

THE
PRIME USER’S

GUIDE

PRIME
Computer

IDR 4130

PRIME USER'S GUIDE

TDR413d

Revision @

This guide documents the operation of the prime Computer and its
Supporting systems and utilities as implemented at Master Disk Revision
Level 17 (Rev. 17).

PRIME
PRIME Computer, Inc.

588 Old Connecticut Path
Framingham, Massachusetts 91701

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the

non-team members, both customer and Prime, who contributed to and

reviewed this book.

Copyright © 198@ by
Prime Computer, Incorporated

588 Old Connecticut Path

Framinghan, Massachusetts 61791

The information in this document is subject to change without notice

ami should not be construed as a commitment by Prime Computer

Corporation. Prime Computer Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime

Computer, Inc.

First Printing January 1989

All correspondence on suggested changes to this document should be

directed to: .

Alice Landy

Technical Publications Department

Prime Computer, Inc.

500 Old Connecticut Path

Framinghan, Massachusetts 91701

1a

TDR413¢ CONTENTS

CONTENTS

PART I ~- USING PRIME DOCUMENTATION

1 INTRODUCTION

What this Book Contains 1-1

How to Use This Book 1-3

How to Use the Rest of Prime's Documentation 1-3

Programmer's Companions 1-8

PART II - WRITING AND RUNNING PROGRAMS

2 BEFORE YOU GET STARTED

Introduction 2-1
Introducing PRIMOS 2-1
Using the File Systen 2-3
System Prompts 2-8
Conventions 2-9

Special Terminal Keys 2-19
Special Characters 2-11
Setting Terminal Characteristics 2-12

3 ACCESSING PRIMOS

Introduction 3-1
Accessing the System 3-2
Directory Operations 3-2
Systen Information 3-5
File Operations 3-8
Completing a Work Session 3-19

4 CREATING SOURCE FILES

Entering and Modifying Programs - The Editor 4-1
Sample Editing Sessions 4-4
Editor Command Summary 4-6
Listing Programs 4-11

Printing Several Files in Qe (CONCAT) 4-14

5 COMPILING PROGRAMS

Invoking the Compiler 5-1

Object Files 5-2
Listing Files 5-3
Cross Reference 5-3
Code Generation 5-3
Loading 5-4
Compiler Messages 5-4
Combining Languages ina Program 5-5

iii January 1986

CONTENTS IDR4138

6 LOADING PROGRAMS

Introduction 6-1

SE 6-1
Using SEG Under PRIMOS' 6-1
Normal Loading 6-2
The R-Mode Loader 6-4
Using the Loader Under PRIMOS’~ 6-5
Normal Loading 5-5

7 RUNNING PROGRAMS INTERACTIVELY

Introduction 7-1
Executing Segmented Runfiles 7-1
Executing R-Mode Memory Images 7-1
Run-Time Error Messages 7-3

8 COMMAND FILES AND PHANTOMS

Command File Operations 8-1
Command File Requirements 8-2
The COMINPUT Command 8-2
The COMOUTPUT Command 8-6
Phantom Users 8-19

9 BATCH JOB PROCESSING

Introduction 9-1
Submitting Batch Jobs 9-2
Controlling Batch Jobs 9-4
Monitoring Batch 9-6

PART III - SYSTEM FACILITIES

1@ FILE-HANDLING UTILITIES

Introduction 10-1
Sorting Files (SORT) 18-1

File Comparison (CMPF) 19-7
Merging Text Files (MRGF) 19-8
File Utility (FUTIL) 18-9
FUTIL Command Summary 10-14

January 1980 iv

ll

12

13

14

15

IDR413¢

USING TAPES AND CARDS

Accessing Data on Tapes and Cards 11-1
Reading Punched Paper Tape 11-3
Magnetic Tape Utilities 11-3
Using ASSIGN 11-7
Releasing a Tape Drive 11-9
Mag Tape Operations 11-19
The Magnet Utility 11-11
Duplicating Magnetic Tapes 11-13

USING PRIMENET

Introduction 12-1
Remote Login 12-1
Attaching to Remote Directories 12-3

SUBROUTINE LIBRARIES

Applications Library 13-1
Sort and Search Libraries 13-9
Operating System Library 13-19

PART IV - ALTERING THE COMMAND ENVIRONMENT

USING RDY AND ABBREV

Changing the PROMPT Message 14-1
Creating and Using Abbreviations (ABBREV) 14-2

USING THE CONDITION MECHANISM

Introduction 15-1

Using the Condition Mechanism 15-2
The System Default On-Unit 15-2
On-Unit Actions 15-3
Writing On-Units 15-3
Scope of M-Units 15-4
A FORTRAN Example 15-5

A PL/I Example 15-6

APPENDICES

A GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

B SYSTEM DEFAULTS AND CONSTANTS

CONTENTS

January 1988

CONTENTS TDR4130

C ASCII CHARACTER SET

Prime Usage C-1l
Keyboard Input C-l
ASCII Character Set (Non—Printing)
ASCII Character Set (Printing) C-3

C-2

D ERROR MESSAGES

Introduction D-l
SEG Loader Error Messages D-2
Loader Error Messages D-4
Run-Time Error Messages D-7

Batch Warnings and Messages D-24

January 1989 vi

Part I
Using Prime Documentation.

IDR413@ INTRODUCTION

SECTION 1

INTRODUCTION

WHAT THIS BOOK CONTAINS

The Prime User's Guide is an introduction and overview to programming
ina high-level language on a Prime computer. It contains all the
information new users need to get started on a Prime system, and
provides a road map for new and experienced users alike that tells
what's available for Prime computers and where to locate information
about it.

This guide is divided into four parts.

Part I contains an introduction (Section 1), which tells how to use
this book and provides an annotated guide to Prime's features and
documentation.

Part II introduces users to PRIMOS (Prime's Operating System) and
carries them step by step through the acts of creating and running a
program, as follows:

e Section 2 introduces Prime's operating system, PRIMOS, and its
file management system (FMS).

@ Section 3 tells how to access the systen: how to log in; how
to create, manipulate, list and delete files and directories;
and how to log out when you're done.

e Section 4 explains how to enter files (programs, text files, and
data files), using Prime's editor; and how to get files printed
on the line printer.

@ Section 5 provides an introduction to compiling programs under
PRIMOS. Simple programs can be compiled fram the information
given in this guide. For more complex programs, or programs for
which the programmer wishes to use the advanced features of
Prime's compilers, the programmer should consult the specific
language reference guide.

@e Section 6 provides an introduction to linking and loading

programs with Prime's two loaders, SEG and LOAD. The
information in this section enables users to load simple
programs, The language guides provide information on
language-specific features; the LOAD and SEG Reference Guide
provides full information on advanced techniques.

@ Section 7 provides an introduction to executing’ programs
interactively. (Language-specific details on execution am
debugging are provided by your language guide.)

1 - 4d January 1988

SECTION 1 IDR4130

e Section 8 tells how to create command files for the

non-interactive running of programs, how to execute command
files from the terminal, and how to execute command files as
phantoms (i.e., as independent processes not connected with your
terminal).

Section 9 provides full information on how to execute programs
using Prime's batch processing envirorment.

Part III, System Facilities, provides an introduction to the resources
available on your Prime system.

@ Section 18 tells how to use four file-handling utilities:

SORT, which sorts and merges files

~ CMPF, which compares files and notes disparities

- MRGF, which creates one updated file out of several disparate
files

- FUTIL, which moves, copies, lists, and deletes both files and
complete directories

Section 11 explains how to handle magnetic tapes, punched cards,

and punched paper tapes on Prime.

Section 12 explains PRIMENET, Prime's networking facility, and

tells how users can take advantage of it.

Section 13 provides a selected list of important subroutines and
libraries available for use by high-level language programs.

Part IV provides a more advanced look at PRIMOS. In particular, it
duscusses several ways in which you can alter the command environment
on a temminal-by-terminal or program—by-program basis.

Section 14 shows how you can define your own abbreviations for
PRIMOS commands (via the ABBREV command) and how you can modify

the system prompts with the RDY commard.

Section 15 explains PRIMOS's condition mechanism and shows how

users can write their ow on-units (error-handling subroutines).

In addition to the body of the text, this guide provides the following

apperdices:

e Aglossary of terms used in Prime documentation

e A list of system defaults and constants

REV. 0

IDR4139 INTRODUCTION

@ The ASCII character set

e A list of system error messages

HOW TO USE THIS BOOK

We suggest that you:

e@ Read Sections 1-4 before beginning to work on the system.

@ Read Sections 6-9 before you try to compile, load or run
programs.

@ Use Sections 18 through 13 as reference sections:

- Section 18 if you need to sort, compare, or merge files, or
move whole directories from place to place

- Section 11 if you need to uSe mag tapes, cards, or paper tape

- Section 12 if the computer you work on is part of a network

- Section 13 to find out whether PRIMOS has a= subroutine or

utility that does some task you need to do, or whether you'll
have to write your own

@ Read Section 14 when you've become somewhat familiar with the

system, to discover some more sophisticated conveniences PRIMOS
can offer you.

e@ Refer to the glossary in Appendix A if you encounter any tems
you don't recognize.

HOW TO USE THE REST OF PRIME'S DOCUMENTATION

If this User's Guide provided all the information you'd ever need to do

anything, it would be about afoot thick. Therefore, Sections 2
through 14 contain enough information to get you started on just about
everything. And the rest of this section supplies a road map to all
our other documentation: the books that do tell you "all you need to

know." (Titles followed by asterisks document separately priced
products.)

1 - 3 January 198@

SECTION 1 TDR4138

The Central Guides

The relationship between these books is illustrated in Figure 1-1.
This user's guide is the center: the starting place. Backing it up

are the high-level language guides, which:

@ Provide full language reference materials

e Explain the compilers in detail, showing the use of all options

e Explain any language-specific techniques of progran development

e Discuss advanced techniques for loading, optimizing, and

debugging programs

Language guides currently available are:

@ The FORTRAN 77 Reference Guide*

e The FORTRAN Reference Guide

@ The COBOL Reference Guide*

@ The PL/I Subset G Reference Guide*

e The RPG II Reference Guide (and the RPG II Debugging Template)

More Detailed References

The commands and utilities explained in this guide and the language

guides will carry most applications programmers through most of their
work. For those who need more detailed references, each topic
discussed in this book is treated more fully in our reference guides.
The reference guides that applications programmers are most likely to
use are:

@ The PRIMOS Commands Reference Guide, which discusses all PRIMOS
level commands available to the user.

e The Subroutines Reference Guide, which tells how to incorporate
into your own programs the various subroutines supplied by
Prime.

e The LOAD and SEG Reference Guide, which provides a_ full
discussion of Prime's loaders for users interested in taking
advantage of their advanced features.

e The Source-Level Debugger Reference Guide,* which provides both

introductory and full discussions on the use of Prime's
interactive debugger for FORTRAN, FORTRAN 77, and PL/I programs.

REV. @ 1 - 4

PRIME/POWER

Data Subsystems ez

 DBMS SCHEMA

DBMS FORTRAN

DBMS COBOL

DBMS
ADMINISTRATOR

Data Base

Management

PMA

SYSTEM
ARCHITECTURE

System Architecture

And Assembly Language

Figure 1-1.

PL/I SUBSET G

IDR41 30

FORTRAN77

INTRODUCTION

SYSTEM ADMIN.

DEBUGGER

SUBROUTINES

LOAD/SEG

PRIMOS
COMMANDS

FORTRANIV

High-Level

Language Guides

WV

ease]

BASIC/VM

Basic

Primos

| Detailed Reference

PRIMENET

DPTX

REMOTE
JOB ENTRY

Communications

‘NEW USER'S
GUIDE TO
EDITOR/RUNOFF

Text Editing
And Formatting

Organization of Prime Documentation

January 198@

SECTION 1 IDR4130

A reference guide for operators and system administrators is:

@ The Systen Administrator's Guide, which tells how to configure,

bring up, and maintain a Prime system.

BASIC

BASIC is implemented on Prime computers as a fully interactive,

self-contained environment. Working in BASIC, a programmer can write,

compile, execute, and debug a progran while remaining inside the BASIC

environment. Prime's guides to working with BASIC, therefore, are

similarly self-contained, providing both full explanations of all BASIC

features and all introductory material needed to get the new user onto

the systen. The guides are:

e Interpretive BASIC

e The BASIC/VM Programmer's Guide*

Assembly Lang uage

For assembly language programmers, and for anyone interested in

learning about Prime's camputer architecture, there are:

e The PMA Programmer's Guide

e@ The Systen Architecture Reference Guide

Prime also supplies a number of guides that deal with more specific

applications.

Text Editing

For users concerned with text editing or formatted printouts, there is:

e The New User's Guide to Editor and Runoff

This guide explains in full detail Prime's editor (ED) and its text

formatting utility (RUNOFF). (Aimed at userS who may not_ be

programmers, this guide also provides a less technical introduction to

Prime software for secretaries, typists and data entry personnel.)

Data Subsystems

POWER is an easy-to-use data management system with f&glish-like

commands that allow the user to create, access, update, and report on

MIDAS, ASCII, or binary files.

REV. 9 1 - 6

TDR4130 INTRODUCTION

POWER files are campatible with (and can be accessed from) BASIC/VM,
COBOL, and FORTRAN programs. The guide to using POWER is:

@ The PRIME/POWER Guide

MIDAS - the Multiple Index Data Access System - creates and maintains
keyed-index data files to hold large amounts of information in a
quickly accessible format. MIDAS files are handled through a variety
of high-level language interfaces. Applications programmers working
with MIDAS files can consult the:

e Reference Guide, Multiple Index Data Access System (MIDAS)

FORMS allows applications programmers to design screen formats (such as
representations of business forms), to store the formats in a directory
and to write applications programs that use these screen formats to
facilitate data entry. The guide that explains how to do it is:

e The FORMS Guide*

SPSS - a Statistical package for the social sciences - is useful to
applications programmers who need statistical tools for data handling.
The use of SPSS on Prime camputers is explained in:

e The SPSS Guide*

Data Base Management

Four guides document Prime's data base management system. Programmers
writing data base applications programs in FORTRAN or COBOL should
consult:

@e The DBMS FORTRAN Reference Guide*

e The DBMS COBOL Reference Guide*

Data base administrators concerned with setting up and maintaining a
data base, use:

e The DBMS Administrator's Guide*

@ The DBMS Schema Reference Guide*

Communications

If you are installing a network (or if your installation is on a
network and you're curious about the details); or if you are writing
Programs concerned with network functions, the guide you want is:

e The PRIMENET Guide*

1 - 7 January 198d

SECTION 1 TDR4130

If your installation has (or is getting) DPTX, (Distributed Processing

Terminal Executive) and you're involved with it, you'll want:

e The Distributed Processing Terminal Executive Guide*

If your work involves any of the main frame emulators — HASP, RJE2786,

RJE3780, 200UT, 1004, GRTS, or ICL 7028 - you can find out how to

handle them in:

e The Remote Job Entry Guide*

PROGRAMMER'S COMPANIONS

Prime also provides a series of handy pocket-sized reference summaries

on many of its products. The following titles are currently available:

e FORTRAN: The Programmer's Companion

@ BASIC/VM: The Programmer's Companion*

e Assembly Language: The Programmer's Companion

@ PRIMOS Commands: The Programmer's Companion

e Systen Administrator: The Programmer's Companion

REV. @ 1 - 8

Part IT
Writing and

Running Programs

IDR413¢ BEFORE YOU GET STARTED

SECTION 2

BEFORE YOU GET STARTED

INTRODUCTION

Before you begin using your PRIME computer, you'll need to know:

e A few facts about PRIME's operating system, PRIMOS

@ How to define and organize your files and directories using
PRIMOS's file management system

@ What the system prompts are

e@ What conventions Prime guides use when documenting commands

@ What meaning the special terminal keys have for the PRIMOS
operating system or for some of its subsystems

@ What meaning some special characters have for PRIMOS or some of
its subsystems

@ How to define your own special characters or change. the
characteristics of your terminal

This section explains all of them, in the above order.

INTRODUCING PRIMOS

All Prime computers, from the 359 up, use a common operating system
known aS PRIMOS. Under PRIMOS, a Prime computer can support up to 63
simultaneous users. Each user is totally independent. Each one may
use any utility (such as an editor or compiler), and may write,
compile, load, and execute any program, in any language, without regard
to what other users are doing on the system.

Program Environments

Under PRIMOS, programs may execute in three environments:

e Interactive

e@ Phantom

e Batch

Interactive: This is the environment most often used. In it, program
execution is initiated directly by the user. The terminal is dedicated

2 - 1 January 19898

SECTION 2 IDR4130

to the program during execution. The program will accept input from
the terminal and will print at the terminal any output specified by the
program aS well as user- or system-generated error messages. This
environment is explained in Section 7. Major uses are:

@ Program development and debugging

@ Programs requiring short execution time

@e Data entry programs such as order entry, payroll, etc.

@ Interactive programs such as the Editor, etc.

Phantom User: The phantom environment (explained in Section 8) allows
programs to be executed while "disconnected" from a terminal. Phantom
users accept input from a command file instead of a terminal; output
directed to a terminal is either ignored or directed to a file.

Major uses of phantoms are:

@ Programs requiring long execution time (such as sorts)

e Certain system utilities (such as line printer spooler)

e Freeing terminals for interactive uses

Batch Jobs: Since the number of phantom users on a system is limited,

phantoms are not always available. The Batch environment (explained in
Section 9) allows users to subnit non-interactive command files as
Batch jobs at any time. The Batch monitor (itself a phantom) queues
these jobs and runs them, up to six at a time, as phantoms become free.

Compatibility

Because a common operating system is used throughout the Prime
processor line, programs created on one Prime computer can be used on
most other Prime computers, without modification. There is complete
upward compatibility among all models, and complete downward
compatibility among the 758, 658, 558, and 458. Considerable downward
compatibility exists among other models as well, as long as system
constraints on program size and mode of code generated are observed.

Some Hardware Features

Prime's hardware supports this multi-user, interactive environment with

e Virtual memory, which allows users to run programs larger than
the physical memory of the machine. A program may be as large
as 32 megabytes on the Prime 458 and up (768 kilobytes on the

Prime 350).

REV. @ 2 - 2

IDR4138 BEFORE YOU GET STARTED

e Segmentation of programs, allowing the separation of code and
data. This facilitates the creation of pure code for shared or
recursive procedures.

e A ring protection system which provides hardware protection for
the operating system and user subsystems.

Except for segmentation of large programs, users have little immediate
concern with these features. They are largely invisible, designed to
let users concentrate on their own goals without worrying about the
hardware.

USING THE FILE SYSTEM

File and Directory Structures

A PRIMOS file is an organized collection of information identified by a
filename. The file contents may represent a source program, an object
program, a run-time memory image, a set of data, a program listing,
text of an on-line document, or anything the user can define and
express in the available symbols.

Files are normally stored on the disks attached to the computer system.
No detailed knowledge of the physical location of a file is required
because the user, through PRIMOS commands, refers to files by name. On
some systems, files may also be stored on magnetic tape for backup or
for archiving.

PRIMOS maintains a separate User File Directory (UFD) for each user to
avoid conflicts that might arise in assignment of filenames. A Master
File Directory (MFD) is maintained by PRIMOS for each logical disk
connected to the system. (A logical disk, sometimes called a volume,
may occupy either a complete disk pack or a partition of a multi-head
disk pack. In either case, it serves as PRIMOS's basic unit of
storage.) The MFD contains information about the location of each UFD
on the disk. In turn, each UFD contains information about the location
and content of each file or sub-UFD in that directory.

The types of files most often encountered are shown in Table 2-1. For
a description of the PRIMOS file system and a description of the
ordering of information within files, refer to the Subroutines
Reference Guide.

Pathnames

The PRIMOS file directory system is arranged as a tree. At the root
are the disk volumes (also called partitions, or logical disks). Each
disk volume has an MFD containing the names of several UFDs. Each UFD
may contain not only files, but subdirectories (sub-UFDs), and theymay
contain subdirectories as well. Directories may have subdirectories to
any reasonable level.

2 - 3 January 19808

SECTION 2 TDR4138

Table 2-1. Types of Files in PRIMOS

File How How How Use

Type Created Accessed Deleted

ASCII, Programs Programs DELETE Source files,
uncompress- SORT ED (examine only) FUTIL DELETE text, data
ed COMOUTPUT SLIST, SPOOL records for

PL/I STREAM I/O sequential

FIN READ/WRITE access

ASCII, ED, SORT, ED, PL/I STREAM DELETE Same aS un-

Compressed Some COBOL I/O FUTIL DELETE compressed
programs, ASCII

variable- FORTRAN WRBIN FORTRAN RDBIN DELETE Data records

length subroutines, subroutines, FUTIL DELETE
binary PL/I record PL/I record

I/O, SORT T/o

Object Translators:RPG, LOAD or SEG DELETE Input to
(Binary) FIN, PMA, COBOL, Binary Editor FUTIL DELETE SEG or LOAD,

PL/I, Binary (EDB) Binary Editor Libraries
Editor (EDB)

Saved LOAD TAP, PSD DELETE Runfiles

Memory Applications Control panel FUTIL DELETE
Image programs

Segmented SEG SEG, VPSD, DBG SEG DELETE Runfiles

runfile . Control panel FUTIL TREDEL

Segmented SGDRSS$ SGDRS$$ subroutine FUTIL TREDEL Data records
data file subroutine MIDAS MIDAS KIDDEL for direct

MIDAS, DBMS DBMS access

UFD CREATE Contents: LISTF DELETE Used by
Sub-UFD FUTIL TREDEL PRIMOS

MFD MAKE Contents: LISTF NO Used by
PRIMOS

Disk record MAKE NO NO Used by
availabil- PRIMOS
ity table
DSKRAT file

BOOT MAKE NO NO Used by
PRIMOS

CMDNC@ MAKE Contents: LISTF NO Used by
PRIMOS

REV. 9

IDR41308 BEFORE YOU GET STARTED

A pathname (also called a treename) is a name used to specify uniquely
any particular file or directory within PRIMOS. It consists of the
names of the disk volume, the UFD, a chain of subdirectories, and the
target file or directory. For example,

<FOREST>BEECH>BRANCH5>SQUIRREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the
sub-UFD BRANCHS. The file's name is SQUIRREL. Figure 2-1 illustrates
how pathnames show paths through a tree of directories and files.

Disk volume names, and the associated logical disk numbers, may be
found with the STATUS DISKS command, described later. A pathname can
be made with the logical disk number, instead of the disk volume name.
For example, if FOREST is mounted as logical disk 3,

<3 >BEECH>BRANCH5SQUIRREL

specifies the same file as the previous example.

Usually each UFD name is unique throughout all the logical disks. In
our example that would mean that there would be only one UFD named
BEECH in all the logical disks, 9 through 62. When that is the case,
the volume or logical disk name maybe omitted, and PRIMOS will search
all the logical disks, starting from 8, until the UFD is found. For
example, if there is no UFD named BEECH on disks @, 1, or 2, then

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last
form of pathname, in which the disk specifier is omitted, is called an
ordinary pathname because it is very frequently used.

Pathnames vs Filenames

Most commands accept a pathname to specify a file or a directory. So
the terms "filename" and "pathname" may be used almost interchangeably.
A few commands, however, require a filename, not a pathname. It is
easy to tell a filename from a pathname. A pathname always contains a
">", while a filename or directory name never does.

Home vs Current Directories

PRIMOS has the ability to remember two working directories for each
user: the "home" directory, and the "current" directory. With few
exceptions, the home and current directories are the same. All work
can be accomplished while treating them both under the single concept
of "working directory."

2 - 5 January 1989

SECTION 2 IDR4130

PINE1 TP (Not all the UFDs

PINE2 +» are shown.)

BEECH —-—oo —~

PINE3 + |

ELM = |
This directory is the MFD of |
the disk volume <FOREST>. |
 c

——>

+» (Not all subdirectories
and files are shown.)

ORIOLE — TREEHOUSE

This directory is the

UFD ELM. sas : \
This directoryis |
the UFD BEECH. j

TWIG14

This is the This is the

file ORIOLE. file TREEHOUSE.

This is the
subdirectory BRANCH 5.
 y

f LEAF1 +.

LEAF3 +

LEAF4 =
This is the

file SQUIRREL. >
This is the

‘subdirectory
TWIG14

This is the

subdirectory

TWIG37.

This is the This is the

file LEAFS. file LEAF4.

Figure 2-1. Examples of Files and Directories

in PRIMOS Tree-structured File System.

REV. 9 2 - 6

IDR4138 BEFORE YOU GET STARTED

When the user logs in to a UFD, that UFD becomes the working directory.
The ATTACH command changes the working directory to any other directory
to which the user has access rights. A working directory may be an
MFD, UFD, or sub-UFD.

The ATTACH command has a home-key option which allows the current
directory to change while the home directory remains the same. See
Reference Guide, PRIMOS Commands, for details of this operation.

Relative Pathnames

It is often more convenient to specify a file or directory pathname
relative to the home directory, rather than via a UFD. For example,
when the home directory is:

BEECH>BRANCH5

the commands

OK, SLIST BEECH>BRANCH5>TWIG9>LEAF3

and

OK, SLIST *>TWIG9>LEAF3

have the same meaning. The symbol "*" as the first directory in a
pathname means "home directory."

Current Disk

Occasionally it will be necessary to specify a UFD on the disk volume
you are currently using; that is, where your home directory is. For
example, when developing a new disk volume with UFD names identical to
those on another disk, it is necessary to specify which disk is to be
used, each time a pathname is given. The current disk is specified by:

<*>BEECH>BRANCH5

for example. Do not confuse "<*>", meaning current disk, with the "*"
alone, which means home directory.

Passwords

If any directory has a password, the password becomes part of the
directory name or pathname. Apostrophes are used to enclose the
pathname.

2 - 7 January 198d

SECTION 2 IDR4130

For example, if the directory BEECH had a password, SECRET, a pathname

using it might be

"BEECH SECRET>BRANCHS'

SYSTEM PROMPTS

The OK Prompt

The OK prompt indicates that the most recent command to PRIMOS has been

successfully executed, and that PRIMOS is ready to accept another

command from the user. The punctuation mark following the "OK"

indicates to the user whether he is interfacing with a single-user

level of PRIMOS. The prompt "OK:" indicates single-user PRIMOS (a

version of PRIMOS II); the prompt "OK," indicates multi-user PRIMOS.

PRIMOS supports type-ahead. The user need not wait for the "OK," after
one command before beginning to type the next command. However, since

each character echoes as the user types it, output from the previous

command may appear on the terminal jumbled with the command being typed
ahead. Type-ahead is limited to the size of the terminal input buffer.

Default is 192 characters.

PRIMOS II does not support type-ahead. The user must wait for "OK:"

before entering the next command.

The ER! Prompt

The ER! prompt indicates that PRIMOS was unable to execute the most

recent command, for one reason or another, and that PRIMOS is ready to

accept another command from the user. The ER! prompt usually is

preceded by one or more error messages indicating what PRIMOS thought

the troublewas.

Common errors include:

e Typographical errors

@ Omitting a password

@ Being in the wrong directory

e Forgetting a parameter or argument

REV. 8 2 - 8

IDR4139 BEFORE YOU GET STARTED

CONVENTIONS

All of Prime's user guides and reference guides use a single set of
conventions for documenting comands. In all of these guides, the
format of a canmand will be displayed in the following manner:

noetion |
COMMANDNAME argument | ooetion {[-option] ...

The symbols and conventions have the following meanings:

@ WORDS-IN-UPPER-CASE

Capital letters identify command words or keywords. They are to be
entered literally. If a portion of an uppercase word is underlined,
the underlined letters indicate the minimum legal abbreviation.

e Words-in-lower-case

Lowercase letters identify parameters. The user substitutes. an
appropriate numerical or text value.

e Braces { }

Braces indicate a choice of parameters and/or keywords. At least one
choice must be selected.

e Brackets []

Brackets indicate that the word or parameter enclosed is optional.

@ Hyphen -

A hyphen identifies a canmand line option, as in: SPOOL -LIST.
Hyphens must be entered literally.

e Parentheses ()

When parentheses appear in a command format, they must be included
literally.

e Ellipsis ...

The preceding parameter may be repeated.

2 - 9 January 1980

SECTION 2 TDR4130

@ Angle brackets < >

Used literally to separate the elements of a pathname. For example:

<FOREST>BEECH>BRANCH537 >TWIG43 >LEAF4.

@ option

The word option indicates that one or more keywords or parameters can

be given, and that a list of options for the command follows.

e Spaces

Command words, arguments and parameters are separated in command lines

by one or more spaces. In order to contain a literal space, a

parameter must be enclosed in single quotes. For exanple, a pathname

may contain a directory having a password:

'<FOREST>BEECH SECRET>BRANCH6' .

The quotes ensure that the pathname is not interpreted as two items

separated by a space.

User input usually may be either in lowercase or in uppercase. The

rare exceptions will be specified in the commands where they occur.

SPECIAL TERMINAL KEYS

@e CONTROL

The key labeled CONTROL (or CTRL) changes the meaning of alphabetic

keys. Holding down CONTROL while pressing an alphabetic key (or some
special keys) generates a control character. Control characters do not

print. Some of them have special meanings to the computer. (See

CONTROL-P, CONTROL-Q and CONTROL-S, below.)

@ RUBOUT

The key labeled RUBOUT has a special use in Prime's text processing

utility, RUNOFF. It is not generally meaningful to other standard

Prime software. On some terminals it is labeled DELETE or DEL.

@ RETURN

The RETURN key ends a line. PRIMOS modifies the line according to any

erase (") or kill (?) characters, and either processes the line as a

PRIMOS command, or passes it to a utility such as the EDITOR. RETURN

is also called CR, CARRIAGE-RETURN, or NEW-LINE.

REV. @ 2 - 10

IDR4139 BEFORE YOU GET STARTED

@e BREAK

ATIN See CONTROL-P

INTRPT

SPECIAL CHARACTERS

@e Caret (*)

Used in EDITOR to enter octal numbers and for literal insertion of
Special characters. On some terminals and printers, prints as up-arrow
(T).

e Backslash (\)

Default EDITOR tab character.

@ Double-quote (")

Default erase character for PRIMOS and all subsystems. Each
double-quote erases a character from the current line. Erasure is from
right (the most recent character) to left. ‘Two double-quotes erase two
characters, three erase three, amd so forth. You cannot erase beyond
the beginning of a line. The PRIMOS command TERM (described later in
this section) allows the user to choose a different erase character.

@ Question mark (?)

Default kill character for PRIMOS and all subsystems. Each question
mark deletes all previous characters on the line. ‘The PRIMOS command
TERM allows the user to choose a different kill character.

@ CONTROL-P

QUIT immediately (interrupt/terminate) from execution of current
command and return to PRIMOS level. Echoes as QUIT. Used to escape
from undesired processes. Will leave used files open in certain
circumstances. Equivalent to hitting BREAK key.

@ CONTROL-S

Halt output to terminal, for inspection. Program will run until output
buffer is full; then it will be suspended. Any commands other than
CONTROL-S or CONTROL-Q will be placed in the input buffer (until that
buffer is full). They will not execute until the suspended program has
terminated. Input will not be echoed at the terminal until either

2 - ll January 1988

SECTION 2 IDR4138

CONTROL-P (QUIT) or CONTROL-Q (Continue) is given. This special

function is activated by the command TERM -XOFF.

e CONTROL-O

Resume output to terminal following a CONTROL-S (if TERM -XOFF is in

effect).

@ UNDERSCORE (_)

On some devices, prints as a backarrow (=).

@ RESERVED CHARACTERS

The following characters are reserved by PRIMOS for special uses. They

may not be used in file names:

()£} C1) <>! &@'=+*>@7: Fz 2? “\% rubout

SETTING TERMINAL CHARACTERISTICS

Terminal characteristics may be set with the TERM command. These

characteristics remain in effect until you reset them or until you log

out. The commonly used TERM options are listed below. Typing TERM

with no options returns the full list of TERM options available. The

format is:

TERM options

The canmon options are:

Option | Function

-ERASE character Sets user's choice of erase character in

place of the " default.

~KILL character Sets user's choice of kill character in

place of ? default.

~XOFF Enables X-OFF/X-ON feature, which allows

users to suspend terminal output

temporarily and to resume it at the point

of suspension. Output is halted by typing

CONTROL-S and is resumed by typing

CONTROL-Q. Also sets terminal to full

duplex (default value).

IDR41 36 BEFORE YOU GET STARTED

Option Function

—NOXOFF Disables X-OFF/X-ON feature (default) .

-DISPLAY Returns list of currently set ‘TERM
characters. Also displays current Duplex,
Break and X-ON/X-OFF status.

2 - 13 January 1989

TDR4139 ACCESSING PRIMOS

SECTION 3

ACCESSING PRIMOS

_ INTRODUCTION

In this section we introduce the essential PRIMOS commands so that you
can begin working on the system. We recommend that you keepa
Programmer's Companion handy as a summary of the commands explained in
this section plus other PRIMOS commands. In this user's guide we have
selected only those PRIMOS commands we know will be of use to most
programmers. Depending upon your application, there are many other
PRIMOS commands that may simplify your task or increase efficiency.

Using PRIMOS

PRIMOS recognizes more than 188 commands, some of which invoke
subsystems which themselves respond to subcommands or extensive
dialogs. However, most users can do 99 percent of their program
development using about a dozen commands. This section introduces the
essential commands needed by all users. These commands allow you to:

@ Gain admittance to the computer system (LOGIN)

e@ Change the wrking directory (ATTACH)

@ Create new directories for work organization (CREATE)

e Secure directories against intrusion (PASSWD)

@ Remove empty directories or unwanted files (DELETE)

@ Examine the location of the working directory and its contents
(LISTF)

e@ took at the availability and current usage of system resources -
space, users, etc. (AVAIL, STATUS, USERS)

@ Rename files or directories (CNAME)

@ Determine file size (SIZE)

@® Examine files (SLIST)

@ Remove unneeded files (DELETE)

e@ Allow controlled access to files (PROTEC)

@ Complete a work session (LOGOUT)

3 - 4. January 198¢

SECTION 3 IDR41398

ACCESSING THE SYSTEM

In order to access or work in the system, the user must first follow a
procedure known as 'login'. "Logging in' identifies the user to the
system and establishes the initial contact between system and user (via
a terminal). Once logged in, the user has access to a working
directory (work area), to files and to other system resources. The
format of the LOGIN command is:

LOGIN ufd-name [password] [-ON nodename]

ufd-—name The name of your login directory.

password Must be included if the directoryhas
a password.

-ON nodename Used for remote login across PRIMENET network.

For example:

LOGIN DOUROS NIX
DOUROS (21) LOGGED IN AT 18'33 112878

The number in parentheses is the PRIMOS-assigned user number (also

called 'job' number). The time is expressed in 24-hour format. The
date is expressed as mmddyy (Month Day Year). The word NIX, in this
example, is the password on the login directory.

During login, a misspelled UFD will cause the message "Not found.
(LOGIN)" to be displayed. A misspelled or incorrect password will
return the message "Insufficient access rights. (LOGIN)." If you get
either of these messages, check to be sure you're logging into the
right directory with the right password; then try logging in again.
If you still have trouble, ask your supervisor for help. If the system
itself is overloaded, a message such as "maximum number of users
exceeded" may be displayed. In this case, log in again later, when
some other user may have logged out. .

DIRECTORY OPERATIONS

Changing the Working Directory

After logging in, the user's working directory is set to the login UFD
by PRIMOS. The user can move (i.e., attach) to another directory in
the PRIMOS tree structure with the ATTACH command. The format is:

ATTACH new-directory.

new-directory is the pathname of the new working directory.

REV. @ 3 - 2

IDR4136 ACCESSING PRIMOS

Note

If any directory in the pathname has a password, the pathname
must be enclosed in single quotes, as in:

A ‘BEECH SECRET>BRANCHS'

To set the MFD of a disk as the working directory, the format is
Slightly different:

ATTACH <volume>MFD mfd-password

volume is either the literal volume name or the logical disk number,
and mfd-password is the password of the MFD. A password is always
required for an MFD.

Recovering from Errors While Attaching: If an error message is
returned following an ATTACH command (for example, if a UFD is not
found), the user remains attached to the previous working directory.

However, if an incorrect password is given, then the user is not
attached to any UFD (has no working directory). If a command, such as
LISTF, is entered while in this state, the message:

NO UFD ATTACHED

is returned. To remedy this condition, the user must ATTACH to a UFD
as in:

A BEECH

or to a subdirectory, using a complete or ordinary pathname (but not a
relative pathname), as in:

A BEECH>BRANCH2

Creating New Directories

To organize tasks and work efficiently, it is often advantageous to
create new Ssub-UFDs. These sub-UFDs can be created within UFDs or
other sub-UFDs with the CREATE command. ‘They can contain files and/or
other subdirectories. The format is:

CREATE pathname

The pathname specifies the directory in which the sub-UFD is being
created, aS well as the name of the new directory. For example:

CREATE <1>TOPS>MIDDLE>BOTTOM

The sub-UFD BOTTOM is created in the Sub-UFD MIDDLE, which in turn is
found in the UFD TOPS, which is in the MFD of disk volume 1.

3 - 3 January 19898

SECTION 3 IDR41308

Subdirectories may be created within the current directory simply by

specifying the new directory name. For example:

CREATE SUBDIR

Two files or sub-UFDS of the same name are not permitted ina

directory. If this is inadvertently attempted, PRIMOS will return the

message:

Already exists. DIRECTORY-NAME
ER!

Assigning Directory Passwords

Directories may be secured against unauthorized users by assigning

passwords with the PASSWD command. There are two levels of passwords:

owner and non-owner. If you give the owner password in an ATTACH

command, you have owner status; if you give the non-owner password in

an ATTACH command, you have non-owner status. Files can be given

different access rights for owners and non-owners with the PROTEC

command (see Controlling File Access).

The PASSWD command replaces any existing password(s) on the working

directory with one or two new passwords, or assigns passwords to this

directory if there are none. The format is:

PASSWD owner-password [non-owner-—password]

The owner-password is specified first; the non-owner-password, if
given, follows. If a non-owner password is not specified, the default

is null; then, any password (except the owner password) or none allows

access to this directory as a non-owner. For example:

OK, A DOUROS NIX
OK, PASSWD US THEM

The old password, NIX, is replaced by the owner password US, and the

non-owner password THEM. Passwords may contain almost any characters;

but they may not begin with a digit (8-9).

Examining Contents of a Directory

After logging in or attaching to a directory, the user can examine the

contents of this directory with the LISTF command which generates a

list of the files and subdirectories in the current directory. The
format is:

LISTF

REV. @ 3 - 4

IDR4130 ACCESSING PRIMOS

For example, the working directory is called LAURA. The following list
will be generated when LISTF is entered at the terminal:

OK, LISTE

UFD=<MISCEL>TEKMAN>LAURA 6 OWNER

SQUERY BOILER EX LETTER QUERY OLISTF BASICPROGS
OUTLINE SOUTLINE MOL SMOL SLETTER MOL. LETTER FTN1@
EXAMPLES FUTIL.10 SFUTIL. 10

OK,

The number following the UFD-name is the logical device number, in this
case, 6. The words OWNER or NONOWN follow this number, indicating the
user status in this directory. (See Assigning Directory Passwords) .

If no files are contained in a directory, .NULL. is printed instead of
a list of files.

Deleting Directories

When directories or subdirectories are no longer needed, they may be
removed from the system to provide more room for current work. If the
directories are empty, they may be removed by the DELETE command. The
format is:

DELETE pathname

If an attempt is made to delete directories containing files or
subdirectories, PRIMOS prints the message:

The directory is not empty. (DIRECTORY-NAME)

In this case, the user must do one of two things:

e Use the LISTF command to find what files (or subdirectories) are

in the directory. Delete each entry with the command "DELETE
filename." Then delete the empty directory.

e Use FUTIL's TREDEL command (explained in Section 14) to delete
files and directory simultaneously.

SYSTEM INFORMATION

Table 3-1 summarizes useful information you may need about the system
and how to obtain it.

3 - 5 January 1988

SECTION 3

Table 3-1.

Item

Number of users

User login UFD

User number

User line number

User physical
device

Open file units

Magnetic tape units

Disks in operation

Assigned peripheral

devices

User priorities

Other user numbers

Your phantom
user number

Network information

Current nodename

Records available

System time
and date

REV. @

IDR4130

Use

Indicates system
resource usage and
expected per formance.

Identifies user who
spooled text file
(printed on banner).

Avoids conflict when

using files.

Lists asSigned units,
with their logical
aliases and users

Tells what devices

are available.

For logging out your
phantoms.

Tells if network is

available.

Tells how much roan

is available for file

building, sorting, etc.

Performs time logging
in audit files.

Useful System Information

PRIMOS commands

STATUS USERS (user list)
USERS (number of users)

STATUS, STATUS UNITS,.
STATUS ME

STATUS ME, STATUS USERS

STATUS ME, STATUS USERS

STATUS ME

STATUS, STATUS UNITS

STATUS DEVICE

STATUS, STATUS DISKS

STATUS USERS

STATUS USERS

STATUS USERS

STATUS USERS, STATUS ME

STATUS, STATUS NET

STATUS NET, STATUS UNITS

AVAIL

DATE

Item

Computer time used
Since login

Spool queue
contents

Names and status of

printers

Fnvirorment for a

printer

Batch users

Your active Batch

jobs

Batch queue status

Batch queue
configurations

IDR413¢8

Table 3-1.

Use
——

Measures program

execution time.

Tells if job has been
printed.

Tells if local printers
are functioning.

Gives parameters for
printer's operations

Identifies executing
jobs, number of jobs
per queue

Gives job id, status;
gives job parameters

Shows environment

of Batch system

Note

(Cont'd)

ACCESSING PRIMOS

PRIMOS commands

TIME

SPOOL -LIST

PROP -—STATUS

PROP printer-—name
-DISPLAY

BATCH -DISPLAY

JOB -STATUS

JOB -DISPLAY

BATGEN ~STATUS

BATGEN —DISPLAY

Information given by any STATUS command is also given by the
STATUS ALL command.

January 1989

SECTION 3 IDR4138

FILE OPERATIONS |

Creating and Modifying Files

Text files are created and modified using the text editor (ED). They

are printed on the line printer using the SPOOL command. Both these
processes are discussed in Section 4. Files may be transferred from
other systems not connected via PRIMENET using magnetic tape (MAGNET
command) , paper tape (ED command), or punched cards (CRSER command).
These commands are described in Section ll.

Changing File Names

It is often convenient or necessary to change the name of a file or a
directory. This is done with the CNAME command. The format is:

CNAME old-name new-name

old-name is the pathname of the file to be renamed, and new-name is the
new filename. For example:

cn tools>moretest oldtest

The file named MORETEST in the UFD TOOLS is changed to OLDTEST. Since
no disk was specified, all MFDs (starting with logical disk 9) are
searched for the UFD TOOLS.

If new-name already exists, PRIMOS will display the message:

Already exists. OLDTEST
ER!

An incorrect old-name prompts the message:

Not found. MORETEST
ER!

Determining File Size

The size (in decimal records) of a file is obtained with the SIZE
command. This command returns the number of records in the file
specified by the given pathname. The number of records ina file is
defined as the total number of data words divided by 44@. However, a
zero-word length file always contains one record. The format is:

SIZE pathname

REV. @ 3 - 8

IDR413d ACCESSING PRIMOS

For example:

OK, SIZE GLOSSARY
14 RECORDS IN FILE

Examining File Contents

Contents of a program or any text file can be examined at the terminal
with the SLIST command. The format is:

SLIST pathname

The file specified by the given pathname is displayed at the terminal.
It is possible to suspend the terminal display as it is printing. See
the discussion on TERM, in Section 2.

Deleting Files

When files or programs are no longer needed they may be removed from
the system to provide more room for other uses. The DELETE command
deletes files from the working directory. The format is:

DELETE pathname

SEG runfiles cannot be deleted by this command. They must be deleted
by SEG's own delete command (explained in Section $) or by FUTIL's
TREDEL command (explained in Section 10).

Controlling File Access

Assigning passwords to directories allows users working in a directory
to be classified as owners or non-owners, depending upon which password
they use with the ATTACH command. Controlled access can be established
for any file using the PROTEC command. This command sets the
protection keys for users with owner and non-owner status in the
directory. (See Assigning Directory Passwords above.) The format is:

PROTEC pathname [owner-rights] [non-owner-rights]

pathname The name of the file to be protected.

owner-rights A key specifying owner's access rights to
file (original value = 7).

non-owner-rights A key specifying the non-owner's access
rights (original value = @).

3 - 9 January 1980

SECTION 3 IDR4138

The values and meanings of the access keys are:

Rights

No access of any kind allowed

Read only
Write only
Read and Write
Delete and truncate

Delete, truncate and read
Delete, truncate and write
All access

s
S
O
O

PS
P
W
D
H
F
&

@

For example:

PROTEC <OLD>MYUFD>SECRET 7 1

In this example, protection rights are set on the file SECRET in the

UFD MYUFD so that all rights are given to the owner and only read

rights are given to the non-owner.

Note

The default protection keys associated with any newly created
file or UFD are: 79. The owner is given ALL rights and the
non-owner is given none. Default values for the PROTEC
command, however, are: @ @. Thus, the command PROTEC MYFILE

denies all rights to owner and non-owner alike.

COMPLETING A WORK SESSION

When finished with a session at the terminal, give the LOGOUT command.

The format is:

LocouT
PRIMOS acknowledges the command with the following message:

UFD—name (user-number) LOGGED OUT AT (time) (date)
TIME USED = terminal-time CPU-time I/O-time

user—number The number assigned at LOGIN.

terminal-time The amount of elapsed clock time between LOGIN

and LOGOUT in hours and minutes.

REV. 0 3 - 1

IDR4139 . ACCESSING PRIMOS

CPU-time Central Processing Unit time consumed in minutes
and seconds.

I/O-time The amount of input/output time used in minutes
and seconds.

It is a good practice to log out after every session. This closes all
files and releases the PRIMOS process to another user. However, if you
forget to log out, there is no serious harm done. The system will
automatically log out an unused terminal after a time delay. This
delay is set by the System Administrator (the default is 10808 minutes
but most System Administrators will lower this value).

3 - ll January 19890

TDR4130 CREATING AND LISTING FILES

SECTION 4

CREATING SOURCE FILES

ENTERING AND MODIFYING PROGRAMS - THE EDITOR

Programs are normally entered into the computer using Prime's Text
Editor (ED). This Editor is a line-oriented text processor. That is,
it enters and modifies text on a line-by-line basis, keeping track of
its current location by a line pointer which is always located at the
last line processed (whether the processing action is’ printing,
locating, moving pointer, etc). The Editor Operates in two modes,
INPUT and EDIT.

Using the Editor

When creating a new file, the Editor is invoked by

ED

which places the Editor in the INPUT mode. When modifying an existing
file, the Editor is invoked by

ED filename

which places the Editor in the EDIT mode.

A RETURN with no preceding characters on that line switches the Rditor
from one mode to another.

Input Mode

The INPUT mode is used when entering text information into a file
(e.g., Creating a program). The word INPUT is displayed at the user's
terminal to indicate that the Editor has entered that mode. ‘The RETURN
key terminates the current line and prepares the Editor to receive a
new line. Tabulation is done with the backslash (\) character. Each
backslash represents the first, second, etc., tab setting; the default
tabs are at columns 6, 15, and 3%. ‘These settings may be overridden
and up to 8 tab settings may be specified by the user with the TABSET
command (described later). A RETURN with no text preceding it puts the
Editor into EDIT mode.

Edit Mode

The EDIT mode is used when the contents of the file are to be modified.
More than 58 commands are available, although users will find that a
small subset of these will suffice for most purposes. The commands are
listed and described later in this section.

4 - Jt January 1980

SECTION 4 TDR41398

In EDIT mode, the Editor maintains an internal line pointer at the

current line (the last line processed). Commands such as TOP, BOTTOM,

FIND, and LOCATE, move this pointer. WHERE prints out the current line

number; POINT moves the pointer to a specified line number. The MODE

NUMBER command causes the line number to be printed out whenever a line

of text is printed. All commands for location and modification begin

processing with the current line.

A RETURN without any preceding characters puts the Editor into the

INPUT mode.

Special Characters

In either mode, a single character can be erased with the erase

character (default is "). For each " typed, a character is erased

(from right to left). The entire current line may be deleted by typing

the kill character (default is ?). A line followed by a ? is null,

and a RETURN at that point will switch the Editor into the other mode.

In input mode, the semicolon (;) is equivalent to a CR (ends a line of

input). In edit mode, semicolons in a character string are treated as

a printing character; semicolons within commands separate multiple

commands entered on the same line. A special character may be entered

literally in either mode by preceding it with an escape character (*).

Special characters may be changed using the TERM command (explained in

Section 1).

Saving Files

Orderly termination of an Editor session is done from EDIT mode. The

command :

FILE filenane

writes the current version of the edited file to the disk under the

nane filename. The specified file will be created if it did not

previously exist or overwritten if it does exist. If an existing file

is being modified, the command

FILE

writes the edited version to the disk with the old filename. After

execution of the filing command, control is returned to PRIMOS.

REV. 9 4 - 2

IDR41398 CREATING AND LISTING FILES

Useful Techniques

The following will aid the user in adapting to Prime's Editor:

Tab Settings: When entering source code, much time can be saved using
the TABSET command. In INPUT mode, each \ character is interpreted as
one tab setting; the default values are columns 6, 15, and 30. Tabs
may be set to whatever values each programmer finds useful, Setting a
tab near column 45 makes entry of in-line comments simple; the use of
Such comments in programs is strongly advised.

Moving Lines of Code: Any number of lines can be moved from one
location to another using the DUNLOAD command. DUNLOAD deletes these
lines as it writes them into an auxiliary file. A LOAD command loads
the new file at the desired point. Any number of lines can be copied
from one location in a

_

program to another using the UNLOAD command.
UNLOAD does not delete the lines as it writes them into an auxil iary
file. A LOAD command loads the copy fram the new file at the desired
point.

Overlaying Comments After Code is Written: Comments may be easily
added to an existing source progran with the OVERLAY command in
conjunction with the TABSET command.

Finding a Line by Label or Statement Number: ‘The FIND command may be
used to locate a statement number in a FORTRAN progran or a label ina
COBOL or PL/I program.

Modifying a Line Without Changing Character Positions: The MODIFY
command is used when a line must be modified but the absolute column
alignment must remain the same,

Other hints: When entering FORTRAN programs, it is often helpful to use
the TABSET command to reset tabs to columns 7 and 45.

When entering PL/I programs, use the SYMBOL command to change the
SEMICO character (which normally tells the editor of the end of a line
or command) from a semicolon to something else. For example:

SYMBOL SEMICO {

In this example, the brace becomes the Editor's line-ending symbol, and
the semicolon is freed for its PL/I functions.

To enter a single semicolon (or other special character), precede it
with an up-arrow.

To enter up-arrows literally, type two up-arrows. The result displays
aS two up-arrows on the terminal, but prints as one up-arrow on the
printer and is interpreted as a single up-arrow by compilers.

4 - 3 January 1989

SECTION 4 TDR4130

SAMPLE EDITING SESSIONS

Here are three examples showing the writing and editing of source

files. See the list following these examples for an explanation of the

commands.

A PL/I Example

OK, ED
INPUT

An empty line puts us in edit mode

EDIT

TABSET 3 6 9 12 18 21 Set tabs for PL/I code

SYMBOL SEMICO [Change editor's delimiter symbol
Pmpty line puts us in input mode

INPUT

\DO I=1 TO 18 Type in source code using tabs

\\DO J=1 TO 10; to show levels of indentation

WAX (1 ,J=A(1) +B (1);
WAY (1,5) =SORT (X(T)) 3
\\END; /*J-LOOP*/

\END; /*I-LOOP*/

EDIT

TOP Go to top of file

NEXT First non-null line

DO I=l TO 19
APPEND ; Add a forgotten semicolon

DO I=l TO 10;
NEXT 2 Down two lines

X(I,J=A(L)+B(T);
CHANGE/J/J) Balance parentheses

X(I,J)=A(1I)+B(1);
TOP

PRIT ?PRINT 99 Check code before filing
NULL.

DO I=1 TO 19;

DO J=1 TO 10;

X(L,J)=A(1I)+B(I);

¥ (I,J) =SOQRT (X(I,J));
END; /*J-LOOP*/

END; /*I-LOOP*/
BOTTOM

FILE ED. EX Name a new file when you file it

OK,

REV. 9 4 -- 4

TIDR4136 CREATING AND LISTING FILES

A FORTRAN Example

OK, ED
INPUT

EDIT

TABSET 7 45 Useful settings for FORTRAN

INPUT

\A-"=30\/* COMMENT Quote mark erases one character
\B=46
C-A?\C=A4B Question mark erases entire line.
\PRINT 10,C
CALL EXTI""IT

\END

EDIT
FILE FIN. TEST

OK, ED FIN. TEST
EDIT

PRINT 20

-NULL.
A=30 /* COMMENT
B=40
C=A4+B

PRINT 19,C

CALL EXIT

END

BOTTOM

NEXT -3 Move up three lines
PRINT 10,C

TABSET 7 45 Set FORTRAN tabs again
INSERT 1@\FORMAT('THE ANSWER IS',I4) Insert forgotten line
TOP, PRINT 20 Check file once more

-NULL.

A=30 /* COMMENT
B=49d
C=A+B

PRINT 19,C
19 FORMAT ('THE ANSWER IS',I4)

CALL EXIT

END

BOTTOM

FILE No need to use a filename this time

OK,

4 - 5 January 1988

SECTION 4 TDR4130

A COBOL Example

OK, ED
INPUT

EDIT
MODE COLUMN

INPUT
1 2 3 4 5 6 7

12345678901 2345678901 23456789012345678981 23456789012345678981 234567898123456789

ID DIVISION.
PROGRAM-ID. TEST. Source coding is keyed in,
INSTALLATION. PRIME. aligned by column.

\ *

. The first tab default is position

. 6. A space after the backslash

. character positions the asterisk
in the continuation column 7.

OK,

EDITOR COMMAND SUMMARY

The following is an alphabetic list of each Editor command and its

function. Acceptable command abbreviations are underlined. Especially

useful commands are indicated with a bullet (e). For a detailed

description of all commands, see the Editor Reference Section of The

New User's Guide To EDITOR and RUNOFF.

Note

The string parameter in a command is any series of ASCII

characters including leading, trailing, or embedded blanks. A

semicolon terminates the command unless it appears within

delimiters (as in the CHANGE, MODIFY, or GMODIFY commands) or
is preceded by the escape character (*).

Command Function

@ APPEND string Appends string to the end of the

current line.

e BOTTOM Moves the pointer beyond the last

line of the file.

IDR4138 CREATING AND LISTING FILES

BRIEF

@ CHANGE/string-1/string-2/[G] [n]

e DELETE [n]

DELETE TO string

@ DUNLOAD filename [n]

DUNLOAD filename TO string

ERASE character

e FILE [filename]

FIND string

e FIND(n) string

GMODIFY

(ASR)
INPUT (PTR)
—— |(PRY)

@ INSERT string

KILL char acter

Speeds editing by suppressing the
(default) verification responses to
certain Editor commands.

Replaces string-1 with string-2 for
n lines. “If Gis omitted, only the
first occurrence of string-1 on each
line is changed; if G is present,
all occurrences on n lines are
changed.

Deletes n lines, including’ the
current line (default n=1).

Deletes all lines up to but not
including line containing string.

Deletes n lines from current file

and writes them _into filename.

(Default n=1.)

Same aS DELETE...TO, but writes
deleted lines into filename.

Sets erase character to character.

Writes the contents of the current

file into filename and QUITs to

PRIMOS.

Moves the pointer dow to the first
line beginning with string.

Moves the pointer down to first line
with string beginning in column n.

Allows the user to enter a string of
subcommands which modify characters
within a line.

Reads text from the specified
input device: ASR (Teletype
Ppaper-tape reader), PTR (high-speed
paper tape reader) or TTY
(terminal). Default is TTY.

Inserts string after current line.

Sets kill character to character.

- 7 January 198¢

SECTION 4 TDR4130

LINESZ [n]

e LOAD filename

@ LOCATE string

LOCATE string, *

MODE CKPAR

MODE COLUMN

MODE COUNT start increment width

MODE NCKPAR

MODE NCOLUMN

MODE NCOUNT

MODE NUMBER

MODE NNUMBER

MODE PRALL

REV. @ 4

Changes maximun line length.
(Minimun linesz is 10). Linesz
changes the maximun length of both
command lines and input lines.

Loads filename into text following

the current Line.

Moves pointer forward to the first
line containing string, which may
contain leading and trailing blanks.

Moves pointer forward to each
occurrence of string between
pointer's current position and end
of file.

Prints characters as real characters

if parity's on, as octal numbers

(“nnn) if parity's off.

Displays column numbers whenever
INPUT mode is entered.

PRINT

BLANK

SUPPRESS

Turns on the automatic incremented

counter.

Prints all characters as if they had
parity on (default).

Turns off the column. display

(default).

Suspends counter incrementing

(default) .

Displays line numbers in front of

printed line.

Turns off the line number display

(default) .

Prints lower case characters if

device has that capability.

IDR4130 CREATING AND LISTING FILES

MODE PRUPPER

MODE PROMPT

MODE NPROMPT

MODIFY/string-2/string-1/[G] [n]

MOVE buffer-1{potter
/string/

@ NEXT [n]

NFIND string

NFIND (n) String

@ OVERIAY string

PAUSE

POINT line—number

@ PRINT [n]

PSYMBOL

Prints all characters as upper case.
Precedes lower case characters with
an “L and precedes upper case
Characters with an “U if the device
is upper case only.

Prints prompt characters for INPUT
and EDIT modes.

Stops printing of INPUT and EDIT
prompt characters (default).

Superimposes string-l onto string-2
for n lines. If G is omitted, only
the first occurrence of string-1 on
each line is modified; otherwise
all occurrences of sstring-l are
modified.

Move string or contents
of buffer-2 into buffer-l.

Moves the pointer n lines forward or
backward (default n=l).

Moves pointer down to first line NOT
beginning with string.

Moves pointer down to first line in
Which string does not start in
column n.

Superimposes string on current line.

Use tabs to start in middle of line.
use ! to delete existing
characters. (A blank in the string

leaves the old character in place.)

Returns to operating system without
changing the Editor state.

Relocates the pointer to

line-number.

Prints the current line or n lines
beginning with the current line.
Moves pointer to last line printed.

Prints a list of current symbol
characters and their function.

- 9 January 1980

SECTION 4

PTABSET tab-1...tab-8

(ASR)
PUNCH [n]

—~ (ere)
QUIT

RETYPE string

SYMBOL name character

TABSET tab-1...tab-8

e@ TOP
—

@ UNLOAD filename [n]

UNLOAD filename TO string

@ VERIFY

WHERE

XEQ buffer

TDR4139

Provides for a setup of tabs on
devices that have physical tab
stops.

Punches n lines on high- or
low-speed paper-tape punch.

Returns control to PRIMO without

filing text.

The current line is replaced by
string.

Changes a symbol name to character.
Current default values are:

Name Default Characters

KILL ?
ERASE "
WILD !
BLANK #
TAB \
ESCAPE “
SEMICO
CPROMPT
DPROMPT Q

U
r
s

Sets up to eight logical tab stops
to be invoked by the tab symbol ().

Moves the pointer one line before
the first line of text.

Copies n lines into filename.

Unloads lines from current file into

filename until string is found.

Displays each line after completion
of certain commands. (Default).

Prints the current line number.

Executes the contents of buffer.

IDR4130 CREATING AND LISTING FILES

*{n] Causes preceding command to be
repeated n times as in:

F /3:D; *19

which deletes the next ten lines

that begin with / . If nis
omitted, the command repeats until
the bottom of file is reached.

LISTING PROGRAMS

Terminal Listing

Source programs may be listed at the terminal by using the SLIST
command, described in Section 3.

Line Printer Listing

Use the SPOOL command (explained below) to obtain a copy of a source
file on the system line printer.

Renaming

Programs may be renaned with the PRIMOS command CNAME (Section 3). You
must have owner status in the UFD in order to use this command.

Deleting

Programs may be deleted with the PRIMOS command DELETE (Section 3).
You must have delete access in order to use this command.

OBTAINING COPIES OF FILES (SPOOL)

Printed copies of files from a line printer are obtained with the SPOOL
comand. It has several options, some of which will not apply to all
systems, as systems may be configured differently. The format is:

SPOOL pathname [options]

4 - ll January 1989

SECTION 4 TDR4130

PRIMOS makes a copy of pathname in the Spool Queve List for the line

printer, and displays the message:

Your spool file, PRTnnn, is x record[s] long.

nnn is a 3-digit number which identifies the file in the Spool Queue

List. x is number of records in the file. PRIMOS spools out short
files as soon as possible; long files receive a lower priority. For
exanple;

OK, spool example
[SPOOL rev 17.2]
Your spool file, PRT@15, is 2 records long.

OK, spool tekmam al ice>update
[SPOOL rev 17.2]
Your spool file, PRT@15, is 1 record long.

OK,

In this example, one file was spooled by filename and the other by
pathnane. However, SPOOL will refer to both by their filenames, that

is, EXAMPLE and UPDATE.

Checking the Queue: To check the status of the Spool Queue, give the

command ;

SPOOL -LIST

PRIMOS returns a list of all the files on the Queve which have not yet

been printed. Additional information, such as the size, destination,

the PRT number, any options, the form-type and the login-name of the
user who spooled the file, are also specified. For example:

OK, spool -list
[SPOOL rev 17.1]

user prt time name size opts/# form defer at: NEWTON

ELLEN 9@@1 16:42 CARLSON.REPFIL 4B 2 WIDE
TEKMAN 002 9:19 COB#01 3 3 22:88 3
TEKMAN 893 9:20 COBHO2 G WHITE 18:90
SCELZA 895 9:28 TIMETABLE.MEM 4 WHITE
SCELZA 906 9:28 TIMETABLE.MEM 4 WHITE

SCELZA 907 9:28 TIMETABLE.MEM 4 WHITE
TEKMAN 888 9:21 GORK 6 18:08 2

OK,

REV. @ 4 - 12

IDR4138 CREATING AND LISTING FILES

Cancelling a Spool Request: To cancel one or more spool requests, the
command format is:

SPOOL -CANCEL [PRT]n-1 [,n-2...]

where n-1l, n-2, etc., are the numbers of your spool files to be
cancelled. For example:

OK, spool -cancel 47 648 prtg49
[SPOOL rev 17.9]
PRT@47 has been cancelled.

PRT@48 has been cancelled,

PRT@49 has been cancelled.

Printing Multiple Copies: You can request several copies of one file
by using the -COPIES option:

SPOOL pathname -COPIES n

n is the number of copies desired.

Deferring Printing: The —-DEFER option tells the Spooler not to begin
printing the indicated file until the system time matches the time
specified with DEFER. This permits you to enter SPOOL requests at your
convenience, rather than waiting for the appropriate hour.

Specify the DEFER option by:

SPOOL pathname -DEFER time

The format for time is HH [:] MM [AM/PM]. I£ AM or PM is given, HH:MM
(the colon is optional) must be in 12-hour format (e.g., 1008 PM).
Otherwise, time will be interpreted as 24-hour format (in which 2209 is
10:00 PM and 1008 is 10:99 AM.

Printing on Special Forms: Line printers traditionally use one of two
types of paper -- "wide" listing paper, on which most progran listings
appear, and 8-1/2 x 1l-inch white paper, which is standard for menos
and documentation. Computer roams often stock a variety of special
paper forms for special purposes, such as 5-copy sets, pre-printed
forms (checks, orders, invoices) , or odd sizes or colors of paper.

Request a specific form by:

SPOOL pathname -FORM form—name

form-name is any six-character (or less) combination of letters. A
list of available form names can be obtained with the PROP command,
explained in the PRIMOS Commands Reference Guide.

4 - 13 January 1980

SECTION 4 TDR4130

Changing the Header: The -AS option tells the spooler to print your

file under a different name. The form is:

SPOOL pathname -AS alias

The alias will appear on the header and in the SPOOL -LIST display.

Printing at Specific Locations: Networks with several printers often

arrange to have the printers read each other's queues. It is therefore

possible for a spool request to be printed at another location, perhaps

many miles distant. To insure that a spool request is printed where

you want it, use the —AT option:

SPOOL pathname -AT destination

destination is a word of 16 letters or less. A list of available

destination-names can be obtained with the PROP command, explained in

the PRIMOS Commands Reference Guide. (If a destination appears in the

heading of the SPOOL -LIST display, for exanple, AT:NEWTON, then that

destination is the default destination for spool requests. Tf no

destination folows "AT:", then no default has been established, and

Spool requests without destinations may be intercepted by any available

printer.

Eliminating Headers: To have files printed without header or trailer

pages, use the -NOHEAD option:

SPOOL pathname —NOHEAD

This option is particularly useful with preprinted forms, but if you're

using this option in a multi-user environment, you will have to

identify your own jobs.

Multiple Options: Any or all of the above options may be used jointly

in a single SPOOL command line. If -LIST or -CANCEL is included, it

must be the last option on the command line. For example:

OK, spool o_17 -as ex.1 —at bldg.1 -defer 22:00

[SPOOL rev 17.9]
Your spool file, PRT#48, is 1 record long.

This particular command requests that the file naned "O17" be printed

at the "bldg.1" printer, under the alias of "EX.1", at 10 pm (22:80).

PRINTING SEVERAL FILES IN ONE (CONCAT)

The CONCAT command concatenates files into a single file, which can

then be printed via the SPOOL command. The format for CONCAT is:

CONCAT new-file-name [-options]

REV. 9 4 - 14

TDR4136 CREATING AND LISTING FILES

Options govern the format of the print-out and the disposition of the
files. For details, see CONCAT in the PRIMOS Commands Reference Guide.

When you give the CONCAT command without options, CONCAT goes into
input mode. It asks for the names of the files to be concatenated, and
prints a colon pranpt. Type the filenames, one per line. A null line
(carriage return) signals the end of list. CONCAT then goes into
command mode, and prints a right-angle prompt. You can then type a
QUIT to end the session. (You can also type "INPUT" to return to input
mode; or you can give various formatting commands, explained in the
PRIMOS Commands Reference Guide.)

A sample session might be:

OK, concat triplet
[CONCAT Rev 17.9]

Enter filenames, one per line:
first
second

: third
: (CR)

>

OK,

If the file TRIPLET already exists, CONCAT asks:

OK to modify old TRIPLET?

Answering NO returns you to PRIMOS command level. Answering YES
pranpts a second question:

Overwrite or append?

Answering OVERWRITE causes CONCAT to replace the old TRIPLET with a new
one. Answering APPEND preserves the existing contents of TRIPLET and
adds the new ones at its end.

4 - 45 January 1988

IDR41390 COMPILING PROGRAMS

SECTION 5

COMPILING PROGRAMS

After the source code has been entered into the system, it must be
compiled. Compilation creates a new file of linkable code, the object
(or binary) file. Each high-level language has its own canpiler which
creates object code from source code. At the object code level, these
languages are equivalent. Thus, modules of object code originating
from different source language may be linked together to forma
run-time program. (Further comments on this will be found at the end
of this section.) Details of Prime's compilers are treated in the
individual language user guides. This section will consider features
common to all compilers.

INVOKING THE COMPILER

The compiler is invoked from PRIMOS-command level by the command:

compiler pathname [options]

compiler is the compiler for the language in which the source program
is written. Current compilers are:

Compiler Language

COBOL COBOL

F77 FORTRAN 77

FTN FORTRAN IV

PL1G PL/I Subset G

RPG RPG II

pathname is the pathname of the source program file.

options allow specification of the creation of object and listing
files, the mode in which the object code is to be generated, the types
of cross references and listings to be generated, debugger interfaces
and the like. These options may be common to all compilers or unique
to a particular language. The common options are summarized in Table
5-1 and discussed in the following paragraphs.

5 - 1 January 1982

SECTION 5 IDR4139

Table 5-1. Compiler Defaults

Compiler Binary/ Listing Cross- Mode

Object File Reference

File

COBOL yes yes no 64V

F77 yes no no 64V

FTN yes no no 32R

PL1G yes no no 64V

RPG yes yes yes 64R

Comments default default use

Bfilename L_filename —XREF
option

OBJECT FILES

In all compilers, the default is to create an object file. The default

name of this file is B filename. For example, suppose the source file

is TEKMANDEXAMTEST. If this file were compiled, the default object

file would be BTEST in the working directory. A non-default binary

file can be created (or suppressed) with the -BINARY option

(abbreviation -B). Possible arguments for this option are:

Argument Meaning

-BINARY YES Create binary file with default name

—BINARY NO Do not create binary file

—-BINARY pathname Create binary file called pathname

REV. @ 5 - 2

IDR4139 COMPILING PROGRAMS

LISTING FILES

Each compiler can create a file listing the source program.
Language-specific options are available to expand on these listings and
add more information. The standard listing is generated by default for
all compilers except FTN and F77. The option to create a listing file
is -LISTING (abbreviation -L). The default name, which is’ formed in
the same way as the default object file name, is Lfilename. The
arguments for the -LISTING option are:

Argument Meaning

-LISTING YES Create listing file with default name.

-LISTING NO Do not create listing file.

-LISTING pathname Create listing file called pathname.

-LISTING TTY Print listing file at terminal.

-LISTING SPOOL Print listing file on line printer.

CROSS REFERENCE

Each language has its particular cross reference listing. Each lists
the program's variables, tells where they appear in the program, and
provides other useful information. Specific details are in each
language guide. Cross references are listed by default for RPG only.
In other languages, the cross-references listing is generated by using
the option -XREF in the command line.

CODE GENERATION

The addressing mode in which object code is to be loaded must be chosen
at compilation time. Prime's compilers can generate object code to be
loaded in several addressing modes. Table 5-2 shows which types of
code can be generated by each compiler.

5 - 3 January 1989

SECTION 5 IDR4139

Table 5-2. Code Generation

321 625V 64R 32R

FORTRAN 77 (F77) v v

FORTRAN IV (FTN) Vv v Vv

PL/I Subset G V /

COBOL y

RPG v
In general, 64V mode is the mode of choice. This is the default on all

compilers except FORTRAN IV (FIN) and RPG IT (RPG). At present, the

REG compiler generates only 64R mode code. ‘To generate 64V mode code

in FORTRAN IV, use the 64V option in the command line. For example:

FIN GOOD -LISTING YES -64V

compiles the program GOOD, producing 64V mode code and creating a

listing file, L GOOD.

The FORTRAN 77 (F77) and PL/I (PL1G) compilers can also generate 32I

mode code. 32I mode code handles double-precision floating-point

arithmentic more rapidly than the other modes do. ‘Therefore, it is the

mode of choice for many mathematical calculations. To generate 321

mode code, use the 32I option in the command line, as in:

F77 CHEERS -—32I

LOADING

All code generated in 64V or 32I mode is loaded with SEG. (This

procedure is often called linking on other systems.) Code generated in

32R or 64R mode is loaded with LOAD. These loaders (or linkers) are

Summarized in Section 5, and explained in detail in the LOAD and SEG

Guide.

COMPILER MESSAGES

If a compilation completes successfully, a message to that effect is

printed at the user's terminal (or into the user's comoutput file, if

the compilation is not interactive. See Section 7 for information on

comoutput files.) If compilation is not successful, error and/or

warning messages will indicate the offending line and the offense.

Some severe errors halt the compilation as soon as they are discovered.

Others allow the compilation to proceed. Each compiler has its om

error messages.

REV. @ 5 - 4

IDR4138 COMPILING PROGRAMS

Error messages printed by the F77 and PLIG compilers include
explanatory comments. Error messages generated by the FIN, COBOL, and
RPG compilers are discussed in those language guides.

COMBINING LANGUAGES IN A PROGRAM

Since all high-level languages are alike at the object code level, and
since all use the same calling conventions, prograns compiled by the
FIN, F77, COBOL, or PLIG compilers can call subroutines compiled by any
of the other three compilers. For example, a program written in COBOL
could call a subroutine written in FORTRAN 77 which might use a utility
subroutine written in PL/I-G. Procedures compiled by the high-level
language compilers may also call, or be called by, procedures written
in Prime's assembler language, PMA. The following cautions, however,
should be observed:

e@ All I/O routines should be written in a single language.

@e Be sure that there is no conflict in data types for variables

being passed as arguments. For exanple, an integer in FORTRAN
should be declared as fixed binary in PL/I. Also, remember that
PL/I and COBOL may not interpret structures identically.

e All procedures within a program must use compatible addressing
modes. Do not put R-mode procedures into a V-mode or I-mode
program, or vice versa. (V-mode and I-mode are compatible
within prograns.)

@ Some special restrictions must be observed when FTN and F77
routines are linked together. These are discussed in the
FORTRAN 77 Language Guide.

5 - 5 January 1982

IDR4138 LOADING PROGRAMS

SECTION 6

LOADING PROGRAMS

INTRODUCTION

PRIMOS has two utilities for loading programs: SEG and LOAD. SEG
loads (and runs) V-mode and I-mode programs; LOAD loads R-mode
programs. This section explains the basic use of SEG and LOAD for
programs written in high-level languages. Language-specific aspects of
loading programs are treated in the individual language guides. The
loaders are explained in detail in the LOAD and SEG Reference Guide.

SEG

The PRIMOS SEG utility converts object modules (such as those generated
by the FTN, F77, COBOL, and PLIG compilers) into segmented runfiles
that execute in the 64V addressing mode and take full advantage of the
architecture and instruction set of the Prime 358 and up. Segmented
runfiles offer the following advantages:

@ Much larger programs: up to 256 segments per user program (32
Megabytes)

@e Access to V-mode instructions and architecture (Prime 359 and

up) for faster execution

e Ability to install shared code: a single copy of a procedure
can service many users, significantly reducing paging time

@ Re-entrant procedures permitted: procedure and data segments
can be kept separate

The following description emphasizes the commands and functions. that
are of most use to high-level language programmers. Extended features,
as well as a complete description of all SEG commands, including those
for advanced system-level programming, are described in the LOAD and
SEG Reference Guide.

USING SEG UNDER PRIMOS

SEG is invoked by PRIMOS command:

SEG [pathname]

A pathname is given only when an existing SEG runfile is to be
executed. (See Section 7.) Otherwise, the command transfers control
to SEG command level, which prints a "#" prompt character and awaits a
SEG command. After executing a subcommand successfully, the loader

6 - 1 January 1986

SECTION 6 TDR4130

repeats the prompt character. (SEG's loader prints a S$ prompt to
request its subcommands.)

If an error occurs during an operation, SEG prints an error message,
then the prompt character. Error messages and suggested handling
techniques are discussed in this section and in Appendix D.

When a system error (File in use, Illegal name, Insufficient access
rights, etc.) is encountered, SEG prints the system error and returns
the prompt symbol.

SEG remains in control until a QUIT subcommand returns control to
PRIMOS, or an EXECUTE subcommand starts execution of the loaded
program.

SEG subcommands can be used in command files, but comment lines are
accepted only within its LOAD subprocessor.

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward
commands needed. (SEG has many additional features to optimize runfile
size or speed, perform difficult loads, load for shared procedures, and
deal with possible complications. These are described in the LOAD and

SEG Reference Guide.)

The following commands (shown in abbreviated form) accomplish most
loading functions.

SEG-Level Commands

DELETE Deletes segmented runfile.

HELP Prints a list of SEG commands at teminal.

LOAD Invokes loader subprocessor for entry of subcommands.

LOAD Subcommands

LOAD pathname Loads specified object file.

LIBRARY [filename] Loads library object files from UFD LIB.

(Default is PFINLB and IFTNLB)

MAP [option] Prints loadmap. Option 3 shows unresolved
references (usually subroutines which have not
been loaded). Mapping is explained in the LOAD
and SEG Reference Guide.

REV. @ 6 - 2

IDR413¢ LOADING PROGRAMS

INITIALIZE Returns loader to starting condition in case of
command errors or faulty load.

SAVE Saves loaded memory image as runfile.

RETURN Returns to SEG command level.

QUIT Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

1. Invoke SEG from PRIMOS level.

2. Enter the LOAD. command to initiate the loading process.

3. Use the LOAD subcommand to load the object file (B_filename)
and any separately compiled subroutines.

4. Use the LIBRARY subcommand to load subroutines called from

libraries,

5. If you do not receive a LOAD COMPLETE message, do a MAP 3 to
identify the unsatisfied references, and load them. If the
unsatisfied references are the result of having misspelled some
subroutine names, you may want to initialize and re-do the
load.

6. SAVE the runfile.

If these commands produce a LOAD COMPLETE message, then loading was
accomplished. If there is a problem, it will become apparent by the
absence of a LOAD COMPLETE message or some other SEG error message.
(See Appendix D for a complete list of all SEG error messages and their
probable cause and correction.)

After a successful load, you can either start runfile execution from
loader command level, or quit from the loader amd start execution
through the PRIMOS RESUME command. An example of such a load is:

OK, SEG
[SEG REV 17.1]
LOAD
SAVE FILE TREE NAME: #BENCH9
S$ LO B.BENCH9

sir
LOAD COMPLETE

$ SA
$ QU

OK,

6 - 3 January 1989

SECTION 6 IDR4130

Order of Loading

The following loading order is recommended:

1. Main program

2. Separately compiled user-generated subroutines (preferably in
order of frequency of use)

3. Language-specific libraries (PLIGLB for PL/I, VCOBLB- and
possibly NCOBLB for COBOL)

4. Other Prime Libraries (LI filename), such as VAPPLB(V-mode
applications library), VSRTLI (V-mode sort library), VDKALB

(MIDAS library)

5. Standard PRIME library (LT)

For example, a COBOL program which uses MIDAS files would be loaded as

follows:

OK, SEG
[SEG REV 17.1]

LOAD#MAIN
$ LOAD B_MAIN Main program first.
S$ LOAD B_SUBR Separately compiled subroutine next.

$ LI VCOBLB Shared COBOL library: always used.
$ LI NCOBLB Non-Shared library: used with separately—compiled

subroutines
$ LI VKDALB MIDAS library: used with MIDAS files.
$ LI Standard (FORTRAN) library.
LOAD COMPLETE

S SAVE Save the file image
$ QUIT Return to PRIMOS command level.
OK,

THE R-MODE LOADER

The PRIMOS LOAD utility converts object modules (such as_ those .
generated by the FTN or RPG compilers) into runfiles that execute in
the 32R or 64R addressing modes. (Runfiles to execute in the 64V mode

must be loaded using the segmentation utility, SEG.)

The following description emphasizes the loader commands and functions
that are of most use to the FORTRAN and RPGII programmer. For a
complete description of all loader commands, including those for
advanced system-level programming, refer to Reference Guide, LOAD and
SEG.

REV. @ 6 - 4

IDR4138 LOADING PROGRAMS

USING THE LOADER UNDER PRIMOS

The PRIMOS command:

LOAD

transfers control to the R-mode loader, which prints a $ prompt

character and awaits a loader subcommand. After executing a command
successfully, the loader repeats the $ prompt character.

If an error occurs during an operation, the Loader prints an error
message, then the $ prompt character. Loader error messages and
suggestedhandling techniques are discussed elsewhere in this section
and in Appendix A. Most of the errors encountered are caused by large
programs where the user is not making full use of the Loader
capabilities.

When a system error (File in use, Illegal name, Insufficient access
rights, etc.) is encountered, the loader prints this system error am
returns its prompt symbol, $.

The loader remains in control until a QUIT or PAUSE subcommand returns
control to PRIMOS, or an EXECUTE subcommand starts execution of the
loaded program.

Load subcommands can be used in command files, but comment lines result
in a CM (command error) message unless they are preceded by '* ',

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward
commands needed. The loader also has many additional features to
optimize runfile size or speed, perform difficult loads, and deal with
possible complications. The most frequently used load commands am
operations are presented first; this enables immediate use of the
loader. Advanced features are then described followed by a summary of
all loader commands.

The following commands (show in abbreviated form) accomplish most
loading functions.

PRIMOS—Level Commands

FILMEM Initializes user space in preparation for load.

LOAD Invokes loader for entry of subcommands.

RESUME Starts execution of a loaded, SAVEd runfile.

6 - 5 January 198¢@

SECTION 6 TDR4130

LOAD Subcommands

DC Defers loading of COMMON until everything else
has been loaded. This presents overlap of
COMMON and program areas.

MODE option Sets runfile addressing mode as D32R (default)
or DO4R.

LOAD pathname Loads specified object file.

LIBRARY [filename] Loads library object files from UFD LIB.

(Default is FTNLIB.)

MAP [option] Prints loadmap. Option 3 shows unresolved
references.

INITIALIZE Returns loader to starting condition in case of
command errors or faulty load.

SAVE pathname Saves loaded memory image as runfile.

QUIT Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

7.

Use the PRIMOS FILMEM command to initialize memory.

Invoke LOAD.

Use the MODE command to set the addressing mode, if necessary.
(The default is 32R mode.)

Use loader's LOAD subcommand to load the object file
(B_filename) and any separately compiled subroutines.

Use loader's LIBRARY subcommand to load subroutines called from
libraries (the default is FTNLIB in the UFD LIB). Other
libraries, such as SRTLIB or APPLIB, must be named explicitly.

If you do not have a LOAD COMPLETE, do a MAP 3 to identify the
unsatisfied references, and load them. (If the DC option is
used, the LOAD COMPLETE message may not appear until the SAVE
command has been given.)

SAVE the runfile under an appropriate name.

If these commands produce a LOAD COMPLETE message, then loading was
accomplished. If there is a problem, it will become apparent by the
absence of a LOAD COMPLETE message or some other loader error message.
(See Appendix D for a complete list of all loader error messages and
their probable cause and correction.)

REV. 9

IDR4130 LOADING PROGRAMS

After a successful load, you can either start runfile execution from
LOAD command level, or quit from the loader and start execution through
the PRIMOS RESUME command. An example of such a load is:

OK , FILMEM
OK, LOAD

$Dc
S$ LO B_BENCH9

str
LOAD COMPLETE
$ SA *BENCH9

$ QU

OK,

Order of Loading

The order of loading, procedures for mapping, etc., are the same for
LOAD as they are for SEG.

6 - 7 January 1988

TDR4138 RUNNING PROGRAMS INTERACTIVELY

SECTION 7

RUNNING PROGRAMS INTERACTIVELY

INTRODUCTION

This section treats the following topics:

e Execution of segmented runfiles saved by SEG's Loader

e@ Execution of program memory images saved by the R-mode Loader

e Run-time error messages

EXECUTING SEGMENTED RUNFILES

For programs loaded and saved by SEG, execution is performed at the
PRIMOS command level using the SEG commard:

SEG pathname

where pathname is the name of a SEG runfile. SEG loads the runfile
into segmented memory and starts execution. SEG should be used for
runfiles created by SEG's loader; it should not be used for program
memory images created by the R-mode loader. Example:

OK, SEG #TEST user requests program
THIS IS A TEST output of program

OK, PRIMOS requests next command

Upon completion of program execution, control returns to PRIMOS command
level.

A SEG runfile may be restarted by the command:

S 1009

if both the SEG runfile and the copy of SEG used to invoke it are in
memory.

EXECUTING R-MODE MEMORY IMAGES

For programs loaded in 32R or 64R mode by the loader, execution is
performed at the PRIMOS level using the RESUME command. Programs which
are already resident in the user's memory may be executed by a START
command.

7 - 1 January 19892

SECTION 7 IDR4138

RESUME pathname

RESUME brings the memory-image program pathname from the disk into the

user's memory, loads the initial register settings, and begins

execution of the program. For example:

OK, R *TEST User requests program

THIS IS A TEST Output of program

OK, PRIMOS requests next command

Note

RESUME should not be used for segmented (64V mode) programs.

Use the SEG command (discussed in the first part of this

section) instead.

The Start Command

If a program has been made resident in memory (for exanple, by a

previous RESUME command) ,

START [start-—address]

the command may be used to initialize the registers and begin

execution.

START can also restart a program that has returned control to PRIMOS

(for example, because of an error, a FORTRAN PAUSE or CALL EXIT

statement). If START is typed without a value for start-address, the

program resumes at the address value at which execution was

interrupted. To restart the program at a different point, specify an

octal starting location as the start-address value; the usual default

value for the beginning of FORTRAN programs is 1900. For example:

OK, R *TEST1 Begin
INPUT NEW KEY: 5 Program asks for input
QUIT User hit BREAK to stop

OK, S 1800 Restart program from beginning

INPUT NEW KEY:

The applications programmer will almost always use the default forms of

the RESUME and START commands (the form discussed here). Fora

complete treatment of these commands, see the Reference Guide, PRIMOS

Commands.

Upon completion of the program, control returns to PRIMOS command

level.

REV. @ 7 - 2

IDR4130 RUNNING PROGRAMS INTERACTIVELY

RUN-TIME ERROR MESSAGES

During program execution, error conditions may be generated and
detected by the FORTRAN mathematical functions, file system subroutine
calls, or the operating system. A list of run-time error messages is
given in Appendix D.

Error messages specific to execution of segmented programs are labeled
64V mode. Some error messages imply system problems beyond the scope
of the applications programmer. If so, this is indicated in the
explanation of a given error message.

7 - 3 January 198¢@

IDR4136 COMMAND FILES AND PHANTOMS

SECTION 8

COMMAND FILES AND PHANTOMS

COMMAND FILE OPERATIONS

PRIMOS offers three utilities that allow command sequences to run from
files rather than from direct user interaction. Theyare:

@ COMINPUT

@ PHANTOM

e JOB

COMINPUT reads commands from a specified file. Commands and responses
appear on the user's’ terminal. The terminal is dedicated to this
operation during execution.

PHANTOM reads commands from a file but executes as another PRIMOS
process, freeing terminal for other use. Limited number of phanton
processes are available, so user may have to wait for a free process.

JOB reads commands from a file, but executes asa phantom. Users
Submit jobs at their convenience; the Batch monitor queues them and
runs them, one to six at a time, as phantoms become free. (Batch
replaces CX and accepts all existing CX command files.)

All of these utilities read commands from a command file, which is a
file containing PRIMOS commands, utility subcommands, and dialog
responses, The user creates the file with the Editor, rims it under
COMINPUT to verify operation, edits it to make changes, and thereafter
runs it under COMINPUT, PHANTOM or Batch. This is particularly useful
for long program development operations that must be repeated whenever
source code is changed, building libraries, production job rims, etc.

Supporting the three command processing utilities is the COMOUTPUT
command which maintains an audit file of the dialog between PRIMOS and
the user or command file. Output generated by the command file can
thus be channeled to the COMOUTPUT file, to be printed, edited, or
listed at the terminal (via SLIST) whenever the user wishes.

The date of execution, time of execution, and time consumed during
execution of the command file can be placed in the output file by
including the DATE, TIME, or RDY -LONG commands in the command file.

This section discusses:

e@e How to create and run commamnfiles

@ How to have command files call each other

8 - dt January 198d

SECTION 8 TDR4138

@ How to create COMOUTPUT files

e How to use DATE, TIME, and RDY in command files

e How to run command files as phantoms

Batch execution of command files will be discussed in the next section.

COMMAND FILE REQUIREMENTS

Command input files may contain any legal PRIMOS commands, utility

subcommands, or dialog responses, on a line-for-line basis (i.e., each

line in the file must correspond to a line as it would be typed at a

terminal.) Each utility except Batch imposes certain requirements:

e For COMINPUT, the last command should be COMINPUT -TTY or

COMINPUT —END.

e For PHANTOM, the last command should be LOGOUT.

@ Any command file can be used for Batch.

Comments

Command input files can be made self-documenting by including comment

lines at PRIMOS command level. A line beginning with a slash am

asterisk, (/*), is interpreted as a comment and is ignored by PRIMOS.

If a command output file is open, any comments entered at the terminal

by the user or from a command file are written into the command output

file. Any character may be used in a comment line. A comment mayalso

be appended to a command at PRIMOS command level as in:

SLIST MBENCHO7 /* PRINT MAP FILE

THE COMINPUT COMMAND

The COMINPUT command causes PRIMOS to read input from a specified

command file rather than from the terminal. Commands are executed as

if they were entered at the terminal. The format is:

COMINPUT [command-file] [-options] [file-unit]

command-file The pathname of the file from which input is to

be read.

options Specify command control flow as detailed below.

REV. 9 8 - 2

file-unit The PRIMOS file unit number on which the input

file is to be opened. If omitted, file unit 6
is used. File units must be octal (i.e.,
decimal 8 is entered as 19).

Options

-TTY Either one switches the command input stream to the

—END user terminal and closes the command input file.

—PAUSE Switches command input stream to the user terminal
but does not close the command input file.

—CONTINUE Returns control to command input file following a
CO -PAUSE or an error.

—START Resumes command following a BREAK interruption of
execution of a command file.

The -TTY, -END and —PAUSE options are used only within command files.
The -CONTINUE and -START options are typed by the user.

The -TTY or -END option must be the final command in the commard file

(or in the last command file, if files are chained as described below).

A simple command file, C_TEST, might be created to campile the
FTN.

The

and

TIDR4130 COMMAND FILES AND PHANTOMS

TEST:

/*BEGIN TEST OF COMMAND FILE
COMOUTPUT OTEST
DATE
/*COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/*LOAD THE PROGRAM
SEG
VLOAD #FTN. TEST
LO B FTN.TEST
LI
SA
MAP M LOADTEST 7
MAP MUNSATISFIED 3
QU
/*COMMAND FILE TEST COMPLETED
DATE
COMO -END

command file would be executed by the command:

CO C_TEST

would produce the following output file:

program

January 1986

SECTION 8 IDR413d

OK, DATE

Thursday, October 4, 1979 4:84 PM

OK, /*COMPILE THE PROGRAM IN 64V MODE
FIN FIN. TEST -64V
@@0@ ERRORS [<.MAIN. >FTN-REV17.1]

OK, /*LOAD THE PROGRAM
SEG
[SEG rev 17.1]
#VLOAD #FTN. TEST
$ LO BFIN.TEST
$ LI
LOAD COMPLETE
S SA
$ MAP M LOADIEST 7
$ MAP MUNSATISFIED 3
$ QU

OK, /*COMMAND FILE TEST COMPLETED
DATE

Thursday, October 4, 1979 4:85 PM

OK, COMO —END

Chaining Command Files

The -CONTINUE option of COMINPUT allows command files to be chained.

The following example illustrates the chaining of three command files,

and shows how file unit conflicts can be avoided. The command file

C_GO contains the following commands:

/* COMPILE THE PROGRAM IN 64V MODE
FIN FTN.TEST -64V
/* LOAD THE PROGRAM
COMINPUT C_LOADTEST 7
CLOSE 7
/* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY

The command file C_LOADTEST contains the following commands:

/* LOADTEST COMMAND FILE
SEG
VLOAD #FTN. TEST
LO B FTN.TEST
LI
SA
QU

- REV. 9 8 - 4

TDR4139 COMMAND FILES AND PHANTOMS

COMINPUT CMAPS 19

CLOSE 10
COMINPUT -CONTINUE

The command file C_MAPS contains the following commands:

/* GET FULL MAP AND UNSATISFIED REFERENCES
SEG
VLOAD * #FTN. TEST
MAP MLOADTEST 7
MAP MUNSATISFIED 3
Qu
/* RETURN TO 'CALLING' COMMAND FILE
COMINPUT ~CONTINUE 7

Typing COMINPUT C_GO causes PRIMOS to read and execute the commands in
C GO. When the command COMINPUT C LOADTEST 7 is reached, control
passes to C_LOADTEST, which loads the object file, then calls C MAPS
(on file unit '18) to obtain two load maps. When the command COMINPUT
-CONTINUE is reached in CMAPS, control returns to the statement
following the call in C_LOADTEST, which closes the file unit used for
CMAPS. When COMINPUT -CONTINUE is’ reached in C_LOADTEST, control

Similarly returns to C GO. Finally, the command COMINPUT -TTY in C GO
returns control to the user's terminal. 7

OK, CO C_GO
OK, /*COMPILE THE PROGRAM IN 64V MODE
FIN FTN.TEST —64V

0808 ERRORS [<.MAIN, >FTN-REV17.1]

OK, /*LOAD THE PROGRAM
COMINPUT C LOADTEST 7
OK, /*LOADTEST COMMAND FILE
SEG
[SEG rev 17.1]

VLOAD #FTN.TEST
$ LO BFIN.TEST
S$ LI
LOAD COMPLETE
S SA
$ QU

OK, COMINPUT CMAPS 16
OK, /*GET FULL MAP AND UNSATISFIED REFERENCES
SEG
[SEG rev 17.1]
VLOAD * #FTN.TEST
$ MAP MLOADTEST 7
S MAP MUNSATISFIED 3
$ QU

OK, /*RETURN TO 'CALLING' COMMAND FILE
COMINPUT -CONTINUE 7

8 - 5 January 1988

SECTION 8 TDR4130

OK, CLOSE 10
OK, COMINPUT -CONTINUE
OK, CLOSE 7
OK, /*RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY
OK,

Errors

Non-recoverable errors return input control to the teminal, leaving
the command file open. The user may type a correct version of the
offending line, and then resume input from the command file by the

command CO -CONTINUE.

Closing Command Input Files: .

In chaining command files, the '‘'called' files should be closed upon

returning to the 'calling' files, either by file unit number (as in the

exanple above) or by filename. The user should make certain that the
file units to be used for the command input files are not already
opened (or going to be opened) by user programs, utilities, or other
command input files.

Note

The CLOSE ALL command should not be used in a command input
file, as it closes all files, including the command input file
from which this command is read. The message ‘Unit not open.
Cominput (Input from terminal.)' will be printed and input
control will be switched to the terminal.

THE COMOUTPUT COMMAND

The COMOUTPUT command writes, into a specified file, both the output
strean directed to the terminal by PRIMOS and the input presented to
PRIMOS. The input may originate as direct typing, or come from a
command file running under COMINPUT, PHANTOM or Batch. The resulting
output file is a pemanent record of the entire dialog.

Output to the terminal can be suppressed. Print suppression increases
speed since it normally takes more time to write to a terminal than to
a disk file.

The command format is:

COMOUTPUT [output-file] [-options]

output-file is the pathname of the file to which the output stream is
sent. options specify teminal and file output and control flow as

described below.

REV. @ 8 - 6

IDR41398 COMMAND FILES AND PHANTOMS

Teminal Options

These can be used when the output file is first opened, or at any time
before the command output file is closed. User input is always echoed
at the terminal even if the -NTTY option is used.

-NTTY Turn off terminal output.

-TTY Turn on teminal output (default).

Error messages are printed in the output file and at the teminal,
regardless of the terminal option selected. Any inter-user terminal
output (e.g., messages from the supervisor terminal) is printed at the
terminal but not in the output file.

File Options

These stop or restart output to the command file. They may also be
used to append output to an existing file.

—PAUSE Stop output to command file; leave file open.

-CONTINUE Resume output (halted by -PAUSE) to the command output
a file. Or, if at PRIMOS level, re-open an existing

COMOUTPUT file and position the pointer so that new
output will be appended.

~-END Stop output to command file; close file.

A BREAK turns terminal output on, but does not close the file. A
LOGOUT turns terminal output on and also closes the command output
file, as well as any other files the user has currently open. For
example:

COMO OFINTEST

opens the file OFTNTEST for output and positions the pointer to the

start of the file. If OFTNTEST already exists, its previous contents
will be deleted immediately. To open an existing file for appending,
type:

COMO OFTINTEST -C

This opens the file OFTNTEST and positions the pointer at the end of
the file.

8 - 7 January 1989

SECTION 8 IDR4138

Closing Command Output Files

Command output files are closed by the COMO —END command. For example:

COMO O_TEST
SLIST RECORDS
COMO -END

USING DATE AND TIME IN COMMAND FILES

The DATE Command

The command DATE prints the system date and time at the user terminal.

OK, DATE
GO

Wednesday, October 19, 1979 18:11 AM

OK,

This feature allows command output files to be stamped with date/time
information for identification, as an aid to program development and
debugging. For example, the sequence of commands:

COMO O_TEST1
DATE

DATE
COMO -END

creates a file, OTEST1. The first line of this file is the DATE
command; the next line is the time and date of this interactive
session.

DATE may also be included in command input files or in command files
for Batch execution.

The TIME Command

The command TIME entered at the user teminal prints the current values
in the time accounting registers. These are: connect time, canpute
time, and disk I/O time.

OK, TIME
1'32 6©8'll) B'88

OK,

REV. @ 8 - 8

IDR4130 COMMAND FILES AND PHANTOMS

Connect time is the time since LOGIN (in hours and minutes). Compute

time is the time accumulated executing commands or using programs (in
minutes and seconds). This does not include disk I/O time. Disk I/O
time (in minutes and seconds) is the accumulated time for disk input
and output. Disk I/O includes paging I/O time generated on the user's
behalf. All times include system supervisor overhead caused by user
requirements.

The TIME command can be given before and after executing a program.
The time differences can be used to benchmark the program and measure
efficiency as the program is optimized.

Example: The command input file C_BENCH@7 contains the following:

COMO OBENCHO7
/* TIMING TEST OF BENCH@7 PROGRAM
DATE
/* GET START TIME VALUES
TIME
SEG #FTN.TEST
/* GET STOP TIME VALUES
TIME
COMO -END
CO -TTY

The command CO C_BENCH@7 executes this command file. Upon completion,
the output file OBENCH@7 contains the following:

OK, /*TIMING TEST OF BENCH@7 PROGRAM
DATE

Thursday, November 1, 1979 16:24 AM

OK, /*GET START TIME VALUES

TIME

B'11 B'S3 G'83

OK, SEG #FTN.TEST

The answer is 79

OK, /* GET STOP TIME VALUES
TIME

B'1l 86'93 O'@4
COMO —END

The RDY -LONG Command

An alternate method of measuring program efficiency is provided by the
RDY -LONG command. When this command is given, each OK prompt includes
the time of day, the amount of CPU time (in seconds) and the amount of

I/O time (also in seconds) used since the last prompt.

8 - 9 January 1986

SECTION 8 TDR4139

OK, RDY —LONG

OK 89:21:29 9.284 98.324

To return prompts to their normal form, use the command RDY -BRIEF:

OK 89:21:43 9.036 9.800
RDY -BRIEF
OK,

AS an example of using the RDY command, let us modify the command file
C_BENCH@7:

COMO OBENCH@7A
/*TIMING TEST OF BENCH@7 PROGRAM
DATE
/*use rdy-long for time between prompts

RDY —LONG
SEG #FTN.TEST
COMO -END
CO -TTY

The output file for the new command file is as follows:

TIMING TEST OF BENCH97 PROGRAM
DATE .

Wednesday, October 3, 1979 16:06 AM

OK, /*use rdy-long for time between pranpts
RDY —LONG

OK 18:96:15 3.560 3.924
SEG #FTN.TEST

The answer is 79

OK 10:96:18 9.287 1.851
COMO -END

PHANTOM USERS

The phantom user feature allows command file processing without tying
up a terminal. Once a phantom process has been initiated, it is
treated by PRIMOS as a separate process that is not associated with a
terminal. The terminal is then made available for other uses.

Tne command file run by the phantom process specifies the commands and
their sequence, program invocations and necessary input data required
to complete a particular job. Phantoms are used for long compilations,
loadings, and executions that are debugged and require no interactive
terminal input. Certain PRIMOS system utilities (e.g., FAM, SPOOL) are
implemented as phantom processes.

REV. @ 8 - 10

IDR413¢0 COMMAND FILES AND PHANTOMS

Using Phantans

A phantom user process is initiated by the command:

pathname
PHANTOM filename} [file-unit]

filename is the name of a canmand input file, and file-unit is the
PRIMOS file unit number on which the command file is to be opened. If
omitted, file unit 6 is used.

The PHANTOM command checks for available phantom processes. The number
varies with each installation. The message:

No phantoms are available. FILENAME

is returned if no processes are available. Control is then returned to
PRIMOS. When a phantom process is available, the message:

PHANTOM IS USER user-number

is returned and the phantom user is logged in (under the same
login-name as the invoker). If the phantom is invoked by the command,

PH filename

then the current and home directories of the phantom are the same as
the current and home directories of the user (or command file) invoking
the phantom. If the phantom is invoked by the command,

PH pathname

the phantom's current and home directories are both set equal to the
invoker's home directory. User-number is the number assigned by PRIMOS
to the phantom process. Control returns to PRIMOS, the terminal is
freed for other use, and the phantom command file is opened on the
specified (or default) unit. PRIMOS then reads all further commands
for the phantom user from the command file.

Phantom Operation

Phantom processes should not execute programs which require input from
an actual terminal. Such an instruction will abort and log out the
phantom process. This logout information is printed only at the
supervisor terminal.

While a phantom process is in operation, terminal output is suppressed
unless a command output file has been opened by a COMOUTPUT command in
the phantom command file. Output is then written to the COMOUTPUT
file.

8 - dl January 198¢

SECTION 8 IDR4130

It is possible to initiate another phantom from a running phantom, in a

manner similar to chained COMINPUT files. However, there is no
guarantee that a phantom user process will be available when the

process is requested by a command file.

The final command in the last executed phantom command file should be

LOGOUT.

Phantom Logout

At the completion of a job process, phantom users are automatically

logged out. To cancel a phantom user process before completion, use

the command :

LOGOUT -user-number

user—number is the PRIMOS-assigned phantom user number.

Any phantom can be logged out fron the supervisor terminal. From a
user terminal, a phantom can be logged out only if the terminal has the

sane login UFD as that which initiated the phantom.

Phantom STATUS Information

The STATUS USER command (discussed in Section 3), provides a list of

all the users in the system, their login numbers, assigned line

numbers, etc. Phantom users are distinguished by the line number 77 in
a STATUS list. In the following example, the phantom users are numbers

57 through 51, as indicated by LIN = 77.

OK, status users

USER NO LIN PDEVS
SYSTEM 1 76 3462 SMLC@O SMIC#1

GOG 7 5 716863
HEISIN 14 14 46@(END_)
MANN 18 28 71863
SCHWAR 19 21 (TO END)
YLEE 27 31 3462
STUMPF 38 34 3462
FEHSKE 37 43 3462 71963
GMS 38 44 3462
MAM 39 45 3462
J.COOK 45 53 (TO END)
STEF 4654 71963 :
BS 49.75 A6Q(END) (FROM END)
WMM.B 59875 71963 460(ENE) (FROM END)
WEBB 51 75 3462 (FROM END _)
DEBBY 52 75 71963 (FROM END _)
DPF.B 53 75 468(END) (FROM ENE _)
TEKMAN 54 75 71863 (FROM BDSF)

REV. 9 8. - 12

IDR4136 COMMAND FILES AND PHANTOMS

FAM 57 77 3462 (2)

SYSTEM 58 77 468 (3)
SYSTEM 59 77 469 PRG
SYSTEM 68 77 4698 PR1
GMS 61 77 3462

OK,

Example of Phantom Command File

The phantom command file PHTEST contains the following commands:

/*BEGIN TEST OF PHANTOM
COMOUTPUT OPHTEST

DATE

/*COMPILE THE PROGRAM IN 54V MODE

FIN FTN.TEST -64V

/*LOAD THE PROGRAM
SEG

VLOAD #FTN.TEST

LO BFIN.TEST

LI

SA

MAP MLOADTEST 7
MAP MUNSATISFIED 3

QU

/*PHANTOM TEST COMPLETED

DATE

/*COMO -E would normally go here.
/* It has been omitted so the logout sequence
/* could be shown in the comoutput file.
LOGOUT

When a phantom is invoked at the terminal by PH PHTEST, the terminal
interactive dialog is:

OK, PH PHTEST
PHANTOM IS USER 61
OK,

The contents of the command file, OPHTEST, created by the phantom
are:

OK, DATE

Friday, October 5, 1979 10:06 AM

OK, /*COMPILE THE PROGRAM IN 64V MODE
FIN FIN. TEST -64V
$000 ERRORS [<.MAIN.>FTN-REV17.1]

OK, /*LOAD THE PROGRAM

8 - 13 January 1989

SECTION 8 TDR4136

SEG
[SEG rev 17.1]

VLOAD #FTN.TEST
$ LO 8FIN.TEST
$ LI
LOAD COMPLETE
S SA
$S MAP M LOADTEST 7
$ MAP MUNSATISFIED 3
S$ QU

OK, /*PHANTOM TEST COMPLETED
DATE

Friday, October 5, 1979 18:86 AM

OK, /*COMO -E would normally gohere.
/* It has been omitted so the logout sequence
/* could be shown in the comoutput file.

LOGOUT
TEKMAN (62) LOGGED OUT AT 10'H6 190579

TIME USED= @'@8 3'O1l 9'82

REV. @ 8 - 14

TDR4136 BATCH JOB PROCESSING

SECTION 9

BATCH JOB PROCESSING

INTRODUCTION

Batch is the most flexible of the PRIMOS command file utilities. Any
command file that will run under PRIMOS can be run as a Batch job.
This means that users may write command files for submission as Batch
Jobs without including special Batch commands. Yet users may also run
existing COMINPUT, PHANTOM, and CX files as Batch jobs; Batch will
accept them all.

Batch offers further flexibility in job scheduling and execution
control. Each Batch queue has a phantom from which to run users' jobs.
These phantoms run “in the background" of the systen: that is, they
run concurrently with interactive jobs, but at somewhat lower
priorities. Thus, they use only small amounts of CPU time when
interactive use is heavy, but utilize large anounts of CPU time when
interactive use is light or absent. Furthermore, Batch jobs may be
held in their queues by operators, then released to run at appropriate
times. Thus, extremely long jobs, such as file updates and backups,
can be set up as Batch jobs during the day, then run under operator
control at night. |

Each Batch queue is a separate entity, defined by the Systen
Adninistrator to be particularly hospitable to certain types of jobs.
Queues designed for short jobs have a fairly high scheduler priority,
but a short timeslice; queues designed for normal jobs have slightly
lower priorities and normal timeslices. Queues designed for long jobs
have low priorities but large timeslices. The queues for short jobs
will thus run fastest, as they can operate during times of heavier
interactive use. The other queues will take fuller advantage of
periods of lighter activity. By using the BATGEN (BATch GENeration)
command, explained below, users can see what queues are available and
What their characteristics are. They can then submit their jobs to the
appropriate queues.

USING THE BATCH SUBSYSTEM

Users communicate with the Batch subsysten through four commands:
BATCH, BATGEN, JOB, and $$ JOB. With these commands, they can:

@ Submit jobs (JOB)

e Set job parameters (JOB, $$ JOB)

@ Modify, cancel, abort, or restart jobs (JOB)

9 - di January 1984

SECTION 9 IDR41398

@ Monitor subsystem usage (BATCH)

e@ Monitor queue characteristics and availability (BATGEN)

These operations are described below.

SUBMITTING BATCH JOBS

To submit a job, use the command:

-ACCT information

seconds

—CPTIME
NONE

minutes

JOB pathname-1 —ETIME
NONE

-FUNIT number

-HOME pathname-2

-PRIORITY value

-QUEUE queue—-name

YES

—RESTART
NO

Batch will then send a "job submitted" response announcing the job's

job-id number and reminding the user (if he didn't use the —HOME

option) of the home UFD for the job. For example:

OK, job pnjob
[JOB rev 17.2]
Your job, #00015, was submitted to queue Normal-1l.
Home=<MISCEL>TEKMAN>ALICE>ALICE2

As this example shows, jobs may be submitted without options. The

Batch monitor places these jobs in the first available queue amd uses

that queue's default values for all necessary parameters. On the other

hand, users may specify queue and/or parameters, using the JOB

command's options as described below.

Note

All numbers must be decimal integers.

REV. 9 9 - 2

IDR41308 BATCH JOB PROCESSING

Option Description

-ACCT information Allows the user to specify accounting
information for his job. The information
must be 89 characters or less in length. It
may not be an explicit register setting
(octal number) or be preceded by an unquoted
minus sign. If the information contains
spaces, commas, or comment delimiters (/*) it
should be enclosed in apostrophes. (For
exanple: -ACCT 'OK, HERE WE GO').~ The
information will be included in job DISPIAYs,
but will not be used in running the job.

-CPTIME seconds; Specifies the maximum anount of CPU time (in

NONE seconds) to be allotted to the job. NONE
requests that no time limit be placed on the
job. If the job exceeds the time limit, it
will be aborted.

-ETIME 4minutes; Specifies (in minutes) the elapsed time to be

NONE allowed before the job is aborted. Details
are the same as those for -CPTIME.

-FUNIT number Specifies the file unit to be used_ for
command input. Permissible values range from
1 to 16, to 1 to 126, depending on the limit
set by the Systen Administrator. Default
depends on the queue to which the job is
submitted. It is usually 6.

~HOME pathname Specifies the UFD in which a job is to run.
Using this option has the same effect as
providing an ATTACH command as the first line
of the command file. The pathname for a
-HOME option, however, may not be a null
specification or a relative pathname (i.e.,
it may not begin with *>), and may not exceed
8@ characters in length.

-PRIORITY value Determines the job's priority within its
queue. Possible values are from 8 to 9, with

9 being the highest (most favored) priority.
The default depends on the queue.

-QUEUE queuename Names the queue in which the job should be
placed. (To learn the names amd
characteristics of queues, use the BATGEN
-DISPLAY command .)

—-RESTART {ws} Determines whether a job can be restarted
NO following an ABORT or a system shutdown. The

default is always YES.

9 - 3 January 198¢

SECTION 9 TDR4138

If, for any reason, the Batch monitor cannot accept the job as

submitted, it will send the user error messages containing the

information he needs to resubmit the job successfully. These messages
are listed in Appendix A; they are generally self-explanatory.

SUPPLYING OPTIONS VIA THE $$ JOB COMMAND

Any or all of the JOB command's eight options may be given in the first

non-comment line of the command file itself by the command:

$$ JOB username {options}

Users will probably find this command handiest for parameters they

expect to remain constant whenever the job is submitted, and the JOB

command options handiest for parameters which change from submission to

subnission,.

Parameters given in the $$ JOB command line may be overridden by giving

a different value for the same parameter in the JOB comamn. For

instance, if you specified "$$ JOB RESEARCH -CPTIME NONE" in your file,
but wanted to run the job in a queue which had a CPU time limit, the
command "JOB TESTSCORES -CPTIME 18% -QUEUE FAST" would run the job in
queue FAST with a CPU time limit of 188 seconds.

Note

With one exception, any Batch command file, even one including

a $$ JOB command, can be run as acommand input file. The
exception is a file using the $$ JOB -HOME option. When run as
a command input file, the $$ JOB line will be ignored, and no

ATTACH will be done. In this case, add an ATTACH command to

the file immediately following the $$ JOB line.

CONTROLLING BATCH JOBS

Modifying Parameters

To modify a job's parameters after it has been submitted, use the

-—CHANGE option of the JOB command:

-ACCT information

jobname —CPTIME one|

‘JOB 5 ob- id |cums NONE
-ETIME mnutes

(NONE
—-FUNIT number

—-HOME pathname
—RESTART {ee|

NO

REV. @ 9 - 4

IDR4138 BATCH JOB PROCESSING

For example:

JOB #10839 -CHANGE ~ACCT 'research' -HOME ECONDSTATISTICS

JOB TEST_SCORES -CHANGE -FUNIT 8 -RESTART YES

A job's -QUEUE and -PRIORITY options cannot be CHANGEd. If they are in
error, the job must be CANCELed and resubmitted.

Restarting Jobs

Users wishing to CHANGE jobs which are already running can do so by
following a JOB ~CHANGE command with a JOB -RESTART command. For
example:

JOB TEST_SCORES -—CHANGE -HOME RESEARCH>STATS>NEWSTATS
JOB TEST.SCORES -RESTART

This procedure will mark the changes in the job's status, terminate
execution, and then flag the job as ready for restarting under its new
conditions.

Note

Distinguish between the -RESTART YES/NO option and the -RESTART
command. The option always takes an argument; it signals
whether or not a job may be restarted. The -RESTART command
takes no argument; it attempts to abort and restart the job.

Canceling Jobs

To prevent a waiting or held job from running, use the command:

{ jotname|
JOB \3 ob-id |-CANCELyw , Ee

This command will not halt a job that is already running; but it will
mark that job as unrestartable.

Aborting Jobs

To terminate execution of a job already running, use:

jobname

JOB)job-id [-ABORT

This command cancels a waiting or held job and forces a running job to
log itself out immediately.

The JOB -CHANGE, ~CANCEL, -ABORT, and —-RESTART commands will accept a
filename in place of a job-id only if that filename is unique among the
user's active jobs. Thus, if file C_TEST has been submitted once, the

9 - 5 January 1982

SECTION 9 TDR4138

command "JOB C_TEST -CANCEL" will work. But if two submissions of

C_TEST (for exanple, #18057 and #10064) are active, you must use the
job-id to tell the monitor which job to cancel. The monitor accepts
only one command at a time; JOB C_TEST -ABORT -RESTART is illegal, as

is JOB #10035, #19039 -CANCEL.

MONITORING BATCH

Users may monitor their own jobs within the Batch system by using the

JOB -STATUS and JOB -DISPLAY commands; they may monitor subsystem
usage through the BATCH -DISPLAY command; and they may monitor’ the
characterisitics and availability of queues through the BATGEN -DISPLAY
and BATGEN -STATUS commands. These commands work as follows:

job-id ~STATUS
JOB jobname —DISPLAY

Monitors the progress of the user's own jobs. The -STATUS and DISPLAY
options govern the amount of information to be shown, while the jobname
and job-id options allow the user to specify the jobs on which he wants

information, as follows:

Option Description

job-id A 5-digit number assigned to a job by the
monitor when the job is placed in a queue.
Use the job-id to request information on one
job only.

jobname The name of the file being run. If the job
was submitted as a pathname (e.g., JOB
FELLOWSHIP>HOBBITS>FRODO) , its jobname is the

final element of the pathname (e.g., FRODO).
Use this format to request information on
multiple submissions of a file.

(Omitting jobname and job-id requests information on all the user's

active jobs.)

-STATUS Prints out the job's jobname and job-id, the
name of the queue in which it is placed, and
its execution status: whether it is held,
waiting, running, completed, or aborted.

-DISPLAY Provides status information and values for
all JOB and $$ JOB command options (except
for "HOME") -- both those specified by the
user and those assumed fran queue-defined
defaults.

REV. @ 9 - 6

TIDR4130 BATCH JOB PROCESSING

> BATCH -DISPLAY

Monitors Subsystem Usage. It prints the number of jobs waiting in each
queue and lists all jobs currently executing, identifying them by user

job-id, phantom user-number, and queue. For example:

OK, batch -display

[BATCH rev 17.2]

Number of waiting and held jobs:

Queue Jobs

Normal-2 76

Currently running jobs:

User Jobid# # Queue

TURNER #18032 68 Normal-2

BURLEY #80172 62 Normal-l

p> BATGEN -STATUS

Lists the currently defined queues and notes whether each is’ blocked
(not accepting jobs) or unblocked (available for use).

> BATGEN -DISPLAY [queuenane]

Identifies and gives full characteristics for each queue, if queuename
is not specified. If gueuename is specified, gives characteristics for
that queue only. For example:

OK, batgen -display normal
[BATGEN rev 17.2]

Queue name = normal, unblocked.
Default cptime=38, etime=None, priority=5;
Maximum cptime=18@, etime=None; Funit=6;
Delta rlevel=1; Timeslice=29;

In this example, normal is the queue'sS name. Unblocked means that the
queue is accepting jobs for queueing and execution. The default cptime
and etime values will apply to jobs that don't specify their own CPU
time or elapsed time options. The maximum cptime and etime values are
the largest allowed for any job running from the queue. Priority and
funit are default values for those options.

9 - 7 January 1989

SECTION 9 TDR4130

Delta rlevel and timeslice refer to run-time priorities. Queues with
high delta rlevels and large timeslices are best for long jobs; queues
with low delta rlevels amd short timeslices are best for short jobs.
The queue in the example is designed for average jobs.

Note

If the System Administrator has not read-enabled the BATDEF
file, the BATGEN commands will return error messages. In this
case, users needing information about queues should see their
supervisor, the operator, or the System Administrator.

REV. @ 9 - 8

Part III
system Facilities

TDR4130 FILE-HANDLING UTILITIES

SECTION 10

FILE-HANDLING UTILITIES

INTRODUCTION

This section introduces you to Prime's basic file handling utilities.
These utilities allow you to:

@ Sort one or more unsorted files into one sorted file (SORT)

@ Merge several sorted files into one sorted file (SORT)

@ Compare files with each other (CMPF)

@ Resolve differences between files (MRGF)

e@e Move files and subdirectories between directories (FUTIL)

@ Copy or delete entire directories (FUTIL)

SORTING FILES (SORT)

The SORT command sorts up to 29 files, on up to 5@ keys, into a single
output file. SORT preserves the order of input for records with equal
keys (i.e., it is a stable sort).

Most sorts are done on ASCII files (also called compressed files) , such
as those created by the text editor (ED). The following discussion
emphasizes how to do ASCII sorts. In addition, SORT can process
uncompressed files, variable length files (also called binary files),
and fixed length files. The basic format for using SORT is the same

for every file type, but details vary from type to type. The PRIMOS
Commands Reference Guide contains complete information and sorting
instructions for each file type.

Using SORT

To use SORT, provide information in a three— or four-step sequence, as
follows:

1. Give the SORT command.

2. Specify the sort files and number of sort fields, either by a
simple parameter list or by the use of keywords.

3. Specify the starting and ending columns of sort fields (keys).

4, If -MERGE is specified, enter additional filenames.

10 - January 1989

SECTION 16 TDR4138

SORT normally specifies the information it wants at steps 2, 3, and 4.
However, once you are familiar with the prompt dialog, you can suppress
the printout by using the -BRIEF option with the command line. If
-BRIEF is specified, simply give the information line by line in the
same order SORT asks for it. Refer to the sample sort that concludes
this discussion for an example of the SORT dialog.

The SORT Command

To invoke SORT, give the sort canmand, either by itself or accompanied
by one to three options:

SORT [-BRIEF] [-SPACE] [-MERGE]

The meaning of the options is as follows:

Option Meaning

“BRIEF SORT does not print requests for information.

-SPACE Any blank lines are deleted fran the SORT output file.

-MERGE A mergesort (a merge of 2 to 11 presorted files) is
requested. A mergesort is faster than a straight
sort, but it cannot handle wmsorted files.

SORT responds by requesting:

e The name of the file to be sorted

e The name of the output file to be created

e The number of keys for the sort (default is 1)

Simple File and Key Specifications

The simplest type of sort reads one unsorted ASCII file and creates
another sorted ASCII file. To specify this sort, simply list the
filenames and number of keys (if greater than 1) on one line, then list
the starting and ending columns for each key field on a separate line.
If the data within a key field are to be sorted by some code other than
straight ASCII, type a space and the data type after the ending colum.
(The SORT dialog will list data types and their codes. They are also
explained, in greater detail, in the PRIMOS Commands Reference Guide.)
If the sort on any key is to be done in reverse (descending) order,
type a space and an "R" after the ending column or data type. For
exanple, to sort a list of names and addresses, the entire entry of 80
characters might constitute the sort field, and the commands would run:

REV. @ 1 - 2

TDR4136 FILE-HANDLING UTILITIES

OK, SORT -BR

JUMBLED. NAMES NEAT. NAMES
L 80

Unless the -MERGE option has been specified, sorting begins when the
last pair of column numbers is entered. When the sort is complete,
SORT prints at the terminal the number of passes needed for the sort
and the number of items (i.e., lines) placed in the output file, and
then returns to PRIMOS.

Other File Specifications

If you are sorting more than one file, give all filenames plus_ the
number of keys on a single line in the following format:

-INPUT inputfile [...-INPUT inputfile] -OUTPUT outputfile -KEYS n

For example:

- OK, Sort —brief
-input chaos.1 -input chaos.2 -output order -keys 2
1 10
15 20 x

BRGINNING SORT

PASSES 2 ITEMS 19

[SORT-REV17 .8]

OK,

If you are sorting uncanpressed or fixed length files, or if you are

sorting binary files using ASCII keys, you will have to. specify
additional file information (via keywords) along with the filenames.

See the PRIMOS Commands Reference Guide for details.

Key Specifications

SORT recognizes 12 types of keys. ASCII files (compressed and
uncompressed) can use seven of them: A and AU for alphanumeric data,
U, LS, TS, LE and TE for numeric data.

Alphanumeric keys: The two alphanumeric keys are ASCII (A), which
sorts in a strict ASCII sequence, and ASCII, upper and lower (AU),
which sorts all alphanumeric characters as if they were upper case.
(The ASCII sequence is given in Appendix C.)

19 - 3 January 198¢

SECTION 19 IDR4138

The default key type is strict ASCII (A). This represents a departure
from the Rev. 16 ASCII default, which sorted lower case equal to
upper, aS AU does now. Given the four words, APPLE, alphabet, WHY, and
whynot, ASCII (A) produces:

APPLE

WHY
alphabet
whynot

AU produces:

alphabet

APPLE

WHY
whynot

Numeric keys: Three common numeric keys for ASCII sorts are:

U numbers without plus or minus signs

LS numbers preceded by plus or minus_ signs
(Numbers without signs are considered positive.)

TS numbers followed by plus or minus signs
(Numbers without signs are considered positive.)

(The LE and TE keys, which have the sign embedded in the numeral, are

explained in the PRIMOS Commands Reference Guide.)

Here is an example of a sort on an LS key:

OK, sort -br
numbers numbers.1

11¢@ 1s

BEGINNING SORT

PASSES 2 ITEMS 7

[SORT—REV17 .9]

REV. 9 1@ - 4

IDR4136 FILE-HANDLING UTILITIES

OK, slist numbers.1

-9999
-82085
-6783
4114
+5483
8265

+9765

OK,

Additional Filenames for MERGE Operation

After key fields have been specified using the -MERGE option, SORT asks
for the number of additional files to be merged. If you have already
listed all input files with the -INPUT format, this number is @.
Otherwise, give the number of additional files and then the names of
the files, one name per line. When the last nane is entered the
mergesort begins. When the merge is complete, SORT prints the number
of passes and returns to PRIMOS.

Note

In previous versions of PRIMOS (Rev. 16 and- earlier)
SORT-MERGE would sort and then merge unsorted files. The
sort-—and-merge process has now been taken over by SORT itself,
freeing SORT -MERGE to do a true mergesort: i.e., a merge of
presorted files.

A Mergesort Example

Here is an example of a mergesort. Assume we have created two
transaction files, in which each line (record) has the following
format: a transaction number in columns 1-5, a credit or debit
notation in column 6, a customer name in columns 8-17, a customer ID
number in columns 19-25, and other data in the remaining columns. Each
file has been sorted by customer name, customer ID, and transaction
nunber (in reverse order, so that most recent transactions come first).
Now we are going to merge the tw files, sorting on the same three
keys. The sort, with the full SORT dialog, is as follow:

18 - 5 January 1989

SECTION 19 IDR4138

REV.

OK, sort -merge

SORT PROGRAM PARAMETERS ARE:
INPUT TREE NAME -—- OUTPUT TREE NAME FOLLOWED BY

NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

cust.credits cust.accts 3

INPUT PAIRS OF STARTING AND ENDING COLUMNS

ONE PAIR PER LINE--SEPARATED BY A SPACE.

FOR REVERSE SORTING ENTER "R" AFTER DESIRED

ENDING COLUMN--SEPARATED BY A SPACE.

FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE

AT THE END OF THE LINE--SEPARATED BY A SPACE.

"A" - ASCII
"I" -— SINGLE PRECISION INTEGER
"FR" — SINGLE PRECISION REAL
"D" -— DOUBLE PRECISION REAL
"J" —- DOUBLE PRECISION INTEGER
"U" —- NUMERIC ASCII, UNSIGNED
"LS" - NUMERIC ASCII,LEADING SEPARATE SIGN

"Ts" - NUMERIC ASCII, TRAILING SEPARATE SIGN

"LE" -— NUMERIC ASCII,LEADING EMBEDDED SIGN

"TE" — NUMERIC ASCII,TRAILING EMBEDDED SIGN
"PD" — PACKED DECIMAL

"AU" - ASCII, UPPER LOWER CASE SORT EQUAL

DEFAULT IS ASCII.

8 17

19 25
1527

INPUT THE NUMBER OF ADDITIONAL FILES TO BE MERGED. (MAX=

INPUT FILES TO BE MERGED, ONLY ONE PER LINE.

cust debits

BEGINNING MERGE

PASSES 1 ITEMS 19

[SORT-REV17.2]

OK, slist cust.accts

89424+ Jones BR9438 other data about transaction
81884- Jones BR9438 =other data about transaction

12345+ Jones BR9438 other data about transaction
67348- Jones XL1489 other data about transaction
54936+ Jones XL1489 other data about transaction

49488- Jones XL1489 other data about transaction
86889+ Smith CS4192 other data about transaction
29622+ Smith CS4192 other data about transaction
23220- Smith CS4192 other data about transaction
2122+ Smith CS4192 other data about transaction

OK,

g 1@ - 6

19)

IDR4130 FILE-HANDLING UTILITIES

FILE COMPARISON (CMPF)

The PRIMOS command CMPF permits the simultaneous comparison of up to
five ASCII files of varying lengths. The format is:

CMPF file-l file-2 [.....file-5] [options]

The first file, file-1, is treated as the original file against which
the other files are compared. The CMPF command produces output
indicating which lines have been added, changed or deleted in the other
files,

The options which maybe specified are:

Option Function

-BRIEF Suppresses the printing of differing lines

. of text of files being compared. aMly
identification letters and line numbers are
printed.

-MINL number Sets the minimum number of lines that must
match after a discrepancy between files is
found. Needed in order to resynchronize
file comparison. Default = 3 lines.

-REPORT filename Produces a file with specified filename,
containing the differences found between
compared files (in lieu of displaying then
at the terminal during the comparison
process).

After a difference between the original file and another specified file
has been discovered, CMPF attempts to resynchronize the files for
comparison. This occurs only when a certain number of lines match in
all the files being campared. The default value is 3, but can be
changed in the -MINL option. The comparison process continues until
another difference is found.

When line differences are reported, either at the terminal or in a
report file, each line from the original file is indicated by the
letter A, followed by the line number of the line containing
discrepancies. The corresponding lines of other files are indicated in
the sane manner using letters B through E respectively.

16 - 7 January 1980

SECTION 10 TDR41390

Example: Consider the following two files:

FILEA FILEB

The The
quick swift
brow red
fox fox
jJunps jjunps
over over
the the
lazy dog

dog

A CMPF comparison of these two files works as follows:

OK, CMPF FILEA FILEB

GO

A2 quick
A3 brow
CHANGED TO

B2 swift
B3 red

A8 lazy

DELETED BEFORE

B8 dog.

COMPARISON FINISHED.

2 DISCREPANCIES FOUND.

OK,

MERGING TEXT FILES (MRGF)

The MRGF command merges up to five ASCII files. The format is:

MRGF file-l [file-2 ...file—-5] -OUTF outfile [options]

The first file specified is treated as the original file, and it is
assumed that changes have been made to this file to produce the other
files. Pathnames may be used to specify files to be merged. Unchanged
lines of text am nonconflicting changes between’ files are
automatically copied to the output file, outfile. When corresponding
lines of text in the files differ, the user is asked by the MRGF
progran to solve the conflicts. This is done by entering” an
interactive mode in which the user can specify the contents of the
output file. In this mode, the command x (x = A-E) causes all the
queried lines fran file X to be inserted; the command xn causes line n

REV. 9 1@ - 8

IDR4130 FILE-HANDLING UTILITIES

from file X to be inserted. New text can be inserted by entering a

blank line at the terminal (thus sending MRGF into input mode), typing
the new text, and then typing another blank line. No text editing can
be performed on lines thus input, and no expansion of tab characters
will be done. The lines must be entered character-for-character as
they are to appear.

The options taken by the MRGF command are similar to those for the CMPF
command. There is an additional option, -FORCE, which causes file-2 to
be the preferred file if conflicts exist between several files. No

MRGF interactive dialog will be generated when conflicts arise if the
-FORCE option is used. File-2 is assumed 'correct' and the other files
forced to comply with it.

FILE UTILITY (FUrIL)

FUTIL is a file utility command for copying, deleting, and listing
files and directories. FUTIL is most often used for copying files and
directories from one directory to another. It is also useful for
deleting groups of files and entire directories. Its list option
allows the user to examine file and directory properties and to keep
track of the contents of directories involved in the copy or delete
processes. FUTIL allows operations on files within User’ File
Directories (UFDs) and segment directories.

Invoking FUTIL

To invoke FUTIL, type FUTIL. When ready, FUTIL prints the pranpt
character >, and waits for a command string from the user terminal.
FUTIL accepts either upper- or lower-case input, but passwords must be
entered exactly as they have been created. (Most other commands will
convert passwords to upper case before attempting the match. FUTIL
does not.) To abort long operations (such as LISTF), type BREAK, and

restart FUTIL by typing S 1009.

To use FUTIL, type one of the FUTIL subcammands (listed below) followed
by a carriage return, and wait for the prampt character before issuing
the next command. The erase (") and kill (?) characters are supported
in both command and subcommand lines.

FUTIL Commands

Although only the major FUTIL commands are discussed in detail here,
the following figures illustrate the function of all available FUTIL
comands. Figure 18-1 is an overview of all FUTIL commands. Figure
18-2 outlines the COPY, DELETE and PROTEC commands and how they operate
on files and directories. A typical FROM and TO directory outline is
included to show how commands move files and directories fram one
location to another.

19 - 9 January 1980

SECTION 10 TDR4139

Below are some exanples of the most commonly used FUTIL commands. An

overviewof FUTIL commands appears at the end of this section. For

complete details on all the FUTIL commands, which are summarized at the
end of this section, see Reference Guide, PRIMOS Commands.

Copying Files am Directories

FUTIL provides several commands which allow the user to copy files,
directories, or directory trees. These commands, their functions and
formats are listed below:

Command Function

COPY Copies files (as many as will fit on line).

TRECPY Copies directory trees.

UFDCPY Copies entire UFD structure (complete with all

files).

TO Specifies directory to which file(s) or directories
are to be copied. Accepts a pathname. Default is
home directory.

FROM Specifies directory from which files or directories
are to be copied. Accepts a pathname. Default is
home directory.

The general formats of these comands are:

COPY filenane [new-name] ,{[filename new-—name]

TRECPY filename

UFDCPY

Copying Files: In order to copy a file, the user must have read
access rights. The name of a file may be changed by indicating the
desired new name immediately after the current name has been
specified. Filename pairs are separated by commas on the command

line.

The tree structure in Figure 19-3 illustrates the positions of
various files and directories which can be copied from one point to

another, as shown in the following hypothetical situations.

Situation 1: Suppose we want to copy the files HITS and MISSES

from the directory NAUTILUS, into our current directory, SECRETS.
We are currently attached to SECRETS and have also set it as home.
The pathnane of SECRETS is represented as follows: <*>SECRETS.

REV. @ 16 - 10

TIDR41398 FILE-HANDLING UTILITIES

In pathnames, <*> represents the current disk. In this case, it

represents disk 2. This pathname can also be represented as
<MONITOR>SECRETS. MONITOR is the volume-name of the logical
device, whereas 2 is the volume-number. Similarly, in Figure 19-3,
the volune-name and number of the other logical disk are NAVY and 1
respectively. The volume-name amd number’ can be used
interchangeably in a pathnane, and both appear in the following
examples. Any directory subordinate to SECRETS would be described
by a_ relative pathname, as in, *>DOMESTIC. In relative pathnames,
the use of * indicates the home directory.

To move files from any directory to the current directory, the
following general steps are taken:

l. Invoke FUTIL.

2. Define the FROM directory.

3. Define the files to be copied and indicate new filenames
(optional).

The FUPIL dialog for this particular situation is:

OK, FUTIL

[FUTIL rev 17.0]
>FROM <1 >MARINE>NAUTILUS

>COPY HITS, MISSES ZEROES

>QUIT

OK,

The files HITS and ZEROES (formerly MISSES) are now in our home
directory SECRETS, as well as in the FROM directory NAUTILUS.
Notice that a TO directory was not specified. If the TO directory
is not explicitly indicated, FUTIL assumes it to be the current
directory. Although the file MISSES is called ZEROES in the
current directory, its name is not changed in the original, or
FROM, directory.

Situation 2: Suppose we want to copy all the contents of the
directory HOLLAND to another directory CLASSIFIED, on the current
disk. The files and directories contained in HOLLAND are called a
directory tree. The FUTIL dialog would be as follows:

OK, FUTIL

[FUTIL rev 17.8]
>FROM <1 >MARINE

>TO <*>CLASSIFIED

>TRECPY HOLLAND

>Q

This copies the directory HOLLAND (with its subordinate files and
directories) to the directory CLASSIFIED. The <*> indicates the
current disk. HOLLAND is now a subdirectory in CLASSIFIED.

10 - ll January 1989

SECTION 10 TDR4138

Situation 3: Suppose we wish to copy the entire directory tree
MARINE into the UFD REPORTS. The FUTIL dialog would be:

OK, FUTIL
[FUTIL rev 17.6]
>FROM <NAVY>MARINE
>TO <MONITOR>REPORTS
>UFDCPY

>Q

The entire batch of files am directories listed under the UFD

MARINE are now listed as a subdirectory under the UFD REPORTS.

Situation 4: We can also copy files from our home (current)
directory to another. It is not necessary to specify a FROM name.
In the absence of a FROM specification, FUTIL assumes the FROM
directory to be the current working directory. Simply specify the
directory to which the files are to be copied.

The current directory in this situation is NAUTILUS. FUTIL allows

you to move to other directories with the ATTACH subcommand,

abbreviated "A", It is not necessary to return to PRIMOS in order

to change the working directory location. For example:

OK, FUTIL

[FUTIL rev 17.9]
>A <L>MARINE>NAUTILUS

The directory NAUTILUS is now the current wrking directory. To

copy the file HITS from the current directory up to the directory

MARINE, do the following:

>T <1 >MARINE

>C_ HITS

>Q

Deleting Files and Directories

Commands for deleting files, directory trees and UFDs are:

Command Function

DE LETE Deletes specified files from FROMdirectory.

TREDEL Deletes specified directory trees or segment |

directories, including MIDAS files, from FROM

directory.

UFDDEL Deletes entire specified UFD.

REV. @ 1@ - 12

TDR4130 FILE-HANDLING UTILITIES

The user must have read, write, delete/truncate access rights to
delete any file. Below are some situations in which FUTIL is used
to delete several types of files and directories.

Situation 1: In order to delete the file HITS from the sub—-UFD

NAUTILUS, the following dialog could be used:

OK,FUTIL

[FUTIL rev 17.8]
>FROM <NAVY>MARINE>NAUTILUS
>DELETE HITS

>Q

Situation 2: If we wanted to delete the directory tree rooted in
the sub-UFD HOLLAND, we would do the following:

OK,FUTIL
[FUTIL rev 17.8]
>FROM <1>MARINE
>TREDEL HOLLAND

>Q
OK,

This deletes the directory HOLLAND and its entry in MARINE.
Similarly, to delete segment directories and MIDAS files, use the
TREDEL option, as shown. |

Situation 3: To delete the contents of CLASSIFIED appearing on
the current disk, (2), the following dialog could be implemented:

OK,FUTIL
([FUTIL rev 17.9]

>FROM <*>CLASSIFIED
>UFDDEL

>QUIT

OK,

This deletes all subordinate directories and files fron the UFD
CLASSIFIED. The directory itself, however, is not deleted.

Listing Contents of a Directory

The LISTF command in FUTIL displays a list of all the files am
directories in the FROM directory. It also displays the FROM
directory pathnane and the ToO directory pathname (default). The
various options to the LISTF command provide information on all the
files contained in the FRM directory.

1@ - 13° January 1989

SECTION 10 IDR4139

FUTIL COMMAND SUMMARY

ATTACH pathname

Changes working directory to pathname.

CLEAN prefix [level]

Deletes files beginning with prefix, for indicated number of

levels (default=1) .

COPY from-name [to-name] [,from-name [to-name]] ...

Copies naned files from FROM directory to TO directory. If
to-names are omitted, copies have same names as originals.

COPY (from-position) [(to-position)]

Copies from one segment directory to another. If to-position
is omitted, copy goes to same position as original. Note that
COPY from-name (to-position) and COPY (from-position) to-name
are also legal.

COPYDAM

Same as COPY but sets file type of copy to DAM.

COPYSAM

Same as COPY but sets file type of copy to SAM.

CREATE directory [owner-password [non—owner-password]]

Creates directory in current TO directory (with optional

passwords) .

DELETE (file-a [file-b] ...
(position-a) [(position—-b)] ...

Deletes from FROM directory, named files or, in segment
directories, deletes files at specified positions.

REV. @ 1@ - 14

IDR4130 FILE-HANDLING UTILITIES

FORCE {3

[OFF]

ON forces read-access rights in FROM directory for LISTF,
LISTSAVE, SCAN, UFDCPY, and TRECPY. OFF stops FORCE action

(default) .

FROM pathname

Defines FROM directory for subsequent commands such as_ COPY,
LISTF, etc.

LISTF [level] [FIRST] [SIZE] [PROTEC] [RWLOCK] [TYPE]

[DATE] [PASSWD] [LSTFIL]

Lists files and attributes at terminal (and into optional file
called LSTFIL).

LISTSAVE filename [level] [FIRST] [SIZE] [PROTEC] [RWLOCK]
[TYPE] [DATE] [PASSWD]

Same aS LISTF, with the LSTFIL option specified, but writes
output to filename. 3

PROTEC filenane [owner-access [non-ower-access]]

Sets protection attributes for filename.

SCAN filename [level] [FIRST] [LSTFIL] [SIZE] [PROTEC]
[RWLOCK] [TYPE] [DATE] [PASSWD]

Searches FROM directory tree for all occurrences of specified
filename and prints requested attributes.

SRWLOC filename lock-number

Sets per-file read/write lock.

TO pathname

Defines TO directory for subsequent canmands such as CREATE
and all copying comands.

1 - 15 January 1980

SECTION 10 IDR4130

TRECPY directory-a {directory-b] [,directory-c [directory-d]] ...

Copies directory tree(s) in FROM directory into TO directory.

TREDEL directory-a [directory-b] ...

Deletes directory tree(s) in FR& directory.

TREPRO pathname [owner-access [non-owner-—access}]

Sets protection rights for directory and contents (default

1 9).

TRESRW pathname lock—number

Sets per-file read/write lock for all files in pathname.

UFDCPY

Copies entire FROM directory into TO directory.

UFDDEL

Deletes entire FRM directory.

UFDPRO fowner-access [norn-owner-access [level]]]

Sets protection attributes for entire FROM directory.

UFDSRW lock-number [n-levels]

Sets per-file read/write lock for n-levels in FROM directory.

Lock—number Meaning Code

GB Use system read/write lock SYS
1 n readers OR 1 writer W/NR
2 n readers AND 1 writer 1WNR

3 n readers AND n writers NWNR

REV. @ 1@ —- 16

TDR4139 USING TAPES AND CARDS

SECTION 11

USING TAPES AND CARDS

ACCESSING DATA ON TAPES AND CARDS

Existing source programs resident on punched cards, magnetic tape, or
punched paper tape can easily be read into disk files using
PRIMOS-level utilities. In addition, the punched card and magnetic
tape transfer utilities will translate fron BCD or EBCDIC
representation into ASCII representation saving considerable time and
effort.

Subroutines and other installation-dependent operations may be altered
to conform to PRIMOS by using the editor (ED) described in Section 4.

The general order of operations for input from a peripheral device is:

1. Qbdtain exclusive use of the device (Assigning).

2. Transfer programs with appropriate utility.

3. Relinquish exclusive use of the device (Unassigning) .

Assigning a Device

Assigning a device gives the user exclusive control over that
peripheral device. The PRIMOS-level ASSIGN command is given from the
terminal :

ASSIGN device [-WAIT]

device is a mnemonic for the appropriate peripheral:

CRn Card Reader n (n=@,1) |
MTpdn [-ALIAS MT1ldn] Magnetic Tape Unit pdn (pdn=9-7)

MTX -ALIAS MTldn Any Magnetic Tape Unit (ldnd@-7)
PTR Paper Tape Reader

-WAIT is an optional parameter. If included, it queues the ASSIGN
command if the device is already in use. The assignment request
remains in the queue until the device becomes available or the user
types the BREAK key at the terminal; both occurrences return the user
to PRIMOS. If the requested device is not available and the -WAIT
parameter has not been included, the error message:

The device is in use. (ASSIGN)

will be printed at the terminal.

ll - tl January 19898

SECTION 11 IDR4130

After all I/O operations are completed, exclusive use is relinquished

by the command:

UNASSIGN device

device is the same mnemonic used in the ASSIGN command.

READING PUNCHED CARDS

Assign use of the parallel interface card reader by:

AS CRn -WAIT

To read cards from the card reader, load the card deck into the device

and enter the command:

CRMPC deck-image [-PRINT] [-CR@] [-CR1]

deck- image The pathname of the file into which the
card images are to be loaded.

—PRINT Print card while reading.

-CR@ Use device CR@ (default).

-CR1 Use device CRl.

Source deck header control cards are set up as follows:

Source deck Columns 1 and 2 of

representation deck header card

BCD $6
EBCDIC $9

ASCII no header card

Reading continues until a card with SE in columns 1 and 2 are

encountered (end of deck); control returns to PRIMOS and the file is

closed. If the cards are exhausted (or the reader is halted by the

user) , control returns to PRIMOS but the file is not closed. If more

cards are to be read into the file, the reader should be reloaded;

reading is resumed by the command START at the terminal.

Close the file with the commamn:

CLOSE ALL

or

CLOSE deck-image

REV. @ ll - 2

IDR4130 USING TAPES AND CARDS

Example of card reading session:

OK, AS CR -WAIT

OK, CRMPC old—progran-1
OK, UN CR@

OK,

If a serial interface card reader is used, the process is similar, with
slightly different reader comnarnds.

OK, AS CARDR -WAIT
OK, CRSER old—program-2
OK, UN CARDR

OK,

CARDR may be abbreviated to CAR.

READING PUNCHED PAPER TAPE

First load tape into reader; then assign tape reader. Source programs
punched on paper tape in ASCII representation can be read into a disk
file with the Editor utility.

OK, AS PTR -WAIT Assign tape reader
OK, ED Invoke Editor

INPUT

(CR) Switch to EDIT mode
EDIT

INPUT (PTR) Input from tape reader
EDIT Tape is being read
FILE filename File input under filename
OK, UN PTR Unassign tape reader

MAGNETIC TAPE UTILITIES

The Prime magnetic tape utilities (MAGNET, MAGRST and MAGSAV) allow the
duplication of magnetic tapes, the transfer of files from disk to tape

and vice-versa, and the transfer and translation of tapes in selected
non—Prime formats to and from PRIMOS disk files. All mag tape
operations done with these utilities require the assigrment of at least
one magnetic tape drive unit.

Assigning Tape Drives

Magnetic tape drive assigrment can be set up at each installation by
the System Administrator in one of three ways:

1l - 3 January 198¢@

SECTION 11 TDR41390

e Each user can assign a tape drive from any terminal; operator
intervention is necessary only for processing special requests.
This is the default mode.

e Fach user must send all assigrment requests’ through the
operator, who controls all access to tape drives. The operator
then sends messages to the user terminal indicating the status
of the assignment request.

e Tape drive assigrment from any user teminal is_ strictly
forbidden. This feature is used to restrict access to tape
drives in security-conscious environments, or when the operator
is not available to process requests.

The ASSIGN Command Format

Users may assign magnetic tape drives in any one of three ways:

e By physical device number (pdn):

ASSIGN MTpdn [-options]

e@ By logical device number (ldn):

ASSIGN MTX -ALIAS MTldn

e@ By logical device number plus characteristics:

ASSIGN MTX -ALIAS MTldn -options

Assigning a drive by physical device number requests that particular

drive. If the drive is busy, -WAIT queues the request. Assigning a
drive by logical device number says, "Give me any tape drive, and call
it number 1dn." (The -ALIAS option supplies the number.) Any free
tape drive may then be assigned. If all devices are busy, -WAIT queues
a request for the first free device. Assigning a drive by logical
number plus characteristics asks for any drive that can handle a
particular type of tape (for example, a 9-track tape at 6259 bpi), and
gives the drive a logical alias. In all three cases, users will be
told which physical device has been assigned to them; they may refer
to the device by either its physical number or its logical alias.

Additionally, ASSIGN allows special requests to be made of the system

operator; for example, renoving the WRITE-ring or mounting. a
particular tape. (This version of the ASSIGN command applies only to
mag tape drives; other peripheral devices like the paper tape reader
(PTR) cannot be assigned with the options described here.) The command

format, complete with optional arguments, is:

ASSIGN |MTpdn [-ALIAS MTldn] [-option(s)]
MTX -ALIAS MT1dn

REV. @ ll - 4

IDR4136 USING TAPES AND CARDS

The arguments and options are:

Argument Description

MTpdn Mag tape (MT) unit number fron @ to ~=7,
inclusive. pdn is the physical device number
assigned to each drive at system startup.
Numbers can be obtained from the system
operator.

MTX Tells the operator to assign "any available
drive"; MUST be accompanied by -ALIAS MTldn
which assigns a number (alias) to the drive for
reference purposes. See below. MThe actual
drive assigned depends on any other options
which appear on the command line.

-ALIAS MTldn The logical drive number, from 98 to V7,
inclusive. idn is a user-specified number
assigned to a particular physical drive wnit;
used as an alias for the pdn in subsequent mag
tape operations. Logical and physical device
numbers can be used interchangeably in MAGNET,
MAGSAV and MAGRST dialogs; however, to avoid
confusion, give MAGRST/MAGSAV the logical device
number, if you're using aliases. See Note,
below.

Option Description

-WAIT Indicates user is willing to wait until
requested drive is available.

-TPID id Requests the operator to mount a particular reel
of tape, identified by a tape id; requires
operator intervention. id is alist of tape
identifiers (arguments) describing a particular
reel of tape, and/or type of tape drive (name,
number, etc.). Identifiers may not begin with a

hyphen (-) which is” a reserved character

indicating the next control argument on the
ASSIGN statement line.

—-RINGON Protection rights may be specified by:
—-RINGOFF

RINGON Read and write permitted.
or

RINGOFF Read only; write—-protection
in effect.

11 - 5 January 1980

SECTION ll TDR4136

Requires operator intervention for removal or
replacement of write-ring.

Particular tape density settings are requested
—-88@BPI with these options. Most drives can handle 38990
~-1600BPI and 1600 bpi settings. Requires operator
-6250BPI intervention.

—7TRK Indicates 7~- or 9-track tape drive;
—9TRK default is 9-track. Requires operation

intervention if -7TRK is specified.

Using the —ALIAS Option

The -ALIAS option is useful in several general situations:

@ When you request special features and do not know’ which

available drive meets the stated requirements

@ When you are writing a command file to perform mag_ tape

operations and have no way of knowing which tape drive is
available at a given time

@ When you know the actual pdn of the drive being assigned but
prefer to give it another number, for ease of reference, or to
avoid confusion

Once an "alias" has been assigned, either the physical or logical
device number can be used to refer to the drive in question in
subsequent mag tape drive operations like MAGSAV. The logical device
number is “mapped into", or associated with the physical device number
in an internal table.

With the MTX option, command files which perform mag tape operations
can be executed independently of a particular drive's availability.
The arbitrary number assigned the tape drive with MTX -ALIAS can be
used in writing responses to the dialog of the utility invoked by the
command file,

Note

MAGSAV and MAGRST ask the user for the device number of the
drive on which a tape is mounted. Both dialogs assume the
nunber given is a logical device number: consequently, the
internal list of logical device numbers is searched first. If
a match is found, MAGSAV/MAGRST will interact with the tape
mounted on the corresponding physical drive. Suppose the user
first assigns physical device MT@ as logical MTl, then assigns
physical MTl as logical MT@. If the user answers "1" to the

"TAPE UNIT:" prompt of MAGSAV (or MAGRST), the utility assumes
that "L" is a logical device number (ldn). Thus, it attempts

REV. @ ll - 6

TDR4136 USING TAPES AND CARDS

to read from or write to, as the case may be, the tape mounted
on physical device MT@, which the user previously assigned as
logical MT1.

USING ASSIGN

The following examples illustrate some uses of ASSIGN. In all cases,
the distinction between what the user can do without operator
intervention and what must be done with operator assistance is
indicated.

Default Assigrment

The standard form of assigrment does not require operator intervention
on systems with the default configuration (user-privileges allowed) .
For example:

OK, AS MT1

Device MT1 Assigned.

Mag tape drive MTl is assigned. (1 is the physical device number.) If
the device is currently assigned to another user or process, this
message appears:

The device is in use. (ASSIGN)

ER!

On systems where all mag tape requests are monitored, the request above
would be acknowledged with the same message, but a slight delay would
be observed. The operator has to answer each request, which results in
a delayed response at the user terminal.

Logical Aliases

Logical device numbers can be assigned by the user without operator
assistance on default privilege systems, providing that no other
special requests are made on the same ASSIGN command line:

OK, AS MT1 -ALIAS MTO

Device MT1 Assigned.

Note that the physical, not the logical, device number is returned.

PhySical device MTl can now be referred to as logical device MT®@.
ldn's and pdn's are associated internally in a special table and can be
used interchangeably. If no ldn alias is requested, the default
logical device number is the same as the physical device number of the
drive. The STAT DEV command lists the phys ical-to-logical number
correspomence:

ll - 7 January 1989

SECTION 11 TDR413@0

OK, STAT DEV

DEVICE USRNAM USRNUM LDEVICE
MT1 DOUROS 7 MTO

If no logical alias had been requested, the LDEVICE entry would be

identical to the DEVICE entry; in this case, Mfl.

Aliases in Operator Mode

Similarly, logical aliases can be requested on operator-controlled

systems. Again, the pdn of the assigned device will be displayed at

the user's terminal with a message of this general form:

Device MTpdn Assigned.

pdn varies with the actual physical device chosen by the operator.

Special Requests

If control arguments for special requests appear on the ASSIGN command

line, then the operator must intervene, even on systems with default

user privileges. For exanple, all ASSIGN commands with the MTX option

must be handled by the operator:

ASSIGN MTX -ALIAS MT4

The operator is requested to assign any available tape drive as logical

device 4. A message is displayed at the user's terminal, indicating

wnich physical drive has been assigned.

The operator must also intervene if a user wants a tape mounted, or if

a particular density setting is required, or if a particular drive is

needed, (for instance, to read a tape recorded at 6250 bpi). For

exanple:

AS MTX -ALIAS MT3 -TPID POWER -9TRK -RINGOFF -6250

The operator is requested to mount the "POWER" tape on a 9-track drive

that can handle 6258 bpi. In this case, "POWER" is the nane written on

the tape reel to identify the tape and is not necessarily the recorded

label. In addition, the user wants write-protection and is assigning

an alias of MT3 (ldn) to whatever device the operator chooses. This

request, if processed, might be acknowledged with this display:

Device MT@ Assigned.

REV. 9 ll - 8

TDR4138 USING TAPES AND CARDS

Operator Not Available

If the operator is not available to handle requests, any attempt by a
user to assign a mag tape drive will result in this message:

OK, AS MT1

No MagTape Assigrment Permitted. (AS)
ER!

Operator Can't Handle

If any request cannot be handled by the operator for any reason, the
following message appears at the teminal:

OK, AS MTX -ALIAS MT@ -6250

MagTape Assignment Request Aborted (ASSIGN)
ER!

Improper Use of ASSIGN

Should an improper form of the ASSIGN command be issued, an error
message appears, aS well as the proper commamd format, complete with
all the options. For example:

OK, AS MT1 -ALIS MT@ -RINGOFF
"-ALIS" not implemented or improper use of argument. (ASSIGN)
Usage: ASSIGN MTn [-ALIAS MTm] [<options>]

ASSIGN MTX -ALIAS MTn_ [<options>]
Options: [-TPID <id>] [-7TRK | -9TRK] [-RINGON | -RINGOFF]

[-6250BPI | -625@ | -1L69@BPI | -1600 | -80@BPI | -890]

ER!

RELEASING A TAPE DRIVE

When a user completes a mag tape operation, the mag tape drive should
be released for general use. Simply issue the UNASSIGN command with
one of the indicated arguments:

UNASSIGN| MTpdn
-ALIAS MTldn

The -ALIAS option can be used to unassign a drive whether or not the
user assigned an alias to the drive. The ldn argument value can be
either the user-chosen logical device number, ifone was assigned, or
the default ldn, which is identical to the pdn.

11 - 9 January 198d

SECTION 11 TDR4130

Who Can UNASSIGN a Drive

A tape drive can be unassigned only by:

e The user who assigned it (on default-privileged systems)

e The system operator

The system operator can unassign any drive using the pdn argument; the

"_ALIAS ldn" option can be used only if the drive is owned by (i.e.,

was previously assigned by) the operator.

If an operator UNASSIGNS a user-dedicated tape drive, no message will

appear at that user's terminal. Should the user subsequently attempt
to UNASSIGN the same device an error message will be displayed.

MAG TAPE OPERATIONS

Each magnetic tape utility performs one or more specific functions.

MAGNET (for both Prime and non-Prime-format files and tapes)

@ Reading files from tape to disk (with optional unblocking or

character translation)

e Writing files from disk to tape (with optional blocking or

character translation)

@e Copying files from one tape to another

e Translation from EBCDIC or BCD to ASCII during READ or WRITE
operations (optional)

@ Copying binary files

MAGRST (Prime-format tapes only)

e Restoring Prime-format files, directory-trees or disk volumes

from tape

MAGSAV (Prime-format files only)

e Archiving Prime-format files, directory-trees or disk volumes to
tape

The dialogs associated with these utilities are summarized below. For
complete information on these utilities, see the Reference Guide,

PRIMOS Commands.

REV. @ ll - 10

IDR41398 USING TAPES AND CARDS

THE MAGNET UTILITY

The five MAGNET options perform the following tape operations:

Option Function

COPY Copies files from one tape
to another.

POSITION Positions tape to a file
or record.

QUIT Returns to PRIMOS.

READ Reads files from tape to disk.

WRITE Writes a file from disk to tape.

MAGNET Requirenents

Acceptable Tapes: MAGNET accepts only mlabeled- tapes with
fixed-length records and optional blocking. They may be 7- or 9-track,
and may be written in ASCII, BCD (7-track only), BINARY-or EBCDIC
format. They may have a maximun of 10K bytes/tape record, and a
maximum of 2K bytes/disk record.

Tapes which meet these standards maybe read, written or copied with
MAGNET. Translation from/to ASCII, BCD, BINARY and EBCDIC can be done
during READ or WRITE operations. Record blocking/unblocking is also
possible during these operations.

ANSI level 1 volume labels of certain labeled tapes can be read with
the LABEL command. LABEL can also be used to write a label on an
unlabeled tape. See the PRIMOS Commands Reference Guide for details.

Reading/Writing Mag Tapes: Files may be read or written (saved) to

tape with the READ and WRITE options of MAGNET, respectively. Tapes
created with MAGNET cannot be restored with MAGRST, so once you Save

files to tape with MAGNET WRITE, they must be read back with MAGNET
READ. See the PRIMOS Reference Guide for complete details on the
MAGNET READ and WRITE options.

Copying Tapes: The COPY option allows files to be copied fram one tape
to another. No character translation is provided for during this

Operation. Tapes may also be copied in their entirety with this
option, as explained below.

Reading or Writing Magnetic Tape with MAGNET

Once the tape drive has been assigned and the tape mounted, users may
read tapes with the READ option of PRIMOS' MAGNET utility. When the

1 - (hl January 198

SECTION 11 TDR4130

command MAGNET is given, an interactive dialog begins. (The same

dialog, with the WRITE option, allows users to write tapes.)

OK, MAGNET

{MAGNET rev 17.1]

OPTION: READ

MTU# = unit-—number [/tracks]

unit-number is the number of the magnetic tape drive unit which was

previously assigned.

tracks is either 7 or 9; if this parameter is omitted, 9-track tape is

assumed.

MAGNET then asks a series of questions about the tape format.

MTFILE# = tape-file—-number

tape-file-number is the file number on the tape. A positive integer

causes the tape to be rewound and then positioned to the file number;
a @ causes no repositioning of the tape.

LOGICAL RECORD SIZE = n

This is the number of bytes/line image; normally this is 8@ for a
source program,

BLOCKING FACTOR = blocking-factor

blocking-factor is the number of logical records per tape record.
(Maximun size of a tape record is 18,008 characters.)

ASCII, BCD, BINARY, OR EBCDIC? data-representation

data-representation action

ASCII Transfer

BCD Translate to ASCII from 7-track
tape

BINARY Transfer verbatim

EBCDIC Translate to ASCII

IDR41398 USING TAPES AND CARDS

FULL OR PARTIAL RECORD TRANSIATION? answer

answer is FULL or PARTIAL. The question is asked only for BCD or
EBCDIC representations. Partial translation allows specified bytes in
the record to be transferred to disk without translation to ASCII. The
partial option is useful when transferring data files with binary or
packed decimal EBCDIC data. However, almost all source programs will
be transferred with the full option.

OUTPUT FILENAME: filename

filename is the nane of the file in the UFD into which the magnetic

tape is to read. If the filename already exists in the UFD, the
question:

OK TO DELETE OLD filename? answer

will be asked. A NO will cause the request for an output filename to
be repeated. A YES will cause the transfer to begin; upon completion,
the following message will be printed out:

DONE, tape-records RECORDS READ, disk-records DISK RECORDS OUrPUT

OK,

Use of the tape drive unit should then be relinquished by UN MTpdn or
UN -ALIAS ldn.

DUPLICATING MAGNETIC TAPES

MAGNET can copy and read either Prime or non-Prime tapes. MAGSAV
creates Prime-format tapes which can then be read by MAGRST.

Copying Tapes with MAGNET: If there are two tape drives available for
use, the COPY option of MAGNET can be used to generate duplicates of
magnetic tapes. This option copies one tape directly to another. The
MAGNET utility may be used for tapes in Prime or non-Prime format.

The essential steps in the copy procedure are:

1. Assign two magnetic tape drive units from terminal.

2. Mount the FROM tape (original) and TO tape (blank) on their
respective drive units.

3. Use COPY option of MAGNET: supply FROM and TO tape wnit
numbers, starting file number and number of files to be copied,

as requested by dialog (see below.

4. Dismount both tapes and unassign tape drives when EOT (end of

tape) message is returned.

ll - 13 January 1988

SECTION 11

The MAGNET COPY dialog:
following prompts. Expected
corresponding prampts.

Prompt

"FROM' TAPE:

MAGNETIC TAPE UNIT NUMBER=

STARTING FILE NUMBER=

'TO' TAPE
MTU NUMBER=

STARTING FILE NUMBER=

NUMBER OF FILES TO COPY=

DONE

Copying Tapes with MAGRST/MAGSAV:

TDR4138

The COPY option of MAGNET
user responses are outlined opposite

MAGSAV, the MAGSAV/MAGRST utilities can be used to duplicate tapes as
follows:

Response

Enter number (ldn or

mag tape drive
pdn) of

on which non-blank tape is
mounted .

Enter number of file to be
copied; numbers correspond to
order in which files appear on
tape.

Enter number (ldn or pdn) of

mag tape drive unit on which
blank tape is mounted.

Enter position on tape where
file will reside.

Enter number of files to be
copied. If copying entire
tape, enter a large number;
operation ceases when EOT is |
reached.

This means the operation is

completed. The number of
files copied is printed ard

control returns to PRIMOS.

When copying tapes saved with

e Assign a tape drive unit from the terminal.

@ Mount FROM (original) tape on drive unit.

@ Copy tape to files on disk using MAGRST.

@ Remove FROM tape and replace the TO (blank) tape on drive

e Transfer files from disk to TO tape using MAGSAV.

@ Dismount tape and unassign drive unit from terminal.

REV. @ ll 14

invokes the

unit.

TDR41308 USING TAPES AND CARDS

Saving Disk Files on Tape (MAGSAV)

The Magnetic Tape Save Utility writes PRIMOS files from disk to a 7- or
9-track magnetic tape. Several options maybe specified on the MAGSAV
command line:

—7TRK

—INC

—LONG

—UPDT

—-VAR

Uses 7-track magtape format instead of default
(9-track).

Indicates incremental dump. Only files and directories

with DUMPED switch set to 9 will be saved.
(Default=save all).

Sets record size to 1824 words (Default=512).

Indicates update. DUMPED switch is set for files and
directories saved from disk to tape.

Allows variable-length records, up to 2848 #4words;
overrides -LONG option. Improves speed of MAGSAV
operation. If selected, the record size is printed
after the REV stamp of the MAGSAV dialog.

MAGSAV Dialog Summary: The MAGSAV dialog is summarized below.

Suggested user responses are indicated.

Prompt Response

TAPE UNIT (9 TRK): Enter physical or logical tape drive
number, from 6-7. If the -7 TRK option was
not specified, (9 TRK) is displayed.

ENTER LOGICAL Enter number, from 1 to n, of
TAPE NUMBER: desired logical tape (see Note, below);

TAPE NAME:

DATE:

REV.

tape is, then rewound amd positioned.
Specify @ if tape is already positioned as
desired.

Specify a name or identifier for this tape;
maximum of 6 characters.

Specify date in format: mm dd yy. Default
(CR) is system-supplied date.

Enter arbitrary number, or (CR).

NAME OR COMMAND: Possible responses inclide:

pathname Name of file or directory to be
saved.

MFD Saves entire disk volume.

ll - 15 January 1980

SECTION 11 IDR41398

* Saves current directory; up to

13 (nested) levels can be saved
at a time.

$A directory [ldisk]: Changes home UFD to
directory. If ldisk number is not
specified, only the local disk is searched
for directory (default). pathnanes are
not supported.

S$I[filename]n: Prints at terminal an
index of files and directories saved from
from disk to tape. Index can be written
toa file if a filename is provided. n
indicates number of levels in tree
structure hierarchy to be included in
index.

SQ Terminates logical tape and
returns to PRIMOS.

SR Terminates logical tape, rewinds
tape and returns to PRIMOS.

SINC ON Turns incremental save option
OFF on or off; same as -INC command

line option, above.

Note

A "logical tape" results from single invocation of MAGSAV. It

is a unique entity, with its own header, etc. It may be a
portion of a physical tape, or a complete physical tape; or it
May Span one or more physical tapes. A single physical tape
may contain several logical tapes, each of which is identified
by number.

Sample MAGSAV Session: Below is an example taken fron a_ terminal
session during which a disk file (TAPE.EX) was saved on tape. If a
carriage return (CR) is given in response to the DATE and REV NO
prompts, aS shown below, the system will supply the current date and
zero rev number. Notice that a logical device number (ldn) can be
supplied as a response to the "TAPE UNIT" prompt as in this example.
Either a pdn or an ldn, (if one has been assigned) , can be supplied.

OK, AS MTl -ALIAS MT7

Device MTl Assigned.
OK, STAT DEV

DEVICE USRNAM USRNUM LDEVICE
MT1 DOUROS 7 MT7

REV. @ ll - 16

IDR4130 USING TAPES AND CARDS

OK, MAGSAV
REV. 17.8
TAPE UNIT (9 TRK): 7
ENTER LOGICAL TAPE NUMBER: @
TAPE NAME: MAGTAP —
DATE (MM DD YY): (CR)
REV NO: (CR)
NAME OR COMMAND: TAPE.EX
NAME OR COMMAND: $Q
OK,

Restoring Files to Disk (MAGRST)

The Magnetic Tape Restore Utility restores files, directory, trees and
partitions from a magnetic tape (7- or 9-track) to adisk. All
information is restored to the directory to which the user is currently
attached. MAGRST can read tapes of any record size, with fixed or
variable length records (up to 6144 words), making it compatible with
MAGSAV.

The command format is:

MAGRST [-7TRK] (option specifies 7-track tape: defaul t=9)

MAGRST dialog summary: The MAGRST utility displays a series of
questions and messages which are summarized, along with appropriate
responses and descriptions, below:

Prompt/Message Response/Description

YOU ARE NOT ATTACHED This message is returned only if

TO AN MFD ser is not attached to an MPD.

TAPE UNIT (9 TRK): Enter physical or logical device
number; from 8-7. The (9 TRK)
message is displayed if the -7
TRK option was not specified on
the MAGRST command line.

(TAPE NOT AT LOAD POINT) This message appears if the tape
is not positioned to the
beginning of the tape.

ENTER LOGICAL TAPE NUMBER: If tape is divided into several

logical units, enter logical
tape number from 1 to n. Tape
is positioned to specified

logical tape. Enter @ if tape
is already positioned as’

ll - 17 January 1989

SECTION 11

REV.

NAME: tape-name

DATE (MM DD YY): tape-date

REV NO: number

REEL NO: reel—-number

READY TO RESTORE:

TREE NAME:

TDR41398

desired. (No action is taken in
this case.) See also Note,
below.

MAGRST displays the name of the
logical tape currently
positioned to; names are
provided during MAGSAV dialog.

MAGRST displays date on tape was
recorded. Suppl ied during
MAGSAV.

MAGRST displays arbitrary number
specified during MAGSAV.

MAGRST displays appropriate
reel—number of tape.

Enter one of the following
options:

YES: Restores entire tape and
returns to PRIMOS.

NO: Causes first prompt to be
reissued.

SI [filename] n: Prints tape
index to n levels at teminal
during restore. Index can be
optionally saved to indicated
filename.

NW [filename] [n]: Prints n
level index at terminal but DOES
NOT UPDATE disk because no files

are restored. Optionally stores
index in filename.

PARTIAL: Restores only certain
files and directories,

Pathnames are entered in
response to "TREE NAME:".
prompt.

$ A directory [ldisk]: Changes
home UFD to directory. If ldisk
number is not specified, local
disk is searched for directory.

This prompt is returned when
PARTIAL option is’ specified.

- 18

IDR4138 USING TAPES AND CARDS

Respond with one of the

following: :

pathname: Names file or
directory to- be restored.
Pathname should not include name
of directory to which user was
attached when saving file or
directory, except when attached
to an MFD. If, for example, a
file, file2, was saved fram
UFD=TOP, and its pathname is:
TOP>MID>file2, it can be
restored with the pathname:
"MID>file2", but NOT with the
pathname: "TOP>MID>file2".

(CR): Terminates MAGRST dialog
by indicating end of treename
list; tape is read, and control
returns to PRIMOS.

Note

A “runaway” tape condition can occur if there is only one
logical tape on the currently mounted reel of tape and the
user specifies a number greater than 1 in response to the
LOGICAL TAPE NUMBER prompt. If this happens, MAGRST will
search endlessly for the non-existent logical tape(s) and
will consequently be unable to read the end-of-tape marker.
The drive must be unassigned to abort the unsuccessful

search.

When an unrecoverable error is encountered during an attempted MAGRST
operation, an error message is displayed. Recoverable errors are
logged and a total is displayed when the end of the logical or physical
tape is reached.

ll - 19 January 198¢

SECTION 11 TDR41398

Sample MAGRST Session: The following example represents the dialog
necessary to restore a file from tape to disk. The file saved in the
previous MAGSAV sample session (TAPE.EX) is used in this example also.

OK, MAGRST
REV. 17.9
YOU ARE NOT ATTACHED TO AN MFD
TAPE UNIT (9 TRK) 38
ENTER LOGICAL TAPE NUMBER: 1
NAME: MAGTAP
DATE(MM DD YY): 98-31-79
REV NO: 9
REEL NO: 1

READY TO RESTORE: PARTIAL
TREE NAME: TAPE.EX
TREE NAME: (CR)

*** STARTING RESTORE ***
*** END LOGICAL TAPE ***

*** RESTORE COMPLETE ***
OK,

REV. 9 ll - 2

IDR4130 USING PRIMENET

SECTION 12

USING PRIMENET

INTRODUCTION

Many Prime installations contain two or more processors connected in a
network - a canbination of communications hardware and PRIMOS software
Called PRIMENET. In a network, the processor to which’ the user
terminal is connected is the local processor, while all other
processors are considered remote. On a system using PRIMENET, you can:

@e LOGIN to a UFD on a remote system and use that CPU for
processing. (Only terminal I/O is sent across the network.)

e@ LOGIN to your local UFD, then ATTACH to directories on disk
volumes connected to any other processor in the network, and
access files in such directories. (File data is transmitted
across the network; the local CPU does the processing.)

e@ Use a PATHNAME with a subsystem (such as the Editor) to access a
file on a remote disk. For example:

ED <TPUBS>TEKMAN>BOILERPLATE>CHAP2

e Use FUTIL to copy a file from a remote directory into a local
directory, avoiding the overhead of frequent remote access. For
example: |

OK, futil

{[FUTIL rev 17.2]
> from <tpubs>tekmam univers
> copy sl2
> guit

OK,

FUTIL is explained more fully in Section 18.

REMOTE LOGIN

Each processor in the systen is assigned a nodename during system
configuration. The nodenane then identifies the processor for remote
logins. (Users can determine the nodenames of remote processors by
using the STATUS NETWORK command, explained below.) The format for
remote logins is:

LOGIN ufd-name [password] -ON nodename

12 - 1 January 1989

SECTION 12 TDR4139

If -ON nodename is omitted, an attempt is made to log into ufd-name on
the local system only. If nodename is the name of the local node, the
login attempt is done locally without the use of PRIMENET.

If the LOGIN command fails for any reason (e.g., Not found,

insufficient access rights), the user's PRIMENET connection is broken.
Input fron the user's terminal is again processed by the local
processor; but the user is not logged in.

On a. terminal logged in to a remote processor, the command LOGOUT logs
out the process, breaks the remote connection over PRIMENET, and
reconnects the terminal to its local system (not logged in). The
message:

WAIT. . .

DISCONNECTED FROM xxx

OK,

is displayed. All input characters typed between the LOGOUT command
and the response OK are discarded.

Network Status

The STATUS NETWORK command gives the names and states of all nodes in

the network:

OK, status net

RING NETWORK

NODE STATE
ENA KEKE

ENB DOWN
ENC UP
END DOWN
ENE UP
ENG DOWN
EN.D6 DOWN
RES.Cl UP

OK,

This shows the state of a nine—-node network as it would be printed for
a local user on the ENA node. The UP state means that the node is

configured and functioning.

REV. @ 12 - 2

IDR4138 USING PRIMENET

ATTACHING TO REMOTE DIRECTORIES

Attaching to a remote directory is the same as attaching to a local
directory. You can give the name of the disk partition or logical disk
number (determined from a STATUS DISKS display) within the ATTACH
command, as in:

ATTACH <STATISTICS>JONES

Or you may give the UFD-name by itself. PRIMOS then searches each
logical disk beginning with disk 0, and attaches you to the first UFD
of that name it finds.

Status Disks

Users can discover the names and numbers of logical disks on remote
systems by using the STATUS DISKS command. For example, suppose we
wanted to attach to the UFD Tekman on node ENA, but had forgotten the
name of the disk partition on which that UFD resided. We could
accomplish the ATTACH as follows:

OK, STATUS DISKS

DISK LDEV PDEV SYSN
SOFTWR 8 3462
SPOOLB 1 460
MISCEL 2 71863
DBTEST 3 71961
SYSENC 4 469 ENC
SYSEND 5 468 END
TRANS 6 12868 END
TRANS2 7 52961 END
SYSENE 12 460 ENE
CPUGR1 13 12460 ENE
CPUGR2 14 61461 ENE
MFGTFR 15 462 ENE
OSA 23 21468 ENA
TPUBS 24 71061 ENA
M168A1 25 660 ENA
M168B1 26 19668 ENA

OK, ATTACH <TPUBS>TEKMAN
OK,

In the STATUS DISKS printout, DISK is the nane of the logical disk,
LDEV is the logical disk number, PDEV is the physical disk identifier,
and SYSN is the nodename.

12 - 3 January 1980

IDR4130 SUBROUTINE LIBRARIES

SECTION 13

SUBROUTINE LIBRARIES

This section lists the subroutines available in:

@ The Applications Libraries; VAPPLB (V-mode) and APPIB (R-mode)

e The Search and Sort Libraries: VSRTLI (V-mode), SRTLIB
(R-mode) , and MSORTS (R-mode)

@ The Operating System Library

It is meant solely as a checklist, to tell you what subroutines are
available in these libraries. The Subroutines Reference Guide tells
you how to use them. Thus, if you wanted to know whether a certain
Sort routine was available, you would look for it here. Having found
it, you would consult the Subroutines Reference Guide for full details
on how to call am use it.

APPLICATIONS LIBRARY

The applications library provides programmers with easy-to-use
functions and service routines falling between very high-level
constructs and very low-level systems routines. The applications
library is located in UFD=LIB in the files APPLIB (R-mode programs) amd
VAPPLB (V-mode programs). All routines in VAPPLB are pure. procedure
and may be loaded into the shared portion of a shared procedure. The
applications library should be loaded before loading the FORTRAN
library.

Programs using the applications library subroutines must define the
values of the keys used in these routines. This definition is
performed by placing the instruction SINSERT SYSCOM>ASKEYS in each
module which uses any of these subroutines.

The applications routines may be used as functions or as_ subroutine
calls as desired. The function usage gives additional information. —
The type of value of the function (LOGICAL, INTRGER, etc.) is
specified for each function.

The applications library subroutines may be grouped by their functions:

File System

TEMPSA, OPENSA, OPNPSA, OPNVSA, OPVPSA, CLOSSA, RWNDSA, GENDSA, TRNCSA,
DELESA, EXSTSA, UNITSA, RPOSSA, POSNSA, TSCNSA.

13 - dt January 1980

SECTION 13 IDR4130

String Manipulation

FILLSA, NLENSA, MCHRSA, GCHRSA, TREESA, TYPESA, MSTRSA, MSUBSA, CSTRSA,

CSUBSA, LSTRSA, LSUBS$A, JSTRSA, FSUBSA, RSTRSA, RSUBSA, SSTRSA, SSUBSA

User Query

YSNOSA, RNAMSA, RNUMSA

System Information

TIMESA, CTIMSA, DTIMSA, DATESA, EDATSA, DOFYSA

Conversions

ENCDSA, CNVASA, CNVBSA, CASESA, FDATSA, FEDTSA, FTIMSA

Mathematical Routines

RNDISA, RANDSA

Parsing

CMDLSA

A brief description of these routines follows, in alphabetical order.

CASESA

Converts a character string fron uppercase to lowercase or vice versa

and returns .TRUE. if operation succeeds.

CLOSSA LOGICAL

Attempts to close a file by the file unit number on which it was

opened. Reports on success or failure of attempt.

CMDLSA LOGICAL

Parses a PRIMOS-like command line and returns information for each

-keyword (and optional argument) entry in the line (one entry is

returned per call).

REV. 9 130 =- N
w

TDR4136 SUBROUTINE LIBRARIES

CNVASA LOGICAL

Converts.an ASCII digit string to a numerical value (INTEGER*4) for
binary, octal, decimal, and hexadecimal numbers. Reports whether’ the
conversion was made successfullyor not.

CNVBS INTEGER2

Converts a number (INTEGER*4) to an ASCII digit string for binary,
decimal, octal, and hexadecimal numbers. The function value is’ the
nunber of digits in the string (or @ if the conversion is
unsuccessful) .

CSTRSA LOGICAL

Compares two character strings for equality and returns .TRUE. as_ the
function value if they are equal.

CSUBSA LOGICAL

Compares two substrings of character strings for equality and returns

~TRUE. as the function value if they are equal.

CTIMSA REAL*8

Returns the CPU time since login in centiseconds (argument returned)
and in seconds (function value).

DATESA REAL*8

Returns the system date as DAY, MON DD 19YR (argument returned) and as
MM/DD/YY (function value) .

DELESA LOGICAL

Attempts to delete a file specified by the filename. If successful the
function is .TRUE., otherwise .FALSE..

DOFYSA REAL*8

Returns the day of the year as a 3-digit number (argument returned) and
as YR.DDD (function value). The latter is suitable for printing in
FORMAT F6. 3.

13 - 3 January 1980

SECTION 13 TDR4136

DTIMSA REAL*8

Returns disk time since login in centiseconds (argument returned) and
in seconds (function value).

EDATSA REAL*8

Returns the date as DAY, DD MON 19YR (argument returned) and as

DD/MM/YR (function value). This is the European/military format.

ENCDSA LOGICAL

Encodes a value in FORTRAN floating-point print format (Fw.d) and
reports whether the encoding was successful or not.

EXSTSA LOGICAL

Checks for the existence of a file specified by name am reports

whether the file exists or not.

FDATSA REAL*8

Converts the date-last-modified (DATMQD) field of a directory entry to

DAY, MON DD YEAR (argument returned) and MM/DD/YY (function value).

FEDTSA REAL*8

Converts the date-last-modified (DATMOD) field of a directory entry to
DAY, MON DD YEAR (argument returned) and MM.DD.YY (function value).

FILLSA INTEGER

Fills a character string with a specified ASCII character.

FSUBSA LOGICAL

Fills a character substring with a specified character and returns
-TRUE. if successful.

FTIMSA REAL*4

Converts the time-last-modified (TIMMGD) field of a directory entry to
HH:MM:SS (argument returned) and decimal hours (function value).

REV. 9 13 - 4

IDR4138 SUBROUTINE LIBRARIES

GCHRSA INTEGER

Accesses a character in a specified character position. The function
value is the character in FORTRAN Al FORMAT (right padded with blanks).

GENDSA LOGICAL

Positions a file pointer opened on a specified file unit to the

End-of-File. The function value tells whether the positioning was
successful or not.

JSTRSA LOGICAL

Right-justifies or left-justifies, or centers a string am reports
whether the operation is successful.

LSTRSA LOGICAL

Locates a_ string within another string. The function value reports on
whether the substring was found or not.

LSUBSA LOGICAL

Locates one substring within another substring. The function value
reports on whether the substring was found or not.

MCHRSA INTEGER

Replaces a character in one array with a specified character from
another. The function value is the character moved in FORTRAN AL
FORMAT, right padded with blanks.

MSTRSA INTEGER

Moves one string to another string. The function value is equal to the
number of characters moved.

MSUBSA INTEGER

Moves a_ substring in a string into a substring in another string. The
function value is equal to the number of characters moved.

13 - 5 January 1980

SECTION 13 TDR4138

NLENSA INTEGER*2

Returns the length (not including trailing blank) of string in a
buffer.

OPENSA LOGICAL

Opens a file ona user- or system specified file unit. The function
value reports whether the operation was successful or not.

OPNPSA LOGICAL

Gets a filename from the user teminal and opens that file on a
specified file unit. The function value reports whether the operation

was successful or not.

OPNVSA LOGICAL

Opens a file on a user- or system specified file unit, verifies the
operation. If the file is in use the operations are retried. The
function value reports on the ultimate success of the operations.

OPVPSA LOGICAL

Gets a file name fran the user terminal and opens that file on a
specified file wumit. The operations are verified . If the file is in
use the operations are re-tried. The function value reports on the
ultimate success of the operations.

POSNSA LOGICAL

Positions the pointer in the file open on a specified file unit. The

function value reports on the success of the operation.

RANDSA REAL*8

Updates the seed of a random number generator. The old seed is passed
and a new seed returned. The function value is a uniform randamn number
between 8.0 and 1.9.

RNAMSA LOGICAL

Prints a prompt message at the terminal and accepts a name from the
terminal. The function value reports on the validity of the name.

REV. @ 13 - 6

TDR41398 SUBROUTINE LIBRARIES

RNDISA REAL*8

Generates the initializing seed for a random number generator. The
information returned is time of day in centiseconds (argument returned)
and in seconds (function value).

RNUMSA LOGICAL

Prints a pranpt message at the terminal and accepts a number (octal,
decimal, or hexadecimal) string from the terminal. If successful the
value is returned in one of the subroutine arguments and the function

value is .TRUE..

RPOSSA LOGICAL

Returns the current absolute position of the pointer in the file opened
on a specified file unit. The function value reports on the success of
the operation.

RWNDSA LOGICAL

Rewinds the file opened on the specified file unit. The function value

reports on the success of the operation.

TEMPSA LOGICAL

Opens a temporary file with a unique name in the current UFD for
reading and writing on a_ user- or system specified file unit. The
name is returned aS an argument in the subroutine call. The function

value reports on the success of the operation.

TIMESA REAL*8

Returns the time of day as HR:MN:SC (argument returned) and in decimal

hours (function value).

TREESA LOGICAL

Scans a string to check whether it is a valid pathname and, if 6s,

locates the final part (filename) of the name in the string. The
function value reports whether the test is successful or not.

TRNCSA LOGICAL

Truncates the file opened on a specified file unit. The function value

reports on the success of the operation.

13 - 7 January 19898

SECTION 13 TDR4139

TSCNSA LOGICAL

Scans the file system tree-structure (starting with the home directory)

to read UFDs amd segment directory entries. Each call returns the next
file on the current level or the first file on the next lower level.
The function value is .TRUE. until an error occurs or an en of file
is reached.

TYPESA LOGICAL

Tests a character string to see whether it can be interpreted as a
number (binary octal, decimal, or hexadecimal) or a name. The function
value reports whether the string meets the specified criterion.

UNITSA | | LOGICAL

Tests whether any file is open on a specified file unit. The function
value reports whether the unit is in use or not.

YSNOSA LOGICAL

Prints a question at the user terminal which can be answered YES (or
OK) or NO. The function value is .TRUE. for YES (or OK) and .FALSE.
for NO. Any other answer causes the question to be repeated.

REV. @ 13 - 8

TDR41398 SUBROUTINE LIBRARIES

SORT AND SEARCH LIBRARIES

There are two classes of sorting subroutines available: disk sorts and
in-memory sorts. Disk sorts use the mass storage devices (disks) for
working space while the in-memory sorts put working information in the
user's address space. For complete details on the use of these

subroutines, see the Subroutine Reference Guide.

Disk Sorts

Disk sort subroutines are in the VSRTLI (V-mode) and SRTLIB (R-mode)
libraries. VSRTLI contains the followin:

e aASCSSS$ sorts or merges ASCII or binary files on any of the 12
supported key types.

e SUBSRT sorts a Single input file on ASCII keys. It has a

simpler calling sequence than ASCSSS.

e SRTFSS sorts from one to twenty input files into a single output
file. It allows specification of both input and output file
types.

e@ MRG1SS merges from one to eleven input files into a single
output file. It allows specification of both input and output
file types.

The twelve supported key types are: ASCII, single-precision integer,
single-precision real, double precision real, double-precision integer,
numeric ASCII with leading separate sign, numeric ASCII with trailing
separate sign, packed decimal, numeric ASCII with leading embedded
sign, numeric ASCII with trailing embedded sign, numeric ASCII
unsigned, and ASCII with lower case letters treated as equal to upper

case letters. SRTLIB contains the following:

e ascsss sorts on ASCII (upper and lower case) or binary keys. It
can also merge up to ten files.

e SUBSRT sorts a Single input file on ASCII keys. It has a

simpler calling sequence than ASCSSS.

In-memory Sorts and Binary Search

The subroutines listed here are contained in the library MSORTS in

UFD=LIB. This is an R-mode library. There is, at present, no V-mode
version. A complete discussion of these subroutines will be found in
Reference Guide, PRIMOS Subroutines.

See Knuth, Donald The Art of Computer Programming, vol. 3 for complete

discussion of these types of sorts.

13 - 9 January 1989

SECTION 13 TDR4139

Table 13-1 lists Sorts characteristics.

Table 13-1. Sorts Characteristics

Approximate
Sort relative running time Comments

Average Max imun

BUBBLE N**2 = only good for very snall N

HEAP 23N*1n(N) 26N¥*1n(N) inefficient for N<2000

INSERT N*¥*2 ~ small N; very good on

nearly ordered tables

QUICK 12N* 1n (N) N**2 fastest but very slowon
nearlyordered tables

SHELL N**1,25 N*¥*1,.5 good for N<2000

N is the number of entries in the table (nentry).
These routines all sort the table in increasing order with the key
treated as a single, signed multiple-word integer.

RADXEX, however, treats the key as a single, unsigned multi-word (or
partial word) integer. For example: If the keys were 5, -l, 18, -3,
RADXEX would sort them to: 5, 18, -3, -l1 The other routines would sort
them to: -3, -l, 5, 10

OPERATING SYSTEM LIBRARY

These subroutines are used mainly by PRIMOS. However, a number of them
useful at the applications level are described in detail here.
Complete details will be found in Reference Guide, PRIMOS Subroutines.

File Access

Files are structured to be accessed in either of two ways: SAM, or
Sequential Access Method, and DAM, or Direct Access Method. SAM files
are the most common type of file created and processed by PRIMOS. Most
files likely to be dealt with by the user are SAM files.

SAM Files: A SAM file consists of records threaded together with
forward and backward pointers. Each record in the file contains a
pointer to the beginning record address (BRA) of the file. The
beginning record of the file contains a pointer to the file directory

REV. @ 3 - W

IDR41398 SUBROUTINE LIBRARIES

in which it is listed. Since records are strung together in this
manner, they can only be accessed sequentially; the entire file must
be searched from the beginning in order to find a record. This is time
consuming when many randan accesses must be done. However, SAM files
are more compact and require less disk storage space than DAM files.
SAM files are accessed by PRIMOS commands such as ED, etc.

DAM Files: DAM files have a multi-level index containing pointers to
every record on the file. If the file is short, the record address
pointers point directly to records containing data. If the file is
long, these pointers reference other records containing a lower level
index. Those indices in “urn have pointers to records containing data.

DAM structure is more suitable to rapid, randam access of data than SAM
structure. Each individual record can be referenced by a_ unique
pointer connecting the record and a pointer imex at the beginning of
the file. Searching the pointer index for a particular record is
quicker than hunting through each entire record in sequence.

DAM files are less compact than SAM files. The MIDAS Subsystem or user
applications prograns must be written to access them. DAM files occur
in the MIDAS and SEG subsystems.

Names

In the file system calls, names are either ASCII, packed two characters

per word, or character strings (the actual name preceded am followed
by a single quote). If the name length specified in a call is longer
than the actual length of the name, the name must be followed by a
number of trailing blanks sufficient to match the given length.

Passwords

Passwords can be at most six characters long. Passwords less than six
characters must be padded with blanks for the remaining characters.
Passwords are not restricted by filename conventions and may contain
any characters or bit patterns. It is strongly recommended that
passwords not contain’ blanks, commas, the characters
=!' @{ } [1 () or lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

Keys and Error Codes

All keys and error codes are specified in symbolic, rather than numeric
form. These symbolic names are defined as PARAMETERS for FORTRAN
programs in SINSERT files in a UFD on the master disk called SYSC™.
The key definition file is named KEYS.F for FORTRAN. The error
definition file is ERRD.F.

13 - ll January 1989

SECTION 13 TDR4130

Error Handling

Errors occurring from a subroutine call causes a non-zero value of the
argument CODE to be turned. Users should always test CODE after a call
for non-zero values to be certain no errors are missed. Error printing
and control are performed by the ERRPR$ subroutine:

CALL ERRPRS (key,code,text,text—length ,name,name-lerg th)

key Action to be taken after printing message.

KSNRTIN Exit to PRIMOS; do not allow return to calling
program.

KSSRTN Exit to PRIMOS; return to calling progran following
a START command.

KSIRTN Return immediately to calling progran.

code An integer variable containing the error’ code
returned by the subroutine generating the error.

text User's message to be printed following standard error
message (up to 64 characters).

text-length Length of text in characters.
To omit text, specify both text and text-length as @.

name User-specified name of progran oor sub-system,
detecting or reporting the error (up_ to 64
characters).

name-length Length of name in characters.
To omit name, specify both name and name-length as @.

The message format for non-zero values of CODE is:

standard text. user's text, if any (name, ifany) e.g.,

ILLEGAL NAME. OPENING NEWFILE (NEWWRT)

These errors are included in the list of run-time errors in Appendix A.
They are labeled as File System errors.

Operating System Subroutines

A list of all operating system subroutines with a brief description of
their functions is given below. Subroutines marked with a bullet (e)

are described in detail following this list.

REV. @ 13 - 12

@ ATCHSS

@ cNAMSS

COMISS

COMOSs$

CREASS

ERKLS$

GPASS$

NAMEOS

PRWESS

RDENSS

RDLINS

RDTKSS

RESTS$

RESUSS

SATRSS

SAVESS

SGDRS$$

SPASS$

SRCHS$$

TEXTOS

TSRCSS

WTLINS ©

IDR413¢ SUBROUTINE LIBRARIES

Attaches to a UFD and optionally makes it the home UFD.

Changes a filename.

Switches command input stream from terminal to command file
and vice-versa.

Switches output stream from terminal to file and vice-versa.

Creates a sub-UFD in the current UFD.

Reads or sets the erase amd kill characters.

Returns passwords of sub-UFD in the current UFD.

Compares filenames for equivalence.

Reads, writes, and positions pointer in a SAM or DAM file.

Reads entry in UFD.

Reads line of characters fran compressed or uncompressed
ASCII disk file.

Parses the conmand line, token by token.

Restores an R-mode memory image to user memory fron a disk
file.

Restores an R-mode memory image froma file, sets initial
values, and begins execution. An error in this call causes
an error message to be printed automatically and then
returns command to PRIMOS.

Sets attributes (protection, date, time, etc.) in a UFD
entry.

Saves an R-mode memory image in user memory by writing it
into a disk file.

Positions and reads segment directory entries.

Sets the passwords in the current UFD.

Opens or closes a file.

Checks the validity of a filename.

Opens or closes a in the
structure.

file anywhere PRIMOS’ file

Writes a line of ASCII characters to a

compressed format.
disk file in

January 1989

SECTION 13 IDR4136

CALL ATCHS$ (ufd—name ,name-length,logical-disk ,password ,key ,code)

name-length

log ical-disk

Name of UFD to be attached to (if ufd-name=KS$HOME and
key=8, attachment is to home UFD).

Length in characters of ufd-name (if ufd-name=KSHOME,
name-length is ignored).

Logical disk to searched for ufd-nane when

key=KSIMFD.

logical-disk Action

KSALLD Search all started-up
logical devices.

KSCURR Search MFD of current disk.

3-word array containing the ower or non-owner
password of ufd-name (if attaching to home UFD,
password may be 9Q).

reference-key + set-key

reference-key

KSIMFD Attach to ufd-name in MFD on logical—disk.
KSICUR Attach to ufd-name in current UFD.

set-key

KSSETH. Set current UFD to home after attaching.

Returns integer-valued error code.

CALL CNAMSS$ (old—-name ,old-name—-leng th ,new-name ,new-name-length,

old-—name Name of file to be changed.

old-name-length Number of characters in old—name.

new-nane Name to be changed to.

new-name-length Number of characters in new-name.

Returns integer-valued error code.

13 - 14

IDR41398 SUBROUTINE LIBRARIES

Note

CNAMS$ requires owner-rights in the current UFD.

The names of the MFD,BOOT,BADSPT, or the packname may not be
changed.

PRWESS

CALL PRWFSS (read-write-keytposition-keytmode,file-unit,LOC(buffer) ,
number-of-words , position-val vue ,words-transferred, code)

read-wr ite-key

KSREAD

KSWRIT

KSPOSN

KSTRNC

KSRPOS

position-key

KSPRER

KPOSR

KSPREA

KSPOSA

Action to be taken (mandatory).

Read number-of-words from file-unit into buffer.

Write number-of-words fran buffer to fileunit.

Set current position to value at 32-bit integer
in position-value.

Truncate files open on file-unit at current
position.

Return current positions as a 32-bit integer in
position-valve,

Indicates positioning (optional).

Move file pointer of file-unit position-value
words relative to current position; then
perform read-write-key operation.

Performs read-write-key operation then move file
pointer of file-unit position-value words
relative to current position.

Move file pointer of file-unit to absolute
position-value then perform read-write-key
operation.

Perform read-write-key operation, then move
pointer of file-unit to absolute position-value.

If position-key is omitted, KSPRER is used.

mode

omitted

Transfer all or convenient number of words

(optional).

Read/write number-of-words.

13 - 15 January 19898

SECTION 13 IDR41390

KSCONV Read/write convenient number of words up to
number-of-words.

KSFRCW Perform write to disk from buffer
executing next instruction in the progran.
Increases disk I/O time.

See Reference Guide, PRIMOS Subroutines for a discussion
"convenient".

file-unit File unit on which the file has been opened

SRCHS$, PRIMOS command, etc.).

buffer Data buffer for read/write. If not needed,

specify as LOC(G).

nunber-of words number of words to be transferred (mode=9)
maximun number of words to be transferred
(mode=KSCONV) . number-of-words may range from 9

to 65535.

position-val ue Relative or absolute position value
integer, INTEGER*4). If not needed,
long-integer zero as 880000 or INTL(@).

words-transferred The number of words actually transferred when
read-write-key=KSREAD; other keys leave this

parameter unmodified. (INTEGER*2).

code Returns integer-valued error code.

RESUSS

CALL RESUS$ (£il ename ,name—-leng th)

filename Name of the file containing the memory image.

name-length Number of characters in filename.

SRCHSS

CALL SRCHSS (actiont+referencetnewfile,filename,nane—length,

file-unit ,file-type ,code)

action Action to be taken (mandatory).

KSREAD Open filename for reading on file-unit.

KSWRIT Open filename for writing on file-unit.

REV. 9 133. - 16

KSRDWR

KSCLOS

KSDELE

KSEXST

reference

KSIUFD

KSISEG

KSCACC

KSGETU

new-file

KSNSAM

KSNDAM

KSNSGS

KSNSGD

filename

name—length

file—unit

file—type

IDR41398 SUBROUTINE LIBRARIES

Open filename for reading and writing on file-unit.

Close file by filename or by file-unit.

Delete filename.

Check existence of filename.

Modifies action (optional).

Search for filename in current UFD (this is the
default).

Perform the action on the file that is a segment
directory entry in the directory which is open on
filename.

Change access rights of file open on fileunit to
action.

Open filename on an unused file-unit selected by
PRIMOS. The unit number is returned in file-unit.

Specifies type of file to create if file-name does
not already exist.

SAM file (this is the default).

DAM file.

SAM segment directory.

DAM segment directory.

Name of the file to be opened. If reference=KSISEG,
filename is a file unit on which a segment directory
is already open.

Number of characters of filename.

File unit number on which file is to be opened or
closed.

Returns type of file opened. If call does not open
file, its value is uncharged. The values are
integers.

SAM file
DAM file
SAM segment directory
DAM segment directory
UFDB

m
W
H
Y
E
&

13 - 17 January 198d

SECTION 13 IDR4138

code Returns an integer-valued error code.

Note

A UFD may be opened only for readin.

A UFD cannot be deleted unless it is empty.

A segment directory cannot be deleted unless it is of length @.

TSRCS$$

CALL TSRCSS (actiont+new-file ,pathname,file-unit ,character-
position ,code)

REV.

action

KSREAD

KSWRIT

KSRDWR

KSDELE

KSEXST

new~file

Kevsan

KSNDAM

KSNSGS

KSNSGD

pathname

file-unit

character-position

8

Action to be taken (mandatory).

Open pathname for reading on file-unit.

Open pathname for writing on file-unit.

Open pathname for reading and writing” on
file-unit.

Delete file pathname.

Check on existence of pathname.

Specifies type of file to create if pathname

does not already exist.

SAM file (this is the default).

DAM file.

SAM segment directory.

DAM segment directory.

A specification of any file in any directory
or subdirectory stored in array pathname

packed two characters per word.

File unit number on which the file is to be
opened or deleted. The file-unit is closed
before any action is taken.

A two-element integer array.
word 1 of entry: the first character in the
array that is part of the pathname (count

starts at 9) returns: one past the last
character that was part of the pathname.

13 - 18

IDR41390 SUBROUTINE LIBRARIES

word 2 - the number of characters in the

pathname.

file—type Returns type of file opened. If call does not
open file, its value is unchanged. The values
are integers.

SAM file
DAM file
SAM segment directory
DAM segment directory
UFD |P

W
N
S

code returns an integer valued error code

Note

TSRCS$ always closes the file unit, then attaches to the user's
home UFD before attempting any action.

13 - 19 January 198d

Part IV
Altering the

Command Environment

TDR4136 USING RDY AND ABBREV

SECTION 14

USING RDY AND ABBREV

Users can modify the PRIMOS command environment in three ways:

e They can use the RDY command to choose the form of prompts to be

displayed at their terminal during an interactive session or in

a command file.

e They can use the ABBREV command to define their ow
abbreviations for PRIMOS commands, and to use those
abbreviations during interactive sessions.

e@ They can define their own condition-handling routines (on-units)

to supplement or replace system-supplied ones.

The use of RDY and ABBREV are explained in this section. The condition

mechanism and its use are explained in the next section.

CHANGING THE PROMPT MESSAGE

In addition to its normal OK, and ER! prompts, PRIMOS also supplies a
long form of prompt message which displays the time, the amount (in
seconds) of CPU time and I/O time used since the last prompt, and the

user's stack level. (The stack level is only displayed if it is
greater than 1; most users don't need to worry about it.)

Users can change the form of prompt message displayed at their terminal

by giving the RDY command.

Command Function

RDY —LONG Sets the terminal to the long form

of prompt.

RDY -BRIEF Returns it to the standard "OK,".

RDY —OFF Suppresses prompts entirely.

RDY -ON Re-enables prompts to the previous level of
verbosity (long or brief).

RDY Prints a single long-form prompt message.

For example:

OK, RDY —LONG

OK 99:21:29 9.284 8.324

14 - 41 January 1989

SECTION 14 TDR41398

RDY -OFF
RDY -ON
OK 09:21:43 9.936 9.800
RDY -BRIEF
OK,

CREATING AND USING ABBREVIATIONS (ABBREV)

The PRIMOS command ABBREV allows you to create your own abbreviations
for use in PRIMOS command lines. Its form is:

ABBREV [pathname] [options]

To use ABBREV, you:

@ Create an empty abbreviation file.

e Define abbreviations within the file.

@ Invoke ABBREV to activate the file during any work session in
which you want to use your abbreviations.

When an abbreviation file is activated, PRIMOS calls its abbreviation
processor to scan each PRIMOS command entered from the user's terminal.
The abbreviation processor checks each word against the active
abbreviation file, expands all abbreviations to their full defined
form, then passes on the commands to the standard command processor.
You can modify your abbreviation file at any time; but you can use it
only for interactive sessions. Abbreviations will not be expanded in
command files. Once your abbreviation file is activated, it remains
active until you give the ABBREV -OFF command or log out.

Creating an Abbreviation File

Invoke the ABBREV command with the -CREATE option, giving a pathname
which names and locates the new file. For example:

ABBREV MYUFD>MY_UFD.ABBREV -CREATE

This command creates and activates an empty abbreviation file.
Therefore, the file specified must not already exist.

Defining Abbreviations

Abbreviations are defined and put into the abbreviation file by the
-ADD option of the ABBREV command. This option has the form:

ABBREV [pathname] -ADD name value

REV. @ 14 - 2

IDR4139 USING RDY AND ABBREV

where name is the abbreviation and value is the commands and/or

arguments the abbreviation specifies. For example:

ABBREV -ADD JD JOB -DISPLAY

This example enters the abbreviation "JD" in the user's abbreviation
file, and defines it as standing for the command "JOB" plus the option
"-DISPLAY." Whenever this abbreviation file is activated during a work
session at a terminal, typing "JD" at that terminal will be equivalent
to typing "JOB -DISPLAY".

Note

Beware of defining abbreviations identical to PRIMOS
abbreviations. The abbreviation processor will give your
abbreviation precedence. Therefore, you won't be able to use

the PRIMOS abbreviation while your abbreviation file is active.

Activating an Abbreviation File

ABBREV pathname [-ON]

activates an existing abbreviation file. PRIMOS loads the abbreviation
table from the specified file and checks each word typed at the
terminal against the abbreviations in the file before giving it to the
command processor, expanding the abbreviations it finds into their full
form.

Using Variables in Abbreviations

You can define variables within an abbreviation by using numerals
flanked by ABBREV's escape character, %. The symbol "%1%" stands for
the first word following the abbreviation, %2% stands for the second
word, and so on. (Currently, up to nine variable words are allowed.)
This feature is particularly handy for commands naming files. For
example, defining an abbreviation by the command:

ABBREV -ADD F %1% %2% -L %2%.LIST.%1% —-XREF -64V -DEBUG

would allow the abbreviation processor to translate the command:

F FIN FOO

into the command:

FTN FOO -L FOO.LIST.FIN -XREF -64V -DEBUG

Similarly,

F F77 FOO

14 - 3. January 1980

SECTION 14 IDR4136

would become

F77 FOO -L FOO.LIST.F77 -XREF -64V -—DEBUG

Other Options: ABBREV has options for refining definitions, changing
or deleting definitions, etc. Four of common use are:

Command Function

ABBREV —OFF Deactivates abbreviation file.

ABBREV [pathname] —ON Reactivates file. If pathname is
not supplied, previous pathname is
used.

ABBREV [pathname] —DELETE Deletes the named abbreviations
~ from the file.
abbrev-l1 [...abbrev —-n]

ABBREV [pathname] -LIST Lists the contents of the file.

For a full list of options and their uses, see the PRIMOS Commands
Reference Guide.

REV. @ 144 j- 4

IDR4136 USING THE CONDITION MECHANISM

SECTION 15

USING THE CONDITION MECHANISM

INTRODUCTION

PRIMOS has a condition mechanism which is activated when any executing
process encounters certain unusual events. These events (or

conditions) fall into three categories:

Software-puzzling situations: end of file encountered while
reading data, illegal addresses, etc.

Hardware and arithmetic exceptions: numbers too large or too
small for the computer to handle, attempts to divide by zero,
program too large for its allotted space, etc.

External occurrences: situations not directly controlled by the
executing process, such as the uSe of the break key from the
user's terminal

More than 38 PRIMOS-defined conditions exist. Some examples are:

Condition Definition

ACCESSVIOLATIONS Process has attempted to read,

write or execute into a segment
to which it has no access for
that function.

ARITHS Arithmetic exception.

STACKOVFS Process has overflowed its stack
segment.

QUITS User has hit break key on
terminal.

ILLEGALINSTS Process has tried to execute an
illegal instruction.

ENDFILE (file) End of file encountered while

reading a PL/I file.

For a complete list of these conditions, see the Subroutines Reference
Guide.

15 - 41 January 198d

SECTION 15 IDR4130

USING THE CONDITION MECHANISM

The condition mechanism's goal is either to repair the problem and
restart the program, or to terminate the program in an orderly manner.
To achieve this goal, the condition mechanism activates diagnostic or
remedial subroutines (or PL/I begin blocks) called on-units.

Users writing in FORTRAN IV, FORTRAN 77, PL/I, COBOL, or PMA can define
their own on-units within the procedures for which they're intended.
However, all users are automatically protected by PRIMOS' system
on-units. When an error condition occurs, the condition mechanism
looks for on-units within the executing procedure. If it finds none,
or if the procedure's on-units call for further help, the condition
mechanism searches first through any calling procedures’ on-units and
then through the system's on-units, activating the first appropriate

on-unit it finds.

THE SYSTEM DEFAULT ON-UNIT

Of all the system on-units, the system default on-unit is the one most
likely to be encountered by the user. This on-unit prints the
following message at the user's terminal, then returns the user to

PRIMOS command level:

Error: condition "condition" raised at “address"

{extra information]

The user may then take any one of the following actions:

e@ Give the START command. The condition mechanism will try to
resume running the program from the point at which the condition
was raised. |

e Give the DMSTK command. This will print (at the terminal or
into a file, as the user prefers) a stack dump, which traces the
sequence of calls and returns by which the program reached its
current state. If you are familiar with PRIME machine
architecture, you may find that this command gives you enough
information to solve your problem. (For details, see the PRIMOS
Command Reference Guide.) The user may START a program again
after dumping the stack.

@ Give the DBG command to invoke the source-level debugger. Then
re-run the program under DBG. If the DMSTK command didn't
provide enough information to solve the problem, this is
probably the best course of action to take. (For information on
how to use the debugger, see the section on "Debugging" in this
guide.)

e Give the RLS command to release the errant program. You will

remain at PRIMOS command level and can give any PRIMOS command
you choose.

REV. @ 15 - 2

IDR413@ USING THE CONDITION MECHANISM

Note

If the system default on-unit is invoked for a process running
as a phantom or batch job, the condition mechanism prints the
error message into the job's command output file and then logs
the process out.

ON-UNIT ACTIONS

On-units can:

e Terminate the program via a non-local GOTO, passing control back
to the main program, so that it can call EXIT and return to
PRIMOS level.

@ Run diagnostic routines, then terminate the program (as above).

e Repair the problem which caused the error condition and have the
program resume execution from the point of interrupt.

e Ignore the error condition and resume running the program.

e Transfer control to some predetermined spot in the program,
possibly in a different procedure from the one which raised the
error condition.

_@ "Continue to signal", passing control back to the condition
mechanism and telling it to hunt for another on-unit.

e Print messages, then do any of the above.

@ Print messages and/or run diagnostic routines, then transfer
control back to the user at the terminal (as the system default
on-unit does).

WRITING ON-UNITS

User-written on-units have the advantage of being tailored to the
procedures for which they are written. Since on-units have the same
range of action as any subroutine, they can be as elaborate or as
simple as required. On-units can even turn some error conditions into
advantages: "ON ENDFILE CALL some-subroutine" can be an efficient way
of terminating an indefinite-length input loop.

Within any procedure, users can define on-units for as many conditions
as circumstances dictate. On-units can also be defined to handle
conditions not normally recognized by PRIMOS: one subroutine (created
by a call to SIGNLS or SGNLSF) signals the condition when it occurs and
another (created by a call to MKONUS or MKONSF) acts as on-unit.

15 - 3 January 1989

SECTION 15 TDR4138

PRIMOS provides the following subroutines for users wishing to create
their own on-units:

Subroutine Function

MKONUS Called by a procedure when it wishes to
create an on-unit.

MKONSF A FORTRAN-specific version of MKONUS.

SIGNLS, SGNLSF Called to raise a condition.

CNS IG$ Called by an on-unit to pass control back
to the condition mechanism.

RVONUS , RVONSF Called by a procedure to revert (disable)
an on-unit.

MKLBSF, PLISNL Used in FORTRAN’ programs to- enable
on-units to perform non-local GOTO's.

Information on how to use these subroutines is given in the Subroutines

Reference Guide.

When writing on-units, the following rules must be observed:

@ On-units can hand on control in one of three ways: by calling
another procedure, by a local or non-local GOTO, or by returning
to the calling procedure. (They may not call EXIT, though they
may GO TO a point in the main program which does so.)

e They may set error codes as return parameters, print error

messages, or Signal other error conditions. But they may not
call ERRRTN or use ERRPRS with any but the immediate-return key

(KSIRTN) .

@ Programs containing on-units must be compiled in V-mode or

I-mode e

SCOPE OF ON-UNITS

On-units are usually defined at the beginning of a program or
subroutine; but they may be defined at any point within the program.
When the program reaches the point at which the on-unit is defined,
(i.e., a call to MKONUS or MKONSF) the on-unit is said to be set.

However, the on-unit does not execute at this point. It does not

execute unless the condition to which it responds is raised. An
on-unit remains set until one of three things happens:

e The procedure within which the on-unit was defined returns
(ends) .

REV. @ 15 - 4

IDR413@ USING THE CONDITION MECHANISM

e A new on-unit for the condition is defined.

@ The on-unit is r-verted (disabled) by a call to RVONUS or
RVONSF.

Thus, if an on-unit for the condition ARITHS is defined at the
beginning of a program, it remains in effect throughout the program,
unless it is reverted or some other on-unit for ARITHS is defined later
in the program. If a subroutine within that program defines its own
on-unit for ARITHS, then that on-unit takes precedence (but only while
the subroutine is executing). Each call to the subroutine
re-establishes its on-—unit; each return from the subroutine reverts
the new on-unit and re-establishes the on-unit defined in the main
program. (If no on-unit is defined within the main program, then
PRIMOS' on-units are in effect when the main program is running.)

A FORTRAN EXAMPLE

Suppose you have a program which contains a subroutine called UPDATE
that periodically updates journal entries, headers, etc. Once this
Subroutine is started, you want it to finish; a QUIT in the middle
could foul up your bookkeeping. Write a subroutine called NOQUIT which
responds to QUITs by printing a message at the terminal but otherwise
ignoring the QUIT:

SUBROUTINE NOQUIT (CP) /*This will be the on-unit
INTEGER*4 CP /*CP=pointer to condition frame for QUITS

COMMON/COM/NAME /*A variable used by UPDATE

CALL TNOU (‘'Sorry, quits not allowed during update', 38)
CALL TNOUA (‘Currently processing record ', 28)
CALL TNOU (NAME, 6)

RETURN /*Return to UPDATE at point where quit occurred
END

Define NOQUIT as an external procedure within subroutine UPDATE, and
establish it as an on-unit via the subroutine MKONSF. Note that if
UPDATE (or any subroutine that calls MKONUS or MKONSF) is to be
conpiled with the FTN compiler, it must obey the following rules:

e@ It must include a STACK HEADER 34 specification.

e@ It must be canpiled using the -SPO option. This option allows
allocation of the stack header space needed by the on-unit, but
Suppresses some error testing. Therefore, we advise that you
first compile the on-units without the -SPO option, in order to
test for coding errors that -SPO would ignore, before doing the
actual compilation with -SPO.

e Since the -SPO option activates the DCLVAR- option, the
subroutine may not contain undeclared variables.

15 - 5 January 198¢

SECTION 15 IDR4138

e It must not contain common blocks with names of five letters

followed by a dollar sign (xxxxx$).

SUBROUTINE UPDATE

Cc
EXTERNAL NOQUIT

STACK HEADER 34 /*Provides stack space for on-unit

COMMON/COM/NAME /*On-unit reports the value of this
/*variable

INTEGER*2 NAME

CALL MKONSF ('QUITS', 5, NOQUIT)
/*Parameters are:
/* condition-name (defined by PRIMOS)
/* length of condition name
/* name of on-unit subroutine

Cc

Cc

C ...body of subroutine would go here...

Cc

C

Cc
RETURN /*At this point, NOQUIT's authority ceases.

END

A PL/I EXAMPLE

The hypothetical problem: provide a program with an on-unit for the

condition POINTERSFAULT that will fix a faulting pointer to point at a

(possibly long-integer) zero, and retry the instruction that faulted.

A possible solution:

problem: proc;

dcl mkonu$ entry (char(*) var, entry) options (shortcall (18)),

long_zero fixed bin(31) static init (0),

ptrfault_ char(14) var static init ('POINTER_FAULTS"');

SINSERT delfor_ffh
SINSERT dcl_forcfh

/* Set up the on-unit for POINTER_FAULTS. */

call mkonu$ (ptrfault_, ptr_handler);

/* Now perform the computations that might cause pointer-faults. */

/* Having done them, return. */

return;

REV. 9 15 - 6

IDR4138 USING THE CONDITION MECHANISM

/* On-unit for POINTERFAULTS. Correct the faulting
pointer to point at long zero, and restart at the
point of interruption. */

ptr_handler: proc (cp);

dcl cp ptr; /*pointer to cfh */

dcl msp ptr; /* local copy of machine state ptr */
dcl basedptr ptr based;

msp = cp —-> cfh.msptr;
msp —> ffh.fault_addr -> based_ptr = addr (long_);

/* The above uses the hardware-saved pointer to the faulting
pointer, which is found in the machine-state ffh, to reset
the bad pointer. We then simply return, causing the
instruction to be re-executed. */

return;

end; /* ptrhandler */

end; /* problem */

15 - 7 January 1989

Appendices

IDR4130 GLOSSARY

APPENDIX A

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

The following is a glossary of concepts and conventions basic to Prime
computers, the PRIMOS operating system, and the file system.

@ binary file

A translation of a source file generated by a language translator (FIN,
PL1G, F77, COBOL, PMA, RPG). Such files are in the format required as
input to the loaders. Also called "object file".

e byte

8 bits; 1 ASCII character.

® condition mechanism

A PRIMOS facility which responds to conditions that would normally
cause program termination. Rather than terminating the program
immediately, the condition mechanism activates an on-unit to take some
diagnostic or remedial action. A list of conditions handled by PRIMOS'
condition mechanism is given in the Subroutine Reference Guide.

e@ CPU

Central Processor Unit (the Prime computer proper as distinct from
peripheral devices or main memory).

® current directory

A temporary working directory explained in the discussion on Home vs

Current Directories in Section 2.

e directory

A file directory; a special kind of file containing a list of
filenames and/or other directories, along with information on their
characteristics and location. MFDs, UFDs, and subdirectories

(sub-UFDs) are all directories. (Also see segment directory.)

A - 1 January 1980

APPENDIX A IDR4138

e directory name

The file name of a directory.

® external command

A PRIMOS command existing as a runfile in the command directory
(CMDNC@). It is invoked by name, and executes in user address space.
No system-wide abbreviations exist for external commands. Users may
define abbreviations for external commands by using the ABBREV command.

e file

An organized collection of information stored on a disk (or a

peripheral storage medium such as tape). Each file has an identifying

label called a filename.

e filename

A sequence of 32 or fewer characters which names a file or a directory.
Within any directory, each filename is unique. Directory names and a
filenane may be combined into a pathname. Most commands accept a
pathname wherever a filename is required.

Filenames may contain only the following characters:

A-Z, 0-9, #S5-.*&

The first character of a filename must not be numeric. M some devices
underscore (_) prints as backarrow (<-).

@ filename conventions

Prefixes indicate various types of files. These conventions are
established by the compilers and loaders, or by common use, and not by
PRIMOS itself. _

Bfilename Binary (Object) file

C_filename Command input file

Lfilename Listing file

Mfilename Load map file

Ofilename Command output file

PHfilename Phantom command file

REV. @ A - 2

IDR41390 GLOSSARY

filename Source file or text file

*filename SAVED (Executable) R-mode runfile

#£ilename SAVED (Executable) V-mode runfile

e file-unit

A number between @ and 127 ('177, or octal 177)) assigned asa

pseudonym to each open file by PRIMOS. This number may be given in
place of a filename in certain commands, such as CLOSE. PRIMOS-level

internal commands require octal values. Each user is guaranteed at

least 16 file units at a time. The maximum number of units that a user

may have open simultaneously varies per installation; the default is

128. PRIMOS always reserves units @ and 127 for its ow use.

e file protection keys

See keys, file protection.

@e home directory

The user's main wrking directory, initially the login directory. A

different directory may be selected with the ATTACH command. See the

discussion on Home vs Current Directories in Section 2.

e identity

The addressing mode plus its associated repertoire of computer

instructions. Programs conpiled in 32R or 64R mode execute in the

R-identity; programs compiled in 64V mode execute in the V-identity.

Programs compiled in 32I mode execute in the I-identity. R-identity,

V-identity and I-identity are also called R-mode, V-mode, and I-mode.

e internal command

A command that executes in PRIMOS address space. Does not overwrite

the user memory image. PRIMOS-defined abbreviations exist for internal

commands.

A - 3 January 1989

APPENDIX A IDR4138

@e keys, file protection

Specify file protection, as in the PROTEC command.

0 No access

1 Read
2 Write

3 Read/Write
4 Delete and truncate

5 Delete, truncate and read

6 Delete, truncate and write
7 All rights

e LDEV

logical disk device number as printed by the command STATUS DISKS.
(See ldisk.)

@e ldisk

A parameter to be replaced by the logical unit number (octal) of a disk

volume. It is determined when the disk is brought up by a STARTUP or
ADDISK command. Printed as LDEV by STATUS DISKS.

@e logical disk

A disk volume that has been assigned a logical disk number by the
operator or during system startup.

e MFD

The Master File Directory. A special directory that contains the names
of the UFDsS on a particular disk or partition. There is one MFD for

each logical disk.

e® mode

An addressing scheme. The mode used determines the construction of the
computer instructions by a compiler or assembler. (See identity.)

® nodename

Name of system on a network; assigned when local PRIMOS system is
built or configured.

REV. @ A - 4

IDR4139d GLOSSARY

® number representations

XXXXX Decimal

"XxXXXX Octal

SXXXXX Hexadecimal

e object file

See binary file.

@ on-unit

A begin block (in PL/I) or subroutine (in FORTRAN, COBOL, or PL/I)
wnich is activated by the condition mechanism to hardle- error
conditions. PRIMOS has on-units for all conditions it recognizes.
Users may also define on-units within any procedure they write.
User-written on-units take precedence over system ones.

@ open

Active state of a file-unit. A command or program opens a file-unit in

order to read or write it.

@® output stream

Output from the computer that would usuallybe printed at a terminal
during command execution, but which is also written to a file if

COMOUTPUT command was given.

@® packname

See volume—name.

® page

A block of 1024 16-bit words within a segment (512 words on Prime 399).

@ partition

A portion [or all] of a multihead disk pack. Each partition is treated

by PRIMOS as a_ separate physical device. Partitions are an integral
number of heads in size, offset an even number of heads from the first

head. A volume occupies a partition, and a “partition of a disk" and a
"volume ofFiles" are actually the same thing.

A - 5 January 1988

APPENDIX A _ TDR413¢

@ pathname

A multi-part name which uniquely specifies a particular file (or
directory) within a file system tree. A pathname (also called
treenane) gives a path from the disk volume, through directory and
subdirectories, to a particular file or directory. See the discussion
on Pathnames in Section 2.

@ PDEV

Physical disk unit number aS printed by STATUS DISKS. (See pdisk.)

@ pdisk

A parameter to be replaced by a physical disk unit number. Needed only
for operator commands.

@e phantom user

A process running independentlyof a terminal, under the control of a
command file.

@ procedure

In FORTRAN, a Subroutine or function. In PL/I, any subroutine,
function, or program. (In PL/I, procedures may contain other
procedures.) In COBOL, the term usually refers to one or more related
paragraphs or sections within the Procedure Division. Procedures
direct the computer to perform a particular operation or a series of
operations.

@ process

A particular program running in a particular address space.

@ reserved characters

The following characters are reserved by PRIMOS for special uses. They
may not be used in file names.

()* fC): €} 7"? = * | <> @+ ' & \ (delete or rubout)

IDR4138 GLOSSARY

e rwunfile

Executable version of a program, consisting of the loaded binary’file,
subroutines and library entries used by the progran, COMMON areas,
initial settings, etc. (Created using LOAD or SEG.)

e SEG

Prime's segmented loading utility.

® segment

A 65,536-word block of address space.

® segment directory

A special form of directory used in direct-access file operations. Not
to be confused with directory, which means "file directory".

® segno

Segment number.

e source file

A file containing programming language statements in the format

required by the appropriate compiler or assembler.

® subdirectory

A directory that is in a UFD or another subdirectory.

e sub-UFD

Same as subdirectory.

® treename

A synonym for pathname.

e@ UFD

A User File Directory, one of the Directories listed in the MFD of a

volume. It may be used as a LOGIN name.

A - 7 January 1989

APPENDIX A IPR4136

e unit

See file-unit.

@ volume

A self-sufficient unit of disk storage, including an MFD, a disk record
availability table, and associated files and directories. A volume may
occupy a complete disk pack or be a partition within a multi-head disk
pack.

@ volume—name

A sequence of 6 or fewer characters labeling a volume. The name is
assigned during formatting (by MAKE). ‘The STATUS DISKS command uses
this name in its DISK column to identify the disk.

e word

As a unit of address space, tw bytes or 16 bits.

TIDR4130 DEFAULTS AND CONSTANTS

APPENDIXB

SYSTEM DEFAULTS AND CONSTANTS

TERMINAL
full duplex
X-ON/X-OFF disabled

EDITOR (ED)

INPUT (TTY)

LINESZ 144
MODE NCKPAR

MODE NCOLUMN

MODE NCOUNT

MODE NNUMBER

MODE NPROMPT

MODE PRALL

VERIFY

Symbols

BLANKS

COUNTER @
CPROMPT $

DPROMPT &

ERASE "

ESCAPE ~

KILL ?

SEMICO 3;

TAB \
WILD §

end of line or command

SEGMENTED-LOADER (SEG)

Loading address: current TOP+l] in
current procedure segment

Stack size: '6000 words
Library: PFTNLB and IFTNLB libraries

VIRTUAL LOADER (LOAD)

Memory Location: '122778 — '144900
Loading address: current *PBRK value
Library: FTNLIB FORTRAN library
MODE: D32R

sector Zero Base Area:

Base start at location '209
Base range '609 words

COMMON: Top = '877777

B - 4d January 1980

APPENDIX B TDR41308

EXECUTION

A-register value
B-register value
X-register value
Program start address
Bits 4-6 of Keys:

008 16K, sector-address
@01 32K, sector-—address
010 64K, relative-address
G11 32K, relative-address
118 64K, segmented-address

“
<
A
Q
&
2

1660

PRIMOS

ERASE "

INTERRUPT CONTROL-P or BREAK

KILL ?

Files:
created with protection
owner all access rights (7)
non-owner no access rights (9)

REV. @ B - 2

TDR4136 ASCII CHARACTER SET

APPENDIX C

ASCII CHARACTER SET

The standard character set used by Prime is the ANSI, ASCII 7-bit set,
shown in Tables C-l and C-2. This character set conforms to ANSI
X3.4-1968. (1963 variances are noted.)

PRIME USAGE

Prime hardware and software uses standard ASCII for canmunications with
devices. The following points are particularly important to Prime
usage.

e@ Output Parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software will
compute transmitted parity. Some controllers (e.g., MLC) may
have hardware to assist in parity generations.

e@ Input Parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit the
host software requirements. Some controllers (e.g., MLC) may
assist in parity error detection.

e@ The Prime internal standard for the parity bit is one, i.e., '200
is added to the octal value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical
escape character “ and the octal value. The character is interpreted
by output devices according to their hardware. (For example, typing
“207 will enter one character into the text.)

CTRL-P ('220) is interpreted as a .BREAK.
CR. ('215) is interpreted as a newline (.NL.)
" ('242) is interpreted as a character erase
? ('277) is interpreted as line kill

\ ("334) is interpreted as a logical tab (Editor)

C - 1 January 1989

APPENDIX C

Octal ASCII

Value Char

206 NULL

201 SOH
202 STX
203 ETX
204 §OT
205 ENQ
206 ACK
207 =BEL
218 #=BS

211 #£=HT
212 LF
213. +VT
214 FF
215 CR
216 +#4SO
217 ~=SI
220 DLE
221 wl
222 2
223 3
224 Dc4

225 NAK
226 SYN
227 +#2ETB
238 CAN
231 =©EM
232 SUB
233 ESC
234 #=$-FS
235 GS
236 RS
237 ~=US

1.

2. BREAK.

3.

4.

IDR4136

Table C-1. ASCII Character Set (Non-Printing)

Comments/Prime Usage

Null character - filler
Start of header (communications)
Start of text (communications)
End of text communications

_ End of transnission (communications)
End of I.D. (communications)

Acknowledge affirmative (communications)
Audible alarm (bell)
Back space one position (carriage control)

Physical horizontal tab
Line feed; ignored as terminal input
Physical vertical tab (carriage control)
Form feed (carriage control)
Carriage return (carriage control) (1)
RRS-red ribbon shift
BRS-black ribboon shift
RCP-relative copy (2)
RHT-relative horizontal tab (3)
HLF-half line feed forward (carriage control)
RVT-relative vertical tab (4)
HLR-half line feed reverse (carriage control)

Negative acknowledgement (communications)
Synchronocity (communications)
End of transmission block (communications)

Cancel
End of Medium
Substitute
Escape
File separator
Group separator

Record separator
Unit separator

Notes

Interpreted as .NL. at the terminal.

Control

Char

>»
>»

>
Q
A
D
Y
,
Y
®

>
J

>
»
.
>

>
>

>
?

9

G
Q
H
M
m
M
O
y

m
w

>
d
c
o
2
z
2
r
x

>
>

bd
>

>
c
G
H
i
n
w
n
o

S
I
V
i
n
x
s

>
>

at terminal. Relative copy in file; next byte
specifies number of bytes to copy from corresponding position

of preceeding line.

Next byte specifies number of spaces to insert.

Next byte specifies number of lines toinsert.

REV. g

TDR41308 ASCII CHARACTER SET

Table C-2. ASCII Character Set (Printing)

Octal ASCII OCTAL ASCII OCTAL ASCII
Value Character Value CHaracter Value Character

240 -SP (1) 300 @ 348 ~*~ (9)
241 ! 301 A 341 a
242 " (2) 362 B 342 b
243 # (3) 303 Cc 343 c
244 $ 304 D 344 d
245 % 305 E 345 e
246 & 306 F 346 £
247 ' (4) 307 G 347 g
250 (3108 H 358 h
251) 311 I 351 i
252 * 312 J 352 5
253 + 313 K 353 k
254 , (5) 314 L 354 1
255 - 315 M 355 m
256 ° 316 N 356 n
257 / 317 O 357 oO
260 @ 3208 P 3608 p
261 1 321 Q 361 q
262 2 322 R 362 x
263 3 323 S 363 s
264 4 324 T 364 t
265 5 325 U 365 u
266 6 326 V 366 Vv
267 7 327 WwW 367 Ww
270 8 330 X 378 x
271 9 331 Y 371 y
272 : 332 Z 372 z
273 : 333 [373 {
274 < 334 \ 374 |
275 = 335] 375 }

276 > 336 “(7) 376 ~ (10)
277 ? (6) 337 _ (8) 377 DEL (11)

Cc - 3 January 1989

APPENDIX C IDR4130

9.

10.

ll.

Space forward one position

Terminal usage -— erase previous character

@ in British use

Apostrophe/single quote

Comma

Terminal usage - kill line

1963 standard fT; terminal use - logical escape

1963 standard <

Grave

1963 standard ESC

Rubout —- ignored

REV. @ Cc - 4

TDR4138 ERROR MESSAGES

APPENDIX D

ERROR MESSAGES

INTRODUCTION

Error messages are given in the following order:

SEG Loader Error Messages
Loader Error Messages

Run-Time Error Messages
Batch Error Messages amd Warnings

In each group errors are listed alphabetically.

Run-time error messages beginning with a filename, device name,
UFDname, etc., are alphabetized according to the first word which is
constant. The user should have no trouble in detemining this word
(the second word in the message). Leading asterisks, etc., are ignored
in alphabetizing. All run-time errors have been grouped together to
facilitate lookup by the user.

D - 1 January 1988

APPENDIX D IDR41398

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

User 1S attempting co load file which has faulty code. fMThe file
May not be an object file or it may be ‘ncorrectly compiled.
Fatal error, the load must be aborted.

CAN'T LOAD IN SECTORED MODE

The Loader is attempting to load code in sectored mode which has
not been compiled in sectored mode. This could arise if trying to
load a module compiled or assembled in 16S or 32S mode. It is
unlikely that the average applications programmer will encounter
this. Fatal error, abort load.

CAN'T LOAD IN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode which is not
compiled in that mode. This would arise if:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and its mode

is not specified.

In case 1, the user should recompile the progran.

In case 2, which the average applications programmer is unlikely

to encounter, the PMA module must be modified. Fatal error, abort
load.

COMMAND ERROR

An unrecognized command was entered or the filenames/parameters
following the command are incorrect. Usually not fatal.

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

REV.

An attempt was made to load a 64R mode program, causing a
reference to an illegal segment number. Recompile in 64V mode.
Fatal error, abort load.

B D - 2

IDR4136 ERROR MESSAGES

ILLEGAL SPLIT ADDRESS

Incorrect use of the Loader's SPLIT command. Segments may be

split at '4000 boundaries only (i.e., '4000, '10000, '140909, etc.)
Not fatal; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT

An attenpt was made to load a 64R mode progran wherein COMMON
would be allocated to an illegal segment number. Recompile in 64V
mode. Fatal error, abort load.

NO FREE SEGMENTS TO ASSIGN

All SEG'S segments have been allocated; no more are available at
present. Use SYMBOL command to eliminate CQMMON from assigned

segments, thus reducing the number of assigned segments required.
(User may need larger version of SEG and PRIMOS). Fatal error,

abort load.

NO ROOM IN SYMBOL TABLE

Unlikely to occur; no user solution. A new issue of SEG with a
bigger symbol table is required. Check with analyst. As a
temporary measure, user may try to reduce number of symbols used
in program, Fatal error, abort load.

REFERENCE TO UNDEFINED SEGMENT

Almost always caused by improper use of the SYMBOL command to
allocate initialized COMMON. Initialized COMMON cannot be located
with the SYMBOL command; use R/SYMBOL or A/SYMBOL instead.

SECTOR ZERO BASE AREA FULL

Extremely unlikely to occur. Not correctable at applications
level. Check with analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been made to load a 64R mode progran. The program
has exceeded 64K and is trying to be loaded over code previously

loaded. Recompile in 64V mode. Fatal error, abort load.

D - 3 January 1986

APPENDIX D IDR41398

LOADER ERROR MESSAGES

ALREADY EXISTS !

An attempt is being made to define a new symbol; however, the
symbol name is already a defined symbol in the symbol table.

BAD OBJECT FILE

The object text is not recognizable. This usually occurs when an
attempt is made to load source code or when the object text was
compiled or assembled for segmented loading.

BASE SECTOR O FULL

All locations in the sector zero base area have been used. Use
the AU command to generate base areas at regular intervals, or use
the SETB or LOAD commands to specifically place base areas.

CAN'T DEFER COMMON, OLD C8JECT TEXT

The Defer Common command has been given ard a module created with
a pre-Rev.14 compiler or assembler has been encountered. It is
not possible to defer Common in this case. The module must be
recreated with a Rev.15 campiler or assembler.

CAN'T — PLEASE SAVE

The EXecute command has been given for a_ run file which has
required virtual loading. SAve the runfile and give the ExXecute
canmand .

CMs

Command line error. Unrecognized command given. Not fatal.

COMMON OUT OF REACH

Common above '19090006 is out of reach of the current load mode

(16S, 32S or 32R). Use the MOde command to set the load mode to

64R.

REV. @ D - 4

TDR4139 ERROR MESSAGES

COMMON TOO LARGE

Definition of this common block causes common to wrap around
through zero. Moving the top of common - with the COmon command
- may help.

snane ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine Common block sname to a
longer length. The user's program should be examined for
consistent Common definitions. At the very least the longest
definition for a Common block should be first.

XXXXXX MULTIPLE INDIRECT

A module loading in 64R mode requires a second level of
indirection at location xxxxxx. This message usually results when
an attenpt is made to load code compiled or assembled for 32R mode
in 64R mode. It can also happen if code has accidentally been
loaded into base areas as the result of a bad load command
sequence.

sname XXXXXX NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the
instruction. No base areas are within reach except sector zero.
The last referenced symbol was sname. This message is only
generated when the SZ command has been given. Sname may be the
name of a Common block, the name of the routine to which the link
should be made, or the name of the module being loaded.

XXXXxXxX NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for module which was created
with a pre-Rev.14 compiler or assembler. No base area is created.
Recreate the object text with a Rev.15 campiler or assembler.

This is not a fatal error.

PROGRAM-—COMMON OVERLAP

The module being loaded is attempting to load code into an area
reserved for Common. Use the loader's Cdmmon command to move

Common up higher.

D - 5 January 1980

APPENDIX D TDR4139

PROGRAM TOO LARGE

The program has loaded into the last location in memory and has
wrapped around to load in Location 9. The program size must be
decreased. Alternatively, compile in 64V mode and use SEG.

REFERENCE TO UNDEFINED COMMON

An attempt is being made to link to a Common name which has not
been defined. This usually happens to users creating their ow
translators.

SECTORED LOAD MODE INVALID

A module compiled or assembled to load in R mode has been loaded
in S mode. Use the MOde command to reset the load mode. It might

be a good idea to be sure that all modules are correctly written,
Since the default load mode is 32R.

SYMBOL NOT FOUND

An attempt is being made to equate tw symbols with the Symbol
command and the old symbol does not exist.

SYMBOL TABLE FULL

The symbol table has expanded dow to location '4908. The last
buffer cannot be assigned to the symbol table. Rebuild LOAD to
load in higher memory locations, or reduce the number of symbols
in the load.

SYMBOL UNDEFINED

An attenpt is being made to equate two symbols; however, the old
symbol is an undefined symbol in the symbol table.

64R LOAD MODE INVALID

A module canpiled or assembled to run in only 32K of memory is
being loajed in 64R mode. Recompile or reassanble or change the
load mode with the loader's MOde command.

REV. @ D - 6

TDR4136 ERROR MESSAGES

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode

Attempt to perform operations in segments to which user has no
right.

RREKAT) R-mode function

Overflow or underflow in double-precision addition/subtraction

(AS66,S$66) .

All file units in use. File System

User has requested use of a_ file unit when he already has the
maximum allowable number of file units open. [ESFUIU]

ALL REMOTE UNITS IN USE File System

Attempt made to assign a remote unit when none are available.
(Network error) [ESFUIU]

*k** ATOG*ALOG 18 - ARGUMENT <=9 V-mode function

Argunent not greater than zero used in logarithm (ALOG, ALOG 18)
function.

filename ALREADY EXISTS Old file call

Attempt to create a file or UFD with the name of one already
existing. [CZ]

Already exists. File System

Attempt made to create, in the UFD, a Sub-UFD with the same nane
as one already existing. (CREASS) [ESEXST]

KRKKAT R-mode function

Both arguments are zero in the ATAN2 function.

***k ATAN2 — BOTH ARGUMENTS = @ V-mode function

Both arguments are zero in the ATAN2 function.

D - 7 January 1989

APPENDIX D IDR4138

**k* ATTDEV - BAD UNIT V-mode call

Incorrect logical device unit number in the ATTDEV subroutine
call.

BAD CALL TO SEARCH Old file call

Error in calling the SEARCH subroutine, e.g., incorrect parameter.
[SA]

Bad canmand format PRIMOS

User has issued an illegal command line. Command is ignored.
[ESCMND]

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the
programmer or by a system problem. [SS]

Bad DAM file. File System

The DAM file specified has been corrupted - either by the
programmer or by a system problem. (PRWFSS, SRCHSS). [ESBDAM]

Bad key in call. File System

Incorrect key value specified in subroutine argument. (ATCHSS,
RDENSS, SATRSS, SRCHSS, SGDRSS) [ESBKEY]

BAD PARAMETER Old file call

Incorrect parameter value in subroutine call. [SA]

Bad parameter. PRIMOS

Incorrect parameter value in Subroutine call. ([ESBPAR]

REV. 9 D - 8

IDR4136 ERROR MESSAGES

BAD PASSWORD Old file call

Incorrect password specified in ATTACH subroutine. Returns to
PRIMOS level attached to no UFD. [AN]

Bad password. File System

Incorrect password specified in ATCHS$ subroutine. Returns to
PRIMOS level attached to no UFD. [ATCHS$S] [ESBPAS]

Note

To protect UFD privacy the system does not allow the
user to trap BAD PASSWORD errors.

BAD RTNREC PRIMOS

System error.

Bad segment dir unit. File Systen

Error generated in accessing segment directory, i.e., PRIMOS file
unit specified is not a segment directory. (SRCH$$) [ESBSUN]

Bad stack format. PRIMOS
Bad stack format signalling.

Condition mechanisn cannot perform requested action because the
command processor stack has been damaged (system error). User is

returned to PRIMOS command level. [ESSTKF, ESSTKS]

BAD SVC PRIMOS

Bad supervisor call. In FORTRAN usually caused by program writing
over itself.

Bad truncate of segment dir. File Systen

Error encountered in truncating segment directory. (SGDRSS)
[ESBTRAN]

Bad unit number. File System

PRIMOS file unit number specified is invalid - outside legal
range. (PRWFSS, RDENSS, SRCHSS, SGDRSS). [ESBUNT]

D - @9 January 19890

APPENDIX D TDR4138

Bad use of exit. PRIMOS

The condition mechanism sends this fatal message. User is
returned to PRIMOS command level. [ESNEXP]

Beginning of file. File System

Attempt was made to access locations before the beginning of the
file. (PRWFSS, RDENSS, SGDRSS) [ESBOF]

**EEBN R-mode function

Device error in REWIND command on FORTRAN logical unit n.

Buffer too small. File System

Buffer as defined is not large enough to accomodate entry to be
read into it. (RDENSS$) [ESBFTS]

Command line truncated. 7 PRIMOS

An illegal command line has been received. The command is not

executed, and the user is returned to PRMOS command level.
[ESTRCL]

Concealed stack overflow. PRIMOS

System error. (Generally sent by the condition mechanisn.)
[ESCSOV]

Crawlout unwind failed. PRIMOS

System error. (Generally sent by the condition mechanism.)
[ESCRUN]

***k* DATAN — BAD ARGUMENT V-mode function

The second argument in the DATAN2 function is zero.

KKEEDE . R-mode function

The exponent of a double-precision number has overflowed.

REV. 9 D - 10

IDR41308 ERROR MESSAGES

The Device is in use. File System

Attempt was made to ASSIGN a device currently assigned to another
user. [ESDVIU]

Device not assigned. File System

Attempt was made to perform I/O operations on a device before
assigning that device. [ESNASS]

Device is not started. File System

Attempt was made to access a disk not physically or logically
connected to the system. If disk must be accessed, systems
manager must start it up. [ESDNS]

**** DEXP — ARGUMENT TOO LARGE V-mode function

The argument of the DEXP function is too large; i.e., it will
give a result outside the legal range.

*#k*EE DEXP — OVERFLOW*UNDERFLOW V-mode function

An overflow or underflow condition occurred in calculating the

DEXP function.

The directory is damaged. File System

UFD has become corrupted. (ATCHSS, CREASS, GPASSS, RDENSS
SATRS$, SRCHS$) [ESBUFD]. Calls to RDENSS return this asa
trappable error; other commands return to the PRIMOS command
level.

The directory is not empty. File Systen

Attempt was made to delete a non-empty directory. (SRCHSS$)
[ESDNTE]

DISK FULL Old file call

No more roan for creating/extending any type of file on disk.

[DJ]

D - ill January 1989

APPENDIX D IDR4136

The disk is full. File System

No more room for creating/extending any type of file on disk.
(CREASS, PRWFS$$, SRCHS$$, SGDRS$$). [ESDKFL]

Note

Space may be made available. Use the internal PRIMOS
commands ATTACH, LISTF, and DELETE to remove files which
are no longer needed.

Disk I*O Error File System

A read/write error was encountered in accessing disk. Returns
immediately to PRIMOS level. Not correctable by applications
programmer. (ATCHSS, CREASS, GPASSS, PRWFS$, RDENSS, SATRSS,
SRCHS$, SGDR$$). [ESDISK]

Disk is write-protected. File System

An attempt has been made to write to a disk which is

WRITE-protected. [ESWTPR]

DK ERROR Old file call

A read/write error was encountered in accessing disk. [WB]

REEKDT, R-mode function

Argument was not greater than zero in DLOG or DLOG2 function.

**** DLOG*DLOG2 - ARGUMENT <=@ V-mode function

Argument not greater than zero was used in DLOG or DLOG2 function.

KKEEDN R-mode function

Device error (end of file) on FORTRAN logical unit n.

*#*k** DSIN*DCOS - ARGUMENT RANGE ERROR V-mode function

Argument outside legal range for DSIN or DCOS function.

IDR4130 ERROR MESSAGES

**k* DSQRT -— ARGUMENT <@ V-mode function

Negative argument in DSQRT function.

RKEKEDT R-mode function

Second argument is zero in DATAN2 function. (D$22)

DUPLICATE NAME Old file call

Attempt to create/renane a file with the name of an existing file.
[CZ]

REKEDZ R-mode function

Attempt to divide by zero (double-precision) .

End of file. File System

Attempt to access location after the end of the file. (PRWFSS,
RDENSS, SGDRS$) [ESEOF]

KRKKEO
R-mode function

Exponent overflow. (A$81)

KKEEBY R-mode function

Exponent function value too large in EXP or DEXP function.

*kkk EXP — ARGUMENT TOO LARGE V-mode function

The argument of the EXP function is too large, i.e., it will give
a result outside the legal range.

*kE EXP — OVERFLOW V-mode function

Overflow occurred in calculating the EXP function.

Fatal error in crawlout. PRIMOS

System error. [ESCRWL]

D - 13 January 1988

APPENDIX D IDR4136

KEKKEP R-mode function

Error in FORMAT statement. FORMAT statements are not completely

checked at compile time. (FSIO) :

File in use. File System

Attempt made to open a file already opened or to close/delete a
file opened by another user, etc. (SRCHS$) [ESFDEL]

FILE OPEN ON DELETE File System

Attempt made to delete a file which is open. (SRCHS$) [ESFDEL]

The file is too lon. File System

Attempt made to increase size of segment directory beyond size

limit. (SGDRS$$) [ESFITB]

KEEKEN R-mode function

Device error in BACKSPACE command on FORTRAN logical unit n.

*kkk FSBN -— BAD LOGICAL UNIT V-mode function

FORTRAN logical unit number out of range.

*#kk FPSFLEX — DOUBLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to divide by zero.

*#*kkk FSFLEX — DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a double-precision number has exceeded maximun.

**kkk FSFLEX — REAL => INTEGER CONVERSION ERROR 64V mode

Magnitude of real number too great for integer conversion.

*ekkk PSFLEX — SINGLE-PRECISION DIVIDE BY ZERO 64V mode

Attempt has been made to divide by zero.

REV. 9 D - 14

IDR41398 ERROR MESSAGES

**kk FSFLEX —- SINGLE-PRECISION EXPONENT OVERFLOW 64V mode

Exponent of a single-precision number has exceeded maximum.

**kk PSTO - FORMAT ERROR V-mode function

Incorrect FORMAT statement. FORMAT statements are not completely
checked at compile time.

*kkk FSTO — FORMAT*DATA MISMATCH V-mode function

Input data does not correspond to FORMAT statement.

kk FSTO - NULL READ UNIT V-mode function

FORTRAN logical unit for READ statement not configured properly.

KKKKTT | R-mode function

Exponentiation exceeds integer size. (E$11)

ILLEGAL INSTRUCTION AT octal-location R mode and 64V mode

An instruction at octal-location cannot be identified by the
computer.

Illegal name. File System

Illegal name specified for a file or UFD. (CREASS, SRCHSS)
[ESBNAM]

Illegal remote reference. File System

Attempt to perform network operations by user not on network.
[ESIREM]

ILLEGAL SEGNO 64V mode

Program referenced a non-existent segment or a segment number
greater than those available to the user.

D - 15 January 1989

APPENDIX D IDR413¢d

Illegal treename. File System

The string specified for a treename is syntactically incorrect.

[ESITRE]

KREETM R-mode function

Overflow or underflow occurred during a multiply. (M$11, E$11)

filename IN USE | Old file call

Attempt made to opena file already opened, or to close/delete a

file opened by another user, etc. [ST]

Insufficient access rights. File System

User does not have access right to file, or does not have write

access in a UFD when attempting to create a sub-UFD. (CREASS,
GPASSS, SATRSS$, SRCH$$, SGDRS$$) [ESNRIT]

Invalid argument to command. PRIMOS

A command has been issued with an illegal argument. The command

is not executed. [ESBARG]

Invalid segment number. File System

Attempt made to access segment number outside valid range.

[ESBSGN]

#kEK T*XT — ARGUMENT ERROR V-mode function

Exponentiation exceeds integer size.

KKK R-mode function

Argument not greater than zero in ALOG or ALOG1@ function.

Max number of users exceeded. PRIMOS

The maximum allowable number of users are already using the

systen. (This may mean that the operator has used the MAXUSR
command to decrease the number of users temporarily.)

REV. @ D - 16

IDR4138 ERROR MESSAGES

Max remote users exceeded. File system

No more users may access the network. [ESTMRU]

Name is too lon. | File System

Length of name in argument list exceeds 32 characters. [ESNMIG]

NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log
out to release assigned segments and try again later.

No phantoms are available. File system

An attempt has been made to spawn a phantom. All configured
phantoms are already in use. ([ESNPHA]

No on-unit found. Condition mechanism

Condition mechanism cannot take action. User is’ returned to
PRIMOS command level. [DSNOON]

No room. File System

An attempt has been made to add to a table of assignable devices

with a DISKS or ASSIGN AMLC command and the table is already
filled. [ESROOM]

No timer. File System

Clock not started. System error. [ESNTIM]

NO UFD ATTACHED | Old file call

User not attached to a UFD [AL, SL]. Usually occurs after attempt
to attach with a bad password.

No UFD attached. File System

User not attached to a UFD. (ATCHSS, CREASS, GPASSS, SATRSS,
SRCH$$). [ESNATT] Usually occurs after attempt to attach with a
bad password.

D - 17 January 1988

APPENDIX D IDR4138

NO VECTOR R and 64V mode

User error in program has caused PRIMOS to attempt to access an

unloaded element.

1. A UII, PSU, or FLEX to location 9
2. Trap to location 9
3. Svc switch on, SVC trap arm location '65 is @.

Not a segment directory. File System

Attempt to perform segment directory operations on a file which is

not a segment directory. (SRCHS$) [ESNTSD]

NOT A UFD. Old file call

Attempt to perform UFD operations on a file which is not a UFD.

[AR]

Not a UFD File System

Attempt to perform UFD operations ona file which is not a UFD.

(ATCHS$, GPASS$, SRCHS$). [ESNTUD]

device-name NOT ASSIGNED PRIMOS

User program has attempted to access an I/O device which has not

been assigned to the user by a PRIMOS command.

filename NOT FOUND Old file call

File specified in subroutine call not found. [AH, SH]

filename NOT FOUND File System

File specified in subroutine call not found. (ATCH$$, GPASSS,
SATRSS, SRCHSS) [ESFNTF]

Filename not found in segment dir. File System

Filenane specified in subroutine call not found in specified
segment directory. (SRCHS$, SGDRSS) [ESFNTS]

REV. 9 dD - 18

IDR4138 ERROR MESSAGES

NULL READ UNIT PRIMOS

Program has attempted to read with a bad wnit number. This may be
caused by the program overwriting itself (array out of bounds).

OLD PARTITION File System

Attempt to perfom, in an old file partition, an operation
possible only in a new file partition; e.g., date/time
information access. (SATRS$) [ESOLDP]

Operation illegal on directory. PRIMOS

User has tried to perform an operation on a directory that is not

allowed (such as editing it). [ESDIRE]

KEEKPA R-mode function

PAUSE statement n (octal) encountered during program execution.

*kkk PAUSE n V-mode function

PAUSE statement n (octal) encountered during program execution.

POINTER FAULT © | 64V mode

Reference has been made to an argument or instruction not in
memory. The two usual causes of this are an incomplete load
(unsatisfied references), or incomplete argument list in a

subroutine or function call.

Pointer mismatch found. PRIMOS

Internal file pointers have become corrupted. No user remedial

action possible. System Administrator must correct. [ES$PTRM]

PROGRAM HALT AT octal-location R mode and 64V mode

Program control has been lost. The progran has probably written

over itself or the load was incomplete (R-mode).

PRWFIL BOF Old file call

Attempt by PRWFIL subroutine to access location before beginning

of file. [PG]

D - 19 January 1980

APPENDIX D TDR41398

PRWFIL EOF Old file call

Attempt by PRWFIL subroutine to access location after end of file.

[PE]

PRWFIL POINTER MISMATCH Old file call

The internal file pointers in the PRWFIL subroutine have become
corrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a
PRIMOS file unit number on which no file is open.

PTR MISMATCH File System

Internal file pointers have became corrupted. No user remedial
action possible. (ATCHSS, CREASS, GPASSS$, PRWES$, RDENSS, SATRSS, |
SRCHS$, SGDRS$). Consult system manager.

The remote line is down. File System

Remote call-in access to computer not enabled. [ESRLDN]

REKERT R-mode function

Argument is too large for real-to- integer conversion. (C$12)

*#EXERN R-mode function

Device error or end-of-file in READ statement on FORTRAN logical

unit n.

REEKGE R-mode function

Single precision exponent overflow.

SEG-DIR ER Old file call

Error encountered in segment directory operation. [SQ]

REV. @ D —- 26

IDR4136 ERROR MESSAGES

Segment directory error. PRIMOS

Error encountered in segment directory operation. [SQ] [ESSDER]

Segdir unit is not open. File System

Attempt has been made to reference a segment directory which is
not open. (SRCHS$) [ESSUNO]

Semaphore overflow. File System

System error. [E$SEMO]

**kk SIN*COS - ARGUMENT TOO LARGE V-mode function

Argument too large for SIN or COS function.

FERESO | R-mode function

Negative argument in SORT or DSORT function.

*#*** SORT - ARGUMENT<G V-mode functon

Negative argument in SORT function.

KEKKST 1 R-mode function

STOP statement n (octal) encountered during program execution.

*k*k* STOP n V-mode function

STOP statement n (octal) encountered during program execution.

KEKKGT R-mode function

Attempt to divide by zero (single-precision).

Stack overflow in crawlout. PRIMOS

System error. [ESCROV]

D - 21 January 1984

APPENDIX D IDR4136

Too many subdirectory levels. File System

Attempt to create more than 72 levels of sub-UFDs. This error
occurs only on old file partitions; new file partitions have no
limit on UFD levels. [ESTMUL]

UFD FULL Old file call

No more room in UFD. [SK]

The UFD is full. File System

UFD has no room for more files and/or sub-UFD's. Occurs only in

old file partitions. (CREASS$, SRCHSS) [ESFDFL]

UFD OVERFLOW Old file call

No more room in UFD.

Unable to find fault frame. Condition mechanism

A call was made to CNSIGS$, but CNSIGS could not find that any
condition had been raised.

UNIT IN USE Old file call

Attempt to open file on PRIMOS file unit already in use. [SI].

Unit in use. File System

Attempt to open file on PRIMOS file unit already in use.

(SRCH$$). [ESUIUS]

UNIT NOT OPEN Old file call

Attempt to perform operations with a file unit number on which no

file has been opened. ([PD, SD]

Unit not open. File System

Attempt to perform operations with a file unit number on which no
file has been opened. (PRWFSS, RDENSS, SRCHS$, SGDRS$$). [ESUNOP]

REV. @ D - 22

IDR413¢ ERROR MESSAGES

UNIT OPEN ON DELETE Old file call

Attempt to delete file without having first closed it. [SD]

RREEWN R-mode function

Device error or end-of-file in WRITE statement on FORTRAN logical
unit n.

KEEKYYX R-mode function

Integer argument >32767.

D - 23 January 19898

APPENDIX D IDR4130

Bad

(Cha

BATCH WARNINGS AND MESSAGES

$$ command.

(Fatal) A command file was submitted using the JOB command that had
a $$ line other than the $$ JOB line as the first non-comment line.
The command file should be changed so that the "$$" line is legal.
The use of $$ is reserved for future expansion by BATCH.

nges made)

(Response) The changes specified in a JOB -CHANGE operation have
been made. If the job is initiated after the changes are made,
then it will execute with the specified changes in place. The job
status will be displayed after the above message is typed out.

Command file required as first argument on submission.

(Fatal) The JOB command was given with job options (such as -HOME,
-PRIORITY, -CPTIME, etc.) but no command file was seen before
those options. The syntax is "JOB pathname [-options]".

limit must be specified.

(Fatal) The queue referred to by a -QUEUE option during job
submission is defined such that the -CPTIME option is a required
parameter (i.e., default CPU limit for that queue is greater than
the maximun CPU limit for that queue). The job should be
resubmitted with the -CPTIME option specified. To determine the
maximum limits for queues, use BATGEN -DISPLAY.

Elapsed time limit must be specified.

End

REV.

(Fatal) The queue referred to by a -QUEUE option during job
submission has a default elapsed time limit greater than its
maximum time limit. Resubmit the job with the —-ETIME option
specified.

of line.

(Fatal) One of the Batch programs was expecting to fim more
information on the command line, but end-of-line was found instead.
The message will generally contain more information on what was
expected. Re-enter the command with the additional requested
information.

g D -—- 24

TDR4136 ERROR MESSAGES

End of line. Illegal <optiom argument

(Fatal) One of the job parameter options specified on the JOB
command line had no argument. The information required by that

option should be supplied when the command is re-entered.

Home ufd required.

(Fatal) The -HOME option was not present on the JOB or the

(optional) $$ JOB line during submission, and the program was
unable to determine the home attach point of the submitting job.
Resubnit the job, and include the -HOME option followed by the
absolute pathname of the UFD where the job is to execute. If the
pathname cannot fit, use a shorter version of it when you resubmit
the command file, after editing the file to include an "ATTACH"
command that descends the remaining sub-ufds to reach’ the
destination.

Home=<pathname>

(Response) During job submission, the -HOME option was not
specified on the command line or in the command file ($$ JOB), 9
the JOB command detemined the home attach point of the submitting
job. This message is typed out to remind the user that the —-HOME
option was not specified. The job did successfully submit,
however.

Illegal -CHANGE option.

(Fatal) The options -QUEUE and -PRIORITY are illegal during a
-CHANGE operation using the JOB command, as queue and queue
priority of a job cannot be changed. Cancel or abort the job arn
resubmit it into the appropriate queue with the desired queue
priority.

Illegal combination. <optiom

(Fatal) A job parameter (such aS -ACCT, -HOME or -QUEUE, etc.) was
specified on the same JOB command line as an option to perform an
action (such aS -CANCEL, -DISPLAY, -ABORT, etc.). Use separate JOB
commands to perform separate functions.

Illegal limit.

(Fatal) The parameters supplied to the -CPTIME or -ETIME options
during job subnission/changing were not legal limits, i.e. they
were less than or equal to 4, or were not legal decimal numbers amd
not the string "None". Re-enter the command with legal limits.

D - 25 January 1980

APPENDIX D IDR4138

Illegal name.

(Fatal) One of the Batch programs was expecting a name or command,
but it read an unquoted token beginning with a dash ('-'),
indicating that an option was present.

Illegal number. <text> (JOB)

(Fatal) The argument for the -FUNIT or -PRIORITY option during job
subnission using the JOB command was not a legal decimal number.
Re-enter the command line with legal numeric parameters.

Illegal option.

(Fatal) One of the Batch programs was expecting an option, i.e., an
unquoted token beginning with a dash ('-'). Re-enter the command
line with a legal format.

Illegal queue name. <text> (JOB)

(Fatal) The queue name specified after a -QUEUE option while
subnitting or changing a job did not comply with queue name format
rules. Use BATGEN -STATUS or -DISPLAY to determine the names of
legal queues.

Incorrect user—-name.

(Fatal) A command file was submitted using the JOB command that had
a $$ JOB line as the first non-comment line, but the user-name
specified after the "JOB" specifier did not match the user—name of
the submitting user. Edit the command file and change the
user-name in the $$ JOB line to the user-name of the submitter.

*** Invalid batch database, please contact your system administrator.

(Severe) The running job detected an error (such as disk failure,
pointer mismatch, or misprotected file) in the Batch system
database. It will flag the database as invalid. Notify the Systen
Administrator, who has the responsibility for re-initializing the
database (or running *FIXBAT or FIXRAT as the case may be). The
BATCH and JOB commands will be inoperative until the situation is
resolved.

<nn> is out of range. <optiom

REV. @ D - 26

IDR4130 ERROR MESSAGES

(Fatal) The numbers supplied as parameters to the -FUNIT or

-PRIORITY options during job submission/changing were out of range.
The range for -FUNIT is from 1 to 126; that for -PRIORITY is fram
@to9. The job should be resubmitted or changed with legal -FUNIT
and -PRIORITY values. Note that the system may be configured to
have fewer than 126 units per user at cold-start, and the -FUNIT
argument will be limited to the maximum configured unit number.

2J0B <extnan> (<intnam>) <status>.

(Warning) An attempt was made to perform an operation on a job
using the JOB command that could not be performed because of its
status: for example, trying to restart a completed job.

Job name required.

(Fatal) The options —CHANGE, -CANCEL, -ABORT, -RESTART, -HOLD and

-RELEASE all require a job identifier (internal or external name).
Re-enter the command with the job id. (For example: "JOB C.TOP
-HOLD", "JOB #19032 -ABORT").

Job not found.

(Fatal) The job referred to in a JOB command such as -CHANGE,
-CANCEL, -ABORT, -RESTART, -HOLD or -RELEASE, could not be found by
searching the active jobs list. This could mean one of three
things: that no job exists with that name, that all jobs that have
that name are not active jobs (i.e., have completed, aborted or

been cancelled), or that a job exists with that external name but
the user making the request is not the same user that originally
submitted the job.

(Job no longer restartable)

(Response) A JOB ~CANCEL was performed on an executing job. The
job itself is not cancelled; it has been flagged as being

unrestartable (i.e., a -RESTART will abort the job but not restart
it) e

(Job not restartable)

(Warning) A JOB -RESTART was performed on a job that had been
flagged as unrestartable. An attempt will be made to abort the
job.

(Job restarted)

D - 27 January 1988

APPENDIX D IDR41398

kkk

(Response) A JOB -RESTART was performed on a job, and the job has

been flagged as restartable. Although an error message may appear
after this message, the job will generally be restarted wnless a
JOB -CANCEL or JOB -CHANGE -RESTART NO is done on it. Possible
errors after this message include “Insufficient access rights" if
the user is logged in as SYSTEM, amd restarted another user's job
from a user terminal (not the supervisor terminal), or if the
process recently logged out. "Not found" may also be returned in
this case.

Jobs are not being processed at this time.

(Severe) If followed by "*** Please contact your’. system
administrator immediately", it indicates that the Batch database
has not been initialized, or that something has happened to it
(like a disk head crash). If followed by "*** Please try again
later", it indicates that while the database is still valid, the
Batch monitor was logged out using a method other than "BATCH
SYSTEM -STOP", and will verify the validity of the database when it
is started up. Either way, the user will be immediately returned
to command mode (i.e., the operation the user attempted will not be
performed). This can be typed out by the BATCH or the JOB commands
when they start runnin.

Multiple jobs with this name (use internal name).

(Fatal) A reference was made to a job using a filename in the JOB
command, and there were at least 2 such jobs belonging to the user
making the reference that were active. The job-id must be used in
this case. Use JOB -STATUS ALL to determine the filenames and
job-ids of all jobs belonging to the user issuing the command.

Multiple occurance,

(Fatal) An option was specified twice during job submission or job
changing (example: JOB C TEST -HOME HERE —HOME THERE) on either
the JOB or $$ JOB line. (Ifthe option is specified once on the
JOB line and once on the $$ JOB line, no error will result and the
parameter on the JOB line will take precedence). Re-enter’ the
command, specifying each option only once.

Must be first option.

(Fatal) The options -CHANGE, -CANCEL, —-ABORT, -RESTART, -STATUS,

-DISPLAY, -HOLD and -RELEASE must be the first option on the JOB
command line (after a sometimes optional job identifier). Use the
JOB command several times to perform several operations.

REV. 9 D -- 28

TDR4138 ERROR MESSAGES

No active jobs [named "<jobname>"] for user <username>.

(Response) There are no jobs belonging to that user that are
waiting, held, or executing.

The jobnane is output if a jobname was specified for the -DISPLAY
or -STATUS command; otherwise it is anitted.

No job changes specified.

(Fatal) The -CHANGE option was given to the JOB command, but no
actual changes were specified on the command line. Specify changes
to be made after the —-CHANGE option.

No jobs {named "<jobname"] for user <username>.

(Response) This message is typed out by a JOB -DISPLAY ALL or
-~STATUS ALL command, and indicates that there are no jobs belonging
to that user.

No longer executing.

(Fatal) A JOB -ABORT or JOB -RESTART was performed on a job that
had execution status, but by the time the execution file was read
in to determine the user number of the process, it had disappeared.
If the message "(Job restarted)" had been typed out, then the job
would be restarted.

No queue available for job.

(Fatal) A job was submitted using the JOB command that did not use
the -QUEUE option to specify the queue to which it was to be
submitted, and no suitable queue could be found. Suitability for a

queue includes CPU amd elapsed time limits being within the
confines of the queue, queue being unblocked, etc. Use the BATGEN
-STATUS or -—DISPLAY command to yield a list of legal queues and
their status,

No queues have waiting or held jobs.

(Response) A BATCH -DISPLAY command was issued, and there were no

queues that had any waiting or held jobs in them. A queue may have
one executing job in it, but an executing job is not considered a
waiting or held job.

No recent jobs [named <jobname>"] for user <usernane>.

D - 29 January 1989

APPENDIX D TDR4139

No r

Not

(Response) There are no jobs belonging to that user (or in the

batch system if the user is SYSTEM that were submitted, initiated,
aborted, completed or cancelled today.

unning jobs.

(Response) A BATCH ~DISPLAY command was issued, and there were no
jobs that were currently running. It is possible for there to be
no running jobs amd to have jobs waiting, however, even when the

monitor is running and there are free phantoms; there is always a

small amount of turnaround time between the submittal of a job amd

the execution of a job.

an absolute treename.

(Fatal) The home ufd specified with the -HOME option durin
subnission using the JOB command (or changing of job parameters)

was a relative (pathname), i.e., it began with "*>". Re-submit the
job, giving an absolute pathname after the -HOME option.

your job.

(Fatal) A reference was made to a job using an internal name in the

JOB command, and the referenced job did not belong to the user

making the reference. Use "JOB -STATUS ALL" to obtain a list of

all jobs belonging to the user making the request.

Null home ufd.

(Fatal) The home ufd specified with the -HOME option during

submission using the JOB command (or changing of job parameters)
was a null string. Re-submit the job with an absolute pathname

after the —HOME option.

Please stand by.

(Response) This message and others like it ("File in use, please

stand by") will be output if the program being run is trying to

gain access to a file that is in use for more than 5 seconds.
After 29 seconds, the "File is use..." message will be output, and
after 38 seconds, the message "Timeout of 38 seconds has occurred"
will be output and the program will "give up". Usually this will
result in a fatal error, as it could indicate that systen security

is broken.

Please wait.

REV. Q D - 39

IDR41308 ERROR MESSAGES

(Response) This message asks that the user be patient because the

progran he is running has been locking up the Batch database too
long and is not allowing other processes to have access to it. It
is not a fatal error. It generally only is output when a system is
heavily loaded, or when the current process has a very low priority
and does not run frequently.

Queue blocked.

(Fatal) The queue referred to by a -QUEUE option during job
submission is currently blocked to new submissions. Try it again
later, or use another queue.

Queue deleted.

(Fatal) The queue that the job was being submitted to was present
when it was first checked out, but by the time the command file had
been copied and some other activities had taken place, the queue
had been deleted. The job should be resubmitted to a different
queue.

Queue does not exist.

(Fatal) The -QUEUE option on the JOB command line or the (optional)

S$ JOB line referred to a queue that either did not exist or was in
the process of being deleted ("flagged for deletion"). The BATGEN
-STATUS or -DISPLAY command should provide a list of currently
available queues and their status, if the file that defines queues
is accessible by users.

Queue full.

(Fatal) There are already 10,000 jobs (whether active or inactive)
in the queue to which the job is being submitted. The queue must
be deleted and re-created before more jobs can be submitted to it.
The system administrator should be asked to do this. Meanwhile, if

any other queues are available, they can be used instead by the
user. |

Register setting.

(Fatal) Register settings are illegal in the Batch subsysten
(except as part of a submitted command file). Re-enter the command
line without the register setting.

Searching for free command file, please stand by.

D - 31 January 1980

APPENDIX D IDR4136

(Response) This and other messages like "Queue is in heavy

use...please stand by" mean that many users are submitting command
files at once. The situation should resolve itself in a short

amount of time.

Specified value is out of range.

(Fatal) The -CPTIME or -ETIME option specified during job

subnission or a -CHANGE operation is greater than the maximun
allowed by the queue to which the job was submitted. This message
will be preceded by a message indicating the maximum limit for that

queue ("Cpu limit is xx" or "Elapsed time limit is xx"). If the

limits cannot be lowered and the job successfully run, then try a

queue with higher limits.

Syntax error. Register settings are illegal

(Warning) This message is output if end-of-line is expected and a
register setting is found instead. Re-enter the command without

register settings.

<text> seen when end-of-line expected.

(Fatal) <text> was seen when there should have been no more text

(end of line). The command will be ignored and the user will be

returned to PRIMOS level.

This job cannot be restarted.

(Response) Output by a JOB -DISPLAY command if the job being
displayed has had a JOB -CANCEL done to it while it was executing,
or waS submitted with the -RESTART NO option. Any -RESTARTs done
to the job will abort the job (if they succeed) , but the job will

not be restarted.

(This job has already executed nn time(s)).

(Response) Output by a JOB -DISPLAY command if the job being
displayed is executing and has already been executed. This is the
result of a JOB -RESTART being done on that job, or a_ system
cold-start after being brought down while the job was executing.

Too many options.

(Fatal) At least two options were entered that conflicted with each
other, such as JOB -DISPLAY -CHANGE or JOB CTEST —ABORT —-CANCEL.

Use separate JOB commands to perform separate operations.

REV. | D - 32

TDR4130 ERROR MESSAGES

Unknown option.

(Fatal) An option was entered to the BATCH or JOB command that was

not recognized.

Warning: jobs are not being processed at this time.

(Response) The Batch monitor is not running. No submitted jobs

will be executed until it has been started up. The operation
requested will then be performed. If the monitor is force—logged

out, or the system is shut down without the monitor logging itself
out, there may be a database problem as a result.

D - 33 January 1988

"2-11, 4-2

$$ JOB 9-4

*> 2-6

<*> 2-6

? 2-11

ABBREV 14-2

Abbreviations:
conventions for 2-9
defining your om _=_—i114-2
systen-defined 2-9
variables in 14-3

Aborting Batch jobs 9-5

Addressing modes 5-3

ALIAS 11-6

APPLIB 13-1

Application subroutines 13-1

Applications library 13-1

Archiving files on tape 11-19

ASCII character set C-l

ASCII files 19-1

ASCII tapes, translation 11-11

Assenbly Language, The
Progranmer's Companion 1-8

ASSIGN 11-1

ASSIGN (mag tape drives) 11-4

ASSIGN, using -ALIAS with 11-6

Assigning mag tape drives 11-3

Assigning peripheral devices
ll-l

INDEX

ATTACH, across network 12-1,
12-3

ATIN key 2-19

AVAIL 3-6

Backslash (\) 2-11

Backup onto tape 11-18

BASIC/VM Programmer's Guide 1-6

BASIC/VM, The Programmer's
Companion 1-8

BATCH 9-7

Batch error messages D-24

Batch job execution 9-1

Batch job execution enviroment
2-1 v 2-2

Batch jobs:
aborting 9-5
cancelling 9-5
modifying. 9-4
Monitoring 9-6
restarting 9-5
submitting 9-2

Batch queues 9-7

BATGEN 9-7

BCD tapes, translation 11-11

Binary files 5-2

Binary search 13-9

BREAK key 2-19

Calling conventions, for command
files 8-4

Cancelling a spool request 4-13

Cancelling Batch jobs 9-5

Card reader 11-1, 11-2

Cards, reading 11-2

Caret (“) 2-11

Chaining command files 8-4

Changing directories 3-2

Changing file names 3-8

Changing the system prompts
14-1

‘Characters:

ASCII cC-l
control 2-10

reserved 2-12

special 2-19

Closing command files 8-6

Closing command output files
8-8

Closing files, on cards 11-2

CMPF 19-7

CNAME 3-8

COBOL (compiler) 5-1

COBOL Reference Guide 1-5

COBOL:

code generated 5-4
compiler defaults 5-2
creating source files 4-3,

4-6
documentation for 1-5
used with other languages 5-5
using condition mechanism with
15-2

Code generation 5-4

Canbining languages in a program
5-5

INDEX

Combining program modules 5-5

COMINPUT 8-2

COMINPUT options 8-3

Command environment 14-1

Command file operations 8-1

Command files:
chaining 8-6
closing 8-6, 8-8
input 8-2
output 8-6
PHANTOM 8-198

Command output files 8-6

Commands, abbreviating 14-2

Commands:
$$ JOB 9-4
ABBREV 14-2
ASSIGN 11-1
ASSIGN (mag tape drives) 11-4
BATCH 9-7
BATGEN 9-7
CMPF 19-7
COBOL 5-1
COMINPUT 8-2
COMOUTPUT 8-6
CONCAT 4-14
DBG 15-2
DMSTK 15-2
ED 4-3
F77 5-1
FILMEM 6-5
FIN 5-1

FUTIL 16-9
JOB 9-2
LOAD 6-1, 6-4, 6-5
MAGNET 11-18
MAGRST 11-19
MAGSAV 11-19

PHANTOM 8-19, 8-11
PLIG 5-l
RDY 8-9, 14-1
RESUME 6-5, 7-2
RLS 15-2
RPG 5-1
SE 6-1, 7-1
SORT 19-2

SPOOL 4-11

START 7-2, 15-2

TIME 8-8

Comments :
in command files 8-2

in source code 4-3

COMOUTPUT 8-6

COMOUTPUT options 8-7

Comparing files 108-7

Compatibility 2-2

Compiler defaults 5-2

Compiler messages 5-4

Compiling programs 5-1

Compressed files 19-1

CONCAT 4-14

Concatenating files for printing

4-14

Condition mechanism 15-1

Control cards 11-2

CONTROL key 2-10

CONTROL-P 2-11

CONTROL-Q 2-11

CONTROL-S 2-11

Controlling file access 3-9

Conventions, in documentation
2-9

Conversion subroutines 13-2

Copying files and directories,

19-18

INDEX

Copying files onto mag tape
11-198

Copying mag tapes 11-18, 11-14

CREATE 3-3

Creating “listing files" 5-3

Creating and modifying files
3-8

Cross reference listings 5-3

Current directory 2-5

Current disk 2-6

CX 9-1

DAM files 13-11

DATE 3-6

DBG 15-2

DBMS) 1-7

DBMS Administrator's Guide 1-7

DBMS COBOL Reference Guide 1-7

DBMS FORTRAN Reference Guide

1-7

DBMS Schema Reference Guide 1-7

DC, LOAD subcommand 6-6

DELETE 3-5, 3-9

DELETE, SEG command 6-2

Deleting directories 3-5, 19-19

Deleting files 3-9, 10-19

Deleting prograns 4-11

Determining file size 3-8

Directories:
attaching to
copying 19-19
deleting 3-5
deleting 3-5, 10-190
listing contents of 19-13
MFDS 2-3
pathnanes of 2-5
protecting 3-4

2-5 v 3-2

segment 2-4, 6-1, 6-2
sub-UFDs 2-3
UFDS 2-3

Disk sorts 13-9

DISPLAY, TERM 2-12

Displaying Batch information
9-6

Displaying the spool queue 4-12

Distributed Processing Terminal
Executive Guide 1-8

IMSTK 15-2

Double-quote (") 2-11

DPTX 1-8

DUNLOAD 4-3

Duplicating mag tapes 11-13

ED 4-1

Edit mode 4-]

Editor 4-1

Editor command summary 4-6

Editor commands:

DUNLOAD 4-3

FILE 4-3
FIND 4-3
LOAD 4-3
MODIFY 4-3
OVERIAY 4-3
SEMICO 4-3
TABSET 4-3
UNLOAD 4-3

INDEX

ER! 2-8

ERASE character 2-12, 4-2

Error handling, in library
subroutines 13-12

Error messages:
Batch D-24

LOAD D-~4

Run-time D-7
SEG D-2

Error-handling, system 15-1

Errors, in command files 8-6

Errors, run-time 7-3

Examining file contents 3-9

Executing PHANTOM files 8-11

Execution of R-mode memory images
7-1

Execution of segmented runfiles
7-1

F77 (compiler) 5-1

FILE 4-2

File and directory structures
2-3

File Management Systen 2-3

File systen subroutines 13-1

File systen, using the 2-3

File types 2-4, 10-1

File utility 19-9

Files:
ASCII 19-1
binary 5-2, 10-1
changing names of 3-8
COMINPUT 8-2

command 8-l
COMOUTPUT 8-6

comparing 16-7
compressed 19-1
concatenating 4-11, 19-8
copying. 19-19
creating 4-1
PAM 13-11
deleting 19-10
displaying at terminal 4-11
editing 4-1
fixed-length 109-1
listing 5-2, 5-3
listing at terminal 4-11
merging 198-5, 10-8
object 5-2
on cards 11-2
on disks 2-3
on mag tape 11-1
on paper tape 11-3

output 8-6
pathnames of 2-5
phantom 8-19
printing 4-11
protecting 3-10
restoring to disk from tape

11-18, 11-17
SAM 13-19
saving on tape

sorting 16-1
source 4-1, 5-1

types 2-4
variable-length 19-1

11-11, 11-15

FIIMEM, command 6-5

FIND 4-3

Fixed-length files 10-1

FORMS 1-7

FORMS Guide 1-7

FORTRAN 77 Reference Guide 1-5

FORTRAN 77:

combined with other languages

5-5
compiler defaults 5-2
Gocumentation for 1-5
editing source files
modes generated 5-4

on-units in 15-2, 15-4

4-3, 4-5

INDEX

FORTRAN:
combined with other languages

5-5
compiler defaults 5-2
documentation for 1-5
editing source files
modes generated 5-4
writing on-units in 15-4,
15-5

4-3 v 4-5

FORTRAN Reference Guide 1-5

FORTRAN, The Programmer's
Campanion 1-8

FIN (compiler) 5-1

FUTIL 10-9

FUTIL commands 19-10, 10-14

- Hardware features 2-2

HELP, SEG command 6-2

High-level languages:
compiling 5-1

documented 1-5
loading 6-1

Home directory 2-5

Home vs current directories 2-5

I-mode, compiling 5-1

I-mode, loading 6-2

In-memory sorts 13-9

INITIALIZE, LOAD subcommand 6-6

INITIALIZE, SEG subcammand 6-3

Input mode 4-1

Interactive execution environment

2-1, 2-2

Interpretive BASIC 1-6

INTRPT key 2-10

JOB 9-2

JOB command options 9-3

Keys, for sorts 19-3

Keys, in library subroutines
13-11

KILL character 2-12, 4-2

Languages:

BASIC 1-6, 1-8

COBOL 1-5, 4-3, 4-6, 5-1,
5-2, 5-4, 5-5

FORTRAN 1-5, 5-l, 5-2, 5-4,

5-5, 15-5

5-2, 5-4, 5-5

5-2, 5-4, 5-5, 15-2, 15-4, 15-6

RPG 1-5, 5-2, 5-4

Ldn 11-6

Libraries, 13-1

LIBRARY, LOAD subcommand 6-6

LIBRARY, SEG subcanmand 6-2

LISTF 3-4, 3-5

Listing contents of directories
18-13

Listing files (created by
compilers) 5-3

Listing programs at line printer
4-11

Listing programs at terminal
4-11

LOAD (Editor command) 4-3

LOAD (LOAD subcommand) 6-6

INDEX

LOAD (SEG command) 6-2

LOAD (SEG subcamnmand) 6-2

‘LOAD and SEG Reference Guide

1-5

LOAD error messages D-4

LOAD subcommands 6-6

Loading I-mode programs 6-2

Loading procedures (with SEG)
6-3

Loading R-mode prograns 6-4

Loading V-mode prograns 6-2

Logging out 3-19

Logical aliases, for mag tapes
11-7

Logical device numbers, for mag
tape drives 11-6

Logical disk 2-3

Logical disk names 12-3

LOGIN 3-2

Login, across network 12-1

LOGOUT 3-190

Logout, PHANTOM 8-19

Mag tape utilities 11-3

Mag tapes’ 11-1

Mag tapes:

acceptable formats 11-11
assigning 11-3
copying 11-14
duplicating 11-13, 11-14
logical aliases for 11-6
mounting 11-8

operator assistabnce 11-8
releasing 11-9

MAGNET 11-16

MAGNET commands 11-11

MAGNET dialog 11-12

MAGRST 11-190

MAGRST dialog 1-17

MAGSAV 11-198

MAGSAV dialog 11-15

MAP, LOAD subcanmand 6-6

MAP, SEG subcommand 6-2

Master file directory (MFD) 2-3

Mathematical subroutines 13-2

Mergesorts 19-5

Merging files 10-5, 106-8

Messages, compiler 5-4

MFD 2-3

MIDAS 1-7

MODE, LOAD subcommand 6-6

MODIFY 4-3

Modifying files 3-8

Modifying lines of code 4-3

Monitoring Batch jobs 9-6

Monitoring Batch queues 9-7

Monitoring speed of execution

8-8

Monitoring the spool queue 4-12

Mounting mag tapes 11-8

INDEX

Moving lines of code 4-3

MRGF 19-8

MSORTS 13-1

Networks:
attaching across 12-3
defined 12-1
disk names 12-3
logging in across, 12-1
STATUS 12-2
using 12-1

Non-owner Status 3-9

NOXOFF 2-12

Object files 5-2

OK, 2-8

OK: 2-8

On-units:
actions of 15-3
scope 15-4

system 15-2
user-written 15-3
with FIN compiler 15-5
writing 15-4

Operating system subroutines
13-12

Operator intervention in mag tape
assignments 11-8

Order of loading for LOAD 6-6

Order of loading for SEG 6-3

Ordinary pathname 2-5

Output, written to a file 8-6

OVERLAY 4-3

Qverlaying code 4-3

Owner status 3-9

Paper tape reader 11-1, 11-3

Paper tape, reading 11-3

Parsing subroutines 13-2

PASSND 3-4

Passwords 2-7, 3-4

Passwords, in library subroutines
13-11

Pathnames 2-3

Pathnanes, for access to files on
remote disks 12-1

Pdn 11-6

Peripheral devices, assigning
11-1

Peripheral devices, releasing
11-2

PHANTOM 8-190, 8-11

PL/I Subset G Reference Guide
1-5

PL/I, Subset G:
code generated 5-4
canpiler defaults 5-2
creating source files 4-3,
4-4
documentation for 1-5
on-units in 15-2, 15-2, 15-4,
15-6

used with other languages 5-5

PL1G (compiler) 5-1

PMA Programmer's Guide 1-6

POWER 1-6, 1-7

PRIME/POWER Guide 1-7

PRIMENET 1-7, 12-1

INDEX

PRIMENET Guide 1-7

PRIMOS 2-1

PRIMOS Commands Reference Guide

1-5

PRIMOS Commands, The Programmer's
Companion 1-8

Printing files 4-11, 4-15

Printing several files as one
4-14, 4-15

Prompts, changing 14-1

Prompts, system 2-8

PROP 3-7

PROTEC 3-19

Protecting files 3-19

Purging files and directories
19-18

Question mark (?) 2-11

Queues, Batch 9-7

Queues, Spool 4-12

QUIT, LOAD subcommand 5-6

QUIT, SEG subcommand 6-3

Quotation marks 2-11

R-mode, compiling 5-1

R-mode, loading 6-4

RDY 8-9, 14-1

Reading mag tapes 11-18

Reading punched cards 11-2

Reading punched paper tape 11-3

Reference Guide, Multiple Index

Data Access System (MIDAS)
1-7

Relative pathnanes 2-6

Relinquishing peripheral devices
11-2

Relinquishing tape drives 11-9

Remote Job Rntry Guide 1-8

Remote login 12-1

Renaming prograns 4-11

Reserved characters 2-12

Resolving discrepancies in files
(with CMPF) 18-7

Resolving discrepancies in files
(with MRGF) 18-8

Restoring files from tape to disk
11-18, 11-17

RESUME 6-5, 7-1

RETURN key 2-10

RETURN, SEG subcommand 6-3

Ring protection system 2-3

RIS 15-2

RPG (compiler) 5-1

RPG II Debugging Template 1-5

RPG II Reference Guide 1-5

RUBOUT key 2-10

Run-time error messages D-7

Running jobs under Batch 9-1

Running R-mode prograns 7-1

INDEX

Running V-mode and I-mode

prograns 7-1

SAM files 13-10

SAVE, LOAD subcommand 6-6

SAVE, SEG subcommand 6-3

Saving files 4-2

Saving files on tape
11-15

11-11,

Search and sort libraries 13-1,
13-9

Security for directories 3-4

Security for files 3-10

SEG 6-1, 7-1

SEG commands am subcanmands

6-2

SEG error messages D-2

Segment directories, creating
6-1

Segment directories, deleting
6-2

Segmentation 2-2

Segmentation 2-3, 6-1

SEMICO 4-3

Semicolon, as special character
4-2, 4-3

Setting terminal characteristics
2-12

SIZE 3-8

SLIST 3-9

SORT 16-1

9

Sort characteristics 13-18

Sort libraries, 13-1, 13-9

Sorting files 18-1

Source-Level Debugger Reference
Guide 1-5

Special characters 2-10

Special terminal keys 2-10

SPOOL 4-11

SPSS 1-7

SPSS Guide 1-7

SRTLIB 13-1, 13-9

START 7-2, 15-2

STATUS commandS 3-6

STATUS DISKS 12-3

STATUS information, PHANTOM
8-18

STATUS, network 12-2

Status, nonowner 3-9

Status, owner 3-9

String manipulation subroutines
13-2

Sub-UFD 2-3

Subroutine libraries 13-1

Subroutines Reference Guide 1-5

Subroutines, for condition
mechanism interface 15-4

System Administrator's Guide
1-6

INDEX

System Administrator, The

Programmer's Companion 1-8

System Architecture Reference
Guide 1-6

System Prompts 2-8

Tabulation 4-1, 4-3, 4-4, 4-5

Tape drives:
assigned byoperator

11-8
assigned by user 11-3
logical aliases for 11-3
operator assistance 11-8
releasing 11-9

11-4,

TERM command 2-12

TERM command options 2-12

Terminating Batch jobs 9-5

TIME 3-7, 8-8

TREDEL 3-5

Treenames 2-5

Type-ahead 2-8

Typographical conventions 2-9

UPD 2-3

Under score (_) 2-12

UNLOAD 4-3

Up-arrow (~) 2-11

User file directory (UFD) 2-3

User query subroutines 13-2

V-mode, compiling 5-1

V-mode, loading 6-2

VAPPLB 13-1

10

INDEX

Variable-length files 10-1

Variables, in abbreviations

14-3

Virtual memory 2-2

Volume 2-3

VSRTLI 13-1, 13-9

Working directory 2-5

Writing files from tape
11-18, 11-17

Writing mag tapes 11-10

Writing output toa file 8-6

XOFF 2-12

	Front Cover
	Title Page
	i
	Copyright
	ii
	Contents
	iii
	iv
	v
	vi
	Part I
	Using Prime Documentation
	
	Section 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Part II
	Writing and Running Programs
	
	Section 2
	Before You Get Started
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	Section 3
	Accessing PRIMOS
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	Section 4
	Creating Source Files
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	Section 5
	Compiling Programs
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	Section 6
	Loading Programs
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	Section 7
	Running Programs Interactively
	7-1
	7-2
	7-3
	7-4
	Section 8
	Command Files and Phantoms
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	Section 9
	Batch Job Processing
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	Part III
	System Facilities
	
	Section 10
	File-handling Utilities
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	Section 11
	Using Tapes and Cards
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	Section 12
	Using PRIMENET
	12-1
	12-2
	12-3
	12-4
	Section 13
	Subroutine Libraries
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	Part IV
	Altering the Command Environment
	
	Section 14
	Using RDY and ABBREV
	14-1
	14-2
	14-3
	14-4
	Section 15
	Using the Condition Mechanism
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	15-7
	15-8
	Appendices
	
	Appendix A
	Glossary of Prime Concepts and Conventions
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	Appendix B
	System Defaults and Constants
	B-1
	B-2
	Appendix C
	ASCII Character Set
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	D-29
	D-30
	D-31
	D-32
	D-33
	D-34
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	Back Cover

