Ring Zero Debugger User Manual PE-T-1278

TN
]
Date: November 14, 1985
To: R & D personnel
From: Bill Huber, Leonid Shvarts
Subject: Ring Zero Debugger User Manual
Reference: None
Keywords: Ring Zero Debugger, Debug, Tools
Abstract
This document describes the functionality of and uses for 'a new tool called”tHé “Ring Zero
Debugger. The Ring Zero Debugger is an assembly language debugger that allows®one 10~
control program execution of Primos code on a real-timé”interactive basis. Using: this tool, one
can effectively suspend the state of the entire system, examine or change n&itly asy: part of
the system, and then resume execution transparently. The most important feature of thé' Ring
Zero Debugger is the ability to set breakpoints nearly anywhete “in ":shared'“code. Despite its
name, the Ring Zéro Debugger can be used to set breakpoints in either ring”
The primary users of the Ring Zero Debugger are expected to be engineefs working on
either Primos or Primenet. However, it may prove helpful for' other tasks 'as diverse as)
debugging new hardware to debugging shared subsystem®code. : e

Prime Restricted

Ring Zero Debugger User Manual

4.1
4.2

4.3
4.4

Table of Contents

1. Introduction
1.1 Motivation
1.2 Ring Zero Debugger High-level Description
1.3 Document Format
2. The Basics of Using the Ring Zero Debugger
2.1 A Simple Example
2.2 Terminology
2.3 Data Type Conventions
2.4 Referencing Addresses
24.1 Address-expression’s
242 Break-expression's
25 The Active Process
2.6 The Effect of Entering the Ring Zero Debugger
2.7 Operational Procedures
2.7.1 Getting the Ring Zero Debugger
2.7.2 Configuring the Ring Zero Debugger
2.7.3 Ways to Enter the Ring Zero Debugger
2.74 The Command Environment
2.8 Basic Commands
28.1 Entering and Leaving the Ring Zero Debugger
2.8.2 The Status Command
2.8.3 Accessing Memory
_ 2.84 Breakpoints
2.9 Error Handling
3. Ring Zero Debugger Command Descriptions
3.1 Referencing Memory and Registers
3.2 Breakpoints and Single Steps
3.3 Examining a Process’s State
3.4 Examining the State of the System
3.5 Retrieving Symbolic Information
3.6 Program Variables
3.7 User-defined Commands
3.8 Miscellaneous Commands
4. Uses of the Ring Zero Debugger

Adding New Code

Tracking Down System Failures
4.2.1 Fatal Process Errors

4.2.2 System Hangs

4.2.3 System Halts

Debugging Hardware

Debugging a Customer’s System

Prime Restricted

PE-T-1278
Page i

Page

O VoWt D d e i

PE-T-1278 Ring Zero Debugger User Manual

Page ii

4.5 Shared Subsystems -
4.6 A New Angle on Performance

5. Implications of the Ring Zero Debugger Design
5.1 Effect of Breakpoints
5.1.1 General Effects
5.1.2 Stack Implications
5.1.3 PCL Instructions
5.1.4 Single Stepping
5.2 The Issue of Non-resident Memory
5.3 Using a Separate Process
5.4 Warmstart
S5 Effect on the Primos Load

APPENDIX A. Finding Variable Information from Listings
APPENDIX B. Command Syntax

APPENDIX C. Assembly Language Syntax

APPENDIX D.V Error Messages

APPENDIX E. Summary of Functionality Limitations

APPENDIX F. Maintenance Notes
F.1 Changes to Primos for the Ring Zero Debugger
F.2 Areas Most Likely to Chang
F.3 Getting a Load Map '
F.4 Reporting Errors

Index -

Prime Restricted

59
60

61
61
61
63
64
65
66
67
67
68

71

75
79
81
89

91
91
92
93
94

95

Ring Zero Debugger User Manual PE-T-127%
Page 1

1. Introduction

Before discussing details of the operation of the Ring Zero Debugger, some overview of the
debugger and this document should be helpful. This chapter will give a brief statement
concerning the motivation for implementing the debugger. Next it will describe the debugger in
very- general terms. Finally this chapter will discuss the format of the rest of the document.

1.1 Motivation

The only methods that exist for debugging Primos ring zero code without the use of the
Ring Zero Debugger are very crude. These methods were common two decades ago but are an
extremely poor way to do program' development today. These methods include putting halt
instructions directly in the code and taking tape dumps, or modifying the code to print values
of variables on a console. It should be easy to see that this approach has numerous problems.
Foremost among them is the large amount of time needed to fully debug even a small piece
of code. In general, the need for a program debugger for efficient program development is
fairly obvious.)

To address this situation, a new tool known as the Ring Zero Debugger has been written.
The primary goal of this tool is to increase the productivity of Prime engineers developing
code in ring zero. Because of the way that the debugger has been implemented, this increase
in productivity should be ‘true for ring three shared code as well. The claim for increased
productivity is based on two assumptions. One is that the program development time will be
much s_horter due to the interactive nature of the debugger. The other is that new or
modified code will be more reliable due to the ability to more fully check all code paths and
simulate error conditions.

1.2 Ring Zero Debugger High-level Description

The Ring Zero Debugger is an assembly language, system-level debugger. The only
assembly language that it supports is Prime V-mode. The Ring Zero Debugger can run on
any Prime processor which supports V-mode (including dual processors, such as the P850).
The debugger is described as a system-level debugger since it stops the entire system when
entered, not just a single process. It also has commands which relate to the system as a

whole, in addition to process-specific commands.

As with any débugger. the most significant feature in the Ring Zero Debugger is the
ability to set and clear breakpoints. The debugger allows users to set breakpoints nearly
anywhere in both ring zero and ring three shared code. Breakpoints can specify a particular
process in the system or thev can be for any process. The ability to single step through code

is also provided.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 2

The other features available with the Ring Zero Debugger are based primarily on three
other tools. These other tools are DBG (Prime’s Higher-level-language Debugger). Autopsy (an
internal tool for analyzing crash dumps), and VPSD (a crude assembly langauge debugger for
V-mode). Some of the other features include the ability to reference memory or registers of
any process in the system, the ability to completely examine a processs state, the ability to
examine certain system data bases, the ability to examine local program variables by name,
and the ability to translate addresses from virtual to physical and vice versa. Much of the
information is displayed symbolically based on symbols in the Primos load maps.

The debugger is built into Primos as part of the ring zero load. Thus the debugger and its
sources will reside on the Master Disk as part of Primos and will be shipped to customers.
However, the debugger is not a product and will not be documented in any Prime manual.
The only place that the procedure for configuring and entering the debugger is described, is in
this document which is only available to Prime personnel. Thus the debugger will exist in

Primos at customer sites but most of them will not know it's there or how t0 use it.

1.3 Document Format

The main purpose of this document is to describe the functionality of the Ring Zero
Debugger so that a person unfamiliar with it can learn how to use it. This document assumes
the reader has some familiarity with Prime processor architecture and also with some Primos

internals. If this is not the case, some background reading may be helpful.

As regards the format of the rest of the document, chapter 2 describes the most basic
functions of the debugger. It covers all aspects of the debugger environment and then
introduces 2 few elementary commands. Chapter 3 describes the complete functionality of .the
debugger by functional groupings. All commands in the debugger are described here. Chapter 4
gives some examples of the way that the debugger can be used to solve various problems.
Finally chapter 5 describes some implications of the debugger design that have user-visible
effects. All but the most casual user of the Ring Zero Debugger should read this chapter
since it gets to the heart of some of the limitations that the debugger has.

In addition to the basic chapters, there are a number of appendices that can be used as a
reference for various details. These include information such as finding variables from a
program listing, the exact syntax of the debugger commands, the syntax of the assembly
langauge, descriptions of error messages, a summary of debugger functional limitations, and

notes on maintaining the debugger.

Prime Restricted

Ring Zero Debugger User Manual _ PE-T-1278§
Page 3

2. The Basics of Using the Ring Zero Debugger

The purpose of this chapter is 1o introduce users to the basics of the Ring Zero Debugger.
Its role is to provide one with enough knowledge to be able to use some of the most
fundamental commands. Included in this chapter are descriptions of how to configure and
invoke the debugger, how to reference addresses, what some simple commands can be used for,
and how errors are reported.

2.1 A Simple Example

Before discussing the details of the debugger, this section will present a simple example of
what a small debugging session might look like. This example will show the commands that
one might issue to step through a small section of code to verify that it works correctly.
-The reason for showing the example is not so all the commands will be understood, but
rather to start to get a feel for the type of abilities that one has with the debugger.

The small section of code is an actual Primos routine. It is written in assembly language
and is shortcalled. The purpose of this routine is to increment a pointer by the size of a page
map entry and return that pointer. (The size of a page map entry varies depending on the
type of processor.) The name of this routine is pgstep and a segment of its listing is shown
below.

Q01351: 911415.000012S (1289) PGSTEP STL ARGPTR

001353: 045435.0000125 (1290) . LDL ARGPTR,s
001355: 015414.002122 (1291) ADL PME_LENL
901357: 203403.000000X (1292) JMP XB%

One can see from this listing segment that the routine is very simple. It picks up the
argument (a pointer), adds the size of a page map, and returns with the new value in the L
register. In the following sequence, the debugger will be entered, a breakpoint will be set at
pgstep, the debugger will be exited, and finally a Primos interrupt process will hit the
breakpoint causing the debugger to be reentered. '

\

Debugger entered due to console interrupt.
Process -20 (BK1PCB) was executing ot 6(8)/42313 (BK2PB + 4)
=> breakpoint pgstep

-> listell
Type Address Procedure Process Count Mnemonic
brkpt 6(0)/50143 - PGSTEP Any 1 STL

=> continue
Leaving the debugger.

Debugger entered due to breakpoint/single step.
Process -9 (PNCPCB) was executing ot 6(@)/50143 (PGSTEP).
->

Now that we have hit the breakpoint, we can examine the code to assure ourselves that we

Prime Restricted

PE-T-1278 ' Ring Zero Decbugger User Manual
Page 4

are at the right place. The code looks like what one would expect so we also try single
stepping through two instructions.

=> OCCess o

6(0)/50143 STL% SB7Z+ 12
6(0)/50145 LDLZ SBZ%+ 12 ,»
6(@)/50147 ADL% S0714
6(@)/50151 JMPZ XB%+ @ ?
-> step

Debugger entered due to breakpoint/single step.
Process -9 (PNCPCB) was executing ot 6(@)/50145 (PGSTEP + 2)
-> step

Debugger entered due to breckpoint/single step.

Process —9 (PNCPCB) wos executing at 6(@)/50147 (PGSTEP + 4)

The next step is to examine the value of the input pointer (which at this point is in the L
register) and the value of the page map entry size. The entry size of 1 is correct for the
current processor, sO we can move on and see that the addition takes place correctly by
examining the L register after the addition.

—> access_register |
L (high order): 0@R600
L (low order): 257411
=> access_type octol
~> occess 6/50714
. 6(@)/50714 20000
6(0)/50715 eeee01 ?
-> step
Debugger entered due to breakpoint/single step.
Process -9 (PNCPCB) wos executing ot 6(0)/56151 (PGSTEP + 6)
—> occess_register |
L (high order): 200600
L (low order): ©57412
->

We have now seen that the pointer was incremented correctly. If it hadn’t been, we could
have modified the value in the L register and let the program continue. One last thing we
might be curious about is where the routine was called from. A simple way to determine

this is to single step one more time. After doing this we see that pgstep was called from
the routine mapio. - Finally we delete all breakpoints and leave the debugger.

~> step

Debugger entered due to breakpoint/single step.
Process —9 (PNCPCB) was executing ot 11(8)/1676@
(MAPIO + 157). ’

—> clearall

-> continue

Leoving the debugger.

Prime Restricied

Ring Zero Debugger User Manual PE-T-127§
. . Page §

2.2 Terminology -

Before describing the Ring Zero Debugger. it is useful to define a few terms which have

taken on special meanings when used to discuss different features of the debugger.

active process Many debugger commands assume a given process if one is not specified
explicitly. The process assumed is called the active process. When the Ring
Zero Debugger is entered, the active process is set to the process that was
pre-empted to run the debugger. The active process can be changed by a
Ring Zero Debugger command.

original process This refers to the process which caused the Ring Zero Debugger to be
entered. This notion is significant since single steps operate on the original
process.

program variable In the context of the Ring Zero Debugger, program variables refer to those
user-defined names found in various programs. The debugger provides the
capability to allow a user t0 manually define names from local programs
and later use these names to display values of the data objects.

symbol. In the context of the Ring Zero Debugger, the term “symbols” refers to
those object names found only in the Primos load maps. (both ring O and
ring 3)

2.3 Data Type Conventions

A common source of confusion with some programs (e.g. Autopsy) is what radix or
number system an item is printed in. An attempt has been made throughout the Ring Zero
Debugger to display all numbers of then_;same radix in the same format. The conventions are
the following. Single-precision octal numbers are printed as 6 zero-filled octal digits. Double-
precision octal numbers are printed as 11 zerofilled octal digits. Single-precision decimal
numbers are printed as 5 blank-filled decimal digits. Double-precision decimal numbers are
printed as 10 blank-filled decimal digits. Hexadecimal numbers are printed as 4 zero-filled
hexadecimal digits.

In terms of particular objects, there are also’ conventions about the radix used. Process
numbers and single step or breakpoint counts are always in decimal. Addresses and contents of
registers are always referenced as octal numbers. Offsets from addresses are also assumed to be
in octal. Appendix B indicates the radix used in each command should there be any confusion.

2.4 Referencing Addresses

A large number of commands in the Ring Zero Debugger require an address as an
argument. For ease-of-use, the debugger allows a number of different ways of specifving an
address. The term applied t0 the different forms the addresses can take is an address-

expression. A similar but different form is used Just with breakpoint commands. It is called a

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 6

break-expression. -

2.4.1 Address-expression's

An address-expression can take on 3 different forms. The most obvious is specifying a
virtual address directly as in 6000/16100. In this form the segment number and word offset
must be specified separated by a /. There is no ring number. One can also specify an offset
in octal from the given virtual address as in 6/35120+100 or 15/3200-35.

Another form of address-expression allows an address to be specified as a relative offset
from global symbols found in the Primos load maps. If the symbol refers to a procedure
name (as opposed to a "common” or “other” symbol type), the value used for the symbol is
the starting address of the routine. If the symbol is a "cominon™ or “other” symbol type, the
given address is used. The format for symbolic address-expression’s is a symbol followed by
either a2 + or - and then the octal offset as in PRWFS$8+200.

The last form of address-expression permits addresses as offsets from the base registers. The
allowable base registers are known as SB%, LB%, XB%, and a special symbol * The first 3
base registers refer to the same registers one would specify while writing in PMA. An address
is formed by taking the contents of the specified base register for the active process and
adding or subtracting the optional offset. The last form, * refers to the current conients of

the original process’s program- counter. The base register form is useful when examining

assembly language where the operands are expressed in terms of base registers, eg. LDA
LB%+412. Some examples of valid address-expressions are shown below.

6/35043
6003/1200-100
prwi{ss$+200
pudcom
sb%+12

*

*+100

For a more formal definition of an address-expression, see appendix B.

2.4.2 Break-expression’s

The breakpoint commands require arguments similar to address-expression’s. These arpuments
are known as break-expression’s. They permit the same virtual address and symboljc-forms as
do the address-expression’s but they do not allow the base register relative form (except for *).
Another difference with break-expression’s is that they can be used to specify which process
should be breakpointed. The breakpoint command will be described later but it should be

noted at this point that a breakpoint can be set for either a particular process or for all

Prime Restricted

Ring Zero Debugger User Manual ’ PE-T-127%
Page 7

processes. To specify a particular process, say process 5. one might say:
breakpoint S:prwS$S+1

To specify that .any process which encounters the same breakpoint should trap, one would say:
breakpoint prwfsS+1 |

Some further examples should demonstrate the different types of allowable break-expression’s.

breokpoint 6/50212+20
breakpoint 22:15/3120
breakpoint prwf$$+1
breakpoint 230:prwf$$+222

For a more formal definition of a break-expression, see appendix B.

2.5 The Active Process

Because the Ring Zero Debugger is a system debugger, it is important for it to be able to
examine or change the state of any process in the system. To permit this ability yet retain a
simple command structure, many debugger commands assume a certain process. This process is
known as the active process. This means that if a command references a process’s registers

or a process’s private address space, the process that it uses is the active process.

The active process is détermined by the way in which the debugger is entered but can be
changed by a debugger command. If the debugger is entered at coldstart due t0 a sense switch
setting, the active process is process number 1. If the debugger is entered due to a breakpoint
or single step, the active process is the process which encountered the breakpoint or single
step. If the debugger is entered due t0 a console interrupt, the active process is the process
which owned the "last” register set when the clock process was servicing the system console.
(This implies the master cpu on the P850.) The active process can be examined and changed
by the lookat command. This command is described in the following section and in other
chapters as well.

2.6 The Effect of Entering the Ring Zero Debugger

There are a number of different ways to enter the Ring Zero Debugger but all of them
have the same effect on the state of the system, namely it will appear to be suspended.
While in this state, no hardware interrupts will be serviced and no processes other than the
Ring Zero Debugger process will be executing. Even phantom interrupt code will not be
executed since hardware device interrupts are disabled. However, any DMX in progress will
continue. Only the debugger process will be executing and it will not relinquish control to <

Primos until the debugger is exited.

Prime Restricted

PE-T-1278 Ring Zero Decbugger User Manual
Page 8

One of the more visible signs of suspending Primos by invoking the Ring Zero Debugger is
that time will be suspended. This is due to the fact that not even the clock process will run
while in the debugger. Therefore the system time-of-day will be off by the amount of time
spent in the debugger. Without the clock process running there will also be no basis for local
devices to timeout. Thus when one leaves the - debugger, all device i/o will continue
normally. However, a system that has invoked the debugger will probably appear down to
other systems on the network, depending how long one is in the debugger.

2.7 Operational Procedures

Before discussing the specifics of commands in the Ring Zero Debugger, one must know
how to get the debugger, how to configure it, how to enter it, and finally what the
command environment looks like inside the debugger. These topics- are discussed in this section.

2.7.1 Getting the Ring Zero Debugger

The Ring Zero Debugger is built into Primos as part of the ring zero load. This happened
at Primos revision 20.1 and will be true of any later version. Everything that the debugger
needs is already built into Primos. Thus one need only have a recent enough version of
Primos and having the debugger is guaranteed.

2.7.2 Configuring the Ring Zero Debugger

In order to provide the various functions described in this document, the Ring Zero
Debugger must use a large amount of wired memory. In fact the entire debugger must be
both coldstart resident and wired. This does not make much difference to an engineer
debugging code in the lab but it certainly makes a difference to Prime customers who are
interested in performance and throughput. Thus one of the features of the debugger is the
ability to be configurable. If the Ring Zero Debugger is not configured, no wired memory will
be used just for the debugger. In fact, there will be no discernable effect of any kind on the
system. The means for communicating configuration information to the debugger is through the
processor sense swiiches.

The processor sense switches are set by giving an argument 1o the boot command when
the system is first coldstarted. A common sense switch setting is 14114. With the addition of
the Ring Zero Debugger to Primos, there are now two newly defined bits. One bit, bit 2, will
cause the Ring Zero Debugger to be configured. The other bit, bit 3, will cause the debugger
to be entered during coldstart code. Thus, to come up in the debugger when coldstarting, a
typical sense switch setting would be 74114, whereas just configuring the debugger would be
54114. (The illogical combination of bits which indicates “enter the debugger during coldstart
but don’t configure the debugger” is ignored.)

Prime Restricted

Ring Zero Debugger User Manual " PE-T-1278
Page 9

2.7.3 Ways to Enter the Ring Zero Debugger

There are three different wavs to enter the Ring Zero Debugger. It can be entered by

Primos initialization code during coldstart, by issuing a special key sequence on the system

console, or by encountering a previously set breakpoint (or single step).

~ The way t enter the Ring Zero Debugger dﬁring coldstart is to boot the system with the
previously discussed sense switch settings. This will cause the debugger to be entered the first
time process exchange has been turned on. This is important because it means that nearly all
Primos coldstart initialization code can be debugged using the Ring Zero Debugger. The only
code that can’t be debugged during coldstart, besides the boot program on disk, is the coldstart
code before process exchange is turned on.

Another, more common way to get into the Ring Zero Debugger will be to just issue a
special key sequence on the system console. This special sequence is control-c backslash or "c\’.
It can be issued at any time and should cause the debugger command level to be entered.
This is known as a console interrupt. (If one needs to input the sequence "“c\' to user 1

while the debugger is configured, one can type *“¢c"c\. This will not cause the debugger tw be
entered but will put "c\’' in the user 1 input buffer.) If for any reason there is outstanding
or unprocessed input to the debugger when it is entered with a console interrupt, the input
will be ignored.

2.7.4 The Command Environment

The -only way to communicate with the Ring Zero Debugger is through the system
console. Communicating with the debugger will not affect regular Primos user 1 operations
since Primos is basically suspended while the debugger is running.

The Ring Zero Debugger does not change the baud rate of the system console. Thus
whatever rate you have it set for in Primos (using the asrate config directive) will be the
rate you will see while in the debugger. The exception to this is when the debugger is
entered during coldstart before the config file is read. In this case the baud rate of the system
console depends on the boot program on the disk.

The Ring Zero Debugger will use the system default erase and Kkill characters. These values
can be set by config directives (erase and kill). The system supplied defaults are " for the
erase character and ? for the kill character.

The debugger also supports xon-xoff and quits. A control-s stops output and a control-q
resumes output. A control-p will cause a quit to happen in the debugger. A quit will mean
the currently executing operation will be aborted and the debugger will return to command
level. A quit also causes the command buffer for the debugger to be emptied, in the event
that there are other, not-executed commands in it. Unlike Primos quits, the command cannot
be restarted. With xon-xoff and especially quits, it should be noted that the quit or xoff may

Prime Restricted

e

PE-T-1278 | Ring Zero Debugger User Manual
Page 10

not alwavs appear to be working immediately, especially at low baud rates. This has o do

with the fuct that there is a buffer on the VCP that must empty before console input can
be read.

One other point should be made about xon-xoff. While executing in the debugger, all
echoing of characters is done by the VCP, not the debugger. This means that when one types
xoff on the terminal, it is always echoed back to the terminal. This can create problems if
the terminal treats an echoed xoff as a flow-control character and locks up the terminal
keyboard. This happens on PST100 and PT45 terminals but not on a GE Terminet or a Perkin
Elmer Fox. The solution to the problem on a PST100 is w use the "pause” key instead of
control-q and control-s. There is no known way to get around this problem on a PT4S.

Some final points about the command environment within the debugger concern the
command line. A command line can only be 1 line long. However, multiple commands can be
stacked on the same line by separating them by a ; There are no continuation characters to
extend debugger input beyond one line. The maximum length of a line is 256 characters. -

Rd

2.8 Basic Commands

Having discussed the debugger command environment, this next section will describe how
10 use some of the most basic commands. A more thorough discussion of these and other
commands is given in the next chapter.

2.8.1 Entering and Leaving the Ring Zero Debugger

The most common means of entering the Ring Zero Debugger is to use a special key
sequence as described earlier. Typing this key sequence on the system console will immediately
invoke the debugger, thereby suspending Primos. Regardless of the way the debugger is entered,
it will always print a line indicating that the debugger has been entered and stating the
reason for it having been entered. Then it will print the unique debugger prompt, ->, and
wait for a debugger command.

Ring Zero Debugger commands perforni a vartiety of functions but only two of these
commands cause Primos to resume execution. One of these, the step command, will be discussed
in the next section. The other command is continue. The continue command, abbreviated as 'c’,
causes the debugger to stop execution and thus allows Primos to resume just Where it was
interrupted. The following example shows what would be seen at the system console wWhen
the Ring Zero Debugger is entered and then left.

Prime Restricted

Ring Zero Dchugger User Manual PE-T-1278
Page 11

oK.\

Debugger entered due to console interrupt. =
Process -2@ (BK1PCB) was executing at 6(8)/42313 (BK2PB + 4).

-> continue

Leaving the Debugger.

stot me

User No Line Devices
SYSTEM 1 asr <LABSYS>
oK,

In this example, the user enters the debugger by typing control-c \. This causes the
debugger to print both the banner lines and prompt, and then wait for input. The debugger
always indicates which process was interrupted by the debugger and where this process was
executing. At this point the user types “continue” to leave the debugger. The debugger
indicates: that it is being exited and at that point Primos resumes execution. One should note
that there is no additional prompt from user 1 when Primos begins to run again. This is due
to the fact that the execution of the debugger is completely invisible to Primos. User 1 is
completely ignorant of the fact that the debugger has been entered and debugger commands
may have been issued.

2.8.2 The Status Command

An important part of debugging is determining the current state of a process. A process's
state consists of the process’s address space and registers. The status command can be used to
examine important parts of a process’s state. The easiest form of this command -takes no
arguments. This form will ‘display information about the active process. An example of this
command is shown below after encountering a breakpoint at location pagtur+l.

Debugger entered due to breakpoint/single step.
Process 3 was executing ot 6(0)/45205 (PAGTUR + 1).
=> status
Process 3 WSH sse Owns register set 1 eee
Level: Priority 1 user
Type: Normal terminal user
State: Ready

PB: 6(0)/45205 (PAGTUR + 1)

LB: 6(0)/46002 (PAGTUR)

S8: 6000(0)/1264 XB: 6(®)/55534

L: 000010 100077 E: 000000 000000
X: 220000 Y: 177777

FARO: 000000 200000 FLRE: 000000 000000
FAR1: 000000 000002 FLR1: 000020 000000
Keys: 834100 Modals: 180077

Fcode: 045206 900040 Faddr: 6(0)/1703

->

The status command first indicates the process number and, if available, the login name of the x
process. If the process is an interrupt process, it will have a process number of less than 1.

(Interrupt processes are a special form of process used to service devices such as disks and

Prime Restricted

PE-T-1278 Ring Zero Decbugpger User Manual
Page 12

terminals, or for other special purposes.) Interrupt processes have there own special names, such
as DKIPCB for the first dish interrupt process. 1f the process happens to own a register set.

(as opposed 10 just owning a pcb), this will also be indicated.

The next three lines printed by the status command convey information about the specific
process being examined. Level refers to the ready list level. Type refers to the process
type. Examples of vgifferent types are phantom, NPX slave, network process, etc. Interrupt
processes do not éﬁow a type. Finally the state indicates whether a process is on the ready
list or waiting on a semaphore.

The remaining lines of the status command output show register values. All values are
shown in octal. The base registers are printed as pointers. The names that follow the PB and
LB register correspond to names found in the Primos load maps by looking up the values of
the given register. In the case of the PB or program counter, the value is an educated guess
at which routine and offset the program is executing in. In the case of the LB, a match
always indicates that the process is in the named routine, except when this routine shortcalls
another routine.

2.8.3 Accessing Memory

A crucial ability of the Ring Zero Debugger is the ability to examine and change memory.
The most straight-forward way of doing this is to use the access command. This command
allows one to0 examine any resident memory in the system in a variety of formats. The
format assumed in the access command is set by using the access_ type command.

The access__type command allows one to examine memory with the access command in 6
different formats. One can reference memory as ascii text, as a bit string, as a decimal, hex,
or octal number, or, lastly, as V-mode assembly language. The corresponding arguments to the
acces_type. command to set the assumed type are ascii, bit, decimal, hex, octal, and symbolic.
These can be abbreviated as a, b, d, h, o, and s. The current access__type can be deuermined

by issuing the access__type command with no argument.

Having set the access__type, one can now examine memory by using the access command.
It takes any address_expression as an argument. The command will cause the specified
location of the active process’s address space to be displayed in the access__type format. At
this point one may enter a new value for the accessed location. Whether this is done or not,
the debugger expects a special terminator character which indicates one of the following:
examine the next Jocation in sequence (carriage return), examine the previous location in

sequence (°), or abort the access command without changing the current location (? or /).

One other command which should be noted is the lookat command. The access command is
set up so that address__expression's that reference a private address (e.g. 4000/100), assume that

it is the private address space of the active process. However, if one wants to examine the

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 13

private address space of a process other than the current active process, the active process must
be changed. This is the function of the lookat command. It takes a process number as an

argument and makes this process the new active process.

An example should help clarify the way access__type, access, and lookat are used. In this
example, the access type is set to octal and a sequence of numbers is corrected. Next the
private address space of process S is examined.

~> access_type

Current access type is symbolic.
=> access_type octal

~> occess_type

Current access type is octal.
~> access 6/5000

6(e)/5000
6(0)/5001
6(0)/5002
6(0)/5003
6(0)/5002
6(0) /5003
-> access 6§
6(0)/5000
6(0) /5001
6(0)/5002
6(0)/5003
-> lookat
Active process is -20.
_=> lookat 5

=> lookat

Active process is S.

=> access 4000/100
5:4000(0)/100 064000
S:4000(0)/101 177777 7
->

R

5000

PUNSNE 22 AN-

A more efficient way of examining a number of words of memory is to use the dump
command. It requires two arguments, a starting and an ending address. Both these arguments

must be valid address-expressions. The dump format also depends on access__type.

—=> occess_type

Current occess type is octol.

-> lookat

Active process is S.

-> lookat 3

-> fookat

Active process is 3.

~> dump 6000/10 6000/15

3:6000(0)/10 000203 000300 200717 006362 000000 000000
->

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 14

2.8.4 Breakpoints

The most important function provided by the Ring Zero Debugger is the abilitv to set
breakpoints. Breakpoints can be installed nearlv anvwhere in shured code. When a breakpoint
is encountered by a process, control is passed to the debugger prior to the execution of the
instruction at the specified location.

Ring Zero Debugger breakpoints provide the option of setting a breakpoint for either a
particular process or any process which encounters it. They also provide the ability to have an
associated count. This count indicates that the breakpoint will trap only when the breakpoint
has been passed through a specified number of times. A complete description of breakpoints is
given in section 3.2.

A simple example of installing a breakpoint is shown below. In the example below, two
breakpoints are installed.

=> breaokpoint prwf$s+1

-> breaokpoint 6/44242

->

A very important point t0 note about breakpoints is that one must be sure that the given
address is actually the beginning of a valid instruction. The Ring Zero Debugger has no way
of knowing whether a specified location is code or data. In fact, it cannot even tell whether
a location contains the first word of an instruction or the second word. If a breakpoint is
put in the wrong place, the breakpoint will probably never invoke the debugger but rather
cause the system to be corrupted. Thus one should never set a breakpoint at just any
random address without knowing beforehand that the given location contains the start of a
valid instrucion. -

Once a breakpoint has been installed, one can issue a command to examine the state of the
breakpoint. The command to examine a particular breakpoint is list. It takes a breakpoint-
expression as an argument. The command to show the state of all breakpoints is listall.
These commands are shown below. A complete description of the fields shown is-given is
section 3.2.

> list pogtur+1

Type Address Procedure Process Count Mnemonic
brkpt 6(8)/45205 PAGTUR + 1 Any 1 CRA
=> tistall

Type Address Procedure Process Count Mnemonic
brkpt 6(0)/45205 PAGTUR + 1 Any i CRA
brkpt 11(@)/31237 PRWF$S + 1 Any 1 LDA
->

Once a breakpoint has been installed at a location, it remains there until it is explicitly
removed. That is the function of the clear command. It takes a breakpoint-expression as an

argument. The clearall command removes all breakpoints.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 15

-> clearall

> fistall

No breakpoints are set. L
~> breakpoint prw{$3+1

~> cleor prwf3d+1

-> listall

No breakpoints are set.

2.9 Error Handling

Various types of errors can occur while one is using the Ring Zero Debugger. In the
context of the debugger these are broken into 4 classes: user errors, warnings, system errors,
and faults.

User Errors

User errors occur when a user has requested something of the debugger that it either does
not understand or cannot do. The assumption is that in most cases, the user is responsible for
correcting the situation. When such a condition occurs, the current command is always aborted
and control returns to the debugger command level. Descriptions of all user error messages are
given in appendix D. Some examples of these error messages are shown below.

-> foo

see Debugger user error:
Unknown command.
~> clear pogtur+2

eee Debugger user error:
No breakpoint exists at specified oddress.
->

Warnings

Warnings occur when the debugger may have failed to perform some action and therefore
its future operation may not always be correct. A user is in no way responsible for causing
this condition. Presently there is only one such case in the debugger. Warnings only refer to
any debugger operation still in progress. If the operation either terminates or is aborted, then
the warning can be ignored.

System Errors

System errors occur when there is some internal inconsistency within the Ring Zero
Debugger. The assumption here is that the condition has been caused either by an error in the
debugger software or an error in the system hardware. If the problem does not seem as if it2

is related to the hardware, the problem should be reported as described in appendix F.4.

Prime Restricted

PE-T-1278 Ring Zero Decbugger User Manual
Page 16

Faults

The Ring Zero Debugger has u separate fault handier for its own process. If a fault occurs
while the debugger is running, the fault handler will print a message describing the fault,
abort the current command, and return to command level.

Some faults, notably page and segment faults, can be expected to happen often. The reason
for this is that the Ring Zero Debugger does not have the ability to reference non-resident
memory. (For a further discussion of this point see section 5.2.) Any command which does so
will cause the debugger to take a page fault, abort the current command, and print an error
message. If one is determined to reference certain memory, the only recourse is to leave the
debugger and attempt to have Primos bring it in. One way t do this is by touching it with
VPSD. A simple example of a page fault is shown below.

-> access p$cidx

41(@)/137775 ARGT

41(0)/137776 LDA§ 148316 -

41(8)/137777 STA§ SBA+31

41(@)/140000

ee» Foult while in debugger:

Page fault (type 10) encountered ot 55(8)/15233

) Attempt to reference 41(@)/1400080

->

While most faults encountered by users are innocuous, a few may indicate serious
problems. Page and segment faults usually only indicate non-resident or undefined memory. If
this does not seem to be the'case, or if any other type of fault occurs, the fault probably
indicates a debugger software or system hardware error. In this case, the error should be
treated like a system error and reported as described in appendix F.4.

Prime Restricted

Ring Zero Dcbugger User Manual ' PE-T-1278
_Page 17

3. Ring Zero Debugger Command Descriptions

The purpose of this chapter is to give full descriptions of all the commands in the Ring
Zero Debugger. Each section in this chapter describes a number of commands that are related
based on their functionality. The format of each section is to give descriptions of the
commands followed by examples of all the commands in the current section. In specifying the
_command syntax, the common convention of surrounding optional arguments by []is used.

3.1 Referencing Memory and Registers

This section will describe commands that can be used to read and write either resident
memory or a process’s registers. Memory can be printed in a variety of formats for any
process. A command to search for patterns in memory is also discussed.

Referencing Memory - The Access Command

The generic format for the access command (abbreviated a) is:
Access <goddress—expression>

where
<address—expression> is described in section 2.4.1

The access command prints the contents of the active process’s memory at the specified address
and waits_for keyboard input. The type used for printing memory is set by the access-type
command. The input consists of an optional new value for the current location and a
required access command terminator. Any new input must be in the current access-type. Valid
terminators are: a carriage return, which causes the next memory location to be accessed, a
'™, which causes the previous location to be accessed, and 2 "7 or a '/, which causes an exit
from the access mode without changing the currently accessed location. This command will not

wraparound when it hits a segment boundary. It will cross into the next segment

Referencing Registers - The Access__register Command

The generic format for the access_register command (abbreviated areg) is:
Access_REGister <occess—registers>
where
<occess-registers> ::= A { B | L | E| x|{Yy | PB]|SBI| LB |
X8 | DTARe | DTARt | DTAR2 | DTAR3 |
KEYS | MODALS | OWNER | FCODE |

FADDR | TIMER | FAR® | FLR® | FAR1 |
FIRT { @ | ... | 77

Prime Restricted

PE-T-1278 Ring Zero Dcbugger User Manual
Page 18

The access__register command prints the_contents of the specified register for the active process
and waits for keyboard input {(in most cases). Register valuss are shown in octal. Allowable
input is either a new value for the register, in octal. or just a carriage return. A carriage
return leaves the value of the register unchanged. Certain registers cannot be changed (e.g.
FCODE and PB). In these cases, the command will not wait for input. The numbers 0 w0 77
octal refer to the registers in the system register sets. These registers are DMA channels and
microcode scratch registers.

Changing the Access__type - The Access_type Command

The generic format for the access_type command (abbreviated atype) is:
Access_TYPE [<occess—type>]
where

<access—type> ::== Ascii | Bit | Decime! | Hex | Octol |
Symbelic)

The access__type command sets the type that is used in printing memory. This attribute is
relevant for both the access and dump commands. The access__type attribute remains in effect
until the next access__type command is issued. Thus, leaving and re-entering the debugger has
no effect on the access-type. The symbolic type refers to V-mode assembly language. If no
type is given, the current type is displayed. The access-type’s can be abbreviated by the first
letter of the type (eg. ascii=a, etc.).

Displaying Memory - The Dump Command

‘The generic format for the dump command (abbreviated d) is:
Dump <address—expression> <oddress—expression>

where
<oddress—expression> is described in section 2.4.1

The dump command prints the region of memory from the first argument to the second
argument. The memory examined will be that of the active process. When the end of a
segment is reached, the next location referenced is the first word of the next segment in
sequence. The type used to print memory is determined by the access__type command.

Changing the Active Process - The Lookat Command

The generic format for the lookat command is:

LOOKAT [<process—number>]

Prime Restricted

Ring Zero Decbugger User Manual PE-T-1278%
Page 19

where
<process—-number> : .= g decima! number

The lookat command makes the specified process be the active process (see 2.5). This command
determines which process’s private address space will be referenced by debugger commands. lt
will overwrite the existing active process value. If a process number is given, it must be
either a valid interrupt process or a lopged-in user process. The active process will not
change unless another lookat command is issued or until the debugger is exited. If no

argument is given, the currently active process is displayed.
Searching for Patterns in Memory - The Search Command

The generic format for the search command (abbreviated srch) is:

SeoRCH <oddress—expression> <oddress—expression>
<search-pattern>

where

<address—~expression> is defined in 2.4.1

<search-pattern> ::== 'string’ | <octal—-list> <search-mask>

<search-mosk> ::== & <octali-list> | <empty>
The search command searchs the region of memory from the first argument to the second
argument for a given sequence of words. The meniory examined will be that of the active
process. When the end of a segment is reached, the next location referenced is the first word
of the next segment in sequence. The pattern to search for can be a string of up to 20
characters long or a sequence of up t eight 16 bit octal numbers. Single-quote marks can be
put inside strings by using two single quote marks for each single quote mark desired. An
optional mask of octal numbers can bé specified for search patterns specified as octal numbers.
The optional mask will be logically AND'ed with memory before the comparison. The optional
search mask can be smaller (i.e. fewer words) than the search pattern. The memory region

will be searched for all matches except for patterns which overlap a previously found pattern.
Examples

A number of the commands described in this section were shown in examples in the
previous chapter. The access, access_type, dump, and lookat commands were shown in
examples in section 2.8.3. An example of the access_ register command is shown below. In
this example, the L and XB registers were supposed t0 be the same but were not. Thus, the

XB register was changed to be the same as the L.

Prime Restricted

PE-T-1278 ' Ring Zero Debugger User Manual
Page 20

-> occess_register |

L (high order):. ©000R4

L (low order): 100300

—> octcess_register xb

XB (nigh order): 000085 4

XB (low order): 177777 1ee3ee

-> access_register xb

XB (high order): 020004

XB {low order): 100300

->

The search command allows one to search for patterns as either ascii strings or as a series
of octal numbers. In the example below, a particular string (part of an 10AS control string) is
searched for. Finding this string could allow one to change it with the access command,
should it be wrong.

-> seorch 55/@ 55/177777 °*%11:220%%"

55(0) /53466 %Z11:220%%

->
Another situation where the search command could be used is to determine if a particular
pattern which has erroneously- overwritten some code is in a certain region of memory. If the
pattern 101 0 102 0 101 has overwritten some code and you suspect that the pattern may be
in a buffer in either segment 27 or 30, you could determine this by issuing the following
command:

-> search 27/0 38/177777 101 © 162 @ 101

27/5326 000101 ©PPOOP ©BL102 PERGED 000101

27/7234 002101 0OOOR0 020102 ©OOCRR Q0R101

_> -
A final example of the search comimand may help clarify the way the search mask can be
used. Consider a situation where one wants to know if any page in a given segment is "in-
transition, going-out™. This condition is indicated by having bit 1 of a page’s page map be 0
and bits 3 and S be 1. If the page map entries for a segment are located between 600/1000
and 600/1077, the following command could be used to find the “in-transition, going-out”
pages:

-> search 60@/1000 600/1877 24000 & 124000

600/1082 24822

608/1054 27512

600/1867 26324
->

3.2 Breakpoints and Single Steps

This section will describe the breakpoint and step commands. It will also discuss related
commands that can be used to display information about existing breakpoints and commands
that can be used 10 Temove existing breakpoints.

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
' Page 21

Installing Breakpoints - The Breakpoint Command
The generic format for the breakpoint command (abbreviated brk) is:
A
BReaKpoint <bfeok—expression> [<proceed—count>]}

where

<breok-expression; is described in section 2.4.2

<proceed—count> ;:=m 1 to 32767
The breakpoint command can be used to set a breakpoint anywhere in shared code. Breakpoints
work in both ring O and ring 3. There are a2 number of different ways to specify the
location where the breakpoint is to be installed. These are discussed in section 2.4.2. If the
optional process number is specified, only that process will stop when the breakpoint is hit.
Other processes which encounter the breakpoint will continue transparently. If no process
number is specified, any process will stop when the breakpoint is hit.

If the specified address is the name of a procedure, the breakpoint will be set on the first
instruction of the procedure. If that instruction is an argt then the breakpoint must be set
on the next instruction. Breakpoints are not allowed on argt instructions since they are not
real, executable instructions. If an attempt is made to do so, the debugger will treat the

attempt as a user €rror.

The optional proceed count can be used to allow processes to pass through the given
breakpoint a specified number of times before stopping. This count is decremented each time
the breakpoint is encountered. When the count reaches zero, the debugger command level is
entered. If the proceed count is omitted or the count is decreriiented to zero, it is set to one.

While most commands abort when they have a need to reference non-resident memory,
this is not true of the breakpoint command. The breakpoint command should never fail due to
non-resident memory. This is because breakpoints are treated as pended operations. (For a

description of pended operations see section 5.2.)
Removing a Breakpoint - The Clear Command

The generic format for the clear command (abbreviated clr) is:
ClLeaR <bregk—-expression>

where
<bregk—expression> is described in section 2.4.2

The clear command removes the specified breakpoint or single step from the specified location.
If the specified location has a single step in progress as well as a previously installed -
breakpoint, only the breakpoint will be removed.

Prime Restricted

PE-T-1278° Ring Zero Decbugger User. Manual
Page 22

Removing All Breakpoints - The Clearall Command

The generic format for the clearall command (abbreviated clra) is:

CLeaRALL

The clearall command removes all breakpoints and single steps from the code. If one of the
locations has a single step in progress as well as a previously~installed breakpoint, only the
breakpoint will be removed. '

Displaying a Breakpoint - The List Command
The generic format for the list command is:
LIST <breock—expression>
where
<breok—expression> is defined in section 2.4.2
The list command displays information about a particular breakpoint or single step. The fields
displayed in the list command are described below.
o Type. The type can be either a breakpoint or a single step.
0 Address. The location in memory where the breakpoint/single step is installed.

0 Procedure. The procedure name given is an educated guess as to which routine the
breakpoint/single step is in. The guess comes from taking the address and
consulting the Primos load maps. Usually it finds the correct routine, but this is
not always the case (especially with assembly language routines).

0 Process. The process field specifies which process the breakpoint/single step is meant
for.

o Count. This field refers to the proceed count for breakpoints and the single step
count for single steps.

o0 Mnemonic. This field displays the assembly language mnemonic for the instruction

at the specified location. If a breakpoint is "pended”, this field will be empty
(Refer to section 5.2 for a description of pended operations).

Displaying All Breakpoints - The Listall Command

The generic format for the listall command (abbreviated Ista) is:
LiSTALI

The listall command displays information about all breakpoints and single step’s in the system.

Prime Restricted

Ring Zero Dcbugger User Manual PE-T-1278
Page 23

The format is the same as for the list command.
Single Stepping a Process - The Step Command

The generic format for the step command (abbreviated s) is:
Step [<step—count>] |

where
<step—count> ::== 1 to 32767

The step command causes the original process to single step as many instructions as are

specified in the step count. If no step count is specified, it is assumed to be one. A single step
means that the original process executes the next assembly language instruction in the

breakpointed or suspended procedure and then returns control to the debugger. If any fault is
taken during the execution of this instruction, any code needed to service the fault will be
executed and the next instruction executed before control is passed to the debugger. Hence,
many instructions may be executed in order to execute the one that is to be single stepped. It
is also the case that any higher priority processes will execute before the single stepped process
and may encounter breakpoints before the lower pridrity process has done the single step. A
single step is only allowed if the Ring Zero Debugger was entered due to a breakpoint or
previous single step. Another restriction on single stepping is that only one process in the
system can be actively single stepping at a time.

Examples

In the following example, a breakpoint will be placed at the beginning of the routine
ciSget. This routine deals with parsing the command line. To cause the breakpoint to be hit,
the Primos command "date” is entered. After being hit, the breakpoint is removed.

=> breakpoint ci$get+t

-> listall
Type Address Procedure Process Count Mnemonic
brkpt 13(0)/45661 CLSGET + 1 Any 1 JMP

—> continue
Leaving the debugger.
date

Debugger entered due to breakpoint/single step.
Process 1 was executing at 13(3)/45661 (CL$GET + 1).
—> clearall '
=> listall
No breckpoints are set.
-2

Having gotten into the routine clSget, the next command shown is the step command. After :
step is issued a few times, one may wonder what instructions are being executed. The access

command is used t0 examine the instructions. With a little experience, one could tell that

Prime Restricted

PE-T-1278 Ring Zero Dcbugger User Manual
Page 24

these instructions are building an argument list in preparation for making a shoricall to

another routine. A shortcall 1s accomplished with a jsxb instruction.
-> step

Debugger entered due to breokpoint/singie step.
Process 1 wos executing ot 13(3)/45703 (CLS$GET + 23).
—> step

Debugger entered due to breakpoint/single step.
Process 1 was executing ot 13(3)/45705 (CL$GET + 25).

=> occess ci$get+23

13(@)/457@3 EAL% LB%+ 426

13(e)/45705 STLZ SB%+ 65

13(e)/457@7 EAL% SBZ%+ @

13(0)/45711 STLX SB%+ 67

13(0)/45713 EAL% LB7%+ 400

13(0)/45715 STLZ SBZ%+ 71

13(@)/45717 EAL% SB%+ €5

13(0)/45721 ST SB%+ 74

13(0)/45723 EAL% SBZ+ 71

13(@)/45725 JSXB% LB%+ 374 ,« 7

Having seen the code that is being executed, one can see the effect of using a step count with
the step command. After single stepping through about 19 instructions, one can also see that
the code was in the process of shortcalling the routine mkonu$S to setup an onunit. Next a
much larger step count is given. This count is enough to aliow Primos to begin to print out
the date. Finally, a continue command is issued letting Primos print out the rest of the date.

-> step

Debugger"entered due to breckpoint/single step.
Process 1 was executing at 13(3)/457@7 (CLS$GET + 27).
~> step 3

Debugger entered due to breakpoint/single step.
Process 1 was executing at 13(3)/45715 (CL$GET + 35).
-> step 15 -

Debugger entered due to breakpoint/single step.

Process 1 was executing ot 13(3)/46462 (MKONUS + 24).
-> step 100
30 Aug 85 18 :
Debugger entered due to breokpoint/single step.

Process 1 was executing at 6(0)/106055 (ACCOMS + 1).
-> continue

Leaving the debugger.

:49:52 friday
OK 18:49:55 ©.115 ©.000

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%.
Page 25

3.3 Examining a Process’s State

The commands in this section allow one to examine the state of & particular process. The
term state refers mainly to the process’s current register values and its current stuck frame.
Also included is the previous stack history and terminal buffers, if they exist. Some of the
commands described in other sections also allow access to process state information, but the
primary ones are here.

Displaying the Current Arguments - The Arguments Command

The generic format for the arguments command (abbreviated args) is:

ARGumentS

The arguments command prints the name of the current procedure for the active process, the
-number of arguments defined in the routine (from the ECB), and then prints the values of
any arguments passed to this procedure. The address of each argument is printed followed by
the first 2 words of the value of the argument in octal (2 words are printed regardless of
the true length of the argument). The number of arguments shown reflect the number
actually passed to the current procedure which may be less than the number defined. '

Displaying a Process’s PCB - The PCB Command

The generic format for the pcb command (abbreviated p) is:
Pcb I(procesznumber>]

where
<process—number> ::== g decimal! number

The pcb command prints the contents of selected fields of a process’s process control block
followed by its concealed stack frames. Concealed stack frames are only shown if they are
non-zero. Those that have not vet been built into fault frames are marked as "active”. The
process number must be a valid interrupt process or a configured user process. If no process
number is specified, the active process is assumed.

Display Process Information - The Status Command

The generic format for the status command (abbreviated stat) is:
STATus [<stotus—options>]
where

<status—options> ::= <process—number> | ALL | USer |
INTerrupt
<process—number> ::== g decimal number

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 26

The status command displavs the current status for either @ specified process, all processes.
user processes, or interrupt processes. 1 no process or class of processes is specified. the active
process is assumed. The status of a process is represented by the current values of its
registers. These registers are read from the machine register sets if the process owns one.
Otherwise, the information comes from the pcb. If a class of processes is specified, only
limited information will be printed out about a process, and logged-out processes will be
ignored. If a single process is specified, all registers associated with the process will be
displayed, even if the process is logged-out. A description of the information shown by the

command is given in section 2.8.2.
Examining a Process’s Stack - The Trace Command

The generic format for the trace command (abbreviated 1) is:
Troce {<process—number> [<oddress—expression>]]
where

<process-number> :i= o decimol number

<oddress—expression> is described in section 2.4.1,
The trace command prints stack frames for the given process. Any process number specified
must be a valid interrupt process or a logged-in user process. Trace allows one 10
interactively examine the previous state of any process by displaying detailed information from
each individual frame on the stack. This information includes the process’s base registers, the
size of the -stack, and the names of the calling and called procedures. Subcommands 10 the
trace command allow one to0 move up or down the stack to any given frame and to print
additional information about the stack frame. The following subcommands are defined for the

trace subsystem:

Arguments Prints the arguments at this level of the stack.
Current Redisplays the current stack frame. X
Father [<n>] Makes the calling procedure’s stack frame the current one. If n is specified,

n frames of the stack are pushed before reaching the current one.
GOTO [<levels>] Make <level> the current one. If omitted, <level> defaults to 1.
Quit Leaves the trace command subsvstem.

Son [<n>] Makes the called procedure’s stack frame the current one. If n is specified,
n stack frames are popped before arriving at the current one.

STack [<start> [<end>]]
Dumps the current stack frame in oclal Swart and end are relative
locations within the current frame. If not specified, start begins at '10 and
end defaults 1o the end of the stack frame.

User <process-number> [<addresss)

Prime Restricted

Ring Zero Debugger User Manual ' PE-T-127%
Page 27

Starts tracing the specified process’s stack.

If "the process number is not specified in the trace command, the stach examined is that of
the active process. If no address is given the stack trace begins with the current SB of the
given process. Otherwise, the trace begins with the given address.

Displaying a Process’s Terminal Buffers - The Ttybuf Command

The generic format for the ttybuf command (abbreviated tt) is:
TTybuf [<process—-number>]

where

<process—number> ::== a decimal number

The ttybuf command prints the contents of the specified process’s input and output terminal
buffers. The output is printed as Ascii characters. Non-printing characters are shown as the
character "”. The process number must be one of the configured user processes on this
system. It should be noted that not all user processes have terminal buffers. For example,
processes which are phantoms or slaves do not. - If no process number is specified, the buffers
printed are those of the active process. If process 1 is specified, the process 1 message buffer
will be printed in addition to the regular input and output buffers.

Examples

The ~ following example will illustrate the arguments command. In this example, a
breakpoint has previously been placed in the locate routine. The Primos command avail” is
issued to make a process hit the breakpoint.

avail

Debugger entered due to breokpoint/single step.

Process 1 was executing at 11(8)/14216 (LOCATE + 1).
-> arguments
Current routine: LOCATE

4 arguments at SB%+22:

1 at 11(0)/123007 : ©00000.005415
§ 2 ot 6003(0)/1323 : 000000.000001
§ 3 ot 717(9)/5524 : 900000 .000000
4 at 717(0)/5520 : 000000 .000001
->

Next a2 pcb command is issued. In this case, as is often true, there isn't much that is
interesting. One can see that most of the information is out of date by comparing the
program counter (pb register) shown in this command’s output to what was given before N
when the current breakpoint was hit. However, this command can occasionally be helpful in

trying to determine recent process fault activity. As a matter of fact, the last fault on the

Prime Restricted

PE-T-1278
Page 28

Ring Zero Debugger User Manual

concealed stack in this example shows the illegal instruction fault taken for the previously hit

breakpoint.
-> pcb

Process: 1

Level: 622

Waoit list: @(@)/544
PB: 6(8)/42271

LB: 6(@)/42110

L: 000000 000002

X: 0002000

FARO: 002000 000000

Link: ©00000

Abort flogs: ©B2RR00000000000
SB: 6000(e)/12082

XB: 6(0)/55534

E: 000000 000000

Y: oe0dee '

FLRO: ©0PR00 ©000RE

FAR1: ©00000 000200 FLR1: 000000 00000
Interval timer: 177637 000000
DTAR2: 140002 165101 DTAR3: 176302 165064

Keys: 034201

Concealed stocks:

PB KEYS FCODE(high) FADDR
11(0)/14216 014100 014217 11(e)/1703
13(3) /55722 014000 000000 13(3)/60760

->

Elopsed timer: 0000081 143453

The next example shows the type of output one can get from the status command with the

user option. In this example, one will note that two nllocks are owned by process 1 which is

the process that has just hit a breakpoint in the locate routine. This is logical given the role

that locate plays in the file system.

=> stotus user

Process 1 SYSTEM
Level: System process
Type: Supervisor
State: Reody
PB: 11(e)/14216 (LOCATE + 1)
LB: 11(0) /16070 (LOCATE (et al))
Locks owned: FSLOK UFDLOK

sse Owns register set © seo

Process 2 (Login nome is not resident)
Level: Priority 1 user
Type: Normo! terminal user
State: Woiting at 6(@)/13352 (ASRSEM + 2)
PB: 6(0)/34235 (WAITA + 74)
LB: 6(8)/55772 (C1INS$)

Process 29 (lLogin nome is not resident)
Level: Network process
Type: Network process
Stote: Waiting ot 12(@)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)
LB: 6(08)/34156 (SETSWI (et at))

-

The next example shows how a particular process number can be given.

When a specific

process number is given, all the process’s registers are displaved. When a class of processes is

requested (e.g. user), only a few registers are shown.

Prime Restricted

e

Ring Zero Debugger User Manual PE-T-127§
. Page 29

-> status -7 -
Process -7 DKIPCB

Level: Disk/Ringnet process

Stote: Woiting at 4(@)/534 (DSKSEM)

PB: 6(0)/37537 (DMA_ERR + 224)

LB8: 6(2)/103110 (Unknown)

SB: 4(@)/164070 XB: 8(0)/1200

L: 0020000 000000 E: 220000 000000
X: 000000 Y: 000000

FARG: 000000 020000 FLRO: 200000 000000
FAR1: ©00000 000020 FLR1: 000002 000000

Keys: 034001
~>
Having hit a breakpoint in locate, the trace command can be used to determine the sequence
of routines that were called to get to locate. The trace subcommand "arguments” can be used

to examine the arguments passed to locate. The trace subcommand "father” can be used 0
sequence back down the process’s stack.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 30

-> trace

Level 1: LOCATE

Root: 6083 SB: 6803/1354 Size: 152 words Type: 000208 (PCL)
Keys: 014008

Call ot 11(®)/122570 (READ_ENT (et al) + 154@)

SB: 6003(0)/1150 LB: 11(0)/123306

(trace)> orguments
Current routine: LOCATE

4 arguments at SBZ+22:

1 ot 11(2)/123007 : ©00000.005415
2 ot 6003(@)/1323 : ©P0RR0.000001
§ 3 ot 717(8)/5524 : ©PRORD.E00000
4 ot 717(0)/5520 : 000000.000001

(troce)> father

Level 2: READ_ENT

Root: 6003 SB: 6083/1150 Size: 132 words Type: 000000 (PCL)
Keys: ©14000

Coll at 11(@)/117342 (FNDENT (et ol) + 52)

SB: 6003(0)/430 LB: 11(0)/120854

(trace)> fother

Level 3: FNDENT

"Root: 6003 SB: 60@3/430 Size: 336 words Type: 000000 (PCL)
Keys: 914000

Coll ot 11(0)/136463 (AT$ANY + 235)

SB: 6083(e)/164 LB: 11(8)/137322

(troce)> fother

Level 4: ATS$ANY

Root: 6003 SB: 60@3/164 Size: 164 words Type: 0008202 (PCL)
Keys: ©14100

Call at 13(3)/51726 (SRSFX$ + 1306)

SB: 6002(3)/3224 LB: 13(e@)/52720

(troce)> quit
->

The final example shows the output from the ttybuf command. In this particular example the
active process is 1. This means that in addition to the normal input.and output buffers, the
user 1 message buffer is shown as well.

Prime Restricted

Ring Zero Decbugger User Manual ‘ - PE-T-1278

-> ttybuf

Page 31

User 1 message buffer (60C bytes long) at 7(8)/17224:

CO —CONTINUE

dote

Output buffer (600 bytes long) for user 1 at 7(@)/0:

t_log —net —off

0K, RDY —LONG

OK 90:22:51 49.154 100.700
/* Enter time and type CO —CONTINUE.
OK 00:02:51 ©.084 0.000
CO -PAUSE -

OK 20:92:51 0.060 ©0.033

OK 19:03:04 ©.3063 0.690

OK 19:03:04 ©.048 ©.000
MAX ALL

OK 19:03:04 ©0.103 ©.000
COMO —NTTY

OK 19:05:08 ©0.060 ©0.060
CO —-END

OK 19:05:08 ©.054 0.000

13 Sep 85 19:10:52 Friday
OK 19:19:55 ©.187 ©.166

->

3.4 Examining the State of the System

This section will describe commands that give information about the state of the system in

general rather than a specific process. These commands allow one to examine the Primos

nllocks, the system ready list, and certain system registers. The status command, described in

the previous section, is another wayv to look at the state of the system as a whole.

Displaying the Nllocks - The Print__locks Command

The generic format for the print_locks command (abbreviated plocks) is:

Print_LOCKS

This command displays ‘information about the Primos Nllocks. Any processes waiting for a

particular lock will be shown.

The locks are printed in priority order.

Prime Restricted

PE-T-1278 Ring Zero chuggcr User Manual
Page 32

Displaying the Ready List - The Ready_list Command

The generic format for the ready_list commund (abbreviated rdylst) is:
ReaDY_LiST

The ready__list command prints a diagram showing the system ready list. The process for
the Ring Zero Debugger is not shown.

Display Certain System Registers - The System__registers Command

The generic format for the system__registers command (abbreviated sysreg) is:

SYStem_REGisters

The system__registers command prints the pswpb and pswlieys registers as well as the DMA
channels. The DMA channels are only shown if the registers are non-zero. The word count of
the DMA register is right shifted by 4 to right-justify the field.

Examples

The output from the print_locks command is shown below. (Not all the locks are shown

in this example).
~> print_locks

FSLOK: tocked for reading by 1 user(s).
No reoder(s) woiting
No writer(s) woiting

UFDLOK: Locked for reading by 1 user(s).
No reader(s) waiting
No writer(s) woiting

BLKLOK: Unlocked.
No reader(s) waiting
No writer(s) waiting

MOVLCK: Unlocked.
No reader(s) woiting
No writer(s) waiting

SEGLCK: Unlocked.

No reader(s) waiting
No writer(s) woiting
PAGLEK: Unlocked.

No reoder(s) woiting
No writer(s) woiting
->

Another example of the status command with the user option is given below. From this

output, one can tell which processes own the locks described as locked by the print__locks

Prime Restricted

Ring Zero Debﬁggcr User Manual PE-T-1278
Page 33

comniand.

-> stotus user

Process 1 SYSTEM ees Owns register set @ ses
Level: System process
Type: Supervisor
Stote: Ready
PB: 11(0)/14216 (LOCATE + 1)
LB: 11(0)/16070 (LOCATE (et al))
Locks owned: FSLOK UFDLOK

Process 2 (Login name is not resident)
Level: Priority 1 user
Type: Normal terminol user
State: Waiting at 6(0)/13352 (ASRSEM + 2)
P8: 6(0)/34235 (WAITA + 74)
LB: 6(0)/55772 (C1IN$)

Process 29 (Login name is not resident)
Level: Network process
Type: Network process
Stote: Waiting ot 12(Q)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + &)
LB: 6(0)/34156 (SETSWI (et al))

->

Output from the ready_list command is shown next. In this example, the first process on thé
ready list is the clock process, followed by process 1, and then the two backstop processes.
This particular example came from the situation where process 1 had just hit a breakpoint. In
this case, one might expect process 1 10 be at the head of the ready list and in many cases it
probably would. Apparently here, however, the phantom interrupt code for the clock must
have run while the breakpoint was being serviced but before the debugger process had run
and inhijbited interrupts. Thus the phantom interrupt code notified the clock process, putting it
on the ready list. The backstop processes should alwavs be on the ready list and it is common
to also see the clock process there.
=> ready_1ist

START —> CLKPCB

|
v

USR@01

!
v

BK1PCB -> BK2PCB
->
Finally, the system_registers command shows the value of two registers from the system
scratch registers and then what it supposes are the active dma channels. The pswpb and
pswkeys registers show the values of the pb and keys of the currently executing process
when the last machine interrupt was taken. Unfortunately, this is the only information

available about the state of the machine at that point. Therefore, it is usually not very

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Pape 34

helpful but can be a valuable clue in some situations.

-> system_registers
PSWPB: 55(8)/615 PSWKEYS: 814002 100037

DMA chonnel 1/0 oddress Word Count
e 2(0)/174000 200000
2 0(0)/176000 200000
6 . o(e)/1000 200000
14 o(e)/151005 207405
16 0(@)/144265 000000
20 e(0)/171000 200000
22 e(e)/175000 200008
24 e(e)/100255 000300
26 o(e)/72001 000200
30 e(a)/10003 002200
32 ©(0)/41272 002200
34 o(e)/201 202027
36 e(e)/4003 ' 003500
->

3.5 Retrieving Symbolic Information

This section will describe commands which can be used to retrieve symbolic information
from the Primos load maps.

Retrieving Symbols - The Lookup__Address Command

The format of the lookup__address command (abbreviated la) is:
Lookup_Address <oddress_expression> [<symbol_type>]
where

<oddress_expcession> is described in section 2.4.1

<symbol_type> ::== ANY | Common | Other | ECB | PB | LB | LBN
Given an address and an optional symbol__type, the Lookup__Address command searches the
Primos load maps for the name of a symbol. Primos load maps are created by -the SEG
program with three types of symbolss routines, common areas and all other symbols.
Commons and others have only one address associated with them. Routines, on the other hand,
can have several addresses associated with them: ECB address and initial values of PB and LB.
If the Lookup__Address command cannot find an exact match, it returns the name of the
specified type of the symbol which is closest to the specified address (but less than or equal
to the specified address). The only exception is the LBN option which returns the names of
all the routines which have the same LB as the specified address. If no symbol__type is
specified than ANY symbol__tyvpe is assumed. Symbol_type ANY causes the command w®
search the PRIMOS load maps with all possible options and return the name of the svmbol of

any type (routines, commons, others) closest 10 the specified address.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
‘Page 35

Retrieving symbols address - The Lookup__Symbol command

The format of the lookup__svmbo! command (abbreviated 1s) is:
Lookup_Symbo! <symbol>

where

<symbol> ::== gn object nome from the Primos lood mops.

Given a name of the symbol from Primos load maps the Lookup__Symbol command returns
information for a specified svmbol, based on the type of the symbol. The returned information
for the commons and the others is the address of the specified symbol. In the case of the
routines the returned information is the address of the ECB for the specified routine and the
initial values of PB and LB.

Examples

To find the name of the routine whose address of the ECB (or PB or LB) is the closest to
the specified address:

-> tookup_oddress 11/57700 ecb
ROUTINE: SRCH$S + 1@ from ECB
=> lookup_address 11/62452 pb
ROUTINE: GPATHS + 20 from PB
-2

To find- the name of the common block whose address is the closest to the specified address:

-> lookup_oddress 12/1640 common
COMMON : CONTYP + 1
->

To find the name of the other symbol whose address is the closest to the specified address:

=> {ookup_address 12/4067 other
 OTHER: SLCMCH + ©
-

To find the names of all routines which have the same LB as the specified address:

-> lookup_oddress 12/4020 Ibn
ROUTINE: SLCINI '
ROUTINE: SLCBND
ROUTINE: SLCDS
ROUTINE: SLCOTS
ROUTINE: SLCOTP
ROUTINE: StLIOC
ROUTINE: SLCCLK
ROUTINE: SLXDLC
ROUTINE: SLCRST

->

Prime Restricted

PE-T-1278 ‘ _ Ring Zero Debugger User Manual
Page 36

To find the name of the symbol of any tvpe closest to the specified address:

-> lookup_oddress 15/2271
ROUTINE: NLOGIN + 2 from PB
->

To find the information about given symbol:

~> Lookup_Symbo! PRWF$$
ECB of routine: 11/35543
PB of routine: 11/33046
ib of routine: 11/35136
~> Lookup_Symbo! PAGCOM
Address of common: 14/614
~> Lookup_Symbo! TIMERS
Address of other: 6/5032
-2

3.6 Program Variables

It is extremely useful to be able to reference variables in a program by name. DBG
provides this ability with the ™” and let commands. With some extra effort on the part of
the user, this ability can also be available in the Ring Zero Debugger. The extra effort comes
in the form of having to manually define each variable that is to be used. Once the variable
has been defined, it can be referenced symbolically as is done with DBG. This section describes
the commands that can be used to define and then reference program variables.

Defining Program Variables - The Define_ variable command

The format of the define__variable command (abbreviated defvar) is:

DEFine_VARioble [<procedure_name>\] <voriabie>
<oddress_expression> [<variable_type>
<variable_length>]

where

<procedure-name> ::== procedure from the Primos load map

<vgriable> ::== nome with PL1 identifier syntox

<oddress_expression> is described in section 2.4.1

<varioble~type> ::=x Ascii | Bit | char_Vary | Decimal |
Octal | Pointer

<varigble-length> ::== a decima! number

Before any program variable can be referenced, it must be defined with the
define__variable command. This command enters 2 new variable name with the given address
and attributes into an internal debugger table. If the address is specified in terms of a base
register, the evaluation of the specified address does not take place until the program variable
is actually referenced using the ™" or let commands.

The Ring Zero Debugger contains only one internal table for program variables. Therefore,

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 37

there is no notion of scope. However, the debugger does try to protect users against accidental
maodification of memory when & program variabie is assigned a value. This could happen if a
program variable was assigned a value while the active process 1S not executing in the
program that the variable is defined for. The means for preventing this from happening is to
allow a procedure name to be associated with the variable during definition. Then when the
variable is referenced, the debugger compares the program variable’s procedure with the current
procedure of the active process. If they are different, the reference is not allowed.

The information needed for the define__variable command comes from a listing of the
program which defines the variable. (See appendix A for deuwails on getting this information
from a listing). The main piece of information concerns the address-expression which defines
where the variable is located. If the address is given as an offset from one of the base
registers then the procedure-name must be specified. Otherwise it is optional. The variable type
and length can also be determined from the listing. If both the type and length are omitted,
the type is assumed 10 be octal and the length is assumed to be 1. The types known to the
debugger are listed below. '

Ascii A nonvarying character string of length-specified bytes. The 1length
argument is required. The maximum length is 256 characters.

Bit A bit string. Length is assumed t be 1 word. Any length argument is
ignored.

char__Vary A varying character string. The length in bytes is a required argument. The

maximum length is 256 characters.

Decimal” A signed decimal number of length-specified words. If length is omitted, it
is assumed to be one.

Octal An octal number of length-specified words. If length is omitted, it is
assumed to be one.

Pointer A memory address. The length is assumed to be 2 words. Any length
argument is ignored. '

Defined variables are always active until deleted. If a user defines a new wvariable which
already exists then the Debugger will replace newly defined variable with the old one. The
current maximum on the number of defined variables in the debugger is 25.

Examining Progfam Variables - The " Command

[R]

The format of the *’ command is:
: <vorioble> [<varioble_type>]
where

<variabl!e> is described in define_voriable command
<variabie—type> is described in define_variable commond

Prime Restricted

PE-T-1278 | Ring Zero Debugger User Manual
Page 38

This command prints the contents of the specified variable in the format specified by the
variable-tvpe option. If no type is specified then the variable is printed using the wvpe
specified when the varizble was defined. However. there are certain restrictions on the use of
this command. First of all, if the variable was defined for a particular routine {2 routine
name was specified in a define__variable command) then the active process must be executing
in this routine. Secondly, it is not possible to examine a variable using ascii or char__vary
type if the variable was defined as bit, octal or decimal type with a length of 1 word.

Displaying Program Variables - The Display__variable Command

The format of the display__variable command (abbreviated disvar) is:

DISploy_VARiable [<varioble>]

where '

<variable> is described in define_variable command ' -

Display__Variable command displays the current definition of the specified variable. The
definition includes variable name, variable type, variable length, variable address and any
optionally-specified procedure name. If no variable is specified then all defined variables with
their attributes are displayed. .

Deleting Program Variables - The Delete__variable Command

The format of the delete_variable command (abbreviated delvar) is:
DELete_VARigbie [<variable>]

where

<variable> is described in Define_Voricble commond

The delete__variable command deletes a specified variable from the list of defined variables. If
no variable is specified, all defined variables w111 be deleted. However, the debugger will
query the user before deleting all defined variables.

Changing Program Variables - The Let Command

The format of the Let command is:
LET <varicble> = <new_value>
where

<variable> is described in define_varigble command
<new_value> ::= @ value expressed in the type of its
target

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 39

The let command assigns a new value to a specified variable. The specified value must be of
the same tyvpe as & defined wvariable. Also if the variable was defined for u particular routine
(2 routine nume was specified in a define__variable command) then an active process must be
executing in this routine. Character strings must be surrounded by single quotes. Single quotes
inside character strings require two single guotes for every single quote desired. If the length
of a new value of a character string exceeds the length of the defined variable then the new
character string will be truncated to the length of the defined variable. If the length of a
new character string is less than a length of a defined variable then the new character string
will be padded with blanks - left justified (for Ascii type only). If a variable is a bit string
then only up to 16 bits may be specified (just 1 word). However, if less than 16 bits is
specified then the word will be left justified - the rest of the bit string will be padded with
'0’b. If a variable is a pointer type then the user has an option of supplying a ring number.
The valid ring numbers are O and 3 only.

Examples

To define a new program variable use the define__variable command:

-> define_voricbie prwf$$\code SBZ%+105 decimol 1
=> define_varioble stotus 18/11776
->

1,9

To examine a program variable use "’ command:
=> I code
12
-=> : code ©
oPe14
-> : stotus
00000
->

To display one or all program variables along with their attributes use the display__variable
command:

~> display_verioble code

Procedure Variable Address Type Length
PRWF$$ CODE SBZ%+105 DECIMAL 1
~> disvar
Procedure Variable Address Type . Length
-PRWF$$ COoDE SB%+185 DECIMAL 1
' STATUS 10/11776 OCTAL 1
-2

To delete one or all defined variables use the delete__variable command:

Prime Restricted

PE-T-1278 Ring Zero Debugger Uscr Manual
Page 40

—> delvar code

=> disvar -

Procedure Variable Address Type Length
STATUS 10/11776 OCTAL 1

-=> delvar

OK to deiete oll defined variables? yes
-> disvar

No variables are defined.
->

To assign a new value to a defined variable use LET command:

-> disvar

Procedure Variable Address Type Length

DISKIO CNT SB%+44 DECIMAL 1
STRING 4000/10000 ASCII 20
BIT 4001/105 BIT 1
PTR 4022/1002 POINTER 2

=> let cnt = 100

-> : ent

100
-> let string = "It''s only a test’
-> : string

It's only a test
-> let bit = 11101
-> : bit

1112100000000000 .
-> let ptr = 55(0)/2777@
-> : ptr

55(@)/27770
- -

3.7 User-defined Commands

This section describes the commands that allow users to manipulate what are known as
user-defined commands. These commands allow one to define a new command which can then
be used to invoke a series of previously defined commands. User-defined commands are similar
to the abbreviation facility in Primos except for two points. Abbreviations in Primos accept
arguments while user-defined- commands do not. The other point is that user-defined commands
can be recursive. This is not true of abbreviations. The commands covered in this section
allow users to define user-defined commands, to display current definitions of user-defined
commands, and to delete specific user-defined commands.

Defining New Commands - The Define__command Command

The format of the define__command command (abbreviated defcom) is:
DEFine_COMmond <user—command—name> <command—{ist>

where

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
' Page 41

<user—command—name> :.:== Q siring
<commond-list> ::== <commanc> ., <commond-list> | <commond>

Define__command provides the ability to execute a sequence of commands by entering a single
user-defined command. It allows a user of the Ring Zero Debugger to define new commands
which are composed of a series of already defined commands and their arguments. Entering
the specified command will cause each of the commands specified in the list 10 be executed.

Some commands can cause one to leave the debugger command level. In these cases, any
remaining commands will be executed when the debugpger is reentered. The command-list can
contain other user-defined commands. User-defined commands can also be recursive, however
this must be done carefully. No syntax or semantic checking is done on the command-list at
definition time.

One situation to avoid is defining a2 command with the same name as an existing debugger
command. In this case the user-defined command will be effectively ignored since the debugger
command line handler looks through the predefined debugger commands before it searches the

user-defined command table.
Deleting User-defined Cc;mmands - The Delete__command Command

The format of the delete__command command (abbreviated delcom) is:

DELete _COMmond [<user—command-name>]
where

<user—commond-name> ::== a string

Delete__command deletes the specified command from the list of defined commands. If no
user-command-name is given, all defined commands will be deleted. Before deleting all user-
defined commands, the user will be queried about the action.

Displaying User-defined Commands - The Display__command Command

The format of the display__command command (abbreviated discom) is:
DISploy_COMmand [<user—commond—nome>]

where
<user—commond-nome> ::== @ string

Display__command prints the current definition of the specified user-defined command. If no

user-command-name is given, all user-defined commands will be displayed.

Prime Restricted

PE-T-127§ Ring Zero Debugger User Manual
Page 42 .

Examples

The following examples will show different ways that user-defined commands can be used.
In the first example, a user-defined command is made called "next” which simpiv steps
through code and displays the assembly language for the instruction about to be executed. One
point to note is that when a user-defined command is expanded, the expansion is echoed on
the command line. In this example, the Primos command avail is entered to cause the
breakpoint at prwf$$+1 to be hit. Then the user-defined command "next” is used.

=> access_type symbolic

=> define_command next step; dump » o

=> breakpoint prwf$$+1

=> continue

Leoving the debugger.
avail -

- Debugger entered due to breakpoint/single step.

Process 1 was executing ot 11(8)/33047 (PRWF$$ + 1).
-> next
=> STEP; DUMP ¢ «

Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(9)/33051 (PRWFS$$ + 3).
=> DUMP o »

11(e)/330e51 STAf SBZ+ 34
=-> next
=> STEP; DUMP = «

Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(0)/33052 (PRWFS$S + 4).
-> DUMP » &

11(0)/33052 ANA§ 33303

->
The next example shows another way user-defined commands can be used. In this example, a
new command is defined which is just shorthand for an existing debugger command which
may be somewhat tedious to type. (The debugger command structure” is discussed. later in
‘this section.) The purpose of the new command is to display the ecb of a routine
symbolically. First, the address of the ecb must be determined and then the new command
defined. What can’t be seen here is worth noting. In defining the command "ecb”, a space is
typed at the end of the line. This space is needed because the debugger very literallv
expands what is typed as the definition of define__command and concatenates it with the next

token in the command line.

Prime Restricted

Pt

Ring Zero Deﬁuggcr User Manual : PE-T-127%
Page 43

-> lookup_symboi srch$l .

ECB of routine: 11(@)/57670

PB of routine: 11(8)/56630

LB of routine: 11(@)/57236
~> define_command ecb structure ecb
-> disploy_commond

List of defined commonds:

NEXT : STEP, DUMP o o

ECB : STRUCTURE ECB
->

Now that the command has been defined it can be used to examine the ecb of the routine
srchSS. The delete__command command is also shown.
-> ecb 11/57670

=> STRUCTURE ECB 11/57670
Structure ECB ot 11(@)/576760.

Offset | Field nome | Volue

| !
@5767¢ | pb | 11(e)/56630
057672 | frome size | eee160
057673 | stock root | ooep00
057674 | orgs disploc | eeee3s
057675 | num of orgs | 6
857676 | Ib | 11(8)/57236
857700 | keys | e14e00

~-> delete_commond

OK to detete acll defined commonds? yes

-
The final example of a user-defined command will show how new commands can be defined
recursively. As might be imagined, this must be done very carefully. In this example, 2 new
command called "loop™ is defined which will set breakpoints on consecutive locations as a
process steps through code. After the command has been defined, a breakpoint is set in the
routine pScidx.

-> define_command loop breokpoint «; step; loop
=> disploy_command loop

Defined command:

LOOP : BREAKPOINT »; STEP; LOOP
=> breakpoint p$cidx+i
-=> continue
Leoving the debugger.

Debugger entered due to.breakpoint/singie step.
Process 1 wos executing ot 41(@)/133503 (P$CIDX + 1).
->
Now that we are in the routine pScidx, the loop command is issued. An important point to
note here is that recursive commands will always cause an infinite loop. While this is not &
often desireable, it may be in certain cases. One case is where one may want to set up a test

which executes forever. (Much of the debugger was tested this way.) The example below

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 44

shows how to set many breakpoints on a certazin code path quickly. However, to stop the

infinite loop, one has w quit out of the operation as shown below.

-> clear p¥cidx+1

-> loop

<> BREAKPOINT «; STEP; LOOP
-> STEP; LOOP

Debugger entered due to breakpoint/single step.
Process 1 was executing at 41(0)/133504 (P$CIDX + 2).
=> LOOP
=> BREAKPOINT «; STEP; LOOP
-> STEP; LOOP

Debugger entered due to breakpoint/single step.
Process 1 was executing at 41(0)/133505 (P$CIDX + 3).
-> LOOP
=> BREAKPOINT «; STEP; LOOP
-> STEP; LOOP

Debugger entered due to breakpoint/single step.
Process 1 was executing at 41(0)/133510 (P$CIDX + 6).
-> LOOP
=> BREAKPOINT «; STEP:; LOOP
=> STEP; LOOP

Debugger entered due to breakpoint/singte step.
’ Process 1 was executing at 41(9)/133511 (P$CIDX + 7).

quit.
->

To show that these breakpoints are set, a listall command. is issued.

=> listatl

Type Address Procedure Process Count Mnemonic
brkpt 41(0)/133503 PS$CIDX + 1 Any 1 LDA
brkpt 41(0)/133504 PS$CIDX + 2 Any 1 STA
brkpt 41(0@)/133505 P$CIDX + 3 Any 1 EAFA ©
brkpt 41(0)/13351@ P$CIDX + 6 Any 1 LDA
->

3.8 Miscellaneous Commands

This last section of the chapter describes commands .which do not neatly fall into 2
specific category. Included are such useful functions as the ability to translate virtual addresses
to physical addresses (and vice versa) and the ability to examine certain system data bases,
field by field.

Resuming Primos - The Continue Command

The format of the continue command (abbreviated c) is: -

Continue

Prime Restricted

Ring Zero Debugger User Manual . | PE-T-127§
Page 45

The continue command causes execution of Primos to resume. (Qther than the step command.

this is the only way to exit the Ring Zero Debugger. -
A Help Facility - The Help Command

The format of the help command {abbreviated h) is:
Help [<commond>]
Where

<commond> ::= ony Ring Zero Debugger command

The help command displays information about the specified command. If no command is
specified, the names of all commands are listed.

Examine the Fields of a Structure - The Structure Command

The format of the structure command (abbreviated struc) is:
STRUCture [<definition> [<oddress—expression>]]
where

<definition> ::== CLDATA | DISK_QUEUE_BLOCK | ECB |
FIGCOM | PUDCOM | PUSTAK |
SUPCOM | UPCOM
<address_expression> is described in section 2.4.1
The “structure command prints the contents of memory starting at the given address and
using the predefined definition as a template. Simple definitions of many Primos databases are
.defined in tables as part of the Ring Zero Debugger. These definitions contain text and data
type for each field in a database. Thus, given an address, one can print a defined structure as
a list of fields and their values (e.g. PUDCOM or the disk queue blocks). If the structure
command is given without arguments, it will list the currently defined databases. If the
name of the defined structure can be found in the Primos load maps, the address-expression
need not be specified.

The intent of the structure command is that it be constantly expanded and updated. New
definitions can be made by adding new entries to tables in the Ring Zero Debugger. If the
data base that you define is just for a special situation then you might only modify your
copy of the debugger. The more likely situation is that the data bas_e you define is one that
others will be interested in and thus the change should be nade to actual copy of the
debugger in Primos. If an engineer makes a change to an existing data base already known by
the debugger, that engineer must be the one to update the definition in the debugger.

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual
Page 46 .

Translating Virtual to Physical - The. Translate _to__physical Command

The format of the translate_ to__phyvsical command (abbreviated tph_\'s) 1s:
Tronslate_to_PHYSical <address-expression>

where
<address_expression> is described in section 2.4.1

Translate__to__physical translates the .given virtual address of the active process into a physical
memory address. This command will only work for virtual addresses which translate into
resident memory. The physical memory address will be returned as both a 16 bit physical
- page number and a 32 bit physical address.

Translating Physical to Virtual - The Translate__to__virtual Command

The format of the translate_to__virtual command (abbreviated tvir) is:
Tronslate_to_VIRtual <physical—-page—number>

Where
<physical—page-number> ::== a 16 bit octal number

The translate__to__virtual command returns the process number and virtual address that
translate to the specified physical page number. Any physical page number specified must be
configured on the existing system and "owned” by some processes’ virtual address space in
order for the command to return valid output. This command will not detect the fact that
multiple virtual addresses may map into the same physical address (e.g. windowing through
segment O for i/0). Only one virtual address will be returned in all cases.

Display Current State - The Where Command

The format of the where command (abbreviated wh) is:

WHere

The where command prints the process number of the original process, the current value of
its program counter, and the reason for having entered the Ring Zero Debugger. The output
from this command is identical to the banner printed when the debugger is entered.

Examples

The first example will show the results of issuing a help command with no arguments.

Prime Restricted

Ring Zero Debugger

User Manual

-> help

: Access Access_REGister
Access_TYPL ARGumentS BReaKpoint
CLeoR CleoRAl Continue

DEF ine_COMmond
DELete_VARiable

DEFine_VARioble
DISploy_COMmond

DELete_COmmand
DISploy_VARioble

PE-T-127%
Page 47

Dump Help LET

LIST LiSTAIL LOOKAT
Lookup_Address Lookup_Symbol Pcb

Print_LOCKS ReaDY_LiST SeaRCH

STATus Step STRUCture
SYStem_REGisters Troce Tronslote_to_PHYSical
Tronsiate_to_VIRtual TTybuf WHere

-2

Next, the output from specifying a command to help is shown.

~> help occess_type
Command nome: Access_TYPE (ATYPE)

Commond description:
Set the type used by the occess and dump commonds for
. printing memory.

Command line orguments:

[Ascii | Bit | Decimel | Hex | Octel | Symbolic]
- X -

Giving the structure command without arguments, will cause a list of currently defined data
bases to be displayed. The assumption is that this list will grow over time. The original list
of defined structures was just meant to show the usefulness of the command.

=> structure

PRIMOS dote boses known to the Debugger:

CLDATA D1SK_QUEUE_BLOCK gce
FIGCOM PUDCOM PUSTAK
SUPCOM UPCOM

->

In the following example, the structure command is used to look at the ecb for the prwfS$s
routine.

Prime Restricted

PE-T-1278 - Ring Zero Debugger User Manual
Page 4% . .

-> lookup_symbol prwfis
ECB of routine: 11(®)/35625
PB of routine: 11(0)/33046
LB of routine: 11(@)/35220
=> structure ecb 11/35625

Structure ECB ot 11(©)/35625.

Offset | Field name | Vaolue
| |

035625 | pb | 11(0)/33046
035627 | frome size | eee202
835630 | stack root | ©oeee0
035631 | args dispilac | oee070
035632 | num of args (7
035633 | Ib | 11(0)/35220
835635 | keys | 014000

->

The following examples show the output from the translate_to_physical and
translate__to__virtual commands.

~> translate_to_physical 11/50500

Virtual address 11(0)/50500 tronsiates to physical
address 1710500. .

This address is on physical poge 744.

-> {ookat 1

~> translate_to_physical 6000/200

Virtual oddress 6020(@)/20@ transiates to physical
address 55220@.

This address is on physical poge 265.

-> tronstate_to_virtual 744

Corresponding virtual oddress is 11(0)/50000 for process 1.
=> tronslaote_to_virtual 265 '
Corresponding virtual oddress is 6000(@)/0 for process 1.
->

The last example shows the output from the where command. It should be easily recognizable
as the banner that is printed out when the debugger is entered.

-> where

Debugger entered due to console interrupt.

Process —20 (BK1PCB) wos executing ot 6(@)/42313 (BK2P8 + 4)
->

Prime Restricted

Ring Zcro Debugger User Manual , PE-T-1278
Page 49

4. Uses of the Ring Zero Debugger

The previous chapters described the various commands in the Ring Zero Debugger and how
they could each be used o obtain specific information. The focus of this chapter is on the

way that these commands can be used to solve specific sorts of problems.

4.1 Adding New Code

The most common use of the Ring Zero Debugger will be for testing new code that is
added to Primos. This section will describe some .of the steps that one would typically go
through in attempting to debug newly added code.

The first step in attempting to debug new code is to get a listing of the affected module
or modules. If the language is Fortran, an expanded listing of the PMA is necessary. If the
language is PLP, the listing should include statement offsets. In all cases the listing should
have a cross-reference listing at the end. In addition to the typical reasons for wanting a
listing of the module to be debugged, a listing is needed for defining program variables and
determining where to place breakpoints.

The next step is to enter the Ring Zero Debugger before any process has passed through
the newly added or modified module. If the module is not needed during coldstart code, then
the system can be coldstarted and the debugger can be entered later on with a console
interrupt. On the other hand, if the module is used during coldstart or youre not sure if it
is or not, then the debugger should be entered during coldstart.

Once in the Ring Zero Debugger the module’s program variables should be defined.
Program variables are described in section 3.6. The module listing should be consulted to
determine which program variables one might be interested in and what their actual
definitions are. -

The next step is to set breakpoints in the routine to be debugpged and let a process
encounter them. The name of the routine should be in the Primos load map as a global
symbol so that the breakpoint command can be issued using the routine nmame directly. Once
in the routine, the debugger can be used to single step through the new code. If the module
is in PMA then the single step command can be used directly. If the module is in a high
level languaée. then the breakpoint command is needed to single-step through the bigh-level-
language statements. The statement offsets can be read from the listing to determine where
the beginning of each statement is.

After each statement, one can use the ™" command to examine the previously defined
program variables. If any of the variables are wrong, they can be corrected with the let :
command. If the module to be debugged also references system databases, these can be

examined with commands such as print__locks and structure. A common one to examine might

Prime Restricted

PE-T-1278 : ‘Ring Zero Debugger User Manual
Page 50

be pudcom.

When adding new code to Primos. all paths through the new code should be tested. This

means setting a lot of breukpoints and frequently examining variables. This was previously
impractical to do but is relatively easy to do mow. Doing this level of testing is somewhat

tedious but is extremely important in order to produce high quality software. It is far easier

for an ehgineer to find a problem at this point than for someone later on t try to determine
which of the 1000 Primos modules is responsible for the erroneous behavior.

Another important use of the Ring Zero Debugger is to fully test the error or exception
paths through new code. Doing this in the past was very difficult or impossible in most
cases. With the debugger, there is no reason for not doing this testing. All error paths should

be tested by simulating the error with the debupper. This can easily be done in most cases by

setting error codes to different values with the let command.

One caveat about using the Ring Zero Debugger when modifying code is that it is not a
substitute for functionally testing code. The debugger should be used first to verify code paths
but test plans should be developed that use other means of testing the code, unless no other
ways are possible (such as with testing certain error paths). The environment with the
debugger configured is somewhat different from the actual environment that the system will
run in. Thus, the final testing should use other means to verify correct program behavior.

The steps to follow in adding new code are summarized below:

1. make a listing of the affected module(s)
2. enter the debugger -
3. define program variables (define__variable)

4. test all code paths by single stepping through new code and examining local and
global variables (breakpoint, step, : structure)

5. modify variables to correct errors or to simulate error conditions (let)

- 42 Tracking Down System Failures

There are many different circumstances where the system or a particular process Within
the system fail. Sometimes this is related to code that has just been modified, but the
connection between the failure and the change is not clear. Other times the system failure
may occur on released software and there is no clue as to the problem. The Ring Zero
Debugger has great potential for helping in many, but not all, of these situations. This section

suggests some ways that one might use the debugger to examine certain system problems.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page S1

4.2.1 Fatal Process Errors

FFatal process errors can be mildiy frusirating to examine without the debugger. There usre
many reasons for petting these errors. A common one is that the user’'s ring 3 stack has been
corrupted. Whatever the reason, fatal process errors are dealt with by re-initializing the user’s
command environment. This has the unfortunate property of re-initializing the user’s ring 3
stack which probably contained the history {or at least clues) concerning the events before the
fatal process error occurred. One would like to be able to examine the state ,of the system
before the stack is reset.

Before the Ring Zero Debugger, the most common way of dealing with this situation was
to modify code, take a crash dump, and use Autopsy to analyze it. The routine FATALS in
Primos is the one that re-initializes the user’s ring 3 stack. By changing a nop instruction in
this program at label FTL_HLT__ to a halt, one can take a crash dump before the stack
history has been erased. Then the stack can be examined with the trace command in Autopsy.

The debugger should prove to be a much faster way to solve this Kkind of problem since
the system need not be coldstarted again and again. A breakpoint could be set on the label
in FATALS and then one could use the trace command of the debugger to see what events
lead up to the failure. If the problem is not clear from the trace, breakpoints could be set in
one the most recent routines on the stack and the process error repeated. When these
breakpoints are hit, the process state can be examined for any problems. If the problem has
already occurred, then breakpoints need to be set in the previous routine and the process fault
repeatéd. This procedure would go on as many times as needed until the source of the
problem is found.

If the stack is so corrupted that trace will not work, the method just decribed can still be
used but it is much more difficult. The key is to determine which routines may have been
called before the failure. This requires the ability to figure out where some valid or
partially valid stack frames are by just looking at the stack in octal. The access and dump
commands can be used for this purpose.

When dealing with a corrupt stack, one may also be able to trace up the stack using the
search command. This is possible since every stack frame contains the address of the start of
the stack frame for the calling procedure (known as the return sb). If one can find the
beginning of the first stack frame at the base of the stack, one could search up the stack
(higher addresses) for the value of the address of this first stack frame. If one is found, it is
very possibly the return sb in the called procedure’s stack frame. The Jookup__address
command can be used to see if the return 1b in the stack frame seems reasonable. If so, the
address of the start of the second stack frame is now known. The next step is to search up
the stack for this address. This process can continue as long as the frames seem 10 make -

sense. The place 10 put a breakpoint is at the last known routine before the process error.

Prime Restricied

PE-T-1278 Ring Zero Debugger User Manual
Page 52 :

The sweps to follow in debugging a fatal process error are summarized below:

1. put a breakpoint at label VTL_HLT__
2. cause the fatal process error
3. use the trace command when the breakpoint is hit

4. if trace doesn’t work use access, dump, search, and lookup_address to sequence up
-the stack . :

S. if the source of the problem isn't clear, set breakpoints in the most recent routine,
repeat the error, and check the process state

6. move down the stack performing the previous step until the offending routine and
code is found

4.2.2 System Hangs

One common way for the system to fail is for it to appear to be hung. When in this
state, the system appears completely unresponsive to any kind of input for a long period of
time. The difficulty here is determining what a long period of time is. In many situations, it
may be the case that the system is functioning correctly but is so overloaded that it appears
to be hung. Whether this is the case or not, the Ring Zero Debugger is an excellent way to
investigate this kind of problem.

The first step is to enter the debugger by invoking it from the system console. If this
fails, there is a serious problem. Failure to enter the debugger indicates one of two things:
either there is something preventing the clock process from running or the system is hung in
microcode. Issuing a stop command to the VCP separates these two cases. If the system halts,
then something is preventing the clock process from running. A tape dump should be taken at
this point and examined with Autopsy. If the system does not halt, the system is hung in
microcode and there may not be much one can do. A tape dump can be taken, but it will be
hard w0 analyze since there will be no register values for recent processes.

Assuming that one has successfully entered the debugger, the next step is to determine
information about the state of the active process. The first piece of interesting information
relates to the type of the active process. If it is an interrupt process, the system could be
hung in a loop due to bad hardware. If it is the backstop, the system could be deadlocked or
waiting for an event that will never happen.

Other interesting information about the active process concerns what it was attempting to
do. If the process has terminal buffers, one could see the high-level operation that was being
attempted by looking at the process's terminal buffers with the ttybuf command. One can also

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 53

examine the most recent command line by looking in the cldata common aresa with the
structure command. The current path of execution can be examined by using the trace
command. Finallv the curremt procedure and arguments can be determined by using the

arguments and status commands.

There are a few other pieces of information about user processes that can be very telling.
If process faults are inhibited, it could be the case that the process is looping inside a critical
region. The field inhprf in the common area pudcom determines whether process faults are
inhibited. It can be examined with the structure command. The status command will indicate
whether a process owns any system nllocks or has deferred any process aborts. A positive
interval timer value for a process indicates that the process has monopolized the machine for
whatever reason (e.g. looping in interrupt inhibited code). This can be seen with the pcb
command. Finally, a fault that repeatedly generates another fault before a fault frame can be
built will hang the machine. This can be seen by examining the concealed stack with the pcb
command.

If the reason for the system hang is not yet clear, the next step is to examine the state
of the entire system with different debugger commands. The system ready list is a good
thing to inspect for starters. lf there are many processes on it then perhaps a high priority
process is dominating the machine. If there are no interesting processes on- it, then perhaps the
system is either deadlocked or waiting for an event that will never happen.

Another important way to examine system status is to examine the state of all the
different logged in wuser processes. This can be ‘done with the user option to the status
command. The key here is to determine what the processes are waiting for. A common and
uninteresting -event to be waiting for is terminal input. A more interesting event might be
waiting for a disk request to be satisfied. Another might be waiting for 2 lock to become
available. The question to ask here is whether these are events that will ever happen. The
status command can also be used along with the print_locks command to see if any system
nilocks are held. Using the nllocks improperly can easily lead to a deadlock situation.

A user that is of particular importance in trying to figure out the state of the system is
often user 1. This user provides a number of system services such as flushing the locate -
buffers to disk. If user 1 funs into problems, the whole system will suffer since user 1 has
priority over other user processes.

All the previous user checks should be made on user 1. If the minalm process abort flag
is set for user 1, one can infer that no user processes have run for at least the last minute.
This couid indicate that the system was hung either in an interrupt process or in interrupt
inhibited code. Another place to look is at the user 1 message buffer. This can be displayed
with the tiybuf command. It may indicate problems that aren’t yet known such as”®
unrecoverable disk errors. The reason this information may not be known is that this buffer

is only emptied once a minute. Unrecoverable disk errors can seriously affect system

Prime Restricted

PE-T-1278 Ring Zero Débugger User Manual
Page 54

throughput causing one to think the system is hung.

Il examining the state of the active process and the whole svstem in general do not
clarify the source of the problem, the next step is to let the svstem run again and repeat the
previously described examinations. There are three separate approaches that could be used. One
is to single step the active process repeatedly to see if it is running in a tight loop. This
can be done using the breakpoint and single step commands. If a particular area of code is
suspected, breakpoints could be set there and one could let the system run with the continue
command. If the problem area is completely unclear, one can just let Primos run for a little
while longer, reenter the debugger with a console interrupt, and start the investigation over.

Some of the things to look for to investigate system hangs are summarizied below along
with the appropriate debugger commands to use. The list below is only meant to show the
kinds of information that one might need to determine the cause of a system hang and how
to get it with debugger commands. There are countless other approaches.

1. enter the debugger with a console interrupt

2. check the state of the active process

o what kind of a process? (status)

o what is the process doing? (ttybuf, arguments, trace, status, structure. cldata)
0 any outstanding process aborts or locks held? (status) .

0 are process faults inhibited? (structure pudcom)

o is the process interval timer positive? (pcb)

0 has the concealed stack overflowed? (pcb)

3. check the system state

o which processes are on the ready list? (ready__list)

o what interesting events are user processes waiting for? (status)
0 what nllocks are held and by whom? (status, print__locks)

o what is user 1 doing? (status, trace, structure, ttybuf)

0 is user 1's minalm process abort flag set? (status)

0 are there messages in the user 1 message buffer? (ttybuf)

Prime Restricted

Ring Zero Decbugger User Manual PE-T-127%
Page S5

4. if the source of the problem is unclear. let the svstem run a little more

o if & loop is suspected. single step repeatedly (step)

o if a specific area is suspected, use breakpoints and single steps (breakpoint,
step)

o if no idea as to source of problem, let the syétem go and restart the whole
sequence beginning with step 1. (continue)

4.2.3 System Halts

A system has obviously failed when it halts. Halts basically fall into 2 different
categories. On the one hand there are halts that are coded into Primos to stop the system
when some internal inconsistency has been detected. With these halts, the path to the halt and
the low-level reason for stopping the system are usually known. The other types of halts are
locations that contain data that when interpreted as an instruction, turn out to be halts. In
these situations, an error has caused a process to erroneously execute some pathological sequence
of instructions that led the process to start executing data. In other words, some software or
hardware error has caused the machine to “lose its way” and start executing in some
unexpected place. These halts are more difficult to deal with since it is usually very
difficult to tell what the path to the halt was. Furthermore, unlike coded halts, these halts
give no clue as to what was going on when the system halted.

The -Ring Zero Debugger can help in analyzing system halts, but there are definitely
situations where it will be of limited use. The major reason for this relates to the fact that
Primos must be running in order to use the debugger. Therefore, the debugger cannot be used
after the system halts unless the system is warmstarted. However, warmstarts completely
change the system state and thus warmstarting to get to the debugger is of limited use in
investigating a problem that just happened. It is for this reason that the Autopsy program can
sometimes prove to be more useful than the debugger in starting to examine certain halts.

An easy first step in determining the cause of a halt, is to install a breakpoint right on
the halt instruction and then try reproducing the problem. In many cases this will cause the
debugger 10 be entered. Once in the debugger, the process’s stack history can be determined
using the trace command. However, there will also be many situations where the system still
halts despite the breakpoint. One good reason for this to happen is if the nature of the
failure is such that the system halts in random places. Another reason is if the cause for
halting was a stack overflow. Breakpoints will not work on a stack overflow halt since
breakpoints require stack space to work properly (see section 5.1.2). In these situations, the
best approach is to take 2 tape dump and use the trace command in Autopsy 10 determine the
process’s stack history.

Prime Restricted

PE-T-1278 Ring. Zero Debugger User Manual
Page 56

Whether one uses the trace command in the debugger or the trace command on a crash
dump with Autopsy. the key is to try to figure out enough of what happened to be able to
maKke a reasonable guess as to where one might set breakpoints. The approach will be to try
10 set breakpoints in the area where it looks like the problem first occurred. In many cases,
this area might be the part of a routine that handles either exceptional conditions or errors. If
there have been new or changed mnodules, these routines would certainly be good candidates

for breakpoints. Once these breakpoints have been set, the next step is to try to reproduce
the halt again.

If the problem can be reproduced, one of two things will happen: either one of the
breakpbints will be hit or the system will halt again. If breakpoints are hit, the state of the
system can be determined using debugger commands and then new breakpoints set. This may
enable one to follow the path to the halt and thus determine the reason for the system
failure. On the other hand, if the system just halts again, one will have to coldstart the
system (warmstart if possible to save time) and make better guesses about where to install
breakpoints.

The process of setting breakpoints and seeing if processes encounter them before the system
halts may be very time consuming. It may take many attempts beforé~the actual path taken
becomes clear. Random of hard to reproduce halts make the debugging even more difficult.
Unfortunately, one just has to perservere. The steps described above are summarized below.

1. set a breakpoint at the halt address
2. try to reproduce the problem (i.e. halt)

3. use the trace command to determine the process’s recent history

o if the breakpoint was hit, use the debugger
o if the system halted, take a crash dump and use Autopsy
4. coldstart the system (or warmstart if possible)
5. set breakpoints near where it first seems like the problem may be occurring
6. try to reproduce the problem

7. system hits a breakpoint or halts

o if breakpoints are hit then sequence through the code setting breakpoints and
examining system state until the problem is found

o if the system halted then make better choices about the location of
breakpoints and go back to step 4

Prime Restricted

Ring Zero Debugger User Manual ' PE-T-127%
Page 57

4.3 Debugging Hardware

While the Ring Zero Debugger was designed primariiv for use in debugging software. it
can certainly be used 1o debug new or even malfunctioning hardware. While it is not the
best tool to accomplish this (z hardware level debugger like the FEP and diagnostic test

programs are better), it can provide some helpful insights in certain situations.

In the case of new hardware, it is often true that the individual functions or pieces have
been tested and seem to work yet when the total system is tested with Primos, it doesnt
quite work correctly. This happens often with new processor development. It is difficult for
a low-level hardware debugger to find many of these problems because it is not looking at
the situation from a level that is high enough (e.g. microsteps versus a disk read operation).
However, the Ring Zero Debugger is a perfect tool for looking at the problem from the
appropriate level. It can be used to examine the situation from the individual instruction level
up to the command line level.

There are a number of advantages to using the debugger to debug hardware whether it is
newl]y designed or not. These include the following reasons.

0 Much of the svstem can malfunction vet the debupger can still be used. This is
due to the fact that the debugger can be entered very early on during a coldstart.
Primarily all that has happened at this point is that memory has been sized and
process exchange has just been turned on. The debugger only needs the basic
processor and console interface to work. Thus a malfunctioning controller won't
affect the debugger in most cases.

o Problems can be diagnosed without special hardware or software. While the
typical ways for debugging hardware are generally superior to using the Ring Zero
Debugger, they usually require special software and often also require special
hardware. Since the debugger is built right into Primos, it is always available.

The debugger should also prove helpf u-lﬁ for debugging controllers. By setting breakpoints
on the i/o instructions in interrupt processes, one ought to be able to see the exact sequence of
instructions being issued to the controller. The debugger also provides the ability to look at
the DMA channels with the access__register and system__registers commands. If there was any
doubt about the data being transferred correctly from the device into memory with a DMX
transfer, a breakpoint could be set right after the i/o instruction which initiates the transfer.
Then the DMA channel as well as the actual buffer in memory can be examined to see if it
happened correctly.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page S8 . :

4.4 Dcbugging a Customer’s System _

When customers have problems with their syvstems. Customer Service gets involved. If the
problem is stubborn enough or the customer is important enough, then engineers from Prime
Engineering get involved. In somes cases, engineers may even have to travel to customer sites.
It is very possible that the Ring Zero Debugger could prove useful in solving certain types of
customer problems for both Customer Service and Engineering. However, at this point in time,
it is not clear that the debugger will be used for this purpose. The goal of this section is w
suggest some ways that the debugger might be used to solve customer problems. The hope is
that this use of the debugger will be explored.

In terms of Engineering, an important new ability that comes with the debugger is the
means to interactively debug a system remotely. The remote console port of the VCP can be

used to run the debugger at customer sites. In certain circumstances, this ability permits Prime
engineers to diagnose particularly stubborn problems for important customers without having to
make a trip to the site. All of the techniques described in this document for solving
problems can then be used not only in lab situations, but also to solve certain problems that
occur in the field.

From the Customer Service pefspéctive. the Ring Zero Debugger could be used as a
supplement to their existing .methods for diagnosing problems. If Customer Service people
were taught some basic ways to use the debugger in certain situations, they might be able to
easily diagnose some kinds of . problems. Some examples of the kinds of situations where the
debugger could help to get valuable information follow.

0 Machine checks due to a malfunctioning controller. In some situations, a system
may fail to coldstart due to a machine check. Upon decoding the dswstat register
it may be clear that a controller is causing the problem but it is not clear which
controller it is. With the debugger,”one could examine the location where the
processor was executing when the check occurred (contents of the dswpb register)
and determine which routine the process ‘'was executing in. From the routine name,
it is usually fairly clear which controller is involved. One could also set a
breakpoint on the instruction. Once the breakpoint is hit, then one could examine
the state of the system (or controller) at that point and also single step to be sure
that the instruction is the problem.

o0 Hung system due to a malfunctioning controller. Sometimes when a controller
malfunctions, it will appear constantly "busy” to the system. In Primos, most i/o
instructions are coded to spin in a loop if the device is busy. This will cause a
system to appear hung. The debugger could be used to determine the process. that
was executing and where, both of which should indicate the controller that needs
replacement.

o Determine information about a halt. When a system halts, it is often very
difficult to get even the faintest clue about why it halted based on the halt
address. Sometimes a message is printed before the machine halts but many times

Prime Restricted

Ring Zero Debugger User Manual - PE-T-1278
Page 59

not. By coldstarting the system with the debugger. one can look up the name of a
svmbol which correspond<s 10 the halt address. One mayv also be able w0 set a
breakpoint at the halt address and enter the debugger just before the machine is
about to halt. At that point, some basic debugger commands can be issued to
determine more information about why the machine is about to halt. While
knowing the halt name, current routine, or executing process may not isolate the
source of the problem, it should be somewhat helpful in solving the problem.

One other point is that if Customer Service can use the Ring Zero Debugger to solve
certain kinds of problems locally, then they could- also potentially diagnose the problem
remotely using the remote console port. This might allow them to determine what component
might be failing before they make a trip to the customer site.

45 Shared Subsystems

The Ring Zero Debugger can be used to set breakpoints anywhere in shared code (dtars O
and 1). The ring of execution can be either O or 3. The original intent here was to be able
to debug Primos, but there is no reason that the debugger couldn’t also be used on shared
subsystems such as ED, EMACS, Midas Pius, Cobol, etc. There are certainly better ways 10
debug these products, namely debug the code as a non-shared version first with DBG.
However, the Ring Zero Debugger could be useful should a bug appear in the shared version
but not in the non-shared version. '

In debugging a shared -subsystem, all features of the debugger will function correctly but -
there will be no symbolic information available. This is because only the Primos load maps
are currc-:ntl_v written into the debugger. However, with a modest effort, it is possible to get
other load maps written into the debugger. The modest effort involves modifying a program
which writes the Joad maps into a Primos program image just before the mapgen program is
run. This program is 'known as dump_maps and is located in the Primos mapgen
subdirectory.

The procedure to follow in adding the symbols of a subsystem to the debugger is listed
below.

1. make a load map of the subsystem using the same Seg options as are used w
make the Primos load maps

2. modify dump_maps to read in the subsystem map (could be instead of or in
addition to the Primos maps)

3. rebuild dump__maps
4. put subsvstem map in the directory where Primos is built

S. rebuild Primos

Prime Restricted

PE-T-1278 ’ Ring Zero Debugger User Manual
Page 60

4.6 A New Angle on Performance

There are many wavs to gather performance data on a system and the Ring Zero
Debugger is certainly the last place one should look. Yet surprisingly enough, there are at

least 3 ways the debugger can be used to determine information relating to performance.

One way that it can be used is w determine how many times a certain operation happens
to provide a given service. For example, how many disk reads does -it take to satisfy an avail
command? How many calls to locate does it take to invoke emacs? How many page faults are
taken to coldstart the system? To determine the answer to these questions, one need only set
a breakpoint on the routine that provides the service (eg. rrec, locate, or pagtur). The
breakpoint would be set with a large proceed ‘count. After the service has taken place, the
debugger could be reentered and the proceed count examined. The difference in the proceed
count is the number of times the operation took place.

Another way that the ‘debugger can be used to gather performance related date is to
determine how many times one code path is taken over another. For example if a routine like
prwfSS breaks into separate sections based on an input Kkey, one might wonder how often each
key is used. This could be easily determined by again setting breakpoints with large proceed
counts in each section. After running some test, the proceed counts can be examined to
determine the relative f requency that each routine has been- called.

A final way that the debugger could be used for performance is to actually count the
number of instructions needed to perform some operation. This can be done with the
breakpoint and step commands. Breakpoints can be set at the beginning and end of the
operation to measure. When the breakpoint at the beginning has been hit, one can issue a
single step command with a- large step count. When the ending breakpoint is hit, one can
examine the remaining step count. The change in the step count is the number of instructions
that were executed to perform the operation. This information could be valuable in trying to
improve the performance of a small but frequently traversed area of the system.

Obviously, the examples just given demonstrate that the debugger is a crude way to gather
performance data. The usaée command, GEM (the General Event Monitor) and PBHIST (the
pb histogram program) are certainly better sources for performance information. The reason
that this use of the debugger is mentioned here is two-fold. One is that the debugger is a
relatively easy way to gather some indication of what the situation is. The other is that the
information gathered by the debugger may present a new and different perspective. For
example, pbhist may tell one what general area of the system is being heavily traversed, but
its granularity isn't very fine. The actual reason for a system dwelling in a certain area of

code can be more closely examined with breakpoint and step commands.

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 61

o. Implications of the Ring Zero Debugger Design

A goul of the design of the Ring Zero Debugger was to make it as independent {rom
Primos as possible. The degree 1o which this is achieved is important in being able to debup
nearly any part of Primos. If the debugper relied on a particular feature of Primos, then one
couldn’t use the debugger to test changes to that region of the system without possibly
breaking the debugger. Therefore the debugger doesn’t rely on any features of Primos.

However, the Ring Zero Debugger cannot claim to be totally stand-alone. It is loaded
with Primos and runs as a special Primos process. To achieve functionality such as
breakpoints, it must deal with Primos in what are certainly non-obvious ways. While a user
of the Ring Zero Debugger may not be especially interested in its design, the user is certainly
interested when the design imposes certain limitations on the debugger’s use. That is the ’topic
of this chapter.

5.1 Effect of Breakpoints

The most difficult and complex part of designing the Ring Zero Debugger was supporting
breakpoints. Achieving ‘this functionality without any hardware support was extremely
challenging. The final design was largely successful in supporting breakpoints but there are
certain times and places where they cannot be used and other times when their use may be
confusing. Most of these situations are discussed in the following sections.

5.1.1 General Effects

Before describing some of the limitations of breakpoints, a quick sketch of the way that
breakpoints are implemented may help. When a breakpoint command is issued from the Ring
Zero .Debugger, basically two things happen. One, is that the debugger builds code to simulate
the breakpointed instruction. The other is that the original instruction is replaced by an
instruction which will cause an illegal instruction fault when encountered.” When the
breakpoint is hit, the breakpointed process takes a fault. Then the fault handler calls a
routine which wakes up the debugger process (which runs as the highest priority process in
the system). When one decides 10 leave the debugger, it manipulates the two extra stack
frames previously pushed onto the stack of the breakpointed process. The effect of this
manipulation is 10 cause the process to execute the simulated code and then return to the
instruction after the breakpointed one.

This scheme works most of the time but not always. The following paragraphs describe

situations where there are limitations.

o Certain instructions are not supported. Certain instructions do not allow
breakpoints for a variety of reasons. If one attempts to set breakpoints on any of

Prime Restricted

PE-T-1278 ' _ | H Ring Zero Debugger User Manual
Page 62 :

these instructions. the user will get an error message. The list of instructions is
ARGT, CALE. EteS. E32L0 E32R. E32S. E64R. E64V, IRTC. IRTN, LPSW, STEX, and
SV The quad floating point instructions are also not ‘supported.

o Certain places must be avoided. Because the debugger is implemented as a separate
process, breakpoints cannot be set in places where process exchange is disabled in
any way. These places include check handling code, phantom interrupt code, and
the tape dump program. It also includes both coldstart and warmstart code before
process exchange is turned on. An unrelated case is that breakpoints cannot be set
in the frontstop process. (This is only a constraint for dual-processors such as the
P850.) The debugger cannot detect any of these situations and therefore will just
fail to work properly. Breakpoints also ¢annot be set in the debugger itself or the
illegal instruction fault handlers. These two cases can however, be detected by the
debugger.

o Interrupt inhibited code should be avoided. Critical regions are most often achieved
by surrounding the code with interrupt inhibiting instructions such as INHL, INHP,
or INHM. Setting a breakpoint in code where interrupts are inhibited will break
the critical region. The code to simulate any instruction in the region will work
properly, but in the process of servicing the breakpoint, interrupts will be enabled.
This is due to the process exchange needed to invoke the debugger. The Prime
architecture enables interrupts on a process exchange. Enabling interrupts will
defeat the reason for having the critical region. There is no way for the debugger
to detect this condition. It is up to the user to either avoid this situation or at
least be aware of the consequences. (For example, if it is clear that only one
process is executing in the critical region at a time, then the region needn't be
avoided.)

o The whole svstem slows down. Servicing breakpoints can markedly slow the
system down. The degree to which it is slowed is related to the frequency of
breakpoints hit. Breakpoints which are set in code that will be executed on every
tick of the real-time clock can cause. throughput to virtually stop on some
processors. In these cases, virtually all processing time is spent servicing the
breakpoints. On the other hand, if a breakpoint is hit only a few times a second,
it will scarcely be noticed. Some of the effects of slowing down the system are
lower throughput, loss of time on the system time-of-day clock, and loss of
characters on the system console.

o Can't modifv memorv where breakpoints are set. If one attempts to modify a
location where a breakpoint is set, the debugger will give the user an error. This
situation is rather difficult for the debugger to deal with so mo attempt has been
made to do so.

o Won't work with self-modifving code. Breakpoints that are set in code that is
self-modifying will not work. When the code modifies itself, it will overwrite
the illegal instruction and there is no way that the debugger can determine that
this has happened.

o Breakpoints do not instanuv suspend the svstem. A svstem is in a sense
"suspended™ when the debugger process runs since it is the highest priority process

Prime Restricted

Ring Zero Dcbugger User Manual ' | PE-T-127§
Page 63

in the syvstem. However. this does not happen the instant a breakpoint s
encountered. ‘The illegal instruction fault must be handled by building o faul
frume und then calling & routine which eventually invokes the debugger process. If
the breahpoint s in ring 3 there i1s even more code to pass through. While this
code 1s being executed, the breakpointed process must compete with the rest of the
processes for system resources as it does ordinarily. Thus other processes can
potentially run after a certain process has hit a breakpoint.

5.1.2 Stack Implications

As noted in the previous section, when a process hits a breakpoint, it will push two new
stack frames onto the user’s stack. The first stack frame is a fault frame for the illegal
instruction fault. The second frame is built when the illegal instruction fault handler calls a
routine which will invoke the Ring Zero Debugger process. These facts are mostly irrelevant
to a debugger user except for the following cases.

o The extra stack frames can sometimes be seen. When one is in the debugger and
examines a process which has just hit a breakpoint, the added stack frames to
service the breakpoint will not be seen. This is because the debugger takes this into
consideration by looking back down the stack to get the values of the process’s
" registers at the time of the breakpoint. However, if another process is also hitting
a breakpoint but has not yet invoked the debugger, one will see the extra frames
on this process’s stack. In addition, if the user examines register values for this
process, the values shown will not be the wvalues at the time of the breakpoint.
This won’t cause any problems but is mentioned here to avoid confusion.

o Primos stacks are more likely to overflow. Pushing extra stack frames to service
breakpoints means that Primos will use more stack space than it otherwise would.
In most cases this doesn't matter since the stacks are relatively large. However, the
page fault stack is quite small and the addition of extra frames can sometimes
cause it to overflow. When this happens, the system halts at ROOVR_. There is
little that can be done in this case other than trying to limit the number of
breakpoints in routines that will concurrently share this stack.

o A corrupt stack can ruin debugging. The Ring Zero Debugger needs 10 use a
process’s stack to service breakpoints. If this stack bas been corrupted, breakpoints
will not work correctly. This may even cause fatal errors for the debugger. A
common way to allow the stack to become corrupted is to fail to allocate enough
stack space for an assembly language routine.

0 Deadly embrace in the page fault handler. Breakpoints can be set in most of the
ring zero fault handlers, but there can be 2 few obscure problems. An example of
one relates to a small section of code in the page fault handler. A breakpoint in
this section mayv cause one to hang the svstem. The section referred to is the code
that preceeds the CALF instruction in the page fault handler. The root of the
problemy is not issuing a CALF immediately. This means that the code up to the
CALF instruction is not using the page fault stack. Thus, if a breakpoint is set in
this code and the page fault happens to be for the next page of the current stack,

Prime Restricted

PE-T-1278 | Ring Zero Debugger User Manual
Page 64

“the system will be in an infinite loop. When it hits the breakpoint, the illegal
instruction fault handler will tryv to push s fault frame on the current stack.
However, this will just cause another page fault and the cycle begins again. This
is a relatively unlikely event, but it can happen.

o WAITs on the interrupt stack are a problem. There is one stack in the system
shared by all the interrupt processes known as the interrupt stack. All these
processes can share this stack because none of the processes leave any stack history
before executing a wait instruction. However, if a breakpoint is set on one of these
wait instructions, it would leave two extra stack frames before waiting. This
would cause the stack to become corrupted. The debugger can detect this condition.
It will clear the breakpoint and print an error niessage when this happens.

5.1.3 PCL Instructions

There is no instruction on Prime machines that is more complex than procedure call (PCL).
Breakpoints for this instruction proved to be very difficult to implement. The way that was
chosen is different from the method described earlier for .all other breakpoints. Instead of
replacing the PCL instruction with an illegal instruction, the ECB of the routine that the
~ PCL is calling is overwritten with new values. These new values cause the debugger to be
"invoked rather than calling the actual routine. When the debugger is later exited, the process’s
stack is manipulated so that control will pass to the routine originally called by the PCL.
This method seems to work fairly well but has some quirks that should be explained.

o The ECB is modified. The program counter and keys of the routine called by the
PCL will be modified when a breakpoint is installed. Don’t be alarmed.

o The PCL has already executed. With most breakpoints, the instruction breakpointed
has not yet executed. This is not true for PCL instructions because of the way
that they are implemented. With PCL'’s, the instruction has mostly completed but
one has not started to execute in the called routine. This means that the new
stack. frame has been built and the argument pointers have been put into it. The
debugger tries to make this situation transparent by looking in the stack frame tw
get the register values before the PCL executed. It mostly succeeds except that the
program counter (PB) has been advanced past the PCL instruction.

0 A breakpoint on a PCL won’t be seen if the instruction fails to complete. This
point is sort of a corollary of the previous point. Because the pcl instruction has
nearly completed before the breakpoint is encountered, anything which prevents this
instruction from completing also prevents the breakpoint from being seen. A
common reason for failing to complete the instruction is some sort of fault which
cannot be serviced. Page faults and pointer faults are frequent events when
executing a pcl instruction because of the .transfer of the argument pointers. If,
however, the pointer fault cannot be resolved, the instruction will not complete
and the breakpoint will never be seen.

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
Page 65

5.1.4 Single Stepping

The abilny 1o de single step’s is cleatlv o useful ability te have for debugging and thus
this capability 1s part of the Ring Zero Debugger. However, this ability is of much less
utility for users of the Ring Zero Debugger than it would be for other types of debuggers
due to certain limitations. These limitations relate to the designs of the processor architecture,
Primos, and the Ring Zero Debugger itself. These limitations are discussed below.

o Can onlv step from breakpoints. A user of the debugger can only issue the step
command if the debugger was entered from a previously set breakpoint (or step).
Thus if the debugger is entered due to a console interrupt, one must set a
breakpoint, leave the debugger, and have the breakpoint be hit before a single step
can be issued. The reason for this is related to the debugger design for doing next-
instruction prediction. The debugger will issue an error message should a user
attempt a step without having entered the debugger from a breakpoint.

o Only one process can step at a time. When one issues the step command it refers
to 2 single process. If the debugger is entered before this process completes its step
operation (for whatever reason), another step command cannot be issued without
getting an error meésage. The first step command must complete or be cleared
before another one can be issued. Supporting many, actively stepping processes in
the system at the same time would have made the debugger design very much
more complex. :

o Step aborts for various reasons. Step is a relatively useful command when used
with small step counts. However, if one gives it a large count, one sees before
very long that it will probably abort with an error message. This is due to the
fact that there are certain conditions that occur frequently in code that force the
step command to abort. The reasons for this relate primarily to the design of
Primos. Most of the reasons for aborting are listed below.

. Interrupt inhibited code. As previously discussed in section 5.1.1, a breakpoint
inside interrupt inhibited code can break the critical region. Therefore the
debugger will abort a step operation if it encounters an interrupt inhibit
instruction.

. Private address space code. The debugger was not designed tw allow
breakpoints in a process's private address space. Thus if one tries w0 step past
an instruction that calls or jumps into a process's private address space, the
step command will abort 'with an error message.

. Machine mode changes. The Ring Zero Debugger is written for V-mode only.
If one attempts to change the mode of the system with mode changing
instructions or by calling a routine with a mode other than V-mode, the step
command will abort with an error message.

. Unable to set breakpoints. If the debugger cannot set a breakpoint on a
particular instruction, then the step command must abort. Some of the reasons

Prime Restricted

PE-T-1278 ' : " Ring Zero Debugger User Manual
Page 66 :

for not being able to set a breakpoint are described in section 5.1.1..

5.2 The Issue of Non-resident Memory

One of the importain features of Prime systems is the ability to support virtual memory.
There is a great deal of code in Primos to support this functionality. This code makes non-
resident memory become resident if it is referenced. In order to have this ability in the Ring
Zero Debugger, the debugger would either have to use the functionality in Primos or duplicate
this functionality itself. If Primos was used by the debugger to reference non-resident memory,
then the debugger would no longer be stand-alone. This would mean that it could not be used
to debug ‘certain parts of Primos. Duplicating virtual memory support in the debugger is by
no means feasible. Therefore it was decided that the Ring Zero Debugger will not have the
ability to access non-resident memory.r

The effect of the decision to not have the ability to reference non-resident memory is that
most Ring Zero Debugger commands will abort with a page fault error should non-resident
memory be referenced. To lessen the impact of this restriction, the debugger is designed so that
breakpoints can be set in non-resident memory and the let command can modify non-resident
memory.

This ability is achieved by having the Primos page fault handler invoke the Ring Zero
Debugger on everv page fault when non-resident memory prevents these two commands from
completing. When the correct page is made resident, the commands are completed. Of course,
all- this manipulation is transparent to the user except when errors are involved.

The advantage of adding this "pending” ability for installing non-resident breakpoints is
that if everything goes well the user can't even tell whether the breakpointed memory was
resident. The disadvantage of pended breakpoints is that only limited error checking can take
place at the time the command is issued. If the specified location does not represent a valid
instruction, this can only be determined when the non-resident page is made resident.
However, this will not be when the breakpoint command was issued but some time later
after the debugger has been exited.

Errors during pended breakpoints may be somewhat surprising to the user. First the error
will be shown possibly long after the breakpoint command has been issued but before any
process has hit the breakpoint. Secondly, the stated reason for entering the debugger will be
because of a page fault. This is the only way for the user to ever see the debugger entered
this way.

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 67

5.3 Using a Secparate Process

- The Ring Zero Debugper is implemented as a separate process Which has the highes
priority of any process in the svstem. This fact together with the inhibiting of interrupis
means that the debugger will never be preempted by another process or even by phantom
interrupt code. There are a couple of implications of this design.

o The debupger will fail if process exchanpe data bases are corrupted. Process
exchange is implemented in firmware but relies on the integrity of data bases such
as the ready list, PCB’s, and semaphores. If any of these are corrupted, the
debugger may be unable to run. In fact it is common in such circumstances for
the machine to be hung in 2 microcode loop.

o The debupger cannot be entered without Primos running. With stand-alone VPSD,
one can enter VPSD after a machine halts. This is because it does not use process
exchange. Invoking VPSD simply means jumping into some code which turns on
segmentation and lets one exmaine memory. The debugger does need to have process
exchange on and thus Primos must be running. If the machine halts or is halted
while in Primos, Primos must be restarted by either warmstarting, coldstarting ,

or issuing a run command (if manually halted) before the debugger can be used.

o The VCP commands display and displavc won't work while in the debupger.
Display and displayc are VCP commands that allow one 10 eXxamine resident
memory locations while Primos is running. In order to accomplish this, the VCP
relies on the Primos clock process to read the sense switches and output values in
the “lights”. While the debugger is running, the clock process is not. Therefore
display and displayvc will not work correctly.

5.4 Warmstart

Very little is written, or for that matter known, about warmstart. It is a means of
attempting to restart the system right where it left off when it was stopped. The Ring Zero
Debugger can be used in many cases where warmstarts are attempted, yet there are some clear
restrictions. ’

Suating that the debugger can be used with warmstarts refers to two basic abilities. The
first ability is that breakpoints can be set in warmstart code after process exchange has been
turned on. This code can be debugged just like any other code. The second is the ability to
warmstart while in the debugger. This means that if the debugger process is running when.
the warmstart occurs, a warmstart procedure can be done successfully. One can be in the
débugger process either by just "passing through it” to service a breakpoint or by being in the
debugger command level. In the first situation, one will see the warrhs_;t.art happen
immediately. In the second case, one Wwill resume execution back in the debugger and will not
see the warmstart until the debugger is exited.

There are, however, some situations where warmstarts will net work with the Ring Zero

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 68 .

Debugger. These are listed below.

o Breahpoints executed by interrupt processes mav fail after @ warmstart. An
unfortunate aspect of the warmstart code is the way that it deals with the
interrupt stack. This code resets the interrupt stack, effectively destroying any
current state information. Because breakpoints need to use extra stack frames (see
section S.1.2), any process which is servicing a breakpoint and thus using the
interrupt stack, may fail after a warmstart.

unknown.

5.5 Effect on the Primos Load

The Ring Zero Debugger is loaded as part of the Primos ring zero load, but in a rather
unusual way. The debugger is loaded first before the rest of Primos. The unusual part is that
after the debugger is loaded, nearly all the names of debugger routines must be removed. This
means that the debugger can see any name in Primos but Primos can only see a few,
explicitly stated names in the debugger. The main reason for this is that the debugger uses a
few Primos routines including the PLP libraries. Because the debugger must reside in wired
memory, wired copies of these routines must exist. The best way to accomplish this is to load
separate copies of these routines with the debugger. However, this dictates that the debugger
“have its own, separate namespace and thus the just described loading sequence is used. This
design gives rise to a few issues. '

o Changing certain Primos routines can break the debugger. There are a few Primos
routines that are Joaded both with the debugger and with Primos. Primarily these
include the PLP libraries, I0AS, conversion routines such as CHSFX1, and some page
map primitives. (A complete list of these routines can be found in the load.) If
any of these routines are modified incorrectly it will affect the operation of the
debugger, possibly breaking it. If these routines need to be changed and debugged,
one could modify the load so that the debugger picks up the unmodified version
and Primos uses the new version.

o Manyv debugger global entrypoints appear to be unresolved. If one examines the
output from the Primos_ lgad, one will see many unresolved names immediately
after the debugger is loaded (but before the rest of Primos has been).
Unfortunately, this is a normal situation brought about by the peculiar way that
the debugger must be loaded. These unresolved names concern Primos data bases
that the debugger must know the locations of. After the rest of Primos is loaded,
all these names should be resolved.

0 A separate load map for the debupger is not generated. Most Ring Zero Debugger
symbols do not appear in the Primos load map. Basically the debugger has its
own, separate namespace. What would be desireable, then. is two load maps: one
for the debugger and one of Primos. Unfortunately, it is not possible to do this

Prime Restricted

PE-T-1278

Ring Zero Debugger Uscr Manual
Page 69

with SEG without generating an error. Therefore, it was decided that no load map
would be penerated for the debugger. However, one can generate a map for the
debugger by making changes to the ring zero Joad file. (See appendix .3).

Prime Restricted

PE-T-1278 : Ring Zero Debugger User Manual
-Page 70

Prime Restricted

Ring Zero Debugger User Manual . PE-T-127%
Page 71

Appendix A
Finding Variable Information from Listings

Program variables must be mannally defined before they can be referenced (see section 3.6).

In order to do this, one must first know <what the actual definition of the wvariable is. The -

definition of a wvariable relates 10 where it is in memory and what the data type is. This

information can be found in the cross reference of a listing of the program. The following
discussion describes how this information can be extracted from a listing. Before describing
how to get program variable information from a listing, some general comments about the
way variables are defined should be helpful '

\anables in programs generally fall into two classes based on how ‘they are allocated. - .
" Either thev are statically allocated in memory (e.g PL1 static v.mabl&s or Fortmn common __--‘-
areas) or they are dynamically allocated on the’ _current stack “frame (eg PL] automatic |
variables). Variables that are static are usuallv defmed in terms of the lxnkage area of a ':-5-

program. At Prime, this means that when the program is being executed the static variables ',

are referenced as offsets from the linkage base register (LB). Dynamically allocated variables Teen

on the other hand are usually expressed as offsets from the stack base register (SB). Lastly,

*variables in common areas arte teferenced as an offset from the start of the common area.

In order to define program variables in the Ring Zero Debugger, a program listing must be
consulted. The listing will indicate the type of the variable and how it is defined. The key
is 1 know how to get this information from the cross veference listing for the langauge that
the code is written in. The following examples will show how 1o get this mnf ormancm from

listings in plp, pma, and. Fortran. Each example will show hov: certain- variables -WETE

actually defined in a program and then what was produced in the cross reference lising, = '.;' '

PLP Listings

The following lines were removed from the module prwfSS in Primos. They show the
procedure definition and some variable declarations within the program.

prwf$s:
proc {xkey, xunit, xbuf_ptr, xbuf_(en, xposition,
xretwords, xcode) options (nocopy. gote);
det xunit fixed bin(15),
xpbuf_ptr ptr options (short),
xbuf_len bit(16) oligned,
xposition fixed dbin (31),
xretwords fixed bin,
xcode fixed bdin;
dci key_oction fixed bin,
old_cur_ro fixed bin (31),
idptr ptr options (short),
tronsaction_locked dbit(1) otigned,
nrecs f{ixed bin(31):

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual
Page 72

The corresponding lines from the cross reference listing are shown below.

0C1 00RB3SS KEY_ACTION bin(15) outomatic
001 0080154S LDPTR pointer automatic

@01 PPB16@S NRECS bin(31) automatic

001 0021265 OLD_CUR_RA bin(31) automatic
001 0000425 TRANSACTION_LOCKED bit(1) aligned automotic
001 2001015 XBUF_LEN bit(16) parometer
201 909076S XBUF_PTR pointer paraometer
001 0001125 XCODE bin(1S) parometer

081 000070S XKEY parameter

001 202104S XPOSITION bin(31) parameter
021 000107S XRETWORDS bin(15) parameter
001 00008735 XUNIT bin(15S) parameter

The key to reading the listing is that there is the letter S following the second column of
numbers. This means that the variable is stack based and the number is the offset from the
base of the current stack frame. For example, variable "key_action” is at offset 35 in the
stack frame. Thus, one could describe the location of kev__action by the address-expression
"SB%+35". In fact this would be the way that key_.action would be defined using the

define__command command.

Another point about the cross reference listing concerns variables that are labeled as
"parameter”. These variables represent arguments passed to the current program. However, the
actual value of the argument does not exist at the given stack location. This location contains
the address of the argument (since the pcl instruction passes pointers to the arguments not the
arguments). Thus one would have to go through one level of indirection to determine the true

value of the_ variable.

Another segment of the same cross reference listing is shown below to illustrate another
point. This example shows the way that a common area is represented (in this case pudcom).
If one wanted to define a variable that existed in a common area, one could express it as an
offset from the global symbol for the common area. For example, the address-expression for
variable "cusr” would be pudcom+10.

001 1 PUDCOM external
000000+00 2 FREE_PTR - pointer
200002+00 2 EXT_PTR pointer
000004+60 2 STK_RES(1:2) bin(15)
000006+02 2 PGFSPB pointer
000010+02@ 2 CUSR bin(15)
200011400 2 PCBUSR bin(15)
200012+00 2 UTBLPTR pointer

PMA Listings

To illustrate program variables in PMA, the following lines were taken from the Primos
routine pgmapa. Most of the lines demonstrate the use of the dvnm pseudo-op to define stack
based variables.

Prime Restricted

Ring Zero Debugger User Manual PE-T-127¢%
Page 73

ENT SDWADR

DYNM XPTR(3)
DYNM XUSER(3)
DYNM XBSAVE(2)
DYNK TEMP(2)
DYNM SDW_ADDR(2)
DYNM PPN

DYNM MAP_OFF
DYNM PME_OFF
DYNM MAP_PME(2)

SDWADR ECB SDWXe XPTR,2

The corresponding lines from the cross reference listing for pgmapa are shown below. It
should be easy t see that all the stack based variables show an offset followed by an
S. Thus an address-expression to define the location of the variable "map_off” would be
SB%+27. However, some of the stack based variables represent argument pointers and thus
only contain the address of the wvalue of the argument. This is true of variables "xptr” and
"xuser”. Also shown in this listing are some variables in global common areas. These are
listed as an offset followed by the letter C. In this particular example, the actrual common is,
again, pudcom. Thus an address-expression to reference variable “absave” is pudcom+20.

ABSAVE 200028C 8051 0051

HMAPSK ©00062C 0051 0851

MAP_OFF ©08027S 8245 0215 0221

MAP_PME 000031S 2047 0229 233
PME_OFF ©20230S 0046 0222 237

PPN 0000265 0044 0208 0227

SDW2 200202C 0051 @051

SDW_ADDR ©000224S 0043 0194 9198

TEMP ©PR022S ©P42 @136 @142 0155 8157
XBSAVE 2002205 0041 ©RE1 0092 8123 ©143
XPTR 0000125 0B38B 0074 ©R91 0114 0160
XSAVE ©00065C 8051 0851

XUSER 2000155 0239 0148 0154

Fortran Listings

Finally, the following lines will show how Fortran indicates variable definitions. These

code lines were taken from the Primos program taS.

INTEGER FUNCTION TA$ (XLINE,XSTATE,UKEY, FNAME, FNAMEL,
X ATSW,CODE)

INTEGER XLINE(41), XSTATE(2). UKEY, FNAME (16). FNAMEL,
X CODE .
LOGICAL ATSW

INTEGER 1,FLEVEL,]1CODE,CHARPT(S),BUFF(BUFS1Z),
X INFO(B) ., JNKNAM(16) ,LTB,RTB, TPARSS, TYPE , LEVEL,
X LDISK,PASSWD(16) .

INTEGER«4 TNPTR

DATA LTB,RTB/:274,:276/

The corresponding lines from the cross reference listing are shown below. The second column

shows the variable tvpe (e.g. l=integer, L=logical, J=integer*4). The third column shows the

Prime Restricted

PE-T-1278 Ring Zcro chuggér User Manual
Page 74

basis for the definition. Both "argument” dnd “stack™ mean that the displacement given in the
fourth column is relative to the stack. The value "linkage™ means the displacement is relutive
to the linkage area. Finally, if a name appears inside slashes, the offset 1s relative 1o a

common area whose name is in the slashes.

TA$
TNPTR
UKEY
VDNAM
XLINE
XSTATE

STACK 000031 00325 0258M

STACK 000206 0067S ©9087M 0OSEM
ARGUMENT 000040 0832S ©0034S 0872
/LSMCOM/ 202233 ©052S ©8191A
ARGUMENT ©20032 0032S 08345 ©°88A
ARGUMENT 000035 0032S 08345 ©088A

ATSW L ARGUMENT 000051 0032S ©@835S 0075M
CODE 1 ARGUMENT 000054 0032S 02345 0074M
FNAME | ARGUMENT 000643 20325 ©034S @103M
FNAMEL I ARGUMENT 000046 00325 0034S 0076M
INFO 1 STACK 000136 0065S 00BBA 0090
JNKNAM 1 STACK 000146 @065S ©0123A 0125A
LDISK I STACK 000027 @065S 0101M 013oM
LEVEL I STACK 800023 00655 ©0073M @139M
LT8 I LINKAGE @00400 0065S 00691 0159
MDVNO [/LSMCOM/ 002232 0052S 0189
PASSWD] STACK 000166 ©O65S 0104M ©O117A
RTB I LINKAGE 000421 @06SS @e691 ©138

1

J

1

I

1

1

A few examples from the previous cross reference may be helpful. An address-expression
for the variable "info” is sb%+136. The variable “Itb” is defined in the linkage area so it
would be [b%+400. For a variable in a common area, "mdvno” would be defined as
Ismcom+2232. As with all languages on a Prime system, any variables that are arguments
contain pointers to the true argument values. Thus a pointer to the value for argument "code”
is at sb%+54.

Prime Restricted

Ring Zero Decbugger User Manual PE-T-1278
Page 75

Appendix B
Command Syntax

The syvniax for the Ring Zero Debugger is listed below. Both upper and lower case input
is allowed. The convention in the specification below is that commands and arguments may be
abbreviated to the substring of those letters which are capitalized.

<command> :i1== : <voriaoble> <varioble—type—option> |
Access <address—expression> |
Access_REGister <occess—registers> |
Access_TYPE <occess—option> |
ARGumentS |
BReaoKpoint <breok-expression> <proceed-count> |
ClLeaR <break—expression> |
CleoRAll | :

- Continue |
DEFine_COMmand <command—nome> <commond-list>
DEFine_VARigble <quolified-variable>
<oddress—expression> <varioble—type—option> |
DELete_COMmond <command~nome—option> |
DElLete_VARiaoble <variable—option> |
DISplay_COMmond <command—name—option> |
DISplay_VARioble <variable-—option> |
Dump <oddress—expression> <oddress—expression> |
Help <help-option> |
LET <vorioblie> = <new-volue> |
LIST <breok—-expression> |
LiSTAll |
LOOKAT <process—option> |
Lookup_Address <oddress—expression> <symboi-type> |
Lookup_Symbol <symbol> |
- Pcb <process—option> |
Print_LOCKS |
ReaoDY_LiST |
SeoRCH <address—expression> <oddress—expression>
<search-pottern> |

STATus <status—options> |
Step <step—count> |
STRUCture <structure-option> |
SYStem_REGisters |
Traoce <troce-options> |
Tronsiote_to_PHYSicol <oddress—expression> |
Tronslote_to_VIRtuo! <physicoli—-page-number> |
TTybuf <process—option> |
WHere

Prime Restricted

R

PE-T-1278 Ring Zero Debugger User Manual
Page 76 .

<variable> c:= PL1 identifier

<variagble-type—option> ::== <voricble~type—-specification> | <empty>
<address~expression> ::= <virtual-oddress> | <symbolic—expression> |

<base-register—expression>
<access—registers> ::=A | B | L| E| X | Y |PB|SB| LB | XB |
DTAR® | DTAR1 | DTAR2 | DTAR3 | KEYS |
MODALS | OWNER | FCODE | FADDR | TIMER |
FARO | FLRO |FARt | FLR1 J @ | 1 | ... | 77

<aoccess—option> ::== <aoccess—type> | <empty$

<breok—expression> ::== <process—number> : <breakpoint—address> |
<breakpoint—-address>

<proceed—count> ::== <decimal—number> | <empty>

<command—-name> ::== string

<command-1ist> ::= <command> ; <command-list> | <command>
<qualified-variable> ::== <procedure—nome>\<variable> | <variable>
<command-ngme—option> ::== <command—nome> | <empty>

<vorioble—option> ::= <variable> | <empty>

<help-option> ::== <command> I <empty>

<new-value> ::== a volue expressed in the type of -its target

<process—optiond> ::== <process—number> | <empty>

<symbol~type> ::== ANY | PB | ECB | LB | LBN | COMMON | OTHER |
<empty> :

<symbo (> :i== names from the Primos lood maps

<search—pattern> ::= °string’ | <octal-list> <search-mask>

<stotus—options> ::== <process-number> | ALL | ‘USer |
INTerrupt | <empty>

<step—count> ::== <decimal—number> | <empty>

<structure—option> ::= <definition> <address—expression> |
<definition> | <empty>

<traoce—options> ::== <proce§s—number> <address—expression> |
<process—number> | <empty>

<physical—page—number> ::= <octal—number>

<varioble-type-specification> ::== <variable~type> |
<variable—~type> <variable-{ength>

"

<virtuol-oddress> ::== <segment>/<octoli—-number> |
<segment>/<octol-number> <oddop> <octa!-number>

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 77

<symbolic—expression> ::== <symbol> | <symbol> <oddop> <octaol-number>

<bose-register—expression> ::== <bose-reg> |
<bgose~-reg> <oddop> <octal-number>

<occess—type> ::== Ascii | Bit | Decimal | Hex | Octol | Symbolic
<process—number> ::== <decimal-~number>

<breakpoint—address> ::= <virtuol—oddress> | <symbolic—expression>
<decimgl-number> ::== =32768 to 32767

<procedure—nome> ::== procedure from Primos load mop

<octal-list> ::= <octal-number> <octol-list> | éoctol—number>

<search-mask> ::== & <octal-list> | <empty>

<definition> ::== CLDATA | DISK_QUEUE_BLOCK | ECB | FIGCOM |
PUDCOM | PUSTAK | SUPCOM | UPCOM

<octal—-number> ::== 16 bit octal number

<variable-type> ::== Ascii | Bit | char_Vary | Decimoi | Octol |
Pointer

<varigble-length> ::= <decimai-number>

<segment> == 12 bit octal number

<oddop> ii= 4+ | -

<bose-register> ::= SB% | LB%Z | XB% | »

<empty> L=

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 78 .

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 79

Appendix C
Assembly Language Syntax

The syniax for the assembly language accepted by the Ring Zero Debugger is listed below.
The definition is for V-mode only as this is the only mode that the debugger supports.
Symbolic assembly language input is only an issue for the access command.

<symbolic—input> ::== <generics> | <skips> | <decimal> |
<character> | <generic_ap> | <branches> |
<shifts> | <field> | <mem_refs> |

<org_ptrs>
<generics> ::== <generic-mnemonics>
<skips> ::== <skip_mnemonics> | <skip-mnemonics> <bit—number>

<bit—number> ::== 1 to 16

<decimat> ::== <decimol-mnemonics>

<chaoracter> ::= <chorocter—mnemonics>

<generic—ap> ::= <generic—op—mnemonic> <generic—gp~volue>
<generic—ap-vaotue> ::== <base-reg—expression> <bit-expression>

<generic—op—options>

<base-reg-expression> ::== <bose-register> <oddop> <word-number> |
<base-register> | <word-number>

<base~register> ::== PB% | SB%Z | LB% | XB%

<addop> ::= + | -~

<word-number> ::= 16 bit unsigned number

<bit—expression> ::= 4 <bit—number> B | <empty>

<generic—aop-options> ::= ,e | <empty>

<bronches > ::== <branch-mnemonic> <word—-number> .
<shifts> ::= <shift-mnemonic> <shift—count>

<shift-count> ::== o number from @ to 63

<field> ::= <field-mnemonic> <field-operaonds>

<field-operonds> ::== <far> | <fir>

<far> ::== 0 | 1

<fle> ::=0 | 1

<mem—refs> ::== <mem—ref-mnemonic> <length—specifier>
<mem—-ref—operand>

<length—-specifier> ::= § | % | <empty>

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual
Page 80

<mem-ref-operand> ::= <pc—relative> | <base-~reg-reiotive>

<pc-retative> ::== <pc—displocement> |
<pc~displacement> <pc—options>

<pc-displaocement> ::== e <oddop> <pc—bounds> | <valid-displacement>
<pc-bounds> ::= q number between -223 and 255

<valid-displacement> ::== a number — (current progrom counter) is
within <pc-bounds>

<pc—options> ::= ,e | X | ,eX ' °

<base-reg—relative> ::== <base-reg-expression> <base-reg-options>

<base-reg-options> ::== X | Y | .o | ,eX | ,oY | Xe | ,Ye

<9rg—ptrs> D= Aé <bose-reg—expression> <bit—expresion> <ap~options>

.<ap~options> ::== S| ,SL | ,¢ | oS | ,eSL | <empty>

<generic-mnemonics> ::== A1A | A2A | ACA | ADLL | ARGT | . . . ' -
<skip—mnemonics> ::= DRX | IRX |SAR | SAS | SGT |

<decimal-mnemonics > ::= XAD | XBTD | XCM | XDTB | XDV |

<character-mnemonics> ::== ZCM | ZED | ZFIL | ZMv | Z™MVD |

<generic—ap-mnemonics> ::= ABQ | ATQ | CALF | INBC | . . .
<branch-mnemonics> ::= BCEQ | BCGE | BCGT | BCLE |
<shift-mnemonics> ::== ALL | ALR | ALS | ARL | ARR |

<field-mnemonics> ::= ALFA | EAFA | LFLI |

<mem—ref-mnemonics> ::= ADD | ADL | ANA | ANL | CAS |

Prime Restricted

Ring Zero Debugger User Manual : PE-T-127%
Page 81

Appendix D.
Error Messages

Various types of errors can be encountered in the course of using the Ring Zero Debugger.
The different classes of errors are described in section 2.9. This appendix describes the errors

Known as user errors. It also includes warnings.

A breakpoint olreody exists at specified address.)
An ottempt wos made to install o breokpoint ot a location where one olready exists.

A command definition has not been specified.
The define_command commond hos been issued but is missing orguments which will define
the oction of the new user—defined commond.

A command nome has not been specified.
The define_command commond requires aorguments which specify the command nome ond the
definition of this user—defined command.

A Primos symbol is required as on orgument.
This command expects & symbol! from the Primos lood maps but none was given.

A private oddress spoce does not exist for the active process.
The current command is referencing a privote oddress space but the active process is
an interrupt process. The key is that interrupt processes don't have their own private
oddress spoces.

A segment offset is not a valid oddress expression.
A number representing on offset within some “current” segment is not o volid form of
on oddress—expression. See the definition of oddress—expression.

A volid oddress expression must be specified. v
The given commond expected on cddress—expression orgument bul none wos given.

A valid register nome must be specified.
The occess_register command requires o valid register nome os on argument. See the
definition of this command.

An octol number is expected.
The current command expected an octal number but didn’t get one.

An unpend operotion may be erroneously ignored. .
This warning indicotes thot on operotion thot waos “pended” due to non-resident memory,
may never become properly ‘“unpended” when the page becomes resident. Pended operations
usually refer to breakpoints. The expectotion is that this warning will seldom happen,
but if it does, the breakpoint should be cleared ond re—installed.

Bit numbers must be between 1 ond 20 in octol.
The bit number operand specified is not in the correct ronge or rodix.
«
Bronch oddresses must be 16 bit octol numbers.
The operand to o branch instruction must be on offset within the current segment. It
cannot be o relative address (e.g. *=-5).

Breokpoint table is full. Commond ignored.
The number of breokpoints currently defined equois the moximum number aollowed. To
define another breokpoint, one must be deleted from the table. The attempt to set
onother breokpoint did not couse one to be instollied.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 82 .

Breakpoints are not allowed for this instruction. :
Breakpoints are not implemented f3r certoin instructions. The list of instructions is
given in section 5.1.1.

Breaokpoints ore not ollowed in debugger code.
Breokpoints connot be set within the debugger code. They colso connot be set in code
which is needed to invoke the debugger when a breckpoint is hit. Code in this category
includes the gate odded to support ring 3 breakpoints and all illegal instruction
fault handlers. .

Breakpoints are not atlowed in private segments.
The debugger was not designed to allow breakpoints in private segments.

Breakpoints ore not supported for this form of memory reference

instruction.
The form of memory reference instruction refers to the base register relative form
thot ore indexed with a displacement of 7 or less. These ore one word instructions
that wuse the contents of the x register to determine how to form the effective
address! It is truly amazing that ony form so cryptic was ever defined in the
architecture. Breakpoints for such a ridiculous form are impossiblie.

Breakpoints cannot be set on an ARGT instruction. _
An argt instruction is not on executable instruction. Any breakpoint should be set on
the next instruction insteaod. ’

Breakpoints not allowed on LDLR/STLR KEYS. . .
Due to an orchitectural problem, neither the Idir nor the stir instructions can
support breokpoints if the register being referenced by these instructions is the
keys/modals register. Otherwise breokpoints can be set on these instructions.

Can’t continue from breckpoints set on WAIT instructions that use the

interrupt stock. Breakpoint/step cleared.
One of the bosic rules of using the interrupt stack is that no process which uses it
should ever leave any stack history on it. In other words o wait instruction should
not be-executed if the process has active stack frames on the interrupt stack. Setting
o breakpoint on a wait instruction would couse debugger stack frames to be ieft on the

interrupt stock. This would eventually corrupt the interrupt stack. Bregkpoints on
wait instructions are otlowed as long aos the current stack is not the interrupt
stock.

Con’t modify breokpointed memory. Operation aborted.
The basic design of the debugger does not ollow one to change the vaoiues of memory
tocations that contaoin breakpoints.

Can‘t set breakpoints on calls to non—64V routines.
The debugger only supports Prime V-mode. Becouse of the way that breakpoints are
implemented on pcl instructions, the debugger must disallow any ottempt to set
breakpoints on pcl instructions which call a routine whose mode is other than V-mode.

Can’t set breagkpoints on calls to privote segments. Operation

oborted.
The debugger does not support breakpoints in private segments. Because of the way that
breackpoints are implemented on pcl instructions, the debugger must aliso disaliow any
breokpoints on pci instructions which call routines in private segments.

Command line is too long. Any input ignored.
The command iine just entered exceeds the moximum length of 256 characters.

Current instruction doesn’t ollow steps.

The current step operation must abort since the next instruction does not ollow
breakpoints.

Prime Restricted

Ring Zero Decbugger User Manual PE-T-1278
Page 83

Current procedure’s ncme not in Frimos 100d mops.
As port of printing out the crqQuments {o o procedure, on attempt was mode Lo determine
the nome of the procedure by using the voliue of the Ib register. However, the look up
foited.

Define commands table is futl.
The debugger internal table used to store user—defined commaonds is full. Some user—
defined commands must be deleted before more caon be odded.

Given option is involid with this commend.
The current commond does not recognize a given option as volid.

Given physicel poge does not exist for this system.
The physical poge number given for the current commond specifies o physical poge thot
does not exist on the current system.

Given physical page is free or voided.
The physicaol! poge number given to the tronslaote_to_virtua! command does not correspond
(ot this moment) to ony process's virtuo! oddress. In other words, no process
currently owns this physical page.

Given structure nome is not known.
The dote bose name specified in the structure command is not recognized by the
command. A list of the valid names con be seen by issuing the structure commond with
no orguments. .
Given virtuol oddress corresponds to non-resident physicol memory.
The tronslote_to_physicol commaond hos been issued with on oddress that is not
currently resident. Therefore there is no corresponding physical oddress.

Given virtuol oddress is undefined.
The segment specified by the virtuol oddress does not exist (i.e. it has never been
allocated). ’

Index registers cannot be used with this instruction.
Certain memory reference instructions do not ollow indexing. This is a function of the
Prime processor architecture.

Invalid occess type specified.
The description of the access_type commaond specifies the volid occess types.

Invalid oddressing mode. Check indirection or indexing.
The operand given for o memory reference instruction hes tokens in the fields that
usuclly indicaote indirection or indexing, but the tokens connot be recognized.

Invalid bose register expression given as address.
A bose register expression is a specific type of oddress—expression. It specifies o
bose register plus or minus on octal offset. The debugger recognized o base register
but the volues following it do not seem to be volid offsets.

. Invatid displacement in memory reference instruction.
The displiocement given for a one word pc—relotive form of o memory reference
instruction exceeds the allowgble limits (-223 to 255).

Invalid input for current access type.
An ottempt wags mode to modify memory, but the new value is of the wrong occess type
(e.g. on ascii value for o decimol occess type).

Involid input type for this defined variaoble.

The doto item being ossigned to o program vorioble is not of the some type as the
progrom variable.

Prime Restricted

PE-T-1278 ‘ Ring Zero Debugger User Manual
Page 84 '

Invalid interrupt process number specified.
Non-positive process numbers specify interrupt processes. However, the number
specified for this command is beyond the range of those interrupt processes that are
currentiy defined.

Involid length specified for printing ¢ field.
The 1ength given for printing o field is not consistent with the type of a field (e.g.
a decimal number thot is 5 words long). A common way to get this error message is to
add or modify a structure definition with an incorrect field definition.

Invalid mosk. It must be o 16 bit octal number(s).
The mask or masks specified for the search command are not 16 bit octo! numbers.

Invalid operand for o memory reference instruction.
The operand specified for the memory reference instruction cannot be parsed into o
valid instruction.

Invalid operand for the instruction.
In attempting to parse an ossembly longuage instruction, an operand wos given that was
invalid for the given instruction.

Invalid pecb tink address encountered.
In ottempting to sequence through the linked lists of pcb's that make up the system
ready list, a pcb link oddress was found that is cleorly invalid.

Invalid physica! page number specified.
The physical page number argument is not a 16 bit octal number.

Invalid ring number in pointer.
A pointer was specified with an invalid ring number. The correct form for a pointer
with o ring number is SSSS(R)/WWWWWWW where SSSS is ¢ 12 bit segment number in octo!l,
WWWWWAWW is o 16 bit word number in octal, and R is the ring number. The ring number
can only be ® or 3.

Invalid stotus command option specified.
See the description of the status command for o list of the valid stotus command
options.

Invalid symbolic oddress.
A symbolic oddress is a specific type of address—expression. It specifies o Primos
load map symbol plus or minus an octal offset. The debugger interpreted the address-
expression as o symbolic oddress but did not recognize the tokens as being in the
valid format.

Invalid variable length.
The value being specified for the length of the program variable is not wvalid for the
given type. Valid ranges for the lengths depend on the specified type.

Invalid voriable nome.
Progrom varioble names must be like variable nomes in PL1G. They must be start with
letters and consist of only letters, numbers, °_°’, and *$°.

Invalid voriabte type.
A type is given for a progrom variable that is unknown. See the description of the
define_variable command for o list of the defined types.

Invelid word number in pointer.
A pointer was specified with oan invalid word number. A 16 bit octal number is expected

for the word number portion of the pointer.

Missing or invelid search pattern. A charocter string or 16 bit octal

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
Page §5

number(s) is expected. .
The search pottern given for the search commond is not volid. See the seorch commond
description for more detoils.

Nesting of orroys in the definition of o structure is not supported.
The structure commond works from internally defined tables in the debugger. These
definitions aliow o field to be defined os an orray. However, oarrays connot be defined
within arroys. See moduie ds>struc_dc!.pma.

No breokpoint exists ot specified oddress.
An ottempt was mode to clear o breakpoint at o location were none wos set.

Offsets from symbols must be 16 bit octa! numbers.
All forms of oddress—expression's con have an optional offset. The given offset could
not be converted into o 16 bit octal number.

Operction oborted due to foulted pointer.
In ottempting to compute the effective oddress of on instruction, a foulted pointer
(tinkoge foult) was encountered. This happens most often with either breakpoints or
steps on pc! instructions. The debugger cannot resolve the oddress so it must abort.

Procedure nome is required for voriobles defined in terms of base
register expressions.

If o progrom voriobie is defined in terms of o base register, ¢ check is mode in the
debugger to ensure that ony references to this vorioble ore mode while executing in
the procedure for which the varioble was defined. The procedure name is needed for
this check.

Proceed count must be between 1 ond 32767. -

The proceed count octtribute given in the breakpoint command wos not in the proper
ronge of 1 to 32767. '

Process numbers must be decimol numbers less than 256.
The process number specified is greater thon the number of processes thot Primos can
support. Currently the maximum number supported is 255.

Process specified does not hove termingl buffers.
The ttybuf commond wos issued with o process number that does not have terminol
buffers. Processes such os siaves and phontoms do not have termina! buffers.

Referenced variobie is not defined for current procedure. .
A progrom varioble has been referenced which was defined with o procedure nome that
does not moich the procedure currently being executed by the active process.

Search pottern size must not be greater than size of the memory to
search.

The pottern specified with the search commond is lorger than the area of memory that
is to be searched.

Segment” numbers must be 12 bit octal numbers,
A 12 bit octal number representing o segment number was expected as on argument by the

current command.

Shift counts must be between @ ond 77 in octol.
The operand to o shift instruction wos not in the valid range or radix.

Specified memory reference operaond requires o 2 word instruction.
The is no one word form of this memory reference instruction given the specified»

operand.

Specified process is logged out.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 86

The process number specified references o process which is logged out. This is o
problem for the current command since there is limited information obout a logged-out
process.

Specified process is not configured.
The process number specified is greoter than the number of processes configured on
this system.

Specified register name is unknown. -
The register name given does not match ony known to the debugger. See the
occess_register command for o list of valid names.

Step presumes entry from o breakpoint/single step.

’ The ability to issue the step command is limited to the situation where the debugger
must have been entered from o previously set bregkpoint or single step. (See section
5.1.4).

Stepping through o critical region is not allowed.
In single stepping through code, an inhibit instruction was encountered. Setting
bregkpoints in interrupt inhibited code breaks the critical region and thus the step
is aborted. (See section 5.1.1)

Structure definition is missing an array begin.

The structure commond works from internally defined tables in the debugger. These
tables have been incorectiy modified to indicate the end of an arrgy without o
beginning. See the module containing the structure definitions for o complete

description of modifying these data bases. (ds>struc_dcl.pma)

Structure definition is missing an array end.
The structure commond works from internclily defined tables in the debugger. These
tables have been incorectly modified to indicate the start of an array without on end.
See the module containing the structure definitions for a complete description of
modifying these dato bases. (ds>struc_dcl.pma)

Structure entry hos an invalid type.
The structure command works from internglly defined tobies in the debugger. Eoch entry
specifies o type ond length for o particulor field. An entry has just been encountered
thot does not have o defined type. See the module containing the structure definitions
for o list of the valid types. (ds>struc_dc!i.pma)

Symbo! not found in Primos load maps.
An unsuccessful attempt wos made to look up a symbol name or address in the Primos
load maps.

The octive process does not own a register set yet the specified

register only exists in user register sets.
Certain registers, such as fcode and faddr, only exist for a process when that process
owns o register set. When the process gets swapped out of a register set, values for
these registers are not saved and thus are undefined.

The ending oddress is not @ valid address expression.
The commond just issued requires a valid address—expression as an argument. This
orgument represents the ending oddress. See the definition of address—expression.

The size limit on the search pattern is B octol numbers or o string

of 20 charocters.
The search pattern given for the search command is not valid. See the search command
description for more detgils.

The specified nome hos not been defined os o command.)
An ottempt was mode to either display or delete o user—defined command that had not

Prime Restricted

Ring Zero Debugger User Manual : PE-T-1278%
Page 87

previously been defined.

The storting oddress is not o volid address expression.
The commond just issued requires o volid oddress—expression o0s on argument. This
orgument represents the starting oddress. See the definition of oddress—expression.

The step count must be o number between 1 and 32767.
The volue given for the step count wos either not a valid number or not in the o!lowed
ronge.

There is olready an octively stepping process.
The design of the debugger only allows one process system—wide to be octively
stepping ot any one time. (See section 5.1.4).

Too mony arguments specified.
The given commond uses fewer arguments than were given on the commond line.

Too mony maosks specified.
The mosk specified for the search command is not the some length os the specified
pattern to search for. The mask ond the pottern must be the some number of words.

Unknown command.
The commond typed is neither o valid debugger command nor o user—defined commond.

Unknown V-mode instruction.
The current commond required a look up of on instruction by either opcode or mnemonic,
but no corresponding volue wos found in the internol debugger instruction set table
for V-mode instructions.

Variable is noi defined.
A reference hos been made to o progrom varioble which has not been previously defined.

Variable toble is full.
The internal debugger table used to store information oboul program variables is full.
Sothe voriables must be deleted before more con be added.

Virtuol aoddress must be specified in octal.

The argument typed is not o volid virtuo! address. Valid input must be on octal
segment number ond then on octal word number with o / separating the 2 fields.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 88

Prime Restricted

Ring Zero Debugger User Manual PE-T-127%
Page 89

Appendix E
Summary of Functionality Limitations

Due to the complexity of Prime processors and Primos, it is not possible 1o develop a
debugger without some caveats or limitations on its functionality. This appendix summarizes

some of these limitations. Complete descriptions of the limitations are given in chapter 5.

1. Breakpoints cannot be set on the following instructions: ARGT, CALF, E16S, E321,
E32R, E32S, E64R, E64V, IRTC, IRTN, LPSW, STEX, and SVC. The quad floating
point instructions are also not supported.

2. Breakpoints will not work if placed in the following placs:/ check handling code,
phantom interrupt code, the tape dump program, coldstart and warmstart code
before process exchange is turned on, code executed by the frontstop process, illegal
instruction fault handlers, Ring Zero Debugger code.

3. Breakpoints should not be set in interrupt inhibited code.

4. Memory can’t be modified where breakpoints are set.

S. Breakpoints won’t work on self-modifying code.

6. Breakpoints make it more likely that a stack might overflow by pushing on extra
stack frames.

7. A _corrupt stack can make the debugger fail.

8. Breakpoints in a few places in the ring zero fault handlers can sometimes cause
deadly embrace.

9. Breakpoints on pcl instructions won't be seen if the instruction fails to complete.

10. The step command can only be issued if the debugger was entered by encountering
a previously set breakpoint. .

11. The step command cannot be issued again if a previous step command bas not
completed.

12. The step command will abort for various reasons: an inhibit interrupts instruction
has been encountered, the process is about to enter a private segment, the code is
attempting to change modes, a breakpoint cannot be set on the next instruction.

13. Non-resident memory cannot be examined.

14. Corrupting a process exchange data base may make the debugger fail.

15. The debugger cannot be restarted without running Primos.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 90

16. The VCP commands display and displavc do not work while in the debugger.

17. Warmstarts on breakpointed processes which use the interrupt stack may fail.

18. Warmstarts while in the debugger do not work at all on the P850.

19. Modifying Primos routines that are also separately loaded with the debugger can
make the debugger fail.

Prime Restricted

Ring Zero Dcbugger User Manual ' PE-T-1278
Page 91

- Appendix F
Maintenance Notes

Like any other piece of software, the debugger is expected to evolve over time. In many
cases, these changes may be made by engineers who are not very familiar with the structure
of the debugger. The purpose of this appendix is to pass along some information that may be
useful to those people who need to know more about the structure of the debugger. If more
information is desired, a complete design specification was written and can be found in osdoc
(the document system for the Primos group).

F.1 Changes to Primos for the Ring Zero Debugger

Most of the Ring Zero Debugger consists of newly written code. This new code consists of
"about 100 modules and resides in 2 new Primos subdirectory know as ds (i.e. debugger source).
This code is for the most part, independent of the rest of Primos.

The actual number of existing Primos modules which were changed for the debugger is
very small. The number is 8 , excluding minor insert file changes, and half of these changes
consist of only a few modified lines. The basic changes are listed below.

1. A new debugger process

2. A modified system console driver to detect the debugger key sequence and invoke
it-if it is configured

. 3. Modifications to the illegal instruction fault handlers to invoke the debugger if it
is configured (basis of breakpoints)

4. A modified frontstop process to loop while the debugger is running (P850 only)

S. The addition of a new private gate so that breakpoints can be supported in ring 3

One other area where the debugger will be noticed is the ring zero load. The load file
load>begin__load is very much larger because this is where the debugger was added to the
load sequence. The final phase of the ring zero load is also different. Just before the mapgen
program is invoked, a new program (dump__maps) will be invoked. The purpose of this
program is to write the newly created Primos load maps into one of the Primos run images
(i.e. PRXXXX files) for later use by the debugger.

Prime Restricted

PE-T-127% Ring Zero Debugger User Manual
Page 92

F.2 Areas Most Likely to Change

There are two major reasons for changing the debugger. (ne reason is 10 enhance the
existing functionalitv. An example of such an enhancement is to allow conditional breakpoints.
The other reason for changing the debugger is if Primos changes. This is true because the
debugger knows about, and makes certain assumptions about, the structure of a few Primos
data bases. This latter reason for changing the debugger will be the topic of this section.

The basic operation of the debugger (e.g. breakpoints, accessing memory and registers), has
very little connection with Primos. This code depends more on the processor architecture than
on Primos. In other words, it will be a relatively rare occasion that a change to Primos will
require a change in these routines. What is more likely to require changes are cerwin
commands that are rather closely related to the current structure of Primos. These commands
include structure, status, ready__ list, print__locks, and ttybuf. -

The structure command will undoubtedly be the major reason for changing the debugger.
The price of getting the desireable functionality of this command is that there is a debugger
data base that can very easily become out-of-date. When this happens, the structure command
will fail to work properly. It will be the job of every engineer to update the debugger

structure data base when a change is made to a Primos data base that the debugger kmows
about,

One more reason for modifying the structure command will be to add new definitions for
new or existing Primos data bases. The original set of structure definitions was just to
demonstrate _the capability. The hope is that as the use of the debugger becomes more
widespread, engineers will populate this debugger data base.

Another likely command that will require modifications is the status command. It returns
a fair amount of information on each process, much of which can change over time. Some
examples of things that can change in Primos that will require a corresponding change in this
command are new interrupt processes, new ready list levels, new user types, new nllocks, and
new abort flags. -

Other commands that may easily require changes are print_locks and ttybuf. If any
nllocks in the system are added or modified, then print_locks must reflect the change. The
ttybuf is able to display the contents of terminal buffers by knowing the data base for these
buffers. Any changes in the format of these buffer data bases must be reflected in the
ttybuf command of the debugger.

One situation where one needn't change the debugger is if new interrupt processes are
being added at an existing ready list level. This is somewhat surprising since the Autopsy
program requires modification in this circumstance and the debugger does not. The difference is

due to the fact that the names of interrupt processes are looked up in the load maps by the
debugger.

Prime Restricted

Ring Zero Dcbugper User Manual PE-T-1278
Page 93

In summary. the following changes 1o Primos will require changes to debugger code. The

commands or modules affected by the changes are shown in parenthesis.

o modifications to Primos data bases that have a debugger structure defined for them
(structure)

o changing or adding new user types (status)

o ready list level changes (ready__list, status)

o changing or adding new nllocks (print__locks, status)
o changing or adding new process aborts (status)

0 changing terminal buffer data bases (ttybuf)

o elimination of the hideous refalt mechanism in Primos (ds>refalt_fix.pma)

F.3 Getting 2 Load Map

Getting loader information about the Ring Zero Debugger is unfortunately somewhat
involved. Because the debugger is loaded first and then all symbols are expunged, there is
virtually no information about the debugger in the Primos ring zero map. There is a way to
get a separate map of the debugger, but because of limitations in the seg loader, the standard

load is not set up 10 generate one.

The problem with seg is that it cannot generate two load maps in the same load sequence.
The way 1t get around this is to issue the seg subcommand “return” to leave the load
sequence and then restart it with the subcommand "load *". This allows one to get 2 map of
just the debugger, separate from the Primos ring zero map. However the bad consequence of
doing this is that when seg completes, it will indicate an error. This is at best confusing tw
people, at worst it will prevent coldcpl program from running. For this reason, 2 map is not

automatically generated.

In the actual load file for the start of Primos ring zero load, the seg commands to
generate a map for the debugger are included but are commented out. To get a debugger load
map these lines should be replaced “with the real commands. It may aiso be necessary to

manually run cold.cpl

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 94

F.4 Reporting Errors

For problem reporting purposes. the Ring Zero Debugger is just a particular part of Primos.
Theref&re. if there are any problems with the debugger, the approprizte means of resolving the
problem is to enter a spar into Polaris just like any other Primos problem. On this spar, the
product will be Primos, the subproduct will be debugger.

Prime Restricted

[

Ring Zero Decbugger User Manual PE-T-1278
Page 95

Index

: command 37

Access command 12, 17
Access__register command 17
Access__type command 12, 18
Active process

definition §

discussion 7
Address space

changing 12, 18

private 7, 65, 81, 82
Address translation -

physical to virtual 46

virtual to physical 45
Address-expression, discussion of 6
Argt instruction 21, 62, 82
Arguments command 25
Assembly language syntax 79
Autopsy 2, 51, 52, 55, 92

Baud rate 9
Break-expression, discussion of 6
Break point oommahd 20
Breakpoints
clearing 14, 21
discussion of 14
displaying attributes of 14, 22
effect on Primos 61, 62, 63
effect on stack 82
effect on system performance 62
example of 3
implementation 61
installing 20
instructions not supported 61, 82
places to avoid 14, 62

related commands 20

Prime Restricted

PE-T-1278
Page 96

Check handling code 62
14. 21
14, 21

Clear command
Clearall command
Coldstart
active process if entered during 7
after a halt 67
62
entering debugger during 9

breakpoints in

Command environment 9
Command line 10
Command syntax 75
Commands, descriptions of 17
Commands, multiple per line 10
Concealed stacks, examining 25
Configuring the debugger 8
Console interrupt

active process if entered during 7

definition 9

failure to respond to 2 52
Continue command . 44
CPU's supported 1

Critical regions 53, 62, 65

DBG 2, 36, 59
Deadlock 52, 63
Debugging

fatal process errors SO
hardware 56

new code 49

shared subsystems 59
system halts 55

system hangs 52

40

Define__variable command 36

Define__command command

Delete__command command 41
Delete__variable command 38
Display, the VCP command 67

Display_command command 41

Prime Restricted

Ring Zero Debugger User Manual

Ring Zero Debugger User Manual

Display __variable command
Dma channels 18, 32, 57
Dmx 7

Dump command 13, 18

Dump__maps 59, 91

38

ECB, modified for breakpoints 64

Entering the debugger, ways

Erase character 9

Errors
debugger internal 94
during pended operations
faults 15

message descriptions 81

to. 9

66

simulating with the debugger 50

system 15
types of 15
user 15

warnings 15

Fault handlers

- illegal instruction 62, 63, 64, 91

in the debugger 16

page fault 63, 66

role in breakpoints 61
Faults

pointer 85

while using the debugger
FEP 57
Frontstop process 62

GEM 60
Halts 55, 67
Hardware, debugging 56

Help command 45

Inhibited code 62, 65

15

Prime Restricted

PE-T-1278
Page 97

PE-T-1278
Page 98

Interrupt processes 11

Interrupts 7
Kill character 9
Let command 38

14, 22
Listall command 22

List command

Listings 7
getting variable attributes from 71
type needed for debugging 49
68, 93 -
Loading Primos, effect on 68
12, 18
Lookup__address command 34

Load maps

Lookat command

Lookup__symbol command 34

Maintenance of the debugger 90
Memory
changing the type for printing 12, 18

displaying as a structure 45

- non-resident 16, 66
referencing 12, 17
searching for patterns in 19
Message buffer 27, 53

Modes, changing 65

Nllocks 31, 92
Networks, effect of debugger on 8

Original process 5, 6, 23, 46

P850 1, 7, 62, 68, 91
Page faults 16, 66
PBHIST 60

Pcb command 25
Pcl instructions 64

Pended operations 21, 66

Prime Restricted

Ring Zero Debugger User Manual

!

Ring Zero Decbugger User Manual PE-T-127%
Page 99

Performance testing 39
Phantom interrupt code 7, 62
Primos
effect of debugger on 61, 87
effect on load 68, 91
exiting to 10, 44
revision with debuggef 8
routines used by debugger 68
Primos changes 91
Print__locks command 31, 92
Proceed count 21
Process
commands for examining a 25
debugping fatal errors in a 50
logged-out 26, 85
ready list level 12
type 12
Process aborts 53
Process exchange 9, 67
Program variable
changing the value of a 38
- defining a 36
definition of S -
deleting a 38 “
discussion of 36
display the attributes of a 38

examining a 37

types 37
Quits 9
Radix 5

Ready list, displaying the 31
Ready__list command 31
Registers
examining system 32
microcode scratch 18

referencing 17

Prime Restricted

PE-T-1278
Page 100

Remote console 58

Search command 19
Segment faults 16
Self-modifying code 62
Sense switches, for configuring debugger 8
Shared subsystems, debugging 59
Single steps
description of 23
example of 4
in 2 high-level language 49
limitations of 64
Stacks
concealed 25
ciebugging when corrupted 51, 63
effects of breakpoints 63
examining a process’s 26
interrupt 64, 82
overflow of 63
Status command 11, 25, 92
Step command 23
Structure command 45, 92
Structures, adding and updating 86, 92
Symbol
associating addresses with a 34
definition §
look up the address of a 34
types 34
Symbolic information, displaying 12, 22, 34
System console 9
System halts 55
System hangs 52
System state, examining the 31

System__registers command 32
Tape dump program 62

Terminal buffers, .examining a user’s 27
Testing S0

Prime Restricted

Ring Zero Debugger User Manual

!

Ring Zero Debugger User Manual PE-T-1278
Page 101

Time. effect of debugger on 7
Timeout of devices §

Trace command 26
Translate__to__physical command 45
Translate__to__virtual command 46

Tiybuf command, 27

Usage command 60
User-defined commands
defining new 40
deleting 41
discussion of 40
displaying the definition of 41

VPSD 2, 16, 67

Warmstart
after a halt 55, 67
breakpoints in = 62
general discussion 67
Where command 46

Wired memory 8

Xon-xoff 9

Prime Restricted

Cor! P. Underwood is ottempting to emulcte ¢ CPU.
— He works 24 hours o day, 7 doys-a week, 52 weeks a yeor.
- He can do in 1 second what o Prime 985@ con do in 1 nano—second.

Here is o comparison which will show how Car! is doing.
TASK PRIME 9950 CARL
1 Execution of o generic instruction:
- STLB & coche hit 90 ns 1 min 30 sec
- STLB hit, cache miss 902 ns 18 min
~ STLB miss, cache hit 2120 ns 35 min
— STLB miss, cache miss 3000 ns 50 min
- Page fault (disk 1/0) 30 - 100 ms 1 = 3.1 years
II Interrupts:
- Clock process (25 hertz) 4 ms 46 days
— AMLC clock (110 boud) 100 ms 3.2 years
— AMLC clock (9608 boud) 1.041 ms 12 days
- Minor time slice 300 ms 9.5 years
- Major time slice 2 sec €3.5 years

111 Wait Times:

— Process Eschange
- Average disk seek
— Rondom disk seek

- Average latency time

IV Misl.

-~ 1 second of wall clock

-~ Rewind tape
- Coffee break

DMx trap (DMA - DMQ)
Burst mode DMA tronsfer

900 - 7000 ns
4 words 900 ns
every 6900 ns
for 1.8 ms

1.9 - 7.6 us
9.0 - 25.2 ms
45.0 ms

8 ms

1 sec
1 min
15 min

16 min - 2 hours
4 words 15 mins

every 2 hrs

for 21 days

32 mins - 126 mins
3.5 - 12 months
1.5 years

2.5 months

31.7 years
1902 years
28,530 years

N

(.

A Process —20 (BK1PCB) was executing at 6(0)/42313 (BK2PB + 4).
.. .- => continue
- Leaving the debugger.) //f
\ Lz

QiNf) Z€f‘o DebUSOer EXa~plcs

cP>

CP> sysclir DeMON S“"ra ‘i’.‘o,.{ ‘
eee CPU VERIFIED wee

(10/10/%5)

CP> boot 74114 < Con ‘F(ng ‘H\Q debujggef‘ am(

enter (1 dvr-'ug cold start

Debugger entered due to coldstart request.
-> status ' <:
Process 1 SYSTEM

Level: System process

Type: Supervisor

S+a’fu5 Command .

State: Ready . . .

PB: 14(0)/4667 (SUPPB) (— -Furs‘\' ms‘l’rv cf\od execvted
LB: e(9)/@ (Unknown) o ‘

S8: 60e3(e)/164 XB: e(e)/e bY vsee |

L: o0000ee Q00000 E: 200000 000000

X: eoo0ee Y: 000000

FARG: @00000 200000 FLRO: 000000 000000

FAR1: 000000 0@0cee FLR1: 0900000 000000

Keys: 014000

=> continue
Leaving the debugger.
CONF1G ~DATA CONFIG

\ - < Consele interropts

Debugger entered due to console interrupt.

Detugger sntered due ic console iniarrupt. /
Process -20 (BK1PCB) was executing at 6(0)/42313 (BK2PB + 4).
=> continue

Leaving the debugger.

PRIMOS 20.1.00S

(¢) Prime Computer, Inc., 1985
2048K BYTES MEMORY IN USE
Starting up revision 19 partition “DOLFIN".

(Quota system may be incorrect; run FIX_DISK.) [.
\

Deﬁﬁiéer entered due to consoie interrupt.
Process 1 was executing at 6(@)/46576 (PGRESI + 4).
-> continue

Legving the debugger. or W\‘f QO‘
e St S .
Pleas® éNYET dale and time.

debU9ger

OK, COMO ~NTTY Mnemivy for 1he
OK, START_NET NETCON.EN.D11 —NODE EN.D11

Beginning Network Initialization.

OK, ADD —ON ENS OSGRP4 SYSENS INTEG OSGRP2 NEWENS

M, ADD -ON ENM SYSENM OSGRP1 SOFTM DUMPM DSAG

X, ADD ~ON S35 OSGRP@ OSGRP3

OK, event_log —net —off

OK, RDY =LONG

OK 00:92:42 47.566 94.230

/* Enter time and type CO —CONTINUE.

OK 90:22:43 ©.087 eo.e00
CO —PAUSE

OK 90:22:43 ©.066 ©.053
se ~-100385 -1502

OK 15:02:04 ©.3386 0.727
co =continue

X 15:82:11 @.854 ©.000

- WAX ALL

OK 15:02:11 ©.102 @©.000
COMO =NTTY
OK 15:04:11
CO -END

oK 15:04:11

\

0.060 0.e57

0.054 0.000

Debugger entered due to consoie interrupt.

Process ~20 (BK1PCB) wos executing ot 6(8)/42313 (BK2PB + 4).

-> occess_type
Current access type is symbolic.
-> occess prwf$$:
11(0)/33046 ARGT
11(0)/33047 LDA% SB%+ 70 ,»
11(0)/33851 STA§ SB%+ 34 ?
-> stotus
Process -20 BKI1PCB
Leve!l: Backstop process
Stote: Reody
PB: 6(0)/42313 (BK2PB + 4)
18: 6(0)/4211@ (SCHED)

SB: 4(0)/163750 « XB:
L: 000000 000000 E:

X: eep400 Y:
FAR®: 000000 000000 FLRO:
FAR1: 000000 PoPR0R FLR1:
Keys: @©34101

‘> occess 11/33046 -

" 11(0)/33046 ARGT

11(0) /33047 LDA% SE%+ 7€ e
11(0)/33051 STAf SB%+ 34 ?
-> gecess_type octal
-~> access |b%+402
6(0)/42512 006000
6§(0)/42513 000130 ?
-> occess sbR%+2
4(0)/163752 000004
4(@)/163753 163747 ?
-> access_type symbolic <:
=> occess s
6(0)/42313 BDX 42313
6(0)/42315 JRS%Z 42466 .Y 7
~> abcdefghi jkl?occess_type
Current access type is symbolic.
~> stotus
Process ~20 BKI1PCB
Level: Bockstop process
Stote: Reody
PB: 6(0)/42313 (BK2PB + 4)
LB: 6(@)/42110 (SCHED)
SB: 4(0)/163750 XB:
L: 200000 00
quit.
lookat
tive process is -20.
lookat 1
> stotus

Process 1 SYSTEM

N
N\ \/\

and Aaclcess Cummands

&—— Qccess-type

& S\/Axbu\\'c' address- ea(?ressiuu
&- 5+a’fvs c ommand

4(0)/552

000000 0000

eoeeee
000002 000000
000000 200000

&

virctual address- expression

base register re lative

address — expressior

Kill Viae quabi|€+y
‘(ez_iz__—_——*—- qu;“‘ Car)ab\.‘;‘\\/_
< Chausinj the active process
with the lookaT Com moaxdq

@

Level: System process -r
Type: Supervisor L . o
State: Woiting at 6(0)/13350 (ASRSEM) é’-— wa.'huf) ‘Fur C harac'f?r ‘NP
PB: 8(0)/34235 (WAITA + 74)

LB: 6(0)/55706 (C1INS)

$B: 6003(0)/164 XB: 4(0)/100100

L: 000000 200000 E: 000000 200000 -

X: oeo000 Y: 0020000

FAR®: -002e00 000000 FLRO: 002200 000000 -

FAR1: 000000 000000 FLRY: 000000 000000

Keys: 014001

=> access_type octal

p ~N
=> dump vpdev vpdev+15 Commq d

e Aump

6(9)/23757 004060 900001 200001 900001 200001 d00001 000001 000001
6(0)/23767 000001 000001 000001 200001 000001 100000 .
-> breakpoint pcgtur-i:1 < breakpoi~+ aud (.ST (OMMGNJS

=> Jlist pogtur+?

Type Address Procedure Process Count Mnemonic
brkpt &(0)/45205 PAGTUR + 1 Any 1 CRA
=> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.
Process 29 was exscuting ot 6(0)/45205 (PAGTUR + 1).

-> stotus)
Process 29 (Login name is not resident)

Level: Network process

Type: Network process

State: Ready

PB: 6(0)/45205 (PAGTUR + 1)

LB: 6(0)/46002 (PAGTUR)

ess Owns register set 1 sse

e lOCm+£m4 OF b(tﬂkfa;qf

SB: 6000(2)/1264 X8: 30(0)/61460

L: 200010 100077 E: ‘200000 200000

X: 202000 Y: 177777

FARG: 000000 000000 FLRO: 200002 000000

FAR1: 031970 200000 FLR1: 200000 020000

Keys: 034100 Modais: 100077

Fcode: 045206 000040 Foddr: 6(0)/1703 _

Locks owned: NETLCK & — NI LocK h?ld

-> continue
Leaving the debugger.

Debugger entered due to breakpoint/single step.
Process 29 was executing at 6(@)/452@5 (PAGTUR + 1). '

=> list »

Type Address Procedure Process Count Mnemonic
brkpt 5(0)/45205 PAGTUR + 1 Any 1 CRA
~> clear pagtur+t

~> list e

e USer errafs

see Debugger user error:
No breakpoint exists ot specified oddress.
-> foobar

eee Debugger user error:
Unknown command.
-> occess 7777/
29:7777(8)/2
* Foult while in debugger:
Segment foult (type 6@) encountered at 55(0)/15227.
Attempt to reference 7777(@)/0.
~> qccess niogin .
15(0)/2267 N

LY

‘FaUH.‘ A debuﬁg@r

<§______————— ,SG?@PAPA‘}

ese Foult while in debugger: | & Paae ‘{:q”‘t ' debdgbef‘

Poge foult (type 1@) encountered ot 55(0)/15227.
Attempt to reference 15(2)/2267.

=-> continue

Leaving the debugger.

dAate
Oct 85 15:87:56 Thursdoy

.4 15:07:59 ©.168 0.157

Demonstca fiow 2

date
83 Oct 85 15:29:88 Thursday
oK 15:09:11 0.136 0.000
\
Debugger entered dus to console interrupt.

Process =20 (BKIPCB) was executing ot 6(0)/42313 (BK2PB + 4). -
~> access_type symbolic -
=> occess pagtur+tl - -
6(0)/45205 CRA 7
=> breakpoint pagtur+?
-> continue
Leaving the debugger.
ovgil

Debugger entered due to breokpoint/single step.

Process 1 was executing at 6(8)/45285 (PAGTUR + 1). .
~> access_register o & aCCess_Tegx S-‘-e(Comman d
A: 000010 _ , -
-> stotus
Process 1 SYSTEM sss Owns regiater set 1 see

Levei: System process

Type: Supervisor

State: Ready

PB: 6(0)/45205 (PAGTUR + 1)
LB: 6(0)/46002 (PAGTUR)

£1-H 6000(0)/1264 : 6002(3)/3073

L: 200010 100077 E: 000000 000000

X: 000000 i Y: 177777

FARG: 066002 002754 FLRO: 000004 000000

FAR1: 066002 002754 FLR1: 000016 200000

Keys: 034100 Modals: 100077

Fcode: 945206 000040 Foddr: 6(0)/1703 : d) ‘F d

SL . ' T e
~> gccess_register o <____.—--—— a ('Qg'-‘jer (5 Mo

A: 000010 12345

-> occess_reqgister o

A: 912345

-> access_register Ib

LB (high order): 202006

LB (low order): 046002

=> gccess_register fcode
FCODE (high order): 045206

FCODE (low order): 000040

~> search 55/0.55/177777 %11 s SearCL\ (omman d
5 . [
5(0)/14203 %11:2 (‘For, a s‘krudﬁ)

ees Foult while in debugger:
Page fauit (type 1@) encountered at 55(0)/120507.
Attempt to reference 55(0)/174000.

~> occess_type ascii

-> access 55/14203

55(0)/14203 %1

55(0)/14204 1: -

55(0)/14205 2z *?

-~> access_type octal

=> dump 600/2600 600/2677

620(0)/2600 140000 140001 Q0077 142003 140004 141023 140275 000000
600(0)/2610 000000 000P00 000000 200000 G0Q0DQ ©2000Q 000000 200000
600(0)/2620 000000 200000 000002 20LO20 000000 149272 00DQ0Q 000000

9(0)/2632 0QO0R0 140750 140751 902008 0P00P0 000000 0OQOPQ POQO00

.9(2)/2640 Q00000 200000 00O0PD 000EOD 200100 202100 00O100 9RO100
600(2)/2650 000121 20Q121 200101 9QO1@1 BOL101 200181 903777 803777
600(0)/2660 Q03777 03777 003777 003777 003777 003777 003777 003777

600(0)/2670 083777 803777 083777 803777 803777 023777 003777 023777 ‘F a+‘l€fhl
-> search 520/2600 609/2677 142001 & 1402001 <_,____._ searc k ¢ a P
60e(0)/2601 140001 .
600(2)/2603 140003 USlHj a
600(0)/2685 141023
600(0)/2606 140275
00(0)/2632 140751 . - .
oEiKMI - & (‘S*GIl CON”“aNd
Type Address " Procedure Process Count Mnemonic -
brkpt 6(9)/45205 PAGTUR + 1 Any 1 CRA
~> ¢clearall oo (_llea”, CON\N\RNd
=> listall
No breakpoints are set.
=> continue
Leaving the debugger.

Volume DOLFIN

118512 total records

1129€. records oveoilable
90.5% full

pACIS»k

OK 15:09:31 1.836 2.975
\
Debugger entered due to console interrupt.
Process -20 (BK1PCB) was executing at 6(0)/42313 (BK2PB + 4).
-> breokpoint p$cidx+1
=> continue
Leaving the debugger.
date
L 4
Debugger entered due to breokpoint/singlie step.
Process 1 was executing ot 41(3)/133503 (PSCIDX + 1).
=-> access_type symbolic
- => access p$cidx

1(8)/133582 ARGT

A 1-1(0)/1335e3 LDAF 133616

L 1.0%(0)/133504 STAF SB%+ 31
41(0)/133505 EAFA @, SB%+ 12 ,»
41(0)/133512 LDAf SE%+ 26
41(0)/133511 BLGE 133518 ? :
-> clearall 4_._-—-————-' S-tep COMMa“d
-> step

Debugger entered due to breckpoint/single step.
Process 1 wos executing at 41(3)/133504 (PSCIDX + 2).
=> step 2

Debugger entered due to breakpoint/single step. '
Process 1 wos executing ot 41(3)/133510 (PSCIDX + 6).
-> step 10020

Debugger entered due to breakpoint/single step.
Process 1 wos executing at 41(3)/1134 (HASH_UID + 134).
=> step 2000

\ &— (ad enter debugger
Debugger entered due to console interrupt.)
Process 1 wos executing ot 55(@)/615 (DBGSRT + 74). W|fk a C,UI"LSU,C (N‘kf"“}ﬁ

=> listall . . .
Type Address Procedure Process Count Mnemonic Wh ¢ l e 5 ‘rlb\e STePP 11\15
step 32(0)/7733 CL$PIX + 53 1 1659 LDA - .
=> continue

iving the debugger.

>ugger entered due to breokpoint/single step.
Process 1 was executing ot 32(3)/10432 (CLSPIX + 552).

=> occess_type octal @

-> occess pfen | é_,_-— P09€ ‘Fav.ﬁ; COUHT-?{‘

6(0)/622 000000
6(0)/623 007041 ?

=> breokpoint 1:pogtur+467 5 < s .;.{5 q Pr(;(ged COVH+ W\‘}A ‘“\@
=-> listall ° '

Type Address Procedure Process Count Mnemonic - a

brikpt 6(2)/45673 PAGTUR + 467 1 5 STL b"CﬂKPOWT Cormm ud

=> continue
Leaving the debugger:
03 Oct 85 15:14:52 Thursday
oK 15:14:53 2.130 ©.839
avail
Voiume DOLFIN
118512 total records
11296 records ovailable
90.5% full

OK 15:13:04 0.578 0.215
Id x y ’

Debugger entered due to breakpoint/singie step.
Process 1 was executing at 6(0)/45673 (PAGTUR + 467).
=> access pfen

6(0)/622 eeevee &~ g P“f)e -fu.,Hs S (e

6(0)/623 007046 ?

> ::»::.':.: o breakyo.‘,.:f' .

Leoving the debugger.
L 4

<DOLFIN>CMONC® (ALL access)
3965 records in this directory, 3965 total records out of quota of ©.

..No entries selected.

"OK 15:15:17 2.721 9.954

las+

I8

\

Demaﬂs'ﬁ catioH 3

Debugger entered due to console i

nterrupt.

Process —28 (BK1PCB) wos executing at 6(0)/42313 (BK2PB + 4).

=> brk gpoth$+19

-> continue

Leoving the debugger.
Id :

Debugger entered duo.to breckpoint/single step.

Process 1 was executing at 1
=> arguments
Current routine: GPATHS

rouments at SBX+56:
at 41(3)/124207
ot 6002(3)/4715

at 6002(3)/6523
ot 6082(3)/4141
=-> peb 1

M " Y S S e O
oW LN -—-0

Process: 1

Level: 622

Waoit list: ©(0)/106717

P8: 6(0)/357e3

LB: 6(0)/41334

L: 000222 000000 ‘ .

X: ©ooeoe0

FARO: 000000 002000

FAR1: 000000 000000

Interval timer: 177774 000000
TOTAR2: 140002 167101

1(0)/62044 (GPATHS + 10).

&

. 900021.140040
: 000037.000001
ot 6082(3)/10433 : 006742.066002
ot 41(3)/124530 - 000200. 140040
. 035e45.000010
: 0600020.0000200

Link: 000000

Abort flogs: 0000000000000000
SB: 6000(@)/1456

XB: 6(0)/106716

E: 000000 000000

Y: 000000

FLRO: 000000 000000

FLR1: ©poo0o0 oo0000

Elapsed timer: 0002022 212761
DTAR3: 176302 167064

 Keys: 014001
<. .soncecled stocks:
PB KEYS FCODE(high) FADDR
11(8)/62044 014100 062045 11(0)/1703
13(3)/55722 014000 oo0e00 13(3)/60760
=> status

Process 1 SYSTEM
Level: System process
Type: Supervisor
State: Reody

PB: 11(0)/62044 (GPATHS + 1
LB: 11(0)/62432 (GPATHS)
SB: 66e3(0)/164 XB:
L: 200000 062044 E:
X: 220000 Y:
FARO: ©G6002 004412 FLRO:
FAR1: ©660082 906435 FLR?:
Keys: ©14100 Modal

Fcode: 062045 000040
Locks owned: FSLOK

~> stotus ol

Process -21 DBGPCB
Level: Debugger process
Stote: Ready
PB: 55(e)/@ (DBGSEG)
LB: 55(0)/11552 ' (Unknown)
PCB abort flogs: TSEALM

" rrocess =20 BK1PCB

———- g‘\'a*us

see Owns register set @ ses

e) .

6(0)/27052

017777 017777

177777

200000 000000

200000 000000
s: 100037

Faddr: 11(0)/1703

ses Owns register set 1 oee

arg umenTs Command

— PCb Commﬂdd

(ommamd

(<)

Leve!: Backstop process
Stote: Reody

PB: 6(2)/42313 (BK2PB + 4)
LB: 6(0)/42110 (SCHED)

Process =19 BK2PCB
Level: Bockstop process
State: Ready
PB: 6(0)/42307 (BK2PB)
LB: 6(®)/42110 (SCHED)

Process ~18 CLKPCB
Leve!: Clock process
State: Waiting at 4(0)/500 (SEMCOM)
PB: 6(0)/4043 (CLKINS + 650)
LB: 6(0)/5366 (UNLOAD (et al))

Process -17 FNTPCB
Level: Clock process
State: Woiting at 4(08)/572 (FNTSBM)
PB: 6(0)/4057 (FNTPB)
LB: 6(0)/5366 (UNLOAD (et al))

Process =16 SLCPCB
Level: SMLC process
State: Waiting at 4(0)/502 (SLCSEM)
PB: 12(@)/1005 (SLCPB)
LB: 12(0) /4020 (fLCXNI (et atl))

Process =15 AMLPCB
Level: AMLC process
Stote: Waiting ot 4(0)/504 (AMLSEM)
PB: 16(0)/4427 (AMLCI_ + 141)
LB: 16(0)/102008 (Unknown)

Process —-14 MPCPCB
Leve!l: MPC process
Stote: Waiting at 4(@)/506 (MPCSEM)
P8: 68(0)/130002 (MPCDIM)
LB: 6(0)/130732 (MPINIT (et al))

Process =13 MP2PCB
Level: MPC process
State: Waiting at 4(@)/510 (MP2SEM)
PB: 6(0)/131376 (MP2DIM)
LB:’ 6(0)/132326 (M2INIT (et al))

Process -12 GP1PCB
Levei: MPC4/Versatec process
Stote: Waiting ot 4(8)/512 (GP1SEM)
PB: 11(0)/20623 (GP1PB)
LB: 11(0)/23633 (Unknown)

Process =11 GP2PCB
Level: MPC4/Versatec process
State: Waiting at 4(0)/514 (GP2SEM)
PB: 11(0)/20623 (GP1PB)
LB: 11(0)/23634 (Unknown)

Process =10 VERPCH
Level: MPC4/Versatec process
‘Stote: Waiting at 4(0)/516 (VERSEM)
PB: 6(0)/135352 (VERDIM)
LB: 6(8)/135720 (GTSTAT (et al))

Process -8 PNCPCB

Levei: Disk/Ringnet process

Stote: Woiting ot 4(@)/52e (PNCSEM)
PB: 12(0)/25314 (PNCDIM + 6)

LB: 12(0)/30366 (PNCNIT (et ol))

Process -8 SP1PCB
Level: Disk/Ringnet process
Stote: Woiting ot 4(@)/522 (SP1SEM)
PB: 4(0)/163747 (INTRT)
L8: 4(8)/1532 (Unknown)

Process =7 DK1PCB
Level: Disk/Ringnet process
State: Waiting ot 4(@)/534 (DSKSEM)
PB: 6(8)/37537 (DMA_ERR + 224)
LB: 6(0)/106316 {Unknown)

Process -6 DK2PCB
Level: Disk/Ringnet process

Stote: Waiting at 4(8)/536 (DSKSEM + 2)

PB: 6(08)/37537 (DMA_ERR + 224)
LB: 0(0)/1335 (Unknown)

Process -5 DK3PCB
Level: Disk/Ringnet process

Stote: Woiting ot 4(8)/548 (DSKSEM + 4)

PB: 6(0)/37537 (DMA_ERR + 224)
LB: 8(e)/1472 (Unknown)
«
Process —4 DK4PCB
Level: Disk/Ringnet process

Stote: Woiting at 4(®)/542 (DSKSEM + 6)

PB: 6(0)/37537 (DMA_ERR + 224)
LB: 0(0)/1627 (Unknown)

" rcess =3 ASYPCB

" Level: AMLC process

Stote: Woiting at 4(0)/3335 (ASYSEM)
PB: 16(8)/11412 (ASYNDM)

LB: 16(e)/12734 (Unknown)

Process =2 SLXPCB
Levei: SMLC process
Staote: Waiting at 4(0)/3337 (SLXSEM)
PB: 12(0) /4446 (SLXPB)
LB: 12(e)/5444 (Unknown)

Process -1 IPOPCB
Levei: IPQ process
State: Waiting ot 4(0)/3341 (IPQSEM)
PB: 16(0)/32314 (IPOPB)
LB: 16(0)/31734 (Unknown)

Process ® 1BSPCB
Leveli: IPQ process
State: Woiting ot 4(0)/3343 (IBSSEM)
PB: 16(@)/31330 (1BSPB)
LB: 16(0)/30742 (Unknown)

Process 1 SYSTEM
Leve!: System process
Type: Supervisor
State: Ready
~B: 11(0)/62044 (GPATHS + 10)
B: 11(@)/62432 (GPATHS)
" Locks owned: FSLOK

sse Owns register set @ oee

Process 23 NETMAN
Level: Network process
Type: Network process
Staote: Woiting at 12(0)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)

L8: 6(0)/34156 (SETSWI (et al)) .
=> trace 1 . { 'T__ra(e C(Omman,
Leve! 1: GPATHS ' and
Root: 6023 SB: 6003/164 Size: 174 words Type: 000000 (PCL) ’
Keys: 934200 Sub commands

Call at 41(3)/124254 (EPFSMAP (et ai) + 372) SB: 6002(3)/6436 LB: 41(0)/125032"

(troce)> arguments
Current routine: GPATHS

6 arguments at SB%Z+56:

§ 1 ot 41(3)/124207 : 000001.140040
2 ot 6002(3)/4715 : 000037.000001
3 ot 6002(3)/10433 : 006742.0966002
§ 4 at 41(3)/124530 : 000200.140040
§ 5 ot 6002(3)/6523 : 035045.000010
§ 6 at 6002(3)/4141 : 000000.000000
(

trace)> father

Level 2: EPFSMAP

Root: 6082 SB: 6002/6436 Size: 1092 words Type: @@eeee (PCL)
Keys: 9341020

Call at 13(3)/15071 (STDSCP + 2313) SB: 6002(3)/4622 LB: 13(0)/20564

~~~{trace)> arguments
- urrent routine: EPFSMAP

4 arguments at SB%+111:

# 1 ot 13{3}/20721 : 0@0000.177240
§ 2 ot 6002(3)/4715 : 000037.000001
§ 3 ot 13(3)/15223 : ©0PPR6.020000

§ 4 ot 6002(3)/4141 : ©000Q0.000000

(troce)> father

: SB: 6002/4622\ Size: Typc: e10e00 (PCL)
Keys: 134200

Call ot 13(3)/7364 (LISTN_ (et ol) + 1042) SB: 6002(3)/4046 LB: 13(2)/11364

(trace)> arguments
Current routine: STDSCP

6 arguments at SB%+115:

§ 1 at 6002(3)/4410 : 200002.166344
# 2 at 6002(3)/4141 : 00P000.000000
§ 3 ot 6002(3)/4142 : 200000.066002
§ 4 ot 6002(3)/4150 : ©09000.000000

(trace)> stack

:_60eo
1:6002/>10 134200 7366 7777 @ 40000 Q (] 3
5002/>20 47053 4 177777 66002 60013 15035 66002 6303
1:6002/>30 60013 21645 60013 21213 66002 6410 60013 21645
1:6802/>40 7777 @ 66002 6410 66002 6422 212 219
1:6002/>58 100000 3 1 -] (] @ 140000 -]



: 6002/>60 11345 1 66002 (-] o 2 4411 100003

1

1:6002/>70 4622 3 4 37 1 1 14000 41732

1:6002/5100 1 -] (-] 2 140000 e 60013 46204
1:6002/>110 7777 10 177400 4652 1 66002 4410 (]
1:6002/>120 66002 4141 1 66002 4142 -] 66002 4150
1:6002/>130 © 100000 4650 1 100000 66002 4666 66002
1:6002/>140 60013 46204 66002 66002 4664 60013 66002 4634
1:6002/>1520 100000 66002 4650 100000 41 52674 100000 83162
1:6002/>160 66002 - 100000 66002 66002 100000 66002 66002 100000
1:6002/>170 60041 44055 100000 1@ 177400 100000 66002 4761
1:6002/>200 100000 64377 75266 182000 64377 101264 100000 100000
1:6002/>210 66002 100000 -] 120 100000 4525 © 120000
1:6002/>220 60041 130356 100000 4672 41 100000 66002 403
1:6082/>230 180000 100000 2 100000 60041 43747 100000 4770
1:6002/>240 41 100000 14000 43737 100000 130460 1 100000
1:6002/>250 4667 66002 100000 28556 64377 100000 2 66002
1:6002/>260 100000 2 @ 100000 7777 © 100000 44055
—doreo—n

(trace)> fother 2

Level 5: COMLVS

Root: 6002 SB: 6002/40822 Size: 20 words Type: 000000 (PCL)

Keys: 134100

Coll at 13(3)/113353 (DF_UNIT_ + 6403) SB: 6002(3)/2136 LB: 13(8)/116524

(troce)> son

Leve!l 4: LISTN_ «

Root: 6802 SB: 6002/4046 Size: 364 words Type: 010000 (PCL)

Keys: ©14000

Call ot 13(3)/137230 (COMLVS (et ol) + @) SB: 6002(3)/4022 LB: 13(0)/136642

“{troce)> fother 2

j:-fﬁvel 6: DF_UNIT_ .
\u7oot: 6002 SB: 6002/2136 Size: 948 words Type: 000000 (PCL)

Keys: 014000
Catt ot 13(3)/100577 (RAISE_ + 437) SB: 6002(3)/2036 LB: 13(0)/100300

(troce)> orguments
Current routine: DF_UNIT_

1 arguments ot SB%+122:
§ 1 ot 6002(3)/2116 : ©66002.001704

(troce)> father

Leve! 7: RAISE_

Root: 6022 SB: 6002/2036 Size: 64 words Type: 000000 (PCL)

Keys: 0140200

Call ot 13(3)/77633 (SIGNLS + 261) SB: 6002(3)/1704 LB: 13(8)/77440
(troce)> father

Leve! 8: SIGNLS

Root: 6082 SB: 6002/1704 Size: 90 words Type: 940000 (PCL)

Keys: 214000

Coll ot 13(3)/132307 (SWFIM_ (et al) + 5) SB: 6002(3)/1524 LB: 13(8)/131732
(troce)> fother

vel 9: C1INS

'ot: 6002 SB: 6002/1524 Size: 112 words Type: 600000 (PCL)

L. 014000

“Loll ot 13(3)/46146 (CLSGET + 266) SB: 6002(3)/1412 LB: 13(2)/45604



(troce)> goto 15
seas End of stock at level 12 (start + 3)

Level 12: INFIM_ °

Root: 6202 SB: 6002/630 Size: 6§ words Type: 000000 (PCL)

Keys: 862013 ’

Call ot 4(®)/171752 SB: 7777(8)/0 LB: @(e)/see2(6) -

Qi e Tybut

User 1 messoge buffer (600 bytes ilong) ot 7(0)/17224:

Input buffer (492 bytes long) for user 1 at 7(0)/7142:
Q 2267
79
ovail
ovail
Id x
dote
a wsh>tests
r ph_file_copy 1 ring@.map
x.print fc1.como
o wsh>tests
r ph_file_copy 1.ringd.map
ph pager.ph
a bilth
ph pager.ph
vpad
sn 15
o 2267
?q
lo aill
max

L)

date

se —100285 <1920
date

stot us

date

stat us

"

stot us

Id

Output buffer (600 bytes long) for user 1 ot 7(@)/0:
. 20

Moximum number of program invocations: 2@

Maximum number of private static segments: 128

Maximum number of privaote dynamic segmenta: 64

1 99:57:20 6.727 0.033 level 2

User No Line Devices
SYSTEM 1 asr <DOLFIN>



NETMAN 29 nsp <DOLFIN>

OK 9:57:32 ©.109 ©.000 level 2

-> print_tocks é.—————-—— Prn\,.('\'_\o CKS. (OMMaNd

"SLOK: Locked for reoding by 1 user(s). .
o reoder(s) woiting
No writer(s) waiting: I

UFDLOK: Unlocked.
No reoder(s) waiting
No writer(s) waiting

BLKLOK: Unlocked.

No reader(s) waiting
No writer(s) waiting
n

SDLOK: Uniocked.
No reader(s) waiting
No writer(s) woiting

TRNLOK: Unlocked.
No reoder(s) waiting
No writer(s) waiting

UTLOK: Unlocked.
No reoder(s) woiting
No writer(s) waiting ¢

RATLOK: Uniocked.
No recder(s) waiting
No writer(s) waiting

. "FVLCK: Unlocked.
.- reader(s) waiting
a0 vritor(a)_uoiting

SP1LCK: Uniocked.
No reader(s) woiting
No writer(s) waiting

NETLCK: Unlocked.
No reader(s) waiting
No writer(s) waiting .

NMMLCK: Unlocked. .
No reoder(s) waiting
No writer(s) waiting

SLCLCK: Unlocked.
No reader(s) waiting
No writer(s) waiting

MOVLCK: Unilocked.
No reader(s) waiting
No writer(s) waiting

SEGLCK: Unlocked.
No reader(s) waiting
No writer(s) waiting

SLCK: Unlocked.
~eader(s) waiting’
writer(s) waoiting



=> ready_list e——— ready LisT  Command

START => USR001

!
v

BK1PCB -> BK2PCB

-> aysreg é_——-———— SYS-}-eN\-— rea\ S-tf_fﬁ .

PSWPB: 6(0)/42313  PSWKEYS: 014100 100077

Corm and

DMA channel ™ 1/0 address Word Count

) 0(0)/172110 000000
2 9(0)/176000 600000
6 o(0)/10e0 20000
14 9(08)/151005 207405
16 0(8)/145005 000000
20 0(0)/171000 000000 -
22 o(e)/1750¢0 000000
24 2(0)/100255 o00300
26 8(0)/72001 000200
30 : 8(0)/10003 202200
32 0(0)/41272 002200
34 e(e)/201 202027
36 0(0) /4003 083500
-> ¢clra.
=> lookup_oddress 6/11675 ecb < IGOKUP- a ddrCSS Commanl d

ROUTINE: LOGEV! + J434 from ECB
=> lookup_oddress 37/100 common

COMMON: LSMCOM + 100
=> lookup_oddress 13/11364 ibn

ROUTINE: LISTN_
ROUTINE: LISTEN_
ROUTINE: LISTEN_C

-> lookup_oddress 13/7000 any

ROUTINE: LISTEN.C + 371 from PB

=> lookup_symbo! prwf$$ & lOOKVP—SYMbO‘ COMMaNd

ECB of routine: 11(9)/35543
PB of routine: 11(@)/33046
LB of routine: 11(0)/35136
=> lookup_symbol |smcom

Address of common: 37(9)/0
=> lookup_symboi r@dbg_on

Address of other: 14(8)/770
->



Demon sTration

=> clegrall

Y

gur—

=> brk gpoth$+33

-> continue

Leaving the debugger
vpsd

) 1
T-4B00/ 1 STA§ 177748, eX
$quit '

?

oK id

Debugger entered due to breokpoint/single step.
Process 1 was executing ot 11(0)/62067 (GPATHS$

~> define_variable 9path$\codoocimol 1)
-> define_variocble msg 4000/308\q

-}
-> define_variable ptr 4000/10@ pointer
=> define_varioble bit_str 4000/200 bit

-> disploy_variable code

Procedure Voriable Address

GPATHS CODE SBY%+44

-> display_variable

Procedure Voriable _ Address

GPATHS CODE SBY%+-44
MSG 4p00(02)/300
PTRY 4000(0)/100
BIT_STR - 4000(0)/200

-> : code

-]

=> let mag = 'It’°s only o test’

_~> let ptr = 55(0)/12000

T let bit_str = 10110

2 meg

It's only o test

-> : ptr

55(e)/12000

=> : bit_str
1011000000000000

-> : bit_str decimal
-20480

-> delete_variabie code
-> delete_voriobile

OK to delete oll defined voricbies? yes

->
-> define_commaond com2 dump » »; step 1; com2
-> dispiay_command

Defined command:

define_commond coml clearall; breokpoint prwf$$+1; continue; com2 <

). »
—— define-vatiable Command
& disp)ay-variable Cormmand
Type Length
DECIMAL :

Type Length

DECIMAL ; )
ASCII 20

POINTER 2

BIT :

e~——— T <« omMmand

let (ommand

¢

— dele‘re-var.‘ab\e {0 mmgud

detine -COMMANKI Command

fequr sive detintion
d.'SPlﬂj- Command COmmand

<
&

COM1 : CLEARALL ;BREAKPOINT PRWF$$+1 ;CONTINUE ;COM2
coM2 : DUMP o o STEP;COM2
-> coml

=> CLEARALL ; BREAKPOINT PRWFS$$+1; CONTINUE;COM2
=> BREAKPOINT PRWF$$+1;CONTINUE :COM2
=> CONTINUE;COM2

sving the debugger.

Debugger entered due to breakpoint/single step.



Process 1 wos executing at 11(0)/33047 (PRWFSS + 1).

-> COM2
=> DUMP s« o STEP;COM2

&—— @XpaHsioN oT previcesly

Comnnand

de'Fmed

TT17(0)/33047 LDAX SB%+ 70 ,» v -
-> STEP;COM2 N, CAAMA, W}U MLk

Debugger entered due to breckpoint/single step. _
Process 1 was executing ot 11(9)/33851 (PRWFSS + 3). =

-> COM2 :

-> DUMP » o ;STEP.COM2

11(0)/33051 STA§ SB%+ 34 .

-> STEP;COM2

Debugger entered due to breakpoint/single step.

Process 1 was executing ot 11(0)/33052 (PRWFSS + 4).
- CCMZ e -
=> DUMP » «;STEP;COM2 :

] quit.
X eTesralT————— — delefe. Command  Command
=> delete_commaond
OK to delete all defined commands? yes .
: —— help Command
-> help
: Access Access_REGister
Access_TYPE ARGumentS BReoKpoint
.-CleaR CLeoaRAL | Cont inue
‘EF ine_COMmand DEFine_VARiable DELete_COMmand
JvELete_VARiable DISploy_COMmand DISplay_VARiable
Dump Help ) LET
LIST LiSTAII LOOKAT
Lookup_Address Lookup_3Symbo| Pcb
Print_LOCKS ReaDY_LiST SeaRCH
STATus Step STRUCture
SYStem_REGisters Trace Transicte_to_PHYSical
Translate_to_VIRtual TTybuf WHere
=> help troce
Command name: Traoce (7T)
Command description: ’ ,
Print stock frames for the given process. '
Command |ine arguments:
[<process—number> [<oddress—expression>]]
where oddress—expression moy be one of the following:
§ <segno>/<wordno> | <symbol-naome> | LB% | SBX | XB% | = }
[ + <offset> | = <offset>]
where the following commaonds can be used within TRACE:
Quit | Fother [<leveis>] | Son [<levels>] | Current | Goto [<levels>] |
Arguments | STack [<start> [<end>]] | User <process-number> [<oddress>]
=> structure <______—— ,S“TUC“.Vre C 0O MM a,-(d

PRIMOS dota bases known to the Debugger: : @\



CLDATA DISK_QUEUE_BLOCK ECB <:
FIGCOM PUDCOM PUSTAK
SUPCOM UPCOM

=> structure ecb 11/35543
Structure ECB ot 11(8)/35543.

Offset | Field name | Value

| |
835543 | pb | 11(e)/33046
035545 | frome size | eee202
035546 | stack root | oeeo00
035547 | orgs disploc | o©eed70
835558 | num of args } 7
035551 | 1b | 11(0)/35136
035553 | keys | ©14000

=> structure figcom
Structure FIGCOM at 14(0)/700.

3
Offset | Fieid name | value

| |
eea7ee | LOUTOM | 32767
ees7e1 | LOTLIM } 3
0e07e2 | DONSTP | )
000703 | DLOGOT | o
009704 | SPCH1/DERA | eoo0210
eee7e5 | SPCH2/DEKL | ©00277
200706 | PRIS@O | 1
000707 | VERSIO  « | 20.1.103dbg
000720 | NLGPRT i 1
000721 | LOGOVR | e
000722 | LRQUOT | 0
002723 | DMOMSK | 1111111111111
eee724 | CPUID | 6
280725 | INSTLB | e
000726 | APCNFG | e
000727 | UPSSW | =
002730 | CPUREV i 2 _
000731 | STAWP |  09/23/B5+915:15:43e219.2000000
000750 | RWLOCK | 1
000751 | ABBRSW | 1
000752 | SLVRUN | ]
000753 | DTRORP | e
000754 | 2CPU | )
000755 | STTMCP | e
000756 | MAPREV | e
000757 | RGSETS ] 2
900760 | RGSET® | 3
000761 | ECCTRL | -]
000762 | BCLOCK I )
002763 | SENSOR | )
008764 | MEMHLT | 1
000765 | DISPCH | e
200766 | LOGBAD I e
000767 | DEFMEL | 16
000770 | RODBG_ON | 100000
000771 | SUSPEND_SLAV I e

- traonsiate_to_physicol 13/22000 <— Tf anslate ~To- Ph‘js'. cal

".rtual oddress 13(0)/22000 traonslotes to physicol oddress 1514800.
This oddress is on physicol poge 646.

raatial
detined

SéT o+

sTructures

C OMMaNd

@



=> tronslate_to_physical 6/1000

Virtuol oddress 4000(0)/10@ transiotes to physical oddress 63890.

This address is on physical paoge 31.
& Tra&slﬂ'e _'l‘o_vlr’('ua( Commr 1

-> translote_to_virtual 646 S
Corresponding virtuol address is 13(0)/22000 for process 1. _
=> translicte_to_virtual 31

Corresponding virtual address is 6(0)/@ for process 1.



" => continue

ST

dote

| Demw strafion S|
@3 Oct 85 15:19:52 Thursday

g<15::9:55 °.169 ©.027 _ Tes't',‘,qg GPATHi; (MO Fa-“")

Debugger entered due to conscle interrupt.
Process -20 (BK1PCB) was executing at 6(9)/42313 (BK2PB + 4).

-> breokpoint gpath$.+1 e br?ak POiHT q-t-

S*aIT:.o{' Mvdv‘e

Leoving the debugger.
id x .
Debugger entered due to breakpoint/single atep.

Proces® 1 was executing ot 11(0)/62035 (GPATHS + 1).
-=> grguments
Current routine: GPATHS

_ check ,‘NPUT a'reu,.,,,»e.ffs

6 aorguments at SB%+56: <:
§ 1 at 41(3)/124207 : 0000R1.140040
§ 2 ot 6002(3)/1505 : 000037.000001
# 3 ot 6802(3)/5223 : 136304.100000
# 4 ot 41(3)/124530 : ©00200.140040
# 5 ot 6002(3)/3313 : ©35045.000010
# 6 ot 6002(3)/731 : 000LER.000000 ,
~> define_varioble xkey 41/124207 &
-> defvar xunit 6002/15@5
—> defvar xpothname 6802/5223 ascii 128
-> defvar xmax_chars 41/124530 -
=> defvar xpath_lien 6082/3313 decimal 1
-> defvar xcode 6002/731
=> defvar gpath$\key sb%+42
-> defvar gpath$\volid_segment sb%+36
~> defvar gpoth$\uteptr sb%+10@ pointer 2
> defvar gpoth$\code sbX+44
..=> defvar gpath$\unit_open abX+35

de-F.‘.;e program Vafiab’es'

- display_variable
i vocedura Variable Address Type Length
XKEY 41(0)/124207  OCTAL 9
XUNIT 6002(0)/1505  OCTAL 1
XPATHNAME 6002(0)/5223 ASCII 128
XMAX_CHARS 41(0)/124530 OCTAL 1
XPATH_LEN 6002(9)/3313  DECIMAL 1
XCODE 6002(0) /731 OCTAL 1
GPATHS KEY SB%+42 OCTAL 1
GPATHS VALID_SEGMENT SB%+36 OCTAL 1
GPATHS UTEPTR SBX+100 POINTER 2
GPATHS CODE SB%+44 OCTAL 1
GPATHS UNIT_OPEN SB+35 OCTAL 1
-> where

Debugger entered due to breakpoint/single step.
Process 1 wos executing ot 11(0)/62035 (GPATHS + 1).

::o;e:.y <—-———-$’\'ar'\' Se-gveucmﬁ )rhraugh
Z’E";f:h: | the code

Debugger entered due to breakpoint/single step.
Proceass 1 wos executing at 11(0)/62041 (GPATHS + 5).
-> : key
ee1
: valid_segment
“aa
tep 2

(30;



Debugger entered dus to breckpoint/single step.
Process 1 was executing at 6(0)/26637 (LOCKFS).

=> : valid_segment :

220000

-> breokpoint gpath$+1e

-> continue

Leaving the debugger.

Debugger entered due to breaokpoint/single step. -
Process 1 was executing at 11(0)/62044 (GPATHS + 10).
=-> status user
Process 1 SYSTEM sees Owns register set @ es=s
Level: System procesas
Type: Supervisor
Stote: Ready

PB: 11(0)/62044 (GPATHS + 10)
LB: 11(@)/62432 (GPATHS)
Locks owned: FSLOK <- F S l OCk k as bee"

Process 29 (Login nome is not resident)
Leve!: Network process
Type: Network process
State: Woiting at 12(9)/25302 (PNTSEM)
PB:  6(0)/34454 (WAIT + 4)
LB: 8(0)/34156 (SETSWI (et al))

-> clearoall

-> : key

o081 ‘
=> bregkpoint gpath$+22
=> continue

Leaving the debugger.

ebugger entered due to breakpoint/single step.
Process 1 was executing at 11(8)/62856 (GPATHS + 22).
~> access_type symbolic 't'
0

Dl o a2e e— call

11(0)/62060 AP SBX+ 61 ,S
11(0)/62062 AP SBX+ 100 ,S
11(0)/62064 AP SB%+ 44 ,SL
11(0)/62066 STA§ SB%+ 35 ?
-> : xunit <:

200037 /
=> : uteptr
*177776/200000 4/ open- ¢ hK
=> : code :

200001 <;

=> clearalil

=> breakpoint gpoth$+33

=> continue

Leaving the debugger.

Debugger entered due to breckpoint/single step.

Process 1 was executing at 11(0)/62067 (GPATH$ + 33). ' 'f
il % argumeufs at ter
290037

-> : uteptr /
717(@)/6376 < to open-c¢ hK
=> : code .
eoe0e0 /

step

Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(@)/62070 (GPATHS + 34).

1 akew

opeN_C}\K

afgvmeﬂ+5 passed ‘b

Call



-> step

Debugger entered due to breokpoint/single step.
Process 1 wos executing ot 11(0)/62071 (GPATHS + 35).
-~> step

. -sbugger entered due to breokpoint/single step.
Process 1 wos executing ot 11(8)/62877 (GPATHS + 43).

-> step -

Debugger entered due to breakpoint/single step. e___-— eHd U.F se '?('.'-
Process 1 waos executing ot 11(0)/62206 (GPATHS + 152). 1_ 1. 1.

=> : unit_open .S alermed

100000

-> clearoltl

=> breokpoint gpath$+155
=> continue

Leoving thz debugger..

Debugger entered due to breokpoint/single step.
Process 1 was executing ot 11(8)/62211 (GPATH$ + 155).
-> occess_type symbolic
~> occess s
11(@)/62211 CRA
11(0)/62212 STAX SB%+ 72 ,»

11(0)/62214 EALX LBX+ 432 ,» Ca“ ‘l’o locl(r
11(0)/62216 JSXBX LE%+ 434 . & Yoth”
11(0)/62220 PCL% LB%+ 436 ,» ? < Call to fadp

-> breokpoint 11/622207

-> listall

Type Address Procedure Process Count Mnemonic

brkpt 11(8)/62211 GPATHS + 155 Any 1 CRA

brkpt 11(0)/62220 GPATH$ + 164 Any 1 PCL

-»> continue
[ --.aving the debugger.

Debugger enterea due to breakpoint/single step.
Process 1 was executing ot 11(0)/62220 (GPATHS + 164).
=> stotus user
Process 1 SYSTEM ses Owns register set 1 ess
Level: System process
Type: Supervisor
State: Ready

PB:  11(0)/62248 (GPATHS + 204)
LB:  11(0)/62432 (GPATHS)
Locks owned: FSLOK UFDLOK & UFD [ock +ﬂ Ken

PCB obort flags: TSEALM

Process 29 (Login name is not resident)
Levei: Network process
Type: Network process
Stote: Waiting ot 12(0)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)
LB: 6(0)/34156 (SETSWI (et ol))

S rents & argw«\ea'ts To ra})p‘H\

717(@)/6376
—> access_type octal <:
~> access 717/6376+2 \
717(0)/6400 000B0R

'(0)/6401 000264 7 &

zcess 717/6376+6

.(8)/6404 0Q0RQGRR ?
-> xpothname

<DOOF ] 0000 * 050 | 00+ 0040505 YO00000 | 0O000 ‘050 | 00 0040005 >EOCOONDPOV /000000 , 606200 , 6\&\
/



00000000000. GOOCOOOO00OCO0YOCO00 OO00O0 JOOOO00
-> : xmax_chars
200200
=> : xpoth_len
e .
-> ! code
200000
=> ¢learall
=> breakpoint gpath$+201

N\

see Debugger user error:
Unknown V-mode instruction.
-> access_type symbolic

~> access gpath$+164

11(0)/62220 PCLX LBY%+ 436 ,¢ < Ca“ "'0
11(0)/62222 AP SB%+ 100 e :
11(0)/62224 AP X8%+ 2 ,S

11(0)/62226 AP XB%+ 6 ,S

11(0)/62230 AP SB%+ 54 S

11(0)/62232 AP SB%+ 67 .S

11(0)/62234 AP SBYA 72 ,S

11(0)/62236 AP SB%+ 44 ,SL

11(0)/62240 EALX LB%+ 432 ,» ?

=> breakpoint 11/62240

-> listall

Type Address Procedure Process Count Mnemonic

brkpt 11(8)/62240 GPATHS + 204 Any 1 EAL

-> continue
Leaving the debugger. «

Debugger entered due to breakpoint/singie step.

Process 1 was executing ot 11(0)/62240 (GPATHS + 204).
=> : xpothnome
DOLFIN>CMONCO> LD . RUNOSOSYOO0000 | 00000 ° 050 1 00 ° 0040005 >ECOONDOV/000000V , 006200
' 00000000000. 0O0O0OOOC000O-<DOLF IN>CMONCE>LD.RUN F—
=> : xpoth_len

21 <

=> access_type symbolic
=> Qccess »
11(0)/62240 EALX LB%+ 432 ,»
11(0) /62242 JSXB% LB%+ 449 e
11(0)/62244 JMP§ 62475 7
~> clearall
-> breakpoint 11/62244
-> continue
Leoving the debugger.

AN

VFD

Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(0)/62244 (GPATHS + 210).
-> status user

Process 1 SYSTEM sss Owns register set @ ecew
Level: System process
Type: Supervisor
State: Reody
PB: 11(9)/62244 (GPATHS + 210)
LB: 11(0)/62432 (GPATHS)

yFo |

Locks owned: FSLOK
Outsataonding abort flags: TSEAWM

Process 29 (Login name is not resident)

Level: Network process

Type: Network process

Stote: Waiting at 12(0)/25382 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)

L8: 6(0)/34156 (SETSWI (et al))

mval.d O:FFSGt l.s’rma

falp*h

argc/meﬂ’rs G‘H""'
call To ra&pﬂ\

call o unlke o free

focK

ocK released



-> step

Debugger entered due to breokpoint/single step.

Process 1 was executing ot 11(0)/62475 (GPATHS + 441).
=> : code
000000

" => occess _< Cq“ +O | UH H('Fs +O

11(0)/62475 JSXBX LB%+ 456 ,»
11(0)/62477 LDA§ SB%+ 44 =
11(0)/62500 CAS§ 63002 {ree FS =lock
11(0)/62581 JWP§ 62503

11(0)/62502 JMP§ 62507

11(0)/62583 CAS§ 63803 ?

-> breakpoint 11/62477

=> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step. s beg‘)uu:ub O‘P SelGCT
Process 1 wos executing at 11(0)/62477 (GPATHS + 443). ’ _

=> status user
Process 1 SYSTEM sse Owns register set & ses»

Leveil: System process

Type: Supervisor

Stote: Reody

PB: 11(@)/62477 (GPATHS + 443) held

LB: 11(0)/62432 (GPATHS) & NO lockb

Process 29 (Login name is not resident)
Levei: Network proaess
Type: Network process
Stote: Woiting ot 12(8)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)
LB: 6(0)/34156 (SETSWI (et al))

',;;i> step

”~Q3bugger entered due to breokpoint/single step.
Process 1 wos executing ot 11(0)/62500 (GPATHS + 444).
-> step .

Debugger entered due to breackpoint/single step.
Process 1 wos executing at 11(0)/625e3 (GPATHS + 447).
-> step

Debugger entered due to breokpoint/single step.
Process 1 was executing at 11(0)/62506 (GPATHS + 452).
-> step '

Debugger entered due to breokpoint/singie step. é—-—"—'_""" 0-“\9" wise lavse
N oc::::e:s 1 wos executing ot 11(@)/63213 (GPATHS + 757). O'F S?l?(‘l’
11(8)/63013 LDAJ SB%+ 44 :

11(0)/63014 STA% SB%+ 75 ,» < ammmmm X(ode = code;

11(0)/63616 PRTN ?

-=> . code

200000

=> : xcode

200000

-> step

Debugger entered due to breokpoint/single step.
Process 1 was executing ot 11(0)/63814 (GPATHS + 760).
- step . .

‘qqger entered due to breakpoint/single step.

Process 1 was executing ot 11(8)/63016 (GPATHS + 762).



=> : xpathnome
<DOLF IN>CMONCE>LD . RUNOBOS5 YHO0000 | 00000 ‘050 | 00 ' 0040005 >E00ONDOYV/000000V , 006200

->m. S000000000C00<DOLF INSCMONCE>LD . RUN <\\ valves re'furued by
200000 ) é_______-

-> : xpa en ' ATH$
>2.1Pth_| | . </ +ke thl -fo Gf

=> clearatll

=> continue .
Leaving the debugger.

<DOLFIN>CMONC® (ALL occess)
3965 records in this directory, 3965 total records out of quota of @.

No entries selected.

OK 15:20:12 2.603 ©.000

Forciug aq errof

\
Debugger entered due to console interrupt.

Process -20 (BK1PCB) wos executing ot 6(9)/42313 (BK2PB + 4).
~> occess gpath$+160
11(0)/62214 EAL% LB%+ 432 ,» '
11(0)/62216 JSXB% LB%+ 434 ,¢ ' I +O raad P+ h
11(0)/62220 PCLX LE%+ 436 ,# & ca
11(0)/62222 AP SB%+ 100 ,e
11(0)/62224 AP XB%+ 2¢.S

11(0)/62226 AP XB%+ 6 ,S
11(0)/62230 AP SB%+ 64 ,sS
11(0)/62232 AP SB%+ 67 ,eS

11(0)/62234 AP SB%+ 72 S
1(0)/62236 AP SB%+ 44 ,SL
1(0)/62240 EAL% LB%+ 432 .o ?

-> breokpoint 11/62240 '

=> continue

Leaving the debugger.

Id x

after call To radpth

Debugger entered due to breakpoint/singile step.

Process 1 wos executing at 11(0)/622428 (GPATHS + 204).
=> : code
000000

-> let code=43 é MOd"FY (_ode +O FOf(e

-> ! code
000043

=> continue - alJ ey ror
Leaving the debugger.
resv H‘ O'F S;MU ‘MT(’G{ error

Buffer too smail. LD (std$cp)
ER 15:21:34 0.166 ©.033

/1\



AN

a wsh>tests
oK 15:27:07

Demonstration 52

8.178 ©.269

r ph_file_copy 1 ringd.map

PHANTOM is user 31 AHal»{EQNb ] ;\Uﬂﬁ SYS"'QM

oK 15:27:20

. ebugger ent

0.333 ©.042

ered due to console interrupt. -

Process —20 (BK1PCB) was executing ot 6(8)/42313 (BK2P8 + 4). -

->
CP> stop

@,______Warms‘\'m‘r while 1d deb\/ﬁf)f’f

HALTED AT @eeo56/0e175@: 805103

CP> sysclr
ses CPU VERI

CP> run 1001
fookat

Active process is =20. <:

-> continue
Leaving the

FIED see

after warm sTart  sTL 4 debugger

debugger.

sssse WARM START sssee

date

Improper command name. “DATE" (std$cp)

ER 15:27:44
daote

9.206 1.096

©3 Oct 85 15:27:48 Thursdoy

OK 15:27:50
avai |
Volume
118512
11306
90.5%

©.121 0@.000
DOLFIN
totol records

records available
full

OK 15:28:63 ©.581 0.260
\
Debugger entered due to console interrupt.

Process -20 (BK1PCB) wos executing ot 6(0)/42313 (BK2PB + 4).

=> breakpoint amlpd E Se+ breakpo"'d’ ;,4 AN\LDIN\

-=> continue

Leaving the

debugger.

Debugger entered due to breokpoint/single step.

Process —15 (AMLPCB) waos executing at 16(0)/4253 (AMLDIM).
-> clearall
~> ready_list
START => AMLPCB

om:ca ~> PNCPCB
v
Soatep s & sTep of AmLDIM  Cavses
Debugger entered due to breakpoint/single step. ready. lisT

Process —15 (AMLPCB) wos executing ot 16(0)/6055 (TTHOUT + 110).
=> reody_|ist

to AL up

START => AMLPCB

|
v

DK4PCB -> DK3PCB ~> DK2PCB -> DK1PCB —> PNCPCB



v

USRO29

|

v

BK1PCB ~> BK2PCB '

- | & Warms’tmt while 14
CP> stop . ) -
HALTED AT 000056/002136: 013074 0‘ e by 9 b er _
CP> syscir i

see CPU VERIFIED w»ee

CP> run 1001 ?
#ee Foult while in debugger: <: .
Segment foult (type 60) encountered ot 55(0)/1205.
Attempt to reference 3403(0)/0.

-> ready_|list : a H '“,.L‘t.efrup "’ P f'(JC?SS-Q S

START => CLKPCB

l except the clock process

v
USR@29
| are removed

v
BK1PCB -> BK2PCB
~> continue
Leaving the debugger.
L 4

sssee WARM START ssesse .
:voil <___________,__ S‘{STeM 1 S ‘\UHé

Debugger entered due to console interrupt.
Process 29 wos executing at 12(@)/50633 (RNGRCV + 201).

T~ => ready_Iist

START -=> CLKPCB
|
v
USRe29
|
v
BK1PCB -> BK2PCB
=> status user
Process 1 SYSTEM
Leveil: System process
Type: Supervisor
State: Waiting at 6(0)/107167 (DKRQB + 1167)

PB: 6(0)/35763 (DKTWO_ + 16S) <:
L8: 6(0)/41334 (RREC (et al))
Locks owned: FSLOK

PCB obort flags: MINALM Wa"{".’,,lﬁ ‘Fdr (}(\SV\
Process 29 (Login name is not resident)

Level: Network process re que s 1.-5 ‘}’O

Type: Network process '

Stote: Ready Com p\e Te

PB: 12(0)/50633 (RNGRCV + 201) :

LB: 12(0)/51112 (RNGRCV)

Locks owned: NETLCK

Process 31 SYSTEM
Levei: Priority 1 user

Type: CPL phantom L
Stote: Waiting at 6(2)/196645 (DKRQB + 645)
PB: 6(0)/35703 (DKTWO_ + 165)

LB: 6(0)/41334 (RREC (et al)) | ‘ :



\

- TARD: 000000 000000
{7 UR1: ooeeee 00o0R0
“ untervol timer: 120273 000000

Locks owned: FSLOK
Outstanding abort flogs: TSEALM
PCB abort flogs: QUTALM

-> stotus -7
Process -7 DKIPCB
Leve!: Disk/Ringnet process

Stote §oody "D
PB: 233 (OMA_ERR + 720)

LB: 6(0)/106244 (Unknown)
SB: 4(0)/164070 XB:
L: 200000 eo0000 E:

X: oeo000 Y:
FAR®: 0080000 000000 FLRO:
FAR1: 000020 000000 FLR1:
Keys: 134201

=> reody_I|ist
START ~> CLKPCB
|

v
USRO29
|
v
BK1PCB —> BK2PCB
-> peb =7

Process: -7

PB: 6(0)/40 SB:
LB: 6(8)/106244 XB:
- -': ooPR0e 0Pe2Re . E:
. o00000 Y:

DTAR2: 177700 eoeeee
Keys: 134201
->

Link: 76700
Abort flogs: ©200000000000000

¢ o sK pru:c'ess 'S
e(e)/1200
200000 000000
200000

200000 200200
000000 20020220

oH
st

t s wot

Z
N

ready

= Aisk  process -
is in limbo

4(0)/164070

8(0)/1200

200000 000000

200000

FLRO: 000000 000000
FLR1: 000000 020000
Elopsed timer: 002200 100000
DTAR3:

177700 @oe0o0



Demous*ra't'(oﬂ b

O 17:21:06 ©.2857 ©.0090
\
Debugger entered due to console interrupt.

Process ~20 (BK1PCB) was executing ot 6(0)/42313 (BK2PB + 4).
~> breakpoint pagtur

sss Debugger user error: - -

Breakpoints cannot be set on an ARGT instruction. éﬂ bfea KPO""-}S (“NMU+ b@
~> occess_type symboiic ) . L
=> occess pagtur : Se"r 04 (er'b\ ¥ MSTNL '}'( onds
65(0)/45204 ARGT ? ’
-> breakpoint foul t+50

ses Debugger user error:
Breokpoints are not allowed for this inatruction.
=> access foult+60
6(0)/31112_ CALF 32420 ?
-> breckpoint pagtur+t

=> a pogtur+l : ; (G.Hur C;\GM@Q COde

6(8)/45205 CRA sze

see Debugger user error: Wke re breul(\ou.u‘h QAre
Can’t modify breokpointed memory. Operation aborted. T

6(0)/45206 STAf SB%+ 22 ? installed

-> clearall ‘ .

=> gccess prwf$$+35
11(0)/33103 PCL% %'439 ..
11(0)/33185 AP SBR%+ 73 ,sS
11(0)/33107 AP SB%+ 150 ,S
11(0)/33111 AP SB%+ 44 ,SL
11(0)/33113 SAS 1 7

“ => breakpoint prwf$$+35

-> listall
' Type Address Procedurs Process Count Mnemonic U : "’ OH
brkpt 11(0)/33183 . PRWF$S$ + 35 Any 1 PCL é bremkp ' : d
-> continue ! t
v o
Leaving the debugger. PC\ |NS‘\'f ¢t H
ovai l
Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(0)/33183 (PRWFSS + 35).

-=> status
Process 1 SYSTEM sss Owns register set 0 w»ee

Level: System process

Type: Supervisor d d

State: Ready . Vad(e

PB: 11()/33113 (PRWFSS + 45) & Ps has beew 4

LB: 11(0)/35136 (PRWFSS) N

SB:  6083(0)/252 XB: 6(0) /27052 SiNCe PCL has

L: 290000 033103 E: 200000 0000056

X: e00000 Y: 177777 executed

FAR®: 006000 016000 FLRO: 000040 200000

FAR1: 000006 023124 FLRY: 000006 000000

Keys: 014100 Modals: 100037

fFcode: 001100 000040 Foddr: 55(e)/1703

Locks owned: FSLOK

-> clearall
=> continue
‘msaving the debugger.
Volume DOLFIN
118512 total records
11301 records avgilable
99.5% ful!



OK 17:26:53 1.115 3.206
\ £

Debugger entered due to console interrupt.

Process -20 (BK1PCB) wos executing ot 6(0)/42313 (BK2PB + 4). ; 1 I‘ra
-> step <——'— CaH 1. 5 PP ! ™
see Debugger user error: - a (OHSO.IQ ;H‘*e{(,p*}", -

Step presumes entry from a bregkpoint/single step.
=> breakpoint p$cidx+1
-> continye
Leaving the debugger.
ovail

Debugger entered due to breokpoint/singie step.
Process 1 was executing ot 41(3)/133503 (P$SCIDX + 1).
-> step 10000

Debugger entered due ‘to breakpoint/singie step.
Process 1 was executing at 41(3)/133503 (P$CIDX + 1).

-> listall

Type Address Procedure Process Count Mnemonic

brkpt 41(0)/133503 P$CIDX + 1 Any 1 LDA

step 41(0)/133504 PS$CIDX + 2 1 9904 STA : .

sss Debugger user error: : pro(egg ‘IS SJ( ! \-‘ a(ffV(‘,y
There is ciready on actively stepping process. T

~> clearaolt e N

=> listal! ‘ _ ' 5 PY 3

No breakpoints are set.
~> breckpoint pogtur+!
-> continue

‘eaving the debugger.

2sugger entered due to breakpoint/single step.
" Process 1 was executing ot 6(0)7/45205 (PAGTUR + 1).

-> clearall
->.step 2000
o sTep aborts becese
ese Debugger user error:
Stepping through o critical region is not allowed. O-F "\afdwafe |A\'€rrup1°
Debugger entered due to breokpoint/single step. il-lh\b"‘— iﬂST(V(.hthS

Process 1 wos executing ot 6(0)/26223 (LKPRV_ + 7).

-> access_type symbolic
-> access =
6(0)/26223 INHP ?
~> occess nlogin
15(0)/2267
ese Foult while in debugger:

Page foult (type 10) encountered at 55(0)/15227.

Attempt to reference 15(8)/2267. " v .
-> clearal ! ;o Peﬂded bfeaKPUbe
-> breokpoint nilogin ' <
~> listall
Type Address Procedure Process Count Mnemonic ) '
brkpt 15(0)/2267  NLOGIN Any 1 &—— Coan T show  mAeminiC

=> continue
Leaving the debugger.
Volume DOLFIN
118512 total records
11301 records available
. 90.5% full
\

OK 17:27:11 ©.660 ©.245

30



vpsd

:"2;:7 {-————————— ause ‘“‘\e pase +O be

bru U@h"' id

. ewes Debugger user error:

Breakpoints cannpt be set on an ARGT instruction, 4___._ de-Fe rred -errur mess qge

Debugger entered due to poge fault. ; a : -f
Process 1 was executing at 4000(3)/62458 (Unknown). 'FfOM a PeAd?d bf(’ k;’)ﬂuﬂ
-> clearall

-> continue

Leaving the debugger.

15/ 2267 ARGT ?

$q

OK 17:27:4§ 8.287 0.263



/o &

000000 :
000009 :
000000 :
000000 :
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000 :
000000
000000
200000
000000
000000 :
000000
000000
000000
000000
000000
000000
000000
200000
200000
000000
000000:
000000
000000:
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
200000
000000
000000
000000
2008000
200000
000000
000000

)

.

‘, PRIMOS>FS, PRIMOS GROUP, 06/25/84

0001
0002
0003
0004
0085
0006
0007
0008
0009
2019
ee11

0012
0e13
0014
0015
0016
eet?7
0018
0019
0020
0021

0022
0023
0024
0025
0026
0027
0028
0029
0030
el

0032
0933
0034

0035
0036
0037
0038
0039

0040
0041

0042
0043
0044

0045
0046

({0047

0048
0049
0050
0051
0052
0053
0054

/e

"

GPATHS .PLP, PRIMOS>FS, PRIMOS GROUP, 06/25/84
Return a pathname given o unit, attach point or segment number.
Copyright (c) 1981, Prime Computer, Inc., Natick, MA 91760 ¢/

Description:
Returns the paothname of the unit, ottach point or segment specified.

Abnormal conditions: None.
Implementotion: Calls Ra2pth if local, R$cail if remote.

Gate Gpath$: return pathname of unit, attach point or segment.
Calling sequence:

dc! Gpath$ entry (fixed bin, fixed bin, char (s), fixed bin, fixed bin, fixed bin)i

call Gpath$ (key, unit, pathname, max_path_len, actuai_path_len, code);

key: May be any of the following (input):
K$UNIT — use passed unit number.
K$CURA — get pathname of current oa.p.
K$INIA — get pathnome of initial a.p.
K$SEGN ~— use passed segment number.
unit: ' unit number of unit to check or segment number
it key = K$SEGN. (input)

pathnome: returned pathname of unit, attach point or segment (output).

max_path_len: size of pathnome buffer in characters (input).

actual_path_len: length of returned pathneme in characters (output).

code: standard error code (output).

¢ Logical structure of module GpothSé

1f (unit open and local)
Then .
(get idev, bra from AST entry and then get pathname with Ra2pth)
It (segment number)
Then
(get pothname with Ra2pth)
Select (error code) .
When (illegal remote reference)
(go remote with R$call)
When (unit not open)
1f (checking attach point)
Then
(map to not attached for user)
Return

000008000 ¢0 000000000 0000¢00¢000000R00500030¢C 0038000000
¢ This module lakes the FS and UFD locks for reading. e

0000000000000 000000000000000¢00000000000000000000000009

Modifications:

Date Progrommer Description of modification
06/25/84 Sodigh
02/18/84 Sadigh

Return ESUNOP if key is K$COMO and COMO is not open.
Added k$como option to return pothnome of COMOUTPUT

pol221?§

tHLbd9 40 Q"‘!;S\_l V10 Wog_‘_.)od



/¢ GPATHS .

000000:
000000:
000000:
000000:
000000
000000
000000:
000000
000000
000000:
000000:
000000
000000 :
000000:
000001 :
000001 :
000001
000001 :
000001:
000001 :
000001:
000001 :
000001 :
000001 :
000001 ;
000001 :
- 0000801
000001 :
000001 :
000001 :
000001 :
000001 :
000001 :
000001
000001 :
000001 :
000001 :
000001 :
000001 :
000001 :
o001 :
000001 :
000001 :
000001 :
000001:
000001 :
000001 :
000001
000001 :
000001 :
000001 :
000001 :
000001 :
000001 :

(U8
(N

\

. PRIMOS>FS, 'PRIMOS GROUP, ©6/25/84 10 (uge 2
0055 /e file.
0056 /e 01/24/84 Slutz Added init for valid_segment.
0057 /e 11/29/83 Siutz Fixed for Dynamic File Units.
0058 /¢ 08/09/83 Goggin Added new key K$SEGN. '
0059 /¢ 10/65/82 Swartzendruber Use slave ID instead of NPX node. |
0060 /e 11/17/81 Slutz Return correct error code for k$unit. !
0061 /* 11/09/81 Siutz Fixed r$call coding to handle spare byte at end. !
0062 /e Buffer length is in charaocters! :
0063 /* 08/28/81 Weinberg Initial coding. A
0064 o/
0065
0066 gpath$:
0067 proc (xkey, xunit, xpothname, xmax_chars, xpath_len, xcode) options (
0068 gate, nocopy):
0069 .
0070 de! xkey fixed bin, /* Determines whose pathname to get ¢/
0071 xunit fixed bin, /* Unit number if key = k$unit
0072 or segment number If key = k$segne/
0073 xpathnome char (128), /% Name returned here s/
0074 xmax_chars fixed bin, . /* Length of xpathname buffer in choracto
0075 xpath_Jlen fixed bin, /* Length of returned name in characlers
0076 xcode fixed bin; /¢ Stondard error code o/
0077 .
o101 ;
0102 /¢ External entry points ¢/ i
o103 P
0104 dcl ro2pth entry (fixed bin (31), fixed bin, char (¢), fixed bin, fixed
0105 bin, fixed bin),
0106 open_chk entry (fixed bin, ptr, fixed bin) returns (bit (1)), :
2107 r$call entry options (variable), !
o108 ti1$sgs entry returns (fixed bin(lS))
0109 sdwadr entry (fixed bin(15), fixed bln(lS)) roturna(ptr options(
ot10 short)),
o111
0112 /¢ Gets pointer to sdw for
2113 given user and segment. ¢/
0114 |
o115 pgmapao entry (ptr options(short), fixed bin(15)) returns(ptr options(
0116 short ; :
o117 3
o118 /¢ Gets pointer to page map
o119 entry for given user and segment. ¢/ :
0120
0121 /* Local declarations ¢/ .
0122 \
9123 Xreploce faom_i_gpoth$_key by 235, |
0124 sot_high_order_bit by 32768, /¢ used to detect high order :
8125 bit being set in SOW ¢/
0126 page_size by 1024, /¢ record or page size s/
0127 fuli_seg by 65536, /¢ segment size ¢/
0128 dtar2 by 2; !
0129
e13e dc) rcode fixed bin, /¢ Remote error code o/
2131 uteptr ptr, /¢ Pointer to unit table entry ¢/



/o6

000001 :
000001 :
000001 :
000001:
000001
000001
000001
000001
000001
000001
000001 ;
000001 :
000001 :
000001 :
000001 ;
000001
000001 :
000001 :
000001
000001 :
000001
000001
000001 :
000001 ;
000001
00000t ;
000001 :
000001 :
000001 :
000001
000001 :
000001
000001 :
000004 :
000006:
000010
0000190:
000022
000022:
000022:
000033
000033:
000037:
000041
000043:
000043
000043:
000043
000055
000055
000067 :
200067 :
000101 :
000101

@

1

3, PRIMOS>FS, PRIMOS GROUP, 06/25/84

0132

2133
0134
0135
0136
0137
0138
0139
0140
8141
0142
0143
0144
0145
0146
0147
8148
0149
0150
Q151
0152
0153
0154
0155
0156
0157
0158
2159
0160
2161
0162
0163
0164
0165
0166
0167
0168
0169
ei17e
17
o172
0173
0174
0175
0176
0177
o178
2179
0180
2181
0182
0183
0184
0185

unit_open bit (1) aligned,
valid_segment bit(1) aligned,

runit fixed bin,

odd_length bcl(l) aligned,
odd_byte char(1) aligned,
key fixed bin,

rkey fixed bin,

code fixed bin,

adw_ptr ptr options (short),

idx fixed bin,

nvmfs fixed bin static external,
ast_addr ptr options (short),
fb15 fixed bin bosed,

/*
null_sdw fixed bin (31) static init (set_ hlgh/ordor _bit),

h_map_virt_addr ptr options (short),

h_map_ptr ptr options (short),

mapped_phys_page_addr fixed bin (31),

user_phys_page_addr fixed bin (31),
devno fixed bin, ‘
1 bra_bit based,
2 h8 bi(seg.
2 m8 bit(8),
2 116 bit(16),
bra fixed bin (31),
not_found bit(1) oligned,
segno fixed bin,
dtar2_top fixed bin(15);

/¢ Valldote parameters o/

key = xkey;
valid_segment = '@°'b;
call lockfs;

lect (k
* ::on((:zznlt)
do;

/*
/*

True if unit open and local o/

True If valid segment given

with use segment key ¢/

Unit may be different if going romote
True if odd max fength ¢/

The odd byto to keep in remote case ON
Local copies ¢/

key for remote system ¢/

Pointer to SHw «+/
index s/

Number of AST entries ¢/
Pointer to AST s/

Pointer to poge mop for EPF sege/
Pointer to page in which

page map for EPF seg resides ¢/
Physical oddress of HMAP of EPF segmen
Physical address of HMAP from SDW ¢/
Logical device of file ¢/

Copy of BRA of the file ¢/

BRA of the file o/
Booleon ¢/

Segment ¢/

top segment in dtar2 ¢/

Moke locol copy ¢/ .
Init before checking.... ¢/ i
No interruptions, please ¢/ i

unlt_open = open_chk (xunit, uteptr, code);

if code = e$bkio
then do;
code = @;
unit_open = *1°b;
ond;
end;
when (k$curo)

unit_open = open_chk (current_op_unit, uteptr, code);

when (k$homa)

unit_open = open_chk (home_ap_unit, uteptr, code);

when (k$inia)

unit_open = open_chk (inltial_ap_unit, uteptr, code)

when (k$como)

unit_open = open_chk (como_unit, uteptr, code);



/¢ GPATHY 2, PRIMOS>FS, PRIMOS GROUP, @6/25/84 10 Hage 4

000113: (0186
000113: (0187
000114: (0188
000116: (0189
000116: (0190
000121: (0191
000121: (0192
000121: (0193
800121: (0194
000121: (0195
000124: (0196
000124: (0197
000135: (o198
000137: (0199
000141: (0200
000141: (0201
000144: (0202
000144: (0203
000144: (0204
000145: (0205
000147: (0206
000150: (0207
000152: (0208
000152: (0209
000152: (0210
000152: (0211
- 000152: (0212
000155: (0213
000161: (0214
000161: (0215
000201: (0216
000205: (0217

000205: (0218)

000205: (0219
000205: (0220
000211: (0221
000213: (0222
000223: (0223
000223: (0224
200223: (0225
000223: (0226
000223: (0227
000223: (0228
000233: (0229
000233: (0230
000253: (0231
000266: (0232
000277: (0233
000277: (0234
000305: (0235
000305: (0236
000305: (0237
0003e5: (0238
000311: (0239

%)

when (k$segn)

do;
unit_open = ‘0°d; /¢ Remember o unit hos not
been passed.s/
segno = xunit; /¢ Parameter is o segment no ¢/

/¢ Calculate the top segment number in DTAR2 for this user. Check the
bit "pudcom.flagbt.big_dlar2" to determine whether 256 or 512 (dec). ¢/
a
dtar2_top = t18sgs():
it ((segno < dynags(dtar2)) | (segno > dtar2_top))
then do; ,
code = e$bkey; /¢ Segment not in range. ¢/
valid_segment = °9°'b;
end;
else valid_segment = ‘1°'b;
end;
otherwise
do;
unit_open = ‘0°'b;
valid_segment = "@°'b;
code = e$bkey;
end;
end: /* Select o/

if unit_open
then do; /* Go get pathname from unit. ¢/
call lockr (ufdlok); /* Must lock dirs to do it ¢/
call ra2pth (uteptr > utcme.bro, uteptr —> utcme.ldevno, xpathname,
xmax_chars, xpath_len, code);
call unlkn (ufdliok);
end; /* Go get pathname from unit. ¢/

eolse if valid_segment
then do; /¢ Go get pathnome from segno. s/
not_found = *1'b;
sdw_ptr = sdwadr (segno, pudcom.cusr); /¢ Obtain a pointer to SDW s/

/* Form physical address 6( page table from SDW ¢/

if (oddr(sdw_ptr) —> long_fb t= @) /* valid segno ¢/
then if (sdw_ptr —> long_fb t= nuli_sdw)
then do; /+ Good SDW ¢/
user_phys_page_addr = sdw_ptr - sdw.phys_low + fuli_seg ¢
sdw_plr ~> sdw.phys_high;

do idx = 1 to nvmfs while (not_found); /e Search ASTs ¢/
ast_addr = oddr (ast(idx));
it (oaddr(ost_oddr -> aste.nrnw) —> fbi15 t= @)

then do; /¢ This entry in uee. ¢/

/¢ Form physical address of page table for EPF segment s/

h_mop_virt_aoddr = ast_addr ~> aste.ppmap;
h_mop_ptr = pgmapa (h_map_virt_addr, pudcom.cusr);

3
v~ o

r—



y

/s G

}

‘. 1

2, PRIMOS>FS, PRIMOS GROUP, 06/25/84 " brage 5

000321: - (0240

000321
000340
000340:
000340:
000340

000340:
000344
000352:

000355

000363:
000366
000370:
000370:
000370:
000402
000402
000402
000402
000407
000410:
000414
000432
000436
000436
000436
000436
0004490
000440
000440:
000440
000450
000450
000450
000453
000467
000467
000515:
800515:
000515
000547
000556
000556
000564 :
000567
200571 :
000571 :
000571
000574 :
000571
000571:
000571
008571
000672

9

0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
9251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
2271
0272
2273
0274
0275
09276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
2288
0289
0290
0291
0292
0293

mapped_phys_page_addr = poge_size ¢ pgppn(h_mop_ptr) + addr
(h_map_virt_oddr) -> pointerb.w.wn;

/* 11 two addresses are equal get devno ond bra ¢/

if mapped_phys_page_addr = user_phys_page_oddr

then do;
devno = gst_addr -> aste.dev_bra.dvno;
bro = @; a
addr bro; => bro_bit.mB = ost_oddr -> aste.dev_bra.brah;
addr (bro) -> bro_bit.|116 = gst_addr -> agste.dev_bra.bral;
not_found = ‘@'b;
end;
end;
end; /¢ Search ASTs ¢/
end; /% Good SDW «/

1f not_found
then code = e$fntf;

else do;
coll lockr (ufdlok); /* Must lock dirs to do it o/
catl ro2pth (bro, devno, xpathname, xmox_chars, xpath_ien, code);
call unlkn (ufdlok);
end;
end; /¢ it valid segment o/
call unikfs; /¢ Done with fiie syatem ¢/

/° Process according to error code ¢/

sefoct (code):

when (
do;

e$irem)

/* Unit is remote, handle thot o/
xpath_len = 9; ) /* Clear in cose of error ¢/
odd_length = (mod(xmax_chars, 2) = 1); /¢ Remember state ¢/
if odd_length

then odd_byte = substr(xpathnome, xmox_chars + 9, 1;; '
it skoy m k$unit & (xunit >= sysun | xunit = como_unit)) |
key = k$como)

then runit = uteptr => rem_ute.master_to_slave; /* Map unit number

eise runit = xunit; /* Attach point ¢/
if key = k$como
then rkey = k$unit;
olee rkey = key; :
rcode = fam_i_gpoth$_key; /e For FAM | s/
call r$call (lomfs, uteptr —> vem_ute.slave_id, °*GPATH$', 6, rcode,
rkey, 1, k$i2 + k$in,
runit, 1, k$i2 + k$in,
xpathname, xmax_chars, k$out + k$char + k$ref + 5,
xmax_chars, 1, k$i2 + k$in,
xpath_len, 1, k$i2 + k$out,
xcode, 1, k$i2 + k$out,
xunit, 1, k$i2 + k$in); /e Needed for FAM [ o/
if rcode t= 0



/* GPATH,

000672:
000677:
000677
000726
000726:
000726:
000726
000741
008753:
008753:
000754:
000757
0008757
000757
000757:
000760:
000760:

0000 ERRORS (PL/P

-P, PRIMOS>FS, PRIMOS GROUP, ©6/25/84 fv rage 6 ‘

0294
0295
0296
0297
0298
9299
a3en
8301
0302
0303
0304
0305
0306
o3e7
03es
0309
0310

then xcode = rcode; /¢ Network errors take precedence ¢/

if odd_length /* Restore odd byte to keep Trocy amill
then subsatr(xpathname, xnox chars + 1, 1) = odd_byte;

end;

when (e$unop)
if key t= k$unit & key t= k$como

then xcode = e$natt; /% Map not open to not attached ¢/
else xcode = code; /* Correct for units ¢/
otherwise A
do;
xcode = code;
end; ‘
end; /¢ Select o/
return;
end; _ /e Gp&th‘,‘/

rev 19.2)

PROCEDURE SIZE = 507 WORDS, LINKAGE FRAME SIZE = 50 WORDS

2111 SOURCE LINES,

193 STATEMENTS, COMPILATION TIME = 43.49 CPU SECONDS

52.2X DATA POOL UTILIZATION




/e Gy >, PRIMOS>FS, PRIMOS GROUP, 06/25/84

S8 +44

001 06£§2:23 CODE bin(15) automatic
1 171A 172 174M 178A

180A 182A 184A 198M
207M 2144 257M 261A
270 Jo1 304
001 000042S KEY bin(15) automatic
130D 164M 168 277(2) 281
283 298(2)
001 0000355 UNIT_OPEN bil(1) aligned automatic
1300 - 171M 175M 178M 180M
182m 184M 188M 205M
: 211
001 000000X 1 UTCME based
82<137>D
000000400 2 VSTAT
82<137>D
000000+00 3 MODIFIED bit(1)
82<137>D
000000401 3 SYSUSE bit(1)
82<137>D
000000+02 3 SHTBIT bit(t)
82<137>D
000000403 3 NO_CLOSE bit(t)
82<137>D
000000404 3 DISK_ERROR bit(t)
82<137>D ,
000000405 3 FILE_TYPE bit(3)
82<137>D
000000408 3 OPEN_MODE bit(8)
82<137>D .
000001400 2 MORE_VSTAT
82<137>D
000001+00 3 REMOTE_UNIT bit(1)
82<137>D
000001401 3 NO_DTA_UPDATE bit(1)
82<137>D
000001402 3 BACKUP_USE bit(1)
82<137>D .
000001403 3 SPARE bit(13)
82<137>D
000002400 2 BRA bin(31)
82<137>D 214A
000004400 2 CUR_RA bin(31)
82<137>D
000006400 2 LDEVNO bin(15)
82<137>D. 214A
000007400 2 REL_WORDNO bin(15)
82<137>D
000010400 2 REL_RECNO bin(31)
82<137>D
000012400 2 RWLOCK bit(8)
82<137>0
000012408 2 ACCESS
82<137>D

%)
oQ



/¢ GPATh P, PRIMOS>FS, PRIMOS GROUP, 06/25/84 fv roge

000012408 3 PROTECT bit(1)
82<137>D
000012409 3 DELETE bit(1)
82<137>D
000012410 3 ADD bit(1)
82<137>D
000012+11 3 LIST bit(1)
82<137>D
000012+12 3 USE bit(1)
82<137>D
000012+13 3 EXECUTE bit(1)
82<137>D
000012+14 3 WRITE bit(1)
82<137>D
000012+15 3 READ bit(1)
82<137>D
200013+00 2 POS_IN_PARENT bin(15)
82<137>D
000014400 2 PARENT_BRA bin(31)
82<137>D
000016400 2 HASH_THREAD pointer
82<137>D
000020400 2 QUOTA_BLK_PTR pointer
82<137>D
000022+00 2 DIR_BLK_PTR pointer
82<137>D
900024400 2 DAM_IDX_RA bin(31)
82<137>D
000026+00 2 EX_MAP_PTR pointer
82<137>D
001 UTCME_CHARS char(48) based
82<189>D
001 000100S UTEPTR pointer automatic
1300 171A 178A 180A 182A
184A 214(2) 277 285
201 UTHASH(1:257) pointer external
82<84>D .
001 0000365 VALID_SEGMENT bit(1) aligned automatic
130D 165M 1994 201M 206M
219
001 VDNUDG entry constant shortcall external
90<33>D
001 WAITA entry constont shortcall returns(bin(15)) external
90<33>D
001 WORD(1:1) bin(15) based
98«<6>D
201 000075S XCODE bin(15) parameter
700 285A 293M 298M JO1M
3J04M
001 9000565 XKEY bin(15) parameter
70D 164
001 00BO67S XMAX_CHARS bin(15) parameter
700 214A 261A 274 275

9



/s GPA’

0e1

oot

001

001

285(2)A 295
000000X 1| XP based
98<52>D
000000+00 2 R_.SN bit{186)
98<52>D
000001400 2 XREL bin(15)
98<52>0D .
0000645 XPATHNAME char(128) parometer
70D 214A 261A
295M
0000725 XPATH_LEN bin(15) paraometer
700 214A 261A
000200X 1 XPB bosed
98<55>D
000000400 2 R_SN bit(16)
98<55>0
000001400 2 XRELB Dbit(16)
98<55>D.
@00061S XUNIT bin(15) parameter
700 1794 1990
285A

. PRIMOS>FS, PRIMOS GROUP, 06/25/B4

275

273M

277(2)

285A

285A

289










	Cover Sheet
	
	Table of Contents
	i
	
	ii
	Chapter 1. Introduction
	1
	2
	Chapter 2. The Basics of Using the Ring Zero Debugger
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	Chapter 3. Ring Zero Debugger Command Descriptions
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	Chapter 4. Uses of the Ring Zero Debugger
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	Chapter 5. Implications of the Ring Zero Debugger Design
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	Appendix A
	Finding Variable Information from Listings
	71
	72
	73
	74
	Appendix B
	Command Syntax
	75
	76
	77
	78
	Appendix C
	Assembly Language Syntax
	79
	80
	Appendix D
	Error Messages
	81
	82
	83
	84
	85
	86
	87
	88
	Appendix E
	Summary of Functionality Limitations
	89
	90
	Appendix F
	Maintenance Notes
	91
	92
	93
	94
	Index
	95
	96
	97
	98
	99
	100
	101
	
	Time Scale
	Ring Zero Debugger Examples
	Demonstration 1
	1
	2
	3
	4
	Demonstration 2
	5
	6
	7
	Demonstration 3
	8
	9
	10
	11
	12
	13
	14
	15
	Demonstration 4
	16
	17
	18
	19
	Demonstration 5.1
	20
	21
	22
	23
	24
	25
	Demonstration 5.2
	26
	27
	28
	Demonstration 6
	29
	30
	31
	PRIMOS>FS>GPATH$.PLP Partial Listing
	32
	33
	34
	35
	36
	37
	38
	39
	40
	
	

