
                                  Table of Contents                                  _________________

      1 Basic QIP............................................................1
        1.1  General Description.............................................2
            1.1.1 Purpose....................................................2
            1.1.2 Compatibility..............................................2
        1.2  Installing QIP..................................................3
            1.2.1 Initial installation.......................................3
            1.2.2 Configuration changes......................................3
            1.2.3 Initialization.............................................3
        1.3  Converting from SEG to QIP: QIPLOAD.............................4
        1.4  Running a QIP program...........................................5
            1.4.1 Normal invocation..........................................5
            1.4.2 Error recovery.............................................5

      2 Intermediate QIP.....................................................7
        2.1  Theory of operation.............................................8
        2.2  Optimizing QIP performance......................................9
            2.2.1 Initialized common blocks..................................9
            2.2.2 SEG's loader's MIX command.................................9
            2.2.3 Condition handling.........................................9
            2.2.4 IFTNLB....................................................10
        2.3  Special considerations.........................................11
            2.3.1 Use with DBG..............................................11
            2.3.2 Stack assignment and location.............................11
            2.3.3 "File in use" message on QIP runfiles.....................11
            2.3.4 Changing the name of a QIP runfile........................12
            2.3.5 SHUTDN (the operator command).............................12
            2.3.6 "OUT_OF_BOUNDS$" errors...................................12
            2.3.7 Application processing of a command line..................13
        2.4  QIP -DEBUG option..............................................14
        2.5  QIP -CLUP option...............................................15
        2.6  QIP default BREAK key handling.................................16
        2.7  QIPLIB: interprogram serial linkage............................17

      3 Advanced QIP........................................................19
        3.1  Multiple QIP files: interprogram concurrent linkage............20
        3.2  QIP -SHARE option: interprogram public linkage.................22
        3.3  QIP -ALLOCATE option...........................................23
        3.4  QIP -VPSD option...............................................24
        3.5  Condition handling in the QIP environment......................25
            3.5.1 General method............................................25
            3.5.2 QIP -ONUNIT option........................................25
            3.5.3 User written on-units.....................................26
            3.5.4 User handling of "ACCESS_VIOLATION$" conditions...........26

      4 QIP Configuration...................................................27





      QIP                                                            Basic QIP

                                     Basic QIP

                                                                     Page    1



      QIP                                                            Basic QIP

      1.1  General Description.           ____________________

         1.1.1 Purpose.

         QIP, a  performance  enhancement   package   for   Pr1me   computers,         ___
         implements read-only  demand  paging directly from named files.  This
         methodology is  commonly  used  on  other  virtual  memory  computing
         systems, and  yields  several  advantages  over  conventional  PRIMOS
         paging:

             (1) Program start-up is much quicker, since demand paging is used
                 instead of SEG, which must read all of the program  and  data
                 into memory.

             (2) Sharing of procedure and read-only data occurs automatically;
                 only when a data segment is modified is a private  user  copy
                 made.

             (3) As a result of these two factors, system paging  activity  is
                 reduced.

             (4) Less allocated paging space is required.

             (5) Better balance among  disk  drives  and  controllers  can  be
                 achieved.

             (6) The administrative complexity and service disruption entailed
                 by using "shared segments" under PRIMOS is eliminated.

         The effectiveness of QIP over SEG generally increases  in  proportion
         to the size of procedures and the number of concurrent users.

         1.1.2 Compatibility.

         The QIPLOAD utility converts existing  SEG  runfiles  into  a  paging
         format (QIP format).  Ordinarily, no changes to the source program or
         to the  SEG  load  procedure are required by QIP;  the package can be
         installed and used with minimum effort  and  training.   Optimization
         techniques are available to secure even better QIP performance.

      Page    2



      QIP                                                            Basic QIP

      1.2  Installing QIP.           _______________

         1.2.1 Initial installation.

         Using MAGRST, restore the QIP directory from  the  supplied  magnetic
         tape, then type "ATTACH *>QIP.UFD" and then type "R INSTALL".

         1.2.2 Configuration changes.

         Before QIP will run, a directive must be added  to  the  CONFIG  file
         used for  PRIMOS coldstarts, and the system must then be coldstarted.
         The directive is:

              NVMFS 400      /* 256 VMFA segments.

         It must be placed prior to the "GO" directive  in  the  CONFIG  file.
         The NVMFS directive is a special PRIMOS directive which will not have
         any adverse effect on system integrity or performance.

         PLEASE NOTE: If there is an NSEG directive in CONFIG, the sum of  the         ____________
         parameters to  NSEG  and  NVMFS  must be less than '1776 (octal).  If
         there is no NSEG directive, the adjustment will occur  automatically.

         1.2.3 Initialization.

         In specific instances, pertinent only to PRIMOS revision 19 or above,
         a special initialization  program  must  be  run  from  the  operator
         console to  permit  QIP  to  operate.  The two instances when this is
         required are:

               (1) On any system operating  under  PRIMOS  revisions  19.0  or
         19.1.

               (2) If the QIP run-time option, -SHARE, is to be used.

         The initialization command must be invoked under the control  of  the
         operator terminal,  preferably  by  adding to the coldstart procedure
         file (PRIMOS.COMI):

              R SYSTEM>QIPINIT

         QIPINIT has no effect if it has been previously run, or if it is  run
         under PRIMOS  revision 18.  QIP software delivered at PRIMOS revision
         18 does not include QIPINIT.

                                                                     Page    3



      QIP                                                            Basic QIP

      1.3  Converting from SEG to QIP:  QIPLOAD.           _____________________________________

      To convert a SEG runfile into a QIP runfile, specify:

          QIPLOAD {SEG-runfile-pathname} {QIP-runfile-pathname}

      If both command arguments are omitted, QIPLOAD will prompt for them.  If
      the QIP runfile is omitted, its name will default from the SEG filename.

      QIPLOAD obeys the PRIMOS filename suffix conventions.  For example:

          QIPLOAD RUN>EXAMPLE.SEG
          QIPLOAD RUN>EXAMPLE
          QIPLOAD RUN>EXAMPLE.SEG   RUN>EXAMPLE.QIP
          QIPLOAD RUN>EXAMPLE.SEG   RUN>EXAMPLE
          QIPLOAD RUN>EXAMPLE       RUN>EXAMPLE.QIP
          QIPLOAD RUN>EXAMPLE       RUN>EXAMPLE

      all  will   convert   "RUN>EXAMPLE.SEG"    into    a    QIPfile    named
      "RUN>EXAMPLE.QIP".

      QIPLOAD never opens the SEG runfile for writing.

      Page    4



      QIP                                                            Basic QIP

      1.4  Running a QIP program.           ______________________

         1.4.1 Normal invocation.

         Resuming a QIP program is very similar to  resuming  a  SEG  program.
         Either

             QIP  RUN>GIGANTIC
             QIP  RUN>GIGANTIC.QIP

         will result  in  the execution of "RUN>GIGANTIC.QIP", since QIP, like
         QIPLOAD, recognizes suffix conventions.

         Generally, start-up of a QIP program requires  noticeably  less  time
         and fewer  page  faults  than  the SEG copy of the identical program.
         Paging is effected directly from the QIP file, and multiple users  of
         the same file will share both paging space and high-speed memory.                                  ____

         In the event that a procedure or data segment is modified,  QIP  will
         automatically and  invisibly  revert  the  segment to the traditional
         paging mechanism,  avoiding   interference   among   sharing   users.
         Ordinarily, all  procedure  segments  and  perhaps some data segments
         will utilize QIP paging during the entire program execution.

         1.4.2 Error recovery.

         QIP restores the  normal  PRIMOS  environment  when  the  application
         program returns  to  PRIMOS  for  any reason (including most errors).
         Nevertheless, specifying

             QIP

         without any  command  arguments  will  insure  that  environment   is
         completely restored following abnormal program exits, abends, etc.

                                                                     Page    5



      Page    6



      QIP                                                     Intermediate QIP

                                  Intermediate QIP

                                                                     Page    7



      QIP                                                     Intermediate QIP

      2.1  Theory of operation.           ____________________

      QIPLOAD.  QIPLOAD is more  of  a  converter  than  a  loader.   The  SEG
      mechanism for  creating SINGLE/SHARE files is used to create files which
      are in a segment directory rather than being named files, and which  are
      DAM rather  than  SAM  files  (this  is a requirement of the file system
      paging mechanism).   There  is  one  file  for  each  non-empty  segment
      originally specified  in  the  SEG  load.   A  descriptor  file (file 0)
      contains pertinent information for QIP,  and  also  retains  information
      from the SEG load.

      QIP.  QIP processes the  user  command  line  optionally  consisting  of
      pathnames of  QIP  files,  and command arguments prefixed with a hyphen.
      QIP establishes a relationship between specific segments and their files
      in the  QIP  segment  directory  which  causes  all  read  and   execute
      references (including  I/O)  on those segments to page from the files in
      the segment  directory,  rather  than  using  the  conventional   paging
      mechanism.  The  segments  are  write-protected such that if the program
      attempts to  modify  a  QIP  segment,  an  ACCESS_VIOLATION$  fault   is
      generated, and  QIP  silently takes control and manifests the segment to
      conventional paging  with  all  access  rights  available.   Until  that
      occurs, the  portion(s) of the program which are paged from the QIP file
      will be shared among concurrently accessing users (both paging space and
      high-speed memory).

      Because QIP establishes limited access to normally used  segments  (such
      as segment '4001), the potential for access violation faults exists even
      after the  QIP  program  has  exited.   For this reason, QIP attempts to
      detect all situations which will return  to  PRIMOS.   Ordinarily,  such             ___
      situations as  errors  will  be  trapped by QIP, and all of the segments
      will be manifested to conventional paging, such  that  sharing  is  then
      disabled, but  the program is still executable (using the PRIMOS "START"
      command).  Some errors, as well as FORTRAN STOP statements,  will  cause
      QIP to  "shutdown"  its  program  environment.   This  is  quicker  than
      manifesting all of the shared segments, but it is effectively a  "DELSEG
      ALL" which  prevents  program  resumption.   Program  exit  control  and
      cleanup is adjustable via the -CLUP command argument (see below).

      QIP is designed to operate as a more efficient replacement for SEG,  and
      is usable  from  keyboard,  COMINPUT,  or  CPL  just  as SEG is.  QIP is
      ordinarily silent and undetectable by the user.  However, through use of
      command line options -VPSD, -DEBUG, and -ONUNIT  additional  information
      may  be  obtained  from  QIP  to  permit  the  system  administrator  or
      programmer to assess and tune system performance.

      Page    8



      QIP                                                     Intermediate QIP

      2.2  Optimizing QIP performance.           ___________________________

      By design, use of QIP  does  not  mandate  that  either  program  source
      changes   or  even  changes  to  the  SEG  load  in  order  to  operate.
      Nevertheless, opportunities for  optimizing  performance  under  QIP  do
      exist, none of which will impair program operation under SEG.

         2.2.1 Initialized common blocks.

         An "initialized  common  block"  is  a  FTN/F77  common  block  which
         contains one  or  more variables which are initialized before binding
         using the DATA statement.  PL/I programs accomplish the  same  effect
         by using  the INIT and EXTERNAL attributes in a variable declaration.
         Initialized common  blocks  decrease  compile  and  load  speed,  and
         require more  disk  space  under both SEG and QIP, than uninitialized
         common blocks.

         The following  recommendations  are   made   for   situations   where
         initialized common blocks are required:

         (1) Separate (using SEG's loader's SYMBOL, A/SY, and  R/SY  commands)
         the common  blocks  so  that  any  read-only  common  blocks  are  in                                            _________
         different segments than other common blocks.  Read-only common blocks
         (such as prompts, error texts, and constants) will be shared  by  QIP
         among all concurrent users.

         (2) Specify (using   SYMBOL,   etc.)    initialized   common   blocks
         contiguously, and  place  them at lower addresses in the segment than
         uninitialized common blocks.  This technique minimizes the disk space
         required by SEG and QIP to store the initialization data.

         2.2.2 SEG's loader's MIX command.

         All Pr1me translators output separated procedure and data object text
         as a result of compilation.  Ordinarily, procedure text is unmodified
         during program execution, while data text  by  definition  is  always
         modified.  Accordingly, QIP can share procedure text among concurrent
         users, while  data  text  must  be  "copied" from the QIP runfile and
         maintained per user under conventional paging.   SEG'S  loader's  MIX
         command defeats  the  separation  of  procedure  and data, making the
         program "impure" (ie., not sharable at all).  Therefore, use of MIXed
         loads under QIP is not recommended.                            _______________

         2.2.3 Condition handling.

         As described above, QIP intercepts all situations which invoke PRIMOS
         command input.  At that time, QIP self-disables the direct paging and
         sharing mechanism, unless exit/cleanup has been modified by the  user

                                                                     Page    9



      QIP                                                     Intermediate QIP

         using the -CLUP option.

         If the application or PRIMOS should signal a condition, and there  is
         no on-unit  for  that  condition  in the QIP-invoked application, QIP
         will intercept the condition before it reaches  PRIMOS,  and  perform                                      ______
         its exit/cleanup  sequence.   QIP will always continue signalling the
         condition to PRIMOS.

         However, if there is an on-unit for the condition, and the on-unit is
         able to handle the condition (rather than  continuing  to  signal  to
         PRIMOS), QIP  will not "see" the condition at all.  For example, some
         applications utilize the BREAK key as a standard means of escape to a
         known point in a program.  By writing an  on-unit  for  "QUIT$",  the
         condition signalled  when  BREAK  is  depressed,  the  programmer can
         prevent QIP from  self-disabling  as  a  result  of  this  situation.
         Details of  the condition mechanism are described in PDR 3621, PRIMOS                                                                        ______
         Subroutines.         ___________

         If a QIP application intends to signal a condition to be serviced  by
         a CPL  on-unit which invoked the QIP application, the condition will,
         in this case, be recognized by QIP.  If this  is  not  desirable,  an
         appropriate QIP -CLUP option will have to be specified.

         IMPORTANT: Read details in "Advanced QIP" before writing  an  on-unit         __________
         for the condition "ACCESS_VIOLATION$".

         2.2.4 IFTNLB.

         Pr1me's "impure FORTRAN library", IFTNLB, is normally loaded  into  a
         procedure segment  by  SEG.   Since  IFTNLB programs are impure (ie.,
         write on themselves), any segments which contain IFTNLB routines will
         become unshared as a result of the execution of these routines, which
         include subroutines for FTN built-in functions SIN, COS, LOG, etc.

         To sidestep this inefficiency, IFTNLB may be specific-loaded  by  SEG
         into either a known data segment, or a previously unused segment.  An
         excerpted example:

             $ PL                    /* loads the pure FTN library.
             $ S/IL 0 4070 4070      /* loads impure lib into unused seg.

      Page   10



      QIP                                                     Intermediate QIP

      2.3  Special considerations.           _______________________

         2.3.1 Use with DBG.

         It is not possible at this  time  to  utilize  Pr1me's  Source  Level
         Debugger, DBG,  with  a  QIP  format  file.   Because  the  nature of
         debuggers requires that the procedure text be modified from  time  to
         time, debugging would generally negate the efficiency features of QIP
         anyway.

         However, it is possible to QIPLOAD and QIP a program which  has  been
         compiled and loaded with any combination of routines using -DEBUG and
         -PRODUCTION compile  modes.   Because QIPLOAD does not copy the debug
         information, there is no difference between  runfiles  created  under
         -PRODUCTION and runfiles consisting of routines with no debug options
         at all.

         2.3.2 Stack assignment and location.

         To maximize  its  own  efficiency,   QIP   controls   stack   segment
         assignment, ignoring all stack-related parameters which may have been
         supplied at SEG load time.  Because QIP has complete knowledge of the
         user address  space, it allocates stack an entire segment at one time
         using the first available segment at the  top  of  the  user  address
         space, and  automatically  extends  the stack by one segment whenever
         stack overflow occurs.

         This variation from  SEG  will  never  cause  a  problem  unless  the
         application program  contains  special programming which is sensitive
         to the location or size of the stack.  Automatic overflow,  which  is
         almost always  desirable,  can  be disabled or modified by writing an
         on-unit for condition "STACK_OVF$".

         2.3.3 "File in use" message on QIP runfiles.

         If an attempt is made to delete or write on a QIP  runfile  which  is
         activated by  QIP, a "file in use" message will result.  This message
         will result even though a display of STATUS UNITS may not reveal that
         the file is "open" on any unit by any user.  Similarly, using  "CLOSE
         pathname" from  the  operator  terminal  will not change the "file in
         use" status.  This is because the file is  "in  use"  by  the  paging
         system, and will continue to be in use until all programs referencing
         it have  "released"  the association of the file with memory segments
         (QIP cleanup).

                                                                     Page   11



      QIP                                                     Intermediate QIP

         2.3.4 Changing the name of a QIP runfile.

         Even though the QIP runfile may be in use, only the segment  subfiles
         are actually  active  for  the  duration  of  execution;  the segment
         directory itself is open only briefly at the invocation  of  the  QIP
         run.  Accordingly,  the  name  of the QIP runfile (segment directory)
         may be changed while its subfiles are in use.  This feature is  quite
         useful for  installing new or corrected versions of a program without
         disrupting the sessions of users in process.

         2.3.5 SHUTDN (the operator command).

         If the operator  command  SHUTDN  is  issued  for  a  disk  partition
         containing an  active  QIP  file, the message "Segment xxxx deleted."
         will appear, perhaps numerous times, on the user's terminal with  the
         appropriate segment  number  substituted  for "xxxx".  Thereafter, if
         the deleted segment is  referenced,  it  will  be  "zeroed"  and  the
         application   program  is  likely  to  err  or  crash  as  a  result.
         Consequently, care must be taken to avoid placing QIP files  on  disk
         partitions which  are  likely to be shut down in the course of normal
         operations.

         2.3.6 "OUT_OF_BOUNDS$" errors.

         An unfamiliar diagnostic may appear from a QIP  run  which  will  not
         arise from a SEG run.  This message begins:

             Error: condition "OUT_OF_BOUNDS$" ...

         and  is  otherwise  similar  to  "ILLEGAL_SEGNO"  and  other  usually
         undesirable messages.  It  arises  only  from  attempts  to  read  or
         execute on  a  currently shared segment at an address which is higher
         than the highest address specified for that segment in the SEG  load.

         Because no data has been written  at  this  location  (otherwise  the
         segment would not currently be shared), the message is a bonafide and
         reliable indication  of a logic error in the application program;  it
         implies reference to an "undefined" area.

         Even though such an  error  might  not  interfere  with  the  results
         obtained, there is no appropriate action QIP may take (the referenced
         area is  beyond  "end-of-file"  on  the paging file);  therefore, the
         application program must be fixed.

      Page   12



      QIP                                                     Intermediate QIP

         2.3.7 Application processing of a command line.

         QIP allows a variety of options on its command line;   a  fact  which
         could conflict  with  some  target  applications  which  also process
         elements from the command line.   To  handle  this  situation  in  an
         orderly way,  QIP  recognizes the command argument "-E" as the end of
         its own command list.   If  the  application  program  specifies  the
         argument to  "get  next token" for the RDTK$$ subroutine, any and all
         information following "-E" will be supplied.  To avoid processing QIP
         arguments, the application must never "rewind" the command line.

                                                                     Page   13



      QIP                                                     Intermediate QIP

      2.4  QIP -DEBUG option.           __________________

      QIP is able  to  supply  status  information  allowing  a  knowledgeable
      observer to assess performance and environmental considerations relating
      to a  specific  QIP  run.   The  -DEBUG command line argument requires a
      string of one or more digits in any order which  specify  what  features
      are to be displayed.  The meanings of the digits are as follows:

         0. Sound the terminal's "bell" (tone) whenever a segment is copied
            from shared to private paging.  This is useful for monitoring
            "copypage" operations under FORMS or other delicate situations.
         1. Display "Go" immediately prior to program entry.
         2. Display a message whenever the RELEASE or SHUTDOWN cleanup
            routines are invoked.
         3. Display all encountered signals which are not ignored by QIP.
         4. Display the segment/word address of references which cause
            a segment to be copied from shared to private paging.
         5. Display the segment address of each stack segment allocated.
         9. Display the KST (segment usage) map prior to execution.

      For example:

            QIP PROG -DEBUG 512

      will activate debug options 1, 2, and 5 and might look like this:

        Go
        QIP Stackseg 4374(3)/4.
        QIP shutdown.

      If your installation has debug options configured into QIP, this may  be
      reversed by  specifying  -NODEBUG  on  the command line, followed by the
      numbers of the debug options which are to be suppressed.

      Page   14



      QIP                                                     Intermediate QIP

      2.5  QIP -CLUP option.           _________________

      QIP incorporates  intelligence  to  determine  which  of  three  cleanup
      actions it  will  take  if  it is about to relinquish control to PRIMOS.
      Depending on  the  condition,  QIP  will  either  discontinue  the  user
      environment (this  operation is called a "shutdown"), or discontinue the
      sharing and direct paging while  preserving  the  execution  environment
      (this operation  is  called  a  "release"),  or  ignoring the condition.
      Because of differences among programs and installations, some  tailoring
      or modification of the cleanup mechanism may be dictated.  The QIP -CLUP
      command line  argument must be followed by a single character indicating
      the cleanup action to occur:

          D specifies the default cleanup mode, which  will  "release"  on          _
          most conditions,  but will "shutdown" on detecting program EXIT,
          STOP, or any condition which is not returnable.  This option  is
          used to  override  a  different  cleanup  option  which  may  be
          configured in an installation's version of QIP.

          R specifies that a "release" is to be done at  any  time  either          _
          "release" or  "shutdown"  would  normally  occur.   This  option
          maximizes the  restartability  of  the  program   from   PRIMOS,
          although such  restarts  and reenters will be to a program which
          is not shared, ie., the restarted program will operate  entirely
          under conventional paging.

          S specifies  that  a  "shutdown"  is  to  occur  any  time   QIP          _
          encounters a  condition  or  program exit.  This option executes
          much  quicker   than   "release",    although    it    precludes
          restartability from  the  PRIMOS  command level.  The assumption
          behind this option is that users will always abandon the run  if                                                ______
          any "fatal" error is encountered.

          N specifies that "release" and "shutdown" will NOT  occur  under          _
          any circumstances.   This option is the "fastest" of all, and it
          is useful if BREAKS, arithmetic exceptions, and other conditions
          are expected regularly and if restartability from these "errors"
          is a requirement.   It  is  also  necessary  if  conditions  are
          signalled from  an  application  to  CPL,  and  "release" is not
          desired.  This option  retains  restricted  access  to  normally
          unrestricted user  segments,  even  after  the  QIP  program  is
          "done".  Accordingly, anomalous behavior  will  result  if  this
          option is used, and if a non-QIP application is subsequently run
          without an  intervening "QIP", "DELSEG ALL", or "LOGOUT"/"LOGIN"
          following the QIP run.

                                                                     Page   15



      QIP                                                     Intermediate QIP

      2.6  QIP default BREAK key handling.           _______________________________

      If BREAK  (or  control-P  or  equivalent)  is  depressed  during  a  QIP
      execution, and  if the program does not have an on-unit which completely
      handles the "QUIT$" condition, QIP will display the following:

         QUIT. QIP program suspended at 4444(3)/55555. Continue?

      If the user types "YES", "Y", or "OK" the program will  continue  as  if
      nothing happened.   Otherwise,  QIP will perform the appropriate cleanup
      routine (see -CLUP, above) and will continue  to  signal  the  condition
      (presumably to a CPL or to PRIMOS).

      This QUIT  query  feature  is  intended  to  allow  pacing  or   program
      monitoring without  necessarily sacrificing the performance advantage of
      QIP.  It also recognizes that a BREAK will occasionally arise which  was
      not intended  by  the  user,  due to a keying error or line transmission
      noise.

      Nonetheless, a user or installation can suppress the default QUIT  alert
      message, by  specifying  -NOQUIT  on the QIP command line.  On the other
      hand, if -NOQUIT has been configured into your installation's  QIP,  you
      can revert  to  reporting QUIT conditions by specifying -QUIT on the QIP
      command line.

      Page   16



      QIP                                                     Intermediate QIP

      2.7  QIPLIB:  interprogram serial linkage.           _____________________________________

      There are four QIP library subroutines which facilitate invocation of  a
      QIP runfile  by a QIP runfile.  This capability is useful for assembling
      relatively independent program modules, perhaps using a central  control
      or menu  program.  Linking is chain-style;  the invoked program does not
      "return" to the invoking  program.   This  feature  allows  all  of  the
      programs in  a  chain  to  utilize  the  entire  address  space, without
      particular attention to address overlap unless a common mailbox is to be
      shared between the programs.  Ordinarily, a simple SEG load can be  used
      for each  QIP  file  to  be  linked, an advantage over the more powerful
      multiple QIP file capability (described in "Advanced QIP").

      To be able to use the QIP library routines, the SEG load  procedure  for
      the program(s)  involved  must  specify  "LIB QIPLIB" or its equivalent.
      These subroutines are usable only within the QIP  environment.   If  the                                   ____
      SEG runfile is used, these calls will generate an error message.

      QIPLNK effects a transfer of control from on  QIP  runfile  to  another.      ______
      The QIPLNK calling sequence is intended for PL/I usage:

           Declare QIPLNK Entry
               (fixed binary(15), character(*) varying, fixed binary(15))
           Call QIPLNK (MODE, TEXT, CODE)

      * MODE defines the linkage mode;  in this version MODE must be zero.

      * TEXT may  contain  any  information  acceptable  to  the  QIP  command
      (normally only the name of the QIP runfile to invoke).

      * CODE is a standard PRIMOS error code returned only  if  the  arguments
      are invalid.   QIP  errors  (such  as  file  not found) will utilize the
      normal QIP error-handling facilities.

      QIPLNF effects a transfer of control from one QIP  runfile  to  another.      ______
      The QIPLNF calling sequence is intended for FORTRAN and COBOL usage:

           INTEGER MODE, TEXT(4), LENTXT, CODE       /* FTN example */
           DATA MODE /0/, TEXT/'NEXTFILE'/, LENTXT/8/
           CALL QIPLNF (MODE, TEXT, LENTXT, CODE)

      The arguments  MODE, TEXT, and CODE have the same meaning as for QIPLNK;
      argument LENTXT is the character  length  of  argument  TEXT.   A  COBOL
      example follows:

           77 MODE    PICTURE S9999, USAGE IS COMPUTATIONAL, VALUE IS ZERO.
           77 TEXT    PICTURE X(8),  USAGE IS DISPLAY, VALUE IS 'NEXTFILE'.
           77 LENTXT  PICTURE S9999, USAGE IS COMPUTATIONAL, VALUE IS 8.
           77 RTNCODE PICTURE S9999, USAGE IS COMPUTATIONAL.

           CALL 'QIPLNF' USING MODE, TEXT, LENTXT, RTNCODE....

                                                                     Page   17



      QIP                                                     Intermediate QIP

      The linkage  subroutines,  QIPLNK  and  QIPLNF,  have  no  provision for
      argument passing among the linked runfiles.  A  "mailbox"  common  block
      could be established at a specific address known to all of the programs,
      so that  the  runfiles  could communicate with each other.  However, QIP
      cleans the entire address space  between  each  QIP  runfile  invocation
      including linked  invocations,  thus destroying any residual data.  This
      mechanism can be selectively suppressed, facilitating program to program
      communication.

      To establish a mailbox, the program language  must  be  able  to  define
      external symbols  for  data  (ie.,  FORTRAN common, PL/I external, etc.)
      which precludes COBOL usage at this time.  The external  structure  must
      be defined identically in each cooperating program and must be given the
      same name.  Finally, the SEG loader's SYMBOL command must be identically
      specified in the SEG load for each cooperating program, for example:

          SYMBOL MAILBX 4020 1000

      Generally, the  SYMBOL command should precede all LOAD and LIB commands.

      To inform QIP that the area is to be saved, the address (or pointer)  of
      the area,  and  its  length  in  characters, must be supplied to the QIP
      monitor.  To do this, use QIPSAV prior to calling QIPLNK or QIPLNF.  FTN
      and PL/I examples follow:

            COMMON /MAILBX/ ITEM1, ITEM2, REAL1, REAL2, DOUBLE, ETC
       C    Character counts:  2      2      4      4       8    4   =  24
            INTEGER*4 MBSIZE
            DATA MBSIZE /24/

            CALL QIPSAV (LOC(MAILBX), MBSIZE)

            --------------------------------------------------------------

            Declare QIPSAV Entry (Pointer, fixed binary(31))
            Declare MAILBOX Character(20) static external
                                           init ('QIPSAV TEST.  123456')

            Call QIPSAV (Addr(MAILBOX), 20)

      Of course, the designer may elect to use other methods of  inter-program
      communication such  as semaphores, disk files, or shared memory, none of
      which are interfered with by the QIP system.

      Page   18



      QIP                                                         Advanced QIP

                                    Advanced QIP

                                                                     Page   19



      QIP                                                         Advanced QIP

      3.1  Multiple QIP files:  interprogram concurrent linkage           ____________________________________________________

      It is possible to have several QIP runfiles active simultaneously;   for
      example, a  menu  program  named  X  may  need to invoke "main" programs
      ALPHA, BETA, DELTA, and GAMMA, each of which must be able to be  invoked
      independently by name.  Other QIP menu runfiles might also invoke any of
      ALPHA, BETA,  DELTA,  or  GAMMA.   Ordinarily,  under  SEG,  these  four
      programs would be loaded as subroutines into each and every  runfile  in
      which they might be invoked.  Although QIP relieves the previous problem
      of long start-up time for such applications, a tiny change to GAMMA, for
      instance, results  in  a  long  and  tedious  reload procedure for every
      module which references the changed routine.

      To cause several QIP runfiles to be simultaneously resident  in  memory,
      the several  QIP runfile names are all supplied on the QIP command line:

          QIP X ALPHA BETA DELTA GAMMA

      Possibly some, or all, of these routines will actually be executed;  the
      "main" routine, X, always will be started by QIP.  Program X  then  must
      decide which,  if  any,  of  the other routines will be executed.  Up to
      sixteen (16) QIP runfile names may be specified on the command line, and
      any QIP options must follow the runfile names.

      Address space planning must be exercised to be sure than  there  are  no
      segment overlaps among the procedure or linkage of runfiles which are to
      be concurrently specified to QIP (similar to the '2xxx public segments).
      Uninitialized common blocks may be specified in more than one of the SEG
      loads;  attention  to  alignment  (using  the  SYMBOL  command)  may  be
      required.  To effect inter-program linkage, each  QIP  runfile  must  be
      supplied with  the  address  of  the ECB or ECBs which it can reference.
      This is done with the SYMBOL command.

      An example on the next page demonstrates how two  cooperating  processes
      are loaded using SEG, and executed using QIP.

      Page   20



      QIP                                                         Advanced QIP

      Example of two cooperating QIP runfiles.      ________________________________________

      OK, SEG -LOAD     /* First load F2, the secondary program...
      [SEG rev 18.3]
      $ S/LO F2 0 4021 4022       /* Two segments "reserved" for F2.
      $ D/LI                      /* CAREFUL! Must be a ditto load.
      LOAD COMPLETE
      $ MAP
      *START  4022  000002  *STACK  7777  000000  *SYM    000023

      SEG. #    TYPE        LOW      HIGH      TOP
        4021    PROC      001000    001214    001214
        4022    DATA      000000    000053    000053

      ROUTINE        ECB         PROCEDURE     ST. SIZE  LINK FR.
        F2       4022  000002   4021  001000    000042  000026  4022  177400

      DIRECT ENTRY LINKS
        EXIT     4021  001172    TNOU     4021  001176    TNOUA    4021 001202
        F$WA     4021  001206    F$CB     4021  001212

      OTHER SYMBOLS
        F183KWIK  4021  001143

      $ QUIT               /* We now know F2 ECB is at 4022/2.
      OK, SEG -LOAD        /* Now load the primary routine, F1...
      [SEG rev 18.3]
      $ SYMBOL FRIEND 4022 2   /* The subroutine name for F2 is FRIEND.
      $ S/LO F1 0 4011 4012    /* Two different segments reserved for F1.
      $ D/LI
      LOAD COMPLETE
      $ QUIT                   /* The hardest part is now done!
      OK, QIPLOAD (F1 F2)      /* MAKE TWO QIP RUNFILES.
      F1.QIP load complete.
      F2.QIP load complete.
      OK, QIP F1 F2

      This is the first part of two segmented loads which
      are designed to test inter-linking capabilities in
      the QIP software.  Following is output from F2...

      This output is from program F2.  Program F2
      will return, which will either exit or return
      to the invoker.

      This is program F1 again... SIGNING OFF.

      OK,

                                                                     Page   21



      QIP                                                         Advanced QIP

      3.2  QIP -SHARE option:  interprogram public linkage.           ________________________________________________

      An advantage of QIP is the ability to achieve sharing  and  to  minimize
      program start-up  overhead  without  resorting to explicit management of
      the public segments (octal  numbers  less  than  '4000).   Nevertheless,
      there may  be situations where the use of public address space may still
      be required for reasons  of  addressing  compatibilities,  user  created
      shared  libraries,  or  permanent  residency  in  virtual  memory.   QIP
      accomodates the use of public segments.

      QIPLOAD will transfer all segments from  the  SEG  runfile  to  the  QIP
      runfile.  However, QIP will not attempt to associate the public segments
      with their  QIP  segment  files, since operations on public segments are
      privileged.  Instead, QIP will  only  associate  private  segments  with                                                       _______
      their segment  files,  assuming  that  the  public  segments  have  been
      previously initialized.  This assumption is consistent with the  present
      PRIMOS mode of operation.

      However, if the -SHARE option is supplied on the QIP command line,  only                                                                          ____
      public segments  will  be  associated,  and the QIP program(s) specified
      will not be started.  This feature is  analogous  to  the  PRIMOS  SHARE
      command and, similarly, it is usable only from the operator terminal.

      For example:

          QIP PROGS>DEMO -SHARE     /* executed from the operator terminal.

              ... then subsequently ...

          QIP PROGS>DEMO            /* operable from any terminal.

      It is unlikely, but possible, that -SHARE is configured as  a  permanent
      option in  your  version  of  QIP.   If  this  is  the  case, normal QIP
      execution can be restored by specifying  -NOSHARE  on  the  QIP  command
      line.

      IMPORTANT: Access privileges to QIP public segments must not be  changed      __________                                               ___
      using the  SHARE  command!  If WRITE access is defined for a QIP segment
      at PRIMOS revision 18, and if a  write  access  to  the  segment  should
      occur, the QIP runfile will be altered, and possibly damaged.

      Page   22



      QIP                                                         Advanced QIP

      3.3  QIP -ALLOCATE option.           _____________________

      QIP reserves segments in the user space for QIP operation during program
      execution.  These segments  are  typically  assigned  from  the  highest
      addressable segment  downward,  but in a way that will not conflict with
      procedure and  data  segments  used  by  the  QIP  program(s).   Segment
      conflict resolution  is  not  normally  applied to "empty" uninitialized                               ___
      segments specified in the  SEG  load,  but  containing  no  information.
      (Such segments  appear  on  the SEG map with LOW address 177777 and HIGH
      address 000000.)  Segment conflict resolution can be  applied  to  these
      uninitialized segments  as  well, by specifying -ALLOCATE (or simply -A)
      on the QIP command line.  This option imposes a  start-up  time  penalty
      which is  proportional  to  the  number of uninitialized segments in the
      runfile(s).

      NOTES:

      QIP allocates all of its own segments prior to starting the QIP runfile.
      QIP never needs additional segments once the program is underway.

      Some programs indiscriminantly use  "unused"  segments,  which  are  not
      referenced in  the  SEG  load  map.   Such  usage  is  not detectable or
      predictable by QIP, and -ALLOCATE will not help.  The programs  involved
      will have  to  be  modified  to use documented segments only, or to test
      segment usage.  The PL/I ALLOCATE and  FREE  statements  exhibited  such
      indiscriminant usage  at PRIMOS revision 18.3;  use of QIPLIB in the SEG
      load of applicable PL/I programs will  load  improved  versions  of  the
      applicable routines (which are also usable under SEG).

      If the -ALLOCATE option is configured to be on in your QIP,  it  may  be
      disabled by specifying -NOALLOCATE or -NOA on the QIP command line.

                                                                     Page   23



      QIP                                                         Advanced QIP

      3.4  QIP -VPSD option.           _________________

      This feature is analogous to the SEG {program} 1/1 feature of  SEG.   It
      invokes a  VPSD  built  into QIP prior to transfer of control to the QIP                                       _____
      runfile, but  after  QIP's  internal  tables  and  on-units  have   been                    _____
      initialized.  If VPSD is used to modify data in the shared QIP segments,
      QIP will  "COPY_SEG"  the segments into private address space just as if
      the QIP program itself had made the modification.

      If -VPSD is configured into your QIP, you may disable it  by  specifying
      -NOVPSD on the QIP command line.

      Page   24



      QIP                                                         Advanced QIP

      3.5  Condition handling in the QIP environment.           __________________________________________

      QIP relies extensively on the  condition  mechanism  to  provide  proper
      transition from  the restricted QIP addressing environment to the normal
      unrestricted environment.   The  presence  of  this  condition  handling
      software is  ordinarily  invisible  to both users of QIP programs and to
      the system administrator, with two exceptions:

          (1) Performance aspects discussed in "Intermediate QIP", above;
          (2) User handling of "ACCESS_VIOLATION$".

         3.5.1 General method.

         QIP establishes an on-unit for ALL conditions which reach it via  the
         PRIMOS condition  mechanism.   This  on-unit  "decides" which cleanup
         method to use, unless this has been specified  on  the  user  command
         line.  The  following condition names are ignored at or before PRIMOS
         revision 19.1, because they always  either  return  or  signal  other
         conditions which will be "seen" by QIP or the application:

             ARITH$
             COMI_EOF$
             SETRC$
             PH_LOGO$
             NULL_POINTER$
             LISTENER_ORDER$
             SUBSYS_ERR$
             ENDPAGE
             FINISH
             NAME
             STRINGSIZE

         QIP provides special services for the condition  "STACK_OVF$"  (stack
         overflow), by  allocating  stack  space in known, available segments.
         QIP also specially services "QUIT$" to  provide  BREAK  key  handling
         appropriate to  the QIP environment.  Finally, "ACCESS_VIOLATION$" is
         specially handled to discern write attempts on QIP segments, invoking
         the "COPY_SEG" operation when this occurs;   otherwise,  the  on-unit
         simply continues the signal to PRIMOS.

         3.5.2 QIP -ONUNIT option.

         By specifying  -ONUNIT on the QIP command line, somewhat more control
         can be exercised by  a  knowledgeable  user  running  a  QIP  program
         interactively.  If  -ONUNIT is active, all on-units signalled, except
         for those listed above as "ignored", will  generate  a  message  from
         within QIP itself and provide a list of actions:

                                                                     Page   25



      QIP                                                         Advanced QIP

             Options:
             [C]ontinue program,
             [P]RIMOS,
             [H]elp (this text),
             [M]ap of QIP segs.,
             [D]isplay the stack,
             [V]PSD.

         The first two options, C and P, will either continue the program from
         the point  of  interruption  (if  possible) or continue the signal to
         PRIMOS, respectively.  The  other  options  provide  the  appropriate
         information or  facilities,  and then they redisplay the option list.

         3.5.3 User written on-units.

         When QIP encounters a signal, it is  not  possible  to  determine  or
         control whether  the  user,  at PRIMOS command level, will resume the
         execution environment using the PRIMOS START command, or will  simply
         execute another  program.   Accordingly,  QIP  will  tidy  the memory
         environment and disable QIP sharing unless instructed otherwise using
         the -CLUP command line option.

         If specific signals are expected during the routine usage  of  a  QIP                                 ________
         program, it  may  be  desirable to provide pre-programmed on-units to
         handle those signals.  Also, user-written on-units developed  in  the
         SEG environment  should  operate equally well in the QIP environment.
         In fact, on-units which completely handle a  condition  (and  do  not                                                                           ___
         continue the  signal)  will  prevent  the  condition  from even being
         "seen" by QIP.

         Except for the condition  "ACCESS_VIOLATION$",  there  are  no  known
         restrictions governing  the use of the condition mechanism under QIP.

         If -ONUNIT is configured into your copy of QIP, the  feature  may  be
         reversed by specifying -NOONUNIT (or simply -NOON) on the QIP command
         line.

         3.5.4 User handling of "ACCESS_VIOLATION$" conditions.

         User handling of "ACCESS_VIOLATION$" conditions  is  not  recommended
         under the QIP environment.  If an on-unit for this condition is truly
         necessary, the  on-unit must continue the signal if the fault address
         in the fault frame header is a DTAR 2 address (ie., segments  in  the
         range from  '4000  to  '5777).  Any messages normally displayed under
         these   circumstances    should    be    suppressed,    since     the
         "ACCESS_VIOLATION$" condition is very routine in the QIP environment,
         and is handled silently by QIP.

      Page   26



      QIP                                                    QIP Configuration

                                 QIP Configuration

                                                                     Page   27



      QIP                                                    QIP Configuration

      Nearly all of the QIP command line options can be permanently  installed
      in QIP  itself  (ie.,  QIP.SAVE on CMDNC0) through use of the -CONFIGURE
      (abbreviation:  -CONFIG) option.   This  option  will  save  all  option
      settings which  are simultaneously supplied on the command line with it,
      so that frequently used options need not be specified on the QIP command
      line every time QIP is used.

      The action of the configuration mechanism is  cumulative,  ie.,  if  one
      configuration operation  follows  another,  and  the second one does not
      cancel any options set by the first, then all of  the  options  declared
      will be  set.   To undo the result of a configuration option, all of the
      configurable options except for -CLUP may be prefixed by "NO" (-CLUP  is
      simply set to one of its four valid settings).

      Here is a table of valid option settings, abbreviations, and  negations:

          O P T I O N                          N E G A T I O N
          -----------                          ---------------
          -DEBUG, -D                           -NODEBUG, -NOD
          -CLUP, -C                            <none>
          -SHARE, -S                           -NOSHARE, -NOS
          -ALLOCATE, -A                        -NOALLOCATE, -NOA
          -VPSD, -V                            -NOVPSD, -NOV
          -ONUNIT, -ON                         -NOONUNIT, -NOON
          -QUIT, -Q                            -NOQUIT, -NOQ

      NOTES:      ______

      (1) The specification of -DEBUG or -NODEBUG will only affect  the  debug                                                       ____
      options corresponding to digits following -DEBUG or -NODEBUG.

      (2) The user may, at run time, activate or negate any option  which  has
      been configured into QIP.

      (3) Three QIP command line arguments:
            -CONFIG[ure]
            -H[elp]
            -E[nd]
      are not configurable options.          ___

      (4) The user of the -CONFIGURE option must have write access  privileges
      to the  QIP  save  file.   Security  conscious installations may wish to
      establish read-only  access  to  this  file  to   prevent   unauthorized
      configuration.

      Page   28



                              SUPPLEMENTAL INFORMATION - QIP

                                     January 25, 1984

      This document supplements the QIP Instruction Guide.  It explains features and
      corrections available in QIP systems shipped on or  after  January  25,  1984.
      These features and corrections are:

      1.  QIPINIT (reference 1.2.3).  QIPINIT is only required  on  systems  running          _______
      PRIMOS revisions 19.0 and 19.1, or on PRIMOS revision 19.2 and up when the QIP                                      __
      -SHARE option  is  used.   QIPINIT  need  not  be  run on systems using PRIMOS
      revision 19.2 or higher, if the -SHARE feature is not used.

      2.  QIP environment.  QIP formerly performed  a  "DELSEG  ALL"  when  invoked.          _______________
      This operation  zeroed  memory  segments  not  used  by  QIP,  but which could
      potentially hold user defined inter-program information.  Effective with  this
      release,  QIP  only  deletes  all  segments  when  invoked  without  arguments
      (reference 1.4.2).  When QIP is invoked with one or more file names, a segment
      is claimed for each file name and starting at the top of user  memory  address
      space (as  defined  with  the  CONFIG  NUSEG directive).  Then, each non-empty
      segment loaded by SEG is  claimed,  and  a  corresponding  segment  number  is                                                                          ______
      claimed, resuming  from the top of user memory address space.  For an example,
      simply invoke any QIP program with -DEBUG 9, and note the segment  assignments
      presented in the ensuing KST map.

      To avoid the possibility of over-writes of inter-program communication  areas,
      these areas  should  be  assigned  to  the  lowest numbered segments possible.
      Better yet, CONFIG NUSEG should be set sufficiently large to insure  that  the
      QIP temporary  segments (assigned in top-down sequence) do not encroach on any
      areas expected to be defined by application programs.

      3.  QIP linkage (reference 2.7).  Multiple linkages  aborted  (with  differing          ___________
      errors, depending  on  the PRIMOS revision) from P$ALC.  The linkage mechanism
      was recoded to avoid using the PL/1 allocate mechanism, and is now capable  of
      an indefinite number of linkages.

      4.  QIP configuration sensitivity error.  At PRIMOS revision 19, if the CONFIG          ___________________________________
      directive NUSEG was set to less than the allowable  maximum  (normally,  octal
      360), QIP  would  issue  either a "BAD PARAMETER" diagnostic, or abort with an
      "ILLEGAL_SEGNO$" error.  This "memory-top" sensing mechanism is now fixed.

      5.  QIP, new option (reference 2.6).  The default BREAK key message issued  by          _______________
      QIP can be controlled using two new command options to QIP:

           -QUIT, -Q         to enable quit servicing by QIP (default), and
           -NOQUIT, -NOQ     to inhibit quit servicing by QIP.

      This feature is configurable (reference section 4).

      6.  QIPMON.  Some garbled message texts were corrected.          ______


