
 UUUssseeerrr’’’sss GGGuuuiiidddeee fffooorrr ttthhheee
 SSSoooffftttwwwaaarrreee TTToooooolllsss SSSuuubbbsssyyysssttteeemmm CCCooommmmmmaaannnddd IIInnnttteeerrrppprrreeettteeerrr
 (((TTThhheee SSShhheeellllll)))

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 | Jefferey S. Lee
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 ___TTT___AAA___BBB___LLL___EEE___ ___OOO___FFF___ ___CCC___OOO___NNN___TTT___EEE___NNN___TTT___SSS

 TTTuuutttooorrriiiaaalll ... 1
 Commands .. 1
 How the Command Interpreter Locates a Command 2
 Special Characters and Quoting 2
 Command Files ... 3
 Doing Repetitive Tasks --- Iteration 4
 I/O Redirection 5
 I/O Redirection to Disk Files or Devices 6
 I/O Redirection to other Commands 7
 I/O Redirection for a Group of Commands 8
 I/O Redirection to a Command Argument 9
 Variables ... 9
 Interrupts, Quits and Error Handling Mechanisms 11
 Conclusion .. 11

 SSSuuummmmmmaaarrryyy ooofff SSSyyynnntttaaaxxx aaannnddd SSSeeemmmaaannntttiiicccsss 12
 Commands .. 12
 Networks .. 12
 Nodes ... 15
 Comments .. 21
 Variables ... 21
 Iteration ... 23
 Function Calls .. 24
 History Mechanism 24
 Command Selection 25
 Argument Selection 25
 Substitution 25
 Conclusion .. 26

 AAAppppppllliiicccaaatttiiiooonnn NNNooottteeesss .. 27
 Basic Functions 27
 History Examples 31
 Shell Control Variables 35
 Shell Command Statistics 38
 Symbiotic Commands 38
 Argument Fetching 38
 Shell Tracing 39
 Shell Variable Utilities 40
 Program Interface 40
 Conclusion .. 42

 MMMeeessssssaaagggeeesss fffrrrooommm ttthhheee SSShhheeellllll 43

 - iii -

 FFFooorrreeewwwooorrrddd

 The Software Tools Subsystem is a set of program development
 tools based on the book _S_o_f_t_w_a_r_e _T_o_o_l_s by Brian W. Kernighan and
 P. J. Plauger. It was originally developed for use on the Prime
 400 computer in 1977 and 1978 in the form of several cooperating
 | user programs. The present Subsystem, the ninth version, is a
 | powerful tool that aids in the effective use of computing resour-
 ces.

 The command interpreter, also referred to as the "shell," is
 a vital part of the Subsystem. It is a program which accepts
 commands typed by the user on his terminal and converts them into
 more primitive directions to the computer itself. The user’s
 instructions are expressed in a special medium called the "com-
 mand language." The greatest part of this document is involved
 with describing the command language and giving examples of how
 it is used.

 Three areas will be covered in the following pages. First,
 there is a tutorial on the use of the command language. New Sub-
 system users should read this chapter first. Some minimal
 knowledge of terminal usage is assumed; if you are unsure of
 yourself in this area, see Prime’s published documentation and
 the _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m _T_u_t_o_r_i_a_l for help. Second, there is
 a summary of the syntax and semantics of the command language.
 Experienced users should find this chapter valuable as a
 reference. Finally, there is a selection of application notes.
 This chapter is a good source of useful techniques and samples of
 advanced usage. Experienced users and curious beginners should
 find it well worthwhile.

 - iv -

 Command Interpreter User’s Guide

 TTTuuutttooorrriiiaaalll

 CCCooommmmmmaaannndddsss

 Input to the command interpreter consists of "commands".
 Commands, in turn, consist of a "command name", which is the name
 of an executable file. A command is executed simply by entering
 its name. For example,

] hhheeelllppp

 is a command that will describe how you can obtain online
 documentation.

 Some commands may have arguments. Arguments are values sup-
 plied by you to the command. Arguments can be required or they
 may be optional in which case the system uses a default. In the
 above example when ’help’ is invoked with no arguments the Sub-
 system assumes the command ’help help’ (i.e. get me on-line
 documentation for the ’help’ command). However, if you wanted
 on-line documentation for a specific command you would supply the
 command name as an argument, e.g.

] hhheeelllppp lllfff

 will describe the command that can be used to list information
 about files in a directory. Some commands may have options.
 Options are used to make the same command execute in slightly
 different ways. Options usually consist of one letter and are
 preceded by a dash. The command,

] hhheeelllppp ---fff fffiiillleee

 will list the names of commands and subroutines that may be
 associated with the keyword "file". The "-f" is an option and
 "file" is an argument. Commands, arguments and options are
 separated from each other by blanks.

 Here is a final example:

] lllfff
 adventure ee guide m6800
 shell shell.doc subsys time_sheet
 words zunde
]

 ’Lf’ is used to list the names of your files. Executed without
 any arguments, ’lf’ prints the files in your current directory,
 but (like ’help’) ’lf’ may be used with or without arguments and
 options.

 - 1 -

 Command Interpreter User’s Guide

 HHHooowww ttthhheee CCCooommmmmmaaannnddd IIInnnttteeerrrppprrreeettteeerrr LLLooocccaaattteeesss aaa CCCooommmmmmaaannnddd

 Recall that you can access files by their entrynames only if
 they are located in your current directory. Without help from
 the shell this would also be true for commands. That is, in
 order to execute ’help’ you would need to have a copy of the
 ’help’ command in your current directory or you would have to
 enter its full pathname so that the shell could locate it in
 another directory. Obviously, neither alternative is desirable.
 In reality, the shell uses a "variable" called "_search_rule" to
 find commands like "help" in other directories. Each user has
 his own search rule. (Refer to the section in this guide entit-
 led "Shell Control Variables" for more information.) The search
 rule tells the shell in what locations to look for commands, and
 if there is more than one location possible, it specifies the
 order in which the locations will be searched.

 Most new users are given the search rule that causes the
 command interpreter to look for commands in the following five
 locations in the order shown:

 1. The shell’s internal library for an internal command
 (e.g, ’stop’, ’set’)
 2. The user’s variables currently stored in memory
 3. The user’s current directory
 4. The Subsystem library containing locally supported exter-
 nal commands, "=lbin=" (e.g. memo, moot)
 5. The Subsystem library containing standard external com-
 mands, "=bin=" (e.g. ’lf’, ’help’)

 This variable is explained in more detail in the "Application
 Notes" section of this guide.

 Beware that this flexibility can get beginners (and some
 experienced users) into trouble. With the search rule above, the
 command interpreter will always look in your current directory
 for a command before it looks in one of the Subsystem command
 directories. Therefore, if you create a file having the same
 name as a command, the shell will try its best to execute the
 contents of that file.

 SSSpppeeeccciiiaaalll CCChhhaaarrraaacccttteeerrrsss aaannnddd QQQuuuoootttiiinnnggg

 Some characters have special meaning to the command
 interpreter. For example, try typing this command:

] eeeccchhhooo AAAlllaaasss,,, pppoooooorrr YYYooorrriiiccckkk
 Alas
 poor: not found
]

 ’Echo’ is simply a command that types back its arguments.
 Obviously this example is not working as it should. The strange
 behavior is caused by the fact that the comma is used for dark

 - 2 -

 Command Interpreter User’s Guide

 mysterious purposes elsewhere in the command language. (The
 comma actually represents a null I/O connection between nodes of
 a network. See the section on pipes and networks for more
 information.) In fact, all of the following characters are
 potential troublemakers:

 | , ; # @ > | { } [] () _ blank

 The way to handle this problem is to use quotes. You may use
 either single or double quotes, but be sure to match each with
 another of the same kind. Try this command now:

] eeeccchhhooo """AAAlllaaasss,,, pppoooooorrr YYYooorrriiiccckkk;;; III kkknnneeewww hhhiiimmm wwweeellllll..."""
 Alas, poor Yorick; I knew him well.
]

 You can use quotes to enclose other quotes:

] eeeccchhhooo ’’’QQQuuuooottthhh ttthhheee rrraaavvveeennn::: """NNNeeevvveeerrrmmmooorrreee!!!""" ’’’
 Quoth the raven: "Nevermore!"
]

 A final word on quoting: Note that anything enclosed in
 quotes becomes a _s_i_n_g_l_e argument. For example, the command

] eeeccchhhooo """CCCaaannn III uuussseee ttthhhaaattt iiinnn mmmyyy bbbooooookkk???"""

 has only one argument, but

] eeeccchhhooo CCCaaannn III uuussseee ttthhhaaattt iiinnn mmmyyy bbbooooookkk???

 has seven.

 CCCooommmmmmaaannnddd FFFiiillleeesss

 Suppose you have a task which must be done often enough that
 it is inconvenient to remember the necessary commands and type
 them in every time. For an example, let’s say that you have to
 print the year-end financial reports for the last five years. If
 the "print" command is used to print files, your command might
 look like:

] ppprrriiinnnttt yyyeeeaaarrr777444 yyyeeeaaarrr777555 yyyeeeaaarrr777666 yyyeeeaaarrr777777 yyyeeeaaarrr777888 yyyeeeaaarrr777999

 If you use a text editor to make a file named "reports" that
 contains this command, you can then print your reports by typing

] rrreeepppooorrrtttsss

 No special command is required to perform the operations in this
 "command file;" simply typing its name is sufficient.

 Any number of commands may be placed in a command file. It
 is possible to set up groups of commands to be repeated or

 - 3 -

 Command Interpreter User’s Guide

 executed only if certain conditions occur. See the Applications
 Notes for examples.

 It is one of the important features of the command
 interpreter that command files can be treated _e_x_a_c_t_l_y like
 ordinary commands. As shown in later sections, they are actually
 programs written in the command language; in fact, they are often
 called "shell programs." Many Subsystem commands (’e’, ’fos’,
 and ’rfl’, for example) are implemented in this manner.

 DDDoooiiinnnggg RRReeepppeeetttiiitttiiivvveee TTTaaassskkksss --------- IIIttteeerrraaatttiiiooonnn

 Some commands can accept only a single argument. One exam-
 ple of this is the ’fos’ command. "Fos" stands for "format,
 overstrike, and spool." It is a shorthand command for printing
 "formatted" documents on the line printer. (A "formatted"
 document is one prepared with the help of a program called a
 "text formatter," which justifies right margins, indents
 paragraphs, etc. This document was prepared by the Software
 Tools text formatter ’fmt.’) If you have several documents to be
 prepared, it is inconvenient to have to type the ’fos’ command
 for each one. A special technique called "iteration" allows you
 to "factor out" the repeated text. For example,

] fffooosss (((fffiiillleee111 fffiiillleee222 fffiiillleee333)))

 is equivalent to

] fffooosss fffiiillleee111
] fffooosss fffiiillleee222
] fffooosss fffiiillleee333

 The arguments inside the parentheses form an "iteration group."
 There may be more than one iteration group in a command, but they
 must all contain the same number of arguments. This is because
 each new command line produced by iteration must have one
 argument from each group. As an illustration of this,

] (((eeeccchhhooo ppprrriiinnnttt fffooosss))) fffiiillleee(((111 222 333)))

 is equivalent to

] eeeccchhhooo fffiiillleee111
] ppprrriiinnnttt fffiiillleee222
] fffooosss fffiiillleee333

 Iteration is performed by simple text substitution; if there is
 no space between an argument and an iteration group in the
 original command, then there is none between the argument and
 group elements in the new commands. Thus,

 file(1 2 3)

 is equivalent to

 - 4 -

 Command Interpreter User’s Guide

 file1
 file2
 file3

 Iteration is most useful when combined with function calls, which
 will be discussed later.

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn

 Control of the sources and destinations of data is a very
 basic function of the command interpreter, yet one that deserves
 special attention. The concepts involved are not new, yet they
 are rarely employed to the extent that they have been used in the
 Subsystem. The best approach to learning these ideas is to
 experiment. Get on a terminal, enter the Subsystem, and try the
 examples given here until they seem to make sense. Above all,
 experiment freely; try anything that comes to mind. The Sub-
 system has been designed with the idea that users are intelligent
 human beings, and their freedom of expression is the most
 valuable of tools. Use your imagination; if it needs tweaking,
 take a look at the Application Notes in the last chapter.

 Programs and commands in the Subsystem do not have to be
 written to read and write to specific files and devices. In fact
 most of them are written to read from "anything" and write to
 "anything." Only when the program is executed do you specify
 what "anything" is, which could be your terminal, a disk file,
 the line printer, or even another program. "Anything"s are more
 formally known as "standard input ports" and "standard output
 ports." Programs are said to "read from standard input" and
 "write on standard output." The key point here is that programs
 need not take into account how input data is made available or
 what happens to output data when they are finished with it; the
 command interpreter is in complete control of the standard ports.

 A command we will use frequently in this section is ’copy’.
 ’Copy’ does exactly what its name implies; it copies data from
 one place to another. In fact, it copies data from its first
 standard input port to its first standard output port.

 The first point to remember is that _b_y _d_e_f_a_u_l_t, _s_t_a_n_d_a_r_d
 _p_o_r_t_s _r_e_f_e_r_e_n_c_e _t_h_e _t_e_r_m_i_n_a_l. Try ’copy’ now:

] cccooopppyyy

 After you have entered this command, type some random text fol-
 lowed by a newline. ’Copy’ will type the same text back to you.
 (When you tire of this game, type a control-c; this causes an
 end-of-file signal to be sent to ’copy’, which then returns to
 the command interpreter. Typing control-c to cause end-of-file
 is a convention observed by all Subsystem programs.) Since you
 did not say otherwise, standard input and standard output
 referred to the terminal; input data was taken from the terminal
 (as you typed it) and output data was placed on the terminal
 (printed by ’copy’).

 - 5 -

 Command Interpreter User’s Guide

 Obviously, ’copy’ would not be of much use if this was all
 it could do. Fortunately, the command interpreter can change the
 sources and destinations of data, thus making ’copy’ less
 trivial.

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn tttooo DDDiiissskkk FFFiiillleeesss ooorrr DDDeeevvviiiccceeesss

 Standard ports may be altered so as to refer to disk files
 by use of a "funnel." The greater-than sign (>) is used to
 represent a funnel. Conventionally, the ">" points in the direc-
 tion of data flow. For example, if you wished to copy the
 contents of file "ee" to file "old_ee", you could type

] eeeeee>>> cccooopppyyy >>>ooolllddd___eeeeee

 The greater-than sign must always be immediately next to its
 associated filename; no intervening blanks are allowed. At least
 one blank must separate the ’>’ from any command name or
 arguments. This restriction is necessary to insure that the com-
 mand language can be interpreted unambiguously.

 The construct "ee>" is read "from ee"; ">old_ee" is read
 "toward old_ee." Thus, the command above can be read "from ee
 copy toward old_ee," or, "copy from ee toward old_ee." The
 process of changing the file assignment of a standard port by use
 of a funnel is called "I/O redirection," or simply "redirection."

 It is not necessary to redirect both standard input and
 standard output; either may be redirected independently of the
 other. For example,

] eeeeee>>> cccooopppyyy

 can be used to print the contents of file "ee" on the terminal.
 (Remember that standard output, since it was not specifically
 redirected, refers to the terminal.) Not surprisingly, the last
 variation of ’copy’,

] cccooopppyyy >>>ooolllddd___eeeeee

 is also useful. This command causes input to be taken from the
 terminal (until an end-of-file is generated by typing a control-
 c) and placed on the file "old_ee". This is a quick way of
 creating a small file of text without using a text editor.

 It is important to realize that _a_l_l _S_u_b_s_y_s_t_e_m _p_r_o_g_r_a_m_s
 _b_e_h_a_v_e _u_n_i_f_o_r_m_l_y _w_i_t_h _r_e_g_a_r_d _t_o _r_e_d_i_r_e_c_t_i_o_n. It is as correct to
 redirect the output of, say, ’lf’

] lllfff >>>fffiiillleee___llliiisssttt

 as it is to redirect the output of ’copy’.

 Recall that special pathnames which begin with "/dev" may
 refer to peripheral devices. For example, by redirecting output
 to "/dev/lps" you can print a file on the line printer.

 - 6 -

 Command Interpreter User’s Guide

] cccaaattt mmmyyyfffiiillleee >>>///dddeeevvv///lllpppsss

 Although the discussion has been limited to one input port and
 one output port up to this point, more of each type are
 available. In the current implementation, there are a total of
 six; three for input and three for output. The highest-numbered
 output port is generally used for error messages, and is often
 called "ERROUT"; you can "capture" error messages by redirecting
 this output port. For example, if any errors are detected by
 ’lf’ in this command

] lllfff 333>>>eeerrrrrrooorrrsss

 then the resulting error messages will be placed on the file
 "errors".

 Final words on redirection: there are two special-purpose
 redirection operators left. They are both represented by the
 double funnel ">>". The first operator is called "append:"

] lllfff >>>>>>llliiisssttt

 causes a list of files to be placed _a_t _t_h_e _e_n_d _o_f (appended to)
 the file named "list". The second operator is called "from com-
 mand input." It is represented as just ">>" with no file name,
 and causes standard input to refer to the current source of com-
 mands. It is useful for running programs like the text editor
 | from "scripts" of instructions placed in a command file. See the
 | Application Notes for examples.

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn tttooo ooottthhheeerrr CCCooommmmmmaaannndddsss

 The last section discussed I/O redirection --- the process
 of making standard ports refer to disk files or devices, rather
 than just to the terminal. This section will take that idea one
 step further. Frequently, the output of one program is placed on
 a file, only to be picked up again later and used by another
 program. The command interpreter simplifies this process by
 eliminating the intermediate file. The connection between
 programs that is so formed is called a "pipe," and a linear array
 of programs communicating through pipes is called a "pipeline."

 Suppose that you maintain a large directory, containing
 drafts of various manuals. Each draft is in a file with a name
 of the form "MANxxxx.rr", where "xxxx" is the number of the
 manual and "rr" is the revision number. You are asked to produce
 a list of the numbers of all manuals at the first revision stage.
 The following command will do the job:

] lllfff ---ccc ||| fffiiinnnddd ...000111

 | "lf -c" lists the names of all files in the current directory, in
 | a single column. The "pipe connection" (vertical bar) causes
 this listing to be passed to the ’find’ command, which selects
 those lines containing the string ".01" and prints them. Thus,

 - 7 -

 Command Interpreter User’s Guide

 the pipeline above will print all filenames matching the con-
 ventional form of a first-revision manual name.

 The ability to build special purpose commands cheaply and
 quickly from available tools using pipes is one of the most
 valuable features of the command interpreter. With practice,
 surprisingly difficult problems can be solved with ease. For
 further examples of pipelines, see the Applications Notes.

 Combinations of programs connected with pipes need not be
 linear. Since multiple standard ports are available, programs
 can be and often are connected in non-linear networks. (Some
 networks cannot be executed if the programs in the network are
 not executed concurrently. The command interpreter detects such
 networks, and prints a warning message if they cannot be per-
 formed.) Further information on networks can be found in both
 the reference and applications chapters of this guide.

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn fffooorrr aaa GGGrrrooouuuppp ooofff CCCooommmmmmaaannndddsss

 It is sometimes necessary to change the standard port
 environment of many commands at one time, for reasons of con-
 venience or efficiency. The "compound node" (a set of networks
 surrounded by curly braces) can be used in these situations.

 As an example of the first case, suppose that you wish to
 generate a list of manual names (see the last example) in either
 the first or the second stage of revision. One way to do this is
 to generate the list for the first revision stage, place it on a
 file using a funnel, then generate a list for the second revision
 stage and place it on the end of the same file using an "append"
 redirector. A compound node might simplify the procedure thusly:

] {{{ lllfff ---ccc ||| fffiiinnnddd ...000111;;; lllfff ---ccc ||| fffiiinnnddd ...000222 }}} >>>llliiisssttt

 The first network finds all manuals at the first revision stage,
 and the second finds all those at the second stage. The networks
 will execute left-to-right, with the output of each being placed
 on the file "list," thus generating the desired listing. With
 iteration, the command can be collapsed even farther:

] {{{ lllfff ---ccc ||| fffiiinnnddd ...000(((111 222))) }}} >>>llliiisssttt

 This combination of iteration and compound nodes is often useful.

 Efficiency becomes a consideration in cases where successive
 long streams of data are to be copied onto a file; if the
 "append" redirector is used each time, the file must be reopened
 and repositioned several times. Using a compound node, the out-
 put file need be opened only once:

] {{{ (((fffiiillleee111 fffiiillleee222 fffiiillleee333)))>>> cccooopppyyy }}} >>>aaallllll___fffiiillleeesss

 This complex example copies the contents of files "file1,"
 "file2," and "file3" into the file named "all_files."

 - 8 -

 Command Interpreter User’s Guide

 III///OOO RRReeedddiiirrreeeccctttiiiooonnn tttooo aaa CCCooommmmmmaaannnddd AAArrrggguuummmeeennnttt

 As mentioned before, some commands may have arguments. The
 standard output of a command (or a series of commands) can be
 used as an argument(s) by using the "function call" mechanism.
 For example, recall the situation illustrated in the section on
 pipes and networks; suppose it is necessary to actually print the
 manuals whose names were found. This is how the task could be
 done:

] ppprrriiinnnttt [[[lllfff ---ccc ||| fffiiinnnddd ...000111]]]

 The function call is composed of the pipeline "lf -c | find .01"
 and the square brackets enclosing it. The output of the pipeline
 within the brackets is passed to ’print’ as a set of arguments,
 which it accesses in the usual manner. Specifically, _a_l_l the
 lines of output from the pipeline are combined into _o_n_e set of
 arguments, with spaces provided where multiple lines have been
 collapsed into one line.

 ’Print’ accepts multiple arguments; however, suppose it was
 necessary to use a program like ’fos’, that accepts only one
 argument. Iteration can be combined with a function call to do
 the job:

] fffooosss ((([[[lllfff ---ccc ||| fffiiinnnddd ...000111]]])))

 This command formats and prints all manuals in the current direc-
 tory with revision numbers "01".

 Function calls are frequently used in command files,
 particularly for accessing arguments passed to them. Since the
 sequence "lf -c | find pattern" occurs very frequently, it is a
 good candidate for replacement with a command file; it is only
 necessary to pass the pattern to be matched from the argument
 list of the command file to the ’find’ command with a function
 call. The following command file, called ’files’, will
 illustrate the process:

 lf -c | find [arg 1]

 "arg 1" retrieves the first command file argument. The function
 call then passes that argument to ’find’ through its argument
 list. ’Files’ may then be used anywhere the original network was
 appropriate:

] fffiiillleeesss ...000111
] ppprrriiinnnttt [[[fffiiillleeesss ...000111]]]
] fffooosss ((([[[fffiiillleeesss ...000111]]])))

 VVVaaarrriiiaaabbbllleeesss

 It has been claimed that the command language is a
 programming language in its own right. One facet of this

 - 9 -

 Command Interpreter User’s Guide

 language that has not been discussed thus far is the use of its
 variables. The command interpreter allows the user to create
 variables, with scope, and assign values to them or reference the
 values stored in them.

 Certain special variables are used by the command
 interpreter in its everyday operation. These variables have
 names that begin with the underline (_). One of these is
 ’_prompt’, which is the prompt string the command interpreter
 prints when requesting a command. If you object to "]" as a
 prompt, you can change it with the "set" command:

] ssseeettt ___ppprrrooommmpppttt === """OOOKKK,,, """
 OK, ssseeettt ___ppprrrooommmpppttt === """%%% """
 % ssseeettt ___ppprrrooommmpppttt === """]]] """
]

 You may create and use variables of your own. To create a
 variable in the current scope (level of command file execution),
 use the "declare" command:

] dddeeeccclllaaarrreee iii jjj kkk sssuuummm

 Values are assigned to variables with the ’set’ command. The
 command interpreter checks the current scope and all surrounding
 scopes for the variable to be set; if found, it is changed,
 otherwise it is declared in the current scope and assigned the
 specified value.

 Variables behave like small programs that print their
 current values. Thus the value of a variable can be obtained by
 simply typing its name, or it can be used in a command line by
 enclosing it in brackets to form a function call. The following
 command file (which also illustrates the use of ’if’, ’eval’, and
 ’goto’) will count from 1 to the number given as its first
 argument:

 declare i
 set i = 1
 :loop
 if [eval i ">" [arg 1]]
 goto exit
 fi
 i
 set i = [eval i + 1]
 goto loop
 :exit

 Note the use of the "eval" function, which treats its arguments
 as an arithmetic expression and returns the expression’s value.
 This is required to insure that the string "i + 1" is interpreted
 as an expression rather than as a character string. Also note
 | that ’fi’ terminates the ’if’ command.

 | When setting a variable to a string containing unprintable
 | characters, you may use a special mnemonic form to prevent having

 - 10 -

 Command Interpreter User’s Guide

 | to type the literal characters. For example

 | set crlf = "<cr><lf>"

 | sets the variable ’crlf’ to a literal carriage return followed by
 | a linefeed. There are times when this is not desirable, so to
 | prevent the interpretation of the string, simply escape the start
 | the start on the mnemonic with the Subsystem escape character (an
 | ’@’). To set set the variable ’crlf’ to the literal string
 | "<cr><lf>" you would type

 | set crlf = "@<cr>@<lf>"

 | The quotes in these two cases are necessary, otherwise the shell
 | would try to interpret the ’>’ as an I/O redirector. If the
 | string between the "<>" characters is not a legal ASCII mnemonic,
 | no substitution will be made and the string will be passed
 | unchanged.

 IIInnnttteeerrrrrruuuppptttsss,,, QQQuuuiiitttsss aaannnddd EEErrrrrrooorrr HHHaaannndddllliiinnnggg MMMeeeccchhhaaannniiisssmmmsss

 Normally, if you interrupt a program, it will terminate and
 the next thing you will see is the Subsystem’s prompt for your
 next command. However, by defining the shell control variable
 "_quit_action" in your "=varsdir=/.vars" file, the fault handler
 will, upon detection of the interrupt, prompt you as to whether
 to abort the current program, continue, or call Primos. For
 program errors, the fault handler will always ask whether you
 want to abort the program, continue, or call Primos (regardless
 | of whether "_quit_action" is defined or not). The Application
 | Notes discuss how to go about creating shell variables (which are
 | kept in "=varsdir=/.vars" for storage between login sessions).

 CCCooonnncccllluuusssiiiooonnn

 This concludes the tutorial chapter of this document.
 Despite the fact that a good deal of material has been presented,
 much detail has been omitted. The next chapter is a complete
 summary of the capabilities of the command interpreter. It is
 written in a rather technical style, and is recommended for
 reference rather than self-teaching. The last chapter is a set
 of examples that may prove helpful. As always, the best approach
 is simply to sit down at a terminal and try out whatever you wish
 to do. Should you have difficulty, further tutorials are
 available, and the ’help’ command can be consulted for quick
 reference.

 - 11 -

 Command Interpreter User’s Guide

 SSSuuummmmmmaaarrryyy ooofff SSSyyynnntttaaaxxx aaannnddd SSSeeemmmaaannntttiiicccsss

 This section is the definitive document for the syntax and
 corresponding semantics of the Software Tools Subsystem Command
 Interpreter. It is composed of several sub-sections, each cover-
 ing some major area of command syntax, with discussions of the
 semantic consequences of employing particular constructs. It is
 not intended as a tutorial, nor is it intended to supply mul-
 titudinous examples; the other sections of this document are
 provided to fill those needs.

 CCCooommmmmmaaannndddsss

 <command> ::= [<net> { ; <net> }] <newline>

 The "command" is the basic unit of communication between the
 command interpreter and the user. It consists of any number of
 networks (described below) separated by semicolons and terminated
 by a newline. The networks are executed one at a time, left-to-
 right; should an error occur at any point in the parse or execu-
 tion of a network, the remainder of the <command> is ignored.
 The null command is legal, and causes no action.

 The command interpreter reads commands for interpretation
 from the "command source." This is initially the user’s
 terminal, although execution of a command file may change the
 assignment. Whenever the command source is the terminal, and the
 command interpreter is ready for input, it prompts the user with
 the string contained in the shell variable ’_prompt’. Since this
 variable may be altered by the user, the prompt string is selec-
 table on a per-user basis.

 NNNeeetttwwwooorrrkkksss

 <net> ::= <node>
 { <node separator> { <node separator> } <node> }

 <node separator> ::= , | <pipe connection>

 <pipe connection> ::= [<port>] ’|’ [<node number>] [.<port>]

 <port> ::= <integer>

 <node number> ::= <integer> | $ | <label>

 A <net> generates a block of (possibly concurrent) processes
 that are bound to one another by channels for the flow of data.
 Typically, each <node> corresponds to a single process. (<Node>s
 are described in more detail below.) There is no predefined
 "execution order" of the processes composing a <net>; the command
 interpreter will select any order it sees fit in order to satisfy
 the required input/output relations. In particular, the user is
 specifically enjoined _n_o_t to assume a left-to-right serial

 - 12 -

 Command Interpreter User’s Guide

 execution, since some <net>s cannot be executed in this manner.

 Input/output relations between <node>s are specified with
 the <node separator> construct. The following discussion may be
 useful in visualizing the data flows in a <net>, and clarifing
 the function of the components of the <node separator>.

 The entire <net> may be represented as a directed graph with
 one vertex for each <node> (typically, equivalent to each
 process) in the net. Each vertex may have up to _n arcs terminat-
 ing at it (representing "input data streams"), and _m arcs
 originating from it (representing "output data streams"). An arc
 between two vertices indicates a flow of data from one <node> to
 another, and is physically implemented by a pipe.

 Each of the _n possible input points on a <node> is assigned
 an identifier consisting of a unique integer in the range 1 to _n.
 These identifiers are referred to as the "port numbers" for the
 "standard input ports" of the given <node>. Similarly, each of
 the _m possible output points on a <node> is assigned a unique
 integer in the range 1 to _m, referred to as the port numbers for
 the "standard output ports" of the given <node>.

 Lastly, the <node>s themselves are numbered, starting at 1
 and increasing by 1 from the left end of the <net> to the right.

 Clearly, in order to specify any possible input/output con-
 nection between any two <node>s, it is sufficient to specify:

 ... The number of the "source" <node>.

 ... The number of the "destination" <node>.

 ... The port number of the standard output port on the
 source <node> that is to be the source of the data.

 ... The port number of the standard input port on the
 destination <node> that is to receive the data.

 The syntax for <node separator> includes the specifications
 for the last three of these items. The source <node> is under-
 stood to be the node that immediately precedes the
 <node separator> under consideration. The special
 <node separator> "," is used to separate <node>s that do not
 participate in data sharing; it specifies a null connection.
 _T_h_u_s, _t_h_e <_n_o_d_e _s_e_p_a_r_a_t_o_r> _p_r_o_v_i_d_e_s _a _m_e_a_n_s _o_f _e_s_t_a_b_l_i_s_h_i_n_g _a_n_y
 _p_o_s_s_i_b_l_e _c_o_n_n_e_c_t_i_o_n _b_e_t_w_e_e_n _t_w_o <_n_o_d_e>_s _o_f _a _g_i_v_e_n <_n_e_t>.

 The full flexibility of the <node separator> is rarely
 needed or desirable. In order to make effective use of the
 capabilities provided, suitable defaults have been designed into
 the syntax. The semantics associated with the defaults are as
 follows:

 - 13 -

 Command Interpreter User’s Guide

 ... If the output port number (the one to the left of the
 vertical bar) is omitted, _t_h_e _n_e_x_t _u_n_a_s_s_i_g_n_e_d _o_u_t_p_u_t
 _p_o_r_t (_i_n _i_n_c_r_e_a_s_i_n_g _n_u_m_e_r_i_c_a_l _o_r_d_e_r) _i_s _i_m_p_l_i_e_d. This
 default action takes place _o_n_l_y after the entire <net>
 has been examined, and all non-defaulted output ports
 for the given node have been assigned. Thus, if the
 first <node separator> after a <node> has a defaulted
 output port number, port 1 will be assigned if and only
 if no other <node separator> attached to that <node>
 references output port 1. It is an error for two
 | <node separators> to reference the same output port.

 ... If the destination <node> number is omitted, then the
 next node in the <net> (scanning from left to right) is
 implied. Occasionally a null <node> is generated at
 the end of a <net> because of the necessity for resolv-
 ing such references.

 ... If the destination <node>’s input port number is omit-
 ted, then the next unassigned input port (in increasing
 numerical order) is implied. As with the defaulted
 output port, this action takes place only after the
 entire <net> has been examined. The comments under (1)
 above also apply to defaulted input ports.

 In addition to the defaults, specifying input/output connec-
 tions between widely separated <node>s is aided by alternative
 means of giving <node> numbers. The last <node> in a <net> may
 be referred to by the <node number> $, and any <node> may be
 referred to by an alphanumeric <label>. (<Node> labelling is
 discussed in the section on <node> syntax, below.) If the first
 <node> of a <net> is labelled, the <net> may serve as a target
 for the ’goto’ command; see the Applications Notes for examples.

 As will be seen in the next section, further syntax is
 necessary to completely specify the input/output environment of a
 <node>; the reader should remember that <node separator>s control
 only those flows of data _b_e_t_w_e_e_n _p_r_o_c_e_s_s_e_s.

 A few examples of the syntax presented above may help to
 clarify some of the semantics. Since the syntax of <node> has
 not yet been discussed, <node>s will be represented by the string
 "node" followed by a digit, for uniqueness and as a key to
 <node number>s.

 A simple linear <net> of three <node>s without defaults:

 node1 1|2.1 node2 1|3.1 node3

 (Data flows from output port 1 of node1 to input port 1 of node2
 and output port 1 of node2 to input port 1 of node3.)

 The same <net>, with defaults:

 node1 | node2 | node3

 - 14 -

 Command Interpreter User’s Guide

 (Note that the spaces around the vertical bars are _m_a_n_d_a_t_o_r_y, so
 that the lexical analysis routines of the command interpreter can
 parse the elements of the command unambiguously.)

 A simple cycle:

 node1 |1.2

 (Data flows from output port 1 of node1 to input port 2 of node1.
 Other data flows are unspecified at this level.)

 | A branching <net> with overridden defaults:

 node1 |$ node2 |.1 node3

 (Data flows from output port 1 of node1 to input port 2(!) of
 node3 and output port 1 of node2 to input port 1 of node3.)

 NNNooodddeeesss

 <node> ::= {:<label>} [<simple node> | <compound node>]

 <simple node> ::= { <i/o redirector> }
 <command name>
 { <i/o redirector> | <argument> }

 <compound node> ::= { <i/o redirector> }
 ’{’ <net> { <net separator> <net> } ’}’
 { <i/o redirector> }

 <i/o redirector> ::= <file name> ’>’ [<port>] |
 [<port>] ’>’ <file name> |
 [<port>] ’>>’ <file name> |
 ’>>’ [<port>]

 <net separator> ::= ;

 <command name> ::= <file name>

 <label> ::= <identifier>

 The <node> is the basic executable element of the command
 language. It consists of zero or more labels (strings of let-
 ters, digits, and underscores, beginning with a letter),
 optionally followed by one of two additional structures.
 Although, strictly speaking, the syntax allows an empty node, in
 practice there must be either a label or one of the two
 additional structures present.

 The first option is the <simple node>. It specifies the
 name of a command to be performed, any arguments that command may
 require, and any <i/o redirector>s that will affect the data
 environment of the command. (<I/o redirectors will be discussed
 below.) The execution of a simple node normally involves the
 creation of a single process, which performs some function, then

 - 15 -

 Command Interpreter User’s Guide

 returns to the operating system.

 The second option is the <compound node>. It specifies a
 <net> which is to be executed according to the usual rules of
 <net> evaluation (see the previous subsection), and any
 <i/o redirector>s that should affect the environment of the
 <net>. The <compound node> is provided for two reasons. One, it
 is occasionally useful to alter default port assignments for an
 entire <net> with <i/o redirector>s, rather than supplying
 <i/o redirector>s for each <node>. Two, use of compound nodes
 containing more than one <net> gives the user some control over
 the order of execution of his processes. These abilities are
 discussed in more detail below.

 Since it is the more basic construct, consider the
 <simple node>. It consists of a <command name> with <argument>s,
 intermixed with <i/o redirector>s. The <command name> must be a
 filename, usually specifying the name of an object code file to
 be loaded. The command interpreter locates the command to be
 performed by use of a user-specified "search rule." The search
 rule resides in the shell variable "_search_rule", and consists
 of a series of comma-separated elements. Each element is either
 a template in which ampersands (&) are replaced by the
 <command name> or a flag instructing the command interpreter to
 search one of its internal tables. The flag "^int" indicates
 that the command interpreter’s repertoire of "internal" commands
 is to be checked. (An internal command is implemented as a
 subroutine of the command interpreter, typically for speed or
 because of a need to access some private data base.) The flag
 "^var" causes a search of the user’s "shell variables" (see below
 for further discussion of variables and functions). The follow-
 ing search rule will cause the command interpreter to search for
 a command among the internal commands, shell variables, and the
 directory "=bin=", in that order:

 "^int,^var,=bin=/&"

 The purpose of the search rule is to allow optimization of com-
 mand location for speed, and to admit the possibility of restric-
 ting some users from accessing "privileged" commands. (For exam-
 ple, the search rule

 "^var,//project/library/&"

 would restrict a user to accessing his variables and those com-
 mands in the directory "//project/library". He could not alter
 this restriction, since he does not have access to the (internal)
 ’set’ command; the "^int" flag is missing from his search rule.)
 In addition to restricting a user to commands in specific direc-
 tories, the system administrator can also restrict a user from
 using certain internal commands (and allow use of all other
 internal commands). This is accomplished by adding "qualifiers"
 after the internal command flag in the search rule. The
 qualifiers are characters representing the class of commands to
 be _e_x_c_l_u_d_e_d in the search for internal commands to be executed.
 Qualifiers follow the "^int" flag, separated from it by a slash.

 - 16 -

 Command Interpreter User’s Guide

 The following table summarizes the qualifiers and which internal
 commands they exclude :

 Qualifier meaning

 a access to arguments in shell files
 (’arg’, ’args’, ’argsto’, ’nargs’, and
 ’quote’)

 b access to debugging commands (’dump’ and
 ’shtrace’)

 c access to flow of control commands
 | (’case’, ’elif’, ’else’, ’esac’, ’exit’,
 | ’fi’, ’goto’, ’if’, ’label’, ’out’,
 | ’repeat’, ’then’, ’until’, and ’when’)

 d ability to change directories (via ’cd’)

 h access to environment information
 (’date’, ’day’, ’echo’, ’eval’, ’instal-
 lation’, ’line’, ’login_name’, and
 ’time’)

 m access to string manipulation functions
 (’drop’, ’index’, ’substr’, and ’take’)

 q ability to exit the shell (via ’stop’)

 s access to variable setting commands
 (’forget’, ’set’, and ’sh’)

 v access to variable manipulating commands
 (’declare’, ’declared’, and ’vars’)

 x access to commands which allow execution
 of Primos commands (’dbg’, ’primos’,
 ’vpsd’, and ’x’)

 For instance, if the system administrator wanted to keep someone
 from executing the Primos Fortran compiler directly, then the
 following search rule would accomplish this :

 "^int/qxv,^var,=bin=/&"

 The "q" qualifier prevents exit from the shell (so that you can’t
 run the Primos Fortran compiler directly), the "x" qualifier
 prevents you from accessing external commands from within the
 shell (i.e., via "x ftn prog"), and the "v" qualifier prevents
 you from using ’declare’ to modify or create a search rule (the
 shell file ’fc’, which is the Subsystem interface to the Primos
 Fortran compiler, declares its own search rule) which contains an
 unqualified "^int" flag. It should be noted, however, that this
 is not a fool-proof method of limiting a user’s access to com-

 - 17 -

 Command Interpreter User’s Guide

 mands; a better solution is to write a program which is run at
 login and which "supervises" the user’s session. One way of
 overcoming such a restriction placed by the system administrator
 would be to execute a command within a function call, such as the
 following:

 | [declare _search_rule = "<normal search rule>"; _
 | <unrestricted command>]

 By redefining the search rule, the user is then allowed to
 execute any desired command, including a new invocation of the
 command interpreter.

 <Argument>s to be passed to the program being readied for
 execution are gathered by the command interpreter and placed in
 an area of memory accessible to the library routine ’getarg’.
 They may be arbitrary strings, separated from the command name
 and from each other by blanks. Quoting may be necessary if an
 <argument> could be interpreted as some other element of the com-
 mand syntax. Either single or double quotes may be used. The
 appearance of two strings adjacent to one another without blanks
 implies concatenation. Thus,

 "quoted "string

 is equivalent to

 "quoted string"

 or to

 quoted’ string’

 Single quotes may appear within strings delimited by double
 quotes, and vice versa; this is the only way to include quotes
 within a string. Example:

 "’quoted string’"
 ’"Alas, poor Yorick!"’

 Arguments are generally unprocessed by the command interpreter,
 and so may contain any information useful to the program being
 invoked.

 In the previous section, it was shown that streams of data
 from "standard ports" could be piped from program to program
 through the use of the <pipe connection> syntax. It is also pos-
 sible to redirect these data streams to files, or to use files as
 sources of data. The construct that makes this possible is the
 <i/o redirector>. The <i/o redirector> is composed of filenames,
 port numbers (as described in the last section), and one or two
 occurrences of the "funnel" (>).

 The two simplest forms take input from a file to a standard
 port or output from a standard port to a file. In the case of
 delivering output to a file, the file is automatically created if

 - 18 -

 Command Interpreter User’s Guide

 it did not exist, and overwritten if it did. In the case of tak-
 ing input from a file, the file is unmodified. Example:

 documentation>1

 causes the data on the file "documentation" to be passed to stan-
 dard input port 1 of the node;

 1>results

 causes data written to standard output port 1 of the node to be
 placed on the file "results".

 If no <i/o redirector> is present for a given port, then
 that port automatically refers to the user’s terminal.

 If port numbers are omitted, an assignment of defaults is
 made. The assignment rule is identical to that given above for
 <pipe connections>: the first available port after the entire
 <net> has been scanned is used. <I/O redirector>s are evaluated
 left-to-right, so leftmost defaulted redirectors are assigned to
 lower-numbered ports than those to their right. For example,

 data> requests> trans 2>summary 3>errors | sp

 is the same as

 data>1 requests>2 trans 2>summary 3>errors 1|2.1 sp

 where all defaults have been elaborated. ’Trans’ might be some
 sort of transaction processor, accepting data input and update
 requests, and producing a report (here printed off-line by being
 piped to a spooler program), a summary of transactions, and an
 error listing.

 In addition to the <i/o redirector>s mentioned above, there
 are two lesser-used redirectors that are useful. The first
 _a_p_p_e_n_d_s output to a file, rather than overwriting the file. The
 syntax is identical to the other output redirector, with the
 exception that two funnels ’>>’ are used, rather than one. For
 example,

 2>>stuff

 causes the data written to output port 2 to be appended to the
 file "stuff". (Note the lack of spaces around the redirector; a
 redirector and its parameters are _n_e_v_e_r separated from one
 another, but are _a_l_w_a_y_s separated from surrounding arguments or
 other text. This restriction is necessary to insure unambiguous
 interpretation of the redirector.) The second redirector causes
 input to be taken from the current command source file. It is
 most useful in conjunction with command files. The syntax is
 similar to the input redirector mentioned above, but two funnels
 are used and no filename may be specified. As an example, the
 following segment of a command file uses the text editor to
 change all occurrences of "March" to "April" in a given file:

 - 19 -

 Command Interpreter User’s Guide

 >> ed file
 g/March/s//April/
 w
 q

 When the editor is invoked, it will take input directly from the
 command file, and thus it will read the three commands placed
 there for it.

 The "command source" and "append" redirectors are subject to
 the same resolution of defaults as the other redirectors and
 <pipe connection>s. Thus, in the example immediately above,

 >> ed file

 is equivalent to

 >>1 ed file

 Now that the syntax of <node> has been covered, just two
 further considerations remain. First, the nature of an
 executable program must be defined. Second, the problem of
 execution order must be clarified.

 In the vast majority of cases, a <node> is executed by
 bringing an object program into memory and starting it. However,
 the <command name> may also specify an internal command, a shell
 variable, or a command file. Internal commands are executed
 within the command interpreter by the invocation of a subroutine.
 When a shell variable is used as a command, the net effect is to
 print the value of the variable on the first output port, fol-
 lowed by a newline. If the filename specified is a text file
 rather than an object file, the command interpreter "guesses"
 that the named file is a file of commands to be interpreted one
 at a time. In any case, command invocation is uniform, and any
 <i/o redirector> or <pipe connection> given will be honored.
 Thus, it is allowable to redirect the output of a command file
 just as if it were an object program, or copy a shell variable to
 the line printer by connecting it to the spooler through a pipe.

 As mentioned in the section on <net>s, the execution order
 of nodes in a <net> is undefined. That is, they may be executed
 serially in any order, concurrently, or even simultaneously. The
 exact method is left to the implementor of the command
 interpreter. In any case, the flows of data described by
 <pipe connection>s and <i/o redirector>s are guaranteed to be
 present. There are times when it would be preferable to know the
 order in which a <net> will be evaluated; to help with this
 situation, <compound node>s may be used to effect serialization
 of control flow within a network. <Net>s separated by semicolons
 or newlines are guaranteed to be executed serially, left-to-
 right, otherwise the command interpreter would exhibit unpredic-
 table behavior as the user typed in his commands. Suppose it is
 necessary to operate four programs; three may proceed
 concurrently to make full use of the multiprogramming capability

 - 20 -

 Command Interpreter User’s Guide

 of the computer system, but the fourth must not be executed until
 the second of the three has terminated. For simplicity, we will
 assume there are no input/output connections between the
 programs. The following command line meets the requirements
 stated above:

 program1, {program2; program4}, program3

 (Recall that the comma represents a null i/o connection.) Sup-
 pose that we have a slightly different problem: the fourth
 program must run after _a_l_l of the other three had run to com-
 pletion. This, too, can be expressed concisely:

 program1, program2, program3; program4

 Thus, the user has fairly complete control over the execution
 order of his <net>s. (The use of commas and semicolons in the
 command language is analogous to their use for collateral and
 serial elaboration in Algol 68.)

 This completes the discussion of the core of the command
 language. The remainder of the features present in the command
 interpreter are provided by a built-in preprocessor, which hand-
 les function calls, iteration, and comments. The next few sec-
 tions deal with the preprocessor’s capabilities.

 CCCooommmmmmeeennntttsss

 Any good command language should provide some means for the
 user to comment his code, particularly in command files that may
 be used by others. The command interpreter has a simple comment
 convention: Any text between an unquoted sharp sign (#) and the
 next newline is ignored. A comment may appear at the beginning
 of a line, like this:

 # command file to preprocess, compile, and link edit

 Or after a command, like this:

 file.r> rp # Ratfor’s output goes to the terminal

 Or even after a label, for identification of a loop:

 :loop # beginning of daily cycle

 As far as implications in other areas of command syntax, the
 comment is functionally equivalent to a newline.

 VVVaaarrriiiaaabbbllleeesss

 <variable> ::= <identifier>

 | <value> ::= { <printable char> | <unprintable char> }

 - 21 -

 Command Interpreter User’s Guide

 |
 | <unprintable char> ::= ’<’ <ascii mnemonic> ’>’
 |
 | <set command> ::= set [<variable>] = [<value>]
 |
 | <declare command> ::= declare { <variable [= <value>] }

 <forget command> ::= forget <variable> { <variable> }

 The command interpreter supports named string storage areas
 for miscellaneous user applications. These are called _v_a_r_i_a_b_l_e_s.
 Variables are identified by a name, consisting of letters of
 either case, digits, and underscores, not beginning with a digit.
 Variables have two attributes: value and scope. The value of a
 variable may be altered with the ’set’ command, discussed below.
 The scope of a variable is fixed at the time of its creation;
 simply, variables declared during the time when the command
 interpreter is taking input from a command file are active as
 long as that file is being used as the command source. Variables
 with global scope (those created when the command interpreter is
 reading commands from the terminal) are saved as part of the
 user’s profile, and so are available from terminal session to
 terminal session. Other variables disappear when the execution
 of the command file in which they were declared terminates.

 Variables may be created with the ’declare’ command.
 ’Declare’ creates variables with the given names at the current
 lexical level (within the scope of the current command file).
 The newly-created variables are assigned a null value, unless an
 initialization string is provided.

 Variables may be destroyed prematurely with the ’forget’
 command. The named variables are removed from the command
 interpreter’s symbol table and storage assigned to them is
 released to the system. Note that variables created by
 operations within a command file are automatically released when
 that command file ceases to execute. Also note that the only way
 to destroy variables at the global lexical level is to use the
 ’forget’ command.

 The value of a variable may be changed with the ’set’ com-
 mand. The first argument to ’set’ is the name of the variable to
 be changed. If absent, the value that would have been assigned
 is printed on ’set’s first standard output. The last argument to
 ’set’ is the value to be assigned to the variable. It is
 uninterpreted, that is, treated as an arbitrary string of text.
 If missing, ’set’ reads one line from its first standard input,
 and assigns the resulting string. If the variable named in the
 first argument has not been declared at any lexical level, ’set’
 declares it at the current lexical level.

 | A variable may contain any legal ASCII character. To allow
 | the user to enter unprintable characters that might be a problem
 | to Primos or the shell, the commands that manipulate variables
 | allow the use of ASCII mnemonics in the value of a shell
 | variable. The following would set the "_kill_resp" variables to

 - 22 -

 Command Interpreter User’s Guide

 | two ASCII escape characters, a backspace, and the string "*del*":

 | set _kill_resp = "<esc><esc><bs>*del*"

 | To prevent the interpretation of the mnemonics (i.e. to enter a
 | literal "<esc><esc><bs>*del*", in this case) the user simply uses
 | the Subsystem escape character in front of the mnemonics:

 | set _kill_resp = "@<esc>@<esc>@<bs>*del*"

 Variables are accessed by name, as with any command. (Note
 that the user’s search rule must contain the flag "^var" before
 variables will be evaluated.) The command interpreter prints the
 value of the variable on the first standard output. This
 behavior makes variables useful in function calls (discussed
 below). In addition, the user may obtain the value of a variable
 for checking simply by typing its name as a command.

 IIIttteeerrraaatttiiiooonnn

 <iteration> ::= ’(’ <element> { <element> } ’)’

 Iteration is used to generate multiple command lines each
 differing by one or more substrings. Several iteration elements
 (collectively, an "iteration group") are placed in parentheses;
 the command interpreter will then generate one command line for
 each element, with successive elements replacing the instance of
 iteration. Iteration takes place over the scope of one <net>; it
 will not extend over a <net separator>. (If iteration is applied
 to a <compound node>, it will, of course, apply to the entire
 <node>; not just to the first <net> within that <node>.)

 Multiple iterations may be present on one command; each
 iteration group must have the same number of elements, since the
 command interpreter will pick one element from each group for
 each generated command line. (Cross-products over iteration
 groups are not implemented.)

 An example of iteration:

] fffooosss pppaaarrrttt(((111 222 333)))

 is equivalent to

] fffooosss pppaaarrrttt111;;; fffooosss pppaaarrrttt222;;; fffooosss pppaaarrrttt333

 and

] cccppp (((iiinnntttrrrooo bbbooodddyyy sssuuummmmmmaaarrryyy))) pppaaarrrttt(((111 222 333)))

 is equivalent to

] cccppp iiinnntttrrrooo pppaaarrrttt111;;; cccppp bbbooodddyyy pppaaarrrttt222;;; cccppp sssuuummmmmmaaarrryyy pppaaarrrttt333

 - 23 -

 Command Interpreter User’s Guide

 FFFuuunnnccctttiiiooonnn CCCaaallllllsss

 <function call> ::= ’[’ <net> { <net separator> <net> } ’]’

 Occasionally it is useful to be able to pass the output of a
 program along as arguments to another program, rather than to an
 input port. The "function call" makes this possible. The output
 appearing on each of the first standard output ports of the
 <net>s within the function call is copied into the command line
 in place of the function call itself. Line separators (newlines)
 present in the <net>’s output are replaced by blanks. No quoting
 of <net> output is performed, thus blank-separated tokens will be
 passed as separate arguments. (If quoting is desired, the filter
 ’quote’ can be used or the shell variable "_quote_opt" may be set
 to the string "YES" to cause automatic quotation.)

 A <net> may of course be any network; all the syntax
 described in this document is applicable. In particular, the
 name of a variable may appear with the brackets; thus, the value
 | of a variable may be substituted into the command line.

 | HHHiiissstttooorrryyy MMMeeeccchhhaaannniiisssmmm

 | <history_command> ::= <cmd_select> <arg_select> <substitution>

 | The shell provides a sort of dynamic macro replacement facility
 | for commands that are entered from the terminal. This is called
 | a command history mechanism. It allows the user to recall com-
 | mands he has previously entered, extract portions of the command,
 | edit the portions he has selected, and either execute what
 | remains or incorporate it into another command, with a minimum of
 | typing.

 | A history substitution contains three parts; command selec-
 | tion, argument selection, and editing. Command selection chooses
 | what command will be used. Argument selection decides which
 | arguments are to be extracted from the chosen command line, and
 | the editing phase allows the result to be edited to change spel-
 | ling or substitute a different word for portions of the line. To
 | prevent any history substitution from taking place, the ’hist’
 | command can turn off the history mechanism. It also controls the
 | saving and restoration of the current history environment. For
 | the rest of this discussion, the assumption will be that history
 | is currently enabled.

 | History substitution is triggered by the ’!’ character. A
 | history substitution is normally stopped by a blank or tab
 | character, but a trailing ’!’ will stop the interpretation of
 | any further characters. This is used when concatenating sup-
 | plementary text to the result of a history substitution. To
 | prevent this and any other interpretation of the special history
 | characters, they may be escaped with the Subsystem escape charac-
 | ter, ’@’. When a history substitution is discovered, the
 | mechanism modifies the command line, prints the resulting command
 | line on the user’s terminal, and then passes the command to the

 - 24 -

 Command Interpreter User’s Guide

 | rest of the shell for execution. History processing occurs
 | before any other evaluation in the shell, such as function calls
 | and iteration. However, the use of ’_’ to continue an input line
 | is done even before the history mechanism sees what you have
 | typed; if the ’_’ is the last character in your history command,
 | and the last character on the line, follow it with a terminating
 | ’!’.

 | _C_o_m_m_a_n_d _S_e_l_e_c_t_i_o_n.

 | <cmd_select> ::= ’!’ [<str> | ’?’ <str> ’?’ | <num>]

 | The first thing in a history substitution is command selec-
 | tion. This is used to retrieve a given command line for use, or
 | further processing. In a history command selection ’!<str>’ will
 | find the most recent command line that started with the charac-
 | ters in <str>. ’!?<str>?’ will find the most recent command
 | line that contained <str> anywhere on the line. It also allows
 | <str> to contain blanks or tabs whereas the first form does not.
 | ’!<num>’ allows the user to specify the number of a command
 | according to the output of the ’hist’ command. As a convenience,
 | ’!’ by itself will repeat the last command entered.

 | _A_r_g_u_m_e_n_t _S_e_l_e_c_t_i_o_n.

 | <arg_select> ::= ’‘’ [<num>] [’-’ <num>]

 | The next portion of a history substitution is an optional
 | argument selection. This chooses which portions of the command
 | are to be kept. History arguments are not exactly the same as
 | the arguments the rest of the shell uses, since history expansion
 | occurs before argument collection. Arguments in this context are
 | blank or tab seperated words on the command line. Function
 | calls, iterations, and quotations will be extracted as a single
 | argument, even if they contain blanks or tabs. Arguments are
 | numbered from zero, starting at the leftmost portion of the line.
 | In an argument selection, ’‘<num>’ specifies that only argument
 | <num> is to be extracted and kept for further processing or use,
 | and the rest of the command line is to be dropped. ’‘<num>-
 | <num>’ specifies that arguments from the first <num> to the last
 | <num> are to be kept. In place of any <num>, ’$’ may be
 | specified to obtain the last argument on the line. The form ’‘-
 | <num>’ is a shorthand for ’‘1-<num>’ and ’‘<num>-’ is a short
 | form for ’‘<num>-$’.

 | _S_u_b_s_t_i_t_u_t_i_o_n.

 | <substitution> ::= { ’^’ <str> ’^’ <str> ’^’ [’g’] }

 | The last portion of a history substitution is also optional
 | and is the editing phase. This allows the portions of the com-
 | mand line that remain to actually be modified like the substitu-
 | tion command in ’ed’, although much more limited. In the history
 | mechanism, <str> is not a regular expression, as in ’ed’, but is
 | taken as a simple string. The regular expression special charac-
 | ters are not recognized in the history mechanism. Each substitu-

 - 25 -

 Command Interpreter User’s Guide

 | tion happens only once on the line unless a ’g’ is appended on
 | the substitution, in which case the change occurs globally on the
 | line. Substitutions may be strung together, so that more than
 | one may be performed at a time.

 | Finally, after all history substitutions have been made, the
 | Shell will echo the new command line to the terminal, and then
 | execute it. See the Application Notes for a discussion of the
 | ’hist’ command.

 CCCooonnncccllluuusssiiiooonnn

 | This concludes the description of command syntax and
 | semantics. The next, and final, chapter contains actual working
 examples of the full command syntax, along with suggested
 applications; it is highly recommended for those who wish to gain
 proficiency in the use of the command language.

 - 26 -

 Command Interpreter User’s Guide

 AAAppppppllliiicccaaatttiiiooonnn NNNooottteeesss

 This section consists mostly of examples of current usage of
 the command interpreter. Extensive knowledge of some Subsystem
 programs may be necessary for complete understanding of these
 examples, but basic principles should be clear without this
 knowledge.

 BBBaaasssiiiccc FFFuuunnnccctttiiiooonnnsss

 In this section, some basic applications of the command
 language will be discussed. These applications are intended to
 give the user a "feel" for the flow of the language, without
 being explicitly pedagogical.

 One commonly occurring task is the location of lines in a
 file that match a certain pattern. The ’find’ command performs
 this function:

] fffiiillleee>>> fffiiinnnddd pppaaatttttteeerrrnnn >>>llliiinnneeesss___fffooouuunnnddd

 Since the lines to be checked against the pattern are frequently
 a list of file names, the following sequence occurs often:

] lllfff ---ccc dddiiirrreeeccctttooorrryyy ||| fffiiinnnddd pppaaatttttteeerrrnnn

 Consequently, a command file named ’files’ is available to
 abbreviate the sequence:

] cccaaattt ===bbbiiinnn===///fffiiillleeesss
 lf -c [args 2] | find [arg 1]

 (’Cat’ is used here only to print the contents of the command
 file.) The internal command ’arg’ is used to fetch the first
 argument on the command line that invoked ’files’. Similarly,
 the internal command ’args’ fetches the second through the last
 arguments on the command line. The command file gives the exter-
 nal appearance of a program ’files’ such that

] fffiiillleeesss pppaaatttttteeerrrnnn

 is equivalent to

] lllfff ---ccc ||| fffiiinnnddd pppaaatttttteeerrrnnn

 and

] fffiiillleeesss pppaaatttttteeerrrnnn dddiiirrreeeccctttooorrryyy

 is equivalent to

] lllfff ---ccc dddiiirrreeeccctttooorrryyy ||| fffiiinnnddd pppaaatttttteeerrrnnn

 Once a list of file names is obtained, it is frequently processed

 - 27 -

 Command Interpreter User’s Guide

 further, as in this command to print Ratfor source files on the
 line printer:

] ppprrr [[[fffiiillleeesss ...rrr$$$ ||| sssooorrrttt]]]

 ’Files’ produces a list of file names with the ".r" suffix, which
 is then sorted by ’sort’. ’Pr’ then prints all the named files
 on the line printer.

 One problem arises when the pattern to be matched contains
 command language metacharacters. When the pattern is substituted
 into the network within ’files’, and the command interpreter par-
 ses the command, trouble of some kind is sure to arise. There
 are two solutions: One, the filter ’quote’ can be used to supply
 a layer of quotes around the pattern:

 lf -c [args 2] | find [arg 1 | quote]

 Two, the shell variable "_quote_opt", which controls automatic
 function quotation by the command interpreter, can be set to the
 string "YES":

 declare _quote_opt = YES
 lf -c [args 2] | find [arg 1]

 This latter solution works only because ’args’ prints each
 argument on a separate line; the command interpreter always
 generates separate arguments from separate lines of function out-
 put. In practice, the first solution is favored, since the non-
 intuitive quoting is made more evident.

 One common non-linear command structure is the so-called "Y"
 structure, where two streams of data join together to form a
 third (after some processing). This situation occurs because of
 the presence of dyadic operations (especially comparisons) in the
 tools available under the Subsystem. As an example, the follow-
 ing command compares the file names in two directories and lists
 those names that are present in both:

] lllfff ---ccc dddiiirrr111 ||| sssooorrrttt |||$$$ lllfff ---ccc dddiiirrr222 ||| sssooorrrttt ||| cccooommmmmmooonnn ---333

 Visualize the command in this way:

 lf -c dir1 | sort lf -c dir2 | sort
 \ /
 ________ __________/
 \ /
 common -3

 The two ’lf’ and ’sort’ pairs produce lists of file names that
 are compared by ’common’, which produces a list of those names
 common to both input lists.

 Command files tend to be used not only for oft-performed
 tasks but also to make life easier when typing long, complex com-
 mands. Quite often these long command lines make use of line

 - 28 -

 Command Interpreter User’s Guide

 continuation -- a newline preceded immediately by an underscore
 is ignored. The following command file is used to create a
 keyword-in-context index from the heading lines of the Subsystem
 Reference Manual. Although it is not used frequently, it does a
 great deal of work and is illustrative of many of the features of
 the command interpreter.

 # make_cmd.k --- build permuted index of commands
 files .d$ -f s1 _
 | change % "find %.hd -o 1" _
 | sh _
 | change ’%.hd *{[˜]*} ["]*{[˜"]*}?*’ ’@1: @2’ _
 | kwic -d =aux=/spelling/discard _
 | sort -d | unrot -w [width] >cmd.k

 First a few words on how Subsystem documentation is stored: The
 documentation for Subsystem commands resides in a subdirectory
 named "s1". The documentation for each command is in a separate
 file with the name "<command>.d". The heading line in each file
 can be identified by the characters ".hd" at the beginning of the
 line.

 The entire command file consists of a single network. The
 ’files’ command produces a list of the full path names (the -f
 option is passed on to ’lf’) of the files in the subdirectory
 "s1" that have path names ending with the characters ".d". The
 next ’change’ command generates a ’find’ command for each
 documentation file to find the heading line. These command lines
 are passed back to the shell (’sh’) for execution. The outputs
 of all of these ’find’ commands, namely the heading lines from
 all the documentation files, are passed back on the first stan-
 dard output of ’sh’. The second ’change’ command uses tagged
 patterns to isolate the command name and its short description
 from the header line and to construct a suitable entry for the
 kwic index generator. Finally, ’kwic’, ’sort’, and ’unrot’
 produce the index on the file "cmd.k".

 To this point, only serially-executed commands have been
 discussed, however sophisticated or parameterized. Control
 structures are necessary for more generally useful applications.
 The following command file, ’ssr’, shows a useful technique for
 parameter-setting commands. Like many APL system commands, ’ssr’
 without arguments prints the value it controls (in this case, the
 user’s command search rule), while ’ssr’ with an argument sets
 the search rule to the argument given, then prints the value for
 verification. ’Ssr’ looks like this:

 # ssr --- set user’s search rule and print it

 if [nargs]
 set _search_rule = [arg 1 | quote]
 fi

 _search_rule

 The ’if’ command conditionally executes other commands. It

 - 29 -

 Command Interpreter User’s Guide

 requires one argument, which is interpreted as "true" if it is
 present, not null, and non-zero. If the argument is true, all
 | the commands from the ’if’ to the next unmatched ’elif’, ’else’
 | or ’fi’ command are executed. If the argument is false, all the
 commands from the next unmatched ’else’ command (if one is
 present) to the next unmatched ’fi’ command are executed. In
 ’ssr’ above, the argument to ’if’ is a function call invoking
 ’nargs’, a command that returns the number of arguments passed to
 the command file that is currently active. If ’nargs’ is zero,
 then no arguments were specified, and ’ssr’ does not set the
 user’s search rule. If ’nargs’ is nonzero, then ’ssr’ fetches
 the first argument, quotes it to prevent the command interpreter
 from evaluating special characters, and assigns it to the user’s
 search rule variable ’_search_rule’.

 ’If’ is useful for simple conditional execution, but it is
 often necessary to select one among several alternative actions
 instead of just one from two. The ’case’ command is available to
 perform this function. One example of ’case’ is the command file
 ’e’, which is used to invoke either the screen editor or the line
 editor depending on which terminal is being used (as well as
 remembering the name of the file last edited):

 # e --- invoke the editor best suited to a terminal
 | # (this is not the current version of ’e’ in =bin=)

 if [nargs]
 set f = [arg 1 | quote]
 fi

 case [line]
 when 10
 se -t consul [se_params] [f]
 when 11
 se -t b200 [se_params] [f]
 when 15
 se -t b150 [se_params] [f]
 when 17
 se -t gt40 [se_params] [f]
 when 18
 se -t b200 [se_params] [f]
 when 25
 se -t b150 [se_params] [f]
 out
 ed [f]
 esac

 The first ’if’ command sets the remembered file name (stored in
 the shell variable ’f’) in the same fashion that ’ssr’ was used
 to set the search rule (above). The ’case’ command then selects
 from the terminals it recognizes and invokes the proper text
 editor. The argument of ’case’ is compared with the arguments of
 successive ’when’ commands until a match occurs, in which case
 the group of commands after the ’when’ is executed; if no match
 occurs, then the commands after the ’out’ command will be
 executed. (If no ’out’ command is present, and no match occurs,

 - 30 -

 Command Interpreter User’s Guide

 then no action is taken as a result of the ’case’.) The ’esac’
 command marks the end of the control structure. In ’e’, the
 ’case’ command selects either ’se’ (the screen editor) or ’ed’
 (the line editor), and invokes each with the proper arguments (in
 the case of ’se’, identifying the terminal type and specifying
 any user-dependent personal parameters).

 The ’goto’ command may be used to set up a loop within a
 command file. For example, the following command file will count
 from 1 to 10:

 # bogus command file to show computers can count

 declare i = 1

 :loop
 i
 set i = [eval i + 1]
 if [eval i <= 10]
 goto loop
 fi

 | The ’repeat’ command is used to set up loops but, unlike the
 | ’goto’ command, will also work from the terminal. The following
 | loop will do exactly what the previous command file did, but will
 | also work when entered from a terminal:

 | # not quite as bogus a loop to show computer counting
 |
 | declare i = 1
 |
 | repeat
 | i
 | set i = [eval i + 1]
 | until [eval i ’>’ 10]

 | HHHiiissstttooorrryyy EEExxxaaammmpppllleeesss

 | Command history provides a quick way of re-executing a com-
 | mand without retyping the entire command line. The following
 | example shows how a user can run the previous command again by
 | only typing a ’!’:

 |] tttiiimmmeee
 | 11:59:04
 |] !!!
 | time
 | 11:59:08

 | Another advantage is the ability to fix a mistyped command.
 | For example, to list the contents of the directory "stuff.u"
 | where the ".u" was omitted in the ’lf’ command and then correc-

 - 31 -

 Command Interpreter User’s Guide

 | ted.

 |] lllfff ssstttuuuffffff
 | stuff: not found
 |] !!!!!!...uuu
 | lf stuff.u
 | bogus gorf snert

 | Two ’!’s are used because text must be entered right next to the
 | history substitution. Any other time, the trailing ’!’ is not
 | needed.

 | The ’hist’ command, without any arguments, will print a list
 | of the current history and their command numbers.

 |] hhhiiisssttt
 | 1: pmac gorf.s; ld gorf.b -o snert
 | 2: se gorf.s
 | 3: pmac gorf.s; ld gorf.b -o gorf
 | 4: gorf
 | 5: se gorf.s

 | At this point it is time to execute the ’pmac’ and ’ld’
 | statements, again. There are several ways to do this. One is to
 | give the specific command number (as printed by ’hist’):

 |] !!!333
 | pmac gorf.s; ld gorf.b -o gorf

 | or let the history do more of the work for us by telling it to
 | look for the command starting with ’pmac’:

 |] !!!pppmmmaaaccc
 | pmac gorf.s; ld gorf.b -o gorf

 | or if that is not the correct command, entering a unique string
 | that appears anywhere on the command line:

 |] !!!???---ooo sssnnn
 | pmac gorf.s; ld gorf.b -o snert

 | Notice that the trailing ’?’ wasn’t needed. This is because it
 | would have occured at the end of the line. None of the delimit-
 | ing characters need to be entered at the end of the line because
 | the command substitution will place them there for you at the end
 | of a line. Also notice that the shell will _a_l_w_a_y_s echo the com-
 | mand produced by the history mechanism to the terminal, so that
 | you can know for sure exactly what the shell is doing.

 | Argument selection allows the user to retrieve certain
 | arguments from the selected command line. After a command line
 | is selected (as in the previous examples) then argument selection
 | takes place. For example, given the command line

 |] eeeccchhhooo 111 222 333 444 555 666 777 888
 | 1 2 3 4 5 6 7 8

 - 32 -

 Command Interpreter User’s Guide

 | to retrieve only arguments 3 to 7 one can type:

 |] eeeccchhhooo 111 222 333 444 555 666 777 888
 | 1 2 3 4 5 6 7 8
 |] eeeccchhhooo !!!‘‘‘333---777
 | echo 3 4 5 6 7
 | 3 4 5 6 7

 | or to grab the first item on the line,

 |] eeeccchhhooo 111 222 333 444 555 666 777 888
 | 1 2 3 4 5 6 7 8
 |] eeeccchhhooo !!!‘‘‘000
 | echo echo
 | echo

 | because argument zero (the command name) is the first item on the
 | line.

 | The history mechanism does not know about command <nodes>.
 | E.g., a ’|’, and the command name after it, are treated as just
 | plain arguments. Numbering starts at zero, and each successive
 | blank separated "item" is considered another argument. In the
 | case of a function call, iteration, or quoted string, blanks and
 | tabs are insignificant until all the brackets, parentheses, and
 | quotes match up. In this manner, an entire function call, itera-
 | tion group, or string counts as a single argument, whether or not
 | it contains spaces.

 |] eeeccchhhooo (((gggooorrrfff...sss sssnnneeerrrttt...rrr)))
 | gorf.s snert.r
 |] cccaaattt ---hhh !!!‘‘‘111
 | cat -h (gorf.s snert.r)
 | ==================== gorf.s ====================
 | SEG
 | DYNT BURF$
 | END
 | ==================== snert.r ====================
 | call print(STDOUT, "burf*n"s)
 | stop
 | end

 | or for a more complicated example

 |] eeeccchhhooo [[[eeeccchhhooo bbbeeerrrfff]]] (((bbbllleeerrrttt bbblllooorrrttt))) """fffiiinnnaaalll wwwooorrrddd"""
 | berf blert final word
 | berf blort final word
 |] eeeccchhhooo !!!‘‘‘333 !!!‘‘‘111 !!!‘‘‘222
 | echo "final word" [echo berf] (blert blort)
 | final word berf blert
 | final word berf blort

 | The last portion of a history replacement is substitution.
 | This allows previously selected portions of the command line to
 | be placed through a set of substitutions similar to the ’change’

 - 33 -

 Command Interpreter User’s Guide

 | command or the substitute command in the editor. To change the
 | "blert" in the previous example to "bonzo", you would type

 |] eeeccchhhooo [[[eeeccchhhooo bbbeeerrrfff]]] (((bbbllleeerrrttt bbblllooorrrttt))) """fffiiinnnaaalll wwwooorrrddd"""
 | berf blert final word
 | berf blort final word
 |] !!!^̂̂bbbllleeerrrttt^̂̂bbbooonnnzzzooo^̂̂
 | echo [echo berf] (bonzo blort) "final word"
 | berf bonzo final word
 | berf blort final word

 | The operations can be combined. For instance to move arguments
 | around, and make substitutions

 |] eeeccchhhooo ooonnneee tttwwwooo ttthhhrrreeeeee
 | one two three
 |] eeeccchhhooo !!!‘‘‘333 !!!‘‘‘111^̂̂ooonnneee^̂̂111^̂̂ !!!‘‘‘222
 | echo three 1 two
 | three 1 two

 | There can be more than one substitution per command line, and the
 | given changes can be made globally.

 |] eeeccchhhooo aaaaaa bbbbbb cccccc dddddd eeeeee
 | aa bb cc dd ee
 |] !!!^̂̂aaa^̂̂zzz
 | echo za bb cc dd ee
 | za bb cc dd ee
 |] !!!???aaaaaa???^̂̂bbb^̂̂yyy^̂̂ggg
 | echo aa yy cc dd ee
 | aa yy cc dd ee
 |] !!!???aaa bbbbbb???^̂̂aaa^̂̂zzz^̂̂ggg^̂̂bbb^̂̂yyy^̂̂ggg^̂̂eeeeee^̂̂vvveee^̂̂^̂̂ddd^̂̂www
 | echo zz yy cc wd ve
 | zz yy cc wd ve

 | The first substitution simply changes the first "a" to a "z".
 | The second one recalls the most recent command with an "aa" in it
 | and changes the first "b" to a "y". The last one looks for the
 | most recent command that contains an "a bb" string (the first
 | line) and then substitutes a "z" for all occurences of an "a", a
 | "y" for all occurences of a "b", a "ve" for the first "ee", and a
 | "w" for the first "d". Notice that for the last substitution,
 | the trailing ’^’ was not necessary.

 | History processing takes place across the entire input line,
 | even inside quoted strings. To get one of the literal history
 | characters (!^‘), you _m_u_s_t escape it with the Subsystem escape
 | character, ’@’.

 | Finally, the ’hist’ command is available to control the use
 | of the history mechanism. ’Hist on’ turns on history processing.
 | By default, it is off. ’Hist off’ turns history processing off.
 | ’Hist save <file>’ will save the current list of remembered com-
 | mands into <file>, or into =histfile= if <file> is not specified.
 | ’Hist restore <file>’ will retrieve a saved history session from
 | <file>, or from =histfile= if <file> is not specified. It is

 - 34 -

 Command Interpreter User’s Guide

 | recommended that you put a ’hist restore’ into your ’_hello’
 | variable or the file it executes (if you want to save your shell
 | sessions across logins). If history processing is not turned on
 | when you do a ’hist restore’, the shell will automatically turn
 | it on for you, and then restore your saved command history. If
 | history is turned on, whenever you issue a ’stop’ command (like
 | =bin=/bye does), the shell will automatically do a ’hist save’
 | for you. This will also happen if you type an EOF at the shell
 | (usually control-c), unless you also have "_nottyeof" set (see
 | below).

 SSShhheeellllll CCCooonnntttrrrooolll VVVaaarrriiiaaabbbllleeesss

 Many special shell variables are used to control the opera-
 tion of the command interpreter. You can define or change any
 shell variable with ’set’ and can delete it with ’forget’. The
 current value of a shell variable can be examined by entering its
 name. The values of all your shell variables can be examined
 | with the ’vars’ command. Certain shell variables are read into
 | the SWT common block at Subsystem initialization to control the
 | terminal input routines. If these variables are changed, the
 | shell will modify the Subsystem common to reflect the change
 | immediately. The variables that could accept control characters
 | as values may be entered using the ASCII mnemonics supported by
 | the shell variable commands (see the heading "variables" in the
 | reference section of this manual). The following table
 identifies these variables and gives a short explanation of the
 * function of each.

 _V_a_r_i_a_b_l_e _F_u_n_c_t_i_o_n

 _ci_name This variable is used to select a command
 interpreter to be executed when the user enters
 the Subsystem. It should be set to the full path-
 | name of the command interpreter desired. This
 | variable is only checked on entrance to the Sub-
 | system, so if this is changed, the user should
 | exit the Subsystem (say with ’stop’) and then
 | reenter (using the ’swt’ command). The default
 value is "=bin=/sh".

 | _eof This variable may be set to a single character
 | which will be used to signal the end of file from
 | a terminal. The Subsystem input routines will
 | recognize an instance of this character anywhere
 | on the input line and send the appropriate signal
 | to the input routine. The default value is the
 ASCII character ETX (control-c).

 | _erase This variable may be set to a single character to
 | be used as the "erase," or character delete,
 control character for Subsystem terminal input
 * processing.

 - 35 -

 Command Interpreter User’s Guide

 | _escape This variable may be set to a single character to
 | be used as the "escape" control character for Sub-
 | system terminal input processing. Note that this
 | will _n_o_t not change the standard Subsystem escape
 | character, it remains an ’@’. (See the help on
 | ’tcook$’ for the gory details.)

 _hello This variable, if present, is used as the source
 of a command to be executed whenever the user
 enters the Subsystem. It is frequently used to
 implement memo systems, supply system status
 information, and print pleasing messages-of-the-
 day.

 | _kill This variable may be set to a single character to
 | be used as the "kill," or line delete, control
 * character for Subsystem terminal input processing.

 _kill_resp This variable may be set to any string which will
 appear on the user’s terminal when the kill
 character is entered. If this variable is not
 present "\\" is the kill response.

 | _mail_check This variable determines how often mail is checked
 | during the login session. If not declared, the
 | user is not notified of incoming mail while he is
 | logged in. If the variable is set to an integer
 | value, the shell will check for changes in his
 | mailbox status after that many seconds has elap-
 | sed, just before his prompt string is printed.
 | The user is notified by the message, "You have new
 | mail". If the variable is declared but not set,
 | or set to an illegal value, the default is to
 | check every 60 seconds.

 | _newline This variable may be set to a single character
 | which will be interpreted as the end-of-line.
 Whenever this character is encountered, a carriage
 return and linefeed will be echoed to the
 terminal. If it is not set, then the ASCII
 | character LF is the default.

 | _nottyeof An EOF character typed at command level 1 will
 | normally terminate the Subsystem and place the
 | user face to face with the Primos operating
 | system. Most commands accept input from the
 | terminal if an alternate file is not specified and
 | if the user’s keyboard happens to bounce, the user
 | is bounced into Primos. If this variable is
 | declared, an EOF typed at command level 1 will not
 | terminate the shell but will type the message "use
 | ’stop’ to exit the subsystem" and return to com-
 | mand level.

 - 36 -

 Command Interpreter User’s Guide

 | _pause_gossip This variable controls the paging of gossip mes-
 | sages. If this variable is set, the gossip will
 | pause at the last page, otherwise it simply
 | returns to command level without allowing any pag-
 | ing commands.

 _prompt This variable contains the prompt string printed
 by the command interpreter before any command read
 from the user’s terminal. The default value is a
 right bracket (]).

 _prt_dest This variable contains the location where all
 files spooled by this user are to be printed. If
 this variable is not present, files will be
 printed at the system-defined default printer.

 _prt_form This variable contains the form to be used for
 files spooled by this user (e.g. "narrow"). If
 this variable is not present, files will be
 printed on the system-defined default form.

 _quit_action If this variable is present, whenever the fault
 handler detects a break, it will prompt you as to
 whether you want to continue, terminate the
 program or call Primos. Otherwise, a break will
 return you to the Subsystem.

 _quote_opt This variable, if set to the value "YES", causes
 automatic quotation of each line of program output
 used in a function call. It is mainly provided
 for compatibility with an older version of the
 command interpreter, which performed the quoting
 automatically. The program ’quote’ may be used to
 explicitly force quotation.

 | _retype This variable may be set to a single character to
 | be used as the "retype" control character for Sub-
 | system terminal input processing.

 _search_rule This variable contains a sequence of comma-
 separated elements that control the procedure used
 by the command interpreter to locate the object
 code for a command. Each element is either (1)
 the flag "^int", meaning the command interpreter’s
 table of internal commands, (2) the flag "^var",
 meaning the user’s shell variables, or (3) a tem-
 plate containing the character ampersand (&),
 meaning a particular directory or file in a direc-
 tory. In the last case, the command name
 specified by the user is substituted into the tem-
 plate at the point of the ampersand, hopefully
 providing a full pathname that locates the object
 | code needed.

 - 37 -

 Command Interpreter User’s Guide

 | _vth_gossip This causes any gossip that is received to be
 | paged using the screen oriented paging mechanism.

 SSShhheeellllll CCCooommmmmmaaannnddd SSStttaaatttiiissstttiiicccsss

 If the public or private template "=statistics=" is defined
 with the value "yes", the shell will record every command issued
 by the user in the directory defined by the system template
 "=statsdir=". If you set your private template "=statistics=" to
 "yes" then your commands will be recorded in the directory
 defined by your "=statsdir=" template. The files in the direc-
 tory "=statsdir=" are named "sh<pid>"; command statistics for a
 given process are stored in the file with the corresponding
 process id. Here is an example of the file:

 122680 171812 16 system 1 F //bin/x
 122680 171816 16 system 1 F //bin/lf
 122680 171822 16 system 1 F //bin/template
 (date) (time) (user) | | (command)
 (pid) (level) (F - command found)

 The date begins in the first column. The (level) is the depth of
 nesting of shell files at which the command is requested; 1 is
 the terminal level.

 SSSyyymmmbbbiiioootttiiiccc CCCooommmmmmaaannndddsss

 There are several commands that, in effect, live sym-
 biotically with the Shell. In the following sections, some of
 the more useful of these will be reviewed. For further
 information, consult the _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m _R_e_f_e_r_e_n_c_e
 _M_a_n_u_a_l.

 _A_r_g_u_m_e_n_t _F_e_t_c_h_i_n_g. Four internal commands are frequently
 used in shell programs to fetch arguments given on the command
 line. ’Arg’ fetches a single argument, ’args’ fetches several,
 ’argsto’ fetchs a specified group, and ’nargs’ returns the number
 of available arguments.

 arg <position> [<level>]

 ’Arg’ prints on its first standard output the
 argument which appeared in the <position>th posi-
 tion in the command line invoking the shell
 program containing ’arg’. Position zero refers to
 the command name, position one to the first
 argument, etc. If an illegal position is
 specified, ’arg’ prints nothing. The optional
 second argument, <level>, specifies the number of
 lexic levels to ascend in order to reach the
 desired argument list. The entry of any command
 file or function call constitutes a new lexic
 level; thus, an ’arg’ command used in a function
 call to fetch an argument to the command file

 - 38 -

 Command Interpreter User’s Guide

 containing the function call needs a <level> of 1
 (to escape the lexic level in which the function
 is evaluated). In fact, this is the most common
 use of ’arg’, so the default value for <level> is
 1. The following three commands, when placed in a
 command file, would cause that command file’s
 first argument to be printed three times on stan-
 dard output one:

 echo [arg 1]
 echo [arg 1 1]
 arg 1 0

 args <first> [<last> [<level>]]

 ’Args’ prints on its first standard output the
 arguments specified on the command file <level>
 lexic levels above the current level. <First> is
 the position on the command line of the first
 argument to be printed; <last> is the position of
 the last argument to be printed. If <last> is
 omitted, the final argument on the command line is
 assumed. <Level> has the same meaning as for
 ’arg’ above.

 argsto <delim> [<number> [<start> [<level>]]]

 ’Argsto’ prints a group of arguments delimited by
 arguments consisting of <delim>. <Number> is an
 integer that controls which group of arguments is
 printed. If <number> is 0 or omitted, arguments
 up to the first occurrence of <delim> are printed;
 if <number> is 1, arguments between the first
 occurrence of <delim> and the second occurrence of
 <delim> are printed, and so on. <Start> is an
 integer indicating the argument at which the scan
 is to begin; if <start> is omitted (or is 1), the
 scan begins at the first argument. <Level> has
 the same meaning as for ’arg’ above.

 nargs [<level>]

 ’Nargs’ prints on its first standard output the
 number of arguments passed to the command file
 <level> lexic levels above the current level.
 <Level> has the same meaning as for ’arg’ above.

 _S_h_e_l_l _T_r_a_c_i_n_g. The ’shtrace’ command is useful for tracing
 the operation of the shell. Although primarily intended for
 debugging the command interpreter itself, it also finds use in
 monitoring and debugging shell files. To turn the trace on,
 enter

 - 39 -

 Command Interpreter User’s Guide

 shtrace on

 To turn the trace off, enter

 shtrace

 Many other options are available. Consult the _S_o_f_t_w_a_r_e _T_o_o_l_s
 _S_u_b_s_y_s_t_e_m _R_e_f_e_r_e_n_c_e _M_a_n_u_a_l for details.

 _S_h_e_l_l _V_a_r_i_a_b_l_e _U_t_i_l_i_t_i_e_s. The following commands (in addi-
 tion to ’declare’, ’set’, and ’forget’ discussed earlier) have
 been found useful in dealing with shell variables. Further
 information can, as usual, be found in the _S_o_f_t_w_a_r_e _T_o_o_l_s
 _S_u_b_s_y_s_t_e_m _R_e_f_e_r_e_n_c_e _M_a_n_u_a_l.

 vars
 ’Vars’ lists the names (and optionally the values)
 of the user’s shell variables. ’Vars’ can also
 save and restore the user’s variables from
 arbitrary files. Various options control the
 listing format, the number of lexic levels scan-
 ned, and whether or not shell control variables
 are listed. The most common form is probably

 vars -alv

 which lists all variables at all lexic levels
 along with their values.

 | PPPrrrooogggrrraaammm IIInnnttteeerrrfffaaaccceee

 | The shell provides a set of routines which allows the user
 | of the standard shared libraries to create shell variables,
 | retrieve their values, and change them as well. You may also
 | execute shell commands from within a program. This facility is
 | not available when using the non-shared libraries, and even using
 | the shared libraries it is somewhat restrictive until Prime sup-
 | ports EPF runfiles. Further information on these routines can be
 | found in the Software Tools Subsystem Reference Manual.

 | shell
 | ’Shell’ is the subroutine which starts another
 | level of the SWT shell. It is used to execute
 | commands read from an open input file. It is
 | analagous to the ’sh’ command.

 | subsys
 | ’Subsys’ is used to execute a single command from
 | within a program. It combines all the operations
 | needed to execute a string with ’shell’ without
 | the user having to perform the operations. It is
 | a convenience for the user.

 | svdel
 | ’Svdel’ accepts the name of a shell variable and

 - 40 -

 Command Interpreter User’s Guide

 | deletes it at the current shell level. It takes
 | care of updating the SWT common block in the case
 | of a special shell variable (see "Shell Control
 | Variables", above). It is analagous to the com-
 | mand ’forget’.

 | svdump
 | ’Svdump’ prints a representation of the internal
 | shell variable common block. It scans all levels
 | of the variables dumping the chains and the hash
 | tables. It is analagous to the ’dump sv’ command.

 | svget
 | ’Svget’ simply retrieves the value of a given
 | shell variable. Since "executing" a variable from
 | the command level prints the value of the
 | variable, the action of ’svget’ is closest to the
 | execution of a variable.

 | svlevl
 | ’Svlevl’ returns the current lexic level of the
 | shell. This is useful in cooporation with
 | ’svscan’ (described below) to retrieve the value
 | of all currently declared variables. This routine
 | has no command equivalent.

 | svmake
 | ’Svmake’ creates a given shell variable at the
 | current lexic level of the shell. It returns the
 | lexic level of the shell. If the variable already
 | exists at the current level, then ’svmake’ will
 | have no effect. Any special variables (see "Shell
 | Control Variables", above) that are changed will
 | cause a change in the SWT common block to reflect
 | the value of the variable. ’Svmake’ is analagous
 | to the ’declare’ command.

 | svput
 | ’Svput’ sets the value of a given shell variable
 | in the most recent lexic level that it appears.
 | If the variable does not exist in any scope of the
 | shell, it is created in the current level.
 | ’Svput’ also makes modifications to the SWT common
 | block if any special variables are changed.
 | ’Svput’ is analagous to the ’set’ command.

 | svrest
 | ’Svrest’ reads a file written by ’svsave’ (see
 | below) and attempts to merge those variables with
 | those at the current lexic level. ’Svrest’ is
 | analagous to the ’vars -r’ command.

 | svsave
 | ’Svsave’ attempts to save the shell variables at
 | lexic level number 1 (the top level) in the given
 | file. ’Svsave’ is analagous to the ’vars -s’ com-

 - 41 -

 Command Interpreter User’s Guide

 | mand.

 | svscan
 | ’Svscan’ provides a way for the user to obtain the
 | value of all shell variables at any or all lexic
 | levels. It operates in a method similar to
 | ’tscan$’. There is no command associated with
 | ’svscan’.

 CCCooonnncccllluuusssiiiooonnn

 This concludes the Application Notes section of the guide.
 Hopefully it has presented some ideas that will make the use of
 the command interpreter more productive and enjoyable.

 - 42 -

 Command Interpreter User’s Guide

 MMMeeessssssaaagggeeesss fffrrrooommm ttthhheee SSShhheeellllll

 Listed here are messages with obscure meanings that are
 produced by the Shell; several indicate dire internal problems
 that should not occur during normal operation. In the interest
 of saving paper, self-explanatory messages are not included.

 <<<cccooommmmmmaaannnddd>>>::: nnnooottt fffooouuunnnddd
 The list of elements in the search rule was exhausted,
 but the command had not been located.

 <<<cccooommmmmmaaannnddd>>>::: tttoooooo mmmaaannnyyy ccciii fffiiillleeesss
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell
 and may be increased at the expense of additional table
 space.

 cccooonnntttiiinnnuuueee???
 This message occurs after each network when the
 "single_step" shell trace option is set. A line begin-
 ning with anything other than an upper or lower case
 letter "n" will cause the shell to execute the next
 network. A response beginning with "n" will cause the
 shell to return to command level.

 iiilllllleeegggaaalll dddeeessstttiiinnnaaatttiiiooonnn nnnooodddeee ssspppeeeccc
 The destination node specifier must be a defined label
 or a number between 1 and the number of nodes in the
 network.

 iiilllllleeegggaaalll pppooorrrttt nnnuuummmbbbeeerrr
 A port number must be a number between 1 and the
 maximum number of standard ports defined (currently 3).

 mmmiiissssssiiinnnggg cccooommmmmmaaannnddd nnnaaammmeee
 Although an empty net is allowable, redirectors must
 not be specified without a command name.

 mmmiiissssssiiinnnggg pppaaattthhhnnnaaammmeee iiinnn rrreeedddiiirrreeeccctttooorrr
 A greater-than sign was encountered without a pathname
 on either side.

 nnneeettt iiisss nnnooottt ssseeerrriiiaaallllllyyy eeexxxeeecccuuutttaaabbbllleee
 Because multiple processes per user are not supported,
 each node of a net must be executed serially.
 Therefore, nets which have pipe connections that form a
 complete cycle cannot be executed.

 ooovvveeerrrffflllooowww (((sssaaavvveee___ssstttaaattteee)))::: <<<llleeevvveeelll>>>
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell

 - 43 -

 Command Interpreter User’s Guide

 and may be increased at the expense of additional table
 space.

 pppiiipppeee dddeeessstttiiinnnaaatttiiiooonnn nnnooottt fffooouuunnnddd
 The destination node of a pipe is not in the range of
 the current net.

 ssstttaaattteee sssaaavvveee ssstttaaaccckkk ooovvveeerrrffflllooowww
 The nesting depth of command files has been exceeded.
 This is usually caused by an infinitely recursive call
 on a command file. The maximum nesting depth
 (currently 10) is a compile time option of the shell
 and may be increased at the expense of additional table
 space.

 uuunnnbbbaaalllaaannnccceeeddd iiittteeerrraaatttiiiooonnn gggrrrooouuupppsss
 Because of the semantics of iteration, each iteration
 group in the same net must contain the same number of
 arguments.

 uuunnneeexxxpppeeecccttteeeddd EEEOOOFFF ooonnn vvvaaarrriiiaaabbbllleee sssaaavvveee fffiiillleee
 End of file has been encountered on the shell variable
 save file when a value has been expected. The shell
 variables have been corrupted. To recover what might
 be left, exit the Subsystem with a <break> or control-P
 and consult your system administrator.

 wwwhhhiiittteeessspppaaaccceee rrreeeqqquuuiiirrreeeddd aaarrrooouuunnnddd pppiiipppeee cccooonnnnnneeeccctttooorrr
 A pipe connector and its associated port numbers and
 destination label must be surrounded by spaces.

 wwwhhhiiittteeessspppaaaccceee rrreeeqqquuuiiirrreeeddd aaarrrooouuunnnddd iii///ooo rrreeedddiiirrreeeccctttooorrr
 An i/o redirector and its associated i/o redirector
 | must be surrounded by spaces.

 - 44 -

	Title Page
	i
	ii
	Table of Contents
	iii
	Foreword
	iv
	Tutorial
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	Summary of Syntax and Semantics
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	Application Notes
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	Messages from the Shell
	43
	44

