
Prime Computer,Inc.

CPL
Rev. 19.3

 FDR7811-193

REVISION 19.3

FDR7811-193

by

Alice Landy _

This documentreflects the software as of
Master Disk Revision 19.3.

Prime Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

The Programmer’s Companion is a series of pocket-size,
quick reference guides to Prime software products.

Published by Prime Computer, Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701

Copyright © 1984 by Prime Computer,Inc.

Printed in USA. All rights reserved.

The Programmer’s Companion and PRIMOSare rained
trademarks of Prime Computer, Inc.

The information contained in this document is subject.
change without notice and should not be construed as
commitment by Prime Computer. Prime Computer, Ir
assumes no responsibility for errors that may appear in ‘this
document.

Credits
Editor Irene Rubin

Designer Susan Windheim
Typesetter Datatext

Printer Winthrop Printing Company, Inc.

‘TABLE OF CONTENTS

CPL Terminology

CPL Operators | |

CPL Format Rules

CPL Variables

CPL Directives

Command Functions

CPL-related Commands

CPL-related Subroutines

Printing history: —

March 1984, First Printing

13

17

33

47

51

Command Format Conventions

UPPERCASE: Commands or keywords that
must be entered literally are shown in
uppercase letters.

lowercase: Lowercase letters identify variable
arguments. When entering the command, the
user substitutes an appropriate numerical or
text value.

Abbreviations: Abbreviations for commands
are shown in rust-colored letters, as in:
LOGOUT.

Braces { } : Braces indicate a choice of

arguments. At least one choice must beselected.

Square brackets []: Square brackets printed
in brown indicate that the word or argument
enclosed is optional. Square brackets printed in
rust indicate a function call and must be
enteredliterally.

Hyphen -: A hyphen identifies a command
line option, as in: SPOOL -LIST. Hyphens
must be enteredliterally.

Ellipsis ...: An ellipsis means that the
preceding option or argumentcan be repeated.

Angle brackets < >: Angle brackets are
used literally to separate the elements of a
pathname,as in:

FOREST? BEECH? BRAHCHS37> THIG43> LEAF4

CPL TERMINOLOGY

CPL

CPL is Prime’s Command Procedure Language.
It provides the ability to direct and control the
flow of command execution under PRIMOS,
thus allowing you to create programs that con-
ditionally execute sequences of commands. An
interpretive language, CPL uses high-level lan-
guage features, such as branching, looping, and
argument passing, to facilitate the creation of
structured commandscripts.

Statements

CPL programs are made up of statements.

A statement may beeither:

® A PRIMOS command

@ A sequence of PRIMOS commands, separated
by semicolons

e A CPLdirective plus its arguments

The maximum length of a CPL statement is
1024 characters.

CPL TERMINOLOGY I

Commands

CPL programs can contain any PRIMOS com-

mands with the following three exceptions:

e COMINPUT(in any form)
e CLOSE ALL
¢ DELSEG ALL

The oe of any of these commands will abort

the CPL program. .

Directives | |
ACPL directive is an instructionto the CPL

interpreter. Each directive begins with an am-

persand (&).You can use directivesto establish

values for arguments and variables, to cause

conditional execution of commands, to perform

debugging, and so on. re

Variables

A variable in CPL, as in other high-level pro-
gramming languages, has a name anda value.

The name of the variable remains constant, but

its value can change. | -

When the name ofa variableis given in a CPL
program, it is given without any extra char-

acters before or after it. When the value of a

variable is to be referenced, the name of the

variable is given with percent signs before and

after it, as in Z%NAME%. — ae

CPL TERMINOLOGY “D.

Variable References .

 When interpreting astatement that contains
variablereference the’ CPL”‘interpreter sub-
stitutes a character |string representing the cur-
rent value of. thevariable for the character
string representingthereference before the
statement is executed, .

Values may beofa1kinds: ‘integer, logical,
or character‘string. alues maybe supplied as
constantsor as.5 Copreseens:

Expressions

Expressions are.“composedof operands and op-
_erators. .

@peisnds<can| ealcharacter strings, vari-
able referenitat,.or functionae

CPL. Toconeubratetwo‘arings in CPL, sim-
ply juxtapose themwithno intervening spaces.
For example,t. concatenate.the values of two-
variables,yiy Id give the string
FIRST_HA LERISEC BpTALES:

CPL TERMINOLOGY

Arguments

An argumentis a variable whose value is passed
to the CPL program by the program’s caller.
Arguments in CPL are defined by the SARGS

directive.

Callers

Thecaller of a CPL program is the process that
invokes the program. Thecaller can be:

e A user, running the program interactively

e A Batch job or phantom

® Another CPL program

Functions

CPL also uses built-in functions. Function calls
are enclosed in brackets, as in [DATE].

When the CPL interpreter encounters a func-
tion call in a CPL statement, it evaluates the
call. Then, before the statement is executed, it
replaces the character string representing the
function call with a character string containing
the result of the evaluation. Function calls are
evaluated after variables have been evaluated;
therefore, variable references may be used inside

function calls.

Function calls may also be nested. In this case,
evaluation is performed from the inside out;
that is, the innermost function call is evaluated
first, and so on until the outermost function

call is reached.

CPL TERMINOLOGY 4

Quoted Strings

Placing quotation marks around either variable
references or function calls prevents their evalu-
ation.

Return

When a CPL program completes execution, it
returnsto its caller.

CPL TERMINOLOGY J

CPL OPERATORS

ScKSxond
aq0

afer.varial
sion. Thus,
characters

cil,hot execute.

» Rule 2: A statement may start anywhere

on theline.

We suggest that you indent CPL programs for
ease of reading, as you would indent any struc-
tured program. There are no rules governing

indentation.

An exception to this rule is a line of text
within an &DATA statement. Any blanks in
these lines are passed as part of the input line

to the program invoked by &DATA.

>» Rule 3: To continue a statement over two
or more lines, place a tilde (~) at the end of

each incomplete line.

If there is a blank between the tilde and the
word that precedesit, or if the beginning of the
next line is indented by one or more spaces,
the contents of the two lines are separated by
one or more spaces when the statementis eval-

uated.

For example: EREAK ~
HERE

is read as: BREAK HERE

If no space precedes the tilde and the next line
starts in column 1, the two lines are concat-
enated with no space between them.

For example: HO BREAR~
HERE

is read as: HO BREAKHERE

CPL FORMAT RULES 8

> Rule 4 Comments may be included in
CPL programs by preceding each comment
with a slash-asterisk (/*).

Comments end at the end of the physical line
on which they appear. They are never contin-

ued onto the nextline.

Comments are not evaluated or passed on to
the commandprocessor. If a tilde appears at the
end of a line containing a comment, then any
non-comment material from that line is joined
with any non-comment material from the next
line when forming the CPL statement.

For example:
&IF VARS = 1 -#Comment ~

&THEH -#Emore comment ~

SEG MYFILE.SEG -#more comment

is read as:
SIF EVAR K = 1THEN SEG MYFILE.SEG

> Rule 5: Every CPL file ends with an
&RETURN directive. If the user omits the
&RETURN directive, it is supplied automati-
cally by the CPL interpreter.

> Rule 6: Filenames for CPL programsfollow
Prime’s standard rules for filenames. They must
end with thesuffix, “.CPL’.

Filenames must not exceed 32 characters, in-
cluding the .CPL suffix. Allowable characters

are:
A-Z, 0-9, #$-.*&

CPL FORMAT RULES 9

The first character may not benumeric,
may it be a hyphen. The nameeee
legal n:name. yids

& “Rule va Variable names must alsofol
standard rules. cs

ranieblecnames5 may not exceed 32 charaa

orGonple:(CR4so aa oes
: &1F “THIS% + “THAT:

quotes.when:ekestring isusedasthesva
variable.

CPL FORMAT RULES —

Special characters are:

Single quotes (’), which must bee doubled inside Z
the string.

Commas(,)

Square brackets([»

_Semicolons(;)

Percent signs (%)

~Hyphens(-) at thebeginningofstrings,he i
the string is not aCPLoptionargument. |

~CPL expressions, ifyoudo-notwant them
evaluated. |

Whenever yyou use aquoted 3stringin CPL,the |
quotes are considered part ©of the string.

CPL provides built-in QUOTE and UN-
QUOTE functions to place quotes around
strings and to remove quotes from strings.

CPL FORMATRULES ee

CPL VARIABLES

Local and Global Variables

Local variables are defined (or created) inside a
CPL program. They are known only to the
program that creates them, and they disappear
when that program terminates.

Global variables may be defined inside CPL
programs, inside high-level language programs,
or at command level. They are stored in a
global variable file in a user directory. When
the file is active, the variables it contains can be
referenced or modified in any of the following

ways:

e Interactively, at commandlevel

e By any of your CPL programs

e By high-level language programs

Global variables survive program termination
and logouts. Once defined, they last until you

delete them.

CPL VARIABLES 13

Defining Variables

Local variables may be defined in three ways:
e By the GARGSdirective
e By the GSET_VARdirective
e By the SET_VAR command

Global variables may not be defined by the
S&ARGS directive. They may be defined in
three ways:

e Within a CPL program, by the &@SET_VAR
directive or the SET_VAR command

e At commandlevel, by the SET_VAR command
© From a_ high-level program, by the GV$SET

routine

Variable Names

anaes names must be 32 characters or less in
length. They may contain only the characters
A-Z (uppercase or lowercase), 0-9, WASIEIH
(_), and dot(.).

Names of local variables must begin with a
letter. Names of global variables must begin
with a dot.

Variable Values

Variables may have one of three types of val-
ues:

e Character string
e Logical value
e Integer value

CPL VARIABLES 14

The value of a variable may be given as one of
the following: .

e A character ree (up to 1024 characters,
quoted if necessary)

e Aninteger (—23! + 1 to 231 - 1):

A logical value (TRUE, true, T, ort for “true’;.
FALSE,false, F, orf for “false”)

e An expression that evaluates to any of the
above values —

Evaluationof Variables

A variable is referenced by enclosing its name
in percentsigns, as in %VARIABLE_NAME%.
When a statement contains variable references,
all references are replaced by their values before
the statement executes. .

. ~ Note
_ An exception to thisruleoccurs when you use
the GEXPAND ON directive. This directive

_ forces subsequentstatements to be handed to the
abbreviationpreprocessor before either variable
or functionevaluation is performed. In this case,
function calls will be handled at command level;
variables will not. be evaluated unless you force
their evaluation with the function call
[ABBREV -EXPAND Jovarh j.

Variable evaluation is performed only once per
statement. If the evaluation of ZVAR1% pro-
duces the string ZVAR2%, then %ZVAR2% is
the value of that variable; the variable is not
re-evaluated.

Placing a variable reference inside quotes pre-
vents its evaluation.

CPL VARIABLES — 15

If you want to place the result of a variable
reference inside quotes, use the QUOTEfunc-
tion. For example:

&SETUVAR ANSHER := C RESPONSE ~
C QUOTE SPROMPT=129

Comparison of Variables

The operators that can be used to compare
variables are:

> >= = <= < A=

Comparisons are done by the followingrules: £,

e If either epee is a character ree a sering é
comparison is done. .

-e If both operands are integers, an arithmetic
_ comparison is done.

® If both operands are Boolean (orlogical) values, om
an arithmetic comparison is done. (TRUE =. 1 ay
and FALSE = 0.) re

CPL VARIABLES i 846

CPL DIRECTIVES

The following directives can be used within
CPL programsonly.

> GARGS[object-args] [option-args|
[rest-arg |

Format for object-args is:

name[;:[type][=default]][;...]

Format for option-argsis:

name: -control-list [name[:[type]
[=default }][;-..].

Format for rest-arg is:

name:REST [=default]

Defines names (plus types, default values, and
keywords, if desired) for arguments passed to a
CPL program from the commandline that ex-
ecutes the program. Except for REST argu-
ments, type can be any type shownin Table 2.
If type is not specified, the argument defaults to
type char. If default is not specified, system
defaults are assigned as shown in Table 2.

&ARGS 17

Object Arguments: Object arguments are posi-
tional. The first item on the commandline,
after the name of the CPL program, is taken as —
the value of the first argument; the second item |
is taken as the value of the second argument,
and so on.

If more object arguments exist than are defined
on the commandline, default values are as-
signed to the remaining arguments. If more
items exist on the commandline than there are
argumentsdefined, then one of ttwo things hap-

pens:

e If an argument of type REST or UNCL has
been defined, then all further items on the
command line are takenas the value of that
argument. (This allows you to pass PRIMOS
options as argumentsto a CPL program with- |

out having to quote them.)

@ Otherwise, the last argument takes only one
item as its value. All further items on the com-
mandline are ignored.

Option Arguments: Option arguments are not
positional. If one of the options specified by
-control-list is present anywhere on the com-
mandline, the first option in thecontrol-list is
passed to the CPL program. (Each option-name _
in the control-list must begin with a hyphen ©
and contain atleast one alphabetic character. If
morethan one option-name is specified, the -
option-names must be separated by commas.) |

GARGS 18

As the format statement shows, the definition
of an option argumentcan include one or more
arguments that will follow the option argument

on the command line. These arguments are

positional, in that they must follow immediately

after the option-name on the commandline,
and will be interpreted in the order in which
they appear in the GARGSdirective.

If an undefined option argument appears on
the commandline, it is assigned all the ar-
guments between itself and the next option

argument, or (if there is no other option ar-

gument) betweenitself and the end of theline.

REST Arguments: Only one argumentof type

REST can be specified. It must be the last

argument specified in the directive. Its evalu-

ation will halt parsing of the command line;
everything remaining on the line will be as-
signed as the value of the REST argument.

Examples:
&ARGS TRUTH; BEAUTY; CHARM

&RARGS TRUTH: OEC:

RAR GS CHARM: CHAR; ~
TR_FLAG:-TR,-T TRUTH: OEC~

BE_FLAG:-BE BEAUTY:

TREE=A_UFO?F ILE

GARGS 19

charl

tree

entry

dec

oct

hex

ptr

date

rest

uncl

TABLE 2

CPL ARGUMENTTYPES AND DEFAULTS

Argument:
Type Explanation

char Anycharacter string up to
1024 characters long, mapped
to uppercase. (Default)

Anycharacter string up to
1024 characters long, no case
shifting.

A filename, directory name, or
pathname, up to 128
characters long. Thelast
element of the pathname (that
is, the final file or directory
name) can contain wildcard
characters.

A filename up to 32
characters long; can contain ~
wildcard characters.

A decimal integer.'

Anoctal integer.!
A hexadecimal integer.!

Pointer; a virtual address in
the format “octal/octal”
(segno/offset).

Calendar date in the formats
described in the DATE
command.

The remainder of the
commandline.

All tokens not accounted for
in the GARGSpicture.

'Numeric arguments must be within the range -23! + 1

*User specified default values are not supported for this
data type.

(the null |

Default
Value —

v9

(the null —
string) |

eB

7777/0

pointer)
a

GARGS

20

» &CALL routine-name

Transfers controlto the internal routine des-
ignated by routine-name.

Example: >a
&CALLTHISROUTINE

&ROUTINEfe arspurine :

>» &CHECK expression &ROUTINE
routiee

Defines anerror condition (expression) and a
routine (routine-name)tohandle the condi-
tion. When this directiveis present, the CPL
interpreter evaluatesexpressionafter executing
each PRIMOS command.If expression is true,
control passesto routine-name .

Example: —
&CHECK XTHIS_VARY > RTHAT_LVARS ~

&ROUTINE DISASTER

>» &DATA statement
statement-1

statement-n

[&TTY]
[&TTY_CONTINUE]
&END

Statements 1 through n are treated as data or
subcommands for user programs or PRIMOS
utilities. The statement immediately following

G@CALL / GDATA 21

G&DATA must invoke the program or utility.
All other statements between &DATA and
GEND are evaluated, and the results written
into a temporary file. The program (or utility)
is then invoked and information from thefile
passed to it, a line at a time, whencalled for.

Either the &TTY_CONTINUEor the &TTY
directive can be used as the last statement in
the GDATAgroup, immediately preceding the
GEND statement. These directives can be used
conditionally (as in &IF statements) or uncon-
ditionally.

The two directives differ in where they send
control when they execute. The
G&TTY_CONTINUEdirective takes input from
the command input stream, whether that be an
interactive user, a command inputfile, or an
GSDATA group in another CPL program. The
G&TTY directive always sends control to the
terminal. Thus, it cannot be used in programs
that may run as Batch jobs or phantoms.

In both cases, control returns to the CPL pro-
gram when the caller or user exits from the
program or utility called by the @DATA
group.

Example:

&OATA SEG

WL PROG, SEG

&IF “DEBUGGER_USEDS~

& THEN Lo~
#>BIM>MEWUPROG, BIH, OBG

®ELSE LO-~

#°BIN>HEW_WPROG, BIH

&EHD

G@DATA 22

> &DEBUG leptons)

Enables debugging for the CPL eae con-
taining the&@DEBUGdirective. If given with-
out options, &DEBUG is equivalent to
&DEBUG eeeeee (&ECHO ALL.
Options are:

Option co Meaning

SOFF — — Turns off all debugging
. - options. Initially all op-

tionsare off.

G&EXECUTE / Enables execution of
PRIMOS commands.

&NO_EXECUTE Suppresses execution of
— PRIMOS commands, but

interpretsCPL directives.

ALL} __If ALLis specified, echoes
&ECHO COM ~ PRIMOS commands and

DIR CPL directives. If COM is
- specified, echoes only

PRIMOS commands. If
- DIR isspecified, echoes
CPL directives. (Default is
ALL.)

ALL } ALL cancels all echoing.
&NO_ECHO ¢{COM} COM cancels echoing of

DIR PRIMOScommands. DIR
cancels echoing of CPL
directives. (Default is

ALL.) :

@DEBUG - 23

&WATCH
[varl ... var16]

&NO_WATCH
[varl ... var16]

Example:
&DEBUG &ECHO ALL

> &DO[iteration]
statement-1

statement-n

&END

Adds the specified vari-
ables to the watchlist.

When the value of a
watched variable is

changed using the
&SET_VAR directive

(not the SET_VAR com-
mand), CPL reports this
fact and the new value of

the variable. At most, 16
variables can be on the
watchlist. If no variables
are specified, all variables
in the CPL programs are
watched.

Removesthe specified vari-
ables from the watchlist. If
no variables are specified,
watching is turned off
completely.

RMAITCH BERSERK_VAR

Allows a group of statements to be used any--
where a single statement can be used. If iter-
ation is present, allows conditionally repeated
execution of the statements contained between
the &DO and the &END.iteration can take
any of the following forms:

1. null (no iteration)

2. [&WHILE while] [@UNTIL until]

&DEBUG/&DO

3. var = start [&TO to] [&BY by]
[&WHILEwhile][QUNTIL until]

4. var&LISTlist [&WHILE while]
~ [&UNTILuntil]

5. var &ITEMSitems [WHILE while]
. _[&UNTILuntil]
: var:= start &REPEAT repeat
- [&WHILEwhite}(AUNTIE uneil |

-Examples:
aDOT:= 1873°

FTN ABCKIX,FINS
&END

00 WHILE CHULL KAY]

&.00 RUNTIL c NULL RAKq

e00A:=5%7016

800 A= 5 8&T0 16 &BY 2 -

eD0A:=5&BY 2270 16

2.00 A:=58
7o 1e GWHILE*xSige|

ENUEEAA,Ss TRINGK 7

$00 A:= 58701G8UNTI
L~

i NULL. “A—STRING® 1

&00 A &LIST aLIST.oFAmes

&SETVAR UNIT :
200 A&ITENS EMILE aSUFD>ee, PLiG ~
-SINGLEUNITde 6

 &DO A i=6 SREPEA “# NALCONSTANT%

&DO A 1= 6 &TO-108 BBY -2

&00 A :=-1 &REPEAT %AX * -1 ~
&UNTIL C LENGTH%A_LSTRINGX J> 10 |

&DO . 25

> G&EXPAND {oxOFF

Turns statement expansion on oroff. (The de-
fault is OFF).

When expansion is turned on, the CPL inter-
preter passes each command in the CPL pro-
gram to the PRIMOSabbreviation pre-processor
for abbreviation expansion. (Abbreviations
must have been enabled with the ABBREV
command for this to work.) The commandsare
passed before variable evaluation, function eval-
uation, or execution occurs.

Directives are not passed to the pre-processor.
Therefore, user-defined abbreviations cannot be
used in CPL directives.

Example: &E#PAND OH

> &GOTOlabel-name

Transfers control to the statement following the
S&LABEL label-name directive. (See SLABEL,
below.)

Example: #%GOTO ALLABEL

&LABEL A_LLABEL

GEXPAND/&GOTO 26

o If‘ELSE istnot: prevent,“tontrel passes toTe
next seement|in theCPLprogram.

Example:
RIF %1% > S&THENTYPE1=XIX

-&ELSE TYPE %IX TOO SMALL

reached, coilpasses
uadirec

iae‘SLABELdi-
used in an SIF,

> &ONcondition.&RO
_pemtinetatel ”

eeeand an
dition Mecha:

pressionis I
the resulta Yeefunctio

A EOALE2N%-1
cast

> &RETURN [severity] [&MESSAGE text]

Halts execu ion ofthe procedure in whichit
occurs. ‘Recumps,controltothe procedures call-
er.

If &MESSAGEis present, cetext on ter-
minal whencontrol returns. If severity is
present, returns‘its value as aseverity code to
the procedure’s caller. severity must evaluate to
an integer. ep

Examples”&RETURN
rh Ae der

RETURNa

Peerie

RETURNHSEVERITYS%

 &RETURN&MESSAGEHELLO!

- &RETURN1 &MESSAGE OOPS!

irisroutine. OS

Example: “enourmie0QUIT_HANDLER

G@RETURN/

» G&SELECTtest-expression
&WHENexpr-l [,... ,expr-n] —
statement |
&WHENexpr-l[,... ,expr-n]
statement ;

dl

[SOTHERWISE
statement]

&END
_ test-expression is evaluated and tested against

—expr-l, expr-2, in turn. When a match for test-

expression is found, statement following the
matching expression is executed.

Ifno match is found, then:

: -@ If anS&OTHERWISE directive is present, the

- - statement following it is executed.

_@If no &OTHERWISEdirective is present, con-
trol passes to the statement following the
__&ENDofthe &SELECT group. — .

Example: es,
 &SELECT XWHAT_TO_OOX
 &WHENABC

ATTACH BEECH
&BWHEN 6, XONE_WARS + XTHO_VARS

— & RETURN |
& OTHERWISE

RESUME NOT_ONE_OF_THOSE.CFL
& EMO

SELECT Lo gets, 30

> &SET_VARvar-l [, var-2, eee yara|
:= value ©

Sets the value of the named variables to value.
The variables need not exist already. .

Examples: _ . . oe
&SET_VAR THIS_VAR : = THIS_STRING

&S THIS_VAR := THIS_STRING

£5 A,B,C 1=@ |

>“&SEVERITY[level [action]

Checks| for s seerates,other‘than0where
codes >0.indicate
dicate warni after|
PRIMOSane |lfa codeeyeeis
found, takesthespeci tedaction. -

level can be: oe

- &ERROR Ignores warnings, takes aaction

a — onerrors. pales

- &WARNING Takes action on both warnings
and errors. Ben ea Bh

action can be: | Deen ee,

— &FAIL Halts execution, returnsa
Positive severity codeto the _
routine’s caller.

| &IGNORE — Continues execution, Sis

- G&ROUTINE Passes control to thedesignated 7
- routinename routine. S

If neither level nor action is siven; all severity .
codes are ignored. If no &SEVERITY directive
is given, warningsare ignored and errors hale .
execution. 7

GSET_VAR/@SEVERITY oe Fe

Examples:
&ES5EVERITY & WARMING & IGHORE

BSEVERITY&ERROR &ROUTINE FIS_IT

&SEVERITY &ERROR &FAIL

RSEVERITY

> SIGNALcondition [@NO_RETURN]

Raises the condition condition and causes the

CPL mechanism to search fora handler for that

condition. If &NO_RETURNis specified, ex-

ecution of the error-causing procedure cannot

be continued. ;

Example: &S1GNAL BADLBUG &NO_RETURN ;

> &STOP [severity] [&MESSAGEtext] _

Halts execution of the procedure in whichit

occurs. If this procedure is a routine, &STC .

also halts execution of the program containing

the routine, and any other active routines the

program has. Control returns to the caller of|

the main program.

If severity ispresent, the specified severity‘code

is returned to program’s caller. The codei
dicates the success or failure of the progt

severity must be an integer. /

If &MESSAGEis present, text is princeatsoe,
caller’sterminal.

~

Example: #%3TOF 1 &MESSAGE OH, Nal

GSEVERITY / &STOP Oe a

The Gotan types of csinmaand faricrionsdescribed

below are used primarily inCPLprograms.

However, they can beused inPRIMOS.com-

mandlinesalso.

Throughoutthe followingdescriptions, any

functionmarked1aeee;r ageter itsSCN)when .

ctions

ical expressions. Re-
omtheevaluation. .
ised),“1 (or),.2
* /,unary +,

Returns::

Similarly:es
Returns: —

CALC

> [HEX number]

Returns the decimal equivalent of a hex-
adecimal number.

For example: [HEX AJ
Returns: 1a

> [MODstring! string2]

Divides string1 by string2 and returns the re- _
mainder.

For example: CMOD 26a 23 J
Returns: 15

Similarly:- CMoo 18 123 I
: Returns: 18

b> [OCTAL number]

Returns the decimal equivalent of an octal—
number. .

For example: COCTAL 14]
Returns: &

>‘[T0_HEX number]

Returns the hexadecimal equivalent of adeci .
mal number. :

For éxample: C TO_LHEX 153
Returns: F

> [TO_OCTALnumber]

Returns the octal equivalent of a decimal’num-
ber.

HEX / TO_OCTAL 4

For example: CTOLOCTAL 8]
Returns: = 14

| String-Handling Functions ©

> [AFTERstring find-string] _ a

Returns the part of string that appeats after Be

first occurrence of find-string. Returns the null

stringif find-string is notin stringoris at the
end of string.

For example: AFTER ABCOE o1)
Returns; E

> [BEFORE string find-string] ae

Returnsthepartof,string that appears before

the first occurrence offind-string. Returns

string iffind-stri ‘not instring;returns the
nullstringiffindstringisatthe beginning of

string.a “ 2

For ‘example: cBEFOREABCDE ca
Returns: CRBs

> [INDEX string find-string]

Returns aniI tingthe starting po-
tring) within string.

EMABCDE DEJ
Returns:

> [LENGTHstring]

Returns thenumberof cunente in string.

For example: |_CLENGTH This igatest]

Returns: i4

reectapieiense : 35

pb [NULLstring]

Returns TRUE if string has no text characters,
and FALSEotherwise.

For example: CNULLCWILO ®.CPLI J

Might return: TRUE

> [QUOTE string] [string2 ..stringn|}

Adds an outer pair of quotes and doubles the |
quotes already inside the given strings. Prevents |
misinterpretation of special symbols.

For example: (CC GUOTE xy'i'z]
Returns: Joenn 2 0 U beget

Similarly: CQUOTE 'abe''de''fg']
Returns: ‘label i det i htggi tt

re [SEARCH string! string2]

Returns the index ofthe first characterin
string1 that appears in string2. Returns 0ifno|
character from string] appears in string2. ;

For example: (€ SEARCH abcS3def Z692]
Returns: 4

> [SUBSTstring! string2 string3]**

Substitutes string3 for string2 wherever stitiig?
occurs within stringl. Returns the altered
string1. /

For example: (C SUBST abecabccab¢cc 1
Returns: abGabGab . ifog:

NULL / SUBST 36

> [SUBSTRstring start-position
[num-chars]] sea

Returns a substring of string that begins at
position start-position and extends for length
num-chars. If num-chars is omitted, the sub-
string runs from start-position to the end of
string. Start-position and num-chars(if given)
must be positive integers.

For example: [C SUBSTR ABCOE 327
Returns: co

> [TRANSLATEstring! string2 string3]

Replaces characters in one string with characters

from another. TRANSLATE looks for string3
characters in stringl, replaces them with char-
acters from string2, then returns the altered
stringl. If string2 and string3 are omitted,
TRANSLATEconverts all stringl characters to
uppercase, then returns string]. If string3 alone
is omitted, the ASCII collating sequence is used
for string3.

For example: CTRANSLATE abe 3245 chad

Returns: 543

-LEFT
> [TRIM string |-RIGHT]| [char]] **

-BOTH

Removes a given character from theleft, right,
or both sides of a given string. If you do not
specify a side, TRIM assumes —BOTH. If you
omit char, TRIM removes blanks.

For example: CTRIM BBBABCBEBE -BOTH BJ

Returns: ABC

SUBSTR / TRIM 37

> [UNQUOTE string]

Removes one outer pair of quotes from around
stringand changes all remaining: pairs of quer’,
to single quotes.

For example: CUNGUOTE ''' et tu! | rl
Returns; 'xx' "yy! :

> [VERIFY stringl sting?)

- Returns an integer representing the positionoof
thefirst character in stringl that does not ap-
pear in string2. Returns 0 if all characters in
stringlappear in string2. ae

For example: CVERIFY 1298s~
ee 9123456789
-Recurns: ee

_ File System Functions —

—>[ATTRIB pathname att [-BRIEF]]

Returns. information about the file in path-
mame.att must be specified and must beoneof
the following keywords:

-TYPE . Returnsthe file type of pathname —
~ (ACAT, SAM, DAM, SEGSAM,
eee SEGDAM,UED,or UNKNOWN)
_ -DTM __ Returns thedate andtime when __
eS the object was last modified, in the

~ form 83-05-31.13:24:29.Tue a
- _DTBCn Returns the date and time the

objectwas last backed up bytued
BACKUP utility — a

-LENGTH Returnsthefile length (in
. halfwords)

UNQUOTE / ATTRIB ag

The -BRIEF option suppresses most error mes-

sages.

For example: CATTRIB THIG -TYPE 4

Might return: SAM

Similarly: CATTRIB THIG -LENGTHI
Might return: 36 :

p> [DIR pathname [-BRIEF]] ba!

Returns the directory portion of pathname. Re-

turns “*” if pathnameis a simple filename. The
—BRIEF option suppresses most error messages.

For example: (COIR BEECH? BRANCH1>THIGI

Returns: BEECH? BRANCHI

>» [ENTRYNAMEpathname]

Returns the entryname portion of pathname —

that is, the portion following the final >. If the
> character does not occur in pathname, re-
turns the entire pathname.

For example:
C ENTRYNANE> BEECH?BRAHCHI>THIG I

Returns: THIG

ATTRIB / ENTRYNAME 39

p» [EXISTS pathname [type] [-BRIEF]]

Returns TRUE if pathname exists and matches

type specified; otherwise, returns FALSE. type

can be:

-ANY
Anytype is acceptable.

-ACCESS_CATEGORY
Must be an access category.

-FILE
Mustbe afile.

-DIRECTORY
Must be a directory.

-~SEGMENT_DIRECTORY
Must be a segmentdirectory.

If type is omitted, -ANY is assumed. The
—BRIEF option suppresses most error messages.

For example: CEXIS75 THIG]
Might return: TRUE

> [GVPATH]
Returns the pathname of your active global
variable file. GVPATH returns —OFF if you
have no active or defined global variable file.

For example: [C GWFATH I
Might return: <FOREST? BEECH? GVARS

» [OPEN_FILEpathnamestatus-var
-MODE m]

Opensthe file pathname for reading or writing

on some available file unit, then returns the

unit number. m can be:

EXISTS / OPEN_FILE 40

R Read only.
Ww Write only.
WR Read and write.

If -MODE m is omitted, the file is opened for
reading. The variable whose name is status-var
is set to 0 if the file is opened successfully, and
to a positive nonzero value otherwise. It must

be a global variable if the function is invoked
at command level; it can be global or local if
the function is invoked inside a CPL program.

> [PATHNAMEpath [-BRIEF]]
Returns the full pathname of path.
[PATHNAME*] gives the full pathname of
the current directory. If any of the intermediate
directories do not exist, an error message ap-
pears. The —BRIEF option suppresses most error

messages.

For example: C FATHNAME BRANCHI1 J

Might return: <FOREST>BEECH>BRANCHI
While: CPATHHAME * J
Would return: <FOREST? BEECH? BRANCH1> +

> [READ_FILEunit status-var

[-BRIEF]]
262

Reads a line from the file opened on unit and
returns the quoted line as its value. status-varis
set to 0 if the operation is successful, to 1 if
end of file is reached, or to some other positive
nonzero value otherwise. The —BRIEF option

suppresses most error messages.

OPEN_FILE / READ_FILE 41

> [WILD wild-name-l [...wild-name—n |
[options] [-SINGLE unit-var] [-BRIEF]]

Returns a list of all names within a directory
that match one or more wildcard names. With-
out the —SINGLE option, returns a_ blank-
separated list of file system objects that match
the wild-names and option arguments. wild-
name-l through wild-name-n are wildcard
names. wild-name-l can be a pathname; the
others cannot. options can be any combination
of:

-BEFOREdate
Matches only the objects last modified before
date.

-MODIFIED_BEFOREdate
Same as -BEFOREdate.

~AFTER date
Matches only the objects last modified on or

after date.

-MODIFIED_AFTERdate
Same as -AFTER date.

-~BACKEDUP_BEFOREdate
Matches only objects saved by BACKUP before
date.

-BACKEDUP_AFTERdate
Matches only objects saved by BACKUP on or
after date.

-FILE
Matchesfiles only.

-~DIRECTORY
Matches directories only.

-SEGMENT_DIRECTORY
Matches segmentdirectories only.

WILD 42

-~ACCESS__CATEGORY
Matches access categories only.

-RBF
Matches ROAMfiles only.

The —BRIEF option suppresses most error mes-

sages.

With the -SINGLE option, WILD returns
names one at a time, rather than listing them.
Use -SINGLE when you think WILD’s list
might overrun its limit of 1024 characters, or
when it is more convenient to deal with
filenames oneat a time. Set unit-var to 0 before
using the WILD function. WILD uses unit-var
to store the numberofthe file unit on which it
opens the directory for reading. The directory
remains open until all matching names have
been returned. WILD returns the true null
string when no entries are matched, or when,
in -SINGLE mode, the end of the directory is

reached.

> [WRITE_FILEunit text]

Strips one layer of quotes from text and writes
text (as a new line) to the file open on unit.
Returns 0 if the operation is successful, a posi-
tive nonzero integer otherwise.

Miscellaneous Functions

> [ABBREV -EXPANDtext]

Returns the expanded form of a current abbre-
viation, namedin text.

WILD / ABBREV -EXPAND 43

> [CND_INFOflag]
Allows a CPL condition handler to examine
the condition information of the most recent
condition on the stack. Returns the information
requested by flag as follows:

-~NAME

Returns the name of the condition. Returns
$NONE$if no condition name is on the stack.

-CONTINUE_SWITCH
Returns the Boolean value of the continue-to-signal
switch. Returns FALSE if no condition frame
exists.

-RETURN_PERMIT
Returns the Boolean value of the return-permitted

_ switch. Returns FALSEif no condition frame
exists.

> [DATE[option]] id

Returns the current date/time in a variety of
formats. If option is omitted, the date only is
returned: 83-05-31. The other possibilities are:

-FULL BS-O5-31.13:24:49. Tue

-USA AS63183

-~UFULL BSe31°83,13:24:459, Tue

-DAY 31

-MONTH fay

-YEAR 1353

-TIME 12:24:43

-AMPM 1:24 FM

-DOW Tuesday

-CAL May S31, 1353

CND_INFO / DATE 44

-TAG S38531

-FTAG 838531.132449

-VFULL |
31 May 83 13:24:49 Tuesday

-VIS 31 May 83

> [GET_VARexpr]

Returns the value of the variable name given
by expr. Returns $UNDEFINED$ if the vari-
able named by expr has not been defined.
ae

> [QUERYtext [default] [-TTY]]
Prints text, followed by a question mark, on
your terminal output stream.(If text is null, no
text appears.) Use quotes aroundtext and de-
fault if they contain special characters or em-
bedded blanks; these quotes arestripped before
printing. After text appears, answer by typing
YES, Y, OK, NO, N, or null. (You can use
uppercase or lowercase letters.) QUERY returns
TRUE if the answer was YES or OK, and
FALSEif it was NO. A null answer returns the
default value. If this has not been specified, it is
assumed to be NO.

The -TTY option forces QUERY to take input
from the terminal. A CPL program with the
-TTY option cannot be executed as a Batch job
or phantom.If you omit -TTY, QUERY takes
its response from the commandinput stream.

DATE / QUERY 45

> [RESCANstring]

Returns a string produced by stripping one

level of quotes from string and evaluating any

function calls or variable references that no

longer appear in quotes.

p> [RESPONSEtext [default] [-TTY]]

Prints text, followed by a colon, on your termi-

nal output stream. (If text is null, no text ap-

pears.) Use quotes around text and default if

they contain special characters or embedded

blanks; these quotes are stripped before print-

ing. RESPONSE reads the command input

stream for your reply, or takes it from the

terminal if you use the -TTY option. (Do not

use -ITY with Batch jobs or phantoms.) RE-

SPONSEthen returns your input as the value

of the function. If a null reply is entered, de-

fault is returned. If default is omitted, the null

string is assumed.

RESCAN / RESPONSE 46

CPL-RELATED
COMMANDS

Four PRIMOS commands handle global vari-
ables:

DEFINE_GVAR Activates or deactivates a
global variable file.

DELETE_VAR __ Deletes global variables.

LIST_VAR Lists names and values of
global variables.

SET_VAR | Sets the value of a variable.

> DEFINE_GVAR{J pathname [-CREATE]
_-OFF

Activating a File: The format,
“DEFINE_GVAR pathname —-CREATE?”creates
and activates a new global variable file. The
format “DEFINE_GVAR pathname” activates
an existing file.You must have LURW rights to
open or create a global variable file. If the
directory containing a global variable file is
password-protected, you must provide the full
pathname (including the diskname) within the

DEFINE_GVAR 47

DEFINE_GVAR command. You must have an
active global variable file in order to define or
refer to global variables.

Deactivating a File: You can deactivate a global
variable file in any of three ways:

e By giving the command “DEFINE_GVAR
—OFF”

e By giving the command “DEFINE_GVAR
pathname”, which deactivates the current file
and activates the new one

e By logging out

> DELETE_VARid-1 [... idn]

Removes the specified variables from an active
global variable file. id-L through id-n may be:

e Namesof global variables

e Wildcards

e Variable references or function calls that evalu-

ate to the namesof global variables.

> LIST_VAR [name-l ... name-n]

Lists the specified global variables, if they are
contained in the active global variablefile.

name-l through name-n maybeeither variable
names or wildcards. If no names are given,

LIST_VARlists all the variables in the active

file.

DEFINE_GVAR / LIST_VAR 48

> SET_VARname[:=] value

Creates and/or sets the value of a global vari-

able.

name is any legal variable name, up to 32
characters long. Names of global variables must
begin with a dot (.).

value can be any one ofthe following:

e A character string, up to 1024 characters long.
(Lowercase characters are not converted to up-
percase.) If the string contains special characters,
it must be enclosed in single quotes. These
quotes are included in the character count.

e A numeric character string Pepiong an in-
teger between the values of —27! + 1 to 2°) - 1.

e A character string consisting of the logical value
TRUE or FALSE(the forms TRUE, T,true,t,

FALSE,F, false, and f are acceptable).

The assignment symbol (:=) is optional.

Note
The SET_VAR command may be used both
interactively and within CPL programs. How-
ever, since the &SET_VARdirective is faster
than the SET_VAR commandand can produce
debug information on watch-list variables, we
recommend the use of the directive within CPL
programs.

SET_VAR 49

Two other PRIMOS commands, RSTERM and
TYPE, are often used within CPL programs to
perform terminal-related operations.

> RSTERM [-READ] [-WRITE]

Resets terminal input (READ) and/or output
(WRITE) buffers. If no arguments are given,
empties both buffers. Often used by condition
handlers for the QUIT$ condition.

>» TYPEtext

Outputs text at the user terminal or into a
command outputfile. text may contain embed-
ded blanks, variables, or function calls.

SET_VAR / TYPE 50

CPL-RELATED
SUBROUTINES _

Two subroutines allow high-level programs to
access global variables:

GV$SET Creates and/or sets the value of a

global variable.

GV$GET Retrieves the value of a global

variable. |

Datatypes
These routines use the PL/I data types

CHAR(*) VAR and FIXED BIN. To use them

in COBOL and FORTRANprograms, use the

following datatype conversions.

FORTRAN: The FORTRAN equivalent of

CHAR(*) VAR is an INTEGER*2 array. The

first element of the array stores the length of

the string to be passed. The rest of the array

contains the string, two characters per element.

The FORTRAN equivalent of FIXED BIN is

INTEGER*2.

CPL-RELATED SUBROUTINES 51

COBOL: The COBOL equivalent of CHAR(*)

VAR is a record structure. The first element

(datatype COMP) contains the length of the

character string to be passed; the rest of the

structure (datatype PIC X(n)) contains the

string itself.

The COBOL equivalent to FIXED BIN is

COMP.

Note

Before calling either the GV$SET or the

GV$GET subroutines, make sure you have used

the PRIMOS command DEFINE_GVAR to de-

fine your global variablefile.

>» GV$SET

GV$SET sets the value of a global variable. Its

calling sequenceis:

DCL GV$SET ENTRY (CHAR(*) VAR,

CHAR(*) VAR, FIXED BIN),

CALL GV$SET (var-name, var-value, code);

var-ename (input argument) is the name for the

global variable to be set. The name must follow

the rules for CPL global variables. All letters

must be in uppercase.

var-value (input argument) is the new value for

the variable var-name.

CPL-RELATED SUBROUTINES 52

code (output argument) is a return error code.

Codes returned include:

E$BFTSif the specified value is too big.

e E$UNOP if the global variable area is bad or

uninitialized.

e E$ROOMif an attempt to acquire more storage

by the variable managementroutinesfails.

> GV$GET

GV$GETretrieves the value of a global vari-

able. Its calling sequenceis:

DCL GV$GET ENTRY (CHAR(*) VAR,

CHAR(*) VAR, FIXED BIN, FIXED BIN);

CALL GV$GET(var-name, var-value, value-size,

code);

var-ename (input argument) is the name of the

global variable whose value is to be retrieved.It

must be in uppercase.

var-value (output argument)is the returned val-

ue of var-name.

value-size (input argument) is the length of the

user’s buffer var-value in characters.

code (output argument) is a return error code.

Codes returned include:

e E$BFTSif the user buffer var-value is too small

to hold the current value of the variable.

e E$UNOPif the global variable storage is un-

initialized or in bad format.

e E$EFNTEif the variable is not found.

CPL-RELATED SUBROUTINES 53

	Front Cover
	
	Title Page
	i
	Copyright
	ii
	Table of Contents
	iii
	Command Format Conventions
	iv
	CPL Terminology
	1
	2
	3
	4
	5
	CPL Operators
	6
	7
	CPL Format Rules
	8
	9
	10
	11
	12
	CPL Variables
	13
	14
	15
	16
	CPL Directives
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	Command Functions
	-- Arithmetic Functions
	33
	34
	-- String-Handling Functions
	35
	36
	37
	-- File System Functions
	38
	39
	40
	41
	42
	-- Miscellaneous Functions
	43
	44
	45
	46
	CPL-Related Commands
	47
	48
	49
	50
	CPL-Related Subroutines
	51
	52
	53
	54
	55
	56
	
	Back Cover

