

 | GIT−ICS−84/18

 SOFTWARE TOOLS SUBSYSTEM
 USER’S GUIDE

 | 4th Edition
 |
 |
 | September, 1984

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 | Jefferey S. Lee
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 INTRODUCTION TO THE
 GEORGIA TECH SOFTWARE TOOLS SUBSYSTEM USER’S GUIDE

 The documents following this Introduction comprise the most
 recent version of the User’s Guide for the Georgia Tech Software
 Tools Subsystem for Prime 350 and larger computers. This Guide
 brings together in one place all the tutorial and reference
 information useful to novice and intermediate users of the Sub−
 system. It deals with several important aspects of Subsystem
 use: the user interface in general, unavoidable aspects of the
 underlying operating system, and the most−frequently used major
 commands. Each topic is covered in a separate document
 (available individually) and all documents are collected together
 with this Introduction to form the Guide itself. Experienced
 users, as well as beginning users who wish to expand their
 knowledge of the Subsystem, will find the Software Tools
 Subsystem Reference Manual valuable.

 The development of the Georgia Tech Software Tools Subsystem
 was originally motivated by the text Software Tools by Brian W.
 Kernighan and P. J. Plauger, Addison−Wesley, 1976. That text is
 still the basic reference for the tools that it covers,
 particularly Ratfor, the text editor, the macro preprocessor, and
 the text formatter.

 SOFTWARE TOOLS SUBSYSTEM TUTORIAL

 USER’S GUIDE TO THE PRIMOS FILE SYSTEM

 INTRODUCTION TO THE SOFTWARE TOOLS SUBSYSTEM TEXT EDITOR

 USER’S GUIDE FOR THE SOFTWARE TOOLS SUBSYSTEM COMMAND INTERPRETER

 USER’S GUIDE TO THE RATFOR PREPROCESSOR

 SOFTWARE TOOLS TEXT FORMATTER USER’S GUIDE

 Copyright (c) 1984 Georgia Institute of Technology

 Software Tools Subsystem Tutorial

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 Foreword

 The Software Tools Subsystem is powerful collection of
 program development and text processing tools developed at the
 Georgia Tech School of Information and Computer Science, for use
 on Prime 350 and larger computer systems. The tutorial that you
 are now reading is intended to serve as your first introduction
 | to the Subsystem and its many capabilities. The information
 | contained herein applies to Version 9 of the Subsystem as
 | released in September 1984.

 − iv −

 Software Tools Subsystem Tutorial

 Introduction

 The Software Tools Subsystem is a programming
 system based on the book Software Tools, by Brian W.
 Kernighan and P. J. Plauger, (Addison−Wesley Publishing
 Company, 1976), that runs under the Primos operating
 system on Prime 350 and larger computers. It allows
 much greater flexibility in command structure and
 input/output capabilities than Primos, at some small
 added expense in processing time.

 This tutorial is intended to provide sufficient
 information for a beginning user to get started with
 the Subsystem, and to acquaint him with its basic
 features; it is by no means a comprehensive reference.
 Readers desiring a more detailed exposition of the Sub−
 system’s capabilities are referred to the Software
 Tools Subsystem Reference Manual and to the remainder
 of the Software Tools Subsystem User’s Guide, of which
 this Tutorial is a part.

 Getting Started

 Since the Subsystem is composed entirely of ordinary user−
 state programs, as opposed to being a part of the operating
 | system, it must be called when needed. In other words, as far as
 | Primos is concerned, the Subsystem is a single program invoked by
 | the user. If the user wishes to use the Subsystem, he or she
 | must call it explicitly (it is possible to call the Subsystem
 | automatically on login; we will discuss how to do so a little
 | further on).

 The following example shows how a typical terminal session
 | might begin. Items typed by the user are boldfaced.

 OK, login login_name (1)
 | Password? (2)
 | LOGIN_NAME (User 15) logged in Friday, 06 Jul 84 14:22:07. (3)
 | Welcome to PRIMOS version 19.2.
 | Last login Friday, 06 Jul 84 14:06:32
 OK, swt (4)
 Password: (5)
 Enter terminal type: ti (6)
] (7)

 | (1) A terminal session is initiated when you type the
 Primos LOGIN command. "Login_name" here represents the
 login name that you were assigned when your account was
 established.

 − 1 −

 Software Tools Subsystem Tutorial

 (2) Primos asks you to enter your login password (if you
 have one) and turns off the terminal’s printer. You
 | then type your password (which is not echoed) followed
 | by a newline (the key labelled "newline", "return", or
 | "cr" on your terminal). Note: password checking on
 | login, as of Rev. 19, is now a standard part of Primos.

 (3) Primos acknowledges a successful login by typing your
 login name, your process number (in parentheses), and
 | the current time and date. (Note: At Georgia Tech,
 | the login acknowledgement will look somewhat different
 | from what is shown here.)

 (4) Primos indicates it is ready to accept commands by
 typing "OK,". (Whenever you see this prompt, Primos is
 waiting for you to type a command.) Type ’swt’ (for
 "Software Tools") to start up the Subsystem.

 (5) ’Swt’ prompts you for your Subsystem password. This
 password will have been assigned to you by your Sub−
 system Manager at the time he created your Subsystem
 account. (Note: Under Georgia Tech Primos, Subsystem
 passwords are not issued and not prompted for by
 ’swt’.) After you receive the prompt, enter your Sub−
 system password. It will not be printed on the
 terminal.

 (6) ’Swt’ asks you to enter the type of terminal that you
 are using. Depending on your local configuration, you
 may or may not see this message. If you do see it,
 enter the type of terminal you are using. You may
 obtain the name of your terminal type by asking your
 system administrator, or you can enter a question mark
 ("?") and try to find your terminal type in the list
 that ’swt’ will display for you.

 (7) The Subsystem’s command interpreter prompts with "]",
 indicating that it is ready to accept commands.

 When the Subsystem command interpreter has told you it is
 waiting for something to do (by typing the "]"), you may proceed
 to enter commands. Each command consists of a ’command−name’,
 followed by zero or more ’arguments’, all separated from each
 other by blanks:

 command−name argument argument ...

 The command name is necessary so that the command interpreter
 knows what it is you want it to do. On the other hand, the
 arguments, with a few exceptions, are completely ignored by the
 command interpreter. They consist of arbitrary sequences of
 characters which are made available to the command when it is
 invoked. For this reason, the things that you can type as
 arguments depend on what command you are invoking.

 − 2 −

 Software Tools Subsystem Tutorial

 When you have finished typing a command, you inform the com−
 mand interpreter of this by hitting the "newline" key. (On some
 terminals, this key is labeled "return", or "cr". If both the
 "newline" and "return" keys are present, you should use
 "return".)

 Incidentally, if you get some strange results from including
 any of the characters

 " ’ # | , ; () { } [] >

 within a command name or argument, don’t fret. These are called
 "meta−characters" and each has a special meaning to the command
 interpreter. We will explain some of them later on. For a more
 complete description of their meaning, see the User’s Guide for
 the Software Tools Subsystem Command Interpreter.

 Correcting Typographical Errors

 If you are a perfect typist, you can probably skip this
 part. But, if you are like most of us, you will make at least a
 few typos in the course of a session and will need to know how to
 correct them.

 There are three special characters used in making correc−
 tions. The "erase" character causes the last character typed on
 the line to be deleted. If you want to delete the last three
 characters you have typed so far, you should type the erase
 character three times. If you have messed up a line so badly
 that it is beyond repair, you can throw away everything you have
 typed on that line in one fell swoop by typing the "kill" charac−
 ter. The result will be that two backslashes (\\) are printed,
 and the cursor or carriage is repositioned to the beginning of
 the line. Finally, the "retype" character retypes the present
 line, so you can see exactly what erasures and changes have been
 made. You may then continue to edit the line, or enter it by
 striking the return key.

 When you log into the Subsystem for the very first time,
 your erase, kill and retype characters are control−h (backspace),
 DEL (RUBOUT on some terminals), and control−r, respectively. You
 can, however, change their values to anything you wish, and the
 new settings will be remembered from session to session. The
 ’ek’ command is used to set erase and kill characters:

 ek erase kill

 "Erase" should be replaced by any single character or by an ASCII
 mnemonic (like "BS" or "SUB"). The indicated character will be
 used as the new erase character. Similarly, "kill" should be
 replaced by a character or mnemonic to be used as the new kill
 character. For instance, if you want to change your erase and
 kill characters back to the default values of "BS" and "DEL", you
 can use the following command:

 − 3 −

 Software Tools Subsystem Tutorial

 ek BS DEL

 (By the way, we recommend that you do not use "e" or "k" for your
 erase or kill character. If you do, you will be hard pressed to
 change them ever again!)

 Adjusting to Terminal Characteristics

 Unfortunately, not all terminals have full upper/lower case
 capability. In particular, most of the older Teletype models can
 handle only the upper case letters. In the belief that the use
 of "good" terminals should not be restricted by the limitations
 of the "bad" ones, the Subsystem preserves the distinction
 between upper and lower case letters.

 To allow users of upper−case−only terminals to cope with
 programs that expect lower case input (and for other mysterious
 reasons), the Subsystem always knows what kind of terminal you
 are using. You may have told it your terminal type when you
 entered the Subsystem, or your system administrator may have pre−
 assigned your terminal type. In any event, the Subsystem
 initially decides whether or not you are using an upper−case−only
 terminal from this terminal type.

 You can find out what the Subsystem thinks about your
 terminal by entering the ’term’ command:

] term
 type tty buffer 2
 −erase BS −escape ESC −kill DEL
 −retype DC2 −eof ETX −newline LF
 −echo −lf −xoff −noinh −nose −novth −nolcase
 −break
]

 If the Subsystem thinks you are using an upper−case−only
 terminal, you will see the entry "−nolcase" in the last line;
 otherwise, you will see "−lcase". If you see that you have
 mistakenly entered the wrong terminal type, you can use ’term’ to
 change it. To list the possible terminal types for your instal−
 lation, enter

] term ?

 Then change your terminal type by entering

] term <new terminal type>

 If you are using an upper−case−only terminal, the Subsystem
 converts all subsequent upper case letters you type to lower
 case, and converts all lower case letters sent to your terminal
 by the computer to upper case. Since your terminal is also mis−
 sing a few other necessary characters, the Subsystem also
 activates a set of "escape" conventions to allow them to enter

 − 4 −

 Software Tools Subsystem Tutorial

 other special characters not on their keyboard, and to provide
 for their printing. When the "escape" character (@) precedes
 another, the two characters together are recognized by the Sub−
 system as a single character according to the following list:

 @A −> A (note that A −> a in "nolcase" mode)
 ...
 @Z −> Z
 @(−> {
 @) −> }
 @_ −> ~
 @’ −> ‘
 @! −> |

 All other characters are mapped to themselves when escaped; thus,
 "@−" is recognized as "−". If you must enter a literal escape
 character, you must enter two: "@@".

 If the Subsystem thinks you have an upper−case−only terminal
 (i. e., you see "−nolcase" in the output from ’term’), you must
 use escapes to enter upper case letters, since everything would
 otherwise be forced to lower case. For example,

 @A

 is used to transmit an upper case ’A’, while

 A

 is used to transmit a lower case ’A’.

 All output generated when "−nolcase" is in effect is forced
 to upper case for compatibility with upper−case−only terminals.
 However, the distinction between upper and lower case is preser−
 ved by prefixing each letter that was originally upper case with
 an escape character. The same is true for the special characters
 in the above list. Thus,

 Software Tools Subsystem

 would be printed as

 @SOFTWARE @TOOLS @SUBSYSTEM

 under "−nolcase".

 Finishing Up

 When you’re finished using the Subsystem, you have several
 options for getting out. The first two simply terminate the Sub−
 system, leaving you face to face with bare Primos. We cover them
 here only for the sake of completeness, and on the off chance
 that you will actually want to use Primos by itself.

 − 5 −

 Software Tools Subsystem Tutorial

 First, you may type

] stop
 OK,

 which effects an orderly exit from the Subsystem’s command
 interpreter and gives control to Primos’ command interpreter.
 You will be immediately greeted with "OK,", indicating that
 Primos is ready to heed your call.

 Second, you may enter a control−c (hold the "control" key
 down, then type the letter "c") immediately after the "]" prompt
 from the command interpreter. TAKE HEED that this is the stan−
 dard method of generating an end−of−file signal to a program that
 is trying to read from the terminal and is widely used throughout
 the Subsystem. Upon seeing this end−of−file signal, the command
 interpreter assumes you are finished and automatically invokes
 the ’stop’ command.

 Finally, we come to the method you will probably want to use
 most often. The ’bye’ command simply ends your terminal session
 and disconnects you from the computer. The following example
 illustrates its use. (Once again, user input is boldfaced.)

 |] bye (1)
 | LOGIN_NAME (User 15) logged out Friday, 06 Jul 84 15:30:00. (2)
 | Time Used: 01h 08m connect, 01m 06s CPU, 01m 10s I/O. (3)
 OK, (4)

 | (1) You type the ’bye’ command to end your terminal ses−
 sion.

 (2) Primos acknowledges, printing the time of logout.

 (3) Primos prints a summary of times used.

 . The first time is the number of hours and minutes of
 connect time.

 . The second time is the number of minutes and seconds
 of CPU time.

 . The third time is the number of minutes and seconds
 spent doing disk i/o.

 (4) Primos signals it is ready for a new login.

 Note the the ’bye’ command is equivalent to exiting the Subsystem
 | and executing the Primos LOGOUT command.

 | Automatically Running the Subsystem

 | With Primos Rev. 19, you can arrange to automatically run
 | the Subsystem when you log in. Simply put the command ’swt’ into
 | a file named ’login.comi’ in the directory to which you will be

 − 6 −

 Software Tools Subsystem Tutorial

 | attached when you log in.

 | Primos will execute the command(s) in this file
 | automatically. Furthermore, if your profile directory is an ACL
 | directory instead of a password directory, the Subsystem will not
 | even ask you for a password, since the file system provides the
 | protection automatically. (If this paragraph makes no sense to
 | you at all, don’t worry about it. It isn’t all that important.)

 − 7 −

 Software Tools Subsystem Tutorial

 Online Documentation

 Users, old and new alike, often find that their
 memories need jogging on the use of a particular com−
 mand. It is convenient, rather than having to look
 something up in a book or a manual, to have the com−
 puter tell you what you want to know. Two Subsystem
 commands, ’help’ and ’usage,’ attempt to address this
 need.

 The ’Help’ Command

 The ’help’ command is designed to give a comprehensive
 description of the command in question. The information provided
 includes the following: a brief, one−line description of what
 the command does; the date of the last modification to the
 documentation; the usage syntax for the command (what you must
 type to make it do what you want it to do); a detailed descrip−
 tion of the command’s features; a few examples; a list of files
 referenced by the command; a list of the possible messages issued
 by the command; a list of the command’s known bugs or
 shortcomings; and a cross reference of related commands or
 documentation.

 ’Help’ is called in the following manner:

 help command−1 command−2 ...

 If help is available for the specified commands, it is printed;
 otherwise, ’help’ tells you that no information is available.

 ’Help’ will only print out about as many lines as will fit
 on most CRT screens, and then prompt you with a message ending
 "more?". This allows you to read the information before it rolls
 off the screen, and also lets you stop getting the information
 for a command if you find you’re not really interested. To stop
 the output, just type an "n" or a "q" followed by a NEWLINE. To
 continue, you may type anything else, including just a NEWLINE.

 Several special cases are of interest. One, the command
 "help" with no arguments is the same as "help general", which
 gives general information on the Subsystem and explains how to
 use the help command. Two, the command "help −i" produces an
 index of all commands supported under the Subsystem, along with a
 short description of each. Finally, "help bnf" gives an explana−
 tion of the conventions used in the documentation to describe
 command syntax.

 − 8 −

 Software Tools Subsystem Tutorial

 Examples of the use of ’help’:

] help (1)
] help −i (2)
] help rp ed term (3)
] help bnf (4)
] help guide (5)

 (1) General information pertaining to the Subsystem, along
 with an explanation of the ’help’ command, is listed on
 the terminal.

 (2) A list of currently supported commands and subprograms,
 each with a short description, is listed on the
 terminal.

 (3) Information on the Ratfor preprocessor, the Software
 Tools text editor, and the terminal configuration
 program is printed on the terminal.

 (4) A description of the notational conventions used to
 describe command syntax is printed.

 (5) Information on how to obtain the Subsystem User’s
 Guides is listed on the terminal.

 Since beginning users frequently find printed documentation
 helpful, you may find the following procedure useful.
 Unfortunately, it involves many concepts not yet discussed, so it
 will be rather cryptic; nevertheless, it will allow you to
 produce a neatly−formatted copy of output from ’help’.

] help −p | os >/dev/lps/f (1)
] help −p rp se term | os >/dev/lps/f (2)
] help −p −i | os >/dev/lps/f (3)

 (1) The general information entry is printed on the line
 printer.

 (2) Information on the Ratfor preprocessor, the screen
 editor, and the terminal configuration program is
 printed on the line printer.

 (3) The index of available commands and subprograms is
 printed on the line printer.

 The ’Usage’ Command

 Whereas ’help’ produces a fairly comprehensive description
 of the command in question, the ’usage’ command gives only a
 brief summary of the syntax of the command. The syntax is
 expressed in a notation known as Backus−Naur Form (BNF for short)
 which is itself explained by typing "help bnf".

 − 9 −

 Software Tools Subsystem Tutorial

 The ’usage’ command is used in the same way as the ’help’
 command, as the following examples illustrate.

] usage usage (1)
] usage fmt help (2)

 (1) The syntax of the ’usage’ command is printed.

 (2) Usage information on the Software Tools text formatter
 and the ’help’ command is printed.

 − 10 −

 Software Tools Subsystem Tutorial

 The File System and Related Utilities

 Users spend much of their time creating, deleting,
 modifying and manipulating files. The utilities
 discussed in this section perform these tasks.

 Creating Files

 The most common way to create a file is to write the
 contents of a text editor to a new filename. Another common way
 (especially for creating small files) is to use the ’cat’ com−
 mand. Both of these methods are covered later in this guide.
 Right now, we prefer that you not be concerned with creating
 large, elaborate files or with knowing about more advanced
 features of the Subsystem. Instead, we will show you a simple
 method for creating one−line files. (Although you may not under−
 stand the command format at this point in time, don’t worry
 because you will by the time you get through the tutorial).

 You can use the command ’echo’ to create files as in the
 examples below:

] echo xxxx >file_of_x (1)
] echo contents of myfile >myfile (2)

 (1) Creates a file named "file_of_x" containing "xxxx".

 (2) Creates a file named "myfile" containing the line
 "contents of myfile".

 In case you were wondering, you can only use letters,
 digits, underscores, and periods in file names. (You can
 actually use a few other characters in names, but that can get
 you into trouble.) The names must not start with a digit, and
 can be no longer than 32 characters.

 Looking at the Contents of Files

 There are several ways of looking at the contents of a file.
 One command that you can use is the ’cat’ command. ’Cat’ is an
 alias for Kernighan and Plauger’s program ’concat’, which appears
 on page 78 of Software Tools. It has a simple function: to
 concatenate the files named in its argument list, and print them
 on standard output. If no files are named, it takes input from
 standard input. (More on standard input and output in a sub−
 sequent section, which has examples using ’cat.’ For now, just
 assume that standard input comes from the terminal and standard
 output goes to the terminal.)

 Here are some samples of how to use ’cat’. For more
 important and useful ones, see the following section.

 − 11 −

 Software Tools Subsystem Tutorial

] cat myfile (1)
] cat part1 part2 part3 (2)
] cat (3)

 (1) Prints the file named "myfile" on the user’s terminal;
 i.e., "myfile" is concatenated with nothing and printed
 on standard output.

 (2) Prints the concatenation of the files named "part1",
 "part2", and "part3" on the terminal.

 (3) Copies standard input to standard output. On a
 terminal, this would cause anything you typed to ’cat’
 to be echoed back to you. (If you try this, the way to
 stop is to type a control−c as the first character on
 the line. As we said before, lots of programs use this
 end−of−file convention.)

 Deleting Files

 Sooner or later, you will find it necessary to get rid of
 some files. The ’del’ command serves this need very nicely. It
 is used like this:

 del file1 file2 file3 ...

 to remove as many files as you wish. Remember that each file can
 be specified by a pathname, so you are not limited to deleting
 files in your current directory; but of course, you can delete
 only files that belong to you.

 The ’Lf’ Command

 The ’lf’ (for "list files") command is the preferred method
 for obtaining information about files. Used by itself without
 any arguments, ’lf’ prints the names of all the files in your
 current directory in a multi−column format. This, however, is by
 no means all that ’lf’ can do. In fact, used in its general
 form, an ’lf’ command looks something like this:

 lf options files

 The "files" part is simply a list of files and/or direc−
 tories that you want information about. If the "files" part is
 omitted, ’lf’ assumes you mean the current directory. For each
 file in the list, information about that file is printed; for
 each directory listed, information about each file within that
 directory is printed.

 The "options" part of the command controls what information
 is to be printed. It is composed of a dash ("−") followed by a
 string of single character option specifiers. Some of the more

 − 12 −

 Software Tools Subsystem Tutorial

 useful options are the following:

 c print information in a single column format.

 d for each directory in the list, print information about
 the directory itself instead of about its contents.

 l print all known information about the named files.

 w print the size (in 16−bit words) of each named file.

 (As always, if you would like complete information on ’lf’, just
 use ’help’.) As we said above, if no options are given, then
 only the names of the files are printed.

 Here are some examples of ’lf’ commands:

] lf (1)
] lf −l (2)
] lf //lkj (3)
] lf −cw //lkj =extra=/news (4)

 (1) List the names of all files in the current directory,
 in a multi−column format.

 (2) List the names of all files in the current directory,
 including all information that is known about each
 file.

 (3) List the names of all files in the directory named
 "lkj".

 (4) List the names and sizes of lkj’s files in a single−
 column format, followed by the names and sizes of all
 files in directory "=extra=/news".

 The Primos File System

 Primos files are stored on several disk packs, each with a
 unique name. Each pack contains a master file directory (mfd),
 which contains a pointer to each primary directory on that disk.
 Each of these primary directories (one for each user, and several
 special ones for the system) may contain sub−directories, which
 may themselves contain further sub−directories, ad infinitum.
 Any directory may also contain ordinary files of text, data, or
 program code. This diagram shows a simple structure that we will
 use as an example:

 − 13 −

 Software Tools Subsystem Tutorial

 _______ sys _______ users
 / | \ / \
 bin extra edward kate
 / | \ | / | | \
 lf cat ... users p1 p2 p2 kdir
 |
 kfl

 In this example, the mfds are named "sys" and "users", while
 there are primary directories named "bin", "extra", "edward", and
 "kate".

 The Subsystem allows you to specify the location of any file
 with a construct known as a "pathname." Pathnames have several
 elements.

 . The first characters of a pathname may be a slash, fol−
 lowed by a disk packname or octal logical disk number,
 followed by another slash (e.g. "sys" in the diagram
 above could be referred to as "/0/" or "/sys/"). The
 named disk is the starting point for the search of the
 rest of the pathname. The disk name may be omitted,
 implying that all disks are to be searched. For exam−
 ple, "//edward" would cause a search for a primary
 directory named "edward" starting its search at "sys"
 and then "users" where "//edward" is found.

 . When a pathname does not begin with a slash, the file
 search operation begins with your current directory.
 You can think of your current directory as your
 "location" in the file system at the time you use the
 pathname. For instance, if your current directory was
 "/users/edward" and you used the name "p2", you would
 get the file "p2" under "/users/edward"; however, if
 your current directory was "/users/kate" you would get
 the file "p2" under "/users/kate". Later, you will see
 how find out the name of your current directory and how
 to "move around" the file system by changing your
 current directory.

 . The remainder of the pathname consists of "nodes",
 separated by slashes. Each node contains the name of a
 | sub−directory or a file. (For revisions of Primos
 | below Rev 19, which have passworded directories, you
 | may have to specify nodes as a name possibly followed
 | by a colon (":") and a password.) For example

 kdir
 extra
 | sys:xxxxxx (pre−Rev 19 Primos)

 are nodes.

 When nodes are strung together, they describe a path to a
 file, from anywhere in the file system. Hence the term "path−

 − 14 −

 Software Tools Subsystem Tutorial

 name." For example,

 /sys/bin

 names the primary directory named "bin", located on the disk
 whose packname is "sys".

 //extra/users

 names the file named "users" in the primary directory named
 "extra" on some unknown disk (all disks will be searched);

 p2

 names the file "p2" in "/users/edward" if your current directory
 is "/users/edward" or the file "p2" in "/users/kate" if your
 current directory is "/user/kate".

 kdir:pwd/kfl

 | names the file "kfl" in the directory "kdir" (with password
 | "pwd"), in a pre−Rev 19 Primos file system, only if your current
 | directory is "/user/kate".

 Certain important Subsystem directories have been given
 alternative names, called "templates," in order to allow the Sub−
 system manager to change their location on disk without disturb−
 ing existing programs (or users). A template consists of a name
 surrounded by equals signs ("="). For example, the Subsystem
 command directory is named "bin". which could be referred to on
 a standard system as "//bin." If the Subsystem Manager at your
 installation had changed the location of the command directory,
 the command above would not work. To avoid this problem, you
 could use the template for "bin", "=bin=". which would correctly
 reference "bin" regardless of its location. There exist tem−
 plates for all of the most important Subsystem directories; for
 more information on them, and on pathnames in general, see the
 | User’s Guide to the Primos File System.

 | A word on upper and lower case: The Primos file system does
 | not distinguish between upper and lower case, thus "//BIN",
 | "//Bin", and "//bin" are all the same. However, the Subsystem
 | template mechanism does distinguish between upper and lower case,
 | so "=BIN=", "=Bin=", and "=bin=" are three different templates.
 | This can be a subtle trap for the unwary.

 Directories

 Directories can be created with the ’mkdir’ ("make
 directory) command; e.g.

] mkdir /users/edward

 will create the directory "edward" under the master file direc−
 tory "users". The command

 − 15 −

 Software Tools Subsystem Tutorial

] mkdir edward

 will create the directory "edward" in the current directory.

 As mentioned above, the ’lf’ command can be used to list
 information about directories and the files and subdirectories
 contained therein; e.g.,

] lf /users/edward
] lf edward

 Finally, directories, like files, can be deleted with ’del’.
 However, unlike files, directories cannot be deleted until all
 the files and subdirectories contained in them have been deleted.
 If "edward" is an empty directory it can be deleted with the com−
 mand

] del edward

 If "edward" is not an empty directory then it can be deleted with
 the command

] del −ds edward

 | where the the "−ds" specifies to delete the contents of the
 * directory, then the directory itself.

 Moving Around in the File System

 You can change your current directory with the ’cd’ (change
 directory) command. Simply type ’cd’ followed by the pathname of
 the directory to which you wish to move and, as long as its a
 valid directory name, you will be promptly deposited there; e.g.

] cd /users/edward
] cd kdir

 Note that in the second example, since the pathname ’kdir’ is not
 preceded by slashes, your current directory must be "/users/kate"
 for it to work.

 You can move "up" in the file system with

] cd \

 For instance, if you were in "/users/kate/kdir" and you typed
 "cd \", your current directory would then be "/user/kate".

 Finally, if you get lost, you can find out where you are
 with the command

] cd −p

 It will print the full name of your current directory.

 − 16 −

 Software Tools Subsystem Tutorial

 Subsystem Communication Services

 Communication utilities are becoming increasingly
 important in today’s computer systems. The Subsystem,
 in keeping up with the times, offers as its most
 important communication facilities a postal and news
 service and a real−time communication system.

 The Subsystem Postal Service

 In order to facilitate communication among users, the Sub−
 system supports a postal service in the form of the ’mail’ com−
 mand. ’Mail’ can be used in either of two ways:

] mail

 which looks to see if you have been sent any mail, prints it on
 your terminal, and asks if you would like your mail to be saved,
 or

] mail login_name

 which accepts input from standard input and sends it to the mail−
 box of the user whose login name is "login_name". Used in this
 fashion, ’mail’ reads until it sees an end−of−file. From the
 terminal, this means until you type a control−c in column 1.
 Your letter is postmarked with the day, date and time of mailing
 and with your login name.

 Whenever you enter the Subsystem (by typing ’swt’) a check
 is made to see if you have received any mail. If you have, you
 are told so. When you receive your mail (by typing ’mail’), you
 are asked if you want it to be saved. If you reply "n", the mail
 you have just received will be discarded. Otherwise, it is
 appended to the file "=mailfile=", which is located in your
 profile directory. (You can look at it with ’cat’, print it with
 ’pr’, or do anything else you wish to it, simply by giving its
 name to the proper command. For example,

] cat =mailfile=

 | would print all your saved mail on your terminal.)

 | If you have declared the shell variable "_mail_check", (but
 | not set it), the shell will check your mail file every 60
 | seconds, to see if it has increased in size. If it has, the
 | shell will tell you, "You have new mail." You may then read your
 | mail with the ’mail’ program. If you want it to check you mail
 | more frequently, or less frequently, you may set it to the number
 | of seconds between checks. For instance:

 | declare _mail_check = 300 # check mail every five minutes

 − 17 −

 Software Tools Subsystem Tutorial

 | By default, "_mail_check" will not be set for new users, so the
 | shell will only check your mail once, when the Subsystem is first
 | cranked up. (See the User’s Guide for the Software Tools
 | Subsystem Command Interpreter for a more detailed discussion of
 | the use of shell variables.

 | Due to the nature of the file system, setting "_mail_check"
 | to less than four will be no different than setting it to four.
 | At Georgia Tech, the mail directory is shared among several
 | machines, so, since the shell has to go across Primenet, you
 | should set "_mail_check" to a fairly large value, say 300, for
 | once every five minutes.

 The Subsystem News Service

 Whereas ’mail’ is designed for person to person com−
 munication, the Subsystem news service is intended for the
 publication of articles that appeal to a more general interest.
 The news service is implemented by three commands: ’subscribe’,
 ’publish’ and ’news’. The use of the first two should be
 obvious.

 If you wish to subscribe to the new service, simply type

] subscribe

 and then, whenever anyone publishes an article, a copy of it will
 be delivered to your news box. (You need subscribe to the news
 service only once; all subscriptions are perpetual.) Whenever
 you enter the Subsystem, as with mail, a check is made to see if
 there is anything in your news box; if there is, you are given a
 message to that effect.

 Having gotten such a message, you may then read the news at
 your convenience by typing

] news

 The news will be printed out on your terminal and then you will
 be asked whether or not you want to save it. If you say "yes",
 it will be left in your box and you may read it again at a later
 date; otherwise, it is discarded. There are other ways to use
 the ’news’ command that are fully explained by ’help’.

 Now suppose you have a hot story that you want to publish.
 All you have to do is create a file (let’s call it "article")
 whose first line is the headline, followed by the text of the
 story. Then you type

] publish article

 and your story will be delivered to all subscribers of the news
 service. If you are a subscriber yourself, you can check this
 with the ’news’ command. In addition, a copy is made in the news
 archives.

 − 18 −

 Software Tools Subsystem Tutorial

 If you find that you have published the wrong article or if
 you want to remove an outdated one, you can do a

] retract <article number>

 to remove the article, where <article number> is the sequence
 number obtained from the news index ("news −i" will give you such
 an index). A retraction notice will be delivered to all sub−
 scribers who have seen the article, and the article will simply
 be removed from the news boxes of subscribers who have not yet
 seen it. If you are only removing an outdated article, then
 using

] retract −q <article number>

 will quietly remove all traces of the article, leaving no retrac−
 tion notices behind to disturb those who have seen it.

 Subsystem Real−Time Communications

 As if ’mail’ and ’news’ were not enough, the Subsystem
 offers still another way to communicate with your fellow user, by
 means of the ’to’ command. ’To’ allows you to communicate with
 other logged−in users on a real−time basis; messages that are
 sent to another user by the command

] to login_name <message>

 will be retrieved by the user whose login name is "login_name"
 the next time his shell is ready for a command. Contrast this
 behavior to that of ’mail’, where the message must be retrieved
 by an action on the part of the addressee. If <message> contains
 any of the shell’s metacharacters, it must be enclosed in quotes,
 as in:

] to allen "Where are you, and what are you doing?"

 If you want to send a multi−line message, ’to’ will read
 your message from standard input (just like most other Subsystem
 programs), so that the only argument you would specify in this
 case would be the login_name. As always, a control−c in column 1
 will generate an end−of−file to terminate your input.

 Messages are only retrieved when the shell is ready for the
 next command, so a user who is running a long program may not see
 your messages until long after you have sent them. If he logs
 out before he sees your messages, they will sit there, waiting to
 | be retrieved until the next time he logs in.

 | To alleviate this somewhat, the Subsystem screen editor,
 | ’se’, will notify you if there is a message waiting for you. See
 | the "om" command in the help on ’se’ for details.

 − 19 −

 Software Tools Subsystem Tutorial

 Input/Output

 One of the most powerful features of the Software
 Tools Subsystem is its handling of input and output.
 As much as possible, the Subsystem has been designed to
 shield the user from having to be aware of any specific
 input or output medium; it presents to him, instead, a
 standardized interface with his environment. This
 facilitates use of programs that work together, without
 the need for any esoteric or complicated programming
 techniques. The ability to combine programs as
 cooperating tools makes them more versatile; and the
 Software Tools Subsystem makes combining them easy.

 Standard Input and Standard Output

 Programs in the Subsystem do not have to be written to read
 and write to specific devices. In fact, most commands are writ−
 ten to read from "anything" and write to "anything." Only when
 the command is executed do you specify what "anything" is, which
 could be your terminal, a disk file, device etc. "Anythings" are
 more formally known as ’standard ports’; those available for
 input are called ’standard inputs’, and those available for out−
 put are called ’standard outputs’.

 Standard inputs and standard outputs are initially assigned
 to your terminal, and revert back to those assignments after each
 | program terminates. However, you can change this through a
 facility known as "input/output redirection" (or "i/o redirec−
 tion" for short).

 I/O Redirection

 As we mentioned, standard input and output are by default
 assigned to the terminal. Since this is not always desirable,
 the command interpreter allows them to be redirected (reassigned)
 to other media. Typically, they are redirected to or from disk
 files, allowing one program’s output to be saved for later use
 perhaps as the input to another program. This opens the pos−
 sibility for programs to co−operate with each other. What is
 more, when programs can communicate through a common medium such
 as a disk file, they can be combined in ways innumerable, and can
 take on functions easily and naturally that they were never
 individually designed for. A few examples with ’cat’ below, will
 help to make this clear.

 However, let us first examine the techniques for directing
 standard inputs and standard outputs to things other than the
 terminal. The command interpreter supports a special syntax
 (called a funnel) for this purpose:

 − 20 −

 Software Tools Subsystem Tutorial

 pathname> (read "from" pathname)

 redirects standard input to come from the file named by "path−
 name";

 >pathname (read "toward" pathname)

 redirects standard output to go to the file named by "pathname".
 For example, suppose you wanted a copy of your mail, perhaps to
 look at slowly with the editor. Instead of typing

 mail

 which would print your mail on the terminal, you would type

 mail >mymail

 which causes your mail to be written to the file named "mymail"
 in the current directory. It is important to realize that ’mail’
 does nothing special to arrange for this; it still thinks it is
 printing mail on the terminal. It is more important to realize
 that any program you write need not be aware of what file or
 device it is writing on or reading from.

 A bit of terminology from Software Tools: programs which
 read only from standard input, process the data so gathered, and
 write only on standard output, are known as "filters." They are
 useful in many ways.

 Examples of Redirected I/O Using ’Cat’

 Now, ’cat’ does not seem like a particularly powerful com−
 mand; all it can do is concatenate files and do some peculiar
 things when it isn’t given any arguments. But this behavior is
 designed with redirected i/o in mind. Look through the following
 examples and see if they make sense.

 cat file1 >file2

 What this does is to copy "file1" into "file2". Note that since
 ’cat’ sends its output to standard output, we have gained a copy
 program for free.

 cat file1 file2 file3 >total

 This example concatenates "file1", "file2", and "file3" and
 places the result in the file named "total". This is probably
 the most common use of ’cat’ besides the simple "cat filename".

 You need to be careful with the files to which you redirect
 i/o. In the above example, if a file by the name of "total"
 already exists, its contents will be replaced by the concatena−
 tion of "file1", "file2" and "file3". Similarly if you try the
 command

 − 21 −

 Software Tools Subsystem Tutorial

 cat file1 file2 file3 >file1

 disaster results as it first clobbers "file1", destroying its
 contents for good.)

 cat >test

 This is an easy way to create small files of data. ’Cat’ does
 not see any filenames for it to take input from, so it reads from
 standard input. Now, notice that where before, this simply
 caused lines to be echoed on the terminal as they were typed,
 each line is now placed in the file named "test". As always,
 end−of−file from the terminal is generated by typing a control−c
 in column 1.

 One thing that is extremely important is the placement of
 blanks around i/o redirectors. A funnel (">") must not be
 separated from its associated file name, and the entire redirec−
 tor must be surrounded by at least on blank at each end. For
 example, "file> cat" and "cat >file" are correct, but "file >
 cat", "cat > file", "file>cat" and "cat>file" are all incorrect,
 and may cause catastrophic results if used!

 You can see that more complicated programs can profit
 greatly from this system of i/o. After all, from a simple file
 concatenator we have gained functions that would have to be per−
 | formed by separate programs on other systems.

 | There are other, more complicated i/o redirectors available
 | to you. See the User’s Guide for the Software Tools Subsystem
 | Command Interpreter for a full, in−depth discussion of the
 | facilities the shell provides.

 − 22 −

 Software Tools Subsystem Tutorial

 Using Primos from the Subsystem

 Unfortunately, a few functions of Primos and its
 support programs have not been neatly bundled into the
 Subsystem. The Subsystem commands that address this
 problem are the topic of this section.

 Executing Primos Commands from the Subsystem

 The commands ’x’ and ’primos’ can be used to access Primos
 programs and commands without having to go through the work of
 leaving and re−entering the Subsystem.

 ’X’ may be used in either of two ways; the first is

 x Primos−command

 This is the method of choice for executing a single Primos com−
 mand. You will probably want to put double quotes around the
 Primos command to keep the Subsystem from becoming annoyed at
 metacharacters such as ">" and "<" being used in the Primos com−
 mand.

 The second way to use ’x’ is to use it without arguments.
 Here is an example:

] x
 ok, status net
 ok, message −9 now
 Hi there.
 ok, <control−c>
]

 This method allows many Primos commands to be executed. In this
 case, ’x’ reads a line at a time and passes it to the Primos com−
 mand interpreter for execution. If the Primos return code is
 positive, ’x’ continues to the next line; if not, ’x’ exits to
 the Subsystem. ’X’ will also return to the Subsystem when it
 encounters a control−c or a Primos REN. The prompt, "ok,", is in
 small letters to remind you that it is the command ’x’ producing
 the prompt and not Primos.

 The second command, ’primos’, invokes a new level of the
 Primos command interpreter from the Subsystem. (With this com−
 mand, the Primos command interpreter prints the prompt "OK," and
 your commands are received directly by it.) You can return to
 the Subsystem by typing the Primos REN command.

 − 23 −

 Software Tools Subsystem Tutorial

 Program Development

 One of the most important uses of the Software
 Tools Subsystem is program development. The Ratfor
 language presented in Software Tools is an elegant
 language for software developers, and is the foundation
 of the Subsystem; virtually all of the Subsystem is
 written in Ratfor.

 Developing Programs

 To acquaint you with the several steps of program develop−
 ment, we present an example in which we develop a simple Ratfor
 program. We use a Ratfor example here because Ratfor is the most
 widely used language in the Subsystem −−− but for a few lines
 here and there, the entire Subsystem is written in Ratfor. If
 you want to learn more about Ratfor programming, you can read the
 User’s Guide for the Ratfor Preprocessor. Meanwhile, on with the
 example

 The Subsystem Text Editor

 The first program most users will see when they wish to
 create another program is ’ed’, the Subsystem text editor, or if
 you have a crt, ’se’, the screen editor. A complete description
 of either is beyond the scope of this tutorial, but a short list
 of commands (accepted by both the line editor and full screen
 editor) and their formats, as well as an example using ’ed,’
 should help you get started. For more information refer to
 Introduction to the Software Tools Text Editor and of course to
 Software Tools.

 ’Ed’ is an interactive program used for the creation and
 modification of "text". "Text" may be any collection of charac−
 ters, such as a report, a program, or data to be used by a
 program. All editing takes place in a "buffer", which is nothing
 more than ’ed’s own private storage area where it can manipulate
 your text. ’Ed’s commands have the general format

 <line number>,<line number><command>

 where, typically, both line numbers are optional. Commands are
 one letter, sometimes with optional parameters.

 The symbol <line number> above can have several formats.
 Among them are:

 . an integer, meaning the line with that number. For
 example, if the integer is 7, then the 7th line in the
 buffer;

 − 24 −

 Software Tools Subsystem Tutorial

 . a period ("."), meaning the current line;

 . a dollar sign ("$"), meaning the last line of the
 buffer;

 . /string/, meaning the next line containing "string";

 . \string\, meaning the previous line containing
 "string";

 . any of the above expression elements followed by "+" or
 "−" and another expression element.

 All commands assume certain default values for their line
 numbers. In the list below, the defaults are in parentheses.

 Command Action

 (.)a Appends text from standard input to the
 buffer after the line specified. The
 append operation is terminated by a line
 containing only a period in column 1.
 Until that time, though, everything you
 type goes into the buffer.

 (.,.)d Deletes lines from the first line
 specified to the last line specified.

 | e filename Fills the buffer from the named file.
 | Anything previously in the buffer is
 | lost.

 (.,.)p Prints lines from the first line
 specified to the last. 1,$p prints the
 entire buffer.

 q Causes ’ed’ to return to the command
 interpreter. Note that unless you have
 given a "w" command (see below),
 everything you have done to the buffer
 is lost.

 (.)r filename Reads the contents of the named file
 into the buffer after the specified
 line.

 (.,.)s/old/new/p Substitutes the string "new" for the
 string "old". If the trailing p is
 included, the result is printed, other−
 wise ’ed’ stays quiet.

 (1,$)w filename Writes the buffer to the named file.
 This command must be used if you want to
 save what you have done to the buffer.

 − 25 −

 Software Tools Subsystem Tutorial

 ? Prints a longer description of the last
 error that occurred.

 If ’ed’ is called with a filename as an argument, it
 automatically performs an "e" command for the user.

 ’Ed’ is extremely quiet. The only diagnostic message issued
 (except in a time of dire distress) is a question mark. Almost
 always it is obvious to the user what is wrong when ’ed’ com−
 plains. However, a longer description of the problem can be had
 by typing "?" as the next command after the error occurs. The
 only commands for which ’ed’ provides unsolicited information are
 the "e", "r", and "w" commands. For each of these, the number of
 lines transferred between the file and ’ed’s buffer is printed.

 You should note that specifying a line number without a com−
 mand is identical to specifying the line number followed by a "p"
 command; i.e., print that line.

 Creating a Program

 Now that we have a basic knowledge of the editor, we should
 be able to use it to write a short program. As usual, user input
 is boldfaced.

] ed (1)
 a (2)
 # now −−− print the current time (3)

 define(TIME_OF_DAY,2) (4)

 character now (10) (5)

 call date (TIME_OF_DAY, now) (6)
 call print (STDOUT, "Now: *s*n"s, now (7)

 stop (8)
 end (9)
 . (10)
 w now.r (11)
 11 (12)
 q (13)
] (14)

 (1) You invoke the editor by typing "ed" after the command
 interpreter’s prompt. ’Ed,’ in its usual soft−spoken
 manner, says nothing.

 (2) ’Ed’s "a" command allows text to be added to the
 buffer.

 (3) Now you type in the text of the program. The sharp
 sign "#" introduces comments in Ratfor.

 − 26 −

 Software Tools Subsystem Tutorial

 (4) Ratfor’s built−in macro processor is used to define a
 macro with the name "TIME_OF_DAY". Whenever this name
 appears in the program, it will be replaced by the text
 appearing after the comma in its definition. This
 technique is used to improve readability and allow
 quick conversions in the future.

 (5) An array "now", of type character, length 10, is
 declared.

 (6) The library routine ’date’ is called to determine the
 current time.

 (7) The library routine ’print’ is called to perform
 formatted output to the program’s standard output port.

 (8) The "stop" statement causes a return to the Subsystem
 command interpreter when executed.

 (9) The "end" statement marks the end of the program.

 (10) The period alone on a line terminates the "a" command.
 Remember that this must be done before ’ed’ will
 recognize any further commands.

 (11) With the "w" command, ’ed’ copies its buffer into the
 file named "now.r".

 (12) ’Ed’ responds by typing the number of lines written
 out.

 (13) The "q" command tells ’ed’ to quit and return to the
 Subsystem’s command interpreter.

 (14) The Subsystem command interpreter prompts with a right
 bracket, awaiting a new command.

 Now we are talking to the command interpreter again. We may
 now use the ’rp’ command to change our program from Ratfor into
 Fortran, and hopefully compile and execute it.

] rp now.r (1)
 8 (.main.): ’<NEWLINE>’ missing right parenthesis. (2)
] (3)

 (1) ’Rp’ is called. The argument "now.r" directs Ratfor to
 take its input from the file "now.r" and produce output
 on the file "now.f".

 (2) ’Rp’ has detected an error in the Ratfor program.
 ’Rp’s error messages are of the form

 line (program−element): ’context’ explanation

 In this case, a missing parenthesis was detected on

 − 27 −

 Software Tools Subsystem Tutorial

 line 8 in the main program.

 (3) ’Rp’ has returned to the Subsystem’s command
 interpreter, which prompts with "]".

 Looking back over the program, we quickly spot the
 difficulty and proceed to fix it with ’ed’:

] ed now.r (1)
 11 (2)
 8 (3)
 call print (STDOUT, "Now: *s*n"s, now (4)
 s/, now/, now)/p (5)
 call print (STDOUT, "Now: *s*n"s, now) (6)
 w (7)
 11 (8)
 q (9)
] rp now.r (10)
] (11)

 (1) The editor is called as before. However, since we have
 given the name of a file, "now.r", to ’ed’ as an
 argument, it automatically does an "e" command on that
 file, bringing it into the buffer.

 (2) ’Ed’ types the number of lines in the file.

 (3) We type the line number 8, since that is the line that
 ’rp’ told us had the error.

 (4) ’Ed’ responds by typing the line. (Remember that a
 line number by itself is the same as a "p" command of
 that line number.)

 (5) We use ’ed’s "s" command to add the missing
 parenthesis. Note the use of the "p" at the end of the
 command.

 (6) ’Ed’ makes the substitution, and since we have
 specified the "p", the result is printed.

 (7) We now write the changed buffer back out to our file
 (’ed’ remembers the file name "now.r" for us).

 (8) ’Ed’ prints the number of lines written.

 (9) We exit from the editor with the quit command "q".

 (10) We invoke Ratfor to process the program. Ratfor
 detects no errors. The output of the preprocessing is
 on file "now.f".

 − 28 −

 Software Tools Subsystem Tutorial

 (11) The command interpreter prompts us for another command.

 Now that the Ratfor program has been successfully preproces−
 sed, it is time to compile the Fortran output, which was placed
 in the file "now.f". ’Fc,’ should be used to compile Subsystem
 programs, since it selects several useful compiler options and
 standardizes the compilation process:

] fc now.f
 0000 ERRORS [<.MAIN.>FTN−REV18.4]
]

 All of the garbage between the "fc" and the "]" prompt is
 stuff produced by the Fortran compiler and is mostly irrelevant
 at this point. The essential thing to recognize about it is that
 the number before "ERRORS" is zero.

 Now that our program has compiled successfully, we bravely
 proceed to invoke the Linking Loader using ’ld.’ ’Fc’ has left
 the output of Fortran in the file "now.b". We will use ’ld’s
 "−o" option to select the name of the executable file:

] ld now.b −o now
 | [SEG rev 19.2.GT]
 # vl #
 $ co ab 4001
 $ sy swt$cm 4040 40000
 $ sy swt$tp 2030 120000
 $ mi
 $ s/lo now.b 0 4000 4000
 $ s/lo ’lib>vswtlb’ 0 4000 4000
 $ s/li 0 4000 4000
 | LOAD COMPLETE
 | $ ma 6
 $ re
 # sh
 TWO CHARACTER FILE ID: ..
 # delete
 # q
]

 Again, all the noise between "ld" and "]" comes from the
 Loader. The important thing to notice here is the
 "LOAD COMPLETE" message, which indicates that linking is
 complete. If we did not get the "LOAD COMPLETE" message, we
 would re−link using the command "ld −u now.b −o now" and the
 loader would then list the undefined subprograms.

 We now have an executable program in our directory. We can
 check this using ’lf’:

] lf
 now now.b now.f now.r

 − 29 −

 Software Tools Subsystem Tutorial

]

 Deciding we do not need the Fortran source file and the
 intermediate binary file hanging around, we remove them with
 ’del’:

] del now.f now.b
] lf
 now now.r
]

 And getting really brave, we try to run our newly created
 program:

] now
 Now: 16:34:41
]

 Hopefully the preceding example will be of some help in the
 development of your own (more important) programs. Even though
 it is simple, it shows almost all the common steps involved in
 creating and running a typical program.

 Caveats for Subsystem Programmers

 Since the Subsystem is exactly that, not an operating system
 but a sub−system, programs written for it must follow a few sim−
 ple conventions, summarized below.

 . To exit, a program running under the Subsystem should
 either use a "stop" statement (Ratfor programs only),
 "return" from the main program (Pascal and PL/I G), or
 call the subroutine "swt". Specifically, the Primos
 routine "exit" must not be called to terminate a
 program.

 . Whenever possible, Subsystem i/o and utility routines
 should be used instead of Primos routines, since the
 latter cannot handle all aspects of the Subsystem
 files. If, however, programs must use native i/o
 routines, remember that they must inform their native
 i/o routines of the Subsystem by calling the proper
 initialization routines (see Subsystem Interface
 Subroutines in the table below), or they will not be
 able to take advantage of standard input, standard out−
 put or any of the other i/o related features provided
 by the Subsystem.

 − 30 −

 Software Tools Subsystem Tutorial

 The Subsystem interfaces available for Primos languages and
 utilities are summarized below:

 Language Primos Primos Subsystem
 or Subsystem Commands Interface
 Utility Interface Interfaced Subroutines

 | C xcc CC −
 | xccl CC, SEG
 |
 Cobol cobc COBOL −
 cobcl COBOL, SEG

 Database fsubc FSUBS −
 fdmlc FDML
 fdmlcl FDML, FTN,
 SEG

 csubc CSUBS −
 cdmlc CDML
 cdmlcl CDML,
 COBOL,
 SEG

 ddlc SCHEMA −

 Debugger dbg DBG −
 vpsd SEG

 Fortran 66 fc FTN init$f,
 fcl FTN, SEG geta$f

 Fortran 77 f77c F77 init$f,
 f77cl F77, SEG geta$f

 Loader ld SEG −

 Pascal pc PASCAL init$p,
 pcl PASCAL, SEG file$p,
 geta$p

 PL/P plpc PLP −
 plpcl PLP, SEG

 PL/1 G plgc PL1G init$plg,
 plgcl PL1G, SEG geta$plg

 Prime pmac PMA −
 Assembler pmacl PMA, SEG

 SPL splc SPL −
 splcl SPL, SEG

 Use ’help’ or refer to the Subsystem Reference Manual for a
 complete description of Primos/Subsystem interface commands and

 − 31 −

 Software Tools Subsystem Tutorial

 Subsystem interface subroutines.

 − 32 −

 Software Tools Subsystem Tutorial

 | Errors

 | Although the Software Tools Subsystem provides a
 | very nice program development and applications
 | environment, Murphy’s Law indicates that things will
 | still go wrong. "To err is human...", so it is best to
 | anticipate errors, and know what to do when you
 | encounter them. This section indicates some of the
 | more common causes of errors, and what to do when you
 | encounter them. The non−technical user can probably
 | skip this section.

 Recovering from Errors

 Everyone encounters errors sometimes. Eventually you will
 divide by zero, or try to execute source code, or do something
 even worse. Primos will make you pay for little mistakes like
 this, and typically will kick you out of the Subsystem. Although
 graceful recovery is sometimes possible, more often than not, it
 is so tedious that it is easier just to start all over again.

 When an error occurs, and after you have satisfied yourself
 reasonably well as to why, the "cure−all" for Subsystem problems
 is simply to type:

 swt

 | Sometimes, this will not work. The stack may screwed up, or
 | something else may have gone terribly wrong. To clear everything
 | completely, and restart the Subsystem, type the following:

 | OK, rls −all
 | OK, dels all
 | OK, swt

 All error messages that cause an exit to Primos (signalled
 by the "OK," or "ER!" prompts) are briefly explained in appendix
 A−4 of the Prime Fortran Programmer’s Guide (FDR3057). Some very
 common programming errors can cause cryptic error messages with
 explanations that may be unintelligible to the novice. The rest
 of this section contains a brief description of some of those
 messages. You need not read what follows if you don’t make
 programming errors.

 Many Primos error messages are dead giveaways of program
 errors. Messages that begin with four asterisks are from the
 Fortran runtime packages −− they usually indicate such things as
 division by zero or extraction of the square root of a negative
 number. For example,

 − 33 −

 Software Tools Subsystem Tutorial

 **** SQRT −− ARGUMENT < 0
 OK,

 results from extracting the square root of a number less than
 zero.

 Other more mysterious error messages can also be caused by
 simple program errors.

 POINTER FAULT

 usually indicates that a subprogram was called that was not
 included in the object file. An obvious indication of a missing
 subprogram is the failure to get the

 LOAD COMPLETE

 message from ’ld’. (Note that the Fortran compiler treats
 references to undimensioned arrays as function calls!) A more
 insidious cause of the "POINTER FAULT" message is referencing in
 a subprogram an argument that was not supplied in the subprogram
 call; e.g., the calling routine specifies three arguments and the
 called routine expects four. The error occurs when the
 unspecified argument is referenced in the subprogram, not during
 the subprogram call.

 ACCESS VIOLATION
 ILLEGAL INSTRUCTION AT <address>
 ILLEGAL SEGNO
 PROGRAM HALT AT <address>

 all can result from a subscript exceeding its bounds. Because
 the program may have destroyed part of itself, the memory addres−
 ses sometimes given may well be meaningless.

 To find errors such as these, time can often be saved by
 using a program trace. In addition to the manual insertion of
 ’print’ statements in the source program, both ’rp’ and ’fc’ have
 options to produce a program trace. The "−t" option will cause
 ’rp’ to insert code to trace the entry and exit of subprograms.
 (One should note that only subprograms preprocessed with the "−t"
 option will be traced.) ’Fc’ will emit code to produce a Fortran
 statement−label and assignment trace when called with the "−t"
 option. Although this trace will contain the statement labels
 generated by ’rp’, the intermediate Fortran code may be listed
 | and the execution path followed.

 | See the subsection on debugging in the Application Notes
 | section of the User’s Guide for the Ratfor Preprocessor for more
 | suggestions on finding and eliminating errors in your ratfor
 | programs.

 − 34 −

 Software Tools Subsystem Tutorial

 Advanced Techniques

 This section deals with several of the more
 advanced features of the Subsystem.

 Command Files

 As an illustration, let us take an operation that finds use
 quite frequently: making printed listings of all the Ratfor
 source code in a directory. Command language programs, or
 "shell programs," greatly simplify the automation of this
 process. Shell programs are files containing commands to be
 executed when human intervention is not required.

 Suppose that we put the following commands in a file named
 "mklist" (note the use of i/o redirection here):

 lf −c >temp1
 temp1> find .r >temp2
 temp2> change % "sp " >temp3
 temp3> sh
 del temp1 temp2 temp3

 Then, whenever we want a listing of all the Ratfor source code in
 the current directory, we just type:

 mklist

 The only price we must pay for this convenience is to ensure that
 the names of all files containing Ratfor programs end in ".r".
 (If the ’find’, ’change’, and ’sp’ commands mystify you, ’help’
 can offer explanations.)

 Pipes

 Pipes are another handy feature of the Subsystem. A "pipe"
 between two programs simply connects the standard output of the
 first to the standard input of the second; and two or more
 programs connected in this manner form a "pipeline." With pipes,
 programs are easily combined as cooperating tools to perform any
 number of complex tasks that would otherwise require special−
 purpose programs.

 The command interpreter provides a simple and intuitive way
 to specify these combinations:

 prog1 | prog2

 Essentially, two or more complete commands are typed on the same
 line, separated by vertical bars ("|"). (One or more spaces must
 appear on both sides of this symbol.) The command interpreter
 then does all the work in connecting them together so that

 − 35 −

 Software Tools Subsystem Tutorial

 whatever the program on the left of the bar writes on its stan−
 dard output, the one on the right reads from its standard input.

 Take our shell program to create listings as an example;
 that series of commands involved the creation of three temporary
 files. Not only is this distracting, in that it takes our atten−
 tion away from the real work at hand, but it also leads to wasted
 storage space, since one all too frequently forgets to delete
 temporary files after they have served their function. Using
 pipes, we could just as easily have done the same thing like
 this:

 lf −c | find .r | change % "sp " | sh

 and the command interpreter would have taken care of all the
 details that before we had to attend to ourselves. In addition
 to being much cleaner looking, the pipeline’s function is also
 more obvious.

 Additional I/O Redirectors

 The last advanced features of the Subsystem that we will
 examine are the two remaining i/o redirection operators,
 represented by two variations of the double funnel (">>").

 In the first variation,

 >>xyz (read "append to xyz")

 causes standard output to be appended to the file named "xyz".
 Whereas

 cat file1 >file2

 would copy the contents of file1 into file2, destroying whatever
 was previously in file2,

 cat file1 >>file2

 would copy the contents of file1 to the end of file2, without
 destroying anything that was there to start with.

 In the second variation, the double funnel is used without a
 file name

 >> (read "from command input")

 to connect standard input to the current shell program. For
 example, suppose we wanted to make a shell program that extracted
 the first ten lines of a file, and deleted all the rest. The
 shell program might look something like this:

 − 36 −

 Software Tools Subsystem Tutorial

 >> ed file
 11,$d
 w
 q

 ">>" is frequently used in this way for the editor to read com−
 mands from the shell program, without having to have a separate
 script file.

 This is only a very small sample of the power made available
 by the features of the Subsystem. As is the case with any craft,
 given the proper tools and an hospitable environment in which to
 work, the only limit to the variety of things that can be done is
 the imagination and ingenuity of the craftsman himself.

 − 37 −

 Software Tools Subsystem Tutorial

 Background

 Ancient History

 | The Software Tools Subsystem, as it now exists, is in its
 | ninth major revision. To give you an idea of its development,
 here is a short history of successive versions.

 Version 1:

 . Features: Basic utility commands, no redirection of
 input or output, low−level routines for performing file
 operations, but no consistent input/output.

 . Language: Fortran

 Version 2:

 . Features: Almost complete set of utility commands,
 redirection of input and output, all Software Tools i/o
 routines, Software Tools editor and Ratfor, improved
 reliability during information passing from one program
 to another.

 . Language: Low level routines in Fortran, high level
 routines and programs in Ratfor

 Version 3:

 . Features: Same as version 2, but with Primos com−
 patible i/o for speed; new shell added later greatly
 expanded program interaction

 . Language: Almost entirely Ratfor

 Version 4:

 . Features: Same as version 3, plus: (1) ability to
 handle file names of up to 32 characters on new Primos
 file partitions; (2) much faster disk i/o (on an
 unloaded system, benchmarks show an improvement on the
 order of a factor of 20); (3) internal reorganization
 to speed up command searches; (4) support for virtual
 mode programs and a shared command interpreter.

 . Language: All higher−level routines in Ratfor. A few
 special routines in assembly language to provide
 capabilities not inherent in Fortran.

 − 38 −

 Software Tools Subsystem Tutorial

 Version 5:

 . Features: A new command interpreter supporting
 arbitrary networks of pipes, generalized command file
 handling, and dynamic command line structures was
 added. General reorganization of Subsystem directories
 on disk.

 . Language: Ratfor and Assembler (PMA).

 Version 6:

 . Features: Shared libraries, maximal security under
 unmodified Primos, increased robustness.

 . Language: Ratfor and Assembler (PMA)

 Version 7:

 . Features: Much faster disk I/O, extensions to path−
 names to allow specification of non−file−system
 devices, new Ratfor preprocessor with significant
 extensions, some general cleanup of code and redundant
 tools, many additional tools.

 . Language: Ratfor, Assembler (PMA), and some PL/I.

 Version 8:

 . Features: Additional I/O speed, reduced working set,
 support for PL/I G, Pascal, Fortran 77, DBG, improved
 error handling, terminal type handling, virtual
 terminal handler.

 | . Language: Ratfor, Assembler (PMA), and some PL/I.

 | Version 9:

 | . Features: Increased security for shared segments,
 | improved shell, extended text editors and formatter,
 | access to new Primos file system features, some support
 | for Prime’s C compiler, a high precision mathematics
 | library, and an improved stacc.

 | . Language: Ratfor, Assembler (PMA), and some PL/I.

 Authors and Origins

 The principal authors of the Software Tools Subsystem are
 Allen Akin, Perry Flinn, Dan Forsyth, and Jack Waugh, of the

 − 39 −

 Software Tools Subsystem Tutorial

 Georgia Institute of Technology, aided by a cast of thousands.

 The ultimate antecedent for the design of the Subsystem is
 the UNIX operating system, written by Dennis Ritchie and Ken
 Thompson of Bell Labs for the DEC PDP−11 computers.

 The tremendous debt owed to Brian W. Kernighan and P. J.
 | Plauger, the authors of Software Tools, cannot be overstated.

 − 40 −

 TABLE OF CONTENTS

 Introduction ... 1
 Getting Started 1
 Correcting Typographical Errors 3
 Adjusting to Terminal Characteristics 4
 Finishing Up .. 5
 Automatically Running the Subsystem 6

 Online Documentation 8
 The ’Help’ Command 8
 The ’Usage’ Command 9

 The File System and Related Utilities 11
 Creating Files .. 11
 Looking at the Contents of Files 11
 Deleting Files .. 12
 The ’Lf’ Command 12
 The Primos File System 13
 Directories ... 15
 Moving Around in the File System 16

 Subsystem Communication Services 17
 The Subsystem Postal Service 17
 The Subsystem News Service 18
 Subsystem Real−Time Communications 19

 Input/Output ... 20
 Standard Input and Standard Output 20
 I/O Redirection 20
 Examples of Redirected I/O Using ’Cat’ 21

 Using Primos from the Subsystem 23
 Executing Primos Commands from the Subsystem 23

 Program Development 24
 Developing Programs 24
 The Subsystem Text Editor 24
 Creating a Program 26
 Caveats for Subsystem Programmers 30

 Errors ... 33
 Recovering from Errors 33

 Advanced Techniques 35
 Command Files ... 35
 Pipes ... 35
 Additional I/O Redirectors 36

 − iii −

 Background ... 38
 Ancient History 38
 Authors and Origins 39

 − iv −

 User’s Guide to the Primos File System

 Perry B. Flinn
 | Jefferey S. Lee

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 Foreword

 We offer this guide as an attempt to acquaint you with
 everything you need to know to make effective use of the file
 system from within the Subsystem. Although we have tried to be
 thorough in our coverage of concepts and features, we have
 specifically avoided the details of the programmer’s interface to
 the file system, and everything having to do with implementation.
 Should you find yourself in need of further information in either
 | of these areas, let us direct your attention to section two of
 | The Software Tools Subsystem Reference Manual, the Reference
 | Guide, File Management System (Prime publication number FDR3110),
 | and the Prime User’s Guide (Prime publication number DOC4130).

 − iv −

 File System User’s Guide

 Introduction

 One thing that you will almost certainly encounter
 frequently during your exploits in the Software Tools
 Subsystem is the Primos file system. Indeed, there is
 | hardly anything you can do that does not in some way
 | involve this ubiquitous beast.

 What is a File?

 A file is a named collection of information retained on some
 storage medium such as a disk pack. Just what kind of informa−
 tion a file contains isn’t of much concern to us here; it may be
 ASCII character codes that form the text of a book or a program’s
 source code, it may be arbitrary binary machine words to be used
 as input data for a program, or it may be the actual machine
 instructions of the program itself, to mention just a few. No
 matter what form the information in a file takes, as far as
 Primos is concerned it is just an ordered sequence of sixteen bit
 binary numbers. The interpretation of those numbers is left to
 other programs.

 Entrynames

 Since we mentioned that a file has a name, you might ask
 what names are acceptable. A file is known by something called
 its "entryname." An entryname is a sequence of 32 or fewer
 characters chosen from the letters of the alphabet, the decimal
 digits, and the following special characters:

 # $ & − * . / _

 The first character in the entryname must not be a digit. Also,
 no distinction is made between upper− and lower−case letters.
 Thus "file_name" and "FILE_NAME" are the same.

 Even though Primos allows you to use slashes (/) in
 entrynames, for reasons that will become apparent in the section
 | on pathnames they must be treated specially when you are using
 | the Subsystem. Because the slash is used to separate entrynames
 from one another in pathnames, if you want to use it in an
 entryname you have to "escape" it. By this we mean that you have
 to precede it with the "escape" character "@". The "@" simply
 tells the Subsystem to "treat the next character literally, no
 matter what special meaning it may have;" it is not taken as part
 of the entryname. It is important that you realize this caveat
 applies only when you are dealing with the Subsystem; if you try
 to put an "@" in an entryname when talking directly to Primos,
 you will get a rather impudent message.

 − 1 −

 File System User’s Guide

 Directories

 The way that Primos makes the association between a file’s
 entryname and its contents is through the use of "directories."
 Like a file, a directory has an entryname and contains some
 information; but it is different from ordinary files in that the
 information it contains is treated specially by Primos. The
 information in a directory is a series of "entries," each
 consisting of the entryname of some other file, that file’s loca−
 tion on the disk pack, and some other stuff that we will cover in
 a later section. When a file’s entryname and location appear in
 a directory, we say that the directory "contains" that file, or
 that the file "resides within" that directory. Either way you
 say it, every file in the system appears in exactly one direc−
 tory.

 Since a directory is so much like a file, there is really
 nothing to prevent us from having directories that contain other
 directories. This phenomenon is known as "nesting" and may be
 carried out to any depth, giving rise to a hierarchical struc−
 ture:

 mfd
 _________________|__________________
 | | | | | |
 disk_rat dir1 mfd boot badspt dir2
 ___|___ _______|______
 | | | | |
 dir3 file1 dir4 file1 dir1
 | |
 file2 file1

 At the topmost level of the hierarchy is a directory named "mfd",
 short for master file directory. You will find this directory at
 the top level of every Primos file system. The MFD is special
 because it always begins at a fixed location on the disk pack,
 and because it always contains the following entries:

 disk_rat
 The disk_rat (disk record availability table) is a file
 that catalogs all of the storage space on the disk pack
 that isn’t already in use. It is always the first
 entry in the MFD and, like the MFD, always begins at a
 fixed location. This file may have any valid
 entryname; it doesn’t have to be called "disk_rat".
 But whatever entryname is chosen, it is known as the
 "packname" for that disk pack.

 mfd
 The MFD always has an entry describing itself.

 boot
 The "boot" file, which also begins at a fixed location,
 contains the memory−image of a program that is loaded
 and executed whenever the computer is cold−started.
 This program is usually a single−user version of

 − 2 −

 File System User’s Guide

 Primos.

 badspt
 Although this file is not necessarily present on every
 disk pack, if it is it contains a list of faulty
 records that should not be used.

 You may have noticed in the diagram that there are three
 occurrences of the entryname "file1", and two of "dir1". Each of
 these entrynames refers to a different file or directory. Even
 though each entryname must be unique among all those in a given
 directory, it is perfectly legal to use the same name repeatedly
 in different directories.

 Logical Disks

 Since Primos doesn’t allow file systems that span multiple
 disk packs, it does the next best thing and allows you to have
 multiple file systems in the same installation. Each file system
 is called a "logical disk" and has exactly the structure
 described in the last section. Although each installation is
 virtually guaranteed to have at least one logical disk, the
 actual number may vary dynamically from 0 to 62. Each disk is
 uniquely identified by its "logical disk number," and though it
 is not required, it is extremely desirable for each disk to have
 a unique packname.

 The "Current" and "Home" Directories

 Now that we have described this wonderful hierarchy of
 directories and files just waiting to be used, you might wonder
 how it is that you go about getting to them. One concept that is
 central to the solution of this problem is that of the "current
 directory." From the time you log in to the time you log out,
 your terminal is having an ongoing relationship with some direc−
 | tory in the file system. When you first log in, this directory
 | is set to whatever the system administrator decided when he
 | created your account. But monogamy is not required; you are free
 | to jump around from directory to directory upon the slightest
 whim. We say the "current directory" is the directory to which
 you are attached.

 The current directory is important because all the files
 contained in it are directly accessible to you at the drop of an
 entryname. In fact, if you are using some of Prime’s software,
 these are the only files accessible to you without changing your
 current directory. But there is a handy device called the "home
 directory" that takes some of the edge off of this restriction.
 Your home directory is the one to which you intend to return
 after an expedition into the wilds of the file system. In
 effect, it allows you to remember the location of some particular
 directory, and to later return there in one giant step, regard−
 less of your (then) current location. Whenever you change your
 current directory, you get to choose whether to change your home

 − 3 −

 File System User’s Guide

 directory as well or to leave it where it is.

 Protection and Access Control

 | In versions of Primos before Revision 19, to guard your
 | files from unwanted perusal or alteration, the file system
 | included a basic access control mechanism that provided two
 | levels of protection to each file. As part of this mechanism,
 | each directory had associated with it a pair of six−character
 passwords, one called the "owner password," and the other called
 | the "non−owner password." Normally, when a directory was created
 | its owner password was blank and its non−owner password was zero;
 | these were the default values. But if the passwords had other
 | than default values, then before you could successfully attach to
 | the directory, you had to prove your worthiness to do so by cit−
 | ing one of them. If you cited the owner password, then you were
 | attached to the directory with "owner status;" if it’s the non−
 | owner password that you cited, then you were attached with "non−
 | owner status." If you failed to cite either password, then
 | unless one of them had a default value your attempt would be in
 | vain. Just what status you attained when attaching to a direc−
 | tory bears upon the kinds of things you could do to the files it
 | contains.

 | For the purposes of password protection, there are three
 | things you can do to a file: you can read from it, you can write
 | into it, and you can truncate (shorten) or delete it. Now if you
 will recall that "other stuff" we mentioned a while back as being
 in a file’s directory entry, part of it is two sets of "protec−
 tion keys:" one for people attached to the containing directory
 with owner status, and the other for those with non−owner status.
 Each set of keys has a bit for each type of access: read, write
 and delete. If a bit is turned on, the associated type of access
 | is permitted; otherwise, it is denied.

 | Revision 19 of Primos introduced Access Control Lists
 | (ACL’s). Unlike the password protection previously described,
 | ACL’s allow specific permissions on files to be granted on a per−
 | user basis, instead of a broad class of permissions being granted
 | to anyone who happens to know, or guess, the password. They also
 | allow better control over permissions given to users.
 | Previously, in order to allow a user to create files in a direc−
 | tory, he was implicitly given the right to delete any other files
 | in that directory, also. With ACL’s, this is no longer the case.

 | An ACL consists of a list of up to 32 identifiers and
 | privileges associated with each of the identifiers. An
 | identifier can be a user’s login name or it can be a group
 | identifier associated with several users. If a user’s name and
 | associated group are both in an ACL, the user’s login name takes
 | precedence. The seven different privileges associated with ACL’s
 | are:

 | add This privilege is associated with a directory and
 | allows the user to create a new file within that

 − 4 −

 File System User’s Guide

 | directory. Once the file is created, the user has
 | full read/write access to the file until the file
 | is closed, at which point other privileges
 | determine the accessibility of the file.

 | delete This privilege is associated with a directory
 | and allows the user to delete an existing file
 | within that directory.

 | list This privilege is associated with a directory and
 | allows the user to list the contents of the direc−
 | tory (like with ’lf’).

 | protect This privilege is associated with a directory
 | and allows the user to set ACL protection for
 | objects in the directory.

 | read This privilege is associated with a file and
 | allows the user to open a file for reading or to
 | execute a file. The user must first be able to
 | attach to the directory before he can read the
 | file, which implies use privilege (see below).

 | use This privilege is associated with a directory and
 | allows the user to attach to the directory (like
 | with ’cd’). In order to access a file or a direc−
 | tory, the user must have use privilege on all
 | intervening directories between the MFD and the
 | desired file or directory.

 | write This privilege is associated with a file and
 | allows the user to open a file in write mode or to
 | truncate a file.

 | Associated with the ACL is its type. There are five
 | different types of ACL’s. The first type is the specific ACL.
 | This gives protection on one specific file object and is
 | associated with only that object. If the object is deleted then
 | the specific ACL goes away, also.

 | The second type of ACL is the default specific ACL where a
 | specific ACL is set on an ancestor directory of the current
 | object. If the object is not protected by a specific ACL or an
 | access category (the next type), then it is given the same
 | protection as the ancestor directory.

 | The third type of ACL is the access category ("acat"). An
 | access category, unlike the two previous types, may protect many
 | objects at one time with the same protections. An acat appears
 | in the file system as a file that cannot be read or written, and
 | its name must end in ".acat". It is a separate type of file
 | system object (just as in ’lf −l’ listings, DAM files are
 | different from SAM files −− acats are of type ACT). An access
 | category need not protect any object since it exists independant
 | of any other object in the file system. If an access category is
 | deleted, any object that it was protecting becomes default

 − 5 −

 File System User’s Guide

 | protected, or becomes protected by the directory that contains
 | it.

 | The fourth type of ACL is the default access category. This
 | is an access category that protects a directory that contains
 | other objects that are then protected by default.

 | The last type of ACL is the priority ACL. This is an ACL
 | that is set on an entire disk partition by the system
 | administrator, normally at boot time. Any rights given by a
 | priority ACL override any rights given by any other ACL’s.

 | In order to allow for a gradual change from the older ver−
 | sions of Primos to Revision 19, it is possible for password
 | directories and ACL’s to exist in the same system, although pass−
 | word directories will eventually be unsupported. There is a
 | restriction in that ACL directories may contain both password and
 | ACL directories but password directories may not contain ACL
 | directories. In order for any directory to be an ACL directory
 | on a logical disk, the MFD of that partition has to be ACL
 | protected. Password directories also overcome some of the
 | limitations of ACL’s. If an ACL gives someone the privilege of
 | writing a file, then under all circumstances they are allowed to
 | write the file. If the file is in a password directory, though,
 | they may only write the file if they know the password. This
 | means that a password can be nested deep in a program that is
 | used to control their access to a file, even if the person run−
 | ning the program does not know the password.

 Pathnames

 Unlike the Prime software we mentioned that only lets you
 manipulate files in your current directory, the Subsystem places
 no restrictions on the whereabouts of the files you can
 reference. Generally speaking, anywhere the name of a file is
 required you may use something called a "pathname." A pathname
 is a construct that allows you to uniquely specify any file in
 the system by describing a path to it from some known point. As
 we have seen, the current directory is one such point, and
 because of its fixed location, the MFD on each logical disk is
 another.

 The syntax of a pathname is divided into two basic parts
 which we will call the "starting node," designating the
 particular known point at which the path starts, and the "direc−
 tory path," designating the actual series of nested directories
 that leads to the desired file. Both parts, by the way, are
 optional: either one may stand alone, they may stand together,
 or they may both be omitted. But if both are present, they must
 be separated by a single slash (/).

 The starting node of a pathname comes in two varieties. The
 first designates the MFD of a particular logical disk and
 consists of an initial slash followed by a packname, a logical
 disk number in octal, or a single asterisk (*):

 − 6 −

 File System User’s Guide

 /vol00
 /7
 /*

 If the asterisk is used, the MFD of the logical disk containing
 the current directory is implied; the other two forms should be
 self−explanatory. The second variety of starting node refers to
 one of the current directory’s ancestors in the hierarchy and
 consists of one or more backslashes (\). The number of back−
 slashes indicates the number of nesting levels above the current
 directory at which the path begins. If the starting node is
 omitted altogether, then the path starts in the current direc−
 tory.

 Now the other half of a pathname, the directory path, is
 simply a series of one or more entrynames, each separated from
 the next by a single slash. The first entryname must be
 contained in the starting directory, and each subsequent
 entryname must reside in the directory designated by the preced−
 ing entryname. The very last entryname in the path is that of
 the target file. To illustrate,

 src/lib/swt
 extra

 are proper directory paths. As you might expect, if the direc−
 tory path is omitted, the target of the pathname is the starting
 directory. Thus, the pathname from which both the starting node
 and the directory path have been omitted (the empty pathname)
 refers to the current directory.

 A couple of special cases are worth mentioning here: First,
 a pathname that begins with a slash and whose directory path is
 not omitted need not contain a packname or logical disk number.
 In this case an implicit search of the MFD on each logical disk
 is made for the first entryname in the directory path. The MFD
 on the lowest numbered logical disk in which that entryname is
 found is taken as the starting directory. Notice that such a
 pathname is easily recognizable because it begins with two
 slashes; the first one belongs to the starting node and the
 second separates it from the directory path:

 //system

 The second special case has to do with pathnames beginning
 with a backslash. Although we said that a slash must be used to
 separate a starting node from a directory path, when using back−
 slashes the intervening slash is not required; indeed it is omit−
 ted more often than not.

 Passwords in Pathnames

 | The following discussion is applicable only for password
 | protected directories, since ACL protected items do not need pas−

 − 7 −

 File System User’s Guide

 | swords. Thus far in discussing pathnames we have assumed that we
 may freely specify any valid sequence of directories in a direc−
 tory path without regard to the passwords that may be associated
 with those directories. In fact, this is true only if the direc−
 | tories have at least one password with a default value, or if the
 | directories are ACL directories. You see, the interpretation of
 a pathname involves temporarily attaching to each directory in
 the path; if this can’t be done without a password then the path−
 name can’t be interpreted. Furthermore, the set of access
 privileges (owner or non−owner) available to you with respect to
 the target file is determined by whether you are attached to its
 parent directory as an owner or a non−owner by the pathname
 interpreter. So, to let you deal effectively with passworded
 directories, the pathname syntax allows you to append a password
 to each directory entryname in the path, separated from the
 entryname by a colon:

 entryname:passwd

 If a password is so specified, the pathname interpreter will use
 it when attaching to the associated directory.

 | A password may contain arbitrary characters which are not
 | necessarily legal in entrynames. So to avoid the ambiguity in
 interpreting a password containing a slash, as with entrynames,
 the slash must be "escaped" by preceding it with an "@". This
 also means that the "@" itself must be escaped if it is to appear
 literally in the password. Remember that the "@" used as an
 escape character is not included in the password; it merely turns
 off the special meaning of the character that follows.

 The following set of examples contains an instance of just
 about every possible variation in the syntax of pathnames, along
 with an explanation of each. A formal summary of pathname syntax
 in BNF notation is included in Appendix B.

 a_file
 A file in the current directory whose entryname is
 "a_file".

 a_ufd/a_file
 A file whose entryname is also "a_file" and is
 contained in the subdirectory "a_ufd" of the current
 directory.

 \
 The parent of the current directory.

 \brother (or \/brother)
 The file or directory named "brother" that resides in
 the same directory that contains the current one.

 /0/cmdnc0:secret
 The directory named "cmdnc0" (one of whose passwords is
 "secret") which resides in the MFD on logical disk 0.

 − 8 −

 File System User’s Guide

 /md
 The MFD on the logical disk whose packname is "md".

 /*/boot
 The "boot" file on the current logical disk.

 //spoolq/q.ctrl
 The file named "q.ctrl" in the "spoolq" directory on
 the lowest numbered logical disk that has one.

 ki@/da:ad@/ik
 The directory residing in the current directory whose
 entryname is "ki/da" and one of whose passwords is
 "ad/ik". (Note the use of the "@" to turn off the
 special meaning of "/".)

 <empty>
 The current directory.

 Templates

 In order to provide flexibility in the organization and
 placement of the directories and files used by the Subsystem, the
 pathname interpreter contains a primitive macro substitution
 facility, a feature that is loosely referred to as "templates."
 Templates provide a means for designating particular files or
 directories without having to know their exact location in the
 file system, and for constructing file names whose exact
 interpretation may vary with the context in which, or the user by
 | whom they are used. A template is constructed from letters,
 digits and underscores and is always enclosed in equals bars (=).
 (Templates do not have to begin with a letter). Unlike
 entrynames, upper− and lower−case letters are different in tem−
 plate names; "name" and "NAME" are not the same. Each defined
 template has an associated value which is an arbitrary character
 string. The effect of including a template in a pathname is the
 same as if its value had appeared instead.

 There are two types of templates: static and dynamic. The
 value of a dynamic template varies depending upon who you are,
 how you are connected to the computer, or what time it is. The
 following list describes all of the available dynamic templates:

 =date=
 The current date in the format mmddyy.

 =day=
 | The current day of the week; "monday", for example.

 | =home=
 | The current user’s initial login directory (set by the
 | system administrator when he created the account).
 | This may vary on a per−user per−project basis. I.e.,
 | the system administrator may set it up so that the
 | initial login directory for a given user is different

 − 9 −

 File System User’s Guide

 | for different projects.

 =passwd=
 The owner password of the current user’s profile direc−
 tory. (This is the same password the Subsystem asked
 you for when you typed "swt".)

 =pid=
 The current user’s process−id. This is a three−digit
 number in the range 001−128 that is unique to each
 logged−in user.

 =time=
 The current time in the format hhmmss.

 =user=
 The current user’s login name.

 These templates are particularly useful for constructing unique
 file names.

 Static templates are those whose definitions are independent
 of the context in which they are used. These templates and their
 values come from two sources. The file whose name is the value
 of the template

 =template=

 contains system template definitions that apply globally to all
 Subsystem users. In fact the definition of "=template=" itself
 is contained in this file, as are definitions for other important
 Subsystem files and directories. In addition to this file, you
 | may have in your profile directory (named by the template
 "=varsdir=") a file named ".template" that contains your own per−
 | sonal template definitions. Any templates that you define your−
 | self preempt similarly named system templates, so you should
 | exercise caution in choosing names. Also note that any new tem−
 plates you place in your personal template file do not take
 effect until the next time you enter the Subsystem via ’swt’;
 | this is the only time that the file is examined. If you wish to
 | create templates that will take effect immediately, use the ’tem−
 | plate’ command (do a ’help template’ for details).

 The format of both files is the same: a series of lines
 containing a name, followed by one or more blanks, and then a
 value. Blank lines are ignored, as are leading and trailing
 blanks on each line. Comments may be introduced with the sharp
 character (#); all characters from the sharp to the end of the
 line are ignored:

 # example of a template definition
 macros //smith/misc/macros #Smith’s macros

 The above example defines a template "macros" referring to the
 file "//smith/misc/macros." A quick perusal of the contents of
 "=template=" should clear up any lingering questions you may

 − 10 −

 File System User’s Guide

 have. Just for convenience, all dynamic and system templates,
 along with an explanation of each, are listed in Appendix A.

 If you look at the template definition file, you will notice
 that some of the definitions appear to contain templates them−
 selves. This is perfectly legal, for after each template is
 expanded, the result is inspected for further templates until no
 others are found. This makes possible the definition of such
 templates as "=varsdir=", and generally enhances the utility of
 the mechanism.

 Just one further remark about templates: Remember the
 trouble we had with "/" in passwords and entrynames? Well, we
 have a similar situation with "="; when should it be taken
 literally, and when should it indicate the beginning of a tem−
 plate? To solve this dilemma, any time the template expander
 sees a template with an empty name (that is, two consecutive
 equals bars), it supplies a single "=" as the replacement value
 and does not consider it to be the start of another template. So
 if you ever want a literal "=", in a password for example, just
 type "==" and you’ve got it.

 Device Names

 Up to this point, we have been talking only about disk
 files, and the pathnames we have described have corresponded
 exactly to some actual sequence of directories leading to a file.
 Although this is certainly the most common use of pathnames,
 there is one additional feature that significantly enhances their
 usefulness. If the "starting node" of a pathname is "/dev", the
 pathname doesn’t necessarily refer to a disk file, but may
 instead refer to an arbitrary peripheral device, or to some
 special file that requires unusual processing. As with ordinary
 pathnames, the "directory path" provides more information about
 the target file or device.

 Perhaps the most useful of these extended pathnames (or
 "device names," as they are usually called) is

 /dev/lps

 which refers to the line printer spooler. When this pathname is
 opened for writing, a special disk file is created and other
 processing is done so that when the file is closed, its contents
 will be written to the on−site line printer by the spooler and
 then deleted. Additional entrynames may be included after the
 "lps" to select various processing options specific to the spool−
 ing process. A complete list of these in included as Appendix C.

 Another useful device name is

 /dev/tty

 which refers to your terminal device. There are also others
 which, when opened, yield file descriptors for the various stan−

 − 11 −

 File System User’s Guide

 dard input and output ports:

 | /dev/stdout /dev/stdin
 /dev/stdout1 /dev/stdin1
 /dev/stdout2 /dev/stdin2
 /dev/stdout3 /dev/stdin3
 | /dev/errout /dev/errin

 Finally, the device name

 /dev/null

 when opened yields a file descriptor which discards all data
 written to it and returns an end−of−file signal every time it is
 read. It is really just a fancy name for the proverbial bit buc−
 ket.

 Georgia Tech Extensions

 As many of you reading this guide will eventually come to
 know, using the standard Primos file system can be quite awkward,
 principally because of the constant necessity of typing passwords
 in pathnames. Relief from this burden comes only at the expense
 of security, which in many cases is a more important considera−
 tion than ease of use. So that we can have our cake and eat it
 too, we at Georgia Tech have made a few modifications to the
 standard protection mechanism that virtually eliminate the neces−
 sity for typing passwords in all but the rarest of circumstances.
 The Subsystem requires none of these modifications to operate
 properly, and in those cases where it behaves differently depend−
 ing on the extant version of Primos, it does so completely
 transparently to the user.

 In Georgia Tech Primos, if a directory’s owner password is a
 valid entryname, it is assumed to be the login name of the user
 that "owns" that directory. In this case, the "owner password"
 is instead called the "owner name." When you attach to a direc−
 tory whose owner name "matches" your login name, you
 | automatically get owner status without having to cite a password.
 | This is the only difference between the protection mechanism in
 Georgia Tech Primos and the standard mechanism. In all other
 situations, you can expect the standard behavior.

 − 12 −

 File System User’s Guide

 Appendix A − Standard Templates

 The following list describes all of the templates that are
 provided either in the standard Subsystem template file or by the
 template interpreter.

 =aux=
 This Subsystem directory contains large files that are
 not absolutely necessary for the operation of the Sub−
 system.

 =bin=
 The standard Subsystem command directory.

 =bug=
 The directory in which the Subsystem bug reporting
 mechanism collects bug reports.

 =cldata=
 Defines the location of the Primos CLDATA structure,
 used internally by the Subsystem command interpreter
 (shell).

 =cmdnc0=
 The directory to which the system console is normally
 | attached.

 | =crondir=
 | The directory where the ’cron’ program creates tem−
 | porary files for phantoms.

 | =cronfile=
 | The file that contains the directive lines for the
 | ’cron’ program.

 =date=
 The current date in the format mmddyy.

 =day=
 The current day of the week (e.g., "monday", "tuesday",
 etc.).

 =dictionary=
 A file containing English words, used by the spelling
 checker.

 =doc=
 The Subsystem documentation directory.

 =ebin=
 A directory of programs called by shell programs in
 "=bin=".

 =extra=
 A standard Subsystem directory containing miscellaneous
 files required for proper operation of the Subsystem.

 − 13 −

 File System User’s Guide

 =fmac=
 The Subsystem directory containing all the text format−
 ter macro definition files.

 =GaTech=
 This is a template having nothing to do with pathnames.
 Its value is "yes" at installations that run the Geor−
 gia Tech version of Primos, and "no" elsewhere.
 Programs that are sensitive to the operating system
 version use this template to determine their
 environment.

 =gossip=
 The directory containing user−to−user message files
 | generated by the ’to’ command.

 | =histfile=
 | The current user’s saved command history file.

 =home=
 The current user’s login directory. Take note that
 this is not the same as his "home directory" as
 described in the section on "current" and "home" direc−
 tories.

 =incl=
 The standard Subsystem directory containing files that
 | are included by Ratfor and C programs.

 =installation=
 A file containing the name of the installation.

 =lbin=
 The standard Subsystem locally−supported command direc−
 tory.

 =lib=
 The Primos directory containing all library files that
 should be accessible to the loader.

 =mail=
 The Subsystem directory that contains per−user mail
 delivery files.

 =mailfile=
 The current user’s mail storage file. This is where
 the ’mail’ command deposits a letter after you have
 | asked that it be saved.

 | =new_words=
 | If this template exists and describes a legal file
 | name, the ’spell’ program will write a copy of
 | unrecognized words to this file.

 − 14 −

 File System User’s Guide

 =newbin=
 The Subsystem directory into which newly−compiled com−
 mands are placed during a recompilation of the entire
 Subsystem.

 =newcmdnc0=
 The Subsystem directory into which newly−compiled Sub−
 system files that belong in "cmdnc0" are placed during
 a recompilation of the entire Subsystem.

 =newebin=
 The Subsystem directory into which newly−compiled com−
 mands destined for "=ebin=" are placed during a recom−
 pilation of the entire Subsystem.

 =newlbin=
 The Subsystem directory into which newly−compiled
 locally−supported−commands are placed during a recom−
 pilation of the entire Subsystem.

 =newlib=
 The Subsystem directory into which newly−compiled
 object code libraries are placed during a recompilation
 of the entire Subsystem.

 =news=
 The directory used by the Subsystem news service.

 =newsfile=
 The current user’s news delivery file.

 =newsystem=
 The Subsystem directory into which newly−compiled Sub−
 system files that belong in "system" are placed during
 a recompilation of the entire Subsystem.

 =passwd=
 The password of the current user’s profile directory.
 (This is the same password the Subsystem asked you for
 when you typed "swt".)

 =pid=
 The current user’s process−id. This is a three−digit
 number in the range 001−128 that is unique to each
 logged−in user.

 =src=
 The Subsystem source code directory.

 =srcloc=
 A file associating each Subsystem library subroutine
 and command with the pathname(s) of its source code
 file(s).

 − 15 −

 File System User’s Guide

 =statistics=
 The system template which controls whether or not com−
 | mand statistics are to be kept. (See the "Application
 | Notes" section of the Command Interpreter User’s
 | Guide.)

 =statsdir=
 | The directory where command statistics are recorded.
 | (See the "Application Notes" section of the Command
 | Interpreter User’s Guide.)

 =syscom=
 The directory where the Primos subprogram keys
 (predefined constants) are stored.

 =sysname=
 This is the system’s Primenet node name, if it is a
 network system.

 =system=
 The Primos directory that contains the core−images of
 the various shared memory segments.

 =temp=
 The Subsystem directory in which all temporary files
 are created.

 =template=
 The system template definition file.

 =termlist=
 A file describing the location and type of each
 terminal connected to the computer.

 =time=
 The current time in the format hhmmss.

 =ttypes=
 A file containing a list of terminals supported by your
 Subsystem and their characteristics.

 =ubin=
 By convention, the user’s private command directory.

 =user=
 The current user’s login name.

 =userlist=
 A file containing a list of all users authorized to use
 the computer.

 =utemplate=
 The current user’s private template definition file.

 − 16 −

 File System User’s Guide

 =vars=
 The Subsystem directory in which all per−user profile
 directories are contained.

 =varsdir=
 The current user’s profile directory.

 =varsfile=
 The current user’s shell variable storage file.

 =vth=
 The directory used by the Subsystem virtual terminal
 handler.

 − 17 −

 File System User’s Guide

 Appendix B − Pathname Syntax

 | For the grammar aficionados among you, here is a formal
 | description of the syntax of pathnames. The notation used is an
 extended Backus−Naur Form (BNF) which is described in the
 introduction to the Software Tools Subsystem Reference Manual.

 <pathname> ::= <starting node>
 | <directory path>
 | <starting node>/<directory path>
 | <empty>
 <starting node> ::= \{\}
 | | /<volume id>
 <volume id> ::= <packname>
 | <octal integer>
 | *
 <packname> ::= <entryname>
 <directory path> ::= <node>{/<node>}
 <node> ::= <entryname>[:<password>]
 <entryname> ::= <non−digit>{<valid char>}
 <non−digit> ::= <letter> | <special char>
 <valid char> ::= <non−digit> | <digit>
 <letter> ::= a | b | c |...| x | y | z
 <digit> ::= 0 | 1 | 2 |...| 7 | 8 | 9
 <special char> ::= # | $ | & | − | * | . | / | _

 Appendix C − Spool Options

 The entrynames that may be appended to the "/dev/lps" device
 name to control spooling options are summarized in the following
 list. These entrynames correspond exactly to the options that
 are accepted by the ’sp’ command (see section one of the Sub−
 system reference manual). These entrynames and associated values
 must be separated by slashes or blanks, e.g. "/dev/lps/b/TECH/"
 or "/dev/lps/b TECH."

 a This option selects a specific location at which the
 file is to be printed. The immediately following
 entryname in the path is taken as the name of the
 destination printer.

 b The file name that is printed on the banner page of the
 printout may be set arbitrarily with this option. The
 next entryname in the path is taken as the name to be
 printed. If this option is not used, the name
 "/dev/lps" is printed.

 c This option specifies the number of copies of the file
 that are to be printed. The next entryname must be a
 decimal integer indicating the number of copies.

 − 18 −

 File System User’s Guide

 d Printing of the file may be deferred until a specific
 time of day using this option. The next entryname in
 the path must be a time of day in any reasonable
 format.

 f If specified, this option indicates that the print file
 contains standard Fortran carriage control characters.

 h This option causes the spooler to suppress the printing
 of the banner page that normally precedes each
 printout.

 j Specifying this option causes the spooler to suppress
 the trailing page eject that it normally supplies at
 the end of each printout.

 n This option causes the spooler to print a consecutive
 line number in front of each line of the print file.

 p This option instructs the spooler that the print file
 is to be printed on a special type of paper. The name
 of the desired form should follow as the next entryname
 in the path.

 r "Raw" forms control mode is selected by this option.
 No carriage control characters are recognized, nor is
 any pagination done when this mode is in effect.

 s This option selects the standard Primos forms control
 mode. Under this mode, the printout is automatically
 paginated, and a header line is printed on each page.

 − 19 −

 | TABLE OF CONTENTS

 What is a File? 1
 Entrynames .. 1
 Directories ... 2
 Logical Disks ... 3
 The "Current" and "Home" Directories 3
 Protection and Access Control 4
 Pathnames ... 6
 Passwords in Pathnames 7
 Templates ... 9
 Device Names .. 11
 Georgia Tech Extensions 12
 Appendix A − Standard Templates 13
 Appendix B − Pathname Syntax 18
 Appendix C − Spool Options 18

 − iii −

 Introduction to the Software Tools Text Editor

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 | Foreword

 ’Ed’ is an interactive program that can be used for the
 creation and modification of "text." "Text" may be any collec−
 tion of character data, such as a report, a program, or data to
 be used by a program.

 This document is intended to provide the beginning user of
 ’ed’ with a tutorial, an aid to becoming familiar with editing.
 It does not attempt to cover the editor in full; only the most
 frequently used aspects are mentioned. For details on advanced
 uses, a careful reading of Software Tools and the Software Tools
 Subsystem Reference Manual is recommended.

 How To Use This Guide

 This tutorial includes a step−by−step journey through an
 editing session. You should be sitting at a terminal and running
 the Software Tools Subsystem, so that you can perform the sug−
 gested exercises as you go.

 Throughout the text of this guide are sample editing com−
 mands, which you can execute on your terminal to get a feel for
 their actual effect. If at any time your terminal session
 produces results different from those shown in the text,
 carefully re−check what you have typed, or consult someone in
 charge of your installation.

 − v −

 Introduction to ’Ed’

 Tutorial

 Starting an Editing Session

 We assume that you have successfully logged in to your com−
 puter and are running the Software Tools Subsystem. If you need
 assistance, see the Software Tools Subsystem Tutorial. We
 further assume that you know how to use the character erase and
 line delete characters, so that you will have no trouble correct−
 ing typographical errors, and that you have some idea of what a
 "file" is.

 Since you are in the Subsystem, the command interpreter
 should have just printed the prompt "]". To enter the text
 editor, type

] ed (followed by a newline)

 (Throughout this guide, boldface is used to indicate information
 that you should type in. Things typed by ’ed’ are shown in the
 regular font.) You are now in the editor, ready to go. Note
 that ’ed’ does not print any prompting information; this quiet
 behavior is preferred by experienced users. (If you would like a
 prompt, it can be provided; try the command "op/prompt/".)

 At this point, ’ed’ is waiting for instructions from you.
 You can instruct ’ed’ by using "commands," which are single let−
 ters (occasionally accompanied by other information, which you
 will see shortly).

 Entering Text − the Append Command

 The first thing that you need is text to edit. Working with
 ’ed’ is like working with a blank sheet of paper; you write on
 the paper, alter or add to what you have written, and either file
 the paper away for further use or throw it away. In ’ed’s
 terminology, the blank sheet of paper you start with is called a
 "buffer." The buffer is empty when you start editing. All edit−
 ing operations take place in the buffer; nothing you do can
 affect any file unless you make an explicit request to transfer
 the contents of the buffer to a file.

 So the first problem reduces to finding a way to put text
 into the buffer. The "append" command is used to do this:

 a

 This command appends (adds) text lines to the buffer, as they are
 typed in.

 To put text into the buffer, simply type it in, terminating
 each line with a newline:

 − 1 −

 Introduction to ’Ed’

 The quick brown fox
 jumps over
 the lazy dog.
 .

 To stop entering text, you must enter a line containing only a
 period, immediately followed by a newline, as in the last line
 above. This tells ’ed’ that you are finished writing on the
 buffer, and are ready to do some editing.

 The buffer now contains:

 The quick brown fox
 jumps over
 the lazy dog.

 Neither the append command nor the final period are included in
 the buffer −− just the text you typed in between them.

 Writing text on a file − the Write command

 Now that you have some text in the buffer, you need to know
 how to save it. The write command "w" is used for this purpose.
 It is used like this:

 w file

 where "file" is the name of the file used to store what you just
 typed in. The write command copies the contents of the buffer to
 the named file, destroying whatever was previously in the file.
 The buffer, however, remains intact; whatever you typed in is
 still there. To indicate that the transfer of data was success−
 ful, ’ed’ types out the number of lines written. In this exam−
 ple, ’ed’ would type:

 3

 It is advisable to write the contents of the buffer out to a file
 periodically, to insure that you have an up−to−date version in
 case of some terrible catastrophe (like a system crash).

 Finishing up − the Quit command

 Now that you have saved your text in a file, you may wish to
 leave the editor. The "quit" command "q" is provided for this:

 q

 The next thing you see should be the "]" prompt from the Sub−
 system command interpreter. If you did not write out the
 contents of the buffer, the editor would respond:

 ?
 (not saved)

 − 2 −

 Introduction to ’Ed’

 This is to remind you to write out the buffer, so that the
 results of your editing session are not lost. If you intended
 that the buffer be discarded, just enter "q" again and ’ed’ will
 throw away the buffer and terminate.

 When you receive the "]" prompt from the Subsystem command
 interpreter, the buffer has been thrown away; there is absolutely
 no way to recover it. If you wrote the contents of the buffer to
 a file, then this is of no concern; if you did not, it may mean
 disaster.

 To check if the text you typed in is really in the file you
 wrote it to, try the following command:

] cat file

 where "file" is the name of the file given with the "w" command.
 ("Cat" is a Subsystem command that can be used to print files on
 the terminal. If, for example, you wished to print your file on
 the line printer, you could say:

] pr file

 and the contents of "file" would be queued for printing.)

 Reading files − the Enter command

 Of course, most of the time you will not be entering text
 into the buffer for the first time. You need a way to fill the
 buffer with the contents of some file that already exists, so
 that you can modify it. This is the purpose of the "enter" com−
 mand "e"; it enters the contents of a file into the buffer. To
 try out "enter," you must first get back into the editor:

] ed

 "Enter" is used like this:

 e file

 "File" is the name of a file to be read into the buffer.

 Note that you are not restricted to editing files in the
 current directory; you may also edit files belonging to other
 users (provided they have given you permission). Files belonging
 to other users must be identified by their full "pathname"
 (discussed fully in User’s Guide to the Primos File System). For
 example, to edit a file named "document" belonging to user "tom,"
 you would enter the following command:

 e //tom/document

 After the file’s contents are copied into the buffer, ’ed’
 prints the number of lines it read. In our example, the buffer

 − 3 −

 Introduction to ’Ed’

 would now contain:

 The quick brown fox
 jumps over
 the lazy dog.

 If anything at all is present in the buffer, the "e" command
 destroys it before reading the named file.

 As a matter of convenience, ’ed’ remembers the file name
 specified on the last "e" command, so you do not have to specify
 a file name on the "w" command. With these provisions, a common
 editing session looks like

] ed
 e file
 {editing}
 w
 q

 The "file" command ("f") is available for finding out the remem−
 bered file name. To print out the name, just type:

 f
 file

 You might also want to check that

] ed file

 is exactly the same as

] ed
 e file

 That is, ’ed’ performs an "e" command for you if you give it a
 file name on the command line.

 Errors − the Query command

 Occasionally, an error of some kind is encountered.
 Usually, these are caused by misspelled file names, although
 there are other possibilities. Whenever an error occurs, ’ed’
 types

 ?

 Although this is rather cryptic, it is usually clear what caused
 the problem. If you need further explanation, just enter "?"
 and ’ed’ responds with a one−line explanation of the error. For
 example, if the last command you typed was an "e" command, ’ed’
 is probably saying that it could not find the file you asked for.
 You can find out for sure by entering "?":

 − 4 −

 Introduction to ’Ed’

 e myfile
 ?
 ?
 I can’t open the file to read

 Except for the messages in response to "?", ’ed’ rarely gives
 other, more verbose error messages; if you should see one of
 these, the best course of action is to report it to whoever
 maintains the editor at your installation.

 Printing text − the Print command

 You are likely to need to print the text you have typed to
 check it for accuracy. The "print" command "p" is available to
 do this. "P" is different from the commands seen thus far; "e",
 "w", and "a" have been seen to work on the whole buffer at once.
 For a small file, it might be easiest to print the entire buffer
 just to check on some few lines, but for very large files this is
 clearly impractical. The "p" command therefore accepts "line
 numbers" that indicate which lines to print. Try the following
 experiment:

] ed file
 3
 1p
 The quick brown fox
 3p
 the lazy dog.
 1,2p
 The quick brown fox
 jumps over
 1,3p
 The quick brown fox
 jumps over
 the lazy dog.

 "1p" tells ’ed’ to print line 1 ("The quick brown fox"). "3p"
 says to print the third line ("the lazy dog."). "1,2p" tells
 ’ed’ to print the first through the second lines, and "1,3p" says
 to print the first through the third lines.

 Suppose we want to print the last line in the buffer, but we
 don’t know what its number is. ’Ed’ provides an abbreviation to
 specify the last line in the buffer:

 $p
 the lazy dog.

 The dollar sign can be used just like a number. To print
 everything in the buffer, we could type:

 1,$p
 The quick brown fox
 jumps over
 the lazy dog.

 − 5 −

 Introduction to ’Ed’

 If for some reason you want to stop the printing before it
 is done, press the BREAK key on your terminal. If you receive no
 response from BREAK, ’ed’ is waiting for you to enter a command.
 Otherwise, ’ed’ responds with

 ?

 and waits for your next command.

 More Complicated Line Numbers

 ’Ed’ has several ways to specify lines other than just num−
 bers and "$". Try the following command:

 p
 the lazy dog.

 ’Ed’ prints the last line. Does ’ed’ always print the last line
 when it is given an unadorned "p" command? No. The "p" command
 by itself prints the "current" line. The "current" line is the
 last line you have edited in any way. (As a matter of fact, the
 last thing we did was to print all the lines in the buffer, so
 the last line was edited by being printed.) ’Ed’ allows you to
 use the symbol "." (read "dot") to represent the current line.
 Thus

 .p
 the lazy dog.

 is the same as

 .,.p
 the lazy dog.

 which is the same as just

 p
 the lazy dog.

 "." can be used in many ways. For example,

 1,2p
 The quick brown fox
 jumps over
 1,.p
 The quick brown fox
 jumps over
 .,$p
 jumps over
 the lazy dog.

 This example shows how to print all the lines up to the current
 line (1,.p) or all the lines from the current line to the end of
 the buffer (.,$p). If for some reason you would like to know the

 − 6 −

 Introduction to ’Ed’

 number of the current line, you can type

 .=
 3

 and ’ed’ displays the number. (Note that the last thing we did
 was to print the last line, so the current line became line 3.)

 "." is not particularly useful when used alone. It becomes
 much more important when used in "line−number expressions." Try
 this experiment:

 .−1p
 jumps over

 ".−1" means "the line that is one line before the current line."

 .+1p
 the lazy dog.

 ".+1" means "the line that is one line after the current line."

 .−2,.−1p
 The quick brown fox
 jumps over

 ".−2,.−1p" means "print the lines from two lines before to one
 line before the current line."

 You can also use "$" in line−number expressions:

 $−1p
 jumps over

 "$−1p" means "print the line that is one line before the last
 line in the buffer, i.e., the next to the last line."

 Some abbreviations are available to help reduce the amount
 of typing you have to do. Typing a newline by itself is
 | equivalent to typing ".+1p"; typing a caret, "^", or a single
 | minus sign, "−", followed by a newline is equivalent to typing
 ".−1p"; and typing a line−number expression followed by a newline
 is equivalent to typing that line−number expression followed by
 | "p". Examples:

 {type a newline by itself}
 the lazy dog.
 ^
 jumps over
 | −
 | The quick brown fox
 1
 The quick brown fox

 − 7 −^^

 Introduction to ’Ed’

 It might be worthwhile to note here that almost all commands
 expect line numbers of one form or another. If none are sup−
 plied, ’ed’ uses default values. Thus,

 w file

 is equivalent to

 1,$w file

 and

 a

 is equivalent to

 .a

 (which means, append text after the current line.)

 Deleting Lines

 As yet, you have seen no way of removing lines that are no
 longer wanted or needed. To do this, use the "delete" command
 "d":

 1,2d

 deletes the first through the second lines. "D" expects line
 numbers that work in the same way as those specified for "p",
 deleting one line or any range of lines.

 d

 deletes only the current line. It is the same as ".d" or ".,.d".

 After a deletion, the current line pointer is left pointing
 to the first line after the group of deleted lines, unless the
 last line in the buffer was deleted. In this case, the current
 line is the last line before the group of deleted lines.

 Text Patterns

 Frequently it is desirable to be able to find a particular
 "pattern" in a piece of text. For example, suppose that after
 proofreading a report you have typed in using ’ed’ you find a
 spelling error. There must be an easy way to find the misspelled
 word in the file so it can be corrected. One way to do this is
 to count all the lines up to the line containing the error, so
 that you can give the line number of the offending line to ’ed’.
 Obviously, this way is not very fast or efficient. ’Ed’ allows
 you to "search" for patterns of text (like words) by enclosing
 the pattern in slashes:

 − 8 −

 Introduction to ’Ed’

 /jumps/
 jumps over

 ’Ed’ looks for the pattern you specified, and moves to the first
 line which contains the pattern. Note that if we had typed

 /jumped/
 ?

 ’ed’ would inform us that it could not find the pattern we
 wanted.

 ’Ed’ searches forward from the current line when it attempts
 to find the pattern you specified. If ’ed’ reaches the last line
 without seeing the pattern, it "wraps around" to the first line
 in the file and continues searching until it either finds the
 pattern or gets back to the line where it started (line ".").
 This procedure ensures that you get the "next" occurrence of the
 pattern you were looking for, and that you don’t miss any
 occurrences because of your current position in the file.

 Suppose, however, that you do not wish to find the "next"
 occurrence of a word, but the previous one instead. Very few
 text editors provide this capability; however, ’ed’ makes it sim−
 ple. Just surround the pattern with backslashes:

 \quick\
 The quick brown fox

 Remember: backslashes search backward. The backward search (or
 backscan, as it is sometimes called) wraps around the file in a
 manner similar to the forward search (or scan). The search
 begins at the line before the current line, proceeds until the
 first line of the file is seen, then begins at the last line of
 the file and searches up until the current line is encountered.
 Once again, this is to ensure that you do not miss any
 occurrences of a pattern due to your current position in the
 file.

 | In pattern searches, and in other commands which we will get
 | to later, ’ed’ allows you to leave off the trailing the
 | delimiter. I.e., instead of typing

 | /jumps/

 | you can type

 | /jumps

 | to search forward for the first occurrence of the pattern
 | "jumps". Similarly, to search backwards, you may type

 | \quick

 | instead of

 − 9 −

 Introduction to ’Ed’

 | \quick\

 | This feature can save considerable time and frustration when you
 | are doing some involved editing, and accidentally leave off the
 | trailing delimiter ("/" or "\"). The rest of this guide will
 | continue to use examples with the trailing delimiter, but you do
 | not have to in your actual editing.

 ’Ed’ also provides more powerful pattern matching services
 than simply looking for a given string of characters. (A note to
 beginning users: this section may seem fairly complicated at
 first, and indeed you do not really need to understand it com−
 pletely for effective use of the editor. However, the results
 you might get from some patterns would be mystifying if you were
 not provided with some explanation, so look this over once and
 move on.)

 The pattern that may appear within slashes (or backslashes)
 is called a "regular expression." It contains characters to look
 for and special characters used to perform other operations. The
 following characters

 % ? $ [* @ {

 have special meaning to ’ed’:

 % Beginning of line. The "%" character appearing as the
 first element in a pattern matches the beginning of a
 line. It is most frequently used to locate lines with
 some string at the very beginning; for example,

 /%The/

 finds the next line that begins with the word "The".
 The percent sign has its special meaning only if it is
 the first element of the pattern; otherwise, it is
 treated as a literal percent sign.

 ? Any character. The question mark "?" in a regular
 expression matches any character (except a beginning−
 of−line or a newline). It can be used like this:

 /a?b/

 to find strings like

 a+b
 a−b
 a b
 arbitrary

 However, "?" is most often used with the "closure"
 operator "*" (see below).

 − 10 −

 Introduction to ’Ed’

 $ End of line. The dollar sign appearing as the last
 element of a pattern matches the newline character at
 the end of a line. Thus,

 /today$/

 can be used to find a line with the word "today" at the
 very end. Like the percent sign, the dollar sign has
 no special meaning in positions other than the end of a
 pattern.

 [] Character classes. The square brackets are used to
 match "classes" of characters. For example,

 /[A−Z]/

 finds the next line containing a capital letter,

 /%[abcxyz]/

 finds the next line beginning with an a, b, c, x, y, or
 z, and

 /[~0−9]/

 finds the next line which contains a non−digit.
 Character classes are also frequently used with the
 "closure" operator "*".

 * Closure. The asterisk is used to mean "any number of
 repetitions (including zero) of the previous pattern
 element (one character or a character class in brac−
 kets)." Thus,

 /a?*b/

 finds lines containing an "a" followed by any number of
 characters and a "b". For example, the following lines
 are matched:

 ab
 abnormal
 Recording Media, by Dr. Joseph P. Gunchy

 As another example,

 /%=*$/

 matches only those lines containing all equal−signs (or
 nothing at all). If you wish to ensure that only non−
 empty lines are matched, use

 /%==*$/

 Always remember that "*" (closure) matches zero or more
 repetitions of an element.

 − 11 −

 Introduction to ’Ed’

 @ Escape. The "at" sign has special meaning to ’ed’. It
 is the "escape" character, which is used to prevent
 interpretation of a special character which follows.
 Suppose you wish to locate a line containing the string
 "a * b". You may use the following command:

 /a @* b/

 The "at" sign "turns off" the special meaning of the
 asterisk, so it can be used as an ordinary text charac−
 ter. You may have occasion to escape any of the
 regular expression metacharacters (%, ?, $, [, *, @, or
 {) or the slash itself. For example, suppose you
 wished to find the next occurrence of the string "1/2".
 The command you need is:

 /1@/2/

 {} Pattern tags. As seen in the next section, it is
 sometimes useful to remember what part of a line was
 actually matched by a pattern. By default, the string
 matched by the entire pattern is remembered. It is
 also possible to remember a string that was matched by
 only a part of a pattern by enclosing that part of the
 pattern in braces. Hence to find the next line that
 contains a quoted string and remember the text between
 the quotes, we might use

 /"{?*}"/

 If the line thus located looked like this

 This is a line containing a "quoted string".

 then the text remembered as matching the tagged part of
 the pattern would be

 quoted string

 The last important thing you need to know about patterns is
 the use of the "default" pattern. ’Ed’ remembers the last pat−
 tern used in any command, to save you the trouble of retyping it.
 To access the remembered pattern, simply use an "empty" string.
 For example, the following sequence of commands could be used to
 step through a file, looking for each occurrence of the string
 "ICS":

 /ICS/
 //
 //
 (and so on)

 − 12 −

 Introduction to ’Ed’

 One last comment before leaving pattern searching. The
 constructs

 /pattern/
 \pattern\

 are not separate commands; they are components of line number
 expressions. Thus, to print the line after the next line
 containing "tape", you could say

 /tape/+1p

 Or, to print a range of lines from one before to one after a line
 with a given pattern, you could use

 /pattern/−1,/pattern/+1p

 Making Substitutions − the Substitute command

 This is one of the most used editor commands. The "sub−
 stitute" command "s" is used to make small changes within lines,
 without retyping them completely. It is used like this:

 | starting−line,ending−line s [/pattern/new−stuff[/]]

 For instance, suppose our buffer looks like this:

 1,$p
 The quick brown fox
 jumps over
 the lazy dog.

 To change "jumps" to "jumped,"

 2s/jumps/jumped/p
 jumped over

 Note the use of the trailing "p" to print the result. If the "p"
 had been omitted, the change would have been performed (in the
 buffer) but the changed line would not have been printed out.

 If the last string specified in the substitute command is
 empty, then the text matching the pattern is deleted:

 s/jumped//p
 over
 s/% */ jumps /p
 jumps over

 Recalling that a missing pattern means "use the last pattern
 specified," try to explain what the following commands do:

 − 13 −

 Introduction to ’Ed’

 s///p
 jumps over
 s// /p
 jumps over

 (Note that, like many other commands, the substitute command
 assumes you want to work on the current line if you do not
 specify any line numbers.)

 What if you want to change "over" into "over and over"? You
 might use

 s/over/over and over/p
 jumps over and over

 to accomplish this. There is a shorthand notation for this kind
 of substitution that was alluded to briefly in the last section.
 (Recall the discussion of "tagged" patterns.) By default, the
 part of a line that was matched by the whole pattern is remem−
 bered. This string can then be included in the replacement
 string by typing an ampersand ("&") in the desired position. So,
 instead of the command in the last example,

 s/over/& and &/

 could have been used to get the same result. If a portion of the
 pattern had been tagged, the text matched by the tagged part in
 the replacement could be reused by typing "@1":

 s/jump{?*}/vault@1/p
 vaults over and over

 It is possible to tag up to nine parts of a pattern using braces.
 The text matched by each tagged part may then be used in a
 replacement string by typing

 @n

 where n corresponds to the nth "{" in the pattern. What does the
 following command do?

 s/{[~]*} {?*}/@2 @1/

 | Some more words on substitute: the slashes are known as
 | "delimiters" and may be replaced by any other character except a
 newline, as long as the same character is used consistently
 throughout the command. Thus,

 s#vaults#vaulted#p
 vaulted over and over

 is legal. Also, note that substitute changes only the first
 occurrence of the pattern that it finds; if you wish to change
 all occurrences on a line, you may append a "g" (for "global") to
 the command, like this:

 − 14 −

 Introduction to ’Ed’

 s/ /*/gp
 ****vaulted*over*and*over

 | In the replacement part of a substitute command, the character
 | "&", as the only character in the pattern, means "the replacement
 | part of the previous substitute command". (This allows an empty
 | replacement pattern as well.) Thus, to step through the buffer,
 | and change selected occurrences of one pattern into another, you
 | might do the following:

 | /pat1/
 | Line containing pat1.
 | s/pat1/stuff1/p
 | Line containing stuff1.
 | //
 | Another line with pat1.
 | //
 | Yet another line with pat1.
 | s//&/p
 | Yet another line with stuff1.

 | You may leave off the trailing delimiter in the substitute com−
 | mand. This will cause ’ed’ to print out the changed line. I.e.,
 | "s/stuff/junk" is the same as "s/stuff/junk/p".

 | /quick/
 | The quick brown fox
 | s/quick/really fast
 | The really fast brown fox

 | If you wish to delete an occurrence of a pattern, you may leave
 | it off. ’Ed’ will delete the pattern, and then print the line.
 | In other words, "s/stuff" is the same as "s/stuff//p".

 | p
 | The quick brown fox
 | s/quick
 | The brown fox

 | Finally, you may leave off the search pattern and replacement
 | string entirely. If you do, ’ed’ will behave as though you had
 | typed "s//&/p", in other words, substitute the previous
 | replacement pattern for the previous search pattern, and print.

 | 1,$d
 | a
 | line 1
 | line 2
 | .
 | 1s/line/this is &/p
 | this is line 1
 | 2s
 | this is line 2

 | This can save considerable typing.

 − 15 −

 Introduction to ’Ed’

 | Line Changes, Insertions, and Concatenations

 Two "abbreviation" commands are available to shorten common
 operations applying to changes of entire lines. These are the
 "change" command "c" and the "insert" command "i".

 The change command is a combination of delete and append.
 Its format is

 starting−line,ending−line c

 This command deletes the given range of lines, and then goes into
 append mode to obtain text to replace them. Append mode works
 exactly the same way as it does for the "a" command; input is
 terminated by a period standing alone on a line. Examine the
 following editing session to see how change might be used:

 1,$c
 Ed is an interactive program used for
 the creation and modification of "text.
 .
 c
 the creation and modification of "text."
 "Text" may be any collection of character
 data.
 .

 As you can see, the current line is set to the last line entered
 in append mode.

 The other abbreviation command is "i". "I" is very closely
 related to "a"; in fact, the following relation holds:

 starting−line i

 is the same as

 starting−line − 1 a

 In short, "i" inserts text before the specified line, whereas "a"
 | inserts text after the specified line.

 | The join command "j" can be used to put two or more lines
 | together into a single line. It works like this:

 | starting−line,ending−line j[/string[/]]

 | The defaults for starting−line and ending−line are "^" and "."
 | respectively, that is, "join the line before the current line to
 | the current line". You may specify in "string" what is to
 | replace the newline(s) which currently separate the lines which
 | are to be joined. If you do not specify any string, ’ed’ will
 | replace the newline with a single blank. If you do specify a
 | string, you may leave off the trailing delimiter (which can be
 | any character), and ’ed’ will print out the resulting joined
 | line. An extended example should make this clear:

 − 16 −

 Introduction to ’Ed’

 | 1,$p
 | The quick brown fox
 | jumps over
 | the lazy dog.
 | 2,$s/% *//
 | 1,$p
 | The quick brown fox
 | jumps over
 | the lazy dog.
 | 1,2j
 | The quick brown fox jumps over
 | 1,2j/ the back of /p
 | The quick brown fox jumps over the back of the lazy dog.

 Moving Text

 Throughout this guide, we have concentrated on what may be
 called "in−place" editing. The other type of editing commonly
 used is often called "cut−and−paste" editing. The move command
 "m" is provided to facilitate this kind of editing, and works
 like this:

 starting−line,ending−line m after−this−line

 If you wanted to move the last fifty lines of a file to a point
 after the third line, the command would be

 $−49,$m3

 Any of the line numbers may, of course, be full expressions with
 search strings, arithmetic, etc.

 You may, if you like, append a "p" to the move command to
 cause it to print the last line moved. The current line is set
 to the last line moved.

 Global Commands

 The "global" command "g" is used to perform an editing com−
 mand on all lines in the buffer that match a certain pattern.
 For example, to print all the lines containing the word "editor",
 you could type

 g/editor/p

 If you wanted to correct some common spelling error, you would
 use

 g/old−stuff/s//new−stuff/gp

 which makes the change in all appropriate lines and prints the
 resulting lines. Another example: deleting all lines that begin
 with an asterisk could be done this way:

 − 17 −

 Introduction to ’Ed’

 g/%@*/d

 "G" has a companion command "x" (for "exclude") that per−
 forms an operation on all lines in the buffer that do not match a
 given pattern. For example, to delete all lines that do not
 begin with an asterisk, use

 x/%@*/d

 "G" and "x" are very powerful commands that are essential
 for advanced usage, but are usually not necessary for beginners.
 Concentrate on other aspects of ’ed’ before you move on to tackle
 global commands.

 Marking Lines

 During some types of editing, especially when moving blocks
 of text, it is often necessary to refer to a line in the buffer
 that is far away from the current line. For instance, say you
 want to move a subroutine near the beginning of a file to
 somewhere near the end, but you aren’t sure that you can specify
 patterns to properly locate the subroutine. One way to solve
 this problem is to find the first line of the subroutine, then
 use the command ".=":

 /subroutine/
 subroutine think
 .=
 47

 and write down (or remember) line 47. Then find the end of the
 subroutine and do the same thing:

 /end/
 end
 .=
 71

 Now you move to where you want to place the subroutine and enter
 the command

 47,71m.

 which does exactly what you want.

 The problem here is that absolute line numbers are easily
 forgotten, easily mistyped, and difficult to find in the first
 place. It is much easier to have ’ed’ remember a short "name"
 along with each line, and allow you to reference a line by its
 name. In practice, it seems convenient to restrict names to a
 single character, such as "b" or "e" (for "beginning" or "end").
 It is not necessary for a given name to be uniquely associated
 with one line; many lines may bear the same name. In fact, at

 − 18 −

 Introduction to ’Ed’

 the beginning of the editing session, all lines are marked with
 the same name: a single space.

 To return to our example, using the ’k’ command, we can mark
 the beginning and ending lines of the subroutine quite easily:

 /subroutine/
 subroutine think
 kb
 /end/
 end
 ke

 We have now marked the first line in the subroutine with "b" and
 the second line with "e".

 To refer to names, we need more line number expression
 elements: ">" and "<". Both work in line number expressions
 just like "$" or "/pattern/". The symbol ">" followed by a
 single character mark name means "the line number of the first
 line with this name when you search forward". The symbol "<"
 followed by a single character mark name means "the line number
 of the first line with this name when you search backward".
 (Just remember that ’<’ points backward and ’>’ points forward.)

 Now in our example, once we locate the new destination of
 the subroutine, we can use "<b" and "<e" to refer to lines 47 and
 71, respectively (remember, we marked them). The "move" command
 would then be

 <b,<em.

 Several other features pertaining to mark names are
 important. First, the ’k’ command does not change the current
 line ’.’. You can say

 $kx

 (which marks the last line with "x") and "." will not be
 changed. If you want to mark a range of lines, the ’k’ command
 accepts two line numbers. For instance,

 5,10ka

 marks lines 5 through 10 with "a" (i.e., gives each of lines 5
 through 10 the markname "a").

 The ’n’, ’!’ and apostrophe commands also deal with marks.
 The ’n’ command performs two functions. If it is invoked without
 a mark name following it, like

 $n

 it prints the mark name of the line. In this case, it would
 print the mark name of the last line in the file. If the ’n’

 − 19 −

 Introduction to ’Ed’

 command is followed by a mark name, like

 4nq

 it marks the line with that mark name, and erases the marks on
 any other lines with that name. In this case, line 4 is marked
 with "q" and it is guaranteed that no other line in the file is
 marked with "q".

 The ’!’ and apostrophe commands are both global commands
 that deal with mark names. The apostrophe command works very
 much like the ’g’ command: the apostrophe is followed by a mark
 name and another command; the command is performed on every line
 marked with that name. For instance,

 ’as/fox/rabbit/

 changes the first "fox" to "rabbit" on every line that is named
 "a". The ’!’ command works in the same manner, except that it
 performs the command on those lines that are not marked with the
 specified name. For example, to delete all lines not named "k",
 you could type

 !kd

 Undoing Things −− the Undo Command

 Unfortunately, Murphy’s Law guarantees that if you make a
 mistake, it will happen at the worst possible time and cause the
 greatest possible amount of damage. ’Ed’ attempts to prevent
 mistakes by doing such things as working with a copy of your file
 (rather than the file itself) and checking commands for their
 plausibility. However, if you type

 d

 when you really meant to type

 a

 ’ed’ must take its input at face value and do what you say. It
 is at this point that the "undo" command ’u’ becomes useful.
 "Undo" allows you to "undelete" the last group of lines that was
 deleted from the buffer. In the last example, some inconvenience
 could be avoided by typing

 ^ud

 which restores the deleted line. (By default "undo" replaces the
 specified line by the last group of lines deleted. Specifying
 the "d", as in "ud", causes the group to be inserted after the
 specified line instead.)

 − 20 −

 Introduction to ’Ed’

 The problem that arises with "undo" is the answer to the
 question: "What was the last group of lines deleted?" This ans−
 wer is very dependent on the implementation of ’ed’ and in some
 cases is subject to change. After many commands, the last group
 of lines deleted is well−defined, but unspecified. It is not a
 good idea to use the "undo" command after anything other than
 ’c’, ’d’, or ’s’. After a ’c’ or ’d’ command,

 ud

 places the last group of deleted lines after the current line.
 After an ’s’ command (which by the way, deletes the old line,
 replacing it by the changed line),

 u

 deletes the current line and replaces it by the last line deleted
 −− it exactly undoes the effects of the ’s’ command. But beware!
 If the ’s’ command covered a range of lines, ’u’ can only restore
 the last of the lines in which a substitution was made; the
 others are gone forever.

 You should be warned that while "undo" works nicely for
 repairing a single ’c’, ’d’, or ’s’ command, it cannot repair the
 damage done by one of these commands under the control of a
 global prefix (’g’, ’x’, ’!’ and apostrophe). Since the global
 prefixes cause their command to be performed many times, only the
 very last command performed by a global prefix can be repaired.

 More Line Number Syntax

 So far, the commands that you have seen can be given either
 no line numbers elements (the command tries to make an intel−
 ligent assumption about the line(s) on which to perform an
 operation), one line number element (the command acts only on
 that line), or two line numbers separated by a comma (the command
 acts on the given range of lines). There is one more way to
 specify line number elements, and that is to separate them by a
 semicolon. When line number elements are separated by
 semicolons, each line number element encountered sets the
 "current line" marker before the next line number element is
 evaluated. This is especially useful when using patterns as line
 number elements; some examples will illustrate what we mean.

 Suppose that you wanted to print all the lines which lie
 between two lines, each containing the string "fred". An initial
 effort might yield the following command line:

 /fred/,/fred/p

 This, however, will only print out the first line which contains
 "fred" after the current line. This is because both patterns
 will start their search after the current line where the command
 was executed, instead of the second one starting where the first
 pattern was found. To correct this, we would issue the fol−

 − 21 −

 Introduction to ’Ed’

 lowing:

 /fred/;/fred/p

 | When the first occurrence of "fred" is found, the "current line"
 | is set to that line, and the second occurrence of "fred" will be
 | found starting at this new line. This will print the lines
 | between two succeeding occurrences of "fred" from the current
 | line.

 As a final example, suppose that we wanted to print the
 | lines between the second and third occurrence of "fred" after the
 | current line; to do this, we would do:

 /fred/;//;//p

 The first pattern search would find "fred", the next two null
 strings will cause the previous pattern ("fred") to be searched
 for again, each time resetting the "current line" marker. Of
 course, the command "p" may be replaced by any command you wish.

 For both comma−separated and semicolon−separated line number
 elements, you may specify more than two such elements, as the
 above example shows; only the last two such elements will be used
 as the range for the given command. In general, using more than
 two line number elements separated by commas is not too useful,
 because the "current line" is not modified for any of the line
 number expression evaluations. Also, using integer line numbers
 means that multiple expressions (more than two) are not useful,
 since the equivalent behavior can be obtained by specifying only
 | the last two line numbers.

 | Escaping to the Shell

 | With Version 9 of Software Tools and Revision 19.2 or later
 | of PRIMOS, it is now possible to call the Software Tools Sub−
 | system command interpreter (the shell) from within a program.

 | ’Ed’ provides access to this facility with the shell escape
 | "~" command. It works like this:

 | ~[<Software Tools Command>]

 | If present, the <Software Tools Command> is passed to the shell
 | to be executed. Otherwise, an interactive shell is created.
 | After either the command or the shell exits, ’ed’ prints a "~" to
 | indicate that the shell escape has completed. If the first
 | character of the <Software Tools Command> is a "!", then the "!"
 | is replaced with the text of the previous shell command. An
 | unescaped "%" in the <Software Tools Command> will be replaced
 | with the current saved file name. If the shell command is expan−
 | ded, ’ed’ will echo it first, and then execute it.

 | This feature is useful when you want to temporarily stop
 | editing and do something else, or find something out, without

 − 22 −

 Introduction to ’Ed’

 | having write your file and leave the editor.

 | {editing session}
 | ~lf −l %
 | lf −l file
 | sam a/r 06/17/84 16:25:08 19463 sys file
 | ~

 | For a deeper discussion of using the shell from within a
 | program, see the help on the ’shell’ subroutine. In particular,
 | due to operating system constraints, you must not run another
 | instance of the editor from the new shell, or you will end up
 | clobbering your current edit buffer.

 | WARNING: Until Prime supports EPFs, and the editor is
 | reloaded in EPF format, you must not run any external commands
 | (like ’lf’) from a shell started from ’ed’. If you do, the new
 | program will load over ’ed’, and wipe out your current editing
 | session. You can use commands which are internal to the shell
 | (like ’cd’), without any ill effect. This restriction, for
 | various arcane reasons, does not apply to the Subsystem screen
 | editor, ’se’.

 | In essence, this feature is provided in the editor with an
 | eye to the future.

 Summary

 This concludes our tour through the world of text editing.
 In the section that follows, you will find a brief introduction
 to the Software Tools Subsystem screen editor ’se’, which sup−
 ports all of the line−oriented commands of ’ed’ as well as full
 screen editing capabilities, while giving you a "window" into
 your edit buffer. Following that, we have included for your con−
 venience a short summary of all available line editing commands
 supported by ’ed’ and ’se’, many of which were not discussed in
 this introduction, but which you will undoubtedly find useful.

 − 23 −

 Introduction to ’Ed’

 The Subsystem Screen Editor

 The screen editor, ’se’, is an extended version of the Sub−
 system line editor, ’ed’. Although ’se’ contains a number of
 additional features, it accepts all ’ed’ commands (almost without
 exception), and is therefore easily used by anyone familiar with
 ’ed’. This section outlines the differences between ’ed’ and
 | ’se’.

 | The screen editor has a built−in "help" facility, which
 | documents all the commands and options. When in doubt, type
 | "help", and the help screens should guide you to further informa−
 | tion on what you need to know.

 Invoking the Screen Editor

 You can invoke the screen editor with either of the follow−
 ing commands:

] se

 or

] se myfile

 ’Se’ will automatically fetch your terminal type from the Sub−
 system. If you never told the Subsystem your terminal type or
 set an unknown terminal type with the ’term’ command, ’se’ will
 prompt you for another terminal type; if you type a ’?’, ’se’
 will give you a list of possible terminal types and prompt you
 again for yours.

 ’Se’ can also be invoked by the command ’e’. ’E’ remembers
 the name of the last file you edited, so if you don’t specify a
 file, ’e’ will enter the last file you edited.

 Using ’Se’

 | ’Se’ first clears the screen, draws in its margins, and
 | executes the commands in the file "=home=/.serc", if it exists.
 | It then processes the command line, obeying the options given
 | there, and begins reading your file (if you specified one). The
 screen it draws looks something like this. (The parenthesized
 numerals are not part of the screen layout, but are there to aid
 in the following discussion.)

 − 24 −

 Introduction to ’Ed’

 (1) (2) (3)
 A |
 B *| integer a
 C |
 . −> | for (a = 1; a <= 12; a = a + 1)
 E | call putch (NEWLINE, STDOUT)
 F | stop
 $ | end
 cmd> _ (4)
 11:39 myfile(5)..................................

 The display is divided into five parts: (1) the line number
 area, (2) the mark name area, (3) the text area, (4) the command
 line, and (5) the status line. The current line (remember ".")
 is indicated by the symbol "." in the line number area of the
 screen. In addition, a rocket ("−>") is displayed to make the
 current line more obvious. The current mark name of each line is
 shown in the markname area just to the left of the vertical bar.
 Other information, such as the number of lines read in, the name
 of the file, and the time of day, are displayed in the status
 line.

 The cursor is positioned at the beginning of the command
 line, showing you that ’se’ awaits your command. You may now
 enter any of the ’ed’ commands and ’se’ will perform them, while
 making sure that the current line is always displayed on the
 screen. There are only a few other things that you need know to
 successfully use ’se’.

 . ’Se’ always recognizes BS (control−h) and DEL as the
 erase and kill characters, regardless of your Subsystem
 erase and kill character settings.

 . If you make an error, ’se’ automatically displays an
 error message in the status line. It also leaves your
 command line intact so that you may change it using in−
 line editing commands (we’ll get to this a little
 later). If you don’t want to bother with changing the
 command, just hit DEL and ’se’ will erase it.

 . The "p" command has a different meaning than in ’ed’.
 When used with line numbers, it displays as many of the
 lines in the specified range as possible (always
 including the last line). When used without line num−
 bers, "p" displays the previous page.

 . The ":" command positions a specified line at the top
 of the screen (e.g., "12:" positions the screen so
 that line 12 is at the top). If no line number is
 specified, ":" displays the next page.

 . The "v" command can be used to modify an entire line
 rather than just add to the end of the line. Also, if
 you use "v" over a range of lines and find that you
 want to terminate the command before all lines have
 been considered, the control−f key is used instead of a

 − 25 −

 Introduction to ’Ed’

 period.

 . If a file name is specified in the "w" command and the
 file already exists, ’se’ will display "file already
 exists"; entering the command again (by typing a
 NEWLINE) will cause the file to be overwritten. Given
 the command "w! <file>", ’se’ will never warn about the
 destruction of an existing file.

 Keeping these few differences in mind, you will see that ’se’ can
 perform all of the functions of ’ed’, while giving the advantage
 of a "window" into the edit buffer.

 Extended Line Numbers

 ’Se’ has a number of features that take advantage of the
 window display to minimize keystrokes and speed editing. In the
 line number area of the screen, ’se’ always displays for each
 line a string that may be used in a command to refer to that
 line. Normally, it displays a capital letter for each line, but
 in "absolute line number" mode (controlled by the "oa" command;
 see the section on options for more details), it displays the
 ordinal number of the line in the buffer.

 The line number letters displayed by ’se’ may be used in any
 context requiring a line number. For instance, in the above
 example, a change to the first line on the screen could be
 specified as

 As/%/# my new program/

 You could delete the line before the first line on the screen by
 typing

 A−1d

 Finally, ’se’ accepts "#" as a line number element; it
 always refers to the first line on the screen; like the line num−
 ber letters, it may be used in any context which requires a line
 number element or expression.

 Case Conversion

 When ’se’ is displaying upper−case letters for line numbers,
 | it accepts command letters only in lower case. For those who
 | edit predominantly upper−case text this is somewhat inconvenient;
 for those with upper−case only terminals this is a disaster. For
 this reason, ’se’ offers several options to alleviate this
 situation.

 First of all, typing a control−z causes ’se’ to invert the
 case of all letters (just like the alpha−lock key on some
 terminals). Upper−case letters are converted to lower−case,

 − 26 −

 Introduction to ’Ed’

 lower−case letters are converted to upper−case, and all other
 characters are unchanged. You can type control−z at any time to
 toggle the case conversion mode. When case inversion is in
 effect, ’se’ displays the word "CASE" in the status line.

 One drawback to this feature is that ’se’ still expects line
 numbers in upper case and commands in lower case, so you must
 shift to type the command letter −− just the reverse of what
 you’re used to. A more satisfactory solution is to specify the
 "c" option. Just type

 oc

 on the command line and ’se’ toggles the case conversion mode,
 and completely reverses its interpretation of upper and lower
 case letters. In this mode, ’se’ displays the line number let−
 ters in lower case and expects its command letters in upper case.
 Unshifted letters from the terminal are converted to upper case
 and shifted letters to lower case.

 Tabs

 In the absence of tabs, program indentation is very costly
 in keystrokes. So ’se’ gives you the ability to set arbitrary
 tab stops using the "ot" command. By default, ’se’ places a stop
 at column 1 and every third column thereafter. Tabs correspond−
 ing to the default can be set by enumerating the column positions
 for the stops:

 ot 1 4 7 10 13 16 19 22 25 28 31 34 ...

 This is almost as bad as typing the blanks on each line. For
 this reason, there is also a shorthand for such repetitive
 specifications.

 ot +3

 sets a tab stop at column 1 and at every third column thereafter.
 Fortran programmers may prefer the specification

 ot 7 +3

 to set a stop at column 7 and at every third thereafter.

 Once the tab stops are set, the control−i and control−e keys
 can be used to move the cursor from its current position forward
 or backward to the nearest stop, respectively.

 Full−Screen Editing

 Full screen editing with ’se’ is accomplished through the
 use of control characters for editing functions. A few, such as
 control−h, control−i, and control−e have already been mentioned.
 Since ’se’ supports such a large number of control functions, the

 − 27 −

 Introduction to ’Ed’

 mnemonic value of control character assignments has dwindled to
 almost zero. About the only thing mnemonic is that most sym−
 metric functions have been assigned to opposing keys on the
 keyboard (e.g., forward and backward tab to control−i and
 control−e, forward and backward space to control−g and control−h,
 skip right and left to control−o and control−w, and so on). We
 feel pangs of conscience about this, but can find no more satis−
 factory alternative. If you feel the control character
 assignments are terrible and you can find a better way, you may
 | change them by modifying the definitions in ’se’ and recompiling.

 Except for a few special purpose ones, control characters
 can be used anywhere, even on the command line. (This is why
 erroneous commands are not erased −− you may want to edit them.)
 Most of the functions work on a single line, but in overlay mode
 (controlled by the "v" command), the cursor may be positioned
 anywhere in the buffer.

 Horizontal Cursor Motion

 There are quite a few functions for moving the cursor.
 You’ve probably used at least one (control−h) to backspace over
 errors. None of the cursor motion functions erase characters, so
 you may move forward and backward over a line without destroying
 it. Here are several of the more frequently used cursor motion
 characters:

 control−g Move forward one column.

 control−h Move backward one column.

 control−i Move forward to the next tab stop.

 control−e Move backward to the previous tab stop.

 control−o Move to the first column beyond the end of the line.

 control−w Move to column 1.

 Vertical Cursor Motion

 ’Se’ provides two control keys, control−d and control−k, to
 move the cursor up and down, respectively, from line to line
 through the edit buffer. The exact function of each depends on
 ’se’s current mode: in command mode they simply move the current
 line pointer without affecting the cursor position or the
 contents of the command line; in overlay mode (viz. the "v" com−
 mand) they actually move the cursor up or down one line within
 the same column; finally, in append move, these keys are ignored.
 Regardless of the mode, the screen is adjusted when necessary to
 insure that the current line is displayed.

 − 28 −

 Introduction to ’Ed’

 control−d Move the cursor up one line.

 control−k Move the cursor down one line.

 Character Insertion

 Of course the next question is: "Now that I’ve moved the
 cursor, how do I change things?" If you want to retype a charac−
 ter, just position the cursor over it, and type the desired
 character; the old one is replaced. You may also insert charac−
 ters at the current cursor position instead of merely overwriting
 what’s already there. Typing a control−c inserts a single blank
 before the character under the cursor and moves the remainder of
 the line one column to the right; the cursor remains in the same
 column over the newly−inserted blank. Typing a control−x inserts
 enough blanks at the current cursor position to move the charac−
 ter that was there to the next tab stop. This can be handy for
 aligning items in a table, for example. As with control−c, the
 cursor remains in the same column.

 A more general way of handling insertions is to type
 control−a. This toggles "insert mode" −− the word "INSERT"
 appears on the status line, and all characters typed from this
 point are inserted in the line (and characters to the right are
 moved over). Typing control−a again turns insert mode off. Here
 is a summary of these control characters:

 control−a Toggle insert mode.

 control−c Insert a blank to the left of the cursor.

 | control−x Insert blanks to the next tab stop.

 | control−_ Insert a newline.

 Character Deletion

 There are many ways to do away with characters. The most
 drastic is to type DEL; ’se’ erases the current line and leaves
 the cursor in column 1. Typing control−t causes ’se’ to delete
 the character under the cursor and all those to its right. The
 cursor is left in the same column which is now just beyond the
 new end of the line. Similarly, control−y deletes all the
 characters to the left of the cursor (not including the one under
 it). The remainder of the line is moved to the left, leaving the
 cursor over the same character, but now in column 1. Control−r
 deletes the character under the cursor and closes the gap from
 the right, while control−u does the same thing after first moving
 the cursor one column to the left. These last two are most com−
 monly used to eat characters out of the middle of a line.

 − 29 −

 Introduction to ’Ed’

 DEL Erase the entire line.

 control−t Erase the characters under and to the right of the
 cursor.

 control−y Erase the characters to the left of the cursor.

 control−r Erase the character under the cursor.

 control−u Erase the character immediately to left of the cur−
 sor.

 Terminating a Line

 After you have edited a line, there are two ways of
 terminating it. The most commonly used is the control−v. A
 newline (or carriage−return) can be used but beware that it
 deletes all characters over and to the right of the cursor.

 control−v Terminate.

 NEWLINE Erase characters under and to the right of the cursor
 and terminate.

 Non−printing Characters

 ’Se’ displays a non−printing character as a blank (or other
 user−selectable character; see the description of "ou" in the
 section on options). Non−printing characters (such as ’se’s
 control characters), or any others for that matter, may be
 entered by hitting the ESC key followed immediately by the key to
 generate the desired character. Note, however, that the charac−
 ter you type is taken literally, exactly as it is generated by
 your terminal, so case conversion does not apply.

 ESC Accept the literal value of the next character,
 regardless of its function.

 | The .serc File

 | When ’se’ starts up, it tries to open the file
 | "=home=/.serc". If that file exists, ’se’ reads it, one line at
 | a time, and executes each line as a command. If a line has "#"
 | as the first character on the line, or if the line is empty, the
 | entire line is treated as a comment, otherwise it is executed.
 | Here is a sample ".serc" file:

 | # turn on unix mode, tabs every 8 columns, auto indent
 | opu
 | ot+8
 | oia

 − 30 −

 Introduction to ’Ed’

 | The ".serc" file is useful for setting up personalized options,
 | without having to type them on the command line every time, and
 | without using a special shell file in your bin. In particular,
 | it is useful for automatically turning on UNIX mode for Software
 | Tools users who are familiar with the UNIX system.

 | Command line options are processed after commands in the ".serc"
 | file, so, in effect, command line options can be used to over−
 | ride the defaults in your ".serc" file.

 | NOTE: Commands in the ".serc" file do not go through that part
 | of ’se’ which processes the special control characters (see
 | above), so do not use them in your ".serc" file.

 − 31 −

 Introduction to ’Ed’

 Screen Editor Options

 Options for ’se’ can be specified in two ways: with the "o"
 command or on the Subsystem command line that invokes ’se’. To
 specify an option with the "o" command, just enter "o" followed
 immediately by the option letter and its parameters. To specify
 an option on the command line, just use "−" followed by the
 option letter and its parameters. With this second method, if
 there are imbedded spaces in the parameter list, the entire
 option should be enclosed in quotes. For example, to specify the
 "a" (absolute line number) option and tab stops at column 8 and
 every fourth thereafter with the "o" command, just enter

 oa
 ot 8 +4

 when ’se’ is waiting for a command. To enter the same options on
 the invoking command line, you might use

 se −t regent myfile −a "−t 8 +4"

 The following table summarizes the available ’se’ options:

 | Option Action

 a causes absolute line numbers to be displayed in the
 line number area of the screen. The default behavior
 is to display upper−case letters with the letter "A"
 corresponding to the first line in the window.

 c inverts the case of all letters you type (i.e., con−
 verts upper−case to lower−case and vice versa). This
 option causes commands to be recognized only in upper−
 case and alphabetic line numbers to be displayed and
 recognized only in lower−case.

 d[<dir>] selects the placement of the current line pointer fol−
 lowing a "d" (delete) command. <dir> must be either
 ">" or "<". If ">" is specified, the default behavior
 is selected: the line following the deleted lines
 becomes the new current line. If "<" is specified, the
 line immediately preceding the deleted lines becomes
 the new current line. If neither is specified, the
 current value of <dir> is displayed in the status line.

 f selects Fortran oriented options. This is equivalent
 to specifying both the "c" and "t7 +3" (see below)
 | options.

 | g controls the behavior of the "s" (substitute) command
 | when it is under the control of a "g" (global) command.
 | By default, if a substitute inside a global command
 | fails, ’se’ will not continue with the rest of the

 − 32 −

 Introduction to ’Ed’

 | lines which might succeed. If "og" is given, then the
 | global substitute will continue, and lines which failed
 | will not be affected. Successive "og" commands will
 | toggle this behavior. An explanatory message is placed
 | in the status line.

 h[<baud>] lets the editor know at what baud rate you are receiv−
 ing characters. Baud rates can range from 50 to 19200;
 the default is 9600. This option allows the editor to
 determine how many, if any, delay characters (nulls)
 will be output when the hardware line insert/delete
 functions of the terminal are being used (if
 available). Use of the built−in terminal capabilities
 to insert/delete lines speeds up editing over slow−
 speed lines (i.e., dialups). Entering ’oh’ without an
 argument will cause your current baud rate to appear on
 | the status line.

 | i[a | <indent>] selects indent value for lines inserted with "a",
 | "c" and "i" commands (initially 1). "a" selects auto−
 | indent which sets the indent to the value which equals
 | the indent of the previous line. If <indent> is an
 | integer, then the indent value will be set to that num−
 | ber. If neither "a" nor <indent> are specified, the
 | current value of indent is displayed.

 | k Indicates whether the current contents of your edit
 | buffer has been saved or not by printing either a
 | "saved" or "not saved" message on your status line.

 | l[<lop>] sets the line number display option. Under control of
 | this option, ’se’ continuously displays the value of
 | one of three symbolic line numbers in the status line.
 | <lop> may be any of the following:

 | . display the current line number

 | # display the number of the top line on the screen

 | $ display the number of the last line in the buffer

 | If <lop> is omitted, the line number display is
 | disabled.

 lm[<col>] sets the left margin to <col> which must be a positive
 integer. This option will shift your entire screen to
 the left, enabling you to see characters at the end of
 the line that were previously off the screen; the
 characters in columns 1 through <col> − 1 will not be
 visible. You may continue editing in the normal
 fashion. To reset your screen enter the command ’olm
 | 1’. If <col> is omitted, the current left margin
 | column is displayed in the status line.

 − 33 −

 Introduction to ’Ed’

 | m[d] [<user>] displays messages sent to you by other users (via
 | the ’to’ command) while you are editing. When a mes−
 | sage arrives while you are editing, the word "message"
 | appears on your status line. To send other users mes−
 sages while inside of the editor, you can insert the
 text of your message into the edit buffer, and then
 issue the command "line1,line2om <user>", where "line1"
 and "line2" are the first and last lines, respectively,
 of where you appended your message in the edit buffer
 and "<user>" is the login name or process id of the
 person to whom you want to send a message. The given
 | lines are sent and deleted from the edit buffer. To
 | prevent the lines from being deleted after they are
 | sent, use the command line "line1,line2omd <user>"

 | p[s | u] converts to or from UNIX (tm) compatibility mode. The
 | "op" command, by itself, will toggle between normal
 | (Software Tools mode) and UNIX mode. The command "opu"
 | will force ’se’ to use UNIX mode, while the command
 | "ops" will force ’se’ to use Software Tools mode.

 | When in UNIX mode, ’se’ uses the following for its pat−
 | terns and commands:

 | ?pattern[?] searches backwards for a pattern.

 | ^ matches the beginning of a line.

 | . matches any character.

 | ^ is used to negate character classes.

 | % used by itself in the replacement part of a sub−
 | stitute command represents the replacement part of
 | the previous substitute command.

 | \(<regular expression>\) tags pieces of a pattern.

 | \<digit> represents the text matched by the tagged sub−
 | pattern specified by <digit>.

 | \ is the escape character, instead of @.

 | t copies lines.

 | y transliterates lines.

 | ~ does the global exclude on markname (see the "!"
 | command, in the help on ’ed’).

 | ![<Software Tools Command>] will create a new instance
 | of the Software Tools shell, or execute <Software
 | Tools Command> if it is present (see the "~" com−
 | mand, in the help on ’ed’).

 | All other characters and commands are the same for both

 − 34 −

 Introduction to ’Ed’

 | UNIX and normal (Software Tools) mode. The help com−
 | mand will always call up documentation appropriate to
 | the current mode. UNIX mode is indicated by the mes−
 | sage "UNIX" in the status line.

 | UNIX mode is available only in ’se’. This extension is
 | not available in ’ed’.

 s[pma | ftn | f77 | s | f] sets other options for case, tabs,
 etc., for one of the three programming languages
 listed. The option "oss" is the same as "ospma" and
 the option "osf" is the same thing as "osftn" (the
 corresponding command line options are "−ss" and
 "−sf"). If no argument is specified the options effec−
 ted by this command revert to their default value.

 t[<tabs>] sets tab stops according to <tabs>. <tabs> consists of
 a series of numbers indicating columns in which tab
 stops are to be set. If a number is preceded by a plus
 sign ("+"), it indicates that the number is an
 increment; stops are set at regular intervals separated
 by that many columns, beginning with the most recently
 specified absolute column number. If no such number
 precedes the first increment specification, the stops
 are set relative to column 1. By default, tab stops
 are set in every third column starting with column 1,
 corresponding to a <tabs> specification of "+3". If
 <tabs> is omitted, the current tab spacing is displayed
 in the status line.

 u[<chr>] selects the character that ’se’ displays in place of
 unprintable characters. <chr> may be any printable
 character; it is initially set to blank. If <chr> is
 omitted, ’se’ displays the current replacement charac−
 ter on the status line.

 v[<col>] sets the default "overlay column". This is the column
 at which the cursor is initially positioned by the "v"
 command. <Col> must be a positive integer, or a dollar
 sign ($) to indicate the end of the line. If <col> is
 omitted, the current overlay column is displayed in the
 status line.

 w[<col>] sets the "warning threshold" to <col> which must be a
 positive integer. Whenever the cursor is positioned at
 or beyond this column, the column number is displayed
 in the status line and the terminal’s bell is sounded.
 If <col> is omitted, the current warning threshold is
 displayed in the status line. The default warning
 threshold is 74, corresponding to the first column
 beyond the right edge of the screen on an 80 column
 crt.

 − 35 −

 Introduction to ’Ed’

 −[<lnr>] splits the screen at the line specified by <lnr> which
 must be a simple line number within the current window.
 All lines above <lnr> remain frozen on the screen, the
 line specified by <lnr> is replaced by a row of dashes,
 and the space below this row becomes the new window on
 the file. Further editing commands do not affect the
 lines displayed in the top part of the screen. If
 <lnr> is omitted, the screen is restored to its full
 size.

 − 36 −

 Introduction to ’Ed’

 Screen Editor Control Characters

 (Files can be edited with control characters only when you
 are in overlay mode, which you can enter with the ’v’ command. A
 control−v will exit overlay mode and put you back into command
 mode. While in command mode you can use these characters to edit
 your command.)

 Character Action

 control−a Toggle insert mode. The status of the insertion
 indicator is inverted. Insert mode, when enabled,
 causes characters typed to be inserted at the current
 cursor position in the line instead of overwriting the
 characters that were there previously. When insert
 mode is in effect, "INSERT" appears in the status line.

 control−b Scan right and erase. The current line is scanned from
 the current cursor position to the right margin until
 an occurrence of the next character typed is found.
 When the character is found, all characters from the
 current cursor position up to (but not including) the
 scanned character are deleted and the remainder of the
 line is moved to the left to close the gap. The cursor
 is left in the same column which is now occupied by the
 scanned character. If the line to the right of the
 cursor does not contain the character being sought, the
 terminal’s bell is sounded. ’Se’ remembers the last
 character that was scanned using this or any of the
 other scanning keys; if control−b is hit twice in a
 row, this remembered character is used instead of a
 literal control−b.

 control−c Insert blank. The characters at and to the right of
 the current cursor position are moved to the right one
 column and a blank is inserted to fill the gap.

 control−d Cursor up. The effect of this key depends on ’se’s
 current mode. When in command mode, the current line
 pointer is moved to the previous line without affecting
 the contents of the command line. If the current line
 pointer is at line 1, the last line in the file becomes
 the new current line. In overlay mode (viz. the "v"
 command), the cursor is moved up one line while remain−
 ing in the same column. In append mode, this key is
 ignored.

 control−e Tab left. The cursor is moved to the nearest tab stop
 to the left of its current position.

 control−f "Funny" return. The effect of this key depends on the
 editor’s current mode. In command mode, the current
 command line is entered as−is, but is not erased upon
 completion of the command; in append mode, the current

 − 37 −

 Introduction to ’Ed’

 line is duplicated; in overlay mode (viz. the "v" com−
 mand), the current line is restored to its original
 state and command mode is reentered (except if under
 control of a global prefix).

 control−g Cursor right. The cursor is moved one column to the
 right.

 control−h Cursor left. The cursor is moved one column to the
 left. Note that this does not erase any characters; it
 simply moves the cursor.

 control−i Tab right. The cursor is moved to the next tab stop to
 the right of its current position.

 control−k Cursor down. As with the control−d key, this key’s
 effect depends on the current editing mode. In command
 mode, the current line pointer is moved to the next
 line without changing the contents of the command line.
 If the current line pointer is at the last line in the
 file, line 1 becomes the new current line. In overlay
 mode (viz. the "v" command), the cursor is moved down
 one line while remaining in the same column. In append
 mode, control−k has no effect.

 control−l Scan left. The cursor is positioned according to the
 character typed immediately after the control−l. In
 effect, the current line is scanned, starting from the
 current cursor position and moving left, for the first
 occurrence of this character. If none is found before
 the beginning of the line is reached, the scan resumes
 with the last character in the line. If the line does
 not contain the character being looked for, the message
 "NOT FOUND" is printed in the status line. ’Se’ remem−
 bers the last character that was scanned for using this
 key; if the control−l is hit twice in a row, this
 remembered character is searched for instead of a
 literal control−l. Apart from this, however, the
 character typed after control−l is taken literally, so
 ’se’s case conversion feature does not apply.

 control−m Newline. This key is identical to the NEWLINE key
 described below.

 control−n Scan left and erase. The current line is scanned from
 the current cursor position to the left margin until an
 occurrence of the next character typed is found. Then
 that character and all characters to its right up to
 (but not including) the character under the cursor are
 erased. The remainder of the line, as well as the cur−
 sor are moved to the left to close the gap. If the
 line to the left of the cursor does not contain the
 character being sought, the terminal’s bell is sounded.
 As with the control−b key, if control−n is hit twice in
 a row, the last character scanned for is used instead
 of a literal control−n.

 − 38 −

 Introduction to ’Ed’

 control−o Skip right. The cursor is moved to the first position
 beyond the current end of line.

 control−p Interrupt. If executing any command except "a", "c",
 "i" or "v", ’se’ aborts the command and reenters com−
 mand mode. The command line is not erased.

 control−q Fix screen. The screen is reconstructed from ’se’s
 internal representation of the screen.

 control−r Erase right. The character at the current cursor posi−
 tion is erased and all characters to its right are
 moved left one position.

 control−s Scan right. This key is identical to the control−l key
 described above, except that the scan proceeds to the
 right from the current cursor position.

 control−t Kill right. The character at the current cursor posi−
 tion and all those to its right are erased.

 control−u Erase left. The character to the left of the current
 cursor position is deleted and all characters to its
 right are moved to the left to fill the gap. The cur−
 sor is also moved left one column, leaving it over the
 same character.

 control−v Skip right and terminate. The cursor is moved to the
 current end of line and the line is terminated.

 control−w Skip left. The cursor is positioned at column 1.

 control−x Insert tab. The character under the cursor is moved
 right to the next tab stop; the gap is filled with
 blanks. The cursor is not moved.

 control−y Kill left. All characters to the left of the cursor
 are erased; those at and to the right of the cursor are
 moved to the left to fill the void. The cursor is left
 in column 1.

 control−z Toggle case conversion mode. The status of the case
 conversion indicator is inverted; if case inversion was
 on, it is turned off, and vice versa. Case inversion,
 when in effect, causes all upper case letters to be
 converted to lower case, and all lower case letters to
 be converted to upper case. Note, however, that ’se’
 continues to recognize alphabetic line numbers in upper
 case only, in contrast to the "case inversion" option
 (see the description of options above). When case
 inversion is on, "CASE" appears in the status line.

 control−_ Insert newline. A newline character is inserted before
 the current cursor position, and the cursor is moved
 one position to the right. The newline is displayed
 according to the current non−printing replacement

 − 39 −

 Introduction to ’Ed’

 character (see the "u" option).

 control−\ Tab left and erase. Characters are erased starting
 with the character at the nearest tab stop to the left
 of the cursor up to but not including the character
 under the cursor. The rest of the line, including the
 cursor, is moved to the left to close the gap.

 control−^ Tab right and erase. Characters are erased starting
 with the character under the cursor up to but not
 including the character at the nearest tab stop to the
 right of the cursor. The rest of the line is then
 shifted to the left to close the gap.

 NEWLINE Kill right and terminate. The characters at and to the
 right of the current cursor position are deleted, and
 the line is terminated.

 DEL Kill all. The entire line is erased, along with any
 error message that appears in the status line.

 ESC Escape. The ESC key provides a means for entering
 ’se’s control characters literally as text into the
 file. In fact, any character that can be generated
 from the keyboard is taken literally when it
 immediately follows the ESC key. If the character is
 non−printing (as are all of ’se’s control characters),
 it appears on the screen as the current non−printing
 replacement character (normally a blank).

 − 40 −

 Introduction to ’Ed’

 Editor Command Summary

 Range Syntax Function

 . a[:text] Append
 Inserts text after the specified line.
 Text is inserted until a line containing
 only a period and a newline is
 encountered. In ’se’, if the command is
 followed immediately by a colon, then
 whatever text follows the colon is
 inserted without entering "append" mode.
 The current line pointer is left at the
 last line inserted.

 .,. c[:text] Change
 Deletes the lines specified and inserts
 text to replace them. Text is inserted
 until a line containing only a period and
 a newline is encountered. In ’se’, if
 the command is followed immediately by a
 colon, then whatever text follows the
 colon is inserted without entering
 "append" mode. The current line pointer
 is left at the last line inserted.

 .,. d[p] Delete
 Deletes all lines between the specified
 | lines, inclusive. The current line
 | pointer is left at the line after the
 | last one deleted. If the "p" is
 included, the new current line is
 printed.

 none e[!] [filename] Enter
 Loads the specified file into the buffer
 and prepares for editing. Automatically
 invoked if a filename is specified as an
 argument on the command line used to
 invoke the editor. The current line
 pointer is positioned at the first line
 in the buffer. An error message is
 generated if the editing buffer contains
 text that has not been saved. The enter
 command may be resubmitted after the
 error message, in which case it will be
 obeyed. The "enter now" command "e!"
 may be used to avoid the error message.

 none f [filename] File
 Print or change the remembered file name.
 If a name is given, the remembered file
 name is set to that value; otherwise, the
 remembered file name is printed.

 − 41 −

 Introduction to ’Ed’

 .,$ g/pat/command Global on pattern
 Performs the given command on all lines
 in the specified range that match a
 certain pattern.

 none h[stuff] Help
 In ’se’, provides access to online
 documentation on the screen editor.
 "Stuff" may be used to select which
 information is displayed.

 . i[:text] Insert
 Inserts text before the specified line.
 Text is inserted until a line containing
 only a period and a newline is
 encountered. In ’se’, if the command is
 immediately followed by a colon, then
 whatever text follows is inserted without
 entering "append" mode. The current line
 pointer is left at the last line
 | inserted.

 | ^,. j[/stuff[/]][p] Join
 | The specified lines are joined into a
 | single line. You may specify in "stuff"
 | what is to replace the newlines that
 | previously separated the lines. The
 | default is a single blank. If you use
 | the default, ’ed’ automatically prints
 | out the result. If the "p" option is
 used, the resulting line (which becomes
 | the new current line) is printed. Thus
 | "j" and "jp" are equivalent to "j/ /p".
 | In general, ’ed’ and ’se’ will supply
 | trailing delimiters for you. So "j/" is
 | the same as "j//", i.e. replace the
 | newline(s) with nothing (delete them).

 .,. km marK
 The specified lines are marked with ’m’
 which may be any single character other
 than a newline. If ’m’ is not present,
 the lines are marked with the default
 name of blank. The current line pointer
 | is never changed.

 | none l Locate
 | "l" will print the first line of the file
 | =installation=. This is so that one can
 | tell what machine he is using from within
 | the editor. This is particularly useful
 | for installations with many machines that
 | can run the editor, where the user can
 | switch back and forth between them, and
 | become confused as to where he is at a
 | given moment.

 − 42 −

 Introduction to ’Ed’

 .,. m<line>[p] Move
 Moves the specified block of lines after
 <line>. <Line> may not be omitted. The
 current line pointer is left at the last
 line moved. If the "p" is specified, the
 new current line is also printed.

 .,. n[m] Name
 If ’m’ is present, the last line in the
 specified range is marked with it and all
 other lines having that mark name are
 given the default mark name of blank. In
 ’ed’, if ’m’ is not present, the mark
 name of each line in the range is
 printed; in ’se’ the names of all lines
 in the range are cleared.

 none o[stuff] Option
 Editing options may be queried or set.
 "Stuff" determines which options are
 | affected. In ’ed’, options "d", "g",
 | "k", and "p" are available. Options "d",
 | "g", and "k" are the same as in ’se’. In
 | ’ed’, option "p" sets the prompt to be
 | used (useful for the user who is distur−
 | bed by ’ed’s quiet behavior). The prompt
 | can be set by the command "op/string[/]",
 | which sets the prompt to "string". The
 | trailing delimiter is optional. If no
 | string is given, the prompt is set to
 | "* ". An empty string ("op//") restores
 | ’ed’s no prompting behavior. Successive
 | "op" commands will toggle prompting mode.
 | In ’se’, the "op" command controls what
 | metacharacters are used for pattern
 | matching.

 .,. p Print
 Prints all the lines in the given range.
 In ’se’, as much as possible of the range
 is displayed, always including the last
 line; if no range is given, the previous
 page is displayed. The current line
 pointer is left at the last line printed.

 none q[!] Quit
 Exit from the editor. An error message
 is generated if the editing buffer
 contains text that has not been saved.
 The quit command may be resubmitted after
 the error message, in which case it will
 be obeyed. The "quit now" command "q!"
 may be used to avoid the error message.

 − 43 −

 Introduction to ’Ed’

 . r [filename] Read
 Insert the contents of the given file
 after the specified line. The current
 line pointer is left at the last line
 | read.

 | .,. s[/pat/sub[/][g][p]] Substitute
 Substitutes "sub" for each occurrence of
 the pattern "pat". If the optional "g"
 is specified, all occurrences in each
 line are changed; otherwise, only the
 first occurrence is changed. The current
 line pointer is left at the last line in
 the range in which a substitution was
 made. This line is also printed if the
 | "p" is used. In ’ed’, if you leave off
 | the trailing slash, the result of the
 | substitute will be printed automatically.
 | Thus "s/junk/stuff" is entirely
 | equivalent to "s/junk/stuff/p". If you
 | type an "s" by itself, without a pattern
 | and replacement string, ’ed’ will behave
 | as though you had typed "s//&/p", i.e.
 | substitute the previous replacement pat−
 | tern for the previous search pattern, and
 | print.

 | .,. t[/from/to[/][p]] Transliterate
 The range of characters specified by
 ’from’ is transliterated into the range
 of characters specified by ’to’. The
 last line on which something was
 transliterated is printed if the "p"
 option is used. The last line in the
 | range becomes the new current line.
 | Again, if you leave off the trailing
 | delimiter, ’ed’ will print the result of
 | the transliteration. In addition, like
 | the "s" command, both the ’from’ and ’to’
 | parts are saved; "t//&/" will perform the
 | same transliteration as the last one, and
 | "t" is the same as "t//&/". The "&" is
 | special if it is the only character in
 | the ’to’ part, otherwise it is treated as
 | a literal "&". In Unix mode (for ’se’
 | only), use "%" instead of "&". See
 | Software Tools and the help on ’tlit’ for
 | some examples of character
 | transliterations.

 . u[d][p] Undo
 The specified range of lines is replaced
 by the last range of lines deleted. If
 the "d" is used, the restored text is
 inserted after the last line in the
 specified range. The current line

 − 44 −

 Introduction to ’Ed’

 pointer is set at the last line that was
 restored; this line is also printed if
 the "p" is specified.

 .,. v oVerlay
 In ’ed’, each line in the given range is
 printed without its terminating newline
 and a line of input is read and added to
 the end of the line. If the first and
 only character on the input line is a
 period, no further lines are printed. In
 ’se’, "overlay mode" is entered and the
 control characters may be used to modify
 text anywhere in the buffer. A control−v
 may be used to quit overlay mode. A
 control−f may be used to restore the
 current line to its original state and
 terminate the command.

 1,$ w[’+’|’!’] [filename] Write
 Writes the portion of the buffer
 specified to the named file. The current
 line pointer is not changed. If "+" is
 given, the portion of the buffer is
 appended to the file; otherwise the por−
 tion of the buffer replaces the file. In
 ’se’ only, if "!" is present, an exist−
 ing file specified in the command is
 overwritten without comment. If
 "filename" is not present, the specified
 lines will be written to the current file
 name specified on the status line.

 1,$ x/pat/command eXclude on pattern
 Performs the command on all lines in the
 given range that do not match the
 specified pattern.

 .,. y<line>[p] copY
 Makes a copy of all the lines in the
 given range, and inserts the copies after
 <line>. As with the "m" command, <line>
 may not be omitted. The current line
 pointer is set to the new copy of the
 last line in the range; this line is
 printed if the "p" is present.

 .,. zb<left>[,<right>][<char>] draw Box
 In ’se’ only, a box is drawn using the
 given <char> (blank by default, allowing
 erasure of a previously−drawn box). Line
 numbers are used to specify top and bot−
 tom row positions of the box. <Left> and
 <right> specify left and right column
 positions of the box. If second line
 number is omitted, the box degenerates to

 − 45 −

 Introduction to ’Ed’

 a horizontal line. If right−hand column
 is omitted, the box degenerates to a
 vertical line.

 . =[p] Equals
 The number of the specified line is
 printed. The line itself is also printed
 if the "p" option is used. The current
 line pointer is not changed.

 none ? Query
 In ’ed’ only, a verbose description of
 the last error encountered is printed.

 1,$!mcommand Exclude on markname
 Similar to the ’x’ prefix except that
 ’command’ is performed for all lines in
 the range that do not have the mark name
 ’m’.

 1,$ ’mcommand Global on markname
 Similar to the ’g’ prefix except that
 ’command’ is performed for all lines in
 the range that have the mark name ’m’.

 . : Print next page
 In ’ed’, 23 lines beginning with the
 current line are printed (equivalent to
 ".,.+23p"). In ’se’, the next page of
 the buffer is displayed and the current
 line pointer is placed at the top of the
 | window.

 | none ~[<Software Tools Command>] Escape to the shell
 | If present, the <Software Tools Command>
 | is passed to the shell to be executed.
 | Otherwise, an interactive shell is
 | created. After either the command or the
 | shell exits, ’ed’ prints "~" to indicate
 | that the shell escape has completed. For
 | a command, ’se’ asks you to type a
 | newline before redrawing the screen, but
 | for an interactive shell, ’se’ will
 | redraw the screen immediately. If the
 | first character of the <Software Tools
 | Command> is a "!", then the "!" is
 | replaced with the text of the previous
 | shell command. An unescaped "%" in the
 | <Software Tools Command> will be replaced
 | with the current saved file name. If the
 | shell command is expanded, both ’ed’ and
 | ’se’ will echo it first, and then execute
 | it.

 | Until EPFs are supported, when using
 | ’ed’, do not use the shell to execute

 − 46 −

 Introduction to ’Ed’

 | external commands. Internal commands
 | (like ’cd’) are OK. This does not apply
 | to ’se’.

 | For a deeper discussion of using the
 | shell from within a program, see the help
 | on the ’shell’ subroutine.

 − 47 −

 Introduction to ’Ed’

 Elements of Line Number Expressions

 Form Value

 integer value of the integer (e.g., 44).

 . number of the current line in the buffer.

 $ number of the last line in the buffer.

 ^ number of the previous line in the buffer (same as
 | .−1).

 | − number of the previous line in the buffer (same as
 | ^).

 # number of the first line on the screen (only in
 | ’se’)

 | /pattern[/] number of the next line in the buffer that matches
 the given pattern (e.g., /February/); the search
 proceeds to the end of the buffer, then wraps
 around to the beginning and back to the current
 | line. The trailing "/" is optional.

 | \pattern[\] number of the previous line in the buffer that
 matches the given pattern (e.g., \January\);
 search proceeds in reverse, from the current line
 to line 1, then from the last line back to the
 | current line. The trailing "\" is optional.

 >name number of the next line having the given markname
 (search wraps around, like //).

 <name number of the previous line having the given mark−
 name (search proceeds in reverse, like \\).

 expression any of the above operands may be combined with
 plus or minus signs to produce a line number
 expression. Plus signs may be omitted if desired
 (e.g., /parse/−5, /lexical/+2, /lexical/2, $−5,
 .+6, .6).

 − 48 −

 Introduction to ’Ed’

 Summary of Pattern Elements

 Element Meaning

 % Matches the null string at the beginning of a
 line. However, if not the first element of a pat−
 tern, is treated as a literal percent sign.

 ? Matches any single character other than newline.

 $ Matches the newline character at the end of a
 line. However, if not the last element of a pat−
 tern, is treated as a literal dollar sign.

 [<ccl>] Matches any single character that is a member of
 the set specified by <ccl>. <Ccl> may be composed
 of single characters or of character ranges of the
 form <c1>−<c2>. If character ranges are used,
 <c1> and <c2> must both belong to the digits, the
 upper case alphabet or the lower case alphabet.

 [~<ccl>] Matches any single character that is not a member
 of the set specified by <ccl>.

 | * In combination with the immediately preceding pat−
 | tern element, matches zero or more characters that
 are matched by that element.

 @ Turns off the special meaning of the immediately
 following character. If that character has no
 special meaning, this is treated as a literal "@".

 {<pattern>} Tags the text actually matched by the sub−pattern
 specified by <pattern> for use in the replacement
 part of a substitute command.

 & Appearing in the replacement part of a substitute
 command, represents the text actually matched by
 the pattern part of the command. If "&" is the
 only character in the replacement part, however,
 then it represents the replacement part used in a
 previous substitute command.

 @<digit> Appearing in the replacement part of a substitute
 command, represents the text actually matched by
 the tagged sub−pattern specified by <digit>.

 − 49 −

 | TABLE OF CONTENTS

 Tutorial ... 1
 Starting an Editing Session 1
 Entering Text − the Append Command 1
 Writing text on a file − the Write command 2
 Finishing up − the Quit command 2
 Reading files − the Enter command 3
 Errors − the Query command 4
 Printing text − the Print command 5
 More Complicated Line Numbers 6
 Deleting Lines .. 8
 Text Patterns ... 8
 Making Substitutions − the Substitute command 13
 Line Changes, Insertions, and Concatenations 16
 Moving Text ... 17
 Global Commands 17
 Marking Lines ... 18
 Undoing Things −− the Undo Command 20
 More Line Number Syntax 21
 Escaping to the Shell 22
 Summary ... 23

 The Subsystem Screen Editor 24
 Invoking the Screen Editor 24
 Using ’Se’ .. 24
 Extended Line Numbers 26
 Case Conversion 26
 Tabs .. 27
 Full−Screen Editing 27
 Horizontal Cursor Motion 28
 Vertical Cursor Motion 28
 Character Insertion 29
 Character Deletion 29
 Terminating a Line 30
 Non−printing Characters 30
 The .serc File .. 30

 Screen Editor Options 32

 Screen Editor Control Characters 37

 Editor Command Summary 41

 Elements of Line Number Expressions 48

 − iii −

 Summary of Pattern Elements 49

 − iv −

 User’s Guide for the
 Software Tools Subsystem Command Interpreter
 (The Shell)

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 | Jefferey S. Lee
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 Foreword

 The Software Tools Subsystem is a set of program development
 tools based on the book Software Tools by Brian W. Kernighan and
 P. J. Plauger. It was originally developed for use on the Prime
 400 computer in 1977 and 1978 in the form of several cooperating
 | user programs. The present Subsystem, the ninth version, is a
 | powerful tool that aids in the effective use of computing resour−
 ces.

 The command interpreter, also referred to as the "shell," is
 a vital part of the Subsystem. It is a program which accepts
 commands typed by the user on his terminal and converts them into
 more primitive directions to the computer itself. The user’s
 instructions are expressed in a special medium called the "com−
 mand language." The greatest part of this document is involved
 with describing the command language and giving examples of how
 it is used.

 Three areas will be covered in the following pages. First,
 there is a tutorial on the use of the command language. New Sub−
 system users should read this chapter first. Some minimal
 knowledge of terminal usage is assumed; if you are unsure of
 yourself in this area, see Prime’s published documentation and
 the Software Tools Subsystem Tutorial for help. Second, there is
 a summary of the syntax and semantics of the command language.
 Experienced users should find this chapter valuable as a
 reference. Finally, there is a selection of application notes.
 This chapter is a good source of useful techniques and samples of
 advanced usage. Experienced users and curious beginners should
 find it well worthwhile.

 − iv −

 Command Interpreter User’s Guide

 Tutorial

 Commands

 Input to the command interpreter consists of "commands".
 Commands, in turn, consist of a "command name", which is the name
 of an executable file. A command is executed simply by entering
 its name. For example,

] help

 is a command that will describe how you can obtain online
 documentation.

 Some commands may have arguments. Arguments are values sup−
 plied by you to the command. Arguments can be required or they
 may be optional in which case the system uses a default. In the
 above example when ’help’ is invoked with no arguments the Sub−
 system assumes the command ’help help’ (i.e. get me on−line
 documentation for the ’help’ command). However, if you wanted
 on−line documentation for a specific command you would supply the
 command name as an argument, e.g.

] help lf

 will describe the command that can be used to list information
 about files in a directory. Some commands may have options.
 Options are used to make the same command execute in slightly
 different ways. Options usually consist of one letter and are
 preceded by a dash. The command,

] help −f file

 will list the names of commands and subroutines that may be
 associated with the keyword "file". The "−f" is an option and
 "file" is an argument. Commands, arguments and options are
 separated from each other by blanks.

 Here is a final example:

] lf
 adventure ee guide m6800
 shell shell.doc subsys time_sheet
 words zunde
]

 ’Lf’ is used to list the names of your files. Executed without
 any arguments, ’lf’ prints the files in your current directory,
 but (like ’help’) ’lf’ may be used with or without arguments and
 options.

 − 1 −

 Command Interpreter User’s Guide

 How the Command Interpreter Locates a Command

 Recall that you can access files by their entrynames only if
 they are located in your current directory. Without help from
 the shell this would also be true for commands. That is, in
 order to execute ’help’ you would need to have a copy of the
 ’help’ command in your current directory or you would have to
 enter its full pathname so that the shell could locate it in
 another directory. Obviously, neither alternative is desirable.
 In reality, the shell uses a "variable" called "_search_rule" to
 find commands like "help" in other directories. Each user has
 his own search rule. (Refer to the section in this guide entit−
 led "Shell Control Variables" for more information.) The search
 rule tells the shell in what locations to look for commands, and
 if there is more than one location possible, it specifies the
 order in which the locations will be searched.

 Most new users are given the search rule that causes the
 command interpreter to look for commands in the following five
 locations in the order shown:

 1. The shell’s internal library for an internal command
 (e.g, ’stop’, ’set’)
 2. The user’s variables currently stored in memory
 3. The user’s current directory
 4. The Subsystem library containing locally supported exter−
 nal commands, "=lbin=" (e.g. memo, moot)
 5. The Subsystem library containing standard external com−
 mands, "=bin=" (e.g. ’lf’, ’help’)

 This variable is explained in more detail in the "Application
 Notes" section of this guide.

 Beware that this flexibility can get beginners (and some
 experienced users) into trouble. With the search rule above, the
 command interpreter will always look in your current directory
 for a command before it looks in one of the Subsystem command
 directories. Therefore, if you create a file having the same
 name as a command, the shell will try its best to execute the
 contents of that file.

 Special Characters and Quoting

 Some characters have special meaning to the command
 interpreter. For example, try typing this command:

] echo Alas, poor Yorick
 Alas
 poor: not found
]

 ’Echo’ is simply a command that types back its arguments.
 Obviously this example is not working as it should. The strange
 behavior is caused by the fact that the comma is used for dark

 − 2 −

 Command Interpreter User’s Guide

 mysterious purposes elsewhere in the command language. (The
 comma actually represents a null I/O connection between nodes of
 a network. See the section on pipes and networks for more
 information.) In fact, all of the following characters are
 potential troublemakers:

 | , ; # @ > | { } [] () _ blank

 The way to handle this problem is to use quotes. You may use
 either single or double quotes, but be sure to match each with
 another of the same kind. Try this command now:

] echo "Alas, poor Yorick; I knew him well."
 Alas, poor Yorick; I knew him well.
]

 You can use quotes to enclose other quotes:

] echo ’Quoth the raven: "Nevermore!" ’
 Quoth the raven: "Nevermore!"
]

 A final word on quoting: Note that anything enclosed in
 quotes becomes a single argument. For example, the command

] echo "Can I use that in my book?"

 has only one argument, but

] echo Can I use that in my book?

 has seven.

 Command Files

 Suppose you have a task which must be done often enough that
 it is inconvenient to remember the necessary commands and type
 them in every time. For an example, let’s say that you have to
 print the year−end financial reports for the last five years. If
 the "print" command is used to print files, your command might
 look like:

] print year74 year75 year76 year77 year78 year79

 If you use a text editor to make a file named "reports" that
 contains this command, you can then print your reports by typing

] reports

 No special command is required to perform the operations in this
 "command file;" simply typing its name is sufficient.

 Any number of commands may be placed in a command file. It
 is possible to set up groups of commands to be repeated or

 − 3 −

 Command Interpreter User’s Guide

 executed only if certain conditions occur. See the Applications
 Notes for examples.

 It is one of the important features of the command
 interpreter that command files can be treated exactly like
 ordinary commands. As shown in later sections, they are actually
 programs written in the command language; in fact, they are often
 called "shell programs." Many Subsystem commands (’e’, ’fos’,
 and ’rfl’, for example) are implemented in this manner.

 Doing Repetitive Tasks −−− Iteration

 Some commands can accept only a single argument. One exam−
 ple of this is the ’fos’ command. "Fos" stands for "format,
 overstrike, and spool." It is a shorthand command for printing
 "formatted" documents on the line printer. (A "formatted"
 document is one prepared with the help of a program called a
 "text formatter," which justifies right margins, indents
 paragraphs, etc. This document was prepared by the Software
 Tools text formatter ’fmt.’) If you have several documents to be
 prepared, it is inconvenient to have to type the ’fos’ command
 for each one. A special technique called "iteration" allows you
 to "factor out" the repeated text. For example,

] fos (file1 file2 file3)

 is equivalent to

] fos file1
] fos file2
] fos file3

 The arguments inside the parentheses form an "iteration group."
 There may be more than one iteration group in a command, but they
 must all contain the same number of arguments. This is because
 each new command line produced by iteration must have one
 argument from each group. As an illustration of this,

] (echo print fos) file(1 2 3)

 is equivalent to

] echo file1
] print file2
] fos file3

 Iteration is performed by simple text substitution; if there is
 no space between an argument and an iteration group in the
 original command, then there is none between the argument and
 group elements in the new commands. Thus,

 file(1 2 3)

 is equivalent to

 − 4 −

 Command Interpreter User’s Guide

 file1
 file2
 file3

 Iteration is most useful when combined with function calls, which
 will be discussed later.

 I/O Redirection

 Control of the sources and destinations of data is a very
 basic function of the command interpreter, yet one that deserves
 special attention. The concepts involved are not new, yet they
 are rarely employed to the extent that they have been used in the
 Subsystem. The best approach to learning these ideas is to
 experiment. Get on a terminal, enter the Subsystem, and try the
 examples given here until they seem to make sense. Above all,
 experiment freely; try anything that comes to mind. The Sub−
 system has been designed with the idea that users are intelligent
 human beings, and their freedom of expression is the most
 valuable of tools. Use your imagination; if it needs tweaking,
 take a look at the Application Notes in the last chapter.

 Programs and commands in the Subsystem do not have to be
 written to read and write to specific files and devices. In fact
 most of them are written to read from "anything" and write to
 "anything." Only when the program is executed do you specify
 what "anything" is, which could be your terminal, a disk file,
 the line printer, or even another program. "Anything"s are more
 formally known as "standard input ports" and "standard output
 ports." Programs are said to "read from standard input" and
 "write on standard output." The key point here is that programs
 need not take into account how input data is made available or
 what happens to output data when they are finished with it; the
 command interpreter is in complete control of the standard ports.

 A command we will use frequently in this section is ’copy’.
 ’Copy’ does exactly what its name implies; it copies data from
 one place to another. In fact, it copies data from its first
 standard input port to its first standard output port.

 The first point to remember is that by default, standard
 ports reference the terminal. Try ’copy’ now:

] copy

 After you have entered this command, type some random text fol−
 lowed by a newline. ’Copy’ will type the same text back to you.
 (When you tire of this game, type a control−c; this causes an
 end−of−file signal to be sent to ’copy’, which then returns to
 the command interpreter. Typing control−c to cause end−of−file
 is a convention observed by all Subsystem programs.) Since you
 did not say otherwise, standard input and standard output
 referred to the terminal; input data was taken from the terminal
 (as you typed it) and output data was placed on the terminal
 (printed by ’copy’).

 − 5 −

 Command Interpreter User’s Guide

 Obviously, ’copy’ would not be of much use if this was all
 it could do. Fortunately, the command interpreter can change the
 sources and destinations of data, thus making ’copy’ less
 trivial.

 I/O Redirection to Disk Files or Devices

 Standard ports may be altered so as to refer to disk files
 by use of a "funnel." The greater−than sign (>) is used to
 represent a funnel. Conventionally, the ">" points in the direc−
 tion of data flow. For example, if you wished to copy the
 contents of file "ee" to file "old_ee", you could type

] ee> copy >old_ee

 The greater−than sign must always be immediately next to its
 associated filename; no intervening blanks are allowed. At least
 one blank must separate the ’>’ from any command name or
 arguments. This restriction is necessary to insure that the com−
 mand language can be interpreted unambiguously.

 The construct "ee>" is read "from ee"; ">old_ee" is read
 "toward old_ee." Thus, the command above can be read "from ee
 copy toward old_ee," or, "copy from ee toward old_ee." The
 process of changing the file assignment of a standard port by use
 of a funnel is called "I/O redirection," or simply "redirection."

 It is not necessary to redirect both standard input and
 standard output; either may be redirected independently of the
 other. For example,

] ee> copy

 can be used to print the contents of file "ee" on the terminal.
 (Remember that standard output, since it was not specifically
 redirected, refers to the terminal.) Not surprisingly, the last
 variation of ’copy’,

] copy >old_ee

 is also useful. This command causes input to be taken from the
 terminal (until an end−of−file is generated by typing a control−
 c) and placed on the file "old_ee". This is a quick way of
 creating a small file of text without using a text editor.

 It is important to realize that all Subsystem programs
 behave uniformly with regard to redirection. It is as correct to
 redirect the output of, say, ’lf’

] lf >file_list

 as it is to redirect the output of ’copy’.

 Recall that special pathnames which begin with "/dev" may
 refer to peripheral devices. For example, by redirecting output
 to "/dev/lps" you can print a file on the line printer.

 − 6 −

 Command Interpreter User’s Guide

] cat myfile >/dev/lps

 Although the discussion has been limited to one input port and
 one output port up to this point, more of each type are
 available. In the current implementation, there are a total of
 six; three for input and three for output. The highest−numbered
 output port is generally used for error messages, and is often
 called "ERROUT"; you can "capture" error messages by redirecting
 this output port. For example, if any errors are detected by
 ’lf’ in this command

] lf 3>errors

 then the resulting error messages will be placed on the file
 "errors".

 Final words on redirection: there are two special−purpose
 redirection operators left. They are both represented by the
 double funnel ">>". The first operator is called "append:"

] lf >>list

 causes a list of files to be placed at the end of (appended to)
 the file named "list". The second operator is called "from com−
 mand input." It is represented as just ">>" with no file name,
 and causes standard input to refer to the current source of com−
 mands. It is useful for running programs like the text editor
 | from "scripts" of instructions placed in a command file. See the
 | Application Notes for examples.

 I/O Redirection to other Commands

 The last section discussed I/O redirection −−− the process
 of making standard ports refer to disk files or devices, rather
 than just to the terminal. This section will take that idea one
 step further. Frequently, the output of one program is placed on
 a file, only to be picked up again later and used by another
 program. The command interpreter simplifies this process by
 eliminating the intermediate file. The connection between
 programs that is so formed is called a "pipe," and a linear array
 of programs communicating through pipes is called a "pipeline."

 Suppose that you maintain a large directory, containing
 drafts of various manuals. Each draft is in a file with a name
 of the form "MANxxxx.rr", where "xxxx" is the number of the
 manual and "rr" is the revision number. You are asked to produce
 a list of the numbers of all manuals at the first revision stage.
 The following command will do the job:

] lf −c | find .01

 | "lf −c" lists the names of all files in the current directory, in
 | a single column. The "pipe connection" (vertical bar) causes
 this listing to be passed to the ’find’ command, which selects
 those lines containing the string ".01" and prints them. Thus,

 − 7 −

 Command Interpreter User’s Guide

 the pipeline above will print all filenames matching the con−
 ventional form of a first−revision manual name.

 The ability to build special purpose commands cheaply and
 quickly from available tools using pipes is one of the most
 valuable features of the command interpreter. With practice,
 surprisingly difficult problems can be solved with ease. For
 further examples of pipelines, see the Applications Notes.

 Combinations of programs connected with pipes need not be
 linear. Since multiple standard ports are available, programs
 can be and often are connected in non−linear networks. (Some
 networks cannot be executed if the programs in the network are
 not executed concurrently. The command interpreter detects such
 networks, and prints a warning message if they cannot be per−
 formed.) Further information on networks can be found in both
 the reference and applications chapters of this guide.

 I/O Redirection for a Group of Commands

 It is sometimes necessary to change the standard port
 environment of many commands at one time, for reasons of con−
 venience or efficiency. The "compound node" (a set of networks
 surrounded by curly braces) can be used in these situations.

 As an example of the first case, suppose that you wish to
 generate a list of manual names (see the last example) in either
 the first or the second stage of revision. One way to do this is
 to generate the list for the first revision stage, place it on a
 file using a funnel, then generate a list for the second revision
 stage and place it on the end of the same file using an "append"
 redirector. A compound node might simplify the procedure thusly:

] { lf −c | find .01; lf −c | find .02 } >list

 The first network finds all manuals at the first revision stage,
 and the second finds all those at the second stage. The networks
 will execute left−to−right, with the output of each being placed
 on the file "list," thus generating the desired listing. With
 iteration, the command can be collapsed even farther:

] { lf −c | find .0(1 2) } >list

 This combination of iteration and compound nodes is often useful.

 Efficiency becomes a consideration in cases where successive
 long streams of data are to be copied onto a file; if the
 "append" redirector is used each time, the file must be reopened
 and repositioned several times. Using a compound node, the out−
 put file need be opened only once:

] { (file1 file2 file3)> copy } >all_files

 This complex example copies the contents of files "file1,"
 "file2," and "file3" into the file named "all_files."

 − 8 −

 Command Interpreter User’s Guide

 I/O Redirection to a Command Argument

 As mentioned before, some commands may have arguments. The
 standard output of a command (or a series of commands) can be
 used as an argument(s) by using the "function call" mechanism.
 For example, recall the situation illustrated in the section on
 pipes and networks; suppose it is necessary to actually print the
 manuals whose names were found. This is how the task could be
 done:

] print [lf −c | find .01]

 The function call is composed of the pipeline "lf −c | find .01"
 and the square brackets enclosing it. The output of the pipeline
 within the brackets is passed to ’print’ as a set of arguments,
 which it accesses in the usual manner. Specifically, all the
 lines of output from the pipeline are combined into one set of
 arguments, with spaces provided where multiple lines have been
 collapsed into one line.

 ’Print’ accepts multiple arguments; however, suppose it was
 necessary to use a program like ’fos’, that accepts only one
 argument. Iteration can be combined with a function call to do
 the job:

] fos ([lf −c | find .01])

 This command formats and prints all manuals in the current direc−
 tory with revision numbers "01".

 Function calls are frequently used in command files,
 particularly for accessing arguments passed to them. Since the
 sequence "lf −c | find pattern" occurs very frequently, it is a
 good candidate for replacement with a command file; it is only
 necessary to pass the pattern to be matched from the argument
 list of the command file to the ’find’ command with a function
 call. The following command file, called ’files’, will
 illustrate the process:

 lf −c | find [arg 1]

 "arg 1" retrieves the first command file argument. The function
 call then passes that argument to ’find’ through its argument
 list. ’Files’ may then be used anywhere the original network was
 appropriate:

] files .01
] print [files .01]
] fos ([files .01])

 Variables

 It has been claimed that the command language is a
 programming language in its own right. One facet of this

 − 9 −

 Command Interpreter User’s Guide

 language that has not been discussed thus far is the use of its
 variables. The command interpreter allows the user to create
 variables, with scope, and assign values to them or reference the
 values stored in them.

 Certain special variables are used by the command
 interpreter in its everyday operation. These variables have
 names that begin with the underline (_). One of these is
 ’_prompt’, which is the prompt string the command interpreter
 prints when requesting a command. If you object to "]" as a
 prompt, you can change it with the "set" command:

] set _prompt = "OK, "
 OK, set _prompt = "% "
 % set _prompt = "] "
]

 You may create and use variables of your own. To create a
 variable in the current scope (level of command file execution),
 use the "declare" command:

] declare i j k sum

 Values are assigned to variables with the ’set’ command. The
 command interpreter checks the current scope and all surrounding
 scopes for the variable to be set; if found, it is changed,
 otherwise it is declared in the current scope and assigned the
 specified value.

 Variables behave like small programs that print their
 current values. Thus the value of a variable can be obtained by
 simply typing its name, or it can be used in a command line by
 enclosing it in brackets to form a function call. The following
 command file (which also illustrates the use of ’if’, ’eval’, and
 ’goto’) will count from 1 to the number given as its first
 argument:

 declare i
 set i = 1
 :loop
 if [eval i ">" [arg 1]]
 goto exit
 fi
 i
 set i = [eval i + 1]
 goto loop
 :exit

 Note the use of the "eval" function, which treats its arguments
 as an arithmetic expression and returns the expression’s value.
 This is required to insure that the string "i + 1" is interpreted
 as an expression rather than as a character string. Also note
 | that ’fi’ terminates the ’if’ command.

 | When setting a variable to a string containing unprintable
 | characters, you may use a special mnemonic form to prevent having

 − 10 −

 Command Interpreter User’s Guide

 | to type the literal characters. For example

 | set crlf = "<cr><lf>"

 | sets the variable ’crlf’ to a literal carriage return followed by
 | a linefeed. There are times when this is not desirable, so to
 | prevent the interpretation of the string, simply escape the start
 | the start on the mnemonic with the Subsystem escape character (an
 | ’@’). To set set the variable ’crlf’ to the literal string
 | "<cr><lf>" you would type

 | set crlf = "@<cr>@<lf>"

 | The quotes in these two cases are necessary, otherwise the shell
 | would try to interpret the ’>’ as an I/O redirector. If the
 | string between the "<>" characters is not a legal ASCII mnemonic,
 | no substitution will be made and the string will be passed
 | unchanged.

 Interrupts, Quits and Error Handling Mechanisms

 Normally, if you interrupt a program, it will terminate and
 the next thing you will see is the Subsystem’s prompt for your
 next command. However, by defining the shell control variable
 "_quit_action" in your "=varsdir=/.vars" file, the fault handler
 will, upon detection of the interrupt, prompt you as to whether
 to abort the current program, continue, or call Primos. For
 program errors, the fault handler will always ask whether you
 want to abort the program, continue, or call Primos (regardless
 | of whether "_quit_action" is defined or not). The Application
 | Notes discuss how to go about creating shell variables (which are
 | kept in "=varsdir=/.vars" for storage between login sessions).

 Conclusion

 This concludes the tutorial chapter of this document.
 Despite the fact that a good deal of material has been presented,
 much detail has been omitted. The next chapter is a complete
 summary of the capabilities of the command interpreter. It is
 written in a rather technical style, and is recommended for
 reference rather than self−teaching. The last chapter is a set
 of examples that may prove helpful. As always, the best approach
 is simply to sit down at a terminal and try out whatever you wish
 to do. Should you have difficulty, further tutorials are
 available, and the ’help’ command can be consulted for quick
 reference.

 − 11 −

 Command Interpreter User’s Guide

 Summary of Syntax and Semantics

 This section is the definitive document for the syntax and
 corresponding semantics of the Software Tools Subsystem Command
 Interpreter. It is composed of several sub−sections, each cover−
 ing some major area of command syntax, with discussions of the
 semantic consequences of employing particular constructs. It is
 not intended as a tutorial, nor is it intended to supply mul−
 titudinous examples; the other sections of this document are
 provided to fill those needs.

 Commands

 <command> ::= [<net> { ; <net> }] <newline>

 The "command" is the basic unit of communication between the
 command interpreter and the user. It consists of any number of
 networks (described below) separated by semicolons and terminated
 by a newline. The networks are executed one at a time, left−to−
 right; should an error occur at any point in the parse or execu−
 tion of a network, the remainder of the <command> is ignored.
 The null command is legal, and causes no action.

 The command interpreter reads commands for interpretation
 from the "command source." This is initially the user’s
 terminal, although execution of a command file may change the
 assignment. Whenever the command source is the terminal, and the
 command interpreter is ready for input, it prompts the user with
 the string contained in the shell variable ’_prompt’. Since this
 variable may be altered by the user, the prompt string is selec−
 table on a per−user basis.

 Networks

 <net> ::= <node>
 { <node separator> { <node separator> } <node> }

 <node separator> ::= , | <pipe connection>

 <pipe connection> ::= [<port>] ’|’ [<node number>] [.<port>]

 <port> ::= <integer>

 <node number> ::= <integer> | $ | <label>

 A <net> generates a block of (possibly concurrent) processes
 that are bound to one another by channels for the flow of data.
 Typically, each <node> corresponds to a single process. (<Node>s
 are described in more detail below.) There is no predefined
 "execution order" of the processes composing a <net>; the command
 interpreter will select any order it sees fit in order to satisfy
 the required input/output relations. In particular, the user is
 specifically enjoined not to assume a left−to−right serial

 − 12 −

 Command Interpreter User’s Guide

 execution, since some <net>s cannot be executed in this manner.

 Input/output relations between <node>s are specified with
 the <node separator> construct. The following discussion may be
 useful in visualizing the data flows in a <net>, and clarifing
 the function of the components of the <node separator>.

 The entire <net> may be represented as a directed graph with
 one vertex for each <node> (typically, equivalent to each
 process) in the net. Each vertex may have up to n arcs terminat−
 ing at it (representing "input data streams"), and m arcs
 originating from it (representing "output data streams"). An arc
 between two vertices indicates a flow of data from one <node> to
 another, and is physically implemented by a pipe.

 Each of the n possible input points on a <node> is assigned
 an identifier consisting of a unique integer in the range 1 to n.
 These identifiers are referred to as the "port numbers" for the
 "standard input ports" of the given <node>. Similarly, each of
 the m possible output points on a <node> is assigned a unique
 integer in the range 1 to m, referred to as the port numbers for
 the "standard output ports" of the given <node>.

 Lastly, the <node>s themselves are numbered, starting at 1
 and increasing by 1 from the left end of the <net> to the right.

 Clearly, in order to specify any possible input/output con−
 nection between any two <node>s, it is sufficient to specify:

 . The number of the "source" <node>.

 . The number of the "destination" <node>.

 . The port number of the standard output port on the
 source <node> that is to be the source of the data.

 . The port number of the standard input port on the
 destination <node> that is to receive the data.

 The syntax for <node separator> includes the specifications
 for the last three of these items. The source <node> is under−
 stood to be the node that immediately precedes the
 <node separator> under consideration. The special
 <node separator> "," is used to separate <node>s that do not
 participate in data sharing; it specifies a null connection.
 Thus, the <node separator> provides a means of establishing any
 possible connection between two <node>s of a given <net>.

 The full flexibility of the <node separator> is rarely
 needed or desirable. In order to make effective use of the
 capabilities provided, suitable defaults have been designed into
 the syntax. The semantics associated with the defaults are as
 follows:

 − 13 −

 Command Interpreter User’s Guide

 . If the output port number (the one to the left of the
 vertical bar) is omitted, the next unassigned output
 port (in increasing numerical order) is implied. This
 default action takes place only after the entire <net>
 has been examined, and all non−defaulted output ports
 for the given node have been assigned. Thus, if the
 first <node separator> after a <node> has a defaulted
 output port number, port 1 will be assigned if and only
 if no other <node separator> attached to that <node>
 references output port 1. It is an error for two
 | <node separators> to reference the same output port.

 . If the destination <node> number is omitted, then the
 next node in the <net> (scanning from left to right) is
 implied. Occasionally a null <node> is generated at
 the end of a <net> because of the necessity for resolv−
 ing such references.

 . If the destination <node>’s input port number is omit−
 ted, then the next unassigned input port (in increasing
 numerical order) is implied. As with the defaulted
 output port, this action takes place only after the
 entire <net> has been examined. The comments under (1)
 above also apply to defaulted input ports.

 In addition to the defaults, specifying input/output connec−
 tions between widely separated <node>s is aided by alternative
 means of giving <node> numbers. The last <node> in a <net> may
 be referred to by the <node number> $, and any <node> may be
 referred to by an alphanumeric <label>. (<Node> labelling is
 discussed in the section on <node> syntax, below.) If the first
 <node> of a <net> is labelled, the <net> may serve as a target
 for the ’goto’ command; see the Applications Notes for examples.

 As will be seen in the next section, further syntax is
 necessary to completely specify the input/output environment of a
 <node>; the reader should remember that <node separator>s control
 only those flows of data between processes.

 A few examples of the syntax presented above may help to
 clarify some of the semantics. Since the syntax of <node> has
 not yet been discussed, <node>s will be represented by the string
 "node" followed by a digit, for uniqueness and as a key to
 <node number>s.

 A simple linear <net> of three <node>s without defaults:

 node1 1|2.1 node2 1|3.1 node3

 (Data flows from output port 1 of node1 to input port 1 of node2
 and output port 1 of node2 to input port 1 of node3.)

 The same <net>, with defaults:

 node1 | node2 | node3

 − 14 −

 Command Interpreter User’s Guide

 (Note that the spaces around the vertical bars are mandatory, so
 that the lexical analysis routines of the command interpreter can
 parse the elements of the command unambiguously.)

 A simple cycle:

 node1 |1.2

 (Data flows from output port 1 of node1 to input port 2 of node1.
 Other data flows are unspecified at this level.)

 | A branching <net> with overridden defaults:

 node1 |$ node2 |.1 node3

 (Data flows from output port 1 of node1 to input port 2(!) of
 node3 and output port 1 of node2 to input port 1 of node3.)

 Nodes

 <node> ::= {:<label>} [<simple node> | <compound node>]

 <simple node> ::= { <i/o redirector> }
 <command name>
 { <i/o redirector> | <argument> }

 <compound node> ::= { <i/o redirector> }
 ’{’ <net> { <net separator> <net> } ’}’
 { <i/o redirector> }

 <i/o redirector> ::= <file name> ’>’ [<port>] |
 [<port>] ’>’ <file name> |
 [<port>] ’>>’ <file name> |
 ’>>’ [<port>]

 <net separator> ::= ;

 <command name> ::= <file name>

 <label> ::= <identifier>

 The <node> is the basic executable element of the command
 language. It consists of zero or more labels (strings of let−
 ters, digits, and underscores, beginning with a letter),
 optionally followed by one of two additional structures.
 Although, strictly speaking, the syntax allows an empty node, in
 practice there must be either a label or one of the two
 additional structures present.

 The first option is the <simple node>. It specifies the
 name of a command to be performed, any arguments that command may
 require, and any <i/o redirector>s that will affect the data
 environment of the command. (<I/o redirectors will be discussed
 below.) The execution of a simple node normally involves the
 creation of a single process, which performs some function, then

 − 15 −

 Command Interpreter User’s Guide

 returns to the operating system.

 The second option is the <compound node>. It specifies a
 <net> which is to be executed according to the usual rules of
 <net> evaluation (see the previous subsection), and any
 <i/o redirector>s that should affect the environment of the
 <net>. The <compound node> is provided for two reasons. One, it
 is occasionally useful to alter default port assignments for an
 entire <net> with <i/o redirector>s, rather than supplying
 <i/o redirector>s for each <node>. Two, use of compound nodes
 containing more than one <net> gives the user some control over
 the order of execution of his processes. These abilities are
 discussed in more detail below.

 Since it is the more basic construct, consider the
 <simple node>. It consists of a <command name> with <argument>s,
 intermixed with <i/o redirector>s. The <command name> must be a
 filename, usually specifying the name of an object code file to
 be loaded. The command interpreter locates the command to be
 performed by use of a user−specified "search rule." The search
 rule resides in the shell variable "_search_rule", and consists
 of a series of comma−separated elements. Each element is either
 a template in which ampersands (&) are replaced by the
 <command name> or a flag instructing the command interpreter to
 search one of its internal tables. The flag "^int" indicates
 that the command interpreter’s repertoire of "internal" commands
 is to be checked. (An internal command is implemented as a
 subroutine of the command interpreter, typically for speed or
 because of a need to access some private data base.) The flag
 "^var" causes a search of the user’s "shell variables" (see below
 for further discussion of variables and functions). The follow−
 ing search rule will cause the command interpreter to search for
 a command among the internal commands, shell variables, and the
 directory "=bin=", in that order:

 "^int,^var,=bin=/&"

 The purpose of the search rule is to allow optimization of com−
 mand location for speed, and to admit the possibility of restric−
 ting some users from accessing "privileged" commands. (For exam−
 ple, the search rule

 "^var,//project/library/&"

 would restrict a user to accessing his variables and those com−
 mands in the directory "//project/library". He could not alter
 this restriction, since he does not have access to the (internal)
 ’set’ command; the "^int" flag is missing from his search rule.)
 In addition to restricting a user to commands in specific direc−
 tories, the system administrator can also restrict a user from
 using certain internal commands (and allow use of all other
 internal commands). This is accomplished by adding "qualifiers"
 after the internal command flag in the search rule. The
 qualifiers are characters representing the class of commands to
 be excluded in the search for internal commands to be executed.
 Qualifiers follow the "^int" flag, separated from it by a slash.

 − 16 −

 Command Interpreter User’s Guide

 The following table summarizes the qualifiers and which internal
 commands they exclude :

 Qualifier meaning

 a access to arguments in shell files
 (’arg’, ’args’, ’argsto’, ’nargs’, and
 ’quote’)

 b access to debugging commands (’dump’ and
 ’shtrace’)

 c access to flow of control commands
 | (’case’, ’elif’, ’else’, ’esac’, ’exit’,
 | ’fi’, ’goto’, ’if’, ’label’, ’out’,
 | ’repeat’, ’then’, ’until’, and ’when’)

 d ability to change directories (via ’cd’)

 h access to environment information
 (’date’, ’day’, ’echo’, ’eval’, ’instal−
 lation’, ’line’, ’login_name’, and
 ’time’)

 m access to string manipulation functions
 (’drop’, ’index’, ’substr’, and ’take’)

 q ability to exit the shell (via ’stop’)

 s access to variable setting commands
 (’forget’, ’set’, and ’sh’)

 v access to variable manipulating commands
 (’declare’, ’declared’, and ’vars’)

 x access to commands which allow execution
 of Primos commands (’dbg’, ’primos’,
 ’vpsd’, and ’x’)

 For instance, if the system administrator wanted to keep someone
 from executing the Primos Fortran compiler directly, then the
 following search rule would accomplish this :

 "^int/qxv,^var,=bin=/&"

 The "q" qualifier prevents exit from the shell (so that you can’t
 run the Primos Fortran compiler directly), the "x" qualifier
 prevents you from accessing external commands from within the
 shell (i.e., via "x ftn prog"), and the "v" qualifier prevents
 you from using ’declare’ to modify or create a search rule (the
 shell file ’fc’, which is the Subsystem interface to the Primos
 Fortran compiler, declares its own search rule) which contains an
 unqualified "^int" flag. It should be noted, however, that this
 is not a fool−proof method of limiting a user’s access to com−

 − 17 −

 Command Interpreter User’s Guide

 mands; a better solution is to write a program which is run at
 login and which "supervises" the user’s session. One way of
 overcoming such a restriction placed by the system administrator
 would be to execute a command within a function call, such as the
 following:

 | [declare _search_rule = "<normal search rule>"; _
 | <unrestricted command>]

 By redefining the search rule, the user is then allowed to
 execute any desired command, including a new invocation of the
 command interpreter.

 <Argument>s to be passed to the program being readied for
 execution are gathered by the command interpreter and placed in
 an area of memory accessible to the library routine ’getarg’.
 They may be arbitrary strings, separated from the command name
 and from each other by blanks. Quoting may be necessary if an
 <argument> could be interpreted as some other element of the com−
 mand syntax. Either single or double quotes may be used. The
 appearance of two strings adjacent to one another without blanks
 implies concatenation. Thus,

 "quoted "string

 is equivalent to

 "quoted string"

 or to

 quoted’ string’

 Single quotes may appear within strings delimited by double
 quotes, and vice versa; this is the only way to include quotes
 within a string. Example:

 "’quoted string’"
 ’"Alas, poor Yorick!"’

 Arguments are generally unprocessed by the command interpreter,
 and so may contain any information useful to the program being
 invoked.

 In the previous section, it was shown that streams of data
 from "standard ports" could be piped from program to program
 through the use of the <pipe connection> syntax. It is also pos−
 sible to redirect these data streams to files, or to use files as
 sources of data. The construct that makes this possible is the
 <i/o redirector>. The <i/o redirector> is composed of filenames,
 port numbers (as described in the last section), and one or two
 occurrences of the "funnel" (>).

 The two simplest forms take input from a file to a standard
 port or output from a standard port to a file. In the case of
 delivering output to a file, the file is automatically created if

 − 18 −

 Command Interpreter User’s Guide

 it did not exist, and overwritten if it did. In the case of tak−
 ing input from a file, the file is unmodified. Example:

 documentation>1

 causes the data on the file "documentation" to be passed to stan−
 dard input port 1 of the node;

 1>results

 causes data written to standard output port 1 of the node to be
 placed on the file "results".

 If no <i/o redirector> is present for a given port, then
 that port automatically refers to the user’s terminal.

 If port numbers are omitted, an assignment of defaults is
 made. The assignment rule is identical to that given above for
 <pipe connections>: the first available port after the entire
 <net> has been scanned is used. <I/O redirector>s are evaluated
 left−to−right, so leftmost defaulted redirectors are assigned to
 lower−numbered ports than those to their right. For example,

 data> requests> trans 2>summary 3>errors | sp

 is the same as

 data>1 requests>2 trans 2>summary 3>errors 1|2.1 sp

 where all defaults have been elaborated. ’Trans’ might be some
 sort of transaction processor, accepting data input and update
 requests, and producing a report (here printed off−line by being
 piped to a spooler program), a summary of transactions, and an
 error listing.

 In addition to the <i/o redirector>s mentioned above, there
 are two lesser−used redirectors that are useful. The first
 appends output to a file, rather than overwriting the file. The
 syntax is identical to the other output redirector, with the
 exception that two funnels ’>>’ are used, rather than one. For
 example,

 2>>stuff

 causes the data written to output port 2 to be appended to the
 file "stuff". (Note the lack of spaces around the redirector; a
 redirector and its parameters are never separated from one
 another, but are always separated from surrounding arguments or
 other text. This restriction is necessary to insure unambiguous
 interpretation of the redirector.) The second redirector causes
 input to be taken from the current command source file. It is
 most useful in conjunction with command files. The syntax is
 similar to the input redirector mentioned above, but two funnels
 are used and no filename may be specified. As an example, the
 following segment of a command file uses the text editor to
 change all occurrences of "March" to "April" in a given file:

 − 19 −

 Command Interpreter User’s Guide

 >> ed file
 g/March/s//April/
 w
 q

 When the editor is invoked, it will take input directly from the
 command file, and thus it will read the three commands placed
 there for it.

 The "command source" and "append" redirectors are subject to
 the same resolution of defaults as the other redirectors and
 <pipe connection>s. Thus, in the example immediately above,

 >> ed file

 is equivalent to

 >>1 ed file

 Now that the syntax of <node> has been covered, just two
 further considerations remain. First, the nature of an
 executable program must be defined. Second, the problem of
 execution order must be clarified.

 In the vast majority of cases, a <node> is executed by
 bringing an object program into memory and starting it. However,
 the <command name> may also specify an internal command, a shell
 variable, or a command file. Internal commands are executed
 within the command interpreter by the invocation of a subroutine.
 When a shell variable is used as a command, the net effect is to
 print the value of the variable on the first output port, fol−
 lowed by a newline. If the filename specified is a text file
 rather than an object file, the command interpreter "guesses"
 that the named file is a file of commands to be interpreted one
 at a time. In any case, command invocation is uniform, and any
 <i/o redirector> or <pipe connection> given will be honored.
 Thus, it is allowable to redirect the output of a command file
 just as if it were an object program, or copy a shell variable to
 the line printer by connecting it to the spooler through a pipe.

 As mentioned in the section on <net>s, the execution order
 of nodes in a <net> is undefined. That is, they may be executed
 serially in any order, concurrently, or even simultaneously. The
 exact method is left to the implementor of the command
 interpreter. In any case, the flows of data described by
 <pipe connection>s and <i/o redirector>s are guaranteed to be
 present. There are times when it would be preferable to know the
 order in which a <net> will be evaluated; to help with this
 situation, <compound node>s may be used to effect serialization
 of control flow within a network. <Net>s separated by semicolons
 or newlines are guaranteed to be executed serially, left−to−
 right, otherwise the command interpreter would exhibit unpredic−
 table behavior as the user typed in his commands. Suppose it is
 necessary to operate four programs; three may proceed
 concurrently to make full use of the multiprogramming capability

 − 20 −

 Command Interpreter User’s Guide

 of the computer system, but the fourth must not be executed until
 the second of the three has terminated. For simplicity, we will
 assume there are no input/output connections between the
 programs. The following command line meets the requirements
 stated above:

 program1, {program2; program4}, program3

 (Recall that the comma represents a null i/o connection.) Sup−
 pose that we have a slightly different problem: the fourth
 program must run after all of the other three had run to com−
 pletion. This, too, can be expressed concisely:

 program1, program2, program3; program4

 Thus, the user has fairly complete control over the execution
 order of his <net>s. (The use of commas and semicolons in the
 command language is analogous to their use for collateral and
 serial elaboration in Algol 68.)

 This completes the discussion of the core of the command
 language. The remainder of the features present in the command
 interpreter are provided by a built−in preprocessor, which hand−
 les function calls, iteration, and comments. The next few sec−
 tions deal with the preprocessor’s capabilities.

 Comments

 Any good command language should provide some means for the
 user to comment his code, particularly in command files that may
 be used by others. The command interpreter has a simple comment
 convention: Any text between an unquoted sharp sign (#) and the
 next newline is ignored. A comment may appear at the beginning
 of a line, like this:

 # command file to preprocess, compile, and link edit

 Or after a command, like this:

 file.r> rp # Ratfor’s output goes to the terminal

 Or even after a label, for identification of a loop:

 :loop # beginning of daily cycle

 As far as implications in other areas of command syntax, the
 comment is functionally equivalent to a newline.

 Variables

 <variable> ::= <identifier>

 | <value> ::= { <printable char> | <unprintable char> }

 − 21 −

 Command Interpreter User’s Guide

 |
 | <unprintable char> ::= ’<’ <ascii mnemonic> ’>’
 |
 | <set command> ::= set [<variable>] = [<value>]
 |
 | <declare command> ::= declare { <variable [= <value>] }

 <forget command> ::= forget <variable> { <variable> }

 The command interpreter supports named string storage areas
 for miscellaneous user applications. These are called variables.
 Variables are identified by a name, consisting of letters of
 either case, digits, and underscores, not beginning with a digit.
 Variables have two attributes: value and scope. The value of a
 variable may be altered with the ’set’ command, discussed below.
 The scope of a variable is fixed at the time of its creation;
 simply, variables declared during the time when the command
 interpreter is taking input from a command file are active as
 long as that file is being used as the command source. Variables
 with global scope (those created when the command interpreter is
 reading commands from the terminal) are saved as part of the
 user’s profile, and so are available from terminal session to
 terminal session. Other variables disappear when the execution
 of the command file in which they were declared terminates.

 Variables may be created with the ’declare’ command.
 ’Declare’ creates variables with the given names at the current
 lexical level (within the scope of the current command file).
 The newly−created variables are assigned a null value, unless an
 initialization string is provided.

 Variables may be destroyed prematurely with the ’forget’
 command. The named variables are removed from the command
 interpreter’s symbol table and storage assigned to them is
 released to the system. Note that variables created by
 operations within a command file are automatically released when
 that command file ceases to execute. Also note that the only way
 to destroy variables at the global lexical level is to use the
 ’forget’ command.

 The value of a variable may be changed with the ’set’ com−
 mand. The first argument to ’set’ is the name of the variable to
 be changed. If absent, the value that would have been assigned
 is printed on ’set’s first standard output. The last argument to
 ’set’ is the value to be assigned to the variable. It is
 uninterpreted, that is, treated as an arbitrary string of text.
 If missing, ’set’ reads one line from its first standard input,
 and assigns the resulting string. If the variable named in the
 first argument has not been declared at any lexical level, ’set’
 declares it at the current lexical level.

 | A variable may contain any legal ASCII character. To allow
 | the user to enter unprintable characters that might be a problem
 | to Primos or the shell, the commands that manipulate variables
 | allow the use of ASCII mnemonics in the value of a shell
 | variable. The following would set the "_kill_resp" variables to

 − 22 −

 Command Interpreter User’s Guide

 | two ASCII escape characters, a backspace, and the string "*del*":

 | set _kill_resp = "<esc><esc><bs>*del*"

 | To prevent the interpretation of the mnemonics (i.e. to enter a
 | literal "<esc><esc><bs>*del*", in this case) the user simply uses
 | the Subsystem escape character in front of the mnemonics:

 | set _kill_resp = "@<esc>@<esc>@<bs>*del*"

 Variables are accessed by name, as with any command. (Note
 that the user’s search rule must contain the flag "^var" before
 variables will be evaluated.) The command interpreter prints the
 value of the variable on the first standard output. This
 behavior makes variables useful in function calls (discussed
 below). In addition, the user may obtain the value of a variable
 for checking simply by typing its name as a command.

 Iteration

 <iteration> ::= ’(’ <element> { <element> } ’)’

 Iteration is used to generate multiple command lines each
 differing by one or more substrings. Several iteration elements
 (collectively, an "iteration group") are placed in parentheses;
 the command interpreter will then generate one command line for
 each element, with successive elements replacing the instance of
 iteration. Iteration takes place over the scope of one <net>; it
 will not extend over a <net separator>. (If iteration is applied
 to a <compound node>, it will, of course, apply to the entire
 <node>; not just to the first <net> within that <node>.)

 Multiple iterations may be present on one command; each
 iteration group must have the same number of elements, since the
 command interpreter will pick one element from each group for
 each generated command line. (Cross−products over iteration
 groups are not implemented.)

 An example of iteration:

] fos part(1 2 3)

 is equivalent to

] fos part1; fos part2; fos part3

 and

] cp (intro body summary) part(1 2 3)

 is equivalent to

] cp intro part1; cp body part2; cp summary part3

 − 23 −

 Command Interpreter User’s Guide

 Function Calls

 <function call> ::= ’[’ <net> { <net separator> <net> } ’]’

 Occasionally it is useful to be able to pass the output of a
 program along as arguments to another program, rather than to an
 input port. The "function call" makes this possible. The output
 appearing on each of the first standard output ports of the
 <net>s within the function call is copied into the command line
 in place of the function call itself. Line separators (newlines)
 present in the <net>’s output are replaced by blanks. No quoting
 of <net> output is performed, thus blank−separated tokens will be
 passed as separate arguments. (If quoting is desired, the filter
 ’quote’ can be used or the shell variable "_quote_opt" may be set
 to the string "YES" to cause automatic quotation.)

 A <net> may of course be any network; all the syntax
 described in this document is applicable. In particular, the
 name of a variable may appear with the brackets; thus, the value
 | of a variable may be substituted into the command line.

 | History Mechanism

 | <history_command> ::= <cmd_select> <arg_select> <substitution>

 | The shell provides a sort of dynamic macro replacement facility
 | for commands that are entered from the terminal. This is called
 | a command history mechanism. It allows the user to recall com−
 | mands he has previously entered, extract portions of the command,
 | edit the portions he has selected, and either execute what
 | remains or incorporate it into another command, with a minimum of
 | typing.

 | A history substitution contains three parts; command selec−
 | tion, argument selection, and editing. Command selection chooses
 | what command will be used. Argument selection decides which
 | arguments are to be extracted from the chosen command line, and
 | the editing phase allows the result to be edited to change spel−
 | ling or substitute a different word for portions of the line. To
 | prevent any history substitution from taking place, the ’hist’
 | command can turn off the history mechanism. It also controls the
 | saving and restoration of the current history environment. For
 | the rest of this discussion, the assumption will be that history
 | is currently enabled.

 | History substitution is triggered by the ’!’ character. A
 | history substitution is normally stopped by a blank or tab
 | character, but a trailing ’!’ will stop the interpretation of
 | any further characters. This is used when concatenating sup−
 | plementary text to the result of a history substitution. To
 | prevent this and any other interpretation of the special history
 | characters, they may be escaped with the Subsystem escape charac−
 | ter, ’@’. When a history substitution is discovered, the
 | mechanism modifies the command line, prints the resulting command
 | line on the user’s terminal, and then passes the command to the

 − 24 −

 Command Interpreter User’s Guide

 | rest of the shell for execution. History processing occurs
 | before any other evaluation in the shell, such as function calls
 | and iteration. However, the use of ’_’ to continue an input line
 | is done even before the history mechanism sees what you have
 | typed; if the ’_’ is the last character in your history command,
 | and the last character on the line, follow it with a terminating
 | ’!’.

 | Command Selection.

 | <cmd_select> ::= ’!’ [<str> | ’?’ <str> ’?’ | <num>]

 | The first thing in a history substitution is command selec−
 | tion. This is used to retrieve a given command line for use, or
 | further processing. In a history command selection ’!<str>’ will
 | find the most recent command line that started with the charac−
 | ters in <str>. ’!?<str>?’ will find the most recent command
 | line that contained <str> anywhere on the line. It also allows
 | <str> to contain blanks or tabs whereas the first form does not.
 | ’!<num>’ allows the user to specify the number of a command
 | according to the output of the ’hist’ command. As a convenience,
 | ’!’ by itself will repeat the last command entered.

 | Argument Selection.

 | <arg_select> ::= ’‘’ [<num>] [’−’ <num>]

 | The next portion of a history substitution is an optional
 | argument selection. This chooses which portions of the command
 | are to be kept. History arguments are not exactly the same as
 | the arguments the rest of the shell uses, since history expansion
 | occurs before argument collection. Arguments in this context are
 | blank or tab seperated words on the command line. Function
 | calls, iterations, and quotations will be extracted as a single
 | argument, even if they contain blanks or tabs. Arguments are
 | numbered from zero, starting at the leftmost portion of the line.
 | In an argument selection, ’‘<num>’ specifies that only argument
 | <num> is to be extracted and kept for further processing or use,
 | and the rest of the command line is to be dropped. ’‘<num>−
 | <num>’ specifies that arguments from the first <num> to the last
 | <num> are to be kept. In place of any <num>, ’$’ may be
 | specified to obtain the last argument on the line. The form ’‘−
 | <num>’ is a shorthand for ’‘1−<num>’ and ’‘<num>−’ is a short
 | form for ’‘<num>−$’.

 | Substitution.

 | <substitution> ::= { ’^’ <str> ’^’ <str> ’^’ [’g’] }

 | The last portion of a history substitution is also optional
 | and is the editing phase. This allows the portions of the com−
 | mand line that remain to actually be modified like the substitu−
 | tion command in ’ed’, although much more limited. In the history
 | mechanism, <str> is not a regular expression, as in ’ed’, but is
 | taken as a simple string. The regular expression special charac−
 | ters are not recognized in the history mechanism. Each substitu−

 − 25 −

 Command Interpreter User’s Guide

 | tion happens only once on the line unless a ’g’ is appended on
 | the substitution, in which case the change occurs globally on the
 | line. Substitutions may be strung together, so that more than
 | one may be performed at a time.

 | Finally, after all history substitutions have been made, the
 | Shell will echo the new command line to the terminal, and then
 | execute it. See the Application Notes for a discussion of the
 | ’hist’ command.

 Conclusion

 | This concludes the description of command syntax and
 | semantics. The next, and final, chapter contains actual working
 examples of the full command syntax, along with suggested
 applications; it is highly recommended for those who wish to gain
 proficiency in the use of the command language.

 − 26 −

 Command Interpreter User’s Guide

 Application Notes

 This section consists mostly of examples of current usage of
 the command interpreter. Extensive knowledge of some Subsystem
 programs may be necessary for complete understanding of these
 examples, but basic principles should be clear without this
 knowledge.

 Basic Functions

 In this section, some basic applications of the command
 language will be discussed. These applications are intended to
 give the user a "feel" for the flow of the language, without
 being explicitly pedagogical.

 One commonly occurring task is the location of lines in a
 file that match a certain pattern. The ’find’ command performs
 this function:

] file> find pattern >lines_found

 Since the lines to be checked against the pattern are frequently
 a list of file names, the following sequence occurs often:

] lf −c directory | find pattern

 Consequently, a command file named ’files’ is available to
 abbreviate the sequence:

] cat =bin=/files
 lf −c [args 2] | find [arg 1]

 (’Cat’ is used here only to print the contents of the command
 file.) The internal command ’arg’ is used to fetch the first
 argument on the command line that invoked ’files’. Similarly,
 the internal command ’args’ fetches the second through the last
 arguments on the command line. The command file gives the exter−
 nal appearance of a program ’files’ such that

] files pattern

 is equivalent to

] lf −c | find pattern

 and

] files pattern directory

 is equivalent to

] lf −c directory | find pattern

 Once a list of file names is obtained, it is frequently processed

 − 27 −

 Command Interpreter User’s Guide

 further, as in this command to print Ratfor source files on the
 line printer:

] pr [files .r$ | sort]

 ’Files’ produces a list of file names with the ".r" suffix, which
 is then sorted by ’sort’. ’Pr’ then prints all the named files
 on the line printer.

 One problem arises when the pattern to be matched contains
 command language metacharacters. When the pattern is substituted
 into the network within ’files’, and the command interpreter par−
 ses the command, trouble of some kind is sure to arise. There
 are two solutions: One, the filter ’quote’ can be used to supply
 a layer of quotes around the pattern:

 lf −c [args 2] | find [arg 1 | quote]

 Two, the shell variable "_quote_opt", which controls automatic
 function quotation by the command interpreter, can be set to the
 string "YES":

 declare _quote_opt = YES
 lf −c [args 2] | find [arg 1]

 This latter solution works only because ’args’ prints each
 argument on a separate line; the command interpreter always
 generates separate arguments from separate lines of function out−
 put. In practice, the first solution is favored, since the non−
 intuitive quoting is made more evident.

 One common non−linear command structure is the so−called "Y"
 structure, where two streams of data join together to form a
 third (after some processing). This situation occurs because of
 the presence of dyadic operations (especially comparisons) in the
 tools available under the Subsystem. As an example, the follow−
 ing command compares the file names in two directories and lists
 those names that are present in both:

] lf −c dir1 | sort |$ lf −c dir2 | sort | common −3

 Visualize the command in this way:

 lf −c dir1 | sort lf −c dir2 | sort
 \ /
 ________ __________/
 \ /
 common −3

 The two ’lf’ and ’sort’ pairs produce lists of file names that
 are compared by ’common’, which produces a list of those names
 common to both input lists.

 Command files tend to be used not only for oft−performed
 tasks but also to make life easier when typing long, complex com−
 mands. Quite often these long command lines make use of line

 − 28 −

 Command Interpreter User’s Guide

 continuation −− a newline preceded immediately by an underscore
 is ignored. The following command file is used to create a
 keyword−in−context index from the heading lines of the Subsystem
 Reference Manual. Although it is not used frequently, it does a
 great deal of work and is illustrative of many of the features of
 the command interpreter.

 # make_cmd.k −−− build permuted index of commands
 files .d$ −f s1 _
 | change % "find %.hd −o 1" _
 | sh _
 | change ’%.hd *{[~]*} ["]*{[~"]*}?*’ ’@1: @2’ _
 | kwic −d =aux=/spelling/discard _
 | sort −d | unrot −w [width] >cmd.k

 First a few words on how Subsystem documentation is stored: The
 documentation for Subsystem commands resides in a subdirectory
 named "s1". The documentation for each command is in a separate
 file with the name "<command>.d". The heading line in each file
 can be identified by the characters ".hd" at the beginning of the
 line.

 The entire command file consists of a single network. The
 ’files’ command produces a list of the full path names (the −f
 option is passed on to ’lf’) of the files in the subdirectory
 "s1" that have path names ending with the characters ".d". The
 next ’change’ command generates a ’find’ command for each
 documentation file to find the heading line. These command lines
 are passed back to the shell (’sh’) for execution. The outputs
 of all of these ’find’ commands, namely the heading lines from
 all the documentation files, are passed back on the first stan−
 dard output of ’sh’. The second ’change’ command uses tagged
 patterns to isolate the command name and its short description
 from the header line and to construct a suitable entry for the
 kwic index generator. Finally, ’kwic’, ’sort’, and ’unrot’
 produce the index on the file "cmd.k".

 To this point, only serially−executed commands have been
 discussed, however sophisticated or parameterized. Control
 structures are necessary for more generally useful applications.
 The following command file, ’ssr’, shows a useful technique for
 parameter−setting commands. Like many APL system commands, ’ssr’
 without arguments prints the value it controls (in this case, the
 user’s command search rule), while ’ssr’ with an argument sets
 the search rule to the argument given, then prints the value for
 verification. ’Ssr’ looks like this:

 # ssr −−− set user’s search rule and print it

 if [nargs]
 set _search_rule = [arg 1 | quote]
 fi

 _search_rule

 The ’if’ command conditionally executes other commands. It

 − 29 −

 Command Interpreter User’s Guide

 requires one argument, which is interpreted as "true" if it is
 present, not null, and non−zero. If the argument is true, all
 | the commands from the ’if’ to the next unmatched ’elif’, ’else’
 | or ’fi’ command are executed. If the argument is false, all the
 commands from the next unmatched ’else’ command (if one is
 present) to the next unmatched ’fi’ command are executed. In
 ’ssr’ above, the argument to ’if’ is a function call invoking
 ’nargs’, a command that returns the number of arguments passed to
 the command file that is currently active. If ’nargs’ is zero,
 then no arguments were specified, and ’ssr’ does not set the
 user’s search rule. If ’nargs’ is nonzero, then ’ssr’ fetches
 the first argument, quotes it to prevent the command interpreter
 from evaluating special characters, and assigns it to the user’s
 search rule variable ’_search_rule’.

 ’If’ is useful for simple conditional execution, but it is
 often necessary to select one among several alternative actions
 instead of just one from two. The ’case’ command is available to
 perform this function. One example of ’case’ is the command file
 ’e’, which is used to invoke either the screen editor or the line
 editor depending on which terminal is being used (as well as
 remembering the name of the file last edited):

 # e −−− invoke the editor best suited to a terminal
 | # (this is not the current version of ’e’ in =bin=)

 if [nargs]
 set f = [arg 1 | quote]
 fi

 case [line]
 when 10
 se −t consul [se_params] [f]
 when 11
 se −t b200 [se_params] [f]
 when 15
 se −t b150 [se_params] [f]
 when 17
 se −t gt40 [se_params] [f]
 when 18
 se −t b200 [se_params] [f]
 when 25
 se −t b150 [se_params] [f]
 out
 ed [f]
 esac

 The first ’if’ command sets the remembered file name (stored in
 the shell variable ’f’) in the same fashion that ’ssr’ was used
 to set the search rule (above). The ’case’ command then selects
 from the terminals it recognizes and invokes the proper text
 editor. The argument of ’case’ is compared with the arguments of
 successive ’when’ commands until a match occurs, in which case
 the group of commands after the ’when’ is executed; if no match
 occurs, then the commands after the ’out’ command will be
 executed. (If no ’out’ command is present, and no match occurs,

 − 30 −

 Command Interpreter User’s Guide

 then no action is taken as a result of the ’case’.) The ’esac’
 command marks the end of the control structure. In ’e’, the
 ’case’ command selects either ’se’ (the screen editor) or ’ed’
 (the line editor), and invokes each with the proper arguments (in
 the case of ’se’, identifying the terminal type and specifying
 any user−dependent personal parameters).

 The ’goto’ command may be used to set up a loop within a
 command file. For example, the following command file will count
 from 1 to 10:

 # bogus command file to show computers can count

 declare i = 1

 :loop
 i
 set i = [eval i + 1]
 if [eval i <= 10]
 goto loop
 fi

 | The ’repeat’ command is used to set up loops but, unlike the
 | ’goto’ command, will also work from the terminal. The following
 | loop will do exactly what the previous command file did, but will
 | also work when entered from a terminal:

 | # not quite as bogus a loop to show computer counting
 |
 | declare i = 1
 |
 | repeat
 | i
 | set i = [eval i + 1]
 | until [eval i ’>’ 10]

 | History Examples

 | Command history provides a quick way of re−executing a com−
 | mand without retyping the entire command line. The following
 | example shows how a user can run the previous command again by
 | only typing a ’!’:

 |] time
 | 11:59:04
 |] !
 | time
 | 11:59:08

 | Another advantage is the ability to fix a mistyped command.
 | For example, to list the contents of the directory "stuff.u"
 | where the ".u" was omitted in the ’lf’ command and then correc−

 − 31 −

 Command Interpreter User’s Guide

 | ted.

 |] lf stuff
 | stuff: not found
 |] !!.u
 | lf stuff.u
 | bogus gorf snert

 | Two ’!’s are used because text must be entered right next to the
 | history substitution. Any other time, the trailing ’!’ is not
 | needed.

 | The ’hist’ command, without any arguments, will print a list
 | of the current history and their command numbers.

 |] hist
 | 1: pmac gorf.s; ld gorf.b −o snert
 | 2: se gorf.s
 | 3: pmac gorf.s; ld gorf.b −o gorf
 | 4: gorf
 | 5: se gorf.s

 | At this point it is time to execute the ’pmac’ and ’ld’
 | statements, again. There are several ways to do this. One is to
 | give the specific command number (as printed by ’hist’):

 |] !3
 | pmac gorf.s; ld gorf.b −o gorf

 | or let the history do more of the work for us by telling it to
 | look for the command starting with ’pmac’:

 |] !pmac
 | pmac gorf.s; ld gorf.b −o gorf

 | or if that is not the correct command, entering a unique string
 | that appears anywhere on the command line:

 |] !?−o sn
 | pmac gorf.s; ld gorf.b −o snert

 | Notice that the trailing ’?’ wasn’t needed. This is because it
 | would have occured at the end of the line. None of the delimit−
 | ing characters need to be entered at the end of the line because
 | the command substitution will place them there for you at the end
 | of a line. Also notice that the shell will always echo the com−
 | mand produced by the history mechanism to the terminal, so that
 | you can know for sure exactly what the shell is doing.

 | Argument selection allows the user to retrieve certain
 | arguments from the selected command line. After a command line
 | is selected (as in the previous examples) then argument selection
 | takes place. For example, given the command line

 |] echo 1 2 3 4 5 6 7 8
 | 1 2 3 4 5 6 7 8

 − 32 −

 Command Interpreter User’s Guide

 | to retrieve only arguments 3 to 7 one can type:

 |] echo 1 2 3 4 5 6 7 8
 | 1 2 3 4 5 6 7 8
 |] echo !‘3−7
 | echo 3 4 5 6 7
 | 3 4 5 6 7

 | or to grab the first item on the line,

 |] echo 1 2 3 4 5 6 7 8
 | 1 2 3 4 5 6 7 8
 |] echo !‘0
 | echo echo
 | echo

 | because argument zero (the command name) is the first item on the
 | line.

 | The history mechanism does not know about command <nodes>.
 | E.g., a ’|’, and the command name after it, are treated as just
 | plain arguments. Numbering starts at zero, and each successive
 | blank separated "item" is considered another argument. In the
 | case of a function call, iteration, or quoted string, blanks and
 | tabs are insignificant until all the brackets, parentheses, and
 | quotes match up. In this manner, an entire function call, itera−
 | tion group, or string counts as a single argument, whether or not
 | it contains spaces.

 |] echo (gorf.s snert.r)
 | gorf.s snert.r
 |] cat −h !‘1
 | cat −h (gorf.s snert.r)
 | ==================== gorf.s ====================
 | SEG
 | DYNT BURF$
 | END
 | ==================== snert.r ====================
 | call print(STDOUT, "burf*n"s)
 | stop
 | end

 | or for a more complicated example

 |] echo [echo berf] (blert blort) "final word"
 | berf blert final word
 | berf blort final word
 |] echo !‘3 !‘1 !‘2
 | echo "final word" [echo berf] (blert blort)
 | final word berf blert
 | final word berf blort

 | The last portion of a history replacement is substitution.
 | This allows previously selected portions of the command line to
 | be placed through a set of substitutions similar to the ’change’

 − 33 −

 Command Interpreter User’s Guide

 | command or the substitute command in the editor. To change the
 | "blert" in the previous example to "bonzo", you would type

 |] echo [echo berf] (blert blort) "final word"
 | berf blert final word
 | berf blort final word
 |] !^blert^bonzo^
 | echo [echo berf] (bonzo blort) "final word"
 | berf bonzo final word
 | berf blort final word

 | The operations can be combined. For instance to move arguments
 | around, and make substitutions

 |] echo one two three
 | one two three
 |] echo !‘3 !‘1^one^1^ !‘2
 | echo three 1 two
 | three 1 two

 | There can be more than one substitution per command line, and the
 | given changes can be made globally.

 |] echo aa bb cc dd ee
 | aa bb cc dd ee
 |] !^a^z
 | echo za bb cc dd ee
 | za bb cc dd ee
 |] !?aa?^b^y^g
 | echo aa yy cc dd ee
 | aa yy cc dd ee
 |] !?a bb?^a^z^g^b^y^g^ee^ve^^d^w
 | echo zz yy cc wd ve
 | zz yy cc wd ve

 | The first substitution simply changes the first "a" to a "z".
 | The second one recalls the most recent command with an "aa" in it
 | and changes the first "b" to a "y". The last one looks for the
 | most recent command that contains an "a bb" string (the first
 | line) and then substitutes a "z" for all occurences of an "a", a
 | "y" for all occurences of a "b", a "ve" for the first "ee", and a
 | "w" for the first "d". Notice that for the last substitution,
 | the trailing ’^’ was not necessary.

 | History processing takes place across the entire input line,
 | even inside quoted strings. To get one of the literal history
 | characters (!^‘), you must escape it with the Subsystem escape
 | character, ’@’.

 | Finally, the ’hist’ command is available to control the use
 | of the history mechanism. ’Hist on’ turns on history processing.
 | By default, it is off. ’Hist off’ turns history processing off.
 | ’Hist save <file>’ will save the current list of remembered com−
 | mands into <file>, or into =histfile= if <file> is not specified.
 | ’Hist restore <file>’ will retrieve a saved history session from
 | <file>, or from =histfile= if <file> is not specified. It is

 − 34 −

 Command Interpreter User’s Guide

 | recommended that you put a ’hist restore’ into your ’_hello’
 | variable or the file it executes (if you want to save your shell
 | sessions across logins). If history processing is not turned on
 | when you do a ’hist restore’, the shell will automatically turn
 | it on for you, and then restore your saved command history. If
 | history is turned on, whenever you issue a ’stop’ command (like
 | =bin=/bye does), the shell will automatically do a ’hist save’
 | for you. This will also happen if you type an EOF at the shell
 | (usually control−c), unless you also have "_nottyeof" set (see
 | below).

 Shell Control Variables

 Many special shell variables are used to control the opera−
 tion of the command interpreter. You can define or change any
 shell variable with ’set’ and can delete it with ’forget’. The
 current value of a shell variable can be examined by entering its
 name. The values of all your shell variables can be examined
 | with the ’vars’ command. Certain shell variables are read into
 | the SWT common block at Subsystem initialization to control the
 | terminal input routines. If these variables are changed, the
 | shell will modify the Subsystem common to reflect the change
 | immediately. The variables that could accept control characters
 | as values may be entered using the ASCII mnemonics supported by
 | the shell variable commands (see the heading "variables" in the
 | reference section of this manual). The following table
 identifies these variables and gives a short explanation of the
 * function of each.

 Variable Function

 _ci_name This variable is used to select a command
 interpreter to be executed when the user enters
 the Subsystem. It should be set to the full path−
 | name of the command interpreter desired. This
 | variable is only checked on entrance to the Sub−
 | system, so if this is changed, the user should
 | exit the Subsystem (say with ’stop’) and then
 | reenter (using the ’swt’ command). The default
 value is "=bin=/sh".

 | _eof This variable may be set to a single character
 | which will be used to signal the end of file from
 | a terminal. The Subsystem input routines will
 | recognize an instance of this character anywhere
 | on the input line and send the appropriate signal
 | to the input routine. The default value is the
 ASCII character ETX (control−c).

 | _erase This variable may be set to a single character to
 | be used as the "erase," or character delete,
 control character for Subsystem terminal input
 * processing.

 − 35 −

 Command Interpreter User’s Guide

 | _escape This variable may be set to a single character to
 | be used as the "escape" control character for Sub−
 | system terminal input processing. Note that this
 | will not not change the standard Subsystem escape
 | character, it remains an ’@’. (See the help on
 | ’tcook$’ for the gory details.)

 _hello This variable, if present, is used as the source
 of a command to be executed whenever the user
 enters the Subsystem. It is frequently used to
 implement memo systems, supply system status
 information, and print pleasing messages−of−the−
 day.

 | _kill This variable may be set to a single character to
 | be used as the "kill," or line delete, control
 * character for Subsystem terminal input processing.

 _kill_resp This variable may be set to any string which will
 appear on the user’s terminal when the kill
 character is entered. If this variable is not
 present "\\" is the kill response.

 | _mail_check This variable determines how often mail is checked
 | during the login session. If not declared, the
 | user is not notified of incoming mail while he is
 | logged in. If the variable is set to an integer
 | value, the shell will check for changes in his
 | mailbox status after that many seconds has elap−
 | sed, just before his prompt string is printed.
 | The user is notified by the message, "You have new
 | mail". If the variable is declared but not set,
 | or set to an illegal value, the default is to
 | check every 60 seconds.

 | _newline This variable may be set to a single character
 | which will be interpreted as the end−of−line.
 Whenever this character is encountered, a carriage
 return and linefeed will be echoed to the
 terminal. If it is not set, then the ASCII
 | character LF is the default.

 | _nottyeof An EOF character typed at command level 1 will
 | normally terminate the Subsystem and place the
 | user face to face with the Primos operating
 | system. Most commands accept input from the
 | terminal if an alternate file is not specified and
 | if the user’s keyboard happens to bounce, the user
 | is bounced into Primos. If this variable is
 | declared, an EOF typed at command level 1 will not
 | terminate the shell but will type the message "use
 | ’stop’ to exit the subsystem" and return to com−
 | mand level.

 − 36 −

 Command Interpreter User’s Guide

 | _pause_gossip This variable controls the paging of gossip mes−
 | sages. If this variable is set, the gossip will
 | pause at the last page, otherwise it simply
 | returns to command level without allowing any pag−
 | ing commands.

 _prompt This variable contains the prompt string printed
 by the command interpreter before any command read
 from the user’s terminal. The default value is a
 right bracket (]).

 _prt_dest This variable contains the location where all
 files spooled by this user are to be printed. If
 this variable is not present, files will be
 printed at the system−defined default printer.

 _prt_form This variable contains the form to be used for
 files spooled by this user (e.g. "narrow"). If
 this variable is not present, files will be
 printed on the system−defined default form.

 _quit_action If this variable is present, whenever the fault
 handler detects a break, it will prompt you as to
 whether you want to continue, terminate the
 program or call Primos. Otherwise, a break will
 return you to the Subsystem.

 _quote_opt This variable, if set to the value "YES", causes
 automatic quotation of each line of program output
 used in a function call. It is mainly provided
 for compatibility with an older version of the
 command interpreter, which performed the quoting
 automatically. The program ’quote’ may be used to
 explicitly force quotation.

 | _retype This variable may be set to a single character to
 | be used as the "retype" control character for Sub−
 | system terminal input processing.

 _search_rule This variable contains a sequence of comma−
 separated elements that control the procedure used
 by the command interpreter to locate the object
 code for a command. Each element is either (1)
 the flag "^int", meaning the command interpreter’s
 table of internal commands, (2) the flag "^var",
 meaning the user’s shell variables, or (3) a tem−
 plate containing the character ampersand (&),
 meaning a particular directory or file in a direc−
 tory. In the last case, the command name
 specified by the user is substituted into the tem−
 plate at the point of the ampersand, hopefully
 providing a full pathname that locates the object
 | code needed.

 − 37 −

 Command Interpreter User’s Guide

 | _vth_gossip This causes any gossip that is received to be
 | paged using the screen oriented paging mechanism.

 Shell Command Statistics

 If the public or private template "=statistics=" is defined
 with the value "yes", the shell will record every command issued
 by the user in the directory defined by the system template
 "=statsdir=". If you set your private template "=statistics=" to
 "yes" then your commands will be recorded in the directory
 defined by your "=statsdir=" template. The files in the direc−
 tory "=statsdir=" are named "sh<pid>"; command statistics for a
 given process are stored in the file with the corresponding
 process id. Here is an example of the file:

 122680 171812 16 system 1 F //bin/x
 122680 171816 16 system 1 F //bin/lf
 122680 171822 16 system 1 F //bin/template
 (date) (time) (user) | | (command)
 (pid) (level) (F − command found)

 The date begins in the first column. The (level) is the depth of
 nesting of shell files at which the command is requested; 1 is
 the terminal level.

 Symbiotic Commands

 There are several commands that, in effect, live sym−
 biotically with the Shell. In the following sections, some of
 the more useful of these will be reviewed. For further
 information, consult the Software Tools Subsystem Reference
 Manual.

 Argument Fetching. Four internal commands are frequently
 used in shell programs to fetch arguments given on the command
 line. ’Arg’ fetches a single argument, ’args’ fetches several,
 ’argsto’ fetchs a specified group, and ’nargs’ returns the number
 of available arguments.

 arg <position> [<level>]

 ’Arg’ prints on its first standard output the
 argument which appeared in the <position>th posi−
 tion in the command line invoking the shell
 program containing ’arg’. Position zero refers to
 the command name, position one to the first
 argument, etc. If an illegal position is
 specified, ’arg’ prints nothing. The optional
 second argument, <level>, specifies the number of
 lexic levels to ascend in order to reach the
 desired argument list. The entry of any command
 file or function call constitutes a new lexic
 level; thus, an ’arg’ command used in a function
 call to fetch an argument to the command file

 − 38 −

 Command Interpreter User’s Guide

 containing the function call needs a <level> of 1
 (to escape the lexic level in which the function
 is evaluated). In fact, this is the most common
 use of ’arg’, so the default value for <level> is
 1. The following three commands, when placed in a
 command file, would cause that command file’s
 first argument to be printed three times on stan−
 dard output one:

 echo [arg 1]
 echo [arg 1 1]
 arg 1 0

 args <first> [<last> [<level>]]

 ’Args’ prints on its first standard output the
 arguments specified on the command file <level>
 lexic levels above the current level. <First> is
 the position on the command line of the first
 argument to be printed; <last> is the position of
 the last argument to be printed. If <last> is
 omitted, the final argument on the command line is
 assumed. <Level> has the same meaning as for
 ’arg’ above.

 argsto <delim> [<number> [<start> [<level>]]]

 ’Argsto’ prints a group of arguments delimited by
 arguments consisting of <delim>. <Number> is an
 integer that controls which group of arguments is
 printed. If <number> is 0 or omitted, arguments
 up to the first occurrence of <delim> are printed;
 if <number> is 1, arguments between the first
 occurrence of <delim> and the second occurrence of
 <delim> are printed, and so on. <Start> is an
 integer indicating the argument at which the scan
 is to begin; if <start> is omitted (or is 1), the
 scan begins at the first argument. <Level> has
 the same meaning as for ’arg’ above.

 nargs [<level>]

 ’Nargs’ prints on its first standard output the
 number of arguments passed to the command file
 <level> lexic levels above the current level.
 <Level> has the same meaning as for ’arg’ above.

 Shell Tracing. The ’shtrace’ command is useful for tracing
 the operation of the shell. Although primarily intended for
 debugging the command interpreter itself, it also finds use in
 monitoring and debugging shell files. To turn the trace on,
 enter

 − 39 −

 Command Interpreter User’s Guide

 shtrace on

 To turn the trace off, enter

 shtrace

 Many other options are available. Consult the Software Tools
 Subsystem Reference Manual for details.

 Shell Variable Utilities. The following commands (in addi−
 tion to ’declare’, ’set’, and ’forget’ discussed earlier) have
 been found useful in dealing with shell variables. Further
 information can, as usual, be found in the Software Tools
 Subsystem Reference Manual.

 vars
 ’Vars’ lists the names (and optionally the values)
 of the user’s shell variables. ’Vars’ can also
 save and restore the user’s variables from
 arbitrary files. Various options control the
 listing format, the number of lexic levels scan−
 ned, and whether or not shell control variables
 are listed. The most common form is probably

 vars −alv

 which lists all variables at all lexic levels
 along with their values.

 | Program Interface

 | The shell provides a set of routines which allows the user
 | of the standard shared libraries to create shell variables,
 | retrieve their values, and change them as well. You may also
 | execute shell commands from within a program. This facility is
 | not available when using the non−shared libraries, and even using
 | the shared libraries it is somewhat restrictive until Prime sup−
 | ports EPF runfiles. Further information on these routines can be
 | found in the Software Tools Subsystem Reference Manual.

 | shell
 | ’Shell’ is the subroutine which starts another
 | level of the SWT shell. It is used to execute
 | commands read from an open input file. It is
 | analagous to the ’sh’ command.

 | subsys
 | ’Subsys’ is used to execute a single command from
 | within a program. It combines all the operations
 | needed to execute a string with ’shell’ without
 | the user having to perform the operations. It is
 | a convenience for the user.

 | svdel
 | ’Svdel’ accepts the name of a shell variable and

 − 40 −

 Command Interpreter User’s Guide

 | deletes it at the current shell level. It takes
 | care of updating the SWT common block in the case
 | of a special shell variable (see "Shell Control
 | Variables", above). It is analagous to the com−
 | mand ’forget’.

 | svdump
 | ’Svdump’ prints a representation of the internal
 | shell variable common block. It scans all levels
 | of the variables dumping the chains and the hash
 | tables. It is analagous to the ’dump sv’ command.

 | svget
 | ’Svget’ simply retrieves the value of a given
 | shell variable. Since "executing" a variable from
 | the command level prints the value of the
 | variable, the action of ’svget’ is closest to the
 | execution of a variable.

 | svlevl
 | ’Svlevl’ returns the current lexic level of the
 | shell. This is useful in cooporation with
 | ’svscan’ (described below) to retrieve the value
 | of all currently declared variables. This routine
 | has no command equivalent.

 | svmake
 | ’Svmake’ creates a given shell variable at the
 | current lexic level of the shell. It returns the
 | lexic level of the shell. If the variable already
 | exists at the current level, then ’svmake’ will
 | have no effect. Any special variables (see "Shell
 | Control Variables", above) that are changed will
 | cause a change in the SWT common block to reflect
 | the value of the variable. ’Svmake’ is analagous
 | to the ’declare’ command.

 | svput
 | ’Svput’ sets the value of a given shell variable
 | in the most recent lexic level that it appears.
 | If the variable does not exist in any scope of the
 | shell, it is created in the current level.
 | ’Svput’ also makes modifications to the SWT common
 | block if any special variables are changed.
 | ’Svput’ is analagous to the ’set’ command.

 | svrest
 | ’Svrest’ reads a file written by ’svsave’ (see
 | below) and attempts to merge those variables with
 | those at the current lexic level. ’Svrest’ is
 | analagous to the ’vars −r’ command.

 | svsave
 | ’Svsave’ attempts to save the shell variables at
 | lexic level number 1 (the top level) in the given
 | file. ’Svsave’ is analagous to the ’vars −s’ com−

 − 41 −

 Command Interpreter User’s Guide

 | mand.

 | svscan
 | ’Svscan’ provides a way for the user to obtain the
 | value of all shell variables at any or all lexic
 | levels. It operates in a method similar to
 | ’tscan$’. There is no command associated with
 | ’svscan’.

 Conclusion

 This concludes the Application Notes section of the guide.
 Hopefully it has presented some ideas that will make the use of
 the command interpreter more productive and enjoyable.

 − 42 −

 Command Interpreter User’s Guide

 Messages from the Shell

 Listed here are messages with obscure meanings that are
 produced by the Shell; several indicate dire internal problems
 that should not occur during normal operation. In the interest
 of saving paper, self−explanatory messages are not included.

 <command>: not found
 The list of elements in the search rule was exhausted,
 but the command had not been located.

 <command>: too many ci files
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell
 and may be increased at the expense of additional table
 space.

 continue?
 This message occurs after each network when the
 "single_step" shell trace option is set. A line begin−
 ning with anything other than an upper or lower case
 letter "n" will cause the shell to execute the next
 network. A response beginning with "n" will cause the
 shell to return to command level.

 illegal destination node spec
 The destination node specifier must be a defined label
 or a number between 1 and the number of nodes in the
 network.

 illegal port number
 A port number must be a number between 1 and the
 maximum number of standard ports defined (currently 3).

 missing command name
 Although an empty net is allowable, redirectors must
 not be specified without a command name.

 missing pathname in redirector
 A greater−than sign was encountered without a pathname
 on either side.

 net is not serially executable
 Because multiple processes per user are not supported,
 each node of a net must be executed serially.
 Therefore, nets which have pipe connections that form a
 complete cycle cannot be executed.

 overflow (save_state): <level>
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell

 − 43 −

 Command Interpreter User’s Guide

 and may be increased at the expense of additional table
 space.

 pipe destination not found
 The destination node of a pipe is not in the range of
 the current net.

 state save stack overflow
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell
 and may be increased at the expense of additional table
 space.

 unbalanced iteration groups
 Because of the semantics of iteration, each iteration
 group in the same net must contain the same number of
 arguments.

 unexpected EOF on variable save file
 End of file has been encountered on the shell variable
 save file when a value has been expected. The shell
 variables have been corrupted. To recover what might
 be left, exit the Subsystem with a <break> or control−P
 and consult your system administrator.

 whitespace required around pipe connector
 A pipe connector and its associated port numbers and
 destination label must be surrounded by spaces.

 whitespace required around i/o redirector
 An i/o redirector and its associated i/o redirector
 | must be surrounded by spaces.

 − 44 −

 TABLE OF CONTENTS

 Tutorial ... 1
 Commands .. 1
 How the Command Interpreter Locates a Command 2
 Special Characters and Quoting 2
 Command Files ... 3
 Doing Repetitive Tasks −−− Iteration 4
 I/O Redirection 5
 I/O Redirection to Disk Files or Devices 6
 I/O Redirection to other Commands 7
 I/O Redirection for a Group of Commands 8
 I/O Redirection to a Command Argument 9
 Variables ... 9
 Interrupts, Quits and Error Handling Mechanisms 11
 Conclusion .. 11

 Summary of Syntax and Semantics 12
 Commands .. 12
 Networks .. 12
 Nodes ... 15
 Comments .. 21
 Variables ... 21
 Iteration ... 23
 Function Calls .. 24
 History Mechanism 24
 Command Selection 25
 Argument Selection 25
 Substitution 25
 Conclusion .. 26

 Application Notes .. 27
 Basic Functions 27
 History Examples 31
 Shell Control Variables 35
 Shell Command Statistics 38
 Symbiotic Commands 38
 Argument Fetching 38
 Shell Tracing 39
 Shell Variable Utilities 40
 Program Interface 40
 Conclusion .. 42

 Messages from the Shell 43

 − iii −

 User’s Guide for the Ratfor Preprocessor

 Second Edition

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | July, 1984

 Foreword

 Ratfor ("Rational Fortran") is an extension of Fortran−66
 that serves as the basis for the Software Tools Subsystem. It
 provides a number of enhancements to Fortran that facilitate
 structured design and programming, as well as enhance program
 readability and ease the burden of program coding.

 This guide is intended to explain and demonstrate the use of
 Ratfor as a programming language within the Software Tools Sub−
 system. In addition, applications notes are provided to help
 users build on the experience of others.

 − vii −

 Ratfor User’s Guide

 Ratfor Language Guide

 What is Ratfor?

 The Ratfor ("Rational Fortran") language was introduced in
 the book Software Tools by Brian W. Kernighan and P. J. Plauger
 (Addison−Wesley, 1976). There, the authors use it as the medium
 for the development of programs that may be used as cooperating
 tools. Ratfor offers many extensions to Fortran that encourage
 and facilitate structured design and programming, enhance program
 readability and ease the burden of coding. Through some very
 simple mechanisms, Ratfor helps the programmer to isolate machine
 and implementation dependent sections of his code.

 Among the many programs developed in Software Tools is a
 Ratfor preprocessor −− a program for converting Ratfor into
 equivalent ANSI−66 Fortran. ’Rp’, the preprocessor described in
 this guide, is an original version based on the program presented
 in Software Tools.

 Differences Between Ratfor and Fortran

 As we mentioned, Ratfor and Fortran are very similar. Per−
 haps the best introduction to their differences is given by Ker−
 nighan and Plauger in Software Tools:

 "But bare Fortran is a poor language indeed for
 programming or describing programs. . . . Ratfor
 provides modern control flow statements like those in
 PL/I, Cobol, Algol, or Pascal, so we can do structured
 programming properly. It is easy to read, write and
 understand, and readily translates into Fortran. . . .
 Except for a handful of new statements like if − else,
 while, and repeat − until, Ratfor is Fortran."

 Source Program Format

 Case Sensitivity. In most cases, the format of Ratfor
 programs is much less restricted than that of Fortran programs.
 Since the Software Tools Subsystem encourages use of terminals
 with multi−case capabilities, ’rp’ accepts input in both upper
 and lower case. ’Rp’ is case sensitive. Keywords, such as if
 and select, must appear in lower case. Case is significant in
 identifiers; they may appear in either case, but upper case let−
 ters are not equivalent to lower case letters. For example, the
 words "blank" and "Blank" do not represent the same identifier.
 For circumstances in which case sensitivity is a bother, ’rp’
 accepts a command line option ("−m") that instructs it to ignore

 − 1 −

 Ratfor User’s Guide

 the case of all identifiers and keywords. See the applications
 notes or the ’help’ command for more details.

 Blank Sensitivity. Unlike most Fortran compilers, ’rp’ is
 very sensitive to blanks. ’Rp’ requires that all words be
 separated by at least one blank or special character. Words
 containing imbedded blanks are not allowed. The best rule of
 thumb is to remember that if it is incomprehensible to you, it is
 probably incomprehensible to ’rp.’ (Remember, we humans normally
 leave blank spaces between words and tend not to place blanks
 inside words. Such things make text difficult to understand.)

 As a bad example, the following Ratfor code is incorrect and
 will not be interpreted properly:

 subroutineexample(a,b,c)
 integera,b,c

 repeatx=x+1
 until(x>1)

 A few well placed blanks will have to be added before ’rp’ can
 understand it:

 subroutine example(a,b,c)
 integer a,b,c

 repeat x=x+1
 until(x>1)

 You should note that extra spaces are allowed (and encouraged)
 everywhere except inside words and literals. Extra spaces make a
 program much more readable by humans:

 subroutine example (a, b, c)
 integer a, b, c

 repeat x = x + 1
 until (x > 1)

 Card Columns. As should be expected of any interactive
 software system, ’rp’ is completely insensitive to "card"
 columns; statements may begin and end at any position in a line.
 Lines may be of any length, but identifiers and quoted strings
 may not be longer than 100 characters. ’Rp’ will output all
 statements beginning in column 7, and automatically generate
 continuation lines for statements extending past column 72. All
 of the following are valid Ratfor statements, although such
 erratic indentation is definitely frowned upon.

 integer i, j
 i = 1
 j = 2
 stop
 end

 − 2 −

 Ratfor User’s Guide

 Multiple Statements per Line. ’Rp’ also allows multiple
 statements per line, although indiscriminate use of this feature
 is not encouraged. Just place a semicolon between statements and
 ’rp’ will generate two Fortran statements from them. You will
 find

 integer i
 real a
 logical l

 to be completely equivalent to

 integer i; real a; logical l

 Statement Labels and Continuation. You may wonder what hap−
 pens to statement labels and continuation lines, since ’rp’ pays
 no attention to card columns. It turns out that statement labels
 and continuation lines are not often necessary. While ’rp’
 minimizes the need for statement labels (except on format
 statements) and is quite intelligent about continuation lines,
 there are conventions to take care of those situations where a
 label is required or the need for a continuation line is not
 obvious to ’rp.’

 A statement may be labeled simply by placing the statement
 number, starting in any column, before the statement. Any
 executable statement, including the Ratfor control statements,
 may be labeled, and ’rp’ will place the label correctly in the
 Fortran output. It is wise to refrain from using five−digit
 statement numbers; ’rp’ uses these statement labels to implement
 the Ratfor control statements, and consequently will complain if
 it encounters them in a source program. As examples of statement
 labels,

 2 read (1, 10) a, b, c
 10 format (3e10.0)
 write (1, 20) a, b, c; 20 format (3f20.5)
 go to 2

 all show statement numbers in use. You should note that with
 proper use of Ratfor and the Software Tools Subsystem support
 subroutines, statement labels are almost never required.

 As for continuation lines, ’rp’ is usually able to recognize
 when the current line needs to be continued. A line ending with
 a comma, unbalanced parentheses in a condition, or a missing
 statement (such as at the end of an if) are all situations in
 which ’rp’ correctly anticipates a continuation line:

 − 3 −

 Ratfor User’s Guide

 integer a, b, c, d,
 e, f, g

 if (a == b & c == d & e == f &
 g == h & i == j & k == l) call eql

 if (a == b)

 c = −2

 If an explicit continuation is required, such as in a long
 assignment statement, ’rp’ can be made to continue a line by
 placing a trailing underscore ("_") at the end of the line. This
 underscore must be preceded by a space. You should note that the
 underscore is placed on the end of line to be continued, rather
 than on the continuation line as in Fortran. If you are unsure
 whether Ratfor will correctly anticipate a continuation line, go
 ahead and place an underscore on the line to be continued −− ’rp’
 will ignore redundant continuation indicators.

 Identifiers may not be split between lines; continuation is
 allowed only between tokens. If you have an extremely long
 string constant that requires continuation, you can take
 advantage of the fact that ’rp’ always concatenates two adjacent
 string constants. Just close the first part of the literal with
 a quote, space, and underscore, and begin the second part on the
 next line with a quote. ’Rp’ will ignore the line break (because
 of the trailing underscore) and concatenate the two literals.

 The following are some examples of explicit line
 continuations:

 i = i + j + k + l + m + n + o + p + q + r + _
 s + t + u + v

 1 format ("for inputs of ", i5, " and ", i5/ _
 "the expected output should be ", i5)

 string heading _
 "−−" _
 "−−"

 Comments. Comments, an important part of any program, can
 be entered on any line; a comment begins with a sharp sign ("#")
 and continues until the end of the line. In addition, blank
 lines and lines containing only comments may be freely placed in
 the source program. Here are some appropriate and (correct but)
 inappropriate uses of Ratfor comments:

 − 4 −

 Ratfor User’s Guide

 if (i > 48)
 # do this only if i is greater than 48
 j = j + 1

 data array / 1, # element 1
 2, # element 2
 3, # element 3
 4/ # element 4

 integer cnt, # counter for controlling the
 # outer loop
 total_errs, # total number of errors
 # encountered
 last_pass # flag for determining the
 # last pass; init = 0

 Identifiers

 A major difference between Ratfor and Fortran is Ratfor’s
 acceptance of arbitrarily long identifiers. A Ratfor identifier
 may be up to 100 characters long, beginning with a letter, and
 may contain letters, digits, dollar signs, and underscores.
 However, it may not be a Ratfor or Fortran keyword, such as if,
 else, integer, real, or logical. Underscores are allowed in
 identifiers only for the sake of readability, and are always
 ignored. Thus, "these_tasks" and "the_set_asks" are equivalent
 Ratfor identifiers.

 ’Rp’ guarantees that an identifier longer than six charac−
 ters will be transformed into a unique Fortran identifier.
 Normally, the process of transforming Ratfor identifiers into
 Fortran identifiers is transparent; you need not be concerned
 with how this transformation is accomplished. The one notable
 exception is the effect on external symbols (i.e. subroutine and
 function names, common block names). When the declaration of a
 subprogram and its invocation are preprocessed together, in the
 same run, no problems will occur. However, if the subprogram and
 its invocation are preprocessed separately, there is no guarantee
 that a given Ratfor name will be transformed into the same
 Fortran name in the two different runs. This situation can be
 avoided in either of three ways: (1) use the linkage statement
 described in the next section, (2) use six−character or shorter
 identifiers for subprogram names, or (3) preprocess subprograms
 and their invocations in the same run.

 Just for pedagogical reasons, here are a few correct and
 incorrect Ratfor identifiers:

 − 5 −

 Ratfor User’s Guide

 Correct

 long_name_1
 long_name_2
 prwf$$
 I_am_a_very_long_Ratfor_name_that_is_perfectly_correct
 a_a # You should note that ’a_a’, ’a__a’, and ’aa’
 a__a # are all absolutely identical in Ratfor −−
 aa # underscores are always ignored in identifiers,
 AA # but ’AA’ is very different.

 Incorrect

 123_part # starts with a digit
 _part1 # starts with an underscore
 part 2 # contains a blank
 a*b # contains an asterisk

 The following paragraph contains a description of exactly
 how Ratfor identifiers are transformed into Fortran identifiers.
 You need not know how this transformation is accomplished to make
 full use of Ratfor; hence, you probably need not read the next
 paragraph.

 If a Ratfor identifier is longer than six characters or
 contains an upper case letter, it is made unique by the following
 procedure:

 (1) The identifier is padded with ’a’s or truncated to five
 characters. Remaining characters are mapped to lower case.
 (2) The first character is retained to preserve implicit typing.
 (3) The sixth character is changed to a "uniquing character"
 (normally a zero).
 (4) If necessary, the second, third, fourth, and fifth charac−
 ters are altered to make sure there is no conflict with a
 previously used identifier.

 ’Rp’ also examines six−character identifiers containing the
 uniquing character in the sixth position, to ensure that no con−
 flicts arise.

 Integer Constants

 Since it is sometimes necessary to use other than decimal
 integer constants in a program, ’rp’ accepts integers in bases 2
 through 16. Integers consisting of only digits are, of course,
 considered decimal integers. Other bases can be indicated with
 the following notation:

 <base>r<number>

 where <base> is the base of the number (in decimal) and <number>
 is number in the desired base (the letters ’a’ through ’f’ are

 − 6 −

 Ratfor User’s Guide

 used to represent the digits ’10’ through ’15’ in bases greater
 than 10). For example, here are some Ratfor integer constants
 and the decimal values they represent:

 Number Decimal Value

 8r77 63
 16rff 255
 −2r11 −3
 7r13 10

 Some care must be exercised when using this form of constant
 to generate bit−masks with the high−order bit set. For example,
 to set the high−order bit in a 16−bit word, one might be tempted
 to use one of the constants

 16r8000 or 8r100000

 Either of these would cause incorrect results, because the value
 that they represent, in decimal, is 65536. This number, when
 encountered by Prime Fortran, is converted to a 32−bit constant
 (with the high order bit in the second word set). This is
 probably not the desired result. The only solutions to this
 problem (which occurs when trying to represent a negative twos−
 complement number as a positive number) are (1) use the correct
 twos−complement representation (−32768 in this case), or (2) fall
 back to Prime Fortran’s octal constants (e.g. :100000).

 String Constants

 Under the Software Tools Subsystem, character strings come
 in various flavors. Because various internal representations are
 used for character strings, Fortran Hollerith constants are not
 sufficient to easily provide all the different formats required.

 All types of Ratfor string constants consist of a string
 body followed by a string format indicator. The body of a string
 constant consists of strings of characters bounded by pairs of
 quotes (either single or double quotes), possibly separated by
 blanks. All the character strings in the body (not including the
 bounding quotes) are concatenated to give the value of the string
 constant. For example, here are three string constant bodies
 that contain the same string:

 "I am a string constant body"
 "I" ’ am ’ "a" ’ string ’ "constant" ’ body’
 "I am a string "’constant body’

 The string format indicator is an optional letter that
 determines the internal format to be used when storing the
 string. Currently there are five different string
 representations available:

 − 7 −

 Ratfor User’s Guide

 omitted Fortran Hollerith string. When the string format
 indicator is omitted, a standard Fortran Hollerith
 constant is generated. Characters are left−justified,
 packed in words (two characters per word on the Prime),
 and unused positions on the right are filled with
 blanks.

 c Single character constant. The ’c’ string format
 indicator causes a single character constant to be
 generated. The character is right−justified and zero−
 filled on the left in a word. Only one character is
 allowed in the body of the constant. Since it is easy
 to manipulate and compare characters in this format, it
 is the preferred format for all single characters in the
 Software Tools Subsystem.

 p Packed (Hollerith) period−terminated string. The ’p’
 format indicator causes the generation of a Fortran Hol−
 lerith constant containing the characters in the string
 body followed by a period. In addition, all periods in
 the string body are preceded by an escape character
 ("@"). The advantage of a "p" format string over a
 Fortran Hollerith string is that the length of the "p"
 format string can be determined at run time.

 v PL/I character varying string. For compatibility with
 Prime’s PL/I and because this data format is required by
 some system calls, the "v" format indicator will
 generate Fortran declarations to create a PL/I character
 varying string. The first word of the constant contains
 the number of characters; subsequent words contain the
 characters of the string body packed two per word. "V"
 format string constants may only be used in executable
 statements.

 s EOS−terminated unpacked string. The "s" string format
 indicator causes ’rp’ to generated declarations neces−
 sary to construct an array of characters containing each
 character in the string body in a separate word, right−
 justified and zero−filled (each character is in the same
 format as is generated by the "c" format indicator).
 Following the characters is a word containing a value
 different from any character value that marks the end of
 the string. This ending value is defined as the sym−
 bolic constant EOS. EOS−terminated strings are the
 preferred format for multi−character strings in the Sub−
 system, and are used by most Subsystem routines dealing
 with character strings. "S" format string constants may
 only be used in executable statements.

 Here are some examples of strings and the result that would
 be generated for Prime Fortran. On a machine with a different
 character set or word length, different code might be generated.

 − 8 −

 Ratfor User’s Guide

 String Constant Resulting Code

 ’v’c the integer constant 246
 "=doc="s an integer array of length 6
 containing 189, 228, 239, 227, 189,
 0
 "a>b c>d"v an integer array containing 7,
 "a>", "b ", "c>", "d "
 ".main."p the constant 9h@.main@..
 "Hollerith" the constant 9hHollerith

 Logical and Relational Operators

 Ratfor allows the use of graphic characters to represent
 logical and relational operators instead of the Fortran ".EQ."
 and such. While use of these graphic characters is encouraged,
 it is not incorrect to use the Fortran operators. The following
 table shows the equivalent syntaxes:

 Ratfor Fortran Function

 > .GT. Greater than
 >= .GE. Greater or equal
 < .LT. Less than
 <= .LE. Less or equal
 == .EQ. Equal to
 ~= .NE. Not equal to

 ~ .NOT. Logical negation
 & .AND. Logical conjunction
 | .OR. Logical disjunction

 Note than the digraphs shown in the table must appear in the Rat−
 for program with no imbedded spaces.

 For example, the two following if statements are equivalent
 in every way:

 if (a .eq. b .or. .not. (c .ne. d .and. f .ge. g))

 if (a == b | ~ (c ~= d & f >= g))

 In addition to graphics representing Fortran operators, two
 additional operators are available in any logical expression par−
 sed by ’rp’ (i.e. anywhere but assignment statements). These
 operators, ’&&’ ("and if") and ’||’ ("or if") perform the same
 action as the logical operators ’&’ and ’|’, except that they
 guarantee that the expression is evaluated from left to right,
 and that evaluation is terminated when the truth value of the
 expression is known. They may appear within the scope of the ’~’
 operator, but they may not grouped within the scope of ’&’ and

 − 9 −

 Ratfor User’s Guide

 ’|’.

 These operators find use in situations in which it may be
 illegal or undesirable to evaluate the right−hand side of a
 logical expression based on the truth value of the left−hand
 side. For example, in

 while (i > 0 && str (i) == ’ ’c)
 i = i − 1

 it is necessary that the subscript be checked before it is used.
 The order of evaluation of Fortran logical expressions is not
 specified, so in this example, it would be technically illegal to
 use ’&’ in place of ’&&’. If the value of ’i’ were less than 1,
 the illegal subscript reference might be made regardless of the
 range check of the subscript. The Ratfor short−circuited logical
 operators prevent this problem by insuring that "i > 0" is
 evaluated first, and if it is false, evaluation of the expression
 terminates, since its value (false) is known.

 Assignment Operators

 Ratfor provides shorthand forms for the Fortran idioms of
 the form

 <variable> = <variable> <operator> <expression>

 In Ratfor, this assignment can be simplified to the form

 <variable> <assignment operator> <expression>

 with the use of assignment operators. The following assignment
 operators are available:

 Operator Use Result

 += <v> += <e> <v> = <v> + (<e>)
 −= <v> −= <e> <v> = <v> − (<e>)
 *= <v> *= <e> <v> = <v> * (<e>)
 /= <v> /= <e> <v> = <v> / (<e>)
 %= <v> %= <e> <v> = mod (<v>, <e>)
 &= <v> &= <e> <v> = and (<v>, <e>)
 |= <v> |= <e> <v> = or (<v>, <e>)
 ^= <v> ^= <e> <v> = xor (<v>, <e>)

 The Ratfor assignment operators may be used wherever a Fortran
 assignment statement is allowable. Regrettably, the assignment
 operators provide only a shorthand for the programmer; they do
 not affect the efficiency of the object code.

 The assignment operators are especially useful with sub−
 scripted variables; since a complex subscript expression need
 appear only once, there is no possibility of mistyping or forget−
 ting to change one. Here are some examples of the use of
 assignment operators

 − 10 −

 Ratfor User’s Guide

 i += 1
 fact *= i + 10
 subs (2 * i − 2, 5 * j − 23) −= 1
 int %= 10 ** j
 mask &= 8r12

 For comparison, here are the same assignments without the use of
 assignment operators:

 i = i + 1
 fact = fact * (i + 10)
 subs (2*i−2, 5*j−23) = subs (2*i−2, 5*j−23) − 1
 int = mod (int, (10 ** j))
 mask = and (mask, 8r12)

 Fortran Statements in Ratfor Programs

 Ratfor provides the escape statement to allow Fortran
 statements to be passed directly to the output without the usual
 processing, such as case mapping and automatic continuation. The
 escape statement has three forms, summarized below. In the first
 form listed below, the first non−blank character of the Fortran
 statement is output in column seven. In the second form, the
 first non−blank character of the Fortran statement is output in
 column seven, but column six contains a "$" to continue a
 previous Fortran statement to that stream. In the third form,
 the Fortran statement is output starting in column one, so that
 the user has full control of the placement of items on the line.
 The following is a summary of this description:

 Escape Statement Format Output Column

 %<stream><Fortran statement> 7
 %<stream>&<Fortran statement> 6
 %<stream>%<Fortran statement> 1

 "Stream" can take on the following values:

 1 declaration
 2 data
 3 code

 If no stream is specified (i.e. %%<Fortran statement>), the
 | Fortran statement is sent to the code stream.

 | Escaped statements must occur inside a program unit, i.e.,
 | between a function or subroutine statement, and its corresponding
 | end statement. Otherwise ’rp’ gets confused about where the
 | escaped statements should go, since it won’t have any streams
 | open. If you have a large amount of self contained FORTRAN that
 | you want ’rp’ to include in its output, you can accomplish this
 | in two steps. First, put ’%1%’ at the beginning of each line,
 | and then put the FORTRAN at the beginning of your ratfor source
 | file.

 − 11 −

 Ratfor User’s Guide

 Incompatibilities

 Even with the great similarities between Fortran and Ratfor,
 an arbitrary Fortran program is not necessarily a correct Ratfor
 program. Several areas of incompatibilities exist:

 − In Ratfor, blanks are significant −− at least one space
 must separate adjacent identifiers.

 − The Ratfor do statement, as we shall soon see, does not
 contain the statement number following the "do".
 Instead, its range extends over the next (possibly com−
 pound) statement.

 − Two word Fortran key phrases such as double precision,
 block data, and stack header must be presented as a
 single Ratfor identifier (e.g. "blockdata" or
 "block_data").

 − Fortran statement functions must be preceded by the
 Ratfor keyword stmtfunc. To assure that they will
 appear in the correct order in the Fortran, they should
 immediately precede the end statement for the program
 unit.

 − Hollerith literals (i.e. 5HABCDE) are not allowed
 anywhere in a Ratfor program. Instead, ’rp’ expects
 all Hollerith literals to be enclosed in single or
 double quotes (i.e. "ABCDE" or ’ABCDE’). ’Rp’ will
 convert the quoted string into a proper Fortran Hol−
 lerith string.

 − ’Rp’ does not allow Fortran comments. In Ratfor, com−
 ments are introduced by a sharp sign ("#") appearing
 anywhere on a line, and continue to the end of the
 line.

 − ’Rp’ does not accept the Fortran continuation con−
 vention. Continuation is implicit for any line ending
 with a comma, or any conditional statement containing
 unbalanced parentheses. Continuation between arbitrary
 words may be indicated by placing an underscore,
 preceded by at least one space, at the end of the line
 to be continued.

 − ’Rp’ does not ignore text beyond column 72.

 − Fortran and Ratfor keywords may not be used as
 identifiers in a Ratfor program. Their use will result
 in unreasonable behavior.

 − 12 −

 Ratfor User’s Guide

 Ratfor Text Substitution Statements

 ’Rp’ provides several text substitution facilities to
 improve the readability and maintainability of Ratfor programs.
 You can use these facilities to great advantage to hide tedious
 implementation details and to assist in writing transportable
 code.

 Define

 The Ratfor define statement bears a vague similarity to the
 non−standard Fortran parameter declaration, but is much more
 flexible. In Ratfor, any legal identifier may be defined as
 almost any string of characters. Thereafter, ’rp’ will replace
 all occurrences of the defined identifier with the definition
 string. In addition, identifiers may be defined with a formal
 parameter list. Then, during replacement, actual parameters
 specified in the invocation are substituted for occurrences of
 the formal parameters in the replacement text.

 Defines find their principle use in helping to clarify the
 meaning of "magic numbers" that appear frequently. For example,

 while (getlin (line, −10) ~= −1)
 call putlin (line, −11)

 is syntactically correct, and even does something useful. But
 what? The use of define to hide the magic numbers not only
 allows them to be changed easily and uniformly, but also gives
 the program reader a helpful hint as to what is going on. If we
 rewrite the example, replacing the numbers by defined
 identifiers, not only are the numbers easier to change uniformly
 at some later date, but also, the reader is given a little bit of
 a hint as to what is intended.

 define (EOF, −1)
 define (STANDARD_INPUT, −10)
 define (STANDARD_OUTPUT, −11)

 while (getlin (line, STANDARD_INPUT) ~= EOF)
 call putlin (line, STANDARD_OUTPUT)

 The last example also shows the syntax for definitions
 without formal parameters.

 Often there are situations in which the replacement text
 must vary slightly from place to place. For example, let’s take
 the last situation in which the programmer must supply
 "STANDARD_INPUT" and "STANDARD_OUTPUT" in calls to the line input
 and output routines. Since this occurs in a large majority of
 cases, it would be more convenient to have procedures named, say
 "getl" and "putl" that take only one parameter and assume
 "STANDARD_INPUT" or "STANDARD_OUTPUT". We could, of course,

 − 13 −

 Ratfor User’s Guide

 write two new procedures to fill this need, but that would add
 more code and more procedure calls. Two define statements will
 serve the purpose very well:

 define (STANDARD_INPUT, −10)
 define (STANDARD_OUTPUT, −11)
 define (getl (ln), getlin (ln, STANDARD_INPUT))
 define (putl (ln), putlin (ln, STANDARD_OUTPUT))

 while (getl (line) ~= EOF)
 call putl (line)

 In this case, when the string "getl (line)" is replaced, all
 occurrences of "ln" (the formal parameter) will be replaced by
 "line" (the actual parameter). This example will give exactly
 the same results as the first, but with a little less typing when
 "getl" and "putl" are called often.

 The full syntax for a define statement follows:

 define (<identifier> [(<formal params>)], <replacement>)

 When such a define statement is encountered, <replacement> is
 recorded as the value of <identifier>. At any later time, if
 <identifier> is encountered in the text, it is replaced by the
 text of <replacement>. If the original define contained a formal
 parameter list, the list of actual parameters following
 <identifier> is collected, and the actual parameters are sub−
 stituted for the corresponding formal parameters in <replacement>
 before the replacement is made.

 There is a file of "standard" definitions used by all Sub−
 system programs called "=incl=/swt_def.r.i". The define
 statements in this file are automatically inserted before each
 source file (unless ’rp’ is told otherwise by the "−f" command
 line option). For information on the exact contents of this
 file, see Appendix D.

 There are also a few other facts that are helpful when using
 define:

 − The <replacement> may be any string of characters not
 containing unbalanced parentheses or unpaired quotes

 − <Formal parameters> must be identifiers.

 − <Actual parameters> may be any string of characters not
 containing unbalanced parentheses, unpaired quotes, or com−
 mas not surrounded by quotes or parentheses.

 − Formal parameter replacement in <replacement> occurs even
 inside of quoted strings. For example,

 − 14 −

 Ratfor User’s Guide

 define (assert (cond), {
 if (~(cond))
 call error ("assertion cond not valid"p)}
 assert (i < j)

 would generate

 {
 if (~(i < j))
 call error ("assertion i < j not valid"p)}

 − During replacement of an identifier defined without a formal
 parameter list, an actual parameter list will never be
 accessed. For example,

 define (ARRAYNAME, table1)
 ARRAYNAME (i, j) = 0

 would generate

 table1 (i, j) = 0

 − The number of actual and formal parameters need not match.
 Excess formal parameters will be replaced by null strings;
 excess actual parameters will be ignored.

 − A define statement affects only those identifiers following
 it. In the following example, STDIN would not be replaced
 by −11, unless a define statement for STDIN had occurred
 previously:

 l = getlin (buf, STDIN)
 define (STDIN, −11)

 − A define statement applies to all lines following it in the
 input to ’rp’, regardless of subroutine, procedure, and
 source file boundaries.

 − After replacement, the substituted text itself is examined
 for further defined identifiers. This allows such defini−
 tion sequences as

 define (DELCOMMAND, LETD)
 define (LETD, 100)

 to result in the desired replacement of "100" for
 "DELCOMMAND". Actual parameters are not reexamined until
 the entire replacement string is reexamined.

 − Identifiers may be redefined without error. The most recent
 definition supersedes all previous ones. Storage space used
 by superseded definitions is reclaimed.

 − 15 −

 Ratfor User’s Guide

 Here are a few more examples of how defines can be used:

 Before Defines Have Been Processed:

 define (NO, 0)
 define (YES, 1)
 define (STDIN, −11)
 define (EOF, −2)
 define (RESET (flag), flag = NO)
 define (CHECK_FOR_ERROR (flag, msg),
 if (flag == YES)
 call error (msg)
)
 define (FATAL_ERROR_MESSAGE,
 "Fatal error −− run terminated"p)
 define (PROCESS_LINE,
 count = count + 1
 call check_syntax (buf, count, error_flag)
)

 while (getlin (buf, STDIN) ~= EOF) {
 RESET (error_flag)
 PROCESS_LINE
 CHECK_FOR_ERROR (error_flag, FATAL_ERROR_MESSAGE)
 }

 After Defines Have Been Processed:

 while (getlin (buf, −11) ~= −2) {
 error_flag = 0
 count = count + 1
 call check_syntax (buf, count, error_flag)
 if (error_flag == 1)
 call error ("Fatal error −− run terminated"p)
 }

 Undefine

 The Ratfor undefine statement allows termination of the
 range of a define statement. The identifier named in the un−
 define statement is removed from the define table if it is
 present; otherwise, no action is taken. Storage used by the
 definition is reclaimed. For example, the statements

 define (xxx, a = 1)
 xxx
 undefine (xxx)
 xxx

 would produce the following code:

 − 16 −

 Ratfor User’s Guide

 a = 1
 xxx

 Include

 The Ratfor include statement allows you to include arbitrary
 files in a Ratfor program (much like the COBOL copy verb). The
 syntax of an include statement is as follows:

 include "<file name>"

 If the file name is six or fewer characters in length and
 contains only alphanumeric characters, the quotes may be omitted.
 For the sake of uniformity, we suggest that the quotes always be
 used.

 When ’rp’ encounters an include statement, it begins taking
 input from the file specified by <file name>. When the end of
 the included file is encountered, ’rp’ resumes reading the preem−
 pted file. Files named in include statements may themselves
 contain include statements; this nesting may continue to an
 arbitrary depth (which, by the way, is arbitrarily limited to
 five).

 For an example of include at work, assume the existence of
 the following files:

 f1:
 include "f2"
 i = 1
 include "f3"

 f2:
 include "f4"
 m = 1

 f3:
 j = 1

 f4:
 k = 1

 If "f1" were the original file, the following text is what would
 actually be processed:

 k = 1
 m = 1
 i = 1
 j = 1

 − 17 −

 Ratfor User’s Guide

 Ratfor Declarations

 There are several declarations available in Ratfor in addi−
 tion to those usually supported in Fortran. They provide a way
 of conveniently declaring data structures not available in
 Fortran, assist in supporting separate compilation, allow
 declaration of local variables within compound statements, and
 allow the declaration of internal procedures. Declarations in
 Ratfor may be intermixed with executable statements.

 String

 The string statement is provided as a shorthand way of
 creating and naming EOS−terminated strings. The structure and
 use of an EOS−terminated string is described in the section on
 Subsystem Conventions. Here it is sufficient to say that such a
 string is an integer array containing one character per element,
 right justified and zero filled, and ending with a special value
 (EOS) designating the "end of string." Since Fortran has no
 construct for specifying such a data structure, it must either be
 declared manually, as a Ratfor string constant, or by the Ratfor
 string statement.

 The string statement is a declaration that creates a named
 string in an integer array using a Fortran data statement. The
 syntax of the string statement is as follows:

 string <name> <quoted string>

 where <name> is the Ratfor identifier to be used in naming the
 string and <quoted string> specifies the string’s contents. As
 you might expect, either single or double quotes may be used to
 delimit <quoted string>. In either case, only the characters
 between the quotes become part of the string; the quotes them−
 selves are not included.

 String statements are quite often used for setting up
 constant strings such as file names or key words. For instance,

 string file_name "//mydir/myfile"
 string change_command "change"
 string delete_command "delete"

 define such character arrays.

 Stringtable

 The stringtable statement creates a rather specialized data
 structure −− a marginally indexed array of variable length
 strings. This data structure provides the same ease of access as
 an array, but it can contain entries of varying sizes. A string−
 table declaration defines two data items: a marginal index and a
 table body. The marginal index is an integer array containing

 − 18 −

 Ratfor User’s Guide

 indices into the table body. The first element of the marginal
 index is the number of entries following in the marginal index.
 Subsequent elements of the marginal index are pointers to the
 beginning of items in the table body. Since the beginning of the
 table body is always the beginning of an item, the second entry
 of the marginal index is always 1.

 The syntax of a stringtable declaration is as follows:

 string_table <marginal index>, <table body>,
 [/] <item> { / <item> }

 <Marginal index> and <table body> are identifiers that will be
 declared as the marginal index and table body, respectively.
 <Item> is a comma−separated list of single−character constants
 (with a "c" string format indicator), integers, or EOS−terminated
 character strings (with no string format indicator −− a little
 inconsistency here). The values contained in an <item> are
 stored contiguously in <table body> with no separator values
 (save for an EOS at the end of each EOS−terminated string). An
 entry is made in the marginal index containing the position of
 the first word of each <item>.

 For example, assume that you have a program in which you
 wish to obtain one of three integer values based on an input
 string. You want to allow an arbitrary number of synonyms in the
 input (like "add", "insert", etc.).

 string_table cmdpos, cmdtext,
 / ADD, "add" _
 / ADD, "insert" _
 / CHANGE, "change" _
 / CHANGE, "update" _
 / DELETE, "delete" _
 / DELETE, "remove"

 This declaration creates a structure something like the fol−
 lowing:

 cmdpos cmdtext

 1: 6
 2: 1 1: ADD, ’a’c, ’d’c, ’d’c, EOS
 3: 6 6: ADD, ’i’c, ’n’c, ’s’c, ’e’c,
 ’r’c, ’t’c, EOS
 4: 14 14: CHANGE, ’c’c, ’h’c, ’a’c, ’n’c,
 ’g’c, ’e’c, EOS
 5: 22 22: CHANGE, ’u’c, ’p’c, ’d’c, ’a’c,
 ’t’c, ’e’c, EOS
 6: 29 29: DELETE, ’d’c, ’e’c, ’l’c, ’e’c,
 ’t’c, ’e’c, EOS
 7: 36 36: DELETE, ’r’c, ’e’c, ’m’c, ’o’c,
 ’v’c, ’e’c, EOS

 − 19 −

 Ratfor User’s Guide

 There are several routines in the Subsystem library that can
 be used to search for strings in one of these structures. You
 can find details on the use of these procedures in the reference
 manual/’help’ entries for ’strlsr’ and ’strbsr’.

 Linkage

 The sole purpose of the linkage declaration is to circumvent
 problems with transforming Ratfor identifiers to Fortran
 identifiers when compiling program modules separately. To relax
 the restriction that externally visible names (subroutine, func−
 tion, and common block names) must contain no more than six
 characters, each separately compiled module must begin with an
 identical linkage declaration containing the names of all exter−
 nal symbols −− subroutine names, function names, and common block
 names (the identifiers inside the slashes −− not the variable
 names). Except for text substitution statements, the linkage
 declaration must be the first statement in each module. The
 order of names in the statement is significant −− as a general
 rule, you should include the same file containing the linkage
 declaration in each module.

 Linkage looks very much like a Fortran type declaration:

 linkage identifier1, identifier2, identifier3

 Each of the identifiers is an external name (i.e. subroutine,
 function, or common block name). If this statement appears in
 each source module, with the identifiers in exactly the same
 order, it is guaranteed that in all cases, each of these
 identifiers will be transformed into the same unique Fortran
 identifier. For Subsystem−specific information on the mechanics
 of separate compilation, you can see the section in the
 applications notes devoted to this topic.

 Local

 With the local declaration, you can indicate that certain
 variables are "local" to a particular compound statement (or
 block) just as in Algol. Local declarations are most often used
 inside internal procedures (which are described later), but they
 can appear in any compound statement.

 | The type declarations for local variables must be preceded
 | by a local declaration containing the names of all variables that
 are to be local to the block:

 local i, j, a

 integer i, j
 real a

 The local statement must precede the first appearance of a
 | variable inside the block. While this isn’t the greatest syntax

 − 20 −

 Ratfor User’s Guide

 | in the world, it is easy to implement local variables in this
 | fashion.

 Scope rules similar to those of most block−structured
 languages apply to nested compound statements: A local variable
 is visible to all blocks nested within the block in which it is
 declared. Declaration of a local variable obscures a variable by
 the same name declared in an outer block.

 There are several cautions you must observe when using local
 variables. ’Rp’ is currently not well−versed in the semantics of
 Fortran declarations and therefore cannot diagnose the incorrect
 use of local declarations. Misuse can then result in semantic
 errors in the Fortran output that are often not caught by the
 Fortran compiler. If the declaration of a variable within a
 block appears before the variable is named in a local
 declaration, ’rp’ will not detect the error, and an "undeclared
 variable" error will be generated in the Fortran. External names
 (i.e. function, subroutine, and common block names) must never
 be named in a local declaration, unless you want to declare a
 local variable of the same name. Finally, the formal parameters
 of internal procedures should never appear in a local declaration
 in the body of the procedure, again, unless you want to declare a
 local variable of the same name.

 Here is an example showing the scopes of variables appearing
 in a local declaration:

 ### level 0
 subroutine test

 integer i, j, k

 { ### level 1
 local i, m; integer i, m
 # accessible: level 0 j, k; level 1 i, m
 { ### level 2
 local m, k; real m, k
 # accessible: level 0 j; level 1 i; level 2 m, k
 }
 }

 end

 − 21 −

 Ratfor User’s Guide

 Ratfor Control Statements

 As was said by Kernighan and Plauger in Software Tools,
 except for the control structures, "Ratfor is Fortran." The
 additional control structures just serve to give Fortran the
 capabilities that already exist in Algol, Pascal, and PL/I.

 Compound Statements

 Ratfor allows the specification of a compound statement by
 surrounding a group of Ratfor statements with braces ("{}"), just
 like begin − end in Algol or Pascal, or do − end in PL/I. A com−
 pound statement may appear anywhere a single statement may
 appear, and is considered to be equivalent to a single statement
 when used within the scope of a Ratfor control statement.

 There is normally no need for a compound statement to appear
 by itself −− compound statements usually appear in the context of
 a control structure −− but for completeness, here is an example
 of a compound statement.

 { # end of line −− set to beginning of next line
 line = line + 1
 col = 1
 end_of_line = YES
 }

 If − Else

 The Ratfor if statement is much more flexible than its
 Fortran counterpart. In addition to allowing a compound
 statement as an alternative, the Ratfor if includes an optional
 else statement to allow the specification of an alternative
 statement. Here is the complete syntax of the Ratfor if
 statement:

 if (<condition>) <statement1>
 [else <statement2>]

 <Condition> is an ordinary Fortran logical expression. If
 <condition> is true, <statement1> will be executed. If
 <condition> is false and the else alternative is specified,
 <statement2> will be executed. Otherwise, if <condition> is
 false and the else alternative has not been specified, no action
 occurs.

 Both <statement1> and <statement2> may be compound
 statements or may be further if statements. In the case of
 nested if statements where one or more else alternatives are not
 specified, each else is paired with the most recently occurring
 if that has not already been paired with an else.

 − 22 −

 Ratfor User’s Guide

 Although deep nesting of if statements hinders understan−
 ding, one situation often occurs when it is necessary to select
 one and only one of a set of alternatives based on several con−
 ditions. This can be nicely represented with a chain of if − el−
 se if − else if . . . else statements. For example,

 if (color == RED)
 call process_red
 else if (color == BLUE | color == GREEN)
 call process_blue_green
 else if (color == YELLOW)
 call process_yellow
 else
 call color_error

 could be used to select a routine for processing based on color.

 While

 The Ratfor while statement allows the repetition of a
 statement (or compound statement) as long as a specified condi−
 tion is met. The Ratfor while loop is a "test at the top" loop
 exactly like the Pascal while and the PL/I do while. The while
 statement has the following syntax:

 while (<condition>)
 <statement>

 If <condition> is false, control passes beyond the loop to the
 next statement in the program; if <condition> is true,
 <statement> is executed and <condition> is retested. As should
 be expected, if <condition> is false when the while is first
 entered, <statement> will be executed zero times.

 The while statement is very handy for controlling such
 things as skipping blanks in strings:

 while (str (i) == BLANK)
 i = i + 1

 And of course, <statement> may also be a compound statement:

 while (getlin (buf, STDIN) ~= EOF) {
 call process (buf)
 call output (buf)
 }

 Repeat

 The Ratfor repeat loop allows repetitive execution of a
 statement until a specified condition is met. But, unlike the
 while loop, the test is made at the bottom of the loop, so that
 the controlled statement will be executed at least once. The

 − 23 −

 Ratfor User’s Guide

 repeat loop has syntax as follows:

 repeat
 <statement>
 [until (<condition>)]

 When the repeat statement is encountered, <statement> is
 executed. If <condition> is found to be false, <statement> is
 reexecuted and the <condition> is retested. Otherwise control
 passes to the statement following the repeat loop. If the until
 portion of the loop is omitted, the loop is considered an
 "infinite repeat" and must be terminated within <statement>
 (usually with a break or return statement). Pascal users should
 note that the scope of the Ratfor repeat is only a single
 <statement> (which of course may be compound).

 Repeat loops, as opposed to while loops, are used when the
 controlled statement must be evaluated at least once. For exam−
 ple,

 repeat
 call get_next_token (token)
 until (token ~= BLANK_TOKEN)

 The "infinite repeat" is often useful when a loop must be
 terminated "in the middle:"

 repeat {
 call get_next_input (inp)
 call check_syntax (inp, error_flag)
 if (error_flag == NO)
 return
 call syntax_error (inp) # go back and get another
 }

 Do

 Ratfor provides access to the Fortran do statement. The
 Ratfor do statement is identical to the Fortran do except that it
 does not use a statement label to delimit its scope. The Ratfor
 do statement has the following syntax:

 do <limits>
 <statement>

 <Limits> is the normal Fortran notation for the limits of a do,
 such as "i = 1, 10" or "j = 5, 20, 2". The same restrictions
 apply to <limits> as apply to the limits in the Fortran do.
 <Statement> is any Ratfor statement (which may be compound).

 The Ratfor do statement is just like the standard Fortran
 one−trip do loop −− <statement> will be executed at least once,
 regardless of the limits. Also, the value of the do control
 variable is not defined on exit from the loop.

 − 24 −

 Ratfor User’s Guide

 The do loop can be used for array initialization and other
 such things that can never require "zero trips", since it
 produces slightly more efficient object code than the for
 statement (which we will get to next).

 do i = 1, 10
 array (i) = 0

 One slight irregularity in the Ratfor syntax occurs when
 <statement> appears on the same line as the do. Since ’rp’ knows
 very little about Fortran, it assumes that the <limits> continue
 until a statement delimiter. This means that the <limits> must
 be followed by a semicolon if <statement> is to begin on the same
 line. This often occurs when a compound statement is to be used:

 do i = 1, 10; {
 array_1 (i) = 0
 array_2 (i) = 0
 }

 For

 The Ratfor for statement is an all−purpose looping construct
 that takes the best features of both the while and do statements,
 while allowing more flexibility. The syntax of the for statement
 is as follows:

 for (<initialize>; <condition>; <reinitialize>)
 <statement>

 When the for is executed, the statement represented by
 <initialize> is executed. Then, if <condition> is true,
 <statement> is executed, followed by the statement represented by
 <reinitialize>. Then, <condition> is retested, etc. Any or all
 of <initialize>, <condition>, or <reinitialize> may be omitted;
 the semicolons, however, must remain. If <initialize> or
 <reinitialize> is omitted, no action is performed in their place.
 If <condition> is omitted, an "infinite loop" is assumed. (Both
 <initialize> or <reinitialize> may be compound statements).

 As you can see, the for loop with <initialize> and
 <reinitialize> omitted is identical to the while loop. With the
 addition of <initialize> and <reinitialize>, a zero−trip do loop
 can be constructed. For instance,

 for (i = 1; i <= 10; i += 1) {
 array_1 (i) = 0
 array_2 (i) = 0
 }

 is identical to the last do example, but given a certain combina−
 tion of limits, the for loop would execute <statement> zero times
 while the do loop would execute it once.

 − 25 −

 Ratfor User’s Guide

 The for loop can do many things not possible with a do loop,
 since the for loop is not constrained to the ascending
 incrementation of an index. As an example, assume a list struc−
 ture in which "list" contains the index of the first item in a
 list, and the first position in each list item contains the index
 of the next. The for statement could be used to serially examine
 the list:

 for (ptr = list; ptr ~= NULL; ptr = array (ptr)){
 [examine the item beginning at array (ptr + 1)]
 }

 Break

 The break statement allows the early termination of a loop.
 The statement

 break [<level>]

 will cause the immediate termination of <level> loops, where
 <level>, if specified, is an integer in the range 1 to the depth
 of loop nesting at the point the break statement appears. Where
 <level> is omitted, only the innermost loop surrounding the break
 is terminated.

 In the following example, the break statement will cause the
 termination of the inner for loop if a blank is encountered in
 ’str’:

 while (getlin (str, STDIN) ~= EOF) {
 for (i = 1; str (i) ~= EOS; i += 1)
 if (str (i) == BLANK)
 break

 str (i) = EOS # output just the first word
 call putlin (str, STDOUT)
 call putch (NEWLINE, STDOUT)
 }

 Replacing the break statement with "break 1" would have exactly
 the same effect. However, replacing it with "break 2" would
 cause termination of both the inner for and outer while loops.
 Unless this fragment is nested inside other loops, a value
 greater than 2 would be an error.

 Next

 The next statement is very similar to the break statement,
 except that a statement of the form

 next [<level>]

 causes termination of <level> − 1 nested loops (zero when <level>

 − 26 −

 Ratfor User’s Guide

 is omitted). Execution then resumes with the next iteration of
 the innermost active loop. <Level>, if specified, is again an
 integer in the range 1 to the depth of loop nesting that
 specifies which loop (from inside out) is to begin its next
 iteration.

 In this example, the next statement will cause the proces−
 sing to be skipped when an array element with the value "UNUSED"
 is encountered.

 for (i = 1; i <= 10; i += 1)
 for (j = 1; j <= 10; j += 1) {
 if (array (i, j) == UNUSED)
 next

 # process array (i, j)

 }

 When an array element with the value "UNUSED" is encountered,
 execution of the next statement causes the <reinitialize> portion
 of the innermost for statement, "j += 1", to be executed before
 the next iteration of the inner loop begins. You should note
 that when used with a for statement, next always skips to the
 <reinitialize> part of the appropriate for loop.

 If the statement "next 2" had been used in place of "next",
 the inner for loop would have been terminated, and the "i += 1"
 of the outer for loop would have been executed in preparation for
 its next iteration.

 Return

 The Ratfor return statement normally behaves exactly like
 the Fortran return statement in all but one case. In this case,
 Ratfor allows a parenthesized expression to follow the keyword
 return inside a function subprogram. The value of this expres−
 sion is then assigned to the function name as the value of the
 function before the return is executed. This is just another
 shorthand and does not provide any additional functionality.

 Normally in a Fortran function subprogram, you place an
 assignment statement that assigns a value to the function name
 before the return statement, like this:

 integer function calc (x, y, z)
 ...
 calc = x + y − z
 return
 ...

 If you like, Ratfor allows you to express the same actions with
 one line less code:

 − 27 −

 Ratfor User’s Guide

 integer function calc (x, y, z)
 ...
 return (x + y − z)
 ...

 This segment performs exactly the same function as the preceding
 segment.

 Select

 The Ratfor select statement allows the selection of a
 statement from several alternatives, based either on the value of
 an integer variable or on the outcome of several logical con−
 ditions. A select statement of the form

 select
 when (<expression list 1>)
 <statement 1>
 when (<expression list 2>)
 <statement 2>
 ...
 when (<expression list n>)
 <statement n>
 [ifany
 <statement n+1>]
 [else
 <statement n+2>]

 (where <expression list> is a comma−separated list of logical
 expressions) performs almost the same function as a chain of if −
 else if . . . else statements. Each <logical expression> is
 | evaluated in turn, and when the first true expression is
 | encountered, the corresponding statement is executed. If any
 when alternative is selected, the statement in the ifany part is
 executed. If none of the when alternatives are selected, the
 statement in the else part is executed.

 Although its function is very similar to an if − else chain,
 a select statement has two distinct advantages. First, it allows
 the "ifany" alternative −− a way to implement a rather frequently
 encountered control structure without repeated code or procedure
 calls. Second, it places all the logical expressions in the same
 basic optimization block, so that even a dumb Fortran compiler
 can optimize register loads and stores.

 For example, assume that we want to check to see if the
 variable ’color’ contains a valid color, namely ’RED’, ’YELLOW’,
 ’BLUE’, or ’GREEN’. If it does, we want to executed one of the
 three subroutines ’process_red’, ’process_yellow’, or
 ’process_blue_green’ and set the flag ’color_valid’ to YES.
 Otherwise, we want to set the ’color_valid’ to NO. A select
 statement performs this trick nicely, with no repeated code:

 − 28 −

 Ratfor User’s Guide

 select
 when (color == RED)
 call process_red
 when (color == YELLOW)
 call process_yellow
 when (color == BLUE, color == GREEN)
 call process_blue_green
 ifany
 color_valid = YES
 else
 color_valid = NO

 The second variant of the select statement allows the selec−
 tion of a statement based on the value of an integer (or charac−
 ter) expression. It has almost exactly the same syntax as the
 logical variant:

 select (<integer expression>)
 when (<expression list 1>)
 <statement 1>
 when (<expression list 2>)
 <statement 2>
 ...
 when (<expression list n>)
 <statement n>
 [ifany
 <statement n+1>]
 [else
 <statement n+2>]

 Using this variant, a statement is selected when one of its
 corresponding integer expressions has the same value as the
 <integer expression> following the ’select’. The ifany and else
 clause behave as they do in the logical variant. The most
 visible difference, though, is that the order of evaluation of
 the integer expressions is not specified. If two values in two
 expression lists are identical, it is difficult to say which of
 the statements will be executed; it can only be said that one and
 only one will be executed.

 The integer variant offers one further advantage. If
 elements in the expression lists are integer or single−character
 constants, ’rp’ will generate Fortran computed goto statements,
 rather than Fortran if statements, where possible. This code is
 usually considerably faster and more compact than the code
 generated by if statements.

 The example given for the logical variant of select would
 really be much more easily done with the integer variant:

 − 29 −

 Ratfor User’s Guide

 select (color)
 when (RED)
 call process_red
 when (YELLOW)
 call process_yellow
 when (BLUE, GREEN)
 call process_blue_green
 ifany
 color_valid = YES
 else
 color_valid = NO

 As a final example of select, the following program fragment
 selects an insert, update, delete, or print routine based on the
 input codes "i", "u", "d" or "p":

 while (getlin (buf, STDIN) ~= EOF)

 select (buf (1))
 when (’i’c, ’I’c) # insert record
 call insert_record
 when (’u’c, ’U’c) { # update record
 call delete_record
 call insert_record
 }
 when (’d’c, ’D’c) # delete record
 call delete_record
 when (’p’c, ’P’c) # print record
 ;
 ifany # always print after command
 call print_record
 else # illegal input
 call command_error

 This example shows the use of both a compound statement within an
 alternative (the "update" action deletes the target record and
 then inserts a new version), and a null statement consisting of a
 single semicolon.

 Procedure

 Procedures are a convenient and useful structuring mechanism
 for programs, but in Fortran there often reasons for restricting
 the unbridled use of procedures. Among these reasons are (1) the
 run−time expense of procedure calls, and argument and common
 block addressing; (2) external name space congestion; and (3)
 difficulty in detecting errors in parameter and common−block
 correspondence. Ratfor attempts to address these problems by
 allowing declaration of procedures within Fortran subprograms
 that are inexpensive to call (an assignment and two gotos), are
 not externally visible, and allow access to global variables. In
 addition, when correctly declared, Ratfor internal procedures can
 call each other recursively without requiring recursive
 procedures in the host Fortran.

 − 30 −

 Ratfor User’s Guide

 Currently, Ratfor internal procedures do not provide the
 same level of functionality as Fortran subroutines and functions:
 internal procedure parameters must be scalars and are passed by
 value, internal procedures cannot be used as functions (they can−
 not return values), and no automatic storage is available with
 recursive integer procedures. But even with these restrictions,
 internal procedures can significantly improve the readability and
 modularity of Ratfor code.

 Internal procedures are declared with the Ratfor procedure
 statement. Internal procedures may be declared anywhere in a
 program, but a declaration must appear before any of its calls.
 Here is an example of a non−recursive procedure declaration:

 # putchar −−− put a character in the output string
 procedure putchar (ch) {

 character ch

 str (i) = ch
 i += 1
 }

 This procedure has one parameter, "ch", which must appear in a
 type declaration inside the procedure.

 Internal procedures always exit by falling through the end
 of the compound statement. A return statement in an internal
 procedure will return from the Fortran subprogram in which the
 internal procedure is declared.

 After the above declaration, "putchar" can be subsequently
 called in one of two ways:

 putchar (’=’c)

 −or−

 call putchar (’=’c)

 The second form is preferable, so that a procedure can be con−
 verted to a subroutine, and vice−versa. The number of parameters
 in the call must always match the number of parameters in the
 declaration. If parameter list is omitted in the declaration,
 then it also must be omitted in its calls.

 If "putchar" were recursive, the declaration would be

 procedure putchar (ch) recursive 128

 The value "128" is an integer constant that is the maximum number
 of recursive calls to "putchar" outstanding at any one time.

 Since internal procedures may be mutually recursive, and
 since they must be declared textually before they are used,
 procedures may be declared "forward" by separating the procedure

 − 31 −

 Ratfor User’s Guide

 declaration from its body. Here is "putchar" declared using a
 "forward" declaration:

 procedure putchar (ch) forward

 ...

 # putchar −−− put a character in the output string
 procedure putchar {

 character ch

 str (i) = ch
 i += 1
 }

 As you can see, the parameters must appear in the "forward"
 declaration; they may appear in the body declaration, but are
 ignored. For maximum efficiency, all internal procedures should
 be presented in a "forward" declaration. The procedure bodies
 | should then be declared after the final return or stop statement
 | in the body of the Fortran subprogram, but before the terminating
 | end statement (then the program never has to jump around the
 procedure body).

 In general, a procedure declaration contains five parts:
 the word "procedure", the procedure name, an optional list of
 formal parameters, an optional "recursive <integer>" part, and
 either a compound statement or the word "forward". An internal
 procedure call consists of three parts: optionally the word
 "call", the procedure name, and an optional parameter list.

 − 32 −

 Ratfor User’s Guide

 Ratfor Language Reference

 This section contains a summary of the Ratfor syntax and
 source program format. In addition to serving as a reference for
 Ratfor, it can also be used by someone who is familiar with
 Fortran and wants to quickly gain a reading knowledge of Ratfor.

 Differences Between Ratfor and Fortran

 Source Program Format

 − ’Rp’ is sensitive to letter case. Keywords must appear
 in lower case. Case is significant in identifiers.

 − ’Rp’ is blank sensitive in that words (sequences of
 letters, digits, dollar signs, and underscores) must be
 separated by special characters or blanks.

 − ’Rp’ is not sensitive to card columns. Statements may
 begin at any position on a line.

 − ’Rp’ allows multiple statements per line by separating
 the statements with semicolons.

 − A Ratfor statement may be labeled by placing the
 numeric label in front of the statement. The label
 must be separated from the statement by at least one
 space.

 − ’Rp’ will expect a continuation line if it encounters a
 line ending with a trailing comma, a condition with
 unbalanced parentheses, a missing statement following a
 control statement, or a line ending with a trailing
 underscore.

 − Any line may contain a comment. Comments begin with a
 sharp sign ("#") and continue until the end of the
 line.

 Identifiers

 Ratfor identifiers consist of letters, digits, underscores,
 dollar signs, and may be up to 100 characters long. An
 identifier must begin with a letter. Underscores may be included
 for readability, but are completely ignored. An identifier may
 not be the same as a Fortran or Ratfor keyword. ’Rp’ transforms
 all long Ratfor identifiers into unique Fortran identifiers.

 − 33 −

 Ratfor User’s Guide

 Integer Constants

 ’Rp’ allows integer constants of the form "<base>r<number>"
 where <base> is an integer between 2 and 16. The letters "a" −
 "f" are used for digits in bases greater than 10.

 String Constants

 String constants in Ratfor consist of a string body and a
 string format indicator. The string body is a group of strings,
 bounded by quotes, and possibly separated by blanks. The string
 format indicator designates the data representation to be used
 for the characters in the string body. It has one of the follow−
 ing values:

 omitted Fortran Hollerith string. A standard Fortran Hollerith
 constant is generated. Characters are left−justified,
 packed in words (two characters per word on the Prime),
 and unused positions on the right are filled with
 blanks.

 c Single character constant. A single character constant
 is generated. The character is right−justified and
 zero−filled on the left in a word. Only one character
 is allowed in the body of the constant. This is the
 preferred format for all single characters in the
 Software Tools Subsystem.

 p Packed (Hollerith) period−terminated string. The ’p’
 format indicator causes the generation of a Fortran Hol−
 lerith constant. All periods in the string body are
 preceded by an escape character ("@").

 v PL/I character varying string. Fortran declarations are
 generated to create a PL/I character varying string.
 "V" format string constants may only be used in
 executable statements.

 s EOS−terminated unpacked string. Fortran declarations
 are generated to construct an array in which each
 element contains one character of the string body,
 right−justified and zero−filled (each character is in
 the same format as is generated by the "c" format
 indicator). Following the characters is a word contain−
 ing the value EOS. EOS−terminated strings are the
 preferred format for multi−character strings in the Sub−
 system. "S" format string constants may only be used in
 executable statements.

 Logical and Relational Operators

 Ratfor allows the use of graphic characters to represent
 logical and relational operators instead of the Fortran ".EQ."
 and such. These characters will be replaced by their Fortran

 − 34 −

 Ratfor User’s Guide

 equivalents during preprocessing. The following table shows the
 equivalent syntaxes:

 Ratfor Fortran Function

 > .GT. Greater than
 >= .GE. Greater or equal
 < .LT. Less than
 <= .LE. Less or equal
 == .EQ. Equal to
 ~= .NE. Not equal to

 ~ .NOT. Logical negation
 & .AND. Logical conjunction
 | .OR. Logical disjunction

 && (none) Short−circuited conjunction
 || (none) Short−circuited disjunction

 Note that the digraphs shown in the table must appear in the Rat−
 for program with no imbedded spaces. The short−circuited
 operators may appear only in the <condition> part of Ratfor
 control statements.

 Assignment Operators

 Assignment operators provide a shorthand for the common
 Fortran idiom "<v> = <v> <op> <expr>". Assignment operators may
 appear anywhere a Fortran assignment statement may appear. The
 following assignment operators are available in Ratfor:

 Operator Use Result

 += <v> += <e> <v> = <v> + (<e>)
 −= <v> −= <e> <v> = <v> − (<e>)
 *= <v> *= <e> <v> = <v> * (<e>)
 /= <v> /= <e> <v> = <v> / (<e>)
 %= <v> %= <e> <v> = mod (<v>, <e>)
 &= <v> &= <e> <v> = and (<v>, <e>)
 |= <v> |= <e> <v> = or (<v>, <e>)
 ^= <v> ^= <e> <v> = xor (<v>, <e>)

 Escape Statements

 Escape statements can be used to output Fortran statements
 that will not be touched by the Ratfor preprocessor. The escape
 statement has three possible forms. In the first form listed
 below, the first non−blank character of the Fortran statement is
 output in column seven. In the second form, the first non−blank
 character of the Fortran statement is output in column seven, but
 column six contains a "$" to continue a previous Fortran

 − 35 −

 Ratfor User’s Guide

 statement to that stream. In the third form, the Fortran
 statement is output starting in column one, so that the user has
 full control of the placement of items on the line. The follow−
 ing is a summary of this description:

 Escape Statement Format Output Column

 %<stream><Fortran statement> 7
 %<stream>&<Fortran statement> 6
 %<stream>%<Fortran statement> 1

 "Stream" can take on the following values:

 1 declaration
 2 data
 3 code

 | If no stream value is given, it is assumed to be the code stream.
 | Escaped statements have to come between a function or subroutine
 | statement and the corresponding end statement.

 Incompatibilities

 Even with the great similarities between Fortran and Ratfor,
 an arbitrary Fortran program is not necessarily a correct Ratfor
 program. Several areas of incompatibilities exist:

 − Blanks are significant −− at least one space or special
 character must separate adjacent keywords and
 identifiers.

 − The Ratfor do statement does not contain a statement
 number following the "do". Its range always extends
 over the next statement.

 − Two word Fortran key phrases such as double precision
 must be presented as a single Ratfor identifier (e.g.
 "doubleprecision" or "double_precision").

 − Fortran statement functions must be preceded by the
 Ratfor keyword stmtfunc. To assure that they will
 appear in the correct order in the Fortran, they should
 immediately precede the end statement of the program
 unit.

 − Hollerith literals (i.e. 5HABCDE) are not allowed
 anywhere in a Ratfor program. Instead, ’rp’ expects
 all Hollerith literals to be enclosed in single or
 double quotes (i.e. "ABCDE" or ’ABCDE’).

 − ’Rp’ does not allow Fortran comments. Ratfor comments
 must be introduced by a sharp sign ("#").

 − ’Rp’ does not accept the Fortran continuation con−
 vention. Continuation is implicit for any line ending

 − 36 −

 Ratfor User’s Guide

 with a comma, or any conditional statement containing
 unbalanced parentheses. Continuation between arbitrary
 words may be indicated by placing an underscore,
 preceded by at least one space, at the end of the line
 to be continued.

 − ’Rp’ does not ignore text beyond column 72.

 − Fortran and Ratfor keywords may not be used as
 identifiers in a Ratfor program. Their use will result
 in unreasonable behavior.

 Ratfor Text Substitution Statements

 define (<identifier> [(<formal params>)], <replacement text>)

 When a define statement is encountered in a source program,
 <replacement text> is recorded as the replacement for
 <identifier>. If <identifier> is encountered later in the
 program, it will be replaced by <replacement text>. If <formal
 params> was present in the definition of <identifier>, and the
 subsequent occurrence of <identifier> is followed by a
 parenthesized, comma−separated list of strings, occurrences of
 the formal parameters in <replacement text> will be replaced by
 the corresponding strings in the actual parameter list.

 <Identifier> must be an alphabetic Ratfor identifier, while
 <replacement text> may contain any characters except unmatched
 quotes or parentheses. <Formal params> must be a comma−separated
 list of identifiers; corresponding actual parameters may contain
 any characters except unmatched quotes, unbalanced parentheses,
 or unnested commas. During replacement, <replacement text> is
 also examined for occurrences of defined identifiers. Formal
 parameter replacement occurs on identifiers in <replacement
 text>, even if the identifiers are surrounded by quotes or
 parentheses. Redefinition of an <identifier> causes the new
 <replacement text> to replace the old.

 undefine (<identifier>)

 The undefine statement removes the definition of
 <identifier> from the list of defined identifiers. Subsequent
 occurrences of <identifier> in the program will not be replaced
 unless <identifier> appears in a subsequent define statement.

 include ’<path name>’

 An include statement instructs ’rp’ to begin taking input
 from the file specified by <path name>. When the end of the file
 is reached, ’rp’ resumes taking input from the file containing
 the include statement. The path name may be surrounded by either

 − 37 −

 Ratfor User’s Guide

 single or double quotes. The file specified by <path name> may
 contain further include statements, up to a maximum depth of 5.

 Ratfor Declarations

 linkage <identifier> { , <identifier> }

 The linkage declaration is used to guarantee that long
 external names are transformed into the same unique Fortran name.
 Names are transformed as they are presented in the linkage
 declaration. The same linkage statement should appear as the
 first statement of each separately compiled source module, and
 should contain the names of all subroutines, functions, and com−
 mon blocks in the program.

 local <identifier> { , <identifier> }

 The local declaration allows the declaration of variables
 with names local to the scope of a compound statement (block).
 The local declaration should appear inside a compound statement
 and must precede all occurrences of the identifiers to be
 declared local to the block. All identifiers appearing in a
 local declaration must subsequently appear in a type declaration
 in the same compound statement.

 string <name> <quoted string>

 The string statement generates declarations to produce an
 EOS−terminated string in the integer array <name>. <Quoted
 string> must be surrounded by either single or double quotes.

 stringtable <index>, <body>, [/] <item> { / <item }

 The stringtable declaration creates a marginally indexed
 array of integers and character strings. <Index> and <body> are
 variables to be declared as the index and body arrays respec−
 tively. <Body> is a one−dimensional array in which the values
 generated by the <item>s are stored consecutively. The first
 element of <index> contains the number of remaining elements in
 <index>; subsequent elements each contain the index in <body> of
 the first position of the corresponding <item>.

 <Item>s are comma−separated lists of integers, single−character
 constants, and strings (with no string format indicators).
 Integers and EOS−terminated strings are generated and stored
 consecutively in <body>. The first position of each <item> in
 <body> is stored in the corresponding entry of <index>.

 − 38 −

 Ratfor User’s Guide

 Ratfor Control Statements

 break [<integer>]

 The break statement allows the user to terminate the execu−
 tion of a for, while, or repeat loop and resume control at the
 first statement following the loop. The <integer> specifies the
 number of loops to terminate; if absent, 1 is assumed (only the
 innermost loop is terminated). If the integer is N, then the N
 innermost loops currently active are terminated.

 do <limits>; <statement>

 The do statement provides a means of accessing the local
 Fortran do−statement. <Limits> includes whatever parameters are
 necessary to satisfy Fortran, minus the statement number of the
 last statement to be performed, which is generated by Ratfor.
 The semicolon must not be used if the statement to be iterated
 does not appear on the same line as the do.

 for ’(’ <init>; <condition>; <reinit> ’)’ <statement>

 The for statement is a very general looping construct.
 <init> is a statement to be executed before loop entry; it is
 frequently used to initialize a counter. <Condition> is a condi−
 tion to be satisfied for every iteration; the condition is tested
 at the top of the loop. <Condition> becoming false is the most
 often used method of terminating the loop. <Reinit> is a
 statement to be executed at the bottom of the loop, just before a
 jump is made to the top to test the <condition>. <Reinit> is
 usually used to increment or decrement a counter. <Statement>
 may be any legal Ratfor statement.

 if ’(’ <condition> ’)’ <statement> [else <statement>]

 If is a generalization of the Fortran logical−if statement.
 If the condition is true, the first <statement> is executed. If
 the optional else clause is missing, control is then passed to
 the statement following the if; otherwise, the <statement> fol−
 lowing the else is executed before passing control.

 next [<integer>]

 The next statement complements the break statement. It is
 used to force the next iteration of a for, repeat or while loop
 to occur. The parameter <integer> specifies the number of levels
 of nested loops to jump out; if omitted, the innermost loop is
 continued; otherwise, for <integer> = 2, the next−to−innermost
 loop is continued, etc.

 − 39 −

 Ratfor User’s Guide

 procedure <procid> [’(’ <id> {, <id> } ’)’]
 [recursive <integer>]
 (forward | <compound statement>)

 [call] <procid> [’(’ <expr> {, <expr> } ’)’]

 The procedure declaration allows the declaration of internal
 Ratfor procedures. <Procid> is the name of the internal
 procedure. Formal parameters (scalar, pass−by−value) are
 declared following the <procid>. Formal parameters must appear
 in a type declaration in the body of the procedure. If the
 procedure is to be called recursively, the recursive <integer>
 clause must be included; <integer> is the maximum number of
 recursive calls in process at any given time. Following the
 heading, either a compound statement or the word forward must
 appear. If the forward option is used, a procedure declaration
 containing <compound statement> must follow at some point in the
 program unit. Formal parameters specified on the second declara−
 tion may be present, but are ignored.

 A <procid> must be defined before it is referenced by a
 call. The call can appear exactly as a Fortran call, or the word
 call can be omitted. Actual parameters must correspond in number
 to formal parameters. If the formal parameters list is omitted
 in the declaration, no actual parameter list may be present.

 repeat <statement> [until ’(’ <condition> ’)’]

 The repeat statement is used to generate a loop with the
 iteration test at the bottom. The <statement> is performed, then
 the <condition> checked; if false, the <statement> is repeated.
 If true, control passes to the statement following the until. If
 the until is omitted, the loop is repeated indefinitely, and must
 be terminated with a stop, break, or goto.

 return [’(’ <expression> ’)’]

 The return statement behaves exactly like its Fortran
 counterpart, except that if the optional parenthesized expression
 is included inside a function subprogram, the value of
 <expression> will be assigned to the function name as the func−
 tion value before the return is executed.

 select
 {when ’(’ <condition> {, <condition>} ’)’ <statement> }
 [ifany <statement>] [else <statement>]

 select ’(’ <integer expr> ’)’
 {when ’(’ <integer expr> {, <integer expr>} ’)’ <statement>
 [ifany <statement>] [else <statement>]

 Select is a generalization of the if statement. In its
 first alternative, the when <conditions>s are evaluated in order;

 − 40 −

 Ratfor User’s Guide

 the <statement> associated with the first one found to be true is
 executed. If any <condition> is found true, the <statement>
 associated with ifany is executed; if none are found true, the
 <statement> associated with else is executed.

 Similarly, in the second alternative, the <integer expr>
 associated with select is evaluated. The result is then compared
 to the <integer expr>s associated with the when parts in an
 unspecified order. When an equal comparison is made, the
 <statement> following the corresponding when is executed. If an
 equal comparison is made, the <statement> following ifany is
 executed; if no equal comparison is made, the <statement> follow−
 ing else is executed.

 while ’(’ <condition> ’)’ <statement>

 The while statement is the basic test−at−the−top loop. The
 <condition> is evaluated; if true, the <statement> is executed
 and the loop is repeated, otherwise control passes to the
 statement following the loop.

 − 41 −

 Ratfor User’s Guide

 Ratfor Programming Under the Subsystem

 This chapter describes the use of Ratfor in the programming
 environment provided by the Software Tools Subsystem. In addi−
 tion to demonstrating use of the Ratfor preprocessor, Fortran
 compiler, and linking loader, the programming conventions neces−
 sary for the use of the Subsystem support subprograms are
 described.

 In this chapter, a number of programming conventions are
 presented. Since very few of the conventions can be enforced by
 the Subsystem, adherence to these conventions must be left to up
 to the programmer. Many conventions, such as those dealing with
 indentation and comment placement, are shown because they assist
 in producing readable, maintainable programs. Violation of these
 conventions, while not critical, may result in unmaintainable
 programs and extended debugging times. Other conventions, such
 as those dealing with character string representations and
 input/output, are crucial to the proper operation of the Sub−
 system and its support subprograms. Violation of these
 conventions can and will cause undesirable results.

 Requirements for Ratfor Programs

 The Software Tools Subsystem is not an operating system.
 Rather, it is a collection of cooperating user programs. To run
 successfully under the Subsystem, a program must cooperate with
 it. Several things are required of Subsystem programs:

 − The program must terminate with a stop statement, or a call
 to the routine "error". The program must not "call exit" or
 invoke any of the Primos error reporting subroutines with
 the the "immediate return" key. A program’s failure to
 terminate properly will also cause the Subsystem command
 interpreter to be terminated, leaving the user face−to−face
 with Primos.

 − The program should not have initialized common blocks (i.e.
 block data). Initialize the common areas with executable
 statements. (To link a program that must have initialized
 common, see appendix b.)

 − Local variables in a subprogram are placed on the stack
 unless they appear in a data or save declaration. The value
 of variables not appearing in one of these declarations is
 not defined on entry to a subprogram.

 Several conventions apply to the file containing the Ratfor
 source statements:

 − 42 −

 Ratfor User’s Guide

 − The file name should end with the suffix ".r".

 − Any number of program units (main program, functions, and
 subroutines) may be included in the file, but the main
 program must be first.

 − All variables and functions must be declared in type
 statements (the Primos Fortran compiler enforces this
 restriction, except in the case of function names).

 − Each program unit must end with an end statement.

 − Since defines apply globally to all subsequent program
 units, a main program and all of its associated subprograms
 can be contained in the same file. Only one copy of
 definitions need be included at the beginning of the source
 file.

 Running Ratfor Programs Under the Subsystem

 Three steps are required to obtain an executable program
 from Ratfor source statements. The first step, preprocessing,
 produces ANSI Fortran statements from the Ratfor source
 statements. The second step, compilation, results in a
 relocatable binary module, which lacks all of the Primos, Fortran
 and Subsystem subroutines. The last step, linking, produces an
 executable object program by linking the relocatable binary
 module with the Primos, Fortran and Subsystem support routines
 necessary for its execution. The object program produced during
 linking may then be executed.

 Preprocessing

 In the preprocessing step, the Ratfor preprocessor, ’rp,’ is
 used to translate Ratfor source statements into semantically
 equivalent ANSI Fortran statements acceptable to the Primos
 Fortran compiler. The Ratfor preprocessor is invoked with a com−
 mand line of the following syntax:

 rp [−o <output file>] <input file> [<rp options>]

 If you do not want a conventionally named output file, you
 may specify the option "−o <output file>", where <output file> is
 the name you want given to the Fortran output. If you do not
 include a "−o <output file>" option, ’rp’ will name the output
 file by appending ".f" to the name of the first <input file>. If
 the name of the first <input file> ends in ".r", the ".r" will be
 replaced by the ".f".

 Next comes a list of the files containing Ratfor source
 statements to be preprocessed. ’Rp’ reads the files in the order

 − 43 −

 Ratfor User’s Guide

 specified on the command line and treats the contents as if they
 were together in one big file. This means that defines in each
 input file apply to all subsequent input files.

 Finally, there are preprocessor options which may be
 specified to change the output in some way or affect preprocessor
 operation. For a complete list of available options and a more
 detailed description of the command line syntax, see Appendix F.

 In spite of all this complicated stuff, the ’rp’ preproces−
 sor is quite easy to use if you follow the recommended naming
 conventions for files. For instance, if you have a Ratfor
 program in a file called "prog.r", you can have it preprocessed
 by just typing

 rp prog.r

 This command will cause the program contained in "prog.r" to be
 preprocessed, and the Fortran output to be produced on the file
 "prog.f" (which is exactly what the Fortran compiler expects).

 Here are some more examples to show other ways in which ’rp’
 can be called:

 # preprocess the files "p1.r", "p2.r", and "p3.r"
 # and produce Fortran output on "p1.f"

 rp p1.r p2.r p3.r

 # preprocess the files "p1.r", "p2.r", and "p3.r"
 # and produce Fortran output on "ftn_out"

 rp p1.r p2.r p3.r −o ftn_out

 # preprocess the file "p1.r", produce the Fortran
 # on "ftn_out" and include code to produce
 # subprogram level trace

 rp −t p1.r −o ftn_out

 Compiling

 After turning your Ratfor source code into Fortran with the
 preprocessor, the next step is to compile the Fortran code.
 Since the Subsystem uses the Primos Fortran compiler, the ’fc’
 command just produces a sequence of Primos commands to cause the
 compilation. The following command will call the Fortran com−
 piler for a compilation:

 fc [<options>] <input> [−b [<binary>]] [−l [<listing>]]

 The Fortran source code must be in the file <input>. The

 − 44 −

 Ratfor User’s Guide

 relocatable binary output will be placed in the file <binary>,
 unless "−b <binary>" is omitted. Then, following Subsystem con−
 ventions, the binary file name is constructed by appending the
 input file name with ".b"; if the input file ends with ".f", the
 "f" will be replaced by the "b". Normally no listing is
 produced; however, if one is requested, it will appear on the
 file <listing>, or if the listing file name is omitted, the name
 will be constructed by appending the ".l" to the input file name;
 again, if the input file name ends in ".f", the "f" will be
 replaced with the "l".

 <Options> is a series of single letter options that specify
 how the compiler is to generate the object code. Since there are
 too many options to completely describe here, we will only men−
 tion a few of the more important ones. For those who wish to
 make full use of the Fortran compiler, or for those just curious,
 the Software Tools Subsystem Reference Manual, or the ’help’ com−
 mand will give complete information.

 Here are brief descriptions of the options of interest:

 −v Generate pseudo−assembly code describing the
 object code produced.

 −i Unless otherwise specified, consider all integers
 to be "long" (32−bit) rather than "short" (16−
 bit). (This is useful for programs ported from
 machines with longer word lengths.)

 −t Insert code to produce a statement−level trace
 during execution.

 Of course, more than one of these options may be specified.

 Again, even though all of this looks very complicated, it is
 really very simple, if you have used the Subsystem file naming
 conventions. If you have your Fortran code in a file named
 "prog.f" (remember where Ratfor put its output), you may compile
 it, using the default options, by just entering

 fc prog.f

 The command will call the Fortran compiler to produce binary out−
 put in the file "prog.b". Just for completeness, here are some
 other examples of ’fc’ commands:

 − 45 −

 Ratfor User’s Guide

 # Compile "p1.f" to produce the binary "p1.b" and
 # and a listing on "p1.l"

 fc p1.f −l

 # Compile "p1.f" to produce the binary "bin" and
 # the listing on "list"

 fc p1.f −b bin −l list

 # Compile "p3.f", produce a pseudo−assembly code
 # listing and default to 32−bit integers

 fc −v −i p3.f −l

 One problem you may encounter when using ’fc’ is that the
 Primos Fortran compiler pays no attention to i/o redirection when
 it is writing error messages to the terminal. This is a problem
 common to all Primos commands called from the Subsystem. If you
 want to record the terminal output of the Fortran compiler, you
 must use the Primos command output facility. This facility is
 accessed through the Subsystem ’como’ command; for details, see
 the Software Tools Subsystem Reference Manual or use the ’help’
 command.

 Linking

 The last step in preparing the program for execution is lin−
 king. The linking step fixes the memory locations of the Sub−
 system common areas; assigns the binary module for each sub−
 program to an absolute memory location; and links in the required
 Subsystem support routines, Fortran run−time routines, and Primos
 system calls. The memory image file produced by this step may
 then be executed. It should be noted here that programs linked
 under the Subsystem can run only under the Subsystem; they may
 not run without it.

 The ’ld’ command is used to invoke the Primos loader to to
 do the linking. Its syntax is as follows:

 ld [−u] <binary file> . . . [−l <library file>] . . .
 [−t −m] [−o <output file>]

 This is not the entire syntax accepted by ’ld,’ but a complete
 discussion requires detailed knowledge of the Primos loaders.
 For more information, see the Subsystem reference manual.

 The "−u" option causes the loader to print a list of
 undefined subprograms. Any number of binary files to be included
 may be listed. The only restriction is that the main program
 must be the first binary subprogram encountered −− it must be the
 first program unit in a binary file, and that binary file must be

 − 46 −

 Ratfor User’s Guide

 the first <binary file> to appear on the command line. Any num−
 ber of libraries (residing in "=lib=") may then be specified with
 the "−l" option. The "−t −m" options cause a load map to be
 produced on a file with the name as the output file (or first
 <binary file>, if an output file is not specified) with ".m"
 appended. If the file name ends with ".b", the ".b" is replaced
 by the ".m". The "−o" option specifies the name of the output
 file. If the "−o" option is omitted, the output file will have
 the same name as the first <binary file>, with ".o" appended. If
 the name of the first <binary file> ends in ".b", the ".b" will
 be replaced by the ".o".

 Even though linking is a mysterious process, it need not be
 traumatic. Most of the time, you will be linking a single binary
 file with no additional libraries. For instance, if you had a
 binary file named "prog.b," you could produce an object program
 by just typing the command

 ld prog.b

 The Primos loader would be invoked, and after a great deal of
 garbage was printed on the terminal, the executable program
 "prog.o" would be produced.

 The only thing that you must do is look for the message
 "LOAD COMPLETE" lurking somewhere near the end of this garbage.
 If you find this message, it means that all of the external
 references in your program (subroutine and function calls) have
 been satisfied, and linking is complete. If you don’t find this
 message, there are unsatisfied references in your program. You
 may then call ’ld’ with the "−u" option and the loader will print
 the names of the unsatisfied references on the terminal. You
 will probably then find that these references are caused by mis−
 spelled subprogram names, missing subprograms, or undimensioned
 arrays (remember, the Fortran compiler treats undimensioned
 arrays as functions calls, so you may not always get an error
 message from the compiler).

 − 47 −

 Ratfor User’s Guide

 Again, for completeness, here are some examples of ’ld’ at
 work:

 # link the binary files "p1.b", "p2.b", and "p3.b"
 # to produce "p1.o" as output

 ld p1.b p2.b p3.b

 # link the binary file "nprog.b",
 | # include the library "vshlib",
 # and produce the output file "nprog"

 | ld nprog.b −l vshlib −o nprog

 # link the binary files "np1" and "np2",
 # produce a load map,
 # and output "my_new_prog"

 ld np1 np2 −t −m −o my_new_prog

 The Primos loader also pays no attention to i/o redirection.
 If you want to catch its terminal output, you must use the Primos
 ’como’ commands. For details, see the reference manual or use
 the ’help’ command.

 Executing

 Executing a Subsystem program is the easiest step of all.
 All you have to do to execute it is to type its name. For
 instance, if your object program was named "prog.o", all you need
 type is

 prog.o

 to make it go. Because the shell also looks in your current
 directory for executable programs, "prog.o" is now a full−fledged
 Subsystem command. You may give it arguments on its command
 line, redirect its standard inputs and outputs, include it in
 pipelines, or use it as a function. Of course to be able to do
 all of these things properly, it must observe the Subsystem con−
 ventions and use the Subsystem I/O routines.

 Shortcuts

 There are several shortcuts that speed things up and save
 typing when developing programs.

 Shell Programs. Shell programs can be a great help when
 performing repetitive tasks. Quite often one of these tasks is
 preprocessing, compiling, and linking a program during its
 development. A simple shell program can save a great deal of

 − 48 −

 Ratfor User’s Guide

 typing in this situation. For instance, let’s say we are writing
 a Ratfor program that is in the file "np.r". We are in the
 process of adding new features to "np" and will probably compile
 and test it several times. We can make a very simple shell
 program that will keep us from having to type ’rp,’ ’fc,’ and
 ’ld’ commands every time we want to make a test run. All we have
 to do make a file containing these three commands with ’cat’:

] cat >cnp
 rp np.r
 fc np.f
 ld −u np.b −o np
 <control−c>
]

 Now the file "cnp" contains the following text:

 rp np.r
 fc np.f
 ld −u np.b −o np

 All we need do now to preprocess, compile, and link our program
 is just type the name of the shell program as a command:

 cnp

 and the shell will execute all of the commands contained in it.

 The ’Rfl’ Command. Of course, it is so common to
 preprocess, compile, and link a program, there is an already−
 built shell program that works nicely in most cases. ’Rfl’
 contains the necessary commands to preprocess, compile and link a
 Ratfor program contained in a file whose name ends with ".r".
 All you have to do is type

 rfl np.r

 and ’rfl’ will execute the necessary commands to produce an
 executable file named "np". (note that the executable file is
 named "np" and not "np.o"!) ’Rfl’ can also do some other handy
 things that you can find out about in the Subsystem reference
 manual.

 Storing Source Programs Separately. When you write fairly
 large programs or test modules independently, it is often con−
 venient to store the programs in separate files. If this is the
 case, creating an executable program is just a little bit more
 complicated. The easiest solution is to just name all of the
 programs on the ’rp’ command line, like this:

 rp p1.r p2.r p3.r

 ’Rp’ will preprocess all of the files together and produce output
 on the file "p1.f". The define statements in "p1.r" will still
 be in effect when "p2.r" is preprocessed, etc. so "p1.r",
 "p2.r", and "p3.r" might just as well be together in one file.

 − 49 −

 Ratfor User’s Guide

 Compiling Programs Separately. A little bit harder, but
 sometimes much faster, is to preprocess and compile the modules
 separately and then combine them during linking. There are two
 things that you have to watch. The first problem with separate
 compilation is that define statements in one file cannot affect
 subprograms in the other files. For a large program that would
 benefit from separate compilation, this nastiness can be avoided
 by placing all of the defines together in one file and placing an
 include for that file at the beginning of each of the files
 containing the program. The defines will then be applied
 uniformly to all parts of the program.

 The second thing is that since Ratfor chooses unique Fortran
 names in the order it is presented with "long" Ratfor names, it
 cannot guarantee that a long name in one file will be transformed
 into exactly the same Fortran name as the same long name in a
 second file (although the probability is quite high). To avoid
 problems, either subprogram names that are cross−referenced in
 the separate binary files should be given six−character or
 shorter names, or a linkage declaration containing the names of
 all subroutines, function, and common blocks should be inserted
 at the beginning of each module. It is usually easiest to handle
 the linkage declaration just like the define statements: put it
 in a separate file, and add an include statement for it at the
 beginning of each module.

 Then, the program units in each file may be preprocessed and
 compiled separately. The binary files from the separate com−
 pilations are linked together by just listing the names of all of
 the files on the ’ld’ command:

 ld p1.b p2.b p3.b

 The only restriction is that the main program must appear first.
 The object file from this example would be named "p1.o", but this
 could have been overridden by including the "−o <output file>"
 option.

 When compiling parts of a program separately, you should be
 aware that incorrect use of the linkage declaration can cause
 totally irrational behavior of the program with no other indica−
 tion of error. Since no checking is done on the linkage
 declaration, you must be certain that every external name appears
 in the statement. More importantly, when you add a subroutine,
 function, or common block, you must remember to change the lin−
 kage declaration. In addition, if you do not add the name to the
 very end of the declaration, you must immediately recompile all
 modules! If you compile separately, and are confronted with a
 situation in which your program is misbehaving for no apparent
 reason, re−check the linkage declaration and recompile all the
 modules.

 − 50 −

 Ratfor User’s Guide

 Debugging

 Debugging unruly programs under Primos is at best a grueling
 task, as currently there is almost no run−time debugging support.
 Except for a couple of machine−language level debuggers, you’ll
 get very little help from Primos (except for some nasty error
 messages) while debugging programs. This means that such tech−
 niques as top−down design, reading other programmers’ code, and
 reasonably careful desk checking will pay off in the long run.
 But even with all the care in the world, some bugs will creep
 through (especially on an unfamiliar system). The next few
 paragraphs will be devoted to techniques for exterminating these
 stubborn bugs.

 For an experienced user, a load map, the Primos DMSTK com−
 mand, and VPSD (the V−mode symbolic debugger) can very quickly
 isolate the location, if not the cause, of a bug. With more com−
 plicated programs that are dependent on the internal structure of
 the machine and operating system, such machine level debugging
 cannot always be avoided. If you find yourself in such as
 position, you can begin to learn some of these things by examin−
 ing the following reference manuals:

 MAN 1671 System Reference Manual, Prime 100−200−300

 MAN 2798 System Reference Manual, Prime 400

 FDR 3059 The PMA Programmer’s Guide

 FDR 3057 User Guide for the Fortran Programmer

 Most often, the bug can be found by one or more of the fol−
 lowing techniques:

 (1) Inserting ’print’ calls to display the intermediate results
 within the program.

 (2) Using the Ratfor subroutine trace.

 (3) Using the Fortran statement number and assignment trace.

 It is usually quickest to use the Ratfor subroutine trace (by
 including the "−t" option on the ’rp’ command line). Although
 this trace lists only subroutine nesting, it will narrow down
 where a program is blowing up to a single subprogram. If the
 program is very modular and contains mostly small subprograms,
 quite often, the error can be spotted.

 If the Ratfor trace fails to pinpoint the problem, the
 Fortran statement and assignment trace will give a great deal
 more information (possibly hundreds of pages). The Fortran trace
 can be produced by specifying the "−t" option on the ’fc’ com−
 mand. The Fortran code produced by ’rp’ must be examined to
 locate the statement numbers, but given the large number of
 statement labels generated by ’rp,’ study of this trace can

 − 51 −

 Ratfor User’s Guide

 isolate the problem practically to within one statement.

 The above debugging methods are quick and easy to use when
 the program contains a catastrophic error that causes an error
 termination or an infinite loop. While this is sometimes the
 case, more often a subtle error is the problem. In finding these
 errors, there is no substitute for carefully inserted debugging
 code (such as calls to ’print’) at critical points in the
 program.

 The rest of this section is devoted to a brief description
 of many of the terminal errors that may do away with programs
 (and the Subsystem). Most terminal errors cause the Subsystem
 command interpreter to be terminated along with the user’s delin−
 quent program. You can tell that you’ve been booted into Primos
 by the appearance of the "OK," or "ER!" prompt. All error mes−
 sages that cause an exit to Primos are briefly explained in
 appendix A−4 of the Prime Fortran Programmer’s Guide (FDR3057).
 Some very common programming errors can cause cryptic error mes−
 sages with explanations that are close to unintelligible.
 Hopefully, most of these messages are described below.

 Many Primos error messages are dead giveaways of program
 errors. Messages that begin with four asterisks are from the
 Fortran runtime packages −− they usually indicate such things as
 division by zero or extraction of the square root of a negative
 number. For example,

 **** SQRT −− ARGUMENT < 0
 OK,

 results from extracting the square root of a number less than
 zero.

 Other, more mysterious, error messages can also be caused by
 simple program errors.

 Error: condition "POINTER_FAULT$" raised at <addr>

 can be caused by referencing a subprogram which has not been
 included in the object file. An obvious indication of a missing
 subprogram is the failure to get the

 LOAD COMPLETE

 message from ’ld’. (Note that the Fortran compiler treats
 references to undimensioned arrays as function calls!) A more
 insidious cause of the "POINTER FAULT" message is a reference to
 an unspecified argument in a subprogram; i.e. the calling
 routine specifies three arguments and the called routine expects
 four. The error occurs when the unspecified argument is
 referenced in the subprogram, not during the subprogram call.

 Error: condition "ACCESS_VIOLATION$" raised at <addr>
 Error: condition "RESTRICTED_INST$" raised at <addr>
 Error: condition "ILLEGAL_SEGNO$" raised at <addr>

 − 52 −

 Ratfor User’s Guide

 Error: condition "ARITH$" raised at <addr>
 Program halt at <addr>

 all can result from a subscript exceeding its bounds. Because
 the program may have destroyed parts of its code, the memory
 addresses sometimes given may well be meaningless. Even so, you
 may locate the routine in which the program blew up by using the
 Primos DMSTK command and a load map. For instance, given the
 following scenario (ellipsis indicate irrelevant information),

 Error: condition "POINTER_FAULT$" raised at 3.4000.001000.
 Abort (a), Continue (c) or Call Primos (p)? p
 OK, dmstk
 ...
 Stack Segment is 6002.

 6) 001464: Condition Frame for "POINTER_FAULT$"; ...
 Raised at 3.4000.017202; LB= 0.4000.017402, ...

 7) 001374: Fault Frame; fault type= 000064
 Returns to 3.4000.017202; LB= 0.4000.017402, ...
 Fault code= 100000, Fault addr= 3.4000.017204
 Registers at time of fault:
 ...

 The numbers following "LB=" on the underlined portion of the
 stack dump show the address of the data area of the procedure
 executing when the fault occurred. The segment number portion of
 this address (the four−digit part) tells who the routine belongs
 to:

 Segment Use

 0000 − 0033 Operating System
 2030 Software Tools Shell
 2031 Software Tools Screen Editor
 2035 Software Tools Library
 2050 Fortran Library
 4000 − 4037 User Program
 4040 Software Tools Common
 4041 Software Tools Stack
 6001 Fortran Library
 6002 Primos Ring 3 Stack

 If the executing routine is not part of your program, you can
 trace back the stack (see below) until you find which of your
 subprograms made the call. If the segment number begins with
 "4", you need only look down the right−most two columns of the
 load map (see the ’ld’ command) for the two numbers (4000 17402
 in this case). If you get an exact match, just look across to
 the name on the left −− this is the subprogram that was
 executing. Otherwise, if none of the numbers match then either
 the program has clobbered itself and jumped into nowhere, you
 left off an argument to a library subprogram, or one of the
 library routines has caused an exception trap with no fault vec−
 tor.

 − 53 −

 Ratfor User’s Guide

 Subsequent entries in the stack dump (following the informa−
 tion in the last scenario) can be used to find what procedure
 calls were in process when the error occurred. The entries are
 of the following form:

 Stack Segment is 4041.

 8) 002222: Owner= (LB= 0.4000.017402).
 Called from 3.4000.017700; returns to 3.2035.017702.

 9) 002156: Owner= (LB= 0.4000.013026).
 Called from 3.4000.013442; returns to 3.2030.013450.
 ...

 Each entry on the Subsystem stack (segment 4041) represents a
 procedure call in process. You can use the numbers following the
 "LB=" and the load map to trace back through the "stack" of
 procedure calls, just as with the "fault frame" mentioned above.

 If you find yourself at a complete and total loss at finding
 why your program is blowing up, here is a list of some of the
 errors that have caused us great anguish:

 − Subscript out of range. This error can cause any number of
 strange results.

 − Undefined subprogram. This error can be detected by the
 lack of a "LOAD COMPLETE" message from the ’ld’ command.

 − Too few arguments passed. This error almost always causes a
 "POINTER_FAULT$" when the missing argument is referenced.

 − Code and initialized local data requires more that one seg−
 ment (64K words). The load map shows how much space is
 allocated. No linkage or procedure frame should appear in
 any segment other than 4000.

 − Delimiter character is missing in a packed string. This
 includes periods in packed strings passed to ’print’ and
 ’input’. This error causes the program to run wild, writing
 all over the place.

 − Type declaration is missing for a function. This error can
 causes failure of routines such as ’open’ which return an
 integer result. The Primos Fortran compiler does not flag
 undeclared functions. This error may also cause an erratic
 real−to−integer conversion error or cause the program to
 take an exception trap.

 − A subprogram is changing the value of a constant. If you
 pass a single constant as a function or subroutine argument,
 and the subprogram changes the corresponding parameter, the
 values of all occurrences of that constant in the calling
 program will be changed. With this error, it is quite pos−
 sible for the constant 12 to have the value −37 at some time
 during execution.

 − 54 −

 Ratfor User’s Guide

 Performance Monitoring

 In most cases, it is very difficult to determine how much
 processing time is required by different parts of a program.
 Since it is nearly impossible to determine which parts of a
 program are "inefficient", especially before the program is writ−
 ten, it often more effective to write a program in the most sim−
 ple and straightforward manner, and then use performance monitor−
 ing tools to find where the program is spending its time. It has
 many times been our experience to find even though parts of a
 program are coded inefficiently, only a very small amount of time
 is wasted.

 There are two available methods for obtaining an execution
 time "profile" of a Ratfor program. The first method provides
 statistics on the number of calls to and the amount of time spent
 in each subprogram. The second method provides a count of the
 number of times each statement in the program is executed.

 To invoke the subroutine profile, just preprocess (in one
 run) all the subprograms to be profiled. Add the "−p" option to
 the ’rp’ command line when the programs are preprocessed. Then
 compile, link and execute the program normally. When the program
 terminates (it must execute a stop statement, and not call
 "error"), type the command

 profile

 ’Profile’ accesses the files "timer_dictionary" (output by ’rp’)
 and "_profile" (output by your program) and prints the subroutine
 profile to standard output.

 To invoke the statement count profile, put all the sub−
 programs to be profiled (you must also include the main program)
 in a single file. Then preprocess the file with ’rp’ and the
 "−c" option. Compile, link, and execute the program. When the
 program terminates normally, type the command

 st_profile myprog.r

 (Of course, assuming your source file name is "myprog.r".) A
 listing of the program with execution count for each line will be
 printed.

 When running a profile, there are several things to keep in
 mind. First, the program with the profiling code can be more
 than twice as large as the original program. Second, the program
 can run an order of magnitude more slowly. Third, there can be a
 considerable delay between the execution of the stop statement
 and the actual end of the program. Finally, you should remember
 that the main program and all subprograms to be profiled must be
 preprocessed at the same time.

 − 55 −

 Ratfor User’s Guide

 Conditional Compilation

 Conditional compilation is a handy trick for inserting
 debugging code or setting compile−time options for programs.
 Conditional compilation can be approximated in Ratfor by defining
 an identifier, such as "DEBUG" to a sharp sign or null (for off
 and on respectively). Lines in the Ratfor program beginning with
 the identifier "DEBUG" (i.e. debugging code) are not compiled if
 "DEBUG" is defined to be "#", but are compiled normally if
 "DEBUG" is defined as a null string.

 For instance, the following example shows how conditional
 compilation can be used to "turn off" print statements at compile
 time:

 define (DEBUG, #)

 fd = open (fn, READ)
 DEBUG call print (ERROUT, "fd returned:*i*n"s, fd)
 ...
 len = getlin (str, fd)
 DEBUG call print (ERROUT, "str read: *s"s, str)

 In this example, all lines beginning with "DEBUG" are ignored,
 unless the define statement is replaced with

 define (DEBUG,)

 Then, all lines beginning with "DEBUG" will be compiled normally.

 Portability

 If your intent is to produce portable Fortran code, the Rat−
 for preprocessor, ’rp’ can be invoked with the following four
 options:

 −h Produce Hollerith−format string constants rather than
 quoted string constants. This option useful in produc−
 ing character strings in the proper format needed by
 your Fortran compiler.

 −v Output "standard" Fortran. This option causes ’rp’ to
 generate only standard Fortran constructs (as far as we
 know). This option does not detect non−standard
 Fortran usage in Ratfor source code; it only prevents
 ’rp’ from generating non−standard constructs in
 implementing its data and control structures.

 −x Translate character codes. ’Rp’ uses the character
 correspondences in a translation file to convert
 characters into integers when it builds Fortran "data"
 statements containing EOS−terminated or PL/I strings.
 If the option is not specified, ’rp’ converts the
 characters using the native Prime character set.

 − 56 −

 Ratfor User’s Guide

 −y Do not output "call swt". This option keeps ’rp’ from
 generating a "call swt" in place of all "stop"
 statements, which are required for Fortran programs to
 run under the Subsystem.

 The following option for ’fc’ may also help:

 −i Consider all integers to be "long" (32−bit) rather than
 short.

 Source Program Format Conventions

 After considering many program formatting styles, we have
 concluded that the convention used by Kernighan and Plauger in
 Software Tools is the most expedient in terms of clarity and ease
 of modification. As a consequence, we have tried to be
 consistent in the use of this convention throughout the Subsystem
 to provide uniformly readable and modifiable code. We present
 the convention here in the hope that you can use it to the same
 advantage.

 Statement Placement

 The placement of statements in program units is perhaps the
 most important part of the formatting convention. Through
 uniform placement of statements, many documents can be produced
 directly directly from the source code. For instance, the
 skeleton for Section 2 of the Subsystem Reference Manual was
 produced originally from the subprogram headers of the Subsystem
 library subprograms. Then the detail was filled in using the
 text editor.

 The order of a program unit (including a main program)
 should be as follows:

 1. A comment line of the following format:

 # <program name> −−− <one−line description>

 2. The subroutine or function statement (or nothing if it
 is a main program).

 3. The declarations of all arguments passed to the sub−
 program, if any.

 4. A blank line

 5. Declarations for all local variables in the program
 unit.

 − 57 −

 Ratfor User’s Guide

 6. A blank line.

 7. Executable program statements.

 8. The end statement.

 9. Three blank lines.

 Of course, extra blank lines should be used freely to separate
 different logical groups of declarations and different logical
 blocks of executable statements.

 As an example, here is the source code for the subroutine
 "cant" taken directly from the Subsystem library:

 | # cant −−− print cant open file message
 subroutine cant (str)
 character str (ARB)

 call putlin (str, ERROUT)
 | call error (": can’t open.")
 |
 return
 end

 Indentation

 The indentation convention is very simple. It is based on
 the idea that a statement should be indented three spaces to the
 right of the innermost statement controlling it. Braces are
 placed as unobtrusively as possible, without affecting the ease
 of adding or deleting statements.

 Statements, with the exception of the program heading com−
 ment, are placed three spaces to the right of the left margin.
 All statements are placed in this position, unless they are
 subordinate to a control statement. In this case, they are
 placed three spaces to the right of the beginning of the control−
 ling statement.

 Braces do not affect the placement of statements. An open−
 ing brace is placed on the line with the controlling statement.
 A closing brace is placed on a separate line three spaces to the
 right of the beginning of the controlling statement.

 Multiple statements per line are forbidden, except when a
 chain of if − else if . . . else statements is used to implement
 a case structure. In this event, the else if is considered a
 single statement, appearing on the same line, and subsequent
 lines are indented only three spaces to the right.

 If all of this seems terribly confusing, here are some exam−
 ples that show the indentation convention in action (the bars are
 just to show you the matching of braces):

 − 58 −

 Ratfor User’s Guide

 for (i = 1; str (i) ~= EOS; i += 1) {
 | if (str (i) == ’a’c) {
 | | j = ctoi (str (2), i)
 | | select (j)
 | | | when (1)
 | | | | call alt1
 | | | when (2)
 | | | | call alt2
 | | | when (3) {
 | | | | call alt1
 | | | | call alt2
 | | | | }
 | | else
 | | call error ("number must be >= 1 and <= 3"s)
 | −−−}
 | else if (str (i) == ’s’c)
 | repeat {
 | | j = ctoi (str (2), i)
 | | status = getnext (j)
 | −−−} until (status == EOF)
 | else {
 | | call clean_up
 | | stop
 | −−−}
 −−−}

 Subsystem Definitions

 The use of the define statement plays a large part in
 producing readable, maintainable programs. Hiding implementation
 details with define statements not only produces more readable
 code, but allows changes in the implementation details to be made
 without necessitating changes in applications programs. The
 development of a large part of the Subsystem would have been
 greatly hindered if it had not been possible to redefine the
 constant "STDIN" from "1" to "−11", with no more than recom−
 pilation.

 The Subsystem definitions file, "=incl=/swt_def.r.i" exists
 primarily to hide the dirty details of the Subsystem support
 routines from Ratfor programmers. We sincerely believe that the
 character string "EOF" is inherently more meaningful than the
 string "−1". (Would you believe that after three years of using
 the Subsystem, the author of this section had to look up the
 value assigned to "EOF" in order to write the preceding
 sentence?)

 Of course, the use of the Subsystem definitions also allow
 the developers to change these values when necessary. Of course,
 these changes force recompilation of all existing programs, but
 we feel that this is a small price to pay for the availability of
 more advanced features. All users of the Subsystem support
 routines are therefore warned that the values of the Subsystem
 definitions may change between versions of the Subsystem. (At

 − 59 −

 Ratfor User’s Guide

 Georgia Tech, this may be daily.) Programs that depend on the
 specific values of the symbolic constants may well cease to func−
 tion when a new version of the Subsystem is installed.

 Appendix D contains specific information about (but not
 specific specific values for) the standard Subsystem definition
 file. As a general rule, all symbolic constants mentioned in
 Section 2 of the Subsystem Reference Manual can be found in
 "=incl=/swt_def.r.i".

 Using the Subsystem Support Routines

 Many of the capabilities available to a Subsystem programmer
 are provided through the Subsystem support routines. The Sub−
 system support routines consist of well over one hundred Ratfor
 and PMA subprograms that either perform common tasks, insulate
 the user from Primos and Fortran, or conceal the internal
 mechanisms of the Subsystem. By default, the library containing
 all of these routines ("=lib=/vswtlb") is included in the linking
 of all Subsystem programs. Therefore, no special actions need be
 taken to call these routines.

 If you notice that there are some "holes" in the func−
 tionality of the Subsystem library, you are probably quite
 correct. The Subsystem library has grown to its present size
 through the effort of many of its users. The instance often
 arises that a routine is required to fill a specific function.
 In keeping with the Software Tools methodology, instead of writ−
 ing a very specific routine, we ask that the author write a
 slightly more general routine that can be used in a variety of
 instances. The routine can then be documented and placed in the
 Subsystem library for the benefit of all users. Many of the sup−
 port routines, including the dynamic storage management routines,
 have come from just such instances. The "holes" in the Subsystem
 library are just waiting for someone to fill them; if you need a
 routine that isn’t there, please write it for us.

 Termination

 The subprogram ’swt’ terminates the program and causes a
 return to the Subsystem command interpreter. Any Subsystem files
 left open by the program are closed. Ratfor automatically
 inserts a "call swt" any time it encounters a Fortran stop
 statement. All Ratfor programs should stop rather than "call
 exit". Fortran and PMA programs should invoke ’swt’ to
 terminate.

 Character Strings

 Most of the support routines use characters that are unpac−
 ked, one per word (i.e. integer variable), right−justified with

 − 60 −

 Ratfor User’s Guide

 zero fill, rather than the Fortran default, two characters per
 word, left−justified, with blank fill (for an odd last charac−
 ter). In addition to the simplicity of manipulating unpacked
 strings, the unpacked format represents characters as small,
 positive integers. Thus, character values can be used in com−
 parisons and as indexes without conversion.

 Most of the support routines that manipulate character
 strings expect them to be stored in an integer array, one charac−
 ter per word, right−justified and zero−filled, and terminated
 with a word containing the symbolic constant ’EOS’. Strings of
 this format are usually called EOS−terminated strings.

 Support for the use of unpacked characters is provided in
 several ways: (1) the Subsystem I/O routines perform conversion
 to and from unpacked format, (2) single−character constants ’a’c,
 ’b’c, ’,’c, etc. are provided for use in place of single−
 character Hollerith literals, and (3) the Ratfor string statement
 is provided to initialize EOS−terminated strings.

 In a few cases, it is more convenient to use a Hollerith
 literal instead of an EOS−terminated string. Since it is impos−
 sible to tell the length of a Hollerith literal at run time, Hol−
 lerith literals used with the Subsystem are required to contain a
 delimiter character (usually a period) as the last character.
 Hollerith literals or integer arrays that contain Hollerith−
 format characters and end with a delimiter character are referred
 to as packed strings.

 Following are brief descriptions for the most generally
 useful character manipulation routines. For specific
 information, see the Software Tools Subsystem Reference Manual.

 Equal. ’Equal’ is an integer function that takes two EOS−
 terminated strings as arguments. If the two strings are
 identical, ’equal’ returns YES; otherwise it returns NO. For
 example,

 string dash_x "−x"
 integer equal
 ...
 if (equal (argument, dash_x) == YES)
 call cross_ref

 Index. ’Index’ is used to find the position of a character
 in an EOS−terminated string. If the character is in the string,
 its position is returned, otherwise zero is returned. ’Index’ is
 very similar to the built−in function of the same name in PL/I.
 Example:

 − 61 −

 Ratfor User’s Guide

 string options "acx"
 integer ndx
 integer index
 ...
 ndx = index (options, opt_character)
 select (ndx)
 when (1)
 call list_all
 when (2)
 call list_common
 when (3)
 call cross_reference
 else
 call remark ("illegal option"s)

 This example selects one of a number of subroutines to be
 executed depending on a single−character option specifier. Of
 course, this particular example could be done with just select
 alone. ’Index’ is also useful in character transliteration and
 conversion from character to binary integer.

 Length. ’Length’ is an integer function that returns the
 length of an EOS−terminated string. The length of a string is
 zero if and only if its first character is an EOS; it is the num−
 ber of characters before the EOS in all other cases. ’Length’ is
 often useful in deciding where to start appending additional
 text, as in the following example:

 integer len
 integer length
 ...
 len = length (str)
 call scopy (new_str, 1, str, len + 1)

 Mapdn and Mapup. These functions accept a single character
 as an argument and if the character is alphabetic, force it to
 lower or upper case, respectively. ’Mapdn’ and ’mapup’ quite
 often find use in mapping option letters to a single case before
 comparison. Since non−alphabetic characters are not modified,
 these routines may be used safely even if non−alphabetic charac−
 ters appear. In addition, these routines provide a very good
 place to isolate character set dependencies. For example,

 character c
 character mapdn
 ...
 if (mapdn (c) == ’a’c) {
 # handle ’a’ option
 ...
 else if (mapdn (c) == ’1’c) {
 # handle ’1’ option

 Mapstr. ’Mapstr’ provides case mapping for alphabetic
 characters in EOS−terminated strings. As arguments ’mapstr’

 − 62 −

 Ratfor User’s Guide

 takes a string and the symbolic constant ’LOWER’ or ’UPPER’.
 Alphabetic characters in the string are then forced to lower or
 upper case, depending on the constant specified.

 Scopy. The subroutine ’scopy’ is used for copying EOS−
 terminated strings. It requires four arguments: the source
 string, the position from which to start copying, the destination
 string, and the position at which filling begins in the destina−
 tion string. Since Ratfor provides no string assignment, ’scopy’
 is normally used to provide the capability. The simple movement
 of a string from one place to another is coded as

 character str1 (MAXLINE), str2 (MAXLINE)
 ...
 call scopy (str1, 1, str2, 1)

 ’Scopy’ is also capable of appending one string to another, as in
 the following example:

 character str1 (MAXLINE), str2 (MAXLINE)
 ...
 call scopy (str1, 1, str2, length (str2) + 1)

 Note that ’scopy’ makes no attempt to avoid writing past the end
 of ’str2’!

 Type. ’Type’ is another of the routines that is intended to
 isolate character dependencies. Type is a function that takes a
 single character as an argument. If that character is a letter,
 ’type’ returns the constant ’LETTER’; if the character is a
 digit, ’type’ returns the constant ’DIGIT’; otherwise, ’type’
 returns the character. ’Type’ often finds use in a lexical
 analyzer:

 character c
 character type

 if (type (c) == LETTER) {
 # collect identifier
 ...
 else if (type (c) == DIGIT) {
 # collect integer
 ...
 else {
 # handle special character

 File Access

 File access is one of the more important aspects of the Sub−
 system. It is through the Subsystem i/o routines that device
 independence and i/o redirection are accomplished; moreover, the
 Subsystem routines provide a much less complicated interface than
 comparable Primos routines.

 − 63 −

 Ratfor User’s Guide

 The basic method of access to a Subsystem file is through
 the contents of an integer variable called a file descriptor.
 File descriptors can be set by one of several routines or they
 can be set to one of the six standard descriptors representing
 the six standard ports provided to all Subsystem programs.

 Quite often, the standard ports provide all of the file
 access required by a program. Values for the standard port
 descriptors can be accessed from defines contained in
 "=incl=/swt_def.r.i" (’Rp’ automatically includes this file in
 each run). The following table gives the symbolic names for the
 three standard input and three standard output ports available:

 Input Ports Output Ports

 STDIN1 (or STDIN) STDOUT1 (or STDOUT)
 STDIN2 STDOUT2
 STDIN3 (or ERRIN) STDOUT3 (or ERROUT)

 These constants may be used wherever a file descriptor is
 required by a Subsystem i/o routine.

 Other files may be accessed or created through the routines
 ’open’, ’create’, and ’mktemp’ that are described later. At the
 moment, it is sufficient to say that these routines are functions
 that return a file descriptor that may be used in other Subsystem
 i/o calls.

 Once a file descriptor has been obtained, the file it
 references may be read with the routines ’getlin’, ’getch’, or
 ’input’; written with the routines ’putlin’, ’putch’, or ’print’;
 positioned with the routines ’wind’ or ’rewind’; or closed with
 the routines ’close’ or ’rmtemp’.

 Open and Close. ’Open’ takes an EOS−terminated path name
 and a mode (one of the constants READ, WRITE, or READWRITE) as
 arguments and returns the value of a file descriptor or the sym−
 bolic constant ERR as a function value. ’Open’ is normally used
 to make a file available for processing in the specified mode.
 If the mode is READ, ’open’ will open the file for reading; if
 the file doesn’t exist or cannot be read (i.e. no read permis−
 sion), ’open’ will return ERR. If the mode is WRITE or READ−
 WRITE, ’open’ will open an existing file or create a new file for
 writing or reading and writing, if possible; otherwise it will
 return ERR. If ’open’ opens an existing file, it will never
 destroy the contents, even if mode is WRITE. To be certain that
 a "new" file is empty, use ’create’ instead of ’open’.

 ’Close’ takes a file descriptor as its argument; it closes
 and releases the file attached to the descriptor. If ’close’ is
 called with a standard port, it takes no action.

 Opening and closing a file is really very easy. This exam−
 ple opens a file named "=extra=/news/index" and returns the file
 descriptor in ’fd’. If the file can’t be opened, the program
 will terminate with a call to ’cant’.

 − 64 −

 Ratfor User’s Guide

 file_des fd
 integer open
 string fn "=extra=/news/index"

 fd = open (fn, READ) # open "=extra=/news/index"
 if (fd == ERR)
 call cant (fn)

 <process the contents of =extra=/news/index>

 call close (fd) # release the file
 stop

 If the file can’t be opened, ’cant’ will print the message

 =extra=/news/index: can’t open

 and terminate the program.

 Create. ’Create’ takes the same arguments as ’open’, but
 also truncates the file (makes it empty) to be sure that there
 are no remnants of its previous contents.

 Mktemp and Rmtemp. Quite often, programs need temporary
 files for their internal use only. ’Mktemp’ and ’rmtemp’ allow
 the creation of unique temporaries in the directory "=temp=".
 ’Mktemp’ requires only a mode (READ, WRITE, or READWRITE) as an
 argument and returns a file descriptor as its function value.
 ’Rmtemp’ takes a file descriptor as its argument and destroys and
 closes the temporary file. (One should use caution, for if a
 descriptor for a permanent file is passed to ’rmtemp’, that file
 will also be destroyed.)

 Typical use of ’mktemp’ and ’rmtemp’ usually involves the
 writing and reading of an intermediate file:

 file_des fd
 integer mktemp

 fd = mktemp (READWRITE) # create a temporary file

 <code to write the intermediate file>

 call rewind (fd) # reposition the temporary

 <code to read the intermediate file>

 call rmtemp (fd) # close and destroy the temporary

 Wind and Rewind. The subroutines ’wind’ and ’rewind’ allow
 the positioning of an open file to its end and beginning, respec−
 tively. Both take a file descriptor as an argument. Usually,
 ’rewind’ is used when a program creates a file and then wishes to
 read it back; ’wind’ is often used when a program wants to add to
 the end of an existing file.

 − 65 −

 Ratfor User’s Guide

 A program wishing to extend a file would make a call to
 ’wind’ just after successfully opening the file to be extended:

 file_des fd
 integer open
 string fn "myfile"

 fd = open (fn, READWRITE)
 if (fd == ERR)
 call cant (fn)
 call wind (fd) # file is now positioned at the
 # end, ready for appending.

 Trunc. ’Trunc’ truncates an open file. Truncating a file
 means releasing all of its disk space, hence making it empty, but
 retaining its name and attributes. ’Trunc’ takes a file descrip−
 tor as its argument.

 Remove. ’Remove’ removes a file by name, deleting it from
 the disk directory. It takes an EOS−terminated string as its
 argument, and returns the constant OK or ERR, depending on
 whether or not it could remove the file. (’Remove’ will also
 delete a Primos segment directory without complaining.)

 Cant. ’Cant’ is a handy routine for handling exceptions
 when opening files. For its argument, ’cant’ takes an EOS−
 terminated string containing a file name. It prints the message

 <file name>: can’t open

 and then terminates the program.

 Getlin. All Subsystem character input is done through ’get−
 lin’. ’Getlin’ takes a character array (at least MAXLINE long)
 and a file descriptor and returns a line of input in the array as
 an EOS−terminated string. Although the last character in the
 string is normally a NEWLINE character, if the line is longer
 than MAXLINE, no NEWLINE will be present and the rest of the line
 will be obtained on the next call to ’getlin’. For its function
 value, ’getlin’ returns the length of the line delivered,
 (including the NEWLINE, if any) or the constant EOF if end−of−
 file was encountered.

 Most line−oriented i/o is done with ’getlin’. For instance,
 using ’getlin’ with its analog ’putlin’, a program to select only
 those lines beginning with the letter "a" can be written very
 quickly:

 character buf (MAXLINE)
 integer getlin

 while (getlin (buf, STDIN) ~= EOF)
 if (buf (1) == ’a’c)
 call putlin (buf, STDOUT)

 − 66 −

 Ratfor User’s Guide

 ’Getlin’ is guaranteed to never return a line longer than the
 symbolic constant MAXLINE (including the terminating EOS).

 If needed, there are a number of routines that you can call
 to convert the character string returned by ’getlin’ into other
 formats, such as integer and real. Most of these routines are
 described later in the section on "Type Conversion".

 Getch. ’Getch’ returns one character at a time from a file;
 it requires a character variable and a file descriptor as
 arguments; it returns the character obtained, or the constant
 EOF, in the supplied argument and as the function value. Calls
 to ’getch’ and ’getlin’ may be interleaved; ’getlin’ will pick up
 the rest of a line not read by ’getch’.

 ’Getch’ is very useful in lexical analyzers or just when
 counting characters. For instance, the following routine counts
 both characters and lines at the same time:

 character c
 integer c_count, l_count
 integer getch

 c_count = 0
 l_count = 0
 while (getch (c, STDIN) ~= EOF) {
 c_count = c_count + 1
 if (c == NEWLINE)
 l_count = l_count + 1
 }

 This example assumes that since each line ends with a NEWLINE
 character, lines can be counted by counting the NEWLINEs.

 Input. ’Input’ is a rather general routine created to
 provide easy access to both interactive and file input. For
 interactive input, ’input’ will prompt at the terminal, accept
 input, and call the proper conversion routines to produce the
 desired data formats. In case of unexpected input (like letters
 in an integer), it will ask for a line to be retyped. For file
 input, ’input’ recognizes that its input is not coming from a
 terminal (even if from a standard port) by turning off all promp−
 ting. It will then accept fixed or variable−length fields from
 the file under control of the format string.

 ’Input’ requires a variable number of arguments: a file
 descriptor, a format string, and as many destination fields as
 required by the format string. It returns the constant EOF as
 its function value if it encountered end−of−file; otherwise it
 returns OK.

 The file descriptor passed to ’input’ describes the file to
 be read. All prompting output (if any) always appears on the
 terminal. The format string passed to ’input’ indicates what
 prompting information is to be output and what data format to
 expect as input. Prompts to be output are specified as literal

 − 67 −

 Ratfor User’s Guide

 characters; i.e. to output "Input X:", the characters "Input X:"
 would appear in the format string. Prompting characters may only
 appear at the beginning of the string and immediately after
 "skip−newline" ("*n") format codes. Data items to be input are
 described by an asterisk followed by optionally one or two num−
 bers and a letter. For instance the code to input a decimal
 integer would be "*i" and the code to input a double precision
 floating point number would be "*d".

 When a call to ’input’ is executed, the format string is
 interpreted from left to right. When leading literal characters
 are encountered, they are output as a prompt. When the first
 format code is encountered, a line is read from the file, the
 corresponding item is obtained from the input line, and the item
 is placed in the next item in the argument list. More items are
 removed from the input line until the end of the format string is
 reached or a newline appears in the input. If the end of the
 format string is encountered, the rest of the input line is
 discarded, and ’input’ returns OK. Otherwise, if a newline is
 encountered in the input, fields designated by the format are
 filled with empty strings, blanks, or zeroes, until the format
 string is exhausted, or a code ("*n") to skip the NEWLINE and
 read a new line is encountered.

 The format string must contain exactly as many input
 indicators as there are receiving data items in the call. In any
 case, the maximum number of input items per call is 10.

 Before we go any further, here is an example of an ’input’
 call to obtain three integers:

 call input (STDIN, "Type i: *i*nType j: *i*nType k: *i"s,
 i, j, k)

 If this statement were executed the following might appear at the
 terminal (user input is boldfaced):

 Type i: 22 <newline>
 Type j: 476 <newline>
 Type k: 1 <newline>

 We could also type all three integers on the same line, and
 ’input’ would omit the prompting for the second and third num−
 bers:

 Type i: 22 476 1 <newline>

 There are a number of input indicators available for use in
 the format string. Since there are a large number of them with
 many available options, only a few are mentioned in the following
 table. For further information, see the Subsystem reference
 manual.

 Item Data Type Input Representation

 − 68 −

 Ratfor User’s Guide

 *n skip newline If there is a NEWLINE at the current
 position, skip over it and read another
 line. Otherwise do nothing. (’Input’
 will never read more than one line per
 call, unless this format code is present.

 *i 16 bit integer Input an integer with optional plus or
 minus sign, followed by a string of
 digits, delimited by a blank or newline.
 Leading blanks are ignored. The input
 radix can be changed by preceding the
 number with "<radix>r" (e.g. octal
 should be expressed by "8r").

 *l 32 bit integer Same as "*i".

 *r 32 bit real Input a real number with optional plus or
 minus sign, followed by a possible empty
 string of digits, optionally followed by
 a decimal point and a possibly empty
 string of digits. Scaling by a power of
 10 may be indicated by an "e" followed by
 an optional plus or minus sign, followed
 by a string of digits. The number is
 delimited by a blank; leading blanks are
 ignored.

 *d 64 bit real Same as "*r".

 *s string Input a string of characters delimited by
 a blank or newline. No more than MAXLINE
 characters will be delivered, regardless
 | of input size. Use "*1s" to read in a
 | single character. (Admittedly, this is
 | an inconsistency; there really should be
 | a "*c" format.)

 Fixed size input fields can be requested by placing the
 desired field size immediately following the asterisk in the
 format code. For instance, to read three integers requiring five
 spaces each, you can use the following format string:

 "*5i*5i*5i"

 You can also change the delimiting character of a field from its
 default value of a blank. Just place two commas followed by the
 new delimiter immediately after the asterisk. For instance, two
 strings delimited by slashes can be input with the following
 format string:

 ,,/s,,/s

 Regardless of the delimiter setting, a newline is always treated
 as a delimiter. One caution: if the delimiter is not a blank,
 leading blanks in strings are not ignored.

 − 69 −

 Ratfor User’s Guide

 Readf. You can use ’readf’ to read binary (memory−image)
 files that were created with ’writef’. ’Readf’ is the fastest
 way to read files, since no data conversion is performed.
 However, use of ’readf’ and ’writef’ tend to make a program
 dependent on machine word size, and hence, non−portable.

 ’Readf’ takes three arguments: a receiving data array, the
 maximum number of words to be read, and a Subsystem file descrip−
 tor. When called, ’readf’ attempts to read the number of words
 requested; if there are not that many in the file, it returns all
 that are left. If there are no words left in the file at all,
 ’readf’ returns EOF as its function value; otherwise, it returns
 the number of words actually read as its function value.

 Putlin. ’Putlin’ is the primary output routine of the Sub−
 system. It takes an EOS−terminated string and a file descriptor
 as arguments, and writes the characters in the string on the file
 specified by the descriptor. There is no restriction on the
 length of the input string; ’putlin’ will write characters until
 it sees an EOS. ’Putlin’ does not supply a newline character at
 the end of the line; if one is to be written, it must appear in
 the string. For a simple example, see the description of ’get−
 lin’.

 Putch. A single character can be output to a file with
 ’putch’; it takes a character and a file descriptor as arguments
 and writes the character on the file specified by the descriptor.
 Calls to ’putch’ and ’putlin’ can be interleaved as desired.

 Print. ’Print’ is a general output routine that accepts a
 format string and up to ten output data items. Interpreting the
 format string, ’print’ calls the appropriate type conversion
 routines to produce character data, and outputs the characters as
 directed by the format string. ’Print’ requires several
 arguments: a file descriptor; an EOS−terminated format string;
 and zero to ten output data arguments, depending on how many are
 required by the format string.

 The format string contains two kinds of items: literal
 items which are output when they are encountered, and output
 items, which cause the next data argument to be converted to
 character format and output. Literal items are just characters
 in the string; i.e. to output "X =", the format string would
 contain "X =". Output items consist of an asterisk, followed by
 two optional numbers, followed by a letter. For instance an out−
 put item for an integer is "*i" and an output item for single
 precision floating point is "*r". The next example shows the
 output of three integers:

 call print (STDOUT, "i = *i, j = *i, k = *i*n"s,
 i, j, k)

 If this call were executed, the following might be the result:

 i = 342, j = 1, k = −3382

 − 70 −

 Ratfor User’s Guide

 Some of the more useful output items are described in the follow−
 ing table:

 Item Data Representation

 *i short (16 bit) integer
 *l long (32 bit) integer
 *r single precision (32 bit) real
 *d double precision (64 bit) real
 *p packed, period−terminated string
 *s EOS−terminated string
 *c single character
 *n newline

 It is possible to exert much more control over the format of out−
 put using ’print’; for more information, see the Subsystem
 reference manual.

 Writef. ’Writef’ is the companion routine to ’readf’; it
 writes words to a binary (memory−image) file. It is the fastest
 of the output routines, since it performs no data conversion. It
 is called with three arguments: a data array containing the
 words to be written, the number of words to write, and a Sub−
 system file descriptor. Here is an example fast file−to−file
 copy using ’readf’ and ’writef’ together.

 integer l, buf (1024)
 integer readf
 file_des in_fd, out_fd

 repeat {
 l = readf (buf, 1024, in_fd)
 if (l == EOF)
 break
 call writef (buf, l, out_fd)
 }

 Fcopy. ’Fcopy’ is a very simple routine that copies files.
 You open and position the input and output files and call ’fcopy’
 with the input and output file descriptors. It then copies lines
 from the input file to the output file. ’Fcopy’ uses a great
 deal of "secret knowledge" of the workings of the Subsystem
 input−output routines, and as a consequence, it copies disk−file
 to disk−file very quickly (even when the descriptors are of stan−
 dard ports).

 Markf and Seekf. ’Markf’ and ’seekf’ are companion routines
 that implement random access on disk files. ’Markf’ takes a file
 descriptor as argument and returns a "file_mark" (currently a 32−
 bit integer). ’Seekf’ takes the file mark along with a file
 descriptor and sets the file pointer so that the file is
 positioned at the same place as when the "mark" was taken.

 To be used portably, ’markf’ and ’seekf’ may only be used
 between calls to ’readf’ and ’writef’, or immediately after input

 − 71 −

 Ratfor User’s Guide

 or output of a newline character (i.e. at the ends of lines).
 In addition, a call to ’putlin’ or ’putch’ on a file effectively
 (although not actually) destroys information following the
 current position of the file. For example, if you want to write
 a line in a file, go off and do other operations on the file, and
 then be able to re−read the line later, you can use ’markf’ and
 ’seekf’:

 file_mark fm
 file_mark markf
 file_des fd
 character line (MAXLINE)

 fm = markf (fd)
 call putlin (line, fd)

 ### perform other operations on ’fd’

 call seekf (fm, fd)
 call getlin (line, fd) # get ’line’ back

 Non−portably, you can assume that a "file mark" is a zero−
 relative word number within the file −− to get word number 12 in
 the file, just execute

 call seekf (intl (12), fd)
 call readf (word, 1, fd)

 (Remember: file marks are 32 bits, not 16! We use ’intl’ here
 to make "12" into a 32 bit integer.) Keep in mind that this
 "secret knowledge" is useful only with "readf" and "writef", not
 with any other input or output routine. Blank compression is
 used in line oriented files, so the position of a line is depen−
 dent not only on length of previous lines, but also on their
 content. This usually makes the position of a line in a file
 quite unpredictable.

 Getto. ’Getto’ exists primarily to interface with the
 Primos file system calls. ’Getto’ takes a path name (in an EOS−
 terminated string) as its first argument. It follows the path
 and sets the current directory to that specified for the file in
 the path name. It then packs the file name into its second
 argument, a 16 word array (with blank padding), ready for a call
 to the Primos file system. It fills its 3−word third argument
 with the password of the last node of the path (if there was
 one). Its fourth argument, an integer, is set to YES if ’getto’
 changed the attach point, and NO otherwise.

 ’Getto’ often finds use when functions other than those sup−
 ported by Subsystem routines need to be performed, such as set−
 ting the passwords on a directory:

 − 72 −

 Ratfor User’s Guide

 integer pfn (16), opw (3), npw (3), pw (3), att
 integer getto
 string fn "=vars=/system"

 if (getto (fn, pfn, pw, att) == ERR)
 call print (ERROUT, "can’t get to *s*n"s, fn)
 call spas$$ (pfn, 32, opw, npw) # set passwords
 if (att == YES)
 call follow (EOS, 0) # attach back to home

 Type Conversion

 There are a very large number of type conversion routines
 available to convert most data types into character strings and
 back. Because keeping up with all the conversion routine names
 and calling sequences can be quite a chore, two routines ’decode’
 and ’encode’ exist to handle conversion details in a consistent
 format. These two routines are described at the end of this sec−
 tion.

 Most of the "character−to−something" routines require at
 least two arguments. The first argument is usually the character
 string, and the second is an integer variable indicating the
 first of the characters to be converted. The result of conver−
 sion is then returned as the function value, and the position
 variable is updated to indicate the first position past the
 characters used in the conversion.

 For example, the simplest "character−to−integer" routine,
 ’ctoi’ requires the two arguments mentioned above. Since it
 skips leading blanks, but stops at the first non−digit character,
 it can be called several times in succession to grab several
 blank−separated integers on a line:

 character str (MAXLINE)
 integer i, k (4), pos
 integer ctoi
 ...
 pos = 1
 do i = 1, 4
 k (i) = ctoi (str, pos)
 if (str (pos) ~= EOS)
 call remark ("illegal character in input"s)

 This routine will assume unspecified values to be zero, but com−
 plain if non−numeric, non−blank characters are specified.

 Here is a list of all of the currently supported "character−
 to−something" routines.

 ctoc Character−to−character; copies character
 strings and pays attention to the maximum
 length parameter.

 − 73 −

 Ratfor User’s Guide

 ctod Character−to−double precision real; handles
 general floating point input.

 ctoi Character−to−integer (16 bit); does not handle
 plus and minus signs; decimal only.

 ctop Character−to−packed−string; converts to packed
 format with no delimiter character.

 ctor Character−to−single precision real; handles
 general floating point input.

 ctov Character−to−PL/I−character−varying; converts
 to PL/I character varying format.

 gctoi Generalized−character−to−integer (16 bit);
 handles plus and minus signs; in addition to
 program−specified radix, accepts an optional
 user−specified radix from 2−16.

 gctol Generalized−character−to−long−integer (32
 bit); handles plus and minus signs; in addi−
 tion to program−specified radix, accepts an
 optional user−specified radix from 2−16.

 In addition to the "character−to−something" routines, there
 are the "something−to−character" routines. Most of these
 routines require three arguments: the value to be converted, the
 destination string, and the maximum size allowable. They return
 the length of the string produced as the function value. An EOS
 is always placed in the position following the last character in
 the destination string, but the EOS is not included when the size
 of the returned string is calculated.

 Since the functions will accept a sub−array reference for
 the output string, you may place several objects in the same
 string. For example, using the "integer−to−character" conversion
 routine ’itoc’, you can place the four integers in the array ’k’
 into ’str’ in character format:

 character str (MAXLINE)
 integer i, k(4), pos
 integer itoc
 ...
 pos = 1
 do i = 1, 4; {
 pos = pos + itoc (k (i), str (pos), MAXLINE − pos)
 if (pos >= MAXLINE − 1) # there’s no room for any more
 break
 str (pos) = BLANK
 pos = pos + 1
 }
 str (pos) = EOS # cover up the last blank

 This code will place the four integers in ’str’, separated by a

 − 74 −

 Ratfor User’s Guide

 single blank. Although all conversion routines leave an EOS in
 the string, we have to replace it here because we clobber it with
 the blank.

 It’s worth noting that the maximum size parameter always
 includes the EOS −− the conversion routine will never touch any
 more characters than are specified by this parameter.

 Here is a list of all available "something−to−character"
 conversion routines:

 ctoc Character−to−character; copies character
 strings and pays attention to the maximum
 length parameter.

 dtoc Double−precision−real−to−character; handles
 general floating point conversions in Basic or
 Fortran formats.

 gitoc Generalized−integer−to−character (16 bit);
 handles integer conversions; program−specified
 radix.

 gltoc Generalized−long−integer−to−character (32
 bit); handles long integer conversion; program
 specified radix.

 itoc Integer−to−character (16 bit); handles integer
 conversion; decimal only.

 ltoc Long−integer−to−character (32 bit); handles
 long integer conversion; decimal only.

 ptoc Packed−string−to−character; accepts arbitrary
 delimiter character; will unpack fixed length
 strings if delimiter is set to EOS and maximum
 is set to (length + 1).

 rtoc Single−precision−real−to−character; handles
 general real conversion in Basic or Fortran
 formats.

 vtoc PL/I−character−varying−to−character; converts
 PL/I character varying format to character.

 Decode. ’Decode’ handles conversion from character strings
 to all other formats. It is written to be used in concert with
 ’getlin’ and other such routines, and as such, has a rather odd
 calling sequence. It requires a minimum of five arguments: the
 usual string, and string index; a format string; a format string
 index and an argument string index. Following are receiving
 arguments, depending on the data types specified in the format
 string. In almost all cases, you should just supply variables
 with a values of 1 for the format index and the argument index.
 The string index behaves just as it does in all other character−
 to−something routine −− on successful conversion, it points to

 − 75 −

 Ratfor User’s Guide

 the EOS in the string. The specifics of the format string and
 receiving fields are identical to ’input’. The only differences
 are that ’decode’ returns with OK in the situations in which
 ’input’ would read another line of input, and EOF otherwise, and
 that all characters in the format string that are not format
 codes are ignored.

 Encode. ’Encode’ is a companion routine to ’decode’: it
 can access all of the something−to−character conversion routines
 in a consistent way. For arguments it takes a character string,
 maximum length of the string, a format string, and a varying num−
 ber of source arguments, depending on the format string.
 ’Encode’ behaves exactly like ’print’, except that it puts the
 converted characters into the string, rather than putting them
 onto a file.

 Argument Access

 Programs often find it necessary to access arguments
 specified on the command line. These arguments can be obtained
 as EOS−terminated strings, ready for processing or passing to a
 routine such as ’open’.

 Getarg. ’Getarg’ is the only routine that retrieves
 arguments from the shell’s argument buffer. It is called with
 three arguments: an integer describing the position of the
 argument desired, a character array to receive the argument, and
 an integer describing the maximum size of the receiving array.
 ’Getarg’ tries to retrieve the argument in the specified
 position; if it can, it returns the length of the string placed
 in the array; if it can’t, it returns the constant EOF. ’Getarg’
 will never write farther in the character array than the size
 specified in the third argument.

 Arguments are numbered 0 through the maximum specified on
 the command line. Argument 0 is the name of the command,
 argument 1 is the first argument specified, and so on. The num−
 ber of arguments present on the command line can be determined by
 the point at which ’getarg’ returns EOF.

 As a short example, here is a program fragment that attempts
 to delete all files specified as arguments on its command line:

 character file (MAXLINE)
 integer i
 integer remove, getarg

 i = 1
 while (getarg (i, file, MAXLINE ~= EOF)) {
 if (remove (file) == ERR)
 call print (ERROUT, "*s: cannot remove*n"s,
 file)
 i = i + 1
 }

 − 76 −

 Ratfor User’s Guide

 Parscl. In many programs, argument syntax is quite complex.
 ’Parscl’ exists for the benefit of both programmers and users:
 it makes coding argument parsing simple and it helps keep
 argument conventions uniform. Of course, to do this, it must
 automatically enforce certain argument conventions. ’Parscl’ and
 its accompanying macros expect to recognize arguments of a single
 letter without regard to case. Rather than a lengthy
 explanation, let’s look at an example: For its arguments, a
 program requires a page length (which should default to 66 if not
 present), a title (which may also not be present), a flag to tell
 whether to format for for a printer or a terminal, and a list of
 file names to process. In this case, a reasonable option syntax
 is

 prog [−l <page length>] [−t [<title>]] [−p] {<file name>}

 We have used single letter flags to avoid the need for always
 specifying arguments. Now, in terms of ’parscl’, what we have is
 an "required integer", an "optional string", and a "flag". This
 means that "−l" cannot be specified without a <page length>, but
 "−t" can be specified without a <title> (in this case, of course,
 we would use an empty title). Be sure to note that a "required"
 argument means that if the letter is specified, it must be fol−
 lowed by a value. It does not mean that the letter argument must
 always be present. In other circumstances, we can also have
 "optional integer" and "required string" arguments.

 To use ’parscl’ in our program, we must first include the
 argument macros and declare the argument data area:

 include ARGUMENT_DEFS
 ARG_DECL

 Then, near the beginning of the main program, we use a macro call
 to call ’parscl’ that contains the syntax of the command line and
 a "usage" message to be displayed if the command line is
 incorrect. For our example, we can use

 PARSE_COMMAND_LINE ("l<req int> t<opt str> p<flag>"s,
 "prog [−l <page len>] [−t [<title]] [−p] {<file}>"s)

 For "optional integer" and "required string" arguments, the
 argument types are "<opt int>" and "<req str>", respectively.

 If the command line is parsed successfully, ’parscl’ returns
 and the program continues; otherwise, ’parscl’ prints the "usage"
 message with a call to ’error’. Once ’parscl’ has returned, we
 can set the default values, test for the presence or absence of
 arguments, and obtain values of arguments. First we usually set
 default values:

 ARG_DEFAULT_INT (l, 66)
 if (ARG_PRESENT (t))
 ARG_DEFAULT_STR (t, ""s)
 else
 ARG_DEFAULT_STR (t, "Listing from prog"s)

 − 77 −

 Ratfor User’s Guide

 Remember, default values are set after the call to ’parscl’!

 | In the preceding example, we set the value of the argument
 for "l" to 66. This is simple enough. But for the "t" argument,
 we really have three different cases: the argument was specified
 with a string, the argument was specified without a string (mean−
 ing that we must use an empty title), or the argument was not
 specified at all (meaning that we use some other default). In
 the first case, neither call to ARG_DEFAULT_STR will do anything,
 since the string was specified by the user; in the second case,
 ARG_PRESENT (t) will be ".true." setting the default to the
 empty string (since the "t" argument was specified, even though
 it was without a string); and in the third case ARG_PRESENT (t)
 will be ".false.", setting the default to "Listing from prog".

 Now that we have finished setting defaults, we can obtain
 the values of arguments with more macros: the call ARG_VALUE (l)
 will return the page length value: either the value specified by
 the user or the value 66 that we set as the default. ARG_TEXT
 (t) references an EOS−terminated string containing the title:
 either the value specified the user, an empty string, or "Listing
 from prog". Use of the values in our example might look like
 this:

 page_len = ARG_VALUE (l)
 call ctoc (ARG_TEXT (t), title, MAXTITLE)
 if (ARG_PRESENT (p))
 ### do printer formatting
 else
 ### do terminal formatting

 And now, here’s how all of the argument parsing will look:

 include ARGUMENT_DEFS
 ARG_DECL

 PARSE_COMMAND_LINE ("l<req int> t<opt str> p<flag>"s,
 "prog [−l <page len>] [−t [<title]] [−p] {<file}>"s)

 ARG_DEFAULT_INT (l, 66)
 if (ARG_PRESENT (t))
 ARG_DEFAULT_STR (t, ""s)
 else
 ARG_DEFAULT_STR (t, "Listing from prog"s)

 page_len = ARG_VALUE (l)
 call ctoc (ARG_TEXT (t), title, MAXTITLE)
 if (ARG_PRESENT (p))
 ### do printer formatting
 else
 ### do terminal formatting

 Now, what about the file name arguments we were supposed to
 parse. Where did they go? ’Parscl’ deletes arguments that it
 processes; it also ignores any arguments not starting with a

 − 78 −

 Ratfor User’s Guide

 hyphen (that do not appear after an letter−argument looking for a
 string). So the file name arguments are still there, ready to be
 fetched by ’getarg’, with none of the "−t <title>" stuff left to
 confuse the logic of the rest of the program.

 Now, how about some example commands to call this program:

 prog −p
 (page_len = 66, title = "Listing from prog",
 formatted for printer)

 prog −l34 −t new title
 (page_len = 34, title = "new",
 file name = "title",
 formatted for terminal)

 prog file1 file2 −p −t −l70
 (page_len = 70, title = "",
 file names = file1 file2,
 formatted for printer)

 prog filea −t"my new title" −l 60
 (page_len = 60, title = "my new title",
 file name = filea, formatted for printer)

 prog −x filea
 (the "usage" message is printed)

 prog fileb −l
 (the "usage" message is printed)

 As you can see, ’parscl’ allows you to specify arguments in many
 different ways. For more information on ’parscl’, see its entry
 in the Reference Manual.

 Dynamic Storage Management

 Dynamic storage subroutines reserve and free variable size
 blocks from an area of memory. In this implementation, the area
 of memory is a one−dimensional array. Each block consists of
 consecutive words of that array.

 The dynamic storage routines assume that you have included
 the following declaration in your main program and in any sub−
 programs that reference dynamic storage:

 DS_DECL (mem, MEMSIZE)

 where ’mem’ is an array name that can be used to reference the
 dynamic storage area. You must also define MEMSIZE to an integer
 value between 6 and 32767 inclusive. This number is the maximum
 amount of space available for use by the dynamic storage
 routines. In estimating for the amount of dynamic storage
 required, you must allow for two extra ’overhead’ words for each
 block allocated. Three other overhead words are required for a

 − 79 −

 Ratfor User’s Guide

 pointer to the first available block of memory and to store the
 value of MEMSIZE.

 Dsinit. The call

 call dsinit (MEMSIZE)

 initializes the storage structure’s pointers and sets up the list
 of free blocks. This call must be made before any other
 references to the dynamic storage area are made.

 Dsget. ’Dsget’ allocates a block of words in the storage
 area and returns a pointer (array index) to the first useable
 word of the block. It takes one argument −− the size of the
 block to be allocated (in words).

 After a call to ’dsget’, you may then fill consecutive words
 in the ’mem’ array beginning at the pointer returned by ’dsget’
 (up to the number of words you requested in the block) with
 whatever information called for by your application. If you
 should write more words to the block than you allocated, the next
 block will be overwritten. Needless to say, if this happens you
 may as well give up and start over.

 If ’dsget’ finds that there is not enough contiguous storage
 space to satisfy your request, it prints an error message, and if
 you desire, calls ’dsdump’ to give you a dump of the contents of
 the dynamic storage array.

 Dsfree. A call to ’dsfree’ with a pointer to a block of
 storage (obtained from a call to ’dsget’) deallocates the block
 and makes it available for later use by ’dsget’. ’Dsfree’ will
 warn you if it detects an attempt to free an unallocated block
 and give you the option of terminating or continuing the program.

 Dsdump. The dynamic storage routines cannot check for
 correct usage of dynamic storage. Because block sizes and
 pointers are also stored in ’mem’ it is very easy for a mistake
 in your program to destroy this information. ’Dsdump’ is a
 subroutine that can print the dynamic storage area in a semi−
 readable format to assist in debugging. It takes one argument:
 the constant LETTER for an alphanumeric dump, or the constant
 DIGIT for a numeric dump.

 The following example shows the use of the dynamic storage
 routines and uses ’dsdump’ to show the changes in storage that
 result from each call.

 − 80 −

 Ratfor User’s Guide

 define (MEMSIZE, 35)

 pointer pos1, pos2 # pointer is a subsystem defined type
 pointer dsget
 DS_DECL (mem, MEMSIZE)

 call dsinit (MEMSIZE)
 call dsdump (LETTER) # first call

 pos1 = dsget (4)
 call scopy ("aaa"s, 1, mem, pos1)
 call dsdump (LETTER) # second call

 pos2 = dsget (3)
 call scopy ("bb"s, 1, mem, pos2)
 call dsdump (LETTER) # third call

 call dsfree (pos2)
 call dsdump (LETTER) # fourth call

 stop
 end

 The first call to ’dsdump’ (after ’init’) produces the following
 dump:

 * DYNAMIC STORAGE DUMP *
 1 3 words in use
 4 32 words available
 * END DUMP *

 The first three words are used for overhead, and 32 (MEMSIZE − 3)
 words are available starting at word four in ’mem’.

 The second call to ’dsdump’ (after the first write to
 dynamic storage) produces the following:

 * DYNAMIC STORAGE DUMP *
 1 3 words in use
 4 26 words available
 30 6 words in use
 aaa
 * END DUMP *

 Note that only four characters were written, three a’s and an EOS
 (an EOS is a nonprinting character), but two extra control words
 are required for each block. That block is comprised of words 30
 − 35 in the array ’mem’.

 The third call to ’dsdump’ (after the second ’scopy’)
 produces the following:

 − 81 −

 Ratfor User’s Guide

 * DYNAMIC STORAGE DUMP *
 1 3 words in use
 4 21 words available
 25 5 words in use
 bb
 30 6 words in use
 aaa
 * END DUMP *

 The final call to ’dsdump’ produces:

 * DYNAMIC STORAGE DUMP *
 1 3 words in use
 4 26 words available
 30 6 words in use
 aaa
 * END DUMP *

 As you can see, the second block of storage that began at word 25
 has been returned to the list of available space.

 Symbol Table Manipulation

 Symbol table routines allow you to index tabular data with a
 character string rather than an integer subscript. For instance,
 in the following table, the information contained in "field1",
 "field2", and "field3" can obtained by specifying a certain key
 value (e.g. "firstentry").

 −−
 |key |field1 | field2 |field3|
 −−
 |firstentry | 10268 | data | u |
 | | | | |
 |secondentry | 27043 | moredata | a |
 −−

 All Subsystem symbol table routines use dynamic storage.
 Therefore, the declarations and initialization required for
 dynamic storage are also required for the symbol table routines;
 namely:

 DS_DECL (mem, MEMSIZE)
 ...
 call dsinit (MEMSIZE)

 where ’mem’ is an array name that can be used to reference the
 dynamic storage area, and MEMSIZE is a user−defined identifier
 describing how many words are to be reserved for items in dynamic
 storage. MEMSIZE must be a integer value between 6 and 32767
 inclusive. For a discussion on how to estimate the amount of
 dynamic storage space needed in a program, you can refer back to
 the section on the dynamic storage routines.

 − 82 −

 Ratfor User’s Guide

 A symbol table entry consists of two parts: an identifier
 and its associated data. The identifier is a variable length
 character string; it is dynamically created when the symbol is
 entered into a symbol table. The data associated with the symbol
 is treated as a fixed−length array of words to be stored or
 modified when the associated symbol is entered in the table and
 returned when the symbol is looked up. The size of the data is
 fixed for each symbol table −− each entry in a table must have
 associated data of the same size, but different symbol tables may
 have different lengths of data.

 Mktabl. A symbol table is created by a call to the pointer
 function ’mktabl’ with a single integer argument giving the size
 of the associated data array or the "node size". ’Mktabl’
 returns a pointer to the symbol table in dynamic storage. This
 returned pointer identifies the symbol table −− you must pass it
 to the other symbol table routines to identify which table you
 want to reference. A symbol table is relatively small (each
 table requires about 50 words, not counting the symbols stored in
 it), so you may create as many of them as you like (as long as
 you have room for them).

 In the table above, if "field1" and "field3" require one
 word each, and "field2" requires no more than 9 words, then you
 can create the symbol table with the following call:

 pointer extable
 ...
 extable = mktabl (11)

 The argument to ’mktabl’ is 11 −− the total length of the data to
 be associated with each symbol.

 Enter. To enter a symbol in a symbol table, you must
 provide two items: an EOS−terminated string containing the
 identifier to be placed in the table, and an array containing the
 data to be associated with the symbol. Of course this array must
 be at least as large as the "nodesize" declared when the
 particular symbol table was created. A call to the subroutine
 ’enter’ with the identifier, the data array, and the symbol table
 pointer will make an entry in the symbol table. However, if the
 identifier is already in the table, its associated data will be
 overwritten by that you’ve just supplied. It is not possible to
 have the same identifier in the same symbol table twice.

 Now, continuing our example, to enter the first row of
 information in the table, you can use the following statements:

 info (1) = 10268
 call scopy ("data"s, 1, info, 2)
 info (11) = ’u’c
 call enter ("firstentry"s, info, extable)

 Lookup. Once you’ve made an entry in the symbol table, you
 can retrieve it by supplying the identifier in an EOS−terminated

 − 83 −

 Ratfor User’s Guide

 string, an empty data array, and the symbol table pointer to the
 function ’lookup’. If ’lookup’ can find the identifier in the
 table, it will fill in your data array with the data it has
 stored with the symbol and return with YES for its function
 value. Otherwise, it will just return with NO as its function
 value.

 In our example, to access the data associated with the "fir−
 stentry" we can make the following call:

 foundit = lookup ("firstentry"s, info, extable)

 After this call (assuming that "firstentry" was in the table),
 "foundit" would have the value YES, "info (1)" would have the
 value for "field1", "info (2)" through "info (10)" would have the
 value for "field2", and "info (11)" would have the value for
 "field3".

 Delete. If you should want to get rid of an entry in a sym−
 bol table, you can make a call to the subroutine ’delete’ with
 identifier you want to delete in an EOS−terminated string and the
 symbol table pointer. If the identifier you pass is in the
 table, ’delete’ will delete it and free its space for later use.
 If the identifier is not in the table, then ’delete’ won’t do
 anything.

 Using our example again, if you want to delete ’firstentry’
 from the table, you can just make the call

 call delete ("firstentry"s, extable)

 and "firstentry" will be removed from the table.

 Rmtabl. When you are through with a table and want to
 reclaim all of its storage space, you pass the table pointer to
 ’rmtabl’. ’Rmtabl’ will delete all of the symbols in the table
 and release the storage space for the table itself. Of course,
 after you remove a table, you can never reference it again.

 To complete our example, we can get rid of our symbol table
 by just calling ’rmtabl’:

 call rmtabl (extable)

 Sctabl. So far, the routines we’ve talked about have been
 sufficient for dealing with symbol tables. It turns out that
 there is one missing operation: getting entries from the table
 without knowing the identifiers. The need for this operation
 arises under many circumstances. Perhaps the most common is when
 we want to print out the contents of a symbol table for debug−
 ging.

 To use ’sctabl’ to return the contents of a symbol table,
 you first need to initialize a pointer with the value zero.
 We’ll call this the position pointer from now on. Then you call

 − 84 −

 Ratfor User’s Guide

 ’sctable’ repeatedly, passing it the symbol table pointer, a
 character array for the name, a data array for the associated
 data, and the position pointer. Each time you call it, ’sctabl’
 will return another entry in the table: it will fill in the
 character string with the entry’s identifier, fill in your data
 array with the entry’s data, and update position in the position
 pointer. When there are no more entries to return in the table,
 ’sctabl’ returns EOF as its function value.

 There are two things you have to watch when using ’sctabl’.
 First, if you don’t keep calling ’sctabl’ until it returns EOF,
 you must call ’dsfree’ with the position pointer to release the
 space. Second, you may call ’enter’ to modify the value of a
 symbol while scanning a table, but you cannot use ’enter’ to add
 a new symbol or use ’delete’ to remove a symbol. If you do,
 ’sctabl’ may lose its place and return garbage, or it may not
 return at all!

 Here is a subroutine that will dump the contents of our
 example symbol table:

 # stdump −−− print the contents of a symbol table
 subroutine stdump (table)
 pointer table

 integer posn
 integer sctabl
 character symbol (MAXSTR)
 untyped info (11)

 call print (ERROUT, "*4xSymbol*12xInfo*n"s)

 posn = 0
 while (sctabl (table, symbol, info, posn) ~= EOF)
 call print (ERROUT, "*15s|*6i|*9s|*c*n"s,
 symbol, info (1), info (2), info (9))

 return
 end

 If make a call to ’stdump’ after made the entry for "firstentry",
 it would print the following:

 Symbol Info
 firstentry | 10268|data |u

 Other Routines

 There are a number of miscellaneous routines that provide
 often needed assistance. The following table gives their names
 and a brief description. For full information on their use, see
 the Subsystem reference manual:

 date Obtain date, time, process id, login name

 − 85 −

 Ratfor User’s Guide

 error Print an error message and terminate

 follow Follow a path and set the current and/or home
 directories

 remark Print a string followed by a newline

 tquit$ Check if the break key was hit

 wkday Determine the day of the week of any date

 − 86 −

 Ratfor User’s Guide

 ^HA^Hp_^Hp_^He_^Hn_^Hd_^Hi_^Hx_^He_^Hs

 Appendix A −− Implementation of Control Statements

 This appendix contains flowcharts of the code produced by
 the Ratfor control statements along with actual examples of the
 code Ratfor produces.

 In different contexts, a given sequence of Ratfor control
 statements can generate slightly different code. First, where
 possible, statement labels are not produced when they are not
 referenced. For instance, a repeat loop containing no break
 statements will have no "exit" label generated, since one is not
 needed. Second, continue statements are generated only when two
 statement numbers must reference the same statement. Finally,
 internally generated goto statements are omitted when control can
 never pass to them; e.g. a when clause ending with a return
 statement.

 These code generation techniques make no fundamental
 difference in the control−flow of a program, but can make the
 code generated by very similar instances of a control statement
 appear quite different. Please keep in mind that the examples of
 Fortran code generated by ’rp’ are included for completeness, and
 are not necessarily character−for−character descriptions of the
 code that would be obtained from preprocessing. Rather, they are
 intended to illustrate the manner in which the Ratfor statements
 are implemented in Fortran.

 − 87 −

 Ratfor User’s Guide

 Break

 Syntax:

 break [<levels>]

 Function:

 Causes an immediate exit from the referenced loop.

 Example:

 for (i = length (str); i > 0; i = i − 1)
 if (str (i) ~= ’ ’c)
 break

 i=length(str)
 goto 10002
 10000 i=i−1
 10002 if((i.le.0))goto 10001
 if((str(i).eq.160))goto 10003
 goto 10001
 10003 goto 10000
 10001 continue

 − 88 −

 Ratfor User’s Guide

 Do

 Syntax:

 do <limits>
 <statement>

 Function:

 |
 V
 −−−−−−−−−−−−−−−−−−−−−
 | |
 | initialize do |
 | |
 −−−−−−−−−−−−−−−−−−−−−
 |<−−−
 V |
 −−−−−−−−−−−−−−−−−−−−− |
 | | |
 | <statement> | |
 | | |
 −−−−−−−−−−−−−−−−−−−−− |
 | |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * * false | | |
 * do satisfied? * −−−>| reinitialize do |−−−−−>|
 * * | |
 * * −−−−−−−−−−−−−−−−−−−−−
 *
 | true
 V

 Example:

 do i = 1, 10
 array (i) = 0

 do 10000 i=1,10
 10000 array(i)=0

 − 89 −

 Ratfor User’s Guide

 For

 Syntax:

 for ([<initialize>]; [<condition>]; [<reinitialize>])
 <statement>

 Function:

 |
 V
 −−−−−−−−−−−−−−−−−−−−−
 | |
 | <initialize> |
 | |
 −−−−−−−−−−−−−−−−−−−−−
 −−−−−−−−−−−−−−>|
 | V
 | *
 | * *
 | * * false
 | * <condition> * −−−−−−>|
 | * * |
 | * * |
 | * |
 | | true |
 | V |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | | |
 | | <statement> | |
 | | | |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | |
 | V |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | | |
 | | <reinitialize> | |
 | | | |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | |
 | V |
 |−−−−−−−−−−−−−−− |
 |
 |−−−−−−−−−−−−−−−−−−
 V

 − 90 −

 Ratfor User’s Guide

 Example:

 for (i = limit − 1; i > 0; i = i − 1) {
 array_1 (i) = array_1 (i + 1)
 array_2 (i) = array_2 (i + 1)
 }

 i=limit−1
 goto 10002
 10000 i=i−1
 10002 if((i.le.0))goto 10001
 array1(i)=array1(i+1)
 array2(i)=array2(i+1)
 goto 10000
 10001 continue

 − 91 −

 Ratfor User’s Guide

 If

 Syntax:

 if (<condition>)
 <statement>

 Function:

 |
 V
 *
 * * −−−−−−−−−−−−−−−−−−−−−
 * * true | |
 * <condition> * −−−>| <statement> |−−−−−>|
 * * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 |<−−−
 V

 Example:

 if (a == b) {
 c = 1
 d = 1
 }

 if((a.ne.b))goto 10000
 c=1
 d=1
 10000 continue

 − 92 −

 Ratfor User’s Guide

 If − Else

 Syntax:

 if (<condition>)
 <statement_1>
 else
 <statement_2>

 Function:

 |
 V
 *
 * *
 true * * false
 |<−−−−− * <condition> * −−−−−>|
 | * * |
 | * * |
 V * V
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | | | |
 | <statement_1> | | <statement_2> |
 | | | |
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | |
 V V
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 |
 V

 Example:

 if (i >= MAXLINE)
 i = 1
 else
 i = i + 1

 if((i.lt.102))goto 10000
 i=1
 goto 10001
 10000 i=i+1
 10001 continue

 − 93 −

 Ratfor User’s Guide

 Next

 Syntax:

 next [<levels>]

 Function:

 All loops nested within the loop specified by <levels> are
 terminated. Execution resumes with the next iteration of
 the loop specified by <levels>.

 Example:

 # output only strings containing no blanks
 for (i = 1; i <= LIMIT; i = i + 1) {
 for (j = 1; str (j, i) ~= EOS; j = j + 1)
 if (str (j, i) == ’ ’c)
 next 2
 call putlin (str (1, i), STDOUT)
 }

 i=1
 goto 10002
 10000 i=i+1
 10002 if((i.gt.50))goto 10001
 j=1
 goto 10005
 10003 j=j+1
 10005 if((str(j,i).eq.−2))goto 10004
 if((str(j,i).ne.160))goto 10006
 goto 10000
 10006 goto 10003
 10004 call putlin(str(1,i),−11)
 goto 10000
 10001 continue

 − 94 −

 Ratfor User’s Guide

 Repeat

 Syntax:

 repeat
 <statement>
 [until (<condition>)]

 Function:

 |
 |<−−−−−−−−−−−−−−−−−
 V |
 −−−−−−−−−−−−−−−−−−−−− |
 | | |
 | <statement> | |
 | | |
 −−−−−−−−−−−−−−−−−−−−− |
 | |
 V |
 * |
 * * |
 * * false |
 * <condition> * −−−−−−>|
 * *
 * *
 *
 | true
 V

 Example:

 repeat {
 i = i + 1
 j = j + 1
 } until (str (i) ~= ’ ’c)

 10000 i=i+1
 j=j+1
 if((str(i).eq.160))goto 10000

 − 95 −

 Ratfor User’s Guide

 Return

 Syntax:

 return [’(’ <expression ’)’]

 Function:

 Causes <expression> (if specified) to be assigned to the
 function name, and then causes a return from the subprogram.

 Example:

 integer function fcn (x)
 ...
 return (a + 12)

 integer function fcn (x)
 ...
 fcn=a+12
 return

 − 96 −

 Ratfor User’s Guide

 Select

 Syntax:

 select
 when (<condition_1>)
 <statement_1>
 when (<condition_2>)
 <statement_2>
 when (<condition_3>)
 <statement_3>
 .
 .
 .
 when (<condition_n>)
 <statement_n>
 * [ifany
 <statement_i>]
 [else
 <statement_e>]

 − 97 −

 Ratfor User’s Guide

 Function:

 |
 V
 *
 * * −−−−−−−−−−−−−−−−−−−−−
 * * true | |
 * <condition_1> * −−−>| <statement_1> |−>|
 * * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * * true | | |
 * <condition_2> * −−−>| <statement_2> |−>|
 * * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * * true | | |
 * <condition_3> * −−−>| <statement_3> |−>|
 * * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 . .
 . .
 . .
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * * true | | |
 * <condition_n> * −−−>| <statement_n> |−>|
 * * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V V
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | | | |
 | <statement_e> | | <statement_i> |
 | | | |
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | |
 | V
 |<−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 V

 − 98 −

 Ratfor User’s Guide

 Example:

 select
 when (i == 1)
 call add_record
 when (i == 2)
 call delete_record
 else
 call code_error

 goto 10001
 10002 call addre0
 goto 10000
 10003 call delet0
 goto 10000
 10001 if((i.eq.1))goto 10002
 if((i.eq.2))goto 10003
 call codee0
 10000 continue

 − 99 −

 Ratfor User’s Guide

 Select (<integer expression>)

 Syntax:

 select (<i0>)
 when (<i1.1>, <i1.2>, ...)
 <statement_1>
 when (<i2.1>, <i2.2>, ...)
 <statement_2>
 when (<i3.1>, <i3.2>, ...)
 <statement_3>
 .
 .
 .
 when (<in.1>, <in.2>, ...)
 <statement_n>
 * [ifany
 <statement_i>]
 [else
 <statement_e>]

 − 100 −

 Ratfor User’s Guide

 Function:

 |
 V
 *
 * * −−−−−−−−−−−−−−−−−−−−−
 * i0 == * true | |
 * i1.1 or i1.2 * −−−>| <statement_1> |−>|
 * or ... * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * i0 == * true | | |
 * i2.1 or i2.2 * −−−>| <statement_2> |−>|
 * or ... * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * i0 == * true | | |
 * i3.1 or i3.2 * −−−>| <statement_3> |−>|
 * or ... * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V |
 . .
 . .
 . .
 | false |
 V |
 * |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * i0 == * true | | |
 * in.1 or in.2 * −−−>| <statement_n> |−>|
 * or ... * | | |
 * * −−−−−−−−−−−−−−−−−−−−− |
 * |
 | false |
 V V
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | | | |
 | <statement_e> | | <statement_i> |
 | | | |
 −−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−
 | |
 | V
 |<−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 V

 − 101 −

 Ratfor User’s Guide

 Example:

 select (i)
 when (4, 6, 3003)
 call add_record
 when (2, 12, 5000)
 call delete_record
 else
 call code_error

 integer aaaaa0,aaaab0
 ...
 aaaaa0=i
 goto 10001
 10002 call addre0
 goto 10000
 10003 call delet0
 goto 10000
 10001 aaaab0=aaaaa0−1
 goto(10003,10004,10002,10004,10002,
 * 10004,10004,10004,10004,10004,
 * 10003),aaaab0
 if(aaaaa0.eq.3003)goto 10002
 if(aaaaa0.eq.5000)goto 10003
 10004 continue
 10000 continue

 − 102 −

 Ratfor User’s Guide

 While

 Syntax:

 while (<condition>)
 <statement>

 Function:

 |
 −−−−−−−−−−−−−−>|
 | V
 | *
 | * *
 | * * false
 | * <condition> * −−−−−−>|
 | * * |
 | * * |
 | * |
 | | true |
 | V |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | | |
 | | <statement> | |
 | | | |
 | −−−−−−−−−−−−−−−−−−−−− |
 | | |
 | V |
 |−−−−−−−−−−−−−−− |
 |
 |−−−−−−−−−−−−−−−−−−
 V

 Example:

 while (str (i) ~= EOS)
 i = i + 1

 10000 if((str(i).eq.−2))goto 10001
 i=i+1
 goto 10000
 10001 continue

 − 103 −

 Ratfor User’s Guide

 Appendix B −− Linking Programs With Initialized Common

 The Subsystem link procedure makes the assumption that all
 common areas are uninitialized to allow programs to access up to
 27 64K word segments of data space. A program which uses
 initialized common areas must be linked with one of two slightly
 different procedures: If the object file can be a segment direc−
 tory (this is usually not a problem), you can have the object
 file placed in a segment directory. Just add the "−d" option to
 the ’ld’ command line. Assuming your binary file is named
 "prog.b", you can use the command

 ld −d prog.b

 If you would rather the object program be stored in a
 regular file, you can use a slightly different procedure. With
 this procedure, the program is restricted to one segment (64K
 words) for both code and data space. If this limit is exceeded,
 no warning will be given, and unpredictable results will occur
 during execution. If more than 64K words of space is required,
 the common areas must be initialized at run time, or the program
 must be placed in a segment directory.

 This modification to the link procedure is as follows: the
 option string "−s ’co ab 4000’" must appear on the ’ld’ command
 line before the first binary file. For instance, if the file
 "prog.b" contained a program with block data statements, an ’ld’
 command to link it might appear as follows:

 ld −s ’co ab 4000’ prog.b

 The executable program would be placed in the file "prog.o".

 − 104 −

 Ratfor User’s Guide

 Appendix C −− Requirements for Subsystem Programs

 This appendix gives the technical specifications of
 requirements for programs that run under the Subsystem. It is
 included to allow non−Ratfor programs to run under the Subsystem.

 32S and 16S addressing modes

 − There is no support for the execution of these addressing
 modes.

 64R & 32R addressing modes

 − The 64R mode library routines cannot access the Subsystem
 common areas, so 32R and 64R mode programs cannot execute
 | under the Subsystem.

 64V addressing mode

 − Segments ’4040 and ’4041 may not be disturbed.

 − When a Subsystem program is executed, the stack is already
 constructed in segment ’4041. However, the executing
 program may rebuild it if desired.

 − Programs that use native i/o routines must inform their
 native i/o routines of the Subsystem (if they wish to take
 advantage of Subsystem i/o) by calling the proper
 initialization routines, i.e. ’init$f’ for Fortran 66 and
 Fortran 77, ’init$p’ for Pascal and ’init$plg’ for PL/I G.

 − The program must terminate with a call to the Subsystem
 routine ’swt’ at the end of its execution or its main
 program must return to its caller. A stop statement in
 Ratfor will be transformed into a call to ’swt’.

 − The program must not tamper with any file units already
 open by the Subsystem. It should always use a Subsystem
 or Primos call to obtain an unused file unit.

 − The program must be in a P300 format runfile or a SEG−
 compatible segment directory.

 − If the program is in a P300 format runfile, it must have
 been loaded by the modified version of the segmented
 loader, ’swtseg’, or the entry control block for the main
 program must be at location ’1000 in segment ’4000.

 − The runfile must not expect any segment other than ’4000
 to be initialized before execution, unless it is loaded
 from a SEG−compatible segment directory.

 − The default load sequence produced by ’ld’ will correctly

 − 105 −

 Ratfor User’s Guide

 link programs requiring up to 64K words of procedure
 (code) and linkage (initialized local data) frames. Up to
 27 64K word segments may be used for uninitialized common
 blocks. Up to 64K words of local data may be allocated on
 the stack. Programs loaded from SEG−compatible segment
 directories may be as large as the operating system
 permits, as long as they do not modify segments ’4040 and
 ’4041.

 32I addressing mode

 − Programs in 32I mode may be executed under the Subsystem
 subject to the same constraints as 64V mode programs.

 − 106 −

 Ratfor User’s Guide

 Appendix D −− The Subsystem Definitions

 The file "=incl=/swt_def.r.i" contains Ratfor define
 statements for all the symbolic constants required to use the
 routines in the Subsystem support library. This appendix
 describes the more frequently used constants and the constraints
 placed on them.

 Characters

 ASCII Mnemonics. Character definitions for the ASCII
 control characters NUL, SOH, STX, ..., GS, RS, US,
 as well as SP and DEL.
 Control characters. Character definitions for the ASCII
 control characters CTRL_AT, CTRL_A, CTRL_B, ...,
 CTRL_LBRACK, CTRL_BACKSLASH, CTRL_RBRACK,
 CTRL_CARET, and CTRL_UNDERLINE.
 BACKSPACE Synonym for ASCII BS.
 TAB Synonym for ASCII HT.
 BELL Synonym for ASCII BEL.
 RHT Relative horizontal tab character (used for blank
 compression in Primos text files).
 RUBOUT Synonym for ASCII DEL.

 Data Types

 bits Bit strings (16 bit items).
 bool Boolean (logical) values: .true. and .false. (16
 bit items).
 character Single right−justified zero−filled character
 (scalar), or a string of these characters
 terminated by an EOS (array).
 file_des File descriptor returned ’open’, ’create’, etc.
 file_mark File position returned by ’seekf’.
 longint Double precision (32 bit) integer.
 longreal Double precision (64 bit) floating point.
 pointer Pointer for use with dynamic storage and symbol
 table routines.

 Macro Subroutines

 fpchar (<packed array>, <index>, <character>) Fetches
 <character> from <packed array> at character posi−
 tion <index> and increments <index>. The first
 character in the array is position zero.
 spchar (<packed array>, <index>, <character>) Stores
 <character> in <packed array> at character posi−
 tion <index> and increments <index>. The first
 character in the array is position zero.
 getc (<char>) Behaves exactly like ’getch’, except the
 character is always obtained from STDIN.
 putc (<char)) Behaves exactly like ’putch’, except the

 − 107 −

 Ratfor User’s Guide

 character is always placed on STDOUT.
 SKIPBL (<character array>, <index>) Increments <index> until
 the corresponding position in the character array
 is non−blank.
 DS_DECL (<ds array name>, <ds array size>) Declares the
 dynamic storage array with the name <ds array
 name> with size <ds array size>.

 Language Extensions

 ARB Used when dimensioning array parameters in sub−
 programs (since their length is determined by the
 calling program, not the subprogram).
 FALSE Represents the Fortran logical constant .false.
 IS_DIGIT (<char>) Logical expression yielding TRUE if <char>
 is a digit.
 IS_LETTER (<char>) Logical expression yielding TRUE if
 <char> is an upper or lower case letter.
 IS_UPPER (<char>) Logical expression yielding TRUE if <char>
 is an upper case letter.
 IS_LOWER (<char>) Logical expression yielding TRUE if <char>
 is a lower case letter.
 SET_OF_UPPER_CASE Sequence of 26 character constants
 representing the upper case letters for use in the
 when parts of select statements.
 SET_OF_LOWER_CASE Sequence of 26 character constants
 representing the lower case letters for use in
 when parts of select statements.
 SET_OF_LETTERS Sequence of 52 character constants represent−
 ing the upper and lower case letters for use in
 when parts of select statements.
 SET_OF_DIGITS Sequence of 10 character constants represent−
 ing the digits for use in when parts of select
 statements.
 SET_OF_CONTROL_CHAR Sequence of 32 character constants
 representing the first 32 ASCII control characters
 for use in when parts of select statements.
 TRUE Represents the Fortran logical constant .true.

 Limits

 CHARS_PER_WORD Maximum number of packed characters per
 machine word.
 MAXINT Largest 16−bit integer.
 MAXARG Maximum length of a command line argument (EOS−
 terminated character string).
 MAXCARD Maximum input line length (excluding the EOS).
 MAXDECODE Maximum size of string processed by ’decode’.
 MAXLINE Maximum input line length.
 MAXPAT Maximum size of a pattern array.
 MAXPATH Maximum size of a Subsystem pathname.
 MAXPRINT Maximum number of character that can be output by
 a single call to ’print’.
 MAXTREE Maximum number of characters in a Primos tree

 − 108 −

 Ratfor User’s Guide

 name.
 MAXFNAME Maximum number of characters in a simple file
 name.

 Standard Ports

 STDIN Standard input 1.
 STDIN1 Standard input 1.
 STDIN2 Standard input 2.
 ERRIN Standard input 3.
 STDIN3 Standard input 3.
 STDOUT Standard output 1.
 STDOUT1 Standard output 1.
 STDOUT2 Standard output 2.
 ERROUT Standard output 3.
 STDOUT3 Standard output 3.

 Argument and Return Values

 ABS Request absolute positioning (’seekf’).
 REL Request relative positioning (’seekf’).
 DIGIT Character is a digit (’type’).
 LETTER Character is a letter (’type’).
 UPPER Map to upper case (’mapstr’).
 LOWER Map to lower case (’mapstr’).
 READ Open file for reading.
 WRITE Open file for writing.
 READWRITE Open file for reading and writing.
 EOF End of file (guaranteed distinct from all charac−
 ters and from OK and ERR).
 OK No error (guaranteed distinct from all characters
 and from EOF and ERR).
 ERR Error occurred (guaranteed distinct from all
 characters and from EOF and OK).
 EOS End of string (guaranteed distinct from all
 characters).
 LAMBDA Null pointer (guaranteed distinct from all pointer
 values).
 | PG_END Make ’page’ return after the last page of input.
 | PG_VTH Make ’page’ use the VTH routines when writing to
 | the terminal.
 YES Affirmative response (guaranteed distinct from
 NO).
 NO Negative response (guaranteed distinct from YES).

 − 109 −

 Ratfor User’s Guide

 Appendix E −− ’Rp’ Reserved Words

 The following identifiers are reserved keywords in Ratfor
 and cannot be used as identifiers. ’Rp’ will not diagnose the
 use of reserved keywords as identifiers; results of misuse will
 be unreasonable behavior such as misleading error messages and
 mis−ordered Fortran code.

 blockdata linkage
 break local
 call logical
 case next
 common parameter
 complex procedure
 continue real
 data recursive
 define repeat
 dimension return
 do save
 doubleprecision select
 else shortcall
 end stackheader
 equivalence stmtfunc
 external stop
 for string
 forward stringtable
 function subroutine
 goto trace
 if undefine
 ifany until
 implicit when
 include while
 integer

 − 110 −

 Ratfor User’s Guide

 Appendix F −− Command Line Syntax

 ’Rp’ provides a rich set of processing options to allow the
 user much flexibility and control over the code which is
 produced. The command line syntax is as follows:

 rp [−{a | b | c | d | f | g | h | l | m | p | s | t | v | y}]
 [−o <output_file>] {<input_file>} [−x <translation file>]

 The following is a full description of each option:

 a Abort all active shell programs if any errors were
 encountered during preprocessing. This option is
 useful in shell programs like ’rfl’ that wish to
 inhibit compilation and loading if preprocessing
 failed. By default, this option is not selected; that
 is, errors in preprocessing do not terminate active
 shell programs.

 b Do not map long indentifiers or identifiers containing
 upper case letters into unique six character Fortran
 identifiers. This option is useful if your Fortran
 compiler will accept names longer than six characters.

 c Include statement−count profiling code in the generated
 Fortran. When this option is selected, calls to the
 library routines ’c$init’, ’c$incr’, and ’c$end’ will
 be placed (unobtrusively) in the output code. When the
 preprocessed program is run, it will generate a file
 named "_st_count" containing execution frequencies for
 each line of source code. The utility program
 ’st_profile’ may then be used to combine source code
 and statement counts to form a readable report.

 d Inhibit generation of the long−name dictionary.
 Normally, a dictionary listing all long names used in
 the Ratfor program along with their equivalent short
 forms is placed at the end of the generated Fortran as
 a series of comment statements. This option prevents
 its generation.

 f Suppress automatic inclusion of standard definitions
 file. Macro definitions for the manifest constants
 used throughout the Subsystem reside in the file
 "=incl=/swt_def.r.i". ’Rp’ will process these
 definitions automatically, unless the "−f" option is
 specified.

 g Make a second pass over the code and remove GOTOs to
 GOTOs generated in Ratfor control structures. Use of
 this option lengthens preprocessing time significantly,
 but can result (sometimes) in a 2−5% speedup of the
 object program.

 h Produce Hollerith−format string constants rather than

 − 111 −

 Ratfor User’s Guide

 quoted string constants. This option useful in produc−
 ing character strings in the proper format needed by
 your Fortran compiler.

 l Include Ratfor line numbers in the sequence number
 field of the Fortran output. This may be useful in
 tracking down the Ratfor statement that caused a
 Fortran syntax error. By default, no sequence field is
 generated.

 m Map all identifiers to lower case. When this option is
 selected, ’rp’ considers the upper case letters
 equivalent to the corresponding lower case letters,
 except inside quoted strings.

 p Emit subroutine profiling code. When this option is
 selected, ’rp’ places calls to the library routines
 ’t$entr’, ’t$exit’, and ’t$clup’ in the Fortran output,
 and creates a text file named "timer_dictionary"
 containing the names of all subprograms seen by the
 preprocessor. When the profiled program is run, a file
 named "_profile" is created that contains timing
 measurements for each subprogram. The utility program
 ’profile’ may then be used to print a report summariz−
 ing the number of times each subprogram was called and
 the total time spent in each.

 s Short−circuit all logical conditions. The order of
 evaluation of logical operands in Fortran is
 unspecified; that is, in the expression "a&b" there is
 no guarantee that "a" will be evaluated before "b".
 Occasionally this creates inconveniences; one would
 like to say something like "if(i>1&array(i)~=0)...".
 ’Rp’ supplies the short−circuit logical operators "&&"
 and "||" (read "andif" and "orif") for these occasions.
 Both operators evaluate their left operands; if the
 value of the logical expression is predictable solely
 on the basis of the value of the left operand, then the
 right operand remains unevaluated and the correct
 expression value is yielded. Otherwise the right
 operand is evaluated and the proper expression value is
 determined. The "−s" option may be used to
 automatically convert all "logical and" operators in a
 program to "andifs," and all "logical or" operators to
 "orifs." In addition to improving program portability,
 this option may also reduce execution time. By
 default, however, this option is not in effect.

 t Trace subprograms. When a program preprocessed with
 the "−t" option is run, an indented trace of the sub−
 programs encountered will be printed on ERROUT. This
 trace output is generated by calls to the library
 routine ’t$trac’ that are inserted automatically by
 ’rp’.

 v Output "standard" Fortran. This option causes ’rp’ to

 − 112 −

 Ratfor User’s Guide

 generate only standard Fortran constructs (as far as we
 know). This option does not detect non−standard
 Fortran usage in Ratfor source code; it only prevents
 ’rp’ from generating non−standard constructs in
 implementing its data and control structures. Programs
 preprocessed with this option are slightly larger and
 slower; the intermediate Fortran and binary files are
 approximately 10% larger.

 x Translate character codes. ’Rp’ uses the character
 correspondences in the <translation file> to convert
 characters into integers when it builds Fortran DATA
 statements containing EOS−terminated or PL/I strings.
 If the option is not specified, ’rp’ converts the
 characters using the native Prime character set. The
 format of the translation file is documented below.

 y Do not output "call swt". This option keeps ’rp’ from
 generating "call swt" in place of all "stop"
 statements.

 The remainder of the command line is used to specify the
 names of the Ratfor input file(s) and the Fortran output file.
 If the "−o" option, followed by a filename, is selected, then the
 named file is used for Fortran output. Any remaining filenames
 are considered Ratfor source files. If no other file names are
 specified, standard input is read. If the "−o" option is not
 specified, then the output filename is constructed from the first
 input filename by changing a ".r" suffix (if present) to ".f".
 If the ".r" suffix is not present, the output filename is the
 input filename followed by the suffix ".f".

 The format of the translation file used with the "−x" option
 is as follows. Each line contains descriptions of two charac−
 ters: the Prime native character to be replaced, and the charac−
 ter value to replace it. These descriptions may be any one of
 the following: a single non−blank Prime ASCII character, a num−
 ber in a format acceptable to ’gctoi’ (must be more than one
 digit), or an ASCII mnemonic acceptable to ’mntoc’. In addition,
 the character to be replaced may also be the mnemonic "EOS" to
 indicate that the value of the end−of−string indicator is to be
 changed. For example, here is a portion of the table for con−
 verting the EBCDIC character set:

 A 16rc1
 B 16rc2
 ...
 Z 16re9
 0 16rf0
 ...
 9 16rf9
 SP 16r40

 − 113 −

 | TABLE OF CONTENTS

 Ratfor Language Guide

 What is Ratfor? .. 1

 Differences Between Ratfor and Fortran 1
 Source Program Format 1
 Case Sensitivity 1
 Blank Sensitivity 2
 Card Columns 2
 Multiple Statements per Line 2
 Statement Labels and Continuation 3
 Comments ... 4
 Identifiers ... 5
 Integer Constants 6
 String Constants 7
 Logical and Relational Operators 9
 Assignment Operators 10
 Fortran Statements in Ratfor Programs 11
 Incompatibilities 12

 Ratfor Text Substitution Statements 13
 Define .. 13
 Undefine .. 16
 Include ... 17

 Ratfor Declarations 18
 String .. 18
 Stringtable ... 18
 Linkage ... 20
 Local ... 20

 Ratfor Control Statements 22
 Compound Statements 22
 If − Else ... 22
 While ... 23
 Repeat .. 23
 Do .. 24
 For ... 25
 Break ... 26
 Next .. 26
 Return .. 27
 Select .. 28
 Procedure ... 30

 − iii −

 Ratfor Language Reference

 Differences Between Ratfor and Fortran 33
 Source Program Format 33
 Identifiers ... 33
 Integer Constants 34
 String Constants 34
 Logical and Relational Operators 34
 Assignment Operators 35
 Escape Statements 35
 Incompatibilities 36

 Ratfor Text Substitution Statements 37
 Define .. 37
 Undefine .. 37
 Include ... 37

 Ratfor Declarations 38
 Linkage ... 38
 Local ... 38
 String .. 38
 Stringtable ... 38

 Ratfor Control Statements 39
 Break ... 39
 Do .. 39
 For ... 39
 If .. 39
 Next .. 39
 Procedure ... 40
 Repeat .. 40
 Return .. 40
 Select .. 40
 While ... 41

 Ratfor Programming Under the Subsystem

 Requirements for Ratfor Programs 42

 Running Ratfor Programs Under the Subsystem 43
 Preprocessing ... 43
 Compiling ... 44
 Linking ... 46
 Executing ... 48
 Shortcuts ... 48
 Shell Programs 48
 The ’Rfl’ Command 49
 Storing Source Programs Separately 49
 Compiling Programs Separately 49

 − iv −

 Debugging ... 51
 Performance Monitoring 55
 Conditional Compilation 56
 Portability ... 56

 Source Program Format Conventions 57
 Statement Placement 57
 Indentation ... 58
 Subsystem Definitions 59

 Using the Subsystem Support Routines 60
 Termination ... 60
 Character Strings 60
 Equal .. 61
 Index .. 61
 Length ... 62
 Mapdn and Mapup 62
 Mapstr ... 62
 Scopy .. 63
 Type ... 63
 File Access ... 63
 Open and Close 64
 Create ... 65
 Mktemp and Rmtemp 65
 Wind and Rewind 65
 Trunc .. 66
 Remove ... 66
 Cant ... 66
 Getlin ... 66
 Getch .. 67
 Input .. 67
 Readf .. 69
 Putlin ... 70
 Putch .. 70
 Print .. 70
 Writef ... 71
 Fcopy .. 71
 Markf and Seekf 71
 Getto .. 72
 Type Conversion 73
 Decode ... 75
 Encode ... 76
 Argument Access 76
 Getarg ... 76
 Parscl ... 76
 Dynamic Storage Management 79
 Dsinit ... 80
 Dsget .. 80
 Dsfree ... 80
 Dsdump ... 80
 Symbol Table Manipulation 82
 Mktabl ... 83
 Enter .. 83
 Lookup ... 83
 Delete ... 84
 Rmtabl ... 84

 − v −

 Sctabl ... 84
 Other Routines .. 85

 Appendixes

 Appendix A −− Implementation of Control Statements 87
 Break ... 88
 Do .. 89
 For ... 90
 If .. 92
 If − Else ... 93
 Next .. 94
 Repeat .. 95
 Return .. 96
 Select .. 97
 Select (<integer expression>) 100
 While ... 103

 Appendix B −− Linking Programs With Initialized Common ... 104

 Appendix C −− Requirements for Subsystem Programs 105

 Appendix D −− The Subsystem Definitions 107
 Characters .. 107
 Data Types .. 107
 Macro Subroutines 107
 Language Extensions 108
 Limits .. 108
 Standard Ports .. 109
 Argument and Return Values 109

 Appendix E −− ’Rp’ Reserved Words 110

 Appendix F −− Command Line Syntax 111

 − vi −

 Software Tools Text Formatter
 User’s Guide

 Terrell L. Countryman
 Perry B. Flinn
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | July, 1984

 Foreword

 ’Fmt’ is a program designed to facilitate the preparation of
 neatly formatted text. It provides many features, such as
 automatic margin alignment, paragraph indentation, hyphenation
 and pagination, that are designed to greatly ease an otherwise
 tedious job.

 It is the intent of this guide to familiarize the user with
 the principles of automatic text formatting in general and with
 | the capabilities and usage of ’fmt’ in particular.

 − v −

 Text Formatter User’s Guide

 * Basics

 Usage

 ’Fmt’ takes as input a file containing text with intersper−
 sed formatting instructions. It is invoked by a command with
 various optional parameters, discussed below. The resultant out−
 put is appropriately formatted text suitable for a printer having
 backspacing capabilities. The output of ’fmt’ is made available
 on its first standard output port, and so may be placed in a
 file, sent to a line printer, or changed in any of a number of
 ways, simply by applying standard Software Tools Subsystem I/O
 redirection.

 When ’fmt’ is invoked from the Subsystem, there are several
 optional parameters that may be specified to control its
 operation. The full command line syntax is

 fmt [−s] [−p<first>[−<last>]] { <file name> }

 A brief explanation of the cryptic notation: the items enclosed
 within square brackets ("[]") are optional −− they may or may not
 be specified; items enclosed between braces ("{}") may occur any
 number of times, including zero; items enclosed in angle brackets
 ("<>") designate character strings whose significance is sug−
 gested by the text within the brackets; everything else should be
 taken literally.

 And now for an explanation of what these parameters mean:

 −s If this option is selected, ’fmt’ will pause at the top
 of each page, ring the bell or buzzer on your terminal,
 and wait for a response. This feature is for the
 benefit of people using hard−copy terminals with paper
 not having pin−feed margins. The correct response, to
 be entered after the paper is mounted, is a control−c
 (hold the ’control’ key down and type ’c’).

 −p ... This option allows selection of which pages of the
 formatted document will actually be printed.
 Immediately following the "−p", without any intervening
 spaces, should be a number indicating the first page to
 be printed. Following this, a second number may be
 specified, separated from the first by a single dash,
 which indicates the last page to be printed. If this
 second number is omitted, all remaining pages will be
 produced.

 <file> Any number of file names may be specified on the com−
 mand line. ’Fmt’ will open the files in turn,
 formatting the contents of each one as if they
 constituted one big file. When the last named file is
 processed, ’fmt’ terminates. If no file names are
 specified, standard input number one is used. In
 addition, standard input may be specified explicitly on

 − 1 −

 Text Formatter User’s Guide

 the command line by using a dash as a file name.

 Commands and Text

 ’Fmt’, like almost every other text formatter ever written,
 operates on an input stream that consists of a mixture of text
 and formatting commands. Each command starts at the beginning of
 a line with a ’control character’, usually a period, followed by
 a two character name, in turn followed by some optional
 ’parameters’. There must not be anything else on the line. For
 example, in

 .ta 11 21 31 41

 the control character is a period, the command name is ta, and
 there are four parameters: "11", "21", "31" and "41". Notice
 that the command name and all the parameters must be separated
 from each other by one or more blanks. Anything not recognizable
 as a command is treated as text.

 Filling and Margin Adjustment

 Filled Text

 ’Fmt’ collects as many words as will fit on a single output
 line before actually writing it out, regardless of line boun−
 daries in its input stream. This is called ’filling’ and is
 standard practice for ’fmt’. It can, however, be turned off with
 the ’no−fill’ command

 .nf

 and lines thenceforth will be copied from input to output unal−
 tered. When you want to turn filling back on again, you may do
 so with the ’fill’ command

 .fi

 and ’fmt’ will resume its normal behavior.

 If there is a partially filled line that has not yet been
 written out when an nf command is encountered, the line is forced
 out before any other action is taken. This phenomenon of forcing
 out a partially filled line is known as a ’break’ and occurs
 implicitly with many formatting commands. To cause one
 explicitly, the ’break’ command

 .br

 is available.

 − 2 −

 Text Formatter User’s Guide

 Hyphenation

 If, while filling an output line, it is discovered that the
 next word will not fit, an attempt is made to hyphenate it.
 Although ’fmt’ is usually quite good in its choice of where to
 split a word, it occasionally makes a gaffe or two, giving reason
 to want to turn the feature off. Automatic hyphenation can be
 disabled with the ’no−hyphenation’ command

 .nh

 long enough for a troublesome word to be processed, and then
 reenabled with the ’hyphenate’ command

 .hy

 Neither command causes a break.

 Margin Adjustment

 After filling an output line, ’fmt’ inserts extra blanks
 between words so that the last word on the line is flush with the
 right margin, giving the text a "professional" appearance. This
 is one of several margin adjustment modes that can be selected
 with the ’adjust’ command

 .ad <mode>

 The optional parameter <mode> may be any one of four single
 characters: "b", "c", "l" or "r". If the parameter is "b" or
 missing, normal behavior will prevail −− both margins will be
 made even by inserting extra blanks between words. This is the
 default margin adjustment mode. If "c" is specified, lines will
 be shifted to the right so that they are centered between the
 left and right margins. If the parameter is "l", no adjustment
 will be performed; the line will start at the left margin and the
 right margin will be ragged. If "r" is specified, lines will be
 moved to the right so that the right margin is even, leaving the
 left margin ragged.

 The ’no−adjustment’ command

 .na

 has exactly the same effect as the following ’adjust’ command:

 .ad l

 No adjustment will be performed, leaving the left margin even and
 the right margin ragged. In no case does a change in the adjust−
 ment mode cause a break.

 − 3 −

 Text Formatter User’s Guide

 Centering

 Input lines may be centered, without filling, with the help
 of the ’center’ command

 .ce N

 The optional parameter N is the number of subsequent input lines
 to be centered between the left and right margins. If the
 parameter is omitted, only the next line of input text is
 centered. Typically, one would specify a large number, say 1000,
 to avoid having to count lines; then, immediately following the
 lines to be centered, give a ’center’ command with an parameter
 of zero. For example:

 .ce 1000
 more lines
 than I care
 to count
 .ce 0

 It is worth noting the difference between

 .ce

 and

 .ad c

 When the former is used, an implicit break occurs before each
 line is printed, preventing filling of the centered lines; when
 the latter is used, each line is filled with as many words as
 possible before centering takes place.

 Sentence Punctuation

 By default, ’fmt’ adds an extra blank after punctuation at
 the end of a sentence; specifically, after periods, colons,
 exclamation points and question marks. This may not be
 desirable, particularly when abbreviations or a person’s initials
 are involved. Thus, it can be turned on and off at will. The
 ’single−blank’ command

 .sb

 turns the mode off, while the ’extra−blank’ command

 .xb

 turns it back on again. As with hyphenation, neither command
 causes a break.

 − 4 −

 Text Formatter User’s Guide

 Summary − Filling and Margin Adjustment

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .ad <mode> "b" "b" no Set margin adjustment
 mode.

 .br − − yes Force a break.

 .ce N N=0 N=1 yes Center N input text
 lines.

 .fi on − no Turn on fill mode.

 .hy on − no Turn on automatic
 hyphenation.

 .na − − no Turn off margin adjust−
 ment.

 .nf − − yes Turn off fill mode.
 (Also inhibits adjust−
 ment.)

 .nh − − no Turn off automatic
 hyphenation.

 .sb off − no Single blank after end of
 sentence.

 .xb on − no Extra blank after end of
 sentence.

 Spacing and Page Control

 Line Spacing

 ’Fmt’ usually produces single−spaced output, but this can be
 changed, without a break, using the ’line−spacing’ command

 .ls N

 The parameter N specifies how many lines on the page a single
 line of text will use; for double spacing, N would be two. If N
 is omitted, the default (single) spacing is reinstated.

 Blank lines may be produced with the ’space’ command

 .sp N

 − 5 −

 Text Formatter User’s Guide

 The parameter N is the number of blank lines to produce; if omit−
 ted, a value of one is assumed. The sp command first causes a
 break; this not only causes a partially filled line to be output,
 but if the current line spacing is more than one, the break will
 cause the extra blank lines to be output as well. Then the blank
 lines generated by sp are output. Thus, if output is being
 double−spaced and the command

 .sp 3

 is given, four blank lines will be generated: one from the
 double−spacing that is in effect, and three from the sp command.
 If the value of N calls for more blank lines than there are
 remaining on the current page, any extra ones are discarded.
 This ensures that, normally, each page begins at the same
 distance from the top of the paper.

 Page Division

 ’Fmt’ automatically divides its output into pages, leaving
 adequate room at the top and bottom of each page for running
 headings and footings. There are several commands that
 facilitate the control of page divisions when the normal behavior
 is inadequate.

 The ’begin−page’ command

 .bp +N

 causes a break and a skip to the top of the next page. If a
 parameter is given, it serves to alter the page number and so it
 must be numeric with an optional plus or minus sign. If the
 parameter is omitted, the page number is incremented by one. If
 the command occurs at the top of a page before any text has been
 printed on it, the command is ignored, except perhaps to set the
 page number. This is to prevent the random occurrence of blank
 pages.

 The optionally signed numeric parameter is a form of
 parameter used by many formatting commands. When the sign is
 omitted, it indicates an absolute value to be used; when the sign
 is present, it indicates an amount to be added to or subtracted
 from the current value.

 The page number may be set independently of the ’begin−page’
 command with the ’page−number’ command

 .pn +N

 The next page after the current one, when and if it occurs, will
 be numbered +N. No break is caused.

 The length of each page produced by ’fmt’ is normally 66
 lines. This is standard for eleven inch paper printed at six
 lines per inch. However, if non−standard paper is used, the

 − 6 −

 Text Formatter User’s Guide

 printed length of the page may easily be changed with the ’page−
 length’ command

 .pl +N

 which will set the length of the page to +N lines without causing
 a break.

 | It is possible skip an arbitrary number of pages in a
 | controlled fashion. To do this, use the ’page−skip’ command

 | .ps <max> <modulus>

 | <Max> is the maximum number of pages plus one that ’fmt’ will
 | skip. <Modulus> is the number which ’fmt’ uses modulo the next
 | output page number to count skipping pages. It works as follows:
 | ’Fmt’ sees the .ps command. It computes the page number of the
 | current page plus one, and then takes the remainder of that num−
 | ber divided by the <modulus>, and saves it. ’Fmt’ skips pages,
 | adding one to this saved value. As long as this value is less
 | than <max>, it continues to skip pages. For instance, if the
 | current page is 15, and you issue a

 | .ps 3 5

 | command, ’fmt’ would compute ((15 + 1) mod 5), yielding (16 mod
 | 5), which is one (16 divided by 5 is 3, with 1 left over). It
 | will then skip two pages, since it started with one, then skipped
 | one, which is two. This is still less than three, so it skips
 | one more page, yielding three, which is not less than three, so
 | it stops. It is really quite simple. For instance, to skip to
 | the next even page, use

 | .ps 2 2

 | and to skip to the next odd page, use

 | .ps 1 2

 | This feature is particularly useful for writing macros which aid
 | with large documents. For example, it may be necessary that a
 | chapter always start on an odd numbered page. So the ’begin
 | chapter’ macro would have a ’.ps 1 2’ as one of its lines. (See
 | later for more details on how to write macros.)

 Finally, if it is necessary to be sure of having enough room
 on a page, say for a figure or a graph, use the ’need’ command

 .ne N

 ’Fmt’ will cause a break, check if there are N lines left on the
 current page and, if so, will do nothing more. Otherwise, it
 will skip to the top of the next page where there should be
 adequate room.

 − 7 −

 Text Formatter User’s Guide

 ’No−space’ Mode

 ’No−space’ mode is a feature that assists in preventing
 unwanted blank lines from appearing, usually at the top of a
 page. When in effect, certain commands that cause blank lines to
 be generated, such as bp, ne and sp, are suppressed. For the
 most part, ’no−space’ mode is managed automatically; it is turned
 on automatically at the top of each page before the first text
 has appeared, and turned off again automatically when a line of
 output is generated. This accounts for the suppression of bp
 commands at the top of a page and the discarding of excess blank
 lines in sp commands.

 ’No−space’ mode may be turned on explicitly with the ’no−
 space’ command

 .ns

 and turned off explicitly with the ’restore−spacing’ command

 .rs

 Neither command causes a break.

 Summary − Spacing and Page Control

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .bp +N N=1 next yes Begin a new page.

 .ls N N=1 N=1 yes Set line spacing.

 .ne N − N=1 yes Express a need for N
 contiguous lines.

 .ns on − no Turn on ’no−space’ mode.

 .pl +N N=66 N=66 no Set page length.

 | .pn +N N=1 ignored no Set page number.

 | .ps N M N=M=0 N=M=0 yes Skip pages while (page
 | number mod M) is less
 | than N.

 .rs − − no Turn off ’no−space’ mode.

 .sp N − N=1 yes Put out N blank lines.

 − 8 −

 Text Formatter User’s Guide

 Margins and Indentation

 Margins

 All formatting operations are performed within the framework
 of a page whose size is defined by four margins: top, bottom,
 left and right. The top and bottom margins determine the number
 of lines that are left blank at the top and bottom of each page.
 Likewise, the left and right margins determine the first and last
 columns across the page into which text may be placed.

 Top and Bottom Margins

 Both the top and the bottom margins consist of two sub−
 margins that fix the location of the header and footer lines.
 For the sake of clarity, the first and second sub−margins of the
 top margin will be referred to as ’margin 1’ and ’margin 2’, and
 the first and second sub−margins of the bottom margin, ’margin 3’
 and ’margin 4’.

 The value of margin 1 is the number of lines to skip at the
 top of each page before the header line, plus one. Thus, margin
 1 includes the header line and all the blank lines preceding it
 from the top of the paper. By default, its value is three. Mar−
 gin 2 is the number of blank lines that are to appear between the
 header line and the first text on the page. Normally, it has a
 value of two. The two together form a standard top margin of
 five lines, with the header line right in the middle. It is easy
 enough to change these defaults if they prove unsatisfactory;
 just use the ’margin−1’ and ’margin−2’ commands

 .m1 +N
 .m2 +N

 to set either or both sub−margins to +N.

 The bottom margin is completely analogous to the top margin,
 with margin 3 being the number of blank lines between the last
 text on a page and the footer line, and margin 4 being the number
 of lines from the footer to the bottom of the paper (including
 the footer). They may be set using the ’margin−3’ and ’margin−4’
 commands

 .m3 +N
 .m4 +N

 which work just like their counterparts in the top margin; none
 causes a break.

 Left and Right Margins

 The left and right margins define the first and last columns
 into which text may be printed. They affect such things as

 − 9 −

 Text Formatter User’s Guide

 adjustment and centering. The left margin is normally set at
 column one, though this is easily changed with the ’left−margin’
 command

 .lm +N

 The right margin, which is normally positioned in column sixty,
 can be set similarly with the ’right−margin’ command

 .rm +N

 To ensure that the new margins apply only to subsequent text,
 each command causes a break before changing the margin value.

 Indentation

 It is often desirable to change the effective value of the
 left margin for indentation, without actually changing the margin
 itself. For instance, all of the examples in this guide are
 indented from the left margin in order to set them apart from the
 rest of the text. Indentation is easily arranged using the
 ’indent’ command,

 .in +N

 whose parameter specifies the number of columns to indent from
 the left margin. The initial indentation value, and the one
 assumed if no parameter is given, is zero (i.e., start in the
 left margin).

 For the purpose of margin adjustment, the current indenta−
 tion value is added to the left margin value to obtain the effec−
 tive left margin. In this respect, the lm and in commands are
 quite similar. But, whereas the left margin value affects the
 placement of centered lines produced by the ce command, indenta−
 tion is completely ignored when lines are centered.

 Paragraph indentation poses a sticky problem in that the
 indentation must be applied only to the first line of the
 paragraph, and then normal margins must be resumed. This can’t
 be done conveniently with the ’indent’ command, since it causes a
 break. Therefore, ’fmt’ has a ’temporary−indent’ command

 .ti +N

 whose function is to cause a break, alter the current indentation
 value by +N until the next line of text is produced, and then
 reset the indentation to its previous value. So to begin a new
 paragraph with a five column indentation, one would say

 .ti +5

 − 10 −

 Text Formatter User’s Guide

 Page Offset

 As if control over the left margin position and indentation
 were not enough, there is yet a third means for controlling the
 position of text on the page. The concept of a page offset
 involves nothing more than prepending a number of blanks to each
 and every line of output. It is primarily intended to allow out−
 put to be easily positioned on the paper without having to adjust
 margins and indentation (with all their attendant side effects)
 and without having to physically move the paper. Although the
 page offset is initially zero, other arrangements may be made
 with the ’page−offset’ command

 .po +N

 which causes a break.

 ’Eo’ and ’oo’ commands allow you to specify different page
 offsets for even− and odd−numbered pages respectively. Like
 ’po’, they are initialized to zero and revert to that value when
 no parameter is specified. For instance,

 .eo +N

 will change the even−numbered page offset by N (or to N if no
 sign is specified).

 Margin Characters

 It is common practice in the revision of technical
 literature to indicate parts of the text that are different from
 previous versions of the same document. Such changes are usually
 indicated by "revision bars" which are vertical lines in the left
 margin of lines that are new or revised. ’Fmt’ provides for this
 capability with two formatting commands. The ’margin−offset’
 command,

 .mo +N

 without causing a break, specifies that +N columns are to be
 reserved between the ’page−offset’ columns and the ’left−margin’
 column for revision bars or other marginal characters. The mar−
 gin offset starts out at zero, and reverts to that value if no
 parameter is specified.

 Once a non−zero margin offset has been set, any arbitrary
 character may be placed in the leftmost column of the area with
 the ’margin−character’ command:

 .mc <char>

 Initially, and when <char> is omitted, this character has blank
 as its value. For revision bars, <char> would be specified as
 "|". Whatever character is specified, it is placed next to the
 left margin on every line of output as long as the margin offset

 − 11 −

 Text Formatter User’s Guide

 is non−zero.

 Summary − Margins and Indentation

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .eo +N N=0 N=0 yes Set even page offset.

 .in +N N=0 N=0 yes Indent left margin.

 .lm +N N=1 N=1 yes Set left margin.

 .m1 +N N=3 N=3 no Set top margin before and
 including page heading.

 .m2 +N N=2 N=2 no Set top margin after page
 heading.

 .m3 +N N=2 N=2 no Set bottom margin before
 page footing.

 .m4 +N N=3 N=3 no Set bottom margin includ−
 ing and after page
 footing.

 .mc <char> BLANK BLANK no Set margin character.

 .mo +N N=0 N=0 no Set margin offset.

 .oo +N N=0 N=0 yes Set odd page offset.

 .po +N N=0 N=0 yes Set page offset.

 .rm +N N=60 N=60 yes Set right margin.

 .ti +N N=0 N=0 yes Temporarily indent left
 margin.

 Headings, Footings and Titles

 Three Part Titles

 A three part title is a line of output consisting of three
 segments. The first segment is left−justified, the second is
 centered between the left and right margins, and the third is
 right−justified. For example

 left part center part right part

 − 12 −

 Text Formatter User’s Guide

 is a three part title whose first segment is "left part", whose
 second segment is "center part", and whose third segment is
 "right part".

 To generate a title at the current position on the page, the
 ’title’ command is available:

 .tl /left part/center part/right part/

 In fact, this command was used to generate the previous example.
 The parameter to the title command is made up of the text of the
 three parts, with each segment enclosed within a pair of
 delimiter characters. Here, the delimiter is a slash, but any
 other character may be used as long as it is used consistently
 within the same command. If one or more segments are to be omit−
 ted, indicate this with two adjacent delimiters at the desired
 position. Thus,

 .tl ///Page 1/

 specifies only the third segment and would produce something like
 this:

 Page 1

 It is not necessary to include the trailing delimiters.

 To facilitate page numbering, you may include the sharp
 character ("#") anywhere in the text of the title; when the com−
 mand is actually performed, ’fmt’ will replace all occurrences of
 the "#" with the current page number. To produce a literal sharp
 character in the title, it should be preceded by an "@"

 @#

 so that it loses its special meaning.

 The first segment of a title always starts at the left mar−
 gin as specified by the lm command. While the third segment
 normally ends at the right margin as specified by the rm command,
 this can be changed with the ’length−of−title’ command:

 .lt +N

 which changes the length of subsequent titles to +N, still
 beginning at the left margin. Note that the title length is
 automatically set by the lm and rm commands to coincide with the
 distance between the left and right margins.

 Page Headings and Footings

 The most common uses for three part titles are page headings
 and footings. The header and footer lines are initially blank.
 Either one or both may be set at any time, without a break, by
 using the ’header’ command

 − 13 −

 Text Formatter User’s Guide

 .he /left/center/right/

 to set the page heading, and the ’footer’ command

 .fo /left/center/right/

 to set the page footing. The change will become manifest the
 next time the top or the bottom of a page is reached. As with
 the tl command, the "#" may be used to access the current page
 number.

 It is often desirable when producing text to be printed on
 both sides of a page to have different headings and footings on
 odd− and even−numbered pages. Although the he and fo commands
 affect the headings and footings on all pages, it is possible to
 set up independent headings and footings for odd− and even−
 numbered pages. For odd−numbered pages, the ’odd−header’ and
 ’odd−footer’ commands are available:

 .oh /left/center/right/
 .of /left/center/right/

 while the ’even−header’ and ’even−footer’ commands are provided
 for even−numbered pages:

 .eh /left/center/right/
 .ef /left/center/right/

 As an illustration, the following commands were used to generate
 the page headings and footings for this guide:

 .eh /Text Formatter User’s Guide///
 .oh ///Text Formatter User’s Guide/
 .fo //− # −//

 − 14 −

 Text Formatter User’s Guide

 Summary − Headings, Footings and Titles

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .ef /l/c/r/ blank blank no Set even−numbered page
 footing.

 .eh /l/c/r/ blank blank no Set even−numbered page
 heading.

 .fo /l/c/r/ blank blank no Set running page footing.

 .he /l/c/r/ blank blank no Set running page heading.

 .lt +N N=60 N=60 no Set length of header,
 footer and titles.

 .of /l/c/r/ blank blank no Set odd−numbered page
 footing.

 .oh /l/c/r/ blank blank no Set odd−numbered page
 heading.

 .tl /l/c/r/ blank blank yes Generate a three part
 title.

 Tabulation

 Tabs

 Just like any good typewriter, ’fmt’ has facilities for
 tabulation. When it encounters a special character in its input
 called the ’tab character’ (analogous to the TAB key on a
 typewriter), it automatically advances to the next output column
 in which a ’tab stop’ has been previously set. Tab stops are
 always measured from the effective left margin, that is, the left
 margin plus the current indentation or temporary indentation
 value. Whatever column the left margin may actually be in, it is
 always assumed to be column one for the purpose of tabulation.

 Originally, a tab stop is set in every eighth column, start−
 ing with column nine. This may be changed using the ’tab’ com−
 mand

 .ta <col> <col> ...

 Each parameter specified must be a number, and causes a tab stop
 to be set in the corresponding output column. All existing stops
 are cleared before setting the new ones, and a stop is set in
 every column beyond the last one specified. This means that if

 − 15 −

 Text Formatter User’s Guide

 no columns are specified, a stop is set in every column.

 By default, ’fmt’ recognizes the ASCII TAB, control−i, as
 the ’tab character’. But since this is an invisible character
 and is guaranteed to be interpreted differently by different
 terminals, it can be changed to any character with the ’tab−
 character’ command:

 .tc <char>

 While there is no restriction on what particular character is
 specified for <char>, it is wise to choose one that doesn’t occur
 too frequently elsewhere in the text. If you omit the parameter,
 the tab character reverts to the default.

 When ’fmt’ expands a tab character, it normally puts out
 enough blanks to get to the next tab stop. In other words, the
 default ’replacement’ character is the blank. This too may
 easily be changed with the ’replacement−character’ command:

 .rc <char>

 As with the tc command, <char> may be any single character. If
 omitted, the default is used.

 A common alternate replacement character is the period,
 which is frequently used in tables of contents. The following
 example illustrates how one might be constructed:

 .ta 52
 .tc \
 Section Name\Page
 .rc .
 .sp
 .nf
 .ta 53
 Basics\1
 Filling and Margin Adjustment\2
 Spacing and Page Control\5
 .sp
 .fi

 The result should look about like this:

 Section Name Page

 Basics..1
 Filling and Margin Adjustment.......................2
 Spacing and Page Control............................5

 A final word on tabs: Since the default replacement charac−
 ter is a blank you might think that, in the process of adjusting
 margins (i.e., when the adjustment mode is "b"), ’fmt’ might
 throw in extra blanks between words that were separated by the
 tab character. Since this is definitely not the expected or

 − 16 −

 Text Formatter User’s Guide

 desired behavior, ’fmt’ uses what is called a "phantom blank" as
 the default replacement character. The phantom blank prints as
 an ordinary blank, but is not recognized as one during margin
 adjustment.

 Summary − Tabulation

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .ta N ... 9 17 ... all no Set tab stops.

 .tc c TAB TAB no Set tab character.

 .rc c BLANK BLANK no Set tab replacement
 character.

 Miscellaneous Commands

 Comments

 It is rare that a document survives its writing under the
 pen of just one author or editor. More frequently, several
 different people are likely to put in their two cents worth
 concerning its format or content. So, if the author is
 particularly attached to something he has written, he is well
 advised to say so. Comments are an ideal vehicle for this
 purpose and are easily introduced with the ’comment’ command

 .# <commentary text>

 Everything after the # up to and including the next newline
 character is completely ignored by ’fmt’.

 Boldfacing and Underlining

 ’Fmt’ makes provisions for boldfacing and underlining lines
 or parts thereof with two commands:

 .bf N

 boldfaces the next N lines of input text, while

 .ul N

 underlines the next N lines of input text. In both cases, if N
 is omitted, a value of one is assumed. Neither command causes a
 break, allowing single words or phrases to be boldfaced or under−
 lined without affecting the rest of the output line.

 − 17 −

 Text Formatter User’s Guide

 It is also possible to use the two in combination. For
 instance, the heading at the beginning of the table of contents
 was produced by a sequence of commands and text similar to the
 following:

 .bf
 .ul
 TABLE OF CONTENTS

 As with the ’center’ command, these two commands are often used
 to bracket the lines to be affected by specifying a huge
 parameter value with the first occurrence of the command and a
 value of zero with the second:

 .bf 1000
 .ul 1000
 lots of lines
 to be
 boldfaced
 and
 underlined
 .bf 0
 .ul 0

 Control Characters

 As mentioned in the first section, command lines are
 distinguished from text by the presence of a ’control character’
 in column one. In all the examples cited thus far, a period has
 been used to represent the control character. It is possible to
 select any character for this purpose. In fact, several
 occasions arose in the writing of this guide which called for use
 of an alternate control character, particularly in the construc−
 tion of the command summaries at the end of each section. The
 ’control−character’ command may be used anywhere to select a new
 value:

 .cc <char>

 The parameter <char>, which may be any single character, becomes
 the new control character. If the parameter is omitted, the
 familiar period is reinstated.

 It has been shown that many commands automatically cause a
 break before they perform their function. When this presents a
 problem, it can be altered. If instead of using the basic
 control character the ’no−break’ control character is used to
 introduce a command, the automatic break that would normally
 result is suppressed. The standard no−break control character is
 the grave accent ("‘"), but may easily be changed with the fol−
 lowing command:

 .c2 <char>

 − 18 −

 Text Formatter User’s Guide

 As with the cc command, the parameter may be any single charac−
 ter, or may be omitted if the default value is desired.

 Prompting

 Brief, one−line messages may be written directly to the
 user’s terminal using the ’prompt’ command

 .er <brief, one−line message>

 The text that is actually written to the terminal starts with the
 first non−blank character following the command name, and
 continues up to, but not including, the next newline character.
 If a newline character should be included in the message, the
 escape sequence

 @n

 may be used. Leading blanks may also be included in the message
 by preceding the message with a quote or an apostrophe. ’Fmt’
 will discard this character, but will then print the rest of the
 message verbatim. For instance,

 .er ’ this is a message with 10 leading blanks

 would write the following text on the terminal, leaving the cur−
 sor or carriage at the end of the message

 this is a message with 10 leading blanks

 For a multiple−line message, try

 .er multiple@nline@nmessage@n

 The output should look like this:

 multiple
 line
 message

 Prompts are particularly useful in form letter applications
 where there may be several pieces of information that ’fmt’ has
 to ask for in the course of its work. The next section describes
 how ’fmt’ can dynamically obtain information from the user.

 Premature Termination

 If ’fmt’ should ever encounter an ’exit’ command

 .ex

 in the course of doing its job, it will cause a break and exit
 immediately to the Subsystem.

 − 19 −

 Text Formatter User’s Guide

 Summary − Miscellaneous Commands

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .# − − no Introduce a comment.

 .bf N N=0 N=1 no Boldface N input text
 lines.

 .c2 c ‘ ‘ no Set no−break control
 character.

 .cc c . . no Set basic control charac−
 ter.

 .er text − ignored no Write a message to the
 terminal.

 .ex − − yes Exit immediately to the
 Subsystem.

 .ul N N=0 N=1 no Underline N input text
 lines.

 Input/Output Processing

 Input File Control

 Up to this point, it has been assumed that ’fmt’ reads only
 from its standard input file or from files specified as
 parameters on the command line. It is also possible to
 dynamically include the contents of any file in the midst of
 formatting another. This aids greatly in the modularization of
 large, otherwise unwieldy documents, or in the definition of
 frequently used sequences of commands and text.

 The ’source’ command is available to dynamically include the
 contents of a file:

 .so <file>

 The parameter <file> is mandatory; it may be an arbitrary file
 system pathname, or, as with file names on the command line, a
 single dash ("−") to specify standard input number one.

 The effect of a ’source’ command is to temporarily preempt
 the current input source and begin reading from the named file.
 When the end of that file is reached, the original source of
 input is resumed. Files included with ’source’ commands may
 themselves contain other ’source’ commands; in fact, this

 − 20 −

 Text Formatter User’s Guide

 ’nesting’ of input files may be carried out to virtually any
 depth.

 ’Fmt’ provides one additional command for manipulating input
 files. The ’next file’ command

 .nx <file>

 may be used for either one of two purposes. If you specify a
 <file> parameter, all current input files are closed (including
 those opened with so commands), and the named file becomes the
 new input source. You can use this for repeatedly processing the
 same file, as, for example, with a form letter. If you omit the
 <file> parameter, ’fmt’ still closes all of its current input
 files. But instead of using a file name you supply with the nx
 command, it uses the next file named on the command line that
 invoked ’fmt’. If there is no next file, then formatting
 terminates normally.

 Neither the so command nor the nx command causes a break.

 Output File Control

 The output of the formatter is always written on STDOUT
 unless you divert it with the divert output stream command, ’dv’.
 ’Dv’ can be used to divert fmt’s output to a named file:

 .dv <file>

 All output is written in <file> until a ’dv’ command with no
 parameter is specified. ’Dv’ can also be used to divert output
 to a temporary file that can be later read with the ’so’ command.
 This is useful for generating tables of contents for documents
 (see the "Application Notes" section). The command

 .dv N

 diverts output to stream ’N’ and can be read at any time and
 repeatedly by the command

 .so N

 Output will be diverted until the the ’dv’ command is seen again
 without parameters. (N can be an integer between 1 and 100; the
 upper limit may be somewhat less for you −−− it depends on the
 number of file units that you can have open and the number of
 file units that you actually have open at the time the command is
 executed).

 The basic difference between the two variants of ’dv’ is
 that ’dv <file>’ opens <file> for WRITE access; <file> cannot be
 used as an input file. ’Dv N’ opens a temporary file for
 READ/WRITE access; therefore, ’so N’ causes the temporary file to
 be rewound and read. If the command ’dv N’ occurs a second,
 third, fourth etc. time, diverted lines are appended to the end

 − 21 −

 Text Formatter User’s Guide

 of that same temporary file.

 One final important comment is necessary. We were hesitant
 to even tell you about ’dv’ because of its rather nasty habit of
 executing commands instead of diverting them. Since it is the
 only way for you to generate automatic table of contents we
 decided to document it. Just keep in mind that when you want to
 divert commands, precede them by a character other than your
 control character; you can later designate that character as your
 control character before you read the stream.

 Functions, Variables and Special Characters

 Whenever ’fmt’ reads a line of input, no matter what the
 source may be, there is a certain amount of ’pre−processing’ done
 before any other formatting operations take place. This pre−
 processing consists of the interpretation of ’functions’,
 ’variables’ and ’special characters’. A ’function’ is a
 predefined set of actions that produces a textual result, pos−
 sibly based on some user supplied textual input. For example,
 one hypothetical function might be named ’time’, and its result
 might be a textual representation of the current time of day:

 01:22:49

 A ’variable’ is simply one of ’fmt’s internal parameters, such as
 the current page length or the current line−spacing value; the
 name of each variable is the same as the two−character name of
 the corresponding command to set the value of that parameter.
 The result of a variable is just a textual representation of that
 value.

 A ’special character’ is like a function or variable, but
 its result is a single character that cannot be conveniently
 generated from the keyboard.

 From the standpoint of a user, functions, variables and
 special characters are all very similar. In fact, they are
 invoked identically by enclosing the appropriate name, plus any
 text to be used as arguments, in square brackets:

 [bf This text to be boldfaced]
 [ls]
 [alpha 5]

 Such a construct is known as a "function call."

 When ’fmt’ sees a function call in an input line, it excises
 everything in between the brackets, including the brackets them−
 selves, and inserts the results in its place. Naturally, anyth−
 ing not recognizable is left alone. If by chance you want the
 name of a function, variable or special character enclosed in
 square brackets included literally as part of the text, you can
 inhibit evaluation by preceding the left bracket with the escape
 character:

 − 22 −

 Text Formatter User’s Guide

 @[time]

 Similarly, a right bracket may appear literally inside a function
 call when preceded by an escape character:

 [bf [item 1@]]

 It is also possible to "nest" function calls so that the results
 of one may be used as arguments to another:

 [bf [ldate]]

 Number Registers

 | The ’number registers’ are a group of 200 accumulators (num−
 | bered 1−200) on which simple arithmetic operations may be per−
 formed. They find their greatest use in the preparation of
 documents with numbered sections and paragraphs. Number
 registers are accessed and manipulated by a special set of func−
 tions. The ’set’ function

 [set reg value]

 assigns the integer ’value’ to the register ’reg’ and yields the
 empty string as its result. The ’add’ function

 [add reg value]

 adds the integer ’value’ (which, by the way may be positive or
 negative) to the register ’reg’. This function too yields an
 empty result. Finally, the ’num’ function

 [num reg]

 yields the current value of the register ’reg’ as its result. In
 addition, ’reg’ may either be prefixed or postfixed by a plus or
 minus sign. If the sign appears before the register number, the
 register is incremented or decremented (according to the sign) by
 one before the function’s result is yielded. If the sign follows
 the register number, though, the register’s current value is
 yielded and then the register is incremented or decremented.

 Functions

 The following table summarizes the available functions:

 | add Add constant to number register
 | bf Boldface the arguments on output
 | cu Output the arguments with a continuous underline
 | date Current date; e.g., 11/27/84
 | day Current day of the week; e.g., Tuesday
 | ldate Current date: e.g., November 27, 1984
 num Output value of number register with optional pre−

 − 23 −

 Text Formatter User’s Guide

 | or post−incrementation or decrementation
 | rn Convert the argument to a lower−case Roman numeral
 RN Convert the argument to an upper−case Roman
 | numeral
 | set Set number register to value
 | sub Output the arguments as a subscript (requires
 | post−processor, e.g. ’sprint’)
 sup Output the arguments as a superscript (requires
 | post−processor)
 | time Current time of day; e.g., 01:22:54
 | ul Underline the arguments on output
 | letter Convert a number to its lower case equivalent
 | LETTER Convert a number to its upper case equivalent
 | vertspace Change the vertical spacing on a NEC Spinwriter
 | (requires spinwriter)
 | even Test if number is even
 | odd Test if number is odd
 | cap Capitalize Text
 | small Map all characters of text to lower case
 | plus Add two numbers
 | minus Subtract two numbers
 | header Return the page header
 | evenheader Return the even page header
 | oddheader Return the odd page header
 | footer Return the page footer
 | evenfooter Return the even page footer
 | oddfooter Return the odd page footer
 | cmp Perform string comparison
 | icmp Perform integer comparison
 | bottom Return the number of the last printed line
 | top Return the number of the first printed line

 Variables

 The formatting parameters whose values are available through
 function calls are summarized in the following table:

 | cc Current basic control character
 | c2 Current no−break control character
 | in Current indentation value
 | lm Current left margin value
 | ln Current line number on the page
 | ls Current line−spacing value
 | lt Length of titles
 | ml Current macro invocation level
 | m1 Current margin 1 value
 | m2 Current margin 2 value
 | m3 Current margin 3 value
 | m4 Current margin 4 value
 | ns True or false if no−space is in effect
 | pl Current page length value
 | pn Current page number
 | po Current page offset value
 | rm Current right margin value
 | tc Current tab character

 − 24 −

 Text Formatter User’s Guide

 | ti Current temporary indentation value
 tcpn Current page number, right justified in 4 charac−
 ter field

 Special Characters

 The following table summarizes the available special charac−
 ters. In each case, a positive integer may be included as an
 argument following the name to produce multiple instances of the
 character. For example, "[bl 5]" yields five contiguous phantom
 blanks. NOTE: in order for the Greek letters and mathematical
 symbols to be printed correctly, a post−processor such as
 ’dprint’ (see Section 3 of the Software Tools Subsystem Reference
 Manual) and/or special printing equipment is required.

 | bl Phantom blank
 | bs Backspace
 | alpha lower−case Greek alpha
 | * ALPHA upper−case Greek alpha
 | beta lower−case Greek beta
 | * BETA upper−case Greek beta
 | * chi lower−case Greek chi
 | * CHI upper−case Greek chi
 | delta lower−case Greek delta
 | * DELTA upper−case Greek delta
 | epsilon lower−case Greek epsilon
 | * EPSILON upper−case Greek epsilon
 | eta lower−case Greek eta
 | * ETA upper−case Greek eta
 | gamma lower−case Greek gamma
 | GAMMA upper−case Greek gamma
 | infinity infinity symbol
 | integral integration symbol
 | * INTEGRAL large integration sign
 | * iota lower−case Greek iota
 | * IOTA upper−case Greek iota
 | * kappa lower−case Greek kappa
 | * KAPPA upper−case Greek kappa
 | lambda lower−case Greek lambda
 | LAMBDA upper−case Greek lambda
 | mu lower−case Greek mu
 | * MU upper−case Greek mu
 | nabla inverted delta (APL del)
 | not EBCDIC−style not symbol
 | * nu lower−case Greek nu
 | * NU upper−case Greek nu
 | omega lower−case Greek omega
 | OMEGA upper−case Greek omega
 | * omicron lower−case Greek omicron
 | * OMICRON upper−case Greek omicron
 | partial partial differential symbol
 | phi lower−case Greek phi
 | PHI upper−case Greek phi
 | psi lower−case Greek psi
 | PSI upper−case Greek psi

 − 25 −

 Text Formatter User’s Guide

 | pi lower−case Greek pi
 | PI upper−case Greek pi
 | rho lower−case Greek rho
 | * RHO upper−case Greek rho
 | sigma lower−case Greek sigma
 | SIGMA upper−case Greek sigma
 | tau lower−case Greek tau
 | * TAU upper−case Greek tau
 | theta lower−case Greek theta
 | THETA upper−case Greek theta
 | * upsilon lower−case Greek upsilon
 | * UPSILON upper−case Greek upsilon
 | xi lower−case Greek xi
 | * XI upper−case Greek xi
 | zeta lower−case Greek zeta
 | * ZETA upper−case Greek zeta
 | * downarrow arrow pointing down
 | * uparrow arrow pointing up
 | * backslash back slash symbol
 | * tilde tilde symbol
 | * largerbrace large square right brace
 | * largelbrace large square left brace
 | * proportional proportional symbol
 | * apeq approximately equal to
 | * ge greater than or equal to
 | * imp implies
 | * exist there exists
 | * AND logical and
 | * ne not equal to
 | * psset proper subset
 | * sset subset
 | * le less than or equal to
 | * nexist there does not exist
 | * univ for every
 | * OR logical or
 | * iso congruence
 | * lfloor left floor
 | * rfloor right floor
 | * lceil left ceiling
 | * rceil right ceiling
 | * small0 a small 0
 | * small1 a small 1
 | * small2 a small 2
 | * small3 a small 3
 | * small4 a small 4
 | * small5 a small 5
 | * small6 a small 6
 | * small7 a small 7
 | * small8 a small 8
 | * small9 a small 9
 | * scolon semicolon
 | * dquote double quote
 | * dollar dollar sign

 | The special characters marked with an asterisk (*) are only
 | available on the NEC Spinwriter, and so the output of ’fmt’ must

 − 26 −

 Text Formatter User’s Guide

 | be post−processed with ’sprint’.

 | In particular, these characters require that the special
 | Times−Roman/Mathematics type wheel be in the Spinwriter. This
 | wheel, in order to accommodate the special characters, lacks
 | certain of the regular ASCII graphics. These are substituted for
 | by special functions. For example, [scolon] is used to produce a
 | semi−colon.

 Summary − Input Processing

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .dv [stream] − end ’.dv’ no Temporarily divert the
 output stream to a
 "filename" or to a tem−
 porary file designated by
 an integer "N" (to be
 later read by a ".so N"
 command) until a ’dv’
 command with no arguments
 is seen.

 .nx file − next arg no Move on to the next input
 file.

 .so <stream> − ignored no Temporarily alter the
 input source. "Stream
 can be a "−" to indicate
 standard input, a
 "filename," or an integer
 "N" corresponding to a
 temporary file created by
 a previous ’.dv N’ com−
 mand.

 Macros

 Macro Definition

 A macro is nothing more than a frequently used sequence of
 commands and/or text that have been grouped together under a
 single name. This name may then be used just like an ordinary
 command to invoke the whole group in one fell swoop.

 The definition (or redefinition) of a macro starts with a
 ’define’ command

 − 27 −

 Text Formatter User’s Guide

 .de xx

 whose parameter is a one or two character string that becomes the
 name of the macro. The macro name may consist of any characters
 other than blanks, tabs or newlines; upper and lower letters are
 distinct. The definition of the macro continues until a matching
 ’end’ command

 .en xx

 is encountered. Anything may appear within a macro definition,
 including other macro definitions. The only processing that is
 done during definition is the interpretation of variables and
 functions (i.e. things surrounded by square brackets). Other
 than this, lines are stored exactly as they are read from the
 input source. To include a function call in the definition of a
 macro so that its interpretation will be delayed until the macro
 is invoked, the opening bracket should be preceded by the escape
 character "@". For example,

 .# tm −−− time of day
 .de tm
 @[time]
 .en tm

 would produce the current time of day when invoked, whereas

 .# tm −−− time of day
 .de tm
 [time]
 .en tm

 would produce the time at which the macro definition was proces−
 sed.

 Macro Invocation

 Again, a macro is invoked like an ordinary command: a
 control character at the beginning of the line immediately fol−
 lowed by the name of the macro. So to invoke the above ’time−of−
 day’ macro, one might say

 .tm

 As with ordinary commands, macros may have parameters. In
 fact, anything typed on the line after the macro name is
 available to the contents of the macro. As usual, blanks and
 tabs serve to separate parameters from each other and from the
 macro name. If it is necessary to include a blank or a tab
 within a parameter, it may be enclosed in quotes. Thus,

 "parameter one"

 would constitute a single parameter and would be passed to the

 − 28 −

 Text Formatter User’s Guide

 macro as

 parameter one

 To include an actual quotation mark within the parameter, type
 two quotes immediately adjacent to each other. For instance,

 """quoted string"""

 would be passed to the macro as the single parameter

 "quoted string"

 Within the macro, parameters are accessed in a way similar
 to functions and variables: the number of the desired parameter
 is enclosed is square brackets. Thus,

 [1]

 would retrieve the first parameter,

 [2]

 would fetch the second, and so on. As a special case, the name
 of the macro itself may be accessed with

 [0]

 Assume there is a macro named "mx" defined as follows:

 .# mx −−− macro example
 .de mx
 Macro named ’[0]’, invoked with two arguments:
 ’[1]’ and ’[2]’.
 .en mx

 Then, typing

 .mx "param 1" "param 2"

 would produce the same result as typing

 Macro named ’mx’, invoked with two arguments:
 ’param 1’ and ’param 2’.

 Macros are quite handy for such common operations as start−
 ing a new paragraph, or for such tedious tasks as the construc−
 tion of tables like the ones appearing at the end of each section
 in this guide. For some examples of frequently used macros, see
 | the applications notes in the following pages.

 − 29 −

 Text Formatter User’s Guide

 | Appending To A Macro

 | It is possible to add text to the body of a previously
 | defined macro, using the ’append macro’ command:

 | .am xx

 | where xx is a previously defined macro. It is an error to append
 | to a macro which has not been previously defined. The additional
 | text of the macro is terminated with a ’.en xx’ command, just
 | like the initial definition of the macro. The rules for the
 | additional text of the macro are the same as for the initial
 | text, i.e. any function calls or special characters must be
 | escaped with an "@" sign to prevent their immediate evaluation.

 | Summary − Macros

 | Command Initial If no Cause
 | Syntax Value Parameter Break Explanation

 .de xx − ignored no Begin definition or
 redefinition of a macro.

 | .en xx − ignored no End macro definition.

 | .am xx − ignored no Add additional text to
 | the body of a previously
 | defined macro.

 | Conditional Line Processing

 | Introduction

 | This sections discusses the features of ’fmt’ which provide
 | you with considerable control and flexibility over the formatting
 | of your documents.

 | The .if command

 | ’Fmt’ allows you to test a condition and if that condition
 | is true, it will execute a command. Optionally, you may specify
 | a command to be executed if the condition is not true (an ’else’
 | part). This is done using the ’if’ command:

 | .if cond delim true_part [delim else_part]

 | This evaluates a condition (’cond’) which, if it is true, will
 | cause ’true_part’ to be executed, just as if ’true_part’ had been
 | on a line by itself. If the condition is false, and the

 − 30 −

 Text Formatter User’s Guide

 | ’else_part’ is present, then ’else_part’ will be executed as if
 | it had been on a line by itself. The ’delim’ is any single non−
 | blank character. For instance, the command

 | .if [odd [pn]] / .er odd page@n / .er even page@n

 | will write either ’odd page’ or ’even page’ to the terminal,
 | depending on whether or not the current page is odd (the [odd]
 | function will be discussed shortly).

 | The ’cond’ can be negated by putting a ’~’ in front of it.
 | Note that ’fmt’ only checks for a single ’~’ to see if the condi−
 | tion is to be inverted. ’Fmt’ is not a true programming
 | language! It is probably almost always better to rewrite your
 | condition than to use a ’~’ to negate it. The functions discus−
 | sed below, and the ability to specify an ’else’ part, provide
 | ample flexibility to do whatever needs to be done.

 | A .if command with no arguments has no effect on the format−
 | ted output. The .if command may or may not cause a break, depen−
 | ding on the contents of the ’if’ and ’else’ parts.

 | Conditional Functions

 | ’Fmt’ provides four function calls which return either true
 | or false (1 or 0) depending on the truth values of the conditions
 | specified in their arguments. The four functions are as follows:

 | odd Return true (false) if its integer argument is odd
 | (even).

 | even Return true (false) if its integer argument is even
 | (odd).

 | cmp Does a string comparison on its arguments, returning
 | true if the specified relation is true, false other−
 | wise. The form of this call is described below.

 | icmp Does an integer comparison on its arguments, returning
 | true if the specified relation is true, false other−
 | wise.

 | The two comparison functions are called with three
 | arguments, the first operand, a relational operator, and the
 | second operand. The relational operators are:

 | <= Less than or equal to.
 | =< Less than or equal to.
 | < Less than.
 | == Equal to.
 | = Equal to.
 | ~= Not equal to.

 − 31 −

 Text Formatter User’s Guide

 | <> Not equal to.
 | >< Not equal to.
 | >= Greater than or equal to.
 | => Greater than or equal to.
 | > Greater than.

 | A missing or incorrect operator is an error, and will cause ’fmt’
 | to exit. As an example, to determine where you are, you could do
 | the following:

 | This must be
 | .if [cmp [day] = Tuesday] / Belgium. / Somewhere.

 | would cause the output to be "This must be Belgium." if it were
 | Tuesday. Otherwise your text would simply wonder where it is.

 | Summary − Conditional Line Processing

 | Command Initial If no Cause
 | Syntax Value Parameter Break Explanation

 | .if <args> − ignored maybe Conditional execution of
 | an input line.

 − 32 −

 Text Formatter User’s Guide

 Applications Notes

 This section will illustrate the capabilities of ’fmt’ with
 some actual applications. Most of the examples are macros that
 assist in common formatting operations, but attention has also
 been given to table construction. All of the macros presented
 here are available for general use in the file
 "//extra/fmacro/report", which may be named on the command line
 invoking ’fmt’ or may be included with a ’source’ command as fol−
 lows:

 .so =fmac=/report

 Paragraphs

 One standard way of beginning a new paragraph is to skip a
 line and indent by a few spaces, as was done throughout this
 guide. This can be done by giving an sp command followed by a ti
 command. A better way is to define a macro. This allows
 procrastination on deciding the format of paragraphs and
 facilitates change at some later date without a major editing
 effort.

 Here is the paragraph macro used in this document:

 .# pp −−− begin paragraph
 .de pp
 .sp
 .ne 2
 .ti @[in]
 .ti +5
 .ns
 .en pp

 First a line is skipped via the ’space’ command. Then, after
 checking that there is room on the current page for the first two
 lines of the new paragraph, a temporary indentation is set up
 that is five columns to the right of the running indentation with
 the two ti commands. Finally, no−space mode is turned on to sup−
 press unwanted blank lines.

 Sub−headings

 Sub−headings such as the ones used here may be easily
 produced with the following macro:

 − 33 −

 Text Formatter User’s Guide

 .# sh −−− sub−heading
 .de sh
 .sp 2
 .ne 4
 .ti @[in]
 .bf
 [1]
 .pp
 .en sh

 First, two blank lines are put out. Then it is determined if
 there are four contiguous lines on the current page: one for the
 heading itself, one for the blank line after the heading, and two
 for the first two lines of the next paragraph. The temporary
 indentation value is then set to coincide with the current
 indentation value. Next, the first parameter passed to the macro
 (the text of the sub−heading) is boldfaced and a new paragraph is
 begun. The "pp" macro will insert the blank line after the
 heading.

 Major Headings

 Each section of this guide is introduced by a major heading
 that is boldfaced, underlined and centered on the page. The
 macro used to produce these headings is the following:

 .# mh −−− major heading
 .de mh
 .sp 3
 .ne 5
 .ce
 .ul
 .bf
 [1]
 .sp
 .pp
 .en mh

 This is similar to the sub−heading macro: three blank lines are
 put out; a check for enough room is made; the parameter is
 centered, underlined and boldfaced; another blank line is put
 out; and a new paragraph is begun.

 Tables of Contents

 Table of contents can be automatically generated by writing
 the contents to a temporary file, then at the end reading that
 file to produce the table of contents. In the examples above we
 could divert subheadings and headings to a temporary file; e.g.,
 add the following to the ’sh’ and ’mh’ macros. (These examples
 are similar to what is used to produce the table of contents of
 this guide; for pedagogical reasons we have simplified it a lit−
 tle).

 − 34 −

 Text Formatter User’s Guide

 .# generate a table of contents entry for a heading
 .dv 5
 .cc #
 #sp
 #ne 8
 [bf [1]] @[tc]@[tcpn]
 #cc .
 .dv

 .# table of contents entry for sub−heading
 .dv 5
 .cc #
 #ne 4
 [1] @[tc]@[tcpn]
 #br
 #cc .
 .dv

 Each time a heading is printed a line is written to temporary
 file "5" containing the heading, boldfaced, followed by a blank,
 a tab and finally the current page number right justified in four
 columns. Each time a subheading is printed a line is written
 containing three blanks, the subheading, a blank, a tab and
 finally the current page number. Note that we precede diverted
 commands by a different control character because ’dv’ will
 execute commands instead of diverting them.

 The very last command of the document would be a generate
 table of contents macro, e.g.,

 .# TC −−− generate table of contents
 .de TC
 .cc #
 #bp
 #fo ..− @[rn @[pn]] −..
 #ce "TABLE OF CONTENTS"
 #rm −6
 #ta @[rm]
 #rm +6
 #rc .
 #ns
 #so 5
 #cc .
 .en TC

 This macro will set the control character to correspond to the
 control characters written to output stream "5," advance to the
 top of the next page, center the heading "TABLE OF CONTENTS", set
 the footer to print the page number in small roman numerals (the
 page number must be set prior to calling ’TC’), set the tab
 column to 6 columns to the left of the right margin (this
 generates 2 blanks followed by the page number which is right
 justified in four columns), sets the replacement tab character to
 "." and reads the contents of temporary file "5".

 − 35 −

 Text Formatter User’s Guide

 Quotations

 Lengthy quotations are often set apart from other text by
 altering the left and right margins to narrow the width of the
 quoted text. Here is a pair of macros that may be used to
 delimit the beginning and end of a direct quotation:

 .# bq −−− begin direct quote
 .de bq
 .sp
 .ne 2
 .in +5
 .rm −5
 .lt +5
 .en bq

 .# eq −−− end direct quote
 .de eq
 .sp
 .in −5
 .rm +5
 .en eq

 Notice the lt command in the first macro. To avoid affecting
 page headings and footings, the left margin is not adjusted;
 rather, an additional indentation is applied. But to increase
 the right margin width, there is no other alternative but to use
 the rm command. The ’title−length’ command is thus necessary to
 allow headings and footings to remain unaffected by the interim
 right margin.

 Italics

 Since most printers can’t easily produce italics, they are
 frequently simulated by underlining. The following macro
 ’italicizes’ its parameter by underlining it.

 .# it −−− italicize (by underlining)
 .de it
 .ul
 [1]
 .en it

 Boldfacing

 While ’fmt’ has built−in facilities for boldfacing, their
 use may be somewhat cumbersome if there are many short phrases or
 single words that need boldfacing; each phrase or word requires
 two input lines: one for the bf command and one for the actual
 text. The following macro cuts the overhead in half by allowing
 the command and the text to appear on the same line.

 − 36 −

 Text Formatter User’s Guide

 .# bo −−− boldface parameter
 .de bo
 .bf
 [1]
 .en bo

 Examples

 This guide is peppered with examples, each one set apart
 from other text by surrounding blank lines and additional
 indentation. The next two macros, used like the "bq" and "eq"
 macros, facilitate the production of examples.

 .# bx −−− begin example text
 .de bx
 .sp
 .ne 2
 .nf
 .in +10
 .en bx

 .# ex −−− end example text
 .de ex
 .sp
 .fi
 .in −10
 .en ex

 Note that the definition of the "ex" macro causes the ex command
 to become inaccessible.

 Table Construction

 One example of table construction (for a table of contents)
 has already been mentioned in the section dealing with tabs.
 Another type of table that occurs frequently is that used in the
 command summaries in this guide. Each entry of such a table
 consists of a number of ’fields’, followed on the right by a body
 of explanatory text that needs to be filled and adjusted.

 The easiest way to construct a table like this involves
 using a combination of tabs and indentation, as the following
 series of commands illustrates:

 .in +40
 .ta 14 24 34 41
 .tc \

 The idea is to set a tab stop in each column that begins a field,
 and one last one in the column that is to be the left margin for
 the explanatory text. The extra indentation moves the effective
 left margin to this column. To begin a new entry, temporarily

 − 37 −

 Text Formatter User’s Guide

 undo the extra indentation with a ti command, and then type the
 text of the entry, separating the fields from one another with a
 tab character:

 .ti −40
 field 1\field 2\field 3\field 4\Explanatory text

 The first line of the entry will start at the old left margin.
 Then all subsequent lines will be filled and adjusted between
 | column forty−one and the right margin (inclusive).

 | Subsystem Macro Packages

 | Introduction

 | The previous section discussed how you might go about writ−
 | ing macros which do all kinds of nifty things, including building
 | a table of contents. Fortunately, you do not have to write your
 | own macro packages, since the Subsystem comes with several
 | already written.

 | The two major packages are the User Guide Macros, and the
 | Report macros. The Report macros are an older set of macros;
 | their use is discouraged in favor of the User Guide Macros, which
 | can actually be easily adapted for almost any kind of paper you
 | may have to write. Users who wish to use the Report macros may
 | print them off to see what they do and how they work. They are
 | in =fmac=/report and =fmac=/ds_report for single− and double−
 | spaced reports, respectively.

 | There are also macros for formatting Master’s and Ph.D.
 | theses. These are contained in =fmac=/gt_thesis. They are meant
 | to be used by themselves, without any of the =fmac=/ev?* files
 | (discussed below). The macros are documented in the file itself;
 | see there for details on using them. You will probably want to
 | change them to have your school’s name, instead of Georgia Tech.

 | Accessing The User Guide Macros

 | To use the User Guide Macros in your paper, you may name
 | them on the command line, or more conveniently, use one of the
 | lines

 | .so =fmac=/ugh

 | − or −

 | .so =fmac=/ugnh

 | as the first line in your ’fmt’ input file. The first command
 | provides you with a report that uses plain headings (like the
 | ones in this guide), while the second provides you with numbered

 − 38 −

 Text Formatter User’s Guide

 | headings (useful for technical reports). In either case, the
 | macros are used in an identical fashion. You should not need to
 | change the text of your document in order to get either numbered
 | or plain headings; you just need to switch macro packages.

 | Each of these files sets up the macros for headings, and
 | then does a

 | .so =fmac=/ugm

 | to include the rest of the User Guide macros.

 | Using The User Guide Macros

 | The User Guide macros will automatically produce a title
 | page and table of contents. The macros and their functions are:

 | .TP Start the Title Page.

 | .AU List the name(s) of the author(s).

 | .PD [<date>] Give the publication date.

 | .CH [<heading text>] Chapter heading.

 | .MH [<heading text>] Major heading (within a chapter).

 | .SH [<heading text>] Sub−heading (within a major
 | heading).

 | .PH [<heading text>] Paragraph heading (within a sub−
 | heading).

 | .pp Start a new paragraph (do not use
 | after .PH).

 | .bq [<length>] Begin an indented quote.

 | .eq End an indented quote.

 | .be [<length>] Begin an example.

 | .ee End an example.

 | .ep Skip to an even page.

 | .op Skip to an odd page.

 | .HI Produce a hanging Indent. Used for
 | lists like this one.

 − 39 −

 Text Formatter User’s Guide

 | .TC Generate the table of contents
 | (reset the page number with a
 | .bp n, first).

 | So, a full paper might look something like this:

 | .TP
 | On The Preservation Of The Arithmetic IF
 | .AU
 | Arnold D. Robbins
 | Eugene H. Spafford
 | .PD "[ldate]"
 | .op
 | .HE "Saving The Arithmetic IF"
 | .# The .HE macro will be explained shortly
 | .fo ’’− # −’’
 | .CH "Chapter 1"
 | ...
 | .MH "Major 2"
 | ...
 | .SH "Sub 3"
 | ...
 | .PH "Par 4"
 | ...
 | .bp 3
 | .TC

 | The title page produced would look just like the title page
 | of this guide. You may want to change the .PD macro in
 | =fmac=/ugm to have the name and address of your school or
 | business, instead of Georgia Tech.

 | The heading macros each use two additional macros; one to
 | help generate the table of contents, and one to actually produce
 | the heading. For instance, .CH calls .Ch to produce the table of
 | contents entry, and .ch to produce the chapter heading. The
 | other header macros are implemented in a similar fashion. It is
 | occasionally useful to access these macros directly; for instance
 | in order to produce a foreword to a document, without having the
 | foreword show up in the table of contents.

 | You should use all the .?H macros when writing your papers,
 | i.e., the .CH macro, as well as the .MH and .SH macros. If you
 | do not use the .CH macro, and you wish to use the numbered
 | headings macros, your major sections will be sections 1, 2, 3,
 | ... of Chapter 0, not Chapter 1, so bear this in mind.

 | It is never necessary to use a .pp macro after any of the
 | heading macros, since they all do a .pp for you. In particular,
 | the .PH heading macro should not be followed by a .pp; while
 | after the other macros a .pp will only cause an extra line to be
 | skipped.

 | The .be and .bq macros each take an optional argument, which
 | is the the length of the example or quote. For a small quote or

 − 40 −

 Text Formatter User’s Guide

 | example, you probably do not need to provide the length.

 | Since your entire document has to be formatted before the
 | table of contents can be produced, the .TC macro should come at
 | the end of your paper. You need to do a .bp n to the proper page
 | for the table of contents (usually n = 3). The macros use diver−
 | sion stream number five for the table of contents, so you should
 | not use stream five for doing any of your own diversions.

 | The Printing Environment And The .HE Macro

 | The User Guide macros are designed so that a paper which
 | uses them may be formatted on a variety of output devices,
 | without changing the text of the paper. This is done by defining
 | the printing environment in a macro; specifically the .EV macro.
 | This macro takes care of setting the margin values, the page and
 | margin offsets, the even and odd offsets, and the page length,
 | among other things.

 | There are different environment files for different output
 | devices. The files and the environments they are designed for
 | are:

 | =fmac=/evd Format output for the Diablo.

 | =fmac=/evp Format output for the line printer.

 | =fmac=/evl Format output for the Georgia Tech Xerox
 | 9700 laser printer (See the help on
 | ’lz’). These macros are for the User
 | Guides.

 | =fmac=/evl2 Format output for the Georgia Tech Xerox
 | 9700 laser printer. These macros are
 | for the Reference Manual.

 | =fmac=/evt Format output for "typesetting" on the
 | Spinwriter. The output produced is
 | designed to be photo−reduced to 8 1/2"
 | by 11".

 | Unless you are positive that you will always use a
 | particular output device, these files should not be included in
 | your ’fmt’ input file. Instead, they should be named on the com−
 | mand line. The .TP macro automatically calls the .EV macro to
 | reset the environment.

 | The ev? files also define the .HE macro, which is used for
 | designating the page headings. For single sided output, .HE is:

 | .de HE <left> <center> <right>
 | @[cc]he ‘[1]‘[2]‘[3]‘
 | .en HE

 − 41 −

 Text Formatter User’s Guide

 | while for double sided output (like the printed user guides), .HE
 | is:

 | .de HE <left> <center> <right>
 | @[cc]eh ‘[1]‘[2]‘[3]‘
 | @[cc]oh ‘[3]‘[2]‘[1]‘
 | .en HE

 | The .HE macro should be placed right after the .bp 1 command
 | for the first page of your document, and before the first .CH
 | command.

 | There is no special macro for footers. They are left to the
 | .fo command. The usual choice is:

 | .fo ’’− # −’’

 | which places the page number at the bottom of the page.

 | There are environment files for the Report macros as well.
 | The files are =fmac=/envd and =fmac=/envp for the Diablo and line
 | printer, respectively.

 | Conclusion

 | The macros available to you with the Subsystem should
 | satisfy most of your documentation needs, particularly with the
 | variety of output devices that are supported. They can also be
 | easily changed to suit your requirements, since the source files
 | for the macro packages are included with the Subsystem.

 − 42 −

 Text Formatter User’s Guide

 Summary of Commands Sorted Alphabetically

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 | .# − − no Introduce a comment.

 .ad c both both no Set margin adjustment
 | mode.

 | .am xx − − no Add additional text to
 | the body of a previously
 | defined macro.

 .bf N N=0 N=1 no Boldface N input text
 lines.

 .bp +N N=1 next yes Begin a new page.

 .br − − yes Force a break.

 .c2 c ‘ ‘ no Set no−break control
 character.

 .cc c . . no Set basic control charac−
 ter.

 .ce N N=0 N=1 yes Center N input text
 lines.

 .de xx − ignored no Begin definition or
 redefinition of a macro.

 .dv <stream> − end ’.dv’ no Temporarily divert the
 output stream to a
 "filename" or to a tem−
 porary file designated by
 an integer "N" (to be
 later read by a ".so N"
 command) until a ’dv’
 command with no arguments
 is seen.

 .ef /l/c/r/ blank blank no Set even−numbered page
 footing.

 .eh /l/c/r/ blank blank no Set even−numbered page
 heading.

 .en xx − ignored no End macro definition.

 .eo +N N=0 N=0 yes Set even page offset.

 .er text − ignored no Write a message to the
 terminal.

 − 43 −

 Text Formatter User’s Guide

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .ex − − yes Exit immediately to the
 * Subsystem.

 .fi on − no Turn on fill mode.

 .fo /l/c/r/ blank blank no Set running page footing.

 .he /l/c/r/ blank blank no Set running page heading.

 .hy on − no Turn on automatic
 | hyphenation.

 | .if <args> − ignored maybe Conditional execution of
 | an input line.

 .in +N N=0 N=0 yes Indent left margin.

 .lm +N N=1 N=1 yes Set left margin.

 .ls N N=1 N=1 no Set line spacing.

 .lt +N N=60 N=60 no Set length of header,
 footer and titles.

 .m1 +N N=3 N=3 no Set top margin before and
 including page heading.

 .m2 +N N=2 N=2 no Set top margin after page
 heading.

 .m3 +N N=2 N=2 no Set bottom margin before
 page footing.

 .m4 +N N=3 N=3 no Set bottom margin includ−
 ing and after page
 footing.

 .mc <char> BLANK BLANK no Set margin character.

 .mo +N N=0 N=0 no Set margin offset.

 .na − − no Turn off margin adjust−
 ment.

 .ne N − N=1 yes Express a need for N
 contiguous lines.

 .nf − − yes Turn off fill mode.
 (Also inhibits adjust−
 ment.)

 .nh − − no Turn off automatic
 hyphenation.

 − 44 −

 Text Formatter User’s Guide

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .ns on − no Turn on ’no−space’ mode.

 .nx file − next arg no Move on to the next input
 * file.

 .of /l/c/r/ blank blank no Set odd−numbered page
 footing.

 .oh /l/c/r/ blank blank no Set odd−numbered page
 heading.

 .oo +N N=0 N=0 yes Set odd page offset.

 .pl +N N=66 N=66 no Set page length.

 .pn +N N=1 ignored no Set page number.

 | .po +N N=0 N=0 yes Set page offset.

 | .ps N M N=M=0 N=M=0 yes Skip pages while (page
 | number mod M) is less
 | than N.

 .rc c BLANK BLANK no Set tab replacement
 character.

 .rm +N N=60 N=60 yes Set right margin.

 .rs − − no Turn off ’no−space’ mode.

 .sb off − no Single blank after end of
 sentence.

 .so <stream> − ignored no Temporarily alter the
 input source. "Stream
 can be a "−" to indicate
 standard input, a
 "filename," or an integer
 "N" corresponding to a
 temporary file created by
 a previous ’.dv N’ com−
 mand.

 .sp N − N=1 yes Put out N blank lines.

 .ta N ... 9 17 ... all no Set tab stops.

 .tc c TAB TAB no Set tab character.

 .ti +N N=0 N=0 yes Temporarily indent left
 margin.

 − 45 −

 Text Formatter User’s Guide

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .tl ’l’c’r’ blank blank yes Generate a three part
 title.

 .ul N N=0 N=1 no Underline N input text
 lines.

 .xb on − no Extra blank after end of
 sentence.

 − 46 −

 | TABLE OF CONTENTS

 Basics ... 1
 Usage ... 1
 Commands and Text 2

 Filling and Margin Adjustment 2
 Filled Text ... 2
 Hyphenation ... 3
 Margin Adjustment 3
 Centering ... 4
 Sentence Punctuation 4
 Summary − Filling and Margin Adjustment 5

 Spacing and Page Control 5
 Line Spacing .. 5
 Page Division ... 6
 ’No−space’ Mode 8
 Summary − Spacing and Page Control 8

 Margins and Indentation 9
 Margins ... 9
 Top and Bottom Margins 9
 Left and Right Margins 9
 Indentation ... 10
 Page Offset ... 11
 Margin Characters 11
 Summary − Margins and Indentation 12

 Headings, Footings and Titles 12
 Three Part Titles 12
 Page Headings and Footings 13
 Summary − Headings, Footings and Titles 15

 Tabulation ... 15
 Tabs .. 15
 Summary − Tabulation 17

 Miscellaneous Commands 17
 Comments .. 17
 Boldfacing and Underlining 17
 Control Characters 18
 Prompting ... 19
 Premature Termination 19
 Summary − Miscellaneous Commands 20

 − iii −

 Input/Output Processing 20
 Input File Control 20
 Output File Control 21
 Functions, Variables and Special Characters 22
 Number Registers 23
 Functions ... 23
 Variables ... 24
 Special Characters 25
 Summary − Input Processing 27

 Macros ... 27
 Macro Definition 27
 Macro Invocation 28
 Appending To A Macro 30
 Summary − Macros 30

 Conditional Line Processing 30
 Introduction .. 30
 The .if command 30
 Conditional Functions 31
 Summary − Conditional Line Processing 32

 Applications Notes 33
 Paragraphs .. 33
 Sub−headings .. 33
 Major Headings .. 34
 Tables of Contents 34
 Quotations .. 36
 Italics ... 36
 Boldfacing .. 36
 Examples .. 37
 Table Construction 37

 Subsystem Macro Packages 38
 Introduction .. 38
 Accessing The User Guide Macros 38
 Using The User Guide Macros 39
 The Printing Environment And The .HE Macro 41
 Conclusion .. 42

 Summary of Commands Sorted Alphabetically 43

 − iv −

 Software Tools Subsystem
 Manager’s Guide

 T. Allen Akin
 Terrell L. Countryman
 Daniel H. Forsyth, Jr.
 | Jefferey S. Lee
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 Subsystem Manager’s Guide

 | Overview

 You are reading the Software Tools Subsystem Manager’s
 Guide. The machine−readable text of this Guide is supplied with
 the Subsystem in the file "=doc=/fguide/mgr" (already formatted)
 and in the directory "=doc=/guide/mgr" (unformatted).

 Purpose

 This Guide addresses the needs of the Subsystem Manager:
 that individual or small group of individuals that is responsible
 for the installation, maintenance and daily operation of the Sub−
 system.

 Bringing up a large software system is a complicated process
 that involves several bootstrapping steps. In this case, the
 Subsystem Manager will be responsible for at least three: the
 installation of the Subsystem, initial distribution of
 documentation, and creation of user accounts.

 Once the system is running and a sizable user community
 develops, the responsibilities of the Manager will change. In
 particular, he will control the generation and distribution of
 new copies of documentation, maintain lists of active users,
 update the description of the local hardware configuration, and
 possibly modify the Subsystem itself by changing either the
 system code or documentation.

 It is the intent of this Guide to provide the Manager with
 the information necessary to carry out these duties and with
 procedures for their performance that are recommended by the Sub−
 system’s designers.

 For further information on the philosophy and use of the
 Subsystem, the reader is referred to the Software Tools Subsystem
 Reference Manual, the Software Tools Subsystem User’s Guide, and,
 of course, to Kernighan and Plauger’s Software Tools.

 Summary of Contents

 This Guide is divided into five sections as outlined in the
 following five paragraphs.

 The Subsystem Configuration section deals with the directory
 structure of the Subsystem. It describes the standard configura−
 tion supplied on the Release Tape as well as options for changing
 directory names, locating directories on specific logical disks,
 and storing certain portions of the Subsystem off−line.

 The Installation Procedure covers the initial installation
 of the Subsystem. It catalogs the contents of the Subsystem
 Installation Package and Release Tape, provides instructions for
 loading the tape, and details the steps the Manager must take in

 − 1 −

 Subsystem Manager’s Guide

 order to make the Subsystem operational.

 The Conversion Procedure section describes the steps neces−
 sary to update your current Subsystem to this release. If you
 are a new customer, then you need only peruse this section for
 various caveats, but not necessarily act upon the information
 contained therein.

 The section on Documentation Structure describes the nature,
 coverage and physical location of all Subsystem documentation.
 Its two sub−sections correspond to the two major Subsystem
 documents: the Software Tools Subsystem Reference Manual and the
 Software Tools Subsystem User’s Guide.

 The day−to−day activities of the Subsystem Manager are
 covered in Subsystem Management. Such concerns as maintaining
 user accounts and hardware configuration files, adding local
 software tools and documentation, and operating Subsystem user
 services are treated.

 Subsystem Configuration

 The Subsystem is a complex piece of software that resides in
 several disk directories. This section discusses the standard
 directory structure and the means provided for changing it, some
 alternative directory structures, and naming and structural con−
 ventions that must be followed if changes are made.

 Standard Directory Structure

 The following chart outlines the structure of the major Sub−
 system directories as supplied on the Release Tape:

 aux
 primes (file of prime numbers less than 1,000,000)
 spelling
 {dictionaries of English words, place names, etc.}

 bin
 {standard Subsystem commands, supported by GT}

 lbin
 {locally−supported commands}

 temp
 {scratch files created by Subsystem programs}

 − 2 −

 Subsystem Manager’s Guide

 | vars
 {subdirectory for each user}
 .mail (old mail storage)
 .vars (shell variable storage)
 .template (user template definitions)
 | .hist (user shell session storage)

 extra
 bin
 {programs called by shell files in ’bin’}

 bug
 {bug reports gathered by ’bug’}

 | cron
 | {example files for use by the ’cron’ program}
 |
 clist (list of command names used by ’guess’)

 gossip
 {file for each user, for messages sent by ’to’}

 * installation (installation name)

 mail
 {file for each user, for messages sent by ’mail’}

 memo
 {file for each user, for memoranda from ’memo’}

 moot.u
 {files used by ’moot’}

 news
 * articles
 {files containing one news article each}
 index (index to all past news articles)
 subscribers (list of news service subscribers)

 delivery
 {file for each user, for undelivered news}

 phones (list of phone numbers used by ’phone’)

 terms (list of terminals attached to the system)

 users (list of authorized Subsystem users)

 fmacro
 {miscellaneous text formatter macro files}

 incl
 | {macro definitions for Ratfor, C, and PMA}

 numsg (propaganda message sent to new users)

 − 3 −

 Subsystem Manager’s Guide

 template (pathname template definition file)

 vth
 {files describing terminal hardware characteristics}

 ttypes (list of Subsystem−supported terminals and their
 characteristics)

 src

 lcl
 lib
 {subdirectories for locally−supported libraries}
 spc
 {subdirectories for local programs with non−
 standard compilation requirements}
 std.r
 {source files for local Ratfor programs}
 std.sh
 {source files for local shell programs}
 std.stacc
 {source files for local Ratfor/’stacc’ programs}

 lib
 | c$main
 | {files to build the C startoff routine −−−
 | only for sites which license the C compiler}
 | cio
 | {source files for C I/O library −−− only for
 | sites which license the C compiler}
 edt
 {source files for line editor routines}
 | math
 | {source files for ’vswtmath’ library}
 | sh
 | src
 | {source files and directories for ’vshlib’}
 | {miscellaneous files for ’vshlib’}
 swt
 obj
 {object code files for ’vswtlb’ routines}
 src.a
 (archive containing source code for ’vswtlb’ routines)
 {miscellaneous files for library ’vswtlb’}
 | vcg
 | {source files for the vcg support library −−−
 | only for sites which license the C compiler}
 | vcg_main
 | {source for main routine for vcg for individuals
 | that have written their own front ends for vcg −−−
 | only for sites which license the C compiler}

 spc
 {subdirectories for programs with nonstandard
 compilation requirements}

 − 4 −

 Subsystem Manager’s Guide

 std.r
 {source files for standard Ratfor programs}

 std.sh
 {source files for standard shell programs}

 std.stacc
 {source files for standard Ratfor/’stacc’ programs}

 | ext.c
 | {source files for C programs in "=ebin=" −−− only
 | for sites which license the C compiler}
 |
 ext.r
 {source files for Ratfor programs in "=ebin="}

 ext.sh
 {source files for shell programs in "=ebin="}

 | misc
 | {Subsystem support and maintenance routines}
 |
 doc
 build
 guide (format a new version of the User’s Guide)
 man (format a new version of the Reference Manual)
 rebuild (format a new Reference Manual entry)

 fguide
 {files containing formatted portions of the
 User’s Guide}

 fman
 s1
 {formatted standard command documentation}
 s2
 {formatted standard library documentation}
 s3
 {formatted local command documentation}
 s4
 {formatted local library documentation}
 s5
 {formatted low−level command documentation}
 s6
 {formatted low−level library documentation}
 {miscellaneous formatted portions of Reference Manual}

 guide
 {subdirectories containing portions of the User’s
 Guide, unformatted}

 hist
 history (history of changes to the Subsystem)

 − 5 −

 Subsystem Manager’s Guide

 man
 s1
 {unformatted standard command documentation}
 s2
 {unformatted standard library documentation}
 s3
 {unformatted local command documentation}
 s4
 {unformatted local library documentation}
 s5
 {unformatted low−level command documentation}
 s6
 {unformatted low−level library documentation}
 {miscellaneous unformatted portions of Reference Manual}

 print
 guide (print a copy of the User’s Guide)
 man (print a copy of the Reference Manual)

 se_h
 {files containing on−line help information for ’se’}

 | misc
 | {Documentation support and maintenance routines}
 |

 Top−Level Directories. The top−level directories ’aux’,
 ’bin’, ’doc’, ’extra’, ’lbin’, ’src’, ’temp’ and ’vars’ are
 dedicated to the Subsystem. In addition, use of the Subsystem
 requires that several files be added to the Primos directories
 ’cmdnc0’, ’lib’, and ’system’. (A list of these files may be
 found in the section on Installation Procedures in this Guide.)

 | Previously, the ’cmdnc0’ directory used for Subsystem files
 | had to be the directory to which the console was attached after a
 | cold start. Under the new revision (Revision 19) of the operat−
 | ing system, the ’cmdnc0’ directory used for Subsystem support
 | commands must be the ’cmdnc0’ located on the lowest numbered
 | logical disk partition, to ensure that users can enter the Sub−
 | system properly. The ’lib’ directory used for Subsystem
 | libraries must also be on the lowest−numbered logical disk, so
 the libraries will be locatable by the loader. The ’system’
 directory used for Subsystem shared segment files should be the
 directory in which all standard Primos shared code resides, so
 that the shared Subsystem programs may be installed during a
 cold−start.

 | Directory Security and Placement on Disk. The subsystem is
 | supplied with ACL protections but if the tape is restored onto a
 | password partition, the password protections will override the
 | ACL protections. Although the Subsystem will operate properly
 | regardless of the placement of its top−level directories, sub−
 | stantial reduction in overhead may be had by following these
 | recommendations. The following discussion normally describes the
 | necessary protections for password directories and then follows
 | that with the protections needed in the case of ACL directories.

 − 6 −

 Subsystem Manager’s Guide

 The directories ’bin’ and ’lbin’ are accessed very
 frequently (about once per command) and so should be located on a
 | low−numbered logical disk. The files in these directories must
 | be readable by non−owners but should be protected against altera−
 | tion by ordinary users. This can be accomplished by placing an
 | owner password on the directories or by making the directories
 | ACL protected directories with permissions of "list", "use", and
 | "read" for everyone. (But see the User’s Guide for the Software
 Tools Subsystem Command Interpreter, for information on "search
 rules.")

 Scratch files created by Subsystem programs reside in the
 directory ’temp’. The concept of a "temporary file directory" is
 necessary to allow editing of files on read−only disks or in
 directories in which the user has non−owner status. Depending on
 the application at hand, files in ’temp’ may grow to excessive
 size, so it should be placed on a logical disk with plenty of
 available storage space. It is not accessed frequently, so its
 | placement is otherwise unconstrained. ’Temp’ must be public;
 | that is, it must have either a blank owner password or, if it is
 | an ACL protected directory, permissions of "list", "use", "add",
 | "delete", "read", and "write" for everyone.

 Subdirectories of the directory ’vars’ are used for storage
 of personal profile information. ’Vars’ is accessed
 infrequently, and is typically small; it may be placed on any
 convenient logical disk. ’Vars’ itself should have an owner pas−
 sword to preserve the privacy of individual users; it may not
 | have a non−owner password. If ’vars’ is made an ACL protected
 | directory, it should have permissions of "list" and "use" for
 | everyone. The Subsystem manager must create in ’vars’ a sub−
 directory for each Subsystem user, named by that user’s login
 name. Each of these subdirectories should be protected by an
 owner password of the user’s own choosing and should have no non−
 | owner password. If they are ACL protected, they should be given
 | ACL protection for the owner of "list", "use", "add", "delete",
 | "read", and "write" and "list" and "use" permissions for everyone
 | else. If the directory is ACL protected, the Subsystem will not
 | request a password to allow entry. If it is password protected,
 | the ’swt’ command prompts for the owner password and records it
 internally before entering the Subsystem; this saved password is
 then used in all future references to the directory by the Sub−
 system. If the user wishes to change the directory’s password,
 he must do so outside of the Subsystem, so that the Subsystem
 will be able to exit normally.

 Miscellaneous information that pertains to the Subsystem
 resides in the directory ’extra’. ’Extra’ is relatively small
 and is frequently referenced (to check for messages sent from
 user to user via the ’to’ command), so it should be placed on a
 low−numbered logical disk. All contents of ’extra’ and its sub−
 directories should be readable by non−owners and free of non−
 | owner passwords. If it is ACL protected, each file should be
 | protected so that everyone can read it and each directory should
 | be protected with "list", "use", and "read" protections for
 | everyone. The subdirectories ’mail’, ’gossip’, and ’memo’ must

 − 7 −

 Subsystem Manager’s Guide

 | be public so that anyone can create a file in them ("list",
 | "use", "add", "delete", "read", and "write"). The files in the
 subdirectory ’news’ should normally be writeable by anyone and
 its subdirectories public; however, the Subsystem Manager may see
 fit to restrict subscriptions to the news service by removing
 non−owner write access to the ’subscribers’ file, and publishing
 of news articles by removing non−owner write access to the
 ’index’ file.

 ’Src’ contains all Subsystem source code. It is extremely
 large and very infrequently used. It should be placed on a high−
 | numbered logical disk, and, at the discretion of the Subsystem
 | Manager, be protected to prevent unauthorized access.

 ’Aux’ contains several large auxiliary files, particularly
 the dictionary of English words and the list of prime numbers
 less than one million. It should be placed on a high−numbered
 logical disk. Files in ’aux’ and its subdirectories should be
 readable by non−owners, and there should be no non−owner pass−
 words. An owner password may be employed at the discretion of
 | the Manager to enforce security. The ACL protections would be
 | "list", "use", and "read" permissions for everyone. If you
 | uncomment the template =new_word=, and leave it as
 | =aux=/spelling/new_words, then this file needs to writeable by
 | everyone. (Permissions of a/rw, or "read" and "write" ACL
 | permissions.)

 ’Doc’ contains the formatted and unformatted versions of
 both the Reference Manual and the User’s Guide. It should be
 placed on a high−numbered logical disk. Generally, its contents
 should be readable by non−owners. It may be owner password
 | protected at the discretion of the Manager, but should not have a
 | non−owner password (ACL permissions of "list", "use", and "read"
 | for everyone). The same applies to all of its subdirectories.

 Alternative Directory Structures

 For various reasons (lack of disk space or naming conflicts,
 for example) the Subsystem manager may need to restructure the
 Subsystem or even remove portions of it entirely. This section
 describes the actions necessary to reconfigure the Subsystem
 directory structure to meet local needs.

 Templates and Top−Level Directories. File names (alias
 "pathnames") in the Subsystem feature a number of extensions
 beyond the capabilities of Primos treenames. (For a full discus−
 sion of pathnames, please see the User’s Guide to the Primos File
 System in the Software Tools Subsystem User’s Guide.) The
 extension that bears on Subsystem directory structure is a simple
 macro substitution facility that goes by the name of "templates."
 When an identifier enclosed in equals bars (=) appears in a path−
 name, it is automatically replaced by some appropriate substitu−
 tion text. In particular, such "templates" have been provided
 for the names of all Subsystem top−level directories, and all
 Subsystem code follows the convention that top−level directories

 − 8 −

 Subsystem Manager’s Guide

 are always named by a pathname containing the appropriate tem−
 plate.

 Reconfiguration of the Subsystem’s directory structure may
 be accomplished simply by changing the substitution text that
 replaces the top−level directory templates. The templates and
 their substitution text may be found in the file ’template’ in
 the directory ’extra’ (on the Release Tape). (This file may be
 edited with either the Primos editor or one of the Subsystem
 editors.) For example, suppose that the directory ’doc’ con−
 flicts with a local directory of the same name. Edit the tem−
 plate definition file, and change the following line

 doc //doc

 to

 doc //tools_doc

 then change the name of ’doc’ to ’tools_doc’. The reconfigura−
 tion is complete.

 It should be noted that if the name or location of the
 directory ’extra’ or of the template definition file itself is
 changed, the ’initswt’ program run at cold start time must be
 given a command line argument that specifies the new location of
 the template file. See the section on Subsystem Installation for
 further details.

 As supplied, the template definitions for all top−level Sub−
 system directories use the omitted−packname option of the path−
 name syntax. This means that any time one of these directories
 is referenced, an ascending search of the MFDs on all logical
 disks is made until the directory is found. If circumstances
 prevent placement of the frequently−referenced Subsystem direc−
 tories on low−numbered disks, it is still possible to avoid the
 overhead of long directory searches by changing the template
 definitions to include explicit packnames or logical disk num−
 bers. If this is done, however, the Subsystem must be
 reinitialized any time one of its directories is moved to another
 pack.

 Off−Line Storage. Certain portions of the Subsystem are not
 required for everyday usage, and may be removed in order to
 conserve disk space. The following paragraphs list the direc−
 tories that may be stored off−line.

 The source code directory ’src’ is extremely large and may
 be useless on a production system. It may be stored on tape with
 impunity (although doing so will cause the ’locate’ and ’source’
 commands to cease functioning).

 The on−line documentation supplied with the Subsystem has
 been found extremely useful in the past, both to new users learn−
 ing the system and to expert users needing a refresher course on
 the usage of particular commands. However, none of it is

 − 9 −

 Subsystem Manager’s Guide

 essential to the operation of the Subsystem; the entire directory
 ’doc’ may be stored off−line. As a less drastic measure, the
 unformatted versions of the Reference Manual and User’s Guide
 that reside in the subdirectories ’man’ and ’guide’ may be stored
 off−line, while everything else remains on disk. (This allows
 the ’help’ and ’guide’ commands and the ’h’ command of ’se’ to
 function properly.)

 If the dictionary of English words and the list of prime
 numbers are not frequently used, the directory ’aux’ may be
 | stored off−line. This affects the commands ’spell’, ’speling’
 | and ’rsa’, the template =new_words= (if it is defined), and the
 | local math library routine ’prime’.

 Installation Procedure

 This section covers the procedures necessary for installa−
 tion of the Subsystem. It lists the contents of the Installation
 Package and the Release Tape, and provides instructions for load−
 ing the tape and initializing the Subsystem. Before reading this
 section, a thorough study of the Subsystem Configuration section
 of this Guide is recommended.

 Subsystem Installation Package

 | For new customers, the Subsystem Installation Package as
 | sent from Georgia Tech contains the following items:

 1 Release Tape
 | 1 Copy of the Subsystem Manager’s Guide
 | 1 Copy of the Reference Manual
 | 1 Copy of the User’s Guide

 | Old customers who are updating to Release 9 will only receive the
 | Release Tape, the Conversion Guide, and the Manager’s Guide.

 Release Tape Contents

 The Subsystem Release Tape contains all files and direc−
 tories necessary for proper operation of the Subsystem. It is in
 standard MAGSAV/MAGRST format and contains four "logical tapes."
 Each logical tape contains a number of separate directories that
 normally would reside on the same logical disk.

 Logical Tape 1. The first logical tape contains the follow−
 ing three directories:

 cmdnc0 lib system

 and these directories contain the following files:

 − 10 −

 Subsystem Manager’s Guide

 cmdnc0>swt used to enter the Subsystem
 cmdnc0>swtseg latest revision of SEG, modified slightly
 for the Subsystem. Its output is
 completely compatible with standard SEG.
 | cmdnc0>snplnk snaps dynamic pointer links (see below)

 lib>vswtlb shared Subsystem I/O and utility library
 lib>nvswtlb unshared version of vswtlb
 * lib>p4clib bootstrap Pascal compiler run−time−support
 library
 lib>vedtlb line editor library
 | lib>vswtmath high precision mathematical function library
 | lib>shortlb shortcall routines for FORTRAN
 | lib>vlslb linked string library
 | lib>vrnglb ring support library
 | lib>vshlib shared Shell utility library

 | system>cron.comi example startup file for ’cron’
 | system>ring.comi example startup file for ’ring’
 system>sh2030 shared portion of the command interpreter
 system>st2030 shared data area for templates
 system>se2031 shared portion of the screen editor
 system>sw2035 shared portion of the Subsystem library
 | system>sh4000 used to install the command interpreter
 system>sw4000 used to install the Subsystem library
 * system>initswt used to initialize pathname templates

 These files must be placed in the appropriate Primos directories
 | at your installation. They should be placed in ’cmdnc0’, ’lib’,
 | and ’system’ on the lowest−numbered logical disk containing those
 | directories.

 Logical Tape 2. The second logical tape contains the fol−
 lowing directories:

 bin lbin extra

 ’Bin’ is the standard Subsystem command directory. It
 contains the executable versions of all Georgia Tech−supported
 Subsystem commands.

 ’Lbin’ is a command directory for locally−written tools.
 Commands in ’lbin’ are normally useful at only one installation,
 or have not been found valuable enough to merit full support.

 ’Extra’ contains miscellaneous information used by various
 parts of the Subsystem. In particular, it houses the mail, news
 and memo delivery directories, which tend to grow steadily in
 size over a period of time.

 − 11 −

 Subsystem Manager’s Guide

 Logical Tape 3. The third logical tape contains the follow−
 ing directories:

 vars temp

 These directories should be placed on a disk partition with a
 large amount of free space, since files in ’temp’ may become
 arbitrarily large.

 ’Vars’ is used to store personal profile information for all
 Subsystem users.

 ’Temp’ is a special directory dedicated to containing
 scratch files.

 Logical Tape 4. The fourth logical tape contains the fol−
 lowing directories:

 doc src aux

 These directories are all very large and infrequently accessed.
 They do not normally vary much in size.

 ’Doc’ contains formatted and unformatted copies of all Sub−
 system documentation.

 ’Src’ contains all releasable Subsystem source code.

 ’Aux’ contains miscellaneous auxiliary files, such as the
 dictionary of English words and the list of prime numbers.

 Loading the Tape

 To load the release tape, follow the instructions below:

 1. Assign a tape drive:

 | ASSIGN MT0

 2. Mount the release tape on the assigned drive.

 3. Attach to the master file directory on the logical disk
 containing ’cmdnc0’, ’lib’, and ’system’ (usually disk 0):

 | ATTACH MFD <owner−password> <disk−number>

 | or if the tape is being restored to an ACL or priority ACL
 | protected partition, type

 | ATTACH MFD <disk−number>

 4. Load the contents of the first logical tape with MAGRST:

 | MAGRST
 | Tape Unit (9 Trk): 0

 − 12 −

 Subsystem Manager’s Guide

 | Enter logical tape number: 1
 <tape label information>
 | Ready to Restore: yes

 (This will load the files in ’cmdnc0’, ’lib’, and ’system’.)

 5. Attach to the master file directory on the logical disk
 selected for the ’bin’, ’lbin’ and ’extra’ directories.

 6. Load the contents of the next logical tape (i.e., reply "0"
 | to the "Enter logical tape number:" prompt) with MAGRST.
 (This will load the directories ’bin’, ’lbin’ and ’extra’.)

 7. Attach to the master file directory on the logical disk
 selected for the ’temp’ and ’vars’ directories. It should
 have ample free space.

 8. Load the contents of the next logical tape with MAGRST.
 (This will load directories ’vars’ and ’temp’.)

 9. Attach to the master file directory on a logical disk with a
 great deal of free space.

 10. Load the contents of the next logical tape with MAGRST.
 (This will load directories ’aux’, ’doc’, and ’src’.)

 This completes the loading of the Subsystem from tape.

 Reconfiguration of Primos for the Subsystem

 Primos Revisions 18.0 and above have now used all normally
 available private memory segments. In order to bring up the Sub−
 system, it is necessary to increase the NUSEG parameter in the
 | Primos configuration file to at least 43 (octal), up from the
 | default of 40 (octal), to provide private segments for the Sub−
 system that do not conflict with standard Prime programs. It
 also implies that you cannot bring up the Subsystem without
 rebooting your system, unless you already have the NUSEG
 parameter set high enough.

 Initialization of Shared Segments

 Several important portions of the Subsystem reside in shared
 memory segments. Once the release tape is loaded, these segments
 must be initialized.

 | One of the enhancements provided with Version 9 is increased
 | security of shared segments. The SNPLNK ("Snap Link") program
 | shown in the commands below runs through a given segment and
 | "snaps" the dynamic subroutine linkages. In other words, all
 | pointers which are set up as dynamic links are turned into real
 | pointers. This is usually done when a program runs, by the Ring
 | 3 pointer fault handler. By snapping all the links at one time,
 | these segments can then be shared as read only. This will

 − 13 −

 Subsystem Manager’s Guide

 | prevent an errant program from scrambling the shared libraries.

 | Type the following commands on your system console:

 OPR 1
 | SHARE SYSTEM>SW2035 2035 700
 | SHARE SYSTEM>SH2030 2030 700
 | SHARE SYSTEM>ST2030 2030 700
 | SHARE SYSTEM>SE2031 2031 700
 R SYSTEM>SW4000
 | R SYSTEM>SH4000
 R SYSTEM>INITSWT

 | SNPLNK 1/2030; SHARE 2030 600
 | SNPLNK 1/2031; SHARE 2031 600
 | SNPLNK 1/2035; SHARE 2035 600
 OPR 0

 Ideally, the preceding commands would be placed in your cold−
 | start procedure file CMDNC0>C_PRMO or CMDNC0>PRIMOS.COMI, so they
 | will be performed automatically after every cold−start. Note:
 if you have changed the name or location of the template defini−
 tion file or the ’extra’ directory, you must specify the new name
 of the template file on the invocation of ’initswt’. For exam−
 ple, if you have changed the name of the ’extra’ directory to
 ’etc’, use the following command instead of "r system>initswt":

 R SYSTEM>INITSWT ETC>TEMPLATE

 For installations that had a previous release of the Subsystem,
 this completes the installation procedure. The Subsystem should
 | now be ready to go. Otherwise, new Subsystem managers should
 read the next subsection, which describes the remaining steps.

 Initial Log−in by SYSTEM

 If this is your first Subsystem release, several further
 steps are necessary to complete installation. As delivered, the
 Subsystem has only one active user account: that for the login
 name SYSTEM, which is assumed to be used only by system
 administrative personnel. Once the Subsystem is loaded and
 initialized, the Subsystem Manager should log in as user SYSTEM
 and verify that the Subsystem is working.

 Login as user SYSTEM and type the following command:

 swt

 | If the ’vars’ directory was restored on a password partition,
 | ’swt’ will prompt for the owner password of SYSTEM’s profile
 | directory. The Subsystem is delivered with a null password for
 SYSTEM, so just strike the RETURN key. The shell (Subsystem com−
 | mand interpreter) will then be executed. If the ’vars’ directory
 | was restored on an ACL partition, the ’swt’ will not prompt for
 | any password, but will immediately execute the shell. Before it

 − 14 −

 Subsystem Manager’s Guide

 will accept any commands, the shell will prompt you with
 "Enter terminal type: ". You should respond with the mnemonic
 for your terminal type; if you do not know the correct mnemonic,
 respond with a "?" and the shell will provide a list of accep−
 table responses. After you have entered an acceptable mnemonic
 or a RETURN (if you do not wish a terminal type associated with
 your login session), the shell will be ready to accept commands.
 You should see a "]" prompt, indicating that the Subsystem is up
 and running.

 Modify the file "=installation=" to contain the name of your
 installation. (The easiest way to do this from the Subsystem is
 to type a command similar to the following:

 echo "Georgia Tech System B" >=installation=

 Simply replace "Georgia Tech System B" with the name of your
 installation.)

 Before the Subsystem can be released for general use,
 profile storage directories must be created for all potential
 users, and their names must be entered in the "=userlist=" file.
 In addition, descriptions of all terminals attached to the com−
 puter must be entered in the "=termlist=" and "=ttypes=" files.
 For information on these tasks, see the Subsystem Management sec−
 tion of this Guide.

 Resolving Shared Segment Conflicts

 If the segment numbers used by the shared Subsystem programs
 and libraries conflict with those used by other programs at your
 installation, you can change the Subsystem segment numbers;
 however, you must first install the Subsystem as supplied. Also
 | note that you must change the SHARE commands used in your
 | ’c_prmo’ or ’primos.comi’ cold start command file to reflect the
 | changed segment numbers.

 The Subsystem makes use of three shared segments: 2030 for
 the Shell and system template table, 2031 for the screen editor
 ’se’, and 2035 for the shared library.

 | The directory for building the Shell is "=src=/lib/sh". In
 this directory there is a file named "segment" which contains the
 segment number to be used for the shared portion of the object
 code. First, change the contents of this file to the desired
 | segment number; then simply execute the Shell program ’build’.
 | This will produce three object codes files, ’sh’, the interlude
 | program which should be placed in "=bin=" as ’sh’ and "=system="
 | as ’sh4000’, "sh<segment>", the shared code which should be
 | copied to "=system=" for automatic sharing by your ’c_prmo’ or
 | ’primos.comi’ cold start procedure, and ’vshlib’, which should be
 | copied to "=lib=". This copying can be done by executing the
 | Shell program ’install’. For example, the following would fix
 | the shell to run in segment 2037:

 − 15 −

 Subsystem Manager’s Guide

 | cd =src=/lib/sh
 | echo "2037" >segment
 | build
 | install

 Also in segment 2030 is the shared portion of ’swt’, the
 | Subsystem initialization program. To change its segment, attach
 | (using ’cd’) to the directory "=src=/spc/swt.u", change the
 contents of the file "segment" to the desired segment number, and
 | execute the shell program ’build’, just like changing the Shell’s
 | segments. Then execute ’install’ to copy the shared portion in
 the file "st<segment>" into "=system=" and copy ’swt’ into
 "=cmdnc0=". (Please note that if you change the code for ’swt’,
 it must generate no sector−zero links. If it does, you will wipe
 out the shell when sharing it!)

 Segment 2030 is also used for the storage of system tem−
 plates. If you must change the location of their storage area,
 you must alter the loader interface program ’ld’ in order to
 specify a new absolute address for the storage area, then rebuild
 the Shell (as outlined above), the libraries (as outlined below),
 the program ’initswt’, and any local program that uses the
 unshared version of the Subsystem library (’nvswtlb’). For
 further information on the implications of moving the template
 storage area, please contact Georgia Tech.

 The screen editor normally resides in segment 2031. To move
 it, attach to the directory "=src=/spc/se.u", change the contents
 of the file "segment" to the desired segment number, then execute
 the Shell program ’build’. This will yield two object code
 files: ’se’, the interface program that should be placed in
 "=bin=", and "se<segment>", the shared portion that should be
 placed in "=system=" to be shared in at cold−start time. This
 copying can be done by executing the Shell program ’install’.

 The shared libraries normally reside in segment 2035. To
 move them, attach to the directory "=src=/lib/swt", change the
 contents of the file "segment" to the desired segment number,
 then execute the Shell program ’build’. The object code files,
 ’vswtlb’ and ’nvswtlb’ should be copied to the "=lib=" directory;
 the shared code file "sw<segment>" should be copied to
 "=system="; and the file ’inst’ should be copied to "=system="
 and renamed "sw4000". This copying can be done by executing the
 | Shell program ’install’.

 | Segments Used

 | The following table lists the segments in virtual memory,
 | and how they are used by the operating system and various Sub−
 | system programs.

 | Segment Use
 |
 | 0000 − 0401 Operating System

 − 16 −

 Subsystem Manager’s Guide

 | 2030 Software Tools Shell
 | 2031 Software Tools Screen Editor
 | 2035 Software Tools Library
 | 2050 Fortran Library
 | 4000 − 4037 User Program
 | 4040 Software Tools Common
 | 4041 Software Tools Stack
 | 4042 Software Tools Common
 | 6000 Operating System Data
 | 6001 Fortran Library
 | 6002 Primos Ring 3 Stack
 | 6003 Operating System Stack

 | Some user programs use certain predefined user segments for their
 | own use, so you have to be careful where you load your programs.
 | For instance, if a program uses segment 4006, and you run it from
 | the shell, from within the screen editor, you will destroy the
 | screen editor’s common blocks. If any of the programs or
 | routines that use these predefined segments are not in use, they
 | are available for user programs. For example, If the screen
 | editor is not in use, segments 4006 and 4007 can be used with no
 | problem, and if the Primos routine P$ALC is not being used (it is
 | used by C, Pascal, and PL/I programs) then segments 4010 through
 | 4027 become available.

 | Segment Use
 |
 | 4000 − 4005 User Program
 | 4006 − 4007 Screen Editor Per User Common
 | 4010 − 4027 Primos Dynamic Memory −− P$ALC routine
 | 4036 − 4037 SEG Symbol Tables

 | Changes for Primos Rev. 19.4

 | When Rev. 19.4 of Primos is released, you will need to make
 | two changes to allow you to run the Subsystem under it. First,
 | change the definition of =cldata= to be "6002 12", instead of
 | "6002 6". There is a commented out template definition for this
 | in the =template= file. All you have to do is remove the leading
 | comment symbol, for this definition, and comment out the old one.
 | Secondly, in the file =src=/spc/swt.u/init_s.s, change the
 | definition of CLDATA$SM_FAULT_ERR from "XB%+90" to "XB%+91".
 | This is because several Primos internal data structures change
 | their location at Rev. 19.4.

 − 17 −

 Subsystem Manager’s Guide

 Conversion Procedure

 This section contains pointers for re−installing the Sub−
 system on a system running an older version of the Subsystem.

 User Impact

 Before trying to use a newer Subsystem release, first study
 the Conversion Guide included with the new release to determine
 what, if any, impact will be felt by your user community. If you
 need complete information on the changes made to programs, you
 can load the documentation directories "//doc/fman" and
 "//doc/fguide" from the release tape.

 Usually, a Subsystem release is largely compatible with the
 release it replaces. Those incompatibilities that do exist are
 noted in the Conversion Guide. If incompatible changes have been
 made to a command so that you determine it unreasonable to force
 your user community to convert to the new command, you have
 several alternatives: (1) you can write shell programs to cover
 the incompatibilities, (2) in many cases, you can install the old
 command from the previous release (you may have to recompile it,
 though), or (3) you can not install the new Subsystem release.
 If you find it necessary to take the third alternative, please
 contact us so that we can try to find a better solution to your
 dilemma.

 Compatibility is a different story when you have locally
 modified versions of Subsystem programs or you have locally writ−
 ten programs that take advantage of "secret knowledge" of the
 Subsystem’s internals. In this situation, you must examine the
 newly released programs that interface with your local software
 to determine the changes necessary to interface with the new
 release. If you have difficulty in this area, please contact us
 and perhaps we can suggest possible solutions.

 Installing the New Subsystem

 Once you have determined the suitability of the new Sub−
 system release and have mapped out a conversion plan, you are
 ready to test and install the new release. Unfortunately, two
 different versions of the Subsystem cannot run simultaneously
 because the Primos shared library mechanism has no provision for
 duplicate shared entry points. Therefore, to test and install
 the new Subsystem, you must bring up the new Subsystem only when
 no other users are running with the old Subsystem.

 Before loading the new release, you must first save the old
 Subsystem files and directories. You can then immediately
 restore the old Subsystem in the case that the new one malfunc−
 | tions. If you have about 16 million bytes of disk available, you
 can just change the directory names:

 − 18 −

 Subsystem Manager’s Guide

 CNAME BIN OLD_BIN
 CNAME LBIN OLD_LBIN
 CNAME DOC OLD_DOC
 CNAME SRC OLD_SRC
 CNAME EXTRA OLD_EXTRA
 CNAME AUX OLD_AUX

 Otherwise, you must copy the directories to tape (or removable
 disk) and delete the original versions. If you copy the files to
 tape, copy ’extra’ and change its name; do not remove it from
 disk −− you will need it later. Do not change the directories
 ’vars’ and ’temp’; these can be used as they are. Be sure to
 save the Subsystem files in ’cmdnc0’, ’lib’, and ’system’.

 Then, load the release tape just as explained in the Instal−
 lation Procedure section, leaving out the load of ’vars’ and
 ’temp’. After you place the new Subsystem files in ’system’,
 ’cmdnc0’, and ’lib’, re−boot your system. (Unless you are
 familiar with the shared library re−installation procedures, a
 re−boot is the only safe way to re−install a shared library.)
 | The new Subsystem should now be available for use.

 | What To Do About Pre−8.1 Programs

 | Any calls to the subroutine ’init’ should be removed from
 | your programs. You should then recompile them, making sure that
 | nothing depends on the value of EOS being less than 0. In fact,
 | no program should depend on any properties of EOS. The Version 8
 | Compatiblity libraries are no longer supported. You may, at your
 | own risk, continue using the V8−compatible libraries supplied
 | with Release 8.1.

 | Modifications to Subsystem Files

 | Once you have installed the new release, you must move your
 | local modifications into ’extra’. First, compare the files
 | "=extra=/template" and "//old_extra/template" (using ’diff’, if
 | you like); add any local templates to "=extra=/template". Then
 | update the templates: Exit the Subsystem and type

 | OPR 1
 | SHARE 2030 700
 | R SYSTEM>INITSWT
 | SHARE 2030
 | OPR 0

 Copy the following files from ’old_extra’ to ’extra’:

 installation
 phones
 terms
 users

 − 19 −

 Subsystem Manager’s Guide

 | The ’users’ file has changed format (see the section on adding
 | and deleting users under Subsystem Management) so you might want
 | to copy it the following way

 | =ebin=/cvusr old_extra/users extra/users

 | =ebin=/cvusr is a shell file that takes the pathnames of the old
 | userlist and the new userlist as arguments, and expands the login
 | names to the 32 character length needed by the ’whois’ program.
 | This conversion only needs to be done once, when the new Sub−
 | system is first installed and brought up. New customers do not
 | have to do this, of course.

 Delete the following directories in ’extra’ and copy them
 from ’old_extra’ using ’cp’:

 gossip
 mail
 memo
 moot.u
 news

 You may want to examine the articles in ’news’ before replacing
 them with your local articles.

 You must examine the following files and directories in
 ’extra’ to determine if local changes need to be made:

 bug
 fmacro
 incl
 numsg
 ttypes
 vth

 | The shell uses a slightly different shell variable save file
 | format to allow special characters to be encoded as mnemonics and
 | prevent the file from getting scrambled if NEWLINE characters are
 | accidently entered in a variable’s value. A program, ’csv’, is
 | supplied to make this change simpler for each of the users.
 | ’Csv’ takes a list of user names as standard input, opens up the
 | file "=vars=/<user−name>/.vars" and changes the appropriate shell
 | variable values. This will only need to be done when the system
 | is first brought up. If the directory "=vars=" contains only
 | user variable directories then a simple command to perform the
 | conversion is

 | lf −c =vars= | =ebin=/csv

 | or another way, if it contains other files, is to list the names
 | into a file, edit the file, and then redirect the input into
 | ’csv’. For example:

 − 20 −

 Subsystem Manager’s Guide

 | lf −c =vars= >user_names
 | se user_names # make any changes here
 | user_names> =ebin=/csv
 | del user_names # don’t need it any more

 Now, you may perform any tests that you like. We suggest
 that at minimum, you try the screen editor, a few shell files,
 and any other commands that are frequently used on your system.

 Documentation Structure

 Given a question about the Subsystem, where does one go in
 order to find the answer? This section attempts to address this
 problem, at least to the extent of enabling the Subsystem Manager
 to identify the document required and produce a printed copy of
 it if needed.

 Software Tools Subsystem documentation is divided into two
 parts: the Reference Manual and the User’s Guide. The Reference
 Manual is mostly technical information: usage summaries,
 listings of differences from standard Software Tools programs,
 etc. The User’s Guide is mostly "soft" information: tutorials,
 applications notes, and the like. Each has its place, and must
 be accessed in its own way.

 Reference Manual

 The Reference Manual is normally the first port of call for
 anyone seeking an answer to a specific question. The Manual is
 composed of a number of entries, one for each command or sub−
 program in the Subsystem, divided into six sections: standard
 (i.e., supported by Georgia Tech) commands, standard subprograms,
 local (i.e., supported by the local installation, or not at all)
 commands, local subprograms, low−level commands, and low−level
 subprograms. The Manual is indexed by a simple list of entries
 and by an automatically generated key−word−in−context index.

 A copy of the Reference Manual, formatted for 8.5" by 11"
 paper at 10 characters per inch horizontal, 6 lines per inch
 vertical, may be spooled for printing with the command

 =doc=/print/man

 Frequent use of this command is not recommended because of the
 * manual’s sheer size.

 Individual Manual entries may be printed with the ’help’
 command. Simply typing

 help <command−name>... or
 help <subprogram−name>...

 − 21 −

 Subsystem Manager’s Guide

 will cause the selected Manual entries to be printed on the
 user’s terminal, with a pause between each screenful. The user
 may also type

 help −p <command−name> | os >/dev/lps/f

 to obtain a printed copy of an entry exactly as it appears in the
 Manual.

 ’Help’ may also be used to read the Manual’s index. If "−i"
 is used in place of a command name, then the Manual’s index will
 be printed. If "−f <pattern>" is used in place of a command
 name, then only those index entries matching the given pattern
 will be printed. For example, all commands and subprograms whose
 Manual entry heading lines contain the word "string" could be
 identified by typing

 help −f string

 This may be useful for people just learning to use the Subsystem,
 who may know several names for a function they wish to perform,
 but not the exact command or subprogram they need.

 An unformatted copy of the Reference Manual resides in the
 directory "=doc=/man". A formatted version resides in
 "=doc=/fman". Should it ever be necessary to rebuild the format−
 ted version, simply type

 =doc=/build/man

 User’s Guide

 The Guide is recommended for anyone just learning to use the
 Subsystem, as well as for those requiring a deeper knowledge of
 the workings of some of the more complex tools. It is actually a
 collection of separate papers, arranged roughly in the order
 required by a novice user. It is not intended as a quick
 reference; the Reference Manual performs that function.

 Most papers in the Guide contain a tutorial section and an
 applications notes section, for beginners and experienced users,
 respectively. Some papers also contain a formal definition sec−
 tion; these would be of use only to those requiring a very com−
 plete understanding of the workings of the Subsystem.

 The entire User’s Guide, formatted for 8.5" by 11" paper, 10
 characters per inch horizontal, 6 lines per inch vertical, may be
 spooled for printing by executing the following command:

 =doc=/print/guide

 The Guide is small enough that this operation is not overly
 expensive in terms of time or paper.

 − 22 −

 Subsystem Manager’s Guide

 The ’guide’ command may be used to print the individual
 papers that comprise the Guide. For example,

 guide ed

 would print the Introduction to the Software Tools Text Editor on
 the user’s terminal, pausing after each screenful. To obtain a
 printed copy instead, one should type

 guide −p ed | os >/dev/lps/f

 It is generally good policy to have a number of copies of the
 Software Tools Subsystem Tutorial and the Introduction to the
 Software Tools Text Editor on hand for distribution to new users.

 An unformatted copy of the User’s Guide resides in the
 directory "=doc=/guide". Should it ever be necessary to rebuild
 the formatted copy in "=doc=/fguide", it can be done by typing

 =doc=/build/guide

 Subsystem Management

 This section outlines the day−to−day responsibilities of the
 Subsystem Manager: adding and removing user accounts, keeping
 track of local hardware configuration changes, maintaining local
 tools, etc.

 Adding and Deleting Users

 Adding and deleting Subsystem user accounts boils down to
 the maintenance of one file and one directory.

 The list of authorized users is addressed by the template
 "=userlist=". On a standard Subsystem, it resides in the file
 //extra/users. There is one line in the user list corresponding
 to each authorized Subsystem user. Users may appear in any order
 in the user list, although conventionally it is kept sorted
 alphabetically. The format of a line in the user list is as fol−
 lows:

 Columns Information
 | 1−32 User’s login name, in upper case, left−
 justified, blank−padded
 | 33 Blank
 | 34−80 User’s name and commentary information

 | Example:

 | 123456789012345678901234567890123456789...
 | BURDELL George P. Burdell (Development)

 − 23 −

 Subsystem Manager’s Guide

 Whenever someone is added to the Subsystem user community, an
 appropriate entry must be made in "=userlist=". Whenever a user
 is no longer authorized to use the system, his entry must be
 removed.

 Each Subsystem user possesses a "profile" directory, which
 must be created for him by the Subsystem Manager. When adding an
 | account, create the profile directory with the command

 mkdir =vars=/<login−name> −o <password>

 | if it is a password directory or just

 | mkdir =vars=/<login−name>
 | sacl =vars=/<login−name> <login−name>=adlurw $rest=lu

 | if it is an ACL protected directory. "<Login−name>" represents
 the login name of the new user. "<Password>" represents a stan−
 dard file system owner password, which must be cited by the user
 | when he enters the Subsystem if his variables directory is pass−
 | word protected. Example:

 mkdir =vars=/gpb −o sesame

 When a user is removed from the system, his profile directory
 must be deleted. This can be done most conveniently with the
 ’del’ command:

 del −sd =vars=/<login−name>:<password>

 For example,

 del −sd =vars=/gpb:sesame

 In addition to the above measures for removing a user’s account,
 the Subsystem Manager should check for any undelivered mail, gos−
 sip messages, or news articles. See the Operation of Com−
 munications Systems subsection below.

 Specifying Local Hardware Configuration

 The screen editor ’se’ and a number of other programs that
 employ the virtual terminal handler library need to know the type
 and make of the terminals attached to each AMLC line on the
 system. This information is contained in the terminal list,
 which resides in the file "=termlist=" (nominally
 "//extra/terms"). Each line of the terminal list has the follow−
 ing format:

 − 24 −

 Subsystem Manager’s Guide

 Columns Information
 1−3 Octal AMLC line number (000−177)
 4 Blank
 5−9 Three digit decimal user number of associated
 process, in parentheses
 10 Blank
 11−16 Terminal type (as recognized by the Subsystem);
 blank if unknown
 17 Blank
 18−80 Comments (usually physical location of
 terminal, etc.)

 For example:

 12345678901234567890...
 007 (009) b200 George Burdell’s office (Room 1729)

 The contents of the "=termlist=" file must be kept up−to−date, or
 the ’e’, ’whereis’, ’se’, and ’term_type’ commands will cease to
 operate properly.

 Adding Terminal Types

 | To extend the terminal type knowledge of the Subsystem,
 | there are three places where changes need to be made in Subsystem
 files. These locations are the "=ttypes=" file, the "=vth="
 directory, and various files under the screen editor directory,
 | "=src=/spc/se.u". In all cases, the mnemonic for the new
 | terminal may not be longer than six characters.

 The "=ttypes=" file contains the terminal’s general
 attributes. Its format consists of a mnemonic for the terminal
 name, the full terminal name, and then a series of flags. These
 flags currently indicate whether the terminal type is supported
 by ’se’, whether the terminal type is supported by the VTH pac−
 kage, and whether the terminal type represents an upper−case only
 terminal.

 The file "=src=/spc/se.u/how_to_add_terminal_types" gives
 the details on adding new terminal types to the screen editor.
 Basically, new code must be added for the cursor movement
 routines and the editor must be recompiled and installed so that
 | it incorporates the new code. Also, the screen editor’s ’usage’
 | routine, as well as the Reference Manual entry, should be updated
 | to include the mnemonic of the new terminal.

 To add a new terminal type to the VTH package, an
 initialization file must be created in the "=vth=" directory,
 with the same name as the mnemonic that you have chosen for that
 terminal type. To find out what the format and contents of this
 file should be, please refer to the other files in that directory
 for examples.

 * Adding Local Tools and Library Routines

 − 25 −

 Subsystem Manager’s Guide

 When the Subsystem is used for program development, there is
 a tendency for an installation to collect a set of locally−useful
 tools. Here are a few suggestions on how to incorporate these
 local tools into the Subsystem environment.

 Of course the primary repository for local commands is the
 directory ’lbin’. The Georgia Tech ’lbin’ is supplied on the
 release tape as an example of a local command library, and
 because some of the commands contained therein may be of general
 use. To place a local tool in ’lbin’, simply copy its object
 code into the directory and use the ’chat’ command to make sure
 | it is readable by all users, or if the ’lbin’ is ACL protected
 | then the command will automatically be readable.

 Since the command search rule employed by the command
 interpreter may be changed by the user, any number of local com−
 mand directories may be created. For example, a directory named
 ’games’ might be created for the purpose of keeping employees out
 of the local arcade at lunchtime. A search rule including this
 directory might be

 ^int,^var,&,=lbin=/&,=bin=/&,//games/&

 Any of the programs in ’games’ may then be invoked without need
 for using their full pathnames.

 Of course, local subprogram libraries may also be created at
 will. As with standard Primos, the only steps necessary to make
 such libraries accessible are to place them in ’lib’ and make
 them readable by all users.

 Adding Local Documentation

 If local tools and libraries are added to the Subsystem (as
 outlined above), there will be a need for some means of document−
 ing them. Sections three and four of the Reference Manual are
 provided for this purpose.

 Section three of the Manual deals with local commands. To
 document such a command, one places a standard documentation file
 in "=doc=/man/s3" and uses "=doc=/build/rebuild" to place a
 formatted copy in "=doc=/fman/s3". The documentation may then be
 extracted by the ’help’ command, or printed with the entire
 manual by executing "=doc=/print/man".

 A standard documentation file for a command has several
 distinguishing characteristics. First, the documentation for a
 tool named "xxx" resides in a file named "xxx.d". Second, the
 structure of the file’s contents is determined by a number of
 standard text formatter macro commands. Each macro begins a
 separate subject in a manual entry. They must appear in the fol−
 lowing order: ".hd" (heading), ".ds" (description), ".es" (exam−
 ples), ".fl" (files used), ".me" (messages issued), ".bu" (bugs
 and deficiencies), and ".sa" (see also). If a section is empty,
 it should be omitted entirely.

 − 26 −

 Subsystem Manager’s Guide

 Once a documentation file has been entered, it must be
 formatted and the formatted copy placed in a separate directory.
 The shell program "=doc=/build/rebuild" has been provided for
 this purpose. An example:

 =doc=/build/rebuild s3 xxx

 This would format the file "=doc=/man/s3/xxx.d" and place the
 result in "=doc=/fman/s3/xxx.d", where it may be accessed by
 ’help’ and ’usage’.

 Section four of the Manual deals with local library sub−
 programs. The documentation procedure for subprograms is similar
 to that for major tools; an unformatted copy of the documentation
 is placed in "=doc=/man/s4", and a formatted copy in
 "=doc=/fman/s4". Again, this makes the documentation available
 through ’help’.

 Formatter macros for library routine documentation differ
 somewhat from those for command documentation. In order, they
 are: ".hd" (header), ".fs" (function of subprogram), ".im"
 (implementation sketch), ".am" (arguments modified by sub−
 program), ".ca" (other subprograms called by this subprogram),
 ".bu" (bugs or deficiencies), and ".sa" (see also). Again, if a
 section is empty, it should be omitted entirely.

 The rebuild procedure for subprogram documentation is very
 similar to that for command documentation; simply use "s4" in
 | place of "s3" in the "rebuild" command.

 | Operation of the ’Cron’ Program

 | One of the new features of Version 9 of Software Tools is
 | the ’cron’ program, which allows the system administrator to
 | arrange for the computer to automatically do tasks of a periodic
 | nature. The manual entry for ’cron’ (help cron) will give you
 | the information you need in setting up ’cron’. As distributed,
 | "=cronfile=", contains an example entry and a brief description
 | of what cronfile entries should look like, and
 | "=system=/cron.comi" contains an example startup file to
 | initialize ’cron’. ’Cron’ executes as an ordinary Software Tools
 | user so it must have an entry in "=varsdir=" and "=userlist="
 | (see Adding and Deleting Users in this section). The ’cron’ user
 | must have all permission to the directory "=crondir=". As sup−
 | plied, ’cron’ expects to be run as the system administrator with
 | an ACL protecting "=crondir=" ("=crondir=" is protected with
 | SYSTEM having $all access and everyone else has "list" and "use"
 | privileges).

 | The supplied Primos routine SPH should be used to start
 | ’cron’. The following command should be entered at the console
 | or placed in the Primos cold start command file (’c_prmo’ or
 | ’primos.comi’):

 − 27 −

 Subsystem Manager’s Guide

 | SPH SYSTEM>CRON.COMI −U <user−name> −P <project> −V 1 −G <groups>

 | where <user−name> is the name under which ’cron’ should run,
 | <project> is ’cron’s login project, and <groups> is the list of
 | file system groups with which the ’cron’ user should be
 | associated. For example, the following will startup ’cron’ with
 | all the default attributes and no groups:

 | SPH SYSTEM>CRON.COMI −U SYSTEM −P DEFAULT −V 1 −G

 Operation of Communications Systems

 The Subsystem provides three different means of passing
 information from user to user: the postal service, the
 grapevine, and the news service.

 Postal Service. Most electronic communication between Sub−
 system users is accomplished through the mail system. The ’mail’
 command stores arbitrary messages in the directory "=mail="
 (nominally "//extra/mail"), from where they may be retrieved by
 the addressee at a later time. All letters are postmarked with
 the time of mailing and the login name of the sender. Whenever a
 user enters the Subsystem via ’swt’, he is informed if there is
 any undelivered mail addressed to him.

 Grapevine. ’Mail’ is not real−time; a letter sent is
 | generally not received until the next time a user enters the Sub−
 | system, or if the user has set his mail notification in the
 | Shell, the next time the Shell notifies him. The "grapevine"
 managed by the ’to’ command alleviates some of this problem.
 Messages sent from user to user via ’to’ are stored in the direc−
 tory "=gossip=" (nominally "//extra/gossip"), which is searched
 by the command interpreter before executing each terminal−level
 command. Thus, the delay between sending a message with ’to’ and
 its receipt by the addressee is no longer than the longest time
 he spends executing a command. Since users typically spend a
 great deal of time text editing, the screen editor has also been
 given the ability to display a message sent by ’to’. See the
 "om" command in ’se’ for details.

 News Service. Occasionally an item of general interest or
 special importance must be delivered to the user community at
 large. The Subsystem news service provides a means of delivering
 these articles, while making an archival copy of them and placing
 their headlines in an index file for later reference.

 Since the disk space required to store undelivered news
 articles may be prohibitively expensive, users who wish to
 receive news must "subscribe" to the service with the ’subscribe’
 command. This need only be done once in an account’s lifetime.
 The list of subscribers may be found in the file
 "=news=/subscribers".

 − 28 −

 Subsystem Manager’s Guide

 News articles are published with the ’publish’ command.
 ’Publish’ takes one file name argument. The named file is copied
 into the news boxes ("=news=/delivery/<user>") of all sub−
 scribers, an archival copy is made in "=news=/articles", and the
 first line is entered into the index file "=news=/index" for
 later reference.

 News articles that were published incorrectly or are out−
 dated may be removed with the ’retract’ command. ’Retract’ can
 remove one or more articles at one time by specifying the article
 numbers as arguments. A notice of retraction for each article
 removed is placed in the news boxes of all subscribers who have
 seen the retracted article; subscribers who have not seen a
 retracted article are not notified of the retraction. Since
 removal of outdated news articles is not of great importance,
 such articles may be retracted quietly by using the "−q" option.

 When a subscriber enters the Subsystem, he is informed if
 there is any news he has not yet seen. He may then retrieve the
 article with the ’news’ command. At any time, he may also use
 the ’news’ command to review the index or any archived articles.

 Modifying the Dictionary of English Words

 The dictionary of words supplied with the Subsystem is still
 | rather incomplete, and may require additions from time to time.

 | The template =new_words= is commented out in the system tem−
 | plate file. If you make it an active template (by removing the
 | comment symbol), the ’spell’ program will write into =new_words=
 | any words it finds which are not in the dictionary. (=new_words=
 | is defined to be =aux=/spelling/new_words.) You may then wish to
 | periodically clean up the file as follows:

 | cd =aux=/spelling
 | sort new_words | uniq >new_words

 | which will sort the file and remove duplicate entries. You can
 | then go through the file with a dictionary, and remove words
 | which are misspelled.

 | To add new words to the dictionary, the following procedure
 | is recommended.

 | Obtain a list of words to be added, or use =new_words= as
 | described above (or both). Obtain from each word as many
 derivative words as possible, by changing prefixes and suffixes,
 forming compounds, etc. Check each of these for correct spel−
 ling.

 | Attach to the directory "=aux=/spelling/new" and split the
 | new words into the word files there according to the following
 scheme:

 − 29 −

 Subsystem Manager’s Guide

 dictionary ordinary English words
 gazetteer names and trademarks
 abbreviations abbreviations, acronyms
 glossary computer science terms

 Words may appear in more than one file; for example, "assemble"
 may appear both in the dictionary and in the glossary.

 When the new words have been split to their respective
 | files, append these files onto the files of the same name in
 | "=aux=/spelling." You may then empty out the files in
 | "=aux=/spelling/new" by ’echo’ing into them. Go back to
 | "=aux=/spelling", and execute the shell program ’build’, which
 combines the files to form the file ’words’, which is used by the
 | spelling check program. You may also run the program ’info’ in
 | "=aux=/spelling" for more information.

 − 30 −

 TABLE OF CONTENTS

 Overview ... 1
 Purpose ... 1
 Summary of Contents 1

 Subsystem Configuration 2
 Standard Directory Structure 2
 Top−Level Directories 6
 Directory Security and Placement on Disk 6
 Alternative Directory Structures 8
 Templates and Top−Level Directories 8
 Off−Line Storage 9

 Installation Procedure 10
 Subsystem Installation Package 10
 Release Tape Contents 10
 Logical Tape 1 10
 Logical Tape 2 11
 Logical Tape 3 11
 Logical Tape 4 12
 Loading the Tape 12
 Reconfiguration of Primos for the Subsystem 13
 Initialization of Shared Segments 13
 Initial Log−in by SYSTEM 14
 Resolving Shared Segment Conflicts 15
 Segments Used ... 16
 Changes for Primos Rev. 19.4 17

 Conversion Procedure 18
 User Impact ... 18
 Installing the New Subsystem 18
 What To Do About Pre−8.1 Programs 19
 Modifications to Subsystem Files 19

 Documentation Structure 21
 Reference Manual 21
 User’s Guide .. 22

 Subsystem Management 23
 Adding and Deleting Users 23
 Specifying Local Hardware Configuration 24
 Adding Terminal Types 25
 Adding Local Tools and Library Routines 25
 Adding Local Documentation 26
 Operation of the ’Cron’ Program 27
 Operation of Communications Systems 28
 Postal Service 28
 Grapevine .. 28
 News Service 28

 − iii −

 Modifying the Dictionary of English Words 29

 − iv −

 Software Tools Subsystem

 Version 7.1 to Version 8 Conversion Guide

 Terrell L. Countryman
 Jeanette T. Myers
 Peter N. Wan

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 April, 1982

 Version 8 Conversion Guide

 Introduction

 Version 8 of the Software Tools Subsystem differs from
 Version 7.1 in a number of ways, most of which will not impact
 the average user. Most changes are extensions or internal per−
 formance improvements, and affect one or two commands rather than
 the entire Subsystem. This conversion guide is divided into
 three sections: Global Changes discusses the alterations that
 affect large portions of the user interface; Status of V7.1 Com−
 mands and Status of V7.1 Subroutines describe additions,
 deletions, and modifications made to individual commands and
 subroutines.

 Global Changes

 Terminal Type Handling

 Various programs and library routines now support the
 tailoring of output for specific terminals. This entailed
 changes in the library, the macro definitions file, the Subsystem
 common blocks, ’swt’, ’se’, ’term’, and ’term_type’. You will be
 affected by these changes if you have added terminal types to
 ’se’ or if you have used the preliminary version of the Virtual
 Terminal Handler (VTH) library on the Version 7.1 release. Since
 a prompt for terminal type may now occur upon Subsystem entry,
 you may have to add terminal types to the "=ttypes=" file or
 educate your users about terminal types.

 If you want to extend the terminal type knowledge of the
 Subsystem, you must add new terminal types and information
 concerning them to the file "=ttypes=", add a new initialization
 file in the directory "=vth=" for each new terminal type, and
 modify and recompile ’se’ with new code to handle the new
 terminal.

 Templates

 Templates are no longer mapped to a single case. Unless you
 have some single−case terminals or regularly program in upper−
 case only, this change is unlikely to affect you.

 If a template must contain imbedded equals signs, use two
 consecutive equals signs to pass one through the template expan−
 der; in an earlier version of the template processor, the
 "at sign" was used to "escape" the equals sign.

 Speed

 Version 8 of the Subsystem uses considerably less CPU time
 for I/O than Version 7.1. Unfortunately, if you are moving up to

 − 1 −

 Version 8 Conversion Guide

 Revision 18 of Primos, you may not notice much difference;
 Revision 18 can be that much slower than Revision 17.

 Memory Segments

 Prime has now used all available private memory segments.
 At Version 8 of the Subsystem, it has become necessary to
 increase the NUSEG parameter in the Primos configuration file to
 at least 42 (octal), to provide private segments for the Sub−
 system that do not conflict with standard Prime programs. This
 implies that programs using secret knowledge of the Subsystem’s
 common blocks must be relinked. It also implies that you cannot
 bring up Version 8 without rebooting your system.

 Listed below are the segments required for the Subsystem:

 Version 8 Version 7.1

 SWT Shell and template area 2030 2030
 SWT Screen Editor 2031 2031
 SWT Library 2035 2035
 SWT Common 4040 4036
 SWT Stack 4041 4035

 Process Ids to Three Digits

 To accomodate the increase in the number of processes in
 Primos 18, process ids will be three digits instead of two. The
 "=termlist=" file has changed slightly in format to accomodate
 the increased id lengths and AMLC numbers.

 Cldata Template

 The location of "cldata", a Primos command interpreter data
 structure referenced by the Subsystem shell, is now a template.
 The Version 8 release has "cldata" defined to be segment 6002,
 word 6, which applies to you if you are running Primos 18.3 or
 above. If you are running Primos 18.2 or lower, there is a com−
 mented template in the "Configuration Options" section of "=tem−
 plate=" that you need to use.

 Exception Handling

 The new version of the shell now allows you to intercept
 exceptional conditions, such as pointer faults, arithmetic value
 errors, interrupts, etc. Quits (via control−p or "break") abort
 the current program and return to command level in the shell,
 rather than leaving the you stranded in Primos, as was the case
 in previous versions of the shell. If you have a shell variable
 named "_quit_action" (the value is not important), then when the
 quit occurs, the shell will prompt you as to whether to abort the

 − 2 −

 Version 8 Conversion Guide

 current program, continue, or call Primos. If Primos is called,
 the current program may be continued by typing START, or the Sub−
 system may be re−entered by typing REN.

 DBG Support

 There is now some support for invoking the symbolic debugger
 from the Subsystem. Please see the Reference Manual entry on
 ’dbg’ for more information.

 New Shell Control Variables

 The variable "_kill_resp" can be used to set the character
 string that will be printed on your screen whenever you type a
 "kill" (the default is the string "\\"); "_prt_form" can be used
 to specify your usual printing form (the default is to use the
 default installation printer form); "_prt_dest" can be used to
 specify your favorite line printer (the default is to use the
 default installation printer); and, "_quit_action" can be used to
 take advantage of the new quit handling capabilities of the shell
 (by default, this variable is not declared and you are
 automatically returned to the command level of the shell, with no
 choice of error handling for quits).

 Note that when a variable is set using either ’declare’ or
 ’set’, the value does not take effect until you exit the Sub−
 system and re−enter.

 Deleted Macro Definition

 One macro definition has been removed from the standard
 macros file. ESCCHAR is no longer defined; use ESCAPE instead.

 Change in Value of EOS

 After Version 8 of the Subsystem, the value of the end−of−
 string character (EOS) will be changed. The current value of
 EOS, as defined in the Subsystem definition file, is −2. It will
 be changed to the value 0 to maintain consistency with the way
 the C library handles the end−of−string. If you have any
 programs which depend on the value of EOS being of a certain
 magnitude (i.e., being negative), you should recode them to avoid
 depending on that assumption. This change will require the
 recompilation of all local Subsystem programs.

 New Reference Manual Sections

 Two new sections have been created to contain low level com−
 mands (Section 5) and low level subroutines (Section 6). You
 should not invoke these commands and routines under normal cir−
 cumstances; they are usually support routines for user−callable

 − 3 −

 Version 8 Conversion Guide

 Subsystem commands and routines.

 The following commands were moved from sections 1 and 3 to
 section 5:

 bmerge bnames bs
 bs1 bugfm bugn
 guess mkcl

 The following routines were moved from sections 2 and 4 to
 section 6:

 at$ bponu$ c$end
 c$incr c$init call$$
 chunk$ cof$ cpfil$
 cpseg$ dgetl$ dmark$
 dmpcm$ dmpfd$ dopen$
 dputl$ dread$ dsdbiu
 dseek$ dwrit$ findf$
 finfo$ first$ flush$
 gcdir$ gcifu$ getfd$
 gfnam$ icomn$ iofl$
 ioinit ldseg$ ldtmp$
 lopen$ lutemp mkdir$
 mkfd$ mkpa$ mktr$
 reonu$ rmfil$ rmseg$
 rtn$$ sprot$ st$lu
 t$clup t$entr t$exit
 t$time t$trac tcook$
 tgetl$ tmark$ tputl$
 tread$ tscan$ tseek$
 ttyp$f ttyp$l ttyp$q
 ttyp$r ttyp$v twrit$
 upkfn$ vt$alc vt$clr
 vt$db vt$db1 vt$db2
 vt$db3 vt$def vt$del
 vt$dsw vt$err vt$get
 vt$gsq vt$idf vt$ier
 vt$ndf vt$out vt$pos
 vt$put vt$rdf zmem$

 New Subsystem Libraries

 Vthlib has been totally rewritten, and is now supported as
 part of the Subsystem. It is much faster than the earlier ver−
 sion, and offers more features. In general, the rewritten
 routines are not compatible with those of the earlier release of
 VTH. Programs which used the earlier version of VTH will have to
 have the VTH calls recoded to use the new routine names (and new
 calling formats).

 − 4 −

 Version 8 Conversion Guide

 New Subsystem Templates

 The templates "=newcmdnc0=" and "=newsystem=" specify where
 newly compiled Subsystem files that belong in "cmdnc0" and
 "system" are placed during a recompilation of the Subsystem. The
 "=ttypes=" file contains a list of terminals supported by your
 Subsystem and their characteristics. The "=cldata=" template,
 mentioned above, indicates where the Primos "cldata" data struc−
 ture is located. The "=sysname=" template is used to indicate
 the Primenet node name, if the system is a network system.

 Obsolete templates have been removed from the Version 8
 release template file.

 Status of Version 7.1 Commands

 This section summarizes the user−visible changes that have
 been made to Subsystem commands for Version 8. It is divided
 into several subsections: obsolete commands, superseded com−
 mands, modified commands, enhanced commands, and unchanged com−
 mands. The final subsection is a summary of commands that are
 new for the Version 8 release.

 Obsolete Commands

 The commands in this subsection were part of the Version 7.1
 Subsystem, but are not included in the Version 8 release. Most
 of them were used only by certain shell programs and have out−
 lived their usefulness. In other cases, the commands were relics
 of past Subsystems, and either were no longer useful, or no
 longer worked.

 No commands are obsoleted at Version 8.

 Superseded Commands

 The commands in this subsection are not part of the Ver−
 sion 8 Subsystem; their functionality has been subsumed by other
 commands. Each entry describes the command and options you can
 use to get the same results.

 ar
 Has been completely rewritten. The old ’ar’ is now
 ’old_ar’. All existing archives should be processed
 with ’old_ar’, and then reprocessed with ’ar’, since
 support of ’old_ar’ will be dropped in a future
 release.

 dumpls
 Use the new command ’dump’ instead. The command line
 would be "dump ls".

 − 5 −

 Version 8 Conversion Guide

 dumpsv
 Use the new command ’dump’ instead. The command line
 would be "dump sv".

 Modified Commands

 The commands listed in this subsection have been modified
 for the Version 8 release and are no longer completely compatible
 with their Version 7.1 counterparts. Each entry gives a brief
 description of the changes, but before using any of these com−
 mands, please check the corresponding Reference Manual entry to
 be sure of the command’s exact behavior.

 dprint
 The argument syntax has been changed slightly. The
 length option is now "−l <length>", rather than
 "−<length>".

 ’Dprint’ can now handle the generation of multiple
 copies.

 mon
 Accepts four commands while running; three are used to
 reformat the screen and the fourth command redraws the
 screen.

 Now uses VTH to do output, so it will work on terminals
 besides Beehives (any terminal supported by VTH).

 pg
 The control−c response causes ’pg’ to ignore any
 remaining file names that were command line arguments
 and exit to the command interpreter.

 Default prompt now shows the file being displayed as
 well as the page number.

 The "−s" option has been added; it allows you to
 specify the screen size as an argument. The old syntax
 of "−<screen size>" was ambiguous if the <screen size>
 was 1, 2, or 3 (it was too close to the Subsystem con−
 vention of referencing the standard input/output ports
 with a "−<port number>").

 rtime
 By default, the output of the command being measured is
 diverted to /dev/tty; you can specify diversion to
 /dev/null if no output is desire.

 − 6 −

 Version 8 Conversion Guide

 se
 Your terminal type can now be obtained by a call to the
 Subsystem. (This usually eliminates the need to know
 terminal type mnemonics, or at least the need to retype
 them as long as the Subsystem knows your terminal type
 −−− if the Subsystem does not know your terminal type,
 it will prompt you for it when you invoke ’se’).

 Long input lines are now scrolled horizontally, allow−
 ing the cursor to remain visible at all times.

 New options include "oh[<baud>]", to tell ’se’ your
 baud rate; "olm[<column>]", to set the left margin of
 text to be displayed in the window (permitting handling
 of very wide files); and, "os[s | f | f77]", to set
 several programming language related parameters at once
 ("oss" for PMA, "osf" for FTN, "osf77" for F77).

 Documented options include "ok", to indicate whether or
 not the current edit buffer has been saved; and, "om"
 to display a message (sent via ’to’).

 New commands include "e!", "w!" and "q!" which can be
 used to enter, write or quit without having ’se’ tell
 you if you are about to destroy the contents of your
 edit buffer or the contents of an existing file. These
 replace the old forms "ea", "wa", and "qa", respec−
 tively.

 New terminal types supported by ’se’ are the hz1510,
 ts1, tvi, and z19.

 ’Se’ now takes advantage of terminal hardware line
 insert/delete functions (if they are available for the
 given terminal) to speed up processing over slower
 transmission lines (i.e., dialups). The "−h" command
 line option and the "oh" ’se’ command set/query the
 baud rate you are running at; ’se’ decides how many
 nulls to put out, and whether to use the hardware line
 insert/delete functions or not, based on a combination
 of the baud rate and terminal type. If you want to add
 terminal types to ’se’ for locally available terminals,
 the file "=src=/spc/se.u/how_to_add_terminal_types"
 explains how to do it (it also includes information on
 where to add the code necessary to handle the hardware
 line insert/delete functions). We at Georgia Tech
 would be interested to know about terminals that you
 add to both ’se’ and the VTH package, so that we can
 include them in future releases of the Subsystem.

 − 7 −

 Version 8 Conversion Guide

 sh
 The shell now handles breaks and control−p. If you
 declare the variable "_quit_action", you receive a
 prompt after a break and are allowed to continue the
 program, terminate the program and return to the Sub−
 system, or terminate the program and drop out to Primos
 (for debugging). If "_quit_action" is not declared,
 interrupted programs simply return control to the
 shell.

 term
 Support for the Subsystem terminal type management
 routines has been added.

 New "−newline" and "−eof" options to specify newline
 and end−of−file characters; new "−vth" and "−se"
 options to specify whether or not the terminal type is
 supported by the Virtual Terminal Handler (VTH) and
 ’se’.

 Removed "−tab" and "−enb".

 term_type
 Now uses the Subsystem terminal type management
 facilities. Options have been added to query the
 values of particular terminal attributes, as well.

 x
 ’X’ now calls the Primos command interpreter directly,
 via the Primos routine CP$. (This reduces execution
 time and the amount of garbage displayed on your
 terminal.)

 ’X’ can execute Primos commands interactively, regain−
 ing control when you generate an end−of−file.

 Enhanced Commands

 Commands in this subsection have been functionally enhanced
 for the Version 8 release, but remain compatible with their Ver−
 sion 7.1 counterparts.

 change
 Accepts a string as an argument that is to be searched
 for a pattern.

 declare
 Will not modify a shell variable that has already been
 declared at the current level.

 declared
 No longer decides whether a shell variable is
 "declared" if an illegal lexical level offset is sup−
 plied.

 − 8 −

 Version 8 Conversion Guide

 define
 Finally does what the documentation says it will do.

 diff
 A "−b" option has been added to allow direct binary
 comparison of files. (Note that files that compare
 "equal" under the usual text comparison may not be
 equal under the binary comparison, because of blank
 compression.)

 e
 Takes ’se’ options as arguments and uses new terminal
 type handling.

 f77c
 New "−w" option to generate floating round instructions
 which improves the accuracy of single precision float−
 ing point calculations.

 fc
 New "−w" option to generate floating round instructions
 which improves the accuracy of single precision float−
 ing point calculations.

 file
 No longer returns "−1" when it could not perform a test
 on a file; it returns a zero, which is in accordance to
 the documentation. An error message is written to
 ERROUT for this case.

 fmt
 New ".eo" and ".oo" commands to specify different page
 offsets for even− and odd−numbered pages.

 Documented the ".dv" (divert stream) command which,
 when used in conjunction with ".so", can produce an
 automatic table of contents.

 guess
 Requires an argument that is the command name to be
 used and optionally accepts a "tolerence" level.

 guide
 Version 8 Conversion Guide now available.

 hd
 New "−n" and "−u" options to display "normalized" (440
 words/record) or "unnormalized" (1024 words per record)
 record counts, respectively.

 help
 Documented the "−u" option to print usage for com−
 mand(s).

 ’Help’ now uses ’page’ for paging so you can use all
 the responses acceptable to ’page’.

 − 9 −

 Version 8 Conversion Guide

 ld
 The templates "=cm_loc=" and "=tp_loc=" are checked to
 allow overriding the default segment numbers for Sub−
 system common blocks and template storage areas. This
 is useful if you are modifying the Subsystem and must
 run a production copy and a development copy side−by−
 side.

 lf
 New "−q" option to print nonowner password.

 mail
 Mail is saved in the file defined by the template
 "=mailfile=". The Subsystem default is
 "=varsdir=/.mail".

 Checks for valid addressee name(s) before reading the
 letter to be sent.

 mkclist
 New "−s" argument to create the system defined command
 list ("=ubin=" is ignored).

 moot
 An "index" command has been added to summarize the
 entries that have been made in the current conference.

 mt
 ’Mt’ has been heavily modified to fix all known bugs.

 New "−v" option to cause ’mt’ to print the number of
 blocks read or written.

 plgc
 New "−w" option to generate floating round instructions
 which improves the accuracy of single precision float−
 ing point calculations.

 print
 New "−i" option to indent listing, "−j" option to cause
 ’print’ to put a FORMFEED character at the end of a
 page instead of generating the number a blank lines
 required to get to the top of the next page, and a "−l"
 option to indicate the number of lines per page.

 publish
 A warning is now issued if you interrupt a ’publish’
 (interrupting a ’publish’ has possible harmful side
 effects).

 retract
 A "−q" option has been added to allow retraction of a
 news article without printing a retraction notice.

 − 10 −

 Version 8 Conversion Guide

 rp
 Declarations are now handled as a separate data stream.

 You can now put statements in your Ratfor program that
 will not be touched by ’rp’ and you can indicate if
 those statements are to be routed to the "declaration",
 "data", or "code" stream.

 A "−g" option has been added to invoke an algorithm
 that tries to eliminate chains of GOTO statements.
 (When this was applied to the preprocessor itself, a
 10% speedup resulted.)

 New "−x" option and a accompanying translation table
 can be used for user definable character code
 translation.

 A new "−y" option is available that causes ’rp’ to not
 place "call init" and "call swt" statements in the
 Fortran code.

 Several internal speed−up improvements have been made.

 String tables now allow multiple slashes, causing mar−
 ginal index entries to be duplicated. The maximum
 string table size has been increased.

 The standard Ratfor macro definitions file now includes
 "SET_OF_GRAPHICS" and "SET_OF_SPECIAL_CHAR" for use in
 "when" clauses in Ratfor.

 sema
 Now handles named and negative (Primos system)
 semaphores.

 stacc
 A "null token" construct (epsilon) has been added to
 cause a match without scanning any input.

 A "quick select" construct has been added to permit
 fast selection between a number of alternatives begin−
 ning with distinct terminal symbols.

 General processing speed has been improved by eliminat−
 ing the use of temporary files.

 ’Stacc’ can now generate code in the C programming
 language, as well as Ratfor. The Reference Manual
 entry has been corrected so that it no longer indicates
 that SSPL, Pascal, and PLP are supported (they are
 not).

 tail
 Now correctly accepts a filename as an argument, even
 if it is the only argument (before, ’tail’ would try to
 convert the lone file name as the number of lines

 − 11 −

 Version 8 Conversion Guide

 parameter, get an error in the conversion, and end up
 reading the default number of lines from standard
 input).

 tlit
 Running time has been improved drastically.

 For compatibility with ’take’, ’drop’, and other com−
 mand line utility functions, ’tlit’ can also accept
 strings as arguments to be transliterated.

 to
 The header line format has been changed, to provide
 more information.

 translang
 Added the "nor" operator, which was inadvertently left
 out of the lexical analyzer.

 who
 Changed to call the new Primos GMETR$ to access the
 system data bases.

 An "r" flag is appended onto the pid if the user is a
 remote user.

 − 12 −

 Version 8 Conversion Guide

 Unchanged Commands

 This subsection lists the commands that have no user−visible
 changes made for Version 8.

 alarm arg args
 argsto as11 as6800
 as8080 banner basys
 batch block bs
 bug bye cal
 case cat cd
 chat chown clear
 clock cmp cn
 col common como
 copy copyout cp
 crypt ctime cto
 date day declared
 del detab dmach
 dnum drop echo
 ek else entab
 error esac eval
 exit f77cl fcl
 fdmp fi field
 files find fixp
 fmt focld forget
 fos fsize goto
 history hp if
 imi include index
 installation intel iota
 join kill kwic
 lam ld length
 lex lib line
 link lk locate
 log login_name lps
 macro memo mkclist
 mkdir mklib mktree
 mkusr mot mv
 nargs news opt6800
 opt8080 os out
 p4c p4cl passwd
 pause pc pcl
 ph phist phone
 plgcl pmac pmacl
 pr print profile
 publish pwd pword
 quote rcl rf
 rfl rmusr rnd
 rot rsa save
 scroll sep set
 sh show shtrace
 size slice sort
 source sp speling
 sspl ssr st_profile
 stats stop subscribe
 substr symbols systat
 take tc tee

 − 13 −

 Version 8 Conversion Guide

 template then time
 ts uniq unoct
 unrot us usage
 vars when whereis
 whois xref

 New Commands

 This subsection lists commands that are new for Version 8.

 basename
 Select various portions of a pathname.

 bmerge
 Merge object code files into one file for building a
 library.

 bnames
 Print entry point names in object files.

 bs1
 Identical to ’bs’ except that it reduces search time,
 with the possible result of having a less intelligent
 guess.

 bugfm
 Format a bug report created with the ’bug’ command.

 bugn
 Process the highest bug number.

 cc
 Compiles a C program with the Subsystem C compiler.

 ccl
 Compiles and loads a C program.

 cdmlc
 Compiles a Prime DBMS Cobol Data Manipulation Language
 program.

 cdmlcl
 Compiles and loads a DBMS Cobol Data Manipulation
 Language program.

 cobc
 Compiles a Cobol program.

 cobcl
 Compiles and loads a Cobol program.

 csubc
 Compiles a Primos DBMS Cobol subschema.

 − 14 −

 Version 8 Conversion Guide

 dbg
 Interface to Primos source level debugger.

 ddlc
 Compiles a Prime DBMS schema.

 des
 An implementation of the National Bureau of Standards
 Data Encryption System.

 dump
 Debugging aid which dumps the shell’s various internal
 data bases in a semi−readable format. This command
 supersedes the Version 7.1 commands ’dumpls’ and
 ’dumpsv’.

 fdmlc
 Compiles a program written in the Prime DBMS Fortran
 Data Manipulation Language.

 fdmlcl
 Compiles and loads a Prime DBMS Fortran Data Manipula−
 tion Language program.

 fsubc
 Compiles a Primos DBMS Fortran subschema.

 last
 Allows you to look at the last few lines of a file.

 Can also count the number of lines in a file very quic−
 kly.

 mkcl
 Make a command list in compressed binary format for use
 with the ’guess’ command.

 old_ar
 Subsystem archiver from Version 7.1; included to allow
 you to retrieve your files and convert to the new
 archiver, ’ar’.

 plpc
 Compiles a PL/P program.

 plpcl
 Compiles and loads a PL/P program.

 primos
 Allows the use of the Primos command interpreter from
 the Subsystem. This command is somewhat different from
 the ’x’ command, in that ’primos’ causes a new level of
 the Primos command interpreter to be initiated.

 − 15 −

 Version 8 Conversion Guide

 radix
 Convert numbers from one radix representation to
 another.

 raid
 Examine bug report submitted with ’bug’ command (this
 is intended for the use of the Subsystem manager).

 The bug reports can also be optionally be printed so
 that a hardcopy may be obtained.

 rdcat
 Relational database command which concatenates two
 identical relations.

 rdextr
 Relational database command which extracts relation
 data from a given relation.

 rdjoin
 Relational database command which joins two relations.

 rdmake
 Relational database command which constructs a relation
 from a data file.

 rdprint
 Relational database command to print a relation or a
 relation descriptor.

 rdproj
 Relational database command to project a relation.

 rdsel
 Relational database command to select tuples of a
 relation.

 rdsort
 Relational database command to sort a relation.

 rduniq
 Relational database command to remove duplicate tuples
 from a relation.

 sol
 Game of solitaire. A good demonstration of the new
 Virtual Terminal Handler (VTH) package.

 spell
 Faster than ’speling’.

 Has a "verbose" output format to aid in locating mis−
 spelled words.

 Is more intelligent about not reporting formatter com−
 mands as misspelled words.

 − 16 −

 Version 8 Conversion Guide

 tip
 Check if terminal input is pending.

 vpsd
 Interface to invoke the Primos V−mode Symbolic Debugger
 on Subsystem programs.

 Status of Version 7.1 Subroutines

 This section summarizes the user−visible changes to the Sub−
 system library routines. It is divided into several subsections:
 obsolete routines, superseded routines, modified routines,
 enhanced routines, unchanged routines and new routines.

 Obsolete Routines

 The routines listed here were only used by other library
 routines. Since their services are no longer required, they have
 been deleted.

 cmdf$$
 Obsoleted because of a smarter shell.

 rtr6800
 The SSPL run−time support library for the M6800
 microprocessor has been removed.

 vt$bc
 Obsoleted by the new VTH routines.

 vt$cc
 Obsoleted by the new VTH routines.

 vt$ld
 Obsoleted by the new VTH routines.

 vt$ll
 Obsoleted by the new VTH routines.

 vt$mv
 Obsoleted by the new VTH routines.

 vt$pk
 Obsoleted by the new VTH routines.

 vt$rc
 Obsoleted by the new VTH routines.

 vt$upk
 Obsoleted by the new VTH routines.

 − 17 −

 Version 8 Conversion Guide

 vtceol
 Obsoleted by the new VTH routines.

 vtceos
 Obsoleted by the new VTH routines.

 vtenc
 Obsoleted by the new VTH routines.

 vtinl
 Obsoleted by the new VTH routines.

 vtins
 Obsoleted by the new VTH routines.

 vtmvdn
 Obsoleted by the new VTH routines.

 vtmvlf
 Obsoleted by the new VTH routines.

 vtmvrt
 Obsoleted by the new VTH routines.

 vtmvup
 Obsoleted by the new VTH routines.

 vtpos
 Obsoleted by the new VTH routines.

 Superseded Routines

 The following routines have been subsumed by other more
 powerful routines. Each entry names the Version 8 routine that
 performs the same function.

 inloc$
 Use ’decode’.

 itoc0
 Use ’gitoc’ or ’encode’.

 itoc8
 Use ’gitoc’ or ’encode’.

 prot$
 Use ’sprot$’. The name was changed to avoid a conflict
 with the Primos routine of the same name.

 Modified Routines

 The routines listed in this subsection have been modified so
 that they are no longer compatible with their Version 7.1
 counterparts. Although each entry briefly describes the changes

 − 18 −

 Version 8 Conversion Guide

 that have been made, you should examine the corresponding
 Reference Manual entries to determine the exact behavior of the
 routines.

 cof$
 Requires a "state" argument.

 enter
 ’Enter’ is now a function that returns a pointer to the
 dynamic storage area containing text of next symbol.

 expand
 If a template must contain uninterpreted "="s, do not
 precede it by a "@" but by another "=".

 iofl$
 Requires a "state" argument.

 sys$$
 New argument to specify file unit from which the Primos
 command takes its input.

 tscan$
 The ’path’ argument is changed by this routine, but was
 not documented to say so. The documentation has been
 changed.

 vt$db
 Has been rewritten for new VTH library.

 vt$del
 Has been rewritten for new VTH library.

 vt$out
 Has been rewritten for new VTH library.

 vtclr
 Has been rewritten for new VTH library.

 vtinit
 Has been rewritten for new VTH library.

 vtputl
 Has been rewritten for new VTH library.

 vtterm
 Has been rewritten for new VTH library.

 vtupd
 Has been rewritten for new VTH library.

 Enhanced Routines

 The routines listed in this subsection have additional func−
 tionality in the Version 8 release, but remain compatible with

 − 19 −

 Version 8 Conversion Guide

 their Version 7.1 counterparts.

 call$$
 Accepts an optional argument for the creation of an on−
 unit.

 date
 There are now system defines for the request keys (so
 that actual numbers for the type of request need not be
 supplied).

 New values returned are minutes, seconds and mil−
 liseconds past midnight.

 dopen$
 Now takes an argument to determine the number of
 retries on encountering a "file in use" situation.

 getto
 MFD passwords are now consistently assumed to be
 "XXXXXX". Mixed−case passwords have caused several
 problems; the real source of the difficulty is a change
 Prime made to TA$ that renders it incompatible with
 earlier revisions of Primos.

 lopen$
 Will put in the values for the user’s shell variables
 "_prt_form" and "_prt_dest", if available, in the
 spooler entry.

 open
 Now takes a fourth argument to determine the number of
 retries on encountering a "file in use" situation.

 − 20 −

 Version 8 Conversion Guide

 Unchanged Routines

 No user−visible changes have been made to the routines
 listed in this subsection.

 addset amatch atoc
 c$end c$incr cant
 catsub chkarg chkinp
 close cpfil$ cpseg$
 create ctoa ctoc
 ctod ctoi ctol
 ctomn ctop ctor
 ctov decode delarg
 delete dgetl$ dmark$
 dodash dputl$ dread$
 dsdbiu dsdump dseek$
 dsfree dsget dsinit
 dtoc dwrit$ edit
 encode enter equal
 error esc exec
 execn fcopy filcpy
 filset filtst findf$
 finfo$ flush$ follow
 gcd gcdir$ gctoi
 gctol getarg getccl
 getch getkwd getlin
 getto getvdn gfnarg
 gitoc gklarg gltoc
 gtemp gvlarg icomn$
 index init input
 invmod ioinit isatty
 itoc jdate ldseg$
 ldtmp$ length locate
 lookup lsallo lscmpk
 lscomp lscopy lscut
 lsdel lsdrop lsdump
 lsextr lsfree lsgetc
 lsgetf lsinit lsins
 lsjoin lslen lsmake
 lspos lsputc lsputf
 lssubs lstake ltoc
 lutemp makpat maksub
 mapdn mapfd mapstr
 mapsu mapup markf
 match mkdir$ mkfd$
 mkpa$ mktabl mktemp
 mktr$ mntoc move$
 omatch open page
 parsdt parstm patsiz
 prime print ptoc
 putch putdec putlin
 putlit pwrmod readf
 remark remove reonu$
 rewind rmfil$ rmseg$
 rmtabl rmtemp rtn$$
 rtoc scopy sctabl

 − 21 −

 Version 8 Conversion Guide

 sdrop seekf set_copy
 set_create set_delete set_element
 set_equal set_init set_insert
 set_intersect set_remove set_subset
 set_subtract set_union seterr
 st$lu stake stclos
 strbsr strcmp strim
 strlsr substr swt
 t$clup t$entr t$exit
 t$time t$trac tgetl$
 tmark$ tputl$ tquit$
 tread$ trunc tseek$
 twrit$ type upkfn$
 vfyusr vtoc wind
 wkday writef zmem$

 New Routines

 The routines listed in this section are new for the Ver−
 sion 8 release.

 at$
 Subsystem interlude to Primos ATCH$$.

 bponu$
 On−unit handler for "BAD_PASSWORD$" condition.

 c$init
 Initializes a Ratfor program in preparation for a
 statement count run.

 chkstr
 Check a string for printable characters.

 dmpcm$
 Dump the contents of Subsystem common blocks in a
 printable format.

 dmpfd$
 Dump information about a file descriptor.

 file$p
 When called from a Pascal program, allows the program
 to use the I/O redirection and piping features of the
 Subsystem.

 first$
 This routine sees if it has been called before; it is
 used by the Subsystem for initialization purposes.

 gcifu$
 Get the file unit which is providing command input to
 the shell.

 − 22 −

 Version 8 Conversion Guide

 geta$f
 Allows Fortran programs access to the arguments from
 the Subsystem command line.

 geta$p
 Allows Pascal programs to access the arguments from the
 Subsystem command line.

 geta$plg
 Allows PL/I (subset G) programs to access the arguments
 from the Subsystem command line.

 getfd$
 Look for an empty file descriptor.

 getwrd
 Retrieve the next word from a buffer.

 gfnam$
 Get pathname of an open file.

 gtattr
 Returns a user’s terminal attributes.

 gttype
 Returns the user’s terminal type name.

 init$f
 Allows the Fortran programmer to take advantage of Sub−
 system I/O (especially the standard input and output
 ports).

 init$p
 Allows the Pascal programmer to take advantage of Sub−
 system I/O (especially the standard input and output
 ports).

 init$plg
 Allows the PL/I (subset G) programmer to take advantage
 of Subsystem I/O (especially the standard input and
 output ports).

 isadsk
 Test to see if a file is a disk file.

 sprot$
 Set the protection attributes for a file. This routine
 used to be named ’prot$’, but had to be renamed because
 of a name conflict with a Primos routine.

 tcook$
 Read a line from the terminal and handle operations of
 processing escape sequences, case and character set
 mapping, line kills, etc. ("cooking" the line).

 − 23 −

 Version 8 Conversion Guide

 ttyp$f
 Obtain the user’s terminal type from the "=termlist="
 file, if available.

 ttyp$l
 List the available terminal types (as defined in the
 "=ttypes=" file).

 ttyp$q
 Query for the terminal type from the user.

 ttyp$r
 Return the user’s terminal type from the Subsystem com−
 mon area, if available.

 ttyp$v
 Set the terminal’s attributes in the Subsystem common
 areas.

 vt$alc
 Allocate another VTH definition table for the keyboard
 macros.

 vt$clr
 Send the clear screen sequence.

 vt$db1
 VTH debugging routine which prints mnemonics for the
 unprintable characters to be output.

 vt$db2
 VTH debugging routine to dump the terminal input
 tables.

 vt$db3
 VTH debugging routine to dump the macro definition
 table.

 vt$def
 Allows the user to define a keyboard macro.

 vt$dsw
 Perform a garbage collection on the VTH definition
 tables.

 vt$err
 Print a VTH error message.

 vt$get
 VTH input routine.

 vt$gsq
 VTH input routine to receive a delimited sequence of
 characters.

 − 24 −

 Version 8 Conversion Guide

 vt$idf
 VTH input processor which invokes user−defined keyboard
 macros.

 vt$ier
 Report an error in a VTH initialization file.

 vt$ndf
 Remove a VTH macro definition.

 vt$pos
 VTH positioning routine which moves the terminal cursor
 by means of absolute positioning sequences.

 vt$put
 Copy a string into a VTH screen buffer.

 vt$rdf
 Remove a VTH keyboard macro from the definition table.

 vtenb
 Enable input on a particular screen line.

 vtgetl
 Retrieve a line from the VTH screen buffer.

 vtinfo
 Return information contained in the VTH common block.

 vtmove
 Position the cursor to a given row and column.

 vtmsg
 Display a message in the VTH status line.

 vtopt
 Set optional parameters for the VTH screen.

 vtpad
 Pad the rest of a field with blanks.

 vtprt
 Output formatted information to the screen buffers.

 vtread
 Read characters from the terminal into the screen
 buffers.

 vtstop
 Reset a terminal’s attributes before terminating a
 program.

 − 25 −

 TABLE OF CONTENTS

 Introduction ... 1

 Global Changes ... 1
 Terminal Type Handling 1
 Templates ... 1
 Speed ... 1
 Memory Segments 2
 Process Ids to Three Digits 2
 Cldata Template 2
 Exception Handling 2
 DBG Support ... 3
 New Shell Control Variables 3
 Deleted Macro Definition 3
 Change in Value of EOS 3
 New Reference Manual Sections 3
 New Subsystem Libraries 4
 New Subsystem Templates 5

 Status of Version 7.1 Commands 5
 Obsolete Commands 5
 Superseded Commands 5
 Modified Commands 6
 Enhanced Commands 8
 Unchanged Commands 13
 New Commands .. 14

 Status of Version 7.1 Subroutines 17
 Obsolete Routines 17
 Superseded Routines 18
 Modified Routines 18
 Enhanced Routines 19
 Unchanged Routines 21
 New Routines .. 22

 − iii −

 Software Tools Subsystem

 Version 8 to Version 8.1 Conversion Guide

 Terrell L. Countryman
 Peter N. Wan

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 March, 1983

 Version 8.1 Conversion Guide

 Introduction

 Version 8.1 of the Subsystem represents a big change over
 Version 8, as well as being the last release of the Subsystem
 targeted for a Primos 18 system. The next release, Version 9,
 will be targeted for the new operating system, Primos 19.
 Although this release will run under Primos 19 (if you have got−
 ten it already), you will not have access to some of the newer
 features, such as Access Control Lists (ACLs) and disk quotas.
 Estimates for the release date of Version 9 are for around the
 end of the third quarter of 1983 or at the beginning of the last
 quarter; the reason for this delay is that as of the writing of
 this paragraph, we have not yet received our release copy of
 Primos 19.1. We ask your indulgence in this matter; we are
 endeavoring to obtain a copy as soon as possible.

 This conversion guide is divided into three sections:
 Global Changes discusses the alterations that affect large
 portions of the user interface; Status of V8 Commands and
 Status of V8 Subroutines describe additions, deletions, and
 modifications made to individual commands and subroutines.

 Global Changes

 Change in Value of EOS

 As described in the V7.1 to V8 Conversion Guide, the value
 of EOS (end of string) has changed from the value of −2 to 0.
 This change should not affect the operation of your programs,
 unless they make (unwise) assumptions as to the value or
 magnitude of this constant. The purpose of this change is to
 better support the C language (available as a separate package to
 Subsystem customers) and to slightly improve run−time performance
 of the Subsystem in general (it is faster to compare against 0
 than −2).

 Although a change of this magnitude normally requires the
 recompilation of all code (yours and ours), we have come up with
 a scheme whereby we build two Subsystem libraries: one handles
 EOS being −2, and the other one handles EOS being 0. The library
 that will be used for a particular object program is determined
 by whether the program calls ’init’ or not −− programs which
 contain "call init" are assumed to be "old" and get an EOS value
 of −2. We can get by with this because ’init’ hasn’t been needed
 for years; not calling it has caused no ill effects for several
 releases, although its call was automatically included by ’rp’.
 This means as long as existing object programs behave (the only
 ones in doubt are non−Ratfor programs) by calling ’init’, use the
 shared library, and don’t muddle with the Subsystem common
 blocks, they will work perfectly under Version 8.1. Of course,
 Ratfor programs compiled under Version 8.1 will no longer call
 ’init’ and will receive EOS as 0. (It is still possible to

 − 1 −

 Version 8.1 Conversion Guide

 recompile EOS=−2 programs under Version 8.1, but it will not be
 as convenient.) Locally−written routines (that do not access
 Subsystem common blocks) can be incorporated into both versions
 of the library automatically by putting them in the proper source
 directory and rebuilding the libraries.

 This horrendous kluge will not be in effect for more than a
 couple of releases; good taste prevents us from allowing such an
 abomination to live any longer than necessary. We are doing it
 in the first place only to allow users at both your and our sites
 time to gradually rebuild programs (and because there were
 threats against our personal safety if we forced recompilation
 again). We do expect you to recompile all your local programs in
 the months following the installation of Version 8.1.

 In recompiling your code, you should look for several things
 which could cause problems at execution time with the new
 library. First, make sure that your code does not depend on the
 value or magnitude of EOS, except to note that its value is
 different from the characters returned by ’getlin’. Next, if any
 of your main programs are introduced by the ’subroutine’ keyword,
 you should recompile them immediately, since they are definitely
 not going to work with this version of the Subsystem. Third,
 make sure that none of your code (Ratfor or otherwise) contains
 an explicit call to the ’init’ routine. This routine is no
 longer needed, and will cause the wrong value of EOS to be used
 while the compatible library is in use. Finally, if you use the
 unshared version of the Subsystem library ("nvswtlb") in the
 loads of your programs, they must be recompiled also. Except for
 the exceptions noted above, you may recompile your programs at
 your leisure; but be sure to do it soon, since the compatibility
 library will disappear eventually.

 However, if you must recompile a program which has not been
 purged of its EOS value dependencies (and therefore must run with
 the value of EOS used at Version 8), you can do so by first mak−
 ing sure that the program (we are assuming Ratfor here) calls
 ’init’. Then, compile and load it via the following:

 rp =src=/lib/swt/v8def.r.i <program>.r _
 −x =src=/lib/swt/v8rptab −o <program>.f
 fc <program>.f
 ld <program>.b −l v8vswtlb −o <program>

 In the ’rp’ call, the "v8def.r.i" file changes EOS references in
 your source and the file "v8rptab" changes the strings generated
 by ’rp’ to have the correct terminator. The library call to the
 "v8vswtlb" library in the ’ld’ line will cause the compatability
 library to be loaded, which does expect EOS to have the value
 used in Version 8.

 Macro Definition Changes

 The Subsystem definition files have been changed to clean up
 some old definitions and add some new ones. The old values INH

 − 2 −

 Version 8.1 Conversion Guide

 and ENB, which are used with the Primos ’break$’ routine, have
 been changed to DISABLE and ENABLE, respectively. The values of
 PRIMOS_KEYS and PRIMOS_ERRD have been changed to contain the
 current names of those respective files. The names MAXUSERNAME
 and MAXPACKEDUSERNAME have been added to help interface with the
 ’date’ routine; these values should also be used when dealing
 with login names (warning: Primos 19 will allow much longer
 names, so using these constants will ease your transition to the
 new operating system for programs which process login names).

 New Subsystem Libraries

 There have been many additions to the Subsystem libraries
 for this release. Two new libraries, "v8vswtlb" and "nv8vswtlb",
 have been added to provide compatability for programs which were
 compiled with Version 8 and must have EOS at the old value.
 There is a new library, "shortlb", which contains short−callable
 routines to provide Ratfor/Fortran programmers with operations
 that before this time were available only to assembly language
 programs. The Subsystem math library, "vswtml", contains new
 routines which provide double precision functionality. Finally,
 the support library for the Portable Pascal compiler has been
 renamed to "p4clib", to lessen confusion with the Prime Pascal
 library.

 Deleted Subsystem Libraries

 The pattern−matching library, "vpatlb", has been merged with
 the standard Subsystem library, and is therefore no longer
 needed. All programs that used to be loaded with this library
 can be loaded with the standard Subsystem library (automatically
 included by ’ld’). The old version of the Portable Pascal com−
 piler library, "pasclib", has been removed (as noted above); Sub−
 system managers should make sure that this library is removed
 from =lib= to avoid having users access an older copy of the
 routines formerly in this library.

 New Subsystem Template

 The Subsystem template file has been enhanced by the addi−
 tion of the template "=phonelist=". The ’phone’ program was
 changed to use this template so that the user may set a private
 value for this template and use personal phone number lists.

 Command Interpreter Enhancements

 Terminal configuration (suppressed output and duplex) are
 restored properly after a command aborts and between execution of
 commands on a command line.

 There are two new variables, "_eof" and "_newline", which
 have been documented.

 − 3 −

 Version 8.1 Conversion Guide

 There is now documentation in the User’s Guide to the
 Software Tools Command Interpreter about restrictions that the
 Subsystem administrator can impose on Subsystem users in terms of
 which commands may be executed.

 Update to SWTSEG

 The Subsystem segmented loader has been updated to Primos
 version 18.3. This will solve most problems with loading the
 output of the current compilers; the temporary solution for
 program loading as described in the newsletter is no longer
 needed.

 Status of Version 8 Commands

 This section summarizes the user−visible changes that have
 been made to Subsystem commands for Version 8.1. It is divided
 into several subsections: obsolete commands, superseded com−
 mands, modified commands, enhanced commands, and unchanged com−
 mands. The final subsection is a summary of commands that are
 new for the Version 8.1 release.

 Obsolete Commands

 The commands in this subsection were part of the Version 8
 Subsystem, but are not included in the Version 8.1 release. Most
 of them were used only by certain shell programs and have out−
 lived their usefulness. In other cases, the commands were relics
 of past Subsystems, and either were no longer useful, or no
 longer worked.

 lex
 The lexical analyzer for the SSPL compiler has been
 removed because support of the compiler no longer
 exists.

 opt6800
 The Motorola 6800 code generator for the SSPL compiler
 has been removed because there is no longer any support
 for the compiler.

 opt8080
 The Intel 8080 code generator for the SSPL compiler has
 been removed because there is no longer any support for
 the compiler.

 sspl
 Support for the Small Systems Programming Language com−
 piler (SSPL) has been removed from the Subsystem,
 because it enjoyed very limited use.

 − 4 −

 Version 8.1 Conversion Guide

 Superseded Commands

 The commands in this subsection are not part of the Ver−
 sion 8.1 Subsystem; their functionality has been subsumed by
 other commands. Each entry describes the command and options you
 can use to get the same results.

 No commands are superseded at Version 8.1.

 Modified Commands

 The commands listed in this subsection have been modified
 for the Version 8.1 release and are no longer completely com−
 patible with their Version 8 counterparts. Each entry gives a
 brief description of the changes, but before using any of these
 commands, please check the corresponding Reference Manual entry
 to be sure of the command’s exact behavior.

 No commands are modified at Version 8.1.

 Enhanced Commands

 Commands in this subsection have been functionally enhanced
 for the Version 8.1 release, but remain compatible with their
 Version 8 counterparts.

 bmerge
 Updated to handle new object code format.

 bnames
 Updated to handle new object code format.

 copyout
 Updated to use new spooler library.

 define
 Enhanced to allow dollar signs in identifiers (to be
 compatible with ’rp’).

 dmach
 Installed in the correct location (it is supposed to be
 in "=lbin=").

 f77c
 Now handles the "−u" option to list undefined variables
 and routines (its default behavior), and allows new
 levels of optimization.

 fc
 Added "−k" option to list compilation statistics.

 fsize
 Gives the number of records in a file system object as
 the default, and has "−w" option to list sizes in words

 − 5 −

 Version 8.1 Conversion Guide

 (like ’lf’).

 hd
 Gives record size for unnormalized records, searches
 all possible disks instead of stopping at the first one
 that it could not size, and has new verbose option
 "−v".

 include
 Continues to process input despite errors in opening
 included files, and handles more deeply nested include
 calls.

 ld
 Added "−b" option to handle the C language library,
 added "−f" option to provide full map, and updated "−u"
 option to issue "ma 6" instead of "ma 3" to increase
 load speed.

 lps
 Updated to use the newer spool library, accepts more
 than one disk pack specification to indicate spool
 directories to be searched, prefixes the currently
 printing spooler entry with an asterisk, modified the
 "−q" option to provide more verbose information, queue
 entry lists are now prefixed by a label indicating on
 which disk partition the queue was found, and the "−c"
 option no longer allows cancellation of print files on
 remote spool queues.

 macro
 Now accepts the "−e" option to allow the escaping of
 characters.

 mon
 Accepts new commands "?", "x", and "q".

 os
 Includes speed enhancements and accepts "−x" option to
 reverse the order in which it outputs the overstrikes
 (needed for Printronix printers).

 pc
 Extended the "−f" option to handle the new map options,
 meaning of the "−q" option changed so that the meaning
 of the levels is now reversed.

 pg
 Calls the extended ’page’ subroutine to allow search by
 pattern, etc. See the Reference Manual entry for both
 the ’pg’ command and the ’page’ subroutine for more
 information.

 phone
 Changed to use the new template "=phonelist=", to allow
 private phone lists to be used.

 − 6 −

 Version 8.1 Conversion Guide

 plgc
 Extended the "−f" option in the same manner as ’pc’,
 added the "−p" option to control short−call routine
 generation, and added the "−s" option to control copy−
 ing of constant subroutine parameters.

 plpc
 Added "−q" option to control listing of warning mes−
 sages.

 pr
 Now kicks the spooler after the file has been spooled.

 radix
 Prints on standard output instead of the error output,
 as stated in the Reference Manual entry.

 rp
 No longer generates calls to the ’init’ routine and
 transliterates single character constants correctly.
 New ’b’ option to prevent mapping of long identifiers
 or identifiers which contain upper case letters, and
 new ’h’ option to force the output of Hollerith
 constants rather than quoted string constants.

 se
 Handles more terminal types, handles more and longer
 lines, and fixed errors caused by an uninitialized
 variable. Documentation has been added for "oss" and
 "osf" options, "&" pattern element, ";" and "#" line
 number elements, and extended message command.

 sp
 Now kicks the spooler after the file has been spooled.

 who
 Added the "−q" option to suppress printing of header
 lines.

 − 7 −

 Version 8.1 Conversion Guide

 Unchanged Commands

 This subsection lists the commands that have no user−visible
 changes made for Version 8.1.

 alarm ar arg args
 argsto as11 as6800 as8080
 banner basename basys batch
 block bs bs1 bug
 bugfm bugn bye cal
 case cat cd cdmlc
 cdmlcl change chat chown
 clear clock cmp cn
 cobc cobcl col common
 como copy cp crypt
 csubc ctime cto date
 day dbg ddlc declare
 declared del des detab
 diff dmach dnum dprint
 drop dump e echo
 ed ek else entab
 error esac eval exit
 f77cl fcl fdmlc fdmlcl
 fdmp fi field file
 files find fixp fmt
 focld forget fos fsubc
 goto guess guide help
 history hp if imi
 index installation intel iota
 join kill kwic lam
 last length lf lib
 line link lk locate
 log login_name mail memo
 mkcl mkclist mkdir mklib
 mktree mkusr moot mot
 mt mv nargs news
 old_ar out p4c p4cl
 passwd pause pcl ph
 phist plgcl plpcl pmac
 pmacl primos print profile
 publish pwd pword quote
 raid rcl rdcat rdextr
 rdjoin rdmake rdprint rdproj
 rdsel rdsort rduniq retract
 rf rfl rmusr rnd
 rot rsa rtime save
 scroll sema sep set
 sh show shtrace size
 slice sol sort source
 speling spell ssr st_profile
 stacc stats stop subscribe
 substr symbols systat tail
 take tc tee template
 term

 − 8 −

 Version 8.1 Conversion Guide

 New Commands

 This subsection lists commands that are new for Version 8.1.

 brefs
 Provide a list of caller−callee pairs for an object
 file.

 cc
 Compiles a C program with the Subsystem C compiler.
 This program is only available to customers who have
 also licensed the C language compiler package.

 ccl
 Compiles and loads a C program. This program is only
 available to customers who have also licensed the C
 language compiler package.

 isph
 Allows shell files to determine whether they are run−
 ning in a phantom environment. This is useful for
 scripts which might attempt to write to the terminal
 unless their output is redirected.

 lorder
 Provides the ordering of a library necessary for a one−
 pass load.

 splc
 Compiles an SPL program.

 splcl
 Compiles and loads an SPL program.

 sprint
 Filters formatter output for a NEC Spinwriter and
 provides similar functionality to ’dprint.’

 tsort
 Performs topological sort of caller−callee pairs for
 ordering library routines.

 ucc
 Compiles and loads a C program, ala Unix(tm). This
 program is only available to customers who have also
 licensed the C language compiler package.

 vcg
 Generates V−mode object code for Prime 50−Series com−
 puters. Allows the ambitious installation to write
 "front−ends" for local implementations of compilers.
 This program is only available to customers who have
 also licensed the C language compiler package.

 − 9 −

 Version 8.1 Conversion Guide

 vcgdump
 Displays the input files for ’vcg’ in a semi−readable
 format; useful for debugging compiler "front−ends."
 This program is only available to customers who have
 also licensed the C language compiler package.

 yesno
 Provides selective input filtering.

 Status of Version 8 Subroutines

 This section summarizes the user−visible changes to the Sub−
 system library routines. It is divided into several subsections:
 obsolete routines, superseded routines, modified routines,
 enhanced routines, unchanged routines and new routines.

 Obsolete Routines

 The routines listed here were only used by other library
 routines. Since their services are no longer required, they have
 been deleted.

 No routines were obsoleted at Version 8.1.

 Superseded Routines

 The following routines have been subsumed by other more
 powerful routines. Each entry names the Version 8.1 routine that
 performs the same function.

 at$
 Use ’at$swt’. Its name was changed to avoid naming
 conflicts with a Primos 19 routine.

 Modified Routines

 The routines listed in this subsection have been modified so
 that they are no longer compatible with their Version 8
 counterparts. Although each entry briefly describes the changes
 that have been made, you should examine the corresponding
 Reference Manual entries to determine the exact behavior of the
 routines.

 file$p
 Updated for Prime Pascal version 18.3/18.4 release,
 which is incompatible with previous releases.

 init
 Modified to allow use of the compatibility library
 (funeral notices will soon appear in a Subsystem new−

 − 10 −

 Version 8.1 Conversion Guide

 sletter near you).

 init$p
 Updated for Prime Pascal version 18.3/18.4 release,
 which is incompatible with previous releases.

 Enhanced Routines

 The routines listed in this subsection have additional func−
 tionality in the Version 8.1 release, but remain compatible with
 their Version 8 counterparts.

 addset
 Cleaned up code and is now part of the standard Sub−
 system library.

 amatch
 Cleaned up code and is now part of the standard Sub−
 system library.

 call$$
 Modified to handle the "output suppressed" bits.

 cant
 Changed its error message to the one specified in the
 Reference Manual.

 catsub
 Cleaned up code and is now part of the standard Sub−
 system library.

 dmpcm$
 Also prints the current EOS value, which is currently
 stored in the common block.

 dodash
 Cleaned up code and is now part of the standard Sub−
 system library.

 esc
 Cleaned up code and is now part of the standard Sub−
 system library.

 filset
 Cleaned up code and is now part of the standard Sub−
 system library.

 getccl
 Cleaned up code and is now part of the standard Sub−
 system library.

 locate
 Cleaned up code and is now part of the standard Sub−
 system library.

 − 11 −

 Version 8.1 Conversion Guide

 makpat
 Cleaned up code and is now part of the standard Sub−
 system library.

 maksub
 Cleaned up code and is now part of the standard Sub−
 system library.

 match
 Cleaned up code and is now part of the standard Sub−
 system library.

 omatch
 Cleaned up code and is now part of the standard Sub−
 system library.

 page
 Handles the page count correctly, allows pattern sear−
 ching, and has been modified to provide better per−
 formance.

 patsiz
 Cleaned up code and is now part of the standard Sub−
 system library.

 stclos
 Cleaned up code and is now part of the standard Sub−
 system library.

 vfyusr
 Checks the length of its argument, and immediately
 returns if the argument string is too long to be a
 legal login name.

 vt$def
 Uses Primos C1IN instead of T1IN for faster response.

 vt$get
 Uses Primos C1IN instead of T1IN for faster response.

 vt$gsq
 Uses Primos C1IN instead of T1IN for faster response.

 vt$ndf
 Uses Primos C1IN instead of T1IN for faster response.

 vt$pos
 Supports positioning for Hewlett−Packard terminals.

 − 12 −

 Version 8.1 Conversion Guide

 Unchanged Routines

 No user−visible changes have been made to the routines
 listed in this subsection.

 atoc bponu$ c$end c$incr
 c$init chkarg chkinp chkstr
 chunk$ close cof$ cpfil$
 cpseg$ create ctoa ctoc
 ctod ctoi ctol ctomn
 ctop ctor ctov date
 decode delarg delete dgetl$
 dmark$ dmpfd$ dopen$ dputl$
 dread$ dsdbiu dsdump dseek$
 dsfree dsget dsinit dtoc
 dwrit$ edit encode enter
 equal error exec execn
 expand fcopy filcpy filtst
 findf$ finfo$ first$ flush$
 follow gcd gcdir$ gcifu$
 gctoi gctol geta$f geta$p
 geta$plg getarg getch getfd$
 getkwd getlin getto getvdn
 getwrd gfnam$ gfnarg gitoc
 gklarg gltoc gtattr gtemp
 gttype gvlarg icomn$ index
 init$f init$plg input invmod
 iofl$ ioinit isadsk isatty
 itoc jdate ldseg$ ldtmp$
 length lookup lopen$ lsallo
 lscmpk lscomp lscopy lscut
 lsdel lsdrop lsdump lsextr
 lsfree lsgetc lsgetf lsinit
 lsins lsjoin lslen lsmake
 lspos lsputc lsputf lssubs
 lstake ltoc lutemp mapdn
 mapfd mapstr mapsu mapup
 markf mkdir$ mkfd$ mkpa$
 mktabl mktemp mktr$ mntoc
 move$ open parscl parsdt
 parstm prime print ptoc
 putch putdec putlin putlit
 pwrmod readf remark remove
 reonu$ rewind rmfil$ rmseg$
 rmtabl rmtemp rtn$$ rtoc
 scopy sctabl sdrop seekf
 set_copy set_create set_delete set_element
 set_equal set_init set_insert set_intersect
 set_remove set_subset set_subtract set_union
 seterr sprot$ st$lu stake
 strbsr strcmp strim strlsr
 substr swt sys$$ t$clup
 t$entr t$exit t$time t$trac
 tcook$ tgetl$ tmark$ tputl$
 tquit$ tread$ trunc tscan$
 tseek$ ttyp$f ttyp$l ttyp$q

 − 13 −

 Version 8.1 Conversion Guide

 ttyp$r ttyp$v twrit$ type
 upkfn$ vt$alc vt$clr vt$db
 vt$db1 vt$db2 vt$db3 vt$del
 vt$dsw vt$err vt$idf vt$ier
 vt$out vt$put vt$rdf vtclr
 vtenb vtgetl vtinfo vtinit
 vtmove vtmsg vtoc vtopt
 vtpad vtprt vtputl vtread
 vtstop vtterm vtupd wind
 wkday writef zmem$

 New Routines

 The routines listed in this section are new for the Ver−
 sion 8.1 release.

 abq$xs
 Adds an entry to the bottom of a queue.

 at$swt
 Provides interlude to Primos ATCH$$ (formerly ’at$’).

 atq$xs
 Adds an entry to the top of a queue.

 dacos
 Returns the double precision inverse cosine value of
 its argument.

 dasin
 Returns the double precision inverse sine value of its
 argument.

 dbexp
 Returns the double precision exponentiation of its
 argument to the base of the natural logarithms.

 dbsqrt
 Returns the double precision square root of its
 argument.

 dflot
 Returns the double precision float of its long integer
 argument.

 drand
 Returns a double precision random number.

 get$xs
 Returns a character from an array by using efficient
 indexing and byte−swapping operations.

 − 14 −

 Version 8.1 Conversion Guide

 gky$xs
 Returns the current CPU keys.

 isnull
 Test to see if a given file is the null device.

 mkq$xs
 Initializes a hardware−defined queue.

 pek$xs
 Returns the value in a given memory location (performs
 a peek operation).

 pok$xs
 Changes the value in a given memory location (performs
 a poke operation).

 put$xs
 Put a character into an array by using efficient index−
 ing and byte−swapping operations.

 rbq$xs
 Returns the value removed from the bottom of a queue.

 rdy$xs
 Returns the character that was typed at a terminal, if
 any.

 rtq$xs
 Returns the value removed from the top of a queue.

 s1c$xs
 Implements an atomic set−and−test operation.

 s2c$xs
 Implements an atomic set−and−test operation on a
 double−word.

 sky$xs
 Changes the value of the CPU keys.

 stk$xs
 Sets and reads the value of the stack extension
 pointer.

 tsq$xs
 Returns the number of entries in a queue.

 − 15 −

 TABLE OF CONTENTS

 Introduction ... 1

 Global Changes ... 1
 Change in Value of EOS 1
 Macro Definition Changes 2
 New Subsystem Libraries 3
 Deleted Subsystem Libraries 3
 New Subsystem Template 3
 Command Interpreter Enhancements 3
 Update to SWTSEG 4

 Status of Version 8 Commands 4
 Obsolete Commands 4
 Superseded Commands 5
 Modified Commands 5
 Enhanced Commands 5
 Unchanged Commands 8
 New Commands .. 9

 Status of Version 8 Subroutines 10
 Obsolete Routines 10
 Superseded Routines 10
 Modified Routines 10
 Enhanced Routines 11
 Unchanged Routines 13
 New Routines .. 14

 − iii −

 A Report on the Accuracy of PR1ME Computers’
 Floating Point Software and Hardware

 − and −

 The SWT Math Library User’s Guide

 Technical Report GIT−ICS−83/09

 Eugene H. Spafford

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 April 24, 1983

 Copyright (c) 1983
 Georgia Tech Research Institute
 225 North Avenue NW
 Atlanta, Georgia 30332

 Reproduction of all or part of this technical report is
 prohibited without the express written consent of the Georgia
 Tech Research Institute. Inquiries should be directed to the
 author.

 PR1ME is a registered trademark of Prime Computer, Incorporated

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Introduction

 Users of Prime computers have been aware for some time of a
 number of shortcomings in the floating point arithmetic firmware.
 In addition, there have been a number of inaccuracies found in
 the standard math libraries which have gone uncorrected for years
 ({1}, {2}). Unlike other major computer firms, Prime has not
 published any documents dealing with the algorithms or error
 analysis of their math routines.

 In the winter of 1982 I undertook the coding of a new math
 library to support the Georgia Tech SWT Pascal compiler, and the
 Georgia Tech C compiler. The results of tests on that library
 and the standard Prime libraries have revealed a number of
 interesting facts. Additionally, further experimentation with
 the floating point mechanisms has revealed some bugs in the way
 arithmetic is performed, in some cases.

 First, this guide describes the architecture of the floating
 point mechanism, including some error analysis and description of
 quirks in the hardware. This includes a description of incom−
 patibilities between the 400/550 cpu and the 750/850 cpu floating
 point register structure. Next is a description of the SWT Math
 library. Last is a discussion of some preliminary error analysis
 of the SWT library and the Prime standard library functions. The
 appendices contain information on auxiliary programs supplied
 with the library which will aid users in writing their own
 routines, and checking existing routines and floating point firm−
 ware.

 Acknowledgements

 I would like to thank Roy Mongiovi for his help in debugging
 some of the SWT Math routines, and Peter Wan for his help in
 preparing this guide. I would also like to thank Ann Vitale, Ron
 Kurtzer, and especially Emory Stevens of the Atlanta Prime office
 for their co−operation and aid in the testing of these routines.

 Research contributing to the development of this report was
 conducted while the author was receiving a National Science Foun−
 dation Graduate Fellowship, support which is gratefully ack−
 nowledged.

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 The Hardware

 Internal Representation of Floating Point Values

 There are two basic forms of floating point representation
 on the Prime: single precision and double precision. Both forms
 are stored in memory and the registers in about the same manner.
 It should be noted, however, that the storage format in memory
 and the storage format in the registers are different from each
 other. Also, the representation of values is different on
 750/850 models than on the others.

 Note that both forms of floating point values are available
 in three of the four Prime addressing modes: R, V and I. For
 purposes of this discussion, assume that all references are being
 made to the V mode instructions and registers unless noted other−
 wise. Also note that when I refer to the 400/550 machines, this
 also includes the 550−II.

 The reader might be interested in perusing {12} through {15}
 for information about the proposed IEEE 754 standard on floating
 point representation. These articles also contain information
 about internal representation and accuracy of results. As a mat−
 ter of interest, Prime Computer, Inc. had two voting
 representatives on the committee.

 Storage Formats

 A floating point value consists of three parts: a sign, a
 normalized mantissa, and an exponent. The mantissa is a two’s
 complement value with an implied leading binary point (radix
 point). A normalized mantissa always represents a value in the
 interval [0.5, 1) unless it represents zero. The sign bit is set
 to indicate a negative value, reset to indicate a positive value.
 The sign bit is always in the most significant bit position (bit
 one). Following the sign bit is the mantissa.

 A single precision value consists of the sign bit, 23
 mantissa bits, and 8 exponent bits. The sign bit is bit one, the
 mantissa is bits 2 to 24, and the exponent is bits 25 to 32. The
 exponent is stored in excess−128 representation. That is, the
 value stored in the 8 bits of the exponent, if viewed as a two’s
 complement value, is always 128 greater than the value it
 represents. Thus,

 0 0 0 0 0 0 0 0 represents −128

 1 1 1 1 1 1 1 1 represents 127

 1 0 0 0 0 0 0 0 represents 0

 − 1 −

 Floating Point SWT Math Guide

 1 0 0 0 0 1 0 0 represents 4

 0 1 1 1 1 1 0 0 represents −4

 This implies that the largest possible exponent is +127, and
 the smallest possible exponent is −128. The exponent is taken to
 the base 2. (You may wish to refer to a reference such as {3} or
 {4} for more information about value representations.)

 A double precision value consists of the sign bit, a 47 bit
 mantissa, and 16 exponent bits. The sign bit is bit one, the
 mantissa is bits 2 to 48, and the exponent is bits 49 to 64. The
 exponent is stored as a 128−biased value. This is similar to
 excess−128 except that the most significant bit of the exponent
 is taken as a sign bit. Thus,

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 represents 0

 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 represents 4

 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 represents −4

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 represents −32896

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 represents 32639

 As you can see from the examples, the range of the exponent
 is larger in the negative direction than in the positive. This
 means that it is possible to have values in the register whose
 multiplicative inverses cannot be represented.

 Normalization

 Every arithmetic operation on a floating point value causes
 the mantissa to be normalized. On the Primes normalization means
 that the mantissa is shifted towards the sign bit until the bit
 next to the sign bit is different from the sign bit. The
 exponent is decreased by the same amount as the number of places
 shifted. Normalization does not always mean shifting until a "1"
 is present in the second bit.

 Let us examine an example. Suppose we have just completed a
 single precision add, and the result is either 5 1/2 or −5 1/2 as
 follows:

 0 00010110000000000000000 10000110 5.5
 1 11101010000000000000000 10000110 −5.5

 Neither of these values is normalized. The mantissa is
 shifted left until its first bit is different from the sign bit.
 Note that it takes exactly 3 such shifts for each value:

 − 2 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 0 10110000000000000000000 10000011 5.5
 1 01010000000000000000000 10000011 −5.5

 Both of these values are now normalized. The value of each
 is unchanged. There is no assumed first bit as on some machines
 (such as certain PDP machines).

 Normalization helps maintain accuracy of results between
 computations. Additionally, comparisons between floating point
 numbers is made much easier −− a zero can always be recognized by
 examining the first word of the value only, and comparison
 between two floating point numbers can sometimes be done by a
 simple compare of the exponents and mantissa sign. It also helps
 to ensure that only one of the two values needs to be adjusted
 prior to some arithmetic operations (such as add).

 A special case is when the sign bit is one (a negative
 value) and every bit of the mantissa is zero. This is not equal
 to zero, but rather is equal to −0.5 (assuming the exponent
 represents zero, of course).

 It should be noted that load and store operations do not
 cause the register contents to be normalized. There is also no
 "normalize" instruction which will allow the user to normalize
 the bit pattern in the register.

 Floating skip operations (eg, FSGT, FSZE) and comparison
 operations (eg, FCS and DFCS) will not work correctly unless the
 values involved are normalized.

 Representation in the Registers

 The single precision floating point register has more range
 than can be accommodated in the memory format. The single
 precision floating point register overlaps the double precision
 register and uses the extra bits available in the double floating
 register as guard bits. The register is organized as follows on
 400/550 cpus:

 S MMMMMMMMMMMMMMMMMMMMMMM GGGGGGGG HHHHHHHH EEEEEEEE 0000000000000000
 1 2..24 25..32 33..40 41..48 49..64
 Where:
 S is sign of the mantissa
 M is the mantissa (2’s complement)
 G is mantissa extension (guard bits)
 H is exponent extension (guard bits)
 E is exponent (128−biased)
 0 extra bits −− must be zero

 On 750 and 850 cpus (with hardware floating point) the
 organization is:

 − 3 −

 Floating Point SWT Math Guide

 S MMMMMMMMMMMMMMMMMMMMMMM GGGGGGGGGGGGGGGGGGGGGGGG HHHHHHHH EEEEEEEE
 1 2..24 25..48 49..56 57..64
 Where:
 S is sign of the mantissa
 M is the mantissa (2’s complement)
 G is mantissa extension (guard bits)
 H is exponent extension (guard bits)
 E is exponent (excess 128)
 0 extra bits −− must be zero

 The guard bits are always zeroed whenever a floating load
 operation is done (FLD). The high−order guard bit may be used to
 round the least significant bit of the regular mantissa just
 before storage by using the FRN instruction. This increases
 accuracy somewhat at the cost of increased execution time. See
 the section on "Firmware Accuracy" for more details.

 Double precision floating point values are similar in nature
 to single precision and are organized as follows on 400/550
 machines:

 S MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM EEEEEEEEEEEEEEEE MMMMMMMMMMMMMMMM
 1 2..32 33..48 49..64
 Where:
 S is sign of the mantissa
 M is the mantissa (2’s complement)
 E is exponent (excess 128, two’s complement)

 On 750 and 850 machines, the double precision register is
 organized as:

 S MMM EEEEEEEEEEEEEEEE
 1 2..48 49..64
 Where:
 S is sign of the mantissa
 M is the mantissa (2’s complement)
 E is exponent (128 biased)

 Access Methods

 Besides the standard load and store instructions, it is pos−
 sible to access portions of the floating point registers with
 integer operations. These accesses are done either through the
 use of P300 address traps, or through the LDLR/STLR instructions.

 If short memory references are made to locations 4, 5, and
 6, the instructions actually are accessing the first two words of
 the mantissa and the exponent, respectively. In single precision
 references, the reference to the exponent fetches both the
 exponent and exponent guard bits. In double precision, the
 reference to location 6 fetches the complete exponent. Thus, the
 PMA sequence:

 − 4 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 LDA =’40000
 STA# 4
 CRA
 STA# 5
 LDA =128
 STA# 6

 results in the value 0.5 being in the single precision floating
 register (note that this sequence also loads all the guard bits
 correctly on a 400/550).

 It is also possible to access the floating point register
 via the LDLR and STLR instructions. In V mode, the first two
 words (bits 1 to 32) of the mantissa can be loaded into the L
 register by loading from register file location ’12. The third
 word of the mantissa and the exponent can be obtained by loading
 from location ’13. The organization of the register file on
 750/850 machines and 400/550 machines means that the L register
 contents after a "LDLR ’13" will be different on these machines.
 On 400/550 machines, the A register will contain the exponent and
 the B register will contain the third word of the mantissa. On a
 750/850 these will be reversed. The program in Appendix I can be
 used to discover which case is present on your machine. When
 dealing with the two floating accumulators in I mode addressing,
 a "LDLR ’11" will have the same problem.

 Additionally, the floating accumulator shares the same
 register file location as the second field address and length
 registers (in the V mode register file). In the I mode
 registers, the first floating accumulator shares the same loca−
 tion as the first field address register, and the second floating
 accumulator shares the same location as the second field address
 register. Thus, various character manipulation instructions
 including decimal (character) arithmetic instructions may change
 the floating accumulators as a side effect.

 Ranges

 The effective range for single precision floating point
 values is approximately 1.701412 * (10 ** 38) to −1.701412 * (10
 **38). The smallest, non−zero magnitude that can be represented
 is approximately 1.469368 * (10 ** −39). This is the range for
 single precision storage in memory. The guard bits in the
 register give extended range to values held in the register.

 Effective range for double precision floating point values
 is approximately 2.079833 * (10 ** 9825) to −2.079833 * (10 **
 9825). The smallest, non−zero magnitude that can be represented
 is approximately 1.03808 * (10 ** −9903).

 − 5 −

 Floating Point SWT Math Guide

 Available Operations

 The following lists describe the instructions available on
 Prime 50 series machines to manipulate floating point values in
 64V mode. This material has been extracted from the paper 64V
 Mode Instruction Summary and Addressing Formats, by T. Allen
 Akin, Perry Flinn, and Eugene Spafford, Georgia Tech 1981. The
 abbreviation FAC refers to the floating accumulator, meaning the
 combination (overlapped) register. The instructions will be
 presented first grouped by function, then alphabetically. In the
 following instruction set summary, instruction formats are
 abbreviated as follows:

 branch branch
 gen generic
 mr memory reference

 The descriptions of restricted instructions are preceded by an
 asterisk (*). Note that these instructions are not restricted
 unless segmented memory is turned on (bit 14 in current modals)
 and only if a reference is made outside of the range ’0 to ’17
 (zero to 15, decimal).

 In the descriptions of effects on the C−bit, L−bit, and con−
 dition codes, the following abbreviations are used:

 C−bit:
 − unchanged
 V arithmetic overflow indication
 X indeterminate

 L−bit:
 − unchanged
 X indeterminate

 Condition Codes (CC):
 − unchanged
 S properly set to reflect value of result,
 may be used for condition code branches
 X indeterminate

 Branch

 Mnemonic Format C L CC Description
 BFEQ branch − − S branch if FAC = 0
 BFGE branch − − S branch if FAC >= 0
 BFGT branch − − S branch if FAC > 0
 BFLE branch − − S branch if FAC <= 0
 BFLT branch − − S branch if FAC < 0
 BFNE branch − − S branch if FAC <> 0

 − 6 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Floating Point Arithmetic

 Mnemonic Format C L CC Description
 FAD mr V X X add memory to single precision FAC
 FCM gen V X X complement single precision FAC arith−
 metically
 FDBL gen − − − convert single precision floating to
 double precision
 FDV mr V X X divide memory into single precision FAC
 FLTA gen V X X convert 16 bit integer to single
 precision float
 FLTL gen V X X convert 32 bit integer to single
 precision float
 FMP mr V X X multiply single precision FAC by memory
 FRN gen V X X floating round double to single
 FSB mr V X X subtract memory from single precision
 FAC

 Mnemonic Format C L CC Description
 FCS mr X X X compare single precision FAC to memory
 and skip
 FLD mr − − − load single precision FAC from memory
 FLX mr − − − load double word index
 FST mr V X − store single precision FAC into memory
 INTA gen V X X convert single precision FAC to 16 bit
 integer
 INTL gen V X X convert single precision FAC to 32 bit
 integer

 Mnemonic Format C L CC Description
 DFAD mr V X X add memory to double precision FAC
 DFCM gen V X X complement double precision FAC arith−
 metically
 DFDV mr V X X divide memory into double precision FAC
 DFMP mr V X X multiply double precision FAC by memory
 DFSB mr V X X subtract memory from double precision
 FAC
 FDBL gen − − − convert single precision floating to
 double precision
 FRN gen V X X floating round double to single

 Mnemonic Format C L CC Description
 DFCS mr X X X compare double precision FAC with
 memory and skip
 DFLD mr − − − load double precision FAC
 DFLX mr − − − load quadruple word index
 DFST mr − − − store double precision FAC

 − 7 −

 Floating Point SWT Math Guide

 Logicize

 Mnemonic Format C L CC Description
 LFEQ gen − − S set A to 1 if FAC = 0; else reset A to
 0
 LFGE gen − − S set A to 1 if FAC >= 0; else reset A to
 0
 LFGT gen − − S set A to 1 if FAC > 0; else reset A to
 0
 LFLE gen − − S set A to 1 if FAC <= 0; else reset A to
 0
 LFLT gen − − S set A to 1 if FAC < 0; else reset A to
 0
 LFNE gen − − S set A to 1 if FAC <> 0; else reset A to
 0

 Skip

 Mnemonic Format C L CC Description
 FSGT gen − − − skip if FAC > 0
 FSLE gen − − − skip if FAC <= 0
 FSMI gen − − − skip if FAC < 0
 FSNZ gen − − − skip if FAC <> 0
 FSPL gen − − − skip if FAC >= 0
 FSZE gen − − − skip if FAC = 0

 Mnemonic Format C L CC Description
 DFCS mr X X X compare double precision FAC with
 memory and skip
 FCS mr X X X compare single precision FAC to memory
 and skip

 Data Movement

 Mnemonic Format C L CC Description
 DFLD mr − − − load double precision FAC
 DFLX mr − − − load quadruple word index
 DFST mr − − − store double precision FAC
 FLD mr − − − load single precision FAC from memory
 FLX mr − − − load double word index
 FST mr V X − store single precision FAC into memory
 LDLR mr − − − *load L from register file
 STLR mr − − − *store L into register file

 Address Manipulation

 Mnemonic Format C L CC Description
 DFLX mr − − − load quadruple word index
 FLX mr − − − load double word index

 − 8 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Type Conversion

 Mnemonic Format C L CC Description
 FDBL gen − − − convert single precision floating to
 double precision
 FLTA gen V X X convert 16 bit integer to single
 precision float
 FLTL gen V X X convert 32 bit integer to single
 precision float
 FRN gen V X X floating round double to single
 INTA gen V X X convert single precision FAC to 16 bit
 integer
 INTL gen V X X convert single precision FAC to 32 bit
 integer

 Instructions Grouped Alphabetically

 Mnemonic Format C L CC Description
 BFEQ branch − − S branch if FAC = 0
 BFGE branch − − S branch if FAC >= 0
 BFGT branch − − S branch if FAC > 0
 BFLE branch − − S branch if FAC <= 0
 BFLT branch − − S branch if FAC < 0
 BFNE branch − − S branch if FAC <> 0
 DFAD mr V X X add memory to double precision FAC
 DFCM gen V X X complement double precision FAC arith−
 metically
 DFCS mr X X X compare double precision FAC with
 memory and skip
 DFDV mr V X X divide memory into double precision FAC
 DFLD mr − − − load double precision FAC
 DFLX mr − − − load quadruple word index
 DFMP mr V X X multiply double precision FAC by memory
 DFSB mr V X X subtract memory from double precision
 FAC
 DFST mr − − − store double precision FAC
 FAD mr V X X add memory to single precision FAC
 FCM gen V X X complement single precision FAC arith−
 metically
 FCS mr X X X compare single precision FAC to memory
 and skip
 FDBL gen − − − convert single precision floating to
 double precision
 FDV mr V X X divide memory into single precision FAC
 FLD mr − − − load single precision FAC from memory
 FLTA gen V X X convert 16 bit integer to single
 precision float
 FLTL gen V X X convert 32 bit integer to single
 precision float
 FLX mr − − − load double word index
 FMP mr V X X multiply single precision FAC by memory
 FRN gen V X X floating round double to single
 FSB mr V X X subtract memory from single precision
 FAC
 FSGT gen − − − skip if FAC > 0

 − 9 −

 Floating Point SWT Math Guide

 FSLE gen − − − skip if FAC <= 0
 FSMI gen − − − skip if FAC < 0
 FSNZ gen − − − skip if FAC <> 0
 FSPL gen − − − skip if FAC >= 0
 FST mr V X − store single precision FAC into memory
 FSZE gen − − − skip if FAC = 0
 INTA gen V X X convert single precision FAC to 16 bit
 integer
 INTL gen V X X convert single precision FAC to 32 bit
 integer
 LDLR mr − − − *load L from register file
 LFEQ gen − − S set A to 1 if FAC = 0; else reset A to
 0
 LFGE gen − − S set A to 1 if FAC >= 0; else reset A to
 0
 LFGT gen − − S set A to 1 if FAC > 0; else reset A to
 0
 LFLE gen − − S set A to 1 if FAC <= 0; else reset A to
 0
 LFLT gen − − S set A to 1 if FAC < 0; else reset A to
 0
 LFNE gen − − S set A to 1 if FAC <> 0; else reset A to
 0
 STLR mr − − − *store L into register file

 Error Handling

 There are basically four floating point errors determined by
 the floating point firmware: store exception, overflow, under−
 flow, and divide by zero. The action on these errors is
 determined by the state of bit 7 in the current cpu keys. If bit
 7 is set, a floating point fault simply sets the C bit and no
 other action is taken. If bit 7 is reset, then an arithmetic
 fault is signalled and the standard fault handler invoked. In
 Primos, this usually entails signalling the ERROR condition.

 A store exception is triggered when an attempt is made to
 FST (single precision floating store) a value which is too big or
 too small (negative) to be accomodated in the two word memory
 format used by single precision values. This can happen because
 the value in the floating point register may have been loaded or
 generated using double precision operations. Alternatively, the
 value in the register could have been generated by single
 precision operations, but the value is larger than the memory
 format can accomodate due to the extra capacity provided by the
 guard bits. A double precision store cannot cause a store excep−
 tion.

 Overflow and underflow operations are the result of arith−
 metic operations (add, subtract, multiply, or divide) whose
 result is too big or too small to fit (normalized) in the
 register. Thus, the exponent of the result must be bigger than
 32639 for overflow (base 2 exponent), or less than −32896 for

 − 10 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 underflow (see the next section).

 A divide by zero fault is exactly what the name implies −−
 an attempt to divide by a floating point value, single or double
 precision, whose value is identical to zero.

 Another type of fault, not strictly a floating point fault,
 is triggered when an attempt is made to convert a floating value
 to an integer, and the floating value is too big or too small to
 be held in the corresponding integer register.

 It is possible for user programs to set bit 7 in the keys to
 ignore these fault conditions, but in doing so the user should
 realize that results could be invalid without any indication of
 error. Explicit checks should be made of the C bit after any
 operation which might cause an error. By default, the standard
 compilers and the PMA assembler generate entry control blocks
 (ECBs) for procedures with bit 7 reset to zero.

 Firmware Accuracy

 In this document, the word "firmware" refers to the
 microcode or hardware which performs the floating point arith−
 metic. 750 and 850 cpus have floating point operations
 implemented in hardware, while the other models have these
 operations implemented in microcode. Programs and subroutines
 depend on the accuracy of these operations, so it is crucial that
 these operations be implemented correctly.

 Problems in Multiplication

 There appears to be a bug in the double precision floating
 point multiplication at a few points near the maximum value. If
 a value whose base 2 exponent is 32639 (maximum possible) is mul−
 tiplied by a value greater than 0.5, an overflow fault is trig−
 gered. Thus, it is possible to multiply a value in the register
 by something less than 1.0 and get an overflow! In some cases,
 attempting to multiply smaller values to yield a value
 theoretically in range also results in an overflow. We have not
 attempted exhaustive testing to determine limits where this
 occurs since the likelihood of encountering such an error is
 small. However, the problem is there, and the user is advised to
 be careful when writing tests which need to deal with values at
 the upper limit of register capacity.

 A much more serious flaw is to be found in the DFMP instruc−
 tion on 400/550 machines. The double floating multiply instruc−
 tion appears to always return a result whose two least
 significant bits of the mantissa are zero. That is, every mul−
 tiplication potentially loses 2 out of 47 bits of precision! It
 is possible to multiply a value by 1.0 and not obtain a result
 equal to the original value. Such errors can, of course, cascade

 − 11 −

 Floating Point SWT Math Guide

 and result in severe accuracy problems in chains of calculations.
 The hardware on 750/850 machines appears to be free of this
 defect. Appendix II contains a program to test your machine and
 illustrate this problem.

 Oddly enough, division on the 400/550 machines does not
 appear to truncate any bits of precision, and according to
 published timing figures {5} the DFDV instruction is just as fast
 (slow) as the DFMP instruction. Thus, it might be advisable to
 recode critical calculations on these machines to be composed of
 divisions rather than multiplications, whenever possible.

 Loss of Precision in Type Conversion

 When converting from integers to floating point there are
 basically two machine instructions: FLTA and FLTL. The FLTA
 instruction converts a 16 bit integer into a single precision
 floating point value (24 bit mantissa). The FLTL instruction
 converts a 32 bit integer into a single precision floating point
 value. Note that such a conversion potentially drops 8 bits of
 precision. There is adequate storage in the double precision
 floating point register to convert without a loss of precision,
 but there is no instruction to convert from long integer to
 double precision real. Rather, the conversion must be done by a
 series of instructions; see the code for the SWT ’dble$m’
 routine.

 Problems in the Other Operations

 We have not observed any loss of precision in the addition,
 subtraction or division of double precision quantities. We have
 also not been able to detect any precision losses in any of the
 single precision operations. However, this does not indicate the
 absence of errors, rather it just indicates that we have not
 extensively tested for such errors and none have appeared in any
 of our other tests.

 Floating Round

 Studies performed at The Flinders University of South
 Australia on a 750 have indicated that some calculations per−
 formed in single precision floating point may benefit from the
 fact that the register contains extra precision, but that the
 results may be somewhat uneven depending on how the code is
 organized {6}. Their studies have also indicated that use of the
 FRN (floating round) instruction before each store greatly
 enhances the accuracy of some calculations in single precision:

 "In fact for the single precision problem a simple and
 almost complete cure for the problem has been
 demonstrated, and that is for the compiler to force a
 round before every store (i.e. emit an FRN instruction
 before each FST instruction emitted)." {6}

 − 12 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Their studies also indicated that the double precision
 arithmetic failed to do correct rounding. In fact, double
 precision operations truncate their results rather than rounding
 (see the next section). This leads to slightly skewed results
 which are especially noticeable in problems requiring very
 precise results:

 "... Consequently the Prime−750 exhibits a far larger
 error than the VAX−11/780 when we use the sum of
 squares measure. This error has been detected by our
 users in other calculations and programs and is
 particularly critical when nearly unstable matrix
 problems are investigated.... The consequences of such
 inaccuracy in a research−oriented application area
 could be critical." {6}

 That conclusion was made for a 750 with hardware floating point
 operations. It can certainly be concluded that a 400 or 550 is
 not at all appropriate for double precision calculations requir−
 ing any high degree of accuracy.

 Precision

 The various models of Prime computer perform floating point
 operations to slightly different precisions. To quote from sec−
 tion 6.2.1 of {9}:

 "In double and single precision add, subtract, and mul−
 tiply operations, the 750 and 850 truncate results to
 48 sign and magnitude bits. Single precision divide
 operations on these processors produce 32 sign and
 magnitude bits of rounded result....

 Double precision operations on the 500−II (and 650) are
 identical to those performed on the 750 and 850.
 Single precision divide is also identical to 750/850
 single precision divide. Single precision add, sub−
 tract, and multiply operations truncate results to 32
 sign and magnitude bits.

 For all other 50 Series systems, double precision add
 and subtract operations truncate results to 48 sign and
 magnitude bits; multiply and divide operations truncate
 to 47 sign and magnitude bits. All single precision
 operations on these processors truncate results to 32
 sign and magnitude bits."

 These statements tend to raise serious doubts about the accuracy
 of similar programs run on different model machines due to
 precision changes. It also would indicate that some program
 behavior might change when run on a different model cpu.

 − 13 −

 Floating Point SWT Math Guide

 The SWT Math Library

 In General

 The Software Tools Subsystem (SWT) is a major software pac−
 kage developed at Georgia Tech for Prime 50−series machines. It
 includes an advanced command interpreter with command pipes and
 i/o re−direction, a full screen editor with advanced regular pat−
 tern matching and replacement, and a large library of utility
 routines. One of the libraries which is to be included in
 further releases of the Subsystem is the SWT Math Library.

 The SWT Math Library contains thoroughly tested routines to
 calculate various useful functions, including standard
 trigonometric functions. All of the routines share a number of
 common features which will be described in the next section. The
 individual routines will be described in the sections following.

 Source

 Most of the routines were obtained from the book Software
 Manual for the Elementary Functions by William Cody, Jr. and
 William Waite {7}. The random number generator was written
 utilizing material from {8}, and a few routines such as ’dble$m’
 and ’dint$m’ were developed by the author. Testing of the
 routines is described in the next chapter.

 Implementation

 All of the SWT Math routines have been coded in Prime assem−
 bly language. Although this may make the code somewhat harder to
 read, it helps to enhance the accuracy and efficiency of the
 routines. A number of actions, such as direct manipulation of
 the exponent in the register file, are not available in higher
 level languages and this was a major factor in the decision to
 use assembler.

 One factor which helps to increase the accuracy of the
 routines is the manner in which constants for the routines were
 obtained. Almost all of the constants used in the SWT Math
 Library are given as hexadecimal data constants in the assembly
 language programs. These values were derived from the constants
 given in {7} and the program in Appendix III. The program in
 Appendix III was run on a Cyber 760 which has over 90 bits of
 precision in the mantissa of double precision floating point
 values. The program calculates the proper rounded representation
 of the given input constants and returns the appropriate hex
 values.

 − 14 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 It is interesting to note that some of the standard Prime
 library routines were also derived from {7} but many of the
 constants are given in the source code as decimal values. Tests
 by the author indicate that the PMA assembler does not always
 translate double precision decimal values into the correct bit
 pattern, thus inducing error.

 Timing

 One factor that is of interest to users of any math package
 is that of the efficiency of the code. Unfortunately, it is not
 possible to make a direct comparison of the speed of routines in
 the SWT Math Library to that of equivalent routines in the stan−
 dard Prime libraries. The Prime native compilers are able to
 generate special "shortcalls" to known library subprograms which
 enhance their apparent speed. The SWT Math library routines are
 all done as regular procedure calls and will thus appear much
 slower if compared directly. The only statement that can be made
 about the efficiency of these routines is that they were coded in
 PMA by someone expert in that language, and they have been
 optimized as much as possible without sacrificing accuracy.

 Naming and Function

 All of the functions in the SWT Math Library return double
 precision values. Most of the functions have two entry points
 for every calculation −− one for a single precision argument and
 one for a double precision argument. The routines which take
 single precision arguments do argument verification and will not
 return a value which is out of range for a single precision
 floating point value. Thus, the value returned by those func−
 tions can be considered to be single precision. Since the single
 and double precision registers overlap, it is trivial to use
 these functions as either single or double precision.

 In general, routines whose names begin with the letter ’d’
 are intended to take double precision arguments. Specific
 considerations are given in the sections below.

 Errors

 In the standard Prime library routines, calling a function
 with an improper value (such as trying to take the square root of
 a negative value) results in a signal to the condition ERROR.
 This signal cannot be returned from and thus execution of the
 program is terminated. Furthermore, the nature of the error and
 the routine involved is not well specified. In the Fortran 66
 library the cause of the error is better identified but the
 general result is the same.

 In the SWT Math Library whenever an error condition is
 encountered, the condition SWT_MATH_ERROR$ is signalled. The
 "ms" structure indicated by the call to SIGNL$ is the stack frame

 − 15 −

 Floating Point SWT Math Guide

 of the routine calling the math routine, and the "info" structure
 is composed of the faulty argument (4 words), default return
 value (4 words), and a pointer (2 words) to a message describing
 the error. The user may specify an on−unit which can examine and
 change the default return value. The signal can be returned from
 and thus execution may continue.

 The routine ’err$m’ is a default on−unit handler which can
 be used to print the name of the faulting routine and the value
 of the faulting argument. This guide is not intended to present
 the information necessary to understand the Prime on−unit
 mechanism, so the interested reader is directed to the code for
 ’err$m’ and to {10}.

 Each routine sets the ’owner’ pointer at offset 18 within
 the stack frame, and each routine has its ECB labelled according
 to standard conventions. Thus, the Primos DMSTK command will
 print the names of activations of SWT Math Library routines, as
 will programs such as DBG.

 To the best of my knowledge, no error can occur during the
 execution of any of the SWT Math routines which does not signal
 the condition SWT_MATH_ERROR$. Thus, unlike many of the Prime
 routines, the user will not encounter errors such as ’SIZE’ or
 ’OVERFLOW’ during execution of these routines (see the section on
 Tests for more specific details).

 The Routines

 ACOS$M and DACS$M

 These two functions calculate the inverse cosine of an
 angle. The argument to the functions is the cosine of the angle,
 and the function returns the measure of the angle, in radians.
 The ’dacs$m’ function expects a double precision argument, and
 the ’acos$m’ function expects a single precision argument.
 Arguments to the functions must be in the closed interval [−1.0,
 1.0] or else the condition SWT_MATH_ERROR$ is signalled. In the
 case of an error, the default return value is zero.

 The functions are implemented as rational minimax
 approximations on a modified argument value.

 ASIN$M and DASN$M

 These two functions calculate the inverse sine of an angle.
 The argument to the functions is the sine of the angle, and the
 function returns the measure of the angle, in radians. The
 ’dasn$m’ function expects a double precision argument, and the
 ’asin$m’ function expects a single precision argument. Arguments
 to the functions must be in the closed interval [−1.0, 1.0] or
 else the condition SWT_MATH_ERROR$ is signalled. If an error is

 − 16 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 signalled, the default function value is zero.

 The functions are implemented as rational minimax
 approximations on a modified argument value.

 ATAN$M and DATN$M

 These two functions calculate the inverse tangent of an
 angle. The argument to the functions is the tangent of the
 angle, and the function returns the measure of the angle, in
 radians. The ’datn$m’ function expects a double precision
 argument, and the ’atan$m’ function expects a single precision
 argument. The functions will not signal any errors based on
 input values.

 The functions are implemented as a rational approximation on
 a modified argument value. Note that there is no equivalent to
 the ATAN2 function which is available in some implementations of
 Fortran; if users wish such a function, they may construct it
 from this function.

 COS$M and DCOS$M

 These two functions return the cosine of the angle whose
 measure (in radians) is given by the argument. The ’dcos$m’
 routine expects a double precision argument, and the ’cos$m’
 routine expects a single precision argument. If the absolute
 value of the angle plus one−half pi is greater than 26353588.0
 then the condition SWT_MATH_ERROR$ is signalled. If an error is
 signalled, the default function return is zero.

 The functions are implemented as minimax polynomial
 approximations.

 COSH$M and DCSH$M

 These two routines calculate the hyperbolic cosine of their
 arguments, defined as cosh(x) = [exp(x) + exp(−x)]/2. The func−
 tion ’dcsh$m’ expects a double precision value as argument, and
 the ’cosh$m’ function expects a single precision argument. The
 condition SWT_MATH_ERROR$ is signalled if the absolute value of
 the argument is greater than 22623.630826296. In the single
 precision case, arguments which produce a value too large for
 single precision storage will also signal the error condition.
 If an error is signalled, the default function value is zero.

 COT$M and DCOT$M

 These two functions calculate the cotangent of the angle
 whose measure is given (in radians) as the argument to the func−
 tions. The ’dcot$m’ function expects a double precision
 argument, and the ’cot$m’ routine expects a single precision

 − 17 −

 Floating Point SWT Math Guide

 argument. The arguments must have an absolute value greater than
 7.064835966E−9865 and less than 13176794.0 or else the condition
 SWT_MATH_ERROR$ will be signalled. If an error is signalled, the
 default function return is zero.

 The functions are calculated based on a minimax polynomial
 approximation over a reduced argument.

 DBLE$M

 The ’dble$m’ function implements something akin to the
 Fortran 66 ’dble’ function, or the Fortran 77 ’dreal’ function.
 It takes as an argument a 32 bit integer and returns a double
 precision floating point number of the same value. This function
 should always be used when converting 32 bit integers to double
 precision real numbers because the code generated by some of the
 compilers will (potentially) lose up to 8 bits of mantissa
 precision (see the discussion in the previous chapter).

 The ’dble$m’ function has no single precision counterpart in
 this library. The routine, as defined, does not recognize or
 signal any error conditions. It is written so as to work on both
 550 and 750 style machines, despite the internal difference in
 register structure.

 The algorithm involved was derived from known register
 structure by the author.

 DINT$M

 The ’dint$m’ function implements the Fortran ’dint’ func−
 tion. That is, it takes one double precision value and resets
 bits in the mantissa to remove any fractional part of the value.
 The return value is a double precision real. This routine also
 has a shortcall (JSXB) entrance labelled ’dint$p’ which is used
 in some of the other math routines; users should not attempt to
 use this shortcall entrance unless they are aware of its struc−
 ture.

 The ’dint$m’ of 1.5 is 1.0, the ’dint$m’ of −1.5 is −1.0,
 and the ’dint$m’ of anything less than 1.0 and greater than −1.0
 is equal to zero.

 The dint$m function has no single precision counterpart in
 this library. The routine, as defined, does not recognize or
 signal any error conditions. It is written so as to work of both
 550 and 750 style machines, despite the internal difference in
 register structure.

 The algorithm involved was developed by the author based on
 the known register structure.

 − 18 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 ERR$M

 The ’err$m’ procedure is provided as a default handler for
 the SWT_MATH_ERROR$ condition. It takes a single argument, a 2
 word pointer as defined by the condition mechanism, and prints
 information about the routine and values which signalled the
 fault. All output from the ’err$m’ routine is sent to SWT
 ERROUT. Included in the output is the name of the faulting
 routine, the location from which the faulting routine was called,
 the value of the argument involved, and the default return value
 to be used.

 The following code illustrates how to set up this default
 handler for use in Fortran 66 programs:

 EXTERNAL ERR$M

 CALL MKON$F (’SWT_MATH_ERROR$’, 15, ERR$M)

 The following code illustrates how to set up this default handler
 for use in Fortran 77 programs:

 EXTERNAL ERR$M, MKON$P

 CALL MKON$P (’SWT_MATH_ERROR$’, 15, ERR$M)

 The user may wish to copy and modify the source code for the
 ’err$m’ procedure so as to provide a more specific form of error
 handling. If this is done, it would probably be a good idea to
 rename the user’s version to something other than ’err$m.’

 EXP$M and DEXP$M

 These two functions implement the inverse of the ’ln$m’ and
 ’dln$m’ functions. That is, they raise the constant e to the
 power of the argument. The ’dexp$m’ function takes a double
 precision argument, and the ’exp$m’ function takes a single
 precision argument. Arguments to the ’exp$m’ routine must be in
 the closed interval [−89.415985, 88.029678] and arguments to the
 ’dexp$m’ routine must be in the closed interval [−22802.46279888,
 22623.630826296], or else the SWT_MATH_ERROR$ condition will be
 signalled. If an error is signalled, the default function return
 value is zero.

 It should be noted that the functions could simply return
 zero for sufficiently small arguments rather than signalling an
 error since the actual function value would be indistinguishable
 from zero to the precision of the machine. However, there is no
 mapping to zero in the actual function, and that is why the func−
 tion signals an error in this case.

 − 19 −

 Floating Point SWT Math Guide

 The routines are implemented as a functional approximation
 performed on a reduction of the argument.

 LN$M and DLN$M

 These two functions implement the natural logarithm (base e)
 function. The ’ln$m’ function works for single precision
 arguments, and the ’dln$m’ function works for double precision
 arguments. Arguments less than or equal to zero will signal the
 SWT_MATH_ERROR$ condition; the default return is the log of the
 absolute value of the argument, or zero in the case of a zero
 argument.

 The algorithm involved uses a minimax rational approximation
 on a reduction of the argument. All positive inputs will return
 a valid result.

 LOG$M and DLOG$M

 These two functions implement the common logarithm (base 10)
 function. The ’log$m’ function works for single precision
 arguments, and the ’dlog$m’ function works for double precision
 arguments. Arguments less than or equal to zero will signal the
 SWT_MATH_ERROR$ condition; the default return is the log of the
 absolute value of the argument, or zero in the case of a zero
 argument.

 The algorithm involved uses a minimax rational approximation
 on a reduction of the argument. All positive inputs will return
 a valid result.

 POWR$M

 The ’powr$m’ function raises a double precision real value
 to a double precision real power. The function return is also
 double precision; there is no single precision equivalent. The
 algorithm is taken from {7}.

 The function is coded so as to adhere to ANSI Fortran stan−
 dards which do not allow raising negative values to a floating
 point power, and which do not allow zero to be raised to a zero
 or negative power. Other inputs may trigger an error if the
 result of the calculation would result in overflow.

 The function implements the following equivalent operation
 in Fortran:

 − 20 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 DOUBLE PRECISION A, B, C
 A = B ** C

 as

 DOUBLE PRECISION A, B, C
 DOUBLE PRECISION POWR$M
 EXTERNAL POWR$M
 A = POWR$M (B, C)

 There are four cases where this function may signal
 SWT_MATH_ERROR$. If an attempt is made to raise a negative value
 to a non−zero power, then the default return value will be the
 absolute value of that quantity raised to the given power. If an
 attempt is made to raise zero to a zero or negative power, the
 default return is zero. If the result would overflow then the
 default return value is the largest double precision quantity
 that can be represented. If the result would cause underflow,
 the default return is the smallest positive value which can be
 represented on the machine.

 SEED$M and RAND$M

 The ’seed$m’ procedure is used to reset the pseudo−random
 number generator to a known state. It is called with any 4 byte
 value which is not equal to 32 bits of zero. The seed can
 therefore be 4 characters, a long pointer, a long integer, or a
 real number. If the input is identical to zero then the
 SWT_MATH_ERROR$ condition is signalled. ’Seed$m’ does not return
 a value.

 The ’rand$m’ function returns a double precision floating
 value in the open interval (0.0, 1.0). The argument to the func−
 tion is set to a 32 bit integer in the range (0, 2**31 − 1). The
 generator is a linear congruential generator derived from
 information presented in {8}. The values returned seem to be
 very well distributed, both from the standpoint of spectral tests
 and lattice tests.

 The ’rand$m’ routine does not detect or signal any errors.
 The first time the ’rand$m’ function is called, if the generator
 has not been initialized with the ’seed$m’ procedure, a seed is
 derived based on the current time of day and cpu utilization.

 SIN$M and DSIN$M

 These two functions return the sine of the angle whose
 measure (in radians) is given by the argument. The ’dsin$m’
 routine expects a double precision argument, and the ’sin$m’
 routine expects a single precision argument. If the absolute
 value of the angle is greater than 26353588.0 then the condition
 SWT_MATH_ERROR$ is signalled. If an error is signalled, the
 default return value will be zero.

 − 21 −

 Floating Point SWT Math Guide

 The functions are implemented as minimax polynomial
 approximations. Note that for angles sufficiently small the
 value of the sine function is equal to the measure of the angle.

 SINH$M and DSNH$M

 These two routines calculate the hyperbolic sine of their
 arguments, defined as sinh(x) = [exp(x) − exp(−x)]/2. The func−
 tion ’dsnh$m’ expects a double precision value as argument, and
 the ’sinh$m’ function expects a single precision argument. The
 condition SWT_MATH_ERROR$ is signalled if the absolute value of
 the argument is greater than 22623.630826296. If an error is
 signalled, the default return value will be zero.

 SQRT$M and DSQT$M

 These two functions calculate the square root of a floating
 point value. The ’sqrt$m’ function calculates the root of a
 single precision value, and the ’dsqt$m’ routine works for double
 precision arguments. Attempts to take the square root of
 negative values will result in an error (signal to
 SWT_MATH_ERROR$). The default return in this case will be the
 square root of the absolute value of the argument. All other
 arguments are in range and return valid results.

 The algorithm involved is based on Newton’s approximation
 method with an initial multiplicative approximation. The
 argument is scaled to within the range [0.5, 2.0) and then the
 algorithm is iterated to a solution.

 TAN$M and DTAN$M

 These two functions calculate the tangent of the angle whose
 measure is given (in radians) as the argument to the functions.
 The ’dtan$m’ function expects a double precision argument, and
 the ’tan$m’ routine expects a single precision argument. The
 arguments must have an absolute value of less than 13176794.0 or
 else the condition SWT_MATH_ERROR$ will be signalled. If an
 error is signalled, the default return value will be zero.

 The functions are calculated based on a minimax polynomial
 approximation over a reduced argument.

 TANH$M and DTNH$M

 These two routines calculate the hyperbolic tangent of their
 arguments, defined as tanh(x) = 2/[exp(2x) + 1]. The function
 ’dtnh$m’ expects a double precision value as argument, and the
 ’tanh$m’ function expects a single precision argument. The func−
 tions never signal an error and return valid results for all
 inputs.

 − 22 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 ^HT^He_^Hs_^Ht_^Hi_^Hn_^Hg

 In General

 It is important to test the standard mathematical functions
 which may be used in critical calculations. Not only will the
 tests measure the accuracy of the routines involved for use in
 later error estimations, but the testing helps provide informa−
 tion about the allowed domain and range of the functions. Many
 computer systems have quirks that require special case code for
 values near the extremes of precision {11}.

 The Source of the Tests

 The tests were taken from {7}. The tests were altered
 somewhat to help automate a test suite and also to provide a
 slightly more consistent form of output for comparison purposes.
 All of the tests use a set of common routines for non−test cal−
 culations and invocation. Where appropriate, the tests have been
 coded in both Fortran 66 (FTN) and Fortran 77 (F77) so as to test
 3 libraries: the SWT Math library, the standard FTN library used
 by Fortran 66 and Ratfor programs, and the new standard library
 used in Fortran 77, Pascal, and PL/I programs.

 The source code for the tests and support routines is
 located in the directory along with the source to the SWT Math
 library. There is a separate set of tests for single precision
 and double precision. These have been provided in case you wish
 to verify your own software, or re−run the tests on your own
 machine. Instructions on how to build and run a test are given
 in Appendix IV.

 The Test Results

 There are a number of error measures that could be used to
 describe these library routines. (For an involved discussion of
 some of the issues involved, see {7}) The tests which will be
 described below were taken from {7} and involve a number of
 checks and comparisons. Each test involves some random accuracy
 checks in various argument domains. These checks are made
 against known identities or calculations; for instance, the
 square root function is checked by comparing a random X against
 the square root of X*X.

 Each accuracy test was performed for 5000 random arguments
 in each domain. The results of each test are given below, listed
 as the number of exact matches against the expected value, the
 number of times less than, and the number of times greater than.
 Also given are the MRE (maximum relative error) and the point at
 which that error occurred, and the RMS (root mean square) error

 − 23 −

 Floating Point SWT Math Guide

 over all the tests in that domain. For those unfamiliar with
 these measures, the MRE can be thought of as a "worst case"
 error, and the RMS can be viewed as an "average case" measure of
 error.

 The tests are given single precision first, then double
 precision. The tests with an asterisk ("*") after the CPU model
 are double precision test results.

 Most of the routines have also been tested with special
 arguments at the limits of the argument domain or machine
 precision to help validate the entire range of possible input
 values. You will note that a few of the Prime standard library
 routines fail or return incorrect values at the extreme points of
 the domain. Other special tests are performed and described with
 each routine, as appropriate. The results given for some of
 these tests are worst−case results and not average−case; the
 average case performance was often much better with special
 arguments.

 Finally, each routine was tested with values that would
 trigger an error (if appropriate). Again, some of the Prime
 library routines performed badly −− some of them returned
 incorrect values and never triggered an error.

 A Special Note on 550 Results

 Each test was run on a 550 model cpu at Georgia Tech and on
 a 750 model cpu at the Atlanta office of Prime Computer, Inc.
 The results for the 550 are intended for comparison purposes and
 should not be taken as a strict measure of accuracy. This is due
 to the problem with truncation of bits in double precision mul−
 tiplies discussed in the last chapter. The vast differences in
 accuracy results between the 550 and 750 may be a measure of
 improvement in the library routines due to increased accuracy, or
 they may be an artifact caused by a change in the values cal−
 culated by the test programs themselves. The figures given
 should still allow some comparison between the Prime libraries
 and the SWT Math library, however.

 Other Points of Interest

 All of the tests invoke a special subroutine named ’machar’
 which determines machine characteristics to be used in the tests.
 The double precision version of this routine cannot be run
 unmodified on Prime machines due to their odd exponent structure.
 The double precision routine was modified by the author to return
 the results as defined by {7}. To recap the few most important
 points: a single precision value has 23 bits of mantissa and 8
 bits of exponent, and rounds results. A double precision value
 has 47 bits of mantissa and 16 bits of exponent, and multiplica−
 tion truncates results.

 − 24 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Since single precision arithmetic can include extra bits of
 accuracy if intermediate results are kept in the extended
 register, the test routines have been modified in places to force
 storage (and thus, truncation) of intermediate results. All of
 the single precision tests were compiled with the −FRN option set
 on. All of the tests were compiled with minimal optimizations
 enabled and full debugging. The debug option defeats register
 tracking optimizations and forces numerous stores. As an aside,
 this is often why erroneous numerical results disappear when a
 module is compiled with the debug option −− often to the
 amazement and indignation of the user.

 The random number generator was not extensively tested since
 it was coded based on published, previous tests {8}. It should
 be noted, however, that a number of distribution and spectral
 tests were done locally to ensure that the implementation was not
 suspect. For comparison purposes, it should be noted that the
 multiplier used in the Prime APPLIB random number generator
 (16807) has been shown to be poor in performance on both spectral
 and lattice tests {8}. The Fortran intrinsic random number
 generators (’rnd’ and ’irnd’) behave very poorly in simple spec−
 tral tests. They are implemented as 16 bit generators rather
 than as 32 bit generators.

 Use of These Results

 It should be noted that these results are general in nature
 and should not be taken as a complete measure of accuracy on
 Prime computers. The author has not had extensive training in
 numerical analysis. A few of the tests did not appear to work
 correctly, and I found what I believe to be at least one genuine
 bug in the logic of one of the published test programs. The
 unusual and inconsistent register structure also leads to
 problems in running the tests.

 It should also be noted that the Primos 18.4 version of the
 libraries was used in these tests. Future releases of these
 libraries may demonstrate better performance.

 These tests are to be used for general comparison purposes
 of the Software Tools Math Library routines and the standard
 Prime libraries. There appear to be a number of accuracy
 problems in the Prime library routines and floating point firm−
 ware and hopefully some of these problems have been indicated in
 the following tests. Any user wishing to use the Primes or the
 SWT Math library for any critical applications should make their
 own tests before placing any great confidence in the results.

 − 25 −

 Floating Point SWT Math Guide

 Inverse Sine and Cosine

 There are no inverse sine or cosine functions in the Fortran
 66 library, so these tests are for the other two libraries only.

 Test 1
 ASIN(X) vs. Taylor Series in (−0.125, 0.125)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 1031 3227 742 1.50 of 23 0.0110 0.00 of 23
 550 SWT 1 4998 1 0.63 of 23 −0.0808 0.00 of 23
 750 F77 1041 3234 725 1.50 of 23 0.0110 0.00 of 23
 750 SWT 1 4998 1 0.63 of 23 −0.0808 0.00 of 23

 550* F77 3 66 4931 3.55 of 47 0.802E−2 2.15 of 47
 550* SWT 0 2348 2652 2.00 of 47 −0.1247 0.05 of 47
 750* F77 309 1563 3128 2.58 of 47 −0.0157 0.72 of 47
 750* SWT 0 2347 2653 2.00 of 47 −0.1247 0.05 of 47

 Test 2
 ACOS(X) vs. Taylor Series in (−0.125, 0.125)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 0 3320 1680 0.47 of 23 0.1249 0.00 of 23
 550 SWT 0 4904 96 0.47 of 23 0.1249 0.00 of 23
 750 F77 0 3319 1681 0.47 of 23 0.1249 0.00 of 23
 750 SWT 0 4904 96 0.47 of 23 0.1249 0.00 of 23

 550* F77 0 816 4184 1.29 of 47 −0.0606 0.23 of 47
 550* SWT 0 1796 3204 0.47 of 47 0.1250 0.01 of 47
 750* F77 0 681 4319 1.27 of 47 −0.0874 0.25 of 47
 750* SWT 0 1795 3205 0.47 of 47 0.1250 0.01 of 47

 − 26 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Test 3
 ASIN(X) vs. Taylor Series in (0.75, 1.00)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 76 1313 3611 2.00 of 23 0.84175 0.58 of 23
 550 SWT 237 4123 640 1.00 of 23 0.8416 0.00 of 23
 750 F77 76 1318 3606 2.00 of 23 0.84175 0.58 of 23
 750 SWT 237 4123 640 1.00 of 23 0.8416 0.00 of 23

 550* F77 0 6 4994 6.95 of 47 1.0000 2.36 of 47
 550* SWT 0 446 4554 1.24 of 47 0.7502 0.70 of 47
 750* F77 125 1413 3462 4.88 of 47 1.0000 0.86 of 47
 750* SWT 0 595 4405 1.24 of 47 0.7500 0.66 of 47

 Test 4
 ACOS(X) vs. Taylor Series in (0.75, 1.00)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 3210 1261 529 2.95 of 23 0.9746 1.20 of 23
 550 SWT 593 3785 622 1.00 of 23 0.8773 0.00 of 23
 750 F77 3193 1270 537 2.92 of 23 0.9805 1.19 of 23
 750 SWT 593 3785 622 1.00 of 23 0.8773 0.00 of 23

 550* F77 4955 41 4 14.43 of 47 1.0000 8.50 of 47
 550* SWT 2656 2344 0 2.00 of 47 0.8773 0.15 of 47
 750* F77 2560 1267 1173 12.47 of 47 1.0000 6.52 of 47
 750* SWT 2377 2623 0 1.99 of 47 0.8762 0.07 of 47

 Test 5
 ACOS(X) vs. Taylor Series in (−1.0,−0.75)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 0 2287 2713 0.73 of 23 −0.7504 0.15 of 23
 550 SWT 0 4571 429 0.73 of 23 −0.7504 0.00 of 23
 750 F77 0 2286 2714 0.73 of 23 −0.7504 0.15 of 23
 750 SWT 0 4572 428 0.73 of 23 −0.7504 0.00 of 23

 550* F77 0 12 4988 5.35 of 47 −1.0000 1.46 of 47
 550* SWT 0 547 4453 0.73 of 47 −0.7500 0.51 of 47
 750* F77 15 930 4055 2.68 of 47 −1.0000 0.56 of 47
 750* SWT 0 608 4392 0.73 of 47 −0.7500 0.50 of 47

 Examining the test results shows that the standard Prime
 library routines are not as accurate as one might wish,
 especially in test 4. According to {7}, the MRE error should not
 exceed 1.5 on any of the tests, and the RMS error should be no
 more than 0.75 in all tests. With the exception of the MRE in
 the double precision test 2, the SWT Math library performs within
 these limits; even the error in test 2 is acceptable when the RMS
 error for the same test is noted.

 − 27 −

 Floating Point SWT Math Guide

 The tests of special arguments and error returns showed no
 problems or unexpected results.

 − 28 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Inverse Tangent

 Test 1
 ATAN(X) vs. Taylor Series in (−0.0625, 0.0625)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 527 4211 262 1.00 of 23 −0.0039 0.00 of 23
 550 F77 527 4211 262 1.00 of 23 −0.0039 0.00 of 23
 550 SWT 0 4999 1 0.32 of 23 0.0500 0.00 of 23
 750 FTN 529 4213 258 1.00 of 23 −0.0039 0.00 of 23
 750 F77 529 4213 258 1.00 of 23 −0.0039 0.00 of 23
 750 SWT 0 4999 1 0.32 of 23 0.0500 0.00 of 23

 550* FTN 0 0 5000 3.32 of 47 0.0314 2.12 of 47
 550* F77 0 47 4953 3.20 of 47 −0.0043 1.95 of 47
 550* SWT 0 2508 2492 1.59 of 47 0.0313 0.00 of 47
 750* FTN 0 3 4997 2.00 of 47 −0.0156 1.11 of 47
 750* F77 0 697 4303 2.00 of 47 −0.0156 0.80 of 47
 750* SWT 0 2530 2470 1.59 of 47 0.0313 0.00 of 47

 Test 2
 ATAN(X) vs. ATAN(1/16)+ATAN((X−1/16)/(1+X/16)) in (0.0625,
 0.2679)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 538 2636 1826 2.34 of 23 0.2007 0.21 of 23
 550 F77 664 2482 1854 2.34 of 23 0.2007 0.35 of 23
 550 SWT 425 3530 1045 1.40 of 23 0.1917 0.00 of 23
 750 FTN 543 2626 1831 2.34 of 23 0.2007 0.21 of 23
 750 F77 665 2475 1860 2.34 of 23 0.2007 0.35 of 23
 750 SWT 423 3530 1047 1.40 of 23 0.1917 0.00 of 23

 550* FTN 372 1454 3174 2.99 of 47 0.0631 1.27 of 47
 550* F77 1774 723 2503 3.28 of 47 0.2081 1.68 of 47
 550* SWT 947 3933 120 1.02 of 47 0.2523 0.00 of 47
 750* FTN 63 2245 2692 1.70 of 47 0.0773 0.15 of 47
 750* F77 1773 1656 1571 2.64 of 47 0.2033 0.94 of 47
 750* SWT 192 4021 787 1.03 of 47 0.2503 0.00 of 47

 − 29 −

 Floating Point SWT Math Guide

 Test 3
 ATAN(X)*2 vs. ATAN(2X/(1−X*X)) in (0.2679, 0.4142)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1868 2729 403 1.91 of 23 0.2717 0.05 of 23
 550 F77 1531 2931 538 1.91 of 23 0.2717 0.02 of 23
 550 SWT 882 3678 440 0.93 of 23 0.2680 0.00 of 23
 750 FTN 1862 2734 404 1.91 of 23 0.2717 0.05 of 23
 750 F77 1526 2933 541 1.91 of 23 0.2717 0.01 of 23
 750 SWT 878 3679 443 0.93 of 23 0.2680 0.00 of 23

 550* FTN 158 175 4667 4.81 of 47 0.2731 3.40 of 47
 550* F77 1597 1506 1897 2.93 of 47 0.2693 1.05 of 47
 550* SWT 142 567 4291 3.30 of 47 0.3155 1.83 of 47
 750* FTN 119 137 4744 4.77 of 47 0.2817 3.43 of 47
 750* F77 3576 1015 409 2.76 of 47 0.3050 1.23 of 47
 750* SWT 146 1017 3837 2.80 of 47 0.2952 1.22 of 47

 Test 4
 ATAN(X)*2 vs. ATAN(2X/(1−X*X)) in (0.4142, 1.0)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1943 3010 47 2.00 of 23 0.5483 0.07 of 23
 550 F77 1970 2986 44 2.00 of 23 0.5479 0.12 of 23
 550 SWT 453 4386 161 1.00 of 23 0.5465 0.00 of 23
 750 FTN 1941 3012 47 2.00 of 23 0.5483 0.08 of 23
 750 F77 1968 2988 44 2.00 of 23 0.5479 0.13 of 23
 750 SWT 452 4387 161 1.00 of 23 0.5465 0.00 of 23

 550* FTN 188 576 4236 4.12 of 47 0.4254 2.35 of 47
 550* F77 939 1521 2540 2.76 of 47 0.6689 0.99 of 47
 550* SWT 20 906 4074 3.34 of 47 0.4166 1.94 of 47
 750* FTN 2 48 4950 4.32 of 47 0.4246 2.78 of 47
 750* F77 1913 1042 2045 2.35 of 47 0.6693 0.93 of 47
 750* SWT 872 1859 2269 2.35 of 47 0.4145 0.64 of 47

 Examining the test results leads to some interesting
 conclusions. The SWT Math Library routines are definitely better
 than either Prime library version, especially in test 2. The
 margin of error suggested in {7} is met only by the SWT routines.

 In the testing of special arguments, the Prime FTN library
 ATAN had problems with the identities ATAN(−x) = − ATAN(x) and
 ATAN(x) = x for small x. Errors in both cases were about 10E−7
 of the magnitude of x in both single and double precision.

 − 30 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Exponential

 In the following tests, the double precision tests did not
 run to completion when testing the FTN library due to problems in
 the EXP function. Due to incorrect coding of the function, a
 floating to fixed conversion raised a SIZE error when taking the
 exponential of a value which was theoretically in range. Thus,
 only the results for the first test are available for the FTN
 exponential function in double precision.

 Test 1
 EXP(X−0.0625) vs. EXP(X)/EXP(0.0625) in (−0.2841, 0.3466)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 624 3537 839 1.09 of 23 0.9069E−3 0.00 of 23
 550 F77 1217 2173 1610 2.41 of 23 0.1815 0.39 of 23
 550 SWT 553 3704 743 1.00 of 23 0.0629 0.00 of 23
 750 FTN 636 3525 839 1.09 of 23 0.9069E−3 0.00 of 23
 750 F77 1218 2172 1610 2.41 of 23 0.1815 0.39 of 23
 750 SWT 553 3704 743 1.00 of 23 0.0629 0.00 of 23

 550* FTN 1555 906 2539 4.53 of 47 0.0150 2.51 of 47
 550* F77 1619 711 2670 3.74 of 47 0.2457 1.96 of 47
 550* SWT 325 1759 2916 2.48 of 47 −0.2730 0.72 of 47
 750* FTN 479 1762 2759 4.17 of 47 0.6161E−2 2.23 of 47
 750* F77 1007 1597 2396 2.37 of 47 0.0293 0.78 of 47
 750* SWT 227 2056 2717 2.08 of 47 −0.2777 0.42 of 47

 Test 2
 EXP(X−2.8125) vs. EXP(X)/EXP(2.8125) in (−0.2277E+5,
 −0.3466E+1)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 2838 23 2139 6.42 of 23 −0.4405E+2 4.94 of 23
 550 F77 1201 2287 1512 2.01 of 23 −0.6125E+2 0.32 of 23
 550 SWT 499 3745 756 1.02 of 23 −0.1799E+2 0.00 of 23
 750 FTN 2838 23 2139 6.42 of 23 −0.4405E+2 4.94 of 23
 750 F77 1201 2285 1514 2.01 of 23 −0.6125E+2 0.32 of 23
 750 SWT 499 3745 756 1.02 of 23 −0.1799E+2 0.00 of 23

 550* F77 2638 426 1936 47.00 of 47 −0.2268E+5 43.85 of 47
 550* SWT 1034 205 3761 13.95 of 47 −0.2264E+5 11.75 of 47
 750* F77 2036 1426 1538 47.00 of 47 −0.2089E+2 43.85 of 47
 750* SWT 441 424 4135 13.95 of 47 −0.2264E+5 11.75 of 47

 − 31 −

 Floating Point SWT Math Guide

 Test 3
 EXP(X−2.8125) vs. EXP(X)/EXP(2.8125) in (6.931, 87.92)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 2993 15 1992 5.69 of 23 0.8669E+2 5.05 of 23
 550 F77 1204 2311 1485 1.93 of 23 0.5069E+2 0.30 of 23
 550 SWT 489 3704 807 1.00 of 23 0.4371E+2 0.00 of 23
 750 FTN 2993 15 1992 5.69 of 23 0.8669E+2 5.05 of 23
 750 F77 1204 2311 1485 1.93 of 23 0.5069E+2 0.30 of 23
 750 SWT 489 3704 807 1.00 of 23 0.4371E+2 0.00 of 23

 550* F77 2676 444 1880 6.12 of 47 0.1571E+5 4.28 of 47
 550* SWT 3082 899 1019 4.28 of 47 0.1592E+5 2.07 of 47
 750* F77 2078 1400 1522 5.08 of 47 0.1584E+5 2.65 of 47
 750* SWT 1065 2205 1730 3.47 of 47 0.2018E+5 1.29 of 47

 The results of test 2 are a bit surprising. After careful
 checking of the code and the test, it seems likely that there is
 a problem in the test since the routines from both libraries
 appear so bad. The MRE values appear to be close to the limit of
 what the routines can compute without underflow. Performing a
 check on the MRE error in each case reveals that there is no
 measurable error in the exponential function at this point in
 regard to the logarithm function. That is, the values of the
 exponential functions at the MRE point, when used as arguments to
 the SWT logarithm function (which is known to be fairly accurate;
 see below), produce the exact same value as the MRE point. This
 leads to the conclusion that the testing procedure is somehow
 faulty due to the unusual register structure of the Primes. It
 can be concluded that (in this domain) the functions are probably
 correct, but the measure of error cannot be determined by this
 test.

 The results of the other tests indicate major differences in
 accuracy amongst the routines. The SWT routine seems much better
 in most cases.

 The tests of special arguments revealed a number of
 interesting items. For instance, the single precision F77 EXP
 routine does not signal an error when given arguments very much
 out of range. Instead, it returns either zero (in the case of
 underflow) or a very large value (in the case of overflow).
 Also, all of the functions have some amount of error in the
 identity EXP(X)*EXP(−X) = 1.0, with single precision values of X
 near 1.0 producing errors of approximately 10E−6, and double
 precision values near 1.0 producing errors of near 10E−12.

 − 32 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Logarithms

 Test 1
 ALOG(X) vs. Taylor Series of ALOG(1+Y) in (1−.7813E−2,
 1+.7813E−2)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 2246 234 2520 2.57 of 23 0.9961 1.35 of 23
 550 F77 1392 2607 1001 1.89 of 23 1.0021 0.07 of 23
 550 SWT 1 4996 3 0.59 of 23 0.9948 0.00 of 23
 750 FTN 2251 229 2520 2.57 of 23 0.9961 1.36 of 23
 750 F77 1389 2603 1008 1.89 of 23 1.0021 0.07 of 23
 750 SWT 1 4996 3 0.59 of 23 0.9948 0.00 of 23

 550* FTN 2449 315 2236 25.55 of 47 1.000 19.52 of 47
 550* F77 2038 996 1966 2.98 of 47 1.000 1.42 of 47
 550* SWT 1013 2493 1494 2.13 of 47 1.0000 0.19 of 47
 750* FTN 1314 1603 2083 25.55 of 47 1.000 19.52 of 47
 750* F77 1206 2507 1287 1.94 of 47 1.000 0.04 of 47
 750* SWT 1206 2507 1287 1.94 of 47 1.000 0.04 of 47

 Test 2
 ALOG(X) vs. ALOG(17X/16)−ALOG(17/16) in (0.7071, 0.9375)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 0 1930 3070 2.01 of 23 0.8300 0.41 of 23
 550 F77 0 2753 2247 1.97 of 23 0.8253 0.07 of 23
 550 SWT 0 3628 1372 1.00 of 23 0.7788 0.00 of 23
 750 FTN 0 1936 3064 2.01 of 23 0.8300 0.41 of 23
 750 F77 0 2760 2240 1.97 of 23 0.8253 0.07 of 23
 750 SWT 0 3628 1372 1.00 of 23 0.7788 0.00 of 23

 550* FTN 0 54 4946 4.24 of 47 0.9299 2.49 of 47
 550* F77 0 132 4868 3.00 of 47 0.7323 1.28 of 47
 550* SWT 0 2053 2947 2.28 of 47 0.7347 0.51 of 47
 750* FTN 0 1022 3978 4.26 of 47 0.9367 2.47 of 47
 750* F77 0 2067 2933 1.99 of 47 0.7779 0.46 of 47
 750* SWT 0 2067 2933 1.99 of 47 0.7779 0.46 of 47

 − 33 −

 Floating Point SWT Math Guide

 Test 3
 ALOG10(X) vs. ALOG10(11X/10)−ALOG(11/10) in (0.3162, 0.900)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 0 1870 3130 2.58 of 23 0.8659 0.90 of 23
 550 F77 0 1986 3014 2.72 of 23 0.7045 0.74 of 23
 550 SWT 0 2462 2538 2.06 of 23 0.8708 0.35 of 23
 750 FTN 0 1867 3133 2.58 of 23 0.8659 0.90 of 23
 750 F77 0 1983 3017 2.72 of 23 0.7045 0.75 of 23
 750 SWT 0 2462 2538 2.06 of 23 0.8708 0.35 of 23

 550* FTN 0 924 4076 4.44 of 47 0.8936 2.18 of 47
 550* F77 0 1029 3971 3.58 of 47 0.8974 1.66 of 47
 550* SWT 0 1244 3756 3.73 of 47 0.8974 1.71 of 47
 750* FTN 0 1383 3617 4.40 of 47 0.8963 2.27 of 47
 750* F77 0 1684 3316 3.37 of 47 0.8946 1.34 of 47
 750* SWT 0 1499 3501 3.37 of 47 0.8943 1.29 of 47

 Test 4
 ALOG(X*X) vs. 2*ALOG(X) in (16.00, 240.0)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 2490 2510 0 1.00 of 23 0.5473E+2 0.15 of 23
 550 F77 2499 2501 0 1.00 of 23 0.5473E+2 0.15 of 23
 550 SWT 127 4873 0 0.99 of 23 0.5575E+2 0.00 of 23
 750 FTN 2499 2501 0 1.00 of 23 0.5473E+2 0.15 of 23
 750 F77 2491 2509 0 1.00 of 23 0.5473E+2 0.15 of 23
 750 SWT 127 4873 0 0.99 of 23 0.5575E+2 0.00 of 23

 550* FTN 2911 2089 0 2.36 of 47 0.2263E+2 0.98 of 47
 550* F77 1195 3805 0 3.00 of 47 0.5491E+2 1.58 of 47
 550* SWT 1437 3563 0 1.53 of 47 0.1604E+2 0.00 of 47
 750* FTN 1548 3452 0 1.44 of 47 0.1909E+2 0.00 of 47
 750* F77 1537 3463 0 1.44 of 47 0.1909E+2 0.00 of 47
 750* SWT 333 4667 0 1.06 of 47 0.4591E+2 0.00 of 47

 These tests indicate that both the SWT Math library and the
 F77 library implementations of the logarithm functions are within
 acceptable error bounds (as defined in {7}), with the SWT version
 being somewhat better. The Fortran 66 version obviously has some
 points at which it behaves very poorly (see test 1). The
 similarity between the results for the SWT and F77 versions as
 shown in tests 1 and 2 can probably be explained by the fact that
 the same algorithm was used in each.

 The SWT MRE errors in the double precision part of tests 1
 and 2 are a bit large, but the corresponding error in the RMS
 indicates that the error is not systematic in nature. The error
 is of no major significance, although it could possibly be less.

 The SWT routine performed very well in tests of the identity
 ALOG(X) = −ALOG(1/X), returning exactly the same values in every

 − 34 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 test. The FTN and F77 routines returned occasional matches, but
 were often in error by amounts close to 10E−6 (single precision)
 and 10E−12 (double precision).

 What is most interesting is to note that both the F77 and
 FTN double precision routines are seriously flawed for very small
 arguments. Due to a rather obvious coding error, any double
 precision value whose exponent is less than −32640 will have its
 logarithm calculated as a large positive number −− just as if the
 sign of the exponent was reversed!! It would appear as if these
 routines were never tested at any values near the limits of their
 domains. The SWT routine does not suffer from this problem.

 − 35 −

 Floating Point SWT Math Guide

 The POWR$M Function

 The SWT ’powr$m’ function was tested against the intrinsic
 "**" operation in these tests. That is, when testing the FTN and
 F77 libraries, the operation "x ** y" was used and the compilers
 were allowed to generate the calls to the appropriate library
 routines.

 Although there is no single precision version of the SWT
 ’powr$m’ function, it was tested within the range for single
 precision values and compared against the Prime power operation.
 Due to recurring problems in the division of very small values,
 and the multiplication of very large values caused by the faults
 in the hardware, tests 1 and 2 were the only double precision
 tests run to completion.

 Test 1
 X ** 1.0 vs. X in (0.50, 1.00)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 2399 2583 18 0.99 of 23 0.5022 0.00 of 23
 550 F77 2886 1935 179 1.50 of 23 0.7072 0.37 of 23
 550 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 750 FTN 2394 2586 20 0.99 of 23 0.5022 0.00 of 23
 750 F77 2888 1932 180 1.50 of 23 0.7072 0.37 of 23
 750 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23

 550* FTN 5000 0 0 4.76 of 47 0.8469 4.12 of 47
 550* F77 4996 4 0 4.19 of 47 0.6025 3.06 of 47
 550* SWT 4997 3 0 1.94 of 47 0.5222 0.69 of 47
 750* FTN 4920 80 0 4.28 of 47 0.7735 3.66 of 47
 750* F77 4437 563 0 2.62 of 47 0.6511 1.38 of 47
 750* SWT 4837 163 0 1.06 of 47 0.9578 0.50 of 47

 Test 2
 (X*X)**1.5 vs. (X*X)*X in (0.50, 1.00)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 3330 1394 276 2.90 of 23 0.5118 0.98 of 23
 550 F77 2047 2082 871 1.87 of 23 0.5147 0.35 of 23
 550 SWT 332 4359 319 1.00 of 23 0.6300 0.00 of 23
 750 FTN 3305 1410 285 2.94 of 23 0.5068 0.98 of 23
 750 F77 2086 2062 852 1.98 of 23 0.9135 0.37 of 23
 750 SWT 317 4349 334 0.99 of 23 0.7954 0.00 of 23

 550* FTN 4939 55 6 5.12 of 47 0.5712 4.03 of 47
 550* F77 4869 131 0 4.94 of 47 0.5466 3.30 of 47
 550* SWT 1172 2051 1777 2.57 of 47 0.5012 0.66 of 47
 750* FTN 4172 649 179 4.23 of 47 0.7358 3.47 of 47
 750* F77 3782 1010 208 2.62 of 47 0.6875 1.20 of 47
 750* SWT 2432 2566 2 1.06 of 47 0.7833 0.07 of 47

 − 36 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Test 3
 (X*X)**1.5 vs. (X*X)*X in (1.00, 0.5541E+13)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 5000 0 0 8.51 of 23 0.1129E+13 7.80 of 23
 550 F77 4950 0 50 17.93 of 23 0.5487E+13 13.83 of 23
 550 SWT 315 4362 323 1.00 of 23 0.6928E+12 0.00 of 23
 750 FTN 5000 0 0 8.53 of 23 0.2676E+12 7.80 of 23
 750 F77 4950 0 50 17.93 of 23 0.5487E+13 13.83 of 23
 750 SWT 337 4313 350 0.99 of 23 0.4407E+13 0.00 of 23

 In test 4, the point given at which the MRE was recorded is
 the value of X. The Y value is available on request.

 Test 4
 X**Y vs. (X*X)**(Y/2), X in (0.01, 10.0), Y in (−19.42,
 19.42)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1006 3052 942 6.49 of 23 9.8692 4.20 of 23
 550 F77 2266 518 2216 5.46 of 23 0.0120 3.43 of 23
 550 SWT 1700 1604 1696 3.25 of 23 2.0541 1.28 of 23
 750 FTN 958 3104 938 6.49 of 23 7.7463 4.20 of 23
 750 F77 2251 514 2235 5.46 of 23 0.0120 3.47 of 23
 750 SWT 1644 1591 1765 3.20 of 23 2.8599 1.30 of 23

 It seems fairly obvious from the above test results that the
 Prime library routines are rather sadly lacking in precision.
 Test 3 alone shows a RME loss of nearly 18 out of 23 bits.
 Conclusions about tests 3 and 4 can possibly (with a cautionary
 warning!) be extrapolated to the double precision cases, at
 least for the SWT routine, since the routine is the same for both
 precisions. The tests of special arguments indicate that the
 ’powr$m’ routine does behave well in the double precision case.
 Running small portions of the test to avoid some of the firmware
 arithmetic problems tends to support these conclusions.

 − 37 −

 Floating Point SWT Math Guide

 Sine and Cosine

 Test 1
 SIN(X) vs. 3*SIN(X/3)−4*SIN(X/3)**3 in (0.0, 1.571)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 3047 32 1921 1.41 of 23 0.8183 0.00 of 23
 550 F77 466 2204 2330 1.49 of 23 0.7910 0.00 of 23
 550 SWT 498 3979 523 1.00 of 23 0.5243 0.00 of 23
 750 FTN 3095 0 1905 1.41 of 23 0.8183 0.00 of 23
 750 F77 466 2202 2332 1.61 of 23 0.3330 0.00 of 23
 750 SWT 498 3979 523 1.00 of 23 0.5243 0.00 of 23

 550* FTN 31 233 4736 4.50 of 47 0.7888 3.17 of 47
 550* F77 3204 1276 520 4.07 of 47 0.3021 2.09 of 47
 550* SWT 2880 1207 913 3.41 of 47 0.1898 1.51 of 47
 750* FTN 130 679 4191 2.81 of 47 0.1495 1.44 of 47
 750* F77 863 1773 2364 2.30 of 47 0.6557 0.46 of 47
 750* SWT 494 2459 2047 2.04 of 47 1.3513 0.21 of 47

 Test 2
 SIN(X) vs. 3*SIN(X/3)−4*SIN(X/3)**3 in (18.85, 20.42)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 3546 12 1442 18.00 of 23 18.850 11.87 of 23
 550 F77 431 2267 2302 1.73 of 23 19.001 0.00 of 23
 550 SWT 510 3939 551 1.00 of 23 19.103 0.00 of 23
 750 FTN 3560 0 1440 18.00 of 23 18.850 11.87 of 23
 750 F77 431 2267 2302 1.73 of 23 19.001 0.00 of 23
 750 SWT 511 3938 551 1.00 of 23 19.103 0.00 of 23

 550* FTN 394 118 4488 18.98 of 47 18.850 12.87 of 47
 550* F77 1800 660 2540 19.33 of 47 18.850 13.20 of 47
 550* SWT 1776 491 2733 19.33 of 47 18.850 13.20 of 47
 750* FTN 1852 160 2988 18.98 of 47 18.850 12.84 of 47
 750* F77 891 1803 2306 6.93 of 47 18.850 1.14 of 47
 750* SWT 699 2463 1838 2.02 of 47 20.242 0.14 of 47

 − 38 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Test 3
 COS(X) vs. 4*COS(X/3)**3−3*COS(X/3) in (21.99, 23.56)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1911 13 3076 11.83 of 23 23.555 7.14 of 23
 550 F77 1850 24 3126 1.36 of 23 23.150 0.00 of 23
 550 SWT 2470 33 2497 0.70 of 23 23.529 0.00 of 23
 750 FTN 1923 0 3077 11.83 of 23 23.555 7.14 of 23
 750 F77 1845 0 3155 1.37 of 23 23.150 0.00 of 23
 750 SWT 2471 0 2529 0.70 of 23 23.530 0.00 of 23

 550* FTN 1470 658 2872 17.42 of 47 23.562 11.44 of 47
 550* F77 4978 20 2 17.77 of 47 23.562 11.70 of 47
 550* SWT 4657 291 52 17.77 of 47 23.562 11.70 of 47
 750* FTN 855 564 3581 15.33 of 47 23.561 9.78 of 47
 750* F77 4490 464 46 2.85 of 47 23.353 1.46 of 47
 750* SWT 1334 2614 1052 1.63 of 47 22.237 0.00 of 47

 This is another test which illustrates how the multiplica−
 tion bug in the 550 firmware can affect critical results.
 Observe the differences in double precision results in test 2 and
 3. It is also fairly obvious that the FTN library sine and
 cosine functions have severe accuracy problems. The SWT library
 routines perform well within error limits {7} and are much better
 than the F77 routines.

 When testing special arguments it is found that both the F77
 and FTN routines have difficulty with the identities SIN(−X)=−
 SIN(X) and COS(−X)=COS(X). The ratio of the calculated
 difference to X is about 10E−8 for single precision, and 10E−12
 to 10E−28 for double precision (the F77 library is more
 accurate). The SWT Library routines calculate no differences in
 these identities.

 When special values are tested for error checking, it is
 discovered that the Prime routines trigger a SIZE error in float
 to fixed conversion when presented with a large argument rather
 than checking for (and reporting) the actual problem of an error
 of excessive magnitude. The SWT routine properly traps the
 error.

 − 39 −

 Floating Point SWT Math Guide

 Hyperbolic Sine and Cosine

 There are no hyperbolic sine (sinh) or hyperbolic cosine
 (cosh) routines in the FTN library, so the tests below are only
 for the F77 and SWT libraries.

 Test 1
 SINH(X) vs. Taylor Series in (0.00, 0.50)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 1 2418 2581 1.38 of 23 0.1908 0.17 of 23
 550 SWT 8 4965 27 1.00 of 23 0.4827 0.00 of 23
 750 F77 1 2430 2569 1.38 of 23 0.1908 0.17 of 23
 750 SWT 7 4966 27 1.00 of 23 0.4827 0.00 of 23

 550* F77 87 754 4159 3.00 of 47 0.0156 1.69 of 47
 550* SWT 360 2597 2043 1.99 of 47 0.4855 0.06 of 47
 750* F77 343 2643 2033 1.99 of 47 0.4833 0.06 of 47
 750* SWT 370 2643 1987 2.00 of 47 0.4822 0.06 of 47

 Test 2
 COSH(X) vs. Taylor Series in (0.00, 0.50)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 0 3547 1453 1.00 of 23 0.0348 0.03 of 23
 550 SWT 6 4905 89 0.98 of 23 0.1599 0.00 of 23
 750 F77 1 3548 1451 1.00 of 23 0.3937E−2 0.03 of 23
 750 SWT 6 4905 89 0.98 of 23 0.1599 0.00 of 23

 550* F77 0 143 4857 4.15 of 47 0.4906 2.74 of 47
 550* SWT 0 1442 3558 3.41 of 47 0.4997 1.28 of 47
 750* F77 0 2098 2902 3.41 of 47 0.4955 1.30 of 47
 750* SWT 0 2809 2191 3.15 of 47 0.4919 1.04 of 47

 − 40 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Test 3
 SINH(X) vs. C*(SINH(X+1)+SINH(X−1)) in (3.00, LOG(XMAX))

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 2051 1879 1070 16.53 of 23 87.017 10.43 of 23
 550 SWT 1618 3303 79 1.24 of 23 43.500 0.00 of 23
 750 F77 2051 1881 1068 16.53 of 23 87.017 10.43 of 23
 750 SWT 1618 3303 79 1.24 of 23 43.500 0.00 of 23

 550* F77 3615 388 997 5.92 of 47 0.2124E+5 4.19 of 47
 550* SWT 4579 262 159 4.45 of 47 0.2067E+5 3.17 of 47
 750* F77 3937 337 726 4.85 of 47 0.1669E+5 2.73 of 47
 750* SWT 4498 303 199 3.03 of 47 0.1304E+5 1.49 of 47

 In test 4, the double precision COSH routine in the F77
 library generated numerous errors for large values that should
 have been in range. These errors aborted the test and therefore
 there are no results for the double precision F77 COSH.

 Test 4
 COSH(X) vs. C*(COSH(X+1)+COSH(X−1)) in (3.00, LOG(XMAX))

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 2051 1903 1046 17.75 of 23 87.000 11.74 of 23
 550 SWT 1558 3341 101 1.00 of 23 49.214 0.00 of 23
 750 F77 2051 1904 1045 17.75 of 23 87.000 11.74 of 23
 750 SWT 1558 3341 101 1.00 of 23 49.214 0.00 of 23

 550* SWT 4566 263 171 4.53 of 47 0.1794E+5 3.16 of 47
 750* SWT 4522 284 194 3.06 of 47 0.1281E+5 1.49 of 47

 The results of tests 3 and 4 show that the F77 routines are
 rather inaccurate at the extremes of range. The RME measures for
 the SWT routines are a bit large, but the corresponding RMS error
 is small. According to the figures given in {7}, the SWT
 routines perform within the range of acceptable error.

 As with many of the other tests, fundamental identities
 involving negated arguments were not calculated quite correctly
 in the Prime routines. Another interesting(?) result occurred
 when the F77 SINH routine was called with a very large positive
 value. The SINH routine did not signal an error, but rather
 returned the maximum floating point value −− an incorrect result.

 − 41 −

 Floating Point SWT Math Guide

 Square Root

 The square root function is one of the easiest to code and
 the accuracy of such a routine should be very, very good if done
 correctly. Newton’s method converges quickly and requires only a
 few iterations on a reduced argument to reach a solution. Due to
 the nature of the square root function and its use, the random
 arguments are logarithmically distributed over the sample inter−
 val; all the other tests use a uniform distribution.

 Test 1
 SQRT(X*X) vs. X in (0.7071, 1.00)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 550 F77 1 4999 0 0.42 of 23 0.7500 0.00 of 23
 550 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 750 FTN 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 750 F77 1 4999 0 0.42 of 23 0.7500 0.00 of 23
 750 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23

 550* FTN 0 0 5000 2.50 of 47 0.7095 1.33 of 47
 550* F77 0 1 4999 2.08 of 47 0.7074 1.13 of 47
 550* SWT 0 0 5000 2.49 of 47 0.7114 1.31 of 47
 750* FTN 0 2403 2597 0.50 of 47 0.7072 0.00 of 47
 750* F77 0 4481 519 0.50 of 47 0.7072 0.00 of 47
 750* SWT 0 2493 2507 0.50 of 47 0.7072 0.00 of 47

 Test 2
 SQRT(X*X) vs. X in (1.00, 1.414)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 550 F77 77 4923 0 1.00 of 23 1.0004 0.00 of 23
 550 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 750 FTN 0 5000 0 0.00 of 23 −−−−− 0.00 of 23
 750 F77 80 4920 0 1.00 of 23 1.0004 0.00 of 23
 750 SWT 0 5000 0 0.00 of 23 −−−−− 0.00 of 23

 550* FTN 0 0 5000 3.00 of 47 1.0003 2.00 of 47
 550* F77 0 6 4994 3.00 of 47 1.0003 1.97 of 47
 550* SWT 0 0 5000 3.00 of 47 1.0003 2.00 of 47
 750* FTN 0 3384 1616 1.00 of 47 1.0001 0.00 of 47
 750* F77 1 3766 1233 1.00 of 47 1.0001 0.00 of 47
 750* SWT 0 3387 1613 1.00 of 47 1.0001 0.00 of 47

 All of the routines perform well in these tests, and all
 have results within acceptable margins of error. Test 2 readily
 illustrates how results can change due to the double precision
 multiply bug on 550 machines. Nothing in these tests would
 particularly recommend one routine against any other, although
 the SWT and FTN routines appear to be marginally more accurate

 − 42 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 than the F77 version.

 Tests of special arguments, however, reveal some difficul−
 ties. The FTN and F77 double precision functions generate over−
 flow faults when presented with a large enough argument. There
 is no valid mathematical reason for this to occur. Additionally,
 the Prime double precision functions calculated incorrect square
 roots for selected small values near the limits of storage
 precision. The SWT library routine behaved correctly for all
 special arguments.

 − 43 −

 Floating Point SWT Math Guide

 Tangent and Cotangent

 There is no tangent routine in the standard FTN library, so
 the results of the tests below apply to only the F77 and SWT
 libraries.

 Test 1
 TAN(X) vs. 2*TAN(X/2)/(1−TAN(X/2)**2) in (0.00, 0.7854)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 1978 2361 661 1.99 of 23 0.2458 0.22 of 23
 550 SWT 2054 2518 428 1.97 of 23 0.1273 0.11 of 23
 750 F77 1968 2369 663 1.99 of 23 0.2458 0.21 of 23
 750 SWT 2044 2525 431 1.79 of 23 0.5237 0.11 of 23

 550* F77 191 1085 3724 3.43 of 47 0.7483 1.93 of 47
 550* SWT 190 996 3814 3.62 of 47 0.7734 2.03 of 47
 750* F77 439 2565 1996 2.79 of 47 0.2815 0.99 of 47
 750* SWT 542 2384 2074 2.87 of 47 0.2678 1.11 of 47

 Test 2
 TAN(X) vs. 2*TAN(X/2)/(1−TAN(X/2)**2) in (2.749, 3.534)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 2318 2018 664 2.21 of 23 2.9813 0.48 of 23
 550 SWT 991 3178 831 1.17 of 23 3.0306 0.00 of 23
 750 F77 2340 2009 651 2.09 of 23 2.8026 0.49 of 23
 750 SWT 987 3176 837 1.17 of 23 3.0306 0.00 of 23

 550* F77 3715 815 470 3.88 of 47 3.1342 2.09 of 47
 550* SWT 3827 868 305 3.87 of 47 3.1116 2.00 of 47
 750* F77 2197 1870 933 2.79 of 47 2.9978 1.07 of 47
 750* SWT 2131 2213 656 2.60 of 47 3.4601 0.83 of 47

 − 44 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Test 3
 TAN(X) vs. 2*TAN(X/2)/(1−TAN(X/2)**2) in (18.85, 19.63)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 1933 2374 693 1.93 of 23 19.332 0.20 of 23
 550 SWT 2074 2467 459 1.94 of 23 19.104 0.14 of 23
 750 F77 1934 2374 692 1.96 of 23 19.102 0.20 of 23
 750 SWT 2071 2470 459 1.94 of 23 19.104 0.14 of 23

 550* F77 193 1136 3671 3.55 of 47 19.448 1.93 of 47
 550* SWT 178 1076 3746 3.59 of 47 19.541 2.03 of 47
 750* F77 399 2583 2018 2.94 of 47 19.104 0.99 of 47
 750* SWT 499 2403 2098 2.92 of 47 18.981 1.10 of 47

 Test 4
 COT(X) vs. (COT(X/2)**2−1)/(2*COT(X/2)) in (18.85, 19.63)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 F77 2602 16 2382 2.16 of 23 19.377 0.18 of 23
 550 SWT 2311 32 2657 1.36 of 23 19.086 0.00 of 23
 750 F77 2593 8 2399 2.16 of 23 19.377 0.18 of 23
 750 SWT 2307 13 2680 1.35 of 23 19.086 0.00 of 23

 550* F77 261 818 3921 3.91 of 47 18.857 2.20 of 47
 550* SWT 335 772 3893 3.79 of 47 19.455 1.95 of 47
 750* F77 973 1843 2184 3.00 of 47 19.439 1.13 of 47
 750* SWT 989 1794 2217 2.53 of 47 19.616 0.73 of 47

 These tests show that both implementations are correct to
 within a reasonable error bound. Tests on special arguments
 revealed that the double precision F77 tangent routine signals an
 error for a large input value that should be well within the
 range that can be dealt with.

 − 45 −

 Floating Point SWT Math Guide

 Hyperbolic Tangent

 There does not appear to be a double precision hyperbolic
 tangent routine in the FTN library, although there is a single
 precision version. The following test results reflect that fact.

 Test 1
 TANH(X) vs. (TANH(X−1/8)*TANH(1/8))/(1+TANH(X−1/8)*TANH(1/8))
 in (0.125, 0.5493)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1396 1788 1816 2.99 of 23 0.1268 0.72 of 23
 550 F77 1860 1253 1887 3.71 of 23 0.1347 1.41 of 23
 550 SWT 1203 2833 964 1.77 of 23 0.1479 0.00 of 23
 750 FTN 1401 1782 1817 2.99 of 23 0.1268 0.73 of 23
 750 F77 1863 1248 1889 3.71 of 23 0.1347 1.41 of 23
 750 SWT 1200 2832 968 1.77 of 23 0.1479 0.00 of 23

 550* F77 2731 230 2039 6.64 of 47 0.1315 4.08 of 47
 550* SWT 4624 348 28 3.55 of 47 0.1288 1.98 of 47
 750* F77 2380 605 2015 4.83 of 47 0.1328 2.58 of 47
 750* SWT 3966 957 77 2.99 of 47 0.1270 1.33 of 47

 Test 2
 TANH(X) vs. (TANH(X−1/8)*TANH(1/8))/(1+TANH(X−1/8)*TANH(1/8))
 in (0.6743, 17.33)

 5000 Comparisons Maximum Rel. Error Root Mean Sq.
 CPU Library gt eq lt Bitloss At Bitloss
 550 FTN 1103 2707 1190 1.69 of 23 0.7217 0.00 of 23
 550 F77 1288 2316 1396 1.91 of 23 1.0990 0.00 of 23
 550 SWT 1204 2324 1472 1.73 of 23 0.6974 0.00 of 23
 750 FTN 1100 2704 1196 1.69 of 23 0.7217 0.00 of 23
 750 F77 1281 2324 1395 1.91 of 23 1.0990 0.00 of 23
 750 SWT 1198 2328 1474 1.73 of 23 0.6974 0.00 of 23

 550* F77 1846 2234 920 3.34 of 47 0.8543 0.86 of 47
 550* SWT 2676 2258 66 2.11 of 47 1.6430 0.62 of 47
 750* F77 974 3464 562 2.26 of 47 0.7330 0.14 of 47
 750* SWT 1185 3442 373 1.76 of 47 1.3987 0.14 of 47

 The above tests show that any of the three routines is
 acceptable for use in single precision, but the error in the
 double precision F77 routine in test 1 is rather large. The SWT
 routine is once again the best.

 Tests of special arguments indicate a definite problem in
 the Prime single precision library routines when calculating
 various identity operations such as TANH(−X) = −TANH(X). The
 difference in calculated values is about 10E−6; the SWT routine
 calculates no differences.

 − 46 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Conclusions

 It appears as if the standard libraries under Primos have
 been implemented without anything other than a cursory check of
 accuracy. A number of the library routines return incorrect
 results that are mathematically absurd. Other routines trigger
 errors on values which should be well within range.

 Although the single precision arithmetic is acceptable for
 most calculations, the double precision floating point arithmetic
 on Prime 400/550 machines (and possibly on the new 2250, as well)
 is seriously flawed. Critical calculations should not be per−
 formed on any of these machines since the error induced by
 certain unstable operations can completely ruin the accuracy of
 the results. Bizarre behavior of programs which work on other
 machines may also be noted due to some of the odd quirks in the
 floating point structure. Users should run their own tests to
 determine if their applications will be affected adversely by
 these problems.

 An increase in accuracy may very well be obtained in some
 programs by recoding the standard functions. It has been shown
 that the SWT Math Library significantly outperforms the standard
 Prime libraries in virtually every instance; it is possible that
 the encoding of different algorithms might also result in
 increased precision.

 This paper has also presented differences in the architec−
 ture of the Prime 400/550 computer and the 750 which violate the
 claim of strict upward compatibility of software. Programs which
 directly access the register structure or make specific assump−
 tions about precision should be coded with these differences in
 mind.

 − 47 −

 Floating Point SWT Math Guide

 References

 {1} Dr. John Spitzer; private communication to Academic
 Computing Center, State University College at Brockport,
 NY, and reported to Prime Computer; 1978

 {2} Mark P. C. Legg; copies of TAR reports to Prime computer
 dated 1980 to 1982 from The Flinders University of South
 Australia; private communication; 1982

 {3} Harold Stone, editor; Introduction to Computer
 Architecture, 2nd. Edition; Science Research Associates,
 Inc; 1980

 {4} Andrew Tanenbaum; Structured Computer Organization;
 Prentice−Hall; 1976

 {5} M. Sporer; Prime PE−T 416, "P400 Instruction Times";
 Prime Computer, Inc.; 1978

 {6} Mark P. C. Legg; untitled report contained in private
 communication; Computer Centre of The Flinders University
 of South Australia, Bedford Park; 1982

 {7} William J. Cody, Jr. and William Waite; Software Manual
 for the Elementary Functions; Prentice−Hall; 1980

 {8} George S. Fishman and Louis R. Moore; A statistical
 Evaluation of Multiplicative Congruential Random Number
 Generators with Modulus 2 ^ 31 − 1; Journal of the
 American Statistical Association, March 1982, Volume 77 #
 377

 {9} Martha August; Prime PE−T 1025, "50 Series General
 Architecture"; Prime Computer, Inc.; 1982

 {10} Anne P. Ladd; Subroutines Reference Guide; Doc 3621−190,
 Revision 19.0; Prime Computer, Inc.; 1982

 {11} Ivars Peterson; "Can You Count on Your Computer"; Science
 News, Vol. 122 #5; Jul 31, 1982

 {12} W. J. Cody; "Analysis of Proposals for the Floating−Point
 Standard"; IEEE Computer, Volume 14 #3, March 1981

 {13} David Hough; "Applications of the Proposed IEEE 754
 Standard for Floating−Point Arithmetic"; IEEE Computer,
 Volume 14 #3, March 1981

 {14} Jerome T. Coonen; "Underflow and the Denormalized
 Numbers"; IEEE Computer, Volume 14 #3, March 1981

 − 48 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 {15} A Proposed Standard for Binary Floating−Point Arithmetic;
 IEEE Computer, Volume 14 #3, March 1981

 − 49 −

 Floating Point SWT Math Guide

 Appendix I

 Where is the Exponent?

 The following program is written in PMA (Prime Assembly
 Language) and is intended to indicate where the exponent is
 stored in the live register set of your machine. It can be
 entered and run without the Software Tools Subsystem being
 present on your system.

 * EXPTEST −−− SEE WHERE DOUBLE FLOATING EXPONENT IS LOCATED
 *
 * Eugene Spafford
 * School of Information and Computer Science
 * Georgia Institute of Technology
 * Atlanta, GA 30332
 *
 *
 * To assemble, load and run this test, copy lines 16 to 31
 * into a file named "exptest.cpl" and remove the "*" from
 * the first column of each line. Then type (in Primos):
 *
 * cpl exptest
 *
 *
 * /* exptest.cpl −−− assemble, load and run the exponent test
 *
 * pma exptest.pma −l yes −b yes
 *
 * &data seg
 * vload exptest.seg
 * load exptest.bin
 * library
 * map 6
 * save
 * quit
 * &end
 *
 * seg exptest.seg
 *
 * &stop
 *
 *
 SEG
 SUBR MAIN

 LINK
 MAIN ECB START
 PROC

 − 50 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 START EQU *
 DFLD =2.5D0
 LDLR PB% + ’13
 BNE HIGH_HALF

 CALL IOA$
 AP LOWM,S
 AP =99,SL
 PRTN

 HIGH_HALF EQU *
 CALL IOA$
 AP HIGHM,S
 AP =99,SL
 PRTN

 LOWM BCI ’Exponent is in the low half (2nd 16 bits).%.’
 HIGHM BCI ’Exponent is in the high half (1st 16 bits).%.’

 END MAIN
 SEG
 DYNT IOA$
 END

 − 51 −

 Floating Point SWT Math Guide

 Appendix II

 A Program to Detect Bit Loss in Multiplication

 The following program is written in Prime Fortran 66 (FTN)
 and is intended to indicate whether multiplication on your
 machine truncates or deletes bits in the mantissa of products of
 double precision floating point quantities. It can be entered and
 run without the Software Tools Subsystem being present on your
 system.

 C CHECK_DFMP −−− SEE IF DOUBLE PRECISION MULTIPLY DROPS BITS
 C
 C Eugene Spafford
 C School of Information and Computer Science
 C Georgia Institute of Technology
 C Atlanta, GA 30332
 C
 C
 C To compile, load and run this test, copy lines 16 to 31
 C into a file named "check_dfmp.cpl" and remove the "C" from
 C the first column of each line. Then type (in Primos):
 C cpl check_dfmp
 C
 C
 C
 C /* check_dfmp.cpl −−− compile, load and run the test to check DFMP
 C
 C ftn check_dfmp.ftn −l yes −b yes −64v −dynm −dclvar −prod
 C
 C &data seg
 C vload check_dfmp.seg
 C load check_dfmp.bin
 C library
 C map 6
 C save
 C quit
 C &end
 C
 C seg check_dfmp.seg
 C
 C &stop
 C
 C
 C
 INTEGER BITCNT
 C
 DOUBLE PRECISION DA,DB,DC
 INTEGER IDB(4),IDC(4)
 EQUIVALENCE (IDB,DB),(IDC,DC)

 − 52 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 C
 INTEGER LOOP,COMPAR,LOSS,IX
 DOUBLE PRECISION DCON(3)
 DATA DCON /1.0D0,16.0D0,0.125D0/
 C
 C
 IDB(1) = :77777
 IDB(2) = :177777
 IDB(4) = 128
 C
 DO 30 IX = 1,3
 DA = DCON(IX)
 IDB(3) = 0
 DO 20 LOOP = 1,16
 IDB(3) = IDB(3)*2+1
 DC = DA*DB
 DO 10 COMPAR = 1,3
 IF (IDC(4−COMPAR) .EQ. IDB(4−COMPAR)) GO TO 10
 PRINT 70, DA
 PRINT 90, COMPAR,IDC(4−COMPAR),IDB(4−COMPAR)
 LOSS = BITCNT(IDC(4−COMPAR),IDB(4−COMPAR),COMPAR)
 PRINT 100, LOSS
 GO TO 20
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
 C
 C
 DO 60 IX = 1,3
 DA = DCON(IX)
 IDB(3) = 0
 DO 50 LOOP = 1,16
 IDB(3) = IDB(3)*2+1
 DC = DB/DA
 DO 40 COMPAR = 1,3
 IF (IDC(4−COMPAR) .EQ. IDB(4−COMPAR)) GO TO 40
 PRINT 80, DA
 PRINT 90, COMPAR,IDC(4−COMPAR),IDB(4−COMPAR)
 LOSS = BITCNT(IDC(4−COMPAR),IDB(4−COMPAR),COMPAR)
 PRINT 100, LOSS
 GO TO 50
 40 CONTINUE
 50 CONTINUE
 60 CONTINUE
 C
 C
 CALL EXIT
 C
 C
 70 FORMAT (’Loss of precision multiplying by ’,F10.6)
 80 FORMAT (’Loss of precision dividing by ’,F10.6)
 90 FORMAT (’Word ’,I2,’ is ’,I6,’ and should be ’,I6)
 100 FORMAT (’Result is loss of ’,I3,’ bits out of 47.’//)
 END
 C
 C

 − 53 −

 Floating Point SWT Math Guide

 C BITCNT −−− FIGURE LOSS OF BITS
 C
 INTEGER FUNCTION BITCNT(I,J,COMPAR)
 C
 INTEGER I,J,COMPAR
 C
 INTEGER COUNT,AND,MASK,RS
 C
 C
 MASK = :100000
 DO 20 COUNT = 1,16
 IF (AND(MASK,I) .EQ. AND(MASK,J)) GO TO 10
 BITCNT = (COMPAR−1)*16+17−COUNT
 RETURN
 10 CONTINUE
 MASK = RS(MASK,1)
 20 CONTINUE
 C
 BITCNT = 0
 RETURN
 END

 − 54 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Appendix III

 A Program to Calculate Prime Hexadecimal Constants

 The following program is written in Fortran 77 and can be
 used to generate Prime PMA−style hexadecimal constants from
 decimal inputs. The version included here was run on a Cyber 760
 under NOS 2.0 to generate the constants used in the SWT Math
 Library. To be used effectively, if you use this program you
 should run it on a machine with more precision than the Primes
 provide.

 C MAKE_CONSTANT −−− MAKE THE HEX CONSTANTS FOR THE LIBRARY
 C
 C The following PROGRAM line is for FTN5 on the Cyber 760
 C
 PROGRAM MAKCON (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
 C
 DOUBLE PRECISION INP,HALF,TWO,ZERO,ONE
 LOGICAL BITS(0:47)
 INTEGER I,ISIGN,EXP,J
 PARAMETER (ZERO=0.0D0,TWO=2.0D0,HALF=0.5D0,ONE=1.0D0)
 EXTERNAL PUTHEX,PUTHX2
 INTRINSIC DINT
 DOUBLE PRECISION DINT
 C
 C
 10 CONTINUE
 READ (5,*,END=70) INP
 IF (INP .NE. ZERO) THEN
 ISIGN = 1
 IF (INP .LT. ZERO) THEN
 ISIGN = −1
 INP = −INP
 ENDIF
 C
 C START WITH 128 BIAS EXPONENT
 EXP = 128
 20 CONTINUE
 IF (INP .LT. HALF) THEN
 INP = INP*TWO
 EXP = EXP−1
 GO TO 20
 C
 ELSEIF (INP .GE. ONE) THEN
 INP = INP/TWO
 EXP = EXP+1
 GO TO 20
 ENDIF
 C

 − 55 −

 Floating Point SWT Math Guide

 ELSE
 ISIGN = 1
 EXP = 0
 ENDIF
 C
 DO 30 I = 1,47
 IF (DINT(INP*TWO) .GT. ZERO) THEN
 BITS(I) = .TRUE.
 INP = INP*TWO−ONE
 C
 ELSE
 BITS(I) = .FALSE.
 INP = INP*TWO
 ENDIF
 30 CONTINUE
 C
 IF (INP .GE. HALF) THEN
 I = 47
 40 CONTINUE
 BITS(I) = .NOT.BITS(I)
 I = I−1
 IF (.NOT. BITS(I+1) .AND.
 & I .GT. 0) THEN
 GO TO 40
 ELSE IF (.NOT. BITS(I+1)) THEN
 BITS(1) = .TRUE.
 EXP = EXP+1
 ENDIF
 ENDIF
 C
 C NOW GENERATE THE 2’S COMPLEMENT IF NEGATIVE
 IF (ISIGN .LT. 0) THEN
 I = 47
 50 CONTINUE
 I = I−1
 IF (.NOT. BITS(I+1) .AND.
 & I .GT. 0) GO TO 50
 DO 60 J = 1,I
 BITS(J) = .NOT.BITS(J)
 60 CONTINUE
 BITS(0) = .TRUE.
 C
 ELSE
 BITS(0) = .FALSE.
 ENDIF
 C
 CALL PUTHEX (BITS(0))
 CALL PUTHEX (BITS(16))
 CALL PUTHEX (BITS(32))
 CALL PUTHX2 (EXP)
 GO TO 10
 C
 C
 70 CONTINUE
 STOP
 END

 − 56 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 C PUTHEX −−− PUT OUT A HEXADECIMAL VALUE
 C
 SUBROUTINE PUTHEX (BITARR)
 C
 LOGICAL BITARR(16)
 C
 INTEGER I,J,VAL
 CHARACTER*16 DIGITS
 CHARACTER*4 NUM
 DATA DIGITS /’0123456789ABCDEF’/
 C
 C
 DO 20 I = 1,4
 VAL = 0
 DO 10 J = 1,4
 VAL = VAL*2
 IF (BITARR((I−1)*4+J)) THEN
 VAL = VAL+1
 ENDIF
 10 CONTINUE
 VAL = VAL+1
 NUM(I:I) = DIGITS(VAL:VAL)
 20 CONTINUE
 C
 WRITE (6,30) NUM
 RETURN
 C
 30 FORMAT (A4)
 END
 C PUTHX2 −−− PUT OUT A HEXADECIMAL VALUE
 C
 SUBROUTINE PUTHX2 (EXP)
 C
 INTEGER EXP
 C
 INTEGER DIG,VAL,POWER2(4),LOOP
 LOGICAL ISNEG
 CHARACTER*17 DIGITS
 CHARACTER*4 NUM
 DATA DIGITS /’0123456789ABCDEF0’/
 DATA POWER2 /4096,256,16,1/
 C
 C
 VAL = EXP
 IF (EXP .LT. 0) THEN
 VAL = −EXP
 ISNEG = .TRUE.
 VAL = VAL−1
 C
 ELSE
 ISNEG = .FALSE.
 ENDIF
 C
 DO 10 LOOP = 1,4
 DIG = VAL/POWER2(LOOP)
 VAL = VAL−DIG*POWER2(LOOP)

 − 57 −

 Floating Point SWT Math Guide

 IF (ISNEG) DIG = 15−DIG
 DIG = DIG+1
 NUM(LOOP:LOOP) = DIGITS(DIG:DIG)
 10 CONTINUE
 C
 WRITE (6,20) NUM
 RETURN
 C
 20 FORMAT (A4/)
 END

 − 58 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 Appendix IV

 Building The SWT Math Library Tests

 In General

 The tests provided along with the SWT Math library may be
 recompiled and run on your machine to test your own routines or
 verify the results presented in this report. The tests are
 written in Fortran 77 and Fortran 66 with command files in Prime
 CPL. Consult your system administrator to find where the tests
 have been stored on disk; the default location is with the source
 code to the SWT Math Library routines. The single precision tests
 are in a separate directory from the double precision tests, but
 the directions given below apply to both sets of tests.

 You must have the Software Tools Subsystem and the F77
 compiler to run the tests! You can recode the routines written in
 F77 to either Ratfor or FTN, but be aware of the library that is
 used when you choose this option!

 Make sure that the SWT Math Library has been built and
 installed in a directory where you can access it. Set a SWT
 template in your account named "=mathlib=" and equal to the SWT
 pathname to the library. The format to do this is:

 template −a mathlib //<some path name here>/mathlib

 Building the Support Routines

 Attach to the directory containing the tests you wish to
 build and run. Modify the "subs.f77" file, if necessary, to
 change the library routines to be tested. The routines in the
 "subs.f77" file which begin with the letter Z are the routines to
 modify to invoke the correct library functions.

 Next, you need to build the support routines. To do this,
 simply run the SWT shell file "make_support". This will cause the
 files "main.b" and "sublib" to be created in your account.

 Next, edit the file "run_test.cpl" so that any necessary
 local libraries get loaded along with the tests. Also include any
 special commands that you might wish to execute as part of the
 tests.

 Running a Test

 If you execute the SWT shell file "make" with the name of a
 test to run (asin, atan, exp, log, power, sqrt, sin, sinh, tan,

 − 59 −

 Floating Point SWT Math Guide

 or tanh) the SWT shell files and associated Prime CPL files will
 compile and load the appropriate test programs, execute them with
 output captured to comoutput files, and then produce a file with
 labelled results and a report generated by CMPF. The file created
 will be named after the test executed, with the string
 ".comparison" added to the end of the name. For example, if you
 executed the command

 make power

 the file "power.comparison" would be created in your account.

 If you wish to make further modifications to the test
 software, examine the SWT shell files and CPL files to determine
 what needs to be modified.

 − 60 −

 Georgia Institute of Technology Technical Report GIT−ICS−83/09

 ADDENDUM

 Arnold D. Robbins

 August, 1984

 Introduction

 For Release 9 of the Software Tools Subsystem, in order that
 there should only be one math library, the old, locally
 supported, math library, "vswtml", has been merged with the new
 library described in this report, "vswtmath". This addendum
 describes these routines.

 Deleted Functions

 The functions dacos, dasin, dbexp, dbsqrt, dflot, and drand,
 have all been deleted from "vswtml", since there are new routines
 to take their places.

 Remaining Routines

 The following pages contain the Software Tools Reference
 Manual entries for the remaining routines which have been added
 to "vswtmath" from "vswtml".

 Note that although the original "vswtmath" routines are
 listed in Section 2 of the SWT Reference Manual, these routines
 are listed in Section 4, even though they are all in one library.

 − 61 −

 gcd (4) −−− determine greatest common divisor of two integers 07/20/84

 | Calling Information

 long_int function gcd (x0, x1)
 long_int x0, x1

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Gcd’ determines the greatest common divisor of the two long
 integers specified as arguments. The function return is the
 GCD (always positive).

 Implementation

 ’Gcd’ is a straightforward implementation of Euclid’s
 algorithm.

 Bugs

 Behavior with nonpositive arguments may be considered
 irrational by some.

 See Also

 | invmod (4)

 gcd (4) − 1 − gcd (4)

 invmod (4) −−− find inverse of an integer modulo another integer 07/20/84

 | Calling Information

 long_int function invmod (x1, x0)
 long_int x1, x0

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Invmod’ is used to find the inverse of ’x1’ in the ring of
 integers modulo ’x0’. The function return is the inverse if
 it could be found, or ERR if ’x1’ and ’x0’ are not
 relatively prime.

 Implementation

 ’Invmod’ uses a variant of Euclid’s greatest common divisor
 algorithm.

 Bugs

 Rational behavior for nonpositive arguments has not been
 established.

 Locally supported.

 See Also

 | gcd (4)

 invmod (4) − 1 − invmod (4)

 prime (4) −−− retrieve the ’i’th prime number 07/20/84

 | Calling Information

 long_int function prime (i)
 long_int i

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Prime’ is used to retrieve a specified prime number. The
 argument is the ordinal of the prime number desired. The
 function return is the specified prime. For example, if ’i’
 is 1, the function return is 2; if ’i’ is 3, the function
 return is 5, etc.

 ’Prime’ uses the table of prime numbers in the file
 "=aux=/primes". This file contains the prime numbers up to
 one million in long−integer binary format. If "=aux=/primes"
 is unreadable or if ’i’ is less than one or greater than
 78498, the function return is zero.

 Implementation

 The file "=aux=/primes" is opened for reading. The
 read/write pointer for the file is then moved to the desired
 location and the prime number read. The file is then closed.

 Calls

 open, close, mapfd, Primos prwf$$

 Bugs

 Should probably raise cain if the prime numbers file is not
 available, rather than meekly returning zero.

 | Locally supported.

 prime (4) − 1 − prime (4)

 pwrmod (4) −−− calculate an exponential modulo a given modulus 07/20/84

 | Calling Information

 long_int function pwrmod (p, e, n)
 long_int p, e, n

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Pwrmod’ is used to perform an integer exponentiation in the
 ring of integers modulo a given modulus. The argument ’p’ is
 the base of the expression, ’e’ is the exponent, and ’n’ the
 modulus. The function return is p**E (mod n).

 Implementation

 ’Pwrmod’ examines the exponent a bit a time, squaring the
 intermediate result accumulated so far and multiplying it by
 the base whenever the selected bit is a 1. Each operation is
 performed modulo ’n’, so that intermediate results don’t
 become excessively large.

 See Also

 | invmod (4)

 pwrmod (4) − 1 − pwrmod (4)

 set_copy (4) −−− make a copy of one set in another 07/20/84

 | Calling Information

 subroutine set_copy (source, destination)
 pointer source, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_copy’ duplicates one set in another. For proper
 operation, the source set should be larger than or
 equivalent in size to the destination set. The source set is
 not altered by the copy operation.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_copy’ uses the size field encoded in the first word of
 each set to determine the number of words in the bit vector
 to be copied. A simple loop implements the copy.

 Bugs

 Should handle sets of different sizes properly.

 See Also

 | other set operations (’set_?*’) (4)

 set_copy (4) − 1 − set_copy (4)

 set_create (4) −−− generate a new, initially empty set 07/20/84

 | Calling Information

 pointer function set_create (set, size)
 pointer set
 integer size

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_create’ is used to create a Pascal−style bit vector
 representation for a set of integers from 1 to ’size’. The
 function return and the variable ’set’ are set to the
 address in dynamic storage of the newly−created set.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_create’ calls ’dsget’ to obtain a contiguous array of
 16−bit words that is large enough to represent a bit vector
 with ’size’ elements. The first word of this array is set to
 ’size’ for use by other set manipulation routines. A call to
 ’set_init’ then insures that the new set is empty.

 Arguments Modified

 set

 Calls

 dsget, set_init

 See Also

 | other set routines (’set_?*’) (4)

 set_create (4) − 1 − set_create (4)

 set_delete (4) −−− remove given element from a set 07/20/84

 | Calling Information

 subroutine set_delete (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_delete’ is used to remove a given element from a set.
 The first argument is the element (an integer between one
 and the maximum set size, inclusive), and the second is the
 set from which it is to be removed.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 The element selected is compared to the size field of the
 set; if invalid, ’set_delete’ prints an error message and
 terminates the program. Otherwise, the position of the
 element in the bit vector is calculated, and the bit is
 reset by straightforward logical operations.

 Calls

 error

 See Also

 | other set operations (’set_?*’) (4)

 set_delete (4) − 1 − set_delete (4)

 set_element (4) −−− see if a given element is in a set 07/20/84

 | Calling Information

 integer function set_element (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_element’ returns 1 if ’element’ is a member of the set
 ’set’, 0 otherwise. The argument ’element’ must be an
 integer from 1 to the maximum size of the set, inclusive.
 The argument ’set’ must have been created beforehand with
 ’set_create’.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If ’element’ is not in the range of allowable set elements
 for the given set, the program is terminated by a call to
 ’error’. Otherwise, the location of the element in the bit
 vector is calculated, and the function returns the value of
 the bit at that position.

 Calls

 error

 See Also

 | other set routines (’set_?*’) (4)

 set_element (4) − 1 − set_element (4)

 set_equal (4) −−− return TRUE if two sets contain the same members 07/20/84

 | Calling Information

 logical function set_equal (set1, set2)
 pointer set1, set2

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_equal’ determines if two sets contain the same members.
 The sets need not be of equal length.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_equal’ makes two calls on ’set_subset’. The function
 return is true if ’set1’ is a subset of ’set2’ and ’set2’ is
 a subset of ’set1’, false otherwise.

 Calls

 set_subset

 See Also

 | other set routines (’set_?*’) (4)

 set_equal (4) − 1 − set_equal (4)

 set_init (4) −−− cause a set to be empty 07/20/84

 | Calling Information

 subroutine set_init (set)
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_init’ initializes a set created by ’set_create’. An
 initialized set is empty, i.e. contains no members.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_init’ simply clears all elements of the bit vector por−
 tion of the data structure addressed by its first argument.

 See Also

 | other set routines (’set_?*’) (4)

 set_init (4) − 1 − set_init (4)

 set_insert (4) −−− place given element in a set 07/20/84

 | Calling Information

 subroutine set_insert (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_insert’ is the primary means of placing a given element
 in a set. ’Element’ must be an integer between one and the
 maximum size of the set, inclusive; ’set’ must be a pointer
 to a set data structure created by ’set_create’. If it is
 within range, the given element is marked "present" in the
 bit vector associated with the set.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If the element is out of range, a call to ’error’ is made to
 inform the user and terminate the program. Otherwise, the
 location of the element in the bit vector is determined and
 a few logical operations are employed to set the selected
 bit.

 Calls

 error

 See Also

 | other set routines (’set_?*’) (4)

 set_insert (4) − 1 − set_insert (4)

 set_intersect (4) −−− place intersection of two sets in a third 07/20/84

 | Calling Information

 subroutine set_intersect (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_intersect’ determines the intersection of the sets
 given as its first two arguments and places that intersec−
 tion in the set specified by the third. For proper
 operation, all three sets should be equal in size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Does a word−by−word logical ’and’ of the bit vectors for the
 first two sets, placing the result in the third.

 Bugs

 Should be fixed to work with sets of differing lengths.

 See Also

 | other set routines (’set_?*’) (4)

 set_intersect (4) − 1 − set_intersect (4)

 set_remove (4) −−− remove a set that is no longer needed 07/20/84

 | Calling Information

 subroutine set_remove (set)
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_remove’ reclaims the dynamic storage space used by a
 set data structure. It is the inverse of ’set_create’. To
 prevent dynamic storage space from becoming irretrievably
 lost, sets should always be removed by a call to
 ’set_remove’ when they are no longer needed.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Calls ’dsfree’ to throw away the storage space used by the
 internal data structure.

 Calls

 dsfree

 See Also

 other set routines (’set_?*’) (4), dsinit (2), dsget (2),
 | dsfree (2)

 set_remove (4) − 1 − set_remove (4)

 set_subset (4) −−− return TRUE if set1 is a subset of set2 07/20/84

 | Calling Information

 logical function set_subset (set1, set2)
 pointer set1, set2

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_subset’ returns the logical value ’.true.’ if and only
 if its first argument points to a set that is a subset of or
 equal to the set pointed to by its second argument. The sets
 need not be of equal length.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If one set is larger than the other, it is checked to make
 sure that none of the higher−order elements is present. The
 subset condition is then true if and only if every element
 of ’set1’ is also an element of ’set2’, a statement which
 can be checked a word at a time with the proper logical
 operations.

 Calls

 set_element

 See Also

 | other set routines (’set_?*’) (4)

 set_subset (4) − 1 − set_subset (4)

 set_subtract (4) −−− place difference of two sets in a third 07/20/84

 | Calling Information

 subroutine set_subtract (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_subtract’ performs the set subtraction operation, i.e.
 places in the set ’destination’ those elements of ’set1’
 that are not in ’set2’. For proper operation, all three sets
 should be the same size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Since sets are represented as bit vectors, the subtraction
 operation is performed by logically ’and’ing the elements of
 the first set with the negation of the elements of the
 second set.

 Bugs

 Should work with sets of differing sizes.

 See Also

 | other set routines (’set_?*’) (4)

 set_subtract (4) − 1 − set_subtract (4)

 set_union (4) −−− place union of two sets in a third 07/20/84

 | Calling Information

 subroutine set_union (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_union’ computes the union of ’set1’ and ’set2’, placing
 the result in ’destination’. For proper operation, all three
 sets should be the same size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 The set union is computed by logically ’or’ing the bit vec−
 tors associated with ’set1’ and ’set2’.

 Bugs

 Should work with sets of differing sizes.

 See Also

 other set routines (’set_?*’) (4)

 set_union (4) − 1 − set_union (4)

 TABLE OF CONTENTS

 The Hardware

 Internal Representation of Floating Point Values 1
 Storage Formats 1
 Normalization ... 2
 Representation in the Registers 3
 Access Methods .. 4
 Ranges .. 5

 Available Operations 6
 Branch .. 6
 Floating Point Arithmetic 7
 Logicize .. 8
 Skip .. 8
 Data Movement ... 8
 Address Manipulation 8
 Type Conversion 9
 Instructions Grouped Alphabetically 9

 Error Handling ... 10

 Firmware Accuracy .. 11
 Problems in Multiplication 11
 Loss of Precision in Type Conversion 12
 Problems in the Other Operations 12
 Floating Round .. 12
 Precision ... 13

 The SWT Math Library

 In General ... 14
 Source .. 14
 Implementation .. 14
 Timing .. 15
 Naming and Function 15
 Errors .. 15

 − iii −

 The Routines ... 16
 ACOS$M and DACS$M 16
 ASIN$M and DASN$M 16
 ATAN$M and DATN$M 17
 COS$M and DCOS$M 17
 COSH$M and DCSH$M 17
 COT$M and DCOT$M 17
 DBLE$M .. 18
 DINT$M .. 18
 ERR$M ... 19
 EXP$M and DEXP$M 19
 LN$M and DLN$M .. 20
 LOG$M and DLOG$M 20
 POWR$M .. 20
 SEED$M and RAND$M 21
 SIN$M and DSIN$M 21
 SINH$M and DSNH$M 22
 SQRT$M and DSQT$M 22
 TAN$M and DTAN$M 22
 TANH$M and DTNH$M 22

 Testing

 In General ... 23
 The Source of the Tests 23
 The Test Results 23
 A Special Note on 550 Results 24
 Other Points of Interest 24
 Use of These Results 25

 The Tests .. 25
 Inverse Sine and Cosine 26
 Inverse Tangent 29
 Exponential ... 31
 Logarithms .. 33
 The POWR$M Function 36
 Sine and Cosine 38
 Hyperbolic Sine and Cosine 40
 Square Root ... 42
 Tangent and Cotangent 44
 Hyperbolic Tangent 46

 − iv −

 Appendix I

 Where is the Exponent? 50

 Appendix II

 A Program to Detect Bit Loss in Multiplication 52

 Appendix III

 A Program to Calculate Prime Hexadecimal Constants 55

 Appendix IV

 Building The SWT Math Library Tests 59
 In General .. 59
 Building the Support Routines 59
 Running a Test .. 59

 ADDENDUM

 Introduction ... 61

 Deleted Functions .. 61

 Remaining Routines 61

 − v −

 Ring

 The Software Tools Subsystem Network Utility
 Version 1.0

 Roy J. Mongiovi

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 April, 1983

 Ring User’s Guide

 Ring

 Introduction

 Ring is a distributed request server for the Software Tools
 Subsystem which uses PRIMENET to communicate between nodes in a
 distributed ring. It performs simple system functions such as
 keeping the time of day synchronized on all the machines in the
 ring, as well as accepting user requests for services. It
 validates all requests it receives, which ensures that a devious
 user cannot create his own Ring server and transmit invalid
 requests to the other Ring processes.

 One copy of the Ring process executes on each of the systems
 in the ring. Each process establishes two virtual circuits (a
 transmit and a receive circuit) with the next and previous
 systems, where next and previous are defined by the system names
 in lexically sorted order. As systems are brought up and down,
 the ring dynamically reconstructs itself to maintain that
 ordering. A user who wishes to make a request of the ring con−
 nects to the Ring process on his own system and transmits his
 request. That Ring process reformats the request and transmits
 it around the ring where it is eventually seen and acted upon by
 the Ring process to which it was addressed.

 Ring User’s Guide

 Validation

 There are two distinct types of connection request valida−
 tion performed by Ring. The first is the validation of virtual
 circuits connecting each of the Ring processes in the ring, and
 the second is the validation of a virtual circuit connection from
 a user to the Ring process. These two types of validation are
 distinguished by the fact that ring connections are normally
 between two systems, while user connections are restricted to the
 same system (that is, a user is not allowed to connect to a Ring
 process on another system).

 Validation is made difficult by the fact that it is impos−
 sible to determine the user name (or any other information) of
 the process on the other end of a virtual circuit. Information
 may be returned only for virtual circuits on the current system,
 and even then only for known virtual circuits. As we shall see,
 it is possible to find the user name of the process on the other
 end of a circuit given certain restrictions. In fact, the entire
 purpose of user validation is to determine the user name and
 process id of the process on the other end of a virtual circuit.

 Ring Connections

 When a Ring process attempts to break into a previously
 existing ring (i.e. when a system has been down and is being
 brought up), and when a system that was in the ring has gone
 down, the new connections must be validated before they are
 accepted as coming from a Ring process. It would be very simple
 if a user name (such as SYSTEM) could be checked, but as has
 already been mentioned it is impossible to determine the user
 name on the other end of a virtual circuit that is on another
 system. The only piece of information that can be used for
 validation that is assured by the PRIMENET routines is the fact
 that a port can be assigned by only one process. Using this
 fact, together with the assumptions that the Ring process will be
 started at boot time, will immediately assign its ports, and will
 never relinquish those ports as long as the system is up, it is
 possible to validate ring connections. Note that this assumes
 that Ring will never fail on a hardware/software error, a rather
 stringent requirement. Should Ring ever fail and unassign the
 validation port while the system is up, it would be possible for
 another user process to assign that port and become the Ring
 process for that system.

 When a Ring process begins execution, the first thing it
 does is assign three ports: a ring port, a validation port, and
 a user port. These ports are never unassigned. It then
 determines all system names, sorts them, and begins attempting to
 connect to an already existing ring starting with the next system
 (in the sorted list). Should it be the first Ring process, it
 will eventually connect to itself and establish the initial
 degenerate ring. Validation of that connection proceeds as fol−
 lows:

 − 2 −

 Ring User’s Guide

 When a Ring process detects a connection request to its ring
 port, it accepts it provisionally and then attempts to validate
 it.

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−−−−−−−−−−−−−−| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | | | |
 −−−−−−−−−−−− −−−−−−−−−−−−
 ^ |
 | |
 | |
 −−−−−−−−

 1. The new Ring process makes a connection request.

 The Ring process makes a connection request to the validation
 port on the system from which the ring connection was received.
 When that connection is accepted, it generates a random number
 password and transmits it to the validation circuit.

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−−−−−−−−−−−−−−| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | |−−−−−password−−−−>| |
 −−−−−−−−−−−− −−−−−−−−−−−−
 ^ |
 | |
 | |
 −−−−−−−−

 2. The validation password is transmitted.

 If the ring connection is indeed valid, then the validation con−
 nection is to the same process that issued the ring connection.
 The password is then received and retransmitted to the ring cir−
 cuit.

 − 3 −

 Ring User’s Guide

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−password−−−−−| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | |−−−−−−−−−−−−−−−−−>| |
 −−−−−−−−−−−− −−−−−−−−−−−−
 ^ |
 | |
 | |
 −−−−−−−−

 3. The response password is retransmitted.

 The Ring process that is validating the connection receives that
 password on the circuit that is being validated, compares it with
 the password that was transmitted, and validates the circuit.

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−−−−−−−−−−−−−−| |
 | | | |
 | GT.A |−−−−−−−−−−−−−−−−−>| GT.B |
 | | | |
 | | | |
 −−−−−−−−−−−− −−−−−−−−−−−−

 4. The new ring connections are established.

 If the ring connection is from a pretender, then the validation
 connection is to the actual Ring process on that system, the
 pretender cannot receive the password, and the ring connection is
 not validated.

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−−−−−−−−−−−−−−| |
 | | | |
 | GT.A |−−−−−−−−−−−−−−−−−>| GT.B |
 | | | |
 | |−−−−−password−−−−>| |
 −−−−−−−−−−−− −−−−−−−−−−−−
 ^
 | −−−−−−−−−−−−
 −−−−−−−−−−−−−−−−−−−−−−−−| |
 | |
 | GT.B |
 | |
 | |
 −−−−−−−−−−−−

 5. The false Ring process cannot receive the password.

 When the actual Ring process receives the password, it transmits
 it through the already validated ring circuits, and when the

 − 4 −

 Ring User’s Guide

 validating process receives it from that circuit (and not the
 circuit being validated) it knows that the connection attempt is
 not valid and clears the connection.

 −−−−−−−−−−−− −−−−−−−−−−−−
 | |<−−−−password−−−−−| |
 | | | |
 | GT.A |−−−−−−−−−−−−−−−−−>| GT.B |
 | | | |
 | |−−−−−−−−−−−−−−−−−>| |
 −−−−−−−−−−−− −−−−−−−−−−−−
 ^
 | −−−−−−−−−−−−
 −−−−−−−−−−−−−−−−−−−−−−−−| |
 | |
 | GT.B |
 | |
 | |
 −−−−−−−−−−−−

 6. The password is received from the existing ring.

 User Connections

 When a user connection is received, the Ring process must
 determine the user name and process id of the process making the
 connection request in order to ensure the validity of any
 requests that the process may make. It is not good enough to
 have the user process transmit this information since that
 process could easily fabricate it. The ability to identify the
 user process hinges on the following ideas: it is possible to
 determine the virtual circuit numbers of all allocated virtual
 circuits open on a system, user connections must be from the same
 system as the Ring process that they are connected to, and user
 connections are accepted and identified one at a time.

 To identify a user connection, the Ring process obtains a
 list of all open virtual circuits on the current system. This
 list is scanned to find all circuits that are to the user port,
 which have been accepted, and which are not the process id of the
 Ring process. The list of existing user connections is then
 scanned, and the corresponding entries in the list of virtual
 circuits are marked as known. Since user connections are accep−
 ted one at a time, there will be exactly one virtual circuit that
 was not marked as known, and that is the virtual circuit
 corresponding to the newly accepted user connection. The user
 name of that process is determined using a system call, and the
 connection is added to the list of known virtual circuits.

 − 5 −

 Ring User’s Guide

 Ring Requests

 All operations performed by Ring are initiated by request
 packets which are passed around the ring connections. Each pac−
 ket has the same size and consists of two parts: a fixed
 identification header, and a variable argument array. The header
 consists of a flag that indicates whether the packet is a request
 or a response, source and destination addresses, a count of the
 number of Ring processes that have seen the packet, a process id
 and unique identifier to indicate what process created the pac−
 ket, and the Ring request command/status words. The format of
 the variable argument array depends of the value of the command
 word in the packet header.

 Ring requests are passed around the ring, from receive con−
 nection to transmit connection, until they are received by the
 system to which they are addressed or the number of Ring proces−
 ses that have seen them is greater than the number of systems in
 the ring. A packet destination with all bits set (−1) is
 received by all Ring processes in the ring. When the request
 packet is performed or destroyed, it is transformed into a
 response packet which is transmitted to the system that created
 the request.

 Internal Requests

 When a new ring is established, as well as when an existing
 ring is changed because one or more systems have come up or gone
 down, a special request packet is transmitted around the ring.
 This packet, the INITIALIZE request, has two purposes. First, it
 is used to count the number of Ring processes that are actually
 in the ring. PRIMENET provides a status call which returns the
 number of systems configured in the network, but they may not all
 be running Ring. As the INITIALIZE packet goes around the ring,
 each Ring process increments a counter in the packet. When the
 request arrives back at the Ring process that created it, an
 INITIALIZE response packet is created which contains the number
 of systems that saw the original request. This response packet
 is then used by each Ring process to set the actual number of
 systems in the ring. The second purpose of the INITIALIZE
 request is to determine who is to set the time of day on all
 systems initially. Normally, the time of day is set by the first
 (in lexically sorted order) system that is running Ring.
 However, should that system be the one that caused the ring to
 change (i.e. it just entered the ring), it is assumed not to
 know the correct time, and the next system which was in the ring
 previously should set the time. As the INITIALIZE response is
 transmitted around the ring, a state variable is transmitted
 along with it. This variable starts as 0, when the system that
 is supposed to set the time of day sees the packet, it sets the
 state to 1 if it just entered the ring and does not know the time
 of day, and 2 if it does know the time of day. If the state is
 1, then the next system that does know the time of day sets the
 state to 2 and then sets the time of day on all systems.

 − 6 −

 Ring User’s Guide

 Each hour on the hour, the Ring process that is first in
 lexically sorted order transmits the current time of day to all
 other systems in the ring. Although this is not necessary for
 orderly system operation, it does make sense for each processor
 in a distributed system to have the same time of day.

 User Requests

 Currently, four kinds of user requests are implemented by
 Ring: a BROADCAST request which allows a PRIMOS message to be
 sent on all systems in the ring, an EXECUTE request which starts
 up a SWT phantom on a particular system in the ring, a TERMINATE
 request which allows one or all of the Ring processes to be stop−
 ped and re−executed (so that a new version of the Ring process
 may be brought up), and a SETTIME request that allows the time to
 be reset on all systems in the ring.

 To make a user request, a user process first connects to the
 user port of the Ring process which is executing on its system.
 When the connection has been accepted, the user transmits the
 request and begins waiting for a response. When the Ring process
 has received the request and checked its validity, it transmits a
 status code to indicate that the operation has been initiated or
 that an error has been encountered back to the user process. The
 user process receives this status code, and if it indicates that
 the request has been initiated begins waiting for a completion
 response. When the Ring request has been completed (successfully
 or not), the Ring process will transmit a final status code to
 the user process. The user process then examines the returned
 status and clears the connection.

 BROADCAST. The BROADCAST user request consists of three
 parts: the BROADCAST request word, a three word user name of the
 user who is to receive the message (zero if all users), and a
 Software Tools string which is to be broadcast.

 EXECUTE. The EXECUTE user request also consists of three
 parts: the EXECUTE request word, a three word system name of the
 system on which the phantom is to be executed (zero if all
 systems), and a Software Tools string which is the command line
 to be executed.

 TERMINATE. The TERMINATE user request consists of two
 parts: the TERMINATE request word, and a three word system name
 of the system which is to be terminated (zero if all systems).
 Because it is impossible to determine when a transmitted message
 has been received, the TERMINATE request actually occurs in two
 stages. After the user’s TERMINATE request has been processed
 and the status response has been transmitted, an internal request
 (SHUTDOWN) is transmitted around the ring. It is this request
 which actually causes the selected Ring process(es) to terminate,
 thus allowing time for the user process to receive its status.

 SETTIME. The SETTIME user request consists of two parts:
 the SETTIME request word, and a five word block which contains

 − 7 −

 Ring User’s Guide

 the month, day, year, hour, and minute to which the current time
 is to be set.

 Future Requests

 Ring is intended to handle simple requests by itself. A
 simple request is defined as one which would require no more than
 one request and response packet to perform. In the future, it is
 envisioned that complex requests such as remote execution of com−
 mands and remote file handling will be performed by a helper
 phantom which the Ring process will create and which will then be
 connected directly to the requesting user. Ring can also be used
 to moderate interprocess communication by allocating ports and
 controlling access to those ports. This will allow two or more
 user processes to communicate without requiring fixed port num−
 bers which may be used by other user processes with which com−
 munication is not desired.

 The major drawback with this scheme of creating helper
 phantoms is the relatively large amount of time required to
 create a phantom. In fact, when PRIME itself decided to replace
 the old FAM (the File Access Manager) with a new version which
 uses SLAVE$ helper phantoms, it was necessary to special−case the
 SLAVE$ phantoms so that they would start up more quickly.

 PRIMENET Problems

 During the development of Ring, only one significant error
 was found, and that was in the PRIMENET documentation. However,
 quite a bit of code in Ring is devoted to determining information
 that should most likely be available directly from the PRIMENET
 subroutines. Several enhancements to the existing routines come
 easily to mind.

 Errors

 The only problem with PRIMENET that may be classified as an
 error is in the documentation for the message transmission
 subroutine X$TRAN. The following information about the return
 status codes (taken directly from the PRIMENET manual) is not
 correct:

 The codes that may be returned in status by a call to
 X$TRAN appear below:

 XS$CMP The transmit is complete. The message has
 been copied out of the sender’s buffer and
 transmission is initiated. (A transmit
 status of complete means only that PRIMENET

 − 8 −

 Ring User’s Guide

 will attempt to deliver the message.
 Applications requiring assured delivery must
 implement their own end to end ack−
 nowledgement.)

 XS$IP The transmit is in progress. status will be
 further updated by the completion or failure
 of the operation.

 XS$BVC The calling process does not control the
 virtual circuit specified in vcid.

 XS$MEM Temporary PRIMENET congestion prevents the
 acceptance of the request at this time.

 XS$MAX The maximum number of transmits simul−
 taneously in progress over a single virtual
 circuit has been exceeded. This request to
 initiate another transmission is denied.

 XS$RST The virtual circuit has been reset. The
 status of this operation is unknown and no
 further attempts will be made to complete it.

 XS$CLR The virtual circuit has been cleared. See
 the virtual circuit status array for the
 clearing cause.

 XS$ILL The transmit operation is illegal because a
 circuit connection request or a clear request
 is pending. This is the result of attempting
 transmission over an "almost−open" or
 "almost−closed" circuit.

 The description of status codes XSCMP, XSMEM, and XS$MAX
 seems to indicate that once a transmit operation is in progress
 it must either complete or return an error code. In fact, this
 is not the case. If too many transmit requests have been issued
 on a virtual circuit, the status code remains XS$IP until enough
 receives have been performed to allow the transmit to take place.
 In its example programs, the PRIMENET manual gives a subroutine
 which is called after a transmit to wait until the transmit
 status is not "in progress". In ratfor, this subroutine is
 essentially:

 subroutine complete(status)
 integer status

 − 9 −

 Ring User’s Guide

 while (status == XS$IP)
 call x$wait(1)
 return
 end

 The real difficulty with the documentation is with an
 application like Ring, when only one system is in the ring. In
 this case the ring is a loop back to that one system, and the
 Ring process is talking to itself. If the wait loop given above
 is used in this case, the Ring process will never receive any of
 the transmissions that have been made, and space will never
 become available for the new transmit. In other words, the
 status will stay XS$IP forever.

 Enhancements

 X$GVVC. The PRIMENET subroutine call X$GVVC may be used to
 pass control of a virtual circuit to another process. This would
 be very useful to Ring when a complex user request requires that
 a helper process be phantomed, except for the fact that it can
 only be used to pass a connection to another process on the same
 system. To be truly useful, it must be possible to pass a con−
 nection to any system.

 X$STAT. The X$STAT PRIMENET subroutine can be used to
 determine virtual circuit information about circuits only on the
 current system. It would be extremely useful if it could return
 information about circuits on any system. Then it could return
 the system name and virtual circuit id of the other end of a con−
 nection, and it would be possible to find the user name of the
 owner of the other end of a virtual circuit easily.

 X$TRAN. The X$TRAN subroutine call is documented as not
 informing the transmitting process that the reception has been
 completed. This is extremely annoying because it means that it
 is impossible to transmit a response code to a user process, wait
 until that process has received the code, and then clear the
 virtual circuit. Saying that "applications requiring assured
 delivery must implement their own end−to−end acknowledgement" is
 certainly the easy way out, but it leaves much to be desired.
 More importantly, it assumes that the processes on both ends of a
 circuit are intelligent enough to perform an end−to−end ack−
 nowledgement. Ring cannot assume that the user process is going
 to acknowledge that it has received the response since the user
 program is not under its control. Neither can Ring allow a user
 connection to remain long past the completion of the user request
 if no acknowledgement takes place. Ring solves the problem by
 keeping the time of day when the last activity on a circuit took
 place, and clearing a circuit when it has been inactive for a
 sufficiently long period of time.

 − 10 −

 Ring User’s Guide

 Bibliography

 PRIMENET Guide, DOC3710−190, Second Edition, by Peter
 A. Neilson, Prime Computer, Incorporated, 500 Old Con−
 necticut Path, Framingham, Massachusetts 01701.

 Software Tools Subsystem User’s Guide, April 1982, by
 T. Allen Akin, Terrell L. Countryman, Perry B. Flinn,
 Daniel H. Forsyth, Jr., Jeanette T. Myers, and Peter N.
 Wan, School of Information and Computer Science, Geor−
 gia Institute of Technology, Atlanta, Georgia 30332.

 − 11 −

 Ring User’s Guide

 Appendix

 The following is a trace of Ring operating on two systems.
 The text which is boldfaced is commentary, not part of the trace
 itself.

 System GT.A System GT.B

 Ring is brought up on GT.A

 Wednesday, April 6, 1983 3:53 PM

 Attempting connection to GT.B
 Attempting connection to GT.C
 Attempting connection to GT.D
 Attempting connection to GT.E
 Attempting connection to GT.A
 Connection received from GT.A
 Connection received from GT.A
 Validated transmission to GT.A
 Validated reception from GT.A
 Degenerate ring initialized

 The ring is initialized

 Ring is brought up on GT.B

 Wednesday, April 6, 1983 3:54 PM

 Attempting connection to GT.C
 Attempting connection to GT.D
 Attempting connection to GT.E
 Attempting connection to GT.A

 GT.A receives a connection

 Connection received from GT.B

 GT.B receives the validation
 connection request

 Connection received from GT.A
 Validated transmission to GT.A

 New connection validated

 New connection validated
 Previous connection cleared

 − 12 −

 Ring User’s Guide

 Validated reception from GT.B
 Attempting connection to GT.B

 GT.B receives a connection

 Connection received from GT.A

 GT.A receives a validation
 connection request

 Connection received from GT.B
 Validated transmission to GT.B

 New connection validated

 New connection validated
 INITIALIZE request created

 Validated reception from GT.A
 Transmitted INITIALIZE request

 INITIALIZE request received

 Created INITIALIZE response

 Initial time set

 Transmitted SYNCHRONIZE request at 15:55 on 04/06/83

 Synchronized at 15:55 on 04/06/83

 New ring is initialized

 User issues a BROADCAST

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 Roy is not logged on

 *** Unknown addressee.
 Message broadcast to user ROY

 this is a test.
 Message broadcast to user ROY

 User issues EXECUTE on ALL

 − 13 −

 Ring User’s Guide

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 Phantom (58) created for user ROY

 Phantom (63) created for user ROY

 Time is set on the hour

 Transmitted SYNCHRONIZE request at 16:00 on 04/06/83

 Synchronized at 16:00 on 04/06/83

 User issues EXECUTE on GT.A

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 Phantom (59) created for user ROY

 4 users issue BROADCASTs

 Connection received from GT.B
 Connection received from ROY (59)
 Connection received from GT.B
 Connection received from ROY (56)
 Connection received from GT.B
 Connection received from ROY (63)
 User request made for ROY (59)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 4
 Message broadcast to user ROY
 User request made for ROY (63)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 2
 Message broadcast to user ROY
 User request made for ROY (56)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 3
 Message broadcast to user ROY
 Connection received from GT.B

 − 14 −

 Ring User’s Guide

 Connection received from ROY (61)
 User request made for ROY (61)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 1
 Message broadcast to user ROY

 User issues TERMINATE

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 TERMINATE request received

 User receives the response

 TERMINATE request received
 SHUTDOWN request transmitted

 Ring SHUTDOWN initiated
 Shutdown complete

 Ring SHUTDOWN initiated
 Shutdown complete

 − 15 −

 TABLE OF CONTENTS

 Ring

 Introduction ... 1

 Validation ... 2
 Ring Connections 2
 User Connections 5

 Ring Requests .. 6
 Internal Requests 6
 User Requests ... 7
 BROADCAST .. 7
 EXECUTE .. 7
 TERMINATE .. 7
 SETTIME .. 7
 Future Requests 8

 PRIMENET Problems .. 8
 Errors .. 8
 Enhancements .. 10
 X$GVVC ... 10
 X$STAT ... 10
 X$TRAN ... 10

 Bibliography ... 11

 Appendix ... 12

 − iii −

 User’s Guide for the
 Georgia Tech C Compiler

 Second Edition

 Daniel H. Forsyth, Jr.
 Edward J. Hunt
 Jeanette T. Myers
 Arnold D. Robbins

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 October, 1984

 Foreword

 The Georgia Tech C compiler and run time support library
 provide a C programming environment on Prime computer systems.
 The Georgia Tech C Compiler runs under and requires the Georgia
 Tech Software Tools Subsystem, Version 9 or later. Both run on
 PRIME 400, 500 and 50−series computers.

 This guide documents the second version of the Georgia Tech
 C compiler and run time library which is released with Version 9
 of the Software Tools Subsystem. The eight chapters of this
 guide

 1) explain the use of the compiler,
 2) describe the machine−dependent features of the
 implementation,
 3) describe the compile time environment provided,
 4) detail the behavior of the run time package,
 5) enumerate problems of conversion from other systems,
 6) document known compiler bugs and shortcomings,
 7) provide some technical information on the implementation
 and performane of the C compiler, and
 8) outline actions necessary to manage the C system.

 A complete description of C can be found in The C
 Programming Language by Brian W. Kernighan and Dennis M.
 Ritchie (Prentice−Hall, 1978). Further information on individual
 commands in the C system can be obtained from the Software Tools
 Subsystem Reference Manual, accessible both on paper and through
 the Subsystem ’help’ command. The C run time library is only
 documented here. There are no ’help’ entries for the individual
 subroutines.

 Wherever a routine or facility has been changed from the
 first release of the C compiler, it will be explicitly noted as
 such.

 It is to be noted that wherever it appears in this document,
 the term "Unix" is a trademark of AT&T Bell Laboratories, Inc.

 − vi −

 C User’s Guide

 Getting Started

 Prerequisites

 We assume that you are already familiar with the Subsystem;
 that you can create, delete, edit and list files; redirect input
 and output; obtain on−line documentation, etc. We also assume
 that you are familiar with the C programming language. If you
 are not, you should examine the Software Tools Subsystem User’s
 Guide and The C Programming Language by Kernighan and Ritchie
 before continuing in this guide.

 Throughout this guide, we boldface user input in our exam−
 ples, as is the convention in the Software Tools Subsystem User’s
 Guide.

 Calling the C Compiler

 There are several commands that call the C compiler:

 cc − compile a C program
 ccl − compile and load a C program
 ucc − "Unix−like" C compile and load
 compile − general purpose compiler interlude

 We follow with a brief description of each. For detailed
 information and examples refer to the Reference Manual entries
 for each command, e.g.:

] help cc

 Cc −−− compile a C program

 ’Cc’ behaves much like the other Subsystem compiler inter−
 faces. It is a program that takes a file whose name ends in ".c"
 and calls the programs necessary to convert it into a relocatable
 object program in a file whose name ends in ".b". ’Cc’ calls two
 major programs: the compiler front end ’c1’, and the code
 generator ’vcg’. If you have no compile−time errors in your
 program, you will not see any messages at all from either
 program. ’Cc’ automatically "includes" the file "=cdefs=" (which
 is "=incl=/swt_def.c.i") containing macros and external data
 declarations for the C Standard I/O Library and for interfacing
 with the Subsystem.

 − 1 −

 C User’s Guide

 Ccl −−− compile and load a C program

 ’Ccl’ compiles a ".c" file in the same way as ’cc’; it then
 calls ’ld’, the Subsystem loader interface, to produce an
 executable program in a file with no suffix. Unfortunately, the
 Prime loader is somewhat noisy, so you receive a good bit of out−
 put during the execution of ’ld’.

 Ucc −−− compile and load a C program

 ’Ucc’ is a "Unix−style" C compiler and loader. It is not,
 however, exactly like Unix’s ’cc’ or any other known Unix
 program! ’Ucc’ recognizes file naming conventions for Subsystem
 supported languages and will use the appropriate preprocessor
 and/or compiler to process non−C files. Consequently, it can be
 used to compile and load several files of different languages
 into an executable program, as long as the main program is writ−
 ten in C. ’Ucc’ now depends on the new ’compile’ program to do
 most of its work. It is just smart enough to arrange to call
 ’compile’ properly; it no longer knows about all the details of
 the C compiler, or how to go about compiling other languages.

 Compile −−− general purpose compile and load

 ’Compile’ is a general purpose compiler interlude. It knows
 about the Subsystem naming convention for the more popular
 languages available under SWT and Primos. It will arrange to
 call the proper compiler for each source file, based on the
 suffix. You may tell it to pass options on to each different
 compiler or preprocessor, and also to tell it what is the "main"
 language, in order for it to load any necessary libraries and/or
 start−off routines. ’Ucc’ now just rearranges its arguments, and
 calls ’compile’.

 C Program Development −−− An Example

 For this example, the file "inout.c" contains the following
 C program:

 main () /* copy input to output until EOF */
 {
 int c;

 while ((c = getchar()) != EOF)
 putchar (c);
 }

 We can compile and load (i.e., link−edit) "inout" with the com−
 mand

 − 2 −

 C User’s Guide

] ccl inout.c

 Consistent with Subsystem convention, ’ccl’ places the executable
 version of "inout.c" in a file named "inout". You can execute
 "inout" as follows:

] inout
 a
 a
 echo me if you dare
 echo me if you dare
 <control−c>
]

 − 3 −

 C User’s Guide

 Features of Georgia Tech C

 Standard Implemented

 The Georgia Tech C compiler is based on the specifications
 contained in The C Programming Language by Brian W. Kernighan and
 Dennis M. Ritchie, Prentice−Hall, 1978.

 Additional Features

 The Georgia Tech C compiler provides the following
 extensions to C:

 1. Unions may be initialized. The first type entry in the union
 will be used to determine the format of the data. For exam−
 ple, "union {int a; double b;} x = 1;" would initialize "x"
 as an int, not a double.

 2. Except for external names, all characters in all names are
 significant. External names are up to 8 characters in
 length, with no case significance. To allow access to Primos
 system calls, the dollar sign ("$") is also a legal character
 in identifiers. The external names in the object code
 produced by the compiler can be up to 32 characters long; it
 is the SEG loader that restricts their lengths to 8 charac−
 ters. The ’bind’ EPF loader does pay attention to the full
 32 character names.

 3. The late Unix Version 7 enhancements, structure assignment
 and "enum" types, are implemented (but not thoroughly
 tested).

 4. C functions can call Fortran, PL/1, etc. routines, and vice
 versa. C uses the same calling sequence as all other Prime
 supported languages. SHORTCALL procedure calls (using the
 JSXB instruction) are not supported by Georgia Tech C.

 5. The Ratfor/Algol68 radix notation may be used to specify
 integer constants. In addition to using a leading 0 for
 specifying octal and 0x for hexadecimal, Georgia Tech C
 recognizes the Ratfor radix syntax for integer constants up
 to base 36. (For instance, "7r123" is 123 base 7, i.e. 66.)

 6. Single quotes may be used to specify packed character strings
 as in Fortran. The Georgia Tech C compiler treats a single
 character enclosed in apostrophes as a character constant,
 while more than one character enclosed in apostrophes is
 considered a pointer to an array of integers containing a
 packed "hollerith" character constant.

 − 4 −

 C User’s Guide

 7. The data type "long unsigned" is supported, giving access to
 32−bit unsigned numbers.

 8. Initialization of automatic aggregates is supported. (The
 code generator is not particularly smart about it, though, so
 initializing huge automatic arrays is incredibly space−
 inefficient.)

 9. Macro definitions ("#define"s) can be specified on the com−
 mand line using the "−D" compiler option.

 10. Directories to be searched for include files may be specified
 on the command line using the "−I" compiler option.

 11. The special macros "__FILE__" and "__LINE__" are supported to
 provide access to the source file name and source line number
 (as a string constant and an integer constant), respectively.

 − 5 −

 C User’s Guide

 Compile Time Facilities

 Include File Organization

 The C compiler package comes with several standard header
 files which perform a number of functions for the C programmer.
 All include files are kept in the directory =incl=.

 To maintain compatibility with the previous release of the C
 compiler, the file "=cdefs=" which the C compiler automatically
 includes (unless you use the "−f" option) is still
 "=incl=/swt_def.c.i". This is also in accordance with the Sub−
 system naming convention for other "standard" include files.
 However, all other C include files end in ".h" (for "header"),
 which is the Unix convention (this should make porting code a
 little easier as well).

 The "=cdefs=" file itself has been considerably reorganized
 for the second release. This organization is discussed below.

 =incl=/swt_def.c.i

 This file now contains very few actual definitions.
 Instead, it #includes separate files to provide the same func−
 tionality as it previously did.

 We have reorganized the include files to both increase the
 available functionality, and to separate the features into
 appropriate, self−contained, "modules". So that previous
 programs which depend on "=cdefs=" to contain everything need
 from breaking, "=cdefs=" includes the files it needs. All the
 include files have been organized so that they may be included
 more than once. The definitions will only take effect the first
 time.

 The following identifiers are defined in "=cdefs=" for use
 in determining what kind of hardware and software environment the
 program will run in. This is useful for writing code designed to
 be ported to more than one computing system. The identifiers
 are:

 #define gtswt 1 /* using Software Tools */
 #define primos 1 /* os is primos */
 #define prime 1 /* hardware is prime */
 #define pr1me 1 /* another name for prime */

 We have #defined the identifier "gtswt" instead of just plain
 "swt", since "swt" is the name of the routine you have to call in
 order to exit to the Subsystem.

 − 6 −

 C User’s Guide

 You would use these identifiers for tailoring your code to
 different environments. For instance

 #ifdef gtswt
 /* code to do nifty stuff for Software Tools */
 #else
 #ifdef unix
 /* code to do nifty stuff for Unix */
 #else
 /* code to do nifty stuff in a generic environment */
 #endif
 #endif

 "=cdefs=" then includes the following four files (discussed
 below).

 #include "=incl=/stdio.h"
 #include "=incl=/ctype.h"
 #include "=incl=/swt.h"
 #include "=incl=/ascii.h"

 Following the discussion of these four main files, we briefly
 discribe the other include files which are available.

 =incl=/stdio.h

 This file contains the declarations and definitions needed
 to use the C Standard I/O Library.

 The following functions, macros, and symbolic constants are
 available for the programmer to use. (There are others, whose
 names begin with ’_’, which the programmer should not need to
 use, so they aren’t discussed here).

 typedef ... FILE; The standard type FILE.

 /* declaration of functions */
 extern long ftell();
 extern FILE *fopen(), *fdopen(), *freopen(), *popen();
 extern char *fgets(), *gets();
 extern char *strcat(), *strcpy(), *strncpy(), *strpbrk(), *strtok();
 extern char *strchr(), *strrchr(), *index(), *rindex();

 stdin Standard Input.
 stdout Standard Output.
 stderr Standard Error Output (Standard Output 3).
 stdin1 Subsystem name for stdin.
 stdout1 Subsystem name for stdout.
 stdin2 Standard Input Port 2.
 stdout2 Standard Output Port 2.
 stdin3 Standard Input Port 3.
 stdout3 Standard Output Port 3 (Error Output).
 tty File pointer which is always the terminal.
 errin Another name for stdin3.

 − 7 −

 C User’s Guide

 errout Subsystem name for stderr.

 EOF End of file indicator (not a valid character).
 NULL The empty pointer.
 BUFSIZ A convenient buffer size (used a lot on Unix).
 TRUE Represents logical true.
 FALSE Represents logical false.

 L_cuserid The length of a string to hold a user id.
 L_ctermid The length of a string to hold a terminal name.
 L_tmpnam The length of a string to hold a temporary file name.
 P_tmpdir The (string) name of a directory for temporary files.

 getchar() Get a character from stdin.
 putchar(ch) Put a character on stdout.

 feof(fp) Did EOF happen on this file?
 ferror(fp) Did an error occur on this file?
 clearerr(fp) Clear all error flags for this file.
 fileno(fp) Give the SWT file descriptor for the FILE pointer.

 Any functions which don’t return int, and which are not
 declared in "=incl=/stdio.h", should be declared before they’re
 used. (The type of each function in the C library is given in
 the chapter on the run time environment, below.)

 =incl=/ctype.h

 This file defines the character testing macros discussed in
 the chapter on the run time environment. These macros are very
 useful, and are often faster than writing an explicit test (e.g.
 islower(c) should be faster than (c >= ’a’ && c <= ’z’)). The
 macros have been rewritten to only evaluate their argument once,
 so that they won’t bite you if the argument has side effects
 (.e.g. islower(*c++)).

 =incl=/swt.h

 This file provides most of the functionality that the Ratfor
 programmer obtains from "=incl=/swt_def.r.i". Some of the Ratfor
 specific declarations have been deleted (for example, the
 "dynamic memory" routines). The programmer is referred to Appen−
 dix D of the User’s Guide for the Ratfor Preprocessor and the
 "swt.h" file itself for details.

 One thing that may need clarifying: The SET_OF_?* macros
 are used in the following way:

 − 8 −

 C User’s Guide

 .
 .
 switch (c = getchar()) {
 case SET_OF_UPPER_CASE:
 /* stuff for upper case */
 break;

 case SET_OF_LOWER_CASE:
 /* stuff for lower case */
 break;

 case SET_OF_DIGITS:
 /* stuff for digits */
 break;

 default:
 /* stuff for default */
 break;
 }
 .
 .

 In other words, you supply the leading case and the trailing
 colon; the macro supplies everything else.

 =incl=/ascii.h

 This file contains definitions for the ASCII mnemonics, as
 well as for the control characters. E.g. Both BEL and CTRL_G
 are defined as octal 0207. The synonyms BACKSPACE, TAB, BELL,
 RHT, and RUBOUT for other characters are also defined.

 =incl=/assert.h

 This file defines the ’assert’ macro. It must be
 specifically included in order to use it. See the chapter on the
 run time environment for what the ’assert’ macro does.

 =incl=/debug.h

 This file declares a macro "debug" which is useful for put−
 ting debugging code into your programs. For instance:

 #include <debug.h>
 ...
 debug (fprintf (stderr, "i == %d\n", i));
 /* note the balanced parentheses */
 ...

 If the symbol "DEBUG" has been defined before <debug.h> is
 included, then whatever occurs as an argument to the "debug"
 macro will be placed into the source code. Otherwise, "debug"
 becomes a null macro. The easiest way to turn debugging on is to

 − 9 −

 C User’s Guide

 put "debug" statements in your code, and then do a "−DDEBUG" on
 the compiler command line. For larger blocks of code, you can do

 #ifdef DEBUG
 /*
 * a lot of debugging code
 */
 #endif

 =incl=/keys.h

 This file declares the symbolic keys for the Primos file
 system. It is the analogue of "=incl=/keys.r.i".

 =incl=/lib_def.h

 This file is analogous to the Ratfor include file
 "=incl=/lib_def.r.i". It contains symbolic constants and macros
 which are useful for dealing with the low level Software Tools
 Library routines.

 =incl=/math.h

 This file contains declarations for all the mathematical
 routines in the C library. These routines all return double.

 =incl=/memory.h

 This file contains declarations of mem?* functions. These
 functions are similar to the str?* functions, but work on
 arbitrary areas of memory, and do not care about the zero word,
 ’\0’. This file should be included before using the functions,
 although you can always just declare each function before using
 it.

 =incl=/setjmp.h

 This file must be included if you intend to use the ’setjmp’
 and ’longjmp’ non−local goto functions.

 =incl=/swt_com.h

 This file contains the necessary #defines and declarations
 for accessing the Software Tools common blocks from a C program.
 It has not been extensively tested. See the file for more
 details.

 − 10 −

 C User’s Guide

 =incl=/varargs.h

 This file contains definitions which allow you to portably
 write functions which expect a variable number of arguments. The
 macros are discussed below, in the chapter dealing with the run
 time environment. They have not been extensively tested, but do
 seem to work.

 Loading C Programs For Bare Primos

 Several of the routines in the C Library depend on the
 shared Subsystem libraries to do some of their work.

 In order for you to write C programs to run under bare
 Primos, we have provided a second run time library with alternate
 versions of these few subroutines, as well as a second C start
 off routine. Most routines perform the same under both the Sub−
 system and bare Primos. Those few which behave differently under
 bare Primos are detailed in the chapter on run time facilities.
 In particular, they always return the value that indicates an
 error has occurred.

 The alternate C start off routine and run time library are
 in the files =lib=/nc$main and =lib=/nciolib, respectively.
 Since loading programs for bare Primos is not simple, ’ld’ does
 not have an option for loading C programs for running without the
 Subsystem. You must do it yourself, by hand.

 To load a C program for use with bare Primos, follow this
 procedure:

 1) Load the file =lib=/nc$main. This is the alternate
 startoff routine, which does some extra initialization.

 2) Load your C binaries.

 3) Load =lib=/nciolib. This library contains versions of
 the few routines which act differently under bare
 Primos. This library also contains a special version
 of ’getarg’, to allow ’argc’ and ’argv’ to work
 properly. The environment pointer, ’envp’ (see below),
 will be set to NULL when a program is loaded for run−
 ning under bare Primos.

 4) Load =lib=/ciolib. This contains the rest of the C run
 time library.

 5) Load =lib=/vswtmath, if your C program uses the C math
 routines.

 − 11 −

 C User’s Guide

 6) Load =lib=/nvswtlib. This is the non−shared version of
 the Subystem library, which does most of the real work.

 7) Load any system libraries, e.g. the Fortran library.

 You should actually be able to use ’ld’ to load your
 program, following this outline:

] ld −dnu −l nc$main <binaries> −l nciolib −l ciolib _
 [−l vswtmath] −l nvswtlb −t −m −o <executable_file>

 You will probably not have too many programs to be run under
 bare Primos, but we have provided for this possibility.

 − 12 −

 C User’s Guide

 Run Time Environment

 Calling Primos and Subsystem Routines

 C programs have access to all Primos system and library
 subroutines and Software Tools library routines. Georgia Tech C
 follows Prime’s established conventions for parameter passing,
 thus allowing C routines to call or be called by programs written
 in other high−level languages or in assembly language. For exam−
 ple the following C program uses the Ratfor subroutine ’putch’
 for output:

 main () /* copy input to output until EOF */
 {
 int c;

 while ((c = getchar()) != EOF)
 putch (c, STDOUT);
 }

 ’Ccl’ and ’ucc’ both use the Subsystem loader interface ’ld’.
 When loading C programs, ’ld’ automatically includes the C Stan−
 dard I/O Library, "ciolib", the SWT math library, "vswtmath", the
 shared shell library, "vshlib", and the shared Subsystem I/O and
 utility library "vswtlb". However, if another library is
 required, e.g. one of your own making, "mylib", then the follow−
 ing command must be used:

] ccl <program_name> −l mylib

 The Main Program

 All complete C programs must have a function named ’main’,
 which is where execution will begin. The ’main’ function in
 Georgia Tech C Programs may have zero, one, two, or three
 arguments. If there are arguments, the first is an integer,
 which indicates the number of command line arguments there were
 (including the command name). The second is a pointer to an
 array of character strings containing the text of the arguments.
 The final element in the array will be equal to NULL. The third
 argument is a similar pointer to an array of character strings
 containing a list of name=value pairs. These are your shell
 variables and their values. (This is just like the Unix
 environment pointer, although shell variables aren’t as heavily
 used under Software Tools.) Try this sample program (call it
 junk.c):

 − 13 −

 C User’s Guide

 main (argc, argv, envp)
 int argc; /* argument count */
 char **argv; /* argument values */
 char **envp; /* environment pointer */
 {
 int i;

 for (i = 0; i < argc; i++)
 printf ("%s\n", argv[i]);

 for (i = 0; envp[i] != NULL; i++)
 printf ("%s\n", envp[i]);
 }

 Compile and run it with:

] ccl junk.c
] junk foo bar baz

 You should see something like:

 junk
 foo
 bar
 baz
 HOME=/uc/arnold
 _prt_dest=LPB
 _search_rule=^int,^var,&,=ubin=/&,=lbin=/&,=bin=/&

 The program printed its arguments, and then the names and values
 of any shell variables you may have set.

 C Run Time Library

 The Georgia Tech C Run Time Library, "ciolib", is a version
 of the C Standard I/O library. It is automatically loaded with C
 programs by ’ccl’ and ’ucc’. This section describes the routines
 available in "ciolib".

 We have attempted to provide almost all the routines in Sec−
 tion 3 of the UNIX User’s Manual, for Release 1 of UNIX System V.
 In particular, "ciolib" contains all of the routines marked "3S"
 (the Standard I/O Library), most of the routines marked "3M" (the
 Math library), as many as possible of the routines marked "3C"
 (routines automatically loaded with every C compilation), and
 even some of the routines marked "3X" (routines from specialized
 libraries). In addition, there are routines to emulate some of
 the more useful (and easy to implement) Unix system calls. These
 should help when porting programs originally written to run under
 Unix. Finally, there are a few routines which are not provided
 under Unix at all, but which allow access to certain features of
 Primos, or which are just generally useful.

 − 14 −

 C User’s Guide

 NOTE: The calling sequences of two routines, ’c$ctov’ and
 ’c$vtoc’, have changed since the first release of the C compiler.
 The original motivation for these routines was that the C end−of−
 string character (’\0’) was different from the Subsystem EOS.
 Since they are now the same, these routines have been brought
 closer in line with the behavior of the other C string routines.
 If you need them the old way, take a look at ’ctov’ and ’vtoc’ in
 section 2 of the Software Tools Subsystem Reference Manual. No
 other routines have been changed in how they are called, although
 the functionality and/or implementation of a routine may have
 changed.

 In the following, NULL denotes the null pointer (defined in
 "=incl=/stdio.h" as "(char *) 0"). Note that, on the Primes,
 ASCII NUL is represented as octal 0200, while ’\0’, the zero
 character, has the octal value 0.

 Finally, remember that "=cdefs=" includes the files
 "=incl=/stdio.h", "=incl=/ctype.h", "=incl=/swt.h", and
 "=incl=/ascii.h", so their contents are automatically available,
 unless you specify the "−f" option.

 UNIX System Calls

 This section describes the routines in "ciolib" which are
 not part of the Standard I/O Library per se, but which emulate
 Unix system calls.

 The Unix i/o system calls operate on integers, called file
 descriptors. Due to the similarity with Software Tools file
 descriptors, these routines usually act as interludes to their
 SWT counterparts, but return the values described in the Unix
 User’s Manual.

 . chdir −−− change directory

 Calling Information:

 int chdir (path)
 char *path

 ’Chdir’ is used to change the current working directory. It
 uses the SWT routine ’getto’ to actually change directory.
 ’Chdir’ returns 0 if it succeeded, −1 if it failed.

 Note that under Primos, if a program does a ’chdir’, you
 will be in the new directory when the program exits, not
 where you were when the program started.

 − 15 −

 C User’s Guide

 . close −−− close an open fd

 Calling Information:

 int close (fd)
 int fd;

 ’Close’ closes a file associated with the file descriptor
 ’fd’ returned by ’creat’ or ’open’. ’Close’ flushes any
 data buffers associated with the file and returns 0 if it
 was successful. If an error occurs, ’close’ returns −1.
 This is not the same as SWT’s ’close’ (it’s a macro), so
 "=incl=/stdio.h" must be included for ’close’ to work as
 described.

 . creat −−− create a file

 Calling Information:

 int creat (name, mode)
 char *name;
 int mode; /* protection mode; not used on Prime */

 ’Creat’ creates and opens the file ’name’ with WRITE access
 and returns a file descriptor. The new file has protection
 keys of "a/" (owner has all permissions). If the file
 ’name’ already exists, ’creat’ opens it for writing and
 truncates it to length 0. An existing file must have either
 "wt/" or "a/" protection keys (owner has both write and
 truncate permission). A return value of −1 indicates that
 the file cannot be created or that an attempt was made to
 ’creat’ an existing file with the wrong protection keys.
 ’Mode’ is ignored in this implementation.

 . open −−− open a file, return a SWT fd

 Calling Information:

 int open (name, mode)
 char *name;
 int mode;

 ’Open’ provides a "Unix−style" call to open a file for read−
 ing and/or writing and returns a file descriptor. ’Mode’ =
 0 specifies read access, 1 specifies write access, and 2
 specifies read/write access. A return value of −1 indicates
 that the file does not exist (as determined by filtst(2)),
 or cannot be opened (access mode does not match protection
 keys, or no free file descriptors are available) or that
 ’mode’ was invalid. The C ’open’ is not the same as SWT’s
 ’open’ (it’s a macro), and requires that "=incl=/stdio.h" be
 included to function correctly.

 − 16 −

 C User’s Guide

 . exit −−− exit from this program

 Calling Information:

 int exit (exit_val)
 int exit_val; /* not used on the Primes */

 ’Exit’ closes all open files and returns to the Subsystem
 (or to bare Primos). Temporary files that may have been
 created during program execution remain in directory
 "=temp=". ’Exit_val’ is unused.

 . getpid −−− return the current process number

 Calling Information:

 int getpid()

 ’Getpid’ returns the current process number. It uses the
 Subsystem routine ’date’ to retrieve this information from
 Primos.

 . lseek −−− position to a designated word in file

 Calling Information:

 long lseek (fd, offset, origin)
 int fd, origin;
 long offset;

 ’Lseek’ positions the read/write pointer for the file
 associated with file descriptor ’fd’ (returned by ’creat’ or
 ’open’) to the word designated by ’offset’ and ’origin’. If
 ’origin’ = 0, ’offset’ is the number of words from the
 beginning of the file. If ’origin’ = 1, ’offset’ is the
 number of words forward(backward) from the current position.
 If ’origin’ = 2, ’offset’ is the number of words
 past(before) the end of the file. See ’fseek’ for further
 discussion.

 If ’lseek’ succeeds, it returns the current file position;
 otherwise it returns −1. ’lseek’ calls ’markf’, which will
 flush the buffers associated with ’fd’.

 − 17 −

 C User’s Guide

 . read −−− read raw words from a file

 Calling Information:

 int read (fd, buf, nw)
 int fd, nw;
 char *buf;

 ’Read’ reads words from the file associated with the file
 descriptor ’fd’ (returned by ’creat’ or ’open’) until ’nw’
 words have been read or until it encounters the end of file.
 If ’fd’ is attached to a terminal device, ’read’ will col−
 lect characters until it encounters a NEWLINE.

 If an error occurred, ’read’ returns −1; if ’read’
 encounters the end of the file or if a disk error occurred,
 it returns 0, so both −1 and 0 should be taken as error
 returns. Otherwise, ’read’ returns the number of words
 transferred to ’buf’.

 . unlink −−− delete a file

 Calling Information:

 int unlink (path)
 char *path;

 Since Primos does not support links to files, ’unlink’
 always removes the file. If the file is open by any other
 user, or if the file does not have protection keys "t/" or
 "a/" (owner has truncate permission) ’unlink’ will fail.
 ’Unlink’ returns −1 on failure and 0 otherwise.

 . write −−− write raw words to a file

 Calling Information:

 int write (fd, buf, nw)
 int fd, nw;
 char *buf;

 ’Write’ writes ’nw’ words from ’buf’ to the file associated
 with a file descriptor ’fd’ (returned by ’creat’ or ’open’).
 If an error occurs or if ’fd’ is attached to "/dev/null",
 ’write’ returns −1. Otherwise, ’write’ returns the number
 of words written.

 The C Standard I/O Library

 The following routines are those listed as "3S", i.e. the
 actual Standard I/O Library. Input/Output operations in the
 Standard I/O Library occur on objects of type "FILE *". These
 are known variously as file pointers, or I/O streams.

 − 18 −

 C User’s Guide

 The routines are listed below in roughly alphabetical order.
 However, logically associated routines (and/or macros) are
 grouped together.

 . ctermid −−− return a filename for a terminal

 Calling Information:

 char *ctermid (s)
 char *s;

 ’Ctermid’ returns the standard Georgia Tech SWT terminal
 name "/dev/tty". If ’s’ is not NULL, then ’ctermid’ copies
 "/dev/tty" into it, and returns ’s’. ’S’ should be at least
 ’L_ctermid’ characters long. ’L_ctermid’ is defined in
 "=incl=/stdio.h".

 . cuserid −−− return the user’s login name

 Calling Information:

 char *cuserid (s)
 char *s;

 ’Cuserid’ returns the user’s login name consisting of
 ’L_cuserid’ − 1 or fewer lower case non−blank ASCII charac−
 ters followed by ’\0’. (’L_cuserid’ is defined in
 "=incl=/stdio.h".)

 . fclose −−− close a stream

 Calling Information:

 int fclose (stream)
 FILE *stream;

 ’Fclose’ closes the file and flushes the buffer associated
 with ’stream’. ’Fclose’ returns 0 if the close was success−
 ful, EOF (−1) otherwise.

 . ferror −−− indicate if an error has occurred on a given
 stream

 Calling Information:

 int ferror (stream)
 FILE *stream;

 ’Ferror’ returns TRUE if an error has occurred while doing
 i/o on ’stream.’ It returns FALSE otherwise. This is
 actually a macro in "=incl=/stdio.h".

 − 19 −

 C User’s Guide

 . feof −−− indicate if EOF has occurred on a given stream

 Calling Information:

 int feof (stream)
 FILE *stream;

 ’Feof’ returns TRUE if EOF has occurred on ’stream’, and
 FALSE otherwise. ’Feof’ should be used to find out if EOF
 has actually occurred, particularly when using ’fread’ and
 ’fwrite’. This is actually a macro in "=incl=/stdio.h".

 . clearerr −−− clear any errors associated with a given
 stream.

 Calling Information:

 int clearerr (stream)
 FILE *stream;

 ’Clearerr’ will clear all of the error and EOF flags
 associated with ’stream’. This is actually a macro in
 "=incl=/stdio.h".

 . fileno −−− return a Subsystem file descriptor

 Calling Information:

 int fileno (stream)
 FILE *stream;

 ’Fileno’ is a macro in "=incl=/stdio.h" which returns the
 Software Tools Subsystem file descriptor associated with
 ’stream’. (Each FILE structure contains a Subsystem file
 descriptor, along with other information that the programmer
 should not need to access.) This permits you to use Sub−
 system routines that require a file descriptor rather than a
 file pointer, for instance:

 FILE *fp;
 ...
 fp = fopen ("file", "w");
 /* do formatted i/o with a Subsystem routine */
 print (fileno (fp), "i = *d*n", i);

 − 20 −

 C User’s Guide

 . fflush −−− flush all buffers for a stream

 Calling Information:

 int fflush (stream)
 FILE *stream;

 ’Fflush’ ensures that the contents and position of the open
 file reflect all output and positioning operations performed
 by the program. In other words, any in−memory C library and
 operating system buffers are flushed to disk, so that the
 permanent file matches the "logical" file (the file that the
 program has been working with). This is analogous to making
 changes to a file with the screen editor, and then issuing a
 "w" command to force the changes back out to the permanent
 file.

 Please note that ’fflush’ called on a disk file anywhere
 other than after a NEWLINE has been read or written may
 cause undesirable results, since Primos measures file
 positions in words and the i/o library writes in units of
 bytes. Flushing in the middle of a line can cause the
 compressed−blank count to be lost on an input file or can
 cause an additional ’\0’ (padding the last word) to be writ−
 ten to an output file. ’Fflush’ also dumps the stream’s
 ’ungetc’ buffer.

 ’Fflush’ returns EOF (−1) if the flush failed, 0 if it was
 successful.

 . fopen −−− open an i/o stream

 Calling Information:

 FILE *fopen (name, mode)
 char *name, *mode;

 ’Fopen’ opens a file ’name’ and returns a pointer to an i/o
 stream. If the file does not exist, ’fopen’ will create it.
 The stream has the mode specified in ’mode’:

 Mode equivalent SWT mode

 "r" read, file not truncated
 "r+" read/write, file not truncated
 "w" write, file truncated
 "w+" read/write, file truncated
 "a" append for writing, file not truncated
 "a+" read/append for writing, file not truncated

 Opening a file for write ("w", "w+") access truncates the
 file to length 0, while opening it for read ("r", "r+") or
 append ("a", "a+") access does not. The file pointer is
 positioned to the beginning of the file for both read and
 write access, and to the end of the file for append access.
 Append mode forces all writes to occur on the end of the

 − 21 −

 C User’s Guide

 file, even if the file was opened for reading as well, and
 it is not currently at the end of the file.

 ’Fopen’ returns NULL if no streams are available, if an
 invalid mode is supplied, if any of the arguments are bad,
 or if the access mode does not match the Primos protection
 keys.

 . freopen −−− associate a new file with an opened stream

 Calling Information:

 FILE *freopen (name, mode, stream)
 char *name, *mode;
 FILE *stream;

 ’Freopen’ closes the file currently associated with
 ’stream’, opens the file ’name’ with mode ’mode’ (same as in
 ’fopen’), and associates it with ’stream’. This function
 finds use in associating named files with the standard
 stream identifiers ’stdin’, ’stdout’, and ’stderr’.

 ’Freopen’ returns NULL if the mode specified is invalid or
 if the file ’name’ cannot be opened. If the file does not
 exist, ’freopen’ will create it. In any case, ’stream’ will
 be closed first.

 Use of this routine is normally not possible in a non−Unix
 environment; Software Tools is an exception, since its file
 descriptors are very similar to those used by Unix i/o
 system calls.

 . fdopen −−− associate a stream with an opened file

 Calling Information:

 FILE *fdopen (fd, mode)
 int fd;
 char *mode;

 ’Fdopen’ gets an i/o stream and associates it with the file
 descriptor ’fd’ returned by ’creat’ or ’open’. The stream
 has the mode specified in ’mode’; ’mode’ may take the same
 values as the ’mode’ argument to ’fopen’. This implementa−
 tion of ’fdopen’ does not check to make sure that modes of
 the file descriptor and the stream are the same.

 The function returns NULL if an invalid mode is specified or
 if there are no free i/o streams. Successful execution
 returns a pointer to the newly assigned stream.

 − 22 −

 C User’s Guide

 . fread −−− read raw words from a stream

 Calling Information:

 int fread (ptr, itemsize, nitems, stream)
 char *ptr;
 int itemsize, nitems;
 FILE *stream;

 ’Fread’ reads ’nitems’ * ’itemsize’ words from ’stream’ into
 the buffer addressed by ’ptr’. (’Itemsize’ may be
 determined using the sizeof operator.) The function returns
 the number of items of size ’itemsize’ read without error.
 If an error occurs or if it encounters end−of−file, ’fread’
 returns 0. Results are unpredictable if more words are
 requested than there is space in the buffer.

 . fwrite −−− write raw words to a stream

 Calling Information:

 int fwrite (ptr, itemsize, nitems, stream)
 char *ptr;
 int itemsize, nitems;
 FILE *stream;

 ’Fwrite’ writes ’itemsize’ * ’nitems’ words onto ’stream’
 from the buffer pointed to by ’ptr’. If an error occurs,
 ’fwrite’ returns 0; otherwise it returns the number of suc−
 cessfully written items of size ’itemsize’.

 . fseek −−− position to a designated word in a stream

 Calling Information:

 int fseek (stream, offset, origin)
 FILE *stream;
 long offset;
 int origin;

 ’Fseek’ first flushes the stream buffers (including the
 ’ungetc’ buffer) to clear up any pending i/o on ’stream’ and
 then positions the read/write pointer to the word specified
 by ’offset’ and ’origin’. If ’origin’ = 0, ’offset’ is the
 number of words from the beginning of the file. If ’origin’
 = 1, ’offset’ is the number of words forward (backward) from
 the current position. If ’origin’ = 2, ’offset’ is the num−
 ber of words past (before) the end of the file. ’Fseek’
 returns −1 if an error occurs or 0 if it succeeds.

 There are several things to note about ’fseek’. First, it
 is not possible to seek past the end of a Primos file; zero
 words (’\0’s) must be written to extend the file. Second,
 positioning to the end of a Primos sequential−format file
 requires Primos to read all of the blocks in the file (i.e.
 ’origin’ = 2 can be quite slow). Third, since Primos text

 − 23 −

 C User’s Guide

 files contain blank compression and ’\0’ padding, an ’fputs’
 of a 30−character string will probably not change the file
 pointer’s position by 30; ’ftell’ at the beginning of a line
 is the only reliable way to obtain a file position of a line
 in a text file. Finally, flushing the stream buffers may
 have undesirable results if it occurs during the formation
 of a line (i.e. before ’fputs’, ’fprintf’, etc. have put
 out a complete line).

 . rewind −−− rewind to beginning of stream

 Calling Information:

 int rewind (stream)
 FILE *stream;

 ’Rewind’ positions the read/write pointer associated with
 ’stream’ to the beginning of the file. It is equivalent to
 "fseek (stream, 0L, 0)". Returns 0 if it was successful or
 −1 if an error occurred. (Under Unix, ’rewind’ returns no
 value).

 . ftell −−− return absolute position in a stream

 Calling Information:

 long ftell (stream)
 FILE *stream;

 ’Ftell’ returns the current word position in ’stream’ after
 flushing the stream buffers (and the ’ungetc’ buffer) to
 clear any pending i/o on the stream.

 Under Primos, ’ftell’ may actually corrupt (slightly) an
 output text file when it flushes the stream buffers. On
 text files, ’markf’ is the only reasonable way to determine
 the position of the beginning of a line. See the comments
 under ’fseek’. ’Ftell’ returns −1 if an error occurs.

 . getc −−− get a character from a stream

 . getchar −−− get a character from ’stdin’

 Calling Information:

 int getc (stream)
 FILE *stream;

 int getchar()

 ’Getc’ obtains the next character from ’stream’. If there
 are no more characters, or if an error occurs, ’getc’
 returns EOF (−1).

 ’Getchar’ is a macro; it is defined as ’getc(stdin)’ in
 "=incl=/stdio.h".

 − 24 −

 C User’s Guide

 . fgetc −−− get next character from stream

 Calling Information:

 int fgetc (stream)
 FILE *stream;

 ’Fgetc’ is another function which does what ’getc’ does. It
 was initially created to serve as a real function that one
 could take the address of etc., since under Unix, ’getc’ is
 a macro. On the prime, both ’getc’ and ’fgetc’ are func−
 tions.

 . getw −−− get a machine word from a stream

 Calling Information:

 int getw (stream)
 FILE *stream;

 ’Getw’ returns a single 16−bit word from a stream or EOF
 (−1) if an error occurred or no more characters were
 available. If ’stream’ is attached to a terminal, ’getw’
 returns EOF when a NEWLINE is encountered. Since EOF could
 be an actual word value, ’feof’ should be used to see if end
 of file has actually occurred.

 . gets −−− get a string (up to a newline) from ’stdin’

 Calling Information:

 char *gets (s)
 char *s;

 ’Gets’ copies the next line from ’stdin’ into ’s’, discard−
 ing the NEWLINE and terminating ’s’ with ’\0’. If ’gets’
 returns a line, the function return value is ’s’; otherwise
 it is NULL.

 . fgets −−− get a string from a stream

 Calling Information:

 char *fgets (line, size, stream)
 char *line;
 int size;
 FILE *stream;

 ’Fgets’ fetches the next line from ’stream’ by copying
 characters into ’line’ from the stream buffer until ’size’−1
 characters have been copied or until it encounters the next
 NEWLINE character. The NEWLINE character is kept. The
 function appends ’\0’ as the last character in ’line’.
 ’Fgets’ returns ’line’ if it obtained a line, and NULL
 otherwise.

 − 25 −

 C User’s Guide

 . popen −−− initiate a "pipe" to/from a process

 . pclose −−− close a stream obtained from popen

 Calling Information:

 FILE *popen (command, type)
 char *command, *type;

 int pclose (stream)
 FILE *stream;

 ’Popen’ takes two string arguments. The first, ’command’,
 is a command to be executed by the Software Tools shell.
 The second, ’type’, is either "r" or "w", to read from the
 standard output of the command, or to write to the standard
 input of the command, respectively. The function return is
 a stream which can be treated like any other object of type
 "FILE *".

 ’Popen’ will return NULL if 1) another "pipe" is still open,
 2) the ’type’ argument is invalid, 3) the shell could not
 execute the command, or 4) needed temporary files could not
 be created.

 ’Pclose’ closes the stream obtained from ’popen’. It
 returns 0 if it could successfully close the "pipe", other−
 wise it returns −1.

 For programs that use "=lib=/nciolib", ’popen’ always
 returns NULL, and ’pclose’ always returns −1.

 See the help on shell(2) in the Software Tools Subsystem
 Reference Manual for some caveats when dealing with the
 shell.

 . printf −−− formatted output to ’stdout’

 . fprintf −−− formatted output to a stream

 . sprintf −−− formatted memory to memory conversion

 Calling Information:

 int printf (control [, arg1, arg2, ..., arg10])
 char *control;
 untyped arg1, arg2, ..., arg10;

 int fprintf (stream, control [, arg1, arg2, ..., arg10])
 FILE *stream;
 char *control;
 untyped arg1, arg2, ..., arg10;

 int sprintf (string, control [, arg1, arg2, ..., arg10])
 char *string;
 char *control;

 − 26 −

 C User’s Guide

 untyped arg1, arg2, ..., arg10;

 ’Printf’ formats its arguments (’arg1’, ..., ’arg10’) accor−
 ding to conversion specifications in ’control’ and outputs
 the resulting character string on ’stdout’. The arguments
 may be pointers (i.e., to strings) or names of variables
 (e.g., ints, floats, ...). ’Fprintf’ does the same thing,
 but to the named ’stream’. ’Sprintf’ places the formatted
 output into ’string’. These routines take care of accessing
 the arguments according to the specifications of the
 ’control’ string. In the following discussion ’printf’
 should be taken as a generic name for all three functions.

 The ’control’ string contains literal characters, which are
 copied to the "output" directly, and up to 10 conversion
 specifiers, each of which must have a corresponding
 argument. These routines conform as closely as possible to
 the specifications given for ’printf’ in the UNIX System V
 User’s Manual (Release 1).

 A conversion specifier may consist of the following:

 required % Begins conversion specification.

 optional flag Modifies the meaning of the conver−
 sion specifier.

 optional <number> Minimum field width. More space
 will be used if needed. If
 <number> begins with "0", then "0"
 will be used as a padding charac−
 ter; otherwise, ’printf’ pads the
 output field with blanks.

 optional . Separates field width and
 precision.

 optional <number> Precision: maximum number of
 characters to print from a string
 or maximum number of digits to the
 right of the decimal point in a
 real number.

 optional [lh] Size of argument indicator. ’l’
 indicates a long integer, ’h’ a
 short. The ’h’ modifier is
 recognized, but has no effect on
 the conversion.

 required Conversion specifier.

 A field width or precision may be a ’*’ instead of a decimal
 integer. In this case, the next argument in the argument
 list will be treated as an integer and used for the field
 width or precision.

 − 27 −

 C User’s Guide

 The flag may be one of the following:

 − Left justify the conversion within the field.

 + The result of a signed conversion is always
 signed. I.e. a ’+’ will be prepended if the
 result is positive.

 <blank> If the first character of a signed conversion is
 not a minus sign, the result will be prepended
 with a blank. The ’+’ flag overrides the <blank>
 flag.

 # Convert the result to an alternate form. This
 flag has no effect on the c, d, s, and u conver−
 sion specifiers. For o conversion, the precision
 is increased so that the result has a leading 0.
 For x (X) conversion, the result will have a lead−
 ing 0x (0X). For e, E, f, g, and G conversions,
 the result should always have a decimal point,
 even if there are no digits following the decimal
 point.

 The conversion characters and their meanings are:

 d,o,u,x,X Interpret the corresponding argument as a
 decimal, octal (no leading "0"), unsigned
 decimal or hexadecimal (no leading "0x"),
 integer, respectively. For x conversion, the
 letters abcdef are used, while for X conver−
 sion, the letters ABCDEF are used.

 c Interpret the argument as a character (unpac−
 ked).

 s The argument is a ’\0’−terminated string:
 output characters until the correct precision
 has been achieved, or until ’\0’ is
 encountered, whichever comes first.

 e,E Interpret the corresponding argument as a
 double−precision floating−point number and
 print it in the form

 [−]m{m}.n{n}e±xx.

 E format will cause the exponent to start
 with E instead of e.

 − 28 −

 C User’s Guide

 f Interpret the corresponding argument as a
 double−precision floating−point number and
 print it in the form

 [−]m{m}.n{n}

 with ’precision’ digits to the right of the
 decimal point. If ’precision’ is greater
 than 14, at most 6 significant digits will be
 printed.

 g,G Use the shortest of %e and %f formats. G
 format indicates %E instead of %e.

 If the character "%" follows the initial "%" of the control
 specifier, the pair is taken as a literal character "%".
 ’Printf’ returns the number of successfully printed charac−
 ters or EOF (−1) if an error occurred.

 Note that the old style (undocumented) capital letter con−
 version specifiers, which indicated ’long’ arguments (e.g.
 %D for long int), are not supported. Use %ld (for example)
 instead of %D.

 . putc −−− put a character on a stream

 . putchar −−− put a character onto ’stdout’

 Calling Information:

 int putc (ch, stream)
 char ch;
 FILE *stream;

 int putchar (c)
 char c;

 ’Putc’ puts the single character in ’ch’ on ’stream’. If an
 error occurs, ’putc’ returns EOF (−1); otherwise it returns
 the character just written.

 ’Putchar’ is a macro; it is defined as ’putc(c, stdout)’ in
 "=incl=/stdio.h".

 . fputc −−− put a character on a stream

 Calling Information:

 int fputc (c, stream)
 char c;
 FILE *stream;

 ’Fputc’ is another function which does what ’putc’ does. It
 was initially created to serve as a real function that one
 could take the address of etc., since under Unix, ’putc’ is
 a macro. On the prime, both ’putc’ and ’fputc’ are func−

 − 29 −

 C User’s Guide

 tions.

 . putw −−− put raw words on a stream

 Calling Information:

 int putw (w, stream)
 int w;
 FILE *stream;

 ’Putw’ writes a single 16−bit word on ’stream’. After a
 successful write ’putw’ returns the word written, while it
 returns EOF (−1) if an error occurred. If ’stream’ is
 attached to "/dev/null", ’putw’ always returns EOF.

 . puts −−− put a string on ’stdout’

 Calling Information:

 int puts (s)
 char *s;

 ’Puts’ appends a NEWLINE to the ’\0’−terminated string ’s’
 and prints it on standard output. If an errors occurs,
 ’puts’ returns EOF (−1).

 . fputs −−− put a string on a stream

 Calling Information:

 int fputs (s, stream)
 char *s;
 FILE *stream;

 ’Fputs’ puts the ’\0’−terminated string ’s’ on ’stream’.
 Note that ’s’ need not contain a NEWLINE character and that
 ’fputs’ will not supply one. ’Fputs’ returns EOF (−1) if an
 error occurred, zero otherwise.

 . scanf −−− formatted input conversion from ’stdin’

 . fscanf −−− formatted input conversion from stream

 . sscanf −−− formatted input conversion from a string

 Calling Information:

 int scanf (control [, arg1, arg2, ..., arg10])
 char *control;
 char *arg1, *arg2, ..., *arg10;

 int fscanf (stream, control [, arg1, arg2, ..., arg10])
 FILE *stream;
 char *control;
 char *arg1, *arg2, ..., *arg10;

 − 30 −

 C User’s Guide

 int sscanf (string, control [, arg1, arg2, ..., arg10])
 char *string;
 char *control;
 char *arg1, *arg2, ..., *arg10;

 ’Scanf’ reads characters from ’stdin’, formats them accord−
 ing to conversion specifications in the control string, and
 stores the results in the variables pointed to by correspon−
 ding arguments 1−10. ’Fscanf’ reads its input from the
 named ’stream’. ’Sscanf’ reads characters from the named
 ’string’. In the following discussion, ’scanf’ should be
 taken as a generic name for all three functions.

 The control string may contain white space, which is skip−
 ped, literal characters (which must match corresponding
 characters from the input stream) and at most 10 conversion
 specifiers consisting of the following:

 required % Begins conversion specification.

 optional * Suppresses assignment of input
 field (does not skip argument).

 optional <number> Numeric field width.

 optional l Read variable as ’long’.

 optional h Read variable as ’short’.

 required Conversion specifier:

 ’[’[^]<char>[−<char>]{<char>[−<char>]}’]’
 Input a string of characters until finding
 a character not included in the bracketed
 set. E.g., "[a−zA−Z]" stops reading when a
 non−alphabetic character is encountered.
 If the first character in the set is ’^’,
 input characters are read until finding a
 character included in the bracketed set.
 E.g., "[^]" reads until a blank is found.

 d,o,u,x Input decimal, octal, unsigned decimal, or
 hexadecimal integers.

 c Read single character(s) including blanks.

 s Input a string delimited by white space, or
 until <width> characters have been read.
 The variable in which the string is to be
 stored must be long enough to contain the
 string followed by a ’\0’.

 − 31 −

 C User’s Guide

 e,f,g Read a floating point number of the form

 [±]m{m}.n{n}[E[±]x{x}].

 The value returned in both cases is a
 float. Use the "l" option to specify a
 double value.

 If the character ’%’ follows the initial ’%’ of the control
 specifier, the pair is taken as a literal character ’%’.

 ’Scanf’ conversions stop when EOF is seen, when the control
 string is exhausted, or when an input character conflicts
 with the control string.

 ’Scanf’ returns the number of successfully assigned input
 items, or EOF (−1) if none were found.

 . setbuf −−− set buffering on a stream

 Calling Information:

 setbuf (stream, buf)
 FILE *stream;
 char *buf;

 Under Software Tools and Primos, ’setbuf’ is a null (do
 nothing) function. Under Unix, it allows the user to
 associate a character array as the buffer for a given
 stream. ’Setbuf’ is provided to make porting of programs
 easier. It is an actual function, just in case there is
 code which takes its address, or does something else strange
 of this nature.

 . system −−− pass a command to the Software Tools Shell

 Calling Information:

 int system (cmd)
 char *cmd;

 ’System’ passes a command ’cmd’ to the Software Tools shell
 to be executed, and returns TRUE if the call was successful.
 If the call failed, ’system’ returns FALSE. See the help on
 shell(2) in the Software Tools Subsystem Reference Manual
 for some caveats when dealing with the shell.

 For programs that use "=lib=/nciolib", ’system’ always
 returns FALSE.

 NOTE: This routine has changed from the previous release of
 the C compiler. Before Version 9 of Software Tools, it was
 not possible to call the Software Tools shell, so the
 ’system’ routine called the Primos command interpreter. If
 you still need to call Primos, see the help on sys$$(2) in
 the Software Tools Subsystem Reference Manual.

 − 32 −

 C User’s Guide

 . tmpfile −−− create a temporary file

 Calling Information:

 FILE *tmpfile ()

 ’Tmpfile’ returns a pointer to a temporary file opened with
 "w+" access. The name of the file is inaccessible from
 inside a program. The file actually created bears the
 process unique name "=temp=/tm###" (where ### ranges from
 1−999) and remains in the "=temp=" directory after the
 creating process terminates. If no file can be created,
 ’tmpfile’ returns NULL.

 . tmpnam −−− return a filename for a temporary file

 Calling Information:

 char *tmpnam (s)
 char *s;

 ’Tmpnam’ returns a unique temporary file name
 "=temp=/ct=pid=###" where ### is a process unique number
 0−999 and =pid= is the current process id. Names are
 recycled after all 1000 have been used.

 . tempnam −−− return a filename for a temporary file

 Calling Information:

 char *tempnam (dir, pfx)
 char *dir, *pfx;

 ’Tempnam’ is designed to give the user a little more control
 over the name of his temporary file. The directory for the
 tempfile will be taken from the environment variable TMPDIR,
 if it exists. Otherwise, if ’dir’ is not NULL, ’dir’ will
 be used. If ’dir’ is NULL, the directory will be P_tmpdir
 (defined in "=incl=/stdio.h").

 If ’pfx’ is not NULL, it will be used as the prefix for the
 file name. Otherwise, the prefix will be "ct".

 The full file name will consist of the directory name, a
 ’/’, then the prefix, the process id number, and a number
 between 0 and 999. The number changes after each call to
 ’tempnam’. After all 1000 have been used, they will be
 recycled.

 ’Tempnam’ uses ’malloc’ to create space for the string
 containing the file name. The pointer returned by ’tempnam’
 can be used later in a call to ’free’.

 ’Tempnam’ returns NULL if it could not allocate enough space
 for the string to hold the generated file name.

 − 33 −

 C User’s Guide

 . ungetc −−− push a single character back on an input stream

 Calling Information:

 int ungetc (ch, stream)
 char ch;
 FILE *stream;

 ’Ungetc’ places ’ch’ in a single−character buffer associated
 with ’stream’. The next call to ’getc’ or ’fgetc’ retrieves
 ’ch’. Attempting to push more than one character back onto
 the input stream or using ’ungetc’ on a closed stream
 produces an error return of EOF (−1). Otherwise, ’ungetc’
 returns ’ch’.

 . ftrunc −−− truncate a stream at the current position

 Calling Information:

 int ftrunc (stream)
 FILE *stream;

 ’Ftrunc’ flushes all file and ’ungetc’ buffers for the file
 associated with ’stream’ and truncates the file at its
 current position. The file must be opened with write
 access. (If ’fopen’ is used to open the file, then the only
 really useful values for ’mode’ are "r+" and "a+", because
 read access is usually necessary to position the file
 correctly and because opening the file for write ("w", "w+")
 access always truncates the file.) ’Ftrunc’ returns 0 if it
 succeeded, −1 otherwise.

 ’Ftrunc’ is not part of the Standard I/O Library per se, but
 is provided in order to allow access to this capability of
 the Primos file system.

 Unix Subroutines For C Programs

 The following routines are those listed as "3C", i.e. the
 routines which are loaded along with every Unix C program, but
 which are not guaranteed to be on other non−Unix systems.

 The character testing macros discussed below (’isalnum’,
 ’isdigit’, etc.) are valid on integers in the range −1 to 0377
 (EOF to ASCII DEL). They merely return FALSE on characters in
 the range −1 to ’\177’. The result of these macros on values
 less than −1 or greater than 0377 is undefined.

 These macros do not necessarily return "true" values equal
 to the symbolic constant TRUE defined in "=incl=/stdio.h".
 Rather, they return logical true, i.e. non−zero, and logical
 false, i.e. zero. They should be used as conditions, not compared
 against TRUE and FALSE. In other words, use:

 − 34 −

 C User’s Guide

 if (islower (c)) { /* stuff */ }

 and not

 if (islower (c) == TRUE) { /* stuff */ }

 The routines are listed below in roughly alphabetical order.
 However, logically associated routines (and/or macros) are
 grouped together.

 . a64l −−− convert base−64 string to long integer

 . l64a −−− convert long integer to base−64 string

 Calling Information:

 long a64l (s)
 char *s;

 char *l64a (l)
 long l;

 ’A64l’ takes a ’\0’−terminated string containing a base−64
 representation, and returns the corresponding long. If the
 string has more than six characters, only the first six are
 used. ’L64a’ takes a long integer, and returns a pointer to
 a string with the corresponding base−64 representation.

 These routines use the following characters as digits in the
 base−64 notation. ’.’ for 0, ’/’ for 1, ’0’ through ’9’
 for 2−11, ’A’ through ’Z’ for 12−37, and ’a’ through ’z’ for
 38−63.

 . abort −−− generate a "fault"

 Calling Information:

 int abort ()

 Under Unix, ’abort’ generates a SIGIOT fault, which causes
 the program to exit and dump core. The user may catch this
 signal. Under Software Tools or Primos, this routine simply
 exits.

 . abs −−− return integer absolute value

 Calling Information:

 int abs (x)
 int x;

 ’Abs’ returns the absolute value of its integer argument.
 This is a fast, assembly language routine, local to the C
 library.

 − 35 −

 C User’s Guide

 . atof −−− convert character string to double precision real

 Calling Information:

 double atof (str)
 char *str;

 Converts a string of characters ’str’ to a double precision
 real number. Conversion stops when ’atof’ encounters a non−
 numeric character.

 . atoi −−− convert character string to integer

 Calling Information:

 int atoi (str)
 char *str;

 ’Atoi’ converts a string of characters ’str’ to a base−10
 integer. Conversion stops when ’atoi’ encounters a non−
 numeric character. ’Atoi’ uses ’gctoi’, so it will
 recognize the Ratfor "radix notation" (e.g. 8r377).

 . atol −−− convert character string to long integer

 Calling Information:

 long atol (str)
 char *str;

 ’Atol’ converts a string of characters ’str’ to a base−10
 long (32−bit) integer. Conversion stops when ’atol’
 encounters a non−numeric character in ’str’. ’Atol’ uses
 ’gctol’, so it will recognize the Ratfor "radix notation"
 (e.g. 8r377).

 . strtol −−− convert string to arbitrary base long integer

 Calling Information:

 long strtol (str, ptr, base)
 char *str;
 char **ptr;
 int base;

 ’Strtol’ takes a ’\0’−terminated string in ’str’, and
 returns the long integer it represents. ’Base’ is the base
 of the string. If base is less than zero or greater than
 36, ’strtol’ will return. If base is zero, it will attempt
 to determine the base from the string itself. A leading ’0’
 indicates octal, ’0x’ or ’0X’ indicates hexadecimal; other−
 wise, the string is assumed to be in decimal.

 If the value of ’ptr’ is not (char **) 0, the address of the
 character which terminated the string will be placed in
 *ptr. If no integer can be converted from the string, *ptr

 − 36 −

 C User’s Guide

 is set to ’str’, and 0 is returned.

 . getcwd −−− get pathname of current working directory

 Calling Information:

 char *getcwd (buf, size)
 char *buf;
 int size;

 ’Getcwd’ returns a pointer to a string containing the SWT
 path name of the current directory. If ’buf’ is not NULL,
 ’getcwd’ will use ’buf’ a buffer in which to place the name.
 Otherwise, it will use ’malloc’ to dynamically allocate a
 buffer. In this case, the returned pointer can be used
 later in a call to ’free’. ’Size’ is the size of the buffer
 to be ’malloc’ed, so it must include room for the trailing
 ’\0’.

 ’Getcwd’ returns NULL if size is less than or equal to 1, if
 ’malloc’ could not allocate enough memory, or if one of the
 SWT routines ’follow’ or ’gcdir$’ failed.

 . getenv −−− return value for "environment" variable

 Calling Information:

 extern char **environ;

 char *getenv (var)
 char *var;

 ’Getenv’ scans the environment list of name=value pairs
 pointed to by the external variable ’environ’. If ’var’ is
 found, ’getenv’ returns a pointer to its value. Otherwise,
 it returns NULL.

 For programs which use "=lib=/nciolib", ’getenv’ will always
 return NULL, and ’environ’ is always equal to NULL.

 . getlogin −−− get the login name

 Calling Information:

 char *getlogin()

 If the current process is a phantom, ’getlogin’ returns
 NULL. Otherwise, it returns the user’s login name, as
 obtained from ’cuserid’.

 − 37 −

 C User’s Guide

 . getopt −−− get option letter from argument vector

 Calling Information:

 extern char *optarg;
 extern int optind;

 int getopt (argc, argv, optstring)
 int argc;
 char **argv;
 char *optstring;

 ’Getopt’ returns the next option letter in ’argv’ that
 matches a letter in ’optstring’. If a letter in ’optstring’
 is followed by a colon, then that option is supposed to have
 an argument, that may or may not be separated from it by
 white space. ’Optarg’ is set to point to the beginning of
 the argument to the current option when ’getopt’ returns.

 ’Getopt’ sets ’optind’ to the index of the next argument in
 ’argv’ to be processed. Since ’optind’ is external, it is
 initialized to zero.

 When all options have been processed (i.e. when the first
 non−option is encountered), ’getopt’ returns EOF. The
 special option −− can be used to delimit the end of the
 options. ’Getopt’ will return EOF, and will skip the −−.

 ’Getopt’ returns a ’?’ and prints an error message on
 ’stderr’ when it finds an option that is not in ’optstring’.

 . getpass −−− read a password

 Calling Information:

 char *getpass (prompt)
 char *prompt;

 ’Getpass’ disables echoing, and prints ’prompt’ on ’stderr’.
 It then reads up to a newline or EOF from the terminal. It
 returns a pointer to a ’\0’−terminated string of at most
 eight characters. If ’getpass’ cannot use the TTY file
 descriptor, and if it cannot open "/dev/tty", it will read
 from ’stdin’. ’Getpass’ turns echoing back on before retur−
 ning.

 . isalnum −−− indicate if a character is alphanumeric

 Calling Information:

 int isalnum (ch)
 char ch;

 ’Isalnum’ returns TRUE if ’ch’ falls in the range ’A’
 through ’Z’, inclusive, in the range ’a’ through ’z’,
 inclusive, or if it lies between ’0’ and ’9’, inclusive. It

 − 38 −

 C User’s Guide

 returns FALSE otherwise. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . isalpha −−− indicate if a character is alphabetic

 Calling Information:

 int isalpha (ch)
 char ch;

 ’Isalpha’ returns TRUE if ’ch’ lies between ’A’ and ’Z’,
 inclusive, or if it lies between ’a’ and ’z’, inclusive. It
 returns FALSE otherwise. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . isdigit −−− indicate if a character is a decimal digit

 Calling Information:

 int isdigit (ch)
 char ch;

 ’Isdigit’ returns TRUE if ’ch’ lies between ’0’ and ’9’,
 inclusive. It returns FALSE otherwise. To use this macro,
 the file "=incl=/ctype.h" must be included first.

 . isxdigit −−− indicate if a character is a hexadecimal digit

 Calling Information:

 int isxdigit (ch)
 char ch;

 ’Isxdigit’ returns TRUE if ’ch’ falls between ’0’ and ’9’,
 inclusive, or if it falls between ’A’ and ’F’ inclusive, or
 ’a’ and ’f’ inclusive. It returns FALSE otherwise. To use
 this macro, the file "=incl=/ctype.h" must be included
 first.

 . isupper −−− indicate if a character is an upper case letter

 Calling Information:

 int isupper (ch)
 char ch;

 ’Isupper’ returns TRUE if ’ch’ lies between ’A’ and ’Z’,
 inclusive. It returns FALSE otherwise. To use this macro,
 the file "=incl=/ctype.h" must be included first.

 − 39 −

 C User’s Guide

 . islower −−− indicate if a character is an lower case letter

 Calling Information:

 int islower (ch)
 char ch;

 ’Islower’ returns TRUE if ’ch’ lies between ’a’ and ’z’,
 inclusive. It returns FALSE otherwise. To use this macro,
 the file "=incl=/ctype.h" must be included first.

 . isprint −−− indicate if a character is printable

 Calling Information:

 int isprint (ch)
 char ch;

 ’Isprint’ returns TRUE if ’ch’ is a printable character.
 This includes all punctuation, letters, digits, and the
 space character ’ ’. It returns FALSE otherwise. To use
 this macro, the file "=incl=/ctype.h" must be included
 first.

 . isgraph −−− indicate if a character is printable and visible

 Calling Information:

 int isgraph (ch)
 char ch;

 ’Isgraph’ is similar to ’isprint’ above, except that it
 excludes the space character ’ ’. It returns TRUE if ’ch’
 has a graphic representation, FALSE otherwise. To use this
 macro, the file "=incl=/ctype.h" must be included first.

 . ispunct −−− indicate if a character is punctuation

 Calling Information:

 int ispunct (ch)
 char ch;

 ’Ispunct’ returns TRUE if ’ch’ is neither an alphanumeric
 nor a control character. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 − 40 −

 C User’s Guide

 . iscntrl −−− indicate if a character is a control character

 Calling Information:

 int iscntrl (ch)
 char ch;

 ’Iscntrl’ returns TRUE if ’ch’ is an ASCII control charac−
 ter, i.e., if ’ch’ falls in the range ’\200’ to ’\237’,
 inclusive, or if ’ch’ equals ’\377’ (DEL). It returns FALSE
 otherwise. To use this macro, the file "=incl=/ctype.h"
 must be included first.

 . isascii −−− indicate if character is within the ASCII
 character set

 Calling Information:

 int isascii (ch)
 char ch;

 ’Isascii’ returns TRUE if ’ch’ lies in the range ’\200’ to
 ’\377’, inclusive (Prime’s ASCII representation). It
 returns FALSE otherwise. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . isspace −−− indicate if a character is white space

 Calling Information:

 int isspace (ch)
 char ch;

 ’Isspace’ returns TRUE if ’ch’ is a space, a tab, a newline,
 a carriage return, a form feed or a vertical tab. It
 returns FALSE otherwise. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . malloc −−− allocate memory

 . alloc −−− allocate memory (old name)

 Calling Information:

 char *malloc (n)
 int n;

 char *alloc (n)
 int n;

 ’Malloc’ allocates ’n’ words of memory and returns a pointer
 to the beginning of the storage block. If 64K words are
 requested or if zero words are requested, ’malloc’ returns
 NULL.

 ’Alloc’ is the name of the pre−Version 7 UNIX storage

 − 41 −

 C User’s Guide

 allocator. It performs the same function as ’malloc’. Its
 use in new programs is strongly discouraged. It is provided
 to make porting code easier, and because it was in the first
 release of the C compiler.

 . calloc −−− allocate memory for arrays or structures

 Calling Information:

 char *calloc (n, size)
 int n, size

 ’Calloc’ allocates ’n’ * ’size’ words of memory for storing
 ’n’ objects of ’size’ words each. If successful, ’calloc’
 initializes all words to zero, and returns a pointer to the
 first word of the storage block. If 64K or more words are
 requested or if zero words are requested, ’calloc’ returns
 NULL.

 . realloc −−− change the size of previously allocated memory

 Calling Information:

 char *realloc (ptr, size)
 char *ptr;
 int size;

 ’Realloc’ reallocates a block of memory of ’size’ words for
 a storage block previously allocated by ’malloc’ or ’calloc’
 (0 < ’size’ < 64K). The contents of the original storage
 block are preserved by copying to the newly allocated block.
 Therefore, the pointer ’ptr’ passed as a parameter to ’real−
 loc’ must point to the beginning of a block allocated by
 ’malloc’ or ’calloc’ in order for the copy to work properly.
 Any existing pointers to the original data structure must be
 changed. (I.e. the contents of the old memory are preser−
 ved, but the same actual block of memory may not be used.)

 ’Realloc’ returns a pointer to the first word of the new
 storage block or NULL if an error occurred.

 . free −−− free allocated memory

 . cfree −−− free allocated memory (old name)

 Calling Information:

 free (ptr)
 char *ptr

 cfree (ptr)
 char *ptr;

 ’Free’ frees a block of memory previously allocated by ’mal−
 loc’, ’realloc’, or ’calloc’. ’Free’ will fail miserably if
 handed an arbitrary pointer; only pointers returned by ’mal−

 − 42 −

 C User’s Guide

 loc’, ’realloc’ or ’calloc’ are valid parameters.

 ’Cfree’ is the name of the pre−Version 7 UNIX storage
 releaser. It performs the same function as ’free’. Its use
 in new programs is strongly discouraged. It is provided to
 make porting code easier, and because it was in the first
 release of the C compiler.

 . memccpy −−− copy characters up to a character or some number

 Calling Information:

 char *memccpy (s1, s2, c, n)
 char *s1, *s2, c;
 int n;

 ’Memccpy’ copies characters (words, on the Prime) from the
 memory pointed to by ’s1’ into ’s2’ until it encounters ’c’,
 or until ’n’ characters have been copied. It returns a
 pointer to the character after the first occurrence of ’c’,
 or NULL if ’c’ was not found in the first ’n’ characters of
 ’s1’.

 . memchr −−− return a pointer to a char within a memory area

 Calling Information:

 char *memchr (s, c, n)
 char *s;
 int c, n;

 ’Memchr’ returns a pointer to the first occurrence of ’c’
 within the first ’n’ characters (words, on the Prime) of
 ’s’. It returns NULL if ’c’ does not occur.

 . memcmp −−− compare arbitrary areas of memory

 Calling Information:

 int memcpmp (s1, s2, n)
 char *s1, *s2;
 int n;

 ’Memcmp’ looks only at the first ’n’ words of its first two
 arguments. It returns an integer less than zero, equal to
 zero, or greater than zero, according as ’s1’ is
 lexicographically less than, equal to, or greater than ’s2’.

 − 43 −

 C User’s Guide

 . memcpy −−− copy arbitrary areas of memory

 Calling Information:

 char *memcpy (s1, s2, n)
 char *s1, *s2;
 int n;

 ’Memcpy’ copies ’n’ characters from ’s2’ to ’s1’. It
 returns ’s1’.

 . memset −−− initialize memory to a given value

 Calling Information:

 char *memset (s, c, n)
 char *s;
 int c, n;

 ’Memset’ sets the first ’n’ characters (words) of ’s’ to
 ’c’. It returns ’s’.

 . mktemp −−− make a unique file name

 Calling Information:

 char *mktemp (template)
 char *template;

 ’Mktemp’ replaces the contents of the string pointed to by
 ’template’ with a unique file name, and returns ’template’.
 ’Template’ should look like a file name with six trailing
 Xs; ’mktemp’ replaces the Xs with a unique letter and the
 process id. (This implementation only requires four Xs; six
 is recommended for portability to/from Unix systems.)

 If there are no Xs in the ’template’, ’mktemp’ returns NULL.
 The "unique" letter will recycled after 26 calls to
 ’mktemp’.

 So that this routine does not conflict with the SWT
 ’mktemp’, it is actually a macro, so "=incl=/stdio.h" must
 be included in order to use it.

 . rand −−− return a random integer

 . srand −−− seed the random number generator

 Calling Information:

 int rand()

 srand (seed)
 unsigned seed;

 ’Rand’ uses ’rand$m’ in the SWT Math Library. It returns a

 − 44 −

 C User’s Guide

 number between 0 and 2^16−1. ’Srand’ uses ’seed$m’ to seed
 the random number generator. In keeping with the Unix
 semantics, if the user calls ’rand’ before calling ’srand’,
 the random number generator will be seeded with 1.

 . setjmp −−− set up for non−local goto

 . longjmp −−− perform a non−local goto

 Calling Information:

 #include <setjmp.h>

 int setjmp (env)
 jmp_buf env;

 longjmp (env, status)
 jmp_buf env;
 int status;

 ’Setjmp’ saves the current stack frame in ’env’ for later
 use. On every call, ’setjmp’ returns 0. ’Longjmp’ takes
 ’status’ and performs a non−local "goto" to an environment
 (’env’) saved by a previous call to ’setjmp’. The result of
 that operation allows execution to continue as if ’setjmp’
 had returned ’status’ rather than 0 at the point of
 invocation. Use of these routines requires inclusion of
 "<setjmp.h>" before either of the routines is called. In
 particular "<setjmp.h>" does a typedef on the type
 ’jmp_buf’, and contains a macro definition which is needed
 for ’setjmp’ to return properly.

 . sleep −−− sleep for the given number of seconds

 Calling Information:

 int sleep (amount)
 unsigned amount;

 ’Sleep’ will sleep for ’amount’ seconds. ’Sleep’ simply
 calls the Primos ’sleep$’ routine. It returns no value.

 . strcat −−− concatenate two strings

 Calling Information:

 char *strcat (t, s)
 char *t, *s;

 ’Strcat’ concatenates string ’s’ to string ’t’, terminating
 ’t’ with ’\0’. The target string ’t’ is assumed to be large
 enough to accommodate all of the characters copied from ’s’.
 ’Strcat’ returns a pointer to ’t’, or NULL if either ’s’ or
 ’t’ is NULL.

 − 45 −

 C User’s Guide

 . strncat −−− concatenate substring to string

 Calling Information:

 char *strncat (t, s, n)
 char *t, *s;
 int n;

 Concatenates at most ’n’ characters of string ’s’ to string
 ’t’. If ’s’ contains fewer than ’n’ characters, then only
 "strlen (s)" characters will be copied. In any case,
 ’strncat’ terminates ’t’ with ’\0’ and returns a pointer to
 ’t’.

 . strcmp −−− compare strings

 Calling Information:

 strcmp (s1, s2)
 char *s1, *s2;

 ’Strcmp’ compares strings ’s1’ and ’s2’ and returns 0 if
 they are equal or if s1 = NULL and s2 = NULL. If *s1 > *s2
 or if s2 = NULL, ’strcmp’ returns a positive value; it
 returns a negative value if *s1 < *s2 or if s1 = NULL.

 . strncmp −−− compare substrings

 Calling Information:

 int strncmp (s1, s2, n)
 char *s1, *s2;
 int n;

 ’Strncmp’ compares at most ’n’ characters of ’s1’ and ’s2’.
 It returns 0 if equal or if s1 = NULL and s2 = NULL; a
 positive value if *s1 > *s2 or if s2 = NULL; or a negative
 value if *s1 < *s2 or if s1 = NULL.

 . strcpy −−− copy string

 Calling Information:

 char *strcpy (t, s)
 char *t, *s;

 Copy string ’s’ to string ’t’. ’Strcpy’ assumes that ’t’ is
 large enough to receive all characters contained in ’s’. If
 ’t’ is NULL ’strcpy’ returns NULL; if ’s’ is NULL and ’t’ is
 non−NULL, ’t’ is set to the empty string ("").

 − 46 −

 C User’s Guide

 . strncpy −−− copy substring to string

 Calling Information:

 char *strncpy (s1, s2, n)
 char *s1, *s2;
 int n;

 ’Strncpy’ copies at most ’n’ characters from string ’s2’ to
 string ’s1’. If ’s2’ contains more than ’n’ characters,
 then ’s1’ will not be ’\0’−terminated. If ’s2’ contains
 fewer than ’n’ characters (including a terminal ’\0’), then
 ’s1’ is ’\0’−padded until it contains ’n’ characters.

 . strlen −−− return length of string

 Calling Information:

 int strlen (s)
 char *s;

 ’Strlen’ returns the length of a string ’s’ excluding the
 terminating ’\0’ character.

 . strchr −−− find character in string

 Calling Information:

 char *strchr (s, c)
 char *s, c;

 Returns pointer to first occurrence of character ’c’ in
 string ’s’; if ’c’ is not found ’strchr’ returns NULL.

 . strrchr −−− find character in string (last occurrence of)

 Calling Information:

 char *strrchr (s, c)
 char *s, c;

 ’Strrchr’ returns a pointer to the last occurrence of the
 character ’c’ in the string ’s’. If ’c’ does not occur in
 ’s’, NULL is returned. (’Strrchr’ also works if ’c’ =
 ’\0’.)

 . strpbrk −−− find one of a class of characters in a string

 Calling Information:

 char *strpbrk (s1, s2)
 char *s1, *s2;

 Returns a pointer to the first character in ’s1’ matching
 any character in string ’s2’, or NULL if no character in
 ’s2’ is in ’s1’. Both ’s1’ and ’s2’ must be non−NULL.

 − 47 −

 C User’s Guide

 . strspn −−− find qualified substring

 Calling Information:

 int strspn (s1, s2)
 char *s1, *s2;

 ’Strspn’ returns the length of the initial substring of ’s1’
 that is made entirely of characters from ’s2’. If either
 ’s1’ = NULL or ’s2’ = NULL, ’strspn’ returns 0.

 . strcspn −−− find qualified substring

 Calling Information:

 int strcspn (s1, s2)
 char *s1, *s2;

 ’Strcspn’ returns the length of the initial substring of
 ’s1’ not having any characters contained in ’s2’.

 . strtok −−− find tokens in a string

 Calling Information:

 char *strtok (s1, s2)
 char *s1, *s2;

 ’Strtok’ returns a pointer to the start of each token in
 ’s1’. Tokens are defined as contiguous strings of charac−
 ters delimited by separators. ’Strtok’ skips over any lead−
 ing separators. ’S2’ contains 1 or more characters to be
 considered as token separators. When ’strtok’ finds a
 token, it replaces the terminating delimiter with ’\0’. If
 it can’t find a token with the current set of delimiters,
 ’strtok’ returns NULL; however, if ’s1’ has already been
 successfully searched for a token, the terminating ’\0’ in
 ’s1’ is considered a valid delimiter. Thus, the final token
 in ’s1’ can be retrieved without any special finagling (the
 ’\0’ of ’s2’ is never considered a valid separator during
 the scan of ’s1’ for delimiters).

 On the first call to ’strtok’, ’s1’ should point to a valid
 string, while on subsequent calls ’s1’ should be NULL so
 that the entire string is scanned. The characters in ’s2’
 may change from call to call searching the same ’s1’.

 . index −−− find character in string

 Calling Information:

 char *index (s, c)
 char *s, c;

 Same as ’strchr’. This is the V7 (and Berkeley) UNIX
 routine; the name was changed with UNIX System III.

 − 48 −

 C User’s Guide

 . rindex −−− find the last occurrence of character in string

 Calling Information:

 char *rindex (s, c)
 char *s, c;

 Same as ’strrchr’. This is the V7 (and Berkeley) UNIX
 routine; the name was changed with UNIX System III.

 . toascii −−− convert a char/int to a valid ASCII value

 Calling Information:

 char toascii (ch)
 char ch;

 ’Toascii’ returns its argument converted into a valid ASCII
 value. When unpacking packed character strings, ’toascii’
 can be used to obtain the high character after shifting the
 packed word right by 8 bits. The low character can be got−
 ten by passing the whole integer to ’toascii’. To use this
 macro, the file "=incl=/ctype.h" must be included first.

 . toupper −−− convert lower case character to upper case

 Calling Information:

 char toupper (ch)
 char ch;

 If ’ch’ is a lower case letter, ’toupper’ returns the
 corresponding upper case letter. Otherwise it returns ’ch’
 unchanged. This is actually a fast, assembly language
 routine, declared in "=incl=/ctype.h".

 . tolower −−− convert upper case character to lower case

 Calling Information:

 char tolower (ch)
 char ch;

 If ’ch’ is an upper case letter, ’tolower’ returns the
 corresponding lower case letter. Otherwise it returns ’ch’
 unchanged. This is actually a fast, assembly language
 routine, declared in "=incl=/ctype.h".

 − 49 −

 C User’s Guide

 . _toupper −−− blindly convert a character to upper case

 Calling Information:

 char _toupper (ch)
 char ch;

 ’_toupper’ returns ’ch’ converted to upper case. It does
 not check that its argument is indeed a lower case letter.
 This function performs the Unix Version 7 ’toupper’, which
 was changed to ’_toupper’ in Unix System III to accommodate
 those who may still want it. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . _tolower −−− blindly convert a character to lower case

 Calling Information:

 char _tolower (ch)
 char ch;

 ’_tolower’ returns ’ch’ converted to lower case. It does
 not check that its argument is indeed an upper case letter.
 This function performs the Unix Version 7 ’tolower’, which
 was changed to ’_tolower’ in Unix System III to accommodate
 those who may still want it. To use this macro, the file
 "=incl=/ctype.h" must be included first.

 . ttyname −−− return the name of the terminal

 Calling Information:

 char *ttyname (fd)
 int fd;

 ’Ttyname’ takes an integer file descriptor as an argument.
 If the device which is attached to the file descriptor is a
 terminal, it returns the string "/dev/tty", otherwise it
 returns NULL. (Under Unix, it would return the actual
 device name.)

 The associated ’isatty’ function already exists in SWT. It
 may used as is.

 The C Math Library

 The following routines are those listed as "3M", i.e. the C
 Math Library. These routines all take arguments of type double,
 and return type double.

 You should include the file "=incl=/math.h" which declares
 these routines, before using them. This can be done with the
 line:

 − 50 −

 C User’s Guide

 #include <math.h>

 Most of these routines simply call the corresponding routine
 in the SWT math library, "vswtmath". See the SWT Math Library
 User’s Guide for details on how these routines work, and under
 what condition(s) they will raise an error condition.

 . acos −−− take arc cosine of a real

 Calling Information:

 double acos (x)
 double x;

 This routine returns the value obtained from ’dacs$m’ in SWT
 math library.

 . asin −−− take arc sine of a real

 Calling Information:

 double asin (x)
 double x;

 This routine returns the value obtained from ’dasn$m’ in SWT
 math library.

 . atan −−− take arc tangent of a real

 Calling Information:

 double atan (x)
 double x;

 This routine returns the value obtained from ’datn$m’ in SWT
 math library.

 . atan2 −−− take arc tangent of x/y

 Calling Information:

 double atan2 (x, y)
 double x, y;

 This routine first divides x by y. It passes the result of
 the division to the SWT math library routine ’datn$m’,
 returning its result.

 . ceil −−− return smallest integer not less than x

 Calling Information:

 double ceil (x)
 double x;

 − 51 −

 C User’s Guide

 This routine uses the ’dint$m’ routine in the SWT Math
 Library to remove the fractional part, and then adds 1.0 if
 its argument was positive.

 . cos −−− take cosine of a real

 Calling Information:

 double cos (x)
 double x;

 This routine returns the value obtained from the ’dcos$m’
 routine in the SWT math library.

 . cosh −−− take hyperbolic cosine of a real

 Calling Information:

 double cosh (x)
 double x;

 This routine returns the value obtained from the ’dcsh$m’
 routine in the SWT math library.

 . exp −−− compute exponential (base e) of a real

 Calling Information:

 double exp (x)
 double x;

 This routine returns the value obtained from the ’dexp$m’
 routine in the SWT math library (Raise e to ’x’ power).

 . fabs −−− compute the absolute value of a real

 Calling Information:

 double fabs (x)
 double x;

 This routine returns the absolute value of its double
 precision argument. It is a fast, assembly language
 routine, local to the C library.

 . fmod −−− do floating point modulus operation

 Calling Information:

 double fmod (x, y)
 double x, y;

 ’Fmod’ returns ’x’ if ’y’ is zero. Otherwise, it returns a
 number f, of the same sign as x, such that x = iy + f for
 some integer i, and |f| < |y|.

 − 52 −

 C User’s Guide

 . hypot −−− return Euclidean distance function

 Calling Information:

 double hypot (x, y)
 double x, y;

 ’Hypot’ returns

 sqrt (x * x + y * y)

 It does not check for overflow of the multiplication and
 addition operations (although it should).

 . floor −−− return largest integer not greater than x

 Calling Information:

 double floor (x)
 double x;

 This routine uses the ’dint$m’ routine in the SWT Math
 Library to remove the fractional part, and then subtracts
 1.0 if its argument was negative.

 . log −−− take the natural log (base e) of a real

 Calling Information:

 double log (x)
 double x;

 This routine returns the value obtained from the ’dln$m’
 routine in the SWT math library.

 . log10 −−− take the log base 10 of a real

 Calling Information:

 double log10 (x)
 double x;

 This routine returns the value obtained from the ’dlog$m’
 routine in the SWT math library.

 . pow −−− provide exponentiation for C programs

 Calling Information:

 double pow (a, b)
 double a, b;

 ’Pow’ computes ’a’ to the ’b’. ’Pow’ calls ’powr$m’ in the
 SWT math library. It may raise ’SWT_MATH_ERROR$’ if the
 first argument is negative, or if the first argument is
 zero, and the second is negative or zero. The exception

 − 53 −

 C User’s Guide

 will also be raised if the results of the calculation would
 cause an overflow.

 . sin −−− take sine of a real

 Calling Information:

 double sin (x)
 double x;

 This routine returns the value obtained from the ’dsin$m’
 routine in the SWT math library.

 . sinh −−− take hyperbolic sine of a real

 Calling Information:

 double sinh (x)
 double x;

 This routine returns the value obtained from the ’dsnh$m’
 routine in the SWT math library.

 . sqrt −−− take square root of a positive real

 Calling Information:

 double sqrt (x)
 double x;

 This routine returns the value obtained from the ’dsqt$m’
 routine in the SWT math library.

 . tan −−− take tangent of a real

 Calling Information:

 double tan (x)
 double x;

 This routine returns the value obtained from the ’dtan$m’
 routine in the SWT math library.

 . tanh −−− take hyperbolic tangent of a real

 Calling Information:

 double tanh (x)
 double x;

 This routine returns the value obtained from the ’dtnh$m’
 routine in the SWT math library.

 − 54 −

 C User’s Guide

 Unix Special Library Routines

 The following routines are those listed as "3X", i.e. the
 routines which require special libraries and/or include files.

 . assert −−− put assertions into C programs

 Calling Information:

 #include <assert.h>

 assert (expression)
 int expression;

 The ’assert’ function is actually a macro which tests the
 boolean expression. If the expression is FALSE, ’assert’
 prints a message to ’stderr’, and exits. The error message
 will contain the file name and line number of the ’assert’
 statement. The ’assert’ macro is written in such a way that
 it can be used as a regular statement in a C program; it
 will not mess up if−else nesting, for instance.

 Defining NDEBUG before including "<assert.h>" or on the ’cc’
 (or ’ccl’ or ’ucc’) command line will turn ’assert’ into a
 null (empty) macro.

 . logname −−− return login name of user

 Calling Information:

 char *logname()

 ’Logname’ returns a pointer to a string containing the
 user’s login name. If the LOGNAME environment variable
 exists, ’logname’ returns its value. Otherwise, if the tem−
 plate =user= has a value, that value is returned. If
 neither of those work, ’logname’ returns NULL. Both of
 these methods are subject to counterfieting.

 . varargs −−− portably write functions with a variable number
 of arguments

 Calling Information:

 #include <varargs.h>

 function (va_alist)
 va_dcl
 va_list pvar;
 va_start (pvar);
 f = va_arg (pvar, type);
 va_end (pvar);

 The file "=incl=/varargs.h" contains a set of macros which
 allow you to write functions which will have a variable num−
 ber of arguments in a portable (if slightly opaque) fashion.

 − 55 −

 C User’s Guide

 va_alist is used in place of the argument list
 inside the parentheses of a function
 header, to declare a variable argument
 list.

 va_dcl declares the "type" of the variable
 argument list. Note that there is no
 semicolon after the "va_dcl".

 va_list is a "type" for declaring the variable
 pvar. Pvar is a variable which will be
 used to step through the argument list.
 One such variable must be declared.

 va_start (pvar) initializes pvar to the beginning of
 the argument list.

 va_arg (pvar, type) returns the next argument in the
 list pointed to by pvar. It will be a
 value of type type. Variables of
 different types may be mixed, but it is
 up to the called routine to determine
 their types, since this cannot be done
 at compile time.

 va_end (pvar) is used to finish up.

 The list can be traversed multiple times, as long as each
 traversal starts with a ’va_start’ and ends with ’va_end’.

 While ’varargs’ originated at Bell Labs, and is available
 with System V, it is not documented there. Instead, its use
 was popularized with the Berkeley versions of Unix (which do
 document it). In any case, you should be able to use the
 ’varargs’ macros to portably write functions which take a
 variable number of arguments (like ’printf’ does).

 The current implementation of ’varargs’ allows a maximum of
 ten arguments in the ’va_alist’.

 Other Routines Not From Unix

 The following routines are not routines found on Unix, but
 are supplied in "ciolib", since they are generally useful.

 − 56 −

 C User’s Guide

 . basename −−− return the file name part of a path name

 . dirname −−− return all but the last part of a path name

 Calling Information:

 char *basename (str)
 char *str;

 char *dirname (str)
 char *str;

 ’Basename’ returns a pointer to the last part of the SWT
 path name contained in ’str’. If there are no slashes in
 ’str’, it returns ’str’, otherwise it returns a pointer to
 somewhere in the middle of ’str’.

 ’Dirname’ returns a pointer to the directory part of the SWT
 path name contained in ’str’. It copies ’str’ into a
 private buffer (of length MAXPATH), and then replaces the
 final slash with a ’\0’. If there are no slashes, it
 changes no characters in the buffer. In all cases, it
 returns the address of the buffer; the original ’str’ is not
 modified.

 The following example should clariy what these routines do:

 basename ("path/file"); returns "file"
 dirname ("path/file"); returns "path"

 . c$ctov −−− convert C string to PL/I string

 Calling Information:

 int c$ctov (dest, src)
 int *dest;
 char *src;

 Converts the C string in ’src’ to a PL/I varying string in
 ’dest’. (A PL/I string is an array of integers. The first
 element contains the number of characters in the string.
 The rest of the array contains the characters, packed two to
 a word.) Conversion terminates when a ’\0’ is encountered
 in ’src’. The function return is the number of characters
 converted to ’var’. Like other C string routines, no bounds
 checking is performed (see ctov(2) in the Software Tools
 Subsystem Reference Manual, though).

 NOTE: This routine has been changed from the previous
 release of the C compiler.

 − 57 −

 C User’s Guide

 . c$vtoc −−− convert PL/I string to C string

 Calling Information:

 int c$vtoc (dest, src)
 char *dest;
 int *src;

 Converts a PL/I varying string ’src’ to a C string ’dest’.
 The function returns the number of characters copied into to
 ’str’. Again, no bounds checking is done (see vtoc(2) in
 the Software Tools Subsystem Reference Manual).

 NOTE: This routine has been changed from the previous
 release of the C compiler.

 − 58 −

 C User’s Guide

 ^HC^Ho_^Hn_^Hv_^He_^Hr_^Hs_^Hi_^Ho_^Hn

 The Georgia Tech C compiler is based on the specifications
 contained in The C Programming Language by Kernighan and Ritchie.
 However the C compiler environment is not totally compatible with
 the Unix C implementation. Simulation of a Unix environment
 under Primos can be done only with an unreasonable loss of per−
 formance. Therefore, Unix C programs require some conversion to
 execute on Prime systems. (Programs that depend intimately upon
 the Unix process mechanism or the Unix file system layout are
 more difficult to convert. Likewise, programs that make heavy
 use of Unix inter−process ’signal’ interfaces will be difficult
 to convert.)

 C Program Checker

 There exist the beginnings of a "C Program Checker" to flag
 possibly dangerous C program constructs when it encounters them;
 e.g. type mismatches. The "C Program Checker" can be called by
 using the "−y" option with ’cc’, ’ccl’, or ’ucc’. It currently
 reports on mismatched formal/actual parameters and misdeclared
 function return values.

 Incompatabilities With PDP−11 C

 The C compiler is compatible with PDP−11 C where possible.
 The following list enumerates those features of the Georgia Tech
 C compiler which are not compatible with PDP−11 C.

 Include Statements

 The compiler will complain about semicolons appearing at the
 end of include statements.

 Note that the Georgia Tech C compiler automatically includes
 the standard definitions in "=cdefs=" so that the typical Unix−
 style "#include <stdio.h>" is optional. The compiler will search
 for an include file starting with the the current working direc−
 tory, through the directories listed with the "−I" compiler
 option in the order listed, and ending with the system include
 directory "=incl=". Use of angle brackets (e.g., <filename>)
 rather than double quotes (e.g., "filename") in the include
 statement directs the compiler to skip the search of the current
 working directory.

 − 59 −

 C User’s Guide

 Pointers

 It is currently not possible to make pointers and ints the
 same length. Pointers are 32 bits, ints are 16 bits. The com−
 piler tries to warn of pointer truncation, but cannot always
 detect it.

 If NULL pointers are to be passed as arguments, they must be
 of type pointer (e.g. you cannot pass 0 or 0L as a NULL pointer.
 Use the symbolic constant NULL which is defined in
 "=incl=/stdio.h" to be "(char*) 0").

 Pointers to dynamically linked objects cannot be compared.
 Pointers to dynamically linked objects (currently only functions
 are dynamically linked) are actually faulting pointers to charac−
 ter strings. At run time, these pointers are filled in with the
 correct linkage address (the links are "snapped") the first time
 the pointer is referenced indirectly. The C compiler must
 generate a constant pointer to each external object in each C
 object file. If relocatable files are linked together, during
 execution it is possible to have one file’s constant pointer
 snapped, and the other’s untouched. The object code generated by
 the compiler to compare these pointers does not reference through
 the pointers; it merely treats them as 32−bit integers. Because
 of this, comparisons of pointers to dynamically linked objects
 may give inconsistent results. A significant performance penalty
 would be required to guarantee consistent results in such a
 limited case.

 Program and Data Object Size Restrictions

 No source file may require more than 65536 words of static
 data. The static data for each C source file is compiled into a
 single linkage frame, and the linkage frame size restriction is
 imposed by the system architecture.

 If you do require very large data objects, you may be able
 to get around this restriction with some work. You must declare
 the data object as an extern and write a Fortran subroutine that
 declares the data object name as a common block. Then when
 accessing the contents of this large block you must somehow
 insure that an object never crosses a segment boundary (start it
 at the beginning of the next segment just as Fortran does). If
 you attempt to address an object (such as a double) across a seg−
 ment boundary, part of your reference simply wrap around to the
 beginning of the segment you are trying to reference beyond.

 No source file may require more than 65536 words of
 procedure text. The compiler generates all procedures in the
 same PMA (Prime Macro Assembler) module. Currently PMA restricts
 the module size to 65536 words.

 No function may generate more than 65536 words of internal−
 format PMA (currently around 16K statements). This is a code−
 generator workspace restriction. It has only been encountered

 − 60 −

 C User’s Guide

 with output from YACC −− functions this huge are just not
 normally found around PDP−11s. (YACC is an LALR(1) parser
 generator. Its reads a BNF grammar, and produces a C function
 which will parse the grammar. This generated output has many
 large tables.)

 Functions

 In C, all arguments are passed by value. In Georgia Tech C,
 as long as arguments match in type they are, in all outward
 appearances, also passed by value. However, the internal
 mechanism for parameter passing is different from Unix C and will
 give different side effects if arguments do not match in type and
 in number.

 The Prime architecture maintains a stack for local variables
 and provides a 64V mode procedure call argument transfer
 primitive for passing pointers, but not data values. We have
 used this mechanism to take advantage of its speed. Therefore,
 pointers are passed by value, just as in Unix C, but data values
 are not passed by value; a pointer to the data value is passed
 into the stack frame of the called procedure; the data value is
 then copied into the local stack frame by the procedure
 initialization code. This scheme is transparent as long as there
 are no type mismatches. For this reason, an attempt to cast a
 pointer argument to a non−pointer type will fail.

 A variable number of arguments can be used, but not in the
 same manner as in Unix. The strategy is to declare as many
 arguments as you will ever need (make them pointers so that the
 compiler does not try to copy them). You will actually ignore
 all but the first of these names in the function. This trick
 forces the compiler to leave enough room for your arguments in
 the procedure’s local stack frame. When the function is called,
 you will find the first argument pointer at the address of the
 first argument, the second argument pointer at the address of the
 first argument plus 3, the third at the address of the first
 argument plus 6, etc. Note that because of software conventions,
 i.e., the procedure initialization code, functions that are
 declared with zero arguments must be called with exactly zero
 arguments; and functions that are declared with one or more
 arguments must not be called with zero arguments.

 Programs that depend on the order of parameter evaluation
 will fail.

 You cannot call a function with single precision floating
 point arguments nor can you ever expect a function to return a
 single precision floating point argument. Remember, C turns them
 into double precision.

 If a structure is to be a return value, the compiler adds on
 an additional first argument through which it passes a pointer to
 a temporary area in the calling procedure for the return value.
 Needless to say, type or length mismatches could cause

 − 61 −

 C User’s Guide

 significant nastiness.

 The side effects of type mismatches are quite predictable
 and can be useful for calling non−C procedures. For example, if
 you pass a non−pointer argument to a pointer argument, it will
 behave exactly as if a pointer had been passed (i.e. possibly
 allowing the supposed "value" argument to be modified). If you
 pass a pointer argument to a simple variable argument it behaves
 just like you passed the value of the argument instead.

 Be wary of non−C routines which modify their arguments
 (particularly Subsystem routines like ’ctoi’); if you pass a
 constant, the "constant" might end up with a different value in
 it than it had before the routine was called!

 Arrays

 Although it is possible to index outside of array bounds,
 doing so is very dangerous. In 64V mode, indexed instructions
 are much faster than 32−bit pointer arithmetic. As a
 consequence, the compiler generates 16−bit indexed instructions
 wherever possible. The only side effect of this performance
 improvement is that indexing outside the bounds of arrays may not
 give the expected results.

 Identifiers −−− Naming Restrictions

 Because the C compiler originally generated symbolic assem−
 bly language which was then processed by PMA, the Prime Macro
 Assembler, variable and function names had to follow PMA’s naming
 conventions which require that names begin with an alphabetic
 character. To achieve the necessary compatibility, variable and
 function names beginning with an underscore are prefixed with
 "z$". Even though ’vcg’ now generates object code directly, this
 naming restriction is still in effect.

 Field names within structs must be unique since the C com−
 piler does not maintain a separate symbol table for each struct.
 This behavior is in accordance with K&R and the V7 Unix C com−
 piler. (Berkeley Unix, System III, and System V, all keep
 separate symbol tables for each structure.)

 Character Representation and Conversion

 Character values run from 128−255, not 0−127.

 Characters are not sign extended when promoted to integers.

 Numerical

 Programs that use data of type double may lose precision in
 trade for increased magnitude.

 − 62 −

 C User’s Guide

 See the SWT Math Library User’s Guide for more details on
 Prime’s floating point hardware and software.

 Library Incompatibilities

 The Unix call ’fork’ cannot be efficiently implemented
 because of operating system restrictions, and is therefore not
 available with Georgia Tech C.

 ’Read’ and ’write’ calls that do not use ’sizeof’ to compute
 the buffer length will probably have to be changed.

 Programs that open other users’ terminals can not be sup−
 ported.

 Unix File System Incompatibilities

 Programs that depend intimately on the Unix directory struc−
 ture (’..’, directory layout, links) will not be easily con−
 verted.

 Programs that depend on the order and behavior of Unix file
 descriptors will not be easily converted.

 You cannot depend on file descriptors 0, 1, and 2 always
 being connected to standard input, standard output, and standard
 error respectively. Instead, use the macros STDIN, STDOUT, and
 STDERR (defined in "=incl=/swt.h", which is automatically
 included by "=cdefs=").

 Tabs

 Tabs are not supported in exactly the same manner on the
 Prime as in Unix. C programs which produce tabs in their output
 should be run piping their output into the Subsystem program
 ’detab’ (’detab +8’ is recommended).

 Static Initializers

 Initializers for static data objects which involve the
 "address−of" operator may only consist of "&objectreference".
 For example, while the statement "static char *x = &A" is okay,
 the statement "static char *x = &A+1" cannot be handled by the
 Georgia Tech C compiler. The restriction arises from the
 inability of PMA/SEG to handle address expressions of external
 symbols when forming 32−bit pointers.

 Registers

 In 64V mode, the Prime is essentially a single accumulator
 machine. Thus, while the compiler recognizes the register

 − 63 −

 C User’s Guide

 keyword, there is no effect on the size or speed of the generated
 code.

 The Type void

 Berkeley and System III Unix introduced the new type void
 into the C language. A void function is one which is guaranteed
 not to return a value (i.e. a true procedure). Only functions
 may be declared to be of type void, although you may also cast a
 function call to void. Georgia Tech C does not directly support
 void, but you may get around it with the simple statement:

 #define void int

 which should allow you to port practically any code which uses
 void. Admittedly, this defeats some of the type checking that
 the new type provides, but it will allow you to port code,
 without having to modify it.

 − 64 −

 C User’s Guide

 ^HB^Hu_^Hg_^Hs

 Known Bugs

 The following is a list of known problems with the C com−
 piler, as well as important enhancements that need to be made.

 1. In certain instances, the compiler’s attempt at parsing
 error correction fails to accept an input token. This can
 result in an infinite loop in the parser as it encounters
 and reports the same error repeatedly. A good example is
 placing an extra semicolon after the right brace of the
 statement in an if, before the corresponding else. The com−
 piler will halt after reaching a limit of 50 such messages.

 2. Bit fields must be initialized by execution time
 assignments; compile time initialization does not work
 correctly.

 3. If "f" and "g" are type float, then "f*=g" is performed in
 single precision, whereas "f=f*g" is performed in double
 precision. We have not made a detailed analysis of the
 ramifications of this situation; it may be that no loss of
 precision can be detected. Regardless, because of the
 structure of the code generator, it will be very difficult
 to alter this situation.

 4. The preprocessor does not support the "#if" construct.

 5. The parameter−checking option ("−y") does not check calls to
 the C library.

 6. A duplicate case in a switch is not detected by the first
 pass of the compiler. It will cause an error (with no
 information regarding the location of the error!) message
 to be reported by ’vcg’. In some cases, no error is
 reported, but ’vcg’ generates unreasonable code.

 7. There are several problems involving duplicated declarations
 for an external/global identifier (e.g. "extern a; int
 a;"). Most reasonable redeclarations are handled correctly,
 but some of the more obscure cases are probably not handled
 the way the Unix compilers handle them. In general, correct
 handling of these odd cases is not described explicitly−−to
 find out how they "should" be handled, you have to ask a
 Unix compiler (and they often give different answers).

 8. The sequence of declarations "extern int a[]; int a[5];"
 generates a warning message that "a" is being redeclared
 improperly. This is caused by the differing array bounds
 confusing the compiler into thinking that the second
 declaration is unreasonable. This is a definite bug (as

 − 65 −

 C User’s Guide

 opposed to a question of interpretation).

 9. The constant −2^−31 (smallest 32−bit negative number) is
 mishandled in all bases (’gctoi’ goofs on it). For the time
 being, instead of using "0x80000000", use "(1<<31)" or
 "(~0x7FFFFFFF)". These will give identical results because
 the constant folder gives correct results.

 10. The construct "p++−>x" confuses the compiler and causes it
 to complain about missing parentheses. This is because "−>"
 is of higher precedence than "++" and thus confuses the
 recursive−descent parser. You should write the expression
 as "(p++)−>x".

 11. The new version of the code generator still has some bugs in
 it. If it produces an object file which causes an error
 from the loader, you may wish to compile the program with
 the "−s" option, to generate PMA in a ".s" file. Then use
 ’pmac’ to assemble it, and load the new binary. This will
 usually work; it will simply take longer to compile.

 − 66 −

 C User’s Guide

 Technical Information

 Implementation

 The C compiler accepts C source code as input and in two
 "passes" produces 64V−mode relocatable object code as output.
 The first compilation pass is implemented by a Ratfor program
 known as the "front end," and the second pass by a Ratfor program
 known as the "back end." The front end is the Subsystem program
 ’c1’ and the back end is ’vcg’.

 ________ _________ ___________
 | | | | | |
 | | | | | |−−−>^H− Entry Points
 C −−−>| LA |−−−>| CMP |−−−>| PARSE |−−−>^H− Static Data
 Program | | | | | |−−−>^H− Function Bodies
 |______| |_______| |_________|
 A^H|
 |
 V^H|
 Mode Table
 Symbol Table
 Expression Table

 The "Front End." LA is the lexical analyzer, or scan−
 ner. CMP is the C macro preprocessor. PARSE is the
 parser and intermediate code generator.

 The front end is a classical recursive−descent compiler,
 employing a lexical analyzer (to break the stream of input
 characters into tokens), a preprocessor (to handle macro
 definitions and source file inclusion), and a parser (to analyze
 the program, diagnose syntactic and semantic errors, and produce
 an "intermediate form" output stream).

 − 67 −

 C User’s Guide

 ______ _______
 | |−−−−−−−−−−−−−−−−−−−−−−−−−−−−>| |
 Entry Points −>| | | |
 Static Data −>| IN | __________ __________ | OUT |−> PMA
 Function Bodies −>| |−−>| |−−>| |−−>| |
 |____| | CODE | | OPT | |_____|
 | tree−> | | |
 | mach. | | (mach. |
 | inst. | | inst.) |
 |________| |________|

 The "Back End." IN reads the intermediate code produced
 by the front end. CODE attempts to "intelligently"
 generate machine instructions. OPT performs some sim−
 ple peephole optimizations to remove redundant loads
 and stores. OUT converts the internal instruction form
 to 64V−mode object code, or, optionally, to Prime Macro
 Assembly Language.

 The back end is a reusable general−purpose code generator.
 It accepts the linearized intermediate form tree produced by the
 front end, rebuilds the tree internally, converts the tree to a
 linked list of machine instruction representations, performs
 peephole optimizations on that list, and then produces 64V−mode
 object code, ready for link editing and subsequent execution.
 ’Vcg’ has an option for producing symbolic assembly language
 instead of object code. The assembly language that ’vcg’
 produces is suitable for processing by the Prime Macro Assembler,
 PMA.

 For those of you wishing to supply your own front−ends to
 the code generator, there is a V−mode Code Generator User’s Guide
 (use the Subsystem command ’guide’) and a Reference Manual entry
 for ’vcg’.

 Performance

 The C compiler requires parts of 5 segments to run. The
 previous version of the C compiler, which used to call PMA, ran
 almost twice as fast as Prime’s Fortran 77 and Pascal compilers
 (700 lines per minute vs 400 lines/minute on a PRIME 550 running
 under Primos 18.1). Hand inspection and informal benchmarks
 indicate that the code produced is superior to that produced by
 Pascal, PL/1 and Fortran 77; in particular, fewer base register
 loads are generated, and operations on packed data structures are
 performed without resorting to the field manipulation instruc−
 tions.

 − 68 −

 C User’s Guide

 The compile time requirements for each phase were
 approximately as follows: ’c1’: 23%, ’vcg’: 27%, ’pma’: 50%.
 Roughly half of ’vcg’s time was spent in the assembly−language
 output routines.

 For the second release, ’vcg’ has been changed to produce
 64V−mode object modules directly. This substantially reduces
 compile time. We have not measured the new version of the com−
 piler, but the compile time requirements for each phase are about
 equal. The total compile time is now approximately half of what
 it was, since PMA is not involved in the process.

 − 69 −

 C User’s Guide

 Subsystem Managers Section

 The machine−readable text of the User’s Guide for the
 Georgia Tech C Compiler is in the file "=doc=/fguide/cc" (already
 formatted) and in the directory "=doc=/guide/cc" (unformatted)
 (assuming that you have already installed the C compiler accord−
 ing to the directions below).

 Installation Procedure

 The C compiler and its support programs are intended to be
 part of the Subsystem. Source, documentation and executable ver−
 sions "drop in" to appropriate Subsystem directories so that they
 are accessible as standard Subsystem tools. This section covers
 the procedures necessary for installation of the C compiler.

 Georgia Tech C Installation Package

 The C Installation Package as sent from Georgia Tech
 contains the following items:

 1 Release Tape
 1 Copy of the C User’s Guide

 Release Tape Contents

 The C Release Tape contains all files and directories neces−
 sary for proper operation of the C compiler under the Software
 Tools Subsystem. It is in standard MAGSAV/MAGRST format and
 contains 5 "logical tapes." Each logical tape contains a number
 of files that "drop in" to Subsystem directories.

 Logical Tape 1

 The first logical tape contains executable files that are to
 be placed in "=bin=",

 cc ccl compile ucc vcg vcgdump

 ’Cc’ is the Subsystem C compiler, ’ccl’ is a shell file that com−
 piles and loads a C program, ’ucc’ is a ’Unix−like’ C compiler
 and ’vcg’ is the V−mode code generator. ’Vcg’ is used by the C

 − 70 −

 C User’s Guide

 compiler but can also be used separately by those users who have
 their own "front ends." ’Vcgdump’ reads the intermediate files
 produced by ’c1’, and prints a human−readable version of the
 intermediate form tree. ’Compile’ is a general purpose compiler
 interlude.

 Logical Tape 2

 The second logical tape contains libraries for "=lib=",

 ciolib c$main nciolib vcglib vcg_main

 "Ciolib" contains the executable version of the C run time
 library; "c$main" is a small startup program that must be loaded
 with every C main program. "Nciolib" is the version of the C run
 time library for programs which are to run under bare Primos.

 ’Vcglib’ is a library of regular and shortcall routines for
 range testing and other purposes. ’Vcg’ generates calls to these
 routines for their operations, instead of generating code.
 ’Vcg_main’ is a small general purpose start off routine. These
 are not used by C programs, but are necessary if you wish to
 provide your own "front end" for ’vcg’.

 Logical Tape 3

 The third logical tape contains files for "=extra=",

 bin/(c1 cc cck1 cck2 compile ucc)

 incl/(swt_def.c.i ascii.h assert.h ctype.h
 debug.h lib_def.h keys.h math.h
 memory.h setjmp.h stdio.h swt.h
 swt_com.h varargs.h)

 incl/(vcg_defs.h vcg_defs.p.i vcg_defs.r.i)

 ’C1’ is the "front end" for the C compiler and is called by ’cc’,
 ’ccl’, and ’ucc’. ’Compile’ is a general purpose compiler inter−
 lude. ’Ucc’ calls it. ’Cck1’ and ’cck2’ are the "trouble spot−
 ters" for C programs. They will flag potentially dangerous
 constructs in a C program and are invoked by compiling a program
 with "ucc −y". Subsystem definitions for the C compiler are
 contained in "swt_def.c.i". The ?*.h files are other header
 files, discussed above in the chapter on the compile time
 environment.

 The vcg_defs.?* files contain constant definitions for use
 in writing "front ends" for ’vcg’.

 − 71 −

 C User’s Guide

 Logical Tape 4

 The fourth logical tape contains documentation for "=doc=",

 man/s1/(cc.d ccl.d ucc.d
 vcg.d vcgdump.d compile.d)

 man/s5/(c1.d cck1.d cck2.d)

 fman/s1/(cc.d ccl.d ucc.d
 vcg.d vcgdump.d compile.d)

 fman/s5/(c1.d cck1.d cck2.d)

 guide/(cc vcg)

 fguide/(cc vcg)

 Logical Tape 5

 The fifth logical tape contains source files for "=src=",

 std.sh/(cc.sh ccl.sh ucc.sh compile.sh)

 ext.c # new directory with source files for C interludes

 ext.r/(cck1.r cck2.r cck2_com.r.i cck2_def.r.i)

 lib/(cio c$main nc$main vcg vcg_main)

 spc/(c1.u vcg.u)

 std.r/(vcgdump.r vcgdump_com.r.i)

 If you do not have a source license then you will not recieve any
 of the source files. In fact, the "src" directory will not be on
 the tape.

 Loading the Tape

 To load the release tape, follow the instructions below:

 1. Assign a tape drive:

 ASSIGN MT0

 2. Mount the release tape on the assigned drive.

 3. Attach to directory "=bin=":

 ATTACH BIN <owner−password>

 − 72 −

 C User’s Guide

 or if the tape is being restored to an ACL or priority ACL
 protected partition, type

 ATTACH BIN

 4. Load the contents of the first logical tape with MAGRST:

 MAGRST
 Tape Unit (9 Trk): 0
 Enter logical tape number: 1
 <tape label information>
 Ready to Restore: yes

 (This loads the files "cc", "ccl", "ucc", "compile", "vcg",
 and "vcgdump".)

 5. Attach to directory "=lib=":

 6. Load the contents of the next logical tape (i.e., reply "0"
 to the "Enter logical tape number:" prompt) with MAGRST.
 (This loads the library files for ’cc’ and ’vcg’.)

 7. Attach to directory "=extra=":

 8. Load the contents of the next logical tape with MAGRST.
 (This loads the support programs for the compiler inter−
 faces.)

 9. Attach to directory "=doc=":

 10. Load the contents of the next logical tape with MAGRST.
 (This loads the formatted and unformatted ’vcg’ and C com−
 piler guides, and the formatted and unformatted Reference
 Manual (help) entries.)

 11. Attach to directory "=src=":

 12. Load the contents of the next logical tape with MAGRST.
 (This loads the source code for the C compiler, the run_time
 library, the compiler interfaces, the V−mode code generator,
 and the vcg support routines.) If you do not have a source
 license, and/or you have received a demonstration tape, this
 logical tape will not be present.

 This completes the loading of the C compiler from tape.

 Installation

 Once you have loaded the tape, the C compiler is ready to
 use. However, for the C compiler programs to appear in the
 "help" index, you must rebuild it by executing ’man_index’ in
 "=doc=/build".

 − 73 −

 C User’s Guide

 Finally, for the ’locate’ and ’source’ commands to work
 correctly, you have to rebuild the =srcloc= file. To do this,
 ’cd’ to "=src=/misc", and execute the file "make_srcloc". This
 completes the integration of the C compiler with the rest of the
 Subsystem.

 − 74 −

 TABLE OF CONTENTS

 Getting Started

 Prerequisites .. 1

 Calling the C Compiler 1
 Cc −−− compile a C program 1
 Ccl −−− compile and load a C program 2
 Ucc −−− compile and load a C program 2
 Compile −−− general purpose compile and load 2

 C Program Development −−− An Example 2

 Features of Georgia Tech C

 Standard Implemented 4

 Additional Features 4

 Compile Time Facilities

 Include File Organization 6
 =incl=/swt_def.c.i 6
 =incl=/stdio.h .. 7
 =incl=/ctype.h .. 8
 =incl=/swt.h .. 8
 =incl=/ascii.h .. 9
 =incl=/assert.h 9
 =incl=/debug.h .. 9
 =incl=/keys.h ... 10
 =incl=/lib_def.h 10
 =incl=/math.h ... 10
 =incl=/memory.h 10
 =incl=/setjmp.h 10
 =incl=/swt_com.h 10
 =incl=/varargs.h 11

 − iii −

 Loading C Programs For Bare Primos 11

 Run Time Environment

 Calling Primos and Subsystem Routines 13

 The Main Program ... 13

 C Run Time Library 14
 UNIX System Calls 15
 The C Standard I/O Library 18
 Unix Subroutines For C Programs 34
 The C Math Library 50
 Unix Special Library Routines 55
 Other Routines Not From Unix 56

 Conversion

 C Program Checker .. 59

 Incompatabilities With PDP−11 C 59
 Include Statements 59
 Pointers .. 60
 Program and Data Object Size Restrictions 60
 Functions ... 61
 Arrays .. 62
 Identifiers −−− Naming Restrictions 62
 Character Representation and Conversion 62
 Numerical ... 62
 Library Incompatibilities 63
 Unix File System Incompatibilities 63
 Tabs .. 63
 Static Initializers 63
 Registers ... 63
 The Type void ... 64

 − iv −

 Bugs

 Known Bugs ... 65

 Technical Information

 Implementation ... 67

 Performance .. 68

 Subsystem Managers Section

 Installation Procedure 70

 Georgia Tech C Installation Package 70

 Release Tape Contents 70
 Logical Tape 1 .. 70
 Logical Tape 2 .. 71
 Logical Tape 3 .. 71
 Logical Tape 4 .. 72
 Logical Tape 5 .. 72

 Loading the Tape ... 72

 Installation ... 73

 − v −

 A Re−Usable Code Generator
 for Prime 50−Series Computers

 User’s Guide

 T. Allen Akin

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 March, 1983

 Foreword

 Although the School of Information and Computer Science has
 operated Prime 400 and 550 computers for over four years, as yet
 there has been no successful local attempt to produce a compiler
 for them. The main reasons for this failure are the irregularity
 of the architecture and existing system software, the complexity
 of Prime’s standard object code format, and the lack of
 documentation on matters of importance to compiler writers.

 This paper discusses the design, implementation, and usage
 of a re−usable code generator. This program can serve as a com−
 mon "back−end" for a number of language translators, producing
 64V−mode assembly language code suitable for execution on the
 P400 and higher numbered processors in Prime’s "50" series.
 Furthermore, it could be tailored to match specific front−ends,
 when needs for special optimizations arise.

 A preliminary version of the code generator is available for
 general use.

 How to Use This Guide

 The first chapter of this Guide is the Overview. The
 Overview is a brief summary of the design and construction of the
 code generator. This chapter may be of general interest, but it
 is not necessary to read it in order to learn to use the code
 generator.

 The Code Generator Usage chapter describes the location of
 the code generator and its associated run−time support libraries,
 as well as the Software Tools Subsystem commands necessary to
 access them. Recommended procedure is to study this section,
 then generate command language programs to do the low−level file
 access operations.

 Input Data Stream Formats gives a bird’s−eye view of the
 formats of the three code generator input streams. This chapter
 merits some study, although it is supplemented by the Extended
 Examples.

 The three operator definitions chapters (Operators Useful in
 the Static Data Stream, Operators Useful in the Procedure
 Definition Stream, Operators Useful in Procedure Definitions)
 provide a detailed reference for the intermediate form operators
 interpreted by the code generator. One or two readings through
 this chapter are desirable; thereafter, it can be used as a
 reference with the Operator/Function Index and the Table of
 Contents used as entry points.

 The Extended Examples are comprised of several short (but
 complete) programs written in the language C. These examples
 include the original C code, annotated versions of the three code
 generator input streams, and an annotated listing of the code
 generator’s assembly language output. The chapter should be
 useful in learning how the various intermediate form operators
 work together, and may be used as a reference when building a new
 front end.

 ’Drift’ is a very small expression−based language whose
 structure closely mimics the code generator’s internal world−
 model. The ’Drift’ Compiler is a complete, working compiler
 using the code generator as a back−end. It serves as an example
 of one way to construct a front−end for the VCG.

 For ease of reference, all the intermediate form operators
 have been organized by subject in the Intermediate Form
 Operator/Function Index. Typically, one would look up some func−
 tion (e.g., "subscripting") in the Index, find the name of the
 appropriate intermediate form operator (e.g., INDEX_OP), then
 look up that operator in the table of contents to find its com−
 plete description.

 − 1 −

 Overview

 Philosophy

 Design Considerations

 The design of the code generator (hereinafter referred to as
 VCG, for "V−mode Code Generator") was driven by a number of
 considerations:

 . For experimental language translators, code generation
 should be fast and straightforward. This is necessary both
 for fast turnaround and ease of debugging in the development
 stage, and for fast turnaround in typical educational
 applications.

 . The VCG should insulate front−ends from details of storage
 allocation and data format selection, as well as instruction
 generation. This encourages inter−language compatibility at
 the object code level, as well as providing a framework for
 easily retargetable front−ends.

 . The intermediate form (IMF) that is processed by the VCG
 should be simple to generate and display (for debugging
 purposes). Furthermore, it should not unduly restrict
 extension for additional functionality or optimization.

 . The output object code should conform to Prime’s current
 standards, and should include at least minimal provisions
 for separate compilation and run−time debugging.

 Implementation Approaches

 After some time, consideration of the goals above led to the
 following approaches to the implementation of the VCG:

 . The basic IMF handled by both the front end and the VCG
 should be a tree structure. A tree is easily generated from
 the information available on the semantic stack during a
 bottom−up parse, and can be generated directly without an
 explicit stack during a top−down parse. A number of
 operations like constant folding, reordering of operands of
 commutative operators, and global context propagation are
 readily performed on a tree structure. Furthermore, use of
 a tree can eliminate the need for generation and tracking of
 temporary variables in the front end.

 . The IMF operators should be close to the constructs used in
 an algorithmic language of the level of, say, Pascal. This
 permits straightforward translation of most algorithmic

 − 2 −

 languages, and provides enough additional context to sim−
 plify many optimization tasks. For example, the IMF resem−
 bles the program’s flow graph closely enough that simple
 global register allocation can be performed without graph
 reduction.

 . One of the basic functions of the VCG is the mapping of data
 descriptions supplied by the front end into physical storage
 layouts. The goal of complete machine data structure
 independence in the front end cannot be met without com−
 promising the code generator’s utility for languages that
 allow storage layout specification (C and Ada are notable
 examples). Therefore, the IMF should contain descriptions
 of data structures in terms of a small set of primitive data
 modes that can easily be parameterized in front−end code.
 Simple variables, structures, and arrays defined in the
 front end must be converted to single or multiple instances
 of the following basic machine data modes: 16−bit signed
 integer, 16−bit unsigned integer, 32−bit signed integer, 32−
 bit unsigned integer, 32−bit floating point, and 64−bit
 floating point.

 . The IMF tree should be linearized and passed to the VCG as a
 stream of data in prefix Polish notation. The linearized
 form partly reflects the usual Software Tools methodology of
 expressing even complex data transformations as "filters."
 However, there are other advantages, particularly in storing
 and interpreting the IMF for debugging. Prefix Polish was
 chosen because it can be generated easily from the internal
 representation of the tree, and because it minimizes the
 amount of state information that must be explicitly
 maintained by both the front end and the VCG in order to
 output or input the IMF.

 . The final output of the VCG should be a stream of Prime
 Macro Assembly Language source code. Although the time
 required to assemble this source imposes a significant
 penalty on code generator performance, it appears to be
 unavoidable if the compiler writer is to be insulated from
 Prime’s object code format. (In addition, Prime has
 scheduled object code format changes, and it would not be
 wise to invest heavily in the present format.)

 Structure

 The VCG "main loop" simply reads each module present on its
 input, rebuilds the tree represented by the input, transforms the
 tree to a linked list of machine instructions, performs register
 tracking optimizations on that list, and finally converts the
 list to assembly language and outputs it.

 The input and output routines are straightforward and
 relatively uninteresting.

 − 3 −

 The optimization routines amount to about 13 pages of Ratfor
 code, and work by simulating the effect of each machine instruc−
 tion on the contents of the six registers that are tracked. At
 the moment, three types of optimization are performed: redundant
 loads are eliminated, some memory references are eliminated in
 favor of register−to−register transfers, and general instruction
 sequences are replaced with special−case code.

 The heart of the code generator is the set of transformation
 routines that convert the tree representation to the doubly−
 linked list of machine instructions. The transformation routines
 exhibit a great deal of knowledge about the machine architecture,
 but actually employ only very simple algorithms for code
 generation.

 IMF operators may appear in one of several "contexts,"
 identified internally by the following terms:

 Reach. An operator evaluated in reach context yields the
 address of a word in memory containing the result of the
 operation, if possible. At present, only the object,
 constant, pointer dereferencing, array indexing, and struc−
 ture member selection operators yield addresses. All other
 operators behave as if they were evaluated in "load"
 context.

 Load. An operator evaluated in load context yields a value
 in a machine register. The particular register used depends
 only on the basic machine data mode of the operation. Most
 IMF operators are evaluated only in this context.

 Void. An operator evaluated in void context yields side
 effects only. In a very few cases, this results in an
 opportunity to exploit special−case machine instructions
 that perform some calculation without making the result
 available in a register (incrementing a memory location, for
 example).

 Flow. An operator evaluated in flow context yields a change
 in flow−of−control rather than a value. For example, a
 "test for equality" operator would return 1 or 0 in a load
 context, but in flow context would cause a jump to a given
 label depending on the outcome of the test.

 AP. An operator evaluated in AP context yields an "argument
 pointer" rather than a value. Argument pointers are used to
 pass parameters to procedures.

 Context information is propagated top−down by the code
 generator as it scans the IMF tree. Additional information in
 the form of register requirements is propagated from the bottom
 up during the same scan. Together, context and register usage
 determine with fair accuracy the optimal code sequence to be
 generated for a given operator.

 − 4 −

 Input/Output Semantics

 Input Structure

 The IMF passed to the VCG consists of a sequence of modules.
 A module is a sequence of procedure definitions, static data
 definitions, and entry point declarations. The static data
 definitions build a data area that is shared by all procedures in
 the module, while the procedure definitions build code and data
 areas that are strictly local to each procedure, and the entry
 point declarations make the static data area or procedures
 visible to Prime’s link editor.

 Prime’s Fortran compilers currently generate code that is
 equivalent to one procedure per module under this scheme; Prime’s
 PL/I and Pascal compilers generate code that is equivalent to a
 single IMF module. The VCG module structure permits com−
 patibility with either of these alternatives, as well as com−
 promise forms that are more suitable for other languages.

 Note: Separate compilation capability directly affects
 module structure. At present, there is no way for
 separately compiled procedures to share a static data
 area. Furthermore, separately−compiled static objects
 must be referenced by a unique 8 or fewer character
 name made visible to the loader. A Fortran COMMON
 block definition can be used to reduce the number of
 such external symbols, but COMMON definitions must
 match exactly in all separately−maintained modules. In
 addition, note that Prime’s current loader software
 requires that external objects be referenced through an
 indirect address, which can cause a significant reduc−
 tion in performance.

 Each static data definition allocates space for an object
 and may specify an initial value for the object. A static data
 declaration names an object that is defined outside the current
 module, but provides no other information about the object.

 Each procedure definition consists of information associated
 with a closed routine defined by the front end. In particular,
 the procedure’s argument types and code tree are included.

 The bulk of the IMF will be in subtrees defining the code
 associated with procedures. Most storage allocators, arithmetic
 operators, and flow controllers are straightforwardly expressed
 in tree form; a description of these IMF components is available
 elsewhere.

 Output Structure

 Each VCG input module generates a single PMA input module,
 terminated by an END pseudo−op. The PMA input module may be

 − 5 −

 assembled, link−edited, and subsequently executed. The
 concatenation of all static data definitions and declarations
 forms a link frame that is shared by all procedures in the
 module. Each procedure definition yields an entry control block
 (ECB) and a chunk of machine code that implements the function of
 the procedure, including the allocation of space in the
 procedure’s stack frame for local variables.

 − 6 −

 Code Generator Usage

 The code generator currently resides in the file =bin=/vcg.
 The three input streams can be read from the three standard
 inputs, or from three files (if a standard naming convention is
 used). The PMA output stream is produced on standard output 1,
 and should be redirected to a file for assembly.

 Assume temporary files will be used for communications between
 the front end and the code generator. The temporary files must
 have names of the form "xxx.ct1" (for IMF stream 1), "xxx.ct2"
 (for IMF stream 2), and "xxx.ct3" (for IMF stream 3), where "xxx"
 is completely arbitrary but must be the same for all of the three
 temporary files in a given run. When the code generator is
 invoked, the string "xxx" must be passed to it as a command line
 argument.

 To use the code generator, first run the front end to produce the
 temporary files:

 front_end

 Say, for example, this produces files "temp.ct1", "temp.ct2", and
 "temp.ct3". Next, run the code generator and produce the assem−
 bly language output:

 vcg temp >temp.s

 Run the assembler to convert the PMA source to relocatable binary
 code:

 pmac temp.s

 Finally, run the link editor to load the VCG main program, the
 binary code for your program, and all required library routines:

 ld =lib=/vcg_main temp.b =lib=/vcglib −o program

 This produces an object program (in the file "program") which may
 be executed simply by typing its name:

 program

 All run−time support routines called by the output of the
 code generator are available in the library =lib=/vcglib. The
 stub main program in =lib=/vcg_main calls a procedure named MAIN;
 therefore, the user’s main program must be named MAIN. (This is
 the usual case in C environments.)

 One miscellaneous note: if the front end is being written
 in Ratfor, the complete set of macro definitions for the
 intermediate form operators can be obtained by simply including

 − 7 −

 the file "=incl=/vcg_defs.r.i". If the front end is being writ−
 ten in Pascal, the complete set of constant definitions for the
 intermediate form operators can be obtained by including the file
 "=incl=/vcg_defs.p.i".

 − 8 −

 Input Data Stream Formats

 This section describes the formats of the three code
 generator input streams. Note that all three have the same basic
 format:

 _
 32 MODULE_OP |
 _ |
 59 SEQ_OP | Repeat for | Repeat for each
 ... Item of information _| each item | module
 |
 39 NULL_OP _|

 39 NULL_OP Stream termination

 Detailed examples of the code generator input can be found in the
 "Extended Examples" section of this guide.

 Stream 1 −−− Entry Point Declarations

 The first intermediate form stream consists of one or more
 modules. Each module consists of a MODULE_OP, a list of entry
 point declarations separated by SEQ_OPs, and a NULL_OP terminat−
 ing the list of entry point declarations. The list of modules is
 terminated by a final NULL_OP.

 Each entry point declaration is an object identification
 number followed by a character string, expressed as the length of
 the string followed by the ASCII character codes for the charac−
 ters in the string. Each such string is assumed to be the name
 of a location defined in the current input module, and is made
 available to the link editor for resolving references made by
 other modules.

 A template for stream 1 would look something like this:

 _
 32 MODULE_OP |
 _ |
 59 SEQ_OP | Repeat for each | Repeat for each
 Entry object id | entry point | module
 ... Entry point name _| |
 |
 39 NULL_OP _|

 39 NULL_OP Terminate stream

 − 9 −

 Stream 2 −−− Static Data Declarations/Definitions

 In C terminology, a data "definition" reserves storage space
 for an object and possibly initializes that space, whereas a data
 "declaration" simply indicates that the storage space for an
 object resides outside the current module. The second
 intermediate form input stream defines or declares static data
 (objects that are not automatically allocated on the stack when a
 procedure is entered).

 The input stream consists of a series of modules, terminated
 by a NULL_OP. Each module contains a sequence of DEFINE_STAT_OPs
 and DECLARE_STAT_OPs, terminated by a NULL_OP.

 A template for the static data stream would look something
 like this:

 _
 32 MODULE_OP |
 _ |
 59 SEQ_OP | Repeat for | Repeat for
 14/11 DEFINE/DECLARE_STAT_OP | each defn/decl | each module
 ... with associated info _| |
 |
 39 NULL_OP _|

 39 NULL_OP Terminate stream

 Stream 3 −−− Procedure Definitions

 The third intermediate form input stream consists of one or
 more modules, terminated by a NULL_OP. Each module contains a
 list of PROC_DEFN_OPs, separated by SEQ_OPs and terminated with a
 NULL_OP.

 Each PROC_DEFN_OP causes a procedure to be defined and code
 for it to be generated.

 A template for stream 3 would look something like this:

 _
 32 MODULE_OP |
 _ |
 59 SEQ_OP | Repeat for | Repeat for
 50 PROC_DEFN_OP | each procedure | each module
 ... with associated info _| |
 |
 39 NULL_OP _|

 39 NULL_OP Terminate stream

 − 10 −

 Primitive Data Modes

 The following primitive data modes are presently handled by
 the code generator:

 INT_MODE 1

 Integer objects are one 16−bit word in size. They have integral
 values in the range (−2**15) to (2**15 − 1), inclusive.

 LONG_INT_MODE 2

 Long integer objects are two 16−bit words in size. They have
 integral values in the range (−2**31) to (2**31 − 1), inclusive.

 UNS_MODE 3

 Unsigned objects are nominally one 16−bit word in size. They
 have integral values in the range 0 to (2**16 − 1). Bit fields
 (see FIELD_OP) can be of mode UNSIGNED, and may range from 1 bit
 to 16 bits in length (with consequent change in the range of
 values they can represent).

 LONG_UNS_MODE 4

 Long unsigned objects are nominally two 16−bit words in size.
 They have integral values in the range 0 to (2**32 − 1). Machine
 addresses (pointers) are represented as long unsigned quantities.
 Bit fields (see FIELD_OP) can be of mode LONG UNSIGNED, and may
 range from 1 bit to 32 bits in length (with consequent change in
 the range of values they can represent).

 FLOAT_MODE 5

 Floating point objects are two 16−bit words in size.

 LONG FLOAT_MODE 6

 Long floating point objects are four 16−bit words in size.

 − 11 −

 STOWED_MODE 7

 STOWED mode is the mode assigned to structured objects like
 arrays and structs (Pascal "records"). STOWED objects may be any
 size from 1 to 65536 16−bit words; IMF operators that need to
 know the size of a STOWED object invariably have a "length" or
 "size" parameter to carry that information.

 − 12 −

 Operators Useful in the Static Data Stream

 DECLARE_STAT_OP 11

 int 11
 int object_id
 string external_name

 DECLARE_STAT informs the code generator that an object defined
 outside the current module will be referenced by a given integer
 object id. The parameter ’external_name’ is a character string,
 represented in the IMF by a length followed by a stream of ASCII
 characters (one per word, right justified, zero filled). The
 external name is used by the link editor and the loader to
 resolve actual references to the object.

 Example: extern int abc
 where ’abc’ is assigned the object id 6

 11 DECLARE_STAT_OP
 6 Object id of ’abc’
 3 Length of name ’abc’
 225 character ’a’
 226 character ’b’
 227 character ’c’

 DEFINE_STAT_OP 14

 int 14
 int object_id
 tree init_list
 int size

 This operator causes storage for the object identified by
 ’object_id’ to be allocated in the current link frame (static
 data area). ’Object_id’ must be used in all subsequent
 references to the object, and the object’s definition with
 DEFINE_STAT must precede all such references. The init_list is a
 list of initializers whose values will be assigned to successive
 portions of the newly−declared object. The size parameter
 specifies the amount of storage to be reserved for the object, in
 words. (Slightly fewer than 65,535 words are available for
 static storage in each module.)

 Example: static int abc[100]
 where abc is assigned the object id 6

 14 DEFINE_STAT_OP
 6 Object id for ’abc’
 39 NULL_OP (no initializers present)

 − 13 −

 100 Object is 100 words long

 − 14 −

 Operators Useful in the Procedure Definition Stream

 PROC_DEFN_OP 50

 int 50
 int object_id
 int number_of_args
 string proc_name
 tree argument_list
 tree code

 Each procedure to be generated by the code generator is defined
 by a PROC_DEFN_OP. The ’object_id’ is an integer identifier that
 must be used on calls to the procedure and other references to
 its entry control block (for example, pointers to functions as
 used in C). ’Number_of_args’ should be self−explanatory.
 ’Proc_name’ is a string (in the IMF, a length followed by ASCII
 character values) giving the internal name of the procedure.
 (This information is used to print trace information during
 debugging.) Each formal parameter (argument) is described by a
 PROC_DEFN_ARG_OP; ’argument_list’ is simply a linked list of
 those descriptions. ’Code’ is a subtree containing the body of
 the procedure: local variable definitions and expressions to be
 evaluated.

 Example: the following C function

 main (argc, argv)
 int argc;
 char **argv;
 {
 int i;
 i = 4;
 }

 50 PROC_DEFN_OP
 1 Procedure is object number 1
 2 Procedure has 2 arguments
 4 Procedure name is 4 characters long
 237 m
 225 a
 233 i
 238 n
 49 PROC_DEFN_ARG_OP
 2 Argument is object number 2
 1 INT_MODE
 0 VAL_DISP; pass argument by value
 1 Argument is 1 word long
 49 PROC_DEFN_ARG_OP
 3 Argument is object number 3
 4 LONG_UNS_MODE (a pointer)
 1 REF_DISP; pass argument by reference
 2 Argument is 2 words long

 − 15 −

 39 NULL_OP; end of argument description list
 59 SEQ_OP; beginning of procedure code
 13 DEFINE_DYNM_OP
 4 Object id is 4
 39 NULL_OP; no initializers
 1 Object is 1 word long
 59 SEQ_OP; procedure code continues
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 4 Object id is 4
 9 CONST_OP
 1 INT_MODE
 1 Constant is 1 word long
 4 Constant has value 4
 1 Assignment transfers 1 word
 39 NULL_OP; end of procedure code

 PROC_DEFN_ARG_OP 49

 int 49
 int object_id
 int mode
 int disposition
 int length
 tree next_argument

 Formal parameters to procedures are described by this operator.
 The ’object_id’ is an integer identifier that must be supplied on
 subsequent references to the parameter (see OBJECT_OP). The
 ’mode’ is the machine data type of the parameter. ’Disposition’
 indicates how the argument is to be treated on the call; the two
 alternatives at the moment are 0 (VALUE_DISP) for pass−by−value
 (aka copy in) and 1 (REF_DISP) for pass−by−reference. ’Length’
 gives the size of the argument in 16−bit words; it is primarily
 necessary for handling of STOWED arguments that are passed by
 value. ’Next_argument’ is simply a link to the next
 PROC_DEFN_ARG_OP in a procedure’s argument descriptor list, or a
 NULL_OP.

 See PROC_DEFN_OP for examples of PROC_DEFN_ARG_OP.

 − 16 −

 Operators Useful in Procedure Definitions

 ADDAA_OP 1

 int 1
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the sum of the values
 of the left and right operands. As a side effect, the sum is
 stored back into the left operand. The left operand must be an
 lvalue or a bit field (see FIELD_OP). Both operands must have
 the same mode as the ADDAA operation. The operation mode may not
 be STOWED.

 ADDAA stands for "add and assign." This operator is normally
 used to implement the addition assignment operator ("+=" in C,
 "+:=" in Algol 68).

 Example: i += 1 (where i is an integer object with object id 12)
 1 ADDAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 ADD_OP 2

 int 2
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the sum of the values
 of the left and right operands. Both operands must have the same
 mode as the ADD, and STOWED mode is not allowed.

 ADD is used to implement simple addition of fixed or floating
 point values.

 Example: i + 1 (where i is an integer object with object id 12)
 2 ADD_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE

 − 17 −

 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 ANDAA_OP 3

 int 3
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise logical
 "and" of the values of the left and right operands. As a side
 effect, the conjunction is stored back into the left operand.
 The left operand must be an lvalue or a bit field (see FIELD_OP).
 Both operands must have the same mode as the ANDAA operation; the
 only allowable modes are INT, UNSIGNED, LONG INT, and LONG
 UNSIGNED.

 ANDAA stands for "’and’ and assign." ANDAA_OP is used to
 implement the logical−and assignment operator ("&=" in C).

 Example: i &= 1 (where i is an integer object with object id 12)
 3 ANDAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 AND_OP 4

 int 4
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise logical−
 "and" of the values of the left and right operands. Both
 operands must have the same mode as the AND operation; the only
 allowable modes are INT, LONG INT, UNSIGNED, and LONG UNSIGNED.

 AND_OP is normally used to implement the bitwise logical conjunc−
 tion of integers ("&" in C). Although AND_OP can be used to
 implement conjunction in Boolean expressions, the short−circuit

 − 18 −

 conjunction operator (SAND_OP) is probably a better choice, since
 it guarantees evaluation order and prevents undesirable side
 effects.

 Example: i & 1 (where i is an integer object with object id 12)
 4 AND_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 ASSIGN_OP 5

 int 5
 int mode
 tree left
 tree right
 int length

 The result of this operator is an rvalue, namely the value of the
 right operand. As a side effect, the result is stored into the
 left operand. The left operand must be an lvalue or a bit field
 (see FIELD_OP). Both operands must have the same mode as the
 ASSIGN operation. Any mode is allowable, but the parameter
 ’length’ must be set to the operand length, in 16−bit words.

 ASSIGN implements the semantics of assignment statements in most
 algorithmic languages. Note that STOWED mode values are allowed,
 so things like Pascal record assignment can be handled.

 Example: i = 1 (where i is an integer object with object id 12)
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1
 1 length of assigned quantity is 1 word

 BREAK_OP 6

 int 6
 int levels

 − 19 −

 BREAK_OP yields no result value, but causes an exit from one or
 more enclosing loops or multiway−branch ("switch," in C
 terminology; "case" in Pascal) statements. The operand ’levels’
 is an integer giving the number of nested loops and multiway
 branches to terminate. Obviously, ’levels’ must be between 1 and
 the number of nested loops and multiway branch statements
 currently active, inclusive.

 BREAK is mainly intended to implement premature loop exits.
 Because of (inadequate) historical reasons, a BREAK is also
 required to force control out of a multiway−branch alternative to
 the end of the statement. Thus, in implementing a Pascal−style
 case statement with the SWITCH_OP described below, each alter−
 native would end with a BREAK_OP with ’levels’ equal to 1. If
 the BREAK_OP was missing, control would fall through from case to
 case, as it does in C.

 Example: break 2 (terminate 2 enclosing loops)
 6 BREAK_OP
 2 Levels to break

 CASE_OP 7

 int 7
 tree value
 tree actions
 tree next_case

 CASE is used to label an alternative in a multiway branch
 statement (like ’switch’ in C or ’case’ in Pascal). The ’value’
 parameter is the case label value for the alternative; it must be
 a CONST_OP node of the same mode as the switch expression (see
 SWITCH_OP). The mode may not be STOWED. The ’actions’ parameter
 is the code to be executed for the given case label. The
 ’next_case’ operand is a DEFAULT_OP or another CASE_OP or a
 NULL_OP (for the last alternative in the multiway−branch).

 CASE_OP is simply a structural device; it organizes the alter−
 natives in a multiway−branch so that variable−sized SWITCH
 operators are not necessary.

 Example: case 10: i += 1 (i is an integer with object id 12)
 7 CASE_OP
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 10 value of first word is 10
 1 ADDAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP

 − 20 −

 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1
 7 or 12 or 39 CASE_OP or DEFAULT_OP or NULL_OP,
 depending on next element of SWITCH

 CHECK_LOWER_OP 72

 int 72
 int mode
 tree expression
 tree lower_bound
 int source_line_number

 The result of this operator is an rvalue, the value of the
 parameter ’expression’. The expression must have the mode given
 by the parameter ’mode’, and may not be FLOAT, LONG_FLOAT, or
 STOWED. If at run time the value of the expression is less than
 the value of the expression given by the parameter ’lower_bound’,
 an error message is printed and a RANGE_ERROR exception raised.
 The parameter ’source_line_number’ is printed as part of the
 error message, and is identified as the number of the source code
 line that caused the range check to be generated.

 This operator would normally be used in a situation that permit−
 ted optimized range checking, like assignment of one integer
 subrange variable to another.

 Example: var i: 0..100; j: 1..100; begin ...; j := i; ... end
 (where i has object id 12 and j has object id 13,
 and the code above appears on line 14)

 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for j
 72 CHECK_LOWER_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 1 Value is 1
 14 Line number in source code
 1 Length of assigned quantity is 1 word

 − 21 −

 CHECK_RANGE_OP 70

 int 70
 int mode
 tree expression
 tree lower_bound
 tree upper_bound
 int source_line_number

 The result of this operator is an rvalue, the value of the
 parameter ’expression’. The expression must have the mode given
 by the parameter ’mode’, and may not be FLOAT, LONG_FLOAT, or
 STOWED. If at run time the value of the expression is less than
 the value of the expression given by the parameter ’lower_bound’
 or greater than the value of the expression given by the
 parameter ’upper_bound’ an error message is printed and a
 RANGE_ERROR exception raised. The parameter ’source_line_number’
 is printed as part of the error message, and is identified as the
 number of the source code line that caused the range check to be
 generated.

 This operator would normally be used where a complete range check
 was necessary (an array subscripted by an unconstrained integer
 variable, for example).

 Example: var a: array 1..10 of integer; i: integer; ...a[i]...
 where ’a’ has object id 4, ’i’ has id 12,
 and the subscripting operation appears on line 97
 of the source code:

 25 INDEX_OP
 1 INT_MODE (element type of a)
 40 OBJECT_OP; this is the base address of ’a’
 7 STOWED_MODE
 4 Object id of ’a’
 70 CHECK_RANGE_OP; this is the index expression
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id of ’i’
 9 CONST_OP; this is the lower bound
 1 INT_MODE
 1 Length of constant is 1 word
 1 Value of constant is 1
 9 CONST_OP; this is the upper bound
 1 INT_MODE
 1 Length of constant is 1 word
 10 Value of constant is 10
 97 Range check is on line 97
 1 Array element size is 1 word

 − 22 −

 CHECK_UPPER_OP 71

 int 71
 int mode
 tree expression
 tree upper_bound
 int source_line_number

 The result of this operator is an rvalue, the value of the
 parameter ’expression’. The expression must have the mode given
 by the parameter ’mode’, and may not be FLOAT, LONG_FLOAT, or
 STOWED. If at run time the value of the expression is greater
 than the value of the expression given by the parameter
 ’upper_bound’, an error message is printed and a RANGE_ERROR
 exception raised. The parameter ’source_line_number’ is printed
 as part of the error message, and is identified as the number of
 the source code line that caused the range check to be generated.

 Like CHECK_LOWER, this operator is normally used in situations
 that permit optimized range checks.

 Example: var i: 1..100; j: 1..10; begin ...; j := i; ... end
 (where i has object id 12 and j has object id 13,
 and the code above appears on line 14)

 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for j
 71 CHECK_UPPER_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 10 Value is 10
 14 Line number in source code
 1 Length of assigned quantity is 1 word

 COMPL_OP 8

 int 8
 int mode
 tree operand

 The result of this operator is an rvalue, the bitwise complement
 of the operand. The operand must have the same mode as the COMPL
 operation; the only allowable modes are INT, LONG INT, UNSIGNED,
 and LONG UNSIGNED.

 − 23 −

 This operator implements bitwise complementation in languages
 that support bit operations (e.g. the "~" operator in C). In
 most cases, it should not be used for logical negation; the
 NOT_OP is more appropriate.

 Example: ~i (i is an integer object with id 12)
 8 COMPL_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id is 12

 CONST_OP 9

 int 9
 int mode
 int length
 int word[1]
 int word[2]
 ...
 int word[length]

 The result of this operator is an rvalue, equivalent to the value
 of the constant it defines. ’Length’ is the length of the
 constant in 16−bit machine words. ’Mode’ may take on any of the
 operand mode values, although STOWED constants are not of much
 use outside initializers.

 CONST_OP is the only operator whose IMF representation varies in
 length depending on its contents. Most literals in a source
 language program eventually are expressed as CONST_OPs in the
 IMF.

 Example: 14 (an integer constant)
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 14 first word has value 14

 CONVERT_OP 10

 int 10
 int source_mode
 int destination_mode
 tree operand

 The result of this operator is an rvalue, namely the value of the
 operand converted to the data mode specified by
 ’destination_mode’. The operand mode must be the same as
 ’source_mode’. STOWED mode is not permissible in either mode

 − 24 −

 parameter. Note that in most cases, no range checking is per−
 formed; it is possible, for example, to convert an UNSIGNED
 quantity into an negative INT quantity. Floating point to
 integer conversions are performed by truncation.

 CONVERT is the only means of converting data from one mode to
 another; the code generator never coerces data from one mode to
 another, unless the coercion is called for by a CONVERT operator.

 Example: x = i (x is a FLOAT object, with id 6;
 i is an INT object, with id 12)
 5 ASSIGN_OP
 5 FLOAT_MODE
 40 OBJECT_OP
 5 FLOAT_MODE
 6 Object id is 6
 10 CONVERT_OP
 1 from INT_MODE
 5 to FLOAT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id is 12

 DECLARE_STAT_OP 11

 int 11
 int object_id
 string external_name

 See "Operators useful in the Static Data Stream".

 DEFAULT_OP 12

 int 12
 tree actions
 tree next_case

 This operator is used to label the default action in a multiway−
 branch statement. (In C, the default action is labeled
 "default"; in Pascal, it is labeled "otherwise".) The DEFAULT_OP
 need not be the last alternative in the list of alternatives fol−
 lowing a SWITCH. A DEFAULT_OP behaves much like a CASE_OP, in
 that control will fall through to the next alternative unless the
 actions conclude with a BREAK_OP.

 Example: default: i += 1 (where i is an integer object with id 12)
 12 DEFAULT_OP
 1 ADDAA_OP
 1 INT_MODE

 − 25 −

 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1
 7 or 39 CASE_OP or NULL_OP, depending on structure
 of SWITCH

 DEFINE_DYNM_OP 13

 int 13
 int object_id
 tree init_list
 int size

 This operator causes storage for the object identified by
 ’object_id’ to be allocated in the current stack frame. It is
 generated for local variable declarations and for temporary
 variables allocated by the front end. ’Object_id’ must be used
 in all subsequent references to the object, and the object’s
 definition with DEFINE_DYNM must precede all such references.
 The init_list is a list of expressions whose values will be
 assigned to successive words of the newly−declared object (see
 INITIALIZER_OP and ZERO_INITIALIZER_OP). The size parameter
 specifies the amount of storage to be reserved for the object, in
 16−bit words. (Slightly fewer than 65,535 words are available
 for local storage in each procedure.)

 When processing a declaration, the front−end should assign each
 declared variable an integer "object id." To be safe, the object
 id should be unique within an IMF module. This object id must be
 used whenever the variable being declared is referenced.

 Example: int blank = 160; (a local declaration; assume ’blank’
 is assigned the object id 4)
 13 DEFINE_DYNM_OP
 4 Object id is 4
 26 INITIALIZER_OP
 1 INT_MODE
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 160 Value of first word is 160
 39 NULL_OP (end of init list)
 1 Size is 1 word

 − 26 −

 DEFINE_STAT_OP 14

 int 14
 int object_id
 tree init_list
 int size

 This operator causes storage for the object identified by
 ’object_id’ to be allocated in the current link frame (static
 data area). It is normally generated by the front end for global
 variable declarations. ’Object_id’ must be used in all sub−
 sequent references to the object, and the object’s definition
 with DEFINE_STAT must precede all such references. The init_list
 is a list of constants whose values will be assigned to succes−
 sive words of the newly−declared object (see INITIALIZER_OP and
 ZERO_INITIALIZER_OP). The size parameter specifies the amount of
 storage to be reserved for the object, in 16−bit words. (Sligh−
 tly fewer than 65,535 words are available for static storage in
 each module.)

 Any storage reserved by a DEFINE_STAT_OP that is not filled by an
 initializer will be set to zero.

 When processing a declaration, the front−end should assign each
 declared variable an integer "object id." To be safe, the object
 id should be unique within an IMF module. This object id must be
 used whenever the variable being declared is referenced.

 Example: int blank = 160; (a global declaration; assume ’blank’
 is assigned the object id 4)
 14 DEFINE_STAT_OP
 4 Object id is 4
 26 INITIALIZER_OP
 1 INT_MODE
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 160 Value of first word is 160
 39 NULL_OP (end of init list)
 1 Size is 1 word

 DEREF_OP 15

 int 15
 int mode
 tree operand

 The result of this operator is an lvalue, the object whose
 address is given by the value of the operand. The operand must
 yield a 32−bit LONG INT or LONG UNSIGNED value. The operation
 mode is not restricted.

 DEREF is one of the few operators that yield an lvalue, and are

 − 27 −

 therefore allowed as left−operands of assignments. DEREF is
 normally used for indirection through pointers in languages that
 support them explicitly (eg "^" operator in Pascal, or unary "*"
 in C), although it is also useful in obtaining the value of a
 variable that is passed to a procedure by reference.

 Example: i = *p (or i = p^ in Pascal)
 (i is an integer object with id 12;
 p is a long unsigned object with id 32)
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id is 12
 15 DEREF_OP
 1 INT_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 32 Object id is 32

 DIVAA_OP 16

 int 16
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the quotient of the
 value of the left operand divided by the value of the right. As
 a side effect, the quotient is stored back into the left operand.
 The left operand must be an lvalue or a bit field (see FIELD_OP).
 Both operands must have the same mode as the DIVAA operation; any
 mode other than STOWED is acceptable.

 DIVAA stands for "divide and assign." The operator is usually
 used to implement the division assignment operator ("/=" in C,
 "/:=" or "divab" in Algol 68).

 If the operation mode is UNSIGNED or LONG UNSIGNED and the right
 operand is a power of 2, the division will be performed by a
 right logical shift.

 Example: i /= 10 (where i is an integer object with object id 12)
 16 DIVAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 10 value of first word is 1

 − 28 −

 DIV_OP 17

 int 17
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the quotient of the
 value of the left operand divided by the value of the right.
 Both operands must have the same mode as the DIV operation, and
 the mode STOWED is not allowed.

 DIV is used to implement simple division.

 If the operation mode is UNSIGNED or LONG UNSIGNED and the right
 operand is a power of 2, the division will be performed by a
 right logical shift.

 Example: i / 10 (where i is an integer object with object id 12)
 17 DIV_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 10 value of first word is 1

 DO_LOOP_OP 18

 int 18
 tree body
 tree condition

 This operator implements a test−at−the−bottom loop. ’Body’
 specifies the operations to be performed in the loop. The loop
 is performed until the value of the expression specified by ’con−
 dition’ is non−zero. A BREAK_OP may be used to terminate execu−
 tion of the loop from within the body, and a NEXT_OP may be used
 to cause an immediate transfer to the condition test from within
 the body.

 It is not kosher to use a DO_LOOP as a value−returning construct.

 Example: do i *= 2 until (i > j)
 (where i and j are integer objects, with ids 12 and 60)
 18 DO_LOOP_OP
 33 MULAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id is 12

 − 29 −

 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 2 Value is 2
 23 GT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id is 12
 40 OBJECT_OP
 1 INT_MODE
 60 Object id is 60

 EQ_OP 19

 int 19
 int mode
 tree left
 tree right

 The result of this operator is an rvalue: 1 if the value of the
 left operand equals the value of the right, and 0 otherwise.
 Both operands must have the mode specified by the parameter
 ’mode’, but note that the result mode of EQ is always INTEGER.
 The operation mode may not be STOWED.

 EQ is used to implement test−for−equality for both expressions
 yielding Boolean values and for control flow tests. The restric−
 tion against STOWED operands will hopefully be lifted in the near
 future.

 Example: i == 1 (where i is an integer object with object id 12)
 19 EQ_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 FIELD_OP 69

 int 69
 int mode
 int offset_from_msb
 int length_in_bits
 tree base_address

 − 30 −

 FIELD is used to select a partial field of a word or double word.
 It may be used on the left hand side of assignments, to cause the
 right hand side value to be placed in the field, or as an rvalue,
 to yield the value stored in the field. The operation mode must
 be INT, UNSIGNED, LONG INT, or LONG UNSIGNED. The parameter
 ’base_address’ is an lvalue which specifies the first 16−bit word
 containing any portion of the bit field. The parameter
 ’offset_from_msb’ gives the offset, in bits, of the beginning of
 the field from the left−hand (most significant) bit of the first
 word. The parameter ’length_in_bits’ gives the length of the bit
 field. Bit fields may be 1 to 32 bits in length, and must be
 aligned so as not to cross more than one word boundary.

 FIELDs behave like lvalues in most circumstances; for instance,
 they can be used in left−hand−sides of assignments. However, bit
 fields cannot be addressed, so they may not be passed by
 reference on procedure calls or used as an operand of the REFTO
 operator. FIELDs can always be used as rvalues.

 Bit fields may not cross more than one word boundary, since this
 would require 48 bit shifts for field extraction. Formally, this
 means that ’offset_from_msb’ + ’length_in_bits’ must be less than
 or equal to 32.

 Example: Fetching the right−hand byte of a 16−bit word in
 the integer object i, with id 12:

 69 FIELD_OP
 1 INT_MODE
 8 Bit field begins 8 bits from the most
 significant bit
 8 Bit field is 8 bits long
 40 OBJECT_OP; the base address of the field
 1 INT_MODE
 12 Object id for ’i’

 FOR_LOOP_OP 20

 int 20
 tree init
 tree cond
 tree reinit
 tree body

 The FOR_LOOP_OP implements the general−purpose C ’for’ loop. The
 parameters ’init’, ’reinit’, and ’body’ correspond to statements;
 ’cond’ corresponds to a Boolean expression. The for−loop

 for (init; cond; reinit) statement

 is equivalent to

 − 31 −

 init; while cond do begin statement; reinit end

 A typical application in languages other than C might be the
 construction of an arithmetic loop like the Pascal ’for’ or the
 Fortran ’do’.

 Within the body of the loop, a BREAK_OP may be used to cause
 early loop termination, and a NEXT_OP may be used to cause an
 immediate jump to the ’reinit’ code in preparation for another
 iteration.

 It is not reasonable to use a FOR_LOOP as a value−returning
 construct.

 Example: for (i = 1; i <= n; i += 1)
 j *= i;
 (where i, j, n are integers with object ids 12, 60, 44)
 20 FOR_LOOP_OP
 5 ASSIGN
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 1 Value is 1
 1 Assign 1 word
 28 LE_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 40 OBJECT_OP
 1 INT_MODE
 44 Object id 44
 1 ADDAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 1 Value is 1
 33 MULAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 60 Object id 60
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12

 − 32 −

 GE_OP 21

 int 21
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, 1 if the value of the
 left operand is greater−than−or−equal−to the value of the right,
 0 otherwise. Both operands must have the mode given in the
 parameter ’mode’; note, however, that the result of GE is always
 of mode INTEGER. The operation mode may not be STOWED. Note
 that if the operands are unsigned, a "magnitude" comparison is
 performed to insure correct results.

 GE_OP implements the test for greater−or−equal in both Boolean
 expressions and flow−of−control tests. The restriction against
 STOWED operands may be lifted someday.

 Example: i >= 1 (where i is an integer object with object id 12)
 21 GE_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 GOTO_OP 22

 int 22
 int object_id

 GOTO_OP is used to implement unrestricted ’goto’ statements in
 languages that support such nonsense. The parameter ’object_id’
 is the integer object identifier of the label which is the target
 of the goto. (See LABEL_OP).

 The stack is not adjusted if the target label is outside the
 current procedure.

 Example: goto label (where ’label’ has object id 99)
 22 GOTO_OP
 99 Object ID of target label

 − 33 −

 GT_OP 23

 int mode
 tree left
 tree right

 The result of this operator is an rvalue, 1 if the value of the
 left operand is greater than the value of the right, 0 otherwise.
 Both operands must have the mode given by the parameter ’mode’;
 but note that GT always returns a value of mode INTEGER. The
 operation mode may not be STOWED. Note that if the operands are
 of mode unsigned, a "magnitude" comparison will be performed to
 insure correct results.

 GT implements the test for greater−than for Boolean expressions
 and expressions in flow−of−control context. The restriction
 against STOWED operands might be lifted if the public demands it.

 Example: i > 1 (where i is an integer object with object id 12)
 23 GT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 length is 1 word
 1 value of first word is 1

 IF_OP 24

 int 24
 int mode
 tree condition
 tree then_part
 tree else_part

 IF can be used to implement conditional expressions or con−
 ditional evaluation of statements; it always returns an rvalue.
 If the value of the condition is non−zero, the ’then_part’ will
 be evaluated; otherwise, the ’else_part’ will be evaluated.
 Either ’then_part’ or ’else_part’ may be omitted (ie, replaced by
 a NULL_OP). The operation mode may not be STOWED; if the
 operator is used to return a value (as in a conditional expres−
 sion) then the modes of both the ’then_part’ and the ’else_part’
 must be the same as the operation mode.

 IF is most often used to implement conditional statements (eg the
 ’if’ statement of most algorithmic languages). Since the code
 generator tends to view operators as value−returning, IF may also
 be used to implement conditional expressions (’if’−’then’−’else’
 in the Algol family, or ’?:’ in C).

 − 34 −

 Example: if a < b then m = a else m = b
 (where a, b, m are floating point objects with id’s 1, 2, 13)
 24 IF_OP
 5 FLOAT_MODE
 31 LT_OP
 5 FLOAT_MODE
 40 OBJECT_OP
 5 FLOAT_MODE
 1 Object id 1
 40 OBJECT_OP
 5 FLOAT_MODE
 2 Object id 2
 5 ASSIGN_OP
 5 FLOAT_MODE
 40 OBJECT_OP
 5 FLOAT_MODE
 13 Object id 13
 40 OBJECT_OP
 5 FLOAT_MODE
 1 Object id 1
 2 Length is 2 words
 5 ASSIGN_OP
 5 FLOAT_MODE
 40 OBJECT_OP
 5 FLOAT_MODE
 13 Object id 13
 40 OBJECT_OP
 5 FLOAT_MODE
 2 Object id 2
 2 Length is 2 words

 INDEX_OP 25

 int 25
 int mode
 tree array_base
 tree index_expression
 int element_size

 The result of this operator is an lvalue, one member of a vector
 of identical objects. The parameter ’array_base’ is the base of
 the vector; it is typically a simple OBJECT_OP, although it may
 be an expression yielding the base address of the vector (a
 dereferenced pointer, for example). It must be an lvalue. The
 ’index_expression’ selects the particular vector element desired;
 it should have a value greater than or equal to zero and less
 than the number of elements in the vector. (Note that this
 implies zero−origin addressing.) (Note furthermore that there is
 no subscript checking.) The ’index_expression’ must be of mode
 INTEGER or UNSIGNED (indexing across 64K−word segment boundaries
 produces incorrect results in V mode). ’Element_size’ is the
 size of one element of the vector, in 16−bit words. The opera−
 tion mode must be the same as the mode of the vector elements,

 − 35 −

 but is otherwise unrestricted; in particular, STOWED mode is
 allowed.

 INDEX is used to implement array subscripting. The operator has
 deliberately been made rather primitive, to allow the front−end
 greater freedom in selecting storage layouts. For example, mul−
 tidimensional arrays may be implemented by treating arrays as
 vector elements, and subsuming the additional addressing cal−
 culations in the ’index_expression’. This allows a compiler to
 select row− or column−major addressing. Note that subscripting
 is vastly more efficient if vector elements are a power of 2
 words in length, and furthermore that lengths 1, 2, and 4 are
 most efficient.

 Example: a[i + 1] (where a is a floating point object with id 1,
 and i is an integer object with id 12)
 25 INDEX_OP
 5 FLOAT_MODE
 40 OBJECT_OP
 7 STOWED_MODE
 1 Object id 1
 2 ADD_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 1 Value is 1
 2 Array element is 2 words long

 INITIALIZER_OP 26

 int 26
 int mode
 tree expression
 tree next_initializer

 Initializers are the initial−value expressions that appear in
 definitions of variables in C (see DEFINE_DYNM_OP and
 DEFINE_STAT_OP). In the case of local variables, which are
 reinitialized whenever they are allocated, these expressions are
 arbitrary. In the case of static variables, these expressions
 must be constants or REFTO operators whose operands are constants
 or OBJECT_OPs.

 Initializers are formed by linking a number of INITIALIZER_OPs
 and ZERO_INITIALIZER_OPs together through their
 ’next_initializer’ fields. ZERO_INITIALIZER_OP is a compact
 representation of an initializer consisting of all zeros.

 Any mode is allowable in an INITIALIZER. INT and UNSIGNED

 − 36 −

 initializers cause one word to be filled; LONG INT, LONG
 UNSIGNED, and FLOAT cause two words to be filled; LONG FLOAT
 causes four words to be filled; STOWED expressions fill as many
 words as the size of the expression allows (STOWED mode CONST_OPs
 are particularly useful here).

 Example: int ai[3] = {1, 2, 3}
 (a local declaration, where ai is assigned object id 8)
 13 DEFINE_DYNM_OP
 8 Object has id 8
 26 INITIALIZER_OP
 1 INT_MODE
 9 CONST_OP (the init. expression)
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1
 26 INITIALIZER_OP
 1 INT_MODE
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 2 Constant has value 2
 26 INITIALIZER_OP
 1 INT_MODE
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 3 Constant has value 3
 39 NULL_OP (end of initializers)
 3 Object has size 3 words

 As an alternative,

 13 DEFINE_DYNM_OP
 8 Object has id 8
 26 INITIALIZER_OP
 7 STOWED_MODE
 9 CONST_OP
 7 STOWED_MODE
 3 Constant is 3 words long
 1 First word is 1
 2 Second word is 2
 3 Third word is 3
 39 NULL_OP (end of initializers)
 3 Object is 3 words long

 LABEL_OP 27

 int 27
 int object_id

 LABEL_OP is used to place the target label for ’goto’ statements.
 The parameter ’object_id’ is the integer identifier used by

 − 37 −

 GOTO_OPs to identify their target labels.

 Example: label lab;.... lab:
 (assume the label declaration causes ’lab’ to be assigned
 the object id 6)
 27 LABEL_OP
 6 The object ID of the label

 LE_OP 28

 int 28
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, 1 if the value of the
 left operand is less than or equal to the value of the right, 0
 otherwise. Both operands must have the mode specified by the
 parameter ’mode’; STOWED mode is not allowable. Note that LE
 always returns a value of mode INTEGER. Magnitude comparisons
 are generated for unsigned operands, to insure correct results.

 Use LE_OP to implement all tests for less−than−or−equal−to,
 whether they appear in boolean expressions or flow−of−control
 tests. The restriction against STOWED operands may be lifted if
 the author feels sufficiently threatened.

 Example: i <= 1 (where i is an integer object with id 12)

 28 LE_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 LSHIFTAA_OP 29

 int 29
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand shifted logically (zero−fill) left the number of bit
 places specified by the value of the right operand. As a side
 effect, the result is stored back into the left operand. The

 − 38 −

 left operand must be an lvalue or a bit field (see FIELD_OP).
 The operation mode may be INT, LONG INT, UNSIGNED, or LONG
 UNSIGNED, and the left operand must have the same mode. The
 right operand must be of mode INT or UNSIGNED, and really should
 have a value between 0 and the length of the left operand,
 inclusive. (Reasonable results outside this range are not
 guaranteed.)

 LSHIFTAA stands for "left−shift and assign." The operator is
 used to implement "<<=" in C.

 Example: i <<= 1 (where i is an integer object with id 12)

 29 LSHIFTAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 LSHIFT_OP 30

 int 30
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand shifted left logically (zero−fill) the number of bit
 places specified by the value of the right operand. The opera−
 tion mode may be INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and
 the left operand must have the same mode. The right operand must
 be of mode INT or UNSIGNED, and really should have a value
 between 0 and the length of the left operand, inclusive.
 (Reasonable results outside this range are not guaranteed.)

 LSHIFT is used to implement the "<<" operator in C.

 Example: i << 1 (where i is an integer object with id 12)

 30 LSHIFT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 − 39 −

 LT_OP 31

 int 31
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, 1 if the value of the
 left operand is less than the value of the right, 0 otherwise.
 Both operands must have the mode given in the parameter ’mode’.
 Note that LT always returns a value of mode INTEGER, no matter
 what the operation mode was. The operation mode may not be
 STOWED. Magnitude comparisons are used if the operands are
 unsigned, to insure correct results.

 LT is used to implement the test for less−than, in both Boolean
 expressions and flow−of−control expressions. The restriction
 against STOWED operands may be removed if an angry armed mob
 storms the author’s office.

 Example: i < 1 (where i is an integer object with id 12)

 31 LT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 MODULE_OP 32

 int 32

 This operator is not used in procedure definitions; it is used
 strictly to separate modules in input streams.

 MULAA_OP 33

 int 33
 int mode
 tree left
 tree right

 The result of this operation is an rvalue, the product of the
 value of the left operand and the value of the right. As a side
 effect, the product is stored into the left operand. The left

 − 40 −

 operand must be an lvalue or a bit field. Both operands must
 have the same mode as the operation, and that mode may not be
 STOWED.

 MULAA stands for "multiply and assign." It is used to implement
 the multiplication assignment operators ("*=" in C, "*:=" or
 "mulab" in Algol 68). When either operand is known to be a power
 of 2, the multiplication will be replaced by a left logical
 shift.

 Example: i *= 10 (where i is an integer object with id 12)

 33 MULAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 10 Constant has value 10

 MUL_OP 34

 int 34
 int mode
 tree left
 tree right

 The result of this operation is an rvalue, the product of the
 value of the left operand and the value of the right. Both
 operands must have the same mode as the operation, and that mode
 may not be STOWED.

 MUL_OP is used to implement simple multiplication. When either
 operand is known to be a power of 2, the multiplication will be
 replaced by a left logical shift.

 Example: i * 2 (where i is an integer object with id 12)

 34 MUL_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 2 Constant has value 2

 − 41 −

 NEG_OP 35

 int 35
 int mode
 tree operand

 The result of this operator is an rvalue, the additive inverse of
 the value of the operand. Unsigned operands are subtracted from
 2**n, where n is the number of bits used to represent them (16 or
 32, in this implementation). The operation mode must be the same
 as the mode of the operand, and may not be STOWED.

 NEG_OP implements the unary minus (negation) operator for all the
 primitive arithmetic data modes.

 Example: −i (where i is an integer object with id 12)

 35 NEG_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object has id 12

 NEXT_OP 36

 int 36
 int levels

 NEXT_OP yields no result value, but causes an immediate restart
 of a particular enclosing loop. ’Levels’ − 1 enclosing loops are
 terminated (see BREAK_OP) and then a branch is taken to the
 proper restart point in the next enclosing loop. For the
 FOR_LOOP, the restart point is the re−initialization statement at
 the end of the body. For DO_LOOPs and WHILE_LOOPs, the restart
 point is the evaluation of the iteration condition.

 Example: next 2 (break 1 loop, continue the next outermost)

 36 NEXT_OP
 2 Levels

 NE_OP 37

 int 37
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, 1 if the value of the
 left operand does not equal the value of the right, 0 otherwise.

 − 42 −

 The modes of both operands must match the mode of the operation,
 and STOWED mode is not allowed. Note that NE_OP always returns a
 value of mode INTEGER, no matter what operation mode is
 specified.

 NE implements the test for inequality in all contexts. Use of
 nuclear weapons might be enough to convince the author to lift
 the restriction against STOWED operands.

 Example: i <> 1 (where i is an integer object with id 12)

 37 NE_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 NOT_OP 38

 int 38
 int mode
 tree operand

 The result of this operator is an rvalue, the logical negation of
 the operand value. (Ie, if the operand has value zero, the
 result of the NOT_OP will be 1; if the operand is non−zero, the
 result of the NOT_OP will be zero.) The mode of the operand must
 be the same as the mode of the operation, and STOWED mode is not
 allowed. The result of a NOT_OP is always of mode INTEGER, no
 matter what the operation mode.

 NOT_OP is normally used to implement Boolean negation. For
 bitwise complementation, use COMPL_OP.

 Example: !i (where i is an integer object with id 12)

 38 NOT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object has id 12

 NULL_OP 39

 int 39

 − 43 −

 The null operator is usually used to terminate lists constructed
 with the sequence operator SEQ_OP, or to indicate that a subtree
 has been omitted. For example, if a conditional has no
 else_part, the missing subtree must be represented by a NULL_OP.
 SEQ also acts as a delimiter at several places in the input
 stream.

 Example:
 39 NULL_OP

 OBJECT_OP 40

 int 40
 int mode
 int object_id

 The result of this operator is an lvalue, corresponding to a
 variable defined by the front end. ’Mode’ is unrestricted;
 objects may have any primitive data mode, including STOWED (for
 arrays and records). The ’object_id’ parameter gives the
 identification number that was supplied in the definition or
 declaration of the object.

 Normally, each occurrence of a variable in the source program
 produces an OBJECT_OP in the intermediate form. OBJECTs are the
 primitive lvalues from which all other lvalue−producing
 constructs are derived.

 Each object that is referenced in the intermediate form must be
 identified by a simple integer known as the "object id."
 Typically these ids are assigned at declaration time (for
 variables) or at time of first reference (for locations, like
 procedure names or statement labels). Object ids should be
 unique within each IMF module.

 Example: i (where i is an integer object, with object id 12)

 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12

 ORAA_OP 41

 int 41
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise inclusive−
 or of the values of the left and right operands. As a side

 − 44 −

 effect, the result is stored back into the left operand. The
 left operand must be an lvalue or a bit field (see FIELD_OP).
 The operation mode must be INT, LONG INT, UNSIGNED, or LONG
 UNSIGNED, and the modes of both operands must match the operation
 mode.

 ORAA stands for "logical or and assign." It is used to implement
 the C assignment operator "|=".

 Example: i |= 1 (where i is an integer object with id 12)

 41 ORAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 OR_OP 42

 int 42
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise inclusive−
 or of the values of the left and right operands. The operation
 mode must be INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and the
 modes of both operands must match the operation mode.

 OR is used to implement bit−oriented logical operations, like the
 "|" operator of C. Although OR can be used in Boolean expres−
 sions, the sequential−OR operator SOR_OP is usually more
 appropriate.

 Example: i | 1 (where i is an integer object with id 12)

 42 OR_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id 12
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 1 Constant has value 1

 − 45 −

 POSTDEC_OP 43

 int 43
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand before the operator is executed. As a side effect, the
 left operand is decremented by the value of the right operand.
 The left operand must be an lvalue or a bit field (see FIELD_OP),
 and must have the same mode as the operation. The right operand
 must be a CONST_OP, with the same mode as the operation.

 The POSTDEC operator corresponds to the C postfix autodecrement
 construct.

 Example: p−− (where p is a long unsigned (pointer) object with
 object id 15, and p is intended to point to integers)

 43 POSTDEC_OP
 4 LONG_UNS_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 15 Object id of p
 9 CONST_OP
 4 LONG_UNS_MODE
 2 Constant has length 2
 0 Constant has value...
 1 ...1, expressed as a long integer

 POSTINC_OP 44

 int 44
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand before the operator is executed. As a side effect, the
 left operand is incremented by the value of the right operand.
 The left operand must be an lvalue or a bit field (see FIELD_OP),
 and must have the same mode as the operation. The right operand
 must be a CONST_OP, with the same mode as the operation.

 The POSTINC operator corresponds to the C postfix autoincrement
 construct.

 Example: p++ (where p is a long unsigned (pointer) object with
 object id 15, and p is intended to point to integers)

 44 POSTINC_OP
 4 LONG_UNS_MODE

 − 46 −

 40 OBJECT_OP
 4 LONG_UNS_MODE
 15 Object id of p
 9 CONST_OP
 4 LONG_UNS_MODE
 2 Constant has length 2
 0 Constant has value...
 1 ...1, expressed as a long integer

 PREDEC_OP 45

 int 45
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand decremented by the value of the right operand. As a side
 effect, the result is stored back into the left operand. The
 left operand must be an lvalue or a bit field (see FIELD_OP), and
 must have the same mode as the operation. The right operand must
 be a CONST_OP, with the same mode as the operation.

 The PREDEC operator corresponds to the C prefix autodecrement
 construct.

 Example: −−p (where p is a long unsigned (pointer) object with
 object id 15, and p is intended to point to integers)

 45 PREDEC_OP
 4 LONG_UNS_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 15 Object id of p
 9 CONST_OP
 4 LONG_UNS_MODE
 2 Constant has length 2
 0 Constant has value...
 1 ...1, expressed as a long integer

 PREINC_OP 46

 int 46
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand incremented by the value of the right operand. As a side
 effect, the result is stored back into the left operand. The

 − 47 −

 left operand must be an lvalue or a bit field (see FIELD_OP), and
 must have the same mode as the operation. The right operand must
 be a CONST_OP, with the same mode as the operation.

 The PREINC operator corresponds to the C prefix autoincrement
 construct.

 Example: ++p (where p is a long unsigned (pointer) object with
 object id 15, and p is intended to point to integers)

 46 PREINC_OP
 4 LONG_UNS_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 15 Object id of p
 9 CONST_OP
 4 LONG_UNS_MODE
 2 Constant has length 2
 0 Constant has value...
 1 ...1, expressed as a long integer

 PROC_CALL_ARG_OP 47

 int 47
 int mode
 tree expression
 tree next_argument

 Procedure call arguments are specified in a linked list of
 PROC_CALL_ARG_OPs attached to a PROC_CALL_OP. An argument
 expression is specified by the parameter ’expression’; its mode
 must be given by the parameter ’mode’. The parameter
 ’next_argument’ is simply the next procedure argument in the
 list. Any mode expression is allowable as an argument, since the
 Prime procedure call convention passes a fixed−size pointer to
 the actual argument, rather than the argument itself.

 Note that arguments (with the exception of bit fields) are always
 passed by reference. If arguments are to be copied on procedure
 entry or exit, the called procedure must do the copying. (See
 PROC_DEFN_ARG_OP; an argument will be copied automatically if it
 is given the disposition VALUE_DISP.) Bit fields are an excep−
 tion; they are not addressable objects, and so are always passed
 by value.

 See PROC_CALL_OP for examples of PROC_CALL_ARG_OP.

 PROC_CALL_OP 48

 int 48
 int mode

 − 48 −

 tree procedure
 tree argument_list

 The PROC_CALL_OP is used to generate a call to a procedure. The
 parameter ’mode’ is the mode of the return value of the
 procedure, if any. The parameter ’procedure’ is an lvalue
 representing the address of the procedure to be called; the most
 common case is simply an OBJECT_OP with an object id equal to the
 id of a declared procedure (see PROC_DEFN_OP). The parameter
 ’argument_list’ is a singly−linked list of expressions to be pas−
 sed as arguments to the procedure; each expression in the
 argument list is contained in a PROC_CALL_ARG_OP subtree, and the
 entire list is terminated with a NULL_OP.

 PROC_CALL implements invocation of both "procedures" and "func−
 tions" (or "value−returning procedures").

 Example: l = strlen (s)
 where l is an integer object with id 13,
 s is a STOWED object (an array of integers) with id 14,
 and strlen is a procedure with id 50.

 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 object id for l
 48 PROC_CALL_OP
 1 INT_MODE
 40 OBJECT_OP; this gives the procedure address
 7 STOWED_MODE
 50 Object id for strlen
 47 PROC_CALL_ARG_OP; description of first arg
 7 STOWED_MODE
 40 OBJECT_OP
 7 STOWED_MODE
 14 Object id for s
 39 NULL_OP; ends list of arguments
 1 Number of words transferred by ASSIGN

 PROC_DEFN_ARG_OP 49

 int 49
 int object_id
 int mode
 int disposition
 int length
 tree next_argument

 This operator cannot be used as part of the code of a procedure.
 See "Operators Useful in the Procedure Definition Stream".

 − 49 −

 PROC_DEFN_OP 50

 int 50
 int object_id
 int number_of_args
 string proc_name
 tree argument_list
 tree code

 This operator cannot be used as part of the code of a procedure.
 See "Operators Useful in the Procedure Definition Stream".

 REFTO_OP 51

 int 51
 int mode
 tree operand

 The result of this operator is an rvalue, the virtual memory
 address of the operand. The operand must be an lvalue, but it
 can have any mode. In particular, the operand may not be a bit
 field. The operation mode must be LONG INT or LONG UNSIGNED.

 REFTO implements the unary "&" operator in C.

 Example: &i (where i is an integer object with id 12)

 51 REFTO_OP
 4 LONG_UNS_MODE; pointers are generally of this mode
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i

 REMAA_OP 52

 int 52
 int mode
 tree left
 tree right

 The result of this operation is an rvalue, the remainder result−
 ing from division of the value of the left operand by the value
 of the right. As a side effect, the result is stored back into
 the left operand. The left operand must be an lvalue or a bit
 field. Both operands must have the same mode as the operation,
 and the operation mode may not be STOWED, FLOAT, or LONG FLOAT.
 (The restriction against floating point operands may be lifted in
 the near future.)

 − 50 −

 Note that this operator produces the remainder resulting from the
 division; the remainder may be negative. If a true modulus is
 desired, the absolute value of the left operand should be remain−
 dered by the right operand, instead.

 Example: i %= 2 (where i is an integer object with id 12)

 52 REMAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1 word
 2 Value of constant is 2

 REM_OP 53

 int 53
 int mode
 tree left
 tree right

 The result of this operation is an rvalue, the remainder result−
 ing from division of the value of the left operand by the value
 of the right. Both operands must have the same mode as the
 operation, and the operation mode may not be STOWED, FLOAT, or
 LONG FLOAT. (The restriction against floating point operands may
 be lifted in the near future.)

 Note that this operator produces the remainder resulting from the
 division; the remainder may be negative. If a true modulus is
 desired, the absolute value of the left operand should be remain−
 dered by the right operand, instead.

 Example: i % 2 (where i is an integer object with id 12)

 53 REM_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1 word
 2 Value of constant is 2

 − 51 −

 RETURN_OP 54

 int 54
 int mode
 tree operand

 The operand is evaluated and returned as the result of the
 current procedure. If the operand is absent (represented by a
 NULL_OP) a procedure return takes place, but no effort is made to
 return a particular value. The operation mode may not be STOWED.

 This operator is used to implement the "return" statement in many
 algorithmic languages. All procedures should end with a
 RETURN_OP.

 Example: return (0)

 54 RETURN_OP
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 0 Constant has value 0

 RSHIFTAA_OP 55

 int 55
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand shifted right the number of bit places specified by the
 value of the right operand. As a side effect, the result is
 stored back into the left operand. The left operand must be an
 lvalue or a bit field (see FIELD_OP). The operation mode may be
 INT, LONG INT, UNSIGNED, or LONG UNSIGNED, and the left operand
 must have the same mode. The right operand must be of mode INT
 or UNSIGNED, and really should have a value between 0 and the
 length of the left operand, inclusive. (Reasonable results
 outside this range are not guaranteed.)

 RSHIFTAA stands for "right−shift and assign." The operator is
 used to implement ">>=" in C. If the operation mode is UNSIGNED
 or LONG UNSIGNED, the vacated bits on the left are zero−filled
 (logical shift); if the operation mode is INT or LONG INT, the
 vacated bits on the left are sign−filled (arithmetic shift).

 Example: i >>= 1 (where i is an integer object with id 12)

 55 RSHIFTAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE

 − 52 −

 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1 word
 1 Value of constant is 1

 RSHIFT_OP 56

 int 56
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand shifted right the number of bit places specified by the
 value of the right operand. The operation mode may be INT, LONG
 INT, UNSIGNED, or LONG UNSIGNED, and the left operand must have
 the same mode. The right operand must be of mode INT or
 UNSIGNED, and really should have a value between 0 and the length
 of the left operand, inclusive. (Reasonable results outside this
 range are not guaranteed.)

 This operator is used to implement ">>" in C. If the operation
 mode is UNSIGNED or LONG UNSIGNED, the vacated bits on the left
 are zero−filled (logical shift); if the operation mode is INT or
 LONG INT, the vacated bits on the left are sign−filled (arith−
 metic shift).

 Example: i >> 1 (where i is an integer object with id 12)

 56 RSHIFT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1 word
 1 Value of constant is 1

 SAND_OP 57

 int 57
 int mode
 tree left
 tree right

 The result of this operation is an rvalue. The left operand is
 evaluated first. If it is zero, the result of the operation is
 zero and evaluation is terminated. If it is non−zero, then the

 − 53 −

 value of the right operand is returned as the result of the
 operator. The modes of both operands must be the same as the
 mode of the result.

 SAND is used to implement sequential ("short−circuit") logical
 conjunctions.

 Example: i && j (where i, j are integer objects with ids 12 and 13)

 57 SAND_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for j

 SELECT_OP 58

 int 58
 int mode
 int offset
 tree structure

 The result of this operator is an lvalue, one member of a
 heterogeneous data structure (ala the Pascal "record" or the C
 "struct"). The parameter ’mode’ is the mode of the element
 selected; it is unrestricted. The parameter ’structure’ is an
 lvalue expression yielding the base address of the structure.
 Typically it is an OBJECT_OP with an object_id field equal to the
 object id of a STOWED object defined by DEFINE_STAT or
 DEFINE_DYNM.

 Example: rec.field
 (rec is a record with object id 4;
 field is an integer field offset 3 words from the beginning
 of the record)

 58 SELECT_OP
 1 INT_MODE
 3 Offset from beginning of struct
 40 OBJECT_OP
 7 STOWED mode
 4 Object id of ’rec’

 SEQ_OP 59

 int 59
 tree left

 − 54 −

 tree right

 SEQ causes the left operand to be evaluated, then the right
 operand. The result is the result of the right operand.

 SEQ_OP corresponds roughly to the "," operator in C and the
 semicolon statement separator in Pascal.

 Example: i = 1; j = 2
 (where i, j are integer objects with ids 12, 13)

 59 SEQ_OP
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id of ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant length is 1 word
 1 Constant value is 1
 1 Assignment transfers 1 word
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id of ’j’
 9 CONST_OP
 1 INT_MODE
 1 Constant length is 1 word
 1 Constant value is 1
 1 Assignment transfers 1 word

 A frequently−used alternative to the above is

 59 SEQ_OP
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id of ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant length is 1 word
 1 Constant value is 1
 1 Assignment transfers 1 word
 59 SEQ_OP
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id of ’j’
 9 CONST_OP
 1 INT_MODE
 1 Constant length is 1 word
 1 Constant value is 1

 − 55 −

 1 Assignment transfers 1 word
 39 NULL_OP; end of sequence

 SOR_OP 60

 int 60
 int mode
 tree left
 tree right

 The result of this operator is an rvalue. The left operand is
 evaluated first. If it is non−zero, it is returned as the result
 of the operation. If it is zero, the value of the right operand
 is returned as the result of the operation. The mode of the
 operation result is always INTEGER. The operands may be of any
 mode other than STOWED.

 SOR is used to implement sequential ("short−circuit") logical
 disjunctions.

 Example: i || j (where i, j are integer objects with ids 12 and 13)

 60 SOR_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for i
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for j

 SUBAA_OP 61

 int 61
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand minus the value of the right operand. As a side effect,
 the difference is stored back into the left operand. The left
 operand must be an lvalue or a bit field (see FIELD_OP). Both
 operands must have the same mode as the operation, and the mode
 may not be STOWED.

 SUBAA stands for "subtract and assign." It is used to implement
 the "−=" operator of C and the "−:=" or "minusab" operator of
 Algol 68.

 Example: i −= 1 (where i is an integer object with id 12)

 − 56 −

 61 SUBAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant is of length 1
 1 Constant has value 1

 SUB_OP 62

 int 62
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the value of the left
 operand minus the value of the right operand. Both operands must
 have the same mode as the operation, and that mode may not be
 STOWED.

 Example: i − 1 (where i is an integer object with id 12)

 62 SUB_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant is of length 1
 1 Constant has value 1

 SWITCH_OP 63

 int 63
 int mode
 tree selector
 tree alternative_list

 SWITCH_OP is used to generate a multiway−branch statement, like
 the ’switch’ of C or the ’case’ of Pascal. When the SWITCH is
 used as a value−returning construct, the modes of all the CASESs
 must match the operation mode, and must not be STOWED. The
 parameter ’selector’ is an expression to be evaluated and com−
 pared with all alternative values in CASE_OPs.
 ’Alternative_list’ is a singly−linked list of CASE_OPs and at
 most one DEFAULT_OP, terminated with a NULL_OP.

 − 57 −

 Note that there is no automatic jump from the end of an alter−
 native to the end of the switch; if one is desired, a BREAK_OP
 should be used. This behavior allows construction of alter−
 natives with multiple case labels, as illustrated in the example
 below.

 Example: The following Pascal ’case’ statement, assuming i and j
 are integer variables with object ids 12 and 13,
 respectively

 case i of
 1: j := 6;
 2, 4: j := 10;
 otherwise j := 9;
 end;

 63 SWITCH_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for ’i’
 7 CASE_OP; the first alternative
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1
 1 Value of constant is 1
 59 SEQ_OP; actions for first CASE
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for ’j’
 9 CONST_OP
 1 INT_MODE
 1 Length of constant is 1 word
 6 Value of constant is 6
 1 Assignment transfers 1 word
 59 SEQ_OP; continuing CASE actions
 6 BREAK_OP
 1 1 Level (the SWITCH)
 39 NULL_OP; end of CASE actions
 7 CASE_OP; second alternative
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 2 Constant has value 2
 39 NULL_OP; no actions, control falls through
 7 CASE_OP; second case of second alternative
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 4 Constant has value 4
 59 SEQ_OP; beginning of actions
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE

 − 58 −

 13 Object id for ’j’
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 10 Constant has value 10
 1 Assignment transfers 1 word
 59 SEQ_OP; actions continue
 6 BREAK_OP
 1 1 Level
 39 NULL_OP; end of actions
 12 DEFAULT_OP; default actions for SWITCH
 59 SEQ_OP; beginning of actions
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 13 Object id for ’j’
 9 CONST_OP
 1 INT_MODE
 1 Length 1
 9 Value 9
 1 Assignment transfers 1 word
 59 SEQ_OP; default actions continue
 6 BREAK_OP
 1 1 Level
 39 NULL_OP; end of default actions
 39 NULL_OP; end of alternatives for SWITCH

 UNDEFINE_DYNM_OP 64

 int 64
 int object_id

 UNDEFINE_DYNM is used to release space assigned to an object
 allocated in the current local storage area. The parameter
 ’object_id’ is the object identifier used in the DEFINE_DYNM_OP
 that assigned space to the object.

 This operator is rarely used; it is normally unnecessary unless
 the language supported by the front−end allows nested blocks or
 the front−end generates and deallocates temporary variables
 explicitly.

 Example: If object number 44 has been allocated by the front end
 as a temporary, it can be deallocated with

 64 UNDEFINE_DYNM_OP
 44 ID of object to be deallocated

 − 59 −

 WHILE_LOOP_OP 65

 int 65
 tree condition
 tree body

 WHILE_LOOP_OP generates a test−at−the−top loop. The parameter
 ’condition’ must be an expression yielding a result of zero (for
 loop termination) or non−zero (for loop continuation). The
 parameter ’body’ is the body of the loop (which may contain BREAK
 ops for early termination or NEXT ops for explicit continuation).

 Example: while (i < j) do i <<= 1;
 where i, j are integer objects with ids 12 and 13

 65 WHILE_LOOP_OP
 31 LT_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object ID for i
 40 OBJECT_OP
 1 INT_MODE
 13 Object ID for j
 29 LSHIFTAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object ID for i
 9 CONST_OP
 1 INT_MODE
 1 Length 1
 1 Value 1

 XORAA_OP 66

 int 66
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise exclusive−
 or of the values of the left and right operands. As a side
 effect, the result is stored back into the left operand. The
 left operand must be an lvalue or a bit field (see FIELD_OP).
 Both operands must have the same mode as the operation, and only
 modes INT, LONG INT, UNSIGNED, and LONG UNSIGNED are allowable.

 XORAA stands for "exclusive−or and assign." It is used to
 implement the "^=" operator of C.

 Example: i ^= 1 (where i is an integer object with id 12)

 − 60 −

 66 XORAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant is of length 1
 1 Constant has value 1

 XOR_OP 67

 int 67
 int mode
 tree left
 tree right

 The result of this operator is an rvalue, the bitwise exclusive−
 or of the values of the left and right operands. Both operands
 must have the same mode as the operation, and only modes INT,
 LONG INT, UNSIGNED, and LONG UNSIGNED are allowable.

 Example: i ^ 1 (where i is an integer object with id 12)

 67 XOR_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 12 Object id for ’i’
 9 CONST_OP
 1 INT_MODE
 1 Constant is of length 1
 1 Constant has value 1

 ZERO_INITIALIZER_OP 68

 int 68
 int size
 tree next_initializer

 Initializers are the initial−value expressions that appear in
 definitions of variables in C (see DEFINE_DYNM_OP and
 DEFINE_STAT_OP). Local variables are reinitialized whenever the
 procedure containing them is entered; global (static) variables
 are initialized only when the program containing them is loaded.

 ZERO_INITIALIZER provides a compact way of specifying an all−
 zeros initializer. The parameter ’size’ is the number of 16−bit
 zero words to be generated; ’next_initializer’ is simply a link
 to the next INITIALIZER or ZERO_INITIALIZER in a variable’s

 − 61 −

 initial−value list.

 Example: int a[3] = {0, 0, 0} (a global declaration where ’a’
 has object id 1)

 14 DEFINE_STAT_OP
 1 Object id for ’a’
 68 ZERO_INITIALIZER_OP
 3 Fill 3 words with zero
 39 NULL_OP; no more initializers
 3 Size of ’a’, in 16−bit words

 − 62 −

 Extended Examples

 These examples should illustrate some global aspects of
 using the code generator. They include a segment of C source
 code, the (annotated) intermediate form code produced by the C
 front end, and the (annotated) assembly language generated by the
 VCG.

 Basic VCG Input

 C Code

 extern int e1, e2; /* defined outside this module */

 int v1, v2; /* defined here, visible outside */

 static int s1, s2; /* defined here, not visible outside */

 proc1 () /* procedure defined here, visible outside */
 {
 }

 proc2 () /* more of the same */
 {
 }

 IMF Stream 1

 32 A MODULE_OP; begins the input module
 59 SEQ_OP; initiates the sequence of entry points
 7 Object number 7 is an entry point...
 5 whose name is 5 characters long...
 240 p
 242 r
 239 o
 227 c
 177 1
 59 SEQ_OP; next member of the list of entry points
 8 Object number 8 is an entry point...
 5 whose name is 5 characters long...
 240 p
 242 r
 239 o
 227 c
 178 2
 59 SEQ_OP; next member of the list of entry points
 3 Object number 3 is an entry point...
 2 whose name is 2 characters long...
 246 v

 − 63 −

 177 1
 59 SEQ_OP; next member of the list of entry points
 4 Object number 4 is an entry point...
 2 whose name is 2 characters long...
 246 v
 178 2
 39 NULL_OP; terminates the list of entries in this module
 39 NULL_OP; terminates the list of modules in the input

 IMF Stream 2

 32 MODULE_OP; beginning of this input module
 59 SEQ_OP; beginning of static data declarations list
 14 DEFINE_STAT_OP; reserve space for an object
 3 Object ID is 3
 39 NULL_OP; there are no initializers for this object
 1 Its size is 1 word
 59 SEQ_OP; next element of declarations list
 14 DEFINE_STAT_OP; reserve space for an object
 4 Object ID is 4
 39 NULL_OP; there are no initializers for this object
 1 Its size is 1 word
 59 SEQ_OP; next element of declarations list
 14 DEFINE_STAT_OP; reserve space for an object
 5 Object ID is 5
 39 NULL_OP; there are no initializers for this object
 1 Its size is 1 word
 59 SEQ_OP; next element of declarations list
 14 DEFINE_STAT_OP; reserve space for an object
 6 Object ID is 6
 39 NULL_OP; there are no initializers for this object
 1 Its size is 1 word
 59 SEQ_OP; next element of declarations list
 11 DECLARE_STAT_OP; declare object defined outside this module
 1 Object ID is 1
 2 Name has 2 characters...
 229 e
 177 1
 59 SEQ_OP; next element of declarations list
 11 DECLARE_STAT_OP; declare object defined outside this module
 2 Object ID is 2
 2 Name has 2 characters...
 229 e
 178 2
 39 NULL_OP; end of static data definition/declaration list
 39 NULL_OP; end of modules in input stream

 IMF Stream 3

 32 MODULE_OP; beginning of next module in input stream
 59 SEQ_OP; first element of procedure definitions list
 50 PROC_DEFN_OP; procedure definition follows
 7 Procedure is object number 7
 0 Procedure has no arguments

 − 64 −

 5 Procedure name is 5 characters long...
 240 p
 242 r
 239 o
 227 c
 177 1
 39 NULL_OP; empty argument description list
 39 NULL_OP; no code for this procedure
 59 SEQ_OP; next element of procedure definitions list
 50 PROC_DEFN_OP; procedure definition follows
 8 Procedure is object number 8
 0 Procedure has no arguments
 5 Procedure name is 5 characters long...
 240 p
 242 r
 239 o
 227 c
 178 2
 39 NULL_OP; empty argument description list
 39 NULL_OP; no code for this procedure
 39 NULL_OP; end of procedure definitions list (and this module)
 39 NULL_OP; end of modules in this input stream

 PMA Code

 SEG Assemble in 64V mode
 RLIT Place literals in procedure frame
 SYML Allow 8−character external names
 ENT PROC1,L7_ PROC1 is an entry point with address L7_
 ENT PROC2,L8_ Similarly for PROC2,
 ENT V1,L3_ V1,
 ENT V2,L4_ and V2
 LINK Output data in link (static) frame
 L3_ EQU *
 BSZ ’1 Reserve one word for L3_, init to zero
 PROC Output data in proc (procedure) frame
 LINK
 L4_ EQU *
 BSZ ’1 Reserve one word for L4_, init to zero
 PROC
 LINK
 L5_ EQU *
 BSZ ’1 Reserve one word for L5_, init to zero
 PROC
 LINK
 L6_ EQU *
 BSZ ’1 Reserve one word for L6_, init to zero
 PROC
 LINK
 EXT E1 Declare symbol E1 external to this module
 L1_ EQU *
 IP E1 Generate a pointer for the loader to fill in
 PROC
 LINK
 EXT E2 Declare symbol E2 external to this module

 − 65 −

 L2_ EQU *
 IP E2 Generate a pointer for the loader
 PROC
 PROC
 L65535_ EQU * Beginning of a procedure
 EAL L7_ Set up stack frame owner pointer for debugging
 STL SB%+18
 LDA =’4000
 STA% SB%
 PRTN "Procedure Return" at end of procedure
 L7_ ECB L65535_,,SB%+’0,0,’24 Entry control block for procedure
 DATA ’5 PL/I character varying form procedure name
 DATA ’170362
 DATA ’167743
 DATA ’130405
 PROC
 L65534_ EQU * Beginning of second procedure
 EAL L8_ Set up stack frame owner pointer
 STL SB%+18
 LDA =’4000
 STA% SB%
 PRTN
 L8_ ECB L65534_,,SB%+’0,0,’24 Entry control block
 DATA ’5 Procedure name
 DATA ’170362
 DATA ’167743
 DATA ’131370
 END End of this module

 − 66 −

 Storage Allocation

 C Code

 int i, /* a static integer variable */
 ii [10]; /* a static integer array */

 struct
 {
 int f1, f2;
 } s; /* a static structure with two integer fields */

 main (argc, argv) /* a non−trivial procedure, with arguments */
 int argc; /* integer argument */
 char **argv; /* pointer−to−pointer−to−character argument */
 {
 int li, /* a local integer variable */
 lii [10]; /* a local integer array */

 struct
 {
 int m1, m2;
 } ls; /* a local structure with two integer fields */

 i; /* use of various things in expressions */
 ii [0];
 s.f1;
 li;
 lii [0];
 ls.m1;
 argv;
 argc;
 }

 IMF Stream 1

 32 MODULE_OP; beginning of next module in input stream
 59 SEQ_OP; beginning of entry point declaration list
 1 Object number 1 is an entry point...
 1 whose name is 1 character long...
 233 i
 59 SEQ_OP; next member of entry point list
 3 Object number 3 is an entry point...
 1 whose name is 1 character long...
 243 s
 59 SEQ_OP; next member of entry point list
 4 Object number 4 is an entry point...
 4 whose name is 4 characters long...
 237 m
 225 a
 233 i
 238 n
 59 SEQ_OP; next member of entry point list
 2 Object number 2 is an entry point...

 − 67 −

 2 whose name is 2 characters long...
 233 i
 233 i
 39 NULL_OP; end of entry point list (and this module)
 39 NULL_OP; end of modules in this input stream

 IMF Stream 2

 32 MODULE_OP; beginning of next module
 59 SEQ_OP; beginning of static data declarations/definitions
 14 DEFINE_STAT_OP; reserve space for a static variable
 1 Object ID is 1
 39 NULL_OP; no initializers for this variable
 1 Object size is 1 word
 59 SEQ_OP; next member of static data list
 14 DEFINE_STAT_OP; reserve space for a static variable
 2 Object ID is 2
 39 NULL_OP; no initializers for this variable
 10 Object size is 10 words
 59 SEQ_OP; next member of static data list
 14 DEFINE_STAT_OP; reserve space for a static variable
 3 Object ID is 3
 39 NULL_OP; no initializers for this variable
 2 Object size is 2 words
 39 NULL_OP; end of static data list
 39 NULL_OP; end of modules in this input stream

 IMF Stream 3

 32 MODULE_OP; beginning of next module in input stream
 59 SEQ_OP; beginning of procedure definition list
 50 PROC_DEFN_OP; procedure definition follows
 4 Object ID of procedure is 4
 2 Procedure has 2 arguments
 4 Procedure name is 4 characters long...
 237 m
 225 a
 233 i
 238 n
 49 PROC_DEFN_ARG_OP; description of first argument
 5 Argument has object ID 5
 1 Argument has mode 1 (INTEGER)
 0 Argument has disposition 0 (pass−by−value)
 1 Argument is 1 word long
 49 PROC_DEFN_ARG_OP; description of second argument
 6 Argument has object ID 6
 4 Argument has mode 4 (LONG UNSIGNED, or pointer)
 1 Argument has disposition 1 (pass−by−reference)
 2 Argument is 2 words long
 39 NULL_OP; end of argument descriptor list
 59 SEQ_OP; beginning of procedure code
 13 DEFINE_DYNM_OP; reserve space for local variable
 7 Object ID 7
 39 NULL_OP; no initializers

 − 68 −

 1 Size 1 word
 59 SEQ_OP; next element of procedure code
 13 DEFINE_DYNM_OP; reserve space for local variable
 8 Object ID 8
 39 NULL_OP; no initializers
 10 Size 10 words
 59 SEQ_OP; next element of procedure code
 13 DEFINE_DYNM_OP; reserve space for local variable
 9 Object ID 9
 39 NULL_OP; no initializers
 2 Size 2 words
 59 SEQ_OP; next element of procedure code
 40 OBJECT_OP; (this is actually an expression subtree)
 1 Mode 1 (INTEGER)
 1 Object ID 1
 59 SEQ_OP; next element of procedure code
 25 INDEX_OP; again, the top of an expression subtree
 1 Mode 1 (INTEGER)
 40 OBJECT_OP; the base address of the array
 7 Mode 7 (STOWED)
 2 Object ID 2
 9 CONST_OP; this one is the index expression
 1 Mode 1 (INTEGER)
 1 Length is 1 word
 0 Value of word is 0
 1 Array element size is 1 word
 59 SEQ_OP; next element of procedure code
 58 SELECT_OP; again, the top of an expression subtree
 1 Mode 1 (INTEGER)
 0 Field to be selected has word offset 0 from base
 40 OBJECT_OP; the base address of the structure
 7 Mode 7 (STOWED)
 3 Object ID 3
 59 SEQ_OP; next element of procedure code
 40 OBJECT_OP; an expression, again
 1 Mode 1 (INTEGER)
 7 Object ID is 7
 59 SEQ_OP; next element of procedure code
 25 INDEX_OP; using an array element as an expression
 1 Mode 1 (INTEGER)
 40 OBJECT_OP; the base of the array being indexed
 7 Mode 7 (STOWED)
 8 Object ID is 8
 9 CONST_OP; this is the subscript expression
 1 MODE 1 (INTEGER)
 1 Length of constant is 1 word
 0 Value of constant is 0
 1 Array element size is 1 word
 59 SEQ_OP; next element of procedure code
 58 SELECT_OP; using struct field as an expression
 1 Mode 1 (INTEGER)
 0 Offset of selected field is 0 words from base
 40 OBJECT_OP; the base address of the structure
 7 Mode 7 (STOWED)
 9 Object ID is 9
 59 SEQ_OP; next element of procedure code

 − 69 −

 40 OBJECT_OP; just the top of an expression tree
 4 Mode 4 (LONG_UNSIGNED, or pointer)
 6 Object ID is 6
 59 SEQ_OP; next element of procedure code
 40 OBJECT_OP; an expression, again
 1 Mode 1 (INTEGER)
 5 Object ID is 5
 39 NULL_OP; end of procedure body code (and proc defn)
 39 NULL_OP; end of procedure defn list (and this module)
 39 NULL_OP; end of this input stream

 PMA Code

 SEG Assemble in 64V mode
 RLIT Place literals in procedure frame
 SYML Allow 8−character external symbols
 ENT I,L1_ I is an entry point, with address L1_
 ENT S,L3_ S is an entry point, with address L3_
 ENT MAIN,L4_ MAIN is an entry point, with address L4_
 ENT II,L2_ II is an entry point, with address L2_
 LINK Emit data in link (static data) frame
 L1_ EQU *
 BSZ ’1 Reserve 1 word for L1_
 PROC
 LINK
 L2_ EQU *
 BSZ ’12 Reserve 10 words (’12 octal) for L2_
 PROC
 LINK
 L3_ EQU *
 BSZ ’2 Reserve 2 words for L3_
 PROC
 PROC
 L65535_ EQU * Beginning of a procedure
 ARGT Transfer arguments from caller
 EAL L4_ Set up stack frame owner pointer for debugging
 STL SB%+18
 LDA =’4000
 STA% SB%
 LDA SB%+’24,* Make copy of pass−by−value arguments
 STA SB%+’24
 LDA LB%+’400 Evaluate expression 1,
 LDA LB%+’401 2,
 LDA LB%+’413 3,
 LDA SB%+’25 4,
 LDA SB%+’32 5,
 LDA SB%+’44 6,
 LDL SB%+’27 7,
 LDA SB%+’24 8
 PRTN Return from the procedure
 L4_ ECB L65535_,,SB%+’24,2,’46 Entry control block
 DATA ’4 PL/I char varying procedure name
 DATA ’166741
 DATA ’164756
 END End of this PMA module

 − 70 −

 String Copy

 C Code

 strcpy (s, t) /* copy string s to string t */
 char s[], t[];
 {
 int i; /* a local integer variable, for indexing */

 i = 0; /* start at first char */
 while ((t[i] = s[i]) != ’\0’) /* copy until a zero char is seen */
 i += 1; /* incrementing the index each time */
 }

 IMF Stream 1

 32 MODULE_OP; begins the input module
 59 SEQ_OP; begins sequence of entry points
 1 Object number 1 is an entry point
 6 whose name is 6 characters long...
 243 s
 244 t
 242 r
 227 c
 240 p
 249 y
 39 NULL_OP; terminates entry point list
 39 NULL_OP; terminates list of modules in the input

 IMF Stream 2

 32 MODULE_OP; begins the input module
 39 NULL_OP; terminates the sequence of static data definitions
 39 NULL_OP; terminates list of modules in the input

 IMF Stream 3

 32 MODULE_OP; begins next module in the input stream
 59 SEQ_OP; first procedure definition follows
 50 PROC_DEFN_OP; procedure definition follows
 1 Procedure is object number 1
 2 There are 2 arguments, described below.
 6 Procedure name is 6 characters long...
 243 s
 244 t
 242 r
 227 c
 240 p
 249 y
 49 PROC_DEFN_ARG_OP; description of argument number 1
 2 Argument is object number 2
 4 LONG_UNS_MODE; argument is a pointer

 − 71 −

 1 REF_DISP; argument is passed−by−reference
 2 Argument is 2 words long
 49 PROC_DEFN_ARG_OP; description of argument number 2
 3 Argument is object number 3
 4 LONG_UNS_MODE; argument is a pointer
 1 REF_DISP; argument is passed−by−reference
 2 Argument is 2 words long
 39 NULL_OP; end of argument descriptions
 59 SEQ_OP; beginning of procedure code list
 13 DEFINE_DYNM_OP; declare a local variable
 4 Variable has object id 4
 39 No initializers
 1 Variable is 1 word in length
 59 SEQ_OP; next element of code list
 5 ASSIGN_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 4 Object id is 4
 9 CONST_OP
 1 INT_MODE
 1 Constant has length 1
 0 Constant has value 0
 1 Assignment transfers 1 word
 59 SEQ_OP; next element of code list
 65 WHILE_OP
 37 NE_OP
 1 INT_MODE
 5 ASSIGN_OP
 1 INT_MODE
 25 INDEX_OP; the LHS of the assignment
 1 INT_MODE
 15 DEREF_OP; this is the base address
 7 STOWED_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 3 Object id is 3
 40 OBJECT_OP; this is the subscript
 1 INT_MODE
 4 Object id is 4
 1 Array element size is 1 word
 25 INDEX_OP; the RHS of the assignment
 1 INT_MODE
 15 DEREF_OP; the base address expression
 7 STOWED_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 2 Object id is 2
 40 OBJECT_OP; the subscript, again
 1 INT_MODE
 4 Object id is 4
 1 Array element size is 1 word
 1 Assignment transfers 1 word
 9 CONST_OP; the right operand of the NE_OP
 1 INT_MODE
 1 Constant is 1 word long

 − 72 −

 0 Constant has value 0
 59 SEQ_OP; beginning of the body of the WHILE loop
 1 ADDAA_OP
 1 INT_MODE
 40 OBJECT_OP
 1 INT_MODE
 4 Object id is 4
 9 CONST_OP
 1 INT_MODE
 1 Length is 1 word
 1 Value is 1
 39 NULL_OP; end of the body of the WHILE loop
 39 NULL_OP; end of the statements for the current procedure
 39 NULL_OP; end of the procedure definitions in this module
 39 NULL_OP; end of this input stream

 PMA Code

 SEG
 RLIT
 SYML
 ENT STRCPY,L1_
 PROC
 L65535_ EQU *
 ARGT Transfer arguments from caller
 EAL L1_ Set up stack frame owner pointer for debugging
 STL SB%+18
 LDA =’4000
 STA% SB%
 CRA Load A with zero
 STA SB%+’32 Store in i
 JMP L65533_ Enter the WHILE loop at the test
 FIN (dump literals here)
 L65532_ EQU * Top of the WHILE loop body
 IRS SB%+’32 Increment i
 RCB (takes two instructions on this turkey machine)
 L65533_ EQU * WHILE loop test starts here
 LDX SB%+’32 Load index register with i
 LDA SB%+’24,*X Load next character in string s
 STA SB%+’27,*X Store it in next position in string t
 BNE L65532_ If it’s non−zero, go back for more characters
 L65534_ EQU * Exit label for the WHILE loop
 PRTN Return from string copy procedure
 L1_ ECB L65535_,,SB%+’24,2,’33
 DATA ’6
 DATA ’171764
 DATA ’171343
 DATA ’170371
 END

 − 73 −

 Tree Print

 C Code

 /* recursive tree−printing routine */

 #define NULL 0 /* a nil pointer */

 struct TNODE /* the data structure out of which the tree is built */
 {
 int value;
 struct TNODE *left, *right;
 };
 typedef struct TNODE tnode; /* create a new type, for convenience */

 treeprint (t)
 tnode *t;
 {
 if (t != NULL)
 {
 treeprint (t−>left);
 printf ("%4d\n", t−>value); /* output the ’value’ field */
 treeprint (t−>right);
 }
 }

 IMF Stream 1

 32 MODULE_OP; beginning of next module in input stream
 59 SEQ_OP; beginning of list of entry point declarations
 1 Object number 1 is an entry point
 9 whose name is 9 characters long...
 244 t
 242 r
 229 e
 229 e
 240 p
 242 r
 233 i
 238 n
 244 t
 39 NULL_OP; end of entry point list for this module
 39 NULL_OP; end of modules in this input stream

 IMF Stream 2

 32 MODULE_OP; beginning of next module in this input stream
 59 SEQ_OP; beginning of list of static data definitions
 11 DECLARE_STAT_OP; declare an externally−defined object
 3 Object has object id 3
 6 Name of object is 6 characters long...
 240 p

 − 74 −

 242 r
 233 i
 238 n
 244 t
 230 f
 39 NULL_OP; end of static data for this module
 39 NULL_OP; end of modules in this input stream

 IMF Stream 3

 32 MODULE_OP; beginning of next module in input stream
 59 SEQ_OP; beginning of list of procedure definitions
 50 PROC_DEFN_OP; procedure definition follows
 1 Procedure has object id 1
 1 Procedure has 1 argument
 9 Procedure name is 9 characters long...
 244 t
 242 r
 229 e
 229 e
 240 p
 242 r
 233 i
 238 n
 244 t
 49 PROC_DEFN_ARG_OP; description of procedure argument
 2 Argument has object id 2
 4 Argument has mode LONG_UNS (it’s a pointer)
 1 Argument has REF disposition (pass−by−reference)
 2 Argument is 2 words long
 39 NULL_OP; no further argument descriptions
 59 SEQ_OP; beginning of statement list
 24 IF_OP
 1 INT_MODE
 37 NE_OP
 4 LONG_UNS_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 2 Object has id 2
 9 CONST_OP
 4 LONG_UNS_MODE
 2 Constant has length 2
 0 First word of constant is 0
 0 Second word of constant is 0
 59 SEQ_OP; then−part of IF statement follows
 48 PROC_CALL_OP (for treeprint)
 1 INT_MODE
 40 OBJECT_OP; this is the base address
 7 STOWED_MODE; arbitrary, for procs.
 1 Object id of procedure is 1
 47 PROC_CALL_ARG_OP
 7 STOWED_MODE
 15 DEREF_OP
 7 STOWED_MODE
 58 SELECT_OP

 − 75 −

 4 LONG_UNS_MODE
 1 Field offset is 1 word
 15 DEREF_OP
 7 STOWED_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 2 Object id is 2
 39 NULL_OP; end of argument list
 59 SEQ_OP; next element of IF body follows
 48 PROC_CALL_OP (for printf)
 1 INT_MODE
 40 OBJECT_OP; the base address
 7 STOWED_MODE; ignored in this case
 3 Object id of procedure is 3
 47 PROC_CALL_ARG_OP
 1 INT_MODE
 15 DEREF_OP
 1 INT_MODE
 51 REFTO_OP
 4 LONG_UNS_MODE (pointer to char)
 9 CONST_OP; this is the string
 7 STOWED_MODE
 5 Length is 5 words
 165 Value is %
 180 4
 228 d
 138 newline
 0 0
 47 PROC_CALL_ARG_OP
 1 INT_MODE
 58 SELECT_OP
 1 INT_MODE
 0 Field is at offset 0
 15 DEREF_OP; base address of struct
 7 STOWED_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE
 2 Object id is 2
 39 NULL_OP; end of argument list
 59 SEQ_OP; next element of body of IF follows
 48 PROC_CALL_OP
 1 INT_MODE (ignored)
 40 OBJECT_OP; the procedure address
 7 STOWED_MODE
 1 Object id is 1
 47 PROC_CALL_ARG_OP
 7 STOWED_MODE
 15 DEREF_OP
 7 STOWED_MODE
 58 SELECT_OP
 4 LONG_UNS_MODE
 3 Field has offset 3 words
 15 DEREF_OP
 7 STOWED_MODE
 40 OBJECT_OP
 4 LONG_UNS_MODE

 − 76 −

 2 Object id is 2
 39 NULL_OP; end of treeprint args
 39 NULL_OP; end of then−part of IF
 39 NULL_OP; omitted else−part of the IF
 39 NULL_OP; end of statements in this procedure
 39 NULL_OP; end of procedure definition list (and this module)
 39 NULL_OP; end of modules in this input stream

 PMA Code

 SEG
 RLIT
 SYML
 ENT TREEPRINT,L1_ Make ’treeprint’ available outside this module
 LINK
 EXT PRINTF
 L3_ EQU *
 IP PRINTF Use ’printf’, defined outside this module
 PROC
 PROC
 L65535_ EQU * Beginning of ’treeprint’
 ARGT Transfer arguments from caller
 EAL L1_ Set up stack frame owner pointer for debugging
 STL SB%+18
 LDA =’4000
 STA% SB%
 LDL SB%+’24 If the argument...
 BLEQ L65534_ ...is nonzero...
 LDX =’1 we first get the pointer in the ’left’ field
 EAXB SB%+’24,*X by addressing the field with XB
 LDL XB%+’0 then loading the value of the pointer into L
 STL SB%+’27 then storing it in a temporary
 PCL L1_ call ’treeprint’ recursively
 AP SB%+’27,*SL using the temporary to pass the value
 LINK
 DATA ’245 This is the format string for ’printf’...
 DATA ’264 ...value is "%4d\n\0"
 DATA ’344
 DATA ’212
 DATA ’0
 PROC
 PCL LB%+’400,* Here’s the call to ’printf’
 AP LB%+’402,S passing the formatting string
 AP SB%+’24,*SL and the value field of the current tnode
 LDX =’3 Now we get the pointer in the ’right’ field
 EAXB SB%+’24,*X pretty much as we did it before
 LDL XB%+’0
 STL SB%+’27
 PCL L1_ and call ’treeprint’,
 AP SB%+’27,*SL passing it the pointer to the right subtree
 L65534_ EQU *
 PRTN return from ’treeprint’
 L1_ ECB L65535_,,SB%+’24,1,’31
 DATA ’11
 DATA ’172362

 − 77 −

 DATA ’162745
 DATA ’170362
 DATA ’164756
 DATA ’172041
 END

 − 78 −

 The ’Drift’ Compiler

 The ’Drift’ Language

 Description

 ’Drift’ is an extremely simplified programming language for
 computers with Von Neumann−style architectures. While too
 restrictive to be generally useful, it does have a few interest−
 ing features. It is an expression−oriented language rather than
 statement−oriented; non−declarative constructs generally yield a
 value of some sort. The syntax is intended to be conducive to
 simple error recovery schemes (particularly to panic−mode symbol
 skipping) while retaining a reasonable degree of cleanliness and
 human engineering (for example, statements are terminated by end−
 of−line, rather than some delimiter like a semicolon;
 continuations across lines are represented explicitly by an ’&’).
 The semantics of the language closely reflect the expression−
 oriented semantics of the VCG itself.

 ’Drift’ programs are composed of variable declarations,
 function declarations, and expressions. Variables may be global
 in scope or restricted to the function in which they are
 declared. Function declarations may not be nested. All
 variables represent floating point quantities; all functions
 return floating point quantities. The return value of a function
 is the return value of the last expression in the expression
 series that comprises its body. Functions may be recursive and
 need not be defined before use. The function named ’main’ is
 assumed to be the main program, and will be invoked by whatever
 environment supports ’drift’ programs.

 Expressions are made of the four standard operators (+, −,
 *, /), assignment (’=’, treated uniformly as an arithmetic
 operator yielding the value of its right−hand−side), two−way
 selection (’if’), and a loop (’while’). Variables in expressions
 yield their values (or take on new ones if used as the left
 operand of an assignment operator). They must be declared before
 they are used. Function calls in expressions cause parameters to
 be passed by value to the named function; the value returned by
 the function then takes the place of the call in the expression.
 The quad (’#’) is a pseudovariable used for input/output. When
 used in the right−hand−side of an assignment, it causes input of
 a floating point value from standard input; when used in the
 left−hand−side, it causes output of the right−hand−side to stan−
 dard output.

 BNF

 The syntax of ’drift’ presented below employs the extended
 BNF used throughout the Software Tools Subsystem documentation.

 − 79 −

 Alternatives enclosed in curly braces {} may be repeated any num−
 ber of times, including zero. Alternatives enclosed in square
 brackets [] may be used once or not at all.

 program −>
 newlines {declaration newlines} eof

 declaration −>
 global_variable_declaration
 | function_declaration

 global_variable_declaration −>
 ’float’ identifier {’,’ newlines identifier}

 identifier −>
 letter {letter | digit | ’_’}

 newlines −>
 {NEWLINE}

 function_declaration −>
 ’function’ identifier ’(’ formal_parameters ’)’ newlines
 {local_variable_declaration newlines}
 series newlines
 ’end_function’

 formal_parameters −>
 [identifier {’,’ newlines identifier}]

 local_variable_declaration −>
 ’float’ identifier {’,’ newlines identifier}

 series −>
 expression newlines {expression newlines}

 expression −>
 sum {’=’ sum}

 sum −>
 term {(’+’ | ’−’) term}

 term −>
 primary {(’*’ | ’/’) primary}

 primary −>
 ’#’
 | ’null’
 | number
 | identifier
 | identifier ’(’ actual_parameters ’)’
 | loop
 | conditional
 | ’(’ series ’)’

 loop −>

 − 80 −

 ’while’ newlines series newlines
 ’do’ newlines
 series newlines
 ’od’

 conditional −>
 ’if’ newlines series newlines
 ’then’ newlines series newlines
 [’else’ newlines series newlines]
 ’fi’

 actual_parameters −>
 [series {’,’ newlines series}]

 Examples

 The following programs compute the value of a base raised to
 a positive integer exponent. The first is iterative, while the
 second is recursive.

 −− A sample program in ’drift’

 float x, y

 function power (base, exponent)

 float result

 result = 1
 while exponent −− that is, while exponent <> 0
 do
 result = result * base
 exponent = exponent − 1
 od

 result
 end_function

 function main ()
 x = #
 y = #
 # = power (x, y)
 end_function

 −− The same sample, only done recursively

 float x, y

 function power (base, exponent)
 if exponent

 − 81 −

 then base * power (base, exponent − 1)
 else 1
 fi
 end_function

 function main ()
 x = #
 y = #
 # = power (x, y)
 end_function

 The Compiler

 The ’drift’ compiler was implemented in Ratfor under the
 Software Tools Subsystem in about two man−days. Conceptually, it
 generates intermediate form code for the VCG in two passes: the
 first (lexical and syntactic) generates an internal form used
 only by the front end, while the second (semantic) does semantic
 checking and converts the internal form to IMF.

 The lexical analyzer used in the compiler is a fairly stan−
 dard one employed in a number of Software Tools Subsystem
 programs because of its compactness and high speed. It resides
 almost entirely in the subroutine ’getsym’.

 The parser code is input to ’stacc’, a recursive−descent
 parser generator that is part of the Software Tools package. The
 production for ’program’ is actually the main routine of the com−
 piler. Note that very little attempt is made to recover from
 syntactic errors; the purpose of the compiler is the demonstra−
 tion of code generation, not parsing. The parser drives the com−
 pilation process, making calls on the lexical analyzer and inter−
 nal form code generation routines as necessary.

 The IMF generation process is concentrated in the subroutine
 ’semantic_analysis’ and its descendents. This routine invokes
 ’void_context’, ’lvalue_context’, and ’rvalue_context’ to
 propagate contextual information during a traversal of the inter−
 nal form tree. The bulk of the IMF generation takes place in
 ’rvalue_context’, since most operators yield floating point
 values. Special cases are handled in the other two contexts:
 left−hand−sides of assignments by ’lvalue_context’ and constructs
 that don’t yield values by ’void_context’. Since the internal
 form is tree structured, the translation to IMF is straightfor−
 ward.

 Global Variable Definitions

 # global variables for ’drift’ compiler

 # dynamic storage used by symbol table routines:
 DS_DECL (Mem, MEMSIZE)

 − 82 −

 # symbol tables:
 pointer Functions, Globals, Locals, Reserved_words
 common /stcom/ Functions, Globals, Locals, Reserved_words

 # lexical stuff:
 character Inbuf (INBUFSIZE), Symtext (MAX_SYM_LEN)
 integer Symbol, Ibp, Current_line
 real Symval
 common /lexcom/ Inbuf, Symtext, Symbol, Ibp, Current_line, Symval

 # files for I/O:
 filedes In_stream, Ent_stream, Data_stream, Code_stream
 common /filcom/ In_stream, Ent_stream, Data_stream, Code_stream

 # internal form memory:
 integer Ifmem (INTERNAL_FORM_MEMSIZE), Next_ifmem
 common /if1com/ Ifmem
 common /if2com/ Next_ifmem

 # semantic stack:
 ifpointer Stack (SEMANTIC_STACK_SIZE)
 integer Sp
 common /semcom/ Sp, Stack

 # other junk:
 integer Next_obj_id, Exin_id, Exout_id, Error_count
 common /miscom/ Next_obj_id, Exin_id, Exout_id, Error_count

 Parser Source Code

 # ’stacc’ parser for drift

 .common "drift_com.r.i"; # file containing global variables

 .symbol Symbol; # "current symbol" variable

 .scanner getsym; # name of lexical analysis routine

 .state state; # "parse state" variable

 .terminal # terminal symbols
 256 # start higher than largest char value
 FLOAT_SYM
 ID_SYM
 FUNCTION_SYM
 END_FUNCTION_SYM
 NULL_SYM
 NUMBER_SYM
 WHILE_SYM
 DO_SYM
 OD_SYM
 IF_SYM
 THEN_SYM
 ELSE_SYM

 − 83 −

 FI_SYM
 ;

 NEWLINE
 EOF
 ;

 program −>
 ! call begin_program
 nls
 {
 declaration
 nls
 }
 EOF.
 ! call end_program
 ? call pmr ("EOF expected*n"p, state)
 ;

 declaration −>
 global_variable_declaration
 |
 function_declaration
 ;

 global_variable_declaration −>
 FLOAT_SYM
 ID_SYM
 ! call declare_global_variable (Symtext)
 ? call pmr ("missing identifier*n"p, state,
 state)
 {
 ’,’
 nls
 ID_SYM
 ! call declare_global_variable (Symtext)
 ? call pmr ("missing identifier*n"p, state)
 }
 ;

 nls −>
 {
 NEWLINE
 }
 ;

 − 84 −

 function_declaration −>
 FUNCTION_SYM
 ID_SYM
 ! call begin_function (Symtext)
 ? call pmr ("missing function name*n"p, state)
 ’(’
 ! call make_null
 ? call pmr ("missing parameters*n"p, state)
 formal_parameters
 ! call make_function_parameters
 ’)’
 ? call pmr ("missing ’)’*n"p, state)
 nls
 ! call make_null
 {
 local_variable_declaration
 nls
 }
 series
 ! call make_function_body
 ? call pmr ("missing function body*n"p, state)
 nls
 END_FUNCTION_SYM
 ! call end_function
 ? call pmr ("missing ’end_function’*n"p,
 state)
 ;

 formal_parameters −>
 ID_SYM
 ! call declare_formal_parameter (Symtext)
 {
 ’,’
 nls
 ID_SYM
 ! call declare_formal_parameter (Symtext)
 ? call pmr ("missing identifier*n"p, state)
 }
 |
 epsilon
 ;

 local_variable_declaration −>
 FLOAT_SYM
 ID_SYM
 ! call declare_local_variable (Symtext)
 ? call pmr ("missing identifier*n"p, state)
 {
 ’,’
 nls
 ID_SYM

 − 85 −

 ! call declare_local_variable (Symtext)
 ? call pmr ("missing identifier*n"p, state)
 }
 ;

 series −>
 expression
 nls
 {
 expression
 ! call sequentialize
 nls
 }
 ;

 expression −>
 sum
 {
 ’=’
 sum
 ! call make_dyad (ASSIGN_NODE)
 ? call pmr ("missing right−hand−side*n"p,
 state)
 }
 ;

 sum −>
 ! integer node
 term
 {
 (
 ’+’
 ! node = ADD_NODE
 |
 ’−’
 ! node = SUBTRACT_NODE
)
 term
 ! call make_dyad (node)
 ? call pmr ("missing right operand*n"p, state)
 }
 ;

 term −>
 ! integer node
 primary
 {
 (

 − 86 −

 ’*’
 ! node = MULTIPLY_NODE
 |
 ’/’
 ! node = DIVIDE_NODE
)
 primary
 ! call make_dyad (node)
 ? call pmr ("missing right operand*n"p, state)
 }
 ;

 primary −>
 ! character id (MAX_SYM_LEN)
 ’#’
 ! call make_quad
 |
 NULL_SYM
 ! call make_null
 |
 NUMBER_SYM
 ! call make_constant (Symval)
 |
 ID_SYM
 ! call scopy (Symtext, 1, id, 1)
 (
 ’(’
 actual_parameters
 ’)’
 ! call make_call (id)
 ? call pmr ("missing ’)’*n"p, state)
 |
 epsilon
 ! call make_object (id)
)
 |
 loop
 |
 conditional
 |
 ’(’
 series
 ’)’
 ? call pmr ("missing ’)’*n"p, state)
 ;

 loop −>
 WHILE_SYM
 nls
 series
 ? call pmr ("missing loop condition*n"p,
 state)

 − 87 −

 nls
 DO_SYM
 ? call pmr ("missing ’do’*n"p, state)
 nls
 series
 ? call pmr ("missing loop body*n"p, state)
 nls
 OD_SYM
 ! call make_loop
 ? call pmr ("missing ’od’*n"p, state)
 ;

 conditional −>
 IF_SYM
 nls
 series
 ? call pmr ("missing ’if’ condition*n"p,
 state)
 nls
 THEN_SYM
 ? call pmr ("missing ’then’*n"p, state)
 nls
 series
 ? call pmr ("missing then_part*n"p, state)
 (
 ELSE_SYM
 nls
 series
 ? call pmr ("missing else_part*n"p, state)
 nls
 |
 nls
 ! call make_null
)
 FI_SYM
 ! call make_conditional
 ? call pmr ("missing ’fi’*n"p, state)
 ;

 actual_parameters −>
 ! call make_null
 series
 ! call make_actual_parameter
 {
 ’,’
 nls
 series
 ! call make_actual_parameter
 ? call pmr ("missing parameter after ’,’*n"p,
 state)
 }
 |

 − 88 −

 epsilon
 ;

 Remainder of Compiler Source Code

 # drift −−− sample compiler for VCG demonstration

 define (GLOBAL_VARIABLES,"drift_com.r.i")

 define (MAX_SYM_LEN, MAXLINE)
 define (MEMSIZE, 4096)
 define (SEMANTIC_STACK_SIZE, 100)
 define (INTERNAL_FORM_MEMSIZE, 20000)
 define (INBUFSIZE, 300)
 define (PBLIMIT, 150)

 define (UNDEFINED, 0)
 define (DEFINED, 1)

 define (ifpointer, integer)
 define (unknown, integer)

 # Types of internal form nodes:
 define (ADD_NODE,1)
 define (ARG_NODE,2)
 define (ASSIGN_NODE,3)
 define (CALL_NODE,4)
 define (COND_NODE,5)
 define (CONSTANT_NODE,6)
 define (DECLARE_VAR_NODE,7)
 define (DIVIDE_NODE,8)
 define (FUNCTION_NODE,9)
 define (IO_NODE,10)
 define (LOOP_NODE,11)
 define (MULTIPLY_NODE,12)
 define (NULL_NODE,13)
 define (PARAM_NODE,14)
 define (SEQ_NODE,15)
 define (SUBTRACT_NODE,16)
 define (VAR_NODE,17)
 define (LAST_NODE_TYPE,VAR_NODE)

 # Elements of internal form records:
 define (ARG_EXPR (n), Ifmem (n + 2))
 define (ARG_LIST (n), Ifmem (n + 3))
 define (COND (n), Ifmem (n + 2))
 define (ELSE_PART (n), Ifmem (n + 4))
 define (FUNC_BODY (n), Ifmem (n + 5))
 define (LEFT (n), Ifmem (n + 2))
 define (LINE_NUM (n), Ifmem (n + 1))
 define (LOOP_BODY (n), Ifmem (n + 3))
 define (NODE_TYPE (n), Ifmem (n))
 define (NPARAMS (n), Ifmem (n + 4))
 define (OBJ_ID (n), Ifmem (n + 2))
 define (PARAM_LIST (n), Ifmem (n + 3))

 − 89 −

 define (RIGHT (n), Ifmem (n + 3))
 define (THEN_PART (n), Ifmem (n + 3))
 define (WORD1 (n), Ifmem (n + 2))
 define (WORD2 (n), Ifmem (n + 3))

 include "drift.stacc.defs" # macro defns. produced by ’stacc’
 include "/uc/allen/vcg/vcg_defs.r.i" # macro defns. for IMF operators

 integer state

 call program (state)
 if (state ~= ACCEPT)
 call error ("syntactically incorrect program"p)
 stop
 end

 include "drift.stacc.r" # Ratfor source code produced by ’stacc’

 # begin_function −−− set up environment for compiling a function

 subroutine begin_function (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 pointer mktabl

 integer info2 (2)
 integer lookup, gen_id

 ifpointer func_node
 ifpointer ialloc

 Next_ifmem = 1 # initialize internal form memory
 Locals = mktabl (1) # initialize local variable symbol table
 Sp = 0 # initialize semantic stack pointer

 # Place function name in ’Functions’ table, if it’s not already there
 if (lookup (name, info2, Functions) == YES)
 if (info2 (2) == DEFINED)
 call warning ("function *s multiply defined*n"p, name)
 else {
 info2 (2) = DEFINED
 call enter (name, info2, Functions)
 }
 else {
 info2 (1) = gen_id (1)
 info2 (2) = DEFINED
 call enter (name, info2, Functions)
 }

 − 90 −

 # Output an entry point definition for the procedure:
 call emit (SEQ_OP, Ent_stream)
 call emit (info2 (1), Ent_stream) # object id of function
 call emit_string (name, Ent_stream) # function name

 # Put function node on semantic stack:
 func_node = ifalloc (FUNCTION_NODE)
 NPARAMS (func_node) = 0
 OBJ_ID (func_node) = info2 (1)
 call push (func_node)

 return
 end

 # begin_program −−− do pre−program initialization

 subroutine begin_program

 include GLOBAL_VARIABLES

 pointer mktabl

 filedes create, open

 character infile (MAXARG)

 integer getarg, gen_id

 call dsinit (MEMSIZE) # init. dynamic storage
 Functions = mktabl (2) # symbol table for function names
 Globals = mktabl (1) # symbol table for global variables
 Reserved_words = mktabl (1) # symbol table for reserved words
 Next_obj_id = 1 # for object id generator
 Error_count = 0
 Ibp = 1 # buffer pointer...
 Inbuf (Ibp) = EOS # ...and input buffer used by lexer
 Current_line = 0

 # open input file specified on command line:
 if (getarg (1, infile, MAXARG) == EOF)
 In_stream = STDIN
 else {
 In_stream = open (infile, READ)
 if (In_stream == ERR)
 call cant (infile)
 }

 # create temporary files for passing the IMF to the code generator:
 Ent_stream = create ("_drift_.ct1"s, READWRITE)
 Data_stream = create ("_drift_.ct2"s, READWRITE)
 Code_stream = create ("_drift_.ct3"s, READWRITE)
 if (Ent_stream == ERR || Data_stream == ERR || Code_stream == ERR)
 call error ("can’t open temporary files _drift_.ct[1−3]"p)

 − 91 −

 call emit (MODULE_OP, Ent_stream)
 call emit (MODULE_OP, Data_stream)
 call emit (MODULE_OP, Code_stream)

 # define object id’s for the two run−time routines we’ll need:
 Ex$in_id = gen_id (1) # run−time routine for input
 call emit (SEQ_OP, Data_stream)
 call emit (DECLARE_STAT_OP, Data_stream)
 call emit (Ex$in_id, Data_stream)
 call emit_string ("EX$IN"s, Data_stream)

 Ex$out_id = gen_id (1) # run−time routine for output
 call emit (SEQ_OP, Data_stream)
 call emit (DECLARE_STAT_OP, Data_stream)
 call emit (Ex$out_id, Data_stream)
 call emit_string ("EX$OUT"s, Data_stream)

 # build the reserved−word table used by the lexical analyzer:
 call enter ("do"s, DO_SYM, Reserved_words)
 call enter ("else"s, ELSE_SYM, Reserved_words)
 call enter ("end_function"s, END_FUNCTION_SYM, Reserved_words)
 call enter ("fi"s, FI_SYM, Reserved_words)
 call enter ("float"s, FLOAT_SYM, Reserved_words)
 call enter ("function"s, FUNCTION_SYM, Reserved_words)
 call enter ("if"s, IF_SYM, Reserved_words)
 call enter ("null"s, NULL_SYM, Reserved_words)
 call enter ("od"s, OD_SYM, Reserved_words)
 call enter ("then"s, THEN_SYM, Reserved_words)
 call enter ("while"s, WHILE_SYM, Reserved_words)

 # fire up lexical analysis:
 call getsym

 return
 end

 # declare_formal_parameter − put param name in table, assign obj id

 subroutine declare_formal_parameter (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 integer obj_id
 integer lookup, gen_id

 ifpointer param_node
 ifpointer ifalloc

 if (lookup (name, obj_id, Locals) == YES) {
 call warning ("*s: multiply declared*n"p, name)
 return
 }

 − 92 −

 obj_id = gen_id (1)
 call enter (name, obj_id, Locals)

 # create new parameter node and combine it with previous sequence
 # on the semantic stack:
 param_node = ifalloc (PARAM_NODE)
 OBJ_ID (param_node) = obj_id
 call push (param_node)
 call sequentialize
 NPARAMS (Stack (Sp − 1)) += 1

 return
 end

 # declare_global_variable − put name in global table, assign object id

 subroutine declare_global_variable (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 integer obj_id
 integer lookup, gen_id

 if (lookup (name, obj_id, Globals) == YES) {
 call warning ("*s: multiply declared*n"p, name)
 return
 }

 obj_id = gen_id (1)
 call enter (name, obj_id, Globals)

 # go ahead and reserve space in the static data storage area for
 # the variable we just declared:
 call emit (SEQ_OP, Data_stream)
 call emit (DEFINE_STAT_OP, Data_stream)
 call emit (obj_id, Data_stream)
 call emit (NULL_OP, Data_stream) # no initializers
 call emit (2, Data_stream) # 2 words for a floating object

 return
 end

 # declare_local_variable − enter name in local table, assign object id

 subroutine declare_local_variable (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 integer obj_id

 − 93 −

 integer lookup, gen_id

 ifpointer decl_var_node
 ifpointer ifalloc

 if (lookup (name, obj_id, Locals) == YES) {
 call warning ("*s: multiply declared*n"p, name)
 return
 }

 obj_id = gen_id (1)
 call enter (name, obj_id, Locals)

 # make new variable declaration node and put it into a sequence
 # following all previously declared variables:
 decl_var_node = ifalloc (DECLARE_VAR_NODE)
 OBJ_ID (decl_var_node) = obj_id
 call push (decl_var_node)
 call sequentialize

 return
 end

 # emit −−− place value on an output stream

 subroutine emit (val, stream)
 integer val
 filedes stream

 call print (stream, "*i*n"s, val)

 return
 end

 # emit_string − place length of string and string on an output stream

 subroutine emit_string (str, stream)
 character str (ARB)
 filedes stream

 integer i
 integer length

 call emit (length (str), stream)
 for (i = 1; str (i) ~= EOS; i += 1)
 call emit (str (i), stream)

 return
 end

 − 94 −

 # end_function −−− clean up after parse of a function is completed

 subroutine end_function

 include GLOBAL_VARIABLES

 call semantic_analysis (Stack (Sp))
 call rmtabl (Locals) # get rid of all local variable information

 return
 end

 # end_program −−− clean up after the entire program is parsed

 subroutine end_program

 include GLOBAL_VARIABLES

 pointer position

 integer info2 (2)
 integer sctabl

 character sym (MAX_SYM_LEN)

 logical first

 call close (In_stream)

 # terminate IMF streams by ending sequence of definitions, then
 # ending sequence of modules:
 call emit (NULL_OP, Ent_stream); call emit (NULL_OP, Ent_stream)
 call emit (NULL_OP, Data_stream); call emit (NULL_OP, Data_stream)
 call emit (NULL_OP, Code_stream); call emit (NULL_OP, Code_stream)

 call close (Ent_stream)
 call close (Data_stream)
 call close (Code_stream)

 # check function table for names that were referenced but not
 # declared; presumably these are externally compiled
 first = TRUE
 position = 0
 while (sctabl (Functions, sym, info2, position) ~= EOF)
 if (info2 (2) == UNDEFINED) {
 if (first) {
 call print (STDOUT, "External symbols:*n"p)
 first = FALSE
 }
 call print (STDOUT, "*s*n"p, sym)
 }

 return
 end

 − 95 −

 # gen_id −−− generate new object identifiers

 integer function gen_id (num_ids)
 integer num_ids

 include GLOBAL_VARIABLES

 gen_id = Next_obj_id
 Next_obj_id += num_ids

 return
 end

 # getsym −−− get next symbol from input stream

 subroutine getsym

 include GLOBAL_VARIABLES

 procedure getchar forward
 procedure putback (c) forward
 procedure empty_buffer forward

 character c

 integer i
 integer getlin, lookup

 real ctor

 logical too_long, continuation

 continuation = FALSE # true if we want to ignore a line boundary
 repeat { # until we find a legal symbol

 repeat
 getchar
 until (c ~= ’ ’c)

 select (c)

 when (NEWLINE) {
 Current_line += 1
 Symbol = NEWLINE
 if (~continuation)
 break
 }

 when (’;’c) {
 Symbol = NEWLINE # but no line number advance
 if (~continuation)

 − 96 −

 break
 }

 when (’−’c) {
 getchar
 if (c == ’−’c) { # −− begins comments
 empty_buffer
 Current_line += 1
 Symbol = NEWLINE
 if (~continuation)
 break
 }
 else {
 putback (c)
 Symbol = ’−’c
 break
 }
 }

 when (’&’c)
 continuation = TRUE

 when (’+’c, ’*’c, ’/’c, ’#’c, ’(’c, ’)’c, ’,’c, ’=’c, EOF) {
 Symbol = c
 break
 }

 when (SET_OF_LETTERS) { # a−z or A−Z; starting an identifier
 too_long = FALSE
 i = 1
 while (IS_LETTER (c) || IS_DIGIT (c) || c == ’_’c) {
 Symtext (i) = c
 i += 1
 if (i > MAX_SYM_LEN) {
 i −= 1
 too_long = TRUE
 }
 getchar
 }
 putback (c)
 Symtext (i) = EOS
 if (too_long)
 call warning("symbol beginning *s is too long*n"p,Symtext)
 if (lookup (Symtext, Symbol, Reserved_words) == NO)
 Symbol = ID_SYM
 break
 }

 when (’.’c, SET_OF_DIGITS) {
 putback (c)
 Symval = ctor (Inbuf, Ibp) # advances Ibp
 Symbol = NUMBER_SYM
 break
 }

 else

 − 97 −

 call warning ("’*c’: unrecognized character*n"p, c)

 } # repeat until a valid symbol is found

 return

 # getchar −−− get the next character from the input stream

 procedure getchar {

 if (Inbuf (Ibp) == EOS) # time to read a new buffer?
 if (getlin (Inbuf (PBLIMIT), In_stream) == EOF)
 c = EOF
 else {
 c = Inbuf (PBLIMIT) # pick up the first char read
 Ibp = PBLIMIT + 1
 }
 else { # text was already available
 c = Inbuf (Ibp)
 Ibp += 1
 }

 }

 # putback −−− push a character back onto the input stream

 procedure putback (c) {
 character c

 if (Ibp <= 1)
 call error ("too many characters pushed back"p)
 else {
 Ibp −= 1
 Inbuf (Ibp) = c
 }

 }

 # empty_buffer −−− kill remainder of line in input buffer

 procedure empty_buffer {

 Inbuf (Ibp) = EOS # will force a read in ’getchar’

 }

 end

 # ifalloc − allocate space for a particular type node in
 # internal form memory

 ifpointer function ifalloc (node_type)

 − 98 −

 integer node_type

 include GLOBAL_VARIABLES

 # These declarations assume that the internal form node types form
 # a dense ascending sequence of integers from 1 to LAST_NODE_TYPE:
 integer sizeof (LAST_NODE_TYPE)
 data sizeof / _
 4, # ADD_NODE
 3, # ARG_NODE
 4, # ASSIGN_NODE
 4, # CALL_NODE
 5, # COND_NODE
 4, # CONSTANT_NODE
 3, # DECLARE_VAR_NODE
 4, # DIVIDE_NODE
 6, # FUNCTION_NODE
 2, # IO_NODE
 4, # LOOP_NODE
 4, # MULTIPLY_NODE
 2, # NULL_NODE
 3, # PARAM_NODE
 4, # SEQ_NODE
 4, # SUBTRACT_NODE
 3 _ # VAR_NODE
 /

 if (node_type < 1 || node_type > LAST_NODE_TYPE)
 call error ("ifalloc received bad node type"p)

 if (Next_ifmem + sizeof (node_type) > INTERNAL_FORM_MEMSIZE)
 call error ("insufficient internal form memory"p)

 ifalloc = Next_ifmem
 Next_ifmem += sizeof (node_type)

 NODE_TYPE (ifalloc) = node_type
 LINE_NUM (ifalloc) = Current_line

 return
 end

 # lvalue_context −−− generate VCG code for constructs used as lvalues
 # (assumes I/O quads have already been eliminated from LHS’s)

 subroutine lvalue_context (node)
 ifpointer node

 include GLOBAL_VARIABLES

 select (NODE_TYPE (node))

 when (VAR_NODE) {
 call emit (OBJECT_OP, Code_stream)

 − 99 −

 call emit (FLOAT_MODE, Code_stream)
 call emit (OBJ_ID (node), Code_stream)
 }

 when (SEQ_NODE) {
 if (NODE_TYPE (RIGHT (node)) == NULL_NODE)
 call lvalue_context (LEFT (node))
 else {
 call emit (SEQ_OP, Code_stream)
 call void_context (LEFT (node))
 call lvalue_context (RIGHT (node))
 }
 }

 else
 call warning("assignment on line *i has an illegal left side*n"p,
 LINE_NUM (node))

 return
 end

 # make_actual_parameter −−− link actual parameter expression to list

 subroutine make_actual_parameter

 include GLOBAL_VARIABLES

 ifpointer act_param
 ifpointer ifalloc, pop

 act_param = ifalloc (ARG_NODE)
 ARG_EXPR (act_param) = pop (0)
 call push (act_param)
 call sequentialize

 return
 end

 # make_call −−− generate a call to a function

 subroutine make_call (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 integer info2 (2)
 integer lookup, gen_id

 ifpointer call_node
 ifpointer ifalloc, pop

 # if function name is in Functions table, all is well; if not,

 − 100 −

 # we add it provisionally (it may be defined later).
 if (lookup (name, info2, Functions) == NO) {
 info2 (1) = gen_id (1)
 info2 (2) = UNDEFINED
 call enter (name, info2, Functions)
 }

 call_node = ifalloc (CALL_NODE)
 OBJ_ID (call_node) = info2 (1)
 ARG_LIST (call_node) = pop (0)
 call push (call_node)

 return
 end

 # make_conditional −−− make conditional (if−then−else−fi) node

 subroutine make_conditional

 include GLOBAL_VARIABLES

 ifpointer cond
 ifpointer if_alloc, pop

 cond = if_alloc (COND_NODE)
 ELSE_PART (cond) = pop (0)
 THEN_PART (cond) = pop (0)
 COND (cond) = pop (0)

 call push (cond)
 return
 end

 # make_constant −−− make constant node from given value

 subroutine make_constant (val)
 real val

 include GLOBAL_VARIABLES

 real rkluge
 integer ikluge (2)
 equivalence (rkluge, ikluge) # used to unpack floating point constants

 ifpointer cnode
 ifpointer ifalloc

 cnode = ifalloc (CONSTANT_NODE)
 rkluge = val
 WORD1 (cnode) = ikluge (1)
 WORD2 (cnode) = ikluge (2)

 − 101 −

 call push (cnode)
 return
 end

 # make_dyad −−− make node for a dyadic operator (=, +, −, *, /)

 subroutine make_dyad (node_type)
 integer node_type

 include GLOBAL_VARIABLES

 ifpointer node
 ifpointer ifalloc, pop

 node = ifalloc (node_type)
 RIGHT (node) = pop (0)
 LEFT (node) = pop (0)
 call push (node)

 return
 end

 # make_function_body −−− add function body to function definition node

 subroutine make_function_body

 include GLOBAL_VARIABLES

 ifpointer body
 ifpointer pop

 call sequentialize # combine declarations and code
 body = pop (0) # note deep−stack addressing makes sequencing
 FUNC_BODY (Stack (Sp)) = body # necessary...

 return
 end

 # make_function_parameters −−− add params to function definition node

 subroutine make_function_parameters

 include GLOBAL_VARIABLES

 ifpointer params
 ifpointer pop

 params = pop (0) # note: deep−stack addressing makes use of
 PARAM_LIST (Stack (Sp)) = params # a particular sequence necessary

 − 102 −

 return
 end

 # make_loop −−− pop cond and body off stack, generate a loop node

 subroutine make_loop

 include GLOBAL_VARIABLES

 ifpointer loop
 ifpointer ifalloc, pop

 loop = ifalloc (LOOP_NODE)
 LOOP_BODY (loop) = pop (0)
 COND (loop) = pop (0)
 call push (loop)

 return
 end

 # make_null −−− push new "null operator" node on stack

 subroutine make_null

 include GLOBAL_VARIABLES

 ifpointer ifalloc

 call push (ifalloc (NULL_NODE))

 return
 end

 # make_object −−− push node referencing a variable on the stack

 subroutine make_object (name)
 character name (ARB)

 include GLOBAL_VARIABLES

 ifpointer node
 ifpointer ifalloc

 integer obj_id
 integer lookup

 node = ifalloc (VAR_NODE)

 if (lookup (name, obj_id, Locals) == NO
 && lookup (name, obj_id, Globals) == NO) {

 − 103 −

 call warning ("*s: undeclared identifier*n"p, name)
 obj_id = 0
 }

 OBJ_ID (node) = obj_id
 call push (node)

 return
 end

 # make_quad −−− generate an input/output operation node

 subroutine make_quad

 include GLOBAL_VARIABLES

 ifpointer ifalloc

 call push (ifalloc (IO_NODE))

 return
 end

 # output_arguments −−− output IMF for procedure call arguments

 subroutine output_arguments (arg_node)
 ifpointer arg_node

 include GLOBAL_VARIABLES

 select (NODE_TYPE (arg_node))

 when (ARG_NODE) {
 call emit (PROC_CALL_ARG_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call rvalue_context (ARG_EXPR (arg_node))
 }

 when (NULL_NODE)
 ;

 when (SEQ_NODE) {
 call output_arguments (LEFT (arg_node))
 call output_arguments (RIGHT (arg_node))
 }

 else
 call error ("in output_argument: shouldn’t happen"p)

 return
 end

 − 104 −

 # output_params −−− output IMF for procedure formal parameter definitions

 subroutine output_params (param_node)
 ifpointer param_node

 include GLOBAL_VARIABLES

 select (NODE_TYPE (param_node))

 when (PARAM_NODE) {
 call emit (PROC_DEFN_ARG_OP, Code_stream)
 call emit (OBJ_ID (param_node), Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (VALUE_DISP, Code_stream)
 call emit (2, Code_stream) # FLOATs are 2 words long
 }

 when (NULL_NODE)
 ;

 when (SEQ_NODE) {
 call output_params (LEFT (param_node))
 call output_params (RIGHT (param_node))
 }

 else
 call error ("in output_param: shouldn’t happen"p)

 return
 end

 # pmr −−− panic mode recovery for parser

 subroutine pmr (message, state)
 character message (ARB)
 integer state

 include GLOBAL_VARIABLES

 call warning (message)
 state = ACCEPT

 while (Symbol ~= EOF && Symbol ~= ’)’c && Symbol ~= NEWLINE
 && Symbol ~= END_FUNCTION_SYM && Symbol ~= THEN_SYM
 && Symbol ~= ELSE_SYM && Symbol ~= FI_SYM && Symbol ~= DO_SYM
 && Symbol ~= OD_SYM && Symbol ~= ’,’c)
 call getsym

 return
 end

 − 105 −

 # pop −−− pop a node pointer off the semantic stack

 ifpointer function pop (dummy)
 integer dummy # needed to satisfy FORTRAN syntax requirements

 include GLOBAL_VARIABLES

 if (Sp < 1)
 call error ("semantic stack underflow"p)

 pop = Stack (Sp)
 Sp −= 1

 return
 end

 # push −−− push a node pointer onto the semantic stack

 subroutine push (node)
 ifpointer node

 include GLOBAL_VARIABLES

 if (Sp >= SEMANTIC_STACK_SIZE)
 call error ("semantic stack overflow"p)

 Sp += 1
 Stack (Sp) = node

 return
 end

 # rvalue_context −−− generate VCG code for constructs used as rvalues

 subroutine rvalue_context (node)
 ifpointer node

 include GLOBAL_VARIABLES

 select (NODE_TYPE (node))

 when (ADD_NODE, SUBTRACT_NODE, MULTIPLY_NODE, DIVIDE_NODE) {
 select (NODE_TYPE (node))
 when (ADD_NODE)
 call emit (ADD_OP, Code_stream)
 when (SUBTRACT_NODE)
 call emit (SUB_OP, Code_stream)
 when (MULTIPLY_NODE)
 call emit (MUL_OP, Code_stream)
 when (DIVIDE_NODE)
 call emit (DIV_OP, Code_stream)

 − 106 −

 call emit (FLOAT_MODE, Code_stream)
 call rvalue_context (LEFT (node))
 call rvalue_context (RIGHT (node))
 }

 when (ASSIGN_NODE) {
 if (NODE_TYPE (LEFT (node)) == IO_NODE) {
 # fake up output by calling ’ex$out’ at run time:
 call emit (PROC_CALL_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (OBJECT_OP, Code_stream)
 call emit (STOWED_MODE, Code_stream)
 call emit (Ex$out_id, Code_stream)
 call emit (PROC_CALL_ARG_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call rvalue_context (RIGHT (node))
 call emit (NULL_OP, Code_stream)
 }
 else {
 call emit (ASSIGN_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call lvalue_context (LEFT (node))
 call rvalue_context (RIGHT (node))
 call emit (2, Code_stream) # assign 2 words
 }
 }

 when (CALL_NODE) {
 call emit (PROC_CALL_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (OBJECT_OP, Code_stream)
 call emit (STOWED_MODE, Code_stream)
 call emit (OBJ_ID (node), Code_stream)
 call output_arguments (ARG_LIST (node))
 call emit (NULL_OP, Code_stream)
 }

 when (COND_NODE) {
 call emit (IF_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call rvalue_context (COND (node))
 call rvalue_context (THEN_PART (node))
 if (NODE_TYPE (ELSE_PART (node)) == NULL_NODE)
 call warning ("’if’ on line *i needs an ’else’ part*n"p,
 LINE_NUM (node))
 call rvalue_context (ELSE_PART (node))
 }

 when (CONSTANT_NODE) {
 call emit (CONST_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (2, Code_stream) # 2−word floats
 call emit (WORD1 (node), Code_stream)
 call emit (WORD2 (node), Code_stream)
 }

 − 107 −

 when (DECLARE_VAR_NODE) {
 call emit (DEFINE_DYNM_OP, Code_stream)
 call emit (OBJ_ID (node), Code_stream)
 call emit (NULL_OP, Code_stream) # no initializers
 call emit (2, Code_stream) # size is 2 words
 }

 when (IO_NODE) {
 # fake up input by calling ’ex$in’ at run time:
 call emit (PROC_CALL_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (OBJECT_OP, Code_stream)
 call emit (STOWED_MODE, Code_stream)
 call emit (Ex$in_id, Code_stream)
 call emit (NULL_OP, Code_stream) # no arguments
 }

 when (LOOP_NODE)
 call warning("while−loop at line *i is used as an rvalue*n"p,
 LINE_NUM (node))

 when (NULL_NODE)
 call emit (NULL_OP, Code_stream)

 when (SEQ_NODE) {
 if (NODE_TYPE (RIGHT (node)) == NULL_NODE)
 call rvalue_context (LEFT (node))
 else {
 call emit (SEQ_OP, Code_stream)
 call void_context (LEFT (node)) # can never yield a value
 call rvalue_context (RIGHT (node))
 }
 }

 when (VAR_NODE) {
 call emit (OBJECT_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call emit (OBJ_ID (node), Code_stream)
 }

 else
 call error ("in rvalue_context: shouldn’t happen"p)

 return
 end

 # semantic_analysis −−− check function and output VCG code for it

 subroutine semantic_analysis (func)
 ifpointer func

 include GLOBAL_VARIABLES

 # output the procedure definition node:

 − 108 −

 call emit (SEQ_OP, Code_stream)
 call emit (PROC_DEFN_OP, Code_stream)
 call emit (OBJ_ID (func), Code_stream)
 call emit (NPARAMS (func), Code_stream)
 call emit_string (EOS, Code_stream) # we’ll ignore this for now

 # take care of the formal parameter declarations:
 call output_params (ARG_LIST (func))
 call emit (NULL_OP, Code_stream)

 # finally, take care of local variables and the function code:
 call rvalue_context (FUNC_BODY (func))

 return
 end

 # sequentialize −−− combine two nodes with a "sequence" node

 subroutine sequentialize

 include GLOBAL_VARIABLES

 ifpointer seq_node
 ifpointer ifalloc, pop

 seq_node = ifalloc (SEQ_NODE)
 RIGHT (seq_node) = pop (0)
 LEFT (seq_node) = pop (0)
 call push (seq_node)

 return
 end

 # void_context − generate VCG code for constructs that yield no value

 subroutine void_context (node)
 ifpointer node

 include GLOBAL_VARIABLES

 select (NODE_TYPE (node))

 when (COND_NODE) { # an ’if’ used as a statement
 call emit (IF_OP, Code_stream)
 call emit (FLOAT_MODE, Code_stream)
 call rvalue_context (COND (node))
 call void_context (THEN_PART (node))
 call void_context (ELSE_PART (node))
 }

 when (LOOP_NODE) {
 call emit (WHILE_LOOP_OP, Code_stream)

 − 109 −

 call rvalue_context (COND (node))
 call void_context (LOOP_BODY (node))
 }

 when (SEQ_NODE) {
 call emit (SEQ_OP, Code_stream)
 call void_context (LEFT (node))
 call void_context (RIGHT (node))
 }

 else
 call rvalue_context (node)

 return
 end

 # warning −−− print warning message

 subroutine warning (format, a1, a2, a3, a4, a5, a6, a7, a8, a9)
 character format (ARB)
 unknown a1, a2, a3, a4, a5, a6, a7, a8, a9

 include GLOBAL_VARIABLES

 call print (ERROUT, "*i: "s, Current_line)
 call print (ERROUT, format, a1, a2, a3, a4, a5, a6, a7, a8, a9)
 Error_count += 1

 return
 end

 Run−Time Support Routines Source Code

 * RUN−TIME SUPPORT FOR ’DRIFT’
 * UNFORTUNATELY, EX$IN MUST BE WRITTEN IN ASSEMBLER SINCE
 * FORTRAN DOESN’T ALLOW FUNCTIONS WITHOUT ARGUMENTS.
 * AN ALTERNATIVE WOULD BE TO HAVE THE COMPILER GENERATE
 * A DUMMY ARGUMENT ON THE CALL; THEN EX$IN AND EX$OUT
 * COULD BE WRITTEN IN RATFOR, PASCAL, OR WHAT HAVE YOU.

 * EX$IN −−− READ A LINE FROM STANDARD INPUT, CONVERT FROM CHARACTER
 * TO REAL, AND RETURN VALUE

 SEG
 RLIT
 SYML

 SUBR EX$IN

 EX$IN ECB EX$IN$

 DYNM LINE(100),I

 − 110 −

 EXIN EQU *
 CALL GETLIN READ NEXT INPUT LINE
 AP LINE,S
 AP =−10,SL
 BGT CVT_IN IF WE HIT EOF,
 CALL SWT JUST QUIT
 CVT_IN EQU *
 LT OTHERWISE,
 STA I
 CALL CTOR CONVERT TO REAL
 AP LINE,S
 AP I,SL
 PRTN AND RETURN WITH VALUE IN F

 END

 * EX$OUT − WRITE REAL VALUE TO STANDARD OUTPUT, RETURN VALUE UNCHANGED

 SEG
 RLIT
 SYML

 SUBR EX$OUT
 EX$OUT ECB EX$OUT$,,VAL,1

 DYNM VAL(3)

 EXOUT EQU *
 ARGT
 CALL PRINT JUST USE SWT I/O TO OUTPUT VALUE
 AP =−11,S ON STDOUT
 AP =C’*r*n.’,S
 AP VAL,*SL
 FLD VAL,* RETURN VALUE IN F SO THIS FUNCTION
 PRTN BEHAVES LIKE A PSEUDO−VARIABLE

 END

 − 111 −

 Intermediate Form Operator/Function Index

 absolute address
 REFTO_OP

 actual parameter
 PROC_CALL_ARG_OP

 add, addition
 ADD_OP, ADDAA_OP

 address
 REFTO_OP

 alignment
 FIELD_OP

 allocation of storage
 DEFINE_DYNM_OP, DEFINE_STAT_OP, DECLARE_STAT_OP

 alternative in a multiway−branch
 CASE_OP, DEFAULT_OP

 and
 AND_OP, SAND_OP

 argument
 in a procedure call: PROC_CALL_ARG_OP
 in a procedure definition: PROC_DEFN_ARG_OP

 arithmetic operators
 ADDAA_OP, ADD_OP, CONVERT_OP, DIVAA_OP, DIV_OP, MULAA_OP,
 MUL_OP, NEG_OP, REMAA_OP, REM_OP, SUBAA_OP, SUB_OP

 array
 allocation: DEFINE_DYNM_OP, DEFINE_STAT_OP, DECLARE_STAT_OP
 indexing: INDEX_OP

 assignment operators
 ADDAA_OP, ANDAA_OP, ASSIGN_OP, DIVAA_OP, LSHIFTAA_OP,
 MULAA_OP, ORAA_OP, POSTDEC_OP, POSTINC_OP, PREDEC_OP,
 PREINC_OP, REMAA_OP, RSHIFTAA_OP, SUBAA_OP, XORAA_OP

 autodecrement
 POSTDEC_OP, PREDEC_OP

 autoincrement
 POSTINC_OP, PREINC_OP

 automatic variable allocation
 DEFINE_DYNM_OP

 − 112 −

 bit fields
 FIELD_OP

 bitwise logical operators
 ANDAA_OP, AND_OP, COMPL_OP, LSHIFTAA_OP, LSHIFT_OP, ORAA_OP,
 OR_OP, RSHIFTAA_OP, RSHIFT_OP, XORAA_OP, XOR_OP

 boolean operators
 NOT_OP, SAND_OP, SOR_OP

 bounds checking
 CHECK_RANGE_OP, CHECK_LOWER_OP, CHECK_UPPER_OP

 branch
 GOTO_OP, LABEL_OP

 break (loop termination)
 BREAK_OP, NEXT_OP

 byte access
 FIELD_OP

 call
 procedures, functions, subroutines: PROC_CALL_OP,
 PROC_CALL_ARG_OP

 case statement
 SWITCH_OP

 character operations
 FIELD_OP

 checking
 CHECK_RANGE_OP, CHECK_UPPER_OP, CHECK_LOWER_OP

 choice
 boolean: IF_OP
 arithmetic: SWITCH_OP

 coercions
 CONVERT_OP

 common blocks
 DECLARE_STAT_OP

 comparison operators
 EQ_OP, GE_OP, GT_OP, LE_OP, LT_OP, NE_OP

 complement
 COMPL_OP, NOT_OP

 conditional expressions
 IF_OP

 conjunction
 AND_OP, ANDAA_OP

 − 113 −

 constants
 CONST_OP

 continuation of loops
 NEXT_OP

 control flow
 BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP, LABEL_OP,
 NEXT_OP, PROC_CALL_OP, RETURN_OP, SEQ_OP, SWITCH_OP,
 WHILE_LOOP_OP

 conversions
 CONVERT_OP

 copy
 ASSIGN_OP

 data
 CONST_OP, INITIALIZER_OP, ZERO_INITIALIZER_OP

 deallocation
 UNDEFINE_DYNM_OP

 declarations
 DEFINE_DYNM_OP, DEFINE_STAT_OP, DECLARE_STAT_OP

 decrement
 POSTDEC_OP, PREDEC_OP, SUBAA_OP

 default case
 DEFAULT_OP

 define
 procedures: PROC_DEFN_OP
 storage: DEFINE_DYNM_OP, DEFINE_STAT_OP

 dereferencing
 DEREF_OP

 descriptor
 address: REFTO_OP

 difference
 SUBAA_OP, SUB_OP

 disjunction
 ORAA_OP, OR_OP

 disposition of arguments
 PROC_DEFN_ARG_OP

 division
 DIVAA_OP, DIV_OP, RSHIFTAA_OP, RSHIFT_OP

 do loop
 C−style: DO_LOOP_OP

 − 114 −

 Fortran−style: FOR_LOOP_OP

 double precision
 LONG_FLOAT_MODE

 dynamic variablesa
 DEFINE_DYNM_OP, UNDEFINE_DYNM_OP

 element
 of an array: INDEX_OP
 of a structure or record: SELECT_OP

 else
 IF_OP

 entry points
 See descriptions of Intermediate Form stream 1

 equality
 EQ_OP, NE_OP

 exception
 No exception handling, yet

 exclusive−or
 XORAA_OP, XOR_OP

 exit
 from procedures: RETURN_OP
 from loops: BREAK_OP, NEXT_OP

 external symbols
 DECLARE_STAT_OP

 false
 zero

 fields
 of words: FIELD_OP
 of structures or records: SELECT_OP

 fixed−point modes
 INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE

 floating−point modes
 FLOAT_MODE, LONG_FLOAT_MODE

 flow of control
 BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP, LABEL_OP,
 NEXT_OP, PROC_CALL_OP, RETURN_OP, SEQ_OP, SWITCH_OP,
 WHILE_LOOP_OP

 formal parameters
 PROC_DEFN_ARG_OP

 − 115 −

 functions
 declaration: PROC_DEFN_OP
 call: PROC_CALL_OP

 global variables
 declaration: DECLARE_STAT_OP
 definition: DEFINE_STAT_OP

 goto
 GOTO_OP

 greater−than
 GT_OP

 guarantees
 None here.

 immediate operands
 CONST_OP

 inclusive−or
 ORAA_OP, OR_OP

 incrementation
 ADDAA_OP, POSTINC_OP, PREINC_OP

 indexing
 INDEX_OP

 indirection
 DEREF_OP

 inequality
 EQ_OP, NE_OP

 initialization
 INITIALIZER_OP, ZERO_INITIALIZER_OP

 integer
 modes: INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE
 conversion: CONVERT_OP

 inverse
 additive: NEG_OP
 bitwise: COMPL_OP
 boolean: NOT_OP

 invocation
 of procedures: PROC_CALL_OP

 iteration
 DO_LOOP_OP, FOR_LOOP_OP, WHILE_LOOP_OP

 jump
 GOTO_OP

 − 116 −

 labels
 LABEL_OP

 layouts
 of storage: FIELD_OP; also see data modes

 less−than
 LT_OP

 literals
 CONST_OP

 local variables
 DEFINE_DYNM_OP, UNDEFINE_DYNM_OP

 locations
 REFTO_OP

 logical operators
 ANDAA_OP, AND_OP, COMPL_OP, NOT_OP, ORAA_OP, OR_OP,
 SAND_OP, SOR_OP, XORAA_OP, XOR_OP

 long data modes
 LONG_INT_MODE, LONG_UNS_MODE, LONG_FLOAT_MODE

 loops
 DO_LOOP_OP, FOR_LOOP_OP, WHILE_LOOP_OP

 lower bound checking
 CHECK_RANGE_OP, CHECK_LOWER_OP

 lvalues
 DEREF_OP, INDEX_OP, OBJECT_OP, SELECT_OP

 magnitude comparisons (unsigned arithmetic)
 GE_OP, GT_OP, LE_OP, LT_OP

 member
 of an array: INDEX_OP
 of a structure or record: SELECT_OP

 minus
 SUBAA_OP, SUB_OP

 modes
 INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE, FLOAT_MODE,
 LONG_FLOAT_MODE, STOWED_MODE

 modulus
 REMAA_OP, REM_OP

 multidimensional arrays
 INDEX_OP

 multiplication
 MULAA_OP, MUL_OP, LSHIFTAA_OP, LSHIFT_OP

 − 117 −

 multiway branch
 SWITCH_OP

 negation
 NEG_OP

 objects
 OBJECT_OP

 or (logical)
 ORAA_OP, OR_OP, XORAA_OP, XOR_OP

 otherwise
 in Pascal case statement: DEFAULT_OP

 packed data structures
 arrays: no support
 structures: FIELD_OP

 parameters
 formal: PROC_DEFN_ARG_OP
 actual: PROC_CALL_ARG_OP
 pass−by−value: see VALUE_DISP in PROC_DEFN_ARG_OP
 pass−by−reference: see REF_DISP in PROC_DEFN_ARG_OP

 partial fields
 FIELD_OP

 passing parameters
 PROC_CALL_ARG_OP
 by value: see VALUE_DISP in PROC_DEFN_ARG_OP
 by reference: see REF_DISP in PROC_DEFN_ARG_OP

 pointers
 obtaining them: REFTO_OP
 indirection through them: DEREF_OP

 portions of a machine word
 FIELD_OP

 postdecrement
 POSTDEC_OP

 postincrement
 POSTINC_OP

 predecrement
 PREDEC_OP

 preincrement
 PREINC_OP

 primitive data modes
 INT_MODE, LONG_INT_MODE, UNS_MODE, LONG_UNS_MODE, FLOAT_MODE,
 LONG_FLOAT_MODE, STOWED_MODE

 − 118 −

 procedure
 calling: PROC_CALL_OP
 definition: PROC_DEFN_OP

 public symbols
 See description of IMF stream 1
 DECLARE_STAT_OP

 quotient
 DIVAA_OP, DIV_OP

 range checking
 CHECK_RANGE_OP, CHECK_LOWER_OP, CHECK_UPPER_OP

 real
 FLOAT_MODE, LONG_FLOAT_MODE

 records
 STOWED_MODE
 SELECT_OP

 reference (pass−by)
 see REF_DISP in PROC_DEFN_ARG_OP

 references
 REFTO_OP

 remainder
 REMAA_OP, REM_OP

 reserving storage
 DEFINE_DYNM_OP, DEFINE_STAT_OP

 returning from procedures/function/subroutines
 RETURN_OP

 semicolon
 SEQ_OP

 sets
 bit vector implementations: FIELD_OP

 shift
 left: LSHIFTAA_OP, LSHIFT_OP
 right: RSHIFTAA_OP, RSHIFT_OP

 short data modes
 INT_MODE, UNS_MODE, FLOAT_MODE

 sign change
 NEG_OP

 stack
 allocating storage on: DEFINE_DYNM_OP
 deallocating storage on: UNDEFINE_DYNM_OP

 − 119 −

 statements
 ASSIGN_OP, BREAK_OP, DO_LOOP_OP, FOR_LOOP_OP, GOTO_OP, IF_OP,
 NEXT_OP, PROC_CALL_OP, RETURN_OP, SWITCH_OP, WHILE_LOOP_OP

 static variables
 DEFINE_STAT_OP, DECLARE_STAT_OP

 storage
 allocation: DEFINE_DYNM_OP, DEFINE_STAT_OP, DECLARE_STAT_OP
 deallocation: UNDEFINE_DYNM_OP

 structures
 STOWED_MODE
 SELECT_OP

 subscripting
 INDEX_OP

 subtraction
 SUBAA_OP, SUB_OP, PREDEC_OP, POSTDEC_OP

 sum
 ADDAA_OP, ADD_OP, POSTINC_OP, PREINC_OP

 switch
 SWITCH_OP, CASE_OP, DEFAULT_OP

 target label
 LABEL_OP

 temporary variables
 DEFINE_DYNM_OP, UNDEFINE_DYNM_OP

 termination
 of procedures: RETURN_OP

 tests
 EQ_OP, GE_OP, GT_OP, LE_OP, LT_OP, NE_OP

 transfers
 GOTO_OP

 true
 non−zero

 truncation
 CONVERT_OP

 type
 primitive types: INT_MODE, LONG_INT_MODE, UNS_MODE,
 LONG_UNS_MODE, FLOAT_MODE, LONG_FLOAT_MODE, STOWED_MODE

 unary
 minus: NEG_OP
 complementation: COMPL_OP, NOT_OP

 − 120 −

 unsigned data modes
 UNS_MODE, LONG_UNS_MODE

 upper bound checking
 CHECK_RANGE_OP, CHECK_UPPER_OP

 use list
 DECLARE_STAT_OP

 value (pass−by)
 see VALUE_DISP in PROC_DEFN_ARG_OP

 variables
 OBJECT_OP

 vector element selection
 INDEX_OP

 zeros
 ZERO_INITIALIZER_OP

 − 121 −

 ADDENDUM

 Arnold D. Robbins

 August, 1984

 Introduction

 With the second release of the Georgia Tech C Compiler,
 ’vcg’ has been changed in two ways. This addendum describes
 those changes.

 Object Code Produced Directly

 ’Vcg’ has been changed to directly generate 64V−mode
 relocatable object code, instead of symbolic assembly language.
 This enormously speeds up code generation time, since the Prime
 Macros Assembler, PMA, is no longer needed to turn the assembly
 code into binary.

 As an option, ’vcg’ will still produce PMA, which can be
 assembled normally. This is occasionally useful, since the
 object code routines still have some bugs buried deep within
 them. See the help on ’vcg’ for details on producing assembly
 code.

 Shift Instructions

 Whenever a shift instruction is needed, ’vcg’ used to
 generate code to build an instruction and then XEC it. Now,
 ’vcg’ will generate a shortcall into a table of shift instruc−
 tions. This table is included in the "vcglib" library, and in
 the "ciolib" library for C programs. This change saves code
 space for programs with a lot of shift instructions.

 − 122 −

 TABLE OF CONTENTS

 Foreword ... 1

 How to Use This Guide 1

 Overview ... 2

 Philosophy ... 2
 Design Considerations 2
 Implementation Approaches 2

 Structure .. 3

 Input/Output Semantics 5
 Input Structure 5
 Output Structure 5

 Code Generator Usage 7

 Input Data Stream Formats 9

 Stream 1 −−− Entry Point Declarations 9

 − ii −

 Stream 2 −−− Static Data Declarations/Definitions 10

 Stream 3 −−− Procedure Definitions 10

 Primitive Data Modes 11

 INT_MODE 1 .. 11
 LONG_INT_MODE 2 11
 UNS_MODE 3 .. 11
 LONG_UNS_MODE 4 11
 FLOAT_MODE 5 .. 11
 LONG FLOAT_MODE 6 11
 STOWED_MODE 7 ... 12

 Operators Useful in the Static Data Stream 13

 DECLARE_STAT_OP 11 13
 DEFINE_STAT_OP 14 13

 Operators Useful in the Procedure Definition Stream 15

 PROC_DEFN_OP 50 15
 PROC_DEFN_ARG_OP 49 16

 Operators Useful in Procedure Definitions 17

 ADDAA_OP 1 .. 17
 ADD_OP 2 .. 17
 ANDAA_OP 3 .. 18
 AND_OP 4 .. 18
 ASSIGN_OP 5 ... 19
 BREAK_OP 6 .. 19
 CASE_OP 7 ... 20
 CHECK_LOWER_OP 72 21
 CHECK_RANGE_OP 70 22
 CHECK_UPPER_OP 71 23
 COMPL_OP 8 .. 23

 − iii −

 CONST_OP 9 .. 24
 CONVERT_OP 10 ... 24
 DECLARE_STAT_OP 11 25
 DEFAULT_OP 12 ... 25
 DEFINE_DYNM_OP 13 26
 DEFINE_STAT_OP 14 27
 DEREF_OP 15 ... 27
 DIVAA_OP 16 ... 28
 DIV_OP 17 ... 29
 DO_LOOP_OP 18 ... 29
 EQ_OP 19 .. 30
 FIELD_OP 69 ... 30
 FOR_LOOP_OP 20 .. 31
 GE_OP 21 .. 33
 GOTO_OP 22 .. 33
 GT_OP 23 .. 34
 IF_OP 24 .. 34
 INDEX_OP 25 ... 35
 INITIALIZER_OP 26 36
 LABEL_OP 27 ... 37
 LE_OP 28 .. 38
 LSHIFTAA_OP 29 .. 38
 LSHIFT_OP 30 .. 39
 LT_OP 31 .. 40
 MODULE_OP 32 .. 40
 MULAA_OP 33 ... 40
 MUL_OP 34 ... 41
 NEG_OP 35 ... 42
 NEXT_OP 36 .. 42
 NE_OP 37 .. 42
 NOT_OP 38 ... 43
 NULL_OP 39 .. 43
 OBJECT_OP 40 .. 44
 ORAA_OP 41 .. 44
 OR_OP 42 .. 45
 POSTDEC_OP 43 ... 46
 POSTINC_OP 44 ... 46
 PREDEC_OP 45 .. 47
 PREINC_OP 46 .. 47
 PROC_CALL_ARG_OP 47 48
 PROC_CALL_OP 48 48
 PROC_DEFN_ARG_OP 49 49
 PROC_DEFN_OP 50 50
 REFTO_OP 51 ... 50
 REMAA_OP 52 ... 50
 REM_OP 53 ... 51
 RETURN_OP 54 .. 52
 RSHIFTAA_OP 55 .. 52
 RSHIFT_OP 56 .. 53
 SAND_OP 57 .. 53
 SELECT_OP 58 .. 54
 SEQ_OP 59 ... 54
 SOR_OP 60 ... 56

 − iv −

 SUBAA_OP 61 ... 56
 SUB_OP 62 ... 57
 SWITCH_OP 63 .. 57
 UNDEFINE_DYNM_OP 64 59
 WHILE_LOOP_OP 65 60
 XORAA_OP 66 ... 60
 XOR_OP 67 ... 61
 ZERO_INITIALIZER_OP 68 61

 Extended Examples .. 63

 Basic VCG Input .. 63
 C Code .. 63
 IMF Stream 1 .. 63
 IMF Stream 2 .. 64
 IMF Stream 3 .. 64
 PMA Code .. 65

 Storage Allocation 67
 C Code .. 67
 IMF Stream 1 .. 67
 IMF Stream 2 .. 68
 IMF Stream 3 .. 68
 PMA Code .. 70

 String Copy .. 71
 C Code .. 71
 IMF Stream 1 .. 71
 IMF Stream 2 .. 71
 IMF Stream 3 .. 71
 PMA Code .. 73

 Tree Print ... 74
 C Code .. 74
 IMF Stream 1 .. 74
 IMF Stream 2 .. 74
 IMF Stream 3 .. 75
 PMA Code .. 77

 − v −

 The ’Drift’ Compiler 79

 The ’Drift’ Language 79
 Description ... 79
 BNF ... 79
 Examples .. 81

 The Compiler ... 82
 Global Variable Definitions 82
 Parser Source Code 83
 Remainder of Compiler Source Code 89
 Run−Time Support Routines Source Code 110

 Intermediate Form Operator/Function Index 112

 ADDENDUM ... 122

 Introduction ... 122

 Object Code Produced Directly 122

 Shift Instructions 122

 − vi −

	Front Cover
	
	Table of Contents
	
	Software Tools Subsystem Tutorial
	TUT-1
	TUT-2
	TUT-3
	TUT-4
	TUT-5
	TUT-6
	TUT-7
	TUT-8
	TUT-9
	TUT-10
	TUT-11
	TUT-12
	TUT-13
	TUT-14
	TUT-15
	TUT-16
	TUT-17
	TUT-18
	TUT-19
	TUT-20
	TUT-21
	TUT-22
	TUT-23
	TUT-24
	TUT-25
	TUT-26
	TUT-27
	TUT-28
	TUT-29
	TUT-30
	TUT-31
	TUT-32
	TUT-33
	TUT-34
	TUT-35
	TUT-36
	TUT-37
	TUT-38
	TUT-39
	TUT-40
	TUT-41
	TUT-42
	TUT-43
	User's Guide to the Primos File System
	FS-1
	FS-2
	FS-3
	FS-4
	FS-5
	FS-6
	FS-7
	FS-8
	FS-9
	FS-10
	FS-11
	FS-12
	FS-13
	FS-14
	FS-15
	FS-16
	FS-17
	FS-18
	FS-19
	FS-20
	FS-21
	FS-22
	Introduction to the Software Tools Text Editor
	ED-1
	ED-2
	ED-3
	ED-4
	ED-5
	ED-6
	ED-7
	ED-8
	ED-9
	ED-10
	ED-11
	ED-12
	ED-13
	ED-14
	ED-15
	ED-16
	ED-17
	ED-18
	ED-19
	ED-20
	ED-21
	ED-22
	ED-23
	ED-24
	ED-25
	ED-26
	ED-27
	ED-28
	ED-29
	ED-30
	ED-31
	ED-32
	ED-33
	ED-34
	ED-35
	ED-36
	ED-37
	ED-38
	ED-39
	ED-40
	ED-41
	ED-42
	ED-43
	ED-44
	ED-45
	ED-46
	ED-47
	ED-48
	ED-49
	ED-50
	ED-51
	ED-52
	User's Guide for the Software Tools Subsystem Command Interpreter (The Shell)
	SH-1
	SH-2
	SH-3
	SH-4
	SH-5
	SH-6
	SH-7
	SH-8
	SH-9
	SH-10
	SH-11
	SH-12
	SH-13
	SH-14
	SH-15
	SH-16
	SH-17
	SH-18
	SH-19
	SH-20
	SH-21
	SH-22
	SH-23
	SH-24
	SH-25
	SH-26
	SH-27
	SH-28
	SH-29
	SH-30
	SH-31
	SH-32
	SH-33
	SH-34
	SH-35
	SH-36
	SH-37
	SH-38
	SH-39
	SH-40
	SH-41
	SH-42
	SH-43
	SH-44
	SH-45
	SH-46
	SH-47
	User's Guide for the Ratfor Preprocessor
	RP-1
	RP-2
	RP-3
	RP-4
	RP-5
	RP-6
	RP-7
	RP-8
	RP-9
	RP-10
	RP-11
	RP-12
	RP-13
	RP-14
	RP-15
	RP-16
	RP-17
	RP-18
	RP-19
	RP-20
	RP-21
	RP-22
	RP-23
	RP-24
	RP-25
	RP-26
	RP-27
	RP-28
	RP-29
	RP-30
	RP-31
	RP-32
	RP-33
	RP-34
	RP-35
	RP-36
	RP-37
	RP-38
	RP-39
	RP-40
	RP-41
	RP-42
	RP-43
	RP-44
	RP-45
	RP-46
	RP-47
	RP-48
	RP-49
	RP-50
	RP-51
	RP-52
	RP-53
	RP-54
	RP-55
	RP-56
	RP-57
	RP-58
	RP-59
	RP-60
	RP-61
	RP-62
	RP-63
	RP-64
	RP-65
	RP-66
	RP-67
	RP-68
	RP-69
	RP-70
	RP-71
	RP-72
	RP-73
	RP-74
	RP-75
	RP-76
	RP-77
	RP-78
	RP-79
	RP-80
	RP-81
	RP-82
	RP-83
	RP-84
	RP-85
	RP-86
	RP-87
	RP-88
	RP-89
	RP-90
	RP-91
	RP-92
	RP-93
	RP-94
	RP-95
	RP-96
	RP-97
	RP-98
	RP-99
	RP-100
	RP-101
	RP-102
	RP-103
	RP-104
	RP-105
	RP-106
	RP-107
	RP-108
	RP-109
	RP-110
	RP-111
	RP-112
	RP-113
	RP-114
	RP-115
	RP-116
	RP-117
	RP-118
	Software Tools Text Formatter User's Guide
	FMT-1
	FMT-2
	FMT-3
	FMT-4
	FMT-5
	FMT-6
	FMT-7
	FMT-8
	FMT-9
	FMT-10
	FMT-11
	FMT-12
	FMT-13
	FMT-14
	FMT-15
	FMT-16
	FMT-17
	FMT-18
	FMT-19
	FMT-20
	FMT-21
	FMT-22
	FMT-23
	FMT-24
	FMT-25
	FMT-26
	FMT-27
	FMT-28
	FMT-29
	FMT-30
	FMT-31
	FMT-32
	FMT-33
	FMT-34
	FMT-35
	FMT-36
	FMT-37
	FMT-38
	FMT-39
	FMT-40
	FMT-41
	FMT-42
	FMT-43
	FMT-44
	FMT-45
	FMT-46
	FMT-47
	FMT-48
	FMT-49
	Software Tools Subsystem Manger's Guide
	MGR-1
	MGR-2
	MGR-3
	MGR-4
	MGR-5
	MGR-6
	MGR-7
	MGR-8
	MGR-9
	MGR-10
	MGR-11
	MGR-12
	MGR-13
	MGR-14
	MGR-15
	MGR-16
	MGR-17
	MGR-18
	MGR-19
	MGR-20
	MGR-21
	MGR-22
	MGR-23
	MGR-24
	MGR-25
	MGR-26
	MGR-27
	MGR-28
	MGR-29
	MGR-30
	MGR-31
	MGR-32
	Software Tools Subsystem Version 7.1 to Version 8 Conversion Guide
	V8-1
	V8-2
	V8-3
	V8-4
	V8-5
	V8-6
	V8-7
	V8-8
	V8-9
	V8-10
	V8-11
	V8-12
	V8-13
	V8-14
	V8-15
	V8-16
	V8-17
	V8-18
	V8-19
	V8-20
	V8-21
	V8-22
	V8-23
	V8-24
	V8-25
	V8-26
	V8-27
	V8-28
	Software Tools Subsystem Version 8 to Version 8.1 Conversion Guide
	V81-1
	V81-2
	V81-3
	V81-4
	V81-5
	V81-6
	V81-7
	V81-8
	V81-9
	V81-10
	V81-11
	V81-12
	V81-13
	V81-14
	V81-15
	V81-16
	V81-17
	V81-18
	A Report on the Accuracy of PR1ME Computers' Floating Point Software and Hardware - and - The SWT Math Library User's Guide
	MATH-1
	MATH-2
	MATH-3
	MATH-4
	MATH-5
	MATH-6
	MATH-7
	MATH-8
	MATH-9
	MATH-10
	MATH-11
	MATH-12
	MATH-13
	MATH-14
	MATH-15
	MATH-16
	MATH-17
	MATH-18
	MATH-19
	MATH-20
	MATH-21
	MATH-22
	MATH-23
	MATH-24
	MATH-25
	MATH-26
	MATH-27
	MATH-28
	MATH-29
	MATH-30
	MATH-31
	MATH-32
	MATH-33
	MATH-34
	MATH-35
	MATH-36
	MATH-37
	MATH-38
	MATH-39
	MATH-40
	MATH-41
	MATH-42
	MATH-43
	MATH-44
	MATH-45
	MATH-46
	MATH-47
	MATH-48
	MATH-49
	MATH-50
	MATH-51
	MATH-52
	MATH-53
	MATH-54
	MATH-55
	MATH-56
	MATH-57
	MATH-58
	MATH-59
	MATH-60
	MATH-61
	MATH-62
	MATH-63
	MATH-64
	MATH-65
	MATH-66
	MATH-67
	MATH-68
	MATH-69
	MATH-70
	MATH-71
	MATH-72
	MATH-73
	MATH-74
	MATH-75
	MATH-76
	MATH-77
	MATH-78
	MATH-79
	MATH-80
	MATH-81
	MATH-82
	Ring - The Software Tools Subsystem Network Utility
	RING-1
	RING-2
	RING-3
	RING-4
	RING-5
	RING-6
	RING-7
	RING-8
	RING-9
	RING-10
	RING-11
	RING-12
	RING-13
	RING-14
	RING-15
	RING-16
	RING-17
	User's Guide for the Georgia Tech C Compiler
	CC-1
	CC-2
	CC-3
	CC-4
	CC-5
	CC-6
	CC-7
	CC-8
	CC-9
	CC-10
	CC-11
	CC-12
	CC-13
	CC-14
	CC-15
	CC-16
	CC-17
	CC-18
	CC-19
	CC-20
	CC-21
	CC-22
	CC-23
	CC-24
	CC-25
	CC-26
	CC-27
	CC-28
	CC-29
	CC-30
	CC-31
	CC-32
	CC-33
	CC-34
	CC-35
	CC-36
	CC-37
	CC-38
	CC-39
	CC-40
	CC-41
	CC-42
	CC-43
	CC-44
	CC-45
	CC-46
	CC-47
	CC-48
	CC-49
	CC-50
	CC-51
	CC-52
	CC-53
	CC-54
	CC-55
	CC-56
	CC-57
	CC-58
	CC-59
	CC-60
	CC-61
	CC-62
	CC-63
	CC-64
	CC-65
	CC-66
	CC-67
	CC-68
	CC-69
	CC-70
	CC-71
	CC-72
	CC-73
	CC-74
	CC-75
	CC-76
	CC-77
	CC-78
	CC-79
	A Re-Usable Code Generator for Prime 50-Series Computers - User's Guide
	VCG-1
	VCG-2
	VCG-3
	VCG-4
	VCG-5
	VCG-6
	VCG-7
	VCG-8
	VCG-9
	VCG-10
	VCG-11
	VCG-12
	VCG-13
	VCG-14
	VCG-15
	VCG-16
	VCG-17
	VCG-18
	VCG-19
	VCG-20
	VCG-21
	VCG-22
	VCG-23
	VCG-24
	VCG-25
	VCG-26
	VCG-27
	VCG-28
	VCG-29
	VCG-30
	VCG-31
	VCG-32
	VCG-33
	VCG-34
	VCG-35
	VCG-36
	VCG-37
	VCG-38
	VCG-39
	VCG-40
	VCG-41
	VCG-42
	VCG-43
	VCG-44
	VCG-45
	VCG-46
	VCG-47
	VCG-48
	VCG-49
	VCG-50
	VCG-51
	VCG-52
	VCG-53
	VCG-54
	VCG-55
	VCG-56
	VCG-57
	VCG-58
	VCG-59
	VCG-60
	VCG-61
	VCG-62
	VCG-63
	VCG-64
	VCG-65
	VCG-66
	VCG-67
	VCG-68
	VCG-69
	VCG-70
	VCG-71
	VCG-72
	VCG-73
	VCG-74
	VCG-75
	VCG-76
	VCG-77
	VCG-78
	VCG-79
	VCG-80
	VCG-81
	VCG-82
	VCG-83
	VCG-84
	VCG-85
	VCG-86
	VCG-87
	VCG-88
	VCG-89
	VCG-90
	VCG-91
	VCG-92
	VCG-93
	VCG-94
	VCG-95
	VCG-96
	VCG-97
	VCG-98
	VCG-99
	VCG-100
	VCG-101
	VCG-102
	VCG-103
	VCG-104
	VCG-105
	VCG-106
	VCG-107
	VCG-108
	VCG-109
	VCG-110
	VCG-111
	VCG-112
	VCG-113
	VCG-114
	VCG-115
	VCG-116
	VCG-117
	VCG-118
	VCG-119
	VCG-120
	VCG-121
	VCG-122
	VCG-123
	VCG-124
	VCG-125
	VCG-126
	VCG-127
	VCG-128
	VCG-129
	VCG-130

