
Ring Zero Debugger User Manual PE-T-1278

eo

'

Date: November 14, 1985 :

To: R & D personnel

From: Bill Huber, Leonid Shvarts

Subject: Ring Zero Debugger User Manual

Reference: None

Keywords: Ring Zero Debugger, Debug, Tools

Abstract

This document describes the functionality of and uses for ’a new tool called*tHeRing Zero

Debugger. The Ring Zero Debugger is an assembly language debugger that allows‘one to

control program execution of Primos code on a real-timé;* interactive basis. Using: thistool, oné

can effectively suspend the state of the entire system, examine or change nearly“ asy~part of

the system, and then resume execution transparently. The most important feature of the Ring

Zero Debugger is the ability to set breakpoints nearly anywheté'“in "ghared:icode. Despite its

name, the Ring Zéro Debugger can be used to set breakpoints in either ring:

The primary users of the Ring Zero Debugger are expected to be enginee¥s working on

either Primos or Primenet. However, it may prove helpful for’ other tasks as diverse as -)

debugging new hardware to debugging shared subsystem‘code. “ed

Prime Restricted

Ring Zero Debugger User Manual

4.1

4.2

4.3

4.4

Table of Contents

1. Introduction

1.1. Motivation
1.2 Ring Zero Debugger High-level Description

1.3 Document Format

2. The Basics of Using the Ring Zero Debugger

2.1 A Simple Example

2.2 Terminology
2.3 Data Type Conventions
2.4 Referencing Addresses

2.4.1 Address-expression’s
2.4.2 Break-expression’s

25 The Active Process
2.6 The Effect of Entering the Ring Zero Debugger

2.7 Operational Procedures

2.7.1 Getting the Ring Zero Debugger
2.7.2 Configuring the Ring Zero Debugger
2.7.3. Ways to Enter the Ring Zero Debugger
2.7.4 The Command Environment

2.8 Basic Commands

2.8.1 Entering and Leaving the Ring Zero Debugger
2.8.2 The Status Command

2.8.3. Accessing Memory
_ 2.8.4 Breakpoints

2.9 Error Handling

3. Ring Zero Debugger Command Descriptions
3.1 Referencing Memory and Registers

3.2. Breakpoints and Single Steps
3.3. Examining a Process’s State
3.4 Examining the State of the System

35 Retrieving Symbolic Information
3.6 Program Variables
3.7. User-defined Commands

3.8 Miscellaneous Commands

4. Uses of the Ring Zero Debugger

Adding New Code
Tracking Down System Failures
4.2.1 Fatal Process Errors

4.2.2. System Hangs
4.2.3. System Halts

Debugging Hardware

Debugging a Customer's System

Prime Restricted

PE-T-1278
Page i

Page

O
O

C
O

O
O

W
M
W
D
W
D
Q
I
A
A
N
A
A
M

W
w

W
w

R
I

pe
ak
e
e
e

PE-T-1278

Page ii

4S

4.6

Shared Subsystems _

A New Angle on Performance

5. Implications of the Ring Zero Debugger Design

5.1

5.2
5.3
5.4

5.5

Effect of Breakpoints
5.1.1. General Effects

$.1.2 Stack Implications
5.1.3 PCL Instructions
5.1.4 Single Stepping
The Issue of Non-resident Memory

Using a Separate Process

Warmstart

Effect on the Primos Load

APPENDIX A. Finding Variable Information from Listings

APPENDIX B. Command Syntax

APPENDIX C. Assembly Language Syntax

APPENDIX D. Error Messages

APPENDIX E. Summary of Functionality Limitations

APPENDIX F. Maintenance Notes

F.1
F.2

F.3
F.4

Index

Changes to Primos for the Ring Zero Debugger

Areas Most Likely to Chang
Getting a Load Map

Reporting Errors

Prime Restricted

Ring Zero Debugger User Manual

59
60

61

61
61

63
64

65
66
67
67

68

71

75

79

81

89

91
91

92
93
94

95

Ring Zero Debugger User Manual PE-T-1278
Page 1}

1. Introduction

Before discussing details of the operation of the Ring Zero Debugger, some overview of the

debugger and this document should be helpful. This chapter will give a brief statement

concerning the motivation for implementing the debugger. Next it will describe the debugger in

very: general terms. Finally this chapter will discuss the format of the rest of the document.

1.1 Motivation

The only methods that exist for debugging Primos ring zero code without the use of the

Ring Zero Debugger are very crude. These methods were common two decades ago but are an

extremely poor way to do program development today. These methods include putting halt

instructions directly in the code and taking tape dumps, or modifying the code to print values

of variables on a console. It should be easy to see that this approach has numerous problems.

Foremost among them is the large amount of time needed to fully debug even a small piece

of code. In general, the need for a program debugger for efficient program development is

fairly obvious. :

To address this situation, a new tool known as the Ring Zero Debugger has been written.

The primary goal of this tool is to increase the productivity of Prime engineers developing

code in ring zero. Because of the way that the debugger has been implemented, this increase

in productivity should be true for ring three shared code as well. The claim for increased

productivity is based on two assumptions. One is that the program development time will be

much shorter due to the interactive nature of the debugger. The other is that new or

modified code will be more reliable due to the ability to more fully check all code paths and

simulate error conditions.

1.2 Ring Zero Debugger High-level Description

The Ring Zero Debugger is an assembly language, system-level debugger. The only

assembly language that it supports is Prime V-mode. The Ring Zero Debugger can run on

any Prime processor which supports V-mode (including dual processors, such as the P850).

The debugger is described as a system-level debugger since it stops the entire system when

entered, not just a single process. It also has commands which relate to the system as a

whole, in addition to process-specific commands.

As with any debugger, the most significant feature in the Ring Zero Debugger is the

ability to set and clear breakpoints. The debugger allows users to set breakpoints nearly

anywhere in both ring zero and ring three shared code. Breakpoints can specify a particular |

process in the system or they can be for any process. The ability to single step through code

is also provided.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 2

The other features available with the Ring Zero Debugger are based primarily on three

other tools. These other tools are DBG (Prime's Higher-level-language Debugger), Autopsy (an

internal tool for analyzing crash dumps), and VPSID (a crude assembly langauge debugger for

V-mode). Some of the other features include the ability to reference memory or registers of

any process in the system, the ability to completely examine a process's state, the ability to

examine certain system data bases, the ability to examine local program variables by name,

and the ability to translate addresses from virtual to physical and vice versa. Much of the

information is displayed symbolically based on symbols in the Primos load maps.

The debugger is built into Primos as part of the ring zero load. Thus the debugger and its

sources will reside on the Master Disk as part of Primos and will be shipped to customers.

However, the debugger is not a product and will not be documented in any Prime manual.

The only place that the procedure for configuring and entering the debugger is described, is in

this document which is only available to Prime personnel. Thus the debugger will exist in

Primos at customer sites but most of them will not knowit’s there or how to use it.

1.3. Document Format

The main purpose of this document is to describe the functionality of the Ring Zero

Debugger so that a person unfamiliar with it can learn how to use it. This document assumes

the reader has some familiarity with Prime processor architecture and also with some Primos

internals. If this is not the case, some background reading may be helpful.

As regards the format of the rest of the document, chapter 2 describes the most basic

functions of the debugger. It covers all aspects of the debugger environment and then

introduces a few elementary commands. Chapter 3 describes the complete functionality of . the

debugger by functional groupings. All commands in the debugger are described here. Chapter 4

gives some examples of the way that the debugger can be used to solve various problems.

Finally chapter 5 describes some implications of the debugger design that have user-visible

effects. All but the most casual user of the Ring Zero Debugger should read this chapter

since it gets to the heart of some of the limitations that the debugger has.

In addition to the basic chapters, there are a number of appendices that can be used as a

reference for various details. These include information such as finding variables from a

program listing, the exact syntax of the debugger commands, the syntax of the assembly

langauge, descriptions of error messages, a summary of debugger functional limitations, and

notes on maintaining the debugger.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 3

2. The Basics of Using the Ring Zero Debugger

The purpose of this chapter is to introduce users to the basics of the Ring Zero Debugger.

Its role is to provide one with enough knowledge to be able to use some of the most

fundamental commands. Included in this chapter are descriptions of how to configure and

invoke the debugger, how to reference addresses, what some simple commands can be used for,

and how errors are reported.

2.1 A Simple. Example

Before discussing the details of the debugger, this section will present a simple example of

what a small debugging session might look like. This example will show the commands that

one might issue to step through a small section of code to verify that it works correctly.

-The reason for showing the example is not so all the commands will be understood, but

Tather to start to get a feel for the type of abilities that one has with the debugger.

The small section of code is an actual Primos routine. It is written in assembly language

and is shortcalled. The purpose of this routine is to increment a pointer by the size of a page

map entry and return that pointer. (The size of a page map entry varies depending on the

type of processor.) The name of this routine is pgstep and a segment of its listing is shown

below.

001551: 811415.008012S (1289) PGSTEP STL ARGPTR

@01353: 045435.000012S (1290) . LOL ARGPTR,«
@@135S: 015414.002122 (1291) ADL PME_LENL
001357: 003403.e00000x (1292) JMP XB%

One can see from this listing segment that the routine is very simple. It picks up the

argument (a pointer), adds the size of a page map, and returns with the new value in the L

register. In the following sequence, the debugger will be entered, a breakpoint will be set at

Pgstep, the debugger will be exited, and finally a Primos interrupt process will hit the

breakpoint causing the debugger to be reentered. "

\
Debugger entered due to console interrupt.

Process -20 (BKIPCB) was executing at 6(@)/42313 (BK2PB + 4)
—> breakpoint pgstep
-> listel!l

Type Address Procedure Process Count Mnemonic

brkpt 6(@)/50143 _ PGSTEP Any 1 STL

-> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process -9 (PNCPCB) was executing ot 6(@)/50143 (PGSTEP).
~>

Now that we have hit the breakpoint, we can examine the code to assure ourselves that we

Prime Restricted

PE-T-1278 , Ring Zero Debugger User Manual

Page 4

are at the right place. The code looks like what one would expect so we also try single

stepping through two instructions.

-> access «

6(@)/50143 STL% SB%+ 12

6(@)/50145 LOL% SB%+ 12 ,«
6(@)/50147 ADL% 58714

6(@)/50151 JMPZ% XB%+ @ =?
-> step

Debugger entered due to breakpoint/single step.

Process -9 (PNCPCB) wos executing ot 6(@)/50145 (PGSTEP + 2)

-> step

Debugger entered due to breakpoint/single step.
Process —9 (PNCPCB) was executing at 6(@)/50147 (PGSTEP + 4)

The next step is to examine the value of the input pointer (which at this point is in the L

register) and the value of the page map entry size. The entry size of 1 is correct for the

current processor, so we can move on and see that the addition takes place correctly by

examining the L register after the addition.

—> access_register 1

L (high order): 9806200

L (low order): 057411

—> access_type octal

-> access 6/50714

_ 6(8)/50714 eee000

6(®)/S8715 9020001 ?

—> step

Debugger entered due to breakpoint/single step.

Process —9 (PNCPCB) was executing ot 6(@)/50151 (PGSTEP + 6)

—> access_register |

L (high order): 000600
L (tow order): @57412

->

We have nowseen that the pointer was incremented correctly. If it hadn't been, we could

have modified the value in the L register and Jet the program continue. One last thing we

might be curious about is where the routine was calied from. A simple way to determine

this is to single step one more time. After doing this we see that pgstep was called from

the routine mapio. . Finally we delete all breakpoints and leave the debugger.

-> step

Debugger entered due to breakpoint/single step.
Process —9 (PNCPCB) was executing at 11(@)/16760

(MAPIO + 157). :
—> clearall

—> continue

Leaving the debugger.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
° ,

Page §

2.2 Terminology -

Before describing the Ring Zero Debugger, it is useful to define a few terms which have

taken on special meanings when used to discuss different features of the debugger.

active process Many debugger commands assume a given process if one is not specified

explicitly. The process assumed is called the active process. When the Ring

Zero Debugger is entered, the active process is set to the process that was
pre-empted to run the debugger. The active process can be changed by a
Ring Zero Debugger command.

original process This refers to the process which caused the Ring Zero Debugger to be
entered. This notion is significant since single steps operate on the original
process.

Program variable In the context of the Ring Zero Debugger, program variables refer to those
user-defined names found in various programs. The debugger provides the

capability to allow a user to manually define names from local programs
and later use these names to display values of the data objects.

symbol. In the context of the Ring Zero Debugger, the term “symbols” refers to
those object names found only in the Primos load maps. (both ring 0 and
ring 3)

2.3 Data Type Conventions

A common source of confusion with some programs (eg. Autopsy) is what radix or

number system an item is printed in. An attempt has been made throughout the Ring Zero

Debugger to display all numbers of thesame radix in the same format. The conventions are

the following. Single-precision octal] numbers are printed as 6 zero-filled octal digits. Double-

Precision octal numbers are printed as 11 zero-filled octal digits. Single-precision decimal

numbers are printed as 5 blank-filled decimal digits. Double-precision decimal numbers are

printed as 10 blank-filled decimal digits. Hexadecimal numbers are printed as 4 zero-filled

hexadecimal digits.

In terms of particular objects, there are also’ conventions about the radix used. Process

numbers and single step or breakpoint counts are always in decimal. Addresses and contents of

registers are always referenced as octal numbers. Offsets from addresses are also assumed to be

in octal. Appendix B indicates the radix used in each command should there be any confusion.

2.4 Referencing Addresses

A large number of commands in the Ring Zero Debugger require an address as an

argument. For ease-of-use, the debugger allows a number of different ways of specifying an

address. The term applied to the different forms the addresses can take is an address-~

expression. A similar but different form is used just with breakpoint commands. It is called a

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 6

break -expression. -

2.4.1 Address-expression’s

An_ address-expression can take on 3 different forms. The most obvious is specifying a

virtual address directly as in 6000/16100. In this form the segment number and word offset

must be specified separated by a /. There is no ring number. One can also specify an offset

in octal from the given virtual address as in 6/35120+100 or 15/3200-35.

Another form of address-expression allows an address to be specified as a relative offset

from global symbols found in the Primos load maps. If the symbol refers to a procedure

name (as opposed to a "common” or “other” symbol type), the value used for the symbol is

the starting address of the routine. If the symbol is a “common” or “other” symbol type, the

given address is used. The format for symbolic address-expression’s is a symbol followed by

either a + or - and then the octal offset as in PRWFSS+200.

The last form of address-expression permits addresses as offsets from the base registers. The

allowable base registers are known as SB%, LB%, XB%, and a special symbol *. The first 3

base registers refer to the same registers one would specify while writing in PMA. An address

is formed by taking the contents of the specified base register for the active process and

adding or subtracting the optional offset. The last form, *, refers to the current contents of

the original process's program’ counter. The base register form is useful when examining

assembly language where the operands are expressed in terms of base registers, e.g. LDA

LB%+412. Some examples of valid address-expressions are shown below.

6/35043
6003/1200-100
prwf$$+200
pudcom

sb%+12
*

*4100

For a more formal definition of an address-expression, see appendix B.

2.4.2 Break-expression’s

The breakpoint commands require arguments similar to address-expression’s. These arguments

are known as break-expression’s. They permit the same virtual address and symbolic forms as

do the address-expression’s but they do not allow the base register relative form (except for *).

Another difference with break-expression’s is that they can be used to specify which process

should be breakpointed. The breakpoint command will be described later but it should be

noted at this point that a breakpoint can be set for either a particular process or for all

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 7

processes. To specify a particular process, suy process 5. one might say:

breakpoint S:prwfSS+1

To specify that ‘any process which encounters the same breakpoint should trap, one would say:

breakpoint prwfSS+1 |

Some further examples should demonstrate the different types of allowable break-expression’s.

breakpoint 6/50212+20

breakpoint 22:15/3120

breakpoint prwf$$+1

breakpoint 230: prwf$$+222

For a more formal definition of a break-expression, see appendix B.

2.5 The Active Process

Because the Ring Zero Debugger is a system debugger, it is important for it to be able to

examine or change the state of any process in the system. To permit this ability yet retain a

simple command structure, many debugger commands assume a certain process. This process is

known as the active process. This means that if a command references a process’s registers

or a process's private address space, the process that it uses is the active process.

The active process is determined by the way in which the debugger is entered but can be

changed.by a debugger command. If the debugger is entered at coldstart due to a sense switch

setting, the active process is process number 1. If the debugger is entered due to a breakpoint

or single step, the active process is the process which encountered the breakpoint or single

step. If the debugger is entered due to a console interrupt, the active process is the process

which owned the “last” register set when the clock process was servicing the system console.

(This implies the master cpu on the P8500.) The active process can be examined and changed

by the lookat command. This command is described in the following section and in other

chapters as well.

2.6 The Effect of Entering the Ring Zero Debugger

There are a number of different ways to enter the Ring Zero Debugger but all of them

have the same effect on the state of the system, namely it will appear to be suspended.

While in this state, no hardware interrupts will be serviced and no processes other than the

Ring Zero Debugger process will be executing. Even phantom interrupt code will not be

executed since hardware device interrupts are disabled. However, any DMX in progress will _

continue. Only the debugger process will be executing and it will not relinquish control to *

Primos until] the debugger is exited.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 8

One of the more visible signs of suspending Primos by invoking the Ring Zero Debugger is

that time will be suspended. This is due to the fact that not even the clock process will run

while in the debugger. Therefore the system time-of-day will be off by the amount of time

spent in thedebugger. Without the clock process running there will also be no basis for local

devices to timeout. Thus when one leaves the debugger, all device i/o will continue

normally. However, a system that has invoked the debugger will probably appear down to

other systems on the network, depending howlong one is in the debugger.

2.7 Operational Procedures

Before discussing the specifics of commands in the Ring Zero Debugger, one must know

how to get the debugger, how to configure it, how to enter it, and finally what the

command environment looks like inside the debugger. These topics- are discussed in this section.

2.7.1 Getting the Ring Zero Debugger

The Ring Zero Debugger is built into Primos as part of the ring zero load. This happened

at Primos revision 20.1 and will be true of any later version. Everything that the debugger

needs is already built into Primos. Thus one need only have a recent enough version of

Primos and having the debugger is guaranteed.

2.7.2 Configuring the Ring Zero Debugger

In order to provide the various functions described in this document, the Ring Zero

Debugger must use a large amount of wired memory. In fact the entire debugger must be

both coldstart resident and wired. This does not make much difference to an engineer

debugging code in the lab but it certainly makes a difference to Prime customers who are

interested in performance and throughput. Thus one of the features of the debugger is the

ability to be configurable. If the Ring Zero Debugger is not configured, no wired memory will

be used just for the debugger. In fact, there will be no discernable effect of any kind on the

system. The means for communicating configuration information to the debugger is through the

processor sense switches.

The processor sense switches are set by giving an argument to the boot command when

the system is first coldstarted. A common sense switch setting is 14114. With the addition of

the Ring Zero Debugger to Primos, there are now two newly defined bits. One bit, bit 2, will

cause the Ring Zero Debugger to be configured. The other bit, bit 3, will cause the debugger

to be entered during coldstart code. Thus, to come up in the debugger when coldstarting, a

typical sense switch setting would be 74114, whereas just configuring the debugger would be

$4114. (The illogical combination of bits which indicates “enter the debugger during coldstart

but don’t configure the debugger” is ignored.)

Prime Restricted

Ring Zero Debugger User Manual " PE-T-1278
Page 9

2.7.3. Ways to Enter the Ring Zero Debugger

There are three different wavs to enter the Ring Zero Debugger. It can be entered by

Primos initialization code during coldstart, by issuing a special key sequence on the system

console, or by encountering a previously set breakpoint (or single step).

| The way to enter the Ring Zero Debugger during coldstart is to boot the system with the

previously discussed sense switch settings. This will cause the debugger to be entered the first

time process exchange has been turned on. This is important because it means that nearly all

Primos coldstart initialization code can be debugged using the Ring Zero Debugger. The only

code that can’t be debugged during coldstart, besides the boot program on disk, is the coldstart

code before process exchange is turned on.

Another, more common way to get into the Ring Zero Debugger will be to just issue a

special key sequence on the system console. This special sequence is control-c backslash or “c\’.

It can be issued at any time and should cause the debugger command level to be entered.

This is known as a console interrupt. (If one needs to input the sequence “c\’ to user 1

while the debugger is configured, one can type “c’c\’. This will not cause the debugger to be

entered but will put “c\’ in the user 1 input buffer.) If for any reason there is outstanding

Or unprocessed input to the debugger when it is entered with a console interrupt, the input

will be ignored.

2.7.4 The Command Environment

The-only way to communicate with the Ring Zero Debugger is through the system

console. Communicating with the debugger will not affect regular Primos user 1 operations

since Primos is basically suspended while the debugger is running.

The Ring Zero Debugger does not change the baud rate of the system console. Thus

whatever rate you have it set for in Primos (using the asrate config directive) will be the

rate you will see while in the debugger. The exception to this is when the debugger is

entered during coldstart before the config file is read. In this case the baud rate of the system

console depends on the boot program on the disk.

The Ring Zero Debugger will use the system default erase and kill characters. These values

can be set by config directives (erase and kill). The system supplied defaults are " for the

erase character and ? for the kill character.

The debugger also supports xon-xoff and quits. A control-s stops output and a control-q

Tesumes Output. A control-p will cause a quit to happen in the debugger. A quit will mean

the currently executing operation will be aborted and the debugger will return to command

level. A quit also causes the command buffer for the debugger to be emptied, in the event

that there are other, not-executed commands in it. Unlike Primos quits, the command cannot

be restarted. With xon-xoff and especially quits, it should be noted that the quit or xoff may

Prime Restricted

ft

PE-T-1278 | Ring Zero Debugger User Manual]
Page 10

not always appear to be working immediately, especially at low baud rates. This has ta do

with the fuct that there is a buffer on the VCP that must empty before console input can

be read.

One other point should be made about xon-xoff. While executing in the debugger, all

echoing of characters is done by the VCP, not the debugger. This means that when one types

xoff on the terminal, it is always echoed back to the terminal. This can create problems if

the terminal treats an echoed xoff as a flow-control character and locks up the terminal

keyboard. This happens on PST100 and PT45 terminals but not on a GE Terminet or a Perkin

Elmer Fox. The solution to the problem on a PST100 is to use the “pause” key imstead of

control-q and control-s. There is no known way to get around this problem on a PT45.

Some final points about the command environment within the debugger concern the

command line. A command line can only be 1 line long. However, multiple commands can be

stacked on the same line by separating them by a ; There are no continuation characters to

extend debugger input beyond one line. The maximum length of a line is 256 characters. <
”

2.8 Basic Commands

Having discussed the debugger command environment, this next section will describe how

to use some of the most basic commands. A more thorough discussion of these and other

commands is given in the next chapter.

2.8.1 Entering and Leaving the Ring Zero Debugger

The most common means of entering the Ring Zero Debugger is to use a special key

sequence as described earlier. Typing this key sequence on the system console will immediately

invoke the debugger, thereby suspending Primos. Regardless of the way the debugger is entered,

it will always print a line indicating that the debugger has been entered and stating the

reason for it having been entered. Then it will print the unique debugger prompt, ->, and

wait for a debugger command.

Ring Zero Debugger commands perform a variety of functions but only two of these

commands cause Primos to resume execution. One of these, the step command, will be discussed

in the next section. The other command is continue. The continue command, abbreviated as ‘c’,

causes the debugger to stop execution and thus allows Primos to resume just where it was

interrupted. The following example shows what would be seen at the system console when

the Ring Zero Debugger is entered and then left.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 11

OK .\
Debugger entered due to console interrupt. -

Process -2@ (BK1PCB) was executing at 6(8)/42313 (BK2PB + 4).

-> continue

Leaving the Debugger.

stat me

User No Line Devices

SYSTEM 1 ase <LABSYS>

OK,

In this example, the user enters the debugger by typing control-c \. This causes the

debugger to print both the banner lines and prompt, and then wait for input. The debugger

always indicates which process was interrupted by the debugger and where this process was

executing. At this point the user types "continue” to leave the debugger. The debugger

indicates. that it is being exited and at that point Primos resumes execution. One should note

that there is no additional prompt from user 1 when Primos begins to run again. This is due

to the fact that the execution of the debugger is completely invisible to Primos. User 1 is

completely ignorant of the fact that the debugger has been entered and debugger commands

may have been issued.

2.8.2 The Status Command

An important part of debugging is determining the current state of a process. A process’s

state consists of the process’s address space and registers. The status command can be used to

examine important parts of a process’s state. The easiest form of this command -takes no

arguments. This form will display information about the active process. An example of this

command is shown below after encountering a breakpoint at location pagtur+l.

Debugger entered due to breakpoint/single step.

Process 3 was executing at 6(0)/452@5 (PAGTUR + 1).

-> status

Process 3 WSH eee Owns register set 1 ees

Level: Priority 1 user
Type: Normal terminal user

State: Ready
PB: 6(@)/45205 (PAGTUR + 1)
LB: 6(@)/46802 (PAGTUR)
SB: 6000(0)/1264 XB: 6(@)/55534
L: 000010 100077 E: ee0eee ea0eee
x: ee0000 Y: 177777
FAR@: 8000020 e80000 FLR@: 620000 e00000
FAR1: 00000 200000 FLR1: 909000 eeeee0
Keys: 034100 Modals: 180077

Feode: 045206 900040 Faddr: 6(8)/17@3

->

The status command first indicates the process number and, if available, the login name of the *

process. If the process is an interrupt process, it will have a process number of less than 1.

(Interrupt processes are a special form of process used to service devices such as disks and

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 12

terminals, or for other special purposes.) Interrupt processes have there own Special names, such

as DKIPCB for the first dish interrupt process. If the process happens to own a register set.

(as opposed to just owning a pcb), this will also be indicated.

The next three lines printed by the status command convey information about the specific

process being examined. Level refers to the ready list level. Type refers to the process

type. Examples of different types are phantom, NPX slave, network process, etc. Interrupt

processes do not show a type. Finally the state indicates whether a process is on the ready

list or waiting on a semaphore.

The remaining lines of the status command output show register values. All values are

shown in octal. The base registers are printed as pointers. The names that follow the PB and

LB register correspond to names found in the Primos load maps by looking up the values of

the given register. In the case of the PB or program counter, the value is an educated guess

at which routine and offset the program is executing in. In the case of the LB, a match

always indicates that the process is in the named routine, except when this routine shortcalls

another routine.

2.8.3 Accessing Memory

A crucial ability of the Ring Zero Debugger is the ability to examine and change memory.

The most straight-forward way of doing this is to use the access command. This command

allows one to examine any resident memory in the system in a variety of formats. The

format assumed in the access command is set by using the access_type command.

The access_type command allows one to examine memory with the access command in 6

different formats. One can reference memory as ascii text, as a bit string, as a decimal, hex,

or octal number, or, lastly, as V-mode assembly language. The corresponding arguments to the

access__type command to set the assumed type are ascii, bit, decimal, hex, octal, and symbolic.

These can be abbreviated as a, b, d, h, 0, and s. The current access_type can be determined

by issuing the access_type command with no argument.

Having set the access_type, one can now examine memory by using the access command.

It takes any address_expression as an argument. The command will cause the specified

location of the active process’s address space to be displayed in the access_type format. At

this point one may enter a new value for the accessed location. Whether this is done or not,

the debugger expects a special terminator character which indicates one of the following:

examine the next ljocation in sequence (carriage return), examine the previous location in

sequence (*), or abort the access command without changing the current location (? or /).

One other command which should be noted is the lookat command. The access command is

set up so that address_expression’s that reference a private address (e.g. 4000/100), assume that

it is the private address space of the active process. However, if one wants to examine the

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 13

private address space of a process other than the current active process, the active process must

be changed. This is the function of the lookat command. It takes a process number as an

argument and makes this process the new active process.

An example should help clarify the way access_type, access, and lookat are used. In this

example, the access type is set to octal and a sequence of numbers is corrected. Next the

private address space of process 5 is examined.

~> aecess_type

Current access type is symbolic.

—> access_type octal

~> aoccess_type

Current access type is octal.

—> access 6/5000

6(8)/S000
6(8)/5e01

6(0)/S002

6(0)/S5003

6(0)/5082

6(0)/5ee3
—> access 6

6(0)/50e0
6(0)/5001
6(0)/50e2

6(0)/5003

—> lookat

Active process is —20.

_7> looket 5

—> lookat
Active process is 5.

—> access 4000/1008

§:4000(@)/108 064000
S$:4008(@)/181 177777 ?
->

y
u

50e0

F
U
N
A
N
A
e
R
A
E
N

A more efficient way of examining a number of words of memory is to use the dump

command. It requires two arguments, a starting and an ending address. Both these arguments

must be valid address-expressions. The dump format also depends on access__type.

—> access_type

Current access type is octal.

> ltooket

Active process is 5.

-> lookat 3

—> ftookat
Active process is 3.

—> dump 6000/10 6000/15
3:6000(8)/12 000003 000300 000717 886362 920000 000000

~>

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 14

2.8.4 Breakpoints

The most important function provided Sy the Ring Zero Debugger is the ability to set

breakpoints. Breakpoints can be installed nearly anywhere in shared code. When a breakpoint

is encountered by a process, control is passed to the debugger prior to the execution of the

instruction at the specified location.

Ring Zero Debugger breakpoints provide the option of setting a breakpoint for either a

particular process or any process which encounters it. They also provide the ability to have an

associated count. This count indicates that the breakpoint will trap only when the breakpoint

has been passed through a specified number of times. A complete description of breakpoints is

given in section 3.2.

A simple example of installing a breakpoint is shown below. In the example below, two

breakpoints are installed.

—> breakpoint prwf$$+1

—> breakpoint 6/44242

->

A very important point to note about breakpoints is that one must be sure that the given

address is actually the beginning of a valid instruction. The Ring Zero Debugger has no way

of knowing whether a specified location is code or data. In fact, it cannot even tell whether

a location contains the first word of an instruction or the second word. If a breakpoint is

put in the wrong place, the breakpoint will probably never invoke the debugger but rather

cause the system to be corrupted. Thus one should never set a breakpoint at just any

random address without knowing beforehand that the given location contains the start of a

valid instrucion. Te

Once a breakpoint has been installed, one can issue a command to examine the state of the

breakpoint. The command to examine a particular breakpoint is list. It takes a breakpoint-

expression as an argument. The command to show the state of all breakpoints is listall.

These commands are shown below. A complete description of the fields shown is -given is

section 3.2.

—> list pogturt1

Type Address Procedure Process Count Mnemonic

brkpt 6(8)/452@5 PAGTUR + 1 Any 1 CRA

-> listal!l

Type Address Procedure Process Count Mnemonic

brkpt 6(0}/45285 PAGTUR + 1 Any 4 CRA
brkpt 11(@)/31237 PRWF$$ + 1 Any 1 LDA

—>

Once a breakpoint has been installed at a location, it remains there until it is explicitly

removed. That is the function of the clear command. It takes a breakpoint-expression as an

argument. The clearall command removes all breakpoints.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 15

-> clearall

-> tisteall

No breakpoints are set. ®

—> breakpoint prwf$$+i

—> cleor prwfS$+i

=> listall

No breakpoints ore set.

2.9 Error Handling

Various types of errors can occur while one is using the Ring Zero Debugger. In the

context of the debugger these are broken into 4 classes: user errors, warnings, system errors,

and faults.

User Errors

User errors occur when a user has requested something of the debugger that it either does

not understand or cannot do. The assumption is that in most cases, the user is responsible for

correcting the situation. When such a condition occurs, the current command is always aborted

and contro] returns to the debugger command level. Descriptions of all user error messages are

given in appendix D. Some examples of these error messages are shown below.

-> foo

eee Debugger user error:

Unknown command.

~> clear pogtur+2

eee Debugger user error:
No breckpoint exists at specified address.

->

Warnings

Warnings occur when the debugger may have failed to perform some action and therefore

its future operation may not always be correct. A user is in no way responsible for causing

this condition. Presently there is only one such case in the debugger. Warnings only refer to

any debugger operation still in progress. If the operation either terminates or is aborted, then

the warning can be ignored.

System Errors

System errors occur when there is some internal inconsistency within the Ring Zero

Debugger. The assumption here is that the condition has been caused either by an error in the

debugger software or an error in the system hardware. If the problem does not seem as if it=

is related to the hardware, the problem should be reported as described in appendix F.4.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual]
Page 16

Faults

The Ring Zero Debugger has a separate fault handler for its own process. If a fault occurs

while the debugger is running, the fault handler will print a message describing the fault,

abort the current command, and return to command level.

Some faults, notably page and segment faults, can be expected to happen often. The reason

for this is that the Ring Zero Debugger does not have the ability to reference non-resident

memory. (For a further discussion of this point see section 5.2.) Any command which does so

will cause the debugger to take a page fault, abort the current command, and print an error

message. If one is determined to reference certain memory, the only recourse is to leave the

debugger and attempt to have Primos bring it in. One way to do this is by touching it with

VPSD. A simple example of a page fault is shown below.

-> access p$cidx

41(@)/137775 ARGT
41(@)/137776 LDAP 140316 -
41(6)/137777 STA# SB%+31

41(8)/140000

eee Foult while in debugger:

Page fault (type 10) encountered ot 55(@)/15233

; Attempt to reference 41(@)/140000

->

While most faults encountered by users are innocuous, a few may indicate serious

problems. Page and segment faults usually only indicate non-resident or undefined memory. If

this does not seem tobe the case, or if any other type of fault occurs, the fault probably

indicates a debugger software or system hardware error. In this case, the error should be

treated like a system error and reported as described in appendix F.4.

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
_ Page 17

3. Ring Zero Debugger Command Descriptions

The purpose of this chapter is to give full descriptions of all the commands in the Ring

Zero Debugger. Each section in this chapter describes a number of commands that are related

based on their functionality. The format of each section is to give descriptions of the

commands followed by examples of all the commands in the current section. In specifying the

_command syntax, the common convention of surrounding optional arguments by [] is used.

3.1 Referencing Memory and Registers

This section will describe commands that can be used to read and write either resident

memory or a process's registers. Memory can be printed in a variety of formats for any

process. A command to search for patterns in memory is also discussed. ©

Referencing Memory - The Access Command

The generic format for the access command (abbreviated a)is:

Access <oddress-—expression>

where

<address-expression> is described in section 2.4.1

The access command prints the contents of the active process’s memory at the specified address

and waitsfor keyboard input. The type used for printing memory is set by the access-type

command. The input consists of an optional new value for the current location and a

required access command terminator. Any new input must be in the current access-type. Valid

terminators are: a carriage return, which causes the next memory location to be accessed, a

*™, which causes the previous location to be accessed, and a or a ‘/, which causes an exit

from the access mode without changing the currently accessed location. This command will not

wraparound when it hits a segment boundary. It will cross into the next segment.

Referencing Registers - The Access_register Command

The generic format for the access_register command (abbreviated areg) is:

Access_REGister <occess—registers>

where

<occess-registers> ::-=Af{B[L|]Ex fy 1 PB | sB ft LB |

XB | DTAR@ | DTARt [| DTAR2 | DTARS |
KEYS | MODALS | OWNER | FCODE |
FADDR { TIMER [| FAR@ | FLR@ { FAR1 |
FLR1 | @ |... [77

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual]

Page 18

The access_register command prints the_contents of the specified register for the active process

and waits for keyboard input (in most cases). Register values are shown in octal. Allowable

input is either a new value for the register, in octal. or just a carriage return. A carriage

return leaves the value of the register unchanged. Certain registers cannot be changed (eg.

FCODE and PB). In these cases, the command will not wait for input. The numbers 0 to 77

octal refer to the registers in the system register sets. These registers are DMA channels and

microcode scratch registers.

Changing the Access_type - The Access_type Command

The generic format for the access_type command {abbreviated atype) is:

Access_TYPE [<occess-type>]

where

<access-type> ::== Ascii | Bit | Decimal! | Hex | Octal |

Symbolic :

The access_type command sets the type that is used in printing memory. This attribute is

relevant for both the access and dump commands. The access_type attribute remains in effect

until the next access_type command is issued. Thus, leaving and re-entering the debugger has

no effect on the access-type. The symbolic type refers to V-mode assembly language. If no

type is given, the current type is displayed. The access-type’s can be abbreviated by the first

letter of the type (e.g. ascii=a, etc.).

Displaying Memory - The Dump Command

‘The generic format for the dump command (abbreviated d) is:

Dump <address-expression> <oddress—-expression>

where

<oddress—expression> is described in section 2.4.1

The dump command prints the region of memory from the first argument to the second

argument. The memory examined will be that of the active process. When the end of a

segment is reached, the next location referenced is the first word of the next segment in

sequence. The type used to print memory is determined by the access_type command.

Changing the Active Process - The Lookat Command

The generic format for the lookat commandis:

LOOKAT [<process—number>]

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 19

where

<process-number> ::== o decimal! number

The lookat command makes the specified process be the active process (see 2.5). This command

determines which process's private address space will be referenced by debugger commands. It

will overwrite the existing active process value. If a process number is given, it must be

either a valid interrupt process or a logged-in user process. The active process will not

change unless another lookat command is issued or until the debugger is exited. If no

argument is given, the currently active process is displayed.

Searching for Patterns in Memory - The Search Command

The generic format for the search command (abbreviated srch) is:

SeaRCH <address—-expression> <oddress—expression>
<search—~pattern>

where

<address~-expression> is defined in 2.4.1

<search=pattern> ::== ‘string’ | <octal—list> <search—mask>

<search-mask> ::== & <octal-list> | <empty>

The search command searchs the region of memory from the first argument to the second

argument for a given sequence of words. The memory examined will be that of the active

process. When the end of a segment is reached, the next location referenced is the first word

of the next segment in sequence. The pattern to search for can be a string of up to 20

characters long or a sequence of up to eight 16 bit octal numbers. Single- quote marks can be

put inside strings by using two single quote marks for each single quote mark desired. An

optional mask of octal numbers can bé specified for search patterns specified as octal numbers.

The optional mask will be logically AND’ed with memory before the comparison. The optional

search mask can be smaller (ie. fewer words) than the search pattern. The memory region

will be searched for all matches except for patterns which overlap a previously found pattern.

Examples

A number of the commands described in this section were shown in examples in the

previous chapter. The access, access_type, dump, and lookat commands were shown in

examples in section 2.8.3. An example of the access_register command is shown below. In

this example, the L and XB registers were supposed to be the same but were not. Thus, the

XB register was changed to be the same as the L.

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual
Page 20

—-> occess_register |

L (high order): 800004

L (low order): 100300

—> occess_register xb

XB (high order): 880005 4

XB (low order): 177777 100300

-> access_register xb

XB (high order): 080004

XB (low order): 100308
->

The search command allows one to search for patterns as either ascii strings or as a series

of octal numbers. In the example below, a particular string (part of an IOAS control string) is

searched for. Finding this string could allow one to change it with the access command,

should it be wrong.

-> seorch 55/8 55/177777 °%11:2z0%$'

§8(0)/S3466 %11:220%$

->

Another situation where the search command could be used is to determine if a particular

pattern which has erroneously: overwritten some code is in a certain region of memory. If the

pattern 101 0 102 0 101 has overwritten some code and you suspect that the pattern may be

in a buffer in either segment 27 or 30, you could determine this by issuing the following

command:

-> search 27/@ 30/177777 101 @ 182 @ 101
27/5326 008101 088008 080102 B82000 200101
27/7234 ©00101 @80000 ©00102 900000 002101
= -

A final example of the search command may help clarify the way the search mask can be

used. Consider a situation where one wants to know if any page in a given segment is "in-

transition, going-out”. This condition is indicated by having bit 1 of a page’s page map be O

and bits 3 and 5 be 1. If the page map entries for a segment are located between 600/1000

and 600/1077, the following command could be used to find the "in-transition, going-out”

pages:

-> search 680/1600 6200/1077 24000 & 124000
6080/1082 24022
600/1054 27512
680/1867 26324

->

3.2 Breakpoints and Single Steps

This section will describe the breakpoint and step commands. It will also discuss related

commands that can be used to display information about existing breakpoints and commands

that can be used to remove existing breakpoints.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 21

Installing Breakpoints - The Breakpoint Command

The generic format for the breakpoint command (abbreviated brk) is:
%

BReakpoint <break-expression> [<proceed—count>]}

where

<break-expression> is described in section 2.4.2

<proceed—count> ::== 1 to 32767

The breakpoint command can be used to set a breakpoint anywhere in shared code. Breakpoints

work in both ring O and ring 3. There are a number of different ways to specify the

location where the breakpoint is to be installed. These are discussed in section 2.4.2. If the

optional process number is specified, only that process will stop when the breakpoint is hit.

Other processes which encounter the breakpoint will continue transparently. If no process

number is specified, any process will stop when the breakpoint is hit.

If the specified address is the name of a procedure, the breakpoint will be set on the first

instruction of the procedure. If that instruction is an argt then the breakpoint must be set

on the next instruction. Breakpoints are not allowed on argt instructions since they are not

real, executable instructions. If an attempt is made to do so, the debugger will treat the

attempt as a user error.

The optional proceed count can be used to allow processes to pass through the given

breakpoint a specified number of times before stopping. This count is decremented each time

the breakpoint is encountered. When the count reaches zero, the debugger command level is

entered. If the proceed count is omitted or the count is decrefifented to zero, it is set to one.

While most commands abort when they have a need to reference non-resident memory,

this is not true of the breakpoint command. The breakpoint command should never fail due to

non-resident memory. This is because breakpoints are treated as pended operations. (For a

description of pended operations see section 5.2.)

Removing a Breakpoint - The Clear Command

The generic format for the clear command (abbreviated clr) is:

CleaR <break-expression>

where

<break-expression> is described in section 2.4.2

The clear command removes the specified breakpoint or single step from the specified location.

If the specified location has a single step in progress as well as a previously installed .

breakpoint, only the breakpoint will be removed.

Prime Restricted

PE-T-1278 © Ring Zero Debugger User. Manual]
Page 22

Removing All Breakpoints - The Clearall Command

The generic format for the clearall command (abbreviated clra) is:

CLeaRAIL!

The clearall command removes all breakpoints and single steps from the code. If one of the

locations has a single step in progress as well as a previously installed breakpoint, only the

breakpoint will be removed.

Displaying a Breakpoint - The List Command

The generic format for the list command is:

LIST <break-expression>

where

<break-expression> is defined in section 2.4.2

The list command displays information about a particular breakpoint or single step. The fields

displayed in the list command are described below.

o Type. The type can be either a breakpoint or a single step.

o Address, The location in memory where the breakpoint/single step is installed.

o Procedure. The procedure name given is an educated guess as to which routine the
breakpoint/single step is in. The guess comes from taking the address and

consulting the Primos load maps. Usually it finds the correct routine, but this is

not always the case (especially with assembly Janguage routines).

o Process. The process field specifies which process the breakpoint/single step is meant

for.

o Count. This field refers to the proceed count for breakpoints and the single step
count for single steps.

o Mnemonic. This field displays the assembly language mnemonic for the instruction
at the specified location. If a breakpoint is “pended”, this field will be empty

(Refer to section 5.2 for a description of pended operations).

Displaying All Breakpoints - The Listall Command

The generic format for the listall command (abbreviated Ista) is:

LiSTAtI

The listall command displays information about all breakpoints and single step’s in the system.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 23

The format is the same as for the hst command.

Single Stepping a Process - The Step Command

The generic format for the step command (abbreviated s) is:

Step [<step-count>]

where

<step-count> ::e 1 to 52767

The step command causes the original process to single step as many instructions as are

specified in the step count. If no step count is specified, it is assumed to be one. A single step

means that the original process executes the next assembly language instruction in the

breakpointed or suspended procedure and then returns control to the debugger. If any fault is

taken during the execution of this instruction, any code needed to service the fault will be

executed and the next instruction executed before control is passed to the debugger. Hence,

many instructions may be executed in order to execute the one that is to be single stepped. It

is also the case that any higher priority processes will execute before the single stepped process

and may encounter breakpoints before the lower priority process has done the single step. <A

single step is only allowed if the Ring Zero Debugger was entered due to a breakpoint or

previous single step. Another restriction on single stepping is that only one process in the

system can be actively single stepping at a time.

Examples

In the following example, a breakpoint will be placed at the beginning of the routine

clSget. This routine deals with parsing the command line. To cause the breakpoint to be hit,

the Primos command “date” is entered. After being hit, the breakpoint is removed.

-> breakpoint ci$get+1

> listall

Type Address Procedure Process Count Mnemonic

brkpt 13(0)/45661 CLEGET + 1 Any 1 JMP

-—> continue

‘Leaving the debugger.

date

Debugger entered due to breakpoint/single step.

Process 1 was executing at 13(3)/45661 (CL$GET + 1).

—> cleoral! ,
-> listall

No breakpoints are set.

->

Having gotten into the routine clSget, the next command shown is the step command. After x

Step is issued a few times, one may wonder what instructions are being executed. The access

command is used to examine the instructions. With a little experience, one could tell that

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 24

these instrucuans are building an argument list in preparation for making a shortcall to

another routine. A shortcall is accomplished with a jsxb instruction.

-> step

Debugger entered due to breakpoint/single step.

Process 1 wos executing ot 13(3)/45703 (CLEGET + 23).

-> step

Debugger entered due to breakpoint/single step.

Process 1 was executing at 13(3)/45705 (CLEGET + 25).

—> access cli$get+25

13(@)/457@3 EAL% LB%+ 426

13(@)/45785 STL% SB%+ 65

13(@)/45707 EAL% SB%+ @

13(0)/45711 STL% SB%+ 67

13(0)/45713 EAL% LB%+ 400

13(@)/45715 STL% SB%+ 71

13(@)/45717 EAL% SB%+ E65

13(@)/45721 STL% SB%+ 74

13(8)/45723 EAL% SB%+ 71

13(@)/45725 JSXB% LB%+ 374 ,2 7?

Having seen the code that is being executed, one can see the effect of using a step count with

the step command. After single stepping through about 19 instructions, one can also see that

the code was in the process of shortcalling the routine mkonuS to setup an onunit. Next a

much larger step count is given. This count is enough to allow Primos to begin to print out

the date. Finally, a continue command is issued letting Primos print out the rest of the date.

-> step

Debuggerentered due to breakpoint/single step.

Process 1 was executing at 13(3)/45707 (CLSGET + 27).

-> step 3

Debugger entered due to breakpoint/single step.

Process 1 was executing at 13(3)/45715 (CLS$GET + 35).

-> step 15 -

Debugger entered due to breakpoint/single step.

Process 1 was executing ot 13(3)/46462 (MKONUS$ + 24).

-> step 100

38 Aug 85 18
Debugger entered due to breakpoint/single step.

Process 1 was executing at 6(@)/106055 (ACCOM$ + 1).

—> continue

Leaving the debugger.

2:49:52 Friday

OK 18:49:55 0.115 6.000

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278.

Page 25

3.3 Examining a Process’s State

The commands in this section allow one to examine the state of a particular pracess. The

term state refers mainly to the process's current register values and its current stack frume.

Also included is the previous stack history and terminal buffers, if they exist. Some of the

commands described in other sections also allow access to process state information, but the

primary ones are here.

Displaying the Current Arguments - The Arguments Command

The generic format for the arguments command (abbreviated args) is:

ARGumentS

The arguments command prints the name of the current procedure for the active process, the

‘number of arguments defined in the routine (from the ECB), and then prints the values of

any arguments passed to this procedure. The address of each argument is printed followed by

the first 2 words of the value of the argument in octal (2 words are printed regardless of

the true length of the argument). The number of arguments shown reflect the number

actually passed to the current procedure which may be less than the number defined.

Displaying a Process’s PCB - The PCB Command

The generic format for the pcb command (abbreviated p) is:

Pob [<process—number>]

where

<process—number> ::== a decimal number

The pcb command prints the contents of selected fields of a process’s process control block

followed by its concealed stack frames. Concealed stack frames are only shown if they are

non-zero. Those that have not vet been built into fault frames are marked as “active”. The

process number must be a valid interrupt process or a configured user process. If no process

number is specified, the active process is assumed.

Display Process Information - The Status Command

The generic format for the status command (abbreviated stat) is:

STATus [<status—options>]

where

<status-options> ::== <process-number> | ALL { USer |

INTerrupt

<process—-number> ::== a decimal number

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manua!}

Page 26

The status command displavs the current status for either a specified process, all pracesses.

user processes, OF interrupt pracesses. If no pracess or class of pracesses is specified. the active

process is assumed. Yhe status of a process is represented by the current values of its

registers. These registers are read from the machine register sets if the process owns one.

Otherwise, the information comes from the pcb. If a class of processes is specified, only

limited information will be printed out about a process, and logged-out processes will be

ignored. If a single process is specified, all registers associated with the process will be

displayed, even if the process is logped-out. A description of the information shown by the

command is given in section 2.8.2.

Examining a Process’s Stack - The Trace Command

The generic format for the trace command (abbreviated t) is:

Trace {<process—-number> [<oddress—expression>]]

where

<process—number> == @ decimal number

<address-expression> is described in section 2.4.1.

The trace command prints stack frames for the given process. Any process number specified

must be a valid interrupt process or a logged-in user process. Trace allows one to

interactively examine the previous state of any process by displaying detailed information from

each individual frame on the stack. This information includes the process’s base registers, the

size of the ‘stack, and the names of the calling and called procedures. Subcommands to the

trace command allow one to move up or down the stack to any given frame and to print

additional information about the stack frame. The following subcommands are defined for the

trace subsystem:

Arguments Prints the arguments at this level of the stack.

Current Redisplays the current stack frame. ;

Father [<n>] Makes the calling procedure’s stack frame the current one. If n is specified,

n frames of the stack are pushed before reaching the current one.

GOTO [<levels>] Make <level> the current one. If omitted, <level> defaults to 1.

Quit Leaves the trace command subsystem.

Son [<n>] Makes the called procedure’s stack frame the current one. If n is specified,
n stack frames are popped before arriving at the current one.

STack [xstart> [<end>]]
Dumps the current stack frame in ctal. Start and end are relative

locations within the current frame. If not specified, start begins at ‘10 and

end defaults to the end of the stack frame.

User <process-number> [<address>]

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
Page 27

Starts tracing the specified process's stack.

If “the process number is not specified in the trace command, the stack examined is that of

the active process. If no address is given the stack trace begins with the current SB of the

given process. Otherwise, the trace begins with the given address.

Displaying a Process’s Terminal Buffers - The Ttybuf Command

The generic format for the ttybuf command (abbreviated tt) is:

TTybuf [<process-number>]

where

<process—number> ::== a decimal number

The ttybuf command prints the contents of the specified process’s input and output terminal

buffers. The output is printed as Ascii characters. Non-printing characters are shown as the

character ".”. The process number must be one of the configured user processes on this

system. It should be noted that not all user processes have terminal buffers. For example,

processes which are phantoms or slaves do not. - If no process number is specified, the buffers

printed are those of the active process. If process 1 is specified, the process 1 message buffer

will be printed in addition to the regular input and output buffers.

Examples

The “following example will illustrate the arguments command. In this example, a

breakpoint has previously been placed in the locate routine. The Primos command “avail” is

issued to make a process hit the breakpoint.

avail

Debugger entered due to breakpoint/single step.
Process 1 was executing at 11(0)/14216 (LOCATE + 1).

—> arguments

Current routine: LOCATE

4 arguments at SB%+22:

1 at 11(@)/123007 : e@0eee.005415
2 at 6003(8)/1323 : eeeeee.eeeee1
3 ot 717(8)/5524 +: e@e008. 000000
4 at 717(@)/5520 =: e8ee00. 200001
~>

Next a pcb command is issued. In this case, as is often true, there isn’t much that is

interesting. One can see that most of the information is out of date by comparing the

program counter (pb register) shown in this command's output to what was given before x

when the current breakpoint was hit. However, this command can occasionally be helpful in

trying to determine recent process fault activity. As a matter of fact, the last fault on the

Prime Restricted

PE-T-1278
Page 28

Ring Zero Debugger User Manual

concealed stack in this example shows the illegal instruction fault taken for the previously hit

breakpoint.

-> peb

Process: 1

Level: 622

Weit list: @(@)/544

PB: 6(6)/42271

L8: 6(0)/42110

L: 28000 @00000

X: 888000

FAR®: 802000 800000

Link: ©8000
Abort flags: eeeeeeeeeeee00e2
SB: 6000(€)/1262
XB: 6(0)/55534
E: e20eee eeoc0ee
Y: eee600 ,
FLRE: 880000 e0000e

FAR1: 880000 000000 FLR1: 800200 eee00e

Interval timer: 177637 000000
DTAR2: 140002 165101 OTAR3: 176302 165064

Keys: 034201

Concealed stocks:

PB KEYS FCODE (high) FADDR
11(@)/14216 014100 014217 11(8)/1703
13(3)/55722 014000 900000 13(3)/6876@

-—>

Elopsed timer: 000001 143453

The next example shows the type of output one can get from the status command with the

user option. In this example, one will note that two nllocks are owned by process 1 which is

the process that has just hit a breakpoint in the locate routine. This is logical given the role

that locate plays in the file system.

-> stotus user

Process 1 SYSTEM

Level: System process

Type: Supervisor

State: Ready
PB: 11(@)/14216 (LOCATE + 1)

LB: 11(@)/1607@ (LOCATE (et at))

Locks owned: FSLOK UFDLOK

eee Owns register set @ see

Process 2 (Login name is not resident)

Level: Priority 1 user

Type: Normal terminal user

State: Waiting at 6(@)/13352 (ASRSEM + 2)
PB: 6(0)/34235 (WAITA + 74)

LB: 6(6)/55772 (C1IN$)

Process 29 (Login nome is not resident)

Level: Network process

Type: Network process

State: Waiting ot 12(@)/25302 (PNTSEM)
PB: 6(@)/34454 (WAIT + 4)

LB: 6(@)/34156 (SETSWI (et at))

->

The next example shows how a particular process number can be given. When a specific

process number is given, all the process's registers are displaved. When a class of processes is

requested (e.g. user), only a few Tegisters are shown.

Prime Restricted

e

Ring Zero Debugger User Manual PE-T-1278
. Page 29

-> stotus -7 =<

Process -7 DKIPCB

Level: Disk/Ringnet process

Stote: Waiting at 4(@)/S34 (DSKSEM)

PB: 6(@)/37537 (DMA_ERR + 224)
LB: 6(0)/103118 (Unknown)
SB: 4(@)/164070 xB: @(2)/120@
L: 820080 800000 E: 020008 900000

xX: 009000 Y: 880008

FAR@: 280000 @00000 FLRO: 2820080 8200000

FAR1: 800000 e000e0 FLR1: 888002 000000

Keys: 34001

~>

Having hit a breakpoint in locate, the trace command can be used to determine the sequence

of routines that were called to get to locate. The trace subcommand “arguments” can be used

to examine the arguments passed to locate. The trace subcommand "father" can be used to

‘Sequence back down the process’s stack.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 30

-> trace

Level 1: LOCATE

Root: 6003 SB: 6003/1354 Size: 152 words Type: 080000 (PCL)

Keys: 014008

Call ot 11(8)/12257@ (READ_ENT (et of) + 1542)
SB: 6@03(@)/1150 LB: 11(@)/123306

(trace)> orguments

Current routine: LOCATE

4 arguments at S8%+22:

1 ot 11(0)/123007 : @00000.005415
2 ot 6003(@)/1323 +: 00000. 000001
3 ot 717(0)/5524 +; ©98000.e00000
4 ot 717(0)/5520 =: ©80000.000001

(trace)> father

Level 2: READ_ENT

Root: 6003 SB: 6083/1158 Size: 132 words Type: 800000 (PCL)

Keys: 8148000

Call at 11(8)/117342 (FNDENT (et of) + 52)
SB: 6003(0)/430 LB: 11(@)/120054

(trace)> father

Level 3: FNDENT

“Root: 6003 SB: 60@3/430 Size: 336 words Type: @00000 (PCL)

Keys: 014800

Call at 11(@)/136463 (AT$ANY + 235)

SB: 6003(@)/164 LB: 11(0@)/137322

(trace)> fother

Leve! 4: ATSANY
Root: 6083 S8: 6003/164 Size: 164 words Type: @86002@ (PCL)

Keys: 014100

Cali ot 13(3)/51726 (SRSFX$ + 136)
SB: 6002(3)/3224 LB: 13(@)/52728

(trace)> quit

->

The final example shows the output from the ttybuf command. In this particular example the

active process is 1. This means that in addition to the normal input.and output buffers, the

user 1 message buffer is shown as well.

Prime Restricted

Ring Zero Debugger User Manual - PE-T-1278
. Page 31

-> ttybuf

User 1 message buffer (600 bytes long) at 7(@)/17224:

CO -CONTINUE
date

Output buffer (60@ bytes long) for user 1 at 7(@)/2:

tilog ~-net -off

OK, RDY —LONG

OK 0@:02:51 49.154 100.700

/* Enter time and type CO -CONTINUE.

OK 00:02:51 @.084 8.2000

CO -PAUSE -

OK 00:02:51 0.660 @.033

OK 19:03:04 8.383 0.690

OK 19:03:04 @.848 @.2800

MAX ALL

OK 19:03:04 0.103 0.000
COMO -NTTY

OK 19:05:08 ©.060 0.060

CO -END

OK 19:05:08 ©@.054 0.000

13 Sep 85 19:10:52 Friday

OK 19:10:55 @.187 0.166

->

3.4 Examining the State of the System

This section will describe commands that give information about the state of the system in

general rather than a specific process. These commands allow one to examine the Primos

nilocks, the system ready list, and certain system registers. The status command, described in

the previous section, is another way to look at the state of the system as a whole.

Displaying the Nllocks - The Print_locks Command

The generic format for the print_locks command (abbreviated plocks) is:

Print_LOCKS

This command displays ‘information about the Primos Nllocks. Any processes waiting for a&

particular lock will be shown. The locks are printed in priority order.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 32

Displaying the Ready List - The Ready_list Command

The generic format for the ready_list command (abbreviated rdylst) is:

ReaDY_LiST

The ready_list command prints a diagram showing the system ready list. The process for

the Ring Zero Debugger is not shown.

Display Certain System Registers - The System__registers Command

The generic format for the system_registers command (abbreviated sysreg) is:

SYStem_REGisters

The system_registers command prints the pswpb and pswkeys registers as weil as the DMA

channels.The DMA channels are only shown if the registers are non-zero. The word count of

the DMA register is right shifted by 4 to right-justify the field.

Examples

The output from the print_locks command is shown below. (Not all the locks are shown

in this example).

-> printlocks

FSLOK: Locked for reading by 1 user(s).

No reoder(s) woiting

No writer(s) woiting

UFDLOK: Locked for reading by 1 user(s).

No reader(s) waiting

No writer(s) waiting

BLKLOK: Unlocked.
No reader(s) waiting

No writer(s) waiting

MOVLCK: Unlocked.

No reader(s) waiting

No writer(s) waiting

SEGLCK: Unlocked.
No reader(s) waiting
No writer(s) waiting

PAGLCK: Unlocked.
No reader(s) waiting
No writer(s) woiting

->

Another example of the status command with the user option is given below. From this

output, one can tell which processes own the locks described as locked by the print_locks

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 33

commiand.

~-> stotus user

Process 1 SYSTEM ees Owns register set @ ses

Level: System process
Type: Supervisor

State: Ready

PB: 11(@)/14216 (LOCATE + 1)
LB: 11(8)/16070 (LOCATE (et al))

Locks owned: FSLOK UFDLOK

Process 2 (Login nome is not resident)
Level: Priority 1 user
Type: Normal terminol user

State: Waiting at 6(@)/13352 (ASRSEM + 2)
PB: 6(0)/34235 (WAITA + 74)

LB: 6(0)/55772 (C1IN$)

Process 29 (Login name is not resident)

Level: Network process

Type: Network process

State: Waiting at 12(0@)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)

LB: 6(®)/34156 (SETSWI (et al))

->

Output from the ready_list command is shown next. In this example, the first process on thé

ready list is the clock process, followed by process 1, and then the two backstop processes.

This particular example came from the situation where process 1 had just hit a breakpoint. In

this case, one might expect process 1 to be at the head of the ready list and in many casesit

probably would. Apparently here, however, the phantom interrupt code for the clock must

have run while the breakpoint was being serviced but before the debugger process had run

and inhibited interrupts. Thus the phantom interrupt code notified the clock process, putting it

on the ready list. The backstop processes should always be on the ready list and it is common

to also see the clock process there.

—> ready_tist

START -—> CLKPCB

|
Vv

USROO1

|
v

8K1PCB -> BK2PCB
->

Finally, the system_registers command shows the value of two Tegisters from the system

Scratch registers and then what it supposes are the active dma channels. The pswpb and

pswkeys registers show the values of the pb and keys of the currently executing process

when the last machine interrupt was taken. Unfortunately, this is the only information “

available about the state of the machine at that point. Therefore, it is usually not very

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Pape 34

helpful but can be a valuable clue in some situations.

-> system_registers

PSWPB: 55(@)/615 PSWKEYS: 814002 100037

DMA chonnel 1/0 address Word Count

® 0(8)/17400e eoe0es
2 0(2)/176000 eeoe20e
6 , 0(8)/1000 02000

14 0(6)/151eeS 007405

16 0(@)/144265 eeeeee
20 0(8)/171000 eeec9ee
22 €(@)/17500e eoeoee
24 @(8)/100255 000300

26 0(0)/72001 020200
30 @(2@)/10003 0022008
32 @(8)/41272 002200
34 0(@)/201 02027
36 @(8)/4203 , 003500

->

3.5 Retrieving Symbolic Information

This section will describe commands which can be used to retrieve symbolic information

from the Primos load maps.

Retrieving Symbols - The Lookup_Address Command

The format of the Jookup_address command (abbreviated la) is:

Lookup_Address <oddress_expression> [<symbol_type>]

where

<oddress_expcession> is described in section 2.4.1

<symbol_type> ::== ANY | Common | Other | ECB | PB { LB | LEN

Given an address and an optional symbol_type, the Lookup_Address command searches the

Primos load maps for the name of a symbol. Primos load maps are created bythe SEG

program with three types of symbols: routines, common areas and al) other symbols.

Commons and others have only one address associated with them. Routines, on the other hand,

ean have several addresses associated with them: ECB address and initial values of PB and LB.

If the Lookup__Address command cannot find an exact match, it returns the name of the

specified type of the symbol which is closest to the specified address (but less than or equal

to the specified address). The only exception is the LBN option which returns the names of

all the routines which have the same LB as the specified address. If no symbol_type is

specified than ANY symbol_tvpe is assumed. Symbol_type ANY causes the command to

search the PRIMOS load maps with all possible options and return the name of the symbol of

any type (routines, commons, others) closest to the specified address.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

‘Page 35

Retrieving symbols address - The Lookup_Symbol command

The format of the loakup_svmbo! command (abbreviated Is) is:

Lookup_Symbo! <symbol>

where

<symbol> ::= on object nome from the Primos lood mops.

Given a name of the symbol from Primos load maps the Lookup_Symbol command returns

information for a specified symbol, based on the type of the symbol. The returned information

for the commons and the others is the address of the specified symbol. In the case of the

routines the returned information is the address of the ECB for the specified routine and the

initial values of PB and LB.

Examples

To find the name of the routine whose address of the ECB (or PB or LB) is the closest to

the specified address:

—> tookup_oddress 11/57708 ecb
ROUTINE: SRCHS$$ + 18 from ECB

—> lookup_oddress 11/62452 pb
ROUTINE: GPATHS + 20 from PB

->

To find-the name of the common block whose address is the closest to the specified address:

—> lookup_oddress 12/1648 common

COMMON: CONTYP + 1

->

To find the name of the other symbol whose address is the closest to the specified address:

—> lfookup_address 12/4067 other

OTHER: SLCMCH + @
->

To find the names of all routines which havethe same LB as the specified address:

—> lookup_address 12/4820 Ibn

ROUTINE: SLCINI ‘

ROUTINE: SLCBND

ROUTINE: SLCOS

ROUTINE: SLCOTS$

ROUTINE: SLCOTP

ROUTINE: SLIOC

ROUTINE: SLCCLK

ROUTINE: SLXDLC

ROUTINE: SLCRST

->

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 36

To find the name of the symbol of any type closest to the specified address:

> ltookup_oddress 15/2271

ROUTINE: NLOGIN + 2 from PB

~->

To find the information about given symbol:

~-> Lookup_Symbol PRWFS$$

ECB of routine: 11/35543

PB of routine: 11/33046

{ib of routine: 11/35136

—> Lookup_Symbol PAGCOM

Address of common: 14/614

> Lookup_Symbo! TIMERS

Address of other: 6/5032
->

3.6 Program Variables

It is extremely useful to be able to reference variables in a program by name. DBG

provides this ability with the ”:” and let commands. With some extra effort on the part of

the user, this ability can also be available in the Ring Zero Debugger. The extra effort comes

in the form of having to manually define each variable that is to be used. Once the variable

has been defined, it can be referenced symbolically as is done with DBG. This section describes

the commands that can be used to define and then reference program variables.

Defining Program Variables - The Define_variable command

The format of the define_variable command (abbreviated defvar) is:

DEFine_VARiabte [<procedure_name>\] <voriabie>
<oddress_expression> [<variable_type>

<variable_length>]

where

<procedure-name> ::== procedure from the Primos load map

<voriable> ::== name with PL1 identifier syntax

<address_expression> is described in section 2.4.1

<variable-type> ::a= Ascii {| Bit | cherVary | Decimal |

Octal {| Pointer
<variable—length> ::=m a decima! number

Before any program variable can be referenced, it must be defined with the

define_variable command. This command enters a new variable name with the given address

and attributes into an internal debugger table. If the address is specified in terms of a base

register, the evaluation of the specified address does not take place until the program variable

is actually referenced using the ™:” or Jet commands.

The Ring Zero Debugger contains only one internal table for program variables. Therefore,

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 37

there is no notion of scope. However, the debugger does try to protect users against accidental

modification of memory when « program variable is assigned a value. This could happen if a

program variable was assigned a value while the active process is not executing in the

program that the variable is defined for. The means for preventing this from happening is to

allow a procedure name to be associated with the variable during definition. Then when the

variable is referenced, the debugger compares the program variable’s procedure with the current

procedure of the active process. If they are different, the reference is not allowed.

The information needed for the define_variable command comes from a listing of the

program which defines the variable. (See appendix A for details on getting this information

from a listing). The main piece of information concerns the address-expression which defines

where the variable is located. If the address is given as an offset from one of the base

registers then the procedure-name must be specified. Otherwise it is optional. The variable type

and length can also be determined from the listing. If both the type and length are omitted,

the type is assumed to be octal and the length is assumed to be 1. The types known to the

debugger are listed below.

Ascii A nonvarying character string of length-specified bytes. The jength

argument is required. The maximum length is 256 characters.

Bit A bit string. Length is assumed to be 1 word. Any length argument is

ignored.

char_Vary A varying character string. The length in bytes is a required argument. The

maximum length is 256 characters.

Decimal] ” A signed decimal number of length-specified words. If length is omitted, it

is assumed to be one.

Octal An octal number of length-specified words. If length is omitted, it is

assumed to be one.

Pointer A memory address. The length is assumed to be 2 words. Any length

argument is ignored.

Defined variables are always active until deleted. If a user defines a new variable which

already exists then the Debugger will replace newly defined variable with the old one. The

current maximum on the number of defined variables in the debugger is 25.

Examining Program Variables - The ':”) Command

we
The format of the °” commandis:

: <voriable> [<variable_type>]

where

<variable> is described in define_voriable command

<vorioble-type> is described in define_variable command

Prime Restricted

PE-T-1278 | Ring Zero Debugger User Manual

Page 38

This command prints the contents of the specified variable in the format specified by the

variable-type option. If no type is specified then the variable is printed using the tpe

specified when the variable was defined. However, there are certain restrictions on the use of

this command. First of all, if the variable was defined for a particular routine (a routine

name was specified in a define_variable command) then the active process must be executing

in this routine. Secondly, it is not possible to examine a variable using ascii or char_vary

type if the variable was defined as bit, octal or decimal type with a length of 1 word.

Displaying Program Variables - The Display_variable Command

The format of the display_variable command (abbreviated disvar) is:

DISplay_VARiable [<variable>]

where '

<variable> is described in define_variable command -

Display__Variable command displays the current definition of the specified variable. The

definition includes variable name, variable type, variable length, variable address and any

optionally-specified procedure name. If no variable is specified then all defined variables with

their attributes are displayed. .

Deleting Program Variables - The Delete_variable Command

The format of the delete_variable command (abbreviated delvar) is:

DELete_VARiable [<variable>]

where

<variable> is described in Define_Variable command

The delete_variable command deletes a specified variable from the list of defined variables. If

no variable is specified, all defined variables will be deleted. However, the debugger will

query the user before deleting all defined variables.

Changing Program Variables - The Let Command

The format of the Let command is:

LET <variable> = <new_value>

where

<variable> is described in define_variable command

<new_value> ::== a value expressed in the type of its

target

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 39

The let command assigns a new value to a specified variable. The specified value must be of

the same tvpe as a defined variable. Also if the variable was defined for a particular routine

(a routine name was specified in a definevariable command) then an active process must be

executing in this routine. Character strings must be surrounded by single quotes. Single quotes

inside character strings require two single quotes for every single quote desired. If the length

of a new value of a character string exceeds the length of the defined variable then the new

character string will be truncated to the Jength of the defined variable. If the length of a

new character string is less than a length of a defined variable then the new character string

Will be padded with blanks - left justified (for Ascii type only). If a variable is a bit string

then only up to 16 bits may be specified (just 1 word). However, if less than 16 bits is

specified then the word will be left justified - the rest of the bit string will be padded with

’O’b. If a variable is a pointer type then the user has an option of supplying a ring number.

The valid ring numbers are O and 3 only.

Examples

To define a new program variable use the define_variable command:

-> define_vorioble prwf$$\code SB%+105 decimal! 1

—> define_variable status 10/11776

->

a9To examine a program variable use °° command:

-> : code

12
—> : code o

eoe14
—> : stotus

ee000
->

To display one or all program variables along with their attributes use the display__variable

command:

~> disploy_vcriable code

Procedure Variable Address Type Length

PRWF$$ CODE SB%+1@5 DECIMAL 1

—> disvar

Procedure Variable Address Type. Length

~PRWFS$$ CODE S8%+105 DECIMAL 1

, STATUS 10/11776 OCTAL 1
->

To delete one or all defined variables use the delete_variable command:

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 40

-—> delvar code

-> disvar ~

Procedure Variable Address Type Length

STATUS 18/11776 OCTAL 1
-> delvar

OK to delete all defined variables? yes
-> disvar

No variables are defined.

->

To assign a new value to a defined variable use LET command:

-> disvor

Procedure Variable Address Type Length

OISKIO CNT S8%+44 DECIMAL 1

STRING 4000/1000@ ASCII 20

BIT 4001/1205 BIT 1

PTR 4002/1000 POINTER 2

-> tet cnt = 100

—> : ent

1028

—~> tet string = °It’'’s only a test’

—> : string

It’s only a test

-> fet bit = 11101

—> : bit

1118100090000000 .
—> let ptr = 55(8)/27770

—> : ptr

$5(®)/27770
-_> .

3.7 User-defined Commands

This section describes the commands that allow users to manipulate what are known as

user-defined commands. These commands allow one to define a new command which can then

be used to invoke a series of previously defined commands. User-defined commands are similar

to the abbreviation facility in Primos except for two points. Abbreviations in Primos accept

arguments while user-defined: commands do not. The other point is that user-defined commands

can be recursive. This is not true of abbreviations. The commands covered in this section

allow users to define user-defined commands, to display current definitions of user-defined

commands, and to delete specific user-defined commands.

Defining New Commands - The Define_command Command

The format of the define_command command (abbreviated defcom) is:

DEF ine_COMmand <user—command—name> <command-tist>

where

Prime Restricted

Ring Zero Debugger User Manual ‘PE-T-1278
Page 41

<user—command—nome> ::== a string

<commond-list> ::== <command> ; <command-list> | <commond>

Define_command provides the ability to execute a sequence of commands by entering a single

user-defined command. I]t allows a user of the Ring Zero Debugger to define new commands

which are composed of a series of already defined commands and their arguments. Entering

the specified command will cause each of the commands specified in the list to be executed.

Some commands can cause one to leave the debugger command level. In these cases, any

remaining commands will be executed when the debugger is reentered. The command-list can

contain other user-defined commands. User-defined commands can also be recursive, however

this must be done carefully. No syntax or semantic checking is done on the command-list at

definition time.

One situation to avoid is defining a command with the same name as an existing debugger

command. In this case the user-defined command will be effectively ignored since the debugger

command line handler looks through the predefined debugger commands before it searches the

user-defined command table.

Deleting User-defined Commands - The Delete_command Command

The format of the delete_command command (abbreviated delcom) is:

DELete_COMmend [<user—command—name>]

where

<user—commond—name> ::== a string

Delete_command deletes the specified command from the list of defined commands. If no

user-command-name is given, all defined commands will be deleted. Before deleting all user-

defined commands, the user will be queried about the action.

Displaying User-defined Commands - The Display_command Command

The format of the displav_command command (abbreviated discom) is:

DISplay_COMmand [<user—commond—name>]}

where

<user-commond-nome> ::== a string

Display_command prints the current definition of the specified user-defined command. If no

user-command-name is given, all user-defined commands will be displayed.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 42 .

Examples

The following examples will show different ways that user-defined commands can be used.

In the first example, a user-defined command is made called “next” which simply steps

through code and displays the assembly language for the instruction about to be executed. One

point to note is that when a user-defined command is expanded, the expansion is echoed on

the command line. In this example, the Primos command avail is entered to cause the

breakpoint at prwfS$+1 to be hit. Then the user-defined command “next” is used.

“> access_type symbolic

—> define_command next step; dump « «

> breakpoint prwf$$+1

~> continue

Leaving the debugger.
avail -

_ Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(@)/33047 .(PRWFS$S + 1).
—> next

—-> STEP; DUMP « «

Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(8)/33051 (PRWF$$ + 3).
—> DUMP « «

11(8)/33051 STA#F S8%+ 34

> next

-> STEP; DUMP « «

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(0)/33052 (PRWF$S + 4).
—-> DUMP « e

11(8)/33052 ANA# 33303
~~

The next example shows another way user-defined commands can be used. In this example, a

new command is defined which is just shorthand for an existing debugger command which

may be somewhat tedious to type. (The debugger command “structure” is discussed. later in

‘this section.) The purpose of the new command is to display the ecb of a routine

symbolically. First, the address of the ecb must be determined and then the new command

defined. What can’t be seen here is worth noting. In defining the command "ecb", a space is

typed at the end of the line. This space is needed because the debugger very literally

expands what is typed as the definition of define_command and concatenates it with the next

token in the command line.

Prime Restricted

“p
t

Ring Zero Debugger User Manual PE-T-127§

Page 43

-> lookup_symbol srch$d .

ECB of routine: 11(@)/57676

PB of routine: 11(8)/56630

LB of routine: 11(@)/57236

-> define_command ecb structure ecb

-> disploay_commond

List of defined commands:

NEXT : STEP; DUMP « «

ECB : STRUCTURE ECB

->

Now that the command has been defined it can be used to examine the ecb of the routine

srch$$. The delete_command command is also shown.

—> ecb 11/57678
—> STRUCTURE ECB 11/57670

Structure ECB at 11(@)/57678@.

Offset | Field name | Votue

I |
@57678 | pb | 11(8)/56630
@57672 | frame size | 00160
@57673 | stock root | e@ee0e000e

057674 | orgs disploc { 00036

057675 | num of args | 6

@57676 | Ib } 11(8)/57236
@57700 | keys [| 14000"

-> delete_commond

OK to detete all defined commands? yes

->

The final example of a user-defined command will show how new commands can be defined

recursively. As might be imagined, this must be done very carefully. In this example, a new

command called “loop” is defined which will set breakpoints on consecutive locations as a

process steps through code. After the command has been defined, a breakpoint is set in the

routine pScidx.

-> define_command loop breakpoint *; step; loop

-> display_command loop

Defined command:

LOOP : BREAKPOINT ©; STEP; LOOP

-> breakpoint p$cidx+1

-—> continue

Leaving the debugger.

Debugger entered due to. breakpoint/single step.
Process 1 was executing ot 41(@)/1335@3 (P$CIDX + 1).

->

Now that we are in the routine pScidx, the loop command is issued. An important point to

note here is that recursive commands will always cause an infinite loop. While this is not +

often desireable, it may be in certain cases. One case is where one may want to set up a test

which executes forever. (Much of the debugger was tested this way.) The example below

Prime Restricted

PE-T-1278
Page 44

Ring Zero Debugger User Manual

shows how to set many breakpoints on a certain code path quickly. However, to stop the

infinite loop, one has to quit out of the operation as shown below.

-> clear p$cidx+1

-> loop

—> BREAKPOINT «: STEP; LOOP
—> STEP: LOOP

Debugger entered due to breakpoint/single step.

Process 1 was executing at 41(@)/133504 (P$CIDX + 2).

-—> LooP

—> BREAKPOINT «; STEP; LOOP
-> STEP; LOOP

Debugger entered due to breakpoint/single step.

Process 1 was executing at 41(0)/133505 (P$CIDX + 3).

-> LOOP

—> BREAKPOINT «; STEP; LOOP

-> STEP; LOOP

Debugger entered due to breakpoint/single step.

Process 1 was executing at 41(@)/133510 (P$CIDX + 6).

-> LOOP

—> BREAKPOINT «; STEP; LOOP

-> STEP; LOOP

Debugger entered due to breakpoint/single step.

, Process 1 was executing at 41(0)/133511 (P$CIOX + 7).

quit.

->

To show that these breakpoints are set, a listall command.is issued.

—> tistatl

Type Address

bekpt 41(0)/133503
brkpt 41(0)/133504

bekpt 41(@)/133505

bekpt 41(8)/133510
->

Procedure
PS$CIOX + 1

P$CIOX + 2

P$CIOX + 3

PSCIDX + 6

3.8 Miscellaneous Commands

Process Count

Any

Any

Any

Any

1

1

1

1

Mnemonic

LDA

STA

EAFA @
LOA

This last section of the chapter describes commands which do not neatly fall into a

specific category. Included are such useful functions as the ability to translate virtual addresses

to physical addresses (and vice versa) and the ability to examine certain system data bases,

field by field.

Resuming Primos - The Continue Command

The format of the continue command (abbreviated c) is: -

Continue

Prime Restricted

Ring Zero Debugger, User Manual , | PE-T-1278

Page 45

The continue command causes execution of Primos to resume. Other than the step command.

this is the only way to exit the Ring Zero Debugger. -

A Help Facility - The Help Command

The format of the help command (abbreviated h) is:

Help [<commond>]

where

<command> ::== ony Ring Zero Debugger command

The help command displays information about the specified command. If no command is

specified, the names of ali commands are listed.

Examine the Fields of a Structure - The Structure Command

The format of the structure command (abbreviated struc) is:

STRUCture [<definition> [<oddress—expression>) }

where

<definition> ::== CLDATA | DISK_QUEUE_BLOCK { ECB |
FIGCOM | PUDCOM { PUSTAK |

SUPCOM | UPCOM
<address_expression> is described in section 2.4.1

The structure command prints the contents of memory starting at the given address and

using the predefined definition as a template. Simple definitions of many Primos databases are

defined in tables as part of the Ring Zero Debugger. These definitions contain text and data

type for each field in a database. Thus, given an address, one can print a defined structure as

a list of fields and their values (eg. PUDCOM or the disk queue blocks). If the structure

command is given without arguments, it will list the currently defined databases. If the

name of the defined structure can be found in the Primos load maps, the address-expression

need not be specified.

The intent of the structure command is that it be constantly expanded and updated. New

definitions can be made by adding newentries to tables in the Ring Zero Debugger. If the

data base that you define is just for a special situation then you might only modify your

copy of the debugger. The more likely situation is that the data base you define is one that

others wil] be interested in and thus the change should be made to actual copy of the

debugger in Primos. If an engineer makes a change to an existing data base already known by

the debugger, that engineer must be the one to update the definition in the debugger.

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual

Page 46 ,

Translating Virtual to Physical - The Translate_to_physical Command

The format of the translate_ to_physical command (abbreviated tphys) iS:

Translate_to_PHYSical <address-—expression>

where

<address_expression> is described in section 2.4.1

Translate_to__physical translates the -given virtual address of the active process into a physical

memory address. This command will only work for virtual addresses which translate into

resident memory. The physical memory address will be returned as both a 16 bit physical

‘page number and a 32 bit physical address.

Translating Physical to Virtual - The Translate_to_virtual Command

The format of the translate_to_virtual command (abbreviated tvir) is:

Translate_to_VIRtual <physical—page—number>

where

<physical—page-number> ::== a 16 bit octal number

The translate_to_virtual command returns the process number and virtual address that

translate to the specified physical page number. Any physical page number specified must be

configured on the existing system and “owned” by some processes’ virtual address space in

order for the command to return valid output. This command will not detect the fact that

multiple virtual addresses may map into the same physical address (eg. windowing through

segment O for i/o). Only one virtual address will be returned in all cases.

Display Current State - The Where Command

The format of the where command (abbreviated wh) is:

WHere

The where command prints the process number of the original process, the current value of

its program counter, and the reason for having entered the Ring Zero Debugger. The output

from this command is identical to the banner printed when the debugger is entered.

Examples

The first example will show the results of issuing a help command with no arguments.

Prime Restricted

Ring Zero Debugger

-> help

Access _ TYPE

CLeoR

DEF ine_COMmond

DELete_VARiable

Dump

LIST

Lookup_Address

PrintLOCKS

STATus

SYStem_REGisters

User Manual

Access

ARGumentS

CLeaRA! i

DEF ine_VARiable

DISptay_COMmond

Help

LiSTAI1

Lookup_Symbol
ReaDY_LiST

Step

Trace

Tronsiate_to_VIRtual TTybuf

->

Access_REGister

BReakpoint

Continue

DELete_COmMnand

DISploy_VARioble

LET
LOOKAT

Peb

SeaRCH

STRUCture

Tronstote_to_PHYSical

WHere

Next, the output from specifying a command to help is shown.

-> help occess_type

Access_TYPE (ATYPE)Command nome:

Commond description:

Set the type used by the occess and dump commands for

. printing memory.

Commond Line arguments:
[Ascii [Bit | Decimal

->

{ Hex | Octal | Symbolic]

PE-T-1278
Pape 47

Giving the structure command without arguments, will cause a list of currently defined data

bases to be displayed. The assumption is that this list will grow over time. The original list

of defined structures was just meant to show the usefulness of the command.

-> structure

PRIMOS dote bases known to the Debugger:

01SK_QUEVE_BLOCKCLDATA

FIGCOM

SUPCOM

->

PUDCOM

UPCOM

€ce
PUSTAK

In the following example, the structure command is used to look at the ecb for the prwfS$

routine.

Prime Restricted

PE-T-1278

Page 48

Ring Zero Debugger User Manual

-—> lookup_symbol prwff

ECB of routine: 11(8)/35625

PB of routine: 11(0)/33046

LB of routine: 11(@)/35220

—> structure ecb 11/35625

Structure ECB at 11(@)/35625.

Offset | Field name | Votue

I |
@35625 | pb | 11(@)/33046
@35627 | frome size [| 900202
@35630 | stack root | eee9ece

@35631 | args displac {| 9e0070
@35632 | num of args I 7
@35633 [Ib | 11(@)/3522@
@35635 | keys {| 0140008

->

The following examples. show the output from the translate_to_physical and

translate__to__virtual commands.

—> translate_to_physical 11/5050
Virtual address 11(@)/50500 translates to physical

address 1710500. .

This address is on physical page 744.

-> fookat 1

—> transtate_to_physical 6000/200
Virtual address 6000(8)/200 translates to physical
address 552200.
This address is on physical poge 265.

-> transtate_to_virtual 744
Corresponding virtual address is 11(0)/50000 for process 1.

—> translate_to_virtual 265
Corresponding virtual address is 6000(8)/@ for process 1.

~>

The last example shows the output from the where command. It should be easily recognizable

as the banner that is printed out when the debugger is entered.

=> where

Debugger entered due to console interrupt.

Process -2@ (BKIPCB) wos executing at 6(@)/42313 (BK2PB 4+ 4)
->

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 49

4. Uses of the Ring Zero Debugger

The previous chapters described the various commands in the Ring Zero Debugger and how

they could each be used to obtain specific information. The focus of this chapter is on the

way that these commands can be used to solve specific sorts of problems.

4.1 Adding New Code

The most common use of the Ring Zero Debugger will be for testing new code that is

added to Primos. This section will describe some .of the steps that one would typically go

through in attempting to debug newly added code.

The first step in attempting to debug newcode is to get a listing of the affected module

or modules. If the language is Fortran, an expanded listing of the PMA is necessary. If the

language is PLP, the listing should include statement offsets. In all cases the listing should

have a cross-reference listing at the end. In addition to the typical reasons for wanting a

listing of the module to be debugged, a listing is needed for defining program variables and

determining where to place breakpoints.

The next step is to enter the Ring Zero Debugger before any process has passed through

the newly added or modified module. If the module is not needed during coldstart code, then

the system can be coldstarted and the debugger can be entered later on with a console

interrupt. On the other hand, if the module is used during coldstart or you're not sure if it

is Or not, then the debugger should be entered during coldstart.

Once in the Ring Zero Debugger the module’s program variables should be defined.

Program variables are described in section 3.6. The module listing should be consulted to

determine which program variables one might be interested in and what their actual

definitions are. “

The next step is to set breakpoints in the routine to be debugged and let a process

encounter them. The name of the routine should be in the Primos load map as a global

symbol so that the breakpoint command can be issued using the routine name directly. Once

in the routine, the debugger can be used to single step through the new code. If the module

is in PMA then the single step command can be used directly. If the module is in a high

level language, then the breakpoint command is needed to single-step through the high-level-

language statements. The statement offsets can be read from the listing to determine where

the beginning of each statementis.

After each statement, one can use the ™:” command to examine the previously defined

program variables. If any of the variables are wrong, they can be corrected with the let %

command. If the module to be debugged also references system databases, these can be

examined with commands such as print_locks and structure. A common one to examine might

Prime Restricted

PE-T-1278 , ‘Ring Zero Debugger User Manual

Page SO

be pudcom.

When adding new code to Primos. all paths through the new code should be tested. This

means setting a lot of breakpoints and frequently examining variables. This was previously

impractical to do but is relatively easy to do now. Doing this level of testing is somewhat

tedious but is extremely important in order to produce high quality software. It is far easier

for an engineer to find a problem at this point than for someone later on to try to determine

which of the 1000 Primos modules is responsible for the erroneous behavior.

Another important use of the Ring Zero Debugger is to fully test the error or exception

paths through new code. Doing this in the past was very difficult or impossible in most

cases. With the debugger, there is no reason for not doing this testing. All error paths should

be tested by simulating the error with the debugger. This can easily be done in most cases by

setting error codes to different values with the let command.

One caveat about using the Ring Zero Debugger when modifying code is that it is not a

substitute for functionally testing code. The debugger should be used first to verify code paths

but test plans should be developed that use other means of testing the code, unless no other

ways are possible (such as with testing certain error paths). The environment with the

debugger corifigured is somewhat different from the actual environment that the system will

run in. Thus, the final testing should use other means to verify correct program behavior.

The steps to follow in adding new code are summarized below:

1. make a listing of the affected module(s)

2. enter the debugger -

3. define program variables (define_variable)

4, test all code paths by single stepping through new code and examining local and

global variables (breakpoint, step, ; structure)

5. modify variables to correct errors or to simulate error conditions (let)

_ 4.2 Tracking Down System Failures

There are many different circumstances where the system or a particular process within

the system fail. Sometimes this is related to code that has just been modified, but the

connection between the failure and the change is not clear. Other times the system failure

may occur on released software and there is no clue as to the problem. The Ring Zero

Debugger has great potential for helping in many, but not all, of these situations. This section

suggests some ways that one might use the debugger to examine certain system problems.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page Sl

4.2.1 Fatal Process Errors

Fatal process errors can be mildiv frustrating to examine without the debugger. There are

many reasons for getting these errors. A common one is that the user's ring 3 stack has been

corrupted. Whatever the reason, fatal process errors are dealt with by re-initializing the user's

command environment. This has the unfortunate property of re-initializing the user’s ring 3

stack which probably contained the history (or at least clues) concerning the events before the

fatal process error occurred. One would like to be able to examine the state of the system

before the stack is reset.

Before the Ring Zero Debugger, the most common way of dealing with this situation was

to modify code, take a crash dump, and use Autopsy to analyze it. The routine FATALS in

Primos is the one that re-initializes the user's ring 3 stack. By changing a nop instruction in

this program at label FTL_HLT_. to a halt, one can take a crash dump before the stack

history has been erased. Then the stack can be examined with the trace command in Autopsy.

The debugger should prove to be a much faster way to solve this kind of problem since

the system need not be coldstarted again and again. A breakpoint could be set on the label

in FATALS and then one could use the trace command of the debugger to see what events

lead up to the failure. If the problem is not clear from the trace, breakpoints could be set in

one the most recent routines on the stack and the process error repeated. When these

breakpoints are hit, the process state can be examined for any problems. If the problem has

already occurred, then breakpoints need to be set in the previous routine and the process fault

repeated. This procedure would go on as many times as needed until the source of the

problem is found.

If the stack is so corrupted that trace will not work, the method just decribed can still be

used but it is much more difficult. The key is to determine which routines may have been

called before the failure. This requires the ability to figure out where some valid or

partially valid stack frames are by just looking at the stack in octal. The access and dump

commands can be used for this purpose.

When dealing with a corrupt stack, one may also be able to trace up the stack using the

search command. This is possible since every stack frame contains the address of the start of

the stack frame for the calling procedure (known as the return sb). If one can find the

beginning of the first stack frame at the base of the stack, one could search up the stack

(higher addresses) for the value of the address of this first stack frame. If one is found, it is

very possibly the return sb in the called procedure’s stack frame. The Jookup_address

command can be used to see if the return 1b in the stack frame seems reasonable. If so, the

address of the start of the second stack frame is now known. The next step is to search up

the stack for this address. This process can continue as long as the frames seem to make “

sense. The place to put a breakpoint is at the last known routine before the process error.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 52

The steps to follow in debugging a fatal process error are summarized below:

1. put a breakpoint at label PTLOULT_

2. cause the fatal process error

3. use the trace command when the breakpoint is hit

4. if trace doesn’t work use access, dump, search, and lookup_address to sequence up

‘the stack . '

5. if the source of the problem isn’t clear, set breakpoints in the most recent routine,

Tepeat the error, and check the process state

6. move down the stack performing the previous step until the offending routine and

code is found

4.2.2 System Hangs

One common way for the system to fail is for it to appear to be hung. When in this

state, the system appears completely unresponsive to any kind of input for a long period of

time. The difficulty here is determining what a long period of time is. In many situations, it

may be thecase that the system is functioning correctly but is so overloaded that it appears

to be hung. Whether this is the case or not, the Ring Zero Debugger is an excellent way to

investigate this kind of problem.

The first step is to enter the debugger by invoking it from the system console. If this

fails, there is a serious problem. Failure to enter the debugger indicates one of two things:

either there is something preventing the clock process from running or the system is hung in

microcode. Issuing a stop command. to the VCP separates these two cases. If the system halts,

then something is preventing the clock process from running. A tape dump should be taken at

this point and examined with Autopsy. If the system does not halt, the system is hung in

microcode and there may not be much one can do. A tape dump can be taken, but it will be

hard to analyze since there will be no register values for recent processes.

Assuming that one has successfully entered the debugger, the next step is to determine

information about the state of the active process. The first piece of interesting information

relates to the type of the active process. If it is an interrupt process, the system could be

hung in a loop due to bad hardware. If it is the backstop, the system could be deadlocked or

waiting for an event that will never happen.

Other interesting information about the active process concerns what it was attempting to

do. If the process has terminal buffers, one could see the high-level operation that was being

attempted by looking at the process’s terminal buffers with the ttybuf command. One can also

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page S3

examine the most recent command line by looking in the cldata common area with the

structure command. The current path of execution can be examined by using the trace

command. Finally the current procedure and arguments can be determined by using the

arguments and status commands.

There are a few other pieces of information about user processes that can be very telling.

If process faults are inhibited, it could be the case that the process is looping inside a critical

region. The field inhprf in the common area pudcom determines whether process faults are

inhibited. It can be examined with the structure command. The status command will indicate

whether a process owns any system nilocks or has deferred any process aborts. A positive

interval timer value for a process indicates that the process has monopolized the machine for

whatever reason (eg. looping in interrupt inhibited code). This can be seen with the pcb

command. Finally, a fault that repeatedly generates another fault before a fault frame can be

built will hang the machine. This can be seen by examining the concealed stack with the pcb

command.

If the reason for the system hang is not yet clear, the next step is to examine the state

of the entire system with different debugger commands. The system ready list is a good

thing to inspect for starters. If there are many processes on it then perhaps a high priority

process is dominating the machine. If there are no interesting processes on: it, then perhaps the

system is either deadlocked or waiting for an event that will never happen.

Another important way to examine system status is to examine the state of all the

different logged in user processes. This can be ‘done with the user option to the status

command. The key here is to determine what the processes are waiting for. A common and

uninteresting ‘event to be waiting for is terminal input. A more interesting event might be

waiting for a disk request to be satisfied. Another might be waiting for a lock to become

available. The question to ask here is whether these are events that will ever happen. The

status command can also be used along with the print_locks command to see if any system

nllocks are held. Using the nllocks improperly can easily lead to a deadlock situation.

A user that is of particular importance in trying to figure out the state of the system is

often user 1. This user provides a number of system services such as flushing the locate -

buffers to disk. If user 1 runs into problems, the whole system will suffer since user 1 has

priority over other user processes.

All the previous user checks should be made on user 1. If the minalm process abort flag

is set for user 1, one can infer that no user processes have run for at least the last minute.

This could indicate that the system was hung either in an interrupt process or in interrupt

inhibited code. Another place to look is at the user 1 message buffer. This can be displayed

with the ttybuf command. It may indicate problems that aren’t yet known such as”

unrecoverable disk errors. The reason this information may not be known is that this buffer

is only emptied once a minute. Unrecoverable disk errors can seriously affect system

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 54

throughput causing one to think the system is hung.

If examining the state of the active process and the whole system in general do not

clarify the source of the problem, the next step is to let the system run again and repeat the

previously described examinations. There are three separate approaches that could be used. One

is to single step the active process repeatedly to see if it is running in a tight loop. This

can be done using the breakpoint and single step commands. If a particular area of code is

suspected, breakpoints could be set there and one could let the system run withthe continue

command. If the problem area is completely unclear, one can just let Primos run for a little

while longer, reenter the debugger with a console interrupt, and start the investigation over.

Some of the things to look for to investigate system hangs are summarizied below along

with the appropriate debugger commands to use. The list below is only meant to show the

kinds of information that one might need to determine the cause of a system hang and how

to get it with debugger commands. There are countless other approaches.

1. enter the debugger with a console interrupt

2. check the state of the active process

© what kind of a process? (status)

© what is the process doing? (ttybuf, arguments, trace, status, structure cldata)

© any outstanding process aborts or locks held? (status) .

© are process faults inhibited? (structure pudcom)

0 is the process interval timer positive? (pcb)

© has the concealed stack overflowed? (pcb)

3. check the system state

o which processes are on the ready list? (ready__list)

o what interesting events are user processes waiting for? (status)

© what nilocks are held and by whom? (status, print__locks)

oO what is user 1 doing? (status, trace, structure, ttybuf)

© is user 1’s minalm process abort flag set? (status)

© are there messages in the user 1 message buffer? (ttybuf)

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page S5

4. if the source of the prablem is unclear, let the svstem run a little more

co if a loop is suspected, single step repeatedly (step)

o if a specific area is suspected, use breakpoints and single steps (breakpoint,

step)

o if no idea as to source of problem, let the system go and restart the whole

sequence beginning with step 1. (continue)

4.2.3. System Halts

A system has obviously failed when it halts. Halts basically fall into 2 different

categories. Qn the one hand there are halts that are coded into Primos to stop the system

when some internal inconsistency has been detected. With these halts, the path to the halt and

the low-level reason for stopping the system are usually known. The other types of halts are

locations that contain data that when interpreted as an instruction, turn out to be halts. In

these situations, an error has caused a process to erroneously execute some pathological sequence

of instructions that led the process to start executing data. In other words, some software or

hardware error has caused the machine to “lose its way” and start executing in some

unexpected place. These halts are more difficult to deal with since it is usually very

difficult to tell what the path to the halt was. Furthermore, unlike coded halts, these halts

give no clue as to what was going on when the system halted.

The -Ring Zero Debugger can help in analyzing system halts, but there are definitely

situations where it will be of limited use. The major reason for this relates to the fact that

Primos must be running in order to use the debugger. Therefore, the debugger cannot be used

after the system halts unless the system is warmstarted. However, warmstarts completely

change the system state and thus warmstarting to get to the debugger is of limited use in

investigating a problem that just happened. It is for this reason that the Autopsy program can

sometimes prove to be more useful than the debugger in starting to examine certain halts.

An easy first step in determining the cause of a halt, is to install a breakpoint right on

the halt instruction and then try reproducing the problem. In many cases this will cause the

debugger to be entered. Once in the debugger, the process’s stack history can be determined

using the trace command. However, there will also be many situations where the system still

halts despite the breakpoint. One good reason for this to happen is if the nature of the

failure is such that the system halts in random places. Another reason is if the cause for

halting was a stack overflow. Breakpoints will not work on a stack overflow halt since

breakpoints require stack space to work properly (see section 5.1.2). In these situations, the

best approach is to take a tape dump and use the trace command in Autopsy to determine the

process’s stack history.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 56

Whether one uses the trace command in the debugger or the trace command on a crash

dump with Autopsy, the key is to try to figure out enough of what happened to be able to

make a reasonable guess as to Where one might set breakpoints. The approach will be to try

to set breakpoints in the area where it looks like the problem first occurred. In many cases,

this area might be the part of a routine that handles either exceptional conditions or errors. If

there have been new or changed modules, these routines would certainly be good candidates

for breakpoints. Once these breakpoints have been set, the next step is to try to reproduce

the halt again.

If the problem can be reproduced, one of two things will happen: either one of the

breakpoints will be hit or the system will halt again. If breakpoints are hit, the state of the

System can be determined using debugger commands and then new breakpoints set. This may

enable one to follow the path to the halt and thus determine the reason for the system

failure. On the other hand, if the system just halts again, one will have to coldstart the

system (warmstart if possible to save time) and make better guesses about where to install

breakpoints.

The process of setting breakpoints and seeing if processes encounter them before the system

halts may be very time consuming. It may take many attempts beforé“the actual path taken

becomes clear. Random of hard to reproduce halts make the debugging even more difficult.

Unfortunately, one just has to perservere. The steps described above are summarized below.

1. set a breakpoint at the halt address

2. try to reproduce the problem (ie. halt)

3. use the trace command to determine the process’s recent history

0 if the breakpoint was hit, use the debugger

© if the system halted, take a crash dump and use Autopsy

4. coldstart the system (or warmstart if possible)

5. set breakpoints near where it first seems like the problem may be occurring

6. try to reproduce the problem

7. system hits a breakpoint or halts

o if breakpoints are hit then sequence through the code setting breakpoints and

examining system state until the problem is found

o if the system halted then make better choices about the location of

breakpoints and go back to step 4

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 57

4.3 Debugging Hardware

While the Ring Zero Debugger was designed primarily for use in debugging software. it

cun certainly be used to debug new or even malfunctioning hardware. While it is not the

best tool to accomplish this (a hardware level debugger like the FEP and diagnostic test

programs are better), it can provide some helpful insights in certain situations.

In the case of new hardware, it is often true that the individual functions or pieces have

been tested and seem to work yet when the total system is tested with Primos, it doesn't

quite work correctly. This happens often with newprocessor development. It is difficult for

a low-level hardware debugger to find many of these problems because it is not looking at

the situation from a level that is high enough (e.g. microsteps versus a disk read operation).

However, the Ring Zero Debugger is a perfect tool for looking at the problem from the

appropriate level. It can be used to examine the situation from the individua] instruction level

up to the command line level.

There are a number of advantages to using the debugger to debug hardware whether it is

newly designed or not. These include the following reasons.

o Much of the system can malfunction yet the debugger can still be used. This is
= ee OS eee

due to the fact that the debugger can be entered very early on during a coldstart.

Primarily al] that has happened at this point is that memory has been sized and

process exchange has just been turned on. The debugger only needs the basic

processor and console interface to work. Thus a malfunctioning controller won't
affect the debugger in most cases.

o Problems can be diagnosed without special hardware or software. While the
typical ways for debugging hardware are generally superior to using the Ring Zero

Debugger, they usually require special software and often also require special
hardware. Since the debugger is built right into Primos, it is always available.

The debugger should also prove helpful’ for debugging controllers. By setting breakpoints

on the i/o instructions in interrupt processes, one ought to be able to see the exact sequence of

instructions being issued to the controller. The debugger also provides the ability to look at

the DMA channels with the access_register and system__registers commands. If there was any

doubt about the data being transferred correctly from the device into memory with a DMX

transfer, a breakpoint could be set right after the i/o instruction which initiates the transfer.

Then the DMA channel as well as the actual buffer in memory can be examined to see if it

happened correctly.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 58 ° .

4.4 Debugging a Customer’s System _

When customers have problems with their systems. Customer Service gets involved. If the

problem is stubborn enough or the customer is important enough, then engineers from Prime

Engineering get involved. In somes cases, engineers may even have to travel to customer sites.

It is very possible that the Ring Zero Debugger could prove useful in solving certain types of

customer problems for both Customer Service and Engineering. However, at this point in time,

it is not clear that the debugger will be used for this purpose. The goal of this section is to

suggest some ways that the debugger might be used to solve customer problems. The hope is

that this use of the debugger will be explored.

In terms of Engineering, an important new ability that comes with the debugger is the

means to interactively debug a system remotely. The remote console port of the VCP can be

used to run the debugger at customersites. In certain circumstances, this ability permits Prime

engineers to diagnose particularly stubborn problems for important customers without having to

make a trip to the site. All of the techniques described in this document for solving

problems can then be used not only in lab situations, but also to solve certain problems that

occur in the field.

From the Customer Service perspective, the Ring Zero Debugger could be used as a

supplement to their existing methods for diagnosing problems. If Customer Service people

were taught some basic ways to use the debugger in certain situations, they might be able to

easily diagnose some kinds of problems. Some examples of the kinds of situations where the

debugger could help toget valuable information follow.

© Machine checks due to a malfunctioning controller. In some situations, a system
may fail to coldstart due to a machine check. Upon decoding the dswstat register
it may be clear that a controller is causing the problem but it is not clear which
controller it is. With the debugger,-one could examine the location where the

processor was executing when the check occurred (contents of the dswpb register)

and determine which routine the process was executing in. From the routine name,
it is usually fairly clear which controller is involved. One could also set a

breakpoint on the instruction. Once the breakpoint is hit, then one could examine

the state of the system (or controller) at that point and also single step to be sure

that the instruction is the problem.

o Hung system due to a malfunctioning controller. Sometimes when a controller

malfunctions, it will appear constantly “busy” to the system. In Primos, most i/o
instructions are coded to spin in a loop if the device is busy. This will cause a
system to appear hung. The debugger could be used to determine the process. that
‘was executing and where, both of which should indicate the controller that needs

replacement.

o Determine information about a halt. When a system halts, it is often very
difficult to get even the faintest clue about why it halted based on the halt

address. Sometimes a message is printed before the machine halts but many times

Prime Restricted

Ring Zero Debugger User Manual ’ PE-T-1278
Page 59

not. Bx coldstarting the svstem with the debugger. one can look up the name of a

symbol which corresponds to the halt address. One may alsa be able to set a

breakpoint at the halt address and enter the debugger just before the machine is

about to halt. At that point, some basic debugger commands can be issued to
determine more information about why the machine is about to halt. While

knowing the halt name, current routine, or executing process may not isolate the
source of the problem, it should be somewhat helpful in solving the problem.

One other point is that if Customer Service can use the Ring Zero Debugger to solve

certain kinds of problems locally, then they could also potentially diagnose the problem

remotely using the remote console port. This might allow them to determine what component

might be failing before they make a trip to the customersite.

45 Shared Subsystems

The Ring Zero Debugger can be used to set breakpoints anywhere in shared code (dtars 0

and 1). The ring of execution can be either O or 3. The original intent here was to be able

to debug Primos, but there is no reason that the debugger couldn’t also be used on shared _

subsystems such as ED, EMACS, Midas Pius, Cobol, etc. There are certainly better ways to

debug these products, namely debug the code as a non-shared version first with DBG.

However, the Ring Zero Debugger could be useful should a bug appear in the shared version

but not in the non-shared version. .

In debugging a shared -subsystem, all features of the debugger will function correctly but ..

there will be no symbolic information available. This is because only the Primos load maps

are currently written into the debugger. However, with a modest effort, it is possible to get

other load maps written into the debugger. The modest effort involves modifying a program

which writes the load maps into a Primos program image just before the mapgen program is

tun. This program is ‘known as dump_maps and is located in the Primos mapgen

subdirectory.

The procedure to follow in adding the symbols of a subsystem to the debugger is listed

below.

1. make a load map of the subsystem using the same Seg options as are used to

make the Primos load maps

2. modify dump_maps to read in the subsystem map (could be instead of or in

addition to the Primos maps)

3. rebuild dump_maps

4. put subsystem map in the directory where Primos is built

S. rebuild Primos

Prime Restricted

PE-T-1278 | , Ring Zero Debugger User Manual

Page 60

4.6 A New Angle on Performance

There are many ways ta gather performance data on a system and the Ring Zero

Debugger is certainly the last place one should look. Yet surprisingly enough, there are at

least 3 ways the debugger can be used to determine information relating to performance.

One way that it can be used is to determine how many times a certain operation happens

to provide agiven service. For example, how many disk reads does it take to satisfy an avail

command? How many calls to locate does it take to invoke emacs? How many page faults are

taken to coldstart the system? To determine the answer to these questions, one need only set

a breakpoint on the routine that provides the service (eg. rrec, locate, or pagtur). The

breakpoint would be set with a large proceed ‘count. After the service has taken place, the

debugger could be reentered and the proceed count examined. The difference in the proceed

count is the number of times the operation took place.

Another way that the debugger can be used to gather performance related date is to

determine how many times one code path is taken over another. For example if a routine like

prwfSS breaks into separate sections based on an input key, one might wonder how often each

key is used. This could be easily determined by againsetting breakpoints with large proceed

counts in each section. After running some test, the proceed counts can be examined to

determine the relative frequency that each routine has been- called.

A final way that the debugger could be used for performance is to actually count the

number of instructions needed to perform some operation. This can be done with the

breakpoint and step commands. Breakpoints can be set at the beginning and end of the

Operation to measure. When the breakpoint at the beginning has been hit, one can issue a

single step command with a: large step count. When the ending breakpoint is hit, one can

examine the remaining step count. The change in the step count is the number of instructions

that were executed to perform the operation. This information could be valuable in trying to

improve the performance of a small but frequently traversed area of the system.

Obviously, the examples just given demonstrate that the debugger is a crude way to gather

performance data. The usage command, GEM (the General Event Monitor) and PBHIST (the

pb histogram program) are certainly better sources for performance information. The reason

that this use of the debugger is mentioned here is two-fold. One is that the debugger is a

telatively easy way to gather some indication of what the situation is. The other is that the

information gathered by the debugger may present a new and different perspective. For

example, pbhist may tell one what general area of the system is being heavily traversed, but

its granularity isn’t very fine. The actual reason for a system dwelling in a certain area of

code can be more closely examined with breakpoint and step commands.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 61

o. Implications of the Ring Zero Debugger Design

A goal of the design of the Ring Zero Debugger was to make it as independent from

Primos as possible. The degree to which this is achieved is important in being able to debug

nearly any part of Primos. If the debugger relied on a particular feature of Primos, then one

couldn’t use the debugger to test changes to that region of the system without possibly

breaking the debugger. Therefore the debugger doesn’t rely on any features ofPrimos.

However, the Ring Zero Debugger cannot claim to be totally stand-alone. It is loaded

with Primos and runs as a special Primos process. To achieve functionality such as

breakpoints, it must deal with Primos in what are certainly non-obvious ways. While a user

of the Ring Zero Debugger may not be especially interested in its design, the user is certainly

interested when the design imposes certain limitations on the debugger’s use. That is the topic

of this chapter.

5.1 Effect of Breakpoints

The most difficult and complex part of designing the Ring Zero Debugger was supporting

breakpoints. Achieving ‘this functionality without any hardware support was extremely

challenging. The final design was largely successful in supporting breakpoints but there are

certain times and places where they cannot be used and other times when their use may be

confusing. Most of these situations are discussed in the following sections.

§.1.1 Genera) Effects

Before describing some of the limitations of breakpoints, a quick sketch of the way that

breakpoints are implemented may help. When a breakpoint command is issued from the Ring

Zero ‘Debugger, basically two things happen. One, is that the debugger builds code to simulate

the breakpointed instruction. The other is that the original instruction is replaced by an

instruction which will cause an illegal instruction fault when encountered.” When the

breakpoint is hit, the breakpointed process takes a fault. Then the fault handler calls a

routine which wakes up the debugger process (which runs as the highest priority process in

the system). When one decides to leave the debugger, it manipulates the two extra stack

frames previously pushed onto the stack of the breakpointed process. The effect of this

manipulation is to cause the process to execute the simulated code and then return to the

instruction after the breakpointed one.

This scheme works most of the time but not always. The following paragraphs describe

situations where there are limitations.

o Certain instructions are not supported. Certain instructions do not allow

breakpoints for a variety of reasons. If one attempts to set breakpoints on any of

Prime Restricted

PE-T-1278 , | : Ring Zero Debugger User Manual
Page 62 ;

these instructions. the user will get an error message. The list of instrucuons is
ARGT, CALF, E168. E321 E322R. E32S. E64AR. E64, IRTC. IRTN, LPSW, STEN, and

SVC. The quad floating point instructions are also not ‘supported.

o Certain places must be avoided. Because the debugger is implemented as a separate

process, breakpoints cannot be set in places where process exchange is disabled in
any way. These places include check handling code, phantom interrupt code, and

the tape dump program. It aiso includes both coldstart and warmstart code before
Process exchange is turned on. An unrelated case is that breakpoints cannotbe set

in the frontstop process. (This is only a constraint for dual-processors such as the
P850.) The debugger cannot detect anyof these situations and therefore will just

fail to work properly. Breakpoints also cannot be set in the debugger itself or the
illegal instruction fault handlers. These two cases can however, be detected by the
debugger.

© Interrupt inhibited code should be avoided. Critical regions are most often achieved
by surrounding the code with interrupt inhibiting instructions such as INHL, INHP,
or INHM. Setting a breakpoint in code where interrupts are inhibited will break
the critical region. The code to simulate any instruction in the region will work
properly, but in the process of servicing the breakpoint, interrupts will be enabled.

This is due to the process exchange needed to invoke the debugger. The Prime
architecture enables interrupts on a process exchange. Enabling interrupts will
defeat the reason for having the critical region. There is no way for the debugger
to detect this condition. It is upto the user to either avoid this situation or at
least be aware of the consequences. (For example, if it is clear that only one

process is executing in the critical region at a time, then the region needn't be
avoided.)

o The whole system slows down. Servicing breakpoints can markedly slow the

system down. The degree to which it is slowed is related to the frequency of

breakpoints hit. Breakpoints which are set in code that will be executed on every

tick of the real-time clock can cause. throughput to virtually stop on some
processors. In these cases, virtually all processing time is spent servicing the

breakpoints. On the other hand, if a breakpoint is hit only a few times a second,
it will scarcely be noticed. Some of the effects of slowing down the system are

lower throughput, loss of time on the system time-of-day clock, and loss of
characters on the system console.

o Can't modify memory where breakpoints are set. If one attempts to modify a
location where a breakpoint is set, the debugger will give the user an error. This
situation is rather difficult for the debugger to deal with so no attempt has been
made to do so.

o Won't work with self-modifying code. Breakpoints that are set in code that is

self-modifying will not work. When the code modifies itself, it will overwrite
the illegal instruction and there is no way that the debugger can determine that

this has happened.

o Breakpoints do not instantly suspend the system. A system is in a sense

“suspended™ when the debugger process runs since it is the highest priority process

Prime Restricted

Ring Zero Debugger User Manual | , | PE-T-1278
Page 63

in the system. However. this does not happen the instant a= breakpoint is

encountered. “Phe illegal instruction fault must be handled bs building a fault

frame and then calling a routine which eventually invokes the debugger process. If

the breakpoint is in ring 3 there is even more code ta pass through. While this

code is being executed, the breakpointed process must compete with the rest of the

processes for system resources as it does ordinarily. Thus other pracesses can
potentially run after a certain process has hit a breakpoint.

5.1.2 Stack Implications

As noted in the previous section, when a process hits a breakpoint, it will push two new

stack frames onto the user’s stack. The first stack frame is a fault frame for the illegal

instruction fault. The second frame is built when the illegal instruction fault handler calls a

routine which will invoke the Ring Zero Debugger process. These facts are mostly irrelevant

to a debugger user except for the following cases.

o The extra stack frames can sometimes be seen. When one is in the debugger and
examines a process which has just hit a breakpoint, the added stack frames to

service the breakpoint will not be seen. This is because the debugger takes this into
consideration by looking back down the stack to get the values of the process's

‘registers at the time of the breakpoint. However, if another process is also hitting
a breakpoint but has not yet invoked the debugger, one will see the extra frames

on this process’s stack. In addition, if the user examines register values for this
process, the values shown wil] not be the values at the time of the breakpoint.

This won't cause any problems but is mentioned here to avoid confusion.

o Primos stacks are more likely to overflow. Pushing extra stack frames to service
breakpoints means that Primos will use more stack space than it otherwise would.

In most cases this doesn’t matter since the stacks are relatively large. However, the
page fault stack is quite small and the addition of extra frames can sometimes
cause it to overflow. When this happens, the system halts at ROOVR_. There is
little that can be done in this case other than trying to limit the number of

breakpoints in routines that will concurrently share this stack.

o A corrupt stack can ruin debugging. The Ring Zero Debugger needs to use a

process’s stack to service breakpoints. If this stack has been corrupted, breakpoints

will not work correctly. This may even cause fatal errors for the debugger. A

common way to allow the stack to become corrupted is to fail to allocate enough

stack space for an assembly language routine.

o Deadly embrace in the page fault handler. Breakpoints can be set in most of the
ring zero fault handlers, but there can be a fewobscure problems. An example of

one relates to a small section of code in the page fault handler. A breakpoint in
this section may cause one to hang the system. The section referred to is the code

that preceeds the CALF instruction in the page fault handler. The root of the
problem is not issuing a CALF immediately. This means that the code up to the
CALF instruction is not using the page fault stack. Thus, if a breakpoint is set in
this code and the page fault happens to be for the next page of the current stack,

Prime Restricted

PE-T-1278 | Ring Zero Debugger User Manual
Page 64

“the system will be in an infinite loop. When it hits the breakpoint, the illegal

instruction fault handler will tre to push a fault frame on the current stack.

However, this will just cause another page fault and the cycle begins again. This

is a relatively unlikely event. but it can happen.

o WAIT’s on the interrupt stack are a problem. There is one stack in the system
shared by ali the interrupt processes known as the interrupt stack. All these

processes can share this stack because none of the processes leave any stack history

before executing a wait instruction. However, if a breakpoint is set on one of these
wait instructions, it would leave two extra stack frames before waiting. This
would cause the stack to become corrupted. The debugger can detect this condition.
It will clear the breakpoint and print an error message when this happens.

5.1.3 PCL Instructions

There is no instruction on Prime machines that is more complex than procedure call (PCL).

Breakpoints for this instruction proved to be very difficult to implement. The way that was

chosen is different from the method described earlier for all other breakpoints. Instead of

replacing the PCL instruction with an illegal instruction, the ECB of the routine that the

. PCL is calling is overwritten with new values. These new values cause the debugger to be

‘invoked rather than calling the actual routine. When the debugger is later exited, the process’s

stack is manipulated so that control will pass to the routine originally called by the PCL.

This method seems to work fairly well but has some quirks that should be explained.

o The ECB is modified. The program counter and keys of the routine called by the
PCL will be modified when a breakpoint is installed. Don’t be alarmed.

0 The PCL has already executed. With most breakpoints, the instruction breakpointed
has not yet executed. This is not true for PCL instructions because of the way

that they are implemented. With PCL’s, the instruction has mostly completed but

one has not started to execute in the called routine. This means that the new

stack. frame has been built and the argument pointers have been put into it. The
debugger tries to make this situation transparent by looking in the stack frame to

get the register values before the PCL executed. It mostly succeeds except that the
program counter (PB) has been advanced past the PCL instruction.

o A breakpoint on a PCL won't be seen if the instruction fails to complete. This
point is sort of a corollary of the previous point. Because the pcl instruction has

nearly completed before the breakpoint is encountered, anything which prevents this
instruction from completing also prevents the breakpoint from being seen. A

common reason for failing to complete the instruction is some sort of fault which
cannot be serviced. Page faults and pointer faults are frequent events when
executing a pcl instruction because of the transfer of the argument pointers. If,
however, the pointer fault cannot be resolved, the instruction will not complete

and the breakpoint will never be seen.

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
Page 65

5.1.4 Single Stepping

Vhe ability to do single step’s is clearly a useful ability to have for debugging and thus

this capability is part of the Ring Zero Debugger. However, this ability is of much less

utility for users of the Ring Zero Debugger than it would be for other types of debuggers

due to certain limitations. These limitations relate to the designs of the processor architecture,

Primos, and the Ring Zero Debugger itself. These limitations are discussed below.

o Can only step from breakpoints. A user of the debugger can only issue the step
command if the debugger was entered from a previously set breakpoint (or step).
Thus if the debugger is entered due to a console interrupt, one must set a
breakpoint, leave the debugger, and have the breakpoint be hit before a single step
can be issued. The reason for this is related to the debugger design for doing next-
instruction prediction. The debugger will issue an error message should a user
attempt a step without having entered the debugger from a breakpoint.

o Only one process can step at a time. When one issues the step command it refers

to a single process. If the debugger is entered before this process completes its step

operation (for whatever reason), another step command cannot be issued without
getting an error message. The first step command must complete or be cleared

before another one can be issued. Supporting many, actively stepping processes in

the system at the same time would have made the debugger design very much

more complex. :

© Step aborts for various reasons. Step is a relatively useful command when used

with small step counts. However, if one gives it a large count, one sees before

very long that it will probably abort with an error message. This is due to the
fact that there are certain conditions that occur frequently in code that force the

step command to abort. The reasons for this relate primarily to the design of

Primos. Most of the reasons for aborting are listed below.

. Interrupt inhibited code. As previously discussed in section 5.1.1, a breakpoint

inside interrupt inhibited code can break the critical region. Therefore the

debugger will abort a step operation if it encounters an interrupt inhibit

instruction.

. Private address space code. The debugger was not designed to allow

breakpoints in a process’s private address space. Thus if one tries to step past

an instruction that calls or jumps into a process’s private address space, the

step command wil] abort ‘with an error message.

. Machine mode changes. The Ring Zero Debugger is written for V-mode only.

If one attempts to change the mode of the system with mode changing

instructions or by calling a routine with a mode other than V-mode, the step

command will abort with an error message.

. Unable to set breakpoints. If the debugger cannot set a breakpoint on a

particular instruction, then the step command must abort. Some of the reasons

Prime Restricted

PE-T-1278 . | Ring Zero Debugger User’ Manual
Page 66

for not being able to set a breakpoint are described in section 5.1.1.

5.2. The Issue of Non-resident Memory

One of the important features of Prime systems is the ability to support virtual memory.

There is a great deal of code in Primos to support this functionality. This code makes non-

resident memory become resident if it is referenced. In order to have this ability in the Ring

Zero Debugger, the debugger would either have to use the functionality in Primos or duplicate

this functionality itself. If Primos was used by the debugger to reference non-resident memory,

then the debugger would no longer be stand-alone. This would mean that it could not be used

to debug certain parts of Primos. Duplicating virtual memory support in the debugger is by

no means feasible. Therefore it was decided that the Ring Zero Debugger will not have the

ability to access non-resident memory.

The effect of the decision to not have the ability to reference non-resident memory is that

most Ring Zero Debugger commands will abort with a page fault error should non-resident

memory be referenced. To lessen the impact of this restriction, the debugger is designed so that

breakpoints can be set in non-resident memory and the let command can modify non-resident

memory.

This ability is achieved by having the Primos page fault handler invoke the Ring Zero

Debugger on every page fault when non-resident memory prevents these two commands from

completing. When the correct page is made resident, the commands are completed. Of course,

all. this manipulation is transparent to the user except when errors are involved.

The advantage of adding this “pending” ability for installing non-resident breakpoints is

that if everything goes well the user can’t even tell whether the breakpointed memory was

resident. The disadvantage of pended breakpoints is that only limited error checking can take

place at the time the command is issued. If the specified location does not represent a valid

instruction, this can only be determined when the non-resident page is made resident.

However, this will not be when the breakpoint command was issued but some time later

after the debugger has been exited.

Errors during pended breakpoints may be somewhat surprising to the user. First the error

will be shown possibly long after the breakpoint command has been issued but before any

process has hit the breakpoint. Secondly, the stated reason for entering the debugger will be

because of a page fault. This is the only way for the user to ever see the debugger entered

this way.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 67

5.3. Using a Separate Process

~The King Zero Debugver is implemented as a separate process Which has the highest

priority of any process in the system. This fact together with the inhibiting of interrupts

means that the debugger will never be preempted by another process or even by phantom

interrupt code. There are a couple of implications of this design.

o The debugger will fail if process exchange data bases are corrupted. Process
exchange is implemented in firmware but relies on the integrity of data bases such
as the ready list, PCB’s, and semaphores. If any of these are corrupted, the

debugger may be unable to run. In fact it is common in such circumstances for

the machine to be hung in a microcode loop.

o The debugger cannot be entered without Primos running. With stand-alone VPSD,

one can enter VPSD after a machine halts. This is because it does not use process
exchange. Invoking VPSD simply means jumping into some code which turns on
Segmentation and lets one exmaine memory. The debugger does need to have process
exchange on and thus Primos must be running. If the machine halts or is halted
while in Primos, Primos must be restarted by either warmstarting, coldstarting ,
or issuing a run command (if manually halted) before the debugger can be used.

o The VCP commands display and displave won't work while in the debugger.
Display and displayc are VCP commands that allow one to examine resident

memory locations while Primos is running. In order to accomplish this, the VCP
relies on the Primos clock process to read the sense switches and output values in
the “lights”. While the debugger is running, the clock process is not. Therefore
display and displayc will not work correctly.

5.4 Warmstart

Very litth is written, or for that matter known, about warmstart. It is a means of

attempting to restart the system right where it left off when it was stopped. The Ring Zero

Debugger can be used in many cases where warmstarts are attempted, yet there are some clear

restrictions. °

Stating that the debugger can be used with warmstarts refers to two basic abilities. The

first ability is that breakpoints can be set in warmstart code after process exchange has been

turned on. This code can be debugged just like any other code. The second is the ability to

warmstart while in the debugger. This means that if the debugger process is running when.

the warmstart occurs, a Warmstart procedure can be done successfully. One can be in the

debugger process either by just "passing through it” to service a breakpoint or by being in the

debugger command level. In the first’ situation, one will see the warmstart happen

immediately. In the second case, one will resume execution back in the debugger and will not |

see the warmstart until the debugger is exited.

There are, however, some situations where warmstarts will not work with the Ring Zero

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 68

Debugger. Phese are listed below.

© Breakpoints executed by interrupt processes may fail after a Wwarmstart. An
unfortunate aspect of the warmstart code is the way that it deals with the

interrupt stack. This code resets the interrupt stack, effectively destroying any

current state information. Because breakpoints need to use extra stack frames (see

section 5.1.2), any process which is servicing a breakpoint and thus using the

interrupt stack, may fail after a warmstart.

unknown.

5.5 Effect on the Primos Load

The Ring Zero Debugger is loaded as part of the Primos ring zero load, but in a rather

unusual way. The debugger is loaded first before the rest of Primos. The unusual part is that

after the debugger is loaded, nearly all the names of debugger routines must be removed. This

Means that the debugger can see any name in Primos but Primos can only see a few,

explicitly stated names in the debugger. The main reason for this is that the debugger uses a

few Primos routines including the PLP libraries. Because the debugger must reside in wired

Memory, Wired copies of these routines must exist. The best way to accomplish this is to load

separate copies of these routines with the debugger. However, this dictates that the debugger

have its own, separate namespace and thus the just described loading sequence is used. This

design gives rise to a few issues. ,

o Changing certain Primos routines can break the debugger. There are a few Primos
routines that are loaded both with the debugger and with Primos. Primarily these
include the PLP libraries, IOAS, conversion routines such as CHSFX1, and some page
map primitives. (A complete list of these routines can be found in the load.) If

any of these routines are modified incorrectly it will affect the operation of the

debugger, possibly breaking it. If these routines need to be changed and debugged,

one could modify the load so that the debugger picks up the unmodified version

and Primos uses the newversion.

o Many debugger global entrypoints appear to be unresolved. If one examines the

output from the Primos load, one will see many unresolved names immediately
after the debugger is loaded (but before the rest of Primos has been)..
Unfortunately, this is a normal situation brought about by the peculiar way that

the debugger must be loaded. These unresolved names concern Primos data bases

that the debugger must know the locations of. After the rest of Primos is loaded,

all these names should be resolved.

o A separate load map for the debugger is not generated. Most Ring Zero Debugger
Symbols do not appear in the Primos load map. Basically the debugger hus its

own, separate namespace. What would be desireable, then, is two load maps: one

for the debugger and one of Primos. Unfortunately, it is not possible to do this

Prime Restricted

PE-T-1278Ring Zero Debugger User Manual

Page 69

with SEG without generating an error. Therefore, it was decided that no load map

would be generated for the debugger. However, one can generate a map for the
debugger by making changes to the ring zero load file. (See appendix P.3).

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

-Page 70

Prime Restricted

Ring Zero Debugger User Manual] _ PE-T-1278

Page 71

Appendix A

Finding Variable Information from Listings

Program variables must be manually defined before they can be referenced (see section 3.6).

in order to do this, one must first know what the actuaJ definition of the variable is. The -

definition of a variable relates to where it is in memory and what the data type is. This |

information can be found in the cross reference of a listing of the program. The following

discussion describes how this information can be extracted from a listing. Before describing

how to pet program variable information from a listing, some genera] comments about the

way variables are defined should be helpful

Variables in programs generally fall into two classes based on how they are allocated, - -

’ Either they are statically allocated in memory (eg. PL1 static variables or Fortran common oS

areas) or they are dynamically allocated on the. current stack ‘frame leg. PLA automatic .

variables). Variables that are static ‘are usually defined in terms of the jinkage area of” a “i os

program. At Prime, this means that when the program is being executed, the static variables *,

are referenced as offsets from the linkage base register (LB). Dynamically allocated variables er

on the other hand are usually expressed as offsets from the stack base register (SB). Lastly,

‘variables in common areas ate referenced as an offset from the start of the common area.

In order to define program variables in the Ring Zero Debugger, a program listing must be

consulted. The listing will indicate the type of the variable and howit is defined. The kev

is to know how to get this information from the cross teference listing for the langauge that

the code is written in. The following examples will show how 10 get this inf!ormation from

listings in plp, pma, and, Fortran. Each example will show how certain- variables - Were.

actually defined in a program and then what was produced in the cross reference listing. 45° oo

PLP Listings

The following lines were removed from the module prwfSS in Primos. They show the

procedure definition and some variable declarations withm the program.

prwf$$:

proc (xkey, xunit. xbuf_ptr, xbuf_fen, xposition,

xretwords, xcode) options (nocopy, gote);
dct xunit fixed bin(15),

xbuf_ptr ptr options (short),

xbuf_len bit(16) aligned,

xposition fixed bin (31),

xretwords fixed bin,

xcode fixed bin;

Gci key_oction fixed bin,

old_cur_ro fixed bin (31),

idptr ptr options (short),

tronsaction_locked bit(1) otigned,

nrecs fixed bin(31):

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual

Page 72

The corresponding lines from the cross reference listing are shawn below.

@G1 O00035S KEY_ACTION bin(15) outomatic

@Q@1 @00154S LOPTR pointer automatic

@81 @82160S NRECS bin(31) automatic

081 0082126S OLD_CUR_RA bin(31) automatic

@81 0000425 TRANSACTION_LOCKED bit(1) aligned automotic

@@1 @00101S XBUF_LLEN bit(16) parometer

881 @00076S XBUF_PTR pointer parameter

@@1 @08112S XCODE bin(1S) parameter

@@1 @00070S XKEY pcrameter
@@1 @00104S XPOSITION bin(31) parameter

@21 @20187S XRETWORDS bin(15) parameter

@@1 @80073S XUNIT bin(15) parameter

The key to reading the listing is that there is the letter S following the second column of

numbers. This means that the variable is stack based and the number is the offset from the

base of the current stack frame. For example, variable "key_action” is at offset 35 in the

stack frame. Thus, one could describe the location of kev_action by the address-expression

"SB%+35". In fact this would be the way that key_action would be defined using the

define_command command.

Another point about the cross reference listing concerns variables that are labeled as

“parameter”. These variables represent arguments passed to the current program. However, the

actual value of the argument does not exist at the given stack location. This location contains

the address of the argument (since the pcl instruction passes pointers to the arguments not the

arguments). Thus one would have to go through one level of indirection to determine the true

value of the variable.

Another segment of the same cross reference listing is shown below to illustrate another

point. This example shows the way that a common area is represented (in this case pudcom).

If one wanted to define a variable that existed in a common area, one could express it as an

offset from the global symbol for the common area. For example, the address-expression for

variable “cusr” would be pudcom+10.

021 1 PUDCOM external

@@0000+00 2 FREE_PTR - pointer

0280002+00 2 EXT_PTR pointer

@00004+60 2 STK_RES(1:2) bin(15)
@00@06+02 2 PGFSPB pointer

@00010+80 2 CUSR bin(15)

000011480 2 PCBUSR bin(15)

@00012+00 2 UTBLPTR pointer

PMA Listings

To illustrate program variables in PMA, the following lines were taken from the Primos

routine pgmapa. Most of the lines demonstrate the use of the dvnm pseudo-op to define stack

based variables.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 73

ENT SDWADR

DYNM XPTR(3)

DYNM §6XUSER(3)

DYNM XBSAVE(2)

OYNM TEMP(2)

DYNM SDW_ADDR(2)
DYNM PPN

DYNM MAP_OFF
DYNM PME_OFF
DYNM MAP_PME(2)

SDWAOR ECB SDWXO,XPTR,2

The corresponding lines from the cross reference listing for pgmapa are shown below. It

should be easy to see that all the stack based variables show an offset followed by an

S. Thus an address-expression to define the location of the variable "map_off" would be

SB%+27. However, some of the stack based variables represent argument pointers and thus

only contain the address of the value of the argument. This is true of variables "xptr” and

"xuser”. Also shown in this listing are some variables in global common areas. These are

listed as an offset followed by the lJetter C. In this particular example, the actual common is,

again, pudcom. Thus an address-expression to reference variable "absave” is pudcom+20.

ABSAVE @08020C 0851 2251
HMAPSK @22062C 0251 e251
MAP_OFF ©0@027S 0845 0215 @221
MAP_PME 0800315 0847 ©229 233

PME_OFF 080@30S 6046 @222 0237

PPN @@8826S 0044 8208 9227

SOW2 @80202C 6051 e251

SDW_AODDR ©00024S 0043 6194 0198
TEMP @00022S 0042 8136 @142 0155 8157

XBSAVE @0002@S 0041 8081 0890 6123 6143
XPTR @00012S 0838 0674 291 8114 6168

XSAVE @@@G65C 0251 0251

XUSER @@0015S 0239 8148 6154

Fortran Listings

Finally, the following lines will show howFortran indicates variable definitions. These

code lines were taken from the Primos program taS.

INTEGER FUNCTION TAS (XLINE,XSTATE,UKEY, FNAME, FNAMEL,
x ATSW, CODE)

INTEGER XLINE(41), XSTATE(2). UKEY, FNAME (16). FNAMEL,
x CODE .

LOGICAL ATSW
INTEGER 1,FLEVEL, ICODE, CHARPT(5), BUFF (BUFSIZ),

x INFO(8) , JNKNAM(16),LTB,RTB, TPARS$, TYPE, LEVEL,

x LDISK ,PASSWD(16) :
INTEGER*4 TNPTR
DATA LTB8,RTB/:274,:276/

The corresponding lines from the cross reference listing are shown below. The second column

shows the variable type (e.g. I=integer, L=logical, J=integer*4). The third column shows the

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 74

basis for the definition. Both “argument” dnd “stack” mean that the displacement given in the

fourth column is relative to the stack. The value “linkage” means the displacement is reluuve

ta the linkage area. Finally, if a mame appears inside slashes, the offset as relative to a

common area whose name is in the slashes.

TA$
TNPTR
UKEY
VDNAM
XLINE
XSTATE

STACK 000051 @8@32S 258M

STACK 000206 @267S 087M 896M
ARGUMENT 000040 0032S @2@34S 9872

/LSMCOM/ 802233 0052S @191A
ARGUMENT 600032 8832S 8834S O88B8A

ARGUMENT @00035 @32S 8034S 6088A

ATSW L- ARGUMENT 600051 @@32S @@35S 0275M

CODE 1 ARGUMENT 800054 @@32S 0834S 0074
FNAME I ARGUMENT @@0643 9232S 6034S 103M

FNAMEL I ARGUMENT 000046 0032S 0034S 0076M

INFO I STACK 020136 8865S @@B8A 2090
JNKNAM I STACK @00146 @065S 8123A @125A

LOISK | STACK Q@00027 8065S 0101M 130M

LEVEL I STACK 800023 8865S 8073M 139M

LTB I LINKAGE @00400 2065S 00691 9159

MDVNO I /LSMCOM/ 802232 @@525S 8189
PASSWD I STACK @00166 @865S 0104M 6117A

RTB I LINKAGE 000401 @06SS @8@69I 8138

I
J

I

I

I

I

A few examples from the previous cross reference may be helpful. An address-expression

for the variable “info” is sb%+136. The variable “Itb” is defined in the linkage area so it

would be 1b%&+400. For a variable in a common area, "mdvno” would be defined as

Ismcom+2232. As with all languages on a Prime system, any variables that are arguments

contain pointers to the true argument values. Thus a pointer to the value for argument “code”

is at sb%+54.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 75

Appendix B

Command Syntax

The syntax for the Ring Zero Debugger is listed below. Both upper and lower case input

is allowed. The convention in the specification below is that commands and arguments may be

abbreviated to the substring of those letters which are capitalized.

<command> :is= : <veriable> <variable-type-option> |

Access <oddress-expression> |

Access_REGister <occess-registers> |

Access_TYPE <access~option> |

ARGumentS |

BReakKpoint <breok-expression> <proceed—count> |

CleaR <break-expression> |

CLeoRaAlt | .

- Continue |

DEF ine_COMmand <command—-name> <command—-list>

DEFine_VARiable <qualified-variable>

<address—expression> <variable-type-option> |

DELete_COMmand <command-name-option> |

DELete_VARiable <variable-option> |

DISplay_COMmand <command—name—option> |

DISpiay_VARiable <variable-option> |

Dump <oddress—-expression> <oddress-expression> |

Help <help-option> |

LET <voriable> = <new-volue> |

LIST <break~expression> |

LISTAII |

LOOKAT <process—option> |

Lookup_Address <address—expression> <symboi-type> |

Lookup_Symbol <symbo(> |

- Peb <process-option> |

Print_LOCKS |
ReoDY_LiST |

SeaRCH <address-—expression> <address—expression>

<search-pottern> |

STATus <status-options> |

Step <step-count> |

STRUCture <structure-option> |

SYStem_REGisters |

Trace <trace-options> |
Transtate_to_PHYSical <oddress—expression> |

Transtote_to_VIRtuo!l <physicol—page-number> |

TTybuf <process—-option> |

WHere

Prime Restricted

W
e

PE-T-1278 Ring Zero Debugger User Manual

Page 76 °

<variable> i= PL1 identifier

<variable-type-option> ::== <voriable-type-specification> {| <empty>

<address-expression> ::== <virtual-oddress> | <symbolic—expression> |

<base-register—expression>

<access-registers> ::=A|]B{L{IEIX {[Y | FB | sB | 1B [xB f

DTAR®@ | DTAR1 | OTAR2 | OTARS | KEYS |

MODALS | OWNER | FCODE | FADDR | TIMER |

FAR@ {| FLRO [FARt | FLR1 |] @] 1]... { 77

<access-option> ::=<= <access~-type> | <empty>

<break-expression> ::== <process—number> : <breakpoint—address> |

<breakpoint-address>

<proceed-count> ::== <decimat—number> | <empty>

<command—name> ::== string

<command-list> ::== <command> ; <command-list> | <command>

<qualified-variable> ::== <procedure—nome>\<variable> | <variable>

<command—name-option> ::== <command—name> | <empty>

<vorioble-option> ::== <variable> | <empty>

<help-option> ::== <command> | <empty>

<new-value> ::== a value expressed in the type of -its target

<process-option> ::== <process—number> | <empty>

<symbol~type> ::== ANY { PB { ECB [| LB {| LBN { COMMON | OTHER |
<empty> .

<symbol> ::== names from the Primos lood maps

<search-pattern> ::= ‘string’ | <octal-—list> <search-mask>

<stotus-options> ::== <process-number> | ALL | ‘USer |

INTerrupt | <empty>

<step-count> ::== <decimat—number> | <empty>

<structure-option> ::== <definition> <address—expression> |

<definition> | <empty>

<trace-options> ::== <process—number> <address—expression> |

<process—number> | <empty>

<physicat-page—number> ::== <octal—number>

<variable-type-specification> ::== <variable-type> |

<voriable-type> <variable-length> a

<virtual-oddress> ::== <segment>/<octal—number> |

<segment>/<octal-—number> <oddop> <octa!—number>

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 77

<symbolic-expression> ::== <symbol> | <symbol> <addop> <octal—number>

<bose-register-expression> ::== <bose-rea> |

<base-reg> <addop> <octal-—number>

<occess-type> ::== Ascii | Bit | Decimal | Hex | Octal | Symbolic

<process—number> ::== <decimat-—number>

<breakpoint-oddress> ::== <virtual-oddress> | <symbolic-expression>

<decimat=-number> ::== -32768 to 32767

<procedure—nome> ::== procedure from Primos load mop

<octal-list> ::=<= <octal-number> <octal-list> | <octa!—number>

<search-mosk> ::== & <octal-list> | <empty>

<definition> ::== CLDATA { DISK_QUEUE_BLOCK | ECB | FIGCOM |
PUDCOM [| PUSTAK | SUPCOM | UPCOM

<octal—number> ::== 16 bit octal number

<variable-type> ::= Ascii | Bit | char_Vary | Decimo! | Octo! |

Pointer

<varioble-length> ::== <decimalt—number>

<segment> [== 12 bit octal number

<oddop> to t+ [-

<bose-register> ::== SB% | LB% | XB% | «

<empty> =

Prime Restricted

ye
t

PE-T-1278 Ring Zero Debugger User Manual

Page 78 .

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 79

Appendix C

Assembly Language Syntax

The syntax for the assembly language accepted by the Ring Zero Debugger is listed below.

The definition is for V-mode only as this is the only mode that the debugger supports.

Symbolic assembly language input is only an issue for the access command.

<symbolic-input> ::== <generics> | <skips> | <decimal> |

<choracter> | <generic_ap> {| <branches> |

<shifts> | <field> | <mem_refs> |

<org_ptrs>

<generics> ::== <generic-mnemonics>

<skips> ::== <skip_mnemonics> | <skip—mnemonics> <bit-—number>

<bit-number> ::== 1 to 16

<decimat> ::== <decimal—mnemonics>

<choracter> ::== <character—mnemonics>

<generic-op> ::== <generic—ap-—mnemonic> <generic-ap~value>

<generic-cp-volue> ::== <base-reg-expression> <bit-expression>

<generic-op-opt ions>

<base-reg-expression> ::== <bose-register> <addop> <word-number> |

<base-register> | <word—number>

<base-register> ::== PB% { SB% | LB% | XB%

<addop> ::= + | -

<word-number> ::== 16 bit unsigned number

<bit-expression> ::== + <bit-—number> B [| <empty>

<generic~-cop-options> ::= ,« | <empty>

<bronches > ::== <branch-mnemonic> <word—number> :

<shifts> <::== <shift-mnemonic> <shift—-count>

<shift-count> ::== a number from @ to 63

<field> ::== <field-mnemonic> <field—operands>

<field-operands> ::== <far> | <fir>

<for> ::=—=@]|1

<fle> i::=0@f 1

<mem—refs> <::== <mem—ref-mnemonic> <tength-specifier>

<mem-ref—operand>

<length-specifier> ::== ¢ | % | <empty>

Prime Restricted

PE-T-1278 . Ring Zero Debugger User Manual

Page 80

<mem—-ref-operand> ::== <pc-retative> | <base-reg—-relative>

<pe-retative> ::== <pc-displacement> [

<pc-displacement> <pc—options>

<pe-displacement> ::== « <addop> <pc-bounds> | <valid-displacement>

<pe-bounds> ::== a number between -—223 and 255

<valid-displacement> ::== a number — (current program counter) is

within <pe-bounds>

<pe-options> ::== ,« [| .X [,*X °

<base-reg-relative> ::== <base—-reg-expression> <base-reg—options>

<base-reg-options> ::== .X | .Y J .e | .eX | .e¥ | .X* | .¥e

<arg-ptrs> = ap <bose-reg-expression> <bit-expresion> <ap-options>

.<ap-options> ::= ,S | ,SL {i.e | .*S | .SL [<empty>

<generic-mnemonics> ::== A1A | A2A [ACA | ADLL [| ARGT [| ... , -

<skip-mnemonics> ::== ORX | IRX [SAR | SAS | SGT |

<decimal—mnemonics > ::== XAD | XBTD | XCM [| XDTB | XDV |

<character-mnemonics> ::== ZCM | ZED | ZFIL | ZV | ZMvD |

<generic—ap-mnemonics> ::== ABQ | ATO [CALF | INBC J...

<branch-mnemonics> ::== BCEQ { 8CGE | BCGT { BCLE |

<shift-mnemonics> ::== ALL { ALR [| ALS | ARL | ARR |

<fietd-mnemonics> ::== ALFA | EAFA | LFLI |

<mem—-ref—mnemonics> ::== ADD {| ADL | ANA | ANL [| CAS |

Prime Restricted

Ring Zero Debugger User Manual PE-T-127§

Page 81

Appendix D.
Error Messages

Various types of errors can be encountered in the course of using the Ring Zero Debugger.

The different classes of errors are described in section 2.9. This appendix describes the errors

Known as user errors. It also includes warnings.

A breakpoint already exists at specified address. ;

An ottempt was made to instol! a breakpoint at a focation where one already exists.

A command definition has not been specified.

The define_command command hos been issued but is missing orguments which will define

the oction of the new user-defined commond.

A command nome hes not been specified.

The define_command command requires arguments which specify the command nome and the

definition of this user-defined command.

A Primos symbol is required as on orgument.

This command expects & symbol! from the Primos load maps but none was given.

A private address spoce does not exist for the active process.

The current command is referencing a private address space but the active process is

an interrupt process. The key is that interrupt processes don’t have their own private

oddress spoces.

A segment offset is not a valid oddress expression.

A number representing an offset within some “current" segment is not a volid form of

on address-expression. See the definition of oaddress—expression.

A valid address expression must be specified.

The given commond expected an address—-expression orgument but none was given.

A valid register name must be specified.

The occess_register command requires o valid register nome as on argument. See the

definition of this command.

An octal number is expected.

The current command expected an octal number but didn’t get one.

An unpend operation may be erroneously ignored. -

This warning indicates thet on operation that was “pended" due to non-resident memory,

may never become properly “unpended" when the page becomes resident. Pended operations

usually refer to breakpoints. The expectotion is that this warning will seldom happen,

but if it does, the breakpoint should be cleared ond re-installed.

Bit numbers must be between 1 ond 20 in octol.

The bit mumber operand specified is not in the correct range or rodix.
¢

Branch addresses must be 16 bit octal numbers.
The operand to o branch instruction must be on offset within the current segment. It

cannot be o relative address (e.g. °-5).

Breokpoint table is full. Command ignored.

The number of breakpoints currently defined equais the maximum number allowed. To.
Gefine another breakpoint, one must be deleted from the table. The attempt to set

onother breakpoint did not couse one to be instalied.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 82.

Breakpoints are not allowed for this instruction. .

Breakpoints are not imptemented fdr certain instructions. The fist of instructions is

given in section 5.1.1.

Breakpoints ore not allowed in debugger code.

Breokpoints cannot be set within the debugger code. They also cannot be set in code

which is needed to invoke the debugger when a breakpoint is hit. Code in this category

inctudes the gate added to support ring 3 breakpoints and all iftegal instruction

fault handlers.

Breakpoints are not atlowed in private segments.

The debugger wos not designed to allow breakpoints in private segments.

Breakpoints ore not supported for this form of memory reference

instruction.

The form of memory reference instruction refers to the base register relative form

thot are indexed with a displacement of 7 or less. These are one word instructions

thot use the contents of the x register to determine how to form the effective

address! It is truly amazing that any form so cryptic was ever defined in the

architecture. Breakpoints for such a ridiculous form are impossible.

Breakpoints cannot be set on an ARGT instruction.

An argt instruction is not an executable instruction. Any breakpoint should be set on

the next instruction instead. .

Breakpoints not allowed on LOLR/STLR KEYS. . .
Due to an orchitectural problem, neither the (dir nor the stir instructions can

support breakpoints if the register being referenced by these instructions is the

keys/modais register. Otherwise breakpoints can be set on these instructions.

Can’t continue from breakpoints set on WAIT instructions that use the
interrupt stock. Breakpoint/step cleared.

One of the basic rules of using the interrupt stack is that no process which uses it

should ever leave any stack history on it. In other words a wait instruction should

not be-executed if the process has active stack frames on the interrupt stack. Setting

@ breakpoint on a wait instruction would cause debugger stack frames to be teft on the

interrupt stock. This would eventually corrupt the interrupt stack. Breakpoints on

woit instructions are atlowed as long as the current stack is not the interrupt
stock.

Can't modify breakpointed memory. Operation aborted.

The basic design of the debugger does not allow one to change the vatues of memory
tocations that contain breakpoints.

Can‘t set breakpoints on calls to non-64V routines.

The debugger only supports Prime V-mode. Becouse of the way that breakpoints ore

implemented on pcl instructions, the debugger must disallow any ottempt to set

breakpoints on pc! instructions which call a routine whose mode is other than V-mode.

Can’t set breakpoints on catis to private segments. Operation

aborted.

The debugger does not support breakpoints in private segments. Because of the way that

breakpoints are implemented on pci instructions, the debugger must ciso disaltow any

breakpoints on pci instructions which call routines in private segments.

Command tine is too long. Any input ignored.

The command iine just entered exceeds the maximum tength of 256 characters.

Current instruction doesn't allow steps.

The current step operation must abort since the next instruction does not allow

breakpoints.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 83

Current procedure’s neme not in Primos lood mops.

As port of printing out the orgquments to o procedure, aon attempt wos made to determine

the nome of the procedure by using the volue of the Ib register. However, the look up

foited.

Define commands table is full.

The debugger interna! table used to store user-defined commands is full. Some user-—

defined commands must be deleted before more can be added.

Given option is invalid with this commond.

The current commond does not recognize a given option as valid.

Given physical page does not exist for this system.

The physical poge number given for the current command specifies a physical page that

does not exist on the current system.

Given physical page is free or voided.

The physica! page number given to the translate_to_virtua!l command does not correspond

(ot this moment) to any process's virtua! address. In other words, no process

currently owns this physical page.

Given structure mame is not known.

The date base nome specified in the structure command is not recognized by the

command. A list of the valid nomes con be seen by issuing the structure command with

no orguments.

Given virtual address corresponds to non-resident physical memory.

The tronslote_to_physical commond has been issued with on oddress that is not

currently resident. Therefore there is no corresponding physico! oddress.

Given virtual oddress is undefined.

The segment specified by the virtual address does not exist (i.e. it has never been

allocated). :

Index registers cannot be used with this instruction.
Certain memory reference instructions do not allow indexing. This is a function of the

Prime processor architecture.

Invalid access type specified.
The description of the access_type command specifies the volid oaccess types.

Invalid addressing mode. Check indirection or indexing.
The operand given for a memory reference instruction hes tokens in the fields that

usually indicate indirection or indexing, but the tokens connot be recognized.

Invalid bose register expression given as address.

A bose register expression is a specific type of oddress-expression. It specifies a

bose register plus or minus on octal offset. The debugger recognized a base register

but the vatues following it do not seem to be valid offsets.

_Invatid displacement in memory reference instruction.
The displocement given for a one word pe-retative form of a memory reference

instruction exceeds the allowable limits (-223 to 255).

Invalid input for current access type.

An ottempt was made to modify memory, but the new value is of the wrong access type

(e.g. an ascii value for a decimal occess type).

Invalid input type for this defined variable.
The data item being ossigned to o program vorioble is not of the some type as the

Progrom variable.

Prime Restricted

PE-T-1278 , Ring Zero Debugger User Manual
Page 84 ,

Invalid interrupt process number specified.

Non-positive process numbers specify interrupt processes. However, the number

specified for this command is beyond the range of those interrupt processes thot ore

currentiy defined.

Invatid length specified for printing o field.

The length given for printing a fieid is not consistent with the type of a field (e.g.

a decimal number that is 5 words fong). A common way to get this error message is to

add or modify a structure definition with an incorrect field definition.

Invalid mask. It must be a 16 bit octal number(s).

The mask or masks specified for the search command ore not 16 bit octo! numbers.

Invatid operand for oa memory reference instruction.

The operand specified for the memory reference instruction cannot be parsed into o

valid instruction.

Invalid operand for the instruction.

In attempting to parse an assembly language instruction, an operand wos given that was

invalid for the given instruction.

Invalid pcb tink address encountered.

In attempting to sequence through the linked tists of pcb’s that make up the system

ready list, a pcb link oddress was found that is clearly invalid.

Invalid physical page number specified.

The physical page number argument is not a 16 bit octal number.

Invalid ring number in pointer.

A pointer was specified with an invalid ring number. The correct form for a pointer

with a ring number is SSSS(R)/WWWWHWW where SSSS is a 12 bit segment number in octal,

Wwwis Go 16 bit word number in octal, and R is the ring number. The ring number

can only be @ or 3.

Invalid status command option specified.

See the description of the status command for o list of the valid stotus command

options.

Invalid symbolic address.

A symbolic address is a specific type of address-expression. It specifies a Primos

load map symbol! plus or minus an octal offset. The debugger interpreted the address-

expression as o symbolic oddress but did not recognize the tokens as being in the
valid format.

Invalid variable length.

The vaiue being specified for the length of the program variable is not valid for the

given type. Valid ranges for the tengths depend on the specified type.

Invalid variable nome.

Progrom variable names must be like variable names in PLiG. They must be start with

letters and consist of only letters, numbers, ‘_°, and ‘$°.

Invalid voriabte type.

A type is given for a progrom variable that is unknown. See the description of the
define_variable command for a list of the defined types.

Invalid word number in pointer.

A pointer wos specified with an invalid word number. A 16 bit octal number is expected

for the word number portion of the pointer.

Missing or invelid search pattern. A character string or 16 bit octal

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278

Page &5

number(s) is expected. .

The search pattern given for the search commond is not valid. See the search commond

description for more detoils.

Nesting of orrays in the definition of o structure is not supported.

The structure command works from internally defined tables in the debugger. These

definitions altow a field to be defined os an array. However, orrays cannot be defined

within arroys. See moduie ds>struc_dc!.pma.

No breakpoint exists ot specified address.

An attempt was mode to clear a breakpoint at a location were none wos set.

Offsets from symbols must be 16 bit octal! numbers.

All forms of address—expression’s can have an optional offset. The given offset could

not be converted into o 16 bit octal number.

Operction aborted due to foulted pointer.

In attempting to compute the effective address of an instruction, a faulted pointer

(tinkoge foult}) was encountered. This happens most often with either breakpoints or

steps on pc! instructions. The debugger cannot resolve the address so it must abort.

Procedure nome is required for voriables defined in terms of base

register expressions.

If o program variable is defined in terms of o base register, a check is made in the

debugger to ensure that ony references to this voriable ore made while executing in

the procedure for which the variable was defined. The procedure name is needed for

this check.

Proceed count must be between 1 and 32767. :

The proceed count attribute given in the breakpoint command wos not in the proper

range of 1 to 32767. :

Process numbers must be decimal numbers less than 256.

The process number specified is greater than the number of processes that Primos can

support. Currently the maximum number supported its 255.

Process specified does not hove terminal buffers.

The ttybuf command was issued with a process number that does not have terminal

buffers. Processes such as staves and phantoms do not have termina! buffers.

Referenced variable is mot defined for current procedure. .

A progrom variable has been referenced which was defined with o procedure nome that

does not match the procedure currently being executed by the active process.

Search pattern size must not be greater than size of the memory to

search.

The pattern specified with the search command is forger than the area of memory that

is to be searched.

Segment” numbers must be 12 bit octal numbers.
A 12 bit octoal mumber representing a segment number was expected as oan argument by the

current command.

Shift counts must be between @ and 77 in octal.

The operand to a shift instruction wos not in the valid range or radix.

Specified memory reference operand requires o 2 word instruction.

The is no one word form of this memory reference instruction given the specified x

operand.

Specified process is togged out.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 86

The process number specified references o process which is logged out. This is a

problem for the current command since there is limited information about a ltogged-out

process.

Specified process is not configured.

The process number specified is greater than the number of processes configured on

this system.

Specified register name is unknown. :
The register name given does not match any known to the debugger. See the

eccess_register command for a list of valid names.

Step presumes entry from a breakpoint/singte step.

The ability to issue the step command is limited to the situation where the debugger
must have been entered from a previously set breakpoint or single step. (See section

5.1.4).

Stepping through o critical region is not allowed.
In single stepping through code, an inhibit instruction was encountered. Setting

breakpoints in interrupt inhibited code breaks the critical region and thus the step

is aborted. (See section 5.1.1)

Structure definition is missing an array begin.
The structure command works from internally defined tables in the debugger. These

tables have been incorect!y modified to indicate the end of an array without oa

beginning. See the module containing the structure definitions for oa complete

description of modifying these data bases. (ds>struc_dcl .pma)

Structure definition is missing an array end.
The structure command works from internally defined tables in the debugger. These

tables have been incorectly modified to indicate the start of an array without an end.

See the module containing the structure definitions for a complete description of

modifying these dato bases. (ds>struc_dc! .pma)

Structure entry hos an invalid type.
The structure command works from internally defined tabies in the debugger. Each entry

specifies o type and fength for ao particular field. An entry has just been encountered

thot does not have a defined type. See the module containing the structure definitions

for a list of the valid types. (ds>struc_de!.pma)

Symbol not found in Primos load maps.
An unsuccessful attempt wos made to look up a symbol name or address in the Primos

lood maps.

The active process does not own a register set yet the specified

register only exists in user register sets.
Certain registers, such as fcode and faddr, only exist for a process when that process

owns a register set. When the process gets swapped out of a register set, values for

these registers are not saved and thus ore undefined.

The ending oddress is not a valid address expression.

The commond just issued requires a valid address-expression as an argument. This

argument represents the ending oddress. See the definition of address—-expression.

The size timit on the search pattern is 8 octal numbers or a string

of 20 characters.
The search pattern given for the seorch command is not valid. See the search command

description for more details.

The specified name hos not been defined as a command. :
An attempt was made to either display or delete o user-defined command that had not

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Pape 87

previously been defined.

The starting oddress is not ao volid address expression.

The commond just issued requires o valid oaddress-expression os an argument. This

argument represents the starting address. See the definition of oddress—expression.

The step count must be a number between 1 and 32767.

The vatue given for the step count wos either not a valid number or not in the a! lowed

ronge.

There is already an octively stepping process.

The design of the debugger onty allows one process system-wide to be actively

stepping ot any one time. (See section 5.1.4).

Too mony arguments specified.
The given commond uses fewer arguments than were given on the command line.

Too mony masks specified.

The mosk specified for the search command is not the some length os the specified

pattern to search for. The mask and the pottern must be the some number of words.

Unknown command.

The commond typed is neither a valid debugger command nor o user-defined command.

Unknown V-mode instruction.

The current commond required a look up of on instruction by either opcode or mnemonic,

but no corresponding value wos found in the internal debugger instruction set table

for V-mode instructions.

Variable is not defined.

A reference has been mode to a program variable which has not been previously defined.

Voriable toble is full.
The internal debugger table used to store information about program variables is full.

Some variables must be deleted before more can be added.

Virtual address must be specified in octal.

The argument typed is not a valid virtuo! address. Valid input must be oan octal

segment number and then on octal word number with ao / separating the 2 fields.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 8&

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278
Page 89

Appendix E

Summary of Functionality Limitations

Due to the complexity of Prime processors and Primos, it is not possible to develop a

debugger without some caveats or limitations on its functionality. This appendix summarizes

some of these limitations. Complete descriptions of the limitations are given in chapter 5.

1. Breakpoints cannot be set on the following instructions: ARGT, CALF, E16S, £321,

E32R, E32S, E64R, E64V, IRTC, IRTN, LPSW, STEX, and SVC. The quad floating

point instructions are also not supported.

2. Breakpoints will not work if placed in the following places: check handling code,

phantom interrupt code, the tape dump program, coldstart and warmstart code

before process exchange is turned on, code executed by the frontstop process, illegal

instruction fault handlers, Ring Zero Debugger code.

3. Breakpoints should not be set in interrupt inhibited code.

4. Memory can’t be modified where breakpoints are set.

5. Breakpoints won’t work on self-modifying code.

6. Breakpoints make it more likely that a stack might overflow by pushing on extra

stack frames.

7. A_corrupt stack can make the debugger fail.

8. Breakpoints in a few places in the ring zero fault handlers can sometimes cause
deadly embrace.

9. Breakpoints on pcl instructions won't be seen if the instruction fails to complete.

10. The step command can only be issued if the debugger was entered by encountering

a previously set breakpoint. .

11. The step command cannot be issued again if a previous step command has not

completed.

12. The step command will abort for various reasons: an inhibit interrupts instruction

has been encountered, the process is about to enter a private segment, the code is

attempting to change modes, a breakpoint cannot be set on the next instruction.

13. Non-resident memory cannot be examined.

14. Corrupting a process exchange data base may make the debugger fail.

15. The debugger cannot be restarted without running Primos.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 90

16. The VCP commands display and displaye do not work while in the debugger.

17. Warmstarts on breakpointed processes which use the interrupt stack may fail.

18. Warmstarts while in the debugger do not work at all on the P85O.

19. Modifying Primos routines that are also separately loaded with the debugger can
make the debugger fail.

Prime Restricted

Ring Zero Debugger User Manual . PE-T-1278
Page 91

_ Appendix F

Maintenance Notes

Like any other piece of software, the debugger is expected to evolve over time. In many

cases, these changes may be made by engineers who are not very familiar with the structure

of the debugger. The purpose of this appendix is to pass along some information that may be

useful to those people who need to know more about the structure of the debugger. If more

information is desired, a complete design specification was written and can be found in osdoc

(the document system for the Primos group).

F.1 Changes to Primos for the Ring Zero Debugger

Most of the Ring Zero Debugger consists of newly written code. This new code consists of

‘about 100 modules and resides in a new Primos subdirectory know as ds (i. debugger source).

This code is for the most part, independent of the rest of Primos.

The actual number of existing Primos modules which were changed for the debugger is

very small. The number is 8 , excluding minor insert file changes, and half of these changes

consist of only a few modified lines. The basic changes are listed below.

1. A new debugger: process

2. A modified system console driver to detect the debugger key sequence and invoke

it-if it is configured

_ 3. Modifications to the illegal instruction fault handlers to invoke the debugger if it

is configured (basis of breakpoints)

4. A modified frontstop process to loop while the debugger is running (P850 only)

S. The addition of a new private gate so that breakpoints can be supported in ring 3

One other area where the debugger will be noticed is the ring zero load. The load file

load>begin_load is very much larger because this is where the debugger was added to the

load sequence. The final phase of the ring zero load is also different. Just before the mapgen

program is invoked, a new program (dump_maps) will be invoked. The purpose of this

program is to write the newly created Primos load maps into one of the Primos run images

(ie. PRXXXX files) for later use by the debugger.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual

Page 92

F.2 Areas Most Likely to Change

There are two major reasons for changing the debugger. One reason is to enhance the

existing functionality. An example of such an enhancement is to allow conditional break points.

The other reason for changing the debugger is if Primos changes. This is true because the

debugger knows about, and makes certain assumptions about, the structure of a few Primos

data bases. This latter reason for changing the debugger will be the topic of this section.

The basic operation of the debugger (e.g. breakpoints, accessing memory and registers), has

very little connection with Primos. This code depends more on the processor architecture than

on Primos. In other words, it will be a relatively rare occasion that a change to Primos will

Tequire a change in these routines. What is more likely to require changes are certain

commands that are rather closely related to the current structure of Primos. These commands

include structure, status, ready__list, print_locks, and ttybuf. ,

The structure command will undoubtedly be the major reason for changing the debugger.

The price of getting the desireable functionality of this command is that there is a debugger

data base that can very easily become out-of-date. When this happens, the structure command

will fail to work properly. It will be the job of every engineer to update the debugger

structure data base when a change is made to a Primos data base that the debugger knows

about.

One more reason for modifying the structure command will be to add newdefinitions for

new or existing Primos data bases. The original set of structure definitions was just to

demonstrate .the capability. The hope is that as the use of the debugger becomes more

widespread, engineers will populate this debugger data base.

Another likely command that will require modifications is the status command. It returns

a fair amount of information on each process, much of which can change over time. Some

examples of things that can change in Primos that will require a corresponding change in this

command are new interrupt processes, new ready list levels, new user types, new nllocks, and

new abort flags.

Other commands that may easily require changes are print_locks and ttybuf. If any

nilocks in the system are added or modified, then print_locks must reflect the change. The

ttybuf is able to display the contents of terminal buffers by knowing the data base for these

buffers. Any changes in the format of these buffer data bases must be reflected in the

ttybuf command of the debugger.

One situation where one needn't change the debugger is if new interrupt processes are

being added at an existing ready list level. This is somewhat surprising since the Autopsy

program requires modification in this circumstance and the debugger does not. The difference is

due to the fact that the names of interrupt processes are looked up in the load maps by the

debugger.

Prime Restricted

Ring Zero Debugger User Manual PE-T-1278

Page 93

In summary, the following changes to Primos will require changes to debugger code. The

commands or modules affected by the changes are shown in parenthesis.

o modifications to Primos data bases that have a debugger structure defined for them

(structure)

o changing or adding newuser types (status)

o ready list level changes (ready__list, status)

o changing or adding new nilocks (print__locks, status)

© changing or adding newprocess aborts (status)

© changing terminal buffer data bases (ttybuf)

© elimination of the hideous refalt mechanism in Primos (ds>refalt_fix.pma)

F.3. Getting a Load Map

Getting loader information about the Ring Zero Debugger is unfortunately somewhat

involved. Because the debugger is loaded first and then all symbols are expunged, there is

virtually no information about the debugger in the Primos ring zero map. There is a way to

pet a Separate map of the debugger, but because of limitations in the seg loader, the standard

load is not set up to generate one.

The problem with seg is that it cannot generate two load maps in the same load sequence.

The way to get around this is to issue the seg subcommand “return” to leave the load

sequence and then restart it with the subcommand "load *". This allows one to get a map of

just the debugger, separate from the Primos ring zero map. However the bad consequence of

doing this is that when seg completes, it will indicate an error. This is at best confusing to

people, at worst it will prevent cold.cp! program from running. For this reason, a map is not

automatically generated.

In the actual load file for the start of Primos ring zero load, the seg commands to

generate a map for the debugger are included but are commented out To get a debugger load

map these lines should be replaced “with the real commands. It may aiso be necessary to

manually run cold.cpl.

Prime Restricted

PE-T-1278 Ring Zero Debugger User Manual
Page 94

F.4 Reporting Errors

For problem reporting purposes. the Ring Zero Debugger is just a particular part of Primos.

Therefore, if there are anv problems with the debugger, the appropriate means of resolving: the

problem is to enter a spar into Polaris just like any other Primos problem. On this spar, the

product will be Primos, the subproduct will be debugger.

Prime Restricted

tp
t

Ring Zero Debugger User Manual PE-T-1278

Page 95

Index

> command 37

Access command 12, 17

Access__register command 17

Access_type command 12, 18

Active process

definition 5

discussion 7

Address space

changing 12, 18

private 7, 65, 81, 82

Address translation =

physical to virtual 46

Virtual to physical 4§

Address-expression, discussion of 6

Argt instruction 21, 62, 82

Arguments command 25

Assembly language syntax 79

Autopsy 2, 51, 52, 55, 92

Baud rate 9

Break-expression, discussion of 6

Break point command 20

Breakpoints

clearing 14, 21

discussion of 14

displaying attributes of 14, 22

effect on Primos 61, 62, 63

effect on stack 82

effect on system performance 62

example of 3

implementation 6]

installing 20

instructions not supported 61, 82

places to avoid 14, 62

related commands 20

Prime Restricted

PE-T-1278
Page 96

Check handling code 62

14, 21

14, 21,
Clear command

Clearall command

Coldstart

active process if entered during 7

after a halt 67

62

entering debugger during 9

breakpoints in

Command environment 9

Command line 10

Command syntax 75

Commands, descriptions of 17

Commands, multiple per line 10

Concealed stacks, examining 25

Configuring the debugger 8

Console interrupt

active process if entered during 7

definition 9

failure to respond to a 52

Continue command .. 44

CPU's supported 1

Critical regions 53, 62, 65

DBG 2, 36, 59

Deadlock 52, 63

Debugging

fatal process errors 50

hardware 56

new code 49

shared subsystems 59

system halts 55

system hangs 52

40

Define__variable command 36

Define_command command

Delete_command command 41

Delete__variable command 38

Display, the VCP command 67

Display_command command 41

Prime Restricted

Ring Zero Debugger User Manual

Ring Zero Debugger User Manual

Display__variable command 38

Dms channels 18, 32, 57

Dmx 7

Dump command 13, 18

Dump_maps 59, 91

ECB, modified for breakpoints 64

Entering the debugger, ways to. 9

Erase character 9

Errors

debugger internal 94

during pended operations 66

faults 15

message descriptions 81

simulating with the debugger 50

system 15

types of 15

user 15

warnings 15

Fault handlers —

illegal instruction 62, 63, 64, 91

in the debugger 16

page fault 63, 66

role in breakpoints 61

Faults

pointer 85

while using the debugger 15

FEP 57

Frontstop process 62

GEM 60

Halts 55, 67

Hardware, debugging 56

Help command 45

Inhibited code 62, 65

Prime Restricted

PE-T-1278
Page 97

PE-T-1278
Page 98

Interrupt processes 11

Interrupts 7

Kill character 9

Let command 38

14, 22

Listall command 22

List command

Listings

getting variable attributes from 71

type needed for debugging 49

68, 93-
Loading Primos, effect on 68

12, 18

Lookup__address command 34

Load maps

Lookat command

Lookup__symbol command 34

Maintenance of the debugger 90

Memory

changing the type for printing 12, 18

displaying as a structure 45

- hon-resident 16, 66

referencing 12, 17

searching for patterns in 19

Message buffer 27, 53

Modes, changing 65

Nlilocks 31, 92

Networks, effect of debugger on 8

Original process 5, 6, 23, 46

P8501, 7, 62, 68, 91

Page faults 16, 66

PBHIST 60

Pcb command 25

Pcl instructions 64

Pended operations 21, 66

Prime Restricted

Ring Zero Debugger User Manual

fp
r

Ring Zero Debugger User Manual PE-T-1278
Page 99

Performance testing 39

Phantom interrupt cade 7, 62

Primos

effect of debugger on 61, 87

effect on load 68, 91

exiting to 10, 44

Tevision with debugger 8

Toutines used by debugger 68

Primos changes 91

Print_locks command 31, 92

Proceed count 21

Process

commands for examining a 25

debugging fatal errors in a 50

logged-out 26, 85

ready list level 12

type 12

Process aborts 53

Process exchange 9, 67

Program variable

changing the value of a 38

- defining a 36

definition of 5 oo

deleting a 38 :

discussion of 36

display the attributes of a 38

examining a 37

types 37

Quits 9

Radix 5

Ready list, displaying the 31

Ready__list command 31

Registers

examining system 32

microcode scratch 18

referencing 17

Prime Restricted

PE-T-1278
Page 100

Remote console 5§

Search command 19

Segment faults 16

Self-modifying code 62

Sense switches, for configuring debugger 8

Shared subsystems, debugging 59

Single steps

description of 23

example of 4

in a high-level language 49

limitations of 64
Stacks

concealed 25

debugging when corrupted 51, 63

effects of breakpoints 63

examining a process’s 26

interrupt 64, 82

overflow of 63

Status command 11, 25, 92

Step command 23

Structure command 45, 92

Structures, adding and updating 86, 92

Symbol

associating addresses with a 34

definition $5

look up the address of a 34

types 34

Symbolic information, displaving 12, 22, 34

System console 9

System halts 55

System hangs 52

System state, examining the 31

System__registers command 32

Tape dump program 62

Terminal buffers, examining a user’s 27

Testing SO

Prime Restricted

Ring Zero Debugger User Manual

fy
t

Ring Zero Debugger User Manual PE-T-1278
Page 101

Time. effect of debugger on 7

Timeout of devices §

Trace command 26

Translate_to_physica] command 45

Translate__to_virtual command 46

Ttybuf command, 27

Usage command 60

User-defined commands

defining new 40

deleting 41

discussion of 40

displaying the definition of 41

VPSD 2, 16, 67

Warmstart

after a halt 55, 67

breakpoints in 62

general discussion 67

Where command 46

Wired memory 8

Xon-xoff 9

Prime Restricted

Corl P. Underwood is attempting to emulate a CPU,

~ He works 24 hours a day, 7 days.a week, 52 weeks a year.

- He can do in 1 second what o Prime 9958 can do in 1 nano—-second.

Here is a comparison which will show how Car! is doing.

TASK PRIME 9952 CARL

I Execution of a generic instruction:
- STLB & cache hit 90 ns 1 min 30 sec
- STLB hit, cache miss 908 ns 15 min

- STLB miss, cache hit 2128 ns 35 min
- STLB miss, cache miss 3008 ns 56 min
— Page fault (disk 1/0) 30 - 100 ms 1—- 3.1 years

II Interrupts:
— Clock process (25@ hertz) 4 ms 46 days
— AMLC clock (11@ boud) 100 ms 3.2 years

- AMLC clock (9608 boud) 1.041 ms 12 days
- Minor time slice 300 ms 9.5 yeors
- Major time slice 2 sec 63.5 yeors

III Wait Times:
— Process Eschange
- Average disk seek
— Random disk seek

- Average latency time

IV Mis!.
-— 1 second of wall clock

—- Rewind tape
~ Coffee break

DMx trap (DMA — 0MQ)
Burst mode DMA tronsfer

900 — 7000 ns
4 words 900 ns

every 6900 ns
for 1.8 ms

1.9 — 7.6 us

9.8 —- 25.8 ms

45.8 ms

8 ms

1 sec

1 min

15 min

15 min — 2 hours
4 words 15 mins

every 2 hrs
for 21 days

32 mins — 126 mins

3.5 — 18 months
1.5 years

2.5 months

31.7 years

1902 years
28,530 yeors

V
e

Ring Z ero Debugger E xanples (10/10/¥5)

CP>

cp t> syscir De naon stra tron |

eee CPU VERIFIED eve . .

CP> boot 74114 <% Corn Figure the debumager and

enter (Tt during cold start

Status Cummand .
Debugger entered due to coldstart request.

-> status , <

Process 1 SYSTEM

Level: System process

Type: Supervisor

State: Ready ‘ . .
PB: 14(@)/4667 (SUPPB) Fiest inst ry ctiod executed
LB: @(@)/@ (Unknown) a

SB: 6003(@)/164 xB: e(2)/e by usec |
L: eeeeee eeoeee E: eeeeee eeacee
x: e@eocee Y: eeeece
FAR@: eeeeee eegece FLR@: e9e9ee eoceee
FARI: 80000 eaegee FLR1: 90008 e@e000
Keys: 0814000

-> continue

Leaving the debugger.

CONFIG =DATA CONFIG .

S <: Conscle tater rupts
Debugger entered due to console interrupt.

ce Process -20 (BK1PCB) was executing at 6(0)/42313 (BK2PB + 4).
=> continue

- Leaving the debugger. ; /

\ i
/

Detugger entered due ic console inisrrupt.

Process -2@ (BKIPCB) was executing at 6(@)/42313 (BK2PB + 4).

-> continue

Leaving the debugger.

PRIMOS 20.1.900S

(c) Prime Computer, Inc., 1985

2048K BYTES MEMORY IN USE

Starting up revision 19 partition “DOLFIN".

(Quota system may be incorrect; run FIX_DISK.)
\ i
Debugger entered due to console interrupt.

Process 1 was executing at 6(8)/46576 (PGRESI + 4).

~> continue

Leaving the debugger. MvCh poor’ wiced

aterSTPleasé enter date and time.

OK, COMO -NTTY MWemaavy for the debugger
OK, START_NET NETCON.EN.D11 -NODE EN.D11

Beginning Network Initialization.

OK, ADD -ON ENS OSGRP4 SYSENS INTEG OSGRP2 NEWENS
“KK, ADD -ON ENM SYSENM OSGRP1 SOFTM DUMPM DSAG

&, ADD ~ON S35 OSGRP@ OSGRP3
OK, event_log -net -off

OK, RDY -LONG

OK 00:02:42 47.566 94.230

/* Enter time and type CO —CONTINUE.

OK 00:22:43 ©.087 6.000

CO —PAUSE

OK 02:22:43 @.066 6.093

se ~100385 -1502

OK 15:02:04 8.338 0.727

co =-continue

*& 15:02:11 @.854 0.2080 . .

» MAX ALL

 41(0)/33046 ARGT

OK 15:02:11 8.180 ©.0028 -

COMO -<NTTY

OK 15:04:11 6.860 @.057

CO -END

OK 15:04:11 8.054 8.808

\
Debugger entered due to console interrupt.

Process —20 (BKIPCB) was executing et 6(@)/42313 (BK2PB + 4).

~> access_type é— access-type and ACCESS Commands
Current access type is symbolic. dd

—> occess prwf$$, C0 ftSS— fr essiuw
11(8)/33046 ARGT < Symbolic a exp

11(8)/33047 LDA% SB%+ 70 ,»

11(8)/33851 STAP SBX+ 34? é- s tatus Command
-—> status .

Process -20 BKIPCB

Level: Backstop process

Stote: Reody

PB: 6(0)/42313 (BK2PB + 4)

LB: 6(®)/42118 (SCHED)

SB: 4(0)/163750 « XB: 4(0)/552
L: eeeeee eevee E: eeceee aoeeee
x: ee2400 Y: eeee9e
FAR@: e@@e0ee eoeeee FLR@: @00006 eeoe2e
FAR1: @@@00e Be200e FLR1: 00002 e000e0
Keys: 034101

4 fb occess 11/33046 - S virtual address - OXplession

11(@)/33047 LDAK SB%+ 70 ,«
11(8)/33051 STAF SB%+ 34?
—> occess_type octal ,

> access 1b%+402 | re lative
6(8)/42512 ee6e0e Ss base Teg) ster

stey7aasisenerse7 address - expressior
4(®)/163752 90004

4(®)/163753 163747 ? ;

-> occess_type symbolic & '

-> occess © ‘

6(@)/42313 BDX 42313

6(8)/42315 IRS% 42466 ,Y 7? .

~> abedefghi jk|i7occess_type < Ki L\

Current access type is symbolic.

-> stotus

Process ~20 BKIPCB

Level: Bockstop process

Stote: Ready

PB: 6(@)/42313 (BK2PB + 4)

LB: 6(@)/421108 (SCHED)

SB: 4(@)/163750 XB: 4(0)/552

L: peeves eo ;
quit. ($$Ft

lookat . .

tive process is ~20. < Charging the active process

lookat 1

> status . with the loo Kat COM MH and
Process 1 SYSTEM

g

)

line Cqpab, ty

capabr|ty

Level: System process +

Type: Supervisor hy : C

State: Waiting at 6(0)/13350 (ASRSEM) <— Waiting for C haracter Np

PB: 6(@)/34235 (WAITA + 74)

LB: 6(0)/55786 (C1TINS)
SB: 6003(20)/164 xB: 4(8)/100100
L: eeee0ee Ee0000 E: G9ee00e 200000 :

xX: eeeeee Y: 000000

FAR@: ‘epeeee 800000 FLRO: eeeeee BeE08e >

FAR1: e9ee0ee ee0e20 FLR1: e8eee9 Ce8ee0

Keys: 014801

—> access_type octal
‘ A

-> dump vpdev vpdev+15 Comma dé— dump
6(8)/23757 84962 e0ee01 ee2001 920001 980001 200001 e9000e1 e0eeo1

6(0)/23767 00001 e@0001 ee00e1 900001 eeeee1 1eeece .
-> breakpoint pagtur+! c break point and (st Commands

—> list pogtur+1

Type Address Procedure Process Count Mnemonic

brkpt 6(0)/45205 PAGTUR + 1 Any 1 CRA

=> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process 29 was executing ot 6(0)/45205 (PAGTUR + 1).

-> status .

Process 29 (Login name is not resident)
Level: Network process

Type: Network process

State: Ready
PB: 6(@)/452@5 (PAGTUR + 1)

LB: 6(8)/46002 (PAGTUR)

oes Owns register set 1 see

co location of breakpoint

SB: 6000(@)/1264 XB: 30(0)/61460

L: 000018 100077 E: eeeeee eaeccee

xX: 80000 Y: 177777

FAR@: eeeeee eeecee FLRO: eeQene eRe20ed

FAR1: 031070 200000 FLRI: eee0028 ee0000

Keys: 034188 Modais: 100077

Feode: 045206 000040

Locks owned: NETLCK

Faddr: 6(8)/1703

<—————_ AI Lock held

-> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process 29 was executing at 6(@)/452@5 (PAGTUR + 1). :

—> list «

Type Address Procedure Process Count Mnemonic

brkpt 6(@)/45205 PAGTUR + 1 Any 1 CRA
~> clear pogtur+1

~> List e«
——— USer errots

eee Debugger user error:

No breckpoint exists ot specified address.

~-> foobar

eos Debugger user error:

Unknown command.

-> occess 7777/28

29:7777(8)/28

* Foult while in debugger:

Segment foult (type 60) encountered at 55(0)/15227.
Attempt to reference 7777(8)/®e.

> access niogin .

15(0)/2267 *

y

Fav\t tA debugger
<< Segmeat

ese Foult while in debugger:

Page foult (type 1@) encountered ot 55(@)/15227.

Attempt to reference 15(8)/2267.

-—> continue
Lecving the debugger.

date

Oct 85 15:07:56 Thursday

.4 13:07:59 @.166 0.157

&— page £ av\ft tnd debygser

Demonstca tioydate

@3 Oct 85 15:89:08 Thursday

OK 1§:09:11 98.136 0.000

\
Debugger entered due to console interrupt.

Process -20 (BKIPCB) was executing ot 6(@)/42313 (BK2PB + 4). -

“> access_type symbolic _

“> access pagtur+t ~- -

6(8)/45205 CRA ?

—> breakpoint pagtur+1

=> continue

Leaving the debugger.

ovail

Debugger entered due to breakpoint/single step.

Process 1 was executing at 6(8)/45205 (PAGTUR + 1). .
“> access_register a & access_ feo ster COMMAN d

A: 080010 -
-> status

Process 1 SYSTEM eee Owns register set 1 sss

Levei: System process

Type: Supervisor

State: Ready

PB: 6(@)/45205 (PAGTUR + 1)
LB: 6(@)/46002 (PAGTUR)

SB: 6000(0)/1264 : 6002(3)/3073

Lb: 080010 100077 E: e800e0 eRe0se

xX: eeee0e « Y: 177777

FAR@: 66002 002754 FLRO: 800004 ae0000

FAR1: 66002 002754 FLR1I: 000016 800000

Keys: 034100 Modals: 100077

Feode: 045206 @20040 Faddr: 6(@)/17@3 A ; ft df
“oat . ’ wbie

—> occess_register a C—_—_—_—_—— Qa register (5 MO

A: 000010 12345

—> occess_register a

A: 012345

-> access_register Ib

LB (high order): 900006

LB (low order): 046002
> access_register fcode

FCODE (high order): 045206

FCODE (low order): 000040
—> search 55/855/177777 "mits? a search COMM an d
5: : '5(@)/14203 %11:2 (for, a string)

eee Foult while in debugger:

Page fault (type 10) encountered at 55(0)/128507.

Attempt to reference 55(0)/174000.

-> occess_type ascii

> access 55/14203

§5(0)/14203 %1
55(@)/14204 1: -

55(0)/14205 22 ?

-> access_type octal!

—-> dump 6820/2600 6008/2677

620(0)/2600 140000 140001 000077 140003 140004 141223 140275 ee0000

600(0)/261@ e0eeea eaaega BE0000 ea0Ree BeeQ202e EQBE0e OeQe0e eanaeD

600(0)/2620 900609 eeaeega BEgE0e Beeeee GO208e 140272 BADede Oe0000

9(@)/263@ 80000 140750 140751 eeeeee Be0e0e eHAeee BeEe00e e02000

.0(@)/2648 82000 eeeese BeGeee eeeEoe 800100 000100 900100 900100

600(8)/265@ 000101 900101 800161 920181 200101 800181 003777 003777

600(@)/2668 003777 803777 023777 083777 803777 003777 803777 003777

600(@)/267@ 003777 083777 003777 683777 863777 803777 083777 @23777 f at tern

=> search 6820/2600 6080/2677 140001 & 140001 e— se@arc h of a p
600(6)/2601 140001 .
600(0)/2683 140003 VU SING q
600(0)/2685 141023

600(@)/2606 140275
100(8)/2632 140751 . . .

Se iatall - L listal| Command

Type Address * Procedure Process Count Mnemonic Z

brkpt 6(8)/452e5 PAGTUR + 1 Any 1 CRA
-> clearall ———$—— clearal| Command
—> tistall

No breakpoints ore set.

-> continue

Leaving the debugger.

Volume DOLFIN

118512 total records

11296. records avei lable

90.5% full

mask

OK 15:69:31 1.036 2.975

\
Debugger entered due to console interrupt.

Process -20 (BKIPCB) was executing at 6(0)/42313 (BK2PB + 4).

—> breokpoint p$cidx+1
=> continue

Leaving the debugger.

date
€

Debugger entered due to breakpoint/single step.

Process 1 was executing ot 41(3)/1335@3 (P$CIDX + 1).

=> eccess_type symbol ic

-=> access p$cidx

-1(8)/133502 ARGT

£29 (@)/133583 LOAF 133616

+ 13(0)/133504 STAP SBX+ 31
41(@)/1335@5 EAFA ©, SB%+ 12 ,2

41(@)/13351 LDAg SB%+ 26
41(@)/133511 BLGE 133515 ? :

-> clearall ne step Command
—> step

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 41(3)/133504 (P$CIDX + 2).

—> step 2

Debugger entered due to breakpoint/single step. ’

Process 1 wos executing at 41(3)/133510 (P$CIDX + 6).

-> step 1080

Debugger entered due to breokpoint/single step.

Process 1 wos executing at 41(3)/1134 (HASH_UID + 134).

—> step 2000

\ ——— Can enter debugger

Debugger entered due to console interrupt. .

Process 1 wos executing ot 55(@)/615 (DBGSRT + 74). with A Consele interrupt
=> listall . . .
Type Address Procedure Process Count Mnemonic wh ‘ \ e S$ ingle Stepp ING

step 32(8)/7733 CL$PIX + 53 1 1659 LDA : :

—> continue

aving the debugger.

ougger entered due to breokpoint/single step.

Process 1 was executing at 32(3)/10432 (CLSPIX + 552).

-> access_type octal G)

=> occess pfen | é— page Laytt Counter

6(0)/622 eee02e0
6(0)/623 007041 7?

—> breokpoint 1:pogtur+467 5 j US IHS a proceed Covxt with the

-> listall ° ,

Type Address Procedure Process Count Mnemonic . a

brkpt 6(0)/45673 PAGTUR + 467 1 8 STL breakpowt Com™ ud

-> continue

Leaving the debugger: -

@3 Oct 85 15:14:52 Thursday

OK 15:14:53 2.130 0.839

avail

Volume DOLFIN

118512 total records

11296 records available

90.5% full

OK 15:15:04 08.578 08.215

Id x ’ ,

Debugger entered due to breakpoint/singie step.

Process 1 was executing at 6(@)/456735 (PAGTUR + 467).
=> access pfen 4

6(0)/622 eeeeee ta lts ce
6(2)/623 ee7e46 7 < 5 page Tas Sune
-> clearall .

=> continue ° breakpowt :
Leaving the debugger. .

@

<DOLFIN>CMONC® (ALL cccess)
3965 records in this directory, 3965 total records out of quote of @.

_:No entries selected.

"OK 15:15:17 2.721 0.954

last

Debugger entered due to console i

5Demanst ratio

nterrupt.

Process -2@ (BKIPCB) wos executing at 6(8@)/42313 (BK2P8 + 4).

—> brk gpoth$+10

-> continue

Leoving the debugger.

Id .

Debugger entered dueto breckpoint/single step.

Process 1 was executing at 1

-> arguments

Current routine: GPATH$

1(®)/62044 (GPATHS$ + 18). arguments Command

€

e——— pcb Command

6 arguments at SB%+56:

1 at 41(3)/124287 +: 980001.140040
§ 2 ct 68002(3)/4715 : 000037.000001

3 ot 6002(3)/10433 : €06742.e66e02

4 at 41(3)/124538 = 900200. 140040
5 at 6002(3)/6523 +: 035045.900010

6 at 6002(3)/4141 : ee80000.a00000

—> peb 1

Process: 1

Level: 622

Woit list: @(@)/106717
PB: 6(0)/35783

LB: 6(0)/41334

L: eeee0e eee0ee

xX: 80000

FAR@: 8820060 660000

FAR1: 880080 990000

Interval timer: 177774 880000

“TARZ: 140082 167101

<<.

Link: 809000

Abort flags: eeeeReeQR0000000

SB: 6000(@)/1456
XB: 6(@)/106716
E: ee0e8e 800000

Y: 800000

FLRO: 880000 880080

FLR1: eeeee00e Beeeee

Elapsed timer: 000002 012761

DOTARS: 176302 167064

, . Seys: 814001

‘-vonecealed stocks:

PB KEYS FCODE(high) FADDR

11(0)/62044 014100 062045 11(0)/1783
13(3)/55722 014000 eeeeee 13(3)/60760

—> status
— étatus Command

Process 1 SYSTEM eee Owns register set @ ses

Level: System process

Type: Supervisor

State: Ready

PB: 11(8)/62044 (GPATHS$ + 1

LB: 11(@)/62432 (GPATH$)

SB: 6003(0)/164 XB:

L: 80008 862044 E:
xX: eo08ee Y:

FAR@: 66002 004412 FLRO:

FAR1: ©66002 006435 FLRI:

Keys: 0814100 Moda!

Feode: 062045 000040

Locks owned: FSLOK

-> stotus of!

Process -21 DBGPCB

Level: Debugger process

State: Ready

PB: 55(0)/@ (DBGSEG)

LB: 55(0)/11552 ‘ (Unknown)
PCB abort flegs: TSEALM

“process ~20 BKIPCB

Faddr:

@)

6(0)/27052
017777 017777
177777
eeeeee eoeeee
eees0ee eec2ee
100037
11(8)/1783

eee Owns register set 1 ese

(i)

Level: Backstop process

Stote: Ready
PB: 6(0)/42313 (BK2PB + 4)

LB: 6(@)/42118 (SCHED)

Process -19 8K2PCB

Level: Backstop process

State: Ready

PB: 6(@)/42307 (BK2PB)

LB: 6(@)/42110 (SCHED)

Process ~18 CLKPCB

Level: Clock process

State: Waiting at 4(0)/58@ (SEMCOM)
PB: 6(0)/4043 (CLKINS + 650)

LB: 6(0@)/5366 (UNLOAD (et a/))

Process -17 FNTPCB

Level: Clock process

State: Woiting at 4(@)/572 (FNTSEM)
PB: 6(0)/4057 (FNTPB)
LB: 6(®)/5366 (UNLOAD (et a/))

Process -16 SLCPCB

Level: SMLC process

State: Waiting at 4(8)/582 (SLCSEM)
PB: 12(@)/1@@5 (SLCPB)

LB: 12(8)/4020 (SLCINI (et al))

Process -15 AMLPCB

Level: AMLC process

State: Waiting at 4(@)/504 (AMLSEM)
PB: ~ 16(@)/4427 (AMLCI_ + 141)
LB: 16(0)/1828@ (Unknown)

Process -14 MPCPCB

Level: MPC process

State: Waiting at 4(@)/506 (MPCSEM)
PS: 6(8)/130002 (MPCOIM)

LB: 6(0)/130732 (MPINIT (et of))

Process -13 MP2PCB

Level: MPC process
State: Waiting at 4(@)/510 (MP2SEM)

PB: 6(@)/131376 (MP2DIM)
LB:° 6(0)/132326 (M2INIT (et al))

Process -12 GP1PCB

Level: MPC4/Versatec process

State: Waiting ot 4(8)/512 (GP1SEM)

PB: 11(@)/20623 (GP1PB)
Le: 11(®)/23633 (Unknown)

Process —11 GP2PCB

Level: mPC4/Versatec process

State: Waiting at 4(0)/514 (GP2SEM)
PB: 11(@)/20623 (GP1PB)
LB: 11(@)/23634 (Unknown)

Process -1® VERPCB

Level: MPC4/Versatec process

‘State: Waiting at 4(@)/516 (VERSEM)

PS: 6(8)/135352 (VERDIM)
LB: 6(0)/135720 (GTSTAT (et a!))

Process -9 PNCPCB

Levei: Disk/Ringnet process

Stote: Waiting at 4(@)/52@ (PNCSEM)

PB: 12(@)/25314 (PNCDIM + 6)

LB: 12(@)/30366 (PNCNIT (et ol))

Process -8 SP1PCB

Level: Disk/Ringnet process

Stote: Woiting ot 4(8)/522 (SP1SEM)

PB: 4(0)/163747 (INTRT_)

LB: 4(8)/1532 (Unknown)

Process —7 DK1PCB

Level: Disk/Ringnet process

State: Waiting ot 4(@)/534 (DSKSEM)

PB: 6(@)/37537 (OMA_LERR + 224)

LB: 6(0)/106316 (Unknown)

Process -6 DK2PCB ~

Level: Disk/Ringnet process

State: Waiting at 4(8)/536 (DSKSEM + 2)
PB: 6(@)/37537 (DMA_ERR + 224)
LB: 0(0)/1335 (Unknown)

Process -5 DK3PCB

Level: Disk/Ringnet process

State: Waiting at 4(0)/540 (DSKSEM + 4)

PB: 6(8)/37537 (DMA_ERR + 224)

LB: @(@)/1472 (Unknown)
¢

Process —4 DK4PCB

Level: Disk/Ringnet process

State: Woiting at 4(8)/542 (DSKSEM + 6)

PB: 6(@)/37537 (DMA_ERR + 224)
LB: @(8)/1627 (Unknown)

‘"" 3eess <3 ASYPCB
“ Levelt: AMLC process

Stote: Waiting at 4(8)/3335 (ASYSBM)

PB: 46(6)/11412 (ASYNDM)
LB: 16(8)/12734 (Unknown)

Process -2 SLXPCB

Levei: SMLC process

State: Waiting at 4(@)/3337 (SLXSEM)

PB: 12(@)/4446 (SLXPB)

LB: 12(@)/5444 (Unknown)

Process -1 IPOPCB

Level: IPQ process

State: Waiting ot 4(0)/3341 (IPOSEM)

PB: 16(8)/32314 (IPOPB)

LB: 16(0)/31734 (Unknown)

Process @ IBSPCB

Level: IPQ process

State: Woiting ot 4(8)/3343 (IBSSEM)

PB: 16(@)/31330 (1BSPB)

LB: 16(@)/30742 (Unknown)

Process 1 SYSTEM

Leve!: System process

Type: Supervisor

State: Ready

°B: 11(0)/62044 (GPATH$ + 10)

B: 11(@)/62432 (GPATH$)

' Locks owned: FSLOK

see Owns register set @ eee

Process 29 NETMAN

Level: Network process

Type: Network process

State: Woiting at 12(@)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)
LB: 6(0@)/34156 (SETSWI (et al)) .

=> trace 1 . ———____—_ Trace COmMmManNne,

Level! 1: GPATH$ and

Root: 6003 SB: 6003/164 Size: 174 words Type: eeeeee (PCL) ,

Keys: 034200 sub Commands
Call at 41(3)/124254 (EPFS$MAP (et of) + 372) SB: 6002(3)/6436 LB: 41(0)/125032°

(troce)> arguments
Current routine: GPATHS

6 arguments at S8%+56:

#1 ot 41(3)/124207 =: 900001.140040
2 ot 6002(3)/4715 ; 000037.900001
3 ot 6002(3)/10433 : @06742.966002
§ 4 at 41(3)/12453@ : 900200.140040
5 at 6002(3)/6523 : 035045.900010
6 at 6002(3)/4141 : eaeeea.aaee0e

(trace)> father

Level 2: EPFSMAP
Root: 60@2 SB: 6002/6436 Size: 109@ words Type: @@0@00 (PCL)
Keys: 034100

Cail at 13(3)/15071 (STD$CP + 2313) SB: 6002(3)/4622 LB: 13(@)/20564

_7~{trace)> arguments
--surrent routine: EPF$MAP

4 arguments at SB%+111:

1% at 13(3},/20721 : @90000.177240
2 ot 6902(3)/4715 +: @00037.e00001
3 at 13(3)/15223 : e92006.020000
4 at 6002(3)/4141 : 90000. 2200000

(trace)> father

: SB: 6002/462\ Size: GoswordsType: e1000¢0 (PCL)
Keys: 134200

Coll at 13(3)/7364 (LISTN_ (et of) + 1042) SB: 6002(3)/4046 LB: 13(@)/11364

(trace)> arguments

Current routine: STO$CP

6 arguments at SB%+115:

1 at 6002(3)/4410 : 000002. 166344
2 at 6002(3)/4141 +: e@0000. 0020000

3 at 6002(3)/4142 +: 900000.e66002

4 at 6002(3)/4150 : e@0000.e00000

(trace)> stack

1600

1:6002/>18 134200 7366 7777 @ 40000 Q e 3

3802/>20 47853 4 177777 66002 60013 15035 66002 6303

+: 68002/>30 60013 21645 600135 21213 66002 6410 60013 21645

1:6802/>40 7777 @ 66282 6410 66002 6422 212 210

1:6002/>5@ 100000 3 1 @ e @ 1490¢e0 8

:6002/>60 11345 1 66002 @ e 2 4411 1800031

1:6802/>78 4622 3 4 37 1 1 14000 41732

1:6002/>100 1 @ @ ® 148000 e 60013 46204

1:6002/>118 7777 10 177480 4652 1 66002 4418 e

1:6002/>120 66002 4141 1 660982 4142 8 66002 4158

1:6002/>138 ® 108000 4650 1 180000 66002 4666 66002

1:6002/>140 60013 46204 66602 66002 4664 68013 66002 4634

1:6002/>158 100000 66002 4650 100000 41 $2674 100000 $3162

1:6002/>160 66002 - 1000200 660282 660e2- 1000028 66002 66002 1900000

1:6802/>178 60041 44055 100000 18 177400 19800028 66002 4761

1:6002/>2e0 1090000 64377 75266 1020008 64377 101264 100000 100000

1:6002/>216 66002 100000 @ 128 100000 4525 6 180000

1:60802/>228 60041 730356 100000 4672 41 180000 66002 403

1:6802/>23e@ 180002 100000 ®@ 10ee0e0 60041 43747 108800 4770

1:6002/>240 41 100008 14000 43737 190000 130460 1 190600

1:68002/>250 4667 66002 100000 20556 64377 100000 2 662002

1:6002/>26@ 100000 2 @ 1080028 7777 @ 1080000 44055

—More—n

(trace)> fother 2

Level 5: COMLV$

Root: 6082 SB: 6002/4022 Size: 20 words Type: 080000 (PCL)

Keys: 134180

Coll at 13(3)/113353 (DF_UNIT_ + 6403) SB: 6002(3)/2136 LB: 13(8)/116524

(troce)> son

Level 4: LISTN_ «

Root: 6802 SB: 6002/4046 Size: 364 words Type: 016000 (PCL)
Keys: 014000

Call ot 13(3)/13723@ (COMLV$ (et of) + ®) SB: 6002(3)/4022 LB: 13(@)/136642

“{troce)> father 2

level 6: DF_LUNIT_

\ikoot: 6002 SB: 6002/2136 Size: 948 words Type: 080000 (PCL)

Keys: 014000

Catt at 13(3)/100577 (RAISE_ + 437) SB: 6002(3)/2036 LB: 13(@)/188300

(trace)> orguments
Current routine: DF_UNIT_

1 arguments at SB%+122:

1 ot 6002(3)/2116 +: 966002.001704

(troce)> father

Level 7: RAISE_

Root: 6802 SB: 6002/2036 Size: 64 words Type: 00000 (PCL)
Keys: 014000

Coll ot 13(3)/77633 (SIGNL$ + 261) SB: 6002(3)/1704 LB: 13(0)/77440

(troce)> father

Leve! 8: SIGNLS$

Root: 6062 SB: 6002/1704 Size: 98 words Type: 040000 (PCL)

Keys: 14000

Colt ot 13(3)/132307 (SWFIM_ (et a!) + 5) SB: 6002(3)/1524 LB: 13(0)/131732

(trace)> father

vel 9: CTINS$

“-9t: 6802 SB: 6002/1524 Size: 112 words Type: eee00e (PCL)

4. 814800

“volt at 13(3)/46146 (CLS$GET + 266) SB: 6002(3)/1412 LB: 13(@)/45604,

(trace)> goto 15

ees End of stack at level

Leve! 12: INFIM_ °

12 (stort + 3)

Root: 6002 SB: 600@2/630 Size: 6 words Type: 000000 (PCL)

Keys: 868015

Call at 4(@)/171752 SB: 7777(@)/@ LB: @(@)/6ee2(6)

(trace)> quit
-> ttybuf 1

User 1 messoge buffer (600 bytes tong) ot 7(0)/17224:

we ee ewer reer eone

Input buffer (400 bytes !ong) for user 1 at 7(0)/7142:
@ 2267

?q
avail

avail

Id x

dote

@ wsh>tests .

rf phifile_copy 1 ring@.map

x.print felt.como

Go wsh>tests

r ph_file_copy 1. ring®@.map
ph pager .ph

a billh

ph poger.ph

vpsd

sn 15

a 2267

?q
to all

max

date

se —100285 ~1920

date

stot us

date

stot us

"

stot us

id

Output buffer (608 bytes long) for user 1 at 7(@)/2:

- 28

Moximum number of program

Maximum number of private

Maximum number of private

* @9:57:20 6.727 90.833

User

SYSTEM

invocations: 20

static segments: 128

dynamic segments: 64

level 2

No Line Devices

1 asr <DOLFIN>

NETMAN 29 nsp <DOLFIN>

OK @9:57:32 8.189 8.000 level 2

=> print_locks —_ print — lo cks Command

"SLOK: Locked for reading by 1 user(s). .

_. reader(s) waiting

No writer(s) waiting: z

UFDLOK: Unlocked.

No reoder(s) waiting

No writer(s) waiting

BLKLOK: Unlocked.

No reader(s) waiting
No writer(s) waiting

”

SDLOK: Unlocked.
No reoder(s) waiting

No writer(s) waiting

TRNLOK: Untocked.

No reoder(s) waiting

No writer(s) waiting

UTLOK: Unlocked.

No reoder(s) waiting

No writer(s)waiting ¢

RATLOK: Uniocked.

No recder(s) waiting

No writer(s) waiting

,EMLCK: Unlocked.

i reader(s) waiting
WO writer(s) waiting

SPILCK: Uniocked.

No reader(s) waiting
No writer(s) waiting

NETLCK: Untocked.

No reader(s) waiting

No writer(s) waiting '

NMMALCK: Unlocked. '

No reoder(s) waiting

No writer(s) waiting

SLCLCK: Unlocked.

No reader(s) waiting

No writer(s) waiting

MOVLCK: Untocked.
No reader(s) waiting

No writer(s) waiting

SEGLCK: Unlocked.

No reader(s) waiting

No writer(s) waiting

SLCK: Untocked.
-eader(s) waiting

“writer(s) woiting

=> reody_tist C— feat bist Command

START => USROO1

|
Vv

BKIPCB => BK2PCB
—> sysreg ———_— system regi sters .
PSWPB: 6(@)/42313 PSWKEYS: 014100 100077

Command

OMA channel” 1/O address Word Count
e 0(0)/172110 eeecee
2 0(0)/176e00 eeaeee
6 0(@)/1e¢e0 eeecce

14 0(0)/151005 207405
16 0(@)/148005 eeecee
20 0(0)/1712000 eeceeo -
22 0(8)/175000 eeceee
24 (0)/100255 eee3ee
26 0(@)/72001 eee200
30 0(0)/10003 02200
32 @(@)/41272 002200
34 @(2)/201 002027
36 0(0)/4003 003500

-> clra.

->lookup_oddress 6/11675 ecb < |ookvp- a ddress COMMG Al d

ROUTINE: LOGEV1! + 3434 from ECB

—> lookup_oddress 37/100 common

COMMON: LSMCOM + 1008

—> lookup_oddress 13/11364 Ibn

ROUTINE: LISTN_
ROUTINE: LISTENL

ROUTINE: LISTEN_C

-> lookup_oddress 13/7000 any

ROUTINE: LISTEN_C + 371 from PB

-> lookup_symbo! prwf$$ e— lookup- Symbol Command

ECB of routine: 11(8)/35543

PB of routine: 11(@)/33046

LBS of routine: 11(0)/35136
-> lookup_symbo! Ismcom

Address. of common: 37(0)/®

—> lookup_symboi r@dbg_on

Address of other: 14(@)/770

-_

Demon gtra tion Y
-> cleorall — . Ly

—> brk gpoth$+33

—> continue \\ \p

Leaving the debugger

vpsd
\

é . 3 .

"6800/1 STAFF 177740,0X ? ip ar

Squit

OK 14 Y
Debugger entered due to breokpoint/single step.

Process 1 wos executing at 11(@)/62067 (GPATH$).

; and
—> define_voriable sotnscode(noisin 1) =e define~ variable | Comm
—> define_varicble msg 4800/300\a @

—> definevariable ptr 4000/1080 pointer

—> define_variable bit_str 4000/2008 bit

‘splay-variable Command
—> disploy_variable code < display vara

Procedure Variable Address Type Length

GPATHS$ CODE SB%+44 DECIMAL 1

-~> display_voriable

Procedure Voriable | Address Type Length

GPATHS$ CODE SB%+44 DECIMAL 1 -

MSG 4000(8)/300 ASCII 20

PTR 4000(@)/100 POINTER 2
BIT_STR: - 4000(0)/200 BIT 1

—> : codee ——_—_—_ ‘ COMMAaN d

—> tet msg = ‘It’’s only o test’ ‘
_n> tet ptr = 55(@)/12000 < let Command
 _ let bitistr = 10118

2S: msg

It’s only a test

> : ptr

55(0)/12008

—> : bit_str

181 1e0e000000000

—> : bitstr decimal

—204828
—> delete_voriable code é — delete- variable COMmaud
-> delete_variable

OK to delete all defined voriobies? yes :

—_ ‘He moand Command
-—> definecommand com1 cleorall; breakpoint prwf$$+1; continue; com2 € define “fo

—> definecommand com2 dump * *; step 1; com2 € recursive dotimtion

dis pla - Command Command

-> display_command <

Defined command:

COM1 : CLEARALL: BREAKPOINT PRWF$$+1 ;CONTINUE;COM2

COM2 : DUMP « «STEP; COM2

-> com!

—> CLEARALL; BREAKPOINT PRWF$$+1 ; CONTINUE; COM2

—> BREAKPOINT PRWF$$+1; CONTINUE ;COM2

=> CONTINUE ;COM2

aving the debugger.

Debugger entered due to breakpoint/single step.

Process 1 wos executing ot 11(0)/33047 (PRWFS$$ + 1). |

> o8e
<— OXPansion oT previcusly

—> DUMP e ©: STEP;COM2

detined Comnnand

—T1(6)733047 LDAX SB%+ 72 ,* ae
-> STEP;COM2 NeCU, wh MUP

Debugger entered due to breakpoint/single step.

Process 1 was executing ot 11(8)/33051 (PRWFS$$ + 3). -

—> COM2 .
—> DUMP ® ©;STEP;COM2

11(@)/33051 STAP SB%+ 34 .
=> STEP;COM2

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(0)/33052 (PRWFS$ + 4).
-> COmM2 *

—> DUMP © ©:STEP;COM2

quit.

=> cTearall deleve- Commani Command
-> delete_command €

OK to delete all defined commands? yes

‘ e——— help Command
~> help

: Access Accesa_REGister

Access_TYPE ARGumentS BReokpoint

Clear CLeoRA!I Cont inue

‘EF ine_COMmand DEF ine_VARiable DELete_COMnand

vELete_VARiabie DISp!lay_COmMnand DISplay_VARiable

Dump Help LET

LIST LISTAII LOOKAT

Lookup_Address Lookup.Symbo! Peb

PrintLOCKS ReaDY_LiST SeaRCH

STATus Step STRUCtUre

SYStem_REGisters Trace Transicte_to_PHYSica!l

Translate_to_VIRtual TTybuf WHere

-> help troce

Command nome: Trace (T)

Command description: ‘ '

Print stack frames for the given process. ‘

Command tine arguments:

[<process—number> [<oddress—expression>]]

where address—expression may be one of the following:

{ <segno>/<wordno> | <symbol—name> | LB% | SB% | XBX | = }
{ + <offset> | ~ <offset>]

where the following commands can be used within TRACE:

Quit { Father [<leveis>} {| Son [<levels>] | Current | Goto [<levels>] |
Arguments | STack [<start> [<end>]] | User <process=number> [<address>]

—> structure nn structure C O KM and

PRIMOS dota bases known to the Debugger: . 7

CLDATA D1SK_QUEUE_BLOCK ECB Z IAL + ral §$ et ot
FIGCOM PUDCOM PUSTAK
SUPCOM UPCOM dletined structures
-> structure ecb 11/35543

Structure ECB at 11(0)/35543.

Offset | Field name | | Volue

| |
035543 | pb | 11(@)/33046 -
@35545 | frome size | e2e202 ~
@35546 | stack root | ee2e0ee

035547 | orgs displac | 000070

@35558 | num of args ! 7

035551 | Ib } 11(0)/35136
@35553 | keys }] 14000

—> structure figcom

Structure FIGCOM at 14(0)/700.

}

Offset | Field name | Value

| |
@20700 | LOUTOM | 32767
eee7e1 | LOTLIM | 3
@@0702 | DONSTP | @
088703 | DLOGOT | e
080704 | SPCH1/DERA | eee2ie
@00705 | SPCH2/DEKL | 000277
008706 | PRIS500 | 1
@00707 | VERSIO « | 20.1. 10sdb9
@@0720 | NLGPRT | 1
000721 | LOGOVR | e
80722 | LRQUOT | e
080723 | DMOMSK fo 9999999999999999

@@0724 | CPUID | 6

000725 | INSTLBS | 8

@00726 | APCNFG | e
e09e727 | UPSSW | “1
@@0730 | CPUREV | 2
000731 | STAMP | 09/23/85*915:15:430919. 2000000
@0075@ | RWLOCK | 1
000751 | ABBRSW | 1
@00752 | SLVRUN | e

@80753 } OTRORP | e
0e0754 | ZCPU | e
000755 | STTMCP | e
80756 | MAPREV | e
000757 | RGSETS | 2
00760 | RGSETO | 3 :

@00761 | ECCTRL | 8

@00762 | BCLOCK | e
00763 | SENSOR | e
000764 | MEMHLT | 1
@00765 | DISPCH | e

@@0766 | LOGBAD | 8
000767 | DEFMEL | 16
800778 | R@DBG_ON | 189000
008771 | SUSPEND_SLAV | e

- translate_to_physica! 13/22000 — Tr anslate —To- phys ca Command

‘.rtual address 13(0)/2200@ translates to physical oddress 1514000.

This address is on physico! page 646.

@

> tronsicte_to_physical 6/1000

Virtual oddress 4000(0)/10@ translates to physico! address 65900.

This address is on physical page 31.

—> translate_to_virtuol 646 Ee Trans late

Corresponding virtual address is 13(0)/22000 for process 1.

> transicte_to_virtual 31

Corresponding virtua! address is 6(0)/®@ for process 1.

_to-virtual Comme |

"=> continue

“
o
s

dote
| () mon stration Sul

@3 Oct 85 15:19:52 Thursday

OK 15:19:55 ®.169 0.027 Testing G PATH $ (owe path)

Debugger entered due to console interrupt.

Process ~20 (BKIPCB) was executing at §(8)/42313 (BK2PB + 4).
> breakpoint gpath$+1 <—— break point at start. ot module

Leoving the debugger.

td x .

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(@)/62035 (GPATH$ + 1).

—> orguments

Current routine: GPATHS$. +

6 arguments at SB%+56: —_———— ¢ heck input argu men's
1 at 41(3)/124207 : 900001.140040
2 ot 6002(3)/1505 : 000037.000001

3 at 6002(3)/5223 : 136304.190000

4 at 41(3)/124530 : e00200.149040
5 ot 6002(3)/3313 : @35045.000010
6 at 6002(3)/731 : eeeece.cQacee ,
<> define_voriable xkey 41/124207 €
—> defvar xunit 6002/1525

—> defvar xpothnome 6092/5223 ascii 128

-> defvar xmox_chars 41/124530 ~
—> defvar xpath_ien 6082/3313 decimal 1

—> defvar xcode 6002/731

—> defvor gpoth$\key sb%+42

-> defvar gpath$\valid_segment sb%+36

—> defvar gpoth$\uteptr sb%+188 pointer 2

> defvar gpath$\code sb%+44

_ => defvor gpath$\unitlopen ab%+35

detine program variables

~~ display_veriable

2.7@Ccedure Variable Address Type Length

XKEY 41(8)/124207. OCTAL 1
XUNIT 6002(0)/15@5 OCTAL 1
XPATHNAME 6002(@)/5223 ASCII 128

XMAX_CHARS 41(8)/124530 OCTAL 1

XPATH_LEN 6002(@)/3313 DECIMAL 1
XCODE 6002(0)/731 OCTAL 1

GPATH$ KEY SB%+-42 OCTAL 1

GPATHS$ VALID_SEGMENT SB%+36 OCTAL 1°

GPATHS$ UTEPTR SBX+100 POINTER 2

GPATHS CODE SB%+44 OCTAL 1 !
GPATHS UNI T_OPEN SEB%+35 OCTAL 1

-—> where

Debugger entered due to breakpoint/single step.

Process 1 wos executing ot 11(8)/62835 (GPATH$ + 1).

700000” é———_ start SOqvencing throueh

conees | the code

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(8)/62041. (GPATH$ + 5).

—> : key

Yee1

: validsegment

“Be

_tep 2

(a0

Debugger entered due to breckpoint/single step.

Process 1 was executing at 6(0)/26637 (LOCKFS).
=> : validsegment .

eeeeee

—> breakpoint gpath$+1e

—> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step. -

Process 1 was executing at 11(0)/62044 (GPATH$ + 10).

-=> status user

Process 1 SYSTEM eee Owns register set @ ess

Level: System process

Type: Supervisor

State: Ready

PB: 11(0)/62044 (GPATHS$ + 10)
LB: 11(@)/62432 (GPATHS)
Locks owned: FSLOK <——_—_ F S | ock has b een

Process 29 (Login nome is not resident)
Leve!: Network process

Type: Network process

State: Waiting at 12(8)/25302 (PNTSBEM)

PB: 6(0)/34454 (WAIT + 4)
LB: 6(@)/34156 (SETSWI (et al))

-> clearall

-> : key
ee00e1 «

-> breakpoint gpath$+22
=> continue

Leaving the debugger.

ebugger entered due to breakpoint/single step.

Process 1 was executing at 11(8)/62056 (GPATH$ + 22).

-—> occess_type symbolic +

02acetate tote aze e——_ call
11(8)/62060 AP SBX+ 61 .«S

11(®@)/62062 AP SBX%+ 100 ,S

11(0)/62064 AP SB%+ 44 ,SL

41(8)/62066 STAG SB%+ 35?

+ akeu

open.chK

> : xun $se tosoeosr SS arguments passed to
7177767800000 —— open- chk
—> : code Le

ee00e1

=> cleoral |

—> breakpoint gpath$+33

—> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(@)/62067 (GPATH$ + 33).

=> : xunit é

000037
arguments at re "—> : uteptr eo” to apen-chk717(@)/6376

—> : code

eee3eee ao
step

Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(@)/62070 (GPATH$ + 34).

call

—-> step

Debugger entered due to breokpoint/single step.

Process 1 wos executing ot 11(8)/62071 (GPATH$ + 35).

~-> step

. sbugger entered due to breokpoint/single step.

Process 1 wos executing ot 11(@)/62077 (GPATHS$ + 43).

-> step =

Debugger entered due to breakpoint/single step. <— end at Se lect

Process 1 was executing at 11(@)/62206 (GPATHS$ + 152). + + +

—> : unitlopen S Ale mead

100000

~> clecrolt

—> breakpoint gpath$+155
> continue

Leoving the debugger...

Debugger entered due to breakpoint/single step.

Process 1 wos executing ot 11(0)/62211 (GPATH$ + 155).

> occess_type symbolic

—> access «
11(@)/62211 CRA
11(@)/62212 STA SB%+ 72 ,2

11(@)/62214 EAL® LBX+ 432 .» call to locKr
11(@)/62216 JSXBX LBX+ 434 ,« << doth”
11(@)/62220 PCL% LOX+ 436 ,* ? é- call to amp
—> breokpoint 11/62220%
—> listall
Type Address Procedure Process Count Mnemonic

brkpt 11(8)/62211 GPATH$ + 185 Any 1 CRA
orkpt 11(0)/62220 =GPATH$ + 164 Any 1 PCL
i> continue

f -.uaving the debugger.

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(8)/62228 (GPATH$ + 164).

—> status user
Process 1 SYSTEM ees Owns register set 1 ees

Level: System process

Type: Supervisor

State: Ready

PB: 11(@)/62248 (GPATHS + 204)
LB: 11(@)/62432 (GPATHS)
Locks owned: FSLOK UFDLOK < VFD ra Ta Ker
PCB obort flags: TSEALM

Process 29 (Login name is not resident)

Levei: Network process

Type: Network process

State: Waiting ot 12(@)/25302 (PNTSEM)

PB: 6(0)/34454 (WAIT + 4)
LB: 6(0)/34156 (SETSWI (et o!))

- | tt .=> Sheet ~——— arqumests to radpth
717(0)/6376

—> access_type octal &

—> access 717/6376+2 ‘
717(8)/6408 9280000

*(8)/6401 00264 7 Sf
cess 717/6376+6

.(8)/6404 eeee0e 7?
->;: xpothnome

<DOOF1000 * 050 | 00+0040805YE00000 | 00000 ‘0501009040005 >EODONpOV/eQ090eV 006200 (2

/

eoecocecoos. GoccocoooCCeeyOcoee COCeoS Jdo0CCCO

-> : xmoax_chars

200200

-> : xpothlen

® .

-—> : code

ee000e

=> clearal!

-> breakpoint gpath$+201
é———_—— invalid ottset IM Isting

eee Debugger user error:

Unknown V-mode instruction.

—> access_type symbolic

—> access gpath$+164

* caadpth
11(@)/62220 PCLX LB% 436 ,« € call To f P
11(@)/62222 AP SBX%+ 10@ ,«
11(@)/62224 AP XBX%+ 2 ,S
11(@)/62226 AP XB%+ 6 ,S
11(8@)/62230 AP SB%+ G4 ,9S
11(@)/62232 AP SB%+ 67 ,9S
11(@)/62234 AP SB% 72 ,9S
11(@)/62236 AP SB%+ 44 ,SL
11(@)/6224@ EALX LB%+ 432 ,» ?
—> breakpoint 11/6224@

~> listall

Type Address Procedure Process Count Mnemonic

brkpt 11(0)/62240 GPATH$ + 204 Any 1 EAL
-> continue

Leaving the debugger. ¢«

Debugger entered due to breakpoint/singie step.

Process 1 was executing ot 11(8)/62240 (GPATH$ + 204).
—-> : xpothname

<DOLFIN>CMONC@>LD . RUNOS@SYeeeoes | 09000 ‘850 100‘0040005 >EOOONpeV/eonceeV,006200 +

- @e@e@COCECD. GooEEEOOEOEEe<DOLFIN>CMONCO>LD.RUN KK arguments at Ter
=> : xpothien < > th

21 call To fap
—> access_type symbo!ic

—-> access * f

11(@)/62240 EAL% LB%+ 432 , fee
11(@)/62242 UJSXB% LBX+ 440 ,« <—_—— Ca (\ To Un lke to
11(@)/62244 JMP$ 62475 7 ,
~> clearai | U FO | oc K

—> breakpoint 11/62244

—> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(0)/62244 (GPATH$ + 210).
> stotus user

Process 1 SYSTEM eee Owns register set @ eee

Level: System process

Type: Supervisor

Stete: Ready

PB: 11(9)/62244 (GPATH$ + 210)
LB: 11(®)/62432 (GPATH$)
Locks owned: FSLOK ———_— YFO lock released

Outstanding abort flags: TSEALM

Process 29 (Login name is not resident)
Level: Network process

Type: Network process

Stote: Waiting at 12(@)/25302 (PNTSEM)
PB: 6(0)/34454 (WAIT + 4)
LB: 6(8)/34156 (SETSWI (et al))

-> step

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(@)/62475 (GPATHS$ + 441).

-> : code

eeeeee
| : 4

"=> access e

11(8)/62475 JSXBX LB%+ 456 ,s _< call to VH tk ts O

11(@)/62477 LDA¥# SB%+ 44
-

11(@)/6250@ CAS# 63002 free ES lock

11(8)/62501 JMPg 625035

11(@)/62502 JMP§ 62507

11(0)/62583 CAS# 63003 7?

> breakpoint 11/62477

-> continue

Leaving the debugger.

Debugger entered due to breakpoint/single step. é begina.ng ot select

Process 1 wos executing at 11(@)/62477 (GPATH$ + 443). ,
-> status user

Process 1 SYSTEM eee Owns register set 0 ve»

Level: System process

Type: Supervisor

Stote: Reody

PB: 11(®)/62477 (GPATH$ + 443)

LB: 11(@)/62432 (GPATHS) ——— NO locks held

Process 29 (Login name is not resident)

Level: Network proaess

Type: Network process

State: Weiting ot 12(@)/25302 (PNTSEM)

PB: 6(0)/34454 (WAIT + 4)

LB: 6(0)/34156 (SETSWI (et a!))

“ese step

-yebugger entered due to breakpoint/single step.

Process 1 wos executing oat 11(@)/62508 (GPATH$ + 444).

-> step .

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(@)/625@3 (GPATH$ + 447).
-> step

Debugger entered due to breakpoint/single step.

Process 1 wos executing at 11(@)/62506 (GPATH$ + 452).

-> step '

Debugger entered due to breakpoint/singie step. tee other wise C lavse

> oes 1 wos executing ot 11(@)/63013 (GPATHS$ + 757). — ot select

11(8)/63013 LDA¥ SB%+ 44
11(8)/63014 STA% SB%+ 75 ,« < X Code = code’
11(8)/63016 PRIN ?
—> : code

000000

—> : xcode

200008

—> step

Debugger entered due to breokpoint/single step.

Process 1 was executing ot 11(8)/63014 (GPATH$ + 760).

» step . .

“sgger entered due to breakpoint/single step.

Process 1 was executing ot 11(8)/63016 (GPATH$ + 762).

-> : xpathnome

<DOLFIN>CMONC@>LD . RUNOS@5YS00009 | SOGCe ‘050100 '0040005 >ESCONpPOV/oDCCOeV , 086200

>eee SOCCOCOOCOCOE<DOLF I N>CMONCO>LD . RUN <—_ valves ceturned by

e00000 ; c———_—_——

-> : xpa en , ATHSeee | | ee the call To G?
=> cleerall

=> continue .

Leaving the debugger.

<DOLFIND>CMDNC® (ALL occess)

3965 records in this directory, 3965 total records out of quota of @.

No entries selected.

OK 15:20:12 2.603 8.000

Forcing Q@N error
 \

Debugger entered due to console interrupt.

Process -20 (BK1PCB) wos executing at 6(0)/42313 (BK2PB + 4).
~> eccess gpath$+160

11(@)/62214 EAL% LEX+ 432 ,«
11(0)/62216 JSXB% LE%+ 434 ,« :

11(@)/62220 PCL% LB%+ 436 ,e ce Ca l To
11(®)/62222 AP SB%+ 100 ,s

11(@)/62224 AP XB%+ 24,S

radpth |

11(@)/62226 AP XB%+ 6 ,S
11(@)/62230 AP SB% 64 ,*S
11(@)/62232 AP SB%+ 67 ,*S
11(0)/62234 AP SB%+ 72 ,*S

1(®)/62236 AP SB%+ 44 ,SL

1(@)/62240 EAL% LB%+ 432 1.2 7?

—> breakpoint 11/62240

=> continue

Leaving the debugger.

Id x

after call to radpthDebugger entered due to breakpoint/single step.

Process 1 wos executing at 11(@)/6224@ (GPATH$ + 284).
> : code

220000

—~> let code=43 €

—> >; code
modity Code to F or ce

0200043 .

~> continue Qn ey ror
Leaving the debugger.

Buffer too smalt. LD (std$cp) pesv (t oT simu lated error
ER 15:21:34 @.166 ©.833

W

Demonstration SA
a wsh>tests

OK 15:27:07 08.178 6.269

r phifile_copy 1 ring@.mop
PHANTOM is user 31 Analy? ing Q hung system

OK 15:27:28 @.393 @.042

_ ebugger entered due to console interrupt. -
Process ~2@ (BKIPCB) was executing ot 6(0)/42313 (BK2PB + 4). -

=>

HALTED AT 000056/001750: 005103

CP> syscir

eee CPU VERIFIED soe

CP> run 1001

fookat

Active process is -20. &

—> continue

Leaving the debugger.

eeess WARM START esoue

date .

Improper command name. “DATE" (std$cp)

ER 15:27:44 ®.206 1.096

date <

@3 Oct 85 15:27:48 Thursday

OK 15:27:58 ©.121 @.000

evai |

Votume DOLFIN

118512 toto! records

11306 records avai lable

90.5% full

‘OK 15:28:03 @.581 0.260
\
Debugger entered due to console interrupt.

Process -2@ (BKIPCB) wos executing at 6(®)/42313 (BK2PB + 4). + A LDLM

—> breakpoint amipb C tA re M
—> continue set breakpo '

Leaving the debugger.

Debugger entered due to breakpoint/single step.

Process -15 (AMLPCB) wos executing at 16(0)/4253 (AMLDIM).
-> cleorall

—> ready_list

START —> AMLPCB

|
Vv

DK1IPCB ~> PNCPCB

Vv

BKIPCB —> BK2PCB
-> step 100 } —_ step ot AML pin Cavses

Debugger entered due to breakpoint/single step. fread ~ \isT to FA\\ up
Process -—15 (AMLPCB) wos executing at 16(@)/6055 (TTHOUT + 170). ;

—> ready_list ,
START -—> AMLPCB

|
Vv :

DK4PCB => DK3PCB ~> DK2PCB —> DKIPCB —> PNCPCB

|

CP> stop << warmstart while 1M debugser

after warmstart still in debvg ser

Vv

USR@29
|
v

BKIPCB ~> BK2PCB~ | € yarmstact while iW

CP> stop . : .

HALTED AT @0@056/002136: 013074 ol e by 4 4 er _

CP> syrecir .

eee CPU VERIFIED eee

CP> run 1001 >

eee Fault while in debugger: < .

Segment fault (type 6@) encountered at 55(0)/1285.
Attempt to reference 3403(2)/2.

—> ready_list : a {| witercup + p rocesse $

START => CLKPCB

. e xcept the clock process

Vv

USR@29
are removed

Vv

BKIPCB =—> BK2PCB

-> continue

Leaving the debugger.

€

eseoe WARM START ssees .

ya! é—— system LS hun

Debugger entered due to console interrupt.

Process 29 wos executing at 12(@)/S0633 (RNGRCV + 201).
“~ => ready_list

START => CLKPCB

|
Vv

USR@29

|
Vv

BKIPCB —> BK2PCB

-> stotus user

Process 1 SYSTEM

Levelt: System process

Type: Supervisor

State: Waiting at 6(@)/107167 (DKRQB + 1167)

PB: 6(@)/35703 (DKTWO_ + 165) <

LB: 6(0)/41334 (RREC (et al))

Locks owned: FSLOK

PCB abort flags: MINALM waiting for Ask

Process 29 (Login name is not resident)
Level: Network process re que $ Ts To

Type: Network process ,

Stote: Ready COM ple Te
PB: 12(@)/5@633 (RNGRCV + 201) ,

LB: 12(@)/51112 (RNGRCV)

Locks owned: NETLCK

Process 31 SYSTEM

Level: Priority 1 user

Type: CPL phantom L<

State: Waiting at 6(@)/106645 (DKRQB + 645)
PB: 6(@)/35703 (OKTWO_ + 165)
LB: 6(®)/41334 (RREC (et a!))

\

Locks owned: FSLOK

Outstanding abort flogs: TSEALM

PCB abort flags: QUTALM

-> stotus -7

Process -7 DKIPCB

Leve!: Disk/Ringnet process

Stote¢ Ready >

PB: 233° (OMA_LERR + 720)

LB: 6(8)/106244 (Unknown)

SB: 4(©)/164078 xB:

L: eee08e eeeeee E:

x: eee00e Y:

FAR@: e8e2e0e eeaeee FLR®:

FAR1: 808080 980000 FLR1:

Keys: 134201

—> reody_list

START <-> CLKPCB

|
Vv

USR@29

|
Vv

BKIPCB -—> BK2PCB

—> peb -7

Process: -7

PB: 6(0)/40
LB: 6(@)/106244

-“ 3 @88808 GBe02e

. 800800

- FAR®: B8O8EG B00000
[.) R14: @@eee@ eeeeee
~ snterval timer: 120273 eee0ee

DTAR2: 177768 e2eeee

Keys: 134201

->

¢—————_ disk process 15

ready but ...
0(8)/12e0
eeeccee eecoee
ee2000
eee2eee eeeeee
eeeeee eeceee

No + 0H

list

iT ts

ready

=> disk process -

limbo
Link: 076700 . .

Abort flogs: eeaeeeenqe—eeeED iS aN
SB: 4(0)/164070
XB: @(0)/1200
E: e8e80e eeoeee

Y: e8es0ee

FLRO: 800008 e00000

FLR1: @80008 G80000

Elapsed timer: 000000 1800000

DTAR3: 177708 980000

Denmonstratiox b
OK 17:21:06 08.857 0.000

\
Debugger entered due to console interrupt.

Process ~20 (BKIPCB) was executing ot 6(0)/42313 (BK2PB + 4).

-> breakpoint pogtur

eee Debugger user error: 7 _—
Breakpoints cannot be set on an ARGT instruction. << brea Kooiats Cannot De

“~> access_type symbolic / : 4)
-—> access pogtur : Set on certain inS tive ti gad§

6(0)/45204 ARGT ? :

-> breakpoint foul t+60

eee Debugger user error:

Breokpoints are not allowed for this inatruction.

—> access fault+60

6(@)/31112. CALF 32420 ?

-> breakpoint pagtur+1
-> a pogtur+! c : can t Change code
6(@)/45205 CRA sze

eee Debugger user error: whe re breakputs ar

Can’t modify breakpointed memory. Operation aborted. .,

6(0)/45206 STA¥ SBX+ 22 ? installed
-> clearall , .

—> access prwf$$+35

11(@)/33103 PCLX LE%+ 430 «

11(@)/33105 AP SB%+ 73 ,«S

11(@)/33107 AP SBX+ 15@ .S
11(0)/33111 AP SB%+ 44 ,SL
11(0)/33113 SAS 1 ?

“<-> breakpoint prwf$$+35

=-—> listell

, Type Address Procedure Process Count Mnemonic u . t OW

brkpt 11(8)/33103 . PRWF$$ + 35 Any 1 PCL € breéakp ‘-“ ; a

=> continue ‘ tiVU Oo
Leaving the debugger. pc | inst ¢ ct 4

avail

Debugger entered due to breakpoint/single step.

Process 1 was executing at 11(8)/33183 (PRWF$$ + 35).
—> status

Process 1 SYSTEM eee Owns register set 0 see

Level: System process

Type: Supervisor F A

State: Ready : Valce

PB: 11(@)/33113 (PRWFS$ + 45) e_— PB has been a
LB: 11(®)/35136 (PRWF$$) .

SB: 6803(0)/252 XB: 6(0)/27052 SINCe PcL_ has
L: 800000 633105 E: @808e0 900006

x: eeeeee Y: 177777 eXecuted
FAR@: €060028 016000 FLRO: ee004e eBQe000

FAR1: 880006 @03124 FLR1: eeeee6 e9eeee

Keys: 0141090 Modals: 100037

Feode: 001100 900042 Faddr: 55(8)/1703

Locks owned: FSLOK

—> clearai!

—> continue

*aaving the debugger.

Volume OOLFIN

118512 total records

11301 records available

90.5% full

OK 17:26:53 1.115 3.206

\ o,
Debugger entered due to console interrupt.

Process -20 (BKiPCB) wos executing ot 6(@)/42313 (BK2PB + 4). i; + Ley

_ => step <e— Can t S ep “

see Debugger user error: - a Console tute rrp ® °

Step presumes entry froma breakpoint/single step.

—> breakpoint p$cidx+1

—> continue

Leaving the debugger.

ovail

Debugger entered due to breakpoint/single step.

Process 1 was executing at 41(3)/133583 (P$CIDX + 1).

-> step 10000

Debugger entered due ‘to breakpoint/single step.

Process 1 was executing at 41(3)/133503 (P$CIDX + 1).

-—> listoll

Type Address Procedure Process Count Mnemonic

brkpt 41(0)/133503 P$CIDX + 1 Any 1 LDA

step 41(8)/133504 P$CIDX + 2 1 9904 STA : .

eee Debugger user error: . process 18 st ‘ \| actively
There is clready an actively stepping process. +

-—> cleaorali € in
—> listall . , s PP 9

No breokpoints are set.

~> breakpoint pagtur+!

=—> continue

“e@eaving the debugger.

seugger entered due to breakpoint/single step.

' Process 1 wos executing at 6(@)/45205 (PAGTUR + 1).
-> clearall

—>.step 2000

step aberts becese
eee Debugger user error:

Stepping through o critical region is not allowed. ot hardware aterrupt

Debugger entered due to breakpoint/single step. iahibs t raStrvctions

Process 1 wos executing ot 6(0)/26223 (LKPRV_ + 7).

—> access_type symbolic

—> access «

6(0)/26223 INHP ?

~> access niogin

18(®)/2267

eee Foult while in debugger:

Page foult (type 10) encountered at 55(0)/15227.
Attempt to reference 15(@)/2267. t “ .

-> cleoral! oo pended breakpuwt

—> breakpoint nlogin : €

-> ltistall
Type Address Procedure Process Count Mnemonic ? ‘

brkpt 15(@)/2267 NLOGIN Any 1 £— cant show MNemenie
—> continue

Leaving the debugger.

Volume DOLFIN

118512 total records —

11381 records availabie

. 90.5% full
\

OK 17:27:11 @.668 0.245

30)

vosd

er
<< Cause the pase to be

Dro uaht bd
_ ese Debugger user error:

Breakpoints cannot be set on an ARGT instruction. <— defle rrod - erreur mess age

Debugger entered due to poge fault. a . +

Process 1 was executing at 4000(3)/6245@ (Unknown). From a pended bre Kon
-> clearall

~> continue

Leaving the debugger.

15/ 2267 ARGT ?

$q
OK 17:27:46 ®.287 0.263

Js Gi

eeeece:
eeocee:
e000:
e80000:
ee0e0e:
680000:
eeceCe:

eeeoee:
eeneee:
eeoece:

020000:
Q0e0000:
eeoces:
800000:
ee0eee:

080000:
oe00ee:

090080:
e00000:

200080:
evcoee:
080000:

eee:
eeeceed:
eeoeee:
00000:
808000:
e0eo0es:
eeeeee:
800000:
000800:
ee0e0ee:
eeceee:
eecece:
000800:
900000:
oeoeee:

ee000ee:
eeoeee:
eeeoee:
ee00ee:
eee0ee:
e0eeee:
0e0000:
000000:
000000:
900000:
9e0eee:
0200000:
eoecee:
e08000:
000000:
90080:
000000:

2)

‘
‘', PRIMOS>FS, PRIMOS GROUP, 06/25/84

2001
0002
e203
0004
0085
0006
0007
6008
9009
2010
eeit
0812
0815
0014
0015
Q016
Qe17
0018
0019
8820
0021
8022
8823
@024
0025
0026
0027
0028
0029
0050
0831
8032
08353
0034
0835
0036
0037
0058
Q839
0040
0041
8042
0043
0044
0045
0046

(e047
0048
6049
0850
0051
0852
0e53
0054

/*

¢ Logical structure of module Gpoth$:

f

GPATH$.PLP, PRIMOS>FS, PRIMOS GROUP, 06/25/84 !
Return a pathname given o unit, attach point or segment number. :
Copyright (c) 1981, Prime Computer, Inc., Natick, MA 01760 «/

Description:
Returns the pothname of the unit, attach point or segment specified. i

Abnormal conditions: None. . |

Implementation: Calis Ra2pth if local, R$call if remote.

pe
Pa
le
s

Gate Gpath$: return pathname of unit, attach point or segment.
Calling sequence:

dcl Gpath$ entry (fixed bin, fixed bin, char (*), fixed bin, fixed bin, fined bin):
call Gpath$ (key, unit, pathname, max_path_ten, actuai_path_len, code); '

key: Moy be any of the following (Input):
K$UNIT — use passed unit number.
K$CURA — get pathname of current a.p.
K$INIA — get pathnome of initial a.p.
K$SEGN ~—- use passed segment number.

unit: | unit number of unit to check or segment number
if key = K$SEGN. (input)

pathnome: returned pathname of unit, attach polnt or segment (output).
max_path_len: size of pathname buffer in characters (input). }
actual_path_len: length of returned pathname in characters (output). ;
code: standard error code (output).

1f (unit open and local)
Then .

(get tdev, bra from AST entry and then get pathname with Ra2pth)
If (segment number)
Then

(get pothname with Ra2pth)
Select (error code) _.
When (illegal remote reference)

(go remote with R$call)
Whon (unit not open)

If (checking attach point)
Then

(map to not attached for user)
Return

SOHSHSSHOHSHEHHHHHSOHSHESOHOHSHHSHSSHSHSHESHESEHSHOSOSHOSSEHSEHSHSCHEOD {

* This module tokes the FS and UFD locke for reading. ©
SOCOSHHSSHSSHEOHESSSHSHEEHSOOHSHOSHESEHSHSHTHSSSHSESH EK HSHHHS OHH ED '

Modifications:

f
H
L
i
d
g

4°
G
r
i
y
s
e

y
0

sH
o1
1J
0d

Date Progrommer Description of modification
06/25/84 Sadigh Return E$UNOP if key is K$COMO and COMO js not open.
02/18/84 Sadigh Added k$como option to return pathnome of COMOUTPUT

/* GPATH$.

Q00000:
000000:
000000:
000000:
680000:
080000:
000000:
@00000:
008000:
Q00000:
000000:
000000:
000000:
eeeee0:
000001:
000001:
000001;
020001:
000001:
0200001:
000001:
000001:
000001:
G0000! :
ee0e0!:
e0eeet:

- 808801:
000001:
000001:
000001:
200001:
000001:
ee0e0t :
000001:
000001;
000001:
080001:
006001:
000001:
00000! :
800801:
000001:
808001:
000001:
000001:
000001:
Q00001:
600001:
000001:
200001:
0080801:
Q00001:
000001:
000001:

W
QW

\

. PRIMOS>FS, PRIMOS GROUP, 06/25/84 10 .-uge 2

0055 /e file.
0056 /* 01/24/84 Slutz Added init for vatid_segment.
0057 /* 11/29/83 Stutz Fixed for Dynamic File Units.
0858 /* 08/09/83 Goggin Added new key K$SEGN. '
0059 /* 10/05/82 Swartzendruber Use slave ID instead of NPX node. 1
ee6e /* 1/17/81 Stutz Return correct error code for k$unit. :
e061 /* 11/09/81 Slutz Fixed r$call coding to handle spore byte at end. |
0062 /e Buffer length is in characters!
e063 /* 08/28/61 Weinberg Initial coding. a
e064 o/
0065
6066 gpath$:
0067 proc (xkey, xunit, xpothname, xmax_chars, xpath_ten, xcode) options (
0068 gate, nocopy);
8069 .

6070 dc! xkey fixed bin, /* Determines whose pathname to get «/
0071 xunit fixed bin, /* Unit number if key = k$unit
0072 or segment number If key = k$segne/
8073 xpathnome char (128), /* Name returned here /
0074 xmaxchars fixed bin, . /* Length of xpathnome buffer in characte
0075 xpath_len fixed bin, /* Length of returned name [n characters
0076 xcode fixed bin; /¢ Standard error code 0/
0077 .
0101
0102 /* External entry points e/ :
0103 i.
0104 dcl ro2pth entry (fixed bin (31), fixed bin, char (0), fixed bin, fixed
e105 bin, fixed bin),
0106 open_chk entry (fixed bin, ptr, fixed bin) returns (bit (1)),
0107 r$cali entry options (variable), '
0108 tl$sge entry returns (fixed bin(15)),
0109 sdwadr entry (fixed bin(15), fixed bin(i5)) returna(ptr opt fons(
e110 short)),
Ott

0112 /*¢ Gets pointer to sdw for
e113 given user and segment. ¢/
0114 |
115 pgmapo entry (ptr options(short), fixed bin(15)) returns(ptr options(
0116 short yy; :
0117
e118 /* Gets pointer to page mop
0119 entry for given user and segment. o/
0120

0121 /* Local deciarations ¢/ '
e422 t

8125 Xreplace fam_i_gpath$_key by 235, j
0124 set_high_order_bit by 32768, /* used to detect high order S
0125 bit being set in SOW «/
6126 page_size by 1024, /* record or page size +/
Q127 full_seg by 65536, /* segment size +/
0128 dtar2 by 2; '
0129
8138 del rcode fixed bin, /* Remote error code o/
e131 uteptr ptr, /* Pointer to unit table entry «/

/s

800001:
800001:

Q000e!:

000001:
000001:
000001:
090001:
000001:
eeeoe!:
000801:
0002001:
e000801:
000001:
000001:
e00e0e1:
000001:
eecce!:

Qe0001;

000001:
80001:
000001:
ee0ee!:
eeeee!:

Q00001;

990001:
G008Gt:
900001:
eeeoe!:
800001:
ee0ee!:
eeeeet:
900001:
eee0e!:
900004:
000006:
000810:
00010:
000022:
000022:
900022:
000833:
000033:
000037:
e00ee41:
000043:
8000435:
000043:
000045:
e00e055:
000055:
000067:

200067:

000101:
eeelal:

(
9
)

1 >, PRIMOS>FS, PRIMOS GROUP, 06/25/84

8132.
81353
@134
0135
0136
Q137
8138
@139
0148
6141
0142
@143
0144
e145
@146
@147
e148
e149
@158
e151
@152
@153
@154
@155
0156
Ot57
0158
8159
e160
0161
@162
0163
0164
0165
O166
Q167
e168
0169
e170
e171
0172
@173
0174
@175
0176
0177
0178
e179
0188
e181
0182
0183
O184
0185

unit_open bit (1) atigned, /*
valid_segment bit(1) aligned,

runit fixed bin, /e
odd_length bit(1) aligned, /*
odd_byte char(1) aligned, /*e
key fixed bin, /e
rkey fixed bin,
code fixed bin,

sdw_ptr ptr options (short),

idx Tixed bin,

fe
null_sdw fixed bin (31) static init (set_-hishorderbit),

nvmfs fixed bin static external, /*
ast_addr ptr options (short), /e
fb15 fixed bin based,
h_map_virt_addr ptr options (short), /*
h_map_ptr ptr options (short),

mapped_phys_page_oddr fixed bin (31), /*
user_phys_page_addr fixed bin (31), /*
devno fixed bin, /e
1 bra_bil based, /*

2 ha bitsy:
2 m8 bIt(S
2 116 bit(16),

bra fixed bin (31),
not_found bit(1) aligned, /*
segno fixed bin, /*
dtar2_top fixed bin(15);

‘/* Validote porameters ¢/

key = xkey; fe
valid_segment = ‘O'b; /*
call lockfs; fe

select (key);
when (kSunit)

do;
unit_open = open_chk
if code = e$bkio

then do;
code = Q;
unit_lopen = °1°b;
ond;

end;
when (k$cura)

True If unit open and local 0/
True If valid segment given
with use segment key o/
Unit may be different if going remote
True if odd max fength o/
The odd byte to keep in remote case on
Locel copies ¢/
key for remote system o/

Pointer to SbW o/

Index «/
Number of AST entries */
Pointer to AST +«/

Pointer to poge mop for EPF sege/
Pointer to page in which
poge map for EPF seg resides +/
Physical oddresas of HMAP of EPF segmen
Physical address of HMAP from SOW ¢/
Logical device of file */
Copy of BRA of the file ¢/

BRA of the file o/
Boolean «/
Segment */
top segment in dtar2 ¢/

Moke locol copy e/ .
Init before checking.... */ i
No interruptions, please */ i

(xunit, uteptr, code);

unit_open = open_chk (current_ap_unit, uteptr, code);
when (k$homa)

unit_open = open_chk (home_ap_unit, uteptr, code);
when (k$inia)

unit_open = open_chk (initial_ap_unit, uteptr, code);’
when (k$como)

unit_open = open_chk (como_unit, uteptr, code);

/* GPATH$ 2, PRIMOS>FS, PRIMOS GROUP, 06/25/84 18 rage 4

@00113: (0186
@00113: (0187
Q00114: (0188
@00116: (0189
@80116: (0198
Q00121: (0191
@00121; (0192
@80121: (0195
@06121: (8194
Q00121: (e195
000124: (0196
008124; (0197
000135: (e198
@00137: (8199
000141: (82008
Q00141: (0201
000144: (8202
000144; (02035
000144: (0204
000145: (8205
@00147: (0206
@00150: (6207
080152: (8208
000152: (08209
@00152: (8210
000152: (8211

- 008152: (0212
080155: (0215
O0O16!: (0214
O80161; (0215
000201: (0216
@00205: (0217
000205: (0218)
e20205: (0219
e00e2e5: (0220
@00211: (0221
800213: (0222
000223: (0223
000223: (0224
000223: (6225
000223: (0226
000223: (0227
e00223: (0228
080233: (0229
800233: (0230
000253: (0231
e00266: (0232
200277: (0233
000277: (0234
0¢0305: (0235
000305: (0236
000305: (0237
eee3ses: (0238
000311: (0239

8)

when (k$segn)
do;

unit_open = ‘6b; /+ Remember o unit hos not
been possed.+«/

segno = xunit; /* Parameter is a segment no o/

/*¢ Catculate the top segment number in DOTAR2 for this user. Check the
bit "pudcom.flagbt.big_dtar2” to determine whether 256 or 512 (dec). */

a

dtar2_top = ti$sgs();
if ((segno < dynsgs(dtor2)) | (segno > dtar2_top))

then do; '
code = e$bkey; /* Segment not in range. ¢/
valid_segment = ‘O’b;
end;

else valid_segment = ‘1'b;
end;

otherwise
do;

unit_open = °@°b;
valid_segment = '@’b;
code = e$bkey;:
end;

end; /* Select e/

if unit_open
then do; /* Go get pathname from unit. «/
call lockr (ufdiok); /* Must lock dirs to do it ¢/
call ra2pth (uteptr —> utcme.bra, uteptr —> utcme.idevno, xpathname,

xmox_chors, xpath_len, code);
call untkn (ufdlok);
end; /* Go get pathname from unit. °/

else if valid_segment
then do; /* Go get pathname from segno. +/
not_found = ‘1’b;
sdw_ptr = adwadr (segno, pudcom.cuar); /* Obtain a pointer to SDW o/

/* Form physical address of page table from SDW ¢/

if (oddr(sdw_ptr) —> tong_fb t= 0) /* valid. segno o/
then if (sdw.ptr —> long_fb t= nul l_sdw)

then do; /* Good SDW «/
user_phys_page_addr = edwiptr —> sdw.phys_low + full_seg «

sdw_ptr -—> sdw.phys_high;
do idx = 1 to nvmfa while (not_found); /« Search ASTs ¢«/

ast_addr = addr (ast(idx));
if (addr(ast_oddr —> aste.nrnw) —> fb15 t= @)

thon do; /¢ This entry in use. ¢/

/* Form physical address of page table for EPF segment +/

h_mop_virt_addr = ast_addr —> aste.ppmap;
h_mop_ptr = pgmapa (h_map_virt_addr, pudcom.cusr);

x

w
e
e

e
e

o
e

ce
“ 1

/*G 4 2, PRIMOS>FS, PRIMOS GROUP, 06/25/84 @ rage 5

000321: (8240 mapped_phys_page_addr = poge_size * pgppn(h_mop_ptr) + addr
@00321: (8241 (h_map_virt_oddr) —> pointerb.w.wn:
000340: (0242

000340: (0243 /* If two addresses ore equal get devno and bra ¢/
080340: (0244

000340: (0245 if mapped_phys_page_oddr = user_phys_page_oddr
000348: (0246 then do;
000344: (0247 devno = ost_addr —> aste.dev_bra.dvno;
000352: (0248 bra = @; a
000355: (0249 addr pre} —> bra_bit.m8 = aaet_addr —> aste.dev_bra.brah;
000363: (0250 addr (bra) —> bro_bit.116 = ast_addr —> aste.dev_bra.bral;
Q0O3S66: (8251 not_found = °@'b;
080370: (8252 end;
200370: (0253 end;
000370: (0254 end; /* Search ASTa ¢/
000402: (0255 end; /* Good SOW «/
080402: (0256 .
000402: (0257 if not_found

000402: (0258 then code = e$fntf;
000407: (0259 else do;
000410: (0268 call fockr (ufdiok); /* Must tock dirs to do it ¢/
000414: (0261 catt ra2pth (bro, devno, xpathname, xmox_chars, xpath_ien, code);
008432: (0262 call untkn (ufdlok);
000436: (02635 end;

@00436: (0264 end; /* if valid segment ¢/
000436: (0265

000436: (0266 call untkfs; /* Done with file system ¢/
000440: (0267
000440: (8268 /* Process according to error code e/
000448: (0269
000448: (0270 sefect (code);
000450: (0271 when (e$irem)
000450: (0272 do; /* Unit is remote, handle thot «/
200450: (0273 xpath_len = 0; /* Clear in cose of error 0/
600453: (0274 odd_length = (mod(xmax_chars, 2) = 1); /e Remember state */
000467: (0275 if odd_length
@00467: (8276 then odd_byte = substr(xpathnome, xmox_chare + 1, 3
000515: (0277 if fuey = k$unit & (xunit >= sysun | xunit # como_unit)) |
200515: (8278 key = k$como)
000515: (0279 then runit = uteptr —> rem_ute.master_to_slave; /* Map unit number
@00547: (0280 else runit = xunit; /* Attach point ¢/
000556: (0281 if key = k$como
000556: (0282 then rkey = k$unit;
000564: (0283 etee rkey = key; :
000567: (0284 rcode = fam_i_gpoth$_key; /* For FAM I ¢/
000571: (6285 call r$cotl (lomfs, uteptr —> vem_ute.slave_id, ‘GPATH$', 6, rcode,
000571: (0286 rkey, 1, k$i2 + k$in,
@00571: (0287 runit, 4, k$i2 + k$in,
@00571: (0288 xpathnome, xmaxchars, k$out + k$char + k$ref + 5,
200571: (8289. umox_chors, 1, k$i2 + k$in,
000571: (0290 xpath_ten, 1, k$i2 + k$out,
000571: (0291 xcode, 1, k$i2 + k$out,
000571: (8292 xunit, 1, k$i2 + k$in); /@ Needed for FAM I o/
000672: (8295 if rcode t= @

©)

/* GPATH,

000672:
000677;
000677:
000726:
000726:
000726:
000726:
000741:
008753:
008753:
000754:
000757:
000757:
000757:
000757:
000760:
000760:

@@0@ ERRORS (PL/P

-P, PRIMOS>FS, PRIMOS GROUP, 06/25/84

0294
@295
@296
@297
0298
@299
@30A8
8301
0382
0303
8304
0385
@306
0307
0308
0309
0310

then xcode = rcode;
if odd_length

lw rage 6 {

/* Network errors take precedence */
/* Restore odd byte to keep Tracy smi

then substr(xpathname, xmax_chars + 1, 1) = odd_byte;
end;

when (e$unop)
if key t= k$unit & key t= k$como

then xcode = efnatt;
else xcode = code;

otherwise
do;

xcode = code;
end;

end;

return;

end;

rev 19.2)

PROCEDURE SIZE = 507 WORDS, LINKAGE FRAME SIZE = 5@ WORDS
2111 SOURCE LINES, 193 STATEMENTS, COMPILATION TIME = 43.49 CPU
52.2% DATA POOL UTILIZATION

/* Map not open to not attached +/
/* Correct for units «/

a

/* Select o/

/* Gpath$,¢/

SECONDS

Jo Get 2, PRIMOS>FS, PRIMOS GROUP, 06/25/84

SB44
e01 sodgus) CODE bin(15) automatic

1 171A 172 174M 178A
180A 182A 184A 198M
207M 214A 257M 261A
270 301 304

@Gt 808042S KEY bin(15) automatic
130D 164M 168 277(2) 281

283 298(2)
801 @80C035S UNIT_LOPEN bilt(1) aligned automatic

1300 - 171M 175M 178M 180M
182M 184M 188M 205M
ai

001 BE0CBOX 1 UTCME based
82<137>D

600000100 2 VSTAT
82<137>0

900000400 3 MODIFIED bit(1)
82<137>D

000000+01 3 SYSUSE bit(1)
82<137>0

800000+202 3 SHTBIT bit(t)
82<137>D

900000403 3 NO_CLOSE bit(t)
82<137>0

eeeeeo+e4 3 DISK_ERROR bit(t)
82<137>D

eegeee+e5 3 FILE_TYPE bit(3)
82<137>0

e00000+08 3 OPEN_MODE bit(8)
B82<137>D

000001+00 2 MORE_VSTAT
82<137>D0

000001+00 3 REMOTE_UNIT bit(1)
82<137>0

000001401 3 NO_DTA_UPDATE bit(1)
82<137>D

000001402 3 BACKUP_USE bit(1)
82<137>0 .

ee0e01+03 3 SPARE bit(13)
82<137>0

@80002+00 2 BRA bin(31)
82<137>D 214A

000004400 2 CUR_RA bin(31)
82<137>D

000006400 2 LDEVNO bin(15)
82<137>D. 214A

000007400 2 REL_WORDNO bin(15)
82<137>D

000010400 2 REL_RECNO bin(31)
82<137>0

@000124+00 2 RWLOCK bit(8)
82<137>0

000012408 2 ACCESS
82<137>D

2)oq

/* GPATh -P, PRIMOS>FS, PRIMOS GROUP, 06/25/84 tw rage

000012408 3 PROTECT bit(1)
82<137>0

000012409 3 DELETE bit(1)

82<137>0
000012+10 3 ADD bit(1)

82<137>D
000012411 S LIST bit(1)
82<137>D

000012412 3 USE bit(1)

82<137>D
000012413 3 EXECUTE bit(1)

82<137>D
000012414 3 WRITE bit(1)
82<137>D

000012415 3 READ bit(1)
82<137>0

000013400 2 POS_IN_PARENT bin(15)
82<137>D

0600014+028 2 PARENT_BRA bin(31)
82<137>D

000016+00 2 HASH_THREAD pointer
82<137>0

0080020+00 2 QUOTA_BLK_PTR pointer

82<137>D
@00022+00 2 DIR_BLK_PTR pointer

82<137>D

800024400 2 DAM_IOX_RA bin(31)
82<137>0

0800026+60 2 EX_MAP_PTR pointer

82<137>0

001 UTCME_CHARS char(48) based
82<189>D

@01 800100S UTEPTR pointer automatic
1300 174A 178A 180A 182A

184A 214(2) 277 285
801 UTHASH(1:257) pointer external

82<84>0 ..
@01 G@0036S VALID_SEGMENT bit(1) aligned automatic

130D 165M 1994 201M 206M
219

ee1 VDNUDG entry constant shortcall external
98<33>D

@01 WAITA entry constant shortcal! returns(bin(15)) external
98<33>D

001 WORD(1:1) bin(15) based
98<6>0

@81 @80075S XCODE bin(15) parameter
7080 285A ‘293M 298M 301M

304M
@01 880056S XKEY bin(15) parameter

700 164
@01 08000675 XMAX_CHARS bin(15) parameter

70D 214A 261A 274 275

Q

/* GPA’ -, PRIMOS>FS, PRIMOS GROUP, 06/25/84

ee1

ee!

01

oo!

285(2)A 295

@E0080xX 1 XP based
98<52>D

0080000+028 2 R_SN bit(16)
98<52>D

000001400 2 XREL bin(15)
98<52>0 .

@0@864S XPATHNAME char(128) parameter
70D 214A 261A

295M
6000725 XPATH_LEN bin(15) parameter

700 214A 261A

@eee00xX 1 XPB_ bosed
98<55>D

9e0e@0e+e0 2 R_LSNobit(16)
98<55>0

e000014+e0 2 XRELB bit(16)
98<55>D.

@00061S XUNIT bin(15) parameter
7@D © 171A 198

285A

275

273M

277(2)

285A

285A

280

	Cover Sheet
	
	Table of Contents
	i
	
	ii
	Chapter 1. Introduction
	1
	2
	Chapter 2. The Basics of Using the Ring Zero Debugger
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	Chapter 3. Ring Zero Debugger Command Descriptions
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	Chapter 4. Uses of the Ring Zero Debugger
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	Chapter 5. Implications of the Ring Zero Debugger Design
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	Appendix A
	Finding Variable Information from Listings
	71
	72
	73
	74
	Appendix B
	Command Syntax
	75
	76
	77
	78
	Appendix C
	Assembly Language Syntax
	79
	80
	Appendix D
	Error Messages
	81
	82
	83
	84
	85
	86
	87
	88
	Appendix E
	Summary of Functionality Limitations
	89
	90
	Appendix F
	Maintenance Notes
	91
	92
	93
	94
	Index
	95
	96
	97
	98
	99
	100
	101
	
	Time Scale
	Ring Zero Debugger Examples
	Demonstration 1
	1
	2
	3
	4
	Demonstration 2
	5
	6
	7
	Demonstration 3
	8
	9
	10
	11
	12
	13
	14
	15
	Demonstration 4
	16
	17
	18
	19
	Demonstration 5.1
	20
	21
	22
	23
	24
	25
	Demonstration 5.2
	26
	27
	28
	Demonstration 6
	29
	30
	31
	PRIMOS>FS>GPATH$.PLP Partial Listing
	32
	33
	34
	35
	36
	37
	38
	39
	40
	
	

