

UNIVERSITY OF SHEFFIELD

COMPUTING SERVICES

Using the Sheffield Prime Editor

Wendy Thomson and Peter Mason
Computing Services Department
University of Sheffield
Sheffield
S10 2TN
England

Phone +44 742 768555 extension 4253
Fax +44 742 753899

Telex 547216 UGSHEF G

March 1990

PE1/90

CONTENTS
1. The Sheffield Prime Editor
1.1 Introduction
1.2 General Principles
1.3 Basic Strategies
1.4 Using Filenames and Treenames in the editor
1.5 Quit Handling
1.6 Entering the Editor
2. Window Editor Commands
2.1 Introduction
2.2 General Purpose Commands
2.3 Changing Modes
2.4 Moving the Cursor
2.5 Making Changes to the File
2.6 Moving Text Around the File
2.7 Tabulating and Indenting
2.8 Simple Text Formatting
2.9 Command Repetition
2.10 Window Editor Macros
2.11 Leaving the Window Editor
3. Line Editor Commands
3.1 Introduction
3.2 General Purpose Commands
3.3 Changing Modes
3.4 Moving the Pointer
3.5 Altering a Line in the File
3.6 Adding and Deleting Complete lines
3.7 Moving Text Around the File
3.8 Tabulating and Indenting
3.9 Simple Text Formatting
3.10 Composite Commands
3.11 Use of Markers
3.12 More General Purpose Commands
3.13 The Mode command
3.14 Editing Files Organised in Columns
3.15 Command Repetition
3.16 Line Editor Macros
3.17 The Spelling Checker
3.18 Initialising the Editor
3.19 Leaving the Line Editor
3.20 An Example of Line Editing
4. Editing Several Files at Once
4.1 General Principles
4.2 Making Your Workfiles Permanent
4.3 More Commands for Use with Buffers
4.4 Split Screen Editing
4.5 Safety Measures
5. The TIDY sub-system
Appendix A Summary of Window Editor Commands
Appendix B Summary of Line Editing Commands
Appendix C Terminal Control Keys and Special Characters

PE1/90

1. THE SHEFFIELD PRIME EDITOR

1.1 Introduction

The editor used on the Prime computers at Sheffield is not the standard
editor supplied by Prime Computers Ltd., but is one developed in Sheffield
Computing Services. It consists of two parts, a line editor and a window
editor: the 1line editor is largely compatible with the Prime editor buthas
several additional features and is also considerably faster; the window
editor is an entirely new facility.

Although this document describes all the facilities available with the window
editor, you may also like to try a 'teach yourself' system which is available
on all our Prime computers. To use it you should type

LEARN ED

and follow the instructions.

This document is reprinted approximately once yearly, so it will happen from
time to time that new features have been introduced into the editorsince the
latest printing. You can find out about anything new by usingthe built-in
Help system: type the line editor command

HELP NEWS

This printing of the document reflects the Sheffield Editor at version 8.5.2
in March 1990.

Finally, any comments about the editor would be welcomedby Peter Mason at
the address on the title page, or by electronicmail to CS1PM@UK.AC.SHEF.PA.

1.2 General Principles

This document describes how you can use the editor to create new files and
also to change existing ones. The Prime Editor can be used in either oftwo
ways: when used as a 'line editor' you have to type in directives to
describe what you want to do, but when used as a 'window editor' your vdu
screen acts like a 'window' on your file so that what vyou type in acts
directlyon your file. (Actually it is not strictly true to talk in terms of
acting'directly' on vyour file, since the editor in fact operates on a
temporary copyof yourfile which is only made into a permanent file in your
filestore when yourequest it). The window editor is much easier to use than
the line editor,and many people never use the line editor. However there
are some complicatededits which can be done much more quickly with the line
editor, and it isuseful to have a knowledge of its capabilities.

Both the line editor and the window editor may be used either in 'input'
mode, to add text to a file, or 1in ‘'edit' mode to change the existing
contentsof a file. When you are creating a new file you enter the editor in
inputmode, but when you are editing an existing file vyou enter in edit
mode.However once vyou are 1in the editor you can switch modes, or switch
betweenline and window editors, and the distinction between creating a new
fileand editing an existing one tends to disappear.

To distinguish the window editor's modes from the 1line editor's modes we
refer to:

PE1/90

input mode to mean line editor input mode. Everything you type in is
simply written into the workfile.
edit mode to mean line editor edit mode. Everything you
type in 1is interpreted as editing directives to make
alterations to the workfile.
Iw to mean window editor input mode. New text is

copied intothe workfile, and you may also use the window
editing keys to alterwhat you have typed in.

WI to mean window editor edit mode. New text
will overwriteexisting text (unless you create space for it)
and window editing keysmay be used to make other changes.

Both the window editor and the line editor use a pointer to determine the
'current' point in the file. All new text will be inserted at the current
point, and all changes will take effect at the current point. The window
editor indicates the current point by means of a cursor (a small white square
blob) on your screen. The line editor cannot do this but normally printsout
the current line of your file after each directive has been executed.

When you enter the editor, the current point is the beginning of the first
line. You can move it about by:

(a) Typing in new text. The current point is always immediately after the
last character typed in.
(b) Using the line editor commands to move the pointer.
(c¢) Use window edit techniques to move the cursor.

It is important to be clear about this concept of current point, so that you
do not make mistakes when switching modes. Thus, for example, if youare
typing in a new file, and you then enter edit mode to move backwards in the
file and make some changes, you must remember to move back to theright place
before re-entering input mode to continue with your typing.

1.3 Basic Strategies

As was mentioned in Section 1.2, the only difference between creating a new
file and editing an existing one 1lies 1in the way in which the editoris
called in the first place. Thereafter you may spend some time in input mode
(typing in new text) some time 1in WI mode (altering existing text onthe
screen) and some time in (line editor) edit mode typing in directives to
alter your text.

1.3.1 Creating a New File

To create a new file, type
ED -W

Your vdu screen will be cleared, an empty temporary file will be set up, and
as long as you remain in input mode, everything you type in will becopied
into the temporary file. You can correct any mistakes on visible text by
using the window editing techniques described in Section 2. Ifyou wish to
make changes to a part of the file which has disappeared vyou will have to
change to WI or edit mode in order to go back to the offendingline to change

PE1/90

it. (You must then remember to return to the right partof the file before
carrying on with your typing).
Alternatively, you can type

SED

to enter the editor in screen mode (SED stands for Screen EDit). This has
the same effect as typing ED -W with the single exception that it makes you
stay permanently in screen-editing mode; the exit to 1line-editing mode is
disallowed. This sounds like bad news, but many new users get very confused
if they accidentally drop into the line editor; SED can be very useful on
introductory computing courses and for infrequent wusers. Typing SED is
exactly equivalent to typing ED -S.

When you are satisfied with vyour file vyou should make 1t permanent as
describedin Section 2.11 or 3.19 depending upon whether you finish up in the
windoweditor or the line editor respectively.

For completeness we should perhaps mention that you can simply type

ED
to enter the line editor in input mode, and proceed from there. You still

type in vyour file line by line but you cannot correct it so easily as yougo
along, and no one uses this method any more.

1.3.2 Editing an Existing File

To edit an existing file, you should type either
ED filename -W

or ED filename

This will cause you to enter the editor in WI or edit mode respectively.
Either way vyour file will be copied into the temporary file with the pointer
(cursor) at the beginning of the file. You can now make your changes using
the techniques described in Sections 2 and 3, and you can change to input
mode if you wish to insert several lines of new text.

When you are satisfied with the file, you can make it permanent, as described
in Section 2.11 and 3.19. The editor normally takes a backup copy of any
file that you are about to overwrite, so that you can get back to old version
if necessary; this process is described in section 2.11.1.

1.3.3 Setting Your Terminal for the Window Editor

Because different terminals deal differently with some of the keys wused by
the Window Editor, it 1is necessary for the editor to know what typeof
terminal you are using; at Sheffield we ask for your terminal typeat login
time and the editor uses this information when deciding whattype it needs to
deal with. If you wish to override the chosen terminal typeyou can use a
-TERMINAL n optionwith the ED command to set the window editor for your
terminal.

PE1/90

e.qg. ED filename -W -T 3
You can also use the line editor command
TERMINAL

to find out what value of n you need (see Section 2.3 to see how to useline
editor commands from the window editor).

1.4 Using Filenames and Treenames in the editor

Wherever you supply a filename for an editor command, such as when you copy
your workfile back into a Primos file, you can give either a filenameor a
treename. A filename is just the name of a file in your current directory;
a treename 1is a sequence of directories and a filename whichspecify exactly
where the file is located. For example

MYUFD>MY SUBUFD>FILENAME

means the file FILENAME in the sub-directory MYSUBUFD of the directoryMYUFD.
Some commands, such as the ones for loading and unloading pieces of text,
will also accept a buffer number instead of a filename; 1in that casethe
command uses one of the editor's file buffers to temporarily store the text
until it is needed again. This is explained in more detail insection 4.

A filename, treename or buffer number may have qualifiers after it to alter
the way the text is filed. The possible values are:

Dam Create the file as a DAM (Direct Access Method) file.
Sam Create the file as a SAM (Sequential Access
Method) file.This is the default for newly created files.
Append Add the new text to the end of the file if it

existsinstead of replacing the file as usual.

The qualifiers are added in parentheses after the name, separated by slashes
if necessary. e.g.

FILE filename (append/dam)

will copy to the end of the file "filename", creating it as a new DAM fileif

it does not already exist.

If you have any 'argument'-class Primos abbreviations the editor will make
use of them in pathnames. This means that you can define an abbreviation for
all or part of a 1long pathname that you frequently refer to, and use the
short form both in Primos commands and within the editor.

When you are using the window editor you will be asked to type a filename
when you save your file to disk; a prompt appears at the top of the screen,
possibly giving a default filename that can be used Jjust by pressing the
RETURN key. For this prompt, and also most other window editor prompts,you

can decide not to go ahead with the relevant operation after all; todo this

you enter the CAN control character by holding down the Controlor CTRL key

and pressing X. The window editor treats CTRL+X as meaning'give up the

current operation and wait for next command'.

PE1/90

1.5 Quit Handling

The editor handles "quits" (pressing CTRL-P or BREAK) by interrupting whatit
is doing at a safe place and asking for the next command. You can safely
break in on the editor at any time. You might, for instance, have typeda
command which changes many lines of the file, printing the new version of
each; to make it go faster you could break in, type BRIEF to suppressthe
printing, and then re-issue the command.

1.6 Entering the Editor

This is a summary of the command you type to enter the Sheffield editor. If
you have not used the editor before some of the terms used may beunfamiliar
until you have read later sections of this document.

To edit a file or files you type

ED filename list options

"filename list" is a list of one or more pathnames of files to be modified,
separated by spaces.The first one is loaded into the editor's buffer 1, the
second into buffer 2and so on. If you give no pathname then the editor
starts in 'input' mode inbuffer 1 so that you can type in a new file. The
editor prints EDIT or INPUTto show which mode you are in.

"options" available on the command 1line are as follows (each may be
abbreviatedto the '-' followed by the letters in capitals).

-Init pathname The editor will obey the editor commands contained in
"pathname" (in EDIT mode) before asking for commandsfrom
the terminal. You can use this to personalisethe editor
by including such commands as TABSET to set your
preferred tab settings. If you do not give -INIT then
the editor will look for a file called PMED_INITin your
origin directory and use that as the initfile; if that
does not exist (or the -NO_INIT optionis given) then no
init file is obeyed.

-No_Init Disallow the search for the PMED_INIT
initialisationfile mentioned above. This option 1is
useful whencalling the editor from a CPL file to avoid
anyunexpected effects from commands 1in the user's
PMED_INIT file.

-No_Primos Disallow the ! and PAUSE commands to
enhance the security of the editor if used as part of a
turn-keysystem.

-Window Go straight into the window editor
subsystem after obeying any commands in the init file if
present.

-No_Line Do not allow exit from the window
editor back to theline editor.

-Screen Go straight into the window editor and
disallow exit (exactly equivalent to giving both -W and
-N) .

-Terminal n Set the window editor terminal type to
"n", instead ofthe default global variable value or 1.
-Report The editor will report in a global

variable the name used for filing. This option is for

PE1/90

use by systemsthat call the editor.

-Help key Give help on calling the editor.
"key" is optional;if present then that is the first key
used in the helpsystem; if omitted then the index page
is the firstone displayed.

-TIDY wildcard Enter the editor directory tidying
sub-system. 'wildcard' 1s wused to select which files to
display;the default is to display all files. If a

wildcard is given 1t must be enclosed in guotes. See
section 5 formore information.

-SORT_dtM The TIDY system normally sorts files
alphabetically; this option tells it to sort by
'date/time modified',with the most recent files at the
top of the list.

-ReVerse Tells the TIDY system to reverse the
usual order ofsorting.

The -SCREEN option is designed mainly to provide a pure screen editor that is
simple to teach to novice users; they do not need to know any 1line editor
commands since they can do everything from within the screen editor. -NOLINE
acts like -SCREEN but allows (for example) a CPL macro to obey a few line
editor commands before going irrevocably into the screen editor.The special
CPL command SED 1s provided which merely runs the editor withthe option
-SCREEN specified in addition to any other options given; SEDis useful for
beginners who do not wish to know about line editing.

PE1/90

2. WINDOW EDITOR COMMANDS

2.1 Introduction

In this section we look at the keys you use to perform the various window
editing functions. You will find references to key combinationsof two
types:

DEL key means you should press the key marked DEL followed by the

specified key. Thus
DEL B

means press DEL followed by the letter B.
CTRL+key means you should hold down the key marked CTRL
at thesame time as pressing the specified key. Thus

CTRL+N
means hold down the CTRL key whilst you type in your N.

Note that, with the exception of DEL A and DEL a (which are described in
Section 2.5) letters may be typed in upper or lower case, e.g. DEL B, CTRL+n
etc.

Some operations may only be carried out with the aid of 1line editing
directives.When this 1is the case vyou can either use DEL C to execute a
single lineeditor directive (see Section 2.2) or you can use the F1 key to
transferto the 1line editor (see Section 2.3). The important point to note
is thatline editing directives are always terminated by the RETURN key,
whereaswindow editing commands are not.

On some terminals there are extra keys which vyou can use to make window
editing easier; for instance, on the Merlinand Televideo terminals you can
use the row of keys marked CHAR INS, CHAR DEL etc. for insertingand
deleting characters and lines. Those keys are not describedfurther in this
document because they may be different for the various types ofterminal, but
you can find out about the special keys for your terminalby typing

Help SUMMary

as a 1line editor command, or by pressing theF3 function key in the window

editor andtyping SUMMARY as a keyword when asked for one. The list given is

the onecorresponding to the type of terminal you are currently using.

There may also be some Function Keys on your terminal and again they differ
from one terminal to another; you may have been provided with an overlay
label to indicate what they do, but Help SUMMary will also tell you.Appendix

A of this document includes a list of the actions of the function keys for

our Televideo and Merlin terminals.

PE1/90

10

2.2 General Purpose Commands

The following commands are not used directly in connection with changing the
file, but perform various incidental (but essential) operations:

DEL S Is used to save a copy of your workfile in a permanent file.
A message at the top of your screen will ask for the name to
beused for the file, and you can either type in the name
(followed by RETURN) or wuse a previously specified name by
just pressing RETURN on its own.It is advisable to use this
command every 15 or 20 minutes so that a systembreak or
similar catastrophe does not result in the loss of hours of
editingtime.
DEL C Allows you to execute one or more line editor
directives.The top 1line of your screen will be cleared and
you will be asked to typein your directives. You can type
one or more directives, separatingthem by semicolons. Press
RETURN at the end to cause the commands to be obeyed,or, if
you decide it was a bad idea after all, press CTRL+X to cancel

theoperation.

DEL X Causes the most recent line editor directive
to be executedagain.

DEL = Redraws the current line. Sometimes when the
Prime is very busy, the display on the screen acts slightly
behind what is actuallyhappening. If you press DEL =, you

will be sure which line is the currentline and also what is
the current position of the cursor.

F2 This is the F2 function key on the top
left-hand side, and redraws the entire screen. This is
useful if, for instance, a message fromthe system operator
has overwritten the screen.

F3 or DEL H Enter the editor help system; this allows you
to seea summary of the window editing commands, as well as
all the other information about the editor. When you type
QUIT to leave the help system your original screen display
will be restored.

2.3 Changing Modes

The following keys may be used from either IW or WI mode to change to a
different mode:

DEL W switches from IW to WI or vice versa.
Fl or DEL E leave the window editor and go to the 1line
editor,changing the mode from IW or WI to line editor edit
mode.
DEL C puts you temporarily in line editor edit mode

ready for a line editor command. As soon as the command has
been executed, you arereturned to your original (IW or WI)
mode.

Note that it is not possible to go from IW/WI mode to line editor inputmode:

you would have to go to line editor edit mode first, and then switchto input
mode.

PE1/90

11

2.4 Moving the Cursor

"cursor arrows" The four keys marked with an arroware grouped at the
bottom right-hand sideof the keyboard and move the
cursor one position in the direction shown. (We
cannot print them in this document as there 1is no
corresponding symbol on the printer.) These keys
will also repeat if they are held down, but the editor
may havedifficulty keeping up 1if vyou repeat the
"uparrow" or "downarrow" keys and it is better to
useDEL V or DEL A instead. If the editor does get

behind, it redraws the screen to ensure that
everything is displayed correctly.

DEL V Moves the cursor down 12 lines
(you can remember thisbecause V points downwards).
DEL A Moves the cursor up 12 1lines
(you can remember thisbecause A points upwards) .

DEL "uparrow" Moves the cursor to the
beginning of the file.

DEL "downarrow" Moves the cursor to the end of
the file.

DEL "leftarrow" Moves the cursor to the
beginning of the current line.

DEL "rightarrow" Moves the cursor to one past

the last character of thecurrent line so that you
can append text.

HOME Moves the cursor to the top
left-hand corner of thescreen.

RETURN Moves the cursor to the
beginning of the next 1line (but see also Section
2.7).

BACKSPACE Equivalent to "leftarrow".

TAB Moves the cursor to the next
TAB position. By default these are 6, 12, 30 and
80.

BACK TAB Moves the cursor back to the

previous TAB position.

2.5 Making Changes to the File

There are three ways in which you might wish to change a file:

(a) Typing new text on top of old text

(b) Inserting new text

(c) Deleting old text

Of these, the first is by far the easiest: vyou simply move the cursor tothe
place where you wish to start the changes and then type in your new text;
the new will over-write the o0ld. The following keys may also be usedfor
changing text:

DEL B Breaks the current line at the cursor position, to make two
lines.
DEL J Causes the line following the current line to

be joined to the current line at the cursor position. Any
text to the right of the cursoron the current line will be
lost.

PE1/90

12

DEL A Convert to upper casethe part of the current
line which is bounded by the cursor andthe character pointer
inclusive, or from the cursor to theend of the 1line if no

pointer is set. You use DEL P (described below) toset the
pointer.
DEL a Convert to lower case; the characters

affected are defined asfor DEL A. Note that DEL A and DEL a
are the only window editing commandswhere upper and lower
case are distinguished.

DEL I If you wish to insert new text you can press
DEL followed Dby I to cause new text to be Inserted rather
than superimposed. Normalovertyping mode 1is regained by
typing DEL I again. Alternativelyyou can create space for
new text by using any of the following:

DEL & Inserts one space at the current cursor
position.

DEL space Inserts 20 spaces at the current cursor
position.

DEL + Inserts a blank line before the line
containing the cursor.

DEL " Inserts a copy of the current line.

DEL O Inserts 12 blank 1lines before the line

containing the cursor.

When you have typed in your new text you can delete any spare spaces orblank
lines (if you have used DEL space or DEL O) by using:

CTRL+N space Deletes any subsequent spaces.
CTRL+N O Deletes any subsequent blank lines.
To delete unwanted text, you can use the following:
CTRL+N & Deletes one character at the current cursor
position. (See also DEL Z below.)
DEL - Deletes the current line.
DEL / Truncates the current 1line at the cursor
position.

You can also delete part of a line by putting a marker at one end of your
deletion, moving the cursor to the other end and then deleting what lies
between. It does not matter whether the marker is before the cursor orafter

it. The keys to do this are:

DEL P Puts a delete marker at the current cursor position.
CTRL+N P Removes the currently active delete marker
(not necessarily atthe cursor position).
DEL Z Deletes everything between the cursor and the

current marker;the marker will be removed after this action.
If you have not set a marker,the single character at the
current cursor position will be deleted.

PE1/90

13

2.5.1 The OOPS Command in the Window Editor

It is possible to undo the effects of recent changes that you have made to
the file by using the line-editor OOPS command; when used from thewindow
editor this works as follows (see section 3 for normal line-editoruse).
Whenever you start to make changes to a line when using the screen editor a
copy of the original version is added to the top of a stack; the stack can
hold up to ten copies so usually an old copy will drop off the bottom into
oblivion at the same time. You will not normally need to make anyuse of
these old versions, but the time will come when you accidentallyoverwrite an
important line, or press LINE DELETE when you meant to press LINE INSERT.
The OOPS command now comes to your rescue: use DEL C toobey the command
O0OPS and what the editor does is takes the most recentline copy from the top
of the stack and inserts it into the file at the current location. The
action is rather similar to the duplicate operation.The old version is
inserted instead of overwriting the current line to avoid making matters
worse by obliterating anything useful in the new line; withthe old version
available you can use the normal screen editing facilitiesto get the file
looking how vyou really want it, which may involve simplydeleting the
erroneous changes or combining them together.

You may find that you in fact need an even earlier version of the 1line, so
you can obey the OOPS command again (up to ten times). You can in factobey
a command such as

OOPS 3

which retrieves and inserts the three most recent copies from the stack. It
is then up to you to decide which parts to delete and which to keep.

2.5.2 Search and Replace Operations

If you have many similar changes to make, such as changing the name of a
variable throughout a program, then the easiest way is to use the search and
replace command REPLACE. This command goes through the file performing the

operations:

(1) search for the next occurrence of the search string

(2) ask the user whether to replace it, and do so if requested

It does these repeatedly until the end of the file, or wuntil terminated by
theuser. There are options to restrict the operation to certain lines of

the file, andto govern the matching operation when searching for the
string.The simplest way to use REPLACE is just to obey it with no options
(it must beobeyed from within the window editor, so you need to type DEL C
REPLACE) ;you will be prompted for:

(1) The search string; this may include the special characters ! and #
thatLOCATE uses
(2) The replacement string.
(3) Options: this is a string of single letters chosen from:

I Identifier type search - only match if found as a word on its own.
(¢} Case independent search - match whether in upper or lower case.

PE1/90

14

You can just press RETURN if you do not want any options.

When you are doing case-independent replacing, the editor will adjust the
caseof the replacement string to match the case of the string found in the
file.Thus the command REP/the/these/CI will replace "the" by "these" but it
willreplace "The" by "These". The editor will only do this if you type
yourreplacement string all in UPPER case or all in lower case, on the
assumptionthat you have not explicitly specified what case you want.

The REPLACE operation then proceeds; the cursor will stop on each occurrence
of the search string and the message

Replace?

will appear; vyou should then type a single letter:

Y Yes replace and continue

N No do not replace, but continue

Q Quit do not replace, stop searching

C Continue do the replace, and continue to search and replace

without prompting

When there are no more occurrences of the search string, the command
terminates and displays

End of REPLACE
You can restrict the REPLACE to a region of the file by:
(1) Mark the first line of the region (DEL M)
(2) Move the cursor to the last line
(3) Perform the replace command
The line marker will be removed when the command completes execution.
When you have used the command a few times you can avoid being prompted by
giving the command parameters with the command. For example
REPLACE/search string/new string/CI

The format is similar to that for the CHANGE command.

2.6 Moving Text Around the File

If you want to move a portion of text from one part of the file to another,
you should do the following:

(a) Put a 'move' marker at one end of the text to be moved.
(b) Move the cursor to the other end of the text.
(c) Put the marked text in an editor buffer or Primos file. If vyou do
notneed the Primos file for any other purpose, it is quicker to use an
editorbuffer.
(d) Move the cursor to the place where vyou want the file to be
inserted.
(e) Insert the text.

PE1/90

15

The keys to achieve this are as follows:

DEL M

2.7

Puts an arrow marker on the current line of your file.

DEL U Copies the text to a Primos file or editor buffer. A prompt
will appear at the top of your screen asking you for a filename or
buffer number; rememberto press RETURN at the end (or CTRL+X to
cancel the operation). The text copied also remains in the file you
are editing.

DEL D Same as DEL U except that the text is deleted from the file
youare editing.

DEL L Inserts the text from an editor buffer or a Primos fileabove
the current line of the file.You will be prompted at the top of your
screenfor the name of the file or the number of the buffer;
remember to press RETURN after typing.

Tabulating and Indenting

The following keys are used in connection with tabulating and indenting when
typing in new text.

TAB,

CTRL+I or DEL > Causes the cursor to move to the next tabulation
column.
BACK TAB or DEL < Causes the cursor to move back
to the previoustabulation column.
DEL T Sets a tab stop at the current
cursor position.
CTRL+N T Clears the tab stop at the

current cursor position.

You can also use the 1line editor TABSET and MODE INDENT commands for
tabulatingand indenting:

TAbset nl n2... Sets tab stops at the specified columns.The default

TAB positions are columns 6, 12, 30 and 80.

MODE INdent Switches on automatic
indenting. This 1is achieved by changing the normal
effect of the RETURN key; instead ofpositioning the
cursor at the beginning of the next line, it will be
moved along to preserve the indentation of the
previous line. Note that this command is only
effective when using the window editor and is ignored
if used with theline editor.

MODE NOINdent Switches off automatic
indenting.

To use these commands, you should precede them by DEL C as described in
Section 2.2

PE1/90

16

2.8 Simple Text Formatting

The Prime Editor offers simple text formatting facilities which are suitable
for text which 1s to be formatted in a reasonably straightforward way.Thus
text is 'tidied up' by the removal of excess spaces between words and by

filling lines as much as possible. You can choose the positions of your
right and left margins, the format of paragraphs, and the 'mode' (justified
or ragged) of the right-hand edge by means of the line editor STYLE directive
(described in Section 3.9). Having established your requirements, you can

use the following directives and keys to initiate the formatting progress:

DEL M Sets a marker at the beginning or end of the text which is to
be formatted.
DEL P Tells the formatter where the current left
hand margin is. Youshould move the cursor to the beginning

of any line within the sectionto be formatted, and then set
this marker by pressing DEL P.This is not necessary if you
are using automatic text formatting.

DEL ' Initiates the formatting process. You should
move the cursorto the opposite end of the text from the one
where you put your M marker,and then use DEL ' to initiate
formatting.

You may also use the line editor SYMBOL VISIBLE and SYMBOL VERBATIM commands
(see Section 3.9) to change the details of how the formatting is carried out.
For further details, see Section 3.9.

There is a line editor command which makes it easier to type in text which is
to be processed later:

MODE Margin n Switches the window editor into word processing mode for any
new text that you type. The effect is that you can type in
your textwithout having to think about pressing RETURN at
the end of each line. When aline gets past column n as
given with MODE MARGIN (or column 78 by default) the editor
splits it automatically at a word boundary so vyou find
yourself typing onthe next line. This allows vyou to type
continuously and your text will befilled into lines of up to
78 columns. You can, of course, still press RETURNto force
a new line.

MODE NOMargin Switches off word processing mode.

Word-processing users may also find the STATS and CENTRE commands useful.

STATS counts words and 1lines 1n a document and CENTRE moves text to the
centreof the line; see section 3.9 for more information on these commands.

2.9 Command Repetition

If you wish to execute a window editing command more than once, you can use
DEL R

to signify that the next command is to be repeated. You will then be asked

for a code to indicate how you wish to terminate your repetition; there are

several possibilities, and each one must be followed by RETURN as usual.You
can abort the operation at this stage by pressing CTRL+X.The options are:

PE1/90

17

n where n is a number, meaning repeat n times.
* repeat for ever (i.e. wuntil an error such as beginning or end
offile or line is encountered) .

M means repeat to marked line (set up by DEL M).

E means repeat until a specified character is found (you will be
askedto specify the character).

N means repeat until a character other than the specified one is

found(you will be asked to specify the character).

Thus the complete sequence of keys could be

(a) DEL R to initiate the repetition
(b) 200 [RETURN] to indicate that the command
is to be repeated200 times.
(c) command the window editing command

which is to be repeated.

2.10 Window Editor Macros

You will by now be familiar with the concept of using DEL followed by a
character to perform a particular editing operation. Facilities also exist
for you to build up your own sequence of commands which are invoked by
pressingDEL followed by a chosen character. The commands used in connection
withthis are as follows:

DEL (causes subsequent commands to be stored (as well as being
executed in the normal way). You will be asked what character
is to be wused for your macro. You may use any printable
character except (or) but if youuse one which is already
used by the window editor your macro will over-writethe
normal usage until you clear your macro; see "CTRL-N (" or
MACCLEAR below. If vyou use a digit from 1 to 9 you will not
have to worry about this sincethe window editor does not use
these characters. Remember to press RETURNafter typing in
your identifying character.

DEL) terminates the storing of your macro
commands .

DEL char is used to execute your macro, where char 1is
the characteryou specified initially.

CTRL+N (is used to delete a macro. You will be asked

which macro vyou wish to delete and should type in the
character you chose initially.

In the same way that the window editor has two functions on one key,
activated by DEL and CTRL-N, you can define a pair of macros on one key.To

define two macros on the "1" key, for instance, you give "1" as the key for

the first one and "Al" as the key for the second; the first will beobeyed

if you type DEL 1 and the second if you type CTRL-N 1.

The following line editor commands are available for use with macros; they
may be used in shortened form as shown by the part in capital letters.You

can use themby means of the window editor DEL C command, as described in

Section 2.2.

PE1/90

18

MACPrint abc displays the sequences of commands which makeup your
current macros. You give one space and then a list of
macro keysfor the macros you want to be printed.If
no keys are given then all macros are printed.
MACClear clears all your current
macros. If any of themhave over-written standard
window editor commands, the original wusage will be
re-instated.

MACSave filename stores all your current macros
in the specified file for future wuse. If the
filename is omitted, the last-mentioned macrofile
will be used. The stored file 1s very similar in
format to theoutput of the MACPRINT command.

MACLoad filename loads (i.e. activates) the
macros stored in thespecified file. Any currently
defined macros will be over-written by loaded macros
of the same name. If the filename is omitted, the
last-mentionedmacro file will be assumed. You can
use this command in an 'INIT' file(see Section 3.18)
to make a set of macros available every time you use
the editor.

Window editor macros are stored in a way that does not depend on the type of
terminal you are using; vyou can define and MACSAVE them on one terminal and
then MACLOAD and use them on another. If you wish to make some changesto a
macro you have defined you can MACSAVE it to a file and then editthe file;
you will need to preserve the general layout of the file for it to be
successfully MACLOADed again. In saved macro files theleft brace character
"{" is stored as double to avoid confusion withcommand keywords which are
shown enclosed in braces.

2.11 Leaving the Window Editor

In order to leave the window editor you can use either of the following:

DEL F Will cause the temporary file to be copied into a permanent file and
you will be returned to Primos. You will be asked to type in a name
for your file (followed by RETURN) or you can press RETURN by itself
ifyou wish to use a previously specified name. Type CTRL+X if you
decide notto go ahead with the file operation after all; doing this
will leave youin the window editor.

DEL Q Is used if you wish to abandon your edit, and causes you to
bereturned to Primos without the file being changed. You will be
asked ifit is all right to lose your edits, just to make sure vyou
have not typedthe command by mistake.

Note that DEL S (as described in Section 2.2) is similar to DEL F in that it
is used to save your workfile in a permanent file but, unlike DEL F,it does

not take you out of the Editor. It is a good idea to save your workfile
every so often in case of machine breaks, 1lightning strikesor similar
catastrophes.

PE1/90

19

2.11.1 Backup Copies of Files

When the editor is about to overwrite a file it first takes a backup copy so
that you can go back to the old one if you need to. The backup copy has the
same name as your file with .BAK1l added to the end. If you decide later that
your new version was a mistake you can get back to the old by using the COPY
command or by deleting the new and using CNAME to change the name of the old.
This action of taking backup copies is controlled by the MODE BACKUP command.
The usual action is as described above, keeping one backup copy of the file
before overwriting. If you type, for example,

MODE BACKUP 3

then up to 3 Dbackup copies will be kept, with suffixes .BAKI1 (the most
recent), .BAK2 and .BAK3 (the oldest).You can ask for at most 9 backups to
be kept.If you type instead

MODE NOBACKUP

then the editor does not take any backup copies.

The action of taking backups proceeds as follows. When you are about to
overwrite a file (and have been asked if it is alright to do so if you are
using MODE SAFETY), the editor goes into the backup procedure. It will only
take a backup of a file vyou are editing the first time you save it in an
editing session, or when you file it at the end 1if vyou did not do any
intermediate saves; the reason for this is to avoid overwriting the backup
with small changes and destroying its usefulness. If you have requested no
backups then of course none are taken and the process ends.

The backup procedure first checks whether the oldest backup exists, and
deletesit if necessary. It then changes the names of all the backup files
to onenumber higher than they were before, and finally copies the file
being overwritten to filename.BAKl. When all this has happened it goes ahead
and writes the file. If any error occurs in the backup process the user will
be asked if they want to go ahead and overwrite the file anyway; if they
answer YES then the file will be overwritten without taking a backup.

The editor does not take backup copies when it is being run from a CPL or
cominput file, because 1in general that is not required. After a CPL file
reverts to user input with the &TTY directive then taking of backups will
occur.

This section has not described absolutely all features of the window editor;
if you want to learn about Split Screen editing turn to section 4.

PE1/90

20

3. LINE EDITOR COMMANDS
3.1 Introduction
In this section we look at the commands you can use 1in the 1line editor.
These may either be typed in one at a time, each one beingfollowed by the
RETURN key, or you may type in several together separatedby semicolons, and
pressing RETURN, as usual, at the end:

commandl ; command?2 ; command3
Most commands have a permitted shortened form, and these are shown in this
document by capital letters.

3.2 General Purpose Commands

The following commands are not used directly for changing the file, but
perform various incidental (and essential) operations.
SAVe filename
Saves your edit workfile in the specifiedfile in your filestore. It
is a good idea to do this from time to timewhen creating a new file
or editing an existing one, since your workfilewould be lost in the
event of a system failure, and you would lose allthe work you had
done. If the editor already knows the name of your file,either
because you are editing an existing file or have already issued a
SAVE command or FNAME command (see below) then vyou can omit the
filenamefrom your SAVE command and the current name will be used

instead.

EDit filename
copies the specified file into theworkfile ready for editing. If
you omit the filename, the workfile willbe cleared and you will be
in input mode ready to create a new file. You must SAVE your

previous file before using this command, although ifyou forget to do
so, you will be asked the question

'Is it alright to lose the edits you have done?'

This gives vyou a chance to say NO, and then SAVE your file. The EDIT
commandis mainly used whenyou are editing several files at once.
See section 4 for how to do this.

FName filename
Tellsthe editor the name which is to be used for your file if a SAVE
or FILEcommand is used without a filename being specified. The
FNAME command can be wused at any time, and the name will be
'remembered' until required.If you issue an FNAME command with no
filename specified, the command will tell you the current name of
your file and no further action is taken. A common use for this
command is when you are editing an existing file,and wish to give
the edited version a new name. You can of course simplytype SAVE or
FILE with the new filename specified, but it is all too easy to
forget and issue your SAVE or FILE directive with no name specified,
and your old file will then be overwritten; it 1s better to issue
your FNAME command right at the beginning of your edit, and then
nothing can go wrong.

PE1/90

21

0O0ps
This directive is used when you havemade a mistake and wish to undo
the effect of the command vyou have justissued. The current line
will be reinstated to how it was before you startedchanging 1it, so
in effect several (consecutive) directives may be nullified.This
command can also be used in the window editor where it has a similar
purpose achieved slightly differently; see section 2.5.1 for
details.

Print n
If n is positive, this directive printsout n lines starting with the
current line. If n is negative, the n linesbefore the current line
are printed. If n is such that the end or beginningof the file is
reached while printing no harm is done:the editor prints .bottom.
or .top., as appropriate, and stops printing.This means that if you
want to print out the whole file through to the endyou just have to
choose a sufficiently large value of n to ensure the endof the file
is reached. This directive causes the pointer to move to the point
where printing ceases. (See also Section 3.10 for an extended
versionof the Print command) .

PPrint m n
This directive prints out a range of 1lines without moving the
pointer. The parameters m and n indicate startingand finishing
lines respectively, and are specified relative to the current line.
Normally the parameters are omitted, and you get five lines before
and five lines after the current line. If you want a different range
youwill have to specify m and n where a negative number in either
positionimplies counting backwards in the file, a positive number
implies countingforwards. If only one parameter is specified and it
is negative, then printing starts at that 1line and ends at the
current line. If only one parameteris given and 1t is positive,
then printing starts at the current line andends with the specified
line. If no parameters are given, printing startsfive lines before
the current line and ends five lines after it.

e.g. PP -2 3

prints out the file from 2 lines before the current line to 3 lines
after it.

Where
Prints where you are in the file.The current line, column and buffer
numbers are printed.

Erase character

Kill character
cause the specified characters to be used, instead of backspace and
?, for the ERASE andKILL characters thus causing backspace and ? to
be interpreted at face value.KILL is probably the more useful, since
you are more likely to want totype in text containing a ? than text
containing a backspace.

PE1/90

22

3.3 Changing Modes

If you wish to change between edit mode and input mode in the Prime editor,
you type in a null 1line; in other words vyou press RETURN as usual to
terminateyour last line, and then press it again without typing anything
else in between. If you wish to change to the window editor, you should
type

WI to enter the window editor edit mode
IW to enter the window editor input mode
When you are in the window editor (WI or IW mode) you should use F1 or DEL E

toreturn to the 1line editor edit mode, and then press RETURN if youwant
the line editor input mode.

3.4 Moving the Pointer

The following commands are used for moving the pointer:

Top
moves the pointer to the null line at the beginningof the file.
Bottom
moves the pointer to the last line of the file.
Next n.m
moves the pointer through n lines and positionsthe pointer at column
m. If n>0, the pointer is moved forwards; if n<0, the pointer is
moved backwards; if n is omitted, n=1 is assumed. If m isomitted,

the first column is assumed.
POint n.m

POint M
the first form moves the pointer to the mth column ofthe nth line in
the file. If m is omitted the first column will be assumed. The

second form moves the pointer to the currently markedline (see
Section 3.11).

Find string Locate string
Find(n) string Locate(n) string
NFind string NLocate string
NFind (n) string NLocate(n) string

These are the main commands used for looking for strings in the file;
the'find' commands always look at a particular column of each line
(usuallythe first), whereas the 'locate' commands look anywhere
along the 1lines for the string sought. All these commands are
followed by a single spaceand then the text of the string sought;
if however you have just locateda particular string and want to find
the next occurrence then you canomit both the space and the string
to save typing.

FIND moves the pointer forwards to the next line which contains the
specifiedstring starting in column 1. FIND(n) looks for the string
starting in columnn. NFIND looks for the next line which does not
contain the stringstarting in column 1. NFIND(n) looks for the next
line which does not contain the string starting in column n. The
four forms of the LOCATE command are similar, but look for the
specified string starting on or after thespecified column.

Thus, for example LOCATE moves the pointer to the next line
containing the string starting on or after column 1 (i.e. anywhere),

PE1/90

23

etc. Thespecified string may contain ! characters to mean 'any
character' or # characters to mean 'any number of spaces or no
spaces'. Thus A!B will bematched with any three character string

which starts with A and ends with B,whilst A#B will be matched with
any string which starts with A and ends with B and has spaces in
between (or the string AB, which contains no spaces). Seealso
Section 3.10 for extended forms of these commands.
It may happen when these commands are being executedthat the pointer reaches
the top or bottom of the file without finding therequired line (because, for
example, the specified string has not been found,or the line number does not

exist, etc.); when this occurs, the pointerstops and the message
.top.
or .bottom.

is output, as appropriate. No harm has been done, and you can re-position
the pointer as you wish.

3.5 Altering a Line in the File

Append string
appends the specified string to the end of the current line.
Retype string
deletes the current line and replaces it with the specified string.
Change/stringl/string2/qualifiers
changes stringl (if it occurs) to string2 in the current line of the
file.The action of the command is modified by any qualifiers present
after theclosing delimiter, as follows:

G If G is present then all occurrences of the string in the line
arechanged. If G is absent then only the first occurrence
is changed.

n Perform the change on n 1lines starting at the the
current line, instead ofjust the current line.

-n Perform the change on the previous n lines, starting
with the current line.

* Perform the change on all lines throughout the file.
M Perform the change from the current 1line to the
current marker (see Section 3.11) inclusive.

I Perform the change only if the string is found as a

word on its own (i.e itis surrounded by punctuation) .This

is an Identifier change, and allows you, for instance, to
change all occurrences of I to J without changing WRITE to
WRJTE by accident. Punctuationincludes beginnings and ends
of lines, and can be redefined by the PUNCTcommand (see
section 3.12).

Examples:
CHANGE/x/y/G20 could change alloccurrences of x in the next 20
lines to y.

CHANGE/x/y/* will change thefirst occurrence of x
in each line throughout the file to y.

PE1/90

24

CHANGE/I/J/gi* will change all occurrences of I to J
throughout the file,but only if I appears as a word
on its own and not within another word.

If no qualifiers are specified, only the current 1line will be
changed.The command may be written in the form

CHANGE//string/

to insert the specified string at the beginningof the line. The
string delimiters do not have to be / but may be anycharacter which
is not contained in stringl or string2.
Modify/stringl/string2/qualifiers
This command is similar to CHANGEin that stringl is replaced by
string2 according to the specification of anyqualifiers. 1In this
case, however, the substitution leaves (as far as 1s possible) the
column positions of the remainder of the original line unchanged.
Thus if stringl contains n characters, whilst string2 contains m
characters, then n>m causes (n-m) spaces to be inserted after
string2, and n<m causes(m-n) extra characters in the original 1line
to be overwritten, e.g.

10 A$='FIRSTSTRING'
M/FIRST/SECOND/
10 A$='SECONDTRING'
M/SECOND/FIRST/
10 A$='FIRST TRING'

Overlay string
superimposes the specified stringon the current 1line starting in
column 1. Note, however, if the specifiedstring contains a space,
the original character is left unchanged; a ! must be used to
produce a space in the new line. e.g.

10 A$='FIRST, SECOND AND THIRD STRING'
0} FOURTH, !FIFTH
10 A$='FOURTH, FIFTH AND THIRD STRING'

(note the eight spaces between 'O' and 'FOURTH': The first is the
separatorbetween O and its parameter, the remaining seven cause the
first seven charactersof the original line to be left unchanged.
EXPand
The EXPAND command replaces any tab characters in the current line by
therequisite number of spaces to achieve the same effect. It is
useful if you have a file (probably from another site) that contains
tabcharacters and vyou want to convert the file to its correct
appearance takingthe tab characters into account. While performing
the expansion this command makes use of the tab symbol (set by the
SYMBOL command) and the tabulationcolumns set by the TAB command.
See section 3.8 for more information.
As an example, suppose vyou have received a file containing HT
characters based on the assumption of tabs every 8 columns; the
EXPAND command only affects asingle line, so if you want to convert
a whole file you need to loop asfollows:

PE1/90

25

SYMBOL TAB A211

TAB 9 17 25 33 41 49 57 65 73 81
TOP

LOCATE A211;EXPAND; *

The last line could have been:
NEXT ; EXPAND; *

but it 1is considerably quicker to avoid expanding any lines not
containing tabcharacters.

Gmodify directives
This command offers a way of performing complicated changes to one or
more lines of the file; the changes are specified by subdirectives
given after the command. Before editing begins, a pointer is
positioned at the beginning of the line tobe edited, and an empty
line bufferis set up ready to receive the new version. Characters
are copied into this buffer as specified by a set of directives, as
described below. These directives may (but need not) be separated
from eachother by spaces. When all directives have been obeyed, the
line buffer is madethe new version of the current line.
The possible directives are as follows:

A/string/ copy the rest of the original line, and then append
thespecified string.
Bn move the pointer n spaces to the
left; no copying takes place.
Cc copy all the characters up to, but
not including the character c.
Dc move the pointer up tothe character
immediately before the character c¢; no copying takes
place.
En moves the pointer n charactersto the
right; no copying takes place.
F copy the rest of the line.
I/string/ insert the specified string.

join the next line inthe file to the

current line at the current position. Subsequent

directiveswill apply to the second 1line and, in
particular, you must remember to useF if you wish to
copy the rest of this line.

K break the line at the current
position to form two separate lines.

Mn copy the next n characters.

N reverses the next C orD command to
mean 'up to the next character which is not character
c'.

O/string/ overlays the specifiedstring on the

new line. This means that the string is copied to the
newline and the pointer moves along the old line the
same number of characters.Any spaces in the string
will be replaced by the corresponding charactersfrom
the old line. TIf an actual space 1is required, it
should be writtenas a ! character.

R/string/ the same as O/string/ except that
spaces are copied as such, and are not replaced by

PE1/90

26

charactersfrom the old line.
S re-positions the pointer at the
beginning of the old line.

Example:
original line: ABCDEFG12345HIJKL
GMODIFY D1 M5 S Cl1 E5 F

new version: 12345ABCDEFGHIJKL
GMODIFY M5 K F
new version: 12345
ABCDEFGHIJKL
GMODIFY M5 J F
new version: 12345ABCDEFGHIJKL
You must always remember to include an F directive after making a
correctionin the middle of a line; if you forget it, you will lose

the rest of theline.

3.6 Adding and Deleting Complete Lines

Adding Lines

You can add complete lines of text to a file by moving the pointer to the
correct place in the file (remember, information is inserted immediately
after the current line), changing to input mode, typing in the extra lines,
and changing back to edit mode. This is a bit of a nuisance if onlyone or
two lines need to be added, and wusers may prefer to wuse the INSERT
directive:

Insert string inserts the specified string as a new line
immediatelyafter the current line. If no string is
specified, you will go into inputmode and the new
lines of input will come immediately after the
currentline.

IB string inserts the specified string
as a new line immediatelybefore the current line.
If no string is specified, you will go into input
mode and the new lines of input will come immediately
before the currentline.

After either INSERT or IB has been obeyed, the line that has been inserted
becomes the current line.

Information which is stored in a permanent file can be merged with the file
being edited by use of the LOAD directive, as described in Section 3.7.
Deleting Lines

One or more complete lines may be deleted from the workfile using either of
the following directives:

Delete n if n is positive the next n 1lines, including the
current line, are deleted. If n 1is negative, the
current line and theprevious n-1 lines are deleted.
If n is omitted, n=1 is assumed.

Delete TO string deletes lines starting with
the current line and going forwards until a line
containing the specified string isencountered; this
line is not deleted.

PE1/90

27

Note if a mistake is made in
specifying thisstring, and no line containing it can
be found, deleting will continue rightto the end of

the file. Some vusers prefer to use DUNLOAD (as
describedin Section 3.7) to copy deleted information
to a file or buffer, so that it can beretrieved,

using LOAD, if an accident occurs.

3.7 Moving Text Around the File

In order to copy a portion of your file to a new position in the file, vyou
have to perform the following steps:

(a) Move the pointer to the beginning of the section you want to copy using
any of the commands described in Section 3.4 above.
(b) Copy the requisite number of lines to a buffer or file in your
filestore.If you wish to retain this part of your file in its original
position, youshould use the UNLOAD command, but if you wish to delete
it from its originalposition you should use DUNLOAD. Both commands are
described below.
(c) Move the pointer to the line of your edit workfile where vyou wish
the text to be moved to(again, use any of the commands described in
Section 3.4).
(d) Copy the contents of the buffer or file to your edit workfile at
thecurrent pointer position using the LOAD command (see below) .

The UNLOAD and DUNLOAD commands are used as follows:

Unload filename n

Unload filename TO string
copies lines of text from your edit workfile to the specified
filestore file or editor buffer.If the buffer already contains text
which has been modified you will be asked 1if it is alright to
overwrite it. When this command is used inthe first form, n lines
of text are copied; when used in the second form,copying terminates
when a line containing the specified string is found (this 1line 1is
not included in the copying process). In both cases copyingstarts
with the current 1line and moves forward through the file; for
backwardcopying, see the composite command facility described in
Section 3.10 below.
This command does mnot delete the 1lines of text from your edit
workfile.

DUnload filename n

DUnload filename TO string
this command is similar to UNLOAD, and differs only in that the text
which is copied to the filestore file is also deleted from the edit
file.

PE1/90

28

LOAd filename
copies the contents of the specified Primos file or editor buffer
into the edit workfile starting immediately below the current line.
The Primos file is not affected; if a buffer is copied then it will
be marked as "not modified" ©because its contents have been copied
elsewhere.
These commands do, of course, have uses other than as described above. You
can store a frequently-used portion of text in a permanent file and
incorporate it in any file by using LOAD. You can use DUNLOAD as a safe
method of deleting a large portion of text (if you delete too much by
mistake,you can LOAD it back into your edit workfile and start again).

3.8 Tabulating and Indenting

Tabulating and indenting are only used in input mode. The line editor allows
you to set up tab stops from edit mode by using the TAB command:

TAbset nl n2...

where nl n2... are the required column positions for tab stops (the defaults
are 6, 12, 30 and 80). When in input mode, you use the \ character to move
to the next tab stop position.

Automatic indenting is not available with the 1line editor, and the MODE
INDENT command 1s therefore described in connection with the window editor
(Section 2.7) where it is applicable. It 1s possible to expand any tab

characters stored in a file (by replacing them with an equivalentnumber of

spaces); see the EXPAND command in section 3.5.
3.9 Simple Text Formatting

The Sheffield Editor includes facilities for performing simple text
formattingon your file. In order to do this you must do the following:

(a) Use the STYLE command (see below) to establish the required formatting.
(b) Move the pointer to either the beginning or the end of the text to
be formatted (using any directives described in Section 3.4) and place a
marker there (see Section 3.11).
(c) Move to the unmarked end of the text to be formatted.
(d) Use the TEXT command (see below) to initiate the formatting
process.

The STYLE Command
The STYLE command takes the form

STyle left right para-indent para-gap mode
where

left, right specify the left and right margins. The value given for the
left margin can be zero, which means that automatic text
formatting willbe performed: paragraphs will be reformatted
in their current style, subjectonly to the 'right margin'
value given.
para-indent specifies the indentation on the first line of

PE1/90

29

a new paragraph.

para-gap specifies the number of blank lines before a
new paragraph.

mode should be written as FILL or ADJUST (shortened
forms For A). The former will fill all lines but will not
right-justify them whilst the latter will right-justify
them.

Thus for example, if you want your text to be printed between columns 6 and
75 (i.e. leaving a b5-column margin on each side) and you want your
paragraphsseparated by one blank line but with no indentation, you would
need

STYLE 6 75 0 1 A
or STYLE 6 75 0 1 F

The first would give right-justified text, whilst the second would givea
ragged right-hand side.

STYLE O 75 0 0 A

would indicate that you want automatic formatting with the right margin
adjusted up to column 75.

The SYMBOL VISIBLE Command

The SYMBOL VISIBLE command takes the form

Symbol Visible character

It causes the specified character to be used as a 'visible space' - in other
words it appears as a space after your text has been formatted but enables
you to specify an exact number of spaces in a particular position (normally
the number of spaces between words will be determined by the requirementof
right-justification). A common use of the visible space 1is when you want
'hanging' paragraphs, as shown in the example below.

The SYMBOL VERBATIM Command

The SYMBOL VERBATIM command takes the form

Symbol VErbatim character

It causes the specified character to be used to indicate lines that are not
to be reformatted. Any lines starting with this character in column 1will
be left unchanged during formatting. This facility is useful ifyou have a
few lines of text that you have laid out specially in the middleof ordinary
text that you want to reformat.

The TEXT Command

The TEXT command is used for initiating the formatting process, and takesthe
form

TEXt n

where n is the current position of the left-hand margin; this is omitted if
you are using automatic formatting because in that case the editor deduces
thisinformation from the existing layout of the text. If you are not using
automatic formatting you would normally use

PE1/90

30

TEX 1

to initiate your text formatting, since most people type in their text
startingat column 1. However, if your first efforts at text formatting are
unsatisfactory in some way, but you do succeed in moving the left-hand margin
to column 10, say, you could have a second attempt at formatting by using

TEX 10

to initiate the process.

The CENTRE command

This command causes the text on the current line to be centred within the
margins specified for word-processing; the centreing 1s achieved by
inserting or deleting spaces at the start of the line, the actual text being
unaffected. The margins referenced while centreing are those specifiedin
the most recent STYLE command, or the defaults if that command has not been
used. The CENTRE command can be abbreviated to CE.

The STATS command

The STATS command counts words and lines 1in part or all of the current
buffer.It gives you a printout of the form:

70 lines made up of:
51 text lines
19 blank lines
0 lines beginning with '.'
466 words in text lines

Lines beginning with a dot are ignored when counting words because they are
usually word-processor command lines; 1if you use a differentcharacter for
commands then you can use the SYMBOL WPC command to specify it before using
STATS.Words are split up in the text by using the setof punctuation
characters defined by the PUNCT command; a word 1s any sequence of
characters not in the set of punctuation characters. See the PUNCT command
to find out how to change the set of punctuation characters if necessary.
The STATS command normally does its counting in the whole of the file, but
youcan restrict it to operate on a region of the file by:

(1) Mark the first line of the region

(2) Move the cursor to the last line

(3) Type STATS

The line marker will be removed when the command completes execution.
An Example of Text Processing

Suppose you want your formatted text to be as follows:

(a) Beginning of first item...
continuation...

(b) Beginning of second item...
continuation...

(c) Beginning of third item...
continuation....

PE1/90

31

You can set vyour left margin to be the column at which the text begins in
each line, and you can set a negative indentation of -6 so that the first
line of each paragraph begins to the left of succeeding lines, and you can
use the visible space to ensure everything lines up correctly.

Thus we could use

STYLE 10 75 -6 1 A

S VISTI @
and we would then type our text in the form

(a) @@@Beginning of first item...
continuation...
(b) @@e@Beginning of second item...
continuation...

(c) @@@Beginning of third item...

continuation...

The position of the line breaks in each paragraph is immaterial, as theusual
filling and adjustment takes place.

The next step is to move to the beginning of your text and set a marker by
typing

MARK
(as described in Section 3.11). Then move to the end, and type
TEXT 1

and off it goes.

Try it and see!

If you have typed in your text with the correct paragraph layout, or youhave
already reformatted it as above, then you can use the much simpler automatic
formatting to tidy it up after insertions or deletions. Yousimply set the
first parameter of STYLE to zero and reprocess the textas above; you will
not need to give a left-margin value with TEXT.The editor will go through
the text, recognising how you have laid out your paragraphs and refilling
lines up to the maximum to tidy them up.Any paragraphs that occupy only a
single line are assumed to be already formatted correctly so are not
altered.

You can use defaults for the options on STYLE, although you may only omit an
option if all succeeding ones are omitted as well - since the editorwill
always assume that the first item (if present) is the left margin, the second
is the right margin etc. The defaults are:

left margin column 0

right margin column 79
para-indent no indentation
para-gap one blank line
mode adjust

PE1/90

32

3.10 Composite Commands

In this section we look at the use of composite commands which give greater
flexibility when printing, searching etc. The command takes the form

oplist searchtype string

or oplist searchtype filename TO string
where oplist is a command made up of asequence of one or more of
the following operation codes, whichmust not contain
spaces:
P for print
D for delete
U for unload
B for backwards
C for case independence
I for Identifier type locate. If I is

given the string will only bematched if it
is found as a word on its own 1in the file
(i.e.surrounded by punctuation characters or
spaces). This allows you to 1locate, for
instance, "the" without accidentally stopping
on"atheist".

N for not
searchtype is F or L for a FIND or LOCATE type string
specificationwith a column number in parentheses if
required.
string is the identification string

to indicate the termination of the command. The
'filename TO' part is present if the oplist contains
a U but not otherwise.

The following shows some examples:
CL Name will move the pointer forwards until it

encounters a line containing the string Name,
NAME, name, etc.

CPL Name as above, Dbut
the lines will also be printedas the search
proceeds.

ICL Name the most

useful form for 1locating anidentifier in a
program, irrespective of whether you typed it
in upper orlower case.

DUBF (7) MYFILE TO SUBROUTINE will search
backwards until a line 1is reached with
SUBROUTINE starting in column 7. All the text
up to that line willbe deleted from the edit
workfile and stored in the permanent file
MYFILE.

PE1/90

33

3.11 Use of Markers

There are several occasions when you may need to place a marker on your file,
such as if you wish to CHANGE your file down to a marked 1line (see Section
3.5)or 1f you wish to format your text down to a marked line (see Section
3.9) .You may only have one marker in force at any one time, and once set it
willremain there wuntil you delete it or use it. The MARK command is used
for allmarking operations:

MArk n marks line number n
MArk marks the current line

MArk 0 cancels the marker, if any, not necessarily on the current line.

3.12 More General Purpose Commands

In this section we look at general purpose commands which are wused less
frequently than those described in Section 3.2.
BRief
Verify
Many editor commands cause the current lineto be displayed on your
terminal after they have executed,and this can slow things down if
you are, for example, using CHANGE to altera lot of 1lines all at
once. The BRIEF command will, however, suppress thisdisplay and
will remain in force until the end of the session, or untilVERIFY is
used to switch printing on again.
Symbol function character
This is an alternative way of resetting the erase and kill
characters, and also permits the setting of other specialcharacters.
The characters which may be reset are shown below, with their
defaults and meanings:

Kill ? deletes the current line.
ERase backspace deletes previous
character.
EScape A interprets the
following character at its face value.
wild ! used with FIND and
LOCATE etc to mean 'any character'.
Blanks # used with FIND and

LOCATE etc to mean 'any number ofspaces or
no spaces'.

Tab \ inserts spaces up to
next tab stop.

CPrompt $ the EDIT prompt when
MODE PROMPT is used.

DPrompt & the INPUT prompts when
MODE PROMPT is used.

Semicolon ; end-of-line separator
when MODE SEMI is used.

COunter @ the counter symbol
when MODE COUNT is used.

Visible space used in connection

with text formatting to establish

PE1/90

34

WPC . used in connection
with the STATS command to indicate which
lines are word processing commands and not
text.

VERBATIM ~ used in connection
with text formatting toindicate lines that
are to be left unchanged.

PSymbol
Can be used to check which charactersare currently being used as
special characters - any symbols which are invisible (e.qg.

backspace) are written in the form Annn where nnn 1is their ASCII
value in octal.

! command
Obeys the specified Primos command and returns you to the editor.You
can use ! to obey aCLOSE command, for example, if you find that you
cannot FILE your edits becausethe file is still open. You can also
use ! to enter the Prime HELP system.Becausethe editor runs as an
EPF it 1s able to obey any other Primos command or runany program
without corruption, but it is possible to get very confused ifyou go
too deep.
Primos abbreviations are expanded in the command if you have enabled
them at Primos level.

Help
Enters the Editor's HELP system, which contains information about how
touse all the line editor and window editor commands. This can be
very usefulwhen you cannot remember how to use some command, and you
have forgotten tobring this document to the terminal. In general,
if any changes are madeto the editor the HELP information will be
kept up-to-date, but of coursethis document cannot be re-printed so
easily.

VERSion
This command prints out the version number of the editor.

ALphabet abc...
This command is provided mainly for use in European countries where
theASCII character set includes some alphabetic characters outside
the usualA to Z range; for instance, in Denmark three extra codes
are assigned forthe special Danish letters. This command allows you
to specify the set ofcharacters that is to be affected by the window
editor commands which convertbetween upper and lower case, so that
the extra characters can be included.
If the command is given alone then you are asked in turn whether each
possible alphabetic character is to be included; you answer Yes or No
asappropriate. You can instead give the list of characters after
the command, separated by one space; this form is more useful if you
want to put itin a -INIT file.
The MODE command with no arguments prints the current alphabetic set.

PUnct ...
This command allows you to specify the set of characters to be treated
aspunctuation by commands such as ICL and c¢/I/J/gi* (see sections
3.5 and 3.10). The default set includes all the usual punctuation
characters, and will usuallybe alright. You can either give a 1list
of characters after the command, separated from the commandby one
space, or you can just type the command and be prompted for each
possible punctuation character in turn. The set always includes the
space character, and beginning and end of 1line are always treated

PE1/90

35

likepunctuation. If you give the 1list of characters after the
command, you must be careful ifyou need to give any characters which
the editor uses as special symbols:e.g. vyou specify ";" as "A;n
and "A" as "AA", The MODE command with no arguments will print the
currentset of punctuation characters.

3.13 The Mode Command

The MODE command is used to make changes to the mode of operation of the
editor, allowing you to control various aspects of how it operates.Each mode
of operation has a name, and the command

MODE name
switches on that mode, while the command
MODE Noname

switches off that mode. A small number of the modes have extra parameters
after the name; these parameters are only meaningful when switching themode
on, but the values are preserved if you switch it off and thenon again. Any
extra parameters are detailed below.

You can find out the current settings of all the editor's modes by typing

MODE

This gives you a detailed display showing which modes are on and which off,
together with the current values of any extra parameters where appropriate;
you are also shown the current settings of the information associated with
such commands as STYLE, TAB and LINESZ, together with a summary ofthe status
of the current editing buffer. The display should be usefulif the editor
performs in a way that you did not expect, allowing youto check that all the
modes have their usual values.
All the possible forms of the MODE command are now given, together with the
meanings of any extra parameters.
MODE Backup n
MODE NoBackup
Switches on or off the taking of Dbackup copies of files before
overwritingthem with new versions. 'n' is the number of backups to
keep for each file overwritten. See section 2.11.1 for a full
description of the backup process.
MODE CHain list
MODE NoCHain
Switches on or off the chaining together of a set of buffers so that
they aretreated as continuous by commands such as LOCATE. 'list!' 1is
a list of buffernumbers to be chained, or ranges of numbers such as
1-20. MODE CHAIN isdescribed in more detail in section 4.3.1

PE1/90

36

MODE Ckpar

MODE NoCkpar
The first form checks for parity errors, and is wuseful if vyou have
(forexample) read a file into the Prime from paper tape. The second
form cancelsthe effect.

MODE COlumn

MODE NoCOlumn
The first form of the command causes a column header display to Dbe
printedevery time input mode 1is entered, or when using PRINT or
PPRINT commands; 1itis helpful when you are editing files which are
laid out 1in particular columns.The second form cancels this effect.
The default is MODE NOCOLUMN.

MODE COMo

MODE NoCOMo
The editor normally switches off the Primos comoutput stream on
enteringthe window editor and reinstates it on exit; this is done
to avoidfilling the como file with unintelligible control characters
which cancause severe problems if accidentally spooled by a novice
user. However, there are times when the como output from the window
editor is useful (notleast when testing the editor); the editor
will leave 1t switched on ifyou specify MODE COMO. The default is
MODE NOCOMO.

MODE COUnt nl n2 n3 form

MODE NoCOUnt
This command allows you to use a 'counter symbol' when using the
editorcommands APPEND, INSERT, OVERLAY, RETYPE or GMODIFY with A, I,
O or Rsub-command. The first time you use the symbol (default is @)
it will be replaced by your specified initial value, n (default 1),
and each subsequenttime it will be replaced by a value which is
incremented by your specifiedincrement, n2 (default 1). The number
will be written with n3 digits(default 5). Leading zeros may be
printed, suppressed or replacedwith blanks by writing form as PRINT,
SUPPRESS or BLANK respectively. Once youhave specified nl, n2, n3
and form, you can use MODE COUNT with no parametersand the current
values will be assumed. MODE NOCOUNT makes the counter symbolrevert
to being a normal character.

MODE Direct

MODE NoDirect
The editor normally leaves character echoing switched on when in the
window editor because that gives the Dbest response for the user,
especiallyif the machine is heavily loaded or a network is involved;
it can howevercause problems when the user types ahead while the
screen is Dbeing updated,although the editor tries to recognise this
situation and correct it.If you have a lightly loaded machine with
directly connected terminals you may prefer to have the editor
perform its own character echoing, givingyou the assurance that the
screen is always perfectly up to date and youcan type ahead at any
time with impunity. MODE DIRECT switches over to program echoing
(for use on direct lines), while MODE NODIRECT switchesback to the
default state. This mode has no effect on SSMP terminals because
that protocol always gives you the benefit of instantaneousechoing
with protection against type-ahead problems.

PE1/90

37

MODE DISp

MODE NoDISp
When this mode is switched on the editor will display the buffer
numberand filename whenever you enter the window editor or switch to
adifferent buffer. When switched off, the information is only
displayedwhen the editor has chosen a buffer number for you, such as
when youuse the NEW command, or 'BUFFER name'.

MODE INdent

MODE NoINdent
Switch on and off the window editor automatic indenting facility.See
section 2.7 for more details.

MODE Info

MODE NoInfo
This command is provided to make the editor more similar to the Prime
information editor. After MODE INFO, the RETURN key used in line edit
modejust moves you onto the next line instead of going into input

mode; if you want to go into input mode type the INSERT command.
MODE NOINFO cancels theeffect.
MODE Lon

MODE NoLon
The editor normally stops logout notification messages appearing on
the screen while you are in the windoweditor, so that the screen is
not scrambled; this iswhat most users want Dbecause it can be
confusing to have these messages overlaid on your screen. However,
if you want messages to be allowed though, MODE LON will tell the
editor to do so. See also MODE MSG.

MODE Margin

MODE NoMargin
These commands switch on and off the window editor word processing
inputmode; see section 2.8 for more information.

MODE MSg

MODE NoMSg
The editor normally stops messages appearing on thescreen while vyou
are in the window editor, so that thescreen is not scrambled; this
is what most users wantbecause it can be confusing to have operator
messagesoverlaid on your screen. However, if you wantmessages to
be allowed though, MODE MSG will tell theeditor to do so. See also
MODE LON.

MODE NUmber

MODE NoNUmber
The first form of this command causes the line number to be shown
whenever a line is printed;the second form cancels this effect.

MODE Prompt

MODE NoPrompt
The first form of this command will cause the system to output
'prompt' characters at the beginning of each 1ine when 1t is
expecting you to type something.An ampersand (&) 1s printed for
input mode and a dollar ($) for edit mode.The second form of the
command cancels this effect. The default is MODENOPROMPT.

PE1/90

38

MODE Quiet

MODE NoQuiet
The first form of this command switches the window editor into quiet
mode; this suppresses window editor messages which are purely
informative, buterror messages and prompts are unaffected.You can
use this command when you are familiar with the window editor.The
second form cancels this effect.

MODE SAfety

MODE NoSAfety
The first form switches on safety checking when the editor writes to
files in the Primos filestore: it checks first whether the file
exists and if so askswhether you want to overwrite it. The check is
not performed if you are justfiling away under the original name of
the file, or if the editor is beingrun from a cominput or CPL file
(since you cannot generally predict theoccurrence of this prompt).
This mode is very wuseful for avoiding accidentally overwriting
important files.
MODE NOSAFETY switches off safety checking; the default is off.

MODE Semi

MODE NoSemi
The first form of this command causes thesemicolon to be used as a
newline character in input mode, whilst the second cancels the
effect. The default is MODESEMI.

3.14 Editing Files Organised in Columns

There are two commands in the editor which allow you to extract a vertical
column of text from a file, edit it separately in a buffer of its own, and
then incorporate it Dback into the original file. You might wuse these
commandswhen editing a column of numbers in a data file, or to produce a
multi-column listing.
EXtract buffernumber columnl column2 options

The EXTRACT command allows you to extract a vertical column of text

from thefile you are editing and copy it into another buffer so that

you can treat itseparately.

buffernumber The number of the buffer into which the extracted text
is to becopied.More information about buffers can
be found in section 4.

columnl First column number specifying the
part of each line to beextracted.
column?2 Last column number. On each line this

range of columns (inclusive) is extracted and copied
to the target buffer.

options If no options are given then the
extracted text 1s not removed from the current
buffer. If Blank is giventhen the extracted text is
replaced by blank characters. If Delete 1s given
then the extracted text isdeleted from the current
buffer; the rest of the 1line 1is shifted 1left to
close the space.

examples:

EX 2 41 80 Extract columns 41 to 80 inclusive of
each line of the currentbuffer and copy into buffer
2; the current buffer is leftunchanged.

PE1/90

39

EX 2 41 80 B As for the previous example, except
that columns 41 to 80 arereplaced by spaces after
the text has been extracted.

EX 2 41 80 D The same again, except that columns 41
to 80 are deleted afterthe text has been extracted.
Text that was previously aftercolumn 80 is shifted
40 columns left to f£ill in.

The extract operation normally extracts columns of text from all lines
of thefile in the current buffer; if you want to restrict it to
just part of thefile then you should mark the line at one end of the
part to be affected (usingthe MARK command or DEL M in the window
editor), move to the line at the otherend and then obey the extract
command. This will restrict the extractoperation to the lines from
the current line to the marked line inclusive.

MErge buffernumber columnl column2 options
The MERGE command allows you to merge two file buffers side-by-side.
It takesthe lines from a specified buffer and overlays them one at a
time onto successive 1lines of the current buffer, starting at the
current line, replacingthat part of the text of each line within the
given range of columns.

buffernumber The number of the buffer containing the text to be
merged into the current Dbuffer. More information
about buffers can be found in section 4.

columnl First column number specifying the
part of each line to bereplaced.
column?2 Last column number. On each line this

range of columns (inclusive) is replaced by the text
from the file being merged.

options If no options are given then the
merged text overwrites the text in the current
buffer. If Insert is given thenthe merged text is
inserted into the 1lines of the currentbuffer; the
rest of the line is shifted right to make space.

examples:

ME 2 41 80 Merge the contents of buffer 2 onto
this buffer, replacingcolumns 41 to 80 of each line.
Each line of buffer 2 is overlaid onto the

corresponding line of the current buffer,starting at
the current line,replacing columns 41 to 80 with the
new text from buffer 2.

ME 2 41 80 I As for the previous example, except
that the new text isinserted into columns 41 to 80
inclusive; the text that waspreviously after column
40 is shifted 40 columns right to makespace.

The merge operation finishes when all the 1lines of the specified
buffer have been wused; if the bottom of the current buffer is
reached during the mergethen the buffer is extended with blank lines
to allow the merge to continue.

PE1/90

3.15

If you wish to execute a sequence of commands several

40

Command Repetition

times, vyou can type

them in all together in the form:

comml ; comm2; . ..commn; *m

where comml, comm2, ...commn
number of times they are to be executed.

are the commands to be repeated, and m is the

You can omit the m if you want the

commands to be repeated until the end of the file is reached

e.g.

will go
them to NAME2

through your entire file,

. Be care

L NAME1; C/NAME1l/NAME2/; *

locating occurrences of NAME1l and changing
ful to avoid doing the following:

C/NAME1/NAME2/ ; *

as this will

go on

for ever (unless vyou break in). You can 'nest'

repetition,by including the * or *m as many times as you like in a sequence.
Thus, for example

c/o0/

will change
file.

Another way of achieving repetitive editing is to use

/i*3;N;*

the first

three occurrences of 0 to a space throughout your

string buffers. You

can put a complicated sequence of editing directives into a stringbuffer and

thenexecute
this are:

MOVe sbuffer

them by quoting the string buffer name.

/string/

The commands for doing

Copies the specified string (usuallyyour sequence of
editing commands) into a string buffer.You can use
as delimiter any character that is not in your string;
/ isusually used.

MOVe sbufferl sbuffer2 Copies the contents of
buffer 2 intostring buffer 1.

Xeq sbuffer Causes the editing commands in
the specifiedstring buffer to be executed. If no
string buffer is specified, the mostrecent line of
edit commands is executed again.

Print sbuffer Prints out the contents of the
specified string buffer.
Print All

are not empty.

string

Prints all string buffers that

You can use up to ten string buffers called STRA,
STR.2 STR.10.
EDLINwhich always contains the last command
in,whilst INLIN contains the cur

STRB, ... STRJ or STR.1,
In addition there are two special stringbuffers, namely
(or sequence of commands) typed

clever things 1like putting a
LOADing this to their workfile,
issuing an XEQ INLIN command to
from your workfile if you do th
to use Xeqg on its own to repeat

rent line of your workfile.
sequence

Some people do

of editing directives into a file,
so that they are contained in INLIN, andthen
execute them. Remember to delete the line
is! The most common use of these commandsis
the most recent edit command,or to copy a

PE1/90

41

sequence of commands to a string buffer and execute that repeatedly.

e.g. MOVE STRA /N;L NAMEI1;C!NAME1l!NAME2!/
XEQ STRA
3.16 Line Editor Macros

The editor provides by means of the OBEY command a simple means of
substitutingvalues of variables into commands so that useful effects can be
achieved. TheOBEY command works in conjunction with standard variables so
you can use such things as ‘'current line number' in your editing; it is
intended mainly for usein window editor macros. To use a standard variable
in a command the commandmust be issued by OBEY in the form

OBEY 'commandl; command2...'
You can use any punctuation character to enclose the line of commands; we
usedquotes in the example.
To illustrate the use of OBEY we will use the standard variable LINENO which
contains the current 1line number in the file.To insert the line number at
the start of the line type

OBEY 'C//%lineno% /'

The same effect could be achieved by

MOVE STRA 'C//%lineno% /'
OBEY STRA

To see how this works, suppose we are on line 23 of the file and we type the
above command. First of all the OBEY command copies

C//%lineno% /

into a temporary string buffer. It then goes through the buffer looking for

Q

variables enclosed in % characters. 1In this case it recognises the wvariable
LINENO (it can be 1in upper or lower case), and replaces it by its value of
23.

c//23 /
This command is then obeyed, inserting '23 ' at the start of the line.
To extend this example, if you wanted to insert 1line numbers throughout a

fileyou could type

POINT 1
OBEY 'C//%lineno% /';NEXT;*

Note that the very similar command

OBEY 'C//%lineno% /;NEXT;*'

PE1/90

42

would not have the same effect; it would in fact insert 'l ' before every
line. The reason is that variable substitution occurs when the OBEY command
isexecuted, which is once for each line in the first case, but only once
altogether in the second.

Further examples:

OB 'POINT .%indent%' Move to the first non-blank character
on the current line.
OB 'NF (%colno%) '

Find the next line that is non-blank

in
the current column. This can be used
for finding an END in a

block-structuredlanguage.
OB 'BNF (%colno%) '
Ditto, but move up the file.
OB 'BUFF 6;SAVE;BUFF %buffno%'
Switch to buffer 6, save it, and swi
tch
back to the current buffer.

3.16.1 Editor Standard Variables

The following variables are available for use in the OBEY command. When used
they are enclosed in % symbols. If you want an explicit % symbol in the

command then use %%. The variable names are recognised in upper or lower
case.
BUFFNO The number of the current buffer.
LINENO The line number of the current line.
COLNO The column number within the current line.
MLINENO The line number of the marked line, or zero if no line
is marked.
PCOLNO The column number of the character marker, or zero if
none.
PLINENO The line number of the character marker, or =zero 1if
none.
INDENT The indentation level of the current 1line; this 1is

the column number of the first non-blank character on the line,
or one if theline is all blank.

NEXTNO The next number extracted from the current line of the
currentbuffer. The editor starts at the current position on the
line andworks forwards until a decimal number (positive or
negative) 1is found; 1t gives the value of the number or zero if
none is found.This is useful for picking up line numbers from
listing files.

FILENAME The filename of the file being edited in the current
buffer,exactly as specified at start up or on the EDIT or NEW
command.

INLIN The complete text of the current line of the file.
EDLIN The complete text of the last 1line of commands
obeyed.

STRA. .. The contents of a string buffer. Can be specified as

STRA to STRJor STR.1 to STR.10.

PE1/90

43

You can also access standard Primos global variables; these are recognised
bythe fact that the name begins with a dot. For this to work you must have
activated a global variables file by using the DEFINE_GVAR command.

For example, outside the editor you obey

DEFINE_GVAR globals
SET VAR .myglobal := myvalue

In the editor:
OBEY 'I %.myglobal%'

will insert a line 'myvalue' into the file.

3.17 The Spelling Checker

The SPELL command, which may be abbreviated to SPE, goes through vyour file
checking that the words you have typed are in the dictionary. You can use it
to check for spelling and typing mistakes in your documents. It goes through
the following stages:

1: It reads the dictionary of around 80000 words into memory so that it «can
beaccessed rapidly; the dictionary stays in memory, so any further uses
Of SPELL in the editing session will not need to read it again. If there
isnot enough memory for the dictionary you will get an error message;
youwill need to free some dynamic segments using the REMOVE_EPF command,
orleave the editor and obey ICE to clear things out.

2: It reads any list of glossary words that it can find, so that 1t does
notkeep on reporting the same words over and over again when you already

knowabout them. See Dbelow for more about user dictionaries and
glossaries.

3: It scans through the text, splitting it up into words and checking them
inthe dictionary. It normally starts from line one and scans the whole
file,but you can restrict it to part of the file as described below. It
keeps arecord of all different words so that it only has to look each one
up once.

4: When it finds a word that is not in the dictionary it asks you what to
doabout it. You can correct it or tell SPELL that it is alright as it
is.

5: At the end of the document or section indicated it reports how many
wordswere checked, and updates the user dictionary or glossary if you
have addedany words.

The SPELL command is very good at finding spelling and typing mistakes in a
document, but it does not remove the need to check documents thoroughly: it
cannot, of course, tell you whether you have wused "their" when you should
haveused "there". Its great advantage 1is the speed with which it draws
yourattention to the suspect words in the document. SPELL automatically
skips over any one-letter words, and also any 'words' containing
non-alphabetic characterssuch as numerals. Lines beginning with '.' are
assumed to be word-processing commands and are ignored; the '.' can be
changed to something else by theSYMBOL WPC command.

SPELL can be run from the line editor or by wusing DEL C from the screen
editor. The action is almost identical, the single difference being when you
type a response to 1indicate what to do with a non-dictionary word: in the

PE1/90

44

lineeditor you type a one-letter command followed by pressing RETURN; in
thescreen editor the RETURN is not needed. The command letters you can type
are:

A Add the word is alright; add it to the glossary or user
dictionary (see below)
S Skip the word is alright; skip over it and continue
checking
R Retype the word is wrong; retype 1it. You will be

prompted for the correct spelling of the word, and checking
will continue fromthe start of the replacement word so that
the new spelling ischecked.

Q Quit terminate the spell-checking session.

You can restrict the SPELL command to a region of the file by:

1: Mark the first line of the region

2: Move the cursor to the last line

3: Perform the SPELL command

The line marker will be removed when the command completes execution.

3.17.1 User Dictionaries and Glossaries

Documents almost always contain words that are not in the dictionary; they
might be proper names or technical terms, or just relatively uncommon words.
It would be very tedious to keep on telling SPELL about them, so there are
waysof giving SPELL lists of words that are alright even though they are not
in the dictionary. You can build a glossary for an individual file that
contains lotsof special words, or you can build user dictionaries either for
all files orjust all the files in a particular directory. When SPELL starts
it looks for adictionary or glossary in the following order:

1: If you are editing a named file SPELL looks for a file named ==.GLOSSARY
inthe same directory. For example, if your file is called MYDOC.RUNI
then itlooks for MYDOC.GLOSSARY, and if it is called TEXT it looks for
TEXT.GLOSSARY, both in the same directory as the file. If you want to use
an individual glossary file then just create it as an empty file before
using SPELL.

2: It looks for a file called EDITOR_USER_DICTIONARY in the directory that
youare attached to; this would contain glossary words for all files in
thedirectory. If you want a user dictionary for a particular directory,
justcreate it as an empty file before using SPELL.

3: It looks for a file <called EDITOR USER_DICTIONARY in your origin
directory.This would contain glossary words for all files everywhere.
The editor willcreate this file for you automatically if it does not
exist.

If none of these is found then you will start with an empty list of glossary
words. During the spelling session you will probably come across words that
are reported as not in the dictionary but you know are in fact alright. If a
word is unlikely to be encountered again then it is best to Skip 1it, but
otherwise Add it to the glossary so that any future occurrences will not be
reported.

At the end of a session in which you have added words to the glossary, the
SPELL command will update whichever file it read the words from (after asking
first whether it is alright to do so). If it did notfind any glossary file

PE1/90

45

or user dictionary, then it will create one for you inyour origin directory.
These files are merely lists of words so you can editthem or delete them if
you wish. The dictionary itself is kept in a highlycompressed form which
cannot be edited.

3.18 Initialising the Editor

If there are any Line Editor commands which vyou frequently find vyourself
typing in before starting your edit (e.g. MODE INDENT, TABSET etc.) youcan
arrange for them to Dbe automatically executed for you at the start ofyour
edit. To do this, you should put them all into a file <called PMED_INIT in
your origin directory (i.e. the directory that Primos attaches you towhen
you first login). From now on, whenever you enter the editor eitherdirectly
or as part of some other system (such as a mailer or command environment),
the commands in the file will be obeyed before startingto customise the
editor to your requirements.

If at some time you need to specify a different initialisation filefor some
special purpose you can add the option

-INIT pathname

to your ED command. (Pathname is the Primos pathname of the file containing
the editing directives.) You can use this facility regardless of how you are
entering the editor:

e.qg. ED textfile -INIT pathname for line editor edit mode.

ED -W -INIT pathname for window editor input mode
The editor always goes temporarily into line edit mode while itexecutes the
commands in your initialisation file, and then transfer vyou to the
appropriate mode as indicated by therest of your ED command.
Systems programmers should note that the commands a user includes in the
PMED_INIT file can cause trouble when running the editor from a CPL
procedure; for instance, MODE SAFETY could be switched on causing an
unexpected prompt to appear. You can solve this problem by using theoption
-no_init to suppress the search for the PMED_INIT file, or alternatively
specify a special init file using the -init option.

3.19 Leaving the Line Editor

In order to leave the line Editor you should use one of the following:

FILe filename causes the workfile to be copied into a filestore
file with the specified name. You can omit the
filename if you wish touse a name you have specified
previously (on a SAVE or FNAME command as described
in Section 3.2) or if you are editing an existing file
and wishto keep the same name.

Quit causes the edit to be
abandoned without the workfilebeing made permanent;
you can do this when things have gone badly wrong and
you decideit would be easier to start again. If you
have made some changes to vyour file, you will be
asked if it is

PE1/90

46

Alright to lose the edits you have done?

as a safeguard against typing QUIT by mistake.If you
were using the editor just to inspect a file with no
intention ofchanging it, then of course vyou finish
by typing QUIT.

QF is the same as QUIT except
that the edit isabandoned without question. Do not
get into the habit of using this command unless you
are sure you will not use it by mistake!

The editor keeps backup copies of any files that you overwrite while editing,
so that you can go back to the old version 1f you make a mistake. See
section 2.11 for more information on this topic.

3.20 An Example of Line-Editing

The following shows a simple example to illustrate various editing
techniques.The lines typed in by the user are shown by underlining.
OK, ed edexample

[Sheffield Editor version 8.5.2]

Copyright (c) University of Sheffield 1990
Edit

print 99

.top.

The Microbe is so very small

You cannot make him out at all,

But many sanguine people hope

Th see him through a microscope.

His jointed tongue that lies beneath

A hundred curious rows of teeth:

His seven tufted tials with lots

Of lovely pink and purple spots:

Of lovely pink and purple spots:

On each of which a pattern stands,

His eyebrows of a tender green:

All these have never yet been seen-

But scientists,

Assure us that they must be so....

Ohl Let us never never doubt

What nobody is sure about!

.bottom.

top return to top of file
locate see locate line containing 'see'
Th see him through a microscope.

change/h/o/ change h to o

To see him through a microscope.

next 4 move forward 4 lines

Of lovely pink and purple spots:

delete delete current line

find But find the line beginning with 'But’'
But scientists,

append who ought to know, append ' who ought to know'
But scientists, who ought to know,

next 2 move forward 2 lines

PE1/90

47

Ohl Let us never never doubt

change/1/!/ change 1 to !

Oh! Let us never never doubt

print -99 print the file to check it again
.top.

The Microbe is so very small

You cannot make him out at all,

But many sanguine people hope

To see him through a microscope

His jointed tongue that lies beneath
A hundred curious rows of teeth:
His seven tufted tials with lots

Of lovely pink and purple spots:

On each of which a pattern stands,
His eyebrows of a tender green:

All these have never yet been seen-
But scientists, who ought to know,
Assure us that they must be so....
Oh! Let us never never doubt

bl tials;c/ia/ai locate backwards the line containing
His seven tufted tials with lots 'tials' and change ia to ai

His seven tufted tails with lots
f On; T Composed of forty separate bands: find the line starting with 'On' and

On each of which a pattern stands, insert the new line 'Composed of'
bl seven locate backwards the line containing
His seven tufted tails with lots 'seven'

pé6 print the next 6 lines to check again

His seven tufted tails with lots

Of lovely pink and purple spots:

On each of which a pattern stands,
Composed of forty separate bands:
His eyebrows of a tender green:

All these have never yet been seen -

fil

EDEXAMPLE

There is, of course, no unique way of editing a file, and the above shows
only one way to correct the typing mistakes made. Thus, after printingout
the file ('99' was a convenient number to choose for the number of 1lines to

be printed - there is no need to count up to find the correct number)we then
returned to the top of the file, and worked through it correctingvarious
errors. In order to print it out again, we used 'print -99' sothat counting
went backwards instead of forwards and we could look at thepart of the file
we had changed. This left us back near the bottom of thefile again, and we
had to use the composite backwards locate to reach the line containing the

erroneous 'tials'. After making one or two more corrections,we again use
backwards locate to retrace our steps and then print out the six 1lines
containing the recent changes. We could, of course, have usedthe NEXT

command with a negative number to move backwards in the file.

You will notice, perhaps, that all the editing commands are typed in lower
case; we could have used upper or lower case but lower is more convenient
when editing a lower case text file such as ours, since the insertions,
changes etc. will normally be written in lower case.

PE1/90

48

4. EDITING SEVERAL FILES AT ONCE

4.1 General Principles

The Sheffield Editor allows you to keep many files in memory at once, each
one being kept 1in a separate 'buffer'. You can put the required filesin

buffers by means of an extended form of the ED command:
ED filel file2...

where the first file is placed in buffer 1, the second in buffer 2 etc. You
can also put additional files into buffers when you are already inthe
Editor, as we shall see shortly.

Instead of giving just a list of files you can use the Primos features of
wildcarding, treewalking and iteration to specify many files at once. These
features are described in the Primos Commands reference guide. For example,

ED @@.PAS
will load all files with the suffix .PAS in the current directory, and
ED *>@e@>@@. (PAS F77)

will load all files with suffixes .PAS or .F77 in all directories below the
current. If you use any of these features on the command 1line the editor
reports how many files have actually been loaded into buffers for you; this
is useful information if you intend to use MODE CHAIN.The NEW command can
also make use of these facilities for loading multiplefiles.

When you first enter the Editor, your current buffer is buffer 1, and all
editing commands you type in will be applied to that file. You can change
the current buffer by typing

BUFFer n

where n is either an integer specifying the buffer number or a string of
characters matching all or part of the pathname of the file in the required
buffer; matching treats upper and lower case characters as identical.If you

have already placed afile in the specified buffer, that file will be edited

by your subsequent editing commands. If you have not placed a file in the

buffer, the bufferwill be empty; you can go into input mode and create a

new file in it, oryou can copy an existing file into it by typing the editor

command

EDit filename
You will quite commonly want to perform the two operations of first finding
an empty buffer and then editing a new file in that buffer; vyou can do this
with the one command

NEW filename
The NEW command looks for the first empty or unused buffer and switches to
it, and then 1loads the given file into that buffer. It is equivalent toa
BUFFER command followed by an EDIT command. When you give a filename or
treename for the NEW command you can use Primos features such as wildcarding
and iteration to make it load in many files instead of just one. For obvious
reasons this does not apply to the EDIT command.

PE1/90

49

RELoad
The RELOAD command loads a fresh copy of the file from disc into the current
buffer, after checking whether it 1is alright to lose any editsyou have
already done. RELOAD is useful if you have started makingsome changes to a
file but you decide that what you have done is wrongand you would be best
starting afresh. Typing RELOAD is exactly thesame as typing 'ED filename',
where filename is the name of the fileyou are working on.
You can find out which buffers are currently occupied by issuing a BUFFER
command with no buffer number specified. This will also indicate the current
buffer by means of an arrow (->) and will indicate which buffers have been
modified (see Section 4.4) and which files are still open for reading.If you
are using split-screen editing this command also indicateswhich buffers are
displayed in which windows on the screen.The file copied into a buffer stays
open until you first go to the bottomof the file; this is done to save
having to read the whole file in before youcan start editing, as you may not
want to look all the way down a huge file.
If you have loaded many files into the editor and you want to browse round
looking at them in turn, you may find these commands useful: the NEXTBUFF
command switches you to the next buffer that contains a file, cycling back to
buffer 1 at the end of the list. The PREVBUFF command cycles round in the
opposite direction. Abbreviations are NEXTB and PRE.

4.2 Making Your Workfiles Permanent

You can issue SAVE or FILE commands at any time to make a permanent copy of

the file which 1s in the current buffer. FILE will of course cause youto
leave the Editor, so SAVE is more likely to be wuseful, even if vyou have
finished editing the file in the current buffer (since you will probablywant
to move on to a different buffer). You do not have to SAVE or FILEa file
before switching to a different buffer, since yourfiles are kept intact in
their buffers. However, you are recommended touse the command

SAVEA1l

from time to time, as this will SAVE all files which have been tagged
'modified' (see Section 4.4) .When vyou finish editing you can use the
command

FILEAll

which is equivalent to a SAVEALL followed by a QUIT, but the QUIT is only
triedif the SAVEALL worked successfully.
SAVEALL and FILEALL use the current names specifiedfor your buffers, and so
they will fail to save a modified buffer if youhave not yet given it a name.
In that case vyou will need to switch to thatbuffer and use FNAME or SAVE
with a filename specified (see section 3.2).
Sometimes when you are editing many files simultaneously you need to break
off for a while, and it <can be quite a complicated job gettingthe edit
restarted exactly where it was when you finished. There are two editor
commands which help you here.

SAVEState filename

LOADState filename

PE1/90

50

SAVESTATE first performs a SAVEALL operation to save all modified buffers to
files, and then writes a file of editor commands thatcan be wused later to
restore your current position in the editor. TheLOADSTATE command is used
to read the file of commands. After saving andrestoring in this way vyou
will have all the same files loaded into the samebuffers and positioned
exactly as before.

The SAVEALL operation will fail if you have any buffers containing modified
text but not assigned to filenames. When writing the file of commands, you
will be warned if any buffers contain text but do not have filenames, since
itwill not be possible to restore these. They may just be some text dumped
fromthe file you are editing and not needed again, in which case you can
ignore the warning, but if vyou do want them again you should specifically
save them tofiles and perform the SAVESTATE command again.

The LOADSTATE reads commands from the file written by SAVESTATE; vyou should
enter the editor with no file being edited, make sure that you are in edit
mode, and obey the LOADSTATE command. It may also be obeyed from within the
window editor, 1in which case each line of commands is obeyed as thoughit
were preceded by DEL C or the OBEY COMMAND function key.

The first time you use either SAVESTATE or LOADSTATE in an editing session
you must give the name of a file, but you can omit it laterif you wish to
use the same file again.

The LOADSTATE command merely reads lines of commands and obeys them, which
can be wuseful in other situations. For this purpose the COMINPUTcommand 1is
also provided, which acts in exactly the same way with the single exception
that it does not wuse the default filename. COMINPUTcan read lines of
commands from a file or an editor buffer, so itcan be used to set wup and
execute complicated edits.

4.3 More Commands for Use with Buffers
Other commands used in connection with buffers are as follows:

LOAd n is similar to LOAD, as described in Section 3.7, but
this form 1s wused to copy the contents of buffer n
into the current buffer. Buffer n is tagged
'unmodified' (even 1f it had been modified sincethe
last SAVE or SAVEALL) since its contents have been
copied elsewhere (the current buffer 1s of course
tagged 'modified').

Unload n m is similar to UNLOAD, as
described in Section 3.7, but this form is used to
copy m lines from the current buffer into Dbuffer
number n.If buffer n contains modified text you will
be asked if it is OK toproceed.

DELBuf nl n2... deletes the specified buffers.
You can give a list of buffer numbers or specify
ranges such as 3-10, meaning all buffers from 3to 10
inclusive. If any buffer to be deleted contains
modified text you willbe asked if it is alright to
lose the edits. If you delete your currentbuffer
you will be switched to the next buffer containing
text.

SIZE list all buffers that are 1in
use, indicating thesizes of the workfiles stored in
them. The sizes are given in lines, in Prime words

PE1/90

51

(2 characters per word), and in records of 1024 words.
Thetotal size of all buffers is also given. If any
of the files have not yet been completely read in
there will be a short delay before the information
appears.

The window editor commands for moving lines of text may also use a buffer as

intermediary; vyou give the buffer number instead of a filename.See section
2.6 for details of the commands.

4.3.1 Buffer Chaining

When you have several files in editor buffers vyou sometimes find that vyou
wantto make the same or similar changes to them all. This can prove
tediousbecause of all the buffer switching and retyping of commands
necessary. MODECHAIN can make it a lot easier.

MODE CHAIN has the effect of making a set of buffers appear 1like one 1long
fileas far as certain commands are concerned. You can specify that, for
instance,buffers 1 to 10 inclusive are to be treated as a chain; if you
then type TOPthe current position moves to the top of buffer 1, not just the
top of the current file, and of course BOTTOM moves you to the bottom of
buffer 10. ALOCATE command will move on to the next buffer in the chain if
it hits thebottom of the current buffer, and so on.

A typical use of buffer chaining would be to change the name of a variable
throughout a large program kept in many source files, or to do systematic
changes to the whole of a document when each chapter is kept 1in a separate
file.

To switch on buffer chaining you type, for instance,

MODE CHAIN 1-10
which indicates that any files 1in buffers 1 to 10 are to be treated as a
chain.It does not matter if some of the buffers are empty as buffer chaining
skipsover any empties when looking for the next buffer. The list of buffers
can bemore complicated, such as

MODE CHAIN 1 3 7 10-12 2 4

which chains the buffers 1, 3, 7, 10, 11, 12, 2 and 4 in that order. To
switchoff chaining type

MODE NOCHAIN

If you have already used chaining in this editing session you can switch it
back on again with the same buffers in the chain by typing

MODE CHAIN
but of course this would be an error if it was the first time vyou had used
the command.

When buffer chaining is in operation the action of the following commands is
affected.

PE1/90

52

TOP Moves to the top of the first buffer in the chain.
BOTTOM Moves to the bottom of the last Dbuffer in the
chain.
LOCATE (and FIND and all variants) Move onto the next

buffer in the chain when they hit the bottom of the current
buffer, orvice-versa if moving backwards.

CHANGE (and MODIFY) If you give the '*' qualifier after
the command itwill apply to all buffers in the chain instead
of just the wholeof the current buffer.

REPLACE If no line is marked the replace operation will
apply to the whole chain of buffers instead of just the
current one.

If buffer chaining is in operation but the current buffer is not part of the

chain then all the above commands apply as usual to just the current buffer.

All commands not mentioned above, and in particular all window-editor
commands,apply to just the current buffer.

Whenever the buffer chaining operation switches to a different buffer it

announces the new buffer number and filename so that you can keep track of

where you are.

4.4 Split Screen Editing

The editor allows you to display and modify the contents of more than one
editing buffer at the same time; this 1s <called 'split screen editing’
becausethe screen is split into two or more 'windows', each one displaying
thecontents of an editing buffer. Split screen editing can be very useful
whenamending several files which are similar or related in some way, because
youcan keep all the files visible at the same time. Of course there are

limits to how many windows can be used, dictated by the minimum window size
that isviable.

Split screen editing imposes a slight penalty on response time which is most
noticeable on network terminals. The reason 1is that the editor has to
performits own echoing to keep the split screens up to date. There will be
nodifference however if you normally use MODE DIRECT or if you use an SSMP
terminal. In fact the SSMP protocol provides special facilities for split
screen editing which are wutilised by the editor, mainly when the split is
horizontal.

To enter split screen editing you use the SPLIT command, which may be obeyed
either before entering the window sub-system, or via DEL C from within the
window editor. A typical SPLIT command is:

SPLIT 1 2 VERTICAL

which tells the editor to split the screen vertically into two windows, one
containing buffer 1 and the other buffer 2. Buffer 1 will occupy the left
halfof the screen and buffer 2 the right half. You can give a list of up to
eightbuffers to be displayed on the screen; more than eight implies a
window sizetoo small to be useful.

The word at the end of the command indicates whether you want a vertical or a
horizontal split; it may be abbreviated to V or H, and horizontal is assumed
if omitted. The SPLIT command itself may be abbreviated to SP. For other
forms of the SPLIT command defining complicated splits see below.

The SPLIT command will always leave the current buffer as one of the buffers
inthe split 1list; if you are already in one mentioned in the list then it

PE1/90

53

takesno action but otherwise it switches to the first in the list.
When you want to revert to non-split editing the command to use is SPLIT NO.

4.4.1 Switching Between Windows

When you use split screen editing you will have several buffers displayed on
the screen at the same time. The easiest way to switch between windows isto

type DEL N; this switches to the next window in the split screen. The
opposite function CTRL-N N switches to the previous window.

To switch to a particular buffer displayed you can usethe BUFFER, NEXTBUFF

or PREVBUFF commands (after typing DEL C of course).For instance, if you had

typed

SP 1 23 H

and you were currently in the top window on the screen editing buffer 1, you
could switch over to buffer 3 by typing DEL C BUFFER 3 {RETURN}. You will
probably find it convenient to set up macros for switching easily to the
firstfew buffers: for instance DEL 1 could switch to buffer 1, DEL 2 to
buffer 2and so on.

You were probably just thinking 'What happens if I switch to a buffer that is
not on the screen?', the answer being that the new Dbuffer appears occupying
thewhole screen and split screen editing is temporarily suspended. When,
however,you switch back to one of the buffers that is part of the split vyou
will go back to split screen editing with the original buffers displayed.
You can, ofcourse, change the split at any time, or revert to no split by
typing SPLIT NO.

If you type the SPLIT command alone (i.e. with no parameters after it), then
the editor displays information about the current split (if any). This will
show you how the available screen size has Dbeen divided to provide the
windowsthat you have requested. You may have a terminal that is capable of
changingits screen size to a greater width, usually 132 columns; when you
use the TERMcommand to change the screen size the window sizes will Dbe
recalculated basedon the new area available.

4.4.2 More Complicated Splits

On certain occasions it may be useful to split the screen both vertically and
horizontally to form square-shaped windows which may allow you to inspect
your files more easily. This can be achieved by adding one extra parameter
tothe SPLIT command, known as the 'split ways' parameter. For example, the
command

SPLIT 1 2 3 4 5 6 VERTICAL 3

means split up the screen into six windows, first splitting it into 3
verticalcolumns (the ‘'split ways' parameter is 3), and then splitting it
furtherhorizontally to provide the necessary number of windows; in this

case thewindows will be laid out as

123

PE1/90

54

456
Exactly the same effect could be achieved by

SPLIT 1 2 3 4 5 6 HORIZONTAL 2
which would first split the screen horizontally into two and then vertically
togive the requisite number of windows.
The buffers are always allocated to the windows by rows starting from the top
left. If the number of buffers given is not divisible by the ‘'split ways'
parameter then one or more empty windows will be left at the bottom right.
Forexample

SPLIT 1 2 3 4 5 VERTICAL 3
would result in windows laid out as

123

45

4.5 Safety Measures

If you try to delete a buffer which is tagged 'modified' vyou will be told
that it has been modified and asked if it is 'OK to delete?' In a similar
way, the Editor will query any attempt to overwrite a modified buffer when
you issue an EDIT command. The 'modified' tags are cancelled when a fileis
SAVEd or copied into another buffer by means of a LOAD command.

PE1/90

55

5. THE TIDY SUB-SYSTEM

The editor has a built-in system to help you with the task of clearing out
allthe rubbish that builds up in your directories after a hard day's work at
theterminal. It displays a list of the entries in the directory and allows
you tolook at them and mark for deletion any that you do not want to keep.
When you have finished you are shown a list of all the files you have marked
fordeletion and asked whether you want to go ahead and clear them out. You
canalso go down into any sub-directories and clean those up too.

This subsystem is normally run by using the CPL command TIDY; this performs
some operand checking and then enters the editor. You are recommended to use
this in preference to entering directly.

To clean up the current directory type

TIDY
or

ED -TIDY
The editor creates a file containing a list of all the entries in the current
directory and enters the window editor to display it on the screen. The list
normally shows all entries in alphabetical order, but you can change this by
typing extra options:

TIDY -SORTM Sort in date order.
TIDY @@.LIST Show only files matching the given wildcard.
TIDY -REVERSE Reverse the usual sorting order.

When you have the file list displayed on the screen you can move the cursor
tothe 1line containing an entry you are interested in and use the commands:

DEL I Inspect the entry. If it is a file it will be displayed on the
screen in normal window-editor fashion. If it appears to be a
binary file you will be asked whether you really want to display
it.

DEL D Mark the file to be deleted later. This merely overlays a letter

'd' on the first column of the line.

When you have typed DEL I and are displaying a file you can type any of:

DEL D Go back to the file list and mark this file for deletion.
DEL L Just go back to the file list display and do not mark for deletion.
An '*' is put in column 1 of the display just to remind you that

you have looked at that file. It will not be deleted later.

DEL I Go back to the file list, do not mark for deletion, and then
inspect the next entry on the list. This allows you easily to go
down a list of files looking at each one in turn.

When you have finished with the directory listing you can type:
DEL F Finish with this directory with the option of deleting marked
files. If you have marked any files for deletion you will be shown

a list of them and asked whether you want to go ahead and delete
them.

PE1/90

56

DEL Q Quit and do not delete any files.
To go down into a sub-directory place the cursor on the entry in the file
listand type DEL T. The editor will display a new file list showing the

contentsof this sub-directory and you can inspect and delete any entries as
before.When you have finished in the sub-directory type DEL F or DEL Q as
above toreturn to the higher level.

While using the tidy system you have all the usual editor commands available,
sO you can easily locate any files vyou are interested 1in. It 1is also
possibleto actually change a file that you are inspecting but do not forget
to save itbefore returning to the file list.

PE1/90

APPENDIX A

57

SUMMARY OF WINDOW EDITING COMMANDS

DEL A
2.5

CTRL-N
4.4.1

DEL O
2.5

CTRL+N
2.5

CTRL+N
2.5

DEL Q

=

Convert all or part of the current line to UPPER case.
Convert all or part of the current line to lower case.
Break the current line into two at the current cursor
position.

Obey a line editor command.

Delete marked text (see also DEL M) and copy to a specified
buffer file.

Copy the workfile to a permanent file and end the edit.

Toggle between insert mode and overtype mode.

Join the next line to the current line at the current cursor
position.

Loads text from a specified buffer at the current cursor
position (see also DEL U, DEL D, DEL M).

Put a marker at the current cursor position for unloading
(see DEL D, DEL U or text-formatting).

Cancel the marker.

Switch to the next window of the split screen.

Switch to the preceding window of the split screen.
Inserts 12 blank lines above the current line.

Deletes any blank lines between the current line and the
next line of text.

Mark the current cursor position.

Remove the currently active marker.

Leave the editor without copying the workfile to a permanent

PE1/90

58

2.11 file.

DEL R Execute the next command a specified number of times.

2.9

DEL S Saves the workfile in a filestore file without leaving the
2.2 editor.

DEL T Sets a tab stop at the current cursor position.

2.7

CTRL+N T Clears the tab stop at the current cursor position.

2.7

DEL U Copies marked text (see DEL M) to a buffer file.

2.6

DEL V Move the cursor down 12 lines.

2.4

DEL W Switch to window edit mode from input window mode or vice
2.3 versa.

DEL X Execute the last command again.

2.2

DEL 2z Delete the marked part of a line (see DEL P).

2.5

DEL + Insert a blank line above the current line

2.5

DEL - Delete the current line

2.5

DEL = Redraw the current line

2.2

DEL " Insert a copy of the current line.

2.5

DEL & Insert one space at the current cursor position.

2.5

CTRL+N & Delete one character at the current cursor position.

2.5

DEL space Insert 20 spaces at the current cursor position.

2.5

CTRL+N space Delete any spaces to the right of the cursor on the current
2.5 line.

DEL / Truncates the current line at the current cursor position.
2.5

PE1/90

59

DEL > Move the cursor to the next tab position.
2.7

DEL < Move the cursor to the previous tab position.
2.7

DEL ' Initiates text-formatting.

2.8

DEL (Start definition of a macro.

2.10

CTRL+N (Delete a specified macro.

2.10

DEL) End definition of a macro.

2.10

DEL "uparrow" Move the cursor to beginning of file.

2.4

DEL "downarrow" Move the cursor to end of file.

2.4

DEL "rightarrow" Move the cursor to one past the last character on the line.

DEL "leftarrow" Move the cursor to the beginning of the line.

2.4

DEL A Move the cursor up 12 lines.

2.4

RETURN Move the cursor to the beginning of the next line (but see
2.4 also the line editor MODE INDENT command) .

HOME Move the cursor to the top left hand corner of the screen.
2.4

BACKSPACE Move the cursor one place to the left.

2.4

"cursor arrows" Move the cursor one place in the direction shown on the key.
2.4

TAB Move the cursor to the next tab position.

2.4, 2.7

BACK TAB Move the cursor back to the previous tab position.

2.4, 2.7

FUNCTION KEYS

Many terminals have a row of function keys along the top of the keyboard or
to one side; it will wusually Dbe possible to use these keys to perform
certain common window editor commands by a single keystroke. Sincedifferent

PE1/90

60

terminals have different numbers of function keys it is notpossible to say
exactly what will be provided, but you can find out bytyping the line-editor
command HELP SUMMARY. On the Televideo and Merlin terminals in use at
Sheffield the set is as follows:

Key Without Shift With Shift

Fl Exit to Line Ed Quit

F2 Redraw Screen Redraw Line

F3 Help Repeat

F4 Cursor Down half screen Cursor Up half screen
F5 Break Line Join Line

F6 Mark Line Mark Char

F7 Unload Lines Delete Lines

F8 Load Lines Duplicate Line

F9 Save File

F10 Switch WI <-> IW Insert Mode

F1l1 Obey Command Obey Command again

PE1/90

61

APPENDIX B SUMMARY OF LINE EDITING COMMANDS

These directives must be followed by the RETURN key in the wusual way;
permittedshortened forms are shown by capital letters.

ALphabet
3.12

Append string
3.5

Bottom
3.4

BRief
3.12

BUFFer n
4.1
CEntre
3.9

Change/stringl/string2/G end
3.5

COminput filename
4.2

DELBuf nl n2...
4.3

Delete n
Delete TO string
3.6

DUnload file n

DUnload file TO string
3.7

EDit filename

3.2, 4.1
EXPand
3.5

Specify the alphabetic characters.
Appends string to the end of the current
line.

Moves pointer to the bottom of the workfile.

Suppresses verification output.

Switches to file buffer n or the buffer
matching a string. If no n is specified, a
list of your buffers is displayed.

Centres the text on the current line between
the margins specified by the STYLE command.

Replaces stringl by string2. If G is
present, replaces all occurrences on
specified line(s); 1if G is omitted, only
first occurrence is replaced. The lines to
change are determined by end which may be n,

-n, *, M for 'mext n lines', 'previous n
lines', 'throughout file', or 'to marker'
respectively.

Reads and obeys lines of editor commands
from the given filename.

Deletes buffers nl, n2....

Deletes n lines or up to but not including
the line containing the specified string.

Deletes n lines, or up to but not including
the line containing the specified string,
and copies them to an editor buffer or
Primos file.

Copies specified file into workfile for new
edit. If no filename is specified starts
new file in input mode.

Convert any tabs in current line to
equivalent spaces.

PE1/90

Erase character
3.2

EXtract buffer coll col2 options
3.14

FILe filename
3.19

Find string

Find(n)
3.4

string

FName filename
3.2

Gmodify arglist
3.5

Help
3.12

IB string
3.6

Insert string
3.6

Iw
3.3

Kill character
3.2

LInesz n

LOAd file

3.7, 4.3

LOADState filename

4.2

Locate string
Locate(n) string

62

Makes the specified character the ERASE
character.

Extract a vertical column of text from the
current buffer for editing separately.

Copies workfile to specified file.

Moves the pointer to the first line with the

specified string starting in column 1 or
column n.

Changes the 'current name' of the edited
file to the specified name. If no name is
specified, prints out the current name.

Changes current line according to list of
directives which may or may not be separated

by spaces. See section 3.5 for a list of

directives.

Enters the editor internal HELP system.
Inserts the specified string as a new line
immediately before the current line.

Inserts the
immediately

specified string as a new line
following current line.

Switches to input window mode.

Makes the specified character the KILL
character.

Reports any lines of length n characters or
more.

Copies the specified file into the workfile;

the file may be specified by name or as a
file buffer number.

Reads editor commands from the given file to
restore the editor to the state saved by the
SAVESTATE command.

Moves the pointer to the next line which
contains the specified string on or after

PE1/90

3.4

MACClear
2.10

MACLoad filename
2.10

MACPrint maclist
2.10

MACSave filename
2.10

MArk n
3.11

MErge buffer coll col2 options

3.14

MODE
3.13

MODE Backup ncopies
MODE NoBackup
3.13, 2.11.1

MODE CHain list
MODE NoCHain
3.13, 4.3.1

MODE Ckpar
MODE NoCkpar
3.13

MODE COlumn
MODE NoCOlumn
3.13

MODE COMo
MODE NoCOMo
3.13

MODE COUnt nl n2 n3 mode
MODE NoCOUnt
3.13

MODE Direct
MODE NoDirect

63

column 1 or column n.

Clears all current window editor macros.
Loads the window editor macros from the
specified file.

Displays the specified macros, or all macros
if maclist is omitted.

Saves all current window editor macros in
the specified file.

Places a 'marker' at the specified line.
The marker remains set until a different
marker is set, or until MARK is called with
n zero. If n is omitted, a marker is set at

the current line. Markers are used in with
commands such as CHANGE and TEXT.

Merge the given buffer side-by-side with the
current buffer.
Displays current MODE and other settings.

Activates/deactivates taking of backup
copies before overwriting file.

Activates/deactivates chaining together
a set of buffers so that they are treated
as one file by commands such as LOCATE.

Activates/deactivates parity checking.

Activates/deactivates the column indicator
at the start of input mode or before any
printing directive.

Activates/deactivates allowing como file to
stay open while in window editor.

Activates/deactivates counter symbol.
Negative counting is allowed.

Activates/deactivates editor operation
suited to directly-connected terminals on

PE1/90

3.13

MODE DISp
MODE NoDISp
3.13

MODE INdent
MODE NoINdent
2.7, 3.13

MODE Info
MODE NoInfo
3.13

MODE Lon
MODE NoLon
3.13

MODE Margin
MODE NoMargin
3.13

MODE MSg
MODE NoMSg
3.13

MODE NUmber
MODE NoNUmber
3.13

MODE Prompt
MODE NoPrompt
3.13

MODE Quiet
MODE NoQuiet
3.13

MODE SAfety
MODE NoSAfety
3.13

MODE Semi
MODE NoSemi
3.13

Modify/stringl/string2/G end
3.5

MOVe bufferl /string/

MOVe bufferl Dbuffer2
3.15

NEW filename

64

lightly-loaded machines.

Activates/deactivates display of buffer
number and filename whenever buffer
changed.

Used with window editing, and causes the
RETURN key to return the cursor to the same
starting position as the line above.

Activates/deactivates info editing mode

Activates/deactivates printing of logout
notification messages during window edits.

Activates/deactivates word-processing input
margin mode.

Activates/deactivates printing of messages
during window editing.

Activates/deactivates the printing of line
numbers.

Activates/deactivates display of input and
edit prompts.

Activates/deactivates window editor quiet
mode.

Activates/deactivates safety checking when
writing to filestore.

Activates/deactivates ; as newline in
input mode

As CHANGE, but with column alignment
preserved.

Moves specified string or buffer2 into
bufferl. EDLIN is a line buffer containing

the previous edit directives, INLIN is a
buffer containing the current workfile line.

Switches to first empty buffer and loads the

PE1/90

Next n.m
3.4

NEXTBuff
4.1

NFind string
NFind (n) string
3.4

NLocate string
NLocate (n) string

3.4

OBey 'comml;comm2.. .

3.16

OOps number
2.5.1, 3.2
Overlay string

3.5

POint n.m
3.4

PPrint m n
3.2

PREvbuff
4.1

Print n
Print buffer

Print All
3.2, 3.15

PSymbol
3.12
PUnct

3.12

OF
3.19

65

given file into it for editing.

Moves pointer n lines, and positions it at
the mth column. If n is negative, movement
is backwards. If m is omitted, the pointer
is positioned at the first character.
Switch to next buffer containing text.
Moves the pointer to the next line which
does not contain the specified string

starting in column 1 or n.

Moves pointer to the next line which does
not contain the specified string on or after

column 1 or n.

Obey a line of editor commands after
variable substitution.

Reinstates 'current line' as it was before
current alterations, or inserts old copy of
line (window editor action).

Superimposes the specified string on the
current line.

Moves pointer to column m of line n.
Prints m lines before, and n lines after,
the current line.

Switch to previous buffer containing text.

Prints the next n lines (or previous n lines
if n is negative), or prints contents of the
specified line buffer, or all buffers.
Prints a list of the special characters.

Any invisible characters will be shown as

octal ASCII codes.

Sets the characters to be treated as
punctuation.

Leaves the editor without saving the edited

version of the file, and without asking if
you really want to go.

PE1/90

Quit
3.19

RELoad
4.1

REPlace/stringl/string2/ci
2.5.2

Retype string

3.5

SAve filename

3.2

SAVEAll

4.2

SAVEState filename
4.2

SIze
4.3

SPEL1l
3.17

SP1lit nl n2...
4.4

STAts
3.9

STyle 1m rm pi pb mode
3.9

Symbol function character
3.9, 3.12

TAbset tl t2
2.7, 3.8

TEXt n

orientation n

66

As QF but asks if you really want to 'quit'.

Reload a fresh copy of the file being
edited.

Window editor search and replace command.
(May only be used via DEL C from within the
window editor.)

Deletes the current line, replacing it with
the specified string.

Saves the edited version of your file, but
leaves you in the editor to continue
editing.

Saves all the file buffers.

Saves all file buffers and writes editor
commands to the given filename, so that the
editor state can be restored by the

LOADSTATE command.

Display sizes of files stored in all editor
buffers.

Run the spelling checker on the text in the
current buffer.

Tells the window editor to initiate split
screen editing, listing the numbers of the
buffers to be included in the split, whether

it is Horizontal (default) or Vertical, and
also the split-ways parameter if necessary.

Counts words and lines in part or all of a
document.

Used for text formatting to specify left
margin, right margin, paragraph indentation,

blank lines between paragraphs and adjust
mode (Adjust or Fill).

Resets the specified character as a special
character as defined by function.

Sets tab position. Up to 30 positions may
be established.

Formats file according to most recent STYLE

PE1/90

67

3.9 specification down to the next marker (see
MARK) . Any lines not starting in column n
will be assumed to start a new paragraph.
If n is omitted, 1 is assumed; n is not
used in automatic formatting.

Top Moves pointer to the top of the file.

3.4

Unload file n
Unload file TO string

Copies n lines, or up to but not including
the line containing the specified string, to

3.7, 4.3 the specified file. The file may be
specified by name or as a buffer number.

Verify Activates verification output.

3.11

VERSion Prints the editor version number.

3.12

Where Prints the current line and column number,

3.2 and buffer number.

WI Switches to window mode.

3.3

Xeq buffer

Executes the contents of the specified

3.15 buffer. If no buffer is specified, executes
last command again.

* n Repeats line of editing directives n times.

! command Obeys the specified Primos command, after

3.12 expanding abbreviations if enabled.

In addition to the above, a directive may be built up of any of the following
elements to achieve the outcome indicated.

P for Print
D for Delete
U for ©Unload
B for Backwards
C for Case independence
I for 1Identifier type
N for Not
The composite command is then followed by:
(a) F or L for a FIND or LOCATE type string specification, with a (column)
number in parentheses if required
(b) string if it includes U
filename TO string if it does not include U

PE1/90

68

APPENDIX C TERMINAL CONTROL KEYS AND SPECIAL CHARACTERS
Special Keys and Characters for Use at All Times

In the list below, where two keys are pressed simultaneously,
as atb, e.g. CTRL+E etc.

RETURN Causes the computer to take action on the
typed.Until vyou press RETURN you can correct
your erase and killcharacters. Window editor
not followed by RETURN.

BRK Produces a 'break-in'; it

they are shown

line you have
the line using
commands are

is used to

interrupt the Prime in whatever it is doing, and to bring
control back to the keyboard. Prime terminalsonly.

CTRL+P,B Produces the same effect as the BRK key.
Network terminals only.

CTRL+S Suspends the activity of the terminal when it
is outputting information (e.g. a file 1listing, program

results etc.).

CTRL+Q Re-activates the terminal after it has been

stopped by CTRL+S.

CTRL+X Cancels the action being prompted for; e.qg.
when typing a filename CTRL+X cancels the operation that

prompted for the filename.

BACKSPACE Erases the previous character of the current
line.

? Kills the whole of the current line typed so
far.

Special Characters for Use with the Editor
; Is equivalent to a 'newline'
line editorinput mode.

character when in

A May be used to precede BACKSPACE or °? (or
itself) to givethese characters their face value.

! Is used in connection with string
specifications for FIND and LOCATE etc. to mean 'any
character'.

Is used in the same circumstances as ! and

means 'any number of spaces or no spaces'.

PE1/90

