
 SSSoooffftttwwwaaarrreee TTToooooolllsss SSSuuubbbsssyyysssttteeemmm TTTuuutttooorrriiiaaalll

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 ___TTT___AAA___BBB___LLL___EEE___ ___OOO___FFF___ ___CCC___OOO___NNN___TTT___EEE___NNN___TTT___SSS

 IIInnntttrrroooddduuuccctttiiiooonnn ... 1
 Getting Started 1
 Correcting Typographical Errors 3
 Adjusting to Terminal Characteristics 4
 Finishing Up .. 5
 Automatically Running the Subsystem 6

 OOOnnnllliiinnneee DDDooocccuuummmeeennntttaaatttiiiooonnn 8
 The ’Help’ Command 8
 The ’Usage’ Command 9

 TTThhheee FFFiiillleee SSSyyysssttteeemmm aaannnddd RRReeelllaaattteeeddd UUUtttiiillliiitttiiieeesss 11
 Creating Files .. 11
 Looking at the Contents of Files 11
 Deleting Files .. 12
 The ’Lf’ Command 12
 The Primos File System 13
 Directories ... 15
 Moving Around in the File System 16

 SSSuuubbbsssyyysssttteeemmm CCCooommmmmmuuunnniiicccaaatttiiiooonnn SSSeeerrrvvviiiccceeesss 17
 The Subsystem Postal Service 17
 The Subsystem News Service 18
 Subsystem Real-Time Communications 19

 IIInnnpppuuuttt///OOOuuutttpppuuuttt ... 20
 Standard Input and Standard Output 20
 I/O Redirection 20
 Examples of Redirected I/O Using ’Cat’ 21

 UUUsssiiinnnggg PPPrrriiimmmooosss fffrrrooommm ttthhheee SSSuuubbbsssyyysssttteeemmm 23
 Executing Primos Commands from the Subsystem 23

 PPPrrrooogggrrraaammm DDDeeevvveeelllooopppmmmeeennnttt 24
 Developing Programs 24
 The Subsystem Text Editor 24
 Creating a Program 26
 Caveats for Subsystem Programmers 30

 EEErrrrrrooorrrsss ... 33
 Recovering from Errors 33

 AAAdddvvvaaannnccceeeddd TTTeeeccchhhnnniiiqqquuueeesss 35
 Command Files ... 35
 Pipes ... 35
 Additional I/O Redirectors 36

 - iii -

 BBBaaaccckkkgggrrrooouuunnnddd ... 38
 Ancient History 38
 Authors and Origins 39

 - iv -

 FFFooorrreeewwwooorrrddd

 The SSSoooffftttwwwaaarrreee TTToooooolllsss SSSuuubbbsssyyysssttteeemmm is powerful collection of
 program development and text processing tools developed at the
 Georgia Tech School of Information and Computer Science, for use
 on Prime 350 and larger computer systems. The tutorial that you
 are now reading is intended to serve as your first introduction
 | to the Subsystem and its many capabilities. The information
 | contained herein applies to Version 9 of the Subsystem as
 | released in September 1984.

 - iv -

 Software Tools Subsystem Tutorial

 IIInnntttrrroooddduuuccctttiiiooonnn

 The Software Tools Subsystem is a programming
 system based on the book _S_o_f_t_w_a_r_e _T_o_o_l_s, by Brian W.
 Kernighan and P. J. Plauger, (Addison-Wesley Publishing
 Company, 1976), that runs under the Primos operating
 system on Prime 350 and larger computers. It allows
 much greater flexibility in command structure and
 input/output capabilities than Primos, at some small
 added expense in processing time.

 This tutorial is intended to provide sufficient
 information for a beginning user to get started with
 the Subsystem, and to acquaint him with its basic
 features; it is by no means a comprehensive reference.
 Readers desiring a more detailed exposition of the Sub-
 system’s capabilities are referred to the _S_o_f_t_w_a_r_e
 _T_o_o_l_s _S_u_b_s_y_s_t_e_m _R_e_f_e_r_e_n_c_e _M_a_n_u_a_l and to the remainder
 of the _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m _U_s_e_r_’_s _G_u_i_d_e, of which
 this Tutorial is a part.

 GGGeeettttttiiinnnggg SSStttaaarrrttteeeddd

 Since the Subsystem is composed entirely of ordinary user-
 state programs, as opposed to being a part of the operating
 | system, it must be called when needed. In other words, as far as
 | Primos is concerned, the Subsystem is a single program invoked by
 | the user. If the user wishes to use the Subsystem, he or she
 | must call it explicitly (it is possible to call the Subsystem
 | automatically on login; we will discuss how to do so a little
 | further on).

 The following example shows how a typical terminal session
 | might begin. Items typed by the user are boldfaced.

 OK, lllooogggiiinnn lllooogggiiinnn___nnnaaammmeee (1)
 | Password? (2)
 | LOGIN_NAME (User 15) logged in Friday, 06 Jul 84 14:22:07. (3)
 | Welcome to PRIMOS version 19.2.
 | Last login Friday, 06 Jul 84 14:06:32
 OK, ssswwwttt (4)
 Password: (5)
 Enter terminal type: tttiii (6)
] (7)

 | (1) A terminal session is initiated when you type the
 Primos LOGIN command. "Login_name" here represents the
 login name that you were assigned when your account was
 established.

 - 1 -

 Software Tools Subsystem Tutorial

 (2) Primos asks you to enter your login password (if you
 have one) and turns off the terminal’s printer. You
 | then type your password (which is not echoed) followed
 | by a newline (the key labelled "newline", "return", or
 | "cr" on your terminal). Note: password checking on
 | login, as of Rev. 19, is now a standard part of Primos.

 (3) Primos acknowledges a successful login by typing your
 login name, your process number (in parentheses), and
 | the current time and date. (Note: At Georgia Tech,
 | the login acknowledgement will look somewhat different
 | from what is shown here.)

 (4) Primos indicates it is ready to accept commands by
 typing "OK,". (Whenever you see this prompt, Primos is
 waiting for you to type a command.) Type ’swt’ (for
 "_Soft_ware _Tools") to start up the Subsystem.

 (5) ’Swt’ prompts you for your Subsystem password. This
 password will have been assigned to you by your Sub-
 system Manager at the time he created your Subsystem
 account. (Note: Under Georgia Tech Primos, Subsystem
 passwords are not issued and not prompted for by
 ’swt’.) After you receive the prompt, enter your Sub-
 system password. It will not be printed on the
 terminal.

 (6) ’Swt’ asks you to enter the type of terminal that you
 are using. Depending on your local configuration, you
 may or may not see this message. If you do see it,
 enter the type of terminal you are using. You may
 obtain the name of your terminal type by asking your
 system administrator, or you can enter a question mark
 ("?") and try to find your terminal type in the list
 that ’swt’ will display for you.

 (7) The Subsystem’s command interpreter prompts with "]",
 indicating that it is ready to accept commands.

 When the Subsystem command interpreter has told you it is
 waiting for something to do (by typing the "]"), you may proceed
 to enter commands. Each command consists of a ’command-name’,
 followed by zero or more ’arguments’, all separated from each
 other by blanks:

 command-name argument argument ...

 The command name is necessary so that the command interpreter
 knows what it is you want it to do. On the other hand, the
 arguments, with a few exceptions, are completely ignored by the
 command interpreter. They consist of arbitrary sequences of
 characters which are made available to the command when it is
 invoked. For this reason, the things that you can type as
 arguments depend on what command you are invoking.

 - 2 -

 Software Tools Subsystem Tutorial

 When you have finished typing a command, you inform the com-
 mand interpreter of this by hitting the "newline" key. (On some
 terminals, this key is labeled "return", or "cr". If both the
 "newline" and "return" keys are present, you should use
 "return".)

 Incidentally, if you get some strange results from including
 any of the characters

 " ’ # | , ; () { } [] >

 within a command name or argument, don’t fret. These are called
 "meta-characters" and each has a special meaning to the command
 interpreter. We will explain some of them later on. For a more
 complete description of their meaning, see the _U_s_e_r_’_s _G_u_i_d_e _f_o_r
 _t_h_e _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m _C_o_m_m_a_n_d _I_n_t_e_r_p_r_e_t_e_r.

 CCCooorrrrrreeeccctttiiinnnggg TTTyyypppooogggrrraaappphhhiiicccaaalll EEErrrrrrooorrrsss

 If you are a perfect typist, you can probably skip this
 part. But, if you are like most of us, you will make at least a
 few typos in the course of a session and will need to know how to
 correct them.

 There are three special characters used in making correc-
 tions. The "erase" character causes the last character typed on
 the line to be deleted. If you want to delete the last three
 characters you have typed so far, you should type the erase
 character three times. If you have messed up a line so badly
 that it is beyond repair, you can throw away everything you have
 typed on that line in one fell swoop by typing the "kill" charac-
 ter. The result will be that two backslashes (\\) are printed,
 and the cursor or carriage is repositioned to the beginning of
 the line. Finally, the "retype" character retypes the present
 line, so you can see exactly what erasures and changes have been
 made. You may then continue to edit the line, or enter it by
 striking the return key.

 When you log into the Subsystem for the very first time,
 your erase, kill and retype characters are control-h (backspace),
 DEL (RUBOUT on some terminals), and control-r, respectively. You
 can, however, change their values to anything you wish, and the
 new settings will be remembered from session to session. The
 ’ek’ command is used to set erase and kill characters:

 ek erase kill

 "Erase" should be replaced by any single character or by an ASCII
 mnemonic (like "BS" or "SUB"). The indicated character will be
 used as the new erase character. Similarly, "kill" should be
 replaced by a character or mnemonic to be used as the new kill
 character. For instance, if you want to change your erase and
 kill characters back to the default values of "BS" and "DEL", you
 can use the following command:

 - 3 -

 Software Tools Subsystem Tutorial

 ek BS DEL

 (By the way, we recommend that you _d_o _n_o_t use "e" or "k" for your
 erase or kill character. If you do, you will be hard pressed to
 change them ever again!)

 AAAdddjjjuuussstttiiinnnggg tttooo TTTeeerrrmmmiiinnnaaalll CCChhhaaarrraaacccttteeerrriiissstttiiicccsss

 Unfortunately, not all terminals have full upper/lower case
 capability. In particular, most of the older Teletype models can
 handle only the upper case letters. In the belief that the use
 of "good" terminals should not be restricted by the limitations
 of the "bad" ones, the Subsystem preserves the distinction
 between upper and lower case letters.

 To allow users of upper-case-only terminals to cope with
 programs that expect lower case input (and for other mysterious
 reasons), the Subsystem always knows what kind of terminal you
 are using. You may have told it your terminal type when you
 entered the Subsystem, or your system administrator may have pre-
 assigned your terminal type. In any event, the Subsystem
 initially decides whether or not you are using an upper-case-only
 terminal from this terminal type.

 You can find out what the Subsystem thinks about your
 terminal by entering the ’term’ command:

] ttteeerrrmmm
 type tty buffer 2
 -erase BS -escape ESC -kill DEL
 -retype DC2 -eof ETX -newline LF
 -echo -lf -xoff -noinh -nose -novth -nolcase
 -break
]

 If the Subsystem thinks you are using an upper-case-only
 terminal, you will see the entry "-nolcase" in the last line;
 otherwise, you will see "-lcase". If you see that you have
 mistakenly entered the wrong terminal type, you can use ’term’ to
 change it. To list the possible terminal types for your instal-
 lation, enter

] ttteeerrrmmm ???

 Then change your terminal type by entering

] ttteeerrrmmm <<<nnneeewww ttteeerrrmmmiiinnnaaalll tttyyypppeee>>>

 If you are using an upper-case-only terminal, the Subsystem
 converts all subsequent upper case letters you type to lower
 case, and converts all lower case letters sent to your terminal
 by the computer to upper case. Since your terminal is also mis-
 sing a few other necessary characters, the Subsystem also
 activates a set of "escape" conventions to allow them to enter

 - 4 -

 Software Tools Subsystem Tutorial

 other special characters not on their keyboard, and to provide
 for their printing. When the "escape" character (@) precedes
 another, the two characters together are recognized by the Sub-
 system as a single character according to the following list:

 @A -> A (note that A -> a in "nolcase" mode)
 ...
 @Z -> Z
 @(-> {
 @) -> }
 @_ -> ˜
 @’ -> ‘
 @! -> |

 All other characters are mapped to themselves when escaped; thus,
 "@-" is recognized as "-". If you must enter a literal escape
 character, you must enter two: "@@".

 If the Subsystem thinks you have an upper-case-only terminal
 (i. e., you see "-nolcase" in the output from ’term’), you must
 use escapes to enter upper case letters, since everything would
 otherwise be forced to lower case. For example,

 @A

 is used to transmit an upper case ’A’, while

 A

 is used to transmit a lower case ’A’.

 All output generated when "-nolcase" is in effect is forced
 to upper case for compatibility with upper-case-only terminals.
 However, the distinction between upper and lower case is preser-
 ved by prefixing each letter that was originally upper case with
 an escape character. The same is true for the special characters
 in the above list. Thus,

 Software Tools Subsystem

 would be printed as

 @SOFTWARE @TOOLS @SUBSYSTEM

 under "-nolcase".

 FFFiiinnniiissshhhiiinnnggg UUUppp

 When you’re finished using the Subsystem, you have several
 options for getting out. The first two simply terminate the Sub-
 system, leaving you face to face with bare Primos. We cover them
 here only for the sake of completeness, and on the off chance
 that you will actually want to use Primos by itself.

 - 5 -

 Software Tools Subsystem Tutorial

 First, you may type

] ssstttoooppp
 OK,

 which effects an orderly exit from the Subsystem’s command
 interpreter and gives control to Primos’ command interpreter.
 You will be immediately greeted with "OK,", indicating that
 Primos is ready to heed your call.

 Second, you may enter a control-c (hold the "control" key
 down, then type the letter "c") immediately after the "]" prompt
 from the command interpreter. TAKE HEED that this is the stan-
 dard method of generating an end-of-file signal to a program that
 is trying to read from the terminal and is widely used throughout
 the Subsystem. Upon seeing this end-of-file signal, the command
 interpreter assumes you are finished and automatically invokes
 the ’stop’ command.

 Finally, we come to the method you will probably want to use
 most often. The ’bye’ command simply ends your terminal session
 and disconnects you from the computer. The following example
 illustrates its use. (Once again, user input is boldfaced.)

 |] bbbyyyeee (1)
 | LOGIN_NAME (User 15) logged out Friday, 06 Jul 84 15:30:00. (2)
 | Time Used: 01h 08m connect, 01m 06s CPU, 01m 10s I/O. (3)
 OK, (4)

 | (1) You type the ’bye’ command to end your terminal ses-
 sion.

 (2) Primos acknowledges, printing the time of logout.

 (3) Primos prints a summary of times used.

 ... The first time is the number of hours and minutes of
 connect time.

 ... The second time is the number of minutes and seconds
 of CPU time.

 ... The third time is the number of minutes and seconds
 spent doing disk i/o.

 (4) Primos signals it is ready for a new login.

 Note the the ’bye’ command is equivalent to exiting the Subsystem
 | and executing the Primos LOGOUT command.

 | AAAuuutttooommmaaatttiiicccaaallllllyyy RRRuuunnnnnniiinnnggg ttthhheee SSSuuubbbsssyyysssttteeemmm

 | With Primos Rev. 19, you can arrange to automatically run
 | the Subsystem when you log in. Simply put the command ’swt’ into
 | a file named ’login.comi’ in the directory to which you will be

 - 6 -

 Software Tools Subsystem Tutorial

 | attached when you log in.

 | Primos will execute the command(s) in this file
 | automatically. Furthermore, if your profile directory is an ACL
 | directory instead of a password directory, the Subsystem will not
 | even ask you for a password, since the file system provides the
 | protection automatically. (If this paragraph makes no sense to
 | you at all, don’t worry about it. It isn’t all that important.)

 - 7 -

 Software Tools Subsystem Tutorial

 OOOnnnllliiinnneee DDDooocccuuummmeeennntttaaatttiiiooonnn

 Users, old and new alike, often find that their
 memories need jogging on the use of a particular com-
 mand. It is convenient, rather than having to look
 something up in a book or a manual, to have the com-
 puter tell you what you want to know. Two Subsystem
 commands, ’help’ and ’usage,’ attempt to address this
 need.

 TTThhheee ’’’HHHeeelllppp’’’ CCCooommmmmmaaannnddd

 The ’help’ command is designed to give a comprehensive
 description of the command in question. The information provided
 includes the following: a brief, one-line description of what
 the command does; the date of the last modification to the
 documentation; the usage syntax for the command (what you must
 type to make it do what you want it to do); a detailed descrip-
 tion of the command’s features; a few examples; a list of files
 referenced by the command; a list of the possible messages issued
 by the command; a list of the command’s known bugs or
 shortcomings; and a cross reference of related commands or
 documentation.

 ’Help’ is called in the following manner:

 help command-1 command-2 ...

 If help is available for the specified commands, it is printed;
 otherwise, ’help’ tells you that no information is available.

 ’Help’ will only print out about as many lines as will fit
 on most CRT screens, and then prompt you with a message ending
 "more?". This allows you to read the information before it rolls
 off the screen, and also lets you stop getting the information
 for a command if you find you’re not really interested. To stop
 the output, just type an "n" or a "q" followed by a NEWLINE. To
 continue, you may type anything else, including just a NEWLINE.

 Several special cases are of interest. One, the command
 "help" with no arguments is the same as "help general", which
 gives general information on the Subsystem and explains how to
 use the help command. Two, the command "help -i" produces an
 index of all commands supported under the Subsystem, along with a
 short description of each. Finally, "help bnf" gives an explana-
 tion of the conventions used in the documentation to describe
 command syntax.

 - 8 -

 Software Tools Subsystem Tutorial

 Examples of the use of ’help’:

] hhheeelllppp (1)
] hhheeelllppp ---iii (2)
] hhheeelllppp rrrppp eeeddd ttteeerrrmmm (3)
] hhheeelllppp bbbnnnfff (4)
] hhheeelllppp ggguuuiiidddeee (5)

 (1) General information pertaining to the Subsystem, along
 with an explanation of the ’help’ command, is listed on
 the terminal.

 (2) A list of currently supported commands and subprograms,
 each with a short description, is listed on the
 terminal.

 (3) Information on the Ratfor preprocessor, the Software
 Tools text editor, and the terminal configuration
 program is printed on the terminal.

 (4) A description of the notational conventions used to
 describe command syntax is printed.

 (5) Information on how to obtain the Subsystem User’s
 Guides is listed on the terminal.

 Since beginning users frequently find printed documentation
 helpful, you may find the following procedure useful.
 Unfortunately, it involves many concepts not yet discussed, so it
 will be rather cryptic; nevertheless, it will allow you to
 produce a neatly-formatted copy of output from ’help’.

] hhheeelllppp ---ppp ||| ooosss >>>///dddeeevvv///lllpppsss///fff (1)
] hhheeelllppp ---ppp rrrppp ssseee ttteeerrrmmm ||| ooosss >>>///dddeeevvv///lllpppsss///fff (2)
] hhheeelllppp ---ppp ---iii ||| ooosss >>>///dddeeevvv///lllpppsss///fff (3)

 (1) The general information entry is printed on the line
 printer.

 (2) Information on the Ratfor preprocessor, the screen
 editor, and the terminal configuration program is
 printed on the line printer.

 (3) The index of available commands and subprograms is
 printed on the line printer.

 TTThhheee ’’’UUUsssaaagggeee’’’ CCCooommmmmmaaannnddd

 Whereas ’help’ produces a fairly comprehensive description
 of the command in question, the ’usage’ command gives only a
 brief summary of the syntax of the command. The syntax is
 expressed in a notation known as Backus-Naur Form (BNF for short)
 which is itself explained by typing "help bnf".

 - 9 -

 Software Tools Subsystem Tutorial

 The ’usage’ command is used in the same way as the ’help’
 command, as the following examples illustrate.

] uuusssaaagggeee uuusssaaagggeee (1)
] uuusssaaagggeee fffmmmttt hhheeelllppp (2)

 (1) The syntax of the ’usage’ command is printed.

 (2) Usage information on the Software Tools text formatter
 and the ’help’ command is printed.

 - 10 -

 Software Tools Subsystem Tutorial

 TTThhheee FFFiiillleee SSSyyysssttteeemmm aaannnddd RRReeelllaaattteeeddd UUUtttiiillliiitttiiieeesss

 Users spend much of their time creating, deleting,
 modifying and manipulating files. The utilities
 discussed in this section perform these tasks.

 CCCrrreeeaaatttiiinnnggg FFFiiillleeesss

 The most common way to create a file is to write the
 contents of a text editor to a new filename. Another common way
 (especially for creating small files) is to use the ’cat’ com-
 mand. Both of these methods are covered later in this guide.
 Right now, we prefer that you not be concerned with creating
 large, elaborate files or with knowing about more advanced
 features of the Subsystem. Instead, we will show you a simple
 method for creating one-line files. (Although you may not under-
 stand the command format at this point in time, don’t worry
 because you will by the time you get through the tutorial).

 You can use the command ’echo’ to create files as in the
 examples below:

] eeeccchhhooo xxxxxxxxxxxx >>>fffiiillleee___ooofff___xxx (1)
] eeeccchhhooo cccooonnnttteeennntttsss ooofff mmmyyyfffiiillleee >>>mmmyyyfffiiillleee (2)

 (1) Creates a file named "file_of_x" containing "xxxx".

 (2) Creates a file named "myfile" containing the line
 "contents of myfile".

 In case you were wondering, you can only use letters,
 digits, underscores, and periods in file names. (You can
 actually use a few other characters in names, but that can get
 you into trouble.) The names must not start with a digit, and
 can be no longer than 32 characters.

 LLLooooookkkiiinnnggg aaattt ttthhheee CCCooonnnttteeennntttsss ooofff FFFiiillleeesss

 There are several ways of looking at the contents of a file.
 One command that you can use is the ’cat’ command. ’Cat’ is an
 alias for Kernighan and Plauger’s program ’concat’, which appears
 on page 78 of _S_o_f_t_w_a_r_e _T_o_o_l_s. It has a simple function: to
 concatenate the files named in its argument list, and print them
 on standard output. If no files are named, it takes input from
 standard input. (More on standard input and output in a sub-
 sequent section, which has examples using ’cat.’ For now, just
 assume that standard input comes from the terminal and standard
 output goes to the terminal.)

 Here are some samples of how to use ’cat’. For more
 important and useful ones, see the following section.

 - 11 -

 Software Tools Subsystem Tutorial

] cccaaattt mmmyyyfffiiillleee (1)
] cccaaattt pppaaarrrttt111 pppaaarrrttt222 pppaaarrrttt333 (2)
] cccaaattt (3)

 (1) Prints the file named "myfile" on the user’s terminal;
 i.e., "myfile" is concatenated with nothing and printed
 on standard output.

 (2) Prints the concatenation of the files named "part1",
 "part2", and "part3" on the terminal.

 (3) Copies standard input to standard output. On a
 terminal, this would cause anything you typed to ’cat’
 to be echoed back to you. (If you try this, the way to
 stop is to type a control-c as the first character on
 the line. As we said before, lots of programs use this
 end-of-file convention.)

 DDDeeellleeetttiiinnnggg FFFiiillleeesss

 Sooner or later, you will find it necessary to get rid of
 some files. The ’del’ command serves this need very nicely. It
 is used like this:

 del file1 file2 file3 ...

 to remove as many files as you wish. Remember that each file can
 be specified by a pathname, so you are not limited to deleting
 files in your current directory; but of course, you can delete
 only files that belong to you.

 TTThhheee ’’’LLLfff’’’ CCCooommmmmmaaannnddd

 The ’lf’ (for "_list _files") command is the preferred method
 for obtaining information about files. Used by itself without
 any arguments, ’lf’ prints the names of all the files in your
 current directory in a multi-column format. This, however, is by
 no means all that ’lf’ can do. In fact, used in its general
 form, an ’lf’ command looks something like this:

 lf options files

 The "files" part is simply a list of files and/or direc-
 tories that you want information about. If the "files" part is
 omitted, ’lf’ assumes you mean the current directory. For each
 file in the list, information about that file is printed; for
 each directory listed, information about each file within that
 directory is printed.

 The "options" part of the command controls what information
 is to be printed. It is composed of a dash ("-") followed by a
 string of single character option specifiers. Some of the more

 - 12 -

 Software Tools Subsystem Tutorial

 useful options are the following:

 c print information in a single column format.

 d for each directory in the list, print information about
 the directory itself instead of about its contents.

 l print all known information about the named files.

 w print the size (in 16-bit words) of each named file.

 (As always, if you would like complete information on ’lf’, just
 use ’help’.) As we said above, if no options are given, then
 only the names of the files are printed.

 Here are some examples of ’lf’ commands:

] lllfff (1)
] lllfff ---lll (2)
] lllfff //////lllkkkjjj (3)
] lllfff ---cccwww //////lllkkkjjj ===eeexxxtttrrraaa===///nnneeewwwsss (4)

 (1) List the names of all files in the current directory,
 in a multi-column format.

 (2) List the names of all files in the current directory,
 including all information that is known about each
 file.

 (3) List the names of all files in the directory named
 "lkj".

 (4) List the names and sizes of lkj’s files in a single-
 column format, followed by the names and sizes of all
 files in directory "=extra=/news".

 TTThhheee PPPrrriiimmmooosss FFFiiillleee SSSyyysssttteeemmm

 Primos files are stored on several disk packs, each with a
 unique name. Each pack contains a master file directory (mfd),
 which contains a pointer to each primary directory on that disk.
 Each of these primary directories (one for each user, and several
 special ones for the system) may contain sub-directories, which
 may themselves contain further sub-directories, ad infinitum.
 Any directory may also contain ordinary files of text, data, or
 program code. This diagram shows a simple structure that we will
 use as an example:

 - 13 -

 Software Tools Subsystem Tutorial

 _______ sys _______ users
 / | \ / \
 bin extra edward kate
 / | \ | / | | \
 lf cat ... users p1 p2 p2 kdir
 |
 kfl

 In this example, the mfds are named "sys" and "users", while
 there are primary directories named "bin", "extra", "edward", and
 "kate".

 The Subsystem allows you to specify the location of any file
 with a construct known as a "pathname." Pathnames have several
 elements.

 ... The first characters of a pathname may be a slash, fol-
 lowed by a disk packname or _o_c_t_a_l logical disk number,
 followed by another slash (e.g. "sys" in the diagram
 above could be referred to as "/0/" or "/sys/"). The
 named disk is the starting point for the search of the
 rest of the pathname. The disk name may be omitted,
 implying that all disks are to be searched. For exam-
 ple, "//edward" would cause a search for a primary
 directory named "edward" starting its search at "sys"
 and then "users" where "//edward" is found.

 ... When a pathname does not begin with a slash, the file
 search operation begins with your current directory.
 You can think of your current directory as your
 "location" in the file system at the time you use the
 pathname. For instance, if your current directory was
 "/users/edward" and you used the name "p2", you would
 get the file "p2" under "/users/edward"; however, if
 your current directory was "/users/kate" you would get
 the file "p2" under "/users/kate". Later, you will see
 how find out the name of your current directory and how
 to "move around" the file system by changing your
 current directory.

 ... The remainder of the pathname consists of "nodes",
 separated by slashes. Each node contains the name of a
 | sub-directory or a file. (For revisions of Primos
 | below Rev 19, which have passworded directories, you
 | may have to specify nodes as a name possibly followed
 | by a colon (":") and a password.) For example

 kdir
 extra
 | sys:xxxxxx (pre-Rev 19 Primos)

 are nodes.

 When nodes are strung together, they describe a path to a
 file, from anywhere in the file system. Hence the term "path-

 - 14 -

 Software Tools Subsystem Tutorial

 name." For example,

 /sys/bin

 names the primary directory named "bin", located on the disk
 whose packname is "sys".

 //extra/users

 names the file named "users" in the primary directory named
 "extra" on some unknown disk (all disks will be searched);

 p2

 names the file "p2" in "/users/edward" if your current directory
 is "/users/edward" or the file "p2" in "/users/kate" if your
 current directory is "/user/kate".

 kdir:pwd/kfl

 | names the file "kfl" in the directory "kdir" (with password
 | "pwd"), in a pre-Rev 19 Primos file system, only if your current
 | directory is "/user/kate".

 Certain important Subsystem directories have been given
 alternative names, called "templates," in order to allow the Sub-
 system manager to change their location on disk without disturb-
 ing existing programs (or users). A template consists of a name
 surrounded by equals signs ("="). For example, the Subsystem
 command directory is named "bin". which could be referred to on
 a standard system as "//bin." If the Subsystem Manager at your
 installation had changed the location of the command directory,
 the command above would not work. To avoid this problem, you
 could use the template for "bin", "=bin=". which would correctly
 reference "bin" regardless of its location. There exist tem-
 plates for all of the most important Subsystem directories; for
 more information on them, and on pathnames in general, see the
 | _U_s_e_r_’_s _G_u_i_d_e _t_o _t_h_e _P_r_i_m_o_s _F_i_l_e _S_y_s_t_e_m.

 | A word on upper and lower case: The Primos file system does
 | _n_o_t distinguish between upper and lower case, thus "//BIN",
 | "//Bin", and "//bin" are all the same. However, the Subsystem
 | template mechanism _d_o_e_s distinguish between upper and lower case,
 | so "=BIN=", "=Bin=", and "=bin=" are three different templates.
 | This can be a subtle trap for the unwary.

 DDDiiirrreeeccctttooorrriiieeesss

 Directories can be created with the ’mkdir’ ("_ma_ke
 _d_i_rectory) command; e.g.

] mmmkkkdddiiirrr ///uuussseeerrrsss///eeedddwwwaaarrrddd

 will create the directory "edward" under the master file direc-
 tory "users". The command

 - 15 -

 Software Tools Subsystem Tutorial

] mmmkkkdddiiirrr eeedddwwwaaarrrddd

 will create the directory "edward" in the current directory.

 As mentioned above, the ’lf’ command can be used to list
 information about directories and the files and subdirectories
 contained therein; e.g.,

] lllfff ///uuussseeerrrsss///eeedddwwwaaarrrddd
] lllfff eeedddwwwaaarrrddd

 Finally, directories, like files, can be deleted with ’del’.
 However, unlike files, directories cannot be deleted until all
 the files and subdirectories contained in them have been deleted.
 If "edward" is an empty directory it can be deleted with the com-
 mand

] dddeeelll eeedddwwwaaarrrddd

 If "edward" is not an empty directory then it can be deleted with
 the command

] dddeeelll ---dddsss eeedddwwwaaarrrddd

 | where the the "-ds" specifies to delete the contents of the
 * directory, then the directory itself.

 MMMooovvviiinnnggg AAArrrooouuunnnddd iiinnn ttthhheee FFFiiillleee SSSyyysssttteeemmm

 You can change your current directory with the ’cd’ (change
 directory) command. Simply type ’cd’ followed by the pathname of
 the directory to which you wish to move and, as long as its a
 valid directory name, you will be promptly deposited there; e.g.

] cccddd ///uuussseeerrrsss///eeedddwwwaaarrrddd
] cccddd kkkdddiiirrr

 Note that in the second example, since the pathname ’kdir’ is not
 preceded by slashes, your current directory must be "/users/kate"
 for it to work.

 You can move "up" in the file system with

] cccddd \\\

 For instance, if you were in "/users/kate/kdir" and you typed
 "cd \", your current directory would then be "/user/kate".

 Finally, if you get lost, you can find out where you are
 with the command

] cccddd ---ppp

 It will print the full name of your current directory.

 - 16 -

 Software Tools Subsystem Tutorial

 SSSuuubbbsssyyysssttteeemmm CCCooommmmmmuuunnniiicccaaatttiiiooonnn SSSeeerrrvvviiiccceeesss

 Communication utilities are becoming increasingly
 important in today’s computer systems. The Subsystem,
 in keeping up with the times, offers as its most
 important communication facilities a postal and news
 service and a real-time communication system.

 TTThhheee SSSuuubbbsssyyysssttteeemmm PPPooossstttaaalll SSSeeerrrvvviiiccceee

 In order to facilitate communication among users, the Sub-
 system supports a postal service in the form of the ’mail’ com-
 mand. ’Mail’ can be used in either of two ways:

] mmmaaaiiilll

 which looks to see if you have been sent any mail, prints it on
 your terminal, and asks if you would like your mail to be saved,
 or

] mmmaaaiiilll lllooogggiiinnn___nnnaaammmeee

 which accepts input from standard input and sends it to the mail-
 box of the user whose login name is "login_name". Used in this
 fashion, ’mail’ reads until it sees an end-of-file. From the
 terminal, this means until you type a control-c in column 1.
 Your letter is postmarked with the day, date and time of mailing
 and with your login name.

 Whenever you enter the Subsystem (by typing ’swt’) a check
 is made to see if you have received any mail. If you have, you
 are told so. When you receive your mail (by typing ’mail’), you
 are asked if you want it to be saved. If you reply "n", the mail
 you have just received will be discarded. Otherwise, it is
 appended to the file "=mailfile=", which is located in your
 profile directory. (You can look at it with ’cat’, print it with
 ’pr’, or do anything else you wish to it, simply by giving its
 name to the proper command. For example,

] cccaaattt ===mmmaaaiiilllfffiiillleee===

 | would print all your saved mail on your terminal.)

 | If you have declared the shell variable "_mail_check", (but
 | not set it), the shell will check your mail file every 60
 | seconds, to see if it has increased in size. If it has, the
 | shell will tell you, "You have new mail." You may then read your
 | mail with the ’mail’ program. If you want it to check you mail
 | more frequently, or less frequently, you may set it to the number
 | of seconds between checks. For instance:

 | declare _mail_check = 300 # check mail every five minutes

 - 17 -

 Software Tools Subsystem Tutorial

 | By default, "_mail_check" will not be set for new users, so the
 | shell will only check your mail once, when the Subsystem is first
 | cranked up. (See the _U_s_e_r_’_s _G_u_i_d_e _f_o_r _t_h_e _S_o_f_t_w_a_r_e _T_o_o_l_s
 | _S_u_b_s_y_s_t_e_m _C_o_m_m_a_n_d _I_n_t_e_r_p_r_e_t_e_r for a more detailed discussion of
 | the use of shell variables.

 | Due to the nature of the file system, setting "_mail_check"
 | to less than four will be no different than setting it to four.
 | At Georgia Tech, the mail directory is shared among several
 | machines, so, since the shell has to go across Primenet, you
 | should set "_mail_check" to a fairly large value, say 300, for
 | once every five minutes.

 TTThhheee SSSuuubbbsssyyysssttteeemmm NNNeeewwwsss SSSeeerrrvvviiiccceee

 Whereas ’mail’ is designed for person to person com-
 munication, the Subsystem news service is intended for the
 publication of articles that appeal to a more general interest.
 The news service is implemented by three commands: ’subscribe’,
 ’publish’ and ’news’. The use of the first two should be
 obvious.

 If you wish to subscribe to the new service, simply type

] sssuuubbbssscccrrriiibbbeee

 and then, whenever anyone publishes an article, a copy of it will
 be delivered to your news box. (You need subscribe to the news
 service only once; all subscriptions are perpetual.) Whenever
 you enter the Subsystem, as with mail, a check is made to see if
 there is anything in your news box; if there is, you are given a
 message to that effect.

 Having gotten such a message, you may then read the news at
 your convenience by typing

] nnneeewwwsss

 The news will be printed out on your terminal and then you will
 be asked whether or not you want to save it. If you say "yes",
 it will be left in your box and you may read it again at a later
 date; otherwise, it is discarded. There are other ways to use
 the ’news’ command that are fully explained by ’help’.

 Now suppose you have a hot story that you want to publish.
 All you have to do is create a file (let’s call it "article")
 whose first line is the headline, followed by the text of the
 story. Then you type

] pppuuubbbllliiissshhh aaarrrtttiiicccllleee

 and your story will be delivered to all subscribers of the news
 service. If you are a subscriber yourself, you can check this
 with the ’news’ command. In addition, a copy is made in the news
 archives.

 - 18 -

 Software Tools Subsystem Tutorial

 If you find that you have published the wrong article or if
 you want to remove an outdated one, you can do a

] rrreeetttrrraaacccttt <<<aaarrrtttiiicccllleee nnnuuummmbbbeeerrr>>>

 to remove the article, where <article number> is the sequence
 number obtained from the news index ("news -i" will give you such
 an index). A retraction notice will be delivered to all sub-
 scribers who have seen the article, and the article will simply
 be removed from the news boxes of subscribers who have not yet
 seen it. If you are only removing an outdated article, then
 using

] rrreeetttrrraaacccttt ---qqq <<<aaarrrtttiiicccllleee nnnuuummmbbbeeerrr>>>

 will quietly remove all traces of the article, leaving no retrac-
 tion notices behind to disturb those who have seen it.

 SSSuuubbbsssyyysssttteeemmm RRReeeaaalll---TTTiiimmmeee CCCooommmmmmuuunnniiicccaaatttiiiooonnnsss

 As if ’mail’ and ’news’ were not enough, the Subsystem
 offers still another way to communicate with your fellow user, by
 means of the ’to’ command. ’To’ allows you to communicate with
 other logged-in users on a real-time basis; messages that are
 sent to another user by the command

] tttooo lllooogggiiinnn___nnnaaammmeee <<<mmmeeessssssaaagggeee>>>

 will be retrieved by the user whose login name is "login_name"
 the next time his shell is ready for a command. Contrast this
 behavior to that of ’mail’, where the message must be retrieved
 by an action on the part of the addressee. If <message> contains
 any of the shell’s metacharacters, it must be enclosed in quotes,
 as in:

] tttooo aaalllllleeennn """WWWhhheeerrreee aaarrreee yyyooouuu,,, aaannnddd wwwhhhaaattt aaarrreee yyyooouuu dddoooiiinnnggg???"""

 If you want to send a multi-line message, ’to’ will read
 your message from standard input (just like most other Subsystem
 programs), so that the only argument you would specify in this
 case would be the login_name. As always, a control-c in column 1
 will generate an end-of-file to terminate your input.

 Messages are only retrieved when the shell is ready for the
 next command, so a user who is running a long program may not see
 your messages until long after you have sent them. If he logs
 out before he sees your messages, they will sit there, waiting to
 | be retrieved until the next time he logs in.

 | To alleviate this somewhat, the Subsystem screen editor,
 | ’se’, will notify you if there is a message waiting for you. See
 | the "om" command in the help on ’se’ for details.

 - 19 -

 Software Tools Subsystem Tutorial

 IIInnnpppuuuttt///OOOuuutttpppuuuttt

 One of the most powerful features of the Software
 Tools Subsystem is its handling of input and output.
 As much as possible, the Subsystem has been designed to
 shield the user from having to be aware of any specific
 input or output medium; it presents to him, instead, a
 standardized interface with his environment. This
 facilitates use of programs that work together, without
 the need for any esoteric or complicated programming
 techniques. The ability to combine programs as
 cooperating tools makes them more versatile; and the
 Software Tools Subsystem makes combining them easy.

 SSStttaaannndddaaarrrddd IIInnnpppuuuttt aaannnddd SSStttaaannndddaaarrrddd OOOuuutttpppuuuttt

 Programs in the Subsystem do not have to be written to read
 and write to specific devices. In fact, most commands are writ-
 ten to read from "anything" and write to "anything." Only when
 the command is executed do you specify what "anything" is, which
 could be your terminal, a disk file, device etc. "Anythings" are
 more formally known as ’standard ports’; those available for
 input are called ’standard inputs’, and those available for out-
 put are called ’standard outputs’.

 Standard inputs and standard outputs are initially assigned
 to your terminal, and revert back to those assignments after each
 | program terminates. However, you can change this through a
 facility known as "input/output redirection" (or "i/o redirec-
 tion" for short).

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn

 As we mentioned, standard input and output are by default
 assigned to the terminal. Since this is not always desirable,
 the command interpreter allows them to be redirected (reassigned)
 to other media. Typically, they are redirected to or from disk
 files, allowing one program’s output to be saved for later use
 perhaps as the input to another program. This opens the pos-
 sibility for programs to co-operate with each other. What is
 more, when programs can communicate through a common medium such
 as a disk file, they can be combined in ways innumerable, and can
 take on functions easily and naturally that they were never
 individually designed for. A few examples with ’cat’ below, will
 help to make this clear.

 However, let us first examine the techniques for directing
 standard inputs and standard outputs to things other than the
 terminal. The command interpreter supports a special syntax
 (called a _f_u_n_n_e_l) for this purpose:

 - 20 -

 Software Tools Subsystem Tutorial

 pathname> (read "from" pathname)

 redirects standard input to come from the file named by "path-
 name";

 >pathname (read "toward" pathname)

 redirects standard output to go to the file named by "pathname".
 For example, suppose you wanted a copy of your mail, perhaps to
 look at slowly with the editor. Instead of typing

 mail

 which would print your mail on the terminal, you would type

 mail >mymail

 which causes your mail to be written to the file named "mymail"
 in the current directory. It is important to realize that ’mail’
 does nothing special to arrange for this; it still thinks it is
 printing mail on the terminal. It is more important to realize
 that any program you write need not be aware of what file or
 device it is writing on or reading from.

 A bit of terminology from _S_o_f_t_w_a_r_e _T_o_o_l_s: programs which
 read only from standard input, process the data so gathered, and
 write only on standard output, are known as "filters." They are
 useful in many ways.

 EEExxxaaammmpppllleeesss ooofff RRReeedddiiirrreeecccttteeeddd III///OOO UUUsssiiinnnggg ’’’CCCaaattt’’’

 Now, ’cat’ does not seem like a particularly powerful com-
 mand; all it can do is concatenate files and do some peculiar
 things when it isn’t given any arguments. But this behavior is
 designed with redirected i/o in mind. Look through the following
 examples and see if they make sense.

 cat file1 >file2

 What this does is to copy "file1" into "file2". Note that since
 ’cat’ sends its output to standard output, we have gained a copy
 program for free.

 cat file1 file2 file3 >total

 This example concatenates "file1", "file2", and "file3" and
 places the result in the file named "total". This is probably
 the most common use of ’cat’ besides the simple "cat filename".

 You need to be careful with the files to which you redirect
 i/o. In the above example, if a file by the name of "total"
 already exists, its contents will be replaced by the concatena-
 tion of "file1", "file2" and "file3". Similarly if you try the
 command

 - 21 -

 Software Tools Subsystem Tutorial

 cat file1 file2 file3 >file1

 disaster results as it first clobbers "file1", destroying its
 contents for good.)

 cat >test

 This is an easy way to create small files of data. ’Cat’ does
 not see any filenames for it to take input from, so it reads from
 standard input. Now, notice that where before, this simply
 caused lines to be echoed on the terminal as they were typed,
 each line is now placed in the file named "test". As always,
 end-of-file from the terminal is generated by typing a control-c
 in column 1.

 One thing that is _e_x_t_r_e_m_e_l_y important is the placement of
 blanks around i/o redirectors. A funnel (">") _m_u_s_t _n_o_t be
 separated from its associated file name, and the entire redirec-
 tor _m_u_s_t be surrounded by at least on blank at each end. For
 example, "file> cat" and "cat >file" are correct, but "file >
 cat", "cat > file", "file>cat" and "cat>file" are all incorrect,
 and may cause catastrophic results if used!

 You can see that more complicated programs can profit
 greatly from this system of i/o. After all, from a simple file
 concatenator we have gained functions that would have to be per-
 | formed by separate programs on other systems.

 | There are other, more complicated i/o redirectors available
 | to you. See the _U_s_e_r_’_s _G_u_i_d_e _f_o_r _t_h_e _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m
 | _C_o_m_m_a_n_d _I_n_t_e_r_p_r_e_t_e_r for a full, in-depth discussion of the
 | facilities the shell provides.

 - 22 -

 Software Tools Subsystem Tutorial

 UUUsssiiinnnggg PPPrrriiimmmooosss fffrrrooommm ttthhheee SSSuuubbbsssyyysssttteeemmm

 Unfortunately, a few functions of Primos and its
 support programs have not been neatly bundled into the
 Subsystem. The Subsystem commands that address this
 problem are the topic of this section.

 EEExxxeeecccuuutttiiinnnggg PPPrrriiimmmooosss CCCooommmmmmaaannndddsss fffrrrooommm ttthhheee SSSuuubbbsssyyysssttteeemmm

 The commands ’x’ and ’primos’ can be used to access Primos
 programs and commands without having to go through the work of
 leaving and re-entering the Subsystem.

 ’X’ may be used in either of two ways; the first is

 xxx PPPrrriiimmmooosss---cccooommmmmmaaannnddd

 This is the method of choice for executing a single Primos com-
 mand. You will probably want to put double quotes around the
 Primos command to keep the Subsystem from becoming annoyed at
 metacharacters such as ">" and "<" being used in the Primos com-
 mand.

 The second way to use ’x’ is to use it without arguments.
 Here is an example:

] xxx
 ok, ssstttaaatttuuusss nnneeettt
 ok, mmmeeessssssaaagggeee ---999 nnnooowww
 HHHiii ttthhheeerrreee...
 ok, <<<cccooonnntttrrrooolll---ccc>>>
]

 This method allows many Primos commands to be executed. In this
 case, ’x’ reads a line at a time and passes it to the Primos com-
 mand interpreter for execution. If the Primos return code is
 positive, ’x’ continues to the next line; if not, ’x’ exits to
 the Subsystem. ’X’ will also return to the Subsystem when it
 encounters a control-c or a Primos REN. The prompt, "ok,", is in
 small letters to remind you that it is the command ’x’ producing
 the prompt and not Primos.

 The second command, ’primos’, invokes a new level of the
 Primos command interpreter from the Subsystem. (With this com-
 mand, the Primos command interpreter prints the prompt "OK," and
 your commands are received directly by it.) You can return to
 the Subsystem by typing the Primos REN command.

 - 23 -

 Software Tools Subsystem Tutorial

 PPPrrrooogggrrraaammm DDDeeevvveeelllooopppmmmeeennnttt

 One of the most important uses of the Software
 Tools Subsystem is program development. The Ratfor
 language presented in _S_o_f_t_w_a_r_e _T_o_o_l_s is an elegant
 language for software developers, and is the foundation
 of the Subsystem; virtually all of the Subsystem is
 written in Ratfor.

 DDDeeevvveeelllooopppiiinnnggg PPPrrrooogggrrraaammmsss

 To acquaint you with the several steps of program develop-
 ment, we present an example in which we develop a simple Ratfor
 program. We use a Ratfor example here because Ratfor is the most
 widely used language in the Subsystem --- but for a few lines
 here and there, the entire Subsystem is written in Ratfor. If
 you want to learn more about Ratfor programming, you can read the
 ___UUU___sss___eee___rrr___’’’___sss ___GGG___uuu___iii___ddd___eee ___fff___ooo___rrr ___ttt___hhh___eee ___RRR___aaa___ttt___fff___ooo___rrr ___PPP___rrr___eee___ppp___rrr___ooo___ccc___eee___sss___sss___ooo___rrr... Meanwhile, on with the
 example

 TTThhheee SSSuuubbbsssyyysssttteeemmm TTTeeexxxttt EEEdddiiitttooorrr

 The first program most users will see when they wish to
 create another program is ’ed’, the Subsystem text editor, or if
 you have a crt, ’se’, the screen editor. A complete description
 of either is beyond the scope of this tutorial, but a short list
 of commands (accepted by both the line editor and full screen
 editor) and their formats, as well as an example using ’ed,’
 should help you get started. For more information refer to
 _I_n_t_r_o_d_u_c_t_i_o_n _t_o _t_h_e _S_o_f_t_w_a_r_e _T_o_o_l_s _T_e_x_t _E_d_i_t_o_r and of course to
 _S_o_f_t_w_a_r_e _T_o_o_l_s.

 ’Ed’ is an interactive program used for the creation and
 modification of "text". "Text" may be any collection of charac-
 ters, such as a report, a program, or data to be used by a
 program. All editing takes place in a "buffer", which is nothing
 more than ’ed’s own private storage area where it can manipulate
 your text. ’Ed’s commands have the general format

 <line number>,<line number><command>

 where, typically, both line numbers are optional. Commands are
 one letter, sometimes with optional parameters.

 The symbol <line number> above can have several formats.
 Among them are:

 ... an integer, meaning the line with that number. For
 example, if the integer is 7, then the 7th line in the
 buffer;

 - 24 -

 Software Tools Subsystem Tutorial

 ... a period ("."), meaning the current line;

 ... a dollar sign ("$"), meaning the last line of the
 buffer;

 ... /string/, meaning the next line containing "string";

 ... \string\, meaning the previous line containing
 "string";

 ... any of the above expression elements followed by "+" or
 "-" and another expression element.

 All commands assume certain default values for their line
 numbers. In the list below, the defaults are in parentheses.

 _C_o_m_m_a_n_d _A_c_t_i_o_n

 (.)a Appends text from standard input to the
 buffer after the line specified. The
 append operation is terminated by a line
 containing only a period in column 1.
 Until that time, though, everything you
 type goes into the buffer.

 (.,.)d Deletes lines from the first line
 specified to the last line specified.

 | e filename Fills the buffer from the named file.
 | Anything previously in the buffer is
 | lost.

 (.,.)p Prints lines from the first line
 specified to the last. 1,$p prints the
 entire buffer.

 q Causes ’ed’ to return to the command
 interpreter. Note that unless you have
 given a "w" command (see below),
 everything you have done to the buffer
 is lost.

 (.)r filename Reads the contents of the named file
 into the buffer after the specified
 line.

 (.,.)s/old/new/p Substitutes the string "new" for the
 string "old". If the trailing p is
 included, the result is printed, other-
 wise ’ed’ stays quiet.

 (1,$)w filename Writes the buffer to the named file.
 This command must be used if you want to
 save what you have done to the buffer.

 - 25 -

 Software Tools Subsystem Tutorial

 ? Prints a longer description of the last
 error that occurred.

 If ’ed’ is called with a filename as an argument, it
 automatically performs an "e" command for the user.

 ’Ed’ is extremely quiet. The only diagnostic message issued
 (except in a time of dire distress) is a question mark. Almost
 always it is obvious to the user what is wrong when ’ed’ com-
 plains. However, a longer description of the problem can be had
 by typing "?" as the next command after the error occurs. The
 only commands for which ’ed’ provides unsolicited information are
 the "e", "r", and "w" commands. For each of these, the number of
 lines transferred between the file and ’ed’s buffer is printed.

 You should note that specifying a line number without a com-
 mand is identical to specifying the line number followed by a "p"
 command; i.e., print that line.

 CCCrrreeeaaatttiiinnnggg aaa PPPrrrooogggrrraaammm

 Now that we have a basic knowledge of the editor, we should
 be able to use it to write a short program. As usual, user input
 is boldfaced.

] eeeddd (1)
 aaa (2)
 ### nnnooowww --------- ppprrriiinnnttt ttthhheee cccuuurrrrrreeennnttt tttiiimmmeee (3)

 dddeeefffiiinnneee(((TTTIIIMMMEEE___OOOFFF___DDDAAAYYY,,,222))) (4)

 ccchhhaaarrraaacccttteeerrr nnnooowww (((111000))) (5)

 cccaaallllll dddaaattteee (((TTTIIIMMMEEE___OOOFFF___DDDAAAYYY,,, nnnooowww))) (6)
 cccaaallllll ppprrriiinnnttt (((SSSTTTDDDOOOUUUTTT,,, """NNNooowww::: ***sss***nnn"""sss,,, nnnooowww (7)

 ssstttoooppp (8)
 eeennnddd (9)
 ... (10)
 www nnnooowww...rrr (11)
 11 (12)
 qqq (13)
] (14)

 (1) You invoke the editor by typing "ed" after the command
 interpreter’s prompt. ’Ed,’ in its usual soft-spoken
 manner, says nothing.

 (2) ’Ed’s "a" command allows text to be added to the
 buffer.

 (3) Now you type in the text of the program. The sharp
 sign "#" introduces comments in Ratfor.

 - 26 -

 Software Tools Subsystem Tutorial

 (4) Ratfor’s built-in macro processor is used to define a
 macro with the name "TIME_OF_DAY". Whenever this name
 appears in the program, it will be replaced by the text
 appearing after the comma in its definition. This
 technique is used to improve readability and allow
 quick conversions in the future.

 (5) An array "now", of type character, length 10, is
 declared.

 (6) The library routine ’date’ is called to determine the
 current time.

 (7) The library routine ’print’ is called to perform
 formatted output to the program’s standard output port.

 (8) The "stop" statement causes a return to the Subsystem
 command interpreter when executed.

 (9) The "end" statement marks the end of the program.

 (10) The period alone on a line terminates the "a" command.
 Remember that this must be done before ’ed’ will
 recognize any further commands.

 (11) With the "w" command, ’ed’ copies its buffer into the
 file named "now.r".

 (12) ’Ed’ responds by typing the number of lines written
 out.

 (13) The "q" command tells ’ed’ to quit and return to the
 Subsystem’s command interpreter.

 (14) The Subsystem command interpreter prompts with a right
 bracket, awaiting a new command.

 Now we are talking to the command interpreter again. We may
 now use the ’rp’ command to change our program from Ratfor into
 Fortran, and hopefully compile and execute it.

] rrrppp nnnooowww...rrr (1)
 8 (.main.): ’<NEWLINE>’ missing right parenthesis. (2)
] (3)

 (1) ’Rp’ is called. The argument "now.r" directs Ratfor to
 take its input from the file "now.r" and produce output
 on the file "now.f".

 (2) ’Rp’ has detected an error in the Ratfor program.
 ’Rp’s error messages are of the form

 line (program-element): ’context’ explanation

 In this case, a missing parenthesis was detected on

 - 27 -

 Software Tools Subsystem Tutorial

 line 8 in the main program.

 (3) ’Rp’ has returned to the Subsystem’s command
 interpreter, which prompts with "]".

 Looking back over the program, we quickly spot the
 difficulty and proceed to fix it with ’ed’:

] eeeddd nnnooowww...rrr (1)
 11 (2)
 888 (3)
 call print (STDOUT, "Now: *s*n"s, now (4)
 sss///,,, nnnooowww///,,, nnnooowww)))///ppp (5)
 call print (STDOUT, "Now: *s*n"s, now) (6)
 www (7)
 11 (8)
 qqq (9)
] rrrppp nnnooowww...rrr (10)
] (11)

 (1) The editor is called as before. However, since we have
 given the name of a file, "now.r", to ’ed’ as an
 argument, it automatically does an "e" command on that
 file, bringing it into the buffer.

 (2) ’Ed’ types the number of lines in the file.

 (3) We type the line number 8, since that is the line that
 ’rp’ told us had the error.

 (4) ’Ed’ responds by typing the line. (Remember that a
 line number by itself is the same as a "p" command of
 that line number.)

 (5) We use ’ed’s "s" command to add the missing
 parenthesis. Note the use of the "p" at the end of the
 command.

 (6) ’Ed’ makes the substitution, and since we have
 specified the "p", the result is printed.

 (7) We now write the changed buffer back out to our file
 (’ed’ remembers the file name "now.r" for us).

 (8) ’Ed’ prints the number of lines written.

 (9) We exit from the editor with the quit command "q".

 (10) We invoke Ratfor to process the program. Ratfor
 detects no errors. The output of the preprocessing is
 on file "now.f".

 - 28 -

 Software Tools Subsystem Tutorial

 (11) The command interpreter prompts us for another command.

 Now that the Ratfor program has been successfully preproces-
 sed, it is time to compile the Fortran output, which was placed
 in the file "now.f". ’Fc,’ should be used to compile Subsystem
 programs, since it selects several useful compiler options and
 standardizes the compilation process:

] fffccc nnnooowww...fff
 0000 ERRORS [<.MAIN.>FTN-REV18.4]
]

 All of the garbage between the "fc" and the "]" prompt is
 stuff produced by the Fortran compiler and is mostly irrelevant
 at this point. The essential thing to recognize about it is that
 the number before "ERRORS" is zero.

 Now that our program has compiled successfully, we bravely
 proceed to invoke the Linking Loader using ’ld.’ ’Fc’ has left
 the output of Fortran in the file "now.b". We will use ’ld’s
 "-o" option to select the name of the executable file:

] lllddd nnnooowww...bbb ---ooo nnnooowww
 | [SEG rev 19.2.GT]
 # vl #
 $ co ab 4001
 $ sy swt$cm 4040 40000
 $ sy swt$tp 2030 120000
 $ mi
 $ s/lo now.b 0 4000 4000
 $ s/lo ’lib>vswtlb’ 0 4000 4000
 $ s/li 0 4000 4000
 | LOAD COMPLETE
 | $ ma 6
 $ re
 # sh
 TWO CHARACTER FILE ID: ..
 # delete
 # q
]

 Again, all the noise between "ld" and "]" comes from the
 Loader. The important thing to notice here is the
 "LOAD COMPLETE" message, which indicates that linking is
 complete. If we did not get the "LOAD COMPLETE" message, we
 would re-link using the command "ld -u now.b -o now" and the
 loader would then list the undefined subprograms.

 We now have an executable program in our directory. We can
 check this using ’lf’:

] lllfff
 now now.b now.f now.r

 - 29 -

 Software Tools Subsystem Tutorial

]

 Deciding we do not need the Fortran source file and the
 intermediate binary file hanging around, we remove them with
 ’del’:

] dddeeelll nnnooowww...fff nnnooowww...bbb
] lllfff
 now now.r
]

 And getting really brave, we try to run our newly created
 program:

] nnnooowww
 Now: 16:34:41
]

 Hopefully the preceding example will be of some help in the
 development of your own (more important) programs. Even though
 it is simple, it shows almost all the common steps involved in
 creating and running a typical program.

 CCCaaavvveeeaaatttsss fffooorrr SSSuuubbbsssyyysssttteeemmm PPPrrrooogggrrraaammmmmmeeerrrsss

 Since the Subsystem is exactly that, not an operating system
 but a sub-system, programs written for it must follow a few sim-
 ple conventions, summarized below.

 ... To exit, a program running under the Subsystem should
 either use a "stop" statement (Ratfor programs only),
 "return" from the main program (Pascal and PL/I G), or
 call the subroutine "swt". Specifically, the Primos
 routine "exit" must _n_o_t be called to terminate a
 program.

 ... Whenever possible, Subsystem i/o and utility routines
 should be used instead of Primos routines, since the
 latter cannot handle all aspects of the Subsystem
 files. If, however, programs must use native i/o
 routines, remember that they must inform their native
 i/o routines of the Subsystem by calling the proper
 initialization routines (see Subsystem Interface
 Subroutines in the table below), or they will not be
 able to take advantage of standard input, standard out-
 put or any of the other i/o related features provided
 by the Subsystem.

 - 30 -

 Software Tools Subsystem Tutorial

 The Subsystem interfaces available for Primos languages and
 utilities are summarized below:

 LLLaaannnggguuuaaagggeee PPPrrriiimmmooosss PPPrrriiimmmooosss SSSuuubbbsssyyysssttteeemmm
 ooorrr SSSuuubbbsssyyysssttteeemmm CCCooommmmmmaaannndddsss IIInnnttteeerrrfffaaaccceee
 ___UUU___ttt___iii___lll___iii___ttt___yyy ___III___nnn___ttt___eee___rrr___fff___aaa___ccc___eee ___III___nnn___ttt___eee___rrr___fff___aaa___ccc___eee___ddd ___SSS___uuu___bbb___rrr___ooo___uuu___ttt___iii___nnn___eee___sss

 | C xcc CC -
 | xccl CC, SEG
 |
 Cobol cobc COBOL -
 cobcl COBOL, SEG

 Database fsubc FSUBS -
 fdmlc FDML
 fdmlcl FDML, FTN,
 SEG

 csubc CSUBS -
 cdmlc CDML
 cdmlcl CDML,
 COBOL,
 SEG

 ddlc SCHEMA -

 Debugger dbg DBG -
 vpsd SEG

 Fortran 66 fc FTN init$f,
 fcl FTN, SEG geta$f

 Fortran 77 f77c F77 init$f,
 f77cl F77, SEG geta$f

 Loader ld SEG -

 Pascal pc PASCAL init$p,
 pcl PASCAL, SEG file$p,
 geta$p

 PL/P plpc PLP -
 plpcl PLP, SEG

 PL/1 G plgc PL1G init$plg,
 plgcl PL1G, SEG geta$plg

 Prime pmac PMA -
 Assembler pmacl PMA, SEG

 SPL splc SPL -
 splcl SPL, SEG

 Use ’help’ or refer to the Subsystem Reference Manual for a
 complete description of Primos/Subsystem interface commands and

 - 31 -

 Software Tools Subsystem Tutorial

 Subsystem interface subroutines.

 - 32 -

 Software Tools Subsystem Tutorial

 | EEErrrrrrooorrrsss

 | Although the Software Tools Subsystem provides a
 | very nice program development and applications
 | environment, Murphy’s Law indicates that things will
 | still go wrong. "To err is human...", so it is best to
 | anticipate errors, and know what to do when you
 | encounter them. This section indicates some of the
 | more common causes of errors, and what to do when you
 | encounter them. The non-technical user can probably
 | skip this section.

 RRReeecccooovvveeerrriiinnnggg fffrrrooommm EEErrrrrrooorrrsss

 Everyone encounters errors sometimes. Eventually you will
 divide by zero, or try to execute source code, or do something
 even worse. Primos will make you pay for little mistakes like
 this, and typically will kick you out of the Subsystem. Although
 graceful recovery is sometimes possible, more often than not, it
 is so tedious that it is easier just to start all over again.

 When an error occurs, and after you have satisfied yourself
 reasonably well as to why, the "cure-all" for Subsystem problems
 is simply to type:

 ssswwwttt

 | Sometimes, this will not work. The stack may screwed up, or
 | something else may have gone terribly wrong. To clear everything
 | completely, and restart the Subsystem, type the following:

 | OK, rrrlllsss ---aaallllll
 | OK, dddeeelllsss aaallllll
 | OK, ssswwwttt

 All error messages that cause an exit to Primos (signalled
 by the "OK," or "ER!" prompts) are briefly explained in appendix
 A-4 of the Prime Fortran Programmer’s Guide (FDR3057). Some very
 common programming errors can cause cryptic error messages with
 explanations that may be unintelligible to the novice. The rest
 of this section contains a brief description of some of those
 messages. You need not read what follows if you don’t make
 programming errors.

 Many Primos error messages are dead giveaways of program
 errors. Messages that begin with four asterisks are from the
 Fortran runtime packages -- they usually indicate such things as
 division by zero or extraction of the square root of a negative
 number. For example,

 - 33 -

 Software Tools Subsystem Tutorial

 **** SQRT -- ARGUMENT < 0
 OK,

 results from extracting the square root of a number less than
 zero.

 Other more mysterious error messages can also be caused by
 simple program errors.

 POINTER FAULT

 usually indicates that a subprogram was called that was not
 included in the object file. An obvious indication of a missing
 subprogram is the failure to get the

 LOAD COMPLETE

 message from ’ld’. (Note that the Fortran compiler treats
 references to undimensioned arrays as function calls!) A more
 insidious cause of the "POINTER FAULT" message is referencing in
 a subprogram an argument that was not supplied in the subprogram
 call; e.g., the calling routine specifies three arguments and the
 called routine expects four. The error occurs when the
 unspecified argument is _r_e_f_e_r_e_n_c_e_d _i_n _t_h_e _s_u_b_p_r_o_g_r_a_m, not during
 the subprogram call.

 ACCESS VIOLATION
 ILLEGAL INSTRUCTION AT <address>
 ILLEGAL SEGNO
 PROGRAM HALT AT <address>

 all can result from a subscript exceeding its bounds. Because
 the program may have destroyed part of itself, the memory addres-
 ses sometimes given may well be meaningless.

 To find errors such as these, time can often be saved by
 using a program trace. In addition to the manual insertion of
 ’print’ statements in the source program, both ’rp’ and ’fc’ have
 options to produce a program trace. The "-t" option will cause
 ’rp’ to insert code to trace the entry and exit of subprograms.
 (One should note that only subprograms preprocessed with the "-t"
 option will be traced.) ’Fc’ will emit code to produce a Fortran
 statement-label and assignment trace when called with the "-t"
 option. Although this trace will contain the statement labels
 generated by ’rp’, the intermediate Fortran code may be listed
 | and the execution path followed.

 | See the subsection on debugging in the Application Notes
 | section of the _U_s_e_r_’_s _G_u_i_d_e _f_o_r _t_h_e _R_a_t_f_o_r _P_r_e_p_r_o_c_e_s_s_o_r for more
 | suggestions on finding and eliminating errors in your ratfor
 | programs.

 - 34 -

 Software Tools Subsystem Tutorial

 AAAdddvvvaaannnccceeeddd TTTeeeccchhhnnniiiqqquuueeesss

 This section deals with several of the more
 advanced features of the Subsystem.

 CCCooommmmmmaaannnddd FFFiiillleeesss

 As an illustration, let us take an operation that finds use
 quite frequently: making printed listings of all the Ratfor
 source code in a directory. Command language programs, or
 "shell programs," greatly simplify the automation of this
 process. Shell programs are files containing commands to be
 executed when human intervention is not required.

 Suppose that we put the following commands in a file named
 "mklist" (note the use of i/o redirection here):

 lf -c >temp1
 temp1> find .r >temp2
 temp2> change % "sp " >temp3
 temp3> sh
 del temp1 temp2 temp3

 Then, whenever we want a listing of all the Ratfor source code in
 the current directory, we just type:

 mklist

 The only price we must pay for this convenience is to ensure that
 the names of all files containing Ratfor programs end in ".r".
 (If the ’find’, ’change’, and ’sp’ commands mystify you, ’help’
 can offer explanations.)

 PPPiiipppeeesss

 Pipes are another handy feature of the Subsystem. A "pipe"
 between two programs simply connects the standard output of the
 first to the standard input of the second; and two or more
 programs connected in this manner form a "pipeline." With pipes,
 programs are easily combined as cooperating tools to perform any
 number of complex tasks that would otherwise require special-
 purpose programs.

 The command interpreter provides a simple and intuitive way
 to specify these combinations:

 prog1 | prog2

 Essentially, two or more complete commands are typed on the same
 line, separated by vertical bars ("|"). (One or more spaces _m_u_s_t
 appear on both sides of this symbol.) The command interpreter
 then does all the work in connecting them together so that

 - 35 -

 Software Tools Subsystem Tutorial

 whatever the program on the left of the bar writes on its stan-
 dard output, the one on the right reads from its standard input.

 Take our shell program to create listings as an example;
 that series of commands involved the creation of three temporary
 files. Not only is this distracting, in that it takes our atten-
 tion away from the real work at hand, but it also leads to wasted
 storage space, since one all too frequently forgets to delete
 temporary files after they have served their function. Using
 pipes, we could just as easily have done the same thing like
 this:

 lf -c | find .r | change % "sp " | sh

 and the command interpreter would have taken care of all the
 details that before we had to attend to ourselves. In addition
 to being much cleaner looking, the pipeline’s function is also
 more obvious.

 AAAddddddiiitttiiiooonnnaaalll III///OOO RRReeedddiiirrreeeccctttooorrrsss

 The last advanced features of the Subsystem that we will
 examine are the two remaining i/o redirection operators,
 represented by two variations of the double funnel (">>").

 In the first variation,

 >>xyz (read "append to xyz")

 causes standard output to be appended to the file named "xyz".
 Whereas

 cat file1 >file2

 would copy the contents of file1 into file2, destroying whatever
 was previously in file2,

 cat file1 >>file2

 would copy the contents of file1 to the end of file2, without
 destroying anything that was there to start with.

 In the second variation, the double funnel is used without a
 file name

 >> (read "from command input")

 to connect standard input to the current shell program. For
 example, suppose we wanted to make a shell program that extracted
 the first ten lines of a file, and deleted all the rest. The
 shell program might look something like this:

 - 36 -

 Software Tools Subsystem Tutorial

 >> ed file
 11,$d
 w
 q

 ">>" is frequently used in this way for the editor to read com-
 mands from the shell program, without having to have a separate
 script file.

 This is only a very small sample of the power made available
 by the features of the Subsystem. As is the case with any craft,
 given the proper tools and an hospitable environment in which to
 work, the only limit to the variety of things that can be done is
 the imagination and ingenuity of the craftsman himself.

 - 37 -

 Software Tools Subsystem Tutorial

 BBBaaaccckkkgggrrrooouuunnnddd

 AAAnnnccciiieeennnttt HHHiiissstttooorrryyy

 | The Software Tools Subsystem, as it now exists, is in its
 | ninth major revision. To give you an idea of its development,
 here is a short history of successive versions.

 Version 1:

 ... Features: Basic utility commands, no redirection of
 input or output, low-level routines for performing file
 operations, but no consistent input/output.

 ... Language: Fortran

 Version 2:

 ... Features: Almost complete set of utility commands,
 redirection of input and output, all _S_o_f_t_w_a_r_e _T_o_o_l_s i/o
 routines, _S_o_f_t_w_a_r_e _T_o_o_l_s editor and Ratfor, improved
 reliability during information passing from one program
 to another.

 ... Language: Low level routines in Fortran, high level
 routines and programs in Ratfor

 Version 3:

 ... Features: Same as version 2, but with Primos com-
 patible i/o for speed; new shell added later greatly
 expanded program interaction

 ... Language: Almost entirely Ratfor

 Version 4:

 ... Features: Same as version 3, plus: (1) ability to
 handle file names of up to 32 characters on new Primos
 file partitions; (2) much faster disk i/o (on an
 unloaded system, benchmarks show an improvement on the
 order of a factor of 20); (3) internal reorganization
 to speed up command searches; (4) support for virtual
 mode programs and a shared command interpreter.

 ... Language: All higher-level routines in Ratfor. A few
 special routines in assembly language to provide
 capabilities not inherent in Fortran.

 - 38 -

 Software Tools Subsystem Tutorial

 Version 5:

 ... Features: A new command interpreter supporting
 arbitrary networks of pipes, generalized command file
 handling, and dynamic command line structures was
 added. General reorganization of Subsystem directories
 on disk.

 ... Language: Ratfor and Assembler (PMA).

 Version 6:

 ... Features: Shared libraries, maximal security under
 unmodified Primos, increased robustness.

 ... Language: Ratfor and Assembler (PMA)

 Version 7:

 ... Features: Much faster disk I/O, extensions to path-
 names to allow specification of non-file-system
 devices, new Ratfor preprocessor with significant
 extensions, some general cleanup of code and redundant
 tools, many additional tools.

 ... Language: Ratfor, Assembler (PMA), and some PL/I.

 Version 8:

 ... Features: Additional I/O speed, reduced working set,
 support for PL/I G, Pascal, Fortran 77, DBG, improved
 error handling, terminal type handling, virtual
 terminal handler.

 | ... Language: Ratfor, Assembler (PMA), and some PL/I.

 | Version 9:

 | ... Features: Increased security for shared segments,
 | improved shell, extended text editors and formatter,
 | access to new Primos file system features, some support
 | for Prime’s C compiler, a high precision mathematics
 | library, and an improved stacc.

 | ... Language: Ratfor, Assembler (PMA), and some PL/I.

 AAAuuuttthhhooorrrsss aaannnddd OOOrrriiigggiiinnnsss

 The principal authors of the Software Tools Subsystem are
 Allen Akin, Perry Flinn, Dan Forsyth, and Jack Waugh, of the

 - 39 -

 Software Tools Subsystem Tutorial

 Georgia Institute of Technology, aided by a cast of thousands.

 The ultimate antecedent for the design of the Subsystem is
 the UNIX operating system, written by Dennis Ritchie and Ken
 Thompson of Bell Labs for the DEC PDP-11 computers.

 The tremendous debt owed to Brian W. Kernighan and P. J.
 | Plauger, the authors of _S_o_f_t_w_a_r_e _T_o_o_l_s, cannot be overstated.

 - 40 -

