
Inter-System Call Exchange

(ICE)

Subroutines Guide

Revision 7.2

ICE Subroutines Guide Version 7.2

Table of Contents

T OVEFVIEW. LL Lec cee eee ee ee ee eee ee eee ee ee eee eee ee ees 1

2 PUPPOSE.. LLL LLte ee ee ee eet ee te wee eee tt eee ee eee eee eee 1

3 Implementation... . 2...weee ee ee te wee eee e eee eens 1

4 Performance... . cccee ee ee ee ee ee ee ee ee ee eee eee 2

5S Problems... cee cc eeee ee eeee ee ee eee 2

6 DOPE.INS - Dope Vector Descriptor..... 2... . 0... ccc et ee ee te ene 3

7 ICE_ALOC - Allocate Slave ProcesS......... ec eee ee ee ee eee eee 7

8 ICE_KEYS.INS - Mnemonic Keys For ICE...........-. 2.2... ce eee eee eee 9

9 ICE_KEYS.INS - Mnemonic Keys For ICE... ... ceeee ee eee 11

10 ICE_NAME ~ Return Node Name... ... cc cc ec cee ee ee eee tee 13

11 ICE_PCL - Execute Remote Procedure Call........ eee eee ee eee 15

12 ICERLS - Release An ICE Slave... . cece ec ee ee ee ee ee ens 19

ICE Subroutines Guide September 25, 1985

ICE Subroutines Guide Version 7.2

1 Overview

The Inter-System Call Exchange, ICE is a set of procedures built on the
Network Process Exchange, NPX. NPX provides a general capability to
make a remote procedure call to any dynamically linkable subroutine on
a remote system.

On the user’s first NPX call to a system, extensive security checks are

performed to ensure only valid calls are accepted. Subsequent calls do
not perform this validation check. The call is then passed to an NPX
slave Process. A slave is a PRIMOS process with the sole function of
executing procedure calls at the request of remote users. When idle, a
slave assigns a Primenet port, releases al] resources such as wired
memory and "hibernates," waiting for a call to come in. Each slave

acts for a single remote "master" and remains assigned to that master

until released. In this way, a master has an exclusive server on each
of possibly several systems for the duration of its remote activity,
thus providing a mechanism for implementing a “distributed” system.

Tne slave unpacks the subroutine name and parameters, builds a standard
calling sequence and calls the procedure. The procedure, unaware that
it is being executed on behalf of a remote user, performs its expected
function. The slave will now transmit the results back to its master.

Throughout this operation, the user is unaware that any remote activity
has occurred.

2 Purpose

NPX is an undocumented Prime tool, it is subject to change at any time.
Using ICE will protect the NPX user from making extensive changes’ to
their application. The first benefit will be seen at PRIMOS revision
19.3, the NPX calling interface has changed.

3 Implementation

As mentioned above, ICE is a tlayer above NPxX. This method of
implementation somewhat limits the functionality of ICE. As new NPX
procedures become available they will be incorporated into ICE.
However, because NPX is a tayer above PRIMENET, it may be possible to

implement some additional functionality not provided by NPX.

ICE Subroutines Guide September 25, 1985 Page 1

ICE Subroutines Guide Version 7.2

4 Performance

Tne NPX mechanism is extremely useful but has some performance

drawbacks. The main concern is the amount of CPU required to pack the
subroutine arguments, transfer the arguments, build the procedure call,

execute the call, pack the results and finally transfer the results.

You will get the best performance if you design your remote procedures
with this in mind. Remote procedures that can gather as much
information as possible in one call, will perform more efficiently than
procedures that return a single item of information and must be called

a number of times. Consider the PRIMOS subroutines DIR$RD and DIR§LS.
Both these procedures return directory entries and may be calied

remotely, however, using DIR$LS is the better “remote” choice. This is

so because DIR$LS can return multiple directory entries in one call.
For example, you can obtain 30 directory entries and only pay the NPX
overhead once. If you used DIR$RD, you could spend more time in NPX

than you would in DIRS$RD.

5 Problems

NPX is under the control of PRIMOS, not ICE. The most obvious problem

is releasing your slave when your application terminates abnormally.
ICE attempts to correct this situation by using a static onunit. When
“terminal'" conditions are raised, al} the user‘’s slaves will be
released. There will be situations where this is not possible. At
this time, the only method of cleanup is to logout of PRIMOS.

ICE Subroutines Guide September 25, 1985 Page 2

ICE Subroutines Guide Version 7.2

6 DOPE.INS - Dope Vector Descriptor

FILE: <MSP194>SYSLIBSRC>INSERT>DOPE.INS.SPL

DESCRIPTION:

This file contains the replacements and description of the compiler

generated dope vectors for parameters with "*" or “variable” extents.

Callers of ICEPCL must supply dope vector descriptors any time a
remote procedure has at least one parameter deciared using a variable
extent. This is true for arrays of any type, and character strings.

After the last declared parameter is passed, you will begin to pass
dope vector descriptors. The vectors are positional and correspond
identically to the calling sequence of the declared parameters. A dope
vector must be passed for each parameter in the list. If a parameter
does not have a variable extent, the value DV$FILL may be passed. This
value is passed to "fill" the space between parameters that have
variable extents, the compilers do not examine it.

Although you must "fill in the gaps", it is not necessary to "fill" the
entire parameter list with OV$FILL once you have satisfied the
requirement for the last variable extent parameter. This is better
shown in the example below. You want to cal! the following remote

procedure:

print:

proc(mb2z1, string, userid, mbz2);

dcl mbz1 fixed bin;

dc! string char(*);
dcl userid char(32) var;
dcl mbz2 fixed bin;

put skip list(’Message from’, userid);
put skip list(string);
return;

end print;

ICE Subroutines Guide September 25, 1985 Page 3

ICE Subroutines Guide Version 7.2

Your procedure would be written as follows:

main:

proc;

dcl error fixed bin;

dcl slave_p pointer;
dcl string char(32);
dcl mbz1l fixed bin;

dcl mbz2 fixed bin;

dcl stringdv like dopevector;

dcl userid char(32) var;
dcl ice_pcl entry options(variable);

string_dv.type = dv$char;
stringdv.ndims = ‘0’b;

stringdv.size = 32;

string = ‘The slave will print this string.’;
userid = ‘’ME’;

call ice_pcl(ik$pcl, slave_p, ‘PRINT’, 5, error,
mbz1, 1, binary(ik$fb15 + ikG$in, 15),
string, 32, binary(ik$char + ik$in, 15),
userid, 32, binary(ik$vchr + ik$in, 15),
mbz2, 1, binary(ik$fb15 + ik$in, 15),

dv$fill, 1, binary(ik$fb15 + ikGin, 15),

string_dv, 2, binary(ik$fb15 + ik$in, 15));

end main;

Please note the use of DV$FILL in the above example. It was required
to insure that the descriptor for "string" was the fourth parameter in
the list. Since "userid" does not have a variable extent and there are
no more variable extent parameters in the list, DV$FILL does not have
to be supplied.

ICE Subroutines Guide September 25, 1985 Page 4

ICE Subroutines Guide Version 7.2

ABNORMAL-CONDITIONS:

If you fail to supply these dope vectors, the condition
“POINTER_FAULT$" will be raised in the slave process and the procedure
call will fail.

If you are not sure how the cailed procedure has declared its
parameters, passing a dope vector will always work, even if the
parameters do not have "*" extents.

DECLARATION:

dc! 1

*replace
*replace
*replace
%replace
%replace
%replace

%replace

*replace

%replace
*%replace
*%replace

*%*replace
%replace

%replace
*replace

%replace

*replace

*replace
*%replace

ICE Subroutines Guide

dope_vector based,
2 type bit(8),
2 ndims bit(8),
2 size fixed bin, /* Depends on data type:

arithmetic declared Q*256+P
string declarled length

pictured address of edit sub
area size of area
otherwise the field is zero */

2 bound(8), /* only needed for arrays */
3 lower fixed bin(31), /* lower bound */
3 upper fixed bin(31), /* upper bound */
3 span fixed bin(31); /* distance between elements */

dv$fill by ‘FFFF’b4; /* Filler */

dv$pictured by ‘01’b4; /* PICTURED */
dv$fixedbin by ’02'b4; /* FIXED BINARY ¥*/

dv$floatbin by ‘’03’b4; 7/* FLOAT BINARY ¥*/

dv$fixeddec by ‘'04’'b4; /* FIXED DECIMAL */
dv$floatdec by ‘05’b4; /* FLOAT DECIMAL */

dv$comfixbin by ‘06’b4; /* COMPLEX FIXED BINARY */

dv$comfltbin by ‘07'b4; /* COMPLEX FLOAT BINARY #*/

dv$comfixdec by ‘08'b4; /* COMPLEX FIXED DECIMAL */

dv$comfltdec by ‘09’b4; /* COMPLEX FLOAT DECIMAL ¥*/

dv$char by ‘OA‘b4; 7* CHARACTER ¥*/

dv$charvar by ‘0B’b4; /* CHARACTER VARYING #*/
dv$bit by ‘OC’b4; /* BIT ¥*/

dv$bitvar by ‘0OD‘b4; /* BIT VARYING ¥*/

dv$bitalign by ‘OE‘b4; 7* BIT ALIGNED */

dv$pointer by ‘OF‘’b4; /* POINTER */

dv$offset by ‘10’b4; /* OFFSET */

dv$area by ‘11’b4; /* AREA */
dv$file by ‘12’b4; /* FILE */

September 25, 1985 Page 5

ICE Subroutines Guide

%replace dv$label by ‘13’b4;
%replace dv$entry by ‘14'b4; /*
%replace dv$logical by

ICE Subroutines Guide

°15‘b4; /*

September 25,

/* LABEL */
ENTRY ¥*/
FTN LOGICAL ¥*/

1985

Version 7.2

Page 6

ICE Subroutines Guide Version 7.2

7 ICE ALOC - Allocate Slave Process

FILE: <MSP194>SYSLIBSRC>ICESRC>ICE_ALOC.SPL

DESCRIPTION:

ICEALOC allocates a stave process on the specified node. The virtual
circuit between the local node and target node is established when it

called for the first time. ICE_RLS must be called to release the
slave.

USAGE:

del ICE_ALOC entry(fixed bin, char(32) var, pointer, fixed bin)
returns(bit(1));

success = ICE_ALOC(key, nodename, slave_p, error);

key Possible values are:
IKSANY If any slave has been started

on this node, increment the
allocation count of the first

slave that was allocated and

return the stave info pointer.

If no slaves have been started,

allocate one and return the

information pointer.

IK$USE Use the SLAVE_P argument and
increment the allocation

count for this slave.

nodename The ASCII name of the target node.

Not used if the key is IK$USE.
Leading and/or trailing blanks are

ignored, and case does not matter.

Type: char(32) var (Cinput parameter)

slave_p A pointer to information about the slave

ICE Subroutines Guide September 25, 1985 Page 7

ICE Subroutines Guide Version 7.2

process being allocated. Usage of this
parameter is dependent upon the supplied
key value.

The caller must submit this value in
subsequent calls to ICE_ALOC, ICEPCL
and ICE_RLS.

Type: pointer (input/output parameter)

error Results. Possible values are:
0 Operation complete.

ESMSLV Maximum number of slaves
allowed per user has been

exceeded.

EG$NETE Network Error

ESRLDN Remote Line is Down

ESNSLA No slaves available

ESBPAR Parameters are invalid

ESRSNU Remote system not up

Type: fixed bin (output parameter)

ABNORMAL—CONDITIONS:

None.

ICE Subroutines Guide September 25, 1985 Page 8

ICE Subroutines Guide Version 7.2

8 ICE KEYS.INS - Mnemonic Keys For ICE

FILE: <MSP194>SYSLIBSRC>INSERT>ICEKEYS.INS.SPL

DESCRIPTION:

Mnemonic keys used for ICE procedure calls.

ABNORMAL~CONDITIONS:

None.

DECLARATION:

RHREEK KE KEKE KK KKK KEKE

%replace ik$any by 1,
ik$new by 2,
ik$use by 3;

HHEKKKEKEKKE KEKE EEE KEE KKK EEE

%replace ik$all by 4,

ik$spec by 5;

HERE EK KEKE EK KEKE KKK KOE KK

%replace ik$mine by 6,
ikGslave by 7;

KEKEREE REE EERE EEE KEE

*%*replace
ik$pcl by O,
ik$func by 8192,

ikGrtry by 16384;

ICE Subroutines Guide

ICE_ALOC

ICE_RLS

ICE_NAME

ICE_PCL

September 25,

KEKE KKK KKK KKK KKK KEKE KK KEK

/* Any slave or new one */
/* Allocate new slave */
/* Use specific slave */

KRKEKE KEKE KEK EKER KEKE KE

/* Release ALL Slaves */
/* Release specific slave */

REKK EK KEKE EE KK EEK EE KE

/* Return local node name */
/* Return node of slave */

REAR EKKAKK KEKE K KE KEK AES KEKE

/*

/*

Call Type Keys */
It’s a procedure call ¥*/

/* It’s a function, return L-REG

*/
/* Retry if slave not available

*/

1985 Page 9

ICE Subroutines Guide

*%replace

*replace

ik$fb15 by O,
ik$i2 by O,

ik$fb31 by 256,
ik$i4 by 256,

ikGchar by 512,

ik$vchr by 768,

ik$ptr by 1024,

ik$f123 by 1280,
ik$r4 by 1280,

ik$f147 by 1536,
ik$r8 by 1536;

ik$in by 128,
ikGout by 64,

ik$ref by OQ;

ICE Subroutines Guide September 25,

/*

/*

/*

/*

/*

Version 7.2

Argument Type Keys */
argument

argument

argument

argument

*/

argument

argument

argument

argument

argument

argument

1985

is fixed bin */

is fixed bin(31) ¥*/

is character */

is character varying

is a pointer */

is float bin(23) */

in float bin(47) */

is INPUT */
is OUTPUT */
is a reference */

Page 10

ICE Subroutines Guide Version 7.2

9 ICE KEYS.INS —- Mnemonic Keys For ICE

FILE: <MSP194>SYSLIBSRC>INSERT>ICEKEYS.INS.F77

DESCRIPTION:

Mnemonic keys used for ICE procedure calls.

ABNORMAL-CONDITIONS:

None.

DECLARATION:

INTEGER*2 IKS$ANY, IKSNEW, IKSUSE, IK$ALL, IKSGSPEC,
C IK$MINE, IK$SLAVE,
C IKPCL, IKSFUNC, IKGRTRY, IK$I2, IK$I4, IKSCHAR,
C IK$VCHR, IK$LOC, IK$R4, IK$RB, IKSIN, IK$OUT,
C IKS$REF

KHER KEKEK KEKE ER EREKEEEKERE*AEE TCE ALOC RK KEKE KE KK EK KEK KEE KEE EK

PARAMETER IKS$ANY = 1 /* Any slave or new one */
PARAMETER IK$NEW = 2 /* Allocate new slave */
PARAMETER IK$USE = 3 /* Use specific stave */

SHREK KEKEKEKE KEE KKK KK KE KEK ICE RLS BREAKER KEKKKEKEKEKAEKEEE KE KS

PARAMETER IK$ALL = 4 /* Release ALL Slaves */
PARAMETER IKS$SPEC = § /* Release specific slave */

HEE KEE E EEE EERE EEREEERE OT CE NAME 4068 ROK KORE ROR ERK RE OR ERE

PARAMETER IKS$MINE = 6 /* Return local name node

PARAMETER IK$SLAVE = 7 /* Return node of slave

KERRKKKE ERE ERE KR KEKE EEE KK ICE PCL KEKKK KEKE KK EEK KEK KE EK

ICE Subroutines Guide September 25, 1985 Page 11

ICE Subroutines Guide Version 7.2

PARAMETER IK$PCL = O 7/* It’s a procedure call #*/
PARAMETER IK$FUNC = 8192 /* It’s a function,

return L-REG */
PARAMETER IK$RTRY = 16384 /* Retry if slave not

available */

PARAMETER IK$I2 = QO /* argument is INTEGER*2 */

PARAMETER IK$I4 = 256 /* argument is INTEGER*4 */
PARAMETER IKS$CHAR = 512 /* argument is CHARACTER */
PARAMETER IKS$VCHR = 768 /* argument is CHAR VAR */
PARAMETER IK$LOC = 1024 /* argument is a LOC */
PARAMETER IK$R4 = 1280 /* argument is REAL*4 #*/
PARAMETER IK$R8 = 1536 /* argument in REAL*8 */

PARAMETER IKS$IN = 128 /* argument is INPUT */
PARAMETER IK$OUT
PARAMETER IKS$REF

64 /* argument is OUTPUT */
argument is a reference */h

o
u

O
o

~ *

ICE Subroutines Guide September 25, 1985 Page 12

ICE Subroutines Guide Version 7.2

10 ICE NAME - Return Node Name

FILE: <MSP194>SYSLIBSRC>ICESRC>ICE_NAME. SPL

DESCRIPTION:

ICENAME is used to return the node name of the local node, or the node
on which a specific slave has been allocated.

USAGE;

dcl ICE_NAME entry(fixed bin, pointer, char(32) var, fixed bin)
returns(bit(1));

success = ICE_NAME(key, slave_p, name, error);

key May be one of the following:

IK$MINE Return local node name
IK$SLAVE Return node of stave

Type: fixed bin (input parameter)

slave_p The information pointer that identifies
the slave. The node on which this slave
has been allocated will be returned.

This parameter is used only if the key
is IKS$SLAVE.

Type: pointer (input parameter)

name The returned node name. Will be set
to the null string if networks are
not configured and the key is IK$MINE.

Type: char(32) var (output parameter)

error Results. Possible values are:

0 Success completion.

ESPTRM The Slave information pointer

ICE Subroutines Guide September 25, 1985 Page 13

ICE Subroutines Guide Version 7.2

is invalid.

ESBPAR The key is invalid.

ABNORMAL—CONDITIONS:

None.

ICE Subroutines Guide September 25, 1985 Page 14

ICE Subroutines Guide Version 7.2

11 ICE PCL - Execute Remote Procedure Call

FILE: <MSP194>SYSLIBSRC>ICESRC>ICEPCL.SPL

DESCRIPTION:

This subroutine is the ICE interface to execute remote procedure calls.
It passes the subroutine name and arguments to a previously allocated
slave. The slave process then calls the specified procedure on the
remote system. The procedure in question must be dynamically linkable,
i.e, in a shared library or PRIMOS. Note that each argument to the
local subroutine expands to a triplet of arguments to this subroutine.
Please note that a maximum of 4K words may be transfered in one
argument.

USAGE:

dcl ICE_PCL entry(fixed bin, pointer, char(32), fixed bin, fixed bin,
[variable]) [returns fixed bin or fixed bin(31)];

[function =] or [call]
ICEPCL(key, slave_p, procname, proclen, error,

argi, arglilen, argitype, ..., argn, argnlen, argntype);

key May be one of the following:
IK$PCL This call is a procedure call.

IK$FUNC This call is a function, the
L-REG is returned.

Type: fixed bin (input parameter)

slave_p Pointer to the slave information as returned
by ICE_ALOC.

Type: pointer (input parameter)

procname The ASCII name of the procedure to call.
Leading and trailing blanks are ignored
and case does not matter. According to

the current search rules, this procedure

must be dynamically linkable.

ICE Subroutines Guide September 25, 1985 Page 15

ICE Subroutines Guide

proclen

error

argN

ICE Subroutines Guide

Version 7.2

Type: char(32) Cinput parameter)

The number of non-blank characters in

procname.

Type: fixed bin (input parameter)

The results of the remote call attempt.
This parameter is NOT passed to the
remote procedure. Possidle values are:

0 Call was successfully transmitted
and has been executed.

ESBPAR The caller’s arguments to this

procedure are invalid.

ESPNTF Remote Procedure Not Found.

EGBCFG Network configuration mismatched
between nodes.

E$VCGC The virtual circuit got cleared.

ESRLDN The remote tine is down

ESNSLA No Slaves Availabie

ESRSNU The remote system is not up yet.

ESMNPX Multiple hops in NPX. Staves
cannot allocate staves.

ESNBUF No buffer space. Argn length

is > 4K words.

Type: fixed bin (output parameter)

The Nth argument to the target subroutine.
A maximum of 15 arguments are supported.
All “argN" arguments are optional, they
do not have to be supplied. However, for

each “argN" that is supplied a corresponding
“argNlten” and "“argNtype" pair of arguments

September 25, 1985 Page 16

ICE Subroutines Guide

argNlen

argNtype

ICE Subroutines Guide

Version 7.2

must be supplied.

Type: any type (any direction)

The length of the Nth argument. This

length is represented in its basic unit as

identified by the argNtype (see below).
May not exceed 4K words of data in either
direction.

Type: fixed bin (input parameter)

An additive key that identifies the type

of the argument being passed.

May be ane of the following:

IK$FB15 or IK$I2
argN is a FIXED BIN(15) whose basic
length unit is 1 16 bit word.

IK$FB31 or IK$I4

argN is a FIXED BIN(31) whose basic
length unit is 2 16 bit words.

IK$CHAR

argN is a character string whose basic
length unit is 8 bits.

IK$VCHR
argN is a PL/1 character varying string.

whose basic length unit is 8 bits. Do

add an extra 2 characters for the length

word, it will be taken into consideration.

IK$PTR or IK$LOC

argN is an address whose basic length

unit is 1 16 bit word.

*** Note ***

The tength must represent the number

of 16 bit words the pointer addresses
NOT the size of the pointer itself.

IK$FL23 or IK$R4

argN is a FLOAT BIN(23) whose basic length
unit is 4 16 bit words.

September 25, 1985 Page 17

ICE Subroutines Guide Version 7.2

IK$FL47 or IK§$RB

argN is a FLOAT BIN(47) whose basic length
unit is 8 16 bit words.

Plus:

IK$IN ArgN is an input argument.
Input arguments are SENT to
the slave. They are NOT
passed back.

Plus:

IK$OUT argN is an output argument.
Output arguments are NOT sent
to the slave, they are received.

Type: fixed bin (input parameter)

ABNORMAL—CONDITIONS:

The link may go down during this call or between cails (the slave is
kept in waiting between successive calls); ICE tries to recover from
this failure, but in the event of an unsuccessful recovery, the error
can be reported to the user via the ERROR argument (see the E$XXXX
labels for other error conditions).

If the procedure to be called has any parameters declared with “*"

extents, ICEPCL will not function properly. The compilers generate a
dope vector for each parameter of this type. At this time, ICE witl
not generate these dope vectors. You may pass these dope vectors as

arguments to ICEPCL. An insert file is supplied which describes these
vectors, see DOPE.INS. later on in this manual. This insert file will
be supplied in the directory SYSCOM.

If you declare ICEPCL as entry options(variable), you must pass
additive keys using the binary built-in function. For example:

binary(ik$fb15 + ik$in + ik$out, 15)

At this time it is known why the compiler does not produce the correct

result for additive keys. Using the binary function will always
product the desired result.

ICE Subroutines Guide september 25, 1985 Page 18

ICE Subroutines Guide Version 7.2

12 ICE RLS - Release An ICE Slave

FILE: <MSP194>SYSLIBSRC>ICESRC>ICE_RLS.SPL

DESCRIPTION:

This procedure performs a specified number of releases on a slave. At
any time when the count of allocations becomes zero, the connection
between the slave and the master is broken, allowing the slave to be
freed from the caller. If the resulting count of allocations is not
zero, the connection is kept open.

USAGE:

dcl ICERLS entry(fixed bin, pointer, fixed bin, fixed bin)

returns(bit(1));

success = ICE_RLS(key, slave_p, count, error);

key Possible values are:
IK$ALL Release all slaves for

all allocations.

IK$SPEC Release the slave as

identified by SLAVE_P

Type: fixed bin (input parameter)

slave_p The pointer to the slave information
that must be released. Not used for
IK$ALL.

Type: pointer (input/output parameter)

count The number of releases to perform. If
count is zero, release all allocations
and break the virtual circuit between
the slave and the master. Otherwise,
perform "count" releases. Not used for
IK$ALL.

ICE Subroutines Guide September 25, 1985 Page 19

ICE Subroutines Guide Version 7.2

Type: fixed bin (input parameter)

error Results. Possible values are:

0 Operation complete.

EGPTRM Pointer Mismatch. The slave
information pointer is not
valid.

ESBPAR The count of allocations on

this slave is less than the
number of release to perform.

ESBVVC Problems in clearing the
virtual circuit.

E$VCGC The virtual circuit got
cleared before the slave
could be released.

Type: fixed bin (output parameter)

ABNORMAL-CONDITIONS:

None.

ICE Subroutines Guide September 25, 1985 Page 20

	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20

