
SYSTEM OVERVIEW

S
e

y
a
s

OPERATING SYSTEMS BOOKS

Madnick, S.E. and Donovan, J.J.

Operating Systems, McGraw Hill, 1974

Wording Seiten are ft degree, Jor a 4 Aen vttede Un 40.
Wew | “% § q &

Brinch Hansen, P. Operating System Principles,

Prentice-Hall, 1973

Wao es por 0h eee aC orgitems nor (unc May are,

Organick, E.I., The Multics System: An Examination of

its Structure MIT Press, 1972

Ppumes » Based on Mittes | 27 wok bowl, com bc Arad or

patTiple Qarcts utth Derren’,

MULTICS TECHNICAL REPORTS

MAC-TR-123 Introduction to Multics 6
SS ‘ ‘

too
x MAC ~7R - Sehbedulos

FROM:

Laboratory for Computer. Sciences ")

MIT /

545 Technology Sq. (“Gar oe ou Wha “We a

i
J

Cambridge, MA 02139 Usk 5 once a tytn gt

(617) 253-5894 wt L, soi Oe ka.

PRIME 350-750

SYSTEM ARCHITECTURE

The Prime 350-750 system embodies a number of

novel architectural concepts which form the

foundation for an efficient, powerful operating

system: recursive/rentrant instruction set,

firmware process dispatching, paged/segmented

virtual memory, firmware stack management, and

protection rings. Understanding these concepts

and the way the software utilizes them is pre-

requisite to understanding Prime's product line

today.

€

WON-EMBEDDED OPERATING SYSTEM

(PRIMOS III, 05/360)

user address space another user address
ae See ee ow \ + EN at en ae

“ { {
Te

es >)
| | .

ba)
overs | { wiely

(i
! l

|
i 4 VK

~~ eee

space

2

EVGEDDED OPERATING SYSTEM

(PRIMOS IV, MULTICS)

another

user address space user address space

(ee dN, e ey

: ek \
— as { Sits.

‘ ; t

\ (| SUPERCALIFOOBAR) t
{ {a [

\ eee ¢ (ece t

{ I I
!

Q ? t
On ~ DOSSUB__, : t

. —-

o COMANL i 1
+ 7

: I
l ee 1 t !

\ } 1 1
Uy oes ey \ J ~-sRe- Ke

c

e

ADVANTAGES OF

- AN EMBEDDED OPERATING SYSTEM

Efficient argument passing to the supervisor.

Reentrant supervisor versus serially-reusable

supervisor.

User revlaceability of supervisor components.

WHY NOT =MSED

Protection hardware is inadequate.

Instruction set is not reentrant. ¢

Address space is inadequate for sharing.

PAGING versus SSCMENTATION

AGING is wholesaling of the physicel address

_ space.

© Peges are uniform in size.

e@ Paging solves the main-—nenory
placement problem for the
operating system.

o Peging benefits the operating
system, and is usuelly invisible

to the user.

SEGMENTATION is wholesaling of the virtual

add @ ress space.
-

e Segments are variable in size.

© Segments hold modules (programs
or data). :

e Segments facilitate address-space

management (variable-sized modules;
sharing).

e Segments facilitate access control

(sharing; protected subsystems).

e Implied segment numbers shorten
address fields end @kiowSencapr:
seule .. LD
Segmentation benefits and is
visible to the user.

PAGING and SEGMENTATION cen be combined in a

system, to gain the benefits of both.

.

SEGMENTS ARE DIVIDED InTC 4 Groups oF 1924 ('299))

- DESCRIFTOR TABLE ADDRESS REG

SEGMENT.
NO.

6909

"4069

“2060

DTAR)

DTARL

DTAR2

DTARS

(ptar 9-3)

PRIVATE TO

USER DTARS
(us22 by Gpereting Suster)

PRIVATE TO

USER DTAR2

SHARED BY

ALL USERS DTARI

 USED BY

OPERATING SYSTEM DTARO

USED BY OPERATING SYSTEM

SHARED BY ALL USERS

PRIVATE TO USER

B
E
B
E

S
S
B

B
B
P

B
B
S

RZ

RB
E
E

SE
Se

A USER'S VIRTUAL MEMORY

SEGMENT
NUMBER
(OCTAL)

‘$7777

4999

‘g050 1206

‘Jot 12066

"14

g

NOT USED

RiwG 3 sricc ASRZEVIATIONS

DATA SPACE FOR SHARED LIB

PUDCOM RING® STACK

NOT USED

R-MODE

NOT USED

SHARED PROGRAMS

NOT USED

PRIMOS

eS
e
l

/ (e

PROTECTION RINGS

Fiererchical Gomeins of successively more

restricted privilege.

most privileged;
least restricted
(operating system)

vrivilezed;

Kodules live in rings, and processes visit then.

Your privilege is determined by who you ere
(what segment table you-use) end by what ring
you are in (what module you are executing).

Segment descriptor (32 bits):

ea

3 3 a 22

oa |e | c:| P

F segment fault if set :

P physicel eddress of page table (22 pits)

A access allowed from ring 1: execute/reead/write

B (reserved for access allowed from ring 2)

Cc access allowed from ring 3; execute/read/write

(all eccess is allowed from ring 0)

@
B

E]
’R
B

RB

RS
S
E
S

P
F
S

RK
B
R
E
A

E
A
S
S

BS

WEAKENING

The ring from which access is mede is carried

along with every effective address computation.

Spece is provided for the ring-of-access in all

base registers, in the field address registers,

end in indirect words.

The ring-of-eccess begins with t

which the process is executing ¢

of the RP).

by the
eld-address

n the effective

The ring-of-access is then

ring field in any bese regi

register, or indirect word

address calculation.

The final weekened ring number is then used

to select the allowed access privileges from

the’ segment descriptor.

7 ‘
‘

‘ 4
MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9 PAGE 1

Draft for approval

Published: 1/23/66
Major Revision

: : PE NIAO S

identifteation
All of Hr > ner apphec ble oh PE IGE

(bat He he at (7 20... 7)
Protection of the Supervisor
R. Montrose Graham

Purpose fs

It is essential that certain supervisor procedures and data bases be totally inaccessable to a user. However, the supervisor must be call- able by a user; and, when called, it must be able to access those pro- tected segments which it needs to perform its function. Hence, a method of controlled entry to the supervisor is required, one which removes access restrictions for a group of segments as control passes to the supervisor. Further, it is desirable that the supervisor be protected from itself. Some segments of the Supervisor are more sensitive than. the others. Access to these segments by the rest of the supervisor should be controlled in the same manner as user access to the supervisor. This minimizes the chance of disaster. in the event of minor machine errors and bugs in the supervisor itself. In addition, it aids in test- ing new supervisor modules. Finally, the same protection mechanism should be extendable for use by the users in such situations as an instructor's grading program and a student's solution, where the relation between programs is analogous to the supervisor-user relationship. The following paragraphs describe a framework in which all of these goals can be achieved.

Domains of Access, Rings, halls eee cess, Rings, halls 5
The segments of a process are divided into a number of mutually exclusive Subsets, called rings. A segment <2>, is in one ang only one ring. If we write <a> éR(3) we mean that <ep is in ring 3. It is helpful to. view these rings as annuli with the innermost ring being the hard core supervisor (see figure 1). The lines between rings are wells. The domain of access or segment <a> , D(a), is the union of the ring whicn contains <a> and all outer rings. In figure 1, D(a)=R(3) U R(4) (i.e., the union of ring 3 and ring 4). D(a) is the set of all-segments which <a> may access. The complement of D(a), R(2) U R(1) in figure 1, is the set of segments to which <a> is denied any access. The hard core supervisor has access to all segments of the process. As control
passes outward, access is denied for more and more segments, i.e., the domain of access gets smaller. When control is in R(i) we will say that the segments which are accessable ere unlocked and those which are inaccessable are locked. Whenever control crosses a wall, the domain
of access changes. Hence, when control passes from R(i) to R(i+1)
all the segments in R(i) have to be locked and when control passes from R(itl) to R(i) all the segments in R(it+l) have to be unlocked. Since

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9 PAGE 2

x

all segments within a ring have the same domain of access, procedures

in the same ring may treely cali eacn other. In figure 1, <a7 may call

 and <y> «~ On the other hand, we want controlled entry to R(i)

from R(it+l). There are @ number of- entry points to proceaures in R(i)>

called gates, to which a procedure in an.outer ring may legally transfer

control. When control crosses the wall between R(i) and R(i+1) the

segments of R(i) must be locked or unlocked depending upon the direction’

of crossing. In figure 1, suppose <a> \ fea] is a gate of R(3)- If

<d> calls <a>|[ea] the segments <a> 5.<bY se+-> <x> , and ~y¥7

have to be unlocked. If <a> then calls <h> the segments Ci

 se00,<x> and <yphave to be locked since they are not in the

domain of access of <h> .- Thus, if the locking and unlocking is to

be achieved automatically, crossing a wall in either. direction must

be detected. The procedure segments in each ring are, in general,

normal slave procedures which use a stack. The contents of this stack

needs to be protected in outer rings. Hence, each ring has its own

stack segment which is a member of the ring. When a wall is crossed

stacks must be switched, i-e., as control passes through a wall into

ring i, the stack pointer is changed to point to the stack associated

with ring i. In summary, when a wall is crossed, 1) the crossing has

to be validated, 2) a number of segments have to be locked or unlocked,

and 3) the stack has to be switched.

; Crossing a Wall

Crossing a wall in either direction is detected by a fault. There is

a distinct descriptor segment, D(i), associated witn each ring, R(i).

The contents of all the descriptor segments are identical, except possibly

the access control bits, i.e., the kth descriptor in each D(i) refers

to the same segment. When control is in R(i) the descriptor base register

» DBR, points to D(i). The domain of access of a segment in R{i) is

defined by the access ‘control bits of the descriptors in D(i). Figure

2 shows the access control of the D(i) for the example in figure 1.

When control is in R(i) only those procedures which are in R(i) are mark-

ed procedure in D(i). Any attempt to transfer control to a procedure

sot in R(i) results ina fault. In this fashion 211 crossings of a

wall are detected. There are four different crossing situations:

Saale Hews
1. Inward call; e.g-, <d> calls <a> ude + Bell u code alle

2. Outward return; e.g., <apreturns to <d> ‘call edward bat ac

3. Outward call; e-g-, <a7 calls Zh? tetra iawar |

4. Inward return; €-8+> zhpreturns to “a> .

Inward crossings are detected by a directed fault and outward crossings

are detected by an attempt-to-execute-data fault. When a-wall is crossed

and control passes to R(i) the stack is switched and the DBR is set to

point to D(i). This changing of effective descriptor segment accomplishes

the locking or unlocking of the appropriate segments. Each of the four

crossing situations is described in detail below.

4

2d

DI
K

E
R
G
A
T
A

ev
ja
ip
wi
ls
.%

 4

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BD.9 PAGE 3

Inward Call

If a directed fault occurs and the instruction which caused the fault

is a transter type (tra, tze, «++ but not rtd) then an inward call is

being attempted. An inward call is legal only if the location to which

control is being transferred is a gate. “The processor status when the

fault occurs gives the number of the calling segment (e.g-> d/+)-and

-the segment number and address of the entry point, (e-g-> a:+|ea).

From this information it is determined to what rings d:* and ai# belong

(in figure 1, d* =R(4) and a:+é R(3))- Associated with each ring,

R(i), is a gate list,, G(i) (which can be hash coded). The gate list

for R(i) contains a list of all gates to R(i) and the ring from which

each gate may be entered. In the example, if the pair (aZ | ea,4)

is on G(3) then <d> may call <a> | [ea]. When it has been determined

that this is a valid inward call to R(i), the stack is switched and

the DBR is set to point to D(i). Execution of the faulting instruction

is then completed.

Outward Return

If an attempt-to-execute-data fault occurs and the instruction causing

the fault is an rtd, then an outward return is being attempted. The

number of the segment to which return is being attempted (e.g., d#)

is obtained from the machine conditions at the time of the fault. The

ring number, R(i), of this segment is then determined. If the segment

descriptor in G(i) is marked procedure, then the return is valid. In

the example <d> is in R(4) and its descriptor in D(4) is marked pro-

cedure. Recall that a procedure is marked procedure in the descriptor

segment of the ring to which it belongs, marked data in the descriptor

segment of all inner rings, and marked directed fault in the descriptor

segment of all outer rings. After it has been determined that this

is a valid outward return a flag is set in the stack which indicates

that control is passing outward from this ring via an outward return.

Then the stack is switched and the DBR is set to point to D(i)-

Execution of the faulting instruction is then completed.

Outward Call

An outward call 1s being attempted when an attempt-to-execute-data fault

occurs and the instruction causing the fault is a transfer type (tra,

tze, ..-, but not rtd). The outward call is validated in the same manner

as the outward return. However, before the call can be completed, if

the calling sequence includes arguments, the arguments must be moved

into an area that is accessible by the procedure in the outer ring.

Without making the rule that all arguments to an outward call must lie

in an outer ring, which is undesirable, the caller may have indicated

as an argument some location’in a segment in the ring of the caller.

MULTICS SYSTEM-PROGRAMMER'S MANUAL SECTION BD.9 PAGE 4

For example, if <a> calls <h> with two arguments one being in <y>

and the second being in <z> then the argument in <y> must be moved

to some segment which <h> may access, Therefore, before the call

is completed all arguments which are not accessible by the called

procedure will be moved into the stack belonging to the ring of the

called procedure. Since there are a numder of ditterent types ot arguments

there are a number of different actions which may be required. The

standard call provides tor type 1nformation to be stored in the argument

pointer (See Section BD.7.02). If the type code is 0, it is assumed

that the argument pointer is pointing to ons word of information.

If the type code is non-zero it indicates the structure of the argument.

The number of different types which will be handled properly on an

outward call is restricted to those which are defined as part of the

standard system module interfaces (See Section BB.2). Any of the data,

specitiers, or dope for any of the arguments which lie in a segment which

is not accessible to the called procedure will be moved into the stack

corresponding to the ring ot the called procedure. A new argument List

will be constructed in which the argument pointers will point to the

appropriate new location of all data. Tnis argument list will also

be placed in the stack of the called procedure. The location of the

original argument jist is saved in the stack of the caller for use when

the called procedure returns (see below). In addition, the normal return

point for this call is also saved for use in validating the return.

A flag is set in the stack indicating that control is passing outward

from this ring via an outward call. After this has been done tne stack

is switched, the DBR is properly set, and the faulting instruction is

then completed. 2

Inward Retorn

If a directea fault occurs and the instruction which caused the fault

is an rtd then an inward return is being attempted. The stack is

switched first since it contains information which 1s needed to validate

the inward return. The inward return is validated in the following

fashion. The contents ot the stack are examined to see if tne last

outwara transter of control trom this ring was a call rather than a

return. If it was a call the address to which control is now attempting

to transfer 1s comparea with the normal return point tor the previous

call. If they match the inward return is valid. If they do not match

a check is made to see if any.of the arguments of the call were label

data. Any arguments which were label data represent possible alternate

return points. These addresses are compared with the address to which

control 1s now attempting’ to transter. If a match is found then this

is a valid inward return. If no match is found the return is invalid

and appropriate error action 1s taken. When it 1s founda that tne inward

return 1s valia, all arguments or tne original outward call which had to

be moved into the stack for accessibility are checked to see if they

have been changed. Any arguments which have been changed by the called

procedure must be moved back to their original position. If the original

location ot any of these arguments was in a read-only procedure a tault will

occur during this process. This favlt indicates the caller violated the reac:

only restriction ot tne argument and appropriate error action is taken at this

point.

;

MULTICS SYSTEM-PROGRAMIERS' MANUAL SECTION BD.9 PAGE 5

Oral Aas : . wer

R4RING 4
USER

R3 RING 3

1

Ri RING 1
2

HARD CORE =

SUPERVISOR :
<z?

. (STACK 1)
|

¢h) : Soc

«a> |
'

: |

STACK 4 mae ag

FIGURE 1; DIVISION OF THE SEGMENTS IN A
_PROCESS INTO SUBSETS, CALLED
RINGS.”

i

: |
U

a
e
.

MULIICS SYSLEM-PROGRAMMERS' MANUAL SECTION BD.9

i D(4) D(3) | (2)

roc data data

<d> | slave access slave access slave access

proc i data data

R(4) gh> | slave access slave access slave access

data data data

<z> | slave access slave access slave access

proc data

<a> | directed slave access slave access

fault

 | directed _proc data

fault slave access slave access i

RG); <y > \ master | data data |

access only ; slave access slave access ;

aot on

<=> | master data data

access only - slave access ; slave access '

[R@) Po<e> | directed ; directed i proc

] | i fault \ fault | slave access

Figure 2: ‘Access Controls in the D(i) for figure 1.

PAGE 6

O
a

nA
ae
a™

A
.

&

2-18

Opcrating B. Randell

Systems Editor

The Multics
Virtual Memory:
Concepts and
Design

A. Bensoussan, C.T. Clingen

Honeywell Information Systems, Ine.*

and
R.C. Daley =

Massachusetts Institute of, Technology7

4
in

As experience with use of on-line operating

systems has grown, the need to share information

among system users has become increasingly apparent.

Many contemporary systems permit some degree of

sharing. Usually, sharing is accomplished by allowing

several users to share data via input and output of

information stored in files kept in secondary storage.

Through the use of segmentation, however, Multics

provides direct hardware addressing by user and system

programs of all information, independent of its physical

storage location. Information is stored in segments each

of which is potentially sharable and carries its own

independent attributes of size and access privilege.

Here, the design and implementation considerations

of segmentation and sharing in Multics are first

discussed under the assumption that all information

resides in a large, segmented main memory. Since the

size of main memory on contemporary systems is rather

limited, it is then shown how the Multics software

achieves the effect of a large segmented main memory

through the use of the Honeywell 645 segmentation and

paging hardware.

Key Words and Phrases: operating system, Multics,

virtual memory, segmentation, information sharing,

paging, memory management, memory hierarchy

CR Categories: 4.30, 4.31, 4.32

1. Introduction

In the past few years several well-known systems

have implemented large virtual memories which permit

the execution of programs exceeding the size of available

core memory. These implementations have been

achieved by demand paging in the Atlas computer [11],

allowing a program to be divided physically into pages

only some of which need reside in core storage at any

one time. by segmentation in the B5000 computer [15].

allowing a program to be divided logically into seg-

ments, only some of which need be in core, and by a

combination of both segmentation and paging in the

Honeywell 645 [3, 12] and the 18 360 67 {2} for which

only a few pages of a few segments need be available in

core while a program is running.

As experience has been gained with remote-access,

multiprogrammed systems, however, it has become

apparent that, in addition to being able to take ad-

vantage of the direct addressibility of large amounts of

information made possible by large virtual memories,

many applications also require the rapid but controlled

sharing of information stored on-line at the central

facility. In Multics (Afultiplexed Information and

Computing Service) segmentation provides a gener-

alized basis for the direct accessing and sharing of on-

line information by satisfying two design goals: (1) it

must be possible for all on-line information stored in

Copyright © 1972. Association for Computing Machinery, Inc

“General permission to republish, but not for profit, all or part

of this muaterial is granted, provided that reference is made to this

publication, to its date of issue, and to the fact that reprinting

privileges were gruntec by permission of the Association for Com:

puting Machinery

308

Minor Tevsion of a paperspreented at an ACM Spmpowwm

on Operating System Principles, Princeton University, October

30-22 1969. Work reported herein way supported (in part) by

Project MAC, an MIT research program sponsored by’ the Ad-

vanced Research Projects Agency, Bsrartment of Defense. under

Office of Naval Research Contract Nifber Nonr-4102(1). “Honcy-

well Information Systems, Inc., Cambridge, MA 02142, {Cam-
z

bridge, MA 02142. z
5

Communications May 1972

of Volume 15
the ACM Number 5

the system to be addressed directly by a processor and

heyee referenced directly by any computation; (2) it

5 yest: possible to control access, at each reference, to

lovrline information in the system.

The fundamental advantage ‘of direct addressibility

hat‘ information copying is no longer mandatory.

se all instructions and data items in the system are

processor-addressible,
duplication of procedures and

det is unnecessary. This means, for example, that core

Hy ges of programs need not be prepared by loading

and binding together copies of procedures before

ution; instead, the original procedures may be used

fectly in a computation. Also, partial copies of data

Ps need not be read, via requests to an 1/0 system,

into core buffers for subsequent use and then returned,

| means of another 1/0 request, to their original

EScations; instead the central processor executing @

computation can directly address just those required

ata items in the original version of the file. This kind

* access to information promises a very attractive

reduction in program complexity for the programmer.

If all on-line information in the system may be

: EY dressed directly by any computation, it becomes

imperative to be able to limit or control access to this

information both for the self-protection of a computa-

{ on from its own mishaps, and for the mutual protec-

lon of computations using the same system hardware

facilities. Thus it becomes desirable to compartmentalize

F package all information in a directly-addressible

ew temory and to attach access attributes to these in-

formation packages describing the fashion in which

may reference the contained data and pro-

dures. Since all such information is processor-

faddressible, the access attributes of the referencing

user must be enforced upon each processor reference

> any information package.

Given the ability to directly address all on-line

information in the system, thereby eliminating the

jeed for copying data and procedures, and given the

‘bility to control access to this information, controlled

sharing among several computations then follows as a

tatural consequence.

In Multics, segments are packages of information

which are directly addressed and which are accessed in

4 controlled fashion. Associated with each segment is

i set of access attributes for each user who may access

the segment. These attributes are checked_b hardware

upon each segment reference by any user. Furthermore

il on-line information in a Multics installation can b

directly referenced as segments while in other systems

most on-line information is referenced as 0

is paper discusses the properties of an “idealized”

Uultics memory comprised entirely of segments

“erenced by symbolic name, and describes the simula-

-son of this idealized memory through the use of both

specialized hardware and system software. The result of

this simulation is referred to as the Multics virtual

memory. Although the Multics virtual memory has

ach user
I

109

2-139

been discussed elsewhere (3, 6, 7] at the conceptual

level or in its earlier forms, the implementation pre-

here represents a mechanism resulting from
sented

several consecutive implementations leading to an

effective realization of the design goals.

2. Segmentation

the
A basic motivation behind segmentation is

> desire to permit information sharing in a more auto-

matic and general manner than provided by non-

segmented systems. Sharing must be accomplished

without duplication of information and access to the

shared information must be controlled not only in

secondary memory but also in main memory.

In most existing systems that provide for informa-

tion sharing, the two requirements mentioned above are

not met. For example, in the CTSS system (5], informa-

tion to be shared is contained in files. In order for

several users to access the information recorded in a

file, a copy of the desired information is placed in a

buffer in each user’s core image. This requires an

explicit, programmer-control
led 1/o request to the file

system, at which time the file system checks whether

the user has appropriate access to the file. During

execution, the user program manipulates this copy and

not the file. Any modification or updating is done on

the copy and can be reflected in the original file only by

an explicit 1/0 request to the file system, at which time

the file system determines whether the user has the

right to change the file.

In nonsegmented systems,

makes it nearly impossible to control access to shared

information in core. Each program in execution is

assigned a logically contiguous, bounded portion of

core memory or paged virtual memory. Even if the

nontrivial problem of addressing the shared intormation

in core were solved, access to this information could

dditional hardware as-
not be controlled without a)

sistance. Each core image consists of a succession of

anonymous words that cannot be decomposed into the

original elementary parts from which the core image

was synthetized. These different parts are indistinguish-

able in the core image; they have lost their identity and

thereby have lost all their attributes, such as length,

access rights, and name. As a consequence, nonseg-

mented hardware is inadequate for controlled sharing

in core memory. Although attempts to share informa-

tion in core memory have been made with nonseg-

mented hardware, they have resulted in each instance

being a special case which must be preplanned at the

supervisory level. For example, if all users are to share

a compiler in main memory, it is imperative that none

of them be able to alter the part of main memory where

“privileged” vode

the use of core images

the compiler resides. The hardware

used by the supervisor is often the only means of pro-

tecting shared information in main memory. In order

Communications May 1972

of
Volume 15

eACNE Number 5

q

So

ek

e
k

2-20
to protect the shared compiler, it is made accessible

only in this privileged mode. The compiler can no

longer be regarded as a user procedure; it has to be

accessed through a supervisor call like any other part

of the supervisor, and must be coded to respect any

conventions which may have been established for the

supervisor.
In segmented systems, hardware segmentation can

be used to divide a core image into several parts, or

segments [10]. Each segment is accessed by the hardware

through a segment descriptor containing the segment’s

attributes. Among these attributes are access rights that

the hardware interprets on each program reference to

the segment for a specific user. The absolute core loca-

tion of the beginning of a segment and its length are

_ also attributes interpreted by the hardware at each

reference, allowing the segment to be relocated any-

where in core and to grow and shrink independently of

other segments. As a result of hardware checking of

access rights, protection of a shared compiler, for

example, becomes trivial since the compiler can reside

in a segment with only the “execute” attribute, thus

permitting users to execute the compiler but not to

change it.

In most segmented systems, a user program must

first call the supervisor to associate a segment descriptor

with a specific file before the program can directly

access the information in the file. If the number of files

the user program must reference exceeds the number

of segment descriptors available to the user, the user

program is forced to call the supervisor again to free

segment descriptors currently in use so that they can

be reused to access other information. Furthermore,

if the number of segment descriptors is insufficient to

provide simultaneous direct access to each distinct file

required by this program, the user must then provide

for some means of buffering this information. Buffering,

of course, requires that information from more than one

file be copied and coalesced with other distinctly differ-

ent information having potentially different attributes.

Once the information is copied and merged, the

identity of the original information is lost, thus making

it impossible for the information to be shared with

other user programs. In addition, this form of user-

controlled segment descriptor allocation and buffering

of information requires a significant amount of pre-

planning by the user.

In Multics, the number of segment descriptors

available to each computation is sufficiently large to

provide a segment descriptor for each file that the user

program needs to reference in most applications. The

-availability of a large number of segment descriptors to

each computation makes it practical for the Multics

supervisor to associate segment descriptors with files

upon first reference to the information by a user pro-

gram, relieving the user from the responsibility of

allocating and deallocating segment descriptors. In

addition, the relatively large number of segment

30

descriptors eliminates the need for buffering, allowing

the user program to opcrate directly on the original

information rather than on a copy of the information.

In this way, all information retains its identity and

independent attributes of length and access privilege

regardless of its physical location in main memory or on

secondary storage. As a result, the Multics user no

longer uses files; instead he references all information

as segments, which are directly accessible to his pro-

grams.
To Multics users, all memory appears to be com-

posed of a large number of independent linear core

memories, each associated with a descriptor. A user

program can create a segment by issuing a call to the

supervisor, giving, as arguments, the appropriate

attributes such as symbolic segment name, name of each

user allowed to access the segment with his respective

access rights, etc. The supervisor then finds an unused

descriptor where it stores the segment attributes. The

segment having been created, the user program can

now address any word of the corresponding linear

memory by the pair (name, i) where “name” is the

symbolic name of the segment and “i” is the word

number ‘in the linear memory. Furthermore, any

other user can reference word number i of this segment

also by the pair (name, i) but he can access it only

according to the access rights he was given by the

creator and which are recorded in the descriptor.

Combinations of the “read,” “write,” “execute” and

“append” access rights [6] are available in Multics.

A simple representation of this memory, referred to

as the Multics idealized memory, is shown in Figure 1.

3. Paging

In a system in which the maximum size of any seg-

ment was very small compared to the size of the entire

core memory, the “swapping” of complete segments

into and out of core would be feasible. Even in such a

system, if all segments did not have the same maximum

size, or had the same maximum size but were allowed to

grow from initially smaller sizes, there remains the

difficult core management problem of providing space

for segments of different sizes. Multics, however,

provides for segments of sufficient maximum size so

that only a few can be entirely core-resident at any one

time. Also, these segments can grow from any initial

size smaller than the maximum permissible size.

By breaking segments into equal-size parts called

pages and providing for the transportation of in-

dividual pages to and from core as demand dictates,

the disadvantages of fragmentation are incurred, as

explained by Denning [9]. However, several practical

problems encountered in the implementation of a

segmented virtual memory are solved.

First, since pages are all of equal size, space alloca-

tion is immensely simplified. The problems of “com-

Communications May 1972
of

Volume 15

the ACM Number 5

bea
ks

ba
t

1. Multics idealized memory.

pacting” information in core and on secondary storage,

characteristic of systems dealing with variable-sized

segments or pages, are thereby eliminated.

Second, since only the referenced page of a segment

need be in core at any one instant, segments need not be

small compared to core memory.

Third, “demand paging” permits advantage to be

taken of any locality of reference peculiar to a program

hy transporting to core only those pages of segments

which are currently needed. Any additional overhead

associated with demand paging should’ of course be

weighed against the alternative inefficiencies associated

with dedicating core to entire segments which must be

swapped into core but which may be only partly ref-

erenced.

Finally, demand paging allows the user a greater

degree of machine independence in that a large pro-

gram designed to run well in a large core memory con-

figuration will continue to run at reduced performance

on smaller configurations.

4. The Multics Virtual Memory

Multics simulates the idealized memory, represented

in Figure I, using the segmentation and paging features

of the 645 assisted by the appropriate software features.

The result of the simulation is referred to as the “Multics

Virtual Memory.” The user can keep a large number of

segments in this memory and reference them by symbolic

name; upon first reference to a segment, the supervisor

automatically transforms the symbolic name into the

appropriate hardware address which is directly used

by the processor for subsequent references.

The remainder of this paper explains the addressing

mechanism in the 645 and describes how the Multics su-

pervisor simulates the Multics idealized memory.

wat

5. The Honeywell 645 Processor

The features of the 645 processor which are of in-

terest for the implementation of the Multics virtual

memory are segmentation and paging.

5.1 Segmentation

Any address in the 645 processor consists of a

pair of integers isis? is called the segment number;

“7” the index within the segment. The range of “5” and

&j is 0 to 2% — 1. Word [s, i] is accessed through a

hardware register which is the sth word in a table called

a descriptor segment (ps). The descriptor segment is in

core memory and its absolute address is recorded in a

processor register called a descriptor base register

(ppR). Each word of the ps is called a segment descriptor

word (spW); the sth spw will be referred to as spw(s).

See Figure 2.

The par contains the values:

par -core which is the absolute core address of the DS.

ppr-t which is the length of the Ds.

Segment descriptor word number “‘s”’

values:

spw(s)-core which is the absolute core address of

the segment Ss.

spw(s)-L which is the length of the segment s.

spw(s)-acc which describes the access rights for

the segment.

spw(s)-F which is the “missing segment” switch.

contains the

A simplified version of the algorithm used by the

processor to access the word whose address is {s, é]

follows (see Figure 2):

If pBR-L < 5, generate a trap, OF

supervisor.

Access spw(s) at absolute location DBR-core +s.

If spw(s)-F = ON, generate a missing segment fault.

If spw(s)-L < é, generate a fault.

If spw(s)-ace is incompatible with the requested

operation, generate a fault.

Access the word whose absolute address is sow(s)-

fault’? to the

core + i.

5.2 Paging

The above description assumes that segments are

not paged; ia fact, paging is implemented in the

In the Multics implementation. all
645 hardware.

segments are paged and the page size is always 1,024

words.

Element

p'" page of the segment, "»

:

P

Each segment is referenced by a processor through a

page table (PT). The pT of a segment is an array or

“p? of a segment is the wt word of the

“and “*p” being defined by

= imod 1,024

= (i — »)/1,024

Communications
May 1972

of
Volume 15

the ACM
Number 5

2222

Fig. 2. Hardware segmentation in the Honeywell 645.

os

sow(s)

SEGMENT “S* core] eee] F

physically contiguous words in core memory. Each

element of this array is called a page table word (PTW).

Page table word number p contains:

PTw(p)-core which is the absolute core address of

page number p.

ptw(p)-F which is the “missing page” switch.

The meaning of pBR-core and spw(s)-core is now:

psr-core = Absolute core address of the pt of the

descriptor segment.

spw(s)-core = Absolute core address of the pT of

segment number s.

A simplified version of the algorithm used by the

processor to access the word whose address is [s, ‘] is

as follows (see Figure 3):

If ppr-L < 5s, generate a fault.

Split s into the page number s, and word number Sy -

Access PTW(s,) at absolute location

DBR-core + Sp-

If prw(s,)-F = ON, generate a missing page fault.

Access spw(s) at absolute location

PTW(s,)-core + Se -

If spw(s)-F = ON, generate a missing segment fault.

If spw(s)-L < i, generate a fault.

If spw(s)-acc is incompatible with the requested

operation, generate a fault.

Split i into the page number i, and word number i, .

Access PTW(i,) at absolute location

spw(s)-core + ip.

If ptw(i,)-F = ON, generate a missing page fault.

Access the word whose absolute location is

PTW(i,)-core + ie.

In order to reduce the number of processor refer-

ences to core storage while performing this algorithm,

each processor has a small, high-speed associative

memory {12] automatically maintained so as to always

contain the PTW’s and spw’s most recently used by the

processor.)The associative memory significantly reduces

Si STLB on Prime

Fig. 3. Hardware segmentatic * and paging in the Honeywell 645.

nao eam
me Mu os pretends)

sows)

qnecng

wor [1]

the number of additional memory requests required

during address preparations.

6. Multics Processes and the Multics Supervisor

A process is generally understood as being a program

in execution. A process is characterized by its state-

word defining, at any given instant, the history resulting

from the execution of the program. It is also charac-

terized by its address space. The address space of a

process is the set of processor addresses that the process

can use to reference information in memory. In Multics,

any information that a process can reference by an

address of the form (segment number, word number) is

said to be in the address space of the process. There isa

one-to-one correspondence between Multics processes

and address spaces. Each process is provided with a

private descriptor segment which maps segment num-

bers into core memory addresses and with a private

table which maps symbolic segment names into seg-

ment numbers. This table is called the Known Segment

Table (KsT).

The Multics supervisor could have been written so

as not to use segment addressing of course; but organiz-

ing the supervisor into procedures and data segments

permits one to use, in the supervisor, the same conven-

tions that are used in user programs. For instance, the

call-save-return conventions [7] made for user pro-

grams can be used by the supervisor; the standard way

to manufacture pure procedures in a user program is

also used extensively in the supervisor. A less visible

advantage of segmentation of the supervisor is that

some supervisory facilities provided for the management

of user segments can also be applied to supervisor

segments; for example, the demand paging facility

designed to automatically load pages of user segments

Communications May 1972

of Volume 15

the ACM Number 5

can also be used to load pages of supervisor segments.

a result, a large portion of the supervisor need not

" s

EI { de permanently in core.

eUnlike most supervisors, the Multics supervisor does

~ aot operate in a dedicated process or address space.

| Instead, the supervisor procedure and data segments

are shared among all Multics processes. Whenever a

new process: is created, its descriptor segment is ini-

, tialized with: descrip
tors for all supervisor segments

rl allowing thé-process to perform all of the basic super-

visory funcftons for itself. The execution of the super-

1 visor in the address space of each process facilitates

4 ’ communication between user procedures and supervisor

procedures. For example, the user can call a supervisor

procedure as if he were calling a normal user procedure.

Also, the sharing of the Multics supervisor facilitates

simultaneous execution, by several processes, of super-

visory functions, just as the sharing of user procedures

facilitates the simultaneous execution of functions

written by users.

Since supervisor segments are in the address space

of each process, they must be protected against un-

authorized references by user programs. Multics pro-

vides the user with a ring protection mechanism [13]

which segregates the segments in his address space into

several sets with different access privileges. The Multics

supervisor takés advantage of the existence of this

&% nechanism and uses it, rather than some other special

4 mechanism to protect itself.

i

3

i

7. Segment Attributes

7A Directory Hierarchy

The name of a segment and its attributes are asso-

ciated in a catalogue. Conceptually this catalogue con-

sists of a table with one entry for each segment in the

system. An entry contains the name of the segment and

all its attributes: length, memory address, list of users

allowed to use the segment with their respective access

rights, date and time the segment was created, etc.

In Multics, this catalogue is implemented as several

segments, called directories, organized into a tree

structure. A segment name is a list of subnames refiect-

ing the position of the entry in the tree structure, with

respect to the beginning, or root directory (ROOT) of

the tree. By convention, subnames are separated by the

character“ >”. Each subname is called an enfryname

and the dist of entrynames is called a pathname. An

entryname is unique in a given directory and a path-

name is unique in the entire directory hierarchy. Be-

cause of its property of uniquely identifying a segment

in the directory hierarchy, the pathname has been

chosen as the symbolic name by which the Multics user

must reference a segment. There are two types of direc-

tory entries, branches and links. A branch is a directory

entry which contains all attributes of a segment while a

link is a directory entry which contains the pathname of

w
e

313

ea, ee

another directory entry. A more detailed description of

the directory hierarchy and of the use of links is given

by Daley and Neumann [6].

7.2 Operations on Segment Attributes

- Supervisor primitives perform all ‘pperations on

segment attributes. There is a set of primitives available

to the user which allow him, for example, to create @

segment, delete a segment, change the eatryname ofa

directory entry, change the access rights of a segment,

list the segment attributes contained in a directory, etc.

Creating a segment whose pathname is ROOT

>A>Brc (see Figure 4) consists basically of the fol-

lowing steps:

Check that entryname C does not already exist in

the directory ROOT > A > B.

Allocate space for a new branch in directory ROOT

>AD>B.

Store in the branch the following items:

The entrynamec.

The segment length, initialized to zero.

The access list, given by the creator.

The segment map, consisting of an array of second-

ary memory addresses, One for each page of the segment.

The maximum length of a segment in Multics being 64

pages, the segment map for any segment contains 64

entries. Since the segment length is still zero, each

entry of the segment map is initialized with a “null”

address, showing that no secondary memory has been

assigned to any potential page of the segment.

The segment status “inactive,” meaning that there

is no page table for this segment. The segment status,

which may be either “active” or ‘inactive’ is indicated

by the acrive switch.

Fig, 4. Directory hierarchy.

saneee

 May 1972

of
Volume 15 Communicationy

the ACM
Number $

TA
 A
e

e
e
e

Ae
O
e
e
e
|
e
c
e

ey ee

8. Segment Accessing

Although the creation of a segment initializes its

attributes, additional supervisor support is required to

make the segment accessible to the processor when 2

user program references the segment by symbolic name.

8.1 Symbolic Addressing Conventions

The pathname is the only symbolic name by which

a segment can be uniquely identified in the directory

hierarchy. However, for user convenience, the system

proxides a facility whereby a user can reference a s¢g-

ment from his program using only the last entryname of

the segment’s pathname and supplying the rest of the

pathname according to system conventions. This last

entry name is called the reference name.

When a process executes an instruction which

attempts to access a segment by means of its reference

name, the Multics dynamic linking facility [7] is auto-

matically invoked. The dynamic linker determines the

missing part of the pathname according to the above-

mentioned system conventions. These conventions are

called search rules and may be regarded as a list of

directories to be searched for an entryname matching,

the specified reference name. When this entryname is

found in a directory, the directory pathname is prefixed

to the reference name yielding the required pathname.

The dynamic linker, using the ‘Make Known” module

(Section 8.2), then obtains a segment number by which

the referenced segment will be accessed. Finally it trans-

forms the reference name into this segment number so

that all subsequent executions of the instruction in this

process access the segment directly by segment number.

Further details are given by Daley and Dennis [7].

8.2 Making a Segment Known to a Process

Each time a segment is referenced in a process by its

pathname, either explicitly or as the result of the evalua-

tion of a reference name by the dynamic linking facility,

the pathname must be translated into a segment number

in order to permit the processor to address the segment

for this process. This translation is done by the super-

visor using the KsT associated with the process. The

KST is an array organized such that entry number “s”’,

KSTE(s), contains the pathname associated with segment

number “‘s”. See Figure 5.

If the association (pathname, segment number) is

found in the KsT of the process, the segment is said to be

known to the process and the segment number can be

used to reference the segment.

If the association (pathname, segment number) is

not found in the ksT, this is the first reference to the

segment in the process and the segment must be made

known. A segment is made known by assigning an

unused segment number “s” in the process and by

recording the pathname in KSTE(s) to establish the pair

(pathname, segment number) in the KST of the process.

The directory hierarchy is also searched for this path-

314

Fig. 5. Basic tables used to implement the Multics virtual memory.

name and a pointer to the corresponding branch is

entered in KSTE(s) for later use (Section 8.3.).

The per-process association of pathname and seg-

ment number is used in the Multics system because it

is impossible to assign a unique segment number to

each segment. The reason is that the number of seg-

ments in the system will nearly always be larger than

the number of segment numbers available in the

processor.

When a segment is made known to a process by

segment number “'s,”” its attributes are not placed in

spw(s) of the descriptor segment of that process.

spw(s) having been initialized with the missing segment

switch ON, the first reference in this process to that

segment by segment number “‘s’’ will cause the processor

to generate a trap. In Multics this trap is called a

“missing segment fault” and transfers control to a

supervisor module called the segment fault handler.

8.3 The Segment Fault Handler

When a missing segment fault occurs, control is

passed to the segment fault handler to store the proper

segment attributes in the appropriate sow and set the

missing segment switch OFF in the sow.

These attributes, as shown in Figure 3, consist of

the page table address, the length of the segment, and

the access rights of the user with respect to the segment.

The information initially available to the supervisor

upon occurrence of 2 missing segment fault is the seg-

ment number “‘s.”

The only place where the needed attributes can be

found is in the branch of the segment. Using the segment

number ‘*s”, the supervisor can locate the KST entry

associated with the faulting segment, it can then find the

required branch since a pointer to the branch has been

stored in the KST entry when the segment was made

known to this process (Section 8.

Communications May 1972
of Volume 15
the ACM Number 5

Using the active switch (Figure 5) in the branch, the

pi pervisor determines whether there is a page table

zi this segment. Recall that this switch was initialized

42 branch at segment creation time. If there is no

ge table, onc must be constructed. A portion of core

Benn is permanently reserved for page tables. All

page tables are of the same length and the number of

_page tables is determined at system initialization. .

Ei The supervisor divides page tables into two lists:

ne used Hst and the free list. Manufacturing a page

table (PT) for a segment could consist only of selecting

FA pr from the free list, putting its absolute address in

Ine branch and moving it from the free to the used list.

If this were actually done, however, the servicing of each

issing page fault would require access to a branch

nce the segment map containing secondary storage

‘addresses is kept there (Figure 5). Since it is impractical

‘or all directories to permanently reside in core, page

‘ault handling could thereby require a secondary

torage access in addition to the read request required

to transport the page itself into core. Although this

 ogeeapen works, efficiency considerations have led

to the “activation” convention between the segment

fault handler and the page fault handler.

Activation. A portion of core memory is permanently

reserved for recording attributes needed by the page

fault handler, i.e. the segment map and the segment

* agth. This portion of core is referred to as the active

zi _gment table (ast). There is only one AST in the system

mF ond it is shared by all processes. The AST contains one

entry (ASTE) for each pT. A PT is always associated with

an asTE, the address of one implying the address of the

other. They may be regarded as 2 single entity and will

be referred to as the (PT, ASTE) of a segment. The used

list and free list mentioned above are referred to as the

(pT, ASTE) free list and the (PT, STE) used list.

A segment which has a (PT, ASTE) is said to be

active. Being active or not active is an attribute of the

segment and is recorded in the branch using the active

switch.

When the active switch is ON, both the segment map

and the segment length are no longer in the branch but

are to be found in the segment’s (PT, ASTE) whose

ade ess was recorded in the branch during “activation”

Find a free (PT, ASTE)- (Assume temporarily that at

least one is available).

Move the segment map and the segment length from

the branch into the ASTE.

Set the active switch ON in the branch.

Yecord the pointer to (PT, asTe) in the branch.

By pairing ar ASTE with a PT in core, the segment

faut handler has guaranteed that all segment attributes

needed by the age fault handler are core-resident,

pe nitting more >

ficient page fault serv iving.

Connection. » ment is active, the corre:

sponding .pW must be “connected” to the segment. To

of; ¢ segment.

to activate a segment, the supervisor must:

r|
mee the se!

|

3s

2-25

connect the spw to the segment the supervisor must:

Get the absolute address of the PT, using the (PT,

‘ASTE) pointer kept in the branch, and store it in sow.

Get the segment length from the asTe and store it

in the sDw.

Get the access rights for the user from the branch

and store them in the SOW.

Turn off the missing segment switch in the sow.

Having defined activation and connection, segment

fault handling can now be summarized as:

Use the segment number s to access the KST entry.

Use the kst entry to locate the branch.

If the active switch in the branch is OFF, activate the

segment.

Connect the sow.

Note that the active switch and the (PT, ASTE)

pointer in the segment branch “qutomatically” guar-

antee segment sharing in core since all spw’s describ-

ing a given segment will point to the same PT.

Once the segment and its sow have been connected,

the hardware can access the appropriate page table

word. If the page is no! in core, a missing page fault

occurs, transferring control to the supervisor module

called the page fault handler.

8.4 The Page Fault Handler

When a page fault occurs the page fault handler is

given control with the pT address and the page number

of the faulting page. The information needed to bring

the page into core memory is the address of a free block

of core memory into which the page can be moved and

the address of the page in secondary memory. The

term page frame is also used to denote a block of core

memory which holds a pase of information [9].

A free block of core must be found. This is done by

using a data base called the core map. The core map is

an array of elements called core map entries (CME).

The 1" entry contains information about the 1" block

of core (the size of all blocks is 1,024 words). The

supervisor divides this core map into two lists; the core

map used list and the core map free list.

The job of the page fault handler consists of the

following steps:

Find a free block of core and remove its core map

entry from the free list. (Assume temporarily that the

free list is not empty.)

Access the ASTE associated with the pt and find the

address in secondary memory of the missing page.

If this address is a “null” address, initialize the

block of core with zeros and update the segment length

in the ASTE; this action is only taken the first time the

page is referenced since the segment was created and

provides for the automatic growing of segments. Other-

wise issue an I © request to Move the page from second-

ary memory into the free block of core and wait for

completion of the request via a call to the “trallic

controller” [14] which is responsible for processer

multiplexing.

Commrsnications May 1972

of
Volume 15

"a
Number 5

2-26

Store the core address in the ptw, remove the fault

fromthe pTw, and place the core map entry in the used list.

5 Page Multiplexing

There are many more pages in virtual memory than

there are blocks of core in the real memory; therefore,

these blocks must be multiplexed among all pages. In

the description of page fault handling it was assumed

that a free block of core was always available. In order

to insure that this is nearly always true, the page fault

handler, upon removing a free block from the core map

free list, examines the number of remaining free list

entries; if this number is less than a preset minimum

value, a page removal mechanism is invoked a sufficient

number of times to ensure 4 nonempty core map free

list in all but the most unusual cases. A nonempty core

map free list eliminates waiting for page removal during

the handling of a missing page fault.

To get a free block of core, the page removal mech-

anism may have to move a page from core to secondary

memory. This requires: (a) an algorithm to select a

page to be removed; (b) the address of the pTw which

holds the address of the selected page, in order to set a

fault in it; and (c) a place to put the page in secondary

memory.

The selection algorithm is based upon page usage.

It is a particularly easy-to-implement version (4] of the

“Jeast-recently-used” algorithm [I, 8]. The hardware

provides valuable assistance by, each time a page is

referenced, setting ON @ bit, called the used bit, in the

corresponding PTW. The selection algorithm will not be

described in detail here. However, it should be noted

that candidates for removal are those pages described

in the core map used list; therefore, each core map

entry which appears in the used list must contain a

pointer to the associated PTW (Figure 5) in order to

permit examination of the used bit. The action of storing

the pTW pointer in the core map entry must be added

to the list of actions taken by the page fault handler

when a page is moved into core (Section 8.4.).

Once the supervisor has selected the page to be

removed, it takes the following steps:

Set the missing page switch ON in the PTW.

If no secondary memory has been assigned yet for

this page, i.e. the segment map entry for this page holds

a “null” address, assign @ block of secondary memory

and store its address in the segment map entry.

Jssue an 1/0 request to move the page to secondary

storage.

Upon completion of the 1/0 request, move the core

map entry describing the freed block of core from the

core map used list to the core map free list. This may be

done in another process upon noticing the completion

of the 1/0 request.

8.6 (PT, ASTE) Multiplexing

Core blocks can be multiplexed only among pages

of active segments. The number of concurrently active

316

Fig. 6. Supervisor functional modules and data bases.

al = ee Ke)

CY®

segments is limited to the number of (PT, ASTE) pairs,

which is, by far, smaller than the total number of

segments in the virtual memory. Therefore (PT, ASTE)

pairs must be multiplexed among all segments in the

virtual memory.

When segment activation was described, a (PT,

ASTE) pair was assumed available for assignment. In

fact, this is not always the case. Making one segment

active may imply making another segment inactive,

thereby disassociating this other segment from its

(pT, ASTE). Since all processes sharing the same segment

will have the address of the PT in an SDW, it is essential to

invalidate this address in all spw’'s containing it before

removing the page table.

This operation requires: (a) an algorithm to select

a segment to be deactivated; (b) knowing all spw’s that

contain the address of the page table of the selected

segment, in order to invalidate this address; (c) moving

the attributes contained in the asTE back to the branch;

and (d) changing the status of the segment from active

to inactive in the branch.

The selection algorithm for deactivation, like the

selection algorithm for page removal, is based on

usage. When the last page of a segment is removed from

core, the segment becomes a candidate for deactivation.

The algorithm selects for deactivation the segment

which has had no pages in core for the longest period of

time, i.e. the segment which has been least recently used.

Since the number of (PT, ASTE) pairs substantially

exceeds the number of pageable blocks of core, it is

always possible to find an active segment with no pages

in core. i

The asTE must provide all the information needed

for deactivating a scgment. This means that during

activation and connection, this information must be

made available. During activation, a pointer to the

branch must be placed in the asTE; during connection,

a pointer to the sbw must be placed in the AsTE. Since

more than one Spw is connected to the same PT when

the segment is shared by several processes, the super-

visor must maintain a list of pointers to all connected

spw’s. This list is called a connection list. See Figure 5.

After the selection algorithm chooses a (PT, ASTE)

to be freed, the disassociation of the segment from its

Communications May 1972

of
Volume 15

the ACM Number 5

PT, ASTE) done in two steps: disconnection and

sconmection consists of storing a segment fault

n¢ spw whose address appears in the connection

in consists of moving the
in the asTE. Deactivatio

ea map and the segment length from the ASTE

k to the branch, ‘resetting the active switch in the

branch, and putting the (pT, ASTE) in the free list.

Structure of the Supervisor

not the supervisor structure. In this section, the

ifferent components of the supervisor are presented

the ability of portions of the supervisor to utilize

virtual memory is discussed.

el Upto now supervisor functions have been described,

ut

d

Functional Modules

Three functional modules can be identified in the

supervisor described in Section 8; they are called

ectory control (DC), segment control (sc), and

ge control (Pc).

pe performs all operations on segment attributes;

also maps pathnames into segment numbers in the

tT of the executing process. Data bases used by 2

ess executing DC procedures are the directories and

the kst of the process (Figure 6).

z 2 performs segment fault handling. Data bases used

a process executing sc procedures are directories,

the Kst of the process, descriptor segments and (PT,

TE) pairs.

pc performs page fault handling. Data bases used by

a process executing PC procedures are (pT, ASTE) pairs

“i the core map.

12 Use of PC in the Supervisor

One can observe that the page fault handler need not

i if a missing page belongs to a user segment or to

supervisor segment; it only expects to find the in-

formation it requires in the (PT, ASTE) of the segment

io which the missing page belongs. Therefore, if all

AT neue used in sc and pc are always active, then their

pages need not be in core since PC can load them when

hey are referenced.
:

In order to make use of pc in the rest of the super-

isor the following (temporary) assumption must be

made.

E fassumption 1

(a) All segments used in pc are always in core and are

onnected to the descriptor segment of each process.

h) All segments used in sc and Dc are always active

j are connected to the descriptor segment of each

~ ocess.

re

Fl,» Use of SC in the Supervisor

Assumption | is satisfactory in the Multics imple-

“eat except for directories.

aT

2-24

The number of directory segments in the system may

be very large and keeping them always active is not a

realistic approach, since a large number of (PT, ASTE)

pairs would have to be permanently assigned to them.

It would be desirable to use SC to activate and connect

directory segments only as needed.

A necessary condition for handling a segment fault

for segment x in a process is that segment x be known

to that process. Assuming that all directories are known

to all processes, but not necessarily active, reference to

a directory x may cause 2 segment fault. When handling

this fault, the segment fault handler must reference the

parent directory of segment x, where the branch for x

is located. This reference to the parent of x could, in

turn, cause a recursive invocation of the segmeat fault

handler. These recursive invocations can propagate

from directory to parent directory up to the root. If the

root directory is always active and connected to each

process, then the recursion is guaranteed to be finite and

a segment fault for any directory can be handled.

The first assumption can be replaced by the follow-

ing more satisfactory assumption (again temporary).

Assumption 2

(a) All segments used in pc are always in core and are

connected to the descriptor segment of each process.

(b) All nondirectory segments used in SC and Dc are

always active and are connected to the descriptor seg-

ment of each process.

(c) The root directory is always active and connected

to each process.

(d) All directories are always known to each process.

9.4 Use of the Make Known Facility in the Supervisor

However, it is unsatisfactory to keep all directories

known to all processes because of the space that would

be required in each KST. It would be more attractive if

a directory could be made known to a process only

when needed by the process.

Making a segment x known implies searching for its

pathname in the KST. If not found, the parent of x must

first be made known and so on up to the root. If the

root directory is always known to all processes, then

any directory can be made known to a process by calling

recursively the Make Known facility of the supervisor.

Assumption 2 will now be replaced by the final

assumption:

Final Assumption

(a) All segments used in pc are always in core and are

connected to the descriptor segment of each process.

(b) All nondirectory segments used-in sc and DC are

always active and are connected to the descriptor seg-

ment of each process.

(c) The root directory is always active and connected

to each process.

(d) The root directory js always known to cach process.

Given the above assumption, supervisor segments, 2S

Communications
May 1972

of
Volume 15

=v Numbee 5

a

a

a

pa
s

Re
pe
pd
ip
es
cg
 p
e
r
c
e
n
t

et

Cu
e

2-28

ell as usr segments, can ve sted In tne vacua

emory that the supery isor provides.

10. Summary

The most important points discussed in this paper

are summarized below. They are grouped into two

classes: the point of view of the user of the virtual

memory, and the point of view of the supervisor itself.

User Point of View

The Multics virtual memory can contain a very

large number of segments that are referenced by

symbolic names.

Segment attributes are stored in special segments

called directories, which are organized into a tree

structure; by a naming convention known to the user,

the symbolic name of a segment must be the pathname

of the segment in the directory tree structure.

Any operation on directory segments must be done

by calling the supervisor.

Any operation on 4 nondirectory segment can be

done directly in accordance with the access rights that

the user has for the segment; any word of any segment

which resides in the virtual memory can be referenced

with a pair (pathname, i) by the user.

Supervisor Point of View

The supervisor must simulate a large segmented

memory which is directly addressable by symbolic

name and such that any access to the memory is sub-

mitted to access rights checking.

The supervisor maintains @ directory tree where it

stores all segment attributes. It can retrieve the attri-

butes of a segment, given the pathname of that segment.

The supervisor itself is organized into segments

and runs in the address space of each user process.

Any segment, be it a directory or a nondirectory

segment, is identified by its pathname but can be ac-

cessed only using a segment number. For each segment

name the supervisor must assign a segment number by

which the processor will address the segment in the

process.
The processor accesses 4 word of a segment through

the appropriate SDW and pTw, subject to the access

rights recorded in the spw.

A segment fault is generated by the processor when-

ever the page table address or access rights are missing

in the sow. The supervisor then, using the KST entry as

a stepping stone, accesses the branch where it finds the

needed information. If a PT is to be assigned, the super-

visor may have to deactivate another segment.

A page fault is generated by the processor whenever

a ptw does not contain a core address. The supervisor

then, using the ASTE associated with the PT, moves the

missing page from secondary storage to core. This may

require the removal of another page.

318

acanowieagments, 1s paper WOUId VE incomplete

without acknowledgment of the people who worked

so hard to build the virtual memory supervisor portion

of Multics. Special mention goes to G.F. Clancy, M.R.

Thompson, and S.H. Webber who, under the design

leadership of R.C. Daley, have been involved in a major

portion of the design and implementation effort. They

were aided in earlier designs amd-implementations by

C.A. Cushing, S.M. Jones, G.B. Krekeler, N.I. Morris,

P.G. Neumann, R-K. Rathbun, J.D. Van Hausan, M.R.

Wagner, and L.D. Whitehead. Recent implementations

have also benefited from the contributions of S.D.

Dunten and M.C. Turnquist. Contributions in the form

of analyses and discussions have been made by Pa:

Corbaté, E.L. Glaser, J.H. Saltzer, and V.A. Vys-

sotsky.
Finally, our thanks go to P.A. Belmont, M.A. Meer,

and D.L. Stone, who participated in studies leading to

this formalized description of the Multics virtual

memory.

Received April 1970; revised July 1971

References

1. Belady, L.A. A study of replacement algorithms for a virtual-

storage computer. IBM Systems J.5, 2 (1966), 78-101.

2. Comfort, W.T. A computing system design for user service,

Foc AFIPS 1965 FICC, Vol. 27, Pt. 1, Spartan Books, New York,

pp. 619-628.
oP Corbaté, F.J., and Vyssotsky, V.A. Introduction and

2 erview of the Multics system, Proc. AFIPS 1965 FICC, Vol.

37, Pt. 1. Spartan Books, New York, pp. 185-196.

4.’ Corbato, FJ. A paging experiment with the Multics system.

Included in a Festschrift published in honor of Prof. P.M.

Morse. MIT Press, Cambridge, Mass., 1969.

3 Grisman, P.A. Ed. The Compatible Time-Sharing System: A

Programmer's Guide, 2nd Ed., MIT Press, Cambridge, Mass.,

1965.
£ Daley, R.C., and Neumann, P.G. A general-purpose file

system for secondary storage. Proc. AFIPS 1965 FICC, Vol. 27,

Pt. 1. Spartan Books, New York, pp. 213-229.

A ‘baley, R.C., and Dennis, J.B. Virtual memory, processes,

7. a sharing in Multics. Comm. ACM 11, 5 (May 1968), 306-312.

B Denning, P.J. The working set model for program behavior.

Comm. ACM 11,5 (May 1968), 323-333.

9. Denning, P. J. Virtual memory. Computing Surveys 2, 3

(Sept. 1970), 153-189.
10. Dennis, J.B. Segmentation and the design of

nultiprosrammed computer systems. JACM 12, 4 (Oct. 1965),

589-602.
1. Fotheringham, J. Dynamic storage allocation jn the Atlas

computer, including an automatic use of a backing store, Comm.

"ACM 4, 10 (Oct. 1961), 435-436
12. Glaser, E.L., Couleur, J.F., and Oliver, G.A. System design

ta computer for time sharing applications. Proc. AFIPS 1965,

FICC, Vol. 27, Pt. 1. Spartan Books, New York, pp. 197-202.

13, Graham, RM. Protection in an information processing

utility. Comm. ACM II, 5 (May 1968), 365-369.

14 Saitzer, J. H. Traffic Control in a Multiplexed Computer

System. Tech. Rep. No. MAC-TR-30 (Ph.D. Thesis), Project

MAC, MIT, Cambridge, Mass., 1964,

15. The Descriptor - A definition of the B3000 Information

Processing System. Burroughs Corp., Detroit, Mich., 1961.

Communications May 1972
of Volume 15

the ACM Number 5

S
e
a

ea

BS

ea

BS
B
S

-P
B
e

B
K
B

E
E

SE
SF

FAULTS:

1) Micro-code builds a concealed stack frame

"in" PCB

A) Concealed stack frame

@ RPH(seg#) see fault

RPL (word #) table #1

2 KEYS see fault

3 F-Code table #1

4 F-addr H see fault

5 F-addr L tabLe #1

B) Concealed stack is built at address

next in PCB

2) Micro-code set RP to the fault vector in PCB

plus fault offset. NOTE: Ring # is part of

vector

3) Micro-code sets keys to 64V

4) Fetch next instruction

a \ / Se Aut { (act eeeoP he |
{ Zoe \ (Lage Eauer

G f «SC
ysses WHEW : Seid jute pase

Dan por WW ! Gacae Mie i) LU SéC

ee. -
M 4 De mA So MGEL

F
a
u
l
t

A
d
d
r
e
s
s

e
e

F
-
c
o
d
e

F
-
a
d
d
r

Ring
Saved

RP
R
-
M
o
d
e

NAME
P
C
B
-
V
e
c
t
o
r

+
Offset

(16
Bits)

(32
Bits)

Vector

R
e
s
t
r
i
c
t
o
r

V
e
c
t
o
r

of
+

-
RP

at
time

c
u
r
r
e
n
t

b
a
c
k
e
d

"62

I
n
s
t
r
u
c
t
i
o
n

c
u
r
r
e
n
t

of
fault

RXM
ring

P
r
o
c
e
s
s

FVO
+

'4
a
b
o
r
t

RP
at

time
@

c
u
r
r
e
n
t

N63

flags
of

fault

PAGE
PFV

+
‘lg

-
RP

at
time

g
b
a
c
k
e
d

'64

of
fault

Svc
V
e
c
t
o
r

of
+

'14
-

RP
at

time
c
u
r
r
e
n
t

c
u
r
r
e
n
t

"65

c
u
r
r
e
n
t

of
fault

ring

UII
Vector

of
+

'2¢
RPL

RP
at

time
current

backed
'66

current
of

fault

ring

Illegal
Vector

of
+

'4%
RPL

RP
at

time
current

backed
re

I
n
s
t
r
u
c
t
i
o
n

c
u
r
r
e
n
t

of
fault

ILL
ring

A
c
e
s
s

FV¢
+

'44
"V1

RP
at

time
G

b
a
c
k
e
d

173

Violation
of

fault

A
r
i
t
h
m
e
t
i
c

V
e
c
t
o
r

of
+

'5¢
tie

RP
at

time
c
u
r
r
e
n
t

c
u
r
r
e
n
t

"74

e
x
c
e
p
t
i
o
n

c
u
r
r
e
n
t

of
fault

ring

Stack
Fv¢

+
'54

"13
RP

at
time

g
backed

'75
;

Overflow
of

fault

Segment
FV¢

+
'60

‘14
RP

at
time

9
backed

"C6

of
fault

Pointer
Vector

of
+

'64
"15

Address
of

current
backed

Te

c
u
r
r
e
n
t

p
o
i
n
t
e
r

ring

T
t
i
e
r
w
r
T
r
e
E
r
e
r
g
e
w
r
g
e
s
i
i
e

w
r
e
r
g
r
r
e
e
e
n

re
 e
e

e
e

e
e

e
e

e
e

5) The first instruction of a fault handler is

a CALF.

a PCL instruction except:

A CALF instruction is the same as

The stack frame built has additional inform—

ation (see *)

CALF Stack Frame Header (V-Mode)
a
n

N
O

o
n

10

ll

13
14

215

STACK ROOT SEGMENT NUNES

RETURN POINTER

CALLER'S SAVED STACK
* REGISTER

CALLER' SAVED LINK

FAULT CODE

FAULT ADDRESS

CALF
PCL

From

From

From

From

set to 1
set to @

concealed

concealed

concealed

concealed

Stack

stack

stack

stack

e 6) The CALF points to an ECB which descrives the fault

handler.

i a) At this point the fault handler is ent red and a

return information is in the current s:ack. The fault

handler is executed as a subroutine of the faulting

routine.

a

h
a

HF
ee

HF
&

&

(Rev Is)

| REFAULT MECHANISM

— APPROXIMATELY 600 WORDS FOR STACK ONLY

~ WECHANISM FOR DEFERRING FAULTS UNTIL THE RETURN FROM PCFSTK :

- REFALT MODIFIES THE RETURN PB IN A STACK FRAME AND PUSHES A
FRAME IN THE CONCEALED STACK SO THAT A SIMULATED FAULT MAY BE

TAKEN WHEN LEAVING PGFSTK

normal
code

Process
fault?

increment
inhibit counter

Do we own locks?
Are Process faults
inhibited?
urrently on PGFSTK?

normal
code

PCL entry |

save registers,
update flags, etc.

OR fault code into
ABSAVE (PUDCOM)

decrement inhibit counter

Are we inhibited
or do we own locks?

were we previously.
on PGFSTK?

fault frame?

Does 2nd frame
point to ARGT

save frame 2
return PB in PUDCOM

ESRB) CY

replace return PB

with one pointing
to our ARGT . -

return

=

execute our ARGT

Call Process-fault
handler PCL entry

Return throug
ved pointer + .

=eve we already
a ong

set repre to our code

create CNSTK entry
using original stack
information

Ge

A

Do CALF to Process-fault
handler on SUPSTK

2
Set up
fault frame

 Call PABORT

return either to
original return point
or to our ARGT

u
awery

adeg

Z
auesiy

adeg

]
surety

adeg

DaSLAO
Aq

paresoyye
pu

11e}S
PjOd

We

peleard
oie

ad1Aap

Suiged
uo

s
j
u
a
w
d
a
s

A
N
L
O
V
A

Aq
A
y
p
e
o
m
e
u
d
p

p
a
y
e
a
r

uryyiM
aged

jen}

 2
A
r
o
w
a
w

u1ew
0}

JuaWsas
ats

woaj
Suiddeu

<
7

A
r
o
w
s
p

e
n
s
)

D
A
S
L
A
S

Aq
Aypeotweudp

payears
ad1aap

u
ssa201g

Bursed
0}

juawdas
p
e
n
a

i
wosj

Suiddew
<
—
-

‘

a
sy

@
l

>
=
=
>

ee
ee

me)
ee

na
aseg

aseg
quawsag

re
eS:

7
M
e
e
t

e
e

>
ee

cai
eS
S
e

~
19

C
a
e
r

r
s

@
I

q
+
S

sat
aseg

aseg
quawsas

ce
.

ZF

e
e

T
e

we
a

baw
e
e
e

Aroweay
ulew

Arowayw
T
E
N
A

q
ssad0ig

Zz
++

f
a
d
e
d

bseq
S
e

ae

t
e
e

=
=

>
u
a
W
s
a
S

a
e

i
S
o
l
a

ard
\

z
1

q
a

*
+
*
b
a
s
e
g

ased
q
u
a
w
s
a
s

q
qawsas

N.S
s
-
.

-
S
S
S
 $s

i
h

~
a
s

Z
i

oe
ae

ee
ae

ete
ee
e
e

\

|
ae

a8eg
Jase

eee
‘

RB
J
U
a
U
s
a
S

a

z
1

eB

*
aseg

adeg
T
U
M

9S

aotaeg

Suiseg

Azoway

Tenia
)

z
t

fe
w
e

SEGMENT
FAULT
U

GETSES

LOCK

GETSEG DATA
BASE

PSDW<- SDWNDX (XUSR,XSEG)
GET INDEX OF SDW OF FAULTING
SEGMENT ,[oTeee i Psdis |

See# # 4000 2477/
AND

” v
 ts Sta. Drock. Ween

CALL ERR RTN
TLLEGAL SEG
NO

po 1 = 1, NSEG

CALL ERRRTN
NO AVAILABLE)

SEGMENTS

MARK OWNER

ptuseg(2*1)
pTuseG(2*1-1) =xusR

=XSEG

GET VIRTUAL

Hva = HVA +
HVA = Loc (H

ADDR OF MAP

MAP)
128* (1-1)

LOOK FOR A FREE PAGE MAP

1 = PAGSEG(HVA)

P = MAPNDX(CUSR-LOC(HMAP) + RS(HVA,10)
HP¢- POINTER TO PAGE MAP THAT OWNS PAGE
MAP WE ARE ALLOCATING
i aie +64) = RT(pacsec(HP +64) +

LOCK MAP IN MEMORY
FAULT PAGE IN

ss

|

SET UP_SDW
PAGSEG(PSDW) = Ls(pAGSEG(H).10), 10) + rT(HVA,10)

pacsec(Pspw +1) = :000700 rt(rs(pAcsec(HP),6),6)

3 |
UNLOCK DATA
AND RETURN

ov
z

c
GFISFEy

FRIA00>KSy
ELSs

03/04/78
FAGE

0001
:

=

ibe

ROC),
)

C
GETSEGs

FRIACOSKSy
PLSs

C2/04/78
L
¢
o
c
o
2
)

¢

ACC
A

SFGMFAT
JO

A U
S
E
R

=
C0co2)

°C
ceco4)

SUFRCLTINE
G
E
T
S
E
G
(
X
U
S
R
y
X
S
F
E
)

LCacge)
___INIFGER

XLSRyxSEC
l
c

ee
(OGUE)

C
CVMCCMy

F
R
I
G
C
O
S
I
N
S
E
R
T
y

e
h
P
-
H
L
S
-
J
F
C
-
R
E
G
-
G
N
S
-
B
I
N
-
L
u
S
-
B
E
H
-
J
C
F
-
F
V
D
,

12/02/78
(c008)

NOLIST
POODOT)

Cc
FUCCeF,

FRIGCOy
NIMy

O4/C2/7E
o

_
S
o

(0607)
ACLIST

(ocon
SECRT

CALL
M
_
_
L
C
E
K
R
,

LOCKKs
L
A
L
K
A
s

LALKE,
sia Se

l
e

x
LOCKFS,

LKFSWy
LNLKFSy

GUITONy
cooon)

x
FILFAGy

INFEITy
ENAELF

p
C
o
c
n
s
)

e
S

S
e
e

cucic)
INTEGER

1yFSCWsEVAGEE
(0011)

¢
:

1(GO1?)
C

are
pes

(0012)
CALL

LCCKW(SEGLCK)
7*

LOCK
GETSEG

CATA
(0014)

F
S
C
W
=
S
C
W
N
C
X
C
X
L
E
R

@XSEC)

(0018)
IF(PSDk

E
0
0
)

GCTC
SCO

7*
KO

SLCH
SEGMENT

‘oe a

(0016)
IF

(
P
A
G
S
F
G
(
F
S
C
w
4
1
)
0
C
F
.
0
)

CCTC
260

/*
SEG

ALREADY
EXISTS!

(0017)
IF CAND

(XSEG
9 S

4
C
0
O
)
E
G
e
C

sANCs
CLSReNEsSUSR)

GOTO
9C0

O01")
CL

[eoo1e)
CO

110
I=1,NSEG

/*
LOCK

FOR
AVAILABLE

FOGE-NAP
ie

m
e
e

cnezo)
IF

C
F
T
L
S
E
G
(
Z
4
1
-
1
)
.
E
G
.
0
)

GCIC
200

[
€
0
C
2
1
)
_
1
1
€

COATINLE
i

eae
Citec)

€CTO
$19

7*
NONE

A
V
A
I
L
A
B
L
E

i
e

(0027)
©

(OCZ4)
C

(FCLND
AVAILAELE

FAGE-FAF)
Reotes)

Cc
:

UPAR
(0026)

ZOU
F
T
L
S
E
G
(
2
s
I
-
1
)
=
x
U
S
R

7*
WARK

FAGE=MAP
OWNEC

FY
(XLUSR

(e027)
ETLSEG(241)=xXSEG

recor)
“c

;
ceces)

FVA=LCC(RMAP)
(0020)

FVASEVA41294
(1-1)

7s
VA

OF
AF

ti
(C21)

FF=F
A
P
N
D
X
C
C
L
U
S
R
y
L
O
C
(
F
M
A
F
)
)
4
R
S
(
F
V
A
G
I
O
)

:
7*

NAP
PTR

OF
FVA

(OC22)
PAGSEG(FP+E4)

=RT
(FAGSECC(EP4E4)

91494240000
7s

WIRE
MAP

(022)
I=PACSEG(EVA)

ERING
MAF

TO
MEMORY

NU
toe

9 2

i

f
f

f
f

f
e

e
w

e
e
e

e
e

c
G
E
T
S
E
S

F
R
I
4
C
O
>
K
S
_

ELSy
O
2
/
0
4
/
7
8

P
A
G
E

0
0
0
2

«
O
C
2
4
)

c

P
e
e

O
S

F
A
G
S
E
G
(
P
S
C
h
I
=
E
L
S
C
P
A
C
S
E
G
(
H
F
)

y
1
0
)
4
R
T
(
E
V
A
g
1
0
)

/*
S
E
T

S
O
W

ul
Bester

8
;
(
C
O
R
T
E
)

F
A
G
S
E
G
C
P
S
C
H
4
1
)
=
2
0
0
C
7
T
O
O
F
R
T
(
R
S
E
(
P
A
G
S
E
C
(
H
P
)

g
E
)

g
6
)

/*
P
L
U
S

A
C
C
E
S
S

C
C
A
T
R
C
L
S

C
H
E
S
T
)

200
C
A
L
L

U
N
L
K
N
C
S
E
E
G
L
C
K
)

i
e
o

R
E
T
U
R
N

vais
eet

~
V
O
C
S
)

C

c
u
c
4
o
)

C
C
E
K
R
C
R
S
)

lcocaiy
(
0
0
4
2
)

cud
C
A
L
L

E
R
R
R
I
N
C
Y
S
E
G

s
O
s
*

I
L
L
E
G
A
L

S
E
C
N
C
%

4
1
2
)

(
6
0
4
2
)

2
0

C
A
L
L

E
R
R
R
T
I
N
C
O
s
C
e
*

N
C

A
V
A
I
L
A
F
L
E

S
E
G
M
E
N
T
S
'
y
2
1
)

locaay
¢

ee
i

(
0
0
4
5
)

EAC
F
R
C
G
R
A
M

S
I
Z
E
:

F
R
C
C
E
O
L
R
E

-
CCOZz22Z

L
I
N
K
A
G
E

-
C
O
C
O
E
?

S
T
A
C
K

-
0
0
0
0
3
4

| CO
O
0
G

E
R
R
C
R
S

C
K
<
G
E
T
S
E
G
S
F
I
N
-
R
E
V
I
E

«
2
:

B
E
B
e
a
e
e
E
e
R

E
R
E

B
F
R

R
R

KE
RB

E
E

S
E
 RIN SEG

SUBROUTINE TO FREE SEGMENTS CALLED By DELSEG commAaND AND LOGOUT

(— RINSEG)

SEG = RT (xseG, 12)
REMOVE RING BITS

IF < RETURN
SEG ¢ 320 ERROR CODE

= ESBPAR

-] SAYS DELETE
IF ALL USER SEGS

oe a sec = :4000

DON’T DELETE seG ‘6000

 DON’T DELETE SYS USER’S
sec ‘4000

PSDW = SDWNDN (CUSR, SEG)
GET POINTER TO SDW

NO SUCH SEGMENT

SEGMENT NOT ALLOCATED

HP= MAPNDX (CUSR, SEG)

HP IS ADDRESS OF PAGE MAP
1 = Loc (HMAP)
I 1S ADDRESS OF PAGE MAP

COMMON
PTUP= RS (HP -1,6)
PTUP IS PAGE MAP # “2

f SEGMENT DOES NOT BELONG TO
>Go0) THIS USER IF

RT(PTUSEG
(ptup+2),12) #

SEG ————— a) WRONG SEG #

 LOCKOUT GETSEG
LOCKOUT PAGTUR

N
PAGSEG (Pspw) =0]

PAGSEG (PsDw +1) = voID
ZERO SDW AND SET FAL T BIT

 v
CLEAR STLB

V

CP IS POINTER TO PAGE IN MMAP|
PAGSEG(CP)=0 FREE PAGE INMMAA
PAVCTR = PAVCTR +1
INCREMENT FREE PAGE COUNTER

po 1 =1,64 THIS LOOP RESETS PAGE TABLE
 PAGE NOT IN MEMORY

MARK
PAGSEG(HP) = :20000

NO COPY ON DISK

 NOT IN MEMORY

HP = HP +1

END
OF LOOP

MARK

PTUSEG(PTUP + 1) =0
PTUSEG(PTUP +2) =0

PAGE MAP FREE
 60) ——__——¥

UNLOCK GETSEG
UNLOCK PAGTUR

|

seo #7 ‘ >(7)—> RETURN

SEG = seg +]

RETURN ERROR
CODE = E$BPAR

sec =anD(seG,:6000) + :2000 | NeXT DTAR
 \/

(seg, 1000_ AND\ SEG, 3

20 ——()

RETURN

e
R
T
N
S
E
G
s

E
R
I
S
C
L
O
S
K
S
 4)

E
L
S
 s

D
E
L
O
S
T

TE
P
A
G
E

C001

CEEC1)
eCOC

Qe)
C7

(
G
0
3
)

(
0
0
0
4
)

K
T
N
S
E
G
,

F
R
I
4
C
O
S
K
S
,

ELSy
C
E
/
0
E
/
7
8

TG
R
E
T
U
R
N

CHE
S
E
C
R
E
N
T

CR
ALL:

S
C
G
S

S
U
F
R
C
U
T
I
N
E

R
I
N
S
E
C
C
X
S
E
G
s
x
X
C
O
C
E
)

I
N
T
E
G
E
R

X
S
E
G
e
X
C
C
C
E

(
G
C
O
S
)

¢€
U
V
Y
C
C
M
s

F
R
I
4
Q
O
Z
I
N
S
E
R
T
s

J
b
P
-
P
L
S
-
J
E
C
-
R
E
G
-
G
M
S
-
R
I
N
-
L
U
S
-
B
E
F
-
L
C
F
-
F
V
D
,

1
2
/
0
2
/
7
8

(C008)
NCLIST

coceéy
C

FUCCeFy
FRIMCOy

NIMy
O4/02/7E

O
u
c
o
e
)

A
C
L
I
S
T

eh
(0007)

C
SYSCCMSERRCoF

MNEMCNIC
COCES

FCR
FILE

SYSTEM
(FIN)

O7/2E/7€
coco?)

KCLIST
[(ccos)

SHCRT
CALL

Baber
COCOF)

x
LCCKRy

LOCKWs
UNLKNy

UNLKF ys
(OCF)

x
LCCKFS»

LKFShy
LALKFSy

GLITCN,y
| cocosy

x
_
F
I
L
F
A
G
s

INFEITy
ENAELE

a
a

q
u
c
a
n
)

c

(oc10)
INTEGER

F
S
C
W
s
F
F

9 CFy1ySEG yf TUP
Icociay

fad
i

(oC1Z)
C

(RELEASE
FAGES)

(OC1z>.)
¢

cac14a)
SEG=RTCXSEC

912)
COC1S)

IF(SEGeLTo:2C0G)
GCTC

00
7*

NOEOCY
ALLCWED

(0C16)
1FCXSEGsEGe-1)

SEG=24000
/*

IF
LCOFING

(0017)
C

+++
RETURN

CAE
SEGMENT

(SEC)
(01f)

10
IF(SEGsEGe:€000)

GCTC
00

7+
SKIP

STACK
SEG

(oc1s)
TFCAND(SEGy240CO)eFO.0

wANC.
CLSReNESSLSAY

CCTC
€00

/*
NCO

ORCINERY
LSR

|coc20)
F
S
C
W
E
S
C
W
N
C
X
(
C
L
E
R

+SEG)
(0C21)

TFCPSCheEGeC)
ECTC

ECO
7*

NO
SUCK

SEGMENT
(0022)

IF(PAGSEG(FSCK41)eLT.0)
GOTO

£CO
/*

SEGMENT
ALREADY

MISSING
[cnce2)

E
P
E
M
A
P
N
O
Y
(
C
L
E
R

SEG)
(0024)

T=LCC(FMAF)
(0025)

PTLP=RS(FF+146)
| «ucze)

I
F
(
C
F
T
U
S
E
G
(
F
I
L
E

41
eNEwCLSR)

CCTC
£0C

(0C27)
IF

(RTCPTUSEC
(PTUP42)y12)eNE«SEC)

GCTC
f0C

i
(0026)

C
(moos)

CALL
LCCKK(SECLCK)

/+
LOCK

GETSEG
DATA

cnoz0)
CALL

LCCKW(FAGLCK)
7*

SHOULD
NOT

GET
A

PAGE-FALLT!
(0021)

PAGSEG(FSCKI=0
(O02)

PAGSEG(PSODK+1)=VCIC
/*

SET
FAULT

B17
IN

SCw

c
RINSEG,

PRIGOO>KS_
BLSy

O€/0E/78
PAGE

0002

r
as

[enosz)
CALL

ITLENZ
/*

CLEAR
WHOLE

STLB

(0034)
DC

200
1=1,64

iat
ye

(ours)
IFCFAGSEG(FF)«GE.0)

GC
TC

150
7*

PAGE
NOT

IN
MEMORY

cocze)
CFECETRG4RT

(PAGSEC
(FP)

912)
7*

PTR
TO

MMAF
ENTRY

FOR
FAGE

Lcoc*7)
FAGSEG(CF)=0

7+
MARK

PAGE
AVAILAELE

(OO2F)
PAVCTR=FAVCIRG1

cogs)
150

PAGSEG(KF)=302000C
7s

WARK
PEGE

ACT
IN

MEMORYs
NO

CCFY
CN

CISK

|cuo4o)
200

HE 4]
(
e
0
4
1
)

C

(e042)
C

CREMCVE
FROM

CESCRIFTCR
TAFLE)

[coca
sy.

ETLSEG(PTLF41)=0
ys

FAGE-MAP
AVATLAELE

‘
e
0

:
(ake

(0044)
FILSEG (PILE 42)

20
4S)

C

1
(
0
C
4
E
)

C
A
L
L

L
A
L
K
N
C
F
A
G
L
C
K
)

Se

(
0
0
4
7
)

C
A
L
L

U
N
L
K
N
C
S
E
G
L
C
K
)

(
0
0
4
8
)

C
<
=
=

S
T
E
E
R

TC
K
E
X
T
'

S
E
C

|cocac)
£CC

 IF(XSEGeNE--1)
GCTC

700
Shc

(Oceo)
SEG=SEC#1

(
0
0
6
1
)

G
O
T
O

19

[cooks)
C---

STEF
TC

_AFXT
CTAR

(0053)
€00

IFCXSEG.eNEs-1)
GCTC

$00
COce4)

SEGZANC
(SECs

2€C00)4:20C0
| (OCEE)

I
F
C
A
N
D
(
S
E
G
s
2
1
C
C
O
O
)
E
G
e
C
)

GCTC
10

~

(OG£6)
700

XCCCE=0
(OCE7)

RETURN
cove#)

A

(oceé)
500

 XCCCE=E{RFAR
(oceo)

RETURN
(o061)

END
FRCGRAM

SIZE:
 FRCCEOLRE

-
C0024)

LInKéGr
-

cCOCd70
€TACK

-
000024

UOCO
ERRCRS

C
E
R
T
A
S
E
G
D
F
T
I
A
-
R
E
V
1
6

62:

| REV

a——

wAlT FOR

TRANS TION

paines 10

FAEINE
ALGORITHM

RESET
"REFLEC

git

ce yy

RESET “FAST
TE as” art

PACE IN
| (Are Ter0s)

AK PASTS
Pt EMORY,
REFERENCED,

YES

ete DIE a mopulr Diy .

PAST TMB fe,

 Se
wortey PAoc
SES wad

Fon TAASSITHA

wo

PRAM PACE?

WoT UH MTKMY,

COPY ow DEK,
AvALARLE.

INCREMENT
AVAILABLE
PACE Cova

Y
RETURN
no

HMAP ENTRY: 16 BITS
(REV 14)

BIT 1 (V):

BIT 2 -

BIT 3 (U):

PIT 4 (S):

BITS S$=16;

ia 00
10
O01
ii .

LMAP ENTRY: 16 BITS
(MMAP +64) (REV 14)

“—B17S. 2,2: ~

BIT 3:

BIT 4:

Bit 5-216:

23a 5 “

V}R{U IS

Valid bit, set when page is in
memory.

Referenced bit, set by hardware
when page is referrenced.

Unmodified bit, reset by hard-
ware when page is modified. -

Shared bit, set by software when
memory page is shared by processors
(inhibits cache)

High order 12 bits of physical
page address (PPN), low order 10
bits taken as @.

If page not in memory, bits 3,5 define

not ‘in, copy on disc
not in, no copy on disc
in transition, coming in
in transition, going out

Las SS: 16

Lock number (O = not locked)

First-time bit

Use alternative paging device

Dise record index (for group of
-8 pages)

CAYONIA
DVISSEA)

LSIXS
LaN33IG

JOVI
Te

S99"
C
U
L
V
a
>

JT
r0,

BIAVILVAY
39Vd

2
999%

SAULVED
JI

20:
SUBNND

OL
Yld

SE
AYLNF

"357
NE

39Vd
U0

T3N*
SAULVI>

JT
Qu,

1
e
)
u
)

;
(39/d

AYON3SY
TVa¥d

Ysd
GUOX

AVI
$379d4

4201)
20)

S
p
e
c
k
)

id
shvAddd

F
1
G
V
L

A
V
W

A
B
I
A
d
A

r
e

.
Pa

(S39Vd
8

JO
dNOYD

YId
3IIVA

3VI)
XZINI

JYIIIY
31-5

z
y

f
S
I
O

INI9Vd
FLVVYILIV

3S
h

z20.
(NI-39V3

S3Ldv
SYFONOT

AYOWSA-VI
39¥d

d39x
DL)

ANTL-1SUTS
e

2000)
(229I01NI=20)

YISNNV
4997

2-1
tdvdq

220,
Ti

C12
909

1Nd
ONIOD

*NOITLISVYYL
VI

ul
a

esa
NE

OVIAD)
#VILELISVVUL

VI
to

2
(32)6)

hs
MSID

VO
A402

IV
SNE

LIV
ot

2
(296)

WSUF
ND)

AdIT
FVD

LIN
On)

2200)
2220)

f3NIG3]
3¢2

SLIG
AYONdd

VI
LON

39¥d
41

(290)
200.

uaaWIN
39Vd

IvILshdd
I1-

(9190)
e
e
e

J3YVHS
39Vd

0
C
H
L
)

G3LdIIJON
LOV

390d
?

(11391
:

J30V3U94d94
390d

2
(910,

C31UL
<=

1)
AMIAGW

NI
390d

t
dvdd

(Sig.
C
H
T
)

Cilan,
DINTSIO

SILTMLVI
BAVH

(CbIVdvAT
ING

ChIddVAd)
SVNOVS

J4L
4D

SLYVS
IML

FHL
(ela,

*
C
O
N
T
D
G
d
-
3
¥
d

HLIM)
d
A
d
L
E
y
O
1
d

J
I
S
N
-
A
T
L
V
A
I
F
N
-
L
3
S
7
4
1

B
L
Y
A
l
K
d
u
d
d
v

V0
ND

CUTo6.
SI

110-39v4
"ONVASD

VO
SI

VI-39V4
*hSOdYd

UO
cotoe,

ADBLVYLS
ING

LNIWGDVNGA
39V4

F4L
SVIVLNOO

YNLIVd
(5022;

7
4
0
9
3
.

YLdX
brygzdaLNI

(L000,
C
U
l
L
d
X
Y
I
U
L
9
V
S

A
V
I
L
V
I
V
G
I
N
S

S
S
S
V
A

S
H
I
T
I
N
N

S
°
O
N
T

S
e
a
h

a
d
d
d
d

A
n
t
e
s

Pet
ot

PHOT
e
A
s
)

O
O
I
*
X
X
A
X
I
U
S

S
I
N
T

$
H
Y
I
L
I
S
N
O
D

J
A
l
Y
d

B
L
/
S
T
/

e
T

S
a
i
V
e
d
o

-
Q
N
a
=
)
d
>
=
S
r
a
s
n
®

“
e
S
d
d
d
d

“a
i
l
o
v
s

"
S
A
V
e

VL o
a
v
a
y

es
R
E

EOe
2

€10I90)

T000
a
9
V
4

SUZ
St/

20)
S
W
i
v
e
d
o
>

)
A
d
e

Id
%-S

T
a
d
a

*
b
S
G
a
u
d

*
"
9
L
I
v
d

:

nee
|

oy
Regs

i’
aes

COP
VCR

E
U
M
C
S

Ts
C
R
E
P
E
S

U
P
C
o
T

V
E

M
C
R

o
h
I
N
G

P
e
s
t
s

/ 7 e
.

F
A
G
E

0
0
0
2

E ¢ C
CVPCCHy

PRIGOODINSERTy
chP-RLS-UFC-REG-CMS-BIN-LeS-REH-JCF=FVDy

12/02/78
p
e
t
e

R
O
L

IS.
p
a
r
s
e
s

Pash
C

FUCC«Fs
PRI400,

NIMs
04/02/78

42)
NOLTST

bGb
y
o

SHOAT
CALL

ae
044)

x
LCCKRy

LCOCKWy
UNLKNy

UNLKFe
1G44)

x
LCCKFSs

LKEFSWs
LNLKFS»

GLITONs
V44)

y
FILPAG,

INHEI19
ENAELE

1G4e)
C

046)
COMMCN

/FMAFEF/
FV AFEF

(E4)
/*

PAGE
MAP

FGR
BLFSEG

1047) _
INIEGER

FRAFEF
a
e

204
C

1

nos)
C

INTERNAL
STCRAGE

ANC
VARIAFLES.

|
eEC)

INTEGER
FPyFMAT+FSyRA

|
G51)

TATEGER*«4
VETR

robe)
C

|
bE!)

100
CALL

LOCKWC(FAGLCK)
}*

LOCK
PAGTUR

DATA
:

:
064)

110
F
P
=
Y
A
P
A
C
X
(
C
U
S
R
y
X
F
T
R
)
4
R
S
C
I
N
T
S
C
X
F
T
R
)

410)/*
PAGE-MAP

ENTRY
INCEX

get)
PMNT=PAGSEC(EF)

1*
SAVE

PAGE-MAP
ENTRY

056)
IF(FMNTeLT«0)

COTC
SCO

/*
PAGE

JUST
ARRIVED!

1057)
IFCANDCFVN1,24000).NE.0)

GCTC
C00

/*
PAGE

IN-TRANSITION
CER)

IFCFAVCTR«EG.O)
GCTO

100C
7*

NC
AVAILABLE

PAGES
CES)

JF C
R
T
C
P
A
G
S
E
G
(
E
F
4
E
4
)

912) oF
00217777)

GCTC
2000

FeO
NOT

AEUODATEL:
CN

OLSKe
l
e
e

mie
e
e
e

wie
SCEO)

TAGSEG(HF)=:4000
7*

MORK
IN-TRANSITION,

CCWVING-IN
=

061)
¢

(FIND
FREE

PAGO)
G62)

EAVCTR=PAVCIR-1
ae

ivi
M
R
 Mle an

PV
re

URAL TL Ga
Se
e
e
e

Qe?)
200

 FPIR=FFIR¢1
7*

STEP
GLOBAL

FREE-POINTER
-CE4)

IF(FETR«GE.CFTE)
FRTR=CPIB

065)
IF (EAGSEG(FFIR)

N
E
.
)

GCTO
200

J+
MVAP

ENTRY:
NOT

AVAILABLE
R
e
e

Cle)
FACSEG(FFIR)=FF

7*
MYAP?

PAGE-CWNED
BY

ME
mOGI).

C
CLEE)

FS=FETR-CPTRG
/*

CCMPUTE
PRYSICAL

PAGE
NUMEER

64)
RAZLS(FAGSEG(FF+E4)

2)
4RT(

Pye)
7*

DISK
RECORD

INDEX
bo7t)

-
 TFCANDCFYNT)$20000).NE.0)

CCTO
225

/*
BYPASS

READ
IF

NO
CCPY-CN-C1SK

nev)
CALL

UNLKACEAGLCK)
ds

UNLOCK
PAGTUR

DATA

a
S

PACILRy
FRYOS4y

w
W
R
-
E
L
S
-
c
F
C
-
F
V
E
~
c
C
R
-
N
I
M
y

1Z/1E/T7E
;

PAGE
C003

Wd
i

1
co072)

VFIR
=

XPTR
/*

CCPY
POINTER

Coc
Ls)

IF
(LT

(tFe
10)

s£Gs
INTIS

(EM APEF),
1€)))

(
O
C
7
4
)

x
V
F
T
R

=
L
C
C

(
R
E
K
D
A
T
(
1
)
)

/*
U
S
E

W
I
N
D
O
W

IF
B
U
F
S
E
G

-
C75)

CALL
T
F
I
C
S
(
C
a
L
T
C
V
P
T
R
S
2
2
)

sPSoRANy9500)
4

REAC-IN
PAGE

Lcoc7e)
CALL

L
O
C
K
h
(
F
A
G
L
C
K
)

yi
:

Bee
S
s

es a
e

ROCT?)
P
A
C
S
E
G
(
H
F
)
=
X
C
R
(
S
I
E
C
O
C
U
s
P
S

y
A
N
C
(
P
M
N
T
«
s
2
0
C
0
C
)
)
/
*

IN
FEMs

USECyMCC
IF

NC-CCP
MP

COCTE)
C

PRESERVE
SHARED

(0079)
ectce

250
i

(
o
c
F
U
)

€

™l(nce8l)
228

F
A
G
S
E
G
C
E
F
I
=
Y
C
R
O
L
1
E
0
0
0
0
s
P
S
y
A
N
C
C
F
M
N
T
s
2
2
0
C
0
C
)
)

1
|cocez)

CALL
FILFAGCYFTR)

/s
FILL

FAGE
WITK

ZEROES
a

(OCF2)
2&0

CALL
INFEIT

7*
GC

PROTECTED
FOR

A
NONFAT.

|
cocea)

FAGSEG(EF+E4)
=
C
R
I
F
A
G
S
E
C
(
H
F
1
E
4
)

320000)/*
SET

FIRST-TIME
BIT

Lcoces)
CALL

ENAPLE
/*

NCW
WE'RE

OKAY!

(ocaed
C

M]}cnca7)
€0C

I
F
C
P
E
N
F
Y
C
.
E
G
«
C
)

GOTC
SFO

/*
GLOBAL

FAGE-NOTIFY
CCLATER

u
[COCRE)

F
G
K
F
Y
C
=
P
E
N
F
Y
C
=
1

f

(OCRS)
CALL

N
C
T
I
F
Y
(
1
9
F
A
G
S
E
M
)

7+
NCTIFY

FROCESSES
WAITING

FCR
TRAN

@
|

corso)
cote

500
mee

LOO
ET1y

C
;

(oceéz)
££C

CALL
UNLKNCFAGLCK)

7*
UNLCCK

FAGTUR
DATA

:

@ |
cocs?)

RETURN
_

[aneso)
C

(PAGE
IN-TRANSITICN)

(
S
E
S
S
)

€
0
0

P
G
N
F
Y
C
=
P
G
N
F
Y
C
4
+
1

7s
I
N
C
R
E
M
E
N
T

G
L
O
R
A
L

P
A
G
E
-
N
C
T
I
F
Y

C
T
R
e

© |
«
c
o
s
e

CALL
U
N
L
K
N
C
F
A
G
L
C
K
)

7*
UNLCCK

FAGTUR
CATA

7
0
c
8
7
)

CALL
WAIT(FAGSEM)

/*
WAIT

FOR
AKY

TRANSITICN
PITe

i

(
O
0
S
E
)

c
o
T
c

1
C
0

7*
A
N
D

T
R
Y

A
G
A
I
N

@j]cooss)
¢

CERROR
CN

PAGE-IN)
e
d
n

1oC)

SCO
=

CALL
LCCRACRPELCK)

7*
LOCK

FAGTLR
DATA

(9101)
TF CAND

CINTS
(RS

(
X
P
T
R
e
1
6
)
)
9
2
€
0
0
0
)
e
h
E
«
:

4
0
0
0
)

COTO
910/*

IF
SYSTEW

PAGE
(0102)

P
A
C
S
E
G
I
H
P
)
=
3
1
4
0
0
0
0
4
F
S

/*
USFR

PAGE:
GIVE

IT
TC

HIM

(102)
CALL

FILFAC(YPIR)
7*

FILL
PACE

WITH
ZERCES

.

(0104)
€oTc

92n
(Q10€)

$10
,
PAGSFECHF)=C

7*
SYSTEM

PAGE:
RELEASE

a.
|

(oice)
VMER(PS+1)=C

0107)
F
A
V
C
T
R
=
F
A
V
C
T
R
@
1

es

PM
ico10%)

S20
I
F
C
F
G
N
F
Y
C
*
E
G
.
0
)

GCTO
930

os
|(0105)

F
G
N
F
Y
C
=
F
G
N
F
Y
C
-
1

/*
AFTER

NOTIFYING
OTHERS

°s

ze
bs

S
M
B
a
g
s
u

usewytiiete

PACTLUR
4

CWPeELS-UPC-FVE*cCR=NIMy
12/18/7E

tan)
CALL

ACTIFY(1sFAGSEM)
a
y
t
i
y

eg ye-se0
cee

11i)
€20

CALL
E
R
R
R
I
A
C
C
s
C
y
*
P
A
C
E
-
C
E
K
*

yk)
e
3
2
3

C

124).
(

(NC
A
V
A
I
L
A
B
L
E

FOGE)

=
11h)

-11€)
1000

CALL
ENAELE

y*
ALLOW

INTERRUPTS
BRIEFLY

W
n

CPIRSCEIR41
7*

STEP
GLCRAL

RELEASE
PIR

118)
IFCCFIR«GE«CFTE)

CFTR=CPIE
115)

FPZEAGSEG(CFIR)
7*

MMAP
ENTRY

etal
IFCHEsFQ.0)

€C10
100C

7*
PAGE

AVAILABLE
1)

IF
(HF 41.6Q.0)

GOTC
1000

x
7*

PAGE
ACT

AVAILABLE
@)

CALL
INHETT

7*
GC

PROTECTED
DURING

CFECK.

2)
L
E
C
L
I
C
E
A
G
S
E
G
(
F
E
4
E
4
)

sZ)eNE ol)
ECTC

1060/*
PAGE

WIREOD-OOWN
4)

FMRT=PAGSEC(FF)
5)

IF(FYKT.CE.0)
GOTC

1000
7*

PDGE
IN

TRANSITION
1z6)

:
(FMONDIPETOT

OTA
DOLOUCEGEO)

COTO
L000

ere
NOMIUSEDG

TAKE
Gl
p
h
n

i li) t
e

a

e
S

27)
TF

CAND
(
F
A
G
S
E
C
(
F
P
4
E
4
)

93 Z0CCC)«NF.0)
GCTC

1900
/*

IST-TIMEs
CLEAR

IT

6)
PAGSEG(FP)=FMNT-~

240000
7*

CLEARPUSEC
BIT,

TRY
NEXT

TIME

my
6CTO

1NC0
bye

eel

C)
©

(FCUKD
PAGF:

NCT
1ST

FIT
AND

ACT
USEC

1)
1010

FAGSEGCRFI=ANCCPMNTs2127779%224000
7*

MARK
NOT-1Ny

IN
TRANSITICN

GOING

32)
CALL

ENABLE
/*

INTERRUPTS
NOW

CKAY
a21.

€
:

24)
FS=CFIR-CFTAC

7*
PFYSICAL

PAGE
NUMBER

28)
CALL

SPTLF
(FS)

/*
FLUSF

STLP
e
a

26)
RA=LS(FAGSEC

(FF
464)

420
4RT(EP

YS)
7*

RECCRC
INCEX

272)
TFCAND(PYNTs$2COOU)eNE«O)

CCTO
102C

/*
BYPASS

WRITE
IF

NCT
MCCIFIEC

2h)
CALL

UNLKN(FAGLCKY
/*

UNLCCK
FAGTUR

CATA
25)

CALL
TRICS(ivINILOC)

PSehAyS19£0)
 /*

WRITE-OUT
PAGE

;
40)

CALL
LCCKh(FAGLCK)

7*
LOCK

PAGTLR
DATA

HY
C

42)
1020

F
A
G
S
E
C
C
(
F
F
)
=
A
N
C
(
P
M
N
T
y
:

10000)
7*

MIRK
NOT-INy

COPY
ON

CISKs
way

PRESERVED
SHARED

BIT.
44)

1030.
MMAPC(FS+1)=0

/*
PAGE

AVAILABLE
146)

FAVCTR=PAVCTRa1
1146)

IF(PAVCTReLT«FREPCK)
GCTC

1000
J*

CONTINUE
FRE-PAGING

147)
core

110
7*

START
ALL

OVER

F
A
G
T
U
R
s

F
R
Y
C
S
4
,

C
W
R
-
E
L
S
-
J
P
F
C
-
F
V
C
-
c
C
F
e
N
I
M
e

1
2
/
1
S
5
/
7
E

PAGE
0
0
0
5

e
2
2
4
)

OC
C
R
I
R
S
T
S
T
I
M
E

ELT
CRI

0
1
4
5
)

1
9
0
0

F
A
G
S
F
E
G
(
P
P
+
e
4

D
=
F
A
G
S
E
G
(
F
F
+
E
4
)
-
2

2
0
0
0
0

Pe
C
V
E
R
R

T
S
t
a
t
I

Me
B
T

9
1
5
0
)

€oTCc
1
0
0
0

7*
AND

F
I
N
G

A
N
O
T
H
E
R

P
A
G
E

P
e
e
l
)
:

C.
G
E
R
R
C
R

ON
W
R
I
T
E
)

:

m
s
e
)

1
9
5
C

C
A
L
L

L
C
C
K
W
I
E
P
E
L
C
K
)

Js
L
C
C
K

P
A
G
T
U
R

D
A
T
A

e

0
1
5
3
)

IF
C
M
M
A
P
C
F
S
4
+
1
)
e
E
Q
e
-
1
)

G
C
T
C

1
0
0
0

/*
P
E
G
E

M
A
F
P
E
C

OUT

0
1
5
4
)

F
A
G
S
E
C
(
R
P
)
=
F
M
A
T
+
:
4
C
0
0
0

/*
R
E
S
T
C
R
E

AND
M
A
R
K

L
S
E
O

B
S
S
)

€
O
T
C

1
0
0
0

/*
L
E
A
V
I
N
G

P
A
G
E

FOR
A
N
O
T
F
E
R

TRY

P
O
I
E
E
)

C
CAC

D
I
S
K

S
P
A
C
E

A
L
L
C
C
A
T
E
C

FCR
F
A
G
E
)

1
0
1
8
7
)

7
0
0
0

E
R
R
V
E
C
(
Z
)
=
X
F
I
R

7*
A
L
T
V
A
L
(
2
)
=
W
O
N
C

O
J
S
F
)

C
A
L
L

E
R
R
R
I
N
C
Y
F
I
R
e
O
y
*
I
L
L
E
G
A
L

F
A
C
E

R
E
F
e
"
y
1
7
)

/*
A
L
T
V
A
L
(
1
)
=
S
E
G
N
O

C
8
1
5
5
)

ENO
R
C
G
R
A
M

S
I
Z
E
:

F
R
C
C
E
D
L
R
E

-
C
o
d
e
d
?

L
I
N
K
A
G
E

-
0
0
C
1
2
2

S
T
A
C
K

=
0
0
0
0
3
2

'OCO
E
R
R
C
R
S

C
C
P
A
G
T
L
R
O
F
I
N
-
R
E
V
I
E
.
e
:

B
R
T
r
B
Q
E
E
E
E
B
E
T
B
e
e
r
e
W
t
e
e
E
e
E
e
E
R
r
e
E
e
E
E
t

PROCEDURE CALLS

 POINTER TO 3 WorD
ED ECR NDIPEC

CALLING PROGRAM i CALLING PROGRAM

4 PROCEDURE SEGNEN LINKAGE SEGMENT

FRED PBZ FRED

eet
| >

I

FRED

ECB

CALLED PROGRAM CALLED PROGRAM
EN PROCEDURE SEGMENT LINKAGE SEGHEN

CALLING

PROGRAM

STACK

CALLED

PROGRAM

STACK

STACK SEGMENT

a
e

ARGUMENT TEMPLATE
—

0 16

E'S 6 18 28

B Te (pOe See le SO eee ae

Ki

B = BIT NUMBER

I] = INDIRECT BIT

L = LAST BIT, LAST TEMPLATE FOR THIS PCL

S = STORE BIT, LAST TEMPLATE FOR THIS ARGUMENT

ENTRY CONTROL BLOCK (ECB)

0 POINTER TO FIRST

EXECUTABLE STATEMENT

OF CALLED PROGRAM "

i

eo. SIZE OF STACK FRAME

3 STACK ROOT SEG, NO.

el
4 ARG. DISPL,

rl
2} NO. OF APGS

i
6} LINKAGE BASE OF

1

7 | CALLED PROGRAM

8 KEYS FOR CALLED PROGRAN

Q

RESERVED

MUST BE ZERO

STACK FRAME

POINTER TO NEXT

FREE FRAME

‘

IN

ND

}

2D

POINTER TO

EXTENSION SEGMENT

FLAGS

STACK ROOT SEC. NO

hr
=

RETURN POINTER

CALLER'S SB

CALLER'S LB

o
o

N
O
M

U1

CALLER'S KEYS

vo

WN arter PCL

POINTERS TO
ARGUMENTS

(3 worD INDIRECTS)
AND

DYNAMIC
VARIABLES

n
e
e
m

eae
e
e
e

ae
e
e

He
a
e
e
e
e
e
s

&

&

&

vu

“

MD

q
s

a
e
e
k

&

a
&

USE OF SUBROUTINES

CALLING PROGRAM
—————

CALL
- CALLS SUBROUTINE

~ GENERATES PCL (PROCEDURE CALL)

PCL
- ADDRESSES AN ECB THROUGH A LINK

= CALCULATES RING NUMBER

= ALLOCATES STACK FRAME

= SAVES CALLER'S STATE

- INITIALISES STATE OF CALLED PROCEDURE

= TRANSFERS ARGUMENT POINTERS

AP

- GENERATES ARGUMENT POINTERS FOR PCL

- FoLtows PCL

- FORMAT

AP ARG, TAG

WHERE TAG MODIFIER CAN BE

S VARIABLE 1S ARGUMENT

SL VARIABLE 1S LAST ARGUMENT

*S ARGUMENT IS INDIRECT

*SL ARGUMENT IS INDIRECT AND LAST

ll

¢-
ec
ea
ca
dl

z
=

2. SUBROUTINE

ARST

- poEs LAST STEP OF PCL

- EXECUTED ONLY IF FAULT OCCURS

DURING ARGUMENT TRANSFER

- MUST BE PRESENT IF ROUTINE REQUIRES

ARGUMENTS

ECB

= GENERATES ENTRY CONTROL BLOCK (ECP)

TO DEFINE A PROCEDURE ENTRY

- GOES INTO LiNK FRAME

- FORMAT

\

LATEL ECB PFIST, ,ARSAISP, HARGS,

SFSIZE, KEYS

WHERE:

PFIRST - POINTER TO FIRST EXECUTABLE STATEMENT

ARGDISP - DISPLACEMENT IN STACK FRAME OF

ARGUMENT LIST (DEFAULT ‘12)

HARSS -° NO. OF ARGUMENTS

SFSIZE - STACK FRAME SIZE, DEFAULT IS GIVEN

py DYtM

KEYS - KEYS, DEFAULT 6LV

DYHM

x - SPECIFIES VARIABLES TO GO INTC STACK FRAME

- EACH ARGUMENT REQUIRES 3 WORDS

- FORMAT

DYN ARS(3), 4RG2(3)

PRT!

- PROCEDURE RETURN

- RESTGRES CALLER'S STATE

- DE-ALLOCATES STACK FRAME

- CALCULATES RING NUMBER

EXAMPLE

Suph SUBLECE

SUB AReT (ENTRY POINT)

Lon ARG1,* (GET FIRST ARG)

STA SUM

LDA ARS2,* (GET SECOND ARG)

STA COUNT

=!

BYNM = ARS1(3), ARG2(3)

DYNM SUM, COUNT

LINK
ECB —- SUB, ,ARG1,2 m

im
)
w
 END

B
o
e
k
e

e
e
e

e
e
e

a
s&s

&
=

NOTE

A MAINLINE PROGRAN IS EXECUTED USING THE PRINCS IV

_ SEG FACILITY.

TO ENABLE SEG TO ENTER THE PROGRAM THIS MUST INCLUDE

AN ECR IN THE LINKAGE AREA.

THE END STATEMENT SHOULD BE FOLLOWED RY y ADD WHERE

ADD 1s THE ADDRESS OF THE FIRST WORD OF tHe ECE,

THIS WILL ENABLE SEG TO SET UP THE ENTRY SEGMENT

NUMBER AND WORD NUMBER,

EXAMPLE

ADD veee FIRST EXECUTABLE INSTRUCTION

2
{

LINK
ECB ECB ADD

END, ECB

DIRECT ENTRANCE CALLS

many PRIMCS IV ROUTINES, PREVIOUSLY REACHED BY SYC’s .

ARE NOW REACHED (REV, 1!) By DIRECT PROCEDURE CALL TO

RING 9, THIS ELIMINATES THE OVERHEAD OF HANDLING THE

SVC FAULT AND THE ATTENDANT ARGUMENT TRANSFER.

DIRECT ENTRANCE CALLS MAKE USE OF THE ‘FAULT’ BIT IN

THE INDIRECT WORD.

| FAULT -
| ! BIT RING ee
' PEL i ee
t Ly 09 =

a INDIRECT WORD WITH

ay 7 FAULT BIT ON AND RING
a ey

Lo

Fretp ft,

mn

PROCEDURE SEGMENT LINK FRAME

THE ABOVE STRUCTURE IS CONSTRUCTED BY SEG WHEN 17 ENCOUNTERS

THE APPROPRIATE KIND OF ENTRY IN THE LIBRARY.

WHEN THE PCL 1S EXECUTED AT RUN-TIME, THE FAULT BIT CAUSES

- A FAULT TO A ROUTINE WHICH FOLLOWS THE POINTER TO THE ASCII

TEXT OF THE NAME.

DIRECT ENTRANCE CALLS

1) V-mode or I-mode entry to PRIMOS

2) Any service routines ring %

a) I/O routines

b) Access restricted data bases

3) D.E. call are entries for anyone into PRIMOS
and the routine must protectect itself.

4) Dynamicly linked

(

1)

2)

3)

4)

CREATE DIRECT ENTRANCE: CALL

Put object code in Lib to tell seg this is a
dynamicly linked routine.

SEG
DYNT routine name
END

Add a gate to Seg5 module of PRIMOS. Use
gate Macro.

GATE routine name ,[PRIMOS name if diff]

a) Note: Gate segment is search sequentially
so order is important for efficiency.

b) Note: adding gate may overflow the current
size of Seg 5 and MAPGEN may need to be
modified to increase the size of the segment.

Write the routine.

a) Standard V-mode subroutine

b) Must protect it's own entry point.

ec) Must validate all arguments

d) Uses Ring 9 stack (seg #6000) set up by AINIT

Load the routine with PRIMOS

a) May have to modify MAPGEN

LINKING TO SHARED LIBRARIES (SIMPLIFIED)

POINTER

FAULT

TRECTE NO
FAULT
TYPE

SEARCH GATE
SEGMENT FOR

MATCH ON
ECR

NOT FOUND

YES

ae

ANB Ey

SEARCH HASH
TABLE FOR NOT FOUND
MATCH WITH
AN ECB

FOUND

INITIALISE IF
FIRST TIME:

 COPY IMPURE

INTO SEG ‘6001

FILL IN LINK
TO POINT TO
MATCHED ECB

“POINTER
RETURN FAULT"

MESSAGE

SAVE . REGISTERS

lw sTAcCK

' LOAD L witH

ADDReess GE Faulting
iPoInTER

ERASE Fae«cl Bil

Ly La EC

 SAVE EL 7M PTRTMP

ae ce

C HECk Fon ‘9 WerD

iLA| Rime & VE.A.

Bea oN sera,

Go To ee

LOAD XB WrTH PolnTeRr

To MAME OF Rowl/VE

Jo BE LijwreD

v

LonaD A

WITH LEYGCTH
OF fVAmMe LY
BYTES

oe BAP PTR

LEMCTH ZR >——S>@
Go Jo
BAD PTR

 CHANCE LErGTH
FRom BYTES Te

WeRDS

 Siete LENGTH
1m =(PTRX
(Steck ‘Relitive)

LoaD jiLB! with
ADDRESS oF GATE

LOA] KX WITH

Lenety

‘

LOAD A WITH PolnTER
TO [AME |M GATE

V

Check FoR MATCH
OM Thc CHARACTERS

OF WAME

C — AX vith KB*, x)

IE a moa MT ESP

ae ECB ee

ee

CoRP TE with | LB |
PeiwTER ' te CATE

THAT MAT¢ HED

STORE [|| Back Le re

aomP JO: FUT RTM

Common; FAGLT
RETURN

LTreeRemerT 1B By
PorrTi To MEXT

Pere fh Te

CEH bdo Gare
vAmM

 “~f¥eT END

6Fi| GATE SEG

GATE
16

€

TRY XT

Geo: To ee (>

EN? OF Galeo

fe Pee bak ee Rie ee
Pointer Catt Ha'n of

J

@*ve been USity }

IiGo TO Sag

iGxlcoal LB ‘be couse:

an *F

 4

ie 0 RINGS HAWDLER..
TLiBTBA AY = prewr—3) :

Te COE fe ale es a
Gaepce® Reser Dre =

To: Loek Like te Rived
‘HANDLER NEéevEerR Ex1c UTED
Awd SéT.«uP TO Excute
Rj 3 HAWDCER 7

v

Loan XB ore

ptr oe PcB Common |
Loaod ie bor th

offset +e currer/

mul hike fo oo

LeAD Ne with Sone

oll sot

Con pee ek Stack

v

108 AItTN sane ptr

Load A te th ptr ep

/* Rabutl& Concerted Steck

GS {ti ees beGore the CALE

ithet get you here ¥/%

| Y :

| fT set Mest ptr in PCR
Lowd PB, KEYS, Fcope,
FADPR jnte Concealek
stack

Oe Cisne hi ek
! S80 @ Can P RTM +e

the ing B) Handle ¥/

v

LoAd Aubkross Beets

harnkler jite Current

Steck Frare

(

Cale 9 fe re eieiche

Common Fach Return

Procedure : Reetore Reg jsters

Come&) Pp RTV

Pe CTE Eeare ane coma!
ChornsgzdA the Riss QD Stock

| we go ite phe Ring 3 banclle

met back te te Faultirn
Proesdure and Charse tbe.

i poo de: —| oC. the mackie +t Ringd +f

eTR ME
a

Weve acl cores ay to RR PRS

{ w
Cie Po inter aoe message

on! Retern ts Bamrrenet

Level

‘PB ADPTIA

Whe taluice Call te. ERRTGT?

Give “‘Potater | Fact : message

and Re tun +e Comma rel

Level

S
2
M
V
N

4O
SYUVHO

OME
41X3N

kyl
aN

V
4
i
d

xag
C
2
1
9
0
)

¥
z
y
E
O
0
*
¥
E
L
O
b
T

P
2
E
Y
E
N
0

H
O
L
V
R

ON
AI

H
O
N
S

S
J
I
L
X
N

3N9
(
1
2
9
0
)

I
b
v
e
a
n
s
e
t
o
o
r
T

s
0
E
Y
E
N
D

=

xX
* sax

Vag
€
0
L
9
0
)

X
0
0
0
0
0
0
*
E
G
v
E
C
O

2
9
2
4
6
0
0

X
*
2
T
+
%
u
t

VUT
d
O
T
k
L
d

(
6
9
9
0
)

1
¥
T
0
0
0
0
*
2
0
%
S
4
0

2
4
2
9
E
N
0

H
L
O
N
F
7

J
u
y
N

X
Y
i
d

XQ7
I
X
N
A
W
L

(
8
9
9
0
)

S
2
s
o
0
0
n
*
s
E

E
2
%
E
0
0

(
2
9
9
0
)

L
N
3
K
9
3
S

3
1
v
9

40
1
Y
V
L
S

$
9
S
1
v
9

g
y
]

(
9
9
9
0
)

T
v
y
y
n
0
n
'
z
E

v
L
9
0

*
T
2
4
£
0
0

X
M
1
d

Vis
(
5
9
9
0
)

S
2
s
o
n
0
a
0
*
s
9

0
2
7
2
0
0

SayO"%
N
I
°
s
s

T
TVaV

6
6
9
9
0
)

4
1
4
0
4
0

L
T
¥
€
0
0

T
d

(
£
5
9
0
)

O
S
O
T
S
I

9
T
%
E
0
0

“
*
°
H
L
O
N
I
T

viv
(
7
9
9
0
)

9
0
2
T
o
T

>
S
I
¥
E
0
0

0
°37°

41
H
I
N
Y
Y
S

u
l
d
a
v
a

318
(
1
9
9
0
)

S
¥
S
F
O
D
*
O
T
I
O

ST
T
E
€
L
4
E
0
0

H
L
O
N
S
1

3
W
V
N

139
*aX

var
0
9
9
0
)

X
0
0
0
0
0
0
°
E
O
%
s
S
0
0

*
T
I
4
E
0
0

J
W
Y
N
‘
N
3
7

OL
I
N
T
O
d

e
*
d
W
i
M
i
d

a
x
y
a

(
6
5
9
0
)

S
O
S
0
0
0
0
*
T
E
%
S
9
0

*
1
0
4
E
0
0

LON,
SI

H
O
N
Y
Y
Q

y
l
d
a
v
a

3nd
(
8
5
9
0
)

S
Y
S
E
O
O
*
F
I
9
O
S
T

*
S
0
%
E
9
0

€
0
=
3
9
d
A
L

C
o
0
0
L
0
.
=

VAY
(
L
5
9
0
)

O
1
9
€
0
0
°
F
O

4
0
9
E
0
0

i
Y
B
I
N
T
O
d

3
A
v
S

d
W
i
M
i
d

ALS
(
9
5
9
0
)

S
O
S
a
N
0
0
*
S
T
H
I
T
O

+
2
0
%
£
0
0

118
1
1
N
v
4

J
s
v
y
a

dss
(
5
6
9
0
)

O
O
T
O
b
T

*
T
O
0
%
E
0
0

M
A
I
N
T
O
d

O
N
T
O
N
S
4
4
0

dN
X
9
I
d

*
f
y
d
o
v
a
7
4

107
€
4
S
9
0
)

S
E
T
O
N
D
N
*
S
E
H
S
H
0

s
2
L
E
€
E
0
0

(
€
$
9
0
)

'
S
S
T
0
0
0
0
*
N
0
%
0
N
0

>
S
L
E
E
0
0

F
A
V
I
S

Y
3
S
N

JAWS
F
A
U
S
Y

 AVSY
a
t
l
d

(
2
9
9
0
)

S
T
L
O
N
O

*
¥
L
€
E
0
0

(
T
S
9
0
)

c
+
d
W
l
¥
i
d

°
N
O

X
U
l
d

(
0
6
9
0
)

2
5
0
0
0
0

S
d
l
1
4
4
+
3
8
5

NOI
d
W
L
Y
l
d

(
6
4
9
0
)

O
s
0
0
0
0

4
5
0
0
0
0

S
9
E
E
0
0

0
0
0
9
0
0

S
9
9
E
E
N
O

0
0
0
%
T
O

O
O
F
L
L
T

0
0
0
0
0
0

T
I
0
0
0
0

0
2
0
0
0
0

-
pe,

¥
L
E
E
O
O

2
E
9
E
E
0
0

S+Sdl14d
=S43°

y
L
s
a
n
s

=1004
dyld

893
@
9
3
¥
l
d

(
8
4
9
0
)

*
(
1
9
9
0
)

L
i
N
V
A
-
¥
3
1
N
T
O
G

*
(
9
5
9
0
)

os

aoe
me

a
ie

a
a

ee
e
e

e
e

P
i
r

f
n

a

p
e

ae
ea

ee
a

a

e
e
e

e
e

ee
e
e
e
 TE

r
e
e

np ae, seen geper

ii
ar ees ai Goh et Gah

eel
ox Taft

eS ens
os an Ge

i

©

r
e
 al

*
(OTLO)

;
NEYITS

dhe
(6020)

92€€00°T0
:LTS€00

~
shayx4

vas
Ce0L0)

SoTOrON*r0
291S€00

C00+T.=
a7

(LOLO)
zT9F00°70

TSTSEC0
gd

1S
(9020)

SZ00M00°ST¥ITO
zE1SE00

e
WITONVH-1

N
d

EN
107

(SUL0)
22LE00*%E%S%O

ZTISEND
pained a

a
&

(4010)
a
w

a
n
e

eh
APeCEUY..

108
€010)

X
¥
0
0
0
0
0
"
L
E
F
I
T
O

2205€00
os

ee
a

yodvd74
707

Z0L0)
SETONDD"SIYSOO

2S0SE00
7
y
2

wae)
eo

$2]
o
p
e

y
e
r

y
a

AfZ42UX
TLS

TOLO)
X
Z
0
0
0
0
0
°
Z
E
F
I
T
O

2€0SE00
a

4+
Skay74

v0)
00L0)

SOTAnans7g
:705€00

=
y rats

~
F
u
s
e

av
6690)

YIEOvT
—

:TOSE00
(ere

atresia
etme)

22g)
ce

3g0947°4
 -YOT

£9690)
sztoo00'z0

:00S€00
~

:
oh

e
r
a

—

Keegy
als

(L690)
XONDDDN°LEYITO

:9L%E00
ae

¥VVLS-G3IVSINGD
OL

DANI
3AOH

ad-4-
1907

9690)
SzN0000*Si74uu

.
27E00

*
(5690)

wid
LX3N

1395
X*THNSOG+REX

WLS
Z4Uld

(4690)
XSLOMOO*FOSTSO

sz7ZyE00
oe

9=
aay

(£690)
1T9F00°90

tTLYE00
LaSay

1SnwW
1sv7

s
t
a
]

€4vld
=

dhe
(2690)

ozse00°TO
20L4€00

248)
ane

(1690)
TL¥£00°TO

:L9¥£00
a

1S¥1
YOV1S-037¥79N09

X*Z4NSId4YEX
SV

(0690)
¥9L0000°F0%E90

3S9%£00
AMIND

GMO
LNSNUNI

<-
A

AW.
(6890)

 S0SO%T
249500

LX3N
YIVLS-037¥79NO9

X*THSIdeRUX
=

VOT

(9690)
XSL0000°E0%S%O

294E00
me

GDd
AW

<-
X

2
kG

(L890)
v2n0000°SE

2T94END
yanno

ytd
($890)

dSZ0000°%0%ETO
:25%£00

INAW9AS
G9d

<-
OX

91$99d
Yxv?

(5890)
19%%000°ZE4S90

355¥E00
=

ANNOd
LOY

AYLNI
dWYid

030
(4890)

E2SE0N*ZTIOHT
SESHEDD

YITONVH
EY

ANY
4?

93S
sWRTETI*

=
va7

C£590)
22LE00°CZ4SHO

TS¥END
*

(2890)
=

MITONVH-LINyS
E-ONTY

YOF
dNLas

(T1890)

3Sv@
YNTT

GvOT3a4y
£°94+993Nld

BV]
C0890)

ILEFOO"OEYLIO
tLb¥END

:
_3N0

SI
41

HONWYA
LYNAUL

=
-3N

(6190)
EZYEDO*ETIONT

2S44E00
i

3WYN
YOd

XI39HD
€t+ke7

v7
(8190)

1S10000°70%500
EbvE00

LN3HO2S
3LV9

NI
693

1X3N
9T4997

GIVI
FDFLXN

(LL90)
TOZ0M00"ZT9LZ70

:T¥¥E00
(9290)

AYLId
 dwe

(S190)
9ZE£00°T0

T044EN0
MNTT

d UNS
atydovs74

TLS
(4190)

SETONOO*SEYTSO
:9€4E00

492
40

yoov
139

--
HOLvH

TIN2
sya)

4y3
C£L90)

TONDNDN*90%ED0
27" 4E00

=

H9d
=

C
T
I
I
V
A
L
I
V

S
*
a
d
7
4

dv
Nlowsd

W
o

W
d

=
C
2
I
W
A
L
I
Y

135
T+99A%G3

=
L
S

W
d

139
T+8d°4

0
7

J
L
V
%

G
3
A
N
T
4
3
0
N
N
‘
S
S

199
I
N
3
W
9
3
S

2
4
¥
9

NT
493

G
3
S
A
N
N

w
o
u
d

AYMLNGA
e
i
d
d
d
¥

axser
t
y
o
a
q
v
a

ina

L
i
N
v
d

M
3
A
L
N
T
O
d
S
R

138
dN

3419
--

$993
Jv3¥

40
inn

ulddov
 axsr

AS*9=
dv

$
*
.
1
7
5
u
1
d
.
9
=

av
$*z 6x

“dv
S
*
T
+
%
u
X

dv
s*gWluid

dv
SfALNASZ=

dv
S£0=

dv
$
¥
d
d
¥
a
d

W
1
v
9

*
°
9
+
9
9
4
N
1
d

I
V
"

.
S
A
T
W
I
N
T

40

T
I
L
A
I
I

a
noF

POd
NI

S
Y
t
d

W
O
V
L
S

3
7
7
9
9
N
0
7

L
e

nog
esauid

dwt
1
S
¥
1
4

459
T
A
S

9d
4+%aX

var

S
€
0
0

3
9
v
d

B
l
v
z
t
v
s
n

§

‘sc

E
s
 ~
~

—

H1dddV

ivodave

U
l
d
a
v
e

a
N
U
l
d
 *

X
V
H
O
T
T

A
S
I
d

e
d
u
l
d

(¥E€10)
CEE

LO)
Cz7€20)

(Te
20)

coe
20)

(
6
2
2
0
)

(
R
2
1
0
)

(
2
2
1
0
)

(
9
2
2
0
)

(
S
2
1
0
)

C¥2L10)
c
é
2
l
0
)

(
2
2
2
0
)

(
1
2
1
0
)

(
0
2
2
0
)

(6TL0)
C
R
T
L
O
)

CLTLO)D
C
9
T
L
0
)

C
S
1
2
0
)

C
1
1
0
)

c
e
1
2
0
)

C
2
7
2
0
)

S
2
n
0
0
0
N
*
N
0
S
O
N
D

z
2
L
S
€
0

1
9
S
¥
0
0
0
°
2
E
4
1
9
0

3S52S5€0
1
2
5
4
0
0
0
*
°
2
2
>
1
S
5
0

s€2S€E0
$
€
0
0
0
0
0
*
T
0
%
S
0
0

T
L
S
E
C

Ove20eT
O
L
S
E
D

G
O
E
C
S
I

:
1
9
S
€
0

T
O
L
E
?

1
2
9
9
S
€
0

O
v
2
2
h
T

3
S
9
S
E
0

S
U
E
L
Y
T

2
4
9
S
E
0

TEEC
ST

2
€9SE€0

SOF
Z
T

2
2
9
S
€
0

9
T
L
2
S
T

t
T
9
S
E
0

T
L
S
E
O
O
*
O
T
Y
I
E
O

2
1
9
5
0

£SS5€00
Ov202zT

2
9
S
S
E
0

O
v
e
2
s
T

2
€
S
S
€
0

V
I
L
2
S
T

2
9
S
S
E
0

T
O
E
E
S
T

t
€
S
S
€
0

O
v
2
1
S
t

2
2
S
S
€
0

S
O
E
C
S
T

ts T
S
S
E
0

O
T
L
S

>t

2
0
S
S
£
0

L
T
E
O
S
T

3
L
9
S
€
0

T
L
S
E
Q
O
*
O
L
Y
I
E
O

2
S
¥
S
E
0

T
T
I
E
O
N
*
N
0
F
O
N
D

s
€
o
S
E
0

S
T
9
E
O
O
*
O
0
T
O
N
O

:
T
¥
S
E
0

X
0
0
0
0
0
9
°
N
0
S
1
0
0

:
2
E
S
€
0

X
T
N
0
0
0
N
"
"
0
S
T
O
O

:
S
€
S
€
0

$
0
S
0
0
0
0
°
0
0
%
4
%
N
0

£€S€0
Y
T
9
E
O
O
"
N
O
T
O
N
O

s
T
E
S
E
N

E
T
I
E
O
O
*
N
O
T
O
N
D

2
2
2
5
€
0

1
0
5
%
0
0
0
°
7
E
€
4
1
9
0

:
s
e
s
E
0

T
L
E
E
O
N
*
N
E
L
9
N

s
E
z
S
E
0

o
T
0
0
0
0

7
2
0
0
0
0

e
L
y
e
o
n
*
t
o

2
2
S
€
0

C
T
T
L
O
)

X
¥
L
0
N
0
0
°
E
O
%
S
%
0

s
0
2
S
E
n

+
j
(
W
I
N
-
S
W
9
-
9

W
-
9
3
8
-
9
d
r
-
9
F
3
-
S
t
u
-
a
M
r

*
S
x
<
0
0
5

4d
*NTYWW!

ere
wey

OF
E
G
E
T

OF APIS
SR

a

BO
208 i aa

O
E

EE E
E

OE
e
M

CE
A

-

L
o
¢
3

N
I

N
I
T
9
S
W

A
S
S
O
l
=

dv

QSW
S
*
%
u
X

dv
N
I
M
L
T
V

ON
S
f
0
=

dV

*

(
0
¥
1
0
)

(
6
€
1
0
)

C
R
E
L
O
)

C
L
E
L
O
)

C9€
10)

(
s
€
l
0
)

y
o
z
o
n
o
o
"
a
o

Y
O
Z
E
I
O
T
*
O
0

Y
O
O
E
T
S
T
°
N
O

V
o
Z
E
N
S
T
*
N
O

y
i
t
T
0
0
0
0
°
0
0

v
o
n
o
n
o
n
"
n
o

Y
0
0
0
4
T
0
°
0
0

v
9
0
0
0
0
0
°
0
0

4
0
0
0
0
L
0
°
0
0

W
o
L
L
L
L
T

"00

O
2
9
£
0
0
"
0
0
E
0
0
0

x
o
n
0
n
0
0
"
0
0
S
I
0
O

E
T
I
F
O
N
*
O
O
T
O
N
O

0
2
9
€
0
0

t
L
I
I
E
N
M
O

s
9
T
9
E
0
0

s
S
T
9
E
0
0

:
¥
1
9
€
0
0

s
€
T
9
E
N
0

e
T
9
I
E
D
O

T
T
9
E
0
0

O
T
9
E
N
0

s
L
O
9
E
N
D

5
6
0
9
€
0
0

s
€
0
9
€
0
0

s
T
O
S
E
N
O

a

| | | }

ve
'

my
o
e

sap:

a

yaleres-3009574
va

(6920)
12TON00*ZO%SNO

:9L9€00
ie

E
E
X

ins
C8920)

XO00N00*LESITO
2429€00

NOVLS-GIIW3SINOD
OL

OSNI
3AOW

#*ZG742GS—ad74
TR

(2920)
1200000°924E40

22L9€00
s*2ouy-s

bv]
(9920)

SSTO000*TEL90
30L9€00

ie
>

($920)
Yld

1X3N
135

X*THxSId4+RUX
WLS

2NGII
(4920)

XSL0000°£0%1S0
299900

a
s
a

o=
av

(€9L0)2
TT9E00"90

259900
e
r
a

?
13S3¥

LSNW
f1Sv1

SiIwnO;I
€NSI1

dwt
(2910)

¥22F00°TO
¥99€00

asy/
z+

dhe
(1920)

$99€00°TO
£9900

4
1Sv1

¥9V41S-031v99N09
X*Z+xSId4EX

SVD
(0910)

X9LC000°F0%E90
2199€00

s
AMING

OM
LNFYYND

<-
A

AwL
(6510)

 S050%T
099€00

1xX3N
NOVLS-047v39N09

X*T+9S9d4+sOxX
=

VOT
CRSL0)

XSL0000°E0%S%0
2959400

@9d
AW

<-
Xx

C2)
ae

(L510)
v200000°SE

2S59€00
WANG

W107
(9510)

dSz0n0n*sOvETO
:€S9E00

LN3K93S
@9d

<-
GX

93899d
8Xv3

(S$10)
19%¥000°ZE%S90

:1S9€00
*

(¥S10)
ie

SY3TONVH
3¥OW

ON
ANSI7

038
C€S10)

L2LE00*?T9IOYT
22149E00

xXeO7e1eTIT
=

yaI

(7610)
22LE00°0z*SeL

3599€00
Xv

(TSLO)
—40S04T

449€00
5

XYld
VIS

(0520)
$250000°%0

£49€00
rsa

(6410)
LLoTO

2749€00
ANS£7

awe
(8¥20)

L2L€00°T0
:TY¥9E00

3
ANSIT

awh
-

(L710)
LZLE00*TO

20%9£00
XvWETIT=

=
Syd

(9410)
LELEOOTTT

2LE9E00
UBLBnYVd

Aye
JN8I7

9-378
(SoL10)

L2LE00°OTIO%T
2S£9£00

i.
NOX

s'19uy4d
=

yar
(o¥L0)

SZTOOVO*TZ¥S¥O
2€£9E00

CAWVas-NIVLS
!NONIVd)

19uy
 NGTI

CEbL0)
509000

ZE9ECO
+50000

r€29€00

2
000%TO

-
OObLLT
200000

:
210000
020000

oi
Z£9€00

T29€00

o+S4i1d
=SsS

 @TOMDS*NG17
999

LXNDTI
(2420)

a
LXNST7

LNA
(T¥l0)

—- T29€00

‘
P
f

e
n
o

S
S

o
S

ee
ee

e
o

a
e
e
.

o
e

ae

ae
- | |

i
|

®

en

o

1or3
(£610)

i
t

Nid
(2620)

voTo0007N0
2
2
0
0

JNMLd
—

dwe
(T1610)

EzSF00"TO
s9€LE00

os
dWL¥id

TLS
(9620)

SOSOD0N*STHITO
sELECD

dSs
(6820)

 00TO4T
T€ELE00

'
seeg7ergs-yagvd7s

=
107

CP8L0)
TETOODN*IESSHO

zTELEDD
a

s
f
2
o
u
y
 4d

Bly}
4NGTT

(1810)
SsTONDN*TESL90

222LE00
'

+
(9810)

2NSI7
dW

(6820)
999F00°TO

92L€00
a

IsvTd
¥s9

T©xSdd+%8X
VOT

ENETI
C¥BL0)

X¥LOMON*EOrS¥O
z¥2LE00

*
(£810)

Z
WLAIT

dI
ILF1IT

(7810)
2
0
0
0
0
0
0
0
0
0
0
0

:zzZE00
A

g
r
e
p
r
d

*4
+

NLud
(1820)

119000
:T2LE00

y
e
r

1
G
!

7
+

ZO4RAS-SAINTT
VAS

(0820)
TOTONOO*ZOFTTO

sZ1LE00
‘

R
E
S

000+T.=
a7

(6220)
2T9€0N*20

POTLENO
io

SUItRNS-Gd-4
TLS

(8210)
TZ00000°9T¥ITO

s¥TLE00
VATONYH-1INYS

€y
ae

T
S
S

AT)
AGF

CLLLOD
Z2ZLEOO*HEYSHT

:ZTLENO
;

NONI
“
—
T
X
t
a
e
r

%6q
C9LL0)

S
2
5
0
0
0
0
°
S
E

TTLENO
Ps

*
(SLL0)

\
Afeee GX

TLS
CyLLO)

X¥OONOO*LEFITO
sLOLEN0

‘
a
>

z
a
i
+
7
u
S
-
u
a
d
v
a
 4

107
CELL0)

TETOOON*ITHSND
scoLECO

-
Rezeeey

TLS
(ZLL0)

XZ00000°LEdTTO
:F0LECO

e
T

B
U
1
+
S
9
S
-
S
s
a
N
 4

VOT
(TL20)

WOTOOOO*ZO%S00
T
O
L
E
D
O

/
e
a
e
,

avL
COLLO)

=

STEOHT

nnLeoo
|

:
‘

I

F
F
a
r
t
r
T
r
F
e
t
r
t
e
t
e
t
r
e
t
P
T
H
R
r
T
e
P
e
E
r
E
e
 ww

S
a
a
r
 &

INTERRUPTS:

Process Exchange mode on

1) Inter:

2) Micro:

a)

b)

e)

d)

e)

£2

g)

3) Next

code

eithe

sched

rupt from I/O Bus

code

PSWKEYS <—

PSWPB RP (joy, where nile, lv. Leet when covud eae)
Keys, models

RP ™ Ring @, Segment 4, Vector address

Keys < 64V mode

ICPN - interrupt clear priority network

Set interrup inhibited in keys

Fetch next instruction

instruction is the beginning Phantom Interrupt

for the interrupt. Phantom interrupt code will

r handle the interrupt or cause a process to be

uled to handle the interrupt.

Phantom Interrupt code must

the controller a) Acknowledge the interrupt to

b) CAI - clear active interrupt

ce) Return from interrupt

EXAMPLE:

MPC Phantom Interrupt Code

(0093)

000120 (0094) ENT MPCINT 2
000120: 031404.031403P (0095) MPCINT ocP "1403

000122: 001216 (0096) INEC MPCSEM

00012 000000 .000506

1) Interrup vectors to MPCINT

2) Acknowledge to controller

3) INEC

- clear active interrupt

~ notify MPCSEM - start interrupt handler proc.

- return from interrupt

Micke

Pick LAMAO
CENnTeoit

MPCDIM
STARTED BY T$xMPC or PHANTOM INTERRUPT

CODE, WAITS ON MPCSEM

 CHECK STATUS AND

LOOP IF BUSY

CHECK MPCFLG

g - INACTIVE
#9 - ADDRESS OF
CLEANUP ROUTINE

LOOK FOR MORE WORK

Vv
JST to CLEANUP

LOAD Y WITH -4

LOAD A RING +4, Y
7 ADDR OF ROUTINE TO PROCESS DEVICE

STORE Y IN RCNT

GO PROCESS

S
E
E
S
S
S
E
P

E
S
S
E

a
e

MPCXIT CLEAR MPCFLG

WAIT
MPCSEM

v —

[| wits |

JMP BACK
TO BEGINNING

MPCDIM page two

PRG, PRI

PROCESS PRA, PRI
BRANCHED TO BY MPCDIM

PRO CLEAR A

JST STATUS
"GET STARTED" |

STORE BUFFER POINTER
(PRBFCf or PRBFC1)

in PARMLIST of NEXT PCL

PRBUSY,1 --B
CLEAR/SET BUSY FLG

GO BACK
TO MAIN
LOOP OF
MPCDIM

B
E
e
a
g
e
t
e
e
t
i
s
e
g
a
e

eb
a

rF

ea
SB
B
B

B
R

a

SG JST SETDMA
LOAD DMA Reg.

LDA BUFA*
GET ADDR OF

INSTRUCTION (FROM TSLMPC)

v

IN A,OTA TO START 1/0

GET STATUS

IF

NO INTERRUPT
PENDING

l
OCP TO ACKNOWLEDGE INTERRUPT

SET MPCFLG
ENB

JMP TO BEGINNING OF MPCDIM
TO HANDLE THE INTERRUPT

PRA, PRI

ENB

and JMP
TO MPCXIT

page two

CLEAR
MPCFLG
AND WAIT
ON MPCSEM

i

aS
xg

e
g
e
e
g
p
r
p
e
a
e
e
d
g
é
t
r
F
a
a
&
t
e
a
t
a
t
a
s
t
a
a

as
sa

MPINIT

MPC INITIALIZATION

CALLED BY T$xMPC

ee
Load A with channel #

(DMA = '36)

OTA to controller

RETURN

No response "No MPC" ?

CALL LOCKPG Lock MPCDIM

Load A with addr to phantom
interrupt code and OTA it
to controller (keep trying
until it works)

Note: Phantom interrupt

code is the same for all
devices: PR, CR, CP

Set MPCFLG inactive
Set PRBUSY and PRBUSY + 1
Not busy
Set MPCINI initialized

Enable MPC interrupts
OCP XSETM

TS$LMPC - USE Ae POINT
ye

(XUNIT, XBA, #Xi> INST, STATV)

NW -- XNW
UNIT -- XUNIT

BA = AND (XBA,: 23 777 777 777) +
AND (LOC(XBA) ,:14 000 000 000)

WEAKEN BUFFER ADDRESS

"BAD UNIT"

CALL
ERRRTN
"NOT ASSIGNED"

CNTRLR.= RS (UNIT, 1)

IF
CNIRLR YES
NOT @

Vv
CONTROLLER § CONTROLLER 1

i
e

CONTROLLER #

DIMNDX

 IF
MPCINI(1) # 9

ee

CALL MPINIT
initialize controller

ae
MPCINI(1) = 9

 vy

DIMNDX is 1 if controller #
and offset of MP2COM from
MPCCOM if Controller 1.
Therefore, no matter which
controller is used, all
access to MPC or MP2COM can
be made by (index + DIMNDX)
into MPCCOM.

BUFX is index into
PROBFC, PRIBFC, PR2BFC, or
PR3BFC depending on unit #
and controller 7.

T$LMPC page tw

CONTROLLER 1

y

IF
MPCINI(2) ¢ 9

 y
CALL M2INIT

initialize controller

i

IF f= CALLS | ie MPCINI(2) = B
ERRRIN

 "'No_MPC"

X v Pcieceeaensera! deisel eee SO

Se | DIMNDX=1+INTS(LOC(
fs |_MP2F<64))) - INTS (LOC (MPCFLG(1)))

| MP2EL(4)

BUFX = DIMNDX + 5* RT(UNIT,1)

IF
INST < 9 YES

Status Request 200

7

TF NW 4 ee
NW = 1

ce nN eee :

IF : :
mst < TuP(4) SS Lg 2

FORMS
CONTROL

zZ
We ee

B
E
E
B
E
e
E
E
e
E

E
E
E

F
E

R
R

RB
R
E
S

SE

ie

NW > 76

NW1 = NW +1

GET ROOM IN PR BUFFER

IF
BUFA # 9

* NO ROOM WAIT FOR
A WHILE *

v

YES

BUFA = BFGETR (PROBFCBUFX) , NW1

YES

CALL NOTIFY

(Q, MPCSEM (1,CNIRCR+1))

TSLMPC page three

Kick Driver to
make sure active

x

CALL _STIMER(3) | WAIT 3/10 of sec.

|
* TRY AGAIN *

CALL STORE (BUFA, INST
CALL MOV32P (BA, BUFA+1, NW
MOVE INSTRUCTION and DATA

INTO BUFFER

TSLMPC — page four

CALL BFENQU (PROBFC(BUFX), NW1 ~
Place Buffer in Queue ;

I = RT (UNIT,1) + DIMNDX

* I is ptr to PRBUSY or PR2BSY *

.

IF
PRBUSY(I) = 9

CALL NOTIFY
(0, MPCSEM (1,CNTRLR+1))

IF device driver
idle start it

STATV(2) = :200 + LS(INTS(BFGETR
(PROBFC(BUFX) , 71)).NE.#,6)
Free space in Buffer status = OK

 B
H
R
e
E
E
B
E
e
E
E
E

E
F

eB
eRe
E
B

B
E
E
S

:

BFGETR

Get space in Q

BUFA = BFGETR (BUFCON, NW)
BUFA = BUFFER ADDRESS RETURNED

BUFCON = POINTERS INTO BUFFER POOL
NW = SIZE OF BUFFER WANTED

BUFCON + @ - BFR - read ptr

BUFCON + 1 - BFW - write ptr

BUFCON + 2 - BFTOP - top of Q

BUFCON + 4 - BFBOT - bottom of Q

U
XB (BUFCON)

 COMPARE FULL
A, BE

Vv

BFXITS A<+ BFW
BFXIT1 Aq-A+1

BOA
ATs

A,B<= A,B + BETOP
RETURN

 B
E
S

S
B
S

82
8

SB
SB
F
S

RB
B
R
E
E

E
S

SE
SB

t

B
R
E
E

e
S
e

e
S
B

SB
SE
F
B

K
E
E

E
E

A
ES

SE

GO TO BFXITO

NO ROOM HERE

PAGE 2

A,BS-$
RETURN

BFTOP, *,X€-
BFV<-9

GO TO BFXIT1

B
E
e
a
e
g
a
e
a
e
e
a
e

se

SB
SE
S
A

SB
E
E

SE
E
E

E
S

BFENQU

PUT INQ

XB <-/BUFCON/

A€— BFW

X€— BFW

AG A+NV41

BFTOP, * , X<-A

BFW? A

RETURN

BFRELS

Release ITEM in Q

XB<~ BUFCON

X<- BFR

A BFTOP, * , X

BFR@ A

RETURN

PAGE 3

BE
eE
Ba
ea

RB
B
R
B

RS
RB

SB
A

RB
KE

KZ

SZ
B
E
E

ESE
A

PAGE 4

BFDEQU
GET FROM Q

XB €-/BUFCON/

A& BER

yo ee

RESET TO TOP

YES BER & A

A,B & A,B + BFTOP
RETURN

PAGE 4

a

BFDEQU
GET FROM Q

XB ¢-/BUFCON/

A& BER

v ——— ae

COMPARE EMPTY

A, BEW

RESET TO TOP
 YES BER Ae

p
Z
s

re

A,B < A,B + BFTOP
RETURN

g
h

G
a
g
a

ea
e

ea
ea

7P
e
e
e

(

YES

L <_ TVAO
ITLB
LDA TVAO,*
invalidate IOTLB
entry and reload
it with a STLB
miss

INH

J

Set or incr
lock bits in

user page table
PAGS64, 1 is
ptr to entry

Access page to
fault it into

memory

COPY HMAP ENTRY
from user page table
to Seg @ page table

NO P750

L < UBUF
LIOT TVAO,*
Load IOTLB entry

page two

ZS
S
S
B

2
2

SB
SB

SB
S
A

KB
E
S

SE

B
A
B
E

|
UBUF + 1024
TVAO + 1024
HMAPO + 1

3 ee
Ya B

A
K
A
 A

L © VAO
RETURN

page three

(unaPro

UBUF < PBUF*

TEMP < Virtual page
of UBUF

CALL MAPNDX to

get address of page
map that owns UBUF

X<€ ptr to page map entry |

| Y<# of locked pages a

iF
key is odd

NO

YES

VY

Reset unmodified
bit in user page

map

g
u
e
a
e
g
e
c
e
t
a
e

st
S
A
R

e
a
e

e
e

2

2
 Lock @ Lock - 1

in user page

map

Lock <~ 9
in user

page map

page two

a
a

PRIME COMPUTER INTERNATICNAL
ee

REFERENCE NOTES CN TEE AMLC
ee

PREPARED BY: C PARTRIDGE

NOVEMBER 1978

R
a
e

W
N

on
)

N
E
F

“
@
R
S

SR
S

SR
S
S
S
A

S
E
S

E
R
E

E
E

CONTENTS

Introduction

Brief description of the AMLC System

The Hardware
The Software
DMX Transfer
Interxzust Processing

Software Implementation

The User Commands

AMLC
ASSIGI/UNASSIGI

AMLEOF
NUSR
NAMLC
TERM

Inner Details of the AMLC Software

Overview

Phantcem Inter=upt Code

Basic Flow Through AMLDIM

Handling Special Requirements and Xnown Problems

Known Specials
Known Problems

P3C0 Differences

1) INTRODUCTICN

This document is designed as an aid to using and under-

standing the AMIC hardware and software.

The standard documents describe the use of the AMIC

related commands, but a description of how the software

and hardware works can only be found in internals course

notes, which really require attendance on the course.

Many problems occur in normal usage of the AMLC due to a

lack of knowledge cof hcow best to use the system. When it

comes to making a modification to the software to adapt it

for a special requirement, all nature of problems occur.

The information contained in this document is split into 4

number of sections:

a)

b)

ec)

d)

e)

The information refers to the

A brief description of the AMLC:

The user commands and what they do.

A more detailed view of the software.

Interfacing special devices and coping

with known bugs.

Differences on the 7300.

segmented architecture: The differences

in the P3CO are described in Section 6.

The details refer to the Rev 15 and Rev 16 releases of PRIMOS.

ae

ee

28
22
82

82*
°*

2B

Be

e
e
e

e
e

ERIEY DESCRIPTICN OF THE AMLC

The Harcwarea:

The AMIC (Asynchronous. Multiline Controller) interfaces

full duplex/half duplex data lines to a PRIM computar.

Thera are basically three types of boards:

5002, 5CO4 hal# duplex

$052, 5084 full duplex .

5152, 5154 full duplex with QAM~C

The last dicit refers to the number of lines(2 = & 4 = 16).

The half duplex’ type isn't supported by standard software.

A.P300 can handle 2 boards (not QAMEC tyre). A 2350, 400, 500
can handle QAMLC with a 400, SCO expandable to 4 boards,

Information is transferred by Programmed Input Cutout (BIO),

intarxsopt and DMX transfer. PIO is used fcr setting states

or reading control words. ‘Information transfer is achieved

on the standard board by DMC on input and DMf for ourput.

The QAMEC beard uses DMC for input and DMQ for output. The

speed cf a line may be altered by software es can the

character format and parity.

The Software

The comsonents of the software for the AMLC are:

a) The AMLC driver AMLDIM (Segment 6)

b) The AMLC phantcm interzupt code (Segment 4)

c) The user ring buffers (Segment 7)

da) The input tumble tables (Segment 9)

e), The dedicated calls (Segment 9)

The software uses two basic mechanisms. The first one, DMX

teansier occurs without direct software intervention. The

second cne, interzupt orecessing involves a) and b).

Se eee oe 2 3

The design aim is to reduce the overheads incurred with the

2nd mechanism because this software is of course consuming

CP power.

DMX Transfer

This mechanism uses cycle stealing. This means that the

flow of execution is not affected while DMX is going on.

However, in the micromachine which is where the microcode

comprising each instruction is being executed, thare is 2

temporary break to handle the DMX service. This microcede

is known as firm wear.

Incoming characters from the device use Direct Memory Control.

This method uses a pair of pointers in memory to indicate a

memory area wheres characters can be placed. Each AMLC board

has two such pointer pairs and memory areas (known as tumble

tables). At Cold Start, the AMLC board (the controller) is

loaded with these pointer pairs, and triggered. For a system

with 4 boards there are consequently § tumble tables. Hach

tumble table is 48 words long. Characters arriving from a

device are routed to the tumble table. The 2 byte (1 word)

entry consists of a line number and the character, or a bit

pattern in the line number byte to indicate a condition ie:

break. This process continues until the tumble table is full.

At this point, the controller signals this fact (interrupts)

and switches input to the other tumble table. This teggling

action continues automatically. “It is the responsibility of

the software to remove these characters hefore the toggle

action overwrites the table.

Outgoing characters can use one of two mechanisms:

a) DMT (Direct Memory Transfer)

b) DMQ (Direct Memory Queue)

are

is ry

DMT is the most commen machanism. In mamory, a cell

is maintained for edch line. The controller is given

the address of the cell block. Each call is scanned

at the rate for the lina pertaining to the cell,. for

presenca of a charactar. If a charactar is present,

it is moved to the output davica and the call cleared

by the controller. It is tha responsihility of the

softeara to fill the calls at a sufficient rate to

satisfy the line speed to which the call ralates.

- The second mechanism, DQ is available on the 51 series

beards. With this technique, the dedicated cell is

replaced by a quata. It is the responsibility of the sott-

wara to tep up the queue before the AMLC has extracted all

the characters at the line speed.

Interrupt Processing.

Transfers to and from memory eccur without software inter-

ruption. It is the raspensibility of the software to remove

the characters from the tumble tables at a fast encuch rate

and place characters in the dedicated cells or queues to

satisfy the line speeds. The software is invoked by means

of interzupticn from the controller. =ach line cn the eontzoller

has a flag bit called the Character Time Interzrurt flag (CTI) .

If this flag is enabled then an periodic inter=upt is generatad by the

AMEC at the rate for the line. The worst situation could be

every line going at 9600 baud with the CTt flag cn. in this

case it is mlikely that the C°U would do anything epart from

xyumning AMLDIM, trying to service this interzupt rate- This

state of affairs is avoided in a balanced system by using the

Ctr flag in an ordered manner. For input the CTI flag is set

cn a particular line at a lew rata. This neminated line,

called the input clock line, (one for the whole system) is set

to intercept 10 times per second

= 4 =

At this rate, software examines the tumble tables and

removes the characters. This is fine while the input

rate is low (human type speed). A second machanism

exists to handle the case where characters are coming

in more rapidly ie: a fast device sending in characters.

When a tumble table is full, the AMLC recognises this and

generates: an interrupt known as an End of Range (EOR)

interrupt. This causes the software to clear the tumble

table, hopefully before the other tumble table fills, i

(which, of course, happens normally). These two mechanisms

cope with the two extremes. The first one, typing a few

characters at cne terminal, ensures that the characters are

interpreted by PRIMOS and not just left in the tumble table

until an EOR is eventually generated. The second one, flooding

the AMLC with characters, prevents data loss except in the

limiting case where the input rate is greater than the ability

of the software to handle it.

For output the CTI flag is set on a particular line at a faster

vate than input. This line is called the output clock line,

(one for the whole system). For the DQ case ¥ A single clock line

cantols cut adimut. In the DMT case the software examines

the dedicated cells of all the lines and fills up any that are

zero if characters are available. In the DMQ case, the software

tops up the queues if possible. This system is fine i= the lines

are operating at the output clock line speed (or lewer) in the

case of DMT. If it is desired to run the line at a high speed,

then two techniques are available. The first one is to make the_

output clock line run at the high speed. The disadvantage of

this is that the amount of CP power required to service this

vate increases. At 9600 baud the CPU can spend a large

percentage of time (>50%) checking the dedicated cells, iz

this technique is adopted. The second technique is to switch

on the CTI flag for the particular line. Hewever when no sore

characters are to be transmitted, then the flag must be switched

off (otherwise the overheads approach the first method).

ate ta

{

t
da

s
tl

(W
oW

t
e
e

2.5

Normally the second method is adopted. The first cne is

usually only chosen by accident. -With DQ high speed lines

are handled by incceasing the size of the queua so ‘phat the

topping up of the quaus lo times a second can copo with the

higher rata. In practise it is Gifficult. to dxive a line

at the maximm rata of $600 baud dua to machine leading.

Software Implementation

Tha previous section described the softuare machanisrs that

ara operating system independent. In other words, the intexrupt

processing is not dependant on the type of operating system. If

the system has an AMLC board, then the softyare most perform the

required servicing. This section describes the software ccn-

ventions adopted by PRIXDS to intarZaca the AMLC to the rest of

the systen.

The first consideration is the eventual Gastination cf incoming

characters and the stera where outgoing characts7s reside.

Each configurad line (terminal users and assicnec lines) has an

input and an output buffer. These buffers are circula> (ring)

and default to 192 characters on input and 384 characters cn

cutput. Characters arrive at the input buffer from a Gevice at

the rata the device is transmitting. When the butter is éull,

echo back is disabled. User space programs remove charactsts

from the buffer using normal input read routines. Characters

azcive at the output buffer from user space programs. When the

buffer is full, the user is suspended. Associated with each line

is a data word called the LYORD. This is used by the software

to determine which buffer is being used for the line and various

characteristics set for the line.

Note echo is achieved in the software not in the iccntzoller.

B
e
a

B
B
B

BK
B

KB
FP
B
B

B
E

SE
eS

Se
eS
Oe

3)

3.1

At cold start time, a test is made to see how many boards

are plugged into the system. The internal tables are

adjusted according to the result. The last line is called

the group 1 line and @etermines the rate at which the tumble

tables are scanned. The next line back is called the last

line of group g and determines the rate at which the dedicated

cells are scanned far output. Ina DMQ system, there is no

group 1 and the clock line becomes the last physical line.

TEE USER_COMMANDS

2.
This section describes the commands that affect the AMIC and

its associated software. The user has to be the stpervisor

(system console) except for the ASSIGY and TERM command.

AMLC

This is the major command affecting the AMC. Itis issued

from the system console either “on the fly" or in the C ¢--PRMO

file. The format is:

AMLC (protoco} line number confic)tword)

The variants are:

i) AMLC protocol line number conti

ii) AMLC protocol line number config Lword

iii) AMEC line number config

iv) AMLC line number config Lword

v) AMLC protocol line number

The protocol may be TRAN, TRANES, TIY, TTYES, TYYNOP. The HS

protocols invoke the CTI bit on. output. Consequently these are

used if the line is being set to 4 speed greater than the output

clock line.. For DMQ systems HS must not be used. The difference

and TI¥ concerns the treatment of newline characters,
between TRAN

the parity bit and echo.

For TITY protocol carriage retum is echoed for line feed,

bit 8 is set true and the character is echoed mless specified

otherwise in LWORD. TTYNOP disassociates the line from a user

spaca and it is used when:

a) A__USRASR is bein it
and can Ba tsed tS aentaver Se

b) An assigned line is being set uw

In case a) the. line. baing no cpped is 2 less than the user

number. Casa b) is usually specified if transparent protocol

is being used. The line number is specified in octal. The

Config word is a bit pattern used to set up line speeds, stop

bits and charactar length. On recaipt of the config word,

PRIMOS issues a PIO to the controller to alter its stata. The

speed bits have 4 fixed speeds, a programmed clock and 3 jumer

assignable speeds. The programmed clock is usually set to 36c0

, baud. The jumpers have to be set on a completa board basis.

Normally installations chcosa the intermediate speeds between

1200 ‘baud and 9600 baud. The DYORD controls treatment of

carriage return, echo and XON/XOFF. The right hand byte

determines whether the line is associated with a user space.

To make a line assignable, this byte must be cleared. The exact

specification of the config LWORD bit pattern can be found in the

System Administrators Guide.

3.2. ASSIGY/CNASSIGN —

This command is used when it is required to assign an AMEC line.

It ig issued from user space. It uses the same format as AMLC,

the ASSIGY/UNASSIGY being placed before AMLC, ie: AS AMLC etc. ~

oa

<i
ee

e
c
e
t
a
c
e
a
n

ah
ah
a

3.3

Two important points to note are:

a) LWORD can not be altered from user space.

b) Not specifying the protocol will default the line

to TRAN.

The implications of a) are that features like XON, if set

up this way, have to be dene on the LWORD attached to the

eriginal AMLC command input at the system console. The

implications of b) are that if a feature like XCN is

requized, then TIY or TTYHS must be spectfied because XCN

will not work under TRAN. For the UNASSIGN, an abbreviated

syntax is allcwed, ie: UN AMLC linmo.

AMLBUF

This command can only be issued at cold start from the

CONFIG Gata file. It is used to change the buffer sizes

and the Queue size if DMQ is being used. Note, hewever, that

the latter doesn't work under Rev 15. The parameters are

octal words, so for buffer sizes, a conversion to decimal

characters has to be made, eg: a parameter of 1000 would

give a buffer of 1024 characters. The line number is also

octal.

Problems cccur if AMLBUF is being used to alter assicned lines.

The line number must be the next one beyond the terminal lines

for the Ist assigned line and the one above that for the next

and so on. This is because the buffer given to an assigned

line is taken from a pool residing above the terminal buffers.

The order in which the buffers are given is determined by the

order in which the lines are assigned. The physical line is

not used for these calculations. Imagine a system where

NUSR = 4 and NAMLC = 3. The AMLBUF command must use line number

3 for the lst assigned line, 4 for the 2nd and 5 for the 3rd.

The line actually assigned is immaterial.

ao

BS
ft
6
6

f
e

Ss
&

3.4

3.5

3.6

4)

When using the DMQ parameter, the queua size mest be

calcalated 27*X, 4} K€1lé If the queus size is less

than 16, then a machine nalt will occur.

NUSR

This command controls the number cf terminal lines configured

for this seesicn.. NUSR must be plecad in the CONFIG data

file. NUSR which is cctal, represents the number of usezs

including the systam user.

NAMLC

This command controls the number of available AMLC lines.

Bu¢fars are lockad according to the combination of NUSR and

NAMLC.

TERM

This command altars the characteristics of the AMIC fzom user

space. It makes the LWORD bits available at user space, in

particular xON/XO0FF and duplex. TERM will ¢lear bits 4- 8

of LNORD so, if these bits have been used by a modified system,

then care must be exercised.

INNER DETAILS OF TSE AMLC SOFTWARE.

This section is intended to give an indepth view cof the software.

If it is required to hang devices on the AMLC or modify the

software for specials then the implications of doing this have

to be. derstood so that unpredictable side effects are not

experienced.

= io =

i
i
|

4.2

Overview

The most important module handling the AMLC is AMLDIM.

This module runs as a complete process and has its cwn

semaphores to control the character flew. AMLDIM is

where control goes eventually when an interrupt is received.

This module uses a number of other modules:

i) FMLIOB (From Logical Input Output Buffer) .

This module is responsible for obtaining

Characters from the ring buffer and passing

them to AMLDIM.

ii) TOLIOB (Te Logical Input Output Buffer).

This module is responsible for placing

characters in the ring buffer (either input

or output).

iii) BUFCHX. This module examines the ring buffer

to see if there is room for a given number of

Characters.

The code that handles the intexrupt is contained in SEG 4.

This code causes the interrupt response code (IRC) to be

invoked.

Phantom Interzupt Code (PIC)

When an interrupt is received by the microcode, control passes

to a location in segment 4. The current PB register and KEYS

are saved by the microcode and the code located in segment 4

is executed.

For the AMLC this code consists of 5 instructions. There

are 4 CCP instructions and an INEC AMLSEM. The OCP?

instructions clear the AMLCS interrupt mask and disable

any further interrupts. The INEC is a process exchange

instruction that:

i) Notifies the semanhora AMLSEM and places tha PCB

on that semaphore on the end of the ready list at

correct level.

id) Issues a CAI cperaticn which frees the backplane

of the CeU for further interzrots.

The operation performed in i) means that the AMLDIM process

which,in idle state waiting om AMLSEM, gats moved conto the

reaéy list by the dispatcher (a microcode operaticn). The

positicn it occupies on the ready list is governed by its

level, which is 2 for the AMIC. Only the clock and SMLC

are higher. The significance of the end positioning means

that if other processes were on the same level, then the

AMLDIM process would be placed at the end of the chain.

Howaver, 2s AMLDIM is tha only process at this level, this

is of no significance. The level is set in the PCS at

System Startup. The dispatcher then either schedules the new

process (AMLDIM) if it is new at the hichest level or, else

continues with the current process. The lattar will only

eccur if the current process is the cleck or the SMIC.

The end result is that the AMLC gets serviced very rapidly.

When the AMLDIM process has finished, then the dispatcher

schedules the next process in the ready list. This could

be the one that was inter=upted or a higher one if another

interrupt had occurred after the AMLC one.

= I2-4

t
-

\
L
n
d
l
a
g

|
|

!

'
.

1
'

'
:

:
|

\
:

(g0xIW+
172)

it
;

1
‘

5
e
e

re
ee

ashe

e
e
e

is
1

4
e
e

a
§va

x
.

*
Gor7ol

77¥?
|

s
3
q
a
n
o

“—“
;

'
"

;

;
I

1

_
(91702

nv)
:

Maas
nes

bee
ars.
S
R

SITUIAC EN
e
i
t
.

M
l
e
.

Re
i
s
)

n
o
s
e

qing
3

’
1

.
?

:

'
yos

don)
:

'
no

sdti,
4

|
.

“
L

|
u
s

g
s
i
)

“
T
S

a
e

1
:

(
B
O
M
O
L

717,
t

‘
y
a
p
t

‘
S
o

a
;

goer

gormwd
11b7

g
u
t

|
N
a
S
4
a
g

4AlVWm
sa7gvh

'
{

770
Was.

'
L
o
a
n
t

'
.

1

\
!

'
1

=

:
c
e
e

ddavuatal
L
N
B
?

v7ISN
w
i
d
?

e
e

e
a

Y
I
7
7
0
¥
.

Yor7olL

11¥2
|

Ll
a
y
o

‘
(va1702

ay)

(

gortwd
11b7

s
u
r

N
3
S
d
a
g

l
v

V
I
S
A

(
a
o
r

117)

“yadad
1
4

3

377397

q
7
L
y
2
1
9
F
0

 v
o
z

no
sditd,

“&
wysz0)

A
L
O
N

2
O
M
L

717,

y
a
v
t

s
a
7
0
V
v
k

g
T
O
W
A
L

w
i
d
7
H
i
/
7

L
d
a
v
u
a
a
l

eo

|

pen
0

ee

L
a
d
b
a
d

1
daow) Salushien

&

da0y?
s
a
t

L
a
a
a
t

'

y
7
7
7
0
Y
L

N
o
?

1 l
a
i

i
P
a
b
i
a
l

U
‘

ef
e
e
e

P
r
e
e

e
e

a
e
e

Pe
e
e
e

e
e

B
H
R
S
&
a
t
a

ae
a

a

a

PF

Basic Flow Through AMLDIM

Referring to the diagram, the basic flow starts with the

Gispatcher (microcode) giving control to AMLDIM. After

the lst interrupt, after cold start, the process (AMLDIM)

is always on a WAIT instruction. The first task is to

identify the controller that interrupted. These tests

are performed in Rmode because PIO cannot be performed

in Vmode. Any PIO instruction is converted to an EIO

which cccupies 2 words. Failure to find the interrupting

controller causes a HALT. Having identified the interrupting

controller, the status word for that controller is input to

Getermine what type of interrupt occurred. Three types of

interrupt can occur:

i) End of Range (EOR)

ii) Character Time Interrupt (CTI)

iii) Multiple CTIs

Case i) is indicated by bit 1 being set (the sign bit)

Case ii) is indicated by bit 9. Bits 13-16 indicate the line.

Case iii) is indicated by hits 9 and 10.

Case iii) occurs if a 2nd CTI is generated before the INA

imstruction is issued to get the status.

If none of these cases is detected then a WAIT on AMLSEM is

issued and the dispatcher reschedules another process-

Case i) EOR

Control is transferred to AMLIN. The correct tumble table is

located and the table IADR is used to reference the input

protocol. IADR has one entry per line which points to a protocol.

= 1a

The dafault set up is TTYIN. The AMEC command modifies

the table according to tha protocol named. The Seoeoeiee

tea point into the corract entry of IADR is cbtained frou

the line number held in the tmble table. Control is

transferred to the appropriates protocol.

There are two basic input protecols:

a) TTT Teletype input

b) TENSIN Transparent input

The purpese of the protccol is to examine the incoming

character and make adjustments according to the srecific-

ation of the protocol. = case a) a test is made to see

if its: a break character. . If not then tests ara made to

see if XON has heen enabled. ‘The character is written to

the input ring buffer using TOLIOS and if echo is required

then it is also written to the outout ring buffer. If the

daput ring buffer is full, then no attemtis made to write

the character away and acho is disabled. Consequently, if

the input ring buffer is net cleared, character less results.

For case bh) no tests ara performed except ignoring break.

However, the character will not go to the input ring buffer

a2 it is fli.

Both protecsls NIFY the semaphore of the line so that a user

process waiting on the semaphora will be placed on the reacy

dist.

Even thoush cnly one EOR was: generated, all the tumble tables

are cleared. while this scan is being performed. At the end of

the lecp, the AMLC status is examined back at AMLDIM to see if

any other intarzupts had occurred (using the same status word

containing EOR). If none exist th mn a WAIT on AMLSEM is issued

and the Cispatcher gives the CoU to the next user on the reacy

list.

= 14 =

Cese ii) Character Time Interrupt

On detecting a character time interrupt has occurred, a :

test is made to see which line caused the interrupt. rf :

the line is the input clock line, indicated by its GFLAG

being set, then extra functions are perfomred. These are: og

i) Testing for loss of carry. The stata indicated by

a bit in the data set word word for the controller.

the DTE(data terminal ready) is topped for these

lines. If carry has. been arepped and DISLOG is enabled

then an abort flag is set in the process abort word of the

PCB. This is done at the half the clock rate (consequently

usually 5 times a second). Dropping the cata terminal signal

for lines that have lost carry.

ii) This occurs every 3 minutes. Eowever, problems occur with

this; see section 5).

Every 3 minutes DTR is drosped for all lines that dont have

carry. This caters for the case where lines that never had

carry, e.g. modem lines, are accidently engaged.

iii) AMLIN is called to clear the tumble tables as for an

EOR.

Then AMLOUT is used to examine all the dedicated in the current group

(@ or 1). The mechanism used to do this is to check the output ving

puffer to see if any characters exist. If there are characters

present then code is entered (depending on the controller type). For

the DMT case, the dedicated cell is examined and if it is empty, then

the OADR table is used to transfexz control to the output protocol for

the line. The default output protocol is Tryour. Others available

are:

a) TRNOUT Transparent

b) TRHOUT Transparent highspeed

c) TrsouT Teletype highspeed

e
e
e

es
e
e

e
e

oe
 e
e
e

ee

ee

e
e

The main differenca exists between the high speed end

the normal protccols. The hich speed protocols use the

Character time intermumt bit to over-ride the slower

speed of the group cleck rata. If there are moze than

40 characters in the outout ring buffar then the CIT bit

is switched on. This of coursa causes interrupts at the

rata for. the line. When thara ara lass than 40 characters,

the CTI bit is switched off and the dcadicated call is re-

plenished at the clock rata fer group zero.

In the DMQ case the quaus is examined to see if it can take

any more characters. Because DM) systems co not use high

spead protocol, the intar=mumt is caused by the last line of

group zero which ecccurs at 110 baud.

The routine FMLIOB is used to obtain a character and place

it in the dedicated cell for the line or at the bottom of the

queue for DMQ.

When all the lines have been servicad, a WAIT on AMLSEM is

issued.

case iii) Multiple Character Time interrusts

The only difference between ii) and iii) is that the AMLIN

loop is executed prior to AMLOUT. This is dene becuase theze

is no guarantee that the multiple interrupt didn't occur on

the input clock line. ‘The AMEC status word only contains the

line number of the last interrupting line.

= 16 =

5) HANDLING SPECIAL REQUIREMENTS AND KNOWN PROBLEMS

Often it is rereaeaty. to interface special devices to =

the AMIC. It is important to be aware of the consequences

of doing this in terms of the effect on the whole system

and the effect on the device.

5.1 Known Specials

a) XON/XOFF for input devices

b) Buffered devices for output

ce) Page mode devices

@) Cassette Input

e) Adding new protocols

£) Interfacing DMQ boards

a) XON/XOFF.

In the standard AMLC software XON/XOFF is surpcerted on

output. This means that when the feature is enabled,

sending an XOFF to PRIMOS suspends cutput and sending an

XCN resumes it. However, some devices used for input,

such as cartridge devices, will respond to XON/XOFF. This

is designed so that the device can transmit data at high

speed with the software stopping the device when its buffers

are full. The modification to PRIMOS is fairly simple and

involves:

i) Testing when the tumble tables are being cleared to

ensure there is enough room in the input ring buffer

to hold the data.

ii) If the buffer hasn't sufficient recm then placing

an XOFF in the outout ring buffer.

Beige

b)

i144) Testing the state of the input ring buffer

if an XOFF had been sent to see if transmission

can be re-enabled.

iv) If transmission cam be re-enabled, then placing

an XON in the output ring buffer.

Invoking special featurss can be achieved hy making use

of spara- LWOND bits. The main consideration is to ensure

that extra coda doas not incraase the overhead in AMIDIM

CPU usage. Consequently test i) is the only cne that

needs to be placed in the inter=upt lcop. Test iii) can

be placed in the low intez=cpt rate locp eg: carzier loss.

Buffered Davices for Outout

Sema output davices, such as plotters and printers,

indicate when their internal buffers are full, by setting

an interface line (the busy signal). The standard AMLC

OS4 can detect this on nin”8 4 mie the state of the signal

available to the software. Interfacing AMLDIM to these

devices can be achieved by:

4) Incorporating a special test in AMLOUT

ae) Adding a new protocol

The modification i) is straightforward but once incorporated,

gives the device to a specified line and also involves an

overhead in AMEDIM, even if the device is not being used.

44) is a much more satisfactory solution as it is line

independent. Care must be exercised when adding this

modification that all the precautions are observed when

performing the I/O required to read the AMLC status.

= 1865

he

ae
a
a
a
a
a
e
a

c)

d)

e)

Page Mode Devices

Page mode terminals are those which transmit a whole

screen of information in ene burst. This causes a

large quantity of information to be sent to the tumble

tables. If there are a number of page mode terminals

connected to the AMLC, then there is the danger that the

tumble tables will not be able to handle the input rate.

Consequently, loss of information will occur, which

necessitates increasing the size of the tumble tables

in segment 9. The main consideration is to ensure that

the disk driver still resides at location 1400. It will

also be necessary to increase the size of the input ring

puffers using the AMLBUF command.

Cassette Input

Cassette input devices are similar to page mode devices,

in that they transmit burst moce packets. Consequently

the size of the input ring butters will need to be

increased and the tumble tables may need to be increased.

If the device responds to XON/XOFF, then the considerations

in a) need to be borne in mind.

Adding new Protocols

Adding new protocols is a fairly straightforward process.

The tables in NLKCOM will need to be adjusted to reference

the new protocol name (as input with the AMLC command) to

the driver name in AMLDIM. The new protocol code will

need to be added to AMLDIM using the bgic contained in ‘the

existing protocols ie: use of TOLIOB and FMLIOB to manipulate

the characters. The only other important consideration is

to ensure that the generated code dcesn't overflow the pege

boundries set up in MAPGEN.

==

—
 f£) Interfacing Di boards

Adding DMQ boards to the standard system causes no

difficulty. The preblen comes when a special addition

has to be incorporated. The DMQ only affacts specials

that require suspension of output based on cartain

requirements. ‘The length of the queue must be taken

into account because suspension of transfar from the

ring buffer to tha quaue dcesn't affact the DMQ going

fron queue to. the AMECc. It is therafors necessary to

pack out the quaue with null characters whic con't

gat sant to the davica.

5.2 Xnown Problems

Cartain known problemexist which can be got round by using cartain

techniques.

If forcad logout on disconnect is configured (in the CONFIG file)

direct connect devices may be logged out. The cbject is to d=sp DIR

(Data Terminal Ready) on lines with no carrier. However this is dene

by pratending all lines hava carrier. Any line that never had carrier

(ie: a diract connected line) will be force legged out. The solution

for devices that generata DIR is to use cable type 1470. For davices

that do not genezatea DTR strap DIR from the AMLC to carzier. For the

system console being operated as a USRASR terminal, the carzier must

appear hich on the line that corzespencs to the buéser being tched.

The alternative is to set the LWORD to zaro.

If forced logout on disconnect is enabled, then cutout may not be

turned on. This is because the logout message is attemptsd hefore the

LWORD is changed to allow output (ia: the buffer number insextsd).

If the output ring buffer is full then the procass (user) hanges on @

semaphora. Message all new can cause the ving buftSer to fill.

a
n
a
t
a
 ae

ese
e
e
e

ea
e
f

e
e

e
e
e

e
e

6)

Unstable carrier can cause problems such as random disconnects.

oblems can occur with UX Modems because noise on the line may

cause the modem to think carrier is permanently high. Carrier

high with no cne logged in can cause a modem to become permanently

engaged by a wrong number.

Tha maximm size of all ring buffers (in total) must be less

than 32K words.

P3200 DIFFERENCES

The mechanisms used by the AMLC harcware are independent of system

as the same controller is used throughout. The main difference

between the P300 and P400 concerns the segmented architecture of

the latter.

The AMLC Griver AMLDIM doesn't differ significantly between the

P300 and P400. The technique of tumbletables, dedicated cells

and ring buffers applies. DmQ is not available on the P300.

The most important difference concerns the way the code is entered.

As there is no process exchange mechanism, the interrupt address

is the entry point for AMLDIM. The DMX memory areas exist in the

same segment as the driver. The ring buffers exist in a pseudo

segment which is addrassed through the memory mapping tables.

The parameters of the ANLC software are fixed and changes can

only be made at source level. The most common change is the

buffer size. This can be achieved by modifying the medule TFLIOB. os

The main consideration is to ensure that the centronics butier

start adéress is located on a page boundary.

= gie

The suspensicn of users is achieved by a state vector.

This means that if a user requires input, he will not

gat access to the ring buffer mttl a time slice interval

(waliks PRIMOS Iv) whare he will be waiting on BUFSEM and

gat put on the ready list by AMEDIM. This of course has

consectances when sarvicing fast devices.

XCH/Z0FF is not implemented in the standard systen,

althouch inserticn of the coda is fairly straightforward.

A

a Ae

AMLDIM ENHANCEMENTS

BUFFERED PROTOCOL (REVERSE CHANNEL)
- LWORD BIT-5 SET-DETECT BUSY

BIT-6 (USED ONLY IF BIT-5 SET)
ON - IF DATA SET SENSE HIGH ISSUE XOFF, ELSE XON-

OFF - IF DSS LOW ISSUE XOFF, ELSE XON
. TRANSMIT DISABLED WHEN BUFFER EYPTY 5 SECONDS,
. DTRORP CONFIG DIRECTIVE AND DROPDTR COMMAND,
. BUFFER OVERFLOW DETECTED USING NAK (°225) CHARACTER,

IF ONLY ONE CHARACTER SPACE REMAINS IN THE INPUT RING

BUFFER, A NAK WILL BE PLACED THERE. A SUBSYSTEM CAN

CHECK FOR THIS AND REQUEST A RETRANSMIT AFTER ISSUING

A CALL TO BUFCLR.

. PARITY ERROR DETECTION

IF BIT 8 OF THE LWORD IS SET, AYLDIM WILL REPLACE ALL PARITY

ERRORS WITH A NAK CHARACTER. THESE MAY BE HANDLED AS FOR

BUFFER OVERFLOKS.

Froariasg Pr

wea

 a

¥

Fl

V-Mode Register Description:

SCRATCH DMX
RSO RS1

ADR HIGH LOW ADR HIGH

@ TRO o oc

1 tri = a=

2 “TR2 = 42. =

3. TRS: 3 43. >=

4 TR4 = 44. -

oS Th> = 4] =

6 TR6 = 46. =

VT TRT i AEA

1g ROMXL = 50 =

iu Rox a Sie

12 = RAIMPL 52 -

13 RSGT1 = s3 >

14 RSGT2 = 5a

15 RECCL = 55.2

16. RECC2 = so

We = REOIV 57

28 ZERO QE 68 (28)

21 PSSAVE - bi

22 RDMX3 = 62 (22)

23 RDMX4 = Gag

24° C377 - 64 (24)

ao - = OD a

26 = = 66 (26)

Ce! - - Sve

38 PSWPB = 78 (38)

31 PSWKEYS 1 a2

32 PPA:PLA FCBA da = (36)

33 PPB:PLB FCB 7

34 DSWRMA = 74 (34)

35 OUswstaAT - 75

36 DSWFS = 76 = (36)

37 RSAVEIR <- we

NOTICE - Numbers in parentheses () show P3989 Address Mapping

A

l
s
a
t

E
nN w

(25)
(27)
en)
G3)
(35)
a7)

CURRENT
RS2
ADR
128
161
182

~193
184
195
126
127
119
111
it2
a3
114
115
116
117
128
121
a2
123
124
125
126
127
138
ao
132
133
134
g35:
136
137

RS3
ADR
148
141
142
143
144
145
146
147
158
152
152
153
154
155
156
157
168
161

178
171
ee
233
174
175
176
177

HIGa
GR8:0LT2

GR1: PIS-

GR2(1,A,L4)
GR3 (EX)
GR4

GR5(3,S,Y)

GR6
G7 (8 ,%)

FAR] (13)

FLR1
FAR2 (4)

FLR2:VSC (6)

PB

$B(14)
LB (16)

xB
DTAR3 (18)
DTAR2
DIARL
DIARG
KEYS
OWNER
FCODE (11)
FADDR
TIMER

nter on a crash (autematic save)

_

RDMX1 - Used by DMC, buffer start pointer

Definitions
T™ Temporary Registers

TR7 - Saved return poi

ROX Register DMX

RDMX2 - REA at time of DMX trap

RDMX3 - Save RD during DXQ

RDMX4 - Used as working register

RATIMPL Read Address Trap Map to rP Low

RSGT Register Secmentation Trap

RSGT1 - SDW2 / address of Page Map

RSGT2 - contents of Page Map / SDW2

Ti 2

f
As
t

I
REGISTERSSET (CRS)

i
e

ot

e
e

Register End of Instruction Vector
Constants
Procedure Base SAVE
saved return pointer when return pointer used aeohert!

Constant °
Processor Status Word Procedure Base
return pointer for interupt return (also used for Prime
388 compatibility)
Processor Status word KEYS :
KEYS for interupt return (also used for Prime 388 canpatibility)
Pointer to Process A
Pointer to Level A
Process Control Block A
Pointer to Precess B

p
e

- Pointer to Level B
Process Control Block B
Diagnostic Status Word RMA
RMA at last Check Trap
Diagnostic Status Word STATus
Diagnostic Status Word Procedure Base
Return pointer or PBSAVE at last check
Register SAVE Pointer
Location of Register Save Area after Halt

General Register
Old Length ard Type
Pointer To Sign
Field Address Register l
Field Length Register l
Field Address Register 2
Field Length Register 2
Procedure Base
Peg - RE

FEL - 8
Stack Base
Link Base
Temporary (auxiliary) base
Descriptor Table address registers
See below
See below
Pointer to FCB of process owning this register set

Fault CODE
Fault ADDRess
l-millisecond precess timer (used for time-slice)

1
an
e

V-Mode Register Usage:

STLR/ E
6

B
E
a
u

w
N
n
w

il

m
o
m

-

E
m
m
m

C
H
E
E
S
E
 Et

I
EV

er

we

s

m
o
d

m
m

M
m
m

m
o
m

.

26H
27 5,L
27L
38 8

Address
Trap

1
B
a
w

P
o
r
e
w

~
f
i
n
n

14,15
16,17

i
b
y
 b

FI

ee
t
a
e

Usage

P (program counter)
A (accumulator, high half of L)
B (double-precision, low half of L)
EH,EL (accumulator extension for MPL

DVL)
Y (alternate index), S (stack)
X (index)

(field address and length
register 9)
(field address and length
register 1)
(floating accumulator, mantissa

high)
(mantissa middle)
(exponent)
(mantissa low, double-precision)
PB (procedure base)
SB (stack base)
LB (linkage base)
XB (temporary base)
(high half of DTAR3)
DTAR3 (descriptor table address,

segments 3272-4295)
DIAR2 (segments 2948-3871)

DIAR1 (segments 1824-2847)

DIARZ (segments 98-1823)
keys, modals
CANER (address of process orcot

block of process owning
register contents)
FOODE (fault cede)
FADOR (fault address)
(fault address word number)

process 1824-microsecond c.p.u timer

ib
o
d
e

N
s

u
a
u
e
l
y

a
e
d

Z
a
w
e
s
y

a
d
e

]
:uesy

aded

iS. La9
Aq

220]
[8

pu

11e)s
p
l
o
d
)

AD
ai

2djAap

uo
s
j
u
a
w
d
a
s

ulyiim
ooed

yeniata
woij

d
u
i
d
d
e
u

ag

9
1
5
.
1
4
9

Aq
Ayjeoiueufp

payeass
adtaap

Sujged
0}

juawBas
jenjaya

w
o
s

Buyddew
S
e

Tiers:
4

T
va]

1
162

a
e

sate
z

I
gies | Smee

ae
| Paral

eae
aaeg

adeg

Lu
7

R
r

n
-

e
e
n
s
.

—
_
—

e
e
e

~

19
ee

eee
on

eee ee
ee

we
@

l
R
e
e

e
s
a

~
~

B
e
l

Baan
e
h

y
anit

e
7

Po
e
e
e

e
S

in
=

e
o
n
s

A
s
o
w
a
p

ujyey

Aaroway
p
e
n
y
A

a]
>
\
u
a
w
d
a
s

a3

&

aged

q
j
u
a
w
d
a
s

|
adeg

©
a
s
e

B
y
U
a
W
d
a
S

aA

aotaad
B
u
s
e
y

fl
8899014

>_>
w
e
.

~

N
aa

x

t
1

*
<5

a
e
d

a
d
e

=
o

u
e

LL
w
w
e

‘
zy

X
x

\

é
|

c
t

a
t
o

aged

Aazoway

p
e
n
s

v
e
r

2

q
u
a
w
d
a
s

q

q
u
a
w
d
a
s

q
q
u
a
w
B
a
g

v

q
u
a
w
d
a
s
g

GuOM

e
e
!

sauadv
ySId

q

dvW1
9+

39Vd
AMOWSH

dVWH
W3u

é

aavi
39vd

|

*
T
a
s
:

Y
O
L
d
I
Y
I
S
I
G

LN3WOAS

F1aVL
Y
O
L
d
I
y
D
S
A
d

LN3AWOSS

39Vd
NIHLIM

SSaudqy

ssauadv
W
L
N
I
A

7

Yo
oahy

f
OM

|

39Vd
4

ANaWw9aS

ee Al 10 11 16 <j

5 | | =

eee
| “t—— ORD PAIR

ao 17:18
32 ae

4 i

4-10 - 9 OF ENTRIES IN SUT

Li - 32 - HIGi ORDER 2 BITS OF PHYSICAL ADDRESS (LOW ORDER BIT TAKEN

AS ZERO SINCE IT ALWAYS ACCESSES
A WORD PAIR IN SDy.

=

o
d

gw
}

a
e
,

Cy SUT

c i= ‘Sow

-
;

=

i Sos
UP TD 128 .ORIS "

. 64 ENTRIES

SoH

z 10.11 16

PMADR_-HT vez

F] asa | BEB | COC | PMADR -LOW

27 18-20 21-23 24-26 27 32

BITS 1-10127-32 = FHYSICAL ADDRESS OF PAGE MAP. (MIST RE GN A 64K BOUNDARY.

BITS 2-20 = SPECIFY THE RING RIGHTS FOR RDG 1

BITS 71-23 © RESERVED FOR TURE (Ring 2 rigs)

BITS 24-25 = SPECIFY THE RING RIGHTS FOR RING 5

NOTE: RING 0 ALWAYS HAS ALL ACCESS RIGHTS.

o
w

HMAP ENTRY :

= ii
-<

cee 12545" 16 A
: ae

el R.

pe ly R uls PHYSICAL PAGE ? at

ee
a

ak

"y - VALID = PAGE IS IN ME-0RY

R - REFERENCED = PAGE AS REFERENCED

U - UN-MODIFIED = 1F THE PAGE HAS BEEN MODIFIED, THIS BIT IS 0

abl
S - SHARED BIT = RESERVED FOR FUTURE MULTI-PROCESSOR SHARING { ve ne

(850)

BITS 5 - 16 = 12 BIT PHYSICAL PAGE #

k\ 2

LMP ENTRY

oy 2 3 4) 5
16

Lx | NO|ALT DISK INDEX TO 8 PAGES

 yp OLD = NO OLD COPY EXISTS ON DISK,IF BIT SET

ALT = USE ALTERNATE PAGING DEVICE

BITS 5 - 16 = DISK TRACK ADDRESS (INDEX TO 8 PAGES)

AE eo

Se

n
i
t

toa

SEGMENT SHARING

f

- DTARs 0 and 1 are shared by all processes. +}

They are not altered on a process exchange.
; =

oh Thus all processes hsare the same segments =e

% numbered 0...3777 (octal). :

- Each user has his own private settings for

Be DTARs 2 and 3 stored in his Process Control

Block. These settings are swapped on a

process exchange.

Thus each user can have his own individual

segments numbered 4000.. -7777(octal).

- But segments in DTARs 2 and 3 can be shared

too. This happens when two (or more) users

have segment descriptors pointing to the

same page table.

This form of sharing need not be system-

wide, and the segment number assigned to

the shared segment need not be identical

in all processes.

This type of sharing is not allowed under

current release of PRIMOS.

OPERATING USER

SYSTEM APPLICATIONS

DTAR O DTAR 1

(0...17777) (2000. ..3777)

SHARED operating shared editor

system code shared libraries

DTAR 3 DTAR BZ

= NONSHARED (6000...7777) (4000. ..5777)

- per-user normal

system tables user code —~
TYPICAL DTAR USAGE

ae ii

a
e

PID

ADDRESS TO
STLB_I
(0-63)

STLB I (TOTLB)

SIMPLIFIED DATA FLOW

(seqnent # = 0)

DOM
e
e

=

R sec # |PAGE #] wD #
- Nia Seed) Ueeeecans

STLBI

PHYSICAL
ae

PHYS PAGE

STLB II SIMPLIFIED DATA FLOW
(seGMENT # # 9)

st

aes a

ae PID R | SEG# PAGE # wo?

INDEX PHYSICAL PAGE NUMBER

oe

1 oF 64 Locations

NY

; (F2) : S, |COMPARATOR

: HIT

\Y MISs

NOTE 1: Fl ano F2 ARE HASH FUNCTIONS —

NOTE Zz: IF MISS EXISTS. MAPPING FUNCTION 1S PERFORMED ALONG WITH

HAS FUNCTION £2, PHYSICAL PAGE NUMBER PLUS HAS F2 ARE
WRITTEN INTO STLB.

I= {3

PHI
PAC

CACHE (P350 - P&50)

VIRTUAL ADDRESS of

rR | sec# PAGE # wo # = ; a

CACHE

INDEX DATA

ADDRESS
INTO CACHE
(051023)

PHYSICAL Ka e
PAGE # INDEX DATA WORD
FROM STLB

COMPARATOR

HIT/MISS

‘o
ge
r

Reweire mdEX
NTH WEL) Phu

 Warr FOR DATA

FROM HEmMORY

WRITE DATA
FRom HEHORY
Into CACHE

set

VALID

HEMORY

ACCESS

ADdDe. CACHE -NtHoORY

ST MUL TANEOUSLY

MEMORY éacne

ae _ [te ass

ADPRESL [Lwed-womace

. DATA FROM

CACHE TS

cPu

 ES

RESET

YALID - 817

WRITE DATA
From CPu

“lro wepMogy

* INPUT - OUTPUT *

1 So 5eere 7 10 11 : 16

14 | FUNCTION DEVICE SELECTION CODE |

>

3 ee OO a ORE

up T0 64 DEVICES

: 10

O1 - SKS

10) INA

11 - OTA

DEPENDS UPON

DEVICE CLASS.

ts

i

‘

ee
he

“LP
W
a
n
d

G
u
u
:

y
a
0
u
3
8

a
a
v
D

|
shops

 tio"
T
A
I
N

I
D
A
I
G

ae
a

S
|
 et

e
s

H
O
A

D
d
a

~~
n

o
°

Sie

ilitaiaacin
ate

Buaxds
7} :

KANO W
O

,
G-0

G
o
w
d
a
}

-

O
A
U
S

i
ownTaa

>)
o
e

K
a
s
s
e
)
 :

534 Isa Ano
iy

:
~.

9
s

B
a
a

7
1

lass
:

O
A
v
A
W
I
N
G

I
PZ

ANNI
21-1

U
a
e

.
Ord

2d
<
S
a
r
e
a
e
a
e

w
d
]

2
0
9

| s
o

|
Epa

Psy
[so]

KT
ea

e
d
a

(
C
T
s
.

xX wa
OL T

| ee ee nae

on :
i(~eseription :

A. DMT - Direct memory transFer s controller Supplies Memory Aldres

directly Fastest of oll Dmx

aoe
uy

; Controller supplees™ channel number B.-Dma - Direck Memory access

to CPUs CPD accesses & pair of locabiens in Resiste

File which ull supply RANGE and STARTING Location
- For transfer 3 8 channels oF Dmas slower than DMT

Reg. Files locstiens 20—37 reserved for DmA

1 $2 13 1415 16 yo

1** Leeatian 2's Comp, oF Range Ra

—_s,

oo aed ‘ta

f Range * Number of Words to be transferred (4k

99 00 = High order ‘sddress bis te stow

transfers mywhere within 256K

ee 1
: i ans te

(er= Lees byon 1s Starting Addears

ae IS Fic ef 1% Useshien extend daddeess 46 a

C. DMC - Direct Memory Channels controtler. supphes “chanel number” +

Cpu 3 CPu access 2 pair ef Memory Lecations Calja

whieh supaly STARTING ADDRESS and ENDING ADD

Z3tK eee channels (ete aees)5 Slowes ceeell DMx 5

ts max. range

1 iS

Starting Gidrass

a t w :

a: Ending Address a

Liewlad by taolesiter

E-1¢

ee ee eee

on i
1 ~eseription:

A. DMT - Direct memory transFer 5 controller Supplies Memory Aidres

directly $ Fastest oe oll Dmx 2

B.DmA- Direct Memory access 5 Controller supplees* channel number
2

> to CPUs CPD accesses 2 pair of locabians im Resiste

File which ull supply “RANGE and STARTING Location
i For transfer 3 8 channels eof DmAs slower than Dm

Reg. Files locstions 20—37 reserved for DMA

112 13 a se Wor
= Location 2's Comp, oF Range Aa -

—,

= —

e Range * Number es Words to be transferred (4k

99 00 = High order ‘address bits te Neu

transfers mywhere within 256K

wee 1 Ie
Lean ae

' | Starting Addrers

i an Lecabion

ans IS vlu of 1% Locahon extend address te
_ :

C. DMC- Direct Memony Channel ; controller, supphes PChasneliericer >t

CPU 3 CPU 2cees3 3 pair oF Memory Lecstions (aljz
whieh supaly STARTING ADDRESS and ENDING ADDI

S32K tece channels tote soee)5 sloueee er 2 Dmx 5 '

1S max. range

! 1m

Starting Addrass

a t a
= Ending Address =

« aly colcter

I-1¢

b
i
-
x

0
2
0
0
1
-
0
0
0
9

suojia0]
o4/uiosf

4afsiinds
prom

opo]
0

sof
Ssasaiuvsod

svoys
aydiuioxy

,

gt
LOOGG
i

x
|
x

SSIUGQV
US4SNVUL

ze
Zt

Ob
Gl

pl
eb

at
1

e
a
e
,

Ueno
:

'
o
e

lt

ne
-

sSJuGGV
V
I
G

= 6
|WaeWNN

i
a

ovoooo
KCssauaov >

3
N
N
V
H
O

O
W
 = 1]

NIVHD
gy|

000900 |
oorzct

v
o
z

t
Dau

SS3uGGv
O/vWa

(aanhivna
eval

¥
3
T
I
O
U
L
N
O
D

O/!
Nds

8
a

o
Ea

»
>

m

'
8

“Z£
St

(00bd)
S
T
A
N
N
V
H
O

V
W
G

JO
Y
S
B
W
A
N

W
A
W
I
X
V
W

—

“960b
S|

O
A
J
U
Y
A
A
S
N
V
U
L

3B
NVI

LVH1L
S
G
Y
O
M

JO
L
N
N
O
W
Y

W
I
W
I
X
V
W

—

“
H
A
A
S
N
V
U
L

JHL
YOS

S
U
I
L
A
W

Y
U

JHL
S
N
I
V
I
N
O
D

JU
SIHL

“VWO
HO4

AOISV
13S

$3
19

U
F
L
S
I
O
I
V

IHL
4O

INO
4O

S
S
I
U
G
G
V

NV
H
L
I
M
A
d
D

SHL
S3lTddNS

Y
3
T
I
O
U
L
N
O
O
D

H
L

S
H
I
A
S
N
V
U
L

V
I
G

HOd

e
(
V
W
)

SS399V

A
Y
O
W
3
W

103NI0

v
i
v
a

/0z00t
' '

aaah

'
viva

/0009

A
Y
N
O
W
I
W

;
:

oe
-—Ir

“
0
2
0
0
1
-
0
0
0
9

sHopiv20]
01 /ut0.4f

4afsuiv4s
p1om

O
F
O
T
™

40f
sidjauivapd

smoys
a
d
u
n
x
y

,

S
S
a
H
a
Q
a
v

W
W
N
I
s
d
/
N
O
I
L
V
I
O
1

G
N
O
I
A
S

SS3UGGV
UASSNVUL/NOILVI07

SUIS

f
fl

'
e
t
a

aN

ssauaav
va

«6
|uaawnn'

N
O

a
n

:
ssaudav

ssauaay
2Wa

40
3NNVHO

owa=t|
NivHa

| —
4
q
"

puped’
<
s
s
a
u
a
a
y

>

N
o
W
G
d
m
a
n
n
e
y

'
:

J
H
L
S
3
S
S
V
d

O
N
Y

R
e
a

Veet
Dau

ssauday
o/vwa

o
o
t

on
e
e
e
g

Wa TOULNOO
ON

nao

(Hv911auOaHL)
1v9 LSOWI¥

“
$1 G3UUa4SNVHL

3a
NVO

3
:

LVL
SGHOM

4O
LNNOWY

WAWIX¥
—

a m

.

(ivolauo3HL)
&

STANNVHO
OWO

bZ01
40 WAWIXVW

—

VOL
dN

3a
NVO

3U3HL
;

SNW3W
SIHL

“BZLE OL
dn

YAGWAN
NAAR

D
e
o
r
e

ANY
SHV

AlddnS
NV9

U3 T1OULNOD
\

HL
LVHL

Sassauaay
318IssOd

'
"301d

AMV
OL SI WS4ASNVEL

HL
e
N
O

a
NOILV907

HOIHM
Ly

Salsioads
ssauaayv

7
ozoot/tooe |

_J

SIHL
“AHOWSW

NI G3SS399V
SI LVHL

0009/000€
SSAUQGY

NV
HLIM

Md)
3HLSIIddNS

aioHan
WaTIOHLNOO

JHL
SUa4SNVUL

OWG
UOs

P

a
t
e

des i
S
k

Tw,

vlowd)
TaNNVHo

AWOWAW
1oauid

A
)

0009
Hopivr04

Wod{/0}
dafsuvd)

v
40f

ss2jaiuvsod
Smoys

aJduivx7
,

Th
a
t
e
s

v
i
v
a

000900
s
s
a
u
q
g
v

“
A
U
O
W
I
W

OL
A
l
L
o
a
v
i
C

s
s
a
y
d
a
v

3H1L
S3asSvd

O
N
Y

i
K
C
r
o
w
i
n
o
a

>

—
LWO

$193130
Ndd

‘Dau
S
S
3
u
d
d
V

L
W
a

Y
A
T
T
O
Y
L
N
G
O

O/1
Ndo

ss3y¥cgv

JOXLNOD

i
“LWG

ONISN
SU3TIOULNOD

3HL
SO

N
O
I
L
O
N
N

ONV
NOIS3G

91d193dS
IHL

OL
t

ONIGUOIIV
SIIUVA

G
3
U
N
S
A
S
N
V
U
L

!
;

! | | 1

38OLSGYOMJOUIGWANSHL
= *

“YR4SNVUL
VLVG

3H
JO SS3udGV

TWNLoV
a

3H
SI} HOIHM

SS3NGQV
Nv

S3Iddns
q

W3ATIOULNOD
3HL

SUaISNVHLLWOuOs
viva

jo009
A
Y
O
W
A
W

\
Ve

e(LWG)

H
S
4
S
N
V
U
L

A
N
O
W
S
W

LO3NIG

at
coat

~" REV, 16 FILE SYSTEM CHANGES

- o &3 FILE UNITS PER USER (UNIT $3 RESERVED-FOR COMOUTPUT)

o NEW CONFIG PARAMETER

FILUNT (RSVUNT) (MAXUNT) (TOTUNT

(16) (64) (2048) °

f
e
e

ey
ie
ed

RSVUNT - NUMBER OF FILE UNITS GUARANTEED T9

BE AVAILABLE TO EACH USER.

: MAXUNT - MAXIMUM NUMBER OF UNITS A USER

CAN HAVE OPEN.

TOTUNT - TOTAL NUMBER OF UNITS THAT MAY BE

OPEN SIMULTANEOUSLY BY ALL USERS.

o
t
a

se
at

w
a
n
e
,

Menory boards

CPU beards

we URC Cortveller

+e Alic w BAHLC

**t HS5smic w MPLe

& Disk Dave Copel

~ Tape Dune Gracie

Soc w VCP board
Both boards pits are yrherclen pestle %

Biloce boerde’ “PUteuns ee datenchanpe nbde
oe

Suess

 iy

4

Boll boards pes dime Are 1 terclen peatde

those 3B boards’ Pottams are Pe
i.

Memory boards

CPU beards

ne URC Contwller

+e Aare w BAKLC

Persea c i ee

* Disk Dawe Cortvreller

a Tape Dur Cotvollze

Sec ow VYCT board

ae

2g LAL

w
a
h

T
e

a
L
I
A
S

S
t
e

aa
See,

-
-
p
p

Q
O

O
g

T
a
p
a

=

i
s

ede

e
e

re
o
g
y

o
f
:

n
d

NjSe5 5

—
—
S

m
d

A
w
O
H
3
H

dao
n
a
y

SOW

INTERLEAV ING

MOS
MEMORY

EVEN

ADDRESSES

-
—
-
-
-
O

M
E
N

O

MOS

MEMORY

ODD

ADDRESSES

o
H

H
O
N
E

INTERLEAVING IS IMPLEMENT USING TWO IDENTICAL BOARDS,

ONE BOARD CONTAINS THE EVEN ADDRESSES, THE OTHER BOARD

CONTAINS THE ODD ADDRESSES,

THIS HAS THE EFFECT OF SPEEDING UP SEQUENTIAL ACCESS AND

REDUCES THE CACHE MISS RATE,

A
ik

XK
K
a
l
k

A
A

hr
EO

N
AALWAAMOIN

X
N

N
N
|
O
N

N
N

N | ON
N

0/1
aGQN

LSund

x
h

h
R
e
d
,

K
nN

|N
N

"IANVd
‘IOWLNOD

TVNLYIA

k
XoiWa

sna
senwAn

Mae
ene

A
N
G

IN
LEN

AUCEN
TTGVAVAT

UBINI

iK
A

k
Ae

Wak
0

0
N
I
N

N
AUOWED

(90d)
NOTLOTWUOO

ANY
XDHHO

YOUU

A
al

aed
Rants

A
K

Ke
VK

N
ALTUVd

(ALAG)
UOSSADIOUd

ik
A

A
R
o
x

x
k

Ke
Wee

N
ALIMVd

(LAG)
AUOWSIY

K
N

N
N |

ON
N

N
N

|N
N

HOSA-dd
NOILOMLLSNI

A
K

A
R
e
k
a

ek
A

N |

N

N
AONVIDXS

SSIOCUd

x
A

A
E
e
k

i
AR

N |

N
N

Luodans
dwg

zz
Ze

weer
ircee

|
Ce

|
ee

8
8 |

8

8
STANNVID

Wid
dO

waanN

XK
K

K
E
N
O
N

A
x

K
a
y
o

0
wd

pue
Ind

&
A

K
K
O
V
R

A
k

N
|
N

N
(ONIUVHS

WWUDCUd)
NOTLOSLOUd

AMOWSN ONTY- I
L
O

91x26 | XZXOT
|NZXOT

[AZXOT
[AZXOT

|NZXOT
[AX2xX9T |

B/U}
B/U

|
B/U

(SALAG
X

SLTG)
2ZIS

NOWEN
D
O
V

+

g
8

8
g|

8
|

eu]
eft

e/a)
e/u |

e/u
SUALSIOTU

ASORUNd
TWUANAD

(LIG
7£)

dO
W
A
N
N

HY

gzt
|

zt}
ezt{

ezt|
ezt

|
szt

|
ze

|
ze
|

we |
ef

A
d

USLSIOTY
NI

SYALSIOGU
AO

WAGON

zz
C
E
P
T
S

Le
eM

ee
pce

Ze
OU

OU
OF

(SLI)
AZIS

WALSIOTU
GNV

SN
TWNYALNI

Nad

¥9
9

|
¥9 |

v9
|

po
|

b9
CA

iN
data

(ie
i

(WALSAS
ONIGNIONI)

SYaISN
JO

UAGWIN
W
W
I
X
W

wee |

wee}
wes|

xzts|
wee

|
X2TS|

Nee]
NezT |

e/4 |
B/U

(SALAG)
UASN/AUOWEN

TYMLYTA
JO

LNNONV WOWIXY

W9SZ]
WZ

v/u
|

e/u
(SHLAG)

AYOWEW
TVALHIA

JO
LNNONY

WOWIXYN

z¢
Sty

mOty
sot

|
Ob

SE
SU

{OU |
9
4

OL
(SLI@)

BZIS
CYOM

A
U
G

WB
we

|
wz

|
We

|
WE

|
We

|
AZIS|

AZTS |
AZT]

AZT
(SALAG)

AUONSW
TVOISAHd

JO
LNNGAV

WOWIXW

ize
|

ze]
ize]

Ize]
ize |

Avo
|

Avo |
Up9

|
Yvd |

Uv9
(aluOddns

3dQN
SSHYddV

LSAHOIH

:
-

a

Nees
t
h
e
s
e

OSL
059

OSS
00S

OSy
O0v

OSf
OOF

002
00T

TUNLVad

SOLLSTUSLOVUVHD

1.
2348”

i

YOSSTOOd
TWUINSD

SW1ud
-

a

SS ee a y

See te. H

ozs
02S

Sa) ee oe

SS ee He

Ozs |
LIS

> Se eH

as

i Se ee >»

 |
BIc

= See RSH St

6If
Sores 2 SH

oS 2 = = = eS

N
N

Srt|
Lit

oe es o

pat

M
d

SIHL
OL

AlddV
LON

S
H
O

FUNLVSA
S
I
L

=
&/u

(
U
V
M

YO)
TYVMCMVH

A
GaLuOddAS

=
HH

SOVAIVd
TUVMLAOS

NOILONULSNI
GELNSNATANINN

AG
CaLuOddNs

GaluOddNs
YO

GAITddNs
SI

LI
SHA

QaLWOddNS
YO

GaI'IddNs
LON

TYNOILdO

'

oz} 2

YOSSANOUd
TWULNAD

NI
SdvvOd

JO
WAGWN

{3GOOOUDIN)
DILSNMLTYY

INIOd
ONILVOIS

LSVvd

DIIDWULIMY
WIOSINI

LI
p9

D
I
L
I
N
H
L
I
Y
Y

YFIOILINI
LIG

2¢

LINA
DIO01

OLLSWMLIV
LIG

Zo

DILIMLLIYY
LNIOd

ONTLVOIS
NOISTOAYd

F1GNOd
pue

FIONIS

‘
O
N
A
L

NOISIOGUd
ATGNOT

PUB
SCIAIG/ATdILINN

TUVNRIVH

;
WUOddNS

LAS
NOTLOMLSNI

SSaNISNA

"13S
NOLLOMULSNI

NI
SNOILOMILSNI

JO
WaMWN

OsL
ance

c
—

oss
=

=00S
a
b
a
n
a

Osy
oov

ost
oor

002
)

munya.
)

Requstex Fives

THE CPU INCORPORATES A HIGH SPEED REGISTER FILE oF 128

LOCATIONS, EACH 32 BITS.

THESE LOCATIONS ARE DIVIDED INTO 4 GROUPS AS FOLLOWS:

croup 0 (FILE ADpDREsses 0-'37)

USED BY MICROCODE AND SYSTEM

croup | (FILE appresses '40-'77)

32 DMA CHANNEL REGISTERS

croup I] (FILE ADDRESSES '100-'137)

USER REGISTER SET A

croup II] (FILe appResses '140-'177)

USER REGISTER SET B

TWO USER REGISTER SETS ARE INCLUDED TO FACILITATE FAST

PROCESS EXCHANGE. ONE SET IS AVAILABLE TO THE CURRENTLY

RUNNING PROCESS AND IS REFERRED TO AS THE CURRENT REGISTER

SE te

DETAILS OF THE USER REGISTER SET ARE AS FOLLOWS:

i rT

S27A
Y31S/93X

005/00b-2,

tes
Lf

Ver
ZE

ls
Widaveg]

LE
9L0

98
xt

9h
(9)

ey)
22

gunsa |
2

1st
ptt

SE
SL

TMLEMSA
| Sf

wet
ve

nt
bE

(sD)
CGs)_]

be
vwansa

| bt

ely
££

al
gf

Su.
gerd

|
Od

-addl
LY

zr
2

est
28

(£8)
(28)

|
22

vO0d
|

vid
‘vd |

2
a
e
s

i.
ih

S
A
a
m
S
d
]

1

Tawil|
of/

OF
Saville

of.
U
w

(2s)_]
a

agnsd |
OF

(20) |
waaava|zor

22
Ry

w
a
v

Lz
lo

42
11)3dedd | 79/7

72
Wy

s
e
a

|9
92

(22)
(2)

99
97.

“BINMO
| 99/

SE
YWANMO

lo;
sz

Ss?
S2

U
s
r
o
w

)
SAN |

bas
be

(
s
i
r
)

Sho
|e!

eZ
($2)

U
r
e
y
)

ZZE%)
|

vz
puwid|oo/

SZ
P
w
d

¢z
59

FRUTy_|
Fz

Java]
zw

22
Tauld|7z1

«22
(s2)

(22)
|

2
fxwas

| 27

29vid
19t

12
2IVLY

(2112
1s

vavead
|

#2

Cei)favid)
ons

@
(optyicdjer

@
C2)

foz)
lo

3NO
oyaz

| 02

BxX\Lsr
2)

ex |i
Ld

45
AloaS,

“i
Cty

T 9
1
9
9
7
)

257
9/

CY
|

CT
eT}

=
91

1S
%035

|
9!

(sid
[OD

as}
550

57
(Gs)

TOT
as)

su
st

ss
1233]

54
Bdlrsl

bt
B
d
|
b
l

ri
KB

T1ISS |
wh

GVEA
TISa|CS!

£7
GysatIaa|

cr
£1

ts
T
1
9
3
3
 |

(SJ [(r) tava
lxst

2!
G
L
O

awa} 2
21

1S
Tavs

2
:

Taxa
|ist

i
Piss}

di
1s

Twas
|

i

(i)Tuvs
jas!

of
(Wy

Tevsjor
oy

0s
Txwad |

of

CPP
LeO

LW
OL

OrAlyo|Lor
Lb

iv
Lie

&
2
9
5
\
o

9
235/99"

9
”

Tek)
9

S
E
N
S
I

Sh
E
S
O
S
I
I

Soy
Ss

y
eae).

I
Z

ZEA
h

vel
|

+
G3

[ay
isd] fr

©
(aT

[
a
T

tey
co

¢
tr

fyac|
£

Crni'a'2)
[rv t)t39)2vl

x
U
T
S

WD
N
E
Y

Y
9
|

207

2
2P

Z
a
k

\2
Tid

F
I
D

|
Ibi

of
SidiTud|

los
1

ip
Tot

j:

7110:
p4D

|On
9

[2110
DBD}

oo;
9

ov
p
s
s

lo

o7
1a

WW
S32

o7
1H

SEY
SU

07
tH

sb
o7

1H
sav

's
\

rayeos
€
4
q

P
i
a
n

c
a
d

v
w
a

T
i
a

H
A
W
S

D
A
A

a-7

PRIMOS STRUCTURE

(
7
1
>
)

|
s
l
y

seesaz]
[40]

[sex]
Com)

(s2]
(54)

34]
ce

Gee
arp

t
a
d

sun|
east]

(0D |
LON}

C24]
LO

e
e
e
)

L
e
g
s

pach
aad

|
oop £ad

qf T
L

-

r
a
v
e
d

m
u
y

B
I
V
A
O
|

»

W
B
e
e

e
s

weaphe
W
a

)

g
s

>

x3
=o

Ss
lA

f
S

&
C

U
I
P

M
P

WY,
O
F
M

OAL
a

Q
=

ao
S&S

'
f

Q
<

H
e
d

YY
O
M
F

I
N
V
A

h
a
a

V

~

PAGE
NUMBER
(OCTAL)

‘0

3)

“ul

"47

"63

"65

"66

"74

Td.

REV, 16 PRIMGS IV SEGMENT LAYOUT

SEG B 1/0 SEGMENT

AMLC DEDICATED CELLS AND TUMBLE TABLES,
SMLC STATUS BUFFERS

DMC CHANNELS FOR AMLC, SMLC,. MAG. TAPE,

‘1370 DVDISK

QAMLC Q CONTROL BLOCKS

PRBUFB, CRBUFF, CPBUFF

PRBUF1, CR2BUFF, CP2BUFF

PRBUF2, PRBUF3

VGBUFF

Zz,

RING NODE WINDOW

SECOND MAG, TAPE
CONTROLLER WINDOW

SMLC WINDOW

IPC WINDOW

MAG, TAPE DUMP WINDOW

FIRST MAG, TAPE
CONTROLLER WINDWO

DISK WINDOW

z- 12

SEG 1

SEG, 2 8-3

SES 4

SEG-5

FILE SYSTEM ASSOCIATIVE BUFFERS

MOVU2U SEGMENT WINDOWS

INTERRUPT SEGMENT

0 PHANTOM INTERRUPT CODE

CHECK HEADERS

READY LIST

WARM START CODE

COLD START CODE

ECC HANDLER

(OPERATING SYSTEM VPSD)

INTERRUPT FAULT TABLE AND HANDLERS

COMMON CHECK HANDLER

FIRST LEVEL EVENT LOGGER (LOGEVI)

FCB’s

CONCEALED STACKS

INTERRUPT STACK

RING @ GATE SEGMENT

T-1

“2000 12000

"76000 -
“LibCce

SEG 7

TMAIN

SUPERVISOR COMMON (SUPCOM)

CLOCK PROCESS

USER FAULT TABLE AND HANDLERS

SVC INTERLUDES AND CODE

COMXIT, UNLOAD, ETC

KERNEL PROCEDURES

DEVICE DRIVERS

LOCK MECHANI Si‘

BUFFER CONTROL (TFLIOB, LOCATE, ETC)

PAGE TURNER

COLD START CODE CAINIT, AMINIT)

COMMAND PROCESSOR (DOSSUB)

BACKSTOP PROCESS (SCHED)

TERMINAL 1/0 BUFFERS

SPECIAL BUFFERS (PTR, PTP, CEN)

Q DATA BLOCKS FOR QAMLC

PER USER DATA (USRCOM)

FILE SYSTEM UNIT TABLES (UTCOM)

19

SE6 11

SEG

(SEG 13

SEG 14

SEG 6009

FILE SYSTEM PROCEDURES

NETWORK DATA AND PROCEDURES

SMLC DATA AND PROCEDURES

COMMAND ENVIRONMENT)

(ONE TO CHE)

RSAV AREA

OPERATING SYSTEM VPSD ENTRY

CONFIGURATION COMMON (FIGCOM AT ’700)

MAGTAPE DUMP AND MEMORY SCAN

WARM AND COLD START ENTRIES

VIRTUAL MEMORY MECHANISM CCDE

MEMORY MAP CAPIAP)

PAGE NAPS (HMAP)

PTUSEG

SEGMENT DESCRIPTOR TABLES

S

6
)

(
6
1

(
O
O

.

O
O
:

V
O
r

O
y

(O
o:

Oo

SUPERVISOR RING & STACK

1-3

REV, 16 PRIMOS IV YSEFUL LOCATIONS

MEMORY HAP HAAP - 14/2000

START OF PAGETAPS HAP - 14/12900

START OF PTUSEG PTUSEG 14/140000

NO, SEGNENTS IN SYSTEM NSEG 14/141200

NO. SEGHENTS PER USER NUSEG 14/142201

NO. OF CONFIGURED USERS NUSR 6/2207

PAGE FAULT COUNTER (32 BITS) PECN 6/2334

LOCATE READ COUNTER (32 BITS) LOCCNT 6/2336

SCHEDULING CONSTANT MAXSCH 6/2213

ELIGIBILITY TIME SLICE ELIGTS 6/2321

TINESLICE FOR USER N usRTs 6/1277 +N

HIGH PRIORITY 9 "—HIPRI 4/536

ELIGIBILITY & EL16Q 4/540

LOW PRIORITY @ FOR DEFAULT :
- USER LEVEL LOWPRI . 4/550

DEFAULT USER LEVEL OM READY LIST LEVEL 4/626

=~ PES CLOCK "4/7870

zr- IF

REV. 16 PRIMOS IV USEFUL LOCATIONS (CONTINUED)

PGBS?

ie

LOCKS:

FIGCOM

BHQMSK

I- \F

ALC

BACKSTOP

USER 1

USER N

FSLOK

UFDLOK

UTLOK

TRNLOX

RATLOK

PAGLCK

PAGSEN

DSKLCK

DSKSEM

4/77100

478600.

4/100100

4/100000 + 100N

6/13343

6/13551

6/13557

6/13555

6/12573

6/13551

4/532

§/13667

4/554

14/700

14/723

REV. 16 PRIMOS IV SEMAPHORE LOCATIONS

HIPRI @

ELIG &

LONPRI Q

INPUT WAIT (BUFSEM)

TIMED WAIT (CLKRNG)

FILE SYSTEM

PAGE IN TRANSITION (PAGSEM)

DVDISK WAIT (DSKLCK)

DISK 1/0 (DSKSEM)

LOCATE WAIT (LOCSEM)

USER SEMAPHORES

NETWORK WAIT

MAG TAPE WAIT

4/538

4/540

4/542 - 552

5/17524 - 17724

6/2350 - 2374

6/13543 - 13576

4/532

6/13667 - 13672

4/534

6/13675

§/21045 - 21245

6/20136 - 20336

6/21247 - 21261

SYSTEM LIMITS EXPANDED (Rev. 17)

» 64 SHARED SEGMENTS:

2000 ED (WII IN SEG 13)

2001 - 2003 DBMS

2004 - 2011 SPSS

2012 DBMS

2013 BASICV

2014 KIDA, FORMS, COBOL, SHARED LIBRARIES

2015 DPTX - TCF
2020 MIDAS SEMAPHORES

2030 - 2037 RESERVED FOR USER APPLICATIONS

2040 - 2042 DBG

2050 FIN SHARED LIBRARY

» S11 TOTAL SEGHENTS (NSEG), DEFAULT IS STILL 192

+ 128 FUNITS (I0CS STILL 16)

+ 62 STARTED UP DISKS

LA

PLUS

PRIMOS MEMORY REQUIREMENTS

SEGNO REV 17

0 3 K WORDS

* 4
6 16

14 4
22 5

600D Le

SEG 4 - 100 WORDS FOR EACH CONFIGURED USER

(PCB’S AND CONCEALED STACKS)

SEG 7 - TERMINAL 1/0 BUFFERS FOR EACH CONFIGURED USER
(DEFAULT 96 AND 192 WORDS RESPECTIVELY)

- PAPER TAPE, CENTRONICS BUFFERS AS REQUESTED
(1K WORDS)

SEG 12- 6K WORDS FOR MDLC
18K WORDS FOR PNC
23K WORDS FOR MDLC & PNC

SEG 14-SEGMENT DESCRIPTOR TABLES (NUSEG*2* NUMBER
CONFIG. USERS)

-MMAP, 1K WORDS FOR EACH 2MB OF PHYS, MEMORY

SEG 21- Q DATA BLOCKS FOR EACH CONFIG, LINE IF

QAMLC PRESENT (DEFAULT 32 WORDS/LINE)

SEG 22- PAGE MAPS, 128 WORDS FOR EACH SEGMENT IN
USE ABOVE ‘1777

SEG 6000 - RING @ STACK, 1K WORDS FOR EACH LOGGED iN

USER,

LA-t

PRIMOS MEMORY REQUIREMENTS (CONT.)

3K WORDS MORE THAN REV 16 (hse =

» EXAMPLES:

10 USERS CONFIG., 5 LOGGED IN - 48K WORDS WIRED
20 USERS CONFIG,, 10 LOGGED IN- 61K WORDS WIRED
30 USERS CONFIG., 15 LOGGED IN- 73K WORDS WIRED

WIRMEM CONFIG, DIRECTIVE PRINTS INITIAL WIRED MEMORY ,
NEED TO ADD USERS RING @ STACKS AS THEY LOGIN,
PAGE MAPS AS THEY ARE USED, BUFFERS AS DEVICES ARE USED,

TAS

PRIMOS MEMORY REQUIREMENTS (CONT.)

PAGED :

SEGNO REVI? REV (6

ASSOCIATED BUFFERS AL 64 64 K WORDS

ECB‘S 5 2 2

KERNEL CODE 6 36 26

USRCOM, UTCOM 10 82 WORD PER CONFIG. USEF

+16 WORDS PER FILE UNIT

IN USE.

FILE SYSTEM CODE i 19 19

NETWORK, COMMS, CODE 12 38 37

COMMAND ENVIRONMENT CODE 1S 34 0

DPTX 15 44 0

RING 3 STACK 6002 1+ PER 0

CONFIG USER

WORKING SET:

MAIN CHANGE OVER REV 16 15 THE NEW COMMAND ENVIRONMENT

- ADDITIONAL 10K WORDS FOR SEG 13

- PLUS 1 1/2K WORDS PER “ACTIVE” USER

GUIDELINE: 20-+30K WORDS INCREASE

REV 17 SHOULD NOT BE RUN ON SYSTEMS WITH LESS THAN 1/2MBYTE

PHYSICAL MEMORY.

IA-4

PRIMOS SEGMENT LAYOUT (REV 17,1)

SEG 0 » 1/0 SEGMENT

» DMC CHANNELS FOR AMLC, SMLC, MAG TAPE

» AMLC DEDICATED CELLS AND TUMBLE TABLES

» SMLC STATUS BUFFERS

» DISK CHANNEL PROGRAMS

» Q CONTROL BLOCKS FOR QAMLC

SEG 1 » FILE SYSTEM ASSOCIATIVE BUFFERS

SEG 2 & 3 » MOVU2U SEGMENT WINDOWS

SEG 4 » INTERRUPT SEGMENT

. PHANTOM INTERRUPT CODE
» CHECK HEADERS

» SEMCOM - SYSTEM SEMAPHORES
+ READY LIST
» WARM START CODE
» COLD START CODE
» ECC HANDLER
» (OPERATING SYSTEM VPSD) ‘2000 ~ 13777

» COMMON CHECK HANDLER 4
. FIRST LEVEL EVENT LOGGER

7 PERS 36000 -

. CONCEALED STACKS ‘115777

» INTERRUPT FAULT TABLE AND HANDLERS
. INTERRUPT STACK i

09-1727

SEG 5 » RING @ GATE SEGMENT

ERS:

PRINOS SEGMENT LAYOUT (REV 17.1) (CONT.)

SEG 6 CCTM
. SUPERVISOR COMMON (SUPCOM)
, CLOCK PROCESS
. RING @ FAULT TABLE AND HANDLERS
, UNLOAD, SEM$, MOV. . .ETC,

» KERNEL PROCEDURES

» DEVICE DRIVERS (INCLUDING DISKIO)
» LOCK MECHANISM
. BUFFER CONTROL (TFLIO$, LOCATE ETC.)
» PAGE TURNER

» COLD START CODE: (AINIT, AMINIT)
» DOSSMB

» INTERNAL LOGIN
» BACKSTOP PROCESS (SCHED)

SEG » TERMINAL I/0 BUFFERS

» SPECIAL BUFFERS (PTR, PTP, CEN)

SEG 10 . PER USER DATA (USRCOM)

» FILE SYSTEM UNIT TABLES (UTCOM)

SEG 11 . FILE SYSTEM PROCEDURES

SEG? . NETWORK DATA AND PROCEDURES

» MDLC DATA AND PROCEDURES

SEG 13 » COMMAND ENVIRONMENT CODE

» CONDITION MECHANISM CODE

» RING 3 FAULT TABLE AND HANDLERS

. SVC INTERLUDES AND CODE

zca-b

SEG 14

SEG 15-20

SEG 21

SEG 22

SEG 6000

SEG 6001

SEG 6002

PRIMOS SEGMENT LAYOUT (REV 17,1) (CONT.)

» RSAV AREA (’200)

» OPERATING SYSTEM VPSD ENTRY

» CONFIGURATION COMMON (FIGCOM AT ‘700)

MAG TAPE DUMP AND MEMORY SCAN

» WARM AND COLD START ENTRIES

VIRTUAL MEMORY MECHANISM CODE

» MEMORY MAP (MMAP) (’2000)

» PTUSEG (’150000)

» SEGMENT DESCRIPTOR TABLES

» DPTX

» Q DATA BLOCKS FOR QAMLC’S

» PAGE MAPS

» RING @ STACK

« SHARED LIBRARY IMPURE SECTIONS

» ABBREVIATION FILE

» RING 3 STACK

IA~]

SYSTEM LIMIT EXTENSIONS «6s (Rev «1%)

. RING BUFFERS MAY BE UP TO TWO SEGYENTS LONG. USE BOTH

SEGYENT ‘7 AND SEGYENT ’34,

NSEG LIMIT NOW 1022 SEGMENTS

. NUMBER OF SHARED CDTAR 1] SEGYENTS INCREASED FROM 64 TO

1g, ['2000-'2177]

NUMBER OF SHARED LIBRARIES INCREASED TO 16:

. PAGE DISK SIZE INCREASED FROM 512 SEGYENTS TO ENTIRE ©

300"B, IF NEEDED.

sm ance seen

VIRTUAL MEMORY DATA STRUCTURE CHANGES

. AT REV 17 HMAP/LMAP COULD SUPPORT 511 ('777) SEGYENTS,

. BY PUTTING HARDHARE MAPS IN SEGYENT 22 AND LOGICAL MAPS

IN SEGYENT 33 WE CAN NOW SUPPORT 1022 SEGYENTS (*776).

START AT WORD ‘100,

» PTUSEG LARGER, NOW STARTS AT 14/25200,

. MAP INCREASED TO 2 WORDS/ENTRY; STARTS AT 14/4000

EXTRA WORD USED BY
SRE

+ eNER &

ee RK

WEA

. METHOD OF PAGING DIRECTLY FROM FILE SYSTEM

» AT REV 18 ONLY ENOUGH SUPPORT FOR POSSIBLE

EARLY RELEASE OF EPF’s,

» THO NEW KEYS TO SRCHS$: ’

:20 OPEN DAM FILE FOR VWFA READ ACCESS

:60 OPEN DAM FILE FOR VFA WRITE ACCESS

TO USE AT REV 18

1, CALL SRCHS$ TO OPEN IN VWFA MODE,

2

3, CALL SRCHS$ TO FREE UNIT.

4,

5,

CALL VINIT$ TO MAP FILE TO MEMORY,

PROCESS FILE.

CALL RTNSEG TO REMOVE SEGYENTS,

» VINITS-

CALL VINIT$ (KPY, UNIT, LOC (SEGTAB), LOC (RSEGTAB), NSERS,

LOC (WINDOW), LOC (ACCESS), “OC (LEN), CODE)

KEY - :10 CONSECTIVE SEGNOS REQUIRED

:4 WILL ACCEPT ANY OLD SEGYENTS

:2 1 AM RECOMMENDING SOME SEGMENTS

+1 I MUST HAVE SPECIFIC SEGENTS

UNIT - UNIT ON WHICH FILE IS OPEN

SEGTAB - SEGYENT NUMBER(S) MAPPED (RETURNED)

RSEGTAB - RECOMYENDED SEGYENT NUYBER(S)

NSEGS - NUYBER OF SEGMENTS TO MAP ‘

WINDOW - WINDOW NUMBER IN FILE (FIRST SEGMENT @, SECOND SEGYENT 1, ETC.)

ACCESS _ ACCESS RIGHTS DESIRED FOR EACH SEGYENT

“LEN ~ LENGTH OF DATA IN EACH SEGMENT (RETURNED)

CODE - STANDARD ERROR CODE (ERRD.F UPDATED FOR VYFA)

~ MUST USE NVYFS CONFIGURATION DIRECTIVE

NVYFS MAY BE FROM 1-256

NSEG + NVMFS MUST NOT BE GREATER THAN 1022

IF WFA SEGYENT, PTUSEG ENTRY IS AFTER THE NSEG'TH ENTRY. WHEN

NOT IN MEMORY, LMAP CONTAINS THE LOW ORDER RA OF PAGE - HMAP CONTAINS

THE HIGH ORDER; WHEN PAGE IS IN MEMORY, HIGH ORDER RA IS STORED IN

THE SECOND WORD OF THE MMAP ENTRY.

Seo
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG
SEG.
SEG
SEG
SEG .
SEG
SEG
SEG
aaa

SEG
SEG

10
ah
12
13
14
15-20
21
22
23-26
Zn
30
31
32
33
34
35-37
40-237
240-277
6000
6001
6002

. 6003
6004
6005

Kev.
I/O MAP SEGMENT -:-%
LOCATE BUFFER SEG ~..’
TEMP SEGS - INTERUSE
CHECKS, TRAPS, PX, E
RING 0 GATES
RING 0 KERNEL CODE,

R MOVES
TC.

LINKAGE
LOW SPEED I/O BUFFERS
FILE SYSTEM DATA STRUCS
FILE SYSTEM CODE, LI
NETWORK CODE, LINKAG

NKAGE, OVERFLOW
E

COMMAND LOOP SEGMENT 1
COLD&WARM START, SDW'
USED BY DPTX
USED BY DMQ BUFFER
PAGE MAP SEGMENT
SMLC COPY SEGMENTS
NETWORK BUFFERS
NETWORK QUEUES/BHA'S
NETWORK

0,1, ETC

COMMAND LOOP SEGMENT 2
LOGICAL PAGE MAP SEG MENT
SECOND SEGMENT FOR RING BUFFERS
FREE
USERS WIRED RINGO ST, ‘ACKS
NETWORK MAPPED SEGMENTS
WIRED RINGO STACK
ABBREVS - DYNAMIC LINKS
RING3 STACK
UNWIRED RINGO STACK
CPL
GLOBAL VARIABLES

)

FROM SEG 6

rose Senge

MEMORY MANAGEMENT

In this section, we shall cover:

e What is Virtual Memory?

e How the system manages its memory?

@ How does a virtual address translate into

a physical address?

L~i7

Vite “2 moos Ark ee ell

4 Groups e. (oad S24 met, pe fee Gronp

Vets Descraptor Sal le le Lepeete (DTAR)

Segment

mo.
am

DTARS

cs Fp RE Jor Sherad Tbe

ssm

DAR 2

‘Yoo | Rome de
3m

DTARL

‘203

7 Shared Roqran

son

DTARG

<4 F
ppartting by stom

0
DTARD — Used Co ume (

Dine Shared o> ah users

DTARA -_ AT
DAR | Pinel to pase

nd9
MH e

a

—
—
—
_
!

ra
yo)

{ft

h
o
w
?

«
g
d

x2gnI
{1

Nid
(
2
4

ol
aid

el
|

merry
rersdug

~
 '

Lue wo
W
A
H

H
o
o

f
i

a

|
M
L
S

‘t
a

ye
8)

[ato
|

ya
Cl

|
ory

ren
sour

per
ey

r2vd-
‘ow

“Ses

s
e

e
n
e

T
o
v
a

T
O
P
V

f
r

7

e
e
e

y
u
n
L
o
v
a
d

4q
A
y
y
e
o
t
w
e
u
d
p

p
a
i
e
e
s

A
s
q
w
a
w

urew
0}

Juauidas
|

}

uiyitm
aded

jenjs”
 woty

g
u
d
d
e
w

“
7
-
7
7

A
s
o
w
o
w

[emstA

u
auesg

a8ed
935.109

-

Aj.
stueudp

payears
aoiaap

u
ssa201d

Suysed
0}

\uawBas
jenyita

:

wosj
S
u
i
d
d
e
w

h
a

2

e
e
t

tern

ws
;

t
e
e
s

4
@

Bee
z

1
7)

S
e

ee
e
e
e

Pee
ee

a8eq|
aed

juawdas

a
7

12
R
e
e

t
e
e
d

gi
sia ie

Ln
R
e
h
a

Z
a
w
e
s
y

aded
149

¢
1

A
<
a

ie
aSeg

aied
quawidas

]
2
w
e
s
g

adeg
ze

Oe
yp

we
e
e

-
"

A
s
o
w
a
p

ulew

A
s
o
w
a
y

[
e
n
a

Z
° 3a

q@
s$29201g

1 H

o
e

z
.

ade]
bieg

STi
o
e

8
N

>
u
a
w
d
a
s

me

Poe |
oaks

sea]
z

1
q

°
+

*]
a8eg

ased
q
u
a
w
s
a
s

aa
e
e
e

ae
q
w
a
w
d
e
s

g
t

[
z

T
P
a
t
a

ean
~

si
a
s
e
g

Jaded
*

a

3

d
a
s
a

Aq
p
a
a
r

<
z

\
quaw3as

parero]e
pu

t
a
e

aio
asog

1421s
pido

1
r

payeasd
asp

adjaap

Buy8ed
uo

s
w
a
w
d
e

:
:

=

a
u
n
)

S
y
o
n
a

A
s
o
w
a
p

yen
\

a
o
j
a
a
d

s
u
i
s
e
d

t

(
©

$
y
s
s
a
v
w
y

e
t

S
S
I
I
I
I
y

v
e
y

+
9
2
2

aN
P
O
M

WONSHY
tar

1

A
v
a
n
a

z
S
y

p
o
v

t
e
-
a
5

BINYD
go

BoUsN
s
a
w
n

ey
4g

9s

Waisiqey
Si

a
w

Y
N

PIWHQUVH
AV

L3S7Y
»
C
s
'
9
=
N

Q
a
I
N
I
V
I
s
I
y

SI
I
w

P
I
A

P
W
T

AP
29S

aD
sig

oy

W
S
H

how
p
y

sw
t
I
S
*

|
4
9

*A

p
e
e
r
s

U
S
I

FIN
p
e
e

ave
vera

y

Vil
Pye>

S
H

SAvETW
pb

D
r
y

1
7L0N

:
(sresy

sv
79>

ywus)
E
D
i
y

vos
q
a
e
n
N
Y

s
r
r
y

*
D
e
-
r
2

B
1
9

+d

(
q
a
n
w
a
s
a
v
)

E
z
-
l
e

o+'9
7
D

puroang
Y
a
a

“weg
ul

pinrvexa
“YN

Gv3d
git

{
I
w
r
F
s

1
)

qaiw9994
991

B
u
e

Gy
avy

Ie
a
v
y

P
i
r

(
a
r

garqr2e)

a
v

PF
S
9
7
7

ON
oop

JSrig
ves

qaMenY
sayy?

O
Z
-
B

S
H
E

V

(s
2

[eu
Sig)

F
I
U
L

d
W

2
P
M

B
e

go
S
I
I
V
A
Y

T
S
A
N
G

~
ee

t
e

q
-
1
.

2
9

8d

[os
s
[
>
l
e
l
v
i
l

7
L
a
y
s

pace
soe

wii

‘
A
v
e
m
M

F
L

SOW
Dvd

(¢
=
ass

9
M07)

SaPVY
29

ee

rv]
H
O
D

-

B
O
S
S
A

A
L
N
P
W
D
F
P
S

Ais
y
e

A
v
e
r
y

Gen
D
I
S
S
?

¥
S90¥?

LON
Gry

(¢

=
957)

peuwie7

SSRUQqY
(12

[A HO L
D
S

Ba0W
F
I
W
L

L
O
W
S

SmIqv
jaa

P
r
e
v

w
e
s
g
i
s
r
s
9
d

SN7H97)

W
e
r
a
w
s
r
{

S
e
m

yzojs
O
-
1
b
"
9

“QirTUDIs
wPSO

YOd
G
9
G
N

Pew
O
M
E

W
R
H
I
O

FHL
G
H
D

WRLSAS
HUN

SIGS
PULA

Q
a
r
P
e
Y

1779
PAN

S,3wad
CMLL
S
a
y
s

Zo!
S
B
M
S

[HD
WOM

F
T
I

99-9
T
S
7
C

A
r
a
s

0

Baring
V
i
g

W
e
y

Vv.

(mas
S
u
t
r
y

S
2
7
7

S
I
M
I

91

PROCEDURE CALL

PROCEDURE/LINKAGE/STACK ARCHITECTURE:

MOTIVATION IS SHARED CODE

NEED SEPARATION OF CODE AND DATA

DEFINE THREE MEMORY CLASSES FOR EACH PROCEDURE :

(2) PROCEDURE AREA: -1 PER SYSTEM

a - PURE CODE

- LITERALS

READ ONLY AREA

- POINTED TO BY PB

Ql) LINKAGE AREA: «1 PER USER

. FORTRAN LOCAL VARIABLES

. LINKS - INDIRECT POINTERS
TO PROCEDURES AND COMMON

ENTRY CONTROL BLOCKS

- ‘POINTED TO BY LB

CD) STACK AREA: -1 PER INVOCATION

- CALLER'S STATE

. ARGUMENT LIST

. FORTRAN TEMPORARIES

. POINTED TO BY SB

HH -22

Base Register

There are four base registers associated with 'Procedure
Call' called by a user:

PB o>

a Si.

Pointed to the beginning of the
procedure segment.

Pointed to a location '400 location
before the beginning of the linkage
area.

Pointed to the current stack frame.

Extra base register for users to use.

Direct Entrance Call

A procedure call to a routine which is implemented
in the operating system but is gated through is
called a Direct Entrance Call. See Figure

223 H

ywiltd
MOYLS

1
4
7

FMP
N
O
L

a[Miod.
N
O
l
N
T
D

Y
i
n
i
e
d

339d4

eunpayyeer
p
r
a
y

dy dV

e
U
t

YET
1
2
d

9
2
2

)
ros}

F
T
O
)

a
p
e

Pag?
wel

alvaer]
Erato

©
avid

cade
ee']

S
M
D

a
w

eampemoAy
4

g armbos
>
pubes

g}
robag

ty
proubes

Champ of A eke ¢ Anant Cah

Frotdare fre ee

Cate TNOUA

Sea S

Gare Twous
ECB

PROCESS EXCHANGE & SCHEDULING

Process Exchange

One of the operating system's responsibilities is to

= decide which process is scheduled to run next and set

up the necessary steps for this process. The first

step is done by software modules, such as SCHED,

PABORT. The latter step is done by hardware/firmware,

and the procedure is called process exchange.

The data bases for Process Exchange are:

READY List

PCB (Process Control Block)

WAIT List

The root of Process Exchange is the Dispatcher,

which is done in hardware.

The Dispatcher assigns a register set to the process

which is scheduled to run and turn on the timer. It

also scans the READY List looking for the process on

the list.

x-of

 0 T Z g

9173
od

adil
34S

2

WOLSSY
“LN

ONIWOD
W3HM

h
$$390Ud

TudHO1

11NWs3d
*

SSONVH

94S
n
e

QNYWWOD
dVHO

sssd0ud

ones
at

c/'t
S173

MBN
Tud IH

GSLSNVHXA
AWIL

ISS
2

N3HM
STSAI1

S
-

TudHO1

ino
NnY

SVH
SIL

93S
2

AGY
TIILS

-
INONNY

S+
YaSN

-
9113

C3Sn
SWIL

LX3N
I3S

OT/s
5113

Tid
3A19

OL
TudTH

NI
Ld

"Y'D
N3HM

-
“TYdTH

JUNOSTY
Sa3N)
LIV

(Nd9
GSN

(TNO)
AQVIU

MINH

NSHM
(93S

OT/E
9173

Ad
13S)

dOLSHIVE

0
—
—
—
—

an
TAAS1

YASN

Tah)
USSN

‘T3A31
USN

‘TaAS1
YASN

iL G g h

$S4I0Ud-YSdNS

7d ‘Idh

J
S

J
W

S$390Yd

49019

ALIYOIUd
LSI]

Advau

BE) £1

ct

Il

OT Oost Sosy

SCHEDULING

——————

ia

o
es

SpTERACTIVE USER" CYCLE
=

PCB
od

<<
——

—

‘ a

/ ‘
i X NFYE (by the AMLDIM process)

<

i [wart ON \

(for a characteT

1 | by CLIN from ring 0) : ‘

TTY Wait Queue

l\ See

Le

" WAIT \
(after a new-line
character is received

by COMANL) reset time

slice 1 ‘i

\ \ NFYE (by, the backstop process)

.
a \ High Priority Queue

Se

p
e
e

s
t
e
r
n

the backstop will netify 8
¥Kben there is no process ready,

£ there are any:
process on the high priority queve i

T-ay

1
r
r

ee
em
mt
re

re

ne
ws

 w
h

OBJECTIVES OF PRIMOS 4 SCHEDULING POLICY

- FAST RESPONSE TO INTERACTIVE USERS

- AVOID THRASHING

+ SOME PROCESSING ON GRINDERS

THE PRINCIPLE CONSEQUENCE OF THE PROCESS PER USER

ORGANISATION OF PRIMOS IV AT REV 14 IS THAT THIS POLICY

IS NO LONGER IMPLEMENTED BY CHARACTERISING THE "STATE" OF

A USER BY A NUMBER ASSOCIATED WITH THE PROCESS, BUT BY

WHICH QUEUE - READY LIST OR WAIT LIST, THE PROCESS CONTROL

BLOCK IS THREADED ON.

SCHEDULING POLICY IS THEN EMBODIED IN THE STRUCTURE OF

NOTIFY AND WAIT INSTRUCTIONS THAT, ON CERTAIN EVENTS, (E.G.

END OF TIME SLICE) ARE USED TO PUT THE PCB ONTO AN

APPROPRIATE QUEUE.

- A PROCESS MAY BE NOTIFIED TO THE BEGINNING OR END

OF THE READY QUEUE

- A PROCESS MAY WAIT ON ANY OF SEVERAL SEMAPHORES

- A PROCESS MAY BE REQUESTED TO REMOVE ITSELF FROM

THE READY QUEUE TO A WAIT QUEUE BY SETTING ITS

‘ABORT FLAG

f
o
n
e

Ready List:

a
S

=

/

'

ointers within the PCB
All polnters ere -I6-bit word number -p'

ined in the high portion
segment. The segment number is conta

of the OWNER pointer within eech register sev.

&= 6). The end

= 1. i All| PCB start addresses must be even (bit I

of the ready list Is marked with e BOL entry

FIGURE I.

h
e
a

e
e

am

(
a

Semephore
poo

4-7 Counter (=2)

WAIT LIST STRUCTURE

LG 4 Sept 1975

| « BOL ee

 a

a

"

oN

PRockity

=

Se
leve] -{- > -level-

| ink : g

WLSN WLSN
. WLWN P WLWN

PCB PCB

Figure 2.

QUVEVINC-. 75 PRIORITY ORDER with FIFO FeR EQvAL

e
e
t
 el

sh
en
 r
eh
y
ya

REV. 15 READY LIST:

y
a
y
?

LEVEL

CLOCK PROCESS

SMLC

AMLC

MPC, MP2

VERSATEC

TPC

RING NET CONTROLLER

SPARE

SUPERVISOR PROCESS

w
o
D
o
n
w
t
a
n
a
u
k
t
W
N
H
 oO

USER LEVEL 3
USER LEVEL 2
USER LEVEL 1
USER LEVEL 8

PPADS PROCESS ee — <9

w
 oO

YSER PROCESSES

ws

ar
y

ro
y

Ny

 er

N
o
e

“
t
e

a ————
ELIG 0 -

=

\e

mregadr, Gore TO euats a

ea
Z-vec Bile Yor UstO ue @ ‘la sec.

REV, 1€ READY LIST:

TS. ak 204 TS ans =

ork, pon yur Get be

ner} cont bre

e LEVEL

[p29 = ma | Chock BROESS

a 1 AMLC

y - SMLC

3 MPC, MP2

a 4 VERSATEC

2 IPC

a 6 RING NET CONTROLLER

E 7 SPARE

8 SUPERVISOR PROCESS

f Q|USER LEVEL 3

1O|USER LEVEL 2 a

u
USER PROCESSES

11 |USER LEVEL 1

z 12 [USER LEVEL 9

IG |.) BACKSTOP PROCESS aa
plan, "Cure user" om “peadig”

| D sec. Tre SLict
r

*

poTeerurTeD EVLEY ‘a se gpa fe OE See

z Sgt ee
RT Q

;

4

Stott @ CHU.
<—F1IS Q

zs

i (Gat. Bet. Comeete Bound ustes (aevei] aaa

ma Goud Lesrense Foe weeny LV° va) [= Q
2

i
a

m
a
e

SS

SS

SS

UE
S

l
m

Uc
 e

S
UL
O
C
U

Ue

U
e

U
e

U
w
e

O
e

le
S
C

||
w
e

rs
eo

me
ma

sm
me

mc
es

j

P
E
R
S
E

AE

LI

E
R
I
T
H

I

AT
E
T
T
T
,

\
A
S
T
O
R

SCHEDULING
—_——_——_——

“INTERACTIVE USER" CYCLE

PCB

— >

 ~

NFYE (by the AMLDIM process) / ©
i S

1 [wat‘ \

oe 2 ag

x
x

(for a character
l | by CLIN from ring 0) x

] \ oo TTY Wait Queue

’ WAIT \
(after a new-line
character is received

> py COMANL) reset time
slice \ \

\ \NFYE (by the backstop process)

ee
x N High Priority Queue

When there is no process ready, the backstop will notify 4

process on the high priority queue if there are any.

SCHEDULING

“COMPUTE BOUND” CYCLE

NFYE FRom
BACKSTOP

ElLTé @

~x= ~ =~ ae

READY LIST

-7 Se es
-

-_

Pee eo
V5ER LEVEL >

~ELICTS cn MEMASTED aan

Soe ELicr Bue

pAmsTeP S
PROCESS ~~

2 BOT Se
EUG BLE

WHEN ELIGTS (DEFAULT 1/3 SEC) IS UP, PROCESS WAITS ON

ELIGIBILITY @ IF 17S TIMESLICE (DEFAULT 2 SECONDS) IS NOT

- EXHAUSTED. OTHERWISE WAITS ON LOW PRIORITY @

ELISTS 1S RESET ON NOTIFY FROM ELIGIBILITY . TIMESLICE IS

RESET ON NOTIFY FROM LOW PRIORITY @

pee ve.

g
e
m

re

yo
il
a

Ov
e

pi
en
l

porutT tO
LOpRI @
FOR USER
LeveL 3

SEMAPHORE
COUNTER

4°

SEMAPHORE

COUNTER

4

HTPRI

NOTIFY

Norley

Lowfat

in

my

i
e

kk| .

a
y

r
a
n
t

BACKSTOP PROCESS (SIMPLIFIED) Rey, [5

F
e
a

fe
e

ni
ve
l

weTiey

HTPRI

NOTIFY

| ule @

NOTIFY

| eowPRt

ACTIVE PROCESSES DEFINED AS THOSE ON FS LOCKS, DSKLCK,

PASLCK, A PARAMETER CALLED MAXSCH IS USED TO CONTROL THE

Ho, OF ACTIVE PROCESSES, THIS NOW CONTROLS INTERACTIVE USERS

4S WELL AS GRINDERS. ;

Ap
es

NOTE: ‘QUITS’ CAN TAKE A LONG TIME TO RESPOND IF PROCESS

TS ON LOWPRI Q. -_

V-to

DACRIISY T ROCESS: fev 15
47 LOPN AY —

 FOR ifvEi lL

vm Pale Svekt WArewr| a= __| 00 Sere
7 wowin arene

So OS KS Ey =<
_ PAGSEM

west
OSsxcien ‘ 4 4
wower ;
vitor
TAN Lon
PTLon

ey

a
g
o
}

e
s

pas
 v

ed

I

Con Pane y macsest
wit

AX SCH

CmARS CH

AUT CLE vss NOTIFY
ow

IPRS 2 nites eS

‘
AMT bine 5 MOTIFY

ow ie, [= ftte @

= 4

3

 Avram 3. | MOTIFS eke On fu ARtin4r ie evnRswe |_| Beeman, ro Yeevtr~ YES LowPas Low Par QO MEY CWT c

que
 ——

“BOPNFY ALLOWS 16 NOTIFIES ON LEVEL 4 LOXPRI 9
= 8 NOTIFIES ON LEVEL 3 LOXPRI Q
i 4 NOTIFIES ON LEVEL 2 LOWPRI 9

P
M

oe
an
y

2 NOTIFIES ON LEVEL 1 LONPRI Q
1 NOTIFIES ON LEVEL B LOWPRI o . NFYCNT CONTAINS CURRENT NO. OF NOTIFIES ON CURRENT LOWPRI @. WHEN NO ONE IS ON THE CURRENT LOWPRI LEVEL, GO TO NEXT LEVEL IRRESPECTIVE OF NFYCNT T-1

MEETS de: eS ase es € BNMCHe (OF PFROSCIS

Csimpl’Fied >

oe

 r
g
?

 a

Pa
h.

py
tv
ed

 mAPHORE
oo oy TER

ye
e

pa
te

tow PRAT Q

v

A

=
=
co

FoR MEXT 7 dower Laver

m
a
a

aE

a

asa

aS
ss

S
t
e
e

fs
fF

S&S
SS

=

ff

&

FF

BACKSTOP PROCESS: Kev 16 :

STCRE NFAT 2 ee ae < ¥
LOWER Bourne iz

4

hoTiIFy

HIPRI Q ea) 4 4

No

at
sum DSHSEM

PAGSEM
- LoesEm

psiten
veotek
uTttonr

TN LOK

Rartiok

Y MAXSEH

¢ KHAXSCH 4

yes NOTIFY
> Eift 2 >

| re
wo

el oneenr Game ves
Lew Pns @ eee

ee 5

LOPNFY ALLOWS 16 NOTIFIES ON LEVEL 4 LOWPRI Q :

8 NOTIFIES ON LEVEL 3 LOWPRI Q

4 NOTIFIES ON LEVEL 2 LOWPRI Q x

2 NOTIFIES ON LEVEL 1 LOWPRI Q 3

1 NOTIFIES ON LEVEL @ LOWPRI Q
NFYCNT CONTAINS CURRENT NO, OF NOTIFIES ON CURRENT LOWPRI Q.
WHEN NO ONE IS ON THE CURRENT LOWPRI LEVEL, GO TO NEXT LEVEL

IRRESPECTIVE OF NFYCNT

XSCH COMMAND :

USED TO SET THE SCHEDULING CONSTANT MAXSCH FROM SYSTEM

TERMINAL
MAXSCH ND’

DEFAULT SHOULD BE 3,

NOTE THAT MAXSCH JS CALCULATED AT CONFIG TIME ACCORDING

TO AVAILABLE MEMORY:

MEMORY HAXSCH

64K WORDS 9

85 i

128 2

169 3

E 5 S COMMAND:

USED TO MODIFY THE ELIGIBILITY TIMESLICE FROM THE SYSTEM

TERMINAL

ELIGTS (n> . WHERE n = NEW VALUE IN TENTHS OF A SECOND

DEFAULTS T0 3/10 SECOND.

CHAP COMMAND:
AS AT REV.14, CAN BE USED TO CHANGE PRIORITY AND TIMESLICE
ON A PER USER BASIS, NOTE THAT DEFAULT TIMESLICE IS 2

SECONDS.

vy 7

SCHEDULING

. MAXSCH DEFAULTS TO 4 FOR SYSTEMS WITH 448KB OR

MORE

. BACKSTOP KNOWS ABOUT THE NEW DISK QUEUING

MECHANISM WHEN CALCULATING THE NUMBER OF

ACTIVE PROCESSES

WITH MULTIPLE DRIVES, MAY BE POSSIBLE TO IMPROVE

SYSTEM THROUGHPUT BY RAISING MAXSCH

COMMAND LINE PROCESSOR

Command Line Processor

In Revision 16 and prior to it, the module DOSSUB

= is 'the' command processor. The commands are cate-
gorized into two groups:

internal and external commands

All internal commands codes reside in DOSSUB. All
external commands’ run images live in an UFD called

CMDNCG.

In Revision 17, a major change occurs in the command
line processor -- call it New Command Line Processor.
It has two distinct modes:

static mode and recursive mode

Currently, all user's programs and all external
commands are executed in static mode. PRIMOS codes,

internal commands, as well as the condition mechanism,

are executed in recursive mode.

There are four groups of commands in Revision 17; they

are:

e Old Ring 3 internal commands:

START and RESTORE

e@ New Ring 3 internal commands:

ABBREV, RLS, REN,

DMSTK, RDY

e Ring O internal commands:

DOSSUB's internal commands

e External commands:

Such as utility programs,

compilers, and external

commands installed by users.

New Command Line Processor is illustrated in Figure

H i w 3

+ Tw LobeEM Ex ERRE

oe =

ok, é fz!
E, possup

a Yeo send
“Messa fe mLssafre

2

e1zV

GET Commaup] <——> COMAWL

<—> Creat

 Tx ecu

Int. Comrd |

% See 4uxt Pape seed

READ A comnanD LINE

Sas eo
> COMARY

i teeter (eruan. Y

COMANL

CILIA READ
L-HARACTER

FROM Fale

3
WAIT

. NOCES

poTIFY FROM ByFsEN s .

ECHO

oo = ¥ curPyt
CHARACTER 5

To FiLeé

e = ¥ ‘

RETUAN

TEST FOR

SAN PROCESS

 ERASE & KEL

Ath ScH&Dd
TO WAIT OW

HIPRI Q UT
RESET T/S

H SD:

oy. tT

Mew Conny

- Fi
Proc essoRy

- ;

:

\-

a CLOGET
Gat

Command
ARCR ay.
Prepro-

Cussor-

fAee
Command

y

. Y80
Execute

yes / pess*s
. Pee

x2 CukS

Yes /tuvcsM
Rest oRE Raw

: imape, Sete

‘A 1h SM.

wo ExT

Treem/ Gk!

DEBUGGING

DBG - SOURCE LEVEL DEBUGGER

(1) Overview

(1) Addressins Modes: DBC operates on prosrams which execute in either
64V or 321 modes. The debusser itself executes in 64V mode.

(2) Lansuases Surrorted: FORTRAN-74»FORTRAN-777PL/11+PL/P.
COBOL surrort is Planned.

(3) Memory Reauvirement: The debusser’s procedure part (which is shared
occuries 3 sesments. Per user information reavires a fixed amount of
space includes common area and linkase text. This occuries about 46K
words. Per user space of variable lensth includes stack srace {at leas
16K words) and symbol table space. All symbol table storase is allocate
dynamically.

(4) Central Processor? The DBG runs on any CPU capable of generating
64V addressing mode. Presently» this includes PRIME 3561499,450,598,558
658 and 758 rrocessors.

(II) PROCEDURE OF CALLING DBG

(1) Prosram Compilation

The user must inform the compiler that he/she later intends to use DBG.
This is done by includins the '’-debus’ parameter as one of the comrile-
time options on the command line.

For exameler to compile 'myrprosram’ with the FORTRAN compiler for later
use of DBGr one enters:

OKr FTN MYPROGRAM -64V -DEBUG

Inclusion of the ’-DEBUG’ option causes the compiler to outrut the
information necessary for the debusser to recosnize and manipulate
Program units, symbols and statements.

(2) Prosram loadins
Programs which are comriled with ’-DEBUG’ option are loaded in the
same way as those which are noty in other words, the user experience
no chanse in program loadings. ae

(3) Invoking and Terminating DBG
The debusser is invoked at PRIMOS level by ’DBG’ command followed by the
name of the SEG file contanings the prosram to be debussed.
For exameler to debus the ’#mvrrosram’?:

OK, DEG #MYPROGRAM
##DBG#* revision 17.6a (@6-February-1979)
>

With this commandr the debusser is entered. It reads the prosram and

symbol table from the SEG file into memory and prints an ID
messase as well as a prompt sign >. The debusser’s command mav be enterer
When the 'auit’ command is entered: the control is returned to
PRIMOS command level.

Examrle?:

> QUIT
OKr 1-34

Fareed amen ce

(4)

i
Control is initially passed to DBC from PRIMOS when the debusser

User Prosram Control

is

nvoked. Control passed from DEG to user’s rrosram when
the user uses RESTART or CONTINUE command to restart or continue
Prosram execution.

the user sives one of the sinsle-ster commands: such as STEP» STEP!
Iny or OUT. oe

the user CALLs a subroutine contained within the user Pprosramy»
or when the evaluation of an expression involves a user-defined

function.

Control returns to DEG when
the user program encounters a breakpoint previously set by user.

the prosram completes execution of the number of statements implies

or expressed in a sinsle-ster commandy
the main program returns» or any Program unit stops? pauses, calls
EXIT or calls ERRPR$ to return to PRIMOS command level»
in entry trace moder whenever a procedure is called or returns»

in statement and/or value trace modesr whenever a procedure is.call

or returness and prior to the execution of each statement
a user’s subroutine or function returns from a call made fron DBG

on behalf of the usery
when the user depresses the 'auit’ key at his/her terminal, provide

the user prosram has no handler or the QUITS condition.

List of Debugger's Commands a gers Commands

RESTART

CONTINUE

GOTO

MAIN

BREAKPOINT

TRACEPOINT

CLEAR

CLEARALL

LIST

LISTALL

TYPE

LET

ARGUMENTS

STEP

STEPIN

IN :
our

ETRACE

STRACE

TRACEBACK

WATCH

WATCHLIST

UNWATCH

VTRACE

PRIMOS BUILD

This section will be devoted to PRIMOS build. It is necessary to
build PRIMOS when you

e@ Modify one of the operating system codes.

or Ring 3

- e Install a Ring Gyantexnal command.

e Install a Direct Entrance Call.

The PRI400 directory is where all the source programs and the
corresponding object codes reside. PRIME supplies the source
program so that user may modify or add a module in the operating
system.

There will be a demonstration for PRIMOS build.

H = 37

** isting of C ALL **

/* ALLy PRI4SSy ZINTA EM: CIV LASTS

fe COMPILE AND LAD ALL SOURCES FIR PRI“IS ANS ITS UTILITIES

/* COPYRIGHT 1373) PRIME COMPUTER INCoy WELLESLEY SNA S259

/*
COMO O_ALL
/*

CO C_COMO.OFF 29
J*
CO C_VPSD 29
J*
/*

€O C_PRMLD 26 7* to build the preloader run file - PRIMOS

/*
Ie

CO C_MAPGEN 2¢ /* Senerate MAPGEN projran for PRIMSS - «MAPGEN

/*
/*

co C_KS 20 /* Compile and/or assemble source progrms in KS

/*
/*

€0;6_FS 20 /* comoile or assemole source prograns in

/*
fe

£0) CONS: 20 /* comnile or assemble source projrams in NS

/*
[*

Go C2cs 20 7* compile or assembl2 sourc> programs in es

fe
/*

co C_SE 20 /* conpile or assemble source programs in S=

fs
le

TEC 283s <20 /* compile or assemolLe source programs i1 83S

/*

Je

CO (CUPEPL TS. 2:0 /* compile or assemble source projrams in FUP L

/*
CO C_COM®.ON 20
/*

CO C_RSLOAD 20 J* toad rings object codes and puild PR0013_y PRSOD2

CO C_LONAD 20 7* Load ringd object codes, build run files PROOO -- PR

Je
/*

Como -END

co -END

w

Bi= 32

00000 PPPP EEEEE RRRR AAA TITED ALI -OO000. hy N sss

° 6 2 P_E R Ron A T I ° OM ENNorN oo

Oo O-= PPEP EEE RRRR AAAAA T 1 0 0 “NONON sss

° Oe E RR A A a 1 ° Oo N NN

00000 P EEEEE R R A A - 11111 00000 N N sss

DEE V Ga

NUMBERS

(\

To build or modify a partition you run a command called MAKE.
In Appendix A, there is an example of MAKE being used to
change two smaller partitons into a larger partition. How-
ever before you can run make, you must calculate the physical
device number for that partition. A physical device number
is a six diget octal number that tells the system how large
the partitonis and precisely where it is located on the disk
pack. Below is an example of a physical device number.

oo B46 g

starting head no. controller drive unit no. x 2
2 address or

drive unit no. x 2 +1

For every physical device number, ther is also a logical
device number. A logical device number is an octal number
assigned to a partition.during startup. The first partition
added to the system is logical device 1, the next partition
is logical device 2, etc.

oie

PUYSICAL DEVICE NUMBER

I. 0Cc04C0 070460 100460 —.
& =-----~ 010461 ------ ------ ------ ----~- ~----- ------ 100461
4 0610G0 071060 —-.
5 001061 ------ ------ ------ ------ ------ ------ 071061
G 001460 01140 0214C0 021460 041460 051460 0G1460
7 =

8
9

NUMBER BEGINNING HEAD NUMBER a

canoes

Q 2 4 G & 10 12 14 16 18

2

002060 012060 022060 O32!
 0424c0 --—-—- 3 0124GO 0224

= 042461
33060

—- 032061
02546
022461

00446C
12 004461

THIS TABLE CONTAIN ALL THE POSSIBLE PIYSICAL DEVICE NUMBERS FOR THE 40, &C,
AND SCO MB DISK DRIVES. TO USE THE TABLE DECIDE HOW MANY DISK SURFACES APE
TO BE INCLUDED JN YOUR PARTITION AND WHAT HEAD NUMBER IS THE FIRST HEAD IN
THE PARTITION. USING THIS INFORMATION LOOK UP THE FHYSICAL DEVICE NUMBER
IN THM TAPLE. IF THE PARTITION YOU DEFINE DOES NOT SHOW UP ON THIS TABLE,
THAN 1T JS NOT A LEGAL PARTITION. FOR EXAMPLE, ALIL PARTITIONS MUST BEGIN
ON AN EVEN EAD NUMBER AND ONLY THE LAST PARTITION.ON THE DISK PACK CAN
HAVE AN ODD NUMBER OF SURFACES. THESE TWO RULES MUST BE OBEYED.:

NOTE - THE PHYSICAL DOVICE NUMBERS IN THIS TABLE ASSUME THAT THE DISK PACK
1S MOUNTED ON DISK DRIVE ©. TC FIND THE AIYSICAL DEVICE NUMBERS FCR DISK
PACKS MOUNTED CN OTHER DRIVFS, TAKE THE DISK DRIVE UNIT NUMBER, MULTIPLE 1T

BY 2, AND ADD IT TO THE PHYSICAL DEVICE NUMBER FROM THE TABLE. TW1S SU 1S
THE FIYSICAL DEVICE NUMBER.

RE = MIYSICAL DIXICE NUMBERS C0061, 010-161, AND 001061 ARF ONLY
SSIBLE ON A 40 OR SO MB DISK DRIVE. ALSO NOTE THAT THE 40 AND £0 MS

DISKS ONLY HAVE HEADS O THRU 4.

PHYSICAL DEVICE NUMBER - 2nd QONTROLLER

NUMBER BEGINNING HEAD NUMBER
OF

SURFACES zi

0 2 4 10 12 14 1G 18
eee 020261 =

2 000GGE 012660 022660 050660
30 == 012C61
4 001260 011260 021260
5 0012G] ------ ------ ------ ------ ------ ------
G 001GGO0 011660 0216G0
& 0022C0 012260 022260 032260 042260 052260

--——-- 052261
10 OO2GEO 0126GO 022660 042660 -
J] ------ ------ ------ ------ 042661
12 COS2GO 012260 023260

0: ‘0
020661

THIS TABLE CONTAIN ALL THE POSSIBLE PNYSICAL DEVICE NUMPERS FOR THE 40, 80,
AND 200 MB DISK DRIVES. TO USE THE TARLE DECIDE HOW MANY DISK SURFACES ARE
TO BE INCLUDED IN YOUR PARTITION AND WHAT HEAD NUMPER IS THE FIRST HEAD IN
THE PARTITION. USING TIS INFORMATION LOOK UP THE PHYSICAL DEVICE NUMBER
IN THE TAPLE. 1F THE PARTITION YOU DEFINE DOES NOT SHOW UP ON THIS TALE,
THAN IT 1S NOT A LEGAL PARTITION. FOR EXAMPLE, ALL PARTITIONS MUST BEGIN
ON AN EVEX HRAD NUMBER AND ONLY THE LAST PARTITION ONJHE DISK PACK CAN
HAVE AN ODD NUMBER OF SURFACES. THESE TWO RULES MUST BE OBLYED.

~
NOTE - THE PHYSICAL DEVICE NUMBERS IN THIS TAPLE ASSUME THAT THR DISK PACK
1S MOUNTED ON DISK DRIVE 0. 1O FIND THE MIYSICAL DEVICF NUMBERS FOR DISK
PACKS MOUNTED ON OTHER DRIVES, TAKE THE DISK DRIVE UNIT NUMDER, MULTIPLE 1T
BY 2, AND ADD 1T TO THE ALYSICAL DEVICE NUSBER FROM THE TABLE. THIS SUM IS
THE PHYSICAL DEVICE NUMBER.

BEWARE - PHYSICAL DEVICL NUMBERS OfC2G], 01266], AND 0012G] ARF ONLY

POSSIBLE ON A 4G) OR SC MB DISK DRIVE. ALSO NOTE THAT THE 40 AND SO MB

DISKS ONLY HAVE HEADS 0 7 4. f

+

PARTITIONING OF CARTRIDGE MODULE DEVICES

First Controller Second Controller

3

5

Removable 61 (16 MB) 261 (1G MB)

Non-ranovable 100061 (1G MB) 100261 (16 MB)

Gi .B Removable G1 (16 MB) 261 (16 MB) ae

E |

Non-removable 1004GO (32 MB) 100GGO (3° MB) \

1100G1 (16 MB) 110261 (1G MB)
or or

1004G1 (48 MB) 10066] (48 MB)

96 kB Removable 61 (16 MB) 261 (1G MB) |

Non-ranovable 100460 (32 MB) 100GGO (22 MP)
1104G0 (32 MB) 110GCO (32 MB) 5

: 120061 (16 MB) 12026] (16 MB) : |

, or or)

OL 101060 (G4 MB) 101260 (64 MB)
1200G1 (1G MB) 120261 (16 MB)

or or
101061 (SO MB) 1012G1 (80 MB)

or or
1004GO (52 MB) 100GG6O (32 MB) i

1104G1 (48 MB) 1106G1 (48 MB) l

i= 5

MAKE

MAKE is a utility program used to create new partitions on a new pack

or to change the size of existing partitions.

In this example we shall recreate a 1062 partition into two partitionsys

462 and 10462. There is one badspot on this pack: TRACK=603 HEAD=35~6

we shall run MAKE at user's terminal though it can be done at system consol

First step is goto system consol and type:

SHUTDN 1052
DISK 462 10452

Thens goto user terminal to run MAKE.

OKs ASSIGN DISK 452
OKs MAKE
GO
MAKE 16-8
BUILDING NEW PARTITION.
PHYSICAL DISK: 462
40MB STORAGE MOD?NO
SPLIT DISK?= NO
DISK FILE-RECORDS ¥AGE-RECORDS (DECIMAL)
000462 14814 Qo
PARAMETERS OK? YES
PACK NAME?CLASS1
BADSPOTS ON DISK? NO
VIRGIN DISK? YecS \

VERIFY DISK? YES
FORMAT DISK? YES
BEGINNING FORMAT
FORMAT COMPLETFO
BEGINNING WRITE
WRITE COMPLETE
BEGINNING VERIFY
DISK CREATED

OKy UNAS DI 422

MAKE (171)

* MAKE partition with bad spots on it.

* We shall run Make on 10462 at user's terminal

OK» AS DI 10462
OKs MAKE
Go
MAKE 1648
BUILDING NEW PARTITIONS
PHYSICAL DISK: 10462
40MB STORAGE MOD?NO
SPLIT DISK?: NO
DISK FILE-RECORDS PAGE-RECORDS (DECIMAL)
010462 14814 0
PARAMETERS OK? YES
PACK NAME?CLASS
BADSPOTS ON DISK? YES
TRACK = 607
HEAD = 3
TRACK = 0 /* answer 0 to terminate BADSPOT List
HEAD = 0

TRACK HEAD OF BAD SPOT

607 3

PARAMETERS OK? YES
VIRGIN DISK? YES
VERIFY DISK? YES
FORMAT DISK? YES
BEGINNING FORMAT
FORMAT COMPLETED
BEGINNING WRITE
WRITE COMPLETE
BEGINNING VERIFY
LOST RECORDS
DISK CREATED i!

OKs UNAS DI 10462

* Goto system consol issue the following commands to starts up the partitions

DISK NOT 462 10452
ADDISK 462 10452

* NOTE: MAKE on paging surface can be done only under PRIMOS II

The CMODNCS and DOS are empty when a partition is made by MAKE.

Extra step must be taken if you wish to modify the partition

containing CMONCO and DOS» You must move these UFD's elsewhere
before running MAKE.

a7

MAINTENANCE

—
FIXRAT

* FIXRAT is an utility program that checks the PRIMOS file integrity on

any partition. It reads every record in every files directory and segment

directory and checks its integritye Should there be any inconsistencys

FIXRAT prints out the discrepency with an error messayee

* In this examples we shall run FIXRAT on 462

* To run FIXRAT, first issue the following commands at system consol:

SHUTDN 462
DI 462

* Then proceed the following:

OKs AS DI 462
OKs FIXRAT
GO
FIXRAT 16«4

FIX DISK? NO /* answer NO for the first time arouna

PHYSICAL DISK = 462

UFD COMPRESSION?YES

DISK PACK ID IS CLASS1

BEGIN MFD
BEGIN CMDNCO

END CMONCO 1

BEGIN DOS

END Dos 2

BEGIN SPOOLQ

END SPOOLQ 46

BEGIN LE

END LEE 15

BEGIN XRI400

END XRI400 414

BEGIN BEVERLY

END BEVERLY 12

BEGIN MIKE

ENO MIKE 11

BEGIN BCB

END BOB ou

BEGIN ELTON

END ELTON 9

BEGIN CHEN.2

END CHENe2 23

END MFD 569
RECORDS USEDCDECIMAL)= 569

RECORDS LEFT= 14245

DSKRAT OK

* FIXRAT donee
* UNASSIGN the disk

* Goto system consol and issue:

DISK NOT 462
ADD 462

* Job done! oh = &

=-4

DISK TO DISK

Original

Back-Up

10462

 DRIVE 1

COPY EXAMPLE

* IN ORDER TO BACKUP A PARTITION, YOU MUST SHUT DOWN THE PARTITION
YOU WISH TO COPY FROM. SINCE YOU SHOULD BE MOUNTING A BACKUP
DISK PACK, THE PARTITION YOU ARE COPYING TO 1S ALREADY SHUT DOWN.
—THE FOLLOWING COMMANDS MUST BE GIVEN FROM THE SYSTEM CONSOLE.

SHUTDN 10460
DISK 10460 10462

* THE FOLLOWING 1S THE TERMINAL SESSION FOR COPY

OK, AS DISK 10460

OK, AS DISK 10462
OK, COPY
COPY 16.4
FROM PHYS DISK= 10460
40°B STORAGE NOD? NO
TO PEYS DISK= 10462 —
40ME STORAGE MOD? NO

mM, TC, RECORDS= 10460, 10462, 7407

‘CO, YOU MUST DO IF YOU ARE BACKING UP THE PARTITICN THAT CONTAINS CN
THE PARTITION SO UNDER PRIMOS 11. THEN YOU DO NOT HAVE TO SHUT DO¥

OR ADD IT TO THE DISE ASSIGNABILITY TABLE.

i 2

RECOVERING FROM DISK

* LILLIAN'S DIRECTORY WAS DELETED BY MISTAKE SO YOU MUST GET

‘A COPY OF THE DIRECTORY OFF THE BACKUP DISK. FIRST; YOU

-MUST MOUNT THE BACKUP DISK ON THE SECOND DRIVE. THEN FROM A

TERMINAL USE FUTIL TO MOVE THE UFD LILLIAN.U OVER TO THE

OTHER DRIVE.

Ok} ACBEDOSECRET

UFD=NFD 1 OWNER

MASTER MFD BOOT CMDNCO DOS NANCY.P JACK1.P GEORGE.U

LDEY PDEY . SYSS

0 460
1 10460
2 10462

OH, FUTIL
>
> 2
>
>

Cit

1 O¥NER

SESTER RFD BOOT Curve es SCY oP GAChI@P EILEIAN.U

MAGNETIC

TA PIE

Wop IEPs fs

H rs

MAGNETIC TAPE UTILITIES

ea

S15

SETTING THE DUNP SWITCH

OK, A MFD SECRET 1

OK; &

UFD=MFD 1 OWNER

MASTER MFD BOOT CMDNCO DOS

GEORGE.U

Ok, AS MT)

O8, GSAV_-L_ -UPDT
REV. 16.2

E UNIT (9 TRE): 2
NTER LOGICAL TAPE NUMEER: 1

SANE: BACKUP

MFD]_6

END OF SAVE
MALT OR COMMAND: SR

NANCY.P JACKI.P LILLIAN.U _

INCREMENTAL BACKUPS

OK, A MFD SECRET 1

OK, L

UFD=MFD 1 OWNER

MASTER MFD BOOT CMDNCO DOS NANCY.P JACK1.P LILLIAN.U

GEORGE .U

OK, AS MT

OK, MAGSAV -L -UPDT -INC
REV. 16.2
FEPE UNIT (OPTRK) <2

ICAL TAPE NUMBER: 1
BACKUP -

RESTORING A DIRECTORY

~

OK, A MFD SECRET 1

* ONE OF THE USERS, GEORGE TO BE EXACT, HAS ACCIDENTLY DELETED H1S

WHOLE UFD. TO FIX THIS PROBLEM, YOU NEED TO MOUNT THE TAPE HIS

UFD WAS SAVED ON. THE INDEX YOU RAN WHILE YOU WERE DOING THE
SAVE WILL HELP YOU LOCATE THE PROPER TAPE.

Ob

UFD=NFD 1 OWNER

MASTER MFD BOOT CMDNCO DOS NANCY.P JACK1.P LILLIAN.U

of, AS

OE, MAGRST
REV« 2

TAPE UXIE Co TRE) 3s

ENTER LOGICAL TAPE NUMBER: 1

Ne NAME: BACKUP
E DD Ys): 09-07-79

REV } 0
REEL 30: 1
READY TO RESTORE: $1 2

READY TO RESTORE: PARTI

*** STARTING RESTORE ***

MFD > GEORGE.U
FJLE COMPLETE

*** RESTORE COMPLETE ***

Ob

UFD=MFD 1 OWNER

MASTER MFD BOOT CMDNCG §=6DOS NANCY.P JACK1.P LILLIAN.U

GEORGE .U

IL-1

CONVENTIONAL TAPE BACKUP

OK., A MFD SECRET J

Ol als

UFD=NFD 1 OWNER

XS

CMDNCO DOS MASTER MFD BOOT
GEORGE .U

EV. 10.2
BOURT Pace wen)c3 1
ER LOGICAL TAPE NUMBER: 1

AME: BACKUP

 2 $1 B MFDI 6

! OR CO ‘D: MPD
H*X* START OF SAVE" **

***EXD OF SAVE**
NAME OR COMMAND: SR

I-14

NANCY.P JACK].P LILLIAN.U

USS "AGE

IL~20

Provides system usage information as difference readings

— between successive invocations of the program e

Runs as ring 3 process under standard operating system

Rev. 15 usage runs on the 64 user versions (with or

without networking)

Counters may change whilst usage is looking at them so

results can be inaccurate if time between runs is short -

should no be less than.30 seconds

Segments 4, 6, 10 must be shared with read access from

ring 3

To run:

1. Rusagei5 , followed by

Ss » at some time later

further readings can be taken

whenever "5" is typed

2. R usagel5 i/n,

Runs periodically,

Runs being n seconds (octal)

Outputs to terminal, use come to get results into 2 file

LINE) is

Date and time of run

DIME = Time between present and previous invocation

in seconds

CPrOT = Total cpu time (seconds) used by all users

since last cold start

IL-l

IOTOT

Rest of

runs

- LINE 2:

— DCPTOT

%CP

DPFCN

PF/SEC

DIOCN

I0/SEC

%OVLAP

lapped

LINE 4:

DLOCNT

LO/SEC

DLOFCT

DLOSC 4

DLOUCT

LINE 5:

DLOCCT

- Total I/0 time (seconds) by all users since

last cold start

output is difference between current and previous

- + Total CPU time (seconds) by all users

- % of real time that CPU was running user

processes (DCPTPT/DTIME)

- Delta number of page faults

- Delta page faults per second (DPFCN/DTINE)

- Total I/0 time (paging and file)

- ¢ of real time that I/0 wes going on

- Number of disk 1/0 requests (paging and file)

- Number of disk 1/0 requests per second (DIOCK/

DTIME)

- Estimate of % cf the I/O time thet was over-

with nonidle time (DIOCN - DCPBAK)/DIOCK)

fe Number cf lecate requests

- Locate

= Number unusea buifers

same buffer

= Number

- Number of locate hits on used buffers

- Number of locate misses

i aa

Lw/SEC - Number of misses per second (DLOCCT/DTINE

%MISS - % of locate requests which were misses

(DLOCCT/DLOCNT*1 00)

%XCP - Unaccounted CP time (100 - the sum of

@CPU) (Process exchange time)

fey,
+

LINE 6, SYSTEM PROCESSESS
LINE 6, sioireeeeeeeeeee

%CLK - CPU for clock process

SANL - CPU for AMLC process

gvpc - CPU for MPC process

gIPpC - CPU for IPC process

@FAR - CPU for farnet process

%SLC - cPu for SMLC process

@3kK - CPU for backstop process

USER DATA

USR = User number

LOGNAM ES Login name

CUFD - Current UFD

 Ox. IN -

CPTINE - t since login (seconds)

DIF - CF = i Sipe (len EN DI)

CP - Delte % ((DIF - CF)/DTINE)

IOTIME - Total 1/0 time since login (seconds)

DIF -I0 - Delta I/O time (IE: IN DTINE)

G10 - Delta % I/O time ((DIF - 10)/DTINE)

iF
 =25

Users only appear if their CP or I/O counters have changed

since the last usage run

When a user logs in or out, will get incorrect data for

thet user on the next usage run

Occasionally get negative numbers when counters overflow

OK, USAGE -FREQ 2

co :

it
y

2622.37 02/18/80 13:55:49.37 DT1IME= 14.54 CPTOT= 4456.32 JOTOT
e

DCPTOT= 5.203 %&CP= 35.793 DPFCN= 237 PF/SEC= 16.303 |

DIOTOT= 12.764 %10= 87.802 DIOCN= 365 10/SEC= 25.109 SOVLAP= 42.814

1176 LO/SEC= 80.90 DLOFCT= 105 DLOSCT= 10 DLOUCT= 0 |

DLOCNT=
DLOCC' 74 LM/SEC= 5.09 SNISE= 6.29 EXCP= 5.80 |

ECLK= 5.21 SAML= 4.73 ZMPC= 0.00 %]PC= 0.00 %FAR= 0.00 %SLC= 0.15 “%BAK=5C.21 |
|

USR LOGNAM MEM CPTIME DCP “CP 10OTIME DIO %10

1 SYSTEM 153 1669.912 0.138 0.951 450.785 0.139 0.959

S NANCY fa 2.862 0.452 2.106 3.948 0.712

6 SLUFD 12 cS.986 1.008 6.931 $1.62) 2.988

7 JACKI at 3.24) 3.394 22.344 8.791 3.258 |

€ SLUFD 20 5.663 Q.04] 0.285 10.23 Joe |

79 SYSTEM 1 525.52 0.02 0.559 94.027 0.412

20) «=FAN 16 160.627 C.0GG 0.45] 166.176 0.855

21 SYSTEM 1 6.105 0.053 0.366 5.82) C.527

SeteAR Use

AND

SHUTDOWN

SHUTDOWN

BEFORE YOU SHUTDOWN THE SYSTEM, YOU SHOULD WARN EVERYONE ON THE

—SYSTEM THAT YOU ARE SHUTTING DOWN. TO DO THIS, SEND A MESSAGE.

BELOW 1S AN EXAMPLE OF HOW TO SHUTDOWN THE SYSTEM. THIS PROCESS

—MUST BE DONE FROM THE SYSTEM CONSOLE. =

OK, M ALL NOW

EVERYONE LOGOUT - THE SYSTEM 1S GOING DOWN

AFTER EVERYONE HAS LOGGED OUT, LOGOUT THE PHANTOMS. IT MAY TAKE

MORE THAN ONE MESSAGE TO GET EVERYONE OFF THE SYSTEM.

OK, LO ALL

ALL THE LOGOUT MESSAGES WILL NOW TYPE OUT ON THE SYSTEM CONSOLE.

OK, SHUTDN ALL
REALLY? YES
WAIT,
LOGICAL DEVICE 0, YOUR FILES ARE CLOSED
PRIMOS NOT IN OPERATION

SYSTEM STARTUP

TURN ON THE POWER IN THIS ORDER

CPU (TURN THE KEY TO ON)
DISK DRIVES (ONE AT A TIME)
TAPE DRIVES
OTHER PER] PHERAL DEVICES

BOOTING THE SYSTEM

TURN THE ROTARY SWITCH ON THE CPU TO STOP/STEP
PRESS MASTER CLEAR SWITCH
CHECK ADDRESS/DATA SWITCH SET TO ADDRESS
PRESS SENSE SWITCHES 10, 12, 14 UP (13 AND 14 1F USING CARTRIDGE DRIVE)
TURN ROTARY SWITCH TO LOAD
PRESS START SWITCH

AT_THE SYSTEM CONSOLE

1F THE BOOT WAS SUCCESSFUL THE SYSTEM W1LL PRINT -

PHYSICAL DEVICE=

ON THE SYSTEM CONSOLE. YOU RESPOND WITH THE PHYSICAL DEVICE NUMBER OF

YOU

 SURFACE 7.5. WEERE PRINOS

TYPE WHAT 1S UNDERLINED AT THE SYSTE CONSOLE
PHYSICAL DEVICE=i60

PRINOS 1] REV 16

OK: STARTUP 460

: A PRIRUN OR A PRI400
OK: R PRIMOS

STARTUP FOR THE 50's SERIES

TURNING ON THE COMPUTER

TURN ON POWER TO THE CPU

TURN ON THE DISK DRIVES ONE AT A TIME
TURN ON THE POWER TO THE TERMINET
TURN ON THE REST OF THE PERIPHERAL DEVICES

BOOTING THE SYSTEM

THE SYSTEM CONSOLE WILL HAVE THE 'CP>' PROMPT
YOU TYPE IN

CP> SYSCLR
CP> BOOT 114

THE SYSTEM CONSOLE WILL THEN PRINT OUT

PHYSICAL DEV1CE=

THE REST 1S THE SAME AS THE 400 AND 500

ABBREV YES
PAGDEV 20061
ALTDEV 20063
ASRATE 1010
COMDEV 1050
LOUTQM 144
MAXPAG 2000
NET ON
SMLC ON
NPUSR 5S
NRUSR 4
NTUSR 24
NUSEG 65
TYPOUT YES
WIRMEM
AMLBUF 20 1500

LOGLOG YES
ERASE
DISLOG YES
GO

** Listing of CONFIG File **

/* PAGING DEVICE Is
/* ALTERNATE PAGING DEVICE
/7* SYSTEM CONSOLE’S 3AUD RATE IS 500
7* COMMAND DEVICE
7* TNACTIVITY-LOGOUT TIME IS 100 MIN.
/* SPECIFY NUM3ER OF PAGES CF MEMORY TO VALIDATE
/* NETWORKS ARE TO BE CONFIGURED
/* ENABLE SMLC LINES
/* SPECIFY NUMBER OF PHANTOM USERS
7« SPECIFY NUMBER OF REMOTE USER
7* SPECIFY NUMBER OF TERMINAL USERS s
/* SET NUMBER OF USER SEGMENTS PER USERS Cdefault is 32)

/* PRINT SIZE OF WIRED MEMCRY
1506

/7* SET AMLC LINE 29'S INPUT 2 OUTPUT BUFFER SIZE IN WORDS
7* ALLOW LOGIN WHILE LOGGED IN
/«* SET SYSTEM'S ERASE CHARACTER IF OTHER THAN ™ IS DESIRED
7* PERFORM LOGOUT WHEN AN AMLC LINE IS OISCONNECTED

m-29 A

SYSTEMS

HALTS

}

PRIMOS SYSTEM CRASH REPORT 400-500

WHEN THE SYSTEM HALTS DO THE FOLLOWING:

16.

DO NOT MASTER CLEAR AT THIS TIME.

TURN ROTARY SWITCH TO STOP/STEP.

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

WRITE DOWN THE NUMBERS OF THE RED LIGHTS THAT ARE ON OR
NOTE THE OCTAL VALUE. LIGHTS ON

NOW TURN ROTARY SWITCH TO FETCH Y.

PLACE ALL NUMBERED TOGGLE SWITCHES TO NEUTRAL POSITION
(THE MAJORITY ALREADY ARE).

PRESS AND RELEASE DATA CLEAR.

PRESS AND RELEASE START.

PUT ADDRESS/DATA TOGGLE SWITCH TO DATA POSITION.

WRITE DOWN THE RED LIGHTS NOW ON. ADDRESS 0

TURN ROTARY SWITCH TO FETCH Y + 1.

PRESS AND RELEASE START.

WRITE DOWN THE RED LIGHTS NOW ON. ADDRESS 1

PRESS AND RELEASE START.
12 WRITE DOWN THE RED LIGHTS NOW ON. ADDRESS

TURN ROTARY SWITCH BACK TO FETCH ¥.

PUT ADDRESS/DATA TOGGLE SWITCH TO ADD

POSITION.

PRESS AND RELEASE DATA CLEAR.

RAISE SWITCHES 1, 2, & 4.

PRESS NUMBERED SWITCHES 12, 13, 14, & 16 DOWN (THIS WILL
TURN ON THEIR ASSOCIATED LIGHTS).

PRESS AND RELEASE START.

3

28.

27.

45.

PUT ADDRESS/DATA TOGGLE SWITCH TO DATA POSITION.

WRITE DOWN THE RED LIGHTS NOK ON. 35 H1 (DSWSTAT)

PUT SWITCH 4 IN NEUTRAL POSITION.

PRESS AND RELEASE START. :

WRITE DOWN THE RED LIGHTS NOW ON. 35 LOW (DSWSTAT)

RAISE SWITCH 4.

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

PRESS AND RELEASE DATA CLEAR.

DEPRESS NUMBERED SWITCHES 22, 137 8 14.

PRESS AND RELEASE START.

PUT ADDRESS/DATA TOGGLE SW1TCH TO DATA POSITION.

WRITE DOWN THE RED LIGHTS NOW ON. 34 HI (DSWRMA)

PUT SWITCH 4 1N NEUTRAL POSITION.

PRESS AND RELEASE START.

WRITE DOWN THE RED LIGHTS NOW ON. 34 LOW (DS¥RMA)

PUT ADDRESS/DATA TOGGLE SWITCH TO ADDRESS POSITION.

PRESS AND RELEASE DATA CLEAR.

RAISE SWITCH 4, DEPRESS SW1TCHES 125 3S 5148155

PRESS AND RELEASE START.

PUT ADDRESS/DATA TOGGLE SWITCH TO

WRITE DOWN THE RED LIGHTS NOW ON. SG HI (DSWPB)

PUT SWITCH 4 1N NELTRAL POSITION.

PRESS AND RELEASE START.

WRITE DOWN THE RED LIGHTS NOW ON. 36 LOW (DSWPB)

46. NOW DO A WARM START. IF YOU CAN'T DO A WARM START YOU HAVE TO DO

A COLD START. TO DO A WARM START, TURN THE ROTARY SWITCH TO
STOP/STEP, PRESS MASTER CLEAR SWITCH, THEN PRESS THE START
SWITCH TWICE. '*** WARM START ***' SHOULD PRINT OUT ON THE
SYSTEM CONSOLE IF A WARN START 1S POSSIBLE. ALL THE TERMINALS

SHOULD BEGIN TO FUNCTION. IF THE WARM START 1S NOT SUCCESSFUL,
YOU SHOULD GO THROUGH COLD START PROCEDURES. THESE ARE THE
SAME AS A NORMAL STARTUP.

SYSTEM HALTS ON A 50'S SERIES

WHEN YOUR SYSTEM HALTS, THE LIGHT ABOVE THE MASTER CLEAR BUTTON GOES
ON AND THE TERMINALS STOP WORKING. THE SYSTEM CONSOLE SHOULD HAVE
PRINTED THE HALT LOCATION.. RECORD THESE NUMBERS IN YOUR SYSTEM LOG.
BELOW IS A PROCEDURE FOR FINDING THE REASON FOR THE HALT.

CP> D_DSWSTAT
CP> D DSWRMA
CP> D DSWPB

RECORD THE NUMBERS THAT PRINT ON THE SYSTEM CONSOLE IN RESPONSE TO
THESE COMMANDS. NOW YOU ARE READY TO ATTEMPT A WARM START. TYPE
THE FOLLOWING COMMANDS ON THE SYSTEM CONSOLE.

CP> SYSCLR
CP> RUN

HALTED AT : 1001: 000010

CP> RUN

*** WARM START ***

IF YOU ARE SUCCESSFUL WITH THE WARM START ATTEMPT, ALL THE USERS WILL

BE ABLE TO CONTINUE. 1F THE WARM START ATTEMPT WAS NOT SUCCESSFUL,
YOU MUST THEN TRY A COLD START. THIS 1S THE SAME PROCESS AS NORMAL
SYSTEM STARTUP.

THE

EV ESNet

RECORDER

OK ,LOGPRT TTY
LOGPRT REV 16.3
INPUT TREENAME: CMDNCO>LOGREC

=**** CMDNCO>LOGREC, 22:20:12 FR] 25 JAN 1980 ***** .

09:25:00 FRI 18 JAN 1980

MEMORY PARITY (ECCC) DSWSTAT= 020110 146400 DSWRMA= 000006 017253

DSWPB= 000006 017367 PPN,WN= 000024 001255 BIT= 6 OP=1

09:25:52 FRI 18 JAN 1980

SHUTDOWN BY OPERATOR

09:27:20 FRI 18 JAN 1980

COLD START CPU TYPE= 6 MICROCODE REV= 2

1D= 000000 000006 000000 000002 000000 000000 000000 000000

DISK MOUNT: OP/SYS ON 000460

09:27:36 FRI 18 JAN 1980

DISK MOUNT: ANLYS1 ON 010460

DISK MOUNT: MRKREP ON C020460

DISK MOUNT: ADMIN ON 020460

DISK MOUNT: CUST1 ON 041060

DISK MOUNT: CUST2 ON 061060

DISK MOUNT: SCRTCK ON 11006]

09:28:04 FR1 18 JAN 1980

DISK MOUNT: SFTWAR ON 000462

DISK MOUNT: ANLYS2 ON 010462

DISK MOUNT: DEMOPK ON 020063

‘v's

"Nu
epeW

Suoyjdes
piesu;

of
Asee

3;
s
e
x
e
w

qe}
uo

e6pe
p
e
p
y
e
g

ous

“SNOILdYO
NMO

UNOA
ALUM

OL
HOIHM

NO
SLUGSNI

NIVId
ONISN

‘LNSWAONVUUY
LOafans

NMO
uno’

S
H
Y

OL
MOA

SIGYNA
SAXSGNI

GVI-SIGVIUSSNI
TYNOILYN

NATIONAL

23-680

NEW STRUCTURE OF USRCOM AND UTCOM:

w
e
p
t

— URSCOM con

10/705 5 10/13105 !
: eee

: UTcoM (16) _|
ENTRY P

ER LY unrTap (64) :

CONFIGURED °
USER CURATT (1) eee ;

HOMATT (1) E i

LOGNAM (16)

ONLY & CHARACTERS OF LOGNAM ARE USGD AT REV, 165. UNITAB, CURATT

AND HOMATT ARE 16 BIT POINTERS INTO UTCOM. WHEN USED AS AN ATTACH

POINT, UTCOM DOES NOT KEEP ASCII CHARACTER STRING (USE UFDNAM.)

i ;

H
e

reany

F| '

“oR STRUCTURES Cf THE PRIMCS FILE SYSTEM DISK

re
pe
ig
e

1.1 OVERVIEW

The format of a Primos disk is similar for all disk types supported.<by Prime. Each
logical» disk comsists of a series of sequentially numbered records. Each disk record
consists of a record header and a data section. All records of a given logical disk are
the same size; every record has a record header. Disk records are used to contain all

+,data on the disk including directories. Primes currently supports two record sizes.
Storage Modules have 1848 word records divided into a 16 word record header and a 1224
word data section. All other Prime supoorted disks have 448 word records divided into
an 8 word record header and a 448 word data section.

1.2 RECORD HEADER FORMATS

‘1.2.1 Overview

The data items in the record header of both Storage Modules and all other disks are
the same. The size of each data item and the order of the items in the record header
are different.

Below will be discussed the meaning of each data item and its usage. The name of the
data iten is the name used to referenct the item in Primos IV operating system
FORTRAN code.

REXCRA Current Record Address
The record address (record number) of this record will generally be
checked by the disk driver (DVDISK).

REXPOP Beginning Record Address or Father Record Address
For all records except the first record in a SAM string, this data item
contains the record address of the first record in the file (BRA). If
the record is the first record in the file, REKFOP contains the
beginning record address of the directory in which the file is entered.
If the file is a DAM file ard the record is the first record in an index
level, but not the highest index level, REXFOP contans the record

address of the first record in the next highest index level (SAM

string).

REXOCT Record Data Coumt
= Nanber of words which are valid in the data section of the record. If

-t . the record is not the last record in a SAM string, the data count must
is be the maximum allowed for the record. i

+
REXTYP Pile Type *

In all The item is only valid in the first record of each file (BRA).
other records, REXTYP must be zero. ©

Bit 16: 8 => SAM file, 1 => DAM file
15: -- 1 => segment directory, else 8
14: 1 =>.UFD, else 8 =

Bits 2-13: on record 8 (BRA of BOOT) and record 2 (BRA of DST
only, 1 if disk has 1248 word records (StDrage Module) ;
else 6. bc

Forward Pointer
Record address of next record in SAM string. Zero if current record is
last record in SAM string.

Back Pointer
Record address of previous record in SAM String. Zero if current record
is first record in SMM string.

~~

Index Level ie pees (D6 Fu
Zero if a SAM file. Else/ the index level of the SAM string of wich the
current record is a menber. The highest index level has the numerically
highest numer; the data level is zero.

1.2.2 Record Header Format - 184) word records (Storage Module)

8 REKCRA INTEGER*4

2 REKPOP INTEGER*4

4 REXOCT INTEGER*2

5 REXTYP INTHGER*2

6 REX PT INTEGER*4
«a

8 REXKSPT INTEGER*4

128 REKLVL INTEGER*2

ee reserved 5 INTHEGER*2 words, must be zero

15

1.2.3 Record Header Format - 448 word records

8 REXCRA INTEGER*2

2 REXKBRA INTEGER*2

a2 REXF PT INTEGER*2
> REXSPT INTEGER*2 =

-@ [Rewer INTEGER*2 :
S REXTYP INTEGER*2 ~
6 | REXLVL INTEGER*2 =
7 reserved INTEGER*2, must be zero

50-5

1.2.4 Accessing Record Beader Data Items

The ring 8 subroutine LOCATE is used to access both the record header and the data
section of a disk record. [Details on the usage of LOCATE are given elsewtere in this
Cociizent. : 34 uw

Cne *pi “the actions of LOCATE is to arrange the record headers so that the data item
lengths are those given for 1248 word records. The Proper method of accessing the
variables from FORTRAN code is: i

I = REXCRA (BUFNEW)

ard similarly. Note that each data item must be accessed individually; note
ordering of the data items can be assumed.

1.3 STRUCTURE CF FILES

1.3.1 Overview

All collections of information on a Primos file system disk are organized into files.
Directories are files whose data sections contain “special” information. Two basic
types of files are currently supported, SAM (Sequential Access Method) and DAM
(Direct Access Method). There is no difference in the user interface to. access
information in either SAM or DAM files. ‘Thus the editor will work on either type of
Sile without any special coding conventions.

1.3.1.1 SAM Files

A SAM file consists of a single “SAM string” in which all the records in the file
are linked together in a linear doulby linked list using the pointer REXFPT and
REKSFT in the record headers of the records in the file.

FOP

 >

4

8<— The data in any SAM file may be accessed using PRHFSS either sequentially or
Tandan access. Randan accesses wich are relatively far apart will be slower than

"if the file were a DAM file. .

1:3.1.2 DAM Files

A DAM file consists of a hierarchy of "SAM strings". ‘The data ipa TAM file may
be accessed either randomly or sequentialy using PRKFSS. eee type of access
wll eccur with approximately the same speed.

Pe Spa ROP. zs -

= |
I -

8<—| I—>

{ I
| |
=|

level 2 | |
| I

|
|

a<—| \——>| |
eal | | !
| | | |
| 1 | |

level 1 | I 1 I
! | | !
ioe I i |

I
I

o<—| I——>! [=> ==> l=) |—>2
level 8 | | | tele lee |
(data) | ee I<— <—| i ee

Pictured above is a moderate size (514 data records on a Storage Module) DAM file.
Note that each index level including the data level is a SAM string. That is the
records in each level are linked together in a linear doubly linked list using
REXFFT ard REKSPT in the record headers. REXFOP in the record header of the first
record in each level points to its “father”, either the first record in the
immediately superior level or the BRA of the directory in which the file is
entered. The data words of all records which are not in the date level contain

pointers to (record addresses of) records in the immediately inferior level. The
top level index is constrained to be exactly one record long. 2

»

acy

1.3.2 EXTENDING AND TRUNCATING DAM FILES

When a [AM file is newly created it consists of two records. The “beginning. record
eddress (PRA) is that of the index record. The index record will-have a data coxt
of 2. (record addresses always INTEGER*4 even on 448 word disks) as the data sect:-.
will: contain one pointer pointing to the data record of the file: As user data is

written to the file, records will be chained into the data level and record address
pointers added ‘to the index record until the data section of the index record is full
(512= data records on Storage Modules, 22% data records on all other disks). Since
the top level index is constrained to be one record long, another level of index must
be created in order to grow the file. The next level of index is created by
logically adding another record to the existing index ard then creating another
higher level index which contains 2 two record address pointers, each of which points
to the two lower level index records. This is done by the ring 8 procedure NEKTAM
and the OOPYUP entry to the ring 8 module LOCATE in such a menner that the BRA
(physical record address) is still the first record in the file (legically the newly
Created higher level index) while the data that was formerly in the physical BRA is
copied to a freshly acquired record.

When a [CAM file is truncated, the number of index levels is never reduced. The
‘number of records in each SAM string can be truncated to one. Thus, if the DAM file
pictured above is truncated to zero data words, the structure will be changed to:

FOP

‘8<—] l==>¢
: |

level 2 | |
| |

a<—| |—>a
[—

devel 1 ! |

1 I

I
|

) a<—| [—>2
level_3 | |
(cata) | |

of oe

do
e

me
at
y

1.3.3 STRUCTURE OF DIRECTORY FILES

ry

tg
s

1,3.3.1 Overview

There are two types of directories currently supported by Primos: (1) User File

SBrrectories (UFDs) and (2) Segment Directories (SEGDIRs). Note that a directory

$5 itself a file and may be either a SAM or DAM file. Currently, DA¥ UFTs are not ©

supported. ‘The structure of record header and index record pointers as outlined

above is valid for all directories. The directory “information” is entirely in

the dsta section (of the data level, if DAN) of the records wich make up the

directory file.

UFDs are always accessed in a sequential manner, usually looking for a match on

file name. File entries in a UFD allow for flexible setting of attributes such as

protection, date and time modified, etc.

SEGDIRs may be accessed either randanly or sequentially. File entries in a SEGDIR

consist of only the beginning record address of the inferior file; all ettributes

are derived from the UFD entry of the topmost SEGDIR in a hierarchy of S5GCIRs.

Qnly data files and other S&GDIRs can be entered (inferior to) a SEGDIR. Thet is

a UFD is not allowed under a SmGDIR.

2.3.3.2 UFD Structure

1.3.3.2.1 Overview

All UFds are SAM files. All information within a UFD is contained in “UFD

entries”. Each entry starts with an mntry Control werd (ECK). The left byte

of the ECK (bits 1-8) contans the UFD entry type and the right byte (bits 9-16)

contain the length of the entry in 16 bit words. Each UFD entry type hes a

fixed length header (which may be zero length) and zero or more su>-entries.

Each sub-entry has a Sub-entry Control word (SH) containing sub-entry type and

length similar to the BCX. Thus, the internal format of a UFD is somewhat

self—defining. In order to allow forward and backward compatibility, all cede

which deals with VFD entries is written so that "unknown" entry and sub-entry

types are ignored. ‘the length field is used to skip over unknown types.

Currently there are 3 defined UrD entry types.

Bf UFD header
2 Vacant entry
3 File entry

a”
'

t
e
n
e
t

wi
de

y
e
y

_1.3.3.2.2 UFD Header

T
i
t
e

-=

pe

The UFD header is always the first entry in every UFD.
and non-owner passwords.

ES

nN

 23

Owner password (3 words)

Non-owner passwords (3 words)

Reserved, must be 6
16 words

1.3.3.2.3 File Rntry

It contains the owner

“ The file entry is used to enter a file (data or directory) in a UFD. The entry
contans the
attributes.

8] 3112+L1

t4 os 1
| !

3 | Reserved |

| pate |

6

7 | Reserved |

8

5

internal name (BRA) ,

ECW (Entry Control Word)

Beginning Record Address

Must be zero
3 words

Protection

Must be zero

Date last medified

Time last modified

Tile type.

SCH (Subentry Control word)

File Name

aw - 10

external name (character string), and

Le- aes langth

in wds

W
d

ma
ny

. PROTEC Bits 1-8 Owner Rights

Bits 9-16 Non-Owner Rights in each byte
+ read
2 write
4 truncate/delete

Wi
re
|

cig
s

gts Bits> 1-7 Year z
ee . 8-11 Month ;

= 12-16 Day

TIMMCO (Seconds since Midnight) /4

FILTYP Bits 5-(reader/writer concurrency lock
=> system default
=> reader xor 1 writer
=> n readers xor 1 writer
= n readers M0 n wtiters W

N
H
a
A

Bit 4: 1 if "special" file (BOOT,DSK-.\T,
(MFD, BADS?PT)

Bits 9-16: file type
8 => sam data

=> dam data
2 => SAMSEGDIR
3 => dam SEGDIR

4 => UFD

rw)

FILMAM~ = File name is a left justified, blank padded character string (ASCII).
The filename may be 1 to 32 characters (1-16 words) in length. Thus,
the length field in the SCW ("1") must be between 2 and 17.

1.3.3.2.4 Vacant Entry

The vacant entry type is used to logically delete a file entry. The contents
of all words in the entry other than the ECW are undefined. ace compression
is not done so that existeng file entries do not change relative position
within the UFD. The “get position " and "set position” finctions of RDENDS
require the file entries not move.

1.3.3.3 SEGHENT DIRECTORY STRUCTURES

3
*31.3.3.3.1 Overview e

ye

SEGDIRs contain only internal names (BRA) or null entries (INTL (2)).
z

*

_ 1.3,3.3.2 Structure

@ {| BRA @ | Beginning Record Address
| | (file in entry @-

Sr
ey

tye

F2 [| BRAl | 3
+ —I el :

“41 8 | Null mtry
[ee 1 + (no file in entry 2)

[Eri |
| I

2n{| BRA n

1.3.3.4 SPECIAL FILES

abe

ao

'
y
i
m

1.3.3.4.1 MFD

The MPD (Master File Directory) is the root node of the hierarchial file
structure. The MFD is a UFD. The BRA of the MFD is defined to be 1. there is
a file entry for "MFD" in the MD. Me of the passwords of the MFD must be
" XXXXEX" s

1.3.3.4,2 Disk Record Availability Table

The "DSKRAT” is a sam data file entered in the MFD which contains a bit-map
which indicates which records on the disk belong to files and which are free.
The name of the logical disk is the character string name given to the dskrat
file. The BRA of the dskrat is defined to be 2.

t
d
s

so
na
r

Wwe-12

a 8 | IJength of dskrat header

io[recsiz1 number of words in disk record (inc. header)—

=
22 { wReCS | mumber of records in partition c

% I | (INTEGER*4) oe
<<

4 | NEEADS | number of heads in prtition |

5 | Reserved | Must be zero

| BITMAP | Mep of used/free records

| 1 1 bit/record

_Users should never change the data in the DSKRAT file. Typically (i.e., when

gt
ew
ly

"xxxxxx" is the MFD non-owner password) the protection should be set to ae

(read only rights for both owner and non-owner).

1.3.3.4.3 BOOT

The sam gata file BOOT is the record zero bootstrap used to read in ance start

the PRIMCS II operating system. The BRA of BOOT is defined to be 2.

1.3.3.4.4 BADSFT

The sam data file named BADSPT is entered in the MFD by the Gisk formatting

utility MAKE. ‘It contains the heads and track numbers of disk records which

are known to be tmreadable. The file is only used by the disk consisting

verification utility FIXRAT.

1.3.3.4.5 INTERNAL DATA BASES

1.3.3.4.5.1 NILOCKS

N-readers-one-ewriter locks, or "“nllocks", allow concurrent use and

interlocked updating of a database. An nllock may be lecked for “writins”

(exclusive use or update) or for reading (non-exclusive use).

The file system uses a collection of ordered nllocks. They are ordered in

the sense that they must be locked only in priority order fi.e., a process

cannot lock a priority 1 Jock while holding a priority 4 lock). This

prevents the classic deadlock situation in which process l*has locked A ard

needs B [where priority (B) > priority (A)) while process 2 haas locked B

and needs A [process 2 would be in priority violation).

The siz file system lecks are described following.

we - 13

FSLOK [File System Global Lock] i

a © Held for reading whenever referencing ANY file = tem databes .
= Prevents addition or shutdown of disks.
= “7

: ~* zr o° Beld for writing during addisk, shutdow-disk, and certain Special
— cases of SRCHSS (change-access).

UFDLOK {UFD Lock]

© Beld for reading whenever any directory is being searched.

“9 Beld for writing whenever any directory will be (or could te)
modified (e.g., creating a file).

UTLOK (Unit Teble Lock]

iz © Held for writing whenever referencing the Unit Table, to prevent
changes to that table by other processes. In particular, the Cpen
Operation conflict check is interlocked in this way.

TRNLOK {Transaction Lock]

{ © Used to ensure that a given read or write call will never be
interleaved with another read or write on the same shared file.
Beld for reading or writing as appropriate. Some operations on
Segment directories use this lock.

RATLOK (Record Available Teble Lock]

© Held for writing whenever the RAT for a given disk is being
accessed. Serializes disk allocation and deallocation.

DSKLOK (Disk DIM Lock]

© Used to single-thread the Disk DIM. Always held for writing.

ICCSEM [Locate Semaphore, not an nllock]

o Used for mutual exclusion in critical regions of the ee routine.

Note fre for most nllocks, recursive locking is not allowed (e.g., Pr
cannot lock A if it already has A locked). he only exception is L
which may be recursively locked for reading, or locked for reading aicer
being locked for writing, but not locked for writing after le lecked for
reading.

’
yee

ge
es

r
a
w

. 1.3.3.4.5.2 UNIT TABLE DATABASE

1.3.3.4.5.2.1 Layout of Usrcn

USROMS

+
eq
tt
el

a

17 unit table entries hame
directory information
current directory information
login name

e
bee

p
sy

s
AM

ye
e

an
y

/ 5,.4.5.2.2 UNIT TABLE ENTRY

name contents

wstat bit 1: wmedified; bits 2-8: filetype (4=dir, 2=segdirs lsdex); bits

v= —§-16: open access (l=read, 2=write, 3=RK). coe

wr If file closed: all 8.
=

vbra (2 words) Beginning Record Address of File.

vdvno Iogical disk of file.

vdera (2 words) Current position Rec Addr (of Dam Index), dem files only. -1 if

invalid.

vdrwp (2 words) Ordinal position, in records.

vera (2 words) Current position Rec Addr of data record.

vIwp Ordinal position, offset in record indicated by vdrwp.

veriv bits 1-8: access control setting of file;
bits 9-16: per-file RY Lock.

vpopra points to date/time modified field in parent directory

Rec. Addr.

vpoprw word offset for vpopra.

'
to

w
ge

.

Ww-'b

entry. (2 words)

A
M
M

ye

as
]

x! asa BCME/CURRENT DIRECTORY INFCRMATICN

we

8

16

18

3
2

u

contents

& worcs) entryname of directory.

& worees) Beginning Record Addr of directory.

Segtcat disk of directory

Record Addr of parent of directory

bits 1-8: &=nonowner, leowner
bits 9-16: access control information.

length of entryname.

Record Addr of DIM in parent directory entry.

offset in record of DIM

Snel 7.

a“
ro

te
e

W
d

oe
ds
y

,
Basa File System Internal Subroutines

7 *3.45.3.1 Close file by unit or name

close (€a dyno, unit cade)
Ass +

braztivno Point to file if units0, else ignored. unit is specific mit if >8, or 8 if close (bra,dvno) code Standard error code (Output)

restriction: cannot go remote.

1.3.3.4.5.3.2 Change Open Access

cngece (key,unit,type,cede)

key l(read), 2(write), 3(RK)
unit unit wose ace is to be Changed. Must be open type file type of <unit>. (Output) : code standard error code (Output) -

restrictions: no remote. New access must not conflict with other users. Unit table ist not be locked en call.

1.: °.4.5.3.3 Delete a Directory Mtry

Jelete (evno ,bra,aldpr ,enthed,entpos,cade)

@vno logical disk of file
bra beginning rec addr of file
Oldpar true if an old Part'n
enthed first word of file's directory entry entros (int*4) position of enthed in the Parent directory code Standard error code. (Output)

estrictions: TRNLOX must not be locked On call. UFDLOK should be locked for writing round call.

-3.3.4.5.3.4 Delete All Fecords in a File

elrec TExa duno, filrop,cade)
-t

tea * Beginning Ree Addr of file to be gutted.
dvro logical disk of file
filpop B.R.A. of parent directory of file
code Btardard error code, {Output)

td

se
an

y

St ition: RATLOK must not be locked on call.

m-12

S
E
R
E
N
E

en
im
nm
ee
mn
e

,3.3-4.553.5 Search Directory for Named File

fd (name,length,dirpos,dirent code)

name name of file to be looked up. om

length bits 5-10: directory select -
gx (8 = user cufd, :77 = susr curd, =
aa other = that logical disk mfd) 3

dirzo: points to start of directory entry, or
Buitable hole if file not found (Ovtput)

dirent(2$) dirent(1) = 1 if old part'n, 8 if new
: dGirent (2:29) = copy of directory entry if

file found, else dirent(2) = size of hole in
words for new prt'n only (Output)

code Standard error code (Output)

restrictions: UFDLOK must be set for reading (at least). TRNLOK must not be locked at
call. NIT D will be used to open source directory. It will be left open and
positioned to DIM slot for a file found.

1.3.3.4.5.3.6 Allocate a Disk Record

newrec = getrec (r2,dvno,code)

ra :record address of current place in file. New rec
will be allocated “near” this one if possible.

dvno legical disk on which to allocate.

—~ecde Standard error code. (Output)
newrec record addr of new record, if allocated.

restrictions: RATLOK must not be locked at call. Must not be called for remote disk.

1.3.3.4.5.3.7 Compare Two File System Entrynames

equal = namecS (namel,lengthl,name2,length2)

namel is first name.
length] is length (namel) in characters.

name2 is secord name
length2 is length (name2) in characters.

equal is true if names are equal. (Output)

Note: lower case is converted to upper case.
aS

é

1.3.3.455.3.8 add Record to Mew Partition DAM File

Bl
ey

sr
ee

newdam (drwp,dvro,datsiz,nrall,cra,bra,dcra,ccde)

trietion: must not go remote.

ae (|

- .3.3,4.5:3.9 Create ® New Entry in Current Directory

wora = newfil (namé-length,pos,dirent, type ,code)
z

name name Of entry to be created - :

length length of name in chars.
ae Ze

Poss position in directory of hole in which to write ce

~~ new entry (int*4)
ne

dire: jrector irent (29) ire oe ¥ Foy anes format as fsufae (Output)

code Stadard error code. (Output)

newbra B.R:A- Of new file. (Output)

restrictions: cannot 9° remote. UFDLOK must be held for write. RATLOK cannot be

locked at call.

1.3.3.4,5.3.18 Allocate Space on Disk for New File

newsta = newfll (oldra< type dvno, filpop,cede)

oldpar © trve if 27 Old partition.

type of file being created.

avno logical disk on which to create
filpop BRA of parent Girectory.

(5 code stardare error code. (Output)
o newbra BRA of #eW file's space. (Output)

index it unit table of unit NOT to be checked in
this scat- Ignored if -l.

fildev logical disk of file in qvestin.

fora BRA of jile in question
desired S41 lock settime to check

unitx

twlock :
{8 = exclusive, 1 =n readers x or 1 writer,

3 3 =n resders of 2 writer, 5 = open]

fop desired open mcde (1 =R, 2° Ww, 3 = RK,

4 = Delete, Clame, etc.)
OK true if 20 conflict. (Output)

‘restrictions: must & called with UTLOX held at least for reading.

1.3.3.4.5.3.11 Perfor? SRCHS$ Functions on Segment Dir

bra = schseg (key seent unit, type code)

All argisients from ex fesponding args to SRCHSS.

UFDLCK and UTLOX and TRNLOK mst not be set at call.
s restrictions: may mt gO remote.

ba
n

Ae =20

~ 3.3.4.5,3.12 Check If File System Fntryname Legal

. -xtoS (name, length,trulen,Ck)

name is the name to check
length length (name) in chars.
trulen length (name) less trailing blanks. (Output) -
Ck, = true if name is OK Z

=

A
t
e

Ag
e

‘

1.3.3.4.5.3.13 Truncate File to Current Position

trunc$ (unit,code)

wit is file unit to be trumcated.
scode) §«is standard error code. (Output)

restrictions: may not go remote. UTLOK must not be locked at call. TRNLOK must not be
locked at call.

4

1.3.3.4.5.3.14 Add or Shut Down Disk

trwrat (key,1dev0)

key 1 = add, 2 = shud don
ldev logical disk to do.

restrictions: must be called with FSLOK held for writing.

1.3.3.4.5.3.15 Associative Buffer Manager

locate (key,ra,lidev)

key bit 1: bypass read if set
bit 2: demote previous buffer if set
bit 16: mark new buffer modified if set

za record addr to oprate on
ldey legical disk of <ra>

restrictions: must not be called with DSKLOK set.

 &
=e

e

A
M
M

re
ad
y

-2| |

PRIMOS IV» Revision 16 PE-T<469 Page Ly.

2 SUPPORT FOR NEW DEVICES

gel _1e0G/e250 Tose Srive Sucsert

At Revision 165 PRIMCS IV has been nocitied to ineluce software

support for 160u/625C SPI tape drives. For complete cetzils» see

fection 3 anc Section 4-

FRIMOS IVs Revision 1é PE-T=465
Page 24

& new (and direct entrance call 4s proviceaq in

nevision 16 vos IV that will allow 2 user program running in

rinz 3 to ceternine 44 a QUIT has taken places Tht:s| eek 1s

sesianed to be used only when QUITs have been inhioitec ty @ call

to ZREAKS «

CALL CUITS LOGICAL)

IF (LOGICAL) GO TO hancle_auit

This call will return «TRUE only it QUITs are inhititec anc the

user has attemoted to GUIT. It a GUIT was pencing (4eees eTQUEo

is returnecds tne pencing GUIT is clearec anc will not tcke plece

when BREAKS ts callec to reenaoled GUITs. Calls to GUITs will

mever reset user terminal input anc output butferse & seperate

cirect entrance call is providec for that purposes facility itm PRIHNOS IV. anc is

futuree QUITS is not

A new (enc direct entrance call 4s provicec in

Revision 16 to allow a orocess to clear its own

terminel input end outout pufferss. this fscility ws useful in

certain cas#sS (€eGe when a process elects to hancle its cwn

BUITs)e
F

Exeactes CALL TTYSES. CKEYs COOE)

KEY is an INTEGER*®2 variable which specifies which puffers are to

be clearede A value of sin0000 ssecifies the output butters

240000, the input buffers and 2140000, both butferse CCOCE ts an

INTEGER*2 variable that will contain an error code upon return

trom TTY3RSe

TTYSKS can te called when a user ring procram decides that input

to the orogran that has alreacy been typec is to be aiscarcece

This might be usefuls for examoles in a case where a text ecitor

detects an error in 4ts input and wisnes to danore further input

that the user has alreacy typece

PRIMOS IN ana is

TTYSRS is not facility in

PRIMOS IVy Revision 16 PE-T-469 Face 25

3.5 CPU anc LOGIN Time Limits = LIMITS

A new cirect entrance call 4s proviced in Revision 16 PRI¥FOS IV

to allow a process to Lower its CPU and/or LOGIN time Licits.

kame? LIMITS

Purpose:

The subroutine LIMTS 4s called to alter or read the arount of cpu

or login time a process Cuser) is Limitec to. Each process

(user) possesses a cou anc Login tine Limit which are initially

detined to be infinite.

The zaximum tinite value either of these Lisits pay be set to is

1006000 (ceciaal). The Login time liait 4s measureco in ninutese

and the cou time Limit 4s measured in seconds- It etiter. of

these Limits is ever exceeceds the process (user) is Logged oute

Usage:

CALL LIMITS (key + subkeyy LIMIT: RESERV, CODE)

key
is the cperation to be perforsec on the Linite valic¢

operations are KSREAD (ls read current Liait value)+ anc

KSWRIT (25 set Limit valued.

sudkey
4s the target Limit that "key" operates one Valid tarset

Limits are KSCPLM (2400+ CPU time Limit) ana KSLGLH

(216609 LOGIN time Limite

LIMIT *

4s an INTEGER*4 variable which receives the value of the

target Lisit when "key” 4s KSREAOs and which contains the

value for the target Limit when the ®key™ is KSwRIT~

RESERY
4s an INTEGER*2 variable which is reserved for future

uses The value of RESERV aust be De

cooe
4s an INTEGER*2 vardable that Cupon return trom a call to

LIMITS) 4s set to 0 if no error has occurrece it the

call to LIMITS was unsucessfuly COOE may be set to ESBKEY

or ESBPAR. ESBKXEY is returnec if the "key + gubkey* 1s

an invalid combination (see NOTES) « EsSPaR 4s returned

4¢ LIMIT 4s either negative or greater than the current

ttale. ae AFSERV 4e MONZeroe

PRI¥CS IVy Revision 16 PEST H86S Face 26

: The fcllowing cescribes the only valid "key*suckey” nations:

KSREAC + KSCELM returns tn LIFT the remaining cpu time until
forces Logout occurs in seconds. A value of zero
means that the Limit is infinite.

oe returns in LIMIT the remaining Login time until
forced logeut occurs in minutes. A value of zero
means that the Limit is infinite.

KSREAO + KSLGLI

XSSRIT + KSCPLM sets the cpu tine until forced locout to LIVIT
seconcs from now. The cpu time until tercec
Logout may not be raiseae

XSLAIT + KSLGL™ sets the Login time until forcec lLocout to LIMIT
minutes from now. The login tine Linit until
torcec Legout may net be raisec.e

CALL LIMITS (KSwRIT+2400, 00000105 RESERV, CODE)

In this examples the CPU time Limit is set to 16 seconds.

in PRIMOS IV and jis
uturee LIMITS 4s not

he LIMITS call is a temoorary facility

 wi
n

a4

26 TSMT -- KN

The following instructions have been added to Ts¥T. (TS¥T 4g
cescrited in the Reference Guides Software Litrary.) These
instructions are enly valid with version two anc three nmacnetic tape controllerse Use of these instructions with olcer versions of the controller will cause an error fessage to pe printec and
the commana to te aborted.

Octal hex Action

10C02G 8010 Erase a 3 inch gap on the tapee
16004C 4020 Unload. Completely rewind the tape

and place the drive oftline.
100100 8040 Set density to 1600 BPI (PE)
10012¢ 8050 Set density to 6250 BPI (6C2)
946500 0940 Reac record backwancs.

New anc Mocitied PKLIMOS iv racieities

PRIMOS IV Kevision 15 PE-T-469 Pace 27,

3Be6e1 Erase 3 Inch Gap

This operation causes a inch gap te be erased tron the tape.

This is useful in error recovery schemes.

3-622 Unloac

Tnis operation causes the tape be completely rewound, anc the

drive to be placed offline. This js useful in preventing

accicental use of the tape arive betore the tase has been

removed from the drives

30603 Censity Selection

It is assumed that tapes are written with one censitye This

assumption its enforced by only permitting chances in density

at the load pointe. For this reasone it is mot mecessarys or

possicle, to set the censity when reacing a tape. when the

tirst recora is reads the density of the tase 4s cGeterninece

The rest of the tape will be read (or written) usinc that

densitye

For examples if the user set the density to 62509 SPI with the

LSSIGN command and read the tirst record of a 1660 EPI tapes

then the rest of the tape would be read using 1600 SPI. Ly

atter reading that recorcs a record was written onto the tape

(without rewinding to the Loadc point); then that record would

also be written at 1£00 5PI- It the tape was rewounc anc then

a record was writtens the density would be switchec to 6250

2Ple Although the censity setting of $250 BPI is rememberecs

4t will not go into affect until a record is written at the

Load pointe ‘

It the user assigns a tape without specifying a censityys the

unit will Left at the density from the previous usee The

default density (at systes {nitialization tise) is 1600 BFle

3e60% Read Record Backwarcs

This request causes the taps to read a recorc while ewoving the

tape backwardse It ds soaetines possible to read a record

backwards when a bad tace prevents reading the recorc in the

torward airectione After the record is reads 4t will Se

necessary to reorganize the datas The words of the recore

wilk be in reverse ordere Each word will have the bytes

reversed. The bits within each byte will be in correct ordere

PRIFOS IVe Revision 16 PE-T=-465 Face 3c

mel2_USS_=_Uninzterruoticle Sower Supply Supzort

PRIMCS IV now supports an Uninterructible Power Supply. Ita
power failure should occurs ang a site hes UPS supports cower to
the backplane is maintaineo vie batteriese When normal power is
restcrec, an automatic warn-start will be performed after a
slight celsy (to allow the aisk(s) to buila up to the Proper
numoer of RF&s)e The celay is set by the CONFIG directive UPS.
A power-fail entry is written to the LOGREC file by LOGPRT when
Dower is restorece See the *UPS* COMFI5 cirective in Section 7
for more cetails.

a
i
e

PRIMOS IVs Revision 15 PE-T=$455 Face 338

ae3_2SSIGN Command Acditication

The 2SSIGN command has teen extendec to allow the setting of the

censity for 1600/6250 tape orives which use the version three

gagnetic tape controller (MPC-3)6¢

ASSIGN MTn CWAITI c-6280BP1) C-1600e8PII

-625GEPI Set the density to 6250 BPIe The default is 1600 6PI

for a software settable drive. This control arcument

4s only valic for the 1600/6250 SPI tepe arivee

“1500EPI - Set the censity to 1600 EPI.» This control argument

is only valio for a software settaole crive-

4 User may now lower the priority of his own process Dy

specifying the LOWEP control argument.

. CHAP LOWER n

This command will lower the priority of the user*s process sy “ne

Levels. The value of "n" must be 0 <e'A ¢S Te ¥t > n= 05 the

priority of the process is unchangec: otherwise, the process?

priority is lowerec by tnt Levelse If the resultant level is

less than the loweste then the priority of the process ia s4t_ to

the loweste The LOwER control argument can only be usec fron a

user process not from the system console (process le

4.5 LOGOUT Command Modification

The LOGOUT command has been modifiec so that when *LOGOUT Me As

specified from the system console (user 1) tne remote file access

manager (FAM) is not Logged out if it is a running processe

4.6 LOOK Command Modification

The LOOK commana has been poditied so that a *REALLY?* promet is

issued for any LOCK commanc whose request is considerec tobe

risky or aangerous to system integritye (It the LOOK command

4nvolves an attempt to do a FROM from a segment that aoes not

existe an attespt to do a TQ to a segment that does exist, or

attempts to map either shared or stack segnents with aeite

permissions the command is consicered risky or dangerous to

system intesrity.-) A sinple "YES? wilt allow the operation to

proceedce

FRECHE SORA SS

PRIMOS IVs Revision 16 PE<T-4609
Pace a1

PERMIT and DENY affect only disk partitions alreacy started up at

the tine of the REMOTE commande Disks shut cown and started up

again will get the systec cefault pernissions until an explicit

REMOTE PERMIT oF REMOTE CEMY commanc changes theme The systen

default permissions are gGetermined from the file NETCON which is

createa by NETCFGe The REMOTE PERMIT comsand wilt not

autoeatically adc a disk to any systea- The REMOTE DENY cosmand

will mot revoke a systen'’s existing access to 4 diske

&o1G STARTUP Command Moacitication

The STARTUP command has peen extencec to perszit 2 disk te .be

software write-protecteds

<roetsk Vs write-protect|ec by specifying PROTECT in the STARTUP

command as follows:
F

STARTUP PROTECT avnol Cdvno2 eee avnos J

PROTECT may only be specitied tor cisks which are started

Locallys and aces mot sovern the rights of remotely added ciskse

Pemotely accec cisks assume the write-protection
status of the

Local systeze

The status of the write-oprotect feature may be changea for 4

given partition. by respecifyings the STARTUP oF ADOISK commanc

with or without PROTECTe

F

If an suodseocuent STARTUP command ds issued for the same cisk, an¢

PROTECT is not specified, the write-protect feature fs disatlec.

(An STARTUP PROTECT to an already protected disk aoes not change

the protecticne) It an STARTUP PROTECT command is 4ssuec for 4

disk which does not have protection enabled» it 4s {aportant that

the disk be shutdown firsts to insure that the disk is not

{naacvertently written upone

Sell} UnassTG" Comeand Modification

to allow an unload

The UNASSIGN command has deen extended

operation for tape drives. This control argument is onty valid

for a version two contretier CtuPe-2) anc a version three

controller (MPCc-5) which controls 1600/6250 BPI tape drives

YNASSIGN MTn C-UNLOAD I

“UNLOAD Rewind the tape complatelys anc set the drive otfttine

before unassigning the drive.

a
w
a
 die
a
L
s

PRIMCS IVs kevision 16 PE-T-469
Fage 42

TESNZL_ CowMing ¥920]F restiows ax
Zel_vIrens

MTICENS allows the user to set the censity on a macnetic tape crive tron the commanc Level eocer Pees Ire The ASSTIGH! cormana
performs this function under PRIsMOS Iv.

MTDENS “Tn ([-6250aPr] C-1eccspyj

_?Tn Megnetic tape c¢rive Teentitier (mTc - BTT7)..

“€2505FI Set the Censity te $256 PPT, The cefault is i600 EET for A software setteaole crive. This control arcument is only valic for the 160076250 BPI tece crive.

1 = uw oO oy

a u m4

Set the Gensity to 1£0¢ grr. This cortrot arsument fs only véelic for 5 sottware settatle Grive.

PRIMCS IVs Revision 16 PE-T-465 Pace 7R

100 IF (STATV(1)2EG.0)} GOTO 120 se SEE IF 10 IS ALREADY DOKE CALL TsmT CUNTT sLOC(O) ees 10000OexSTATV): se @AIT
SOTO 140

129 es 2

0:2 Error Fecovery for Tape writes

There are many possiole error recovery schemese The tno that are cescribec here are basec on different recorc tormatse The first algorithm can oe used when records contain only catae The other scheme requires that the records Cantain extra informetion for error recoverye

Mote: The following schenes are Broviced as alternatives to usinc the IOCS' routines that FTN uses. The error recevery proviaee in the Iccs routines corresponc to that cescribeaq tor Sizple write Error Recovery.

The aim of the simple error recovery program is to get. Sy 24 possible bac spot on the tape by erasing part of the tape where the error occurred ana rewriting the recorc after that gape

The program does not thy ts rewrite the record on the same spot on the tape even though repeatec tries on the same spot may improve the tape enouch to permit the write to succeed. The tape is considered marginal at that spot and may not be readaole at a Later date.

“Only the version three controller (MPC=-3)_ which supperts the 6250 bpi tape drivese has an erase command. Cn cther controllerss the tape can be erased by writing a file mark anc then backspacing over the file-garks This with eause three inches of tape to be erased.

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297

