
 RRRiiinnnggg

 TTThhheee SSSoooffftttwwwaaarrreee TTToooooolllsss SSSuuubbbsssyyysssttteeemmm NNNeeetttwwwooorrrkkk UUUtttiiillliiitttyyy
 VVVeeerrrsssiiiooonnn 111...000

 Roy J. Mongiovi

 School of Information and Computer Science
 Georgia Institute of Technology
 Atlanta, Georgia 30332

 April, 1983

 ___TTT___AAA___BBB___LLL___EEE___ ___OOO___FFF___ ___CCC___OOO___NNN___TTT___EEE___NNN___TTT___SSS

 ___RRR___iii___nnn___ggg

 IIInnntttrrroooddduuuccctttiiiooonnn ... 1

 VVVaaallliiidddaaatttiiiooonnn ... 2
 Ring Connections 2
 User Connections 5

 RRRiiinnnggg RRReeeqqquuueeessstttsss .. 6
 Internal Requests 6
 User Requests ... 7
 BROADCAST .. 7
 EXECUTE .. 7
 TERMINATE .. 7
 SETTIME .. 7
 Future Requests 8

 PPPRRRIIIMMMEEENNNEEETTT PPPrrrooobbbllleeemmmsss .. 8
 Errors .. 8
 Enhancements .. 10
 X$GVVC ... 10
 X$STAT ... 10
 X$TRAN ... 10

 BBBiiibbbllliiiooogggrrraaappphhhyyy ... 11

 AAAppppppeeennndddiiixxx ... 12

 - iii -

 Ring User’s Guide

 ___RRR___iii___nnn___ggg

 IIInnntttrrroooddduuuccctttiiiooonnn

 Ring is a distributed request server for the Software Tools
 Subsystem which uses PRIMENET to communicate between nodes in a
 distributed ring. It performs simple system functions such as
 keeping the time of day synchronized on all the machines in the
 ring, as well as accepting user requests for services. It
 validates all requests it receives, which ensures that a devious
 user cannot create his own Ring server and transmit invalid
 requests to the other Ring processes.

 One copy of the Ring process executes on each of the systems
 in the ring. Each process establishes two virtual circuits (a
 transmit and a receive circuit) with the next and previous
 systems, where next and previous are defined by the system names
 in lexically sorted order. As systems are brought up and down,
 the ring dynamically reconstructs itself to maintain that
 ordering. A user who wishes to make a request of the ring con-
 nects to the Ring process on his own system and transmits his
 request. That Ring process reformats the request and transmits
 it around the ring where it is eventually seen and acted upon by
 the Ring process to which it was addressed.

 Ring User’s Guide

 VVVaaallliiidddaaatttiiiooonnn

 There are two distinct types of connection request valida-
 tion performed by Ring. The first is the validation of virtual
 circuits connecting each of the Ring processes in the ring, and
 the second is the validation of a virtual circuit connection from
 a user to the Ring process. These two types of validation are
 distinguished by the fact that ring connections are normally
 between two systems, while user connections are restricted to the
 same system (that is, a user is not allowed to connect to a Ring
 process on another system).

 Validation is made difficult by the fact that it is impos-
 sible to determine the user name (or any other information) of
 the process on the other end of a virtual circuit. Information
 may be returned only for virtual circuits on the current system,
 and even then only for known virtual circuits. As we shall see,
 it is possible to find the user name of the process on the other
 end of a circuit given certain restrictions. In fact, the entire
 purpose of user validation is to determine the user name and
 process id of the process on the other end of a virtual circuit.

 RRRiiinnnggg CCCooonnnnnneeeccctttiiiooonnnsss

 When a Ring process attempts to break into a previously
 existing ring (i.e. when a system has been down and is being
 brought up), and when a system that was in the ring has gone
 down, the new connections must be validated before they are
 accepted as coming from a Ring process. It would be very simple
 if a user name (such as SYSTEM) could be checked, but as has
 already been mentioned it is impossible to determine the user
 name on the other end of a virtual circuit that is on another
 system. The only piece of information that can be used for
 validation that is assured by the PRIMENET routines is the fact
 that a port can be assigned by only one process. Using this
 fact, together with the assumptions that the Ring process will be
 started at boot time, will immediately assign its ports, and will
 never relinquish those ports as long as the system is up, it is
 possible to validate ring connections. Note that this assumes
 that Ring will never fail on a hardware/software error, a rather
 stringent requirement. Should Ring ever fail and unassign the
 validation port while the system is up, it would be possible for
 another user process to assign that port and become the Ring
 process for that system.

 When a Ring process begins execution, the first thing it
 does is assign three ports: a ring port, a validation port, and
 a user port. These ports are never unassigned. It then
 determines all system names, sorts them, and begins attempting to
 connect to an already existing ring starting with the next system
 (in the sorted list). Should it be the first Ring process, it
 will eventually connect to itself and establish the initial
 degenerate ring. Validation of that connection proceeds as fol-
 lows:

 - 2 -

 Ring User’s Guide

 When a Ring process detects a connection request to its ring
 port, it accepts it provisionally and then attempts to validate
 it.

 ------------ ------------
 | |<-----------------| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | | | |
 ------------ ------------
 ^ |
 | |
 | |

 1. The new Ring process makes a connection request.

 The Ring process makes a connection request to the validation
 port on the system from which the ring connection was received.
 When that connection is accepted, it generates a random number
 password and transmits it to the validation circuit.

 ------------ ------------
 | |<-----------------| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | |-----password---->| |
 ------------ ------------
 ^ |
 | |
 | |

 2. The validation password is transmitted.

 If the ring connection is indeed valid, then the validation con-
 nection is to the same process that issued the ring connection.
 The password is then received and retransmitted to the ring cir-
 cuit.

 - 3 -

 Ring User’s Guide

 ------------ ------------
 | |<----password-----| |
 | | | |
 | GT.A | | GT.B |
 | | | |
 | |----------------->| |
 ------------ ------------
 ^ |
 | |
 | |

 3. The response password is retransmitted.

 The Ring process that is validating the connection receives that
 password on the circuit that is being validated, compares it with
 the password that was transmitted, and validates the circuit.

 ------------ ------------
 | |<-----------------| |
 | | | |
 | GT.A |----------------->| GT.B |
 | | | |
 | | | |
 ------------ ------------

 4. The new ring connections are established.

 If the ring connection is from a pretender, then the validation
 connection is to the actual Ring process on that system, the
 pretender cannot receive the password, and the ring connection is
 not validated.

 ------------ ------------
 | |<-----------------| |
 | | | |
 | GT.A |----------------->| GT.B |
 | | | |
 | |-----password---->| |
 ------------ ------------
 ^
 | ------------
 ------------------------| |
 | |
 | GT.B |
 | |
 | |

 5. The false Ring process cannot receive the password.

 When the actual Ring process receives the password, it transmits
 it through the already validated ring circuits, and when the

 - 4 -

 Ring User’s Guide

 validating process receives it from that circuit (and not the
 circuit being validated) it knows that the connection attempt is
 not valid and clears the connection.

 ------------ ------------
 | |<----password-----| |
 | | | |
 | GT.A |----------------->| GT.B |
 | | | |
 | |----------------->| |
 ------------ ------------
 ^
 | ------------
 ------------------------| |
 | |
 | GT.B |
 | |
 | |

 6. The password is received from the existing ring.

 UUUssseeerrr CCCooonnnnnneeeccctttiiiooonnnsss

 When a user connection is received, the Ring process must
 determine the user name and process id of the process making the
 connection request in order to ensure the validity of any
 requests that the process may make. It is not good enough to
 have the user process transmit this information since that
 process could easily fabricate it. The ability to identify the
 user process hinges on the following ideas: it is possible to
 determine the virtual circuit numbers of all allocated virtual
 circuits open on a system, user connections must be from the same
 system as the Ring process that they are connected to, and user
 connections are accepted and identified one at a time.

 To identify a user connection, the Ring process obtains a
 list of all open virtual circuits on the current system. This
 list is scanned to find all circuits that are to the user port,
 which have been accepted, and which are not the process id of the
 Ring process. The list of existing user connections is then
 scanned, and the corresponding entries in the list of virtual
 circuits are marked as known. Since user connections are accep-
 ted one at a time, there will be exactly one virtual circuit that
 was not marked as known, and that is the virtual circuit
 corresponding to the newly accepted user connection. The user
 name of that process is determined using a system call, and the
 connection is added to the list of known virtual circuits.

 - 5 -

 Ring User’s Guide

 RRRiiinnnggg RRReeeqqquuueeessstttsss

 All operations performed by Ring are initiated by request
 packets which are passed around the ring connections. Each pac-
 ket has the same size and consists of two parts: a fixed
 identification header, and a variable argument array. The header
 consists of a flag that indicates whether the packet is a request
 or a response, source and destination addresses, a count of the
 number of Ring processes that have seen the packet, a process id
 and unique identifier to indicate what process created the pac-
 ket, and the Ring request command/status words. The format of
 the variable argument array depends of the value of the command
 word in the packet header.

 Ring requests are passed around the ring, from receive con-
 nection to transmit connection, until they are received by the
 system to which they are addressed or the number of Ring proces-
 ses that have seen them is greater than the number of systems in
 the ring. A packet destination with all bits set (-1) is
 received by all Ring processes in the ring. When the request
 packet is performed or destroyed, it is transformed into a
 response packet which is transmitted to the system that created
 the request.

 IIInnnttteeerrrnnnaaalll RRReeeqqquuueeessstttsss

 When a new ring is established, as well as when an existing
 ring is changed because one or more systems have come up or gone
 down, a special request packet is transmitted around the ring.
 This packet, the INITIALIZE request, has two purposes. First, it
 is used to count the number of Ring processes that are actually
 in the ring. PRIMENET provides a status call which returns the
 number of systems configured in the network, but they may not all
 be running Ring. As the INITIALIZE packet goes around the ring,
 each Ring process increments a counter in the packet. When the
 request arrives back at the Ring process that created it, an
 INITIALIZE response packet is created which contains the number
 of systems that saw the original request. This response packet
 is then used by each Ring process to set the actual number of
 systems in the ring. The second purpose of the INITIALIZE
 request is to determine who is to set the time of day on all
 systems initially. Normally, the time of day is set by the first
 (in lexically sorted order) system that is running Ring.
 However, should that system be the one that caused the ring to
 change (i.e. it just entered the ring), it is assumed not to
 know the correct time, and the next system which was in the ring
 previously should set the time. As the INITIALIZE response is
 transmitted around the ring, a state variable is transmitted
 along with it. This variable starts as 0, when the system that
 is supposed to set the time of day sees the packet, it sets the
 state to 1 if it just entered the ring and does not know the time
 of day, and 2 if it does know the time of day. If the state is
 1, then the next system that does know the time of day sets the
 state to 2 and then sets the time of day on all systems.

 - 6 -

 Ring User’s Guide

 Each hour on the hour, the Ring process that is first in
 lexically sorted order transmits the current time of day to all
 other systems in the ring. Although this is not necessary for
 orderly system operation, it does make sense for each processor
 in a distributed system to have the same time of day.

 UUUssseeerrr RRReeeqqquuueeessstttsss

 Currently, four kinds of user requests are implemented by
 Ring: a BROADCAST request which allows a PRIMOS message to be
 sent on all systems in the ring, an EXECUTE request which starts
 up a SWT phantom on a particular system in the ring, a TERMINATE
 request which allows one or all of the Ring processes to be stop-
 ped and re-executed (so that a new version of the Ring process
 may be brought up), and a SETTIME request that allows the time to
 be reset on all systems in the ring.

 To make a user request, a user process first connects to the
 user port of the Ring process which is executing on its system.
 When the connection has been accepted, the user transmits the
 request and begins waiting for a response. When the Ring process
 has received the request and checked its validity, it transmits a
 status code to indicate that the operation has been initiated or
 that an error has been encountered back to the user process. The
 user process receives this status code, and if it indicates that
 the request has been initiated begins waiting for a completion
 response. When the Ring request has been completed (successfully
 or not), the Ring process will transmit a final status code to
 the user process. The user process then examines the returned
 status and clears the connection.

 _B_R_O_A_D_C_A_S_T. The BROADCAST user request consists of three
 parts: the BROADCAST request word, a three word user name of the
 user who is to receive the message (zero if all users), and a
 Software Tools string which is to be broadcast.

 _E_X_E_C_U_T_E. The EXECUTE user request also consists of three
 parts: the EXECUTE request word, a three word system name of the
 system on which the phantom is to be executed (zero if all
 systems), and a Software Tools string which is the command line
 to be executed.

 _T_E_R_M_I_N_A_T_E. The TERMINATE user request consists of two
 parts: the TERMINATE request word, and a three word system name
 of the system which is to be terminated (zero if all systems).
 Because it is impossible to determine when a transmitted message
 has been received, the TERMINATE request actually occurs in two
 stages. After the user’s TERMINATE request has been processed
 and the status response has been transmitted, an internal request
 (SHUTDOWN) is transmitted around the ring. It is this request
 which actually causes the selected Ring process(es) to terminate,
 thus allowing time for the user process to receive its status.

 _S_E_T_T_I_M_E. The SETTIME user request consists of two parts:
 the SETTIME request word, and a five word block which contains

 - 7 -

 Ring User’s Guide

 the month, day, year, hour, and minute to which the current time
 is to be set.

 FFFuuutttuuurrreee RRReeeqqquuueeessstttsss

 Ring is intended to handle simple requests by itself. A
 simple request is defined as one which would require no more than
 one request and response packet to perform. In the future, it is
 envisioned that complex requests such as remote execution of com-
 mands and remote file handling will be performed by a helper
 phantom which the Ring process will create and which will then be
 connected directly to the requesting user. Ring can also be used
 to moderate interprocess communication by allocating ports and
 controlling access to those ports. This will allow two or more
 user processes to communicate without requiring fixed port num-
 bers which may be used by other user processes with which com-
 munication is not desired.

 The major drawback with this scheme of creating helper
 phantoms is the relatively large amount of time required to
 create a phantom. In fact, when PRIME itself decided to replace
 the old FAM (the File Access Manager) with a new version which
 uses SLAVE$ helper phantoms, it was necessary to special-case the
 SLAVE$ phantoms so that they would start up more quickly.

 PPPRRRIIIMMMEEENNNEEETTT PPPrrrooobbbllleeemmmsss

 During the development of Ring, only one significant error
 was found, and that was in the PRIMENET documentation. However,
 quite a bit of code in Ring is devoted to determining information
 that should most likely be available directly from the PRIMENET
 subroutines. Several enhancements to the existing routines come
 easily to mind.

 EEErrrrrrooorrrsss

 The only problem with PRIMENET that may be classified as an
 error is in the documentation for the message transmission
 subroutine X$TRAN. The following information about the return
 status codes (taken directly from the PRIMENET manual) is not
 correct:

 The codes that may be returned in status by a call to
 X$TRAN appear below:

 XS$CMP The transmit is complete. The message has
 been copied out of the sender’s buffer and
 transmission is initiated. (A transmit
 status of complete means only that PRIMENET

 - 8 -

 Ring User’s Guide

 will attempt to deliver the message.
 Applications requiring assured delivery must
 implement their own end to end ack-
 nowledgement.)

 XS$IP The transmit is in progress. _s_t_a_t_u_s will be
 further updated by the completion or failure
 of the operation.

 XS$BVC The calling process does not control the
 virtual circuit specified in _v_c_i_d.

 XS$MEM Temporary PRIMENET congestion prevents the
 acceptance of the request at this time.

 XS$MAX The maximum number of transmits simul-
 taneously in progress over a single virtual
 circuit has been exceeded. This request to
 initiate another transmission is denied.

 XS$RST The virtual circuit has been reset. The
 status of this operation is unknown and no
 further attempts will be made to complete it.

 XS$CLR The virtual circuit has been cleared. See
 the virtual circuit status array for the
 clearing cause.

 XS$ILL The transmit operation is illegal because a
 circuit connection request or a clear request
 is pending. This is the result of attempting
 transmission over an "almost-open" or
 "almost-closed" circuit.

 The description of status codes XSCMP, XSMEM, and XS$MAX
 seems to indicate that once a transmit operation is in progress
 it must either complete or return an error code. In fact, this
 is not the case. If too many transmit requests have been issued
 on a virtual circuit, the status code remains XS$IP until enough
 receives have been performed to allow the transmit to take place.
 In its example programs, the PRIMENET manual gives a subroutine
 which is called after a transmit to wait until the transmit
 status is not "in progress". In ratfor, this subroutine is
 essentially:

 subroutine complete(status)
 integer status

 - 9 -

 Ring User’s Guide

 while (status == XS$IP)
 call x$wait(1)
 return
 end

 The real difficulty with the documentation is with an
 application like Ring, when only one system is in the ring. In
 this case the ring is a loop back to that one system, and the
 Ring process is talking to itself. If the wait loop given above
 is used in this case, the Ring process will never receive any of
 the transmissions that have been made, and space will never
 become available for the new transmit. In other words, the
 status will stay XS$IP forever.

 EEEnnnhhhaaannnccceeemmmeeennntttsss

 X$_G_V_V_C. The PRIMENET subroutine call X$GVVC may be used to
 pass control of a virtual circuit to another process. This would
 be very useful to Ring when a complex user request requires that
 a helper process be phantomed, except for the fact that it can
 only be used to pass a connection to another process on the same
 system. To be truly useful, it must be possible to pass a con-
 nection to any system.

 X$_S_T_A_T. The X$STAT PRIMENET subroutine can be used to
 determine virtual circuit information about circuits only on the
 current system. It would be extremely useful if it could return
 information about circuits on any system. Then it could return
 the system name and virtual circuit id of the other end of a con-
 nection, and it would be possible to find the user name of the
 owner of the other end of a virtual circuit easily.

 X$_T_R_A_N. The X$TRAN subroutine call is documented as not
 informing the transmitting process that the reception has been
 completed. This is extremely annoying because it means that it
 is impossible to transmit a response code to a user process, wait
 until that process has received the code, and then clear the
 virtual circuit. Saying that "applications requiring assured
 delivery must implement their own end-to-end acknowledgement" is
 certainly the easy way out, but it leaves much to be desired.
 More importantly, it assumes that the processes on both ends of a
 circuit are intelligent enough to perform an end-to-end ack-
 nowledgement. Ring cannot assume that the user process is going
 to acknowledge that it has received the response since the user
 program is not under its control. Neither can Ring allow a user
 connection to remain long past the completion of the user request
 if no acknowledgement takes place. Ring solves the problem by
 keeping the time of day when the last activity on a circuit took
 place, and clearing a circuit when it has been inactive for a
 sufficiently long period of time.

 - 10 -

 Ring User’s Guide

 BBBiiibbbllliiiooogggrrraaappphhhyyy

 PRIMENET Guide, DOC3710-190, Second Edition, by Peter
 A. Neilson, Prime Computer, Incorporated, 500 Old Con-
 necticut Path, Framingham, Massachusetts 01701.

 Software Tools Subsystem User’s Guide, April 1982, by
 T. Allen Akin, Terrell L. Countryman, Perry B. Flinn,
 Daniel H. Forsyth, Jr., Jeanette T. Myers, and Peter N.
 Wan, School of Information and Computer Science, Geor-
 gia Institute of Technology, Atlanta, Georgia 30332.

 - 11 -

 Ring User’s Guide

 AAAppppppeeennndddiiixxx

 The following is a trace of Ring operating on two systems.
 The text which is bbbooollldddfffaaaccceeeddd is commentary, not part of the trace
 itself.

 _S_y_s_t_e_m _G_T._A _S_y_s_t_e_m _G_T._B

 RRRiiinnnggg iiisss bbbrrrooouuuggghhhttt uuuppp ooonnn GGGTTT...AAA

 Wednesday, April 6, 1983 3:53 PM

 Attempting connection to GT.B
 Attempting connection to GT.C
 Attempting connection to GT.D
 Attempting connection to GT.E
 Attempting connection to GT.A
 Connection received from GT.A
 Connection received from GT.A
 Validated transmission to GT.A
 Validated reception from GT.A
 Degenerate ring initialized

 TTThhheee rrriiinnnggg iiisss iiinnniiitttiiiaaallliiizzzeeeddd

 RRRiiinnnggg iiisss bbbrrrooouuuggghhhttt uuuppp ooonnn GGGTTT...BBB

 Wednesday, April 6, 1983 3:54 PM

 Attempting connection to GT.C
 Attempting connection to GT.D
 Attempting connection to GT.E
 Attempting connection to GT.A

 GGGTTT...AAA rrreeeccceeeiiivvveeesss aaa cccooonnnnnneeeccctttiiiooonnn

 Connection received from GT.B

 GGGTTT...BBB rrreeeccceeeiiivvveeesss ttthhheee vvvaaallliiidddaaatttiiiooonnn
 cccooonnnnnneeeccctttiiiooonnn rrreeeqqquuueeesssttt

 Connection received from GT.A
 Validated transmission to GT.A

 NNNeeewww cccooonnnnnneeeccctttiiiooonnn vvvaaallliiidddaaattteeeddd

 NNNeeewww cccooonnnnnneeeccctttiiiooonnn vvvaaallliiidddaaattteeeddd
 PPPrrreeevvviiiooouuusss cccooonnnnnneeeccctttiiiooonnn cccllleeeaaarrreeeddd

 - 12 -

 Ring User’s Guide

 Validated reception from GT.B
 Attempting connection to GT.B

 GGGTTT...BBB rrreeeccceeeiiivvveeesss aaa cccooonnnnnneeeccctttiiiooonnn

 Connection received from GT.A

 GGGTTT...AAA rrreeeccceeeiiivvveeesss aaa vvvaaallliiidddaaatttiiiooonnn
 cccooonnnnnneeeccctttiiiooonnn rrreeeqqquuueeesssttt

 Connection received from GT.B
 Validated transmission to GT.B

 NNNeeewww cccooonnnnnneeeccctttiiiooonnn vvvaaallliiidddaaattteeeddd

 NNNeeewww cccooonnnnnneeeccctttiiiooonnn vvvaaallliiidddaaattteeeddd
 IIINNNIIITTTIIIAAALLLIIIZZZEEE rrreeeqqquuueeesssttt cccrrreeeaaattteeeddd

 Validated reception from GT.A
 Transmitted INITIALIZE request

 INITIALIZE request received

 Created INITIALIZE response

 IIInnniiitttiiiaaalll tttiiimmmeee ssseeettt

 Transmitted SYNCHRONIZE request at 15:55 on 04/06/83

 Synchronized at 15:55 on 04/06/83

 NNNeeewww rrriiinnnggg iiisss iiinnniiitttiiiaaallliiizzzeeeddd

 UUUssseeerrr iiissssssuuueeesss aaa BBBRRROOOAAADDDCCCAAASSSTTT

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 RRRoooyyy iiisss nnnooottt llloooggggggeeeddd ooonnn

 *** Unknown addressee.
 Message broadcast to user ROY

 this is a test.
 Message broadcast to user ROY

 UUUssseeerrr iiissssssuuueeesss EEEXXXEEECCCUUUTTTEEE ooonnn AAALLLLLL

 - 13 -

 Ring User’s Guide

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 Phantom (58) created for user ROY

 Phantom (63) created for user ROY

 TTTiiimmmeee iiisss ssseeettt ooonnn ttthhheee hhhooouuurrr

 Transmitted SYNCHRONIZE request at 16:00 on 04/06/83

 Synchronized at 16:00 on 04/06/83

 UUUssseeerrr iiissssssuuueeesss EEEXXXEEECCCUUUTTTEEE ooonnn GGGTTT...AAA

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 Phantom (59) created for user ROY

 444 uuussseeerrrsss iiissssssuuueee BBBRRROOOAAADDDCCCAAASSSTTTsss

 Connection received from GT.B
 Connection received from ROY (59)
 Connection received from GT.B
 Connection received from ROY (56)
 Connection received from GT.B
 Connection received from ROY (63)
 User request made for ROY (59)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 4
 Message broadcast to user ROY
 User request made for ROY (63)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 2
 Message broadcast to user ROY
 User request made for ROY (56)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 3
 Message broadcast to user ROY
 Connection received from GT.B

 - 14 -

 Ring User’s Guide

 Connection received from ROY (61)
 User request made for ROY (61)

 *** Unknown addressee.
 Message broadcast to user ROY

 message 1
 Message broadcast to user ROY

 UUUssseeerrr iiissssssuuueeesss TTTEEERRRMMMIIINNNAAATTTEEE

 Connection received from GT.B
 Connection received from ROY (29)
 User request made for ROY (29)

 TERMINATE request received

 UUUssseeerrr rrreeeccceeeiiivvveeesss ttthhheee rrreeessspppooonnnssseee

 TERMINATE request received
 SHUTDOWN request transmitted

 Ring SHUTDOWN initiated
 Shutdown complete

 Ring SHUTDOWN initiated
 Shutdown complete

 - 15 -

	Title Page
	i
	ii
	Table of Contents
	iii
	Introduction
	1
	Validation
	2
	3
	4
	5
	Ring Requests
	6
	7
	PRIMENET Problems
	8
	9
	10
	Bibliography
	11
	Appendix
	12
	13
	14
	15

