

 | Software Tools Subsystem
 Reference Manual

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 | Jefferey S. Lee
 | Roy J. Mongiovi
 | Arnold D. Robbins
 Peter N. Wan

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 | September, 1984

 | The documentation contained herein pertains to Version 9 of
 | the Software Tools Subsystem as implemented on the Prime 400 com−
 puter system at the School of Information and Computer Science of
 the Georgia Institute of Technology. While it is believed that
 the contents are completely accurate, neither the school, the
 institute, nor the authors assume any liability resulting from
 inaccuracies herein or from the use of this documentation or the
 Subsystem.

 The text before you was prepared using the Software Tools
 text editor, ’se’, and text formatter, ’fmt’, both with Georgia
 | Tech extensions.

 Copyright (c) 1981, 1982, 1983, 1984 Georgia Institute of Technology

 Software Tools Subsystem Reference Manual

 This manual is intended to serve as a reference for the
 manager of the Software Tools Subsystem and for users desiring
 more detailed knowledge of the workings of the Subsystem. It is
 divided into six sections:

 Section 1: Commands
 Descriptions of available commands.

 Section 2: Library Subprograms
 Descriptions of Subsystem library routines.

 Section 3: Locally−Supported Commands
 | Descriptions of commands in the local command
 | directory.

 Section 4: Locally−Supported Library Subprograms
 Descriptions of locally−supported subprogram
 libraries.

 Section 5: Low Level Support Commands
 Descriptions of low level commands, which are
 invoked by other commands. These commands should
 not be directly executed by the user under normal
 circumstances.

 Section 6: Low Level Library Subprograms
 Descriptions of low level subprograms, which are
 invoked by other subprograms. These routines
 should not be called by the user under normal cir−
 cumstances.

 The reader who wishes further discussion of how the Sub−
 system may be used effectively is referred to the Software Tools
 Subsystem User’s Guide.

 − iii −

 Key to Notation

 | Throughout this manual, (in Sections 1 and 3 in particular,) the
 syntax of commands is described through the use of various
 ’meta−symbols’. These symbols comprise a system of notation
 commonly known as ’Backus−Naur Form’, or simply BNF. What
 follows is a brief description of the BNF that is used in this
 documentation.

 <> A word or phrase enclosed in left and right angle
 brackets stands for any string of characters whose
 | meaning is either suggested by the word or phrase so
 | enclosed or explicitly defined later in the syntax.
 For example, "<number>" might stand for "127" or "3" or
 "98.6". Words or phrases enclosed in these brackets
 are called ’meta−linguistic variables’.

 ::= This symbol means "is defined as" and it is used to
 separate a meta−linguistic variable from its
 | definition. For example,

 <number> ::= <integer>

 | would be read "a number is defined as an integer."
 Everything to the right of the "::=" is called a
 ’meta−linguistic formula’.

 | The vertical bar means "or" and is used to separate
 alternatives within a meta−linguistic formula. For
 | example,

 <number> ::= <integer> | <real>

 | would be read "a number is defined as an integer or a
 real."

 () Parentheses are used to enclose a series of alter−
 natives in a formula when the series comprises only one
 | part of the formula. For example,

 <signed_number> ::= (+|−)<number>

 | would be read "a signed number is defined as a plus
 sign or a minus sign, followed by a number."

 [] Formulae (or parts thereof) that are enclosed in square
 | brackets are optional. For example,

 <command> ::= <filename> [<parameters>]

 | would be read "a command is defined as a filename,
 optionally followed by parameters."

 − iv −

 {} Formulae that are enclosed in curly braces may be
 repeated any number of times, including zero. For
 | example,

 <integer> ::= <digit>{<digit>}

 | would be read "an integer is defined as a digit
 followed by zero or more digits."

 In situations where the syntax requires that one of the above
 meta−symbols appear literally, the symbol is enclosed in
 | apostrophes. For example, in

 <vertical_bar> ::= ’|’

 | the vertical bar on the right hand side is interpreted as a
 literal character, not as an "or" symbol.

 − v −

 TABLE OF CONTENTS

 Section 1 − Commands

 alarm digital alarm clock for CRTs
 ar archive file maintainer
 arg print command file arguments
 args print command file arguments
 argsto print command file arguments
 banner convert text to banner size
 basename select part of a pathname
 batch interface to Primos batch subsystem
 bye log out from the Subsystem
 case case statement for shell files
 cat concatenate and print files
 cc compile a C program
 ccl compile and load a C program
 cd change home directory
 cdmlc interface to Prime DBMS Cobol DML preprocessor
 cdmlcl compile and load a Cobol DML program
 change look for a pattern and change it
 chat change file attributes
 clear clear terminal screen
 clock digital time−of−day clock for CRTs
 cmp string comparison
 cn change file names
 cobc interface to Primos Cobol compiler
 cobcl compile and load a Cobol program
 col convert input to multi−column output
 common print lines common to two sorted files
 como divert command output stream
 compile compile and load mixed language programs
 copy copy standard input to standard output
 copyout copy user’s terminal session to printer
 cp generalized file copier
 crypt exclusive−or encryption and decryption
 cset list information about the ASCII character set
 csubc interface to Prime DBMS Cobol subschema compiler
 ctime print accumulated cpu time
 cto copy STDIN to STDOUT up to a sentinel
 date print date
 day day of week
 dbg invoke the Primos source level debugger (DBG)
 ddlc interface to Prime DBMS schema compiler
 declare create shell variables
 declared test for declared variables
 define define expander
 del delete files
 detab convert tabs to multiple spaces
 diff isolate differences between two files
 dnum generate or interpret legal disk numbers
 drop drop characters from a string (APL−style)
 dump dump various internal data bases
 e invoke proper editor for current terminal

 − vi −

 Table of Contents Section 1

 echo echo arguments
 ed Software Tools text editor (extended)
 ek select erase and kill characters
 elif else−if construct for Shell programs
 else introduce else−part of a conditional
 entab convert multiple blanks to tabs
 error output error message, return error code
 esac mark the end of a case statment
 eval evaluate arithmetic expressions
 exit terminate execution of command files
 f77c interface to Primos Fortran 77 compiler
 f77cl compile and load a Fortran 77 program
 fc interface to Primos Fortran compiler
 fcl compile and load a Fortran 66 program
 fdmlc interface to Prime DBMS Fortran DML preprocessor
 fdmlcl compile and load a Fortran DML program
 fdmp produce formatted dump of a disk file
 ffind look for a string (kmp style)
 fi terminate conditional statement
 field manipulate field−oriented data
 file test information about a file
 files list file names matching a pattern
 find look for a pattern
 fmt text formatter
 forget destroy shell variables
 fos format, overstrike, and spool a document
 fsize size any file system structure
 fsubc interface to Prime DBMS Fortran subschema compiler
 goto command file flow−of−control statement
 group test or list a users group identities
 gtod get time of day
 guide Software Tools Subsystem User’s Guides
 hd summarize available disk space
 help provide help for users in need
 hist manipulate the subsystem history mechanism
 history Software Tools Subsystem historian
 hp Reverse Polish Notation calculator
 if conditional statement for Shell files
 include expand include statements
 index find index of a character in a string
 installation print Subsystem installation name
 iota generate vector of integers
 isph see if process is a phantom
 join replace newlines with an arbitrary string
 kwic produce key−word−in−context index
 lacl List ACL information about a file system object
 lam laminate lines from separate files
 ld interface with the Primos loader
 length compute length of strings
 lf list files
 line print user’s process id
 link build Ratfor linkage declaration
 locate locate subsystem source code
 log make an entry in a personal log
 login_name print user’s login name
 lorder order libraries for one−pass loading

 − vii −

 Table of Contents Section 1

 lps line printer status monitor
 macro macro language from Software Tools
 mail send or receive mail
 mkdir make a directory
 mklib convert binary relocatable to a library
 mktree convert pathname to treename
 mt magnetic tape interface
 nargs print number of command file arguments
 news news service for Subsystem users
 os convert backspaces to line printer overstrikes
 out specify default alternative in a case statement
 pause suspend command interpretation
 pc interface to Primos Pascal compiler
 pcl compile and load a Pascal program
 pg list a file in paginated form
 ph execute subsystem commands in the background
 phist print Subsystem history
 plgc interface to Primos PL/I subset G compiler
 plgcl compile and load a PL/I subset G program
 plpc interface to Primos PL/P compiler
 plpcl compile and load a PL/P program
 pmac interface to Primos assembler
 pmacl assemble and load a PMA program
 pr print files on the line printer
 primos push a new Primos command interpreter
 print print files
 profile print execution profile
 publish publish a news article
 pword change login password
 quota read and set disk record quota limits
 quote enquote strings from standard input
 radix change radix of numbers
 rdatt list the attributes of a relation
 rdavg compute the average value of an attribute
 rdcat concatenate two identical relations
 rdcount count the number of rows in a relation
 rddiff take the difference of two relations
 rddiv perform the division of two relations
 rdextr extract relation data from a relation
 rdint intersect two identical relations
 rdjoin join two relations
 rdmake make a relation from data file
 rdmax find the maximum value of a specified attribute
 rdmin find the minimum value of a specified attribute
 rdnat perform the natural join of two relations
 rdprint print a relation or relation descriptor
 rdproj project a relation
 rdsel select tuples of a relation
 rdsort sort a relation
 rdsum sum the values of an attribute
 rduniq remove duplicate tuples from a relation
 repeat loop control structure for Shell files
 retract retract a news article
 rfc command file to rp and fc a Ratfor program
 rfl command file to rp, fc, and ld a Ratfor program
 rnd generate random numbers

 − viii −

 Table of Contents Section 1

 rot rotate or reverse strings from STDIN to STDOUT
 rp extended Ratfor preprocessor
 sacl set ACL attributes on an object
 save save shell variables
 se screen−oriented text editor
 sema manipulate user semaphores
 sep separate compilation facility for Ratfor programs
 set assign values to shell variables
 sh Subsystem Command Interpreter (Shell)
 shtrace trace activity in command interpreter
 slice slice out a chunk of a file
 sort sort ASCII−encoded records
 source print source for a command or subroutine
 sp line printer spooler
 speling detect spelling errors
 spell check for possible spelling errors
 splc interface to Primos SPL compiler
 splcl compile and load a SPL program
 ssr set search rule
 stacc recursive descent parser generator
 stats print statistical measures
 stop exit from subsystem
 st_profile statement−level profile
 subscribe subscribe to the Subsystem news service
 substr take a substring of a string
 systat check on Subsystem status directories
 tail print last n lines from standard input
 take take characters from a string (APL style)
 tc text counter (characters, words, lines, pages)
 tee tee fitting for pipelines
 template manipulate and display templates
 term select individual terminal parameters
 term_type print user’s terminal type
 then introduce the then−part of a conditional
 time print time−of−day
 tip check if terminal input is pending
 tlit transliterate characters
 to send messages to a logged−in user
 touch set file date/time modification fields
 tsort topological sort
 ucc compile and load a C program (Unix−style)
 uniq eliminate successive identical lines
 unrot ’un−rotate’ output produced by kwic
 until terminate a loop statement
 us list users of the Prime
 usage print summary of command syntax
 vars print, save, or restore shell variables
 vcg Prime V−mode code generator
 vcgdump display ’vcg’ input files
 vpsd Subsystem interlude to SEG’s vpsd
 when flag alternative in a case statement
 whereis find the location of a terminal
 which search _search_rule for a command
 whois find the user associated with a login name
 x execute Primos commands
 xcc compile a C program with Prime compiler

 − ix −

 Table of Contents Section 1

 xccl compile and load a Prime C program
 xref Ratfor cross reference generator
 yesno selective filter with user decision

 Section 2 − Library Subprograms

 acos$m calculate inverse cosine
 addset put character in a set if it fits
 amatch look for pattern match at specific location
 asin$m calculate inverse sine
 atan$m calculate inverse tangent
 atoc convert an address to a string
 cant print cant open file message
 catsub add replacement text to end of string
 chkarg parse single−letter arguments
 chkinp check for terminal input availability
 chkstr check a string for printable characters
 close close out an open file
 cos$m calculate cosine
 cosh$m calculate hyperbolic cosine
 cot$m calculate cotangent
 create create a new file and open it
 ctoa convert character to address
 ctoc convert EOS−terminated string to EOS−terminated string
 ctod convert string to double precision real
 ctoi convert ascii string to integer
 ctol convert ascii string to long integer
 ctomn translate ASCII control character to mnemonic
 ctop convert EOS−terminated string to packed string
 ctor character to real conversion
 ctov convert EOS−terminated string to varying string
 dacs$m calculate double precision inverse cosine
 dasn$m calculate double precision inverse sine
 date return time, date and other system information
 datn$m calculate double precision inverse tangent
 dble$m create a longreal from a longint
 dcos$m calculate double precision cosine
 dcot$m calculate double precision cotangent
 dcsh$m calculate double precision hyperbolic cosine
 decode perform formatted conversion from character
 delarg delete a command line argument
 delete remove a symbol from a symbol table
 dexp$m calculate double precision exponential to the base e
 dint$m get integer part of an longreal
 dint$p get integer part of a longreal (PMA only)
 dln$m calculate double precision logarithm to the base e
 dlog$m calculate double precision logarithm to the base 10
 dodash expand subrange of a set of characters
 dsdump produce semi−readable dump of storage
 dsfree free a block of dynamic storage
 dsget obtain a block of dynamic storage
 dsin$m calculate double precision sine
 dsinit initialize dynamic storage space
 dsnh$m calculate double precision hyperbolic sine
 dsqt$m calculate double precision square root

 − x −

 Table of Contents Section 2

 dtan$m calculate double precision tangent
 dtnh$m calculate double precision hyperbolic tangent
 dtoc convert double precision value to ASCII string
 edit invoke the line−oriented text editor
 encode formatted memory−to−memory conversion routine
 enter place symbol in symbol table
 equal compare two strings for equality
 err$m common error condition handler for math routines
 error print fatal error message, then die
 esc map substring into escaped character if appropriate
 exec execute pathname
 execn execute program named by a quoted string
 exp$m calculate exponential to the base e
 expand convert a template into an EOS−terminated string
 fcopy copy one file to another
 filcpy copy a file and its attributes
 file$p connect Pascal file variables to Subsystem files
 filset expand character set, stop at delimiter
 filtst perform existence and size tests on a file
 follow path name follower
 gctoi generalized character to integer conversion
 gctol generalized character to long integer conversion
 geta$f fetch arguments for a Fortran program
 geta$p fetch arguments for a Pascal program
 geta$plg fetch arguments for a PL/I G program
 getarg fetch command line arguments
 getccl expand character class into pattern
 getch get a character from a file
 getkwd look for keyword/value arguments
 getlin read one line from a file
 getto get to the last file in a pathname
 getvdn return name of file in user’s variables directory
 getwrd get a word from a line buffer
 gfdata get information about file characteristics
 gfnarg get next file name argument from argument list
 gitoc convert single precision integer to any radix string
 gklarg parse a single key−letter argument
 gltoc convert double precision integer to any radix string
 gtattr get a user’s terminal attributes
 gtemp parse a template into name and definition
 gttype return the user’s terminal type
 gvlarg obtain the value of a key−letter argument
 index find index of a character in a string
 init$f force Fortran i/o to recognize the Subsystem
 init$p force Pascal i/o to recognize the Subsystem
 init$plg force PL/I G i/o to recognize the Subsystem
 init initialize a Subsystem program
 input easy to use semi−formatted input routine
 isadsk test if a file is a disk file
 isatty test if a file is connected to a terminal
 isnull see if a file is connected to the bit bucket
 isph$ determine if the caller is a phantom
 itoc convert integer to character string
 jdate take month, day, and year and return day−of−year
 length find length of a string
 ln$m calculate logarithm to the base e

 − xi −

 Table of Contents Section 2

 locate look for character in character class
 log$m calculate logarithm to the base 10
 lookup retrieve information from a symbol table
 ltoc convert long integer to character string
 makpat make pattern, terminate at delimiter
 maksub make substitution string
 mapdn fold character to lower case
 mapfd convert fd to Primos funit
 mapstr map case of a string
 mapsu map standard unit to file descriptor
 mapup fold character to upper case
 markf get the current position of a file
 match match pattern anywhere on a line
 mktabl make a symbol table
 mktemp create a temporary file
 mntoc convert ASCII mnemonic to character
 move$ move blocks of memory around quickly
 omatch try to match a single pattern element
 open open a file
 page display file in paginated form
 parscl parse command line arguments
 parsdt parse a date in mm/dd/yy format
 parstm convert time−of−day to seconds past midnight
 patsiz return size of pattern entry
 powr$m calculate a longreal raised to a longreal power
 print easy to use semi−formatted print routine
 ptoc convert packed string to EOS−terminated string
 ptov convert packed string to PL/I varying string
 putch put a character on a file
 putdec write decimal integer to a file
 putlin put a line on a file
 putlit write literal string on a file
 rand$m generate a random number
 readf read raw words from a file
 remark print diagnostic message
 remove remove a file, return status
 rewind rewind a file
 rmtabl remove a symbol table
 rmtemp remove a temporary file
 rtoc convert real value to ASCII string
 scopy copy one string to another
 sctabl scan all symbols in a symbol table
 sdrop drop characters from a string APL−style
 seed$m set the seed for the rand$m random number generator
 seekf position a file to a designated word
 seterr set Subsystem error return code
 sfdata set characteristics for a file
 shell run the Subsystem command interpreter
 sin$m calculate sine
 sinh$m calculate hyperbolic sine
 sqrt$m calculate square root
 stake take characters from a string APL−style
 stclos insert closure entry in pattern
 strbsr perform a binary search of a string table
 strcmp compare strings and return 1 2 or 3 for < = or >
 strim trim trailing blanks and tabs from a string

 − xii −

 Table of Contents Section 2

 strlsr perform a linear search of a string table
 substr take a substring from a string
 subsys call the Subsystem command interpreter
 svdel delete a shell variable at the current level
 svdump dump the contents of the shell variable common
 svget return the value of a shell variable
 svlevl return the current shell variable lexic level
 svmake create a shell variable at the current lexic level
 svput set the value of a shell variable
 svrest restore shell variables from a file
 svsave save shell variables in a file
 svscan scan a user’s list of shell variables
 swt return to Software Tools Subsystem
 sys$$ pass a command to the Primos shell
 tan$m calculate tangent
 tanh$m calculate hyperbolic tangent
 tquit$ check for pending terminal interrupt
 trunc truncate a file
 type return type of character
 vfyusr validate username
 vtbaud set vth’s concept of the terminal speed
 vtclr clear a rectangle on the screen
 vtdlin delete lines on the user’s terminal screen
 vtenb enable input on a particular screen line
 vtgetl get a line from the VTH screen
 vtilin insert lines on the user’s terminal screen
 vtinfo return VTH common block information
 vtinit initialize terminal characteristics
 vtmove move the user’s cursor to row, col
 vtmsg display a message in the status line
 vtoc convert PL/I varying string to EOS−terminated string
 vtop convert PL/I varying string to packed string
 vtopt set options for the virtual terminal handler
 vtpad pad the rest of a field with blanks
 vtprt place formatted strings into screen buffers
 vtputl put line into terminal screen buffer
 vtread read characters from a user’s terminal
 vtstop reset a user’s terminal attributes
 vtterm read terminal characteristics file
 vtupd update the terminal screen with VTH screen
 wind position to end of file
 wkday get day−of−week corresponding to month, day, year
 writef write raw words to file

 Section 3 − Locally−Supported Commands

 ap Generate Object Tape for A & P M6800 Monitor
 as11 PDP−11 cross assembler
 as6800 Motorola 6800 cross−assembler
 as8080 Intel 8080 cross−assembler
 basys basic computer system simulator
 bind interface with the Primos EPF loader
 block convert text to block letters
 broadcast send a Primos message to a user on all machines
 bug report a bug with system software

 − xiii −

 Table of Contents Section 3

 cal print a calendar on standard output
 chown change directory ownership
 cron time driven command processor
 des NBS Data Encryption Standard Implementation
 dmach Burroughs D−machine simulator
 dprint optimize printing on a Diablo
 execute execute a SWT command on another machine
 fixp file translation and parity set program
 focld send FOCAL−GT/RT programs to the GT40
 imi generate IMI prom programmer down−line load stream
 intel generate Intel format object tape
 kill log out a user
 last print last n lines of a file
 lfo list files opened for a specified user
 lib concatenate cross−assembler object files
 lk link cross−assembler object files
 lz post process ’fmt’ output for laser printer
 memo automated memo and reminder system
 mkclist create a list of commands for backstop
 mon system status monitor
 moot teleconference manager
 mot generate Motorola format object tape
 mv move a file from one place to another
 nodes print network nodes
 ns print out network status
 nstat remote node status command
 otd object text dumper
 p4c Pascal 4 Compiler
 p4cl compile and load Pascal 4 program
 passwd change directory non−owner password
 phone find someone’s telephone number
 ptar decode Unix tar format tapes
 pwd print working directory name
 raid examine bug reports
 rcl command file to rf, fc and ld a program
 rf original Ratfor preprocessor
 rsa toy RSA public−key cryptosystem
 rtime determine run−time of a command
 scroll load scrolling terminal program on the GT40
 setime set time of day/date on all systems running ring
 shar put text files into a ’shell archive’
 show print a file showing control characters
 size calculate size of cross−assembler object code
 sol play a friendly game of solitaire
 sprint optimize printing on a Spinwriter
 symbols print cross−assembly symbol table
 terminate terminate currently executing ’ring’ process
 translang D−Machine microprogram translator
 ts time sheet for hourly employees
 unoct convert UNIX ’od’ output to binary
 wallclock tell the time in a big way
 who find out who’s on the system and where they are

 − xiv −

 Table of Contents Section 3

 Section 4 − Locally−Supported Library Subprograms

 abq$xs add an element to the bottom of a queue
 atq$xs add an element to the top of a queue
 gcd determine greatest common divisor of two integers
 get$xs get a character (byte) from an array
 gky$xs get current cpu keys
 invmod find inverse of an integer modulo another integer
 lsallo allocate space for a linked string
 lscmpk compare linked string with contiguous string
 lscomp compare two linked strings
 lscopy copy linked string
 lscut divide a linked string into two linked strings
 lsdel delete characters from a linked string
 lsdrop drop characters from a linked string
 lsdump dump linked string space for debugging
 lsextr extract contiguous string from linked string
 lsfree free linked string space
 lsgetc get character from linked string
 lsgetf read an arbitrarily long linked string
 lsinit initialize linked string space
 lsins insert in linked string
 lsjoin join two linked strings
 lslen compute length of linked string
 lsmake convert contiguous string to linked string
 lspos find position in linked string
 lsputc put character into a linked string
 lsputf write an arbitrarily long linked string
 lssubs take a substring of a linked string
 lstake take characters from a linked string
 mkq$xs initialize a hardware defined queue
 pek$xs look at a location in memory
 pok$xs change a location in memory
 prime retrieve the ’i’th prime number
 put$xs put a character (byte) into an array
 pwrmod calculate an exponential modulo a given modulus
 rbq$xs remove an element from the bottom of a queue
 rdy$xs see if character waiting, and if so, fetch it
 rtq$xs remove an element from the top of a queue
 s1c$xs protected single−word store operation
 s2c$xs protected double−word store operation
 set_copy make a copy of one set in another
 set_create generate a new, initially empty set
 set_delete remove given element from a set
 set_element see if a given element is in a set
 set_equal return TRUE if two sets contain the same members
 set_init cause a set to be empty
 set_insert place given element in a set
 set_intersect place intersection of two sets in a third
 set_remove remove a set that is no longer needed
 set_subset return TRUE if set1 is a subset of set2
 set_subtract place difference of two sets in a third
 set_union place union of two sets in a third
 sky$xs set current cpu keys
 stk$xs set/read stack extension pointer
 tsq$xs return the number of entries in a queue

 − xv −

 Table of Contents Section 4

 Section 5 − Low Level Support Commands

 bmerge merge object code files into one file
 bnames print entry point names in object files
 brefs print caller−callee pairs in an object file
 bs shell backstop program
 bs1 shell backstop program
 bugfm format a bug report
 bugn process the highest bug number
 c1 C compiler front end
 cck1 First phase of C program checker
 cck2 Second phase of C program checker
 csv convert shell variables to new format
 cvusr convert pre−Version 9 user list to Version 9 format
 guess try to guess what command the user means
 mkcl generate a command list file for guess
 ring network communication server
 snplnk snap shared library dynamic links
 sph system phantom processor

 Section 6 − Low Level Support Library Subprograms

 at$swt Subsystem interlude to Primos ATCH$$
 bponu$ on−unit for BAD_PASSWORD$ condition
 c$end clean up after statement count run
 c$incr increment count for a given statement
 c$init initialize for a statement count run
 call$$ call a P300, SEG, or EPF runfile
 chunk$ read one chunk of a SEG runfile
 cof$ close files opened by the last user program
 cpfil$ copy one open file to another
 cpseg$ copy one open segment directory to another
 dgetl$ get a line from a disk file
 dmark$ return the position of a disk file
 dmpcm$ dump Subsystem common areas
 dmpfd$ dump the contents of a file descriptor
 dopen$ open a disk file
 dputl$ put a line on a disk file
 dread$ read raw words from disk
 dsdbiu dump contents of dynamic storage block
 dseek$ seek on a disk device
 dwrit$ write raw characters to disk
 findf$ see if file exists in current directory
 finfo$ return directory information about a file
 first$ check for first call
 flush$ flush out a file’s buffer
 gcdir$ get current directory pathname
 gcifu$ return the current value of the command unit
 getfd$ look for an empty file descriptor
 gfnam$ get the pathname for an open file
 gtacl$ get acl protection into ACL common block
 icomn$ initialize Subsystem common areas
 iofl$ initialize open file list
 ioinit initialize Subsystem I/O areas
 ldseg$ load a SEG runfile into memory

 − xvi −

 Table of Contents Section 6

 ldtmp$ load the per−user template area
 lookac look up a name in the ACL common block
 lopen$ open a disk file in the spool queue
 lutemp look up a template in the template directory
 mkdir$ create a directory
 mkfd$ make a file descriptor from a Primos funit
 mkpa$ convert a treename into a pathname
 mkpacl encode ACL information into a Primos structure
 mksacl encode ACL information into a SWT structure
 mktr$ convert a pathname into a treename
 parsa$ parse ACL changes in the common block
 pg$brk catch a break for the page subroutine
 reonu$ on−unit for the REENTER$ condition
 rmfil$ remove a file, return status
 rmseg$ remove a segment directory
 rtn$$ return to stack frame of call$$
 sprot$ set protection attributes for a file
 st$lu internal symbol table lookup
 szfil$ size an open Primos file descriptor
 szseg$ size an open Primos segment directory
 t$clup profiling routine called on program exit
 t$entr profiling routine called on subprogram entry
 t$exit profiling routine called on subprogram exit
 t$init initialize for a subroutine trace run
 t$time obtain clock readings for profiling
 t$trac trace routine for Ratfor programs
 tcook$ read and cook a line from the terminal
 tgetl$ read a line from the terminal
 tmark$ return the current position of a terminal file
 tputl$ put a line on the terminal
 tread$ read raw words from the terminal
 tscan$ traverse subtree of the file system
 tseek$ seek on a terminal device
 ttyp$f obtain the user’s terminal type
 ttyp$l list the available terminal types
 ttyp$q query for the terminal type from the user
 ttyp$r return the terminal type from the common area
 ttyp$v set terminal attributes
 twrit$ write raw words to terminal
 upkfn$ unpack a Primos file name; escape slashes
 vt$alc allocate another VTH definition table
 vt$cel send a clear to end−of−line sequence
 vt$clr send clear screen sequence
 vt$db dump terminal characteristics
 vt$db1 print mnemonics for special characters
 vt$db2 dump terminal input tables
 vt$db3 dump macro definition table
 vt$def accept a macro definition from the user
 vt$del delay the terminal with nulls
 vt$dln send a delete line sequence
 vt$dsw perform garbage collection on DFA tables
 vt$err display a VTH error message
 vt$get get and edit a single line from input
 vt$gsq get a delimited sequence of characters
 vt$idf invoke user−defined key definition
 vt$ier report error in VTH initialization file

 − xvii −

 Table of Contents Section 6

 vt$iln send an insert line sequence
 vt$ndf remove VTH macro definition
 vt$out output a character onto the screen
 vt$pos position the cursor to row, col
 vt$put copy string into terminal buffer
 vt$rdf remove macro definition of a DFA entry
 vt$rel position relatively to row, col
 zmem$ clear an uninitialized part of a segment

 − xviii −

 Permuted Index

 This section of the Manual contains a key−word−in−context
 index produced from the headers of sections 1 through 6 with the
 commands ’kwic’, ’sort’, and ’unrot’.

 Each line begins with the name of a command or subroutine,
 followed by the (parenthesized) number of the section in which it
 is documented. The lines are duplicated and rotated so that each
 keyword in the line appears to the right of the vertical white
 space that runs down the center of the page.

 − xix −

 Permuted Index

 (3): Generate Object Tape for A & P M6800 Monitor...ap
 precision logarithm to the base 10...dlog$m (2): calculate double
 calculate logarithm to the base 10...log$m (2):
 (1): compile and load a Fortran 66 program...fcl
 as6800 (3): Motorola 6800 cross−assembler
 interface to Primos Fortran 77 compiler...f77c (1):
 (1): compile and load a Fortran 77 program...f77cl
 as8080 (3): Intel 8080 cross−assembler
 lacl (1): List ACL information about a file system object
 file (1): test information about a file
 return directory information about a file...finfo$ (6):
 gfdata (2): get information about file characteristics
 cset (1): list information about the ASCII character set
 bottom of a queue... abq$xs (4): add an element to the
 user...vt$def (6): accept a macro definition from the
 ctime (1): print accumulated cpu time
 sacl (1): set ACL attributes on an object
 parsa$ (6): parse ACL changes in the common block
 (6): get acl protection into ACL common block...gtacl$
 (6): look up a name in the ACL common block...lookac
 system object...lacl (1): List ACL information about a file
 structure...mkpacl (6): encode ACL information into a Primos
 structure...mksacl (6): encode ACL information into a SWT
 block...gtacl$ (6): get acl protection into ACL common
 cosine... acos$m (2): calculate inverse
 shtrace (1): trace activity in command interpreter
 queue...abq$xs (4): add an element to the bottom of a
 queue...atq$xs (4): add an element to the top of a
 string...catsub (2): add replacement text to end of
 atoc (2): convert an address to a string
 ctoa (2): convert character to address
 if it fits... addset (2): put character in a set
 c$end (6): clean up after statement count run
 CRTs... alarm (1): digital alarm clock for
 alarm (1): digital alarm clock for CRTs
 table...vt$alc (6): allocate another VTH definition
 lsallo (4): allocate space for a linked string
 out (1): specify default alternative in a case statement
 when (1): flag alternative in a case statement
 at specific location... amatch (2): look for pattern match
 & P M6800 Monitor... ap (3): Generate Object Tape for A
 take characters from a string (APL style)...take (1):
 drop characters from a string (APL−style)...drop (1):
 drop characters from a string APL−style...sdrop (2):
 take characters from a string APL−style...stake (2):
 into escaped character if appropriate...esc (2): map substri
 ar (1): archive file maintainer
 lsgetf (4): read an arbitrarily long linked string
 lsputf (4): write an arbitrarily long linked string
 (1): replace newlines with an arbitrary string...join
 ar (1): archive file maintainer
 put text files into a ’shell archive’...shar (3):
 (6): load the per−user template area...ldtmp$
 (6): dump Subsystem common areas...dmpcm$
 initialize Subsystem common areas...icomn$ (6):
 (6): initialize Subsystem I/O areas...ioinit

 − xx −

 Permuted Index

 terminal type from the common area...ttyp$r (6): return the
 on the system and where they are...who (3): find out who’s
 arguments... arg (1): print command file
 arguments... args (1): print command file
 arguments... argsto (1): print command file
 gfnarg (2): get next file name argument from argument list
 next file name argument from argument list...gfnarg (2): get
 (2): delete a command line argument...delarg
 (2): parse a single key−letter argument...gklarg
 the value of a key−letter argument...gvlarg (2): obtain
 geta$f (2): fetch arguments for a Fortran program
 geta$p (2): fetch arguments for a Pascal program
 geta$plg (2): fetch arguments for a PL/I G program
 arg (1): print command file arguments
 args (1): print command file arguments
 argsto (1): print command file arguments
 chkarg (2): parse single−letter arguments
 echo (1): echo arguments
 getarg (2): fetch command line arguments
 (2): look for keyword/value arguments...getkwd
 print number of command file arguments...nargs (1):
 parscl (2): parse command line arguments
 eval (1): evaluate arithmetic expressions
 get a character (byte) from an array...get$xs (4):
 put a character (byte) into an array...put$xs (4):
 publish (1): publish a news article
 retract (1): retract a news article
 as11 (3): PDP−11 cross assembler
 cross−assembler... as6800 (3): Motorola 6800
 cross−assembler... as8080 (3): Intel 8080
 (1): list information about the ASCII character set...cset
 mnemonic...ctomn (2): translate ASCII control character to
 mntoc (2): convert ASCII mnemonic to character
 ctoi (2): convert ascii string to integer
 ctol (2): convert ascii string to long integer
 double precision value to ASCII string...dtoc (2): convert
 rtoc (2): convert real value to ASCII string
 sort (1): sort ASCII−encoded records
 asin$m (2): calculate inverse sine
 pmacl (1): assemble and load a PMA program
 as11 (3): PDP−11 cross assembler
 pmac (1): interface to Primos assembler
 set (1): assign values to shell variables
 whois (1): find the user associated with a login name
 tangent... atan$m (2): calculate inverse
 Subsystem interlude to Primos ATCH$$...at$swt (6):
 string... atoc (2): convert an address to a
 top of a queue... atq$xs (4): add an element to the
 Primos ATCH$$... at$swt (6): Subsystem interlude to
 compute the average value of an attribute...rdavg (1):
 maximum value of a specified attribute...rdmax (1): find the
 minimum value of a specified attribute...rdmin (1): find the
 rdsum (1): sum the values of an attribute
 sprot$ (6): set protection attributes for a file
 rdatt (1): list the attributes of a relation
 sacl (1): set ACL attributes on an object

 − xxi −

 Permuted Index

 chat (1): change file attributes
 filcpy (2): copy a file and its attributes
 (2): get a user’s terminal attributes...gtattr
 ttyp$v (6): set terminal attributes
 (2): reset a user’s terminal attributes...vtstop
 memo (3): automated memo and reminder system
 (2): check for terminal input availability...chkinp
 hd (1): summarize available disk space
 ttyp$l (6): list the available terminal types
 rdavg (1): compute the average value of an attribute
 subsystem commands in the background...ph (1): execute
 overstrikes...os (1): convert backspaces to line printer
 bs (5): shell backstop program
 bs1 (5): shell backstop program
 create a list of commands for backstop...mkclist (3):
 bponu$ (6): on−unit for BAD_PASSWORD$ condition
 size... banner (1): convert text to banner
 banner (1): convert text to banner size
 precision logarithm to the base 10...dlog$m (2): calculate do
 (2): calculate logarithm to the base 10...log$m
 precision exponential to the base e...dexp$m (2): calculate dou
 precision logarithm to the base e...dln$m (2): calculate doub
 calculate exponential to the base e...exp$m (2):
 (2): calculate logarithm to the base e...ln$m
 pathname... basename (1): select part of a
 (1): dump various internal data bases...dump
 basys (3): basic computer system simulator
 simulator... basys (3): basic computer system
 batch subsystem... batch (1): interface to Primos
 batch (1): interface to Primos batch subsystem
 (3): tell the time in a big way...wallclock
 mklib (1): convert binary relocatable to a library
 strbsr (2): perform a binary search of a string table
 convert UNIX ’od’ output to binary...unoct (3):
 Primos EPF loader... bind (3): interface with the
 if a file is connected to the bit bucket...isnull (2): see
 strim (2): trim trailing blanks and tabs from a string
 entab (1): convert multiple blanks to tabs
 pad the rest of a field with blanks...vtpad (2):
 letters... block (3): convert text to block
 vtinfo (2): return VTH common block information
 block (3): convert text to block letters
 dsfree (2): free a block of dynamic storage
 dsget (2): obtain a block of dynamic storage
 contents of dynamic storage block...dsdbiu (6): dump
 acl protection into ACL common block...gtacl$ (6): get
 up a name in the ACL common block...lookac (6): look
 parse ACL changes in the common block...parsa$ (6):
 move$ (2): move blocks of memory around quickly
 files into one file... bmerge (5): merge object code
 names in object files... bnames (5): print entry point
 (4): add an element to the bottom of a queue...abq$xs
 (4): remove an element from the bottom of a queue...rbq$xs
 BAD_PASSWORD$ condition... bponu$ (6): on−unit for
 pg$brk (6): catch a break for the page subroutine
 pairs in an object file... brefs (5): print caller−callee

 − xxii −

 Permuted Index

 ge to a user on all machines... broadcast (3): send a Primos
 bs (5): shell backstop program
 bs1 (5): shell backstop program
 a file is connected to the bit bucket...isnull (2): see if
 flush$ (6): flush out a file’s buffer
 (2): get a word from a line buffer...getwrd
 formatted strings into screen buffers...vtprt (2): place
 (6): copy string into terminal buffer...vt$put
 put line into terminal screen buffer...vtputl (2):
 software... bug (3): report a bug with system
 bugn (5): process the highest bug number
 bugfm (5): format a bug report
 raid (3): examine bug reports
 bug (3): report a bug with system software
 bugfm (5): format a bug report
 number... bugn (5): process the highest bug
 link (1): build Ratfor linkage declaration
 dmach (3): Burroughs D−machine simulator
 Subsystem... bye (1): log out from the
 get$xs (4): get a character (byte) from an array
 put$xs (4): put a character (byte) into an array
 c1 (5): C compiler front end
 cck1 (5): First phase of C program checker
 cck2 (5): Second phase of C program checker
 ucc (1): compile and load a C program (Unix−style)
 xcc (1): compile a C program with Prime compiler
 cc (1): compile a C program
 ccl (1): compile and load a C program
 (1): compile and load a Prime C program...xccl
 c1 (5): C compiler front end
 standard output... cal (3): print a calendar on
 longreal power...powr$m (2): calculate a longreal raised to a
 given modulus...pwrmod (4): calculate an exponential modulo a
 cos$m (2): calculate cosine
 cot$m (2): calculate cotangent
 dcos$m (2): calculate double precision cosine
 cotangent...dcot$m (2): calculate double precision
 ial to the base e...dexp$m (2): calculate double precision
 hyperbolic cosine...dcsh$m (2): calculate double precision
 hyperbolic sine...dsnh$m (2): calculate double precision
 yperbolic tangent...dtnh$m (2): calculate double precision
 cosine...dacs$m (2): calculate double precision inverse
 sine...dasn$m (2): calculate double precision inverse
 tangent...datn$m (2): calculate double precision inverse
 hm to the base 10...dlog$m (2): calculate double precision
 ithm to the base e...dln$m (2): calculate double precision
 dsin$m (2): calculate double precision sine
 root...dsqt$m (2): calculate double precision square
 dtan$m (2): calculate double precision tangent
 e...exp$m (2): calculate exponential to the base
 cosh$m (2): calculate hyperbolic cosine
 sinh$m (2): calculate hyperbolic sine
 tanh$m (2): calculate hyperbolic tangent
 acos$m (2): calculate inverse cosine
 asin$m (2): calculate inverse sine
 atan$m (2): calculate inverse tangent

 − xxiii −

 Permuted Index

 log$m (2): calculate logarithm to the base 10
 ln$m (2): calculate logarithm to the base e
 sin$m (2): calculate sine
 object code...size (3): calculate size of cross−assembler
 sqrt$m (2): calculate square root
 tan$m (2): calculate tangent
 hp (1): Reverse Polish Notation calculator
 cal (3): print a calendar on standard output
 EPF runfile... call$$ (6): call a P300, SEG, or
 call$$ (6): call a P300, SEG, or EPF runfile
 interpreter...subsys (2): call the Subsystem command
 t$clup (6): profiling routine called on program exit
 t$entr (6): profiling routine called on subprogram entry
 t$exit (6): profiling routine called on subprogram exit
 isph$ (2): determine if the caller is a phantom
 file...brefs (5): print caller−callee pairs in an object
 first$ (6): check for first call
 (6): return to stack frame of call$$...rtn$$
 message... cant (2): print cant open file
 cant (2): print cant open file message
 files... case (1): case statement for shell
 mapstr (2): map case of a string
 case (1): case statement for shell files
 default alternative in a case statement...out (1): specify
 when (1): flag alternative in a case statement
 esac (1): mark the end of a case statment
 (2): fold character to lower case...mapdn
 (2): fold character to upper case...mapup
 files... cat (1): concatenate and print
 subroutine...pg$brk (6): catch a break for the page
 to end of string... catsub (2): add replacement text
 set_init (4): cause a set to be empty
 cc (1): compile a C program
 checker... cck1 (5): First phase of C program
 program checker... cck2 (5): Second phase of C
 program... ccl (1): compile and load a C
 cd (1): change home directory
 Cobol DML preprocessor... cdmlc (1): interface to Prime DBMS
 Cobol DML program... cdmlcl (1): compile and load a
 statement count run... c$end (6): clean up after
 change it... change (1): look for a pattern and
 pok$xs (4): change a location in memory
 password...passwd (3): change directory non−owner
 chown (3): change directory ownership
 chat (1): change file attributes
 cn (1): change file names
 cd (1): change home directory
 (1): look for a pattern and change it...change
 pword (1): change login password
 radix (1): change radix of numbers
 parsa$ (6): parse ACL changes in the common block
 get$xs (4): get a character (byte) from an array
 put$xs (4): put a character (byte) into an array
 getccl (2): expand character class into pattern
 (2): look for character in character class...locate
 getch (2): get a character from a file

 − xxiv −

 Permuted Index

 lsgetc (4): get character from linked string
 (2): map substring into escaped character if appropriate...esc
 addset (2): put character in a set if it fits
 index (1): find index of a character in a string
 index (2): find index of a character in a string
 locate (2): look for character in character class
 lsputc (4): put character into a linked string
 putch (2): put a character on a file
 vt$out (6): output a character onto the screen
 filset (2): expand character set, stop at delimiter
 information about the ASCII character set...cset (1): list
 itoc (2): convert integer to character string
 (2): convert long integer to character string...ltoc
 ctoa (2): convert character to address
 gctoi (2): generalized character to integer conversion
 ersion...gctol (2): generalized character to long integer
 mapdn (2): fold character to lower case
 (2): translate ASCII control character to mnemonic...ctomn
 ctor (2): character to real conversion
 mapup (2): fold character to upper case
 fetch it...rdy$xs (4): see if character waiting, and if so,
 formatted conversion from character...decode (2): perform
 vtterm (2): read terminal characteristics file
 sfdata (2): set characteristics for a file
 (2): get information about file characteristics...gfdata
 vt$db (6): dump terminal characteristics
 vtinit (2): initialize terminal characteristics
 (2): convert ASCII mnemonic to character...mntoc
 lsdel (4): delete characters from a linked string
 lsdrop (4): drop characters from a linked string
 lstake (4): take characters from a linked string
 style)...take (1): take characters from a string (APL
 (APL−style)...drop (1): drop characters from a string
 sdrop (2): drop characters from a string APL−style
 stake (2): take characters from a string APL−style
 vtread (2): read characters from a user’s terminal
 dwrit$ (6): write raw characters to disk
 tc (1): text counter (characters, words, lines, pages)
 check a string for printable characters...chkstr (2):
 expand subrange of a set of characters...dodash (2):
 ek (1): select erase and kill characters
 print a file showing control characters...show (3):
 tlit (1): transliterate characters
 print mnemonics for special characters...vt$db1 (6):
 get a delimited sequence of characters...vt$gsq (6):
 type (2): return type of character
 chat (1): change file attributes
 characters...chkstr (2): check a string for printable
 first$ (6): check for first call
 interrupt...tquit$ (2): check for pending terminal
 spell (1): check for possible spelling errors
 availability...chkinp (2): check for terminal input
 tip (1): check if terminal input is pending
 directories...systat (1): check on Subsystem status
 (5): First phase of C program checker...cck1
 (5): Second phase of C program checker...cck2

 − xxv −

 Permuted Index

 arguments... chkarg (2): parse single−letter
 input availability... chkinp (2): check for terminal
 printable characters... chkstr (2): check a string for
 ownership... chown (3): change directory
 SEG runfile... chunk$ (6): read one chunk of a
 slice (1): slice out a chunk of a file
 chunk$ (6): read one chunk of a SEG runfile
 given statement... c$incr (6): increment count for a
 statement count run... c$init (6): initialize for a
 getccl (2): expand character class into pattern
 look for character in character class...locate (2):
 c$end (6): clean up after statement count run
 clear (1): clear terminal screen
 vtclr (2): clear a rectangle on the screen
 segment...zmem$ (6): clear an uninitialized part of a
 vt$clr (6): send clear screen sequence
 clear (1): clear terminal screen
 vt$cel (6): send a clear to end−of−line sequence
 clock for CRTs... clock (1): digital time−of−day
 alarm (1): digital alarm clock for CRTs
 clock (1): digital time−of−day clock for CRTs
 t$time (6): obtain clock readings for profiling
 close (2): close out an open file
 user program...cof$ (6): close files opened by the last
 close (2): close out an open file
 stclos (2): insert closure entry in pattern
 cmp (1): string comparison
 cn (1): change file names
 Cobol compiler... cobc (1): interface to Primos
 Cobol program... cobcl (1): compile and load a
 cobc (1): interface to Primos Cobol compiler
 (1): interface to Prime DBMS Cobol DML preprocessor...cdmlc
 cdmlcl (1): compile and load a Cobol DML program
 cobcl (1): compile and load a Cobol program
 (1): interface to Prime DBMS Cobol subschema compiler...csubc
 bmerge (5): merge object code files into one file
 vcg (1): Prime V−mode code generator
 (1): locate subsystem source code ...locate
 error message, return error code...error (1): output
 (2): set Subsystem error return code...seterr
 size of cross−assembler object code...size (3): calculate
 the last user program... cof$ (6): close files opened by
 multi−column output... col (1): convert input to
 vt$dsw (6): perform garbage collection on DFA tables
 move the user’s cursor to row, col...vtmove (2):
 position the cursor to row, col...vt$pos (6):
 position relatively to row, col...vt$rel (6):
 arg (1): print command file arguments
 args (1): print command file arguments
 argsto (1): print command file arguments
 nargs (1): print number of command file arguments
 statement...goto (1): command file flow−of−control
 program...rcl (3): command file to rf, fc and ld a
 program...rfc (1): command file to rp and fc a Ratfor
 Ratfor program...rfl (1): command file to rp, fc, and ld a
 (1): terminate execution of command files...exit

 − xxvi −

 Permuted Index

 pause (1): suspend command interpretation
 sh (1): Subsystem Command Interpreter (Shell)
 primos (1): push a new Primos command interpreter
 shell (2): run the Subsystem command interpreter
 shtrace (1): trace activity in command interpreter
 subsys (2): call the Subsystem command interpreter
 delarg (2): delete a command line argument
 getarg (2): fetch command line arguments
 parscl (2): parse command line arguments
 mkcl (5): generate a command list file for guess
 execute (3): execute a SWT command on another machine
 source (1): print source for a command or subroutine
 como (1): divert command output stream
 cron (3): time driven command processor
 usage (1): print summary of command syntax
 guess (5): try to guess what command the user means
 sys$$ (2): pass a command to the Primos shell
 return the current value of the command unit...gcifu$ (6):
 nstat (3): remote node status command
 (3): determine run−time of a command...rtime
 mkclist (3): create a list of commands for backstop
 ph (1): execute subsystem commands in the background
 x (1): execute Primos commands
 (1): search _search_rule for a command...which
 two sorted files... common (1): print lines common to
 dmpcm$ (6): dump Subsystem common areas
 (6): initialize Subsystem common areas...icomn$
 the terminal type from the common area...ttyp$r (6): return
 vtinfo (2): return VTH common block information
 get acl protection into ACL common block...gtacl$ (6):
 (6): look up a name in the ACL common block...lookac
 (6): parse ACL changes in the common block...parsa$
 gcd (4): determine greatest common divisor of two integers
 math routines...err$m (2): common error condition handler for
 common (1): print lines common to two sorted files
 contents of the shell variable common...svdump (2): dump the
 ring (5): network communication server
 stream... como (1): divert command output
 contiguous string...lscmpk (4): compare linked string with
 3 for < = or >...strcmp (2): compare strings and return 1 2 or
 lscomp (4): compare two linked strings
 equal (2): compare two strings for equality
 cmp (1): string comparison
 programs...sep (1): separate compilation facility for Ratfor
 mixed language programs... compile (1): compile and load
 compiler...xcc (1): compile a C program with Prime
 cc (1): compile a C program
 (Unix−style)...ucc (1): compile and load a C program
 ccl (1): compile and load a C program
 program...cdmlcl (1): compile and load a Cobol DML
 cobcl (1): compile and load a Cobol program
 program...fcl (1): compile and load a Fortran 66
 program...f77cl (1): compile and load a Fortran 77
 program...fdmlcl (1): compile and load a Fortran DML
 pcl (1): compile and load a Pascal program
 program...plgcl (1): compile and load a PL/I subset G

 − xxvii −

 Permuted Index

 plpcl (1): compile and load a PL/P program
 xccl (1): compile and load a Prime C program
 splcl (1): compile and load a SPL program
 programs...compile (1): compile and load mixed language
 p4cl (3): compile and load Pascal 4 program
 c1 (5): C compiler front end
 (1): interface to Primos Cobol compiler...cobc
 to Prime DBMS Cobol subschema compiler...csubc (1): interface
 interface to Prime DBMS schema compiler...ddlc (1):
 interface to Primos Fortran 77 compiler...f77c (1):
 interface to Primos Fortran compiler...fc (1):
 to Prime DBMS Fortran subschema compiler...fsubc (1): interface
 p4c (3): Pascal 4 Compiler
 (1): interface to Primos Pascal compiler...pc
 to Primos PL/I subset G compiler...plgc (1): interface
 (1): interface to Primos PL/P compiler...plpc
 (1): interface to Primos SPL compiler...splc
 compile a C program with Prime compiler...xcc (1):
 lslen (4): compute length of linked string
 length (1): compute length of strings
 attribute...rdavg (1): compute the average value of an
 basys (3): basic computer system simulator
 cat (1): concatenate and print files
 files...lib (3): concatenate cross−assembler object
 relations...rdcat (1): concatenate two identical
 vtbaud (2): set vth’s concept of the terminal speed
 tines...err$m (2): common error condition handler for math
 files...if (1): conditional statement for Shell
 fi (1): terminate conditional statement
 (1): introduce else−part of a conditional...else
 introduce the then−part of a conditional...then (1):
 (6): on−unit for BAD_PASSWORD$ condition...bponu$
 (6): on−unit for the REENTER$ condition...reonu$
 Subsystem files...file$p (2): connect Pascal file variables to
 isatty (2): test if a file is connected to a terminal
 isnull (2): see if a file is connected to the bit bucket
 elif (1): else−if construct for Shell programs
 (4): return TRUE if two sets contain the same members...set_equ
 dmpfd$ (6): dump the contents of a file descriptor
 dsdbiu (6): dump contents of dynamic storage block
 common...svdump (2): dump the contents of the shell variable
 string...lsextr (4): extract contiguous string from linked
 lsmake (4): convert contiguous string to linked string
 (4): compare linked string with contiguous string...lscmpk
 ctomn (2): translate ASCII control character to mnemonic
 show (3): print a file showing control characters
 repeat (1): loop control structure for Shell files
 decode (2): perform formatted conversion from character
 (2): formatted memory−to−memory conversion routine...encode
 ctor (2): character to real conversion
 character to integer conversion...gctoi (2): generalize
 character to long integer conversion...gctol (2): generalize
 mktr$ (6): convert a pathname into a treename
 terminated string...expand (2): convert a template into an
 mkpa$ (6): convert a treename into a pathname
 atoc (2): convert an address to a string

 − xxviii −

 Permuted Index

 character...mntoc (2): convert ASCII mnemonic to
 ctoi (2): convert ascii string to integer
 integer...ctol (2): convert ascii string to long
 overstrikes...os (1): convert backspaces to line printer
 library...mklib (1): convert binary relocatable to a
 ctoa (2): convert character to address
 linked string...lsmake (4): convert contiguous string to
 o any radix string...gltoc (2): convert double precision integer
 ASCII string...dtoc (2): convert double precision value to
 S−terminated string...ctoc (2): convert EOS−terminated string to
 packed string...ctop (2): convert EOS−terminated string to
 varying string...ctov (2): convert EOS−terminated string to
 mapfd (2): convert fd to Primos funit
 output...col (1): convert input to multi−column
 string...itoc (2): convert integer to character
 string...ltoc (2): convert long integer to character
 entab (1): convert multiple blanks to tabs
 S−terminated string...ptoc (2): convert packed string to
 varying string...ptov (2): convert packed string to PL/I
 mktree (1): convert pathname to treename
 S−terminated string...vtoc (2): convert PL/I varying string to
 packed string...vtop (2): convert PL/I varying string to
 Version 9 format...cvusr (5): convert pre−Version 9 user list to
 rtoc (2): convert real value to ASCII string
 format...csv (5): convert shell variables to new
 o any radix string...gitoc (2): convert single precision integer
 real...ctod (2): convert string to double precision
 detab (1): convert tabs to multiple spaces
 banner (1): convert text to banner size
 block (3): convert text to block letters
 past midnight...parstm (2): convert time−of−day to seconds
 unoct (3): convert UNIX ’od’ output to binary
 tcook$ (6): read and cook a line from the terminal
 cp (1): generalized file copier
 standard output... copy (1): copy standard input to
 filcpy (2): copy a file and its attributes
 lscopy (4): copy linked string
 set_copy (4): make a copy of one set in another
 fcopy (2): copy one file to another
 cpfil$ (6): copy one open file to another
 another...cpseg$ (6): copy one open segment directory to
 scopy (2): copy one string to another
 output...copy (1): copy standard input to standard
 sentinel...cto (1): copy STDIN to STDOUT up to a
 vt$put (6): copy string into terminal buffer
 printer...copyout (1): copy user’s terminal session to
 session to printer... copyout (1): copy user’s terminal
 wkday (2): get day−of−week corresponding to month, day, year
 cosine... cosh$m (2): calculate hyperbolic
 acos$m (2): calculate inverse cosine
 (2): calculate hyperbolic cosine...cosh$m
 cos$m (2): calculate cosine
 double precision inverse cosine...dacs$m (2): calculate
 (2): calculate double precision cosine...dcos$m
 double precision hyperbolic cosine...dcsh$m (2): calculate
 cos$m (2): calculate cosine

 − xxix −

 Permuted Index

 cot$m (2): calculate cotangent
 (2): calculate double precision cotangent...dcot$m
 cot$m (2): calculate cotangent
 c$incr (6): increment count for a given statement
 (6): clean up after statement count run...c$end
 (6): initialize for a statement count run...c$init
 relation...rdcount (1): count the number of rows in a
 pages) ...tc (1): text counter (characters, words, lines,
 cp (1): generalized file copier
 another... cpfil$ (6): copy one open file to
 directory to another... cpseg$ (6): copy one open segment
 gky$xs (4): get current cpu keys
 sky$xs (4): set current cpu keys
 ctime (1): print accumulated cpu time
 open it... create (2): create a new file and
 mkdir$ (6): create a directory
 backstop...mkclist (3): create a list of commands for
 dble$m (2): create a longreal from a longint
 create (2): create a new file and open it
 rrent lexic level...svmake (2): create a shell variable at the
 mktemp (2): create a temporary file
 declare (1): create shell variables
 processor... cron (3): time driven command
 as11 (3): PDP−11 cross assembler
 xref (1): Ratfor cross reference generator
 size (3): calculate size of cross−assembler object code
 lib (3): concatenate cross−assembler object files
 lk (3): link cross−assembler object files
 as6800 (3): Motorola 6800 cross−assembler
 as8080 (3): Intel 8080 cross−assembler
 symbols (3): print cross−assembly symbol table
 (1): digital alarm clock for CRTs...alarm
 digital time−of−day clock for CRTs...clock (1):
 and decryption... crypt (1): exclusive−or encryption
 rsa (3): toy RSA public−key cryptosystem
 the ASCII character set... cset (1): list information about
 Cobol subschema compiler... csubc (1): interface to Prime DBMS
 to new format... csv (5): convert shell variables
 time... ctime (1): print accumulated cpu
 to a sentinel... cto (1): copy STDIN to STDOUT up
 address... ctoa (2): convert character to
 ing to EOS−terminated string... ctoc (2): convert EOS−terminated
 precision real... ctod (2): convert string to double
 integer... ctoi (2): convert ascii string to
 long integer... ctol (2): convert ascii string to
 character to mnemonic... ctomn (2): translate ASCII control
 string to packed string... ctop (2): convert EOS−terminated
 conversion... ctor (2): character to real
 string to varying string... ctov (2): convert EOS−terminated
 gky$xs (4): get current cpu keys
 sky$xs (4): set current cpu keys
 gcdir$ (6): get current directory pathname
 (6): see if file exists in current directory...findf$
 delete a shell variable at the current level...svdel (2):
 create a shell variable at the current lexic level...svmake (2):
 markf (2): get the current position of a file

 − xxx −

 Permuted Index

 file...tmark$ (6): return the current position of a terminal
 svlevl (2): return the current shell variable lexic level
 e (1): invoke proper editor for current terminal
 gcifu$ (6): return the current value of the command unit
 terminate (3): terminate currently executing ’ring’ process
 vtmove (2): move the user’s cursor to row, col
 vt$pos (6): position the cursor to row, col
 ser list to Version 9 format... cvusr (5): convert pre−Version 9
 precision inverse cosine... dacs$m (2): calculate double
 precision inverse sine... dasn$m (2): calculate double
 dump (1): dump various internal data bases
 Implementation...des (3): NBS Data Encryption Standard
 (1): make a relation from data file...rdmake
 rdextr (1): extract relation data from a relation
 (1): manipulate field−oriented data...field
 date (1): print date
 other system information... date (2): return time, date and
 date (2): return time, date and other system information
 parsdt (2): parse a date in mm/dd/yy format
 date (1): print date
 touch (1): set file date/time modification fields
 precision inverse tangent... datn$m (2): calculate double
 day (1): day of week
 f−year...jdate (2): take month, day, and year and return
 day (1): day of week
 corresponding to month, day, year...wkday (2): get day−of−
 ring...setime (3): set time of day/date on all systems running
 gtod (1): get time of day
 nth, day, year...wkday (2): get day−of−week corresponding to
 month, day, and year and return day−of−year...jdate (2): take
 level debugger (DBG)... dbg (1): invoke the Primos source
 Primos source level debugger (DBG)...dbg (1): invoke the
 a longint... dble$m (2): create a longreal from
 cdmlc (1): interface to Prime DBMS Cobol DML preprocessor
 csubc (1): interface to Prime DBMS Cobol subschema compiler
 fdmlc (1): interface to Prime DBMS Fortran DML preprocessor
 fsubc (1): interface to Prime DBMS Fortran subschema compiler
 ddlc (1): interface to Prime DBMS schema compiler
 precision cosine... dcos$m (2): calculate double
 precision cotangent... dcot$m (2): calculate double
 precision hyperbolic cosine... dcsh$m (2): calculate double
 schema compiler... ddlc (1): interface to Prime DBMS
 invoke the Primos source level debugger (DBG)...dbg (1):
 dump linked string space for debugging...lsdump (4):
 putdec (2): write decimal integer to a file
 (1): selective filter with user decision...yesno
 link (1): build Ratfor linkage declaration
 variables... declare (1): create shell
 variables... declared (1): test for declared
 declared (1): test for declared variables
 conversion from character... decode (2): perform formatted
 ptar (3): decode Unix tar format tapes
 exclusive−or encryption and decryption...crypt (1):
 statement...out (1): specify default alternative in a case
 define (1): define expander
 define (1): define expander

 − xxxi −

 Permuted Index

 (4): initialize a hardware defined queue...mkq$xs
 vt$def (6): accept a macro definition from the user
 vt$rdf (6): remove macro definition of a DFA entry
 (6): allocate another VTH definition table...vt$alc
 vt$db3 (6): dump macro definition table
 parse a template into name and definition...gtemp (2):
 (6): invoke user−defined key definition...vt$idf
 vt$ndf (6): remove VTH macro definition
 del (1): delete files
 argument... delarg (2): delete a command line
 vt$del (6): delay the terminal with nulls
 symbol table... delete (2): remove a symbol from a
 delarg (2): delete a command line argument
 current level...svdel (2): delete a shell variable at the
 string...lsdel (4): delete characters from a linked
 del (1): delete files
 vt$dln (6): send a delete line sequence
 terminal screen...vtdlin (2): delete lines on the user’s
 vt$gsq (6): get a delimited sequence of characters
 expand character set, stop at delimiter...filset (2):
 (2): make pattern, terminate at delimiter...makpat
 Standard Implementation... des (3): NBS Data Encryption
 stacc (1): recursive descent parser generator
 mkfd$ (6): make a file descriptor from a Primos funit
 dump the contents of a file descriptor...dmpfd$ (6):
 (6): look for an empty file descriptor...getfd$
 (2): map standard unit to file descriptor...mapsu
 print a relation or relation descriptor...rdprint (1):
 (6): size an open Primos file descriptor...szfil$
 seekf (2): position a file to a designated word
 forget (1): destroy shell variables
 multiple spaces... detab (1): convert tabs to
 speling (1): detect spelling errors
 of two integers...gcd (4): determine greatest common divisor
 phantom...isph$ (2): determine if the caller is a
 rtime (3): determine run−time of a command
 dseek$ (6): seek on a disk device
 tseek$ (6): seek on a terminal device
 on exponential to the base e... dexp$m (2): calculate double
 remove macro definition of a DFA entry...vt$rdf (6):
 perform garbage collection on DFA tables...vt$dsw (6):
 file... dgetl$ (6): get a line from a disk
 (3): optimize printing on a Diablo...dprint
 remark (2): print diagnostic message
 print fatal error message, then die...error (2):
 between two files... diff (1): isolate differences
 rddiff (1): take the difference of two relations
 set_subtract (4): place difference of two sets in a third
 diff (1): isolate differences between two files
 alarm (1): digital alarm clock for CRTs
 clock (1): digital time−of−day clock for CRTs
 longreal... dint$m (2): get integer part of an
 longreal (PMA only)... dint$p (2): get integer part of a
 (1): check on Subsystem status directories...systat
 finfo$ (6): return directory information about a file
 pwd (3): print working directory name

 − xxxii −

 Permuted Index

 passwd (3): change directory non−owner password
 chown (3): change directory ownership
 gcdir$ (6): get current directory pathname
 (6): copy one open segment directory to another...cpseg$
 cd (1): change home directory
 see if file exists in current directory...findf$ (6):
 of file in user’s variables directory...getvdn (2): return nam
 up a template in the template directory...lutemp (6): look
 mkdir (1): make a directory
 mkdir$ (6): create a directory
 rmseg$ (6): remove a segment directory
 size an open Primos segment directory...szseg$ (6):
 dseek$ (6): seek on a disk device
 lopen$ (6): open a disk file in the spool queue
 dgetl$ (6): get a line from a disk file
 (6): return the position of a disk file...dmark$
 dopen$ (6): open a disk file
 dputl$ (6): put a line on a disk file
 produce formatted dump of a disk file...fdmp (1):
 isadsk (2): test if a file is a disk file
 generate or interpret legal disk numbers...dnum (1):
 quota (1): read and set disk record quota limits
 hd (1): summarize available disk space
 dread$ (6): read raw words from disk
 (6): write raw characters to disk...dwrit$
 line...vtmsg (2): display a message in the status
 vt$err (6): display a VTH error message
 page (2): display file in paginated form
 template (1): manipulate and display templates
 vcgdump (1): display ’vcg’ input files
 como (1): divert command output stream
 linked strings...lscut (4): divide a linked string into two
 rddiv (1): perform the division of two relations
 (4): determine greatest common divisor of two integers...gcd
 sion logarithm to the base e... dln$m (2): calculate double
 ion logarithm to the base 10... dlog$m (2): calculate double
 simulator... dmach (3): Burroughs D−machine
 translang (3): D−Machine microprogram translator
 dmach (3): Burroughs D−machine simulator
 a disk file... dmark$ (6): return the position of
 interface to Prime DBMS Cobol DML preprocessor...cdmlc (1):
 interface to Prime DBMS Fortran DML preprocessor...fdmlc (1):
 (1): compile and load a Cobol DML program...cdmlcl
 (1): compile and load a Fortran DML program...fdmlcl
 areas... dmpcm$ (6): dump Subsystem common
 file descriptor... dmpfd$ (6): dump the contents of a
 legal disk numbers... dnum (1): generate or interpret
 format, overstrike, and spool a document...fos (1):
 set of characters... dodash (2): expand subrange of a
 dopen$ (6): open a disk file
 dcos$m (2): calculate double precision cosine
 dcot$m (2): calculate double precision cotangent
 base e...dexp$m (2): calculate double precision exponential to
 dcsh$m (2): calculate double precision hyperbolic cosine
 dsnh$m (2): calculate double precision hyperbolic sine
 tangent...dtnh$m (2): calculate double precision hyperbolic

 − xxxiii −

 Permuted Index

 dix string...gltoc (2): convert double precision integer to any
 dacs$m (2): calculate double precision inverse cosine
 dasn$m (2): calculate double precision inverse sine
 datn$m (2): calculate double precision inverse tangent
 base 10...dlog$m (2): calculate double precision logarithm to the
 base e...dln$m (2): calculate double precision logarithm to the
 ctod (2): convert string to double precision real
 dsin$m (2): calculate double precision sine
 dsqt$m (2): calculate double precision square root
 dtan$m (2): calculate double precision tangent
 string...dtoc (2): convert double precision value to ASCII
 s2c$xs (4): protected double−word store operation
 generate IMI prom programmer down−line load stream...imi (3):
 Diablo... dprint (3): optimize printing on a
 file... dputl$ (6): put a line on a disk
 disk... dread$ (6): read raw words from
 cron (3): time driven command processor
 string (APL−style)... drop (1): drop characters from a
 string...lsdrop (4): drop characters from a linked
 (APL−style)...drop (1): drop characters from a string
 APL−style...sdrop (2): drop characters from a string
 dynamic storage block... dsdbiu (6): dump contents of
 dump of storage... dsdump (2): produce semi−readable
 dseek$ (6): seek on a disk device
 dynamic storage... dsfree (2): free a block of
 dynamic storage... dsget (2): obtain a block of
 storage space... dsinit (2): initialize dynamic
 precision sine... dsin$m (2): calculate double
 precision hyperbolic sine... dsnh$m (2): calculate double
 precision square root... dsqt$m (2): calculate double
 precision tangent... dtan$m (2): calculate double
 precision hyperbolic tangent... dtnh$m (2): calculate double
 value to ASCII string... dtoc (2): convert double precision
 data bases... dump (1): dump various internal
 block...dsdbiu (6): dump contents of dynamic storage
 debugging...lsdump (4): dump linked string space for
 vt$db3 (6): dump macro definition table
 fdmp (1): produce formatted dump of a disk file
 (2): produce semi−readable dump of storage...dsdump
 dmpcm$ (6): dump Subsystem common areas
 vt$db (6): dump terminal characteristics
 vt$db2 (6): dump terminal input tables
 descriptor...dmpfd$ (6): dump the contents of a file
 variable common...svdump (2): dump the contents of the shell
 dump (1): dump various internal data bases
 otd (3): object text dumper
 rduniq (1): remove duplicate tuples from a relation
 to disk... dwrit$ (6): write raw characters
 snplnk (5): snap shared library dynamic links
 dsdbiu (6): dump contents of dynamic storage block
 dsinit (2): initialize dynamic storage space
 dsfree (2): free a block of dynamic storage
 dsget (2): obtain a block of dynamic storage
 current terminal... e (1): invoke proper editor for
 routine...input (2): easy to use semi−formatted input
 routine...print (2): easy to use semi−formatted print

 − xxxiv −

 Permuted Index

 echo (1): echo arguments
 echo (1): echo arguments
 (extended)... ed (1): Software Tools text editor
 exponential to the base e...dexp$m (2): calculate double p
 text editor... edit (2): invoke the line−oriented
 vt$get (6): get and edit a single line from input
 ed (1): Software Tools text editor (extended)
 e (1): invoke proper editor for current terminal
 invoke the line−oriented text editor...edit (2):
 se (1): screen−oriented text editor
 precision logarithm to the base e...dln$m (2): calculate double
 exponential to the base e...exp$m (2): calculate
 characters... ek (1): select erase and kill
 set_delete (4): remove given element from a set
 rbq$xs (4): remove an element from the bottom of a queue
 rtq$xs (4): remove an element from the top of a queue
 set_insert (4): place given element in a set
 set_element (4): see if a given element is in a set
 abq$xs (4): add an element to the bottom of a queue
 atq$xs (4): add an element to the top of a queue
 try to match a single pattern element...omatch (2):
 Shell programs... elif (1): else−if construct for
 lines...uniq (1): eliminate successive identical
 calculate logarithm to the base e...ln$m (2):
 conditional... else (1): introduce else−part of a
 programs...elif (1): else−if construct for Shell
 else (1): introduce else−part of a conditional
 ts (3): time sheet for hourly employees
 getfd$ (6): look for an empty file descriptor
 (4): generate a new, initially empty set...set_create
 set_init (4): cause a set to be empty
 screen line...vtenb (2): enable input on a particular
 to−memory conversion routine... encode (2): formatted
 Primos structure...mkpacl (6): encode ACL information into a
 structure...mksacl (6): encode ACL information into a SWT
 crypt (1): exclusive−or encryption and decryption
 des (3): NBS Data Encryption Standard Implementation
 vt$cel (6): send a clear to end−of−line sequence
 input...quote (1): enquote strings from standard
 to tabs... entab (1): convert multiple blanks
 table... enter (2): place symbol in symbol
 (4): return the number of entries in a queue...tsq$xs
 log (1): make an entry in a personal log
 stclos (2): insert closure entry in pattern
 bnames (5): print entry point names in object files
 (2): return size of pattern entry...patsiz
 routine called on subprogram entry...t$entr (6): profiling
 macro definition of a DFA entry...vt$rdf (6): remove
 ated string...ctoc (2): convert EOS−terminated string to
 string...ctop (2): convert EOS−terminated string to packed
 string...ctov (2): convert EOS−terminated string to varying
 EOS−terminated string to EOS−terminated string...ctoc (2):
 (2): convert a template into an EOS−terminated string...expand
 (2): convert packed string to EOS−terminated string...ptoc
 convert PL/I varying string to EOS−terminated string...vtoc (2):
 (3): interface with the Primos EPF loader...bind

 − xxxv −

 Permuted Index

 (6): call a P300, SEG, or EPF runfile...call$$
 equality... equal (2): compare two strings for
 (2): compare two strings for equality...equal
 ek (1): select erase and kill characters
 handler for math routines... err$m (2): common error condition
 return error code... error (1): output error message,
 message, then die... error (2): print fatal error
 output error message, return error code...error (1):
 routines...err$m (2): common error condition handler for math
 vt$ier (6): report error in VTH initialization file
 error (1): output error message, return error code
 error (2): print fatal error message, then die
 vt$err (6): display a VTH error message
 seterr (2): set Subsystem error return code
 speling (1): detect spelling errors
 check for possible spelling errors...spell (1):
 statment... esac (1): mark the end of a case
 ped character if appropriate... esc (2): map substring into
 (6): unpack a Primos file name; escape slashes...upkfn$
 esc (2): map substring into escaped character if appropriate
 expressions... eval (1): evaluate arithmetic
 eval (1): evaluate arithmetic expressions
 raid (3): examine bug reports
 decryption...crypt (1): exclusive−or encryption and
 exec (2): execute pathname
 by a quoted string... execn (2): execute program named
 on another machine... execute (3): execute a SWT command
 machine...execute (3): execute a SWT command on another
 exec (2): execute pathname
 x (1): execute Primos commands
 string...execn (2): execute program named by a quoted
 background...ph (1): execute subsystem commands in the
 (3): terminate currently executing ’ring’ process...termina
 exit (1): terminate execution of command files
 profile (1): print execution profile
 filtst (2): perform existence and size tests on a file
 findf$ (6): see if file exists in current directory
 command files... exit (1): terminate execution of
 stop (1): exit from subsystem
 routine called on program exit...t$clup (6): profiling
 routine called on subprogram exit...t$exit (6): profiling
 nto an EOS−terminated string... expand (2): convert a template
 pattern...getccl (2): expand character class into
 delimiter...filset (2): expand character set, stop at
 include (1): expand include statements
 characters...dodash (2): expand subrange of a set of
 define (1): define expander
 to the base e... exp$m (2): calculate exponential
 pwrmod (4): calculate an exponential modulo a given modulus
 (2): calculate double precision exponential to the base e...dexp$m
 exp$m (2): calculate exponential to the base e
 eval (1): evaluate arithmetic expressions
 rp (1): extended Ratfor preprocessor
 (1): Software Tools text editor (extended)...ed
 stk$xs (4): set/read stack extension pointer
 linked string...lsextr (4): extract contiguous string from

 − xxxvi −

 Permuted Index

 relation...rdextr (1): extract relation data from a
 Fortran 77 compiler... f77c (1): interface to Primos
 Fortran 77 program... f77cl (1): compile and load a
 sep (1): separate compilation facility for Ratfor programs
 error (2): print fatal error message, then die
 Fortran compiler... fc (1): interface to Primos
 rfc (1): command file to rp and fc a Ratfor program
 rcl (3): command file to rf, fc and ld a program
 rfl (1): command file to rp, fc, and ld a Ratfor program
 Fortran 66 program... fcl (1): compile and load a
 another... fcopy (2): copy one file to
 mapfd (2): convert fd to Primos funit
 Fortran DML preprocessor... fdmlc (1): interface to Prime DBMS
 Fortran DML program... fdmlcl (1): compile and load a
 of a disk file... fdmp (1): produce formatted dump
 program...geta$f (2): fetch arguments for a Fortran
 program...geta$p (2): fetch arguments for a Pascal
 program...geta$plg (2): fetch arguments for a PL/I G
 getarg (2): fetch command line arguments
 character waiting, and if so, fetch it...rdy$xs (4): see if
 style)... ffind (1): look for a string (kmp
 statement... fi (1): terminate conditional
 field−oriented data... field (1): manipulate
 vtpad (2): pad the rest of a field with blanks
 field (1): manipulate field−oriented data
 set file date/time modification fields...touch (1):
 attributes... filcpy (2): copy a file and its
 file... file (1): test information about a
 filcpy (2): copy a file and its attributes
 create (2): create a new file and open it
 arg (1): print command file arguments
 args (1): print command file arguments
 argsto (1): print command file arguments
 (1): print number of command file arguments...nargs
 chat (1): change file attributes
 (2): get information about file characteristics...gfdata
 cp (1): generalized file copier
 touch (1): set file date/time modification fields
 funit...mkfd$ (6): make a file descriptor from a Primos
 (6): dump the contents of a file descriptor...dmpfd$
 getfd$ (6): look for an empty file descriptor
 mapsu (2): map standard unit to file descriptor
 szfil$ (6): size an open Primos file descriptor
 findf$ (6): see if file exists in current directory
 goto (1): command file flow−of−control statement
 (5): generate a command list file for guess...mkcl
 mv (3): move a file from one place to another
 getto (2): get to the last file in a pathname
 page (2): display file in paginated form
 pg (1): list a file in paginated form
 lopen$ (6): open a disk file in the spool queue
 getvdn (2): return name of file in user’s variables directory
 isadsk (2): test if a file is a disk file
 isatty (2): test if a file is connected to a terminal
 bucket...isnull (2): see if a file is connected to the bit
 iofl$ (6): initialize open file list

 − xxxvii −

 Permuted Index

 ar (1): archive file maintainer
 cant (2): print cant open file message
 list...gfnarg (2): get next file name argument from argument
 upkfn$ (6): unpack a Primos file name; escape slashes
 files (1): list file names matching a pattern
 cn (1): change file names
 remove (2): remove a file, return status
 rmfil$ (6): remove a file, return status
 show (3): print a file showing control characters
 List ACL information about a file system object...lacl (1):
 fsize (1): size any file system structure
 (6): traverse subtree of the file system...tscan$
 seekf (2): position a file to a designated word
 cpfil$ (6): copy one open file to another
 fcopy (2): copy one file to another
 rcl (3): command file to rf, fc and ld a program
 rfc (1): command file to rp and fc a Ratfor program
 program...rfl (1): command file to rp, fc, and ld a Ratfor
 program...fixp (3): file translation and parity set
 file$p (2): connect Pascal file variables to Subsystem files
 object code files into one file...bmerge (5): merge
 pairs in an object file...brefs (5): print caller−cal
 close (2): close out an open file
 (6): get a line from a disk file...dgetl$
 return the position of a disk file...dmark$ (6):
 dopen$ (6): open a disk file
 (6): put a line on a disk file...dputl$
 formatted dump of a disk file...fdmp (1): produce
 (1): test information about a file...file
 existence and size tests on a file...filtst (2): perform
 directory information about a file...finfo$ (6): return
 (2): get a character from a file...getch
 (2): read one line from a file...getlin
 get the pathname for an open file...gfnam$ (6):
 (2): test if a file is a disk file...isadsk
 (3): print last n lines of a file...last
 get the current position of a file...markf (2):
 mktemp (2): create a temporary file
 open (2): open a file
 variables to Subsystem files... file$p (2): connect Pascal file
 putch (2): put a character on a file
 (2): write decimal integer to a file...putdec
 putlin (2): put a line on a file
 (2): write literal string on a file...putlit
 (1): make a relation from data file...rdmake
 (2): read raw words from a file...readf
 rewind (2): rewind a file
 rmtemp (2): remove a temporary file
 matching a pattern... files (1): list file names
 flush$ (6): flush out a file’s buffer
 shar (3): put text files into a ’shell archive’
 bmerge (5): merge object code files into one file
 pr (1): print files on the line printer
 program...cof$ (6): close files opened by the last user
 lfo (3): list files opened for a specified user
 entry point names in object files...bnames (5): print

 − xxxviii −

 Permuted Index

 (1): case statement for shell files...case
 cat (1): concatenate and print files
 lines common to two sorted files...common (1): print
 del (1): delete files
 isolate differences between two files...diff (1):
 terminate execution of command files...exit (1):
 (2): set characteristics for a file...sfdata
 file variables to Subsystem files...file$p (2): connect Pascal
 conditional statement for Shell files...if (1):
 laminate lines from separate files...lam (1):
 lf (1): list files
 cross−assembler object files...lib (3): concatenate
 (1): slice out a chunk of a file...slice
 link cross−assembler object files...lk (3):
 print (1): print files
 set protection attributes for a file...sprot$ (6):
 control structure for Shell files...repeat (1): loop
 (1): display ’vcg’ input files...vcgdump
 restore shell variables from a file...svrest (2):
 (2): save shell variables in a file...svsave
 current position of a terminal file...tmark$ (6): return the
 trunc (2): truncate a file
 error in VTH initialization file...vt$ier (6): report
 read terminal characteristics file...vtterm (2):
 wind (2): position to end of file
 writef (2): write raw words to file
 stop at delimiter... filset (2): expand character set,
 yesno (1): selective filter with user decision
 size tests on a file... filtst (2): perform existence and
 find (1): look for a pattern
 string...index (1): find index of a character in a
 string...index (2): find index of a character in a
 another integer...invmod (4): find inverse of an integer modulo
 length (2): find length of a string
 where they are...who (3): find out who’s on the system and
 lspos (4): find position in linked string
 phone (3): find someone’s telephone number
 whereis (1): find the location of a terminal
 pecified attribute...rdmax (1): find the maximum value of a
 pecified attribute...rdmin (1): find the minimum value of a
 login name...whois (1): find the user associated with a
 current directory... findf$ (6): see if file exists in
 information about a file... finfo$ (6): return directory
 first$ (6): check for first call
 first$ (6): check for first call
 cck1 (5): First phase of C program checker
 put character in a set if it fits...addset (2):
 tee (1): tee fitting for pipelines
 parity set program... fixp (3): file translation and
 statement...when (1): flag alternative in a case
 goto (1): command file flow−of−control statement
 buffer... flush$ (6): flush out a file’s
 flush$ (6): flush out a file’s buffer
 fmt (1): text formatter
 lz (3): post process ’fmt’ output for laser printer
 focld (3): send FOCAL−GT/RT programs to the GT40

 − xxxix −

 Permuted Index

 programs to the GT40... focld (3): send FOCAL−GT/RT
 mapdn (2): fold character to lower case
 mapup (2): fold character to upper case
 follow (2): path name follower
 follow (2): path name follower
 Subsystem...init$f (2): force Fortran i/o to recognize the
 Subsystem...init$p (2): force Pascal i/o to recognize the
 Subsystem...init$plg (2): force PL/I G i/o to recognize the
 variables... forget (1): destroy shell
 bugfm (5): format a bug report
 intel (3): generate Intel format object tape
 mot (3): generate Motorola format object tape
 document...fos (1): format, overstrike, and spool a
 ptar (3): decode Unix tar format tapes
 convert shell variables to new format...csv (5):
 9 user list to Version 9 format...cvusr (5): convert pre−Ve
 (2): parse a date in mm/dd/yy format...parsdt
 character...decode (2): perform formatted conversion from
 fdmp (1): produce formatted dump of a disk file
 onversion routine...encode (2): formatted memory−to−memory
 buffers...vtprt (2): place formatted strings into screen
 fmt (1): text formatter
 (2): display file in paginated form...page
 (1): list a file in paginated form...pg
 fcl (1): compile and load a Fortran 66 program
 f77c (1): interface to Primos Fortran 77 compiler
 f77cl (1): compile and load a Fortran 77 program
 fc (1): interface to Primos Fortran compiler
 (1): interface to Prime DBMS Fortran DML preprocessor...fdmlc
 fdmlcl (1): compile and load a Fortran DML program
 Subsystem...init$f (2): force Fortran i/o to recognize the
 (2): fetch arguments for a Fortran program...geta$f
 (1): interface to Prime DBMS Fortran subschema compiler...fsubc
 spool a document... fos (1): format, overstrike, and
 rtn$$ (6): return to stack frame of call$$
 dsfree (2): free a block of dynamic storage
 lsfree (4): free linked string space
 sol (3): play a friendly game of solitaire
 c1 (5): C compiler front end
 structure... fsize (1): size any file system
 Fortran subschema compiler... fsubc (1): interface to Prime DBMS
 mapfd (2): convert fd to Primos funit
 a file descriptor from a Primos funit...mkfd$ (6): make
 sol (3): play a friendly game of solitaire
 vt$dsw (6): perform garbage collection on DFA tables
 divisor of two integers... gcd (4): determine greatest common
 pathname... gcdir$ (6): get current directory
 value of the command unit... gcifu$ (6): return the current
 to integer conversion... gctoi (2): generalized character
 to long integer conversion... gctol (2): generalized character
 conversion...gctoi (2): generalized character to integer
 integer conversion...gctol (2): generalized character to long
 cp (1): generalized file copier
 guess...mkcl (5): generate a command list file for
 set...set_create (4): generate a new, initially empty
 rand$m (2): generate a random number

 − xl −

 Permuted Index

 own−line load stream...imi (3): generate IMI prom programmer
 intel (3): generate Intel format object tape
 tape...mot (3): generate Motorola format object
 M6800 Monitor...ap (3): Generate Object Tape for A & P
 numbers...dnum (1): generate or interpret legal disk
 rnd (1): generate random numbers
 iota (1): generate vector of integers
 for the rand$m random number generator...seed$m (2): set the se
 (1): recursive descent parser generator...stacc
 vcg (1): Prime V−mode code generator
 (1): Ratfor cross reference generator...xref
 array...get$xs (4): get a character (byte) from an
 getch (2): get a character from a file
 characters...vt$gsq (6): get a delimited sequence of
 dgetl$ (6): get a line from a disk file
 vtgetl (2): get a line from the VTH screen
 gtattr (2): get a user’s terminal attributes
 getwrd (2): get a word from a line buffer
 block...gtacl$ (6): get acl protection into ACL common
 input...vt$get (6): get and edit a single line from
 lsgetc (4): get character from linked string
 gky$xs (4): get current cpu keys
 gcdir$ (6): get current directory pathname
 month, day, year...wkday (2): get day−of−week corresponding to
 characteristics...gfdata (2): get information about file
 (PMA only)...dint$p (2): get integer part of a longreal
 dint$m (2): get integer part of an longreal
 argument list...gfnarg (2): get next file name argument from
 markf (2): get the current position of a file
 gfnam$ (6): get the pathname for an open file
 gtod (1): get time of day
 getto (2): get to the last file in a pathname
 Fortran program... geta$f (2): fetch arguments for a
 Pascal program... geta$p (2): fetch arguments for a
 a PL/I G program... geta$plg (2): fetch arguments for
 arguments... getarg (2): fetch command line
 into pattern... getccl (2): expand character class
 file... getch (2): get a character from a
 descriptor... getfd$ (6): look for an empty file
 arguments... getkwd (2): look for keyword/value
 file... getlin (2): read one line from a
 a pathname... getto (2): get to the last file in
 user’s variables directory... getvdn (2): return name of file in
 buffer... getwrd (2): get a word from a line
 from an array... get$xs (4): get a character (byte)
 file characteristics... gfdata (2): get information about
 an open file... gfnam$ (6): get the pathname for
 argument from argument list... gfnarg (2): get next file name
 integer to any radix string... gitoc (2): convert single
 set_delete (4): remove given element from a set
 set_insert (4): place given element in a set
 set_element (4): see if a given element is in a set
 an exponential modulo a given modulus...pwrmod (4): calcul
 (6): increment count for a given statement...c$incr
 key−letter argument... gklarg (2): parse a single
 gky$xs (4): get current cpu keys

 − xli −

 Permuted Index

 integer to any radix string... gltoc (2): convert double
 flow−of−control statement... goto (1): command file
 integers...gcd (4): determine greatest common divisor of two
 group identities... group (1): test or list a users
 group (1): test or list a users group identities
 FOCAL−GT/RT programs to the GT40...focld (3): send
 terminal program on the GT40...scroll (3): load scrolling
 into ACL common block... gtacl$ (6): get acl protection
 attributes... gtattr (2): get a user’s terminal
 name and definition... gtemp (2): parse a template into
 gtod (1): get time of day
 terminal type... gttype (2): return the user’s
 command the user means... guess (5): try to guess what
 guess (5): try to guess what command the user means
 a command list file for guess...mkcl (5): generate
 Subsystem User’s Guides... guide (1): Software Tools
 Software Tools Subsystem User’s Guides...guide (1):
 key−letter argument... gvlarg (2): obtain the value of a
 (2): common error condition handler for math routines...err$m
 for the virtual terminal handler...vtopt (2): set options
 mkq$xs (4): initialize a hardware defined queue
 space... hd (1): summarize available disk
 in need... help (1): provide help for users
 help (1): provide help for users in need
 bugn (5): process the highest bug number
 history mechanism... hist (1): manipulate the subsystem
 (1): Software Tools Subsystem historian...history
 Subsystem historian... history (1): Software Tools
 (1): manipulate the subsystem history mechanism...hist
 phist (1): print Subsystem history
 cd (1): change home directory
 ts (3): time sheet for hourly employees
 calculator... hp (1): Reverse Polish Notation
 cosh$m (2): calculate hyperbolic cosine
 (2): calculate double precision hyperbolic cosine...dcsh$m
 (2): calculate double precision hyperbolic sine...dsnh$m
 sinh$m (2): calculate hyperbolic sine
 (2): calculate double precision hyperbolic tangent...dtnh$m
 tanh$m (2): calculate hyperbolic tangent
 common areas... icomn$ (6): initialize Subsystem
 uniq (1): eliminate successive identical lines
 rdcat (1): concatenate two identical relations
 rdint (1): intersect two identical relations
 (1): test or list a users group identities...group
 line (1): print user’s process id
 rammer down−line load stream... imi (3): generate IMI prom
 stream...imi (3): generate IMI prom programmer down−line load
 NBS Data Encryption Standard Implementation...des (3):
 statements... include (1): expand include
 include (1): expand include statements
 statement...c$incr (6): increment count for a given
 character in a string... index (1): find index of a
 character in a string... index (2): find index of a
 index (1): find index of a character in a string
 index (2): find index of a character in a string
 produce key−word−in−context index...kwic (1):

 − xlii −

 Permuted Index

 term (1): select individual terminal parameters
 object...lacl (1): List ACL information about a file system
 file (1): test information about a file
 finfo$ (6): return directory information about a file
 aracteristics...gfdata (2): get information about file
 character set...cset (1): list information about the ASCII
 lookup (2): retrieve information from a symbol table
 ucture...mkpacl (6): encode ACL information into a Primos
 mksacl (6): encode ACL information into a SWT structure
 time, date and other system information...date (2): return
 (2): return VTH common block information...vtinfo
 program... init (2): initialize a Subsystem
 recognize the Subsystem... init$f (2): force Fortran i/o to
 vt$ier (6): report error in VTH initialization file
 queue...mkq$xs (4): initialize a hardware defined
 init (2): initialize a Subsystem program
 dsinit (2): initialize dynamic storage space
 run...c$init (6): initialize for a statement count
 run...t$init (6): initialize for a subroutine trace
 lsinit (4): initialize linked string space
 iofl$ (6): initialize open file list
 icomn$ (6): initialize Subsystem common areas
 ioinit (6): initialize Subsystem I/O areas
 characteristics...vtinit (2): initialize terminal
 set_create (4): generate a new, initially empty set
 recognize the Subsystem... init$p (2): force Pascal i/o to
 recognize the Subsystem... init$plg (2): force PL/I G i/o to
 semi−formatted input routine... input (2): easy to use
 chkinp (2): check for terminal input availability
 vcgdump (1): display ’vcg’ input files
 tip (1): check if terminal input is pending
 vtenb (2): enable input on a particular screen line
 (2): easy to use semi−formatted input routine...input
 vt$db2 (6): dump terminal input tables
 col (1): convert input to multi−column output
 copy (1): copy standard input to standard output
 enquote strings from standard input...quote (1):
 last n lines from standard input...tail (1): print
 get and edit a single line from input...vt$get (6):
 stclos (2): insert closure entry in pattern
 lsins (4): insert in linked string
 vt$iln (6): send an insert line sequence
 terminal screen...vtilin (2): insert lines on the user’s
 installation name... installation (1): print Subsystem
 (1): print Subsystem installation name...installation
 (2): generalized character to integer conversion...gctoi
 generalized character to long integer conversion...gctol (2):
 invmod (4): find inverse of an integer modulo another integer
 only)...dint$p (2): get integer part of a longreal (PMA
 dint$m (2): get integer part of an longreal
 putdec (2): write decimal integer to a file
 (2): convert single precision integer to any radix string...gito
 (2): convert double precision integer to any radix string...glto
 itoc (2): convert integer to character string
 ltoc (2): convert long integer to character string
 (2): convert ascii string to integer...ctoi

 − xliii −

 Permuted Index

 convert ascii string to long integer...ctol (2):
 of an integer modulo another integer...invmod (4): find inverse
 greatest common divisor of two integers...gcd (4): determine
 iota (1): generate vector of integers
 object tape... intel (3): generate Intel format
 as8080 (3): Intel 8080 cross−assembler
 intel (3): generate Intel format object tape
 preprocessor...cdmlc (1): interface to Prime DBMS Cobol DML
 subschema compiler...csubc (1): interface to Prime DBMS Cobol
 DML preprocessor...fdmlc (1): interface to Prime DBMS Fortran
 subschema compiler...fsubc (1): interface to Prime DBMS Fortran
 compiler...ddlc (1): interface to Prime DBMS schema
 pmac (1): interface to Primos assembler
 subsystem...batch (1): interface to Primos batch
 cobc (1): interface to Primos Cobol compiler
 compiler...f77c (1): interface to Primos Fortran 77
 compiler...fc (1): interface to Primos Fortran
 compiler...pc (1): interface to Primos Pascal
 compiler...plgc (1): interface to Primos PL/I subset G
 plpc (1): interface to Primos PL/P compiler
 splc (1): interface to Primos SPL compiler
 loader...bind (3): interface with the Primos EPF
 ld (1): interface with the Primos loader
 mt (1): magnetic tape interface
 at$swt (6): Subsystem interlude to Primos ATCH$$
 vpsd (1): Subsystem interlude to SEG’s vpsd
 dump (1): dump various internal data bases
 st$lu (6): internal symbol table lookup
 dnum (1): generate or interpret legal disk numbers
 pause (1): suspend command interpretation
 sh (1): Subsystem Command Interpreter (Shell)
 (1): push a new Primos command interpreter...primos
 (2): run the Subsystem command interpreter...shell
 (1): trace activity in command interpreter...shtrace
 (2): call the Subsystem command interpreter...subsys
 (2): check for pending terminal interrupt...tquit$
 rdint (1): intersect two identical relations
 hird...set_intersect (4): place intersection of two sets in a
 conditional...else (1): introduce else−part of a
 conditional...then (1): introduce the then−part of a
 acos$m (2): calculate inverse cosine
 (2): calculate double precision inverse cosine...dacs$m
 ther integer...invmod (4): find inverse of an integer modulo
 asin$m (2): calculate inverse sine
 (2): calculate double precision inverse sine...dasn$m
 atan$m (2): calculate inverse tangent
 (2): calculate double precision inverse tangent...datn$m
 teger modulo another integer... invmod (4): find inverse of an
 terminal...e (1): invoke proper editor for current
 editor...edit (2): invoke the line−oriented text
 debugger (DBG)...dbg (1): invoke the Primos source level
 vt$idf (6): invoke user−defined key definition
 (6): initialize Subsystem I/O areas...ioinit
 init$f (2): force Fortran i/o to recognize the Subsystem
 init$p (2): force Pascal i/o to recognize the Subsystem
 init$plg (2): force PL/I G i/o to recognize the Subsystem

 − xliv −

 Permuted Index

 list... iofl$ (6): initialize open file
 I/O areas... ioinit (6): initialize Subsystem
 integers... iota (1): generate vector of
 disk file... isadsk (2): test if a file is a
 connected to a terminal... isatty (2): test if a file is
 connected to the bit bucket... isnull (2): see if a file is
 files...diff (1): isolate differences between two
 phantom... isph (1): see if process is a
 is a phantom... isph$ (2): determine if the caller
 prime (4): retrieve the ’i’th prime number
 character string... itoc (2): convert integer to
 year and return day−of−year... jdate (2): take month, day, and
 arbitrary string... join (1): replace newlines with an
 rdnat (1): perform the natural join of two relations
 lsjoin (4): join two linked strings
 rdjoin (1): join two relations
 vt$idf (6): invoke user−defined key definition
 gklarg (2): parse a single key−letter argument
 (2): obtain the value of a key−letter argument...gvlarg
 gky$xs (4): get current cpu keys
 sky$xs (4): set current cpu keys
 kwic (1): produce key−word−in−context index
 getkwd (2): look for keyword/value arguments
 kill (3): log out a user
 ek (1): select erase and kill characters
 ffind (1): look for a string (kmp style)
 key−word−in−context index... kwic (1): produce
 ’un−rotate’ output produced by kwic...unrot (1):
 about a file system object... lacl (1): List ACL information
 separate files... lam (1): laminate lines from
 lam (1): laminate lines from separate files
 macro (1): macro language from Software Tools
 (1): compile and load mixed language programs...compile
 post process ’fmt’ output for laser printer...lz (3):
 file... last (3): print last n lines of a
 getto (2): get to the last file in a pathname
 tail (1): print last n lines from standard input
 last (3): print last n lines of a file
 (6): close files opened by the last user program...cof$
 loader... ld (1): interface with the Primos
 (3): command file to rf, fc and ld a program...rcl
 command file to rp, fc, and ld a Ratfor program...rfl (1):
 into memory ... ldseg$ (6): load a SEG runfile
 template area... ldtmp$ (6): load the per−user
 dnum (1): generate or interpret legal disk numbers
 strings... length (1): compute length of
 string... length (2): find length of a
 length (2): find length of a string
 lslen (4): compute length of linked string
 length (1): compute length of strings
 (3): convert text to block letters...block
 (1): invoke the Primos source level debugger (DBG)...dbg
 a shell variable at the current level...svdel (2): delete
 current shell variable lexic level...svlevl (2): return the
 variable at the current lexic level...svmake (2): create a shell
 the current shell variable lexic level...svlevl (2): return

 − xlv −

 Permuted Index

 a shell variable at the current lexic level...svmake (2): create
 lf (1): list files
 specified user... lfo (3): list files opened for a
 cross−assembler object files... lib (3): concatenate
 lorder (1): order libraries for one−pass loading
 snplnk (5): snap shared library dynamic links
 convert binary relocatable to a library...mklib (1):
 read and set disk record quota limits...quota (1):
 line (1): print user’s process id
 delarg (2): delete a command line argument
 getarg (2): fetch command line arguments
 parscl (2): parse command line arguments
 getwrd (2): get a word from a line buffer
 dgetl$ (6): get a line from a disk file
 getlin (2): read one line from a file
 (6): get and edit a single line from input...vt$get
 tcook$ (6): read and cook a line from the terminal
 tgetl$ (6): read a line from the terminal
 vtgetl (2): get a line from the VTH screen
 vtputl (2): put line into terminal screen buffer
 dputl$ (6): put a line on a disk file
 putlin (2): put a line on a file
 tputl$ (6): put a line on the terminal
 os (1): convert backspaces to line printer overstrikes
 sp (1): line printer spooler
 lps (1): line printer status monitor
 pr (1): print files on the line printer
 vt$dln (6): send a delete line sequence
 vt$iln (6): send an insert line sequence
 strlsr (2): perform a linear search of a string table
 match pattern anywhere on a line...match (2):
 edit (2): invoke the line−oriented text editor
 common (1): print lines common to two sorted files
 lam (1): laminate lines from separate files
 tail (1): print last n lines from standard input
 last (3): print last n lines of a file
 screen...vtdlin (2): delete lines on the user’s terminal
 screen...vtilin (2): insert lines on the user’s terminal
 counter (characters, words, lines, pages) ...tc (1): text
 eliminate successive identical lines...uniq (1):
 input on a particular screen line...vtenb (2): enable
 display a message in the status line...vtmsg (2):
 declaration... link (1): build Ratfor linkage
 lk (3): link cross−assembler object files
 link (1): build Ratfor linkage declaration
 strings...lscut (4): divide a linked string into two linked
 lsdump (4): dump linked string space for debugging
 lsfree (4): free linked string space
 lsinit (4): initialize linked string space
 string...lscmpk (4): compare linked string with contiguous
 (4): allocate space for a linked string...lsallo
 lscopy (4): copy linked string
 (4): delete characters from a linked string...lsdel
 (4): drop characters from a linked string...lsdrop
 extract contiguous string from linked string...lsextr (4):
 lsgetc (4): get character from linked string

 − xlvi −

 Permuted Index

 (4): read an arbitrarily long linked string...lsgetf
 lsins (4): insert in linked string
 lslen (4): compute length of linked string
 convert contiguous string to linked string...lsmake (4):
 lspos (4): find position in linked string
 (4): put character into a linked string...lsputc
 (4): write an arbitrarily long linked string...lsputf
 (4): take a substring of a linked string...lssubs
 (4): take characters from a linked string...lstake
 lscomp (4): compare two linked strings
 divide a linked string into two linked strings...lscut (4):
 lsjoin (4): join two linked strings
 snap shared library dynamic links...snplnk (5):
 pg (1): list a file in paginated form
 group (1): test or list a users group identities
 system object...lacl (1): List ACL information about a file
 mkcl (5): generate a command list file for guess
 files (1): list file names matching a pattern
 user...lfo (3): list files opened for a specified
 lf (1): list files
 character set...cset (1): list information about the ASCII
 mkclist (3): create a list of commands for backstop
 svscan (2): scan a user’s list of shell variables
 rdatt (1): list the attributes of a relation
 ttyp$l (6): list the available terminal types
 (5): convert pre−Version 9 user list to Version 9 format...cvusr
 us (1): list users of the Prime
 name argument from argument list...gfnarg (2): get next file
 iofl$ (6): initialize open file list
 putlit (2): write literal string on a file
 object files... lk (3): link cross−assembler
 the base e... ln$m (2): calculate logarithm to
 ucc (1): compile and load a C program (Unix−style)
 ccl (1): compile and load a C program
 cdmlcl (1): compile and load a Cobol DML program
 cobcl (1): compile and load a Cobol program
 fcl (1): compile and load a Fortran 66 program
 f77cl (1): compile and load a Fortran 77 program
 fdmlcl (1): compile and load a Fortran DML program
 pcl (1): compile and load a Pascal program
 plgcl (1): compile and load a PL/I subset G program
 plpcl (1): compile and load a PL/P program
 pmacl (1): assemble and load a PMA program
 xccl (1): compile and load a Prime C program
 ldseg$ (6): load a SEG runfile into memory
 splcl (1): compile and load a SPL program
 compile (1): compile and load mixed language programs
 p4cl (3): compile and load Pascal 4 program
 the GT40...scroll (3): load scrolling terminal program on
 IMI prom programmer down−line load stream...imi (3): generate
 ldtmp$ (6): load the per−user template area
 interface with the Primos EPF loader...bind (3):
 (1): interface with the Primos loader...ld
 order libraries for one−pass loading...lorder (1):
 source code ... locate (1): locate subsystem
 character class... locate (2): look for character in

 − xlvii −

 Permuted Index

 locate (1): locate subsystem source code
 pek$xs (4): look at a location in memory
 pok$xs (4): change a location in memory
 whereis (1): find the location of a terminal
 for pattern match at specific location...amatch (2): look
 personal log... log (1): make an entry in a
 kill (3): log out a user
 bye (1): log out from the Subsystem
 (2): calculate double precision logarithm to the base 10...dlog$m
 log$m (2): calculate logarithm to the base 10
 (2): calculate double precision logarithm to the base e...dln$m
 ln$m (2): calculate logarithm to the base e
 to (1): send messages to a logged−in user
 login_name (1): print user’s login name
 find the user associated with a login name...whois (1):
 pword (1): change login password
 name... login_name (1): print user’s login
 make an entry in a personal log...log (1):
 the base 10... log$m (2): calculate logarithm to
 (2): generalized character to long integer conversion...gctol
 ltoc (2): convert long integer to character string
 (2): convert ascii string to long integer...ctol
 lsgetf (4): read an arbitrarily long linked string
 (4): write an arbitrarily long linked string...lsputf
 (4): remove a set that is no longer needed...set_remove
 (2): create a longreal from a longint...dble$m
 dble$m (2): create a longreal from a longint
 (2): get integer part of a longreal (PMA only)...dint$p
 a longreal raised to a longreal power...powr$m (2): calcu
 power...powr$m (2): calculate a longreal raised to a longreal
 (2): get integer part of an longreal...dint$m
 pek$xs (4): look at a location in memory
 change (1): look for a pattern and change it
 find (1): look for a pattern
 ffind (1): look for a string (kmp style)
 getfd$ (6): look for an empty file descriptor
 class...locate (2): look for character in character
 getkwd (2): look for keyword/value arguments
 location...amatch (2): look for pattern match at specific
 block...lookac (6): look up a name in the ACL common
 directory...lutemp (6): look up a template in the template
 ACL common block... lookac (6): look up a name in the
 from a symbol table... lookup (2): retrieve information
 (6): internal symbol table lookup...st$lu
 files...repeat (1): loop control structure for Shell
 until (1): terminate a loop statement
 the spool queue... lopen$ (6): open a disk file in
 one−pass loading... lorder (1): order libraries for
 mapdn (2): fold character to lower case
 monitor... lps (1): line printer status
 linked string... lsallo (4): allocate space for a
 with contiguous string... lscmpk (4): compare linked string
 strings... lscomp (4): compare two linked
 lscopy (4): copy linked string
 into two linked strings... lscut (4): divide a linked string
 a linked string... lsdel (4): delete characters from

 − xlviii −

 Permuted Index

 linked string... lsdrop (4): drop characters from a
 space for debugging... lsdump (4): dump linked string
 string from linked string... lsextr (4): extract contiguous
 space... lsfree (4): free linked string
 linked string... lsgetc (4): get character from
 long linked string... lsgetf (4): read an arbitrarily
 string space... lsinit (4): initialize linked
 lsins (4): insert in linked string
 strings... lsjoin (4): join two linked
 linked string... lslen (4): compute length of
 string to linked string... lsmake (4): convert contiguous
 string... lspos (4): find position in linked
 linked string... lsputc (4): put character into a
 long linked string... lsputf (4): write an arbitrarily
 linked string... lssubs (4): take a substring of a
 linked string... lstake (4): take characters from a
 character string... ltoc (2): convert long integer to
 the template directory... lutemp (6): look up a template in
 for laser printer... lz (3): post process ’fmt’ output
 Generate Object Tape for A & P M6800 Monitor...ap (3):
 a SWT command on another machine...execute (3): execute
 Primos message to a user on all machines...broadcast (3): send a
 Software Tools... macro (1): macro language from
 vt$def (6): accept a macro definition from the user
 vt$rdf (6): remove macro definition of a DFA entry
 vt$db3 (6): dump macro definition table
 vt$ndf (6): remove VTH macro definition
 macro (1): macro language from Software Tools
 mt (1): magnetic tape interface
 mail (1): send or receive mail
 mail (1): send or receive mail
 ar (1): archive file maintainer
 set_copy (4): make a copy of one set in another
 mkdir (1): make a directory
 Primos funit...mkfd$ (6): make a file descriptor from a
 rdmake (1): make a relation from data file
 mktabl (2): make a symbol table
 log (1): make an entry in a personal log
 delimiter...makpat (2): make pattern, terminate at
 maksub (2): make substitution string
 terminate at delimiter... makpat (2): make pattern,
 string... maksub (2): make substitution
 moot (3): teleconference manager
 template (1): manipulate and display templates
 field (1): manipulate field−oriented data
 mechanism...hist (1): manipulate the subsystem history
 sema (1): manipulate user semaphores
 mapstr (2): map case of a string
 descriptor...mapsu (2): map standard unit to file
 acter if appropriate...esc (2): map substring into escaped
 case... mapdn (2): fold character to lower
 funit... mapfd (2): convert fd to Primos
 mapstr (2): map case of a string
 file descriptor... mapsu (2): map standard unit to
 case... mapup (2): fold character to upper
 esac (1): mark the end of a case statment

 − xlix −

 Permuted Index

 position of a file... markf (2): get the current
 on a line... match (2): match pattern anywhere
 omatch (2): try to match a single pattern element
 amatch (2): look for pattern match at specific location
 match (2): match pattern anywhere on a line
 files (1): list file names matching a pattern
 error condition handler for math routines...err$m (2): common
 attribute...rdmax (1): find the maximum value of a specified
 to guess what command the user means...guess (5): try
 stats (1): print statistical measures
 the subsystem history mechanism...hist (1): manipulate
 if two sets contain the same members...set_equal (4): return TR
 reminder system... memo (3): automated memo and
 memo (3): automated memo and reminder system
 move$ (2): move blocks of memory around quickly
 (6): load a SEG runfile into memory ...ldseg$
 (4): look at a location in memory...pek$xs
 (4): change a location in memory...pok$xs
 routine...encode (2): formatted memory−to−memory conversion
 file...bmerge (5): merge object code files into one
 vtmsg (2): display a message in the status line
 error (1): output error message, return error code
 error (2): print fatal error message, then die
 broadcast (3): send a Primos message to a user on all machines
 cant (2): print cant open file message
 remark (2): print diagnostic message
 to (1): send messages to a logged−in user
 vt$err (6): display a VTH error message
 translang (3): D−Machine microprogram translator
 time−of−day to seconds past midnight...parstm (2): convert
 attribute...rdmin (1): find the minimum value of a specified
 compile (1): compile and load mixed language programs
 file for guess... mkcl (5): generate a command list
 commands for backstop... mkclist (3): create a list of
 mkdir (1): make a directory
 mkdir$ (6): create a directory
 from a Primos funit... mkfd$ (6): make a file descriptor
 relocatable to a library... mklib (1): convert binary
 a pathname... mkpa$ (6): convert a treename into
 into a Primos structure... mkpacl (6): encode ACL information
 defined queue... mkq$xs (4): initialize a hardware
 into a SWT structure... mksacl (6): encode ACL information
 mktabl (2): make a symbol table
 file... mktemp (2): create a temporary
 a treename... mktr$ (6): convert a pathname into
 treename... mktree (1): convert pathname to
 parsdt (2): parse a date in mm/dd/yy format
 mntoc (2): convert ASCII mnemonic to character
 ASCII control character to mnemonic...ctomn (2): translate
 vt$db1 (6): print mnemonics for special characters
 to character... mntoc (2): convert ASCII mnemonic
 touch (1): set file date/time modification fields
 (4): calculate an exponential modulo a given modulus...pwrmod
 (4): find inverse of an integer modulo another integer...invmod
 an exponential modulo a given modulus...pwrmod (4): calculate
 mon (3): system status monitor

 − l −

 Permuted Index

 Object Tape for A & P M6800 Monitor...ap (3): Generate
 lps (1): line printer status monitor
 mon (3): system status monitor
 day−of−year...jdate (2): take month, day, and year and return
 day−of−week corresponding to month, day, year...wkday (2): get
 moot (3): teleconference manager
 object tape... mot (3): generate Motorola format
 as6800 (3): Motorola 6800 cross−assembler
 mot (3): generate Motorola format object tape
 around quickly... move$ (2): move blocks of memory
 another...mv (3): move a file from one place to
 quickly...move$ (2): move blocks of memory around
 vtmove (2): move the user’s cursor to row, col
 mt (1): magnetic tape interface
 col (1): convert input to multi−column output
 entab (1): convert multiple blanks to tabs
 detab (1): convert tabs to multiple spaces
 to another... mv (3): move a file from one place
 (2): parse a template into name and definition...gtemp
 gfnarg (2): get next file name argument from argument list
 (6): unpack a Primos file name; escape slashes...upkfn$
 follow (2): path name follower
 lookac (6): look up a name in the ACL common block
 directory...getvdn (2): return name of file in user’s variables
 execn (2): execute program named by a quoted string
 print Subsystem installation name...installation (1):
 (1): print user’s login name...login_name
 (3): print working directory name...pwd
 bnames (5): print entry point names in object files
 files (1): list file names matching a pattern
 cn (1): change file names
 user associated with a login name...whois (1): find the
 file arguments... nargs (1): print number of command
 rdnat (1): perform the natural join of two relations
 Implementation...des (3): NBS Data Encryption Standard
 remove a set that is no longer needed...set_remove (4):
 (1): provide help for users in need...help
 ring (5): network communication server
 nodes (3): print network nodes
 ns (3): print out network status
 create (2): create a new file and open it
 (5): convert shell variables to new format...csv
 set_create (4): generate a new, initially empty set
 primos (1): push a new Primos command interpreter
 join (1): replace newlines with an arbitrary string
 Subsystem users... news (1): news service for
 publish (1): publish a news article
 retract (1): retract a news article
 news (1): news service for Subsystem users
 (1): subscribe to the Subsystem news service...subscribe
 argument list...gfnarg (2): get next file name argument from
 nstat (3): remote node status command
 nodes (3): print network nodes
 nodes (3): print network nodes
 passwd (3): change directory non−owner password
 hp (1): Reverse Polish Notation calculator

 − li −

 Permuted Index

 ns (3): print out network status
 command... nstat (3): remote node status
 (6): delay the terminal with nulls...vt$del
 the seed for the rand$m random number generator...seed$m (2): set
 nargs (1): print number of command file arguments
 tsq$xs (4): return the number of entries in a queue
 rdcount (1): count the number of rows in a relation
 (5): process the highest bug number...bugn
 (3): find someone’s telephone number...phone
 (4): retrieve the ’i’th prime number...prime
 rand$m (2): generate a random number
 or interpret legal disk numbers...dnum (1): generate
 radix (1): change radix of numbers
 rnd (1): generate random numbers
 bmerge (5): merge object code files into one file
 size of cross−assembler object code...size (3): calculate
 print caller−callee pairs in an object file...brefs (5):
 (5): print entry point names in object files...bnames
 concatenate cross−assembler object files...lib (3):
 lk (3): link cross−assembler object files
 Monitor...ap (3): Generate Object Tape for A & P M6800
 (3): generate Intel format object tape...intel
 (3): generate Motorola format object tape...mot
 otd (3): object text dumper
 information about a file system object...lacl (1): List ACL
 (1): set ACL attributes on an object...sacl
 dsget (2): obtain a block of dynamic storage
 profiling...t$time (6): obtain clock readings for
 ttyp$f (6): obtain the user’s terminal type
 argument...gvlarg (2): obtain the value of a key−letter
 unoct (3): convert UNIX ’od’ output to binary
 pattern element... omatch (2): try to match a single
 lorder (1): order libraries for one−pass loading
 integer part of a longreal (PMA only)...dint$p (2): get
 vt$out (6): output a character onto the screen
 condition...bponu$ (6): on−unit for BAD_PASSWORD$
 reonu$ (6): on−unit for the REENTER$ condition
 open (2): open a file
 queue...lopen$ (6): open a disk file in the spool
 dopen$ (6): open a disk file
 open (2): open a file
 iofl$ (6): initialize open file list
 cant (2): print cant open file message
 cpfil$ (6): copy one open file to another
 close (2): close out an open file
 (6): get the pathname for an open file...gfnam$
 (2): create a new file and open it...create
 szfil$ (6): size an open Primos file descriptor
 szseg$ (6): size an open Primos segment directory
 cpseg$ (6): copy one open segment directory to another
 cof$ (6): close files opened by the last user program
 lfo (3): list files opened for a specified user
 protected single−word store operation...s1c$xs (4):
 protected double−word store operation...s2c$xs (4):
 dprint (3): optimize printing on a Diablo
 sprint (3): optimize printing on a Spinwriter

 − lii −

 Permuted Index

 handler...vtopt (2): set options for the virtual terminal
 loading...lorder (1): order libraries for one−pass
 rf (3): original Ratfor preprocessor
 printer overstrikes... os (1): convert backspaces to line
 otd (3): object text dumper
 date (2): return time, date and other system information
 vt$out (6): output a character onto the screen
 code...error (1): output error message, return error
 lz (3): post process ’fmt’ output for laser printer
 unrot (1): ’un−rotate’ output produced by kwic
 como (1): divert command output stream
 unoct (3): convert UNIX ’od’ output to binary
 print a calendar on standard output...cal (3):
 convert input to multi−column output...col (1):
 copy standard input to standard output...copy (1):
 fos (1): format, overstrike, and spool a document
 backspaces to line printer overstrikes...os (1): convert
 chown (3): change directory ownership
 Generate Object Tape for A & P M6800 Monitor...ap (3):
 call$$ (6): call a P300, SEG, or EPF runfile
 p4c (3): Pascal 4 Compiler
 4 program... p4cl (3): compile and load Pascal
 string...ptoc (2): convert packed string to EOS−terminated
 string...ptov (2): convert packed string to PL/I varying
 EOS−terminated string to packed string...ctop (2): convert
 convert PL/I varying string to packed string...vtop (2):
 blanks...vtpad (2): pad the rest of a field with
 paginated form... page (2): display file in
 (6): catch a break for the page subroutine...pg$brk
 (characters, words, lines, pages) ...tc (1): text counter
 page (2): display file in paginated form
 pg (1): list a file in paginated form
 brefs (5): print caller−callee pairs in an object file
 (1): select individual terminal parameters...term
 fixp (3): file translation and parity set program
 the common block... parsa$ (6): parse ACL changes in
 arguments... parscl (2): parse command line
 mm/dd/yy format... parsdt (2): parse a date in
 parsdt (2): parse a date in mm/dd/yy format
 gklarg (2): parse a single key−letter argument
 definition...gtemp (2): parse a template into name and
 block...parsa$ (6): parse ACL changes in the common
 parscl (2): parse command line arguments
 chkarg (2): parse single−letter arguments
 stacc (1): recursive descent parser generator
 seconds past midnight... parstm (2): convert time−of−day to
 dint$p (2): get integer part of a longreal (PMA only)
 basename (1): select part of a pathname
 (6): clear an uninitialized part of a segment...zmem$
 dint$m (2): get integer part of an longreal
 vtenb (2): enable input on a particular screen line
 p4c (3): Pascal 4 Compiler
 p4cl (3): compile and load Pascal 4 program
 pc (1): interface to Primos Pascal compiler
 files...file$p (2): connect Pascal file variables to Subsystem
 Subsystem...init$p (2): force Pascal i/o to recognize the

 − liii −

 Permuted Index

 (2): fetch arguments for a Pascal program...geta$p
 pcl (1): compile and load a Pascal program
 sys$$ (2): pass a command to the Primos shell
 non−owner password... passwd (3): change directory
 (3): change directory non−owner password...passwd
 pword (1): change login password
 convert time−of−day to seconds past midnight...parstm (2):
 follow (2): path name follower
 gfnam$ (6): get the pathname for an open file
 mktr$ (6): convert a pathname into a treename
 mktree (1): convert pathname to treename
 basename (1): select part of a pathname
 exec (2): execute pathname
 (6): get current directory pathname...gcdir$
 (2): get to the last file in a pathname...getto
 (6): convert a treename into a pathname...mkpa$
 entry... patsiz (2): return size of pattern
 change (1): look for a pattern and change it
 match (2): match pattern anywhere on a line
 (2): try to match a single pattern element...omatch
 patsiz (2): return size of pattern entry
 amatch (2): look for pattern match at specific location
 makpat (2): make pattern, terminate at delimiter
 (1): list file names matching a pattern...files
 find (1): look for a pattern
 expand character class into pattern...getccl (2):
 (2): insert closure entry in pattern...stclos
 interpretation... pause (1): suspend command
 compiler... pc (1): interface to Primos Pascal
 program... pcl (1): compile and load a Pascal
 as11 (3): PDP−11 cross assembler
 memory... pek$xs (4): look at a location in
 tquit$ (2): check for pending terminal interrupt
 (1): check if terminal input is pending...tip
 string table...strbsr (2): perform a binary search of a
 string table...strlsr (2): perform a linear search of a
 on a file...filtst (2): perform existence and size tests
 character...decode (2): perform formatted conversion from
 tables...vt$dsw (6): perform garbage collection on DFA
 relations...rddiv (1): perform the division of two
 relations...rdnat (1): perform the natural join of two
 log (1): make an entry in a personal log
 ldtmp$ (6): load the per−user template area
 form... pg (1): list a file in paginated
 page subroutine... pg$brk (6): catch a break for the
 in the background... ph (1): execute subsystem commands
 sph (5): system phantom processor
 isph (1): see if process is a phantom
 determine if the caller is a phantom...isph$ (2):
 cck1 (5): First phase of C program checker
 cck2 (5): Second phase of C program checker
 phist (1): print Subsystem history
 telephone number... phone (3): find someone’s
 tee (1): tee fitting for pipelines
 third...set_subtract (4): place difference of two sets in a
 screen buffers...vtprt (2): place formatted strings into

 − liv −

 Permuted Index

 set_insert (4): place given element in a set
 a third...set_intersect (4): place intersection of two sets in
 enter (2): place symbol in symbol table
 mv (3): move a file from one place to another
 set_union (4): place union of two sets in a third
 sol (3): play a friendly game of solitaire
 subset G compiler... plgc (1): interface to Primos PL/I
 subset G program... plgcl (1): compile and load a PL/I
 Subsystem...init$plg (2): force PL/I G i/o to recognize the
 (2): fetch arguments for a PL/I G program...geta$plg
 plgc (1): interface to Primos PL/I subset G compiler
 plgcl (1): compile and load a PL/I subset G program
 ated string...vtoc (2): convert PL/I varying string to
 string...vtop (2): convert PL/I varying string to packed
 (2): convert packed string to PL/I varying string...ptov
 plpc (1): interface to Primos PL/P compiler
 plpcl (1): compile and load a PL/P program
 compiler... plpc (1): interface to Primos PL/P
 program... plpcl (1): compile and load a PL/P
 get integer part of a longreal (PMA only)...dint$p (2):
 pmacl (1): assemble and load a PMA program
 assembler... pmac (1): interface to Primos
 program... pmacl (1): assemble and load a PMA
 bnames (5): print entry point names in object files
 (4): set/read stack extension pointer...stk$xs
 memory... pok$xs (4): change a location in
 hp (1): Reverse Polish Notation calculator
 word...seekf (2): position a file to a designated
 lspos (4): find position in linked string
 dmark$ (6): return the position of a disk file
 markf (2): get the current position of a file
 tmark$ (6): return the current position of a terminal file
 vt$rel (6): position relatively to row, col
 vt$pos (6): position the cursor to row, col
 wind (2): position to end of file
 spell (1): check for possible spelling errors
 laser printer...lz (3): post process ’fmt’ output for
 a longreal raised to a longreal power...powr$m (2): calculate
 raised to a longreal power... powr$m (2): calculate a longreal
 printer... pr (1): print files on the line
 dcos$m (2): calculate double precision cosine
 dcot$m (2): calculate double precision cotangent
 ...dexp$m (2): calculate double precision exponential to the base
 dcsh$m (2): calculate double precision hyperbolic cosine
 dsnh$m (2): calculate double precision hyperbolic sine
 dtnh$m (2): calculate double precision hyperbolic tangent
 ing...gitoc (2): convert single precision integer to any radix
 ing...gltoc (2): convert double precision integer to any radix
 dacs$m (2): calculate double precision inverse cosine
 dasn$m (2): calculate double precision inverse sine
 datn$m (2): calculate double precision inverse tangent
 dlog$m (2): calculate double precision logarithm to the base 10
 dln$m (2): calculate double precision logarithm to the base e
 (2): convert string to double precision real...ctod
 dsin$m (2): calculate double precision sine
 dsqt$m (2): calculate double precision square root

 − lv −

 Permuted Index

 dtan$m (2): calculate double precision tangent
 dtoc (2): convert double precision value to ASCII string
 to Prime DBMS Cobol DML preprocessor...cdmlc (1): interfac
 to Prime DBMS Fortran DML preprocessor...fdmlc (1): interfac
 rf (3): original Ratfor preprocessor
 rp (1): extended Ratfor preprocessor
 9 format...cvusr (5): convert pre−Version 9 user list to Version
 prime number... prime (4): retrieve the ’i’th
 xccl (1): compile and load a Prime C program
 (1): compile a C program with Prime compiler...xcc
 cdmlc (1): interface to Prime DBMS Cobol DML preprocessor
 piler...csubc (1): interface to Prime DBMS Cobol subschema
 essor...fdmlc (1): interface to Prime DBMS Fortran DML
 piler...fsubc (1): interface to Prime DBMS Fortran subschema
 ddlc (1): interface to Prime DBMS schema compiler
 prime (4): retrieve the ’i’th prime number
 vcg (1): Prime V−mode code generator
 us (1): list users of the Prime
 command interpreter... primos (1): push a new Primos
 pmac (1): interface to Primos assembler
 (6): Subsystem interlude to Primos ATCH$$...at$swt
 batch (1): interface to Primos batch subsystem
 cobc (1): interface to Primos Cobol compiler
 primos (1): push a new Primos command interpreter
 x (1): execute Primos commands
 bind (3): interface with the Primos EPF loader
 szfil$ (6): size an open Primos file descriptor
 upkfn$ (6): unpack a Primos file name; escape slashes
 f77c (1): interface to Primos Fortran 77 compiler
 fc (1): interface to Primos Fortran compiler
 mapfd (2): convert fd to Primos funit
 make a file descriptor from a Primos funit...mkfd$ (6):
 ld (1): interface with the Primos loader
 achines...broadcast (3): send a Primos message to a user on all
 pc (1): interface to Primos Pascal compiler
 plgc (1): interface to Primos PL/I subset G compiler
 plpc (1): interface to Primos PL/P compiler
 szseg$ (6): size an open Primos segment directory
 (2): pass a command to the Primos shell...sys$$
 dbg (1): invoke the Primos source level debugger (DBG)
 splc (1): interface to Primos SPL compiler
 encode ACL information into a Primos structure...mkpacl (6):
 print (1): print files
 semi−formatted print routine... print (2): easy to use
 output...cal (3): print a calendar on standard
 characters...show (3): print a file showing control
 descriptor...rdprint (1): print a relation or relation
 ctime (1): print accumulated cpu time
 object file...brefs (5): print caller−callee pairs in an
 cant (2): print cant open file message
 arg (1): print command file arguments
 args (1): print command file arguments
 argsto (1): print command file arguments
 symbols (3): print cross−assembly symbol table
 date (1): print date
 remark (2): print diagnostic message

 − lvi −

 Permuted Index

 files...bnames (5): print entry point names in object
 profile (1): print execution profile
 die...error (2): print fatal error message, then
 pr (1): print files on the line printer
 cat (1): concatenate and print files
 print (1): print files
 input...tail (1): print last n lines from standard
 last (3): print last n lines of a file
 files...common (1): print lines common to two sorted
 characters...vt$db1 (6): print mnemonics for special
 nodes (3): print network nodes
 arguments...nargs (1): print number of command file
 ns (3): print out network status
 (2): easy to use semi−formatted print routine...print
 variables...vars (1): print, save, or restore shell
 subroutine...source (1): print source for a command or
 stats (1): print statistical measures
 phist (1): print Subsystem history
 installation (1): print Subsystem installation name
 usage (1): print summary of command syntax
 time (1): print time−of−day
 login_name (1): print user’s login name
 line (1): print user’s process id
 term_type (1): print user’s terminal type
 pwd (3): print working directory name
 chkstr (2): check a string for printable characters
 (1): convert backspaces to line printer overstrikes...os
 sp (1): line printer spooler
 lps (1): line printer status monitor
 copy user’s terminal session to printer...copyout (1):
 process ’fmt’ output for laser printer...lz (3): post
 pr (1): print files on the line printer
 dprint (3): optimize printing on a Diablo
 sprint (3): optimize printing on a Spinwriter
 printer...lz (3): post process ’fmt’ output for laser
 line (1): print user’s process id
 isph (1): see if process is a phantom
 bugn (5): process the highest bug number
 cron (3): time driven command processor
 sph (5): system phantom processor
 currently executing ’ring’ process...terminate (3): terminate
 file...fdmp (1): produce formatted dump of a disk
 kwic (1): produce key−word−in−context index
 storage...dsdump (2): produce semi−readable dump of
 unrot (1): ’un−rotate’ output produced by kwic
 profile... profile (1): print execution
 profile (1): print execution profile
 st_profile (1): statement−level profile
 program exit...t$clup (6): profiling routine called on
 subprogram entry...t$entr (6): profiling routine called on
 subprogram exit...t$exit (6): profiling routine called on
 (6): obtain clock readings for profiling...t$time
 cck1 (5): First phase of C program checker
 cck2 (5): Second phase of C program checker
 profiling routine called on program exit...t$clup (6):
 execn (2): execute program named by a quoted string

 − lvii −

 Permuted Index

 (3): load scrolling terminal program on the GT40...scroll
 ucc (1): compile and load a C program (Unix−style)
 xcc (1): compile a C program with Prime compiler
 bs (5): shell backstop program
 bs1 (5): shell backstop program
 cc (1): compile a C program
 ccl (1): compile and load a C program
 compile and load a Cobol DML program...cdmlcl (1):
 (1): compile and load a Cobol program...cobcl
 files opened by the last user program...cof$ (6): close
 compile and load a Fortran 77 program...f77cl (1):
 compile and load a Fortran 66 program...fcl (1):
 compile and load a Fortran DML program...fdmlcl (1):
 file translation and parity set program...fixp (3):
 fetch arguments for a Fortran program...geta$f (2):
 fetch arguments for a Pascal program...geta$p (2):
 fetch arguments for a PL/I G program...geta$plg (2):
 (2): initialize a Subsystem program...init
 imi (3): generate IMI prom programmer down−line load stream
 (3): compile and load Pascal 4 program...p4cl
 (1): compile and load a Pascal program...pcl
 and load a PL/I subset G program...plgcl (1): compile
 (1): compile and load a PL/P program...plpcl
 (1): assemble and load a PMA program...pmacl
 command file to rf, fc and ld a program...rcl (3):
 file to rp and fc a Ratfor program...rfc (1): command
 file to rp, fc, and ld a Ratfor program...rfl (1): command
 focld (3): send FOCAL−GT/RT programs to the GT40
 compile and load mixed language programs...compile (1):
 else−if construct for Shell programs...elif (1):
 (1): compile and load a SPL program...splcl
 compilation facility for Ratfor programs...sep (1): separate
 (6): trace routine for Ratfor programs...t$trac
 (1): compile and load a Prime C program...xccl
 rdproj (1): project a relation
 stream...imi (3): generate IMI prom programmer down−line load
 e (1): invoke proper editor for current terminal
 operation...s2c$xs (4): protected double−word store
 operation...s1c$xs (4): protected single−word store
 sprot$ (6): set protection attributes for a file
 gtacl$ (6): get acl protection into ACL common block
 help (1): provide help for users in need
 tapes... ptar (3): decode Unix tar format
 EOS−terminated string... ptoc (2): convert packed string to
 PL/I varying string... ptov (2): convert packed string to
 rsa (3): toy RSA public−key cryptosystem
 article... publish (1): publish a news
 publish (1): publish a news article
 interpreter...primos (1): push a new Primos command
 array...put$xs (4): put a character (byte) into an
 putch (2): put a character on a file
 dputl$ (6): put a line on a disk file
 putlin (2): put a line on a file
 tputl$ (6): put a line on the terminal
 addset (2): put character in a set if it fits
 lsputc (4): put character into a linked string

 − lviii −

 Permuted Index

 buffer...vtputl (2): put line into terminal screen
 archive’...shar (3): put text files into a ’shell
 file... putch (2): put a character on a
 to a file... putdec (2): write decimal integer
 putlin (2): put a line on a file
 on a file... putlit (2): write literal string
 into an array... put$xs (4): put a character (byte)
 name... pwd (3): print working directory
 pword (1): change login password
 ntial modulo a given modulus... pwrmod (4): calculate an
 the user...ttyp$q (6): query for the terminal type from
 an element to the bottom of a queue...abq$xs (4): add
 add an element to the top of a queue...atq$xs (4):
 open a disk file in the spool queue...lopen$ (6):
 initialize a hardware defined queue...mkq$xs (4):
 an element from the bottom of a queue...rbq$xs (4): remove
 an element from the top of a queue...rtq$xs (4): remove
 the number of entries in a queue...tsq$xs (4): return
 move blocks of memory around quickly...move$ (2):
 record quota limits... quota (1): read and set disk
 (1): read and set disk record quota limits...quota
 standard input... quote (1): enquote strings from
 (2): execute program named by a quoted string...execn
 radix (1): change radix of numbers
 radix (1): change radix of numbers
 single precision integer to any radix string...gitoc (2): convert
 double precision integer to any radix string...gltoc (2): convert
 raid (3): examine bug reports
 (2): calculate a longreal raised to a longreal power...powr$
 number... rand$m (2): generate a random
 (2): set the seed for the rand$m random number generator...s
 set the seed for the rand$m random number generator...seed$m (
 rand$m (2): generate a random number
 rnd (1): generate random numbers
 xref (1): Ratfor cross reference generator
 link (1): build Ratfor linkage declaration
 rf (3): original Ratfor preprocessor
 rp (1): extended Ratfor preprocessor
 command file to rp and fc a Ratfor program...rfc (1):
 file to rp, fc, and ld a Ratfor program...rfl (1): command
 compilation facility for Ratfor programs...sep (1): separat
 t$trac (6): trace routine for Ratfor programs
 dwrit$ (6): write raw characters to disk
 readf (2): read raw words from a file
 dread$ (6): read raw words from disk
 tread$ (6): read raw words from the terminal
 writef (2): write raw words to file
 twrit$ (6): write raw words to terminal
 the bottom of a queue... rbq$xs (4): remove an element from
 and ld a program... rcl (3): command file to rf, fc
 a relation... rdatt (1): list the attributes of
 value of an attribute... rdavg (1): compute the average
 identical relations... rdcat (1): concatenate two
 rows in a relation... rdcount (1): count the number of
 two relations... rddiff (1): take the difference of
 two relations... rddiv (1): perform the division of

 − lix −

 Permuted Index

 from a relation... rdextr (1): extract relation data
 relations... rdint (1): intersect two identical
 rdjoin (1): join two relations
 data file... rdmake (1): make a relation from
 of a specified attribute... rdmax (1): find the maximum value
 of a specified attribute... rdmin (1): find the minimum value
 join of two relations... rdnat (1): perform the natural
 relation descriptor... rdprint (1): print a relation or
 rdproj (1): project a relation
 relation... rdsel (1): select tuples of a
 rdsort (1): sort a relation
 attribute... rdsum (1): sum the values of an
 tuples from a relation... rduniq (1): remove duplicate
 waiting, and if so, fetch it... rdy$xs (4): see if character
 tgetl$ (6): read a line from the terminal
 string...lsgetf (4): read an arbitrarily long linked
 terminal...tcook$ (6): read and cook a line from the
 limits...quota (1): read and set disk record quota
 terminal...vtread (2): read characters from a user’s
 chunk$ (6): read one chunk of a SEG runfile
 getlin (2): read one line from a file
 readf (2): read raw words from a file
 dread$ (6): read raw words from disk
 tread$ (6): read raw words from the terminal
 vtterm (2): read terminal characteristics file
 file... readf (2): read raw words from a
 t$time (6): obtain clock readings for profiling
 ctor (2): character to real conversion
 rtoc (2): convert real value to ASCII string
 string to double precision real...ctod (2): convert
 mail (1): send or receive mail
 (2): force Fortran i/o to recognize the Subsystem...init$f
 init$p (2): force Pascal i/o to recognize the Subsystem
 (2): force PL/I G i/o to recognize the Subsystem...init$plg
 quota (1): read and set disk record quota limits
 sort (1): sort ASCII−encoded records
 vtclr (2): clear a rectangle on the screen
 stacc (1): recursive descent parser generator
 reonu$ (6): on−unit for the REENTER$ condition
 xref (1): Ratfor cross reference generator
 rdextr (1): extract relation data from a relation
 (1): print a relation or relation descriptor...rdprint
 rdmake (1): make a relation from data file
 rdprint (1): print a relation or relation descriptor
 (1): list the attributes of a relation...rdatt
 count the number of rows in a relation...rdcount (1):
 extract relation data from a relation...rdextr (1):
 rdproj (1): project a relation
 rdsel (1): select tuples of a relation
 rdsort (1): sort a relation
 remove duplicate tuples from a relation...rduniq (1):
 (1): concatenate two identical relations...rdcat
 (1): take the difference of two relations...rddiff
 perform the division of two relations...rddiv (1):
 (1): intersect two identical relations...rdint
 rdjoin (1): join two relations

 − lx −

 Permuted Index

 perform the natural join of two relations...rdnat (1):
 vt$rel (6): position relatively to row, col
 mklib (1): convert binary relocatable to a library
 message... remark (2): print diagnostic
 memo (3): automated memo and reminder system
 nstat (3): remote node status command
 status... remove (2): remove a file, return
 remove (2): remove a file, return status
 rmfil$ (6): remove a file, return status
 rmseg$ (6): remove a segment directory
 needed...set_remove (4): remove a set that is no longer
 table...delete (2): remove a symbol from a symbol
 rmtabl (2): remove a symbol table
 rmtemp (2): remove a temporary file
 of a queue...rbq$xs (4): remove an element from the bottom
 a queue...rtq$xs (4): remove an element from the top of
 relation...rduniq (1): remove duplicate tuples from a
 set_delete (4): remove given element from a set
 entry...vt$rdf (6): remove macro definition of a DFA
 vt$ndf (6): remove VTH macro definition
 REENTER$ condition... reonu$ (6): on−unit for the
 for Shell files... repeat (1): loop control structure
 string...join (1): replace newlines with an arbitrary
 catsub (2): add replacement text to end of string
 bug (3): report a bug with system software
 file...vt$ier (6): report error in VTH initialization
 bugfm (5): format a bug report
 raid (3): examine bug reports
 vtstop (2): reset a user’s terminal attributes
 vtpad (2): pad the rest of a field with blanks
 file...svrest (2): restore shell variables from a
 vars (1): print, save, or restore shell variables
 article... retract (1): retract a news
 retract (1): retract a news article
 table...lookup (2): retrieve information from a symbol
 prime (4): retrieve the ’i’th prime number
 strcmp (2): compare strings and return 1 2 or 3 for < = or >
 seterr (2): set Subsystem error return code
 take month, day, and year and return day−of−year...jdate (2):
 a file...finfo$ (6): return directory information about
 (1): output error message, return error code...error
 riables directory...getvdn (2): return name of file in user’s
 patsiz (2): return size of pattern entry
 remove (2): remove a file, return status
 rmfil$ (6): remove a file, return status
 terminal file...tmark$ (6): return the current position of a
 lexic level...svlevl (2): return the current shell variable
 command unit...gcifu$ (6): return the current value of the
 queue...tsq$xs (4): return the number of entries in a
 dmark$ (6): return the position of a disk file
 common area...ttyp$r (6): return the terminal type from the
 gttype (2): return the user’s terminal type
 variable...svget (2): return the value of a shell
 information...date (2): return time, date and other system
 swt (2): return to Software Tools Subsystem
 rtn$$ (6): return to stack frame of call$$

 − lxi −

 Permuted Index

 set2...set_subset (4): return TRUE if set1 is a subset of
 e same members...set_equal (4): return TRUE if two sets contain
 type (2): return type of character
 information...vtinfo (2): return VTH common block
 hp (1): Reverse Polish Notation calculator
 STDOUT...rot (1): rotate or reverse strings from STDIN to
 rewind (2): rewind a file
 rewind (2): rewind a file
 preprocessor... rf (3): original Ratfor
 rcl (3): command file to rf, fc and ld a program
 a Ratfor program... rfc (1): command file to rp and fc
 and ld a Ratfor program... rfl (1): command file to rp, fc,
 server... ring (5): network communication
 terminate currently executing ’ring’ process...terminate (3):
 day/date on all systems running ring...setime (3): set time of
 status... rmfil$ (6): remove a file, return
 directory... rmseg$ (6): remove a segment
 rmtabl (2): remove a symbol table
 file... rmtemp (2): remove a temporary
 rnd (1): generate random numbers
 double precision square root...dsqt$m (2): calculate
 sqrt$m (2): calculate square root
 from STDIN to STDOUT... rot (1): rotate or reverse strings
 STDIN to STDOUT...rot (1): rotate or reverse strings from
 t$clup (6): profiling routine called on program exit
 t$entr (6): profiling routine called on subprogram entry
 t$exit (6): profiling routine called on subprogram exit
 t$trac (6): trace routine for Ratfor programs
 memory−to−memory conversion routine...encode (2): formatted
 to use semi−formatted input routine...input (2): easy
 to use semi−formatted print routine...print (2): easy
 condition handler for math routines...err$m (2): common error
 (2): move the user’s cursor to row, col...vtmove
 (6): position the cursor to row, col...vt$pos
 (6): position relatively to row, col...vt$rel
 (1): count the number of rows in a relation...rdcount
 preprocessor... rp (1): extended Ratfor
 rfc (1): command file to rp and fc a Ratfor program
 rfl (1): command file to rp, fc, and ld a Ratfor program
 cryptosystem... rsa (3): toy RSA public−key
 rsa (3): toy RSA public−key cryptosystem
 command... rtime (3): determine run−time of a
 of call$$... rtn$$ (6): return to stack frame
 ASCII string... rtoc (2): convert real value to
 the top of a queue... rtq$xs (4): remove an element from
 ssr (1): set search rule
 interpreter...shell (2): run the Subsystem command
 clean up after statement count run...c$end (6):
 for a statement count run...c$init (6): initialize
 ldseg$ (6): load a SEG runfile into memory
 (6): call a P300, SEG, or EPF runfile...call$$
 (6): read one chunk of a SEG runfile...chunk$
 time of day/date on all systems running ring...setime (3): set
 rtime (3): determine run−time of a command
 for a subroutine trace run...t$init (6): initialize
 store operation... s1c$xs (4): protected single−word

 − lxii −

 Permuted Index

 store operation... s2c$xs (4): protected double−word
 object... sacl (1): set ACL attributes on an
 TRUE if two sets contain the same members...set_equal (4): retu
 save (1): save shell variables
 vars (1): print, save, or restore shell variables
 svsave (2): save shell variables in a file
 save (1): save shell variables
 variables...svscan (2): scan a user’s list of shell
 sctabl (2): scan all symbols in a symbol table
 (1): interface to Prime DBMS schema compiler...ddlc
 another... scopy (2): copy one string to
 place formatted strings into screen buffers...vtprt (2):
 (2): put line into terminal screen buffer...vtputl
 enable input on a particular screen line...vtenb (2):
 vt$clr (6): send clear screen sequence
 vtupd (2): update the terminal screen with VTH screen
 clear (1): clear terminal screen
 se (1): screen−oriented text editor
 (2): clear a rectangle on the screen...vtclr
 lines on the user’s terminal screen...vtdlin (2): delete
 (2): get a line from the VTH screen...vtgetl
 lines on the user’s terminal screen...vtilin (2): insert
 output a character onto the screen...vt$out (6):
 the terminal screen with VTH screen...vtupd (2): update
 terminal program on the GT40... scroll (3): load scrolling
 GT40...scroll (3): load scrolling terminal program on the
 symbol table... sctabl (2): scan all symbols in a
 string APL−style... sdrop (2): drop characters from a
 editor... se (1): screen−oriented text
 strbsr (2): perform a binary search of a string table
 strlsr (2): perform a linear search of a string table
 ssr (1): set search rule
 which (1): search _search_rule for a command
 which (1): search _search_rule for a command
 cck2 (5): Second phase of C program checker
 (2): convert time−of−day to seconds past midnight...parstm
 bit bucket...isnull (2): see if a file is connected to the
 set_element (4): see if a given element is in a set
 so, fetch it...rdy$xs (4): see if character waiting, and if
 directory...findf$ (6): see if file exists in current
 isph (1): see if process is a phantom
 generator...seed$m (2): set the seed for the rand$m random number
 nd$m random number generator... seed$m (2): set the seed for the
 dseek$ (6): seek on a disk device
 tseek$ (6): seek on a terminal device
 designated word... seekf (2): position a file to a
 call$$ (6): call a P300, SEG, or EPF runfile
 ldseg$ (6): load a SEG runfile into memory
 chunk$ (6): read one chunk of a SEG runfile
 cpseg$ (6): copy one open segment directory to another
 rmseg$ (6): remove a segment directory
 szseg$ (6): size an open Primos segment directory
 an uninitialized part of a segment...zmem$ (6): clear
 (1): Subsystem interlude to SEG’s vpsd...vpsd
 ek (1): select erase and kill characters
 parameters...term (1): select individual terminal

 − lxiii −

 Permuted Index

 basename (1): select part of a pathname
 rdsel (1): select tuples of a relation
 decision...yesno (1): selective filter with user
 semaphores... sema (1): manipulate user
 sema (1): manipulate user semaphores
 input (2): easy to use semi−formatted input routine
 print (2): easy to use semi−formatted print routine
 dsdump (2): produce semi−readable dump of storage
 sequence...vt$cel (6): send a clear to end−of−line
 vt$dln (6): send a delete line sequence
 all machines...broadcast (3): send a Primos message to a user on
 vt$iln (6): send an insert line sequence
 vt$clr (6): send clear screen sequence
 GT40...focld (3): send FOCAL−GT/RT programs to the
 to (1): send messages to a logged−in user
 mail (1): send or receive mail
 copy STDIN to STDOUT up to a sentinel...cto (1):
 facility for Ratfor programs... sep (1): separate compilation
 Ratfor programs...sep (1): separate compilation facility for
 lam (1): laminate lines from separate files
 vt$gsq (6): get a delimited sequence of characters
 send a clear to end−of−line sequence...vt$cel (6):
 vt$clr (6): send clear screen sequence
 vt$dln (6): send a delete line sequence
 vt$iln (6): send an insert line sequence
 ring (5): network communication server
 news (1): news service for Subsystem users
 subscribe to the Subsystem news service...subscribe (1):
 (1): copy user’s terminal session to printer...copyout
 variables... set (1): assign values to shell
 sacl (1): set ACL attributes on an object
 sfdata (2): set characteristics for a file
 sky$xs (4): set current cpu keys
 quota (1): read and set disk record quota limits
 fields...touch (1): set file date/time modification
 addset (2): put character in a set if it fits
 (4): make a copy of one set in another...set_copy
 (2): expand subrange of a set of characters...dodash
 terminal handler...vtopt (2): set options for the virtual
 file translation and parity set program...fixp (3):
 file...sprot$ (6): set protection attributes for a
 ssr (1): set search rule
 filset (2): expand character set, stop at delimiter
 seterr (2): set Subsystem error return code
 ttyp$v (6): set terminal attributes
 set_remove (4): remove a set that is no longer needed
 number generator...seed$m (2): set the seed for the rand$m random
 svput (2): set the value of a shell variable
 tems running ring...setime (3): set time of day/date on all
 set_init (4): cause a set to be empty
 speed...vtbaud (2): set vth’s concept of the terminal
 set_subset (4): return TRUE if set1 is a subset of set2
 TRUE if set1 is a subset of set2...set_subset (4): return
 set in another... set_copy (4): make a copy of one
 initially empty set... set_create (4): generate a new,
 about the ASCII character set...cset (1): list information

 − lxiv −

 Permuted Index

 element from a set... set_delete (4): remove given
 element is in a set... set_element (4): see if a given
 ets contain the same members... set_equal (4): return TRUE if two
 return code... seterr (2): set Subsystem error
 on all systems running ring... setime (3): set time of day/date
 empty... set_init (4): cause a set to be
 element in a set... set_insert (4): place given
 ction of two sets in a third... set_intersect (4): place
 stk$xs (4): set/read stack extension pointer
 is no longer needed... set_remove (4): remove a set that
 (4): return TRUE if two sets contain the same members...se
 (4): place intersection of two sets in a third...set_intersect
 (4): place difference of two sets in a third...set_subtract
 (4): place union of two sets in a third...set_union
 generate a new, initially empty set...set_create (4):
 remove given element from a set...set_delete (4):
 see if a given element is in a set...set_element (4):
 (4): place given element in a set...set_insert
 set1 is a subset of set2... set_subset (4): return TRUE if
 of two sets in a third... set_subtract (4): place difference
 sets in a third... set_union (4): place union of two
 for a file... sfdata (2): set characteristics
 Interpreter (Shell)... sh (1): Subsystem Command
 ’shell archive’... shar (3): put text files into a
 snplnk (5): snap shared library dynamic links
 ts (3): time sheet for hourly employees
 command interpreter... shell (2): run the Subsystem
 shar (3): put text files into a ’shell archive’
 bs (5): shell backstop program
 bs1 (5): shell backstop program
 case (1): case statement for shell files
 (1): conditional statement for Shell files...if
 (1): loop control structure for Shell files...repeat
 elif (1): else−if construct for Shell programs
 level...svdel (2): delete a shell variable at the current
 ic level...svmake (2): create a shell variable at the current
 (2): dump the contents of the shell variable common...svdump
 svlevl (2): return the current shell variable lexic level
 svrest (2): restore shell variables from a file
 svsave (2): save shell variables in a file
 csv (5): convert shell variables to new format
 declare (1): create shell variables
 forget (1): destroy shell variables
 save (1): save shell variables
 set (1): assign values to shell variables
 (2): scan a user’s list of shell variables...svscan
 (1): print, save, or restore shell variables...vars
 (2): return the value of a shell variable...svget
 svput (2): set the value of a shell variable
 Subsystem Command Interpreter (Shell)...sh (1):
 pass a command to the Primos shell...sys$$ (2):
 control characters... show (3): print a file showing
 show (3): print a file showing control characters
 command interpreter... shtrace (1): trace activity in
 (3): basic computer system simulator...basys
 dmach (3): Burroughs D−machine simulator

 − lxv −

 Permuted Index

 asin$m (2): calculate inverse sine
 double precision inverse sine...dasn$m (2): calculate
 (2): calculate double precision sine...dsin$m
 double precision hyperbolic sine...dsnh$m (2): calculate
 (2): calculate hyperbolic sine...sinh$m
 sin$m (2): calculate sine
 gklarg (2): parse a single key−letter argument
 vt$get (6): get and edit a single line from input
 omatch (2): try to match a single pattern element
 dix string...gitoc (2): convert single precision integer to any
 chkarg (2): parse single−letter arguments
 s1c$xs (4): protected single−word store operation
 sine... sinh$m (2): calculate hyperbolic
 sin$m (2): calculate sine
 cross−assembler object code... size (3): calculate size of
 descriptor...szfil$ (6): size an open Primos file
 directory...szseg$ (6): size an open Primos segment
 fsize (1): size any file system structure
 code...size (3): calculate size of cross−assembler object
 patsiz (2): return size of pattern entry
 (2): perform existence and size tests on a file...filtst
 (1): convert text to banner size...banner
 sky$xs (4): set current cpu keys
 a Primos file name; escape slashes...upkfn$ (6): unpack
 file... slice (1): slice out a chunk of a
 slice (1): slice out a chunk of a file
 snplnk (5): snap shared library dynamic links
 dynamic links... snplnk (5): snap shared library
 if character waiting, and if so, fetch it...rdy$xs (4): see
 history (1): Software Tools Subsystem historian
 Guides...guide (1): Software Tools Subsystem User’s
 swt (2): return to Software Tools Subsystem
 (extended)...ed (1): Software Tools text editor
 macro (1): macro language from Software Tools
 (3): report a bug with system software...bug
 solitaire... sol (3): play a friendly game of
 (3): play a friendly game of solitaire...sol
 phone (3): find someone’s telephone number
 records... sort (1): sort ASCII−encoded
 rdsort (1): sort a relation
 sort (1): sort ASCII−encoded records
 (1): print lines common to two sorted files...common
 tsort (1): topological sort
 command or subroutine... source (1): print source for a
 locate (1): locate subsystem source code
 source (1): print source for a command or subroutine
 dbg (1): invoke the Primos source level debugger (DBG)
 sp (1): line printer spooler
 lsallo (4): allocate space for a linked string
 lsdump (4): dump linked string space for debugging
 (2): initialize dynamic storage space...dsinit
 (1): summarize available disk space...hd
 lsfree (4): free linked string space
 (4): initialize linked string space...lsinit
 (1): convert tabs to multiple spaces...detab
 vt$db1 (6): print mnemonics for special characters

 − lxvi −

 Permuted Index

 (2): look for pattern match at specific location...amatch
 find the maximum value of a specified attribute...rdmax (1):
 find the minimum value of a specified attribute...rdmin (1):
 (3): list files opened for a specified user...lfo
 case statement...out (1): specify default alternative in a
 vth’s concept of the terminal speed...vtbaud (2): set
 errors... speling (1): detect spelling
 spelling errors... spell (1): check for possible
 speling (1): detect spelling errors
 spell (1): check for possible spelling errors
 sph (5): system phantom processor
 (3): optimize printing on a Spinwriter...sprint
 splc (1): interface to Primos SPL compiler
 splcl (1): compile and load a SPL program
 compiler... splc (1): interface to Primos SPL
 program... splcl (1): compile and load a SPL
 (1): format, overstrike, and spool a document...fos
 (6): open a disk file in the spool queue...lopen$
 sp (1): line printer spooler
 Spinwriter... sprint (3): optimize printing on a
 attributes for a file... sprot$ (6): set protection
 sqrt$m (2): calculate square root
 (2): calculate double precision square root...dsqt$m
 sqrt$m (2): calculate square root
 ssr (1): set search rule
 parser generator... stacc (1): recursive descent
 stk$xs (4): set/read stack extension pointer
 rtn$$ (6): return to stack frame of call$$
 string APL−style... stake (2): take characters from a
 des (3): NBS Data Encryption Standard Implementation
 copy (1): copy standard input to standard output
 quote (1): enquote strings from standard input
 (1): print last n lines from standard input...tail
 cal (3): print a calendar on standard output
 (1): copy standard input to standard output...copy
 mapsu (2): map standard unit to file descriptor
 c$end (6): clean up after statement count run
 c$init (6): initialize for a statement count run
 case (1): case statement for shell files
 if (1): conditional statement for Shell files
 increment count for a given statement...c$incr (6):
 fi (1): terminate conditional statement
 command file flow−of−control statement...goto (1):
 st_profile (1): statement−level profile
 default alternative in a case statement...out (1): specify
 include (1): expand include statements
 until (1): terminate a loop statement
 (1): flag alternative in a case statement...when
 stats (1): print statistical measures
 (1): mark the end of a case statment...esac
 measures... stats (1): print statistical
 nstat (3): remote node status command
 systat (1): check on Subsystem status directories
 (2): display a message in the status line...vtmsg
 lps (1): line printer status monitor
 mon (3): system status monitor

 − lxvii −

 Permuted Index

 ns (3): print out network status
 (2): remove a file, return status...remove
 (6): remove a file, return status...rmfil$
 in pattern... stclos (2): insert closure entry
 cto (1): copy STDIN to STDOUT up to a sentinel
 rotate or reverse strings from STDIN to STDOUT...rot (1):
 cto (1): copy STDIN to STDOUT up to a sentinel
 reverse strings from STDIN to STDOUT...rot (1): rotate or
 extension pointer... stk$xs (4): set/read stack
 lookup... st$lu (6): internal symbol table
 stop (1): exit from subsystem
 (2): expand character set, stop at delimiter...filset
 (6): dump contents of dynamic storage block...dsdbiu
 dsinit (2): initialize dynamic storage space
 produce semi−readable dump of storage...dsdump (2):
 (2): free a block of dynamic storage...dsfree
 (2): obtain a block of dynamic storage...dsget
 (4): protected single−word store operation...s1c$xs
 (4): protected double−word store operation...s2c$xs
 profile... st_profile (1): statement−level
 search of a string table... strbsr (2): perform a binary
 return 1 2 or 3 for < = or >... strcmp (2): compare strings and
 como (1): divert command output stream
 prom programmer down−line load stream...imi (3): generate IMI
 and tabs from a string... strim (2): trim trailing blanks
 (1): take characters from a string (APL style)...take
 (1): drop characters from a string (APL−style)...drop
 (2): drop characters from a string APL−style...sdrop
 (2): take characters from a string APL−style...stake
 cmp (1): string comparison
 chkstr (2): check a string for printable characters
 lsextr (4): extract contiguous string from linked string
 vt$put (6): copy string into terminal buffer
 lscut (4): divide a linked string into two linked strings
 ffind (1): look for a string (kmp style)
 putlit (2): write literal string on a file
 lsdump (4): dump linked string space for debugging
 lsfree (4): free linked string space
 lsinit (4): initialize linked string space
 perform a binary search of a string table...strbsr (2):
 perform a linear search of a string table...strlsr (2):
 scopy (2): copy one string to another
 ctod (2): convert string to double precision real
 (2): convert EOS−terminated string to EOS−terminated string...
 ptoc (2): convert packed string to EOS−terminated string
 vtoc (2): convert PL/I varying string to EOS−terminated string
 ctoi (2): convert ascii string to integer
 lsmake (4): convert contiguous string to linked string
 ctol (2): convert ascii string to long integer
 (2): convert EOS−terminated string to packed string...ctop
 vtop (2): convert PL/I varying string to packed string
 ptov (2): convert packed string to PL/I varying string
 (2): convert EOS−terminated string to varying string...ctov
 lscmpk (4): compare linked string with contiguous string
 (2): convert an address to a string...atoc
 add replacement text to end of string...catsub (2):

 − lxviii −

 Permuted Index

 string to EOS−terminated string...ctoc (2): convert EOS−ter
 EOS−terminated string to packed string...ctop (2): convert
 string to varying string...ctov (2): convert EOS−ter
 double precision value to ASCII string...dtoc (2): convert
 program named by a quoted string...execn (2): execute
 template into an EOS−terminated string...expand (2): convert a
 precision integer to any radix string...gitoc (2): convert single
 precision integer to any radix string...gltoc (2): convert double
 find index of a character in a string...index (1):
 find index of a character in a string...index (2):
 convert integer to character string...itoc (2):
 newlines with an arbitrary string...join (1): replace
 length (2): find length of a string
 allocate space for a linked string...lsallo (4):
 linked string with contiguous string...lscmpk (4): compare
 lscopy (4): copy linked string
 delete characters from a linked string...lsdel (4):
 drop characters from a linked string...lsdrop (4):
 contiguous string from linked string...lsextr (4): extract
 (4): get character from linked string...lsgetc
 read an arbitrarily long linked string...lsgetf (4):
 lsins (4): insert in linked string
 (4): compute length of linked string...lslen
 contiguous string to linked string...lsmake (4): convert
 (4): find position in linked string...lspos
 put character into a linked string...lsputc (4):
 an arbitrarily long linked string...lsputf (4): write
 take a substring of a linked string...lssubs (4):
 take characters from a linked string...lstake (4):
 long integer to character string...ltoc (2): convert
 maksub (2): make substitution string
 mapstr (2): map case of a string
 packed string to EOS−terminated string...ptoc (2): convert
 packed string to PL/I varying string...ptov (2): convert
 convert real value to ASCII string...rtoc (2):
 = or >...strcmp (2): compare strings and return 1 2 or 3 for <
 equal (2): compare two strings for equality
 quote (1): enquote strings from standard input
 rot (1): rotate or reverse strings from STDIN to STDOUT
 vtprt (2): place formatted strings into screen buffers
 length (1): compute length of strings
 lscomp (4): compare two linked strings
 a linked string into two linked strings...lscut (4): divide
 lsjoin (4): join two linked strings
 trailing blanks and tabs from a string...strim (2): trim
 (1): take a substring of a string...substr
 (2): take a substring from a string...substr
 string to EOS−terminated string...vtoc (2): convert PL/I va
 PL/I varying string to packed string...vtop (2): convert
 search of a string table... strlsr (2): perform a linear
 repeat (1): loop control structure for Shell files
 fsize (1): size any file system structure
 ACL information into a Primos structure...mkpacl (6): encode
 ACL information into a SWT structure...mksacl (6): encode
 (1): look for a string (kmp style)...ffind
 characters from a string (APL style)...take (1): take

 − lxix −

 Permuted Index

 profiling routine called on subprogram entry...t$entr (6):
 profiling routine called on subprogram exit...t$exit (6):
 dodash (2): expand subrange of a set of characters
 t$init (6): initialize for a subroutine trace run
 (6): catch a break for the page subroutine...pg$brk
 print source for a command or subroutine...source (1):
 interface to Prime DBMS Cobol subschema compiler...csubc (1):
 interface to Prime DBMS Fortran subschema compiler...fsubc (1):
 Subsystem news service... subscribe (1): subscribe to the
 service...subscribe (1): subscribe to the Subsystem news
 (1): interface to Primos PL/I subset G compiler...plgc
 (1): compile and load a PL/I subset G program...plgcl
 (4): return TRUE if set1 is a subset of set2...set_subset
 maksub (2): make substitution string
 string... substr (1): take a substring of a
 a string... substr (2): take a substring from
 substr (2): take a substring from a string
 if appropriate...esc (2): map substring into escaped character
 lssubs (4): take a substring of a linked string
 substr (1): take a substring of a string
 command interpreter... subsys (2): call the Subsystem
 (Shell)...sh (1): Subsystem Command Interpreter
 shell (2): run the Subsystem command interpreter
 subsys (2): call the Subsystem command interpreter
 background...ph (1): execute subsystem commands in the
 dmpcm$ (6): dump Subsystem common areas
 icomn$ (6): initialize Subsystem common areas
 seterr (2): set Subsystem error return code
 Pascal file variables to Subsystem files...file$p (2): conn
 history (1): Software Tools Subsystem historian
 hist (1): manipulate the subsystem history mechanism
 phist (1): print Subsystem history
 installation (1): print Subsystem installation name
 ATCH$$...at$swt (6): Subsystem interlude to Primos
 vpsd (1): Subsystem interlude to SEG’s vpsd
 ioinit (6): initialize Subsystem I/O areas
 subscribe (1): subscribe to the Subsystem news service
 init (2): initialize a Subsystem program
 locate (1): locate subsystem source code
 systat (1): check on Subsystem status directories
 guide (1): Software Tools Subsystem User’s Guides
 news (1): news service for Subsystem users
 (1): interface to Primos batch subsystem...batch
 bye (1): log out from the Subsystem
 Fortran i/o to recognize the Subsystem...init$f (2): force
 Pascal i/o to recognize the Subsystem...init$p (2): force
 PL/I G i/o to recognize the Subsystem...init$plg (2): force
 stop (1): exit from subsystem
 (2): return to Software Tools Subsystem...swt
 tscan$ (6): traverse subtree of the file system
 uniq (1): eliminate successive identical lines
 rdsum (1): sum the values of an attribute
 hd (1): summarize available disk space
 usage (1): print summary of command syntax
 pause (1): suspend command interpretation
 at the current level... svdel (2): delete a shell variable

 − lxx −

 Permuted Index

 the shell variable common... svdump (2): dump the contents of
 shell variable... svget (2): return the value of a
 shell variable lexic level... svlevl (2): return the current
 e at the current lexic level... svmake (2): create a shell
 shell variable... svput (2): set the value of a
 variables from a file... svrest (2): restore shell
 in a file... svsave (2): save shell variables
 shell variables... svscan (2): scan a user’s list of
 Subsystem... swt (2): return to Software Tools
 execute (3): execute a SWT command on another machine
 encode ACL information into a SWT structure...mksacl (6):
 delete (2): remove a symbol from a symbol table
 enter (2): place symbol in symbol table
 st$lu (6): internal symbol table lookup
 (2): remove a symbol from a symbol table...delete
 enter (2): place symbol in symbol table
 retrieve information from a symbol table...lookup (2):
 mktabl (2): make a symbol table
 rmtabl (2): remove a symbol table
 (2): scan all symbols in a symbol table...sctabl
 (3): print cross−assembly symbol table...symbols
 symbol table... symbols (3): print cross−assembly
 sctabl (2): scan all symbols in a symbol table
 (1): print summary of command syntax...usage
 Primos shell... sys$$ (2): pass a command to the
 status directories... systat (1): check on Subsystem
 who (3): find out who’s on the system and where they are
 return time, date and other system information...date (2):
 ACL information about a file system object...lacl (1): List
 sph (5): system phantom processor
 basys (3): basic computer system simulator
 bug (3): report a bug with system software
 mon (3): system status monitor
 fsize (1): size any file system structure
 automated memo and reminder system...memo (3):
 set time of day/date on all systems running ring...setime (3):
 traverse subtree of the file system...tscan$ (6):
 file descriptor... szfil$ (6): size an open Primos
 segment directory... szseg$ (6): size an open Primos
 st$lu (6): internal symbol table lookup
 remove a symbol from a symbol table...delete (2):
 (2): place symbol in symbol table...enter
 information from a symbol table...lookup (2): retrieve
 mktabl (2): make a symbol table
 rmtabl (2): remove a symbol table
 scan all symbols in a symbol table...sctabl (2):
 a binary search of a string table...strbsr (2): perform
 a linear search of a string table...strlsr (2): perform
 vt$db2 (6): dump terminal input tables
 garbage collection on DFA tables...vt$dsw (6): perform
 print cross−assembly symbol table...symbols (3):
 allocate another VTH definition table...vt$alc (6):
 (6): dump macro definition table...vt$db3
 (2): trim trailing blanks and tabs from a string...strim
 detab (1): convert tabs to multiple spaces
 (1): convert multiple blanks to tabs...entab

 − lxxi −

 Permuted Index

 standard input... tail (1): print last n lines from
 string (APL style)... take (1): take characters from a
 substr (2): take a substring from a string
 string...lssubs (4): take a substring of a linked
 substr (1): take a substring of a string
 string...lstake (4): take characters from a linked
 style)...take (1): take characters from a string (APL
 APL−style...stake (2): take characters from a string
 return day−of−year...jdate (2): take month, day, and year and
 relations...rddiff (1): take the difference of two
 atan$m (2): calculate inverse tangent
 double precision inverse tangent...datn$m (2): calculate
 (2): calculate double precision tangent...dtan$m
 double precision hyperbolic tangent...dtnh$m (2): calculate
 (2): calculate hyperbolic tangent...tanh$m
 tan$m (2): calculate tangent
 tangent... tanh$m (2): calculate hyperbolic
 tan$m (2): calculate tangent
 ap (3): Generate Object Tape for A & P M6800 Monitor
 mt (1): magnetic tape interface
 generate Intel format object tape...intel (3):
 generate Motorola format object tape...mot (3):
 (3): decode Unix tar format tapes...ptar
 ptar (3): decode Unix tar format tapes
 words, lines, pages) ... tc (1): text counter (characters,
 called on program exit... t$clup (6): profiling routine
 from the terminal... tcook$ (6): read and cook a line
 tee (1): tee fitting for pipelines
 tee (1): tee fitting for pipelines
 moot (3): teleconference manager
 phone (3): find someone’s telephone number
 wallclock (3): tell the time in a big way
 display templates... template (1): manipulate and
 ldtmp$ (6): load the per−user template area
 (6): look up a template in the template directory...lutemp
 lutemp (6): look up a template in the template directory
 string...expand (2): convert a template into an EOS−terminated
 gtemp (2): parse a template into name and definition
 (1): manipulate and display templates...template
 mktemp (2): create a temporary file
 rmtemp (2): remove a temporary file
 called on subprogram entry... t$entr (6): profiling routine
 terminal parameters... term (1): select individual
 gtattr (2): get a user’s terminal attributes
 ttyp$v (6): set terminal attributes
 vtstop (2): reset a user’s terminal attributes
 vt$put (6): copy string into terminal buffer
 vtterm (2): read terminal characteristics file
 vt$db (6): dump terminal characteristics
 vtinit (2): initialize terminal characteristics
 tseek$ (6): seek on a terminal device
 the current position of a terminal file...tmark$ (6): return
 set options for the virtual terminal handler...vtopt (2):
 chkinp (2): check for terminal input availability
 tip (1): check if terminal input is pending
 vt$db2 (6): dump terminal input tables

 − lxxii −

 Permuted Index

 tquit$ (2): check for pending terminal interrupt
 term (1): select individual terminal parameters
 scroll (3): load scrolling terminal program on the GT40
 vtputl (2): put line into terminal screen buffer
 vtupd (2): update the terminal screen with VTH screen
 clear (1): clear terminal screen
 (2): delete lines on the user’s terminal screen...vtdlin
 (2): insert lines on the user’s terminal screen...vtilin
 copyout (1): copy user’s terminal session to printer
 (2): set vth’s concept of the terminal speed...vtbaud
 ttyp$r (6): return the terminal type from the common area
 ttyp$q (6): query for the terminal type from the user
 gttype (2): return the user’s terminal type
 ttyp$l (6): list the available terminal types
 term_type (1): print user’s terminal type
 ttyp$f (6): obtain the user’s terminal type
 vt$del (6): delay the terminal with nulls
 proper editor for current terminal...e (1): invoke
 if a file is connected to a terminal...isatty (2): test
 read and cook a line from the terminal...tcook$ (6):
 (6): read a line from the terminal...tgetl$
 tputl$ (6): put a line on the terminal
 (6): read raw words from the terminal...tread$
 twrit$ (6): write raw words to terminal
 read characters from a user’s terminal...vtread (2):
 (1): find the location of a terminal...whereis
 executing ’ring’ process... terminate (3): terminate currently
 until (1): terminate a loop statement
 makpat (2): make pattern, terminate at delimiter
 fi (1): terminate conditional statement
 ’ring’ process...terminate (3): terminate currently executing
 files...exit (1): terminate execution of command
 terminal type... term_type (1): print user’s
 declared (1): test for declared variables
 isadsk (2): test if a file is a disk file
 terminal...isatty (2): test if a file is connected to a
 file (1): test information about a file
 identities...group (1): test or list a users group
 (2): perform existence and size tests on a file...filtst
 called on subprogram exit... t$exit (6): profiling routine
 lines, pages) ...tc (1): text counter (characters, words,
 otd (3): object text dumper
 ed (1): Software Tools text editor (extended)
 (2): invoke the line−oriented text editor...edit
 se (1): screen−oriented text editor
 shar (3): put text files into a ’shell archive’
 fmt (1): text formatter
 banner (1): convert text to banner size
 block (3): convert text to block letters
 catsub (2): add replacement text to end of string
 terminal... tgetl$ (6): read a line from the
 then (1): introduce the then−part of a conditional
 intersection of two sets in a third...set_intersect (4): place
 difference of two sets in a third...set_subtract (4): place
 place union of two sets in a third...set_union (4):
 time (1): print time−of−day

 − lxxiii −

 Permuted Index

 information...date (2): return time, date and other system
 cron (3): time driven command processor
 wallclock (3): tell the time in a big way
 running ring...setime (3): set time of day/date on all systems
 gtod (1): get time of day
 ts (3): time sheet for hourly employees
 (1): print accumulated cpu time...ctime
 clock (1): digital time−of−day clock for CRTs
 midnight...parstm (2): convert time−of−day to seconds past
 time (1): print time−of−day
 subroutine trace run... t$init (6): initialize for a
 is pending... tip (1): check if terminal input
 tlit (1): transliterate characters
 position of a terminal file... tmark$ (6): return the current
 history (1): Software Tools Subsystem historian
 guide (1): Software Tools Subsystem User’s Guides
 swt (2): return to Software Tools Subsystem
 ed (1): Software Tools text editor (extended)
 macro language from Software Tools...macro (1):
 (4): add an element to the top of a queue...atq$xs
 (4): remove an element from the top of a queue...rtq$xs
 tsort (1): topological sort
 modification fields... touch (1): set file date/time
 rsa (3): toy RSA public−key cryptosystem
 terminal... tputl$ (6): put a line on the
 terminal interrupt... tquit$ (2): check for pending
 interpreter...shtrace (1): trace activity in command
 t$trac (6): trace routine for Ratfor programs
 initialize for a subroutine trace run...t$init (6):
 string...strim (2): trim trailing blanks and tabs from a
 microprogram translator... translang (3): D−Machine
 to mnemonic...ctomn (2): translate ASCII control character
 fixp (3): file translation and parity set program
 (3): D−Machine microprogram translator...translang
 tlit (1): transliterate characters
 system...tscan$ (6): traverse subtree of the file
 the terminal... tread$ (6): read raw words from
 mkpa$ (6): convert a treename into a pathname
 (6): convert a pathname into a treename...mktr$
 mktree (1): convert pathname to treename
 a string...strim (2): trim trailing blanks and tabs from
 set_subset (4): return TRUE if set1 is a subset of set2
 members...set_equal (4): return TRUE if two sets contain the same
 trunc (2): truncate a file
 trunc (2): truncate a file
 means...guess (5): try to guess what command the user
 element...omatch (2): try to match a single pattern
 employees... ts (3): time sheet for hourly
 the file system... tscan$ (6): traverse subtree of
 device... tseek$ (6): seek on a terminal
 tsort (1): topological sort
 entries in a queue... tsq$xs (4): return the number of
 for profiling... t$time (6): obtain clock readings
 Ratfor programs... t$trac (6): trace routine for
 terminal type... ttyp$f (6): obtain the user’s
 terminal types... ttyp$l (6): list the available

 − lxxiv −

 Permuted Index

 type from the user... ttyp$q (6): query for the terminal
 type from the common area... ttyp$r (6): return the terminal
 attributes... ttyp$v (6): set terminal
 rduniq (1): remove duplicate tuples from a relation
 rdsel (1): select tuples of a relation
 terminal... twrit$ (6): write raw words to
 type (2): return type of character
 ttyp$r (6): return the terminal type from the common area
 (6): query for the terminal type from the user...ttyp$q
 type (2): return type of character
 (2): return the user’s terminal type...gttype
 list the available terminal types...ttyp$l (6):
 (1): print user’s terminal type...term_type
 (6): obtain the user’s terminal type...ttyp$f
 program (Unix−style)... ucc (1): compile and load a C
 zmem$ (6): clear an uninitialized part of a segment
 set_union (4): place union of two sets in a third
 identical lines... uniq (1): eliminate successive
 mapsu (2): map standard unit to file descriptor
 current value of the command unit...gcifu$ (6): return the
 unoct (3): convert UNIX ’od’ output to binary
 ptar (3): decode Unix tar format tapes
 compile and load a C program (Unix−style)...ucc (1):
 output to binary... unoct (3): convert UNIX ’od’
 slashes...upkfn$ (6): unpack a Primos file name; escape
 produced by kwic... unrot (1): ’un−rotate’ output
 kwic...unrot (1): ’un−rotate’ output produced by
 VTH screen...vtupd (2): update the terminal screen with
 name; escape slashes... upkfn$ (6): unpack a Primos file
 mapup (2): fold character to upper case
 us (1): list users of the Prime
 command syntax... usage (1): print summary of
 input (2): easy to use semi−formatted input routine
 print (2): easy to use semi−formatted print routine
 whois (1): find the user associated with a login name
 (1): selective filter with user decision...yesno
 (5): convert pre−Version 9 user list to Version 9 format...cv
 try to guess what command the user means...guess (5):
 (3): send a Primos message to a user on all machines...broadcast
 close files opened by the last user program...cof$ (6):
 sema (1): manipulate user semaphores
 vt$idf (6): invoke user−defined key definition
 kill (3): log out a user
 files opened for a specified user...lfo (3): list
 vfyusr (2): validate username
 vtmove (2): move the user’s cursor to row, col
 group (1): test or list a users group identities
 (1): Software Tools Subsystem User’s Guides...guide
 help (1): provide help for users in need
 svscan (2): scan a user’s list of shell variables
 login_name (1): print user’s login name
 us (1): list users of the Prime
 line (1): print user’s process id
 gtattr (2): get a user’s terminal attributes
 vtstop (2): reset a user’s terminal attributes
 vtdlin (2): delete lines on the user’s terminal screen

 − lxxv −

 Permuted Index

 vtilin (2): insert lines on the user’s terminal screen
 copyout (1): copy user’s terminal session to printer
 gttype (2): return the user’s terminal type
 term_type (1): print user’s terminal type
 ttyp$f (6): obtain the user’s terminal type
 (2): read characters from a user’s terminal...vtread
 (2): return name of file in user’s variables directory...getvd
 (1): news service for Subsystem users...news
 send messages to a logged−in user...to (1):
 for the terminal type from the user...ttyp$q (6): query
 a macro definition from the user...vt$def (6): accept
 vfyusr (2): validate username
 gvlarg (2): obtain the value of a key−letter argument
 svget (2): return the value of a shell variable
 svput (2): set the value of a shell variable
 rdmax (1): find the maximum value of a specified attribute
 rdmin (1): find the minimum value of a specified attribute
 rdavg (1): compute the average value of an attribute
 gcifu$ (6): return the current value of the command unit
 (2): convert double precision value to ASCII string...dtoc
 rtoc (2): convert real value to ASCII string
 rdsum (1): sum the values of an attribute
 set (1): assign values to shell variables
 svdel (2): delete a shell variable at the current level
 el...svmake (2): create a shell variable at the current lexic
 dump the contents of the shell variable common...svdump (2):
 (2): return the current shell variable lexic level...svlevl
 return name of file in user’s variables directory...getvdn (2):
 svrest (2): restore shell variables from a file
 svsave (2): save shell variables in a file
 csv (5): convert shell variables to new format
 file$p (2): connect Pascal file variables to Subsystem files
 declare (1): create shell variables
 declared (1): test for declared variables
 forget (1): destroy shell variables
 save (1): save shell variables
 set (1): assign values to shell variables
 scan a user’s list of shell variables...svscan (2):
 print, save, or restore shell variables...vars (1):
 return the value of a shell variable...svget (2):
 (2): set the value of a shell variable...svput
 dump (1): dump various internal data bases
 shell variables... vars (1): print, save, or restore
 string...vtoc (2): convert PL/I varying string to EOS−terminated
 vtop (2): convert PL/I varying string to packed string
 EOS−terminated string to varying string...ctov (2): convert
 convert packed string to PL/I varying string...ptov (2):
 generator... vcg (1): Prime V−mode code
 vcgdump (1): display ’vcg’ input files
 files... vcgdump (1): display ’vcg’ input
 iota (1): generate vector of integers
 pre−Version 9 user list to Version 9 format...cvusr (5): conv
 vfyusr (2): validate username
 vtopt (2): set options for the virtual terminal handler
 vcg (1): Prime V−mode code generator
 SEG’s vpsd... vpsd (1): Subsystem interlude to

 − lxxvi −

 Permuted Index

 Subsystem interlude to SEG’s vpsd...vpsd (1):
 definition table... vt$alc (6): allocate another VTH
 the terminal speed... vtbaud (2): set vth’s concept of
 end−of−line sequence... vt$cel (6): send a clear to
 the screen... vtclr (2): clear a rectangle on
 sequence... vt$clr (6): send clear screen
 characteristics... vt$db (6): dump terminal
 special characters... vt$db1 (6): print mnemonics for
 tables... vt$db2 (6): dump terminal input
 table... vt$db3 (6): dump macro definition
 definition from the user... vt$def (6): accept a macro
 with nulls... vt$del (6): delay the terminal
 user’s terminal screen... vtdlin (2): delete lines on the
 sequence... vt$dln (6): send a delete line
 collection on DFA tables... vt$dsw (6): perform garbage
 particular screen line... vtenb (2): enable input on a
 message... vt$err (6): display a VTH error
 line from input... vt$get (6): get and edit a single
 VTH screen... vtgetl (2): get a line from the
 sequence of characters... vt$gsq (6): get a delimited
 vtinfo (2): return VTH common block information
 vt$alc (6): allocate another VTH definition table
 vt$err (6): display a VTH error message
 vt$ier (6): report error in VTH initialization file
 vt$ndf (6): remove VTH macro definition
 vtgetl (2): get a line from the VTH screen
 update the terminal screen with VTH screen...vtupd (2):
 speed...vtbaud (2): set vth’s concept of the terminal
 key definition... vt$idf (6): invoke user−defined
 initialization file... vt$ier (6): report error in VTH
 user’s terminal screen... vtilin (2): insert lines on the
 sequence... vt$iln (6): send an insert line
 block information... vtinfo (2): return VTH common
 characteristics... vtinit (2): initialize terminal
 to row, col... vtmove (2): move the user’s cursor
 the status line... vtmsg (2): display a message in
 definition... vt$ndf (6): remove VTH macro
 ing to EOS−terminated string... vtoc (2): convert PL/I varying
 string to packed string... vtop (2): convert PL/I varying
 virtual terminal handler... vtopt (2): set options for the
 onto the screen... vt$out (6): output a character
 with blanks... vtpad (2): pad the rest of a field
 row, col... vt$pos (6): position the cursor to
 into screen buffers... vtprt (2): place formatted strings
 terminal buffer... vt$put (6): copy string into
 screen buffer... vtputl (2): put line into terminal
 definition of a DFA entry... vt$rdf (6): remove macro
 user’s terminal... vtread (2): read characters from a
 row, col... vt$rel (6): position relatively to
 terminal attributes... vtstop (2): reset a user’s
 characteristics file... vtterm (2): read terminal
 screen with VTH screen... vtupd (2): update the terminal
 rdy$xs (4): see if character waiting, and if so, fetch it
 big way... wallclock (3): tell the time in a
 (3): tell the time in a big way...wallclock
 day (1): day of week

 − lxxvii −

 Permuted Index

 out who’s on the system and where they are...who (3): find
 a terminal... whereis (1): find the location of
 a command... which (1): search _search_rule for
 associated with a login name... whois (1): find the user
 are...who (3): find out who’s on the system and where they
 wind (2): position to end of file
 sponding to month, day, year... wkday (2): get day−of−week
 getwrd (2): get a word from a line buffer
 readf (2): read raw words from a file
 dread$ (6): read raw words from disk
 tread$ (6): read raw words from the terminal
 (1): text counter (characters, words, lines, pages) ...tc
 writef (2): write raw words to file
 twrit$ (6): write raw words to terminal
 position a file to a designated word...seekf (2):
 pwd (3): print working directory name
 string...lsputf (4): write an arbitrarily long linked
 putdec (2): write decimal integer to a file
 putlit (2): write literal string on a file
 dwrit$ (6): write raw characters to disk
 writef (2): write raw words to file
 twrit$ (6): write raw words to terminal
 file... writef (2): write raw words to
 x (1): execute Primos commands
 Prime compiler... xcc (1): compile a C program with
 C program... xccl (1): compile and load a Prime
 generator... xref (1): Ratfor cross reference
 jdate (2): take month, day, and year and return day−of−year
 corresponding to month, day, year...wkday (2): get day−of−week
 user decision... yesno (1): selective filter with
 part of a segment... zmem$ (6): clear an uninitialized

 − lxxviii −

 | Section 1 − Commands

 By far the most important component of the Software Tools
 Subsystem is its complement of commands. This section is devoted
 to the description of the commands currently available.

 Documentation for each command is divided into the following
 sections. Note that sections that would otherwise contain no
 information will be omitted.

 Header Line

 The command’s name, function, and the date of last
 modification to the documentation.

 Usage

 A description of the syntax permitted on the command
 | line. The notation used in this description was
 | discussed above in the section labelled "Key to
 | Notation."

 Description

 A detailed coverage of the capabilities and operation
 of the command.

 Examples

 A few short examples of the command.

 Files

 A list of the names of special files used by the com−
 mand.

 Messages

 A listing of important error messages or diagnostic
 information issued by the command.

 Bugs

 Known bugs in the operation of the command.

 See Also

 References to further information or related commands.

 − 1 −

 alarm (1) −−− digital alarm clock for CRTs 01/16/83

 Usage

 alarm ([in] <interval> [<units>] | at <time>)

 Description

 ’Alarm’ works like an alarm clock, allowing you to set when
 the alarm goes off. It displays the alarm set time, and
 then displays the current time in "hh:mm:ss" similar to
 ’clock’. When the alarm time is reached, ’alarm’ sounds the
 terminal bell every second.

 In the first usage format, <interval> is the number of time
 units before the alarm sounds, expressed as a positive
 decimal integer. It must be less than 32768. <Units>
 specifies the time unit. It may be:

 "seconds" for seconds,
 "minutes" for minutes,
 "hours" for hours,

 or omitted, in which case "seconds" is assumed.
 Abbreviations consisting of any initial substring of the
 above units are allowed. The word "in" may be included to
 enhance readability; its presence or absence is otherwise
 insignificant.

 In the second format, the alarm will occur when the system
 clock registers the time of day specified by <time>. <Time>
 may be expressed in almost any common format. One guideline
 should be observed, however: a colon must be used to
 separate hours from minutes and minutes from seconds.

 ’Alarm’ is terminated by typing control−P or by pressing the
 BREAK key.

 Examples

 alarm
 alarm in 5 seconds
 alarm at 12:50pm
 alarm at 14:55:55

 Messages

 "Usage: alarm ..." for invalid argument syntax.

 Bugs

 Works only on CRT terminals.

 alarm (1) − 1 − alarm (1)

 alarm (1) −−− digital alarm clock for CRTs 01/16/83

 See Also

 clock (1), date (1), day (1), pause (1), time (1), date (2)

 alarm (1) − 2 − alarm (1)

 ar (1) −−− archive file maintainer 01/16/83

 Usage

 ar −(a[d] | d | p | t | u[d] | x)[v] <archive> {<file_spec>}
 <file_spec> ::= <pathname> | −n[<pathname>|<stdin_number>]

 Description

 ’Ar’ is a program designed to manipulate files that have
 been grouped together into a single "archive" file. Its
 principal utility is in keeping permanent backup copies of
 important files. Significant savings in disk space usage
 may also be realized by maintaining files in archives,
 resulting from the reduction of internal disk fragmentation.

 Arguments to ’ar’ consist of one of six directives, discus−
 sed below, followed by the name of the archive file,
 optionally followed by one or more <file_spec>s. The
 <file_spec>s, if present, designate names of files or
 archive members and are interpreted according to the
 specified directive. (For a full discussion of the syntax
 of <file_spec>, see the entry for ’cat’ in section 1.)

 The possible directives are:

 −a Append. The named files are added to the end of the
 archive; if the archive did not previously exist, it is
 created. If any of the files is already contained in
 the archive, a diagnostic message is printed and the
 archive is not altered. If the "d" flag is specified
 and no errors are encountered in appending the new
 files, the files are deleted from the file system.

 −d Delete. The named members are deleted from the
 archive.

 −p Print. The named members are copied to standard output
 1, one after another. Files are not necessarily
 printed in the order specified in the argument list;
 rather, they are printed in the order in which they
 appear in the archive. If no names are given, all mem−
 bers of the archive are printed.

 −t Table. A table of contents of the archive file is
 printed on standard output 1. If file names are
 specified, information for only those members is
 printed.

 −u Update. The named members of the archive are updated
 from the file system; if no names are specified, all
 members of the archive are updated. Any files named in
 the argument list that have no corresponding members in
 the archive are added to the end of the archive; a new
 archive may be created in this manner. If the "d" flag
 is specified and no errors are encountered, all the
 files named in the argument list are deleted from the

 ar (1) − 1 − ar (1)

 ar (1) −−− archive file maintainer 01/16/83

 file system.

 −x Extract. This directive is similar to the "−p" direc−
 tive, except that the named members are written to
 individual files. Again, if no names are specified in
 the argument list, all archive members are extracted.
 The archive is not modified.

 Any of these directives may be accompanied by the "v" flag,
 which causes ’ar’ to print on standard output 1 the name of
 each archive member that it operates on. In the case of the
 "−t" directive, the "v" flag causes more information about
 each member to be printed. In the case of the "−p" direc−
 tive, the name of the member is written out immediately
 before the contents of the member.

 Examples

 ar −tv arch.a
 ar −x old_progs.a gamma.r gamma.b
 ar −d backup.a rf.r
 ar −ud archive.a ar.r ar.d
 ar −pv archive.a ar.r >archive.r
 lf −fc =src=/std.r | ar −u src.a −n

 Messages

 "Usage: ar ..." for incorrect argument syntax.
 "archive not altered" when fatal errors occur and the
 original archive is left intact.
 "<file>: can’t add" when a file to be put in the archive
 can’t be opened for reading.
 "can’t replace archive with <temp>" with the "−u" directive
 when the old archive can’t be replaced with the newly
 created one. The new archive is left in the file
 <temp>.
 "<member>: already in archive" with the "−a" directive when
 a named file is already in the archive.
 "delete by name only" with the "−d" directive when no member
 names are specified.
 "<file>: can’t create" with the "−x" directive when a file
 can’t be opened for writing to receive the extracted
 archive member, or with the "−a" and "−u" directives
 when a new archive file can’t be created.
 "can’t handle more than <max> file names" when more than
 <max> names are specified in the argument list.
 "<file>: duplicate file name" when the same name appears
 more than once in the argument list.
 "archive not in proper format" when ’ar’ is used on someth−
 ing other than an archive.
 "<member>: not in archive" with the "−d", "−p", "−t" and
 "−x" directives when a member named in the argument
 list is not in the archive.
 "<file>: can’t remove" with the "−a" and "−u" directives

 ar (1) − 2 − ar (1)

 ar (1) −−− archive file maintainer 01/16/83

 when a file can’t be deleted from the file system.
 "premature EOF" with the "−d", "−p", "−u" and "−x" direc−
 tives when end of file is encountered on the archive
 during the copying of a member.

 Bugs

 There is no way to change the name of an archive member.

 It takes a little longer than usual to extract archive mem−
 bers with the "−p" option when standard output is connected
 directly to the terminal.

 See Also

 cat (1), Software Tools

 ar (1) − 3 − ar (1)

 arg (1) −−− print command file arguments 03/20/80

 Usage

 arg <argument_number> [<level_offset>]

 Description

 ’Arg’ is used from within a shell program to print an
 argument specified on the command line that invoked that
 shell program. <Argument_number> is the ordinal position of
 the argument desired. (A value of zero corresponds to the
 command name, one corresponds to the first argument, etc.)
 <Level_offset> is used to specify the number of levels of
 nested input files and/or function calls that are to be
 skipped before fetching the specified argument string. A
 value of zero means fetch the argument from the first higher
 nesting level; one means skip one level to the second higher
 level, etc. The string thus obtained is printed on standard
 output 1, followed by a newline.

 Since ’arg’ is typically used in a function call within a
 shell program, the default value of <level offset> is one,
 so that the level corresponding to the function call is
 skipped and the shell program arguments are accessed.

 If <argument number> is out of range for the specified
 level, the empty string is returned and only a newline is
 printed.

 Examples

 print [arg 1] # These two commands fetch the
 arg 1 0 # same argument.

 echo [arg 1] [arg 2] [arg 3]

 See Also

 args (1), nargs (1), getarg (2), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 arg (1) − 1 − arg (1)

 args (1) −−− print command file arguments 03/20/80

 Usage

 args <first_argument> [<last_argument> [<level_offset>]]

 Description

 ’Args’ is similar in function to the ’arg’ command, except
 that multiple arguments are printed. The first argument
 printed is specified by <first_argument>. If
 <last_argument> is specified, all succeeding arguments up to
 and including it are printed, separated from each other by
 newlines. Otherwise, all remaining arguments are printed,
 again, separated from each other by newlines.

 Unlike ’arg’, a newline is printed only if at least one
 argument was printed.

 Examples

 print [args 1]
 pr [args 3 5]

 Bugs

 There is no way to specify a <level_offset> without specify−
 ing a <last_argument>.

 See Also

 arg (1), nargs (1), getarg (2), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 args (1) − 1 − args (1)

 argsto (1) −−− print command file arguments 04/28/80

 Usage

 argsto <delim> [<num> [<start> [<level_offset>]]]

 Description

 ’Argsto’ is used from within a shell program to print a
 group of arguments specified on the command line that
 invoked that shell program. ’Argsto’ prints the group of
 arguments delimited by arguments consisting of the string
 <delim>. <Num> is an integer that controls which group of
 arguments is printed. If <number> is 0 or omitted,
 arguments up to the first occurrence of <delim> are printed;
 if <number> is 1, arguments between the first occurrence and
 second occurrence of <delim> are printed, and so on.
 <Start> is an integer indicating the argument at which the
 scan is to begin; if <start> is omitted (or is 1), the scan
 begins at the first argument.

 <Level_offset> is used to specify the number of levels of
 nested input files and/or function calls that are to be
 skipped before fetching the specified argument string. A
 value of zero means fetch the argument from the first higher
 nesting level; one means skip one level to the second higher
 level, etc. The strings thus obtained are printed on stan−
 dard output 1, followed by a newlines.

 Since ’argsto’ is typically used in a function call within a
 shell program, the default value of <level offset> is one,
 so that the level corresponding to the function call is
 skipped and the shell program arguments are accessed.

 Examples

 rp [argsto / 2]
 fc [argsto / 1]

 See Also

 args (1), nargs (1), getarg (2), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 argsto (1) − 1 − argsto (1)

 banner (1) −−− convert text to banner size 01/16/83

 Usage

 banner { − | −c <char> } <string>

 Description

 ’Banner’ converts the text in the <string> argument into
 large characters for printing on a suitable hard copy
 printer. The printer should be able to handle 132 charac−
 ters per line.

 Output is produced on standard output 1 and may thus be
 piped to some other program or redirected to a file.

 The dash argument, if present, causes the banner to be
 white−on−black; if absent, the banner is black−on−white.

 The character used for printing the banner is the rubout,
 which appears on the line printer as a small rectangle com−
 posed of three vertical lines. This may be changed to any
 arbitrary ASCII character by using the "−c <char>" argument
 sequence.

 The type font produced is Fortune Light, by the Bauer Type
 Foundry.

 ’Banner’ is capable of producing all of the printable ASCII
 characters except for the following:

 ~ ^ \ ‘ { } [] _

 Of these characters, three may be used to specify other
 special symbols: the caret ("^") is interpreted as the
 "degrees" symbol (superscript zero), the grave accent ("‘")
 is interpreted as the ’cent’ symbol, and the underscore
 ("_") is interpreted as the superscript ’th’ symbol.

 Examples

 banner "Happy Birthday!" >saved_banner
 banner − "Hi Mom"
 banner "School of I. C. S." >/dev/lps

 Messages

 "Usage: banner ..." for improper arguments.

 See Also

 block (3)

 banner (1) − 1 − banner (1)

 basename (1) −−− select part of a pathname 02/22/82

 Usage

 basename [−(b | f | s | d | g)] { <pathname> }

 Description

 ’Basename’ is the function that knows about the syntax of
 pathnames and can select various portions of the name based
 on its arguments. It obtains input pathnames from its
 argument list, or from standard input if no arguments are
 specified, and prints the selected components on standard
 output. Options control the portion of the file name selec−
 ted as follows:

 Option Selects

 −b or none the base file name only
 −s the file suffix only
 −d the directory path only
 −f the directory path and file name
 −g the file name and suffix only

 Messages

 "Usage: basename ..." for bogus arguments.

 Examples

 basename −s myprog.plg
 cd [basename −d [file]]; [basename −g [file]]
 ld [basename [file]].b −o [basename [file]]

 See Also

 take (1), drop (1), rot (1)

 basename (1) − 1 − basename (1)

 batch (1) −−− interface to Primos batch subsystem 08/27/84

 | Usage

 batch [[−k] <command>] {<options>}
 batch −(s | d)[a | t] [<jobname>]
 batch −(c | a | r) <jobname>
 batch −m <jobname> {<options>}
 <options> ::= −a <acct> | −r | −n
 −h <home dir> | −t <cpu time> | −e <elapsed time> |
 −p <priority> | −q <queue> | −f <funit>

 Description

 ’Batch’ provides a Software Tools Subsystem interface to the
 Primos batch subsystem. It subsumes the functionality of
 the Primos JOB command, providing in addition a printed
 listing of the output of the batch job, regardless of its
 disposition.

 Scheduling a Batch Job

 The first alternative of ’batch’ allows the scheduling of
 Subsystem commands as batch jobs. <Command> is submitted to
 the batch queue along with commands to invoke the Subsystem
 and catch its terminal output. If <command> contains
 arguments, it should be surrounded by quotes so that it
 appears as one argument to ’batch’. If <command> begins
 with a hyphen, it must be preceded by the "−k" flag to
 identify it as a command. If <command> is omitted, ’batch’
 reads commands from standard input.

 Before mentioning the available <options>, a few words must
 be said about the Primos batch subsystem. As configured at
 Georgia Tech, the batch subsystem has three queues, named
 "fast", "default", and "slow". When a job is scheduled to
 run in one of these queues, it takes on the default
 attributes assigned to that queue, unless otherwise
 specified. The queue attributes are as follows:

 fast default slow

 Priority 2 1 0
 Timeslice 1.0 sec 2.0 sec 4.0 sec
 Cpu Time:
 Default 4 sec 200 sec 60 min
 Maximum 8 sec 400 sec unlimited
 Elapsed Time:
 Default 30 sec 50 min 24 hrs
 Maximum 60 sec 100 min unlimited

 When scheduling jobs, several options can be specified on
 the command line to change the default behavior. These
 options are as follows:

 −q <Queue> is the queue name ("fast", "slow", or

 batch (1) − 1 − batch (1)

 batch (1) −−− interface to Primos batch subsystem 08/27/84

 "default") in which the batch job is to be
 scheduled. If this option is omitted, the
 job will be scheduled in queue "default".

 −a <Acct info> is any string of accounting
 information desired. This information is for
 documentation only.

 −h <Home dir> is the name of the directory in
 which the batch job is to be started. If
 this option is omitted, the job will start in
 the directory from which the ’batch’ command
 is issued.

 −t <Cpu time> is the maximum allowable cpu time
 in seconds, after which the job will be
 terminated. It must not be larger than the
 maximum allowable elapsed time for the queue.
 If this option is omitted, the default cpu
 time for the selected queue will be enforced
 as the maximum.

 −e <Elapsed time> is the maximum allowable elap−
 sed (wall−clock) time in seconds, after which
 the job will be terminated. It must not be
 larger than the maximum allowable elapsed
 time for the queue. If this option is omit−
 ted, the default elapsed time for the selec−
 ted queue will be enforced as the maximum.

 −p <Priority> specifies order within the queue
 as an integer from 0 to 9. It should
 normally not be used.

 −f <Funit> is the Primos file unit from which
 the batch job is to obtain its input. The
 default is unit 6.

 −r This option specifies that the job should be
 restarted upon system failure. If it is
 omitted, the job will not be restarted on
 system failure.

 −n This option specifies that no batch print
 file be created for the job. If this option
 is omitted, a batch print file will be
 created summarizing the job’s execution.

 Obtaining Batch Job Status

 The second alternative of the ’batch’ command allows the
 user to see the status of selected batch jobs. Normally, a
 user may only request status information about his own jobs.
 There are two basic status requests: "s" (status), and "d"

 batch (1) − 2 − batch (1)

 batch (1) −−− interface to Primos batch subsystem 08/27/84

 (display). "S" produces a one line summary for each job
 while "d" produces a much more detailed summary.

 The additional option "a" with either request returns
 information about active jobs (rather than completed or
 aborted jobs), while "t" returns information about jobs
 scheduled "today". If neither "a" or "t" is specified, all
 jobs scheduled within the last five days are displayed.

 If <jobname> is specified, only information about the named
 job will be printed, if the job meets the other criterion
 set by the "a" or "t" option.

 Cancelling Existing Jobs

 The third alternative to the ’batch’ command allows the
 cancellation of existing jobs. The "−a" option will cause
 the named job to be immediately aborted if it is executing,
 or cause it to be removed from the queue if it is not
 executing. The "−c" option causes the named job to be
 removed from the queue if it is not executing, but be
 allowed to continue if it is executing. The "−r" option
 forces immediate termination of an executing job, but
 returns it to the queue for re−execution.

 Modifying Existing Jobs

 Job attributes may be modified after a job is scheduled with
 the fourth alternative of the ’batch’ command. Any options
 specified on the command will cause corresponding changes to
 the named job. The "−p <priority>" and "−q <queue>" options
 may not be specified.

 Files

 Numerous files in "//batchq".
 =varsdir=/=user=.<line>.<seq>
 =varsdir=/.batch_seq
 =temp=/tm?*

 Messages

 "Usage: batch ..." for erroneous syntax.
 "=varsdir=/.batch_seq: can’t open"

 Bugs

 | Job modification is not implemented.

 batch (1) − 3 − batch (1)

 batch (1) −−− interface to Primos batch subsystem 08/27/84

 See Also

 ph (1), Primos phant$, Primos batch$

 batch (1) − 4 − batch (1)

 bye (1) −−− log out from the Subsystem 03/20/80

 Usage

 bye

 Description

 ’Bye’ is a shell program which may be used to log out from
 the Subsystem. It contains

 stop −

 For details on the action of ’stop’, see its documentation.

 Examples

 bye

 See Also

 stop (1), Primos logo$$

 bye (1) − 1 − bye (1)

 case (1) −−− case statement for shell files 02/22/82

 Usage

 case <value>
 when <alternative1>
 { <command> }
 when <alternative2>
 { <command> }
 ...
 out
 { <command> }
 esac

 Description

 ’Case’ provides capabilities for conditional execution of
 commands in a manner similar to the case statements of the
 Algol 68 and Pascal programming languages. It allows a
 group of commands to be selected for execution based upon
 the value of some expression.

 ’Case’ is always associated with a corresponding ’esac’ com−
 mand which marks the end of the scope of the ’case’.

 ’Case’ accepts one argument to determine which of the sub−
 sequent groups of commands is to be executed. Any construct
 that yields a valid argument may be used. Each group of
 commands following ’case’ is introduced by either a ’when’
 command or an ’out’ command. The ’when’ command takes a
 string argument which is compared with <value>. If the two
 match, the associated group of commands is executed and the
 remaining alternatives are skipped; otherwise, the
 associated commands are skipped. This proceeds until either
 an ’out’ command or an ’esac’ command is seen. If ’out’ is
 seen, the associated command group is unconditionally
 executed; otherwise, the whole ’case’ command results in no
 action. Thus, the commands associated with an ’out’ command
 are executed by default, if no other alternative is selec−
 ted.

 Examples

 case [term_type]
 when "b200"
 se −t b200 [args]
 when "diablo"
 ed [args]
 out
 echo "Unknown terminal type."
 esac

 case (1) − 1 − case (1)

 case (1) −−− case statement for shell files 02/22/82

 case [login_name]
 when ICS002
 set name = Allen
 set class = 4A
 when ICS005
 set name = Dan
 set class = 6D
 when ISLAB
 set name = Perry
 set class = Staff
 out
 echo "I’m sorry, but I don’t recognize you."
 set (name class) = ([login_name] UNKNOWN)
 esac

 Messages

 "missing esac" when end of file is encountered before match−
 ing ’esac’ command is seen

 Bugs

 The string on the ’when’ command is not evaluated, so func−
 tion calls, iteration, etc. are not allowed there.

 See Also

 if (1), esac (1), out (1), when (1), goto (1)

 case (1) − 2 − case (1)

 cat (1) −−− concatenate and print files 08/24/84

 | Usage

 | cat { <file_spec> | −h | −s }

 <file_spec> ::= <filename> | −[<stdin_number>] |
 −n(<stdin_number>|<filename>)

 Description

 ’Cat’ concatenates the contents of the files specified in
 its argument list and writes the result on its first stan−
 dard output. Files to be concatenated may be specified in
 any of several ways:

 <filename> an ordinary Subsystem pathname.

 −<stdin_number> a dash followed by a decimal number,
 ’n’, designates the ’n’th standard
 input. ’n’ must be a legal standard
 input number.

 − this is the same as specifying "−1"
 (i.e. standard input 1).

 −n<stdin_number> "−n" followed by a decimal number ’n’
 indicates that the names of the files to
 be concatenated are to be read from the
 ’n’th standard input.

 −n this is the same as "−n1".

 −n<filename> the names of the files to be
 concatenated are to be read from the
 named file.

 If no arguments appear, the first standard input file is
 copied to standard output until end−of−file.

 If the "−h" argument is given, ’cat’ precedes the contents
 of each file copied with a header line consisting of twenty
 equals−signs ("=") followed by a blank, the name of the
 | file, another blank, and twenty more equals signs.

 | If the "−s" argument is given, ’cat’ will be "silent". In
 | other words, if it cannot open a file, it will not complain.
 | This is mainly for the benefit of shell scripts like ’sep’,
 | and the Subsystem ’build’ procedures.

 Examples

 cat time_sheet
 cat >junk
 print_file> cat
 prog | cat −2 − >two_and_one

 cat (1) − 1 − cat (1)

 cat (1) −−− concatenate and print files 08/24/84

 files .r$ | cat −n
 cat −h −nnamelist >/dev/lps

 Messages

 | "<file>: can’t open" if it can’t open the named file, and
 | the "−s" option was not specified.

 See Also

 copy (1), cp (1), print (1), pr (1), tee (1), gfnarg (2)

 cat (1) − 2 − cat (1)

 cc (1) −−− compile a C program 10/10/84

 | Usage

 | cc [<pathname>] [−afy]
 | {−D<name>[=<val>] | −I<dir>}
 | [−b[<b_pathname>]]
 | [−s[<s_pathname>]]
 | [−u<u_number>]

 | Description

 | ’Cc’ compiles the C program in <pathname>. It is an error
 | to invoke ’cc’ without a path name. The ".c" suffix on the
 | source file name is optional, although ’cc’ requires that
 | the source code reside in a file named with a ".c" suffix.
 | If the source file name specified in <pathname> does not
 | have a ".c" suffix, ’cc’ will append a ".c" and attempt to
 | process a file with that name. The object code is stored in
 | "<pathname>.b".

 | A full description of the C language is beyond the scope of
 | this document. For complete information, refer to The C
 | Programming Language by Brian W. Kernighan and Dennis M.
 | Ritchie (Prentice−Hall, 1978).

 | The following options are available:

 | −a Abort all active shell programs if any errors were
 | encountered during processing. This option is
 | useful in shell programs like ’ccl’ that wish to
 | inhibit compilation and loading if processing
 | failed. By default, this option is not selected;
 | that is, errors in processing do not terminate
 | active shell programs.

 | −b Compile the source code into the object file named
 | "<b_pathname>". ’Cc’ effectively ignores this
 | option if <b_pathname> is unspecified.

 | −f Suppress automatic inclusion of standard
 | definitions file. Macro and common block
 | definitions for the C Standard I/O Library and
 | interfacing with the Subsystem reside in the file
 | "=cdefs=". ’Cc’ will process these definitions
 | automatically, unless the "−f" option is
 | specified.

 | −s Compile the source code into a PMA file named
 | "<s_pathname>". The object code will be left in a
 | file named "<s_pathname>.b" (".s" suffix replaced
 | by ".b"). If <s_pathname> is not specified, ’cc’
 | places the compiler output in "<pathname>.s" and
 | the object module in "<pathname>.b". The
 | "<s_pathname>" will over−ride any path name given
 | to the "−b" option. In addition, ’cc’ will always
 | use ’vcg’ to generate binary.

 cc (1) − 1 − cc (1)

 cc (1) −−− compile a C program 10/10/84

 | −u Reserved.

 | −y Check for potential problems, e.g. type mis−
 | matches. (This is similar in purpose to the Unix
 | ’lint’ program.)

 | −D Defines the identifier <name> with optional
 | <value> for program internal use (maximum of 10).

 | −I Specifies a directory where include files reside
 | (maximum of 10). All "−I" directories are sear−
 | ched after the current directory and before
 | "=incl=".

 | Examples

 | cc file.c
 | cc prog.c −af

 | Messages

 | Numerous and self−explanatory.

 | Bugs

 | The "−a" flag doesn’t always work yet.

 | The "−y" option complains about many things that are not
 | problems. For instance, it does not know about the run−time
 | library.

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | compile (1), ccl (1), ld (1), ucc (1), vcg (1), bind (3), c1
 | (5), User’s Guide for the Georgia Tech C Compiler

 cc (1) − 2 − cc (1)

 ccl (1) −−− compile and load a C program 10/10/84

 | Usage

 | ccl [<pathname>] [<’ld’ args>] [/ <’cc’ args>]

 | Description

 | ’Ccl’ is a shell program that compiles and loads the C
 | program in <pathname>. If ’ccl’ is invoked with no
 | <pathname> argument, it automatically processes the last
 | program edited, since it shares the shell variable ’f’ with
 | the shell program ’e’. If the source file name specified in
 | <pathname> does not have a ".c" suffix, ’ccl’ will append a
 | ".c" and attempt to process a file with that name. The ".c"
 | suffix on the source file name is not required, although
 | ’ccl’ requires that the source code reside in a file named
 | with a ".c" suffix. The executable code is stored in
 | <pathname>, or a file named appropriately from <’ld’ args>
 | (e.g., "−o gorf") or from <’cc’ args> (e.g., "−b bonzo").

 | Options for ’ld’ (names of libraries, for example) may fol−
 | low the name of the source file, e.g. "ccl prog −l mylib".
 | Special options for ’cc’ may be placed after the ’ld’
 | options, as long as they are separated by an argument
 | consisting only of a slash; for example, "ccl prog −l mylib
 | / −f". Aberrent command syntax may produce bizarre results.

 | Examples

 | ccl # cc and ld the last file edited with ’e’

 | ccl profile
 | ccl profile.c

 | ccl change −l mylib

 | Messages

 | "<source_file>: can’t open" for missing ".c" file

 | Bugs

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | compile (1), cc (1), vcg (1), ld (1), ucc (1), c1 (5), bind
 | (3), User’s Guide for the Georgia Tech C Compiler

 ccl (1) − 1 − ccl (1)

 cd (1) −−− change home directory 03/25/82

 Usage

 cd [−p] [<pathname>]

 Description

 ’Cd’ changes the current working directory. <Pathname>
 gives the pathname of the target directory; if no arguments
 are present, the user’s login directory is assumed.

 If "−p" is given as the first argument, ’cd’ prints on stan−
 dard output the full pathname of the directory specified as
 the second argument. If there is no second argument, the
 full pathname of the current directory is printed. In
 neither case is the current working directory changed.

 Examples

 cd
 cd =extra=/fmacro
 cd subdir
 cd −p
 cd −p =src=

 Messages

 "bad pathname" when an invalid pathname is specified.

 See Also

 mkdir (1), Primos atch$$, Primos gpath$, gcdir$ (6)

 cd (1) − 1 − cd (1)

 cdmlc (1) −−− interface to Prime DBMS Cobol DML preprocessor 08/27/84

 | Usage

 cdmlc <input file>
 [−b [<output file>]]
 [−l [<listing file>]]
 [−z <CDML option>]

 Description

 ’Cdmlc’ serves as the Subsystem interface to the Prime DBMS
 Cobol DML preprocessor (CDML). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 output files as needed, and then produces a Primos CDML com−
 mand and causes it to be executed.

 The "−b" option is used to select the name of the file to
 receive the output Cobol code from the preprocessor. If a
 file name follows the option, then that file receives the
 output. If the option is not specified, or no file name
 follows it, a default filename is constructed from the input
 filename by changing its suffix to ".dcob". For example, if
 the input filename is "prog.cob", the output file will be
 "prog.dcob"; if the input filename is "foo", the output file
 will be "foo.dcob".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the preprocessor. If a
 file name follows the option, then that file receives the
 listing. If the "−l" option is specified without a file
 name following it or is not specified, a default filename is
 constructed from the input filename by changing its suffix
 to ".dl". For example, if the input filename is "gon−
 zo.cob", the listing file will be "gonzo.dl"; if the input
 filename is "bar", the listing file will be "bar.dl".

 The input filename must be a disk file name (conventionally
 ending in ".cob" or ".cobol").

 In summary, then, the default command line for compiling a
 file named "file.cob" is

 cdmlc file.cob −b file.dcob −l file.dl

 which corresponds to the CDML command

 cdml −i *>file.f −b *>file.dcob −l *>file.dl

 Examples

 cdmlc file.cob
 cdmlc payroll.cob −b b_payroll −l l_payroll
 cdmlc funnyprog.cob −z"−newopt"

 cdmlc (1) − 1 − cdmlc (1)

 cdmlc (1) −−− interface to Prime DBMS Cobol DML preprocessor 08/27/84

 Messages

 "Usage: cdmlc ..." for invalid option syntax.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable output file name" if an attempt was
 made to output on the terminal or line printer spooler.
 "Sorry, the listing file must be a disk file" if the listing
 file was directed to a device file.
 "Sorry, the output file must be a disk file" if the output
 file was directed to a device file.

 Bugs

 ’Cdmlc’ pays no attention to standard ports.

 There is no way to avoid getting both a listing and output
 file.

 See Also

 | cobc (1), csubc (1), ddlc (1), cdmlcl (1), ld (1), bind (3)

 cdmlc (1) − 2 − cdmlc (1)

 cdmlcl (1) −−− compile and load a Cobol DML program 08/27/84

 | Usage

 cdmlcl <program name> [<’ld’ options>] [/ <’cobc’ options>]

 Description

 ’Cdmlcl’ is a shell file that invokes the Prime DBMS Cobol
 DML preprocessor, the Primos Cobol compiler and the Primos
 | segmented loader. If ’cdmlcl’ is invoked with no <program
 | name> argument, it automatically processes the last program
 | edited, since it shares the shell variable ’f’ with the
 | shell program ’e’. The name of the file containing the
 program to be compiled must end with ".cob", although in
 <program name> it may be specified with or without the end−
 ing ".cob". If no output file is specified in the <’ld’
 options>, the output object file name will be <program name>
 with no extension.

 Concerning the options, ’cobc’ will be called with the
 <’cobc’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 cdmlcl myprog.cob
 cdmlcl myprog subs.b subs2.b −l mylib
 cdmlcl myprog / −ok −l mylist

 Messages

 "<program name>.cob: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | cdmlc (1), cobc (1), ld (1), bind (3)

 cdmlcl (1) − 1 − cdmlcl (1)

 change (1) −−− look for a pattern and change it 02/01/81

 Usage

 change <pattern> [<substitution> { <string> }]

 Description

 ’Change’ searches text strings for a pattern, changes each
 occurrence of that pattern to the specified substitution
 string, and writes the result on the standard output. The
 first argument specifies the pattern to be matched; the
 second (optional) argument specifies the substitution string
 to replace the matched string. If the substitution string
 is missing, it is assumed to be null (i.e., the matched
 string is deleted). Any additional arguments are taken as
 strings to be changed. Each is interpreted as a newline−
 terminated string; thus, lacking specific instances of the
 newline character in the <pattern> or <substitution>
 strings, each additional argument will cause one line of
 output to be produced. If no <string> arguments are sup−
 plied, lines of text to be changed are read from the stan−
 dard input.

 Patterns and substitution strings recognized by ’change’ may
 take any form allowed in the text editor’s substitute com−
 mand. For a discussion of this syntax, refer to the
 documentation for the Subsystem text editor, ’ed’, found in
 the Introduction to the Software Tools Subsystem Text
 Editor.

 Examples

 lf −c | sort | change "?*" "/mfd/&" >files
 file.f> change "%C" "#" >file.r
 change ".pl1$" ".l" [source_file]

 Messages

 "Usage: change ..." if no arguments are supplied.
 "illegal pattern string" for bad pattern.
 "illegal substitution string" for bad substitution string.

 See Also

 ed (1), find (1), tlit (1), makpat (2), maksub (2), match
 (2), catsub (2)

 change (1) − 1 − change (1)

 chat (1) −−− change file attributes 08/27/84

 | Usage

 chat { { <option> } { <pathname> } }
 <option> ::= −k <lock> | −m <date> <time> |
 −p <protect> | −s [<depth>] | −u
 <lock> ::= sys | n−1 | n+1 | n+n
 <date> ::= mm/dd/yy
 <time> ::= hh:mm:ss
 <protect> ::= {t | w | r | a}[/{t | w | r | a}]
 <depth> ::= <positive integer>

 Description

 ’Chat’ allows a user to change the attributes associated
 with a file or a group of files. Arguments to ’chat’ are
 generally of the form:

 <attributes> <files> { <attributes> <files> }

 where <attributes> consists of a series of one or more
 options, and <files> is a list of files to which the
 specified attributes should be applied. Options consist of
 an option flag ("−" followed by a single character) usually
 followed by a string specifying the value of the attribute
 to be set. In most cases, this value string may either be a
 separate argument from the option flag, or appended to the
 option flag itself. The exceptions to this rule are the
 "−u" option which takes no value string, and the "−m" option
 which requires two value strings, each of which must be a
 separate argument.

 The following options are available:

 −k the lock that governs concurrent access to a given
 file by multiple users is set for each named file
 according to the value string which may be any of the
 following:

 sys the default system value is used; at most
 installations this is equivalent to "n−1".

 n−1 multiple readers or one writer.

 n+1 multiple readers and one writer.

 n+n multiple readers and writers.

 −m the date and time of last modification is set for
 each of the named files according to the two value
 strings that follow. The first string specifies a
 date, and the second a time in military (24 hour)
 format.

 −p the protection mode associated with the named files

 chat (1) − 1 − chat (1)

 chat (1) −−− change file attributes 08/27/84

 is set according to the value string which is com−
 posed of two fields separated by a "/". The charac−
 ters to the left of the "/" specify the types of
 access to be allowed to users with "owner" status,
 and those to the right specify the types of access to
 be given to users with "non−owner" status. The pos−
 sible types of access are "truncate" (or "delete"),
 "write" and "read", represented by the characters
 "t", "w" and "r" respectively. If all three types of
 access are to be allowed, the character "a" may be
 used instead of "twr". If nonowners are to receive
 no access whatsoever, the slash may be omitted.

 −s the named files are assumed to be directories and the
 specified attributes are applied to all files in the
 subtree rooted in those directories. If a value
 string is specified, it must be a positive integer
 that indicates the maximum number of levels below the
 named directories to which ’chat’ is to descend. For
 example, if "−s1" is specified, only the files
 immediately contained in the named directory will
 have their attributes set.

 −u turn on the "dumped" flag associated with each named
 file. Primos turns off the "dumped" flag associated
 with a given file each time the file is modified.
 When the file system is periodically dumped to tape,
 only those files whose "dumped" flags are off (i.e.
 that have been changed since the last backup) are
 actually copied to the tape. The "dumped" flags of
 those files are then turned on to indicate that the
 files have been backed up.

 If no options (other than "−s") are specified, the
 attributes "−p a/r" are assumed. If the "−s" option is used
 and no <pathname> arguments are given, a pathname equivalent
 to that of the current directory is assumed.

 To find the attribute values currently held by a file, use
 the ’lf’ command.

 Examples

 chat −s
 chat −u junkfile
 chat −p wr/r f1 f2 −p a/wr f3
 chat −s1 //src

 Messages

 "Usage: chat ..." for unrecognizable options.
 "<pathname>: bad pathname" if a specified pathname refers
 to a non−existent file.
 "<pathname>: not a directory" if the "−s" option is used on

 chat (1) − 2 − chat (1)

 chat (1) −−− change file attributes 08/27/84

 a non−directory file.

 The following messages occur when a specified attribute can−
 not be set:

 "<pathname>: can’t set protection"
 "<pathname>: can’t set modification date/time"
 "<pathname>: can’t set dumped bit"
 "<pathname>: can’t set read/write lock"

 The following messages occur when specific argument syntax
 errors are detected:

 "<arg>: bad date"
 "<arg>: bad time"
 "<arg>: bad protection mode"
 "<arg>: bad lock specification"

 See Also

 | lf (1), sacl (1), tscan$ (6), sprot$ (6)

 chat (1) − 3 − chat (1)

 clear (1) −−− clear terminal screen 02/22/82

 Usage

 clear

 Description

 ’Clear’ outputs the correct characters to clear a terminal
 screen. It calls ’vtinit’ to get the user’s terminal
 characteristics. If the terminal type is found, the screen
 is updated with the blank screen to clear it, otherwise 25
 blank lines are output to clear the screen.

 Examples

 clear

 Files

 =vth=/<terminal_type>

 See Also

 vtinit (2), vtupd (2), and other VTH routines (vt?*) (2)

 clear (1) − 1 − clear (1)

 clock (1) −−− digital time−of−day clock for CRTs 02/22/82

 Usage

 clock

 Description

 ’Clock’ generates the display for a digital clock, in the
 form "hh:mm:ss". It can be used on any CRT terminal that
 supports the "backspace" function. Time−of−day is
 guaranteed to be as accurate as the wristwatch of whoever
 last set the system time.

 ’Clock’ is terminated by typing control−P or by pressing the
 BREAK key.

 Examples

 clock

 Bugs

 Works only on CRT terminals.

 See Also

 date (1), day (1), time (1), date (2)

 clock (1) − 1 − clock (1)

 cmp (1) −−− string comparison 01/16/83

 Usage

 cmp <string1> <relation> <string2>

 Description

 ’Cmp’ is a string comparison utility that is designed for
 use in function calls within arithmetic expressions. It
 compares the two strings given as arguments, and returns 1
 if the specified relation holds, 0 otherwise. The following
 relations are supported (operators are the same as those in
 Ratfor, with some synonyms):

 == equal to
 = equal to
 < less than
 > greater than
 <= less than or equal to
 =< less than or equal to
 >= greater than or equal to
 => greater than or equal to
 ~= not equal to
 <> not equal to
 >< not equal to

 Notice that if the "greater than" symbol (">") is used in
 the <relation> argument, the argument must be quoted to
 prevent the shell from interpreting it as an I/O redirector.

 Examples

 if [cmp [day] = friday]; echo T.G.I.F.; fi
 cmp [response] ~= "yes"
 cmp [term] ">=" [term_list[i]]

 Messages

 "Usage: cmp ..." for invalid arguments.

 Bugs

 Redirection problem mentioned above.

 See Also

 case (1), eval (1), if (1), equal (2), strcmp (2)

 cmp (1) − 1 − cmp (1)

 cn (1) −−− change file names 03/20/80

 Usage

 cn <pathname> <new name> { <pathname> <new name> }

 Description

 ’Cn’ changes the names of the files named as arguments.
 Arguments must be paired; the first argument in a pair is
 the pathname of the file whose name is to be changed, the
 second argument in the pair is the new name to be given to
 the file. The new name must be a simple file name, not a
 pathname. Thus, ’cn’ may not be used to move files from one
 directory to another. Use ’cp’ for this purpose.

 Examples

 cn //cmdnc0/new_go go
 cn old new first last always never

 Messages

 "<pathname>: missing name" if <new name> is missing
 "<pathname>: bad pathname" if <pathname> could not be fol−
 lowed
 "Usage: cn old new {old new}" for no arguments
 "<new name>: already exists" for duplicate file name
 "<pathname>: not found" for non−existent file name.
 "<new name>: cannot move file to new directory" for an
 unescaped slash in the new name.

 See Also

 cp (1), Primos cname$

 cn (1) − 1 − cn (1)

 cobc (1) −−− interface to Primos Cobol compiler 08/27/84

 | Usage

 cobc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <COBOL option>]
 <option> ::= d | m | v | x

 Description

 ’Cobc’ serves as the Subsystem interface to the Primos Cobol
 compiler (COBOL). It examines its option specifications and
 checks them for consistency, provides Subsystem−compatible
 default file names for the listing and binary files as
 needed, and then produces a Primos COBOL command and causes
 it to be executed.

 Options

 The general structure of an ’cobc’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −d(1) [0..2] − Debugging.

 Level 0 causes debugging statements in the source
 program to be ignored.

 Levels 1 and 2 cause debugging statements in the source
 program to be compiled.

 −m(1) [1..2] − Addressing.

 Level 1 causes the compiler to generate code in 64R
 mode.

 Level 2 causes the compiler to generate code in 64V
 mode.

 −v(1) [1..2] − Listing verbosity.

 Level 1 generates a full source code listing containing
 the machine code representation of each instruction.

 Level 2 generates a full source code listing that
 includes the code generated by all macro calls.

 cobc (1) − 1 − cobc (1)

 cobc (1) −−− interface to Primos Cobol compiler 08/27/84

 −x(1) [0..2] − Cross−reference listing control.

 Level 0 causes the compiler to generate no cross
 reference listing at the end of the source program
 listing.

 Levels 1 and 2 cause the compiler to generate a full
 cross−reference of all variables at the end of the
 source listing.

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.cob", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.cob", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".cob" or ".cobol") or the device
 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a
 file named "file.cob" is

 cobc −d1m1v1x1 file.cob −b file.b −l /dev/null

 which corresponds to the COBOL command

 cobol −i *>file.cob −b *>file.b −l no

 cobc (1) − 2 − cobc (1)

 cobc (1) −−− interface to Primos Cobol compiler 08/27/84

 Examples

 cobc file.cob
 cobc −xm2 payroll.cob −b b_payroll −l l_payroll
 cobc −v2 funnyprog.cob −z"−newopt"

 Messages

 "Usage: cobc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to <upper
 bound>" if an out−of−range level number is specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’cobc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Cobc’ pays no attention to standard ports.

 See Also

 | cobcl (1), ld (1), bind (3)

 cobc (1) − 3 − cobc (1)

 cobcl (1) −−− compile and load a Cobol program 08/27/84

 | Usage

 cobcl <program name> [<’ld’ options>] [/ <’cobc’ options>]

 Description

 ’Cobcl’ is a shell file that invokes the Primos Cobol com−
 piler and the Primos segmented loader. The program is com−
 | piled and linked in 64V mode. If ’cobcl’ is invoked with no
 | <program name> argument, it automatically processes the last
 | program edited, since it shares the shell variable ’f’ with
 | the shell program ’e’. The name of the file containing the
 program to be compiled must end with ".cob", although in
 <program name> it may be specified with or without the end−
 ing ".cob". If no output file is specified in the <’ld’
 options>, the output object file name will be <program name>
 with no extension.

 Concerning the options, ’Cobc’ will be called with the
 <’cobc’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 cobcl myprog.cob
 cobcl myprog subs.b subs2.b −l mylib
 cobcl myprog / −dx −l mylist

 Messages

 "<program name>.cob: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | cobc (1), ld (1), bind (3)

 cobcl (1) − 1 − cobcl (1)

 col (1) −−− convert input to multi−column output 07/31/80

 Usage

 col { −c <columns> | −g <gutter width> | −i <indent> |
 −l <page length> | −w <column width> | −t }

 Description

 ’Col’ is a filter that reads lines from standard input and
 writes multi−column pages on standard output. The arguments
 control what assumptions are made about such things as the
 size of the input lines, the length of the output page, the
 number of columns per page, and so on; any combination of
 the following may be used:

 −c may be used to control the number of columns per page;
 it must be followed by a positive integer. The current
 implementation of ’col’ restricts the maximum number of
 columns per page to 8. If "−c" is omitted, two columns
 per page is assumed.

 −g may be used to set the width of the "gutters" that
 separate the columns from each other; it must be fol−
 lowed by a non−negative integer. If "−g" is omitted,
 five blanks are placed between columns.

 −i may be used to set a running indentation of the left
 margin and must also be followed by a non−negative
 integer. If no "−i" is given an indentation value of
 zero is assumed.

 −l may be used to specify the number of lines on each page
 of output and must be followed by a positive integer.
 If it is omitted, ’col’ assumes a page length of 54
 lines, which incidentally is the number lines placed on
 each page by the ’print’ command.

 −w may be used to set the width of each column and should
 also be followed by a positive integer. To allow lines
 containing backspaces and overstruck characters whose
 length exceed their printed width, ’col’ never
 truncates input lines; consequently, best results occur
 when all the input lines have a printed width no
 greater than the specified value. If "−w" is omitted,
 three inch wide columns are produced (i.e., 30 charac−
 ters per column, printed at 10 characters per inch).

 −t may be used to select parameter values suitable for
 generating output on a CRT screen. Specifically, this
 option selects five columns of 14 characters each per
 22 line page with two character gutters and no
 indentation. The output generated under these
 parameters is suitable to be piped into the ’pg’ com−
 mand. If additional options are used, the parameter
 values so specified override those selected by "−t".

 col (1) − 1 − col (1)

 col (1) −−− convert input to multi−column output 07/31/80

 Examples

 file> col | print
 files .r$ | col −t | pg
 paper> col −c 2 −w 60 −l 66 >/dev/lps

 Messages

 "Usage: col ..." for improper arguments.
 "too many columns" if more that 8 columns are requested.
 "too many lines" if there is inadequate buffer space to hold
 an entire page.

 Bugs

 The default parameter values are probably wrong. Misbehaves
 when input lines contain more backspaces than printable
 characters.

 See Also

 pg (1), print (1)

 col (1) − 2 − col (1)

 common (1) −−− print lines common to two sorted files 03/20/80

 Usage

 common [−{1 | 2 | 3}] [<file1> [<file2>]]

 Description

 ’Common’ prints the lines common to two sorted files. It
 normally produces three columns of output: Column one
 contains lines present in <file1> but not present in
 <file2>; column two contains lines present in <file2> but
 not in <file1>; and column three contains lines common to
 both files.

 The first argument may be used to select the columns to be
 printed. A dash followed by a "1" selects the first column,
 a dash followed by "12" selects columns one and two, etc.
 For example, to print lines in the second file or in both
 files (i.e. columns two and three), the argument should be
 "−23".

 If the second file name argument is omitted, the first stan−
 dard input is used for <file2>; if no <file >name arguments
 appear, the first and second standard inputs will be used
 for <file1> and <file2> respectively.

 Examples

 lf −c =bin= | sort >file1;
 lf −c =doc=/fman/s1 | sort >file2;
 common −1 file1 file2

 common −1 wordlist =dictionary=

 Messages

 "Usage: common ..." for illegal arguments.

 See Also

 diff (1), sort (1), lf (1)

 common (1) − 1 − common (1)

 como (1) −−− divert command output stream 01/16/83

 Usage

 como { −{c | n | p | t} } [<pathname>]

 Description

 The ’como’ command is used to control the destination of
 command output; that is, output from a program that would
 otherwise appear on the terminal. (This is in no way
 related to the redirection of standard inputs and outputs
 provided by the Subsystem.) It is useful in conjunction
 with phantoms or long command files that are usually run
 without human supervision.

 Command output may be routed to the terminal (the normal
 case), a file, both the terminal and a file, or to neither
 destination (in which case the output is lost). The options
 are as follows:

 −c (Continue.) If a <pathname> argument is
 specified, subsequent command output is appended
 to the named file; otherwise, output to a
 previously opened file is continued (see the "−p"
 option). Terminal output is not affected.

 −n (No output to terminal.) Terminal output is tur−
 ned off. File output is not affected.

 −p (Pause.) File output is turned off. The file is
 not closed, so that file output may be sub−
 sequently resumed with a "como −c" command.
 Terminal output is not affected.

 −t (Output to terminal.) Terminal output is turned
 on. The use of this option in no way affects the
 status of file output.

 In all cases, the specification of a <pathname> results in
 the opening of the named file and the turning on of file
 output, even when the "−p" option is specified. When used
 without any arguments, ’como’ closes any file that may have
 been receiving command output, turns off file output, and
 turns on terminal output.

 Examples

 como listing
 como
 como −cn save

 como (1) − 1 − como (1)

 como (1) −−− divert command output stream 01/16/83

 Messages

 "Usage: como ..." for invalid argument syntax.
 "bad pathname" the <pathname> could not be found.

 Bugs

 If a <pathname> is specified and the file did not previously
 exist, a direct access file is created, rather than a
 sequential file.

 See Also

 Primos como$$, Primos COMO command

 como (1) − 2 − como (1)

 compile (1) −−− compile and load mixed language programs 10/10/84

 | Usage

 | compile {<input_files>} [−c] [−m <language>] [−C<’cc’ options>]
 | [−R<’rp’ options>] [−F<’fc’ options>] [−S<’pmac’ options>]
 | [−P<’pc’ options>] [{−l <library>}] [−o <output_file>]

 | Description

 | ’Compile’ is a general purpose interlude for calling the
 | various compilers available. The choice of compiler is
 | determined by the suffix of the file name.

 | ’Compile’ compiles and loads the pathnames specified. The
 | following options are available:

 | −c Compile only. The various source files will be
 | compiled, but the loader will not be called.

 | −m <language>
 | Specify a "main" language. If the "main" language
 | requires a special library and/or start−off
 | routine, then ’compile’ will arrange to load it.
 | The <language> should be one of the suffix letters
 | listed below. By default, no special libraries
 | (besides the regular "vswtlb") will be loaded.

 | −l <library>
 | Load <library>.

 | −o <output file>
 | Place executable file in <output file>.

 | ’Compile’ recognizes the following file naming conventions
 | and will utilize the appropriate preprocessor and/or com−
 | piler:

 | .c −− C source file
 | .s −− Pma source file
 | .r −− Ratfor source file
 | .f −− Fortran 66 source file
 | .p −− Pascal source file

 | Therefore, if your current directory contains the files
 | "f1.s", "f2.c", "f3.r", "f4.f", and "f5.p" and you execute
 | the command "compile f1.s f2.c f3.r f4.f f5.p", ’compile’
 | will call the appropriate language processors for each file
 | and load the resulting binary versions together. Note that
 | even though there are both C and Pascal files listed, their
 | special libraries would not be loaded.

 | Every path name that you specify must include its associated
 | suffix. Otherwise, ’compile’ will decide that it is not a
 | file, but an argument to pass on to the loader.

 | The following options will be used by the indicated compiler

 compile (1) − 1 − compile (1)

 compile (1) −−− compile and load mixed language programs 10/10/84

 | when it processes those pathnames having the corresponding
 | name extensions. Options to be passed on to the compilers
 | should be enclosed in quotes, so that they will stay grouped
 | together. For instance:

 | compile −m c junk.c −C’−a −Dindex=strchr’ stuff.r
 | −R’−a −g’ −o junk

 | Otherwise, the shell will split them up, and most of the
 | options will go to the loader, and do something unexpected,
 | instead of to the intended compiler.

 | −C <’cc’ options>
 | Use the ’cc’ options specified when compiling C
 | modules.

 | −R <’rp’ options>
 | Use the ’rp’ options specified when preprocessing
 | any Ratfor modules.

 | −F <’fc’ options>
 | Use the ’fc’ options specified when compiling
 | Fortran modules. These options will affect Ratfor
 | programs as well.

 | −S <’pmac’ options>
 | Use the ’pmac’ options specified when assembling
 | PMA modules. These options will not affect C
 | programs, since the C compiler no longer uses PMA
 | to compile its programs.

 | −P <’pc’ options>
 | Use the ’pc’ options specified when compiling
 | Pascal modules.

 | The options should not occur more than once; if they do, the
 | last one will be used. Unrecognized options will be passed
 | on to the loader.

 | Messages

 | "Usage: compile ..." for an invalid option to the ’−m’
 | flag, if no arguments are given, or no files are listed
 | (only options).

 | Examples

 | compile −m c sort.c stuff.p
 | compile prog1.r prog2.p low_level.s −l vswtmath −o prog

 | Bugs

 | Does no sanity checking on the arguments passed to the

 compile (1) − 2 − compile (1)

 compile (1) −−− compile and load mixed language programs 10/10/84

 | individual compilers, nor on what is passed on to the
 | loader.

 | Cannot be used to call ’bind’.

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | cc (1), rp (1), fc (1), pc (1), pmac (1), ld (1), ucc (1),
 | bind (3), User’s Guide for the Georgia Tech C Compiler

 compile (1) − 3 − compile (1)

 copy (1) −−− copy standard input to standard output 02/22/82

 Usage

 copy

 Description

 ’Copy’ is Kernighan and Plauger’s copy command from chapter
 two of Software Tools. It simply copies its standard input
 to its standard output until end−of−file.

 Examples

 file1> copy >file2
 list_file> copy
 copy >data
 copy

 See Also

 cat (1), cp (1), print (1), fcopy (2)

 copy (1) − 1 − copy (1)

 copyout (1) −−− copy user’s terminal session to printer 02/22/82

 Usage

 copyout

 Description

 ’Copyout’ opens a file in the spool queue and diverts the
 user’s command output into the file. This diversion can be
 stopped by logging out or issuing a ’como’ command.

 ’Copyout’ is intended for use by ’batch’ to produce a batch
 job listing, but it may accidentally find use in other
 situations.

 Examples

 copyout

 Files

 //spoolq/prt??? for spool output

 Bugs

 Diverting a screen editor session to the line printer is
 very messy.

 See Also

 batch (1), como (1)

 copyout (1) − 1 − copyout (1)

 cp (1) −−− generalized file copier 08/30/84

 | Usage

 cp [−m] [−p] [−s [<depth>]] <from> [<to>]

 Description

 ’Cp’ copies files or directories from one place in the file
 system to another. The single required argument ’<from>’
 specifies the source file or directory. The ’<to>’
 argument, which is optional, may be used to specify the
 destination file or directory. Omitting this argument
 produces the same effect as specifying the pathname of the
 current working directory. The precise result of any
 invocation of ’cp’ depends on whether or not the destination
 is an existing directory and, in the case where the source
 is a directory, whether the "m" and/or "s" options is
 specified. For a more detailed explanation of the semantics
 of the "s" option, see the Reference Manual entries for the
 ’chat’, ’del’ and ’lf’ commands. The various cases are
 elaborated below.

 | If the destination is an existing directory, the source is
 | normally copied into that directory, retaining its original
 name. If the source is also a directory, its contents may
 be merged into the destination directory by specifying the
 "m" option. Otherwise, the source directory will be copied
 as a subdirectory of the destination directory.

 If the destination is not an existing directory, the
 destination file is exactly as specified by the ’<to>’ path−
 name.

 If the "p" option is specified, any directories created in
 the process of copying are given the same passwords as their
 counterparts in the source. If the option is not specified,
 these directories are given default passwords. (At instal−
 lations running the Ga. Tech version of Primos, the
 defaults are the user’s login name for the owner password
 and zeroes for the non−owner password; at installations run−
 ning standard Primos, the defaults are blanks for the owner
 password and zeroes for the non−owner password.)

 In all cases, the protection, date−modified and read/write
 lock attributes of the copied files are set identically to
 those of their source counterparts.

 Examples

 cp file //dir/file
 cp file //dir
 cp file
 cp file1 file2
 cp old_dir new_dir
 cp −p old_dir new_dir

 cp (1) − 1 − cp (1)

 cp (1) −−− generalized file copier 08/30/84

 Files

 None.

 Messages

 "Usage: cp ..." for illegal argument syntax.
 "<source>: can’t open" if source file can’t be opened for
 reading.
 "<destination>: can’t create" if destination can’t be
 created.
 "<source>: copy incomplete" if an error occurred while mov−
 ing the contents of the source file to the destination.
 "<destination>: non−empty directory" when the source is an
 ordinary file and the destination is a non−empty direc−
 tory.

 Bugs

 | Works only on disk files.

 | Cannot copy specific ACL’s or access categories

 See Also

 cat (1), chat (1), cn (1), copy (1), del (1), lf (1)

 cp (1) − 2 − cp (1)

 crypt (1) −−− exclusive−or encryption and decryption 12/26/80

 Usage

 crypt [<key>]

 Description

 ’Crypt’ encrypts data from its first standard input based
 upon an encryption key supplied as an argument, and writes
 the result on its first standard output.

 ’Crypt’ uses a reversible "exclusive−or" algorithm so that
 cipher text encrypted with a given key may be decoded using
 the same key.

 If the <key> is omitted from the command, ’crypt’ turns off
 the terminal echo and prompts for the key from the terminal.

 Examples

 sensitive_data> crypt bogus−key >safe_data
 secret_message> crypt turkey

 Messages

 "Key: " for a missing key

 crypt (1) − 1 − crypt (1)

 cset (1) −−− list information about the ASCII character set 11/06/82

 | Usage

 | cset [−i <int> | −k <key> | −m <mnemonic>] [−o (i | k | m)]

 | Description

 | ’Cset’ is a command that lists various information about the
 | ASCII character set. The following arguments may be used to
 | select a certain ASCII character for display:

 | −i Information is listed for the character whose
 | integer value is <int>. If <int> is in the range
 | 0 through 127 inclusive the character that will
 | actually be listed is integer value <int> + 128
 | since Prime convention is mark parity for all
 | ASCII characters, otherwise <int> must be in the
 | range 128 to 255 inclusive. <Integer> may be
 | entered in any radix using the <radix>r<int>
 | format.

 | −k Information is listed for the character whose
 | keycode matches <key>. Keycodes are the actual
 | characters typed to enter the character: the
 | character itself if it is simply an upper or lower
 | case character, or an up arrow (^) to represent
 | the control key followed by the character typed
 | while holding the control key down. The only
 | exception is for the rubout key, which is
 | represented as ^#.

 | −m Information is listed for the character whose
 | mnemonic matches <mnemonic>. Mnemonics are stan−
 | dard ASCII mnemonics in upper or lower case.

 | If none of the above options are present, information for
 | all ASCII characters is listed.

 | The following argument may be used to select the output
 | format:

 | −o If the string following this argument begins with
 | an "i" (in upper or lower case), then the output
 | will be the base 10 integer value of each charac−
 | ter selected for display by the above arguments.
 | If the string following this argument begins with
 | a "k", then the output will be the keycodes
 | corresponding to the selected characters. And if
 | the string following this argument begins with an
 | "m", then the output will be the mnemonics for the
 | selected characters.

 | If this argument is omitted, output will consist of the
 | integer value of the selected characters in bases 10, 8, and
 | 16, together with the keycode and mnemonic associated with

 cset (1) − 1 − cset (1)

 cset (1) −−− list information about the ASCII character set 11/06/82

 | those characters.

 | Examples

 | cset
 | cset −k ^p
 | cset −m del −o i
 | cset −i 8r200 −o m

 | See Also

 | ctomn (2)

 cset (1) − 2 − cset (1)

 csubc (1) −−− interface to Prime DBMS Cobol subschema compiler 08/27/84

 | Usage

 csubc <input file>
 [−l [<listing file>]]
 [−z <CSUBS option>]

 Description

 ’Csubc’ serves as the Subsystem interface to the Prime DBMS
 Cobol subschema compiler (CSUBS). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 output files as needed, and then produces a Primos CSUBS
 command and causes it to be executed.

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. If the "−l" option is specified without a file
 name following it or is not specified, a default filename is
 constructed from the input filename by changing its suffix
 to ".l". For example, if the input filename is
 "gonzo.csub", the listing file will be "gonzo.l"; if the
 input filename is "bar", the listing file will be "bar.l".

 The input filename must be a disk file name (conventionally
 ending in ".csub").

 In summary, then, the default command line for compiling a
 file named "file.csub" is

 csubc file.csub −l file.l

 which corresponds to the CSUBS command

 csubs −i *>file.csub −l *>file.l

 Examples

 csubc file.csub
 csubc payroll.csub −l l_payroll
 csubc funnyprog.csub −z"−newopt"

 Messages

 "Usage: csubc ..." for invalid option syntax.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "Sorry, the listing file must be a disk file" if the listing

 csubc (1) − 1 − csubc (1)

 csubc (1) −−− interface to Prime DBMS Cobol subschema compiler 08/27/84

 file was directed to a device file.

 Bugs

 ’Csubc’ pays no attention to standard ports.

 There is no way to avoid getting a listing file.

 See Also

 | ddlc (1), cobc (1), cdmlc (1), ld (1), bind (3)

 csubc (1) − 2 − csubc (1)

 ctime (1) −−− print accumulated cpu time 03/20/80

 Usage

 ctime

 Description

 ’Ctime’ prints the user’s elapsed CPU time since login (in
 seconds) on standard output 1.

 Examples

 ctime

 See Also

 profile (1), time (1), clock (1)

 ctime (1) − 1 − ctime (1)

 cto (1) −−− copy STDIN to STDOUT up to a sentinel 03/20/80

 Usage

 cto [<string>]

 Description

 ’Cto’ copies its first standard input to its first standard
 output, terminating either at end of file or the first
 occurrence of <string>. In order to be recognized, <string>
 must appear on a line by itself. This termination line is
 not copied. If no argument is specified, <string> defaults
 to "−EOF".

 ’Cto’ is useful in shell files for terminating programs that
 read from the command stream. It is virtually a necessity
 for generating end−of−file on terminals that cannot generate
 a control−c character.

 Examples

 >> cto | x
 paron file1 file2
 delete file1
 −EOF

 See Also

 cat (1), copy (1), slice (1)

 cto (1) − 1 − cto (1)

 date (1) −−− print date 03/20/80

 Usage

 date

 Description

 ’Date’ prints the Gregorian date in the form mm/dd/yy on
 standard output one.

 Examples

 date
 echo "Run at" [time] "on" [date]

 See Also

 day (1), time (1), date (2)

 date (1) − 1 − date (1)

 day (1) −−− day of week 03/20/80

 Usage

 day [<dd> | <mm>/<dd> | <mm>/<dd>/<yy>]

 Description

 ’Day’ prints the name of the day of the week (e.g. Monday,
 Tuesday, Wednesday, etc.) on standard output one. The name
 is printed in lower case with the first character
 capitalized.

 Should no arguments be given, the name of the current day is
 printed. Optionally, a day in the current month, in a
 different month but the current year, or in a different
 month and year may be given as an argument, and the day
 associated with that date will be printed.

 Examples

 day
 echo Today is [day] [date]
 day 30
 day 01/01/99

 Bugs

 Argument format restricts usefulness to the Twentieth
 century.

 See Also

 date (1), time (1), date (2)

 day (1) − 1 − day (1)

 dbg (1) −−− invoke the Primos source level debugger (DBG) 08/31/84

 | Usage

 dbg { <DBG option> } <program> { <arguments> }

 Description

 ’Dbg’ allows the user to access the facilities of the Primos
 source level debugger (DBG) while still in the Subsystem.
 <Program> is a Subsystem program that has been linked by
 ’ld’ with the "−d" option (i.e., it is a segment directory).
 ’Dbg’ sets up the standard input and output ports and
 <arguments> for access by the program and then executes DBG
 with a call to Primos routine CP$.

 Examples

 dbg −vfyi −vfyp prog.r> new_rp >prog.f
 dbg test.o −s −t 3

 Messages

 "command too long" for too many DBG options to fit on a
 Primos command line.

 Bugs

 If DBG bombs (as it has been known to do), the Subsystem
 must be reinitialized with the sequence "dels all;dels 6002"
 and then "swt".

 Ratfor programs must be debugged using the Fortran names and
 | line numbers (yuk!).

 | When DBG terminates (with the "q" command) it exits to
 | PRIMOS. Typing "ren" will return back to the subsystem.

 See Also

 fc (1), f77c (1), pc (1), plgc (1), ld (1)

 dbg (1) − 1 − dbg (1)

 ddlc (1) −−− interface to Prime DBMS schema compiler 08/11/81

 Usage

 ddlc <input file>
 [−l [<listing file>]]
 [−z <SCHEMA option>]

 Description

 ’Ddlc’ serves as the Subsystem interface to the Prime DBMS
 schema compiler (SCHEMA). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 output files as needed, and then produces a Primos SCHEMA
 command and causes it to be executed.

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. If the "−l" option is specified without a file
 name following it or is not specified, a default filename is
 constructed from the input filename by changing its suffix
 to ".l". For example, if the input filename is "gonzo.ddl",
 the listing file will be "gonzo.l"; if the input filename is
 "bar", the listing file will be "bar.l".

 The input filename must be a disk file name (conventionally
 ending in ".ddl").

 In summary, then, the default command line for compiling a
 file named "file.ddl" is

 ddlc file.ddl −l file.l

 which corresponds to the SCHEMA command

 schema −i *>file.ddl −l *>file.l

 Examples

 ddlc file.ddl
 ddlc payroll.ddl −l l_payroll
 ddlc funnyschema.ddl −z"−newopt"

 Messages

 "Usage: ddlc ..." for invalid option syntax.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "Sorry, the listing file must be a disk file" if the listing

 ddlc (1) − 1 − ddlc (1)

 ddlc (1) −−− interface to Prime DBMS schema compiler 08/11/81

 file was directed to a device file.

 Bugs

 ’Ddlc’ pays no attention to standard ports.

 There is no way to avoid getting a listing file.

 See Also

 cdmlc (1), csubc (1), fdmlc (1), fsubc (1)

 ddlc (1) − 2 − ddlc (1)

 declare (1) −−− create shell variables 09/11/84

 | Usage

 declare { <identifier> [= <value>] }

 Description

 ’Declare’ is the primary method of creating shell variables
 with local (i.e., to the command file) scope. Its arguments
 are the names of the variables to be declared; they are
 declared at the current lexical level and assigned the
 specified values. If a value is not specified for a
 | variable, it is given the empty string as a value. Value
 | may contain unprintable characters in a mnemonic format.
 | The format is ’<’ ascii_mnemonic ’>’. To set dummy to a
 | dash followed by a control−g and then another dash one would
 | say:

 | declare dummy = "−<bel>−".

 | The quotes are needed to prevent the shell from interpreting
 | the ’<’ and ’>’ signs as I/O redirectors. Variables
 declared within a command file exist as long as that command
 file is active; when its execution is complete, they disap−
 pear. If a variable of the same name is already declared at
 that level, its value is not changed.

 Variables may also be created by the ’set’ command.

 Examples

 declare name address telephone_number
 declare terminal_type
 | declare i = 1 bel = "<bel>"
 | declare nobel = "@<bel>"

 Bugs

 Does not complain about multiple declarations of a variable
 within a given scope.

 See Also

 forget (1), set (1), vars (1), save (1), User’s Guide for
 the Software Tools Subsystem Command Interpreter

 declare (1) − 1 − declare (1)

 declared (1) −−− test for declared variables 02/22/82

 Usage

 declared <variable_name> [<level_offset>]

 Description

 ’Declared’ tests for the existence of a shell variable named
 <variable_name>. If the variable exists, ’declared’ prints
 "1"; otherwise it prints "0".

 If <level_offset> is omitted, ’declared’ examines all lexic
 levels for <variable_name>. Otherwise, only the level
 specified (<current_level> − <level_offset>) is searched.
 (See ’arg’ for a more complete discussion of the
 <level_offset> mechanism.)

 Examples

 if [declared se_params]
 se_params
 else
 echo ""
 fi

 See Also

 vars (1), arg (1), set (1), forget (1), save (1), User’s
 Guide for the Software Tools Subsystem Command Interpreter

 declared (1) − 1 − declared (1)

 define (1) −−− define expander 08/27/84

 | Usage

 | define [−(f | m)] {<input_file>}

 Description

 ’Define’ is a text substitution facility used to replace
 defined identifiers by their definitions. ’Define’ takes
 the file(s) specified in the argument list, processes define
 statements and undefine statements, and places the output on
 its standard output file. ’Define’ also processes include
 statements. For more information on define and undefine
 statements see the Ratfor Programmer’s Guide.

 In addition to the way that Ratfor handles the ’define’
 statement, this processor will allow the user to prevent
 premature evaluation of a given string by enclosing it in
 brackets, similar to ’macro’ (please see the Reference
 Manual entry for the ’macro’ command).

 The following options are available:

 | −f Suppress automatic inclusion of standard
 | definitions file. Macro definitions for the
 manifest constants used throughout the Subsystem
 reside in the file "=incl=/swt_def.r.i". ’Define’
 will process these definitions automatically,
 unless the "−f" option is specified.

 | −m Map all identifiers to lower case. When this
 option is selected, ’define’ considers the upper
 case letters equivalent to the corresponding lower
 case letters, except inside quoted strings.

 The remainder of the command line is used to specify the
 names of the input file(s). If no input file is specified,
 ’define’ will expect input from standard input. Output will
 be sent to standard output.

 Examples

 define file1.r
 file> define −f
 define −m file1 file2 file3

 Files

 =incl=/swt_def.r.i for standard Subsystem macro definitions

 Messages

 "missing left paren in define"

 define (1) − 1 − define (1)

 define (1) −−− define expander 08/27/84

 "non−alphanumeric name in define"
 "missing right paren in define"
 "missing parameter in definition"
 (two commas in a row)
 "non−numeric parameter not allowed"
 "too many parameters"
 (more than 32 parameters)
 "missing comma in parameter list"
 "missing comma in parameter list"
 (no comma between the parameter list or the name and
 the definition)
 "invalid file name in include"
 "includes nested too deeply"
 (more than five levels deep)
 "can’t open include file"
 "definition too long"
 (more then 400 characters long)
 "missing right paren after definition"
 "missing left paren after undefine"
 "non−alphanumeric name in undefine"
 "missing right paren after undefine"
 "line too long"
 "unexpected EOF"

 See Also

 macro (1), rp (1), Ratfor Programmer’s Guide

 define (1) − 2 − define (1)

 del (1) −−− delete files 08/30/84

 | Usage

 del { −<opt>{<opt>} } { −n | <path> }
 <opt> ::= d | f | s[<depth>] | v
 <depth> ::= [<positive integer>]

 Description

 ’Del’ is a general purpose file deleter. When invoked with
 a list of one or more pathnames as arguments, it attempts to
 remove each file named. The list of pathnames may be
 preceded by zero or more control arguments, each consisting
 of a hyphen, followed by one or more of the following let−
 ters:

 | −d when specified in combination with the "s" option
 | (see below), this option causes ’del’ to delete a
 UFD named as an argument after having deleted its
 contents. (Normally, ’del’ deletes the UFD’s
 contents and leaves the UFD itself intact.)

 | −f when specified, causes ’del’ to attempt to
 | manipulate the protection attributes of each file
 that it is about to delete to insure that the file
 is, in fact, deletable. Note, however, that this
 | can only be done when the file resides in a direc−
 | tory that is public, owned by the user of ’del’,
 | or protected with an acl so that the user has
 | protect privileges (ie − can change the acl
 | protection on the object). For objects in pass−
 | word directories, the protection bits are modified
 | to give the user all privileges as an owner. For
 | ACL protected objects, the protecting object is
 | modified to give the user "delete", "list", and
 | "use" privileges.

 | −s when specified, causes ’del’ to traverse the sub−
 | tree of the file system descending from a UFD or
 segment directory named as an argument, attempting
 to delete each file it finds along the way. If a
 decimal number immediately follows the "s", then
 ’del’ will descend to no more than that many
 levels below the named directory in its traversal.
 This option requires at least one of the arguments
 <path> or "−n" be specified (since directories
 must be deleted by name). Normally, when the
 named directory is a UFD, the directory itself is
 not deleted −− only its contents are. But if the
 "d" option (see above) is specified, the UFD too
 will be deleted. Users are exhorted to USE THIS
 OPTION WITH UTMOST CAUTION.

 | −v when specified, ’del’ will print the pathname of
 | each file before attempting to delete it, and will
 wait for a one−line response from the user. Only

 del (1) − 1 − del (1)

 del (1) −−− delete files 08/30/84

 if the line begins with a "Y" or a "y" will the
 file be deleted; otherwise, the file will be left
 intact.

 If the string "−n" appears in the place of a <path>
 argument, ’del’ will read arguments from its first standard
 input port until end−of−file is encountered. It is assumed
 that each line to be read contains a single path name,
 starting in column 1.

 Examples

 del lkj
 del −dfs segdir subufd
 del −vs1
 | del −s [cd −p]
 files %junk | del −n

 Messages

 "Usage: del ..." for bad arguments
 "<path>: in use" for files open by other users
 "<path>: protected" for undeletable files
 "<path>: not found" for non−existent files
 | "<path>: delete protected" for files with delete protection
 | turned on
 "<path>: can’t delete" for unexpected file system error
 "<path>: can’t attach" for pathnames that can’t be followed
 "<path>: directory not empty" for trying to delete a non−
 empty directory
 "<path>: directories nested too deeply" when directories
 are nested more deeply that ’del’ can handle
 "<path>: error reading directory" for unexpected error in
 reading a segment directory
 "<path>: bad pathname" for non−existent files
 "delete current directory by name only" when no arguments
 are given

 | Bugs

 | When deleting an ACL directory with the "−d" and "−f"
 | option, if the top level directory cannot be deleted, the
 | ACL protection attributes may be left changed.

 | A file cannot be deleted with the force option if there is
 | more than one level of protection between the object to be
 | deleted and the object protecting it. For example, if a
 | file is protected by a directory which is protected by an
 | access category then specifying the "−f" option when attemp−
 | ting to delete the file will not work.

 del (1) − 2 − del (1)

 del (1) −−− delete files 08/30/84

 See Also

 | cp (1), lf (1), mkdir (1), sacl (1), remove (2), create (2),
 | gfdata (2), sfdata (2), sprot$ (6)

 del (1) − 3 − del (1)

 detab (1) −−− convert tabs to multiple spaces 02/22/82

 Usage

 detab { −t <tab character> |
 −r <replacement string> |
 <column number> |
 +<increment> }

 Description

 ’Detab’ expands tab characters on its first standard input
 file into an equivalent number of replacement characters on
 its first standard output file.

 The tab character may be specified by an argument following
 the "−t" option; if not so specified, the ASCII TAB (ctrl−i)
 is assumed. Similarly, the string from which replacement
 characters are taken may be specified using the "−r" option.
 Replacement characters are taken as needed from the string,
 starting with the first and wrapping around to the beginning
 when the end of the string is reached. If no replacement
 string is specified, a single blank is assumed.

 Any number of tab stops may be set by specifying the desired
 column number as an argument. If the "+<increment>"
 construct is used, stops will be set at intervals of
 <increment> columns, starting with the most recently set
 stop. Thus, the argument sequence

 10 +5

 would set stops in columns 10, 15, 20, etc. In the absence
 of any other specification, default stops are set in every
 fourth column, starting with column five.

 Examples

 file1> detab 21 36 41 66 −r " ." >file2
 cat subr1 subr2 subr3 | detab +3 >prog.r
 assembler.s> detab −t \ 10 20 35 >asm.s

 Messages

 "Usage: detab ..." for incorrect arguments.

 See Also

 entab (1)

 detab (1) − 1 − detab (1)

 diff (1) −−− isolate differences between two files 02/23/82

 Usage

 diff [−{b | c | d | r | s | v}] [<old_file> [<new_file>]]

 Description

 ’Diff’ compares the contents of two files and reports on the
 differences between them. The default behavior is to
 describe the insert, delete, and change operations that must
 be performed on <old_file> to convert its contents into
 those of <new_file>.

 Both file name arguments are optional; if the second is
 omitted, the first standard input is used for <new_file>; if
 neither argument appears, the first and second standard
 input are used for <old_file> and <new_file> respectively.

 The options currently available are:

 −b Perform a word−for−word binary comparison.
 ’Diff’ will compare corresponding words of
 the two input files; if any differences are
 found, or if one file is shorter than the
 other, ’diff’ prints the message "different"
 and exits. If the files are the same, ’diff’
 produces no output. When the "−v" option
 (see below) is specified, ’diff’ prints an
 octal representation of the words that differ
 along with their offset from the beginning of
 the file, and notifies the user if one file
 is shorter than the other.

 −c Perform a simple line−by−line comparison.
 ’Diff’ will compare successive lines of the
 input files; if any corresponding lines
 differ, or if one file is shorter than the
 other, ’diff’ prints the message "different"
 and exits. If the files are the same, ’diff’
 produces no output. When the "−v" option
 (see below) is specified, ’diff’ prints the
 lines that differ along with their line num−
 ber in the input file, and notifies the user
 if one file is shorter than the other.

 −d List the "differences" between the two files,
 by highlighting the insertions, deletions,
 and changes that will convert <old_file> into
 <new_file>. This is the default option. If
 the "verbose" option "−v" (see below) is
 specified, unchanged text will also be
 listed.

 −r Insert text formatter requests to mark the
 <new_file> with revision bars and deletion
 asterisks. This option is particularly

 diff (1) − 1 − diff (1)

 diff (1) −−− isolate differences between two files 02/23/82

 useful for maintenance of large documents,
 like Subsystem Reference Manuals.

 −s Output a "script" of commands for the text
 editor ’ed’ that will convert <old_file> into
 <new_file>. This is handy for preparing
 updates to large programs or data files,
 since generally the volume of changes
 required will be much smaller than the new
 text in its entirety.

 −v Make output "verbose". This option applies
 to the "−b", "−c" and "−d" options discussed
 above. If not selected, ’diff’ produces
 "concise" output; if selected, ’diff’
 produces more verbiage.

 Examples

 diff myfile1 myfile2
 diff rf.r nrf.r | pg
 diff −b /ca/bin/rp /cb/bin/rp
 diff −c afile maybe_the_same_file
 diff −v rf.r nrf.r | sp
 diff −r old_manual.fmt new_manual.fmt | fmt
 diff −s old new >>update_old_to_new

 Messages

 "<file>: can’t open" if either <new_file> or <old_file> is
 not readable.
 "Usage: diff ..." for illegal options.

 Bugs

 The algorithm used has one quirk: a line or a block of
 lines which is not unique within a file will be labeled as
 an insertion (deletion) if its immediately adjacent neigh−
 bors both above and below are labeled as insertions
 (deletions).

 Fails on very large files (> 10000 lines) when using the
 "−d" option.

 See Also

 common (1),
 Heckel, P., "A Technique for Isolating Differences Between
 Files", Communications of the ACM, vol 21, no 4 (April
 1978), 264−268.

 diff (1) − 2 − diff (1)

 dnum (1) −−− generate or interpret legal disk numbers 03/20/80

 Usage

 dnum [<disk_number>]

 Description

 If given a disk number as an argument, ’dnum’ will print a
 short description of the corresponding disk partition
 (controller type, number of heads, first head number, etc.).
 If the argument is missing, ’dnum’ will prompt the user for
 the required information and generate the corresponding disk
 number.

 Examples

 dnum 21060
 Controller 4004 storage module disk
 controller 0, unit 0
 first head: 4, number of heads: 4

 Messages

 Many; ’dnum’ is interactive.

 Bugs

 When given a cartridge module disk number as an argument,
 ’dnum’ always considers it a storage module and gives
 incorrect results for the fixed surfaces.

 dnum (1) − 1 − dnum (1)

 drop (1) −−− drop characters from a string (APL−style) 03/20/80

 Usage

 drop (<length> | −<length>) <string>

 Description

 ’Drop’ performs the function of the APL dyadic drop
 operator. The absolute value of the first argument is the
 number of characters to be dropped. If the number is
 positive, they are dropped from the front of the string; if
 negative, they are dropped from the end of the string. The
 result is printed on standard output one.

 If more characters are dropped than exist in the string, a
 null string is printed.

 Examples

 drop 2 [filename]
 cat [drop −2 source]

 See Also

 take (1), substr (1), stake (2), sdrop (2), substr (2)

 drop (1) − 1 − drop (1)

 dump (1) −−− dump various internal data bases 03/25/82

 Usage

 dump { ls | linked_string | sv | shell_variable
 | fd [<num>] | file_desc [<num>]
 | cm | swt_common }

 Description

 ’Dump’ is intended to print a semi−readable dump of the
 various Subsystem data areas. It dumps any of four
 different data areas, based on its arguments. Following are
 descriptions of the four different dumps.

 "Ls" or "linked_string" prints the command interpreter’s
 linked string storage space in a readable format. This
 option produces a symbolic listing consisting of a series of
 entries of the form

 address −> item

 where "address" represents an index into the linked string
 storage space, and "item" is either (1) a quoted string,
 representing the characters in memory at the given address
 (e.g. "peruse"); (2) the word LSNULL followed by a size in
 parentheses, indicating available space in the storage area
 (e.g. LSNULL (1600)); or (3) the pointer "−>" followed by
 an address, representing a pointer or link to another place
 in the storage area.

 "Sv" or "shell_variable" dumps the contents of the hash
 table that stores shell variables and their contents. For
 each active lexic level (currently active command file), it
 produces a symbolic dump of the five hashed lists used for
 variable storage. Each item in each list consists of a
 variable name followed by an equals sign (=) and the
 variable’s value. Both name and value are followed by
 indexes into the linked string storage area.

 "Fd" or "file_desc" dumps the Subsystem file descriptor
 <num>. If <num> is missing, all open file descriptors are
 dumped.

 "Cm" or "swt_common" dumps the remaining Subsystem common
 areas.

 Examples

 dump ls sv
 dump fd 3 fd 5
 dump cm fd

 dump (1) − 1 − dump (1)

 dump (1) −−− dump various internal data bases 03/25/82

 See Also

 shtrace (1), dumpls (2), dumpsv (2), dmpcm$ (6), dmpfd$ (6),
 linked string routines (’ls?*’ (4))

 dump (1) − 2 − dump (1)

 e (1) −−− invoke proper editor for current terminal 07/24/84

 | Usage

 e [<filename> { <se options> }]

 Description

 ’E’ is a shell file used to invoke the proper editor (’ed’
 or ’se’) for a given terminal. In addition, ’e’ will remem−
 ber the name of the last file edited, and reuse that name if
 none is specified on the command line.

 ’E’ will make use of the variables ’f’ and ’se_params’ if
 the user has declared them at the terminal level. ’F’ is
 used to store the name of the last file edited;
 consequently, the user need only type the command "f" to
 have that name printed. ’Se_params’ is used to store
 personally−preferred instructions for the initialization of
 ’se’, such as the choice between absolute and relative line
 numbers, case mapping, etc. It may be any sequence of legal
 ’se’ arguments, separated by blanks. Furthermore,
 additional screen editor options may be selected by includ−
 ing them on the ’e’ command line after the file name
 argument. If either ’f’ or ’se_params’ is not declared at
 lexic level 0, ’e’ will assume that they are empty.

 ’E’ selects the proper editor to invoke by calling the
 ’term_type’ command to see if the screen editor supports the
 current terminal type.

 Examples

 e time_sheet
 e

 Messages

 None from ’e’, but several may result from the editors or
 the shell.

 | Bugs

 | Since ’se’ knows about users’ terminal types, and since ’se’
 | now reads personal commands in =home=/.serc, this command is
 | pretty much obsolete.

 See Also

 ed (1), se (1), if (1), term_type (1)

 e (1) − 1 − e (1)

 echo (1) −−− echo arguments 03/20/80

 Usage

 echo { <arbitrary string> }

 Description

 ’Echo’ simply prints its arguments, separated by blanks, on
 standard output. It is frequently used to make
 announcements from shell programs or to quickly produce very
 short data files. If no arguments are specified, ’echo’
 produces no output whatsoever.

 Before printing them, ’echo’ scans its arguments for "@t"
 and "@n" character sequences and converts them to tabs and
 newlines, respectively.

 Examples

 echo "split@nthis@nline"
 echo "Good morning"

 See Also

 error (1)

 echo (1) − 1 − echo (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 | Usage

 ed [<pathname>]

 Description

 ’Ed’ is the Subsystem version of the Software Tools text
 editor ’edit’. This entry contains a short summary of the
 editor’s commands and allowable pattern elements; for a full
 | description, along with a tutorial, see the Introduction to
 | the Software Tools Text Editor.

 Note that the commands accepted by ’ed’ are also accepted by
 the Subsystem screen editor ’se’.

 Commands to ’ed’ consist of zero or more "line number
 expressions" followed by a single−character mnemonic, pos−
 sibly followed by additional parameters. The following
 table outlines the allowable line number expression syntax:

 Elements of Line Number Expressions

 Form Value

 integer value of the integer (e.g., 44).

 . number of the current line in the buffer.

 $ number of the last line in the buffer.

 ^ number of the previous line in the buffer
 | (same as .−1).

 | − number of the previous line in the buffer
 | (same as ^).

 | /pattern[/] number of the next line in the buffer that
 matches the given pattern (e.g., /February/);
 the search proceeds to the end of the buffer,
 then wraps around to the beginning and back
 | to the current line. The trailing "/" is
 | optional.

 | \pattern[\] number of the previous line in the buffer
 that matches the given pattern (e.g.,
 \January\); search proceeds in reverse, from
 the current line to line 1, then from the
 | last line back to the current line. The
 | trailing "\" is optional.

 >name number of the next line having the given
 markname (search wraps around, like //).

 ed (1) − 1 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 <name number of the previous line having the given
 markname (search proceeds in reverse, like
 \\).

 expression any of the above operands may be combined
 with plus or minus signs to produce a line
 number expression. Plus signs may be omitted
 if desired (e.g., /parse/−5, /lexical/+2,
 /lexical/2, $−5, .+6, .6).

 The text patterns used in line number expressions (and in
 global commands and the substitute command, discussed below)
 take the form of limited regular expressions. Each such
 regular expression is composed of a sequence of ordinary
 characters and special metacharacters, called "pattern
 elements." The following table outlines the allowable pat−
 tern elements.

 ed (1) − 2 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 Summary of Pattern Elements

 Element Meaning

 % Matches the null string at the beginning of a
 line. However, if not the first element of a
 pattern, is treated as a literal percent
 sign.

 ? Matches any single character other than
 newline.

 $ Matches the newline character at the end of a
 line. However, if not the last element of a
 pattern, is treated as a literal dollar sign.

 [<ccl>] Matches any single character that is a member
 of the set specified by <ccl>. <Ccl> may be
 composed of single characters or of character
 ranges of the form <c1>−<c2>. If character
 ranges are used, <c1> and <c2> must both
 belong to the digits, the upper case alphabet
 or the lower case alphabet.

 [~<ccl>] Matches any single character that is not a
 member of the set specified by <ccl>.

 | * In combination with the immediately preceding
 | pattern element, matches zero or more charac−
 ters that are matched by that element.

 @ Turns off the special meaning of the
 immediately following character. If that
 character has no special meaning, this is
 treated as a literal "@".

 {<pattern>} Tags the text actually matched by the sub−
 | pattern specified by <pattern> for use in the
 | replacement part of a substitute command.

 & Appearing in the replacement part of a sub−
 stitute command, represents the text actually
 matched by the pattern part of the command.
 If "&" is the only character in the
 replacement part, however, then it represents
 the replacement part used in a previous sub−
 stitute command.

 @<digit> Appearing in the replacement part of a sub−
 stitute command, represents the text actually
 matched by the tagged sub−pattern specified
 by <digit>.

 Finally, the following table lists the commands that may be
 used for the actual creation and modification of text:

 ed (1) − 3 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 Editor Command Summary

 Range Syntax Function

 . a[:text] Append
 Inserts text after the specified
 line. Text is inserted until a line
 containing only a period and a
 newline is encountered. In ’se’, if
 the command is followed immediately
 by a colon, then whatever text fol−
 lows the colon is inserted without
 entering "append" mode. The current
 line pointer is left at the last
 line inserted.

 .,. c[:text] Change
 Deletes the lines specified and
 inserts text to replace them. Text
 is inserted until a line containing
 only a period and a newline is
 encountered. In ’se’, if the com−
 mand is followed immediately by a
 colon, then whatever text follows
 the colon is inserted without enter−
 ing "append" mode. The current line
 pointer is left at the last line
 inserted.

 .,. d[p] Delete
 Deletes all lines between the
 | specified lines, inclusive. The
 | current line pointer is left at the
 | line after the last one deleted. If
 the "p" is included, the new current
 line is printed.

 none e[!] [filename] Enter
 Loads the specified file into the
 buffer and prepares for editing.
 Automatically invoked if a filename
 is specified as an argument on the
 command line used to invoke the
 editor. The current line pointer is
 positioned at the first line in the
 buffer. An error message is
 generated if the editing buffer
 contains text that has not been
 saved. The enter command may be
 resubmitted after the error message,
 in which case it will be obeyed.
 The "enter now" command "e!" may be
 used to avoid the error message.

 ed (1) − 4 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 none f [filename] File
 Print or change the remembered file
 name. If a name is given, the
 remembered file name is set to that
 value; otherwise, the remembered
 file name is printed.

 .,$ g/pat/command Global on pattern
 Performs the given command on all
 lines in the specified range that
 match a certain pattern.

 none h[stuff] Help
 In ’se’, provides access to online
 documentation on the screen editor.
 "Stuff" may be used to select which
 information is displayed.

 . i[:text] Insert
 Inserts text before the specified
 line. Text is inserted until a line
 containing only a period and a
 newline is encountered. In ’se’, if
 the command is immediately followed
 by a colon, then whatever text fol−
 lows is inserted without entering
 "append" mode. The current line
 pointer is left at the last line
 | inserted.

 | ^,. j[/stuff[/]][p] Join
 | The specified lines are joined into
 | a single line. You may specify in
 | "stuff" what is to replace the
 | newlines that previously separated
 | the lines. The default is a single
 | blank. If you use the default, ’ed’
 | automatically prints out the result.
 If the "p" option is used, the
 resulting line (which becomes the
 | new current line) is printed. Thus
 | "j" and "jp" are equivalent to
 | "j/ /p". In general, ’ed’ and ’se’
 | will supply trailing delimiters for
 | you. So "j/" is the same as "j//",
 | i.e. replace the newline(s) with
 | nothing (delete them).

 .,. km marK
 The specified lines are marked with
 ’m’ which may be any single charac−
 ter other than a newline. If ’m’ is
 not present, the lines are marked
 with the default name of blank. The
 current line pointer is never
 | changed.

 ed (1) − 5 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 | none l Locate
 | "l" will print the first line of the
 | file =installation=. This is so
 | that one can tell what machine he is
 | using from within the editor. This
 | is particularly useful for instal−
 | lations with many machines that can
 | run the editor, where the user can
 | switch back and forth between them,
 | and become confused as to where he
 | is at a given moment.

 .,. m<line>[p] Move
 Moves the specified block of lines
 after <line>. <Line> may not be
 omitted. The current line pointer
 is left at the last line moved. If
 the "p" is specified, the new
 current line is also printed.

 .,. n[m] Name
 If ’m’ is present, the last line in
 the specified range is marked with
 it and all other lines having that
 mark name are given the default mark
 name of blank. In ’ed’, if ’m’ is
 not present, the mark name of each
 line in the range is printed; in
 ’se’ the names of all lines in the
 range are cleared.

 none o[stuff] Option
 Editing options may be queried or
 set. "Stuff" determines which
 | options are affected. In ’ed’,
 | options "d", "g", "k", and "p" are
 | available. See below for a full
 | discussion of what the options do.

 .,. p Print
 Prints all the lines in the given
 range. In ’se’, as much as possible
 of the range is displayed, always
 including the last line; if no range
 is given, the previous page is
 displayed. The current line pointer
 is left at the last line printed.

 none q[!] Quit
 Exit from the editor. An error mes−
 sage is generated if the editing
 buffer contains text that has not
 been saved. The quit command may be
 resubmitted after the error message,
 in which case it will be obeyed.
 The "quit now" command "q!" may be

 ed (1) − 6 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 used to avoid the error message.

 . r [filename] Read
 Insert the contents of the given
 file after the specified line. The
 current line pointer is left at the
 | last line read.

 | .,. s[/pat/sub[/][g][p]] Substitute
 Substitutes "sub" for each
 occurrence of the pattern "pat". If
 the optional "g" is specified, all
 occurrences in each line are
 changed; otherwise, only the first
 occurrence is changed. The current
 line pointer is left at the last
 line in the range in which a sub−
 stitution was made. This line is
 | also printed if the "p" is used. In
 | ’ed’, if you leave off the trailing
 | slash, the result of the substitute
 | will be printed automatically. Thus
 | "s/junk/stuff" is entirely
 | equivalent to "s/junk/stuff/p". If
 | you type an "s" by itself, without a
 | pattern and replacement string, ’ed’
 | will behave as though you had typed
 | "s//&/p", i.e. substitute the
 | previous replacement pattern for the
 | previous search pattern, and print.

 | .,. t[/from/to[/][p]] Transliterate
 The range of characters specified by
 ’from’ is transliterated into the
 range of characters specified by
 ’to’. The last line on which
 something was transliterated is
 printed if the "p" option is used.
 The last line in the range becomes
 | the new current line. Again, if you
 | leave off the trailing delimiter,
 | ’ed’ will print the result of the
 | transliteration. In addition, like
 | the "s" command, both the ’from’ and
 | ’to’ parts are saved; "t//&/" will
 | perform the same transliteration as
 | the last one, and "t" is the same as
 | "t//&/". The "&" is special if it
 | is the only character in the ’to’
 | part, otherwise it is treated as a
 | literal "&". In Unix mode (for ’se’
 | only), use "%" instead of "&". See
 | Software Tools and the help on
 | ’tlit’ for some examples of charac−
 | ter transliterations.

 ed (1) − 7 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 . u[d][p] Undo
 The specified range of lines is
 replaced by the last range of lines
 deleted. If the "d" is used, the
 restored text is inserted after the
 last line in the specified range.
 The current line pointer is set at
 the last line that was restored;
 this line is also printed if the "p"
 is specified.

 .,. v oVerlay
 In ’ed’, each line in the given
 range is printed without its
 terminating newline and a line of
 input is read and added to the end
 of the line. If the first and only
 character on the input line is a
 period, no further lines are
 printed. In ’se’, "overlay mode" is
 entered and the control characters
 may be used to modify text anywhere
 in the buffer. A control−v may be
 used to quit overlay mode. A
 control−f may be used to restore the
 current line to its original state
 and terminate the command.

 1,$ w[’+’|’!’] [filename] Write
 Writes the portion of the buffer
 specified to the named file. The
 current line pointer is not changed.
 If "+" is given, the portion of the
 buffer is appended to the file;
 otherwise the portion of the buffer
 replaces the file. In ’se’ only, if
 "!" is present, an existing file
 specified in the command is over−
 written without comment. If
 "filename" is not present, the
 specified lines will be written to
 the current file name specified on
 the status line.

 1,$ x/pat/command eXclude on pattern
 Performs the command on all lines in
 the given range that do not match
 the specified pattern.

 .,. y<line>[p] copY
 Makes a copy of all the lines in the
 given range, and inserts the copies
 after <line>. As with the "m" com−
 mand, <line> may not be omitted.
 The current line pointer is set to
 the new copy of the last line in the

 ed (1) − 8 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 range; this line is printed if the
 "p" is present.

 .,. zb<left>[,<right>][<char>] draw Box
 In ’se’ only, a box is drawn using
 the given <char> (blank by default,
 allowing erasure of a previously−
 drawn box). Line numbers are used
 to specify top and bottom row
 positions of the box. <Left> and
 <right> specify left and right
 column positions of the box. If
 second line number is omitted, the
 box degenerates to a horizontal
 line. If right−hand column is omit−
 ted, the box degenerates to a
 vertical line.

 . =[p] Equals
 The number of the specified line is
 printed. The line itself is also
 printed if the "p" option is used.
 The current line pointer is not
 changed.

 none ? Query
 In ’ed’ only, a verbose description
 of the last error encountered is
 printed.

 1,$!mcommand Exclude on markname
 Similar to the ’x’ prefix except
 that ’command’ is performed for all
 lines in the range that do not have
 the mark name ’m’.

 1,$ ’mcommand Global on markname
 Similar to the ’g’ prefix except
 that ’command’ is performed for all
 lines in the range that have the
 mark name ’m’.

 . : Print next page
 In ’ed’, 23 lines beginning with the
 current line are printed (equivalent
 to ".,.+23p"). In ’se’, the next
 page of the buffer is displayed and
 the current line pointer is placed
 | at the top of the window.

 | . ~[<Software Tools Command>] Escape to the shell
 | If present, the <Software Tools
 | Command> is passed to the shell to
 | be executed. Otherwise, an interac−
 | tive shell is created. After either
 | the command or the shell exits, ’ed’

 ed (1) − 9 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 | prints a "~" to indicate that the
 | shell escape has completed. If the
 | first character of the <Software
 | Tools Command> is a "!", then the
 | "!" is replaced with the text of
 | the previous shell command. An
 | unescaped "%" in the <Software Tools
 | Command> will be replaced with the
 | current saved file name. If the
 | shell command is expanded, both ’ed’
 | and ’se’ will echo it first, and
 | then execute it.

 | Until EPFs are supported, when using
 | ’ed’, do not use the shell to
 | execute external commands. Internal
 | commands (like ’cd’) are OK. This
 | does not apply to ’se’.

 | For a deeper discussion of using the
 | shell from within a program, see the
 | help on the ’shell’ subroutine.

 | The values associated with editor options should immediately
 | follow their respective key letters, without intervening
 | blanks between the option letter and the option value. The
 | options are as follows:

 | Option Action

 | d[<dir>] selects the placement of the current line pointer
 | following a "d" (delete) command. <dir> must be
 | either ">" or "<". If ">" is specified, the
 | default behavior is selected: the line following
 | the deleted lines becomes the new current line.
 | If "<" is specified, the line immediately preced−
 | ing the deleted lines becomes the new current
 | line. If neither is specified, the current value
 | of <dir> is displayed.

 | g controls the behavior of the "s" (substitute) com−
 | mand when it is under the control of a "g"
 | (global) command. By default, if a substitute
 | inside a global command fails, ’ed’ will not
 | continue with the rest of the lines which might
 | succeed. If "og" is given, then the global sub−
 | stitute will continue, and lines which failed will
 | not be affected. Successive "og" commands will
 | toggle this behavior. An explanatory message is
 | written to the terminal.

 | k Indicates whether the current contents of your
 | edit buffer has been saved or not by printing
 | either a "saved" or "not saved" message on your
 | terminal.

 ed (1) − 10 − ed (1)

 ed (1) −−− Software Tools text editor (extended) 09/10/84

 | p[/string[/]] sets the prompt to be used (useful for the
 | user who is disturbed by ’ed’s quiet behavior).
 | The prompt can be set by the command
 | "op/string[/]", which sets the prompt to "string".
 | The trailing delimiter is optional. If no string
 | is given, the prompt is set to "* ". An empty
 | string ("op//") restores ’ed’s no prompting
 | behavior. Successive "op" commands will toggle
 | prompting mode. The "op" option has an entirely
 | different meaning in ’se’; see the help on ’se’
 | for details.

 Examples

 ed
 ed file
 ed_input> ed file

 Files

 =temp=/ed?* for scratch file
 | =temp=/script?* for checkpoint file
 | =home=/ed.logout for saving the buffer on a LOGOUT$ condi−
 | tion

 Messages

 "fatal scratch file read error"
 "fatal scratch file write error"
 "fatal scratch file seek error"
 "can’t open scratch file"
 "?" for miscellaneous errors

 See Also

 se (1), Software Tools, Introduction to the Software Tools
 Text Editor

 ed (1) − 11 − ed (1)

 ek (1) −−− select erase and kill characters 12/16/81

 Usage

 ek [<erase character> <kill character>]

 Description

 ’Ek’ allows the user to select his erase (character delete)
 and kill (line delete) characters. If ’ek’ is called with
 two arguments, the erase and kill characters are set. Each
 of the arguments may be a single character, or an ASCII
 mnemonic for an unprintable character. If ’ek’ is called
 without arguments, the current erase and kill characters are
 printed.

 Erase and kill characters are part of the user’s permanent
 profile, and so will be remembered from session to session.

 Examples

 ek 1 2
 ek BS DEL
 ek

 Messages

 "Usage: ek ..." for improper number of arguments

 Bugs

 "ek e k" will produce extremely undesirable effects.

 See Also

 term (1), User’s Guide for the Software Tools Subsystem
 Command Interpreter

 ek (1) − 1 − ek (1)

 elif (1) −−− else−if construct for Shell programs 09/05/84

 | Usage

 | if <value>
 | then
 | { <command> }
 | elif <value>
 | { <command> }
 | fi

 | Description

 | ’Elif’ is used as a short form of the ’else’ statement with
 | an ’if’ statement. It does not cause another nesting level
 | of control statements and is useful in implementing case−
 | like structures. Unfortunately, <value> must be a constant
 | in the ’elif’ statement where an else−if pair allows <value>
 | to be a function call. This severely limits its usefulness
 | since the value will be known at the time it is used.

 | Examples

 | if [eval [line] = 10]
 | then
 | set term = consul
 | elif 7 # always will execute, so same as an else
 | then
 | set term = regent
 | fi

 | Messages

 | "Missing ’fi’" if end−of−file is seen before a ’fi’ is
 | encountered.

 | Bugs

 | Redirectors placed before the ’fi’ will prevent ’else’ from
 | detecting it.

 | Some might consider it a bug that ’elif’ takes a constant,
 | instead of being able to use the result of a function call.

 | See Also

 | if (1), then (1), elif (1), fi (1), case (1)

 elif (1) − 1 − elif (1)

 else (1) −−− introduce else−part of a conditional 03/20/80

 Usage

 if <value>
 then
 { <command> }
 else
 { <command> }
 fi

 Description

 ’Else’ is used in conjunction with the ’if’ command to
 introduce the negative portion of a conditional statement.
 Paradoxically, it is executed only as control falls through
 from the then−part of the conditional; its action is to skip
 to the first unmatched ’fi’ command.

 The else−clause of a conditional is always optional.

 Since ’else’ works as well from the terminal as it does from
 a command file, typing "else" as a command will cause the
 command interpreter to skip input until it sees a ’fi’ com−
 mand or end−of−file.

 Examples

 if [eval [line] = 10]
 then
 set term = consul
 else
 set term = unknown
 fi

 if [eval [take 2 [time]] ">" [deadline]]
 then
 echo "Time out."
 else
 process_job
 fi

 Messages

 "Missing ’fi’" if end−of−file is seen before a ’fi’ is
 encountered.

 Bugs

 Redirectors placed before the ’fi’ will prevent ’else’ from
 detecting it.

 else (1) − 1 − else (1)

 else (1) −−− introduce else−part of a conditional 03/20/80

 See Also

 if (1), then (1), fi (1), case (1)

 else (1) − 2 − else (1)

 entab (1) −−− convert multiple blanks to tabs 03/20/80

 Usage

 entab { −t <tab character> |
 <column number> |
 +<increment> }

 Description

 ’Entab’ converts multiple blanks on its first standard input
 into an equivalent number of blanks and tab characters on
 its first standard output. The tab character may be
 specified as an argument with the "−t <tab character>"
 argument sequence; otherwise, the ASCII TAB (ctrl−i) is
 used.

 Any number of tab stops may be set by specifying the desired
 column numbers as arguments. If the +<increment> construct
 is used, stops will be set at intervals of <increment>
 columns, starting with the most recently set stop. Thus,
 the argument sequence

 10 +5

 would set stops in columns 10, 15, 20, etc. In the absence
 of any other specification, default stops are set in every
 fourth column, starting with column five.

 Examples

 prog.f> entab 7 >compressed_prog.f
 term_paper> entab −t \

 Messages

 "Usage: entab ..." for incorrect arguments.

 See Also

 detab (1)

 entab (1) − 1 − entab (1)

 error (1) −−− output error message, return error code 03/20/80

 Usage

 error [−<error_code>] { <arbitrary_string> }

 Description

 ’Error’ is used in shell programs to announce the presence
 of an error condition and return an error code. The option
 argument specifies the error code returned; the default is
 1000 (identical to the value returned by the subprogram
 ’error’). The arguments specified are written to ERROUT,
 separated by spaces and terminated by a NEWLINE.

 Examples

 error File not found.
 error −1 "Attention: your program has just been destroyed"

 Bugs

 Probably should understand escape sequences, like ’echo’.

 See Also

 echo (1), error (2), seterr (2)

 error (1) − 1 − error (1)

 esac (1) −−− mark the end of a case statment 03/20/80

 Usage

 case <value>
 when <alternative1>
 { <command> }
 when <alternative2>
 { <command> }
 ...
 out
 { <command> }
 esac

 Description

 ’Esac’ is a do−nothing command used to mark the end of a
 case statement. It may be searched for by the ’case’,
 ’when’, or ’out’ commands. Every ’case’ command must be
 followed by a matching ’esac’ command.

 ’Esac’ may be used to regain control of a terminal after
 execution of a ’when’ or ’out’ command.

 Examples

 case [time]
 when 12:00:00
 echo "LUNCHTIME!!!"
 when 17:00:00
 echo "t i m e t o g o h o m e . . ."
 out
 echo "Back to Work."
 esac

 Bugs

 Redirectors before ’esac’ prevent its recognition by ’when’,
 ’out’, and ’case’.

 See Also

 case (1), when (1), out (1), if (1)

 esac (1) − 1 − esac (1)

 eval (1) −−− evaluate arithmetic expressions 03/20/80

 Usage

 eval { <expression_element> }

 Description

 ’Eval’ is used to evaluate arithmetic expressions involving
 32−bit integers and shell variables. The expression to be
 evaluated is given in the arguments, and may be spread out
 over as many arguments as desired. The value of the expres−
 sion is printed on standard output one.

 ’Eval’ supports the following operators:

 + addition
 − subtraction and unary minus
 * multiplication
 / division
 % modulus
 << logical left shift
 >> logical right shift
 ** exponentiation
 < less than (returns 1 or 0)
 > greater than
 = equal to
 <= less than or equal to
 >= greater than or equal to
 ~= not equal to
 & bitwise logical and
 | bitwise logical or
 ~ bitwise logical complement

 Operator priority, from highest to lowest, is as follows:

 − (unary minus)
 **
 * / % << >>
 + −
 < <= = ~= >= >
 ~
 &
 |

 Parentheses may be freely used to specify the desired order
 of evaluation.

 Shell variables may appear in expressions; their values will
 be substituted when necessary. As always, shell function
 calls may be included as part of the command line, and will
 be processed before ’eval’ sees the expression.

 Care should be taken in using characters recognized by the
 shell as meta−characters (e.g. parentheses, vertical bar,
 greater than sign). For this reason, it is probably wise to
 enclose the expression in quotes.

 eval (1) − 1 − eval (1)

 eval (1) −−− evaluate arithmetic expressions 03/20/80

 Examples

 eval 10 − 14 + 37**2
 set i = [eval i + 1]
 cat file_stack[eval sp−1]

 Messages

 "Bad element in expression" for missing or unrecognizable
 expression element.
 "<var>: domain error" for reference to non−numeric shell
 variable.
 "<var>: value error" for reference to undefined shell
 variable.

 See Also

 cmp (1), declare (1), forget (1), set (1), hp (1)

 eval (1) − 2 − eval (1)

 exit (1) −−− terminate execution of command files 03/20/80

 Usage

 exit [<levels>]

 Description

 ’Exit’ causes execution of one or more currently active com−
 mand files to cease. It is somewhat similar to the PL/I
 "return" statement in that it simulates a normal termination
 of at least one environment (scope).

 When invoked, ’exit’ positions the <levels> most recently
 activated command files to end−of−file and dumps the command
 interpreter’s internal command buffer. Thus, when the com−
 mand interpreter next attempts to fetch a command, it sees
 <levels> successive ends−of−file and cleans up the
 associated environments. If <levels> is omitted, only one
 level is terminated.

 ’Exit’ is most often used to terminate a command file when
 some error condition defined by the user occurs (for exam−
 ple, an attempt to use the command file by an unauthorized
 user).

 Examples

 if 1
 echo "Sorry, you are not allowed to use this program."
 exit
 fi

 Bugs

 May behave irrationally if <levels> is too large.

 See Also

 error (1), if (1), sh (1), goto (1), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 exit (1) − 1 − exit (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 | Usage

 f77c {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <F77 option>]
 <option> ::= c | d | e | f | g | h | i | k | m |
 o | q | r | s | t | u | v | w | x

 Description

 ’F77c’ serves as the Subsystem interface to the Primos
 Fortran 77 compiler (F77). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 binary files as needed, and then produces a Primos F77 com−
 mand and causes it to be executed.

 Options

 The general structure of an ’f77c’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −c(0) [0..1] − Case.

 Level 0 forces case to be insignificant in identifiers.
 Upper case identifiers are considered the same as lower
 case identifiers.

 Level 1 cause case to significant in identifiers.
 Upper case identifiers are considered different from
 lower case identifiers.

 −d(0) [0..2] − Debugging control.

 Level 0 prevents all debugging information from being
 included in the generated code. A program so compiled
 may not be used with the source level debugger.

 Level 1 allows limited debugging information to be
 included in the generated code, but does not interfere
 with optimization.

 Level 2 causes complete debugging information to be
 included in the generated code and inhibits
 optimization. This option cannot be used with full

 f77c (1) − 1 − f77c (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 optimization (−o3).

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 −f(0) [0..1] − Offset map.

 Level 0 inhibits the generation of a storage offset
 map.

 Level 1 cause the generation of a map listing the
 storage offset of each program variable.

 −g(0) [0..1] − Logical precision.

 Level 0 causes the compiler to allocate 16 bits (1
 word) for each logical variable or constant.

 Level 1 causes the compiler to allocate 32 bits (2
 words) for each logical variable or constant.

 −h(0) [0..1] − Huge (multi−segment) arrays.

 Level 0 insures that dummy arrays and array parameters
 will not be treated as multi−segment arrays.

 Level 1 causes references to dummy arrays and array
 parameters to generate code that will work even if the
 arrays are larger than one segment (64K words) in
 length. This option is allowed only when the "−m"
 option is at level 2.

 −i(0) [0..1] − Integer precision.

 Level 0 causes the compiler to assign 16 bits (1 word)
 to each integer variable or constant.

 Level 1 causes the compiler to assign 32 bits (2 words)
 to each integer variable or constant.

 −k(0) [0..1] − Compilation statistics.

 Level 0 inhibits the display of compilation statistics
 on the terminal.

 Level 1 causes the display of compilation statistics on
 the terminal.

 f77c (1) − 2 − f77c (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 −m(2) [2..3] − Addressing mode.

 Level 2 implies 64V addressing mode. At present this
 is the only addressing mode fully supported under the
 Subsystem.

 Level 3 implies 32I addressing mode. Code in this
 addressing mode will not execute on a Prime 400.

 −o(2) [0..3] − Optimization control.

 Level 0 turns off all optimizations.

 Level 1 turns on pattern replacement optimizations.

 Level 2 turns on pattern replacement and strength
 reduction optimizations.

 Level 3 turns on all optimizations (pattern
 replacement, strength reduction, and removal of
 invariants in DO−loops). This option cannot be used
 with full debugging (−d2).

 −q(1) [0..1] − Suppress warning messages.

 Level 0 inhibits the display of compiler warning mes−
 sages.

 Level 1 allows the display of compiler warning mes−
 sages.

 −r(0) [0..1] − Range checking.

 Level 0 inhibits run−time checking of subscripts and
 substrings.

 Level 1 causes the compiler to insert code for the run−
 time checking of subscripts and substrings.

 −s(1) [0..1] − Storage allocation control.

 Level 0 requires that all subprogram variables be
 allocated statically (the usual case for
 implementations of Fortran, although not required by
 the standard).

 Level 1 requires that all subprogram variables not
 named in SAVE declarations or DATA statements be
 allocated dynamically on the run−time stack. This
 permits recursion and more efficient use of memory, and
 is the normal mode of usage under the Subsystem.

 f77c (1) − 3 − f77c (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 −t(0) [0..1] − DO−loop trip control.

 Level 0 causes all DO loops to be of the zero or more
 iteration (Fortran 77 standard) type.

 Level 1 causes all DO loops to be of the one or more
 iteration (Fortran 66 standard) type.

 −u(1) [0..1] − Undeclared variable checking.

 Level 0 prevents the compiler from flagging undeclared
 variables as errors.

 Level 1 causes the compiler to report undeclared
 variables as errors. This enforces (one hopes) better
 programming practices and reduces the number of hard−
 to−find semantic errors in programs.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing.

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 −w(0) [0..1] − Generate floating round instructions.

 Level 0 does not generate floating round (FRN) instruc−
 tions.

 Level 1 cause a floating round (FRN) instruction to be
 generated before every floating store (FST) instruction
 in the code produced by the F77 compiler. This option
 improves the accuracy of single precision floating
 point calculations at some slight run−time performance
 expense.

 −x(1) [0..2] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing containing all variables referenced
 in executable statements and omitting those that are
 declared but never referenced.

 Level 2 causes the compiler to generate a full cross−
 reference of all variables.

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 f77c (1) − 4 − f77c (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.f77", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.f77", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".f77", ".f" or ".df") or the device
 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a
 file named "file.f77" is

 f77c −c0d0e1f0g0h0i0k0m2o2q1r0s1t0u1v1w1x1 _
 file.f77 −b file.b −l /dev/null

 which corresponds to the F77 command

 f77 −i *>file.f77 −b *>file.b −l no −ints −logs

 Examples

 f77c file.f77
 f77c −ig dmach.f77
 f77c −x dmach.f77 −b b_dmach −l l_dmach
 f77c −m3 i_mode_prog.f77 −z"−newopt"

 Messages

 "Usage: f77c ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to

 f77c (1) − 5 − f77c (1)

 f77c (1) −−− interface to Primos Fortran 77 compiler 08/27/84

 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’f77c’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’F77c’ pays no attention to standard ports.

 See Also

 | f77cl (1), ld (1), init$f (2), bind (3)

 f77c (1) − 6 − f77c (1)

 f77cl (1) −−− compile and load a Fortran 77 program 08/27/84

 | Usage

 f77cl <program name> [<’ld’ options>] [/ <’f77c’ options>]

 Description

 ’F77cl’ is a shell file that invokes the Primos Fortran 77
 | and the Primos segmented loader. If ’f77cl’ is invoked with
 | no <program name> argument, it automatically processes the
 | last program edited, since it shares the shell variable ’f’
 | with the shell program ’e’. The name of the file containing
 the program to be compiled must end with ".f77", although in
 <program name> it may be specified with or without the end−
 ing ".f77". If no output file is specified in the <’ld’
 options>, the output object file name will be <program name>
 with no extension.

 Concerning the options, ’f77c’ will be called with the
 <’f77c’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 f77cl myprog.f77
 f77cl myprog subs.b subs2.b −l mylib
 f77cl myprog / −ok −l mylist

 Messages

 "<program name>.f77: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | f77c (1), ld (1), init$f (2), bind (3)

 f77cl (1) − 1 − f77cl (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 | Usage

 fc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <FTN option>]
 <option> ::= d | e | f | h | i | k | m | o | p | q |
 r | s | t | u | v | w | x

 Description

 ’Fc’ serves as the Subsystem interface to the Primos Fortran
 66 compiler (FTN). It examines its option specifications
 and checks them for consistency, provides Subsystem−
 compatible default file names for the listing and binary
 files as needed, and then produces a Primos FTN command and
 causes it to be executed.

 Options

 The general structure of an ’fc’ option is a single letter,
 possibly followed by a "level number" indicating the extent
 to which an option should be employed. The following list
 outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −d(0) [0..2] − Debugging control.

 Level 0 prevents all debugging information from being
 included in the generated code. A program so compiled
 may not be used with the source level debugger.

 Level 1 allows limited debugging information to be
 included in the generated code, but does not interfere
 with optimization.

 Level 2 causes complete debugging information to be
 included in the generated code and inhibits
 optimization. (Cannot be used when the "−o" option is
 specified with a level greater than zero.)

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 fc (1) − 1 − fc (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 −f(1) [0..1] − Floating point instruction restriction.

 Level 0 causes the compiler to avoid generating certain
 types of floating point instructions that are not
 available on all Prime machines. This level is allowed
 only when the "−m" option is at levels 0 or 1.

 Level 1 allows the compiler to use the entire floating
 point instruction set.

 −h(0) [0..1] − Huge (multi−segment) arrays.

 Level 0 insures that dummy arrays and array parameters
 will not be treated as multi−segment arrays.

 Level 1 causes references to dummy arrays and array
 parameters to generate code that will work even if the
 arrays are larger than one segment (64K words) in
 length. This option is allowed only when the "−m"
 option is at level 2.

 −i(0) [0..1] − Integer precision.

 Level 0 causes objects declared to be of type "integer"
 to be assigned to 16 bit storage locations.

 Level 1 causes objects declared to be of type "integer"
 and all integer constants to be assigned to 32 bit
 storage locations. This is occasionally useful in
 transporting Fortran code written on or for other
 systems. Beware of interactions with Primos and Sub−
 system support routines which normally require 16−bit
 parameters.

 −k(0) [0..1] − Compilation statistics.

 Level 0 inhibits the display of compilation statistics
 on the terminal.

 Level 1 causes the display of compilation statistics on
 the terminal.

 −m(2) [0..2] − Addressing mode.

 Level 0 implies 32R addressing mode. Large arrays ("−
 h1"), dynamic storage allocation ("−s1"), and debugging
 ("−d1" or "−d2") may not be used in this mode.

 Level 1 implies 64R addressing mode. Large arrays ("−
 h1"), dynamic storage allocation ("−s1"), and debugging
 ("−d1" or "−d2") may not be used in this mode.

 Level 2 implies 64V addressing mode. At present this
 is the only addressing mode fully supported under the
 Subsystem.

 fc (1) − 2 − fc (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 −o(1) [0..2] − Optimization control.

 Level 0 turns off all optimizations.

 Level 1 turns on "safe" optimizations (strength reduc−
 tion and removal of invariants in DO−loops). This
 option cannot be used with full debugging ("−d2").

 Level 2 turns on "unsafe" optimizations (same as level
 1, but applied even to loops that may make use of the
 Fortran extended−range feature). This option cannot be
 used with full debugging ("−d2"). Note: Ratfor
 generates GOTO instructions to implement its internal
 procedures. If a Ratfor internal procedure is called
 from within a DO loop, this option cannot be used for
 the program.

 −p(0) [0..1] − Entry control block allocation.

 Level 0 disallows mixing of procedures and entry
 control blocks.

 Level 1 allows mixing of procedures and entry control
 blocks. Selection of this option is valid only when
 the "−m" option is at level 2.

 −q(0) [0..1] − Quirk control.

 Level 0 disallows the use of certain statements and
 declarations designed for use by systems programmers.

 Level 1 allows the use of these statements and
 declarations. A side effect of selecting this level is
 that the compiler flags undeclared variables, regard−
 less of the level of the "−u" option.

 −r(0) [0..1] − Instruction reach control.

 Level 0 causes the compiler to generate short instruc−
 tions for all variable references.

 Level 1 causes the compiler to generate long−reach
 instructions for all variable references. This option
 is valid only when the "−m" option is at level 0 or 1.

 −s(1) [0..1] − Storage allocation control.

 Level 0 requires that all subprogram variables be
 allocated statically (the usual case for
 implementations of Fortran, although not required by
 the standard).

 Level 1 requires that all subprogram variables not
 named in SAVE declarations or DATA statements be
 allocated dynamically on the run−time stack. This
 permits recursion and more efficient use of memory, and

 fc (1) − 3 − fc (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 is the normal mode of usage under the Subsystem.
 Dynamic allocation cannot be used unless the addressing
 mode is 64V (−m2).

 −t(0) [0..1] − Run−time trace control.

 Level 0 causes no run−time trace code to be emitted.

 Level 1 causes the compiler to emit trace code that
 prints statement numbers when they are encountered and
 records assignments to variables. Warning: this
 option can produce reams of output!

 −u(1) [0..1] − Undeclared variable checking.

 Level 0 prevents the compiler from flagging undeclared
 variables as errors.

 Level 1 causes the compiler to report undeclared
 variables as errors. This enforces (one hopes) better
 programming practices and reduces the number of hard−
 to−find semantic errors in programs.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing.

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 −w(0) [0..1] − Generate floating round instructions.

 Level 0 does not generate floating round (FRN) instruc−
 tions.

 Level 1 cause a floating round (FRN) instruction to be
 generated before every floating store (FST) instruction
 in the code produced by the FTN compiler. This option
 improves the accuracy of single precision floating
 point calculations at some slight run−time performance
 expense.

 −x(1) [0..2] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing containing all variables referenced
 in executable statements and omitting those that are
 declared but never referenced.

 fc (1) − 4 − fc (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 Level 2 causes the compiler to generate a full cross−
 reference of all variables.

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.f", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.f", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".f", ".ftn", or ".df") or the device
 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a
 file named "file.f" is

 fc −d0e1f1h0i0k0m2o1p0q0r0s1t0u1v1w0x1 _
 file.f −b file.b −l /dev/null

 which corresponds to the FTN command

 ftn −i *>file.f −b *>file.b −l no −64v −dcl −dynm −opt

 Examples

 fc file.f
 fc −i −u0 dmach.f
 fc −x dmach.f −b b_dmach −l l_dmach
 fc −m1 r_mode_prog.f −z"−debase −nofp"

 fc (1) − 5 − fc (1)

 fc (1) −−− interface to Primos Fortran compiler 08/27/84

 Messages

 "Usage: fc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’fc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Fc’ pays no attention to standard ports.

 See Also

 | fcl (1), ld (1), rfl (1), init$f (2), bind (3)

 fc (1) − 6 − fc (1)

 fcl (1) −−− compile and load a Fortran 66 program 08/27/84

 | Usage

 fcl <program name> [<’ld’ options>] [/ <’fc’ options>]

 Description

 ’Fcl’ is a shell program that invokes the Primos Fortran 66
 | compiler and the Primos segmented loader. If ’fcl’ is
 | invoked with no <program name> argument, it automatically
 | processes the last program edited, since it shares the shell
 | variable ’f’ with the shell program ’e’. The name of the
 file containing the program to be compiled must end with
 ".f", although in <program name> it may be specified with or
 without the ending ".f". If no output file is specified in
 the <’ld’ options>, the output object file name will be
 <program name> with no extension.

 Concerning the options, ’fc’ will be called with the
 <’fc’ options> specified on the command line; then ’ld’ will
 be called with the <’ld’ options> specified.

 Examples

 fcl myprog.f
 fcl myprog subs.b subs2.b −l mylib
 fcl myprog / −o −l mylist

 Messages

 "<program name>.f: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | fc (1), ld (1), init$f (2), bind (3)

 fcl (1) − 1 − fcl (1)

 fdmlc (1) −−− interface to Prime DBMS Fortran DML preprocessor 08/27/84

 | Usage

 fdmlc <input file>
 [−b [<output file>]]
 [−l [<listing file>]]
 [−z <FDML option>]

 Description

 ’Fdmlc’ serves as the Subsystem interface to the Prime DBMS
 Fortran DML preprocessor (FDML). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 output files as needed, and then produces a Primos FDML com−
 mand and causes it to be executed.

 The "−b" option is used to select the name of the file to
 receive the output Fortran code from the preprocessor. If a
 file name follows the option, then that file receives the
 output. If the option is not specified, or no file name
 follows it, a default filename is constructed from the input
 filename by changing its suffix to ".df". For example, if
 the input filename is "prog.f", the output file will be
 "prog.df"; if the input filename is "foo", the output file
 will be "foo.df".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the preprocessor. If a
 file name follows the option, then that file receives the
 listing. If the "−l" option is specified without a file
 name following it or is not specified, a default filename is
 constructed from the input filename by changing its suffix
 to ".dl". For example, if the input filename is "gonzo",
 the listing file will be "gonzo.dl"; if the input filename
 is "bar", the listing file will be "bar.dl".

 The input filename must be a disk file name (conventionally
 ending in ".f", ".f77", or ".ftn").

 In summary, then, the default command line for compiling a
 file named "file.f" is

 fdmlc file.f −b file.df −l file.dl

 which corresponds to the FDML command

 fdml −i *>file.f −b *>file.df −l *>file.dl

 Examples

 fdmlc file.f
 fdmlc payroll.f −b b_payroll −l l_payroll
 fdmlc funnyprog.f −z"−newopt"

 fdmlc (1) − 1 − fdmlc (1)

 fdmlc (1) −−− interface to Prime DBMS Fortran DML preprocessor 08/27/84

 Messages

 "Usage: fdmlc ..." for invalid option syntax.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to output on the terminal or line printer spooler.
 "Sorry, the listing file must be a disk file" if the listing
 file was directed to a device file.

 Bugs

 ’Fdmlc’ pays no attention to standard ports.

 There is no way to avoid getting both a listing and output
 file.

 See Also

 | ddlc (1), f77c (1), fc (1), fsubc (1), ld (1), bind (3)

 fdmlc (1) − 2 − fdmlc (1)

 fdmlcl (1) −−− compile and load a Fortran DML program 08/27/84

 | Usage

 fdmlcl <program name> [<’ld’ options>] [/ <’fc’ options>]

 Description

 ’Fdmlcl’ is a shell file that invokes the Prime DBMS Fortran
 DML preprocessor, the Primos Fortran 66 compiler and the
 | Primos segmented loader. If ’fdmlcl’ is invoked with no
 | <program name> argument, it automatically processes the last
 | program edited, since it shares the shell variable ’f’ with
 | the shell program ’e’. The name of the file containing the
 program to be compiled must end with ".f", although in
 <program name> it may be specified with or without the end−
 ing ".f". If no output file is specified in the
 <’ld’ options>, the output object file name will be
 <program name> with no extension.

 Concerning the options, ’fc’ will be called with the
 <’fc’ options> specified on the command line; then ’ld’ will
 be called with the <’ld’ options> specified.

 Examples

 fdmlcl myprog.f
 fdmlcl myprog subs.b subs2.b −l mylib
 fdmlcl myprog / −ok −l mylist

 Messages

 "<program name>.f: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | fc (1), ld (1), bind (3)

 fdmlcl (1) − 1 − fdmlcl (1)

 fdmp (1) −−− produce formatted dump of a disk file 08/27/84

 | Usage

 fdmp { −<opt>{<opt>} |
 +<start> |
 −<end> } [<pathname>]
 <opt> ::= b | c | d | h | o

 Description

 ’Fdmp’ writes on standard output a dump of the named file
 (standard input if the file name is omitted) in one or more
 of five formats as specified by the <opt> arguments. The
 formats are:

 | −b The file is interpreted as a sequence of octal
 | bytes.

 | −c The file is interpreted as a sequence of ASCII
 | characters. Non−printable characters are
 represented by a control sequence consisting of a
 caret ("^") followed by the corresponding
 printable character. Thus, an ETX (ctrl−c) would
 be represented by "^c". The single exception is
 DEL which is represented as "^ ".

 | −d The file is interpreted as a sequence of signed
 | decimal integers.

 | −h The file is interpreted as a sequence of
 | hexadecimal integers.

 | −o The file is interpreted as a sequence of octal
 | integers.

 In the absence of any other specification, "−o" (octal) is
 assumed.

 For each mode requested, one line of output is produced for
 each group of eight words in the file. The file offset, in
 octal, of the first word in the group is prepended to the
 first line of output for each group.

 The portion of the file that is dumped may be controlled
 with the "+<start>" and "−<end>" arguments. <start> and
 <end> represent the decimal addresses of the first and last
 words of the file to be dumped. (The first word has an
 address of zero.) The two arguments may be used in any com−
 bination. If the start address is unspecified, word zero is
 assumed. Likewise, if no ending address is given, the dump
 proceeds until end of file is encountered.

 If no file name is specified as an argument, standard input
 one is read, allowing ’fdmp’ to be used in a pipeline.

 fdmp (1) − 1 − fdmp (1)

 fdmp (1) −−− produce formatted dump of a disk file 08/27/84

 Examples

 fdmp −bc −127 textfile
 weird_program | fdmp

 Messages

 "Usage: fdmp ..." for incorrect arguments.

 fdmp (1) − 2 − fdmp (1)

 ffind (1) −−− look for a string (kmp style) 08/27/84

 | Usage

 | ffind <string> { −{<option>} } { <file_spec> }
 | <option> ::= c | i | l | o[<occurrences>] | v | x
 | <file_spec> ::= <filename> | −[<stdin_number>] |
 | −n(<stdin_number>|<filename>)

 | Description

 | ’Ffind is a filter that selects lines matching a given
 | string from the named files (or standard input if no files
 | are specified) and copies them to standard output. Unlike
 | ’find’, ’ffind’ cannot match the standard Subsystem patterns
 | but will match only a literal string. The algorithm used
 | (Knuth, Morris, and Pratt) is very fast and is typically
 | four to fives times faster than ’find’.

 | The available options are:

 | −c If the "c" option is used, only a count of the
 | lines that matched (differed) is printed.

 | −i If the "i" option is used, the case of the string
 | and the text of the search file(s) is ignored.

 | −l If the "l" option is used, each line printed is
 | preceded by its relative line number within the
 | file from which it was read.

 | −o If the "o" option is used, ’ffind’ will quit sear−
 | ching the current file after <occurrences> match−
 | ing (differing) lines have been found in it, and
 | will continue with the next file. If "o" is
 | specified but <occurrences> is omitted, only the
 | first occurrence is found.

 | −v If the "v" option is specified, each line of out−
 | put is labelled with the name of the input file
 | from which the line was read.

 | −x If the "x" option is used, only lines that do not
 | match the string are printed.

 | The remaining command line arguments are taken as names of
 | files to be searched for the string. The full syntax of the
 | <file_spec> argument is described in the entry for ’cat’
 | (1).

 | Examples

 | lf −c | ffind .r
 | guide −p sh | ffind the −ci

 ffind (1) − 1 − ffind (1)

 ffind (1) −−− look for a string (kmp style) 08/27/84

 | Messages

 | "Usage: ffind ..." for bad arguments.
 | "file: can’t open" for unreadable files.

 | See Also

 | cat (1), change (1), find (1)

 | Knuth, D.E., J.H. Morris, Jr., and V.R. Pratt (1977).
 | "Fast pattern matching in strings." SIAM Journal on Comput−
 | ing 6 (No. 2): 240−267.

 ffind (1) − 2 − ffind (1)

 fi (1) −−− terminate conditional statement 03/20/80

 Usage

 if <value>
 then
 { <command> }
 else
 { <command> }
 fi

 Description

 ’Fi’ marks the end of a conditional statement. It is a do−
 nothing command that may be searched for by either ’if’ or
 ’else’ in the process of skipping commands. Each ’if’ com−
 mand must be followed by a matching ’fi’ command.

 If a terminal is locked up due to an unmatched ’if’ or
 ’else’, the ’fi’ command may be used to regain control.

 Examples

 if [eval [line] ">" 33]
 then
 set type = phantom
 else
 set type = terminal
 fi

 if 1
 echo "Sorry, you can’t use this program."
 goto exit
 fi

 Bugs

 I/o redirectors placed before ’fi’ render it unrecognizable
 to ’if’ and ’else’.

 See Also

 if (1), then (1), else (1), case (1)

 fi (1) − 1 − fi (1)

 field (1) −−− manipulate field−oriented data 03/20/80

 Usage

 field [−f[<width>]] { <column> |
 <column>−<column> |
 c<column> |
 s<string> }

 Description

 ’Field’ is designed for manipulation of data in formatted
 fields. It is a filter that selects data from certain
 fields of standard input, processes it, and copies it to
 standard output.

 To visualize the action of field, consider the following
 scenario: Imagine a blank−filled output line. Cut out data
 from an input line according to column specifications.
 Paste this data onto the output line at the current column
 position. Move the current column position to the end of
 the data just pasted on.

 Field provides this "cut and paste" operation as its most
 basic function. The argument forms <column> (meaning data
 in the single column given) and <column>−<column> (meaning
 all data between the given columns, inclusive) transfer
 fields of data from input line to output line. The argument
 form s<string> inserts an arbitrary string (called a "pad−
 ding string") at the current position in the output line.
 The last argument form (c<column>) resets the current posi−
 tion in the output line to any desired column.

 If the "−f" (fixed−length output) option is selected, field
 will blank−fill output lines to a fixed length as specified
 by <width>. If <width> is omitted, a value of 72 is
 assumed. In the default mode (no "−f"), trailing blanks are
 stripped off.

 Field was first designed to ease the problem of stripping
 sequence numbers from Cobol programs, and still finds most
 of its work at the same sort of task. It is, however, also
 useful for arranging multiple key fields before sorting with
 ’sort’.

 Examples

 cobol_prog> field 1−72 >prog.cob
 file> field 5−10 s" " 1−80 | sort | field 8−87 >sorted_file
 data_file> field −f80 1−80 >padded_data

 Messages

 "Usage: field ..." for incorrect argument syntax
 "<arg>: too many padding strings" for storage area overflow

 field (1) − 1 − field (1)

 field (1) −−− manipulate field−oriented data 03/20/80

 "<arg>: column out of range" for bad column number
 "<arg>: too many fields" for field storage area overflow
 "<arg>: bad column syntax" for non−numeric column

 See Also

 sort (1), lam (1), change (1)

 field (1) − 2 − field (1)

 file (1) −−− test information about a file 04/03/82

 Usage

 file <pathname> {<option>}
 <option> ::= −d | −[n]e | −p twrtwr | −[n]r |
 −s | −u | −[n]w | −[n]z

 Description

 ’File’ tests the specified pathname for certain conditions.
 ’File’ only operates on one pathname per call and can only
 test for all specified conditions true (the and−product of
 all conditions). If no conditions are given, ’file’ assumes
 the "−e" option. All other tests must be specifically tur−
 ned on. The output of ’file’ is a "1" or "0" depending on
 whether the conditions were all true or one or more was
 false.

 ’File’ is most commonly used with the ’if’ command.

 The options available are:

 −d file type is DAM (direct access)
 −[n]e test for the [non] existence of <pathname>
 −p twrtwr test for specific protection bits on
 −[n]r test for [no] read permission on <pathname>
 −s file type is SAM (sequential access)
 −u file type is UFD (directory)
 −[n]w test for [no] write permission on <pathname>
 −[n]z test <pathname> for [non] zero length

 Examples

 if [file [arg 1] −ne]
 echo [arg 1] does not exist
 exit
 fi

 Messages

 "Usage: file ..." for illegal argument syntax.

 "<pathname>: cannot test conditions" if ’filtst’ returned
 an error in trying to test the pathname.

 Primos file system errors will be noted if found.

 Bugs

 Should accept multiple pathnames.

 Should probably have an option to test for ’or’ of arguments
 as well as ’and’ of arguments.

 file (1) − 1 − file (1)

 file (1) −−− test information about a file 04/03/82

 Accepts only an obsolete syntax for the file protection
 argument.

 See Also

 if (1), chat (1), lf (1), find$ (2)

 file (1) − 2 − file (1)

 files (1) −−− list file names matching a pattern 03/20/80

 Usage

 files [<pattern> { <’lf’_argument> }]

 Description

 ’Files’ is a shell file that invokes the ’lf’ command and
 filters its output through ’find’ to select the names that
 match the specified pattern. The pattern may be any expres−
 sion that is acceptable (as a pattern) to ’find’. By
 default, the files in the current working directory are the
 ones whose names are examined; however, an alternate direc−
 tory may be specified as a second argument. If no arguments
 are specified, files produces the same results as an "lf −c"
 command.

 Examples

 del −v [files ".b$"]

 pr [files ".r$"]

 files .r$ =src=/lib/swt/src | change .r$ |$
 files .d$ =doc=/man/s2 | change .d$ | common −1

 Messages

 Various messages may be produced by ’lf’ and ’find’.

 See Also

 find (1), lf (1), amatch (2), makpat (2)

 files (1) − 1 − files (1)

 find (1) −−− look for a pattern 08/27/84

 | Usage

 | find <pattern> { −{<option>} } { <file_spec> }
 | <option> ::= c | i | l | o[<occurrences>] | v | x
 | <file_spec> ::= <filename> | −[<stdin_number>] |
 | −n(<stdin_number>|<filename>)

 Description

 ’Find’ is a filter that selects lines matching a given pat−
 tern from the named files (or standard input if no files are
 specified) and copies them to standard output. The pattern
 supplied as the first argument is a regular expression with
 the full set of options found in the editor. (See
 Introduction to the Software Tools Text Editor in the
 Software Tools Subsystem User’s Guide for details.)

 | The available options are:

 | −c If the "c" option is used, only a count of the
 | lines that matched (differed) is printed.

 | −i If the "i" option is used, the case of the pattern
 | and the text of the search file(s) is ignored.

 | −l If the "l" option is used, each line printed is
 | preceded by its relative line number within the
 | file from which it was read.

 | −o If the "o" option is used, find will quit search−
 | ing the current file after <occurrences> matching
 | (differing) lines have been found in it, and will
 | continue with the next file. If "o" is specified
 | but <occurrences> is omitted, only the first
 | occurrence is found.

 | −v If the "v" option is specified, each line of out−
 | put is labelled with the name of the input file
 | from which the line was read.

 | −x If the "x" option is used, or if the first charac−
 | ter of the pattern is a tilde ("~"), only lines
 | that do not match the pattern are printed.

 | The remaining command line arguments are taken as names of
 | files to be searched for the pattern. The full syntax of
 | the <file_spec> argument is described in the entry for ’cat’
 | (1). Most frequently, it will take the form of a Subsystem
 | pathname.

 ’Find’ is frequently used for processing output from ’lf’
 before performing some operation on a number of files, and
 for stripping out "uninteresting" lines from data to be
 further processed by other tools.

 find (1) − 1 − find (1)

 find (1) −−− look for a pattern 08/27/84

 Examples

 lf −c | find .r$
 lf −c | find .r$ | find call −lv −n
 find CALL −lv [lf −c | find .f$]
 find "format" −c rf.r ed.r

 Messages

 "Usage: find ..." for bad arguments.
 "illegal pattern" for bad pattern syntax.
 "file: can’t open" for unreadable files.

 See Also

 | cat (1), change (1), ffind (1), files (1), se (1), makpat
 | (2), amatch (2), match (2), Introduction to the Software
 Tools Text Editor

 find (1) − 2 − find (1)

 fmt (1) −−− text formatter 08/27/84

 | Usage

 fmt [−s | −p<start_page>[−<end_page>]] { <filename> }

 Description

 ’Fmt’ is an extended version of Kernighan and Plauger’s
 ’format’ text formatter.

 Input to ’fmt’ consists of text intermixed with formatting
 requests and function calls. Formatting requests are
 identified by a special character (called the "control
 character", normally a period) appearing in the first column
 of a line of input. Such requests are used to change mar−
 gins, text justification, underlining and boldfacing, etc.
 Function calls appear within square brackets, and are used
 to change number registers, query the status of certain
 internal formatter variables, and effect partial word bold−
 facing and underlining.

 For a complete description of ’fmt’, along with a tutorial
 and numerous examples, the reader is referred to the
 Software Tools Text Formatter User’s Guide.

 If the "−s" option is specified, ’fmt’ will pause at the top
 of each page of output, to allow the user to insert paper
 manually. To continue output, the user should type a
 control−c.

 The "−p" option may be used to limit the pages output by
 ’fmt’. Only the given range of pages will be printed. If
 the ending page number is omitted, all remaining text will
 be printed.

 The files named on the command line are used as sources of
 input. The effect is the same as if the contents of all the
 named files had been concatenated before processing. Note:
 the filename "−" may be used to indicate the first standard
 input.

 The following tables summarize currently−implemented format−
 ting requests and function calls (and their variants).

 Summary of Commands

 Command Initial If no Cause
 Syntax Value Parameter Break Explanation

 .# − − no Introduce a comment.

 .ad c both both no Set margin adjust−
 | ment mode.

 | .am xx − − no Add additional text
 | to the body of a

 fmt (1) − 1 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 | previously defined
 | macro.

 .bf N N=0 N=1 no Boldface N input
 text lines.

 .bp +N N=1 next yes Begin a new page.

 .br − − yes Force a break.

 .c2 c ‘ ‘ no Set no−break control
 character.

 .cc c . . no Set basic control
 character.

 .ce N N=0 N=1 yes Center N input text
 lines.

 .de xx − ignored no Begin definition or
 redefinition of a
 macro.

 .dv <stream> − end ’.dv’ no Temporarily divert
 the output stream to
 a "filename" or to a
 temporary file
 designated by an
 | integer "N" (to be
 | later read by a ".so
 | N" command) until a
 | ’dv’ command with no
 arguments is seen.

 .ef /l/c/r/ blank blank no Set even−numbered
 page footing.

 .eh /l/c/r/ blank blank no Set even−numbered
 page heading.

 .en xx − ignored no End macro
 definition.

 .eo +N N=0 N=0 yes Set even page off−
 set.

 .er text − ignored no Write a message to
 the terminal.

 .ex − − yes Exit immediately to
 the Subsystem.

 .fi on − no Turn on fill mode.

 .fo /l/c/r/ blank blank no Set running page
 footing.

 fmt (1) − 2 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 .he /l/c/r/ blank blank no Set running page
 heading.

 .hy on − no Turn on automatic
 | hyphenation.

 | .if <args> − ignored maybe Conditional execu−
 | tion of an input
 | line.

 .in +N N=0 N=0 yes Indent left margin.

 .lm +N N=1 N=1 yes Set left margin.

 .ls N N=1 N=1 no Set line spacing.

 .lt +N N=60 N=60 no Set length of
 header, footer and
 titles.

 .m1 +N N=3 N=3 no Set top margin
 before and including
 page heading.

 .m2 +N N=2 N=2 no Set top margin after
 page heading.

 .m3 +N N=2 N=2 no Set bottom margin
 before page footing.

 .m4 +N N=3 N=3 no Set bottom margin
 including and after
 page footing.

 .mc <char> BLANK BLANK no Set margin charac−
 ter.

 .mo +N N=0 N=0 no Set margin offset.

 .na − − no Turn off margin
 adjustment.

 .ne N − N=1 yes Express a need for N
 contiguous lines.

 .nf − − yes Turn off fill mode.
 (Also inhibits
 adjustment.)

 .nh − − no Turn off automatic
 hyphenation.

 .ns on − no Turn on ’no−space’
 mode.

 fmt (1) − 3 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 .nx file − next arg no Move on to the next
 input file.

 .of /l/c/r/ blank blank no Set odd−numbered
 page footing.

 .oh /l/c/r/ blank blank no Set odd−numbered
 page heading.

 .oo +N N=0 N=0 yes Set odd page offset.

 .pl +N N=66 N=66 no Set page length.

 .pn +N N=1 ignored no Set page number.

 | .po +N N=0 N=0 yes Set page offset.

 | .ps N M N=M=0 N=M=0 yes Skip pages while
 | (page number mod M)
 | is less than N.

 .rc c BLANK BLANK no Set tab replacement
 character.

 .rm +N N=60 N=60 yes Set right margin.

 .rs − − no Turn off ’no−space’
 mode.

 .sb off − no Single blank after
 end of sentence.

 | .so <stream> − ignored no Temporarily alter
 | the input source.
 | "Stream can be a "−"
 | to indicate standard
 | input, a "filename,"
 | or an integer "N"
 | corresponding to a
 | temporary file
 | created by a
 | previous ’.dv N’
 | command.

 .sp N − N=1 yes Put out N blank
 lines.

 .ta N ... 9 17 ... all no Set tab stops.

 .tc c TAB TAB no Set tab character.

 .ti +N N=0 N=0 yes Temporarily indent
 left margin.

 .tl ’l’c’r’ blank blank yes Generate a three
 part title.

 fmt (1) − 4 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 .ul N N=0 N=1 no Underline N input
 text lines.

 .xb on − no Extra blank after
 end of sentence.

 | Functions

 | add Add constant to number register (add
 | <reg_number> <constant>)
 | bf Boldface arguments on output
 | cu Output arguments with a continuous underline
 | date Current date; e.g., 11/27/84
 | day Current day of the week; e.g., Tuesday
 | ldate Current date: e.g., November 27, 1984
 | num Evaluate number register (num <pre−
 | inc/dec><reg_number><post−inc/dec>)
 | rn Convert argument to a lower−case Roman
 | numeral
 | RN Convert argument to an upper−case Roman
 | numeral
 | set Set number register to value (set
 | <reg_number> <constant>)
 | sub Output the arguments as a subscript
 | sup Output the arguments as a superscript
 | time Current time of day; e.g., 02:16:12
 | ul Underline the arguments on output
 | letter Convert a number to its lower case equivalent
 | LETTER Convert a number to its upper case equivalent
 | vertspace Change the vertical spacing on NEC Spinwriter
 | even Test if number is even
 | odd Test if number is odd
 | cap Capitalize text
 | small Map all characters of text to lower case
 | plus Add two numbers
 | minus Subtract two numbers
 | header Return the page header
 | evenheader Return the even page header
 | oddheader Return the odd page header
 | footer Return the page footer
 | evenfooter Return the even page footer
 | oddfooter Return the odd page footer
 | cmp Perform string comparison
 | icmp Perform integer comparison
 | bottom Return the number of the last printed line
 | top Return the number of the first printed line

 | Variables

 cc Current basic control character
 c2 Current no−break control character
 in Current indentation value
 lm Current left margin value
 ln Current line number on the page

 fmt (1) − 5 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 ls Current line−spacing value
 | lt Length of titles
 ml Current macro invocation level
 m1 Current margin 1 value
 m2 Current margin 2 value
 m3 Current margin 3 value
 m4 Current margin 4 value
 | ns True or false if no−space is in effect.
 pl Current page length value
 pn Current page number
 po Current page offset value
 rm Current right margin value
 tc Current tab character
 ti Current temporary indentation value
 tcpn Current page number, right justified in 4 charac−
 ter field

 Special Characters

 | bl Phantom blank
 | bs Backspace
 | alpha lower−case Greek alpha
 | * ALPHA upper−case Greek alpha
 | beta lower−case Greek beta
 | * BETA upper−case Greek beta
 | * chi lower−case Greek chi
 | * CHI upper−case Greek chi
 | delta lower−case Greek delta
 | * DELTA upper−case Greek delta
 | epsilon lower−case Greek epsilon
 | * EPSILON upper−case Greek epsilon
 | eta lower−case Greek eta
 | * ETA upper−case Greek eta
 | gamma lower−case Greek gamma
 | GAMMA upper−case Greek gamma
 | infinity infinity symbol
 | integral integration symbol
 | * INTEGRAL large integration sign
 | * iota lower−case Greek iota
 | * IOTA upper−case Greek iota
 | * kappa lower−case Greek kappa
 | * KAPPA upper−case Greek kappa
 | lambda lower−case Greek lambda
 | LAMBDA upper−case Greek lambda
 | mu lower−case Greek mu
 | * MU upper−case Greek mu
 | nabla inverted delta (APL del)
 | not EBCDIC−style not symbol
 | * nu lower−case Greek nu
 | * NU upper−case Greek nu
 | omega lower−case Greek omega
 | OMEGA upper−case Greek omega
 | * omicron lower−case Greek omicron
 | * OMICRON upper−case Greek omicron
 | partial partial differential symbol
 | phi lower−case Greek phi

 fmt (1) − 6 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 | PHI upper−case Greek phi
 | psi lower−case Greek psi
 | PSI upper−case Greek psi
 | pi lower−case Greek pi
 | PI upper−case Greek pi
 | rho lower−case Greek rho
 | * RHO upper−case Greek rho
 | sigma lower−case Greek sigma
 | SIGMA upper−case Greek sigma
 | tau lower−case Greek tau
 | * TAU upper−case Greek tau
 | theta lower−case Greek theta
 | THETA upper−case Greek theta
 | * upsilon lower−case Greek upsilon
 | * UPSILON upper−case Greek upsilon
 | xi lower−case Greek xi
 | * XI upper−case Greek xi
 | zeta lower−case Greek zeta
 | * ZETA upper−case Greek zeta
 | * downarrow arrow pointing down
 | * uparrow arrow pointing up
 | * backslash back slash symbol
 | * tilde tilde symbol
 | * largerbrace large square right brace
 | * largelbrace large square left brace
 | * proportional proportional symbol
 | * apeq approximately equal to
 | * ge greater than or equal to
 | * imp implies
 | * exist there exists
 | * AND logical and
 | * ne not equal to
 | * psset proper subset
 | * sset subset
 | * le less than or equal to
 | * nexist there does not exist
 | * univ for every
 | * OR logical or
 | * iso congruence
 | * lfloor left floor
 | * rfloor right floor
 | * lceil left ceiling
 | * rceil right ceiling
 | * small0 a small 0
 | * small1 a small 1
 | * small2 a small 2
 | * small3 a small 3
 | * small4 a small 4
 | * small5 a small 5
 | * small6 a small 6
 | * small7 a small 7
 | * small8 a small 8
 | * small9 a small 9
 | * scolon semicolon
 | * dquote double quote
 | * dollar dollar sign

 fmt (1) − 7 − fmt (1)

 fmt (1) −−− text formatter 08/27/84

 | The special characters marked with an asterisk (*) are only
 | available on the NEC Spinwriter, and so the output of ’fmt’
 | must be post−processed with ’sprint’.

 | In particular, these characters require that the special
 | Times−Roman/Mathematics type wheel be in the Spinwriter.
 | This wheel, in order to accomodate the special characters,
 | lacks certain of the regular ASCII graphics. These are sub−
 | stituted for by special functions. For example, [scolon] is
 | used to produce a semi−colon.

 Examples

 fmt −p3−10 report | dprint
 fmt report | os >/dev/lps/f
 fmt −s contents tutorial index

 Bugs

 There should be some way to specify multiple ranges of pages
 to be printed.

 See Also

 | os (1), dprint (3), sprint (3), Software Tools Text
 Formatter User’s Guide

 fmt (1) − 8 − fmt (1)

 forget (1) −−− destroy shell variables 03/20/80

 Usage

 forget { <identifier> }

 Description

 ’Forget’ is used to destroy shell variables that were
 created by ’declare’ or ’set’. The arguments supplied must
 be names of shell variables that are active at the current
 lexical level. The named variables will be removed from the
 command interpreter’s symbol table.

 Note that it is not necessary to explicitly destroy shell
 variables that are declared local to a command file; when
 the execution of the command file is completed, they will be
 destroyed automatically.

 Examples

 forget name address telephone_number
 forget face

 See Also

 declare (1), set (1), vars (1), save (1), User’s Guide for
 the Software Tools Subsystem Command Interpreter

 forget (1) − 1 − forget (1)

 fos (1) −−− format, overstrike, and spool a document 12/16/81

 Usage

 fos [<pathname> { <spool options> }]

 Description

 The shell program ’fos’ executes the proper pipeline to
 produce a formatted document on the line printer. If called
 with any arguments, the first argument must be the file to
 be formatted, possibly followed by spooler options. If no
 arguments are supplied, then ’fos’ will attempt to use the
 ’f’ variable that is set by ’e’ (if declared). If the ’f’
 variable is not declared, then an error message is printed.
 The spool options are any options acceptable to ’sp’.

 ’Fos’ can take only one <pathname>, while ’fmt’ can take
 many. To make ’fos’ accept several names, one can type:

 fos "file1 file2 file3"

 Examples

 fos report
 fos book −c 1000

 Messages

 "Usage ..." for missing pathname argument and no ’f’
 variable

 See Also

 e (1), sp (1), fmt (1), os (1)

 fos (1) − 1 − fos (1)

 fsize (1) −−− size any file system structure 01/16/83

 Usage

 fsize { −<option>{<option>} } { <pathname> | −n }
 <option> ::= f | r | v | w

 Description

 ’Fsize’ prints the amount of disk space consumed by the file
 system objects specified as arguments. Any type of file
 system object may be specified (ordinary file, ufd, or seg−
 ment directory); in the case of a ufd or segment directory,
 the entire file system subtree thereunder is considered in
 the size. ’Fsize’ will determine the amount of space used
 not only for data but also for internal purposes (such as
 direct access indices).

 If "−n" appears in place of a pathname, pathnames are read
 from the standard input. For more information on this
 syntax, see the entry for ’cat’ (1).

 The following options are available:

 | −f Force any object that can’t be read to be readable by
 | manipulating its protection bits and concurrent
 access lock. After the object has been sized, the
 original attributes are restored. The user must have
 owner status in the object’s parent directory for
 this option to work. WARNING: This option should
 not be used on objects whose protection and
 concurrency attributes are assumed by some running
 program to have a particular setting. In particular,
 certain of the files used by Prime’s database
 management system must not have their concurrency
 locks changed while the DBMS is active.

 | −r Print the size as a number of disk records (default).

 | −v Print the name of the object along with the size of
 | the object. This is especially useful when pathnames
 are being read from the standard input.

 | −w Print the size as a number of 16 bit words.

 If the "−n" idiom is not used and no pathnames are given on
 the command line, the program will size the current direc−
 tory by default.

 Examples

 fsize
 lf −c | fsize −f −n | stats −tashln
 fsize −wv //extra //lib //src

 fsize (1) − 1 − fsize (1)

 fsize (1) −−− size any file system structure 01/16/83

 Messages

 "Usage: fsize ..." for incorrect argument syntax.
 "−r and −w are mutually exclusive" for requesting both "r"
 and "w".
 "<pathname>: can’t get record size" if the record size of
 the disk partition containing the specified object
 can’t be determined.
 "<pathname>: can’t determine size" if the specified object
 can’t be opened for reading.
 "<pathname>: can’t size directory contents" if the
 specified ufd can’t be attached to.

 Bugs

 Gives inaccurate results for very large DAM files and DAM
 segment directories (those with multi−level indices).

 Will not work if the MFD of the disk containing an object
 cannot be attached to with a password of "XXXXXX". The MFD
 must be read to determine the record size for the disk.

 See Also

 lf (1), hd (1)

 fsize (1) − 2 − fsize (1)

 fsubc (1) −−− interface to Prime DBMS Fortran subschema compiler 08/27/84

 | Usage

 fsubc <input file>
 [−l [<listing file>]]
 [−z <FSUBS option>]

 Description

 ’Fsubc’ serves as the Subsystem interface to the Prime DBMS
 Fortran subschema compiler (FSUBS). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 output files as needed, and then produces a Primos FSUBS
 command and causes it to be executed.

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. If the "−l" option is specified without a file
 name following it or is not specified, a default filename is
 constructed from the input filename by changing its suffix
 to ".l". For example, if the input filename is
 "gonzo.fsub", the listing file will be "gonzo.l"; if the
 input filename is "bar", the listing file will be "bar.l".

 The input filename must be a disk file name (conventionally
 ending in ".fsub").

 In summary, then, the default command line for compiling a
 file named "file.fsub" is

 fsubc file.fsub −l file.l

 which corresponds to the FSUBS command

 fsubs −i *>file.fsub −l *>file.l

 Examples

 fsubc file.fsub
 fsubc payroll.fsub −l l_payroll
 fsubc funnyprog.fsub −z"−newopt"

 Messages

 "Usage: fsubc ..." for invalid option syntax.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "Sorry, the listing file must be a disk file" if the listing

 fsubc (1) − 1 − fsubc (1)

 fsubc (1) −−− interface to Prime DBMS Fortran subschema compiler 08/27/84

 file was directed to a device file.

 Bugs

 ’Fsubc’ pays no attention to standard ports.

 There is no way to avoid getting a listing file.

 See Also

 | ddlc (1), f77c (1), fc (1), fdmlc (1), ld (1), bind (3)

 fsubc (1) − 2 − fsubc (1)

 goto (1) −−− command file flow−of−control statement 03/20/80

 Usage

 goto <label>

 Description

 ’Goto’ provides a means of altering the flow of control in
 command files. After the execution of a ’goto’ command, the
 command interpreter will resume processing of the command
 file at the first command (network, to be precise) labelled
 with the given identifier. A node (and thus a network) may
 be labelled by preceding it with a colon and an identifier,
 e.g.

 :exit echo Done.

 ’Goto’ is normally used only within command files; however,
 it may be used from the terminal, with the restriction that
 control can only be transferred forward, never back.

 Examples

 goto exit

 Messages

 "goto could not find target label" for a missing label.
 "Usage: goto <label>" if used without an argument.

 Bugs

 ’Goto’ does not understand compound nodes, so jumping into
 the middle of one may have unpredictable results. If the
 target label is preceded by any I/O redirectors, it will not
 be recognized.

 See Also

 if (1), case (1), User’s Guide for the Software Tools
 Subsystem Command Interpreter

 goto (1) − 1 − goto (1)

 group (1) −−− test or list a users group identities 07/22/83

 | Usage

 | group [−a | −o] {<group_list>}

 | Description

 | ’Group’ lists a user’s currently active groups or tests for
 | combinations of groups. With no arguments, ’group’ lists
 | all of a users currently active groups. The "−a" option
 | causes ’group’ to return a "1" if all the groups listed are
 | active (i.e. returns the logical AND) and ’0’ otherwise.
 | The "−o" option causes ’group’ to return "1" if any of the
 | listed groups are currently active (i.e. returns the
 | logical OR) and a ’0’ otherwise. If a "<group_list>" is
 | specified with no flag argument then ’group’ assumes "−a".

 | Examples

 | group
 | group .guru
 | group −a .demo .system
 | group −o .test .strange

 | Messages

 | "can’t retrieve group names" if an error in the call to
 | GETID$ occurs.

 | See Also

 | Primos List_Group command

 group (1) − 1 − group (1)

 gtod (1) −−− get time of day 08/02/83

 | Usage

 | gtod

 | Description

 | ’Gtod’ prints the time of day together with the date, month,
 | and year; in a format which is pleasing to humans.

 | Examples

 | gtod
 | echo Compiled at [gtod | quote]

 | See Also

 | date (1), time (1), day (1), ctime (1), date (2)

 gtod (1) − 1 − gtod (1)

 guide (1) −−− Software Tools Subsystem User’s Guides 08/27/84

 | Usage

 guide { <option> | <item> }
 <option> ::= −p
 <item> ::= <guide_name>

 Description

 | Several of the more complicated or more frequently used Sub−
 | system commands and libraries have additional documentation
 | beyond that which is available from the reference manual.
 | This documentation is in the form of a separate paper on
 | each command or library, but these papers may be combined to
 | form the Software Tools Subsystem User’s Guide.

 The command

 guide <guide name>

 prints the named guide in a format suitable for reading on a
 fast CRT terminal.

 The command

 guide −p <guide name>

 prints the named guide in a format suitable for the line
 printer.

 Copies of individual documents may be printed on one of the
 on−site line printers by giving the following command:

 guide −p <guide name> | os >/dev/lps/f

 where "<guide name>" is one of the following guide names:

 | cc

 | A copy of the User’s Guide for the Georgia Tech C
 | Compiler. This guide describes the necessary
 | requirements for compiling programs written in C from
 | the Subsystem. Refer to The C Programming Language by
 | Brian Kernighan and Dennis Ritchie for specific details
 | about the C programming language. This guide is only
 | available to customers who have also licensed the C
 | language compiler package.

 | ed

 | A copy of Introduction to the Software Tools Text
 | Editor is printed. This paper includes a tutorial on
 | the Subsystem’s text editor that is highly recommended
 | for beginning users, as well as a command summary and a

 guide (1) − 1 − guide (1)

 guide (1) −−− Software Tools Subsystem User’s Guides 08/27/84

 | special section on the Subsystem screen editor.

 | fmt

 | A copy of the Software Tools Subsystem Text Formatter
 | User’s Guide is printed. This includes tutorial,
 | reference, and applications information. One very
 | useful appendix contains all text formatting commands,
 | arranged alphabetically.

 | fs

 | A copy of User’s Guide to the Primos File System is
 | printed. This paper gives a brief introduction to the
 | Primos file system as it applies to the use of the Sub−
 | system. It explains the structure of the file system,
 | provisions for security, and how users access files by
 | name.

 | math

 | A copy of the SWT Math Library User’s Guide is printed.
 | This includes descriptions of the Prime floating point
 | hardware, the SWT math library, and the tests used to
 | validate the SWT library. Appendices contain useful
 | programs to help determine where the exponent is
 | located on your particular machine, determine the
 | amount of loss of bits in a multiply operation, and
 | calculate hexadecimal constants for use in mathematical
 | routines. The addendum documents the routines which
 | used to be in the old, locally supported, math library
 | "vswtml."

 | mgr

 | A copy of the Software Tools Subsystem Manager’s Guide
 | is printed. This guide is useful for all Subsystem
 | managers and anyone else interested in the instal−
 | lation, maintenance, and daily operation of the Sub−
 | system.

 | ring

 | A copy of Ring −− The Software Tools Subsystem Network
 | Utility is printed. This paper documents the structure
 | and use of ’ring’, a utility which makes it easier for
 | the end user to deal with Primenet.

 guide (1) − 2 − guide (1)

 guide (1) −−− Software Tools Subsystem User’s Guides 08/27/84

 | rp

 | Prints the Ratfor Programmer’s Guide. This document
 | includes a detailed description of the Ratfor program−
 | ming language as well as instructions for its use under
 | the Subsystem. It is essential for anyone hoping to do
 | any significant amount of programming using the
 | capabilities supplied by the Subsystem.

 | sh

 | A copy of User’s Guide for the Software Tools Subsystem
 | Command Interpreter is printed. This paper discusses
 | the features of the Subsystem command interpreter, cal−
 | led the ’shell’, on three levels: a tutorial introduc−
 | tion, a syntax and semantics reference, and a set of
 | applications notes.

 | tutorial

 | A copy of The Software Tools Subsystem Tutorial is
 | printed. This tutorial is intended as a user’s first
 | introduction to the Subsystem and covers such
 | essentials as logging in and out, features of the com−
 | mand language, editing, online documentation and so
 | forth. NEW USERS SHOULD READ THIS DOCUMENT FIRST.

 | v8.1

 | A copy of the Software Tools Subsystem Version 8 to
 | Version 8.1 Conversion Guide is printed. This guide
 | summarizes all user−visible changes that have been made
 | between the Version 8 and Version 8.1 Subsystems.

 | v9

 | A copy of the Software Tools Subsystem Version 8.1 to
 | Version 9 Conversion Guide is printed. This guide sum−
 | marizes all user−visible changes that have been made
 | between the Version 8.1 and Version 9 Subsystems.

 vcg

 A copy of A Re−Usable Code Generator for Prime 50−
 Series Computers User’s Guide. ’Vcg’ is a reusable
 | general−purpose code generator that accepts an
 | "intermediate form" and produces 64V−mode relocatable
 | object code, or optionally, PMA. The V−mode code
 generator is the back−end for the Georgia Tech C Com−
 | piler. This guide is only available to customers who
 | have also licensed the C language compiler package.

 guide (1) − 3 − guide (1)

 guide (1) −−− Software Tools Subsystem User’s Guides 08/27/84

 Examples

 guide tutorial
 guide −p rp | os >/dev/lps/f

 Files

 Most of those contained in =doc=/fguide.

 See Also

 Software Tools Subsystem Reference Manual

 guide (1) − 4 − guide (1)

 hd (1) −−− summarize available disk space 08/27/84

 | Usage

 hd [−n | −u | −v] { <pack id> }

 Description

 | ’Hd’ ("how’s disk?") prints a summary of available disk
 | space. Zero or more <pack id> arguments may be used to
 specify the disk partitions of interest. A <pack id> may be
 the packname of the partition (the name of the record
 | availability table file) or its octal logical disk number in
 the range 0:76 or an asterisk indicating the disk containing
 the user’s current directory. If no <pack id> arguments are
 given, information for all online disks, in order of
 increasing logical disk number, is provided.

 The format of each line of output is as follows:

 nn: rrrrrr free pppppp% full ssss...

 where ’nn’ is the logical disk number in octal (if the disk
 number is known), ’rrrrrr’ is the (decimal) number of
 records available on the partition, ’pppppp’ is the per−
 centage of total records on the partition that are currently
 in use, and ’ssss...’ is the packname of the partition.

 The "−n" and "−u" options may be used to determine the base
 record size for reporting the number of available records on
 storage module partitions (whose physical record size is
 1024 words). If the "−n" option is specified, the number of
 physical records available is "normalized" to an equivalent
 number of 440 word records. If the "−u" option is
 specified, the number of available physical records is
 reported as is, without normalization. If neither option is
 given, "−u" is assumed.

 If the "−v" option is used, ’hd’ will also print the number
 of heads and total number of records in each partition.

 Examples

 hd
 hd swtsys user_a 10
 hd −v *
 hd −n cc

 Files

 Record availability tables and master file directories on
 all reported disks.

 hd (1) − 1 − hd (1)

 hd (1) −−− summarize available disk space 08/27/84

 Messages

 "Usage: hd ..." for incorrect argument syntax.
 "bad packname" for unrecognized packnames or out−of−range
 logical disk numbers.
 "disk−rat unreadable" if the record availability table can’t
 be opened for reading.
 "disk−rat badly formatted" for a record availability table
 that does not conform to the standard format.
 "mfd unreadable" if the master file directory on the parti−
 tion can’t be opened for reading.
 "−n and −u are mutually exclusive" if both "−n" and "−u"
 options are specified.

 | Bugs

 | The name is not terribly mnemonic. It is a holdover from
 | the long defunct Georgia Tech Burroughs B5500.

 See Also

 fsize (1), lf (1)

 hd (1) − 2 − hd (1)

 help (1) −−− provide help for users in need 08/27/84

 | Usage

 help { <item> | <option> }
 | <option> ::= −c | −d | −s | −f | −g | −i | −p | −u

 Description

 ’Help’ can be used to retrieve various types of information
 concerning Subsystem commands and library subprograms.

 General information on the Subsystem can be had simply by
 typing the command "help" with no arguments:

 help

 More comprehensive information can be obtained with the form

 help item item...

 ’Help’ searches the Software Tools Subsystem Reference
 Manual for the named commands and subprograms and, if they
 are found, prints their manual entries. Any uniquely−named
 command or library subprogram may be found in this manner.

 In the case of commands and subprograms that share a common
 name (e.g. ’print’ or ’date’) the ambiguity may be resolved
 by specifying the option "−c" to select the command or "−s"
 to select the subprogram. If neither "−s" or "−c" is
 specified, the default behavior is the same as for "−c".

 General information not in the Reference Manual is accessed
 with the "−g" option; for example,

 help −g bnf

 gives a short explanation of the extended Backus−Naur Form
 (BNF) used to describe command syntax in the Reference
 Manual.

 An index of all documented commands and library subprograms
 can be generated with the "−i" option. (This is an excel−
 lent way of getting an overview of what functionality the
 Subsystem has to offer.) Furthermore, if some particular
 function is desired, but the names of commands that perform
 that function are unknown, the "−f" option may be used to
 search the index for a given pattern. For example, the
 names and short descriptions of all commands and library
 subprograms dealing with character strings will be listed by
 the following command:

 help −f string

 (The "−f" option is an excellent way for a new user to track
 down commands and subprograms that are germane to the solu−
 tion of a particular problem.) (An aside to experienced

 help (1) − 1 − help (1)

 help (1) −−− provide help for users in need 08/27/84

 users: the patterns following a "−f" option are standard
 Subsystem regular expressions, identical to those used in
 the text editors and the ’find’ and ’change’ commands.)

 ’Help’ calls the ’page’ subroutine in the Subsystem library
 to print a screenful of information at a time; any response
 that is acceptable to ’page’ can be given as a response to
 ’help’. Please see the Reference Manual entry for the
 ’page’ routine for more details ("help page" would be
 appropriate). In particular, a carriage return may be
 entered to continue to the next screenful of information.
 While the ’help’ processor is presenting the text of a
 Reference Manual entry, it prompts with the a string of the
 form "<name> [<number>+] more ? ", where <name> is the name
 of the command or routine for which help is being provided,
 and <number> is the number of the page (screenful) being
 presented. When the end of the Reference Manual entry is
 reached, ’help’ prompts with the string
 "<name> [<number>$] more ? ", with the dollar sign indicat−
 | ing that the end of the manual entry has been reached. By
 | default, ’help’ instructs the ’page’ subroutine to use any
 | special features your terminal may have, via the ’vth’
 | terminal handling library. If you have a dumb terminal, or
 | a hard−copy terminal, use the "−d" option to tell ’help’
 | that it is using a "dumb" terminal.

 For extracting Reference Manual entries to be spooled and
 printed, the "−p" option may be used to turn off the
 automatic pagination described above. When "−p" is
 specified, the Reference Manual entries selected are printed
 exactly as they are stored, with underlining/boldfacing
 intact, and indentation and page size unchanged. This out−
 put must be run through ’os’ before being printed on the
 line printer. Example:

 help −p help rp fmt | os >/dev/lps/f

 If the user only desires to see the syntax for the command
 and not the description, then the "−u" option can be
 specified. This causes only the "Usage" section of the
 Manual entry to be retrieved for the given command. The
 ’usage’ Subsystem command is a shell file that uses this
 option; the user normally does not need to specify it in a
 call to ’help’.

 Examples

 help
 help −g bnf
 help e se date time
 help −s date −c print
 help −i
 help −f file string input output
 help −p fmt | os >/dev/lps/f
 help −u se

 help (1) − 2 − help (1)

 help (1) −−− provide help for users in need 08/27/84

 Files

 =doc=/fman/s1/<command>.d for command documentation
 =doc=/fman/s2/<subprogram>.d for subprogram documentation
 =doc=/fman/s3/<command>.d for local command documentation
 =doc=/fman/s4/<subprogram>.d for local subprogram documenta−
 tion
 =doc=/fman/s5/<command>.d for low−level command documenta−
 tion
 =doc=/fman/s6/<subprogram>.d for low−level subprogram
 documentation
 =doc=/fman/contents for command and subroutine index
 =temp=/tm?* for temporary files to store the Reference
 Manual entry for paging

 Messages

 "Sorry, no help is available for <command>" in case of mis−
 sing or unreadable documentation file.
 "Can’t open index file =doc=/fman/contents" in case index
 file is missing or unreadable.
 "<pattern>: bad pattern" in case there is a syntax error in
 a pattern following a "−f" option.
 "cannot create scratch file for help entry" if a file in the
 =temp= directory could not be opened to store the help
 text for paging.
 "cannot close scratch file" if the scratch file in =temp=
 could not be closed.

 See Also

 | guide (1), pg (1), usage (1), page (2), Software Tools
 Subsystem Reference Manual

 help (1) − 3 − help (1)

 hist (1) −−− manipulate the subsystem history mechanism 09/05/84

 | Usage

 | hist [on | off | save [<file>] | restore [<file>]]

 | Description

 | The Shell contains a mechanism (similar to Berkeley Unix’s
 | C−Shell) called a history mechanism. This is sort of
 | dynamic macro facility that allows the user to specifiy a
 | unique substring of a previous command and have the command
 | recalled and re−executed or have portions of the command
 | edited and inserted into the current command.

 | Up to 128 commands are saved in a circular command queue.
 | Commands are seached for and retrieved from this queue.

 | The possible options to ’hist’ do the following

 | on Turn the history mechanism on and reset the queue.
 | If history is already enabled then this will clear
 | whatever command history exists in the queue.

 | off Turn the history mechanism off. Any command
 | history in the queue is lost.

 | save Save the current command history in the specified
 | file. If no file is specified, the command
 | history is saved in the file "=histfile=".

 | restore Restore the command history from a previous
 | session from the specified file. If no file is
 | specified, the command history is restored from
 | the file "=histfile=".

 | ’Hist’ with no options produces a list of the current com−
 | mand history on STDOUT.

 | See the User’s Guide for the Software Tools Subsystem
 | Command Interpreter for a more detailed explanation of the
 | history mechanism, and examples of its use.

 | Examples

 | hist
 | hist on
 | hist off
 | hist save
 | hist restore //jeff/bin/scum

 | See Also

 | User’s Guide for the Software Tools Subsystem Command
 | Interpreter

 hist (1) − 1 − hist (1)

 history (1) −−− Software Tools Subsystem historian 08/27/84

 | Usage

 | history

 Description

 ’History’ is a simple command file that keeps a history of
 | changes to the Subsystem. It is intended for use by the
 | Subsystem implementors to keep a record of changes and
 | additions.

 | ’History’ is invoked with no arguments, since they are not
 | used. The user invoking ’history’ must be in the group
 | ’.guru’ (users who are all powerful and all knowing) in
 | order to be able to make changes in the Subsystem history.
 | Since most systems do not have the ’.guru’ group, the local
 | administrator should change =src=/std.sh/history.sh to use
 | an appropriate test. Essentially, one should test if the
 | user has permission to modify the history file.

 | To see what changes have been made to the Subsystem, use the
 | command ’phist’.

 Examples

 | history

 Files

 =doc=/hist/history for the history of the Software Tools
 Subsystem.

 Messages

 | "Must be a guru to issue this command" if the user is not
 | allowed to change the Subsystem history.

 See Also

 phist (1)

 history (1) − 1 − history (1)

 hp (1) −−− Reverse Polish Notation calculator 03/20/80

 Usage

 hp { <expression elements> }

 Description

 ’Hp’ is a desk calculator program using the Reverse Polish
 Notation familiar to all stack machine aficionados and users
 of Hewlett−Packard calculators. It accepts expressions com−
 posed of operands and operators from either its argument
 list or its first standard input and evaluates them.

 If the expressions to be evaluated are given on the command
 line, ’hp’ prints the resulting value automatically; other−
 wise, the user must request printing with the "p" or "P"
 commands.

 An acceptable expression consists of a sequence of
 "constants" and "commands." Constants are numeric constants
 written in the style of Fortran, and are stored internally
 as double precision floating−point values. Commands are
 single characters that request an arithmetic, stack control,
 or control flow operation. The following commands are
 currently implemented:

 p print the value on the top of the stack.

 P print all the values currently on the stack.

 d delete the top value on the stack (throw it away).

 D empty the stack completely (throw all stacked data
 away).

 + add top two items on the stack, place sum on the
 stack.

 − subtract top of stack from next to top, place
 difference on the stack.

 * multiply top two items on the stack, place product
 on the stack.

 / divide next to top of stack by top of stack, place
 quotient on the stack.

 ^ evaluate (next to top of stack) to the (top of
 stack) power, place result on the stack.

 < if next to top of stack is less than top of stack,
 place a 1 on the stack; otherwise, place a 0 on
 the stack.

 = if next to top of stack equals top of stack, place
 a 1 on the stack; otherwise, place a 0 on the

 hp (1) − 1 − hp (1)

 hp (1) −−− Reverse Polish Notation calculator 03/20/80

 stack.

 > if next to top of stack is greater than top of
 stack, place a 1 on the stack; otherwise, place a
 0 on the stack.

 & if next to top of stack is nonzero and top of
 stack is nonzero, place a 1 on the stack; other−
 wise, place a 0 on the stack.

 | if next to top of stack is nonzero or top of stack
 is nonzero, place a 1 on the stack; otherwise,
 place a 0 on the stack.

 ~ if top of stack is nonzero, replace it with a 0;
 if it is zero, replace it with a 1 (logical
 negation).

 Examples

 hp 32.75 4.5 *
 hp
 1 2 3 4 5 6 7P++++++pd
 3.1416 2.7183^ 2.7183 3.1416^>p

 Messages

 "stack underflow" if an attempt is made to perform an opera−
 tion with insufficient operands on the stack.
 "<char>: unrecognized command" if an character not
 corresponding to any command appears in an expression.

 See Also

 eval (1), stacc (1)

 hp (1) − 2 − hp (1)

 if (1) −−− conditional statement for Shell files 03/20/80

 Usage

 if <value>
 then
 { <command> }
 else
 { <command> }
 fi

 Description

 ’If’ allows users of the Shell’s programming facilities to
 execute commands conditionally, after the fashion of the
 Algol 68 conditional clause.

 The <value> after the if command may be any string; if it is
 zero, empty, or missing altogether, it is interpreted as
 false; otherwise, it is interpreted as true. If <value> is
 true, then the commands after the keyword ’then’ are
 executed; otherwise, the commands after the keyword ’else’
 are executed. In either alternative, any commands (includ−
 ing nested if commands) may be used.

 The keyword ’then’ is optional. The keyword ’else’ and its
 associated commands may be omitted if no action is desired
 when <value> is false. The keyword ’fi’ is mandatory.

 ’If’ is not restricted to use in command files, and so may
 produce puzzling results when used incorrectly from a
 terminal. These can always be handled by typing a ’fi’ com−
 mand or by generating end−of−file to the command
 interpreter.

 Examples

 if [nargs]
 set params = [args]
 fi

 if [eval i ">=" 10]
 then
 goto exit
 else
 set i = [eval i + 1]
 goto loop
 fi

 if [flag]; then; echo "Success!"
 else; echo "Failure..."
 fi

 if (1) − 1 − if (1)

 if (1) −−− conditional statement for Shell files 03/20/80

 Messages

 "Missing ’fi’" if end−of−file is reached on command input
 before a matching ’fi’ was found.

 Bugs

 Redirectors in front of the ’else’ will prevent it from
 being recognized.

 Typing "if" on someone’s terminal will cause the Shell to
 ignore any command they type until an EOF or an unmatched
 ’fi’ is typed.

 See Also

 then (1), else (1), fi (1), case (1), goto (1), User’s Guide
 for the Software Tools Subsystem Command Interpreter

 if (1) − 2 − if (1)

 include (1) −−− expand include statements 03/20/80

 Usage

 include

 Description

 Many Ratfor programs use the Ratfor "include" statement to
 include a frequently used body of code, such as the standard
 definition file "=incl=/swt_def.r.i", as part of the source
 input. This is useful for saving disk space, but is
 sometimes inconvenient if the programmer wishes to see the
 entire text of his program. The ’include’ command is
 provided to make this possible. ’Include’ copies its stan−
 dard input to its standard output, while looking for lines
 that begin with "include", followed by a file name, possibly
 enclosed in quotes (" or ’). If such a line is found, the
 contents of the named file are inserted in its place and
 copying continues as before. Files to be included may be
 nested to a depth of 5.

 Examples

 prog.r> include | pr

 Messages

 "Can’t open include" if include file could not be found.

 See Also

 rp (1), macro (1)

 include (1) − 1 − include (1)

 index (1) −−− find index of a character in a string 03/20/80

 Usage

 index <string> <character>

 Description

 ’Index’ is a version of the PL/I index function. The string
 specified as the first argument is searched for an
 occurrence of the character specified as the second
 argument; if the character is found, ’index’ prints its
 location in the string (first character in the string is at
 position 1) on standard output. If the character is not
 found, zero is printed.

 ’Index’ is equivalent to the ’index’ subprogram available in
 the standard Software Tools Subsystem library.

 Examples

 index "abcdefghijklmnopqrstuvwxyz" a
 index [upalf] a
 take [index [string] " "]] [string]

 Bugs

 None, unless you consider the argument order a bug.

 See Also

 take (1), drop (1), substr (1), index (2)

 index (1) − 1 − index (1)

 installation (1) −−− print Subsystem installation name 02/22/82

 Usage

 installation

 Description

 ’Installation’ merely prints the Subsystem installation name
 on standard output.

 The installation name resides in the file
 "=extra=/installation" and may be changed at the discretion
 of the Subsystem manager.

 Examples

 echo Run at [installation]

 Files

 =extra=/installation

 installation (1) − 1 − installation (1)

 iota (1) −−− generate vector of integers 03/20/80

 Usage

 iota [<lower_limit>] <upper_limit> [−f <format>]

 Description

 ’Iota’ is derived from the monadic APL operator of the same
 name; it prints a series of consecutive integers on standard
 output. The <upper_limit> and optional <lower_limit>
 arguments specify the range of integers to be printed. The
 default <lower_limit> is one.

 The <format> argument is a standard format string, identical
 to that accepted by ’encode’ or ’print’. Its presence
 allows the user to select fill characters, field width, and
 other parameters associated with the printing of integers.

 Examples

 iota 10
 stack(i)
 iota [most_recent] 1
 iota −5 5 −f "*4,−16,0i"

 Messages

 "Usage: iota ..." for invalid argument syntax.

 Bugs

 If sharp signs ("#") are included in the format string,
 ’iota’ will die of a pointer fault in ’encode’.

 See Also

 parscl (2), encode (2), print (2)

 iota (1) − 1 − iota (1)

 isph (1) −−− see if process is a phantom 11/07/82

 Usage

 isph

 Description

 ’Isph’ allows a shell file to test and see if its invoker is
 a phantom. It writes a "1" to standard output if the
 invoker is a phantom, and a "0" it it is being run from a
 terminal.

 Examples

 if [isph]
 then
 error "screen editor must be run at a terminal"
 else
 se −a my_prog
 fi

 isph (1) − 1 − isph (1)

 join (1) −−− replace newlines with an arbitrary string 02/22/82

 Usage

 join [<delimiter>] [−l<nlines>]

 Description

 ’Join’ reads its first standard input, replaces all NEWLINEs
 with the <delimiter> string, and writes the result on its
 first standard output. The <delimiter> argument may be
 specified as any arbitrary string. If it is omitted, a
 single blank is assumed. If the "−l<nlines>" construct is
 specified, a maximum of <nlines> input lines will be joined
 into each output line.

 Examples

 files .r | join −l10 | change % "ar −u arch " | sh
 file1> join "|" >file2

 join (1) − 1 − join (1)

 kwic (1) −−− produce key−word−in−context index 02/22/82

 Usage

 kwic [−d [<discard list>]]

 Description

 ’Kwic’ is the key−word−in−context program from Software
 Tools. It is a filter, taking lines of text from its stan−
 dard input, rotating them so that each word in the sentence
 appears at the beginning of a line, and marking the original
 position of the NEWLINE with a "fold character" (currently a
 grave accent with zero parity bit).

 If the "−d" option is used, ’kwic’ will read a sorted list
 of words, either from the file specified by <discard list>,
 or from standard input two if the file name is omitted. If
 the first word in a rotated line is found in the list, the
 line will not be written out. The discard file should
 contain one word per line, in lower case. (Before searching
 the list, ’kwic’ converts the search key to lower case.)

 The output from ’kwic’ is typically sorted with ’sort’ then
 "un−rotated" with ’unrot’ to produce the finished key−word−
 in−context index.

 Examples

 text> kwic | sort | unrot >index
 headers> kwic −d discard_list >headers.k
 headers> discard_list> kwic −d >headers.k

 Messages

 "<file>: cannot open" if discard list cannot be read.
 "<word>: discard list too long" if there are too many words
 in the discard list.

 See Also

 sort (1), unrot (1), Software Tools

 kwic (1) − 1 − kwic (1)

 lacl (1) −−− List ACL information about a file system object 09/05/84

 | Usage

 | lacl {<option>} {<file_spec>}
 | <option> ::= −(a | b | c | l | p | t | v)

 | Description

 | The ’lacl’ command will list information about the Access
 | Control Lists protecting any file system object. If no
 | pathname is specified, ’lacl’ will print ACL information on
 | the current directory. For a more comprehensive description
 | of ACL’s, see the help for the ’sacl’ command. For a full
 | description of <file_spec>, see the help on ’cat’.

 | Options recognized by ’lacl’:

 | −a List the access pairs describing the ACL for the
 | object. This is the default action if no options are
 | specified, and the "−a" must be specified if you wish
 | to display the pairs when also specifying the "−t"
 | and "−b" options.

 | −b Give the pathname of the object protecting the named
 | item. The pathname is the same as the object for
 | specific ACLs, or the name of the acat involved for
 | access category protection. The pathname may also be
 | of an ancestor directory in the case of default
 | specific ACLs. If the "−p" option is also given the
 | "−b" is ignored.

 | −c Print the access pairs one per column instead of all
 | on the same line.

 | −l Long format listing. Acts as if the options "−a −b −
 | c −v −t" were all given.

 | −p List the priority ACL in effect for the logical disk
 | partition on which the object resides.

 | −t Give the type of the ACL protecting the object. The
 | type is either "specific", "default specific",
 | "acat", "default acat", "object is an acat", or
 | "priority".

 | −v Verbose form −− echo the pathname of the object being
 | checked and include separator characters if the "−b",
 | "−l", or "−t" options have also been selected.

 | Examples

 | lacl −p −v /0/mfd /1/mfd

 | lf −fc =vars= | lacl −abv −n

 lacl (1) − 1 − lacl (1)

 lacl (1) −−− List ACL information about a file system object 09/05/84

 | lacl

 | Messages

 | "Usage: lacl [−l] [−b [−a]] [−p] [−t] [−c] [−v]
 | {<pathname>}" for improper command usage.
 | "Cannot list acl for <pathname>" for various file system
 | errors or insufficient access rights.

 | See Also

 | lf (1), sacl (1), gfdata (3)

 lacl (1) − 2 − lacl (1)

 lam (1) −−− laminate lines from separate files 03/20/80

 Usage

 lam {−i<string> | <filename>}

 Description

 ’Lam’ is used to combine multiple input streams into one
 output stream by placing corresponding lines from each input
 stream end−to−end. For example, if STDIN1 contains

 line #
 line #

 and STDIN2 contains

 1
 2

 then the result of the command "lam" will be

 line #1
 line #2

 If an input stream is shorter than the others, its contribu−
 tion to the output is null once it reaches EOF.

 The "−i" arguments may be used to insert arbitrary strings
 into the output stream, either before the lamination, after
 it, or between any two files. The string to be inserted
 must follow the "−i" immediately; it may not be placed in
 the following argument.

 If no arguments are given on the command line, standard
 input 1 is laminated to standard input 2, i.e. "lam" is
 equivalent to "lam /dev/stdin1 /dev/stdin2". Otherwise, at
 least one file name argument must be supplied on the command
 line.

 Examples

 file1> file2> lam >lamination
 lam col1 −i\ col2 −i\ /dev/stdin1 | detab −t \
 lam −i">>" file >junk

 See Also

 cat (1), tee (1), common (1), field (1), join (1), diff (1),
 take (1), drop (1)

 lam (1) − 1 − lam (1)

 ld (1) −−− interface with the Primos loader 08/27/84

 | Usage

 | ld [−(a|b|d|f|h|n|p|u|w)] { <binary file> |
 | −c <segment number> |
 | −e <segment number> |
 | −g <segment name> |
 | −l <library file> |
 | −m [<map options>] |
 | −i |
 | −t |
 | −s <loader command> }
 | [−o <output file>]

 Description

 ’Ld’ is used to call the Primos loader (SEG) from the Sub−
 system.

 The following global options indirectly affect the produc−
 tion of loader commands:

 −a Modify the load sequence to include run−time
 support for Pascal programs. This option may
 be used with ’−b’ and ’−p’ for mixed−language
 programs.

 −b Modify the load sequence to include run−time
 support for C programs. (The load of the C
 main program is triggered by the appearance
 of the first binary file or library.) This
 option may be used with ’−a’ and ’−p’ for
 | mixed−language programs. Besides loading the
 | C run−time library "ciolib", this option
 | automatically loads the SWT math library,
 | "vswtmath", and the shared shell library,
 | "vshlib".

 −d Produce a SEG−compatible segment directory
 rather than P300 memory image. This option
 must be used with the source−level debugger
 (DBG) or when more than 64K of memory must be
 initialized when a program is loaded (usually
 Fortran programs with block data
 subroutines).

 −f Generate a full load map after commands are
 complete. The name of the map file will be
 the same as the name of the output file with
 the ".o" suffix (if any) replaced by ".m".
 This option performs the same action as the
 options "−t −m" at the end of the argument
 list.

 −h Suppress the inclusion of the "mix" command
 in the load sequence, so that procedure and

 ld (1) − 1 − ld (1)

 ld (1) −−− interface with the Primos loader 08/27/84

 linkage will be loaded in different segments.

 −n Do not include the high−memory common blocks
 or load the default libraries unless the ’−i’
 and ’−t’ options are encountered. This
 allows the loading of non−Subsystem programs
 or the insertion of additional loader com−
 mands at the beginning and end of the load.

 −p Modify the load sequence to include run−time
 support for PL/I subset G programs. This
 option may be used with ’−a’ and ’−b’ for
 mixed−language programs.

 −u Generate a load map of undefined symbols
 | after the default libraries have been loaded.

 | −w Modify the load sequence to include run−time
 | support for Prime C programs.

 The following local options are examined in the order
 presented and directly produce commands to the loader:

 <binary file> specifies a binary code file to be
 loaded.

 −c <segment number> cause subsequent common
 blocks to be loaded in the specified segment.
 By default, common blocks are loaded into
 segment 4001 (Fortran, Ratfor) or segment
 4000 (PL/I G).

 −e <segment number> specifies the default seg−
 ment number for a load using the "−v" option.
 The segment numbers used for the <binary
 file>, −l <library file>, and −t directives
 are affected. This option normally has use
 only when a shared, multi−segment program is
 being loaded.

 | −g <segment name> causes up to 28 characters
 | specified as <segment name> to be used for
 the names of the segments produced from a
 load using the "−v" option. The default
 <segment name> is "..". This option normally
 has use only when a multi−segment, shared
 program is being loaded.

 −l <library file> specifies a library file to be
 loaded.

 −s <Primos loader command> allows arbitrary
 loader commands to be inserted in the command
 stream

 −m <map options> presents a map command to the

 ld (1) − 2 − ld (1)

 ld (1) −−− interface with the Primos loader 08/27/84

 loader. If <map options> is omitted, the
 first "<binary file>.m" is assumed. (If
 <binary file> ends with ".b", the "b" is
 replaced with an "m".)

 −i causes the inclusion of the initial sequence
 of Subsystem program loader commands (the
 definition of Subsystem common block
 locations and default segment for user common
 blocks) to be included, regardless of the
 "−n" global option.

 −t causes the inclusion of the terminal sequence
 of Subsystem program load commands (the
 default library loads) to be included, regar−
 dless of the "−n" global option. If the "−n"
 option is not specified, the sequence of com−
 mands will be included at this point, so that
 loader commands may be inserted after the
 libraries have been loaded. This option may
 be used with the "−m" option to generate a
 full load map.

 −o <output file> specifies the output file for
 the results of the load. If omitted, the
 first "<binary file>.o" is assumed. (If
 <binary file> ends with ".b", the "b" is
 replaced with an "o".)

 Commands are presented to the loader in the order in which
 they are encountered in the command line, except for "−o",
 which appears only at the end of the command stream.

 Examples

 ld −du rf.b −t −m
 ld sol.b −l vthlib −o sol
 ld sh.b −s "sy kp$swt 165035" −o sh

 Bugs

 ’Ld’ pays no attention to standard ports.

 If the "−d" option is not present, ’ld’ must be able to
 create files in the current directory.

 All files specified must be disk files.

 See Also

 | fc (1), pc (1), plgc (1), f77c (1), pmac (1), x (1), rfl
 | (1), xcc (1), xccl (1), bind (3)

 ld (1) − 3 − ld (1)

 length (1) −−− compute length of strings 02/22/82

 Usage

 length [<string>]

 Description

 ’Length’ may be used to determine the length (in characters)
 of a string or of all the lines in standard input. If an
 argument is specified on the command line, its length is
 printed on ’length’s first standard output port; otherwise,
 lines are read from the first standard input port until end−
 of−file, with the length of each being printed after
 reading. When lines are taken from standard input, the
 NEWLINE at the end of each line is not included in the
 printed length.

 Examples

 length [login_name]
 lf −c | length | stats −hlq

 See Also

 substr (1), take (1), drop (1), rot (1), length (2), substr
 (2), stake (2), sdrop (2)

 length (1) − 1 − length (1)

 lf (1) −−− list files 08/27/84

 | Usage

 lf { −<option>{<option>} } { <pathname> }
 <option> ::= a | c | d | f | k | l | n
 | o | q | r | t | u | v
 | <sort>m | <sort>p | <sort>w | s<depth>
 <sort> ::= [\ | /]
 <depth> ::= [<positive integer>]

 Description

 ’Lf’ prints information about files. Its primary function
 is to list the names of all files within specified direc−
 tories; however, other information is also available under
 control of the options. Each option is specified by a
 single letter, as follows:

 | a list files whose names begin with the character ’.’.
 These files are occasionally used for long−term
 | storage of data, and many people prefer that they not
 | appear in directory listings, so they are not listed
 | by default.

 c force all output to be left justified in a single
 column at the left margin. This option is generally
 used for producing output that is to be processed
 further by other programs.

 d treat the directories named in the argument list as
 ordinary files. ’Lf’ normally prints information
 about the contents of named directories; this option
 causes it to print information about the directories
 themselves.

 f print full pathname (or as much of it as is known)
 for each file name printed. This option is
 frequently used when the output of ’lf’ is to be
 processed by other programs, since it makes the out−
 put filenames independent of the current position in
 the file system.

 k print the value of the read/write lock associated
 with the file. This lock is used to control
 concurrent access to the file by multiple users.
 Possible values are:

 sys system default value is used. At most instal−
 lations this is equivalent to "n−1" (see
 below).

 n−1 allow multiple readers or one writer.

 n+1 allow multiple readers and one writer.

 n+n allow multiple readers and multiple writers.

 lf (1) − 1 − lf (1)

 lf (1) −−− list files 08/27/84

 l select options k, m, o, p, t, u, and w. See below
 for details on these options.

 m print time and date of last modification for each
 file listed.

 n inhibit sorting of output. See below for a discus−
 sion of sorting.

 o print the owner password for each file listed. Note
 that the only files that have passwords are direc−
 tories; a field of blanks is printed for non−
 directory files.

 p print the protection mode of each file listed. The
 protection mode is represented as a string consisting
 of two fields separated by a "/". The characters to
 the left of the "/" indicate the mode that applies to
 users with owner access to the file, while those to
 the right indicate the mode that applies to users
 with non−owner access to the file. The three types
 of access are "truncate" (or "delete"), "write" and
 "read", represented by the characters "t", "w" and
 "r" respectively. The presence of any of these
 characters in the protection mode string indicates
 that the associated type of access is allowed. If
 all three types of access are allowed, the character
 "a" appears instead of "twr".

 q print the non−owner password for each file listed.
 Note that the only files that have passwords are
 directories; a field of blanks is printed for non−
 directory files.

 r reverse sort. The direction of sorting is reversed.
 Thus, an ascending sort becomes descending, and vice
 versa. See below for a discussion of sorting.

 s print information about an entire subtree of the file
 system. When this option is used, ’lf’ interprets
 each <pathname> argument as the name of the root node
 of a subtree of the file system. Each file in the
 named directory is listed; when a subdirectory is
 encountered, ’lf’ descends into it and recursively
 lists its contents. This process is repeated until
 all files and directories in the subtree have been
 listed. The depth to which ’lf’ will descend in
 traversing the subtree may be limited by appending a
 positive integer to the "s"; ’lf’ will then descend
 no more than that many levels below the named direc−
 tory. The other options may be used to select the
 information printed for each file. The current level
 of descent is indicated by indentation; ’lf’ indents
 three spaces each time it descends into a subdirec−
 tory. Indentation may be suppressed by specifying
 the "c" option.

 lf (1) − 2 − lf (1)

 lf (1) −−− list files 08/27/84

 t print the file type of each file listed. The file
 type is a three character string with possible values
 as follows:

 sam the file is organized according to the
 Sequential Access Method.

 dam the file is organized according to the Direct
 Access Method.

 sgs the file is a segment directory organized as a
 "sam" file.

 sgd the file is a segment directory organized as a
 "dam" file.

 ufd the file is a (user file) directory.

 spc the file is a "special" file, such as the
 master file directory (mfd), the disk record
 availability table (dskrat), the system boot
 file (boot) or the bad−record file (badspt).

 ??? the file type cannot be ascertained.

 u print the status of the "dumped" and "modified" flags
 associated with each file listed. The "dumped" flag
 may be set by a program such as a file archiver to
 indicate that a backup copy of the file exists. The
 "modified" flag is set by Prime’s single user operat−
 ing system (DOS) whenever the file is modified to
 indicate that the modification date is inaccurate.
 (DOS doesn’t maintain modification dates.) Primos
 automatically resets both flags whenever the file is
 modified. The "dumped" flag is represented by a "d"
 and the "modified" flag by an "m". If a flag is on,
 its associated character is printed; otherwise, a
 blank is displayed.

 v for each directory named in the argument list, print
 a header containing the directory’s pathname before
 listing its contents.

 w print the file size (in 16−bit words) for each file
 listed. The number printed is the number of data
 words contained in the file; it does not include, for
 example, the cumulative sizes of files contained
 within segment directories or UFDs.

 If no <pathname> arguments are given, ’lf’ assumes you want
 a listing of the contents of the current working directory.

 The default listing format without the "s" option is multi−
 column sorted alphabetically by name across columns; if,
 however, the "n" option is selected, no sorting takes place.
 With the "s" option, sorting is never done and the default

 lf (1) − 3 − lf (1)

 lf (1) −−− list files 08/27/84

 format is one file per line with incremental indentation
 based on nesting level. In all cases, the "c" option forces
 one file per line, starting in column 1.

 When neither the "n" nor "s" option is used, ’lf’ may be
 asked to sort the output on any of three fields other than
 the file name: date of last modification ("m" option),
 protection mode ("p" option), or file size ("w" option). To
 request one of these, a slash ("/") or backslash ("\") may
 be prepended to the appropriate option letter; slash causes
 an ascending sort, backslash, a descending one. Thus, to
 sort the output in order of most recent modification, one
 might use

 lf −\m

 Examples

 lf −/wp
 lf −m =nbin=
 lf −l //allen //dan //perry
 lf −s =src=
 lf −csf /0 /1 /2 /3 /4 /5 | find pascal

 Messages

 "<pathname>: not found" if specified file or directory
 doesn’t exist.

 Bugs

 Sorting is performed on at most one field. The ability to
 sort by protection mode is not very useful.

 See Also

 | chat (1), lacl (1), tscan$ (6)

 lf (1) − 4 − lf (1)

 line (1) −−− print user’s process id 03/20/80

 Usage

 line

 Description

 ’Line’ prints the user’s process id in decimal on standard
 output.

 Examples

 cat >=temp=/t$[line]
 line
 to [caller] Process i.d. is [line]

 Bugs

 A better name for this command would be ’pid’.

 See Also

 login_name (1), term_type (1), date (2)

 line (1) − 1 − line (1)

 link (1) −−− build Ratfor linkage declaration 08/27/84

 | Usage

 link [−{f | m}] {−n<filename> | <filename>}

 Description

 ’Link’ creates a linkage statement for the files specified
 as arguments in the command line. An identifier needs to be
 in a linkage statement if it is longer than six characters
 and it meets one of the following conditions:

 1) The identifier is in an external statement.
 2) The identifier is the name of a named common block.
 3) The identifier is a subroutine name.
 4) The identifier is a function name.

 The linkage statement produced by ’link’ includes all
 identifiers which are of one of the four types above, regar−
 dless of the number of characters in the identifier.
 Because of this, ’link’ creates a list of all external sym−
 bols for the modules of a given program as well as a linkage
 statement.

 The following options are available:

 f Suppress automatic inclusion of standard
 definitions file. Macro definitions for the
 manifest constants used throughout the Subsystem
 reside in the file "=incl=/swt_def.r.i". ’Rp’
 will process these definitions automatically,
 unless the "−f" option is specified.

 m Map all identifiers to lower case. When this
 option is selected, ’link’ considers the upper
 case letters equivalent to the corresponding lower
 case letters, except inside quoted strings.

 n Read file names from an input file until EOF is
 reached. ’link’ observes the convention that a
 "−n" argument implies that file names are to be
 read from an input file until EOF is reached,
 rather than simply from the argument list. "−n"
 implies the standard port STDIN, "−n2" implies
 STDIN2, "−n3" implies STDIN3, and "−nfilename"
 implies the named file.

 The remainder of the command line is used to specify
 filenames which are part of the program for which the lin−
 kage statement is being created.

 Examples

 link −nrpfiles

 link (1) − 1 − link (1)

 link (1) −−− build Ratfor linkage declaration 08/27/84

 link xref.r xref.sort xref.out

 Files

 =temp=/tm?* for internal temporaries
 =incl=/swt_def.r.i for standard Subsystem macro definitions

 Messages

 | See the User’s Guide for the Ratfor Preprocessor for more
 information on linkage statements.

 See Also

 rp (1), sep (1), gfnarg (2)

 link (1) − 2 − link (1)

 locate (1) −−− locate subsystem source code 03/20/80

 Usage

 locate [−cmd | −sub] { <module_name> }

 Description

 ’Locate’ returns the pathname(s) of the source code for a
 command or subprogram on standard output.

 Examples

 locate −sub getlin
 locate lf

 Files

 =src=/misc/srcloc

 Bugs

 Does not complain if source is not found.

 locate (1) − 1 − locate (1)

 log (1) −−− make an entry in a personal log 02/14/82

 Usage

 log [<log file>]

 Description

 ’Log’ is used to make entries in one of a number of user
 logs. When used, ’log’ appends the current date, time, and
 day−of−week to the specified log file and then appends to it
 the contents of standard input one, up to the next
 occurrence of end−of−file.

 If <log file> is present, it must be the name of a file in
 the user’s variables storage directory; the named file is
 used as the log file. If absent, the file "u.log" is used.

 ’Log’ is frequently used to make records suitable for use in
 preparing end−of−the−month time sheets and project diaries.

 Examples

 log time_sheet
 log projlog
 log

 Files

 =varsdir=/<log_file> for log file.

 Bugs

 The restriction of having the log file reside in =varsdir=
 could be considered a bug.

 log (1) − 1 − log (1)

 login_name (1) −−− print user’s login name 03/20/80

 Usage

 login_name

 Description

 ’Login_name’ prints the user’s login name on standard output
 one.

 Examples

 cat >//[login_name]/time_sheet
 cto >//[login_name]/[arg 1]
 login_name

 See Also

 line (1), date (2)

 login_name (1) − 1 − login_name (1)

 lorder (1) −−− order libraries for one−pass loading 07/18/82

 Usage

 lorder <object_file>

 Description

 ’Lorder’ takes the given object code file and rearranges the
 object modules to allow loading in one pass by the loader.

 Examples

 lorder =lib=/vthlib
 lorder mylib

 Files

 <object_file>.lib is generated

 Messages

 "Usage: lorder ..." for no object code file arguments

 Bugs

 Does not complain if more than one object code file is
 specified, but will only process the first one specified.

 See Also

 bmerge (5), brefs (5), tsort (1)

 lorder (1) − 1 − lorder (1)

 lps (1) −−− line printer status monitor 08/17/82

 Usage

 lps (<cancel> | <list>)
 <cancel> ::= −c { <seq> }
 <list> ::= { −{d|m|q} | −a <dest> | −p <paper> } { <pack> }

 Description

 ’Lps’ allows the user to cancel entries from his home spool
 queue, or to list the contents of any spool queue in the
 system.

 To cancel entries, the "−c" argument is followed by the
 entry numbers to be cancelled. If an entry does not belong
 to the user, ’lps’ prints an error message and leaves the
 entry intact.

 In the absence of the "−c" argument, ’lps’ lists the
 contents of the spool queues on the specified disk packs,
 interpreting the remaining arguments as listing constraints
 as follows:

 −a list only entries that will be printed at the
 specified destination.

 −d list only entries that are deferred.

 −m list only entries that belong to the current user.

 −p list only entries that will be printed on the
 specified type of paper.

 −q print a "quiet" listing that contains no heading and
 lists only the sequence number, user name, size,
 destination and file name of each entry selected.
 (Note: this option merely controls the format of the
 listing and has nothing to do with which entries are
 selected.)

 If multiple constraints are specified, only entries that
 satisfy all constraints are listed. If no constraints are
 specified, the entire queue is listed.

 Examples

 lps
 lps −c 1 5 prt10
 lps −a lpb −p narrow −q sa sb sc

 Files

 /<pack>/spoolq/q.ctrl queue control file
 //spoolq/prt??? print files

 lps (1) − 1 − lps (1)

 lps (1) −−− line printer status monitor 08/17/82

 Messages

 "Usage: lps ..." for improper command syntax.
 "Can’t find SPOOLQ directory on disk <pack>" if the
 specified disk partition is inaccessible or does not
 contain a spooler queue.
 "Can’t read queue on disk <pack>" if the spooler queue on
 the specified disk can’t be opened for reading.
 "<seq>: bad sequence number" for illegal syntax in specify−
 ing a print file.
 "<print_file>: in use" for trying to cancel a print file
 that is either being printed or still being written.
 "<print_file>: can’t cancel" when an unexpected error
 occurs while cancelling a print file.
 "<print_file>: not found" for trying to cancel a non−
 existent print file.
 "<print_file>: not yours" for attempting to cancel someone
 else’s print file.

 See Also

 sp (1), pr (1)

 lps (1) − 2 − lps (1)

 macro (1) −−− macro language from Software Tools 01/16/83

 Usage

 macro [−e]

 Description

 ’Macro’ is Kernighan and Plauger’s macro preprocessor from
 Chapter 8 of Software Tools. ’Macro’ is an exceedingly
 powerful program; it is theoretically possible to use it as
 a general programming system. A complete description of its
 capability is beyond the scope of this document, but a few
 samples are presented here to help the user become
 proficient in its usage.

 ’Macro’ is a filter; it takes input from its standard input
 file, expands all macros it encounters, and places the out−
 put on its standard output file. This behavior strongly
 encourages its use in pipelines.

 The basic format of a macro definition is:

 define(macro−name, replacement−text)

 "Macro−name" is an identifier, i.e. a sequence of letters
 or digits beginning with a letter. "replacement−text" is a
 (possibly empty) sequence of characters, which may be
 specially interpreted by ’macro’.

 The "−e" option allows for the escaping of characters that
 "macro’ would normally use as delimiters (e.g. commas,
 right parenthesis, etc.). To escape a character, it must be
 preceded by the escape character "@". ’Macro’ discards the
 escape character and treats the escaped character as a
 normal character with no special meaning. Since ’macro’
 discards the escape character, in order to get a literal "@"
 it must be escaped ("@@").

 Macro arguments are referred to by a construct of the form
 "$<integer>" in the replacement text. The <integer> must be
 a digit from 0 to 9, inclusive. (Digits 1−9 represent the
 first through the ninth arguments; digit 0 represents the
 name of the macro itself). For example, the following macro
 could be used to skip blanks and tabs in a string, starting
 at a given position:

 define(skipbl,
 while ($1 ($2) == ’ ’c | $1 ($2) == TAB)
 $2 = $2 + 1
)

 Here are a few examples of the use of this macro:

 skipbl(line, i)
 skipbl(str, j)

 macro (1) − 1 − macro (1)

 macro (1) −−− macro language from Software Tools 01/16/83

 In order to prevent premature evaluation of a string, the
 string may be surrounded by square brackets. For example,
 suppose we wished to redefine an identifier. The following
 sequence will not work:

 define(x,y)
 define(x,z)

 This is because "x" in the second definition will be
 replaced by "y", with the net result of defining "y" to be
 "z". The correct method is

 define(x,y)
 define([x],z)

 The square brackets prevent the premature evaluation of "x".

 ’Macro’ provides several "built−in" functions. These are
 given below:

 divert(filename) or divert(filename,append) or divert
 "Filename" is opened for output and its file descrip−
 tor is stacked. Whenever ’macro’ produces output, it
 is directed to the named file. If the second argument
 is present, output is appended to the named file,
 rather than overwriting it. If both arguments are
 missing, the current output file is closed and output
 reverts to the last active file.

 dnl or dnl(commentary information)
 As suggested by Kernighan and Plauger, ’dnl’ may be
 used to delete all blanks and tabs up to the next
 NEWLINE, and the NEWLINE itself, from the input
 stream. There is no other way to prevent the NEWLINE
 after each ’define’ from being passed to the output.
 Any arguments present are ignored, thus allowing ’dnl’
 to be used to introduce comments.

 ifelse(a,b,c,d)
 If "a" and "b" are the same string, then "c" is the
 value of the expression; otherwise, "d" is the value
 of the expression. Example: this macro returns "OK"
 if i is defined to be "1", "ERR" otherwise:
 define(status,ifelse(i,1,OK,ERR))

 include(filename)
 "Filename" is opened and its file descriptor is stac−
 ked. The next time ’macro’ requests input, it
 receives input from the named file. When end−of−file
 is seen, ’macro’ reverts to the last active input file
 (the one containing the last include) and picks up
 where it left off.

 incr(n)
 increment the value of the integer represented by "n",
 and return the incremented value. For instance, the

 macro (1) − 2 − macro (1)

 macro (1) −−− macro language from Software Tools 01/16/83

 following pair of defines set MAXCARD to 80 and MAX−
 LINE to 81:
 define(MAXCARD,80)
 define(MAXLINE,incr(MAXCARD))

 substr(s,m,n)
 return a substring of string "s" starting at position
 "m" with length "n". substr(abc,1,2) is ab; sub−
 str(abc,2,1) is b; substr(abc,4,1) is empty. If "n"
 is omitted, the rest of the string is used: sub−
 str(abc,2) is bc.

 undefine(name)
 ’Undefine’ is used to remove the definition associated
 with a name. Note that the name should be surrounded
 by brackets, if it is supplied as a literal, otherwise
 it will be evaluated before it can be undefined.
 Example: undefine([x]), undefine([substr])

 Examples

 See Software Tools.

 Files

 None used by ’macro’ itself; the builtins ’include’ and
 ’divert’ may be used for limited file manipulation.

 Messages

 Extensive. See Software Tools.

 Bugs

 Blanks are not allowed between the macro name and its
 argument list.

 See Also

 rp (1), include (1), Software Tools

 macro (1) − 3 − macro (1)

 mail (1) −−− send or receive mail 03/23/82

 Usage

 mail [−p] { <login name> }

 Description

 ’Mail’ is the user’s interface to the Subsystem postal ser−
 vice.

 If invoked with arguments, ’mail’ first verifies that each
 is the login name of a Subsystem user, reads standard input
 one until end−of−file, and then appends the message thus
 read to the mailbox files of all users named. All letters
 are postmarked with the sender’s login name and the time and
 date of the mailing.

 If no argument is present on the command line, the user’s
 own mailbox file is displayed. If the "−p" option is not
 present and standard output is directed to the user’s
 terminal, letters are printed one CRT screenful at a time.
 (The user may skip or re−examine the mail at this point; see
 manual entries for ’pg’ (1) and ’page’ (2) for further
 information.) If anything was in the mailbox, ’mail’ then
 asks the question, "Save mail?". If the response begins
 with the letter "n", the mail is discarded; otherwise, the
 contents of the mailbox are appended to the file named by
 the template "=mailfile=" (Subsystem default is
 =varsdir=/.mail).

 Examples

 mail
 mail spaf
 (message follows, terminated by end−of−file (Control−C))
 mail perry dan myers
 (message follows, terminated by end−of−file (Control−C))

 Files

 =mail=/<login_name> for mailboxes
 =mailfile= for mail save file

 Messages

 "Usage: mail ..." for invalid arguments.
 "Save mail?" to ask if mail should be saved.
 "can’t create temporary file" if a temporary file can’t be
 created to hold the letter for distribution.
 "can’t open <user>’s mailbox" if the mail delivery file for
 <user> can’t be opened.

 mail (1) − 1 − mail (1)

 mail (1) −−− send or receive mail 03/23/82

 Bugs

 Mail messages are neither secure nor private.

 See Also

 to (1)

 mail (1) − 2 − mail (1)

 mkdir (1) −−− make a directory 03/25/82

 Usage

 mkdir <pathname> [−o <owner>] [−n <non_owner>]

 Description

 ’Mkdir’ is used to create a new directory. The pathname
 given as the first argument is the pathname of the direc−
 tory; all nodes but the last must exist prior to the invoca−
 tion of ’mkdir’. The "−o" and "−n" keyword arguments may be
 used to specify the owner and non−owner passwords to be
 given to the new directory. If they are omitted, default
 values are assumed as follows: at installations running the
 Georgia Tech version of Primos, the user’s login name is
 used for the owner password and the non−owner password is
 set to zero; at installations running unmodified Primos, the
 owner password is set to blanks and the non−owner password
 is set to zero.

 Examples

 mkdir subsys
 mkdir subdir −o allen
 mkdir //may−78/twob −n secret

 Messages

 "Usage: mkdir ..." for missing directory name or bad
 arguments
 "<pathname>: can’t create" if directory already exists or
 the path to it cannot be followed

 See Also

 lf (1), passwd (3), del (1)

 mkdir (1) − 1 − mkdir (1)

 mklib (1) −−− convert binary relocatable to a library 02/22/82

 Usage

 mklib <file>

 Description

 ’Mklib’ runs the Primos EDB program to convert the
 relocatable object code output from FTN, PMA, or other com−
 pilers contained in the file named <file>.b into a library
 format file in the file named <file>.

 For example,

 mklib swtlib

 would convert the contents of the file named "swtlib.b" into
 library format and write the result on the file named
 "swtlib".

 Examples

 mklib swtlib

 Messages

 Several possible messages from EDB.

 See Also

 Primos EDB command

 mklib (1) − 1 − mklib (1)

 mktree (1) −−− convert pathname to treename 03/25/82

 Usage

 mktree { <pathname> }

 Description

 ’Mktree’ converts Subsystem pathnames into standard Primos
 treenames. If arguments are supplied, each is interpreted
 as a pathname and the results of conversion are printed (one
 per line) on standard output. If no arguments are supplied,
 pathnames are read (one per line) from standard input until
 EOF, with the conversion results again being printed one per
 line on standard output.

 Examples

 mktree //bozo/file
 x spool [mktree [arg 1]]

 See Also

 mktr$ (6), mkpa$ (2)

 mktree (1) − 1 − mktree (1)

 mt (1) −−− magnetic tape interface 03/23/82

 Usage

 mt [<unit>] [−p<pos>] [−(r|w) [<cvt>] [<blk>] {<file_spec>}] [−v]
 <unit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
 <pos> ::= [+|−]<file number>[/<block number>]
 <cvt> ::= −c (a[scii] | b[inary] | e[bcdic])
 <blocking> ::= −b <record size>[/<blocking factor>]

 Description

 ’Mt’ is a program designed to provide a general purpose
 magnetic tape handling facility to users of the Subsystem.
 It supports three basic types of operation: tape
 positioning, reading files from tape, and writing files to
 tape. It is also possible to perform both a positioning
 operation and a read or write operation in a single
 invocation.

 The first argument may be used to specify a particular tape
 drive. The allowable values are integers from 0 through 7,
 although a particular installation may not support that many
 drives. If no unit is specified on the command line, unit 0
 is assumed. Whatever unit is used, it should have been
 previously assigned by the user with the Primos ASSIGN com−
 mand.

 The remaining arguments select one of the basic operations
 to be performed on the specified drive. The available
 options are described in the following paragraphs.

 −p The "−p" option may be used to accomplish either
 relative or absolute positioning of the tape. The
 argument following the "−p" consists of an optional
 plus or minus sign followed by either a <file number>
 or a <file number> and a <block number> separated by a
 slash (/).

 If the plus or minus sign is present, relative
 positioning is selected; the <file number> specifies
 the offset from the current file of the target file.
 Thus "+1" would position the tape to the beginning of
 the file immediately following the current one, while
 "−1" would position the tape to the immediately preced−
 ing file. If a block number is present, the specified
 number of blocks are skipped in the same direction. As
 a special case, if a minus sign is present and both the
 <file number> and <block number> are zero, the tape is
 positioned to the beginning of the current file.

 If no sign is present, absolute positioning is selec−
 ted; the <file number> is taken as the target file’s
 ordinal position on the tape, where the first file has
 position 1, and the <block number> is taken as the
 ordinal position of the desired block within the target
 file.

 mt (1) − 1 − mt (1)

 mt (1) −−− magnetic tape interface 03/23/82

 In positioning the tape, ’mt’ only considers physical
 tape marks; it specifically does not recognize any kind
 of labels in determining where a file begins and ends.

 −r The "−r" option causes ’mt’ to read files from the
 specified tape drive. The "−r" may optionally be fol−
 lowed by conversion and blocking specifications. <Cvt>
 specifies what kind of character set conversion is to
 be performed on the data read from the tape: "−c a"
 indicates that the characters on the tape are in ASCII,
 "−c e" indicates that they are in EBCDIC, and "−c b"
 indicates that they are arbitrary binary codes and are
 not to be interpreted as characters at all. If no
 <cvt> is specified, ASCII is assumed. The Prime con−
 vention for text files is to store characters with the
 most significant bit set to 1, whereas most ASCII
 encoded tapes are written with this bit set to 0. ’Mt’
 automatically turns this bit on when reading ASCII
 tapes, and turns it off when writing them.

 <Blk> specifies how the physical blocks from the tape
 will be broken up into lines before being written out.
 This argument is significant only if the specified con−
 version is ASCII or EBCDIC; binary records are written
 out as−is, regardless of whatever <blk> specification
 may be in effect. If omitted, a default value of
 "80/10" is used; that is, 80 bytes per line, 10 lines
 per physical tape block. Although this implicitly sug−
 gests that physical tape blocks are 800 bytes long,
 ’mt’ will read any size tape block (up to 6K bytes for
 ASCII and EBCDIC conversion, up to 12K bytes for binary
 conversion) and divide it into lines according to the
 specified <record size>. For ASCII and EBCDIC tapes,
 each line is stripped of trailing blanks and terminated
 with a NEWLINE character before being written out to
 its final destination.

 −v The "−v" option is used to make ’mt’ verbose, it will
 tell you how many blocks it read from or wrote to the
 tape.

 −w The "−w" option is syntactically identical to the "−r"
 option. The <cvt> specification may be used to specify
 what character set will be used in writing the tape,
 and the <blk> specification determines the size of the
 blocks written. ’Mt’ writes fixed size tape blocks,
 the size of which is determined by the product of
 <record size> and <blocking factor>. If the specified
 conversion is ASCII or EBCDIC, input lines that are
 shorter than <record size> are padded out to that
 length with blanks after having their NEWLINE character
 removed. As with "−r", binary blocks are not divided
 into lines. In any case, if the end of the input file
 is reached before a complete block has been construc−
 ted, the remaining bytes are filled with zeros (for
 binary conversion) or blanks (for ASCII or EBCDIC con−

 mt (1) − 2 − mt (1)

 mt (1) −−− magnetic tape interface 03/23/82

 version).

 The remaining command line arguments are taken as names of
 files to be read from or written to the tape. The full
 syntax of the <file_spec> argument is described in the entry
 for ’cat’ (1). Most frequently, it will take the form of a
 Subsystem pathname.

 Examples

 mt −p 1
 mt 1 −w tape_file
 mt −r −ce −b120/30 file1 file2 file3
 cat file | mt −w

 Messages

 "Usage: mt ..." for incorrect argument syntax.
 "syntax: −b <record size>[/<blocking factor>]" for
 incorrect blocking arguments.
 "syntax: −c (a[scii] | b[inary] | e[bcdic])" for incorrect
 conversion arguments.
 "syntax: −p [+|−]<file number>[/<block number>]" for
 incorrect positioning arguments.
 "maximum block size is <max> bytes" if the requested block
 size exceeds the maximum.
 "units are <low> to <high>" if an illegal unit number is
 specified.
 "drive is not ready" if the specified unit is not ready.
 "drive is off line" if the specified unit is not on line.
 "tape is at end of reel" if the tape mounted on the
 specified unit is positioned beyond the end−of−tape
 marker.
 "tape is in mid−file" if an attempt is made to write on a
 tape that is neither at the load point or at a file
 mark.
 "tape is write protected" if an attempt is made to write on
 a tape that has no write ring.
 "<file>: bad file name" if <file> begins with a dash.
 "<file>: can’t create" if <file> can’t be opened for
 writing.
 "<file>: can’t open" if <file> can’t be opened for reading.
 "<file>: <num> blocks read from tape" when using the "−v"
 option.
 "<file>: <num> blocks written to tape" when using the "−v"
 option.
 "Block <n>: <error status> Unrecovered" for an unrecovered
 tape i/o error on the <n>th block, resulting from
 <error status>.
 "beginning of file" if an attempt is made to do backward
 relative block positioning beyond a file mark.
 "beginning of tape" if an attempt is made to do backward
 relative positioning beyond the load point.
 "end of file" if an attempt is made to do forward relative

 mt (1) − 3 − mt (1)

 mt (1) −−− magnetic tape interface 03/23/82

 block positioning beyond a file mark.
 "end of tape" if an attempt is made to position beyond the
 end−of−tape marker.

 See Also

 cat (1), Primos MAGNET command, Primos t$mt

 mt (1) − 4 − mt (1)

 nargs (1) −−− print number of command file arguments 03/20/80

 Usage

 nargs [<level_offset>]

 Description

 ’Nargs’ prints the number of arguments supplied on a command
 line at some higher level of command file/function call
 nesting. It is most often used in a function call within a
 command file to determine the number of arguments supplied
 to that same command file.

 As with the ’arg’ and ’args’ commands, <level offset> may
 optionally be specified to indicate the number of higher
 nesting levels to skip before counting. In keeping with its
 most frequent mode of usage, the default value is one, so
 that the nesting level corresponding to the function call is
 ignored.

 Examples

 nargs 0
 echo [nargs]

 See Also

 arg (1), args (1), getarg (2)

 nargs (1) − 1 − nargs (1)

 news (1) −−− news service for Subsystem users 08/19/81

 Usage

 news [−p] { −i | <item_number> }

 Description

 ’News’ gives Subsystem users access to the Software Tools
 Subsystem news service. It has three basic functions:

 1. To print an index of currently active news items.

 The "−i" option is available to perform this func−
 tion. The command "news −i" will print the index.
 Each entry in the index is of the form:

 <item_number> <date> <time> <headline>

 The <item_number> is an integer which may be used
 to select specific articles to be printed (see
 below). The <date> and <time> are the date and
 time at which the item was published. (See the
 documentation for the ’publish’ command.) The
 <headline> is a short description of the contents
 of the news item.

 2. To print selected news items.

 For each <item_number> (see above) specified in
 its argument list, ’news’ will print a correspond−
 ing news item on standard output. Available news
 items may be determined by looking at the index
 generated by the "news −i" command.

 3. To print the news delivered to a subscriber.

 Users may "subscribe" to the news service by using
 the ’subscribe’ command. Whenever a subscriber
 logs in to the Subsystem (either at Primos login
 or through the ’swt’ command), he is informed if
 any news item has been published since he last
 checked with the news service. If news is
 available, he should type the command "news",
 without arguments. Recent news items will be
 printed, one CRT screenful at a time. (The user
 may skip or re−examine the news at this point; see
 manual entries for ’pg’ (1) and ’page’ (2) for
 further information.) The user is then asked
 whether or not he wishes to save his news. The
 correct response is "n" or "N" for "no"; anything
 else causes the news to be saved. News not saved
 may still be retrieved through the usual channels
 outlined in steps 1 and 2 above.

 news (1) − 1 − news (1)

 news (1) −−− news service for Subsystem users 08/19/81

 If the user does not specify the "−p" option and standard
 output is directed to his terminal, ’news’ will display the
 requested articles one page at a time. Otherwise, ’news’
 will produce its output in a continuous stream.

 Examples

 news −p −i
 news 22 23 24
 news

 Files

 =news=/articles/art<number> for archived articles
 =news=/index for article index
 =news=/delivery/<login_name> for delivery to subscribers
 =news=/subscribers for a list of subscribers

 Messages

 "Usage: news ..." for invalid argument syntax.
 "article <number> could not be found" for unknown article
 number.

 See Also

 publish (1), retract (1), subscribe (1), pg (1), page (2)

 news (1) − 2 − news (1)

 os (1) −−− convert backspaces to line printer overstrikes 10/17/82

 Usage

 os { −l <page length> | −x }

 Description

 ’Os’ is a filter that may be used to convert backspaces
 (such as those produced by the formatter for underlining and
 boldfacing) into standard Fortran line printer carriage
 control codes.

 If the output of ’os’ is spooled, the Fortran forms control
 mode must be in effect. Use of the "f" option on the ’sp’
 command or the "f" option in a "/dev/lps" pathname (e.g.
 "/dev/lps/f") will enable Fortran forms control.

 If the "−x" option is included, ’os’ will attempt to
 generate output for a Printronix printer. We are told that
 these printers can overprint only a single line, and the
 characters on that line can only be underscores. Under
 "−x", ’os’ emits only the overstriking that can be performed
 on these printers.

 ’Os’ will generate a page−eject at the bottom of each page
 (to keep the pages correct in case of a paper jam). The
 <page_length> is the number of lines per output page. If
 <page_length> is omitted, ’os’ assumes 66 (standard paper).

 Examples

 fmt report | os | sp / f
 junk> os >/dev/lps/f/bjunk

 Messages

 "Usage: os ..." for invalid argument syntax.

 See Also

 sp (1), fos (1)

 os (1) − 1 − os (1)

 out (1) −−− specify default alternative in a case statement 02/22/82

 Usage

 case <value>
 when <alternative1>
 { <command> }
 when <alternative2>
 { <command> }
 ...
 out
 { <command> }
 esac

 Description

 ’Out’ is used to flag the default alternative in a ’case’
 command sequence. It should appear after any command
 sequences introduced by ’when’ commands, and will be selec−
 ted by the ’case’ command if and only if none of the alter−
 natives specified by ’when’ commands are taken.

 ’Out’ is usually executed only if control falls through from
 the commands under the control of a ’when’. In this
 instance, commands are skipped until an unmatched ’esac’
 command is found.

 Use of ’out’ from a terminal may cause input to be ignored
 until end−of−file or the typing of an ’esac’ command.

 Examples

 case [line]
 when 12
 set location = REMOTE
 out
 set location = LOCAL
 esac

 Messages

 "Missing ’esac’" if end−of−file is encountered before an
 ’esac’ command.

 Bugs

 ’Out’ is a holdover from the ALGOL 68 case−clause syntax.

 See Also

 case (1), when (1), esac (1), if (1), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 out (1) − 1 − out (1)

 pause (1) −−− suspend command interpretation 06/10/80

 Usage

 pause ([for] <interval> [<units>] | until <time>)

 Description

 ’Pause’ causes a user’s traffic with the system to cease for
 a fixed interval of time or until a specific wall clock
 time.

 In the first usage format, <interval> is the number of time
 units to pause, expressed as a positive decimal integer. It
 must be less than 32768. <Units> specifies the time unit.
 It may be:

 "seconds" for seconds,
 "minutes" for minutes,
 "hours" for hours,

 or omitted, in which case "seconds" is assumed.
 Abbreviations consisting of any initial substring of the
 above units are allowed. The word "for" may be included to
 enhance readability; its presence or absence is otherwise
 insignificant.

 In the second format, traffic will be suspended until the
 system clock registers the time of day specified by <time>.
 <time> may be expressed in almost any common format. One
 guideline should be observed, however: a colon must be used
 to separate hours from minutes and minutes from seconds.

 Examples

 pause 5 seconds
 pause for 2 hours
 pause until 3pm
 pause until 18:45:30

 Messages

 | "Usage: pause ..." for invalid argument syntax.

 See Also

 sema (1), date (2), Primos sleep$

 pause (1) − 1 − pause (1)

 pc (1) −−− interface to Primos Pascal compiler 08/27/84

 | Usage

 pc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <PASCAL option>]
 <option> ::= c | d | e | f | h | k | m | n |
 o | q | r | s | u | v | w | x

 Description

 ’Pc’ serves as the Subsystem interface to the Primos Pascal
 compiler (PASCAL). It examines its option specifications
 and checks them for consistency, provides Subsystem−
 compatible default file names for the listing and binary
 files as needed, and then produces a Primos PASCAL command
 and causes it to be executed.

 Options

 The general structure of an ’pc’ option is a single letter,
 possibly followed by a "level number" indicating the extent
 to which an option should be employed. The following list
 outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −c(0) [0..1] − Case.

 Level 0 forces case to be insignificant in identifiers.
 Upper case identifiers are considered the same as lower
 case identifiers.

 Level 1 cause case to significant in identifiers.
 Upper case identifiers are considered different from
 lower case identifiers.

 −d(0) [0..2] − Debugging control.

 Level 0 prevents all debugging information from being
 included in the generated code. A program so compiled
 may not be used with the source level debugger.

 Level 1 allows limited debugging information to be
 included in the generated code, but does not interfere
 with optimization.

 Level 2 causes complete debugging information to be
 included in the generated code and inhibits
 optimization. (Cannot be used when the "−o" option is

 pc (1) − 1 − pc (1)

 pc (1) −−− interface to Primos Pascal compiler 08/27/84

 specified with a level greater than zero.)

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 −f(2) [0..3] − Symbol table map and offset map control.

 Level 0 inhibits the generation of either a symbol
 table map or a storage offset map. (Cannot be used
 when the "−x" option is specified with a level greater
 than zero.)

 Level 1 causes the generation of a map listing the
 storage offset of each program variable, but still
 inhibits the generation of a a symbol table map. (Can−
 not be used when the "−x" option is specified with a
 level greater than zero.)

 Level 2 causes the generation of a map listing the sym−
 bol names appearing in the program, but inhibits the
 generation of a storage offset map.

 Level 3 causes the generation of both the symbol table
 and storage offset maps.

 −h(0) [0..1] − Huge (multi−segment) arrays.

 Level 0 insures that dummy arrays and array parameters
 will not be treated as multi−segment arrays.

 Level 1 causes references to dummy arrays and array
 parameters to generate code that will work even if the
 arrays are larger than one segment (64K words) in
 length.

 −k(0) [0..1] − Compilation statistics.

 Level 0 inhibits the display of compilation statistics
 on the terminal.

 Level 1 causes the display of compilation statistics on
 the terminal.

 −m(2) [2..3] − Addressing mode.

 Level 2 implies 64V addressing mode. At present this
 is the only addressing mode fully supported under the
 Subsystem.

 Level 3 implies 32I addressing mode. Code in this
 addressing mode will not execute on a Prime 400.

 pc (1) − 2 − pc (1)

 pc (1) −−− interface to Primos Pascal compiler 08/27/84

 −n(1) [0..1] − Nesting level indicator.

 Level 0 inhibits the printing of the nesting level of
 each statement on the listing.

 Level 1 causes the printing of the nesting level of
 each statement.

 −o(1) [0..1] − Optimization control.

 Level 0 turns off all optimizations.

 Level 1 turns on optimizations. This option cannot be
 used with full debugging (−d2).

 −q(1) [0..1] − Suppress warning messages.

 Level 0 inhibits the display of compiler warning mes−
 sages.

 Level 1 allows the display of compiler warning mes−
 sages.

 −r(0) [0..1] − Range checking.

 Level 0 inhibits run−time checking of subscripts and
 substrings.

 Level 1 causes the compiler to insert code for the run−
 time checking of subscripts and substrings.

 −s(0) [0..1] − Check for use of non−standard features.

 Level 0 allows all features of Prime Pascal.

 Level 1 generates a syntax error for the use of any
 feature not in the proposed ANSI standard.

 −u(0) [0..1] − Generate external procedure definition.

 Level 0 does not generate an external procedure
 definition.

 Level 1 generates an external procedure definition.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing.

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 pc (1) − 3 − pc (1)

 pc (1) −−− interface to Primos Pascal compiler 08/27/84

 −w(0) [0..1] − Generate floating round instructions.

 Level 0 does not generate floating round (FRN) instruc−
 tions.

 Level 1 cause a floating round (FRN) instruction to be
 generated before every floating store (FST) instruction
 in the code produced by the PASCAL compiler. This
 option improves the accuracy of single precision float−
 ing point calculations at some slight run−time per−
 formance expense.

 −x(1) [0..1] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing. (Cannot be used when the "−f"
 option is specified with a level less than two.)

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.p", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.p", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".p" or ".pascal") or the device
 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a

 pc (1) − 4 − pc (1)

 pc (1) −−− interface to Primos Pascal compiler 08/27/84

 file named "file.p" is

 pc −c0d0e1f2h0k0m2n1o1q1r0s0u0v1w0x1 _
 file.p −b file.b −l /dev/null

 which corresponds to the PASCAL command

 pascal −i *>file.p −b *>file.b −l no

 Examples

 pc file.p
 pc −kf dmach.p
 pc −x dmach.p −b b_dmach −l l_dmach
 pc −m3 i_mode_prog.p −z"−newopt"

 Messages

 "Usage: pc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’pc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Pc’ pays no attention to standard ports.

 See Also

 | ld (1), pcl (1), file$p (2), geta$p (2), init$p (2), bind
 | (3)

 pc (1) − 5 − pc (1)

 pcl (1) −−− compile and load a Pascal program 08/27/84

 | Usage

 pcl <program name> [<’ld’ options>] [/ <’pc’ options>]

 Description

 ’Pcl’ is a shell file that invokes the Primos Pascal com−
 | piler and the Primos segmented loader. If ’pcl’ is invoked
 | with no <program name> argument, it automatically processes
 | the last program edited, since it shares the shell variable
 | ’f’ with the shell program ’e’. The name of the file
 containing the program to be compiled must end with ".p",
 although in <program name> it may be specified with or
 without the ending ".p". If no output file is specified in
 the <’ld’ options>, the output object file name will be
 <program name> with no extension.

 Concerning the options, ’pc’ will be called with the
 <’pc’ options> specified on the command line; then ’ld’ will
 be called with the <’ld’ options> specified.

 Examples

 pcl myprog.p
 pcl myprog subs.b subs2.b −l mylib
 pcl myprog / −ok −l mylist

 Messages

 "<program name>.p: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | pc (1), ld (1), init$p (2), bind (3)

 pcl (1) − 1 − pcl (1)

 pg (1) −−− list a file in paginated form 06/22/84

 | Usage

 | pg [−e] [−v] [−s <screensize>] [−m <message>] {<file_spec>}
 <file_spec> ::= <filename> | −[<stdin_number>] |
 −n(<stdin_number> | <filename>)

 Description

 | ’Pg’ is a filter which displays the contents of a disk file
 | in paginated form. It allows skipping pages forward and
 | backward as well as searching for patterns within the file.
 | ’Pg’ is primarily intended for viewing a file on a high
 | speed CRT, but it may be used from any terminal.

 | ’Pg’ displays the named files (see ’cat’ for further
 | information on <file spec>s) by calling the library routine
 | ’page’, which accepts the following responses:

 | f <path> Display the file whose pathname is <path>.
 | f Redisplay the original file.
 | h Print a command summary.
 | l<lines> Set screen size to specified number of lines.
 | Display starts over on page 1.
 | n Proceed to next file (exit if on last file).
 | p<pages> Display given number of pages (default 1),
 | prompting only after the end of the range.
 | q Proceed to next file (exit if on last file).
 | x Exit immediately from ’pg’.
 | y Advance to the next page (proceed to next
 | file if on last page).
 | ctrl−c Exit immediately from ’pg’.
 | newline Advance to the next page (proceed to next
 | file if on last page).
 | <page> Display specified page number.
 | −<pages> Back up given number of pages (default 1).
 | ^ Redisplay previous page.
 | . Redisplay current page.
 | +<pages> Advance given number of pages (default 1).
 | $ Display the last page.
 | /<pat>[/] Display the next page containing <pat>.
 | \<pat>[\] Display the previous page containing <pat>.

 The pattern <pat> is a regular expression with the full set
 of options found in the editor. The file is searched cir−
 cularly from the current position for the next page that
 | contains the specified pattern. As in the editor, the
 | trailing delimiter is optional. (See Introduction to the
 Software Tools Text Editor in the Software Tools Subsystem
 User’s Guide for details.)

 By default, ’pg’ prompts after each page with a string of
 | the form

 | file [n+]?

 pg (1) − 1 − pg (1)

 pg (1) −−− list a file in paginated form 06/22/84

 | and after the last page with a string of the form

 | file [n$]?

 | if the ’−e’ command line argument is not specified. "File"
 | is the name of the file being displayed, and "n" is the page
 | number within the file. If the ’−e’ argument is specified,
 | ’pg’ will not issue a prompt after the final page of a file,
 | but instead it proceeds to the next file in the argument
 | list (if any). The ’−m <message>’ argument sequence may be
 | used to specify a prompt string different from the default;
 | this string is used as both the intermediate and final
 prompt. For details on how this string is interpreted, see
 the entry for ’page’ in section 2.

 | ’Pg’ normally displays each file using the ’vth’ subroutine
 | package to manage the screen. If the current terminal type
 | is not one of those that ’vth’ supports, or if the ’−v’
 | argument is specified, then ’pg’ displays each file using
 | ordinary sequential output.

 | The user can inform ’pg’ of the number of lines on his
 | terminal screen with the ’−s <screensize>’ command line
 | argument. If ’vth’ output is used, ’pg’ takes advantage of
 | the fact that ’vth’ knows the size of the screen, and uses
 | all available lines to display the file. In this case the
 | ’−s’ argument is ignored. If ’vth’ output is not used, and
 | the ’−s’ argument is omitted, ’pg’ uses a default value of
 | 23 lines.

 Examples

 pg −s 5 file
 fmt english | pg
 help −i | pg −m "continue or quit? "

 Messages

 | "Usage: pg ..." for invalid argument syntax.

 | Bugs

 | The "h" command output is not paged.

 See Also

 | cat (1), copy (1), print (1), page (2), vt?* (2),
 Introduction to the Software Tools Text Editor

 pg (1) − 2 − pg (1)

 ph (1) −−− execute subsystem commands in the background 08/17/82

 Usage

 ph { <command> }

 Description

 The ’ph’ command allows the Subsystem user to execute Sub−
 system commands in the background while continuing with
 other work at his terminal. The phantom user feature of the
 Primos operating system is used to implement this command
 and Primos must have been configured at startup for phantom
 users.

 ’Ph’ has two usage formats:

 In the first format, the commands to be executed
 are given as arguments. Care should be taken when
 using this format to enclose in quotes any com−
 mands that contain the following characters:

 () [] { } # , > |

 since these meta−characters will otherwise be
 interpreted by the shell applied to the ’ph’ com−
 mand itself.

 In the second format, commands are read from stan−
 | dard input up to the next occurrence of end of
 | file. This format allows ’ph’ to be used at the
 end of a pipeline.

 In either case, ’ph’ builds a script of commands that will
 be used to drive the phantom process.

 Assuming no errors were encountered, ’ph’ responds by print−
 ing the phantom’s process id on standard output.

 Examples

 ph rf se.r
 ph "rf rf.r; fc rf.f"
 commands> ph

 Files

 =varsdir=/ph<user_number><sequence> for phantom input file

 Messages

 "=temp= missing" if unable to follow pathname of phantom
 script.
 "No free phantoms" if Primos refuses to initiate phantom.

 ph (1) − 1 − ph (1)

 ph (1) −−− execute subsystem commands in the background 08/17/82

 "Can’t create phantom temp" if unable to create file to hold
 phantom script.

 Bugs

 A note on portability: ’ph’ takes advantage of a Georgia
 Tech modification to the Primos operating system that
 duplicates both current and home directories in the
 environment of the phantom (the normal procedure is to
 duplicate only the current directory). In systems that do
 not have this feature, the first command to be executed by
 the phantom should be a ’cd’ command to attach to the
 desired directory.

 Only 4 phantoms may be concurrently in progress on behalf of
 any single user.

 Due to Primos restrictions, phantoms cannot be started while
 the user is attached to a remote disk.

 See Also

 sh (1), x (1), batch (1), Primos phant$

 ph (1) − 2 − ph (1)

 phist (1) −−− print Subsystem history 12/26/80

 Usage

 phist { −b <author> | −f <date> | −s <subject> | −q }
 [−i <input file>]
 <date> ::= <day> | <month>/<day> | <month>/<day>/<year>

 Description

 The purpose of ’phist’ is to print selected portions of a
 | history file. The history file chosen by default,
 | "=doc=/hist/history", chronicles the ongoing development and
 maintenance of the Software Tools Subsystem by its
 implementors at Ga. Tech. It consists of a series of dated
 entries, each of which contains the name of the author, a
 list of commands or files affected, and a description of the
 modification.

 When invoked without arguments, ’phist’ simply prints out
 the entire history file; but several optional argument
 sequences can be employed to sift out the interesting
 entries. The "−b <author>" argument sequence may be
 specified to restrict the entries printed to those written
 by a given author. The syntax of <author> is the same as
 that defined for patterns in the Software Tools Subsystem
 text editors (see the Introduction to the Software Tools
 Text Editor for details).

 The "−s <subject>" argument sequence tells ’phist’ that only
 those entries concerning the specified subject should be
 printed. <Subject> may also be an arbitrary pattern.

 The "−f <date>" sequence allows the user to tell ’phist’
 that he only wants to see entries written on or after a
 specific date. The format of <date> has three options: if
 a single integer is specified, it designates a day of the
 current month; if two integers separated by a slash are
 specified, they designate a month and day of the current
 year; finally, if three integers separated by slashes are
 specified, they designate a specific month, day and year.

 If the "−q" option is specified, ’phist’ will only print the
 heading of each selected entry (i.e., the date, author and
 subject of the entry) and omit the explanatory text. Other−
 wise, the entire entry is printed.

 If the "−i <input file>" is specified, ’phist’ takes its
 input from <input file>, rather than from
 "=doc=/hist/history".

 Examples

 phist
 phist −s %se
 phist −f 12/19

 phist (1) − 1 − phist (1)

 phist (1) −−− print Subsystem history 12/26/80

 phist −f 1/31/79 −s stacc −b allen

 Files

 =doc=/hist/history for the history of the Software Tools
 Subsystem.

 Messages

 "history file not available" if =doc=/hist/history does not
 exist or is not readable.
 "history file contains apocryphal information" if the
 history file is incorrectly formatted.
 "<author>: bad author pattern" if the string following "−b"
 is not a legal pattern.
 "<subject>: bad subject pattern" if the string following
 "−s" is not a legal pattern.
 "<date>: bad date" if the string following "−f" is not
 recognizable as a date.
 "Usage: phist ..." for incorrect argument syntax.

 See Also

 history (1), Software Tools Subsystem User’s Guide

 phist (1) − 2 − phist (1)

 plgc (1) −−− interface to Primos PL/I subset G compiler 08/27/84

 | Usage

 plgc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <PL1G option>]
 <option> ::= c | d | e | f | h | k | m | n |
 o | p | q | r | s | v | w | x

 Description

 ’Plgc’ serves as the Subsystem interface to the Primos PL/I
 subset G compiler (PL1G). It examines its option
 specifications and checks them for consistency, provides
 Subsystem−compatible default file names for the listing and
 binary files as needed, and then produces a Primos PL1G com−
 mand and causes it to be executed.

 Options

 The general structure of an ’plgc’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −c(0) [0..1] − Case.

 Level 0 forces case to be insignificant in identifiers.
 Upper case identifiers are considered the same as lower
 case identifiers.

 Level 1 cause case to significant in identifiers.
 Upper case identifiers are considered different from
 lower case identifiers.

 −d(0) [0..2] − Debugging control.

 Level 0 prevents all debugging information from being
 included in the generated code. A program so compiled
 may not be used with the source level debugger.

 Level 1 allows limited debugging information to be
 included in the generated code, but does not interfere
 with optimization.

 Level 2 causes complete debugging information to be
 included in the generated code and inhibits
 optimization. (Cannot be used when the "−o" option is

 plgc (1) − 1 − plgc (1)

 plgc (1) −−− interface to Primos PL/I subset G compiler 08/27/84

 specified with a level greater than zero.)

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 −f(2) [0..3] − Symbol table map and offset map control.

 Level 0 inhibits the generation of either a symbol
 table map or a storage offset map. (Cannot be used
 when the "−x" option is specified with a level greater
 than zero.)

 Level 1 causes the generation of a map listing the
 storage offset of each program variable, but still
 inhibits the generation of a a symbol table map. (Can−
 not be used when the "−x" option is specified with a
 level greater than zero.)

 Level 2 causes the generation of a map listing the sym−
 bol names appearing in the program, but inhibits the
 generation of a storage offset map.

 Level 3 causes the generation of both the symbol table
 and storage offset maps.

 −h(0) [0..1] − Huge (multi−segment) arrays.

 Level 0 insures that dummy arrays and array parameters
 will not be treated as multi−segment arrays.

 Level 1 causes references to dummy arrays and array
 parameters to generate code that will work even if the
 arrays are larger than one segment (64K words) in
 length.

 −k(0) [0..1] − Compilation statistics.

 Level 0 inhibits the display of compilation statistics
 on the terminal.

 Level 1 causes the display of compilation statistics on
 the terminal.

 −m(2) [2..3] − Addressing mode.

 Level 2 implies 64V addressing mode. At present this
 is the only addressing mode fully supported under the
 Subsystem.

 Level 3 implies 32I addressing mode. Code in this
 addressing mode will not execute on a Prime 400.

 plgc (1) − 2 − plgc (1)

 plgc (1) −−− interface to Primos PL/I subset G compiler 08/27/84

 −n(1) [0..1] − Nesting level indicator.

 Level 0 inhibits the printing of the nesting level of
 each statement on the listing.

 Level 1 causes the printing of the nesting level of
 each statement.

 −o(1) [0..1] − Optimization control.

 Level 0 turns off all optimizations.

 Level 1 turns on optimizations. This option cannot be
 used with full debugging (−d2).

 −p(0) [0..1] − Quick call of internal subroutines.

 Level 0 causes all internal subroutines to be called
 with the normal procedure call (PCL) mechanism.

 Level 1 causes internal subroutines to be "quick cal−
 led" (shortcalled) whenever possible. This option can−
 not be used with full debugging (−d2).

 −q(1) [0..1] − Suppress warning messages.

 Level 0 inhibits the display of compiler warning mes−
 sages.

 Level 1 allows the display of compiler warning mes−
 sages.

 −r(0) [0..1] − Range checking.

 Level 0 inhibits run−time checking of subscripts and
 substrings.

 Level 1 causes the compiler to insert code for the run−
 time checking of subscripts and substrings.

 −s(1) [0..1] − Constant copying for subroutine calls.

 Level 0 inhibits the copying of constants into tem−
 porary variables for passing as subroutine parameters.

 Level 1 causes the compiler to copy constants into tem−
 porary variables before calling subroutines.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing.

 plgc (1) − 3 − plgc (1)

 plgc (1) −−− interface to Primos PL/I subset G compiler 08/27/84

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 −w(0) [0..1] − Generate floating round instructions.

 Level 0 does not generate floating round (FRN) instruc−
 tions.

 Level 1 cause a floating round (FRN) instruction to be
 generated before every floating store (FST) instruction
 in the code produced by the PL1G compiler. This option
 improves the accuracy of single precision floating
 point calculations at some slight run−time performance
 expense.

 −x(1) [0..1] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing. (Cannot be used when the "−f"
 option is specified with a level less than two.)

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.plg", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.plg", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".plg" or ".pl1g") or the device

 plgc (1) − 4 − plgc (1)

 plgc (1) −−− interface to Primos PL/I subset G compiler 08/27/84

 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a
 file named "file.plg" is

 plgc −c0d0e1f2h0k0m2n1o1p0q1r0s1v1w0x1 _
 file.plg −b file.b −l /dev/null

 which corresponds to the PL1G command

 pl1g −i *>file.plg −b *>file.b −l no

 Examples

 plgc file.plg
 plgc −kf dmach.plg
 plgc −x dmach.plg −b b_dmach −l l_dmach
 plgc −m3 i_mode_prog.plg −z"−newopt"

 Messages

 "Usage: plgc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’plgc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Plgc’ pays no attention to standard ports.

 See Also

 | ld (1), plgcl (1), geta$plg (2), init$plg (2), bind (3)

 plgc (1) − 5 − plgc (1)

 plgcl (1) −−− compile and load a PL/I subset G program 08/27/84

 | Usage

 plgcl <program name> [<’ld’ options>] [/ <’plgc’ options>]

 Description

 ’Plgcl’ is a shell file that invokes the Primos PL/I subset
 | G compiler and the Primos segmented loader. If ’plgcl’ is
 | invoked with no <program name> argument, it automatically
 | processes the last program edited, since it shares the shell
 | variable ’f’ with the shell program ’e’. The name of the
 file containing the program to be compiled must end with
 ".plg", although in <program name> it may be specified with
 or without the ending ".plg". If no output file is
 specified in the <’ld’ options>, the output object file name
 will be <program name> with no extension.

 Concerning the options, ’plgc’ will be called with the
 <’plgc’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 plgcl myprog.plg
 plgcl myprog subs.b subs2.b −l mylib
 plgcl myprog / −ok −l mylist

 Messages

 "<program name>.plg: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | plgc (1), ld (1), init$plg (2), bind (3)

 plgcl (1) − 1 − plgcl (1)

 plpc (1) −−− interface to Primos PL/P compiler 08/27/84

 | Usage

 plpc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <PLP option>]
 <option> ::= e | f | q | v | x

 Description

 ’Plpc’ serves as the Subsystem interface to the Primos PL/P
 compiler (PLP). It examines its option specifications and
 checks them for consistency, provides Subsystem−compatible
 default file names for the listing and binary files as
 needed, and then produces a Primos PLP command and causes it
 to be executed.

 Options

 The general structure of an ’plpc’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 −f(0) [0..1] − Offset map.

 Level 0 inhibits the generation of a storage offset
 map.

 Level 1 cause the generation of a map listing the
 storage offset of each program variable.

 −q(1) [0..1] − Suppress warning messages.

 Level 0 inhibits the display of compiler warning mes−
 sages.

 Level 1 allows the display of compiler warning mes−
 sages.

 plpc (1) − 1 − plpc (1)

 plpc (1) −−− interface to Primos PL/P compiler 08/27/84

 −v(1) [1..2] − Listing verbosity.

 Level 1 generates a full source code listing.

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 −x(1) [0..1] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing.

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.plp", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.plp", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".plp") or the device "/dev/tty", in
 which case input to the compiler is read from the user’s
 terminal.

 In summary, then, the default command line for compiling a
 file named "file.plp" is

 plpc −e1f0q1v1x1 _
 file.plp −b file.b −l /dev/null

 plpc (1) − 2 − plpc (1)

 plpc (1) −−− interface to Primos PL/P compiler 08/27/84

 which corresponds to the PLP command

 plp −i *>file.plp −b *>file.b −l no

 Examples

 plpc file.plp
 plpc −f dmach.plp
 plpc −x dmach.plp −b b_dmach −l l_dmach
 plpc −e0 r_mode_prog.plp −z"−newopt"

 Messages

 "Usage: plpc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’plpc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Plpc’ pays no attention to standard ports.

 See Also

 | ld (1), plpcl (1), bind (3)

 plpc (1) − 3 − plpc (1)

 plpcl (1) −−− compile and load a PL/P program 08/27/84

 | Usage

 plpcl <program name> [<’ld’ options>] [/ <’plpc’ options>]

 Description

 ’Plpcl’ is a shell file that invokes the Primos PL/P com−
 | piler and the Primos segmented loader. If ’plpcl’ is
 | invoked with no <program name> argument, it automatically
 | processes the last program edited, since it shares the shell
 | variable ’f’ with the shell program ’e’. The name of the
 file containing the program to be compiled must end with
 ".plp", although in <program name> it may be specified with
 or without the ending ".plp". If no output file is
 specified in the <’ld’ options>, the output object file name
 will be <program name> with no extension.

 Concerning the options, ’plpc’ will be called with the
 <’plpc’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 plpcl myprog.plp
 plpcl myprog subs.b subs2.b −l mylib
 plpcl myprog / −xv −l mylist

 Messages

 "<program name>.plp: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | plpc (1), ld (1), bind (3)

 plpcl (1) − 1 − plpcl (1)

 pmac (1) −−− interface to Primos assembler 08/27/84

 | Usage

 pmac {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <PMA option>]
 <option> ::= v | x

 Description

 ’Pmac’ serves as the Subsystem interface to the Primos macro
 assembler (PMA). It examines its option specifications and
 checks them for consistency, provides Subsystem−compatible
 default file names for the listing and binary files as
 needed, and then produces a Primos PMA command and causes it
 to be executed.

 Options

 The general structure of an ’pmac’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing containing
 the machine code representation of each instruction.

 Level 2 generates a full source code listing that
 includes the code generated by all macro calls.

 −x(1) [1..2] − Cross−reference listing control.

 Level 1 causes the compiler to generate a cross−
 reference listing containing all variables referenced
 in executable statements and omitting those that are
 declared but never referenced.

 Level 2 causes the compiler to generate a full cross−
 reference of all variables.

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 pmac (1) − 1 − pmac (1)

 pmac (1) −−− interface to Primos assembler 08/27/84

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.s", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.s", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".s" or ".pma") or the device
 "/dev/tty", in which case input to the compiler is read from
 the user’s terminal.

 In summary, then, the default command line for compiling a
 file named "file.s" is

 pmac −v1x1 file.s −b file.b −l /dev/null

 which corresponds to the PMA command

 pma −i *>file.s −b *>file.b −l no

 Examples

 pmac file.s
 pmac −x dmach.s −b b_dmach −l l_dmach
 pmac −v2 macroprog.s −z"−newopt"

 Messages

 "Usage: pmac ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.

 pmac (1) − 2 − pmac (1)

 pmac (1) −−− interface to Primos assembler 08/27/84

 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’pmac’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Pmac’ pays no attention to standard ports.

 See Also

 | ld (1), pmacl (1), bind (3)

 pmac (1) − 3 − pmac (1)

 pmacl (1) −−− assemble and load a PMA program 08/27/84

 | Usage

 pmacl <program name> [<’ld’ options>] [/ <’pmac’ options>]

 Description

 ’Pmacl’ is a shell file that invokes the Primos Macro Assem−
 | bler and the Primos segmented loader. If ’pmacl’ is invoked
 | with no <program name> argument, it automatically processes
 | the last program edited, since it shares the shell variable
 | ’f’ with the shell program ’e’. The name of the file
 containing the program to be compiled must end with ".s",
 although in <program name> it may be specified with or
 without the ending ".s". If no output file is specified in
 the <’ld’ options>, the output object file name will be
 <program name> with no extension.

 Concerning the options, ’pmac’ will be called with the
 <’pmac’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 pmacl myprog.s
 pmacl myprog subs.b subs2.b −l mylib
 pmacl myprog / −x −l mylist

 Messages

 "<program name>.s: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | pmac (1), ld (1), bind (3)

 pmacl (1) − 1 − pmacl (1)

 pr (1) −−− print files on the line printer 03/20/80

 Usage

 pr {<file_spec> | −h <heading>} [/ <sp_opts>]

 <file_spec> ::= <filename> | −[<stdin_number>] |
 −n(<stdin_number> | <filename>)

 Description

 ’Pr’ is used to print paginated listings of text files on
 the line printer.

 Files to be printed are specified by <file_spec>s; see ’cat’
 for further information on the semantics of this construct.

 Spooler control options may appear on the command line, but
 must be separated from file names by an argument consisting
 only of a slash. See ’sp’ and the library routine ’open’
 for further information on <sp_opts>.

 Examples

 lf −c | find .r | sort | pr −n
 pr file1 file2 file3
 cat part1 part2 | pr −
 pr form / p/narrow/

 Files

 //spoolq/prt??? for spool file
 //spoolq/q.ctrl for queue control file

 Messages

 See ’print’

 See Also

 print (1), sp (1), cat (1)

 pr (1) − 1 − pr (1)

 primos (1) −−− push a new Primos command interpreter 02/22/82

 Usage

 primos

 Description

 ’Primos’ allows users to use the Primos command interpreter
 without terminating the Subsystem. The ’primos’ command
 pushes a new listener level of the Primos command
 interpreter with a call to the Primos routine COMLV$. The
 Primos command interpreter then prompts with "OK," (or
 whatever prompt has been set). The user can then execute
 any Primos commands (that do not disturb segments ’4040 and
 ’4041) in the normal fashion. Executing the Primos command
 REN (re−enter), or executing the command "swt" will cause
 the Subsystem to close any Primos file units that were left
 open by Primos commands and continue where it left off.

 Examples

 primos

 See Also

 stop (1), x (1), Primos comlv$

 primos (1) − 1 − primos (1)

 print (1) −−− print files 03/23/82

 Usage

 print {<option>} {−h <heading>|<file_spec>}
 <option> ::= −i <indent> | −j | −l <length> |
 −m <margin> | −p

 <file_spec> ::= <filename> | −[<stdin_number>] |
 −n[<stdin_number> | <filename>]

 Description

 ’Print’ is an enhanced version of Kernighan and Plauger’s
 ’print’ program from Software Tools. It produces paginated
 listings with page headings on its standard output and is
 well suited for printing text files on a hard−copy terminal
 or a line printer.

 Options are available to control the format of the listing
 as follows:

 −i A "−i" followed by an integer causes ’print’ to
 prepend the specified number of blanks to each
 output line, indenting the listing from the left
 margin.

 −j The "−j" option causes ’print’ to put out a form−
 feed character (FF) at the end of each page.
 Normally, ’print’ puts out blank lines to get to
 the top of the next page.

 −l A "−l" followed by an integer causes ’print’ to
 change its idea of how many lines there are on a
 page to the specified number. By default, 66
 lines per page are assumed.

 −m A "−m" followed by an integer may be used to set
 the number of blank lines that are left at the top
 and bottom of each page. The default setting is 6
 lines (one inch). The heading produced at the top
 of each page is centered in this group of lines.

 −p Selecting the "−p" option is equivalent to select−
 ing "−j" and "−i 5". This option is designed for
 use when the output is directed to a line printer.

 If no <file_spec> arguments are specified, ’print’ prints
 standard input. Otherwise, ’print’ prints the files selec−
 ted by each <file_spec>. For further information on the
 options available in the <file_spec> construct, see the
 Reference Manual entry for ’cat’.

 ’Print’ produces a header for each page of output, consist−
 ing of the name of the file being printed, the time and date
 of printing, and the current page number in the file. The
 "file name" field of the header may be changed to an

 print (1) − 1 − print (1)

 print (1) −−− print files 03/23/82

 arbitrary string by using the "−h" option followed by the
 desired header text. A "−h" affects all <file_spec>s to its
 right, up until the next "−h". If a "−h" followed by an
 empty string ("") is specified, ’print’ reverts to using the
 name of the file in the header.

 Examples

 file> print
 print file >neat
 files .r$ | print −p −n >/dev/lps
 eight_lines_per_inch> print −l 88 −i10

 Messages

 "<file−name>: can’t print" if file could not be read
 "Usage: print ..." for improper argument syntax

 See Also

 pr (1), sp (1), cat (1)

 print (1) − 2 − print (1)

 profile (1) −−− print execution profile 03/25/82

 Usage

 profile [−d <dictionary>] [<profile>]

 Description

 ’Profile’ formats the information recorded by a profiled
 Ratfor program (one compiled with "rp −p") and prepares a
 report.

 Two input files are used. The first contains a dictionary
 of the subroutines in the traced program and is produced by
 ’rp’ when the program is compiled (with the "−p" option).
 The name of the dictionary file may be specified explicitly
 after the "−d" argument; otherwise, "timer_dictionary" is
 assumed.

 The second file contains the actual profile data that are
 recorded when the traced program is run. Its name may also
 be specified as an argument; "_profile" is assumed other−
 wise.

 Profile analyzes the two data files and produces a report on
 standard output, containing the following information:

 − Number of times each routine was called
 − Real time spent in each routine
 − Percentage real time spent in each routine
 − CPU time spent in each routine
 − Percentage CPU time spent in each routine
 − Milliseconds spent in each routine per call
 − Paging time spent in each routine
 − Percentage paging time spent in each routine

 Note that profile can only be used to summarize execution of
 Ratfor programs compiled with the "−p" option, or Fortran
 programs in which the necessary trace calls have been
 included by hand.

 Examples

 profile | sp
 profile −d dict1 prof_info

 Files

 "timer_dictionary" for default dictionary.
 "_profile" for default profile data.

 Messages

 "Usage: profile ..." for invalid argument syntax.

 profile (1) − 1 − profile (1)

 profile (1) −−− print execution profile 03/25/82

 Bugs

 If the profiled program exits without calling the profile
 exit routine (e.g. by calling ’error’ rather than using
 ’stop’, from Ratfor) no profile data file will be created.

 The system clock only has a resolution of 1/330 second, so
 ’profile’ may not be accurate in timing short routines.

 Procedure call overhead is charged to the calling routine
 rather than to the called routine.

 See Also

 rp (1), st_profile (1), t$entr (6), t$exit (6), t$time (6)

 profile (1) − 2 − profile (1)

 publish (1) −−− publish a news article 03/23/82

 Usage

 publish <path_name> { <path_name> }

 Description

 ’Publish’ is the recommended means of publishing an article
 in the Software Tools Subsystem news service. The contents
 of the files given as arguments (there must be at least one)
 are entered into the news service archive and sent to all
 news service subscribers.

 Each file named is published as a separate news item. The
 first non−blank line of each file should be the "headline."
 The headline may be left−justified or centered. The head−
 line is placed in the index entry for an item, along with
 the time and date of publishing and the item number. (The
 item number is used for retrieving specific news items; see
 the help for the ’news’ command.)

 ’Publish’ deletes leading and trailing blank lines and
 always insures that there is a blank line following the
 headline. Because of this, output from the text formatter
 is suitable for publication if it contains no underlining or
 boldfacing.

 WARNING: When news has a large circulation, ’publish’ will
 take a significant amount of time to do its job. DO NOT
 interrupt it, or you may prevent some users from obtaining a
 copy in their news box. In the event that ’publish’ is
 interrupted, use "retract −q" to remove the article and then
 publish it again.

 Examples

 publish new_york_times
 publish first second

 Files

 =news=/articles/art<number> for archived articles
 =news=/index for article index
 =news=/delivery/<login_name> for delivery to subscribers
 =news=/subscribers for the subscription list

 Messages

 "<article>: cannot open" for not being able to access
 article file.
 "<article>: empty file" for trying to publish an empty
 file.
 "Headline too long: <headline>" for trying to use a head−

 publish (1) − 1 − publish (1)

 publish (1) −−− publish a news article 03/23/82

 line that will not fit in the index.
 "can’t open archive copy file" for not being able to open
 =news=/article/art<number>.
 "cannot make delivery" for not being able to open delivery
 file.
 "can’t open index file" for not being able to open index
 file.

 See Also

 news (1), subscribe (1), retract (1)

 publish (1) − 2 − publish (1)

 pword (1) −−− change login password 08/24/84

 | Usage

 | pword

 | Description

 | ’Pword’ changes a user’s login password. A Primos login
 | password consists of up to 16 letters, numbers, and the fol−
 | lowing special characters: ’#’, ’$’, ’&’, ’*’, ’−’, ’.’,
 | and ’/’. Null passwords (consisting of no characters) may
 | or may not be allowed depending on the specific system.

 | ’Pword’ turns off terminal echo (to prevent someone from
 | peeking) and requests the old password. It then requests
 | the new password. The new password is requested a second
 | time to verify that the user is changing his password to the
 | correct string. If the two new passwords differ in any way
 | then an error message is printed and the users password is
 | left unchanged. ’Pword’ then calls the Primos routine
 | CHG$PW to change the user’s password. Any errors are
 | interpreted and printed on the terminal.

 | Examples

 | pword
 | Old password: old.password
 | New password: new.password$
 | Reenter new password for verification: new.password$

 | Messages

 | "One of the passwords was illegal" if a password containing
 | an illegal character is entered.

 | "The old password did not match the actual password" if the
 | old password entered did not match the actual old password
 | of the account.

 | "Disk is write protected. See system administrator" if the
 | disk on which the passwords reside is write protected.

 | See Also

 | Primos CHANGE_PASSWORD command, Primos chg$pw

 pword (1) − 1 − pword (1)

 quota (1) −−− read and set disk record quota limits 09/05/84

 | Usage

 | quota [−s <quota limit>] [−v] {<file_spec>}

 | Description

 | It is possible to set an upper limit to the number of disk
 | records that may be used in a directory. This command may
 | be used to read or set the quota limits on any directory.
 | Use of the ’quota’ command without the "−s" argument will
 | result in a display of the form:

 | a/b (c)

 | where ’a’ is the total number of records currently used in
 | the directory and all of its descendants, ’b’ is the current
 | quota, and ’c’ is the time−record product; the time record
 | product is a measure of how many records have been in use
 | over time in this directory and may be used in accounting.

 | Use of the "−s" option will set the quota for the named
 | directory. The argument after the "−s" must decode to a
 | positive−valued long integer. If the value is zero then
 | quota limits are removed from the directory.

 | Note that no error is reported if the user should set the
 | maximum quota to a value less than the number of records
 | currently used. Should this event occur, no files or direc−
 | tories may be created in the directory, nor may any existing
 | files be expanded.

 | See the help on ’cat’ for a full description of the meaning
 | of <file_spec>.

 | Examples

 | quota /u(a b c)/spaf −s 0
 | quota foobar/junk

 | Messages

 | "Usage: quota ..." for improper arguments.
 | "<pathname>: can’t get quota information" for various file
 | system errors or lack of access rights.
 | "<pathname>: not a quota directory"; self−explanatory.
 | "improper quota value" for invalid value of <quota limit>.
 | "<pathname>: can’t set quota" for various file system
 | errors or lack of access rights.

 | See Also

 | cat (1), gfdata (2), sfdata (2)

 quota (1) − 1 − quota (1)

 quote (1) −−− enquote strings from standard input 02/22/82

 Usage

 quote

 Description

 ’Quote’ supplies one layer of quotes around strings present
 on its standard input. It is useful in function calls, to
 prevent premature evaluation of text by the command
 interpreter.

 For example, suppose the string

 "# [a−d]"

 were specified as an argument in the invocation of a command
 file which, in turn, passed the string as an argument to
 another program or command file. The first command file
 might access the string using the ’arg’ command in a func−
 tion call:

 [arg 1]

 However, to prevent the meta−characters "#", "[" and "]"
 from being interpreted by the shell after the evaluation of
 the function, the following function call should be used
 instead:

 [arg 1 | quote]

 The string will then be quoted before being substituted back
 into the command line containing the function call, and the
 meta−characters will not be evaluated.

 The result of a function call is quoted automatically by the
 shell if the variable ’_quote_opt’ contains the string
 "YES". This, however, is not the default setting.

 Examples

 to ics002 [args | quote]
 echo [arg 1 | quote] >request_file

 Bugs

 Depends on having both ’ and " available as quoting charac−
 ters.

 Is probably too smart for general application, but under−
 stands the shell’s quoting requirements quite well.

 quote (1) − 1 − quote (1)

 quote (1) −−− enquote strings from standard input 02/22/82

 See Also

 sh (1), arg (1), User’s Guide for the Software Tools
 Subsystem Command Interpreter

 quote (1) − 2 − quote (1)

 radix (1) −−− change radix of numbers 08/07/81

 Usage

 radix [−i <input radix>] [−o <output radix>] { <number> }

 Description

 ’Radix’ is a simple tool that converts numbers from one
 radix representation to another. The "−i" option specifies
 the default input radix. (This radix can be overridden with
 the "<radix>r<number>" notation accepted by ’gctol’). The
 "−o" option specifies the output radix. If either is omit−
 ted, 10 is assumed.

 The numbers specified as arguments are converted to the out−
 put radix and printed on standard output, one number per
 line. If no <number> arguments are specified, ’radix’ reads
 numbers from standard input (one per line), converts them,
 and writes them on standard output (one per line).

 If an illegal character is encountered in a number, it and
 all following characters in the number are ignored.

 Examples

 radix 8r177
 radix −i10 −o2 39 12 5
 radix −i 16

 Messages

 "Usage: radix ..." for invalid argument syntax.

 See Also

 gctol (2)

 radix (1) − 1 − radix (1)

 rdatt (1) −−− list the attributes of a relation 07/01/82

 | Usage

 | rdatt {<option>}
 | <option> ::= −t | −l | −n

 | Description

 | ’Rdatt’ is part of the toy relational data base system,
 | ’rdb’. It lists the attributes of a relation, specified as
 | standard input, on standard output. The input relation must
 | be a file containing a relation that was created by ’rdmake’
 | or another ’rdb’ program; a relation cannot be read from the
 | terminal.

 | If no options are specified then the type, length, and name
 | of each attribute are listed on one line for each attribute.
 | If any of the options ’t’, ’l’, or ’n’ (type, length, name)
 | are specified, then only the characteristics corresponding
 | to the requested option will be listed.

 | Examples

 | p1.rel> rdatt
 | p2.rel> rdatt −tn >attrlist

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "Can’t access input relation"
 | "relation is corrupted!!"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rdatt (1) − 1 − rdatt (1)

 rdavg (1) −−− compute the average value of an attribute 07/01/82

 | Usage

 | rdavg [<selection expr>] <attr>

 | Description

 | ’Rdavg’ is part of the toy relational data base management
 | system, ’rdb’. It computes the average value of a specified
 | attribute over all rows of the relation that satisfy the
 | optional select expression. If no select expression is
 | given then it computes the average of an attribute over all
 | rows of the relation. Standard input 1 must be directed to
 | a file containing an ’rdb’ relation. The result is written
 | to standard output.

 | The input relation must be a file containing a relation that
 | was created by ’rdmake’ or other ’rdb’ programs; the rela−
 | tion cannot be read from the terminal. The select expres−
 | sion is formed from the logical operators "&" (and), "|"
 | (or), and "~" (not) connecting relational conditions involv−
 | ing two domains or a domain and a literal.

 | Examples

 | p.rel> rdavg weight
 | p.rel> rdavg "height>65&height<80" weight

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Cannot load input relation"
 | "Usage: rdavg [<selection expr>] <attr>"
 | "Domain not found"
 | "Strings can’t be averaged"
 | "Average is undefined for empty relation"
 | "Invalid expression"
 | "expected domain name or literal"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdcount (1), rddiff (1), rddiv (1), rdint (1), rdmax (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rdavg (1) − 1 − rdavg (1)

 rdcat (1) −−− concatenate two identical relations 08/03/81

 Usage

 rdcat

 Description

 ’Rdcat’ is part of the toy relational data base system,
 ’rdb’. It creates a new relation by concatenating the two
 relations specified as standard inputs 1 and 2 and writes
 the new relation on standard output 1. Both relations must
 have identical descriptions −− the domains must be identical
 and in the same order.

 The input relations must be files containing relations that
 were created by ’rdmake’; relations cannot be read from the
 terminal. The output relation is displayed in a readable
 format if standard output is directed to a terminal (display
 in binary would be quite a mess); otherwise, the output
 relation is written in binary, internal format for proces−
 sing by other ’rdb’ programs.

 Identical tuples are not removed from the resulting
 relations. These can be removed using ’rdsort’ and
 ’rduniq’.

 Examples

 p1.rel> p2.rel> rdcat >p.rel
 p.des> newp.data> rdmake | p.rel> rdcat >newp.rel

 Messages

 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"
 "Can’t access input relation 1"
 "Can’t access input relation 2"
 "Relations must have identical descriptions"

 Bugs

 It would be nice if the relations only had to have the same
 structure to be concatenated.

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 See Also

 rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rdcat (1) − 1 − rdcat (1)

 rdcount (1) −−− count the number of rows in a relation 07/01/82

 | Usage

 | rdcount [<selection expr>]

 | Description

 | ’Rdcount’ is part of the toy relational data base management
 | system, ’rdb’. It lists the number of rows in a relation
 | satisfying the optional select expression. If no select
 | expression is given then it lists the total number of rows
 | in the relation. Standard input 1 must be directed to a
 | file containing an ’rdb’ relation. The result is written to
 | standard output.

 | The input relation must be a file containing a relation that
 | was created by ’rdmake’ or other ’rdb’ programs; the rela−
 | tion cannot be read from the terminal. The select expres−
 | sion is formed from the logical operators "&" (and), "|"
 | (or), and "~" (not) connecting relational conditions involv−
 | ing two domains or a domain and a literal.

 | Examples

 | p.rel> rdcount
 | p.rel> rdcount "color=’red’"

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Cannot load input relation"
 | "Invalid expression"
 | "expected domain name or literal"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rddiff (1), rddiv (1), rdint (1), rdmax (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rdcount (1) − 1 − rdcount (1)

 rddiff (1) −−− take the difference of two relations 07/01/82

 | Usage

 | rddiff

 | Description

 | ’Rddiff’ is part of the toy relational data base system,
 | ’rdb’. It creates a new relation by performing the set
 | difference of the two relations specified as standard inputs
 | 1 and 2 and writes the new relation on standard output 1.
 | Both relations must have identical descriptions −− the
 | domains must be identical and in the same order.

 | The new relation is formed by examining both input relations
 | and retaining those rows that are in the first relation
 | (standard input 1) but not in the second relation (standard
 | input 2). The remaining rows of both relations are discar−
 | ded.
 |
 | For example:
 |
 | p1.rel −−−−−−−−−−−−−− p2.rel −−−−−−−−−−−−−−
 | |code | name | |code | name |
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 | | 100 | pens | | 100 | pens |
 | |−−−−−|−−−−−−| |−−−−−|−−−−−−|
 | | 101 | ink | | 105 | ruler|
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 |
 | p1.rel> p2.rel> rddiff >p.rel
 |
 | p.rel −−−−−−−−−−−−−−
 | |code | name |
 | −−−−−−−−−−−−−−
 | | 101 | ink |
 | −−−−−−−−−−−−−−
 |

 | The input relations must be files containing relations that
 | were created by ’rdmake’ or other ’rdb’ programs; relations
 | cannot be read from the terminal. The output relation is
 | displayed in a readable format if standard output is direc−
 | ted to a terminal; otherwise, the output relation is written
 | in binary internal format for processing by other ’rdb’
 | programs.

 | Examples

 | p1.rel> p2.rel> rddiff >p.rel
 | p.des> newp.data> rdmake | p.rel> rddiff >newp.rel

 rddiff (1) − 1 − rddiff (1)

 rddiff (1) −−− take the difference of two relations 07/01/82

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Can’t access input relation 1"
 | "Can’t access input relation 2"
 | "Relations must have identical descriptions"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiv (1), rdint (1), rdmax (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rddiff (1) − 2 − rddiff (1)

 rddiv (1) −−− perform the division of two relations 07/01/82

 | Usage

 | rddiv

 | Description

 | ’Rddiv’ is part of the toy relational data base system,
 | ’rdb’. It creates a new relation by performing the set
 | division of the two relations specified as standard inputs 1
 | and 2 and writes the resulting new relation on standard out−
 | put.

 | Standard input 1 is the dividend, standard input 2 is the
 | divisor, and standard output (the resulting relation) is the
 | quotient. The quotient consists of those rows of the
 | dividend, projected onto the attributes not in the division,
 | whose corresponding attributes include every row of the
 | divisor. In other words, a row X will appear in the
 | quotient if and only if the pair <X,Y> appears in the
 | dividend for all rows Y appearing in the divisor.
 |
 | For example:
 |
 | p1.rel −−−−−−−−−−−−−− p2.rel −−−−−−−−
 | |code | name | | name |
 | −−−−−−−−−−−−−− −−−−−−−−
 | | 100 | pens | | pens |
 | |−−−−−|−−−−−−| |−−−−−−|
 | | 100 | ink | | ink |
 | |−−−−−|−−−−−−| −−−−−−−−
 | | 100 | ruler|
 | |−−−−−|−−−−−−|
 | | 101 | pens |
 | |−−−−−|−−−−−−|
 | | 101 | paper|
 | |−−−−−|−−−−−−|
 | | 102 | ink |
 | |−−−−−|−−−−−−|
 | | 103 | ink |
 | |−−−−−|−−−−−−|
 | | 103 | pens |
 | −−−−−−−−−−−−−−
 |
 |
 | p1.rel> p2.rel> rddiv >p.rel
 |
 | p.rel −−−−−−−
 | | code |
 | −−−−−−−−
 | | 100 |
 | |−−−−−−|
 | | 103 |
 | −−−−−−−−
 |

 rddiv (1) − 1 − rddiv (1)

 rddiv (1) −−− perform the division of two relations 07/01/82

 | The input relations must be files containing relations that
 | were created by ’rdmake’ or other ’rdb’ programs; relations
 | cannot be read from the terminal. The output relation is
 | displayed in a readable format if standard output is direc−
 | ted to the terminal; otherwise, the output relation is writ−
 | ten in binary internal format for processing by other ’rdb’
 | programs.

 | Identical tuples are not removed from the resulting
 | relation. These can be removed using ’rdsort’ and ’rduniq’.

 | Examples

 | p1.rel> p2.rel> rddiv >p.rel
 | p1.rel> p2.rel> rddiv | rdsort | rduniq | rdprint

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Cannot load input relation 1"
 | "Cannot load input relation 2"
 | "Relation 2 has domain not defined in relation 1"
 | "Couldn’t rewind sort file 1"
 | "Couldn’t rewind sort file 2"
 | "Error on sort file 2"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rdint (1), rdmax (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rddiv (1) − 2 − rddiv (1)

 rdextr (1) −−− extract relation data from a relation 02/22/82

 Usage

 rdextr

 Description

 ’Rdextr’ is part of toy relational data base management
 system ’rdb’. It converts a relation to a standard text
 file using a format file. Standard input 1 must be directed
 to a file containing an ’rdb’ relation and standard input 2
 must be directed to a file containing a description of the
 desired output format (see below). The relation data is
 output on standard output as a text file.

 The output format file is very similar in structure to the
 input format file used by ’rdmake’. The only difference is
 that the data type of the relation domain is not included in
 the output format. Each line of the output format file
 controls the the conversion of one domain of the relation.
 The domains are output in the order listed in the format
 file; domains may be omitted or duplicated by omitting or
 duplicating lines in the output format file.

 Each line of the file has the following format:

 <domain name> [d[<delimiter>]] [l<length>]

 <Domain name> must be the name of a domain in the relation;
 <delimiter> is a single character delimiter; <length> is
 non−negative integer. When a field is output, it is con−
 verted to character form and blank padded so that it takes
 no less than <length> characters (if "l<length>" is not
 specified, <length> is assumed to be zero). The characters
 are placed in the output followed by the delimiter character
 (if "d<delimiter>" is not specified, <delimiter> is assumed
 to be a blank; if "d" with no delimiter is specified, no
 delimiter is output). For the last domain in the format
 file, <delimiter> is always assumed to be a NEWLINE charac−
 ter. For example,

 pno d,
 pname d l20
 city d$ l10

 In the first line, "pno" is output with no blank padding,
 followed by a comma. In the second line, "pname" is output
 with blank padding to 20 characters with no delimiter
 (assuming "pname" was described as "s20" in the relation, 20
 characters would always be output for "pname"). In the last
 line, "city" is output with blank padding to 10 characters
 and then followed by a newline character.

 rdextr (1) − 1 − rdextr (1)

 rdextr (1) −−− extract relation data from a relation 02/22/82

 Examples

 y.rel> y.fmt> rdextr >y.data
 p.rel> p.fmt> rdextr | field ...
 ... rdsort | rduniq | x.fmt> rdextr >x.data

 Messages

 "Cannot access input relation"
 "<domain>: domain not found"
 "Illegal output length"
 "Unrecognized word"
 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"

 See Also

 dtoc (2), ltoc (2), rdcat (1), rdextr (1), rdjoin (1),
 rdmake (1), rdprint (1), rdproj (1), rdsel (1), rdsort (1),
 rduniq (1)

 rdextr (1) − 2 − rdextr (1)

 rdint (1) −−− intersect two identical relations 07/01/82

 | Usage

 | rdint

 | Description

 | ’Rdint’ is part of the toy relational data base system,
 | ’rdb’. It creates a new relation by performing the inter−
 | section of the two relations specified as standard inputs 1
 | and 2 and writes the new relation on standard output 1.
 | Both relations must have identical descriptions −− the
 | domains must be identical and in the same order.

 | The intersection creates a new relation containing all the
 | rows which appear in both sets −− all other rows are discar−
 | ded. Identical rows are not removed from the resulting
 | relation. These can be removed by using ’rdsort’ and
 | ’rduniq’.
 |
 | For example:
 |
 | p1.rel −−−−−−−−−−−−−− p2.rel −−−−−−−−−−−−−−
 | |code | name | |code | name |
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 | | 100 | pens | | 100 | pens |
 | |−−−−−|−−−−−−| |−−−−−|−−−−−−|
 | | 101 | ink | | 105 | ruler|
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 |
 | p1.rel> p2.rel> rdint >p.rel
 |
 | p.rel −−−−−−−−−−−−−−
 | |code | name |
 | −−−−−−−−−−−−−−
 | | 100 | pens |
 | −−−−−−−−−−−−−−
 |

 | The input relations must be files containing relations that
 | were created by ’rdmake’ or other ’rdb’ programs; relations
 | cannot be read from the terminal. The output relation is
 | displayed in a readable format if standard output is direc−
 | ted to a terminal; otherwise, the output relation is written
 | in binary internal format for processing by other ’rdb’
 | programs.

 | Examples

 | p1.rel> p2.rel> rdint >p.rel
 | p1.rel> p2.rel> rdint | rdsort | rduniq | rdprint

 rdint (1) − 1 − rdint (1)

 rdint (1) −−− intersect two identical relations 07/01/82

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Can’t access input relation 1"
 | "Can’t access input relation 2"
 | "Relations must have identical descriptions"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rddiv (1), rdmax (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rdint (1) − 2 − rdint (1)

 rdjoin (1) −−− join two relations 03/23/82

 Usage

 rdjoin <sel expr> { <new domain> }
 <sel expr> ::= <term> { ’|’ <term> }
 <term> ::= <factor> { & <factor> }
 <factor> ::= ~ <factor> | <primary>
 <primary> ::= <object> <rel op> <object>
 <object> ::= <domain> | <domain>.1 | <domain>.2
 | <integer> | <real> | <string>
 <rel op> ::= < | > | = | <= | >= | ~= | == | <>
 <new domain> ::= <old domain> [= <domain>]
 <old domain> ::= <domain> | <domain>.1 | <domain>.2

 Description

 ’Rdjoin’ is part of the toy relational data base management
 system ’rdb’. It joins two relations, selects relevant
 tuples, and projects the new relation over specified
 domains. Standard input 1 and standard input 2 must be
 directed to files containing ’rdb’ relations. The result
 relation is written to standard output. Identical tuples
 are not removed from the resulting relation. These can be
 removed using ’rdsort’ and ’rduniq’.

 The input relations must be files containing relations that
 were created by ’rdmake’ or other ’rdb’ programs; relations
 cannot be read from the terminal. The output relation is
 displayed in a readable format if standard output is direc−
 ted to a terminal (display in binary would be quite a mess);
 otherwise, the output relation is written in binary, inter−
 nal format for processing by other ’rdb’ programs.

 The new relation is formed (effectively) by concatenating
 every tuple of relation 1 to every tuple of relation 2. The
 selection expression is then evaluated for every new tuple;
 tuples for which the selection expression is false are
 discarded. Then a new relation is formed from the selected
 tuples by projecting over the domains specified on the com−
 mand line.

 The selection expression is formed from the logical
 operators "&" (and), "|" (or), and "~" (not) connecting
 relational conditions involving two domains or a domain and
 a literal. The usual operator hierarchy applies:
 relational conditions first, followed by "~", "&" and then
 "|". Literals must be the same type as the domain to which
 they are compared: string literals must be quoted (either
 single or double quotes) and integer and real literals must
 follow the syntax allowed by ’gctol’ and ’ctod’.

 Since domains may have the same names in the input
 relations, domain names may be qualified by ".1" or ".2
 suffixes corresponding to domain in the first or second
 relation, respectively. If a domain name appears in only
 one input relation, it need not be qualified; if it appears

 rdjoin (1) − 1 − rdjoin (1)

 rdjoin (1) −−− join two relations 03/23/82

 in both relations, it must be qualified.

 If no list of domains is specified for projecting the output
 relation, the output relation is projected over all of the
 domains of both input relations. Duplicate domain names are
 not allowed in the output relation. If there are duplicate
 domain names in output relation, the domains must be renamed
 using the "<old domain>=<domain>" form. Unique domain names
 may also be changed using this notation.

 Examples

 p.rel> sp.rel> rdjoin _
 "pno.1=pno.2" pno.1=no pname=name qty
 p.rel> p.rel> rdjoin _
 "city.1=city.2" pno.1=pno1 pno.2=pno2
 p.rel> p.rel> rdjoin _
 "pname.1=pname.2&color.1~=color.2" pno.1=pno1 pno.2=pno2

 Messages

 "Usage: rdjoin <selection expr> { <domain> }"
 "Cannot load input relation 1"
 "Cannot load input relation 2"
 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"
 "Resulting relation has too many domains"
 "Too many fields in new relation"
 "<domain>: invalid name"
 "<domain>: domain not found"
 "<domain>: duplicate output domain"
 "<domain>: cannot add new domain"
 "<domain>: duplicate output domain"
 "<domain>: domain not found or ambiguous"
 "Invalid expression"
 "Unbalanced parentheses"
 "Missing relational operator"
 "Comparing two literals is bogus!"
 "Types to be compared are not compatible"
 "Expected domain name or literal"
 "Too many literals"
 "Invalid integer constant"
 "Invalid real constant"
 "Missing quote"
 "Illegal character"
 "Selection expression too complicated"

 Bugs

 Uses a slow and stupid algorithm.

 If domain names are duplicated in the input relations,
 domains must be renamed on output; hence all desired output

 rdjoin (1) − 2 − rdjoin (1)

 rdjoin (1) −−− join two relations 03/23/82

 domains must be listed.

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 See Also

 ctod (2), gctol (2), rdcat (1), rdextr (1), rdjoin (1),
 rdmake (1), rdprint (1), rdproj (1), rdsel (1), rdsort (1),
 rduniq (1)

 rdjoin (1) − 3 − rdjoin (1)

 rdmake (1) −−− make a relation from data file 02/22/82

 Usage

 rdmake

 Description

 ’Rdmake’ is part of the toy relational data base management
 system ’rdb’. It creates an ’rdb’ relation from a data file
 and a description file. The relation data is read from
 standard input 1 and the description file is read from stan−
 dard input 2 (see below). The new relation is written to
 standard output. The output relation is displayed in a
 readable format if standard output is directed to a terminal
 (display in binary would be quite a mess); otherwise, the
 output relation is written in binary, internal format for
 processing by other ’rdb’ programs.

 Identical tuples are not removed from the resulting
 relations. These can be removed using ’rdsort’ and
 ’rduniq’.

 The description file is very similar in structure to the
 output format file used by ’rdextr’. Each line of the
 description file causes the creation of a new domain in the
 relation and describes how the data for that domain is to be
 obtained. Each line has one of the following formats:

 i <domain name> [d[<delim>]] [l<flen>]
 r <domain name> [d[<delim>]] [l<flen>]
 s<slen> <domain name> [d[<delim>]] [l<flen>]

 The first two entries in each line describe the format of
 the relation. The first format describes an integer domain
 (containing 32 bit integers), the second describes a real
 domain (containing 64 bit reals), and the last describes a
 string domain containing <slen> character strings (<slen>
 must be a positive integer). The <domain name> must begin
 with a letter and contain only letters, digits, and under−
 scores. Case is significant in identifiers.

 The last two (optional) entries in each format describe how
 each domain is to be obtained from the data file. Data for
 each tuple is taken from a single line in the data file.
 Fields are extracted in the order of lines in the descrip−
 tion file. Each field is extracted by first skipping over
 any leading delimiter characters specified by <delim> in the
 "d<delim>" entry (if the entry is omitted, <delim> is
 assumed to be a blank; if "d" is specified without a
 delimiter, no delimiter is allowed). Then characters are
 collected up to the next occurrence of <delim>. In any
 case, no more than <flen> characters are collected (if
 "l<flen>" is omitted, <flen> is assumed to be a very large
 number). The extracted field is then converted to the
 proper internal format and placed in the tuple. Integers
 and reals are converted into binary representations with

 rdmake (1) − 1 − rdmake (1)

 rdmake (1) −−− make a relation from data file 02/22/82

 ’gctol’ and ’ctod’; strings are blank padded to full length.
 For example,

 s6 pno
 s15 pname l15 d
 i qty d,
 r price d, l10

 "pno" is a string containing 6 characters; it is obtained by
 skipping blanks and then collecting characters up to the
 next blank. "Pname" is a string containing 15 characters;
 it is obtained by taking exactly 15 characters from the
 input line (if a NEWLINE is encountered, spaces are sup−
 plied). "Qty" is an integer domain that is extracted by
 skipping leading commas, collecting characters up to the
 next comma, and then converting the resulting string into an
 integer with ’gctol’. "Price" is a real domain; it is
 extracted by skipping leading commas, collecting characters
 up to the next comma (but not more than 10), and then con−
 verting the resulting string into a real using ’ctod’.

 Examples

 p.data> p.des> rdmake | rdsort | rdjoin >p.rel
 sp.des>2 rdmake >sp.rel

 Messages

 "Illegal length"
 "Illegal data type"
 "Illegal domain name"
 "Duplicate name"
 "Can’t add domain"
 "Illegal input length"
 "Unrecognized word"
 "<integer>: bad integer"
 "<real>: bad real"

 Bugs

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 An empty field cannot be specified by two occurrences of a
 delimiter.

 See Also

 ctod (2), gctol (2), rdcat (1), rdextr (1), rdjoin (1),
 rdmake (1), rdprint (1), rdproj (1), rdsel (1), rdsort (1),
 rduniq (1)

 rdmake (1) − 2 − rdmake (1)

 rdmax (1) −−− find the maximum value of a specified attribute 07/01/82

 | Usage

 | rdmax [<selection expr>] <attr>

 | Description

 | ’Rdmax’ is part of the toy relational data base management
 | system, ’rdb’. It finds the maximum value of a specified
 | attribute over all rows of the relation that satisfy the
 | optional select expression. If no select expression is
 | given then it finds the maximum value of an attribute over
 | all rows of the relation. Standard input 1 must be directed
 | to a file containing an ’rdb’ relation. The result is writ−
 | ten to standard output.

 | The input relation must be a file containing a relation that
 | was created by ’rdmake’ or other ’rdb’ programs; the rela−
 | tion cannot be read from the terminal. The select expres−
 | sion is formed from the logical operators "&" (and), "|"
 | (or), and "~" (not) connecting relational conditions involv−
 | ing two domains or a domain and a literal.

 | Examples

 | p.rel> rdmax size
 | p.rel> rdmax "color=’red’" cost

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Cannot load input relation"
 | "Usage: rdmax [<selection expr>] <attr>"
 | "Domain not found"
 | "No rows satisfy selection expression"
 | "Invalid expression"
 | "expected domain name or literal"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rddiv (1), rdint (1),
 | rdmin (1), rdnat (1), rdsum (1)

 rdmax (1) − 1 − rdmax (1)

 rdmin (1) −−− find the minimum value of a specified attribute 07/01/82

 | Usage

 | rdmin [<selection expr>] <attr>

 | Description

 | ’Rdmin’ is part of the toy relational data base management
 | system, ’rdb’. It finds the minimum value of a specified
 | attribute over all rows of the relation that satisfy the
 | optional select expression. If no select expression is
 | given then it finds the minimum value of an attribute over
 | all rows of the relation. Standard input 1 must be directed
 | to a file containing an ’rdb’ relation. The result is writ−
 | ten to standard output.

 | The input relation must be a file containing a relation that
 | was created by ’rdmake’ or other ’rdb’ programs; the rela−
 | tion cannot be read from the terminal. The select expres−
 | sion is formed from the logical operators "&" (and), "|"
 | (or), and "~" (not) connecting relational conditions involv−
 | ing two domains or a domain and a literal.

 | Examples

 | p.rel> rdmin size
 | p.rel> rdmin "color=’red’" cost

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "Cannot load input relation"
 | "Usage: rdmin [<selection expr>] <attr>"
 | "Domain not found"
 | "No rows satisfy selection expression"
 | "Invalid expression"
 | "expected domain name or literal"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rddiv (1), rdint (1),
 | rdmax (1), rdnat (1), rdsum (1)

 rdmin (1) − 1 − rdmin (1)

 rdnat (1) −−− perform the natural join of two relations 07/01/82

 | Usage

 | rdnat

 | Description

 | ’Rdnat’ is part of the toy relational data base system,
 | ’rdb’. It creates a new relation by performing the natural
 | join of the two relations specified as standard inputs 1 and
 | 2 and writes the resulting new relation on standard output
 | 1.

 | The new relation is formed (effectively) by
 | "pasting together" tuples of relation 1 and relation 2 hav−
 | ing the same values on the same attributes. Identical
 | tuples are not removed from the resulting relation. These
 | can be removed by using ’rdsort’ and ’rduniq’.
 |
 | For example:
 |
 | p1.rel −−−−−−−−−−−−−− p2.rel −−−−−−−−−−−−−−
 | |code | name | |code | loc |
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 | | 100 | pens | | 100 | rear |
 | |−−−−−|−−−−−−| |−−−−−|−−−−−−|
 | | 101 | ink | | 105 | front|
 | −−−−−−−−−−−−−− −−−−−−−−−−−−−−
 |
 | p1.rel> p2.rel> rdnat >p.rel
 |
 | p.rel −−−−−−−−−−−−−−−−−−−−−
 | |code | name | loc |
 | −−−−−−−−−−−−−−−−−−−−−
 | | 100 | pens | rear |
 | −−−−−−−−−−−−−−−−−−−−−
 |

 | The input relations must be files containing relations that
 | were created by ’rdmake’ or other ’rdb’ programs; relations
 | cannot be read from the terminal. The output relation is
 | displayed in a readable format if standard output is direc−
 | ted to a terminal; otherwise, the output relation is written
 | in binary internal format for processing by other ’rdb’
 | programs.

 | Examples

 | p1.rel> p2.rel> rdnat >p.rel
 | p1.rel> p2.rel> rdnat | rdsort | rduniq | rdprint

 | Messages

 | "Sorry, a relation can’t be read from the terminal"

 rdnat (1) − 1 − rdnat (1)

 rdnat (1) −−− perform the natural join of two relations 07/01/82

 | "relation is corrupted!!"
 | "Cannot load input relation 1"
 | "Cannot load input relation 2"
 | "Resulting relation has too many domains"
 | "in add_field_to_rd; bogus type passed"
 | "field not found"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rdint (1), rddiv (1),
 | rdmax (1), rdmin (1), rdsum (1)

 rdnat (1) − 2 − rdnat (1)

 rdprint (1) −−− print a relation or relation descriptor 08/03/81

 Usage

 rdprint { −d | −r }

 Description

 ’Rdprint’ is part of the toy relational data base management
 system ’rdb’. It displays a relation in readable form.
 Standard input 1 must be directed to a file containing an
 ’rdb’ relation. The input relation must be a file contain−
 ing relation that was created by ’rdmake’ or other ’rdb’
 programs; a relation cannot be read from the terminal.

 Printable output is produced on standard output. The "−d"
 option indicates that only the relation description is to be
 displayed; the "−r" option indicates that only the relation
 data is to be displayed. If both or neither of these
 options are present, both the description and data are
 displayed.

 Examples

 p.rel> rdprint −d
 p.rel> rdproj pname pno | rdsort | rduniq | rdprint −r

 Messages

 "Usage: rdprint (−d | −r)"
 "Sorry, a relation can’t be read from the terminal"
 "Can’t access input relation"
 "relation is corrupted!!"

 Bugs

 Relations more than 80 columns wide display badly on the
 terminal.

 See Also

 rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rdprint (1) − 1 − rdprint (1)

 rdproj (1) −−− project a relation 02/22/82

 Usage

 rdproj { <new domain> }
 <new domain> ::= <domain> [= <domain>]

 Description

 ’Rdproj’ is part of the toy relational data base management
 system ’rdb’. It projects a relation over specified
 domains. Standard input 1 must be directed to a file
 containing an ’rdb’ relation. A new relation is created and
 written to standard output. The input relation must be a
 file containing a relation that was created by ’rdmake’ or
 other ’rdb’ programs; a relation cannot be read from the
 terminal. The output relation is displayed in a readable
 format if standard output is directed to a terminal (display
 in binary would be quite a mess); otherwise, the output
 relation is written in binary, internal format for proces−
 sing by other ’rdb’ programs.

 Domains are projected in the order specified on the command
 line. A domain can be renamed by using the syntax
 "<old>=<new>". Identical tuples are not removed from the
 resulting relations. These can be removed using ’rdsort’
 and ’rduniq’.

 Examples

 p.rel> rdproj pname=name color city | rdsort | rduniq
 sp.rel> rdproj pno=no | rdsort | rduniq

 Messages

 "Can’t access input relation"
 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"
 "Too many fields in new relation"
 "<domain>: invalid name"
 "<domain>: field not found"
 "<domain>: duplicate field"
 "<domain>: cannot add new field"

 Bugs

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 If a single domain is to be renamed, all other domains must
 be named in the argument list.

 rdproj (1) − 1 − rdproj (1)

 rdproj (1) −−− project a relation 02/22/82

 See Also

 rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rdproj (1) − 2 − rdproj (1)

 rdsel (1) −−− select tuples of a relation 08/03/81

 Usage

 rdsel <sel exp>
 <sel expr> ::= <term> { ’|’ <term> }
 <term> ::= <factor> { & <factor> }
 <factor> ::= ~ <factor> | <primary>
 <primary> ::= <object> <rel op> <object>
 <object> ::= <domain>
 | <integer> | <real> | <string>
 <rel op> ::= < | > | = | <= | >= | ~= | == | <>

 Description

 ’Rdsel’ is part of the toy relational data base management
 system ’rdb’. It selects tuples from a relation based on a
 selection expression given as an argument. Standard input 1
 must be directed to a file containing an ’rdb’ relation.
 The result relation is written to standard output.

 The input relation must be a file containing a relation that
 was created by ’rdmake’ or other ’rdb’ programs; the rela−
 tion cannot be read from the terminal. The output relation
 is displayed in a readable format if standard output is
 directed to a terminal (display in binary would be quite a
 mess); otherwise, the output relation is written in binary,
 internal format for processing by other ’rdb’ programs.

 The new relation is formed (effectively) by evaluating the
 selection expression for each tuple in the input relation.
 Tuples for which the selection expression is false are then
 discarded and the remaining tuples are placed in the output
 relation.

 The selection expression is formed from the logical
 operators "&" (and), "|" (or), and "~" (not) connecting
 relational conditions involving two domains or a domain and
 a literal. The usual operator hierarchy applies:
 relational conditions first, followed by "~", "&" and then
 "|". Literals must be the same type as the domain to which
 they are compared: string literals must be quoted (either
 single or double quotes) and integer and real literals must
 follow the syntax allowed by ’gctol’ and ’ctod’.

 Examples

 p.rel> rdsel "pno>’p1’&(color=’Red’|weight<15" | rdprint −r
 sp.rel> rdsel "sno<=’s3’"
 p.rel rdsel "weight>5&weight<20"

 Messages

 "Usage: rdsel <selection expr>"
 "Cannot load input relation"

 rdsel (1) − 1 − rdsel (1)

 rdsel (1) −−− select tuples of a relation 08/03/81

 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"
 "Invalid expression"
 "Unbalanced parentheses"
 "Missing relational operator"
 "Comparing two literals is bogus!"
 "Comparing two literals is bogus!"
 "Types to be compared are not compatible"
 "Expected domain name or literal"
 "<domain>: domain not found or ambiguous"
 "Too many literals"
 "Invalid integer constant"
 "Invalid real constant"
 "Missing quote"
 "Illegal character"
 "Selection expression too complicated"

 Bugs

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 See Also

 ctod (2), gctol (2), rdcat (1), rdextr (1), rdjoin (1),
 rdmake (1), rdprint (1), rdproj (1), rdsel (1), rdsort (1),
 rduniq (1)

 rdsel (1) − 2 − rdsel (1)

 rdsort (1) −−− sort a relation 02/22/82

 Usage

 rdsort { <domain> }

 Description

 ’Rdsort’ is part of the toy relational data base system,
 ’rdb’. It sorts the tuples in a relation on the domains
 specified in the argument list. Standard input 1 must be
 directed to a file containing an ’rdb’ relation; the sorted
 relation is written on standard output. The input relation
 must be a file containing a relation that was created by
 ’rdmake’ or other ’rdb’ program; a relation cannot be read
 from the terminal. The output relation is displayed in a
 readable format if standard output is directed to a terminal
 (display in binary would be quite a mess); otherwise, the
 output relation is written in binary, internal format for
 processing by other ’rdb’ programs.

 The relation is sorted on the domains specified in the
 | argument list. Integer and real domains are sorted in
 | numeric order; string domains are sorted in the ASCII col−
 lating sequence. If no arguments are specified, the rela−
 tion is sorted on all domains in the order they appear in
 the relation.

 Examples

 p.rel> rdsort color >np.rel
 sp.rel> rdproj sno | rdsort | rduniq | rdprint

 Messages

 "Can’t access input relation"
 "Sorry, a relation can’t be read from the terminal"
 "Relation is corrupted!!"
 "Too many sort keys"
 "<domain>: field not defined"

 Bugs

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 See Also

 rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rdsort (1) − 1 − rdsort (1)

 rdsum (1) −−− sum the values of an attribute 07/01/82

 | Usage

 | rdsum [<selection expr>] <attr>

 | Description

 | ’Rdsum’ is part of the toy relational data base management
 | system, ’rdb’. It computes the sum of the values of a
 | specified attribute over all rows of the relation that
 | satisfy the optional select expression. If no select
 | expression is given then it computes the sum of the values
 | of an attribute over all rows of the relation. Standard
 | input 1 must be directed to a file containing an ’rdb’
 | relation. The result is written to standard output.

 | The input relation must be a file containing a relation that
 | was created by ’rdmake’ or other ’rdb’ programs; the rela−
 | tion cannot be read from the terminal. The select expres−
 | sion is formed from the logical operators "&" (and), "|"
 | (or), and "~" (not) connecting relational conditions involv−
 | ing two domains or a domain and a literal. The sum cannot
 | be computed for domains containing strings.

 | Examples

 | p.rel> rdsum length
 | p.rel> rdsum "length>20" total_quantity

 | Messages

 | "Sorry, a relation can’t be read from the terminal"
 | "relation is corrupted!!"
 | "cannot load input relation"
 | "Usage; rdsum [<selection expr>] <attr>"
 | "Domain not found"
 | "Strings can’t be averaged"
 | "Invalid expression"
 | "expected domain name or literal"

 | See Also

 | rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 | rdproj (1), rdsel (1), rdsort (1), rduniq (1), rdatt (1),
 | rdavg (1), rdcount (1), rddiff (1), rddiv (1), rdint (1),
 | rdmax (1), rdmin (1), rdnat (1)

 rdsum (1) − 1 − rdsum (1)

 rduniq (1) −−− remove duplicate tuples from a relation 08/03/81

 Usage

 rduniq

 Description

 ’Rduniq’ is part of the toy relational data base system,
 ’rdb’. It removes duplicates from a sorted relation. Stan−
 dard input 1 must be directed to a file containing an ’rdb’
 relation; the new relation is written on standard output.
 The input relation must be a file containing a relation that
 was created by ’rdmake’ or other ’rdb’ program; a relation
 cannot be read from the terminal. The output relation is
 displayed in a readable format if standard output is direc−
 ted to a terminal (display in binary would be quite a mess);
 otherwise, the output relation is written in binary, inter−
 nal format for processing by other ’rdb’ programs.

 Examples

 sp.rel> rdproj sno | rdsort | rduniq | rdprint

 Messages

 "Can’t access input relation"
 "Sorry, a relation can’t be read from the terminal"
 "relation is corrupted!!"

 Bugs

 If standard output is directed to "/dev/lps", the relation
 is written in binary.

 See Also

 rdcat (1), rdextr (1), rdjoin (1), rdmake (1), rdprint (1),
 rdproj (1), rdsel (1), rdsort (1), rduniq (1)

 rduniq (1) − 1 − rduniq (1)

 repeat (1) −−− loop control structure for Shell files 09/05/84

 | Usage

 | repeat
 | { <command> }
 | until [<value>]

 | Description

 | ’Repeat’ implements a Pascal−like repeat loop in the Shell.
 | The optional <value> after the ’until’ command may be any
 | string or function call; if it is zero, empty, or missing
 | altogether, it is interpreted as false, otherwise it is
 | interpreted as true. If <value> is false, control transfers
 | back to the top of the loop and the list of commands are
 | executed again, otherwise the loop terminates and any other
 | commands after the loop are executed.

 | ’Repeat’ operates by saving a copy of any commands entered
 | between the ’repeat’ statement and the ’until’ statement in
 | a temporary file. The top of the file contains a
 | (hopefully) unique label and when the ’until’ statement is
 | entered, an ’if’ statement is generated using <value> as the
 | condition for a ’goto’ to the label. For example the repeat
 | loop

 | repeat
 | set i = [eval i + 1]
 | until [eval i ">" 7]

 | generates the following Shell file

 | :L01t
 | set i = [eval i + 1]
 | if [eval i ">" 7]
 | else
 | goto L01t

 | and then calls the shell to execute it. Since it is execut−
 | ing as another level of the shell, the ’exit’ command will
 | actually cause early termination of the loop, but a ’goto’
 | statement to a label outside the scope of the loop will not
 | work because the label is not accessible from within the
 | shell file. Another incidental advantage obtained from pre−
 | processing the structure and executing as another Shell
 | level is that this loop can be issued from the terminal and
 | it will behave reasonably, i.e. − it will execute the loop
 | instead of ignoring any further commands the way a ’goto’
 | statement does.

 | Examples

 | declare i = 0
 | repeat | change ?* "−− & −−" # they pipe, also
 | echo [i]

 repeat (1) − 1 − repeat (1)

 repeat (1) −−− loop control structure for Shell files 09/05/84

 | set i = [eval i + 1]
 | until [eval i ">" 7]

 | repeat
 | long_command
 | even_longer_command
 | if [flag]
 | exit # terminate the loop early
 | fi
 |
 | very_short_command
 | until [done]

 | repeat
 | hd swt
 | pause for 5
 | until # infinite loop (defaults to false)

 | Messages

 | "Can’t create temporary file for repeat loop" if there is a
 | problem creating a file to hold the processed ’repeat’
 | loop.

 | "Too many arguments" if there is an argument overflow while
 | trying to copy the current arguments for the ’repeat’
 | statement.

 | "Missing ’until’" if end−of−file is reached on command input
 | before a matching ’until’ was found.

 | Bugs

 | Since the ’repeat’ command causes another level of the shell
 | to be executed, the arguments need to be copied to the next
 | level. If there are many arguments to other commands in the
 | network in which the ’repeat’ is contained, then there could
 | be an argument overflow.

 | Typing ’repeat’ on someone’s terminal will cause the Shell
 | to ignore any command they type until an EOF or a matching
 | ’until’ is typed.

 | See Also

 | if (1), then (1), else (1), fi (1), case (1), goto (1),
 | until (1), User’s Guide for the Software Tools Subsystem
 | Command Interpreter

 repeat (1) − 2 − repeat (1)

 retract (1) −−− retract a news article 08/17/82

 Usage

 retract [−q] { <article number> }

 Description

 ’Retract’ is the recommended means of retracting an article
 from the Software Tools Subsystem news service. The
 articles mentioned by number as arguments are removed from
 the news index, news archive, and news delivery files. If
 the article has been read by a subscriber, a notice of
 retraction is placed in his newsbox; otherwise, no notice of
 the retraction is published.

 Under normal circumstances, one never need retract a news
 story. ’Retract’ exists to remedy the all−too−frequent cir−
 cumstance of an erroneous news article. By retracting an
 incorrect article and re−publishing a correct version, the
 news archive is less cluttered and those users who have not
 read their news never know of the retraction.

 When called with the "−q" option, ’retract’ does not tell
 subscribers who have read an article that it has been
 retracted. This "quiet" option is often useful for removing
 all traces of an outdated article without bothering users
 who have read it.

 WARNING: When news has a large circulation, ’retract’ will
 take a significant amount of time to do its job. DO NOT
 interrupt it, or you may leave an article in a half−
 retracted state. In the event ’retract’ is interrupted,
 just retract the article again −− the only problem (in
 almost all cases) will be that some users are given two
 retraction notices.

 Examples

 retract −q 12
 retract 299 233

 Files

 =news=/articles/art<number> for archived articles
 =news=/index for article index
 =news=/delivery/<login_name> for delivery to subscribers
 =news=/subscribers for the subscription list

 Messages

 "<article>: not an article number" for a non−numeric
 article number.
 "<article>: can’t retract" for an unwritable delivery file.

 retract (1) − 1 − retract (1)

 retract (1) −−− retract a news article 08/17/82

 "<article>: not found" for trying to retract a non−existant
 article.
 "<article>: not your article" for trying to retract someone
 else’s article.
 "can’t open index file" for not being able to open index
 file.
 "can’t open subscribers list" for not being able to open
 subscriber file.
 "Usage: retract ..." for incorrect arguments.

 See Also

 news (1), subscribe (1), publish (1)

 retract (1) − 2 − retract (1)

 rfc (1) −−− command file to rp and fc a Ratfor program 08/21/84

 | Usage

 | rfc <file.r> [[<rp_args>] [/ [<fc_args>]]]

 | Description

 | ’Rfc’ is a shell program that causes the specified Ratfor
 | program to be preprocessed and compiled, but not loaded. It
 | is useful for rebuilding single modules in a multi−module
 | program. The source file is expected to be named
 | <program>.r and the output object code is named <program>.b.
 | A check is made to verify the existence of the source
 | program; if it is not present, processing is discontinued.

 | The ".r" suffix on the source file name is not required,
 | although ’rfc’ requires that the source code reside in a
 | file named with a ".r" suffix; thus one may write "rfc file"
 | to compile the contents of "file.r".

 | Special options for ’rp’ may be placed after the file name.
 | Options for ’fc’ may be placed after the ’rp’ options, as
 | long as the two groups are separated by a slash. Example:
 | "rfc prog −a / −c".

 | Examples

 | rfc profile.r
 | rfc profile

 | rfc stuff.r / −do0q

 | Messages

 | "<source_file>: can’t open" for missing ".r" file
 | "Usage: rfc ..." for no arguments

 | See Also

 | rp (1), fc (1), fcl (1), ld (1), rfl (1)

 rfc (1) − 1 − rfc (1)

 rfl (1) −−− command file to rp, fc, and ld a Ratfor program 01/16/83

 Usage

 rfl [<file.r> [<ld_args>] [/ [<rp_args>] [/ [<fc_args>]]]]

 Description

 ’Rfl’ is a shell program that causes the specified Ratfor
 program to be preprocessed, compiled and loaded. The source
 file is expected to be named <program>.r and the output
 object code is named <program>. A check is made to verify
 the existence of the source program; if it is not present,
 processing is discontinued.

 A few examples may clarify the (somewhat obscure) command
 syntax.

 ’Rfl’ shares the shell variable ’f’ with the shell program
 ’e’; thus one may compile the last program edited simply by
 typing "rfl" with no arguments. If the source file is to be
 named explicitly, it follows the "rfl" (e.g. "rfl file.r").
 The ".r" suffix on the source file name is not required,
 although ’rfl’ requires that the source code reside in a
 file named with a ".r" suffix; thus one may write "rfl file"
 to compile the contents of "file.r".

 Options for ’ld’ (names of libraries, for example) may fol−
 low the name of the source file, e.g. "rfl prog −l vthlib".
 Special options for ’rp’ may be placed after the ’ld’
 options, as long as they are separated by an argument
 consisting only of a slash; for example, "rfl prog −l vthlib
 / −c". Finally, options for ’fc’ may be placed after the
 ’rp’ options, as long as the two groups are separated by a
 slash. Example: "rfl prog −l vthlib / −c / −t".

 Examples

 rfl # ratfor, fortran, and load the last file edited

 rfl profile
 rfl profile.r

 rfl sol −l vthlib

 rfl rsa −l vswtml / −t / −t −l rsa.list

 Messages

 "<source_file>: can’t open" for missing ".r" file
 "no source file" for missing file name and no ’f’ variable

 rfl (1) − 1 − rfl (1)

 rfl (1) −−− command file to rp, fc, and ld a Ratfor program 01/16/83

 See Also

 rp (1), fc (1), fcl (1), ld (1)

 rfl (1) − 2 − rfl (1)

 rnd (1) −−− generate random numbers 03/20/80

 Usage

 rnd { −l <lower> | −u <upper> | −n <number> }

 Description

 ’Rnd’ may be used to generate one or more pseudo−random num−
 bers, uniformly distributed over a given range of integers.
 The arguments specify the range and number of pseudo−random
 integers to be generated.

 The "−l" and "−u" options set the lower and upper bounds,
 respectively, of the range. The default values are 1 for
 the lower bound and 100 for the upper bound. The "−n"
 option controls the number of integers generated; the
 default is 1.

 Examples

 rnd
 rnd −n 10 | stats −tq
 rnd −u 10
 rnd −l −5 −u 5

 Bugs

 Round−off error may make this program not quite uniform in
 the long run.

 See Also

 ’rnd’ function in Fortran library

 rnd (1) − 1 − rnd (1)

 rot (1) −−− rotate or reverse strings from STDIN to STDOUT 03/20/80

 Usage

 rot [[+ | −] <rotation>]

 Description

 ’Rot’ circularly rotates character strings found on standard
 input the number of positions specified by <rotation>, in a
 manner similar to the APL function "reversal/rotate".
 Specification of a positive <rotation> will rotate the
 string from left to right the number of characters
 specified. If <rotation> is negative, the string will be
 rotated from right−to−left. When a string is encountered
 that is not as long as the absolute value of <rotation>, the
 string is rotated circularly until the rotation count is
 exhausted.

 If <rotation> is not specified, the strings on standard
 input are reversed, as with the APL monadic function.

 Examples

 palindromes> rot
 ar −t archive | rot −40 | sort | rot 40
 rot 5

 See Also

 take (1), drop (1), iota (1), stake (2), sdrop (2)

 rot (1) − 1 − rot (1)

 rp (1) −−− extended Ratfor preprocessor 08/27/84

 | Usage

 rp [−{a | b | c | d | f | g | h | l | m | p | s | t | v | y}]
 [−o <output_file>] {<input_file>} [−x <translation file>]

 Description

 ’Rp’ is the Georgia Tech extended Ratfor preprocessor. It
 replaces the original Kernighan/Plauger Ratfor preprocessor,
 locally supported under the name ’rf’ at Version 7.

 A full description of the Ratfor language is quite beyond
 the scope of this document. For complete information,
 | please see the User’s Guide for the Ratfor Preprocessor

 The following options are available:

 | −a Abort all active shell programs if any errors were
 | encountered during preprocessing. This option is
 useful in shell programs like ’rfl’ that wish to
 inhibit compilation and loading if preprocessing
 failed. By default, this option is not selected;
 that is, errors in preprocessing do not terminate
 active shell programs.

 | −b Do not map long identifiers or identifiers
 | containing upper case letters into unique six
 character Fortran identifiers. This option is
 useful if your Fortran compiler will accept names
 longer than six characters.

 | −c Include statement−count profiling code in the
 | generated Fortran. When this option is selected,
 calls to the library routines ’c$init’, ’c$incr’,
 and ’c$end’ will be placed (unobtrusively) in the
 output code. When the preprocessed program is
 run, it will generate a file named "_st_count"
 containing execution frequencies for each line of
 source code. The utility program ’st_profile’ may
 then be used to combine source code and statement
 counts to form a readable report.

 | −d Inhibit generation of the long−name dictionary.
 Normally, a dictionary listing all long names used
 in the Ratfor program along with their equivalent
 short forms is placed at the end of the generated
 Fortran as a series of comment statements. This
 option prevents its generation.

 | −f Suppress automatic inclusion of standard
 | definitions file. Macro definitions for the
 manifest constants used throughout the Subsystem
 reside in the file "=incl=/swt_def.r.i". ’Rp’
 will process these definitions automatically,
 unless the "−f" option is specified.

 rp (1) − 1 − rp (1)

 rp (1) −−− extended Ratfor preprocessor 08/27/84

 | −g Make a second pass over the code and remove GOTOs
 | to GOTOs generated in Ratfor control structures.
 Use of this option lengthens preprocessing time
 significantly, but can result (sometimes) in a
 2−5% speedup of the object program.

 | −h Produce Hollerith−format string constants rather
 | than quoted string constants. This option useful
 in producing character strings in the proper
 format needed by your Fortran compiler.

 | −l Include Ratfor line numbers in the sequence number
 | field of the Fortran output. This may be useful
 in tracking down the Ratfor statement that caused
 a Fortran syntax error. By default, no sequence
 field is generated.

 | −m Map all identifiers to lower case. When this
 option is selected, ’rp’ considers the upper case
 letters equivalent to the corresponding lower case
 letters, except inside quoted strings.

 | −p Emit subroutine profiling code. When this option
 is selected, ’rp’ places calls to the library
 routines ’t$entr’, ’t$exit’, and ’t$clup’ in the
 Fortran output, and creates a text file named
 "timer_dictionary" containing the names of all
 subprograms seen by the preprocessor. When the
 profiled program is run, a file named "_profile"
 is created that contains timing measurements for
 each subprogram. The utility program ’profile’
 may then be used to print a report summarizing the
 number of times each subprogram was called and the
 total time spent in each.

 | −s Short−circuit all logical conditions. The order
 of evaluation of logical operands in Fortran is
 unspecified; that is, in the expression "a&b"
 there is no guarantee that "a" will be evaluated
 before "b". Occasionally this creates incon−
 veniences; one would like to say something like
 "if(i>1&array(i)~=0)...". ’Rp’ supplies the
 short−circuit logical operators "&&" and "||"
 (read "andif" and "orif") for these occasions.
 Both operators evaluate their left operands; if
 the value of the logical expression is predictable
 solely on the basis of the value of the left
 operand, then the right operand remains
 unevaluated and the correct expression value is
 yielded. Otherwise the right operand is evaluated
 and the proper expression value is determined.
 The "−s" option may be used to automatically con−
 vert all "logical and" operators in a program to
 "andifs," and all "logical or" operators to
 "orifs." In addition to improving program
 portability, this option may also reduce execution

 rp (1) − 2 − rp (1)

 rp (1) −−− extended Ratfor preprocessor 08/27/84

 time. By default, however, this option is not in
 effect.

 | −t Trace subprograms. When a program preprocessed
 with the "−t" option is run, an indented trace of
 the subprograms encountered will be printed on
 ERROUT. This trace output is generated by calls
 to the library routine ’t$trac’ that are inserted
 automatically by ’rp’.

 | −v Output "standard" Fortran. This option causes
 | ’rp’ to generate only standard Fortran constructs
 (as far as we know). This option does not detect
 non−standard Fortran usage in Ratfor source code;
 it only prevents ’rp’ from generating non−standard
 constructs in implementing its data and control
 structures. Programs preprocessed with this
 option are slightly larger and slower; the
 intermediate Fortran and binary files are
 approximately 10% larger.

 | −x Translate character codes. ’Rp’ uses the charac−
 | ter correspondences in the <translation file> to
 convert characters into integers when it builds
 Fortran DATA statements containing EOS−terminated
 or PL/I strings. If the option is not specified,
 ’rp’ converts the characters using the native
 Prime character set. The format of the transla−
 tion file is documented below.

 | −y Do not output "call swt". This option keeps ’rp’
 from generating "call swt" in place of all "stop"
 statements.

 The remainder of the command line is used to specify the
 names of the Ratfor input file(s) and the Fortran output
 file. If the "−o" option, followed by a filename, is selec−
 ted, then the named file is used for Fortran output. Any
 remaining filenames are considered Ratfor source files. If
 no other file names are specified, standard input is read.
 If the "−o" option is not specified, then the output
 filename is constructed from the first input filename by
 changing a ".r" suffix (if present) to ".f". If the ".r"
 suffix is not present, the output filename is the input
 filename followed by the suffix ".f".

 The format of the translation file used with the "−x" option
 is as follows. Each line contains descriptions of two
 characters: the Prime native character to be replaced, and
 the character value to replace it. These descriptions may
 be any one of the following: a single non−blank Prime ASCII
 character, a number in a format acceptable to ’gctoi’ (must
 be more than one digit), or an ASCII mnemonic acceptable to
 ’mntoc’. In addition, the character to be replaced may also
 be the mnemonic "EOS" to indicate that the value of the end−
 of−string indicator is to be changed. For example, here is

 rp (1) − 3 − rp (1)

 rp (1) −−− extended Ratfor preprocessor 08/27/84

 a portion of the table for converting the EBCDIC character
 set:

 A 16rc1
 B 16rc2
 ...
 Z 16re9
 0 16rf0
 ...
 9 16rf9
 SP 16r40

 Examples

 rp file.r
 rp −scp slow_prog.r
 rp −o all.f part1.r part2.r part3.r
 cat [files .r] | rp >junk.f

 Files

 =temp=/tm?* for various internal temporaries
 =incl=/swt_def.r.i for standard Subsystem macro definitions

 Messages

 | See the User’s Guide for the Ratfor Preprocessor

 See Also

 profile (1), st_profile (1), c$init (6), c$incr (6), c$end
 (6), t$entr (6), t$exit (6), t$clup (6), t$time (6), t$trac
 | (6), Software Tools, Software Tools Subsystem Tutorial,
 | User’s Guide for the Ratfor Preprocessor

 rp (1) − 4 − rp (1)

 sacl (1) −−− set ACL attributes on an object 09/05/84

 | Usage

 | sacl <pathname>
 | sacl <pathname> {<access pairs>} [−l <pathname>]
 | sacl <pathname> −a <access category>

 | Description

 | ’Sacl’ is a command to manipulate Primos ACL’s (Access
 | Control Lists). It may be used to change the access to an
 | object, create an access category, add an item to an access
 | category, or delete an access control list.

 | An access control list is a set of pairs of names and
 | associated access rights. Each access pair has the follow−
 | ing syntax:

 | <name1> := <name2>
 | − or −
 | <name> <op> <rights>

 | Each <name> is either a user name (eg., "system" or "net−
 | man"), the name of an accounting group (eg., ".lab" or
 | ".system_staff"), or the special identifier "$rest" indicat−
 | ing everyone not otherwise named. The first form of ACL
 | shown above indicates that the rights for <name1> should be
 | set to exactly the same rights as for <name2>. In the
 | second form of ACL pair, <op> is either the symbol "+=",
 | "−=", or "="; "+=" means to add the indicated rights, "−="
 | means to remove the indicated rights, and "=" means to set
 | the rights to the indicated permissions.

 | The <rights> argument consists of either a keyword or sym−
 | bol, or some combination of letters indicating an access
 | right. Each of the letters and their corresponding rights
 | is as follows:

 | a −− corresponds to "add" access, that is, the right to
 | create a new file within a directory. Note that once
 | the file is created, the user creating the file can
 | have full read/write access until the first time the
 | file is closed. At that point, the other protections
 | determine access.

 | d −− corresponds to "delete" access. This access sim−
 | ply allows the user to delete files within a directory.
 | "d" access has no meaning when applied to individual
 | files.

 | l −− corresponds to "list" access, which is the ability
 | to list the contents of a directory (as in the ’lf’
 | command).

 | p −− corresponds to "protect" access, which is the
 | ability to set ACL’s for objects within the directory.

 sacl (1) − 1 − sacl (1)

 sacl (1) −−− set ACL attributes on an object 09/05/84

 | r −− corresponds to "read" access, the ability to open
 | a file for reading or execute a file.

 | u −− corresponds to "use" access. Use access means
 | that a user can ’cd’ to a command or open a file
 | inferior to the named directory. As example, to open
 | the file /disk1/system/lab/foobar, the user must have
 | (at least) "u" access to the directories "system" and
 | "lab", as well as "r" and/or "w" access to the file
 | "foobar".

 | w −− corresponds to "write" access. This means that
 | the user has the ability to write to or truncate a
 | file.

 | Thus, to add "read" and "write" access to a file for user
 | "waldo", the ACL pair "waldo+=wr" could be used, as could
 | "waldo+=rw".

 | Some special symbols and keywords are recognized by the
 | ’sacl’ command. These are:

 | $all −− corresponds to "adlpruw"

 | * −− same as "$all"; "adlpruw" rights

 | $none −− confers no rights whatsoever

 | 0 −− same as "$none"

 | $owner −− all rights except protect: "adlruw"

 | $read −− "lru"

 | $use −− "alru"

 | $default −− same rights as currently belong to "$rest"

 | $def −− same as "$default"

 | ? −− same as "$default"

 | Also associated with the concept of ACL is the type of the
 | ACL. There are basically 5 types of ACL. The first type is
 | a specific ACL which confers protection on one specific
 | file. The second type of ACL is the default specific ACL
 | which is a specific ACL set on an ancestor of the object; if
 | an object is not protected by a specific ACL or an acat, it
 | is protected by a default ACL −− the same ACL which protects
 | its parent.

 | The third type of ACL is the access category, or "acat". An
 | acat is an ACL which may protect many objects with the same
 | access rights. An acat appears to be a file that cannot be
 | read or written, and its name must end in the 5 character
 | sequence ".acat". An acat need not currently protect any

 sacl (1) − 2 − sacl (1)

 sacl (1) −−− set ACL attributes on an object 09/05/84

 | files or directories; its existence is independent of other
 | objects, unlike a specific ACL.

 | The fourth type of ACL is the default acat, which is similar
 | in nature to the default specific ACL.

 | The fifth type of ACL is a priority ACL. This is an ACL set
 | on an entire disk partition by the system administrator.
 | Rights confered by a priority override rights confered by an
 | ACL of any of the other four types. Priority ACLs cannot be
 | set with this command. To set a priority ACL, use the
 | Primos ’spacl’ command.

 | "Sacl <pathname>" reverts the object to default protection;
 | if <pathname> is an acat, it is deleted. The "−a" option
 | adds the object to the named acat. The "−l" option is a
 | "like" option; access rights for the object are the combina−
 | tion of the rights on the object specified with the "−l"
 | option along with the given access pairs. In the second and
 | third form, if <pathname> ends in ".acat" then an access
 | category is created with the indicated rights.

 | Examples

 | sacl text harold=$read maude:=harold .staff+=r $rest=$none

 | sacl comm.acat .staff+=* .hackers−=w −l =lbin=

 | sacl text

 | Messages

 | "Usage: sacl <pathname> [<acl list>] [−l <pathname> | −a
 | <acat>]" for incorrect usage.

 | "Cannot set ACL as specified." if the object is unreachable
 | or the user does not have "p" access.

 | "Object specified after the "−a" is not an acat." if the
 | name of the object after the "−a" option is not a valid acat
 | name.

 | Bugs

 | Access categories must end in ".acat". This is not
 | consistent with standard Subsystem naming conventions, but
 | is consistent with Primos standard naming conventions.

 | See Also

 | lf (1), lacl (1), sfdata (2), parsa$ (6)

 sacl (1) − 3 − sacl (1)

 save (1) −−− save shell variables 03/20/80

 Usage

 save

 Description

 ’Save’ saves the lexic level 1 shell variables, causing the
 same action as exiting and reentering the Subsystem.

 Its primary use is to save the current values of the shell
 variables, so that if the Subsystem crashes they will not be
 lost.

 Examples

 if [nargs]
 set f = [arg 1 | quote]
 save
 fi

 See Also

 declare (1), forget (1), vars (1), set (1)

 save (1) − 1 − save (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | Usage

 | Usage: se [−t <term>] { <pathname> | −<option> }
 | <term> ::= adm31 | adm3a | adm42 | adm5 | anp |
 | b150 | b200 | bantam | bee2 | cg |
 | consul | forsys | fox | gt40 | h19 |
 | hp2621 | hp2626 | hp2648 | hp9845 | hz1420 |
 | hz1421 | hz1510 | ibm | info | isc |
 | microb | nby | netron | pst100 | pt45 |
 | regent | sbee | sol | terak | trs80 |
 | ts1 | tvi | tvt | vc4404 | vi200 |
 | viewpt | view90 | vt100 | z19

 | <opt> ::= a | c | d[<dir>] | f | g | h[<speed>] |
 | i[a | <indent>] | k | l[<lop>] | lm[<col>] |
 | m[<opts>] | p[<s | u>] | s<lang> | t[<tabs>] |
 | u[<chr>] | v[<col>] | w[<col>] | −[<row>]

 Description

 In order to understand ’se’, you should be familiar with the
 line editor ’ed’.

 ’Se’ works much like ’ed’, accepting the same commands with
 a few differences. Rather than displaying only a single
 line from the file being edited (as ’ed’ does), ’se’ always
 displays a "window" onto the file. In order to do this,
 ’se’ must be run from a CRT terminal and must be told what
 sort of terminal it is. If the user entered a valid
 terminal type when requested to do so upon entry into the
 Subsystem and that terminal type is recognized by ’se’, the
 "−t <term>" option may be omitted from the ’se’ command.
 Otherwise, either the "−t <term>" terminal type option must
 be specified, or ’se’ will prompt the user for the terminal
 type. Trying out ’se’ will make the screen format evident,
 so details are not given here.

 ’Se’ is capable of being used from a variety of different
 terminals. New terminal types are easily added by making
 small additions to the source code. In general, all that is
 required of a terminal is that it have the ability to home
 the cursor (position it to the upper left hand corner of the
 screen) without erasing the screen’s contents, although bac−
 kspacing, a screen clear function, and arbitrary cursor
 positioning are tremendously helpful.

 | The terminals currently supported are the following:

 | adm31 Lear−Siegler ADM−31.

 | adm3a Lear−Siegler ADM−3A.

 | adm42 Lear−Siegler ADM−42.

 | adm5 Lear−Siegler ADM−5.

 se (1) − 1 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | anp Allen and Paul model 1A.

 | b150 Beehive International B150.

 | b200 Beehive International B200.

 | bantam Perkin−Elmer 550.

 | bee2 Beehive International Model 2.

 | cg Chromatics Color Graphics Terminal.

 | consul ADDS Consul 980.

 | forsys Fortunes Systems Terminal.

 | fox Perkin−Elmer 1100.

 | gt40 DEC GT−40 Graphics Terminal with Waugh
 | terminal software

 | h19 Heath H19 using Heath−mode cursor control
 | (supposedly compatible with DEC VT52’s,
 | although this has not been verified)

 | hp2621 Hewlett−Packard model 2621.

 | hp2626 Hewlett−Packard model 2626.

 | hp2648 Hewlett−Packard model 2648.

 | hp9845 Hewlett−Packard model 9845C color computer
 | with Ray Robinson’s terminal software.

 | hz1420 Hazeltine 1420.

 | hz1421 Hazeltine 1421.

 | hz1510 Hazeltine 1510.

 | ibm IBM 3101.

 | info Infoton 100.

 | isc Intelligent Systems Corporation 8001 Color
 | Terminal.

 | microb Beehive Microb/DM1A.

 | nby Newbury 7009.

 | netron Netronics series.

 | pst100 Prime VT100 look−alike.

 | pt45 Prime PT45.

 se (1) − 2 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | regent ADDS Regent 100 and Regent 40.

 | sbee Beehive International Superbee.

 | sol Processor Technology Sol computer with
 | software to emulate a Beehive B200.

 | terak Terak Microcomputer.

 | trs80 Radio Shack TRS−80 with Brad Isley’s terminal
 | program.

 | ts1 Falco TS−1.

 | tvi Televideo 912/920.

 | tvt Southwest Technical Products TV Typewriter II
 | with computer cursor control board and the
 following cursor controls: right: control−
 I, left: control−H, up: control−K, home:
 control−L, erase screen: control−O, down−
 | and−erase−line: control−J.

 | vc4404 Volker−Craig 4404.

 | vi200 Visual 200.

 | viewpt ADDS Viewpoint 3+.

 | view90 ADDS Viewpoint 90.

 | vt100 DEC VT100.

 | z19 Zenith Z19 (same as Heathkit H19).

 The values associated with screen editor options should
 immediately follow their respective key letters, without
 intervening blanks between the option letter and the option
 value. The options that may be specified on the command
 line correspond to options controlled by the "option" (o)
 command and are as follows:

 Option Action

 a causes absolute line numbers to be displayed in
 the line number area of the screen. The default
 behavior is to display upper−case letters with the
 letter "A" corresponding to the first line in the
 window.

 c inverts the case of all letters you type (i.e.,
 converts upper−case to lower−case and vice versa).
 This option causes commands to be recognized only
 in upper−case and alphabetic line numbers to be
 displayed and recognized only in lower−case.

 se (1) − 3 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 d[<dir>] selects the placement of the current line pointer
 following a "d" (delete) command. <dir> must be
 either ">" or "<". If ">" is specified, the
 default behavior is selected: the line following
 the deleted lines becomes the new current line.
 If "<" is specified, the line immediately preced−
 ing the deleted lines becomes the new current
 line. If neither is specified, the current value
 of <dir> is displayed in the status line.

 f selects Fortran oriented options. This is
 equivalent to specifying both the "c" and "t7 +3"
 | (see below) options.

 | g controls the behavior of the "s" (substitute) com−
 | mand when it is under the control of a "g"
 | (global) command. By default, if a substitute
 | inside a global command fails, ’se’ will not
 | continue with the rest of the lines which might
 | succeed. If "og" is given, then the global sub−
 | stitute will continue, and lines which failed will
 | not be affected. Successive "og" commands will
 | toggle this behavior. An explanatory message is
 | placed in the status line.

 h[<baud>] lets the editor know at what baud rate you are
 receiving characters. Baud rates can range from
 50 to 19200; the default is 9600. This option
 allows the editor to determine how many, if any,
 delay characters (nulls) will be output when the
 hardware line insert/delete functions of the
 terminal are being used (if available). Use of
 the built−in terminal capabilities to
 insert/delete lines speeds up editing over slow−
 speed lines (i.e., dialups). Entering ’oh’
 without an argument will cause your current baud
 | rate to appear on the status line.

 | i[a | <indent>] selects indent value for lines inserted with
 | "a", "c" and "i" commands (initially 1). "a"
 | selects auto−indent which sets the indent to the
 | value which equals the indent of the previous
 | line. If <indent> is an integer, then the indent
 | value will be set to that number. If neither "a"
 | nor <indent> are specified, the current value of
 | indent is displayed.

 | k Indicates whether the current contents of your
 | edit buffer has been saved or not by printing
 | either a "saved" or "not saved" message on your
 | status line.

 | l[<lop>] sets the line number display option. Under
 | control of this option, ’se’ continuously displays
 | the value of one of three symbolic line numbers in
 | the status line. <lop> may be any of the fol−

 se (1) − 4 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | lowing:

 | . display the current line number

 | # display the number of the top line on the
 | screen

 | $ display the number of the last line in the
 | buffer

 | If <lop> is omitted, the line number display is
 | disabled.

 lm[<col>] sets the left margin to <col> which must be a
 positive integer. This option will shift your
 entire screen to the left, enabling you to see
 characters at the end of the line that were
 previously off the screen; the characters in
 columns 1 through <col> − 1 will not be visible.
 You may continue editing in the normal fashion.
 To reset your screen enter the command ’olm 1’.
 If <col> is omitted, the current left margin
 column is displayed in the status line.

 m[d] [<user>] displays messages sent to you by other users
 (via the ’to’ command) while you are editing.
 When a message arrives while you are editing, the
 word "message" appears on your status line. To
 send other users messages while inside of the
 editor, you can insert the text of your message
 into the edit buffer, and then issue the command
 "line1,line2om <user>", where "line1" and "line2"
 are the first and last lines, respectively, of
 where you appended your message in the edit buffer
 and "<user>" is the login name or process id of
 the person to whom you want to send a message.
 The given lines are sent and deleted from the edit
 buffer. To prevent the lines from being deleted
 after they are sent, use the command line
 | "line1,line2omd <user>"

 | p[s | u] converts to or from UNIX (tm) compatibility mode.
 | The "op" command, by itself, will toggle between
 | normal (Software Tools mode) and UNIX mode. The
 | command "opu" will force ’se’ to use UNIX mode,
 | while the command "ops" will force ’se’ to use
 | Software Tools mode.

 | When in UNIX mode, ’se’ uses the following for its
 | patterns and commands:

 | ?pattern[?] searches backwards for a pattern.

 se (1) − 5 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | ^ matches the beginning of a line.

 | . matches any character.

 | ^ is used to negate character classes.

 | % used by itself in the replacement part of a
 | substitute command represents the replacement
 | part of the previous substitute command.

 | \(<regular expression>\) tags pieces of a pattern.

 | \<digit> represents the text matched by the tagged
 | sub−pattern specified by <digit>.

 | \ is the escape character, instead of @.

 | t copies lines.

 | y transliterates lines.

 | ~ does the global exclude on markname (see the
 | "!" command, in the help on ’ed’).

 | ![<Software Tools Command>] will create a new
 | instance of the Software Tools shell, or
 | execute <Software Tools Command> if it is
 | present (see the "~" command, in the help on
 | ’ed’).

 | All other characters and commands are the same for
 | both UNIX and normal (Software Tools) mode. The
 | help command will always call up documentation
 | appropriate to the current mode. UNIX mode is
 | indicated by the message "UNIX" in the status
 | line.

 | UNIX mode is available only in ’se’. This
 | extension is not available in ’ed’.

 s[pma | ftn | f77 | s | f] sets other options for case,
 tabs, etc., for one of the three programming
 languages listed. The option "oss" is the same as
 "ospma" and the option "osf" is the same thing as
 "osftn" (the corresponding command line options
 are "−ss" and "−sf"). If no argument is specified
 the options effected by this command revert to
 their default value.

 t[<tabs>] sets tab stops according to <tabs>. <tabs>
 consists of a series of numbers indicating columns
 in which tab stops are to be set. If a number is
 preceded by a plus sign ("+"), it indicates that
 the number is an increment; stops are set at
 regular intervals separated by that many columns,
 beginning with the most recently specified

 se (1) − 6 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 absolute column number. If no such number
 precedes the first increment specification, the
 stops are set relative to column 1. By default,
 tab stops are set in every third column starting
 with column 1, corresponding to a <tabs>
 specification of "+3". If <tabs> is omitted, the
 current tab spacing is displayed in the status
 line.

 u[<chr>] selects the character that ’se’ displays in place
 of unprintable characters. <chr> may be any
 printable character; it is initially set to blank.
 If <chr> is omitted, ’se’ displays the current
 replacement character on the status line.

 v[<col>] sets the default "overlay column". This is the
 column at which the cursor is initially positioned
 by the "v" command. <Col> must be a positive
 integer, or a dollar sign ($) to indicate the end
 of the line. If <col> is omitted, the current
 overlay column is displayed in the status line.

 w[<col>] sets the "warning threshold" to <col> which must
 be a positive integer. Whenever the cursor is
 positioned at or beyond this column, the column
 number is displayed in the status line and the
 terminal’s bell is sounded. If <col> is omitted,
 the current warning threshold is displayed in the
 status line. The default warning threshold is 74,
 corresponding to the first column beyond the right
 edge of the screen on an 80 column crt.

 −[<lnr>] splits the screen at the line specified by <lnr>
 which must be a simple line number within the
 current window. All lines above <lnr> remain
 frozen on the screen, the line specified by <lnr>
 is replaced by a row of dashes, and the space
 below this row becomes the new window on the file.
 Further editing commands do not affect the lines
 displayed in the top part of the screen. If <lnr>
 is omitted, the screen is restored to its full
 size.

 Since ’se’ takes its commands directly from the terminal, it
 cannot be run from a script by using Subsystem I/O redirec−
 tion, and Subsystem erase, kill, and escape conventions do
 not exactly apply. In fact, ’se’ has its own set of control
 characters for editing and cursor motion; their meaning is
 as follows:

 Character Action

 se (1) − 7 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 control−a Toggle insert mode. The status of the insertion
 indicator is inverted. Insert mode, when enabled,
 causes characters typed to be inserted at the
 current cursor position in the line instead of
 overwriting the characters that were there
 previously. When insert mode is in effect,
 "INSERT" appears in the status line.

 control−b Scan right and erase. The current line is scanned
 from the current cursor position to the right mar−
 gin until an occurrence of the next character
 typed is found. When the character is found, all
 characters from the current cursor position up to
 (but not including) the scanned character are
 deleted and the remainder of the line is moved to
 the left to close the gap. The cursor is left in
 the same column which is now occupied by the scan−
 ned character. If the line to the right of the
 cursor does not contain the character being
 sought, the terminal’s bell is sounded. ’Se’
 remembers the last character that was scanned
 using this or any of the other scanning keys; if
 control−b is hit twice in a row, this remembered
 character is used instead of a literal control−b.

 control−c Insert blank. The characters at and to the right
 of the current cursor position are moved to the
 right one column and a blank is inserted to fill
 the gap.

 control−d Cursor up. The effect of this key depends on
 ’se’s current mode. When in command mode, the
 current line pointer is moved to the previous line
 without affecting the contents of the command
 line. If the current line pointer is at line 1,
 the last line in the file becomes the new current
 line. In overlay mode (viz. the "v" command),
 the cursor is moved up one line while remaining in
 the same column. In append mode, this key is
 ignored.

 control−e Tab left. The cursor is moved to the nearest tab
 stop to the left of its current position.

 control−f "Funny" return. The effect of this key depends on
 the editor’s current mode. In command mode, the
 current command line is entered as−is, but is not
 erased upon completion of the command; in append
 mode, the current line is duplicated; in overlay
 mode (viz. the "v" command), the current line is
 restored to its original state and command mode is
 reentered (except if under control of a global
 prefix).

 se (1) − 8 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 control−g Cursor right. The cursor is moved one column to
 the right.

 control−h Cursor left. The cursor is moved one column to
 the left. Note that this does not erase any
 characters; it simply moves the cursor.

 control−i Tab right. The cursor is moved to the next tab
 stop to the right of its current position.

 control−k Cursor down. As with the control−d key, this
 key’s effect depends on the current editing mode.
 In command mode, the current line pointer is moved
 to the next line without changing the contents of
 the command line. If the current line pointer is
 at the last line in the file, line 1 becomes the
 new current line. In overlay mode (viz. the "v"
 command), the cursor is moved down one line while
 remaining in the same column. In append mode,
 control−K has no effect.

 control−l Scan left. The cursor is positioned according to
 the character typed immediately after the control−
 l. In effect, the current line is scanned, start−
 ing from the current cursor position and moving
 left, for the first occurrence of this character.
 If none is found before the beginning of the line
 is reached, the scan resumes with the last charac−
 ter in the line. If the line does not contain the
 character being looked for, the message "NOT
 FOUND" is printed in the status line. ’Se’ remem−
 bers the last character that was scanned for using
 this key; if the control−l is hit twice in a row,
 this remembered character is searched for instead
 of a literal control−l. Apart from this, however,
 the character typed after control−l is taken
 literally, so ’se’s case conversion feature does
 not apply.

 control−m Newline. This key is identical to the NEWLINE key
 described below.

 control−n Scan left and erase. The current line is scanned
 from the current cursor position to the left mar−
 gin until an occurrence of the next character
 typed is found. Then that character and all
 characters to its right up to (but not including)
 the character under the cursor are erased. The
 remainder of the line, as well as the cursor are
 moved to the left to close the gap. If the line
 to the left of the cursor does not contain the
 character being sought, the terminal’s bell is
 sounded. As with the control−b key, if control−n
 is hit twice in a row, the last character scanned
 for is used instead of a literal control−n.

 se (1) − 9 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 control−o Skip right. The cursor is moved to the first
 position beyond the current end of line.

 control−p Interrupt. If executing any command except "a",
 "c", "i" or "v", ’se’ aborts the command and
 reenters command mode. The command line is not
 erased.

 control−q Fix screen. The screen is reconstructed from
 ’se’s internal representation of the screen.

 control−r Erase right. The character at the current cursor
 position is erased and all characters to its right
 are moved left one position.

 control−s Scan right. This key is identical to the
 control−l key described above, except that the
 scan proceeds to the right from the current cursor
 position.

 control−t Kill right. The character at the current cursor
 position and all those to its right are erased.

 control−u Erase left. The character to the left of the
 current cursor position is deleted and all charac−
 ters to its right are moved to the left to fill
 the gap. The cursor is also moved left one
 column, leaving it over the same character.

 control−v Skip right and terminate. The cursor is moved to
 the current end of line and the line is
 terminated.

 control−w Skip left. The cursor is positioned at column 1.

 control−x Insert tab. The character under the cursor is
 moved right to the next tab stop; the gap is fil−
 led with blanks. The cursor is not moved.

 control−y Kill left. All characters to the left of the cur−
 sor are erased; those at and to the right of the
 cursor are moved to the left to fill the void.
 The cursor is left in column 1.

 control−z Toggle case conversion mode. The status of the
 case conversion indicator is inverted; if case
 inversion was on, it is turned off, and vice
 versa. Case inversion, when in effect, causes all
 upper case letters to be converted to lower case,
 and all lower case letters to be converted to
 upper case. Note, however, that ’se’ continues to
 recognize alphabetic line numbers in upper case
 only, in contrast to the "case inversion" option
 (see the description of options above). When case
 inversion is on, "CASE" appears in the status
 line.

 se (1) − 10 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 control−_ Insert newline. A newline character is inserted
 before the current cursor position, and the cursor
 is moved one position to the right. The newline
 is displayed according to the current non−printing
 replacement character (see the "u" option).

 control−\ Tab left and erase. Characters are erased start−
 ing with the character at the nearest tab stop to
 the left of the cursor up to but not including the
 character under the cursor. The rest of the line,
 including the cursor, is moved to the left to
 close the gap.

 control−^ Tab right and erase. Characters are erased start−
 ing with the character under the cursor up to but
 not including the character at the nearest tab
 stop to the right of the cursor. The rest of the
 line is then shifted to the left to close the gap.

 NEWLINE Kill right and terminate. The characters at and
 to the right of the current cursor position are
 deleted, and the line is terminated.

 DEL Kill all. The entire line is erased, along with
 any error message that appears in the status line.

 ESC Escape. The ESC key provides a means for entering
 ’se’s control characters literally as text into
 the file. In fact, any character that can be
 generated from the keyboard is taken literally
 when it immediately follows the ESC key. If the
 character is non−printing (as are all of ’se’s
 control characters), it appears on the screen as
 the current non−printing replacement character
 (normally a blank).

 The set of control characters defined above can be used for
 correcting mistakes while typing regular editing commands,
 for correcting commands that have caused an error message to
 be displayed, for correcting lines typed in append mode, or
 for inline editing using the "v" command described below.

 There are a few differences in command interpretation
 between the regular editor and ’se’. The only effect of the
 "p" command in ’se’ is to position the window so that as
 many as possible of the "printed" lines are displayed while
 including the last line in the range. In fact, the window
 is always positioned so that the current line is displayed.
 Typing a "p" command with no line numbers positions the win−
 dow so that the line previously at the top of the window is
 at the bottom. This can be used to "page" backwards through
 the file. The ":" command, (which in the regular editor
 prints about a screenfull of text starting with a specified
 line), positions the window so it begins at the specified
 line, and leaves the current line pointer at this line.
 Thus, a ":" can be used to page forward through the file.

 se (1) − 11 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 The "overlay" (v) command in the regular editor ’ed’ only
 allows the user to add onto the end of lines, and can be
 terminated before the stated range of lines has been proces−
 sed by entering a period by itself, as in the "append" com−
 mand. But in ’se’, this command allows arbitrary changes to
 be made to the lines, and the period has no special meaning.
 To abort before all the lines in the range have been
 covered, use the "funny return" character (ctrl−F). Doing
 this restores the line containing the cursor to the state it
 was in before the "v" command was started.

 ’Se’ has a "draw box" command that can be used as an aid for
 preparing block diagrams, flowcharts, or tables. The
 general form is

 top−line,bottom−line zb left−col,right−col character

 For example, "1,10 zb 15,25 *" would draw a box 10 lines
 high and 11 columns across, using asterisks. The upper left
 corner of the box would be on line 1, column 15, and the
 lower right corner on line 10, column 25. The bottom−line
 may be omitted to draw horizontal lines, and the right−col
 may be omitted to draw vertical lines. If the "character"
 at the end of the command is omitted, it is assumed to be a
 space, thus allowing erasure of a box or line.

 When the "write" command ("w") is used with a file name that
 is different from the name ’se’ is remembering, the message
 "file already exists" will be displayed if the output file
 is already present. If the command is entered again (by
 typing a NEWLINE), ’se’ will perform the write, destroying
 the existing file. To circumvent the warning, enter the
 write command suffixed by "!" (just like "quit" or "enter")
 and ’se’ will always write to the file.

 | When ’se’ starts up, it tries to open the file
 | "=home=/.serc". If that file exists, ’se’ reads it, one
 | line at a time, and executes each line as a command. If a
 | line has "#" as the first character on the line, or if the
 | line is empty, the entire line is treated as a comment,
 | otherwise it is executed. Here is a sample ".serc" file:

 | # turn on unix mode, tabs every 8 columns, auto indent
 | opu
 | ot+8
 | oia

 | The ".serc" file is useful for setting up personalized
 | options, without having to type them on the command line
 | every time, and without using a special shell file in your
 | bin. In particular, it is useful for automagically turning
 | on UNIX mode for Software Tools users who are familiar with
 | the UNIX system.

 | Command line options are processed after commands in the
 | ".serc" file, so, in effect, command line options can be

 se (1) − 12 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | used to over−ride the defaults in your ".serc" file.

 | NOTE: Commands in the ".serc" file do not go through that
 | part of ’se’ which processes the special control characters
 | (see above), so do not use them in your ".serc" file.

 For a list of commands accepted by both ’se’ and ’ed’, see
 either the Reference Manual entry for ’ed’ ("help ed") or
 the Introduction to the Software Tools Text Editor.

 | ’Se’ has an extended line number syntax. In general,
 | whatever appears in the left margin on the screen is an
 acceptable line number and refers to the line displayed in
 that row on the screen. In particular, upper case letters
 are often used. Also, the line number element "#" is
 interpreted as being the number of first line of the current
 screen.

 Examples

 se −t b200 −c −w70 −t+6
 se −t consul textfile

 Files

 | =home=/.serc ’se’ start up command file

 | =temp=/se<line><sequence_number> for scratch file

 | =doc=/se_h/?* help scripts for the "h" command

 | =home=/se.logout for saving the buffer on a LOGOUT$ condi−
 | tion

 Messages

 Many. Most are self−explanatory.

 Bugs

 Cannot be run from a script.

 Cannot specify tab stops as the first option if no terminal
 | type is specified first on the command line.

 | The auto−indent feature does not recognize a line consisting
 | of just blanks and then a "." to terminate input, when the
 | "." is not in the same position as the first non−blank
 | character of the previous line.

 | Should be changed to use the ’vth’ terminal operations
 | library, instead of having code hard−wired in for each

 se (1) − 13 − se (1)

 se (1) −−− screen−oriented text editor 07/02/84

 | terminal type. Unfortunately, ’vth’ isn’t quite up to this.

 See Also

 ed (1), Introduction to the Software Tools Text Editor

 se (1) − 14 − se (1)

 sema (1) −−− manipulate user semaphores 08/27/84

 | Usage

 | sema −(w | n | t | d | c) {<semaphore>}
 | sema −o {<pathname>} [−i <integer>]
 <semaphore> ::= integer

 Description

 | ’Sema’ gives access to Prime’s user semaphores, which are
 | available to all users. There is no mechanism to assure
 | that semaphores are used properly (i.e. − preventing dead−
 | lock or race conditions).

 | ’Sema’ performs the function indicated by its argument, on
 | the semaphore number or pathname given. When multiple
 | semaphores or pathnames are supplied, the operation given is
 | performed on each argument in the order listed on the com−
 | mand line. The functions available are:

 | −w (wait) increment the semaphore’s counter. If the
 | resulting value is positive, enqueue on the semaphore’s
 waiting list and block execution (sleep) until awakened
 by some other process.

 | −n (notify) decrement the counter. If the result is
 | positive or zero, dequeue a process from the waiting
 list and wake it up.

 | −t (test) print the value of the counter (in decimal) on
 standard output.

 | −d (drain) initialize a semaphore for use. Set the
 | counter to zero, dequeue all waiting processes and wake
 them up.

 | −o (open) initialize a semaphore for use. This
 | initializes named semaphores for use and returns the
 | semaphore numbers on standard output. A semaphore is
 | opened only if the user has read access to the pathname
 | given and if the pathname is on the current system.
 | One semaphore is opened for each pathname specified.
 | All semaphores opened on the same pathname are the
 | same. This allows the user to restrict access to the
 | semaphores by restricting access access to the files
 | used to open the semaphores. This may be achieved with
 | access control lists or passworded directories. The
 | numbered semaphores (1−64) are considered always open
 | and any attempt to open one of them will result in an
 | error.

 | −i (initialize) when used with the "−o" (open) option
 | causes the semaphores that are opened to be initialized
 | to the value specified. This initialization only takes
 | place the first time the semaphore is opened. If mul−
 | tiple users have opened a semaphore, only first time

 sema (1) − 1 − sema (1)

 sema (1) −−− manipulate user semaphores 08/27/84

 | cause the initialization to take place. Since
 | initializing a semaphore to a positive value does not
 | make sense, only non−positive values are allowed. If
 | this option is omitted, the default is 0.

 | −c (close) close a named semaphore. This removes the
 | user’s number from the list of current users of the
 semaphore and makes the semaphore unavailable for
 | further use for that user. Since the numbered
 | semaphores are always open, any attempt to close one of
 | them will result in an error.

 Examples

 | sema −w 1
 | sema −n 1 2 3
 | sema −t [iota 62]
 | sema −d −32
 | set sema_number = [sema −o //system/restricted_file −i −1]
 | sema −c [sema_number]

 Messages

 "Usage: sema ..." for nonsensical arguments.
 | "no available semaphores" when all named semaphores are
 | allocated.
 | "<pathname>: invalid semaphore name" when the semaphore
 | used has not been opened.
 | "<pathname>: semaphore overflow" when another notify would
 | exceed the limit on the semaphore.
 | "<pathname>: on a remote disk" when the pathname is not on
 | the current system.
 | "<pathname>: file not found" when the file used to open a
 | semaphore cannot be read.
 | "<pathname>: can’t open semaphore" when some unknown reason
 | causes an error.
 | "<integer>: initial value greater than 0" when an initial
 | value is specified that is greater than 0.

 See Also

 | Prime’s Subroutines Reference Guide (DOC3621−190P), section
 | 21, for a complete description of semaphores as implemented
 | in Primos and for a description of the system calls used by
 | ’sema’.

 Peter Freeman: Software Systems Principles, for a discus−
 sion of how semaphores of this type can be used.

 sema (1) − 2 − sema (1)

 sep (1) −−− separate compilation facility for Ratfor programs 08/27/84

 | Usage

 sep <prog> (<module> { <module> }
 | −all | −cat | −stacc | −xref | −names | −link
 | −mklink | −print [<spool options>]
)

 Description

 ’Sep’ is a shell program that assists in maintaining large
 Ratfor programs with modules stored in separate files.
 ’Sep’ insists on a number of file naming conventions so that
 it can locate all the files for a given program. First, all
 files must be stored in the same directory, and that direc−
 tory must be the current directory when ’sep’ is invoked.
 The program name <prog> is part of each source file name and
 is the name of the executable file produced. A module name
 <module> is an arbitrarily selected name for a group of
 routines contained in the same file. A module is the smal−
 lest unit that can be compiled separately. There may be an
 arbitrary number of modules.

 ’Sep’ requires a number of files to be able to successfully
 compile a program. All definitions global to the program
 must be placed in the file "<prog>_def.i"; they are included
 each time a module is preprocessed. Even if there are no
 definitions for a particular program, this file must be
 present. A linkage statement naming all subroutine, func−
 tion, and common block names must be present in the file
 "<prog>_link.i". (If you choose, ’sep’ will build the file
 containing the linkage statement for you; see the "−mklink"
 option.) Finally, the main program (and other routines, if
 desired) must be present in a file named "<prog>.r".

 There are a number of other files that can be present and
 will be used by ’sep’ in compiling a program. Files
 containing groups of subprograms should be named
 "<prog>_<module>.r". Files of this type define the
 separately compiled "modules". A Stacc parser may be
 present in the file "<prog>.stacc"; it is converted to the
 Ratfor module "<prog>_stacc.r" on command. The definitions
 generated from the Stacc code are placed in the file
 "<prog>_def.stacc.i"; there must be an include statement for
 this file in "<prog>_def.i". If the program has an include
 file for common blocks, it must be named "<prog>_com.i" or
 "<prog>_com.r.i", but ’sep’ does not automatically include
 it during compilation.

 Other files that may be present are "<prog>.ldproc" which
 should contain an ’ld’ command for linking the binary files;
 if this file is not present, ’sep’ links all the binary
 files in the directory with names beginning with "<prog>".
 The file "<prog>.rpopts" may also be present; it contains
 command line options such as "−t" to be added to all calls
 to ’rp’. The file "<prog>.fcopts" contains command line

 sep (1) − 1 − sep (1)

 sep (1) −−− separate compilation facility for Ratfor programs 08/27/84

 options to be presented to ’fc’. If the file
 "<prog>.ldopts" is present and ’sep’ generates the ’ld’
 statement itself, the contents of this file are added to the
 end of the ’ld’ command line. Usually this file contains
 the string "−t −m" so that a load map is produced.

 ’Sep’ performs a number of different operations, depending
 on the arguments given to it.

 sep <prog> <module> { <module> }
 Each named module are preprocessed and compiled. The
 main program can be named with an argument containing
 the null string (i.e. ""). All the program’s binary
 modules are then linked together.

 sep <prog> −all
 If a Stacc parser is present, it is converted to Rat−
 for. All the program’s Ratfor modules are preprocessed
 and compiled, and then all the program’s binary modules
 are linked together.

 sep <prog> −stacc
 The Stacc parser is converted to Ratfor.

 sep <prog> −link
 All the program’s binary modules are linked together.
 If a file named "<prog>.ldproc" exists, it is used to
 perform the linking. Otherwise, all binary files in
 the directory with names beginning with "<prog>" are
 linked together. The text in the file "<prog>.ldopts",
 if present, is placed at the end of the generated ’ld’
 command.

 sep <prog> −mklink
 Call ’link’ to build a Ratfor linkage statement for the
 program in the file "<prog>_link.i"

 sep <prog> −cat
 All the source code files area printed on standard out−
 put. No file is printed more than once.

 sep <prog> −print [<spool options>]
 All the source code files for the program are printed
 on the line printer using ’pr’. No file is included
 more than once. <Spool options> are used to determine
 the disposition of the output; they are any options
 acceptable to ’pr’.

 sep <prog> −names
 The names of all source code files are printed on stan−
 dard output. No file name is printed more than once.

 sep <prog> −xref
 All Ratfor source modules is run through ’xref’. The
 listing from ’xref’ appears on standard output.

 sep (1) − 2 − sep (1)

 sep (1) −−− separate compilation facility for Ratfor programs 08/27/84

 Examples

 sep rp −stacc
 sep rp bool init other stacc
 sep xref −all
 sep fmt "" fill
 sep nfmt −print

 Files

 "<prog>.r" for file containing main program.
 "<prog>_def.i" for file containing global definitions.
 "<prog>_link.i" for file containing the "linkage" statement.
 "<prog>_<module>.r" for file containing the Ratfor source
 code for the module named <module>.
 "<prog>.ldopts" for file containing program’s link options
 (optional).
 "<prog>.rpopts" for file containing program’s Ratfor options
 (optional).
 "<prog>.fcopts" for file containing program’s Fortran
 options (optional).

 Messages

 "Usage: sep <prog> <options>" for missing program or
 options.

 Bugs

 Currently undergoing development. The user interface will
 probably be changed in the future.

 Cannot handle more than about 50 modules in a program.

 When presented with errors, it displays the lack of robust−
 ness of a typical shell file.

 See Also

 | fc (1), stacc (1), ld (1), link (1), pr (1), xref (1), bind
 | (3)

 sep (1) − 3 − sep (1)

 set (1) −−− assign values to shell variables 09/11/84

 | Usage

 set [<variable>] = [<string>]

 Description

 ’Set’ can be used to assign arbitrary values to shell
 variables. The first argument is the name of the variable
 to be set; if absent, the value is printed on standard out−
 put instead of being assigned. The third argument is the
 value to be assigned to the variable; if absent, one line is
 read from standard input, and the text thus entered becomes
 | the string to be assigned. The string may contain
 | unprintable characters in a mnemonic form. This consists of
 | a ’<’ sign followed by an ascii mnemonic and terminated by a
 | ’>’ symbol. To prevent a symbol from being interpreted,
 | simply escape the ’<’ with and ’@’ sign. For example to set
 | the variable lfcr to a linefeed and a carriage return, use:

 | set lfcr = "<lf><cr>".

 If <variable> exists in the current scope or any surrounding
 scope, then its value is altered by ’set’; otherwise, it is
 created at the current lexical level and then the value is
 assigned.

 Examples

 set i = 0
 set i = [eval i + 1]
 | set lfcr = "<lf><cr>"
 | set nolfcr = "@<lf>@<cr>"
 | set atsign = "@"
 set response =

 See Also

 declare (1), forget (1), vars (1), save (1), User’s Guide
 for the Software Tools Subsystem Command Interpreter

 set (1) − 1 − set (1)

 sh (1) −−− Subsystem Command Interpreter (Shell) 07/18/84

 | Usage

 sh

 Description

 ’Sh’ is an entry into the Subsystem command interpreter.
 When invoked, it reads commands from standard input one
 until it encounters end−of−file, thus making it useful in
 pipelines.

 The functions of the command interpreter are far too complex
 to describe here; see the User’s Guide for the Software
 Tools Subsystem Command Interpreter for a tutorial and more
 detailed information.

 Examples

 files .r$ | change % "ar −u arch " | sh
 command_file> sh >command_output

 Files

 =temp=/t?* for pipe temporaries, function returns, etc.
 =gossip=/<login_name> for ’to’ messages
 =temp=/cn<line><sequence_number> for compound nodes

 Messages

 * Many. See the User’s Guide.

 See Also

 User’s Guide for the Software Tools Subsystem Command
 Interpreter, Software Tools Subsystem Tutorial

 sh (1) − 1 − sh (1)

 shtrace (1) −−− trace activity in command interpreter 02/22/82

 Usage

 shtrace { on | debug | all | value | <octal_integer>
 | cl | command_line
 | cn | compound_node
 | ex | execution
 | fn | function
 | it | iteration
 | lo | location
 | ls | linked_strings
 | nd | node
 | | ou | onunit
 | pd | port_descriptor
 | sr | sv_restore
 | ss | single_step
 | sv | sv_save }

 Description

 ’Shtrace’ is a debugging aid intended for those who maintain
 the Subsystem, particularly its command interpreter.
 Because of its value in debugging shell programs, it has
 been released for general use, with the warning that it may
 change without notice.

 In essence, ’shtrace’ prints the status of a command line or
 its environment as the command is processed by the shell.
 Since this involves many operations, there are many
 potential "checkpoints" within the command interpreter. The
 ’shtrace’ options are intended to pick out the most vital
 points along a command’s path from entry to execution.

 Each option is specified as a single character−string
 argument, which, except for special cases, may be
 abbreviated with a two−character mnemonic. These options
 are as follows:

 command_line (cl)
 The command line is printed as it is read, without
 processing. (The output from this and other
 options is preceded by a number in brackets, e.g.
 [2.1]; the integer part is the lexic level of the
 command (the number of command inputs currently
 active), while the fractional part is the node
 number of the node within its network.)

 compound_node (cn)
 The command line is printed after compound nodes
 have been replaced by temporary command files.

 function (fn)
 The command line is printed after all function
 calls have been evaluated.

 iteration (it)

 shtrace (1) − 1 − shtrace (1)

 shtrace (1) −−− trace activity in command interpreter 02/22/82

 The command line is printed after all iteration
 groups have been expanded.

 execution (ex)
 The network about to be executed is printed. No
 compound nodes, functions, or iterations will
 appear in this version of the command.

 node (nd)
 The node about to be executed is printed, along
 with its arguments.

 single_step (ss)
 Just before a network is executed, the command
 interpreter will stop, prompt for input with the
 string "continue?", and wait for a reply from the
 user. Inputs beginning with "n" or "N" cause
 execution to be terminated; other inputs cause
 processing of commands to be continued. (This
 option is most useful when used in conjunction
 with the "command_line" option.)

 port_descriptor (pd)
 The port descriptor table used by the shell to
 assign files to the standard input and output
 ports is dumped in symbolic format. Along with a
 mnemonic for each standard port is printed the
 file unit associated with it and the source or
 destination of the data (file or pipe).

 sv_save (sv)
 This option causes the shell variables and their
 values to be printed whenever they are saved on
 disk (e.g., when a ’stop’ or ’save’ command is
 executed).

 sv_restore (sr)
 This option causes the shell variables and their
 values to be printed whenever they are loaded from
 disk (e.g., when the Subsystem is started by the
 ’swt’ command).

 linked_strings (ls)
 Whenever garbage collection takes place in the
 linked string storage area, a summary of the
 memory structure is printed.

 location (lo)
 Following the execution of each node, the full
 pathname of the command just executed is printed.

 | onunit (ou)
 | Whenever the shell’s default onunit is invoked,
 | the condition that was raised is printed.

 In addition to these options, there are three "shorthand"

 shtrace (1) − 2 − shtrace (1)

 shtrace (1) −−− trace activity in command interpreter 02/22/82

 options for specifying common combinations. The "on" option
 turns on the "node" and "execution" traces; "debug" turns on
 "node", "execution", and "single_step"; "all" turns on all
 traces available.

 All traces may be turned off by executing ’shtrace’ with no
 arguments.

 ’Shtrace’ prints on standard output one an octal integer
 reflecting the last state of the trace control variable,
 suitable for saving in a shell variable or otherwise record−
 ing for later use. The special option "value" may be used
 to simply print the current value of the control variable
 without changing it. If an octal integer is given as an
 argument to ’shtrace’, that bit pattern is assigned to the
 trace control variable. Thus, a user’s trace options may be
 changed and then reset to their original state.

 Examples

 shtrace on
 shtrace
 shtrace cn ss pd
 set old_shtrace = [shtrace nd]
 shtrace [old_shtrace]

 See Also

 dump (1), User’s Guide for the Software Tools Subsystem
 Command Interpreter

 shtrace (1) − 3 − shtrace (1)

 slice (1) −−− slice out a chunk of a file 03/20/80

 Usage

 slice (−i | −x) <start_pattern> [(−i | −x) <end_pattern>]

 Description

 ’Slice’ searches its standard input for a line matching the
 pattern <start_pattern> and copies through to standard out−
 put all the lines from that one to the first line matching
 the pattern <end_pattern>.

 The "−i" and "−x" options control the inclusion and
 exclusion (respectively) of the line matching the associated
 pattern.

 If the <end_pattern> and its associated inclusion flag are
 missing, the copy operation continues until end−of−file is
 encountered.

 ’Slice’ is useful for pulling out chunks from well−
 structured files, like the documentation files for the Sub−
 system Reference Manual. For example, "slice −i %.bu −x
 %.sa" would copy the "Bugs" section out of a Reference
 Manual entry.

 Examples

 slice.d> slice −i .bu −x .sa | fmt
 slice −i % −x %−EOF$

 Messages

 "Usage: slice ..." for invalid argument syntax.

 Bugs

 Doesn’t handle lines longer than MAXLINE.

 See Also

 cto (1), find (1), match (2), makpat (2)

 slice (1) − 1 − slice (1)

 sort (1) −−− sort ASCII−encoded records 02/22/82

 Usage

 sort {−d | −r} { <pathname> }

 Description

 ’Sort’ is a rather straightforward program that sorts the
 contents of the files named in its argument list and writes
 the result on its first standard output port. By default,
 lines are sorted in ascending order on the basis of ASCII
 collating sequence, using the entire line as a key. If the
 "−d" option is specified, dictionary collating sequence
 (upper and lower case are equivalent, punctuation and
 special characters are ignored) is used. If the "−r" option
 is specified, lines are sorted in descending order.

 If no pathname arguments are given, or if the pathname "−"
 appears as an argument, standard input one is used for
 input. Thus, ’sort’ may be used as a filter.

 ’Sort’ uses a combination of ’quicksort’ and merge; it is
 taken directly from Software Tools.

 Examples

 lf −c | sort | cat −n
 sort −d wordlist dictionary >new_dictionary
 files .r$ | sort −r | print −n

 Files

 =temp=/st$?* for sort temporary files

 Messages

 "<file>: can’t open" for unreadable files.
 "<file>: can’t create" if temporary file can’t be created.

 See Also

 Software Tools

 sort (1) − 1 − sort (1)

 source (1) −−− print source for a command or subroutine 07/19/84

 | Usage

 | source { <command> | <subroutine> }

 Description

 | The ’source’ command writes a copy of the source code of the
 | named commands or subroutines to standard output, in ’cat
 | −h’ format.

 Examples

 source help

 Files

 | =src=/misc/srcloc for locations of all source code files

 | Messages

 | "Usage: source ..." if called with no arguments

 | Bugs

 | Not exactly blindingly fast.

 See Also

 | cat (1), locate (1)

 source (1) − 1 − source (1)

 sp (1) −−− line printer spooler 03/25/82

 Usage

 sp {<file_spec>} [/ {<option>}]

 <file_spec> ::= <filename> | −[<stdin_number>] |
 −n(<stdin_number> | <filename>)
 <option> ::= −a <location>
 | −b <banner>
 | −c <copies>
 | −d <defer_time>
 | −f
 | −h
 | −j
 | −n
 | −p <paper_type>
 | −r
 | −s

 Description

 ’Sp’ allows users of the Subsystem to send output to the on−
 site line printer.

 Data to be printed is selected by a number of <file_spec>s.
 See ’cat’ for detailed information on the semantics of this
 construct.

 A number of spooler control operations may be specified on
 the command line after the files to be printed, provided the
 files and options are separated by a single argument
 consisting only of a slash. The options presently available
 are:

 | −a Print the file on system <location>
 | −b Change the output heading to <banner>
 | −c Produce <copies> duplicates
 | −d Do not print until <defer_time>
 | −f Use FORTRAN forms control
 | −h Suppress header page
 | −j Suppress final page eject
 | −n Generate line numbers in left hand margin
 | −p Do not print until operator mounts <paper>
 | −r Use raw forms control
 | −s User standard PRIMOS forms control

 Examples

 sp file.l
 fmt report | os | sp / −f
 sp stuff / −d 23:59 −f −c 30

 sp (1) − 1 − sp (1)

 sp (1) −−− line printer spooler 03/25/82

 Files

 //spoolq/prt??? for spooler queue file
 //spoolq/q.ctrl for spool queue

 See Also

 pr (1), open (2), lopen$ (6)

 sp (1) − 2 − sp (1)

 speling (1) −−− detect spelling errors 07/24/84

 | Usage

 speling { <filename> }

 Description

 ’Speling’ places on its first standard output a list of all
 the words in the named files (or standard input, if no files
 are named) that are not in the dictionary "=dictionary=". A
 "word" is a contiguous string of letters. ’Speling’ is a
 shell program; the user is referred to its text to see how
 it works. To see how the word file is constructed, see the
 files in the directory "=aux=/spelling".

 Examples

 speling report >sp.errs
 speling part1 part2 part3 >bogus_words

 Files

 =dictionary= for dictionary of correct spellings

 | Bugs

 | This command is superseded by the faster and more functional
 | ’spell’ command.

 See Also

 | common (1), sort (1), spell (1), tlit (1), uniq (1)

 speling (1) − 1 − speling (1)

 spell (1) −−− check for possible spelling errors 06/21/84

 | Usage

 | spell [−(f | v)] { <pathname> }

 Description

 ’Spell’ can be used to check all the words in a document for
 presence in a dictionary. Thus, it provides an indication
 of words that may be misspelled.

 ’Spell’ has two modes of operation, controlled by the
 absence or presence of the "v" option. If the "v" option is
 not specified, ’spell’ simply produces a list of words that
 it thinks are misspelled. If "v" is specified, ’spell’ will
 also print the original input text, following each line with
 a line containing possibly misspelled words. (This is
 intended to make the erroneous words easier to locate.)
 Each text line is preceded by a blank, while each word list
 line is preceded by a plus sign (’+’); if the output is
 redirected to /dev/lps/f, this causes all misspelled words
 to be boldfaced.

 Normally, ’spell’ ignores input lines that begin with a
 period, since those are normally text formatter control
 directives. However, the "−f" option can be used to force
 ’spell’ to process those lines.

 | If the template =new_words= is defined, ’spell’ will treat
 | it as the pathname of a file into which it will append all
 | words that it could not find. This file should be
 | periodically sorted, uniq’ed, and then checked by hand
 | against a dictionary. Any real words found in this manner
 | should be added to =dictionary=.

 ’Spell’ supersedes the slower and less functional ’speling’
 command.

 Examples

 spell report
 spell −v report >/dev/lps/f
 spell −f arbitrary_text | pg
 spell part1 part2 part3 >new_words
 files .fmt$ | spell −n

 Messages

 "Usage: spell ..." for improper arguments.
 "in dsget: out of storage space" if there are too many mis−
 | spelled words to handle.

 spell (1) − 1 − spell (1)

 spell (1) −−− check for possible spelling errors 06/21/84

 | Bugs

 | Could stand to be made smarter about suffixes and prefixes.
 | At least it does now handle words with a trailing "’s".

 See Also

 speling (1)

 spell (1) − 2 − spell (1)

 splc (1) −−− interface to Primos SPL compiler 08/27/84

 | Usage

 splc {−<option>[<level>]} <input file>
 [−b [<binary file>]]
 [−l [<listing file>]]
 [−z <SPL option>]
 <option> ::= c | d | e | f | h | k | m | n |
 o | p | q | r | s | v | w | x

 Description

 ’Splc’ serves as the Subsystem interface to the Primos SPL
 compiler (SPL). It examines its option specifications and
 checks them for consistency, provides Subsystem−compatible
 default file names for the listing and binary files as
 needed, and then produces a Primos SPL command and causes it
 to be executed.

 Options

 The general structure of an ’splc’ option is a single let−
 ter, possibly followed by a "level number" indicating the
 extent to which an option should be employed. The following
 list outlines the options and the meanings of their various
 levels. The first line of each description contains the
 option letter followed by its default level enclosed in
 parentheses, the range of available levels enclosed in
 square brackets, and a brief description of the option’s
 purpose. In all cases, when an option is specified without
 a level number, the maximum allowable value is assumed.

 −c(0) [0..1] − Case mapping.

 Level 0 forces case to be insignificant in identifiers.
 Upper case identifiers are considered the same as lower
 case identifiers.

 Level 1 cause case to significant in identifiers.
 Upper case identifiers are considered different from
 lower case identifiers.

 −d(0) [0..2] − Debugging control.

 Level 0 prevents all debugging information from being
 included in the generated code. A program so compiled
 may not be used with the source level debugger.

 Level 1 allows limited debugging information to be
 included in the generated code, but does not interfere
 with optimization.

 Level 2 causes complete debugging information to be
 included in the generated code and inhibits
 optimization. (Cannot be used when the "−o" option is

 splc (1) − 1 − splc (1)

 splc (1) −−− interface to Primos SPL compiler 08/27/84

 specified with a level greater than zero.)

 −e(1) [0..1] − Error listing on terminal.

 Level 0 inhibits the printing of compilation errors on
 the user’s terminal.

 Level 1 causes compilation errors to be printed on the
 terminal.

 −f(2) [0..3] − Symbol table map and offset map control.

 Level 0 inhibits the generation of either a symbol
 table map or a storage offset map. (Cannot be used
 when the "−x" option is specified with a level greater
 than zero.)

 Level 1 causes the generation of a map listing the
 storage offset of each program variable, but still
 inhibits the generation of a a symbol table map. (Can−
 not be used when the "−x" option is specified with a
 level greater than zero.)

 Level 2 causes the generation of a map listing the sym−
 bol names appearing in the program, but inhibits the
 generation of a storage offset map.

 Level 3 causes the generation of both the symbol table
 and storage offset maps.

 −h(0) [0..1] − Huge (multi−segment) arrays.

 Level 0 insures that dummy arrays and array parameters
 will not be treated as multi−segment arrays.

 Level 1 causes references to dummy arrays and array
 parameters to generate code that will work even if the
 arrays are larger than one segment (64K words) in
 length.

 −k(0) [0..1] − Compilation statistics.

 Level 0 inhibits the display of compilation statistics
 on the terminal.

 Level 1 causes the display of compilation statistics on
 the terminal.

 −m(2) [2..2] − Addressing mode.

 Level 2 implies 64V addressing mode. At present this
 is the only addressing mode fully supported under the
 Subsystem.

 splc (1) − 2 − splc (1)

 splc (1) −−− interface to Primos SPL compiler 08/27/84

 −n(1) [0..1] − Nesting level indicator.

 Level 0 inhibits the printing of the nesting level of
 each statement on the listing.

 Level 1 causes the printing of the nesting level of
 each statement.

 −o(1) [0..1] − Optimization control.

 Level 0 turns off all optimizations.

 Level 1 turns on optimizations. This option cannot be
 used with full debugging (−d2).

 −p(0) [0..1] − Quick call of internal subroutines.

 Level 0 causes all internal subroutines to be called
 with the normal procedure call (PCL) mechanism.

 Level 1 causes internal subroutines to be "quick cal−
 led" (shortcalled) whenever possible. This option can−
 not be used with full debugging (−d2).

 −q(1) [0..1] − Suppress warning messages.

 Level 0 inhibits the display of compiler warning mes−
 sages.

 Level 1 allows the display of compiler warning mes−
 sages.

 −r(0) [0..1] − Range checking.

 Level 0 inhibits run−time checking of subscripts and
 substrings.

 Level 1 causes the compiler to insert code for the run−
 time checking of subscripts and substrings.

 −s(1) [0..1] − Constant copying for subroutine calls.

 Level 0 inhibits the copying of constants into tem−
 porary variables for passing as subroutine parameters.

 Level 1 causes the compiler to copy constants into tem−
 porary variables before calling subroutines.

 −v(1) [0..2] − Listing verbosity.

 Level 0 prevents the listing of source code, but allows
 the listing of error messages and statements that
 caused them.

 Level 1 generates a full source code listing.

 splc (1) − 3 − splc (1)

 splc (1) −−− interface to Primos SPL compiler 08/27/84

 Level 2 generates a full source code listing plus a
 representation of the machine code generated for each
 statement.

 −w(0) [0..1] − Generate floating round instructions.

 Level 0 does not generate floating round (FRN) instruc−
 tions.

 Level 1 cause a floating round (FRN) instruction to be
 generated before every floating store (FST) instruction
 in the code produced by the SPL compiler. This option
 improves the accuracy of single precision floating
 point calculations at some slight run−time performance
 expense.

 −x(1) [0..1] − Cross−reference listing control.

 Level 0 inhibits the generation of a cross−reference.

 Level 1 causes the compiler to generate a cross−
 reference listing. (Cannot be used when the "−f"
 option is specified with a level less than two.)

 In addition to the options above, the "−z" option allows the
 explicit passing of a string verbatim into the command line.

 File Control

 The "−b" option is used to select the name of the file to
 receive the binary object code output of the compiler. If a
 file name follows the option, then that file receives the
 object code. (Note that if "/dev/null" is specified as the
 file name, no object code will be produced.) If the option
 is not specified, or no file name follows it, a default
 filename is constructed from the input filename by changing
 its suffix to ".b". For example, if the input filename is
 "prog.spl", the binary file will be "prog.b"; if the input
 filename is "foo", the binary file will be "foo.b".

 The "−l" option is used to select the name of the file to
 receive the listing generated by the compiler. If a file
 name follows the option, then that file receives the
 listing. The file name "/dev/null" may be used to inhibit
 the listing; "/dev/tty" to cause it to appear on the user’s
 terminal; "/dev/lps" to cause it to be spooled to the line
 printer. If the "−l" option is specified without a file
 name following it, a default filename is constructed from
 the input filename by changing its suffix to ".l". For
 example, if the input filename is "gonzo.spl", the listing
 file will be "gonzo.l"; if the input filename is "bar", the
 listing file will be "bar.l". If the "−l" option is not
 used, no listing is produced.

 The input filename may be either a disk file name (con−
 ventionally ending in ".spl"). or the device "/dev/tty", in

 splc (1) − 4 − splc (1)

 splc (1) −−− interface to Primos SPL compiler 08/27/84

 which case input to the compiler is read from the user’s
 terminal.

 In summary, then, the default command line for compiling a
 file named "file.spl" is

 splc −c0d0e1f2h0k0m2n1o1p0q1r0s1v1w0x1 _
 file.spl −b file.b −l /dev/null

 which corresponds to the SPL command

 spl −i *>file.spl −b *>file.b −l no

 Examples

 splc file.spl
 splc −kf dmach.spl
 splc −x dmach.spl −b b_dmach −l l_dmach
 splc −m2 v_mode_prog.spl −z"−newopt"

 Messages

 "Usage: splc ..." for invalid option syntax.
 "level numbers for −<option> are <lower bound> to
 <upper bound>" if an out−of−range level number is
 specified.
 "missing input file name" if no input filename could be
 found.
 "<name>: unreasonable input file name" if an attempt was
 made to read from the null device or the line printer
 spooler.
 "<name>: unreasonable binary file name" if an attempt was
 made to produce object code on the terminal or line
 printer spooler.
 "inconsistency in internal tables" if the tables used to
 process the options are incorrectly constructed. This
 message indicates a serious error in the operation of
 ’splc’ that should be reported to your system
 administrator.

 Numerous other self−explanatory messages may be generated to
 diagnose conflicts between selected options.

 Bugs

 ’Splc’ pays no attention to standard ports.

 See Also

 | ld (1), splcl (1), bind (3)

 splc (1) − 5 − splc (1)

 splcl (1) −−− compile and load a SPL program 08/27/84

 | Usage

 splcl <program name> [<’ld’ options>] [/ <’splc’ options>]

 Description

 ’Splcl’ is a shell file that invokes the Primos SPL compiler
 | and the Primos segmented loader. If ’splcl’ is invoked with
 | no <program name> argument, it automatically processes the
 | last program edited, since it shares the shell variable ’f’
 | with the shell program ’e’. The name of the file containing
 the program to be compiled must end with ".spl", although in
 <program name> it may be specified with or without the end−
 ing ".spl". If no output file is specified in the <’ld’
 options>, the output object file name will be <program name>
 with no extension.

 Concerning the options, ’splc’ will be called with the
 <’splc’ options> specified on the command line; then ’ld’
 will be called with the <’ld’ options> specified.

 Examples

 splcl myprog.spl
 splcl myprog subs.b subs2.b −l mylib
 splcl myprog / −ok −l mylist

 Messages

 "<program name>.spl: cannot open"

 Bugs

 An alternate binary file name cannot be specified.

 See Also

 | splc (1), ld (1), bind (3)

 splcl (1) − 1 − splcl (1)

 ssr (1) −−− set search rule 08/27/84

 | Usage

 ssr [<new search rule>]

 Description

 The ’ssr’ command allows users of the Subsystem shell to
 specify which directories and command libraries should be
 searched in the process of invoking a command. If an
 argument is specified, it becomes the new search rule; if
 not, the search rule remains unchanged. In either case, the
 resulting search rule is printed.

 The search rule consists of a string of ’elements’ separated
 by commas. Each element is a template that specifies either
 a special command library or a directory to be searched. In
 the process of invoking a command, the shell examines each
 element in the search rule from left to right. In each
 element, it replaces all ampersands ("&") with the command
 name specified by the user. It then searches for a command
 by that name. The shell keeps examining elements of the
 search rule until a command is located or the end of the
 search rule is reached.

 For example, the default search rule,

 ’^int,^var,&,=lbin=/&,=bin=/&’

 specifies the following directories and libraries:

 ^int Internal commands − those commands recognized
 and executed by the shell itself.

 ^var Shell variables − the effect of ’executing’ a
 variable is to print the value of the
 variable on standard output 1.

 & A single ampersand specifies the current
 working directory.

 =lbin=/& The directory ’//lbin’, where locally−
 supported commands are stored.

 =bin=/& The directory ’//bin’, where standard Sub−
 system commands reside. Note that the trail−
 ing slash and ampersand MUST be included in
 the search rule.

 | Examples

 ssr
 ssr "^var,^int,&,//newshbin/&,//newbin/&"
 ssr "^var,//project_lib/&"

 ssr (1) − 1 − ssr (1)

 ssr (1) −−− set search rule 08/27/84

 See Also

 set (1), declare (1), forget (1), vars (1), User’s Guide for
 the Software Tools Subsystem Command Interpreter

 ssr (1) − 2 − ssr (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 | Usage

 | stacc [Ratfor | C | Pascal | Pl/1 | Plp]

 Description

 ’Stacc’ (STill Another Compiler−Compiler) is a simple parser
 generator designed to reduce the effort involved in building
 recursive−descent parsers. Its development was motivated by
 two things: (1) the large number of ad−hoc recursive
 descent parsers constantly being written and re−written at
 the Georgia Tech installation; (2) the desire to quickly
 generate an SSPL compiler in SSPL for microprocessor
 software development work. Its design was inspired both by
 ’yacc’ (Yet Another Compiler−Compiler) on Unix and the GTL
 Syntax Parser on the now defunct Georgia Tech Burroughs
 B5500.

 Basic Theory

 Given an LL(1) grammar written in an extended BNF, ’stacc’
 generates a very simple top−down, recursive−descent parser.
 Many excellent references are available on the subject of
 such parsers; the following will serve as starting points:

 Gries, David, Compiler Construction for Digital
 Computers, John Wiley & Sons, Inc., New York, 1971
 (See chapters 3, 4, 12, and 15)

 Aho, Alfred V., and Jeffrey D. Ullman, The Theory of
 Parsing, Translation, and Compiling, Prentice−
 Hall, Inc., Englewood Cliffs, NJ, 1972
 (See chapters 1, 3, and 5)

 Georgia Institute of Technology School of Information
 and Computer Science, GTL Programmer’s Reference
 Manual for the Burroughs B5500, 1974
 (See chapter 8)

 Principles of Operation

 ’Stacc’ generates a "parser," a program which converts a
 stream of "tokens" into a representation of a derivation
 tree which describes the production of the input stream from
 a given grammar. In practice, the derivation tree exists
 solely in the call structure of the subprograms called to
 parse the input, so the user must supply "action" routines
 to produce the output he desires.

 A parser written with ’stacc’ also requires a "lexical
 analyzer," a routine that converts the input stream of ASCII
 characters into the tokens handled by the parser.

 stacc (1) − 1 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 The operation of a ’stacc’ parser is roughly as follows. In
 the initialization phase, the lexical analyzer is called to
 pick up the first token from the stream of input characters.
 An integer assigned to the class of token found is then
 placed in a "current symbol" variable by the lexical
 analyzer. The parser is then called. The parser attempts
 to "match" the current symbol against all possibilities for
 the first input symbol; if a match is found, any actions
 supplied by the user are performed and the lexical analyzer
 is called to fetch the next input token. This procedure is
 repeated until either the entire input stream is recognized
 as a valid sentence in the input language or an error (a
 missing or illegal "current symbol") is detected. In the
 event of an error, the user must supply recovery actions so
 that the parse can proceed.

 The function of ’stacc’ is to convert an extended BNF gram−
 mar into code that checks the current input symbol, calls
 the lexical analyzer when appropriate, and performs actions
 specified by the user after certain constructs in the input
 stream are recognized, thus freeing the user from the book−
 keeping details needed to build a parser.

 Usage Information

 ’Stacc’ takes input (described in detail below) on its first
 standard input port and produces output on its first and
 second standard outputs. The first output is the code that
 implements the parser. This code is expressed in the
 language whose name is given as the first argument on the
 command line that invoked ’stacc’. The second output is a
 set of macro definitions that establishes mnemonics for the
 integer "current symbol" values supplied by the lexical
 analyzer.

 Conventionally, ’stacc’ input files have the extension
 ".stacc", e.g. "hp.stacc," "sspl.stacc," "stacc.stacc".
 The first output of ’stacc’ (the parser) is normally placed
 in a file with extension ".stacc.<language>", e.g.
 "hp.stacc.r", "sspl.stacc.s", "stacc.stacc.r". The second
 output of ’stacc’ (the macro definitions) is normally placed
 in a file with extension ".stacc.defs", e.g.
 "hp.stacc.defs", "sspl.stacc.defs", "stacc.stacc.defs".
 These files may then be "included" in a source file during
 compilation. (Note that slightly different naming
 conventions are used by the separate compilation handler
 ’sep’).

 Input Specifications

 Input to ’stacc’ consists of a series of "declarations" and
 "productions", separated by semicolons. There may be any
 number of either, and they may be mixed in any order. Input
 is free−form; whitespace may be inserted where desired to

 stacc (1) − 2 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 improve readability. Ratfor−style comments (beginning with
 a sharp (#), ending with a NEWLINE) may be used for
 documentation.

 Declarations consist of a period (.) followed by a keyword
 and an argument list whose format depends on the keyword.
 There are seven types of declarations.

 Four declarations are used to select the names of critical
 objects used by the parser: ".state <variable>" declares
 the parser state variable (named "state" by default),
 ".scanner <routine>" declares the name of the lexical
 analyzer subprogram ("getsym" by default), ".symbol
 <variable>" declares the "current symbol" variable (named
 "symbol" by default), and ".epsilon <symbol>" declares the
 symbol to be used to match the null token (empty string of
 input symbols).

 One declaration is used only by parsers written in Ratfor:
 ".common ’<filename>’" specifies the name of an include file
 containing the declarations of the current symbol variable
 and any other variables used for communication between the
 parser and the lexical analyzer.

 The final two types of declarations are used to list
 mnemonics for terminal symbols recognized by the lexical
 analyzer. The first consists of ".ext_term" followed by a
 list of identifiers used by the lexical analyzer to identify
 terminal symbols. This declaration merely informs ’stacc’
 that the given names represent terminal symbols; no macro
 definitions are generated. The second type consists of
 ".terminal" followed by a list of mnemonics. Each mnemonic
 is assigned an integer value, and output in a macro defini−
 tion to make that value available to the lexical analyzer.
 A specific value may be assigned to a terminal symbol by
 preceding it with an integer; two terminal symbols may be
 equated by placing an equals sign (=) between them. Other−
 wise, increasing values (starting from zero) are assigned.
 For example, the following declaration

 .terminal
 ALTSYM
 DECLSYM = NOADVANCESYM
 100 LETTER_D
 LETTER_E
 ;

 produces the following Ratfor macro definitions:

 define(ALTSYM,0)
 define(DECLSYM,1)
 define(NOADVANCESYM,1)
 define(LETTER_D,100)
 define(LETTER_E,101)

 Productions are written in a language similar to the exten−

 stacc (1) − 3 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 ded BNF used throughout the Subsystem. A production
 consists of a nonterminal symbol, followed by the "rewrites
 as" symbol (−>), followed by a right−hand−side with imbedded
 semantic actions.

 The right−hand−side allows the usual BNF operators:
 vertical bar (|) to indicate a choice, parentheses to nest
 right−hand−sides, square brackets ([]) to enclose optional
 constructs, and curly braces ({}) to enclose repeated
 constructs.

 Items in the right−hand−side are nonterminal symbols (those
 that appear in the left−hand−side of some production),
 terminal symbols (those declared by the ".terminal" and
 ".ext_term" declarations), quoted single characters, or two
 terminal symbols or quoted characters separated by a colon
 (:) (which matches any terminal symbol or character within
 the given limits). In addition, a right−hand−side may be
 preceded by a dollar sign ($), indicating that it represents
 a particularly common form of production: a number of
 alternatives, each of which is distinguished by a single
 leading terminal symbol. (This happens, for example, in
 parsing statements in most algorithmic languages; each
 different type of statement is preceded by a unique key
 word.) Recognition of this common case allows much faster
 special−purpose code to be generated.

 After any terminal, nonterminal, or special construct in the
 right−hand−side there may appear semantic actions. Actions
 to be performed after a symbol is successfully matched are
 preceded by an exclamation point (!); actions to be per−
 formed after a symbol fails to be matched are preceded by a
 question mark (?). Actions extend from their initial
 character to the end of the line on which they appear.
 Actions appearing after terminal symbols are executed after
 a symbol is matched and before the lexical analyzer is cal−
 led; thus, they may perform some operation based on charac−
 teristics of the symbol matched. If the terminal symbol or
 range of terminal symbols being matched is followed by a
 period (.), the automatic call of the lexical analyzer is
 disabled, allowing the user to substitute his own scanning
 actions.

 Actions may appear immediately after the "rewrites as" sym−
 bol (−>), in which case they are executed before any code
 generated by ’stacc’, or immediately after the production−
 terminating semicolon (;), in which case they are executed
 unconditionally before control leaves the production.

 A sample production:

 parser −>
 {
 (declaration
 | production
)

 stacc (1) − 4 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 ’;’ ? call error ("missing semicolon.")
 ! numprods = numprods + 1
 }
 EOF. ? call error ("EOF expected.")
 ! call analyze
 ;

 Using ’Stacc’ With Ratfor

 Ratfor users of ’stacc’ should note that they must declare a
 common block "include" file with the ".common" declaration,
 so that the lexical analyzer can communicate with the par−
 ser.

 The form of a ’stacc’ output routine in Ratfor is a
 subroutine with one integer argument, which exports the par−
 ser state upon return. The parser state will either be
 NOMATCH (1) if the first symbol failed to match any legal
 alternative, FAILURE (2) if some symbols matched but some
 did not (and no error recovery succeeded), or ACCEPT (3) if
 the input was a legal sentence in the language being proces−
 sed. The name of the status argument is presently fixed at
 "gpst"; this variable is reserved for ’stacc’ and should not
 be used for any other purpose.

 To use a ’stacc’−generated parser, the Ratfor programmer
 should simply call the subroutine whose name corresponds to
 the start symbol of his grammar, passing one integer
 variable as an argument. That variable will contain the
 parse state upon completion of the parse.

 If the user specifies a grammar that is recursive, ’stacc’
 will produce recursive output; it will then be necessary to
 use Virtual−mode Fortran with the local−variables−allocated−
 in−stack−frame option. (This is the default under the Sub−
 system.)

 Examples

 The following sample ’stacc’ input will generate a program
 to convert infix arithmetic expressions to reverse−Polish.
 An expression consists of letters, digits, and operators
 arranged in the usual manner. Multiplication and division
 have priority over addition and subtraction.

 .scanner "getchar";
 .symbol "char";
 .common "rpn.com";

 expression −>
 ! integer op
 term
 {
 ($ ’+’ ! op = ’+’c

 stacc (1) − 5 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 | ’−’ ! op = ’−’c
)
 term ! call putch (op, STDOUT)
 }
 ;

 term −>
 ! integer op
 factor
 {
 ($ ’*’ ! op = ’*’c
 | ’/’ ! op = ’/’c
)
 factor ! call putch (op, STDOUT)
 }
 ;

 factor −>
 ’a’:’z’ ! call putch (char, STDOUT)
 | ’0’:’9’ ! call putch (char, STDOUT)
 | ’(’
 expression
 ’)’
 ;

 ’Stacc’ produced the following Ratfor output:

 define(NOMATCH,1)
 define(FAILURE,2)
 define(ACCEPT,3)

 subroutine expression (gpst)
 integer gpst
 include ’rpn.com’
 integer state
 integer op
 call term (state)
 select (state)
 when (FAILURE) {
 gpst = FAILURE
 return
 }
 if (state == ACCEPT) {
 repeat {
 state = NOMATCH
 select (char)
 when (171) {
 state = ACCEPT
 op = ’+’c
 call getchar
 }
 when (173) {

 stacc (1) − 6 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 state = ACCEPT
 op = ’−’c
 call getchar
 }
 if (state == ACCEPT) {
 call term (state)
 select (state)
 when (FAILURE) {
 gpst = FAILURE
 return
 }
 when (ACCEPT) {
 call putch (op, STDOUT)
 }
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 }
 } until (state ~= ACCEPT)
 select (state)
 when (NOMATCH)
 state = ACCEPT
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 }
 gpst = state
 return
 end

 subroutine term (gpst)
 integer gpst
 include ’rpn.com’
 integer state
 integer op
 call factor (state)
 select (state)
 when (FAILURE) {
 gpst = FAILURE
 return
 }
 if (state == ACCEPT) {
 repeat {
 state = NOMATCH
 select (char)
 when (170) {
 state = ACCEPT
 op = ’*’c
 call getchar
 }
 when (175) {
 state = ACCEPT

 stacc (1) − 7 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 op = ’/’c
 call getchar
 }
 if (state == ACCEPT) {
 call factor (state)
 select (state)
 when (FAILURE) {
 gpst = FAILURE
 return
 }
 when (ACCEPT) {
 call putch (op, STDOUT)
 }
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 }
 } until (state ~= ACCEPT)
 select (state)
 when (NOMATCH)
 state = ACCEPT
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 }
 gpst = state
 return
 end

 subroutine factor (gpst)
 integer gpst
 include ’rpn.com’
 integer state
 state = NOMATCH
 if (225 <= char && char <= 250) {
 state = ACCEPT
 call putch (char, STDOUT)
 call getchar
 }
 if (state == NOMATCH) {
 if (176 <= char && char <= 185) {
 state = ACCEPT
 call putch (char, STDOUT)
 call getchar
 }
 if (state == NOMATCH) {
 if (char == 168) {
 state = ACCEPT
 call getchar
 }
 if (state == ACCEPT) {
 call expression (state)

 stacc (1) − 8 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 select (state)
 when (FAILURE) {
 gpst = FAILURE
 return
 }
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 state = NOMATCH
 if (char == 169) {
 state = ACCEPT
 call getchar
 }
 if (state ~= ACCEPT) {
 gpst = FAILURE
 return
 }
 }
 }
 }
 gpst = state
 return
 end

 The following main program and common block include file
 were necessary to finish the implementation:

 # rpn −−− convert to Reverse Polish

 include "rpn.stacc.defs"

 integer state

 include "rpn.com"

 call getchar
 call expression (state)
 call putch (NEWLINE, STDOUT)
 if (state ~= ACCEPT || char ~= NEWLINE)
 call error ("syntax error.")

 stop
 end

 # getchar −−− get next character from standard input

 subroutine getchar

 include "rpn.com"

 character getch

 char = getch (char, STDIN)

 stacc (1) − 9 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 return
 end

 include "rpn.stacc.r"

 # common blocks for ’rpn’

 character char
 common /chcom/ char

 Messages

 (Note that all error messages are preceded by the number of
 the line in the input stream being processed at the time of
 the detection of the error.)

 −> symbol is ill−formed
 ’−’ was seen, but ’>’ was missing
 EOF expected
 there is data after the last legal production
 actions are illegal here
 actions are not allowed immediately after ’$’
 bad symbol
 input string could not be lexically analyzed
 error actions illegal here
 error actions not allowed after quick−select terminal
 identifier or string expected
 missing declaration parameter
 illegal declarator
 keyword after ’.’ was not recognizable
 illegal term/nonterm
 expected a terminal or nonterminal; didn’t find one
 missing ’−>’
 should be a ’−>’ after the left−hand−side of a production
 missing alternative
 missing or illegal alternative after ’|’
 missing choice
 missing or illegal quick−select alternative after ’|’
 missing declarator
 missing keyword after ’.’
 missing optional rhs
 there should be a right−hand−side within square brackets
 missing quote
 obvious, hopefully
 missing quote or string too long
 strings have a maximum length of about 100 characters
 missing repeated rhs
 there should be a right−hand−side within curly braces
 missing rhs in parentheses
 there should be a right−hand−side within parentheses
 missing right brace

 stacc (1) − 10 − stacc (1)

 stacc (1) −−− recursive descent parser generator 08/27/84

 missing right bracket
 missing right parenthesis
 missing right−hand−side
 missing entire right−hand−side of production
 missing semicolon
 missing upper bound
 missing second terminal in range of form ’lower:upper’
 not yet available
 the language specified cannot be used with ’stacc’ yet
 production expected
 input stream contained neither declaration nor production
 too many action/erroraction lines
 there are too many lines of code to store internally
 too many characters pushed back
 internal error −−− see your Subsystem manager
 too much action/erraction text
 there is too much code to store internally
 unsupported language
 ’stacc’ doesn’t recognize the language name specified

 (Other messages may occasionally arise from the dynamic
 storage routines. If these occur, see your Subsystem
 manager for assistance.)

 Bugs

 | ’Stacc’ does not optimize its Ratfor output as well as it
 could; some redundant code shows up occasionally.

 Error recovery in ’stacc’ is still somewhat primitive.

 No check is made to see if the input grammar is LL(1).

 See Also

 rp (1)

 stacc (1) − 11 − stacc (1)

 stats (1) −−− print statistical measures 08/27/84

 | Usage

 stats [−{option}]

 option ::= t | a | m | s | v | h | l | r | q | n | %<rank>

 Description

 ’Stats’ is a filter that can be used to generate various
 statistical measures of a set of floating point data. Input
 to ’stats’ is a list of numbers, appearing one per line but
 free−form within each line, on its first standard input.
 Output from ’stats’ is a list of statistics, preceded by
 labels (unless the "−q" option has been specified) on the
 first standard output.

 | The options control the statistics to be printed. The
 | available options are:

 | −t Print the sum (total) of all data values.
 | −a Print the arithmetic mean (average) of the
 | data values.
 | −m Print the mode (most frequently occurring
 | value).
 | −s Print the standard deviation of the popula−
 | tion sampled.
 | −v Print the variance of the population sampled.
 | −h Print the highest value in the sample.
 | −l Print the lowest value in the sample.
 | −r Print the range of values in the sample
 | (highest − lowest).
 | −q Quiet; turn off the printing of labels on the
 | output.
 | −n Print the number of data values in the sam−
 | ple.
 % Print percentile ranks for the data. The
 percent sign (%) must be followed by the per−
 centile increment to be used for the ranking.
 Note that "−%50" yields the median value for
 the sample.

 The default options are currently "−as%50".

 Examples

 grades> stats
 grades> stats −ahl%25
 { ([files .r])> tc −l } | stats −tahl
 lf −cw | field 1−8 | stats −tq

 Messages

 "Usage: stats ..." for improper options.

 stats (1) − 1 − stats (1)

 stats (1) −−− print statistical measures 08/27/84

 Bugs

 The mode and percentile rank statistics are limited to
 relatively small data sets because of an internal sort.

 stats (1) − 2 − stats (1)

 stop (1) −−− exit from subsystem 03/20/80

 Usage

 stop [− | <pathname>]

 Description

 ’Stop’ is used to exit from the Software Tools Subsystem.
 If no option is specified, the user’s profile is saved and a
 normal exit to Primos occurs. If the "−" option is
 specified, the user’s profile is saved and logout from the
 Prime is forced. If a pathname is given, then the given
 file is deleted before logout is forced and the user’s
 profile is not saved. This is used in conjunction with the
 ’ph’ command to log out phantoms.

 Examples

 stop
 stop −
 stop =varsdir=/ph00301

 See Also

 bye (1), ph (1), Primos logo$$

 stop (1) − 1 − stop (1)

 st_profile (1) −−− statement−level profile 03/25/82

 Usage

 st_profile [<count_file>] <source_code_file>

 Description

 ’St_profile’ is used to convert the profiling information
 generated by a Ratfor program processed with the "−c" option
 into a readable report. The optional <count_file> argument
 is the name of a statement_level profile data file generated
 by a profiled program; if omitted, the default name of
 "_st_profile" is assumed. The <source_code_file> argument
 is the name of the file containing the Ratfor source code
 for the program being profiled.

 Examples

 st_profile rp.r
 st_profile guide_profile fmt.r

 Files

 _st_profile is the default <count_file>.

 Messages

 "Usage: st_profile ..." if no arguments given.
 "can’t open" if files are inaccessible.

 Bugs

 See Reference Manual entry for ’rp’.

 Seems to leave out the last line of source code.

 See Also

 rp (1), profile (1), c$init (6), c$incr (6), c$end (6)

 st_profile (1) − 1 − st_profile (1)

 subscribe (1) −−− subscribe to the Subsystem news service 02/17/82

 Usage

 subscribe

 Description

 ’Subscribe’ allows a user to become a subscriber to the Sub−
 system news service.

 There is no difference in the news received by subscribers
 and non−subscribers; the only difference is that subscribers
 are automatically informed whenever a news item is
 published.

 Examples

 subscribe

 Files

 =news=/subscribers for news service subscribers

 See Also

 news (1), publish (1), retract (1)

 subscribe (1) − 1 − subscribe (1)

 substr (1) −−− take a substring of a string 02/22/82

 Usage

 substr <start> <length> <string>

 Description

 ’Substr’ is similar in function to the PL/I substr function;
 it prints on standard output a specified substring of its
 third argument. The substring printed is taken from
 <string> starting at position <start> and continuing for
 <length> characters, or until the end of <string> is
 reached. If <start> is negative, the starting position is
 −<start> characters from the end of <string>. If <length>
 is negative, characters are extracted from right to left.

 ’Substr’ is perhaps excessively general; for common
 problems, the ’take’ and ’drop’ commands will usually
 suffice.

 Examples

 substr 1 2 11/27/84
 substr [start] [len] [full_name]
 set last_five = [substr −5 5 [variable]]

 See Also

 take (1), drop (1), rot (1), substr (2), stake (2), sdrop
 (2)

 substr (1) − 1 − substr (1)

 systat (1) −−− check on Subsystem status directories 03/20/80

 Usage

 systat

 Description

 ’Systat’ is a shell program which contains commands to list
 the contents of the gossip directory (names of users with
 pending messages from the ’to’ command), and the mail direc−
 tory (names of users with undelivered mail).

 Examples

 systat

 Files

 =gossip= for messages from ’to’
 =mail= for messages from ’mail’

 See Also

 mail (1), to (1), lf (1)

 systat (1) − 1 − systat (1)

 tail (1) −−− print last n lines from standard input 01/09/82

 Usage

 tail [<number of lines>] [<file>]

 Description

 ’Tail’ is a filter that prints on standard output the last
 few lines that it reads from standard input. The number of
 lines printed may be specified as an integer argument; the
 default value is twenty if none is given. Currently, the
 maximum number of lines that can be printed is 300. If a
 number larger than this is specified, a value of 300 is used
 and no error message is issued.

 | If <number of lines> is preceded by a minus sign, ’tail’
 discards the first <number of lines> lines from its input
 file and copies the remainder to standard output.

 If a file name is given as the second argument, ’tail’ takes
 its input from the named file instead of standard input.

 Examples

 log_file> tail 10
 tail 10 log_file
 lf −cw | sort | tail 5
 listfile> tail −1
 tail −1 listfile

 Bugs

 For the single argument case, if argument is the string "0",
 the program will read in the default number of lines from
 file "0". If the single argument is a file name that starts
 with digits, those digits will be interpreted as the number
 of lines to be read from standard input.

 For the two argument case, if the first argument is the
 string "0", the second argument is ignored and a file name
 of "0" is assumed.

 See Also

 slice (1)

 tail (1) − 1 − tail (1)

 take (1) −−− take characters from a string (APL style) 03/20/80

 Usage

 take <length> <string>

 Description

 ’Take’ can be used to extract substrings from the beginning
 or end of a string. It is essentially identical in function
 to APL’s dyadic take operator as applied to character vec−
 tors.

 The absolute value of the first argument specifies the num−
 ber of characters to be taken (with blank padding, if the
 source string is not long enough.) If it is positive,
 characters are taken from the beginning of <string>; other−
 wise, characters are taken from the end of <string>.

 Other useful string−handling commands are ’drop’, ’index’,
 and ’substr’.

 Examples

 take 6 [filename]
 take −2 [source_file]
 take 2 [date]
 take 3 [day]

 See Also

 drop (1), index (1), substr (1), stake (2), sdrop (2)

 take (1) − 1 − take (1)

 tc (1) −−− text counter (characters, words, lines, pages) 02/22/82

 Usage

 tc [−{c | l | p | w | v}] [<pathname>]

 Description

 ’Tc’ is a filter used to count various parameters of text,
 specifically characters, words, lines, and pages.

 If a pathname is specified, the text to be counted is read
 from that file; otherwise, text is read from standard input
 1. All output from ’tc’ is written to its first standard
 output. If no options are specified, or the "v" option is
 specified, the counts are labeled; otherwise only the counts
 themselves appear.

 The options control the items counted: "c" for characters,
 "w" for words, "l" for lines, "p" for pages. The "v" option
 causes unconditional printing of labels on the output.

 Examples

 report> tc
 eval [tc −w part1] + [tc −w part 2]
 lf −c | tc −l

 Messages

 "Usage: tc ..." for argument specified without "−" flag
 "illegal option" for unrecognized option letter

 Bugs

 The page length is fixed at 66 lines, which is incorrect for
 output generated by ’print’. In addition, the definition of
 word used for word counting ("a sequence of non−blank, non−
 tab, non−newline characters") may be too simplistic.

 tc (1) − 1 − tc (1)

 tee (1) −−− tee fitting for pipelines 02/22/82

 Usage

 tee { <pathname> | −[1 | 2 | 3] }

 Description

 ’Tee’ creates multiple copies of data flowing into its first
 standard input. By default, it copies this stream of data
 to its first standard output. In addition, a copy is made
 on each of the files named in its argument list. If a named
 file did not previously exist, it is created.

 If an argument consists only of a dash ("−"), optionally
 followed by a single digit in the range 1−3, a copy is sent
 to the standard output port corresponding to the digit. If
 the digit is missing, standard output one is assumed.

 ’Tee’ is suitable for checkpointing data flowing past a
 given point in a pipeline, or for fanning out a data stream
 to feed multiple, parallel pipelines.

 Examples

 lf −c | tee file_names | print −p −n >/dev/lps
 memo> tee [cat distribution_list]

 file_names> tee −2 |P1 |P2 _
 :P1 change % //dir1/ | cat −n |$ _
 :P2 change % //dir2/ | cat −n |$ _
 lam

 Messages

 "<pathname>: can’t create" if a file cannot be created.

 Bugs

 This function could be performed by the i/o primitives.

 See Also

 cat (1)

 tee (1) − 1 − tee (1)

 template (1) −−− manipulate and display templates 03/25/82

 Usage

 template [−a | −r] [−l{usv}] { <string> }

 Description

 ’Template’ allows the user to expand templates, list the
 contents of the system template file or his own private tem−
 plate file, or edit the contents of his private template
 file. The operation of ’template’ is controlled by command
 line options as follows:

 −a add or change templates. Any <string>s that appear on
 the command line are taken in pairs of the form

 <name> <definition>

 If any template in the user’s template file has a name
 corresponding to <name>, its definition is replaced by
 <definition>; otherwise, the new template is added to
 the file.

 −r remove templates. Each <string> on the command line is
 taken as the name of a template to be removed from the
 user’s template file.

 −l list templates. The contents of either the system tem−
 plate file or the user’s private template file, or
 both, are listed on standard output. The "−l" may be
 followed by one or more of the following options to
 control the listing:

 u list the contents of the user’s private template
 file.

 s list the contents of the system template file.

 v print a label before listing each set of tem−
 plates.

 If neither the "s" nor the "u" option is specified, "u"
 is assumed by default.

 Note that the "−l" option may be used with either the "−a"
 or the "−r" option to list the modified templates.

 In the absence of any of the above options, ’template’
 expands each <string> argument and prints the result on
 standard output. In order to allow arbitrary strings
 containing templates to be expanded, it is necessary to
 enclose the template name in "equals" symbols (=) just as it
 would appear in a pathname. This is the only context in
 which ’template’ requires or allows the name of a template
 to be so enclosed.

 template (1) − 1 − template (1)

 template (1) −−− manipulate and display templates 03/25/82

 Examples

 template =date= =time= =doc=/man
 template −al mybin //mydir/bin.ufd
 template −r oldtemp
 template −lusv

 Files

 =utemplate= for storage of personal templates

 Messages

 "Usage: template ..." for improper options
 "<string>: duplicate name" if two or more templates with
 the same name are specified with "−a"
 "<string>: missing definition" if a template name is not
 followed by a definition string with "−a"
 "<string>: may not contain ’=’" if an attempt is made to
 add a template name containing an equals sign
 "file not altered" if either of the previous two messages is
 issued
 "<string>: not in template file" if an attempt is made to
 delete a non−existent template
 "can’t open user template file" if "=utemplate=" can’t be
 opened for reading and writing
 "can’t open temporary file" if a temporary file can’t be
 created for the "−a" and "−r" options

 See Also

 expand (2), lutemp (6)
 For more information on templates, see User’s Guide to the
 Primos File System in the Software Tools Subsystem User’s
 Guide.

 template (1) − 2 − template (1)

 term (1) −−− select individual terminal parameters 03/23/82

 Usage

 term { ? | <type> | <option> }
 <option> ::= −erase <echar> | −kill <kchar>
 | −retype <rchar> | −escape <escchar>
 | −newline <nlchar> | −eof <eofchar>
 | −[no]break | −[no]echo
 | −[no]lcase | −[no]lf
 | −[no]xon | −[no]xoff
 | −[no]vth | −[no]se
 | −[no]inh

 Description

 ’Term’ sets or displays the parameters that control terminal
 input and output. At present, these parameters are:

 − erase character
 − kill character
 − retype character
 − escape character
 − end−of−file character
 − newline character
 − recognition of terminal interrupts
 − full/half duplex selection
 − inhibition of terminal output
 − automatic mapping of lower case input
 − line feed suppression
 − interpretation of DC1 and DC3 control characters
 − support by the screen editor ’se’
 − support by the virtual terminal handler

 Arguments to ’term’ consist of either a terminal type, in
 which case parameters applicable to that particular terminal
 are set, or of keywords that set specific parameters to
 specific values. A list of available terminal types will be
 displayed if the "?" option is requested.

 Keywords that may be specified, and their respective
 meanings, are as follows:

 −erase set erase character. The next argument must be a
 single character or an ASCII mnemonic for the
 character which is to become the new erase
 (character delete) character.

 −kill set kill character. The next argument must be a
 single character or an ASCII mnemonic for the
 character which is to become the new kill (line
 delete) character.

 −retype set retype character. The next argument must be a
 single character or an ASCII mnemonic for the
 character which is to become the new retype
 (repeat line) character.

 term (1) − 1 − term (1)

 term (1) −−− select individual terminal parameters 03/23/82

 −escape set escape character. The next argument must be a
 single character or an ASCII mnemonic for the
 character which is to become the new escape
 character. (The escape character is used to enter
 special character codes that could not otherwise
 be entered from a standard keyboard.)

 −newline set newline character. The next argument must be
 a single character or an ASCII mnemonic for the
 character which is to become the new newline
 character. The new character must then be used to
 terminate all subsequent input lines.

 −eof set end−of−file character. The next argument must
 be a single character or an ASCII mnemonic for the
 character which is to become the new end−of−file
 character.

 −break enable terminal interrupts. When terminal
 interrupts are enabled, hitting the BREAK key or
 control−p has the effect of halting the currently
 executing program.

 −nobreak disable terminal interrupts. When terminal
 interrupts are disabled, the currently executing
 program may not be interrupted by the BREAK key or
 control−p. If, however, either of these keys is
 hit, a flag is set indicating a pending interrupt
 that will take effect as soon as terminal
 interrupts are re−enabled.

 −echo full duplex, each character typed is echoed by the
 computer. When this mode is selected, the
 terminal should be set to full duplex mode to
 disable self echo.

 −noecho half duplex, characters are not echoed by the com−
 puter; they must rather be echoed by the terminal
 if they are to be printed. When this mode is in
 effect, the terminal should be set to half duplex
 mode to enable self echo.

 −inh inhibit output. The effect is the same as if a
 DC3 character had been received while "−xon" mode
 was enabled.

 −noinh enable output. The effect is the same as if a DC1
 character had been received while "−xon" mode was
 enabled. Any buffered output is sent to the
 terminal.

 −lcase lower case. This option specifies that the user’s
 terminal can send and receive lower case charac−
 ters.

 −nolcase upper case only. This option is intended for use

 term (1) − 2 − term (1)

 term (1) −−− select individual terminal parameters 03/23/82

 with upper−case−only terminals such as Teletypes.
 All input is forced to lower case and all output
 is forced to upper case. Upper case letters may
 be entered by preceding the letter with the escape
 character (nominally "@"). On output, upper case
 letters are printed as an escape character fol−
 lowed by the letter.

 −lf echo line feed when carriage return is received.
 The computer echoes a line feed whenever it
 receives a carriage return. This is independent
 of whether or not echo is on. However, if echo is
 on, the line feed is echoed after the carriage
 return.

 −nolf do not echo line feed when carriage return is
 received. The terminal should have an automatic
 line feed feature for this mode to produce
 desirable results.

 −xon the computer recognizes the control characters DC1
 and DC3 (Control−Q and Control−S) as X−ON and
 X−OFF signals, respectively. When X−OFF is
 received, output is inhibited until X−ON is
 received. Characters output by a program when
 output is inhibited are not lost, but are buffered
 until an X−ON signal is next received. The
 options "−xon" and "−xoff" are synonymous, as are
 "−noxon" and "−noxoff".

 −noxon the computer does not recognize X−ON and X−OFF
 signals.

 −se the terminal is supported by the screen editor.
 User modification of this option is allowed for
 completeness. Setting it does not necessarily
 mean that ’se’ will operate correctly with the
 terminal.

 −nose the terminal is not supported by the screen
 editor. User modification of this option is
 allowed for completeness.

 −vth the terminal is supported by the virtual terminal
 handler. User modification of this option is
 allowed for completeness. Setting it does not
 necessarily mean that the ’vth’ routines will
 operate correctly with the terminal.

 −novth the terminal is not supported by the virtual
 terminal handler. User modification of this
 option is allowed for completeness.

 If no arguments are specified, term prints the values of the
 various terminal parameters on standard output one.

 term (1) − 3 − term (1)

 term (1) −−− select individual terminal parameters 03/23/82

 Examples

 term tty
 term −lcase −noecho −nolf
 term

 Messages

 "Usage: term ..." for incorrect arguments.

 See Also

 ek (1), Primos duplx$, gttype (2), gtattr (2) User’s Guide
 for the Software Tools Subsystem Command Interpreter

 term (1) − 4 − term (1)

 term_type (1) −−− print user’s terminal type 02/22/82

 Usage

 term_type [−[no]se | −[no]vth | −[no]lcase]

 Description

 ’Term_type’ prints a mnemonic for the type of the current
 user’s terminal on standard output when it is called with no
 arguments. The mnemonic is suitable for use with ’se’,
 among other things.

 If one of the other options is given, ’term_type’ prints a
 "1" or "0" to indicate whether or not the option is selected
 for the terminal. For instance, "term_type −se" prints "1"
 if the terminal is supported by ’se’.

 If no terminal type has been specified for the user’s
 terminal, the call to ’gtattr’ or ’gttype’ in ’term_type’
 will request the terminal type from the user. Otherwise,
 ’term_type’ will use the remembered terminal type.

 Examples

 echo "Your terminal type: "[term_type]
 if [term_type −se]
 se [args]
 else
 ed [args]
 fi

 Files

 =termlist= for the terminal list.
 =ttypes= for the legal terminal type list.

 Messages

 "Usage: term_type ..." for illegal arguments.

 "No terminal type information is available". For some
 reason no terminal type is configured for the line and
 the user has refused to supply a terminal type.

 See Also

 line (1), term (1), se (1), gtattr (2), gttype (2)

 term_type (1) − 1 − term_type (1)

 then (1) −−− introduce the then−part of a conditional 03/20/80

 Usage

 if [<value>]
 then
 { <command> }
 else
 { <command> }
 fi

 Description

 ’Then’ is a do−nothing command that may be used to introduce
 the "affirmative" or "asserted" part of a conditional
 statement. It is available solely for the purpose of
 improving the appearance of conditional statements in com−
 mand files, and is always optional.

 Examples

 if [nargs]
 then
 set file = [arg 1 | quote]
 fi

 See Also

 if (1), else (1), fi (1), case (1)

 then (1) − 1 − then (1)

 time (1) −−− print time−of−day 03/20/80

 Usage

 time

 Description

 ’Time’ prints the time of day in the format hh:mm:ss on
 standard output one.

 Examples

 echo Run at [time]

 See Also

 date (1), day (1), ctime (1), date (2)

 time (1) − 1 − time (1)

 tip (1) −−− check if terminal input is pending 02/25/82

 Usage

 tip

 Description

 ’Tip’ checks to see if there is any terminal input pending.
 If terminal input is waiting to be read, ’tip’ outputs a
 "1". If no terminal input is waiting to be read, ’tip’ out−
 puts a "0".

 ’Tip’ is most commonly used with the ’if’ command.

 Examples

 if [tip]
 [set =]
 fi

 Bugs

 Should probably be able to check an assigned terminal line
 for pending input.

 See Also

 if (1), chkinp (2)

 tip (1) − 1 − tip (1)

 tlit (1) −−− transliterate characters 02/22/82

 Usage

 tlit <from set> [<to set> { <string> }]

 Description

 ’Tlit’ is the character transliteration program from
 Software Tools. Character strings are read from the command
 line arguments, or from standard input, transliterated
 according to instructions provided in the command line
 arguments, and the results written to standard output. The
 <from set> and <to set> arguments are sets of characters,
 with some special shorthand notation. Each set may have any
 number of the following components:

 <character>
 The character specified becomes part of the
 set.

 <letter>−<letter>
 The letters specified, and all letters
 between them alphabetically, become part of
 the set. (Note that letters of a given case
 are contiguous; A−Z means all upper case let−
 ters.)

 <digit>−<digit>
 The digits specified, and all digits between
 them in numerical order, become part of the
 set.

 @n,@t
 A NEWLINE (if the first form is used) or a
 TAB (if the second form is used) becomes part
 of the set.

 In addition, if the <from set> is preceded by a tilde (~),
 the complement of the set is used. For example, "~A−Z"
 means all characters except upper case letters.

 For each character read that is a member of the <from set>,
 the corresponding member of the <to set> is substituted. If
 the <to set> is shorter than the <from set>, each string of
 contiguous characters that are in the <from set> but have no
 corresponding element in the <to set> is replaced by a
 single occurrence of the last member of the <to set>. If
 the <to set> is empty or only a single argument is supplied,
 such character strings are deleted.

 When strings are read from the argument list, each separate
 argument is treated as a NEWLINE−terminated string. Thus,
 lacking specific transliteration of NEWLINE characters, each
 separate argument string will result in one line of output.

 tlit (1) − 1 − tlit (1)

 tlit (1) −−− transliterate characters 02/22/82

 Examples

 file> tlit a−z A−Z >uc_file
 file> tlit A−Z a−z | tlit ~a−z @n >words
 tlit a−z A−Z "output one line"
 tlit a−z A−Z output three lines

 Messages

 "Usage: tlit ..." if no arguments are supplied.
 "<from> set too large" if <from set> cannot be contained in
 the internal buffer.
 "<to> set too large" if <to set> cannot be contained in the
 internal buffer.

 See Also

 change (1), ed (1), Software Tools

 tlit (1) − 2 − tlit (1)

 to (1) −−− send messages to a logged−in user 09/16/82

 Usage

 to (<login−name> | <user−number>) [<message>]

 Description

 ’To’ is used to send messages to another logged−in user.
 The first argument is the login name or user number of the
 user to whom the message is to be sent. If any other
 arguments are present, they are assumed to be message text
 and are sent to the named user. If the login name, or user
 number, is the only argument specified, ’to’ copies the text
 of the message from standard input.

 The message, preceded by the sender’s name and user number
 and the current day and time, will appear on the named
 user’s terminal when he is next prompted for a command by
 the Subsystem command interpreter.

 Examples

 to jack There seems to be a problem with se on the tvt...
 to 16 Why is the system so slow?
 message> to perry

 Files

 =gossip=/<login−name> to hold the message
 =gossip=/*<user−number> to hold the message

 Messages

 "Usage: to ..." if no arguments are specified.
 "bad user number" if the user number is not in the range
 1..128.
 "bad user name" if the user name is not that of a valid
 user.
 "User is busy. Try later." if message file is in use.

 Bugs

 Gossip messages are neither secure nor private.

 See Also

 mail (1)

 to (1) − 1 − to (1)

 touch (1) −−− set file date/time modification fields 08/21/84

 | Usage

 | touch [−d <date>] [−t <time>] {<pathname>}

 | Description

 | Every file system object has a field indicating the date and
 | time (to within 4 seconds) it was last modified. This com−
 | mand will set the date/time modified field of file system
 | objects.

 | The "−d" option may be used to specify a date as recognized
 | by the ’parsdt’ routine; if no date is specified then the
 | current date is used. The "−t" option may be used to
 | specify a time as recognized by the ’parstm’ routine; if no
 | time is specified then the current time is used.

 | The remaining command line arguments are taken as names of
 | files for which to set the modification time. If "−n"
 | appears in place of a pathname, pathnames are read from the
 | standard input. For more information on this syntax, see
 | the entry for ’cat’ (1).

 | Examples

 | lf −c | touch −n
 | touch −t 1124 foo.r bar.r

 | Messages

 | "Usage: touch ..." for invalid arguments.
 | "invalid format in date argument" or "invalid format in time
 | argument" for improper arguments.
 | "<pathname>: can’t "touch"" for protected or non−existant
 | files.

 | See Also

 | cat (1), lf (1), gfdata (2), parsdt (2), parstm (2), sfdata
 | (2)

 touch (1) − 1 − touch (1)

 tsort (1) −−− topological sort 04/12/82

 Usage

 tsort [−v]

 Description

 ’Tsort’ reads pairs of names from its standard input, sorts
 them topologically, and writes the result to its standard
 output. Such a function is useful, for example, in ordering
 the subroutines in a library so that it may be loaded in a
 single pass.

 Each input line consists of a pair of names, separated by
 blanks. The first name is taken as the predecessor, and the
 second as the successor. The names are printed, one per
 line, such that each name that appeared as a successor on
 input follows all the names that appeared as its predeces−
 sor. Normally, only names that appeared somewhere as a
 predecessor are printed. However, if the "−v" flag is
 specified, all names are printed.

 Examples

 brefs library.b | tsort >lib_order
 precedences> tsort −v

 Messages

 "Usage: tsort ..." for specifying unknown flag arguments.
 "input data error" if an input line contains only one name.
 "cycle (in reverse order): name ..." when a set of
 mutually recursive references is detected.

 See Also

 bmerge (5), bnames (5), brefs (5)

 tsort (1) − 1 − tsort (1)

 ucc (1) −−− compile and load a C program (Unix−style) 10/10/84

 | Usage

 | ucc { <input_files> } [<cc_opts>] [<compile_opts>]

 | Description

 | ’Ucc’ is a "UNIX−style" C compiler and loader. It does NOT,
 | however, behave like Unix’s ’cc’ or any other known Unix
 | program!

 | ’Ucc’ compiles and loads the pathnames specified. It
 | assumes that all programs require C runtime support and
 | loads them accordingly.

 | ’Ucc’ recognizes the same set of options as ’cc’. These are
 | passed as C−specific options to ’compile’. Any other
 | options are passed on to ’compile’ directly, which does the
 | real work of recognizing suffixes and compiling and loading
 | the files appropriately.

 | ’Ucc’ remains in existence mainly for compatibility with the
 | first release of the C compiler.

 | Examples

 | ucc sort.c
 | ucc sort.c −ud # the −ud is automatically passed on to ’ld’
 | ucc main.c lib.r lib.s −R−t

 | Bugs

 | Has basically become obsolete.

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | compile (1), cc (1), ccl (1), vcg (1), ld (1), bind (3),
 | User’s Guide for the Georgia Tech C Compiler

 ucc (1) − 1 − ucc (1)

 uniq (1) −−− eliminate successive identical lines 02/22/82

 Usage

 uniq [−n]

 Description

 ’Uniq’ is used to strip adjacent duplicate lines from its
 standard input. The resulting text is copied to standard
 output. ’Uniq’ is usually used to eliminate redundant lines
 from a sorted file.

 If the "−n" option is specified, ’uniq’ counts the number of
 occurrences of each line. The count is placed right
 justified in the first five columns of the output, suitable
 for sorting or further manipulation with ’change’, ’find’,
 or ’field’.

 Examples

 words> sort | uniq −n

 Messages

 "Usage: uniq ..." for invalid argument syntax.

 Bugs

 Does not handle lines of length greater than MAXLINE.

 See Also

 sort (1), speling (1)

 uniq (1) − 1 − uniq (1)

 unrot (1) −−− ’un−rotate’ output produced by kwic 02/22/82

 Usage

 unrot [−w <width>]

 Description

 ’Unrot’ processes the "rotated" output of ’kwic’ to generate
 a key−word−in−context index. It reads lines from standard
 input one and writes the index on standard output one.

 The length of the output lines may be specified with the
 "−w <width>" argument sequence. The maximum width is
 currently 137 characters. If no width is specified, 65 is
 assumed.

 Examples

 definitions> kwic | sort | unrot >index

 Messages

 "Usage: unrot ..." for invalid argument syntax.

 See Also

 kwic (1), sort (1), uniq (1)

 unrot (1) − 1 − unrot (1)

 until (1) −−− terminate a loop statement 09/05/84

 | Usage

 | repeat
 | { <command> }
 | until [<value>]

 | Description

 | ’Until’ marks the end of a ’repeat’ loop. It actually does
 | nothing and is just searched for by the ’repeat’ statement
 | when it is in the process of pre−processing a loop. Each
 | ’repeat’ command must be followed by a matching ’until’ com−
 | mand.

 | Examples

 | repeat
 | echo This terminal is taken
 | until # infinite loop

 | repeat
 | hd swt
 | lf
 | until [eval [template =date=] == 110284]

 | See Also

 | if (1), then (1), else (1), fi (1), case (1), repeat (1)

 until (1) − 1 − until (1)

 us (1) −−− list users of the Prime 03/25/82

 Usage

 us

 Description

 ’Us’ is a shell file that invokes the Primos STATUS command
 to print a listing of the users currently logged in, along
 with their line number and any devices they have assigned.
 Output is always to the user’s terminal.

 Examples

 us

 See Also

 who (3)

 us (1) − 1 − us (1)

 usage (1) −−− print summary of command syntax 03/23/82

 Usage

 usage { <command> }

 Description

 ’Usage’ prints a summary of the acceptable command line
 syntax for each command and a summary of the acceptable cal−
 ling sequence for each library subprogram named in its
 argument list. Command line syntax is expressed in a BNF−
 like meta−language that is described by "help −g bnf".

 Examples

 usage rf ed se

 Files

 =doc=/fman/s1/<command>.d for command documentation
 =doc=/fman/s2/<subprogram>.d for subprogram documentation
 =doc=/fman/s3/<command>.d for local command documentation
 =doc=/fman/s4/<subprogram>.d for local subprogram doc.
 =doc=/fman/s5/<command>.d for low−level command documenta−
 tion
 =doc=/fman/s6/<subprogram>.d for low−level subprogram doc.
 =doc=/fman/index for command and subroutine index

 Messages

 "Sorry, no help is available for <command>" in case of mis−
 sing or unreadable documentation file.

 See Also

 help (1), Software Tools Subsystem Reference Manual

 usage (1) − 1 − usage (1)

 vars (1) −−− print, save, or restore shell variables 08/27/84

 | Usage

 vars [−{v | c | g | a | l}] [−r [<file>] | −s [<file>]]

 Description

 ’Vars’ can be used to print the names and values of all
 currently defined shell variables, save the variables in a
 file, or restore them from a file. The options have
 meanings as follows:

 | −v Values. Print the value of each variable as well
 | as its name.

 | −c Columnar. Print information in a single column,
 | instead of across the page (similar to the −c
 option of ’lf’).

 | −g Global. Print names of all global variables, as
 | well as those on the current nesting level.

 | −a All. Print names of all shell variables, on any
 | nesting level, including those beginning with "_"
 (normally reserved for use by the shell).

 | −l Long. Select options a, g, and v.

 | −s Save. Save shell variables. If a file name is
 | specified, variables and their values are saved in
 the given file; otherwise, the file "=varsfile="
 is used. Only level 1 (global) variables are
 saved. Listing of variable names and values still
 occurs.

 | −r Restore. Restore shell variables. Variables and
 | values from the named file (default "=varsfile=")
 are merged with the currently active set of
 variables, at the current nesting level. Listing
 of variable names and values still occurs.

 If no options are specified, ’vars’ lists the names of all
 variables active at the current nesting level in a multi−
 column format.

 For more information on shell variables, see the ’set’,
 ’declare’ and ’forget’ commands, or the User’s Guide for the
 Software Tools Subsystem Command Interpreter.

 Examples

 vars
 vars −vc
 vars −l
 vars −s

 vars (1) − 1 − vars (1)

 vars (1) −−− print, save, or restore shell variables 08/27/84

 vars −s =varsdir=/environment
 vars −r =varsdir=/environment

 Bugs

 | Should print the mnemonic form of the variable names.

 See Also

 declare (1), forget (1), set (1), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 vars (1) − 2 − vars (1)

 vcg (1) −−− Prime V−mode code generator 10/22/84

 | Usage

 | vcg [−m <module>] [−b [<path>]] [−s [<path>]]

 | Description

 | ’Vcg’ is a reusable, general purpose code generator which
 | accepts a linearized intermediate form tree and generates
 | either 64V−mode object text or PMA or both. For a complete
 | description of ’vcg’ see the VCG User’s Guide.

 | ’Vcg’ requires three input files; the first contains entry
 | points, the second contains external definitions and the
 | third contains the intermediate form tree.

 | If given, the "−m" argument specifies the name of the
 | <module> to which ’vcg’ will append the suffixes ".ct1",
 | ".ct2", and ".ct3" for the three input files. Otherwise,
 | ’vcg’ expects the three input files to be on its three stan−
 | dard input ports.

 | The following command line options are available:

 | −b Generate ’ld’−compatible object text directly.
 | ’Vcg’ generates object text by default and places it
 | in the file "<path>". If <path> is not specified,
 | but a <module> name is given with the "−m" argument,
 | ’vcg’ will place the object text in the file
 | "<module>.b". Otherwise, ’vcg’ will print an error
 | message and exit.

 | −s Generate assembly code. ’Vcg’ will produce Prime
 | Macro Assembly Language (PMA) and place it in the
 | file "<path>". Object text generation is suppressed
 | unless the "−b" command line flag is also specified.
 | If <path> is not specified, but a <module> name is
 | given with the "−m" argument, ’vcg’ will place the
 | PMA in the file "<module>.s". Otherwise, ’vcg’ will
 | simply write the PMA on its first standard output
 | port.

 | −m Specify input and output module names. This option
 | was discussed above.

 | In general, the user should not invoke this command
 | directly. Rather, ’vcg’ should be called via one of the
 | compiler interludes, like ’cc’.

 | Examples

 | vcg −m temp # use temp.ct(1 2 3)
 | p.ent> p.ext> p.tree> vcg −s # write PMA to stdout

 vcg (1) − 1 − vcg (1)

 vcg (1) −−− Prime V−mode code generator 10/22/84

 | Messages

 | Numerous, but sometimes opaque.

 | Bugs

 | ’Vcg’ expects correctly formed input. When it is
 | presented with something else, it usually manages to com−
 | plain, but it may either die or blithely emit incorrect
 | code. The major problem in dealing with ’vcg’ is that it
 | is often not easy to tell what part of the input is caus−
 | ing the difficulty.

 | This program is only available to licensees of Version
 | 2.0 of the Georgia Tech C Compiler.

 | See Also

 | cc (1), ccl (1), ucc (1), vcgdump (1), A Re−Usable Code
 | Generator for Prime 50−Series Computers User’s Guide,
 | User’s Guide for the Georgia Tech C Compiler

 vcg (1) − 2 − vcg (1)

 vcgdump (1) −−− display ’vcg’ input files 10/10/84

 | Usage

 | vcgdump [<path prefix>]

 | Description

 | ’Vcgdump’ displays an input file intended for ’vcg’ in a
 | semi−readable format. For a complete description of ’vcg’
 | see the A Re−Usable Code Generator for Prime 50−Series
 | Computers User’s Guide.

 | ’Vcgdump’ requires three input files; the first contains
 | entry points, the second contains external definitions and
 | the third contains the intermediate form tree. If no
 | argument is given, these files are read from standard inputs
 | 1, 2 and 3 respectively. Otherwise, ’vcgdump’ will append
 | the suffixes ".ct1", ".ct2", and ".ct3" to <path prefix> and
 | use these names for the input files.

 | The output of ’vcgdump’ is placed on standard output.

 | Examples

 | vcgdump temp | pg # use temp.ct(1 2 3)
 | p.ent> p.ext> p.tree> vcgdump | pr

 | Bugs

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | cc (1), ccl (1), ucc (1), vcg (1), A Re−Usable Code
 | Generator for Prime 50−Series Computers User’s Guide

 vcgdump (1) − 1 − vcgdump (1)

 vpsd (1) −−− Subsystem interlude to SEG’s vpsd 02/28/82

 Usage

 vpsd <program> { <arguments> }

 Description

 ’Vpsd’ allows the user to invoke the Primos V−mode Symbolic
 Debugger (VPSD) on a Subsystem program. The program must
 have been linked by ’ld’ with the "−d" option (i.e., it must
 be a segment directory). The standard ports are assigned
 and the arguments are set−up, and then a call to the Primos
 loader (SEG) with the "vpsd" option is made, via ’sys$$’.

 Examples

 vpsd bogus_program >bonzo
 echo Test data | vpsd non_debugged_program −d −l −t 2>answers

 Bugs

 There is no protection in either the shell or ’vpsd’ for
 user errors (such as changing incorrect memory locations)
 while in VPSD.

 ’Vpsd’ is not much good for debugging programs written in
 anything other than assembly. For programs written in a
 higher level language, use ’dbg’.

 The single character I/O of VPSD is not the duke’s choice.

 See Also

 dbg (1), sys$$ (2), Prime Assembly Language Programmer’s
 Guide (Chapters 18 and 21 on VPSD), Prime Load and Seg
 Reference Guide

 vpsd (1) − 1 − vpsd (1)

 when (1) −−− flag alternative in a case statement 02/22/82

 Usage

 case <value>
 when <alternative1>
 { <command> }
 when <alternative2>
 { <command> }
 ...
 out
 { <command> }
 esac

 Description

 ’When’ is used by the ’case’ command to flag alternatives in
 a multi−way comparison. The argument of ’when’ is tested by
 ’case’, and if it is found to be equivalent to <value>, then
 the group of statements following ’when’ is executed. In
 this function, ’when’ is similar to the case statement in
 the language C.

 ’When’ itself is executed only when control falls out of the
 series of commands controlled by the previous ’when’. The
 action taken in this case is to skip until the next
 unmatched ’esac’ is seen. In this respect, ’when’ and ’out’
 are identical.

 Like ’out’ and ’else’, if executed from a terminal without
 proper termination by an ’esac’, ’when’ will cause the shell
 to skip input until end−of−file is seen.

 Examples

 case [line]
 when 10
 se −t adds [arg 1]
 when 15
 se −t b200 [arg 1]
 out
 ed [arg 1]
 esac

 Messages

 "Missing ’esac’" if end−of−file is seen before an ’esac’
 command.

 Bugs

 Redirectors before the ’esac’ prevent ’when’ from spotting
 it.

 when (1) − 1 − when (1)

 when (1) −−− flag alternative in a case statement 02/22/82

 The string given as the argument to ’when’ is not evaluated;
 therefore, function calls and iteration groups are not
 allowed.

 See Also

 case (1), out (1), esac (1), if (1), User’s Guide for the
 Software Tools Subsystem Command Interpreter

 when (1) − 2 − when (1)

 whereis (1) −−− find the location of a terminal 03/20/80

 Usage

 whereis [− | <terminal number>]

 Description

 ’Whereis’ is a shell program that may be used to find the
 location of a specific terminal. The argument may be the
 line number of the terminal to be located or a single dash
 (meaning "all terminals").

 Terminal numbers appear under the column heading "LINE" in
 the output produced by the Subsystem’s ’us’ command (Primos
 STATUS USERS command).

 Examples

 whereis 10
 whereis −

 Files

 =termlist= for terminal list

 Bugs

 Dependence on the fixed terminal list means that inac−
 curacies will occur as terminals get changed or moved
 around.

 See Also

 whois (1), us (1), term_type (1)

 whereis (1) − 1 − whereis (1)

 which (1) −−− search _search_rule for a command 08/27/84

 | Usage

 | which <command>

 | Description

 | ’Which’ steps along the path indicated in the shell variable
 | ’_search_rule’ to locate the <command> named as its
 | argument. It knows which commands are internal to the
 | shell.

 | Examples

 | which cd
 | which (fmt se)

 | Messages

 | "Usage: which ..." for improper arguments.

 | Bugs

 | Ignores all arguments but the first.

 | See Also

 | sh (1), svget (2)

 which (1) − 1 − which (1)

 whois (1) −−− find the user associated with a login name 02/22/82

 Usage

 whois (− | { <login−name> })

 Description

 ’Whois’ is used to determine the name of the user associated
 with a particular login name. The most frequent usage is
 "whois <login_name>", which looks up the login name
 specified and prints the name of its owner. If the "−"
 option is specified, ’whois’ prints the entire name list.
 If no argument is given, ’whois’ accepts a list of login
 names from standard input and prints the name of the owner
 of each.

 Examples

 whois −
 | whois − | pg
 whois allen perry dan

 Files

 | =userlist= for name list

 | Bugs

 | Has a grubby output format due to the incredibly long user
 | login names.

 See Also

 us (1), vfyusr (2), who (3)

 whois (1) − 1 − whois (1)

 x (1) −−− execute Primos commands 02/22/82

 Usage

 x [−d <directory−name>] [<Primos command>]

 Description

 ’X’ allows users to execute Primos commands without leaving
 the Subsystem. The command and its arguments may be
 specified as arguments to ’x’, or, if no command is so
 specified, ’x’ reads commands from its standard input. If
 arguments are present, ’x’ forms a Primos command by
 concatenating all arguments (other than the "−d <directory−
 name>" pair) into a single Primos command line and passes it
 to the Primos command interpreter with a call to the Primos
 routine CP$. If the Primos command returns with a positive
 return code, ’x’ exits with a call to ’error’; otherwise,
 ’x’ exits normally. No change is made to the Primos command
 input source.

 If ’x’ reads commands from standard input, it reads the
 first line, connects the Primos command source to the stan−
 dard input file (either disk or terminal) and passes the
 line to the Primos command interpreter through CP$. When
 the command returns, ’x’ resets the Primos command input
 source. Then, if the Primos command returned with a non−
 positive return code, ’x’ continues to read commands from
 standard input until end−of−file; otherwise ’x’ terminates
 with a call to ’error’.

 All Primos file units that are left open by a Primos command
 will be automatically closed by the Subsystem when the ’x’
 command returns. Please note that this means the sequence

 x "l mylist; ftn myprog"

 will correctly deposit the listing file in "mylist", but

 x l mylist
 x ftn myprog

 will deposit the listing in "l_myprog", since ’x’ will close
 the listing file when it returns.

 If the "−d" option is specified, ’x’ will attach to the
 named directory without changing the home directory. This
 gives the user the ability to execute Primos commands on any
 point in the file system from any point in the file system.

 Examples

 x −d //system share se2031 2031 700
 x pma prog.p 1/707
 x "r system>sw4000 1/1"

 x (1) − 1 − x (1)

 x (1) −−− execute Primos commands 02/22/82

 Messages

 "usage..." for missing directory name after "−d".
 "<directory−name>: bad pathname" for bad directory.

 See Also

 fc (1), ld (1), primos (1), stop (1)

 x (1) − 2 − x (1)

 xcc (1) −−− compile a C program with Prime compiler 08/27/84

 | Usage

 | xcc <pathname> [−c] [−b[<b_pathname>]] [−l[<l_pathname>]]

 | Description

 | ’Xcc’ compiles the C program in <pathname> with Prime’s C
 | compiler. The ".c" suffix on the source file name is
 | optional, although ’xcc’ requires that the source code
 | reside in a file named with a ".c" suffix. If the source
 | file name specified in <pathname> does not have a ".c"
 | suffix, ’xcc’ will append a ".c" and attempt to process a
 | file with that name. The object code is stored in
 | "<pathname>.b". If the "−b" command−line argument specifies
 | <b_pathname>, ’xcc’ stores the object code in a file with
 | that name.

 | A full description of the C language is beyond the scope of
 | this document. For complete information, refer to The C
 | Programming Language by Brian W. Kernighan and Dennis M.
 | Ritchie (Prentice−Hall, 1978).

 | The following options are available:

 | −b Compile the source code into the object file named
 | "<b_pathname>". ’Xcc’ places the object code into
 | the file "<pathname>.b" if this option or
 | <b_pathname> is unspecified.

 | −c Invoke the "−CHECKOUT" option. This option causes
 | the compiler to parse the source code without
 | producing object code. This option suppresses the
 | "−b" and "−l" options.

 | −l Produce a listing in the file "<l_pathname>.l".
 | If <l_pathname> is unspecified, ’xcc’ places the
 | listing in the file named "<pathname>.l".

 | Examples

 | xcc file.c
 | xcc prog.c −l prog_list −b bonzo.b
 | xcc test.c −c −l

 | Messages

 | Numerous and self−explanatory.

 | Bugs

 | There is no way to tell Prime C programs about the Subsytem
 | standard input/output ports.

 xcc (1) − 1 − xcc (1)

 xcc (1) −−− compile a C program with Prime compiler 08/27/84

 | Does not give full access to the all the options available
 | with Prime’s C compiler.

 | See Also

 | ld (1), xccl (1), bind (3)

 xcc (1) − 2 − xcc (1)

 xccl (1) −−− compile and load a Prime C program 08/27/84

 | Usage

 | xccl <program name> [<’ld’ options>] [/ <’xcc’ options>]

 | Description

 | ’Xccl’ is a shell file that invokes the Primos C compiler
 | and the Primos segmented loader. If ’xccl’ is invoked with
 | no <program name> argument, it automatically processes the
 | last program edited, since it shares the shell variable ’f’
 | with the shell program ’e’. The name of the file containing
 | the program to be compiled must end with ".c", although in
 | <program name> it may be specified with or without the end−
 | ing ".c". If no output file is specified in the
 | <’ld’ options>, the output object file name will be
 | <program name> with no extension.

 | Concerning the options, ’xcc’ will be called with the
 | <’xcc’ options> specified on the command line; then ’ld’
 | will be called with the <’ld’ options> specified.

 | Examples

 | xccl myprog.c
 | xccl myprog subs.b subs2.b −l mylib
 | xccl myprog / −l mylist

 | Messages

 | "<program name>.c: cannot open"

 | See Also

 | xcc (1), ld (1), bind (3)

 xccl (1) − 1 − xccl (1)

 xref (1) −−− Ratfor cross reference generator 08/27/84

 | Usage

 xref { −{b | i | l | p | u} } { <pathname> }

 Description

 ’Xref’ produces a cross referenced listing of a Ratfor
 program. The listing consists of the program text, with
 consecutively numbered lines, and an alphabetical concor−
 dance of the identifiers that occur in the program text.

 The program text is read from the concatenation of all the
 files specified as <pathname> arguments. If there are none,
 standard input is used.

 Several command line options are available to control the
 operation of ’xref’:

 | −b highlight keywords by boldfacing. Any Ratfor or
 Fortran keywords contained in the program text will be
 boldfaced (by overstriking) in the listing. If the
 listing is to be printed on a line printer, the output
 should be filtered through ’os’ to convert the over−
 strikes into multiple lines with Fortran forms control.

 | −i process ’include’ statements. Any ’include’ statements
 encountered in the program text will be expanded in−
 line. The included lines will be numbered
 consecutively as if they appeared in the primary input
 file.

 | −l include literals in the concordance. Any numeric
 literals that appear in the program text will be
 included with the identifiers in the concordance.

 | −p format listing for printing. A formfeed will be
 generated following the listing of each input file.
 Output under this option is suitable for piping into
 ’pr’.

 | −u highlight keywords by underlining. Any Ratfor or
 Fortran keywords contained in the program text will be
 underlined (by overstriking) in the listing. If the
 listing is to be printed on a line printer, the output
 should be filtered through ’os’ to convert the over−
 strikes into multiple lines with Fortran forms control.

 Examples

 rfprog.r> xref
 xref −pu prog1 prog2 prog3 | print | os >/dev/lps/f

 xref (1) − 1 − xref (1)

 xref (1) −−− Ratfor cross reference generator 08/27/84

 See Also

 os (1), pr (1), rp (1)

 xref (1) − 2 − xref (1)

 yesno (1) −−− selective filter with user decision 08/06/82

 Usage

 yesno [−yes | −no]

 Description

 This program can be used as a filter in a pipe to regulate
 input to other commands. It reads a line at a time from
 standard input (STDIN), echoes the line in quotes followed
 by a question mark, and then prompts the user for a yes or
 no answer. A response of "y", "ye", "yes", or "ok" all
 result in the line being passed to standard output (STDOUT).
 | A response of "n" or "no" discards the line. Any other
 | response causes an error message and the user is prompted
 | with the line again. Case is not significant in responses.

 Use of the optional "−yes" argument causes a carriage return
 (null response) to default to a "yes" response. Use of the
 optional "−no" argument causes a null response to default to
 "no."

 If the user types an end−of−file character (normally a
 control C) as the response to any decision prompt then the
 current line and all subsequent lines in the input are
 discarded.

 All display and prompting are done to and from device TTY
 and thus will not show up in any of the standard inputs or
 outputs should they be redirected or piped. As a result,
 this command cannot be used in a phantom job, nor may a set
 of pre−determined answers be constructed as input to the
 program.

 Examples

 lf −ca | yesno −no | del −n
 lf −c /user/mfd | yesno | del −sd −n
 =dictionary=> yesno −yes >my_dictionary

 Messages

 "Usage: yesno ..." for improper command line syntax.

 "answer YES or NO." for incorrect or unknown response.

 Bugs

 Does not recognize "−y" or "−n" as command line arguments.

 Will not work in batch or phantom jobs.

 yesno (1) − 1 − yesno (1)

 | Section 2 − Library Subprograms

 A complete set of library subroutines is necessary for
 effective program development under the Subsystem. The primitive
 operations suggested by Kernighan and Plauger in Software Tools,
 as well as many local functions, have been compiled and placed in
 | the libraries =lib=/vswtlb, =lib=/vswtmath, and =lib=/vshlib (for
 | V−mode programs).

 This section is designed to give the user a working
 knowledge of these functions and subroutines. Each routine has
 its own entry organized under the following headings. Note that
 empty entries are omitted entirely.

 Header Line

 The subprogram’s name, a synopsis of its purpose, and
 the date of last modification to its documentation.

 Calling Information

 The subprogram declaration and the declarations of its
 arguments, as well as the name of the library in which
 it can be found. This should be used as a reference
 when constructing calls to a given routine.

 Function

 A description of the purpose of the routine, along with
 the interpretations of its arguments and the returned
 value (if any).

 Implementation

 A short discussion of the strategy used to implement
 the routine, abstracted from the source code.

 Arguments Modified

 Names of those arguments modified by the routine.

 Calls

 Other subprograms called by this routine.

 Bugs

 Known problems with the use of the routine.

 See Also

 References to further information or related routines.

 − 1 −

 acos$m (2) −−− calculate inverse cosine 04/27/83

 | Calling Information

 | longreal function acos$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse cosine of an angle.
 | The argument to the function is the cosine of the angle, and
 | the function returns the measure of the angle, in radians.
 | Arguments to the function must be in the closed interval
 | [−1.0, 1.0]. In the case of an error, the default return
 | value is zero. The condition SWT_MATH_ERROR$ is signalled
 | if there is an argument error. An on−unit can be
 | established to deal with this error; the SWT Math Library
 | contains a default handler named ’err$m’ which the user may
 | utilize.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is implemented as a rational minimax approxima−
 | tion on a modified argument value. It is adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dsqt$m, Primos signl$

 | See Also

 | cos$m (2), dacs$m (2), dsqt$m (2), err$m (2),
 | SWT Math Library User’s Guide

 acos$m (2) − 1 − acos$m (2)

 addset (2) −−− put character in a set if it fits 05/29/82

 Calling Information

 integer function addset (c, set, j, maxsiz)
 character c, set (maxsiz)
 integer j, maxsiz

 Library: vswtlb (standard Subsystem library)

 Function

 ’Addset’ puts the character ’c’ in the array ’set’ at posi−
 tion ’j’ and increments ’j’, provided that ’j’ is not
 greater than ’maxsiz’. The function return is YES if ’c’
 was inserted, NO otherwise.

 Implementation

 Trivial.

 Arguments Modified

 set, j

 addset (2) − 1 − addset (2)

 amatch (2) −−− look for pattern match at specific location 05/29/82

 Calling Information

 integer function amatch (lin, from, pat, tagbeg, tagend)
 character lin (ARB), pat (MAXPAT)
 integer from, tagbeg (9), tagend (9)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Amatch’ checks the substring of the line ’lin’ starting at
 position ’from’ to see if it matches the pattern in ’pat’.
 ’Pat’ must have been created by the utility routine ’makpat’
 beforehand. If a match occurs, then the arrays ’tagbeg’ and
 ’tagend’ are used to record the beginning and end of any
 tagged subpatterns that appeared in ’pat’ (i.e., ’tag−
 beg(N+1)’ contains the index in ’lin’ of the start of the
 Nth tagged subpattern, ’tagend(N+1)’ contains the index in
 ’lin’ of the end of the Nth subpattern, while ’tagbeg(1)’
 and ’tagend(1)’ bracket the entire matched string). The
 function return is the index of the next unexamined charac−
 ter in ’lin’ if a match was found, zero otherwise.

 Implementation

 ’Amatch’ steps through successive entries in the pattern,
 attempting to match them against the line of text. Most of
 the complexity arises in handling closures; ’amatch’ calls
 ’omatch’ repeatedly to match the longest possible substring,
 then backs up as necessary to make the remainder of the pat−
 tern match. This may involve multiple backups, since there
 may be more than one closure in a pattern.

 ’Omatch’ is called to match all single non−closure pattern
 elements. If ’omatch’ fails, then the stack of pending
 closures is examined. If empty, ’amatch’ returns zero; if
 non−empty, ’amatch’ reduces the last closure and attempts to
 match again.

 Whenever a pattern tag (open brace or close brace) is
 encountered in the pattern, ’amatch’ records the current
 offset in the line in ’tagbeg’ or ’tagend’, whichever is
 appropriate.

 Arguments Modified

 tagbeg, tagend

 Calls

 omatch, patsiz

 amatch (2) − 1 − amatch (2)

 amatch (2) −−− look for pattern match at specific location 05/29/82

 Bugs

 Rather slow.

 See Also

 match (2), makpat (2), omatch (2), find (1), ed (1), se (1)

 amatch (2) − 2 − amatch (2)

 asin$m (2) −−− calculate inverse sine 04/27/83

 | Calling Information

 | longreal function asin$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse sine of an angle. The
 | argument to the function is the sine of the angle, and the
 | function returns the measure of the angle, in radians.
 | Arguments to the function must be in the closed interval
 | [−1.0, 1.0]. If an error is signalled, the default function
 | value is zero. The condition SWT_MATH_ERROR$ is signalled
 | if there is an argument error. An on−unit can be
 | established to deal with this error; the SWT Math Library
 | contains a default handler named ’err$m’ which the user may
 | utilize.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is implemented as a rational minimax approxima−
 | tion on a modified argument value. It is adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dsqt$m, Primos signl$

 | See Also

 | dasn$m (2), dsqt$m (2), err$m (2), sin$m (2),
 | SWT Math Library User’s Guide

 asin$m (2) − 1 − asin$m (2)

 atan$m (2) −−− calculate inverse tangent 04/27/83

 | Calling Information

 | longreal function atan$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse tangent of an angle.
 | The argument to the function is the tangent of the angle,
 | and the function returns the measure of the angle, in
 | radians. The function will not signal any errors based on
 | input values.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is implemented as a rational approximation on a
 | modified argument value. It is adapted from the algorithm
 | given in the book Software Manual for the Elementary
 | Functions by William Waite and William Cody, Jr. (Prentice−
 | Hall, 1980).

 | See Also

 | datn$m (2), err$m (2),
 | SWT Math Library User’s Guide

 atan$m (2) − 1 − atan$m (2)

 atoc (2) −−− convert an address to a string 01/07/83

 Calling Information

 integer function atoc (ptr, str, size)
 integer ptr (3), size
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Atoc’ converts the 2 or 3 word 64V mode indirect pointer in
 the address ’ptr’ to a printable EOS−terminated string in
 ’str’. No more than ’size’ elements of ’str’ will be
 modified, including the trailing EOS.

 The pointer is converted into the format

 [f]<ring>.<segment>.<word>[.<bit>]

 <Ring>, <segment>, and <word> are positive octal integers.
 The character "f" is present only if the fault bit in the
 pointer is set, and <bit> is included only if the extension
 bit is set.

 The function return is the number characters used to
 represent the address (the length of ’str’).

 Implementation

 Bits are removed from the indirect pointer and converted to
 character representation with calls to ’gitoc’ in a straigh−
 tforward manner.

 Arguments Modified

 str

 Calls

 gitoc, ctoc

 See Also

 atoc (2), other conversion routines (?*toc (2), cto?* (2))

 atoc (2) − 1 − atoc (2)

 cant (2) −−− print cant open file message 02/24/82

 Calling Information

 subroutine cant (file_name)
 character file_name (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Cant’ is a Kernighan/Plauger subroutine normally used to
 report errors after an attempt to open a file. The
 ’file_name’ supplied (which must be an EOS−terminated
 string) is printed on ERROUT, followed by the message "can’t
 open", and an immediate return to the shell is taken.

 Implementation

 ’Cant’ calls ’putlin’ to print the filename supplied, and
 ’error’ to print the "can’t open" message and return to the
 Subsystem command interpreter.

 Calls

 putlin, error

 See Also

 open (2), create (2), remark (2)

 cant (2) − 1 − cant (2)

 catsub (2) −−− add replacement text to end of string 05/29/82

 Calling Information

 subroutine catsub (lin, from, to, sub, new, k, maxnew)
 character lin (MAXLINE), new (maxnew), sub (MAXPAT)
 integer from(10), to(10), k, maxnew

 Library: vswtlb (standard Subsystem library)

 Function

 ’Catsub’ adds replacement text onto a string after a pattern
 match and substitution operation. ’Lin’ is the original
 text string matched by ’amatch’. ’From’ and ’to’ are ten−
 entry arrays specifying the beginning and end of all tagged
 subpatterns; the N’th element refers to the N−1th tagged
 pattern, and element 1 refers to the entire string matched.
 ’Sub’ is the substitution pattern created by ’maksub’.
 ’New’ is the string to receive the replacement text; its
 maximum length is ’maxnew’ and the index at which the
 replacement text is to be inserted is ’k’.

 Implementation

 The substitution string is copied into ’new’ starting at
 ’k’. Whenever a DITTO ("&" or "@<digit>") is encountered, a
 portion of the original text string is also copied.

 Arguments Modified

 new, k

 Calls

 addset

 See Also

 maksub (2), makpat (2), change (1), ed (1), se (1)

 catsub (2) − 1 − catsub (2)

 chkarg (2) −−− parse single−letter arguments 03/23/80

 Calling Information

 integer function chkarg (arg_num, result)
 integer arg_num, result (26)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Chkarg’ scans the list of arguments supplied on the command
 line, starting at position ’arg_num’, looking for arguments
 that contain a dash followed by a string of letters. For
 each letter in such an argument, ’chkarg’ looks at the
 corresponding element in the ’result’ array (the letters "A"
 and "a" correspond to element 1, "Z" and "z" to element 26).
 If the element is non−negative, it is set to a positive
 value equal to the order in which the letter was encountered
 in scanning the arguments, counting from 1. Otherwise, the
 element is left unchanged and a value of ERR is returned as
 the result of the function. Thus, illegal letters may be
 detected by setting the corresponding elements in ’result’
 to a negative value before calling ’chkarg’.

 Scanning continues, incrementing ’arg_num’, until the end of
 the argument list is reached, an argument not beginning with
 a dash is found, or an argument beginning with a dash but
 containing a subsequent character other than a letter is
 found. In the first two cases, ’chkarg’ returns with the
 number of letters encountered as its result. In the third
 case, a result of ERR is returned.

 Implementation

 ’Chkarg’ does a straightforward argument scan, using
 ’getarg’ to fetch each argument in turn. The actions taken
 for each argument are simply those mentioned above.

 Arguments Modified

 arg_num, result

 Calls

 getarg

 See Also

 getarg (2), getkwd (2)

 chkarg (2) − 1 − chkarg (2)

 chkinp (2) −−− check for terminal input availability 03/24/80

 Calling Information

 logical function chkinp (flag)
 logical flag

 Library: vswtlb (standard Subsystem library)

 Function

 ’Chkinp’ returns the value ".true." if there are characters
 waiting to be read in the user’s terminal buffer. Other−
 wise, ’chkinp’ returns ".false.".

 Implementation

 ’Chkinp’ enters 64R addressing mode and executes the
 instruction

 SKS ’704

 (which is trapped and interpreted by Primos). If the
 instruction skips, ’chkinp’ reenters 64V mode and returns
 ".true.". Otherwise, it reenters 64V mode and returns
 ".false.".

 Arguments Modified

 flag

 chkinp (2) − 1 − chkinp (2)

 chkstr (2) −−− check a string for printable characters 03/22/82

 Calling Information

 integer function chkstr (str, len)
 character str (ARB)
 integer len

 Library: vswtlb (standard Subsystem library)

 Function

 ’Chkstr’ looks to see if the characters in a string are all
 printable. If an EOS character is encountered before any
 unprintable characters are encountered and before ’len’
 characters are examined, ’chkstr’ returns YES; otherwise, it
 returns NO.

 If ’len’ is less than or equal to zero, ’chkstr’ returns NO.

 Implementation

 ’Chkstr’ starts examining the string at the first character;
 as long as the character is not an EOS and is printable and
 ’len’ characters have not been examined, ’chkstr’ continues
 to examine the remainder of the string. When an unprintable
 or EOS character is found, or when ’len’ characters has been
 examined, ’chkstr’ quits; it returns YES if it has
 encountered an EOS character, and NO otherwise.

 See Also

 ctomn (2), mntoc (2)

 chkstr (2) − 1 − chkstr (2)

 close (2) −−− close out an open file 03/25/82

 Calling Information

 integer function close (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Close’ closes the file associated with the given file
 descriptor (the value returned by a call to ’open’,
 ’create’, or ’mktemp’) and releases its buffer areas. If
 the file was open for writing, any data still buffered is
 written to the file. After a file is closed, its file
 descriptor becomes available for future use. ’Close’
 returns OK if the attempt to close was successful, ERR
 otherwise.

 If an attempt is made to close a standard port (STDIN,
 STDOUT, etc.) ’close’ will return OK, but it will not close
 the file associated with the port.

 Implementation

 ’Close’ first checks to see if the given file descriptor is
 a standard port descriptor. If so, the attempt to close is
 ignored. If the file descriptor is illegal or corresponds
 to an already closed file, ERR is returned. ’Flush$’ is
 then called to force any pending writes on the file to be
 performed. The Primos routine SRCH$$ is used to close disk
 files; other file types are closed simply by updating Sub−
 system status areas.

 Calls

 flush, Primos srch$$

 Bugs

 Some consider the behavior on standard ports unreasonable,
 but it definitely seems useful.

 See Also

 open (2), create (2), mktemp (2), flush$ (6)

 close (2) − 1 − close (2)

 cos$m (2) −−− calculate cosine 04/27/83

 | Calling Information

 | longreal function cos$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function returns the cosine of the angle whose measure
 | (in radians) is given by the argument. The absolute value
 | of the angle plus one−half pi must be less than than
 | 26353588.0. The condition SWT_MATH_ERROR$ is signalled if
 | there is an argument error. An on−unit can be established
 | to deal with this error; the SWT Math Library contains a
 | default handler named ’err$m’ which the user may utilize.
 | If an error is signalled, the default function return is
 | zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is implemented as a minimax polynomial
 | approximation. It is adapted from the algorithm given in
 | the book Software Manual for the Elementary Functions by
 | William Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | acos$m (2), dcos$m (2), dint$p (2), err$m (2), sin$m (2),
 | SWT Math Library User’s Guide

 cos$m (2) − 1 − cos$m (2)

 cosh$m (2) −−− calculate hyperbolic cosine 04/27/83

 | Calling Information

 | longreal function cosh$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic cosine of its
 | argument, defined as cosh(x) = [exp(x) + exp(−x)]/2.
 | Arguments which produce a value too large for single
 | precision storage will signal the error condition. The con−
 | dition SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. If an error is signal−
 | led, the default function value is zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The algorithm was adapted from the algorithm given in the
 | book Software Manual for the Elementary Functions by William
 | Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m, Primos signl$

 | See Also

 | dcsh$m (2), dexp$m (2), err$m (2), sinh$m (2),
 | SWT Math Library User’s Guide

 cosh$m (2) − 1 − cosh$m (2)

 cot$m (2) −−− calculate cotangent 04/27/83

 | Calling Information

 | longreal function cot$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the cotangent of the angle whose
 | measure is given (in radians) as the argument to the func−
 | tion. The argument must have an absolute value greater than
 | 7.064835966E−9865 and less than 13176794.0. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default function return is zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is calculated based on a minimax polynomial
 | approximation over a reduced argument. It is adapted from
 | the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | dcot$m (2), dint$p (2), err$m (2), tan$m (2),
 | SWT Math Library User’s Guide

 cot$m (2) − 1 − cot$m (2)

 create (2) −−− create a new file and open it 02/28/83

 Calling Information

 file_des function create (file_name, mode)
 character file_name (ARB)
 integer mode

 Library: vswtlb (standard Subsystem library)

 Function

 ’Create’ creates a named file. The parameter ’mode’ may be
 any one of READ, WRITE, or READWRITE, and specifies the
 action(s) that may be performed on the newly−created file.
 If the file name specified already exists, it is opened and
 then truncated to zero length. ’Create’ returns a file
 descriptor if it was successful, ERR otherwise. The file
 created will have default protection keys of "a/" (owner has
 all permissions, non−owners have none).

 By default, ’create’ returns a file descriptor to a
 sequential access method (SAM) file when referring to a disk
 file. If creating a direct access method file (DAM) is
 desired, the ’mode’ argument may be ORed with the KNDAM file
 key (i.e., ’mode’ can be "READWRITE+KNDAM" to create a DAM
 file opened for reading or writing). The constant KNDAM is
 contained in the "PRIMOS_KEYS" include file.

 Implementation

 ’Create’ calls ’open’ to open the named file, then calls
 ’trunc’ to set it to zero length. If an error occurs during
 truncation, the file is closed by calling ’close’. Note
 that truncation will not be performed if ’mode’ is READ; but
 then, who would create a new file for reading only, anyway?

 Calls

 close, open, trunc

 See Also

 open (2), close (2), mktemp (2), rmtemp (2)

 create (2) − 1 − create (2)

 ctoa (2) −−− convert character to address 01/07/83

 Calling Information

 long_int function ctoa (str, i)
 character str (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctoa’ converts the address in ASCII character representa−
 tion at position ’i’ of the given string to binary format.
 ’I’ is incremented to point to the position just after the
 integer. If the character at position ’i’ is not numeric
 when ’ctoa’ is entered, the value zero is returned (the
 exceptions are blanks and tabs; these characters are ignored
 at the start of the number). ’Ctoa’ recognizes a 32−bit
 address in the following format:

 [f]<ring>.<segment>.<word>

 The presence of the character "f" at the beginning of the
 address indicates that the pointer fault bit is to be set.
 <Ring>, <segment>, and <word> are positive octal integers.
 A bit number following the address is ignored, if present.

 Implementation

 ’Ctoa’ scans the string, using the argument ’i’ as the
 starting position. Leading blanks and tabs are skipped.
 The octal integers are collected with ’gctol’. As each
 element of the address is collected, it is placed in the
 proper bit positions of the long integer return value.

 Arguments Modified

 i

 Calls

 gctol

 Bugs

 Cannot return 48 bit indirect pointers.

 See Also

 atoc (2), other conversion routines (?*toc (2) and cto?*
 (2))

 ctoa (2) − 1 − ctoa (2)

 ctoc (2) −−− convert EOS−terminated string to EOS−terminated string 03/23/80

 Calling Information

 integer function ctoc (from, to, len)
 integer len
 character from (ARB), to (len)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctoc’ copies an EOS−terminated unpacked string from one
 array to another, observing a maximum−length constraint on
 the destination array. The function return is the number of
 characters copied (i.e., the length of the string in the
 parameter ’to’).

 Note that the other string copy routine, ’scopy’, is not
 protected; if the length of the source string exceeds the
 space available in the destination string, some portion of
 memory will be garbled.

 Implementation

 A simple loop copies characters from ’from’ to ’to’ until an
 EOS is encountered or all the space available in the
 destination array is used up.

 Arguments Modified

 to

 See Also

 scopy (2), other conversion routines (’cto?*’ and ’?*toc’)
 (2)

 ctoc (2) − 1 − ctoc (2)

 ctod (2) −−− convert string to double precision real 01/07/83

 Calling Information

 long_real function ctod (str, i)
 character str (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctod’ converts the character string in the array ’str’,
 starting at position ’i’, to double precision floating point
 representation and returns this value as the result of the
 function. The variable ’i’ is incremented to a point one
 character beyond the string that was converted; the array
 ’str’ is not modified. ’Str’ must be an EOS−terminated
 unpacked character string.

 ’Ctod’ recognizes any valid Fortran constant; in particular,
 leading signs are handled. Leading blanks and tabs are
 ignored.

 Implementation

 ’Ctod’ accumulates the integer and fractional parts of the
 number, throwing away leading zeros and insignificant digits
 and computing scaling factors if necessary. A straightfor−
 ward Horner’s method conversion translates each portion of
 the constant to binary, and finally all portions are com−
 bined and appropriately scaled. Scaling is aided by using
 tables of powers−of−two exponents, to preserve as much
 accuracy as possible.

 Arguments Modified

 i

 Calls

 gctoi

 See Also

 dtoc (2), ctor (2), rtoc (2), other conversion routines
 (’cto?*’ and ’?*toc’) (2)

 ctod (2) − 1 − ctod (2)

 ctoi (2) −−− convert ascii string to integer 03/23/80

 Calling Information

 integer function ctoi (str, i)
 character str (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctoi’ converts the integer in ASCII character representa−
 tion at position ’i’ of the given string to binary format.
 ’I’ is incremented to point to the position just after the
 integer. If the character at position ’i’ is not numeric
 when ’ctoi’ is entered, the value zero is returned (the
 exceptions are blanks and tabs; these characters are ignored
 at the start of the number). ’Ctoi’ does not recognize a
 leading plus or minus sign.

 Implementation

 ’Ctoi’ scans the string, using the argument ’i’ as the
 starting position. Leading blanks and tabs are skipped. If
 a numeric is encountered, it is added to ten times the
 current value of the integer, and the scan continues; other−
 wise, ’ctoi’ exits with the desired value.

 Arguments Modified

 i

 See Also

 itoc (2), gitoc (2), gctoi (2), other conversion routines
 (’cto?*’ and ’?*toc’) (2)

 ctoi (2) − 1 − ctoi (2)

 ctol (2) −−− convert ascii string to long integer 03/23/80

 Calling Information

 long_int function ctol (str, i)
 character str (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctol’ converts the integer in ASCII character representa−
 tion at position ’i’ of the given string to binary format.
 ’I’ is incremented to point to the position just after the
 integer. If the character at position ’i’ is not numeric
 when ’ctol’ is entered, the value zero is returned (the
 exceptions are blanks and tabs; these characters are ignored
 at the start of the number). ’Ctol’ does not recognize a
 leading plus or minus sign.

 Implementation

 ’Ctol’ scans the string, using the argument ’i’ as the
 starting position. Leading blanks and tabs are skipped. If
 a numeric is encountered, it is added to ten times the
 current value of the integer, and the scan continues; other−
 wise, ’ctol’ exits with the desired value.

 Arguments Modified

 i

 See Also

 ltoc (2), gltoc (2), gctol (2), other conversion routines
 (’cto?*’ and ’?*toc’) (2)

 ctol (2) − 1 − ctol (2)

 ctomn (2) −−− translate ASCII control character to mnemonic 03/28/80

 Calling Information

 integer function ctomn (c, rep)
 character c, rep (4)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctomn’ is used to convert an unprintable ASCII character to
 its official ASCII mnemonic. The first argument is the
 character to be converted; the second is a string to receive
 the mnemonic. The function return is the length of the
 string placed in the second argument.

 If the character passed is printable, it is copied through
 unchanged to the receiving string. If not, its two− or
 three−character ASCII mnemonic (e.g. NUL, SOH, etc.) is
 copied into the receiving string.

 Implementation

 If the character is printable, it is placed in the receiving
 string, which is then terminated with EOS. If the character
 is between 128 and 160, inclusive, or equals 255, its value
 is used to compute an index into a string table containing
 the mnemonics. The mnemonic thus selected is copied into
 the receiving string.

 Arguments Modified

 rep

 Calls

 scopy

 See Also

 mntoc (2)

 ctomn (2) − 1 − ctomn (2)

 ctop (2) −−− convert EOS−terminated string to packed string 03/23/80

 Calling Information

 integer function ctop (str, i, pstr, len)
 character str (ARB)
 integer i, len
 packed_char pstr (len)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctop’ converts the EOS−terminated unpacked string in
 argument ’str’, starting at position ’i’, to packed integer
 form in the array ’pstr’. The argument ’len’ gives the
 maximum length of the array ’pstr’; no more than ’len’ words
 of this array will be modified by ’ctop’. After conversion,
 ’i’ points to the EOS at the end of ’str’, or one position
 past the last character packed if the maximum length of
 ’pstr’ is exceeded.

 The function return is the number of characters transferred
 from ’str’ to ’pstr’.

 Implementation

 ’Ctop’ picks up successive characters from ’str’ and packs
 them into ’pstr’ with the standard Subsystem macro ’spchar’.

 Arguments Modified

 i, pstr

 See Also

 ptoc (2), other conversion routines (’cto?*’ and ’?*toc’)
 (2)

 ctop (2) − 1 − ctop (2)

 ctor (2) −−− character to real conversion 03/23/80

 Calling Information

 real function ctor (str, i)
 character str (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctor’ is similar in function to ’ctoi’, except that it con−
 verts floating point numbers as well as integers. The
 character string in ’str’ is examined starting in position
 ’i’. Conversion stops when a character is encountered that
 cannot correctly appear in the number. ’I’ is updated to
 point to the first character not included in the converted
 number. The value returned by the function is the real
 (single precision) value of the character string.

 The number in ’str’ may contain a leading sign, a decimal
 point, and an exponent. A decimal point is not required.

 Implementation

 ’Ctod’ is called to convert the character string into a
 double precision value. This value is converted to single
 precision format and returned as the value of ’ctor’.

 Arguments Modified

 i

 Calls

 ctod

 See Also

 input (2), other conversion routines (’cto?*’ and ’?*toc’)
 (2)

 ctor (2) − 1 − ctor (2)

 ctov (2) −−− convert EOS−terminated string to varying string 03/01/83

 Calling Information

 integer function ctov (str, i, var, len)
 character str (ARB)
 integer i, len
 packed_char var (len)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ctov’ converts Software Tools style EOS−terminated strings
 to PL/I style "character varying" strings. Character vary−
 ing strings consist of a one−word length field, followed by
 up to 32767 words of packed character data.

 The argument ’str’ contains the EOS−terminated string to be
 converted. The integer ’i’ gives the position of the first
 character in the string to be converted, i.e. the starting
 point of the substring to be packed. ’Var’ is the array
 which is to receive the character varying string, and ’len’
 is the number of words in ’var’ available for holding
 characters plus one (for the string length word). Conver−
 sion starts at the ’i’th position in ’str’ and continues
 until an EOS is encountered in ’str’ or ’var’ is completely
 filled. The function return is the number of characters
 packed.

 Implementation

 ’Ctov’, like ’ctop’, makes repeated calls on the standard
 macro ’spchar’ to pack characters into the destination
 array. Once all characters in the string have been packed,
 or no room remains in the destination, ’ctov’ sets the first
 word of the destination array to the number of characters it
 contains and returns this number as the function value.

 Arguments Modified

 i, var

 See Also

 other conversion routines (’cto?*’ and ’?*toc’) (2)

 ctov (2) − 1 − ctov (2)

 dacs$m (2) −−− calculate double precision inverse cosine 04/27/83

 | Calling Information

 | longreal function dacs$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse cosine of an angle.
 | The argument to the function is the cosine of the angle, and
 | the function returns the measure of the angle, in radians.
 | Arguments to the function must be in the closed interval
 | [−1.0, 1.0]. The condition SWT_MATH_ERROR$ is signalled if
 | there is an argument error. An on−unit can be established
 | to deal with this error; the SWT Math Library contains a
 | default handler named ’err$m’ which the user may utilize.
 | In the case of an error, the default return value is zero.

 | Implementation

 | The function is implemented as a rational minimax approxima−
 | tion on a modified argument value. It is adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | acos$m (2), dcos$m (2), dsqt$m (2), err$m (2),
 | SWT Math Library User’s Guide

 dacs$m (2) − 1 − dacs$m (2)

 dasn$m (2) −−− calculate double precision inverse sine 04/27/83

 | Calling Information

 | longreal function dasn$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse sine of an angle. The
 | argument to the function is the sine of the angle, and the
 | function returns the measure of the angle, in radians.
 | Arguments to the function must be in the closed interval
 | [−1.0, 1.0]. The condition SWT_MATH_ERROR$ is signalled if
 | there is an argument error. An on−unit can be established
 | to deal with this error; the SWT Math Library contains a
 | default handler named ’err$m’ which the user may utilize.
 | If an error is signalled, the default function value is
 | zero.

 | Implementation

 | The function is implemented as a rational minimax
 | approximations on a modified argument value. It is adapted
 | from the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dsqt$m, Primos signl$

 | See Also

 | asin$m (2), dsin$m (2), dsqt$m (2), err$m (2),
 | SWT Math Library User’s Guide

 dasn$m (2) − 1 − dasn$m (2)

 date (2) −−− return time, date and other system information 02/24/82

 Calling Information

 subroutine date (item, str)
 integer item
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Date’ is used to return several interesting pieces of data
 that Primos keeps for the user. The first argument is a
 switch to select the data returned; the second is a string
 for receiving the data. The following values of the first
 argument are defined:

 SYS_DATE 1 date, in format mm/dd/yy
 SYS_TIME 2 time, in format hh:mm:ss
 SYS_USERID 3 user’s login name
 SYS_PIDSTR 4 user’s three digit process id
 SYS_DAY 5 day of the week (e.g. "monday", "tues−
 day", etc.)
 SYS_PID 6 process id as a binary integer in str
 (1)
 SYS_LDATE 7 name of day, name of month, day, year
 SYS_MINUTES 8 number of minutes past midnight in str
 (1..2)
 SYS_SECONDS 9 number of seconds past midnight in str
 (1..2)
 SYS_MSEC 10 number of milliseconds past midnight in
 str (1..2)

 If the first argument is not one of these values, an empty
 string is returned.

 Implementation

 ’Date’ calls the Primos routine TIMDAT to fetch time, date,
 process id, and login name information. This information is
 then reformatted as needed.

 Arguments Modified

 str

 Calls

 Primos timdat, encode (2), mapup (2), ptoc (2), wkday (2)

 date (2) − 1 − date (2)

 datn$m (2) −−− calculate double precision inverse tangent 04/27/83

 | Calling Information

 | longreal function datn$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the inverse tangent of an angle.
 | The argument to the function is the tangent of the angle,
 | and the function returns the measure of the angle, in
 | radians. The function will not signal any errors based on
 | input values.

 | Implementation

 | The function is implemented as a rational approximation on a
 | modified argument value. It is adapted from the algorithm
 | given in the book Software Manual for the Elementary
 | Functions by William Waite and William Cody, Jr. (Prentice−
 | Hall, 1980).

 | See Also

 | atan$m (2), err$m (2),
 | SWT Math Library User’s Guide

 datn$m (2) − 1 − datn$m (2)

 dble$m (2) −−− create a longreal from a longint 04/27/83

 | Calling Information

 | longreal function dble$m (l)
 | longint l

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’dble$m’ function implements something akin to the
 | Fortran 66 ’dble’ function, or the Fortran 77 ’dreal’ func−
 | tion. It takes as an argument a 32 bit integer and returns
 | a double precision floating point number of the same value.
 | This function should always be used when converting 32 bit
 | integers to double precision real numbers because the code
 | generated by some of the compilers will (potentially) lose
 | up to 8 bits of mantissa precision.

 | Implementation

 | The algorithm involved was derived from known register
 | structure; see the source code for specifics.

 | See Also

 | SWT Math Library User’s Guide

 dble$m (2) − 1 − dble$m (2)

 dcos$m (2) −−− calculate double precision cosine 04/27/83

 | Calling Information

 | longreal function dcos$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function returns the cosine of the angle whose measure
 | (in radians) is given by the argument. The the absolute
 | value of the angle plus one−half pi must be less than
 | 26353588.0. The condition SWT_MATH_ERROR$ is signalled if
 | there is an argument error. An on−unit can be established
 | to deal with this error; the SWT Math Library contains a
 | default handler named ’err$m’ which the user may utilize.
 | If an error is signalled, the default function return is
 | zero.

 | Implementation

 | The function is implemented as minimax polynomial
 | approximation. It is adapted from the algorithm given in
 | the book Software Manual for the Elementary Functions by
 | William Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | cos$m (2), dacs$m (2), dint$p (2), dsin$m (2), err$m (2),
 | SWT Math Library User’s Guide

 dcos$m (2) − 1 − dcos$m (2)

 dcot$m (2) −−− calculate double precision cotangent 04/27/83

 | Calling Information

 | longreal function dcot$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the cotangent of the angle whose
 | measure is given (in radians) as the argument to the func−
 | tion. The argument must have an absolute value greater than
 | 7.064835966E−9865 and less than 13176794.0. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default function return is zero.

 | Implementation

 | The function is calculated based on a minimax polynomial
 | approximation over a reduced argument. It is adapted from
 | the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | cot$m (2), dint$p (2), dtan$m (2), err$m (2),
 | SWT Math Library User’s Guide

 dcot$m (2) − 1 − dcot$m (2)

 dcsh$m (2) −−− calculate double precision hyperbolic cosine 04/27/83

 | Calling Information

 | longreal function dcsh$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic cosine of its
 | argument, defined as cosh(x) = [exp(x) + exp(−x)]/2. The
 | absolute value of the argument must be less than
 | 22623.630826296. The condition SWT_MATH_ERROR$ is signalled
 | if there is an argument error. An on−unit can be
 | established to deal with this error; the SWT Math Library
 | contains a default handler named ’err$m’ which the user may
 | utilize. If an error is signalled, the default function
 | value is zero.

 | Implementation

 | Adapted from the algorithm given in the book Software Manual
 | for the Elementary Functions by William Waite and William
 | Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m, Primos signl$

 | See Also

 | cosh$m (2), dexp$m (2), dsnh$m (2), err$m (2),
 | SWT Math Library User’s Guide

 dcsh$m (2) − 1 − dcsh$m (2)

 decode (2) −−− perform formatted conversion from character 03/30/80

 Calling Information

 integer function decode (str, sp, fmt, fp, ap, a1, ..., a10)
 character str (ARB), fmt (ARB)
 integer sp, fp, ap
 untyped a1, ..., a10

 Library: vswtlb (standard Subsystem library)

 Function

 ’Decode’ is used to convert a character string to a number
 of items in various internal formats (e.g. integer, double
 precision floating point, address, etc.). Its function is
 similar to the Fortran statement of the same name.

 The argument ’str’ is the character string to be decoded,
 and ’sp’ indicates the position in ’str’ at which decoding
 is to begin. ’Fmt’ is a string of format control directives
 (discussed below), and ’fp’ indicates the position in ’fmt’
 of the first format control directive to be used for
 decoding. ’A1’ through ’a10’ (at most) are variables to
 receive decoded data; ’a2’ through ’a10’ are optional, and
 any or all may be omitted. ’Ap’ indicates the next variable
 in the list of ’a1’ through ’a10’ to receive decoded data.

 ’Decode’ performs the decoding operation until it either
 runs out of string to decode or of format to control the
 decoding. The arguments ’sp’, ’fp’, and ’ap’ are always
 updated to point to the next unused character in ’str’, the
 next unused character in ’fmt’, and the next variable in the
 variable list, respectively.

 The function return is OK if not all of the format string
 was used, EOF if all of the format string was used, or ERR
 if an input string was in error.

 The format string consists of a series of "format control
 directives." Each directive controls the conversion of a
 segment of the character string into some internal form. A
 directive consists of the format flag character (an asterisk
 "*") followed by up to three comma−separated option fields,
 and a single character format specifier. The option fields
 are normally designated the "width", "base", and "delimiter
 character" fields. The width field controls the maximum
 number of characters in the input string to be converted.
 The base field controls the radix representation assumed for
 integer fields (and a few other miscellaneous options,
 discussed below). The delimiter character field specifies a
 character that may be used to terminate the conversion
 process for a single variable if it is encountered in the
 string.

 The following format specifiers are available:

 decode (2) − 1 − decode (2)

 decode (2) −−− perform formatted conversion from character 03/30/80

 a

 The input string must contain an address of the form
 "<ring_number>.<segment_number>.<offset>". The receiv−
 ing variable must be a two−word address pointer.

 b or y

 The input string must contain a boolean constant, which
 may be 1 or 0, TRUE or FALSE, T or F, YES or NO, Y or
 N. The receiving variable must be of type integer or
 type logical.

 d or f

 The input string must contain a standard Fortran
 representation of a double−precision floating−point
 constant. The receiving variable must be of type
 long_real or double_precision.

 g

 None of the input string is examined by this format
 code. The argument pointer ’ap’ is set to the value of
 the width field; this allows input items to be re−
 filled or skipped entirely.

 h

 The input string must contain at least as many charac−
 ters as are specified by the width field. The given
 number of characters are then packed into the receiving
 variable, which must be an array of integers larger
 than the number of characters divided by two (since
 there are two characters per word on the Prime.) The
 base field, if nonzero, specifies a limit on the number
 of words of the receiving array that will be changed;
 thus, if the width field is not specified, the entire
 input string (possibly terminated by the delimiter
 character) will be packed into the receiving array, but
 the array will be protected from overrun by the
 specification of its size in the base field. The code
 ’h’ comes from the Fortran term "hollerith literal,"
 which is the type of the receiving variable.

 i

 The input string must contain a representation of a
 short (16−bit) integer constant. If the base field is
 non−zero, it is assumed to be the radix used for
 representation of the integer. If zero, base 10 is
 assumed. The base specified in the format directive
 may be overridden in the input string by giving a radix
 followed by the letter "r" followed by the desired
 value, e.g. "2r1001" or "16rA000". The receiving
 variable must be of type integer.

 decode (2) − 2 − decode (2)

 decode (2) −−− perform formatted conversion from character 03/30/80

 l

 The input string must contain a representation of a
 long (32−bit) integer constant. The syntax and
 semantics of this form are identical to form ’i’ above,
 with the exception that the receiving variable must be
 of type long_int (integer*4).

 n

 The width field specifies the number of newlines in the
 input string to be skipped. If the end of the input
 string is encountered, the skipping stops. This code
 is most often used by the ’input’ routine.

 p

 The syntax and semantics of this form are identical to
 the ’h’ form above, with the exception that a period
 character (".") will be placed at the end of the
 receiving array so that its length may be determined at
 run time.

 r

 The input string must contain a standard Fortran
 representation of a single−precision floating point
 number. The receiving variable must be of type real.

 s

 As many characters as specified by the base field
 (unless the delimiter character is encountered first)
 are copied from the input string to the receiving
 variable, which must be an array of characters.

 t

 The string pointer variable ’sp’ is set to the value of
 the width field, or to the length of the input string,
 whichever is shorter.

 u

 The values of the width, base, and delimiter character
 fields specified on this directive become the default
 values for the remainder of the format directives in
 the format string.

 v

 The syntax and semantics of this directive are similar
 to the ’h’ directive above, with the exception that the
 receiving variable must be a PL/I−style character−
 varying array.

 decode (2) − 3 − decode (2)

 decode (2) −−− perform formatted conversion from character 03/30/80

 x

 The number of characters specified by the width field
 (unless the delimiter character is encountered first)
 are skipped; that is, the specified portion of the
 input string is ignored.

 Implementation

 Impossible to explain to the uninitiated reader. Please see
 the code, and a system guru.

 Arguments Modified

 sp, fp, ap, a1−a10

 Calls

 ctoi, ctop, ctoc, length, ctoa, move$, ctov, gctoi, gctol,
 ctor, ctod, remark

 See Also

 input (2), conversion routines (’cto?*’) (2)

 decode (2) − 4 − decode (2)

 delarg (2) −−− delete a command line argument 03/23/80

 Calling Information

 integer function delarg (ap)
 integer ap

 Library: vswtlb (standard Subsystem library)

 Function

 ’Delarg’ deletes the command line argument indicated by
 ’ap’. Subsequent arguments have their positions shifted
 left by one. ’Delarg’ returns OK if there is an argument at
 the position specified by ’ap’, and EOF otherwise.

 ’Delarg’ can be used by an argument parsing routine to
 discard arguments that it recognizes, while leaving other
 arguments for later action. Then, routines subsequently
 examining the command line arguments are not bothered by
 arguments already processed.

 Implementation

 ’Delarg’ simply shifts the pointers for arguments following
 ’ap’ in the Subsystem common area down by one and then
 reduces the argument count by one.

 See Also

 getarg (2), parscl (2)

 delarg (2) − 1 − delarg (2)

 delete (2) −−− remove a symbol from a symbol table 03/25/82

 Calling Information

 subroutine delete (symbol, table)
 character symbol (ARB)
 pointer table

 Library: vswtlb (standard Subsystem library)

 Function

 ’Delete’ removes the character−string symbol given as its
 first argument from the symbol table given as its second
 argument. All information associated with the symbol is
 lost.

 The symbol table specified must have been generated by the
 routine ’mktabl’.

 If the given symbol is not present in the symbol table,
 ’delete’ does nothing; this condition is not considered an
 error.

 Implementation

 ’Delete’ calls ’st$lu’ to determine the location of the
 given symbol in the symbol table. If present, it is unlin−
 ked from its hash chain. The dynamic storage space
 allocated to the symbol’s node is returned to the system by
 a call to ’dsfree’.

 Calls

 st$lu, dsfree

 See Also

 enter (2), lookup (2), mktabl (2), rmtabl (2), st$lu (6),
 dsget (2), dsfree (2), dsinit (2), sctabl (2)

 delete (2) − 1 − delete (2)

 dexp$m (2) −−− calculate double precision exponential to the base e 04/27/83

 | Calling Information

 | longreal function dexp$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function raises the constant e to the power of the
 | argument. Arguments to the function must be in the closed
 | interval [−22802.46279888, 22623.630826296]. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default function return value is zero.

 | It should be noted that the function could simply return
 | zero for sufficiently small arguments rather than signalling
 | an error since the actual function value would be
 | indistinguishable from zero to the precision of the machine.
 | However, there is no mapping to zero in the actual function,
 | and that is why the function signals an error in this case.

 | Implementation

 | The routine is implemented as a functional approximation
 | performed on a reduction of the argument. It is adapted
 | from the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | err$m (2), exp$m (2),
 | SWT Math Library User’s Guide

 dexp$m (2) − 1 − dexp$m (2)

 dint$m (2) −−− get integer part of an longreal 04/27/83

 | Calling Information

 | longreal function dint$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’dint$m’ function implements the Fortran ’dint’ func−
 | tion. That is, it takes one double precision value and
 | resets bits in the mantissa to remove any fractional part of
 | the value. The return value is a double precision real.

 | The ’dint$m’ of 1.5 is 1.0, the ’dint$m’ of −1.5 is −1.0,
 | and the ’dint$m’ of anything less than 1.0 and greater than
 | −1.0 is equal to zero.

 | The ’dint$m’ function has no single precision counterpart in
 | the SWT Math library. The routine, as defined, does not
 | recognize or signal any error conditions. It is written so
 | as to work of both 550 and 750 style machines, despite the
 | internal difference in register structure.

 | Implementation

 | The algorithm involved was developed from known register
 | structure; see the source code for specifics.

 | See Also

 | SWT Math Library User’s Guide

 dint$m (2) − 1 − dint$m (2)

 dint$p (2) −−− get integer part of a longreal (PMA only) 04/27/83

 | Calling Information

 | DFLD VALUE
 | EXT DINT$P
 | JSXB DINT$P
 | DFST IVALUE

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’dint$p’ function implements the Fortran ’dint’ func−
 | tion. It is part of the SWT Math Library ’dint$m’ routine
 | and is a special shortcall entrance that can only be used by
 | PMA code. It takes one double precision value and resets
 | bits in the mantissa to remove any fractional part of the
 | value. The return value is a double precision real.

 | Implementation

 | The algorithm involved was developed from known register
 | structure; see the source code for specifics.

 | See Also

 | dint$m (2),
 | SWT Math Library User’s Guide

 dint$p (2) − 1 − dint$p (2)

 dln$m (2) −−− calculate double precision logarithm to the base e 04/27/83

 | Calling Information

 | longreal function dln$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function implements the natural logarithm (base e)
 | function. Arguments must be greater than zero. The condi−
 | tion SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. If invalid arguments
 | are supplied to the function the default return is the log
 | of the absolute value of the argument, or zero in the case
 | of a zero argument.

 | Implementation

 | The algorithm involved uses a minimax rational approximation
 | on a reduction of the argument. All positive inputs will
 | return a valid result. It is adapted from the algorithm
 | given in the book Software Manual for the Elementary
 | Functions by William Waite and William Cody, Jr. (Prentice−
 | Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | err$m (2), ln$m (2),
 | SWT Math Library User’s Guide

 dln$m (2) − 1 − dln$m (2)

 dlog$m (2) −−− calculate double precision logarithm to the base 10 04/27/83

 | Calling Information

 | longreal function dlog$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function implements the common logarithm (base 10)
 | function. Arguments should be greater than zero. The con−
 | dition SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. If an invalid argument
 | is supplied to the function the default return is the log of
 | the absolute value of the argument, or zero in the case of a
 | zero argument.

 | Implementation

 | The algorithm involved uses a minimax rational approximation
 | on a reduction of the argument. All positive inputs will
 | return a valid result. It is adapted from the algorithm
 | given in the book Software Manual for the Elementary
 | Functions by William Waite and William Cody, Jr. (Prentice−
 | Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | err$m (2), log$m (2),
 | SWT Math Library User’s Guide

 dlog$m (2) − 1 − dlog$m (2)

 dodash (2) −−− expand subrange of a set of characters 01/07/83

 Calling Information

 subroutine dodash (valid, array, i, set, j, maxset)
 character valid (ARB), array (ARB), set (maxset)
 integer i, j, maxset

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dodash’ expands character ranges given in regular expres−
 sions. ’Valid’ is the set of valid characters in the
 expansion range (e.g. A−Z for upper case letters, 0−9 for
 digits, etc.). ’Array’ contains the character range string,
 starting at position ’i’−1. ’Set’ not only is the recipient
 of the expansion, but element ’j’−1 contains the initial
 character of the range. ’Maxset’ is the maximum size ’set’
 may attain.

 Implementation

 The indices of the first and last characters in the range
 are determined, and the substring of ’valid’ thus selected
 is copied into ’set’.

 Arguments Modified

 i, set, j

 Calls

 addset, esc, index

 See Also

 makpat (2), tlit (1), ed (1), se (1)

 dodash (2) − 1 − dodash (2)

 dsdump (2) −−− produce semi−readable dump of storage 03/25/82

 Calling Information

 subroutine dsdump (form)
 character form

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dsdump’ dumps the contents of memory managed by ’dsinit’,
 ’dsget’, and ’dsfree’ to ERROUT. It is primarily intended
 for debugging.

 The single argument is either the defined value LETTER,
 signifying that a character−format dump is desired, or the
 defined value DIGIT, signifying that an integer−format dump
 is desired.

 Implementation

 ’Dsdump’ simply steps through the memory area (in common
 block DS$MEM) printing the locations and sizes of available
 blocks and calling ’dsdbiu’ to dump the location, size, and
 contents of each block that is in use. The dump terminates
 when the end of memory (as indicated by the contents of the
 first word of memory) is reached.

 The routine ’print’ is used for all output.

 Calls

 print, dsdbiu

 Bugs

 As advertised, the dump is only semi−readable.

 See Also

 dsget (2), dsfree (2), dsinit (2), dsdbiu (6)

 dsdump (2) − 1 − dsdump (2)

 dsfree (2) −−− free a block of dynamic storage 01/07/83

 Calling Information

 subroutine dsfree (block)
 pointer block

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dsfree’ returns a block of storage allocated by ’dsget’ to
 the available space list. The argument must be a pointer
 returned by ’dsget’.

 See the remarks under ’dsget’ for required initialization
 measures.

 Implementation

 ’Dsfree’ is an implementation of Algorithm B on page 440 of
 Volume 1 of The Art of Computer Programming, by Donald E.
 Knuth. The reader is referred to that source for detailed
 information.

 ’Dsfree’ and ’dsget’ maintain a list of free storage blocks,
 ordered by address. ’Dsfree’ searches the list to find the
 proper location for the block being returned, and inserts
 the block into the list at that location. If blocks on
 either side of the newly−returned block are available, they
 are coalesced with the new block. If the block address does
 not correspond to the address of any allocated block,
 ’dsfree’ remarks "attempt to free unallocated block" and
 waits for the user to type a letter "c" to continue. If any
 other character is typed, the program is terminated.

 Calls

 getlin, remark

 Bugs

 The algorithm itself is not the best.

 See Also

 dsget (2), dsinit (2), dsdump (2), dsdbiu (6)

 dsfree (2) − 1 − dsfree (2)

 dsget (2) −−− obtain a block of dynamic storage 01/07/83

 Calling Information

 pointer function dsget (w)
 integer w

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dsget’ searches its available memory list for a block that
 is at least as large as its first argument. If such a block
 is found, its index in the memory list is returned; other−
 wise, an error message is printed and the program
 terminates.

 In order to use ’dsget’, the following declarations must be
 present:

 integer mem (MEMSIZE)
 common /ds$mem/ mem

 or the "DS_DECL" system macro can used for the declarations
 as follows:

 DS_DECL (mem, MEMSIZE)

 where MEMSIZE is supplied by the user, and may take on any
 positive value between 6 and 32767, inclusive. Furthermore,
 memory must have been initialized with a call to ’dsinit’:

 call dsinit (MEMSIZE)

 Implementation

 ’Dsget’ is an implementation of Algorithm A’ on pages 437−
 438 of Volume 1 of The Art of Computer Programming, by
 Donald E. Knuth. The reader is referred to that source for
 detailed information.

 ’Dsget’ searches a linear list of available blocks for one
 of sufficient size. If none are available, a call to
 ’error’ results; otherwise, the block found is broken into
 two pieces, and the index (in array ’mem’) of the piece of
 the desired size is returned to the user. The remaining
 piece is left on the available space list. Should this
 | procedure cause a block to be left on the available space
 | list that is smaller than a threshold size, the few extra
 words are awarded to the user and the block is removed
 entirely, thus speeding up the next search for space. If
 insufficient space is available, ’dsget’ reports "out of
 storage space" and allows the user to obtain a dump of
 dynamic storage space if he desires.

 dsget (2) − 1 − dsget (2)

 dsget (2) −−− obtain a block of dynamic storage 01/07/83

 Calls

 dsdump, error, getlin, remark

 Bugs

 Should probably return error status to the user if space is
 not found. It is also somewhat annoying for the user to
 have to declare the storage area, but Fortran prevents
 effective use of pointers, so this inconvenience is neces−
 sary for now.

 See Also

 dsfree (2), dsinit (2), dsdump (2), dsdbiu (6)

 dsget (2) − 2 − dsget (2)

 dsin$m (2) −−− calculate double precision sine 04/27/83

 | Calling Information

 | longreal function dsin$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function returns the sine of the angle whose measure
 | (in radians) is given by the argument. The absolute value
 | of the argument must be less than 26353588.0. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default return value will be zero.

 | Implementation

 | The function is implemented as a minimax polynomial
 | approximation. Note that for angles sufficiently small the
 | value of the sine function is equal to the measure of the
 | angle. Adapted from the algorithm given in the book
 | Software Manual for the Elementary Functions by William
 | Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | dasn$m (2), dcos$m (2), dint$p (2), err$m (2), sin$m (2),
 | SWT Math Library User’s Guide

 dsin$m (2) − 1 − dsin$m (2)

 dsinit (2) −−− initialize dynamic storage space 03/25/82

 Calling Information

 subroutine dsinit (w)
 integer w

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dsinit’ initializes an area of storage in the common block
 DS$MEM so that the routines ’dsget’ and ’dsfree’ can be used
 for dynamic storage allocation. The memory to be managed
 must be supplied by the user, by two declarations of the
 form:

 integer mem (MEMSIZE)
 common /ds$mem/ mem

 or the "DS_DECL" system macro can be used for the
 declarations as follows:

 DS_DECL (mem, MEMSIZE)

 The memory size (supplied by the user) must then be passed
 to ’dsinit’ as its argument:

 call dsinit (MEMSIZE)

 Implementation

 ’Dsinit’ sets up an available space list consisting of two
 blocks, the first empty and the second containing all
 remaining memory. The first word of memory (below the
 available space list) is set to the total size of memory;
 this information is used only by the dump routines ’dsdump’
 and ’dsdbiu’.

 Calls

 error

 See Also

 dsget (2), dsfree (2), dsdump (2), dsdbiu (6)

 dsinit (2) − 1 − dsinit (2)

 dsnh$m (2) −−− calculate double precision hyperbolic sine 04/27/83

 | Calling Information

 | longreal function dsnh$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic sine of its argument,
 | defined as sinh(x) = [exp(x) − exp(−x)]/2. The argument
 | must be less than 22623.630826296. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default return value will be zero.

 | Implementation

 | The algorithm involved was adapted from the algorithm given
 | in the book Software Manual for the Elementary Functions by
 | William Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m, Primos signl$

 | See Also

 | dcsh$m (2), dexp$m (2), err$m (2), sinh$m (2),
 | SWT Math Library User’s Guide

 dsnh$m (2) − 1 − dsnh$m (2)

 dsqt$m (2) −−− calculate double precision square root 04/27/83

 | Calling Information

 | longreal function dsqt$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the square root of a double
 | precision floating point value. Attempts to take the square
 | root of negative values will result in an error. The condi−
 | tion SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. The default return in
 | this case will be the square root of the absolute value of
 | the argument.

 | Implementation

 | The algorithm involved is based on Newton’s approximation
 | method with an initial multiplicative approximation. The
 | argument is scaled to within the range [0.5, 2.0) and then
 | the algorithm is iterated to a solution. It is adapted from
 | the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | err$m (2), sqrt$m (2),
 | SWT Math Library User’s Guide

 dsqt$m (2) − 1 − dsqt$m (2)

 dtan$m (2) −−− calculate double precision tangent 04/27/83

 | Calling Information

 | longreal function dtan$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the tangent of the angle whose
 | measure is given (in radians) as the argument to the func−
 | tion. The arguments must have an absolute value of less
 | than 13176794.0. The condition SWT_MATH_ERROR$ is signalled
 | if there is an argument error. An on−unit can be
 | established to deal with this error; the SWT Math Library
 | contains a default handler named ’err$m’ which the user may
 | utilize. If an error is signalled, the default return value
 | will be zero.

 | Implementation

 | The function is calculated based on a minimax polynomial
 | approximation over a reduced argument. It is adapted from
 | the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | dcot$m (2), dint$p (2), err$m (2), tan$m (2),
 | SWT Math Library User’s Guide

 dtan$m (2) − 1 − dtan$m (2)

 dtnh$m (2) −−− calculate double precision hyperbolic tangent 04/27/83

 | Calling Information

 | longreal function dtnh$m (x)
 | longreal x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic tangent of their
 | argument, defined as tanh(x) = 2/[exp(2x) + 1]. The func−
 | tion never signals an error and returns valid results for
 | all inputs.

 | Implementation

 | Adapted from the algorithm given in the book Software Manual
 | for the Elementary Functions by William Waite and William
 | Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m

 | See Also

 | dexp$m (2), tanh$m (2),
 | SWT Math Library User’s Guide

 dtnh$m (2) − 1 − dtnh$m (2)

 dtoc (2) −−− convert double precision value to ASCII string 02/25/82

 Calling Information

 integer function dtoc (val, out, w, d)
 long_real val
 character out (ARB)
 integer w, d

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dtoc’ converts the double precision floating point value in
 ’val’ to a character string in ’out’. The length of the
 string is returned as the value of ’dtoc’.

 The values of ’w’ and ’d’ control the format of the con−
 verted string. Generally speaking, ’d’ controls the number
 of decimal positions or significant digits, and ’w’
 specifies the maximum length of the field. The following
 table explains the operation of ’dtoc’ for different com−
 binations of ’w’ and ’d’. (Fortran and Basic programmers
 take note: d>12 corresponds to Basic output, 12>=d>=0
 corresponds to Fortran ’F’ format, and 0>d>=−12 corresponds
 to Fortran ’E’ format)

 ’d’ ’w’ Result

 d>12 w>16 If the value is in the range 1e7>v>=1e−2,
 it is converted into a BASIC−like fixed−
 point with no trailing zeroes after the
 decimal point. Otherwise, it is converted
 into a BASIC−like exponential format with
 no trailing zeroes after the decimal
 point.

 w<=16 An error is returned.

 12>=d>=0 − If possible, the value is converted to a
 fixed−point format with ’d’ positions
 after the decimal point. Otherwise, it is
 converted to an exponential format with as
 many significant digits as possible. If
 ’w’ is less than 8, an exponential conver−
 sion is not possible and an error will be
 returned.

 0>d>−12 w>d+6 The number is converted to an exponential
 format with ’d’ significant digits.

 w<=d+6 An error is returned.

 To return an error, ’dtoc’ places a string consisting of a
 single question mark in ’out’.

 It should be noted that ’w’ is roughly equivalent to the

 dtoc (2) − 1 − dtoc (2)

 dtoc (2) −−− convert double precision value to ASCII string 02/25/82

 ’size’ parameter in other conversion routines such as ’itoc’
 and ’ltoc’; ’w’ specifies the maximum number of digits that
 may be produced. Thus, the maximum number of characters
 returned in ’out’ will never exceed ’w + 1’.

 Implementation

 ’Dtoc’ first scales the number into the range 1 > v >= .1.
 It then determines the format in which the number is to be
 printed and rounds the value to the proper number of digits.
 The digits are then extracted in character form. One of
 several conversion routines is then entered to take the
 extracted digits and add decimal points, signs, and
 exponents as required by the ’d’ and ’w’ specifications.

 Arguments Modified

 out

 Calls

 itoc

 Bugs

 Has been thoroughly debugged, but has not stood the test of
 time.

 See Also

 ctod (2), other conversion routines (’cto?*’ and ’?*toc’)
 (2)

 dtoc (2) − 2 − dtoc (2)

 edit (2) −−− invoke the line−oriented text editor 06/26/84

 | Calling Information

 subroutine edit (filename, fdin, fdout)
 character filename (ARB)
 file_des fdin, fdout

 Library: vedtlb (Subsystem text editor library)

 Function

 ’Edit’ accesses the Subsystem line−oriented text editor.
 When called, ’edit’ begins an editing session, reading edit−
 ing commands from the file specified by "fdin" and writing
 editing output on the file specified by "fdout". If
 "filename" is other than an empty string, ’edit’ reads the
 | file into the edit buffer before accepting editing commands.

 | Since the editor can now call the shell, the shared shell
 | library, ’vshlib’, must be loaded along with the editor
 | library ’vedtlb’ for any program that calls ’edit’.

 | ’Edit’ arranges to catch the ’LOGOUT$’ condition. When a
 | LOGOUT$ occurs, ’edit’ saves the current contents of the
 | edit buffer in the file =home=/<prog>.logout, where <prog>
 | is the name of the program using ’edit’. For example, ’ed’
 | would have the buffer saved in =home=/ed.logout, while
 | ’moot’ would have its buffer saved in =home=/moot.logout.

 For complete information on editing commands, see
 Introduction to the Software Tools Text Editor

 Implementation

 ’Edit’ is the top−level routine for the Subsystem line
 editor.

 edit (2) − 1 − edit (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 Calling Information

 integer function encode (str, max, fmt, a1, a2, ..., a10)
 integer max
 character str (max), fmt (ARB)
 untyped a1, a2, ..., a10

 Library: vswtlb (standard Subsystem library)

 Function

 ’Encode’ is a memory−to−memory data format conversion
 routine, patterned after the Fortran statement of the same
 name. It takes a number of data items, converts them to
 character form under the control of a format, and places the
 results in a designated character string.

 The first argument to ’encode’ is the string to receive the
 converted data, and the second argument is the maximum
 length of that string. The third argument is the format
 which controls conversion (discussed below). The remaining
 arguments are data items to be converted. The function
 return is the number of characters actually transferred to
 the receiving string.

 The format consists of a number of literal characters (to be
 inserted into the receiving string without interpretation)
 and format codes (which control conversion of data items).
 Format codes are paired left−to−right with successive
 arguments that are to be converted, just as in Fortran
 formatted I/O. Format codes have the following general
 form:

 * [width] [, [base] [, [fill]]] form

 ’Width’ is a decimal integer whose absolute value is the
 minimum number of character positions in the receiving
 string that will be used to store the result of the conver−
 | sion. If the value is zero, or insufficiently large to
 | accommodate the representation of the data item, as many
 character positions as necessary, and no more, will be used.
 If ’width’ has a positive value, the converted string is
 given default justification within the specified field
 width: numeric items are right justified, and string items
 are left justified. If ’width’ is negative, reverse
 justification is used.

 ’Fill’ is a single character (blank by default) to be used
 to pad the converted string to the desired width. Depending
 on the justification mode, enough instances of the fill
 character are either prepended or appended to the converted
 string to make up the difference between its width and the
 specified field width.

 ’Base’ is a decimal integer that is interpreted differently

 encode (2) − 1 − encode (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 according to whether the item being converted is an integer
 or a string: for integers, the absolute value of ’base’
 indicates the conversion radix (in the range 2 to 16), and
 its sign indicates whether the item being converted is to be
 treated as signed or unsigned (negative values of ’base’
 yield unsigned conversions); for character strings, ’base’
 indicates the maximum number of characters that will be
 extracted from the string item and placed into the receiving
 string.

 ’Form’ is a single−letter format code that indicates the
 type of conversion to be performed. Since the interpreta−
 tion of the other fields depends critically on the form,
 each form will be discussed individually.

 All three of the parameters ’width’, ’base’ and ’fill’ may
 be represented either explicitly in the format string, or by
 the character "#", which indicates that the value is to be
 taken from the current item in the argument list. This
 allows for a limited form of run−time format specification.

 Form Function

 a Interpret the corresponding argument as an address
 pointer with the following format:

 fr.ssss.wwwwww.bb

 where ’f’ is present if the pointer is invalid
 (i.e., would generate a fault if referenced
 through), ’r’ is the protection ring (0−3)
 associated with the address, ’ssss’ is the segment
 number (0−7777 octal) of the address, ’wwwwww’ is
 the word number (0−177777 octal) of the address,
 and ’bb’, if present, is the bit offset (0−17
 octal) of the address. For more information on
 the significance of the various fields of an
 address pointer, see Prime publication FDR−3059:
 ’Assembly Language Programmer’s Guide’.

 b Interpret the corresponding argument as a Boolean
 (Fortran LOGICAL) value. The possible results are
 the strings "TRUE" and "FALSE", where the number
 of characters transferred from the result to the
 receiving string is determined by ’base’. If
 ’base’ is less than 1, only the "T" or the "F" is
 transferred.

 c The argument to be converted is an ASCII charac−
 ter, right−justified and zero−filled in its word.
 The ’base’ specifier does not apply. "*<width>c"
 is equivalent to "*<width>,1s".

 d Interpret the corresponding argument as a double−
 precision floating−point number. The ’base’

 encode (2) − 2 − encode (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 specifier controls the output format. If ’base’
 is greater than 14, the converted text will resem−
 ble BASIC output: up to six significant digits
 and no trailing zeros. This is the default. If
 ’base’ is between 14 and 0, inclusive, the text
 will resemble Fortran "F"−format output: ’base’
 digits to the right of the decimal point. If
 ’base’ is negative, the text will resemble Fortran
 "E"−format output: scientific notation with
 "−’base’" digits to the right of the decimal
 point. (See the conversion routine ’dtoc’ for
 further information on real−to−character conver−
 sion.)

 g Change the current argument list pointer to
 ’width’. This form allows argument list elements
 to be reused for interpretation by multiple format
 codes. It is particularly useful when ’width’ is
 specified as "#", allowing the binding of argument
 list elements to format codes to be deferred until
 run−time.

 h Interpret the current argument list element as a
 Hollerith character string containing ASCII
 characters packed two−per−word. The ’base’
 parameter determines the number of characters to
 be extracted from the Hollerith string.

 i Interpret the corresponding argument as a single−
 precision integer. The absolute value of the
 ’base’ specifier gives the radix to be used for
 conversion: 2 for binary, 3 for ternary, 16 for
 hexadecimal, etc. If ’base’ is positive, the
 integer is treated as a signed, two’s−complement
 number with 15 bits of precision, plus a sign bit,
 with possible values in the range −32768 to
 +32767. If ’base’ is negative, the integer is
 treated as an unsigned binary number with 16 bits
 of precision with possible values in the range 0
 to 65535.

 l The corresponding argument is a double−precision
 (long) integer. See the comments under "i" for an
 explanation of the action of the ’base’ specifier.

 n Insert ’width’ NEWLINEs into the receiving string.
 None of the arguments in the argument list is
 referenced. If ’width’ is less than 1, a single
 NEWLINE is inserted.

 p Interpret the corresponding argument as a period−
 terminated packed character string (such as that
 generated by the Ratfor "string"p construct). The
 ’base’ specifier is used as the maximum number of
 characters to be copied.

 encode (2) − 3 − encode (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 r Interpret the corresponding argument as a single−
 precision floating−point number. The comments
 under "d" above also apply to this form.

 s Interpret the corresponding argument as an unpac−
 ked EOS−terminated character string (such as
 generated by "string"s in Ratfor, or as returned
 by ’getlin’). The ’base’ specifier gives the
 maximum number of characters to be transferred.

 t Tab to the character position in the receiving
 string specified by ’width’. If the position is
 beyond the current end of the string, pad the
 string to that position with instances of the
 ’fill’ character. The ’base’ parameter is not
 used.

 u Set default values for the ’width’, ’base’ and
 ’fill’ parameters. Subsequent formatting codes
 that do not specify these values will be
 interpreted as if the values specified here had
 been used.

 v Interpret the corresponding argument as a PL/I−
 style varying character string. The ’base’
 specifier once again gives the maximum number of
 characters that will be transferred to the receiv−
 ing string.

 x Transfer an entire field of fill characters to the
 receiving string. The ’base’ specifier is unused.
 The ’fill’ specifier gives the character to be
 used for filling the field; the default is a
 blank.

 y Interpret the corresponding argument as a YES/NO
 value such as those used frequently throughout the
 Subsystem. The possible results are the strings
 "YES" and "NO". The interpretation of the ’base’
 parameter is similar to that used with the "b"
 form.

 The following forms are supported for compatibility with an
 earlier version of the ’print’ subroutine. They should not
 be used in new code.

 f Treat the argument as a double−precision floating−
 point number. "F" is equivalent to "d" in every
 way.

 j The corresponding argument is a single−precision
 integer. "*<width>,<base>j" is equivalent to
 "*<width>,−<base>i".

 encode (2) − 4 − encode (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 m The corresponding argument is a long integer.
 "*<width>,<base>m" is equivalent to "*<width>,−
 <base>l".

 Since ’encode’ is a complex routine, a few samples may be
 helpful in getting the hang of its use. For example, the
 following call will convert two integers to decimal free−
 form, with a comma and space between them:

 len = encode (str, MAXLINE, "*i, *i"s, xcoord, ycoord)

 These calls will print an "address" and the contents of the
 array ’memory’ at that address, in base 16 with zero fill:

 len = encode (str, MAXLINE, "(*4,−16,0i) *4,−16,0i*n"s,
 address, memory (address))
 call putlin (str, STDOUT)

 A typical line of output from the above might be

 (A000) 0002

 A filename for use by ’open’ might be composed like this:

 call encode (name, MAXPATH, "=temp=/*s*2,,0i"s,
 username, sequence_number)

 If ’username’ was a string containing "SYSTEM" and
 ’sequence_number’ contained the integer 1, the previous call
 would set ’name’ to the string "=temp=/SYSTEM01".

 Implementation

 Since Fortran passes arguments to subroutines by reference,
 ’encode’ does not need to declare the actual type of its
 arguments. The type is determined by scanning the format
 string and associating arguments with forms, left−to−right.
 ’Encode’ calls various "something−to−character" conversion
 routines to translate data from internal form to character
 string, which it then simply places in the receiving string
 (checking to make sure the length of the receiver is not
 exceeded). ’Encode’ is not simple, and a reading of the
 code is necessary if full understanding of its implementa−
 tion is required.

 Arguments Modified

 str

 Calls

 atoc, ctoc, ctoi, ptoc, vtoc, gitoc, gltoc, rtoc, dtoc,

 encode (2) − 5 − encode (2)

 encode (2) −−− formatted memory−to−memory conversion routine 01/07/83

 remark

 Bugs

 No more than ten items may be encoded. This routine is
 highly dependent on the ability of Prime’s Fortran to handle
 calls with varying numbers of arguments.

 See Also

 input (2), print (2), conversion routines (’cto?*’ and
 ’?*toc’) (2)

 encode (2) − 6 − encode (2)

 enter (2) −−− place symbol in symbol table 03/25/82

 Calling Information

 integer function enter (symbol, info, table)
 character symbol (ARB)
 integer info (ARB)
 pointer table

 Library: vswtlb (standard Subsystem library)

 Function

 ’Enter’ places the character−string symbol given as its
 first argument, along with the information given in its
 second argument, into the symbol table given as its first
 argument. The function return value (which is ignored by
 almost everyone) is a pointer to the dynamic storage area
 containing the text of the symbol.

 The symbol table used must have been created by the routine
 ’mktabl’. The size of the info array must be at least as
 large as the symbol table node size, determined at table
 creation time.

 Should the given symbol already be present in the symbol
 table, its information field will simply be overwritten with
 the new information.

 ’Enter’ uses the dynamic storage management routines, which
 require initialization by the user; see ’dsinit’ for further
 details.

 Implementation

 ’Enter’ calls ’st$lu’ to find the proper location for the
 symbol. If the symbol is not present in the table, a call
 to ’dsget’ fetches a block of memory of sufficient size,
 which is then linked onto the proper chain from the hash
 table. Once the location of the node for the given symbol
 is known, the contents of the information array are copied
 into the node’s information field.

 Calls

 st$lu, dsget, scopy

 See Also

 lookup (2), delete (2), mktabl (2), rmtabl (2), st$lu (6),
 dsget (2), dsfree (2), dsinit (2), sctabl (2)

 enter (2) − 1 − enter (2)

 equal (2) −−− compare two strings for equality 03/23/80

 Calling Information

 integer function equal (str1, str2)
 character str1 (ARB), str2 (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Equal’ is used to compare EOS−terminated strings. The two
 arguments are the strings to be compared; the function
 return is YES if they are equal (on a character−by−character
 basis), NO if they are not.

 Implementation

 ’Equal’ simply loops through each of the two strings, com−
 paring characters. If a mismatch occurs, NO is returned;
 otherwise, YES is returned. Comparison stops when an EOS is
 encountered. To be equal, strings must be of equal length
 (EOS’s must match).

 See Also

 strcmp (2)

 equal (2) − 1 − equal (2)

 err$m (2) −−− common error condition handler for math routines 04/27/83

 | Calling Information

 | subroutine err$m (ptr_to_cfh)
 | pointer ptr_to_cfh

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’err$m’ procedure is provided as a default handler for
 | the SWT_MATH_ERROR$ condition. It takes a single argument,
 | a 2 word pointer as defined by the condition mechanism, and
 | prints information about the routine and values which
 | signalled the fault. All output from the ’err$m’ routine is
 | sent to ERROUT. Included in the output is the name of the
 | faulting routine, the location from which the faulting
 | routine was called, the value of the argument involved, and
 | the default return value to be used.

 | The Primos MKON$F routine can be used to set up this on−unit
 | handler in Ratfor and Fortran 66 programs. The Primos
 | subroutine MKON$P can be used in Fortran 77 and PL/P
 | programs.

 | The user may wish to copy and modify the source code for the
 | ’err$m’ procedure so as to provide a more specific form of
 | error handling. If this is done, it would probably be a
 | good idea to rename the user’s version to something other
 | than ’err$m.’

 | Calls

 | print

 | See Also

 | Primos mkon$f, Primos mkon$p, Primos signl$,
 | SWT Math Library User’s Guide

 err$m (2) − 1 − err$m (2)

 error (2) −−− print fatal error message, then die 02/24/82

 Calling Information

 subroutine error (message)
 character message (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Error’ is a Kernighan/Plauger routine used to report fatal
 errors. The message passed to it is printed on ERROUT, and
 the program then terminates. An error status of 1000 is
 passed back to the command interpreter, which then decides
 whether or not shell program execution will proceed.

 Implementation

 ’Error’ calls ’remark’ to print the error message on file
 ERROUT. Error status is set by a call to ’seterr’, then a
 ’stop’ statement is executed to make a normal return back to
 the Subsystem command interpreter. (Note that Ratfor con−
 verts ’stop’ statements into calls to the subroutine ’swt’.)

 Calls

 remark, swt, seterr

 See Also

 remark (2), swt (2)

 error (2) − 1 − error (2)

 esc (2) −−− map substring into escaped character if appropriate 05/29/82

 Calling Information

 character function esc (array, i)
 character array (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Esc’ examines the string ’array’ at character position ’i’.
 If there is an escape character ("@") at this point, then
 the next character in the array is examined. If it is a
 letter "n", the function return is the character NEWLINE.
 If it is a letter "t", the function return is the character
 TAB. If the character is neither "n" nor "t", or if the
 escape character was not present, the function return is the
 character itself. In all cases, ’i’ is incremented to point
 to the next unexamined character in the string.

 Arguments Modified

 i

 Bugs

 Should probably handle "b" for backspace, arbitrary octal
 and hex character constants, and a few other things.

 esc (2) − 1 − esc (2)

 exec (2) −−− execute pathname 02/24/82

 Calling Information

 subroutine exec (path_name)
 character path_name (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Exec’ is a means of chaining execution to another program.
 The argument is a pathname specifying the Primos run file of
 the program to be executed. ’Exec’ returns if an error was
 encountered, otherwise control is passed to the called
 program and no return is possible.

 Implementation

 ’Exec’ calls the Subsystem routine ’getto’ to get to the UFD
 in which the file to be executed exists. The existence of
 the file is checked with the function ’findf$’; if the file
 exists, it is executed via a call to the Primos routine
 RESU$$. If the file is not found, or could not be reached
 by ’getto’, ’exec’ returns to the calling program. Note
 that since a call to RESU$$ is used, ’exec’ can be used to
 execute P300 run−file format programs only.

 Calls

 getto, findf$, Primos resu$$

 Bugs

 Since Primos provides no way to tell if a file is executable
 object code, there is always a strong possibility that
 resuming a file of unknown type will cause an unrecoverable
 error.

 See Also

 execn (2), getto (2), findf$ (2)

 exec (2) − 1 − exec (2)

 execn (2) −−− execute program named by a quoted string 03/23/80

 Calling Information

 subroutine execn (path_name)
 packedchar path_name (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 The function of ’execn’ is almost identical to that of
 ’exec’. The only difference is in the form of the argument
 passed to the two routines. ’Exec’ expects an EOS
 terminated string; ’execn’ expects a string of characters
 packed two per word, terminated with a period. Like ’exec’,
 ’execn’ executes the program whose location is specified by
 the given pathname if that is possible; if an error occurs,
 control returns to the calling program. On a successful
 call, control passes to the called program, and the calling
 program is lost.

 Implementation

 ’Execn’ calls ’ptoc’ to unpack its argument into a temporary
 area; this temporary area is then passed as an argument to
 ’exec’, which does all the real work.

 Calls

 ptoc, exec

 Bugs

 Same as ’exec’.

 See Also

 exec (2), ptoc (2)

 execn (2) − 1 − execn (2)

 exp$m (2) −−− calculate exponential to the base e 04/27/83

 | Calling Information

 | longreal function exp$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function raises the constant e to the power of the
 | argument. Arguments to the ’exp$m’ routine must be in the
 | closed interval [−89.415985, 88.029678]. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default function return value is zero.

 | It should be noted that the function could simply return
 | zero for sufficiently small arguments rather than signalling
 | an error since the actual function value would be
 | indistinguishable from zero to the precision of the machine.
 | However, there is no mapping to zero in the actual function,
 | and that is why the function signals an error in this case.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The routine is implemented as a functional approximation
 | performed on a reduction of the argument. It is adapted
 | from the algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | dexp$m (2), dint$p (2), err$m (2), ln$m (2),
 | SWT Math Library User’s Guide

 exp$m (2) − 1 − exp$m (2)

 expand (2) −−− convert a template into an EOS−terminated string 03/25/82

 Calling Information

 integer function expand (template, str, strlen)
 integer strlen
 character template (ARB), str (strlen)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Expand’ is used to convert Subsystem path templates into
 strings. Templates are used to make the directory structure
 of the Subsystem user−selectable without the expense of code
 modification. The first argument of ’expand’ should be an
 EOS−terminated string containing a template to be expanded;
 the second argument should be a string to receive the
 result, and the third argument should be the maximum
 allowable length of the result. The function return is the
 length of the expanded template, or ERR if an undefined or
 ill−formed template is present.

 The template consists of uninterpreted characters, which are
 passed through to the expanded version unchanged, and
 identifiers surrounded by equals signs, which are replaced
 by template text and then rescanned. If the template must
 contain uninterpreted equal signs, they must be "doubled"
 (eg. for one =, use ==).

 See ’lutemp’ for a list of templates currently supported.

 Implementation

 ’Expand’ maintains indices into the template, the receiving
 string, and a pushback buffer, which is initially empty. As
 long as the pushback buffer is empty, ’expand’ copies
 characters from the template to the receiving string. When
 a single equals sign ("=") is encountered, characters are
 stored in another buffer until a trailing equals sign is
 seen. This buffer is passed to ’lutemp’, which places the
 resulting template expansion in the pushback buffer. As
 long as the pushback buffer is nonempty, ’expand’ scans it
 instead of the original template; this allows template
 expansions to contain additional templates.

 Arguments Modified

 str

 Calls

 lutemp

 expand (2) − 1 − expand (2)

 expand (2) −−− convert a template into an EOS−terminated string 03/25/82

 See Also

 lutemp (6), follow (2), getto (2)

 expand (2) − 2 − expand (2)

 fcopy (2) −−− copy one file to another 01/07/83

 Calling Information

 subroutine fcopy (in, out)
 file_des in, out

 Library: vswtlb (standard Subsystem library)

 Function

 ’Fcopy’ is a routine that copies the contents of one file to
 another. The two arguments specify the file descriptors of
 the source and destination files, respectively. Both files
 must be open with the proper access modes (i.e., READ or
 READWRITE access for the source, and WRITE or READWRITE
 access for the destination); neither is rewound before or
 after the copy.

 Implementation

 ’Fcopy’s strategy depends on the types of devices
 represented by the source and destination files; if both are
 disk files, the routines ’readf’ and ’writef’ are called
 repeatedly to transfer large blocks of data. For all other
 combinations of source and destination device types, ’get−
 lin’ and ’putlin’ are called repeatedly to transfer one line
 at a time. Even for disk files, ’getlin’ may be called, to
 insure that the buffer state is consistent.

 Calls

 getlin, mapsu, putlin, readf, writef

 Bugs

 There is no provision for an error return of any sort; no
 status is passed back to the calling program to indicate
 success or failure of the copy.

 See Also

 getlin (2), putlin (2), readf (2), writef (2)

 fcopy (2) − 1 − fcopy (2)

 filcpy (2) −−− copy a file and its attributes 03/06/82

 Calling Information

 integer function filcpy (from, to)
 character from (ARB), to (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Filcpy’ is used to copy a file from one place to another,
 insuring that the copy possesses the same attributes
 (protection keys, time of last modification, read/write
 lock, and dumped/modified bits) as the original.

 The ’from’ argument is the pathname of the source file; the
 ’to’ argument is the pathname of the destination. The func−
 tion return is OK if the copy succeeded, ERR otherwise.

 Implementation

 ’Filcpy’ obtains the ’from’ files attributes with a call to
 | the Primos routine ENT$RD and then opens it with a call to
 | the Primos routine SRCH$$. An attempt is then made to open
 the ’to’ file with the same type. If the attempt fails, the
 ’to’ file is removed and an error exit occurs. If the
 destination file is a non−empty segment directory, it is
 then cleaned out with ’rmseg$’.

 The file is copied by ’cpfil$’ or ’cpseg$’, if it is an
 ordinary file or a segment directory, respectively. If it
 is ordinary, it is truncated after the copy to insure that
 no old data remains.

 Several calls to the Primos routine SATR$$ are then made to
 set the destination file’s attributes.

 Calls

 | getto, Primos srch$$, Primos ent$rd, ptoc, remove, rmseg$,
 cpseg$, cpfil$, Primos prwf$$, Primos satr$$

 See Also

 fcopy (2), cp (1)

 filcpy (2) − 1 − filcpy (2)

 file$p (2) −−− connect Pascal file variables to Subsystem files 11/19/82

 Calling Information

 type file_name = array [1..7] of char;
 procedure file$p (file: text; name: file_name); extern;

 Library: vswtlb (standard Subsystem library)

 Function

 ’File$p’ may be called from a Pascal program to allow that
 program to access the redirection and pipe features of Sub−
 system I/O. Each call to ’file$p’ can connect any Pascal
 file variable to any Subsystem file. The call to ’file$p’
 is equivalent to, and is used instead of, the Pascal "reset"
 and "rewrite" statements.

 To use ’file$p’, it should be declared as a level 1
 procedure:

 procedure file$p(var f: text; n: file_name); extern;

 It may then be called to connect input and output, for exam−
 ple:

 file$p(input,’STDIN ’);
 file$p(output,’STDOUT ’);

 The name of the Subsystem file to be connected must be in
 upper case and space filled. It may be any of the fol−
 lowing: STDIN, STDIN1, STDIN2, STDIN3, ERRIN, STDOUT,
 STDOUT1, STDOUT2, STDOUT3, or ERROUT.

 Implementation

 ’File$p’ searches a table of Subsystem file names to
 determine the standard unit number for the requested file.
 If the name is not in the table, ’file$p’ calls the Primos
 routine ERRPR$ to signal a bad file name error. If the name
 is in the table, a call to ’mapsu’ is made to map the stan−
 dard unit number into the Subsystem unit number, and
 ’flush$’ is called to ensure that the file has been written
 to disk. Then ’mapfd’ is called to determine the Primos
 file unit associated with the file, if there is one. If
 there is no associated file unit, the file is on the
 terminal and ’file$p’ initializes the Pascal file control
 block for a terminal file. Otherwise, the Primos routine
 ATTDEV is called to connect the requested file, and the
 | Pascal file control block is initialized. After the type of
 | file is determined (disk or terminal) the appropriate name
 is copied into the Pascal file control block; ’TTY’ for
 terminal files and for /dev/null, and the Primos treename
 for disk files.

 file$p (2) − 1 − file$p (2)

 file$p (2) −−− connect Pascal file variables to Subsystem files 11/19/82

 Arguments Modified

 file

 Calls

 ctop, equal, flush$, gfnam$, mapfd, mapsu, mktr$, move$,
 ptoc, Primos attdev, Primos errpr$

 Bugs

 Files redirected to /dev/null are not supported.

 Pascal terminal input does not behave correctly, the back−
 space key cannot be used to erase previously entered charac−
 ters.

 See Also

 init$p (2)

 file$p (2) − 2 − file$p (2)

 filset (2) −−− expand character set, stop at delimiter 05/29/82

 Calling Information

 subroutine filset (delim, array, i, set, j, maxset)
 character delim, array (ARB), set (maxset)
 integer i, j, maxset

 Library: vswtlb (standard Subsystem library)

 Function

 ’Filset’ expands a character class specification in ’array’
 into a list of characters in ’set’. ’I’ specifies the
 starting position in ’array’, ’j’ gives the starting posi−
 tion in ’set’, and ’maxset’ gives the maximum size of ’set’.
 Expansion stops when there is insufficient room in ’set’ or
 when the character contained in ’delim’ is encountered in
 ’array’.

 Character sets consist of arbitrary characters, two lower−
 case letters separated by a hyphen, two upper−case letters
 separated by a hyphen, or two digits separated by a hyphen.
 The last three cases represent a range of characters,
 including the endpoints.

 Implementation

 Ordinary characters are simply stuffed into ’set’ with calls
 to ’addset’. The range notation is expanded by ’dodash’.

 Arguments Modified

 i, set, j

 Calls

 addset, esc, index, dodash

 See Also

 dodash (2), makpat (2)

 filset (2) − 1 − filset (2)

 filtst (2) −−− perform existence and size tests on a file 09/10/84

 | Calling Information

 integer function filtst (path, zero, permissions, exists,
 type, readable, writeable, dumped)
 character path (MAXPATH)
 integer zero, permissions, exists, type
 integer readable, writeable, dumped

 Library: vswtlb (standard Subsystem library)

 Function

 ’Filtst’ may be used to perform a number of tests on a named
 file. The arguments specify which tests are to be per−
 formed, in a way described below. The function return is
 YES if all tests succeeded, NO if any one failed, or ERR if
 a test could not be made.

 ’Path’ is an EOS−terminated string containing the pathname
 of the file to be tested. ’Zero’ is −1 if the file is to be
 tested for non−zero length, 1 if for zero length, and 0 if
 it is not to be tested for length. ’Permissions’ is a bit
 | mask of protection keys, as returned by the Primos routines
 | DIR$RD and ENT$RD. or 0 if protections are not to be
 tested. ’Exists’ is −1 if the file is to be tested for
 nonexistence, 1 if for existence, and 0 if it is not to be
 tested for existence. ’Type’ is 0 if the file’s type is not
 to be tested; otherwise, it is the same as the file type
 | returned by Primos ENT$RD logically or’ed with octal 100 (to
 | distinguish between the SAM file type and the "no test"
 value). ’Readable’ is −1 if the file is to be tested for
 non−readability, 1 if for readability, and 0 if no test is
 to be performed. ’Writeable’ is −1 if the file is to be
 tested for non−writeability, 1 if for writeability, and 0 if
 writeability is not to be tested. ’Dumped’ is −1 if the
 file is to be tested for not being dumped, 1 if for being
 dumped, and 0 if the dumped bit is not to be tested.

 Implementation

 | Various calls to the Primos routines SRCH$$, ENT$RD and
 | PRWF$$ are made to check the attributes specified by the
 arguments. The function return is YES if and only if the
 results of all tests were true, ERR if Primos detected an
 error during any test, NO otherwise.

 Calls

 | getto, Primos srch$$, open, close, Primos prwf$$, Primos
 | ent$rd, Primos at$hom

 filtst (2) − 1 − filtst (2)

 filtst (2) −−− perform existence and size tests on a file 09/10/84

 See Also

 file (1), finfo$ (6)

 filtst (2) − 2 − filtst (2)

 follow (2) −−− path name follower 07/08/83

 | Calling Information

 integer function follow (path, sethome)
 character path (ARB)
 integer sethome

 Library: vswtlb (standard Subsystem library)

 Function

 | ’Follow’ changes the current working directory. ’Path’ is a
 | pathname assumed to be composed of nodes that are only UFDs,
 | with no data files or segment directories. ’Follow’
 | "attaches" (Primos terminology) to each of the directories
 | and subdirectories named in the pathname in sequence, thus
 | "following" a path through the file system to the last
 | directory named. ’Sethome’ is a set−home key; if zero, the
 | home directory remains unchanged, and the pathname specifies
 | a new working directory; if ’sethome’ equals one, the path−
 | name specifies a new home directory.

 | ’Follow’ returns ERR if there was a syntax error in the
 | pathname or if a directory could not be attached, and OK if
 | the attach was successful.

 Implementation

 | ’Follow’ sets up an on−unit for the "BAD_PASSWORD$" condi−
 | tion in order to handle errors during the attaching process.
 | If the pathname supplied is empty, ’follow’ attaches back to
 | the home directory by calling the Primos routine AT$HOM.
 Otherwise, ’follow’ calls the routine ’getto’ to reach the
 | parent directory of the last directory in the path, and then
 | calls the Primos routine AT$REL to take the final step in
 the path. If ’getto’ fails to parse the pathname or reach
 | the parent directory or if AT$REL encounters an error, ’fol−
 | low’ attaches back to the home directory and returns ERR; if
 | successful it returns OK.

 Calls

 | bponu$, ctov, ptoc, getto, Primos at$hom, Primos at$rel,
 | Primos break$, Primos mklb$f, Primos mkonu$

 See Also

 getto (2), cd (1)

 follow (2) − 1 − follow (2)

 gctoi (2) −−− generalized character to integer conversion 03/23/80

 Calling Information

 integer function gctoi (str, i, radix)
 character str (ARB)
 integer radix, i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gctoi’ is similar to the routine ’ctoi’, except that it
 accepts base indicators and signs. Conversion begins on the
 string ’str’ at position ’i’. The converted integer is
 returned as the value of the function. ’I’ will be updated
 to indicate the first position not used in the conversion.

 Input to ’gctoi’ consists of a number containing an optional
 plus or minus sign, an optional base indicator, and a string
 of digits allowable for the input base. The base indicator
 consists of the (decimal) radix of the desired base followed
 by the letter "r" (in the style of Algol 68). The digits
 corresponding to the numbers 10 through 15 are entered as
 the letters "a" through "f". If no base indicator occurs in
 the string, the number in ’radix’ is used as the default
 base. Conversion stops when a character not allowable in
 the number is encountered.

 Implementation

 ’Gctoi’ first checks for a leading sign, and records it if
 found. If the first one or two digits of the number are
 numeric and if they are followed by a lower case "r", then
 they are converted to binary and used as the radix of the
 remaining digits; otherwise, the ’radix’ argument is used.
 The remaining digits of the number are converted by a simple
 multiply−and−add−successive−digits algorithm.

 Arguments Modified

 i

 Calls

 index

 See Also

 gctol (2), ctoi (2), other conversion routines (’cto?*’ and
 ’?*toc’) (2)

 gctoi (2) − 1 − gctoi (2)

 gctol (2) −−− generalized character to long integer conversion 03/23/80

 Calling Information

 long_int function gctol (str, i, radix)
 character str (ARB)
 integer radix, i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gctol’ is similar to the routine ’ctol’, except that it
 accepts base indicators and signs. Conversion begins on the
 string ’str’ at position ’i’. The converted integer is
 returned as the value of the function. ’I’ will be updated
 to indicate the first position not used in the conversion.

 Input to ’gctol’ consists of a number containing an optional
 plus or minus sign, an optional base indicator, and a string
 of digits allowable for the input base. The base indicator
 consists of the (decimal) radix of the desired base followed
 by the letter "r" (in the style of Algol 68). The digits
 corresponding to the numbers 10 through 15 are entered as
 the letters "a" through "f". If no base indicator occurs in
 the string, the number in ’radix’ is used as the default
 base. Conversion stops when a character not allowable in
 the number is encountered.

 Implementation

 ’Gctol’ first checks for a leading sign, and records it if
 found. If the first one or two digits of the number are
 numeric and if they are followed by a lower case "r", then
 they are converted to binary and used as the radix of the
 remaining digits; otherwise, the ’radix’ argument is used.
 The remaining digits of the number are converted by a simple
 multiply−and−add−successive−digits algorithm.

 Arguments Modified

 i

 Calls

 index

 See Also

 gctoi (2), ctol (2), other conversion routines (’cto?*’ and
 ’?*toc’) (2)

 gctol (2) − 1 − gctol (2)

 geta$f (2) −−− fetch arguments for a Fortran program 02/24/82

 Calling Information

 integer function geta$f (ap, str, len)
 integer ap, len
 character str (*)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Geta$f’ fetches an argument from the Subsystem command line
 in a format useable by a Fortran program. The arguments are
 analogous to those used by ’getarg’. ’Ap’ is the number of
 the argument to be fetched: 0 for the command name, 1 for
 the first argument, 2 for the second, etc. ’Str’ is a
 string to receive the argument, while ’len’ is the number of
 characters allocated to ’str’. The function return value is
 either the length of the argument string actually returned,
 or EOF (−1) if there is no argument in that position.

 Implementation

 ’Geta$f’ simply calls ’getarg’ with the argument pointer,
 and then calls ’ctop’ to convert the result into the proper
 Fortran format.

 Arguments Modified

 str

 Calls

 ctop (2), getarg (2)

 Bugs

 If ’len’ is an odd number, ’geta$f’ will return at most ’len
 − 1’ characters of an argument.

 See Also

 getarg (2), geta$plg (2), geta$p (2)

 geta$f (2) − 1 − geta$f (2)

 geta$p (2) −−− fetch arguments for a Pascal program 02/24/82

 Calling Information

 type string128 = array [1..128] of char;
 function geta$p (ap: integer;
 var str: string128;
 len: integer) : integer;

 Library: vswtlb (standard Subsystem library)

 Function

 ’Geta$p’ fetches an argument from the Subsystem command line
 in a format useable by a Pascal program. The arguments are
 analogous to those used by ’getarg’. ’Ap’ is the number of
 the argument to be fetched: 0 for the command name, 1 for
 the first argument, 2 for the second, etc. ’Str’ is a
 string to receive the argument, while ’len’ is the number of
 characters allocated to ’str’. The function return value is
 either the length of the argument string actually returned,
 or EOF (−1) if there is no argument in that position.

 To use ’geta$p’, it must be declared as a level 1 procedure
 in the Pascal program:

 function geta$p (ap: integer;
 var str: string128;
 len: integer) : integer; extern;

 It may then be called as a function wherever desired.

 Implementation

 ’Geta$p’ simply calls ’getarg’ with the argument pointer,
 and then calls ’ctop’ to convert the result into the proper
 Pascal format, after it has blank−filled ’str’.

 Arguments Modified

 str

 Calls

 ctop (2), getarg (2)

 Bugs

 If ’len’ is an odd number, ’geta$p’ will at most, return
 ’len − 1’ characters of the argument.

 geta$p (2) − 1 − geta$p (2)

 geta$p (2) −−− fetch arguments for a Pascal program 02/24/82

 See Also

 getarg (2), geta$f (2), geta$plg (2)

 geta$p (2) − 2 − geta$p (2)

 geta$plg (2) −−− fetch arguments for a PL/I G program 02/24/82

 Calling Information

 geta$plg: procedure (ap, str, len) returns (fixed);
 declare
 ap fixed,
 str character (128) varying,
 len fixed;

 Library: vswtlb (standard Subsystem library)

 Function

 ’Geta$plg’ fetches an argument from the Subsystem command
 line in a format useable by a PL/I G (or PL/P) program. The
 arguments are analogous to those used by ’getarg’. ’Ap’ is
 the number of the argument to be fetched: 0 for the command
 name, 1 for the first argument, 2 for the second, etc.
 ’Str’ is a string to receive the argument, while ’len’ is
 the number of characters allocated to ’str’. The function
 return value is either the length of the argument string
 actually returned, or EOF (−1) if there is no argument in
 that position.

 To use ’geta$plg’, it must be declared in the PL/I program:

 declare
 geta$plg entry (fixed, char (128) var, fixed)
 returns (fixed)

 It may then be called as a function wherever desired.

 Implementation

 ’Geta$plg’ simply calls ’getarg’ with the argument pointer,
 and then calls ’ctov’ to convert the result into the proper
 PL/I format.

 Arguments Modified

 str

 Calls

 ctov (2), getarg (2)

 Bugs

 If ’len’ is an odd number, ’geta$plg’ will return at most
 ’len − 1’ characters of an argument.

 geta$plg (2) − 1 − geta$plg (2)

 geta$plg (2) −−− fetch arguments for a PL/I G program 02/24/82

 See Also

 getarg (2), geta$f (2), geta$p (2)

 geta$plg (2) − 2 − geta$plg (2)

 getarg (2) −−− fetch command line arguments 03/23/80

 Calling Information

 integer function getarg (n, arg, arg_len)
 integer n, arg_len
 character arg (arg_len)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getarg’ is used to retrieve the arguments supplied on the
 command line that invoked a program. The first argument is
 the ordinal of the command argument to be fetched: 1 for
 the first, 2 for the second, etc. The second argument is a
 string to receive the command argument being fetched; the
 third argument is the maximum length of the string. The
 function return from ’getarg’ is the length of the command
 argument fetched, if the fetch was successful; EOF if the
 argument could not be fetched. Argument 0 is the name of
 the command calling ’getarg’.

 Implementation

 The Subsystem command interpreter maintains the list of com−
 mand arguments in its linked−string storage area. ’Getarg’
 uses the array of pointers into this area supplied by the
 command interpreter to locate the desired argument, then
 copies the characters to the user’s buffer one−by−one.

 Arguments Modified

 arg

 Bugs

 A program can have at most 256 arguments. There is no con−
 venient way to find out how many arguments have been sup−
 plied on an invocation without searching through the entire
 list with calls to ’getarg’.

 See Also

 chkarg (2), getkwd (2)

 getarg (2) − 1 − getarg (2)

 getccl (2) −−− expand character class into pattern 05/29/82

 Calling Information

 integer function getccl (arg, i, pat, j)
 character arg (ARB), pat (MAXPAT)
 integer i, j

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getccl’ converts the character class specification starting
 at ’arg(i)’ into a pattern element starting at ’pat(j)’.
 The pattern element consists of a character count followed
 by a list of all characters in the class. The function
 return is OK if the character class was successfully con−
 verted, ERR otherwise.

 For a discussion of character classes, see either
 Introduction to the Software Tools Text Editor or Software
 Tools.

 Implementation

 If the first character in the class specification is a
 tilde, the class generated is a negated class rather than
 the standard class. Room is then reserved for the character
 count, and ’filset’ is called to expand the specification
 into the vector of characters.

 Arguments Modified

 i, pat, j

 Calls

 addset, filset

 See Also

 makpat (2), addset (2), filset (2), Introduction to the
 Software Tools Text Editor, Software Tools

 getccl (2) − 1 − getccl (2)

 getch (2) −−− get a character from a file 03/23/80

 Calling Information

 character function getch (c, fd)
 character c
 integer fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getch’ is used to get a character from a file. The first
 argument is assigned the value of the character fetched; the
 second argument is the file descriptor of the file to be
 read. If end−of−file occurs on the input file, the charac−
 ter returned is EOF. The function return is always
 identical to the first argument (character read or EOF).

 Implementation

 ’Getch’ calls ’getlin’ with a very short line buffer (1
 character + EOS). ’Getlin’ thus returns one character in
 the buffer, which becomes the value returned by ’getch’. If
 ’getlin’ returns EOF, ’getch’ also returns EOF.

 Arguments Modified

 c

 Calls

 getlin

 See Also

 getlin (2), putch (2)

 getch (2) − 1 − getch (2)

 getkwd (2) −−− look for keyword/value arguments 03/23/80

 Calling Information

 integer function getkwd (keyword, value, length, default)
 character keyword (ARB), value (ARB), default (ARB)
 integer length

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getkwd’ searches the list of arguments supplied on the com−
 mand line for a string that matches the contents of
 ’keyword’. ’Keyword’ must contain an EOS−terminated string.
 If a matching argument is found, the argument string that
 immediately follows it in the argument list is returned in
 the array ’value’; otherwise, the string contained in
 ’default’ is copied into ’value’. In either case, the
 length of the string returned in ’value’ (excluding EOS) is
 returned as the result of the function. ’Length’ gives the
 size of the ’value’ array in words; no more than ’length’−1
 characters will be copied.

 Implementation

 ’Getarg’ is called to access each successive argument
 string. Each is compared to the supplied keyword, and if a
 match is found, ’getarg’ is called again to retrieve the
 immediately following argument. If that argument doesn’t
 exist or if the keyword is not found, as much of the default
 string as will fit is copied into the ’value’ array, one
 character at a time.

 Arguments Modified

 value

 Calls

 equal, getarg

 See Also

 chkarg (2), getarg (2)

 getkwd (2) − 1 − getkwd (2)

 getlin (2) −−− read one line from a file 04/11/82

 Calling Information

 integer function getlin (line, fd [, line_length])
 integer line_length
 file_des fd
 character line (line_length)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getlin’ is the primary Subsystem input routine. It is used
 to read a line from a file, which may be assigned to any
 device recognized by the Subsystem. The first argument is a
 string to receive data transferred from the file; the second
 argument is the file descriptor of the file from which data
 will be read; the optional third argument is the maximum
 length of the receiving string. Characters are transferred
 from the file to the string buffer until (1) end−of−file
 occurs, (2) a NEWLINE is encountered, or (3) the string
 buffer is completely full. Unless end−of−file occurs, the
 function return is the length of the string returned in the
 buffer; on end−of−file, EOF is returned. The third
 argument, ’line_length’, is optional. If omitted, the value
 MAXLINE is assumed. At most, ’line_length’ − 1 characters,
 followed by an EOS, are transferred to the buffer.

 Implementation

 ’Getlin’ first calls ’mapsu’ to map any standard port
 descriptor it may have been passed into a Subsystem file
 descriptor. The file specified must be readable and not at
 end−of−file; if these conditions are not met, EOF is retur−
 ned immediately. The Primos routine MISSIN is called to
 determine if the line length argument is missing; if it is,
 the default value of MAXLINE is assumed. Regardless of
 device type, ’flush$’ is called to place the file buffer in
 a consistent state if the last operation performed on the
 file was not a ’getlin’ or ’getch’. One of two device
 dependent drivers (’dgetl$’ for disk or ’tgetl$’ for
 terminal) is called to do the real work of getting data into
 the buffer. Note: Reads on a null device always return
 EOF.

 Arguments Modified

 line

 Calls

 mapsu, dgetl$, tgetl$, flush$, Primos missin

 getlin (2) − 1 − getlin (2)

 getlin (2) −−− read one line from a file 04/11/82

 Bugs

 The current optional use of the ’line_length’ argument is
 somewhat shaky. There is need for more devices than
 "terminal" and "disk" (system console, for example).

 See Also

 dgetl$ (6), tgetl$ (6), mapsu (2), putlin (2), flush$ (6)

 getlin (2) − 2 − getlin (2)

 getto (2) −−− get to the last file in a pathname 08/28/84

 | Calling Information

 integer function getto (path, name, pwd, attach)
 character path (ARB)
 | packedchar name (MAXPACKEDFNAME), pwd (3)
 integer attach

 Library: vswtlb (standard Subsystem library)

 Function

 | ’Getto’ attaches to the UFD containing the file specified in
 | the last node of the pathname ’path.’ In order to make
 | further operations on the file convenient, it packs the name
 | of the last node in the path (usually a file name) two
 | characters per word, left justified, blank filled into the
 | argument ’name’, and similarly packs the password (if any)
 | into the argument ’pwd’. Passwords are always mapped to
 upper case.

 ’Getto’ returns ERR if the UFD containing the file could not
 | be attached; OK otherwise. If ’getto’ returns with ’attach’
 | set to NO, the current UFD was not changed; if YES, then the
 | parent directory of the last file in the path became the
 | current directory.

 Implementation

 | ’Getto’ sets up an on−unit for the "BAD_PASSWORD$" condition
 | to handle errors during the attaching process. Then it
 | expands any pathname templates in ’path’, converting the
 | Software Tools−style pathname into a Primos treename by cal−
 | ling ’mktr$’. If the pathname supplied is empty, ’getto’
 | attaches back to the home directory by calling the Primos
 | routine AT$HOM. Otherwise, it loops through the nodes in
 | the treename until it has attached to the parent directory
 | of the last node. If the treename refers to a primary UFD
 | (one in the master file directory of some disk), ’getto’
 | uses the Primos routine AT$ANY to attach to the named UFD,
 | and then attaches to the MFD on the same disk using the
 | Primos routine AT$ABS. If the treename is a fully specified
 | path including packname, ’getto’ checks see to if the pack−
 | name specifies a logical disk number. If it does, the
 | Primos routine AT$ is called to attach to the primary UFD on
 | the specified disk pack; otherwise the AT$ABS is called to
 | do the attach. Then ’getto’ attaches to the MFD on the same
 | disk using AT$ABS. If the last node of the treename has not
 | been reached, ’getto’ attaches down the path by calling the
 | Primos routine AT$REL. If any errors occur during the
 | attaching process, ’getto’ attaches back to the home direc−
 | tory and returns ERR.

 getto (2) − 1 − getto (2)

 getto (2) −−− get to the last file in a pathname 08/28/84

 Arguments Modified

 name, pwd, attach

 Calls

 | bponu$, ctov, expand, mapstr, mktr$, Primos at$, Primos
 | at$abs, Primos at$any, Primos at$hom, Primos at$rel, Primos
 | break$, Primos mklb$f, Primos mkonu$

 See Also

 follow (2), open (2), remove (2)

 getto (2) − 2 − getto (2)

 getvdn (2) −−− return name of file in user’s variables directory 01/07/83

 Calling Information

 subroutine getvdn (filename, pathname [, username])
 character filename (ARB), pathname (ARB), username (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getvdn’ is used to return the full pathname of a file in a
 user’s shell variables storage directory. Such files are
 often used for small amounts of data that must be secure
 (e.g. mail files, encryption parameters, shell variables,
 etc.).

 The ’filename’ argument is an EOS−terminated string contain−
 ing the simple name of a file in the variables directory.
 The ’pathname’ argument receives the full pathname of the
 given file. The ’username’ argument, if present, specifies
 the particular user whose variables directory is to be
 referenced. If ’username’ is missing, or is equal to the
 user making the call to ’getvdn’, then the user’s Subsystem
 password is inserted in the returned pathname, allowing full
 owner rights in the variables directory.

 An example: If the current user’s login name is "foo" and
 his Subsystem password is "bar", then the call
 call getvdn (".vars"s, pathname)
 would return the string "=vars=/foo:bar/.vars" in ’path−
 name’.

 Implementation

 ’Getvdn’ calls ’ctoc’ to start the pathname with the string
 "=vars=/", then simply uses ’scopy’ to append the other
 items of information as needed. The Subsystem password is
 available in the variable ’Passwd’ in the shell’s common
 areas.

 Arguments Modified

 pathname

 Calls

 ctoc, date, equal, length, scopy, Primos missin

 Bugs

 Security of the variables directory can be broken by a
 Trojan horse.

 getvdn (2) − 1 − getvdn (2)

 getvdn (2) −−− return name of file in user’s variables directory 01/07/83

 See Also

 vfyusr (2), expand (2), lutemp (6)

 getvdn (2) − 2 − getvdn (2)

 getwrd (2) −−− get a word from a line buffer 02/04/83

 Calling Information

 integer function getwrd (in, i, out)
 integer in (ARB), out (ARB)
 integer i

 Library: vswtlb (standard Subsystem library)

 Function

 ’Getwrd’ retrieves the next word from the line buffer ’in’
 at current position ’i’, and places it in ’out’. A word is
 a string of characters delimited by blanks or newlines (also
 EOS, if the word occurs at the end of the line). The new
 current position is updated in ’i’, and the length of the
 word is returned as the function value.

 Implementation

 Any blanks, starting at the current position ’i’ in the
 string, are skipped. Characters from ’in’ are then copied
 to ’out’, starting at position ’i’, until the next character
 to be copied is either an EOS, a blank, or a NEWLINE. When
 this happens, the count of characters is returned.

 Arguments Modified

 i, out

 See Also

 ctoc (2)

 getwrd (2) − 1 − getwrd (2)

 gfdata (2) −−− get information about file characteristics 08/28/84

 | Calling Information

 | integer function gfdata (key, pathname, infbuf, attach, aux)
 | integer key, attach
 | untyped infbuf, aux
 | character pathname (ARB)

 | Library: vswtlb (standard Subsystem library)

 | Function

 | This function returns information about a file system entry
 | according to the value of the parameter ’key.’ There are
 | thirteen declarations for values of ’key’ in the standard
 | SWT definitions. Their names and returned values are:

 | FILE_UFDQUOTA −− this key reads information about disk
 | record quotas. The object named in ’pathname’ must be
 | a directory. ’aux’ returns a value of YES (as an
 | integer) if the object is a quota directory, otherwise
 | ’aux’ is returned as NO and the function value is ERR.
 | ’infbuf’ is an array of 6 long_ints. ’infbuf (1)’ is
 | set to the number of words per disk record on the
 | partition (440 or 1024), ’infbuf (2)’ is set to the
 | number of records used in the directory, ’infbuf (3)’
 | is set to the current quota, ’infbuf (4)’ is set to
 | the total number of records used in the directory and
 | its contents, ’infbuf (5)’ is set to the time−record
 | product, and ’infbuf (6)’ is set to the file system
 | date−time modification stamp for the directory.

 | FILE_TYPE −− this key returns an EOS−terminated string in
 | the parameter ’infbuf’ which describes the type of the
 | file named in ’pathname.’ Standard types are "sam",
 | "dam", "sgs", "sgd", "ufd", and "acat". Special files
 | may return types of: "mfd", "boot", "dskrat", or
 | "badspt". ’infbuf’ must be at least 7 characters
 | long. ’aux’ is unmodified.

 | FILE_DMBITS −− this key returns information about the dum−
 | ped bit and the Primos II modification bit. ’infbuf’
 | must be at least 2 words long. infbuf(1) will have
 | the value YES if the dumped bit is set, NO otherwise.
 | infbuf(2) will have the value YES if the modification
 | bit is set, NO otherwise. ’aux’ is unmodified.

 | FILE_RWLOCK −− this key causes the current read/write lock
 | to be encoded in an EOS−terminated string and retur−
 | ned. The format of the string in ’infbuf’ is the same
 | as used in ’lf’ and ’chat.’ ’infbuf’ must be at least
 | 4 characters long. ’aux’ is unmodified.

 | FILE_TIMMOD −− this key returns the date and time of last
 | modification. ’infbuf’ must be at least 6 words long.
 | The date and time are returned as integers. infbuf(2)

 gfdata (2) − 1 − gfdata (2)

 gfdata (2) −−− get information about file characteristics 08/28/84

 | is set to the month (1 to 12), infbuf(3) is set to the
 | day, and infbuf(1) is set to the year modulo 100.
 | Infbuf(4) is set to the hour past midnight (0−23),
 | infbuf(5) is set to the minute, and infbuf(6) is set
 | to the seconds. Note that the file system date/time
 | stamp has a resolution of only 4 seconds. ’aux’ is
 | unmodified.

 | FILE_ACL −− this key encodes the ACL pairs protecting the
 | object into ’infbuf’ with each pair separated by a
 | blank. ’infbuf’ should be declared as a character
 | array of size MAXACLLIST. ’aux’ should be an array
 | MAXPATH long. ’aux (1)’ gets set to an integer
 | indicating the type of object protecting the item
 | named by pathname: 0 is a specific ACL, 1 is an acat,
 | 2 is a default specific ACL, 3 is a default acat, and
 | 4 means the object is an acat. The name of the ACL
 | object confering the protection is returned as an EOS
 | string in ’aux (2)’ and on.

 | FILE_ACCESS −− this key calculates the access for a
 | specific user to the object named by ’pathname’. The
 | user name (or group name) is specified in ’aux’; if
 | ’aux’ is simply an EOS, then access is calculated for
 | the current user. ’infbuf’ is encoded with the access
 | rights, and should be declared to be at least 8
 | characters long.

 | FILE_PRIORITYACL −− this key encodes the current priority
 | ACL set on the disk partition containing the object
 | named in ’pathname’. The ACL is returned as an EOS
 | terminated string in ’infbuf’; ’infbuf’ should be
 | declared to be at least MAXACLLIST characters long.
 | ’aux’ is unchanged.

 | FILE_DELSWITCH −− this key causes ’infbuf’ to be set to
 | YES if the file delete protect bit is set on, NO
 | otherwise. The file delete switch is valid only for
 | ACL−protected items. ’aux’ is unchanged.

 | FILE_SIZE −− this key returned the size of the item named
 | in ’pathname’. If the object is a file the ’infbuf’
 | is the long_int number of words of data in the file.
 | If ’pathname’ is a ufd or segdir, then ’infbuf’ is set
 | to the number of words contained in the total struc−
 | ture. If the item is a ufd, then ’aux’ is a long_int
 | set to the number of words per disk records (440 or
 | 1024); if it is a file or segdir then ’aux’ is
 | unchanged.

 | FILE_FULL_INFO −− this key causes ’infbuf’ to be returned
 | as an array of 24 words, structured as in the call to
 | Primos "ent$rd". ’aux’ is unchanged.

 | FILE_PROTECTION −− this key causes the current file
 | protection attributes to be encoded into an EOS−

 gfdata (2) − 2 − gfdata (2)

 gfdata (2) −−− get information about file characteristics 08/28/84

 | terminated string in the parameter ’infbuf.’ The form
 | of the string is the same as the form presented to the
 | ’chat’ command or returned by the ’lf’ command. ’inf−
 | buf’ must be at least 6 characters long.

 | FILE_PASSWORDS −− this key causes the current passwords
 | for the directory named in ’pathname’ to be returned
 | as EOS terminated strings. The owner password is
 | returned in ’infbuf’ and the nonowneehr password is
 | returned in ’aux’. Both ’infbuf’ and ’aux’ must be at
 | least 7 words long.

 | The ’pathname’ argument is any standard EOS−terminated path−
 | name, and may contain templates. The function value is OK
 | if the information was fetched, ERR otherwise. ERR may
 | indicate that the file does not exist, that the caller does
 | not have rights in the directory containing the file, a bad
 | key, or any of a number of other file system errors.

 | The "attach" key is the same as in the "getto" function −−−
 | it indicates if the directory attach point had to be changed
 | to get to the file entry being examined.

 | Implementation

 | The function uses "getto" to get to the directory containing
 | the file, then it calls the Primos routine "ent$rd" to
 | obtain file system information. Finally, it decodes the
 | information into ’infbuf’ based on the value of ’key.’ The
 | routines "q$read", "acl$01", "acl$50", "szfil$", and
 | "szseg$" may also be called depending on the key supplied.

 | Arguments Modified

 | infbuf, attach, aux

 | Calls

 | ctoc, ptoc, vtoc, getto, follow, index, equal, mapdn,
 | ctov$f, szfil$, szseg$, move$, mktr$, acl$01, acl$50, Primos
 | nameq$, Primos gpas$$, Primos ent$rd, Primos q$read, Primos
 | at$hom, Primos srch$$, Primos calac$

 | Bugs

 | If ’infbuf’ or ’aux’ are not long enough, odd behavior may
 | result.

 | See Also

 | chat (1), lacl (1), lf (1), sacl (1), sfdata (2)

 gfdata (2) − 3 − gfdata (2)

 gfnarg (2) −−− get next file name argument from argument list 01/07/83

 Calling Information

 integer function gfnarg (name, state)
 character name (MAXPATH)
 integer state (4)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gfnarg’ is used to fetch "file name" arguments (those not
 beginning with a dash) from the command line. More
 importantly, it observes the convention that a "−n" argument
 implies that file names are to be read from an input file
 until EOF is reached, rather than simply from the argument
 list.

 In summary, each time ’gfnarg’ is called, it returns a file
 name in ’name’. From its initial state, ’gfnarg’ will fetch
 the next argument from the command line. If the argument is
 a file name, then it is passed back in ’name’, ’state’ is
 updated (in ways to be discussed later), and the function
 return is OK. If the argument begins with "−n", it
 indicates that file names are to be take from a file. ("−n"
 implies the standard port STDIN, "−n2" implies STDIN2, "−n3"
 implies STDIN3, and "−nfilename" implies the named file.)
 Successive calls of ’gfnarg’ then return successive lines of
 the named file (sans newline at the end of each line). When
 EOF is reached, ’gfnarg’ resumes its scan of the command
 line arguments. Whenever a non−filename, non−"−n" argument
 is encountered, ’gfnarg’ returns ERR. When no more filename
 arguments are available, ’gfnarg’ returns EOF.

 As a boundary condition, if there are no arguments on the
 command line, ’gfnarg’ returns the name "/dev/stdin1",
 reflecting the convention that programs invoked without
 arguments take their input from their standard ports.

 Use of ’gfnarg’ requires one initialization step. The first
 element of the state vector must be set to 1, then the first
 call to ’gfnarg’ may be issued. For example:

 state (1) = 1
 call gfnarg (argument, state)

 ’Gfnarg’ will maintain the state vector internally after the
 initialization.

 Implementation

 The four elements of the state vector have the following
 interpretations: state(1) is the current state of ’gfnarg’,
 which may be (1) uninitialized, (2) reading arguments from
 the command line, (3) reading from an input file, (4) end of

 gfnarg (2) − 1 − gfnarg (2)

 gfnarg (2) −−− get next file name argument from argument list 01/07/83

 command line reached, or (5) no more file arguments are
 available (EOF); state(2) is the index of the next argument
 in the command line; state(3) is the file descriptor for the
 current "−n" input file; state(4) is a count of the number
 of file name arguments returned so far. The initial state
 is used by ’gfnarg’ to set up the other elements of the
 state vector. From that point on, the contents of the
 argument list cause changes in state. As a special case, if
 the end of the command line is reached without finding any
 file names, "/dev/stdin1" is returned and state(1) is
 altered to cause an EOF return on the next call to ’gfnarg’.

 Arguments Modified

 name, state

 Calls

 close, error, getarg, getlin, open, print, scopy

 Bugs

 Should probably return argument length, like ’getarg’ does,
 whenever it finds a filename.

 See Also

 getarg (2)

 gfnarg (2) − 2 − gfnarg (2)

 gitoc (2) −−− convert single precision integer to any radix string 03/23/80

 Calling Information

 integer function gitoc (int, str, size, base)
 integer int, size, base
 character str (size)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gitoc’ will convert a single precision (16 bit) integer to
 a character string representation in any radix from 2 to 16
 (inclusive). The integer to be converted may be considered
 as either a signed, two’s−complement number with 15 bits of
 precision, or as an unsigned number with 16 bits of
 precision.

 ’Int’ is the integer to be converted; ’str’ is a character
 array into which the string representation will be stored;
 ’size’ is the size of ’str’. The absolute value of ’base’
 is the conversion radix. If ’base’ is negative, then ’int’
 is treated as an unsigned number; otherwise, ’int’ is
 considered to be a signed, two’s−complement number. If the
 specified radix is not in the range 2:16, then a decimal
 conversion is performed.

 For a signed conversion, if the integer is less than zero,
 its absolute value is preceded by a minus sign in the con−
 verted string; a positive number is never preceded by a
 sign.

 The function return is the number of characters required to
 represent the integer.

 Implementation

 ’Gitoc’ uses a typical divide−and−remainder algorithm to
 perform the conversion; that is, a digit is generated by
 taking the remainder when the integer is divided by the
 radix. For signed conversions, the absolute value of the
 number is first taken, the digits generated, and the minus
 sign inserted if needed. For unsigned conversions, the
 least significant bit of the number is saved, and then the
 number is shifted right one bit position to put it into the
 precision range of 15 bits (and effectively dividing the
 unsigned number by 2). Then, as each digit value is
 generated, it is doubled and added to the carry from the
 previous digit position (with the initial carry being the
 saved least significant digit) and a new carry value is
 generated.

 gitoc (2) − 1 − gitoc (2)

 gitoc (2) −−− convert single precision integer to any radix string 03/23/80

 Arguments Modified

 str

 See Also

 gltoc (2), itoc (2), other conversion routines (’cto?*’ and
 ’?*toc’) (2)

 gitoc (2) − 2 − gitoc (2)

 gklarg (2) −−− parse a single key−letter argument 03/23/80

 Calling Information

 integer function gklarg (args, str)
 integer args (26)
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gklarg’ is used to parse a key−letter argument string.
 Such an argument consists of a dash ("−") followed by any
 number of letters (in upper or lower case).

 All elements in the array ’args’ must be preset to one of
 two values before calling ’gklarg’. Elements corresponding
 to allowable option letters should be initialized to zero;
 all others should contain −1.

 ’Gklarg’ sets the elements of ’args’ that correspond to any
 option letters found in ’str’ to the value 1. The function
 return is ERR if ’str’ does not begin with a dash, or if any
 disallowed option letters are encountered, OK otherwise.

 Implementation

 ’Gklarg’ first verifies that the string given in ’str’
 begins with a dash. If it does not, ERR is returned. The
 remainder of the string is examined character−by−character.
 If a letter is encountered, and the corresponding element of
 ’args’ is nonnegative, then the element is set to one.
 Otherwise the value ERR is returned immediately.

 Arguments Modified

 args

 Calls

 mapdn

 See Also

 gfnarg (2), chkarg (2), getkwd (2)

 gklarg (2) − 1 − gklarg (2)

 gltoc (2) −−− convert double precision integer to any radix string 03/23/80

 Calling Information

 integer function gltoc (int, str, size, base)
 long_int int
 integer size, base
 character str (size)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gltoc’ will convert a double precision (32 bit) integer to
 a character string representation in any radix from 2 to 16
 (inclusive). The integer to be converted may be considered
 as either a signed, two’s−complement number with 31 bits of
 precision, or as an unsigned number with 32 bits of
 precision.

 ’Int’ is the integer to be converted; ’str’ is a character
 array into which the string representation will be stored;
 ’size’ is the size of ’str’. The absolute value of ’base’
 is the conversion radix. If ’base’ is negative, then ’int’
 is treated as an unsigned number; otherwise, ’int’ is
 considered to be a signed, two’s−complement number. If the
 specified radix is not in the range 2:16, then a decimal
 conversion is performed.

 For a signed conversion, if the integer is less than zero,
 its absolute value is preceded by a minus sign in the con−
 verted string; a positive number is never preceded by a
 sign.

 The function return is the number of characters required to
 represent the integer.

 Implementation

 ’Gltoc’ uses a typical divide−and−remainder algorithm to
 perform the conversion; that is, a digit is generated by
 taking the remainder when the integer is divided by the
 radix. For signed conversions, the absolute value of the
 number is first taken, the digits generated, and the minus
 sign inserted if needed. For unsigned conversions, the
 least significant bit of the number is saved, and then the
 number is shifted right one bit position to put it into the
 precision range of 31 bits (and effectively dividing the
 unsigned number by 2). Then, as each digit value is
 generated, it is doubled and added to the carry from the
 previous digit position (with the initial carry being the
 saved least significant bit) and a new carry value is
 generated.

 gltoc (2) − 1 − gltoc (2)

 gltoc (2) −−− convert double precision integer to any radix string 03/23/80

 Arguments Modified

 str

 See Also

 gitoc (2), ltoc (2), other conversion routines (’cto?*’ and
 ’?*toc’) (2)

 gltoc (2) − 2 − gltoc (2)

 gtattr (2) −−− get a user’s terminal attributes 02/24/82

 Calling Information

 integer function gtattr (attr)
 integer attr

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gtattr’ returns the value of the attribute ’attr’ that the
 user desires. Currently, the following attribute types are
 accepted :

 TA_SE_USEABLE − indicates whether the terminal can use the
 screen editor (’se’). The returned value is either YES
 or NO.

 TA_VTH_USEABLE − indicates whether the terminal is sup−
 ported by the Virtual Terminal Handler package (VTH).
 The returned value is either YES or NO.

 TA_UPPER_ONLY − indicates whether the terminal supports
 only the upper case character set. The returned value
 is either YES or NO.

 The value of each of the above attributes is set upon entry
 into the Subsystem, but can be changed by executing the
 ’term’ command.

 Implementation

 ’Gtattr’ first verifies that the given attribute is a legal
 one; if it isn’t, then NO is returned. If the attribute is
 legal, its value is obtained from the Subsystem common area
 and returned as the function value.

 See Also

 term (1), term_type (1), VTH routines (vt?*) (2)

 gtattr (2) − 1 − gtattr (2)

 gtemp (2) −−− parse a template into name and definition 03/25/82

 Calling Information

 integer function gtemp (str, nm, repl)
 character str (ARB), nm (MAXARG), repl (MAXARG)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gtemp’ takes a NEWLINE or EOS terminated character string
 in ’str’ and assigns the first blank−delimited token to ’nm’
 and the remaining characters of the string to ’repl’. Lead−
 ing and trailing blanks are removed from both ’nm’ and
 ’repl’. Ratfor−style (beginning with a sharp sign) comments
 are also ignored. If the input string consists only of
 blanks and comments, ’gtemp’ returns EOF and ’nm’ and ’repl’
 are unmodified; otherwise ’gtemp’ returns OK.

 Implementation

 ’Gtemp’ first removes any trailing comments (begun with a
 sharp sign, as in Ratfor) and leading and trailing blanks
 from the string. It then selects the first blank−delimited
 token from the string, and assigns it to ’nm’. Then, after
 removing intervening blanks, ’gtemp’ assigns the remaining
 characters of the string to ’repl’.

 Arguments Modified

 nm, repl

 See Also

 ldtmp$ (6)

 gtemp (2) − 1 − gtemp (2)

 gttype (2) −−− return the user’s terminal type 03/24/82

 Calling Information

 integer function gttype (ttype)
 character ttype (MAXTERMTYPE)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gttype’ obtains the user’s terminal type by calling
 routines to (1) look in the Subsystem common area, (2) look
 in the =termlist= file, and (3) ask the user. The terminal
 type is checked in each case, and if it is invalid, it is
 ignored. The function returns YES if the character string
 representing the terminal type is returned in ’ttype’ and NO
 otherwise. Since ’gttype’ will return NO only if the user
 refuses to give a terminal type (by entering end−of−file),
 most programs just terminate with a call to ’error’ if
 ’gttype’ returns NO.

 Implementation

 ’Gttype’ calls ’ttyp$r’ to obtain the terminal type from the
 common area. If the string is empty or if the terminal type
 in the common area is invalid, it calls ’ttyp$f’ to obtain
 the terminal type in the "=termlist=" file. If no valid
 type is present in =termlist=, ’gttype’ calls ’ttyp$q’ to
 request the terminal type from the user.

 Arguments Modified

 ttype

 Calls

 ttyp$f, ttyp$q, ttyp$r

 See Also

 gtattr (2), ttyp$v (6)

 gttype (2) − 1 − gttype (2)

 gvlarg (2) −−− obtain the value of a key−letter argument 01/07/83

 Calling Information

 integer function gvlarg (str, state)
 character str (ARB)
 integer state (4)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gvlarg’ returns the next argument and updates the state
 vector; it is normally used in conjunction with ’gklarg’ and
 ’gfnarg’. If the next argument begins with a hyphen,
 ’gvlarg’ returns an empty string. ’Gvlarg’ returns EOF if
 the argument list has been exhausted; otherwise it returns
 OK.

 ’Gvlarg’ exists solely to hide the structure of the state
 vector when an argument must be fetched between calls to
 ’gklarg’ and ’gfnarg’.

 Implementation

 Trivial.

 Arguments Modified

 str, state

 Calls

 error, getarg

 See Also

 gfnarg (2), gklarg (2)

 gvlarg (2) − 1 − gvlarg (2)

 index (2) −−− find index of a character in a string 02/24/82

 Calling Information

 integer function index (str, c)
 character str (ARB)
 character c

 Library: vswtlb (standard Subsystem library)

 Function

 ’Index’ searches the string given as its first argument for
 the character given as its second argument. If the charac−
 ter is found, its index in the string is returned; if it is
 not found, zero is returned.

 Implementation

 A simple loop checks for the character in the string; if
 found, an immediate return takes place. If the loop
 terminates normally, the value zero is returned.

 Bugs

 The arguments should be reversed.

 index (2) − 1 − index (2)

 init$f (2) −−− force Fortran i/o to recognize the Subsystem 01/07/83

 Calling Information

 subroutine init$f

 Library: vswtlb (standard Subsystem library)

 Function

 A call to ’init$f’ from a Fortran 66 or Fortran 77 program
 attaches Fortran unit 5 to the file open as standard input
 (either disk or terminal) and attaches Fortran unit 6 to the
 file open as standard output (either disk or terminal). The
 attachment of unit 1 to the terminal is not changed.

 To use ’init$f’, it must be called as the first executable
 statement in the main program:

 call init$f

 Implementation

 First ’init$f’ calls ’flush$’ on standard input and standard
 output to clean up any unfinished Subsystem I/O. ’Init$f’
 then calls the Subsystem ’mapfd’ to determine the Primos
 file unit attached to standard input. If ’mapfd’ returns a
 file descriptor, ’init$f’ calls Fortran ’attdev’ to attach
 unit 5 to that Primos disk unit; otherwise, ’init$f’ calls
 the Primos routine ATTDEV to attach unit 5 to the terminal.
 The procedure is then repeated for standard output and
 Fortran unit 6.

 Calls

 flush$, mapfd, mapsu, Primos attdev

 Bugs

 Files redirected to /dev/null are not supported.

 See Also

 init$p (2), init$plg (2)

 init$f (2) − 1 − init$f (2)

 init$p (2) −−− force Pascal i/o to recognize the Subsystem 01/07/83

 Calling Information

 procedure init$p;

 Library: vswtlb (standard Subsystem library)

 Function

 A call to ’init$p’ from a Pascal program attaches the Pascal
 file INPUT to the file open as standard input (either disk
 or terminal) and attaches the Pascal file OUTPUT to the file
 open as standard output (either disk or terminal).

 To use ’init$p’, it must be declared as a level 1 procedure,

 procedure init$p; extern;

 and then called as the first statement after the BEGIN in
 the main program:

 init$p;

 Implementation

 First ’init$p’ calls ’flush$’ on standard input and standard
 output to clean up any unfinished Subsystem I/O. ’Init$p’
 then calls the Subsystem ’mapfd’ to determine the Primos
 file unit attached to standard input. If ’mapfd’ returns a
 file descriptor, ’init$p’ tweaks the Pascal file control
 block ’p$ainp’ and calls the Primos routine ATTDEV to
 establish the unit mapping. Next ’init$p’ calls ’gfnam$’ to
 obtain the pathname of the disk file. If ’gfnam$’ returns a
 valid pathname, ’mktr$’ is called to convert the pathname
 into a Primos treename. This treename is copied into the
 Pascal file control block so that Pascal can use it when
 reporting I/O errors. If ’gfnam$’ returns ERR, the message
 ’pathname unobtainable’ is copied into the Pascal file
 control block as the file name. Otherwise, since INPUT is
 already directed to the terminal, ’init$p’ does nothing.
 This procedure is then repeated for standard output and the
 Pascal file OUTPUT.

 Calls

 ctop, flush$, gfnam$, mapfd, mapsu, mktr$, Primos attdev

 Bugs

 Files redirected to /dev/null are not supported.

 init$p (2) − 1 − init$p (2)

 init$p (2) −−− force Pascal i/o to recognize the Subsystem 01/07/83

 See Also

 init$f (2), init$plg (2), file$p (2)

 init$p (2) − 2 − init$p (2)

 init$plg (2) −−− force PL/I G i/o to recognize the Subsystem 01/07/83

 Calling Information

 init$plg: procedure;

 Library: vswtlb (standard Subsystem library)

 Function

 A call to ’init$plg’ from a PL/I G program attaches the PL/I
 G file SYSIN to the file open as standard input (either disk
 or terminal) and attaches the PL/I G file SYSPRINT to the
 file open as standard output (either disk or terminal).

 To use ’init$plg’, it must be declared in the main program,

 declare init$plg entry;

 and then called before any executable statements:

 call init$plg;

 Implementation

 First ’init$plg’ calls ’flush$’ on standard input and stan−
 dard output to clean up any unfinished Subsystem I/O.
 ’Init$plg’ then calls the Subsystem ’mapfd’ to determine the
 Primos file unit attached to standard input. If ’mapfd’
 returns a file descriptor, ’init$plg’ opens SYSIN using that
 file descriptor; otherwise, it opens SYSIN on the terminal.
 The procedure is then repeated for standard output and the
 PL/I G file SYSPRINT.

 Calls

 flush$, mapfd, mapsu, Primos p$open

 Bugs

 Files redirected to /dev/null are not supported.

 Output on SYSPRINT not followed by a line boundary (e.g.
 PUT SKIP) will be ignored when the file is directed to disk.
 It is usually best to terminate all programs with a PUT SKIP
 to insure that this line boundary is present.

 See Also

 init$p (2), init$f (2)

 init$plg (2) − 1 − init$plg (2)

 init (2) −−− initialize a Subsystem program 08/28/84

 | Calling Information

 subroutine init

 Library: vswtlb (standard Subsystem library)

 Function

 | At version 8.1 of the Subsystem, ’init’ became obsolete. It
 | remains to help users find programs which were compiled
 | before Release 8.1. It will print the following error mes−
 | sage:

 | You are trying to run a pre−version 9 compilation.
 | Please recompile and try again.

 | and then exit to the Subsystem.

 | ’Init’ should not be used in new compilations. The Ratfor
 | preprocessor ’rp’ no longer automatically inserts a call to
 ’init’ in each main program it processes. Users should
 remove all references to ’init’ from their programs, and
 | recompile as soon as possible.

 | The Version 8 compatibility library, which allowed the use
 | of programs compiled before Release 8.1, is no longer sup−
 | ported.

 init (2) − 1 − init (2)

 input (2) −−− easy to use semi−formatted input routine 01/07/83

 Calling Information

 integer function input (fd, fmt, a1, a2, ...)
 file_des fd
 packed_char fmt (ARB) −or− character fmt (ARB)
 untyped a1, a2, ...

 Library: vswtlb (standard Subsystem library)

 Function

 ’Input’ is an input routine designed for ease of use. It
 allows the user to specify a file from which to read, a
 format to control input from the file, and any number of
 items to be read. The first argument is the file descriptor
 of the file to be used for input. The second argument is a
 format string (discussed below). The remaining arguments
 (zero or more) are items to be input according to format
 control. The function return is the number of items set as
 a result of the input request, or EOF if end−of−file was
 encountered.

 The format string is a PERIOD−terminated packed character
 string (such as that generated by the Ratfor "string"p
 construct) or an unpacked, EOS−terminated string (such as
 that generated by the "string"s construct). The format
 string contains literal characters which will be output on
 the user’s terminal if the given input file refers to the
 terminal device, and format control directives consisting of
 an asterisk (*) followed by a single lower−case letter
 describing the input format for the next item in the
 argument list. For a complete description of format control
 directives, please see the Reference Manual entry for
 ’decode’.

 Note that each call to ’input’ causes one call to ’getlin’
 to read the input text; the text read is used to fill as
 many items as possible, but any remaining text is lost.
 This corresponds to BASIC and FORTRAN input procedures.

 When erroneous input is detected, ’input’ outputs the
 incorrect value to the terminal, discards the rest of the
 input line, and requests reentry of the incorrect value from
 the the terminal. The user may type in the corrected item
 and continue normally.

 Literal characters in the format will be ignored if the file
 specified by ’fd’ is not directed to the terminal. This
 feature allows a program to prompt for input from the
 terminal, but suppress the prompt for input from a file.
 Note that if no prompting at the terminal is desired,
 literal characters should not be included in the format
 string.

 A few short examples may clarify the operation of ’input’.

 input (2) − 1 − input (2)

 input (2) −−− easy to use semi−formatted input routine 01/07/83

 To input two integers, with a prompt, one might use

 junk = input (STDIN, "Enter i and j: *i*i"s, i, j)

 To input an array of double−precision floating point num−
 bers, one might use

 i = 1
 while (input (file, "*d"s, array (i)) ~= EOF) {
 i += 1
 if (i > ARRAY_SIZE)
 call error ("too many numbers to handle"p)
 }

 Implementation

 ’Input’ outputs prompt characters as it finds them in the
 format string, calls ’getlin’ to obtain a string of input
 from the proper file, and then calls ’decode’ to do the
 actual conversion of as many items as possible. Since the
 design of ’decode’ was heavily influenced by the
 requirements of ’input’, careful reading of the code for
 both routines is recommended.

 Arguments Modified

 a1, a2,

 Calls

 ctoc, decode, getlin, index, isatty, print, ptoc, putch

 Bugs

 At most ten items may be input. ’Input’ depends heavily on
 the ability of Prime’s Fortran to handle subroutines with
 varying numbers of arguments. The ability to buffer some
 input text to satisfy later calls would be nice, but is
 difficult without some static storage.

 See Also

 print (2), encode (2), decode (2), getlin (2), conversion
 routines (’cto?*’ and ’?*toc’) (2)

 input (2) − 2 − input (2)

 isadsk (2) −−− test if a file is a disk file 09/10/82

 Calling Information

 integer function isadsk (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Isadsk’ returns YES if the file referenced by the file
 descriptor in ’fd’ is a disk file; otherwise it returns NO.
 All file descriptors, including standard ports, can be
 tested.

 Implementation

 ’Isadsk’ simply looks in the Subsystem common area at the
 device type in the file descriptor and returns YES or NO
 accordingly.

 Calls

 mapsu

 See Also

 isatty (2), isnull (2)

 isadsk (2) − 1 − isadsk (2)

 isatty (2) −−− test if a file is connected to a terminal 09/10/82

 Calling Information

 integer function isatty (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Isatty’ returns YES if the file referenced by the file
 descriptor in ’fd’ is connected to a terminal; otherwise it
 returns NO. All file descriptors, including standard ports,
 can be tested.

 Implementation

 ’Isatty’ simply looks in the Subsystem common area at the
 device type in the file descriptor and returns YES or NO
 accordingly.

 Calls

 mapsu

 See Also

 isadsk (2), isnull (2)

 isatty (2) − 1 − isatty (2)

 isnull (2) −−− see if a file is connected to the bit bucket 09/10/82

 Calling Information

 integer function isnull (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Isnull’ returns YES if the file referenced by the file
 descriptor in ’fd’ is connected to the null device; other−
 wise it returns NO. All file descriptors, including stan−
 dard ports, can be tested.

 Implementation

 ’Isnull’ simply looks in the Subsystem common area at the
 device type in the file descriptor and returns YES or NO
 accordingly.

 Calls

 mapsu

 See Also

 isadsk (2), isatty (2)

 isnull (2) − 1 − isnull (2)

 isph$ (2) −−− determine if the caller is a phantom 09/18/84

 | Calling Information

 | integer function isph$ (dummy)
 | untyped dummy

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Isph$’ returns YES if the caller is a phantom user or NO
 | otherwise. The single argument ’dummy’ is not referenced
 | and exists only because a function in FORTRAN 66 must have
 | at least one argument.

 | Implementation

 | ’Isph$’ simply returns the value of the ’Isphantom’ variable
 | in the SWT common block, which is set during Subsystem
 | initialization.

 | Arguments Modified

 | none

 | See Also

 | isph (1)

 isph$ (2) − 1 − isph$ (2)

 itoc (2) −−− convert integer to character string 03/23/80

 Calling Information

 integer function itoc (int, str, size)
 integer int, size
 character str (size)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Itoc’ converts the integer given as its first parameter to
 a character string that is returned as its second parameter.
 The last ’size’ − 1 digits of the number, and no more, are
 returned. The number is left justified, with a leading
 minus sign if the number is negative. The function return
 is the length of the character string returned.

 Implementation

 ’Itoc’ performs a rather standard conversion by using
 modular arithmetic to fetch one digit at a time from the
 integer value supplied. The character string generated is
 placed backward in the receiving field, then reversed just
 before exit.

 Arguments Modified

 str

 See Also

 other conversion routines (’cto?*’ and ’?*toc’) (2)

 itoc (2) − 1 − itoc (2)

 jdate (2) −−− take month, day, and year and return day−of−year 03/23/80

 Calling Information

 integer function jdate (month, day, year)
 integer month, day, year

 Library: vswtlb (standard Subsystem library)

 Function

 ’Jdate’ is used to determine the Julian date corresponding
 to a given month, day, and year. (For example, January
 first of any year has Julian date 1; December 31st might
 have Julian date 365 or 366, depending on whether the given
 year is a leap year or not.) The function return is the
 Julian date calculated.

 Implementation

 ’Jdate’ simply adds up the number of days in all months
 before the month given, then adds the number of days given.
 If the year specified is a leap year, February is given 29
 days instead of the usual 28.

 See Also

 date (1), wkday (2), date (2)

 jdate (2) − 1 − jdate (2)

 length (2) −−− find length of a string 03/23/80

 Calling Information

 integer function length (str)
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Length’ returns the length of the string passed as its
 first parameter.

 Implementation

 A simple loop is used to count characters until an EOS is
 encountered.

 Bugs

 Slow.

 length (2) − 1 − length (2)

 ln$m (2) −−− calculate logarithm to the base e 04/27/83

 | Calling Information

 | longreal function ln$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function implements the natural logarithm (base e)
 | function. Arguments must be greater than zero. The condi−
 | tion SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. If an error is signal−
 | led due to an invalid argument the default return is the log
 | of the absolute value of the argument, or zero in the case
 | of a zero argument.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The algorithm involved uses a minimax rational approximation
 | on a reduction of the argument. All positive inputs will
 | return a valid result. The algorithm was adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | dln$m (2), err$m (2),
 | SWT Math Library User’s Guide

 ln$m (2) − 1 − ln$m (2)

 locate (2) −−− look for character in character class 05/29/82

 Calling Information

 integer function locate (c, pat, offset)
 character c, pat (MAXPAT)
 integer offset

 Library: vswtlb (standard Subsystem library)

 Function

 ’Locate’ returns YES if ’c’ is a member of the character
 class at ’pat(offset)’, NO otherwise.

 Implementation

 A character class is stored as a size, followed by a vector
 of characters in the class. ’Locate’ simply checks all the
 characters in the vector; if ’c’ matches one, then the
 return value is YES.

 See Also

 makpat (2), omatch (2), amatch (2)

 locate (2) − 1 − locate (2)

 log$m (2) −−− calculate logarithm to the base 10 04/27/83

 | Calling Information

 | longreal function log$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function implements the common logarithm (base 10)
 | function. Arguments must be greater than zero. The condi−
 | tion SWT_MATH_ERROR$ is signalled if there is an argument
 | error. An on−unit can be established to deal with this
 | error; the SWT Math Library contains a default handler named
 | ’err$m’ which the user may utilize. If an error is signal−
 | led due to an invalid argument the default return is the log
 | of the absolute value of the argument, or zero in the case
 | of a zero argument.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The algorithm involved uses a minimax rational approximation
 | on a reduction of the argument. All positive inputs will
 | return a valid result. It is adapted from the algorithm
 | given in the book Software Manual for the Elementary
 | Functions by William Waite and William Cody, Jr. (Prentice−
 | Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | dlog$m (2), err$m (2),
 | SWT Math Library User’s Guide

 log$m (2) − 1 − log$m (2)

 lookup (2) −−− retrieve information from a symbol table 03/25/82

 Calling Information

 integer function lookup (symbol, info, table)
 character symbol (ARB)
 untyped info (ARB)
 pointer table

 Library: vswtlb (standard Subsystem library)

 Function

 ’Lookup’ examines the symbol table given as its third
 argument for the presence of the character−string symbol
 given as its first argument. If the symbol is not present,
 ’lookup’ returns ’NO’. If the symbol is present, the
 information associated with it is copied into the informa−
 tion array passed as the second argument to ’lookup’, and
 ’lookup’ returns ’YES’.

 The symbol table used must have been created by the routine
 ’mktabl’. The size of the information array must be at
 least as great as the symbol table node size, specified at
 its creation.

 Note that all symbol table routines use dynamic storage
 space, which must have been previously initialized by a call
 to ’dsinit’.

 Implementation

 ’Lookup’ calls ’st$lu’ to determine the location of the sym−
 bol in the table. If ’st$lu’ returns NO, then the symbol is
 not present, and ’lookup’ returns NO. Otherwise, ’lookup’
 copies the information field from the appropriate node of
 the symbol table into the information array and returns YES.

 Arguments Modified

 info

 Calls

 st$lu

 See Also

 enter (2), delete (2), mktabl (2), rmtabl (2), st$lu (6),
 sctabl (2), dsinit (2), dsget (2), dsfree (2)

 lookup (2) − 1 − lookup (2)

 ltoc (2) −−− convert long integer to character string 03/23/80

 Calling Information

 integer function ltoc (int, str, size)
 long_int int
 integer size
 character str (size)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ltoc’ is used to convert long integers to decimal character
 representation.

 ’Int’ is the long integer to be converted; ’str’ is the
 string to receive the ASCII representation; ’size’ is the
 size of ’str’. The function return is the number of charac−
 ters required to represent ’int’.

 ’Ltoc’ duplicates the function of ’itoc’ for long integers.

 Implementation

 Standard modular−arithmetic conversion. See ’itoc’ for
 details.

 Arguments Modified

 str

 See Also

 other conversion routines (’cto?*’ and ’?*toc’) (2)

 ltoc (2) − 1 − ltoc (2)

 makpat (2) −−− make pattern, terminate at delimiter 08/17/84

 | Calling Information

 integer function makpat (arg, from, delim, pat)
 character arg (ARB), delim, pat (MAXPAT)
 integer from

 Library: vswtlb (standard Subsystem library)

 Function

 ’Makpat’ converts the standard character−string form of a
 regular expression into the internal form used by the
 remainder of the pattern matching routines. The argument
 ’arg’ is the regular expression to be converted; ’from’
 specifies the starting position of the pattern in ’arg’;
 ’delim’ contains a termination character which, when
 encountered, causes conversion to stop; ’pat’ receives the
 | internal form of the regular expression. The function
 | returns the index of the delimiter in ’arg’ if the conver−
 sion succeeded, ERR otherwise.

 For a full discussion of patterns and pattern matching, see
 Introduction to the Software Tools Text Editor or, of
 course, Software Tools.

 Implementation

 ’Makpat’ traverses the regular expression a character at a
 | time, building the internal pattern with calls to ’addset’.
 | To build character classes, ’makpat’ calls ’getccl’; to
 | build closures it calls ’stclos’. Calls to ’esc’ handle
 | escape sequences in the regular expression. ’Makpat’ treats
 | the special cases of "*" at beginning−of−line, "%" not at
 | BOL, and "$" not at end−of−line as regular characters.

 | ’Makpat’ takes an error return if the internal form becomes
 | too large, if an attempt is made to use closure on an
 | illegal pattern element, if there are too many tagged sub−
 | patterns, if not all tagged subpatterns are properly closed,
 | or if ’delim’ is never encountered.

 Arguments Modified

 pat

 Calls

 addset, esc, getccl, stclos

 makpat (2) − 1 − makpat (2)

 makpat (2) −−− make pattern, terminate at delimiter 08/17/84

 See Also

 match (2), amatch (2), find (1), change (1), ed (1), se (1),
 Introduction to the Software Tools Text Editor, Software
 Tools

 makpat (2) − 2 − makpat (2)

 maksub (2) −−− make substitution string 01/07/83

 Calling Information

 integer function maksub (arg, from, delim, sub)
 character arg (ARB), delim, sub (MAXPAT)
 integer from

 Library: vswtlb (standard Subsystem library)

 Function

 ’Maksub’ converts the character representation of a sub−
 stitution string starting at "arg(from)" into an internal
 form in ’sub’. Conversion proceeds until there is
 insufficient room in ’sub’ to proceed or until the character
 in ’delim’ is encountered. The function return is the next
 unexamined position in ’arg’.

 For a full discussion of the syntax of substitution strings,
 see either Introduction to the Software Tools Text Editor or
 Software Tools.

 Implementation

 Straightforward scan of the substitution string. At
 present, the metacharacter sequences in a substitution
 string are "&" (meaning the string matched) and "@<digit>"
 (meaning the <digit>th tagged subpattern matched). ’Esc’ is
 used to handle escape sequences; all other characters are
 substituted literally.

 Arguments Modified

 sub

 Calls

 addset, esc, type

 See Also

 makpat (2), addset (2), change (1), ed (1), se (1),
 Introduction to the Software Tools Text Editor, Software
 Tools.

 maksub (2) − 1 − maksub (2)

 mapdn (2) −−− fold character to lower case 03/23/80

 Calling Information

 character function mapdn (c)
 character c

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mapdn’ determines if the character passed as its parameter
 is an upper case letter or not. If not, the function return
 is equal to the character; otherwise, the function return is
 the value of the character mapped to lower case.

 Implementation

 ’Mapdn’ expects all upper case letters to be contiguous and
 arranged in a collating sequence with capital A low and
 capital Z high (internal ASCII satisfies these
 requirements). If the character lies between ’A’c and ’Z’c,
 it is mapped to lower case by adding ’a’c − ’A’c. The func−
 tion return is the mapped value. The parameter is left
 unchanged.

 Bugs

 Depends heavily on ASCII character code, in exchange for
 speed.

 See Also

 mapup (2), mapstr (2)

 mapdn (2) − 1 − mapdn (2)

 mapfd (2) −−− convert fd to Primos funit 01/07/83

 Calling Information

 integer function mapfd (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 Certain applications require the Primos funit number
 associated with a given open disk file. ’Mapfd’ retrieves
 the funit number corresponding to a file descriptor. If the
 file open on the given file descriptor is not a disk file,
 the function return is ERR; otherwise, it is the desired
 funit number.

 Implementation

 The Primos funit associated with each file descriptor is
 available in the Subsystem I/O common area. ’Mapfd’ simply
 checks to make sure the specified file descriptor
 corresponds to a disk file, then returns the funit.

 Calls

 mapsu

 See Also

 mapsu (2)

 mapfd (2) − 1 − mapfd (2)

 mapstr (2) −−− map case of a string 01/07/83

 Calling Information

 integer function mapstr (str, case)
 character str (ARB)
 integer case

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mapstr’ is used to map the case of all the letters in a
 string. ’Str’ is the string to be mapped; ’case’ is UPPER
 if letters are to be mapped to upper case, anything else for
 lower case (usually LOWER).

 The length of the string is returned as the function’s
 value.

 Implementation

 A loop is used to examine each character in the string; the
 actual mapping is done by adding or subtracting the
 difference between ASCII ’a’ and ASCII ’A’.

 Arguments Modified

 str

 See Also

 mapup (2), mapdn (2), tlit (1)

 mapstr (2) − 1 − mapstr (2)

 mapsu (2) −−− map standard unit to file descriptor 03/23/80

 Calling Information

 file_des function mapsu (std_unit)
 file_des std_unit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mapsu’ is used to map standard units (such as STDIN,
 STDOUT, and ERROUT) to the file descriptor associated with
 the file to which they are currently equivalent. It is not
 intended for general use.

 Implementation

 ’Mapsu’ checks the file unit mapping information contained
 in the Subsystem I/O common area. If the parameter
 ’std_unit’ is one of the following:

 STDIN STDOUT
 STDIN1 STDOUT1
 STDIN2 STDOUT2
 STDIN3 STDOUT3
 ERRIN ERROUT

 then the function return is the file descriptor correspond−
 ing to these standard units; otherwise, the function return
 is the same as the value of ’std_unit’.

 Note that if the standard port mapping table contains a cir−
 cular definition, the file descriptor of the user’s terminal
 will be returned.

 mapsu (2) − 1 − mapsu (2)

 mapup (2) −−− fold character to upper case 03/23/80

 Calling Information

 character function mapup (c)
 character c

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mapup’ is the inverse of ’mapdn’. If the character ’c’ is
 a lower case letter, the function return is the correspond−
 ing upper case letter; otherwise, the function return is the
 same as ’c’.

 Implementation

 In ’mapup’, as in ’mapdn’, considerable use is made of the
 internal ASCII character code. If ’c’ is between ’a’c and
 ’z’c, ’c’ − ’a’c + ’A’c is returned; otherwise, ’c’ is
 returned.

 Bugs

 Inordinate dependence on properties of character code.

 See Also

 mapdn (2), mapstr (2)

 mapup (2) − 1 − mapup (2)

 markf (2) −−− get the current position of a file 03/25/82

 Calling Information

 file_mark function markf (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Markf’ is used to determine the current position of an open
 file. The position is normally recorded and later reused by
 ’seekf’ for random I/O.

 The single argument specifies a file whose position is
 desired. The function return is ERR if the position could
 not be determined or if "position" has no meaning for the
 device currently associated with the given file descriptor.

 Implementation

 If necessary, ’markf’ calls ’flush$’ to empty the Subsystem
 buffer belonging to the file. If the file is associated
 with a terminal device, ’tmark$’ is called to get the
 position. Similarly, ’dmark$’ is called if the file is a
 disk file. The null device is always at position zero.

 Calls

 mapsu, flush$, tmark$, dmark$

 Bugs

 ’Markf’ may fail between two characters in a line, because
 files under Primos are word−addressed, rather than byte−
 addressed. ’Markf’ should only be used at word boundaries
 (for binary files) or line boundaries (for standard charac−
 ter files).

 See Also

 dmark$ (6), tmark$ (6), seekf (2)

 markf (2) − 1 − markf (2)

 match (2) −−− match pattern anywhere on a line 05/29/82

 Calling Information

 integer function match (lin, pat)
 character lin (ARB), pat (MAXPAT)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Match’ attempts to find a match for a regular expression
 anywhere in a given line of text. The first argument
 contains the text line; the second contains the pattern to
 be matched. The function return is YES if the pattern was
 found anywhere in the line, NO otherwise.

 The pattern in ’pat’ is a standard Subsystem encoded regular
 expression. ’Pat’ can be generated most conveniently by a
 call to the routine ’makpat’.

 Implementation

 ’Match’ calls ’amatch’ at each position in ’lin’, returning
 YES whenever ’amatch’ indicates it found a match. If the
 test fails at all positions, ’match’ returns NO.

 Calls

 amatch

 Bugs

 Not exactly blindingly fast.

 See Also

 amatch (2), makpat (2), maksub (2), catsub (2), find (1),
 change (1), ed (1), se (1), Introduction to the Software
 Tools Text Editor, Software Tools

 match (2) − 1 − match (2)

 mktabl (2) −−− make a symbol table 03/25/82

 Calling Information

 pointer function mktabl (nodesize)
 integer nodesize

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mktabl’ creates a symbol table for manipulation by the
 routines ’enter’, ’lookup’, ’delete’, and ’rmtabl’. The
 symbol table is a general means of associating data with a
 symbol identified by a character string. The sole argument
 to ’mktabl’ is the number of (integer) words of information
 that are to be associated with each symbol. The function
 return is the address of the symbol table in dynamic storage
 space (see ’dsinit’ and ’dsget’). This value must be passed
 to the other symbol table routines to select the symbol
 table to be manipulated.

 Note that dynamic storage space must be initialized by a
 call to ’dsinit’ before using any symbol table routines.

 Implementation

 ’Mktabl’ calls ’dsget’ to allocate space for a hash table in
 dynamic memory. Each entry in the hash table is the head of
 a linked list (with zero used as a null link) of symbol
 table nodes. ’Mktabl’ also records the nodesize specified
 by the user, so ’enter’ will know how much space to allocate
 when a new symbol is entered in the table.

 Calls

 dsget

 See Also

 enter (2), lookup (2), delete (2), rmtabl (2), st$lu (6),
 dsget (2), dsfree (2), dsinit (2), sctabl (2)

 mktabl (2) − 1 − mktabl (2)

 mktemp (2) −−− create a temporary file 03/23/80

 Calling Information

 file_des function mktemp (mode)
 integer mode

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mktemp’ is used to make a temporary file. The single
 parameter is an i/o mode (WRITE or READWRITE). The tem−
 porary file is created in directory =temp=, so write permis−
 sion in the home directory is not required. ’Mktemp’
 returns a file descriptor if the temporary was successfully
 created, ERR otherwise.

 Implementation

 ’Mktemp’ consists of a loop that calls ’create’ to attempt
 the creation of files with names of the form "=temp=/tm?*",
 where "?*" represents a string of decimal digits. If such a
 file can be created, ’mktemp’ returns a file descriptor that
 can be used to access it; otherwise, ERR is returned.

 Calls

 encode, create

 See Also

 rmtemp (2), close (2), create (2), open (2)

 mktemp (2) − 1 − mktemp (2)

 mntoc (2) −−− convert ASCII mnemonic to character 03/28/80

 Calling Information

 character function mntoc (buf, p, default)
 character buf (ARB), default
 integer p

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mntoc’ is used to convert a standard ASCII mnemonic (e.g.
 ACK, BEL, BS) into an ASCII character code. The argument
 ’buf’ is an EOS−terminated string presumed to contain either
 a single character or a two− or three−character ASCII
 mnemonic (in either upper or lower case), starting at posi−
 tion ’p’. The function return depends on the outcome of the
 conversion as follows: (1) if ’buf’ contains only one
 character, the function return is equivalent to that charac−
 ter; (2) if ’buf’ contains an ASCII mnemonic terminated by a
 nonalphanumeric character, the function return is the
 character code associated with that mnemonic; (3) otherwise,
 the function return is equivalent to the character specified
 as the third argument (’default’). In all cases, ’p’ is
 advanced to the first character beyond the presumed mnemonic
 or single character.

 Implementation

 The mnemonic is transferred to an internal character buffer,
 then used in a binary search of a string table containing
 the ASCII mnemonics.

 Arguments Modified

 p

 Calls

 mapstr, strbsr

 See Also

 ctomn

 mntoc (2) − 1 − mntoc (2)

 move$ (2) −−− move blocks of memory around quickly 03/28/80

 Calling Information

 subroutine move$ (from, to, count)
 integer from (ARB), to (ARB), count

 Library: vswtlb (standard Subsystem library)

 Function

 ’Move$’ is the fastest way known to move a block of words
 from one place to another in memory. The argument ’from’ is
 an array of words to be moved; ’to’ is an array to receive a
 copy of the words in ’from’; ’count’ is the number of words
 to be moved.

 Implementation

 ’Move$’ is written in PMA, and uses multi−word load and
 store instructions to move as much data as possible during
 each iteration of a loop.

 Arguments Modified

 to

 See Also

 scopy (2)

 move$ (2) − 1 − move$ (2)

 omatch (2) −−− try to match a single pattern element 01/07/83

 Calling Information

 integer function omatch (lin, i, pat, j)
 character lin (ARB), pat (MAXPAT)
 integer i, j

 Library: vswtlb (standard Subsystem library)

 Function

 ’Omatch’ attempts to match a single pattern element at
 "pat(j)" against a character at "lin(i)". If the match suc−
 ceeds, ’i’ is incremented to point to the next unexamined
 character in ’lin’. The function return is YES if the pat−
 tern element matched the text, NO otherwise.

 Implementation

 ’Omatch’ is essentially a case statement, treating each pat−
 tern element specially. Non−special characters are directly
 compared. The wild−card character matches any non−NEWLINE
 character in ’lin’. Beginning−of−line is matched only when
 | ’i’ is one. End−of−line is matched only when "lin(i)" is a
 | NEWLINE or an EOS. ’Locate’ is used to match character
 classes. If a character is matched, ’i’ is incremented by
 one.

 Arguments Modified

 i

 Calls

 * locate, error

 See Also

 match (2), amatch (2), locate (2)

 omatch (2) − 1 − omatch (2)

 open (2) −−− open a file 02/28/83

 Calling Information

 file_des function open (path, mode[, typ[, limit]])
 character path (ARB)
 integer mode, typ, limit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Open’ is the primary means of opening files for reading,
 writing, etc. The first argument is the pathname of the
 file to be opened; it must be an EOS terminated string (e.g.
 open(’/dir/file1’s....). The second argument is the mode,
 READ, WRITE or READWRITE. The third argument is optional
 and should normally be omitted. It specifies the type
 associated with the file. The fourth argument is optional
 and should normally be omitted. It specifies the number of
 retries that should be made when a disk file is found to be
 in use. ’Open’ returns a file descriptor which may be used
 for further i/o operations if the attempt to open was suc−
 cessful, or ERR if the attempt failed. The user is always
 left in the home directory after an attempt to open.

 By default, ’open’ returns a file descriptor to a sequential
 access method (SAM) file when referring to a disk file. If
 creating a direct access method file (DAM) is desired, the
 ’mode’ argument may be ORed with the KNDAM file key (i.e.,
 ’mode’ can be "READWRITE+KNDAM" to create a DAM file opened
 for reading or writing). The constant KNDAM is contained in
 the "PRIMOS_KEYS" include file.

 ’Open’ may be used to produce file descriptors that allow
 access to many different devices. Depending on the path−
 name, the file opened may be a standard input or output
 port, the user’s terminal, a line printer spool file, a disk
 file, or the null device. Such special pathnames always
 begin with the characters "/dev/" followed by context−
 dependent strings that may specify names, options, etc. For
 example, the pathname used to open files in the spool queue
 may include any of the following options:

 f use Fortran forms control
 r use raw forms control
 s use standard forms control
 h inhibit header page
 j inhibit final page eject
 n number all output lines
 a/location/ select destination printer
 d/time/ defer printing until specified time
 b/banner/ use given string on header page
 c/copies/ print given number of copies
 p/form/ select form type (wide, narrow, special, etc.)

 Slashes or blanks may be used to separate parameters. For

 open (2) − 1 − open (2)

 open (2) −−− open a file 02/28/83

 example, "/dev/lps/f/agt.b/c10" refers to a spool file with
 Fortran forms control, ten copies of which will be printed
 on the printer with name "gt.b".

 Implementation

 ’Open’ first searches for an available file descriptor and,
 if found, performs initialization for the file. The form of
 the pathname given as the first argument controls subsequent
 actions, as follows:

 /dev/stdout For standard port names, the
 /dev/stdin allocated file descriptor is freed
 /dev/errout and the port descriptor is returned.
 /dev/errin
 /dev/stdout[123]
 /dev/stdin[123]

 /dev/null The null device is opened.
 /dev/tty The user’s terminal is opened.

 /dev/lps?* ’Lopen$’ is called to open a disk
 file in the spool queue

 otherwise, If the pathname does not begin with
 "/dev/", ’dopen$’ is called to open
 a disk file.

 Arguments Modified

 typ

 Calls

 dopen$, lopen$, getfd$, expand, mapdn, strbsr, Primos break$

 See Also

 dopen$ (6), lopen$ (6), close (2), create (2), remove (2)

 open (2) − 2 − open (2)

 page (2) −−− display file in paginated form 06/21/84

 | Calling Information

 | integer function page(fdin, prompt, eprompt, lines, fdout, options)
 file_des fdin, fdout
 character prompt (ARB), eprompt (ARB)
 | integer lines, options

 Library: vswtlb (Standard Subsystem Library)

 Function

 | ’Page’ displays the contents of a disk file in paginated
 | form. It also allows skipping pages forward and backward as
 | well as searching for patterns within the file. ’Page’ is
 | primarily intended for viewing a file on a high speed CRT,
 | but it may be used from any terminal.

 | ’Page’ accepts six arguments, of which the last is optional.
 | ’Fdin’ is the swt file descriptor of a file to be displayed.
 | ’Prompt’ specifies a format string (cf. ’print’, ’encode’)
 | to be used for prompting the user after each screen of text
 | except the final page. If this format string contains a
 | format code for an integer (e.g. "*i") then ’page’ replaces
 | it with the current page number in the actual prompt.
 | ’Eprompt’ specifies a format string to be used for prompting
 | the user when the final page of the file is reached; it may
 | also contain a format code for the current page number.
 | ’Lines’ gives the number of lines in a page. ’Fdout’ is the
 | swt file descriptor of the file to receive the output
 | display; ’page’ only pages output when the output file is
 | connected to a terminal (i.e. if the output file is on
 | disk, ’page’ simply copies the file to be displayed). The
 | final (optional) argument consists of flags that control the
 | operation of the ’page’ subroutine. The following flags may
 | be used singly or in combination (e.g. PG_END + PG_VTH):

 | PG_END Do not prompt following the final page of the
 | file. The default action is to prompt.
 | PG_VTH Use ’vth’ to manage the screen. By default
 | ’page’ displays the file without using ’vth’.

 | If the ’options’ argument is not specified, it defaults to
 | 0; ’page’ displays the file using standard I/O and prompts
 | after the last page of the file.

 | If ’vth’ is used to display the paginated file, ’page’
 | ignores the ’lines’ argument and fixes the number of lines
 | per page at the maximum number that can fit on the screen.

 | ’Page’ prompts the user after each page of output, and
 | awaits one of the following commands (note that alphabetic
 | commands may be entered in upper or lower case):

 | D<pages> Display given number of pages (default 1),
 | prompting only after the end of the range.

 page (2) − 1 − page (2)

 page (2) −−− display file in paginated form 06/21/84

 | E<path> Examine the file whose pathname is <path>.
 | E Examine the original file.
 | H or ? Print a command summary.
 | M<margin> Set column of left margin to be displayed.
 | N or Q Exit with OK status.
 | P or ^ Redisplay previous page.
 | S<lines> Set page size to specified number of lines.
 | Display starts over on page 1.
 | W <path> Write a copy of the file being displayed to
 | <path>. The file named <path> must not
 | already exist.
 | W+<path> Append a copy of the file being displayed to
 | <path>.
 | W!<path> Write a copy of the file being displayed to
 | <path>. If the file already exists, it will
 | be overwritten.
 | X Exit with EOF status.
 | Y or : Advance to the next page.
 | <ctrl−c> Exit with EOF status (does not work in ’vth’
 | mode).
 | <newline> Advance to the next page.
 | <page> Display specified page number.
 | −<pages> Back up given number of pages (default 1).
 | . Redisplay current page.
 | +<pages> Advance given number of pages (default 1).
 | $ Display the last page.
 | /<pat>[/] Display the next page containing <pat>.
 | \<pat>[\] Display the previous page containing <pat>.

 The pattern <pat> is a regular expression with the full set
 | of options found in the editor. ’Page’ searches circularly
 | from the current file position for the next page that
 | contains the specified pattern. As in the editor, the
 | trailing delimiter is optional. (See Introduction to the
 Software Tools Text Editor in the Software Tools Subsystem
 * User’s Guide for details.)

 Calls

 | close, ctoc, ctoi, encode, fcopy, getlin, isatty, makpat,
 | markf, match, open,print, putch, seekf, scopy, strim, vtclr,
 | vtenb, vtgetl, vtinfo, vtinit, vtprt, vtputl, vtread,
 | vtstop, vtupd, Primos break$, missin, mklb$f, mkon$f, pl1$nl

 Bugs

 | Large amounts of stack space are used.

 | If any format code other than "*i" is used in a format
 | string, erroneous values will be displayed.

 | If more than one format code is specified, ’page’ gets a
 | pointer fault error.

 page (2) − 2 − page (2)

 page (2) −−− display file in paginated form 06/21/84

 | There is no way to change the page alignment.

 | The "H" command output is not paged.

 See Also

 pg (1), Introduction to the Software Tools Text Editor

 page (2) − 3 − page (2)

 parscl (2) −−− parse command line arguments 01/07/83

 Calling Information

 integer function parscl (str, buf)
 character str (ARB), buf (MAXARGBUF)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Parscl’ is used to parse most standard Subsystem command
 line formats automatically. It examines the command line,
 parses it according to instructions present in its
 arguments, and makes the result available to the user for
 further processing. This processing is normally done with
 the aid of a set of standard Subsystem macros, described
 below. All arguments handled by ’parscl’ are deleted from
 the command line, so any remaining special cases may be han−
 dled by the user.

 The argument ’str’ is a string describing the syntax of the
 command line. The argument ’buf’ is a one−dimensional array
 of characters normally declared with the standard Subsystem
 macro ’ARG_DECL’. The function return is OK if the command
 line parsed successfully, ERR if an illegal option was seen
 or a required parameter was missing.

 ’Parscl’ handles several types of arguments. "Flag"
 arguments are single−letter flags, preceded by a hyphen or
 dash, that have no parameters and may be grouped together in
 a single argument; for example, "−a" or "−acq". Arguments
 with parameters may have a string or integer value following
 the single−letter, or present in the next argument in the
 command line. For example, "−p1", "−p 1", "−nfilename", or
 "−n filename". Parameters for such arguments may be
 optional or required. Finally, some arguments may be
 ignored entirely, while others may not be allowable at all.

 The argument ’str’ contains a specification of allowable
 arguments and their types. Each specification consists of
 an option letter (case is ignored) followed by a type in
 angle brackets. The following types are allowable: ’f’ or
 ’flag’ for flag arguments, ’ign’ or ’ignored’ for ignorable
 arguments, ’na’ for arguments that are not allowable, ’oi’
 or ’opt int’ for arguments with an optional integer
 parameter, ’os’ or ’opt str’ for arguments with an optional
 string parameter, ’ri’ or ’req int’ for arguments with a
 required integer parameter, and ’rs’ or ’req str’ for
 arguments with a required string parameter. For example, a
 command with the syntax

 −u <integer> [−l <integer>] [−i [<string>]]

 would pass the following string to ’parscl’:

 u<req int> l<req int> i<opt str>

 parscl (2) − 1 − parscl (2)

 parscl (2) −−− parse command line arguments 01/07/83

 Order of arguments on the command line is unimportant, as
 well as the case of the option letter used.

 The command line is typically parsed and then examined with
 a number of standard Subsystem macros. ’ARG_DECL’ is used
 to declare the buffer required by ’parscl’.
 "PARSE_COMMAND_LINE(str,msg)" is used to invoke ’parscl’;
 ’str’ is passed to ’parscl’ as its first argument, and ’msg’
 is passed to ’error’ to be printed if the command line could
 not be parsed. For example, one might use

 PARSE_COMMAND_LINE ("u<ri>l<ri>i<os>"s,
 "Usage: cmd −u<upper> [−l<lower>] [−i[<file>]]"p)

 Once ’parscl’ has been called in this manner, default values
 for optional parameters may be supplied with
 ’ARG_DEFAULT_INT’ and ’ARG_DEFAULT_STR’:

 ARG_DEFAULT_STR(i,"/dev/stdin1"s)
 ARG_DEFAULT_INT(l, 1)

 One may test for the presence of an argument on the command
 line with ’ARG_PRESENT’, and retrieve argument values with
 ’ARG_VALUE’ and ’ARG_TEXT’:

 if (ARG_PRESENT (l))
 lower = ARG_VALUE (l)
 else
 lower = 1
 call ctoc (ARG_TEXT (i), filename, MAXLINE)

 Once as much as possible of this kind of argument parsing is
 complete, the user may examine any remaining arguments by
 fetching them with ’getarg’.

 Implementation

 ’Parscl’ scans the specification string and builds a 26
 element array. Each element of the array corresponds to a
 letter A − Z and contains an integer describing the type of
 argument expected when that letter is encountered. If an
 unrecognized argument type (in angle brackets) is
 encountered, ’parscl’ calls ’error’ to print an error mes−
 sage.

 Then ’parscl’ scans the command line arguments, skipping
 those that do not begin with a hyphen or have a letter as
 the second character. Arguments that begin with hyphens are
 examined further. If the letter in the second position of
 the argument is to be ignored, it is skipped. Flag
 arguments are simply marked "present" in the argument
 buffer. Values for string parameters are stored in the
 argument buffer for later retrieval. Values for integer
 parameters are converted with ’gctoi’ (thus allowing
 arbitrary radix representation) then stored in the argument

 parscl (2) − 2 − parscl (2)

 parscl (2) −−− parse command line arguments 01/07/83

 buffer.

 So that variables can be used in the macro calls, the fol−
 lowing macros take an integer or variable containing an
 integer in the range 1 to 26 rather than a letter:

 ARG_VALUE_I (<integer>)
 ARG_PRESENT_I (<integer>)
 ARG_DEFAULT_INT_I (<integer>, <string>)
 ARG_DEFAULT_STR_I (<integer>, <string>)

 Calls

 ctoc, delarg, error, gctoi, getarg, mapdn, putlin, strbsr

 Arguments Modified

 buf

 See Also

 delarg (2), getarg (2), gfnarg (2)

 parscl (2) − 3 − parscl (2)

 parsdt (2) −−− parse a date in mm/dd/yy format 03/20/80

 Calling Information

 integer function parsdt (str, i, month, day, year)
 character str (ARB)
 integer i, month, day, year

 Library: vswtlb (standard Subsystem library)

 Function

 ’Parsdt’ examines the string passed to it in ’str’, starting
 at position ’i’ and attempts to interpret it as a Gregorian
 date. The string being examined is expected to be in any of
 three formats: a single integer, which is interpreted as a
 day in the current month of the current year; a pair of
 integers separated by a slash (/), which is interpreted as a
 month of the current year followed by a day within that
 month; or three integers separated by slashes, which is
 interpreted in the obvious way.

 If the string is found to be a valid date (both syntac−
 tically and semantically), the arguments ’month’, ’day’ and
 ’year’ are set appropriately, and OK is returned as the
 function value. Otherwise, the contents of ’month’, ’day’
 and ’year’ are unpredictable and ERR is returned as the
 function value. In all cases, the string index ’i’ is
 advanced beyond the last character examined in the string.

 Implementation

 After skipping leading blanks and checking the first non−
 blank character to be sure it is a digit, ’parsdt’ calls
 ’ctoi’ to convert the string to an integer. As long as
 there are trailing slashes, ’ctoi’ is called repeatedly
 until a month, day and year have been parsed. If at any
 point a trailing slash is not encountered, ’parsdt’ calls
 ’date’ to retrieve the current date and parses the remaining
 items from that string.

 Calls

 ctoi, date

 Arguments Modified

 i, month, day, year

 See Also

 parstm (2)

 parsdt (2) − 1 − parsdt (2)

 parstm (2) −−− convert time−of−day to seconds past midnight 03/28/80

 Calling Information

 integer function parstm (str, i, val)
 character str (ARB)
 integer i
 long_int val

 Library: vswtlb (standard Subsystem library)

 Function

 ’Parstm’ converts a standard textual time−of−day representa−
 tion into the number of seconds since midnight. The
 argument ’str’ starting at position ’i’ is assumed to be an
 EOS−terminated string containing the time−of−day in the
 format "<hours>[:<minutes>[:<seconds>]][’am’|’pm’]". ’Val’
 is a long integer variable which receives the result of the
 conversion. The function return is OK if the conversion
 succeeded, ERR otherwise. As with most conversion routines,
 the position argument ’i’ is updated to point to the first
 character in the input string that is not a part of the
 time−of−day.

 Implementation

 ’Parstm’ simply scans the string accumulating the components
 of the time as it goes, calculating ’val’ in the process.
 Errors occur if there is no leading digit or if the time
 specified yields more than 86,400 seconds.

 Arguments Modified

 i

 Calls

 ctoi, mapdn

 Bugs

 Does not check the time string for legality. Behavior at
 midnight and noon may not be correct.

 See Also

 parsdt (2)

 parstm (2) − 1 − parstm (2)

 patsiz (2) −−− return size of pattern entry 05/29/82

 Calling Information

 integer function patsiz (pat, n)
 character pat (MAXPAT)
 integer n

 Library: vswtlb (standard Subsystem library)

 Function

 ’Patsiz’ returns the size of the pattern element at
 "pat(n)".

 Implementation

 Characters, start tags, and stop tags have size 2;
 beginning−of−line, end−of−line, and wild−card character have
 size 1; character classes have arbitrary size encoded at the
 next word in the pattern; closures have size CLOSIZE.

 Calls

 error

 See Also

 match (2), amatch (2)

 patsiz (2) − 1 − patsiz (2)

 powr$m (2) −−− calculate a longreal raised to a longreal power 04/27/83

 | Calling Information

 | longreal function powr$m (x, y)
 | longreal x, y

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’powr$m’ function raises a double precision real value
 | to a double precision real power. The function return is
 | also double precision. It is the same as the Fortran
 | statement "x**y".

 | The function is coded so as to adhere to ANSI Fortran stan−
 | dards which do not allow raising negative values to a float−
 | ing point power, and which do not allow zero to be raised to
 | a zero or negative power. Other inputs may trigger an error
 | if the result of the calculation would result in overflow.
 | The condition SWT_MATH_ERROR$ is signalled if there is an
 | argument error. An on−unit can be established to deal with
 | this error; the SWT Math Library contains a default handler
 | named ’err$m’ which the user may utilize.

 | There are four cases where this function may signal
 | SWT_MATH_ERROR$. If an attempt is made to raise a negative
 | value to a non−zero power, then the default return value
 | will be the absolute value of that quantity raised to the
 | given power. If an attempt is made to raise zero to a zero
 | or negative power, the default return is zero. If the
 | result would overflow then the default return value is the
 | largest double precision quantity that can be represented.
 | If the result would cause underflow, the default return is
 | the smallest positive value which can be represented on the
 | machine.

 | Implementation

 | Adapted from the algorithm given in the book Software Manual
 | for the Elementary Functions by William Waite and William
 | Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | err$m (2),
 | SWT Math Library User’s Guide

 powr$m (2) − 1 − powr$m (2)

 print (2) −−− easy to use semi−formatted print routine 01/07/83

 Calling Information

 subroutine print (fd, fmt, a1, a2, ...)
 file_des fd
 character fmt (ARB)
 untyped a1, a2, ...

 Library: vswtlb (standard Subsystem library)

 Function

 ’Print’ is an output routine designed for ease of use. It
 allows the user to specify a file on which to write, a
 format to control output to the file, and any number of
 items to be printed. The first argument is the file
 descriptor of the file to be used for output. The second
 argument is a format string (discussed below). The remain−
 ing arguments (zero or more) are items to be output accord−
 ing to format control.

 The format string is a EOS−terminated character string. It
 contains literal characters to be printed, as well as
 formatting control structures. Formatting control struc−
 tures consist of an asterisk (*) followed by a single lower−
 case letter describing the action to be performed on the
 next argument in the argument list. For a complete list of
 the available formats, see the documentation for the
 subroutine ’encode’.

 Characters in the format string that are not associated with
 a format control construct are output to the file without
 change.

 A few examples may clarify the use of ’print’. The follow−
 ing call will print two real numbers along with some text
 for identification, followed by a NEWLINE, on standard out−
 put:

 call print (STDOUT, "x = *r, y = *r*n"s, xcoord, ycoord)

 This example shows how a line of output may be built up by
 successive calls:

 call print (STDOUT, "absolute value = "s)
 if (x < 0)
 call print (STDOUT, "*i*n"s, −i)
 else
 call print (STDOUT, "*i*n"s, i)

 Further examples of formats may be found in the documenta−
 tion for ’encode’.

 For compatibility with earlier versions of the Subsystem,
 packed strings will still be accepted, but all new code
 should use standard EOS−terminated strings.

 print (2) − 1 − print (2)

 print (2) −−− easy to use semi−formatted print routine 01/07/83

 Implementation

 Since Fortran passes arguments to subroutines by reference,
 ’print’ does not need to know the actual type of its
 printable arguments. A local character buffer is declared
 and passed along with the arguments to ’encode’, which does
 the actual work of conversion. A call to ’putlin’ then
 writes the result to the specified file.

 Calls

 encode, ptoc, putlin

 Bugs

 At most ten items may be printed.

 See Also

 encode (2), input (2), putlin (2), other conversion routines
 (’?*toc’ and ’cto?*’) (2)

 print (2) − 2 − print (2)

 ptoc (2) −−− convert packed string to EOS−terminated string 03/23/80

 Calling Information

 integer function ptoc (pstr, term, str, len)
 packed_char pstr (ARB)
 integer len
 character term, str (len)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ptoc’ is used to convert packed character strings (e.g.,
 Fortran Hollerith literals) into the EOS−terminated unpacked
 form normally used by all Subsystem routines. The argument
 ’pstr’ is the packed array to be converted. ’Term’ is a
 "termination character"; if the termination character
 appears unescaped in the packed string, then the unpacking
 operation will be terminated. (For example, most uses of
 packed strings in Software Tools included a period as a
 termination character, since in general there is no other
 way for a subprogram to tell where a Hollerith literal
 ends.) The argument ’str’ is an array to receive the unpac−
 ked string; its maximum length is specified by the argument
 ’len’.

 The function return is the length of the string in ’str’ (as
 usual, excluding the EOS character).

 A note on a rather common use of ’ptoc’: Many Primos
 routines return packed character strings that do not have a
 termination character, but do have a maximum length. When
 using ’ptoc’ to convert the output of these routines, one
 may use EOS as the termination character to obtain a fixed−
 length result.

 Implementation

 ’Ptoc’ uses the standard Subsystem macro ’fpchar’ to pull
 successive characters from the packed array. These are sim−
 ply copied into the receiving string until the string is
 full or an unescaped instance of the termination character
 is found.

 Arguments Modified

 str

 See Also

 other conversion routines (’cto?*’ and ’?*toc’),
 particularly ’ctop’ (2), ’vtoc’ (2), and ’ctov’ (2)

 ptoc (2) − 1 − ptoc (2)

 ptov (2) −−− convert packed string to PL/I varying string 09/23/83

 | Calling Information

 | integer function ptov (pstr, term, vstr, len)
 | packed_char pstr (ARB), vstr (len)
 | integer len
 | character term

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Ptov’ converts a packed character string (e.g., Fortran
 | Hollerith literals) into a PL/I−compatible "character
 | varying" string. Character varying strings consist of a
 | one−word length field, followed by up to 32767 words of pac−
 | ked character data.

 | The argument ’pstr’ is the packed array to be converted.
 | ’Term’ specifies a "termination character"; if the termina−
 | tion character appears unescaped in the packed string, then
 | ’ptov’ terminates the copying operation without copying
 | ’term’. (For example, most uses of packed strings in
 | Software Tools included a period as a termination character,
 | since in general there is no other way for a subprogram to
 | tell where a Hollerith literal ends.) The argument ’vstr’
 | is an array which receives the character−varying string;
 | ’len’ gives the number of words available in ’vstr’, includ−
 | ing the leading one−word length field.

 | The function returns the number of characters copied into
 | ’vstr’.

 | Many Primos routines return packed character strings that do
 | not have a termination character, but do have a maximum
 | length. When using ’ptov’ to convert the output of these
 | routines, one may use EOS as the termination character to
 | obtain a fixed−length result.

 | Implementation

 | ’Ptov’ first checks that ’len’ is large enough to allow it
 | to store characters in ’vstr’. If there is room for charac−
 | ters in ’vstr’, ’ptov’ fetches successive words from ’pstr’,
 | unpacks the characters, checks for escaped characters and
 | ’term’, and then packs the characters into ’vstr’. When it
 | encounters ’term’ or if it fills ’len’ words with data,
 | ’ptov’ returns the number of characters copied.

 | Arguments Modified

 | vstr

 ptov (2) − 1 − ptov (2)

 ptov (2) −−− convert packed string to PL/I varying string 09/23/83

 | See Also

 | other conversion routines (’pto?*’ and ’?*tov’),
 | particularly ’vtop’ (2), ’ctop’ (2), ’ptoc’ (2), ’vtoc’ (2),
 | and ’ctov’ (2)

 ptov (2) − 2 − ptov (2)

 putch (2) −−− put a character on a file 03/23/80

 Calling Information

 integer function putch (c, fd)
 character c
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Putch’ places the character ’c’ on the file specified by
 file descriptor ’fd’. If the attempt succeeds, ’putch’
 returns OK; otherwise, it returns ERR.

 Implementation

 ’Putch’ creates an internal buffer of two characters, the
 first being the argument ’c’ and the second being an EOS.
 This buffer is written on the specified file by a call to
 ’putlin’.

 Calls

 putlin

 See Also

 putlin (2), getch (2)

 putch (2) − 1 − putch (2)

 putdec (2) −−− write decimal integer to a file 03/23/80

 Calling Information

 subroutine putdec (n, w, fd)
 integer n, w
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Putdec’ prints a decimal integer in a field of width
 greater than or equal to the argument ’w’. The argument ’n’
 is the integer to be printed; ’w’ is the field width; ’fd’
 is the file descriptor of the file to be written. If ’w’ is
 insufficient to print the integer, enough additional space
 on the file is used to insure that an accurate representa−
 tion is printed.

 Implementation

 ’Putdec’ calls ’itoc’ to convert the integer to a character
 representation. Enough blanks are output by calls to
 ’putch’ to right justify the string produced by ’itoc’, then
 the string itself is printed by multiple calls to ’putch’.

 Calls

 itoc, putch

 See Also

 itoc (2), encode (2), print (2)

 putdec (2) − 1 − putdec (2)

 putlin (2) −−− put a line on a file 03/25/82

 Calling Information

 integer function putlin (line, fd)
 character line (ARB)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Putlin’ is the primary Subsystem output routine. The
 character string supplied as the first argument is placed on
 the file specified by the second argument. The function
 return is OK if the write was successful, ERR otherwise.

 Implementation

 ’Putlin’ first calls ’mapsu’ to map any standard unit which
 may have been supplied on the call to a file descriptor.
 The file specified by this descriptor is checked to insure
 writeability. If the last operation on the given file was
 not a ’putlin’, ’flush$’ is called to place the file’s
 buffer in the empty state. Depending on the device type
 associated with the file, one of the device dependent
 drivers ’dputl$’ (for disk files) or ’tputl$’ (for terminal
 files) is called to perform the actual data transfer. No
 data transfer takes place for the null device (/dev/null).
 The function return is the value returned by the device
 dependent driver chosen, and is OK for a successful trans−
 fer, ERR for an unsuccessful transfer.

 Calls

 mapsu, dputl$, tputl$, flush$

 See Also

 mapsu (2), dputl$ (6), tputl$ (6), putch (2), getlin (2)

 putlin (2) − 1 − putlin (2)

 putlit (2) −−− write literal string on a file 02/24/82

 Calling Information

 subroutine putlit (message, delimiter, fd)
 packed_char message (ARB)
 character delimiter
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Putlit’ provides a way to place a literal string on a file.
 Its first argument is a packed character string, terminated
 by a character specified in the second argument. The third
 argument is the file descriptor of the file to be used.

 ’Putlit’ is maintained for compatibility with earlier ver−
 sions of the Subsystem. In the future, ’Putlin’ should be
 used to write literal strings.

 Implementation

 ’Putlit’ calls ’ptoc’ to unpack its first argument, then
 calls ’putlin’ to print the unpacked string on the specified
 file.

 Calls

 ptoc, putlin

 Bugs

 Returns no status to indicate whether or not the write was
 successful.

 See Also

 ptoc (2), putlin (2), print (2), encode (2)

 putlit (2) − 1 − putlit (2)

 rand$m (2) −−− generate a random number 04/27/83

 | Calling Information

 | longreal function rand$m (l)
 | longint l

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’rand$m’ function returns a double precision floating
 | value in the open interval (0.0, 1.0). The argument to the
 | function is set to a 32 bit integer in the range (0, 2**31 −
 | 1). The generator is a linear congruential generator with
 | multiplier 764261123. The values returned seem to be very
 | well distributed, both from the standpoint of spectral tests
 | and lattice tests.

 | The ’rand$m’ routine does not detect or signal any errors.
 | The first time the ’rand$m’ function is called, if the
 | generator has not been initialized with the ’seed$m’
 | procedure, a seed is derived based on the current time of
 | day and cpu utilization. This seed is returned in the
 | integer argument variable.

 | This function can serve as a single precision function
 | although it returns a double precision result. The function
 | has been coded so that any value returned will not overflow
 | or underflow a single precision floating point value. The
 | double precision register overlaps the single precision
 | register so it is possible to declare and use this function
 | as simply a "real" function.

 | Implementation

 | Derived from information presented in "A Statistical Evalua−
 | tion of Multiplicative Congruential Random Number Generators
 | with Modulus 2^32 −1" by George S. Fishman and Louis R.
 | Moore, in the Journal of the American Statistical
 | Association, volume 77, number 377, March 1982.

 | Calls

 | dble$m, Primos timdat

 | See Also

 | dble$m (2), seed$m (2),
 | SWT Math Library User’s Guide

 rand$m (2) − 1 − rand$m (2)

 readf (2) −−− read raw words from a file 03/25/82

 Calling Information

 integer function readf (buf, nw, fd)
 integer buf (ARB), nw
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Readf’ is used to read words from a file, which may be
 assigned to any device recognized by the Subsystem. (A word
 on the Prime is 16 bits long.) The first argument is a
 buffer to receive data transferred from the file; the second
 argument is the number of words to be read; the third
 argument is the file descriptor of the file from which data
 will be read. Words are transferred from the file to the
 buffer until (1) the requested number of words are trans−
 ferred, (2) end−of−file occurs, or (3) if the file from
 which the data is read is a tty file, a NEWLINE is
 encountered.

 If the file is not readable, the given file designator is
 invalid, or the file’s error flag is set, the function
 return is ERR. If end−of−file is encountered on the read,
 the function return is EOF. Otherwise, the function return
 is the number of words returned in the buffer.

 Implementation

 ’Readf’ first calls ’mapsu’ to convert any standard port
 descriptors it is passed into Subsystem file descriptors.
 If the last operation performed on the file was not a
 ’readf’, then ’flush$’ is called to empty the file’s Sub−
 system buffer. Depending on the device type associated with
 the file, a device dependent driver (’dread$’ for disk or
 ’tread$’ for the user’s terminal) is called to do the actual
 work of getting data into the buffer.

 Arguments Modified

 buf

 Calls

 mapsu, dread$, tread$, flush$

 Bugs

 Strange things may happen if you ask for more words than
 ’buf’ can hold. The semantics of reading raw characters

 readf (2) − 1 − readf (2)

 readf (2) −−− read raw words from a file 03/25/82

 from a terminal are a little shaky; since one character per
 word is stored in a terminal buffer, ’readf’ actually reads
 characters from a terminal, not words. There is a need for
 devices other than "terminal" and "disk" (system console,
 for example). EOF is returned if any error occurs when
 reading from disk (in dread$); the user is not informed of
 the actual error that occurs.

 See Also

 dread$ (6), tread$ (6), flush$ (6), mapsu (2), writef (2),
 getlin (2)

 readf (2) − 2 − readf (2)

 remark (2) −−− print diagnostic message 01/07/83

 Calling Information

 subroutine remark (message)
 packed_char message (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Remark’ is a routine from Software Tools that is used to
 print messages on the error output file (ERROUT). The
 single argument is either a packed, period−terminated
 character string (e.g. a Fortran Hollerith literal), or an
 unpacked, EOS−terminated string (the standard Subsystem
 variety). In either case, the given string is printed on
 ERROUT, followed by a NEWLINE.

 Implementation

 If the high−order byte of the first word of the string is
 non−zero, then the string must be packed; ’remark’ uses
 ’putlit’ to write the string to ERROUT. Otherwise, ’remark’
 uses ’putlin’ to write the string. Finally, ’putch’ is cal−
 led to print the trailing NEWLINE.

 Calls

 putlit, putch, putlin

 See Also

 putlit (2), putch (2), error (2), putlin (2)

 remark (2) − 1 − remark (2)

 remove (2) −−− remove a file, return status 07/04/83

 | Calling Information

 integer function remove (pathname)
 character pathname (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Remove’ deletes the file specified by the pathname given as
 the first argument. If the deletion could not be carried
 out, ERR is returned; otherwise, OK is returned.

 Implementation

 ’Getto’ is called to attach to the UFD containing the
 undesirable file. The file is deleted by a call to
 | ’rmfil$’, and a call to the Primos routine AT$HOM attaches
 the user back to his home directory. If any call to
 ’rmfil$’ or ’getto’ fails, ERR is returned; otherwise, OK is
 returned.

 Calls

 | getto, Primos srch$$, Primos at$hom

 See Also

 getto (2), rmtemp (2), rmfil$ (6), del (1)

 remove (2) − 1 − remove (2)

 rewind (2) −−− rewind a file 02/24/82

 Calling Information

 integer function rewind (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rewind’ positions the file specified by ’fd’ to its begin−
 ning. All internal Subsystem status indicators are reset to
 indicate the new condition of the file. If the attempt to
 rewind was successful, ’rewind’ returns OK; otherwise, it
 returns ERR.

 Implementation

 ’Rewind’ calls ’seekf’ to set the current position of the
 file to zero.

 Calls

 seekf

 Bugs

 Terminal file behavior is somewhat unpredictable, since the
 user may have typed ahead of any requests for input.

 See Also

 wind (2), seekf (2), markf (2)

 rewind (2) − 1 − rewind (2)

 rmtabl (2) −−− remove a symbol table 03/23/80

 Calling Information

 subroutine rmtabl (table)
 pointer table

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rmtabl’ is used to remove a symbol table created by
 ’mktabl’. The sole argument is the address of a symbol
 table in dynamic storage space, as returned by ’mktabl’.

 ’Rmtabl’ deletes each symbol still in the symbol table, so
 it is not necessary to empty a symbol table before deleting
 it (unless symbol table nodes contain a pointer to dynamic
 or linked−string storage, which cannot be reclaimed).

 Please see the manual entry for ’dsinit’ for instructions on
 initializing the dynamic storage space used by the symbol
 table routines.

 Implementation

 ’Rmtabl’ traverses each chain headed by the hash table
 created by ’mktabl’. Each symbol table node encountered
 along the way is returned to free storage by a call to
 ’dsfree’. Once all symbols are removed, the hash table
 itself is returned by a similar call.

 Calls

 dsfree

 See Also

 mktabl (2), enter (2), lookup (2), delete (2), dsget (2),
 dsfree (2), dsinit (2), sctabl (2)

 rmtabl (2) − 1 − rmtabl (2)

 rmtemp (2) −−− remove a temporary file 03/23/80

 Calling Information

 integer function rmtemp (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rmtemp’ is used to remove a temporary file created by
 ’mktemp’. The file specified by ’fd’ is rewound, truncated
 to zero length, and closed. This action is as close as pos−
 sible to actually deleting the file. If the attempt to
 close the file is successful, ’rmtemp’ returns OK; other−
 wise, it returns ERR.

 Implementation

 ’Rmtemp’ simply calls ’rewind’, ’trunc’, and ’close’, in
 that order, on the given file descriptor. If the call to
 ’close’ fails, ERR is returned; otherwise, OK is returned.

 Calls

 rewind, trunc, close

 See Also

 mktemp (2), rewind (2), trunc (2), close (2)

 rmtemp (2) − 1 − rmtemp (2)

 rtoc (2) −−− convert real value to ASCII string 02/24/82

 Calling Information

 integer function rtoc (v, str, w, d)
 real v
 character str (ARB)
 integer w, d

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rtoc’ converts the (single precision) real value in ’v’ to
 a character string in ’str’. The length of the string is
 returned as the value of ’rtoc’.

 The values of ’w’ and ’d’ control the format of the con−
 verted string. Generally speaking, ’d’ controls the number
 of decimal positions or significant digits, and ’w’
 specifies the maximum length of the field. The following
 table explains the operation of ’rtoc’ for different com−
 binations of ’w’ and ’d’. (Fortran and Basic programmers
 take note: d>12 corresponds to Basic output, 12>=d>=0
 corresponds to Fortran ’F’ format, and 0>d>=12 corresponds
 to Fortran ’E’ format)

 ’d’ ’w’ Result

 d>12 w>16 If the value is in the range 1e7>v>=1e−2,
 it is converted into a BASIC−like fixed−
 point with no trailing zeroes after the
 decimal point. Otherwise, it is converted
 into a BASIC−like exponential format with
 no trailing zeroes after the decimal
 point.

 w<=16 An error is returned.

 12>=d>=0 − If possible, the value is converted to a
 fixed−point format with ’d’ positions
 after the decimal point. Otherwise, it is
 converted to an exponential format with as
 many significant digits as possible. If
 ’w’ is less than 8, an exponential conver−
 sion is not possible and an error will be
 returned.

 0>d>−12 w>d+6 The number is converted to an exponential
 format with ’d’ significant digits.

 w<=d+6 An error is returned.

 To return an error, ’rtoc’ places a string consisting of a
 single question mark in ’str’.

 It should be noted that ’w’ is roughly equivalent to the

 rtoc (2) − 1 − rtoc (2)

 rtoc (2) −−− convert real value to ASCII string 02/24/82

 ’size’ parameter in other conversion routines such as ’itoc’
 and ’ltoc’; ’w’ specifies the maximum number of digits that
 may be produced. Thus the maximum number of characters
 returned in ’str’ will never exceed ’w + 1’.

 Implementation

 ’Rtoc’ converts the number to double precision and then
 calls ’dtoc’. ’Rtoc’ then returns whatever ’dtoc’ returns.

 Arguments Modified

 str

 Calls

 dtoc

 Bugs

 Has been thoroughly tested, but has not stood the test of
 time.

 See Also

 other conversion routines (’cto?*’ and ’?*toc’) (2)

 rtoc (2) − 2 − rtoc (2)

 scopy (2) −−− copy one string to another 02/25/83

 Calling Information

 integer function scopy (from, i, to, j)
 character from (ARB), to (ARB)
 integer i, j

 Library: vswtlb (standard Subsystem library)

 Function

 ’Scopy’ copies a string from one place to another. The
 source string begins at the ’i’th character of ’from’, and
 extends to an EOS; the destination string begins at the
 ’j’th character of the string ’to’. Copying takes place by
 character−by−character transfer until an EOS is encountered;
 the EOS is transferred to the receiving string also. When
 it finishes, ’scopy’ returns the number of characters
 copied, excluding the trailing EOS.

 Implementation

 A simple loop copies characters from one string to the
 other, until an EOS is seen.

 Arguments Modified

 to

 scopy (2) − 1 − scopy (2)

 sctabl (2) −−− scan all symbols in a symbol table 01/07/83

 Calling Information

 integer function sctabl (table, symbol, info, posn)
 pointer table, posn
 untyped info (ARB)
 character symbol (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Sctabl’ provides a means of accessing all symbols present
 in a symbol table (c.f. ’mktabl’) without knowledge of the
 table’s internal structure. After a simple initialization
 (see below), successive calls to ’sctabl’ return symbols and
 their associated information. When the return value of
 ’sctabl’ is EOF, the entire table has been scanned.

 The first argument is the index in dynamic storage of the
 symbol table to be accessed. (This should be the value
 returned by ’mktabl’.)

 The second and third arguments receive the character text of
 and integer information associated with the symbol currently
 under scan.

 The fourth argument is used to keep track of the current
 position in the symbol table. It must be initialized to
 zero before ’sctabl’ is called for the first time for a
 given scan. Furthermore, if the scan must be terminated
 early (before ’sctabl’ returns EOF) the dynamic storage area
 pointed to by this argument must be freed, e.g. with "call
 dsfree (posn)".

 The function return is EOF when the entire table has been
 scanned, and not EOF otherwise.

 Implementation

 If ’posn’ is zero, ’sctabl’ allocates two words of dynamic
 memory and assigns their location to it. These words are
 used to keep track of (1) the hash table bucket currently in
 use and (2) the position in the bucket’s list of the next
 symbol. If a symbol is available in the current list,
 ’sctabl’ returns its data and records the position of the
 next symbol in the list; otherwise, it moves to the next
 bucket and examines that list. If there are no more buckets
 in the symbol table, the position information pointed to by
 ’posn’ is returned via a call to ’dsfree’ and EOF is retur−
 ned as the function value. Incidentally, ’posn’ is set to
 zero when the end of the table is encountered.

 sctabl (2) − 1 − sctabl (2)

 sctabl (2) −−− scan all symbols in a symbol table 01/07/83

 Arguments Modified

 symbol, info, posn

 Calls

 dsget, dsfree, scopy

 Bugs

 A call to ’enter’ must be made to update the information
 associated with a symbol. If new symbols are entered or old
 symbols deleted during a scan, the results are unpredic−
 table. The argument order is bogus; all the other symbol
 table routines have the table pointer as the last argument.

 See Also

 lookup (2), delete (2), mktabl (2), rmtabl (2), st$lu (6),
 dsget (2), dsfree (2), dsinit (2)

 sctabl (2) − 2 − sctabl (2)

 sdrop (2) −−− drop characters from a string APL−style 03/23/80

 Calling Information

 integer function sdrop (from, to, length)
 character from (ARB), to (ARB)
 integer length

 Library: vswtlb (standard Subsystem library)

 Function

 ’Sdrop’ copies all but ’length’ characters from the ’from’
 string into the ’to’ string and returns as its result the
 number of characters copied. If ’length’ is positive, the
 omitted characters are relative to the beginning of the
 ’from’ string; if it is negative, they are relative to the
 end of the string.

 Arguments Modified

 to

 Calls

 ctoc, length, scopy

 See Also

 stake (2), index (2), substr (2), drop (1)

 sdrop (2) − 1 − sdrop (2)

 seed$m (2) −−− set the seed for the rand$m random number generator 04/27/83

 | Calling Information

 | subroutine seed$m (u)
 | untyped u

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | The ’seed$m’ procedure is used to reset the pseudo−random
 | number generator to a known state. It is called with any 4
 | byte value which is not equal to 32 bits of zero. The seed
 | can therefore be 4 characters, a long pointer, a long
 | integer, or a real number. If the input is identical to
 | zero then the SWT_MATH_ERROR$ condition is signalled. The
 | condition SWT_MATH_ERROR$ is signalled if there is an
 | argument error. An on−unit can be established to deal with
 | this error; the SWT Math Library contains a default handler
 | named ’err$m’ which the user may utilize. ’Seed$m’ does not
 | return a value.

 | Implementation

 | Based on the structure of the ’rand$m’ routine; see the
 | source for specific details.

 | Calls

 | Primos signl$

 | See Also

 | err$m (2), rand$m (2),
 | SWT Math Library User’s Guide

 seed$m (2) − 1 − seed$m (2)

 seekf (2) −−− position a file to a designated word 01/07/83

 Calling Information

 integer function seekf (pos, fd[, xra])
 file_mark pos
 file_des fd
 integer xra

 Library: vswtlb (standard Subsystem library)

 Function

 ’Seekf’ is used to position the file pointer to a designated
 word. The first argument is an integer value which
 specifies the relative or absolute positioning value (depen−
 ding on the value of the third argument, ’xra’); if ’xra’
 equals ABS then positioning is from the beginning of the
 file, or if ’xra’ equals REL then positioning is from the
 current position. The second argument is the file descrip−
 tor of the file whose file pointer is being manipulated.
 The third argument is optional. If omitted, the value ABS
 is assumed. The function return is OK if the positioning is
 successful, EOF if the end−of−the−file is reached, or ERR if
 ’fd’ is an invalid file descriptor, if the error flag for
 the file is set, if the file device type is disk and ’xra’
 is ABS and ’pos’ is negative, if the device type is terminal
 and ’xra’ is ABS, or if the device type is terminal and
 ’pos’ is negative.

 Implementation

 ’Seekf’ first calls ’mapsu’ to map any standard port
 descriptor it may have been passed into a file descriptor
 for further processing. The Primos routine MISSIN is called
 to determine if the ’xra’ argument is missing; if so, then
 absolute positioning is assumed. Depending on the device
 type associated with the file, a device dependent driver is
 called: ’dseek$’ (for disk) or ’tseek$’ (for terminal).
 The device dependent drivers do the actual work of
 positioning.

 Calls

 mapsu, dseek$, tseek$, flush$, Primos missin

 Bugs

 EOF is returned if any error occurs when reading from disk
 (in dseek$); the user is not informed of the true nature of
 the error.

 Do not seek to end−of−file on a terminal file; all further
 input from the terminal will be ignored.

 seekf (2) − 1 − seekf (2)

 seekf (2) −−− position a file to a designated word 01/07/83

 See Also

 dseek$ (6), tseek$ (6), flush$ (6), mapsu (2)

 seekf (2) − 2 − seekf (2)

 seterr (2) −−− set Subsystem error return code 08/28/84

 | Calling Information

 subroutine seterr (stat)
 integer stat

 Library: vswtlb (standard Subsystem library)

 Function

 ’Seterr’ is used to set the error status code variable in
 the Subsystem common area. This variable is examined by the
 Shell when it regains control after the execution of a user
 program; if the value of the status code is greater than or
 equal to 1000, then the Shell assumes a fatal error has
 | occurred and shuts down all currently active shell programs.

 See Also

 error (1), error (2)

 seterr (2) − 1 − seterr (2)

 sfdata (2) −−− set characteristics for a file 09/04/84

 | Calling Information

 | integer function sfdata (key, pathname, infbuf, attach, aux)
 | integer key, attach
 | untyped infbuf, aux
 | character pathname (ARB)

 | Library: vswtlb (standard Subsystem library)

 | Function

 | This functions sets information for a file system entry
 | according to the value of the parameter ’key’. There are
 | currently nine declarations for the values of ’key’ in the
 | standard SWT definitions. Their names and actions are:

 | FILE_UFDQUOTA −− This key sets quota information on a
 | given directory. The object named in ’pathname’ must
 | be a directory. ’Infbuf’ is a long integer value that
 | is the maximum number of records that may be used
 | under the given directory. If there already exist
 | more records under the directory than this value, the
 | quota is still set but no more may be used until
 | enough records to reduce the number below this value
 | are deleted. ’Aux’ is not used.

 | FILE_DMBITS −− This key sets the dumped bit on the
 | specified file object. ’Aux’ is not used.

 | FILE_RWLOCK −− This key sets the read/write lock according
 | to the string in ’infbuf’. ’Aux’ is not used. Legal
 | values for ’infbuf’ are:

 | "n−1" − The lock is set to N readers or 1 writer.
 | "n+1" − The lock is set to N readers and 1 writer.
 | "n+n" − The lock is set to N readers and N writers.
 | "sys" − The lock is set to the current system default.

 | FILE_TIMMOD −− This key sets the modification date and
 | time according to the values in ’infbuf’. ’Infbuf’ is
 | an array of 6 integers containing the year, month,
 | day, hours, minutes, and seconds, respectively, to
 | which to set the file modification date and time.

 | FILE_ACL −− This key sets the ACL attributes for the given
 | file object. The attributes are set according to the
 | strings contained in ’infbuf’ and ’aux’, which are the
 | same format as used in ’sacl’ and ’lacl’. If ’infbuf’
 | and ’aux’ are both empty (i.e. − contain only an
 | EOS), ’pathname’ is default protected if it is a
 | normal file object or deleted if it is an access
 | category. If ’infbuf’ is empty and ’aux’ is an exist−
 | ing file object, ’pathname’ will be protected like
 | ’aux’ if ’aux’ is a normal file object and protected
 | by ’aux’ if ’aux’ is an access category. If ’aux’ is

 sfdata (2) − 1 − sfdata (2)

 sfdata (2) −−− set characteristics for a file 09/04/84

 | empty then ’pathname’s protections will be modified
 | according to ’infbuf’. If ’aux’ and ’infbuf’ are
 | specified, the protections for the file ’aux’ will be
 | obtained and altered by the specifications in ’infbuf’
 | and placed on the file ’pathname’. The file protec−
 | tions for ’aux’ are not modified.

 | FILE_PRIORITYACL −− This key sets the priority ACL
 | attributes for the partition named in ’infbuf’. If
 | ’aux’ is empty, the current priority ACL is deleted,
 | otherwise the acl is set to the contents of ’aux’.

 | FILE_DELSWITCH −− This key controls the setting of the
 | delete protect switch on the file ’pathname’. ’Inf−
 | buf’ is an integer that contains YES to set the
 | protection switch, or NO to turn it off.

 | FILE_PROTECTION −− This key controls the setting of the
 | password protection bits according to the string in
 | ’infbuf’. Protection bits are read, write, and
 | truncate, represented by the characters ’r’, ’w’, and
 | ’t’, respectively. In addition, the letter ’a’
 | represents the string "trw" or all permissions. ’Inf−
 | buf’ contains a string of owner permissions followed
 | by a ’/’ and a string of non−owner permissions. The
 | ’/’ may be omitted if no non−owner permissions are to
 | be granted.

 | FILE_PASSWORDS −− This key sets the owner and non−owner
 | passwords of the directory ’pathname’ to the value of
 | ’infbuf’ and ’aux’, respectively.

 | ’Pathname’ is any standard EOS−terminated pathname, and may
 | contain templates. The function value is OK if the
 | subroutine was successful and ERR otherwise. ERR may
 | indicate the file does not exist, the caller does not have
 | the necessary permissions, or any of the numerous file
 | system errors possible.

 | The "attach" key is the same as in the ’getto’ function; it
 | indicates if the directory attach point had to be changed to
 | get to the file entry being examined.

 | Implementation

 | The function resets the subsystem error code and expands the
 | templates. If the directory attach point needs to be
 | changed, ’getto’ is called and the attach switch is saved.
 | Then the information is setup and the appropriate Primos
 | subroutines are called to make the file system changes.

 | Arguments Modified

 | attach

 sfdata (2) − 2 − sfdata (2)

 sfdata (2) −−− set characteristics for a file 09/04/84

 | Calls

 | ctoc (2), ctop (2), ctov (2), equal (2), expand (2), follow
 | (2), gtacl$ (6), index (2), mktr$ (2), mapstr (2), parsa$
 | (6), Primos ac$cat, Primos ac$dft, Primos ac$lik, Primos
 | ac$set, Primos at$hom, Primos cat$dl, Primos pa$del, Primos
 | pa$set, Primos q$set, Primos satr$$

 | See Also

 | chat (1), lacl (1), lf (1), sacl (1), gfdata (2)

 sfdata (2) − 3 − sfdata (2)

 shell (2) −−− run the Subsystem command interpreter 09/11/84

 | Calling Information

 | integer function shell (fd)
 | file_des fd

 | Library: vshlib (shell routine library)

 | Function

 | ’Shell’ takes an open file descriptor as its only argument.
 | The shell reads command lines from this file descriptor, and
 | attempts to execute the commands.

 | This is the main routine for the user level shell as well.
 | For details on how to use the shell, see The User’s Guide
 | for the Software Tools Subsystem Command Interpreter.

 | Having the shell as a subroutine opens up many possibilities
 | not previously available to the programmer. However, care
 | must be exercised when using the shell. In particular,
 | since EPF’s are not currently supported, it is quite pos−
 | sible for two user programs called from different
 | invocations of the shell to destroy each other’s code and/or
 | data. For example, if you run ’se’ on one file, and then
 | from ’se’ you run the shell, and from the new shell you run
 | ’se’ on a second file, the second ’se’ will overwrite the
 | data of the first ’se’ (effectively destroying your first
 | editing session). This is because the data for both
 | instances of ’se’ are loaded into the same area of (virtual)
 | memory. There is currently no safe way to get around this,
 | other than to be careful about what programs you run from
 | subsidiary invocations of the shell. (The screen editor
 | should be relatively safe from most programs (besides
 | another ’se’), since its data is not loaded into the default
 | segment (segment 4000), and the code is in a shared seg−
 | ment.)

 | When EPF’s are supported, it is recommended that everything
 | then be reloaded in EPF format. This will allow you to
 | invoke programs from subsidiary shells without having to
 | worry about what segment a program loads in. Until then, it
 | is recommended that you do not use this subroutine for
 | programs that will be loaded in segment 4000, since as soon
 | as you run another external program which also loads in
 | 4000, the first program will be destroyed. (When the second
 | program exits, you will end up back in the lowest level of
 | the shell.)

 | ’Shell’ returns OK if everything went well, otherwise it
 | returns ERR.

 | Implementation

 | Too complicated to describe here.

 shell (2) − 1 − shell (2)

 shell (2) −−− run the Subsystem command interpreter 09/11/84

 | Arguments Modified

 | None

 | See Also

 | The User’s Guide for the Software Tools Subsystem Command
 | Interpreter, sh (1), subsys (2)

 shell (2) − 2 − shell (2)

 sin$m (2) −−− calculate sine 04/27/83

 | Calling Information

 | longreal function sin$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function returns the sine of the angle whose measure
 | (in radians) is given by the argument. The absolute value
 | of the angle must be less than 26353588.0. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default return value will be zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is implemented as a minimax polynomial
 | approximation. Note that for angles sufficiently small the
 | value of the sine function is equal to the measure of the
 | angle. Adapted from the algorithm given in the book
 | Software Manual for the Elementary Functions by William
 | Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | asin$m (2), cos$m (2), dint$p (2), dsin$m (2), err$m (2),
 | SWT Math Library User’s Guide

 sin$m (2) − 1 − sin$m (2)

 sinh$m (2) −−− calculate hyperbolic sine 04/27/83

 | Calling Information

 | longreal function sinh$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic sine of its argument,
 | defined as sinh(x) = [exp(x) − exp(−x)]/2. The argument
 | must be smaller than 22623.630826296. The condition
 | SWT_MATH_ERROR$ is signalled if there is an argument error.
 | An on−unit can be established to deal with this error; the
 | SWT Math Library contains a default handler named ’err$m’
 | which the user may utilize. If an error is signalled, the
 | default return value will be zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The algorithm was adapted from the algorithm given in the
 | book Software Manual for the Elementary Functions by William
 | Waite and William Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m, Primos signl$

 | See Also

 | cosh$m (2), dexp$m (2), dsnh$m (2), err$m (2),
 | SWT Math Library User’s Guide

 sinh$m (2) − 1 − sinh$m (2)

 sqrt$m (2) −−− calculate square root 04/27/83

 | Calling Information

 | longreal function sqrt$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the square root of a floating point
 | value. Attempts to take the square root of negative values
 | will result in an error. The default return in this case
 | will be the square root of the absolute value of the
 | argument. All other arguments are in range and return valid
 | results. The condition SWT_MATH_ERROR$ is signalled if
 | there is an argument error. An on−unit can be established
 | to deal with this error; the SWT Math Library contains a
 | default handler named ’err$m’ which the user may utilize.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The algorithm involved is based on Newton’s approximation
 | method with an initial multiplicative approximation. The
 | argument is scaled to within the range [0.5, 2.0) and then
 | the algorithm is iterated to a solution. Adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | Primos signl$

 | See Also

 | dsqt$m (2), err$m (2),
 | SWT Math Library User’s Guide

 sqrt$m (2) − 1 − sqrt$m (2)

 stake (2) −−− take characters from a string APL−style 03/23/80

 Calling Information

 integer function stake (from, to, length)
 character from (ARB), to (ARB)
 integer length

 Library: vswtlb (standard Subsystem library)

 Function

 ’Stake’ copies the number of characters specified by
 ’length’ from the ’from’ string into the ’to’ string and
 returns as its result the number of characters copied. If
 ’length’ is positive, the characters are copied from the
 beginning of ’from’; if it is negative, they are copied from
 the end of ’from’.

 Arguments Modified

 to

 Calls

 ctoc, length, scopy

 See Also

 sdrop (2), index (2), substr (2), take (1)

 stake (2) − 1 − stake (2)

 stclos (2) −−− insert closure entry in pattern 05/29/82

 Calling Information

 integer function stclos (pat, j, lastj, lastcl)
 character pat (MAXPAT)
 integer j, lastj, lastcl

 Library: vswtlb (standard Subsystem library)

 Function

 ’Stclos’ inserts a closure entry into a pattern being built
 by ’makpat’. This involves shuffling the last pattern entry
 far enough to allow a closure entry to be inserted, then
 linking the closure entry to the last closure entry in the
 pattern. ’Pat’ is the pattern being built; ’j’ is the
 current end of ’pat’; ’lastj’ is the index in ’pat’ of the
 last element inserted (the one that is controlled by the
 closure); ’lastcl’ is the index of the last closure entry in
 ’pat’. The function return is equal to ’lastj’, which is
 the index of the new closure after insertion is completed.

 Implementation

 A simple loop shuffles the last element down; several calls
 to ’addset’ then create the closure entry and link it to the
 previous closure.

 Arguments Modified

 pat, j

 Calls

 addset

 See Also

 addset (2), makpat (2)

 stclos (2) − 1 − stclos (2)

 strbsr (2) −−− perform a binary search of a string table 08/28/84

 | Calling Information

 integer function strbsr (pos, tab, offs, object)
 integer pos (ARB), offs
 character tab (ARB), object (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Strbsr’ is used to perform a binary search on a table
 created by the Ratfor ’string_table’ declaration. The first
 argument is the position array, the second is the array of
 string text and additional information, the third is the
 offset of the string text in the ’tab’ array (i.e., the num−
 ber of words of additional data associated with each entry),
 and the last argument is a string containing the text to be
 sought.

 The function return is the index of the element in the ’pos’
 array that indexes the appropriate entry in ’tab’ if
 ’object’ was found; EOF otherwise.

 | See the User’s Guide for the Ratfor Preprocessor for a
 description of the ’string_table’ declaration.

 WARNING: the string table passed to ’strbsr’ must be
 sorted, otherwise the binary search will fail.

 Implementation

 ’Strbsr’ is a straightforward binary search routine, using
 ’strcmp’ to determine lexical ordering of strings.

 Calls

 strcmp

 Bugs

 Opaquely documented.

 See Also

 | strlsr (2), User’s Guide for the Ratfor Preprocessor

 strbsr (2) − 1 − strbsr (2)

 strcmp (2) −−− compare strings and return 1 2 or 3 for < = or > 03/23/80

 Calling Information

 integer function strcmp (str1, str2)
 character str1 (ARB), str2 (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Strcmp’ is a generalized string comparison routine. The
 two arguments are EOS−terminated strings to be compared; the
 function return is 1 if ’str1’ is less than ’str2’ (accord−
 ing to the ordering of ASCII characters), 2 if ’str1’ is
 equal to ’str2’, and 3 if ’str1’ is greater than ’str2’.

 If one string is a proper initial substring of the other,
 the longer string is always found to be greater.

 Implementation

 Character−at−a−time comparison loop. Function return
 depends on which string hit EOS first, or on ASCII ordering
 of character codes.

 See Also

 equal (2), length (2)

 strcmp (2) − 1 − strcmp (2)

 strim (2) −−− trim trailing blanks and tabs from a string 03/23/80

 Calling Information

 integer function strim (str)
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Strim’ is used to trim trailing blanks and tabs from the
 EOS−terminated passed as its first argument. The function
 return is the length of the trimmed string, excluding EOS.

 Implementation

 One pass is made through the string, and the position of the
 last non−blank, non−tab character remembered. When the
 entire string has been scanned, an EOS is planted
 immediately after the last non−blank.

 Arguments Modified

 str

 See Also

 stake (2), sdrop (2), substr (2)

 strim (2) − 1 − strim (2)

 strlsr (2) −−− perform a linear search of a string table 08/28/84

 | Calling Information

 integer function strlsr (pos, tab, offs, object)
 integer pos (ARB), offs
 character tab (ARB), object (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Strlsr’ is used to perform a linear search on a table
 created by the Ratfor ’string_table’ declaration. The first
 argument is the position array, the second is the array of
 string text and additional information, the third is the
 offset of the string text in the ’tab’ array (i.e., the num−
 ber of words of additional data associated with each entry),
 and the last argument is a string containing the text to be
 sought.

 The function return is the index of the element in the ’pos’
 array that indexes the appropriate entry in ’tab’ if
 ’object’ was found; EOF otherwise.

 | See the User’s Guide for the Ratfor Preprocessor for a
 description of the ’string_table’ declaration.

 Implementation

 ’Strlsr’ is a straightforward linear search routine, using
 ’strcmp’ to determine lexical equality of strings.

 Calls

 strcmp

 Bugs

 Opaquely documented.

 See Also

 | strbsr (2), User’s Guide for the Ratfor Preprocessor

 strlsr (2) − 1 − strlsr (2)

 substr (2) −−− take a substring from a string 03/23/80

 Calling Information

 integer function substr (from, to, first, length)
 character from (ARB), to (ARB)
 integer first, length

 Library: vswtlb (standard Subsystem library)

 Function

 ’Substr’ copies the portion of the ’from’ string specified
 by the ’first’ and ’length’ arguments into the ’to’ string
 and returns the length of ’to’ string as its result.
 ’First’ specifies the starting character position in ’from’;
 if it is positive, it indicates a position relative to the
 beginning of the string, whereas if it is negative, the
 indicated position is relative to the end of the string.
 ’Length’ specifies the number of characters to be copied; if
 | positive, ’length’ characters starting with the one selected
 | by ’first’ are copied; if negative, ’length’ characters
 | ending with the one selected by ’first’ are copied. If the
 specified substring overlaps either the beginning or the end
 of ’from’, ’to’ will be shorter than ’length’ characters.

 Arguments Modified

 to

 Calls

 length

 See Also

 stake (2), sdrop (2), strim (2), take (1), drop (1), substr
 (1)

 substr (2) − 1 − substr (2)

 subsys (2) −−− call the Subsystem command interpreter 08/27/84

 | Calling Information

 | integer function subsys (command)
 | character command (ARB)

 | Library: vshlib (shell routine library)

 | Function

 | ’Subsys’ takes an EOS terminated string as its only
 | argument. It then passes this string on to the shell to be
 | executed.

 | ’Subsys’ returns ERR if it could not put the command where
 | the shell can get to it. Otherwise, it passes on the return
 | code from the shell’s execution of the command.

 | Implementation

 | ’Subsys’ first create a temporary file with ’mktemp’. It
 | writes the command to be executed to the file, rewinds the
 | open file descriptor, and then calls the ’shell’ subroutine
 | on that descriptor. Finally, it calls ’rmtemp’ to close the
 | temporary file.

 | Calls

 | mktemp, shell, rmtemp

 | See Also

 | mktemp (2), shell (2), rmtemp (2)

 subsys (2) − 1 − subsys (2)

 svdel (2) −−− delete a shell variable at the current level 05/27/83

 | Calling Information

 | subroutine svdel (name)
 | character name (ARB)

 | Library: vshlib (shell routine library)

 | Function

 | ’Svdel’ deletes a shell variable at the current lexic level
 | of the shell. ’Name’ contains the name of the variable to
 | delete. ’Svdel’ cannot delete a variable global to the
 | current scope. Changes to shell variables that control
 | values in the SWT common block ("_eof" for example) occur
 | immediately. If one of these values is deleted, the value
 | in the common block reverts to the value it contained in the
 | previous scope.

 | Implementation

 | If the variable does not exist at the current lexic level,
 | the subroutine returns; otherwise, it deallocates the space
 | in the internal variable common block for the name and value
 | and then returns. If the variable is used to control a
 | location in the SWT common block, the current value is
 | replaced by the value it had when the current scope was
 | invoked.

 | Arguments Modified

 | none

 | See Also

 | other sv?* routines (2)

 svdel (2) − 1 − svdel (2)

 svdump (2) −−− dump the contents of the shell variable common 05/27/83

 | Calling Information

 | subroutine svdump (fd)
 | file_des fd

 | Library: vshlib (shell routine library)

 | Function

 | ’Svdump’ outputs all internal shell variable information at
 | all lexic levels on the open file descriptor ’fd’.

 | Implementation

 | ’Svdump’ scans the hash table for each lexic level from the
 | first level to the current level and prints the hash chains
 | (including the variable names, values, and locations) in the
 | internal shell variable array.

 | Arguments Modified

 | none

 | Calls

 | print

 | See Also

 | other sv?* routines (2)

 svdump (2) − 1 − svdump (2)

 svget (2) −−− return the value of a shell variable 05/27/83

 | Calling Information

 | integer function svget (name, value, maxval)
 | character name (ARB), value (maxval)
 | integer maxval

 | Library: vshlib (shell routine library)

 | Function

 | ’Svget’ looks up and returns the value of the most recent
 | declaration of the shell variable ’name’. ’Value’ is the
 | array to receive the value and ’maxval’ is the maximum
 | amount of space (including the EOS) in the receiving string.
 | The function returns the length of the returned string
 | ’value’ if the variable is found and EOF otherwise.

 | Implementation

 | ’Svget’ searches for ’name’ from the current lexic level
 | back to the first lexic level, stopping when it locates the
 | first (most recent) definition. Any previous declarations
 | are ignored. If the variable is not located then the func−
 | tion returns EOF; otherwise, as much of the value as pos−
 | sible is copied into the receiving buffer and the number of
 | characters transferred is returned.

 | Arguments Modified

 | value

 | Calls

 | ctoc

 | Bugs

 | Should probably return the lexic level of the variable
 | located.

 | See Also

 | other sv?* routines (2)

 svget (2) − 1 − svget (2)

 svlevl (2) −−− return the current shell variable lexic level 05/27/83

 | Calling Information

 | integer function svlevl (level)
 | integer level

 | Library: vshlib (shell routine library)

 | Function

 | ’Svlevl’ returns the current lexic level of the shell in
 | ’level’. The function return is also the lexic level.

 | Implementation

 | The lexic level information is retrieved from the internal
 | shell variable common block and returned. The value will be
 | in the range from one to some maximum value (currently ten).

 | Arguments Modified

 | level

 | See Also

 | other sv?* routines (2)

 svlevl (2) − 1 − svlevl (2)

 svmake (2) −−− create a shell variable at the current lexic level 05/27/82

 | Calling Information

 | integer function svmake (name, value)
 | character name (ARB), value (ARB)

 | Library: vshlib (shell routine library)

 | Function

 | ’Svmake’ creates a shell variable ’name’ at the current
 | lexic level of the shell with the value ’value’. The func−
 | tion returns the lexic level at which the variable has been
 | created. If the variable controls a value kept in the SWT
 | common block, the value in the common block is updated to
 | reflect the new value of the variable.

 | Implementation

 | First, ’svmake’ checks the existence of the variable at the
 | current lexic level. If it exists, then the function
 | returns immediately; otherwise it allocates space in the
 | variable area for the name and value. If the variable
 | controls a location in the SWT common block, ’svmake’ saves
 | the current value in the SWT common and copies the new value
 | in its place.

 | Arguments Modified

 | none

 | Calls

 | length, ctoc

 | See Also

 | other sv?* routines (2)

 svmake (2) − 1 − svmake (2)

 svput (2) −−− set the value of a shell variable 05/27/83

 | Calling Information

 | integer function svput (name, value)
 | character name (ARB), value (ARB)

 | Library: vshlib (shell routine library)

 | Function

 | ’Svput’ sets the value of existing shell variable ’name’ or
 | creates a new variable with the specified value at the
 | current lexic level if ’name’ does not already exist. The
 | function returns the lexic level of the variable that was
 | set. If the variable controls a value kept in the SWT com−
 | mon block, ’svput’ updates the value in the common block to
 | reflect the new value of the variable.

 | Implementation

 | If the variable exists at any lexic level, ’svput’ replaces
 | the previous value. If the variable does not exist, ’svput’
 | calls ’svmake’ to create the variable at the current lexic
 | level. If the variable controls a location in the SWT com−
 | mon block, ’svput’ saves the current value in the SWT common
 | and copies the new value in its place.

 | Arguments Modified

 | none

 | Calls

 | svmake

 | See Also

 | other sv?* routines (2)

 svput (2) − 1 − svput (2)

 svrest (2) −−− restore shell variables from a file 05/27/83

 | Calling Information

 | integer function svrest (file, trace)
 | character file (ARB)
 | bool trace

 | Library: vshlib (shell routine library)

 | Function

 | ’Svrest’ takes a file written by ’svsave’ and attempts to
 | merge the variables in the file with those on the current
 | lexic level. Variables already in existence at the current
 | level will not be replaced. ’File’ is the name of the file
 | containing the ’svsave’d variables. If ’trace’ is set,
 | ’svrest’ produces a trace of the restoration consisting of
 | each variable followed by its value printed on the terminal.
 | The function returns ERR if the file cannot be read or if it
 | is misformatted; otherwise, the function returns OK.

 | Implementation

 | If the file cannot be opened then ’svrest’ returns ERR,
 | otherwise it reads pairs of lines containing the names and
 | values of the variables. For each pair of the lines it
 | calls ’svmake’ to merge the variables with the existing
 | ones. If it reads a name without a corresponding value, it
 | closes the file and returns ERR.

 | Arguments Modified

 | none

 | Calls

 | close, open, print, svmake

 | See Also

 | other sv?* routines (2)

 svrest (2) − 1 − svrest (2)

 svsave (2) −−− save shell variables in a file 05/27/83

 | Calling Information

 | integer function svsave (file, trace)
 | character file (ARB)
 | bool trace

 | Library: vshlib (shell routine library)

 | Function

 | ’Svsave’ takes the shell variables at lexic level 1 and
 | writes them to ’file’. Setting ’trace’ produces a trace of
 | the variables being saved on the users terminal. The trace
 | consists of the name of each variable being saved followed
 | by its value. The function returns ERR if the file could
 | not be opened and OK otherwise.

 | Implementation

 | If the file can’t be opened, then the function returns an
 | error; otherwise, the current level of shell variables is
 | traversed and written to the file.

 | Arguments Modified

 | none

 | Calls

 | close, open, print, putch, putlin, trunc

 | See Also

 | other sv?* routines (2)

 svsave (2) − 1 − svsave (2)

 svscan (2) −−− scan a user’s list of shell variables 05/27/83

 | Calling Information

 | integer function svscan (name, maxlen, info [, offset])
 | character name (maxlen)
 | integer maxlen, info (3), offset

 | Library: vshlib (shell routine library)

 | Function

 | ’Svscan’ provides the user with a way of retrieving a list
 | of the shell variables that are currently declared. Each
 | call to ’svscan’ returns one variable name. The first and
 | second arguments are the returned name and the maximum
 | length (including the EOS) that the name can attain. The
 | third argument is a three word array that ’svscan’ uses to
 | keep track of its position in the internal shell variable
 | data structure. The user should set the first element of
 | this array to zero before the first call to ’svscan’ and
 | afterwards should leave it alone. The last argument is an
 | optional offset from the current lexic level of the shell at
 | which to scan for the shell variables. If ’offset’ is omit−
 | ted, ’svscan’ scans the current level. The function returns
 | the length of the returned shell variable name, or EOF if
 | all variables have been returned. The user should not make
 | any subroutine calls that will change any shell variables
 | between the first call to ’svscan’ and the final one. Doing
 | so may cause duplicate names to be returned or may cause
 | some names to be skipped.

 | Implementation

 | If the first element of the information array is 0, ’svscan’
 | initializes the rest of the array. Otherwise it checks
 | information in the array ’info’ for validity and then scans
 | the variable data structures for the next shell variable
 | starting at the previous position. If all shell variables
 | have already been returned, ’svscan’ returns EOF, otherwise
 | it copies as much of the variable name as possible to the
 | user’s receiving buffer and returns the number of characters
 | copied as the function return.

 | Arguments Modified

 | name, info

 | Calls

 | ctoc

 svscan (2) − 1 − svscan (2)

 svscan (2) −−− scan a user’s list of shell variables 05/27/83

 | See Also

 | other sv?* routines (2)

 svscan (2) − 2 − svscan (2)

 swt (2) −−− return to Software Tools Subsystem 03/25/82

 Calling Information

 subroutine swt

 Library: vswtlb (standard Subsystem library)

 Function

 ’Swt’ is called by all Subsystem programs to return to the
 Subsystem command interpreter.

 Implementation

 ’Swt’ calls ’rtn$$’ to return to the Subsystem command
 interpreter.

 Calls

 rtn$$

 See Also

 call$$ (6)

 swt (2) − 1 − swt (2)

 sys$$ (2) −−− pass a command to the Primos shell 08/28/84

 | Calling Information

 integer function sys$$ (cmd, cominput)
 character cmd (ARB)
 file_des cominput

 Library: vswtlb (standard Subsystem library)

 Function

 ’Sys$$’ passes the Primos command in ’cmd’ to the Primos
 shell with a call to the Primos routine CP$. The second
 argument ’cominput’ specifies the file unit from which the
 command takes its input. If no change in command input is
 desired, the argument should be ERR.

 The function return is ERR if the status returned by CP$ is
 greater than zero (a fatal error), and OK otherwise.

 Implementation

 ’Sys$$’ converts the command to a varying character string
 with a call to ’ctov’. If ’cominput’ isn’t the value ERR,
 the command input is switched to that file; otherwise, the
 command is just executed, with no change being made as to
 where the command input is coming from. After making a call
 to the Primos routine MKONU$ to create an on−unit for the
 Primos REENTER$ condition, it calls CP$ to process the
 Primos command.

 Calls

 ctov, flush$, mapfd, mapsu, Primos break$, Primos comi$$,
 Primos cp$, Primos mkonu$

 Bugs

 If the user’s program is loaded in segment 4000, then only
 Primos internal commands may be executed with ’sys$$’.
 External commands will destroy the current memory image, and
 may destroy the user’s current Primos environment, requiring
 | that the user reset it, using the Primos command "RLS −ALL".

 | When Primos supports EPFs, this restriction will be lifted
 | (on programs loaded with ’bind’).

 See Also

 ldtmp$ (6)

 sys$$ (2) − 1 − sys$$ (2)

 tan$m (2) −−− calculate tangent 04/27/83

 | Calling Information

 | longreal function tan$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This function calculates the tangent of the angle whose
 | measure is given (in radians) as the argument to the func−
 | tion. The arguments must have an absolute value of less
 | than 13176794.0. The condition SWT_MATH_ERROR$ is signalled
 | if there is an argument error. An on−unit can be
 | established to deal with this error; the SWT Math Library
 | contains a default handler named ’err$m’ which the user may
 | utilize. If an error is signalled, the default return value
 | will be zero.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | The function is calculated based on a minimax polynomial
 | approximation over a reduced argument. Adapted from the
 | algorithm given in the book Software Manual for the
 | Elementary Functions by William Waite and William Cody, Jr.
 | (Prentice−Hall, 1980).

 | Calls

 | dint$p, Primos signl$

 | See Also

 | cot$m (2), dint$p (2), dtan$m (2), err$m (2),
 | SWT Math Library User’s Guide

 tan$m (2) − 1 − tan$m (2)

 tanh$m (2) −−− calculate hyperbolic tangent 04/27/83

 | Calling Information

 | longreal function tanh$m (x)
 | real x

 | Library: vswtmath (Subsystem mathematical library)

 | Function

 | This routine calculates the hyperbolic tangent of its
 | argument, defined as tanh(x) = 2/[exp(2x) + 1]. The func−
 | tion never signals an error and returns valid results for
 | all inputs.

 | This function is intended to serve as a single precision
 | function although it returns a double precision result. The
 | function has been coded so that any value returned will not
 | overflow or underflow a single precision floating point
 | value. The double precision register overlaps the single
 | precision register so it is possible to declare and use this
 | function as simply a "real" function.

 | Implementation

 | Adapted from the algorithm given in the book Software Manual
 | for the Elementary Functions by William Waite and William
 | Cody, Jr. (Prentice−Hall, 1980).

 | Calls

 | dexp$m

 | See Also

 | dexp$m (2), dtnh$m (2),
 | SWT Math Library User’s Guide

 tanh$m (2) − 1 − tanh$m (2)

 tquit$ (2) −−− check for pending terminal interrupt 02/24/82

 Calling Information

 logical function tquit$ (flag)
 logical flag

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tquit$’ checks to see if there is a pending program
 interrupt as a result of the user having entered a BREAK or
 CTRL−P. If there is, a value of .true. is returned in
 ’flag’ and as the function’s result; otherwise, a value of
 .false. is returned.

 Before ’tquit$’ can be used, the Primos system call BREAK$
 must have been called with an argument of .true.. Before a
 program exits, BREAK$ should be called with an argument of
 .false..

 Implementation

 ’Tquit$’ calls the Primos routine QUIT$ to detect the
 interrupt. If one has occurred, it also calls the Primos
 routine TTY$RS to clear the terminal output buffer and T1OU
 to echo a NEWLINE.

 Arguments Modified

 flag

 Calls

 Primos quit$, Primos tty$rs, Primos t1ou

 tquit$ (2) − 1 − tquit$ (2)

 trunc (2) −−− truncate a file 02/24/82

 Calling Information

 integer function trunc (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Trunc’ is used to truncate writeable files at their current
 position; that is, to delete the remainder of the file. The
 argument is the file descriptor of the file to be truncated;
 the function return is OK if the truncation was successful,
 ERR otherwise.

 Implementation

 ’Flush$’ is called to empty the buffers associated with the
 given file. If the file to be truncated is a terminal file
 or the null device, then an immediate successful return is
 taken. If the file to be truncated is a disk file, it is
 truncated by the Primos routine PRWF$$. If the return from
 PRWF$$ is good, ’trunc’ returns OK; if not, ’trunc’ returns
 ERR.

 Calls

 flush$, mapsu, Primos prwf$$

 Bugs

 Behavior on terminal files is somewhat questionable.

 See Also

 remove (2), rmtemp (2)

 trunc (2) − 1 − trunc (2)

 type (2) −−− return type of character 03/23/80

 Calling Information

 character function type (c)
 character c

 Library: vswtlb (standard Subsystem library)

 Function

 ’Type’ returns the type of the character given as its first
 argument: LETTER if the character was a letter, DIGIT if
 the character was a digit, and the character itself if it
 was anything else.

 Implementation

 ’Type’ checks the type of character by using a Ratfor
 ’select’ statement listing all the letters in one alter−
 native and all the digits in another. If the character
 falls within the first range, LETTER is returned; if it
 falls within the last range, DIGIT is returned; if it is
 outside of both, the function return is the character
 itself.

 type (2) − 1 − type (2)

 vfyusr (2) −−− validate username 01/07/83

 Calling Information

 integer function vfyusr (lognam)
 character lognam (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vfyusr’ is used to verify that a given login name
 corresponds to an authorized user of the Subsystem. The
 single argument is the login name of the user to be checked.
 The function return is OK if the given name was validated,
 ERR otherwise.

 Implementation

 ’Vfyusr’ opens the Subsystem user list file "=userlist="
 (nominally in "//extra/users") and simply reads it until the
 given user name is found or EOF is encountered.

 Calls

 close, ctoc, getlin, length, mapstr, open, remark, strcmp

 vfyusr (2) − 1 − vfyusr (2)

 vtbaud (2) −−− set vth’s concept of the terminal speed 11/06/84

 Calling Information

 subroutine vtbaud (rate)
 integer rate

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vtbaud’ is used to set the terminal baud rate for other VTH
 routines. ’Rate’ can be from 50 to 19200. A number lower
 than 50 will be set to 50 and one higher than 19200 will be
 set to 19200. This value is used to determine the delay
 times for special functions such as screen clearing and cur−
 sor positioning.

 Implementation

 After truncating ’rate’ to the boundary conditions, the
 value is saved in the SWT common blocks for later use.

 See Also

 other vt?* routines (2)

 vtbaud (2) − 1 − vtbaud (2)

 vtclr (2) −−− clear a rectangle on the screen 07/11/84

 | Calling Information

 subroutine vtclr (srow, scol, erow, ecol)
 integer srow, scol, erow, ecol

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtclr’ is used to clear a rectangle on the users terminal.
 The arguments are the starting row ’srow’, starting column
 ’scol’, ending row ’erow’, and ending column ’ecol’.

 Implementation

 After boundaries are checked and truncated (to 1 for values
 less than 1, and MAXCOL and MAXROW for values greater than
 their respective dimension) a small loop simply writes
 sequences of blanks on the screen using ’vt$put’.

 Calls

 vt$put

 See Also

 other vt?* routines (2)

 vtclr (2) − 1 − vtclr (2)

 vtdlin (2) −−− delete lines on the user’s terminal screen 08/16/83

 | Calling Information

 | integer function vtdlin (row, cnt)
 | integer row, cnt

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Vtdlin’ deletes ’cnt’ lines starting at line ’row’ on the
 | screen. If ’cnt’ is not given, it defaults to 1. Unlike
 | other ’vth’ functions, ’vtdlin’ makes the changes on the
 | user’s terminal immediately (ie − with no call to ’vtupd’).
 | ’Vtdlin’ will take advantage of a terminal’s hardware delete
 | line function, if one is available, otherwise it will
 | simulate it with whatever other functions the terminal pos−
 | sesses. The function return is ERR if ’row’ is off the
 | screen or ’cnt’ is negative and OK otherwise.

 | Implementation

 | ’Vtdlin’ first ensures that ’row’ is on the screen and that
 | ’cnt’ is positive. If a hardware delete line function is
 | available, the subroutine simply positions to the correct
 | place on the screen and outputs the appropriate number of
 | line deletes. If hardware delete is not available, the
 | subroutine redraws the appropriate sections and attempts to
 | use a hardware clear to end−of−line function to clear the
 | bottom sections of the screen. If no hardware clear to end−
 | of−line is available, the subroutine just redraws the screen
 | using blanks to clear the correct sections.

 | Calls

 | move$, vt$del, vt$out, vtmove

 | Arguments Modified

 | none

 | See Also

 | Other vt?* routines (2)

 vtdlin (2) − 1 − vtdlin (2)

 vtenb (2) −−− enable input on a particular screen line 07/11/84

 | Calling Information

 subroutine vtenb (row, column, length)
 integer row, column, length

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtenb’ enables input in a field with a particular length,
 starting at the given (row, column) on the screen. Any
 areas of the screen that are not enabled by ’vtenb’ cannot
 be used for entry of data; therefore ’vtenb’ must be called
 before ’vtread’ can be used.

 Implementation

 ’Row’ is checked as being on the screen, and if not, an
 immediate return is executed and input is not enabled at
 that location. ’Column’ and ’length’ are checked as being
 on the screen, and if the values specified "run off" the
 screen, the length is truncated to the border of the screen.
 Input is then enabled starting at (row, column) for ’length’
 characters, or to the border of the screen.

 Bugs

 Allows only one input area per line.

 See Also

 other vt?* routines (2)

 vtenb (2) − 1 − vtenb (2)

 vtgetl (2) −−− get a line from the VTH screen 07/11/84

 | Calling Information

 integer function vtgetl (str, row, column, length)
 character str (ARB)
 integer row, column, length

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtgetl’ transfers data from the internal screen buffer to a
 string supplied by the user. ’Row’ and ’column’ locate the
 starting position of the input field on the screen, and the
 argument ’length’ specifies its length. The function return
 is the actual length of the of the string returned in ’str’.
 Note that ’vtgetl’ doesn’t actually perform a read; it sim−
 ply returns what is in the internal screen buffer. ’Vtread’
 must be called beforehand to allow the user to enter data.

 Implementation

 A check is made to see that the ’row’ argument is within
 bounds, and if not, the string returned is EOS and the
 length returned is 0. If the ’column’ and/or ’length’
 arguments cause a request that is off the screen, the string
 is truncated to the edge of the screen buffer. Then a loop
 simply retrieves characters from the screen buffer and
 places them in ’str’, and the length of the retrieved string
 returned.

 Arguments Modified

 str

 See Also

 vtread (2), and other vt?* routines (2)

 vtgetl (2) − 1 − vtgetl (2)

 vtilin (2) −−− insert lines on the user’s terminal screen 08/16/83

 | Calling Information

 | integer function vtilin (row, cnt)
 | integer row, cnt

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Vtilin’ inserts ’cnt’ blank lines at line ’row’ on the
 | screen. If ’cnt’ is not given, it defaults to 1. Unlike
 | other ’vth’ functions, ’vtilin’ makes the changes on the
 | user’s terminal immediately (ie − with no call to ’vtupd’).
 | ’Vtilin’ will take advantage of a terminal’s hardware insert
 | line function, if one is available, otherwise it will
 | simulate it with whatever other functions the terminal pos−
 | sesses. The function return is ERR if ’row’ is off the
 | screen or ’cnt’ is negative and OK otherwise.

 | Implementation

 | ’Vtilin’ first ensures that ’row’ is on the screen and that
 | ’cnt’ is positive. If a hardware insert line function is
 | available, the subroutine simply positions to the correct
 | place on the screen and outputs the appropriate number of
 | line inserts. If hardware insert is not available the
 | subroutine attempts to use a hardware clear to end−of−line
 | function to clear sections of the screen and then redraw the
 | rest of the screen. If no hardware clear to end−of−line is
 | available the subroutine just writes blanks to clear the
 | correct section and then redraws the rest of the screen.

 | Calls

 | move$, vt$del, vt$out, vtmove

 | Arguments Modified

 | none

 | See Also

 | Other vt?* routines (2)

 vtilin (2) − 1 − vtilin (2)

 vtinfo (2) −−− return VTH common block information 07/11/84

 Calling Information

 integer function vtinfo (key, info)
 integer key, info (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vtinfo’ is used to return certain needed information from
 the VTH common blocks. The first argument is a key to tell
 ’vtinfo’ what set of information to return. The second
 argument is an array to return the information. The func−
 tion return is OK if a correct key is given, and ERR other−
 wise.

 ’Vtinfo’ currently supports the following value(s) for
 ’key’:

 VT_MAXRC returns the maximum row and col values for
 the user’s terminal in the first two words of
 ’info’.

 VT_WRAP returns YES in ’info’ if the terminal wraps
 to the next line after putting a character in
 the last column and NO otherwise.

 VT_HWINS returns YES in ’info’ if the terminal has
 hardware insert capabilities.

 VT_HWDEL returns YES in ’info’ if the terminal has
 hardware delete capabilities.

 VT_HWCEL returns YES in ’info’ if the terminal has
 hardware clear to end−of−line capabilities.

 Implementation

 The key is checked as being legal, and then the requested
 information is simply copied from the VTH common blocks.

 Arguments Modified

 info

 See Also

 other vt?* routines (2)

 vtinfo (2) − 1 − vtinfo (2)

 vtinit (2) −−− initialize terminal characteristics 07/11/84

 | Calling Information

 integer function vtinit (term_type)
 character term_type (MAXTERMTYPE)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtinit’ initializes the terminal characteristic common
 blocks for the virtual terminal handler. It must be called
 before any of the other routines are used. The single
 argument is the returned terminal type of the users current
 process. The value returned from ’vtinit’ is OK if the
 descriptor file for that type of terminal is found, and is
 in the correct format, and ERR otherwise.

 Implementation

 ’Vtinit’ first calls ’vtterm’ to initialize the terminal
 characteristic tables and return the terminal type. If
 ’vtterm’ couldn’t initialize the tables, then ’vtinit’
 | returns ERR. ’Vtinit’ then proceeds to clear the screen
 | buffers, status information, input enabling, and turns off
 terminal echo, and then returns OK.

 Arguments Modified

 term_type

 Calls

 vtterm, Primos duplx$

 See Also

 other vt?* routines (2)

 vtinit (2) − 1 − vtinit (2)

 vtmove (2) −−− move the user’s cursor to row, col 07/11/84

 | Calling Information

 subroutine vtmove (row, col)
 integer row, col

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtmove’ moves the cursor on the terminal to position ’row’,
 ’col’ with the least cost. ’Vtinit’ should have been called
 beforehand to set up the terminal characteristics in the
 virtual terminal handler. If the coordinates given are off
 of the screen, no positioning will be done.

 Implementation

 ’Vtmove’ first checks if relative movement would be faster,
 and if so, relatively positions the cursor, otherwise it
 calls ’vt$pos’ to absolutely position the cursor.

 Calls

 vtpos, vtout

 See Also

 other vt?* routines (2)

 vtmove (2) − 1 − vtmove (2)

 vtmsg (2) −−− display a message in the status line 07/11/84

 | Calling Information

 subroutine vtmsg (msg, type)
 character msg (MAXLINE)
 integer type

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtmsg’ is used to place an arbitrary message in the "status
 line" (if one has been enabled). If there has been no
 status line enabled, ’vtmsg’ has no effect. Messages are
 ’typed’ with simple integers; each new message overwrites
 any old one with the same ’type’. Messages with different
 types are simply shuffled to different places on the status
 line.

 Implementation

 ’Vtmsg’ first checks to see if the status line has been
 enabled and, if not, simply returns. The status line is
 then scanned for another message with the same type. If one
 | is found, it checks to see if the new message will fit in
 | place of the old one, and if not, if proceeds to shuffle the
 existing messages around to attempt to fit them on. If
 another message is not found with the same type, it just
 looks for enough space on the status line to place the new
 message, shuffling the others around, if necessary. If
 there isn’t enough space in which to place the message, as
 much of it as is possible is placed on the status line.

 Calls

 length, vt$put

 See Also

 length (2), and other vt?* routines (2)

 vtmsg (2) − 1 − vtmsg (2)

 vtoc (2) −−− convert PL/I varying string to EOS−terminated string 03/23/80

 Calling Information

 integer function vtoc (var, str, len)
 integer var (ARB), len
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vtoc’ is used to convert a PL/I character−varying string
 into a standard Subsystem EOS−terminated string. The first
 argument is the character−varying string to be converted;
 the second is a string to receive the result; the third is
 the maximum length of the result string. The function
 return is the number of characters in the result string
 after the conversion.

 Implementation

 ’Vtoc’ uses the standard Subsystem macro ’fpchar’ to pull
 characters from the PL/I string one at a time, and place
 them in the result string. Conversion stops when the result
 string fills or when all the characters in the PL/I string
 have been moved.

 Arguments Modified

 str

 See Also

 other conversion routines (’cto?*’ and ’?*toc’) (2)

 vtoc (2) − 1 − vtoc (2)

 vtop (2) −−− convert PL/I varying string to packed string 10/26/83

 | Calling Information

 | integer function vtop (vstr, pstr, len)
 | packed_char vstr (ARB), pstr (len)
 | integer len

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Vtop’ converts a PL/I−compatible "character varying" string
 | into a packed character string. Character varying strings
 | consist of a one−word length field, followed by up to 32767
 | words of packed character data.

 | The argument ’vstr’ is the character−varying string to be
 | converted. ’Pstr’ is an array which receives the packed
 | string; ’len’ gives the number of words available in ’pstr’.

 | The function returns the number of characters copied into
 | ’pstr’.

 | Implementation

 | ’Vtop’ first checks that ’len’ is large enough to allow it
 | to store characters in ’str’ and then computes the number of
 | characters it can copy. If there is room for characters in
 | ’pstr’, ’vtop’ copies successive words from ’vstr’ into
 | ’pstr’ until it fills ’len’ words or runs out of characters
 | in ’vstr’. If ’vstr’ contains an odd number of characters,
 | ’vtop’ pads the last word with 0’s (an EOS character).

 | Arguments Modified

 | pstr

 | See Also

 | other conversion routines (’pto?*’ and ’?*tov’),
 | particularly ’ptov’ (2), ’ctop’ (2), ’ptoc’ (2), ’vtoc’ (2),
 | and ’ctov’ (2)

 vtop (2) − 1 − vtop (2)

 vtopt (2) −−− set options for the virtual terminal handler 07/11/84

 | Calling Information

 subroutine vtopt (option, str)
 integer option, str (ARB)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtopt’ sets a number of optional parameters for the VTH
 screen. The currently available values for ’option’ are:

 STATUS_ROW enable a "status row"; ’str’ should be the row
 number on which the "status row" is to be
 displayed.

 DISPLAY_TIME enable/disable the time display in the
 "status row"; ’str’ should be YES to enable
 the display and it should be NO to disable
 the display.

 UNPRINTABLE_CHARS display a printable representation of
 normally unprintable characters; ’str (1)’
 should contain the replacement character (as
 a character variable).

 SET_TABS set tab stops for input; ’str’ should contain
 an EOS string containing non−blank characters
 where tab stops are to be set.

 Implementation

 ’Vtopt’ simply sets certain variables in the VTH common
 block to allow the rest of the routines to keep up with the
 attributes. For STATUS_ROW, the "status row" is written out
 and a flag indicating that there is a status row, is set.
 For the rest of the options, though, flags are set to
 indicate each option.

 Calls

 vt$put

 See Also

 other vt?* routines (2)

 vtopt (2) − 1 − vtopt (2)

 vtpad (2) −−− pad the rest of a field with blanks 07/11/84

 | Calling Information

 subroutine vtpad (len)
 integer len

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtpad’ simply clears the rest of a field with blanks,
 starting at the current cursor position. The single
 argument required is the length of the field to clear, from
 the current cursor position.

 Implementation

 ’Vtpad’ simply checks how much more room is on a line with
 respect to the length to pad and the current cursor position
 and then stores blanks into the new screen, making sure that
 padding doesn’t go past the end of the screen.

 Calls

 vt$put

 See Also

 other vt?* routines (2)

 vtpad (2) − 1 − vtpad (2)

 vtprt (2) −−− place formatted strings into screen buffers 07/11/84

 | Calling Information

 integer function vtprt (row, col, fmt, a1, a2, ... , a10)
 integer row, col
 character fmt (ARB)
 untyped a1, a2, a3, a4, a5, a6, a7, a8, a9, a10

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtprt’ is used to place formatted strings into the screen
 buffers. ’Row’ and ’col’ tell where the resulting string is
 to be placed. ’Fmt’ is a formatting string like that used
 in encode to define how the final string is to look. It can
 be either an EOS terminated string, or a packed string. The
 remaining arguments are the items to be put on the screen
 according to formatting control.

 ’Vtprt’ works equivalent to the Subsystem subroutine
 ’print’. The user is advised to look at the documentation
 for ’print’ for a full explanation of the formatting
 capabilities of ’vtprt’.

 Implementation

 ’Vtprt’ checks for the legality of the position (row and
 col), and returns ERR if it isn’t legal. It then checks the
 string for being packed, or unpacked. If it is packed,
 ’ptoc’ is called to unpack the character string. ’Encode’
 is then called to do the formatting, and then ’vt$put’ is
 called to place the string in the screen buffer. The size
 of the resulting string is the function return.

 Calls

 ptoc, encode, vt$put

 See Also

 encode (2), print (2), ptoc (2), other vt?* routines (2)

 vtprt (2) − 1 − vtprt (2)

 vtputl (2) −−− put line into terminal screen buffer 07/11/84

 | Calling Information

 subroutine vtputl (str, row, col)
 integer row, col
 character str (ARB)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtputl’ is used to place a string of characters into the
 screen buffer, in the specified position. The first
 argument is the EOS−terminated string of characters to be
 displayed; the second and third arguments are the (row,
 column) position on the screen where the first character of
 the string is to be displayed. ’Vtputl’ only places the
 string into the screen buffer; ’vtupd’ must be called before
 any changes to the internal buffer are reflected on the
 screen.

 Implementation

 ’Vtputl’ simply calls ’vt$put’ with the same arguments, plus
 the length of the string, and then returns.

 Calls

 vt$put, length

 See Also

 length (2), and other vt?* routines (2)

 vtputl (2) − 1 − vtputl (2)

 vtread (2) −−− read characters from a user’s terminal 07/11/84

 | Calling Information

 integer function vtread (crow, ccol, clr)
 integer crow, ccol, clr

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtread’ starts reading characters from the user’s terminal
 into the screen buffers. ’Vtenb’ must be called before
 ’vtread’ to enable input areas. ’Crow’ and ’ccol’ are the
 places at which to start reading. ’Clr’ is a flag to let
 ’vtread’ know if the user wants the input areas cleared
 before reading. If ’clr’ is YES, then the input areas are
 cleared before reading, otherwise they are left as they are.

 Implementation

 ’Clr’ is checked to decide whether or not to clear the input
 | areas, and if so, proceeds to call ’vt$put’ to place blanks
 | in these areas, and calls ’vtupd’ to update these changes.
 It then positions to the input area at the given row and
 column. If there is no input area defined there, it
 positions to the next one defined. If there are no input
 areas defined, the function return is set to zero and
 ’vtread’ returns. If an input area has been defined, it
 calls ’vt$get’ to read characters from the terminal and
 place them on the screen, until a termination character is
 typed (RETURN, KILL_RIGHT_AND_RETURN, MOVE_UP, MOVE_DOWN)
 and then returns the termination code as the function
 return.

 Calls

 vtput, vtget, vtupd

 Arguments Modified

 none

 See Also

 Introduction to the Software Tools Text Editor (Se section),
 and other vt?* routines (2)

 vtread (2) − 1 − vtread (2)

 vtstop (2) −−− reset a user’s terminal attributes 07/11/84

 | Calling Information

 subroutine vtstop

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtstop’ resets terminal attributes when terminating the VTH
 portion of a program.

 Implementation

 ’Vtstop’ first positions to the first column of the last row
 on the user’s terminal. ’Vtstop’ then retrieves the
 previous terminal attributes from the VTH common block
 (where they are saved by ’vtinit’) and restores the
 attributes by a call to the Primos routine DUPLX$.

 Calls

 vtmove, Primos duplx$

 See Also

 other vt?* routines (2)

 vtstop (2) − 1 − vtstop (2)

 vtterm (2) −−− read terminal characteristics file 07/11/84

 | Calling Information

 integer function vtterm (term_type)
 character term_type (MAXTERMTYPE)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtterm’ is used to read in the characteristics for a
 terminal and put that information into the common blocks
 used by the other VTH routines. It obtains the user’s
 terminal type and attempts to open the terminal charac−
 | teristic file. If it succeeds, the function return is OK,
 | otherwise ERR. The user should not call this routine him−
 self, but should use the routine ’vtinit’ as the interface
 into this routine.

 Implementation

 ’Vtterm’ calls ’gttype’ to return the user’s terminal type.
 It attempts to open the file "=vth=/<term_type>" for
 | reading, and if it can’t, it returns ERR. Otherwise, it
 | reads the file, decodes the symbolic characteristics, places
 them in the VTH common block, and then returns OK.

 Arguments Modified

 term_type

 Calls

 close, ctoc, ctoi, encode, equal, getlin, gtattr, gttype,
 length, mntoc, open, strbsr, vtalc, vtier

 See Also

 other vt?* routines (2)

 vtterm (2) − 1 − vtterm (2)

 vtupd (2) −−− update the terminal screen with VTH screen 07/11/84

 | Calling Information

 subroutine vtupd (clr)
 integer clr

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vtupd’ is used to update the changes from the last (old)
 VTH screen buffer to the new screen buffer on the terminal
 screen. The argument is a flag which tells whether or not
 to clear the screen and redraw, or only update the screen
 with the changes. If ’clr’ is YES, the entire screen is
 cleared and completely redrawn. If ’clr’ is NO, only the
 changes needed are made on the screen.

 Implementation

 After making the changes to the screen, the new screen
 buffer image is copied into the old screen buffer image for
 the next time around. ’Vtupd’ is reasonably efficient in
 updating the screen and copying the old screen to the new
 screen.

 Calls

 vtclr, vtout, date, vtmove, vtmsg

 See Also

 other vt?* routines (2)

 vtupd (2) − 1 − vtupd (2)

 wind (2) −−− position to end of file 03/23/80

 Calling Information

 integer function wind (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Wind’ (pronounced w−eye−nd) is the opposite of ’rewind’:
 it positions a file’s pointer to the end of the file, rather
 than the beginning. The argument is the file descriptor of
 the file to be wound. The function return is OK if the wind
 was successful, ERR otherwise.

 Implementation

 ’Wind’ calls ’seekf’ with an extremely large position
 argument, thus setting the file pointer to EOF. The return
 value is whatever ’seekf’ returns.

 Calls

 seekf

 See Also

 rewind (2), trunc (2), seekf (2)

 wind (2) − 1 − wind (2)

 wkday (2) −−− get day−of−week corresponding to month, day, year 03/23/80

 Calling Information

 integer function wkday (month, day, year)
 integer month, day, year

 Library: vswtlb (standard Subsystem library)

 Function

 ’Wkday’ is used to return the day−of−the−week corresponding
 to a given date. The three arguments completely specify the
 date: the month (1−12), day (1−28, 29, 30, or 31), and year
 (e.g. 1980). The function return is the ordinal number of
 the day−of−the−week (1 == Sunday, 7 == Saturday).

 Implementation

 Zeller’s Congruence.

 See Also

 date (2), day (1)

 wkday (2) − 1 − wkday (2)

 writef (2) −−− write raw words to file 03/25/82

 Calling Information

 integer function writef (buf, nw, fd)
 integer buf (ARB), nw
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Writef’ is used to write words to a file, which may be
 assigned to any device recognized by the Subsystem. (A word
 on the Prime is 16 bits long.) The first argument is a
 string of words to be written to the file; the second
 argument is the number of words to be written; the third
 argument is the file descriptor of the file to which data
 will be written. Words are transferred from the string
 buffer to the file until ’nw’ words are written. The func−
 tion return is ERR if the file is not writeable, if the
 given file descriptor is invalid, or if the file’s error
 flag is set; otherwise, the function return is the number of
 words written (nominally the same as ’nw’). Exceptions: a
 write on the null device (/dev/null) always returns EOF, and
 an error detected by Primos causes a return of EOF.

 Implementation

 ’Writef’ calls ’mapsu’ to convert standard port numbers into
 file descriptors. If the last operation performed on the
 file was not a ’writef’, ’flush$’ is called to empty the
 file’s buffers. Depending on the device type associated
 with the file, one of the device dependent drivers ’dwrit$’
 (for disk files) or ’twrit$’ (for terminal files) is called
 to perform the actual data transfer.

 Calls

 mapsu, dwrit$, twrit$, flush$

 Bugs

 Support for more devices would be nice.

 EOF is returned if any error occurs when writing to disk (in
 dwrit$); the user is not informed of the actual error that
 occurs.

 See Also

 mapsu (2), dwrit$ (6), twrit$ (6), flush$ (6)

 writef (2) − 1 − writef (2)

 | Section 3 − Locally−Supported Commands

 This section is devoted to the description of locally−
 supported Subsystem commands. Georgia Tech’s locally−supported
 | commands reside in the directory "=lbin=" and are supplied on the
 | Software Tools release tape as an interesting example of locally
 | developed commands.

 Documentation for each command is organized under the fol−
 lowing headings. Note that a heading will be omitted if it
 contains no additional information.

 Header Line

 The command’s name, function, and the date of last
 modification to the documentation.

 Usage

 A description of the syntax permitted on the command
 line. The notation used in this description is
 identical to that used in Section 1 of this manual.

 Description

 A detailed coverage of the capabilities and operation
 of the command.

 Examples

 A few short examples of the command.

 Files

 A list of the names of special files used by the com−
 mand.

 Messages

 A listing of important error messages or diagnostic
 information issued by the command.

 Bugs

 Known bugs in the operation of the command.

 See Also

 References to further information or related commands.

 − 1 −

 ap (3) −−− Generate Object Tape for A & P M6800 Monitor 07/19/84

 | Usage

 | ap <file> [<start_address>]

 | Description

 | ’Ap’ reads the relocatable binary file in <file>, and
 | produces absolute code, in hexadecimal, on its first stan−
 | dard output. The optional <start_address> is where it will
 | relocate the code to. The default starting address is zero.

 | Messages

 | "Usage: ap ..." if called improperly.

 | Bugs

 | Locally supported.

 | This description may not be entirely accurate, since this
 | command has long been undocumented.

 | See Also

 | Whatever other programs are used for the "Allen and Paul
 | Model 1" terminal.

 ap (3) − 1 − ap (3)

 as11 (3) −−− PDP−11 cross assembler 01/13/83

 Usage

 as11 [g][l[a]]

 Description

 ’As11’ converts an assembly language program into a GT40
 load stream. If the load stream is sent to the GT40 while
 it is running its ROM bootstrap (start address 166000
 octal), the program will be loaded and executed (assuming no
 errors) on that machine.

 The single argument to ’as11’ is a list of option letters.
 The GT40 load stream will be produced only if "g" is
 specified. The "l" option will cause a listing to be
 produced. The listing is essentially a trace of the assem−
 bly process, including what code is generated into what
 addresses and what values are assigned to symbols. The line
 number of the source line responsible for each action is
 given. The source code is not listed. If "la" is
 specified, the listing will be produced for all passes,
 otherwise only for the last pass. The listing for all pas−
 ses feature exists mainly for debugging the assembler.

 If a listing is requested, it goes to standard output (1).
 The GT40 load stream, if requested, is written to standard
 output 2. As usual, error messages go to standard output 3.

 For those familiar with other PDP−11 assemblers, here are
 the main distinguishing characteristics of ’as11’:

 Statements are separated with semicolons or newlines.

 There is no ".word" directive; expression statements are
 used instead.

 Comments are Ratfor−style: initiated by a sharp ("#") and
 closed by the next newline.

 Symbols may have up to 100 characters in their names, all of
 which are significant. They may begin with digits so
 long as they do not meet the syntax for numbers. Among
 the characters that are legal in symbols are the let−
 ters and digits, ".", "_", and "’" so long as it is not
 leading.

 There are Knuth−style local labels, e. g. "1h", "1f",
 "1b".

 Numbers can be octal, decimal, hexadecimal, or default base.
 The default base, which defaults to 10, is settable by
 assignment to the symbol named "base’". Explicit
 indication of base is leading zero for octal, trailing
 "." for decimal, and trailing "’" for hex. Hex digits
 are from the set 0−9A−F (capital letters).

 as11 (3) − 1 − as11 (3)

 as11 (3) −−− PDP−11 cross assembler 01/13/83

 Strings are typed in single quotes, with a pair of single
 quotes within the string representing a single quote.
 One− or two−character strings can be used as literal
 constants.

 Expressions are evaluated left−to−right (this is subject to
 | drastic change) but with unary operators being
 | evaluated before binary. Operators are "+", "−", "*",
 "/", "&" (bit−by−bit AND), "|" (OR), "~" (read
 "without" and meaning AND NOT) "<" (shifted left by),
 and ">" (shifted right by). The sense of unary
 operators is binary operators with a default left
 argument. This works so that unary "−" means minus,
 "~" works as NOT, and "< n" is as "1 < n", i. e. a
 word with only bit n on. There is no way to control
 grouping in expressions. Missing operators in expres−
 sions are interpreted as "+".

 Arbitrary assignment to the location counter is allowed.
 Code is output in the order that it is specified. This
 makes it possible to start a display while the load is
 still going on.

 Symbols are predefined (in lower case) for the PDP−11/20
 instruction set as well as for all the VT40 (GT40
 display processor) instructions and for important
 addresses on the GT40 (device registers, etc.). Upper
 case symbols are predefined for all the ASCII control
 codes (CR, LF, etc.).

 Defining data structures is simplified with two new pseudo−
 ops named ".struct" and ".reserve", for details on
 which see the ’as11’ reference manual. As an example,
 .struct tnode left 2, right 2, info 80
 is equivalent to
 tnode = 0
 left = tnode; tnode = tnode + 2
 right = tnode; tnode = tnode + 2
 info = tnode; tnode = tnode + 80
 Multiple assignments to symbols, whether by assignment
 statement (with "=") or by label (with ":"), are com−
 pletely legal. The most recent definition is the one
 in effect.
 The assembler makes sufficient passes to define all symbols,
 if possible. An arbitrary number of passes may be
 required. The location counter can be undefined over
 portions of passes other than the last.

 Examples

 source> as11 gl >listing >object >errors
 term.s> as11 g 2>object
 as11 la
 try.s> as11

 as11 (3) − 2 − as11 (3)

 as11 (3) −−− PDP−11 cross assembler 01/13/83

 Messages

 "Usage: as11 ..." for invalid argument syntax.
 "−" at the start of each pass.
 "can’t happen" messages for conditions not expected by the
 author.
 "In gtok: string too long" for an overlong string.
 "Too many tokens in source program" indicates that a table
 needs to be enlarged.
 "Too many tokens put back" should not occur.
 "Unrecognized statement"
 "Syntax error in .byte directive"
 "Bad syntax in .struct or .reserve directive"
 "Bad syntax in string statement"
 "Bad syntax in assignment"
 "Instruction syntax"
 "Bad syntax in branch instruction"

 Bugs

 Locally supported.

 See Also

 focld (3), as6800 (3), as8080 (3), PDP−11 Cross Assembler
 Reference Manual

 as11 (3) − 3 − as11 (3)

 as6800 (3) −−− Motorola 6800 cross−assembler 02/23/82

 Usage

 as6800 [−{l | d}]

 Description

 ’As6800’ is an extremely simplified cross−assembler for the
 Motorola 6800 microprocessor.

 It is designed to assemble the output of the SSPL compiler
 in a single pass, producing a file of relocatable object
 code with a symbol table (suitable for later processing by
 ’mot’ or ’lk’). It is also suitable for limited assembly
 language coding by hand (allowing the SSPL run−time package
 to be assembled).

 ’As6800’ takes a source program on its first standard input
 and produces an object program on the file ".o". The assem−
 bler differs from Motorola’s standard in the following ways:

 1. Instruction mnemonics that make use of an accumulator
 symbol ("a" or "b") may not be separated from the
 accumulator symbol. Thus, "add a #5" is illegal; the
 correct form is "adda #5".
 2. Labels may appear in any mixture of upper and lower
 case. Character case is significant. Instruction
 mnemonics must appear in lower case. Labels may
 include the underscore (_) and the grave accent (‘)
 characters; those labels beginning with underscore are
 not written to the object file symbol table and may be
 used freely as temporaries. All characters in labels
 are significant.
 3. Binary and octal number representations are not sup−
 ported. Decimal integers may be used, or hexadecimal
 integers preceded by a dollar sign ($).
 4. The following pseudo−operations are totally unsup−
 ported: end, pag, opt, equ. The fcb and fdb pseudo−
 ops have been replaced by the ’byte’ and ’word’ pseudo−
 ops (otherwise identical in function). The rmb pseudo−
 op has been replaced by the ’res’ pseudo−op, with
 identical function. The ’org’ pseudo−op may not be
 used to decrease the location counter; only forward
 origins are allowed.
 5. Arithmetic expressions more complex than labels or sim−
 ple integers are not supported. (SSPL does not
 generate them.)
 6. Comments are indicated by preceding commentary text
 with a percent sign (%). This rule applies uniformly;
 all comments must be preceded by a percent sign.
 7. Unless the "−l" option is specified, ’as6800’ does not
 produce an assembly listing. When "−l" is used, the
 assembly listing is produced on standard output one.
 8. Multiple statements may be place on one line provided
 they are separated by semicolons (;).
 9. Unless the "−d" option is specified, the ’direct’

 as6800 (3) − 1 − as6800 (3)

 as6800 (3) −−− Motorola 6800 cross−assembler 02/23/82

 (page−zero) addressing mode is not used (since instruc−
 tions using it cannot be relocated). When the "−d"
 option is used, the user must take care that no direct−
 address forward references are made.

 The object file produced by ’as6800’ contains a number of
 "segments," each consisting of a one−byte segment header,
 two bytes of segment size, and the text of the segment.
 Each byte of the object file occupies one 16−bit word in the
 physical file.

 Examples

 rtr.as> as6800
 mux.s> lex | sspl | opt6800 | as6800

 Files

 ".o" for the object code file

 Messages

 Many error messages, hopefully some of which are self−
 explanatory.

 Bugs

 Locally supported.

 See Also

 sspl (3), opt6800 (3), as8080 (3), as11 (3), mot (3), lk (3)

 as6800 (3) − 2 − as6800 (3)

 as8080 (3) −−− Intel 8080 cross−assembler 02/23/82

 Usage

 as8080

 Description

 ’As8080’ is an extremely simplified cross−assembler for the
 Intel 8080 microprocessor.

 It is designed to assemble the output of the SSPL compiler
 in a single pass, producing a file of relocatable object
 code with a symbol table (suitable for later processing by
 ’intel’ or ’lk’). It is also suitable for limited assembly
 language coding by hand (allowing the SSPL run−time package
 to be assembled).

 ’As8080’ takes a source program on its first standard input
 and produces an object program on the file ".o". The source
 program differs from Intel’s standard format in the follow−
 ing ways:

 1. Instruction mnemonics and labels may appear in any mix−
 ture of upper and lower case. Case is significant in
 labels, but not significant in instruction mnemonics or
 register names. Labels must be defined with trailing
 colons (:) and may include the underscore (_) and the
 grave accent (‘) characters; those labels beginning
 with underscore are not written to the object file sym−
 bol table and may be used freely as temporaries.
 2. Register pairs may optionally be referred to as bc, de,
 hl, and sp.
 3. Binary and octal number representations are not sup−
 ported. Decimal integers may be used, or hexadecimal
 integers preceded by a dollar sign ($).
 4. The following pseudo−operations are totally unsup−
 ported: end, equ, macro, org, set. The db and dw
 pseudo−ops have been replaced by the ’byte’ and ’word’
 pseudo−ops (otherwise identical in function).
 5. Arithmetic expressions more complex than labels or sim−
 ple integers are not supported. (SSPL does not
 generate them.)
 6. Comments are indicated by preceding commentary text
 with a sharp sign (#). This rule applies uniformly;
 all comments must be preceded by a sharp sign.
 7. ’As8080’ does not produce an assembly listing.
 8. Multiple statements may be place on one line provided
 they are separated by semicolons (;).

 The object file produced by ’as8080’ contains a number of
 "segments," each consisting of a one−byte segment header,
 two bytes of segment size, and the text of the segment.
 Each byte of the object file occupies one 16−bit word in the
 physical file.

 as8080 (3) − 1 − as8080 (3)

 as8080 (3) −−− Intel 8080 cross−assembler 02/23/82

 Examples

 rtr.as> as8080
 mux.s> lex | sspl | opt8080 | as8080

 Files

 ".o" for the object code file

 Messages

 Many error messages, hopefully some of which are self−
 explanatory.

 Bugs

 Locally supported.

 See Also

 sspl (3), opt8080 (3), as6800 (3), as11 (3), intel (3), lk
 (3)

 as8080 (3) − 2 − as8080 (3)

 basys (3) −−− basic computer system simulator 02/23/82

 Usage

 basys

 Description

 ’Basys’ is a program designed to simulate a basic computer
 system configuration consisting of a central processing
 unit, a disk drive and a central memory. It is a distribu−
 tion driven simulator. In other words, the work load under
 which the system is to be simulated is characterized by
 probability distributions for such factors as the time
 between job arrivals, the priority of a job, the amount of
 memory required by a job, the number of i/o requests a job
 will make, and so on.

 When invoked, ’basys’ asks the user for the following
 information:

 − simulation length
 The number of seconds for which the simulation run
 should last is given here. Note that this is simulated
 time, not real time.

 − memory size
 This is the size of main memory in K−words. All jobs
 generated by the simulator have memory requirements in
 the range 2K to 70K words; thus, the memory size
 specified should probably be greater than or equal to
 70.

 − time to compact memory
 This is the amount of time in microseconds required to
 compress memory to make space available for a job.

 − per word disk transfer time
 This is the time in microseconds required to transfer
 one word between disk and memory.

 − disk access time
 This is the time in milliseconds required to position
 the disk head over the desired sector before a transfer
 takes place. It includes both seek time and rotational
 latency.

 − i/o overhead time
 This is the overhead time in microseconds involved in
 the initiation of an i/o request.

 − mean job interarrival time
 The time in milliseconds between job arrivals is
 generated from an exponential distribution whose mean
 is specified here.

 basys (3) − 1 − basys (3)

 basys (3) −−− basic computer system simulator 02/23/82

 − mean cpu time per job
 The number of milliseconds of cpu time required by each
 job is generated from a normal distribution whose mean
 and standard deviation are specified by this parameter
 and the next.

 − standard deviation of cpu distribution
 The standard deviation (in milliseconds) of the per−job
 cpu time distribution.

 − mean number of i/o requests per job
 The number of i/o requests that a job will make is
 determined by a normal distribution for which the mean
 value is specified here.

 − standard deviation of i/o distribution
 The standard deviation of the distribution from which
 the per−job number of i/o requests is generated is
 specified here.

 − minimum record size
 This is the minimum number of words in a single i/o
 transfer. All transfers requested by a single job
 involve the same number of words.

 − maximum record size
 The maximum number of words in an i/o transfer is
 specified here.

 − event trace
 If the user responds with "yes", ’basys’ will print on
 standard output two a listing of all pertinent events
 as they are scheduled and as they occur. Events traced
 are job arrival, memory request, cpu request, cpu
 release, disk request, disk release and job
 termination. WARNING: under reasonable durations of
 simulation, the volume of output produced by this
 option is prohibitively large.

 Upon completion of the simulation, ’basys’ prints on stan−
 dard output one a three part report. The first part is a
 summary of system parameters as specified by the user. The
 second part is a table of job descriptions, sorted by ascen−
 ding job number. The table gives a profile of each job that
 entered the system during the simulation run. Finally, a
 summary of how well the system performed is printed.
 Included in this part are statistics on utilization of the
 three system resources: memory, cpu and disk, as well as
 statistics on the wait queues for each of these resources.

 Examples

 parameters> basys
 basys >report >event_trace

 basys (3) − 2 − basys (3)

 basys (3) −−− basic computer system simulator 02/23/82

 Bugs

 Meaningless results accompany meaningless input.

 Locally supported.

 basys (3) − 3 − basys (3)

 bind (3) −−− interface with the Primos EPF loader 08/08/83

 | Usage

 | bind [−(a|b|f|n|p|u)] { <binary file> |
 | −d [<entry name>] |
 | −l <library file> |
 | −m [<map file>] |
 | −i |
 | −t |
 | −s <loader command> }
 | [−o <output file>]

 | Description

 | ’Bind’ calls the Primos EPF loader (BIND) from the Software
 | Tools subsystem.

 | The following global options indirectly affect the produc−
 | tion of loader commands:

 | −a Modify the load sequence to include run−time
 | support for Pascal programs. This option may
 | be used with ’−b’ and ’−p’ for mixed−language
 | programs.

 | −b Modify the load sequence to include run−time
 | support for C programs. (The load of the C
 | main program is triggered by the appearance
 | of the first binary file or library.) This
 | option may be used with ’−a’ and ’−p’ for
 | mixed−language programs. Besides loading the
 | C run−time library, "ciolib", this option
 | automatically loads the SWT math library,
 | "vswtmath", and the shared shell library,
 | "vshlib".

 | −d Cause all unresolved external references at
 | the end of the load to be resolved with
 | Primos direct entry links.

 | −f Generate a full load map after commands are
 | complete. The name of the map file will be
 | the same as the name of the output file with
 | the ".o" suffix (if any) replaced by ".m".
 | This option performs the same action as the
 | options "−t −m" at the end of the argument
 | list.

 | −n Do not declare the SWT common blocks or load
 | the default libraries unless the ’−i’ and
 | ’−t’ options are encountered. This allows
 | the loading of non−Subsystem programs or the
 | insertion of additional loader commands at
 | the beginning and end of the load.

 | −p Modify the load sequence to include run−time

 bind (3) − 1 − bind (3)

 bind (3) −−− interface with the Primos EPF loader 08/08/83

 | support for PL/I subset G programs. This
 | option may be used with ’−a’ and ’−b’ for
 | mixed−language programs.

 | −u Generate a load map of undefined symbols
 | after the default libraries have been loaded.

 | −w Modify the load sequence to include run−time
 | support for Prime C programs.

 | The following local options are examined in the order
 | presented and directly produce commands to the loader:

 | <binary file> specifies a binary code file to be
 | loaded.

 | −l <library file> specifies a library file to be
 | loaded.

 | −s <Bind loader command> allows arbitrary loader
 | commands to be inserted in the command stream

 | −m <map file> presents a map command to the
 | loader. If <map file> is omitted, the first
 | "<binary file>.m" is assumed. (If <binary
 | file> ends with ".b", the "b" is replaced
 | with an "m".)

 | −i causes the inclusion of the initial sequence
 | of Subsystem program loader commands (the
 | definition of Subsystem common block
 | locations) to be included, regardless of the
 | "−n" global option.

 | −t causes the inclusion of the terminal sequence
 | of Subsystem program load commands (the
 | default library loads) to be included, regar−
 | dless of the "−n" global option. If the "−n"
 | option is not specified, the sequence of com−
 | mands will be included at this point, so that
 | loader commands may be inserted after the
 | libraries have been loaded. This option may
 | be used with the "−m" option to generate a
 | full load map.

 | −o <output file> specifies the output file for
 | the results of the load. If omitted, the
 | first "<binary file>.o" is assumed. (If
 | <binary file> ends with ".b", the "b" is
 | replaced with an "o".)

 | Commands are presented to the loader in the order in which
 | they are encountered in the command line, except for "−o",
 | which appears only at the end of the command stream.

 bind (3) − 2 − bind (3)

 bind (3) −−− interface with the Primos EPF loader 08/08/83

 | Examples

 | bind −u rf.b −t −m
 | bind sol.b −o sol −d
 | bind test.b −d at$ −o test
 | bind sh.b −s "ma −symbols" −o sh −f

 | Bugs

 | ’Bind’ pays no attention to standard ports.

 | ’Bind’ must be able to create files in the current direc−
 | tory.

 | All files specified must be disk files.

 | EPF’s are not currently supported and Primos BIND is not
 | currently documented. Use of this command is discouraged
 | until Prime supports EPF’s.

 | See Also

 | fc (1), pc (1), plgc (1), f77c (1), pmac (1), x (1), rfl
 | (1), ld (1)

 bind (3) − 3 − bind (3)

 block (3) −−− convert text to block letters 01/13/83

 Usage

 block [−c <char>] [−w <width>]

 Description

 ’Block’ reads lines of text from standard input, converts
 them to large block letters, and writes them on standard
 output. Each character produced is 5 columns in width by 9
 lines in height, with 2 blank columns between consecutive
 block letters and 3 blank lines between consecutive lines of
 block letters.

 The character used to construct the block letters may be
 specified with the "−c <char>" argument sequence; the
 default character is an asterisk (*). Similarly, the length
 (in regular characters) of the lines produced by ’block’ may
 be specified with the "−w <width>" sequence. If omitted, a
 default width of 75 columns is assumed. Input lines that
 will not fit on a single output line are broken into as many
 consecutive lines as necessary.

 Normally, ’block’ ignores control characters in the input
 stream. The two exceptions to this rule are NEWLINEs, which
 force a new output line, and BACKSPACEs, which may be used
 to produce underlined, boldfaced or other overstruck charac−
 ters.

 Examples

 echo "@n@n In Use" | block
 cal 1981 | block −w132 >/dev/lps

 Messages

 "Usage: block ..." for invalid argument syntax.

 See Also

 banner (1)

 block (3) − 1 − block (3)

 broadcast (3) −−− send a Primos message to a user on all machines 07/20/83

 | Usage

 | broadcast [(<user> | all) [<message>]]

 | Description

 | The ’broadcast’ command allows users to send a Primos mes−
 | sage on all systems that are running the SWT process ’ring’.
 | If the first argument is "all", ’ring’ broadcasts the mes−
 | sage to all users on each machine in the ring, otherwise
 | <user> is the user name of the recipient of the message.
 | The remaining arguments constitute the text of the 80
 | character message to be broadcast. If omitted, ’broadcast’
 | reads one line from standard input (STDIN) and broadcasts
 | it. If no arguments are given, ’broadcast’ reads one line
 | from STDIN and broadcasts it to all users.

 | Examples

 | broadcast all System going down in 5 minutes. Please log off.

 | broadcast jeff Your wife called. The house burned down.

 | Messages

 | Cannot transmit BROADCAST request
 | Something interfered with the transmission of the
 | BROADCAST command to the ’ring’ process. This should
 | never happen.

 | Message complete
 | The BROADCAST command has been successfully attempted
 | on all systems in the ring.

 | Message has been transmitted
 | The BROADCAST command has been transmitted to the
 | ’ring’ process.

 | Networks are not configured
 | The system is not configured to support PRIMENET.

 | Request to <system> failed
 | The attempt to broadcast the message on system <system>
 | failed.

 | Request to <system> succeeded
 | The attempt to broadcast the message on system <system>
 | succeeded.

 | Ring connection has been terminated
 | The connection to the ’ring’ process has been cleared.

 broadcast (3) − 1 − broadcast (3)

 broadcast (3) −−− send a Primos message to a user on all machines 07/20/83

 | Unable to connect to ring node
 | The current system is not running a ’ring’ process.

 | You are not validated to BROADCAST
 | Your user number is not allowed to use the BROADCAST
 | command.

 | Bugs

 | Will not work if the current system is not running ’ring’.

 | Message is sent by the ’ring’ process because that is the
 | process which actually executes the Primos ’message’ com−
 | mand.

 | See Also

 | execute (3), setime (3), terminate (3)

 broadcast (3) − 2 − broadcast (3)

 bug (3) −−− report a bug with system software 02/23/82

 Usage

 bug

 Description

 ’Bug’ allows users to report any problems they may encounter
 with system commands or libraries. It creates a standar−
 dized report whose existence is announced to the system
 administrator at each login until the report is examined.
 ’Bug’ prompts for such information as the user’s name, a
 description of the bug, and the name of any file (e.g.,
 program source code or comoutput file) which helps
 illustrate the bug.

 Examples

 bug

 Files

 =bug=/r??? for storage of the bug report
 =bug=/s??? for storage of the user’s environment at the
 time the bug was reported

 See Also

 raid (3)

 bug (3) − 1 − bug (3)

 cal (3) −−− print a calendar on standard output 01/13/83

 Usage

 cal [<month>] [<year>]

 Description

 ’Cal’ prints a Gregorian calendar for any month or any year
 of the user’s choice. When invoked without arguments, a
 calendar for the current month of the current year is
 printed in the following format:

 May 1980

 Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30 31

 In addition, either the name of a month, or a year, or both
 may be specified on the command line to select the calendar
 to be printed. If a month name is given without a year, a
 calendar for that month in the current year is produced. If
 a year is given without the name of a month, then a calendar
 for the entire year is printed.

 ’Cal’ will accept any unique initial abbreviation for the
 name of a month. Also, if a year between 0 and 99 is
 specified, ’cal’ assumes the 20th century.

 Examples

 cal
 cal october
 cal 1980 | col −c 3 −w 20 −l 11 | pr
 cal 1981 | block −w 132 >/dev/lps

 Messages

 "Usage: cal ..." for invalid argument syntax.

 Bugs

 Can’t produce calendars for other than the 20th century.

 See Also

 date (1), day (1)

 cal (3) − 1 − cal (3)

 chown (3) −−− change directory ownership 08/28/84

 | Usage

 chown [−s[<depth>]] <owner> { <pathname> }

 Description

 ’Chown’ is used to change the owner password of one or more
 directories (UFDs) in the file system. <owner> may consist
 of up to six characters; shorter strings are padded with
 blanks, and lower−case letters are converted to upper−case.

 In order to use this command successfully, one must be able
 to attach to the named directories with owner privileges.
 In a standard Primos environment, this means the current
 owner password must be included in the pathname for each
 specified directory. In a Ga. Tech Primos environment,
 this means that the user must currently own the specified
 directories, or they must be public.

 The "−s" option, if specified, causes ’chown’ to traverse
 the file system subtree rooted in the named directory,
 changing the owner password of each directory it encounters.
 The depth of this traversal may be limited by appending a
 positive integer to the "−s" (e.g., "−s3").

 Specifying no <pathname> arguments is the same as specifying
 the pathname of the current directory.

 Examples

 chown "" =mail=
 chown ""
 chown system =src= =src=/lib
 chown −s system =aux=

 Messages

 "Usage: chown ..." for bad argument syntax.
 "owner name too long" for illegal <owner>.
 "<pathname>: can’t change owner" for not being owner of
 <pathname>.
 "<pathname>: bad pathname" for not being able to access the
 directory containing <pathname>.

 Bugs

 In a standard Primos environment, ’chown’ sets the non−owner
 password to zeros when it changes the owner password.

 chown (3) − 1 − chown (3)

 chown (3) −−− change directory ownership 08/28/84

 See Also

 | cd (1), chat (1), lacl (1), sacl (1), passwd (3), Primos
 | spas$$

 chown (3) − 2 − chown (3)

 cron (3) −−− time driven command processor 08/22/84

 | Usage

 | cron

 | Description

 | ’Cron’ allows the system administrator to have shell files
 | executed automatically at a given time. It does this by
 | creating phantoms to execute the file. The attributes
 | (name, project, and associated groups) of the phantom can be
 | specified, along with the time, by the administrator.
 | ’Cron’ must be started from the system console to retain the
 | privileges needed to spawn phantoms for alternate user num−
 | bers. It could be started as a final step in the boot
 | procedure by phantoming it from the boot initialization file
 | (c_config or primos.comi).

 | ’Cron’ gets its information from the file "=cronfile=". It
 | periodically (currently, every minute) wakes up and reads
 | the information in this file. If it finds a job that should
 | be run, it collects the attributes (name, project, and
 | groups) that the job is to have, creates a temporary file in
 | the directory "=crondir=" to hold the commands, copies the
 | file to execute into the temporary file, and calls ’sph’ to
 | attempt to spawn the executing process. Before the spawn
 | attempt, ’cron’ prints information, on STDOUT, as to what
 | file is being phantomed for whom, and the attributes of the
 | phantom.

 | The file "=cronfile=" contains a line for each job to be
 | processed. Each line contains a sequence of space seperated
 | sequences of numbers that describe the time and day to
 | phantom the process, the user name and project name to
 | phantom, the name of the file to phantom, and the list of
 | groups the phantom should have. Each space seperated time
 | description may contain up to 10 comma seperated fields
 | indicating multiple times when this job is to be run. The
 | times specify, in order, the minute, hour, day, day of the
 | month, and month that a command is to be run. If a time
 | does not matter, it can specified by a ’*’ in the
 | appropriate column. In addition to the job descriptions,
 | the file may contain comments by simply placing a ’#’ in the
 | first column of the line. For example, if "=cronfile="
 | contained

 | # min hrs day dat mth user proj file groups
 | 0 6,18 * * * jeff lab //acct/fix guru

 | then the first line would be ignored (because of the ’#’ in
 | column 1) and the second line would cause the shell file
 | "//acct/fix" to be executed by "jeff" under project "lab"
 | with the ".guru" group at 6am and 6pm every day. A more
 | complicated example would be

 cron (3) − 1 − cron (3)

 cron (3) −−− time driven command processor 08/22/84

 | # min hrs day dat mth user proj file groups
 | 15 * 1,7 * 12 arnold lab //system/die scum

 | which would have "arnold" with project "lab" and group
 | ".scum" run the file "//system/die" every 15 minutes after
 | the hour on weekends (Sunday = 1, Saturday = 7) during the
 | month of December (January = 1, December = 12). Another
 | example might be a program to be run on the first day of the
 | year, to send a happy new year message to everyone. This
 | might look like

 | # min hrs day dat mth user proj file
 | 0 0 * 1 1 system lab //message

 | which would run "//message" on January 1 at midnight.

 | When specifying the time, care must be taken to prevent a
 | command from being over−executed. If in the second example
 | the entry had been

 | # min hrs day dat mth user proj file groups
 | * * 1,7 * 12 arnold lab //system/die scum

 | then the file would have been executed every minute during
 | the weekends in December.

 | Messages

 | "can’t open =cronfile=" when "=cronfile=" does not exist or
 | is unreadable.

 | "can’t open <file>" when the file to spawn does not exist or
 | ir unreadable.

 | "can’t create <file>" when it can’t create temporary files
 | in the directory "=crondir=".

 | Any message that ’sph’ can generate.

 | Examples

 | cron

 | Bugs

 | Locally supported until Prime supports EPF’s and the SPAWN$
 | subroutine call.

 | Generates lots of output if "=cronfile=" does not exist.

 cron (3) − 2 − cron (3)

 cron (3) −−− time driven command processor 08/22/84

 | See Also

 | sph (5)

 cron (3) − 3 − cron (3)

 des (3) −−− NBS Data Encryption Standard Implementation 01/13/83

 Usage

 des (−e | −d) [−k <key>] {filename} >output_file

 Description

 ’Des’ is an implementation of the National Bureau of Stan−
 dards Data Encryption Standard. It can be used for protec−
 tion of on−line copies of sensitive information.

 The first argument must be "−e" (for "encryption") or "−d"
 (for decryption). The DES is not self−inverting like the
 exclusive−or algorithm used in ’crypt’; the encryption and
 decryption processes are different and one or the other must
 be selected.

 The optional argument sequence "−k <key>" can be used to
 specify a key to control the encryption or decryption
 process. If a key is not specified on the command line,
 ’des’ will print a prompt message, turn off the terminal’s
 character echo, and read the key. Furthermore, after the
 key has been read, ’des’ will prompt the user for key
 validation; the key must then be re−entered to insure that
 no typographical errors occurred during the original key
 entry.

 Remaining arguments must be the names of files containing
 information to be encrypted or decrypted. Filenames may be
 read from standard input as well as from the command line;
 see the reference manual entry for ’cat’ for further
 information. If no filenames are specified, ’des’ takes
 data from its first standard input. DO NOT use this feature
 to read data from the terminal; ’des’ uses binary I/O with
 the unfortunate side effect that end−of−file cannot be
 generated from a terminal keyboard.

 The output of ’des’ is always produced on its first standard
 output. Because ’des’ processes data in binary rather than
 ASCII form, its output will not be displayed correctly on a
 terminal. Always direct the output of ’des’ to a disk file
 or into a pipe for further processing.

 Examples

 des −e −k turkey document >document.des
 des −d −k turkey document.des >original_document

 Messages

 "Usage: des ..." for improper argument syntax.
 "keys do not match" if the validation key entry does not
 match the original key entry.

 des (3) − 1 − des (3)

 des (3) −−− NBS Data Encryption Standard Implementation 01/13/83

 Bugs

 Binary I/O is needed to handle the arbitrary bit−patterns
 output by the DES algorithm without considerable expansion
 of the output text. Unfortunately, binary I/O from and to
 the terminal does not behave rationally at all.

 The present implementation is very slow, averaging about
 1730 bits per CPU second throughput.

 See Also

 crypt (1)

 des (3) − 2 − des (3)

 dmach (3) −−− Burroughs D−machine simulator 03/25/82

 Usage

 dmach <hex file>

 Description

 ’Dmach’ is a simulator for the microprogrammed Burroughs
 D−machine described in Microprogramming Primer, by Harry
 Katzan, Jr. (McGraw−Hill, 1977). Because of the detailed
 treatment of the machine architecture and programming tech−
 niques given in that text, these topics are not covered
 here.

 ’Dmach’ requires one command line argument: the name of a
 file that contains the hexadecimal representation of a
 microprogram. The file will typically have been generated
 by the ’translang’ command, which is the translator for the
 symbolic microprogramming language described by Katzan.
 (See the documentation for ’translang’ for further details.)

 Upon invocation, ’dmach’ prompts the user for information
 that it needs to control the simulation environment and to
 provide a trace of its activities. What follows is a
 description of the prompt messages that are printed and the
 proper user responses:

 Begin execution at address:

 The user should enter the microprogram address at which
 execution is to begin. Possible values lie in the
 range 0 to 1023 (decimal).

 Number of clock cycles to simulate:

 The response is used as an upper bound on the number of
 microprogram clock cycles that are to be simulated. If
 the microprogram consumes this many cycles without
 executing a halt instruction, simulation is terminated.

 Number of cycles between traces:

 This determines the number of clock cycles that occur
 between each trace point.

 Begin tracing at address:
 End tracing at address:

 These parameters delimit a region of the microprogram
 that is to be traced. Trace output is generated at
 trace points only if the address of the microinstruc−
 tion just executed falls within this region.

 Print S−memory and registers in octal?

 If the response is "yes", the values of registers and

 dmach (3) − 1 − dmach (3)

 dmach (3) −−− Burroughs D−machine simulator 03/25/82

 S−memory locations will be represented as unsigned
 octal numbers in the trace and memory dump output;
 otherwise, the representation is signed decimal.

 Dump S−memory upon termination?

 If the response is "yes" the user is given the
 opportunity to view the contents of S−memory when
 simulation is terminated; otherwise, no dump is
 provided.

 Load S−memory −− Enter <return> to quit
 Starting address (1−2048):
 Ending address :

 The user should enter the starting and ending addresses
 of a contiguous block of S−memory to be initialized
 before execution of the microprogram begins. ’Dmach’
 then issues a series of prompts of the form

 Smem (n) =

 where n is the address of a cell to be initialized.
 Such a prompt is issued for each cell in the block
 delimited by the starting and ending addresses, and
 then another pair of addresses is requested. This
 dialogue continues until the user enters an empty line
 for the starting address.

 All numeric items are expected in decimal; however, if input
 in another radix is desired, the item may be preceded by the
 radix followed by a letter "r". For example:

 8r177

 is interpreted as octal 177 (127 decimal).

 Since all input is read from ’dmach’s first standard input
 port, the responses may be stored in a file to eliminate the
 need for redundant typing. Normally, such a file would
 contain one response per line. When input is being read
 from a file, no prompt messages are printed.

 After the last block of S−memory has been initialized,
 microprogram execution begins. Depending upon the user’s
 responses to the above questions, trace output is printed at
 selected trace points in the microprogram. This output
 takes the following form:

 Phase 3 Mpcr: 0
 Clock: 2 A1: 0 B : 0 Ctr: 0 Br1: 0
 Mpcr : 1 A2: 0 Mir : 0 Lit: 0 Br2: 0
 Ampcr: 0 A3: 0 Bmar: 0 Sar: 0 Mar: 0
 Mst Lst Abt Aov Cov Sai Rdc Gc1 Gc2 Lc1 ... Ex1 ... Int
 F F F T F T F T F F ... F ... F

 dmach (3) − 2 − dmach (3)

 dmach (3) −−− Burroughs D−machine simulator 03/25/82

 The various fields should be self explanatory for users
 familiar with the D−machine architecture. The only field
 present in the trace output not covered by Katzan is the
 ’Bmar’ field, which simply contains the address of the last
 S−memory location fetched or written by the microprogram.
 It is obtained by concatenating one of the two base
 registers ’Br1’ or ’Br2’ with the memory address register
 ’Mar’.

 Upon termination of the microprogram, either because of
 executing a HALT instruction or exceeding the specified num−
 ber of clock cycles, ’dmach’ prints one final trace sequence
 summarizing the final machine state. If a memory dump was
 requested during the initial dialogue, a series of prompts
 similar to that for S−memory initialization is issued and
 the user is allowed to inspect selected blocks of the final
 S−memory.

 Examples

 dmach mult.h
 parameters> dmach microprogram.h
 dmach divide.h >trace_output

 Messages

 "Usage: dmach <hex file>" for incorrect argument syntax.
 "Error −− Bad external operation" when an external operation
 other than memory read or write is requested by the
 microprogram.
 "Error −− S−memory address out of range" when the address
 supplied for a memory read or write command is not in
 the range 1 to 2048.
 "Error −− Memory not ready for read" when a memory read com−
 mand is issued before the previous one is complete.
 "Error −− Memory not ready for write" when a memory write
 command is issued before the previous one is complete.

 See Also

 translang (3), Microprogramming Primer

 dmach (3) − 3 − dmach (3)

 dprint (3) −−− optimize printing on a Diablo 08/28/84

 | Usage

 | dprint {−c <copies> | −j | −l <length> | −s | −x} { <file_spec> }

 Description

 ’Dprint’ prints files on the user’s terminal, making the
 assumption that the terminal is a Diablo model 1610 or 1620.
 Printing is done bi−directionally, optimizing motion of the
 print head and platen as much as possible.

 The following options are available to control ’dprint’s
 behavior:

 −c If present, the next argument must be an integer;
 ’dprint’ will produce the specified number of copies of
 each file that it prints.

 −j ’Dprint’ will cause a page eject following each file
 (or copy of a file, when multiple copies are
 specified). Normally, no extra space is inserted
 between successive files or copies of the same file.

 −l If present, the next argument must be an integer;
 ’dprint’ will use that number as the number of lines
 per physical page. It is important that this number
 match the form length selected on the terminal itself,
 else anomalous behavior may result. ’Dprint’ assumes
 there are 66 lines per page, corresponding to the stan−
 dard 11 inch form length.

 −s This option causes ’dprint’ to pause at the top of each
 page and sound the terminal’s audible alarm, allowing
 the user to insert a new piece of paper. Printing
 continues when the user types an ACK character (ctrl−
 | f).

 | −x This option prevents the initial page eject. This
 | option is useful when printing on special forms (mail−
 | ing labels, etc.). Since the diablo does not support
 | relative vertical motion this option should only be
 | used when the paper/form is initially at top of form.

 The remaining arguments specify files to be printed. Most
 often, one or more pathnames will be given, indicating that
 the named files are to be printed, or there will be no other
 arguments, indicating that input is to be read from standard
 input. The full syntax of the <file_spec> construct is
 described in the entry for ’cat’ in section 1 of the
 Reference Manual.

 It is assumed that the paper has been mounted so that a form
 feed will advance to the first line on the next page. This
 may be done by pressing the ’set tof’ switch (in the upper
 right corner of the keyboard) after the paper has been

 dprint (3) − 1 − dprint (3)

 dprint (3) −−− optimize printing on a Diablo 08/28/84

 positioned properly.

 In addition to optimizing print head motion, ’dprint’
 provides an extended character set of Greek letters and
 mathematical symbols to support the special character func−
 tions of the Software Tools Subsystem text formatter, ’fmt’.
 These special graphics are accessed by normal ASCII charac−
 ter codes with their most significant bit turned off. (Note
 that the normal Prime convention is that this bit is always
 turned on for text characters.) The following table shows
 the correspondence between ASCII character codes, formatter
 functions, and special graphics:

 Character ’Fmt’ Function Graphic

 a alpha lower−case Greek alpha
 b beta lower−case Greek beta
 d delta lower−case Greek delta
 D DELTA upper−case Greek delta
 e epsilon lower−case Greek epsilon
 n eta lower−case Greek eta
 g gamma lower−case Greek gamma
 G GAMMA upper−case Greek gamma
 8 infinity "infinity" symbol
 + integral integration symbol
 l lambda lower−case Greek lambda
 L LAMBDA upper−case Greek lambda
 u mu lower−case Greek mu
 ^ nabla inverted delta (APL del)
 ~ not EBCDIC−style "not" symbol
 v nu lower−case Greek nu
 w omega lower−case Greek omega
 W OMEGA upper−case Greek omega
 − partial partial differential symbol
 p phi lower−case Greek phi
 P PHI upper−case Greek phi
 y psi lower−case Greek psi
 Y PSI upper−case Greek psi
 3 pi lower−case Greek pi
 4 PI upper−case Greek pi
 r rho lower−case Greek rho
 s sigma lower−case Greek sigma
 S SIGMA upper−case Greek sigma
 t tau lower−case Greek tau
 h theta lower−case Greek theta
 H THETA upper−case Greek theta
 x xi lower−case Greek xi
 z zeta lower−case Greek zeta

 These extended graphics are produced by fractional motions
 of the platen and print head and overstriking of standard
 ASCII graphics. Best results are obtained when the paper is
 being fed by the platen and pinch roller and not by the pin−
 feed mechanism.

 dprint (3) − 2 − dprint (3)

 dprint (3) −−− optimize printing on a Diablo 08/28/84

 Examples

 help −p dprint | dprint
 dprint junk
 dprint −s −l 80 journal_article
 dprint −c 5 −j hand_out

 Messages

 "Usage: dprint ..." for incorrect argument syntax.
 "<filename>: can’t open" if given file could not be opened
 for reading.

 Bugs

 If interrupted by the BREAK key while printing, ’dprint’ may
 hang, waiting for the Diablo to acknowledge the last group
 of characters sent. To clear this condition, it is simply
 necessary to type a ctrl−f at the keyboard. If the ctrl−p
 key is used instead of BREAK, this condition normally does
 not occur.

 When multiple copies of a file are requested using the "−c"
 option, ’dprint’ obliges by rewinding the input file and re−
 reading it. If the input is being taken from a standard
 input port, and that port is not connected to a rewindable
 device (i.e., a disk file), then only one copy is produced.

 Error messages are produced on the standard error output
 port, which is normally directed to the terminal. If it is
 undesirable to have these messages interspersed with the
 contents of the printed files, error output should be
 | redirected to a file.

 | Does not currently handle the full set of ’fmt’ special
 | characters.

 See Also

 cat (1), copy (1), fmt (1), print (1), sprint (3)

 dprint (3) − 3 − dprint (3)

 execute (3) −−− execute a SWT command on another machine 07/20/83

 | Usage

 | execute [(<system> | all) [<command>]]

 | Description

 | The ’execute’ command interfaces to the SWT ’ring’ process
 | to allow users to execute a SWT command on any system that
 | is running ’ring’. If the first argument is "all", ’ring’
 | executes the command on all machines in the ring; otherwise
 | it specifies the system name of the machine on which to
 | execute the command. Any remaining arguments comprise the
 | text of the commands to be executed. If these arguments are
 | omitted, ’execute’ reads one line from standard input
 | (STDIN) and executes it. If no arguments are given,
 | ’execute’ reads one line from STDIN and executes it on all
 | systems.

 | In order to execute a command on another system, the ’ring’
 | process on the target system starts up a phantom with the
 | requesting user’s name. This phantom has the same home and
 | current directories as the ’ring’ process, and therefore the
 | command line should contain a ’cd’ command to attach to the
 | correct directory. ’Ring’ has no way to determine if a user
 | is validated to log on to a system. It simply creates a
 | phantom, and the ’swt’ command will kill the process if it
 | finds no "vars" directory.

 | Note that the output from the phantom that ’ring’ creates is
 | not transmitted back to the user who requested the service.
 | In order to save that output, it must be written to a file
 | and delivered to the user in some other fashion (e.g.
 | ’mail’).

 | Examples

 | execute gt.a sema drain −32

 | execute all "cd; lf | mail roy"

 | Messages

 | Cannot transmit EXECUTE request
 | Something interfered with the transmission of the
 | EXECUTE command to the ’ring’ process. This should
 | never happen.

 | Command complete
 | The EXECUTE command has been successfully attempted on
 | all systems in the ring.

 | Command has been transmitted
 | The EXECUTE command has been transmitted to the ’ring’

 execute (3) − 1 − execute (3)

 execute (3) −−− execute a SWT command on another machine 07/20/83

 | process.

 | Networks are not configured
 | The system is not configured to support PRIMENET.

 | Request to <system> failed
 | The attempt to execute the command on system <system>
 | failed.

 | Request to <system> succeeded
 | The attempt to execute the command on system <system>
 | succeeded.

 | Requested system is not in the ring
 | The system on which the commands were supposed to
 | execute is not in the ring.

 | Ring connection has been terminated
 | The connection to the ’ring’ process has been cleared.

 | Unable to connect to ring node
 | The current system is not running a ’ring’ process.

 | You are not validated to EXECUTE
 | Your user number is not allowed to use the EXECUTE com−
 | mand.

 | Bugs

 | Will not work if the current system is not running ’ring’.

 | Cannot determine whether or not user is validated to log on
 | to the requested system(s).

 | Starts up phantoms in the ’ring’ directory rather than in
 | the user’s directory.

 | See Also

 | broadcast (3), setime (3), terminate (3)

 execute (3) − 2 − execute (3)

 fixp (3) −−− file translation and parity set program 01/13/83

 Usage

 fixp [−z] [−mu | −ml] [−cl | −cd] [−u] [<infile> [<outfile>]]

 Description

 The Prime operating system adopts a convention whereby every
 ASCII character has the most significant of eight bits (the
 so−called "parity" bit) always set "on". This can lead to
 some difficulties when dumping a tape from another system
 since not all systems use the eighth bit in this manner.

 ’Fixp’ is a translation program designed to transform
 foreign files to SWT and Primos compatible text files. It
 has some other interesting capabilities, discussed below.
 It is written in PMA to utilize the cpu’s character instruc−
 tions and thus operates very quickly. By default, ’fixp’
 always sets the parity bits of every character to "on".

 The "−z" option causes all null characters, except those
 used for padding at the end of a string, to be deleted.
 This option does not cause ASCII nulls (octal ’200) to be
 deleted if they are present in the input, it simply deletes
 total null (octal 0) characters from the text stream. This
 option can be used when stripping padding from ’se’ tem−
 porary files during recovery operations, for instance.

 The "−mu" and "−ml" options map the output into upper (mu)
 or lower (ml) case. This operation is at least an order of
 magnitude faster than ’tlit’ and thus may be useful by
 itself.

 The "−cl" and "−cd" options are for files which have
 carriage return characters in them. The "−cd" option simply
 drops any carriage returns. The "−cl" option turns all
 carriage returns into linefeed/eol characters.

 The "−u" option strips all control characters from the out−
 put except for linefeed/eol characters. Thus, ’fixp’ may be
 used as a filter for removing all but visible characters
 from a text stream.

 By default, ’fixp’ creates a standard compressed−ASCII file.
 If the "−u" option is given then the output is NOT compres−
 sed but contains the actual blanks that would normally be
 compressed out. It should be noted that such files can take
 up many times more disk space than the equivalent compressed
 files, and thus this option should be used carefully.

 If no output file is given ’fixp’ sends output to STDOUT.
 If no input file is given then ’fixp’ takes input from
 STDIN.

 If no options are given, defaults are no case mapping,
 include all carriage returns unchanged, include all control

 fixp (3) − 1 − fixp (3)

 fixp (3) −−− file translation and parity set program 01/13/83

 characters unchanged, and leave all padding zeros in place
 (except that parity bits get turned on so they become ASCII
 nulls).

 Examples

 from_tape> fixp −mu −cl >text
 fixp //spaf/foo //dan/bar_none

 Messages

 "Usage: fixp ..." for invalid argument syntax.
 "<name>: Cannot open" for files that cannot be opened.
 "Error in fixp" when an error condition other than EOF
 occurs with the input.

 Bugs

 The non−compression of blanks with the "−u" option might be
 considered a bug.

 The program code is self−modifying and should not be put in
 protected or shared memory regions without modification.

 Due to the behavior of ’readf’, when ’fixp’ takes input from
 the terminal there is no way to trigger the EOF condition
 and thus the program will never end! Large scale buffering
 is used so you may not immediately observe any output,
 either.

 ’Fixp’ cannot reverse its actions, it can’t turn the parity
 bits back off.

 Locally supported.

 See Also

 mt (1), tlit (1)

 fixp (3) − 2 − fixp (3)

 focld (3) −−− send FOCAL−GT/RT programs to the GT40 02/23/82

 Usage

 focld <filename>

 Description

 ’Focld’ is used to prepare a FOCAL program stored on the
 Prime for acceptance by FOCAL−GT/RT. ’Focld’ is used from
 FOCAL in the following manner:

 Type control−f.
 Type your "kill" character.
 Without hitting return, type: focld <filename>
 Type control−t.
 Hit return.
 Wait while the program loads.
 Type control−t and control−f and you will be talking
 to FOCAL.

 It is advisable to study section 3.1 and figure 3−1 of the
 FOCAL−GT/RT User’s Manual to understand the above procedure
 and to develop the procedure for saving FOCAL programs.

 Examples

 focld life
 focld chess

 Bugs

 Locally supported.

 See Also

 as11 (3), FOCAL−GT/RT User’s Manual

 focld (3) − 1 − focld (3)

 imi (3) −−− generate IMI prom programmer down−line load stream 01/13/83

 Usage

 imi <object_file> [<relocation>]

 Description

 ’Imi’ takes the output of the Motorola 6800 cross−assembler
 (’as6800’), relocates it to the desired starting address
 (0000 by default), and generates a down−line load stream
 suitable for use by the International Microsystems, Inc.,
 prom programmer.

 Note that the relocation address is given in hexadecimal.
 Other bases may be specified by preceding the address with
 the desired base followed by the letter "r," e.g.
 "8r100000".

 Examples

 imi mux
 imi highloader 4000

 Messages

 "Can’t open" for unreadable object file.
 "Usage: imi ..." for missing arguments.
 "badly formed code file" for erroneous code files.

 Bugs

 Locally supported.

 See Also

 as6800 (3), lk (3), intel (3), mot (3)

 imi (3) − 1 − imi (3)

 intel (3) −−− generate Intel format object tape 01/13/83

 Usage

 intel <object_file> [<relocation>]

 Description

 ’Intel’ takes the output of the Intel 8080 cross−assembler
 (’as8080’), relocates it to the desired starting address
 (0000 by default), and generates an Intel standard format
 object tape on its first standard output.

 ’Intel’ is useful for down−line loading assembled code to
 development systems equipped with a standard ROM loader.

 Examples

 intel mux
 intel highloader 16384

 Messages

 "Can’t open" for unreadable object file.
 "badly formed code file" for erroneous code files.

 Bugs

 Locally supported.

 See Also

 as8080 (3), lk (3), mot (3)

 intel (3) − 1 − intel (3)

 kill (3) −−− log out a user 01/13/83

 Usage

 kill <pid>

 Description

 ’Kill’ logs out the user (process) whose process number is
 given as the first argument. It is a shorthand for
 "x lo −<pid>".

 Examples

 kill 19

 Messages

 "Usage: kill ..." for a missing argument.

 See Also

 x (1), ph (1)

 kill (3) − 1 − kill (3)

 last (3) −−− print last n lines of a file 01/13/83

 Usage

 last [−t] [−c] [−v] [−l<#>] [−n | −n<#> | {<pathname>}]

 Description

 This program allows the user to print the last (or first)
 "n" lines of a file, or of standard input. In addition, it
 does a high speed count of the number of lines in the file
 and can be used simply to size the file. A combination of
 text printing and counting may be chosen.

 "−t" −− prints the lines of text requested (last or first
 "n" lines).

 "−c" −− prints the number of lines in the file followed
 by a blank line.

 "−v" −− print the pathname of the file. The pathname is
 printed after the count (if the count is requested) and
 is followed by a blank line.

 "−l<#>" −− <#> is any number between −32767 and +32767.
 If the number is positive, then the last <#> lines are
 printed as text. Otherwise (<#> is negative), the first
 abs(<#>) lines are printed as the text. Therefore, the
 top 10 lines could be printed with "−l−10".

 "−n or −n<#>" −− standard format to input a list of
 filenames to be used as arguments.

 All output, except error messages, goes to STDOUT. Default
 options are: last −l20 −t

 Examples

 =userlist=> last
 last −t −l50 [lf −c] | sort | uniq >ends
 echo [last −c [file]]" lines in "[file]

 Files

 If input is from STDIN and is from the terminal then the
 input is copied into a file opened with ’mktemp’ before
 positioning is done (since the terminal cannot be
 "positioned").

 Messages

 "<name>: Cannot open" for files that cannot be opened.
 "Usage: last ..." for incorrect argument usage.

 last (3) − 1 − last (3)

 last (3) −−− print last n lines of a file 01/13/83

 Bugs

 Very peculiar behavior will occur if ’last’ is used on
 something other than text (as in binary image files). It
 also will not work correctly on files which do not have the
 character parity bits set on (Prime and SWT standard).

 Locally supported.

 See Also

 tail (1), tc (1), slice (1)

 last (3) − 2 − last (3)

 lfo (3) −−− list files opened for a specified user 10/21/83

 | Usage

 | lfo {<process id> | <user name>}

 | Description

 | ’Lfo’ prints the following information on STDOUT for each
 | process number and for all processes owned by each user name
 | specified:

 | 1. the user name and process−id;
 | 2. his accumulated cpu and io times;
 | 3. his initial, current, and home directories;
 | 4. every open file unit and its associated pathname.

 | If no arguments are specified, ’lfo’ lists the information
 | for as many processes as possible. The normal user may list
 | only his own processes, while a system administrator may
 | list any process on the system.

 | Examples

 | lfo 1 15 16 23
 | lfo snodgrass silverlips
 | lfo 3 upi 8
 | lfo

 | Messages

 | "pathname not obtainable" for files opened on a remote
 | system.

 | Bugs

 | Locally supported.

 | Requires Georgia Tech modified Primos.

 lfo (3) − 1 − lfo (3)

 lib (3) −−− concatenate cross−assembler object files 01/13/83

 Usage

 lib { <object_file> }

 Description

 ’Lib’ is used to concatenate the object code files produced
 by the ’as6800’ and ’as8080’ cross−assemblers. This is
 usually done to generate a library suitable for use by the
 link editor ’lk’.

 If arguments are given on the command line, ’lib’
 concatenates the named files and places their concatenation
 on the file "lib.out". Otherwise, file names are taken from
 standard input, and their contents are concatenated and
 placed on "lib.out".

 Examples

 files .o$ | lib
 lib rtrlib new_routine.o

 Files

 "lib.out" is always the output file.

 Messages

 "Can’t open" for unreadable or unwritable files;

 Bugs

 Locally supported.

 See Also

 as6800 (3), as8080 (3), size (3), symbols (3), lk (3)

 lib (3) − 1 − lib (3)

 lk (3) −−− link cross−assembler object files 01/18/83

 Usage

 lk −(6800 | 8080) { [−(i | l | n)] file }

 Description

 ’Lk’ is used to link together the object code files produced
 by the ’as6800’ and ’as8080’ cross−assemblers. It produces
 a file of the same type as the input files, so the output of
 ’lk’ may itself be linked with other code files.

 If no arguments are given on the command line then they are
 taken from standard input. ’Lk’ always writes its output to
 the file "l.out".

 The first argument selects the machine that the object files
 have been compiled for: "−6800" refers to the Motorola
 6800, while "−8080" indicates the Intel 8080. The remaining
 options select the mode the linker is running under and the
 input files that are to be linked. The available modes are:

 −i INCLUDE This is the default mode. When in this mode,
 all object segments encountered in the files
 specified are linked together onto "l.out".
 −l LIBRARY In this mode, the arguments are taken to be
 libraries, that is, concatenations of object
 code files made with ’lib’. Each segment is
 | examined to see if it satisfies a previously
 | unresolved external reference, and is linked
 | in only if it does.
 −n NAMELIST Any file read in this mode is considered to
 be a program that can be expected to be
 resident at the time that the output file is
 to be run on the target machine. Any entries
 encountered in this file’s symbol table that
 satisfy a previously unresolved external
 reference are used to resolve that reference,
 but the segment itself is not linked in.

 Examples

 lk −6800 tpart1.o tpart2.o −n mux.o −l [libs]

 Files

 "l.out" for the output code file.

 Messages

 "Usage: lk ..." for invalid argument syntax.
 Many other error messages, hopefully some of which are self−
 explanatory.

 lk (3) − 1 − lk (3)

 lk (3) −−− link cross−assembler object files 01/18/83

 Bugs

 Locally supported.

 See Also

 as8080 (3), intel (3), size (3), symbols (3)

 lk (3) − 2 − lk (3)

 lz (3) −−− post process ’fmt’ output for laser printer 10/24/84

 | Usage

 | lz [−i] [−l <page_size>]

 | Description

 | ’Lz’ post processes output from ’fmt’ for the Xerox 9700
 | laser printer owned by the Georgia Tech Office of Computing
 | Services. In particular, it outputs the necessary control
 | statements to get actual boldfacing and italics. These
 | control statements are Georgia Tech specific.

 | The ’fmt’ input files should expect a page that is 100
 | columns wide by 87 lines down. The laser printer
 | automatically supplies 1/2 inch margins on all sides, so the
 | .m1 through .m4 values in ’fmt’ need to be set
 | appropriately, as well as the page and margin offsets, and
 | the left and right margins.

 | ’Lz’ does actual underlining for text that is underlined.
 | If the ’−i’ option is supplied, ’lz’ will print underlined
 | text in italics, instead.

 | The length of the output page can be given with the ’−l’
 | option. ’Lz’ defaults to 87 lines per page.

 | Examples

 | fmt =fmac=/evl =doc=/guide/ed | lz >file_for_xerox

 | Messages

 | "Usage: lz ..." for improper arguments.

 | Bugs

 | Locally supported.

 | See Also

 | fmt (1), os (1), =fmac=/evl, =fmac=/evl2

 lz (3) − 1 − lz (3)

 memo (3) −−− automated memo and reminder system 01/13/83

 Usage

 memo [[[−t] <user>] [−d <display_cond>] [−e <erase_cond>]]

 Description

 ’Memo’ allows a user to send dated memos to himself or to
 another user. ’Memo’ differs from ’mail’ in that "display
 conditions" and "erase conditions" may be specified for
 memos; i.e., the user has control over when a memo is
 displayed and how long it will be displayed before it is
 deleted.

 The simplest usage is just "memo". This form checks the
 current user’s memo file, displays any memos whose display
 conditions yield "true", and deletes any memos whose erase
 conditions yield "true". Normally, a user would include
 this form of the ’memo’ command in his "_hello" shell
 variable, so it would be executed whenever he enters the
 Subsystem.

 The other forms of the command are used to send a memo. The
 "−t" ("to") option, followed by a valid user login name,
 specifies the intended recipient of the memo. The "−t" may
 be omitted if desired. If no user name is specified, then
 the memo is sent to oneself. The "−d" option, if given,
 must be followed by a boolean display condition (discussed
 below). When this condition is "true", the memo will be
 displayed. The default display condition is "always". The
 "−e" option, if given, must be followed by a boolean erasure
 condition (also discussed below). When this condition is
 "true", the memo will be removed from the user’s memo file,
 regardless of whether or not it has ever been displayed.
 The default erasure condition is "always".

 Display and erasure conditions are boolean expressions
 involving variables concerned with the current time and
 date. The allowable syntax is as follows:

 expression −> secondary { ’&’ secondary }
 secondary −> primary { ’|’ primary }
 primary −> ’~’ ’(’ expression ’)’
 | ’(’ expression ’)’
 | relation
 | ’always’
 | ’never’
 relation −> arithprim relop arithprim
 relop −> ’=’ | ’==’ | ’~=’ | ’<>’ | ’<’ | ’>’ | ’<=’ | ’>=’
 arithprim −> integer_constant
 | symbolic_constant
 | time_variable
 symbolic_constant −>
 sunday | sun
 | monday | mon
 | tuesday | tue

 memo (3) − 1 − memo (3)

 memo (3) −−− automated memo and reminder system 01/13/83

 | wednesday | wed
 | thursday | thu
 | friday | fri
 | saturday | sat
 | january | jan
 | february | feb
 | march | mar
 | april | apr
 | may
 | june | jun
 | july | jul
 | august | aug
 | september | sep
 | october | oct
 | november | nov
 | december | dec
 time_variable −>
 month # the current month, 1−12
 | day # the day of the month, 1−31 (usually)
 | year # the current year, e.g. 80
 | dow # the day of the week, 1−7
 | hour # the hour of the day, 0−23
 | minute # the minute of the hour, 0−59

 Some examples of conditions might be helpful.

 The condition "always" is always true. Thus, if used as a
 display condition, the memo will always be displayed. If
 used as an erase condition, the memo will be immediately
 deleted (although it may well have been displayed first).
 The condition "(month=March)&(day>3)" will be true only on
 days in March after March third (in any year). The condi−
 tion "(dow=Friday)" will be true on any Friday, false other−
 wise. The condition "(month=feb)&(day=2)" will be true on
 Groundhog Day. The condition "(dow=mon)&(day=13)" will be
 true on those months in which Friday the 13th falls on Mon−
 day.

 Examples

 memo

 memo system
 See about fixing ’lps’
 <Control−C>

 memo −d "(month=mar)&(day<9)" −e "(month>=mar)&(day>=9)"
 See "In the Name of the Father" at Alliance Studio
 <Control−C>

 Files

 =extra=/memo/<login_name> for storing memos
 =userlist= for verifying user names

 memo (3) − 2 − memo (3)

 memo (3) −−− automated memo and reminder system 01/13/83

 Messages

 "bogus character in expression" an unrecognizable character
 appeared in a display or erasure condition
 "undefined variable" the parser encountered a variable that
 was not a symbolic constant or time variable, as
 defined in the lists above
 "illegal user name" the named user is not in the Subsystem
 user list
 "illegal user name or improper argument syntax" the command
 line could not be parsed properly
 "can’t open memo file" the user’s memo file could not be
 opened
 "memo file not available" the addressee’s memo file could
 not be opened
 "Usage: memo ..." command line was undecodable
 "stack overflow" a condition was too complex to evaluate
 fully
 And several self−explanatory messages from the expression
 parser.

 Bugs

 Needs a more concise syntax for expressing dates. Is sub−
 ject to all the security problems of ’mail’. Lacks the
 ability to file copies of memos away when they are removed
 from the active memo file.

 See Also

 mail (1), to (1), stacc (1)

 memo (3) − 3 − memo (3)

 mkclist (3) −−− create a list of commands for backstop 08/28/84

 | Usage

 mkclist [−s]

 Description

 ’Mkclist’ lists the commands in "=lbin=", "=bin=", "=ubin=",
 and the internal shell commands, sorts them into order, and
 places them in "=ubin=/clist". This file is used by the
 backstop program as the file of commands to search through.

 The template "=ubin=" must refer to the user’s personal com−
 mand directory. By default, the system−wide template
 "=ubin=" refers to "//=user=/bin".

 The "−s" option causes ’mkclist’ to omit "=ubin=" from the
 list of commands and place the resulting list in
 "=extra=/clist", thus creating the system default command
 | list.

 | Examples

 | mkclist

 Messages

 | "Usage ..." for improper arguments

 | Bugs

 | Bombs if =ubin= does not exist.

 See Also

 bs (5), bs1 (5), guess (5)

 mkclist (3) − 1 − mkclist (3)

 mon (3) −−− system status monitor 01/15/83

 Usage

 mon [<sample interval>]

 Description

 ’Mon’ is a program which continuously observes and displays
 the various Primos databases and certain statistics on per−
 formance, which it computes. It accepts one optional com−
 mand line argument, along with several single character com−
 mands, once ’mon’ is running. The command line argument is
 the number of clock seconds to wait between each sampling of
 the Primos databases. If omitted, the interval defaults to
 30 seconds. The single character commands, during the
 program’s run, determines which of several formats ’mon’
 will use to display the information. The commands are:

 l Use LONG format (default)
 s Use SHORT format
 m Use SHORT MEMORY format
 c CLEAR the screen and redraw the data
 q \
 cntrl−p >Quit
 BREAK /
 x Execute a PRIMOS command
 ? Display the available commands

 The "l", "s", and "m" commands adjust the format and
 information displayed. The "l" and "s" commands display the
 statistics with per process CPU usage in long and short
 formats respectively. The "m" command displays the
 statistics with per process memory usage (pages presently in
 memory).

 The "c" command will clear and redraw the screen. This is
 useful after Primos messages or Primos commands have been
 executed via the "x" command (see below).

 ’Mon’ will run continuously until interrupted by either a
 "q", a BREAK, or a control−p being typed. It will then
 position the cursor to the bottom of the screen and
 terminate.

 The "x" command allows the execution of PRIMOS commands
 while ’mon’ is running. It is similar to the Subsystem’s
 "x" command. This feature allows system administrators to
 see how changing scheduling parameters affects system per−
 formance.

 The "?" command will display the available single letter
 commands and then wait until any character is typed before
 continuing.

 mon (3) − 1 − mon (3)

 mon (3) −−− system status monitor 01/15/83

 SYSTEM WIDE TIME STATISTICS:

 For each of these, total time is displayed in hours, minutes
 seconds and hundredths of seconds, along with the change in
 time since last interval was displayed. The change is
 displayed in seconds and hundredths of seconds. The format
 of these statistics does not change with a change in display
 format.

 Up Time Total clock time since last boot.

 User Cpu Time Total cpu time used by normal user
 processes since last boot.

 I/O Time Total I/O time charged since last boot.

 OTHER SYSTEM WIDE STATISTICS:

 For Disk Accesses and Page faults, the total number since
 boot is displayed, as well as the number and rate (per
 second) during the last sample interval. The format of this
 information does not change with a format change.

 Disk Accesses Total disk accesses since the system was
 booted.

 Page Faults Total number of page faults since the
 system was booted.

 Buffer Hit Rate The number of disk records that were
 found in the in−memory associative
 buffers as a percentage of the total
 number of disk records requests during
 the last sample interval.

 PER−PROCESS STATISTICS:

 For each process, the user name, user number, total cpu time
 used, change in cpu time since last interval, and percentage
 of the cpu time used since the last interval are displayed.
 In addition to each logged in user process, data is
 displayed for other internal system processes that are
 active: the Clock process, two Idle processes (the system
 backstop processes; 1 for the main cpu, and one for the
 attached processor, if it exists), two Mpc processes (for
 line printers, mag tapes, and other unit record devices),
 | the Amlc process (asynchronous line driver), the Smlc
 | process (synchronous line driver), and the Ring process (the
 network driver).

 Examples

 mon

 mon (3) − 2 − mon (3)

 mon (3) −−− system status monitor 01/15/83

 mon 15

 Messages

 "Usage: mon ..." for invalid argument syntax.
 "Terminal type ’<term_type>’ not supported" when <term_type>
 is not supported by VTH.

 Bugs

 Since ’mon’ can’t lock the Primos databases that it reads
 the data returned isn’t guaranteed to be 100% accurate.
 Bogus values may appear when a user logs in and out, but
 these will disappear during the next interval. Accuracy
 will improve with longer display times.

 If more users than the screen can display are logged in, the
 higher user numbers may be cut off on the bottom of the
 screen. The short formats can display 50% more users, but
 even that isn’t quite enough for 128 processes.

 Since ’mon’ requires breaks being enabled in order to stop,
 it ensures that breaks are enabled. If a user has pending
 breaks, ’mon’ will terminate as soon as it enables breaks,
 rather than continuing.

 See Also

 | x (1)

 mon (3) − 3 − mon (3)

 moot (3) −−− teleconference manager 01/15/83

 Usage

 moot [−a <user>]

 Description

 ’Moot’ is a teleconference management program. It allows
 users to send messages to one another or to a group of users
 participating in a "conference". Messages may then be
 received automatically and reviewed at will. Authorized
 users may create and destroy conferences, add users to con−
 ferences, etc. ’Moot’ is conversationally oriented, to
 reduce learning time.

 To participate in any of the active teleconferences, type

 moot

 ’Moot’ will then ask you for your name. Respond by typing
 whatever variant of your name you prefer, but don’t use any
 semicolons. We recommend using your calling name and your
 last name, to prevent conflicts. ’Moot’ will then ask you
 for a password, which you must cite whenever you reenter the
 teleconference. (Note that the password is never printed on
 the terminal.)

 If you want to see if a particular user is currently in
 ’moot’ without getting in yourself, you can use the "−a
 <user>" option to check.

 ’Moot’ allows you to abbreviate anything (user names, con−
 ference names, commands); simply use initial substrings of
 each word in the item to be abbreviated. For example, the
 command "add member" can be abbreviated (unambiguously) as
 "a m", "add m", "a memb", etc. (However, do not abbreviate
 your name the first time you enter the teleconference.)

 If at any time you are unsure how to proceed, enter a line
 consisting only of a question mark; ’moot’ will attempt to
 elaborate on the input it expects. Ambiguous command
 abbreviations will also provoke further information.

 Once you have entered the conference successfully, ’moot’
 will prompt you for a command by printing the character ".".
 You may enter any of the following commands:

 add conference
 This command is used to create a new conference.
 ’Moot’ will request a conference title and a
 status (open or closed, presently ignored), then
 prompt for the names of files to be used for
 storage of the conference. The file names sup−
 plied should be full pathnames, with passwords as
 necessary.

 moot (3) − 1 − moot (3)

 moot (3) −−− teleconference manager 01/15/83

 delete conference
 This command will delete a named conference,
 including all of its text storage files.

 add member
 Membership in a closed conference (currently the
 only type supported) is by invitation only. The
 "add member" command allows a ’moot’ user to join
 a particular conference, either as a full
 participant or just an observer (without the
 ability to submit messages to the conference).

 delete member
 This command removes a member from a closed con−
 ference.

 list conferences
 This command lists the names of all currently
 active conferences.

 list users
 This command lists the names and times−of−last−
 entry for all teleconference users.

 list members
 This command lists, for each member of the current
 conference (see "join"), the number of the last
 entry seen, the time of last entry, and the status
 (observer or participant).

 enter
 When a user wishes to send a note to another user
 or to the members of a conference, he must first
 enter the text to be sent. This command prompts
 for a subject heading, cross−reference
 information, and finally for the text itself.
 Text entry continues until the user types a
 control−c (the standard Subsystem end−of−file
 signal). The text so entered fills the user’s
 text buffer, which may be sent to another user
 with the "mail" command or submitted to a con−
 ference with the "submit" command.

 edit
 This command invokes the Subsystem line editor
 ’ed’, allowing the user to edit the text in his
 ’moot’ text buffer or to read in text previously
 prepared and placed on a file. (See the
 Introduction to the Software Tools Text Editor for
 a tutorial on the use of ’ed’. ’Ed’s commands are
 a subset of the screen editor’s.) Note that the
 first two lines of the text buffer are used to
 store the subject and cross−reference information.
 Also note that to save changes made to the text
 buffer, you must issue a ’w’ command before leav−
 ing edit mode with the ’q’ command.

 moot (3) − 2 − moot (3)

 moot (3) −−− teleconference manager 01/15/83

 join
 When a user wishes to review information from or
 send information to the other members of a con−
 ference, he must "join" that conference. When the
 "join" command prompts for a conference name, sim−
 ply type the name of the conference to be joined.
 If no conference name is specified, the user is
 returned to command level (where he may send and
 review personal notes to other users).

 review
 The "review" command allows the user to re−examine
 messages sent by other participants in a con−
 ference. The messages to be reviewed are
 specified by typing a message number (e.g. "4")
 or a range of message numbers (e.g. "1−999")
 "Review" uses the Subsystem library routine ’page’
 to display the message text. In practice, this
 means that the display will be formatted for a CRT
 screen, with output stopping after each screenful
 of information. The user is then prompted for a
 command. The most commonly used commands are
 carriage return (to advance to the next page),
 −<pages> (to back up a given number of pages),
 +<pages> (to advance a given number of pages), and
 q (to quit displaying information). For a full
 description of acceptable commands, see the ’help’
 entry for ’pg’ or ’page’.

 index
 The "index" command allows the user to get a list
 of messages and a brief description of the topic
 of each message. The user must be currently in a
 conference for this command to work. The messages
 are listed with their sequence number within the
 conference, name of the sender, subject of the
 message, and date of submittal to the conference.
 The message list is formatted for the CRT screen
 similar to the output of "review"; the Subsystem
 routine ’page’ is used to display the list a
 screenful at a time.

 submit
 "Submit" takes the contents of the user’s text
 buffer (created by "enter text") and submits it to
 the current conference. The text buffer is not
 altered, so multiple "submits" may be used to send
 messages repeatedly (say, to different con−
 ferences).

 authorize
 This command allows a user to change the
 operations that another user may perform. The
 operations are listed, one at a time, along with
 the current value (Y or N for yes or no); the
 correct response is "y" to enable an operation,

 moot (3) − 3 − moot (3)

 moot (3) −−− teleconference manager 01/15/83

 "n" to disable it, "d" to set it to the default
 value, or simply carriage return to leave it
 unchanged.

 status
 The "status" command lists the names of all
 currently logged−in ’moot’ users and the name of
 the current conference, if one has been joined.

 mail
 The "mail" command allows the user to send the
 contents of his text buffer as a private com−
 munication to another user. The addressee will
 receive the letter automatically; he may review it
 later with the "letter" command.

 letter
 This command is used to review personal notes sent
 by the "mail" command. The index numbers of the
 notes to be reviewed are specified in the same
 manner as those for the "review" command. The
 notes on output pagination under "review" also
 apply to "letter."

 quit
 When the "quit" command is issued, the user is
 logged out from ’moot’ and returned to the Sub−
 system.

 In general, multiple inputs may be typed ahead by separating
 them with semicolons. However, the first parameter of a
 command must not be separated from the command; for example,
 you should type "join <conference>" or "review <entry>" or
 "mail <user>" without separators.

 Examples

 moot
 Please enter your name: George Burdell
 Please enter your password:
 Welcome to the Moot.
 .enter
 Subject: bogus messages
 Xref: none
 Text:
 This is an entirely bogus message.
 <control−c>
 .mail
 Addressee: a a
 .list conferences
 Empirical Metaphysics
 .join empirical metaphysics
 .review 1−1729
 (volumes of stuff would appear here)
 .q

 moot (3) − 4 − moot (3)

 moot (3) −−− teleconference manager 01/15/83

 Files

 Everything in =extra=/moot.u

 Messages

 Too many to document at the moment.

 Bugs

 Null inputs match anything, since the null string is an
 | initial substring of every string.

 | There is no way to alter a user’s name or password.

 ’Moot’ uses semaphore 1 for mutual exclusion; if this
 semaphore is messed up, ’moot’ will fail in fairly unpredic−
 | table ways.

 When ’moot’ fails, it tends to prevent the user from sub−
 | sequently logging in.

 | Inputting a TAB character tends to hang ’moot’ in an
 | infinite loop with breaks disabled, thus preventing the user
 | from stopping the loop.

 See Also

 sema (1)

 moot (3) − 5 − moot (3)

 mot (3) −−− generate Motorola format object tape 01/15/83

 Usage

 mot <object_file> [<relocation>]

 Description

 ’Mot’ takes the output of the Motorola 6800 cross−assembler
 (’as6800’), relocates it to the desired starting address
 (0000 by default), and generates a Motorola standard format
 object tape on its first standard output.

 ’Mot’ is useful for down−line loading assembled code to
 development systems equipped with the MIKBUG/MINIBUG ROM (or
 any of the many other commercially available ROM’s using the
 same load format).

 Unlike MIKBUG’s Punch command, ’mot’ generates an "L" before
 and an "S9" after the object text, thus permitting con−
 venient loading of multiple files without operator inter−
 vention.

 Examples

 mot mux
 mot highloader 16384

 Messages

 "Can’t open" for unreadable object file.
 "Usage: mot ..." for missing arguments.
 "badly formed code file" when an error is found in the code
 file.

 Bugs

 Locally supported.

 See Also

 as6800 (3), lk (3), intel (3)

 mot (3) − 1 − mot (3)

 mv (3) −−− move a file from one place to another 01/15/83

 Usage

 mv <source> <destination>

 Description

 ’Mv’ moves a file from one location or name to another, by
 copying it and then deleting the original. The deletion
 action is not performed if the copy was not successful; the
 copy is left untouched if the deletion could not be per−
 formed.

 Examples

 mv //my/file //your/file
 mv old current

 Messages

 "Usage: mv ..." for improper command syntax.
 "Can’t copy ..." if the copy operation was unsuccessful.

 Bugs

 ’Mv’ can not move whole directories, use ’cp’ with the "−s"
 option.

 See Also

 cp (1), del (1), if (1)

 mv (3) − 1 − mv (3)

 nodes (3) −−− print network nodes 01/15/83

 Usage

 nodes

 Description

 ’Nodes’ prints all network node names in the current
 Primenet configuration, if networks are enabled.

 Messages

 "network not configured" for no network.
 "x$stat error. Shouldn’t happen" for unexpected network
 errors.

 Examples

 nodes

 Bugs

 Locally supported.

 See Also

 ns (3), nstat (3)

 nodes (3) − 1 − nodes (3)

 ns (3) −−− print out network status 01/15/83

 Usage

 ns

 Description

 ’Ns’ prints the status of all active virtual circuits. For
 each virtual circuit, it prints the name and process id of
 the user holding it, the port number, the virtual circuit
 number, and the system to which it connects.

 Messages

 "network not configured" for no network.
 "x$stat error. Shouldn’t happen" for unexpected network
 errors.

 Examples

 ns

 Bugs

 Locally supported.

 See Also

 nodes (3), nstat (3)

 ns (3) − 1 − ns (3)

 nstat (3) −−− remote node status command 01/15/83

 | Usage

 | nstat <node> [us | di | ne | wh | lo]

 | Description

 | ’Nstat’ uses the X.25 Primenet calls to send a request to a
 | server phantom on the destination system. Currently, <node>
 | may be the systems "gt.a", "gt.b", "gt.c", and "gt.d". The
 | remote server process then executes a status command and
 | routes the information back through the virtual circuit to
 | the calling program. Options include:

 | us (default) causes the equivalent of the Subsystem
 | ’us’ command on the other system; same as a Primos
 | STATUS USERS command.

 | di causes a status of active disks; same as a Primos
 | STATUS DISK command.

 | ne causes a status of the network; same as a Primos
 | STATUS NET command.

 | wh causes a verbose status listing of users; equivalent
 | to the Subsystem ’who’ command being executed for
 | the named system.

 | lo causes the server phantom on the named system to
 | logout. This command may only be issued by user
 | "system".

 | Examples

 | nstat gt.b us
 | nstat gt.e di

 | Files

 | The server process uses the file "=temp=/netstat", and some
 | files in the account(s) "//nstat"

 | Messages

 | "Usage: nstat ..." for improper arguments.
 | Various other messages depending on network status.

 | Bugs

 | Locally supported; experimental

 nstat (3) − 1 − nstat (3)

 nstat (3) −−− remote node status command 01/15/83

 | See Also

 | Primenet guides, X.25 routines

 nstat (3) − 2 − nstat (3)

 otd (3) −−− object text dumper 09/10/84

 | Usage

 | otd <file_name>

 | Description

 | ’Otd’ is a program that reads relocatable binary files and
 | prints their contents in human−readable form. It is useful
 | for analyzing the output of high level language compilers.
 | You can use ’otd’ to compare the quality of two compilers’
 | code generation phases, or for debugging your own compilers.

 | Examples

 | otd hello.b

 | Messages

 | "usage: otd ..." if called with not arguments.

 | "filename: can’t open" if it can’t open the file.

 | "bad object file" for a an object file format it does not
 | understand.

 | "inconsistent block size"

 | "unrecognized block type ..."

 | "block size ... exceeds buffer space"

 | Bugs

 | Does not read its standard input port if called with no
 | arguments.

 | See Also

 | VCG User’s Guide

 otd (3) − 1 − otd (3)

 p4c (3) −−− Pascal 4 Compiler 07/07/82

 Usage

 p4c

 Description

 ’P4c’ is the third release of the Georgia Tech Pascal com−
 piler for the Prime 400. The present version takes Pascal
 source code from its first standard input and produces a
 listing on its first standard output, and an equivalent
 Fortran program on its second standard output.

 The Pascal language is fully described in Pascal Users
 Manual and Report , Second Edition, by K. Jensen and N.
 Wirth, Springer−Verlag, 1976. Most error diagnostic numbers
 produced by the compiler conform to those listed in the
 book. The remainder of this description covers the
 important differences between the language described in the
 Report and the one implemented at Georgia Tech.

 Options

 The behavior of the Pascal compiler is controlled
 through the use of special comments of the form:

 (*$<option sequence> any comment *)

 An option sequence consists of a series of option set−
 tings separated by commas with no embedded blanks.
 Available options include:

 B+ Turn on code generation. (Generated Fortran code
 is written to standard output port two.)
 B− Turn off code generation.
 L+ Turn on source listing. (The listing is written
 to standard output port one.)
 L− Turn off source listing.
 P+ Include pointer validity checks in the generated
 code.
 P− Do not include pointer validity checks.
 R2 Include full range and subscript checks in the
 generated code.
 R1 Include optimized range and subscript checks
 (assume subrange variables contain valid values).
 R0 Do not include any range or subscript checks.

 Default values for these options are equivalent to an
 occurence of "(*$B+,L+,P+,R1*)" at the beginning of a
 program.

 Any number of option setting comments may appear in a
 program. Note, however, that turning off code genera−
 tion for any portion of a program may render the
 generated code generally unreliable.

 p4c (3) − 1 − p4c (3)

 p4c (3) −−− Pascal 4 Compiler 07/07/82

 Identifiers

 The identifiers in a program may be of arbitrary length
 and may include the underscore character ("_") and
 upper and lower case letters (no distinction is made
 between upper and lower case). However, only the first
 eight characters of an identifier are significant.

 Keywords

 Keywords are recognized in any mixture of upper and
 lower case.

 Packing

 The ’packed’ attribute that may be applied to arrays
 and records is not implemented, with the single excep−
 tion of character strings. A quoted character string
 has the type

 packed array [1..<length of string>] of char

 This is the only type of character array that may
 appear in an output procedure call (e.g. write,
 writeln).

 In addition, the standard procedures ’pack’ and
 ’unpack’ are not implemented and cause the compiler to
 issue a diagnostic.

 The ’packed’ keyword may be used freely without error
 in the declaration of types and variables; however, it
 currently has no effect except as described in the case
 of character arrays.

 Files

 The use of user defined files has been implemented.
 Currently, the only restriction is that fields within a
 record may not be defined as files. Remember that a
 Pascal file must be passed as an argument in the
 program heading if it is to exist after the program
 terminates execution. This is especially important
 when using pathnames, since a file must be permanent to
 be linked to a pathname.

 The use of pathnames has been implemented by an
 extension of the RESET and REWRITE procedures. To use
 a pathname, a file of the correct type must be defined
 within the program and this file must be an parameter
 in the ’program’ heading. Therefore, the complete
 syntax for RESET or REWRITE is :

 p4c (3) − 2 − p4c (3)

 p4c (3) −−− Pascal 4 Compiler 07/07/82

 RESET(<filename>{,"<pathname>"});

 Note that the pathname is enclosed within double
 quotes. The pathname may be up to 100 characters in
 length and may contain any ASCII character. Two
 | consecutive double quotes act as a single double quote.
 | All references to the pathname (in read, write, etc)
 are made through <filename>.

 There are also four predefined text files, two for
 input and two for output, that the programmer has
 access to. For input, the files ’input’ and ’keyboard’
 are available and correspond to Subsystem standard
 input ports one and two, respectively. For output, the
 files ’output’ and ’prr’ are available and correspond
 to Subsystem standard output ports one and two, respec−
 tively.

 Newly added is the predefined file ’keyboard’ (in the
 place of prd). This file is used for reading from the
 terminal. (note that the name ’keyboard’ was taken
 from the UCSD PASCAL compiler). This file differs from
 standard Pascal files in that it does not incorporate a
 lookahead buffer. Since input does incorporate a
 lookahead buffer, the program will expect a character
 before it will start to execute if ’input’ is used. To
 make these files accessable within a program, it is
 only necessary to include their names as formal
 parameters in the ’program’ declaration. For example

 program test (input, output, keyboard, prr)

 would make all four files available within the program.

 The standard procedure PAGE has been implemented. This
 procedure prints a form feed in the specified file (as
 opposed to a ’1’ is column 1 as described in the stan−
 dard). This allows the user to insert form feeds as
 needed in a file of type TEXT (file of char). If the
 file specified as an argument is not of type TEXT, an
 error will be issued.

 Remember: There are essentially two types of files in
 PASCAL; local files, those that are local to the
 program or a particular procedure or function, and
 external files, which are files that exist before
 and/or after the program is executed. In order that a
 file be external, it must be passed as a parameter to
 the ’program’ in the program heading. If pathnames are
 used, the file that the pathname is linked to must also
 be in the ’program’ heading (NOT the pathname itself!).

 The Heap

 p4c (3) − 3 − p4c (3)

 p4c (3) −−− Pascal 4 Compiler 07/07/82

 Two standard procedures, ’mark’ and ’release’ are
 provided for rudimentary management of the heap. Each
 takes a single parameter whose type must be of the form

 ^<any type>

 ’Mark’ copies the current value of the heap pointer
 into the argument; ’release’ does the opposite: it
 copies the contents of the argument into the heap
 pointer. This scheme is only effective in an
 environment where storage is allocated and released in
 a (more or less) last−in−first−out manner (which is
 exactly the situation in a recursive descent compiler).

 Procedures/Functions as Parameters

 Neither procedures nor functions may be passed as
 parameters to other procedures or functions.

 Non−local Gotos

 ’Goto’ statements whose target label is not within the
 scope of the current procedure are not supported.

 Procedures Time and Date

 Two new (non−standard) procedures have been
 implemented. These are the procedures time and date.
 Both procedures take a single argument which must be an
 (unpacked) array of 8 characters. The variable into
 which the corresponding value is to be returned must
 not be subscripted in the procedure call. An example
 is:

 Time (thetime);

 where the variable thetime is defined as:
 thetime: array [1..8] of char;

 returns the current time in variable thetime.
 Procedure DATE works the same way. The time returned
 is in HH:MM:SS 24−hour format and the date is in
 MM/DD/YY format.

 Execution of Pascal Programs

 The full journey from Pascal source code to executable
 program involves three stages: compilation by ’p4c’, a
 trek through the Fortran compiler, and linking/loading
 by ’ld’. The following sequence of commands
 illustrates a possible scenario:

 p4c (3) − 4 − p4c (3)

 p4c (3) −−− Pascal 4 Compiler 07/07/82

 copy.p> p4c >copy.l >copy.f
 fc copy.f
 ld copy.b −l p4clib −o copy

 Special notice should be taken of the "−l p4clib"
 argument sequence in the ’ld’ command; it is mandatory
 for the completion of linking.

 This procedure may be abbreviated to a single command
 through the use of the ’p4cl’ command. Detailed
 information on its usage is available from ’help’.

 Examples

 prog.p> p4c >prog.l >prog.f
 xref.p> p4c 2>xref.f | sp −f

 Messages

 Numbered error diagnostics for syntactic or semantic errors.
 Messages corresponding to the numbers are given in the
 User’s Manual.

 Bugs

 Produces code that is too huge and too slow to be considered
 useful by anybody.

 Locally supported.

 See Also

 p4cl (3), Pascal User’s Manual and Report

 p4c (3) − 5 − p4c (3)

 p4cl (3) −−− compile and load Pascal 4 program 08/24/84

 | Usage

 p4cl <source> <ld arguments>

 Description

 ’P4cl’ is a shell program that invokes the necessary
 sequence of commands to convert a Pascal source file into an
 executable program. The first argument, <source> specifies
 the file that will contain the final executable version of
 the program. The Pascal source code is assumed to be in the
 | file named <source>.p. If ’p4cl’ is invoked with no
 | <source> argument, it automatically processes the last
 | program edited, since it shares the shell variable ’f’ with
 | the shell program ’e’. Any further arguments appearing on
 the command line are passed directly on to the loader, ’ld’.

 The Pascal compiler, ’p4c’, is first invoked to convert the
 contents of the source file into an equivalent Fortran
 program and write it into the file named <source>.f. A com−
 pilation listing is also generated on the file <source>.l.
 (This listing contains Fortran forms control characters and
 may be printed with ’sp’ using the "−f" option.)

 The Fortran compiler is then invoked, using ’fc’, to produce
 a binary relocatable version of the program in the file
 <source>.b, which is then prepared for execution by ’ld’.

 Examples

 p4cl copy
 p4cl xref −t −m xref.m

 Bugs

 Locally supported.

 See Also

 p4c (3), fc (1), ld (1)

 p4cl (3) − 1 − p4cl (3)

 passwd (3) −−− change directory non−owner password 01/15/83

 Usage

 passwd [−s[<depth>]] <non−owner pwd> { <pathname> }

 Description

 ’Passwd’ is used to change the non−owner password of one or
 more directories (UFDs) in the file system. <Non−owner pwd>
 may consist of up to six characters; shorter strings are
 padded with blanks, and lower−case letters are converted to
 upper−case.

 In order to use this command successfully, one must be able
 to attach to the named directories with owner privileges.
 In a standard Primos environment, this means the current
 owner password must be included in the pathname for each
 specified directory. In a Ga. Tech Primos environment,
 this means that the user must currently own the specified
 directories, or they must be public.

 The "−s" option, if specified, causes ’passwd’ to traverse
 the file system subtree rooted in the named directory,
 changing the non−owner password of each directory it
 encounters. The depth of this traversal may be limited by
 appending a positive integer to the "−s" (e.g., "−s3").

 Specifying no <pathname> arguments is the same as specifying
 the pathname of the current directory.

 Examples

 passwd "" =mail=
 passwd ""
 passwd secret =src= =src=/lib
 passwd −s xyzzy =aux=

 Messages

 "Usage: passwd ..." for bad argument syntax.
 "password too long" for illegal <non−owner pwd>.
 "<pathname>: can’t change password" for not being owner of
 <pathname>.
 "<pathname>: bad pathname" for not being able to access the
 directory containing <pathname>.

 Bugs

 In a standard Primos environment, ’passwd’ sets the owner
 password to spaces when it changes the non−owner password.

 passwd (3) − 1 − passwd (3)

 passwd (3) −−− change directory non−owner password 01/15/83

 See Also

 | cd (1), chat (1), sacl (1), chown (3), Primos spas$$

 passwd (3) − 2 − passwd (3)

 phone (3) −−− find someone’s telephone number 06/12/82

 Usage

 phone [<person> | <business>]

 Description

 ’Phone’ finds the telephone number (or numbers) belonging to
 a given person or business, provided the number has been
 placed in the on−line phone directory.

 If no person or business is given, the entire phone direc−
 tory is listed.

 Examples

 phone ack radio
 phone ed rupp
 phone

 Files

 =phonelist= for directory of telephone numbers

 Bugs

 Locally supported.

 phone (3) − 1 − phone (3)

 ptar (3) −−− decode Unix tar format tapes 05/17/84

 | Usage

 | ptar [−xvt] [−f <file>]

 | Description

 | ’Ptar’ reads input in the form produced by the Unix ’tar’
 | (tape archiver) program, and rebuilds the directory sub−
 | tree(s) encoded on the tape, if possible. ’Ptar’ must have
 | write permission in the current directory in order to create
 | the files and directories it is dumping from the tape.

 | ’Ptar’ knows about the Unix "." (current directory) and
 | ".." (parent directory) directory structures. In the first
 | case, the leading "./" is simply stripped off the file name
 | which is currently being recreated. Multiple occurrences of
 | "./", at the beginning of a file name, are allowed, and will
 | be stripped off. In the second case, the leading "../" is
 | replaced with a "\". Each occurrence of "../" at the begin−
 | ning of a file name is replaced with a "\". Absolute path
 | names (names that start with a "/"), have another "/"
 | prepended, in the hope that there will be an appropriate
 | directory out in the file system somewhere. File names
 | beginning with a digit have an "_" prepended to them, since
 | the Primos file system will not allow file names to start
 | with a digit. In general, it is best if one’s ’tar’ tape
 | contains only relative path names. ’Ptar’ checks first for
 | leading "./"s, and then for "../", so if you have file name
 | that starts with ".././", ’ptar’ will be fooled. Also, one
 | should not have occurrences of either "./" or "../" in the
 | middle of one’s file names.

 | ’Ptar’ assumes that you are dumping text files. Therefore
 | it always sets the parity bit, to conform to Prime’s conven−
 | tion of using mark parity. Unix binaries would be of
 | limited use on a prime anyway.

 | When ’Ptar’ finishes, it leaves a file in the current direc−
 | tory, called "_detab.tar.files". This is a command file
 | which will remove tabs from the files just dumped. Tabs are
 | replaced by eight blanks, which is the Unix default.
 | "_detab.tar.files" turns on shell tracing, so that you can
 | make it sure it is transforming the files properly.

 | The following options are available:

 | −t Table of contents. This option reads through the
 | ’tar’ tape, printing out the file names and their
 | sizes in bytes, but does not dump the files.

 | −v Verbose. This option will print file names and
 | sizes as they are being dumped. It is wise to use
 | this option.

 | −x Extract. This is the default behavior. In fact,

 ptar (3) − 1 − ptar (3)

 ptar (3) −−− decode Unix tar format tapes 05/17/84

 | putting this option on the command line has
 | absolutely no effect at all. Use the "−t" option
 | if you just wish to see what is on the tape.

 | −f Use the given file as input. When this option is
 | given, the next argument is used for input. A
 | file name of "−" is taken to mean the standard
 | input. If no files are given, ’ptar’ will issue
 | an error diagnostic and die.

 | Examples

 | x as mt0; mt −r −cb −b512 | ptar −xv; x un mt0
 | tarfile> ptar −t
 | ptar −xvf tafile

 | Files

 | _detab.tar.files to replace tabs with blanks in the newly
 | extracted files.

 | Messages

 | Various self−explanatory messages if it can’t create direc−
 | tories or files.

 | Bugs

 | Will overwrite "_detab.tar.files" each time.

 | Cannot take more than one file on the command line for the
 | "−f" option.

 | Cannot dump Prime directory trees into a ’tar’ format tape.

 | See Also

 | mt(1), tar(1) in the UNIX Programmer’s Manual.

 ptar (3) − 2 − ptar (3)

 pwd (3) −−− print working directory name 03/23/80

 Usage

 pwd

 Description

 ’Pwd’ is supplied for Unix users who have not learned to
 type "cd −p".

 Examples

 pwd

 See Also

 cd (1)

 pwd (3) − 1 − pwd (3)

 raid (3) −−− examine bug reports 01/15/83

 Usage

 | raid [−(a | p)]

 Description

 ’Raid’ allows a user to examine bug reports submitted with
 the ’bug’ command. ’Raid’ expects to find a variable named
 ’lastbug’ in the global environment (you can create it by
 entering "set lastbug = 0") containing the number of the
 last bug report examined. If the "−a" option is present,
 ’raid’ prints all bug reports; otherwise it prints only
 those reports that have not been seen. If the "−p" option
 is present, ’raid’ spools the bug for printing; otherwise,
 they are displayed on the terminal with ’pg’.

 If you wish to be notified of new bug reports as they
 occurs, place the following command in your "_hello"
 variable, or in a shell program that is executed by "_hello"
 variable:

 if [eval lastbug < [=ebin=/bugn]]
 echo "You have bugs."
 fi

 Examples

 raid
 raid −ap

 Files

 =bug=/r??? for storage of the bug report
 =bug=/s??? for storage of the user’s environment at the
 time the bug was reported

 Messages

 "Usage: raid ..." for improper command syntax

 See Also

 bug (3)

 raid (3) − 1 − raid (3)

 rcl (3) −−− command file to rf, fc and ld a program 08/24/84

 | Usage

 rcl <program> [<ld arguments>]

 Description

 ’Rcl’ is a shell file that causes the specified Ratfor
 program to be preprocessed, compiled and loaded. The source
 file is expected to be named <program>.r and the output
 object code is named <program>. Default options are used on
 | all processors. If ’rcl’ is invoked with no <program>
 | argument, it automatically processes the last program
 | edited, since it shares the shell variable ’f’ with the
 | shell program ’e’.

 If <ld arguments> are present, they will be presented to the
 loader following the main program binary file. This allows
 the inclusion of subroutine and library files in the object
 program.

 Examples

 rcl profile
 | rcl math −l vswtmath

 Bugs

 Will not be supported after Version 7. Use ’rfl’ and the
 extended preprocessor ’rp’ instead.

 See Also

 rf (3), fc (1), ld (1), pl1cl (1), rfl (1), rp (1)

 rcl (3) − 1 − rcl (3)

 rf (3) −−− original Ratfor preprocessor 03/24/82

 Usage

 rf [−t | −p | −c]
 [[−o <output file>] <input file> { <input file> }]

 Description

 ’Rf’ is an extended version of the Ratfor preprocessor
 described in Software Tools. For a complete description of
 ’rf’, see the book. For a summary of Ratfor constructs, see
 Software Tools or the Ratfor Programmer’s Guide.

 Note that ’rf’ has been superseded by ’rp’, and will not be
 supported beyond Version 7 of the Subsystem.

 The following is a summary of the differences between stan−
 dard Ratfor and the language accepted by ’rf’:

 1. When supplied with no <file> arguments, ’rf’ operates
 as a filter, taking its input from standard input and
 writing its output on standard output.

 When any <input file> arguments are given, ’rf’ takes
 its input from the specified files. If
 "−o <output file>" is specified as the first argument,
 output is directed to <output file>. Otherwise, ".f"
 will be appended to (or will replace a ".r" at the end
 of) the first <input file> name to construct the name
 of the output file.

 The table of definitions is not cleared between the
 input files, so definition files can be invoked without
 being added to the source file(s).

 2. Include statements are of the following format:

 include ’<filename>’
 include "<filename>"
 include <filename>

 where <filename> may be any valid Subsystem pathname.
 If, however, the <filename> contains any non−
 alphanumeric characters, one of the quoted forms must
 be used.

 3. ’Rf’ will accept upper or lower case input, and will
 map lower case input to upper case, except in quoted
 strings. Definitions are case sensitive, however; a
 lower case token appearing in the left−hand side of a
 ’define’ statement will be replaced only if it appears
 as a lower case token in the text.

 4. ’Rf’ uses the tilde (~) for "not". Thus, .ne. would
 be represented as ~=. An exclamation point may be used
 instead of the tilde for the benefit of Teletype users.

 rf (3) − 1 − rf (3)

 rf (3) −−− original Ratfor preprocessor 03/24/82

 5. ’Rf’ will accept and discard an underline appearing
 within an identifier. For example, ’get_arg’ will be
 interpreted as ’getarg’. The underline may not begin
 the identifier.

 6. ’Rf’ allows arbitrarily long identifiers and replaces
 them with unique six−character names acceptable to the
 Fortran compiler. The generated names retain the first
 character so as not to disturb implicit typing.

 7. The ’andif’ and ’orif’ constructs suggested in the
 exercises in Software Tools have been added. Two
 syntactic forms are available to invoke these
 constructs:

 The ’||’ and ’&&’ operators may be used in the
 condition part of an if statement to specify orif
 and andif, respectively. If this syntax is used,
 the condition may not contain nested parentheses.

 The keywords ’orif’ and ’andif’ may be used
 explicitly. With this syntax, an orif or andif
 statement may be preceded only by an if statement
 or another orif or andif statement.

 8. Multilevel break and next statements have been
 implemented. Syntax is:

 break [<integer>]
 next [<integer>]

 The integer, if specified, determines how many surroun−
 ding loops will be terminated or continued, respec−
 tively. If omitted, 1 is assumed.

 9. A case statement has been implemented. Syntax is as
 follows:

 case <variable> <compound statement>
 [else <statement>]

 <Variable> is an integer variable whose value selects
 which of the statements in the <compound statement> is
 to be executed: if the variable’s value is 1, the
 first statement is selected, etc. At most one of the
 statements is performed. If there is no statement
 corresponding to the value of the variable, the
 <statement> after "else" is executed if the "else" is
 present; otherwise, execution resumes after the
 <compound statement>.

 Currently, case statements may be nested to a depth of
 10 and may contain as many as 392 alternatives each.

 10. The string declaration has been implemented. Syntax is

 rf (3) − 2 − rf (3)

 rf (3) −−− original Ratfor preprocessor 03/24/82

 string <variable> <quoted string>

 String declarations must appear before the first
 executable statement of a program unit.

 11. The "−p" option may be used to permit profiling studies
 to be performed on Ratfor programs. The option causes
 insertion of code that, at run time, will record
 statistical information on program performance.
 Profiled programs will behave in exactly the same way
 as they would normally, except that they will run VERY
 SLOWLY. The utility command ’profile’ may be used to
 print up a neat report of a profiled program’s per−
 formance. The files "timer_dictionary" and "_profile"
 are generated by ’rf’ and the profiled program, respec−
 tively.

 12. The "−t" option may be used to cause an execution−time
 trace of the Ratfor program. The trace consists of an
 indented listing which indicates the point of call and
 return for each subprogram.

 13. The "−c" option may be used to perform statement−level
 profiling studies on Ratfor programs. The option
 causes insertion of code that counts the number of
 times each statement is executed and then writes the
 totals to the file "_st_profile", where they may be
 read and summarized by the utility program
 ’st_profile’. The statement count statistics gathered
 by this option are inherently more reliable (and
 probably more useful) than the time measurements
 gathered by the "−p" option.

 Examples

 command line format:
 rf −p prog.r
 rf −o prog prog.r
 prog.r> rf −t >prog.f

 orif and andif:
 if (c1 || c2 && c3 || c4) statement1
 else statement2

 if (c1) andif (c2) orif(c3) statement1
 else statement2

 break and next:
 repeat {
 while (condition)
 if (c1) break 2 # terminate repeat
 else next 2 # continue repeat
 } until (c2)

 rf (3) − 3 − rf (3)

 rf (3) −−− original Ratfor preprocessor 03/24/82

 case:
 case i { goto L4
 stmt1 is L1 stmt1; goto L5
 stmt2 equivalent L2 stmt2; goto L5
 stmt3 to L3 stmt3; goto L5
 } L4 goto(L1,L2,L3),i
 else stmt4
 stmt4 L5 continue

 profiling:
 rf −p prog.r; fc prog.f; ld prog.b −o prog
 prog
 profile | sp

 rf −c prog.r; fc prog.f; ld prog.b −o prog
 prog
 st_profile prog.r | sp

 Files

 "timer_dictionary" for programs compiled with "−p" option.

 Messages

 Extensive. Most are self−explanatory. See Software Tools
 for a complete list.

 Bugs

 <integer> must be followed by a NEWLINE in the multi−level
 break and next statements.

 ’andif’ and ’orif’ constructs may not appear in ’while’,
 ’for’ or ’repeat’ statements.

 When the statement−level profile option ("−c") is used, the
 count displayed for each line is the total number of times
 all statements on that line were executed; thus, for exam−
 ple, the line
 repeat c = c + 1; until (prime (c) == YES)
 will have a displayed count equal to three times the actual
 number of loops (once for the ’repeat’, once for the
 assignment, and once for the test). In addition, note that
 only the statements in the uppermost level file are counted;
 any code compiled as a result of an ’include’ will
 contribute to the total for that ’include’.

 See Also

 profile (1), st_profile (1), rp (1), Software Tools

 rf (3) − 4 − rf (3)

 rsa (3) −−− toy RSA public−key cryptosystem 01/15/83

 Usage

 rsa (−i | −e <correspondent> | −d)

 Description

 ’Rsa’ is a simplified implementation of an RSA (Rivest−
 Shamir−Adleman) public−key cryptosystem. While interesting
 as a novelty, it does not provide sufficient security to
 resist an informed attack.

 ’Rsa’ has three options. The "−i" (initialize) option must
 be selected by a user before any other users can send him
 encrypted information. The "−e correspondent" (encipher)
 option is used to encrypt standard input to standard output
 using the public key of the named user. (In a practical
 system, only the named user would then be able to decrypt
 the result, using his private key.) The "−d" (decipher)
 option is used to decrypt standard input to standard output
 using the private key of the current user. Thus, if the
 current user has login name "BOZO", the network

 rsa −e bozo | rsa −d

 effects an identity transformation.

 Further information on public−key cryptosystems in general
 and the RSA algorithm in particular can be found in the fol−
 lowing references:

 Hellman, Martin E. "The Mathematics of Public−Key
 Cryptography," in Scientific American, Vol. 241, No.
 2, pp. 146−157, August, 1979

 Rivest, R. L., Adi Shamir, and Len Adleman On Digital
 Signatures and Public−Key Cryptosystems, Report
 MIT/LCS/Tm−82, Laboratory for Computer Science, Mas−
 sachusetts Institute of Technology, April, 1977

 Rivest, R. L., A. Shamir, and A. Adleman "A Method
 for Obtaining Digital Signatures and Public−Key Cryp−
 tosystems," in Communications of the ACM, Vol. 21, No.
 2, pages 120−126, February, 1978.

 Examples

 rsa −i # initializes public and private key files
 plaintext> rsa −e system >ciphertext
 ciphertext> rsa −d >plaintext
 rsa −e bozo >>=extra=/mail/bozo

 rsa (3) − 1 − rsa (3)

 rsa (3) −−− toy RSA public−key cryptosystem 01/15/83

 Files

 "=varsdir=/.rsa_encipher" for public−key information;
 "=varsdir=/.rsa_decipher" for private−key information.

 Messages

 "Usage: rsa ..." for invalid argument syntax.
 Various self−explanatory messages if key files are not
 present or unreadable.

 Bugs

 32 bit arithmetic is insufficient to guarantee security.

 Locally supported.

 See Also

 Subsystem Mathematical Function Library (’vswtml’)

 rsa (3) − 2 − rsa (3)

 rtime (3) −−− determine run−time of a command 01/15/83

 Usage

 rtime <command>

 Description

 ’Rtime’ is a shell program that will determine the CPU time
 used by the execution of a particular command. The command
 to be timed should be specified as the set of arguments to
 ’rtime’; quoting of the command to prevent premature evalua−
 tion of any command−language metacharacters is recommended.

 The given command is used in a function call, and its output
 on standard output one redirected to /dev/tty if no other
 i/o redirection for standard output one is specified. This
 may cause problems if the command uses all three standard
 output ports.

 Examples

 rtime rp rp.r
 rtime "stuff> filter >nonsense"

 Messages

 "Usage: rtime ..." for improper command syntax.

 Bugs

 Redirection problem mentioned above.

 See Also

 hp (1), ctime (1)

 rtime (3) − 1 − rtime (3)

 scroll (3) −−− load scrolling terminal program on the GT40 03/23/80

 Usage

 scroll

 Description

 ’Scroll’ loads a scrolling terminal program to the GT40. It
 is presumed that the GT40 is ready for loading gtld format
 files, which usually implies that FOCAL must not be running.

 Examples

 scroll

 Bugs

 Will not load the scrolling terminal on top of FOCAL.

 Locally supported.

 See Also

 focld (3)

 scroll (3) − 1 − scroll (3)

 setime (3) −−− set time of day/date on all systems running ring 07/20/83

 | Usage

 | setime [−d mmddyy] [−t hhmm]

 | Description

 | The ’setime’ command is an interface to the SWT ’ring’
 | process which allows validated users to change the time of
 | day on all systems that are running ’ring’. If the
 | "−d mmddyy" argument is present, the current month, day, and
 | year is set to the given value, otherwise the date remains
 | unchanged. If the "−t hhmm" argument is present, the
 | current time of day is set to that value, otherwise the time
 | of day remains unchanged. At least one of the arguments
 | must be present.

 | If the current time of day is being reset, the ’setime’ com−
 | mand executes immediately. Otherwise, ’setime’ pauses until
 | the beginning of the next minute to complete execution.

 | Examples

 | setime −d 030184

 | setime −t 1400

 | Messages

 | Cannot transmit SETTIME request
 | Something interfered with the transmission of the SET−
 | TIME command to the ’ring’ process. This should never
 | happen.

 | Networks are not configured
 | The system is not configured to support PRIMENET.

 | Request to <system> failed
 | The attempt to set the time of day/date on system
 | <system> failed.

 | Request to <system> succeeded
 | The attempt to set the time of day/date on system
 | <system> succeeded.

 | Ring connection has been terminated
 | The connection to the ’ring’ process has been cleared.

 | Setime complete
 | The SETTIME command has been successfully attempted on
 | all systems in the ring.

 | SETTIME request initiated
 | The SETTIME command has been transmitted to the ’ring’

 setime (3) − 1 − setime (3)

 setime (3) −−− set time of day/date on all systems running ring 07/20/83

 | process.

 | The first day of the month must be at least 1
 | 0 is not a valid day of the month.

 | The month must be between 1 and 12 (inclusive)
 | The only valid months are 1 through 12.

 | The hour must be between 0 and 23 (inclusive)
 | The only valid hours are between 0 and 23.

 | The minute must be between 0 and 59 (inclusive)
 | The only valid minutes are between 0 and 59.

 | Usage: setime [−d mmddyy] [−t hhmm]
 | Some argument was incorrectly specified.

 | Unable to connect to ring node
 | The current system is not running a ’ring’ process.

 | You are not validated to SETTIME
 | Your user number is not allowed to use the SETTIME com−
 | mand.

 | <month> has only <count> days
 | The number of days specified is not correct for the
 | given month.

 | Bugs

 | Will not work if the current system is not running ’ring’.

 | Is inherently inaccurate because of the time required for
 | the SETTIME request to go around the ring.

 | See Also

 | broadcast (3), execute (3), terminate (3)

 setime (3) − 2 − setime (3)

 shar (3) −−− put text files into a ’shell archive’ 06/21/84

 | Usage

 | shar <file_spec> { <file_spec> ... }

 | Description

 | ’Shar’ (Shell Archiver) is an alternative method of arrang−
 | ing for long term storage of files that need to be kept
 | together for some purpose, or files that will not be
 | frequently accessed.

 | ’Shar’ reads the files named on the command line, and writes
 | the "shell archive" on its first standard output port. A
 | shell archive is a file containing shell commands and text,
 | that when executed as a command by the Software Tools Sub−
 | system shell, will reproduce the files used to create the
 | archive.

 | See the help on ’cat’ for a full description of <file_spec>.

 | ’Shar’ can even be used to archive other shell archives, as
 | long the component archives do not contain a file by the
 | same name as the archive.

 | To extract the files, simply execute the archive file as a
 | command. As each file is extracted, its name is written out
 | to the terminal.

 | Examples

 | shar [files .r$] [files .d$] >prog.shar # to create an archive
 | prog.shar # to extract the files in the archive

 | Messages

 | "<file>: can’t open" when it can’t open a file.

 | "usage: shar ..." if called improperly.

 | Bugs

 | May do bizarre things with non−text files.

 | Can’t recursively archive sub−directories.

 | See Also

 | ar (1), cto (1), cat (1)

 shar (3) − 1 − shar (3)

 show (3) −−− print a file showing control characters 01/15/83

 Usage

 show [−m | −o] { <file spec> }
 <file spec> ::= <pathname> | −[<stdin_number>]
 | −n(<stdin number> | <pathname>)

 Description

 ’Show’ concatenates the contents of the files specified in
 its argument list, replacing any imbedded non−printing
 characters with printable representations, and writes the
 result on its first standard output. Normally, the non−
 printing characters are displayed as digraphs consisting of
 a caret ("^") followed by an uppercase letter or punctuation
 character. However, if the "−m" option is specified, non−
 printing characters are represented as their ASCII mnemonics
 enclosed in angle brackets (e.g., a NEWLINE would be
 represented as "<LF>"). If the "−o" option is specified,
 the characters are displayed as a caret followed by three
 octal digits.

 Input files may be specified in any of several ways:

 <pathname> an ordinary Subsystem pathname.

 −<stdin number> a dash followed by a decimal number,
 ’n’, designates the ’n’th standard
 input. ’n’ must be a legal standard
 input number.

 − this is the same as specifying "−1"
 (i.e., standard input 1).

 −n<stdin number> "−n" followed by a decimal number ’n’
 indicates that the names of the files to
 be concatenated are to be read from the
 ’n’th standard input.

 −n this is the same as "−n1".

 −n<pathname> the names of the files to be
 concatenated are to be read from the
 named file.

 If no arguments appear, input is read from the first stan−
 dard input port.

 Examples

 show weird_file
 files .r$ | show −m −n

 show (3) − 1 − show (3)

 show (3) −−− print a file showing control characters 01/15/83

 Messages

 "Usage: show ..." for invalid argument syntax.
 "<pathname>: can’t open" if a specified file can’t be
 opened for reading.

 See Also

 cat (1), copy (1), print (1), pr (1), tee (1)

 show (3) − 2 − show (3)

 size (3) −−− calculate size of cross−assembler object code 01/15/83

 Usage

 size (−6800 | −8080) <object_file>

 Description

 ’Size’ is used to determine the number of bytes of object
 code in all the code segments of the named object file. The
 mandatory first argument tells whether the object file was
 generated by the Motorola 6800 cross−assembler (’as6800’) or
 the Intel 8080 cross assembler (’as8080’).

 Examples

 size −6800 .o
 size −8080 mux

 Messages

 "Usage: size ..." for invalid argument syntax.
 Warnings if the object file could not be opened or is not in
 standard format.

 See Also

 symbols (3), as6800 (3), as8080 (3), lk (3)

 size (3) − 1 − size (3)

 sol (3) −−− play a friendly game of solitaire 01/15/83

 Usage

 sol

 Description

 ’Sol’ uses the Subsystem virtual terminal handler (VTH) to
 play a standard or casino version of solitaire on the screen
 of a video terminal. When ’sol’ is executed, it displays
 the commands used for playing the game.

 It is included to demonstrate the use of the VTH package.

 Files

 =vth=/?*

 Examples

 sol

 Messages

 "Terminal type ’<term_type>’ not supported" when <term_type>
 is not supported by VTH.

 Bugs

 Only works on video terminals that are supported by VTH.

 Can be mildly addictive.

 sol (3) − 1 − sol (3)

 sprint (3) −−− optimize printing on a Spinwriter 07/23/84

 | Usage

 sprint { <options> } { <file_spec> }
 <options> ::= −c <copies> |
 −h <horiz_space> |
 −j |
 −l <length> |
 −s |
 −v <vert_space> |
 −x
 <horiz_space> ::= 0 | 1 | 2 | ... | 14 | 15
 <vert_space> ::= 1 | 2 | 3 | ... | 15 | 16

 Description

 ’Sprint’ prints files on the user’s terminal, making the
 | assumption that the terminal is a NEC Spin Writer model
 | 5520. Printing is done bi−directionally, optimizing motion
 of the print head and platen as much as possible.

 The following options are available to control ’sprint’s
 behavior:

 −c If present, the next argument must be an integer;
 ’sprint’ will produce the specified number of copies of
 each file that it prints.

 −h If present, the next argument must be an integer in the
 range 0 to 15. This option controls the horizontal
 spacing between characters measured in 1/120ths of an
 inch.

 −j ’Sprint’ will cause a page eject following each file
 (or copy of a file, when multiple copies are
 specified). Normally, no extra space is inserted
 between successive files or copies of the same file.

 −l If present, the next argument must be an integer;
 ’sprint’ will use that number as the number of lines
 per physical page. It is important that this number
 match the form length selected on the terminal itself,
 else anomalous behavior may result. ’Sprint’ assumes
 there are 66 lines per page, corresponding to the stan−
 dard 11 inch form length.

 −s This option causes ’sprint’ to pause at the top of each
 page and sound the terminal’s audible alarm, allowing
 the user to insert a new piece of paper. Printing
 continues when the user types an ACK character (ctrl−
 f).

 −v If present, the next argument must be an integer in the
 range 1 to 16. This option controls the vertical spac−
 ing between lines measured in 1/48ths of an inch. For
 example, "−v 2" indicates a spacing of 2/48ths of an

 sprint (3) − 1 − sprint (3)

 sprint (3) −−− optimize printing on a Spinwriter 07/23/84

 inch between lines. To obtain line and a half spacing,
 text should be triple spaced and "−v 4" specified on
 the "sprint" command (it is also necessary to set the
 page length to 132 with the ’fmt’ command ".pl" and
 specify a page length of 132 for ’sprint’).

 −x This option prevents the initial page eject. This
 option is useful when printing on special forms (mail−
 ing labels, etc.).

 The remaining arguments specify files to be printed. Most
 often, one or more pathnames will be given, indicating that
 the named files are to be printed, or there will be no other
 arguments, indicating that input is to be read from standard
 input. The full syntax of the <file_spec> construct is
 described in the entry for ’cat’ in section 1 of the
 Reference Manual.

 It is assumed that the paper has been mounted so that a form
 feed will advance to the first line on the next page. This
 may be done by pressing the ’set tof’ switch (in the upper
 right corner of the keyboard) after the paper has been
 positioned properly.

 In addition to optimizing print head motion, ’sprint’
 provides an extended character set of Greek letters and
 mathematical symbols to support the special character func−
 tions of the Software Tools Subsystem text formatter, ’fmt’.
 These special graphics are accessed by normal ASCII charac−
 ter codes with their most significant bit turned off. (Note
 that the normal Prime convention is that this bit is always
 turned on for text characters.) The following table shows
 the correspondence between ASCII character codes, formatter
 functions, and special graphics:

 sprint (3) − 2 − sprint (3)

 sprint (3) −−− optimize printing on a Spinwriter 07/23/84

 Character ’Fmt’ Function Graphic

 a alpha lower−case Greek alpha
 | A ALPHA upper−case alpha
 b beta lower−case Greek beta
 | B BETA upper−case beta
 | c chi lower−case chi
 | C CHI upper−case chi
 d delta lower−case Greek delta
 D DELTA upper−case Greek delta
 e epsilon lower−case Greek epsilon
 | E EPSILON upper−case epsilon
 n eta lower−case Greek eta
 | N ETA upper−case eta
 g gamma lower−case Greek gamma
 G GAMMA upper−case Greek gamma
 8 infinity "infinity" symbol
 + integral integration symbol
 | 9 INTEGRAL large integration sign
 | i iota lower−case iota
 | I IOTA upper−case iota
 | k kappa lower−case kappa
 | K KAPPA upper−case kappa
 l lambda lower−case Greek lambda
 L LAMBDA upper−case Greek lambda
 u mu lower−case Greek mu
 | U MU upper−case mu
 ^ nabla inverted delta (APL del)
 ~ not EBCDIC−style "not" symbol
 v nu lower−case Greek nu
 | V NU upper−case nu
 w omega lower−case Greek omega
 W OMEGA upper−case Greek omega
 | o omicron lower−case omicron
 | O OMICRON upper−case omicron
 − partial partial differential symbol
 p phi lower−case Greek phi
 P PHI upper−case Greek phi
 y psi lower−case Greek psi
 Y PSI upper−case Greek psi
 3 pi lower−case Greek pi
 4 PI upper−case Greek pi
 r rho lower−case Greek rho
 | R RHO upper−case rho
 s sigma lower−case Greek sigma
 S SIGMA upper−case Greek sigma
 t tau lower−case Greek tau
 | T TAU upper−case tau
 h theta lower−case Greek theta
 H THETA upper−case Greek theta
 | q upsilon lower−case upsilon
 | Q UPSILON upper−case upsilon
 x xi lower−case Greek xi
 | X XI upper−case xi
 z zeta lower−case Greek zeta
 | Z ZETA upper−case zeta

 sprint (3) − 3 − sprint (3)

 sprint (3) −−− optimize printing on a Spinwriter 07/23/84

 | 7 downarrow arrow pointing down
 | 6 uparrow arrow pointing up
 | 5 backslash "back slash" symbol
 | 2 tilde "tilde" symbol
 | 0 largerbrace large square right brace
 | 1 largelbrace large square left brace
 | = proportional "proportional" symbol
 | M apeq approximately equal to
 |] ge greater than or equal to
 | @ imp implies
 | [exist there exists
 | _ AND logical and
 | \ ne not equal to
 | < psset proper subset
 | > sset subset
 | ? le less than or equal to
 | } nexist there does not exist
 | univ for every
 | { OR logical or
 | | iso congruence
 | f lfloor left floor
 | j rfloor right floor
 | m lceil left ceiling
 | F rceil right ceiling
 | small0 a small 0
 | small1 a small 1
 | small2 a small 2
 | small3 a small 3
 | small4 a small 4
 | small5 a small 5
 | small6 a small 6
 | small7 a small 7
 | small8 a small 8
 | small9 a small 9
 | scolon semicolon
 | dquote double quote
 | dollar dollar sign

 These extended graphics are produced by fractional motions
 of the platen and print head and overstriking of standard
 ASCII graphics. Best results are obtained when the paper is
 being fed by the platen and pinch roller and not by the pin−
 | feed mechanism.

 | Most of these characters require the special Times−
 | Roman/Mathematics type wheel.

 Examples

 help −p sprint | sprint
 sprint junk
 sprint −s −l 80 journal_article
 sprint −c 5 −j hand_out

 sprint (3) − 4 − sprint (3)

 sprint (3) −−− optimize printing on a Spinwriter 07/23/84

 Messages

 "Usage: sprint ..." for incorrect argument syntax.
 "<filename>: can’t open" if given file could not be opened
 for reading.

 Bugs

 If interrupted by the BREAK key while printing, ’sprint’ may
 hang, waiting for the Spinwriter to acknowledge the last
 group of characters sent. To clear this condition, it is
 simply necessary to type a ctrl−f at the keyboard. If the
 ctrl−p key is used instead of BREAK, this condition normally
 does not occur.

 When multiple copies of a file are requested using the "−c"
 option, ’sprint’ obliges by rewinding the input file and re−
 reading it. If the input is being taken from a standard
 input port, and that port is not connected to a rewindable
 device (i.e., a disk file), then only one copy is produced.

 Error messages are produced on the standard error output
 port, which is normally directed to the terminal. If it is
 undesirable to have these messages interspersed with the
 contents of the printed files, error output should be
 redirected to a file.

 See Also

 cat (1), copy (1), dprint (3), print (1), fmt (1)

 sprint (3) − 5 − sprint (3)

 symbols (3) −−− print cross−assembly symbol table 01/15/83

 Usage

 symbols (−6800 | −8080) <object_file>

 Description

 ’Symbols’ prints the symbol table placed in an object code
 file by one of the cross−assemblers ’as6800’ or ’as8080’ or
 by the linker ’lk’. The mandatory first argument specifies
 the assembler used to create the original object code file.

 Each symbol is printed along with its (16−bit) value and a
 "type" designator, which is "ext" for external, "rel" for
 relocatable, or "abs" for absolute (8080 register
 mnemonics).

 Examples

 symbols −6800 .o
 symbols −8080 mux

 Messages

 "Usage: symbols ..." for invalid argument syntax.
 Warnings if the object file could not be opened or if it was
 improperly structured.

 See Also

 as6800 (3), as8080 (3), lk (3), size (3)

 symbols (3) − 1 − symbols (3)

 terminate (3) −−− terminate currently executing ’ring’ process 07/20/83

 | Usage

 | terminate [<system>]

 | Description

 | The ’terminate’ command is an interface to the SWT ’ring’
 | process which allows validated users to terminate the
 | currently executing ring process on a system. The specified
 | ’ring’ process clears all of its connections and terminates.
 | However, since a ’ring’ process must always be running on
 | each system in the ring to ensure the security of the ring,
 | the shell file executing ’ring’ will immediately re−execute
 | it. ’Terminate’ allows the ’ring’ comoutput file to be
 | reinitialized, and can be used to execute a new version of
 | the ’ring’ process. If <system> is specified, ’ring’
 | terminates on the machine with that system name, otherwise
 | all ’ring’ processes terminate.

 | Examples

 | terminate gt.a

 | terminate

 | Messages

 | Cannot transmit TERMINATE request
 | Something interfered with the transmission of the
 | TERMINATE command to the ’ring’ process. This should
 | never happen.

 | Networks are not configured
 | The system is not configured to support PRIMENET.

 | Request to <system> failed
 | The attempt to broadcast the message on system <system>
 | failed.

 | Request to <system> succeeded
 | The attempt to broadcast the message on system <system>
 | succeeded.

 | Requested system is not in the ring
 | The system which was to be terminated is not in the
 | ring.

 | Ring connection has been terminated
 | The connection to the ’ring’ process has been cleared.

 | Termination complete
 | The TERMINATE command has been successfully attempted
 | on all requested systems.

 terminate (3) − 1 − terminate (3)

 terminate (3) −−− terminate currently executing ’ring’ process 07/20/83

 | TERMINATE request initiated
 | The TERMINATE command has been transmitted to the
 | ’ring’ process.

 | Unable to connect to ring node
 | The current system is not running a ’ring’ process.

 | You are not validated to TERMINATE
 | Your user number is not allowed to use the TERMINATE
 | command.

 | Bugs

 | Will not work if the current system is not running ’ring’.

 | See Also

 | broadcast (3), execute (3), setime (3)

 terminate (3) − 2 − terminate (3)

 translang (3) −−− D−Machine microprogram translator 04/22/80

 Usage

 translang [−b | −l | −bl] <input_file> [−h <hex_file>]

 Description

 ’Translang’ is a translator for the Burroughs D−Machine sym−
 bolic microprogramming language, described in
 Microprogramming Primer, by Harry Katzan, Jr. (McGraw−Hill
 Book Company 1977).

 The source code to be translated is read from the file
 <input_file>, which conventionally is named with a ".d"
 suffix (e.g. "multiply.d"). The hexadecimal microprogram
 is written to <hex_file> if it is specified; otherwise, it
 is written to a file whose name is the input file with the
 suffix changed to ".h" (e.g. "multiply.h"). (If the input
 file has no suffix, ".h" is simply appended.) This file
 name should be given to ’dmach’ for simulation.

 The options control output listing behavior. If "−b" is
 specified, the binary micro and nano instructions are listed
 after each line of source text. If "−l" is specified, the
 hexadecimal micro and nano instructions are listed after the
 entire source text. If neither option is specified, no
 listing is produced.

 The listing, if generated, is produced on standard output
 one, and may be redirected to a file or to another program
 by the usual Subsystem I/O redirection operators. Each line
 of the source file is listed (double spaced), followed by
 any error messages that pertain to its translation and by
 instruction bit patterns (if the "−b" option is used). When
 | no listing is generated, error messages will appear on stan−
 | dard output, preceded by the number of the line causing the
 | error.

 The language accepted by ’translang’ is a superset of the
 language defined in Katzan. The following differences are
 particularly worthy of note:

 . The full 96−character ASCII character set may be used.
 Upper case is not distinguished from lower case.

 . Input is totally free−form; spaces are necessary only
 to separate adjacent keywords or labels.

 . The character sequence "−>" may be used in addition to
 "=". Spaces around these assignment operators are not
 significant.

 . The character "%" (from the reference language) may be
 used in place of "$" to precede a comment.

 . There is no need to terminate each source line with

 translang (3) − 1 − translang (3)

 translang (3) −−− D−Machine microprogram translator 04/22/80

 "$".

 . The key words "comment" and "commnt" may both be used
 to precede comments. Furthermore, they may appear
 anywhere on a line (not just at the beginning).

 . Statement labels are not limited to 6 characters in
 length. (In practice, however, no statement label may
 be longer than a single input line.)

 . The problems with the microcode listing mentioned on
 page 135 of Katzan have been corrected. The bit pat−
 terns listed are now always complete.

 . Empty statements are now allowable, and are recommended
 for improving the readability of microprograms.
 Specifically, blank lines may be used at will, and
 labels may be placed on lines by themselves to
 facilitate insertion and deletion of code following
 them.

 . The character ":" may be used in addition to "." to
 terminate a statement label.

 . Commas are totally ignored; they may be used wherever
 desired.

 . The "end" statement served no purpose and is no longer
 required (although it will be accepted as a comment
 without complaint).

 There are two major results of these changes: (1) the
 reference language used throughout Katzan may be translated
 without change, which was not previously the case; (2) the
 minor inflexibilities and inconsistencies present in the
 original translator have been eliminated, thus making its
 use a little less complex and frustrating.

 Examples

 translang −b multiply.d
 The source program will be read from the file "mul−
 tiply.d"; the hexadecimal output will be written to the
 file "multiply.h". A listing of the source code and
 the bit patterns produced for each instruction will be
 sent to the user’s terminal.

 translang −l emulator −h hex >listing
 The source program will be read from the file
 "emulator" and the hexadecimal output will be written
 to the file "hex". A listing of the source code and
 the hexadecimal microprogram will be placed on the file
 "listing".

 translang −lb stack.d >/dev/lps

 translang (3) − 2 − translang (3)

 translang (3) −−− D−Machine microprogram translator 04/22/80

 The source program will be read from the file
 "stack.d"; the hexadecimal output will be written to
 the file "stack.h"; a listing of the source code, the
 bit patterns it produces, and the hexadecimal
 microprogram will be printed on the line printer.

 Messages

 Several syntax and semantics error messages may be produced.
 These are intended to be self−explanatory.

 Bugs

 This particular implementation has not been thoroughly
 tested, so if mystifying results occur, the bit patterns
 generated by suspect instructions should be reported to
 someone in the Software Support group.

 Since so much of the nano−instruction syntax is optional, it
 is difficult to detect syntax errors and produce meaningful
 diagnostics.

 See Also

 dmach (3), Microprogramming Primer

 translang (3) − 3 − translang (3)

 ts (3) −−− time sheet for hourly employees 01/15/83

 Usage

 ts [in | out] [<hh>:<mm> [<mm>/<dd>]]

 Description

 ’Ts’ was written to ease the monthly chore of preparing a
 time sheet. During the month, the worker uses ’ts’ like a
 time clock, entering "ts in" as he begins a work session and
 "ts out" as he concludes it. His entry and exit times are
 recorded to the nearest quarter−hour. (Should variations in
 time be necessary, he may specify a time and, optionally, a
 date on the command line.) His comings and goings are
 recorded in a file named ".ts" in his variables directory.

 At the end of the month, the worker simply enters the com−
 mand "ts", which causes a reasonably readable time sheet to
 be printed on standard output. This timesheet contains
 daily, weekly, and monthly totals.

 After his time has been reported to his superior, the worker
 should delete his old ".ts" file and begin anew.

 Examples

 ts in
 ts out 12:45
 ts

 Files

 =varsdir=/.ts for record of work

 Messages

 "Usage: ts ..." for invalid argument syntax.
 "can’t open time sheet file" when unable to open
 "=varsdir=/.ts".

 Bugs

 This program is incredibly locked in to the pay period used
 in the Georgia Tech School of Information and Computer
 Science; e.g., pay periods must begin on the 18th of the
 month and end on the 17th of the next, and all entries in
 the timesheet file must have dates between those limits.
 ’Ts’ is also guaranteed to fail on "pathological" timesheet
 files: those that have entries missing or out of order.

 Locally supported.

 ts (3) − 1 − ts (3)

 ts (3) −−− time sheet for hourly employees 01/15/83

 See Also

 log (1)

 ts (3) − 2 − ts (3)

 unoct (3) −−− convert UNIX ’od’ output to binary 03/23/80

 Usage

 unoct [<filename>]

 Description

 ’Unoct’ will read the ASCII output of the UNIX program ’od’
 (octal dump) present on the named file, convert it to
 binary, and write the result in sixbit code suitable for
 loading on the GT40 graphics terminal. (If the filename is
 omitted, standard input is assumed.)

 At present, ’unoct’ is necessary for loading such programs
 as FOCAL−GT.

 Examples

 unoct focal

 Messages

 "<filename>: can’t open" for obvious problems.

 Bugs

 ’Unoct’ is kind of an ad hoc solution to the object code
 porting problem that will hopefully become unnecessary in
 the near future. It is also somewhat peculiar to the
 environs of Georgia Tech.

 Locally supported.

 See Also

 scroll (3), information in GT40 directory (//gt40).

 unoct (3) − 1 − unoct (3)

 wallclock (3) −−− tell the time in a big way 08/30/84

 | Usage

 | wallclock [<delay> [<fill_char>]]

 | Description

 | ’Wallclock’ is a program which uses the CRT as a rather
 | large (and expensive) digital display timepiece. It prints
 | out the time that the "clock" was started, in small charac−
 | ters, and then every <delay> seconds (default is one),
 | updates the current time, in large characters.

 | The characters will be made up of "*"s, unless the user
 | cares to specify an alternate character in <fill_char>.

 | To stop the clock, use the BREAK key, or type a control−p.

 | Examples

 | wallclock
 | wallclock 5
 | wallclock 10 $

 | See Also

 | clock (1), vt?* routines (2)

 wallclock (3) − 1 − wallclock (3)

 who (3) −−− find out who’s on the system and where they are 08/20/83

 | Usage

 | who {−a|−l|−p|−q}

 Description

 | ’Who’ prints a listing on standard output that shows which
 | users are currently logged in. Information provided on each
 logged−in user includes his login name, his process number,
 | the time at which he logged in, his full name, and either
 | his location or his current login project. If the length of
 | a login name exceeds 8 characters then ’who’ prints the name
 | on a line by itself and the other information on the next
 | line.

 | Available options are:

 | −a Display information on all active processes,
 | including phantoms; by default, ’who’ provides
 | information only on real users.

 | −l Display the locations of the logged in users.
 | This is the default behavior. This option cannot
 | be specified if the "−p" option is used.

 | −p Display the current projects of the logged in
 | users. This option cannot be specified if the
 | "−l" option is used.

 | −q Do not print the header lines.

 Examples

 who
 who −a
 | who −p

 Files

 =userlist= to correlate a login name with the user’s full
 name
 =termlist= to correlate process numbers with terminal
 locations

 Messages

 "Usage: who ..." for invalid argument syntax.
 "can’t read user list" when unable to read "=userlist=".
 | "can’t read terminal list" when unable to read "=termlist=".
 | "can’t display both location and project at the same time"
 | when both "−l" and "−p" options are specified.

 who (3) − 1 − who (3)

 who (3) −−− find out who’s on the system and where they are 08/20/83

 Bugs

 The date of login is not displayed; thus, the time displayed
 * for phantom users is probably useless.

 See Also

 us (1)

 who (3) − 2 − who (3)

 | Section 4 − Locally−Supported Library Subprograms

 A number of library subprograms with highly specialized uses
 in mathematics and programming are included in a number of
 * locally−supported Subsystem libraries.

 This section is designed to give the user a working
 knowledge of these functions and subroutines. Each routine has
 its own entry organized under the following headings. Note that
 a heading will be omitted if it contains no information.

 Header Line

 The subprogram’s name, a synopsis of its purpose, and
 the date of last modification to its documentation.

 Calling Information

 The subprogram declaration and the declarations of its
 arguments, as well as the name of the library in which
 it can be found. This should be used as a reference
 when constructing calls to a given routine.

 Function

 A description of the purpose of the routine, along with
 the interpretations of its arguments and the returned
 value (if any).

 Implementation

 A short discussion of the strategy used to implement
 the routine, abstracted from the source code.

 Arguments Modified

 Names of those arguments modified by the routine.

 Calls

 Other subprograms called by this routine.

 Bugs

 Known problems with the use of the routine.

 See Also

 References to further information or related routines.

 − 1 −

 abq$xs (4) −−− add an element to the bottom of a queue 06/28/82

 Calling Information

 logical function abq$xs (qu, addition)
 shortcall abq$xs (4)

 queue_control_block qu
 untyped addition

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine adds a 16 bit quantity (the contents of
 ’addition’) to the bottom of a circular queue (deque) struc−
 ture at ’qu’. The function result is TRUE if the addition
 was done, FALSE if the queue was full (before the call).

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The hardware ABQ instruction is executed on
 the arguments.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 qu

 Bugs

 The routine makes no attempt to validate the argument passed
 as a queue control block.

 Locally supported.

 See Also

 atq$xs (4), fc (1), mkq$xs (4), rtq$xs (4), rbq$xs (4),
 tsq$xs (4), System Architecture Reference Guide (Prime PDR
 3060)

 abq$xs (4) − 1 − abq$xs (4)

 atq$xs (4) −−− add an element to the top of a queue 06/28/82

 Calling Information

 logical function atq$xs (qu, addition)
 shortcall atq$xs (4)

 queue_control_block qu
 untyped addition

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine adds a 16 bit quantity (the contents of
 ’addition’) to the top of a circular queue (deque) structure
 at ’qu’. The function result is TRUE if the addition was
 done, FALSE if the queue was full (before the call).

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The hardware ATQ instruction is executed on
 the arguments.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 qu

 Bugs

 The routine makes no attempt to validate the argument passed
 as a queue control block.

 Locally supported.

 See Also

 abq$xs (4), fc (1), mkq$xs (4), rtq$xs (4), rbq$xs (4),
 tsq$xs (4), System Architecture Reference Guide, (Prime PDR
 3060)

 atq$xs (4) − 1 − atq$xs (4)

 gcd (4) −−− determine greatest common divisor of two integers 07/20/84

 | Calling Information

 long_int function gcd (x0, x1)
 long_int x0, x1

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Gcd’ determines the greatest common divisor of the two long
 integers specified as arguments. The function return is the
 GCD (always positive).

 Implementation

 ’Gcd’ is a straightforward implementation of Euclid’s
 algorithm.

 Bugs

 Behavior with nonpositive arguments may be considered
 irrational by some.

 See Also

 invmod (4)

 gcd (4) − 1 − gcd (4)

 get$xs (4) −−− get a character (byte) from an array 06/25/82

 Calling Information

 character function get$xs (array, position)
 shortcall get$xs (4)

 untyped array (ARB)
 integer position

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine extracts a byte quantity from the specified
 array using highly efficient indexing and byte swapping
 operations.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Bugs

 Does no bounds checking on the array (standard FTN problem),
 but this may also be seen as a good point.

 Locally supported.

 See Also

 fc (1), put$xs (4)

 get$xs (4) − 1 − get$xs (4)

 gky$xs (4) −−− get current cpu keys 06/25/82

 Calling Information

 subroutine gky$xs (word)
 shortcall gky$xs (2)

 integer word

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This subroutine loads the current cpu keys into ’word’.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The subroutine uses the TKA instruction.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 word

 Bugs

 Locally supported.

 See Also

 fc (1), sky$xs (4), System Architecture Reference Guide
 (Prime PDR 3060)

 gky$xs (4) − 1 − gky$xs (4)

 invmod (4) −−− find inverse of an integer modulo another integer 07/20/84

 | Calling Information

 long_int function invmod (x1, x0)
 long_int x1, x0

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Invmod’ is used to find the inverse of ’x1’ in the ring of
 integers modulo ’x0’. The function return is the inverse if
 it could be found, or ERR if ’x1’ and ’x0’ are not
 relatively prime.

 Implementation

 ’Invmod’ uses a variant of Euclid’s greatest common divisor
 algorithm.

 Bugs

 Rational behavior for nonpositive arguments has not been
 established.

 Locally supported.

 See Also

 gcd (4)

 invmod (4) − 1 − invmod (4)

 lsallo (4) −−− allocate space for a linked string 01/03/83

 Calling Information

 pointer function lsallo (ptr, len)
 pointer ptr
 integer len

 Library: vlslb

 Function

 A string of length ’len’ (not counting the EOS) is
 allocated. The pointer to the string is returned in ’ptr’
 and as the function value. If all attempts to find
 sufficient space fail, an error diagnostic ("Too many linked
 strings") is issued and the program is aborted.

 Implementation

 First, a test is made to see if there are ’len’ characters
 available between the highest used location and the top of
 the string space to allocate the string. If not, the
 available space list is followed to find space. If both
 fail, storage is reclaimed by calling ’lsfree’ to deallocate
 the available space list, decrementing the highest open
 pointer to the first allocated location, and rebuilding the
 available space list. If a second search then fails,
 ’error’ is called to print the diagnostic and abort the
 program.

 Arguments Modified

 ptr

 Calls

 error, lsdump, lsfree, remark

 Bugs

 There is no way for the user to intercept a ’string space
 full’ condition.

 If not enough space is available in either the available
 space list or highest open list, but enough is available in
 both, an error is still signalled.

 Locally supported.

 lsallo (4) − 1 − lsallo (4)

 lsallo (4) −−− allocate space for a linked string 01/03/83

 See Also

 lsfree (4)

 lsallo (4) − 2 − lsallo (4)

 lscmpk (4) −−− compare linked string with contiguous string 03/23/80

 Calling Information

 character function lscmpk (ptr, str)
 pointer ptr
 character str (ARB)

 Library: vlslb

 Function

 The linked string specified by ’ptr’ and the contiguous
 string in ’str’ are compared on the basis of ASCII collating
 sequence. Depending upon the relation that the first string
 has to the second, a function value of ’>’c, ’=’c, or ’<’c
 is returned.

 Implementation

 Characters are extracted from the linked string using
 ’lsgetc’ and compared with their corresponding elements in
 ’str’ until two unequal characters are seen or an EOS
 character is encountered. The value returned is then
 decided from these two characters: if one of the characters
 is EOS, the longer string is considered greater; if both of
 the characters are EOS, the strings are considered equal; if
 neither character is EOS, the string with the largest
 character is considered greater.

 Calls

 lsgetc

 Bugs

 Locally supported.

 See Also

 lscomp (4)

 lscmpk (4) − 1 − lscmpk (4)

 lscomp (4) −−− compare two linked strings 02/23/82

 Calling Information

 character function lscomp (ptr1, ptr2)
 pointer ptr1, ptr2

 Library: vlslb

 Function

 The linked strings specified by ’ptr1’ and ’ptr2’ are com−
 | pared on the basis of ASCII collating sequence. The value
 | of the function is ’>’c, ’=’c, or ’<’c, depending upon the
 relation that the first string has to the second.

 Implementation

 Characters are extracted from the strings using ’lsgetc’
 until two unequal characters are found or an EOS character
 is seen. The returned value is then decided from these two
 characters: if one of the characters is EOS, the longer
 string is considered greater; if both of the characters are
 EOS, the strings are considered equal; if neither character
 is EOS, the string with the larger character is considered
 greater.

 Calls

 lsgetc

 Bugs

 Locally supported.

 See Also

 lscmpk (4)

 lscomp (4) − 1 − lscomp (4)

 lscopy (4) −−− copy linked string 01/03/83

 Calling Information

 subroutine lscopy (ptr1, pos1, ptr2, pos2)
 pointer ptr1, ptr2
 integer pos1, pos2

 Library: vlslb

 Function

 The string specified by ’ptr1’, beginning at position ’pos1’
 is copied to the string specified by ’ptr2’ beginning at
 position ’pos2’. If ’ptr2’ is zero, a string of the proper
 length is allocated and the pointer to it is returned in
 ’ptr2’ after copying. If in copying, the resultant string
 would overflow the space allocated for the second string, no
 new space is allocated, and the copy terminates.

 Implementation

 The first string is positioned to position ’pos1’ with a
 call to ’lspos’. Then, if ’ptr2’ is zero, a string of the
 proper length is allocated with a call to ’lsallo’. The
 second string is then positioned to position ’pos2’ and
 characters are copied until the end of one string is reached
 by using ’lsgetc’ and ’lsputc’.

 Arguments Modified

 ptr2 (if zero)

 Calls

 lsallo, lsgetc, lslen, lspos, lsputc

 Bugs

 Locally supported.

 lscopy (4) − 1 − lscopy (4)

 lscut (4) −−− divide a linked string into two linked strings 02/25/80

 Calling Information

 pointer function lscut (ptr1, pos, ptr2)
 pointer ptr1, ptr2
 integer pos

 Library: vlslb

 Function

 The string specified by ’ptr1’ is divided following position
 ’pos’. The first half of the string is returned in ’ptr1’,
 and the second half is returned in ’ptr2’ and as the value
 of the function.

 Implementation

 The string specified by ’ptr1’ is positioned with ’lspos’ to
 position ’pos’. A new string of length 1 is allocated, and
 the character at position ’pos’ is placed in the new string.
 A pointer is placed in position ’pos’ to the new string.
 ’Ptr2’ and the function are given the value of the string
 position after position ’pos’.

 Arguments Modified

 ptr1, ptr2

 Calls

 lsallo, lsgetc, lspos, lsputc

 Bugs

 Locally supported.

 See Also

 lsjoin (4), lssubs (4)

 lscut (4) − 1 − lscut (4)

 lsdel (4) −−− delete characters from a linked string 03/23/80

 Calling Information

 subroutine lsdel (ptr, pos, len)
 pointer ptr
 integer pos, len

 Library: vlslb

 Function

 Characters are deleted from the string specified by ’ptr’
 starting from position ’pos’ and continuing for ’len’
 characters. ’Len’ may be specified as a huge number to
 delete all remaining characters in the string. Even if all
 characters in the string are deleted, the pointer that
 remains in ’ptr’ is still valid and points to a string
 containing EOS.

 Implementation

 The string is positioned to position ’pos’ with ’lspos’.
 ’Lsfree’ is called to free ’len’ characters. If ’lsfree’
 returns 0 as a pointer value (meaning it ran past the EOS),
 EOS is placed is position ’pos’; otherwise, the pointer
 returned by ’lsfree’ is placed in position ’pos’.

 Calls

 lsfree, lspos

 Bugs

 Locally supported.

 See Also

 lsdrop (4), lssubs (4), lstake (4)

 lsdel (4) − 1 − lsdel (4)

 lsdrop (4) −−− drop characters from a linked string 01/03/83

 Calling Information

 pointer function lsdrop (ptr, len)
 pointer ptr
 integer len

 Library: vlslb

 Function

 The value of the function is a pointer to a string contain−
 ing all but the first ’len’ characters of the string
 specified by ’ptr’.

 Implementation

 ’Lspos’ is called to position the string to position ’len’ +
 1. ’Lscopy’ is then called to copy the remainder into a
 newly allocated string, a pointer to which is returned as
 the function value.

 Calls

 lscopy

 Bugs

 Locally supported.

 See Also

 lsdel (4), lssubs (4), lstake (4)

 lsdrop (4) − 1 − lsdrop (4)

 lsdump (4) −−− dump linked string space for debugging 01/03/83

 Calling Information

 subroutine lsdump

 Library: vlslb

 Function

 The linked string space is dumped in semi−readable format to
 ERROUT.

 Implementation

 The string space is printed with various calls to ’print’
 and ’putch’. Long sequences of ’empty’ space are compres−
 sed. Unprintable characters are printed as octal values
 enclosed in angle brackets.

 Calls

 print, putch

 Bugs

 Locally supported.

 See Also

 dump (1)

 lsdump (4) − 1 − lsdump (4)

 lsextr (4) −−− extract contiguous string from linked string 02/25/80

 Calling Information

 integer function lsextr (ptr, str, max)
 pointer ptr
 character str (ARB)
 integer max

 Library: vlslb

 Function

 The linked string specified by ’ptr’ is copied into ’str’.
 No more than ’max’ positions of ’str’ will be used.

 Implementation

 Characters from the linked string are extracted using
 ’lsgetc’ and placed in consecutive positions of ’str’.

 Arguments Modified

 str

 Calls

 lsgetc

 Bugs

 Locally supported.

 See Also

 lsmake (4)

 lsextr (4) − 1 − lsextr (4)

 lsfree (4) −−− free linked string space 03/23/80

 Calling Information

 subroutine lsfree (ptr, len)
 pointer ptr
 integer len

 Library: vlslb

 Function

 The first ’len’ characters of the string specified by ’ptr’
 are deallocated. ’Ptr’ is updated to point to the remaining
 characters. If no characters remain (’len’ is longer than
 the string) ’ptr’ is set to zero.

 Implementation

 The string is traversed, setting all visited locations to
 the value UNUSED, until ’len’ characters or an EOS has been
 passed.

 Arguments Modified

 ptr

 Bugs

 Space is not available for reuse until after garbage collec−
 tion. This is done to avoid pointer fragmentation.

 ’Lsfree’ is used for returning strings to the free list. It
 is not careful with pointers, so it should usually be called
 only to completely deallocate a string (i.e. "call lsfree
 (ptr, ALL)").

 Locally supported.

 See Also

 lsallo (4)

 lsfree (4) − 1 − lsfree (4)

 lsgetc (4) −−− get character from linked string 03/23/80

 Calling Information

 character function lsgetc (ptr, c)
 pointer ptr
 character c

 Library: vlslb

 Function

 The first character in the string specified by ’ptr’ is
 extracted and returned in ’c’ and as the function value.
 ’Ptr’ is updated to point to the next character in the
 string, but is never advanced beyond the EOS.

 Implementation

 Any pointers in the string are followed until a character is
 found. The character becomes the value of the function. If
 the character was not EOS, ’ptr’ is incremented, and any
 pointers in the string are followed until the next character
 is found.

 Arguments Modified

 ptr, c

 Bugs

 Locally supported.

 See Also

 lsputc (4)

 lsgetc (4) − 1 − lsgetc (4)

 lsgetf (4) −−− read an arbitrarily long linked string 01/03/83

 Calling Information

 integer function lsgetf (ptr, fd)
 pointer ptr
 file_des fd

 Library: vlslb

 Function

 ’Lsgetf’ reads characters from the file specified by ’fd’
 into a linked string until a NEWLINE character is read. A
 pointer to the string is returned in ’ptr’. The function
 value is the number of characters read, or EOF if end−of−
 file was encountered before a NEWLINE was seen.

 Implementation

 A new string of zero length is allocated with a call to
 ’lsallo’ and ’ptr’ is set to point to it. Subroutine ’get−
 lin’ is then called repeatedly until a line whose last
 character (before the EOS) is a NEWLINE is returned, or end−
 of−file is encountered. Each line returned is then joined
 to the end of the linked string with a call to ’lsjoin’. If
 EOF is encountered before a NEWLINE is seen, the entire
 string is deallocated with a call to ’lsfree’.

 Arguments Modified

 ptr

 Calls

 getlin, lsallo, lsjoin, lsmake, lspos

 Bugs

 Locally supported.

 See Also

 lsputf (4)

 lsgetf (4) − 1 − lsgetf (4)

 lsinit (4) −−− initialize linked string space 02/23/82

 Calling Information

 subroutine lsinit

 Library: vlslb

 Function

 ’Lsinit’ initializes the string space and associated
 variables. It must be called before using any other linked
 string routines.

 The routines in the linked string library are intended to
 overcome several disadvantages of the contiguously stored
 character strings used throughout the Software Tools Sub−
 system. They facilitate operations such as insertion, dele−
 tion and concatenation with a minimum of wasted storage and
 time. These routines also free the programmer from having
 to explicitly manage the string storage. However, use of
 the linked string routines is costly in that for operations
 such as copying or replacing single characters, they are
 slower and require more subprogram calls than their
 equivalent contiguous string routines. Therefore, linked
 strings are not intended to replace contiguously stored
 strings, but to provide an extension that facilitates com−
 plex string manipulation.

 All linked strings are allocated in the named common block
 ’ls$buf’. Normally, the user does not directly reference
 this block; rather, references are made through pointers
 returned from and passed to the linked string routines.
 Pointers are single−precision integer variables that contain
 an index of the starting location of the string in the com−
 mon block. The user has no need to examine the pointers
 other than to pass them as arguments to the linked string
 routines.

 Linked strings are stored one ASCII character per word,
 right−justified with zero fill and terminated by an EOS
 character. Any word having a value greater than 300
 (decimal) is interpreted to be a pointer whose value is
 obtained by subtracting 300 from the word. This allows for
 the non−contiguity of characters in the string, hence the
 name "linked".

 Space for new strings is obtained either directly or
 indirectly through the ’lsallo’ function. ’Lsallo’ attempts
 to allocate the string contiguously at the end of the common
 block. If this fails, the available space list is examined;
 if no space is found here, the garbage collector is invoked
 and the searches are repeated. Upon a second failure to
 find sufficient space, an error diagnostic is issued and the
 program terminated.

 Old strings are deallocated using the ’lsfree’ subroutine.

 lsinit (4) − 1 − lsinit (4)

 lsinit (4) −−− initialize linked string space 02/23/82

 Deallocated strings are marked with a special value and are
 not available for use until after garbage collection.

 Implementation

 The pointers in the common block ’ls$buf’ are set to their
 proper values. A call to ’lsinit’ has the effect of deal−
 locating all strings.

 Bugs

 ’Lsinit’ must be called to initialize the string space.

 No provision is made for specifying the size of the string
 space.

 Locally supported.

 lsinit (4) − 2 − lsinit (4)

 lsins (4) −−− insert in linked string 01/03/83

 Calling Information

 subroutine lsins (ptr1, pos1, ptr2, pos2, len)
 pointer ptr1, ptr2
 integer pos1, pos2, len

 Library: vlslb

 Function

 The substring specified by ’ptr2’ (from position ’pos2’ with
 length ’len’) is inserted into the string specified by
 ’ptr1’ after position ’pos1’. String 2 is not destroyed. A
 pointer to the resulting string is returned in ’ptr1’.

 Implementation

 If ’pos1’ is less than or equal to zero, the string
 specified by ’ptr2’ (string 2) is prepended to the string
 specified by ’ptr1’ (string 1). This is accomplished by
 copying string 2 into a new string (string 3), pointing
 ’ptr1’ to string 3, and replacing the EOS of string 3 with a
 pointer to string 1.

 If ’pos1’ is greater than zero, string 2 is inserted within
 string 1 (if ’pos1’ is greater than the length of string 1,
 it is assumed to be equal to the length of string 1).
 String 2 is copied to a new string (string 3) with an extra
 position at the beginning. String 1 is positioned to
 ’pos1’. The character at this position is placed at the
 beginning of string 3, a pointer to string 3 replaces this
 character, and the EOS of string 3 is replaced with a
 pointer to ’pos1’ + 1 of string 1.

 Arguments Modified

 ptr1

 Calls

 lscopy, lsdel, lslen, lspos, lssubs

 Bugs

 In appending string 2 to string 1, it is slightly less
 efficient to specify a large number for ’pos1’ than to
 specify the exact length of string 1.

 Locally supported.

 lsins (4) − 1 − lsins (4)

 lsins (4) −−− insert in linked string 01/03/83

 See Also

 lssubs (4)

 lsins (4) − 2 − lsins (4)

 lsjoin (4) −−− join two linked strings 03/23/80

 Calling Information

 pointer function lsjoin (ptr1, ptr2)
 pointer ptr1, ptr2

 Library: vlslb

 Function

 The string specified by ’ptr2’ is concatenated to the end of
 the string specified by ’ptr1’. A pointer to the resulting
 string is returned in ’ptr1’ and as the function value.
 ’Ptr2’ ceases to be a valid pointer.

 Implementation

 The string specified by ’ptr1’ is positioned to its end.
 Then the EOS character in the first string is replaced by
 ’ptr2’ + 300, thus linking the second string to the first.

 Calls

 lspos

 Bugs

 Locally supported.

 See Also

 lscut (4), lsins (4)

 lsjoin (4) − 1 − lsjoin (4)

 lslen (4) −−− compute length of linked string 03/23/80

 Calling Information

 integer function lslen (ptr)
 pointer ptr

 Library: vlslb

 Function

 The length of the string specified by ’ptr’ is returned as
 the function value. ’Ptr’ is not modified.

 Implementation

 The number of characters in the string is counted by calling
 ’lsgetc’ until it returns EOS. The length is computed as
 the number of calls to ’lsgetc’ minus 1.

 Calls

 lsgetc

 Bugs

 Locally supported.

 lslen (4) − 1 − lslen (4)

 lsmake (4) −−− convert contiguous string to linked string 01/03/83

 Calling Information

 pointer function lsmake (ptr, str)
 pointer ptr
 character str (ARB)

 Library: vlslb

 Function

 The contiguous string in ’str’ is copied into the linked
 string space and a pointer to the string is returned both in
 ’ptr’ and as the function value.

 Implementation

 A new string is allocated with the same length as ’str’ via
 a call to ’lsallo’. Characters are then copied into the
 string using ’lsputc’.

 Arguments Modified

 ptr

 Calls

 length, lsallo, lsputc

 Bugs

 Locally supported.

 See Also

 lsextr (4)

 lsmake (4) − 1 − lsmake (4)

 lspos (4) −−− find position in linked string 03/23/80

 Calling Information

 character function lspos (ptr, pos)
 pointer ptr
 integer pos

 Library: vlslb

 Function

 ’Ptr’ is updated to point to the string starting at position
 ’pos’. ’Ptr’ will not be updated past the EOS. The value
 returned by the function is the character in position ’pos’.

 Implementation

 The string is traversed until ’pos’ − 1 characters have been
 skipped. The new pointer is then returned in ’ptr’ and as
 the function value.

 Arguments Modified

 ptr

 Bugs

 Locally supported.

 lspos (4) − 1 − lspos (4)

 lsputc (4) −−− put character into a linked string 02/23/82

 Calling Information

 character function lsputc (ptr, c)
 pointer ptr
 character c

 Library: vlslb

 Function

 The character in ’c’ is placed in the next position of the
 string specified by ’ptr’. ’Ptr’ is then updated to point
 to the next available position. The function value is the
 value of ’c’, unless there is no more room in the string.
 In this case, EOS is returned and the pointer is not
 updated. If an EOS is put in the string before the end, the
 remaining character positions are deallocated.

 Implementation

 Pointers in the string are followed until a character is
 found. If the character is not EOS, it is replaced by the
 value of ’c’ and ’ptr’ is incremented. If the value of ’c’
 is EOS, ’lsfree’ is called to deallocate the rest of the
 string.

 Arguments Modified

 ptr, c

 Calls

 lsfree

 Bugs

 ’Lsputc’ should perhaps allocate more space if the receiving
 string overflows.

 Locally supported.

 See Also

 lsgetc (4)

 lsputc (4) − 1 − lsputc (4)

 lsputf (4) −−− write an arbitrarily long linked string 03/23/80

 Calling Information

 subroutine lsputf (ptr, fd)
 pointer ptr
 file_des fd

 Library: vlslb

 Function

 The linked string specified by ’ptr’ is written to the file
 described by ’fd’.

 Implementation

 A section of the string no more than MAXLINE characters in
 length is extracted using ’lsextr’ and written to the file
 with ’putlin’. The section just extracted is skipped over
 with a call to ’lspos’ and the process is repeated until the
 EOS is encountered.

 Calls

 lsextr, lspos, putlin

 Bugs

 Locally supported.

 See Also

 lsgetf (4)

 lsputf (4) − 1 − lsputf (4)

 lssubs (4) −−− take a substring of a linked string 03/23/80

 Calling Information

 pointer function lssubs (ptr, pos, len)
 pointer ptr
 integer pos, len

 Library: vlslb

 Function

 The value of the function is a pointer to a string contain−
 ing ’len’ characters from the string specified by ’ptr’,
 starting at position ’pos’.

 Implementation

 A new string of length ’len’ is allocated, the string
 specified by ’ptr’ is positioned to ’pos’, and ’len’ charac−
 ters are then copied to the new string with calls to
 ’lsgetc’ and ’lsputc’.

 Calls

 lsallo, lsgetc, lslen, lspos, lsputc

 Bugs

 Locally supported.

 See Also

 lscut (4), lsdel (4), lsdrop (4), lstake (4)

 lssubs (4) − 1 − lssubs (4)

 lstake (4) −−− take characters from a linked string 03/23/80

 Calling Information

 pointer function lstake (ptr, len)
 pointer ptr
 integer len

 Library: vlslb

 Function

 The value of the function is a pointer to a string consist−
 ing of the first ’len’ characters of the string specified by
 ’ptr’.

 Implementation

 A string of length ’len’ is allocated, and the first ’len’
 characters of the string specified by ’ptr’ are copied into
 it using ’lsgetc’ and ’lsputc’.

 Calls

 lsallo, lsgetc, lsputc

 Bugs

 Locally supported.

 See Also

 lsdrop (4), lssubs (4)

 lstake (4) − 1 − lstake (4)

 mkq$xs (4) −−− initialize a hardware defined queue 06/28/82

 Calling Information

 integer function mkq$xs (ptr_to_free, room, qu)
 shortcall mkq$xs (4)

 pointer ptr_to_free
 integer room
 queue_control_block qu

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This function initializes a queue control block so it can be
 used by the other queue functions. Queues are a machine−
 defined data type on higher−level Prime machines, and
 operations on queues are guaranteed "atomic" (non−
 interruptable). However, queues require special definition.

 Queues must be a fixed size in length, and that length must
 be 2 ** k words long, with 4 <= k <= 16. Furthermore, the
 queue must start on a 2 ** k word boundary.

 To make things easier for the user, this function simply
 requires that the user pass a pointer to a free area in
 memory, and the length of that area (’ptr_to_free’ and
 ’room’, respectively). The function then determines the
 largest queue that can fit into that free area and still
 meet the queue−related requirements. The function updates
 the queue control block ’qu’ to reflect this placement, and
 then returns the number of available words in the queue as
 the function value.

 If no queue can be allocated in the space provided, the
 function returns a zero value. It should be noted that it
 is possible that the size of the queue created may be only
 half of the free area due to the address boundary restric−
 tions. Non−zero function returns are always (2 ** k) − 1.

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a PMA routine entered via a JSXB (shortcall).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 mkq$xs (4) − 1 − mkq$xs (4)

 mkq$xs (4) −−− initialize a hardware defined queue 06/28/82

 Arguments Modified

 qu

 Bugs

 The function uses ’qu’ for some temporary values; ’qu’ may
 be partially initialized even if no queue can be created.

 Locally supported.

 See Also

 abq$xs (4), atq$xs (4), fc (1), rbq$xs (4), rtq$xs (4),
 tsq$xs (4), System Architecture Reference Guide (Prime PDR
 3060)

 mkq$xs (4) − 2 − mkq$xs (4)

 pek$xs (4) −−− look at a location in memory 06/25/82

 Calling Information

 subroutine pek$xs (ptr_to_word, contents)
 shortcall pek$xs (4)

 pointer ptr_to_word
 untyped contents

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The subroutine returns the contents of the word at the
 address ’ptr_to_word’. Effectively,

 call pek$xs (loc(word), contents)

 is equivalent to

 contents = word

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 contents

 Bugs

 No validity check is done on the pointer.

 Locally supported.

 See Also

 fc (1), pok$xs (4)

 pek$xs (4) − 1 − pek$xs (4)

 pok$xs (4) −−− change a location in memory 06/25/82

 Calling Information

 subroutine pok$xs (ptr_to_word, contents)
 shortcall pok$xs (4)

 pointer ptr_to_word
 untyped contents

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The subroutine changes the contents of the word at the
 address ’ptr_to_word’. Effectively,

 call pok$xs (loc(word), contents)

 is equivalent to

 word = contents

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Bugs

 No validity check is done on the pointer.

 The user may do very peculiar things to his/her environment
 if the call is not used with care.

 Locally supported.

 See Also

 fc (1), pek$xs (4), s1c$xs (4), s2c$xs (4)

 pok$xs (4) − 1 − pok$xs (4)

 prime (4) −−− retrieve the ’i’th prime number 07/20/84

 | Calling Information

 long_int function prime (i)
 long_int i

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Prime’ is used to retrieve a specified prime number. The
 argument is the ordinal of the prime number desired. The
 function return is the specified prime. For example, if ’i’
 is 1, the function return is 2; if ’i’ is 3, the function
 return is 5, etc.

 ’Prime’ uses the table of prime numbers in the file
 "=aux=/primes". This file contains the prime numbers up to
 one million in long−integer binary format. If
 "=aux=/primes" is unreadable or if ’i’ is less than one or
 greater than 78498, the function return is zero.

 Implementation

 The file "=aux=/primes" is opened for reading. The
 read/write pointer for the file is then moved to the desired
 location and the prime number read. The file is then
 closed.

 Calls

 open, close, mapfd, Primos prwf$$

 Bugs

 Should probably raise cain if the prime numbers file is not
 available, rather than meekly returning zero.

 Locally supported.

 prime (4) − 1 − prime (4)

 put$xs (4) −−− put a character (byte) into an array 06/25/82

 Calling Information

 subroutine put$xs (array, position, char)
 shortcall put$xs (4)

 untyped array (ARB)
 integer position
 character char

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine inserts a byte quantity into ’array’ at
 ’position’, using highly efficient indexing and byte swap−
 ping operations. The byte is assumed to be the least
 significant byte of ’char’.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 array

 Bugs

 Does no bounds checking on the array (standard FTN problem),
 but this may also be seen as a good point.

 Locally supported.

 See Also

 fc (1), get$xs (4)

 put$xs (4) − 1 − put$xs (4)

 pwrmod (4) −−− calculate an exponential modulo a given modulus 07/20/84

 | Calling Information

 long_int function pwrmod (p, e, n)
 long_int p, e, n

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Pwrmod’ is used to perform an integer exponentiation in the
 ring of integers modulo a given modulus. The argument ’p’
 is the base of the expression, ’e’ is the exponent, and ’n’
 the modulus. The function return is p**E (mod n).

 Implementation

 ’Pwrmod’ examines the exponent a bit a time, squaring the
 intermediate result accumulated so far and multiplying it by
 the base whenever the selected bit is a 1. Each operation
 is performed modulo ’n’, so that intermediate results don’t
 become excessively large.

 See Also

 invmod (4)

 pwrmod (4) − 1 − pwrmod (4)

 rbq$xs (4) −−− remove an element from the bottom of a queue 06/28/82

 Calling Information

 logical function rbq$xs (qu, item)
 shortcall rbq$xs (4)

 queue_control_block qu
 untyped item

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine removes a 16 bit quantity (into the variable
 ’item’) from the bottom of a circular queue (deque) struc−
 ture at ’qu’. The function result is TRUE if the removal
 was done, FALSE if the queue was empty (before the call).

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The function executes the RBQ machine instruc−
 tion.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 qu, item

 Bugs

 The routine makes no attempt to validate the argument passed
 as a queue control block.

 Locally supported.

 See Also

 abq$xs (4), atq$xs (4), fc (1), mkq$xs (4), rtq$xs (4),
 tsq$xs (4), System Architecture Reference Guide (Prime PDR
 3060)

 rbq$xs (4) − 1 − rbq$xs (4)

 rdy$xs (4) −−− see if character waiting, and if so, fetch it 06/25/82

 Calling Information

 logical function rdy$xs (char)
 shortcall rdy$xs (4)

 character char

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The function checks to see if a character has been typed at
 the terminal but not yet input by software. If no character
 is waiting, the function returns the value FALSE. If a
 character is waiting, then the function returns TRUE and
 ’char’ gets set to the waiting character.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The function switches to 64R mode to do a
 "SKS ’704" (handled by the Primos restricted instruction
 FIM). If a value is waiting, it is fetched by a call to the
 Primos routine T1IN.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Calls

 Primos t1in

 Arguments Modified

 char

 Bugs

 Locally supported.

 See Also

 chkinp (2), fc (1)

 rdy$xs (4) − 1 − rdy$xs (4)

 rtq$xs (4) −−− remove an element from the top of a queue 06/25/82

 Calling Information

 logical function rtq$xs (qu, item)
 shortcall rtq$xs (4)

 queue_control_block qu
 untyped item

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine removes a 16 bit quantity (into the variable
 ’item’) from the top of a circular queue (deque) structure
 at ’qu’. The function result is TRUE if the removal was
 done, FALSE if the queue was empty (before the call).

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The function executes the RTQ machine instruc−
 tion.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 qu, item

 Bugs

 The routine makes no attempt to validate the argument passed
 as a queue control block.

 Locally supported.

 See Also

 abq$xs (4), atq$xs (4), fc (1), mkq$xs (4), rbq$xs (4),
 tsq$xs (4), System Architecture Reference Guide (Prime PDR
 3060)

 rtq$xs (4) − 1 − rtq$xs (4)

 s1c$xs (4) −−− protected single−word store operation 06/25/82

 Calling Information

 logical function s1c$xs (ptr_to_variable, old_value, new_value)
 shortcall s1c$xs (4)

 pointer ptr_to_variable
 untyped old_value, new_value

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The function implements an uninterruptable form of test−and−
 set operation. The parameter ’ptr_to_variable’ is a 2 word
 virtual memory pointer to a 1 word location in memory to be
 tested and possibly modified.

 If the variable contains the same value as provided in
 ’old_value’ then the variable is updated to ’new_value’ and
 the function returns TRUE. If the variable is not equal to
 ’old_value’ then the function returns FALSE and no change is
 made to the variable. Effectively,

 if (variable == old_value) {
 variable = new_value
 return (TRUE)
 }

 else
 return (FALSE)

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The function uses the STAC instruction which
 is guaranteed to be atomic (non−interruptable).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Bugs

 The pointer supplied is not checked for validity.

 Locally supported.

 See Also

 fc (1), s2c$xs (4), System Architecture Reference Guide
 (Prime PDR 3060)

 s1c$xs (4) − 1 − s1c$xs (4)

 s2c$xs (4) −−− protected double−word store operation 06/25/82

 Calling Information

 logical function s2c$xs (ptr_to_variable, old_value, new_value)
 shortcall s2c$xs (4)

 pointer ptr_to_variable
 untyped old_value, new_value

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The function implements an uninterruptable form of test−and−
 set operation. The parameter ’ptr_to_variable’ is a 2 word
 virtual memory pointer to a 2 word location in memory to be
 tested and possibly modified.

 If the variable contains the same value as provided in
 ’old_value’ then the variable is updated to ’new_value’ and
 the function returns TRUE. If the variable is not equal to
 ’old_value’ then the function returns FALSE and no change is
 made to the variable. Effectively,

 if (variable == old_value) {
 variable = new_value
 return (TRUE)
 }

 else
 return (FALSE)

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The function uses the STLC instruction, which
 is guaranteed to be atomic (non−interruptable).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Bugs

 The pointer supplied is not checked for validity.

 Locally supported.

 See Also

 fc (1), s1c$xs (4), System Architecture Reference Guide
 (Prime PDR 3060)

 s2c$xs (4) − 1 − s2c$xs (4)

 set_copy (4) −−− make a copy of one set in another 07/20/84

 | Calling Information

 subroutine set_copy (source, destination)
 pointer source, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_copy’ duplicates one set in another. For proper
 operation, the source set should be larger than or
 equivalent in size to the destination set. The source set
 is not altered by the copy operation.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_copy’ uses the size field encoded in the first word of
 each set to determine the number of words in the bit vector
 to be copied. A simple loop implements the copy.

 Bugs

 Should handle sets of different sizes properly.

 See Also

 other set operations (’set_?*’) (4)

 set_copy (4) − 1 − set_copy (4)

 set_create (4) −−− generate a new, initially empty set 07/20/84

 | Calling Information

 pointer function set_create (set, size)
 pointer set
 integer size

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_create’ is used to create a Pascal−style bit vector
 representation for a set of integers from 1 to ’size’. The
 function return and the variable ’set’ are set to the
 address in dynamic storage of the newly−created set.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_create’ calls ’dsget’ to obtain a contiguous array of
 16−bit words that is large enough to represent a bit vector
 with ’size’ elements. The first word of this array is set
 to ’size’ for use by other set manipulation routines. A
 call to ’set_init’ then insures that the new set is empty.

 Arguments Modified

 set

 Calls

 dsget, set_init

 See Also

 other set routines (’set_?*’) (4)

 set_create (4) − 1 − set_create (4)

 set_delete (4) −−− remove given element from a set 07/20/84

 | Calling Information

 subroutine set_delete (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_delete’ is used to remove a given element from a set.
 The first argument is the element (an integer between one
 and the maximum set size, inclusive), and the second is the
 set from which it is to be removed.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 The element selected is compared to the size field of the
 set; if invalid, ’set_delete’ prints an error message and
 terminates the program. Otherwise, the position of the
 element in the bit vector is calculated, and the bit is
 reset by straightforward logical operations.

 Calls

 error

 See Also

 other set operations (’set_?*’) (4)

 set_delete (4) − 1 − set_delete (4)

 set_element (4) −−− see if a given element is in a set 07/20/84

 | Calling Information

 integer function set_element (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_element’ returns 1 if ’element’ is a member of the set
 ’set’, 0 otherwise. The argument ’element’ must be an
 integer from 1 to the maximum size of the set, inclusive.
 The argument ’set’ must have been created beforehand with
 ’set_create’.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If ’element’ is not in the range of allowable set elements
 for the given set, the program is terminated by a call to
 ’error’. Otherwise, the location of the element in the bit
 vector is calculated, and the function returns the value of
 the bit at that position.

 Calls

 error

 See Also

 other set routines (’set_?*’) (4)

 set_element (4) − 1 − set_element (4)

 set_equal (4) −−− return TRUE if two sets contain the same members 07/20/84

 | Calling Information

 logical function set_equal (set1, set2)
 pointer set1, set2

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_equal’ determines if two sets contain the same members.
 The sets need not be of equal length.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_equal’ makes two calls on ’set_subset’. The function
 return is true if ’set1’ is a subset of ’set2’ and ’set2’ is
 a subset of ’set1’, false otherwise.

 Calls

 set_subset

 See Also

 other set routines (’set_?*’) (4)

 set_equal (4) − 1 − set_equal (4)

 set_init (4) −−− cause a set to be empty 07/20/84

 | Calling Information

 subroutine set_init (set)
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_init’ initializes a set created by ’set_create’. An
 initialized set is empty, i.e. contains no members.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 ’Set_init’ simply clears all elements of the bit vector por−
 tion of the data structure addressed by its first argument.

 See Also

 other set routines (’set_?*’) (4)

 set_init (4) − 1 − set_init (4)

 set_insert (4) −−− place given element in a set 07/20/84

 | Calling Information

 subroutine set_insert (element, set)
 integer element
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_insert’ is the primary means of placing a given element
 in a set. ’Element’ must be an integer between one and the
 maximum size of the set, inclusive; ’set’ must be a pointer
 to a set data structure created by ’set_create’. If it is
 within range, the given element is marked "present" in the
 bit vector associated with the set.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If the element is out of range, a call to ’error’ is made to
 inform the user and terminate the program. Otherwise, the
 location of the element in the bit vector is determined and
 a few logical operations are employed to set the selected
 bit.

 Calls

 error

 See Also

 other set routines (’set_?*’) (4)

 set_insert (4) − 1 − set_insert (4)

 set_intersect (4) −−− place intersection of two sets in a third 07/20/84

 | Calling Information

 subroutine set_intersect (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_intersect’ determines the intersection of the sets
 given as its first two arguments and places that intersec−
 tion in the set specified by the third. For proper
 operation, all three sets should be equal in size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Does a word−by−word logical ’and’ of the bit vectors for the
 first two sets, placing the result in the third.

 Bugs

 Should be fixed to work with sets of differing lengths.

 See Also

 other set routines (’set_?*’) (4)

 set_intersect (4) − 1 − set_intersect (4)

 set_remove (4) −−− remove a set that is no longer needed 07/20/84

 | Calling Information

 subroutine set_remove (set)
 pointer set

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_remove’ reclaims the dynamic storage space used by a
 set data structure. It is the inverse of ’set_create’. To
 prevent dynamic storage space from becoming irretrievably
 lost, sets should always be removed by a call to
 ’set_remove’ when they are no longer needed.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Calls ’dsfree’ to throw away the storage space used by the
 internal data structure.

 Calls

 dsfree

 See Also

 other set routines (’set_?*’) (4), dsinit (2), dsget (2),
 dsfree (2)

 set_remove (4) − 1 − set_remove (4)

 set_subset (4) −−− return TRUE if set1 is a subset of set2 07/20/84

 | Calling Information

 logical function set_subset (set1, set2)
 pointer set1, set2

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_subset’ returns the logical value ’.true.’ if and only
 if its first argument points to a set that is a subset of or
 equal to the set pointed to by its second argument. The
 sets need not be of equal length.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 If one set is larger than the other, it is checked to make
 sure that none of the higher−order elements is present. The
 subset condition is then true if and only if every element
 of ’set1’ is also an element of ’set2’, a statement which
 can be checked a word at a time with the proper logical
 operations.

 Calls

 set_element

 See Also

 other set routines (’set_?*’) (4)

 set_subset (4) − 1 − set_subset (4)

 set_subtract (4) −−− place difference of two sets in a third 07/20/84

 | Calling Information

 subroutine set_subtract (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_subtract’ performs the set subtraction operation, i.e.
 places in the set ’destination’ those elements of ’set1’
 that are not in ’set2’. For proper operation, all three
 sets should be the same size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 Since sets are represented as bit vectors, the subtraction
 operation is performed by logically ’and’ing the elements of
 the first set with the negation of the elements of the
 second set.

 Bugs

 Should work with sets of differing sizes.

 See Also

 other set routines (’set_?*’) (4)

 set_subtract (4) − 1 − set_subtract (4)

 set_union (4) −−− place union of two sets in a third 07/20/84

 | Calling Information

 subroutine set_union (set1, set2, destination)
 pointer set1, set2, destination

 | Library: vswtmath (Subsystem mathematical library)

 Function

 ’Set_union’ computes the union of ’set1’ and ’set2’, placing
 the result in ’destination’. For proper operation, all
 three sets should be the same size.

 All set manipulation routines make use of dynamic storage,
 which must be initialized before use. See ’dsinit’ for
 further information.

 Note that all set manipulation routines have long names. To
 avoid unique name conflicts with other routines, any Ratfor
 program using the set routines should include the following
 statement:

 | include "=src=/lib/math/swtmlb_link.r.i"

 Implementation

 The set union is computed by logically ’or’ing the bit vec−
 tors associated with ’set1’ and ’set2’.

 Bugs

 Should work with sets of differing sizes.

 See Also

 other set routines (’set_?*’) (4)

 set_union (4) − 1 − set_union (4)

 sky$xs (4) −−− set current cpu keys 06/25/82

 Calling Information

 subroutine sky$xs (word)
 shortcall sky$xs (2)

 integer word

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This routine loads bits 1 − 14 of the cpu keys with the
 corresponding bits of ’word’. This can change the processor
 addressing mode (for the current process), set or clear the
 carry and link bits and the condition codes, and change the
 system’s response to integer, real and decimal exceptions.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The subroutine uses the TAK instruction.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Bugs

 The user can possibly change the current program addressing
 mode in a manner that cannot be recovered by this routine.

 Locally supported.

 See Also

 fc (1), gky$xs (4), System Architecture Reference Guide
 (Prime PDR 3060)

 sky$xs (4) − 1 − sky$xs (4)

 stk$xs (4) −−− set/read stack extension pointer 06/25/82

 Calling Information

 subroutine stk$xs (root, ptr_to_ext)
 shortcall stk$xs (4)

 integer root
 pointer ptr_to_ext

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 The Prime machines support the mechanism of a stack that can
 be extended into additional segments, as needed. This
 routine allows you to set the extension pointer for any
 stack, or read the current extension pointer for any stack.
 The function’s actions depend on the value of ’root’ (seg−
 ment of stack root):

 If (root == :100000) then the function returns the
 current extension pointer in ’ptr_to_ext’. (:100000 ==
 ints(−32768))

 If (root > −32768 & root < 0) then the function returns
 in ’ptr_to_ext’ the current extension pointer for the
 stack whose root is in segment abs(root).

 If (root == 0) then the function sets the extension
 pointer of the current stack to the value of
 ’ptr_to_ext’.

 If (root > 0) then the function sets the extension
 pointer of the stack whose root is in segment ’root’ to
 the value in ’ptr_to_ext’.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). If the operation is specified as relative to
 the current stack root then the stack segment number is
 taken from SB% + 1 (the current stack frame root pointer).

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 ptr_to_ext

 stk$xs (4) − 1 − stk$xs (4)

 stk$xs (4) −−− set/read stack extension pointer 06/25/82

 Bugs

 There is no validity checking done on either the ’root’
 parameter or the ’ptr_to_ext’ parameter.

 No validation is done to make sure that ’ptr_to_ext’ points
 to a valid stack.

 Locally supported.

 See Also

 fc (1), System Architecture Reference Guide (Prime PDR 3060)

 stk$xs (4) − 2 − stk$xs (4)

 tsq$xs (4) −−− return the number of entries in a queue 06/28/82

 Calling Information

 logical function tsq$xs (qu, count)
 shortcall tsq$xs (4)

 queue_control_block qu
 integer count

 Library: shortlb
 Also declared in =incl=/shortlb.r.i

 Function

 This function sets the variable ’count’ to the number of
 entries in the queue at ’qu’. The function value is TRUE if
 the queue is non−empty, FALSE if the queue has no entries.

 The declaration ’queue_control_block’ is defined in
 =incl=/shortlb.r.i; this file should be included if this
 routine is used.

 Implementation

 Implemented as a simple PMA routine entered via a JSXB
 (shortcall). The hardware TSTQ instruction is executed on
 the arguments.

 Note that any routine using this call must be compiled using
 the "−q" option of ’fc’.

 Arguments Modified

 count

 Bugs

 The routine makes no attempt to validate the argument passed
 as a queue control block.

 Locally supported.

 See Also

 abq$xs (4), atq$xs (4), fc (1), mkq$xs (4), rtq$xs (4),
 rbq$xs (4), System Architecture Reference Guide, (Prime PDR
 3060)

 tsq$xs (4) − 1 − tsq$xs (4)

 | Section 5 − Low Level Support Commands

 This section is devoted to the description of low level sup−
 port Subsystem commands. These commands should not be invoked
 from command level, as they are intended to be used as support
 for higher level commands. Georgia Tech’s low level support com−
 | mands reside in the directory "=ebin=" and are supplied on the
 | Software Tools release tape. The commands described in section 1
 | should be used to invoke the commands described here.

 Documentation for each command is organized under the fol−
 lowing headings. Note that a heading will be omitted if it
 contains no additional information.

 Header Line

 The command’s name, function, and the date of last
 modification to the documentation.

 Usage

 A description of the syntax permitted on the command
 line. The notation used in this description is
 identical to that used in Section 1 of this manual.

 Description

 A detailed coverage of the capabilities and operation
 of the command.

 Examples

 A few short examples of the command.

 Files

 A list of the names of special files used by the com−
 mand.

 Messages

 A listing of important error messages or diagnostic
 information issued by the command.

 Bugs

 Known bugs in the operation of the command.

 See Also

 References to further information or related commands.

 − 1 −

 bmerge (5) −−− merge object code files into one file 01/03/83

 Usage

 bmerge {<object file>}

 Description

 ’Bmerge’ is a program which will take the object code files
 given as arguments, if any, and create a new object code
 file that is written to standard output. If you build your
 programs as separately compiled modules, with each module
 containing many subroutines/functions, you can use ’bmerge’
 to combine those modules into one object code file for buil−
 ding a library.

 ’Bmerge’ accepts directives from standard input to indicate
 the order and type of subprograms to be included in the
 resulting object code file; by default, no subprograms will
 be included if there is no input.

 The following may be included in the input stream to direct
 the creation of the object code file :

 input item meaning
 <name> include the named subprogram at the
 current point in the object code
 .rfl reset the "forced load" flag at this
 point
 .sfl set the "forced load" flag at this
 point

 A sample input stream would be :

 ave
 .sfl
 add
 sub
 mul
 .rfl
 div

 If the files specified in the argument list contain more
 than one occurrence of an entry point name (i.e., possibly
 different versions of the same subprogram), then the version
 which gets included depends on the order in which the files
 were specified in the command invocation. Multiple
 occurrences of an entry point name in the input to ’bmerge’
 causes inclusion of more than one version of the named sub−
 program, with the inclusion order being the reverse of the
 order of occurrence (last−in, first−out basis).

 Examples

 entry_names> bmerge ave.b ave_lib.b >new_ave.b
 files .b$ | change .b$ | bmerge [files .b$] >all_object.b

 bmerge (5) − 1 − bmerge (5)

 bmerge (5) −−− merge object code files into one file 01/03/83

 Messages

 "<name>: too many object files" when trying to merge too
 many object code files at the same time.
 "<name>: not found in object files" when trying to include a
 nonexistant routine.
 "bad object file..." for an ill−formatted object code file.
 "<name>: error copying object module" if the length of the
 routine in the resulting object code file is not of the
 same length as in the source file.
 "block size (<size>) exceeds buffer space" if the next block
 to be read from the input object code file is larger
 than the program’s file buffer.
 "<name>: extraneous END block" for object code files which
 have too many END blocks.

 various error messages from the dynamic storage routines

 Bugs

 Binary output is used to generate the resulting object code
 file. If standard output is the terminal, unpredictable
 results may be obtained because of the irrational behavior
 of binary I/O to the terminal.

 Internal procedures (procedures/functions within
 procedures/functions) in PL/1, Pascal, or PL/P modules if
 specified by name, will not be merged correctly.

 If a module has multiple entry points, only the first one is
 recognized.

 See Also

 bnames (5), brefs (5), ld (1), lorder (1)

 bmerge (5) − 2 − bmerge (5)

 bnames (5) −−− print entry point names in object files 01/03/83

 Usage

 bnames {<object file>}

 Description

 ’Bnames’ is a program which will open each of the files, if
 any, named as its arguments and print the names of the
 routines encountered on standard output. This program is
 useful for examining library files to see if the correct
 subroutines have been included.

 The following are the possible types of output :

 type meaning
 <name> name of a subprogram entry point
 .main main program entry point
 .data Fortran block data module
 .rfl a reset "force load" loader group
 .sfl a set "force load" loader group

 Examples

 bnames ave.b ave_lib.b
 bnames [files .b$] | find "%." −x >routine_names

 Messages

 "<name>: bad object file..." for an ill−formatted object
 code file.
 "block size (<integer>) exceeds buffer space" for files
 whose block size exceeds the program input buffer size.
 "<name>: extraneous END block" for superfluous END blocks in
 the object code file.

 Bugs

 If a module has multiple entry points, only the first one is
 recognized.

 See Also

 bmerge (5), brefs (5), ld (1), lorder (1)

 bnames (5) − 1 − bnames (5)

 brefs (5) −−− print caller−callee pairs in an object file 01/03/83

 Usage

 brefs { <object file> | −n }

 Description

 ’Brefs’ prints the precedence relationships between the
 entry points that are defined and/or referenced within the
 named object files. Each output line contains two entry
 point names; the first is the name of the calling routine
 ($MAIN for Fortran main programs or unnamed assembly
 language routines), and the second is the name of an exter−
 nal object referenced by that routine. The output from
 ’brefs’ is suitable for piping into ’tsort’ to determine the
 proper ordering for routines in a library.

 If the "−n" argument appears in the place of an object file
 name, ’brefs’ will obtain names of object files from its
 standard input. For more information on this syntax, see
 the entry for ’cat’ (1).

 Examples

 brefs ave.b ave_lib.b
 brefs lib.b | tsort | bmerge lib.b >lib

 Messages

 "<object file>: can’t open" if a non−existent or inacces−
 sible file is specified.
 "<object file>: bad object file" if something other than an
 object file is specified.
 "block size exceeds buffer space" if the object file is
 badly formatted.

 Bugs

 If a module has multiple entry points, only the last entry
 point is recognized.

 See Also

 bmerge (5), bnames (5), ld (1), lorder (1), tsort (1)

 brefs (5) − 1 − brefs (5)

 bs (5) −−− shell backstop program 02/25/82

 Usage

 bs

 Description

 ’Bs’ is a shell file that executes the program ’guess’ when
 a command is not found in a user’s search rule. ’Guess’ is
 a program that tries to find a command "close" to one that
 was mistyped. This shell file may be added to the end of a
 user’s search rule so that it can aid a fumble−fingered
 typist.

 Examples

 <<’bs’ should not normally be run from command level>>

 Bugs

 Because of search rule problems, ’bs’ will fail if a user
 does not have the current directory in his search rule.

 Locally supported.

 See Also

 bs1 (5), guess (5), mkclist (3)

 bs (5) − 1 − bs (5)

 bs1 (5) −−− shell backstop program 01/03/83

 Usage

 bs1

 Description

 ’Bs1’ is a shell file that executes the program ’guess’ when
 a command is not found in a user’s search rule. This
 program is identical to ’bs’ except that it calls ’guess’
 with an argument of "1" for <maxcost>. This significantly
 reduces the search time, but restricts the set of commands
 that ’guess’ will consider.

 Examples

 <<’bs1’ should not normally be run from command level>>

 Bugs

 Because of search rule problems, ’bs1’ will fail if a user
 does not have the current directory in his search rule.

 Locally supported.

 See Also

 bs (5), guess (5), mkclist (3)

 bs1 (5) − 1 − bs1 (5)

 bugfm (5) −−− format a bug report 01/03/83

 Usage

 bugfm

 Description

 ’Bugfm’ is not meant to be directly user−invoked; rather, it
 is a utility used by the ’bug’ command to solicit for bug
 report information such as the name of the reporter, the
 name of the command or subroutine which is suspected of hav−
 ing a bug, the name of an example file which generates an
 error with the named program, and a description of the
 error.

 The time, date, and login name of the bug reporter are
 inserted in the resulting bug report to allow report
 verification. The resulting bug report is sent to standard
 output.

 Examples

 << should not be invoked by the user >>

 See Also

 bug (3), raid (3)

 bugfm (5) − 1 − bugfm (5)

 bugn (5) −−− process the highest bug number 01/03/83

 Usage

 bugn [−i]

 Description

 ’Bugn’ is not intended to be user−invoked; rather, it is a
 utility used by the ’bug’ command to aid in bug report
 generation. It determines what the highest bug number is so
 far; if the optional argument "−i" is specified, it
 increments the bug number and replaces the old highest bug
 number with the new one. In either case, it prints the
 resulting bug number on standard output.

 Examples

 << not to be invoked by the user >>

 Files

 =bug=/$ to store the current highest bug number; use of the
 "−i" option causes this file to modified.

 Messages

 "Usage: bugn ..." for improper calling sequence

 Bugs

 Will not handle more than 999 concurrent bug reports.

 See Also

 bug (3), raid (3)

 bugn (5) − 1 − bugn (5)

 c1 (5) −−− C compiler front end 10/10/84

 | Usage

 | c1 [−afuy] { −D<name>[=<value>] } { −I<dir> } { <file> }

 | Description

 | ’C1’ is a classical recursive−descent compiler for the C
 | programming language, performing lexical analysis,
 | preprocessing and parsing. ’C1’ produces an "intermediate
 | form" which can be used by the virtual code generator
 | (’vcg’) to produce 64V−mode relocatable object code, or PMA.
 | ’C1’ produces three files: "<file>.ct1" contains entry
 | points, "<file>.ct2" contains external definitions, and
 | "<file>.ct3" contains the intermediate form.

 | The following options are available:

 | −a Abort all active shell programs if any errors were
 | encountered during processing. This option is
 | useful in shell programs like ’ccl’ that wish to
 | inhibit compilation and loading if processing
 | failed. By default, this option is not selected;
 | that is, errors in processing do not terminate
 | active shell programs.

 | −f Suppress automatic inclusion of the standard
 | definitions file. Macro and common block
 | definitions for the C Standard I/O Library and for
 | interfacing with the Subsystem reside in the file
 | "=cdefs=". ’C1’ will process these definitions
 | automatically, unless the "−f" option is
 | specified.

 | −u Reserved.

 | −y Check for potential problems, e.g. type mis−
 | matches. If this option is selected, messages are
 | output in "<file>.ck".

 | −D Defines the identifier <name> with optional
 | <value> for program internal use (maximum of 10).

 | −I Specifies a directory where include files reside
 | (maximum of 10). All "−I" directories are sear−
 | ched after the current directory and before
 | "=incl=".

 | NOTE: This command is not meant to be directly invoked by
 | the user. Use one of the compiler interludes, ’cc’, ’ccl’,
 | ’ucc’, or ’compile’.

 | Examples

 | c1 file.c

 c1 (5) − 1 − c1 (5)

 c1 (5) −−− C compiler front end 10/10/84

 | c1 prog.c −af

 | Messages

 | Numerous and self−explanatory.

 | Bugs

 | Several known compiler bugs exist. See the User’s Guide for
 | the Georgia Tech C Compiler.

 | See Also

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler. cc (1), ccl (1), compile
 | (1), ucc (1), vcg (1), User’s Guide for the Georgia Tech C
 | Compiler

 c1 (5) − 2 − c1 (5)

 cck1 (5) −−− First phase of C program checker 10/10/84

 | Usage

 | cck1

 | Description

 | ’Cck1’ is the first phase of the UNIX (tm) ’lint’ like
 | facility provided by the Georgia Tech Software Tools C com−
 | piler. This program is normally not called directly by the
 | user, but instead via one of the C compiler interludes, with
 | the ’−y’ option.

 | ’Cck1’ reads a ’.ck’ file on its first standard input, and
 | produces output which should be sorted and passed on to the
 | second phase, ’cck2’.

 | The ’.ck’ file is produced automatically by ’c1’ when the
 | ’−y’ option is passed on to it from one of the compiler
 | interludes.

 | Examples

 | prog.ck> cck1 | sort | cck2

 | Files

 | ?*.ck file output by ’c1’ with the ’−y’ option, used as
 | input to ’cck1’.

 | Messages

 | "Too many nesting levels"

 | "Nesting stack overflow"

 | Bugs

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | cc (1), ccl (1), ucc (1), c1 (5), cck2 (5), User’s Guide to
 | the Georgia Tech C Compiler

 cck1 (5) − 1 − cck1 (5)

 cck2 (5) −−− Second phase of C program checker 10/10/84

 | Usage

 | cck2

 | Description

 | ’Cck2’ is the second phase of the UNIX (tm) ’lint’ like
 | facility provided by the Georgia Tech Software Tools C com−
 | piler. This program is normally not called directly by the
 | user, but instead via one of the C compiler interludes, with
 | the ’−y’ option.

 | ’Cck2’ reads the (hopefully) sorted output of ’cck1’, the
 | first phase of the C program checker. It then prints mes−
 | sages detailing possible syntactic and semantic errors in
 | the given C program.

 | Examples

 | prog.ck> cck1 | sort | cck2

 | Files

 | ?*.ck file output by ’c1’ with the ’−y’ option, used as
 | input to ’cck1’.

 | Messages

 | Numerous and self explanatory.

 | Bugs

 | This program is only available to licensees of Version 2.0
 | of the Georgia Tech C Compiler.

 | See Also

 | cc (1), ccl (1), ucc (1), c1 (5), cck1 (5), User’s Guide to
 | the Georgia Tech C Compiler

 cck2 (5) − 1 − cck2 (5)

 csv (5) −−− convert shell variables to new format 09/18/84

 | Usage

 | csv

 | Description

 | ’Csv’ is a command for system administrators to ease the
 | change when bringing up revision 9 of the Software Tools
 | Subsystem. The shell variables save file format has changed
 | at this revision and this command attempts to convert the
 | variables files mechanically. ’Csv’ accepts a list of user
 | names on its first standard input port, attempts to open the
 | corresponding variables file (hopefully
 | "=vars=/<user_name>/.vars"), and changes the special Sub−
 | system character mnemonics for the variables "_eof",
 | "_erase", "_escape", "_kill", "_newline", and "_retype".
 | The new shell variables are copied into a temporary file,
 | which is then used to overwrite the user’s permanent
 | variables file.

 | This command is best run on an empty system because any
 | users who are logged in during this execution will have
 | their variables changed, but when they log out they will
 | overwrite any changes that have been made. Also, the system
 | administrator will have to change his variables manually
 | because when he logs out he will overwrite any changes
 | already made. The easiest way to execute this command is
 | probably to list the files under "=vars=", remove any non−
 | user files, and pipe the resulting list into ’csv’.

 | Examples

 | valid_users> csv
 | lf −c =vars= | =ebin=/csv

 | Messages

 | Self explanatory.

 | Files

 | =temp=/?* =vars=/<user_name>/.vars

 | Bugs

 | Could probably be a little more intelligent.

 | See Also

 | User’s Guide for the Software Tools Subsystem Command

 csv (5) − 1 − csv (5)

 csv (5) −−− convert shell variables to new format 09/18/84

 | Interpreter, Software Tools Subsystem Manager’s Guide

 csv (5) − 2 − csv (5)

 cvusr (5) −−− convert pre−Version 9 user list to Version 9 format 09/21/84

 | Usage

 | cvusr <old_userlist> <new_userlist>

 | Description

 | ’Cvusr’ is a simple shell script that takes two file names
 | as arguments, the old, pre−Version 9 user list, and the new
 | user list to be created. It simply pads six−character login
 | names with blanks to be 32 characters long. It should be
 | run once, by the system administrator, when the new Sub−
 | system is installed. It is not needed at sites whose first
 | edition of the Subsystem was Version 9.

 | Examples

 | =ebin=/cvusr //old_extra/users //extra/users

 | Messages

 | "Usage: ..." if called improperly.
 | "old user list is new user list!!" if both arguments are
 | identical.

 | Bugs

 | Will create a strange user list if any of the old login
 | names are longer than six characters.

 | See Also

 | Software Tools Subsystem Manager’s Guide

 cvusr (5) − 1 − cvusr (5)

 guess (5) −−− try to guess what command the user means 01/03/83

 Usage

 guess <command> [<maxlevels>]

 Description

 ’Guess’ is a program which tries to discern the correct com−
 mand when a misspelled command is entered. The program
 works by computing a "distance" between a misspelled command
 and commands in a predefined list. If any commands are
 found with a distance less than a predefined tolerance,
 ’guess’ will present for selection all commands in the group
 that have the lowest distance. If this list contains only
 one command, it will ask for verification that it selected
 the right command. If this list contains more than one com−
 mand, it prefaces each command by a number, and asks for the
 correct command to be selected by number. In either case, a
 response of a single carriage return means "don’t execute
 anything." If the list has more than 10 commands in the
 group with lowest distance, ’guess’ responds as the Sub−
 system normally does: "<command>: not found".

 ’Guess’ searches through the file "=extra=/clist" which
 | contains the system internal commands, commands from
 | "=lbin=" and "=bin=". The user can define his own list to
 include his personal command directory by running the
 program ’mkclist’, and this will create a file in the user’s
 "bin" directory "=ubin=/clist".

 Files

 =ubin=/clist
 =extra=/clist

 Bugs

 ’Guess’ will not consider commands that are accessible from
 the user’s search rule, but not in one of the "clist" files.

 Examples

 <<’guess’ should not normally be run from command level>>

 Bugs

 Locally supported.

 See Also

 bs (5), bs1 (5), mkclist (3)

 guess (5) − 1 − guess (5)

 mkcl (5) −−− generate a command list file for guess 01/03/83

 Usage

 mkcl [−s]

 Description

 ’Mkcl’ is not intended to be user−invoked; rather, it is a
 utility used by the ’mkclist’ command to build a list of
 commands in a compressed binary format for the use of the
 ’guess’ command. ’Mkcl’ reads a list of command names from
 standard input, one name per line, and builds a binary out−
 put file. This binary output file contains the command
 names ordered by name length first and then alphabetical
 order; i.e., all the one−character commands come first in
 alphabetical order, then the two−character commands in
 alphabetical order, etc. File marks are used to allow fast
 locates of a command within the file.

 If the optional argument "−s" is specified, then ’mkcl’
 generates a new system command file; otherwise, it generates
 a new user command file. Because binary output is used, the
 output of ’mkcl’ should never be sent to the terminal, but
 to a file or to a pipe for further processing.

 Examples

 lf −c =bin= =lbin= =ebin= | sort | uniq | mkcl −s
 lf −c =bin= =lbin= =ebin= =ubin= | sort | uniq | mkcl

 Files

 creates =extra=/clist if a system command list is desired.
 creates =ubin=/clist if a per−user command list is desired.

 Messages

 "Usage: mkcl ..." if invalid arguments are specified.
 "Can’t create clist file" if trying to create a system com−
 mand file from a nonowner account to the =extra= direc−
 tory, or if trying to create a private user command
 list without having the directory =ubin= defined.
 "Overflow!!!!!!!! arggggg..." if there are more commands
 than can be handled in the program’s data area.
 "writef returned an error" if the program could not write
 the file header of file marks.
 "writef died in loop" if the program did not finish writing
 the command names to the command file.
 "writef died on last writef" if the program could not update
 the file header with new information after writing out
 the commands.
 "seekf returned error" if the program could not rewind the
 command file.

 mkcl (5) − 1 − mkcl (5)

 mkcl (5) −−− generate a command list file for guess 01/03/83

 Bugs

 If there are more than 600 commands or more than 4096
 characters total in all the command names, table overflow
 occurs.

 It could be hazardous to your terminal’s health to copy the
 resulting command list file, since there may be some
 terminal control sequences embedded within the binary file.

 Locally supported.

 See Also

 bs (5), bs1 (5), guess (5), mkclist (3)

 mkcl (5) − 2 − mkcl (5)

 ring (5) −−− network communication server 09/18/84

 | Usage

 | ring

 | Description

 | ’Ring’ is a network communication server for Prime com−
 | puters. When run as a privileged process on a node of the
 | ringnet, it figures out who it is and who all the other
 | nodes are, and then procedes to connect itself in a ring
 | with its predecessor and successor using virtual circuits.
 | Once connected, it will (currently) accept requests from
 | users to execute commands on a legal remote node and pass
 | the status back to the user. It also ensures that the
 | system time (time of day, and date) is consistent among all
 | the machines in the network.

 | ’Ring’ is unfinished but has many possibilities. The plans
 | before the SWT project ended and its creator found another
 | job were to set up a method for load sharing among computers
 | in a network under the Software Tools Subsystem. The idea
 | was to make a "/dev/net" device that would have its port
 | number returned by a port server (’ring’, or course) on the
 | remote system. A shell would be cranked up on the remote
 | system who’s standard input would be a NET device. The
 | source of the NET device would be the system where the user
 | actually resided. This would allow the user (only under the
 | Subsystem) to communicate with his process remotely.

 | Messages

 | Numerous. Sorry, but see the source code.

 | Bugs

 | Simply unfinished. Has tremendous possibilities.

 | See Also

 | broadcast (3), execute (3), setime (3), Ring −− The Software
 | Tools Subsystem Network Utility

 ring (5) − 1 − ring (5)

 snplnk (5) −−− snap shared library dynamic links 09/10/84

 | Usage

 | x snplnk 1/<segment> [2/1]

 | Description

 | ’Snplnk’ is a Primos−executable routine that scans a given
 | segment looking for dynamic library links (DYNT’s) and for−
 | ces the Primos ring 3 pointer fault handler to resolve the
 | address. After ’snplnk’ has been run on a segment, the seg−
 | ment may be shared non−writable if it contains pure code.
 | It is actually meant to be run from Primos during library
 | initialization rather than from SWT. <Segment> is the
 | desired segment to snap as an octal number, and the "2/1"
 | causes ’snplnk’ to print the name of the routine it is about
 | to attempt to resolve along with the location of the pointer
 | in the segment.

 | To use ’snplnk’, the information should be installed in the
 | segment and the segment should then be left writable.
 | ’Snplnk’ is then run on the segment and the segment can then
 | be made non−writable. As an example, Georgia Tech has a
 | file that is run at boot time called "swt.share.comi" that
 | installs the SWT subsystem. The file contains:

 | /* SWT.SHARE.COMI, Share Software Tools Subsystem
 | /* Last modified: 06/11/84
 |
 | OPR 1
 | SHARE SYSTEM>SW2035 2035 700 /* Library
 | SHARE SYSTEM>SH2030 2030 700 /* Shell library
 | SHARE SYSTEM>ST2030 2030 700 /* SWT Initialization program
 | SHARE SYSTEM>SE2031 2031 700 /* Screen Editor
 | R SYSTEM>SW4000 1/1 /* Install the Library
 | R SYSTEM>SH4000 1/5 /* Shell library
 | R SYSTEM>INITSWT
 |
 | SNPLNK 1/2030; SHARE 2030 600 /* Snap links and make the
 | SNPLNK 1/2031; SHARE 2031 600 /* segments not writeable
 | SNPLNK 1/2035; SHARE 2035 600
 | OPR 0
 |
 | CO −CONTINUE 6
 | CO −END

 | The command "SNPLNK 1/2035; SHARE 2035 600" first snaps all
 | the dynamic links in segment 2035 (the shared standard
 | library) and then makes the segment non−writable. This
 | prevents a user from altering the segment whether malicious
 | or otherwise.

 | Messages

 | "A register setting missing" for missing <segment>

 snplnk (5) − 1 − snplnk (5)

 snplnk (5) −−− snap shared library dynamic links 09/10/84

 | "Segment range is 2030−2037" for a segment out of that range

 | Bugs

 | Should be written to use reasonable argument handling.

 | Gets a pointer fault when trying to snap a link to a routine
 | that does not exist.

 | The program attempts to be as intelligent as possible about
 | what a link is and is not but mistakes can theoretically
 | happen.

 snplnk (5) − 2 − snplnk (5)

 sph (5) −−− system phantom processor 08/30/84

 | Usage

 | x sph <primos tree> [−u <user>] [−p <project>] [−g {<groups>}]
 | [−v <privilege>]

 | Description

 | ’Sph’ is a SWT supplied command that enables the system
 | administrator to create phantoms with certain attributes
 | (name, project, groups, or special phantom privileges)
 | specified. It can be run only from the system console or,
 | at Georgia Tech, by a user that has the .GURU group
 | associated with his job. ’Sph’ is a primos command, so if
 | it is to be run from the subsystem, the ’x’ command must be
 | used to pass it directly to primos, or it must be called
 | through the ’sys$$’ subroutine.

 | The required argument <primos tree> is the primos treename
 | of the file to phantom. This file is a Primos command file,
 | not a SWT shell file or executable binary. All the remain−
 | ing arguments are optional and, except for the ’−v’ option,
 | default to the attributes that the caller currently has.
 | The ’−u’ specifies the user name of the process to create
 | and the ’−p’ option specifies the project. The ’−g’ option
 | is followed by zero or more groups that the phantom is to
 | have. The group names should not be preceded by a ’.’
 | (which is the Primos standard) because the ’sph’ command
 | will include them automatically. The ’−v’ option allows the
 | caller to set the privilege word (prvl) in the Primos inter−
 | nal databases for the process privilege. Currently, the
 | only useful values for this option are zero and one. Zero
 | prevents the phantomed process from being able to execute
 | ’sph’ and one allows the programs to use ’sph’.

 | Messages

 | "Can’t attach to <primos tree> (SPH)" for a non−attachable
 | directory.

 | "Phantom is user <pid> on <date> at <time>" for a successful
 | phantom.

 | Any Primos standard error message for any other exception
 | conditions (by calling Primos ERRPR$).

 | Examples

 | x sph "system>cron.comi" −u cron −p lab −g guru −v 1
 | x sph "jeff>blerf" −u jeff −p blivnoxx −g

 sph (5) − 1 − sph (5)

 sph (5) −−− system phantom processor 08/30/84

 | Bugs

 | Locally supported until Prime supports EPF’s and the SPAWN$
 | subroutine call.

 | Should probably be written for SWT, also.

 | See Also

 | cron (3)

 sph (5) − 2 − sph (5)

 | Section 6 − Low Level Library Subprograms

 This section is designed to give the user a working
 knowledge of the low level functions and subroutines. This
 information is supplied for informative purposes only, since the
 user should not invoke these routines directly under normal cir−
 | cumstances; appropriate routines in sections two or four should
 | be invoked instead. Each routine has its own entry organized
 under the following headings. Note that empty entries are omit−
 ted entirely.

 Header Line

 The subprogram’s name, a synopsis of its purpose, and
 the date of last modification to its documentation.

 Calling Information

 The subprogram declaration and the declarations of its
 arguments, as well as the name of the library in which
 it can be found.

 Function

 A description of the purpose of the routine, along with
 the interpretations of its arguments and the returned
 value (if any).

 Implementation

 A short discussion of the strategy used to implement
 the routine, abstracted from the source code.

 Arguments Modified

 Names of those arguments modified by the routine.

 Calls

 Other subprograms called by this routine.

 Bugs

 Known problems with the use of the routine.

 See Also

 References to further information or related routines.

 − 1 −

 at$swt (6) −−− Subsystem interlude to Primos ATCH$$ 08/30/84

 | Calling Information

 subroutine at$swt (name, namel, ldisk, passwd, key, code)
 character name (MAXPATH)
 packed_char passwd (3)
 integer namel, ldisk, key, code

 Library: vswtlb (standard Subsystem library)

 Function

 ’At$swt’ is the Subsystem interlude to the Primos ATCH$$
 subroutine. It allows the program to attach to another
 directory, and takes the same arguments as ATCH$$. If there
 is an error in trying to reach the directory, ’at$swt’
 returns E$BPAS in ’code’, instead of leaving the user in
 Primos.

 ’Name’ is the name of the directory to attach to, ’namel’ is
 the length of ’name’, ’ldisk’ is the number of the logical
 disk to be searched to find the given directory, ’passwd’ is
 the password of the directory (the characters are packed two
 per word), ’key’ is the composition of the ’REFERENCE’ and
 ’SETHOME’ subkeys (see the Primos Subroutines Reference
 Guide, PDR3621), and ’code’ is an integer variable which
 contains the return code.

 Implementation

 ’At$swt’ first sets up an on−unit for the "BAD_PASSWORD$"
 condition before it tries to call the Primos ATCH$$ routine.
 It calls that Primos routine with all of its arguments
 (which are not processed in any way), and returns normally
 if there was no error in attaching to the directory. Any
 errors cause an error message to be issued and control is
 returned to the calling procedure.

 Arguments Modified

 code

 Calls

 | Primos atch$$, Primos mkonu$, Primos pl1$nl

 | Bugs

 | Should be converted to use the new Primos ’at$?*’ routines.

 at$swt (6) − 1 − at$swt (6)

 at$swt (6) −−− Subsystem interlude to Primos ATCH$$ 08/30/84

 See Also

 follow (2), getto (2), tscan$ (6), Primos atch$$

 at$swt (6) − 2 − at$swt (6)

 bponu$ (6) −−− on−unit for BAD_PASSWORD$ condition 03/22/82

 Calling Information

 subroutine bponu$ (cp)
 longint cp

 Library: vswtlb (standard Subsystem library)

 Function

 ’Bponu$’ is an on−unit handler for the "BAD_PASSWORD$" con−
 dition. It is used by ’getto’ to catch directory attaches
 which fail because of a bad password.

 ’Bponu$’ should never be called by the user as such; it is
 invoked when the on−unit mechanism detects the
 "BAD_PASSWORD$" condition.

 Implementation

 ’Bponu$’ calls the Primos PL1$NL routine with the "bad pass−
 word label" (i.e., address of the password error return
 location) to execute a "nonlocal goto" to that routine.

 Calls

 Primos pl1$nl

 See Also

 getto (2), Primos mkonu$

 bponu$ (6) − 1 − bponu$ (6)

 c$end (6) −−− clean up after statement count run 03/25/82

 Calling Information

 subroutine c$end

 Library: vswtlb (standard Subsystem library)

 Function

 ’C$end’ is called from Ratfor programs that have been
 processed with the "−c" (statement count) option. Calls to
 ’c$end’ are planted before each ’stop’ statement in the
 program.

 ’C$end’ simply writes out the statement count array to the
 file "_st_count" for later processing.

 Implementation

 The statement count array in common block ’c$stc’ is written
 (by repeated calls to ’print’) to the file "_st_count".

 Calls

 create, cant, print, close

 See Also

 c$incr (6), rp (1)

 c$end (6) − 1 − c$end (6)

 c$incr (6) −−− increment count for a given statement 03/25/82

 Calling Information

 subroutine c$incr (stmt)
 integer stmt

 Library: vswtlb (standard Subsystem library)

 Function

 ’C$incr’ is called from Ratfor programs that have been
 processed with the "−c" (statement count) option. Calls to
 ’c$incr’ are planted before each executable statement in the
 program to keep track of the number of times the correspond−
 ing statement was executed.

 The sole argument is the line number (in the Ratfor source
 code) of the line containing the statement being executed.
 Each call to ’c$incr’ with a given line number as argument
 causes the count for that line to be incremented by one.

 Implementation

 A common block (’c$stc’), created by Ratfor, contains an
 array of statement counts indexed by line number. ’C$incr’
 simply increments the appropriate element of the array.

 See Also

 c$end (6), rp (1)

 c$incr (6) − 1 − c$incr (6)

 c$init (6) −−− initialize for a statement count run 04/06/82

 Calling Information

 subroutine c$init

 Function

 ’C$init’ is called at the beginning of the main program in
 Ratfor programs that have been processed with the "−c"
 (statement count) option of ’rp’. It initializes the
 statement count array for statement count processing.

 ’C$init’ is inserted into the Fortran output as inline code,
 rather than being referenced from the standard Subsystem
 library. As such, it can never be accessed by the user
 unless the "−c" option is specified (even then, it should
 not be called by the user, since the statement counts will
 be erroneously modified).

 Implementation

 A Fortran do loop is used to initialize all of the elements
 in the statement count array to zero.

 See Also

 c$end (6), c$incr (6), rp (1)

 c$init (6) − 1 − c$init (6)

 call$$ (6) −−− call a P300, SEG, or EPF runfile 09/11/84

 | Calling Information

 integer function call$$ (name, length[, onunit])
 integer name (16), length
 external onunit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Call$$’ takes the packed name and name length of a P300
 | format run file, a SEG segment directory, or EPF run file.
 | First ’call$$’ attempts to restore the file with a call to
 | the Primos routine REST$$. If REST$$ returns unsuccess−
 | fully, ’call$$’ attempts to load the file as a SEG run file
 | through a call to ’ldseg$’. If ’ldseg$’ returns because the
 | file was not a segment directory, R$RUN is called with the
 | restore option to attempt to load the file as an EPF. If
 | all attempts to load the file fail, ’call$$’ returns ERR.
 ’Onunit’, if specified, indicates that the shell’s ANY$
 onunit is to be created.

 ’Call$$’ returns (with value OK) if and only if the program
 it calls exits by calling ’swt’ or does a procedure return
 from its main procedure. Otherwise, control goes wherever
 the called program sends it.

 Before executing the run file, ’call$$’ zeroes out the P300
 fault vector in segment 4000, zeroes the program error
 return code, calls ’iofl$’ to mark which Subsystem file
 units are open, and saves the stack base register in the
 Subsystem common block for use by ’rtn$$’.

 Implementation

 ’Call$$’ first zeroes the program error return code and the
 P300 fault vector. It then tries to load the run file in
 memory with a call to REST$$. If there is an error on the
 restore, ’call$$’ calls ’ldseg$’ to load the file as a SEG
 | run file. If ’ldseg$’ fails because the file is not a seg−
 | ment directory, R$RUN is called to restore the file in
 | memory as an EPF. If R$RUN returns an error, ’call$$’
 | returns ERR.

 | For P300 run files and SEG segment directories, if the
 | program just loaded begins in 64V mode, ’call$$’ executes a
 PCL instruction to the address of its main entry control
 block. Otherwise, ’call$$’ builds an R or S mode entry
 control block for the program in the stack. After setting
 up an onunit for ANY$ via a call to the Primos routine
 MKONU$ (if the user specified a third argument), ’call$$’
 executes a PCL instruction to the correct entry control
 | block. If the file is an EPF run file, the onunit for ANY$

 call$$ (6) − 1 − call$$ (6)

 call$$ (6) −−− call a P300, SEG, or EPF runfile 09/11/84

 | is still set (if requested), but then R$INVK is called to
 | start execution of the file.

 When the called program returns directly to ’call$$’ from
 ’rtn$$’, ’call$$’ calls ’cof$’ to close all files opened by
 the program, restores the user’s terminal configuration word
 (saving the output suppressed bit) via calls to Primos
 DUPLX$, restores the previous saved stack base register and
 returns with the value OK.

 Calls

 | cof$, iofl$, ldseg$, move$, Primos break$, Primos duplx$,
 | Primos mkonu$, Primos rest$$, Primos rvonu$, Primos r$run,
 | Primos r$invk

 Bugs

 Will destroy the current executing memory image if the
 | object must be loaded at the same addresses.

 | The ability to execute EPF’s is not really supported until
 | Prime decides to support EPF’s.

 See Also

 rtn$$ (6), swt (2)

 call$$ (6) − 2 − call$$ (6)

 chunk$ (6) −−− read one chunk of a SEG runfile 01/05/83

 Calling Information

 integer function chunk$ (bp, seg, fd)
 longint bp
 integer seg, fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Chunk$’ expects the segment directory to be open on ’fd’ (a
 Primos file descriptor). It opens the file in the segment
 directory at position ’seg + 2’ and reads 2048 words into
 memory at position pointed to by ’bp’. The function return
 is OK if the read was successful, and ERR if any errors
 occur.

 Implementation

 | Straightforward through calls to the Primos routines SGDR$$,
 SRCH$$, and PRWF$$.

 Calls

 Primos sgdr$$, Primos srch$$, Primos prwf$$

 See Also

 ldseg$ (6), zmem$ (6)

 chunk$ (6) − 1 − chunk$ (6)

 cof$ (6) −−− close files opened by the last user program 03/25/82

 Calling Information

 subroutine cof$ (state)
 integer state (MAXFILESTATE)

 Library: vswtlb (standard Subsystem library)

 Function

 When called, ’cof$’ closes all open files that were opened
 after the last call to ’iofl$’. ’Cof$’ also resets the
 terminal input buffer pointer and character count in the
 Subsystem common block.

 Implementation

 ’Cof$’ checks the flag word of each of the file descriptors
 in ’state’ up to the ERR marker. If the file is currently
 open, ’cof$’ calls ’close’ to close it.

 Next, ’cof$’ skips the ERR marker, and calls the Primos
 routine SRCH$$ to close all of the Primos files indicated by
 the second list in ’state’ (up to the next ERR marker).

 Lastly, ’cof$’ resets the terminal input buffer pointer to 1
 and the terminal buffer character count to 0.

 Calls

 close, Primos srch$$

 See Also

 iofl$ (6), close (2), open (2)

 cof$ (6) − 1 − cof$ (6)

 cpfil$ (6) −−− copy one open file to another 03/25/82

 Calling Information

 subroutine cpfil$ (ifd, ofd, rc)
 integer ifd, ofd, rc

 Library: vswtlb (standard Subsystem library)

 Function

 ’Cpfil$’ expects ’ifd’ to contain the Primos file unit num−
 ber of a file open for reading, and ’ofd’ to contain the
 Primos file unit number of a file open for writing.
 ’Cpfil$’ attempts to copy the contents of the input file to
 the output file. If any condition arises that prevents com−
 pletion of the copy, ’cpfil$’ sets ’rc’ to ERR; otherwise,
 it sets it to OK. On return, both files are left open and
 positioned to the end.

 Implementation

 ’Cpfil$’ makes repeated calls to Primos PRWF$$ with a large
 buffer to quickly move the data between the files.

 Arguments Modified

 rc

 Calls

 Primos prwf$$

 See Also

 cpseg$ (6), filcpy (2), fcopy (2)

 cpfil$ (6) − 1 − cpfil$ (6)

 cpseg$ (6) −−− copy one open segment directory to another 01/05/83

 Calling Information

 subroutine cpseg$ (ifd, ofd, rc)
 integer ifd, ofd, rc

 Library: vswtlb (standard Subsystem library)

 Function

 ’Cpseg$’ expects ’ifd’ to contain the Primos file unit of a
 segment directory open for reading and ’ofd’ to contain the
 Primos file unit of an empty segment directory open for
 writing. ’Cpseg$’ attempts to make an exact copy of the
 input segment directory in the output segment directory. If
 it is successful, it sets ’rc’ to OK; otherwise, it sets
 ’rc’ to ERR.

 Implementation

 ’Cpseg$’ scans the open segment directory with the Primos
 routine SGDR$$, calling ’cpfil$’ to copy files, and calling
 itself recursively to copy nested segment directories.

 Arguments Modified

 rc

 Calls

 cpfil$, cpseg$, Primos sgdr$$, Primos srch$$

 See Also

 cpfil$ (6), filcpy (2)

 cpseg$ (6) − 1 − cpseg$ (6)

 dgetl$ (6) −−− get a line from a disk file 01/05/83

 Calling Information

 integer function dgetl$ (line, length, fd)
 integer length
 character line (length)
 file_descriptor_struct fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dgetl$’ is an internal Subsystem routine that performs the
 function of ’getlin’ for disk files only. The first
 argument specifies a string to receive the line read; the
 second argument is the length of the longest string that
 will fit in the receiving buffer; the third is a pointer to
 the appropriate file descriptor structure in the Subsystem
 common area. ’Dgetl$’ returns the number of characters
 placed in the receiving buffer (excluding EOS) if the read
 was successful; EOF otherwise. ’Dgetl$’ is not intended for
 general use; it is not protected from user error, and may
 cause termination of the user’s program if used incorrectly.
 It should always be referenced through ’getlin’.

 Implementation

 ’Dgetl$’ (which is written in PMA, incidentally) shortcalls
 an internal routine that calls the Primos routine PRWF$$ to
 read a buffer full of data from the disk file selected by
 the file descriptor. This buffer is then unpacked into the
 user’s receiving string. During the unpack and copy
 operation, compressed blanks (encoded as an RHT (relative
 horizontal tab) followed by a blank count) are converted
 into the proper number of ordinary blanks. The copy opera−
 tion ends when a NEWLINE is encountered or when the user’s
 buffer is full.

 Arguments Modified

 line

 Calls

 Primos prwf$$

 See Also

 getlin (2), tgetl$ (6), putlin (2), dputl$ (6), tputl$ (6)

 dgetl$ (6) − 1 − dgetl$ (6)

 dmark$ (6) −−− return the position of a disk file 03/25/82

 Calling Information

 file_mark function dmark$ (f)
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dmark$’ performs the function of ’markf’ for disk files.
 The single argument is the file descriptor of a disk file;
 the function return is the current file pointer value for
 the selected file. ERR is returned if the position of the
 file could not be determined.

 As with all Subsystem routines whose names contain the dol−
 lar sign ($), ’dmark$’ is not intended for general use.
 ’Markf’ is normally used to provide the required func−
 tionality.

 Implementation

 The Primos routine PRWF$$ is used to return the current file
 position, which is in units of words past the beginning of
 file. If for any reason PRWF$$ cannot determine the
 position, ’dmark$’ returns ERR.

 Calls

 Primos prwf$$

 See Also

 markf (2), tmark$ (6), seekf (2)

 dmark$ (6) − 1 − dmark$ (6)

 dmpcm$ (6) −−− dump Subsystem common areas 02/24/82

 Calling Information

 subroutine dmpcm$ (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dmpcm$’ outputs the contents of the Subsystem’s common
 blocks in a printable format. Unprintable characters are
 mapped into a mnemonic format, and output is appropriately
 titled.

 ’Fd’ is the file descriptor of the file unit which should
 receive the information.

 Implementation

 The common area values which may be unprintable are mapped
 into mnemonic strings by calls to the routine ’ctomn’.
 Then, the value of each variable in the common area is
 printed, with the appropriate headings.

 Calls

 ctomn, print

 See Also

 dump (1)

 dmpcm$ (6) − 1 − dmpcm$ (6)

 dmpfd$ (6) −−− dump the contents of a file descriptor 01/05/83

 Calling Information

 subroutine dmpfd$ (fd, ofd)
 file_des fd, ofd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dmpfd$’ prints all information that is of importance to the
 user about file descriptor ’fd’ on file unit ’ofd’. Among
 the items of information produced are the file name (if
 obtainable), file position (if a disk file), file buffer
 information, the most recent file system return code, and
 the contents of the file buffer (if a disk file). Each of
 these pieces of information is displayed with the
 appropriate heading.

 Implementation

 ’Gfnam$’ is called to obtain the name of the file associated
 with the descriptor. If the name could be obtained, it is
 printed out. Other file unit information is printed, in the
 proper format, from information stored in the Subsystem com−
 mon areas. The current position in a disk file is obtained
 by calling the Primos routine PRWF$$.

 Calls

 gfnam$, mapsu, print, putch, putlin, Primos prwf$$

 See Also

 dump (1)

 dmpfd$ (6) − 1 − dmpfd$ (6)

 dopen$ (6) −−− open a disk file 07/04/83

 | Calling Information

 integer function dopen$ (path, fd, mode[, typ[, limit]])
 character path (ARB)
 integer mode, typ, limit
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dopen$’ is an internal Subsystem routine that performs the
 function of ’open’ for disk files only. The first argument
 is the pathname of the file to be opened; it must be an EOS
 terminated string (i.e. dopen$(’/dir/file1’s....). The
 second argument is the file descriptor assigned to the file
 in ’open’. The third argument is the mode, READ, WRITE or
 READWRITE. The fourth argument is optional. It specifies
 the type of the file. The fifth argument is optional; it
 specifies the number of times to retry the open if the file
 is in use. ’Dopen$’ returns the value of ’fd’ if the
 attempt to open was successful; ERR if the attempt failed.
 The user is always left in the home directory after an
 attempt to open.

 By default, ’dopen$’ returns a file descriptor to a
 sequential access method (SAM) file. If creating a direct
 access method file (DAM) is desired, the ’mode’ argument may
 be ORed with the KNDAM file key (i.e., ’mode’ can be "READ−
 WRITE+KNDAM" to create a DAM file opened for reading or
 writing). The constant KNDAM is contained in the
 "PRIMOS_KEYS" include file.

 Implementation

 ’Dopen$’ calls ’getto’ to reach the UFD containing the
 desired file and pack the filename into an array suitable
 for use with Primos routines. If ’getto’ is successful, the
 Primos subroutine SRCH$$ is called to open the file. If
 | either ’getto’ or SRCH$$ fails, Primos AT$HOM is called to
 | return the user to the home directory, and ERR is returned
 as the function value of ’dopen$’.

 Arguments Modified

 typ

 Calls

 | getto, Primos at$hom, Primos missin, Primos srch$$, Primos
 | sleep$

 dopen$ (6) − 1 − dopen$ (6)

 dopen$ (6) −−− open a disk file 07/04/83

 See Also

 open (2)

 dopen$ (6) − 2 − dopen$ (6)

 dputl$ (6) −−− put a line on a disk file 03/25/82

 Calling Information

 integer function dputl$ (line, fd)
 character line (ARB)
 file_descriptor_struct fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dputl$’ is called by ’putlin’ to write a line on a disk
 file. The first argument is an EOS−terminated string to be
 placed on the disk file; the second argument is the file
 descriptor of the file on which the string is to be written.
 The function return is OK for a successful call, ERR other−
 wise. ’Dputl$’ is not protected from user error, and so
 should not be used except as it is called by ’putlin’.

 Implementation

 ’Dputl$’ maintains a count of blanks to be used for file
 compression. When a non−blank character is encountered in
 the string, any blanks accumulated are translated to a
 relative horizontal tab (RHT) and a blank count, and the
 non−blank character is output. Characters placed in the
 disk buffer are output by a shortcalled routine internal to
 ’dputl$’; this routine calls the Primos routine PRWF$$ to do
 the actual data transfer.

 Calls

 Primos prwf$$

 See Also

 putlin (2), dgetl$ (6), tputl$ (6)

 dputl$ (6) − 1 − dputl$ (6)

 dread$ (6) −−− read raw words from disk 02/24/82

 Calling Information

 integer function dread$ (buf, nw, f)
 integer buf (ARB), nw
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dread$’ is an internal Subsystem routine that performs the
 function of ’readf’ for disk files only. The first argument
 specifies a string to receive the words read; the second
 argument is the number of words to be read; and, the third
 argument is the file descriptor of the file from which data
 will be read. ’Dread$’ returns the number of words placed
 in the receiving buffer if the read was successful; EOF
 otherwise. ’Dread$’ is not intended for general use; it is
 not protected from user error, and may cause termination of
 the user’s program if used incorrectly. It should always be
 referenced through ’readf’.

 Implementation

 ’Dread$’ calls the Primos subroutine PRWF$$ to fill a buffer
 with words from disk file ’f’.

 Arguments Modified

 buf

 Calls

 move$, Primos prwf$$

 Bugs

 EOF is returned if any error occurs; the user is not
 informed of the actual error that occurs.

 See Also

 readf (2)

 dread$ (6) − 1 − dread$ (6)

 dsdbiu (6) −−− dump contents of dynamic storage block 02/25/80

 Calling Information

 subroutine dsdbiu (block, form)
 pointer block
 character form

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dsdbiu’ is called by ’dsdump’ to dump the contents of a
 block of storage that has been allocated by ’dsget’. The
 first argument is a pointer to the control words of the
 block; the second is LETTER for a character dump, DIGIT for
 a numeric dump.

 This routine is technically not available for direct call by
 the user, since the format and location of block control
 words is subject to change.

 Implementation

 The SIZE control word of the block is read to obtain the
 size of the block, and that many words are written to ERROUT
 via ’print’ in the particular format specified. The first
 argument is incremented to point to the end of the block.

 Arguments Modified

 block

 Calls

 print

 Bugs

 None that can be helped.

 See Also

 dsget (2), dsfree (2), dsinit (2), dsdump (2)

 dsdbiu (6) − 1 − dsdbiu (6)

 dseek$ (6) −−− seek on a disk device 01/24/82

 Calling Information

 integer function dseek$ (pos, f, ra)
 file_mark pos
 file_des f
 integer ra

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dseek$’ is an internal Subsystem routine that performs the
 function of ’seekf’ for disk files only. The first argument
 is a long integer value which specifies the amount of
 relative or absolute positioning, depending on the value of
 the third argument, ’ra’. If ’ra’ equals ABS then position−
 ing is from the beginning of the file; if ’ra’ equals REL
 then positioning is from the current position. The second
 argument is the file descriptor of the file whose file
 pointer is being manipulated. The function return is OK if
 the positioning was successful, ERR if ’ra’ is ABS and ’pos’
 is negative, ERR if ’ra’ is neither ABS nor REL, and EOF
 otherwise. ’Dseek$’ is not intended for general use; it is
 not protected from user error, and may cause termination of
 the user’s program if used incorrectly. It should always be
 referenced through ’seekf’.

 Implementation

 ’Dseek$’ calls the Primos subroutine PRWF$$ to set the file
 pointer of a disk file.

 Calls

 Primos prwf$$

 Bugs

 EOF is returned if any error occurs during disk read; the
 user is not informed of the actual error that occurs.

 See Also

 seekf (2)

 dseek$ (6) − 1 − dseek$ (6)

 dwrit$ (6) −−− write raw characters to disk 02/24/82

 Calling Information

 integer function dwrit$ (buf, nwx, f)
 integer buf (ARB), nwx, f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Dwrit$’ is an internal Subsystem routine that performs the
 function of ’writef’ for disk files only. The first
 argument is the array of words to be written to the file;
 the second argument is the number of words to be written;
 the third argument is the file descriptor of the file to
 which data will be written. ’Dwrit$’ returns the number of
 words written (which should always equal ’nwx’), or EOF.
 ’Dwrit$’ is not intended for general use; it is not protec−
 ted from user error, and may cause termination of the user’s
 program if used incorrectly. It should always be referenced
 through ’writef’.

 Implementation

 ’Dwrit$’ calls the Primos subroutine PRWF$$ to write words
 to disk.

 Calls

 Primos prwf$$, move$

 Bugs

 EOF is returned if any error occurs; the user is not
 informed of the actual error that occurs.

 See Also

 writef (2)

 dwrit$ (6) − 1 − dwrit$ (6)

 findf$ (6) −−− see if file exists in current directory 02/24/82

 Calling Information

 integer function findf$ (file)
 packedchar file (16)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Findf$’ is an internal routine used to verify the existence
 of a file. The argument is a packed, blank−padded character
 string (such as that returned by ’getto’) that is 32 charac−
 ters in length. ’Findf$’ returns YES if the file exists in
 the current directory, NO otherwise.

 Implementation

 ’Findf$’ calls the Primos routine SRCH$$ with the key KEXST
 to determine if the named file exists.

 Calls

 Primos srch$$

 See Also

 getto (2), file (1)

 findf$ (6) − 1 − findf$ (6)

 finfo$ (6) −−− return directory information about a file 09/10/84

 | Calling Information

 integer function finfo$ (path, entry, attach)
 character path (ARB)
 | integer entry (MAXDIRENTRY), attach

 Library: vswtlb (standard Subsystem library)

 Function

 ’Finfo$’ is an internal Subsystem routine used to return the
 Primos directory entry associated with a named file. The
 ’path’ argument is the pathname of the file whose entry is
 desired; ’entry’ is a buffer to receive the entry itself;
 ’attach’ is set to YES if the user’s attach point changed as
 a side effect of obtaining the directory entry, NO other−
 wise. The function return is OK if the directory entry was
 obtained, ERR otherwise.

 See Prime’s File Management System guide for information on
 | the structure of directory entries as returned by the Primos
 | routines DIR$RD and ENT$RD.

 Implementation

 ’Getto’ is called to attach to the parent directory of the
 named file. The ’attach’ parameter is set as a side effect
 of this action. The Primos routine SRCH$$ is then used to
 | open the current directory for reading, and the Primos
 | routine ENT$RD to fetch the entry for the named file. The
 current directory is then closed by SRCH$$ and ’finfo$’
 returns.

 Arguments Modified

 entry, attach

 Calls

 | getto, Primos srch$$, Primos ent$rd

 See Also

 filtst (2), file (1), lf (1)

 finfo$ (6) − 1 − finfo$ (6)

 first$ (6) −−− check for first call 02/24/82

 Calling Information

 integer function first$ (flag)
 integer flag

 Library: vswtlb (standard Subsystem library)

 Function

 ’First$’ checks to see if this is the first call to itself.
 If it is being called for the first time, then it returns
 YES; otherwise, it returns NO. ’Flag’ is set to the return
 value, in either case.

 ’First$’ is used by the ’swt’ command to prevent further
 calls to itself when a previous invocation is still active.

 Implementation

 ’First$’ checks the Subsystem common area variable
 ’first_use’ to see if it contains a special value; if it
 doesn’t, then a YES is returned and this special value is
 set. If it finds the special value, then it returns NO.

 Arguments Modified

 flag

 first$ (6) − 1 − first$ (6)

 flush$ (6) −−− flush out a file’s buffer 02/24/82

 Calling Information

 integer function flush$ (fd)
 file_des fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Flush$’ is used to clean up the state of the internal Sub−
 system buffers associated with an open file. In general,
 this is necessary before changing access mode on a disk file
 (e.g., from read to write or from character to block) and
 when closing a file (to insure that all data is transferred
 from the buffer to disk).

 The single argument to ’flush$’ is the file descriptor
 (returned by ’open’, ’create’, or ’mktemp’) of the file
 whose buffer is to be flushed. The function return is OK if
 the flush succeeded and ERR if it failed.

 Although it sees a great deal of use internally, ’flush$’ is
 practically useless to the general user. The only circum−
 stance in which its use might be appropriate is when a log
 file or audit trail must be written to disk as frequently as
 transactions occur; in such a case, the disk I/O must not be
 buffered.

 Implementation

 The action of ’flush$’ varies according to the device
 assigned to the file and the last operation performed. In
 all cases, buffer pointers and character counts must be
 reinitialized. For terminal devices, no other action is
 required. If the last operation performed on a disk file
 was a ’putlin’ or ’putch’, then any pending compressed
 blanks must be forced out and the buffer must be written to
 disk (via the Primos routine PRWF$$). If the last operation
 was a ’getlin’ or ’getch’, then it is necessary to back up
 the file’s current position to the point at which the unused
 portion of the buffer begins; a call to PRWF$$ does the
 actual repositioning. If the last operation was a ’writef’,
 any words remaining in the buffer are simply written out
 with PRWF$$. Finally, if the last operation was a ’readf’,
 the file’s current position is simply backed up by the num−
 ber of unused words still in the buffer.

 Calls

 dputl$, Primos prwf$$, Primos break$

 flush$ (6) − 1 − flush$ (6)

 gcdir$ (6) −−− get current directory pathname 01/05/83

 Calling Information

 integer function gcdir$ (path)
 character path (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gcdir$’ is used to determine the full pathname of the
 current working directory. The sole argument is a character
 array to receive the pathname. The function return is OK if
 the name could be found, ERR otherwise.

 Implementation

 ’Gcdir$’ first obtains the treename of the current directory
 using the Primos routine GPATH$. This treename is then
 unpacked by ’ptoc’ and passed to ’mkpa$’, which converts it
 into a SWT pathname.

 Arguments Modified

 path

 Calls

 mkpa$, ptoc, Primos gpath$

 Bugs

 Be warned that because of Prime’s password protection
 scheme, it is not always possible to obtain a pathname that
 can later be used to attach to the home directory with the
 same access rights.

 See Also

 mktr$ (6), mkpa$ (6), follow (2), getto (2)

 gcdir$ (6) − 1 − gcdir$ (6)

 gcifu$ (6) −−− return the current value of the command unit 10/15/81

 Calling Information

 integer function gcifu$ (funit)
 integer funit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Gcifu$’ returns the file unit which is providing command
 input for the shell both in the argument ’funit’ and as the
 value of the function.

 Implementation

 ’Gcifu$’ returns the value contained in ’Comunit’ in the
 Subsystem common block.

 Arguments Modified

 funit

 See Also

 sh (1)

 gcifu$ (6) − 1 − gcifu$ (6)

 getfd$ (6) −−− look for an empty file descriptor 03/25/82

 Calling Information

 file_des function getfd$ (fd)
 file_des fd

 Library: vswtlb (standard Subystem library)

 Function

 ’Getfd$’ is used by ’open’ and ’mkfd$’ to find an unused
 file descriptor with which to set up a file unit. If it
 could find one, it returns that file descriptor; otherwise,
 it returns ERR.

 Implementation

 The file descriptor list is searched to find one that is
 available. The search is attempted first on file descrip−
 tors that lie within the current page of memory. If one is
 not found, the search is then performed on any remaining
 file descriptors (possibly requiring paging to bring in the
 required data); if a free descriptor is found, then it is
 returned to the caller. If none are found this time, ERR is
 returned.

 Arguments Modified

 fd

 See Also

 mkfd$ (6), open (2)

 getfd$ (6) − 1 − getfd$ (6)

 gfnam$ (6) −−− get the pathname for an open file 01/05/83

 Calling Information

 integer function gfnam$ (fd, path, size)
 file_des fd
 character path (MAXPATH)
 integer size

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Gfnam$’ tries to find the name of the open file unit ’fd’.
 If the unit is a terminal, it returns the name of the
 terminal device. If the unit is a null device, then it
 returns the null device name; otherwise, it obtains the
 pathname and returns it in ’path’. If the pathname can be
 obtained, the length of ’path’ is the returned value; other−
 wise ERR is returned.

 ’Size’ is the number of characters that can be held in
 ’path’ (including EOS).

 Implementation

 ’Gfnam$’ first tries to verify that the file unit for which
 a name is desired is open and a legal file unit; if it isn’t
 both, then ERR is returned. Otherwise, it checks to see
 what type of file is associated with the given file descrip−
 tor. For terminal and null devices, the appropriate device
 name is returned (device names are of the form ’/dev/?*’).
 For disk files, the Primos GPATH$ subroutine is called to
 obtain the Primos treename for the file. If a treename
 could be obtained, then ’mkpa$’ is called to generate a Sub−
 system pathname for the file; otherwise, ERR is returned.

 Arguments Modified

 path

 Calls

 ctoc, Primos gpath$, mapsu, mkpa$, ptoc

 gfnam$ (6) − 1 − gfnam$ (6)

 gtacl$ (6) −−− get acl protection into ACL common block 09/04/84

 | Calling Information

 | integer function gtacl$ (path, key, at)
 | character path(ARB)
 | integer key, at

 | Library: vswtlb (standard Subsystem library)

 | Function

 | If ’key’ is 1, ’gtacl$’ retrieves the standard ACL protec−
 | tion for the file ’path’ into the ACL common block, or if
 | ’key’ is 2, it returns the priority ACL protection into the
 | ACL common block. ’At’ is set to YES if the current attach
 | was moved to get to the specified file. The function return
 | is OK if the information was was retrieved and ERR other−
 | wise.

 | Implementation

 | ’Gtacl$’ attempts to attach to the directory containing the
 | file and then procedes to retrieve the acl information. It
 | then scans through the returned information and formats it
 | for further use in the common blocks. If any error is
 | encountered it attaches home if the attach point has changed
 | and returns an error, otherwise it returns OK.

 | Calls

 | ctov (2), equal (2), follow (2), getto (2), mkpa$ (2), mktr$
 | (2), mapstr (2), vtoc (2), Primos pa$lst, Primos ac$lst

 | See Also

 | gfdata (2), sfdata (2)

 gtacl$ (6) − 1 − gtacl$ (6)

 icomn$ (6) −−− initialize Subsystem common areas 03/25/82

 Calling Information

 subroutine icomn$

 Library: vswtlb (standard Subsystem library)

 Function

 ’Icomn$’ is used to completely reinitialize all Subsystem
 common areas. At present, it is used only by the program
 ’swt’ on Subsystem entry.

 Implementation

 ’Icomn$’ initializes the Subsystem password, argument count,
 command interpreter status flag, shell error code, command
 input unit, user template storage area, Subsystem return
 label, and linked string control words, then calls ’ioinit’
 to set up the input/output common blocks.

 Calls

 ioinit

 See Also

 ioinit (6)

 icomn$ (6) − 1 − icomn$ (6)

 iofl$ (6) −−− initialize open file list 03/25/82

 Calling Information

 subroutine iofl$ (state)
 integer state (MAXFILESTATE)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Iofl$’ saves the Subsystem and Primos file descriptors
 which correspond to closed files in ’state’, so that sub−
 sequently opened files can be closed by ’cof$’.

 Implementation

 For each Subsystem file descriptor, ’iofl$’ examines the its
 flag word to determine if it is closed. For each closed
 file, its descriptor is saved in ’state’. After the last
 closed Subsystem file descriptor entered into ’state’, ERR
 is entered into ’state’ to mark the end of the list.

 Next, for each Primos file descriptor, ’iofl$’ calls the
 Primos routine PRWF$$ to test whether or not the file is
 open and valid. For each valid closed file, its file
 descriptor is entered into ’state’. After the last valid
 closed Primos file descriptor has been entered, ERR is
 entered into ’state’ to mark the end of the list.

 Calls

 Primos prwf$$

 See Also

 cof$ (6)

 iofl$ (6) − 1 − iofl$ (6)

 ioinit (6) −−− initialize Subsystem I/O areas 03/25/82

 Calling Information

 subroutine ioinit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ioinit’ reinitializes certain control words in the Sub−
 system’s input/output common block. At present, it is used
 solely for starting the Subsystem from scratch.

 Implementation

 ’Ioinit’ sets the erase character, kill character, repeat
 character, escape character, terminal character buffer
 pointer, Subsystem newline character, kill response (the
 string that gets printed when a kill character is
 encountered), terminal attributes, and terminal character
 count. In addition, it "opens" the user’s terminal on the
 file descriptor designated by the macro TTY and sets all
 other file descriptors to "closed", and sets the Subsystem
 printer form and printer destination. Finally, it sets all
 entries in the standard port table to TTY.

 Calls

 ctoc

 See Also

 icomn$ (6)

 ioinit (6) − 1 − ioinit (6)

 ldseg$ (6) −−− load a SEG runfile into memory 01/06/83

 Calling Information

 subroutine ldseg$ (rvec, name, len, code)
 integer rvec (9), name (ARB), len, code

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ldseg$’ first attempts to open the file ’name’ in the
 current directory, using ’len’ as the length of the name.
 If the open is successful, and the file is a SEG run file of
 recent (Primos revision 17 or later) origin, ’ldseg$’ loads
 the private segments of the file into memory and sets ’rvec’
 to the initial save vector of the program. If the load is
 successful, ’ldseg$’ returns a code of 0; otherwise, the
 Primos error code E$BPAR is returned.

 Implementation

 ’Ldseg$’ first opens the segment directory and file 0 in the
 directory. Using calls to the Primos routine PRWF$$,
 ’ldseg$’ reads and checks the revision flag, segment map,
 segment bit map, save vector, time vector, and symbol table.
 Using this information, ’ldseg$’ traverses the symbol table,
 loading initialized chunks of segments with calls to
 ’chunk$’ and zeroing uninitialized segments with calls to
 ’zmem$’. Completely uninitialized segments remain
 unmodified. After loading is complete, ’ldseg$’ sets the
 values in ’rvec’ and returns with a code of 0.

 Arguments Modified

 rvec, code

 Calls

 chunk$, print, zmem$, Primos errpr$, Primos srch$$, Primos
 prwf$$

 See Also

 call$$ (6)

 ldseg$ (6) − 1 − ldseg$ (6)

 ldtmp$ (6) −−− load the per−user template area 01/22/82

 Calling Information

 subroutine ldtmp$

 Library: vswtlb (standard Subsystem library)

 Function

 Using the public template "=utemplate=" to locate the user’s
 private template file, ’ldtmp$’ reloads the hash table in
 the Subsystem common area that contains the private tem−
 plates.

 Implementation

 ’Ldtmp$’ first zeroes the private template area, so the
 reference to "=utemplate=" will be to the public template.
 It then opens "=utemplate=", parses the lines with ’gtemp’
 and fills in the hash table.

 Calls

 close, getlin, gtemp, open, Primos break$, length, print,
 seterr, scopy

 See Also

 expand (2)

 ldtmp$ (6) − 1 − ldtmp$ (6)

 lookac (6) −−− look up a name in the ACL common block 09/04/84

 | Calling Information

 | integer function lookac (name)
 | character name (ARB)

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Lookac’ returns the index of ’name’ in the ACL common block
 | or ERR if ’name’ is not located.

 | Implementation

 | A linear search is used to scan the common block for the
 | name. If the name is found, its index is returned, other−
 | wise the routine returns ERR.

 | Calls

 | equal (2)

 | See Also

 | lacl (1), sacl (1), gfdata (2), sfdata (2)

 lookac (6) − 1 − lookac (6)

 lopen$ (6) −−− open a disk file in the spool queue 01/06/83

 Calling Information

 file_des function lopen$ (path, fd, mode)
 character path (ARB)
 file_des fd
 integer mode

 Library: vswtlb (standard Subsystem library)

 Function

 ’Lopen$’ is an internal Subsystem routine that performs the
 function of ’open’ for disk files in the spool queue only.
 The first argument is the pathname of the file to be opened;
 it must be an EOS terminated string specifying a spooler
 device file (e.g. "/dev/lps"s). The second argument is the
 file descriptor assigned to the file in ’open’. The third
 argument is the mode, READ, WRITE or READWRITE. ’Lopen$’
 returns the value of ’fd’ if the attempt to open was succes−
 sful; ERR if the attempt failed. The user is always left in
 the home directory.

 Implementation

 ’Lopen$’ examines the pathname for line printer spooler
 options (see ’open’). The Subsystem printer form and
 printer destination shell variables are used as the spool
 file’s form type and destination, respectively, if they are
 defined; otherwise, the default installation form and
 printer destination are used. The Primos routine SPOOL$ is
 then called to open a spool file on disk, which may be writ−
 ten by the standard Subsystem disk I/O routines.

 Calls

 ctop, mapdn, mapup, ctoi, Primos srch$$, Primos spool$,
 putch, parstm, mapstr, ctoc

 See Also

 open (2), dopen$ (6), sp (1), pr (1)

 lopen$ (6) − 1 − lopen$ (6)

 lutemp (6) −−− look up a template in the template directory 09/15/83

 | Calling Information

 integer function lutemp (temp, str, strlen)
 integer strlen
 character temp (ARB), str (strlen)

 Library: vswtlb (standard Subsystem library)

 Function

 | ’Lutemp’ converts a single template into its equivalent
 string representation. The argument ’temp’ is the template
 | to be expanded; ’str’ is the string to receive the expansion
 | of at most ’strlen’ characters. The function returns the
 | length of the expanded string contained in ’str’ if the tem−
 plate was found, EOF otherwise.

 Normally, the routine ’expand’ would be called to expand a
 template, since it rescans the text returned by ’lutemp’ to
 evaluate any nested templates.

 | The following dynamic templates are available:

 date the current date, in form MMDDYY

 time the current time, in form HHMMSS

 user the login name of the user calling ’expand’

 pid the process id of the process calling
 ’expand’

 passwd the Subsystem password of the user calling
 ’expand’

 day the name of the current day of the week (e.g.
 tuesday)

 | home the login directory of the user calling
 | ’expand’

 The statically−defined templates reside in the file
 "=template=", and may be changed at the discretion of the
 Subsystem manager. For a complete list of templates, see
 the User’s Guide to the Primos File System.

 Users may create their own personal templates by placing
 template names and replacement text in the file
 "=utemplate=" (nominally "=varsdir=/.template"). The
 template file is a standard text file which may be
 manipulated by any of the usual text processing tools. Each
 template appears on a line by itself, followed by blanks and
 its replacement text. Blank lines and comment lines
 (beginning with "#") may be added to the template file to
 improve readability. For an example of a template file, see

 lutemp (6) − 1 − lutemp (6)

 lutemp (6) −−− look up a template in the template directory 09/15/83

 =template=.

 Implementation

 | ’Lutemp’ first looks up the requested template in a hashed
 | symbol table, which contains the values of all "static"
 | (determined at Subsystem initialization time) templates and
 | resides in the shared Subsystem data area, checking the
 | user’s personal templates and then the system−defined tem−
 | plates. If the search succeeds, ’lutemp’ returns the string
 | value associated with the template. Otherwise, ’lutemp’
 | assumes that the template is dynamic and searches a second
 | shared hash table containing the values of dynamic template.
 | If it finds the template in this table, ’lutemp’ uses an
 | associated function code value to direct appropriate calls
 | to ’date’ (for time, date, day, pid, user) or to file system
 | routines (for home), or to read values from Subsystem common
 | areas (for passwd).

 Arguments Modified

 str

 Calls

 | equal, date, gcdir$, length, mapstr, scopy, Primos at$hom,
 | Primos at$or

 Bugs

 There is no protection against setting static values for the
 dynamic templates. The user can possibly cause problems for
 both himself and other Subsystem users by setting his own
 values for the dynamic template names.

 See Also

 expand (2), open (2), getto (2), follow (2), User’s Guide to
 the Primos File System

 lutemp (6) − 2 − lutemp (6)

 mkdir$ (6) −−− create a directory 07/04/83

 | Calling Information

 integer function mkdir$ (name, owner, non_owner)
 character name (ARB), owner (ARB), non_owner (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mkdir$’ is used to create a new directory. The argument
 ’name’ is the pathname of the directory to be created; the
 arguments ’owner’ and ’non_owner’ specify the owner and non−
 owner passwords, respectively, of the new directory. The
 function return is OK if the directory was successfully
 created, ERR otherwise.

 Implementation

 ’Getto’ is called to attach to the directory which will
 become the parent of the new directory. A call to ’findf$’
 insures that the directory does not already exist. The pas−
 sword strings are converted to packed format via calls to
 ’ctop’. The Primos routine CREA$$ actually creates the
 directory and sets the passwords. Then the Primos routine
 SATR$$ is called to set the protection so that the owner has
 all rights and non−owner has read access.

 Calls

 | ctop, findf$, getto, Primos at$hom, Primos crea$$, Primos
 | satr$$

 See Also

 follow (2), getto (2), mkdir (1)

 mkdir$ (6) − 1 − mkdir$ (6)

 mkfd$ (6) −−− make a file descriptor from a Primos funit 03/25/82

 Calling Information

 file_des function mkfd$ (funit, mode)
 integer funit, mode

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mkfd$’ allocates a Subsystem file descriptor for a disk
 file and initializes it so that it refers to the file open
 on the Primos funit number given as the argument ’funit’.
 ’Mode’ must be READ, WRITE, or READWRITE. The function
 return is a file descriptor if the allocation succeeds, ERR
 otherwise.

 ’Mkfd$’ is normally used to enable Subsystem I/O on a file
 that for some reason has already been opened by a Primos
 routine.

 Implementation

 A Subsystem file descriptor is allocated from the available
 pool (by a call to ’getfd$’) and initialized as per ’open’.
 The given I/O mode, file unit, and disk device status are
 associated with the descriptor.

 Calls

 getfd$, Primos break$

 See Also

 getfd$ (6), mapfd (2), open (2)

 mkfd$ (6) − 1 − mkfd$ (6)

 mkpa$ (6) −−− convert a treename into a pathname 03/25/82

 Calling Information

 integer function mkpa$ (tree, path, default)
 character path (MAXPATH), tree (ARB)
 integer default

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mkpa$’ is used to convert a Primos treename into an
 equivalent Subsystem pathname. The first argument is the
 treename to be converted. The second argument is a string
 to receive the equivalent pathname. The last argument is
 used to resolve an ambiguity in Primos treenames; if it
 equals YES, then simple names are interpreted as top−level
 user file directories, otherwise simple names are
 interpreted as files in the current directory.

 The function return is the length of the pathname returned
 in ’path’.

 The following conversions are performed:

 <name>dir>subdir>file −> /name/dir/subdir/file
 dir>subdir>file −> //dir/subdir/file
 *>subdir>file −> subdir/file
 simplename −> simplename
 (if ’default’ == NO)
 −> //simplename
 (if ’default’ == YES)

 Implementation

 Simple checks determine which of the above cases applies,
 then translation is straightforward.

 Arguments Modified

 path

 Calls

 scopy, mapdn, index

 See Also

 mktr$ (6)

 mkpa$ (6) − 1 − mkpa$ (6)

 mkpacl (6) −−− encode ACL information into a Primos structure 09/04/84

 | Calling Information

 | subroutine mkpacl

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Mkpacl’ converts ACL information like that returned by
 | ’gtacl$’ into Primos ACL information in the ACL common
 | block.

 | Implementation

 | The ACL common block is scanned for information and encoded
 | into an EOS−terminated string a character at a time. When
 | finished, a call to ’ctov’ converts the information into a
 | form that Primos can use.

 | Calls

 | ctoc (2), ctov (2), encode (2)

 | See Also

 | lacl (1), sacl (1), gfdata (2), sfdata (2)

 mkpacl (6) − 1 − mkpacl (6)

 mksacl (6) −−− encode ACL information into a SWT structure 09/04/84

 | Calling Information

 | integer function mksacl (path, pairs, type, sep)
 | character path (ARB), pairs (ARB), sep (ARB)
 | integer type

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Mksacl’ converts ACL information like that returned by
 | ’gtacl$’ into SWT ACL information in the ACL common block.
 | The name of the pathname is returned in ’path’, the string
 | containing the access pairs is returned in ’pairs’, and the
 | type is returned in ’type’. ’Sep’ is a string that is to be
 | placed between each of the access pairs. The function
 | return is the number of characters in ’pairs’.

 | Implementation

 | The ACL common block is scanned for information and encoded
 | into ’pairs’. After each pair is entered, ’sep’ is encoded
 | into the string. The number of characters is returned as
 | the function return.

 | Calls

 | ctoc (2), encode (2)

 | See Also

 | lacl (1), sacl (1), gfdata (2), sfdata (2)

 mksacl (6) − 1 − mksacl (6)

 mktr$ (6) −−− convert a pathname into a treename 03/25/82

 Calling Information

 integer function mktr$ (path, tree)
 character path (ARB), tree (MAXPATH)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Mktr$’ is used to convert a Subsystem pathname into an
 equivalent Primos treename. The argument ’path’ is an EOS−
 terminated string containing the pathname to be converted.
 The argument ’tree’ is a string that will receive the
 equivalent Primos treename. The function return is the
 length of the treename returned in ’tree’.

 The pathname may begin with a series of backslashes ("\"),
 each of which indicates a one−level ascension in the direc−
 tory hierarchy. For example, the pathname "\" means the
 directory which is the parent of the current directory, and
 "\\file2" means the file named "file2" in the grandparent of
 the current directory.

 Slashes in the input pathname that are preceded by an at−
 sign ("@") are passed through to the treename unchanged;
 they are not interpreted as separator characters.

 Multiple slashes (except at the beginning of the path) are
 ignored.

 Implementation

 The first characters in the pathname determine the initial
 portion of the treename. If there are two leading slashes,
 then the treename begins with "mfd". If there is only one
 leading slash, then a packname was specified and the
 treename begins with "<packname>mfd". If there are leading
 backslashes, then the Primos routine GPATH$ is called to get
 the name of the current directory, and the appropriate por−
 tion becomes the start of the treename. The remainder of
 the conversion consists mostly of substituting slashes for
 greater−than signs and handling escape sequences.

 Arguments Modified

 tree

 Calls

 scopy, Primos gpath$, ptoc, mapstr

 mktr$ (6) − 1 − mktr$ (6)

 mktr$ (6) −−− convert a pathname into a treename 03/25/82

 See Also

 mkpa$ (6), follow (2), getto (2)

 mktr$ (6) − 2 − mktr$ (6)

 parsa$ (6) −−− parse ACL changes in the common block 09/04/84

 | Calling Information

 | integer function parsa$ (str)
 | character str (ARB)

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Parsa$’ compares the protections given in ’str’ with those
 | already in the common block and modifies the common block to
 | reflect the changes. If the changes are made, the function
 | return is OK, otherwise the function returns ERR.

 | Implementation

 | ’Parsa$’ goes through ’str’ one pair at a time, calling
 | ’lookac’ to locate a corresponding name and then comparing
 | the differences. It then changes the common block to
 | reflect any modifications that have been made and goes
 | through and removes any deleted entries. If there are any
 | parse errors or erroneous attributes in ’str’ the function
 | returns ERR.

 | Calls

 | equal (2), lookac (6), scopy (2)

 | See Also

 | lacl (1), sacl (1), gfdata (2), sfdata (2)

 parsa$ (6) − 1 − parsa$ (6)

 pg$brk (6) −−− catch a break for the page subroutine 07/19/84

 | Calling Information

 | subroutine pg$brk (cp)
 | long_int cp

 | Function

 | ’Pg$brk’ is used by the ’page’ subroutine to catch the QUIT$
 | condition and return to a set place within it.

 | The user should not call this routine directly.

 | Implementation

 | ’Pg$brk’ simply calls ’pl1$nl’ with the ’Rtlabel’ array from
 | the Software Tools common block. This was previously set to
 | the proper label to return to.

 | Calls

 | Primos pl1$nl

 | See Also

 | page (2)

 pg$brk (6) − 1 − pg$brk (6)

 reonu$ (6) −−− on−unit for the REENTER$ condition 02/24/82

 Calling Information

 subroutine reonu$ (ptr)
 pointer ptr

 Library: vswtlb (standard Subsystem library)

 Function

 ’Reonu$’ is called from the Primos condition mechanism when
 the Primos internal command REN is given. ’Reonu$’ returns
 to the caller who most recently declared ’reonu$’ as its on−
 unit for the "REENTER$" condition.

 Implementation

 Using information passed by the condition mechanism,
 ’reonu$’ finds the stack frame of the declarer of its on−
 unit and unwinds the stack with a call to the Primos routine
 PL1$NL.

 Calls

 Primos pl1$nl

 See Also

 sys$$ (2)

 reonu$ (6) − 1 − reonu$ (6)

 rmfil$ (6) −−− remove a file, return status 08/30/84

 | Calling Information

 integer function rmfil$ (name)
 | packed_char name (MAXPACKEDFNAME)

 Library: vswtlb (standard Subsystem library)

 Function

 | ’Rmfil$’ is used to remove files, segment directories, and
 | access categories by name. The sole argument is the name of
 a file (of either type, in the current directory) to be
 deleted. Note that the name is not an EOS−terminated
 string; it is a packed, blank−filled array of characters.
 The function return is OK if the deletion occurred, ERR
 otherwise.

 Implementation

 ’Rmfil$’ uses the Primos routine SRCH$$ to delete the file
 if possible. If this attempt fails because the file is a
 non−empty segment directory, it is opened and cleaned out by
 | a call to ’rmseg$’, then deleted by SRCH$$. If it fails
 | because the file is an access category, it calls CAT$DL to
 | remove it.

 Calls

 | ptov, Primos cat$dl, Primos srch$$, rmseg$

 See Also

 remove (2), del (1), rmseg$ (6)

 rmfil$ (6) − 1 − rmfil$ (6)

 rmseg$ (6) −−− remove a segment directory 03/25/82

 Calling Information

 subroutine rmseg$ (funit)
 integer funit

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rmseg$’ cleans out the segment directory open on the Primos
 file unit given as its sole argument.

 Implementation

 ’Rmseg$’ deletes successive entries in the directory using
 the Primos routine SRCH$$. When ’rmseg$’ comes across an
 entry that is itself a non−empty segment directory, it opens
 that directory then calls itself recursively to clean it
 out. When all entries have been removed, the directory
 itself is set to zero length.

 Calls

 Primos sgdr$$, Primos srch$$, rmseg$

 See Also

 del (1), remove (2), rmfil$ (6)

 rmseg$ (6) − 1 − rmseg$ (6)

 rtn$$ (6) −−− return to stack frame of call$$ 01/06/83

 Calling Information

 subroutine rtn$$

 Library: vswtlb (standard Subsystem library)

 Function

 ’Rtn$$’ unwinds the stack and returns to the routine
 (usually ’call$$’) indicated by ’rtlabel’ in the Subsystem
 common block.

 Implementation

 ’Rtn$$’ first checks the Primos command level data flags to
 see if the calling routine was DBG; if so, it immediately
 exits. If it was not called by DBG, ’rtn$$’ returns to the
 routine indicated by ’rtlabel’ via the Primos routine
 PL1$NL.

 Calls

 Primos pl1$nl

 See Also

 call$$ (6)

 rtn$$ (6) − 1 − rtn$$ (6)

 sprot$ (6) −−− set protection attributes for a file 07/04/83

 | Calling Information

 integer function sprot$ (name, attr)
 character name (ARB), attr (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Sprot$’ is used to set the protection attributes (read,
 write, truncate) for a given file. Both owner and nonowner
 attributes, specified in convenient notation, may be set on
 a single call.

 The first argument is the full pathname of the file whose
 protection attributes are to be changed. The name must be
 in the usual Subsystem format in an EOS−terminated string.

 The second argument is a protection attribute specification
 string. Each attribute (read, write, truncate) is
 represented by a single letter ("r", "w", and "t", respec−
 tively). In addition, the letter "a" indicates all
 attributes; it is equivalent to "twr". In the specification
 string, owner protection attributes appear first, followed
 | by a slash and nonowner protection attributes. If no
 | permissions are to be confered to nonowners, the slash may
 be omitted. If all attributes are omitted, neither owners
 nor nonowners may access the named file in any way. Exam−
 ples: "a/r" confers all permissions for owners, read−only
 for nonowners; "rw/rw" confers read/write permission for
 everyone, "/w" confers write permission for nonowners and no
 permission for owners.

 The function return is OK if the attempt to set protection
 attributes succeeded, ERR otherwise. The error condition is
 returned if (1) the ’attr’ string contains an illegal
 protection key; (2) the named file could not be reached; (3)
 Primos returns an error code during the attempt to set the
 file’s attributes.

 Implementation

 Protection keys in the form of two three−bit strings in the
 UFD entry for a file are maintained by the Primos routine
 SATR$$. ’Sprot$’ first scans the protection attributes
 string, building a bit−string representation of the
 attributes as it goes. A call to ’getto’ then sets the
 current directory to the parent of the named file. SATR$$
 | is then invoked to set the file’s protection attributes.
 | Finally, the Primos routine AT$HOM is used to attach back to
 the home directory.

 sprot$ (6) − 1 − sprot$ (6)

 sprot$ (6) −−− set protection attributes for a file 07/04/83

 Calls

 | getto, index, Primos at$hom, Primos satr$$

 See Also

 follow (2), getto (2), chat (1), lf (1)

 sprot$ (6) − 2 − sprot$ (6)

 st$lu (6) −−− internal symbol table lookup 03/23/80

 Calling Information

 integer function st$lu (symbol, node, pred, table)
 character symbol (ARB)
 pointer node, pred, table

 Library: vswtlb (standard Subsystem library)

 Function

 ’St$lu’ attempts to find the character−string symbol given
 as its first argument in the symbol table given as its
 fourth argument. If the symbol is present, a pointer to its
 node is returned in ’node’ and ’st$lu’ returns YES; other−
 wise, ’st$lu’ returns NO. In both cases, ’pred’ is set to
 the address of the link field of the previous node, i.e.
 the one that points to the desired node (if it is present)
 or is at the end of the appropriate hash chain (if it is not
 present).

 ’St$lu’ is not intended for general use; the symbol table
 interface routines ’enter’, ’lookup’, and ’delete’ are
 provided for that purpose.

 Implementation

 ’St$lu’ hashes the character string by summing the internal
 representations of its characters and then reducing this
 number modulo the hash table size (a prime number). This
 hash is used as an index into a hash table containing heads
 of linked lists of symbol table nodes. The appropriate list
 is then searched linearly for a node containing the desired
 symbol text. The utility routine ’equal’ is used for per−
 forming string comparisons.

 If the symbol is found, then its index and its predecessor’s
 link field index are returned, along with the function value
 YES. Otherwise, the address of the last link field in the
 appropriate chain is returned, along with the function value
 NO. The combination of node address/predecessor address is
 designed to make insertion, deletion, and updating of symbol
 table nodes relatively easy.

 Arguments Modified

 pred, node

 Calls

 equal

 st$lu (6) − 1 − st$lu (6)

 st$lu (6) −−− internal symbol table lookup 03/23/80

 See Also

 enter (2), lookup (2), delete (2), mktabl (2), rmtabl (2),
 dsget (2), dsfree (2), dsinit (2), sctabl (2)

 st$lu (6) − 2 − st$lu (6)

 szfil$ (6) −−− size an open Primos file descriptor 09/18/84

 | Calling Information

 | longint function szfil$ (fd)
 | integer fd

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Szfil$’ returns the size of the file (in words) associated
 | with the open Primos file unit ’fd’. If there is some error
 | on the file, the function return is ERR. The file is left
 | positioned at the end of file.

 | Implementation

 | Primos PRWF$$ is called to relatively position the file to a
 | large position until the file reaches end of file. Then
 | PRWF$$ is called to read the current position of the file.
 | If any error occurs, the function returns ERR, otherwise the
 | size of the file is returned as the function return.

 | Arguments Modified

 | none

 | See Also

 | gfdata (2), sfdata (2), szseg$ (6)

 szfil$ (6) − 1 − szfil$ (6)

 szseg$ (6) −−− size an open Primos segment directory 09/18/84

 | Calling Information

 | subroutine szseg$ (size, fd)
 | longint size
 | integer fd

 | Library: vswtlb (standard Subsystem library)

 | Function

 | ’Szseg$’ returns the size of the segment directory open on
 | the Primos file descriptor ’fd’. If an error occurs while
 | sizing the directory, ’size’ will contain ERR, otherwise it
 | will contain the size in words of the directory.

 | Implementation

 | The directory is read and each of the file entries is chec−
 | ked. If an entry is a normal file, ’szfil$’ is called to
 | size it. If the entry is another segment directory,
 | ’szseg$’ is called recursively to size the subdirectory.

 | Arguments Modified

 | size

 | Calls

 | Primos sgdr$$, Primos srch$$, szfil$ (6)

 | See Also

 | gfdata (2), sfdata (2), szfil$ (6)

 szseg$ (6) − 1 − szseg$ (6)

 t$clup (6) −−− profiling routine called on program exit 07/04/83

 | Calling Information

 subroutine t$clup

 Library: vswtlb (standard Subsystem library)

 Function

 A call to ’t$clup’ is inserted before each "call swt" in a
 Subsystem program that is to be profiled. When used with
 the "−p" option, Ratfor inserts this call automatically
 before a "stop" statement, and converts the "stop" to a
 "call swt".

 The purpose of ’t$clup’ is to write to the file "_profile" a
 summary of the amount of real, cpu, and paging time spent in
 each subroutine of the profiled program. This summary is
 then read by the program ’profile’ and formatted into a
 report.

 Since no profiling information is written by any of the
 other profiling routines, ’t$clup’ must be called if a
 profile is to be made.

 ’T$clup’ should be called explicitly only by those users
 wishing to profile Fortran programs by hand; Ratfor users
 should always profile with the "−p" option of the preproces−
 sor.

 Implementation

 ’T$clup’ repeatedly calls ’t$exit’ until all subprogram
 calls have been cleaned up from the internal call stack.
 The file "_profile" is opened via a call to ’create’ and
 filled by repeated calls to ’writef’. A final call to
 ’close’ closes the file, leaving it ready for analysis by
 ’profile’.

 Calls

 | cant, close, create, t$exit, writef, Primos at$hom

 Bugs

 This code should be invoked by ’swt’, if necessary and pos−
 sible.

 See Also

 t$entr (6), t$exit (6), t$time (6), t$trac (6), rp (1)

 t$clup (6) − 1 − t$clup (6)

 t$entr (6) −−− profiling routine called on subprogram entry 03/25/82

 Calling Information

 subroutine t$entr (routine)
 integer routine

 Library: vswtlb (standard Subsystem library)

 Function

 ’T$entr’ records the real, cpu, and paging times of the
 current process upon subprogram entry. This information is
 later modified by ’t$exit’ to reflect only the time spent in
 the particular subprogram, which is then added to the total
 for the subprogram.

 ’Routine’ is the number of the subprogram being entered;
 subprograms are numbered consecutively beginning with 1 for
 the main program.

 ’T$entr’ should be called explicitly only by those users
 profiling Fortran programs with hand−inserted code, in which
 case a call to ’t$entr’ should be the first executable
 statement of any profiled routine.

 Implementation

 A call to ’t$time’ gathers the necessary information, which
 is then stacked in a stack provided by the user
 (automatically, in the case of Ratfor programs).

 Calls

 Primos tnou, swt, t$time

 Bugs

 Stack overflow terminates the program.

 See Also

 t$exit (6), t$clup (6), t$time (6), t$trac (6), rp (1)

 t$entr (6) − 1 − t$entr (6)

 t$exit (6) −−− profiling routine called on subprogram exit 03/25/82

 Calling Information

 subroutine t$exit

 Library: vswtlb (standard Subsystem library)

 Function

 ’T$exit’ is called from profiled programs just before a
 "return" statement is executed. It records the current
 amount of real, cpu, and paging time used, and determines
 from these the amount of time spent in the current sub−
 program. This information is added to the total time
 figures maintained for each subprogram.

 Implementation

 ’T$time’ is called to fetch the pertinent information, which
 is then subtracted from the values on the stack to obtain
 the time spent in the current routine. Adjustments are made
 to items remaining on the stack so that they do not reflect
 time spent in subordinate subprograms.

 Calls

 t$time

 See Also

 t$entr (6), t$clup (6), t$time (6), t$trac (6), rp (1)

 t$exit (6) − 1 − t$exit (6)

 t$init (6) −−− initialize for a subroutine trace run 09/05/84

 | Calling Information

 | subroutine t$init

 | Function

 | ’T$init’ is called at the beginning of the main program in
 | Ratfor programs that have been processed with the "−p"
 | (profiling) option of ’rp’. It initializes the profiling
 | common blocks with the number of routines in the program.

 | ’T$init’ is inserted into the Fortran output as inline code,
 | rather than being referenced from the standard Subsystem
 | library. As such, it can never be accessed by the user
 | unless the "−p" option is specified (even then, it should
 | not be called by the user, since it has no effect on the
 | profiling information).

 | Implementation

 | A simple assignment statement initializes a variable in the
 | common blocks produced by ’rp’ and used by the profiling
 | subroutines.

 | See Also

 | rp (1) t$clup (6), t$entr (6), t$exit (6), t$time (6),
 | t$trac (6)

 t$init (6) − 1 − t$init (6)

 t$time (6) −−− obtain clock readings for profiling 03/25/82

 Calling Information

 subroutine t$time (reel, cpu, diskio)
 long_int reel, cpu, diskio

 Library: vswtlb (standard Subsystem library)

 Function

 ’T$time’ is called by ’t$entr’ and ’t$exit’ to fetch the
 amounts of real time, cpu time, and disk I/O time
 accumulated so far during this run.

 Implementation

 The Primos routine TIMDAT is called to fetch the
 information, which is converted uniformly to timer ticks.

 Arguments Modified

 reel, cpu, diskio

 Calls

 Primos timdat

 Bugs

 Timer resolution is not good.

 See Also

 t$entr (6), t$exit (6), t$clup (6), rp (1)

 t$time (6) − 1 − t$time (6)

 t$trac (6) −−− trace routine for Ratfor programs 03/25/82

 Calling Information

 subroutine t$trac (mode, name)
 integer mode
 integer name (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’T$trac’ is called from traced Ratfor programs (those
 processed with the "−t" option). Calls to ’t$trac’ are
 planted in the Fortran output of Ratfor as the first
 executable statement of each routine and before each
 "return" and "stop".

 ’Mode’ is 1 for subprogram entry, 2 for subprogram exit, and
 3 for initialization of the indentation level. ’Name’ is a
 period−terminated packed string containing the name of the
 routine being traced. It need be supplied only when ’mode’
 has a value of 1 (subprogram entry).

 ’T$trac’ produces an indented listing with vertical lines to
 help connect subprogram entry and exit. The trace is
 produced on ERROUT.

 Implementation

 A level counter is maintained to determine the amount of
 indentation; simple output statements produce the trace.

 Calls

 putch, print

 See Also

 t$entr (6), t$exit (6), t$clup (6), t$time (6), rp (1)

 t$trac (6) − 1 − t$trac (6)

 tcook$ (6) −−− read and cook a line from the terminal 09/14/84

 | Calling Information

 | integer function tcook$ (ubuf, size, tbuf, tptr)
 | character ubuf (ARB), tbuf (MAXTERMBUF)
 | integer size, tptr

 Library: vswtlb (standard Subsystem library)

 Function

 | ’Tcook$’ reads and processes a line from the terminal. It
 | handles the processing of escape sequences, case and charac−
 | ter set mapping, line kills, character deletes, EOF’s, and
 | NEWLINE’s. ’Ubuf’ is the user’s buffer that is to receive
 | no more than ’size’ characters (including the EOS). ’Tbuf’
 | is a scratch buffer that is used to process the input before
 | moving it to ’ubuf’ and ’tptr’ is the index of the current
 | character being processed. Before the first call to
 | ’tcook$’, ’tptr’ should contain a 1 and the first element of
 | ’tbuf’ should contain an EOS. If these variables are used
 | in subsequent calls, they will be updated automatically to
 | contain the correct values. The function return value is
 | the number of characters returned in ’ubuf’, not including
 | the EOS.

 Implementation

 ’Tcook$’ reads input from the terminal one character at a
 | time, interpreting each character as it is read. Special
 | characters (the Subsystem escape character, kill character,
 | retype character, newline character, and EOF character) are
 | removed and the appropriate action taken while other charac−
 | ters are echoed and passed on directly. When the NEWLINE
 | character is read or when the end−of−file is generated,
 | reading terminates and the resulting line is returned after
 | any required case and character set mapping are performed.

 | The several special characters used by ’tcook$’ to provide
 | extra functionality are explained below. Look at the
 | description of the ’escape’ character to see how to enter
 | the special characters without their special properties
 | being interpreted.

 | eof
 | The eof character causes the generation of an end−
 | of−file when read from the terminal. If there is
 | information already entered on the current line,
 | the user’s kill response is printed, the informa−
 | tion on that line is forgotten, and the end−of−
 | file is generated.

 | erase
 | The erase character causes the removal of one
 | character of previously read input. The cursor is

 tcook$ (6) − 1 − tcook$ (6)

 tcook$ (6) −−− read and cook a line from the terminal 09/14/84

 | backed up one character position. If there hap−
 | pened to be no characters on the line, nothing
 | happens.

 | escape
 | The escape character is normally used to enter the
 | Subsystem special characters and other characters
 | with special attributes. If any character is
 | preceded by the escape character (including the
 | escape character) it will be passed without
 | interpretation into the receiving buffer. If an
 | escape character is followed by a ’/’ character
 | and then another character, that character will
 | have its parity bit (normally on) turned off. The
 | final case is an escape followed by three octal (0
 | through 7) digits. The character formed by those
 | three digits is the character that is entered.

 | kill
 | The kill character is used to discard all text on
 | the current input line. When entered, the user’s
 | kill response is printed, any information on the
 | current line is forgotten, and the user is allowed
 | to retype the line.

 | newline
 | The newline character is a signal to the input
 | routines that the user is finished with the
 | current line of text and is ready for the machine
 | to accept it. If the character is not a linefeed
 | character (the standard newline character) then
 | ’tcook$’ will echo a carriage return linefeed com−
 | bination and return a NEWLINE character at the end
 | of the line.

 | retype
 | Occasionally, the user will have a message forced
 | to his terminal, or will have typed input ahead of
 | the system, while the system is generating output.
 | In such a case, the representation of the current
 | input line on the user’s terminal will become dis−
 | rupted. To see what has actually been entered,
 | the user may enter the retype character, and
 | ’tcook$’ will echo the current input text. The
 | user can then finish entering his commands.

 Arguments Modified

 | ubuf, tbuf, tptr

 Calls

 Primos c1in, Primos duplx$, Primos tonl, Primos t1ou

 tcook$ (6) − 2 − tcook$ (6)

 tcook$ (6) −−− read and cook a line from the terminal 09/14/84

 See Also

 User’s Guide for the Software Tools Subsystem Command
 | Interpreter, term (1), Primos Subroutines Reference Guide
 | (DOC 3621)

 tcook$ (6) − 3 − tcook$ (6)

 tgetl$ (6) −−− read a line from the terminal 03/25/82

 Calling Information

 integer function tgetl$ (buf, size, f)
 character buf (ARB)
 integer size
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tgetl$’ is the device−dependent driver for terminal line−
 image i/o. The first argument is a string to receive the
 line read; the second argument is the maximum number of
 characters to be placed in the string; the third argument is
 the file descriptor of a terminal file. The function return
 is either zero (when EOF is detected) or the length of the
 string read in.

 Implementation

 ’Tgetl$’ first checks to see if the terminal buffer is
 empty. If it is, then ’tcook$’ is called to refill the
 buffer. The characters in the terminal buffer are copied to
 the user buffer ’buf’ until either ’size’ characters have
 been copied or the terminal buffer has been exhausted. The
 return value is the number of characters that were copied
 into ’buf’.

 Arguments Modified

 buf

 Calls

 tcook$

 See Also

 getlin (2), tputl$ (6), tcook$ (6)

 tgetl$ (6) − 1 − tgetl$ (6)

 tmark$ (6) −−− return the current position of a terminal file 03/23/80

 Calling Information

 file_mark function tmark$ (f)
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tmark$’ is used to obtain the current position of a
 terminal file. Since this concept doesn’t have much meaning
 at the present, ’tmark$’ always returns zero.

 See Also

 markf (2), seekf (2)

 tmark$ (6) − 1 − tmark$ (6)

 tputl$ (6) −−− put a line on the terminal 01/06/83

 Calling Information

 integer function tputl$ (line, fd)
 character line (ARB)
 integer fd

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tputl$’ is the device−dependent driver called by ’putlin’
 to write a string on a terminal file. The first argument is
 the string to be written; the second is the file descriptor
 of a terminal file. The function return is OK if the write
 was successful, ERR otherwise.

 Implementation

 ’Tputl$’ buffers each character in the string into a local
 buffer, and outputs the string in chunks (via calls to the
 Primos routine TNOUA). If case mapping is in effect,
 characters not on a KSR 33 keyboard are converted to escaped
 representations which are printable on a KSR 33.

 Calls

 Primos tnoua

 See Also

 tgetl$ (6), dputl$ (6), putlin (2)

 tputl$ (6) − 1 − tputl$ (6)

 tread$ (6) −−− read raw words from the terminal 03/25/82

 Calling Information

 integer function tread$ (buf, nw, f)
 integer buf(ARB), nw
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tread$’ is the device−dependent driver for terminal line−
 image i/o. The first argument is an array to receive the
 words read; the second argument is the number of words to be
 read; the third argument is the file descriptor of the file
 from which data will be read. ’Tread$’ returns the number
 of words placed in the receiving buffer if the read was suc−
 cessful, EOF otherwise. ’Tread$’ is not intended for
 general use; it is not protected from user error, and may
 cause termination of the user’s program if used incorrectly.
 It should always be referenced through ’readf’.

 Implementation

 ’Tread$’ calls the Primos subroutine C1IN ’nw’ times, or
 until a NEWLINE or EOF is encountered. C1IN gets the next
 character from the terminal or command input stream.

 Arguments Modified

 buf

 Calls

 Primos c1in

 Bugs

 | The semantics of ’tread$’ are a little shaky; since one
 | character per word is stored in a terminal buffer, ’tread$’
 actually reads characters instead of raw words.

 See Also

 readf (2), dread$ (6)

 tread$ (6) − 1 − tread$ (6)

 tscan$ (6) −−− traverse subtree of the file system 09/10/84

 | Calling Information

 integer function tscan$ (path, buf, clev, nlev, action)
 character path (MAXPATH)
 | integer buf (MAXDIRENTRY), clev, nlev, action

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tscan$’ is used to traverse a subtree of the file system
 rooted at ’path’. Each time ’tscan$’ is called, it returns
 the entry of the next file (or directory) in ’buf’, as
 controlled by ’action’ (discussed below). ’Clev’ is the
 current level of descent into the subtree; it must be
 initialized to zero before calling ’tscan$’. ’Nlev’ is the
 maximum level of descent into the subtree; ’clev’ will never
 be greater than ’nlev’. The function return is OK if an
 entry was successfully fetched, ERR if the fetch was unsuc−
 cessful, EOF when the entire subtree has been scanned, or
 EOD if a directory has been completely scanned and the EOD−
 PAUSE action has been specified (see below).

 The argument ’action’ is a bit mask composed of the sum of
 several action codes. The codes POSTORDER and PREORDER
 control the visitation of directories. If POSTORDER is in
 effect, each directory entry will be returned after all the
 files in the directory have been visited. If PREORDER is in
 effect, each directory entry will be returned before any of
 the files in the directory have been visited. The first
 element of ’buf’ is set to 0 or 1 to indicate a preorder or
 postorder encounter, respectively. Note that both PREORDER
 and POSTORDER may be specified; in this case, each directory
 in the subtree is visited twice. The code EODPAUSE causes
 ’tscan$’ to return the code EOD when it completes the scan
 of a directory. Finally, the code REATTACH causes ’tscan$’
 to insure that the user is always attached to the directory
 currently being scanned. (Maintaining the attach point can
 be expensive, so it has been made optional.)

 Implementation

 Various pieces of state information are retained in the com−
 mon block ’c$tscn’. ’Tscan$’ changes state as it scans the
 subtree, deciding when to ascend, descend, pause, get the
 next entry, etc. The algorithm is a simple tree traversal,
 complicated mainly by the difficulties of error handling and
 maintaining the attach point.

 Arguments Modified

 buf, clev, path

 tscan$ (6) − 1 − tscan$ (6)

 tscan$ (6) −−− traverse subtree of the file system 09/10/84

 Calls

 | at$swt, ctoc, error, expand, equal, follow, move$, upkfn$,
 | Primos at$hom, Primos dir$rd, Primos gpas$$, Primos srch$$,
 | Primos texto$

 Bugs

 No more than one instance of ’tscan$’ may be active at a
 given time.

 See Also

 | Primos dir$rd lf (1), del (1), chat (1), cp (1), follow (2)

 tscan$ (6) − 2 − tscan$ (6)

 tseek$ (6) −−− seek on a terminal device 01/06/83

 Calling Information

 integer function tseek$ (pos, f, ra)
 longint pos
 file_des f
 integer ra

 Library: vswtlb (standard Subsystem library)

 Function

 ’Tseek$’ is an internal Subsystem routine that performs the
 function of ’seekf’ for terminal files only. The first
 argument is a long integer value which specifies the amount
 of positioning relative to the current position (negative
 and absolute positioning are not allowed on terminal
 devices). The second argument is the file descriptor of the
 file whose file pointer is being manipulated. The third
 argument must equal REL. The function return is OK if the
 positioning was successful, ERR if ’ra’ is ABS or if ’pos’
 is negative. ’Tseek$’ is not intended for general use; it
 is not protected from user error, and may cause termination
 of the user’s program if used incorrectly. It should always
 be referenced through ’seekf’.

 Implementation

 ’Tseek$’ calls the Primos subroutine C1IN ’pos’ times to
 "skip over" ’pos’ characters.

 Calls

 Primos c1in

 See Also

 seekf (2)

 tseek$ (6) − 1 − tseek$ (6)

 ttyp$f (6) −−− obtain the user’s terminal type 03/25/82

 Calling Information

 integer function ttyp$f (ttype)
 character ttype (MAXTERMTYPE)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ttyp$f’ looks in the file "=termlist=" to see if a terminal
 type is defined for the user’s terminal line. ’Ttyp$f’
 returns a character string which is the name of the user’s
 terminal type in ’ttype’. It returns YES if it could
 determine the terminal type, and NO otherwise.

 Implementation

 ’Ttyp$f’ tries to find the terminal name from the terminal
 list file in "=termlist=" (nominally "//extra/terms"); if it
 can find it, it returns the name found, sets the associated
 terminal attribute values in the Subsystem common area, and
 returns YES. If the terminal name could not be determined
 from the "=termlist=" file, it returns NO.

 Arguments Modified

 ttype

 Calls

 ctoi, close, date, getlin, open, ttyp$v

 See Also

 term_type (1), other ttyp$?* routines (6)

 ttyp$f (6) − 1 − ttyp$f (6)

 ttyp$l (6) −−− list the available terminal types 08/30/84

 | Calling Information

 subroutine ttyp$l

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ttyp$l’ will list all of the terminal types that are sup−
 ported by the Subsystem and its associated software packages
 (such as VTH).

 Implementation

 ’Ttyp$l’ opens the "=ttypes=" (nominally "//extra/terms")
 file, if it can, and lists the terminal types available in a
 readable format to the terminal.

 Calls

 | close, input, length, open, print

 | Bugs

 | Some might consider it a bug that the output is always writ−
 | ten to the terminal.

 See Also

 se (1), term (1), term_type (1), other ttyp$?* routines (6)

 ttyp$l (6) − 1 − ttyp$l (6)

 ttyp$q (6) −−− query for the terminal type from the user 03/25/82

 Calling Information

 integer function ttyp$q (ttype, blankok)
 character ttype (MAXTERMTYPE)
 integer blankok

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ttyp$q’ asks the user for the name of his terminal. If an
 unknown terminal type is specified, the user is given the
 option of having the known terminal types listed by entering
 either a "?" or "help" or entering a valid terminal type.
 If a valid terminal type was given by the user, the function
 returns YES; otherwise, the function return value is NO.
 For valid user responses, ’ttype’ contains the terminal type
 name.

 Implementation

 After a user response is entered, it is mapped to lower case
 (for consistency). If a null response is entered and is
 permitted by the caller (i.e., ’blankok’ is YES), then all
 terminal type information in the Subsystem common area is
 erased; otherwise, the terminal type entered is validated.
 If it is a valid terminal type, the values of its attributes
 are set; otherwise, the user is asked to enter a correct
 response or a help request.

 Arguments Modified

 ttype

 Calls

 ctoc, equal, input, mapstr, print, ttyp$l, ttyp$v

 See Also

 se (1), term (1), term_type (1), other ttyp$?* routines (6)

 ttyp$q (6) − 1 − ttyp$q (6)

 ttyp$r (6) −−− return the terminal type from the common area 03/25/82

 Calling Information

 integer function ttyp$r (ttype)
 character ttype (MAXTERMTYPE)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ttyp$r’ retrieves the name of the terminal from the Sub−
 system common area, if it has been previously set. If a
 valid name is found, the function returns YES; otherwise, it
 returns NO.

 Implementation

 ’Ttyp$r’ calls ’chkstr’ to see if a valid terminal name has
 been set in the Subsystem common area. If an invalid
 terminal name has been set, it clears the name and returns
 NO; otherwise, it copies the name to ’ttype’ and returns
 YES.

 Arguments Modified

 ttype

 Calls

 chkstr, ctoc

 See Also

 term (1), term_type (1), other ttyp$?* routines (6)

 ttyp$r (6) − 1 − ttyp$r (6)

 ttyp$v (6) −−− set terminal attributes 01/06/83

 Calling Information

 integer function ttyp$v (ttype)
 character ttype (MAXTERMTYPE)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Ttyp$v’ takes the terminal type name given in ’ttype’ and
 tries to set the values of that terminal’s attributes in the
 Subsystem common area. If the terminal type is not a legal
 one, then ’ttyp$v’ returns NO and leaves the values of the
 terminal attributes undisturbed; otherwise, it sets up the
 appropriate values and returns YES.

 Implementation

 ’Ttyp$v’ takes the terminal type given in ’ttype’ and tries
 to find it in the file "=ttypes=" (nominally
 "//extra/terms"). If the file could not be opened or if the
 terminal type wasn’t found in the file, ’ttyp$v’ returns NO;
 otherwise, it sets the value of the terminal’s attributes
 from values given in the file and returns a value of YES.

 Calls

 close, ctoc, equal, input, open, Primos break$

 See Also

 other ttyp$?* routines (2)

 ttyp$v (6) − 1 − ttyp$v (6)

 twrit$ (6) −−− write raw words to terminal 03/25/82

 Calling Information

 integer function twrit$ (buf, nw, f)
 integer buf (ARB), nw
 file_des f

 Library: vswtlb (standard Subsystem library)

 Function

 ’Twrit$’ is the device−dependent driver for terminal line−
 image i/o. The first argument is a string of words to be
 written; the second argument is the number of words to be
 written; and, the third argument is the file descriptor of
 the file to which data will be written. ’Twrit$’ returns
 the number of words written (which should always equal
 ’nw’). ’Twrit$’ is not intended for general use; it is not
 protected from user error, and may cause termination of the
 user’s program if used incorrectly. It should always be
 referenced through ’writef’.

 Implementation

 ’Twrit$’ calls the Primos subroutine T1OU ’nw’ times, once
 per word in ’buf’. T1OU outputs one character to the user
 terminal.

 Calls

 Primos t1ou

 See Also

 writef (2), tread$ (6), readf (2)

 twrit$ (6) − 1 − twrit$ (6)

 upkfn$ (6) −−− unpack a Primos file name; escape slashes 01/06/83

 Calling Information

 integer function upkfn$ (name, len, str, max)
 packed_char name (ARB)
 integer len, max
 character str (ARB)

 Library: vswtlb (standard Subsystem library)

 Function

 ’Upkfn$’ operates on the packed Primos file name or password
 of length ’len’ in ’name’. It converts it to an EOS−
 terminated string in ’str’ by unpacking it and placing the
 escape character ("@") in front of all slashes. Thus, the
 name in ’str’ is acceptable to all Subsystem routines expec−
 ting a file or path name.

 The function value is the number of characters placed in
 ’str’. In no case will more than ’max’ elements of ’str’ be
 disturbed.

 Implementation

 ’Upkfn$’ uses the Subsystem macro ’fpchar’ to take succes−
 sive characters from the packed name. Each character is
 copied into the receiving string (preceded by an escape
 character, if it is a slash) after being mapped to lower
 case until the string is full or the end of the name is
 reached.

 Arguments Modified

 str

 Calls

 mapdn

 See Also

 follow (2), getto (2), open (2), ptoc (2)

 upkfn$ (6) − 1 − upkfn$ (6)

 vt$alc (6) −−− allocate another VTH definition table 07/11/84

 | Calling Information

 integer function vt$alc (tbl, c)
 integer tbl
 character c

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$alc’ is used to allocate another VTH definition table
 for the key sequence definitions.

 Implementation

 ’Vt$alc’ verifies that there is room for another definition
 table and then initializes the new table if there is room.
 The "next table" pointer in the table ’tbl’ is set to
 indicate the index to the new table. If no room is found,
 then ERR is returned.

 Arguments Modified

 tbl

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$alc (6) − 1 − vt$alc (6)

 vt$cel (6) −−− send a clear to end−of−line sequence 10/30/84

 Calling Information

 integer function vt$cel (dummy)
 integer dummy

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$cel’ is used to clear the line from where the cursor is
 currently positioned to the end of the line. The return
 value is OK if the line was cleared, and ERR otherwise.

 Implementation

 The VTH common block is checked for the existence of a clear
 to eol sequence. If one exists, it is written out and the
 function return is OK. If there is no sequence, the func−
 tion return is ERR.

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$cel (6) − 1 − vt$cel (6)

 vt$clr (6) −−− send clear screen sequence 07/11/84

 | Calling Information

 integer function vt$clr (dummy)
 integer dummy

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$clr’ is used to clear the screen on the user’s terminal.
 The return value is OK if the screen was cleared, and ERR
 otherwise.

 Implementation

 The VTH common block is checked for the existence of a clear
 screen sequence. If one exists, it is written out, ’vt$del’
 is called to print out a small delay sequence, and the func−
 tion return is OK. If no sequence exists, the return is
 ERR.

 Calls

 vt$del

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$clr (6) − 1 − vt$clr (6)

 vt$db (6) −−− dump terminal characteristics 07/11/84

 | Calling Information

 subroutine vt$db

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$db’ is used to print out the values of terminal charac−
 teristics in the VTH common block. ’Vtinit’ should have
 been called beforehand to set up these terminal charac−
 teristics.

 Implementation

 ’Vt$db1’ is called to print the mnemonics for the cursor
 movement control sequences. Then the numerical terminal
 characteristics (such as cursor movement delay time and
 screen dimensions) are output by calls to ’print’. All out−
 put is to ERROUT.

 Calls

 ctomn, print, vt$db1

 Bugs

 Not meant to be called by the normal user.

 Used mainly for debugging of the VTH package.

 See Also

 other vt?* routines (2) and (6)

 vt$db (6) − 1 − vt$db (6)

 vt$db1 (6) −−− print mnemonics for special characters 07/11/84

 | Calling Information

 subroutine vt$db1 (title, seq)
 character title (ARB), seq (ARB)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$db1’ is used to print out a label in ’title’, along with
 the mnemonics for the special (unprintable) character
 sequence in ’seq’.

 Implementation

 ’Print’ is called to output ’title’; then each character in
 ’seq’, up to the first EOS, is converted to its associated
 mnemonic and printed out. All output is written to ERROUT.

 Calls

 ctomn, print

 Bugs

 Not to be called by the normal user.

 Mainly used for debugging of the VTH package.

 See Also

 other vt?* routines (2) and (6)

 vt$db1 (6) − 1 − vt$db1 (6)

 vt$db2 (6) −−− dump terminal input tables 07/11/84

 | Calling Information

 subroutine vt$db2

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$db2’ dumps out the key sequence definitions from the
 terminal input tables in semi−formatted form.

 Implementation

 For each key sequence definition table, ’vt$db2’ first
 checks to see if the table is being used. If so, it prints
 out all the entries in the table, with the format being
 based on what the information type is. The types of
 information stored include the pointer to the next defini−
 tion table, a pointer to a definition sequence, or character
 values. Unprintable character values are converted to
 mnemonics before being output.

 Calls

 ctomn, print

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$db2 (6) − 1 − vt$db2 (6)

 vt$db3 (6) −−− dump macro definition table 07/11/84

 | Calling Information

 subroutine vt$db3

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$db3’ prints the actual definition sequences for the
 keyboard macros.

 Implementation

 After printing out a heading, ’vt$db3’ prints out each
 character in the macro definition sequence, mapping
 unprintable characters to their corresponding mnemonic.

 Calls

 ctomn, print

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$db3 (6) − 1 − vt$db3 (6)

 vt$def (6) −−− accept a macro definition from the user o7/11/84

 | Calling Information

 integer function vt$def (dummy)
 integer dummy

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$def’ is used to accept a macro definition from the user.
 If a status line is enabled, the user is prompted, otherwise
 he must remember the entry format himself. The format is

 <seq1><seq2>

 where is a delimiter not used in either sequence,
 <seq1> is the macro, and <seq2> is the substitution string.
 When the macro sequence is entered, it is immediately
 replaced by the substitution string. If there is no room
 for another definition, no room for another substitution
 sequence, or an illegal sequence is entered, the function
 return is ERR and ’vt$err’ is called to print an an
 appropriate message, otherwise the function return is OK.

 Calls

 vtalc, vterr, vtgsq, vtrdf, vtmsg, vtupd, and Primos
 c1in

 Bugs

 Not meant to be called by the normal user.

 See Also

 Primos t1in and other vt?* routines (2) and (6)

 vt$def (6) − 1 − vt$def (6)

 vt$del (6) −−− delay the terminal with nulls 07/11/84

 Calling Information

 subroutine vt$del (delay)
 integer delay

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$del’ is used to delay the terminal for ’delay’ mil−
 liseconds after certain operations.

 Implementation

 The VTH common block is checked for the current baud rate of
 the terminal. ’Delay’ is then used to calculate the number
 of nulls to write to the terminal.

 Calls

 Primos t1ou

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$del (6) − 1 − vt$del (6)

 vt$dln (6) −−− send a delete line sequence 10/30/84

 Calling Information

 integer function vt$dln (dummy)
 integer dummy

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$dln’ is used to delete a line at the current cursor
 position on the user’s screen. The return value is OK if
 the line was deleted and ERR otherwise.

 Implementation

 The subsystem common block is checked for the existence of a
 delete line sequence. If one exists, it is written out and
 ’vt$del’ is called to print out a small delay sequence. If
 the sequence existed, the function returns OK and if it did
 not exist, the function returns ERR.

 Calls

 vt$del

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$dln (6) − 1 − vt$dln (6)

 vt$dsw (6) −−− perform garbage collection on DFA tables 07/11/84

 | Calling Information

 subroutine vt$dsw

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$dsw’ reclaims the space occupied by unused definition
 tables for use in storing other definitions.

 Implementation

 ’Vt$dsw’ looks for tables whose entries have all been
 undefined; their "in use" indicators are reset, and all
 references to them by other tables are removed.

 Calls

 vtprt

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$dsw (6) − 1 − vt$dsw (6)

 vt$err (6) −−− display a VTH error message 07/11/84

 | Calling Information

 subroutine vt$err (msg)
 character msg (ARB)

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$err’ prints the specified message, ’msg’, in the status
 line (if one exists), and resets the VTH pushback buffer to
 0.

 Implementation

 A call to ’vtmsg’ is made to print the message on the status
 line (if one is enabled). Then the pushback pointer in the
 VTH common block is set to 0 and a BEL character is printed.

 Calls

 vtmsg, vtupd, Primos t1ou

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$err (6) − 1 − vt$err (6)

 vt$get (6) −−− get and edit a single line from input 07/11/84

 | Calling Information

 integer function vt$get (row, col, start, len)
 integer row, col, start, len

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$get’ is responsible for reading characters from the
 terminal and interpreting the special characters. The first
 two arguments are the ’row’ and ’column’ at which to start
 accepting input. The third argument is the start of the
 input area on the current row, and the fourth argument is
 the length of the input area. ’Vt$get’ will continue read−
 ing from the terminal until a line termination character is
 input (RETURN, KILL_RIGHT_AND_RETURN, MOVE_UP, or
 MOVE_DOWN). The function return is the termination code.
 Any macros are expanded by a call to ’vt$idf’.

 Calls

 vtdef, vterr, vtidf, vtndf, vtout, vtput, vtmove,
 vtmsg, vtupd, Primos c1in

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6), se (1), and the
 Introduction to the Software Tools Text Editor (Se section)
 for a list of available special characters.

 vt$get (6) − 1 − vt$get (6)

 vt$gsq (6) −−− get a delimited sequence of characters 07/11/84

 | Calling Information

 integer function vt$gsq (msg, delim, seq, max)
 character msg (ARB), delim, seq (ARB)
 integer max

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$gsq’ is used to read a sequence of characters from the
 users terminal. The first argument is a message which will
 be displayed in the status line, if one is enabled. The
 second argument is the delimiter used to terminate the
 sequence. The third argument is the returned sequence, and
 the last argument is the maximum length of the sequence.
 ’Vt$err’ is called to print error messages for empty
 sequences, or for sequences which are too long. The func−
 tion return is ERR if an illegal sequence is entered, or the
 length of the returned sequence.

 Arguments Modified

 seq

 Calls

 ctomn, encode, vt$err, vtmsg, vtupd, Primos c1in

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$gsq (6) − 1 − vt$gsq (6)

 vt$idf (6) −−− invoke user−defined key definition 07/11/84

 | Calling Information

 integer function vt$idf (c)
 character c

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$idf’ is invoked to expand the definition of a keyboard
 macro which is encountered in user input; the definition is
 pushed back into the input stream.

 Implementation

 ’Vt$idf’ first checks for infinite recursive definition
 expansion. If it detects too high a nesting level, it
 returns ERR; otherwise, it locates the definition sequence,
 and copies it into the input pushback buffer. If the
 definition exceeds the capacity of the pushback buffer, ERR
 is returned; otherwise, OK is returned.

 Calls

 vt$err

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$idf (6) − 1 − vt$idf (6)

 vt$ier (6) −−− report error in VTH initialization file 07/11/84

 | Calling Information

 integer function vt$ier (msg, name, line, fd)
 character msg (ARB), name (ARB), line (ARB)
 file_des fd

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$ier’ is used to report an error in the contents of the
 terminal characteristics file (=vth=/?*). The file name
 ’name’, a message ’msg’ explaining the error, and the line
 ’line’ from the file which caused the error are printed to
 ERROUT.

 Implementation

 ’Vt$ier’ calls ’print’ to output the file name, the error
 message, and the erroneous line from the file to ERROUT.
 The VTH initialization file indicated by ’fd’ is closed, and
 the function returns ERR.

 Calls

 close, print

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$ier (6) − 1 − vt$ier (6)

 vt$iln (6) −−− send an insert line sequence 10/30/84

 Calling Information

 integer function vt$iln (dummy)
 integer dummy

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$iln’ is used to insert a line at the current cursor
 position on the user’s screen. The return value is OK if
 the line was inserted and ERR otherwise.

 Implementation

 The subsystem common block is checked for the existence of
 an insert line sequence. If one exists, it is written out
 and ’vt$del’ is called to print out a small delay sequence.
 If the sequence existed, the function returns OK and if it
 did not exist, the function returns ERR.

 Calls

 vt$del

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$iln (6) − 1 − vt$iln (6)

 vt$ndf (6) −−− remove VTH macro definition 07/11/84

 | Calling Information

 integer function vt$ndf (ch)
 character ch

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$ndf’ removes keyboard macro definitions from the
 appropriate tables.

 Implementation

 ’Vt$ndf’ prompts the user for the sequence which is to be
 removed from the definition tables. If the sequence is
 found, then its definition is removed and its associated
 definition tables are garbage collected; otherwise, ERR is
 returned.

 Calls

 vtmsg, vtupd, vtdsw, vterr, vtgsq, vtrdf, Primos c1in

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$ndf (6) − 1 − vt$ndf (6)

 vt$out (6) −−− output a character onto the screen 07/11/84

 | Calling Information

 subroutine vt$out (ch)
 character ch

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$out’ is the very low level routine which does the actual
 character output to the terminal screen; the character
 contained in ’ch’ is printed on the screen after certain
 considerations are evaluated.

 Implementation

 First, ’vt$out’ checks to see if the character would be out−
 put on the last character position of the last line of the
 screen; if so, it returns without doing the output
 operations (thus preventing the screen from scrolling).
 Next, the character is checked to see if it is printable; if
 not, then a printed representation is output (if a "shifted"
 sequence for the unprintable character is defined, i.e. a
 transparent mode indicator for the terminal, then that
 sequence is output before the character itself). The inter−
 nal screen cursor position indicators are updated to reflect
 that a character was printed.

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$out (6) − 1 − vt$out (6)

 vt$pos (6) −−− position the cursor to row, col 11/06/84

 Calling Information

 integer function vt$pos (row, col, crow, ccol)
 integer row, col, crow, ccol

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$pos’ positions the cursor on the terminal screen to
 ’row’, ’col’ from ’Crow’, ’ccol’. If the positioning can be
 done faster relatively, a relative position is output,
 otherwise the positioning is done absolutely. ’Vtinit’ or
 ’vtterm’ should have been called beforehand to set up the
 terminal characteristics in the virtual terminal handler.
 If the positioning can be done, ’vt$pos’ returns OK. If the
 positioning can’t be done, or the row and column are out of
 the terminal’s screen boundary, ERR is returned.

 Implementation

 ’Vt$pos’ after checking to make sure the coordinates given
 are actually on the terminal’s screen, computes a ’row−
 coordinate’ and a ’column−coordinate’ that are output after
 the lead−in absolute cursor positioning sequence for the
 terminal. There are only a few different standard ways to
 compute this character. Based on how the terminal does
 absolute addressing, ’vt$pos’ then outputs the characters in
 the correct sequence to do the positioning. A small delay
 (usually nulls) is output for terminals that need it.
 Interested users should look at the code for more
 information.

 Calls

 print, vt$del

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$pos (6) − 1 − vt$pos (6)

 vt$put (6) −−− copy string into terminal buffer 07/11/84

 | Calling Information

 subroutine vt$put (str, row, col, len)
 character str (ARB)
 integer row, col, len

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$put’ takes the string given in ’str’ and copies it to
 the screen buffers so that when the screen is next updated,
 the string appears starting at row ’row’ and column ’col’.
 ’Len’ indicates how long the string is.

 Implementation

 ’Vt$put’ first verifies that a legal location on the screen
 is given by the coordinates (’row’, ’col’); if they are off
 the screen, then internal buffer variables are set to
 defaults which will prevent strange updating of the screen.
 Otherwise, the line is "fitted" to the screen; as much of it
 as possible will be displayed without overstepping the
 screen boundaries. The string in ’str’ is then packed into
 the screen buffer, ready for the next screen update to
 occur.

 Calls

 print

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$put (6) − 1 − vt$put (6)

 vt$rdf (6) −−− remove macro definition of a DFA entry 07/11/84

 | Calling Information

 subroutine vt$rdf (c, tbl)
 character c
 integer tbl

 | Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$rdf’ removes a keyboard macro definition sequence from
 the definition tables.

 Implementation

 ’Vt$rdf’ locates the definition sequence in the definition
 tables and "packs" the table to remove the definition.

 Calls

 length

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$rdf (6) − 1 − vt$rdf (6)

 vt$rel (6) −−− position relatively to row, col 11/06/84

 Calling Information

 subroutine vt$rel (row, col, crow, ccol)
 integer row, col, crow, ccol

 Library: vswtlb (standard Subsystem library)

 Function

 ’Vt$rel’ positions the cursor on the terminal screen to
 ’row’, ’col’ from position ’crow’, ’ccol’ using only
 relative cursor positioning. ’Vtinit’ or ’vtterm’ should
 have been called previously to set up the terminal charac−
 teristics. ’Vt$rel’ is called as a last resort to position
 the cursor by ’vt$pos’. If it is impossible to position the
 cursor with what knowlege it has, ’vtterm’ will have already
 returned an error.

 Implementation

 ’Vt$rel’ uses whatever capabilities are available to posi−
 tion the cursor. If the terminal lacks a cursor_up
 sequence, the cursor is homed to the upper left hand side of
 the screen and moved down using the cursor_down sequence, or
 issuing LF characters (which is relatively universal). It
 moves the cursor to the right my issuing the cursor_right
 sequence and to the left by issuing the cursor_left
 sequence, or by issuing a CR character and issuing the
 cursor_right sequence.

 Bugs

 Not meant to be called by the normal user.

 See Also

 other vt?* routines (2) and (6)

 vt$rel (6) − 1 − vt$rel (6)

 zmem$ (6) −−− clear an uninitialized part of a segment 03/25/82

 Calling Information

 subroutine zmem$ (node)
 integer node (5)

 Library: vswtlb (standard Subsystem library)

 Function

 "Zmem$" zeroes a block of memory in segment "node(2)" start−
 ing at word "node(4)" through "node(5)".

 Implementation

 Trivial.

 See Also

 ldseg$ (6)

 zmem$ (6) − 1 − zmem$ (6)

	Title Page
	i
	Copyright
	ii
	Manual Overview
	iii
	Key to Notation
	iv
	v
	Table of Contents
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi
	xvii
	xviii
	Permuted Index
	xix
	xx
	xxi
	xxii
	xxiii
	xxiv
	xxv
	xxvi
	xxvii
	xxviii
	xxix
	xxx
	xxxi
	xxxii
	xxxiii
	xxxiv
	xxxv
	xxxvi
	xxxvii
	xxxviii
	xxxix
	xl
	xli
	xlii
	xliii
	xliv
	xlv
	xlvi
	xlvii
	xlviii
	xlix
	l
	li
	lii
	liii
	liv
	lv
	lvi
	lvii
	lviii
	lix
	lx
	lxi
	lxii
	lxiii
	lxiv
	lxv
	lxvi
	lxvii
	lxviii
	lxix
	lxx
	lxxi
	lxxii
	lxxiii
	lxxiv
	lxxv
	lxxvi
	lxxvii
	lxxviii
	Section 1 - Commands
	p1
	p2
	p3
	p4
	p5
	p6
	p7
	p8
	p9
	p10
	p11
	p12
	p13
	p14
	p15
	p16
	p17
	p18
	p19
	p20
	p21
	p22
	p23
	p24
	p25
	p26
	p27
	p28
	p29
	p30
	p31
	p32
	p33
	p34
	p35
	p36
	p37
	p38
	p39
	p40
	p41
	p42
	p43
	p44
	p45
	p46
	p47
	p48
	p49
	p50
	p51
	p52
	p53
	p54
	p55
	p56
	p57
	p58
	p59
	p60
	p61
	p62
	p63
	p64
	p65
	p66
	p67
	p68
	p69
	p70
	p71
	p72
	p73
	p74
	p75
	p76
	p77
	p78
	p79
	p80
	p81
	p82
	p83
	p84
	p85
	p86
	p87
	p88
	p89
	p90
	p91
	p92
	p93
	p94
	p95
	p96
	p97
	p98
	p99
	p100
	p101
	p102
	p103
	p104
	p105
	p106
	p107
	p108
	p109
	p110
	p111
	p112
	p113
	p114
	p115
	p116
	p117
	p118
	p119
	p120
	p121
	p122
	p123
	p124
	p125
	p126
	p127
	p128
	p129
	p130
	p131
	p132
	p133
	p134
	p135
	p136
	p137
	p138
	p139
	p140
	p141
	p142
	p143
	p144
	p145
	p146
	p147
	p148
	p149
	p150
	p151
	p152
	p153
	p154
	p155
	p156
	p157
	p158
	p159
	p160
	p161
	p162
	p163
	p164
	p165
	p166
	p167
	p168
	p169
	p170
	p171
	p172
	p173
	p174
	p175
	p176
	p177
	p178
	p179
	p180
	p181
	p182
	p183
	p184
	p185
	p186
	p187
	p188
	p189
	p190
	p191
	p192
	p193
	p194
	p195
	p196
	p197
	p198
	p199
	p200
	p201
	p202
	p203
	p204
	p205
	p206
	p207
	p208
	p209
	p210
	p211
	p212
	p213
	p214
	p215
	p216
	p217
	p218
	p219
	p220
	p221
	p222
	p223
	p224
	p225
	p226
	p227
	p228
	p229
	p230
	p231
	p232
	p233
	p234
	p235
	p236
	p237
	p238
	p239
	p240
	p241
	p242
	p243
	p244
	p245
	p246
	p247
	p248
	p249
	p250
	p251
	p252
	p253
	p254
	p255
	p256
	p257
	p258
	p259
	p260
	p261
	p262
	p263
	p264
	p265
	p266
	p267
	p268
	p269
	p270
	p271
	p272
	p273
	p274
	p275
	p276
	p277
	p278
	p279
	p280
	p281
	p282
	p283
	p284
	p285
	p286
	p287
	p288
	p289
	p290
	p291
	p292
	p293
	p294
	p295
	p296
	p297
	p298
	p299
	p300
	p301
	p302
	p303
	p304
	p305
	p306
	p307
	p308
	p309
	p310
	p311
	p312
	p313
	p314
	p315
	p316
	p317
	p318
	p319
	p320
	p321
	p322
	p323
	p324
	p325
	p326
	p327
	p328
	p329
	p330
	p331
	p332
	p333
	p334
	p335
	p336
	p337
	p338
	p339
	p340
	p341
	p342
	p343
	p344
	p345
	p346
	p347
	p348
	p349
	p350
	p351
	p352
	p353
	p354
	p355
	p356
	p357
	p358
	p359
	p360
	p361
	p362
	p363
	p364
	p365
	p366
	p367
	p368
	p369
	p370
	p371
	p372
	p373
	p374
	p375
	p376
	p377
	p378
	p379
	p380
	p381
	p382
	p383
	p384
	p385
	p386
	p387
	p388
	p389
	p390
	p391
	p392
	p393
	Section 2 - Library Subprograms
	p394
	p395
	p396
	p397
	p398
	p399
	p400
	p401
	p402
	p403
	p404
	p405
	p406
	p407
	p408
	p409
	p410
	p411
	p412
	p413
	p414
	p415
	p416
	p417
	p418
	p419
	p420
	p421
	p422
	p423
	p424
	p425
	p426
	p427
	p428
	p429
	p430
	p431
	p432
	p433
	p434
	p435
	p436
	p437
	p438
	p439
	p440
	p441
	p442
	p443
	p444
	p445
	p446
	p447
	p448
	p449
	p450
	p451
	p452
	p453
	p454
	p455
	p456
	p457
	p458
	p459
	p460
	p461
	p462
	p463
	p464
	p465
	p466
	p467
	p468
	p469
	p470
	p471
	p472
	p473
	p474
	p475
	p476
	p477
	p478
	p479
	p480
	p481
	p482
	p483
	p484
	p485
	p486
	p487
	p488
	p489
	p490
	p491
	p492
	p493
	p494
	p495
	p496
	p497
	p498
	p499
	p500
	p501
	p502
	p503
	p504
	p505
	p506
	p507
	p508
	p509
	p510
	p511
	p512
	p513
	p514
	p515
	p516
	p517
	p518
	p519
	p520
	p521
	p522
	p523
	p524
	p525
	p526
	p527
	p528
	p529
	p530
	p531
	p532
	p533
	p534
	p535
	p536
	p537
	p538
	p539
	p540
	p541
	p542
	p543
	p544
	p545
	p546
	p547
	p548
	p549
	p550
	p551
	p552
	p553
	p554
	p555
	p556
	p557
	p558
	p559
	p560
	p561
	p562
	p563
	p564
	p565
	p566
	p567
	p568
	p569
	p570
	p571
	p572
	p573
	p574
	p575
	p576
	p577
	p578
	p579
	p580
	p581
	p582
	p583
	p584
	p585
	p586
	p587
	p588
	p589
	p590
	p591
	p592
	p593
	p594
	p595
	p596
	p597
	p598
	p599
	p600
	p601
	p602
	p603
	p604
	p605
	p606
	p607
	p608
	p609
	p610
	p611
	p612
	p613
	p614
	p615
	p616
	p617
	p618
	p619
	p620
	p621
	p622
	p623
	p624
	p625
	p626
	p627
	p628
	p629
	p630
	p631
	p632
	p633
	p634
	p635
	p636
	p637
	p638
	p639
	p640
	Section 3 - Locally-Supported Commands
	p641
	p642
	p643
	p644
	p645
	p646
	p647
	p648
	p649
	p650
	p651
	p652
	p653
	p654
	p655
	p656
	p657
	p658
	p659
	p660
	p661
	p662
	p663
	p664
	p665
	p666
	p667
	p668
	p669
	p670
	p671
	p672
	p673
	p674
	p675
	p676
	p677
	p678
	p679
	p680
	p681
	p682
	p683
	p684
	p685
	p686
	p687
	p688
	p689
	p690
	p691
	p692
	p693
	p694
	p695
	p696
	p697
	p698
	p699
	p700
	p701
	p702
	p703
	p704
	p705
	p706
	p707
	p708
	p709
	p710
	p711
	p712
	p713
	p714
	p715
	p716
	p717
	p718
	p719
	p720
	p721
	p722
	p723
	p724
	p725
	p726
	p727
	p728
	p729
	p730
	p731
	p732
	p733
	p734
	p735
	p736
	p737
	p738
	p739
	p740
	p741
	p742
	p743
	p744
	p745
	p746
	p747
	p748
	p749
	p750
	p751
	p752
	p753
	Section 4 - Locally-Supported Library Subprograms
	p754
	p755
	p756
	p757
	p758
	p759
	p760
	p761
	p762
	p763
	p764
	p765
	p766
	p767
	p768
	p769
	p770
	p771
	p772
	p773
	p774
	p775
	p776
	p777
	p778
	p779
	p780
	p781
	p782
	p783
	p784
	p785
	p786
	p787
	p788
	p789
	p790
	p791
	p792
	p793
	p794
	p795
	p796
	p797
	p798
	p799
	p800
	p801
	p802
	p803
	p804
	p805
	p806
	p807
	p808
	p809
	p810
	p811
	p812
	p813
	Section 5 − Low Level Support Commands
	p814
	p815
	p816
	p817
	p818
	p819
	p820
	p821
	p822
	p823
	p824
	p825
	p826
	p827
	p828
	p829
	p830
	p831
	p832
	p833
	p834
	p835
	p836
	p837
	Section 6 - Low Level Library Subprograms
	p838
	p839
	p840
	p841
	p842
	p843
	p844
	p845
	p846
	p847
	p848
	p849
	p850
	p851
	p852
	p853
	p854
	p855
	p856
	p857
	p858
	p859
	p860
	p861
	p862
	p863
	p864
	p865
	p866
	p867
	p868
	p869
	p870
	p871
	p872
	p873
	p874
	p875
	p876
	p877
	p878
	p879
	p880
	p881
	p882
	p883
	p884
	p885
	p886
	p887
	p888
	p889
	p890
	p891
	p892
	p893
	p894
	p895
	p896
	p897
	p898
	p899
	p900
	p901
	p902
	p903
	p904
	p905
	p906
	p907
	p908
	p909
	p910
	p911
	p912
	p913
	p914
	p915
	p916
	p917
	p918
	p919
	p920
	p921
	p922
	p923
	p924
	p925
	p926
	p927
	p928
	p929
	p930
	p931
	p932
	p933
	p934
	p935
	p936
	p937
	p938
	p939
	p940
	p941
	p942
	p943
	p944

