
BUILD: a Tool for Program Building

Douglas S. Rand

PE-T-1283, Rev 5

October 9, 1987

Copyright 1988 by
Pacer Software, Inc.

La Jolla, California 92037
All Rights Reserved

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5

Date: October 9, 1987

To: R & D developers

From: Douglas S. Rand

Subject: BUILD: a Tool for Program Building

Reference: PE-T-1346 RCS: Revision Control System

Keywords: Unix, make, project build, configuration management

Abstract

In building products and projects we often find the need to change several modules and then rebuild the project.
Recompiling individual modules leads to stale binaries and full rebuilds are costly in terms of CPU usage. An
answer to this is a controlled rebuild of the project where all the components are brought up to date. BUILD is a
tool which takes a dependency description and selectively brings a project up to date. It is similar to Unix MAKE in
concept and execution. BUILD will run on 19.4 and later systems.

New in revision (22.0.7 and beyond) is support for RCS archives and efficiency additions. New in this revision
(22.0.16 and beyond) is improved rule handling. Changes from 22.0.7 and 22.0.16 have change bars.

This document is classified PRIME RESTRICTED.
It is for distribution to Prime Personnel only.

When there is no longer a need for this document,
it should be returned to the Bldg. 10 Information

Center or be destroyed in the shredder.

Copyright Prime Computer, Inc., 1987
All Rights Reserved

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 1

1. Introduction

In maintaining products we typically deal with a multitude of source, binary and include file making up the total.
As a single source or include file changes we are faced with the option of attempting to selectively recompile these
files or doing a wholesale rebuild of the product. BUILD answers this need by allowing the user to describe the
interdependencies between these files and the finished product.

In describing these dependencies we will talk of components, which are usually files, and dependencies which
are always treated as components.

BUILD makes assumptions. The initial assumption is that a binary file component implies a source file. A
simple build file will serve to illustrate:

foo.run: foo.bin bar.bin
bind -lo foo bar -li -file foo.run

In this example foo.run (the program EPF) is dependent on foo.bin and bar.bin. BUILD will also infer (let’s assume
foo.spl and bar.spl exist) that foo.bin is dependent on foo.spl and bar.bin is dependent on bar.spl. When BUILD
uses this file it will walk through these dependencies depth then breadth. The search looks like this:

foo.run
foo.bin

foo.spl
bar.bin

bar.spl

As BUILD walks this network it gets the date-time modified from the file system and as it passes up the network it
returns this value. When it finds a component that has a dependency that is newer then the component’s date-time
modified it tries to bring that component up to date. If this succeeds then the current date-time is returned up the
network. So if foo.spl is newer then foo.bin BUILD will recompile foo.spl and it will also bind foo.bin and bar.bin
to create a new copy of foo.run.

BUILD uses a database of dependencies and commands to update a product when a dependent source or include
file changes. No longer does a developer have to worry day by day which sources are dependent on which include
file and how to bring the product as a whole up to date. He only has to maintain a central description in the build
file as the source changes.

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 2

2. Command Description

Capital letters in a flag are required. So -No_commands can be abbreviated on the command line to -N.

BUILD [component]
[-No_commands]
[-DeBuG]
[-From pathname]
[-Ignore_errors]
[-Verbose]
[-Keep_tempfiles]
[-SDI]
[var1=value1 ..]
[-Help]

There are no required arguments and the binary flags -No_commands and -DEBUG default to off.

component The part of the dependency net that should be built. This defaults to the first dependency rule
read in.

-No_commands Tells BUILD to print what commands will be executed without actually doing them.

@CB[-Verbose Puts out warnings for various non-serious conditions. Useful when debugging a buildfile or
when simple problems occur. The -Debug option will imply -Verbose but puts out much more
output.]

-DEBUG Abbreviated -DBG. Causes alot of debugging information to be printed. If you have a problem
then it would be very useful to have a como file of BUILD rerun with the -DEBUG flag. See
also the section on meta commands to get a shorter debug output.

-From This is the pathname for the dependency file. The default is BUILDFILE in the current
directory (or BUILDFILE.BUILD). The suffix .BUILD is understood so for your
product.BUILD file you can simply specify -f product.

-Ignore_errors Don’t stop building if an error is found. BUILD keeps count of errors and warnings if this flag
or -SDI (which turns on this flag as well) are specified.

-Keep_tempfiles If you use CPL code then BUILD generates temporary files for execution. This option leaves
them for your perusal or debug purposes.

-SDI This must be used for SDI submittals. This forces all commands and compilations to occur (as
if everything is out of date) and implies the -Ignore_errors option. @cb[This sets the local
BUILD variable *SDI* to ’true’.]

var1=value1.. There may be any number of var=value pairs on the line to set initial variable values (this is the
way to pass arguments). There may be no whitespace in this, i.e. foo=bar is o.k. whereas
foo = bar and bletch is not. @cb[After rev 22.0.7 whitespace is OK. Also foo = ’bar and bletch’
will do the intuitively correct thing by using quotes to enclose bar and bletch.]

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 3

3. An Example

I will use the build file for BUILD as an example to start with.

/* BUILD.BUILD, BUILDSRC, ENVIRONMENTS, 04/08/86
/* buildfile for build
/* Copyright (c) 1986, Prime Computer, Inc., Natick, MA 01760 */
/* All Rights Reserved */
/*
/* List of object files (note the \ which indicates a line
/* continuation)
objs = build.bin reader.bin utilities.bin dtm.bin\
uptodate.bin expand_line.bin path.bin

/* List of include files
insert = utilities.ins.spl make_ds.ins.spl

/* To compile an spl module
spl -> bin
spl {*} -b *>object>{=}.bin

/* To make build_product.run bind all the objects and rename
/* the result build_product.run. build_product.run is dependent on
/* all the objects and include files
build_product.run: {objs} {insert}
bind -lo {objs} -li -dynt -all -ng
cname build.run build_product.run

/* build.bin ... are each dependent on all the include
/* files (and their sources implicitly)
build.bin: {insert}
path.bin: {insert}
reader.bin: {insert}
utilities.bin: {insert}
dtm.bin: {insert}
uptodate.bin: {insert}
expand_line.bin: {insert}

/* To clean up the binaries one would type build_product clean
clean:
delete *>object>@.bin -nq -nvfy

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 4

4. General Information

4.1 Introduction

BUILD is a tool which takes dependencies and rules and uses them to build a product. The dependencies form a
network and the component argument tells BUILD which network component to start at. Rules and commands
attached to the dependencies are used to bring each component up to date.

BUILD is a qualified tool and may be used for SDI submittals for rev 21.0 and later. Build files must have a
.BUILD suffix and a standard master disk header.

4.2 Components

Components are usually simply filenames and sometimes they are placeholders.

Binary Binary files are assumed if the name of the component ends in ".bin". BINARY$ search rules
are used to find the date-time last modified of the file and a source is presumed to exist and to be
a dependency. The source is obtained using the SOURCE$ search rules and the contents of the
SUFFIXES variable. If no commands are given then either a rule or a default rule will be used
to bring this component up to date.

Source No assumptions are made insofar as dependencies. The date-time last modified is found using
the SOURCE$ search rule. Rules or default rules may be used to build the source file. The ’to’
suffix is obtained from the first dependency (ordering will be important here).

Placeholder This is simply a non-suffixed component name. It is assumed not to be buildable using a rule.
This component will always execute commands if it has them. It is given a default date-time
modified of 1964.

Include Include files may depend on other include files. Commands will be executed if given and the
component is not up to date. Otherwise these components act like source files.

Modula Definition files
Special handling is given to files that end in .def.mod. The file is found using the
DEFINITION$ search rules. The ’to’ suffix is set to ’def.mod’ for the purpose of rules.

Each component is brought up to date depending on whether the component’s starting date-time modified (as
described by the file system or the default) is less then the latest changed dependency (not up to date). Since
dependencies are components one may consider that a component may pass it’s dtm (date-time modified) back to
another component as that other component’s dependency. If a component has no dependencies then it is, by
default, considered to be automatically up to date (that is leaf nodes in this network are always up to date).

It is important to note that once a component has been checked and brought up to date it is not rechecked.
Ordering of your dependencies and components may be important.

@CB[RCS archives have dtm information per revision encoded in the file. See the chapter on RCS for
information on using RCS archives with BUILD.]

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 5

4.3 Search rules

When BUILD looks for a file it will use one of three search rules. If the file is a binary file then it will use the
BINARY$ search rule. If the file is an include file (either contains .ins. in the entryname or a suffix of .h) then it
uses the INCLUDE$ search rule. For MODULA definition modules (.def.mod) it uses the DEFINITION$ search
rule. For all other files it uses the SOURCE$ search rule. If one or more search rules are undefined it will be the
equivalent of using the current directory.

Builtin search rules can be overridden. See the section on meta directives.

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 6

5. File Description

There are five kinds of structure in the build file:

• Comment lines

• Variable assignments

• Rules

• Dependancies

• Meta directives

Comment lines begin in column one with a ’/*’. The remainder of a comment line is ignored.

5.1 Meta directives

If a line starts with a ’%’ then it is a meta line and there are the following options:

%include filename
This starts reading in filename. Filename may also include a %include directive. When BUILD is finished

reading the file in the %include it will continue reading the original file which contained the %include. This is not
usable while processing commands for a rule or node.

%use search_rule_name for suffix list
This allows the user to override the default search rule handling. Suffix list is a blank separated list of suffixes,

i.e. ’c spl mod’. Search rule names are normally capitalized. The suffix may also be ins for all ..ins.. files or
def.mod for definition module files.

%command primos command line
This allows for execution of PRIMOS commands at read time. This is particularly useful for setting search rules.

@cbon()

%revision revision [node]+
This sets the revision for a particular node or nodes. This is used in conjunction with RCS archives. This is a

useful feature for determining the configuration of a particular build since one normally wants all the most current
sources but for a particular source one may want an experimental version or an older version. %revision may be
abbreviated %rev as well.

The revision given may be either an explicit revision such as 3.2 or a named RCS revision such as set by
rcs -nname archive_file.

Remember that the nodes named should be RCS archives and not source filenames.
%revision 19.4 foo.spl_v bar.plp_v is a valid example of this feature. @cboff()

%debug on/off
Essentially the same as -debug command line option but lets you control what portion of the source you actually

want debug info for.

%echo on/off
Echo line expansions. Useful for debugging problems with variable expansions and quoting.

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 7

%if,%then,%else,%end
An %if line introduces a conditionally read section. The sections are delimeted by %then, %else, and %end.

The following illustrates this:

%if {DEBUG_VAR}
%then
COMPILE_FLAGS = -debug
%end

%if [calc {count} = 5
%then
...
%else
...
%end

The %then can be ommited. See the section on line expansion for more details on using PRIMOS command
functions from BUILD.

The expression is considered ’false’ if the text is:

’’ <- meaning blank
F
FALSE
f
false
0

@CBon()

%source_lookup on/off
If turned off then binary files are treated as all other files and will not trigger automatic lookup of their source

files. Also the suffixes variable is effectively ignored. @CBoff()

5.2 Line expansion and reading

All non-comment, non-blank, non-command lines which are read in are passed through an expander which
expands any variables in the line and which removes one level of quoting. For example:

line = {foo} is a good "way of expressing {foo}"

will result in a line read in (assume the value of foo is "once upon a time"):

line = once upon a time is a good way of expressing {foo}

Quotes may be expressed inside of quotes by using a double quote (""). So:

"a "" b """ => a " b "

Another important note is that lines ending in ’\’ will be continued on the next line. This is useful for both
dependencies and variable. This is not implemented for commands.

The ’\’ character is also used as a one character quote. That is \{ is equivalent to "{" and \\ is equivalent to "\".

Also the line is scanned for ’[’. If a ’[’ is found then a matching ’]’ is search for and the contents between the
left and right delimeters is passed to PRIMOS as an active function. So:

date = [date -full]

will set the date variable to the current date. Another example:

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 8

%if [calc [date -tag] > 860101]
%then
options = -newfortran {options}
%end

will add -newfortran to the options if the current date is after 1/1/86.

5.3 Command execution

When commands are executed they are passed through the expander and the results passed to the system
subroutine CP$. This allows one to execute any Primos command or CPL. If any command line has a ’&’ character
in it then the entire set of command lines (either bound to a component or a rule) is passed to CPL in a temporary
file.

5.4 Variables

Variable assignments are of the form variable = value. There is only one of these per line. The value may be
anything and include other variables or quoted areas. A variable is defined as any set of printable characters, e.g.
foo is a variable name, so is 2late. If a variable name starts with a ’.’ it is considered a Primos global variable and
has the restrictions for that class. Either type of variable may be set in the file or on the command line. References
to variables is similar to CPL. They are quoted with ’{}’. Expansion may be inhibited by using double quotes, one
level of quotes will be removed. Examples:

/* set foo to the value trivial pursuit
foo = trivial pursuit
/* set bar to the value what a game
bar = what a game
/* statement will have the value:
/* trivial pursuit : what a game
statement = {foo} : {bar}
/* the Primos global variable .trivia will also
/* have the value of statement
.trivia = {statement}
/* This gives bletch the value: {foo} : what a game
bletch = "{foo}" : what a game

Predefined special variables are:

* See description under RULES.

= See description under RULES.

- See description under RULES.

SUFFIXES Contains the list of source suffixes searched for (in order). The default list is ’cc spl mod pl1
pl1g plp pascal ftn f77 cbl vrpg pma.’ (PL1,PL1G added at 21.0.7)

@cb[REVISION Can be empty, ’latest’, or one, two or three dot separated numbers or a named RCS revision.
(e.g. 1, 1.1, 2.4.2) See the chapter on using RCS from BUILD for details.

SDI This is set to ’true’ if the -SDI command line flag is set.]

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 9

5.5 Rules

Rules explain how to create one kind of file from another. File kinds are determined by suffixes. BUILD
understands (counts upon) our meanings for the suffixes .bin, .h (c header files), and ..ins.. (conventional include
files). All other suffixes are assumed to belong to the category of sources. A rule is expressed:

suffix_from -> suffix_to
command1
command2
...
commandn

A rule should have a minimum of one command. In writing rules one may assume that three special local variables
have values. They are:

{*} The full pathname of the source file.
{=} The entryname of the file (no suffix).
{-} The name of the dependency which triggered the update.

For example a rule to compile a SPL module:

spl -> bin
spl {*} -b myobjdir>{=}.bin {splopts}

BUILD used to default if it searches for a rule and none can be found. @cbon() There are builtin rules for all
standard PRIME languages (and other random things). The current list is:

spl -> bin
spl {*} {splflags}

f77 -> bin
f77 {*} {f77flags}

ftn -> bin
ftn {*} {ftnflags}

pl1 -> bin
pl1 {*} {pl1flags}

pl1g -> bin
pl1g {*} {pl1gflags}

c -> bin
cc {*} {cflags}

cc -> bin
cc {*} {cflags}

pascal -> bin
pascal {*} {pascalflags}

plp -> bin
plp {*} {plpflags}

pma -> bin
pma {*} {pmaflags}

mod -> bin
modula {*} {modflags}

def.mod -> sym
modula {*} {defmodflags}

cbl -> bin
cbl {*} {cblflags}

deremer -> c
deremer {*} -cc {deremerflags}

deremer -> cc
deremer {*} -cc {deremerflags}

deremer -> spl
deremer {*} -spl {deremerflags}

deremer -> plp

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 10

deremer {*} {deremerflags}
vrpg -> bin

vrpg {*} {vrpgflags}

@cboff If from = to then nothing is done.

5.6 Dependancies

Dependancies explain how some components rely on other components. A component will either be a file or a
placeholder as explained under the section on components. The basic format is:

component: dependency1 .. depn
command1
command2
...
commandn

Commands are optional. If there are no commands then BUILD will look for a rule to create the component. If the
component is a binary file then BUILD will automatically assume that it’s source file is a dependent, i.e. if the
component is foo.bin then you needn’t specify foo.spl. BUILD uses the SUFFIXES variable to determine which
sources suffixes to search for and in what order. If the default list is wrong the you may change it in the usual
fashion by including a variable definition line for SUFFIXES.

Some special components exist.

<begin> is a component that is brought up to date before the main component.

<end> is a component that is brought up to date after the main node.

@CBon() <error> has it’s commands executed on error (appropriate when using -SDI or -Ignore_errors).

<warning> has it’s commands executed on warnings (appropriate as <error>). @CBoff()

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 11

6. Using RCS archives

6.1 Introduction

RCS archives are single files that contain the current revision of a file and backward deltas to older revisions of
the text. (See PET-1346 for a full description of RCS) Branches are handled as ’forward’ deltas from the main
trunk.

Using the file system dtm for an RCS archive is clearly not the correct way to determine the ’datedness’ of an
archive file. BUILD has some extensions to deal with this properly.

The revision variable determines the behaviour of BUILD when it encounters a RCS archive. Any file whose
name ends in ’_V’ is assumed to be an archive file. Rules can be constructed in the normal fashion. There are no
builtin rules to handle RCS files.

If the revision variable is set to ’’ or ’latest’ then the first revision listed in the archive file (the most recent) is
taken as the dtm. If the revision variable has one or two digits (a trunk revision) then the first match searching
forward is used. If the revision variable has three digits then a branch rev is searched for and the latest branch rev
(highest fourth number) is used. If the revision variable has four digits then the first exact match is used.

The rules for resolving revision also apply to specific revisions assigned with %revision.

Named revision are mapped on a per archive file basis to actual revisions in each archive file. This provides a
good mechanism for maintaining configurations. (See rcs -n in PE-T-1346)

6.2 Rules for RCS archives

The include files should be brought up to date first. This means that if the version in the file is not up to date
compared to the archive then the later copy should be checked out. Conversely one may wish to always extract the
correct revision. Perhaps the safest way has the file dtm for revisions when the latest revision is used and always
extracts otherwise. The rule for extracting include files would probably look like this:

ins.spl_v -> ins.spl
rco -p *>insert>{=}.ins.spl

For source files the file need only be extracted if the binary is out of date. The following is recommended as a
typical rule:

spl_v -> bin
rco -p *>insert>{=}.spl
spl *>source>{=}.spl -b *>object>{=}.bin

This will also leave browsing copies of source files about.

The suffix list needs also to be modified for source lookup:

SUFFIXES = spl_v cc_v

In RCS revision may also be named. Using the %revision meta directive one may set the required revision
explicitly for named files. Using named revisions will probably be an easier way to maintain older configurations of
software then trying to explicitly name the numerical revision for each archive file.

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 12

7. Writing and debugging BUILDFILES

7.1 Writing BUILDFILES

There are several steps in creating a buildfile. The simplest buildfiles use defaults entirely. For example

my_project.run: my_project.bin my_util_file.bin
bind -lo my_project my_util_file -li

is entirely sufficient to create a program my_project. This is a fine use for BUILD but most programs are more
complex.

The first step is to get a list of binary files and find the include file dependencies on the corresponding sources.
If the project is a large one then the resultant file may want to be separate from the main buildfile. So the main
buildfile then has a line ’%include auxilliary’. This makes BUILD include the file auxilliary or auxilliary.BUILD

(files with .BUILD are selected first) as if the text in the auxilliary file was in the main file. Each node may have
more then one dependency line.

foo.bin: x.ins.spl
foo.bin: y.ins.spl

will do exactly the same thing as:

foo.bin: x.ins.spl y.ins.spl

Important to note is that only one set of commands will be accepted. If two dependency lines both have commands
then the last dependency line read will take precendence.

A good way to organize is to have dependencies in this aux file and the commands that are specific to individual
modules (remember that the general cases can be expressed as rules) are given in the main file. A simple case of
this could be:

/* FOO.BUILD

/* blank options normally are set to things like -debug or extended
/* optimization
options =

/* No sense in looking for cc, plp, etc. since this only uses spl
suffixes = spl

spl -> bin
spl *>source>{=} -b *>object>{=}.bin {options}

foo.run: foo.bin bar.bin bletch.bin
bind -lo foo bar bletch -li

%include aux

/* bletch always is compiled in debug mode
bletch.bin:

spl *>source>bletch.spl -b *>object>bletch.bin -debug

/* AUX.BUILD general dependencies
foo.bin: x.ins.spl y.ins.spl
bar.bin: z.ins.spl
bletch.bin: x.ins.spl

While the names are trite the point is to split the stuff which doesn’t change often (the basic build) and the stuff

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page 13

which changes with the source (the dependencies). This also makes using tools which automatically generate the
dependency file much less painful.

The only way that this becomes more complicated is that one can have include files dependent on other include
files or multilayered dependencies with deremer. Some more examples (snippets of the files):

/* Rule for translating deremer to spl
deremer -> spl

deremer {*} -spl

foo.bin:
/* foo.spl is dependent on foo.deremer
foo.spl: foo.deremer

Another example:

foo.bin: x.ins.spl
/* x.ins.spl includes y and z
x.ins.spl: y.ins.spl z.ins.spl

7.2 Common Problems

7.2.1 Search rules

The biggest problem by far is screwed up search rules so that BUILD doesn’t find the files referenced. This is
really a very simple minded tool. The easy way (after 22.0.7) to find this problem is to turn on -verbose and listen to
the warnings that source files aren’t found and that files aren’t found. Sometimes this doesn’t matter. For example:
you have a node that is a placeholder. A placeholder won’t be found in the file system. A placeholder’s commands
are always executed. If something else, like a binary file, isn’t found then the usual culprit are the search rules.

7.2.2 Updating components

A second problem is that BUILD doesn’t seem to be updating things that it should. This is often caused by not
finding referenced files but also is caused by the simple lookup used. If the node name doesn’t match the
dependency name (like one of them is foo>bar.spl and the other is bar.spl) then no matter how obvious the
association BUILD will not find it. The names must match letter for letter.

7.2.3 Other problems and bug reports

Other problems occur. If a problem occurs and -verbose doesn’t help then try either -debug or %debug on and
off to find the problem. You will get alot of output. Look to see that file lookups use the right search rules and that
induced rules are correct. Sometimes problems occur with the preset variables *, = and -. These settings are
displayed when debug output is on.

When everything fails or you think you’ve found a bug in BUILD then please send me:

• The buildfile(s)

• A como file of the -debug output (all of it please).
This should be sent either to x.mail doug -on enb or pdnmail doug@enx.

Pacer Restricted

BUILD: a Tool for Program Building PE-T-1283, Rev 5
Page i

Table of Contents

Page

1. Introduction 1

2. Command Description 2

3. An Example 3

4. General Information 4
4.1 Introduction 4
4.2 Components 4
4.3 Search rules 5

5. File Description 6
5.1 Meta directives 6
5.2 Line expansion and reading 7
5.3 Command execution 8
5.4 Variables 8
5.5 Rules 9
5.6 Dependancies 10

6. Using RCS archives 11
6.1 Introduction 11
6.2 Rules for RCS archives 11

7. Writing and debugging BUILDFILES 12
7.1 Writing BUILDFILES 12
7.2 Common Problems 13

7.2.1 Search rules 13
7.2.2 Updating components 13
7.2.3 Other problems and bug reports 13

Pacer Restricted

