Prime Computer, Inc.

CPL
Rev. 19.3

FDR7811-193

CPL
PROGRAMMER'’S
COMPANION

REVISION 19.3
FDR7811-193

by
Alice Landy

This document reflects the software as of
Master Disk Revision 19.3.

Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

The Programmer’s Companion is a series of pocketsize,
quick reference guides to Prime software products.

Published by Prime Computer, Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701

Copyright © 1984 by Prime Computer, Inc.
Printed in USA. All rights reserved.

The Programmer’s Companion and PRIMOS are registered
trademarks of Prime Computer, Inc.

The information contained in this document is subject to
change without notice and should not be construed as a
commitment by Prime Computer. Prime Computer, Inc.,
assumes no responsibility for errors that may appear in this
document.

Credits
Editor Irene Rubin
Designer Susan Windheim
Typesetter Datatext
Printer Winthrop Printing Company, Inc.

TABLE OF CONTENTS

CPL Terminology

CPL Operators

CPL Format Rules

CPL Variables

CPL Directives
Command Functions
CPL-related Commands
CPL-related Subroutines

Printing history:
March 1984, First Printing

13
17
33
47
51

Command Format Conventions

UPPERCASE: Commands or keywords that
must be entered literally are shown in
uppercase letters.

lowercase: Lowercase letters identify variable
arguments. When entering the command, the
user substitutes an appropriate numerical or
text value.

Abbreviations : Abbreviations for commands
are shown in rust-colored letters, as in:

LOGOUT.

Braces { }: Braces indicate a choice of
arguments. At least one choice must be selected.

Square brackets []: Square brackets printed
in brown indicate that the word or argument
enclosed is optional. Square brackets printed in
rust indicate a function call and must be
entered literally.

Hyphen -: A hyphen identifies a command
line option, as in: SPOOL -LIST. Hyphens
must be entered literally.

Ellipsis ...: An ellipsis means that the
preceding option or argument can be repeated.

Angle brackets < >: Angle brackets are
used literally to separate the elements of a
pathname, as in:

<FOREST>BEECH:BRAMCHSIV> THIG43> LEAF 4

CPL TERMINOLOGY

CPL

CPL is Prime’s Command Procedure Language.
It provides the ability to direct and control the
flow of command execution under PRIMOS,
thus allowing you to create programs that con-
ditionally execute sequences of commands. An
interpretive language, CPL uses high-level lan-
guage features, such as branching, looping, and
argument passing, to facilitate the creation of
structured command scripts.

Statements
CPL programs are made up of statements.
A statement may be either:

e A PRIMOS command

e A sequence of PRIMOS commands, separated
by semicolons

e A CPL directive plus its arguments

The maximum length of a CPL statement is
1024 characters.

CPL TERMINOLOGY 1

Commands

CPL programs can contain any PRIMOS com-
mands with the following three exceptions:

e COMINPUT (in any form)
e CLOSE ALL
e DELSEG ALL

The use of any of these commands will abort
the CPL program.

Directives

A CPL directive is an instruction to the CPL
interpreter. Each directive begins with an am-
persand (&). You can use directives to establish
values for arguments and variables, to cause
conditional execution of commands, to perform
debugging, and so on.

Variables

A variable in CPL, as in other high-level pro-
gramming languages, has a name and a value.
The name of the variable remains constant, but
its value can change.

When the name of a variable is given in a CPL
program, it is given without any extra char-
acters before or after it. When the value of a
variable is to be referenced, the name of the

variable is given with percent signs before and
after it, as in %NAME%.

CPL TERMINOLOGY 2

Variable References

When interpreting a statement that contains
variable references, the CPL interpreter sub-
stitutes a character string representing the cur-
rent value of the variable for the character
string representing the reference before the
statement is executed.

Values may be of three kinds: integer, logical,
or character string. Values may be supplied as
constants or as expressions.

Expressions

Expressions are composed of operands and op-
erators.

Operands

Operands can be literal character strings, vari-
able references, or function calls.

Operators

Operators can be arithmetic, logical, or rela-
tional operators. They are listed in Table 1.
Note that there is no concatenation operator in
CPL. To concatenate two strings in CPL, sim-
ply juxtapose them with no intervening spaces.
For example, to concatenate the values of two
variables, you would give the string

%FIRST_HALF%%SECOND_HALF%.

CPL TERMINOLOGY 3

Arguments

An argument is a variable whose value is passed
to the CPL program by the program’s caller.
Arguments in CPL are defined by the & ARGS

directive.

Callers

The caller of a CPL program is the process that
invokes the program. The caller can be:

e A user, running the program interactively
e A Batch job or phantom
e Another CPL program

Functions

CPL also uses built-in functions. Function calls
are enclosed in brackets, as in [DATE].

When the CPL interpreter encounters a func-
tion call in a CPL statement, it evaluates the
call. Then, before the statement is executed, it
replaces the character string representing the
function call with a character string containing
the result of the evaluation. Function calls are
evaluated after variables have been evaluated;
therefore, variable references may be used inside
function calls.

Function calls may also be nested. In this case,
evaluation is performed from the inside out;
that is, the innermost function call is evaluated
first, and so on until the outermost function
call is reached.

CPL TERMINOLOGY ¥

Quoted Strings

Placing quotation marks around either variable
references or function calls prevents their evalu-
ation.

Return

When a CPL program completes execution, it
returns to its caller.

CPL TERMINOLOGY 5

CPL OPERATORS

Operator
i

%

/

&
I

TABLE 1
CPL OPERATORS

ARITHMETIC OPERATORS

Meaning

Addition, unary plus
Subtraction, unary minus
Multiplication

Integer division (Result is truncated
to integer, fractional remainder is
dropped.)

LOGICAL OPERATORS

Operator Meaning

And
Or
Not

RELATIONAL OPERATORS

Operator ~ Meaning

= Equal
< Less than
> Greater than
<= Less than or equal
> = Greater than or equal
o= Not equal
CPL OPERATORS

CPL FORMAT RULES

» Rule I: Each statement in a CPL file must
start on a separate line.

A statement is either a PRIMOS command, a
sequence of PRIMOS commands separated by
semicolons, or a CPL directive plus its argu-
ments. An argument may be either a PRIMOS
command or another CPL directive with its
argument(s).

The maximum length of a physical line is 160
characters. (This is also the maximum length

allowed for a PRIMOS command.)

Statements may be split over more than one
line by the use of the tilde (~). See Rule 3 for
details.

The maximum length of a CPL statement is
1024 characters. This is true before, during, and
after variable evaluation and function expan-
sion. Thus, if you have a statement of 600
characters, and variable evaluation adds 600
characters more, your statement will become
1200 characters long. CPL will produce an error
message, and the statement will not execute.

CPL FORMAT RULES 7

B Rule 2: A statement may start anywhere
on the line.

We suggest that you indent CPL programs for
ease of reading, as you would indent any struc-
tured program. There are no rules governing
indentation.

An exception to this rule is a line of text
within an &DATA statement. Any blanks in
these lines are passed as part of the input line
to the program invoked by &DATA.

» Rule 33 To continue a statement over two
or more lines, place a tilde (~) at the end of
each incomplete line.

If there is a blank between the tilde and the
word that precedes it, or if the beginning of the
next line is indented by one or more spaces,
the contents of the two lines are separated by
one or more spaces when the statement is eval-
uated.

For example: ERERE -
HERE

is read as: EREAK HERE

If no space precedes the tilde and the next line
starts in column 1, the two lines are concat-
enated with no space between them.

For example: HO EREAK -~
HERE

is read as: HO BEREARKHERE

CPL FORMAT RULES 8

» Rule 4 Comments may be included in
CPL programs by preceding each comment
with a slash-asterisk (/*).

Comments end at the end of the physical line
on which they appear. They are never contin-
ued onto the next line.

Comments are not evaluated or passed on to
the command processor. If a tilde appears at the
end of a line containing a comment, then any
non-comment material from that line is joined
with any non-comment material from the next
line when forming the CPL statement.

For example:
&IF ZVARY = 1 <¥Comment ~
LTHEH ~f¥more comment ~
SEG MYFILE ., SEG ~¥more comment
is read as:
LIF %WVARY = 1 &THEH SEG MYFILE . SEG

» Rule 5: Every CPL file ends with an
&RETURN directive. If the user omits the
&RETURN directive, it is supplied automati-
cally by the CPL interpreter.

» Rule 6: Filenames for CPL programs follow
Prime’s standard rules for filenames. They must

end with the suffix, “.CPL".

Filenames must not exceed 32 characters, in-
cluding the .CPL suffix. Allowable characters
are:

A-Z,0-9, _ #$-.*&

CPL FORMAT RULES 9

The first character may not be numeric, nor
may it be a hyphen. The name “*” is not a
legal name.

» Rule 7: Variable names must also follow
standard rules.

Variable names may not exceed 32 characters in

length. They may contain only the characters
A-Z, 0-9, underscore (__), and dot (.).

Names of local variables must begin with a
letter. Names of global variables must begin
with a dot.

The CPL interpreter translates lowercase letters
to uppercase.

P Rule & Any arithmetic, relational, or Bool-
ean operators in a CPL expression must be
preceded and followed by one or more spaces.
Parentheses must also be preceded and followed
by one or more spaces.

For example: ¢ 2 +5 » % 4
LIF XKTHISY » XTHAT®

Table 1 lists the operators recognized by CPL.

» Rule 90 Any string containing blanks or
special characters must be placed inside single
quotes when the string is used as the value of a
variable.

CPL FORMAT RULES 10

Special characters are:

Single quotes ('), which must be doubled inside
the string.

Commas (,)

Square brackets ([])

Semicolons (;)

Percent signs (%)

Hyphens (=) at the beginning of strings, when
the string is not a CPL option argument.

CPL expressions, if you do not want them
evaluated.

Whenever you use a quoted string in CPL, the
quotes are considered part of the string.

CPL provides built-in QUOTE and UN-
QUOTE functions to place quotes around
strings and to remove quotes from strings.

CPL FORMAT RULES 11

CPL VARIABLES

Local and Global Variables

Local variables are defined (or created) inside a
CPL program. They are known only to the
program that creates them, and they disappear
when that program terminates.

Global variables may be defined inside CPL
programs, inside high-level language programs,
or at command level. They are stored in a
global variable file in a user directory. When
the file is active, the variables it contains can be
referenced or modified in any of the following
ways:

e Interactively, at command level
e By any of your CPL programs
e By high-level language programs

Global variables survive program termination

and logouts. Once defined, they last until you
delete them.

CPL VARIABLES 13

Defining Variables

Local variables may be defined in three ways:
e By the & ARGS directive
e By the &SET_VAR directive
e By the SET_VAR command

Global variables may not be defined by the
&ARGS directive. They may be defined in
three ways:
e Within a CPL program, by the &SET_VAR
directive or the SET_VAR command
e At command level, by the SET_VAR command
e From a high-level program, by the GV$SET
routine

Variable Names

Variable names must be 32 characters or less in
length. They may contain only the characters
A-Z (uppercase or lowercase), 0-9, underscore

(L), and dot (.).

Names of local variables must begin with a
letter. Names of global variables must begin
with a dot.

Variable Values

Variables may have one of three types of val-
ues:

e Character string

e Logical value

e Integer value

CPL VARIABLES 14

The value of a variable may be given as one of
the following:

e A character string (up to 1024 characters,
quoted if necessary)

e An integer (-2°' + 1t0 2°' = 1)

e A logical value (TRUE, true, T, or t for “true”;
FALSE, false, F, or f for “false”)

® An expression that evaluates to any of the
above values

Evaluation of Variables

A variable is referenced by enclosing its name
in percent signs, as in %VARIABLE_NAME%.
When a statement contains variable references,
all references are replaced by their values before
the statement executes.

Note

An exception to this rule occurs when you use
the &EXPAND ON directive. This directive
forces subsequent statements to be handed to the
abbreviation preprocessor before either variable
or function evaluation is performed. In this case,
function calls will be handled at command level;
variables will not be evaluated unless you force
their evaluation with the function call

[ABBREV —EXPAND %var% .

Variable evaluation is performed only once per
statement. If the evaluation of %VAR1% pro-
duces the string %VAR2%, then %VAR2% is
the value of that variable; the variable is not
re-evaluated.

Placing a wvariable reference inside quotes pre-
vents its evaluation.

CPL VARIABLES 15

If you want to place the result of a wvariable
reference inside quotes, use the QUOTE func-
tion. For example:

LSET_VAR AMSKHER 1= L[RESFOMNSE ~
CRUDTE “PROMFT:I]

Comparison of Variables

The operators that can be used to compare
variables are:

> >= = <= < A=

Comparisons are done by the following rules:

e If either operand is a character string, a string
comparison is done.

e If both operands are integers, an arithmetic
comparison is done.

e If both operands are Boolean (or logical) values,
an arithmetic comparison is done. (TRUE = 1
and FALSE = 0.)

CPL VARIABLES 16

CPL DIRECTIVES

The following directives can be used within
CPL programs only.

» &ARGS [object-args] [option-args]
[rest-arg]

Format for object-args is:
name [:] type][=default]][;...]
Format for option-args is:

name: —control-list [name][:[type]

[=default]][;...].

Format for rest-arg is:
name:REST [=default]

Defines names (plus types, default values, and
keywords, if desired) for arguments passed to a
CPL program from the command line that ex-
ecutes the program. Except for REST argu-
ments, type can be any type shown in Table 2.
If type is not specified, the argument defaults to
type char. If default is not specified, system
defaults are assigned as shown in Table 2.

&ARGS 17

Object Arguments: Object arguments are posi-
tional. The first item on the command line,
after the name of the CPL program, is taken as
the value of the first argument; the second item
is taken as the value of the second argument,
and so on.

If more object arguments exist than are defined
on the command line, default values are as-
signed to the remaining arguments. If more
items exist on the command line than there are
arguments defined, then one of two things hap-
pens:

e If an argument of type REST or UNCL has
been defined, then all further items on the
command line are taken as the value of that
argument. (This allows you to pass PRIMOS
options as arguments to a CPL program with-
out having to quote them.)

e Otherwise, the last argument takes only one
item as its value. All further items on the com-
mand line are ignored.

Option Arguments: Option arguments are not
positional. If one of the options specified by
—control-list is present anywhere on the com-
mand line, the first option in the control-list is
passed to the CPL program. (Each option-name
in the control-list must begin with a hyphen
and contain at least one alphabetic character. If
more than one option-name is specified, the
option-names must be separated by commas.)

&ARGS 18

As the format statement shows, the definition
of an option argument can include one or more
arguments that will follow the option argument
on the command line. These arguments are
positional, in that they must follow immediately
after the option-name on the command line,
and will be interpreted in the order in which
they appear in the & ARGS directive.

If an undefined option argument appears on
the command line, it is assigned all the ar-
guments between itself and the next option
argument, or (if there is no other option ar-
gument) between itself and the end of the line.

REST Arguments: Only one argument of type
REST can be specified. It must be the last
argument specified in the directive. Its evalu-
ation will halt parsing of the command line;
everything remaining on the line will be as-
signed as the value of the REST argument.

Examples:
LARGS TRUTH: BEAUTY ; CHARM

LARGS TRUTH:DEC;
LARGS CHARM: CHAR ; ~
TR_FLAG:~-TR,-T TRUTH:DEC~

EE_FLAG:-BE BEAUTY : ~
TREE=A_UFD:*FILE

&ARGS 19

TABLE 2
CPL ARGUMENT TYPES AND DEFAULTS
Argument
Type Explanation
char Any character string up to
1024 characters long, mapped
to uppercase. (Default)
charl Any character string up to
1024 characters long, no case
shifting.
tree A filename, directory name, or
pathname, up to 128
characters long. The last
element of the pathname (that
is, the final file or directory
name) can contain wildcard
characters.
entry A filename up to 32
characters long; can contain
wildcard characters.
dec A decimal integer.!
oct An octal integer.!
hex A hexadecimal integer.!
ptr Pointer; a virtual address in
the format “octal/octal”
(segno/offset).?
date Calendar date in the formats
described in the DATE
command.
rest The remainder of the
command line.
uncl All tokens not accounted for
in the & ARGS picture.
"Numeric arguments must be within the range —231 + 1
.ster spec;ified default values are not supported for this
data type.

Default
Value

i3]

(the null
string)

”

0
0

7777/0
(the null
pointer)

i3]

&ARGS

20

p &CALL routine-name

Transfers control to the internal routine des-
ignated by routine-name.

Example:
LCALL THIS_ROUTIME

&ROUTINE THIS_ROUTINE

p &CHECK expression &S ROUTINE

routine-name

Defines an error condition (expression) and a
routine (routine-name) to handle the condi-
tion. When this directive is present, the CPL
interpreter evaluates expression after executing
each PRIMOS command. If expression is true,
control passes to routine-name .

Example:
LCHECE XTHIS_VARY > XTHAT_MARY ~
LROUTINE DISASTER

P &DATA statement
statement-1

statement-n

[&TTY]
[&TTY_CONTINUE]
&END

Statements 1 through n are treated as data or
subcommands for user programs or PRIMOS
utilities. The statement immediately following

&CALL / &DATA 21

&DATA must invoke the program or utility.
All other statements between &DATA and
&END are evaluated, and the results written
into a temporary file. The program (or utility)
is then invoked and information from the file
passed to it, a line at a time, when called for.

Either the &TTY_CONTINUE or the &TTY
directive can be used as the last statement in
the &DATA group, immediately preceding the
&END statement. These directives can be used
conditionally (as in &IF statements) or uncon-
ditionally.

The two directives differ in where they send
control when they execute. The
&TTY_CONTINUE directive takes input from
the command input stream, whether that be an
interactive user, a command input file, or an
&DATA group in another CPL program. The
&TTY directive always sends control to the
terminal. Thus, it cannot be used in programs
that may run as Batch jobs or phantoms.

In both cases, control returns to the CPL pro-
gram when the caller or user exits from the
program or utility called by the &DATA
group.

Example:

&0OATH SEG
WL PROG ., SEG
&IF “DEBUGGER_USED ~
S&THEH L0~
¥:BIN:MEW_FPROG.BIH,.DEG
HELSE LO~
¥:BIHHEW_FROG.BIHN

HEHD

&DATA 22

» &DEBUG [options]

Enables debugging for the CPL procedure con-
taining the &DEBUG directive. If given with-
out options, &DEBUG is equivalent to
&DEBUG &NO_EXECUTE &ECHO ALL.
Options are:

Option Meaning
&OFF Turns off all debugging
options. Initially all op-
tions are off.

&EXECUTE Enables execution of
PRIMOS commands.
&NO_EXECUTE Suppresses execution of

PRIMOS commands, but
interprets CPL directives.

ALL If ALL is specified, echoes

&ECHO { COM PRIMOS commands and
DIR CPL directives. If COM is
specified, echoes only
PRIMOS commands. If
DIR is specified, echoes
CPL directives. (Default is
ALL.)

ALL } ALL cancels all echoing.

&NO_ECHO {COM} COM cancels echoing of
DIR J PRIMOS commands. DIR

cancels echoing of CPL

directives. (Default is
ALL.)

&DEBUG 23

&WATCH Adds the specified vari-
[varl ... var16] ables to the watchlist.
When the value of a
watched variable is
changed wusing the
&SET_VAR directive
(not the SET_VAR com-
mand), CPL reports this
fact and the new value of
the variable. At most, 16
variables can be on the
watchlist. If no variables
are specified, all variables
in the CPL programs are

watched.
&NO_WATCH Removes the specified vari-
[varl ... var16] ables from the watchlist. If

no variables are specified,
watching is turned off
completely.
Example:
#DEBUG %ECHD ALL &WATCH BERSERK_VAR

» &DO [iteration]

statement-1

statement-n

&END

Allows a group of statements to be used any-
where a single statement can be used. If iter-
ation is present, allows conditionally repeated
execution of the statements contained between
the &DO and the &END. iteration can take
any of the following forms:

1. null (no iteration)

2. [&WHILE while] [&&«UNTIL until]

&DEBUG / &DO 24

3. var 1= start [&TO to] [&BY by]
[& WHILE while] [& UNTIL until]

4. var &LIST list [& WHILE while]
[&UNTIL until]

5. var &ITEMS items [& WHILE while]
[&UNTIL until]

6. var := start &REPEAT repeat
[&WHILE while] [&UNTIL until]

Examples:

001 1= 1&T0 3
FTH ABCXI%.FTH

&EMD
%00 &WHILE C MULL %A% 3
%00 &UNTIL C HULL %A%]
D0 A :=5&T0 18
D0 A :=5 &TO 18 &BY 2

%00 A =95 &EY 2 &T0 1@

D0 A :=5 &T0 1@ &WHILE ~
CHULL %“A_STRINGX]

D0 A =5 &TO 18 &UNTIL ~
CHULL XA_STRIMGX J

%00 A &LIST XLIST_OF_MAMESXH
LSET_WAR UNIT :=8

%00 A &ITEMS CWILD A_UFD: @@, PLIG ~
-SIHGLE UMIT 3

%00 A 1= & YREPEAT %A% % XA_CONSTANTX
D0 A =6 &T0 -188 LBY -2

“D0OA := -1 &REPEAT %A% % -1 ~
&UMTIL CLEMGTH XA_STRINGX 1> 18

&DO 25

> &EXPAND {OFF

Turns statement expansion on or off. (The de-
fault is OFF).

When expansion is turned on, the CPL inter-
preter passes each command in the CPL pro-
gram to the PRIMOS abbreviation pre-processor
for abbreviation expansion. (Abbreviations
must have been enabled with the ABBREV
command for this to work.) The commands are
passed before variable evaluation, function eval-
uation, or execution occurs.

Directives are not passed to the pre-processor.
Therefore, user-defined abbreviations cannot be
used in CPL directives.

Example: &EXFAMD OM

p &GOTO label-name

Transfers control to the statement following the
&LABEL label-name directive. (See & LABEL,
below.)

Example: %GOTO A_LABEL

LLABEL A_LAEEL

&EXPAND / &GOTO 26

P &IF expression &THEN true-statement
[& ELSE false-statement]

Evaluates expression. If expression is true, true-
statement is executed. If expression is false,
then:

e If &ELSE is present, false-statement is execut-

ed.

e If &ELSE is not present, control passes to the
next statement in the CPL program.

Example:
BIF %1% >

o

LTHEH TYFE I = %1%
#ELSE TYPE %1% TOO SMALL

p &LABEL label-name
statement

Defines a label, label-name, to which a
&GOTO can go. label-name must be a char-
acter string that is a valid variable name. It may
not contain variable references or function calls.

When the &GOTO is reached, control passes
to the statement following the &LABEL direc-
tive.

The execution of the &LABEL directive is
never conditional. Therefore, the &LABEL di-
rective should never be used in an &IF,
&ELSE, or &SELECT statement.

Example: &%LABEL A_LAEEL
ATTACH BEECH

&IF / &LABEL 27

» &ON condition &SROUTINE

routine-label

Defines an internal routine to act as a con-
dition handler (or on-unit) for the defined con-
dition. (See the Subroutines Reference Guide
for a list of PRIMOS-defined conditions and an
explanation of PRIMOS’s Condition Mecha-
nism.)

Examples:
20 BUITS &ROUTINE @UIT_HAMOLER

%&0H BAD_IHNFUT &ROUTIHE ~
EAD_IMPUT_HAMDLER

» &RESULT expression

Used only in CPL programs invoked as func-
tion calls, either from other CPL programs or
from PRIMOS command level.

When the &RESULT directive is reached, ex-
pression is evaluated. This value is returned as

the result of the function call when the
&RETURN directive is reached.

Sample program (FACTORIAL.CPL):

LRESULT~
FFACTORIAL~

ALC %H% -1 33 % XN]
LRETURHN

&ON / &RESULT 28

» &RETURN [severity] [&&«MESSAGE text]

Halts execution of the procedure in which it
occurs. Returns control to the procedure’s call-
er.

If &MESSAGE is present, displays text on ter-
minal when control returns. If severity is
present, returns its value as a severity code to
the procedure’s caller. severity must evaluate to
an integer.

Examples: &RETURH
LRETURHN 1
4RETURH %SEVERITY$%
LRETURM &MESSAGE HELLO!

&RETURMN 1 &MESSAGE QOPS!

» &REVERT condition

Disables the latest condition handler defined
(by an &ON directive) for the named con-
dition. (All handlers defined within a program
are automatically reverted when the program
terminates.)

Example: &REVERT QUIIT$

p &ROUTINE routine-name

Names and defines the entry point for an inter-
nal routine.

Example: #ROUTIHE GUIT_HAHOLER

&RETURN / &ROUTINE 29

» &SELECT test-expression
&WHEN expr-1 [,... exprn]
statement
&WHEN expr-1 [,... ,exprn]
statement

°

[&OTHERWISE
statement |
&END

test-expression is evaluated and tested against
expr-1, expr-2, in turn. When a match for test-
expression is found, statement following the
matching expression is executed.

If no match is found, then:

e If an &OTHERWISE directive is present, the
statement following it is executed.

e If no &OTHERWISE directive is present, con-
trol passes to the statement following the
&END of the &SELECT group.

Example:
LESELECT XMHAT_TO_DOX
LWHEH REC
ATTACH BEECH
LWHEH &, XOME_VMARY + XTHO_MAR=
LEETURH
LOTHERMWISE
RESUME MOT_OHE_OF_THOZE CFL
HEND

&SELECT 30

» &SET_VAR var- |, var-2, ..., var-n]
:= value

Sets the value of the named variables to value.
The variables need not exist already.

= THIS_STRIHG

S_STRIMG

» &SEVERITY [level [action]]

Checks for severity codes other than 0 (where
codes > 0 indicate errors and codes < 0 in-
dicate warnings) after execution of each
PRIMOS command. If a code matching level is
found, takes the specified action.

level can be:

&ERROR Ignores warnings, takes action
on errors.

&WARNING Takes action on both warnings
and errors.

action can be:

&FAIL Halts execution, returns a
positive severity code to the
routine’s caller.

&IGNORE Continues execution.

&ROUTINE Passes control to the designated
routine-name routine.

If neither level nor action is given, all severity
codes are ignored. If no &SEVERITY directive
is given, warnings are ignored and errors halt
execution.

&SET_VAR / &SEVERITY 31

Examples:
LESEVERITY LMWARHIMG &IGHORE

LSEVERITY %ERROR &ROUTIHME FIX_IT
LSEVERITY “ERROR &FAIL

LSEVERITY

» &SIGNAL condition [« NO_RETURN]

Raises the condition condition and causes the
CPL mechanism to search for a handler for that
condition. If &NO_RETURN is specified, ex-
ecution of the error-causing procedure cannot
be continued.

Example: #SIGHAL BAD_BUG &HO_RETUR H

» &STOP [severity] [SS®MESSAGE text]

Halts execution of the procedure in which it
occurs. If this procedure is a routine, &STOP
also halts execution of the program containing
the routine, and any other active routines the
program has. Control returns to the caller of
the main program.

If severity is present, the specified severity code
is returned to program’s caller. The code in-
dicates the success or failure of the program.
severity must be an integer.

If &MESSAGE is present, text is printed at the
caller’s terminal.

Example: #=STOF 1 &MESSAGE OH, HO!

&SEVERITY / &STOP 32

COMMAND FUNCTIONS

The four types of command functions described
below are used primarily in CPL programs.
However, they can be used in PRIMOS com-
mand lines also.

Throughout the following descriptions, any
function marked with ** quotes its results when
appropriate.

Arithmetic Functions

» [CALC expression]

Evaluates arithmetic or logical expressions. Re-
turns the string that results from the evaluation.
Accepts logical operators: & (and), | (or), *
(not); arithmetic operators +, —, *, /, unary +,
unary —; and relational operators =, "=, >, <,
>=, >= All operators must be delimited by
blanks. Arithmetic values are integer only; their
range is from 2% + 1 to 2! - 1.

For example: [CALC 254 % 151

Returns: 4826
Similarly: CCALC S > 33
Returns: TRUE

CALC 33

» [HEX number]

Returns the decimal equivalent of a hex-
adecimal number.

For example: L[HEX A1
Returns: 1@

» [MOD stringl string2]

Divides stringl by string2 and returns the re-
mainder.

For example: [HOD Ze@ 233

Returns: 15
Similarly: CHMOD 18 1231
Returns: 1@

» [OCTAL number]

Returns the decimal equivalent of an octal
number.

For example: COCTAL 1@1
Returns: =

» [TO_HEX number]

Returns the hexadecimal equivalent of a deci-
mal number.

For example: [TO_HEX 151
Returns: F

» [TO_OCTAL number]

Returns the octal equivalent of a decimal num-
ber.

HEX 7/ TO_OCTAL 34

For example: [TO_OCTAL &3
Returns: 1@

String-Handling Functions

» [AFTER string find-string] EE

Returns the part of string that appears after the
first occurrence of find-string. Returns the null
string if find-string is not in string or is at the
end of string.

For example: [AFTER ABCODE D1
Returns: E

» [BEFORE string find-string] %

Returns the part of string that appears before
the first occurrence of find-string. Returns
string if find-string is not in string; returns the
null string if find-string is at the beginning of
string.

For example: [EEFORE RECDE C 1

Returns: AE

» [INDEX string find-string]

Returns an integer representing the starting po-
sition of a substring (find-string) within string.

For example: [IHDEX AECDE DEJ
Returns: 4

» [LENGTH string]

Returns the number of characters in string.

For example: [LEMGTH Thiz iz at
Returns: 14

=t]

m
1]

TO_OCTAL / LENGTH 35

» [NULL string]

Returns TRUE if string has no text characters,
and FALSE otherwise.

For example: CHULL CWILD @.CPLJI J
Might return: TRUE

» [QUOTE stringl [string2 ...stringn]]

Adds an outer pair of quotes and doubles the
quotes already inside the given strings. Prevents
misinterpretation of special symbols.

For example: [@UOTE xu'i 'z 1]

Returns: twytt itz
Similarly: CRAUDTE 'abc''de''fg ']
Returns: Vitghett b iggt i ggti

» [SEARCH stringl string2]

Returns the index of the first character in
stringl that appears in string2. Returns 0 if no
character from stringl appears in string2.

For example: [SEARCH abcSdef 3622 7
Returns: 4

» [SUBST stringl string2 string3] ok

Substitutes string3 for string2 wherever string2
occurs within stringl. Returns the altered
stringl.

For example: [SUBST abccabocak co 0]
Returns: ablabRab

NULL 7/ SUBST 36

P [SUBSTR string start-position
[num-chars]] S

Returns a substring of string that begins at
position start-position and extends for length
nume-chars. If num-chars is omitted, the sub-
string runs from start-position to the end of
string. Start-position and num-chars (if given)
must be positive integers.

For example: [SUBSTR AEBCODE 2 23
Returns: co

P [TRANSLATE stringl string2 string3]

Replaces characters in one string with characters
from another. TRANSLATE looks for string3
characters in stringl, replaces them with char-
acters from string2, then returns the altered
stringl. If string2 and string3 are omitted,
TRANSLATE converts all stringl characters to
uppercase, then returns stringl. If string3 alone
is omitted, the ASCII collating sequence is used
for string3.

For example: [TRAMSLATE abc 245 cba]
Returns: 543

-LEFT
» [TRIM string | -RIGHT | [char]] **
-BOTH

Removes a given character from the left, right,
or both sides of a given string. If you do not

specify a side, TRIM assumes -BOTH. If you
omit char, TRIM removes blanks.

For example: CTRIM EEEARECEEE -BEOTHE 1
Returns: AEBC

SUBSTR / TRIM 37

» [UNQUOTE string]

Removes one outer pair of quotes from around
string and changes all remaining pairs of quotes
to single quotes.

For example: CUMBUOTE "' tww ' gyt ' 1]
Returns: ettt gt

» [VERIFY stringl string2]

Returns an integer representing the position of
the first character in stringl that does not ap-
pear in string2. Returns O if all characters in
stringl appear in string2.

For example: [WERIFY

Returns: 5

File System Functions

» [ATTRIB pathname att [-BRIEF]]

Returns information about the file in path-
name. att must be specified and must be one of
the following keywords:

-TYPE Returns the file type of pathname
(ACAT, SAM, DAM, SEGSAM,
SEGDAM, UFD, or UNKNOWN)

~-DTM Returns the date and time when
the object was last modified, in the
form 83-05-31.13:24:29.Tue

-DTB Returns the date and time the
object was last backed up by the
BACKUP utility

-LENGTH Returns the file length (in
halfwords)

UNQUOTE / ATTRIB 38

The -BRIEF option suppresses most error mes-
sages.

For example: LCATTRIE THWIG -TYWFE]

o
Might return: SAM

Similarly: CATTRIE TWIG -LEHGTHI
Might return: =&

» [DIR pathname [-BRIEF]] *%

Returns the directory portion of pathname. Re-
turns “*” if pathname is a simple filename. The
—BRIEF option suppresses most error messages.

For example: [DIR BEECH»BRAMCH1>TWIGT
Returns: EEECH>BRAMCH1

» [ENTRYNAME pathname]

Returns the entryname portion of pathname —
that is, the portion following the final >. If the
> character does not occur in pathname, re-
turns the entire pathname.

For example:
CEMTRYHAME: BEECH>EBRAMCHL> TWIG]
Returns: THIG

ATTRIB / ENTRYNAME 39

» [EXISTS pathname [type] [-BRIEF]]

Returns TRUE if pathname exists and matches
type specified; otherwise, returns FALSE. type
can be:

-ANY
Any type is acceptable.

-ACCESS_CATEGORY
Must be an access category.

-FILE
Must be a file.

-DIRECTORY
Must be a directory.

-SEGMENT_DIRECTORY
Must be a segment directory.

If type is omitted, ~ANY is assumed. The
—BRIEF option suppresses most error messages.

For example: [L[E®ISTE THWIG]
Might return: TRLUE

» [GVPATH]

Returns the pathname of your active global
variable file. GVPATH returns —OFF if you
have no active or defined global variable file.
For example: L[GWFATH I

Might return: <FOREST:EBEECH» GUARS

» [OPEN_FILE pathname status-var
-MODE m]

Opens the file pathname for reading or writing
on some available file unit, then returns the
unit number. m can be:

EXISTS / OPEN_FILE 40

R Read only.
w Write only.
WR Read and write.

If -MODE m is omitted, the file is opened for
reading. The variable whose name is status-var
is set to O if the file is opened successfully, and
to a positive nonzero value otherwise. It must
be a global variable if the function is invoked
at command level; it can be global or local if
the function is invoked inside a CPL program.

» [PATHNAME path [-BRIEF]]

Returns the full pathname of path.
[PATHNAME *] gives the full pathname of
the current directory. If any of the intermediate
directories do not exist, an error message ap-
pears. The —BRIEF option suppresses most error
messages.

For example: [FATHHAME BERANCHL]
Might return: <FOREST>BEECH»BRANCHIL
While: CPATHHAME % 1

Would return: <FOREST>BEECH:EBRAMCHL: ¥

» [READ_FILE unit status-var
[-BRIEF]] -

Reads a line from the file opened on unit and
returns the quoted line as its value. status-var is
set to 0 if the operation is successful, to 1 if
end of file is reached, or to some other positive
nonzero value otherwise. The —-BRIEF option
suppresses most €rror messages.

OPEN_FILE / READ_FILE 41

p [WILD wild-name-1 [...wild-name—-n]
[options] [-SINGLE unit-var] [-BRIEF]]

Returns a list of all names within a directory
that match one or more wildcard names. With-
out the -SINGLE option, returns a blank-
separated list of file system objects that match
the wild-names and option arguments. wild-
name-l through wild-name-n are wildcard
names. wild-name-1 can be a pathname; the
others cannot. options can be any combination
of:

-BEFORE date
Matches only the objects last modified before
date.

~-MODIFIED_BEFORE date
Same as ~-BEFORE date.
-AFTER date
Matches only the objects last modified on or
after date.
~-MODIFIED_AFTER date
Same as ~AFTER date.
-BACKEDUP_BEFORE date
Matches only objects saved by BACKUP before
date.
-BACKEDUP_AFTER date
Matches only objects saved by BACKUP on or
after date.

-FILE
Matches files only.

-DIRECTORY
Matches directories only.

-SEGMENT_DIRECTORY
Matches segment directories only.

WILD 2

-ACCESS_CATEGORY
Matches access categories only.
-RBF
Matches ROAM files only.

The -BRIEF option suppresses most error mes-
sages.

With the -SINGLE option, WILD returns
names one at a time, rather than listing them.
Use -SINGLE when you think WILD’s list
might overrun its limit of 1024 characters, or
when it is more convenient to deal with
filenames one at a time. Set unit-var to 0 before
using the WILD function. WILD uses unit-var
to store the number of the file unit on which it
opens the directory for reading. The directory
remains open until all matching names have
been returned. WILD returns the true null
string when no entries are matched, or when,
in =SINGLE mode, the end of the directory is
reached.

» [WRITE_FILE unit text]

Strips one layer of quotes from text and writes
text (as a new line) to the file open on unit.
Returns O if the operation is successful, a posi-
tive nonzero integer otherwise.

Miscellaneous Functions

» [ABBREV -EXPAND text]

Returns the expanded form of a current abbre-
viation, named in text.

WILD / ABBREV -EXPAND 43

» [CND_INFO flag]

Allows a CPL condition handler to examine
the condition information of the most recent
condition on the stack. Returns the information
requested by flag as follows:

~-NAME
Returns the name of the condition. Returns
$NONES$ if no condition name is on the stack.

~-CONTINUE_SWITCH
Returns the Boolean value of the continue-to-signal
switch. Returns FALSE if no condition frame
exists.

-RETURN_PERMIT
Returns the Boolean value of the return-permitted
switch. Returns FALSE if no condition frame
exists.

» [DATE [option]] ok

Returns the current date/time in a variety of
formats. If option is omitted, the date only is
returned: 83-05-31. The other possibilities are:

~-FULL 2IZ-85

-USA A5 .-31 -
-UFULL BS-31.-

-DAY 21

-MONTH HMau

-YEAR 1383

-TIME 12:24: 4%
-AMPM 1:24 FM
-DOW Tuesday

-CAL Mag 31, 1383

CND_INFO / DATE

4

-TAG 238531
1

-FTAG 838531.132449
-VFULL

21 May 83 13:24:49 Tuesday
-VIS 31 Mau 83

» [GET_VAR expr]

Returns the value of the variable name given
by expr. Returns $UNDEFINEDS if the vari-
able named by expr has not been defined.

» [QUERY text [default] [-TTY]]

Prints text, followed by a question mark, on
your terminal output stream. (If text is null, no
text appears.) Use quotes around text and de-
fault if they contain special characters or em-
bedded blanks; these quotes are stripped before
printing. After text appears, answer by typing
YES, Y, OK, NO, N, or null. (You can use
uppercase or lowercase letters.) QUERY returns
TRUE if the answer was YES or OK, and
FALSE if it was NO. A null answer returns the
default value. If this has not been specified, it is
assumed to be NO.

The =TTY option forces QUERY to take input
from the terminal. A CPL program with the
~TTY option cannot be executed as a Batch job
or phantom. If you omit -TTY, QUERY takes
its response from the command input stream.

DATE / QUERY 45

» [RESCAN string]

Returns a string produced by stripping one
level of quotes from string and evaluating any
function calls or variable references that no
longer appear in quotes.

» [RESPONSE text [default] [-TTY]] **

Prints text, followed by a colon, on your termi-
nal output stream. (If text is null, no text ap-
pears.) Use quotes around text and default if
they contain special characters or embedded
blanks; these quotes are stripped before print-
ing. RESPONSE reads the command input
stream for your reply, or takes it from the
terminal if you use the =TTY option. (Do not
use ~TTY with Batch jobs or phantoms.) RE-
SPONSE then returns your input as the value
of the function. If a null reply is entered, de-
fault is returned. If default is omitted, the null
string is assumed.

RESCAN / RESPONSE 46

CPL-RELATED
COMMANDS

Four PRIMOS commands handle global vari-
ables:

DEFINE_GVAR Activates or deactivates a
global variable file.

DELETE_VAR Deletes global variables.

LIST_VAR Lists names and values of
global variables.

SET_VAR Sets the value of a variable.

» DEFINE_GVAR {pathname [-CREATE]
-OFF
Activating a File: The format,
“DEFINE_GVAR pathname ~-CREATE” creates
and activates a new global variable file. The
format “DEFINE_GVAR pathname” activates
an existing file. You must have LURW rights to
open or create a global variable file. If the
directory containing a global variable file is
password-protected, you must provide the full
pathname (including the diskname) within the

DEFINE_GVAR 7

DEFINE_GVAR command. You must have an
active global variable file in order to define or
refer to global variables.

Deactivating a File: You can deactivate a global
variable file in any of three ways:

e By giving the command “DEFINE_GVAR
—-OFF”

e By giving the command “DEFINE_GVAR
pathname”, which deactivates the current file
and activates the new one

e By logging out

» DELETE_VAR id-l [...idn]

Removes the specified variables from an active
global variable file. id-1 through id-n may be:

e Names of global variables
o Wildcards

e Variable references or function calls that evalu-
ate to the names of global variables.

» LIST_VAR [name-l ... namen]

Lists the specified global variables, if they are
contained in the active global variable file.

name-1 through name-n may be either variable
names or wildcards. If no names are given,

LIST_VAR lists all the variables in the active
file.

DEFINE_GVAR / LIST_VAR 48

» SET_VAR name [:=] value

Creates and/or sets the value of a global vari-

able.

name is any legal variable name, up to 32
characters long. Names of global variables must
begin with a dot (.).

value can be any one of the following:

e A character string, up to 1024 characters long.
(Lowercase characters are not converted to up-
percase.) If the string contains special characters,
it must be enclosed in single quotes. These
quotes are included in the character count.

e A numeric character string representing an in-
teger between the values of —2°! + 1 to 2 - 1.

e A character string consisting of the logical value
TRUE or FALSE (the forms TRUE, T, true, t,
FALSE, F, false, and f are acceptable).

The assignment symbol (:=) is optional.

Note

The SET_VAR command may be used both
interactively and within CPL programs. How-
ever, since the &SET_VAR directive is faster
than the SET_VAR command and can produce
debug information on watch-list variables, we
recommend the use of the directive within CPL
programs.

SET_VAR 49

Two other PRIMOS commands, RSTERM and
TYPE, are often used within CPL programs to
perform terminal-related operations.

» RSTERM [-READ] [-WRITE]

Resets terminal input (READ) and/or output
(WRITE) buffers. If no arguments are given,
empties both buffers. Often used by condition
handlers for the QUITS$ condition.

» TYPE text

Outputs text at the user terminal or into a
command output file. text may contain embed-
ded blanks, variables, or function calls.

SET_VAR / TYPE 50

CPL-RELATED
SUBROUTINES

Two subroutines allow high-level programs to
access global variables:

GV$SET Creates and/or sets the value of a
global variable.

GV$GET Retrieves the value of a global
variable.

Datatypes

These routines use the PL/I data types
CHAR(*) VAR and FIXED BIN. To use them
in COBOL and FORTRAN programs, use the
following datatype conversions.

FORTRAN: The FORTRAN equivalent of
CHAR(*) VAR is an INTEGER*2 array. The
first element of the array stores the length of
the string to be passed. The rest of the array
contains the string, two characters per element.

The FORTRAN equivalent of FIXED BIN is
INTEGER*2.

CPL-RELATED SUBROUTINES 51

COBOL: The COBOL equivalent of CHAR(*)
VAR is a record structure. The first element
(datatype COMP) contains the length of the
character string to be passed; the rest of the
structure (datatype PIC X(n)) contains the
string itself.

The COBOL equivalent to FIXED BIN is
COMP.

Note
Before calling either the GV$SET or the
GV$GET subroutines, make sure you have used
the PRIMOS command DEFINE_GVAR to de-
fine your global variable file.

» GVS$SET
GVS$SET sets the value of a global variable. Its
calling sequence is:

DCL GV$SET ENTRY (CHAR(*) VAR,
CHAR(*) VAR, FIXED BIN);

CALL GV$SET (var-name, var-value, code);

var-name (input argument) is the name for the
global variable to be set. The name must follow
the rules for CPL global variables. All letters

must be in uppercase.

var-value (input argument) is the new value for
the variable var-name.

CPL-RELATED SUBROUTINES 52

code (output argument) is a return error code.
Codes returned include:

e ES$BFTS if the specified value is too big.

e E$UNOP if the global variable area is bad or
uninitialized.

e E$ROOM if an attempt to acquire more storage
by the variable management routines fails.

» GV$GET

GVS$GET retrieves the value of a global vari-
able. Its calling sequence is:
DCL GV$GET ENTRY (CHAR(*) VAR,
CHAR(*) VAR, FIXED BIN, FIXED BIN);

CALL GV$GET (var-name, var-value, value-size,
code);

var-name (input argument) is the name of the
global variable whose value is to be retrieved. It
must be in uppercase.

var-value (output argument) is the returned val-
ue of var-name.

value-size (input argument) is the length of the
user’s buffer var-value in characters.

code (output argument) is a return error code.
Codes returned include:

e E$BFTS if the user buffer var-value is too small
to hold the current value of the variable.

e E$UNOP if the global variable storage is un-
initialized or in bad format.

e E$FNTF if the variable is not found.

CPL-RELATED SUBROUTINES 53

	Front Cover
	
	Title Page
	i
	Copyright
	ii
	Table of Contents
	iii
	Command Format Conventions
	iv
	CPL Terminology
	1
	2
	3
	4
	5
	CPL Operators
	6
	7
	CPL Format Rules
	8
	9
	10
	11
	12
	CPL Variables
	13
	14
	15
	16
	CPL Directives
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	Command Functions
	-- Arithmetic Functions
	33
	34
	-- String-Handling Functions
	35
	36
	37
	-- File System Functions
	38
	39
	40
	41
	42
	-- Miscellaneous Functions
	43
	44
	45
	46
	CPL-Related Commands
	47
	48
	49
	50
	CPL-Related Subroutines
	51
	52
	53
	54
	55
	56
	
	Back Cover

