Tabl e of Contents

Basi C Q P, .. e 1
1.1 General DesCription. 2
1.1.1 Purpose .. 2
1.1.2 Conpatibi lity. 2
1.2 Installing P 3
1.2.1 Initial installation....... 3
1.2.2 Configuration changes............. 3
L.2.3 Initialization. 3
1.3 Converting fromSEGto QP: QPLOAD.......... ... i, 4
1.4 Running a QP program 5
1.4.1 Normal invocation. e 5
1.4, 2 Error FECOVeIY. oottt e e e e e e e e e 5
Intermediate Q P. e 7
2.1 Theory of operati on. 8
2.2 Optimzing QP performance. 9
2.2.1 Initialized conmon blocks. i, 9
2.2.2 SEG s loader's MX command. 9
2.2.3 Condition handling........... . 9
2. 2.4 I FTNLB. . . 10
2.3 Special considerations. 11
2.3.1 Use With DBG ... e 11
2.3.2 Stack assignnent and location................ 11
2.3.3 "File in use" nessage on QP runfiles..................... 11
2.3.4 Changing the name of a QP runfile........................ 12
2.3.5 SHUTDN (the operator command)............... oo, 12
2.3.6 "OUT_OF _BOUNDSS" €T O S. .\ttt e 12
2.3.7 Application processing of a conmand line.................. 13
2.4 QP -DEBUG OPti ON. ... e 14
2.5 QP -CLUP OptiON. ... 15
2.6 QP default BREAK key handling......... 16
2.7 QPLIB: interprogramserial linkage................. 17
Advanced QU P. e 19
3.1 Miltiple QP files: interprogramconcurrent linkage............ 20
3.2 QP -SHARE option: interprogrampublic linkage................. 22
3.3 QP -ALLOCATE OptiON. ..ot e e e e e 23
3.4 QP -VPSD OPtiONn. ..ot 24
3.5 Condition handling inthe QP environment...................... 25
3.5.1 General method........ 25
3.5.2 QP -ONUNIT OPtiON. .. e 25
3.5.3 User written on-units.......... 26
3.5.4 User handling of "ACCESS VI OLATI ON$" conditions........... 26

4 QP Configuration. 27

Basic QP

Basic QP

Page 1

QP Basic QP

1.1 Ceneral Description.

1.1.1 Purpose.

Q P, a performance enhancenent package for Pr1ime conmput ers,
i mpl enents read-only demand paging directly fromnaned files. This
net hodol ogy is commonly used on other virtual nmenory conputing
systens, and vyields several advantages over conventional PR MOS

pagi ng:

(1) Programstart-up is nmuch quicker, since demand paging is used
instead of SEG which nust read all of the program and data
into nenory.

(2) Sharing of procedure and read-only data occurs automatically;
only when a data segnent is nmodified is a private user copy
made.

(3) As a result of these two factors, systempaging activity is
reduced.

(4) Less allocated pagi ng space is required.

(5) Better balance anbng disk drives and controllers can be
achi eved.

(6) The administrative conplexity and service disruption entail ed
by using "shared segnents" under PRIMOS is elim nated.

The effectiveness of QP over SEG generally increases in proportion
to the size of procedures and the nunber of concurrent users.

1.1.2 Conpatibility.

The Q PLOAD utility converts existing SEG runfiles into a paging
format (Q P format). Odinarily, no changes to the source program or
to the SEG load procedure are required by QP; the package can be
installed and used with mininumeffort and training. Optim zation
techni ques are available to secure even better QP performance.

Page 2

QP Basic QP

1.2 Installing QP.

1.2.1 Initial installation.

Using MAGRST, restore the QP directory from the supplied magnetic
tape, then type "ATTACH *>Q P. UFD' and then type "R I NSTALL".

1.2.2 Configuration changes.

Before QP will run, a directive nust be added to the CONFIG file
used for PRIM3S coldstarts, and the system nust then be coldstarted.
The directive is:

NVMFS 400 /* 256 VMFA segnents.

It must be placed prior to the "GO' directive in the CONFIG file.
The NVMFS directive is a special PRIMOS directive which will not have
any adverse effect on systemintegrity or perfornmance.

PLEASE NOTE: If there is an NSEG directive in CONFIG the sumof the

paraneters to NSEG and NVMFS nust be less than '1776 (octal). |If
there is no NSEG directive, the adjustnent will occur automatically.

1.2.3 Initialization.

I'n specific instances, pertinent only to PRI MOS revision 19 or above,
a special initialization program must be run from the operator
console to permt QP to operate. The two instances when this is
required are:

(1) On any systemoperating under PRIMOS revisions 19.0 or
19. 1.

(2) If the QP run-tine option, -SHARE, is to be used.
The initialization command nust be invoked under the control of the
operator terminal, preferably by adding to the coldstart procedure
file (PRI MOS.COM):

R SYSTEMQ PINI T
QPINIT has no effect if it has been previously run, or if it is run

under PRIMOS revision 18. QP software delivered at PRI MOS revision
18 does not include QPINT.

Page 3

QP Basic QP

1.3 Converting fromSEGto QP: Q PLOAD.

To convert a SEGrunfile into a QP runfile, specify:
Q PLOAD {SEG runfil e-pathnane} {Q P-runfil e-pat hnane}

If both command argunents are omtted, QPLOAD will pronpt for them If
the QP runfile is omtted, its name will default fromthe SEG fil enane.

Q PLOAD obeys the PRIMOS fil ename suffix conventions. For exanple:

Q PLOAD RUN>EXAMPLE. SEG

Q PLOAD RUN>EXANPLE

Q PLOAD RUN>EXAMPLE. SEG RUNSEXAMPLE. Q P
Q PLOAD RUN>EXAMPLE. SEG RUNSEXANMPLE

Q PLOAD RUN>EXAMPLE RUN>EXAMPLE. Q P
Q PLOAD RUN>EXAMPLE RUN>EXAMPLE
all wll convert " RUN>EXAMPLE. SEG' into a QPFfile naned

" RUNSEXAMPLE. Q1 P".

Q PLOAD never opens the SEG runfile for witing.

Page 4

QP Basic QP

1.4 Running a QP program

1.4.1 Nornmal invocation.

Resuming a QP programis very simlar to resuming a SEG program
Ei t her

QP RUN>G GANTIC
QP RUNSGGANTIC.QP

will result in the execution of "RUN>G GANTIC.Q P", since QP, |ike
Q PLOAD, recogni zes suffix conventions.

Ceneral ly, start-up of a QP programrequires noticeably less tine
and fewer page faults than the SEG copy of the identical program
Paging is effected directly fromthe QP file, and nultiple users of
the same file will share both pagi ng space and hi gh-speed nenory.

In the event that a procedure or data segnent is nodified, QP wll
automatically and invisibly revert the segnent to the traditional
pagi ng mechani sm avoi di ng interference anong sharing users.
Odinarily, all procedure segnents and perhaps sone data segnents
will utilize QP paging during the entire program execution.

1.4.2 Error recovery.

QP restores the normal PRIMOS environnent when the application
programreturns to PRIMOS for any reason (including nost errors).
Nevert hel ess, specifying

QP

wi thout any command argunments wll insure that environnent is
conpletely restored foll owi ng abnormal programexits, abends, etc.

Page 5

Page 6

Internmediate QP

Internmediate QP

Page 7

QP Internmediate QP

2.1 Theory of operation.

QPLOAD. QPLOAD is nore of a converter than a |oader. The SEG
nmechanismfor creating SINGLE/ SHARE files is used to create files which
are in a segnent directory rather than being naned files, and which are
DAM rather than SAM files (this is a requirenent of the file system
pagi ng nechanisn). There is one file for each non-enpty segnent
originally specified in the SEG Ioad. A descriptor file (file 0)
contains pertinent infornmation for QP, and also retains information
fromthe SEG | oad.

QP. QP processes the user comand l|ine optionally consisting of
pathnanes of QP files, and comand argunents prefixed with a hyphen.
Q P establishes a rel ationshi p between specific segnments and their files

inthe QP segnment directory which causes all read and execut e
references (including 1/0 on those segnents to page fromthe files in
the segment directory, rather than using the conventional pagi ng

nmechanism The segnents are wite-protected such that if the program
attenpts to modify a QP segnent, an ACCESS VIOLATION$ fault is
generated, and QP silently takes control and manifests the segnent to
conventional paging with all access rights available. Until that
occurs, the portion(s) of the program which are paged fromthe QP file
wi || be shared anpng concurrently accessing users (both pagi ng space and
hi gh- speed menory).

Because QP establishes linmted access to normally used segnents (such
as segnment '4001), the potential for access violation faults exists even
after the QP program has exited. For this reason, QP attenpts to
detect all situations which will return to PRI MOS. Odinarily, such

situations as errors wll be trapped by QP, and all of the segnents
wi Il be nmanifested to conventional paging, such that sharing is then
di sabl ed, but the programis still executable (using the PRI MOS " START"
command). Some errors, as well as FORTRAN STOP statenents, wll cause
QP to "shutdown" its program environnent. This is quicker than
mani festing all of the shared segments, but it is effectively a "DELSEG
ALL" which prevents program resunption. Program exit control and

cleanup is adjustable via the -CLUP command argunent (see bel ow).

QP is designed to operate as a nore efficient replacenent for SEG and
is usable from keyboard, COMNPUT, or CPL just as SEGis. QPis
ordinarily silent and undetectable by the user. However, through use of
command |ine options -VPSD, -DEBUG and -ONUNIT additional information
may be obtained from QP to pernit the system admnistrator or
programmer to assess and tune system perfornmance.

Page 8

QP Internmediate QP

2.2 Optimzing QP perfornance.

By design, use of QP does not nandate that either program source
changes or even changes to the SEG load in order to operate.
Nevert hel ess, opportunities for optimzing performance under QP do
exi st, none of which will inpair program operation under SEG

2.2.1 Initialized conmon bl ocks.

An "initialized common block" is a FTINF77 comon block which
contains one or nore variables which are initialized before binding
using the DATA statenent. PL/| prograns acconplish the sanme effect
by using the INIT and EXTERNAL attributes in a variable declaration.
Initialized coomon blocks decrease conpile and |oad speed, and
require more disk space under both SEG and Q P, than uninitialized
common bl ocks.

The following recomendations are nade for situations where
initialized common bl ocks are required:

(1) Separate (using SEG s |oader's SYMBOL, A/SY, and R/ SY conmands)
the common blocks so that any read-only common blocks are in
di fferent segnments than other common bl ocks. Read-only common bl ocks
(such as pronpts, error texts, and constants) will be shared by QP
among all concurrent users.

(2) Specify (using SYMBQOL, etc.) initialized conmmon bl ocks
contiguously, and place themat |ower addresses in the segnent than
uninitialized common bl ocks. This technique mnimzes the disk space
required by SEG and QP to store the initialization data.

2.2.2 SEG s |l oader's M X command.

Al Prilne translators output separated procedure and data object text
as a result of conpilation. Odinarily, procedure text is unnodified
during program execution, while data text by definition is always
nmodi fied. Accordingly, QP can share procedure text anpbng concurrent
users, while data text nust be "copied' fromthe QP runfile and
mai nt ai ned per user under conventional paging. SEGS loader's MX
command defeats the separation of procedure and data, making the
program "inmpure" (ie., not sharable at all). Therefore, use of M Xed
| oads under QP is not reconmended.

2.2.3 Condition handling.

As described above, QP intercepts all situations which invoke PR MOS
command input. At that tine, QP self-disables the direct paging and
sharing nechani sm unless exit/cleanup has been nodified by the user

Page 9

QP Internmediate QP

using the -CLUP option.

If the application or PRIMOS should signal a condition, and there is
no on-unit for that condition in the QP-invoked application, QP
will intercept the condition before it reaches PRIM3S, and perform
its exit/cleanup sequence. QP will always continue signalling the
condition to PRI MOS.

However, if there is an on-unit for the condition, and the on-unit is
able to handl e the condition (rather than continuing to signal to

PRIMXS), QP wll not "see" the condition at all. For exanple, sone
applications utilize the BREAK key as a standard neans of escape to a
known point in a program By witing an on-unit for "QUTS$", the

condition signalled when BREAK is depressed, the programmer can
prevent QP from self-disabling as a result of this situation.
Details of the condition nmechani smare described in PDR 3621, PRI MOS
Subrouti nes.

If a QP application intends to signal a condition to be serviced by
a CPL on-unit which invoked the QP application, the condition wll,
in this case, be recognized by QP. If this is not desirable, an
appropriate QP -CLUP option will have to be specified.

| MPORTANT: Read details in "Advanced Q P' before witing an on-unit

for the condition "ACCESS VI CLATI ON$".
2.2.4 | FTNLB.

Prime's "inmpure FORTRAN library", IFTNLB, is normally loaded into a
procedure segnent by SEG Since |FTNLB prograns are inpure (ie.,
write on thenselves), any segnments which contain | FTNLB routines will
beconme unshared as a result of the execution of these routines, which
i nclude subroutines for FTN built-in functions SIN, COS, LOG etc.

To sidestep this inefficiency, |FTNLB nmay be specific-loaded by SEG
into either a known data segnent, or a previously unused segnent. An
excer pted exanpl e:

$ PL /* loads the pure FTN library.
$ S/IL 0 4070 4070 /* loads inpure lib into unused seg.

Page 10

QP Internmediate QP

2.3 Special considerations.

2.3.1 Use with DBG

It is not possible at this tine to utilize Prlne's Source Level
Debugger, DBG with a QP format file. Because the nature of
debuggers requires that the procedure text be nodified from time to
time, debugging would generally negate the efficiency features of QP
anyway.

However, it is possible to QPLOAD and Q P a program which has been
conpil ed and | oaded with any conbi nati on of routines using - DEBUG and
- PRODUCTI ON conpi |l e nodes. Because Q PLQOAD does not copy the debug
information, there is no difference between runfiles created under
- PRODUCTI ON and runfiles consisting of routines with no debug options
at all.

2.3.2 Stack assignnent and | ocation.

To maximze its own efficiency, QP controls stack segnent
assignment, ignoring all stack-rel ated paraneters which may have been
supplied at SEG load tinme. Because QP has conpl ete know edge of the
user address space, it allocates stack an entire segnment at one tine
using the first available segnent at the top of the wuser address
space, and automatically extends the stack by one segnent whenever
stack overflow occurs.

This variation from SEG wll never cause a problem unless the
application program contains special programming which is sensitive
to the location or size of the stack. Autonatic overflow, which is
al nost always desirable, can be disabled or nodified by witing an
on-unit for condition "STACK OVF$".

2.3.3 "File in use" nmessage on QP runfiles.

If an attenpt is made to delete or wite on a QP runfile which is
activated by QP, a "file in use" nessage will result. This nessage
will result even though a display of STATUS UNITS may not reveal that
the file is "open" on any unit by any user. Similarly, using "CLOSE
pat hnane" from the operator terminal wll not change the "file in
use" status. This is because the fileis "in wuse" by the paging
system and will continue to be in use until all prograns referencing
it have "released" the association of the file with menory segnents
(Q P cl eanup).

Page 11

QP Internmediate QP

2.3.4 Changing the name of a QP runfile.

Even though the QP runfile may be in use, only the segnment subfiles
are actually active for the duration of execution; the segment
directory itself is open only briefly at the invocation of the QP
run. Accordingly, the nane of the QP runfile (segnent directory)
may be changed while its subfiles are in use. This feature is quite
useful for installing new or corrected versions of a program w thout
di srupting the sessions of users in process.

2.3.5 SHUTDN (the operator conmand).

If the operator command SHUTDN is issued for a disk partition
containing an active QP file, the nessage "Segment xxxx del eted."

wi || appear, perhaps nunerous tines, on the user's terminal with the
appropriate segment nunber substituted for "xxxx". Thereafter, if
the del eted segment is referenced, it wll be "zeroed" and the
application program is likely to err or crash as a result.
Consequently, care nmust be taken to avoid placing QP files on disk
partitions which are likely to be shut down in the course of normal
operations.

2.3.6 "OUT_OF_BOUNDS$" errors.

An unfamiliar diagnostic may appear froma QP run which wll not
arise froma SEG run. This nessage begins:

Error: condition "OUT_OF BOUNDS$"

and is otherwise simlar to "ILLEGAL_SEGNO' and other wusually
undesirabl e nessages. It arises only from attenpts to read or
execute on a currently shared segnment at an address which is higher
than the hi ghest address specified for that segnment in the SEG | oad.

Because no data has been witten at this location (otherwise the
segnment woul d not currently be shared), the nmessage is a bonafide and
reliable indication of a logic error in the application program it
implies reference to an "undefined" area.

Even though such an error might not interfere with the results
obtained, there is no appropriate action QP nmay take (the referenced
area is beyond "end-of-file" on the paging file); therefore, the
application program nust be fixed.

Page 12

QP Internmediate QP
2.3.7 Application processing of a comrand |ine.

QP allows a variety of options on its command |i ne; a fact which
could conflict with sone target applications which also process
el enents fromthe conmand Iine. To handle this situation in an
orderly way, QP recognizes the command argunent "-E' as the end of
its own comand |ist. If the application program specifies the
argunent to "get next token" for the RDTK$$ subroutine, any and all
information followng "-E" will be supplied. To avoid processing QP
argunents, the application nmust never "rew nd" the command |i ne.

Page 13

QP Internmediate QP

2.4 QP -DEBUG option.

QPis able to supply status information allowing a know edgeable
observer to assess perfornmance and environmental considerations relating
to a specific QP run. The -DEBUG conmmand |ine argunment requires a
string of one or nore digits in any order which specify what features
are to be displayed. The neanings of the digits are as foll ows:

0. Sound the terminal's "bell" (tone) whenever a segment is copied
fromshared to private paging. This is useful for nonitoring
"copypage" operations under FORMS or other delicate situations.
Di splay "Go" imediately prior to programentry.

Di spl ay a nessage whenever the RELEASE or SHUTDOMN cl eanup
routines are invoked.

Di splay all encountered signals which are not ignored by Q P.
Di spl ay the segnent/word address of references which cause

a segnent to be copied fromshared to private paging.

Di spl ay the segnent address of each stack segnent all ocated.

Di spl ay the KST (segnment usage) map prior to execution.

o ke NE

For exanpl e:
Q P PROG - DEBUG 512
will activate debug options 1, 2, and 5 and might look like this:

Go
Q P Stackseg 4374(3)/ 4.
Q P shut down.

If your installation has debug options configured into QP, this may be
reversed by specifying -NODEBUG on the command |ine, followed by the
numbers of the debug options which are to be suppressed.

Page 14

QP Internmediate QP

2.5 QP -CLUP option.

QP incorporates intelligence to deternmine which of three cleanup
actions it wll take if it is about to relinquish control to PRI MOS.
Depending on the condition, QP wll either discontinue the user
environment (this operation is called a "shutdown"), or discontinue the
sharing and direct paging while preserving the execution environment
(this operation is called a "release"), or ignoring the condition.
Because of differences anong prograns and installations, some tailoring
or nodification of the cleanup mechani smmay be dictated. The QP -CLUP
command |ine argunent nmust be followed by a single character indicating
the cl eanup action to occur:

D specifies the default cleanup node, which wll "release" on
nost conditions, but wll "shutdown" on detecting program EXIT,
STOP, or any condition which is not returnable. This option is
used to override a different cleanup option which may be
configured in an installation's version of QP.

R specifies that a "release" is to be done at any tinme either
"rel ease" or "shutdown" would normally occur. This option
maxi m zes the restartability of the program from PRI MOS,
al though such restarts and reenters will be to a program which
is not shared, ie., the restarted programw || operate entirely
under conventional paging.

S specifies that a "shutdown" is to occur any tine QP
encounters a condition or programexit. This option executes
much qui cker t han "rel ease", al t hough it pr ecl udes
restartability from the PRIMOS command |evel. The assunption

behind this option is that users will always abandon the run if
any "fatal" error is encountered.

N specifies that "rel ease" and "shutdown" will NOT occur under
any circumnstances. This option is the "fastest" of all, and it
is useful if BREAKS, arithnetic exceptions, and other conditions
are expected regularly and if restartability fromthese "errors"
is a requirenent. It is also necessary if conditions are
signalled from an application to CPL, and "release" is not
desired. This option retains restricted access to normally
unrestricted user segnents, even after the QP program is
"done". Accordingly, anonmal ous behavior wll result if this
option is used, and if a non-Q P application is subsequently run
W thout an intervening "QP", "DELSEG ALL", or "LOGOUT"/"LOGQ N'
following the QP run.

Page 15

QP Internmediate QP

2.6 QP default BREAK key handli ng.

If BREAK (or <control-P or equivalent) is depressed during a QP
execution, and if the program does not have an on-unit which conpletely
handl es the "QUI T$" condition, QP wll display the follow ng:

QUIT. QP program suspended at 4444(3)/55555. Conti nue?

If the user types "YES', "Y', or "OK' the programw |l continue as if
not hi ng happened. O herwise, QP wll performthe appropriate cleanup
routi ne (see -CLUP, above) and will continue to signal the condition
(presumably to a CPL or to PRI MOS).

This QUT query feature is intended to allow pacing or program
nonitoring w thout necessarily sacrificing the performance advantage of
QP. It also recognizes that a BREAK will occasionally arise which was
not intended by the wuser, due to a keying error or line transm ssion
noi se.

Nonet hel ess, a user or installation can suppress the default QUT alert
message, by specifying -NOQU T on the QP conmand line. On the other
hand, if -NOQUI T has been configured into your installation's QUP, vyou
can revert to reporting QUT conditions by specifying -QUT on the QP
comand | i ne.

Page 16

QP Internmediate QP

2.7 QPLIB: interprogramserial linkage.

There are four QP library subroutines which facilitate invocation of a
QP runfile by a QP runfile. This capability is useful for assenbling
rel atively independent program nodul es, perhaps using a central control
or menu program Linking is chain-style; the invoked program does not
"return" to the invoking program This feature allows all of the
progranms in a chain to wutilize the entire address space, wthout
particular attention to address overlap unless a common mailbox is to be
shared between the prograns. Ordinarily, a sinple SEG|oad can be used
for each QP file to be linked, an advantage over the nore powerful
nmultiple QP file capability (described in "Advanced QP").

To be able to use the QP library routines, the SEG |oad procedure for
the progran(s) involved must specify "LIB QPLIB" or its equivalent.
These subroutines are usable only within the QP environment. If the
SEG runfile is used, these calls will generate an error nessage.

Q PLNK effects a transfer of control fromon QP runfile to another.
The Q PLNK cal ling sequence is intended for PL/I usage:

Declare Q PLNK Entry
(fixed binary(15), character(*) varying, fixed binary(15))
Call Q PLNK (MODE, TEXT, CODE)

* MODE defines the |linkage node; in this version MODE nust be zero.

* TEXT may contain any information acceptable to the QP command
(normally only the name of the QP runfile to invoke).

* CODE is a standard PRIMOS error code returned only if the argunments
are invalid. QP errors (such as file not found) will utilize the
normal QP error-handling facilities.

Q PLNF effects a transfer of control fromone QP runfile to another.
The Q PLNF calling sequence is intended for FORTRAN and COBOL usage:

| NTEGER MODE, TEXT(4), LENTXT, CCDE /* FTN exanple */
DATA MODE / 0/, TEXT/' NEXTFILE /, LENTXT/8/
CALL Q PLNF (MODE, TEXT, LENTXT, CODE)

The argunments MODE, TEXT, and CODE have the same neaning as for Q PLNK;
argunent LENTXT is the character Ilength of argument TEXT. A COBOL
exanpl e fol | ows:

77 MODE PI CTURE S9999, USAGE IS COWPUTATI ONAL, VALUE IS ZERO
77 TEXT PI CTURE X(8), USAGE IS DI SPLAY, VALUE IS ' NEXTFI LE' .
77 LENTXT PI CTURE S9999, USAGE | S COVPUTATI ONAL, VALUE IS 8.

77 RTNCODE Pl CTURE S9999, USAGE |'S COVPUTATI ONAL.

CALL ' Q PLNF' USI NG MODE, TEXT, LENTXT, RTNCCDE....

Page 17

QP Internmediate QP

The |inkage subroutines, QPLNK and QPLNF, have no provision for
argunent passing anong the linked runfiles. A "mailbox" comon block
could be established at a specific address known to all of the prograns,
so that the runfiles could communicate with each other. However, QP
cleans the entire address space between each QP runfile invocation
including linked invocations, thus destroying any residual data. This
nechani sm can be selectively suppressed, facilitating programto program
comuni cati on.

To establish a mail box, the program|anguage mnust be able to define
external synbols for data (ie., FORTRAN conmon, PL/I| external, etc.)
whi ch precludes COBOL usage at this tine. The external structure nust
be defined identically in each cooperating program and nust be given the
same nane. Finally, the SEG | oader's SYMBOL conmmand nust be identically
specified in the SEG | oad for each cooperating program for exanple:

SYMBOL MAI LBX 4020 1000
General ly, the SYMBOL command shoul d precede all LQOAD and LI B conmmands.

To inform QP that the area is to be saved, the address (or pointer) of
the area, and its length in characters, nust be supplied to the QP
nmonitor. To do this, use Q PSAV prior to calling Q PLNK or QPLNF. FTN
and PL/1 exanples follow

COWON / MAI LBX/ | TEML, | TEM2, REAL1l, REAL2, DOUBLE, ETC
C Character counts: 2 2 4 4 8 4

| NTEGER*4 MBSI ZE

DATA MBSI ZE [/ 24/

24

CALL Q PSAV (LOC(MAILBX), MBS ZE)

Decl are Q PSAV Entry (Pointer, fixed binary(31))
Decl are MAI LBOX Character(20) static external
init ('QPSAV TEST. 123456')

Cal | Q PSAV (Addr (MAI LBOX), 20)
O course, the designer may elect to use other nethods of inter-program

communi cati on such as senaphores, disk files, or shared nmenory, none of
which are interfered with by the QP system

Page 18

Advanced Q P

Advanced QP

Page 19

QP Advanced QP

3.1 Miltiple QP files: interprogramconcurrent |inkage

It is possible to have several QP runfiles active sinmultaneously; for
exanple, a nenu program naned X may need to invoke "main" prograns
ALPHA, BETA, DELTA, and GAMMA, each of which nust be able to be invoked
i ndependently by name. Oher QP nenu runfiles mght also invoke any of
ALPHA, BETA, DELTA, or GAMA Odinarily, wunder SEG these four
prograns woul d be | oaded as subroutines into each and every runfile in
which they mght be invoked. Although QP relieves the previous problem
of long start-up tinme for such applications, a tiny change to GAMVA, for
instance, results in a long and tedious reload procedure for every
nodul e whi ch references the changed routine.

To cause several QP runfiles to be sinultaneously resident in nenory,
the several QP runfile names are all supplied on the QP comand |i ne:

QP X ALPHA BETA DELTA GAMVA

Possi bly some, or all, of these routines will actually be executed; the
"main" routine, X, always will be started by QP. Program X then nust
decide which, if any, of the other routines will be executed. Up to

sixteen (16) QP runfile names nay be specified on the command |ine, and
any QP options nust follow the runfile names.

Address space planni ng nust be exercised to be sure than there are no
segnent overl aps anong the procedure or |inkage of runfiles which are to
be concurrently specified to QP (simlar to the '2xxx public segnents).
Uninitialized common bl ocks may be specified in nore than one of the SEG
|l oads; attention to alignnent (using the SYMBOL command) may be
required. To effect inter-programlinkage, each QP runfile nust be
supplied with the address of the ECB or ECBs which it can reference.
This is done with the SYMBOL conmand.

An exanpl e on the next page denpnstrates how two cooperating processes
are | oaded using SEG and executed using QP.

Page 20

QP Advanced QP

Exanpl e of two cooperating QP runfiles.

OK, SEG -LOAD /* First load F2, the secondary program..
[SEG rev 18. 3]
$ S/LO F2 0 4021 4022 /* Two segnments "reserved" for F2.
$ D/LI /* CAREFUL! Must be a ditto |oad.
LOAD COWPLETE
$ MAP
*START 4022 000002 *STACK 7777 000000 *SYM 000023
SEG # TYPE LOW H GH TOP
4021 PROC 001000 001214 001214
4022 DATA 000000 000053 000053
RQUTI NE ECB PROCEDURE ST. SIZE LINK FR
F2 4022 000002 4021 001000 000042 000026 4022 177400
DI RECT ENTRY LI NKS
EXIT 4021 001172 TNOU 4021 001176 TNOUA 4021 001202
F$WA 4021 001206 F$CB 4021 001212

OTHER SYMBOLS
F183KWK 4021 001143

$QUT /* W& now know F2 ECB is at 4022/ 2.

OK, SEG -LOAD /* Now | oad the primary routine, F1...

[SEG rev 18. 3]

$ SYMBOL FRI END 4022 2 /* The subroutine name for F2 is FRI END.
$ S/LO F1 0 4011 4012 /* Two different segnents reserved for FI1.
$ D/ LI

LOAD COVPLETE

$ QT /* The hardest part is now done!

K, Q PLOAD (F1 F2) /* MAKE TWO Q P RUNFI LES.

F1.Q P | oad conpl ete.

F2. Q P | oad conpl ete.

XK, QP F1 F2

This is the first part of two segnented | oads which
are designed to test inter-linking capabilities in
the QP software. Following is output fromF2...
This output is fromprogramF2. Program F2

will return, which wll either exit or return

to the invoker.

This is program F1 again... SIGNING CFF.

X,

Page 21

QP Advanced QP

3.2 QP -SHARE option: interprogrampublic |inkage.

An advantage of QP is the ability to achieve sharing and to mninize
program start-up overhead without resorting to explicit nanagenent of
the public segments (octal nunbers Iless than '4000). Nevert hel ess,
there may be situations where the use of public address space may still
be required for reasons of addressing conpatibilities, wuser created
shared libraries, or permanent residency in virtual nenory. QP
acconpdat es the use of public segnents.

Q PLOAD wi l | transfer all segments from the SEG runfile to the QP
runfile. However, QP will not attenpt to associate the public segnments
with their QP segnment files, since operations on public segnments are
privileged. Instead, QP will only associate private segments wth
their segnent files, assumng that the public segnents have been
previously initialized. This assunption is consistent with the present

PRI MOS node of operation.

However, if the -SHARE option is supplied on the QP command line, only
public segnents wll be associated, and the QP progran(s) specified
will not be started. This feature is analogous to the PRIMXS SHARE
comand and, sinmilarly, it is usable only fromthe operator termnal.

For exanpl e:
Q P PROGS>DEMO - SHARE /* executed fromthe operator termnal.
then subsequently ...

Q P PROGS>DEMO /* operable fromany termnal.

It is unlikely, but possible, that -SHARE is configured as a pernmanent
option in your version of QP If this is the case, normal QP
execution can be restored by specifying -NOSHARE on the QP comand
l'ine.

I MPORTANT: Access privileges to QP public segments nust not be changed
using the SHARE command! |f WRITE access is defined for a QP segnment
at PRRMOS revision 18, and if a wite access to the segnent should

occur, the QP runfile will be altered, and possibly damaged.

Page 22

QP Advanced QP

3.3 QP -ALLOCATE option.

Q P reserves segnents in the user space for QP operation during program
execution. These segnents are typically assigned from the highest
addressabl e segnent downward, but in a way that will not conflict with
procedure and data segnments used by the QP progran(s). Segment
conflict resolution is not normally applied to "enpty" uninitialized
segnents specified in the SEG load, but containing no information.
(Such segnments appear on the SEG map with LOWaddress 177777 and H GH
address 000000.) Segnent conflict resolution can be applied to these
uninitialized segments as well, by specifying -ALLOCATE (or sinply -A)
on the QP command line. This option Inposes a start-up tine penalty
which is proportional to the nunber of uninitialized segnents in the
runfile(s).

NOTES:

QP allocates all of its own segnents prior to starting the QP runfile.
Q P never needs additional segnents once the programis underway.

Sone prograns indiscrimnantly use "unused" segnents, which are not
referenced in the SEG |oad map. Such usage is not detectable or
predictable by Q P, and - ALLOCATE will not help. The prograns involved
will have to be nodified to use docunented segnents only, or to test
segnent usage. The PL/|I ALLOCATE and FREE statenments exhibited such
i ndi scrimnant usage at PRIMOS revision 18.3; wuse of QPLIB in the SEG
| oad of applicable PL/I programs will load inproved versions of the
applicabl e routines (which are al so usabl e under SEG.

If the -ALLOCATE option is configured to be on in your QP, it may be
di sabl ed by specifying - NOALLOCATE or -NOA on the QP conmand Iine.

Page 23

QP Advanced QP

3.4 QP -VPSD option.

This feature is anal ogous to the SEG {progran} 1/1 feature of SEG It
invokes a VPSD built into QP prior to transfer of control to the QP
runfile, but after QP's internal tables and on-units have been
initialized. If VPSD is used to nodify data in the shared Q P segnents,
QP will "COPY_SEG' the segnents into private address space just as if

the QP programitself had made the nodification.

If -VPSD is configured into your Q P, you may disable it by specifying
-NOVPSD on the QP command |1 ne.

Page 24

QP Advanced QP

3.5 Condition handling in the Q P environnent.

QP relies extensively on the condition nechanism to provide proper
transition from the restricted QP addressing environnment to the nornal
unrestricted environnent. The presence of this condition handling
software is ordinarily invisible to both users of QP prograns and to
the system adm nistrator, with two exceptions:

(1) Performance aspects discussed in "Internmediate QP", above;
(2) User handling of "ACCESS VI OLATI ON$".

3.5.1 General nethod.

Q P establishes an on-unit for ALL conditions which reach it via the
PRI MOS condition nechani sm This on-unit "decides" which cleanup
method to use, unless this has been specified on the user conmand
line. The follow ng condition nanes are ignored at or before PRI MOS
revision 19.1, because they always either return or signal other
conditions which will be "seen" by QP or the application:

AR TH$

COM _ECF$
SETRCS
PH_LOGOS$
NUCL_POI NTER$
LI STENER ORDERS$
SUBSYS_ERR$
ENDPAGE

FI NI SH

NAVE

STRI NGSI ZE

Q P provides special services for the condition "STACK OVF$" (stack
overflow), by allocating stack space in known, avail able segnments.
QP also specially services "QU T$" to provide BREAK key handling
appropriate to the QP environnent. Finally, "ACCESS VI OLATION$" is
specially handled to discern wite attenpts on QP segnents, invoking
the "COPY_SEG' operation when this occurs; otherwi se, the on-unit
sinply continues the signal to PRI MOS.

3.5.2 QP -ONUNI'T option.

By specifying -ONUNIT on the QP conmand |ine, sonewhat nore control
can be exercised by a know edgeable wuser running a QP program
interactively. |If -ONUNIT is active, all on-units signalled, except
for those listed above as "ignored", will generate a nmessage from
within QP itself and provide a list of actions:

Page 25

QP Advanced QP

5 --

ue program
P] Rl MOS,

(this text),
of QP segs.,
| ay the stack,

The first two options, Cand P, will either continue the programfrom
the point of interruption (if possible) or continue the signal to
PRI MOS, respectively. The other options provide the appropriate
information or facilities, and then they redisplay the option list.

3.5.3 User witten on-units.

Wien Q P encounters a signal, it is not possible to determne or
control whether the wuser, at PRIMOS comand level, will resune the
execution environment using the PRIMOS START conmand, or will sinply
execut e anot her program Accordingly, QP wll tidy the nmenory

environment and di sable QP sharing unless instructed otherw se using
the -CLUP command |ine option.

If specific signals are expected during the routine usage of a QP
program it nmay be desirable to provide pre-programed on-units to
handl e those signals. Also, user-witten on-units developed in the

SEG environnent should operate equally well in the QP environnent.
In fact, on-units which conpletely handle a condition (and do not
continue the signal) wll prevent the condition fromeven being
"seen" by QP

Except for the condition "ACCESS VI OLATION$", there are no known
restrictions governing the use of the condition nechani smunder QP.

If -ONUNIT is configured into your copy of QP, the feature nmay be
reversed by specifying -NOONUNIT (or sinmply -NOON) on the QP conmand
I'i ne.

3.5.4 User handling of "ACCESS VI OLATI ON$" conditions.

User handling of "ACCESS VI OLATI ON$" conditions is not recommended
under the QP environnent. |If an on-unit for this condition is truly
necessary, the on-unit nust continue the signal if the fault address
in the fault frame header is a DTAR 2 address (ie., segnents in the
range from '4000 to '5777). Any nessages nornally displayed under
t hese ci rcunst ances shoul d be suppr essed, si nce t he
"ACCESS_VI OLATI ON$" condition is very routine in the QP environment,
and is handled silently by QP.

Page 26

Q P Configuration

Q P Configuration

Page 27

QP Q P Configuration

Nearly all of the QP comrand |ine options can be permanently installed
in QP itself (ie., QP.SAVE on CVDNCO) through use of the -CONFI GURE
(abbreviation: -CONFIG option. This option wll save all option
settings which are sinultaneously supplied on the command line with it,
so that frequently used options need not be specified on the Q P command
line every tine QP is used.

The action of the configuration nechanismis cumulative, ie., if one
configuration operation follows another, and the second one does not
cancel any options set by the first, then all of the options declared
will be set. To undo the result of a configuration option, all of the
configurabl e options except for -CLUP may be prefixed by "NO' (-CLUP is
sinmply set to one of its four valid settings).

Here is a table of valid option settings, abbreviations, and negations:

OPTI ON NEGATI ON

-DEBUG, -D - NODEBUG, - NOD

-CLUP, -C <none>

-SHARE, -S - NOSHARE, - NCS

- ALLOCCATE, -A - NOALLOCATE, - NOA

-VPSD, -V - NOVPSD, - NOV

-ONUNIT, -ON - NOONUNI T, - NOON

-QUIT, -Q -NOQUIT, -NOQ
NOTES:

(1) The specification of -DEBUG or -NODEBUG wi |l only affect the debug
options corresponding to digits foll ow ng - DEBUG or - NODEBUG

(2) The user may, at run time, activate or negate any option which has
been configured into QP.

(3) Three QP command |ine arguments:
- CONFI J ur e]
-H el p]
- E[nd]

are not configurable options.

(4) The user of the -CONFI GURE option nust have wite access privileges
tothe QP save file. Security conscious installations may wish to
establish read-only access to this file to prevent unaut hori zed
configuration.

Page 28

SUPPLEVENTAL | NFORVATION - QP

January 25, 1984

Thi s docunent supplements the QP Instruction Guide. It explains features and
corrections available in QP systens shipped on or after January 25, 1984.
These features and corrections are:

1. QPINT (reference 1.2.3). QPINITis only required on systens running
PRI MOS revisions 19.0 and 19.1, or on PRIMOS revision 19.2 and up when the QP
-SHARE option is used. QPINIT need not be run on systens using PR MXS
revision 19.2 or higher, if the -SHARE feature is not used.

2. QPenvironment. QP formerly perforned a "DELSEG ALL" when invoked.
This operation zeroed nenory segments not wused by QP, but which could
potentially hold user defined inter-programinformation. Effective with this
release, QP only deletes all segnments when invoked w thout argunents
(reference 1.4.2). Wen QP is invoked with one or nore file nanmes, a segnent
is clained for each file nane and starting at the top of user nmenory address
space (as defined with the CONFIG NUSEG directive). Then, each non-enpty
segnent | oaded by SEGis clained, and a corresponding segnent nunber is
clainmed, resunming fromthe top of user nenory address space. For an exanple,
sinply invoke any QP programwith -DEBUG 9, and note the segnent assignnments
presented in the ensuing KST map.

To avoid the possibility of over-wites of inter-program comunication areas,
these areas should be assigned to the |owest nunbered segnments possible.
Better yet, CONFI G NUSEG should be set sufficiently large to insure that the
QP temporary segnents (assigned in top-down sequence) do not encroach on any
areas expected to be defined by application prograns.

3. QPlinkage (reference 2.7). Miltiple |linkages aborted (with differing
errors, depending on the PRIMOS revision) fromP$ALC. The |inkage nechani sm
was recoded to avoid using the PL/1 allocate nmechanism and is now capable of
an indefinite nunber of |inkages.

4. QP confiquration sensitivity error. At PRIMXS revision 19, if the CONFIG
directive NUSEG was set to less than the allowable rmaxinum (normally, octal
360), QP would issue either a "BAD PARAMETER' di agnostic, or abort with an
"1 LLEGAL_SEGNGS$" error. This "menory-top" sensing mechanismis now fixed.

5. QP, newoption (reference 2.6). The default BREAK key nmessage issued by
Q P can be controlled using two new comrand options to Q P:

-QUIT, -Q to enable quit servicing by QP (default), and
-NOQUIT, - NOQ to inhibit quit servicing by QP.

This feature is configurable (reference section 4).

6. Q PMON. Sone garbled nessage texts were corrected.

