
GEORGIA INSTITUTE OF TECHNOLOGY 
OFFICE OF CONTRACT ADMINISTRATION 

SPONSORED PROJECT INITIATION 

Date: 
	October 17, 1979 

Project Title: 
	Research on Fully Distributed Data Processing Systems 

Project No: 
	G.-36-643 

Project Director: Dr. Philip H. Enslow, Jr. 

Sponsor: 
	Office of Naval Research; Arlington, VA 22217 

93  
Agreement Period: From 	9/1/79 Until 8/31/8e(Perf. Period) 

    

Type Agreement: Contract No. N00014 -79 -C-0873 

$1,114;620 ONR (G-36-643) Partially funded through 9/30/80 as follows: 
Amount: 	 250,000  GIT (G-36-336) 
	

$289,683 ONR (G-36-643) 
$1,364,620  TOTAL 
	

125,000 GIT (G-36-336) 
$414,683  TOTAL 

Reports Required: Progress Report (as req.); Final Report 

Sponsor Contact Person (s): 

Technical Matters 

Scientific Officer 

Program Director Information Systems 
Mathematical and Information Sciences Division 
Office of Naval Research 
800 N. Quincy Street 
Arlington, VA 22217 

Contractual Matters  
(thru OCA) 

Office of Naval Research 
Resident Representative 

325 Hinman Research Building 
Georgia Institute of Technology 
Atlanta, GA 30332 

Defense Priority Rating: DO-C9 under r 	Reg. 1 

Assigned to: 	 Tnfnrmat-inn and rnimpntfar Science 	(School/Laboratory) 

COPIES TO: 

Project Director 

Division Chief (EES) 

School/Laboratory Director 

Dean/Director—EES 

Accounting Office 

Procurement Office 

Security Coordinator (OCA) 

Seports Coordinator (OCA) 

Library, Technical Reports Section 

EES Information Office 

EES Reports & Procedures 

Project File (OCA) 

ProjelaCode(GTRO 
other  C. E. Smith  

  



, GEORGIA INSTITUTE pFA,ECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION 

_ 
IN SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET  

U 
c). 

Date  January 14, 1986 

L 
G-36-643 R5365-0A0 	 SamoMIK ICS 

te-includes Subproject No.(s) 	N/A  

  

Project Director(s) Dr. Philip H. Enslow, Jr. 
GTRC / (MX 

   

Sponsor Office of Naval Research 	Arlington. VA 22217 

Title  Research on Fully Distributed Data Processing Systems 

r.°' Project No. 

Effective Completion Date: 8/31/83 (Performance)  10/31/83 	(Reports) 

Grant/Contract Closeout Actions Remaining: 

r---1  N

• 

one 

Final Invoice or Final Fiscal Report 

Ix I Closing Documents 

I I Final Report of Inventions 

Govt. Property Inventory & Related Certificate 

F---1 C

• 

lassified Material Certificate 

O

• 

ther 	  

Continues Project No. 	 

COPIES TO: 

 

Continued by Project No. 

 

   

Project Director 	 Library 

Research Administrative Network 	 GTRC 

Research Property Management 	 Research Communications (2) 

Accounting 	 Project File 

Procurement/GTRI Supply Services 	 Other  Heyser. Jones. Embry 
Research Security Services 

FORM OCA 69.285 

11311 



Note: 

The following GIT-ICS Technical Reports were submitted as deliverables 
for this pro'ject: 

79/11 

81/01 

81/03 

81/04 

81/11 

81/12 

81/15 

81/16 

81/18 

82/01 

82/12 

They are listed in the Library's catalog under "GIT-ICS [Report Series]." 

See the catalog for complete bibliographical citation, call number, and location. 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 1 
1 September, 1979 - 30 November, 1979 

January, 1980 

Supported by 

Office of Naval Research 
Contract N00014-79-C-0873 

ir 	 M 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



''IT [- DRS Research Rroeram 	 Quarterly Prot:,  Report 1 

1. INTRODlITION 

This 	is the first quarterly nrogress report prepared on the 
Georgia Tech Research Program in Fully Distributed 	Proces- 
sing Systems (FDPS). 

On 1 September, 1979, the School of Information and Computer 
Science, the Georgia Institute of Technology, received a 
Selected Research Pmportunity (SRO) contract from the Office 
of Naval Research to establish a "Center of Excellence for 
Research in Highly Distributed Systems." This contract 
covers a three-year period of operation with a total funding 
of $1,114,620 plus an additional $250,000 cost sharing from 
Georgia Tech for equipment. Final negotiations are under 
way with three other organizations for additional 	research 
contracts 	in this 	area. 	It 	is 	anticipated that those 
contracts will be awarded in December, 1979. 	In addition, 
another research contract for a three-year period has al- 
ready been awarded to an individual faculty member 	in the 
School of 	Information and Computer Science---U.S. Army 
Research Office, "Theory of Systems of Asynchronous Parallel 
Processors," Nancy Lynch, 3 years, approximately $150,000. 

Although distributed processing systems, 	especially 	highly 
distributed and fully distributed ones, have been a subject 
of interest and research (unfunded for the most part) within 
the School for the last three years, this is the first major 
funding received in this area, and these first three months 
of the project have been devoted primarily to organizational 
matters and the initiation of specific research projects and 
tasks. 

Since 	it 	is strongly felt that the maximum accomplishments 
will be achieved by the synergistic effects of a large 	num- 
ber 	of 	individuals working together and interacting, it is 
planned that the Research Program will be run as a 	single 
Program 	with specific directions for the research areas be- 
ing taken from individual sponsors as appropriate. 

?. oRPNIzAINN AND HAEEINi 

Ealmitx 

The 	following members of the ICS Faculty 	have 	been 
identified as participants in the FDPS Research Proeram. 

Crews, Phillir--Assistant Professor 
Demillo, Richard A.--Associate Professor 
rnslow, rhiti) H. Jr.--Professor 
rriffeth, Nancy--Assistant Professor 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 1 

LeRlanc, Richard—Assistant Professor 
Livesey, Jon--Assistant Professor (effective 	 19O) 
Lynch, Nancy--Associate Professor 
Underwood, William—Assistant Professor 

Most of these individuals are presently working on specific 
projects in the program, while others are completing other 
work already in progress. 

Jensen, Alton P.--Princ. Res. End. 
McDonell, Sharon--Sr. Secy. 
Myers, Jeanette--Res. Scientist 
Peckham, Gary (EFS)--Chief, Software Applications Div. 
Pinion, Nancy--Part-time Secy. 

§tultota 
There are 27 students working on various projects in the 
FDPS Research Program. Of these, 12 are in the °h.D. 
program and 4 are preparing mS Thesis on topics in FDPS. 

3. RESLARcU PRUEcTS INITIATU 

The 	specific research projects have been organized into the 
major areas identified in the Program Proposal. 

A. Thsorgtilal and fumal §tusliti 
A.1 Studies of the Theory of Asynchronous Processors 

R. Ehni22i intlEinntiti2D 104 Natmsrkin 
C. 2i2tributad Q[21E11102 2Yitami 

C.1 Decentralized Control 
C.2 Resource Allocation and Work Distribution 

in an FDPS 
C.3 Distributed Operating System - Initial 

Considerations 
C.4 TBA (Distributed Operating Systems) 
C.5 TRA (Distributed Operating Systems) 
C.6 TBA (Distributed and Parallel Operating Systems) 

D- Diatritutad Data lama 
D.1 TBA (Distributed Data Bases) 



GIT FDPS Research "roc ram 	 QuarterLy Prod Report 1 

F. Fault-Tolergnce  

F. aingiAl U2E2hatt 12 SS1QQ2Lt EQE5 

G. Apulqation of QiIrributed PcoEenin2 

G.1 TPA (FDPS Effects on klanagement Organization) 

H. System 2ssign ► tthodolnies 

H.1 FDPS Requirements Engineering Technioues 
H.2 Coordinating Large Programming Projects 

I. Syltgm Utilization 

I.1 A Lanouage for Distributed Programming 
I.2 System Implementation Language Development 

J. 2tiwcitY 

J.1 Process Structures 

K. sY2I4m tamagtmot 

L. Evaluation and lonarilon 

M. FDPS TtIttgd 

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 

4. STATUS OF ReSEARO PRWIC.1§ 

With the exception of project A.1, "Studies of the Theory of 
Asynchronous Processors," all of the projects listed above 
were initiated in the first quarter of the Program and no 
immediate results are anticipated with one exception, 
Project H.1, "FDPS Requirements Engineering Techniques", was 
only a 3-month study and has been completed excert for the 
final report. 

Summary 21 EE.91111 A.1 12 1=1 

A very general and tractable automaton-style model. has been 
designed for describing distributed systems. Details of the 
formalism, 	as 	well 	as some prototypical arbiter examples, 
appear in reference [ADJ. 	The model separates the machinery 
used to describe the requirements for anti the implementation 
of 	a 	system. 	Complexity measures for implementations have 
been proposed it Cb], most importantly including 	a natural 



(IT FDPS Research Program 	 quarterly Proc Report 1 

measure of "runnine time" for asychronous systems. 	Analysis 
using 	this measure has been carried out for the examples in 
EP]. 	Some techniques derived from those used 	in ordinary 
sequential 	complexity theory have been carried over tg the 
new distributed setting. 	Suggestions have been made for the 
types of system parameters whose measurement is of greatest 
interest. For the specific arbiter examples appearing in 
EP], our analysis has suggested a particular system design 
consistig of a tree of polling processes, which has been im-
plemented at the University of Washington for actual use in 
their computer system. Preliminary observations suggest 
that the design does in fact perform efficiently. 

Work 	in Ca] involves measurement of the space complexity of 
algorithms for mutual exclusion. There are many results of 
technical 	interest, providing upper and lower bounds on the 
amount of storage required for the attainment of 	certain 
fairness properties. 	A major contribution of Ca] has been 
the development of 	a 	concise mathematical 	notation for 
describing the execution of 	systems. 	We 	are 	able to 
describe precisely many alternative execution possibilities 
for 	a 	system, a task which is extremely difficult to do in 
English. 	It is this precision 	which 	allows 	us 	to prove 
meaningful 	lower bound results. 	Specific technical results 
of Cal demonstrate ways in which communication snace 	(band- 

width) 	can he used simultaneously for several purposes, 
without danger cf confusion. 

In Cc], the problem of designing algorithms which are immune 
to a limited amount of (non—malicious) 	process 	failure 	is 
considered. 	The problem area studied is a generalization of 
the problem in [a], involving allocation of multiple copies 
of identical resources. 	One key contribution of Cc] is 	the 
careful 	statement of conditions of "graceful degradation of 
performance" -- exactly what the system is still required to 
do when a 	small 	number of processors 	fail. 	Another 
contribution 	is 	the design of 	some 	specific 	ways 	for 
introducing redundancy and thereby achieving the needed 
reliability. 	Another is an interesting method for describ- 
ing some very complicated algorithms by means of 	Layers of 
virtual systems. Finally, another contribution is the 
futher use and development of the notation for describing 
system execution. 

In 	Ed], 	a 	simplified 	but 	realistic 	distributed 	system 
resource allocation problem is considered. 	The 	full 	power 
of 	our model is applied to the problem statement, descrip- 
tion of a particularly fast solution, and the time 	analysis 
of this solution. 	The contributions of Ed] are the develop- 

ment of 	time 	analysis techniques and also the particular 
fast solution proposed. 



GIT FDPS Research Prooram 	 ( uarterty Proe Report 1 

Current work in progress involves study of (1) ways to cope 
with 	malicious 	failure 	of process in distributed systems, 
(2) further develorment 	of 	time 	analysis 	techniques 	(3) 
building of a small Fortran test system for our atoorithms, 
(4) attempts to prove finally the 	correctness of 	our 	at- 
gorithms, (5) study of applications to resource allocation, 
data base and graph theory problems, (6) development of con-
venient high-level Languages for describing systems within 
our model, (7) study of further possible improvements on the 
arbiter design of Ch7, and (8) generalizing the resource- 
allocation strategy of 	Cd] 	for 	possible use 	in a 	real 
distributed system. 

References 

Cal 	Burns, 	J.E., 	m.J. 	Fischer, P. 	Jackson, N.A. 	Lynch, 
and G.L. Peterson, "Data Requirements for Im-
plementation of N-Process Mutual Exclusion Using a 
Single Shared Variable," GIT-ICS-79/02. 

See also - EBFJLP] Burns, J.E., M.J. 	Fischer, P. 	Jac- 
kson, N.A. 	Lynch, and G.L. 	Peterson, "Shared Data 
Requirements 	for Implementation of mutual Exclusion 
Using a Test-and-Set Primitive," International 	Con- 
ference 	on Parallel Processinct, Bellaire, ['ichigan, 
Aug. 	1978. 

Status: 	In process 	of 	revision 	for publication 	in 
Journal of the ACM. 

Eb] 	Lynch, 	N.A. 	and 	M.J. 	Fischer, 	"On Describing the 
Behavior and Implementation of Distributed Systems," 
GIT-ICS-79-03 

See also - Lecture Notes in Computer Science, Semantics 
of Concurrent Computation, Proceedings Evian, France 
1979, op. 147-171. 

Status: 	After presentation at International 	Symposium 
on 	Semantics of Concurrent Computation, Evian, 
France, July 1979, this paper was invited to be sub- 
mitted to a special conference issue of 	Theoretical 
Computer Science. 	It is currently being revised for 
submission. 

Cc ] 

	

Fischer, 	M.J., 	N.A. 	Lynch, 	J.E. 	Burns, 	and 	A. 
Borodin, 	"Resource 	Allocation with 	Immunity 	to 

Limited Process Failure," GIT-ICS- 7 9-1C. 
See also - 20th Annnual Symposium on Foundations of 

Computer Science, Puerto, Rico, 1979, on. 	234-254. 

Status: 	 probably be submitted at a later date for 
journal publication. 

Ed] "Nearby Resource Allocation in a 	Distributed 	System," 
Proceedings of 	19PO Symposium on Theory of Com- 



GIT FDPS Research Pronram 	 OuartPrly Proc Report 1 

putin 	AC"'. 

S. PLAIN, FQR IRS ImmUILIE !MBE 

Of most significance is the series of 	visits 	planned 	for 
project A.1, "Studies of the Theory of Asynchronous Proces- 
sors." 	Professor michaet Fischer, University of Washington, 
will be at GIT as 3 	visitor 	for 	the 	months 	of 	January, 
February and 	March, 	19F0. 	Short visits during the next 
quarter are also planned for Arnold Schoenhage, Eshrat Ar- 
jomandi, Leslie Lampert, Armin Cremers, and Edward Lazowska. 

6. TRAVEL 

Dates of Trig: 	June, 1979 
Individuals Travellino: 	Nancy Lynch 
Purgose: 	Pesearch work with Michael Fischer 

Dates of Trig: 	5-9 June, 1979 
Individuals Travelling: 	Richard DeMitto 
Purgose: 	Particination in AFOSR Summer School on Security, 
Draper Labs, Cambridge, MASS. 

Dates of Trip: 	July, 1979 
Individuals Travellinn: 	Nancy Lynch 
Purgose: 	Present Paper at Evian France 

Dates of Trig: 	14-21 September, 197C 
Individuals Travelling  Richard DeMillo 
Purgose: 	Research on Stochastic Synchronization 

Dates of Trig: 	1-5 October, 1979 
Individuals Travelling: 	Jack Corley, Philtip Crews, 	Philip 
Enslow, Richard LePlanc, Tim Saponas, Don Sharp 
Purgose: 	Attend the 	First 	International 	Conference on 
Distributed Processing, Huntsville, Alabama 

Dates of Trig: 	In October, 1979 
Individuals Traveltino: 	Philip Enslow 
Purgose: 	Fresentation-"Research Issues it Fully Distributed 
Systems", 1979 AICA National Conference, Fari, Italy. 

Dates of Trig: 	November, 1979 
Individuals Travelling: 	Nancy Lynch 
Purgose: 	Present paper at Foundations of 	Ccm,,Duter 	Science 

Page -7- 



GIT FDPS Research Program 	 Quarterly Pro 	Report 1 

Conference IEEE, Puerto Rico 

Dates of Trip: 	5 %ovember, 1979 
Individuals Travelling: 	Philip Enslow 
Purpose: 	Presentation "Research Issues in Fully Distributed 
Systems" IEEE Computer Society Chapter, Atlanta, GA. 

Dates of Trio: 	9 November, 1979 
Individuals Travelling: 	Philip Enslow 
Purpose: 	Presentation "Research issues in Fully Distributed 
Processing 	Systems", 7th Annual 	CDC on Principles of 
Software Development, Minneapolis, MINN. 

7. VISITORS 

Dates of Visit: 	December, 1978 
Visitor: 	Allan Porodin 
Purpose: 	Discussion of common research interests 
Individual Contacted: 	Nancy Lynch 

Dates of Visit: 	January, 1979 
Visitor: 	Michael Fischer 
Purpose: 	Research Collaboration 
Individuals Contacted: 	Nancy Lynch 

Dates of Visit: 	11 Jan, 19:2 E1 

Visitor: 	R.J. 	Lipton 
Purpose: Research 
Individuals Contacted: 	Richard DeMitlo 

Dates of Visit: 	May, 1970 
Visitor: 	Michael Fischer 
Purpose: 	Research Collaboration 
Individual Contacted: 	Nancy Lynch 

Dates of Visit: 	May, 1979 
Visitor: 	Camel Pozenkrantz, Richard Stearns, Philip Lewis 
Purpose Discussion of common research interests 
Individual Contacted: 	Nancy Lynch 

Dates of Visit: 	November, 1 9 79 
Visitor: 	Michael Fischer 
Purpose: 	Research collaboration 
Individual Contacted: 	Nancy Lynch 

Dates of Visit: 	19 "Apvember, 1979 
Visitor: 	Dave F. 	Palmer, General Research Corn. 
Purpose: 	General orientation on 	the SIT 	FDPS Research 
Program. 	Discuss GPC work on distihuted processing funded 
by U.S. 	Army l-mDATC-P, Huntsville, Atabana. 
Individuals contacted: 	Philip Pnslow, Richard LePlanc, Jack 

Pape -P- 



PIT FDPS Research Pro?ram 	 Quarterly Prw- Report 1 

Corley 

Date of Visit: 	27 November, 1979 
Visitor: 	Aaron H. 	Coleman, 	Joseph 	Scheyer, 	Computer 
Sciences Corporation 
Purpose: 	Orientation on the 	FIT 	FDPS Research Program. 
Discussion of CSC research plans in ODP. 	Discussion of pos- 
sible cooperation with CIT on proposed Navy 	research 
project. 
Individuals 	Contacted: 	Philip 	Enslow, 	Richard 	LeBlanc, 
Richard DeMillo 

Date of Visit: 	2P-29 November, 1979 
Visitor: 	Dr. 	Robert 	Graftor, 	Office 	of 	Laval 	Research 
Purpose: 	Review of progress on ONR Contract. 	Discussions 
with individual faculty members. 
Individuals 	Contacted: 	Philip 	Enslow, 	Richard 	LeBlanc, 
Phillip Crews, Nancy Criffeth, Richard Demilld, Nancy Lynch 

Date of Visit: 	29-30 November, 1979 
Visitor: 	Dr. 	Virgil Wallentine, Kansas State University 
Purpose: 	Present 	In-progress 	Review 	to AIRMICS. 	(Wal.- 
lentine has a research contract with AIRmICS for the 
development of a network operating system for distributed 
processing.) 
Individuals Contacted: 	Philip Enslow, Richard LeBlanc 

8. PLILICAI IQU a 

Author(s)  Philip Enslow, Robert Gordon 
Title  IPC 'orkshop Report 
Number  GIT-ICS-79/11 
Type Final Technical Report 
Date December, 1979 

Author(s)  Philip Enslow 
Title  Quarterly Progress Report Number 1 
Date December, 1979 

Author(s)  Nancy Lynch 
Title  Fast Allocation of Nearby Resources in a 	Distributed 
System 
Type Conference Parer 
Date 'v'ay, 19F40 
c omments 	Submitted for publication in Conference of ACM A 
nual Symposium on the Theory of Computing 

Author(s)  Michael Fischer, Nancy Lynch, Alan Rorodin, James 
Burns 
Title 	Resource Allocation with Immunity to Limited Process 
Failure 
Number  EDIT ICS TR 79-10 
Type Conference Paper 
Date October 1979 



GIT FDPS Research 	r.c.) ram 	 Quarterly Prcc Report 1 

Comments  Also in Proceedings of 29th Annual 	IEEE 	Symposium 
on Foundations of Computer Science. 

Author(s)  Nancy Lynch, Michael Fischer 
Title  On Describing 	the Pehavior 	and 	Implementation of 
Distributed Systems 
Number  GIT ICS TR 79-113-01 
Type Conference Paper 
Date July 1979 
Comments  Also- in Proceedings of International 	Symposium on 
Semantics 	of 	Concurrent 	Computation, Evian, France, 1979. 
Sprinter-Verlag. 
Also to appear in special conference 	issue 	of 	Theoretical 
Computer Science. 
Author(s) 	James Rurns, Michael Fischer, Paul Jackson, Nancy 
Lynch 
Title  Data Requirements 	for Implementation of N-Process 
Mutual Exclusion Using a Single Shared Variable 
Number  GIT ICS TR 79-02 
Type Conference Paper 
Date August 1978 (Journal of the ACm) 
Comments  Also published in Proceedings of 1979 Conference on 
Parallel Processing;, Rellaire, Mich. 

Author(s)  George I. 	Davida, Richard DeMille, Richard Li p ton 
Title  A 	System Architecture to Support a Verifiably Secure 
Multilevel Security System 
Number 
Type Conference Paper 
Date April 1980 
Comments  To be presented at 1980 IEEE Symposium on Privacy 
and Security 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 2 
1 December, 1979 - 29 February, 1980 

April, 1980 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: 	G36-649 

International Business Machines, 
General Systems Division (IBM) 

Agreement: GSD-210189 
GIT Project: 	G36-648 

National Science Foundation (NSF) 
Contract: MCS77-28305 

Subcontract from Univ. of Wisc.: 	144-L729 
GIT Project: 	G36-630 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: 	836-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: 	G36-647 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



esearch irearam 	 :- uarterly Drc ,71 Rerort 2 

I. INTRODUCTION 

This 	is the second cuarterly ..rcress rerDc,rt j:A.sepred on 
the 7, eoroia Tech Research flrnoram 	in 	ILy 	nistributed 

Processino '-ystems (FrEP). 

a. Program Description. 

The - enr ia Tech Pesearc'' 'Moir,- 1- Lully r.istrinuted 

'rocessins - vstems is a comerehensiqe investiration of 

data rrecessino systems in which both the pnvsical ana 

losical coipcnents are extremely LooseLy  coupled while 

orer -J1n -  with o h.inh r4 eiree of control outonomy at 

the co -rionent Level. 	The definition cf 	the 	specific 

class of multiple connuter systoms 'Pin' investi ated, 
--n1 	the 	ooerational 	characteristics and features of 

those systems is motivated -v the 	rrsire 	to 	advance 
the 	state-of-the-art 	cr 	that class 	f systems that 

vill 	deliver 	a 	hi h 	or)o -)rticn 	of 	the 	benefits 
currently 	-, rin) 	claimed 	for 	distributed processinc 

syster,, s. 	Th e 	scace 	of 	inflividuL 	topics 	being 
investisated 	under 	this 	; - rogrom 	ranges from formal 

and 	theeret ical 	stu ,, ies 	to 	emrirical 
examinations 	o' 	nrotetyne 	syste , s 	and 	simulation 
models. 	Also included within the scone of the program 
are area 	such as the utili7atior of F-MS's and 	their 
interaction with ^, ana -. ement onerations and structure. 

b. Program Support. 

The 	7:rincinle 	sunport 	for the oro7,ram is a Selected 

°esearch Opportunity contract from the 'Tffice of Naval 

Research; however, there are a numbE::r of ofrer sources 

of funding which also suroort the ororam. A comoLete 

List of these is 21ven belo4. 

Title: 	'PesearcL on gully flistribjted - ,ta ,' rocessing 
yst , ms" 

Fun-rinl Agency' 	Office of 	aval -- esearc" (0"P) 
Contract "u-her7 	"1'11014-7 1 -2-0 0 73 

CIT'roect 'o.: 
' rincinle Investioator: 	Philip H. -nslr, w. Jr. 

Title: 	"esearc 	on - isfriouteo rootrol" 

run-+in , 	 Air 'Mr- cc,  Rome 	Air 	- evelooment 
Center ("1 -, C) 

contract No-'ler: 

";IT rrn'ect 'n.7 	-f4 -  
rrincirte Investi iotnr : 	 H. :nslo., Jr. 



OTT FDT: 	'cpsoarch. ir'roram 	 ,Thartrrly Prq Report 2 

Title: 	",Alrfle ,nert 	y an 	mt4e0n I 	an'GTfl I" 
Aa.a°cy 	Tnternrtional 	Jsiness 	achines. 

CenrL'ysteTs rivision (P-m) 
Contrct I iLe r 	S'n A , rnerent - umPPr 2101 P 
TTrro;act 'umh0r: 

	

rinciple frvet;lats , r: 	rhilin H. 	 Jr. 

TittP7 	"FounlatIons of 	'Theterministic 	r;chedulinl 	of 
recesses for P a rallel -- xecution" 

runiinP 	nency: 	Motional Science roundatior (Nc'F) 
Contract 'ouner: 

(,In. of •isc. subcontract number: 	144-L 7 2r1 ) 
IT rroiect 

Lrinci;AP Invosti-lat -)r: 	--icharr; A. 	("illo 

Title: 	"Theory 	of 	Systems 	ot Asynchronous Parallel 

rocessors" 
Furvfln 	 U.'7. Army 'esearch flffice (ARO) 
Contract Numher: 	r,"Al2 2c?-7'7 -C-IP:55 
OTT Pro:!eci cumbpr: 	G7b-67R 

Principle InvestiPator: 	nancy Lync! 

litle: 	"Su:ort of 	 D-Ita "t7)rale - oncnnt" 

Th'ndin=,clencY: 	U.S. try Tnstitut( for 	Snseorcb 	in 
- .)rdlement 	Inf o rm tion 	and Computer 
Science (ATr"T's"') 

Contract "Jum:Pr: 	DA, , K7P- 7- - - - -  J7 

'TT Proiect 
PrincipleInvesti , athr: 	A.r. JPnsc, n 

c. Administrative Changes 

Curn 	this 	cuarter, 	aclitionaL 	research 	contracts 
sup-ortinl 	the 	FPS 	-rolrwr 	hove 	neer 	awarded. 

"necifically, these are the rArC. IM,  NSF, 	n, 	and 
contracts 	rescnibed 	 Also .urin. this 

cuartPr 	t 1-0 	final 	renort 	on 	orle 	contract 	Was 
rUnLiSh0 - , corrintin7 that nroinct. 

Titln"'ntorProcess 	-, mmuhic tion 	'r 

ristriPut ,.d cystP" (' .orks'oo: 
runoil ,^,-ency! 	1 +. 0 . Army ,:...search lffice (AC) 

- ontr)ct 
CIT Prf) 4 ect 
rrincipte Invpti ator: 	 H. fl-)sloo. Jr. 



SIT FflPS desearch ''ro-ram 	 H.larterly ProT,  Report 2 

2. ORGANIZATION AND STAFFING 

Faculty 

The following 	members 	of 	the 	T25, 	FThculty 	have 	been 
identified 	s oarticipants in the FflPS Research Pro Pram. 

Cre4s. 	 ' rofesser 

'rmillo. --ichord '.--tssociate Fr - fessor 

rnslow. Phili- 0 . Jr.--Professor 

r, riffeth. 	 'rofessor 

Le--"q_Dnc. nicnar(:--'ssir.tant - rofessor 

Livesey, J-n--ssistaet irofessor 
(effective 'eptember. 19F- 1 ) 

Lynch, "oncy--:ssoci -ite Professor 

most 	of 	these 	inc.ividuals 	are 	rresently 	working 	on 

specific 	rroiects 	in 	the 	nro ,Tiram, 	white 	others 	are 
corletin:7 other work already in orooress. 

Staff 

Jensen. .!.ton 	.--rrinc. 	cs. era. 
Mcr)onell, sharQn--r. `ecy. 

r,lyers. Jeanette--0es. scientist 
Pinion. !", ancy--Part-time necy. 

Students 

There 	are 30 students working on various projects in the 
FD 7'S Pesearch 	roararr. 	Of these, 12 	are 	in 	the 	Ph.r). 
Proclram 	and 	are•reparin ,-,  their 	Thesis on topics in 
F777,. 

3. CURRENT RESEARCH PROJECTS 

The snecific research projects have hecn 	craanized 	into 
the major areas identified in the b;:isic nror:_7ram proosal. 

A. Theoretical and Formal Studies 

5',tudies of the Theory of .ZsyncLronous 'rocessors 
A.2 7ecomnositin of Thrallel 

P.3 
rerforr7ance ^f nistriouted Systems 



siT r`  Fs Reseiirc!-- Pro ram 
	

nuarterly Prc Report 2 

?,_Hit 1\lorithms 
.-= Ticket 7;yste7s 

.7  Synchronous Simulation 
Rosource nAloc tion 

B. Etax.aial In1amanntsli2n 	NtikilLkin2 

n.1 Heteroneous 'otworkin7 
H.2 Loc ,,,l 	et-.,,iorkin 	in Fully flistributed c'rocessin2 

C. Distributed Operating Systems 

• -lecentr-3li7r, d 	rid 'istributed Scntrol 
-

• 	

:esource Allocation anJ York niF;trioution 	in 	an 
flcr' 

P. 7  Pully 	7:istrihuteri 	 _̀system 	Initial 
Ponsi -ierr'tions 

P .L . 	 (rietrikutef Theratino cysterns) 
C. -  P'rrress c;urport in 'istriOutrd r- ysfes 

';or-Homr)1 ,,, fleous -, rPrdtin- 
C.7 F7r< - 	 T ,Prlementatirm 	tuf, es 

D. Distributed Data Bases 

n.1 Implement;rition of '_istriuted Patabse !7,ystems 
fl.2 :',Liorort of '1 .. 1_7ERCEN Dta St orr_ine Concert 

E. Fault-Tolerance 

F. Special Hardware to Support FDPS 

G. Application of Distributed Processing 

He System Design Methodologies 

H.1 Fflr'S SeuirementsEn -7.ineerino -Techniques 
H. Largo 	 'rojects 

I. System Utilization 

T.1 A 1_.r17.-0.;e for r:istributed "ro rammin 
I. 	ystem Tmplomentaticr Lannuaoe flevelopent 

J. Security 

3.1 Process StrIctures 

K. System Management 



C,TT FflPS 	eearch rr0nram 	 L4arterly Prn Re,7:ort 2 

L. Evaluation and Comparison 

M. FDPS Testbed 

Fstblishmdnt of 	Teed Facility 
.2 Fecr, ote Load Fmulator 

M.3 Fully 	7 istributed 	flr, eratin7 	 imulation 
Tested 

4. SUMMARY OF PROGRESS 

A.1 Studies of the Theory of Asynchronous Processors 
(Lynch, Fischer, Lamport, Lazowska, Schonhage, 
Arjomandi) 

Ifork 	contir, ups 	in 	the 	-;evel , fr, ent 	Yodels, 
decomposition 	techniques, 	anrd 	con , olcxity 	analysis 
tPc'snioues 	for 	distributed 	systec:s. 	Visitors this 
ouarter have 	included 	Fischer, 	1  a'nrort, 	Lazowska, 
-c.)6nha'e, 	and 	,, rjorran-2i. 	'ecent .^rk 	irs.nired 
r,roiect ,; 	P.3, 	A. 4 , 	11 . '-7:4 	A.b, 	", .7, 	are 	A.F 
described 

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

c'ynchroni7ation 	ai-rithms 	are decorrp se 	using two 
stlie 	odeLs, 	with 	simul a tion 	used 	to 	eliminate 
initial 	si -rolificrItions. such as centralizer' control 
an 	Tultirle shored variables. 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

r'e • ndancy 	is 	uses: 	to 	alleviate 	the 	effects 	of 
ushut -Inwn", 	"deatk", 	and 	"malicious 	f a ilure" 	of 
nrocesscs. 	!=. , ,rdement with f a ulty innuts is difficult 
and 	slow, 	rd , : uirinn 	1 +1 	"rrun -ls" 	of 	4nforoation 
eyci-3n7,0 	t( rrofect d'uint ui to 	faults. 	'pecial 
cases are Heino considered. 

	

A.4 Time Performance of Distributed Systems 	(Lynch, 
Fischer, Lazowska, Sch6nhage) 

cyni..ic , tion 	of co ,TAexity theory in , 'evelorin 	tools 
to - easure _orst-case 	and 	exectcd 	corf-rmance 	of 
distrinute - 	systerr.s 	under 	src-cified 	operating 
conditions. 	'n , Lysis of 	arbiter 	problems 	includes 
wnr, 	on 	tower (time.) 	 with restricted access 
to communication 

- 



GIT FD 
	

Peserch nroram 	 Thirterly Pre 	Report 2 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

"eveLo' ,, ent of al)orith , s 	for 	au, itinl 	, istributed 
Assets 	ithnut 	dc-lavinh 	transactirrs, 	or 

contr. ',  lictinc' 	information 	prn2r)1,tei 	throu ,Th 	the 
syste , 	ay 	 = ) lance tr,at could not have 
existed at any 	oint in time. 

A.6 Ticket Systems (Lynch, Fischer, Griffeth) 

r'esion 	and 	analysis 	of 	al-orithms 	f o r 	ticket 
distribution, 	includin) 	careful 	statement 	of 
correctness and oerformarce reuuirements. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

- eveior , ent onri analysis of tec'tnioues for converting 
synchr ,, nous. 	p2rallel 	olorithms 	into 	euuivalent 
asynchronous 	L orithms. by devising rrot:, cols which 
insure ..r. o!ress 	of 	each 	-- rocess 	without 	actually 
stoo pini co-, Putatian to achieve synchronization. 

A.8 Distributed Resource Allocation (Lynch) 

revelonTent 	of 	a 	sicle 
	

ut realistic model of the 
resource allocation orohlem, 	fst 	solution, 	and 
time analysis of the solution. 

	

B.1 Heterogeneous 	Networking 	(Crews, 	Bray, Greene, 
TuberviLle) 

ThF Tr)- -  Series/7 	has 	been 	connected 	to 	the 	FrS 
test-her 4 	 throu^r 	a unicirectional 
clTmunicatien -,,Ath. 	This n - ti" has 	facilitated 	file 
transfer 	from 	the 	testheo 	to 	the 	''eries/1, 	and 
conseouently 	has 	Proviee^ 	necessary 	software 	to 
initiate work on the cannon co ,lmanf, lanivaue facility 
and 	software 	tools. 	tt 	the  same ti-e, 	link has 
been 	estahtished 	aetween 	the 	Series'1 	and 	7,YPi7P 
system, 	and 	work 	is 	w-Her. ,=ly 	to establish 	an 
interface at the physical codes oneratin- systeT, and 

lan - uahe l-veL. 

B.2 Local Networking in FDPSs (Enslow) 

t survey of the 	state-ef-the-art 	in 	local 	network 
technolc-ly 	and 	ecuinment 	has 	her 	initiated. 	It 
an-ears 	that 	the 	•rir-ary 	weaknesses 	of 	systems 
currently 	available 	or rrone ,- ec -, re in the areas of 
host 	interaction 	 the 	local 	network 	and 
host-to-hest inter a ction. 



Ppcearch 	rr rrt m 	 ^uarterly 	Report 2 

C.1 Decentralized 	and 	Distributed 
	

Control 	(Enslow, 
LeBlanc, Crews, Saponas, Wice) 

Tha first 'oat. of  this :re;ect is to c , ,racterire and 
anah, ze 	rcnols 	of 	distri'-ute -1 	7-nd 	decentralized 
control 	a',- licatoLP to 	,;hly distriouted Fystcrs. 	A 

facin-1 	the 	research 	tear 	is 	the 
devclo, , rent 	of 	a 	tPrr. ni,2ue 	nr 	tr -i - owork by which 
various 	control 	-1-, eLs 	can 	He 	described 	and 

:rinci7lo 	effort thus far in this 
proiect 	has 	been 	focusP ,-' 	on 	i-entifyir ,- 	various 
posiht.-, 	models 	an ,' 	coT-irini 	and ,malvzin- these 

,ith the loal of 	develooin 	a 	b:)is 	for 	a 
cor, pLe+e 	taxonomy. 	"ajor -ro , =re-s has been rade in 
this first steno and a raoer is 	 orerareo 	for 
presentation at the IErL Coimouter 	 rOMPCON in 
'2eoterher. 1?• 

C.2 Resource Allocation and Work Distribution in an FDPS 
(Enslow, Sharp) 

Hurin' this reriod has focused on -eveloping 
a descriptive 	framework 	suitable 	for 	preparinl 	a 
taYonerrY of allocation any morels. The 
approach to k en 'as been to oreLnre descriptions of as 
many models as ,'ossitlP and then to work or , ckw ,3rds to 
develop the fri4-ework. An initial tracp ,s4ork has been 
nrerared '1 ,1 ,4  is heir. ,  refined. 

C.3 FDOS - 	Initial 	Considerations 	(Enslow, 	LeBlanc, 
Crews, 	Akin, 	Flinn, Forsyth, Fukuoka, Myers, Pitts, 
Saponas, Skowbo, Spafford, Wice) 

The 	ordarizatin 	and 	outline 	for 	the 	complete 
specification of an Fr"--“,. is 'nein 	r-repared. 

C.4 TBA - Distributed Operating Systems (Livesey) 

activity this (11,1art.r. 

C.5 Process 	Support in Distributed Systems 	(Enslow, 
Skowbo) 

c‘urveY 	no analysis of corrrrunication orotoco1s 	has 
been 	initiated 	to 	isol•essential 	features for 
suenort ofdistributed 	rocesses. 	Imalications 	of 
trans',, ort 	- rotocols 	-(Hr the T . ' interface are beirq 
studie s 4 . 

a - -7- 



Re Martertv Pr .T.T 	S 	es FflE 	Fearch r ro ra m 	 ort 2 

C.6 Non - Homogeneous Operating Systems (Ratzel) 

o sienific:-., nt activity 	this 	euarter. 	roject 	is 
still in oreliminary stes. 

C.7 FDOS 	Preliminary Implementation Studies (Myers, 
Enslow, Gaither, L. Newell, S. Newell, dice) 

Thy . desi -m and i-IplementrItion of t 0 	F^ 5 	has 	been 
initiated. 	The 	a:scro ,, ch 	 taken 	is to first 
address 	those 	arras 	on 	.,hich 	there 	is 	general 
anreerent 	as 	4. 3 the functionality r0,luiren/desired. 
The first area 	deli:-ned 	is 	that 	of 	"message 
transport". 

D.1 Implementation 	of 	Distributed 	Database Systems 
(Griffeth) 

This bro5ect is planned to comeence in June, 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, 
Doyle, Gehl, Bingham) 

*, relic, a le Literature and reference documentation has 
teen 	 site 	visit 	to 	the t!.. 	Army 
"ilitary Personnel - enter /  Alexandria, Vir , inio, 	has 
been 	mode, during 	hich hriefin-ls were orosented and 
interviews 

H.1 FDPS Requirements Engineering Techniques (Underwood, 
Corley) 

significant activity this qu arter.  

H.2 Coordinating 	Large Programming Projects 	(Enslow, 
Smith) 

A r- uestionnaire to he utilized te 	- ather 	historical 
information 	mana -ler's perception of the problems 
and possible solutions has Neer ,  rrepared. 	Thisdraft 
nu0stionnaire hi-)s been 	circulated 	to 	a 	numberof 
in-iviouals 	for 	comment 	, nd 	recommendations 	on a 
wi d er ronultion to survey. 

I.1 A Language for Distributed Programming (LeBlanc, 
Maccabe, Forsyth) 

'xistin) lancuaes with feature-s relate- to our coals 
are 	currently 	')einn 	studied. 	This 	includes 	the 
imelementation of multi-process pro-rams 	in 	's°03ULA, 



GIT 	flosearch c--- ro -7ram 	 Cuarterly Prao Report 2 

in 	orcer 	to 	gain 	experierce 	with 	interrrocess 
com-unicatirn 	nroblerrs. 	In 	nre°aration 	for 	our 
lanIua ,7e 	resin 	work, 	des ion 	-oals 	have 	been 
identified end a co-rut -itionPl 	model 	on 	which 	the 
lanluaie •4ill he based has been estaoliche - . 	paper 
,, ntitLe 4 	"" 	Lannuaoe 	n d 	for 	Fully nistrik)uted 
5ystems 	aas been 	submitted 	to 	flflPCQN 	t P0 	Pall. 
Another 	 being : - en -, red for sub-,,ission to the 

7'/cific 	r 	conference, 	which has distributed 
prnressin- as its temc. 

	

1.2 System Implementation Language Development 	(LeBlanc, 
Akin, Strickland) 

W4-Pascal 	is '.)einn t ransnorted to the PR1 'T-400 with 
extensions 	to 	sup :_, ort 	the 	F- 71r:-S 	development. 
significant nro -:, ress this auarter. 

J.1 Process Structures (DeMillo, Lipton, Miller, Davida) 

Inves.ti,ation 	of 	several 	acr , ects 	of 	parallel and 
distributed 	system 	desiln, 	includino 	multilevel 
security, 	'rodels 	of synchronization, and efficiency 
of interorocess communication. 

M.1 Establishment of FDPS Testbed 	Facility 	(Myers, 
Elshoff, 	Gaither, Howe, Flinn, L. Newell, S. Newell, 
Wice) 

Th - su , r'sutiT1Pq corrt , ricin ,: the - ri -fenct 	internrocess 
communication 	facility 	are heina used and tested by 
sturr ent pro-rarmers, and will !DP 	used 	in 	the 	near 
future 	tc. 	 'ressa-e 	transport and messaoe 
han ,qin 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth, Howe) 

Proirmmable "scripts" h a ve been devised to 	describe 
a 	variety 	of 	loads. 	'7 tudent 	pro•rammers 	have 
completed a lexical analyzer and parser to 	translate 
scripts for fast interpretation. 

M.3 FDOS Simulation Testbed (LeBlanc, Gaither, Maccabe, 
myers, S. Newell, Wice) 

The 	F - ''.5" 	(Amulat;')n 	tectoeo 	will 	rrov -He 	an 
environment 	for 	the initial t - stimo acid analysis of 
oper a tin 	system 	-,L•orithms 	currently 	neino 
developed. 	The 	overall 	(!esi,:n is co", olete: a more 
detailed 	 is 	written. 	ut'lizi-o 	ST - ULA 
-ontructs, one is in its final st!es. 



CIT Ffl c research 	.r. oram 
	

Tharterly 	Peeort 2 

5. TRAVEL RELATED TO THE FOPS PROGRAM 

Pates of Trin: 	reeruarY, 

Tr-veilin:: 	))-es 	c, Steve "f, yell 
Itinerary: 	 r)erria 

nurnos-: 	 sponsored prrfessional evelonment 
Seminar - ' istributed - rocessinl Systems 

Pates of Trill: 	14 re' , ruary, ln'n 

Tn - ividuals Travellino: 	4  ili7 rnslow 

Ttineriry: 	Atlanta. 

purpos-: 	- resent , rietinl on F. '"c' pro ram and other 	ICS 
research nrnjects. 

Dates of Tr'r: 	 February, 1400 

Crews 

Itinerary: 	San Francisco, California  

Pure-se: 	vttene CO - PC0', e" 

Dates of Trip: 	27-28 February, 19PO 

Inividuals 	Travellino: 	A.P. Jensen, 	John 	Gehl, 	Jim 

Doyle 
Itinerary: 	Alexandria, Vir'ini) 

rpurLose: 	cite survey of mILPrr'cFr'! ''eta Facilities. 

6. VISITORS 

Pates of Visit: 	1 January - 31 "arch, 1c;')0 

Visitor: 	Nicnoel flischor 

Purcos: 	nesearch collaboration 

In(ividual contactezi: 	ancy Lync- 

Pates of Visit: 	11 January. 1' q 
Visitor: 	n.J. 	Linton 
Purilose: 	!research 7ollaherati)n 

In "ividual Contacted: 	[ ich , rq neillo 

Dates of Visit: 	14-1r,  January. lnr 

Visitor: 	rrsnert Conk, •isc., - adison 

rurLose: 
 

To 	-"scu7rs 	rro'lrammin- 	lanouaue 	iesi-n 	and 
operatin .  sYster,  siriulation work neinl done at 	isconsin. 
In' ividual 	Contacted: 	Richard 	teqnc, flhilit Thslow• 
Phil 	Cre 

pates of Visit: 	21-25 January, 19 - 0 
visitor: 	Leslie La - nort, cfanf -Jrd Pesear0 Institute 

-Thrriose: 	research collahortion 	on 	rronlems 	involving 
or) ,Irar, min- in an environTent incluainr; -faulty 
,processors, and choice of primitive nrerations for models 
of asynchronous systems. 

Individual Contacted: 	"ancy Lynch, "ich -ael Fischer 



GTT FP 	Research '"ro ,-ram 	 l':uarterly Pro' Report 2 

gates of Visit: 	4-' rehruary, 
Visitnr: 	Fdwar , . Lazowska, tiniv. 	of iashinator 
ruroose: 	'r, s ,s , rch collaboration 	on 	rrnbleTs 	invnlvino 
perforrronce 	evaldatio-is 	of 	distributer: 	sy:- tems, 	and 
design of arbitration r , rntocols. 
TnJivi-jual Contocteii: 	'ancy Lync"1, 	ichaeL richer 

gf Vi-it: 	ld-21 February, 	C 
Visitor: 	Fshrt ArTomandi, York Univ.. Toront-, C,- nada 
Purans ,-: rese a rch collaboration on I.roLlems invcLvin a 
relationships n ,, t400n synchronous and asynchronous models 
for narallel cn-outtion, and desi , n ot distri'uter. graph 
al'orithms. 
Individual Contacted: 	anc 	Lynch, 	ichanl Fischer 

Dates of Visit: 	21 February, 120 
Visitor: 	Tadaaki 	Hanreh, 	Hitachi Research Laboratory, 
Jaoen. 
Furcose: 	°iscuss Handoh's work in det9flo ,w machines 	and 
our work in F'Pc. . 
In - iviAual 	Contacted: 	°. Fnslow, J. 'yers, -. Fukuoka, 

Pitts, T. Sasonas, C. 	harn, J. "4.0 .,, bot P. 

Dates of visit: 	Rebrury - 11 "arc ' , 
Visitor: 	'.rnot , ' c;chtlqlhade. Univ. 	of Tueinoen, Germany 
PurEnse: 	research collaboration 	on 	orobLems 	involvino 
models 	for 	earallrl comrutation, stochastic analysis of 
di s tributed 	system's, 	'esi'r 	cf 	rbiter 	systems, 	and 
teOnic'uos 	for 	orovin 	lower 	onundc 	for 	arbitration 
rroi-lems. 
Tn 'ivinual Contact e , ': 	'arcy Lynch, micHoel richer 

7. PUBLICATIONS 

Author(s): 	P.H. Fnslo4, P. Cordon 
Title: 	TFC Yorksho 	Report 
Number: 	GIT-TU, -7i/11 
Date: 	flece7Ther. 1q 7 c.? 

Author(s): 	

▪ 	

flr - ill', P.J. Lipton, P•F• 
Title: 	'tochstic 'Ynckrr, nization 
nate: 	June, 1 -  P 

Author(s): 	

• 	

r'0'—ltAni. - .T. 'avida, R.J. Lion 
TitLe 	Secure eey 	istribution 
Tx , e: 	Corf ,  renre 	1 - er 
Date: 	Atril, 1" r' 

Co , monts: 	To He nresen'ed 	at 	19(0 	' , FE 	Symposium 	on 
ce ,-- uritY anc Rrivacv. 

AutJor(s): 	P.h. rosLo'4 
Title: 	'uarterly Rroeress 	- Nu-her 
Tx,e7 	:uarterLy 	ranrss 	e;:ort 
Date: 	A7r4l, 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 3 
1 March, 1980 - 31 May, 1980 

July, 1980 

Supported by 

Office of Nava], Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-649 

International Business Machines, 
General Systems Division (IBM) 

Agreement: GSD-210189 
GIT Project: G36-648 

National Science Foundation (NSF) 
Contract: MCS77-28305 

Subcontract from Univ. of Wisc.: 144-L729 
GIT Project: G36-630 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

1. INTRODUCTION 

This is the Third Quarterly Progress Report prepared on 
the Georgia Tech Research Program in Fully Distributed 
Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed 
Processing Systems is a comprehensive investigation of 
data processing systems in which both the physical and 
logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at 
the component level. The definition of the specific 
class of multiple computer systems being investigated, 
and the operational characteristics and features of 
those systems is motivated by the desire to advance 
the state-of-the-art for that class of systems that 
will deliver a high proportion of the benefits 
currently being claimed for distributed processing 
systems. The scope of individual topics being 
investigated under this program ranges from formal 
modeling and theoretical studies to empirical 
examinations of prototype systems and simulation 
models. Also included within the scope of the program 
are areas such as the utilization of FDPS's and their 
interaction with management operations and structure. 

b. Program Support. 

Th< principle support for the program is a Selected 
Research Opportunity contract from the Office of Naval 
Research; however, there are a number of other sources 
of funding which also support the program. A complete 
list of these is given below. 

Title: "Research on Fully Distributed Data Processing 
Systems" 

Funding Agency: Office of Naval Research (ONR) 
Contract Number: NO0014-79-C-0873 
GIT Project No.: G36-643 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Research on Distributed Control" 
Funding Agency: U.S. Air Force Rome Air Development 

Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-649 
Principle Investigator: Philip H. Enslow, Jr. 

Page -1- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

Title: "Agreement By and Between IBM and GTRI" 
Funding Agency: International 	Business 	Machines, 

General Systems Division (IBM) 
Contract Number: GSD Agreement Number 210189 
GIT Project Number: G36-648 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Foundations of Deterministic Scheduling of 
Processes for Parallel Execution" 

Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS77-28305 

(Univ. of Wisc. subcontract number: 144-L729) 
GIT Project Number: G36-630 
Principle Investigator: Richard A. DeMillo 

Title: "Theory of Systems of Asynchronous Para]) 
Processors" 

Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638 
Principle Investigator: Nancy Lynch 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in 

Management Information and Com -alter 
Science (AIRMICS) 

Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: A.P. Jensen 

2. ORGANIZATION  glik XrAFFING 

Faculty  

The following members of the ICS Faculty have been 
identified as participants in the FDPS Research Program. 

Crews, Phillip--Assistant Professor 
DeMillo, Richard A.--Associate Professor 
Enslow, Philip H. Jr.--Professor 
Griffeth, Nancy--Assistant Professor 
LeBlanc, Richard--Assistant Professor 
Livesey, Jon--Assistant Professor 

(effective September, 1980) 
Lynch, Nancy--Associate Professor 

Most of these individuals are presently working on 
specific projects in the program, while others are 
completing other work already in progress. 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

Staff 

Jensen, Alton P.--Princ. Res. Eng. 
McDonell, Sharon--Sr. Secy. 
Myers, Jeanette--Res. Scientist 
Pinion, Nancy--Part-time Secy. 

Students  

There are 30 students working on various projects in the 
FDPS Research Program. Of these, 12 are in the Ph.D. 
program and 5 are preparing their MS Thesis on topics in 
FDPS. 

3. 'URRENT SESEARCU PROJECTS 

The specific research projects have been organized into 
the major areas identified in the basic program proposal. 

Theoretical  a Formal Studies 
1 Studies of the Theory of Asynchronous Processors 

A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 
A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.11 Shared 	Memory 	Bounds 	for 	Synchronization 

Problems 

B. Physical Interconnection  ADA Networking 

B.1 Heterogeneous Networking 
B.2 Local Networking in Fully Distributed Processing 

Systems 

C. Distributed Operating System. 

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an 

FDPS 
C.3 Fully Distributed Operating System - Initial 

Considerations 
C.4 TBA (Distributed Operating Systems) 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

C.5 Process Support in Distributed Systems 
C.6 Non-Homogeneous Operating Systems 
C.7 FDOS - Preliminary Implementation Studies 

D. Distributed Data eases 

D.1 Implementation of Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 

E. Fault-Tolergnce  

F. Special Bardwara  /2 Support FDPS  

G. Application  2f Distributed Processing 

H. Lvstem Design Methodologies  

H.1 FDPS Requirements Engineering Techniques 
H.2 Coordinating Large Programming Projects 

I. System Utilization 

I.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 

J. Security  

J.1 Process Structures 

K. System Panagement  

L. Evaluation  And Loannrinnn 

M. FDPS Testbed 

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation 

Testbed 

Page -4- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

4. SUMMARY  a PROGRESS 

A.1 Studies of the Theory of Asynchronous Processors 
(Lynch, Fischer, Lamport, Lazowska, Sch8nhage, 
Arjomandi) 

Much of the quarter was spent writing up 	and 
exploring 	ideas originating during the previous 
quarter. Progress is as described in the Summaries 
for Projects A.2 through A.11. 

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

Further progress was made in organizing ideas for the 
decomposition. 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

No significant progress to report. 

A.4 Time 	Performance of Distributed Systems (Lynch, 
Fischer, Lazowska, Sch8nhage) 

A simulation program has been 	developed 	which 
calculates running times for distributed algorithms 
with a tree network topology. This system is being 
used to obtain performance results where analysis is 
difficult, and also to check analytic results. A 
first draft has been written of a paper which 
demonstrates techniques for proving lower bounds on 
time performance for algorithms solving distributed 
problems. The two results for the paper are a lower 
bound for a simple arbitration problem, and a lower 
bound for a synchronized simulation problem. 
Corresponding upper bounds are also described. This 
paper by Arjomandi, SchOnhage, Fischer, and Lynch 
will be submitted to a conference in the near future. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

No significant progress to report. 

A.6 Ticket Systems (Griffeth, Lynch, Fischer) 

Work this quarter includes the development, proof, 
and simulation study of an algorithm determining 
optimal static placement of resources in a 
distributed system. The first draft of a conference 
paper is being prepared. The static results are 
being incorporated into 	a 	dynamic 	distributed 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

algorithm. 	An 	apparently efficient distributed 
algorithm has been designed, based on the optimal 
static placement. Since we have so far been unable 
to prove formal bounds on the overhead introduced by 
the necessary dynamic decisions, we have programmed 
the algorithm in our simulation system (described 
above). We are currently running tests to see how 
well the algorithm performs under various input loads 
and with various network sizes. Performance results 
obtained so far have been uniformly excellent, but 
are still preliminary. We also have an outline of a 
formal correctness proof for our algorithm. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

See Progress Summary for Project A.4. 

A.8 Distributed Resource Allocation (Lynch) 

The paper, "Fast Allocation of Nearby Resouces in a 
Distributed System", was presented by N. Lynch at the 
1980 ACM Symposium on Theory of Computing in Los 
Angeles. Subsequently, the paper was invited for 
inclusion in a special issue of the UCSS to be 
devoted to papers of that conference. 

A.9 Theory 	of Distributed Databases (Ghoudjehbaklou, 
Lynch) 

Preliminary studies of problems arising in 	the 
distributed database area suitable for our types of 
analysis have begun. Ghoudjehbaklou is conducting 
studies of adaptive distributed resource allocation 
algorithms which use distributed data in their 
implementation. 

A.10 Arbiter Design (Lynch, Griffeth, Sch8nhage, Fischer) 

A design of an arbiter which provably works as fast 
as possible, both in the worst case and in the case 
of light input load, has been outlined. 

A.11 Shared Memory Bounds for Synchronization Problems 
(Burns, Lynch) 

Revision of a paper, "Shared Data Requirements for 
Implementation of Mutual Exclusion Using a 
Test-and-Set Primitive", was carried out for eventual 
publication in the Journal of the ACM. 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

B.1 Heterogeneous Networking (Crews, Greene) 

Software Tools has been copied from the PRIME testbed 
and is currently being implemented on the Series/1. 
Software Tools will establish a common user interface 
to the heterogeneous systems, and will be the first 
step in providing an efficient universal interface 
across the disparate systems. 

B.2 Local Networking in FDPSs (Enslow) 

A survey was made of the commercial equipment that 
could be made available during the time period of 
interest. As a result of this survey, a commercial 
system was selected for installation as soon possible 
to provide the initial testbed for work in this area. 

C.1 Decentralized and 	Distributed 	Control 	(Enslow, 
LeBlanc, Crews, Saponas, Vice) 

A presentation on the status of the work on this 
project was made to the RADC Distributed Processing 
Technical Exchange Seminar. Motivated by the need to 
present our findings to a large group of individuals 
who are not totally conversant with the concepts of 
fully distributed systems, major progress was made in 
the techniques and methodology for describing the 
various models of distributed processing systems. 
Both the physical and logical models of the 
components involved in distributed and decentralized 
control were defined. 

In categorizing the various models of distributed 
control, 	it 	was 	found 	that 	the 	following 
characteristics are significant: 	(1) Form of the 
work request, (2) Work request processing, 	(3) 
Information gathering for resources required and 
available, (4) Sources of information, (5) Task-graph 
building, and (6) Mode of execution monitoring. 

Four major types of work requests were identified 
based on combinations of the following attributes: 
(1) Are imbedded (invisible) external references 
allowed, (2) What is the form of the complete request 
(a single executable file or multiple executable 
files with connectivity present), and (3) Is process 
interaction present. Similarly, three major 
characteristics of the control model were identified: 
(1) When are external references resolved and 
resources located and allocated, (2) When is 
interprocess communication established, and (3) When 
is the task graph built. The two options possible in 
each case are: (a) prior to task initiation, and (b) 
as requested. 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

Based on the characterizations developed above, a 
number of examples were prepared clearly explicating 
the operation of decentralized control. 

A paper, "A Model for Decentralized Control in a 
Fully Distributed Processing System", will be 
presented at COMPCON Spring '80. The model presented 
in the paper is being successively refined, and 
initial plans to simulate the model are being made. 

C.2 Resource Allocation and Work Distribution in an FDPS 
(Enslow, Sharp) 

The first draft of a working paper on this subject 
has been prepared. 

C.3 FDOS - Initial Considerations (Enslow, 	LeBlanc, 
Crews, Akin, Flinn, Forsyth, Fukuoka, Myers, Pitts, 
Saponas, Skowbo, Spafford, Wice) 

Recent work in this area has focused primarily on the 
development of a local operating system which will 
support network operating system operations. 

C.4 TBA - Distributed Operating Systems (Livesey) 

No activity this quarter. 

C.5 Communications 	Support 	in 	Distributed 	Systems 
(Enslow, Skowbo) 

A study of existing communications systems 	and 
proposed architectures suggests the need in fully 
distributed systems for specialized services at many 
levels of the protocol hierarchy. These services are 
being identified and defined in terms of existing or 
proposed standards for circuit- and packet-switched 
communication. 

C.6 Non-Homogeneous Operating Systems (Ratzel) 

No significant progress to report. 

C.7 FDOS - Preliminary Implementation Studies (Myers, 
Enslow, Gaither, Newell, Wice) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

D.1 Implementation of 	Distributed 	Database 	Systems 
(Griffeth) 

This project will build on the progress reported for 
Project A.6. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, 
Doyle, Gehl, Bingham) 

Work to date confirms that the MILPERCEN system for 
managing the records of enlisted and commissioned 
personnel 	is 	virtually unique with respect to 
dimensions, complexity, and scope. A comparative 
analysis of military, federal government, civilian, 
and private sector human-resource systems has been 
initiated in order to assess the potential and 
technical problems of integrated manpower management 
systems. 

H.1 FDPS Requirements Engineering Techniques (Underwood, 
Corley) 

No significant progress to report. 

	

H.2 Coordinating Large Programming Projects 	(Enslow, 
Smith) 

The 	principle 	activity during this period has 
involved the refinement of the questionnaire, as well 
as the explanatory material that will accompany it. 

I.1 A Language for Distributed Programming (LeBlanc, 
Maccabe, Forsyth) 

The paper entitled "A Language Model for Fully 
Distributed 	Systems 	has 	been 	accepted 	for 
presentation at COMPCON '80, Fall. Work is 
proceeding toward designing language features based 
on the model described in that paper. One aspect of 
this work is described in a paper entitled 
"Communication Facilities in Programming Languages 
for Fully Distributed Systems" which has been 
submitted to the ACM Pacific '80 Conference. 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

1.2 System Implementation Language Development (LeBlanc, 
Akin, Strickland) 

Due to the development of a PASCAL compiler by PRIME, 
we have determined that further work on transporting 
UW-PASCAL would not be worthwhile. Our attention has 
turned to the development of a MODULA compiler, to 
give us a language which supports multiple processes. 

J.1 Process Structures (DeMillo, Lipton, Miller, Davida) 

The principle result of our research this quarter has 
been the application of distributed computing 
technology to the traditional problems of operating 
system security. The key insight seems to be that it 
is desirable to separate those system functions which 
provide user services from those which mediate system 
security. By using encryption based protocols in a 
distributed system, many system functions can be 
supported with high security. Research is currently 
under way to increase the functionality of these 
designs. A byproduct of the effort is a unification 
of the theories of operating system and data 
security. 

M.1 Establishment of FDPS Testbed 	Facility 	(Myers, 
Elshoff, Gaither, Flinn, Newell, Wice) 

No significant progress to report. 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth, Howe) 

The 	interpreter of script object code is near 
completion. Final enhancements and testing are now 
being undertaken. 

M.3 FDOS Simulation Testbed (LeBlanc, Gaither, Maccabe, 
Myers, Newell, Wice) 

A preliminary implementation of 	the 	simulation 
testbed has been completed, written in "C" on the 
PDP-11/45. This version is currently being extended 
and rewritten in RATFOR to run on the PRIME P400's. 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

5. TRAVEL, RELATED  IQ TUE FDPS PROGRAM 

Dates  j Trip: 3-5 March, 1980 
Individuals Traveling: Philip Enslow 
Itinerary: Atlanta, Georgia 
Purpose: 	Survey 	state-of-the-art 	in 	distributed 
processing 	equipment 	at 	AFIPS 	Office 	Automation 
Conference. 

Dates 2L Trip: 5 March, 1980 
Individuals Traveling: Nancy Lynch 
Itinerary: Seattle, Washington 
Purpose: 	Present talk at University of Washington about 
time analysis of distributed systems. 

Dates  2i Trip: 14 March, 1980 
Individuals Traveling: Philip Enslow 
Itinerary: Baltimore, Maryland 
Purpose: 	Discussion 	of 	decentralized 	distributed 
control. 

Dates ..QLL Trip: 17 March, 1980 
Individuals Traveling,: Philip Enslow 
Itinerary: Miami Beach, Florida 
Purpose: 	Survey 	state-of-the-art in local network 
equipment and systems at INTERFACE '80 Exhibition. 

Dates 421 Trip: 24-26 March, 1980 
Individuals Traveling: Richard LeBlanc 
Itinerary: Tallahassee, Florida 
Purpose: 	Present paper at ACM 	Southeast 	Regional 
Conference 	entitled, 	"Research 	Issues 	in 	Fully 
Distributed Systems". 

Dates DI Trip: 2 April, 1980 
Individuals Traveling: Philip Enslow 
Itinerary: Baltimore, Maryland 
Purpose: 	Discussions 	of 	decentralized 	distributed 
control. 

Dates  21 Trip: 3-4 April, 1980 
Individuals Traveling,: Phillip Crews 
Itinerary: Washington, D.C. 
Purpose: 	Participate 	in 	organization and program 
selection for Fall COMPCON '80 Conference in Distributed 
Processing. 

Dates  21 Trip: 13-14 April, 1980 
Individuals Traveling: Nancy Lynch 
Itinerary: Rochester, N.Y. 
Purpose: 	Present talk at University of Rochester about 
time analysis of distributed systems. 

Page -11- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

Dates  2..0 Trip: 14-16 April, 1980 
Individuals Traveling: 	Phillip Crews, Philip Enslow, 
Carolyn Greene 
Itinerary: Ft. Lauderdale, Florida 
Purpose: Present Georgia Tech FDPS Research Program, and 
participate in Third IBM University Research Seminar. 

Dates  91 Trip: 14-18 April, 1980 
Individuals Traveling: Richard DeMillo 
Itinerary: Berkeley, California 
Purpose: Attend IEEE Symposium on Security and Privacy. 

Dates DI Trip: 16-19 April, 1980 
Individuals Traveling: Nancy Griffeth 
Itinerary: Seattle, Washington 
Purpose: 	Work 	with M. Fischer on paper, "Optimal 
Resource Placement in a Distributed System". 

Dates 2f Trip: 27-30 April, 1980 
Indivicluals Traveling: Nancy Lynch 
Itinerary: Los Angeles, California 
Purpose: Present the paper "Fast Allocation of Nearby 
Resources in a Distributed System" at the 1980 ACM 
Symposium on Theory of Computing. 

Dates  91 Trip: 1-2 May, 1980 
Individuals Traveling: Nancy Lynch 
Itinerary: Palo Alto, California 
Purpose: 	Consult with 	researchers 	in 
computing at Xerox Palo Alto Research Center. 

distributed 

Datea 2f Trip: 13-15 May, 1980 
Individuals Traveling: Philip Enslow 
Itinerary: Rome, N.Y. 
Purpose: 	Participate in the RADC Distributed Processing 
Technology Exchange Seminar, and presentations on the 
Georgia Tech FDPS Research Program and the project on 
Distributed Decentralized Control. 

Dates 21 Trip: 14-16 May, 1980 
Individuals Traveling: Nancy Griffeth 
Itinerary: New York, N.Y. 
Purpose: Present talk at New York University Symposium 
on Distributed Database Systems. 

Dates DL Trip: 19-22 May, 1980 
Individuals Traveling: Richard DeMillo 
Itinerary: Anaheim, California 
Purpose: Attend NCC '80. 

Dates 2f Trip: 28 May, 1980 
Individuals Traveling: A.P. Jensen, John Gehl 
Itinerary: Washington, D.C. 
Purpose: 	Meet with Deputy Chief of Staff of Personnel, 
Department of the Army 

Page -12- 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

6. VISITORS 

Dates 21 Visit: 1 January - 31 March, 1980 
Visitor: Michael Fischer, University of Washington 
Purpose: Research Collaboration. 
Individual Contacted: N. Lynch 

Dates 21 Visit:  25 February - 14 March, 1980 
Visitor: 	Arnold Scheinhage, University of 	Tubingen, 
Germany 
Purpose: 	Research collaboration on problems involving 
models for parallel computation, stochastic analysis of 
distributed systems, design of arbiter systems, and 
techniques for proving lower bounds for arbitration 
problems. 
Individual Contacted: N. Lynch 

Dates 2f Visit:  1 -5 April, 1980 
Visitor: Richard Lipton, University of California 
Purpose: 	Research collaboration on distributed system 
security and synchronization. 
Individual Contacted: R. DeMillo 

Dates sa Visit: 17 April, 1980 
Visitor: William Boile, James Glymph, MILPERCEN 
Purpose: Discuss OMF/EMP file structures. 
Individual Contacted: A.P. Jensen 

Dates 2f Visit: 22 April, 1980 
Visitor: Admiral Albert J. 	Bacioco, Office 
Research 
Purpose: 	Receive briefing on the Georgia 
Research Program. 
Individual Contacted: P. Enslow, R. DeMillo, 
N. Griffeth, R. LeBlanc 

Dates  21 Visit: 29 April, 1980 
Visitor: 	Ray Spitz, Darrell Knaus, Gene Head, IBM 
General Systems Division 
Purpose: Discuss the Georgia Tech FDPS research program. 
Individual Contacted: P. Enslow 

Dates 21 Visit: 27 May, 1980 
Visitor: Charles Bass, Ungermann & Bass 
Purpose: Discuss NETONE, a local communication network 
being developed by Ungermann & Bass. 
Individual Contacted: P. Enslow 

of Naval 

Tech FDPS 

N. Lynch, 



GIT FDPS Research Program 	 Quarterly Prog Report 3 

7. PUBLICATIONS 

Author(..): P. Enslow, P. Crews 
Title: 	IBM Series/1 UT200 RJE Workstation - Interim 
Progress Report Number 1 
Type: Interim Progress Report [IBM Internal Use Only] 
GIT Number: (unnumbered) 
Publ. Dare: 31 March, 1980 

Author(.): A. Maccabe, R. LeBlanc 
Title: A Language Model for Fully Distributed Systems 
Type: Conference Paper 
GIT Number: (unnumbered) 
Publ. Date: (submitted March, 1980; accepted) 

Author(z): N. Lynch 
Title: 	Fast Allocation of Nearby Resources 	in 	a 
Distributed System 
Type: Conference Paper 
GIT Number: GIT-ICS-80/04 
Publ. Date: April, 1980 

Author(.): G. Davida, R. DeMillo, R. Lipton 
Title: 	A System Architecture to Support a VerifialAy 
Secure Multilevel Security System 
Type: Conference Paper 
LIT Number: GIT-ICS-80/05 
Publ. Date: April, 1980. 

Author(.): G. Davida, R. DeMillo, R. Lipton 
Title: Secure Key Distribution 
Type: Conference Paper 
QJI Number: TBA 
Publ. Date: April, 1980 

Author(,): P. Enslow 
Title: Quarterly Progress Report - Number 2 
Type: Quarterly Progress Report 
GIT Number: (unnumbered) 
Publ. Date: April, 1980 

Author(..): R. LeBlanc, J. Myers, S. Newell 
Title: A Simulator for the Evaluation of Operating 
System Algorithms for Fully Distributed Systems 
Type: Conference Paper 
LIT Number: (unnumbered) 
Publ. Date: (submitted April, 1980) 

Author(.): A. Maccabe, R. LeBlanc 
Title: Communication Facilities in Programming Languages 
for Fully Distributed Systems 
Type: Conference Paper 
GIT Number: (unnumbered) 
Publ. Date: (submitted April, 1980) 

Page -14- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 4 
1 June, 1980 - 31 August, 1980 

November, 1980 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36 -643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-649 
GIT Project: G36-654 

International Business Machines, 
General Systems Division (IBM) 

Agreement: GSD-210189 
GIT Project: G36-648 

National Science Foundation (NSF) 
Contract: MCS77-28305 

Subcontract from Univ. of Wise.: 144-L729 
GIT Project: G36-630 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	 Quarterly Prog Report 4 

1. INTRODUCTION  

This is the Fourth Quarterly Progress Report prepared on the Georgia Tech 
Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A complete list 
of these is given below. During this reporting period an additional 
project was assigned under the RADC contract. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: N00014-79-C-0873 
GIT Project No.: G36-643 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Research on Distributed Control" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-649 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Agreement By and Between IBM and GTRI" 
Funding Agency: International Business Machines, General Systems Division 

(IBM) 
Contract Number: GSD Agreement Number 210189 
GIT Project Number: G36-648 
Principle Investigator: Philip H. Enslow, Jr. 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

Title: "Foundations of Deterministic Scheduling of Processes for Parallel 
Execution" 

Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS77-28305 

(Univ. of Wisc. subcontract number: 144-L729) 
GIT Project Number: G36-630 
Principle Investigator: Richard A. DeMillo 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638 
Principle Investigator: Nancy Lynch 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK7O-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: A.P. Jensen 

2. ORGANIZATION  A  STAFFING  

Faculty  

Crews, Phillip--Assistant Professor 
DeMillo, Richard A.--Associate Professor 
Enslow, Philip H. Jr.--Professor 
Griffeth, Nancy--Assistant Professor 
Jensen, Alton P.--Professor 
LeBlanc, Richard--Assistant Professor 
Livesey, Jon--Assistant Professor 

(effective September, 1980) 
Lynch, Nancy--Associate Professor 

Staff  

McDonell, Sharon--Sr. Secy. 
Myers, Jeanette--Res. Scientist 
Pinion, Nancy--Part-time Secy. 

Students  

There are 30 students working on various projects in the FDPS Research 
Program. Of these, 12 are in the Ph.D. program and 5 are preparing their 
MS Thesis on topics in FDPS. 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical And. Formal Studies  

A.1 Models of Asynchronous Processors 
A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 
A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.11 Shared Memory Bounds for Synchronization Problems 
A.12 Mutual Exclusion 
A.13 Adaptive Distributed Resource Allocation Algorithms 

B. Physical Interconnection and Networking 

B.1 Heterogeneous Networking 
B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.3 Fully Distributed Operating System - Initial Considerations 
C.4 TBA (Distributed Operating Systems) 
C.5 Process Support in Distributed Systems 
C.6 Non-Homogeneous Operating Systems 
C.7 FDOS - Preliminary Implementation Studies 

D. Distributed Data Bases  

D.1 Implementation of Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 

E. Fault-Tolerance  

F. Special Hardware lg. Support FDPS  

G. Application pi Distributed Processing 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

H. System Design Methodologies  

H.1 FDPS Requirements Engineering Techniques 
H.2 Coordinating Large Programming Projects 

I. System Utilization  

I.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 

K. System Management 

L. Evaluation and Comparison 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation Testbed 

4. an= PROGRESS  

A.1 Models of Asynchronous Processors (Lynch, Fischer) 

Final revisions were made to a paper entitled, "On Describing the Behavior 
and Implementation of Distributed Systems", scheduled to appear shortly in 
Theoretical Computer Science. Discussions were carried out aimed at 
extending time analysis techniques to communicating sequential process 
models for asynchronous processors. 

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

A manuscript entitled, "A Technique for Decomposing Algorithms which Use a 
Single Shared Variable", was completed and submitted in August for 
publication in the Journal of the ACM. 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

No significant progress to report 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Sch8nhage) 

Discussions were carried out for strengthening and clarifying bounds for a 
simple arbitration problem. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

No significant progress to report 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

A simulation was designed and implemented for simulating the ticket 
system. It was implemented on the CYBER 74 using FORTRAN in order to take 
maximum advantage of the CYBER's speed and to avoid introducing overhead. 
The processor step times are normally distributed, with parameters mean 
and variance as input to the program; request arrival rate is 
exponentially distributed, with input parameter interarrival time. The 
results of the simulation suggested the following hypothesis about the 
behavior of the ticket system: 

As the expected interarrival time of requests for tickets increases, 
the expected response time also increases. 

At first glance this seems counterintuitive, since larger interarrival 
times will mean less interference between processing of requests (in the 
extreme case, one ticket is processed before the next arrives). However, 
a different intuition explains why it is probably true. The intuition is 
that the sooner the requests arrive in the history of the system, the more 
information the system has at any given point in time about how the 
tickets should be allocated to requestors. Thus the hypothesis says that 
tickets are being allocated "intelligently" by the system, on the basis of 
whatever information it has. 

A manuscript entitled, "Optimal Placement of Identical Resources in a 
Distributed Network", was submitted in August to next year's conference on 
distributed computation in Paris. 	This paper describes the optimal 
placement of resources in a distributed system. 	Simulation results 
suggest a very small expected running time for the corresponding dynamic 
case. A new theorem giving an analytic proof of this upper bound is 
currently being written up. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

A paper is being prepared for conference submission. 

A.8 Distributed Resource Allocation (Lynch) 

An invited paper entitled, "Fast Allocation of Nearby Resources in a 
Distributed System", was submitted for publication in the special issue of 
the Journal  DI Computer and System Sciences,  based on papers of the 1980 
ACM Symposium on Theory of Computation. 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

A.9 Theory of Distributed Databases (Ghoudjehbaklou, Lynch) 

More preliminary studies of problems arising in the distributed data-base 
area, suitable for time analysis, were carried out. 

A.10 Arbiter Design (Lynch, Griffeth, Sch8nhage, Fischer) 

No significant progress to report 

A.11 Shared Memory Bounds for Synchronization Problems (Burns, Lynch) 

No significant progress to report 

A.12 Mutual Exclusion (Burns, Lynch) 

A paper entitled, "Mutual Exclusion Using Indivisible Reads and Writes" 
was submitted to the Allerton Conference. 

A.13 Adaptive Distributed Resource Allocation Algorithms (Ghoudjehbaklou, 
Lynch) 

Several distributed resource-allocation problems and algorithms are being 
described and analyzed. 

B.1 Heterogeneous Networking (Crews, Efruss, Greene, Ma, Ramirez) 

The primary work accomplished during this period has been refinement of 
the programs already developed and analysis of the options available for 
the operational environment. 

B.2 Local Networking in FDPSs (Enslow) 

The operational capabilities desired in the local network testbed were 
established. The equipment selected was NETONE produced by Ungermann and 
Bass. NETONE is a baseboard-contention system (similar to ETHERNET). The 
user interfaces to NETONE are programmable, making it extremely useful as 
a research vehicle. Initial funding for the system was obtained. 
Delivery anticipated in October. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Crews, Saponas) 

The draft final report on the first phase of this study, a survey of 
decentralized control models, was prepared. The second phase, evaluation 
of these models, was initiated. 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

No progress to report due to the absence of Mr. Sharp during this period. 
He will return and the project will resume in September. 

C.3 FDOS - Initial Considerations (Enslow, LeBlanc, Crews, Akin, Flinn, 
Forsyth, Fukuoka, Myers, Pitts, Saponas, Skowbo, Spafford, Wice) 

Work proceeds on defining the desired and required capabilities for a 
Fully Distributed Operating System. Implementation experiments have been 
initiated. 

C.4 TBA - Distributed Operating Systems (Livesey) 

No activity to report. Dr. Livesey will join the Georgia Institute of 
Technology and the Project in September. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo, Wice) 

Further study of communications systems and network architectures is in 
progress. A list of services which may be provided at one or more levels 
in a hierarchy of protocols has been developed. Methods for assessing the 
effects of these services on system performance are being considered. The 
existing simulator for interprocess communication is being evaluated as a 
possible basis for further development in this project. Specific 
proposals for additional work are being evaluated and drafts are being 
written. 

C.6 Non-Homogeneous Operating Systems (Ratzel) 

No significant progress to report. 

C.7 FDOS - Preliminary Implementation Studies (Myers, Enslow, Gaither, Newell, 
Wice) 

Work continues on this project in support of Project C.3 and in 
preparation for actual implementation of a prototype FDOS. 

D.1 Implementation of Distributed Database Systems (Griffeth) 

A literature review and a bibliography of distributed database systems 
were begun. A plethora of algorithms for concurrency control were noted. 
Also, a variety of measures of "goodness" of such algorithms have been 
proposed. The area seems ripe for performance comparisons of the 
algorithms along a variety of axes. To this end, a detailed study of the 
concurrency algorithms has been begun. A second area in which some work 
(less than it warrants) was noted is the area of the allocation of data on 
a distributed system. Neglected areas are query procesing on distributed 
systems, recovery and reliability issues, and distributed directories. 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

The simulation program developed for the ticket system (A.6) 	was 
generalized to allow simulation of any distributed algorithm having the 
following properties: 

(1) Each node uses the same algorithm; 
(2) The number of ports at a node is bounded as the system size grows; 
(3) Communication between each pair of nodes is via a mailbox which 

must be explicitly accessed by a node to find out if anything new 
has been sent. 

A generalization of the ticket system simulation can thus be used to 
evaluate the concurrency control algorithms. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

The work in this quarter consisted of four major activities. First, Pete 
Jensen visited MILPERCEN July 16 to present the results of the research 
done to date. Second, Captain Steve Ratzel and Jim Doyle visited USAREC 
in St. Louis to investigate the reserves personnel data base. Third, the 
phase-one report was written and sent to selected industry, academic, and 
military personnel in preparation for a planned October conference on 
human resource management. Fourth, a data element list of approximately 
4800 data elements dealing with personnel data was compiled from 23 files 
and 65 transactions involving MILPERCEN, USAFAC, USAREC, and SIDPERS. 

H.1 FDPS Requirements Engineering Techniques (Underwood, Corley) 

No activity to report. Mr. Corley is expected to return to Georgia Tech 
in January, 1981, to complete the work on his Ph.D. 

H.2 Coordinating Large Programming Projects (Enslow, Smith) 

Questionnaire refinement was completed. The focus during this period was 
on completing the explanatory material. Progress was also made in 
identifying possible subjects. 

I.1 A Language for Distributed Programming (LeBlanc, Macoabe, Hardin) 

The development of features for our language for distributed programming 
has begun. Preparation for our presentation at COMPCON Fall '80 is in 
progress. A conference paper concerning the use of abstraction in our 
languagb has been submitted to L'Exposition de l'Informatique en Louisiana 
(see publications list). Another paper is being prepared for submission 
to the Second International Conference on Distributed Computing. 

1.2 System Implementation Language Development (LeBlanc, Akin) 

An implementation of an extended version of MODULA, a language which 
supports multiple processes, is now in progress. 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

1.3 Experiments with a Distributed Compiler (LeBlanc, Moore) 

In order to test the feasibility of distributed programming, experiments 
have been designed involving several versions of a compiler. A compiler 
was chosen because there is considerable potential for taking advantage of 
parallelism in the compilation process. The experimental work is 
currently in progress. 

J.1 Process Structures (DeMillo, Lipton, Miller, Davida) 

Work continues on the application of cryptographic protocols and 
distributed computing to computer system security. A major output of this 
quarter's research is a survey of applicable cryptographic and operating 
system security theory. Work is beginning on the design of a prototype 
system. In addition, an extensive study of distributed system 
survivability, using statistical designs, was begun. 

M.1 Establishment of FDPS Testbed Facility (Myers, Gaither, Flinn, Newell, 
Wice) 

Work continues on simulations as well as general-purpose support software. 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth) 

During this quarter, code generation routines were added to the script 
preprocessor and large parts of the script interpreter were implemented. 
Status of the various modules of the project is as follows: The script 
preprocesor is fully implemented. It does not yet recover from all syntax 
and semantic errors, although it does diagnose them and it generates 
correct object code for error-free scripts. The interpreter is 
implemented and partially tested. It can now access test systems through 
either asynchronous lines or through X.25 virtual circuits. The emulation 
session analysis programs are still being designed. 

M.3 FDOS Simulation Testbed (LeBlanc, Gaither, Maccabe, Myers, Newell, Wice) 

The simulator has been rewritten in RATFOR and is now running on our PRIME 
computers (the initial version was written in C). 



GIT FDPS Research Program 	 Quarterly Prog Report It 

5. TRAVEL RELATED  .IQ THE FDPS  PROGRAM 

Date pl Trip: 8 July, 1980 
Individual(s) Traveling: P.H. Enslow 
Itinerary: Baltimore, Maryland 
Purpose: 	Present one-day executive-level seminar on distributed data 
processing - research and market. 

Date of Trip: August, 1980 
Individual(.) Traveling: N. Lynch 
„Itinerary: Seattle, Washington 
Contact: M. Fischer 
Purpose: 	Worked with Mike Fischer on several of the listed projects. 
Presented talk on lower bounds for synchronization problems. 

Date of Trip: 19-21 August, 1980 
Individual(.) Traveling: R.A. DeMillo 
Itinerary: Princeton, N.J. 
Contact: Richard J. Lipton 
Purpose: Consult in various topics relating to joint work in distributed 
systems. 

6. VISITORS  

Dates DI Visit: 15-18 July, 1980 
Visitor: George I. Davida 
Contact: R.A. DeMillo 
Purpose: Discuss joint work on cryptographic protocols 

Dates pi' Visit: 4-8 August, 1980 
Visitor: Peter Lauer 
Contact: P.H. Enslow, N. Lynch, & other FDPS team members 
Purpose: Discuss common interests and work in distributed processing 

Dates of Visit: 21 August, 1981 
Visitor: Mont Bernstein, System Development Corp. 
Contact: P.H. Enslow 
Purpose: Discuss SDC work in distributed processing and other common 
interests. 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

7. PUBLICATIONS 

Author(s): T. Saponas & P. Crews 
Title: 	A Model for Distributed and Decentralized Control in a Fully 
Distributed Processing System 
Type: conference paper 
Status: presented at Fall COMPCON '80, September 23-25, 1980 

Author(..): R. LeBlanc 
.Title: 	Control and Communication Abstraction in a Programming Language for 
Distributed Systems. 
Type: conference paper 
Status: accepted for presentation 

Author(s): N. Lynch 
Title: Fast Allocation of Nearby Resources in a Distributed System 
Type: conference paper 
Status: invited & submitted 

Author(s): N. Lynch & M. Fischer 
Title: A Technique for Decomposing Algorithms which Use a Single Shared 
Variable 
Type: journal article 
Status: submitted 

Author(s): N. Lynch & M. Fischer 
Title: On Describing the Behavior & Implementation of Distributed Systems 
Type: journal article 
,Status: final revisions made 

Author(s,): M. Fischer, N. Griffeth, L. Guibas, & N. Lynch 
Title: Optimal Placement of Identical Resources in a Distributed Network 
Type: conference paper 
Status: submitted 

Author(s): J. Burns & N. Lynch 
Title: Mutual Exclusion Using Indivisible Reads and Writes 
Type: conference paper 
Statue : submitted 

Author(s): R.A. DeMillo 
Title: A Brief Overview of Computer System Security 
Type: report prepared for U.S. Army CORADCOM, Ft. Monmouth, N.J. 
Status: delivered 

Author(,): G.I. Davida, R.A. DeMillo, R.J. Lipton 
Title: Protecting Shared Cryptographic Keys 
Type: conference paper 
Status: presented at 1980 IEEE Symposium on Security and Privacy 

Author(s): G.I. Davida, R.A. DeMillo, R.J. Lipton 
Title: 	A System Architecture to Support a Verifiably Secure Multilevel 
Security System 
Type: conference paper 
Status: published 

Page -11- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

Author(s): R.A. DeMillo 
Title: Cryptographic Protocols 
Type: conference paper 
Status: accepted 

Author(s): P.H. Enslow 
Title: Quarterly Progress Report - Number 3 
Type: Quarterly Progress Report 
Status: printed & distributed 
Publ. Date: July, 1980 

Page -12- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

APPENDIX  

A report of work conducted by Professor Michael Fischer in cooperation with the 
Georgia Tech Research Program in Fully Distributed Processing Systems. 

Design and Analysis of Distributed Algorithms 
Second Quarterly Progress Report (March 1 - May 31, 1980) 
Professor Michael J. Fischer - Principal Investigator 

1. INTRODUCTION 

This report covers the progress of the project, "Design and Analysis of 
Distributed Algorithms," directed by Professor Michael J. Fischer, for the 
period March 1 - May 31, 1980. This project is principally supported by ONR 
Contract N00014-80-C-0221. 

From the beginning of the reporting period through April 2, part of the work was 
carried out at Georgia Institute of Technology where Professor Fischer was 
visiting. During that time, additional support for the project came from ONR 
Contract N00014-79-C-0873 through a subcontract from the Georgia Institute of 
Technology to the University of Washington. 

2. TECHNICAL COLLABORATORS 

The work reported on in Sections 4.1 and 4.2 was carried out in close 
collaboration with Professors Nancy A. Lynch and Nancy Griffeth of the Georgia 
Institute of Technology. Professor Griffeth also spent three days in Seattle in 
mid-April working with Professor Fischer after his return from Atlanta. 

Professor Arnold Schanhage, University of Tubingen, Germany, visited the Georgia 
Institute of Technology for the period February 25 - March 14, 1980, and 
contributed greatly to the research. 

3. PUBLICATIONS 

No work on this contract has yet reached publication. References [2] and [3] 
were submitted to conferences. 

4. TECHNICAL PROGRESS 

The first quarterly progress report listed six areas in which investigations had 
been begun: 

1. Decomposition of Parallel Systems 4. Audit Algorithms 
2. Reliable Systems 5. Ticket Systems 
3. Time Analysis 6. Synchronous Simulation 

During the second quarter, work focused on areas (3) and (5). In addition, work 
begun on another project continued on developing a logic of concurrent processes. 

Page -13- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

4.1 TIME ANALYSIS 

Working with Professors Schanhage, Lynch, and Griffeth, we continued to use the 
simple arbiter problem of [1] as a paradigm for the time analysis of distributed 
algorithms. We have taken three different approaches. 

Worst-case analysis. The tree arbiter of [1] is an algorithm for allocating a 
single reusable resource among n competing users. The "lost" time of such a 
system is the total amount of time during which at least one user is requesting 
the resource but the resource is free. A simple worst-case analysis of the tree 
arbiter shows that the total lost time in processing r requests is at most 
0(r log n). This bound is independent of how the individual processes are 
scheduled, as long as each process takes at least one step during each unit 
interval of time. It is also independent of the arrival rate of the requests. 

On the other hand, a simple polling arbiter (also described in [1]) has much 
better performance under a heavy load and much worse under a light load. These 
results led to a reexamination of the tree arbiter and the discovery of a new, 
slightly different, tree arbiter which combines the best features of both 
algorithms: under light loads the lost time per request is O(log n) and under 
heavy loads the lost time drops to a constant. The resulting algorithm is easy 
to implement and might be quite attractive in certain practical applications. 

Lower bounds. The previous analysis leads naturally to the question of whether a 
still better tree arbiter exists, say one with constant lost time per request, 
independent of the load. Under a suitably restricted model of distributed 
computation, we are able to answer that question in the negative by proving that 
every distributed arbiter algorithm in that model must take time clog n) between 
receiving a request at some leaf and granting that request, even if there are no 
other requests present in the system. The proof of this fact follows from a 
(nontrivial) formalization of the notion that it takes fl(log n) steps for 
information to be broadcast throughout a network in which there are natural 
bounds on the number of neighbors of a node. The model unfortunately contains 
some technical restrictions that are somewhat unnatural but we believe also 
inessential. We believe this result can be extended to more natural models as 
well. 

Expected-time 	analysis. 	Worst-case analysis can sometimes lead to 
unrealistically large time bounds which in fact occur with only very low 
probability. As an alternative, one can assume certain probability distributions 
on the parameters affecting the behavior of the system and then analyze the 
expected time of the system under those assumptions. 

The resulting Markov models are generally too complicated to analyze exactly. 
Two approaches around that problem are to construct approximate models which can 
be analyzed exactly and to perform simulations. We began work on approximate 
models with Professor Lazowska during the previous quarter and explored it a 
little further with Professor Sch8nhage. We also sketched the outline of a 
computer program to carry out a simulation of arbiter systems in a reasonably 
efficient way, which we plan to implement. 

Page -14- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

4.2 TICKET SYSTEMS 

We continued the work on algorithms designed to distribute large numbers of 
"tickets" at widely distributed "ticket windows". The ticket problem can be 
thought of as a generalization of the simple arbiter problem to more than one 
resource, and one has a choice of whether or not to allow tickets to be returned 
and later resold. 

The first phase of our work involved thinking of various clever ways of matching 
up requests to tickets in a distributed network. After generating several 
different algorithms for this problem, it became apparent that we had little 
basis for evaluating the relative goodness of the proposed methods, and it was 
unclear what advantages, if any, the more esoteric solutions had. 

We then turned to the problem of analyzing the performance of a very simple 
abstract ticket algorithm -- one in which the tickets are placed initially on 
nodes of a tree and not moved thereafter except to fulfill particular requests. 
Taking the expected distance between a request and the ticket which fulfills it 
as a performance measure, we were able to prove a constant upper bound. Thus, 
even without being clever about dynamically rearranging tickets during the 
processing in response to the requests that have already been processed, one 
still gets a "best possible" kind of performance bound. 

The expected distance is not the same as expected waiting time, however, because 
we have not specified a mechanism whereby a request finds the optimal ticket to 
match with. This led to the development of a complete algorithm in which each 
node uses only local information in its operation, yet every request is 
guaranteed to eventually find a ticket. We hope this algorithm will be a close 
enough approximation to the simple abstract algorithm to still achieve a constant 
expected waiting time. 

4.3 A LOGIC OF CONCURRENT PROCESSES 

Karl Abrahamson is doing dissertation work under Professor Fischer on logics of 
concurrent processes. Programming logics are systems of mathematical logic to be 
used in making assertions and reasoning about computer programs. Previous work 
in this area by others has focused on termination properties of programs, that 
is, under what conditions will a program terminate and what will be true when it 
does? He extends that work by permitting assertions about a program in the midst 
of execution. This useful for understanding the behavior of any program but 
essential in analyzing systems of concurrent processes. 

He is taking three approaches to process logic, developing several specific 
logics based on those approaches, and analyzing and comparing them with each 
other and with recent work by other researchers. The first approach is to extend 
program logics by adding Boolean variables. The second is to build on predicate 
calculus by using explicit time quantifiers. The third, based on modal logic, 
eliminates time variables in favor of a collection of carefully chosen 
modalities. 

Page -15- 



GIT FDPS Research Program 	 Quarterly Prog Report 4 

5. REFERENCES 

1. N.A. Lynch and M.J. Fischer, "On Describing the Behavior and Implementation 
of Distributed Systems," University of Washington Technical Report 79-06-01 
(Revised March 1980) and Georgia Institute of Technology Technical Report 
GIT-ICS-79/03. See also Lecture Notes in Computer Science, Semantics  DI 
Concurrent Computation,  Springer-Verlag (1979), 147-171. 	Also submitted 
for publication in Theoretical Computer Science.  

2. M.J. Fischer, N.D. Griffeth and N.A. Lynch, "Optimal Resource Placement in 
a Distributed System (extended abstract)," Manuscript (April 25, 1980). 

3. M.J. Fischer, "On Developing a Theory of Distributed Computing: Summary of 
Current Research," Manuscript (May 1980). 

Page -16- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 5 
1 September, 1980 - 30 November, 1980 

December, 1980 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-649 
GIT Project: G36-654 

International Business Machines, 
General Systems Division (IBM) 

Agreement: GSD-210189 
GIT Project: G36-648 

National Science Foundation (NSF) 
Contract: MCS77-28305 

Subcontract from Univ. of Wise.: 144-L729 
GIT Project: G36-630 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK7O-79-D-0087 
GIT Project: G36-647 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	 Quarterly Prog Report 5 

1. INTRODUCTION  

This is the Fifth Quarterly Progress Report prepared on the Georgia Tech 
Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A complete list 
of these is given below. During this reporting period RADC Project G36-649 
was completed. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: NO0014-79-C-0873 
GIT Project No.: G36-643 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Research on Distributed Control" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-649 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Agreement By and Between IBM and GTRI" 
Funding Agency: International Business Machines, General Systems Division 

(IBM) 
Contract Number: GSD Agreement Number 210189 
GIT Project Number: G36-648 
Principle Investigator: Philip H. Enslow, Jr. 

Page -1- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

Title: "Foundations of Deterministic Scheduling of Processes for Parallel 
Execution" 

Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS77-28305 

(Univ. of Wisc. subcontract number: 144-L729) 
GIT Project Number: G36-630 
Principle Investigator: Richard A. DeMillo 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638 
Principle Investigator: Nancy Lynch 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: A.P. Jensen 

2. ORGANIZATION AND STAFFING  

faculty  

Crews, Phillip--Assistant Professor 
Davida, George--Professor 
DeMillo, Richard A.--Associate Professor 
Enslow, Philip H. Jr.--Professor 
Griffeth, Nancy--Assistant Professor 
Jensen, Alton P.--Professor 
LeBlanc, Richard--Assistant Professor 
Livesey, Jon--Assistant Professor 
Lynch, Nancy--Associate Professor 
Miller, Raymond--Professor 

Staff  

McDonell, Sharon--Sr. Secy. 
Myers, Jeanette--Res. Scientist 
Pinion, Nancy--Part-time Secy. 

Students  

There are 30 students working on various projects in the FDPS Research 
Program. Of these, 12 are in the Ph.D. program and 5 are preparing their 
MS Thesis on topics in FDPS. 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical and Formal Studies  

A.1 Models of Asynchronous Processors 
A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 
A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.11 Shared Memory Bounds for Synchronization Problems 
A.12 Mutual Exclusion 
A.13 Adaptive Distributed Resource Allocation Algorithms 
A.14 Using Complementary Distributed System Models 
A.15 Probabilistic Algorithms in Distributed Systems 

B. Physical Interconnection and Networking 

B.1 Heterogeneous Networking 
B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.3 Fully Distributed Operating System - Initial Considerations 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.6 Non-Homogeneous Operating Systems 
C.7 FDOS - Preliminary Implementation Studies 

D. Distributed Data Bases  

D.1 Implementation of Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 
D.3 Implementation of the Audit Algorithm 

E. Fault-Tolerance  

F. Special Hardware la ,Support FDPS  

G. Application  gt Distributed Processing  



GIT FDPS Research Program 	 Quarterly Prog Report 5 

H. System Design Methodologies  

H.1 FDPS Requirements Engineering Techniques 
H.2 Coordinating Large Programming Projects 

I. System Utilization  

1.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 

K. System Management  

L. Evaluation and Comparison  

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY  DE PROGRESS  

A.1 Models of Asynchronous Processors (Lynch, Fischer) 

No significant progress to report 

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

No significant progress to report 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

No significant progress to report 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Schenhage) 

No significant progress to report 

Page -4- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

Existing methods of reading a consistent state of a distributed database 
require either (a) stopping all transactions or (b) requesting an 
out-of-date version of the database. Neither of these is necessary. We 
have developed conditions for a set of artificial events in the system 
history to "represent" a consistent state of the database, in the 
following sense: 

Each node can compute a node state, using knowledge of the artificial 
events occurring at the node (i.e., without additional communication), 
in such a way that the set of all node states thus computed is a 
consistent system state. 

The usual definition of consistency in a database is "serializability". 
Our notion of consistency is a generalized version of serializability: 
each transaction occurs either entirely before or entirely after the read 
of the DDB state, although the transactions need not be serialized with 
respect to each other. If the transactions happen to be serialized, then 
slightly more restrictive conditions on the set of artificial events gives 
a system state corresponding to the first N transactions in the 
serialization. 

A paper is being prepared for submission to a journal. 	Also, 
implementation of the algorithm on the PRIME is being examined. 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

More experiments on the simulation program verify the hypothesis that 
average response time increases with interarrival time. Perturbations in 
the results were found to be due to the polling cycle of the nodes. 

A graphical display of the behavior of the ticket system is being 
prepared, using the simulation program. This type of display is suggested 
as a tool for developing intuition about distributed systems and finding 
counterexamples to hypotheses. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

A conference version of a paper entitled, "A Difference in Efficiency 
Between Synchronous and Asynchronous Systems", was completed and submitted 
for possible presentation at next year's ACM Symposium on Theory of 
Computing. Results have been clarified and improved, and the main proof 
has been distilled into an interesting and clean graph-theoretic argument. 
The paper describes a synchronization problem for which there is a 
provable multiplicative factor of log n (n = the number of "ports" in the 
distributed system) distinguishing the achievable time complexity of this 
problem when implemented on a synchronous or on an asynchronous system. 
This is the first such result we know of, and seems to be quite 
fundamental to understanding the differences in capability between these 
two types of parallelism. 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

A.8 Distributed Resource Allocation (Lynch) 

No significant progress to report 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

A seminar for interested faculty and graduate students was conducted, 
carrying out a careful study of recent work on distributed data base 
concurrency control. Plans for a continuation next quarter were made; the 
next quarter will involve simulation and other empirical evaluation of 
some of the algorithms. 

A.10 Arbiter Design (Lynch, Griffeth, Sch8nhage, Fischer) 

No significant progress to report 

A.11 Shared Memory Bounds for Synchronization Problems (Burns, Lynch) 

Revisions of Jim Burns's doctoral dissertation have been carried out; in 
particular, results on number-of-message bounds for distinguishing 
processes in a ring network have been clarified. The dissertation appears 
now to be virtually completed. 

A.12 Mutual Exclusion (Burns, Lynch) 

A paper entitled, "Mutual Exclusion Using Indivisible Reads and Writes", 
was presented at the Allerton Conference. 

A.13 Adaptive Distributed Resource Allocation Algorithms (Ghoudjehbaklou, 
Lynch) 

Several distributed resource-allocation problems and algorithms are being 
described and analyzed. 

A.14 Using Complementary Distributed System Models (Lynch, Rounds, Miller) 

Preliminary discussions were conducted for a project aimed at using a 
combination of several distributed system models to describe and prove 
correctness and performance properties of distributed algorithms. The 
intention is to describe a single algorithm at several levels (related by 
simulation mappings), proving safety properties at one (high) level, and 
fairness and performance properties at another (lower) level. The models 
to be used are Hoare's Communicating Sequential Processes model, Ladner's 
automata-theoretic communication model, Rounds's and Brooke's 
communication event model, and the Lynch-Fischer process-variable model. 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

A.15 Probabilistic Algorithms in Distributed Systems (Lynch, Arjomandi, 
Fischer) 

Preliminary discussions were conducted for a project aimed at evaluating 
the performance of distributed algorithms which use controlled randomness 
to avoid conflicts. 

B.1 Heterogeneous Networking (Crews, Efruss, Greene, Ma, Ramirez) 

The Series/1 has been used in the following projects under the EDX 
operating system: 

1. Training of students and demonstrations of the facilities of the 
system to staff and faculty. The training of students has involved 
support for the ICS 3422 class to run programs written in PL/I using 
the Session Manager facility of EDX, familiarization sessions with 
students interested in the system, and formal training for Susanna 
Ma so that she can help support EDX in the future. 

2. Installation of EDX, Version 3. 
3. Installation of the Software Tools package according to the 

"Cookbook" specification obtained through Dan Forsyth. 

Since September, work on the Series/1, operating under the RPS operating 
system, has concentrated on developing a UT200 task to enable 
communications between the Series/1 and the Cyber 74. Although the design 
and the majority of the coding for this design had been previously 
completed, problems were encountered with the design due to 
inconsistencies in the UT200 protocol that could not be resolved without 
including a large amount of unreliability and complexity in the resulting 
system. A new design was then considered and accepted which bypassed the 
problems previously encountered. The code implementing this design is 
written, with the exception of portions of a user command-handler, and the 
remaining routines are being tested. 

B.2 Local Networking in FDPSs (Enslow) 

The local network hardware was ordered and delivered. An 11-node NETONE 
system produced by Ungermann and Bass is being installed (this is a 
baseboard contention system somewhat similar to Ethernet). This network 
will be used to provide access to all of the systems in the FDPS testbed 
as well as to experiment with computer-to-computer communication utilizing 
a front-end local network (there is already a high-speed coaxial cable 
ring network (8 Mbps) providing a back-end local network to interconnect 
the five PRIME computers in the testbed). The software for normal access 
function is now being checked out. Perhaps the most important 
characteristic of the NETONE system is that it is totally "soft" except 
for the coax cable interface and can be reprogrammed by the operator. 
Cable installation has begun while the system is being checked out. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Crews, Saponas, 
Hopkins) 

The draft of the final report on the first phase of this study, "A Survey 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

of Distributed and Decentralized Control Models", was completed and 
submitted to the sponsors for review (publication anticipated in January, 
1981). The work on the second phase of the project, an evaluation of 
these models, has focused on the development and implementation of an 
appropriately instrumented control model simulator. 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

An expanded draft version of a working paper on this subject has been 
completed and is in the process of being edited. 

C.3 FDOS - Initial Considerations (Enslow, Livesey, LeBlanc, Crews, Akin, 
Flinn, Forsyth, Fukuoka, Maccabe, Myers, Pitts, Saponas, Skowbo, Spafford, 
Wice) 

No significant progress to report 

C.4 Local Operating System (Livesey, LeBlanc, Spafford) 

A study has been begun into the design requirements for a Local Operating 
System (LOS) to support Fully Distributed Processing. The host hardware 
(PRIME P400ts & P500's) has been studied and a design document for the 
local operating system is underway. Additional documentation on the 
instruction set of the host hardware has been written to aid in 
implementation of the LOS. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo, Vice) 

A highly-distributed feedback mechanism for adaptive routing in a 
packet-switched network of very loosely-coupled systems has been outlined. 
Procedures for a highly-selective acknowledgement protocol have been 
developed as a possible basis for this feedback, and as a more general 
error-control mechanism. Further development and testing awaits 
implementation of proposed enhancements to the simulator for interprocess 
communication, which was found to have a number of limitations for this 
research. Specific enhancements will provide for the simulation of: 

1. Acknowledgement Protocols as outlined above 
2. Flow control Protocols 
3. Pseudo-random message generation of varying size and frequency 
4. Priority transmission 
5. Delays due to propagation and bandwidth characteristics 
6. Errors due to message loss or corruption, and to link failure 

C.6 Non-Homogeneous Operating Systems (Ratzel) 

This project has been cancelled 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

C.7 FDOS - Preliminary Implementation Studies (Myers, Enslow, Wice) 

Work continues on this project in support of Project C.3 and in 
preparation for actual implementation of a prototype FDOS. 

D.1 Implementation of Distributed Database Systems (Griffeth, Livesey, Lynch) 

A study is in progress of the communication system and operating system 
facilities required for simulation and implementation of concurrency 
control algorithms. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

A workshop, "Implications of Data Base Technology for Human Resource 
Information Management", was sponsored by AIRMICS and Georgia Tech as 
partial fulfillment of Phase Two of the MILPERCEN project. The workshop 
brought together people representing the military, corporate/industry, and 
academic communities who are interested in personnel and human resource 
management. 

An overview of the Army manpower management systems was presented along 
with the data management problems concerning military personnel. The 
corporate/industry representatives gave presentations of how they are 
managing and developing manpower planning systems for use in operations 
and strategic planning. The academic representatives presented current 
research in date base architecture, data base administration, and 
distributed computing relating these topics to the problem of military 
personnel management. Presentations focused on issues of data base 
technology, extremely large files (greater than one million records), and 
other areas of human resource management systems including promotion, 
design, implementation, economics, and management of such systems. 

After this exchange of ideas and views among the academic, 
corporate/industry, and military representatives, the workshop as a whole 
discussed the issues contained in the Phase I report. Smaller groups were 
formed to work out more specific solutions to the issues discussed. These 
solutions were then presented to the group as a whole for approval and 
more discussion. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

Preliminary discussions have begun. 

H.1 FDPS Requirements Engineering Techniques (Underwood, Corley) 

No activity to report. Mr. Corley is expected to return to Georgia Tech 
in January, 1981, to complete the work on his Ph.D. 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

H.2 Coordinating Large Programming Projects (Enslow, Smith) 

The initial form of the questionnaire has been tested by presenting it to 
several local data processing managers. A revision of the questionnaire 
is being developed based on the results of those interviews. 

I.I A Language for Distributed Programming (LeBlanc, Maccabe, Hardin) 

Initial design of language features for support of distributed programming 
has been completed. Example programs are being written in order to test 
the usefulness of the design. The design of a prototype implementation 
has recently been started. LeBlanc and Maccabe traveled to Washington to 
present a paper at COMPCON Fall '80. A paper was submitted to the Second 
International Conference on Distributed Computing. Final revisions were 
made in a paper to be presented at L'Exposition de l'Informatique en 
Louisiana. 

1.2 System Implementation Language Development (LeBlanc, Akin) 

Work on the implementation of our extended version of MODULA continued 
during this quarter. The front-end scanner and parser for an optimizing 
compiler has been completed, and a general-purpose back-end code generator 
is under development. 

1.3 Experiments with a Distributed Compiler (LeBlanc, Moore) 

The experimental phase of this project has been completed. During this 
quarter, Moore has been analysing the data collected, and writing his 
M.S. thesis based on this work. 

J.1 Process Structures (DeMillo, Lipton, Miller, Davida, Livesey) 

Work on the design of secure operating systems continues. The degree of 
distribution of the system and the level of security achievable is being 
investigated. Encryption and appropriate protocols are being investigated 
for incorporation into the design of the local operating system. 	In 
particular, 	we are investigating the possibility of multiplexing 
processors between mutually secure processes. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

Preliminary discussions have begun 

M.1 Establishment of FDPS Testbed Facility (Myers, Flinn, Wice) 

No significant progress to report 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth) 

No significant progress to report 

M.3 FDOS Simulation Testbed (LeBlanc, Hopkins, Maccabe, Myers, Wioe) 

Work continues in support of Projects C.1, C.2, & C.S. 

5. TRAVEL RELATED  IQ THE FDPS  Maga 

Date  .of Trip:  September, 1980 
Individual() Traveling:  N. Lynch 
Itinerary:  New York, N.Y. 
Contact:  presentation attendees at Columbia University 
Purpose:  Give invited presentation on Projects A.6 & A.B. 

Date  Atil Trip:  15-17 September, 1980 
Individual(A) Traveling:  P.H. Enslow 
Itinerary:  Technical University, Loughborough, England 
Contact:  course attendees 
Purpose:  Present invited talk on "Parallel Control in Distributed Systems" at 
Advanced Course on Parallel Processing 

Date  pl Trip:  22-25 September, 1980 
Individual(A)  Traveling: R.J. LeBlanc & A.B. Maccabe 
Itinerary:  Washington, D.C. 
Purpose:  Attend COMPCON Fall '80 and present a paper based on work in Project 
I.1. 

Date  kt Trip:  10 October, 1980 
Individual(A) Traveling:  P.M. Enslow 
Itinerary;  Hampton, VA 
Contact:  Aircraft Electronic Systems Branch, Flight Electronics Division, 
NASA, Langley Research Center 
Purpose:  Discuss common interests in distributed processing 

Date  at Trip:  October, 1980 
Individual() Traveling:  N. Lynch 
Itinerary:  Syracuse, New York 
Contact:  conference attendees 
Purpose:  Attend conference on Foundations of Computer Science (IEEE) 

Date  21: Trip:  October, 1980 
Individual(.)  Traveling: N. Lynch 
Itinerary:  Toronto, Canada 
Contact:  Eshrat Arjomandi, York University 
Purpose:  Work on projects A.7 & A.15. Give presentation describing projects 
A.6 & A.B. 

Page -11- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

Date  91 Trip:  October, 1980 
Individual(1)  Traveling: N. Lynch 
Itinerary:  Raleigh, North Carolina 
Contact:  presentation attendees at North Carolina State University 
Purpose:  Give invited presentation on Projects A.6 & A.8. 

Date  91 Trip:  27-30 October, 1980 
Individual(1) 	 P.H. Enslow, J. Skowbo, R. Wice 
Itinerary:  Atlanta, Georgia 
Contact:  conference attendees 
Purpose:  Attend ICCC '80 - the Fifth International Conference on Computer 
Communications 

Date  of Trip:  10-14 November, 1980 
Individual(,) Traveling:  P.H. Enslow 
Itinerary:  San Diego, California 
Contact:  meeting attendees 
Purpose: 	Participate in a working meeting of IFIP Working Group 10.7, 
"Operating System Interfaces". 

Date  91 Trip:  12 November 1980 
Individual(.0 Traveling:  P.H. Enslow 
Itinerary:  Naval Ocean Systems Center, San Diego, CA 
Contact:  A.G. Diloreto (Code 1605), R.L. Goodbody (8105), D.W. Gage (8141), 
D.O. Christy (8121), G.R. Allagier (8242), R.D. Cook (164), and B.F. White 
(8314) 
Purpose:  Present briefing on GIT FDPS Research Program. 	Discuss further 
interactions. 

6. VISITORS  

Dates  of Visit:  6 October, 1980 
Visitor: 	Billy L. Dove, Head, Aircraft Electronic Systems Branch, Flight 
Electronics Division, NASA, Langley Research Center, Hampton, Virginia 
Contagt:  P.H. Enslow 
Purpose:  To be briefed on the GIT FDPS Research Program 

Dates  91 Visit:  November, 1980 
Visitor:  William C. Rounds, University of Michigan, Ann Arbor 
Contact:  N. Lynch & R. Miller 
Purpose:  Work on Project A.14 with Prof's Lynch & Miller 

7. PUBLICATIONS  

Author(,):  A.B. Maccabe & R.J. LeBlanc 
Title:  A Language Model for Fully Distributed Systems 
Type:  conference paper 
Status:  presented & published in conference proceedings 

Page -12- 



GIT FDPS Research Program 	 Quarterly Prog Report 5 

Author(s): R.J. LeBlanc & A.B. Maccabe 
Title: P+D: Language Features for Distributed Programming 
Type: conference paper 
Status: submitted 

Author(a): N. Lynch 
Title: Fast Allocation of Nearby Resources in a Distributed System 
Type: journal paper 
Status: submitted 

Author(s): E. Arjomandi, M. Fischer, & N. Lynch 
Title: A Difference in Efficiency Between Synchronous and Asynchronous 
Systems 
Type: conference paper 
Status: submitted 

Author(..): N. Lynch & M. Fischer 
Title: On Describing the Behavior & Implementation of Distributed Systems 
Type: journal paper 
Status: final revisions made 

Author(..): M. Fischer, N. Griffeth, L. Guibas, & N. Lynch 
Title: Optimal Placement of Identical Resources in a Distributed Network 
Type: conference paper 
Status: submitted 

Author(..): J. Burns & N. Lynch 
Title: Mutual Exclusion Using Indivisible Reads and Writes 
Type: conference paper 
Status: presented 

Author(..): P.H. Enslow 
Title: Quarterly Progress Report - Number 4 
Type: Quarterly Progress Report 
Status: printed & distributed 
Publ. Date: November, 1980 

Page -13- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 6 
1 December, 1980 - 28 February, 1981 

March, 1981 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

National Science Foundation (NSF) 
Contract: MCS77-28305 

Subcontract from Univ. of Wisc.: 144-L729 
GIT Project: G36-630 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

1. INTRODUCTION  

This is the Sixth Quarterly Progress Report prepared on the Georgia Tech 
Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: NO0014-79-C-0873 
GIT Project No.: G36-643 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Foundations of Deterministic Scheduling of Processes for Parallel 
Execution" 

Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS77-28305 

(Univ. of Wisc. subcontract number: 144-L729) 
GIT Project Number: G36-630 
Principle Investigator: Richard A. DeMillo 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638 
Principle Investigator: Nancy Lynch 

Page -1- 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: A.P. Jensen 

2. ORGANIZATION AND STAFFING  

Faculty  

Davida, George--Professor 
DeMillo, Richard A.--Associate Professor 
Enslow, Philip H. Jr.--Professor 
Griffeth, Nancy--Assistant Professor 
Jensen, Alton P.--Professor 
LeBlanc, Richard--Assistant Professor 
Livesey, Jon--Assistant Professor 
Lynch, Nancy--Associate Professor 
Miller, Raymond--Professor 

Staff  

McDonell, Sharon--Senior Secretary 
Myers, Jeanette--Research Scientist 
Pinion, Nancy--Part-time Secretary 
Mongiovi, Roy--Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program and 5 are 
preparing their MS Thesis on topics in FDPS. 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical and ,  formal Studies  

A.1 Models of Asynchronous Processors 
A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

A.7 Synchronous Simulation 
A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.11 Shared Memory Bounds for Synchronization Problems 
A.12 Mutual Exclusion 
A.13 Adaptive Distributed Resource Allocation Algorithms 
A.14 Using Complementary Distributed System Models 
A.15 Probabilistic Algorithms in Distributed Systems 
A.16 Stochastic Synchronization 
A.17 Research Allocation in a Failure-Prone Environment 

B. Physical Interconnection and Networking  

B.1 Heterogeneous Networking 
B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.3 Fully Distributed Operating System - Initial Considerations 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.7 FDOS - Preliminary Implementation Studies 

D. Distributed Data Bases  

D.1 Concurrency Control in Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 
D.3 Implementation of the Audit Algorithm 

E. Fault-Tolerance  

F. Special Hardware  1,s1 Support FDPS  

G. Application  DI Distributed Processing 

H. System Design Methodologies  

H.1 FDPS Requirements Engineering Techniques 
H.2 Coordinating Large Programming Projects 

I. System Utilization 

1.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

J. Security  

J.1 Process Structures 
J.2 System Security 

K. System  Management 

L. Evaluation and Comparison  

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 
L.2 Survivability 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY  .Q PROGRESS  

A.1 Models of Asynchronous Processors (Lynch, Fischer) 

No further progress anticipated. Project terminated. 

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

No significant progress to report. 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

No significant progress to report. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Sch5nhage) 

No significant progress to report. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

The earlier bank audit algorithm has been generalized considerably to an 
algorithm that returns a global state of a very general distributed system 
(e.g. a distributed data base), without halting concurrent operations in 
progress. The new general algorithm can be used for failure detection and 
recovery in distributed systems , and consistency checking in data base 
systems. It appears to be quite fast. The first draft of an invited 
paper, "Global States of a Distributed System", was prepared for 
presentation at the 1981 IEEE Conference on Distributed Software and Data 
Bases. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

The paper, "Optimal Placement of Identical Resources in a Distributed 
Network", was rewritten for the Paris Conference on Distributed Systems. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

A paper, "A Difference in Efficiency Between Synchronous and Asynchronous 
Systems", was written and submitted for presentation at the 1981 SIGACT 
Conference. 

A.8 Distributed Resource Allocation (Lynch) 

The paper, "Fast Allocation of Nearby Resources in a Distributed System", 
was revised for invited publication under the title, "Upper Bounds on 
Static Resource Allocation in a Distributed System, in a special issue of 
the Journal DE Computer and System Sciences based on the 1980 SIGACT 
Conference. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

The Audit Algorithm (Project A.5) has been generalized to apply to very 
general distributed data base systems. Discussions have been carried out 
attempting to generalize the usual notion of "serializability" used for 
correctness in data bases. 

A.10 Arbiter Design (Lynch, Griffeth, Sch8nhage, Fischer) 

No significant progress to report. 

A.11 Shared Memory Bounds for Synchronization Problems (Burns, Lynch) 

No further progress anticipated. Project terminated. 

A.12 Mutual Exclusion (Burns, Lynch) 

This Project was completed with the publication of a Ph.D. Thesis by 
J. Burns. 

A.13 Adaptive Distributed Resource Allocation Algorithms (Ghoudjehbaklou, 
Lynch) 

No further progress anticipated. Project terminated. 

A.14 Using Complementary Distributed System Models (Lynch, Rounds, Miller) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

A.15 Probabilistic Algorithms in Distributed Systems (Lynch, Arjomandi, 
Fischer) 

No significant progress to report. 

A.16 Stochastic Synchronization (DeMillo, Miller, Lipton) 

The work in Stochastic Synchronization has been brought to publication 
with an article, "Stochastic Synchronization". This paper reports results 
of simulations to support analytic results. 

A.17 Resource Allocation in a Failure-Prone Environment (Fischer, Lynch, 
Burns, Borodin) 

Revision of a paper, "Resource Allocation with Immunity to Limited Process 
Failure", is being carried out for journal publication. 

B.1 Heterogeneous Networking 

Initial task completed. No further work in this area during this quarter. 
Project terminated. 

B.2 Local Networking in FDPSs (Enslow) 

Work during this period has been focused on the control and software 
problems of the local network that has been installed. Emphasis is being 
placed on software and system reliability as well as the incorporation of 
important features such as a network name server. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Saponas) 

The first task under this project, identification and definition of models 
of distributed control, was completed with the publication of the final 
report. Work on the second task, evaluation of these models, is 
proceeding. 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

A draft of a paper entitled, "An Initial Examination of Resource 
Management and Work Distribution in a Fully Distributed Processing 
System", was completed and is expected to be published as a technical 
report in the near future. A draft version of a proposal for a simulation 
experiment to measure the performance of work distribution algorithms in 
fully distributed systems was completed. The proposal will also be 
published as a technical report. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

C.3 FDOS - Initial Considerations (Enslow, Livesey, LeBlanc, Akin, Flinn, 
Forsyth, Fukuoka, Maooabe, Myers, Pitts, Saponas, Skowbo, Spafford) 

Many of the initial considerations for the design and implementation of a 
Fully Distributed Operating System have appeared under other projects, 
primarily C.1, C.2, and C.4. The local operating system, Project C.4, has 
been designed to support alternative implementations of distributed 
operating system concepts. Project C.3, as well as Project C.7, will be 
terminated this quarter with the conclusion that our efforts are best 
directed towards the implementation of a local operating system that will 
provide a real testing environment for distributed operating system 
concepts. 

C.4 Local Operating System (Livesey, LeBlanc, Spafford, Myers, Flinn, Forsyth, 
Fox, Fukuoka, Greene, Hopkins, Mongiovi, Pitts) 

A preliminary design is complete and we are in the process of expanding 
this design, top-down, to the coding level. In anticipation of 
implementing an LOS on the PR1MEs, a special class, ICS 8113-F, "The 
Organization, Architecture, and Programming of PRIME Computers", was 
offered this quarter by a member of the Local Operating System team. 
Also, in conjunction with this project, ICS 8113-L, a seminar on 
distributed operating system concepts, was offered. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo, Wice) 

At the commencement of the Sixth Quarter, three subtasks for this project 
had been identified: 
1. Development and evaluation of a highly distributed routing algorithm 

for a message-switching network. 
2. Completion of an enhanced Interprocess Communication Simulator to 

support communication research, particularly the evaluation phase of 
the third subtask. 

3. Development and evaluation of a highly selective acknowledgement 
protocol for error control in fully distributed systems and other 
computer networks requiring improved throughput on high-speed, 
long-delay satellite links. 

The first subtask has been abandoned for several reasons: 
1. The physically tight coupling of the current hardware configuration in 

the Computer Lab would not permit a direct evaluation of routing 
methods, since communication between processors is constrained to 
follow a single fixed path, and there are no plans to change this 
configuration in the near future. 

2. The development of software for a completely operational communication 
subsystem or its simulation is well beyond the limitations of this 
project. 

3. Details of the proposed implementation reveal unforeseen operational 
difficulties which would largely negate the expected benefits of this 
algorithm, 	particularly in comparison with currently available 
alternatives which are more centralized and tightly-coupled, but highly 
adaptive and refined by years of operational experience. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

The second subtask is very near completion, however, its exact status 
cannot be determined, pending a demonstration, evaluation, and final 
report in the form of a Masters Thesis by Mr. Wice. (Mr. Wice has left 
Georgia Tech for full-time employment. He anticipates completion of his 
thesis during the next quarter.) 

The highly selective acknowledgement protocol has been described in some 
detail with a plan for undertaking its evaluation; however, further 
progress on this third subtask has been deferred, pending a more thorough 
study of the communications support required by fully distributed 
processing systems. 

C.7 FDOS - Preliminary Implementation Studies (Myers, Enslow) 

This project has been terminated as described above in the progress report 
on Project C.3. 

D.1 Concurrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

A model of a distributed database system has been developed for use in 
simulating distributed concurrency control algorithms. Design of the 
simulation is in progress. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

This quarter's work included typing of the transcript of the workshop, 
"Implications of Data Base Technology for Human Resource Information 
Management", held in October, 1980. The transcript was sent to the 
workshop attendees for review and for approval concerning the basic ideas 
put forth at the workshop. Secondly, initial work was begun in reviewing 
the literature of data base technology from the perspectives of design, 
performance, data communications, and evaluation of data bases. Third, 
the project staff was invited on January 16, 1981 by AIRMICS to an IBM 
General Systems presentation on data base standards, IMS products and 
systems, and the data base environment. Fourth, the writing of the final 
project report was begun and is continuing. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

An investigation of block allocation by the Series/1 file management 
system is in progress, for a test implementation of the audit algorithm. 

H.1 FDPS Requirements Engineering Techniques (Underwood, Corley) 

No further progress anticipated. Project terminated. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

H.2 Coordinating Large Programming Projects (Enslow, Smith) 

The initial formulation of the model of the communcation process in the 
development of large software systems has been completed. The model is 
now undergoing refinement and amplification. 

1.1 A Language for Distributed Programming (LeBlanc, Maccabe, Hardin) 

Design work has continued during this quarter and some implementation work 
has started. A paper was presented at the Louisiana Computer Exposition, 
providing some useful interaction with other researchers in this area. 

1.2 System Implementation Language Development (LeBlanc, Akin) 

The code generator has been completely designed. Implementation will 
start in the near future. 

1.3 Experiments with a Distributed Compiler (LeBlanc, Moore) 

Moore is currently writing his M.S. thesis describing this work. 

J.1 Process Structures (DeMillo, Lipton, Miller) 

We have been preparing a book-length treatment of cryptographic protocols 
for publication in late 1981. As part of this project a large number of 
protocols suited to distributed systems have been identified and potential 
lines of compromise explored. We have also identified several new 
algorithms for examination. Theoretical research has centered on 
quantitative measures of system security . 

J.2 System Security (Livesey, Davida, DeMillo) 

Operating systems security is a relatively new area. Harrison, Ruzzo, and 
Ullman have shown that the safety question for operating systems is 
undecidable. However, practical design issues require that new approaches 
to secure operating systems be developed. Davida, DeMillo, and Lipton 
have introduced a new architecture that implements the "star" property for 
multilevel secure operating systems. The approach differs from that of 
other designs which rely on verification techniques to implement a secure 
kernel. 

A paper is being written in which we present a new architecture that 
achieves security in a timeshared operating system. This is a very 
important class of operating systems since they are widely used. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

The ticket simulation program has been transferred to the PRIME and is 
being tested there. A graphical display of the simulated allocation of 
tickets has been developed. 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

L.2 Survivability (DeMillo, Martin) 

This Project was completed with the publication of a Ph.D. Thesis by 
E. Martin on experimental aspects of survivability in distributed systems. 
A central result of this thesis was a factor analysis of approximately 
300,000 data points to identify key parameters which influence system 
survivability. 

M.1 Establishment of FDPS Testbed Facility (Myers, Fox) 

A high-level language interface to PR1MENET's X.25 subroutines has been 
implemented. This interface allows asynchronously running programs to 
communicate using send and receive primitives. 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth) 

No significant progress to report. 

M.3 FDOS Simulation Testbed (LeBlanc, Hopkins, Myers) 

The simulator is near completion. 	Some tailoring is being done to 
accommodate Project C.2, which will soon require this simulator. 

5. TRAVEL RELATED  IQ. THE FDPS  PROGRAM 

Date  91 Trip:  15-17 December, 1980 
Individual(A) Traveling:  Richard LeBlanc & Nancy Lynch 
Itinerary:  Fallbrook, California 
Purpose:  Attend a workshop on fundamental issues in distributed computing 

Date  91 Trip:  3-5 January, 1981 
Individual  () Traveling:  Richard DeMillo 
Itinerary:  San Francisco, California 
Purpose:  Present invited talk at annual meeting of American Mathematical 
Society 

Date  91 Trip:  9-10 February, 1981 
Individual  (D Traveling:  Philip H. Enslow, Jr. 
Itinerary: 	Virginia Polytechnic Institute and State University, Blacksburg, 
Virginia 
Contact:  Roger Ehrich 
Purpose:  Present talk on FDPS Program to faculty and students 

Date  Q1 Trip:  26-27 February, 1981 
Individual  C) Traveling:  Richard LeBlanc 
Itinerary:  Lafayette, Louisiana 
Purpose:  Present a paper at the Louisiana Computer Exposition 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

6. VISITORS  

Dates of Visit: 10-13 January, 1981 
Visitor: Mike Fischer 
Contact: Nancy Lynch & Nancy Griffeth 
Purpose: Work on Project A.5 and participate in the Ph.D. Dissertation 
Defense of J. Burns. 

7. PUBLICATIONS  

Author(a): N. Lynch 
Title: Fast Allocation of Nearby Resources in a Distributed System 
Type: Conference paper 
Status: Published 
Publ. Date: May, 1980 

Author(A): P.H. Enslow, Jr. 
Title: Quarterly Progress Report - Number 5 
Type: Quarterly Progress Report 
Status: Published 
Publ. Date: December, 1980 

Author(,.): E.W. Martin 
Title: Survivability in Gracefully Degrading Computer Systems. 
Tvrie: Ph.D. Thesis 
Status: Published 
Publ. Date: January, 1981 

Author(.): R.A. DeMillo 
Title: Cryptographic Protocols 
Type: Conference paper 
Status: Published 
Publ. rate: January, 1981 

Author(A): J. Burns 
Title: Complexity of Communication among Asynchronous Parallel Processes 
Type: Ph.D. Thesis 
Status: Published 
Publ. Date: 12 January, 1981 

Author(.): P.H. Enslow, Jr. & T.G. Saponas 
Title: Distributed and Decentralized Control in Fully Distributed Processing 
Systems - A Survey of Applicable Models 
Type: Final Technical Report 
GIT Number: GIT-ICS-81/02 
Status: Published 
Publ. Date: February, 1981 

Page -11- 



GIT FDPS Research Program 	 Quarterly Prog Report 6 

Authora):  R.J. LeBlanc 
Title:  Communication and Control Abstractions 
Fully Distributed Systems 
Time:  Conference paper 
Status: 

	

ub:iesbhreu:ryi, n19:rl oceedings of the 
Exposition 
	  sDatel: 

in a Programming Language for 

Third Annual Louisiana Computer 

Author(,):  R.J. LeBlanc & A.B. Maccabe 
Title:  P+D: Language Features for Distributed Programming 
Type:  Technical Report 
Status:  In preparation 
Publ. Date:  March, 1981 

Author  (.): R.A. DeMillo, R. Lipton, & R. Miller 
Title:  Stochastic Synchronization 
Type:  Conference paper 
Status:  Submitted for publication 
Publ. D-te:  March, 1981 

Author(.):  G. Davida, R. DeMillo, & R. Lipton 
Title:  Achieving Multilevel Security Through Distributed Systems 
Type:  Conference paper 
Status:  Submitted for publication 
Publ. Date:  April, 1981 

Authorai:  M. Fischer, N. Griffeth, L. Guibas, & N. Lynch 
Title:  Optimal Placement of Identical Resources in a Distributed Network 
Type:  Conference paper 
Status:  Accepted by Paris Conference on Distributed Systems 
Publ. Date:  April, 1981 

Author():  E. Arjomandi, M. Fischer, & N. Lynch 
Title:  A Difference in Efficiency Between Synchronous and Asynchronous 
Systems 
Type:  Conference paper 
Status:  Accepted by 1981 SIGACT Conference 
Publ. Date:  May, 1981 

Author  C): M. Fischer, N. Griffeth, & N. Lynch 
Title:  Global States of a Distributed System 
Type:  Conference paper 
Status: 	Invited by 1981 IEEE Conference on Distributed Software and Data 
Bases 
Publ Date:  July, 1981 

Author(.a): N. Lynch 
Title:  Upper Bounds on Static Resource Allocation in a Distributed System 
Type:  Journal paper 
Status:  Invited, revised, and submitted to Journal of Computer and System 
Sciences 

Author(,g): M. Fischer, N. Lynch, J. Burns, & A. Borodin 
Title:  Resource Allocation with Immunity to Limited Process Failure 
Type:  Conference paper 
Status:  Revision in preparation 

Page -12- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 7 
1 March, 1981 - 31 May, 1981 

June, 1981 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

National Science Foundation (NSF) 
Contract: MCS-7924370 
GIT Project: G36-652 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	

Quarterly Prog Report 7 

1. INTRODUCTION  

This is the Seventh Quarterly Progress Report prepared covering the Georgia 
Tech Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: N00014-79-C-0873 
GIT Project No.: G36-643/336 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638/332 
Principle Investigator: Nancy A. Lynch 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36 -647 
Principle Investigator: Alton P. Jensen 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

Title: "Complexity and Computability for Distributed Data Bases" 
Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS-7924370 
GIT Project Number: G36-652/340 
Principle Investigator: Nancy A. Lynch 

2. ORGANIZATION  Alff2 STAFFING  

Faculty 

Davida, George--Professor 
DeMillo, Richard A.--Associate Professor 
Enslow, Philip H. Jr.--Professor 
Griffeth, Nancy--Assistant Professor 
Jensen, Alton P.--Professor 
LeBlanc, Richard--Assistant Professor 
Livesey, Jon--Assistant Professor 
Lynch, Nancy A.--Associate Professor 
Miller, Raymond-- Professor 
Underwood, William -- Assistant Professor 

Staff  

McDonell, Sharon--Senior Secretary 
Myers, Jeanette--Research Scientist 
Pinion, Nancy-- Part-time Secretary 
Mongiovi, Roy--Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program, and 5 are 
preparing their M.S. Thesis on topics in FDPS. 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical and Formal Studies  

A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.14 Using Complementary Distributed System Models 
A.15 Probabilistic Algorithms in Distributed Systems 
A.16 Stochastic Synchronization 
A.17 Research Allocation in a Failure-Prone Environment 

B. Physical Interconnection and Networking 

B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 

D. Distributed Data Bases  

D.1 Concurrency Control in Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 
D.3 Implementation of the Audit Algorithm 

E. Fault-Tolerance  

F. Special Hardware  to Support FDPS  

G. Application  91. Distributed Processing  

H. System Design Methodologies  

H.2 Coordinating Large Programming Projects 

I. System, Utilization 

I.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 
J.2 System Security 



GIT FDPS Research Program 
	

Quarterly Prog Report 7 

K. System  lianagragat 

L. Evaluation, 	Comparison  

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY  .91. PROGRESS  

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

A paper, "On Decomposing Algorithms that use a Single Shared Variable", is 
in the process of being revised for journal publication. 

A.3 Reliable Systems (Lynch, Fischer, Lamport) 

Work has begun on writing up results proving lower bounds on the number of 
rounds of communication required to solve the Byzantine Generals problem 
(i.e. reaching agreement in the presence of faulty processors). The 
present focus is on determining appropriate models for the statement of 
this problem, especially for versions of the problem allowing encrypted 
messages. We would like to interpret the "number of rounds" lower bound 
as a lower bound on the time required for the solution. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Schfthage) 

No significant progress to report. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

The audit algorithm has been generalized still further. The final draft 
of a paper, "Global States of a Distributed System", has been submitted 
for presentation at the 1981 IEEE Conference on Distributed Systems and 
Software. 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

The paper, "Optimal Placement of Identical Resources in a Distributed 
System", was presented at the Second International Conference on 
Distributed Systems (Paris) on April 12, 1981. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

Discussions were carried out for new designs of distributed ticket 
algorithms, as alternatives to those already studied. Several of these 
will be simulated using our general tree network simulator program, and 
compared with our basic algorithm. 

Further tests were carried out on our basic ticket distribution algorithm: 
we tested the effect of allowing returns of tickets, and used a simple 
overestimate of step time to obtain upper bounds on response time, as 
expected interarrival time for requests was allowed to increase 
indefinitely. This upper bound was found to be a monotone increasing and 
bounded function of the expected interarrival time. 

A graphics component for the simulator was completed and used in several 
demonstrations of the operation of our algorithm. 

A.T Synchronous Simulation (Lynch, Fischer, Arjomandi) 

The paper, "A Difference in Efficiency Between Synchronous and 
Asynchronous Systems", was presented at the 1981 SIGACT Conference. 

A.8 Distributed Resource Allocation (Lynch) 

The paper, "Upper Bounds on Static Resource Allocation in a Distributed 
System", was accepted for invited publication in a special issue of the 
Journal  pi Computer and System Sciences  based on the 1980 SIGACT 
Conference. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

The paper, "Multilevel Atomicity - A New Correctness Criterion for 
Distributed Databases", was prepared for journal publication. It contains 
a definition for "multilevel atomicity", a new generalization of the usual 
notion of "serializability" used for correctness in distributed databases. 
This new condition seems to admit more efficient implementation than the 
usual definition, yet seems sufficiently general to allow expression of 
the conditions required for most real database applications. 

Discussions were carried out to see how this generalization applies to the 
"Eden objects" used as the logical basis for the design of the local 
network at the University of Washington. 

A.10 Arbiter Design (Lynch, Griffeth, Sch6nhage, Fischer) 

No significant progress to report. 

A.14 Using Complementary Distributed System Models (Lynch, Rounds, Miller) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

A.15 Probabilistic Algorithms in Distributed Systems (Lynch, 	Arjomandi, 
Fischer) 

No significant progress to report. 

A.16 Stochastic Synchronization (DeMillo, Miller, Lipton) 

No significant progress to report. 

A.17 Resource Allocation in a Failure-Prone Environment (Fischer, Lynch, 
Burns, Borodin) 

Revision of a paper, "Resource Allocation with Immunity to Limited Process 
Failure", is being carried out for journal publication. 

B.2 Local Networking in FDPSs (Enslow) 

Since the last progress report, several new and some improved features 
have been incorporated into the local network. Many of the reliability 
problems have diminished due to our receipt of new software from 
Ungermann-Bass. We are continuing to work with Ungermann-Bass to isolate 
and solve the remaining performance problems. 

Among the new features incorporated into the local network are a 
network-global name service, flow-control buffer thresholds, extended 
RS-232C control, and parallel data communications. Improved network 
throughput is the result of better internal buffer management and more 
efficient device drivers. 

Hardware reliability has been greatly enhanced due to our receipt and 
incorporation of some minor hardware modifications. 

The draft of a report detailing our experiences with NET/ONE and our 
future plans for local networking has been prepared. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Saponas) 

Evaluation of models of distributed control will be done through 
simulation. Work this quarter has been devoted to more thoroughly 
defining these models for the analysis stage and to the completion of the 
simulator. 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

A proposal to conduct a simulation experiment to evaluate the performance 
of several work distribution algorithms was finalized. This paper is 
entitled "Work Distribution in a Fully Distributed Processing System", and 
will be published shortly as a technical report. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

C.4 Local Operating System (Livesey, LeBlanc, Spafford, Myers, Fukuoka, Pitts) 

A program has been set up to explore methods of adapting the PR1MOS 
operating system to act as a LOS prototype. So far, areas covered have 
been the system kernel, device drivers, and high level system 
implementation languages. A secondary study has been carried out on file 
system structures for the LOS. An internal document, "The Local Operating 
System", has been completed and extensively discussed. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo) 

Progress this quarter has focused on the role of satellite communications 
in a FDPS. Multiple-access protocols have some interesting properties 
that seem ideally suited to the operation of such systems. These 
properites are being investigated, and methods for reducing or eliminating 
related problems, such as channel contention, are being studied. A 
long-range research plan has been established as a guide for further 
progress. 

D.1 Concurrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

The simulation framework for concurrency control algorithms in distributed 
database systems has been implemented. A technical report including a 
description of the simulation framework and instructions for its use is in 
preparation. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

The final report is in preparation. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

Three potential applications of the audit algorithm have been investigated 
for an initial implementation: the SERIES/1 file system, the ticket 
system (see Progress Summary for Project L.1), and the distributed 
database simulation of Project D.1. 

The file system implementation has been postponed because the theory must 
be generalized still further to allow the number of nodes in the system to 
grow. The distributed database simulation will be the first implemented 
application of the audit algorithm. 

H.2 Coordinating Large Programming Projects (Enslow, Underwood, Smith) 

Research during this period focused on the development of a design model 
describing the process of large software development and an investigation 
of the relationship between problem solving and the software requirements 
and design specification process. Rittel's analysis of "wicked" problems 
in architectural design was applied to problems of the design of complex 
software systems. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

1.1 A Language for Distributed Programming (LeBlanc, Maccabe) 

Design and implementation work continued this quarter. A technical report 
was published and a presentation on our work was given during a visit to 
the Siemens Research Laboratories in Munich. 

1.2 System Implementation Language Development (LeBlanc, Akin) 

No progress during this quarter. Work by Akin will resume during the next 
quarter. 

1.3 Experiments with a Distributed Compiler (LeBlanc, Moore) 

A M.S. Thesis by Moore has been completed. Work on refining and extending 
these experiments may begin during the next quarter. 

J.1 Process Structures (DeMillo, Lipton, Miller) 

We have isolated a class of cryptographic problems and are working on a 
model of cryptographic protocols. The intent of this model is to allow 
precise formulation of problems of the following type: 

There is no protocol built on a cryptosystem of type x that satisfies 
the property D. 

The protocols that are allowed can be both deterministic and 
probabilistic. To date, a number of protocol problems have been 
translated into the model. 

J.2 System Security (Livesey, Davida, DeMillo) 

A paper by Livesey and Davida, "An Architecture to Support Secure 
Operating Systems", was presented at the Second Symposium on Security and 
Privacy. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

The graphics for the ticket system simulation have been completed. Also, 
the simulation experiments have proved to be consistent with the 
"monotonicity" hypothesis for the ticket system algorithm. The hypothesis 
states that the expected response time increases monotonically with the 
interarrival time. 

Work is in progress on the development of new algorithms for the ticket 
system. It is expected that any reasonable algorithm will obey the 
monotonicity property. The cost of two other properties, fairness and the 
absence of starvation, will also be studied. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

M.1 Establishment of FDPS Testbed Facility (Myers, Mongiovi, Pitts, Fox) 

A preliminary design for distributed software tools (DSWT) is complete. 
DSWT will consist of one or more software tools subsystems (SWT) which 
communicate to locate and utilize resources and make decisions. SWT is a 
subsystem developed at Georgia Tech which operates under the PR1MOS 
operating system on PRIME P350 and larger computers. The subsystem is a 
complete interface between the user and the PRIME computer system. It 
offers a powerful command language similar to the one offered in UNIX, a 
programming environment, and a hierarchical file system. Many of the 
concepts behind software tools stem from those found in MULTICS and UNIX 
and especially from the book Software Tools  by Brian W. Kernighan and 
P.J. Plauger. The general objective of DSWT is to expand upon the 
capabilities provided by SWT (implying a minimum of implementation 
effort), to explore some fully distributed processing concepts. DSWT will 
provide the following: 

1. A distributed file system and an associated naming server. 

2. Work distribution. Deciding where a process is to be run can depend on 
the location and size of the data file the process accesses, the 
current load on each of the individual systems of the network, the 
resources required by the process, etc. 

3. Network utilities like 'mail', 'news', 'to', 'status', and file 
transfer that operate on a network-wide basis. Network utilities are 
actually 'applications' and DSWT will provide the framework for 
applications programs to be written as a set of concurrently executing 
processes which communicate using the network communication routines 
implemented during the previous quarter. This will include the ability 
to 	'invoke' 	remote proceses, establish connections for future 
communication, and provide error handling, network port servers, remote 
file access, etc. 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth) 

The implementation of the Remote Load Emulator is complete. Some 
preliminary tests have been made, and the emulator has successfully run 
20 simultaneous terminal sessions. The M.S. Thesis describing the 
emulator is being written. 

M.3 FDOS Simulation Testbed (LeBlanc, Saponas, Myers) 

Work on the simulator continues in support of projects C.1 and C.2. 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

5. TRAVEL RELATED  IQ THE FDPS PROGRAM 

Date 211 Trip:  6-11 April, 1981 
Individual(s) Traveling:  Richard LeBlanc 
Itinerary:  Paris, France 
Purpose:  Attend Second International Conference on Distributed Computing 
Systems. 

Date  of Trip:  6-11 April, 1981 
Individual(s)  Traveling:  Nancy Griffeth 
Itinerary:  Paris, France 
Purpose:  Present paper, "Optimal Placement of Identical Resources in a 
Distributed System", at the Second International Conference on Distributed 
Systems. 

Date  of Trip:  9-13 April, 1981 
Individual(A) Traveling:  Nancy Lynch 
Itinerary:  Milwaukee, Wisconsin 
Purpose: 	Attend 1981 SIGACT Conference (paper presented by coauthor, 
Arjomandi). 

Date  of Trip:  2-15 April, 1981 
Individual(s) Traveling:  Richard LeBlanc 
Itinerary:  Munich, West Germany 
Contact:  Anton Sauer 
Purpose:  Visit Siemens Research Laboratories. 

Date  of Trip:  20 April, 1981 
Individual() Traveling:  Jon Livesey 
Itinerary:  Oakland, California 
Purpose: 	Present paper, "An Architecture to Support Secure Operating 
Systems", at the Second Symposium on Security and Privacy 

Date  of Trip:  30 April - 3 May, 1981 
Individual(s) Traveling:  Philip Enslow 
Itinerary:  Las Vegas, Nevada 
Purpose: 	Present talk on the status of distributed processing at 
Interface '81. 

Date  of Trip:  18-20 May, 1981 
Individual(g) Traveling:  Philip Enslow 
Itinerary:  San Diego, California 
Purpose:  Present talk on Distributed. Computing Systems at Naval Ocean Systems 
Center. 

Date  DI Trip:  21-22 May, 1981 
Individual(..) Traveling:  Philip Enslow 
Itinerary:  Wrightville Beach, North Carolina 
Purpose:  Participate in Army Workshop on Research Directions for Multi-Micro 
Computers. 

Date  g_c Trip:  27 May, 1981 
Individual(a) Traveling:  Philip Enslow and Jon Livesey 
Itinerary:  Hampton, Virginia 
Purpose:  Explore applications of FDPS in avionics at NASA, Langley AFB. 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

6. VISITORS  

Dates at Visit: 15-17 April, 1981 
Visitor: Andrew C. Yao, Stanford University 
Contact: Richard DeMillo 
Purpose: 	Research collaboration and presentation entitled, "The Security 
Problem for Public-Key Protocols". 

Dates of Visit: 27 April, 1981 
Visitor: Bob Grafton, Dave Mizell, ONR. 
Contact: Albert Badre, Richard DeMillo, Philip Enslow, Nancy Griffeth, 
Richard LeBlanc, Jon Livesey, Nancy Lynch, Raymond Miller 
Purpose: Discuss FDPS Research Program. 

7. PUBLICATIONS  

Author(s): M. Fischer, N. Griffeth, L. Guibas, & N. Lynch 
Title: Optimal Placement of Identical Resources in a Distributed System 
Type: Conference Paper 
Status: 	Presented and published in Proceedings of the Second International 
Conference on Distributed Systems (Paris, France). 
Publ. Date: April, 1981 

Author(s): J. Livesey & G.I. Davida 
Title: An Architecture to Support Secure Operating Systems 
Type: Conference Paper 
Status: Presented and published in Proceedings of the Second Symposium on 
Security and Privacy (Oakland, California). 
Publ. Date: April, 1981 

Author(s): E. Arjomandi, M. Fischer, & N. Lynch 
Title: A Difference in Efficiency Between Synchronous and Asynchronous 
Systems 
Type: Conference Paper 
Status: Presented and published in Proceedings of the 1981 SIGACT Conference. 
Publ. Date: May, 1981 

Author(g): R.J. LeBlanc and A.B. Maccabe 
Title: PRONET: Language Features for Distributed Programming 
Type: Technical Report 
Status: Published 
MI Number: GIT-ICS-81/03 
Publ. Date: May, 1981 

Author(s): Gregory L. Moore 
Title: A Distributed Compiler 
Type: M.S. Thesis 
Status: Presented 
Publ. Date: May, 1981 



GIT FDPS Research Program 	 Quarterly Prog Report 7 

Author(.): N. Lynch 
Title: Upper Bounds on Static Resource Allocation in a Distributed System 
Type: Journal Paper 
Status: Accepted by the Journal kt Computer and System Sciences. 
Jubl. Date: To be determined 

Page -12- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 8 
1 June, 1981 - 31 August, 1981 

October, 1981 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-81-C-0249 

GIT Project: G36-659 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

National Science Foundation (NSF) 
Contract: MCS-7924370 
GIT Project: G36-652 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	

Quarterly Prog Report 8 

1. INTRODUCTION  

This is the Eighth Quarterly Progress Report prepared covering the Georgia 
Tech Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: N00014-79-C-0873 
GIT Project No.: G36-643/336 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "System 	Support 	Capabilities 	for 	Fully-Distributed 	/ 
Loosely-Coupled Processing Systems" 

Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-81-C-0249 
GIT Project No.: G36-659 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638/332 
Principle Investigator: Nancy A. Lynch 

Page -1- 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: Alton P. Jensen 

Title: "Complexity and Computability for Distributed Data Bases" 
Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS-7924370 
GIT Project Number: G36-652/340 
Principle Investigator: Nancy A. Lynch 

2. ORGANIZATION  Ma STAFFING  

Faculty 

DeMillo, Richard A. - Professor 
Enslow, Philip H. Jr. - Professor 
Griffeth, Nancy - Assistant Professor 
Jensen, Alton P. - Professor 
LeBlanc, Richard - Assistant Professor 
Livesey, Jon - Assistant Professor 
Lynch, Nancy A. - Associate Professor 
Miller, Raymond - Professor 
Underwood, William - Assistant Professor 

Staff  

McDonell, Sharon - Senior Secretary 
Myers, Jeanette - Research Scientist 
Pinion, Nancy - Part-time Secretary 
Mongiovi, Roy - Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program, and 5 are 
preparing their M.S. Thesis on topics in FDPS. 



GIT FDPS Research Program 
	

Quarterly Prog Report 8 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical  Aglioarmal  Studies  

A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 
A.8 Distributed Resource Allocation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.14 Using Complementary Distributed System Models 
A.15 Probabilistic Algorithms in Distributed Systems 
A.16 Stochastic Synchronization 
A.17 Research Allocation in a Failure-Prone Environment 
A.18 Multilevel Atomicity 

B. Yhvsical Interconnection and Networking 

B.2 Local. Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.8 Distributed Software Tools 
C.9 Command Languages in an FDPS 

D. Distributed Data  Dusa. 

D.1 Concurrency Control in Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 
D.3 Implementation of the Audit Algorithm 

E. Fault-Tolerance  

F. Special Hardware 12. SpoportFDPS  

G. APolicatiwAsUlDistributed Processing  



GIT FDPS Research Program 	 Quarterly Prog Report 8 

H. System Design Methodologies  

H.2 Coordinating Large Programming Projects 

I. System Utillzation  

I.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 
J.2 System Security 

K. System Panagemept  

L. Evaluation and Comparison  

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.2 Remote Load Emulator 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY  DE PROGRESS  

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

No significant progress to report. 

A.3 Reliable Systems (Lynch, Fischer, Lamport, Merritt) 

A paper, "A Lower Bound on Time to Achieve Interactive Consistency", was 
written, describing lower bound results for number of rounds to solve the 
Byzantine Generals problem. Mike Merritt generalized the result to an 
environment allowing authenticated communication. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Sohenhage) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

Conditions under which the audit can be significantly optimized were 
identified. These are: (1) transactions visit the same sites regardless 
of the interleaving of transactions, and (2) transactions access the same 
data-items regardless of the interleaving of transactions. Complexity 
analysis for the normal case and these two special cases was done. 

A paper, "Global States of a Distributed System", was presented, 
describing the general checkpoint algorithm. The paper was invited for 
submission to the special issue of TOSE based on the conference, and has 
been submitted. It is also being recast in database terms for submission 
to TODS, including some new results on complexity analysis. 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

A new algorithm was devised for dynamic tree-balancing when ticket returns 
are allowed. The tickets are moved from one location to another in the 
tree using a heuristic which is similar to the heuristic for buyers. In 
the case of tickets, a ticket is sent out in some direction if that 
direction is "deficient" in tickets according to a local estimate. 

The ticket system simulation was modified to use a regenerative approach 
to the choice of epochs. This eliminates dependencies of results on 
behavior preceeding or following the epoch. It also simplifies the 
statistical inference methods required to assess the accuracy. 

New results have been obtained generalizing the previous analysis of 
sequential resource allocation and general (interfering) resource 
allocation. Results are currently being written up in a paper, "Expected 
Time Analysis of a Distributed Resource-Allocation Algorithm". 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

A paper, "A Difference in Efficiency between Synchronous and Asynchronous 
Systems", has been rewritten from the conference version for journal 
submission. 

A.8 Distributed Resource Allocation (Lynch) 

This project has been completed. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

Discussions were begun attempting to integrate ideas about multilevel 
atomicity of transactions, multilevel data structuring, and multilevel 
consistency constraints in databases. Some ideas for concurrency control 
designs were also discussed. 

Page -5- 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

A.10 Arbiter Design (Lynch, Griffeth, Soh6nhage, Fischer) 

No significant progress to report. 

A.14 Using Complementary Distributed System Models (Lynch, Rounds, R. Miller) 

No significant progress to report. 

A.15 Probabilistic Algorithms in Distributed Systems (Lynch, Arjomandi, 
Fischer) 

No further progress anticipated. Project completed. 

A.16 Stochastic Synchronization (DeMillo, R. Miller, Lipton) 

No significant progress to report. 

A.17 Resource Allocation in a Failure-Prone Environment (Fisoher, Lynch, 
Burns, Borodin) 

No significant progress to report. 

A.18 Multilevel Atomicity (Lynch) 

The paper, "Multilevel Atomicity: A new Correctness Criterion for 
Distributed Databases", was written and submitted for journal publication. 
It contains a preliminary proposal for a systematic way in which one might 
weaken the usual "serializability" definition for transactions, in order 
to obtain increased concurrency. 

B.2 Local Networking in FDPSs (Enslow) 

A report on initial work in this area has been prepared. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Saponas) 

The second phase of this project was completed on 30 June 1981. A final 
report entitled, "Performance of Distributed and Decentralized Control 
Models for Fully Distributed Processing Systems - Initial Simulation 
Studies", has been completed and submitted to the sponsors for review. 
Final publication of this report is pending the reception of sponsor's 
approval. Meanwhile, further simulation experiments which were suggested 
by the previous work are being conducted. 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

Evaluation of models of work distribution and resource allocation will be 
done by means of simulation. Work this quarter consisted of coding three 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

RAWD algorithms in PASCAL for inclusion in the simulator used in Project 
C.1, thoroughly testing each of the three algorithms, and preparing data 
to be used as input to the simulation experiment. 

C.4 Local Operating System (Livesey, LeBlanc, Spafford, Myers, Fukuoka, Pitts) 

Further work has taken place in investigations into appropriate Local 
Operating Systems structures. A report has been written on the 
meta-system (PRIMOS) approach. 

The members of this project have been working on Distributed Software 
Tools, Project C.8. Previous work done for this project, especially the 
exploration of methods of adapting the PRIMOS operating system to act as a 
LOS prototype, is providing design and implementation support for the DSWT 
project. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo) 

The working draft of a project proposal has been prepared and is being 
expanded as a result of continuing efforts to identify and describe 
communications requirements for fully distributed processing systems. The 
fundamental importance of broadcast services to support distributed 
application processes has prompted a comprehensive investigation of 
transmission hardware, network topologies, and the access and control 
procedures to support these services. For long-haul networks, satellites 
continue to dominate the picture. Several local-area network technologies 
are being studied and compared in light of their unique advantages and 
limitations for locally distributed processing. 

C.8 Distributed Software Tools (Myers, Livesey, Hopkins, Lee, McGraw, Fox) 

Work continues on the Distributed Software Tools Project initiated last 
quarter. The first phase of design and implementation of DSWT involves 
creating a mechanism for remote process execution. This capability will 
serve as a tool that can be used to write many network applications as 
small command language programs. For example, a distributed mail facility 
could implement local mail facilities on each node of the network and 
direct that mail to the user's terminal with the command, "mail; 
mail@gt.b; mail@gt.c", assuming that the user is connected to gt.a and 
that gt.b and gt.c are the only other nodes in the network where mail can 
be stored for the user. As of now, DSWT consists of five components which 
are in various stages of completion: the DSWT command interpreter, server 
processes called hosts which are responsible for initiating remote process 
execution, remote I/O processes which serve as interfaces between the 
local user and a remote process, a network file system, and a message 
passing facility. 

C.9 Command Languages in an FDPS (Badre, Myers, Greene) 

This project, initiated this quarter, is divided into two subprojects. 
The first has as its objective the design of a "friendly" command language 
suitable for a distributed environment. Work this quarter has been 

Page -7- 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

devoted to the collection and review of the available literature on 
command languages. 

The second subproject, scheduled to begin next quarter, will attempt to 
determine if multiple command languages can and should be made available 
in an FDPS. It will also explore various ways in which multiple command 
languages can be integrated in a network to provide some (perhaps all) of 
the claimed benefits of an FDPS. 

D.1 Conourrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

Experiments were designed for studying concurrency control algorithms on 
the simulation tool developed for Project L.1. 	For this purpose, four 
parameters were identified: 	(1) method of guaranteeing consistency, 
(2) method of conflict resolution, 	(3) locus of control, 	and 
(4) management of deadlocks. Ten significant experiments were identified. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

The final report has been written and is being prepared for publication. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

No significant progress to report. 

I.2 Coordinating Large Programming Projects (Enslow, Underwood, Smith) 

Major research activities this quarter included investigation of large 
software development as problem-solving and as design activity. Papers 
were written on both topics. A major paper detailing proposed future 
research was completed by the end of the quarter. 

I.1 A Language for Distributed Programming (LeBlanc, Maooabe) 

Design work has been completed. An implementation using a number of 
compiler development tools, including the code generator developed under 
Project 1.2, is currently in progress. A paper was prepared for 
submission to the Symposium on Principles of Programming Languages. 

1.2 System Implementation Language Development (LeBlanc, Akin) 

Allen Akin has completed his M.S. thesis work on the development of a 
reusable code generator for our PRIME Computers. This tool will enable us 
to build compilers which generate high-quality code without developing a 
customized code generator for each one. The code generator is currently 
being tested by about 20 students in a compiler class and extensions will 
be planned based on their experiences. 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

1.3 Experiments with a Distributed Compiler (LeBlanc, J. Miller) 

John Miller is currently working on refinements of the experiments 
previously conducted as part of this project. 

J.1 Process Structures (DeMillo, Lipton, R. Miller, Merritt, Thomas) 

Michael Merritt and Barbara Smith Thomas are currently studying the 
application of cryptographic techniques to supply utilities in a 
distributed system. Recent results have centered around providing secure 
communications. 

J.2 System Security (Livesey, Davida, DeMillo) 

Further studies are being carried out into an architecture to support 
secure multiprogramming. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

The design and specification of a simulation tool for distributed database 
systems was completed. The tool was designed to be usable for general 
distributed algorithms also. Details can be found in the technical 
report. 

M.1 Establishment of FDPS Testbed Facility (Myers, Mongiovi, Pitts, Fox) 

The Distributed Software Tools (DSWT) Project initiated under this project 
number last quarter is now Project C.8. Although DSWT will enhance the 
testbed facility by providing users with a distributed subsystem and an 
extended capability for running concurrent programs, it was decided that 
it belonged in the Distributed Operating Systems effort since it is 
essentially a Network Operating System implemented on top of several local 
operating systems. 

M.2 Remote Load Emulator (Myers, Enslow, Forsyth) 

This project has been completed this quarter. The emulator and a user's 
guide are now available. Near term plans for the emulator involve 
performance testing for DSWT, Project C.8, and the local network, 
Project B.2. 

M.3 FDOS Simulation Testbed (LeBlanc, Saponas, Myers) 

The simulator is complete and has been used to validate the control models 
developed in Project C.1. 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

5. TRAVEL RELATED  .1(), T FDPS PROGRAM 

Date  of Trip:  July, 1981 - August, 1982 
Individual(s) Traveling:  N. Lynch 
Itinerary:  Cambridge, Massachusetts 
Purpose:  On leave at MIT. 

Date  91 Trip:  20-23 July, 1981 
Individual(A) Traveling:  N. Griffeth, N. Lynch 
Itinerary:  Pittsburg, Pennsylvania 
Purpose:  Attend IEEE Conference on Reliability in Distributed Software and 
Databases, and present paper, "Global States of a Distributed System". 

Date  of Trip:  3-7 August, 1981 
Individual(.) Traveling:  R. LeBlanc 
Itinerary:  Santa Cruz, California 
Purpose:  Attend a course in Functional Programming at the Institute in 
Computer Science at the University of California at Santa Cruz. 

Date  91 Trip:  26-28 August, 1981 
Individual(g) Traveling:  R. DeMillo, M. Merritt 
Itinerary:  Santa Barbara, California 
Purpose:  Attend CRYPTO '81 Symposium. 

Date  .gt: Trip:  30 August - 4 September, 1981 
.Individual(A) Traveling:  N. Griffeth 
Itinerary:  Boston, Massachusetts (MIT) 
Contact:  N. Lynch 
Purpose:  Develop distributed algorithms for ticket systems and discuss 
further work on performance studies of ticket systems. 

6. VISITORS  

(no visitors to report for this quarter) 

7. PUBLICATIONS  

Author(..): A. Akin 
Title:  V-mode Code Generator User's Guide 
Type:  internal document 
Status:  printed 
Publ. Date:  June, 1981 

Page -10- 



GIT FDPS Research Program 	 Quarterly Prog Report 8 

Author(.):  M. Fischer, N. Griffeth, and N. Lynch 
Title:  Global States of a Distributed System 
Type:  conference paper 
Status:  Presented at 1981 IEEE Conference on Distributed Software and 
Databases. Invited and submitted for publication in special issue of TOSE 
based on this conference. Database version in preparation for submission to 
TODS. 
Publ. Date:  July 21, 1981 

Author(.):  N. Griffeth 
Title:  A Simulation Tool for Distributed Database Systems 
Type:  technical report 
Status:  published 
GIT Number:  GIT-ICS-81/15 
Publ. Date:  August, 1981 

Authora):  A. Akin 
Title:  A Reusable Code Generator for PRIME 50-series Computers 
Type:  M.S. Thesis 
Status:  being printed 
GIT Number:  GIT-ICS-81/16 
Publ. Date:  August, 1981 

Author(A):  D. Forsyth 
Title:  A Remote Terminal Emulator for PRIME Computers 
Type:  technical report 
Status:  being printed 
al Number:  GIT-ICS-81/12 
Publ. Date:  August, 1981 

Author(.):  D. Forsyth 
Title:  User's Guide for the PRIME Remote Terminal Emulator 
Type:  internal document 
Status:  printed 
Publ. Date:  August, 1981 

Author(A):  A.B. Maccabe and R.J. LeBlanc 
Title:  Communication Features for Distributed Computing Environments 
Type:  conference paper 
Status:  submitted to the Symposium on Principles of Programming Languages 

Author(,a): N. Lynch 
Title:  Multilevel Atomicity: A New Correctness Criterion for Distributed 
Databases. 
Type:  journal paper 
Status:  submitted for publication 

Page -11- 



GIT FDPS Research Program 	 Quarterly Prog Report 8 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 9 
1 September, 1981 - 30 November, 1981 

January, 1982 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-81-C-0249 

GIT Project: G36-659 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

U.S. Army Institute for Research in 
Management Information and Computer Science (AIRMICS) 

Contract: DAAK70-79-D-0087 
GIT Project: G36-647 

National Science Foundation (NSF) 
Contract: MCS-7924370 
GIT Project: G36-652 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	 Quarterly Prog Report 9 

1. /PTRODUCUON  

This is the Ninth Quarterly Progress Report prepared covering the Georgia Tech 
Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: NO0014-79-C-0873 
GIT Project No.: G36-643/336 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "System 	Support 	Capabilities 	for 	Fully-Distributed 	/ 
Loosely-Coupled Processing Systems" 

Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-81-C-0249 
GIT Project No.: G36-659 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638/332 
Principle Investigator: Nancy A. Lynch 



GIT FDPS Research Program 	 Quarterly Prog Report 9. 

Title: "Support of MILPERCEN Data Storage Concept" 
Funding Agency: U.S. Army Institute for Research in Management Information 

and Computer Science (AIRMICS) 
Contract Number: DAAK70-79-D-0087 
GIT Project Number: G36-647 
Principle Investigator: Alton P. Jensen 

Title: "Complexity and Computability for Distributed Data Bases" 
Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS-7924370 
GIT Project Number: G36-652/340 
Principle Investigator: Nancy A. Lynch 

2. ORGANIZATION AND STAFFING  

Faculty 

DeMillo, Richard A. - Professor 
Enslow, Philip H. Jr. - Professor 
Griffeth, Nancy - Assistant Professor 
Jensen, Alton P. - Professor 
LeBlanc, Richard - Assistant Professor 
Livesey, Jon - Assistant Professor 
Lynch, Nancy A. - Associate Professor 
Miller, Raymond - Professor 
Underwood, William - Assistant Professor 

Staff  

McDonell, Sharon - Administrative Secretary 
Myers, Jeanette - Research Scientist 
Pinion, Nancy - Part-time Secretary 
Mongiovi, Roy - Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program, and 5 are 
preparing their M.S. Thesis on topics in FDPS. 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

Page -2- 



GIT FDPS Research Program 	 Quarterly frog Import y 

A. Theoretigal =Formal Studies  

A.2 Decomposition of Parallel Systems 
A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.7 Synchronous Simulation 
A.9 Theory of Distributed Databases 
A.10 Arbiter Design 
A.14 Using Complementary Distributed System Models 
A.16 Stochastic Synchronization 
A.17 Research Allocation in a Failure-Prone Environment 
A.18 Multilevel Atomicity 
A.19 Formal Semantics and Specification of Distributed Systems 
A.20 Nested Transactions with Aborts 

B. Physical Interconnection  Ansi Networking  

B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed  21==g Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.8 Distributed Software Tools 
C.9 Command Languages in an FDPS 

D. Distributed Data Bases  

D.1 Concurrency Control in Distributed Database Systems 
D.2 Support of MILPERCEN Data Storage Concept 
D.3 Implementation of the Audit Algorithm 
D.4 User Interfaces to Database Systems 

E. Fault-Tolerance  

F. Special Hardware 	Support FDPS  

G. Application gf:Distributed  Processing 

H. System Design Methodologies  

H.2 Coordinating Large Programming Projects 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

I. System Utilization 

I.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 
J.2 System Security 

K. System frianaseement  

L. Evaluation  ADA Comparison 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY .  PROGRESS  

A.2 Decomposition of Parallel Systems (Lynch, Fischer) 

This project was completed with the submission of a report for journal 
publication. 

A.3 Reliable Systems (Lynch, Fischer, DeMillo, Lamport, Merritt) 

A lower bound on time requirements for solution to the Byzantine Generals 
problem, in an environment allowing authentication, has been undergoing 
revision for presentation at SIGACT 1982. Work is also proceeding on 
development of better Byzantine Generals algorithms, requiring less 
communication than currently known algorithms. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Sch8nhage) 

Project Complete. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

The paper "Global States of a Distributed System" is being rewritten for 
submission to TODS. 

Page -4- 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

Algorithms for sequential resource allocation are being developed, to 
prove the upper bound on ticket allocation time when tickets are allocated 
one after the other. The algorithms have been written in such a way as to 
allow generalization to the case in which allocation of different tickets 
may proceed concurrently. 

A.7 Synchronous Simulation (Lynch, Fischer, Arjomandi) 

This project was completed with the submission of a report for journal 
publication. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

No significant progress to report. 

A.10 Arbiter Design (Lynch, Schanhage, Fischer) 

Project Complete. 

A.14 Using Complementary Distributed System Models (Lynch, Rounds, R. Miller) 

Project Complete. 

A.16 Stochastic Synchronization (DeMillo, R. Miller, Lipton) 

We have begun work under the new NSF contract to extend our previous 
results in this area. 

A.17 Resource Allocation in a Failure-Prone Environment (Fischer, Lynch, 
Burns, Borodin) 

No significant progress to report. 

A.18 Multilevel Atomicity (Lynch) 

Connections between the multilevel atomicity model and the nested 
transaction model (as used by Leskov) are being studied. 

A.19 Formal Semantics and Specification of Distributed Systems (Lynch, Stark) 

Dr. Lynch is acting as major Ph.D. advisor to Eugene Stark, an MIT 
Ph.D. student. His thesis work involves formal models for describing 
distributed system behavior. The model has some similarities to previous 
work of Lynch and Fischer (there is no implicit synchronization, and 
finite delay is assumed). However, his model is at a much more abstract 
level than the previous work. 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

A.20 Nested Transactions with Aborts (Lynch, Leskov) 

Dr. Lynch is studying the nested transaction structure used as a basis for 
Argus, Dr. Leskov's new distributed computing language. The language 
includes failure of subactions explicitly in its semantics. Dr. Lynch is 
formulating precise abstract semantics for the language, thereby 
attempting to prove correctness of some of the algorithms used in the 
implementation of Argus. 	A key difficulty is guaranteeing the 
preservation of consistency in the presence of "orphans": 	active 
processes with ancestors which have aborted. 

B.2 Local Networking in FDPSs (Enslow, Myers, Manno, Brundette, Hutchins) 

A technical report "Initial Experiences with a Local Network --- Net/One 
by Ungermann-Bass, Inc." was completed and distributed. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Saponas) 

Further simulation studies were carried out to evaluate the distributed 
control models. The report on the evaluation of these models has been 
published. A draft of Saponas's Ph.D. Dissertation was prepared for the 
final report. Saponas presented a defense of his thesis on this subject. 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

Algorithms developed for work distribution continue to be tested and 
evaluated using the simulator developed in project M.3. 

C.4 Local Operating System (Livesey, LeBlanc, Saponas, Maccabe, Alchin, 
Fukuoka) 

A project has been initiated to study high level inter-process 
communication based on a database description of a distributed system. A 
design of a domain-structured file system for a distributed system has 
been completed, and incorporated in the technical report being prepared 
for project C.8. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo) 

Work continues on identifying and describing the requirements for 
communications support in detail. Several network technologies are being 
considered to evaluate and compare their applicability to the fulfillment 
of these requirements. The formal project proposal is nearing completion 
and is currently under review. 

C.8 Distributed Software Tools (Myers, Livesey, Hopkins, Lee, Fox) 

Work continues on the implementation of Distributed Software Tools and 
preparation of a technical document describing our experiences. 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

C.9 Command Languages in an FDPS (Badre, Myers, Greene) 

Work continues on the literature survey for command languages and the 
design of a "user-friendly" command language. Two abstracts have been 
submitted for consideration as papers for the IFIP Technical Comittee-2, 
Working Group 2.7 Conference on Operating Systems Interfaces to be held in 
September, 1982. 

D.1 Concurrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

A system for simulating concurrency control in distributed database 
systems has been proposed, as outlined in technical report GIT-ICS-81/15. 

D.2 Support of MILPERCEN Data Storage Concept (Jensen, Doyle, Gehl, Bingham) 

This project has been completed. The research conducted under this 
contract has identified and summarized many issues which affect the manner 
in which human resource information is managed for the Army. Several 
recommendations concerning how the Army should address itself in upgrading 
its Automated Manpower and Personnel Resources Management Informations 
Systems are made in the Final Report, "Automating the Exchange of Military 
Personnel Data Among Selected Army Organizations." A second report is a 
comprehensive set of appendices containing data collected during the 
course of study. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

No significant progress to report. 

D.4 User Interfaces to Database Systems (Griffeth) 

An experimental system to test the usability and power of various database 
user interfaces is being developed. The actual storage structure will be 
based on the relational model, because it is easier to present a variety 
of interfaces when the underlying model is relational. However, the user 
data model may include such structures as CODASYL sets, repeating groups, 
vectors, semantic nets, or even higher level objects such as entities, 
relationships, aggregations, generalizations, etc. Furthermore, the user 
language may include navigational features as well as the ability to 
reference rows by value. 

Currently, 	the underlying database is one operation short of 
implementation (this is the division operation). A pretest to determine 
the subject's background and database sophistication has been developed 
and is being refined. The language interpreters are in the design stage. 
A game for the subjects to play has been designed and is close to 
implementation. 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

H.2 Coordinating Large Programming Projects (Enslow, Underwood, Smith) 

During this quarter several sources for data on large software development 
projets were investigated. Of the sources identified, the RADC 
Productivity Database was considered to be most suitable. A copy of the 
data was obtained and preliminary analysis begun. Noting deficiencies in 
the coverage of the database, a search for additional data sources will 
proceed in parallel with continued analysis of the data so far obtained. 

I.1 A Language for Distributed Programming (LeBlanc, Maccabe) 

The PRONET language features (described in technical report GIT/ICS-81/03) 
are currently being implemented. Most of the work done so far has been 
concerned with the required run-time support software. 

1.2 System Implementation Language Development (LeBlanc, Wilkes) 

A compiler for an extended version of Pascal is currently under 
development, using the code generation tool previously implemented as part 
of this project. This compiler will be extended to implement PRONET 
(project 1.1) and will be used in future work in project 1.3. 

1.3 Experiments with a Distributed Compiler (LeBlanc, J. Miller) 

No significant progress to report. 

J.1 Process Structures (DeMillo, Lipton, R. Miller, Merritt, Thomas) 

We have continued to develop new cryptographic protocols. This work will 
be summarized in a forthcoming paper. 

J.2 System Security (Livesey, Davida, DeMillo) 

A proposal for a secure operating system based on the paper "Secure 
Architectures - the Master/Slave Model" has been completed, and awaits 
submission to NSF. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

See D.1; otherwise, no significant progress due to loss of student working 
on simulation program. 

M.1 Establishment of FDPS Testbed Facility (Myers, Mongiovi, Pitts, Fox) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

M.3 FDOS Simulation Testbed (LeBlanc, Saponas, Myers) 

No significant progress to report. 

5. TJfiVEL MATED  IQ= FDPS PROGRAM 

Date 91 Trio: 30 August - 4 September, 1981 
Individual(s) Traveling:  N. Griffeth 
Itinerary: Boston, Massachusetts (MIT) 
Contact: N. Lynch 
Purpose: Develop distributed algorithms for ticket systems and discuss 
further work on performance studies of ticket systems. 

Date of Trip: 14-16 October, 1981 
Individuals) Traveling: J. Livesey (for P. Enslow) 
Itinerary: Rome, New York 
Contact: Tom Lawrence 
Purpose: RADC Technical Exchange Meeting 

Date of Trip: 21 October, 1981 
Individual(A) Traveling: P. Enslow (accompanied by Dr. Robert Grafton, ONR) 
,Itinerary: New London, Connecticut 
Contact: Naval Underwater Systems Center 
Purpose: Orientation on Georgia Tech FDPS Research Program 

Date of Trip: 22 October, 1981 
Individual(g) Traveling: P. Enslow (accompanied by Dr. Robert Grafton, ONR) 
Itinerary: Newport, Rhode Island 
Contact: Naval Underwater Systems Center 
Purpose: Orientation on Georgia Tech FDPS Research Program 

Date of Trip: October, 1981 
Individual(s) Traveling: N. Lynch 
Itinerary: Nashville, Tennessee 
Purpose: Attend FOCS Conference 

Date ,  of Trip: November, 1981 
Individual(s) Traveling: N. Lynch 
Itinerary: New Haven, Connecticut 
Contact: Mike Fischer 
Purpose: Work on projects and give presentation on latest progress. 

6. VISITORS  

Pates of Visit: September, 1981 
Visitor: M. Fischer 
Contact:  N. Lynch (at MIT) 
Purpose: Work on various projects. 



GIT FDPS Research Program 	 Quarterly Prog Report 9 

Dates of Visit: 23 October, 1981 
Visitor: Herman J. Weegenaar (Centraal Beheer, The Netherlands) 
Contact: P. Enslow 
Purpose: Discuss distributed operating system functions 

Dates of Visit: 29-30 October, 1981 
Visitor: Tom Lawrence (RADC) and Rudy Nothdurft 
Contact: P. Enslow 
Purpose: Review and planning session on new RADC contract 

7. PUBLICATIONS  

Author(s): M. Fischer, N. Lynch 
Title: A Lower Bound for the Time to Assure Interactive Consistency 
:Type: technical report 
Status: published 
GIT Number: GIT-ICS-81/13 
Publ. Date: September, 1981 

Author(s): P. Enslow, P. Manno, and J. Myers 
Title: Initial Experience with a Local Network - NET/ONE by Ungermann-Bass 
Type: technical report 
Status: published 
GIT Number: GIT-ICS-81/11 
Publ. Date: October, 1981 

Author(s):  R. DeMillo, N. Lynch, and M. Merritt 
Title ,: Cryptographic Protocols 
Status: abstract submitted to conference 
Publ. Date: Winter '82 

Author(s): A. Jensen, J. Bingham, J. Doyle, and J. Gehl 
Title: Automating the Exchange of Military Personnel Data Among Selected Army 
Organizations 
Type: final report 
Status: published 
Publ. Date: June, 1981 

Author(s): A. Jensen, J. Bingham, J. Doyle, and J. Gehl 
Title: Automating the Exchange of Military Personnel Data Among Selected Army 
Organizations 
Type: appendices 
Status: published 
Publ. Date ,: June, 1981 

Page -10- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 10 
1 December, 1981 - 28 February, 1982 

March, 1982 

Supported by 

Office of Naval Research (ONR) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-81-C-0249 

GIT Project: G36-659 

U.S. Army Research Office (ARO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

National Science Foundation (NSF) 
Contract: MCS-7924370 
GIT Project: G36-652 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 
	 Quarterly Prog Report 10 

1. INTRODUCTION  

This is the Tenth Quarterly Progress Report prepared covering the Georgia Tech 
Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the phybical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: N00014-79-C-0873 
GIT Project No.: G36-643/336 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "System 	Support 	Capabilities 	for 	Fully-Distributed 
Loosely-Coupled Processing Systems" 

Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-81-C-0249 
GIT Project No.: G36-659 
Principlp Investigator: Philip H. Enslow, Jr. 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638/332 
Principle Investigator: Nancy A. Lynch 

Page -1- 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

Title: "Complexity and Computability for Distributed Data Bases" 
Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS-7924370 
GIT Project Number: G36-652/340 
Principle Investigator: Nancy A. Lynch 

2. ORGA$IZATION  Alca §TAFFING  

Faculty 

DeMillo, Richard A. - Professor 
Enslow, Philip H. Jr. - Professor 
Griffeth, Nancy A. - Assistant Professor 
Jensen, Alton P. - Professor 
LeBlanc, Richard J. - Assistant Professor 
Livesey, Jon - Assistant Professor 
Lynch, Nancy A. - Associate Professor 
McKendry, Martin S. - Assistant Professor 
Miller, Raymond - Professor 
Underwood, William - Assistant Professor 

Staff  

McDonell, Sharon - Administrative Secretary 
Myers, Jeanette - Research Scientist 
Pinion, Nancy - Part-time Secretary 
Mongiovi, Roy - Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program, and 5 are 
preparing their M.S. Thesis on topics in FDPS. 

3. CURRENT .RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Ilaurittsal 	Facial Studies 

A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.9 Theory of Distributed Databases 
A.16 Stochastic Synchronization 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

A.17 Research Allocation in a Failure-Prone Environment 
A.18 Multilevel Atomicity 
A.19 Formal Semantics and Specification of Distributed Systems 
A.20 Nested Transactions with Aborts 

B. Physical Interconnection and Networlanz  

B.2 Local Networking in Fully Distributed Processing Systems 

C. Distribute  Operating Systems  

C.1 Decentralized and Distributed Control 
C.2 Resource Allocation and Work Distribution in an FDPS 
C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.8 Distributed Software Tools 
C.9 Command Languages in an FDPS 
C.10 Distributed Operating System Implementation 

D. Ustributed DatA  Ault 

D.1 Concurrency Control in Distributed Database Systems 
D.3 Implementation of the Audit Algorithm 
D.4 User Interfaces to Database Systems 

E. Fault-Tolerance  

F. Special Hardware  1,31 Support IMPS  

G. AmlicatioULAI  Distributed processing  

H. Svste, Design Methodologies  

H.2 Coordinating Large Programming Projects 

I. System Utilization  

1.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. "Security 

J.1 Process Structures 
J.2 System Security 



GIT FDPS Research Program 
	 Quarterly Prog Report 10 

K. System Nanazement  

L. Draluation  awl Comparison 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.3 Fully Distributed Operating System Simulation Testbed 

4. SUMMARY  SE. PROGRESS  

A.3 Reliable Systems (Lynch, Fischer, Fowler, Lamport, Merritt) 

A new Byzantine Generals algorithm was devised, with better performance 
than previously known algorithms, in terms of amount of message traffic. 
The number of rounds is also considerably smaller than in previous 
algorithms with good message performance. 

The lower bound proof for number of rounds in an environment allowing 
arbitrary authentication capabilities, has been considerably refined and 
clarified. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Schenhage) 

No significant progress to report. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

The paper, "Global States of a Distributed System", was accepted for a 
special issue of Transactions on Software Engineering (May, 1982). Also, 
work is in progress on analysis of some significant special-case systems. 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

The ticket system simulation has been modified to reduce the variance in 
results and generalized to allow returns and reallocation of tickets. 
Initial tests have been run. Further modifications are planned to test 
limiting cases. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

No significant progress to report. 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

A.16 Stochastic Synchronization (DeMillo, R. Miller, Lipton) 

No significant progress to report. 

A.17 Resource Allocation in a Failure-Prone Environment (Fischer, Lynch, 
Burns, Borodin) 

No significant progress to report. 

A.18 Multilevel Atomicity (Lynch) 

Some work is being done to integrate the multilevel atomicity concept with 
related work on nested transactions. 

A.19 Formal Semantics and Specification of Distributed Systems (Lynch, Stark) 

Equivalence has been proved for three natural definitions for the class of 
possible behaviors of distributed systems. 

A.20 Nested Transactions with Aborts (Lynch, Leskov) 

Formal correctness conditions for nested transaction systems, and 
correctness proofs for implementations using locking, are in process of 
development. 

B.2 Local Networking in FDPSs (Enslow, Myers, Brundette, Hutchins, Arius) 

A 12-1/2 hour video Net/One Programming class created by Ungermann-Bass 
was taken by members of this project. This course described in detail 
Net/One operation and the recently released software development support 
package. 

We are waiting for the delivery of a new component for the local network, 
an NCF-2, which replaces the MCZ. (The MCZ is no longer supported by 
Ungermann-Bass). The NCF-2 includes the software development support 
package, support for the C programming language and, due to an IEEE-448/79 
interface to the local network, reduces downloading time from 
approximately 90 seconds to 19 seconds per board. 

C.1 Decentralized and Distributed Control (Enslow, LeBlanc, Saponas) 

A technical report concluding Tim Saponas's research in this area is ready 
for distribution. This report analyzes in detail the factors contributing 
to the particular evaluations of each of the control models covered in a 
previously distributed technical report. 

Page -5- 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

C.2 Resource Allocation and Work Distribution in an FDPS (Enslow, Sharp) 

A technical report concluding Don Sharp's research in this area is ready 
for distribution. Results of simulation experiments indicated that the 
best criterion for work distribution is to minimize communication between 
processes represented as nodes of a task graph. 

C.4 Local Operating System (Livesey, LeBlanc, McKendry, Myers, Allchin, 
Fukuoka, Macoabe, Pitts, Spafford) 

Work continues on the identification and research of those design concepts 
related to distributed operating systems. This includes atomicity, 
consistency, recovery, fault tolerence, interprocess communication, file 
systems, etc. Of special importance is the area of distributed databases. 
Due to the amount and distribution of information required by a 
distributed operating system, we are looking into building a distributed 
database as an intrinsic part of the operating system. 

Project C.10 has been created to attempt a "first try" implementation of 
this combination of data base and operating system. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo) 

The formal project proposal is essentially complete and is currently being 
reviewed, revised, and extended. The specification and design of tools 
for an experimental evaluation of proposed alternatives for communications 
support is also in progress. 

C.8 Distributed Software Tools (Myers, Livesey, Hopkins, Fox) 

Work continues on the implementation of Distributed Software Tools and 
preparation of a technical report describing our experiences. 

C.9 Command Languages in an FDPS (Badre, Myers, Greene) 

During this quarter, the main effort has been directed toward 
characterizing the user, his requirements, and his needs. To accomplish 
this in part, user activity has been monitored and these data processed to 
determine how people are using the current facilities. We are studying 
what commands are being used and in what general class of processing these 
commands are used (e.g. text manipulation, program development, etc.). 
Also, the commands available in the same system have been examined to 
determine what these commands functionally provide to a user. The 
information gathered from these approaches is being used as a strong basis 
for the friendly user interface that is the goal of this work. 

C.10 Distributed Operating System Implementation (MoKendry, Allchin, Thibault, 
Macoabe) 

Realizing that there remain many unsolved problems and open areas of 
research related to distributed operating systems, we believe that it 

Page -6- 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

would be beneficial to begin an implementation based on what we currently 
know that we can do. We have named our prototype operating system 
"CLOUDS", an acronym for "Coalescing Local Operating Systems Under 
Decentralized Supervision." The descriptor "Coalescing" is an important 
one. CLOUDS will be capable of stand-alone operation, but when networked 
with other CLOUDS, will naturally come together or "coalesce" into one 
distributed operating system. 

Current efforts are centered around designing a scaled down version of 
such an operating system for the first implementation. 

D.1 Concurrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

No significant progress to report. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

No significant progress to report. 

D.4 User Interfaces to Database Systems (Griffeth) 

Several interfaces have been completed for the PRIME relational database. 
They are: 	(1) a relational algebra interface, (2) a relational calculus 
interface, and (3) a network interface. 	Preliminary tests on the 
effectiveness of these interfaces will begin next quarter. 

A project, "Distributed Database Algorithms", will be funded by NSF for 
the period July 1982 - June 1984. 

H.2 Coordinating Large Programming Projects (Enslow, Smith) 

A number of additional data sources were identified. A tentative metric 
for the quality of communication activities during large software 
development was proposed and is currently under investigation. 

1.1 A Language for Distributed Programming (LeBlanc, Macoabe) 

Design work has been completed; implementation and evaluation are in 
progress. A paper was submitted to the Third Internitional Conference on 
Distributed Computing Systems. 

1.2 System Implementation Language Development (LeBlanc, MoKendry, Wilkes) 

Implementation of a Pascal compiler, using the code generator previously 
developed under this project, is nearly complete. Design of extensions 
for system implementation support is in progress. Implementation should 
begin during next quarter. 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

1.3 Experiments with a Distributed Compiler (LeBlanc, J. Miller) 

Work by Miller has confirmed and considerably improved earlier results. 
Design for balanced message flows was found to be crucial for best 
performance. A paper was submitted to the Third International Conference 
on Distributed Computing Systems. 

J.1 Process Structures (DeMillo, Lipton, R. Miller, Merritt, Thomas) 

No significant progress to report. 

J.2 System Security (Livesey, Davida, DeMillo) 

No significant progress to report. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

No significant progress to report. 

M.1 Establishment of FDPS Testbed Facility (Myers, Mongiovi, Fox) 

No significant progress to report. 

M.3 FDOS Simulation Testbed (LeBlanc, Saponas, Myers) 

No significant progress to report. 

5. MAIM ,RELATED. IQ .1111 FDPS .PROGRAM 

Date  of Trip:  25-27 January, 1982 
Individual(A) Traveling:  Richard LeBlanc 
Itinergrv:  Albuquerque, New Mexico 
Purpose:  Attend ACM Principles of Programming Languages Symposium 

Date  sat Trio:  February, 1982 
_Individual(A0 Traveling:  Nancy A. Lynch 
Itinerary:  Brandeis University, Northeastern University, Boston University 
Purpose:  Speak about new Byzantine Generals algorithm. 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

6. VIA.ITOR; 

Dates  sat Visit:  February, 1982 
Visitor:  Bharat Bhargava 
Contact:  Nancy A. Lynch (at MIT) 
purpose:  Discussions about correctness proofs of concurrency control 
algorithms, and about reliability properties of distributed algorithms. 

7. PUBLZCATIONS  

Author(.):  John A. Miller and Richard J. LeBlanc 
Title:  Distributed Compilation: A Case Study 
Type:  conference paper 
Status:  submitted 

Author(,.): Arthur B. Maccabe and Richard J. LeBlanc 
Title:  The Design of a Programming Language Based on Communication Networks 
Type:  conference paper 
Status:  submitted 

Author(.):  Michael J. Fischer, Nancy D. Griffeth, and Nancy A. Lynch 
Title:  Global States of a Distributed System 
Type:  journal paper 
Status:  accepted for publication in Transactions  2n Software  Znanggang 
Publ. Pate:  May, 1982 

Author(.  ): Nancy A. Lynch 
Title:  Multilevel Atomicity 
Type:  conference paper 
Status:  accepted by Principles of Database Systems Conference 
Publ. Date:  March, 1982 

Author(2):  Nancy A. Lynch, Michael J. Fischer, and Robert Fowler 
Title:  A Simple and Efficient Byzantine Generals Algorithm 
Type:  conference paper 
Status:  submitted to IEEE Symposium on Reliability in Distributed Software 
and Database Systems. 

Author(.):  Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt 
Title:  Cryptographic Protocols 
Type:  conference paper 
Status:  accepted by SIGACT 



GIT FDPS Research Program 	 Quarterly Prog Report 10 

Page -10- 



THE GEORGIA INSTITUTE OF TECHNOLOGY 

RESEARCH PROGRAM IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

Quarterly Progress Report Number 11 
1 March, 1982 - 31 May, 1982 

August, 1982 

Supported by 

Office of Naval Research (ONE) 
Contract: N00014-79-C-0873 

GIT Project: G36-643 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602-78-C-0120 

GIT Project: G36-654 

U.S. Air Force Rome Air Development Center (RADC) 
Contract: F30602 -81 -C-0249 

GIT Project: G36-659 

U.S. Army Research Office (MO) 
Contract: DAAG29-79-C-0155 

GIT Project: G36-638 

National Science Foundation (NSF) 
Contract: MCS-7924370 
GIT Project: G36-652 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

1. INTRODUCTION 

This is the Eleventh Quarterly Progress Report prepared covering the Georgia 
Tech Research Program in Fully Distributed Processing Systems (FDPS). 

a. Program Description. 

The Georgia Tech Research Program in Fully Distributed Processing Systems 
is a comprehensive investigation of data processing systems in which both 
the physical and logical components are extremely loosely coupled while 
operating with a high degree of control autonomy at the component level. 
The definition of the specific class of multiple computer systems being 
investigated, and the operational characteristics and features of those 
systems is motivated by the desire to advance the state-of-the-art for that 
class of systems that will deliver a high proportion of the benefits 
currently being claimed for distributed processing systems. The scope of 
individual topics being investigated under this program ranges from formal 
modeling and theoretical studies to empirical examinations of prototype 
systems and simulation models. Also included within the scope of the 
program are areas such as the utilization of FDPS's and their interaction 
with management operations and structure. 

b. Program Support. 

The principle support for the program is a Selected Research Opportunity 
contract from the Office of Naval Research; however, there are a number of 
other sources of funding which also support the program. A list of the 
currently active contracts and grants is given below. 

Title: "Research on Fully Distributed Data Processing Systems" 
Funding Agency: Office of Naval Research (ONR) 
Contract Number: N00014-79-C-0873 
GIT Project No.: G36-643/336 
Principle Investigator,: Philip H. Enslow, Jr. 

Title: "Evaluation of Distributed Control Models" 
Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-78-C-0120 
GIT Project No.: G36-654 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "System 	Support 	Capabilities 	for 	Fully-Distributed 	/ 
Loosely-Coupled Processing Systems" 

Funding Agency: U.S. Air Force Rome Air Development Center (RADC) 
Contract Number: F30602-81-C-0249 
GIT Project No.: G36-659 
Principle Investigator: Philip H. Enslow, Jr. 

Title: "Theory of Systems of Asynchronous Parallel Processors" 
Funding Agency: U.S. Army Research Office (ARO) 
Contract Number: DAAG29-79-C-0155 
GIT Project Number: G36-638/332 
Principle Investigator: Nancy A. Lynch 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

Title: "Complexity and Computability for Distributed Data Bases" 
Funding Agency: National Science Foundation (NSF) 
Contract Number: MCS-7924370 
GIT Project Number: G36-652/340 
Principle Investigator: Nancy A. Lynch 

2. ORGANIZATION  AND STAFFING 

Faculty  

DeMillo, Richard A. - Professor 
Enslow, Philip H. Jr. - Professor 
Griffeth, Nancy A. - Assistant Professor 
Jensen, Alton P. - Professor 
LeBlanc, Richard J. - Assistant Professor 
Livesey, Jon - Assistant Professor 
Lynch, Nancy A. - Associate Professor (currently visiting at MIT) 
McKendry, Martin S. - Assistant Professor 
Miller, Raymond - Professor 
Underwood, William - Assistant Professor 

Staff 

McDonell, Sharon - Administrative Secretary 
Myers, Jeanette - Research Scientist 
Pinion, Nancy - Part-time Secretary 
Mongiovi, Roy - Research Technologist I 

Students  

There are approximately 30 students working on various projects in the FDPS 
Research Program. Of these, 12 are in the Ph.D. program, and 5 are 
preparing their M.S. Thesis on topics in FDPS. 

3. CURRENT RESEARCH PROJECTS  

The specific research projects have been organized into the major areas 
identified in the basic program proposal. 

A. Theoretical  and Formal Studies  

A.3 Reliable Systems 
A.4 Time Performance of Distributed Systems 
A.5 Audit Algorithms 
A.6 Ticket Systems 
A.9 Theory of Distributed Databases 
A.16 Stochastic Synchronization 

Page -2- 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

A.17 Research Allocation in a Failure-Prone Environment 
A.18 Multilevel Atomicity 
A.19 Formal Semantics and Specification of Distributed Systems 
A.20 Nested Transactions with Aborts 

B. Physical Interconnection  and Networking  

B.2 Local Networking in Fully Distributed Processing Systems 

C. Distributed Operating Systems  

C.4 Local Operating System 
C.5 Communications Support for Distributed Systems 
C.8 Distributed Software Tools 
C.9 Command Languages in an FDPS 
C.10 Distributed Operating System Implementation 

D. Distributed Data Bases  

D.1 Concurrency Control in Distributed Database Systems 
D.3 Implementation of the Audit Algorithm 
D.4 User Interfaces to Database Systems 

K. Fault-Tolerance  

F. Special Hardware laSupport FDPS 

G. Application of Distributed Processing 

H. System Design Methodologies  

H.2 Coordinating Large Programming Projects 

I. System Utilization  

1.1 A Language for Distributed Programming 
1.2 System Implementation Language Development 
1.3 Experiments with a Distributed Compiler 

J. Security  

J.1 Process Structures 
J.2 System Security 

Page -3- 



GIT FDPS Research Program 

K. System Management  

Quarterly Prog Report 11 

L. Evaluation  and Comparison  

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

M. FDPS Testbed  

M.1 Establishment of FDPS Testbed Facility 
M.3 Fully Distributed Operating System Simulation Testbed 
M.4 Interactive Monitoring of Distributed Programs 

4. SUMMARY  OF PROGRESS  

A.3 Reliable Systems (Lynch, Fischer, Fowler, Merritt) 

A paper, "Cryptographic Protocols", was presented at SIGACT 82. 

A.4 Time Performance of Distributed Systems (Lynch, Fischer, Lazowska, 
Schtinhage) 

No significant progress to report. 

A.5 Audit Algorithms (Griffeth, Fischer, Lynch) 

No significant progress to report. 

A.6 Ticket Systems (Fischer, Griffeth, Guibas, Lynch) 

A draft of a paper, "Analysis of a Network Resource Allocation Algorithm", 
has been prepared for presentation at the June ACM workshop on 
probabilistic complexity. 

A.9 Theory of Distributed Databases (Lynch, Griffeth) 

Initial work on a new formulation of concurrency control, providing a more 
basic definition of correctness than earlier work, was carried out. 

A.16 Stochastic Synchronization (DeMillo, R. Miller, Lipton) 

No significant progress to report. 

Page -4- 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

A.17 Resource Allocation in a Failure-Prone Environment (Fischer, Lynch, 
Burns, Borodin) 

No significant progress to report. 

A.18 Multilevel Atomicity (Lynch) 

No significant progress to report. 

A.19 Formal Semantics and Specification of Distributed Systems (Lynch, Stark) 

The model was used to specify and prove correct a simple arbiter 
algorithm. Both safety and fairness properties are easily expressed and 
proved. 

A.20 Nested Transactions with Aborts (Lynch, Liakov) 

A paper, 
written. 
uses the 
algorithm 
system). 

"Concurrency Control for Resilient Nested Transactions", was 

It defines the semantics of resilient nested transactions, and 
framework for proving correctness of a version of Moss's locking 
(the implementation of nested transactions used in the Argus 

B.2 Local Networking in FDPSs (Saslow, Myers, Brundette, Hutchins, Arius) 

The Net/One Network Configuration Facility (NCF-2) has -been successfully 
installed and performs according to published specificaions. A Whitesmith 
C compiler has been received for the NCF-2 to be used for local software 
development. 

C.4 Local Operating System (Livesey, Fukuoka) 

A paper by Fukuoka presenting a comprehensive taxonomy of IPC facilities 
based on the semantic aspects associated with the IPC has been submitted 
to ACM Transactions on Programming Languages and Systems (TOPLAS). This 
paper has been forwarded by TOPLAS for review by ACM Computing Surveys. 

 The paper includes a survey of IPC mechanisms in fifteen existing and 
proposed programming languages and systems for distributed processing. 

C.5 Communications Support for Distributed Systems (Enslow, Skowbo) 

The formal project proposal is essentially complete and is currently being 
reviewed, revised, and extended., The specification and design of tools 
for an experimental evaluation of proposed alternatives for communications 
support is also in progress. 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

C.8 Distributed Software Tools (Myers, Livesey, Hopkins, Lee, Fox) 

Hosts, which initiate additional user processes to perform functions on 
local and remote hosts, have been implemented but require some 
modification as to the "initial" state of the processes. Since we have 
found the overhead of "logging in" another process to be high, we are 
proposing a special network-server process to be used instead of an 
additional user process when a specific user environment is not required. 

The domain-structured file system has been implemented and awaits testing 
and incorporation into DSWT. A paper describing the file system was 
presented at the ACM Southeastern Regional Conference, Apri1,1982, in 
Knoxville, Tennessee. 

An IPC facility has been incorporated into the SWT I/O Subsystem. 
Currently, this facility requires that virtual circuit connections be made 
to specific ports on specific systems. This is being modified so that 
port numbers and system names will be completely transparent to the user 
program. 

C.9 Command Languages in an FDPS (Badre, Myers, Greene) 

During the past quarter, work on characterizing the user, his 
requirements, and his needs has continued. User activity was monitored 
throughout the quarter resulting in a data set that spans one year. This 
information has been gathered in an effort to understand the differences, 
if any, between "guru" or sophisticated users and "novice" or 
unsophisticated users. It is hoped that this will result in a definition 
of the extent of function a user will use in an interfaced -  Specifically, 
the processing task has included calculating frequency counts of the 
commands used by both groups and sampling of the terminal sessions of 
members of both groups of users. Again, the purpose of the analysis of 
this data is to understand what is needed in an interface--to understand 
the difference in functional need and use of a computer by a user, whether 
a sophisticated or unsophisticated user. 

C.10 Distributed Operating System Implementation (McKendry, Allchin, Thibault) 

The CLOUDS project is constructing a distributed operating system for a 
group of workstations connected by a high-speed local-area network. The 
fundamental aims of the project are to provide a testbed for evaluation of 
algorithms developed within the FDPS program and to evaluate structural 
concepts for distributed operating systems. 

The overall structure of the operating system has been defined, the 
interprocess communication mechanism has been designed and documented in 
an internal working paper, and considerable progress has been made in the 
study of data consistency requirements for the system. 

Research is currently concentrating on data management and resource 
management. An implementation of the kernel for PERQ workstations is 
underway, and preparation of a conference paper is in progress. 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

D.1 Concurrency Control in Distributed Database Systems (Griffeth, Livesey, 
Lynch) 

Correction to the March 1982 Quarterly Progress Report: 	The project, 
"Distributed Database Algorithms", reported under Project D.4, "User 
Interfaces", should have been reported under this heading. 

Work is underway on analyzing preliminary hypotheses and developing the 
simulation. Currently, special attention is being paid to establishing 
results which will simplify the simulation (e.g., read/write mix has no 
effect, the same ratio of transaction load to database size has the same 
effect regardless of absolute database size, a database with a skewed 
distribution of frequencies of data-item requests behaves like a smaller 
database with a uniform distribution). Combinatoric and queuing-theoretic 
techniques are being used. 

D.3 Implementation of the Audit Algorithm (Griffeth, Livesey, Lynch) 

No significant progress to report. 

D.4 User Interfaces to Database Systems (Griffeth) 

Pilot studies have been run using a "cops-and-robbers" game and a 
registration problem to test the effectiveness of the relational calculus 
in a problem-solving situation. Preliminary indications are that each 
subject will required more than three hours. 

H.2 Coordinating Large Programming Projects (Breslow, Smith) 

The proposed metric for effectiveness of communication during large 
software development has been refined. A major focus has been the 
determination of the criteria that such a metric must meet. A series of 
experiments has been planned to evaluate the proposed metric. 

1.1 A Language for Distributed Programming (LeBlanc, Maccabe, Mongiovi) 

Intensive work on implementation and evaluation has continued this 
quarter. Work has also been done to further develop features for handling 
process and processor failures. Maccabe's Ph.D. thesis is in preparation. 

1.2 System Implementation Language Development (LeBlanc, McKendry, Wilkes) 

Work continues on the Pascal compiler which is intended to be the basis of 
our implementation. 

1.3 Experiments with a Distributed Compiler (LeBlanc, J. Miller) 

Further experiments have been conducted to study the effects of buffering 
messages. This concept appeared as a major factor in our earlier studies. 
A journal paper based on these experiments is in preparation. 

Page -7- 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

J.1 Process Structures (DeMillo, Lipton, R. Miller, Merritt, Thomas) 

No significant progress to report. 

J.2 System Security (Livesey, Davida, DeMillo) 

No significant progress to report. 

L.1 Simulation of Distributed Algorithms (Griffeth, Lynch) 

Hardware and software selection are underway. The initial simulations 
will be run on a PRIME 550, VAX 780, or CYBER 170/760. Available 
simulation languages include GPSS, SIMULA, and SIMSCRIPT. The ticket 
system simulation written in FORTRAN includes event list management and 
statistical routines. 

M.1 Establishment of FDPS Testbed Facility (Myers, Mongiovi, Fox) 

Test facilities are being developed in conjunction with development work 
in Projects C.8 and C.10. 

M.3 FDOS Simulation Testbed (LeBlanc, Saponas, Myers) 

No significant progress to report. 

M.4 Interactive Monitoring of Distributed Programs (LeBlanc, Robbins) 

With the development of distributed computing systems, it becomes 
necessary to provide programmers with appropriate tools to effectively 
utilize them. The _first required tool is a programming language which 
supports the design and construction of distributed programs. One such 
language, called PRONET, has been developed as part of the FDPS Research 
Program (see Project I.1). The newly initiated project described here is 
concerned with the next required tool: a monitor which will allow 
programmers to examine the behavior of distributed programs, 
interactively. Monitoring a distributed program presents significant new 
challenges, since the "state" of such a program involves information about 
an arbitrary number of processes running on a number of machines. This 
problem is far more complex than monitoring a typical program on a single 
machine, in which case, all of the state information is in a single 
address space. The desired monitoring capability should be generalized, 
so that it can be used both for debugging and performance analysis. Such 
generality is a reasonable goal, since the most important aspect of 
monitoring distributed programs will concern the collection of data about 
the interactions among program parts, a task that is independent of the 
use intended for the data. 

Initial work on the design of a monitoring system has begun and proposals 
have been prepared and submitted in order to obtain support for this work. 



GIT FDPS Research Program 	 Quarterly Prog Report 11 

5. TRAVEL RELATED TO THE FDPS PROGRAM 

Date of Trip: 18-20 May, 1982 
Individual(s) Traveling: Philip Enslow 
Itinerary: Rome Air Development Center 
Contact: Tom Lawrence 
Purpose: Participate in RADC Distributed Processing Technology Exchange 
Meeting 

Date of Trip: May, 1982 
Individual(s) Traveling: Nancy Lynch 
Itinerary: Marina del Rey 
Contact: 
Purpose: Attended Symposium on Principles of Database Systems. Presented the 
paper, "Multilevel Atomicity". 

6. VISITORS  

No visitors to report. 

7. PUBLICATIONS  

Author(s): T. Allen Akin and Richard J. LeBlanc 
Title: The Design and Implementation of a Code Generation Tool 
,Type: journal paper 
Status: accepted for publication in Software - Practice and Experience  

Author(s): Hirobumi Fukuoka 
Title: Interprocess Communication Facilities for Distributed Systems: A 
Taxonomy and a Survey 
Type: journal paper 
Status: submitted to ACM Transactions on Programming Languages and Systems; 
subsequently forwarded to ACM Computing Surveys ,  for review. 
GIT Number: GIT-ICS-82/06 

Author(s): N.J. Livesey 
Title: Extending File Systems to Distributed Systems 
Type: conference paper 
Status: presented at the ACM April Southeastern Regional Conference 
GIT Number: GIT-ICS-82/07 
Publ. Date: April, 1982 

Author(s): Richard DeMillo, Nancy Lynch, Michael Merritt 
Title: Cryptographic Protocols 
Type: conference paper 
Status: presented 
GIT Number: TBA 
Publ. Date: May, 1982 



DISTRIBUTED AND DECENTRALIZED CONTROL 

IN 

FULLY DISTRIBUTED PROCESSING SYSTEMS 

A Survey of Applicable Models 

FINAL TECHNICAL REPORT 

GIT-ICS-81/02 

15 January 1980 - 30 September 1980 

Philip H. Enslow, Jr. 
Timothy G. Saponas 

February, 1981 

Rome Air Development Center (ISCP) 
Department of the Air Force 

Griffiss Air Force Base, New York 13441 

Contract Number F30602-78-C-0120 
GIT Project Number G36-649 

The Georgia Tech Research Program in 
Fully Distributed Processing Systems 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 30332 



THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE 
AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE AIR FORCE 
POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION. 

Georgia Institute of Technology 	 FDPS Control Models 



 

unclassified  

 

Page i 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. REPORT NUMBER 

GIT-ICS-81/02 

2. GOVT ACCESSION NO. 3. 	RECIPIENT'S CATALOG NUMBER 

4. 	TITLE (end Subtitle) 

DISTRIBUTED AND DECENTRALIZED CONTROL IN FULLY 
DISTRIBUTED PROCESSING SYSTEMS --- A Survey of 
Applicable Models. 

5. TYPE OF REPORT & PERIOD COVERED 

Final Technical Report 
15 Jan 80 - 30 Sept 80 

6. PERFORMING ORG. REPORT NUMBER 

GIT-ICS-81/02 
7. AUTHOR(s) 

Philip H. Enslow Jr. 
Timothy G. Saponas 

B. CONTRACT OR GRANT NUMBER(s) 

F30602-78-C-0120 

9. PERFORMING ORGANIZATION NAME AND ADDRESS 

School of Information and Computer Science 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

11. 	CONTROLLING OFFICE NAME AND ADDRESS 

Rome Air Development Center (ISCP) 
Department of the Air Force 
Griffiss Air Force Base, New York 13441 

12. REPORT DATE 

February, 1981 
13. NUMBER OF PAGES 

101 + ix 
14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) 

same as item 11 
15. SECURITY CLASS. (of this report) 

Unclassified 

15a. 	DECLASSIFICATION / DOWNGRADING 

SC
HEDULE  

16. DISTRIBUTION STATEMENT (of this Report) 

Approved for public release; distribution limited. 

17 	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 

same 

19. SUPPLEMENTARY NOTES 

RADC Project Engineer: 	Thomas F. Lawrence (ISCP) 

The view, opinions, and/or findings contained in this report are those of the 
author(s) and should not be construed as an official Department of the Air Force 
position, policy, or decision, unless so designated by other documentation. 

19 	KEY WORDS (Continue on reverse side if necessary and identify by block number) 

Control 
Decentralized Control 	 Network Operating System 

Distributed Processing 
Fully Distributed Processing Systems 
Network 

20. ABSTRACT (Continue on reverse side it necessary and identify by block number) 

Parallel processing has been a popular approach to improving system performance 
through several generations of computer systems design. Although it is not 
usually characterized as a "parallel" processing system, a distributed process-
ing system has the inherent capability for highly parallel operation. 	In order 
to capitalize on the potential performance improvements achievable by a distri-
buted system, major parallel control problems.  must be solved. Central to the 
issue of parallel control is the design and implementation of distributed and 
decentralized control. The study of distributed and decentralized control was 

DD 1 F,JICZ3 1473 	EDITION OF 1  NOV 69 IS OBSOLETE unclassified 

  



Page ii 
unclassified 

SECURITY CLASSIFICATION OF THIS P AGE(When Date Entered) 

initiated with a survey of applicable control models. The results of this 
survey are presented along with an extensive discussion of the control 
problems applicable to distributed systems --- specifically "fully" distributed 
systems. 

unclassified 
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) 



Page iii 

ABSTRACT  

Parallel processing has been a popular approach to improving system per-

formance through several generations of computer systems design. Although it 

is not usually characterized as a "parallel',  processing system, a distributed 

processing system has the inherent capability for highly parallel operation. 

In order to capitalize on the potential performance improvements achievable by 

a distributed system, major parallel control problems must be solved. Central 

to the issue of parallel control is the design and implementation of 

distributed and decentralized control. The study of distributed and 

decentralized control was initiated with a survey of applicable control 

models. The results of this survey are presented along with an extensive 

discussion of the control problems applicable to distributed systems ---

specifically "fully" distributed systems. 

Georgia Tnstitutp of Tanhinnlnmu 	 M.T110 



Page iv 

PREFACE  

Comments from  Ila Principal Investigator  

Although this is the final report on only one of the approximately 30 research 

projects currently being performed in the Georgia Tech research program on 

Fully Distributed Processing Systems, it serves a much broader function than 

just reporting on the work done in this single project. Since this is the 

first major technical report published under the program, it has been neces-

sary to document here much of the background applying to the program in 

general. Specifically, this report presents an extensive discussion of the 

general philosophies of fully distributed control and fully distributed 

processing as well as the notation that has been developed to describe the 

control actions supporting such processing activities. 

Georgia Institute of Technology 	 FDPS Control Models 



Page v 

TABLE  DE CONTENTS  

Section 1. BACKGROUND 	 1 

.1 GOALS OF COMPUTER SYSTEM DEVELOPMENT 	 1 

.2 APPROACHES TO IMPROVING SYSTEM PERFORMANCE 	 3 

.3 PARALLEL PROCESSING SYSTEMS 	 3 
.1 System Coupling 	 4 

.1 Tightly-Coupled Computer Systems 	 4 

.2 Loosely-Coupled Systems 	 6 
.2 Computer Networks 	 7 
.3 Distributed Systems 	 7 

Section 2. INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	 9 

.1 MOTIVATION OF THE FDPS CONCEPT 	 9 

.2 THE DEFINITION OF AN FDPS 	 10 
.1 Discussion of the Definitional Criteria 	 11 
.1 Multiple Resources and Their Utilization 	 11 
.2 Component Interconnection and Communication 	 12 
.3 Unity of Control 	 12 
.4 Transparency of System Control 	 13 
.5 Cooperative Autonomy 	 13 

.2 Effects on System Organization 	 14 
.3 IMPLICATIONS OF THE FDPS DEFINITION ON CONTROL 	 16 

.1 General Nature of FDPS Executive Control 	 16 

.2 Why Not Centralized Control 9 	  17 

.3 Distributed vs. Decentralized 	 18 
.4 AN FDPS APPLICATION --- DATA FLOW PROCESSING 	 18 
.5 PROJECT SCOPE AND ORGANIZATION OF THIS REPORT 	 19 

.1 Discussion of FDPS Models 	 19 

.2 Issues in Decentralized Control 	 19 

.3 Work Requests 	 20 

.4 Characteristics of a Decentralized Control Model 	 20 

.5 Control Model Functions 	 20 

.6 Example Control Models 	 20 

.7 Control Model Evaluation 	 20 

Section 3. FDPS SYSTEM MODELS 	 21 

.1 INTRODUCTION 	 21 
.1 Why a New Model and New Terminology 9 	  21 
.2 Approaches to Modelling 	 21 
.1 Scenario or Flow Chart Models 	 22 
.2 Structure Models 	 22 
.3 Interaction Models 	 22 
.4 Performance and Mathematical Models 	 25 
.5 Summary of Model Types 	 25 

.2 OTHER MODELS 	 25 
.1 The ISO Reference Model for OSI 	 25 
.2 Protocol Hierarchies 	 26 

.3 THE FDPS MODELS 	 26 
.1 The FDPS Logical Model 	 26 

Georgia Institute of Teehnologv 	 FTYPS Control Moriels 



Page vi 

.2 An FDPS Physical Model 	 27 

.3 The FDPS Interaction Model 	 27 

Section 4. ISSUES IN DISTRIBUTED CONTROL 	 33 

.1 DYNAMICS 	 33 
.1 Workload Presented to the System 	 33 
.2 Availability of Resources 	 33 
.3 Individual Work Requests 	 34 

.2 INFORMATION 	 34 

.3 DESIGN PRINCIPLES 	 35 
.1 System Information 	 35 
.2 Resource Control 	 36 

Section 5. CHARACTERIZATION OF FDPS WORK REQUESTS 	 37 

.1 THE WORK REQUEST 	 37 

.2 IMPACT OF THE WORK REQUEST ON THE CONTROL 	 37 
.1 Visibility of References to Resources 	 37 
.2 The Number of Concurrent Processes 	 38 
.3 The Presence of Interprocess Communication 	 38 
.4 The Nature of Process Connectivity 	 39 
.5 The Presence of Command Files 	 39 

.3 A CLASSIFICATION OF WORK REQUESTS 	 39 

Section 6. CHARACTERISTICS OF FDPS CONTROL MODELS 	 41 

.1 APPROACHES TO IMPLEMENTING FDPS EXECUTIVE CONTROL 	 41 

.2 INFORMATION REQUIREMENTS 	 41 
.1 Information Requirements for Work Requests 	 42 
.2 Information Requirements for System Resources 	 49 

.3 BASIC OPERATIONS OF FDPS CONTROL 	 49 
.1 Information Gathering 	 51 
.2 Work Distribution and Resource Allocation 	 51 
.3 Information Recording 	 56 
.4 Task Execution 	 56 
.5 Fault Recovery 	 57 

Section 7. VARIATIONS IN FDPS CONTROL MODELS 	 59 

.1 TASK GRAPH CONSTRUCTION 	 59 

.2 RESOURCE AVAILABILITY INFORMATION 	 61 

.3 ALLOCATING RESOURCES 	 62 

.4 PROCESS INITIATION 	 63 

.5 PROCESS MONITORING 	 64 

.6 PROCESS TERMINATION 	 65 

.7 EXAMPLES 	 65 

Section 8. MODELS OF CONTROL 	 79 

.1 ARAMIS 	 79 
.1 Architecture 	 79 
.2 Work Requests 	 79 
.3 The Control Model 	 79 
.4 Conclusion 	 81 

.2 MEDUSA 	 81 

Georgia Institute of Technology 	 FDPS Control Models 



Page vii 

.1 Architecture 	 81 

.2 Work Requests 	 83 

.3 The Control Model 	 83 

.4 Conclusion 	 84 
.3 CNET 	 84 

.1 Architecture 	 84 

.2 Work Requests 	 84 

.3 The Control Model 	 84 

.4 Conclusion 	 86 
.4 THE XFDPS SERIES OF MODELS 	 86 

.1 Architecture 	 87 

.2 Work Requests 	 87 

.3 XFDPS.1 	 87 
.1 Task Set Manager 	 90 
.2 File System Manager 	 90 
.3 Processor Utilization Manager 	 92 
.4 Process Manager 	 92 
.5 Conclusion 	 93 

.4 XFDPS.2 	 93 

.5 XFDPS.3 	 93 

Section 9. THE EVALUATION OF THE MODELS 	 97 

.1 EVALUATION PLAN 	 97 

.2 EVALUATION CRITERIA 	 97 

References 	 99 

nAnrain TnAti.En.Fa of Tonhnnlneru 	 vnne 



Page viii 

LIST a FIGURES  

Figure 1: Axes of Distribution 	 15 
Figure 2: Protocols and Interfaces 	 23 
Figure 3: The ARPANET Protocol Layers 	 24 
Figure 4: The ISO Reference Model for OSI 	 28 
Figure 5: A 'Complete' Protocol Hierarchy 	 29 
Figure 6: Logical Model of an FDPS 	 30 
Figure 7: Physical Model of FDPS Control 	 31 
Figure 8: Classifications of Computer Network Protocols 	 32 
Figure 9: Classification of Work Requests 	 40 
Figure 10: Work Request Syntax 	 43 
Figure 11: Example of a Work Request 	 44 
Figure 12: Node Control Block 	 45 
Figure 13: Node Interconnection Matrix 	 46 
Figure 14: Example of a Task Graph Using Links 	 47 
Figure 15: Example of a Node Interconnection Matrix 	 48 
Figure 16: Work Request Processing (Detailed Steps) 	 50 
Figure 17: Information Gathering (Resources Required) 	 52 
Figure 18: Information Gathering (Resources Available) 	 53 
Figure 19: Resource Allocation and Work Distribution 	 54 
Figure 20: Work Assignment 	 55 
Figure 21: Example 1 	 67 
Figure 22: Example 2 	 67 
Figure 23: Example 3 	 68 
Figure 24: Example 4 	 68 
Figure 25: Example 5 	 69 
Figure 26: Example 6 	 70 
Figure 27: Example 7 	 71 
Figure 28: Example 8 	 73 
Figure 29: Example 9 	 74 
Figure 30: Example 10 	 75 
Figure 31: Example 11 	 76 
Figure 32: Basic Steps in Work Request Processing 	 77 
Figure 33: An Example of Work Request Processing 	 78 
Figure 34: The XFDPS.1 Control Model 	 89 

Georgia Institute of Technology 	 FDPS Control Models 



Page ix 

LIST  DE TABLES  

Table 1: 'Benefits' Provided by Distributed Processing Systems 	 2 
Table 2: Variations in Control Models 	 60 
Table 3: The Decentralized Control Model of the ARAMIS Distributed 

Computer System 	 80 
Table 4: The Medusa Control Model 	 82 
Table 5: The CNET Control Model 	 85 
Table 6: The XFDPS.1 Control Model 	 88 
Table 7: The XFDPS.2 Control Model 	 94 
Table 8: The XFDPS.3 Control Model 	 95 
Table 9: Possible Evaluation Criteria for Distributed Control Models 	98 

Georgia Institute of Technology 	 FDPS Control Models 



Section 1 	 BACKGROUND 	 Page 1 

SECTION 1 

BACKGROUND 

1.1 GOALS  DE COMPUTER SYSTEM DEVELOPMENT  

Although the state of the art in digital computers has certainly been 

advancing faster than any other technological area in history, it is somewhat 

remarkable that the goals motivating most computer system development projects 

have remained basically unchanged since the earliest days. Perhaps the most 

important of these long sought-after improvements are the following: 

1. 	Increased system productivity 
- Greater capacity 
- Shorter response time 
- Increased throughput 

2. Improved reliability and availability 
3. Ease of system expansion and enhancement 
4. Graceful growth and degradation 
5. Improved ability to share system resources 

The "final or ultimate values" for these various goals cannot be expressed in 

absolute numbers, so it is not surprising that they continue to apply even 

though phenomenal advances have been made in many of them such as speed, 

capacity, and reliability. What is perhaps more noteworthy and important to 

the discussion being presented here is how little progress has been made in 

areas such as easy modular growth, availability, adaptability, etc. 

It seems that each new major systems concept or development (e.g., mul-

tiprogramming, multiprocessing, networking, etc.) has been presented as "the 

answer" to achieving all  of the goals listed above plus many others. 

"Distributed processing" is no exception to this rule. In fact, many salesmen 

have dusted off their old  lists of benefits and are marketing today's  

distributed systems as the means to achieve all of them. Table 1 lists some 

of the benefits currently being claimed for distributed processing systems in 

current  sales literature. Although some forms of distributed processing 

appear to offer great promise as a Possible means  la make  significant advances  
in many of the areas listed, the state-of-the-art, particularly in system 

control software, is far from being able to deliver even a significant propor-

tion of these benefits today. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 2 	 BACKGROUND 	 Section 1 

Table 1, "Benefits" Provided by Distributed Processing Systems 

A Representative List Assembled from Claims Made in 
Actual Sales Literature 

High Availability and Reliability 

Reduced Network Costs 

High System Performance 

Fast Response Time 

High Throughput 

Graceful Degradation, Fail-soft 

Ease of Modular and Incremental Growth 

Configuration Flexibility 

Automatic Load and Resource Sharing 

Easily Adaptable to Changes in Workload 

Incremental Replacement and/or Upgrade 

Easy Expansion in Capacity and/or Function 

Good Response to Temporary Overloads 

Georgia Institute of Technology 	 FDPS Control Models 



Section 1 	 BACKGROUND 	 Page 3 

1.2 APPROACHES  la IMPROVING SYSTEM PERFORMANCE.  

Efforts to improve the performance of digital computer systems can 

address or be focused on a number of major levels or design issues within the 

overall computer structure. These levels are: 

1. Materials - the basic materials used in the construction of 
operating devices such as transistors, integrated circuits, or 
other switching devices. 

2. Devices - operating devices such as transistors, integrated 
circuits, junctions, etc. 

3. Switching circuits - design of circuits that provide fast and 
reliable logic operations. 

4. Register-transfer - assemblies such as registers, buses, shift 
registers, adders, etc. 

5. System architecture - algorithms for executing the basic func-
tions such as arithmetic and logic operations, interrupt 
mechanisms, control of processor and memory states, etc. 

6. System organization - the interconnection of major functional 
units such as control, memory, I/O, arithmetic/logic units, 
etc., and the rules governing the flow of data and control 
signals between these units. 	This level also considers the 
implementation of multiple, parallel paths for simultaneous 
operations and transfers. 

7. Network organization - the number, characteristics, and 
topology of the interconnection of "complete" systems and the 
rules governing the control and utilization of the resources 
those systems provide. 

8. System software - control and support software for the effec-
tive management and utilization of the hardware capabilities 
provided. 

From the very beginning of the computer era there has been activity at all of 

these levels and such work continues today. (To place it into proper perspec-

tive, it should be noted that the research work carried on under this project 

is focused primarily at the three highest levels, system organization, network 

organization, and system software, with some work at level 5, system architec-

ture.) 

1.3 PARALLEL PROCESSING SYSTEMS  

An important theme of computer system development work at levels 5-8, 

"system architecture," "system organization," "network organization," and 

"system software," has been Parallel processing.  Parallel processing has been 

implemented utilizing approaches focused primarily on the system hardware or 

the software as well as integrated systems design. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 4 	 BACKGROUND 	 Section 1 

Since the early days of computing, a direction of research that has 

offered high promise and attracted much attention is "parallel computing." 

Work in this area dates from the late 1950's which saw the development of the 

PILOT system [Lein58] at the National Bureau of Standards. The PILOT system 

consisted of "three independently operating computers that could work in 

cooperation."[Ens174] (From the information available, it appears that PILOT 

would be classified as a "loosely-coupled system" today.) It is interesting 

to note that the evolution of parallel "hardware" systems lead primarily to 

the development of tightly-coupled  systems such as the Burroughs B-825 and 

B-5000, the earliest examples of the classical multiprocessor. Other develop-

ment paths saw the introduction of specialized hardware systems such as 

SOLOMON and the ILLIAC IV, examples of other forms of tightly-coupled proces-

sors. 

1.3.1 System cowling  
System coupling refers to the means by which two or more computer 

systems exchange information. It refers to both the physical transfer of such 

data as well as the manner in which the recipient of the data responds to its 

contents. These two aspects of system interconnection are called "physical 

coupling" and "logical coupling," and they are present in all multiple com-

ponent systems whether the components of interest are complete computers or 

some smaller assembly. 

The terms, "tight" and "loose" have been utilized to describe the mode 

of operation of each type of coupling. (Some authors have utilized a third 

category "medium coupling" and related it to a range of data transfer speeds; 

however, history has clearly shown that basing any characterizations of 

digital computers on speed, size, or even cost is an incorrect approach.) The 

interconnection and interaction of two computer systems can then be described 

by specifying the nature of its physical coupling and the nature of its 

logical coupling. It is important to point out that all four combinations of 

these characteristics are possible and that they all have been observed in 

implemented systems. 

1.3.1.1 Tightly-Coupled Computer Systems  

During the 1960's and 1970's, activities in the development of parallel 

computing, specifically multiple computer systems, were focused primarily on 

the development of tightly-coupled systems. These tightly-coupled systems 

Georgia Institute of Technology 	 FDPS Control Models 



Section 1 	 BACKGROUND 	 Page 5 

took the form of classical multiprocessors (i.e., shared main memory) as well 

as specialized computation systems such as vector and array processors. This 

tight physical coupling resulted in a sharing of the directly executable 

address space common to both processors. There was no means by which the 

recipient of the data or information being transferred could refuse to 

physically accept it --- it was already there In his address space.  

These early systems also usually implemented tight logical coupling. In 

this form of system interaction, the recipient of a message is required to 

perform whatever service is specified therein. With tight logical coupling, 

there is no independence of decision allowed regarding the performance of the 

service or activity "requested." The relationship between the sender and 

recipient is basically that of master-slave. 

Although the concept of tightly-coupled multiprocessor systems appears 

to be a viable approach for achieving almost unlimited improvements in per-

formance (i.e., increases in system throughput) with the addition of more 

processors, such has not been the results obtained with implemented systems. 

It is the very nature of tight-coupling that results in limitations on the 

improvements achievable. Some of the ways that these limitations have 

manifested themselves are listed below. 

1. The direct sharing of resources (memory and input/output 
primarily) often results in access conflicts and delays in 
obtaining use of the shared resource. 

2. User programming languages that support the effective utiliza-
tion of tightly-coupled systems have not been adequately 
developed. 	The programmer must still be directly involved in 
job and task partitioning and the assignment of resources. 

3. The development of "optimal" schedules for the utilization of 
the processors is very difficult except in trivial or static 
situations. Also, the inability to maintain perfect synch-
ronization between all processors often invalidates an 
"optimal" schedule soon after it has been prepared. 

4. Any inefficiencies present in the operating system appear to be 
greatly exaggerated in a tightly-coupled system. 

There was also significant activity during these earlier periods in the 

development of multiple computer systems characterized as "attached support 

processors (ASP)." These systems were physically loosely-coupled; but, 

logically, they were tightly-coupled. The earliest examples of this type of 

system organization were the use of attached processors dedicated to 

Georgia Institute of Technology 	 FDPS Control Models 



Page 6 	 BACKGROUND 	 Section 1 

input/output operations in large-scale batch processing systems. In the lat-

ter part of the 1970's, specialized vector and array processors as well as 

other special-purpose units such as fast Fourier transform units were being 

connected to general computational systems and utilized as attached support 

processors. In any event, the specialized nature of the services provided by 

the attached processor excludes them from consideration as possible approaches 

to providing general-purpose computational support such as that available from 

tightly-coupled general-purpose processors functioning as multiprocessors. 

Tightly-coupled systems certainly do have a role to play in the total 

spectrum of computer systems organization; however, their limitations should 

certainly be considered. It was the recognition of these limitations and the 

small amount of progress made in overcoming them despite the expenditure of 

very large research efforts that contributed to the decision to focus our 

current research program on loosely-coupled systems. 

1.3.1.2 Loosely-Coupled Systems  

Loosely-coupled systems are multiple computer systems in which the 

individual processors both communicate physically and interact logically with 

one another at the "input/output level." There is no direct  sharing of 

primary memory, although, there may be sharing of an on-line storage device 

such as a disk in the interconnecting input/output communication path. The 

important characteristic of this type of system organization and  operation is 

that all data transfer operations between the two component systems are per-

formed as input/output operations. The unit of data transferred is whatever 

is permissible on the particular input/output path being utilized; and, in 

order to complete a transfer, the active  cooperation of both  processors is 

required (i.e., one might execute a READ operation in order to accommodate or 

accept another's WRITE). 

Probably the most important characteristic of loose logical coupling is 

that one processor does not have the capability or authority to "force" 

another processor to do something. One processor can "deliver" data to 

another; however, even if that data is a request (or a "demand") for a service 

to be performed, the receiving processor, theoretically, has the full and 

autonomous rights to refuse to execute that request. The reaction of proces-

sors to such requests for service is established by the operating system rules 

of the receiving processor, not by the transmitter. This allows the recipient 

Georgia Institute of Technology 	 FDPS Control Models 



Section 1 	 BACKGROUND 	 Page 7 

of a request to take into consideration "local" conditions in making the 

decision as to what actions to take. It is important to note that it is pos-

sible for a system to be physically loosely-coupled but logically tightly-

coupled due to the rules embodied in the component operating systems, e.g., a 

permanent master/slave relationship is defined. The other reverse condition, 

tight physical and loose logical coupling, is also possible. 

1.3.2 Computer Networks  

A computer network can be characterized as a physically loosely-coupled, 

multiple-computer system in which the interconnection paths have been extended 

by the inclusion of data communications links. Fundamentally there are no 

differences between the basic characteristics of computer network systems and 

other loosely-coupled systems other than the data transfer rates normally 

provided. The transfer of data between two nodes in the network still 

requires the active cooperation of both parties involved, but there is no 

inherently required cooperation between the operation of the processors other 

than that which they wish to provide. 

1.3.3 Distributed  'Systems  

Although there is a large amount of confusion, and often controversy, 

over exactly what is a "distributed system," it is generally accepted that a 

distributed system is a multiple computer network designed with some unity  gr. 

Purpose in mind. The processors, databases, terminals, operating systems, and 

other hardware and software components included in the system have been inter-

connected for the accomplishment of an identifiable, common goal. That goal 

may be the supplying of general-purpose computing support, a collection of 

integrated applications such as corporate management, or embedded computer 

support such as a real-time process control system. 

This research program is concerned with a very specific subclass of all 

of the systems currently being designated "distributed." The environment of 

interest here has been given the title "Fully Distributed Processing System" 

or FDPS. Section 2 discusses the general characteristics of FDPS's. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 8 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 9 

SECTION 2 

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 

2.1 MOTIVATION  DE THE FDPS CONCEPT  

A large number of claims have been made as to the benefits that will be 

achieved with distributed processing systems. As pointed out above, this list 

is very similar to the lists of "benefits to be achieved" with several earlier 

computer technologies. However, each of those earlier solutions failed to 

deliver its promises for various reasons. It was an examination of the "weak-

nesses" in the earlier concepts and the development of a set of principles to 

overcome these obstacles that led to the concept of "Fully Distributed Proces-

sing Systems" or as it is commonly referred to "FDPS." 

The principle of parallel (i.e., simultaneous and/or concurrent) opera-

tion of a multiplicity of resources continues to be perhaps the most important 

goal. The unique feature of FDPS's is the means or environment in which this 

is attempted. A distributed system should exhibit a continual increase in 

performance as additional processing components are added. The users should 

observe shorter response times as well as an increase in total system through-

put. In addition, the utilization of system resources should be higher as a 

result of the system's ability to perform automatic load balancing servicing a 

large quantity and variety of user work requests. A distributed system should 

also permit the sharing of data between cooperating users and the making 

available of specialized resources found only on certain processors. In 

general, a distributed system should provide more facilities and a wider 

variety of services than those that can be offered by any system composed of a 

single processor [Hopp79]. Another important and highly desirable feature of 

such a system is extensibility. Extensibility might be realized in several 

different ways. The system might support modular and incremental growth 

permitting flexibility in its configuration, or it might support expansion in 

capacity, adding new functions, or both. Finally, it might provide for 

incremental replacement and/or upgrading of system components, either hardware 

or software. The executive control of the system is obviously the key to 

attaining these goals, and it is in the area of executive control that some of 

the most significant deficiencies of earlier systems have been found. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 10 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

The major weaknesses in the executive control of earlier forms of paral-

lel systems appear to result from an excessive degree of centralization of 

control functions reflected in centralized decision making or centralized 

maintenance of system status information or both of these. The net effect of 

these aspects of control was to produce a rather tightly-coupled environment 

in which resources often were idle waiting for work assignments and the 

failure of one major component often resulted in catastrophic and total system 

failure. The solution to this problem is to force a condition of very loose 

coupling on both the logical/control decision making process as well as the 

physical linkages of components. This property of "universal" loose coupling 

results in an environment in which the various components are required to 

operate in an autonomous manner. 

If a single design principle must be identified as the most important or 

central theme of FDPS design, it is component autonomy or "cooperative 

autonomy" as described below. All of the other features of the definition of 

Fully Distributed Processing Systems given below have resulted from determin-

ing what is required to support and utilize the autonomous operation of the 

very loosely-coupled physical and logical resources. 

2.2 TH  DEFINITION  DEAR FDPS  

Fully Distributed Processing Systems (FDPS) were first defined by Enslow 

in 1976 [Ens178] although the designation "fully" was not added until 1978 

when it became necessary to clearly distinguish this class of distributed 

processing from the many others being presented. An FDPS is distinguished by 

the following characteristics: 

1. Multiplicity  DI resources:  an FDPS is composed of a mul-
tiplicity of general-purpose resources (e.g., hardware and 
software processors that can be freely assigned on a short-term 
basis to various system tasks as required; shared data bases, 
etc.). 

2. Component interconnection:  the active components in the FDPS 
are physically interconnected by a communications network(s) 
that utilizes two-party, cooperative protocols to control the 
physical transfer of data (i.e., loose physical coupling). 

3. Unity  of control:  the executive control of an FDPS must define 
and support a unified set of policies (i.e., rules) governing 
the operation and utilization or control of all physical and 
logical resources. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 11 

II. 	System transparency:  users must be able to request services by 
generic names not being aware of their physical location or 
even the fact that there may be multiple copies of the resour-
ces present. (System transparency is designed to aid rather 
than inhibit and, therefore, can be overridden. A user who is 
concerned about the performance of a particular application can 
provide system specific information in order to aid in the 
formulation of management control decisions.) 

5. 	Component autonomy:  both the logical and physical components 
of an FDPS should interact in a manner described as 
"cooperative autonomy" [Clar80, Ens178]. This means that the 
components operate in an autonomous fashion requiring coopera-
tion among processes for the exchange of information as well as 
for the provision of services. In a cooperatively autonomous 
control environment, the components are afforded the ability to 
refuse requests for service, whether they be execution of a 
process or the use of a file. This could result in anarchy 
except for the fact that all components adhere to a common set 
of system utilization and management policies expressed by the 
philosophy of the executive control. 

2.2.1 Discussion  At the Definiti94a1 Criteria  

In order for a system to qualify as being fully  distributed it must pos-

sess all five of the criteria presented in this definition. 

2.2.1.1 Multiple Resources and Their Utilization 

The requirement for resource multiplicity concerns the assignable 

resources that a system provides. Therefore, the type of resources requiring 

replication depends on the purpose of a system. For example, a distributed 

system designed to perform real-time computing for air traffic control 

requires a multiplicity of special-purpose air traffic control processors and 

display terminals. It is not required that replicated resources be exactly 

homogenous, however, they must be capable of providing the same services. 

In addition to this multiplicity, it is also required that the system 

resources be dynamically reconfigurable to respond to a component failure(s). 

This reconfiguration must occur within a "short" period of time so as to 

maintain the functional capabilities of the overall system without affecting 

the operation of components not directly involved. Under normal operation the 

system must be able to dynamically assign its tasks to components distributed 

throughout the system. 

The extent to which resources are replicated can vary from those systems 

where none are replicated (not  a fully distributed system) to systems where 

all assignable resources are replicated. In addition, the number of copies of 

Georgia Institute of Technology 	 FDPS Control Models 



Page 12 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

a particular resource can vary depending on the system and type of resource. 

In general, the greater the degree of replication, particularly of resources 

in high demand, the greater the potential for attaining benefits such as 

increased performance (response time and throughput), availability, 

reliability, and flexibility [Ens178]. 

2.2.1.2 Component Interconnection and Communication 

The extent of physical distribution of resources in distributed systems 

can vary from the length of connection between components on a single 

integrated chip to the distance between two computers connected through an 

international network. 	In addition, interconnection organizations can vary 

from a single bus to a complex mesh network. 	Since a component in a 

distributed system communicates with other components through its own logical 

process, all physical and logical resources can be thought of as processes, 

and interactions between resources can be referred to as interprocess com-

munication [Davi79]. For example, an application program interacting with 

processors and data files is accomplished through communication between 

logical processes. 

Both the physical and logical coupling of the system components are 

characterized as "extremely loose." "Gated" or "master-slave" control of 

physical transfer is not allowed. Communication, i.e., the physical transfer 

of messages, is accomplished by the active cooperation of both the sender and 

addressees. The primary requirement of the intercommunication subsystem is 

that it support a two-party cooperative protocol. This is essential to enable 

the system's resources to exist in cooperative autonomy at the physical level. 

The advantages of using a message-based (loosely-coupled) communication 

system with a two-party cooperative protocol include reliability, 

availability, and extensibility. The disadvantage is the additional overhead 

of message processing incurred to support this method of communication. There 

are a variety of interconnection organizations and communication techniques 

that can be used to support a message-based system with a two-party 

cooperative protocol. 

2.2.1.3 Unity of Control 

In a fully distributed data processing system, individual processors 

will each have their own local operating systems, which may or may not be 

unique, that control local resources. As a result, control is distributed 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 13 

throughout the system to components that operate autonomously of one another. 

However, to gain the benefits of distributed processing it is required that 

the autonomous components of the system cooperate with each other to achieve 

the overall objectives of the system. To insure this, the concept of a high-

level operating system was created to integrate and unify, at least concep-

tually, the decentralized control of the system. 

A high-level operating system is essential to successfully implementing 

a distributed processing system. This operating system is not a centralized 

block of code with strong hierarchical control over the system, but rather it 

is a well-defined set of policies governing the integrated operation of the 

system as a whole. To insure reliable and flexible operation of the system, 

these policies should be implemented with minimal binding to any of the 

system's components [Ens178]. 

What policies are required and how they should be implemented depends 

greatly on the system. For example, if it is a general-purpose system sup-

porting interactive users, then a command interpreter and a user control 

language will be required to make the system's components compatible and 

transparent to the user. 

2.2.1.4 Transparency of System Control 

The high-level operating system also provides the user with his inter-

face to the distributed system. As a result, the user is accessing the system 

as a whole rather than just a host computer in the network. 

In order to increase the effectiveness of the distributed system, the 

actual system is made transparent, and the user is presented with a virtual 

machine and a simplified command language to access it. The user uses this 

language to request services by name and does not have to specify the specific 

server to be used. Clearly, the same request might be assigned a different 

server depending on the state of the total system when the request is made. 

However, to make the system truly effective for all users, knowledgeable 

individuals must be able to interact with the system more intimately, request-

ing specific servers or developing service routines to increase the efficiency 

or effectiveness of the system [Ens178]. 

2.2.1.5 Cooperative Autonomy 

Cooperative autonomy has already been described at the physical inter-

connection level. It is also required that all resources be autonomous at the 

Georgia Institute of Technology 	 FDPS Control Models 



Page 14 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

logical control level. That is, a resource must have full control of itself 

in determining which requests it will service and what future operations it 

will perform. However, a resource must also cooperate with other resources by 

operating according to the policies of the high-level operating system. 

Cooperative autonomy is an essential prerequisite for systems to have fault 

tolerance and high degrees of extensibility [Ens178]. It is perhaps the most 

important as well as the most distinguishing characteristic of a fully 

distributed processing system. 

2.2.2 Effects  szn System. Organization  

Although the detailed design of the hardware and software required to 

implement an FDPS is still in progress, it has been possible for some time to 

identify certain characteristics that these components must have. One area in 

which certain criteria already appear reasonably well defined is the nature of 

the organization of the following system components: 

- Hardware 
- System control software 
- Data bases 

It should be noted that a number of definitions and descriptions of 

distributed systems in general  are based on the principle that one  . more  of 

these components is Physically distributed.  (Some such discussions add to 

this list a fourth component --- "processing or function;" however, consider-

ing the distribution of processing independent from the distribution hardware 

is quite improper. Why distribute the hardware if it will not have some func-

tion to perform; similarly, how can the processing be distributed without a 

corresponding distribution of the hardware? That would be processing on a 

truly "virtual machine.") 

An important characteristic of an FDPS is that, in order to meet the 

definitional criteria given above while also attempting to provide as many as 

possible of the benefits listed in Table 1, all  of the three components listed 

above must  te. Physically distributed  and the degree of distribution must  in 

each case exceed  a reasonably well-defined threshold.  A diagram illustrating 
this requirement is shown in Figure 1. The various organizations of each com-

ponent identified and positioned along each axis is not meant to be an 

exhaustive list. These points are listed to better identify the relative 

location of the three thresholds defining the volume of space occupied by 

FDPS's. (It might also be noted that it seems quite proper to characterize 

Georgia Institute of Technology 	 FDPS Control Models 



.../1///11PAINSIN.r. 	N'ir g pix p p , io  
`00 

r
$1,0  

PARTITIONED DATA BASE, 

CENTRAL MASTER DIRECTORY 
PARTITIONED DATA BASE, 

PARTITIONED DATA BASE, 

NO MASTER FILE OR DIRECTORY 

111111$0$1°° 	 SINGLE CENTRAL DIRECTORY 

COMPLETE 

DISTRIBUTED FILES, 

 
CENTRAL MASTER COPY 

COAAPLC  
REPLI  

S SINGLE  

SECONDARY STORAGE 

PRIMARY STORAGE 
0 	POP  

P/  

a? w r 
 uqwq  e;. g J 

 
E LL  

N u  

N a 

7 ❑ 

C 

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 15 Section 2 

any system that is not in the "origin cube" as being "distributed" to some 

degree.) 

ALLOWABLE 

REGION FOR FULLY 

DISTRIBUTED DATA 
PROCESSING SYSTEMS 

MULTIPLE 

COMPUTERS 

MULTIPLE 

PROCESSORS I  SEPARATE 
I "SPECIALIZED" 

FUNCTIONAL 

V MULTIPLE 

❑ 
EXECUTION UNITS 

Dr 

r'T SINGLE CPU 

I 

2 

B  

EXCLUDED 

CONTROL DISTRIBUTION & DECENTRALIZATION 

DIMENSIONS CHARACTERIZING DISTRIBUTION 

Figure 1. Axes of Distribution 

Georgia Institute of Technology 	 FDPS Control Models 



Page 16 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

2.3 IMPLICATIONS  a THE FDPS DEFINITION  a CONTROL  

2.3.1 General Nature  gl FDPS Executive Control  

Several of the characteristics of an FDPS are found to directly impact 

the design and implementation of the executive control for such a system. 

These include system transparency to the user, extremely loose physical and 

logical coupling, and cooperative autonomy as the basic mode of component 

interaction. System transparency means that the FDPS appears to a user as a 

large uniprocessor which has available a variety of services. It must be pos-

sible for the user to obtain these services by naming them without specifying 

any information concerning the details of their physical location. The result 

is that system control is left with the task of locating all appropriate 

instances (copies) of a particular resource and choosing the instance to be 

utilized. 

"Cooperative autonomy" is another characteristic of an FDPS heavily 

impacting its executive control. The "lower-level" control functions of both 

the logical and physical resource components of an FDPS are designed to 

operate in a "cooperatively autonomous" fashion. Thus, an executive control 

must be designed such that any resource is able to refuse a request even 

though it may have physically accepted the message containing that request. 

Degeneration into total anarchy is prevented by the establishment of a common 

set of criteria to be followed by all resources in determining whether a 

request is accepted and serviced as originally presented, accepted only after 

bidding/negotiation, or rejected. 

Another important FDPS characteristic that definitly affects the design 

of its executive control is the extremely loose coupling of both physical and 

logical resources. 	The components of an FDPS are connected by communication 

paths of relatively low bandwidth. 	The direct sharing of primary memory 

between processors is not acceptable. Even though the logical coupling could 

still be loose with this physical interconnection mechanism, the presence of a 

single critical hardware element, the shared memory would create fault-

tolerance limitations. All communication takes place over "standard" 

input/output paths. The actual data rates that can be supported are primarily 

a function of the distance between processors and the design of their 

input/output paths. In any event, the transfer rates possible will probably 

be much less than memory transfer rates. This implies that the sharing of 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 17 

information among components on different processors is greatly curtailed, and 

system control is forced to work with information that is usually out-of-date 

and, as a result, inaccurate. 

The control of an FDPS requires the action and cooperation of components 

at all layers of the system. This means that there are elements of FDPS 

control present in the lowest levels of the hardware as well as software com-

ponents. This paper is primarily interested in the software components of the 

FDPS control which are typically referred to as "the executive control." 

The executive control is responsible for managing the physical and 

logical resources of a system. It accepts user requests and obtains and 

schedules the resources necessary to satisfy a user's needs. As mentioned 

earlier, these tasks are accomplished so as to unify the distributed com-

ponents of the system into a whole and provide system transparency to the 

user. 

2.3.2 Why  lig_t Centralized Control?  

Why then is a centralized method of control not appropriate? In systems 

utilizing a centralized executive control, all of the control processes share 

a single coherent and deterministic view of the entire system state. An FDPS, 

though, contains only loosely-coupled components, and the communication among 

these components is restricted and subject to variable time delays. This 

means that one cannot guarantee that all processes will have the same view of 

the system state [Jens78]. In fact, it is an important characteristic of an 

FOPS that they will not have a consistent view. 

A centralized executive control weakens the fault-tolerance of the 

overall system due to the existence of a single critical element, the 

executive control itself. This obstacle, though, is not insurmountable for 

strategies do exist for providing fault-tolerance in centralized applications. 

Garcia-Molina [Garc79], for example, has described a scheme for providing 

fault-tolerance in a distributed data base management system with a 

centralized control. Approaches of this type typically assume that failures 

are extremely rare events and that the system can tolerate the dedication of a 

relatively long interval of time to reconfiguration. These restrictions are 

usually unacceptable in an FDPS environment where it is important to provide 

fault-tolerance with a minimum of disruption to the services being supported. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 18 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

Also, the extremely important issue of overall system performance must 

be considered. A distributed processing system is expected to utilize a large 

quantity and a wide variety of resources. If a completely centralized 

executive control is implemented, there is a high probability that a 

bottleneck will be created in the node executing the control functions. A 

distributed and decentralized approach to control attempts to remove this bot-

tleneck by dispersing the control decisions among multiple components on 

different nodes. 

2.3.3 Distributed  .yAL. Deceatral,ized  

This paper advocates utilizing an approach for the control of an FDPS 

that is both distributed and decentralized. There is a clear distinction 

between the terms "distributed" and "decentralized" as they are used in the 

context of this project. "Distributed control"  is characterized by having its 

executing components Physically located  .on, different nodes.  This means there 

are multiple loci  91 control  activity.  In "decentralized control,"  on the 

other hand, control decisions Agagade independently  by separate components  At. 

different locations.  In other words, there are multiple loci  .g1 control  

deaiqion  making. Thus, distributed and decentralized control has active com-

ponents located on different nodes and those components are capable of making 

independent control decisions. 

2.1 	FDPS APPLICATION  -- DATA  FLOW  PROCE.WING  

The operating characteristics specified for an FDPS appear to be 

especially suited to applications composed of cooperating processes that may 

be executed simultaneously. One class of such applications have been referred 

to as data flow networks [Denn78, Nels78]. They utilize the independence of 

the processors combined with the implicit potential for parallel operation of 

data flow networks to improve performance. In addition to potentially improv-

ing performance, the data flow approach often provides a more natural method 

for expressing a solution to a particular problem. Other systems, including 

ADAPT [Peeb80], Medusa [Oust80], and TRIX [Ward80], have been designed to ser-

vice similar types of applications. An application of this type can be 

expressed either as a command level program [Akin78] or a program in a high 

level language [Feld79, Macc80]. The execution of individual processes may 

result from the invocation of files containing either executable code or com-

mands. In such a system, calls to other processes (executable files or com- 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 19 

mand files) can originate from any process, and the nesting of such calls is 

unlimited. 

2.5 PROJECT SCOPE  AND ORGANIZATION  a THIS REPORT  

Following these two sections of introductory comments, this report 

discusses the results of an initial study of distributed and decentralized 

control including, where appropriate, material concerning the results of other 

projects in the Georgia Tech Research Program on Fully Distributed Processing 

Systems (FDPS). This initial study of FDPS control has been focused primarily 

on the qualitative aspects of various forms and implementations of control. 

The project description is as follows: 

"Define and refine existing models of distributed and decentralized 
control and develop new models as appropriate to provide a 
capability of fault tolerance, automatic reconfiguration, and 
dynamic control." 

It is important to note that very few "existing models of distributed 

control" have been identified and those that have been located are so incom-

pletely defined that this project has proceeded primarily by defining can-

didate models while attempting to develop a suitable taxonomy of other pos-

sible models. Since this project was undertaken fully cognizant that a 

quantitative study of the models would follow immediately, it is felt that the 

development of such a taxonomy will help to insure that no significant 

variations are overlooked. 

2.5.1 Discussion  of FDPS Models  

Along with the development of the various models for distributed and 

decentralized control, the FDPS team is also developing total system models. 

These system models provide an essential part of the description of the total 

environment within which the executive control must operate. Although it is 

clear at this time that these system models are still evolving, descriptions 

of their present versions are presented in Section 3. 

2.5.2 Issues  ja Decentralized Control  

Although most readers probably have some understanding of the functions 

of the executive control in a centralized system, the overall effects of the 

distributed environment and the set of totally new requirements placed on a 

decentralized executive control are perhaps not so obvious. The purpose of 

Section 4 is to discuss the effects of the operating environment and to 



Page 20 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2 

explicitly identify as many as possible of the new control requirements and 

limitations as well as variations from centralized control models. 

2.5.3 Work Reauests  

There is a strong relationship between the forms of work requests that 

the distributed system is expected to process and the capabilities required in 

the control model. Section 5 focuses on the variations possible in the work 

requests leaving the discussion of the resulting effects on the operation of 

the executive control until Section 7. 

2.5.4 Characteristics ALA, Decentralized Control Model  

Section 6 of this report presents and discusses those attributes that 

distinguish various models in the present  catalog of decentralized control 

models. (Note that this is not presented as a complete "taxonomy.") The 

attributes are characterized in terms of the information that needs to be 

maintained and the decisions that must be made by an executive control. Also 

discussed in this section are some of the operational aspects of the models 

identified thus far. 

2.5.5 Control Model Functions  

It is during a detailed discussion of the functions performed by an 

executive control that many of the aspects of decentralized control are best 

highlighted. In Section 7 discussion of the individual operations are 

presented and then representative examples of functions such as task graph 

building are discussed. (A task graph is used to maintain information about 

the processes being utilized to satisfy a work request. See Paragraph 7.1 for 

a more complete definition of task graphs.) Experience has shown that many 

individuals do not fully grasp the significance of distributed and 

decentralized control until they study examples such as those presented in 

Section 7. 

2.5.6 Example Control Models  

A few specific control models that have been developed thus far are 

presented in Section 8. These include control models advanced by other 

research teams as well as several developed in the FDPS research program. 

2.5.7 Control Model Evaluation  

Immediately following this survey of control models the various models 

will be evaluated. Section 9 presents a preliminary discussion of some of the 

evaluation criteria to be applied. 

Gporvla Institute of Technology 	 FDPS Control Models 



Section 3 
	

FDPS SYSTEM MODELS 	 Page 21 

SECTION 3 

FDPS SYSTEM MODELS 

3.1 INTRODUCTION  

Models serve extremely important, if not essential, roles in the 

development of complex systems. This is especially true for systems in which 

the effects of complexity are further complicated by inconsistencies, 

ambiguities, and incompleteness in the use of the terms that are employed to 

describe the structure as well as the operation of the systems involved and 

the components thereof. Suitable models are valuable, if not essential, tools 

to support and clarify such discussions. When examining or using any model, 

it is equally important to recognize that it may have been prepared or 

developed for a specific purpose (e.g., logical or physical description, 

simulator design, implementation guide, etc.) and may not be totally suitable 

for other uses. 

3.1.1 Why  a "New" Model and  ".New" Terminology? 

Since the concepts of "full distribution" were first conceived over four 

years ago, members of the FDPS project have been plagued by severe problems in 

explaining the significance of various aspects of the definition of an FDPS. 

Most of these problems have been caused by the difficulties in clearly com-

municating the extremely important differences between "fully" distributed 

systems and those that are merely "distributed." These problems in understan-

ding appear often to result from the "listener" incorrectly equating certain 

aspects of FDPS operation with those of a similarly appearing distributed 

system. Such misunderstandings are not totally unreasonable, for some of the 

most significant differences are quite subtle. One highly desirable effect 

anticipated from "new" system models and "new" terminology is to prevent, or 

at least make less likely, these undesirable associations with existing system 

concepts. 

3.1.2 Approaches ig Modelling  

There are a number of approaches that may be followed in the development 

of a system model. The selection of the approach to be taken is based on the 

intended use of the model and the nature of the system being modelled. 

Georgia Institute of Technology 	 FDPS Cnntrol Mocipls 



Page 22 
	

FDPS SYSTEM MODELS 	 Section 3 

3.1.2.1 Scenario or Flow Chart Models 

Certainly one of the most commonly encountered models is the simple flow 

chart. A flow chart depicts the thread or threads of processing that the 

system will perform in response to a given set of inputs. A flow chart is 

probably the best method to illustrate or model the sequence of processing 

activities involved in a transaction processing or similar type system. 

3.1.2.2 Structure Models 

Logical and physical structure models are focused more on the organiza-

tion and modularization of the processing software and hardware than on the 

actual processing those modules perform. Perhaps the most important use of 

structure models is in the partitioning of functionality and code for 

implementation. 

3.1.2.3 Interaction Models 

Interaction models which focus on the relationships between software and 

hardware processing entities are becoming quite popular in the area of com-

puter networks; however, they are certainly not limited to just those 

applications. The basic principle employed in the development of these models 

is layering with interactions between pairs of peer layers and sets of 

adjacent layers being specified. ,  The operation and functionality provided by 

each layer is defined in terms of its protocols and interfaces. 

The rules and procedures defining the interactions between peer layers 

are known as "protocols," whereas "interfaces" define the boundaries and 

procedures for interaction between adjacent layers. (See Figure 2) (This 

usage of the term "interface" is consistent with its definition as the boun-

dary between dissimilar entities.) To complete the system description at this 

level of abstraction, the interfaces are defined in terms of the services 

provided by a lower layer and the services provided to a higher layer. 

It should be noted that in the area of computer networking, the combina-

tion of a complete set of protocols and a complete set of interfaces is 

referred to as a "network architecture." 

Preparing a layered model with defined interfaces and protocols is no 

guarantee that a "clean" layering structure will result. A classic example of 

this is the ARPANET layers of protocol shown in Figure 3. Although they all 

make use of the Host-to-IMP protocol, there are many instances in ARPANET in 

which layers are bypassed completely. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 3 
	

FDPS SYSTEM MODELS 	 Page 23 

Protocols 

1 

<---- PN - - --> 

<--- FN-1 ---> 

<---- Pm ----> I 
I 
I 
I 
1 
1 
1 
1 
I 
1 
I 
I 

I 
I<---- P

2 
 ---->1 

I 
I 
I<---- P1 ----> 
I 

< 
	1 

i 
1 

1 
1 

< - - 

, 

'''''' 

<■■ 1  

<-- 

I <-- 
I 
I 
I 

1 
I 

1 

1<I 

I N  

-- Interfaces 

1 

1 

i 

i 

I 
I 
I 

I 
I 	Layer N 
1 

1 1 
Layer N 	1 

1 

1 
1 Layer N - 1 
1 

1 
Layer N - 1 	1 

1 

1 
1 
1 

1 

t 

1 
I 

• 
. 

1 
1 1 
1 ! 

Layer M Layer M 	I 

1 

1 
1 1 
1 
I 
I 

• 

1 
4. 	1 

I 	o 	I 
1 	

• 

i 
1 
1 1 

Layer 2 Layer 2 

1 1 
1 , 
I 

Layer 1 Layer 1 
I 

1 1 
I 
I 

Layer 0 

Figure 2. Protocols and Interfaces 

17'.4znv, ain 



Initial 
Connection 
Protocol 
(ICP) 

Page 24 
	

FDPS SYSTEM MODELS 	 Section 3 

Remote 
Job 

Entry 

File 
Transfer 
Protocol 
	

Telnet 
(FTP) 

Host-to-Host 

Host-to-IMP (Interface Message Processor) 

Figure 3. The ARPANET Protocol Layers 

Georgia Institute of Technology 	 FDPS Control Models 



Section 3 
	

FDPS SYSTEM MODELS 	 Page 25 

3.1.2.4 Performance and Mathematical Models 

Obviously, the objective or purpose of this class of models is to 

provide tools to examine, and usually quantify, the performance of a system. 

3.1.2.5 Summary of Model Types 

The various types of models discussed above lo not represent different  

ways LQ accomplish the same task.  Although there is some common information 

found in or derivable from two or more of the various type of models, each is 

actually focused on quite different aspects of the system description. 

- Physical structure model: Depicts the manner in which the various 
hardware and software components are partitioned  ancl packaged.  

- Logical structure model: Focuses on the functionality  provided by 
the hardware and software components and how they may be logically 
organized into modules. 

- Scenario or flow chart model: Depicts the sequence  of. processing  
actions  taken on the data. 

- Interaction model: Focuses on the interactions between processing  
entities  --- services provided to or received from adjacent layer 
entities and the protocols governing the communication and 
negotiations that can occur between corresponding peer layers. 

- Analytic model: Focuses on the performance  s2f, complete systems  or 
subsystems.  Often the external performance characteristics of the 
system being modelled are available. 

- Simulation model: Depicts a system or subsystem by modelling  as 
close  as  possible the operations that  j.  performs.  Provides more 
internal detail than an analytic model. 

3.2 OTHER MODELS  

Although the work on FDPS models has certainly been strongly influenced 

by the numerous existing "models" of multiprocessors, multiple computer 

systems, and computer networks, there has been very little influence from 

other "distributed system" models since few of these have been developed to 

the point that they can be closely analyzed. One model that has had a great 

deal of influence on the development of the FDPS models, at least in guiding 

the manner in which those models are presented, is the "Reference Model for 

Open System Interconnection" developed by Sub-Committee 16 of the Inter-

national Standards Organization Technical Committee 97. 

3.2.1 The. ISO Reference Model for OSI  

The ISO Reference Model, a layered-interaction model, is being prepared 

by Sub-Committee 16 to establish a framework for the development of standard 

nonncrin Tnaf i fiifc of TanhnnincrIr wropc 	 Mespie,le, 



Page 26 
	

FDPS SYSTEM MODELS 	 Section 3 

protocols and interfaces as appropriate for the interconnection of 

heterogeneous nodes in an "open" computer network and the intercommunication 

between the processes in these nodes. (This model is almost totally focused 

on the IPC process, i.e., interprocess communication.) The ISO model is a 

7-layer structure as shown in Figure 4. 

Although the ISO Reference model has been influential in providing ideas 

and concepts applicable to a layered model of an FDPS, there are two major 

factors limiting its direct applicability: 

1. The ISO model is almost totally concerned with communication 
between the nodes of a network. Some references are made to 
higher level protocols in the applications layer, but these are 
not a part of the ISO model. 

2. Although it is not explicitly stated, there appears to be a 
general assumption in the ISO model of a degree of coupling 
that is tighter than that anticipated for an FDPS. (This com-
ment also applies to nearly all of the current network 
architectures --- even those that include application layer 
protocols.) 

3.2.2 Protocol Hierarchies  

As stated above, the ISO Reference Model addresses only a subset of the 

protocols and interfaces that will be found in a complete distributed system. 

A more complete picture is shown in Figure 5. 

3.3 IRE FDPS MODELS 

3.3.1 The FDFS Logical Model  

The current version of the FDPS logical model is organized into five 

layers above the "physical interconnection" layer. (Figure 6) The important 

or significant characteristics of this logical model are: 

It is also a rudimentary layered-interaction model; however, to 
be useful, the interaction model must eventually delineate more 
layers. 

2. 	The operating system has been divided into two parts based on a 
division of functionality and responsibilities: 

a. The Local Operating System (LOS) is responsible 
for the detailed control and management of the 
users and resources at a single node. 

b. The 	Network Operating System 	(NOS) 	is 
responsible for interactions between this node 
and all others. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 3 
	

FDPS SYSTEM MODELS 	 Page 27 

3. 	The correlation of FDPS layers and ISO layers is the following: 

FDPS Lavers 	 ISO Lavers  

Users and Resources 
Local Operating System 
	

Application 
Network Operating System 

Message Handler 	 Presentation 
Session 

Transport 
Message Transporter 
	

Network 
Data Link 
Physical 

3.3.2 An. FDPS Physical Model  

One of the possible physical models for an FDPS operating system is 

shown in Figure 7. This is a good example of how logical models and physical 

models may differ in their modularization. In Figure 7, the division between 

the LOS and NOS layers of the logical model runs horizontal through the 

MANAGERS in the physical model. 

3.3.3 The FDPS Interaction Model  

All of the individual layers of the FDPS interaction model have not yet 

been identified; however, a more detailed list of the protocols that may be 

loosely related to Figure 5 is given in Figure 8. This list of protocols is 

especially significant to the FDPS research project since it identifies those 

specific areas in which work must be done. 

Tnc14-44-,4-", rsf 	 vmpc 



Page 28 
	

FDPS SYSTEM MODELS 	 Section 3 

1 Application 
1 

 

	Application Protocols----->I Application 

<----Presentation Protocols 	>I Presentation 

<---Session Control Protocols 	>I Session 

<--Transport Control Protocols 	>I Transport 

<---Network Control Protocols 	>I Network 
1 	  

 

Presentation 

Session 

Transport 

 

 

Network 

Data Link 

Physical 

  

   

  

I< 	Data Link Protocols 	>I Data Link 
1 1 

< 	Physical Protocol 	>I 	Physical 

  

Interconnection Media 

Figure 4. The ISO Reference Model for OSI 

Georgia Institute of Technology 	 FDPS Control Models 



	

Protocols 	1 1 
1 

1 

Communication 

	

<------ Protocols 	 

<--- Transport --> 
Protocols 

Sharing 	1 1 	Local 
and 	---->1 I Operating 

Host-to-Host 	1 1 i 	System 

1 
1 

Network 	1 
Operating 
System 
	 1 

1 
Presentation 1 
 1 

Session 
	 1 

Transport 
	 1 

1 

Network 	I 
1 

Data Link 

Physical 

FDPS SYSTEM MODELS 	 Page 29 Section 3 

-NOS System Calls by the LOS 

1 	Resources 
1 	& Users 
I -> 	 

1 	I 	 I 	1 
1 1 Resources 	1 1 
1 	1 	& Users 	1 	1 
I 
	 :<- Resource 	1 1 1 

Local 
Operating 
System 

Network 
Operating 
System 

Presentation 

Session 	I 

Transport 

Network 

Data Link 

Physical 

Interconnection Media 

1 < 

 

Communications 
	- Sub-net 	 

Protocols 

 

>i 

  

Figure 5. A "Complete" Protocol Hierarchy 

Georgia Institute of Technology 	 FDPS Contrn1 Mndpls 



FDPS SYSTEM MODELS 	 Section 3 Page 30 

USERS AND RESOURCES 

LOCAL OPERATING SYSTEM 

NETWORK OPERATING SYSTEM 	/ 

MESSAGE HANDLER 
\ 	 / 

\ MESSAGE TRANSPORTER / 
\ 	 / 
1 

PHYSICAL 
I INTERCONNECTION I 

1 
/ 	 \ 

/ MESSAGE TRANSPORTER \ 

MESSAGE HANDLER 

	

NETWORK OPERATING SYSTEM 	\ 
/ 	 \ 

LOCAL OPERATING SYSTEM 
/ 	 \ 

USERS AND RESOURCES 

Figure 6. A Logical Model of an FDPS 

Georgia Institute of Technology 	 FDPS Control Models 



FDPS SYSTEM MODELS 	 Page 31 Section 3 

*** NODE m *** 

1 
I 

I 

1 
1 	Users 
1 	(m) 

1 

Data 
Bases I 
(m) 	1 

I 	Processes 
I 	(m) 

1 
1 	COMMAND 
1 INTERPRETER I 
1 (m) i 
I 

Resources 
(m) 

1 1 I I 
1 

I 
1 

1 1 
1 

DATA 
BASE 

MANAGER 
(m) 

I 
I 

PROCESS 
I CONTROLLER I 
I (m) 1 
I 

PROCESS 
I 	MANAGER 	I 
1 	(m) 

RESOURCE 
MANAGER 

(m) 

1 I I 1 1 

MESSAGE HANDLER & TRANSPORTER 

1 I 
1 

I 
1 

1 1 
1 

DATA 
BASE 

MANAGER 
(n) 

I 
1 
I 

i 	PROCESS 	I 
1 CONTROLLER I 
I 	(n) 	1 

I 	PROCESS 	I 
I 	MANAGER 	1 
1 	(n) 	I 

RESOURCE 
MANAGER 

(n) 

1 1 I 1 
I 1 1 

	

Data 	1 
Bases I 

1 	(n) 	I 
I 	Processes 1 
I 	(n) 	1 

COMMAND 
1 INTERPRETER 1 
1 	(n) 	I 

1 Resources 
I 	(n) 

1 

*** NODE n *** 

Figure 7. Physical Model of FDPS Control 

Georgia Tnstitute of Teohnologv 	 vnpR rnni-A,n1 Mndalgx 



Page 32 
	

FDPS SYSTEM MODELS 	 Section 3 

Computer Network Protocols 
1 

Communications 
Protocols 

-(Processing 
Communication) 
I-Message Formatting 
I-Addressing 

-(Message Handling) 
I-Destination 
I resolution 
1-Connection 
I establishment 
1-Message transfer 

1-(End-to-end) 
I I-Presentation* 
' I-Session* 

-(Transport Subsystem) 
I-Transport* 

I 1-Network control* 
I-Data link* 

1 I-Physical* 
1 
I-(Communications Subnet) 
I I-Network control 
1 I 1-Routing 
I I 1-Broadcast 
I I-Data link 
I I-Physical  

Resource 
Sharing 
Protocols** 

1 
1-(Data Base Control) 

I-File naming 
1-File access 
I-File transfer 
I-Update concurrency 

control 

-(Access) 
I-Virtual terminal 
I-Access control 
I-User interface 

I-Human 
I-Internal 

I-(Work Request Processing) 
-Resource management 

-Identification of 
resource requirements 

-Resource location 
-Resource selection 
-Resource allocation 
-Resource deallocation 

-Task management 
1-Execution control 
I-Synchronization 
1-Failure recovery 

* Classifications (layers) defined by the ISO and CCITT 
Network Architecture Models 

** A preliminary list for FDPS's 

Figure 8. Classifications of Computer Network Protocols 

Georgia Institute of Technology 	 FDPS Control Models 



Section 4 
	

ISSUES IN DISTRIBUTED CONTROL 	 Page 33 

SECTION 4 

ISSUES IN DISTRIBUTED CONTROL 

Before examining specific aspects of executive control in an FDPS, a 

look at some of the various issues of distributed control is appropriate. 

There are three primary issues that require examination: 1) the effect of the 

dynamics of FDPS operation on an executive control, 2) the nature of the 

information an executive control must maintain, and 3) the principles to be 

utilized in the design of an executive control. 

4.1 DYNAMICS  

Dynamics is an inherent characteristic of the operation of an FDPS. 

Dynamics are found in the work load presented to the system, the availability 

of resources, and the individual work requests submitted. The dynamic nature 

of each of these provides the FDPS executive control with many unique 

problems. 

4.1.1 Workload Presented  ,, the System  

In an FDPS, work requests can be generated either by users or active 

processes and can originate at any node. Such work requests potentially can 

require the use of resources on any processor. Thus, the collection of 

executive control procedures must be able to respond to requests arriving at a 

variety of locations from a variety of sources. Each request may require 

system resources located on one or more nodes, not necessarily including the 

originating node. One of the goals of an FDPS executive control is to respond 

to these requests in a manner such that the load on the entire system is 

balanced. 

4.1.2 Availability  &LE Resources  

Another dynamic aspect of the FDPS environment concerns the availability 

of resources within the system. As mentioned above, a request for a service 

to be provided by a system resource may originate at any location in the 

system. In addition, there may be multiple copies of a resource or possibly 

multiple resources that provide the same functionality (e.g., there may be 

functionally equivalent FORTRAN compilers available on several different 

nodes). Since resources are not immune to failures, the possibility of losing 

existing resources or gaining both new and old resources exists. Therefore, 

an FDPS executive control must be able to manage system resources in a dynamic 

acsnrcrim Tncf i fnfP of TPohnnlnav 
	

FDPS Control Models 



Page 31 
	

ISSUES IN DISTRIBUTED CONTROL 	 Section 4 

environment in which the availability of a resource is unpredictable. 

4.1.3 Individual Work Reauests  

Finally, the dynamic nature of the individual work requests must be 

considered. As mentioned above, these work requests define, either directly 

or indirectly, a set of cooperating processes which are to be invoked. An 

indirect definition of the work to be done occurs when the work request is 

itself the name of a command file or contains the name of a command file in 

addition to names of executable files or directly executable statements. A 

command file contains a collection of work requests formulated in command 

language statements (see Figure 10 for a description of the syntax for a 

suitable command language) that are interpreted and executed when the command 

file is invoked. The concept of a command file is similar to that of a 

procedure file which is available on several current systems. 

Management of the processes for a work request thus includes the pos-

sibility that one or more of the processes are command files requiring command 

interpretation. The presence of command files will also result in the 

inclusion of additional information in the task graph or possibly additional 

task graphs. (See paragraph 7.5 for a discussion of the impact of command 

files on the task graph.) 

An important objective of work request management is to control the set 

of processes and do so in such a manner that the inherent parallelism present 

in the operations to be performed is exploited to the maximum. In addition, 

situations in which one or more of the processes fail must also be handled. 

4.2 INFORMATION  

All types of executive control systems require information in order to 

function and perform their mission. The characteristics of the information 

available to the executive control is one aspect of fully distributed systems 

that result in the somewhat unique control problems that follow: 

1. Because of the nature of the interconnection links and the 
delays inherent in any communication process, system informa-
tion on hand is always out of date. 

2. Because of the autonomous nature of operation of all com-
ponents, each processor can make "its own decision" as how to 
reply to an inquiry; therefore, there is always the possibility  
that information received is incomplete and/or inaccurate. 

3. Because of the inherent time delays experienced in exchanging 

Georgia Institute of Technology 	 FDPS Control Models 



Section It 
	

ISSUES IN DISTRIBUTED CONTROL 	 Page 35 

information among processes on different nodes, some informa-
tion held by two processes may conflict  during a particular 
time interval. 

4.3 DESIGN PRINCIPLES  

Designing the system control functions required for the extremely 

loosely-coupled environment of an FDPS and implementing those functions to 

operate in that environment will certainly require the application of some new 

design principles in addition to those commonly utilized in operating systems 

for centralized systems. These design principles must address at least the 

two distinguishing characteristics of FDPS's: 

- System information available, and 
- Nature of resource control 

4.3.1 System Information  

The various functions of an FDPS executive control must be designed 

recognizing that system information is: 

- "Expensive" to obtain 
- Never fully up-to-date 
- Usually incomplete 
- Often inaccurate 

All of these characteristics of system information result from the fact 

that the components providing the information are interconnected by relatively 

narrow bandwidth communication paths (see paragraph 2.3.1) and that those com-

ponents are operating somewhat autonomously with the possibility that their 

state may change immediately after a status report has been tansmitted. 

Further, it\is important to note that the mere existence (or disappearance) of 

a resource is not of interest to a specific component of the FDPS executive 

control until that component needs that information. 

The 

identified 

1. 

	

design 	principles 	applying 	to 	system information that 

thus far include the following: 

	

Economy 	gr. 	communication: 	ask 	for 	only 	the 	information 

have been 

required. 

2. Resiliency: be prepared to recover and continue in the absence 
of replies. 

3. Flexibility: be 	prepared 	to 	recover 	and 	continue if the 
information 
utilized. 

provided 	proves 	to 	be 	inaccurate 	when it 	is 

Georgia Institute of Teohnoloav 	 FDPS Control Models 



Page 36 
	

ISSUES IN DISTRIBUTED CONTROL 	 Section 4 

4.3.2 Resource Control  

Since all of the resources are operating under local control under the 

policies of cooperative autonomy, all requests for service, or the utilization 

of any resource such as a file, must be effected through negotiations that 

culminate in positive acknowledgements by the server. In all instances, the 

control function requesting a service or a resource must be prepared for 

refusal. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 5 
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Page 37 

SECTION 5 

CHARACTERIZATION OF FDPS WORK REQUESTS 

5.1 THE WORK REQUEST  

One of the goals of an FDPS is the ability to provide a hospitable 

environment for solving problems that allows the user to utilize the natural 

distribution of data to obtain a solution which may take the form of an 

algorithm consisting of concurrent processes. The expression of the solution 

is in terms of a work request that describes a series of cooperating proces-

ses, the connectivity of these processes (how the processes communicate), and 

the data files utilized by these processes. This description involves only 

logical entities and does not contain any node specific information. A 

description of one command language capable of expressing requests for work in 

this fashion can be found in [Akin78] (see Figure 10). 

5.2 IMPACT  DE. THE WORK REQUEST 21. THE CONTROL  

The nature of allowable work requests (not just the syntax but what can 

actually be accomplished via the work request) determines to a large extent 

the functionality of an executive control. Therefore, it is important to 

examine the characteristics of work requests and further to see how variations 

in these characteristics impact the strategies utilized by an FDPS executive 

control. 

Five basic characteristics of work requests have been identified: 

1. the external visibility of references to resources required by 
the task, 

2. the presence of any interprocess 	communication (IPC) 
specifications, 

3. the number of concurrent processes, 

4. the nature of the connectivity of processes, and 

5. the presence of command files. 

5.2.1 Visibility kt References  .ta Resources  
References to the resources required to satisfy a work request may 

either be visible prior to the execution of a process associated with the work 

request or embedded in such a manner that some part of the work request must 

be executed to reveal the reference to a particular resource. A resource is 

made "visible" either by the explicit statement of the reference in the work 

ac,nrmin Tnetifilfc, of Tonhnninav 	 PMPR Contrn1 



Page 38 
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Section 5 

request or through a declaration associated with one of the resources 

referenced in the work request. An example of the latter means of visibility 

is a file system in which external references made from a particular file are 

identified and stored in the "header" portion of the file. In this case, the 

identity of a reference can be obtained by simply accessing the header. 

The greatest impact of the visibility characteristic of resource 

requirements occurs in the construction of task graphs and the distribution of 

work. The time at which resource requirements are detected and resolved 

determines when and how parts of the task graph can be constructed. 

Similarly, some work cannot be distributed until certain details are resolved. 

For example, consider a case where resource references cannot be resolved 

until execution time. Assume there exists two processes X and Y where process 

X has a hidden reference to process Y. An executive control cannot consider Y 

in the work distribution decision that is made in order to begin execution of 

X. The significance of this is that certain work distribution decisions may 

not be "globally optimal" because total information was not available at the 

time the decision was made. 

5.2.2 The Number  91 Concurrent Processes  

A work request can either specify the need to execute only a single 

process or the execution of multiple processes which may possibly be executed 

concurrently. Obviously with multiple processes, more resource availability 

information must be maintained; and there is a corresponding increase in the 

data to the work distribution and work allocation phases of control. In 

addition, the complexity of the work distribution decision algorithm increases 

with more resources needing to be allocated and multiple processes needing 

scheduling. The complexity of controlling the execution of the work request 

is also increased with the presence of multiple processes since the control 

must monitor multiple processes for each work request. 

5.2.3 The Presence  gf Interprocess Communication  

The problems described in the previous paragraph are amplified by the 

presence of communication connections between processes. When interprocess 

communication is described in a work request, the work distribution decision 

must consider the requirement for communication links. In addition, a com-

promise must be made in order to satisfy the conflicting goals of maximizing 

the inherent parallelism of the processes of the work request and minimizing 

Georgia Institute of Technology 	 FDPS Control Models 



Section 5 
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Page 39 

the cost of communication among these processes. 	The control activity 

required during execution is also impacted by the presence of interprocess 

communication. It must provide the means for passing messages, buffering mes-

sages, and providing synchronization to insure that a reader does not under-

flow and a writer does not overflow the message buffers. 

5.2.4 The Nature  91 Process Connectivity  

There are a variety of techniques available for expressing interprocess 

communication including pipes (see [Ritc78)) and ports (see [Balz71, Have78, 

Suns77, Zuck77]). 	There are a number of approaches to realizing these 

different forms of interprocess communication. 	The main impact on an 

executive control, though, is in those components controlling process 

execution. 

5.2.5 The Presence  Q.  Command Files  

A command file is composed of work requests. 	Execution of a work 

request that references a command file results in a new issue dealing with the 

construction of task graphs. This issue is concerned with whether a new task 

graph should be constructed to describe the new work request or should these 

new processes be included in the old task graph. The differences between 

these two approaches becomes important during work distribution. It is 

assumed that the work distribution decision will be made only with the 

information available in the task graph. Thus, with the first approach, only 

those tasks in the new work request are considered while the second approach 

provides the ability to take into consideration the assignment of tasks from 

previous work requests. 

5.3 A CLASSIFICATION  Q. WORK REQUESTS  

This examination of the characteristics of FDPS work requests has lead 

to the identification of five basic attributes which have significant impact 

on an executive control. In Figure 9, all possible types of work requests are 

enumerated resulting in 32 different forms of work requests. It should be 

noted, though, that 16 of these (those with an asterisk beside the task num-

ber) contain conflicting characteristics and thus are impossible. 

nonv.aia 	 of TPohnnlnau 	 MIPS nnylf.r.n1 MnriAlp 



page 40 
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Section 5 

No. 

Resource 
All 

I Visible 

References 
Some 

Embedded 
IPC 

YES I NO 

I Resources' 
1Distribut- 

ed on 
Different 

Nodes 
YES I NO 

Multiple 
Copies 

Resources 
YES I NO 

Some 
Resources 
on Node 
Other Than 
Home Node 
YES I NO 

1 X I X I X 
2 X I X X 
3* X I X X 	I 	X X 
4* X X X X X 
5* X X X X X 
6 X I X X X X 
7* X X X X X 
8 X I x X X X 
9 X X X 
10 X X X 
11* X X X 
12* X X X 
13* X X I X 
14 X X X 
15* X X 1i  X x I 	IX 
16 X 
17 1 X 1 	X X 
18 1 X ' 	X X 
19* 1 X X X 
20* 1 X X X 
21* 1 X X X 
22 1 X X 	I X X 	I 	X 
23* 1 X X 	I X 
24 I X X 	I X 
25 1 X X I 	I I 	X 
26 1 X X I 	I X 
27* 1 X X I 	I X 
28* i X X I 	I X 
29* 1 X X I 	I . X 
30 1 X X I 	I X 
31* 1 X X I 	I X 
32 I X X I 	1 X 

Figure 9. Classification of Work Requests 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 41 

SECTION 6 

CHARACTERISTICS OF FDPS CONTROL MODELS 

6.1 APPROACHES 	IMPLEMENTING FDPS EXECUTIVE CONTROL  

There are two basically different approaches available for implementing 

an operating system for a distributed processing system, the base-level 

approach and the meta-system approach [Thom78]. The base-level approach does 

not utilize any existing software and, therefore, requires the development of 

all new software. This includes software for all local control functions such 

as memory management and process management. In contrast, the meta-system 

approach utilizes the "existing" operating systems (called local operating 

systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced" 

to the distributed system by a network operating system (NOS) which is 

designed to provide high level services available on a system-wide basis. The 

meta-system approach is usually preferred due to the availability of existing 

software to accomplish local management functions, thus, reducing development 

costs [Thom78]. 

Figure 6 depicts a logical model applicable to an FDPS executive control 

utilizing either approach. The LOS handles the low-level (processor-specific) 

operations required to directly interface with users and resources. In the 

meta-system approach, the LOS represents primarily the operating systems 

presently available for nodes configured in stand-alone environments. The LOS 

resulting from a base-level approach has similar functionality; however, it 

represents a new design, and certain features may be modified in order to 

allow the NOS to provide certain functions normally provided by the LOS. Any 

"network" operations are performed by the NOS. System unification is realized 

through the interaction of NOS components, possibly residing on different 

processors, acting in cooperation with appropriate LOS components. Communica-

tion among the components is provided by the message handler which utilizes 

the message transport services. 

6.2 INFORMATION REQUIREMENTS  

Two types of information are required by an executive control, informa-

tion concerning the structure of the set of tasks required to satisfy the work 

request and information about system resources. This data is maintained in a 

variety of data structures by a number of different components. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 42 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 

6.2.1 Information Reauirements for Work Reauests  

Each work request identifies a set of cooperating tasks, nodes in a 

logical network that cooperate in' execution to satisfy a request and the con-

nectivity of those nodes. Figure 10 illustrates the notation used in this 

project to express work requests. An example of a work request using this 

notation is presented in Figure 11. Work requests as linear textual forms can 

be easily accepted and manipulated by the computer system; however, task 

graphs, which are an internal control structure used to describe work 

requests, must be represented in a manner such that the linkage information is 

readily available. This can take the form of the explicit linking of node 

control blocks (Figure 12) or an interconnection matrix (Figure 13). 

Information concerning a particular task, i.e., logical node, is 

maintained in a node control block (Figure 12). Associated with each logical 

node is an execution file, a series of input files, and a series of output 

files. The node control block contains information on each of these entities 

that includes the name of the resource, the locations of possible candidates 

that might provide the desired resource, and the location of the candidate 

resource chosen to be utilized in the satisfaction of the work request. In 

addition to this information, the node control block maintains a description 

of all interprocess communication (IPC) in which the node is a party. This 

consists of a list of input ports and output ports. (Interprocess communica-

tion is a term describing the exchange of messages between cooperating proces-

ses of a work request.) Typically, a message is "sent" when it is written to 

the output port of a process. The message is then available for consumption 

by any process possessing an input port that is connected to the previously 

mentioned output port. The message is actually consumed or accepted when the 

process owning the connected input port executes a READ on that port. 

A global view of interprocess communication is provided by the node 

interconnection matrix (Figure 13). This structure indicates the presence or 

absence of an IPC link between an output port of one node and an input port of 

another node. Thus, links are assumed to carry data in only a single direc-

tion. 

An example of a task graph resulting from the work request in Figure 11 

utilizing the direct linking of node control blocks is presented in Figure 14. 

Figure 15 illustrates the utilization of an interconnection matrix. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 43 

<work request> ::= [ <logical net> { ; <logical net> } ] 

<logical net> ::= <logical node> { <node separator> 
{ <node separator> } <logical node> } 

<node separator> ::= , I <pipe connection> 

<pipe connection> ::= [ <port> ] 	[ <logical node number> ] 
.<port> ] 

<port> ::= <integer> 

<logical node number> ::= <integer> 1 $ I <label> 

<logical node> ::= [ :<label> ] [ <simple node> I 
<compound node> ] I 
( <simple node> 1 <compound node> ) 

<simple node> ::= { <i/o redirector> } <command name> 
{ <i/o redirector> I <argument> } 

<compound node> ::= { <i/o redirector> } 'I' <logical net> 
( <net separator> <logical net> } , }t 
{ <i/o redirecotr> } 

<i/o redirector> ::= <file name> '>' [ <port> ] I 
[ <port> ] '>' <file name> I 
[ <port> ] '>>' <file name> I 

1 >> 1  [ <port> ] 

<net separator> ::= ; 

<command name> ::= <file name> 

<label> ::= <identifier> 

Figure 10. Work Request Syntax 
(Taken from [AKIN78]) 

neorvin Tnstitnte of Teohnolnav 	 FTWS Control Models 



Page 44 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 

Work Request: 

pgml 1 pgm2 11a 21b :a pgm3 1 pgm4 10.1 :b pgm5 1 pgm6 1.2 :c pgm7 
(0) 	(1) (2) (3) 	(4) 	(5) 	(6) 	(7) 	(8) 	(9) 

(0) Output port 1 of pgml is connected to 
Ouptut port 1 of pgm2 is connected to 
logical node labeled "a," pgm3. 

(2) Output port 2 of pgm2 is connected to 
logical node labeled "b," pgm5. 

(3) Label for the logical node containing 
module. 

(4) Output port 1 of pgm3 is connected to 
(5) Output port 1 of pgm4 is connected to 

logical node labeled "c," pgm7. 
(6)Label for the logical node containing 

module. 
(7) Output port 1 of pgm5 is connected to 
(8) Output port 1 of pgm6 is connected to 
(9)Label for the logical node containing 

module. 

input port 1 of pgm2. 
input port 1 of the 

input port 1 of the 

pgm3 as its execution 

input port 1 of pgm4. 
input port 1 of the 

pgm5 as its execution 

input port 1 of pgm6. 
input port 2 of pgm7. 
pgm7 as its execution 

Data Flow Graph of the Work Request: 

pgml 

V 
pgm2 

I 
I 

I 	 1 
1 1 	 1 

V 
pgm3 	pgm5 

1 	1 1 

V 	V 
pgm4 	pgm6 

I 	 
11 

1 
VV 

pgm7 

Figure 11. Example of a Work Request 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page l5 

EXECUTION FILE 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

INPUT FILE 1 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

INPUT FILE i 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

OUTPUT FILE 1 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

OUTPUT FILE j 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

IPC 

Input Ports: 
Output Ports: 

Figure 12. Node Control Block 

Genrgrin InstitutP of Tranhnnlnay 
	 rmDe 	 Me.A.mln 



Page 46 	 CHARACTERISTICS OF FDPS CONTROL MODELS 	Section 6 

RECEIVER 

N1 	 Nn 

R 1 	Rm 	 Ri 	Rp  

********************************** *** 
* 	1 	1 	* 	* 	1 	I 	* 

S 1 	* 	1...1 	* 	 1... 1 
* 	1 	I 	* 	* 	I 	1 	* 

N 1  

* 	* 
** • . 
* 	* . 
* 	* 

• • • 

     

* 	 * 1 	I I 	1 	 * 	1 	1 1 
S 	* 	1...1 	* 	 * 	1...1 	* 
i * 	1 1 	1 1 	* 	* 	1 	1 	* 

************************************* 
* 	 * 

S 	 * 	 * 
E 	. 	* 	 . 	 * 
N 	. 	* 	 . 	 * 
D 	. 	* 	 . 	 * 
E 	 * 	 * 
R 	 * 	 * 

************************************* 
* 	1 1 	1 	* 	* 	i 	1 	* 1 

S 1 	* 	1...1 	
* 	* 	1...1 	a 

* 	I 	1 	* 	* 	I 	I 	* 
Sk * 	1...1 	* 	* 	I...I 	* 

* 	I 	1 	* 	* 	I 	1* 
************************************* 

Node Port 

Figure 13. Node Interconnection Matrix 

*I 	I 	* 	 *____1____1____* 1 	1 
* 	* 	* 	* 

• . 	 . 
Nn 	. * it 	* 	* 

* 	 * 
 

* 	
... 

* 	
. 

• . 	 . 
* 	* 	* 	* 

Node 

Port 

Georgia Institute of Technology 	 FDPS Control Models 



1 Name: pgm5 	 1 
1 Candidates: 1  
1 Chosen Candidate: 
1 Input Port 1: 
I Output Port 1: 	 
1 	  

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 47 Section 6 

1 
1 Name: pgml 	 1 
1 Candidates: 	 1 
1 Chosen Candidate: 	1 
1 Output Port 1: 	 1 
1 	 1 

I Name: pgm2 	 1 
1 Candidates: 	 1 
1 Chosen Candidate: 
1 Input Port 1: 
1 Output Port 1: ------1---
1 Output Port 2: 	1- 

1 
1 Name: pgm3 
1 Candidates: 
1 Chosen Candidate: 
1 Input Port 1: 
1 Output Port 1: ------ 
1 	  

<— 

Name: pgm4 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Output Port 1: 

Name: pgm7 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Input Port 2: 

1 
1 Name: pgm6 
1 Candidates: 
1 Chosen Candidate: 
1 Input Port 1: 

--- 	1 Output Port 1: 	 

1 < - - 
1 < 
1 

Figure 14. Example of a Task Graph Using Links within the 
Node Control Blocks 

(Based on the Work Request Shown in Figure 11) 

nonraia Tri!rvEitAltp of TAnhnnlnav 	 pnwQ 	 MnAc.10 



Page 48 	 CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 

RECEIVER 

1 1 

2 	3 	4 	5 	6 	7 	 Node 

1 	1 	1 	1 	1 	2 	Port 

***************************** 
* 	* 	* 	* 	* 	* 
* 1 * 	* 	* 	* 	* 	I 	* 
* 	* 	* 	* 	* 	* 	I 	* 
***************************** 

* 	* 	* 
1 * 1 	* 	* 	* 	* 	1 

2 * 	* 	* 	* 	* 	* 	* 
* 	* 	* 	* 	ft 	* 	I 	* 

2 * 	* 	* 	* 1 	* 	* 	1 	* 
* 	* 	* 	* 	* 	* 1 	* 

E ***************************** 
N * 	* 	* 	* 	* 
D 3 1 * 	• 	* 1 	• 	• 	• 
E * 	* 	* 	* 	* 
R ***************************** 

* 	* 	* 	* 	* 	* 	* 
4 1 • 	• 	• 	• 	• 	• 1 	1 	• 

* 	* 	* 	* 	* 	* 	/ 	* 
***************************** 
* 	* 	* 	* 	* 	* 	1 

5 1 * 	* 	* 	* 	• 1 • 
* 	* 	* 	* 	* 	* 	1 	* 
***************************** 
* 	* 	* 	* 	* 	* 	1 	* 

6 1 * 	* 	* 	* 	* 	* 	1 	1 	* 
* 	* 	* 	* 	* 	* 	1 	* 
***************************** 

Node Port 

Figure 15. Example of a Node Interconnection Matrix 

(Based on Work Request Shown in Figure 11) 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 49 

6.2.2 Information Requirements or System Resources  

Regardless of how the executive control is realized (i.e., how the com-

ponents of the executive control are distributed and how the control decisions 

are decentralized), information concerning all system resources (processors, 

communication lines, files, and peripheral devices) must be maintained. This 

information includes at a minimum an indication of the availability of resour-

ces (available, reserved, or assigned). Preemptable resources (e.g., proces-

sors and communication lines) capable of accommodating more than one user at a 

time may also have associated with them utilization information designed to 

guide an executive control in its effort to perform load balancing. 

As discussed below, there are a number of techniques that may be 

employed to gather and/or maintain the system resource information. 

6.3 BASIC OPERATIONS  OF FDPS CONTROL  

The primary task of an executive control is to process work requests 

that can best be described as logical networks. A node of a logical network 

specifies an execution file that may either contain object code or commands 

(work requests), input files, and output files. These files may reside on one 

or more physical nodes of the system and there may be multiple copies of the 

same file available. Thus, to process a work request, an FDPS executive 

control must perform three basic operations: 1) gather information, 2) 

distribute the work and allocate resources, and 3) initiate and monitor task 

execution. These operations need not be executed in a purely serial fashion 

but may take a more complex form with executive control operations executed 

simultaneously or concurrently with task execution as the need arises. 

Examination of the basic operations in further detail (Figure 16) 

reveals some of the variations possible in the handling of work requests. Two 

steps exist in information gathering --- 1) collecting information about task 

requirements for the work request and 2) identifying the resources available 

for satisfying the request requirements. Information gathering is followed by 

the task of distributing the work and allocating resources. If this operation 

is not successful, three alternatives are available. First, more information 

on resource availability can be gathered in an attempt to formulate a new work 

distribution. 	There may have been a change in the status of some resources 

since the original request for availability information. 	Second, more 

information can be gathered as above, but this time the requester will 

77711.10 



Page 50 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 

WORK REQUEST 
1 
	 >1 

1 

1 	 1 
1 Gather Information 1 
1 (Task Requirements) 1 
1  

I 	 1 
	 >1< 	  

1 	1 
Gather Information 	1 

(Resource Availability) 1 	1 
	 1 	1 YES 

1 

	

(A) I Distribute Work 	1 (B) 1 Bid to a 1 NO Report 
and 	1 	>1 Higher 1--->FAILURE 

	

1 Allocate Resources I 	1 Level? 1 	to User 
I 	 1 

	

1 	1 	 1 
I 	 1 

1 	 Notes: 
1(C) 

A: The proposed allocation 
is not accepted by the 

1 	(D) 	1 	 I 	resources. 
1< 	1 Execute Task 1 

1 	 1 	B: No solution with 
1 	 resources available at 
1 (E) 	 "this" price level. 
1 

C: Allocation accepted by 
1 	I 	 resources. 
1 Cleanup 1 
1 	I 	D: Appearance of a new 

task or request for 
additional resources. 

COMPLETED WORK REQUEST E: Normal or abnormal 
termination. 

Figure 16. Work Request Processing (Detailed Steps) 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 51 

indicate a willingness to "pay more" for the resources. This is referred to 

as bidding to a higher level. Finally, the user can simply be informed that 

it is impossible to satisfy his work request. 

6.3.1 Information Gathering  

Upon receiving a work request, the first task of the control is to 

discover what resources are needed to satisfy the work request (Figure 17) and 

which resources are available to fill these needs (Figure 18). Each work 

request includes a description of a series of tasks and the connectivity of 

those tasks. 	Associated with each task is a series of files. One is 

distinguished as the execution file and the rest are input/output files. 	The 

executive control must first determine which files are needed. It then must 

examine each of the execution files to determine the nature of its contents 

(executable code or commands). Each task will need a processor resource(s), 

and those tasks containing command files will also require a command 

interpreter. 

An FDPS executive control must also determine which of the system 

resources are available. For nonpreemptable resources, the status of a 

resource can be either "available," "reserved," or "assigned." A reservation 

indicates that a resource may be used in the future and that it should not be 

given to another user. Typically, there is a time-out associated with a 

reservation that results in the automatic release of the reservation if an 

assignment is not made within a specified time interval. The idea here is to 

free resources that otherwise would have been left unavailable by a lost 

process. The process may be lost because it failed, its processor failed, or 

the communication link to the node housing the particular resource may have 

failed. An assignment, on the other hand, indicates that a resource is 

dedicated to a user until the user explicitly releases that assignment. 

Preemptable resources may be accessed by more than one concurrent user and 

thus can be treated in a different manner. For these resources, the status 

may be indicated by more continuous values (e.g., the utilization of the 

resource) rather than the discrete values described above. 

6.3.2 Work Distribution and Resource Allocation 

The FDPS executive control must determine the work distribution and the 

allocation of system resources (Figure 19 & 20). This process involves choos-

ing from the available resources those that are to be utilized. This decision 

T.fte.4441.4-^ i.f TeAnhr.^li.r.lr 
	 vnpc ('nmfr.nl Mnric.le 



CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 Page 52 

SUBMISSION OF 
WORK REQUEST 

Examine Work Request and Begin 
Construction of Task Graph 

(At this point the task graph 
describes the "visible" nodes and 
their logical relationships 
as expressed in the work request) 

1 
I When is the Work Request Expanded? 

Piecemeal 	 1 Completely Before 
1 Execution Begins 
1 
I< 	  

1 	 1 
I Locate Each Visible Resource I 
1 	 1 

1 

I 
I Update the Task Graph 1 

	

1 	 1 

	

I 	 1 
1 Were Additional Resource I 
I Requirements Discovered? 1 
 1 

l< 	 

To 
Information Gathering 
(Resources Available) 

1 
I NO YES I 

 

 

Figure 17. Information Gathering (Resources Required) 

Georgia Institute of Technology 	 FDPS Control Models 



CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 53 Section 6 

From 
Information Gathering 
(Resources Required) 

1 	 From 
. All Information 
▪ Available On 
. Resources Required . 
. Has Been Obtained . 1 	 1 

1 Additional Information 1 
1 on Resources Available 1 

Required?  

1< 	Resource Allocation 
and Work Distribution 
	I 	 

	1 YES 	 NO I 

1 
I Resource Availability 1 	1 Resource Information I 
I Information Requested I 	I 	Already on Hand? 	1 

1 A 
	

1B 	 YES I 	NO 1 
V 
	

1 	1 
I 	I 
I 	I 

	

1 All Available 1 	I 	Resources 
1 	Resources 	1 	I 	Requested 

	

1 Automatically 1 	1 Automatically 
I 	Reserved 	1 	1 	Reserved 
I I I 1  

11 
1 	1 How Was Resource 
1 	1 Info. Obtained? 
1 	I 

/ YES 	NOV 	t NO 
1 	2 	1 

YES / 
2 

1 1 

V 
1 I 

1 	During Periodic 1 	1 All Nodes 1 All Nodes 
1 Previous I Queries 1 	1 Broadcast Broadcast 
I 	Info. 	1 by 1 	1 Complete/ 1 Resource 
1 Gatheringl RESOURCE 1 	1 Total Status 1 Availability 
I 	Session 	1 MANAGERS I 	I Info. 1 Info. 
1 I1 1 

IC 	DI 	1E 	F1 
	

1 F 	El 
V 
	

t 	If 
	

V 
3 
	

2 	2 	2 	2 
	

2 	2 	2 

LEGEND AND ,NOTES  

1: Resources Reserved During Information Gathering 
2: No Resources Reserved 
3: Some Resources May Be Reserved 
A: General, for all resources 
B: To meet specific task/job requirements 
C: Replies cover information on resources available only 
D: Replies cover information on the total status 
E: Broadcast only significant changes 
F: Periodic broadcasts at regular intervals 

Figure 18. Information Gathering (Resources Available) 

vmDc 	MnAmle 



"Bidding" 
to a 

Higher 
Level 

INO 
1 	YES! 

Report 
FAILURE 
to User 

Success 

To 
Work 

Assignment 

Transmit 
Reservation 
Requests/ 

Confirmation/ 
Release 

	

NO 1 	YES 1 
	 1 	1 

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 Page 54 

From Information Gathering 
(Resources Available) 

1 

1 
I Run Preliminary 1 
1 Resource Check I 
I 	 I 
	1 YES 	NO 1 

1 
1 	 1 YES 	1 
I 	Preliminary Check 	I or ? 	I I Make Preliminary 
1 Res.Avail > Res.Reqd 1 	>1 Resource Allocation 
1 	 I 	I 	1 	  
Definitely! 
	

1 	I NO 
NO 
	

1<-----1 

I No Solution I 	Run The 
I< 	 I Distribution/ 

Allocation 
Algorithm 

YES 1 
1 

Resources 
to be 

Reserved 

Resources 
Required 

1 

	

I 	 1 1 
To I Update 1 
Info.<--Z--1 Resource Info. f< 
Gathering 1 1 
(Resources 
Available) 

1YES 
1_ 

NO 

Resource 
Reservations 

Accepted 

   

   

Figure 19. Resource Allocation and Work Distribution 

Georgia Institute of Technology 	 FDPS Control Models 



CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 55 Section 6 

From 
Work 

Distribution 

	V. 

Transmit 1 	NO Release I YES 1 	Transmit 
Work K.-- Resources -->1 	Work 

Assignments 1 Not I 	1 Assignments 
1 Required 1 	1 

1 1 

1 
1 

1 	 1 
1 	Work 	1 
I Accepted 1 

1 
1 

1 
1 	Work 
1 Accepted 

1 1 1 
I I 1 1 
NO 	1 YES YES 1 NO 	1 

1 1 
1 1 

Release 	1 1 1 1 
1 Resources 1 	 >1 1 
I Not Used 	i 1 1 

1 1 

EXECUTE 	I 
1 	 TASK 1 	 1 

Note 	 To 
I Failure 	 > Information 
Of This 	 Gathering 

I Solution 	 (Resources 
I 

	

	 Available) 

Figure 20. Work AssignMent 

Genrcris Institute of Technoloctv 	 FDPS Control Models 



Page 56 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 

is designed to achieve several goals such as load balancing, maximum through-

put, and minimum response time. It can be viewed as an optimization problem 

similar in many respects to that discussed by Morgan [Morg77]. 

Once an allocation has been determined, the chosen resources are 

allocated and the processes comprising the task set are scheduled and 

initiated. If a process cannot be immediately scheduled, it may be queued and 

scheduled at a later time. When it is scheduled, a process control block and 

any other execution-time data structures must be created. 

6.3.3 Information Recording  

Information is recorded as a result of management actions as well as 

providing a means to maintain a historical record or audit trail of system 

activity. The information recording resulting from management actions 

maintains the system state and provides information for decision making. The 

historical information is useful in monitoring system security. It provides a 

means to examine past activity on a system in order to determine if a breach 

of security occurred or how a particular problem or breach of security may 

have occurred. 

Management information is maintained in various structures, including 

the task graph. The task graph is used to maintain information about the 

structure of an individual work request, and, thus, its contents change as 

progress on the work request proceeds. A task graph is created when a work 

request is first discovered, and information is then constantly entered into 

the structure as work progresses through information gathering to work 

distribution and resource allocation and on to task execution. The task graph 

remains active until completion of the work request. 

Much of the information contained in the task graph is applicable to 

historical records. In fact, the task graph can be used to house historical 

information as it is gathered during work request processing. Upon completion 

of the work request, the historical information is extracted and entered into 

the permanent historical file. Alternatively, the historical file can be 

created directly skipping the intermediate task graph structure. 

6.3.4 Task  Execution  

Finally, an executive control must monitor the execution of active 

processes. 	This includes providing interprocess communication, handling 

requests from active processes, and supervising process termination. 	The 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 57 

activities associated with interprocess communication include establishing 

communication paths, buffering messages, and synchronizing communicating 

processes. The latter activity is necessary to protect the system from 

processes that flood the system with messages before another process has time 

to absorb the messages. Active processes may also make requests to the 

executive control. These may take the form of additional work requests or 

requests for additional resources. Work requests may originate from either 

command files or files containing executable code. 

An executive control must also detect the termination of processes. 

This includes both normal and abnormal termination. After detecting process 

termination, it must inform processes needing this information that termina-

tion has occurred, open files must be closed, and other loose ends must be 

cleaned up. Finally, when the last process of a work request has terminated, 

it must inform the originator of the request of the completion of the request. 

6.3.5 Fault Recovery  

If portions (tasks) of the work request are being performed on different 

processors, there is inherently a certain degree of fault recovery possible. 

The problem is in exploiting that capability. The ability to utilize "good" 

work remaining after the failure of one or more of the processors executing a 

work request depends on the recovery agent having knowledge of the location of 

that work and the ability of the recovery agent to reestablish the appropriate 

linkages to the new locations for the portions of the work that were being 

executed on the failed processor(s). 

nenrele Institute of Tenhnoloav 	 FTADS rnntrnl Mnriplq 



Page 58 

Georgia Institute of Technology 	 FDPS Control Models 



Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 59 

SECTION 7 

VARIATIONS IN FDPS CONTROL MODELS 

There is an extremely large number of features by which variations in 

distributed control models can be characterized. Of these, only a few basic 

attributes appear to deserve attention. These include the nature of how and 

when a task graph is constructed, the maintenance of resource availability 

information, the allocation of resources, process initiation, and process 

monitoring. In this section, these issues are examined; but again, since the 

number of variations possible in each issue are rather large, only those 

choices considered significant are discussed. Table 2 contains a summary of 

the problems that have been identified and possible solutions (significant and 

reasonable solutions) to these problems. 

7.1 TASK GRAPH CONSTRUCTION  

The task graph is a data structure used to maintain information about 

the applicable task set. The nodes of a task graph represent the tasks of the 

task set, and the arcs represent the connectivity or flow of information 

between tasks. There are basically four issues in task graph construction: 

1) who builds a task graph, 2) what is the basic structure of a task graph, 3) 

where are the copies of a task graph stored, and 4) when is a task graph 

built. 

The identity of the component or components constructing the task graph 

is an issue that presents three basic choices. First, a central node can be 

responsible for the construction of task graphs for all work requests. 

Another choice utilizes the control component on the node receiving the work 

request to construct the task graph. Finally, the job of building the task 

graph can be distributed among several components. In particular, the nodes 

involved in executing individual tasks of the work request can be responsible 

for constructing those parts of the task graph that they are processing. 

The general nature of the task graph itself provides two alternatives 

for the design of an executive control. What is of concern here is not the 

content of a task graph but rather its basic structure. One alternative is to 

maintain a task graph in a single structure regardless of how execution is 

distributed. The other choice is to maintain the task graph as a collection 

of subgraphs with each subgraph representing a part of the work request. For 

T.anInel^lesmIr 
	

PnPS rnntrnl MnriPls 



Page 60 
	 VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

Table 2. Variations in Control Models 

S4MCILIFILON=1: 

Who builds the task graph? 
1. A central node specializing in task graph building. 
2. The node intially receiving and analyzing the work request. 
3. All nodes involved in executing the work request. 

What is the nature of the task graph? 
1. A single complete structure. 
2. Multiple structures each consisting of a subgraph. 
3. Multiple structures each consisting of a aubgraph with one copy 

of the complete task graph. 

Where is the task graph stored? 
1. A central node. 
2. The node intially receiving and analyzing the work request. 
3. A node determined to be in an optimal location. 
4. All nodes involved in executing the work request. 

When is the task graph built? 
1. Completely prior to execution. 
2. Piecemeal during execution. 

2P,souRcg  jouw,ART gm moRmariol:  
Who maintains this information? 

1. A single central node. 
2. Each node maintains information about its own resources. 
3. All nodes maintain common information. 
4. A designated node for each type of resource. 

Where is the information maintained? 
1. At a central node. 
2. Separate pieces of information concerning a particular resource 

type may be kept on different nodes. 
3. In multiple redundant copies. 
4. Information concerning a particular resource type is kept on a 

specially designated node. 

LOCATION  DE JOESOURCES:  

How is concurrency control provided? 
1. None is provided. 
2. Reservations are used prior to a work distribution decision and 

then allocated by a lock. 
3. Allocated by a lock after the work distribution decision. 
4. Resources are locked before the work distribution decision is made. 

limma  puTTATTN:  
How is responsibility distributed? 

1. A central component retains all responsibility. 
2. A single component is in charge of a single work request. 
3. There is a hierarchy of responsibility. 
4. Responsibility is distributed among specialist components. 

How is refusal of a request to execute a process by a node handled? 
1. After repeated attempts, the request is abandoned. 
2. After repeated attempts, a new work distribution is obtained. 

PROCESS  ligialaDia: 

What type of interprocess communication is provided? 
1. Synchronized communication. 
2. Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
1. The new task graph is made part of the old one. 
2. The new task graph is kept separate. 

pROORgq TRRMINAT/ON:  

Options selected here are determined by those selected for 
PROCESS INITIATION. 

Georgia Institute of Technology 
	 FDPS Control Models 



Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 61 

example, a subgraph can represent that portion of the work request that is to 

be executed on the particular node at which that subgraph is stored. 

Another issue of task graph construction concerns where the various 

copies of the task graph are stored. If the control maintains a task graph as 

a unified structure representing the complete set of tasks for a work request, 

this structure may either be stored on a single node, or redundant copies can 

be stored on multiple nodes. The single node can either be a central node 

that is used to store all task graphs, the node at which the original work 

request arrived (the source node), or a node chosen for its ability to provide 

this work request with optimal service. If the task graph is divided into 

several subgraphs, these can be maintained on multiple nodes. 

Finally, there is the issue concerning the timing of task graph 

construction in the sequence of steps that define work request processing. 

Two choices are available: 1) the task graph can be constructed completely, 

at least to the maximum extent possible, before execution is begun, or 2) the 

task graph can be constructed incrementally as execution progresses. 

7.2 RESOURCE AVAILABILITY INFORMATION  

Another possible source of variability for control models is the 

maintenance of resource availability information. What is of importance here 

is "Who maintains this information" and "Where is this information 

maintained." A particular model need not uniformly apply the same technique 

for maintaining resource availability information to all resources. Rather, 

the technique best suited to a particular resource class may be utilized. 

The responsibility for maintaining resource availability information can 

be delegated in a variety of ways. The centralized approach involves assign-

ing a single component this responsibility. In this situation, requests and 

releases for resources flow through the specialized component which maintains 

the complete resource availability information in one location. 

A variation of this technique maintains complete copies of the resource 

availability information at several locations [Caba79a,b]. Components at each 

of these locations are responsible for updating their copy of the resource 

availability information in order to keep it consistent with the other copies. 

This requires a protocol to insure that consistency is maintained. For exam-

ple, two components should not release a file for writing to different users 

of Thnhnnlnau 
	

pnps Crintrol MociPls 



Page 62 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

at the same time. To provide this control, messages containing updates for 

the information tables must be exchanged among the components. In addition, a 

strategy for synchronizing the release of resources is required. An example 

of such a strategy is found in [Caba79a,b] where a baton is passed around the 

network. The holder of the baton is permitted to release resources. 

Another approach exhibiting more decentralization requires dividing the 

collection of resources into subsets or classes and assigning separate com-

ponents to each subset. Each component is responsible for maintaining 

resource availability information on a particular subset. In this case, 

requests for resources can only be serviced by the control component 

responsible for that resource. Resources may be named in a manner such that 

the desired manager is readily identifiable. Alternatively, a search may be 

required in order to locate the appropriate manager. This search may involve 

passing the request from component to component until one is found that is 

capable of performing the desired operation. 

Preemptable resources which can be shared by multiple concurrent users 

(e.g., processors and communication lines) do not necessarily require the 

maintenance of precise availability information. For these resources, it is 

reasonable to maintain only approximate availability information because such 

resources are rarely exhausted. The primary concern in this instance is 

degraded performance. Therefore, a good estimate of resource utilization is 

needed. 

7.3 ALLOCATING RESOURCES  

One of the major problems experienced in the allocation of resources is 

concurrency control. In a hospitable environment, it is possible to ignore 

concurrency control. The users are given the responsibility of insuring that 

access to a shared resource such as a file is handled in a consistent manner. 

In other environments, for example that presented by an FDPS, this is an 

important issue. In an FDPS, the problem is even more difficult than in a 

centralized system due to the loose coupling inherent in the system. 

There are basically two approaches to solving the problem of concurrent 

requests for shared resources. The first utilizes the concept of a reser-

vation. Prior to the allocation of resources (possibly when resource 

availability information is acquired), a resource may be reserved. The reser- 

Georgia Institute of Technology 	 FDPS Control Models 



Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 63 

vation is effective for only a limited period (a period long enough to make a 

work distribution decision and allocate the resources determined by the 

decision) and prevents other users from acquiring the resource. The other 

solution to this problem is to make the work distribution decision without the 

aid of reservations. If resources cannot be allocated, the executive control 

will either wait until they can be allocated or attempt a new work 

distribution. 

7.4 PROCESS INITIATION  

Several issues arise concerning process initiation. Chief among these 

is the distribution of responsibility. There are a large number of 

organizations possible, but only a few are reasonable. The basic 

organizations utilize either a single manager, a hierarchy of managers, or a 

collection of autonomous managers. Two approaches result from the single 

manager concept. In the first organization, a central component is in charge 

of all work requests and the processes resulting from these work requests. 

All decisions concerning the fate of processes and work requests are made by 

this component. A variation on this organization assigns responsibility at 

the level of work requests. In other words, separate components are assigned 

to each work request. Each component makes all decisions concerning the fate 

of a particular work request and its processes. 

Management can also be organized in a hierarchical manner. There are a 

variety of ways hierarchical management can be realized, but we will 

concentrate on only two, the two-level hierarchy and the n-level hierarchy. 

The two-level hierarchy has at the top level a component that is responsible 

for an entire work request. At the lower level are a series of components 

each responsible for an individual task of the work request. The lower level 

components take direction from the high level component and provide results to 

this component. The n-level hierarchy utilizes in its top and bottom levels 

the components described for the two-level hierarchy. The middle levels are 

occupied by components that are each responsible for a subgraph of the entire 

task graph. Therefore, a middle component takes direction from and reports to 

a higher level component which is in charge of a part of the task graph that 

includes the subgraph for which the middle component is responsible. The mid-

dle component also directs lower level components each of which are 

responsible for a particular task. 

nf Tpohnnlnav 
	

FDPS Control Models 



Page 64 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

Another organizational approach utilizes a series of autonomous 

management components. Each component is in charge of some subset of the 

tasks of a work request. Cooperation of the components is required in order 

to realize the orderly completion of a work request. 

Regardless of the organization, at some point, a request for the assump-

tion of responsibility by a component will be made. Such a request may be 

reasonably denied for two reasons: 1) the component does not possess enough 

resources to satisfy the request (e.g., there may not be enough space to place 

a new process on an input queue), or 2) the component may not be functioning. 

The question that arises concerns how this denial is handled. One solution is 

to keep trying the request either until it is accepted or until a certain num-

ber of attempts have failed. In this case if the request is never accepted, 

the work request is abandoned, and the user is notified of the failure. 

Instead of abandoning the work request, it is possible that a new work 

distribution decision can be formulated utilizing the additional knowledge 

concerning the failure of a certain component to accept a previous request. 

7.5 PROCESS MONITORING  

The task of monitoring process execution presents the FDPS executive 

control with two major problems, providing interprocess communication and 

responding to additional work requests and requests for additional resources. 

With regard to the problem of interprocess communication, there is some ques-

tion as to the nature of the communication primitives an FDPS executive 

control should provide. This question arises due to the variety of communica-

tion techniques being offered by current languages. There are two basic 

approaches found in current languages, synchronized communication and unsynch-

ronized communication (buffered messages). Synchronized communication 

requires that the execution of both the sender and the receiver be interrupted 

until a message has been successfully transferred. Examples of languages 

utilizing this form of communication are Hoare's Communicating Sequential 

Processes [Hoar78] and Brinch Hansen's Distributed Processes [Brin78). In 

contrast, buffered messages allow the asynchronous operation of both senders 

and receivers. Examples of languages using this form of communication are 

PLITS EFeld79) and STARMOD [Cook80]. 

The executive control is required to provide communication primitives 

that are suitable to one of the communication techniques discussed above. 	If 

Georgia Institute of Technology 	 FDPS Control Models 



Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 65 

the basic communication system utilizes synchronized communication, both tech-

niques can be easily handled. The problem with this approach is that there is 

extra overhead incurred when providing the message buffering technique. On 

the other hand if the basic communication system utilizes unsynchronized com-

munication, there will be great difficulty in realizing a synchronized form of 

communication. 

The task of monitoring processes also involves responding to requests 

generated by the executing tasks. These may be either requests for additional 

resources (e.g., an additional file) or new work requests. If the request is 

a work request, there is a question as to how a new set of tasks is to be 

associated with the existing set of tasks. The new set could either be 

included in the existing task graph, or a new task graph could be constructed 

for these new tasks. The former technique allows the component making the 

work distribution decision for the new work request to consider the utiliza-

tion of other resources by the control. The latter technique does not allow 

such a situation to occur. 

7.6 PROCESS TERMINATION 

When a process terminates there is always some cleanup work that must be 

accomplished (e.g., closing files, returning memory space, and deleting 

records concerning that process from the executive control's work space). In 

addition, depending on the reason for termination (normal or abnormal), other 

control components may need to be informed of the termination. In the case of 

a failure, the task graph will contain the information needed to perform 

cleanup operations (e.g., the identities of the processes needing information 

concerning the failure). Both the nature of the cleanup and the identity of 

the control components that must be informed of the termination are determined 

from the design decisions resulting from the issues discussed in Section 7.5. 

7.7 EXAMPLES  

To gain a better appreciation of some of the basic issues of control in 

an FDPS, it is useful to examine several examples of work request processing 

on an FDPS. In each example, emphasis is placed on the operations involved in 

the construction of task graphs. The work distribution decision that is 

utilized is a simple one that assigns the execution of processes to the same 

nodes that house the files containing their code. The concern of the first 

Georgia Institute of Technology 	 FDPS Control Models 



Page 66 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

eight examples is the impact of variations in work requests on task graph 

construction. In these examples, the various parts of the overall task graph 

describing the complete work request are stored on the nodes utilized by each 

part. The last three examples, though, examine three different techniques for 

storing the task graphs. In the examples (Figures 21 to 31) the following 

symbols are utilized: 

] 	 visible external reference(s) 
} 	 embedded external reference(s) 

(n)A 	 responsibility for A delegated from node n 
A(n) 	 responsibility for A delegated to node n 
a-->b 	IPC from process a to process b 
A,B,... 	uppercase letters indicate command files 
a,b,... 	lowercase letters indicate executable files 
u,v,w,x,y,z 	indicate data files 

The first example (Figure 21) consists of a simple request in which all 

external references made are visible and all files required are present on the 

node where the original request arrived (referred to as the source node). 

Since the references are visible, the entire task graph can be completed in 

one step. The second example (Figure 22) is similar to the first except that 

there are more references that are chained. Again, since all references are 

visible, the entire task graph can be completed in one step. This work 

request can be processed in an alternate manner as shown by the third example 

(Figure 23) where references are located and linked in a piecemeal fashion. 

Finally, example 4 (Figure 24) adds a slight variation by introducing an 

explicit interprocess communication (IPC) definition. In this case, the task 

graph can still be constructed in one step because all references are visible. 

The next series of examples consider the impact of locating resources on 

nodes other than the source node. In example 5 (Figure 25), all the 

referenced resources reside on a single node other than the source node with 

the exception of one resource that has redundant copies on two different 

nodes. 	Since the resources are not on the source node, negotiation is 

required to transfer responsibility for a piece of the task graph. 	In 

addition, since there is a resource with two redundant copies, a decision as 

to which to utilize must be made and a negotiation must occur to transfer 

responsibility. Example 6 (Figure 26) is similar to example 5 and 

demonstrates the impact of IPC across nodes. 

The effect of embedded references is demonstrated in examples 7 and 8. 

In example 7 (Figure 27), all resources turn out to reside on the source node. 

Georgia Institute of Technology 	 FDPS Control Models 



Task Graph Maintained 
At This Node 

Local Resources 

Request c NUN a 	STEP 0 

1 

	

1 Task Graph Maintained 1 	1 Task Graph Maintained , 
At This Node 	 , 	At This Node 

i 	 . 	. 

	

. 	. 
1 	, . 
. 	 { 	. . 

I  
. . . . 

	

1 	I . 
I  

,  
■ 	 . 

	

:   1 
I 	Local Resources 	1 , 	Local Resources 

; 
 

a[x,y] 	 1 
x 	y 	

. 

	

. 	1 
. 	  , 	. 	  

Node 1 	 Node 2 
(Source of request) 

: Task Graph Maintained 1 
At This Node 

1 	Local Resources 

Node 3 	 Node 4 

Comments: 
A simple request with all external references 
visible. 

Task Graph Maintained 
At This Node 

Local Resources 

1 
Task Graph Maintained 

At This Node 

1 

1 

1 

Local Resources 	1 
1 
1 

I Task Graph Maintained : 
I 	At This Node 

Task Graph Maintained 1 
At Thia Node 

STEP 

Local Resources 	I 
I 	A  10,,d) 	o Ex] 

[y,s] 	xyzi 

Node 1 
(Source of request) 

Local Resources 

Node 2 

d 

VARIATIONS IN FDPS CONTROL MODELS 	 Page 67 Section 7 

a 
• STIP 1 
a 

• 1 	 1 
• I Task Graph Maintained 1 	Task Graph Maintained 
• I 	At This Node 	I 	At This Node 
• I 	 I 
• I 	 a 	 . 
• / \   
• 	1 	a 	y 	1 
• I 	 1 
• 1 	 1 
• I , 	 . 
• 1 	 1 
• I- 	  1 
• . 	Local Resources 	1 	Local Resources 
• 1 slay] 	 . 
• I x 	y 	 , . 
• 1 	   

	

. 	1 	  
• Node 1 	 Node 2 
• (Source of request) 
• 
• 
• 1 	 ' 	 . . 
• 1 Task Graph Maintained 1 	1 Task Graph Maintained : 
• 1 	At This Node 	1 	1 	At This Node 
• 1 .  
• I 	 1 	1  
• 1 

	

1 	
.  

a 	 .  , 	 . 
• 1 	1 
• 1 	 1 	. 
• . 	 1 
• ' 	 1 . 	 , 
• 1 	  1 	1- 	  
• Local Resources 	1 	1 	Local Resources 
• 1 	 I 	. . 
• 1 	 . 	. , 
• I 	  , 	, . 
• Node 3 	 Node 4 
• 
• Comments: 
• All visible references (in this case all resources 
• required) have been located and linked. 
a 

Figure 21. Example 1 

Request m RUN A 	STEP 0 

. 
, 

. 	 . 
. 	 . 

1 	! , 
1 	 1 	, . 
I- 	  1 	1 	  

i A 
Local Resources 	, ' . 	Local Resources 
[c,d] 	0 [x] 	I 	' 

 

IdCY,al 	xpa 	II 

Node 1 	 Node 2 
(Source of request) 

I 	 I 	1 
1 Task Graph Maintained 1 	: Task Graph Maintained 

I 	
At This Node 	 I 

I 	1 	
At This Node 

! 	 ■ 

1 

Task Graph Maintained 
At This Node 

Local Resources 

1 
1 

1 

1 

1 
	 1 

Local Resources 	I 

Node 3 	 Node 4 

Comments: 
A simple request involving a command file that 
speoifies the invocation of two executable tiles. 

Node 3 	 Node 4 

Comments: 
The task graph is expanded as such as possible (in 
this ease, completely) before any mention is begun. 

Task Graph Maintained 
It This Node 

Figure 22. Example 2 

Georgia Institute of Technology 	 FDPS Control Models 



I 
1 
I 
I 

1 
I  
1 _--- 
' 	Local Resources 

I 
I 

• 
• • 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
e 

1 
I 
1 

I 
. 
I 
1.--- ---- .... --- 	 
I 	Local Resources 
. 
I 
. 

I 
1 
1 
1 
I 
I 

, , 
I 
I 

I 
I 

1 
I 

I 
, . 
I 

I 
, , . . . 

I 

Local Resources 

Node 4 Node 3 Node 4 

I 
I 

I 

1 

Local Resources 

I 
I 

Node 3 

I 	 I 	I 	 I 

	

1 Task Graph Maintained I 	I Task Graph Maintained 
At This Node 	. 	I 	At This Node 	1 

	

I 	I 	 I 

	

I 	. 	 I 

	

I 	I 	 . . 	 , . 	 . 	 . 
I . 	. 

	

. 	. 

	

I 	I 	 I 

	

I 	I 	 ' 
I 	 I 	I 	 . . 
I - 	  : 	I 	  I 

1 
A  11.1,33alzR113urr 	 Local Resources 	I 

	

Resources z  1 	1  
. 

1 B [o-->d] 	d [T,a] I 	I 	 1 
. 	  1 	1 	  I 

Node 1 	 Node 2 
(Source of request) 

Task Graph Maintained 	Task Graph Maintained 
At Thia Node 	 At This Node 

Local Resources 	I 	Local Resources 	I 

Node 3 	 Node 4 

Comments: 
A somewhat more omples request: 

1) All external references visible. 
2) Chain of refer:moos are present. 
3) Contains an explicit IPC definition. 

Page 68 

Request 	NUN A 

VARIATIONS 

STEP 

IN FDPS 

• 
• 
• 

I 	• 
I 	• 
I 	• 
I 	• 
I 	• • 
I 	• 
I 	• 
. 	• 
I 	■ 

I 	• 
f 	• 

I 	• 
I 	• 
: 	• 
I 	• 

• 
• 
• 
• 
• 
• 
• 
• 

CONTROL MODELS Section 

STEP 2 

7 

I 
I 
I 
, 
, ' 
! 

. 
I 

, . 
: Task Graph Maintained I 

At This Node 	I 
I 

	

A 	 1 
! 	/ 	 I 

e 

	

1 	 I 

	

x 	 I 
. ■ 
■ 	 1 ■ 

■ — 
	   
Local Resources 	I 

I 	A [c,d] 	c 	[x] 	1 

	

d[y,z] 	xy:1 
. 	 . 

Task Graph Maintained 
At This Node 

.-- 	.. 	••■•••■■••••■ •••■■■•••■■ 

I 
I Task Graph Maintained 
I 	At This Node 
I 
. 	 A 
. . 	/ 	\ , . 	a 	d 
I 	I 	/ 	\ 
, 	x y 	2 
1 
I 

	

I--- 	

I 
I 
I 
I 
I 
, 
I 
I 
I 
1 
1 

1 
I 
1 

I 
I Task Graph Maintained 
I 	At This Node 
I 
. 
. ' 
I 
I 
I 
' 
i . 

. 	Local Resources 
I 
. 

Local Resources I 	Local Resources 
I 	A [c,d] 	0 [x] 
I 	d 	[y,,z] 	a 	y 	a 
I 

Node 1 
(Source of request) 

Node 2 Node 1 
(Source of request) 

Node 2 

I 
Task Graph Maintained ; 	I Task Graph Maintained 

At This Rode 

	

	 At This Node 
I 

I 	. 
I Task Graph Maintained ; 
, 	At This Node 	I 

I Task Graph Maintained 
I 	At This Node 

Comments: 	 • 	Comments: 
External references are not located and linked 

	
All external references have been located and linked. 

until they are required during execution. 

Figure 23. Example 3 
Request • RUN A 
	STEP 0 	 STEP 1 

I 
	 S 

• I 	 1 	I  

•• 
	I Task Graph Maintained I 	I Task Graph Maintained ; 

I 	1 	At This Node At This Node 
• . 	 , 	I  
• . 	 .  , 	 A 	 11 	 , 
• . 	 I 	 I 	I  
• I 	 B 	 I 	I  
• I 	/I% 	. 	I  
• . 	o-->d 	 . . 	I 
• . 	I 	/ \ 	i 
• I 	x y 	2 	I 	1 

: 	  I 	1 — --- 	 i • 
Lo cal Resources 	I 	: 	Local Resources • 

• IA[B]a[x]xyz11  
a 	I B (a-->d] 	d [7,A] I 	I  
• : 	 . 	I 	 ' . 
• Node 1 	 Node 2 
• (Source of request) 
• 
11 
• 
• Task Graph Maintained Task Graph Maintained  
• At This Node At This Node 
• 
• 
• 

: 
• 
• 
• 
a 
• Local Resources Local Resources 
• 
• 
• 
• Node 3 	 Node 4 
• 
• 
•

Comments: 
All external »foresees are located and linked, 

• and IPC is established. 
• 
• 

Figure 24. Example 4 

I 

Georgia Institute of Technology 	 FDPS Control Models 



Task Graph Maintained 
At This Node 

- ----- 
Local Resources 

A [b] 

Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 69 

Request = RUN A STEP 1 STEP 

1 Task Graph Maintained 
At This Node 

. 

1 	I 
1 	I Task Graph Maintained 
I 	I 	At This Node 

, 

Task Graph Maintained 
At This Node 

Task Graph Maintained I 
At This Node 

A(?) . .  A(2?) (1?)A . , 
, . 
1 

. . 
I 	1 

, 
I 	 

5 	I 
I 	I 	  ■ --1 

Local Resources Local Resources . 	, Local Resources 1 Local Resources 
I 	1 A (1)) 	x 	y 1 	 A DO 	z y 
1 	1 b [x,y] I 	 b [x,y] 

Node 1 
(Source of request) 

I Task Graph Maintained : 
At This Node 	f 

	

1   1 
Local Resources 	I 

A [b] 

Node 3 

Node 2 Node 1 
(Source of request) 

Node 2 

1 
I Task Graph Maintained 	 1 Task Graph Maintained 

At This Node 	 At This Node 

1 
: 
i 

I 
I Task Graph Maintained 
I 	At This Node 

(1?)A I I 

1 I 1 
I 

1 -- ---  - I 1-- 
Local Resources ! Local Resources 	 1 I 	Local Resources 

1 A (b) 
1 1 1 

1 
Node 4 Node 3 Node 4 

Comments: 
A simple request with all the files referenced 
residing on a single but non-local node with an 
additional copy of one file on another node. 
At this point, the location of A is not known.  

Comments: 
Pile A is located on nodes 2 and 3 and the 
responsibility for A is tentatively delegated to 
node 2. 

STEP 3 
	

STEP 

I 	 I 	I 
I 	

I 
! Task Graph Maintained I 

, 	
, Task Graph Maintained : 

At This Node 	 , 	At This Node 	I 
. 

	

A(2) 	

. 	 I , 	' . , 1 . 	 1 	' . . 	 . . 	 ■ 

1 	

(1)A 
I . . 	 1 . 	 . 	1 	 1 . 

. , 	1 	 1 . 	 . 	 1 . 	 , 
1  . 

1-- 	 1 	 --- - 
Local Resources 	I i 	1 	Local Resources 	I 

I A [t.] 	x y I . , 	 I 	I 	b [x,y] 	 I 
, 	  1 	1 	  1 

	

Node 1 	 Node 2 
(Source of request)  

1 	 I 	1 	 , 
I Task Graph Maintained I 	1 Task Graph Maintained I 

. 	At This Node 	I 
I 
I 	(1)A  

I 	I 	. 
. 	 b 	 . . 
. . 	/ \ 
I 	2 	y 	1 
I 	 . 
I  1 
I-- 	 I 

, . 
1 
. . . 
I 
I 
. 
' , 
I 
I ■ 

At This Node 

A(2) 

1 
. 
1 
1 
. 
1 
1 
. 
1 
I 

I 	
Local Resources 	1 	1 	Local Resources 

1 	1 A [b] 	x y 	. 
I 	 1 	1 b [soy] 	 . . 
1 	  I 	1 	  . . 

Node 1 	 Node 2 
(Source of request) 

1 Task Graph Maintained 
At This Node 

• 

: 	Local Resouroes 	I 
: A (b) 
1 	 1 
	 1 

Node 3 	 node  Node 3 	 Node A 

Task Graph Maintained 
At This Node 

Local Resources 

Task Graph Maintained 
At This Node 

Local Resources 

Comments: 	 Comments: 
Responsibility for A is accepted by node 2. 	 All external references have been boosted and linked. 

Figure 25. Example 5 

Georgia Institute of Technology 	 FDPS Control Models 



Node 1 	 Node 2 
(Source of request) 

Task Graph Maintained 
I 	At This Node 

Task Graph Maintained 
At This Node 

	 --- 

Local Resources 

Node 3 	 Node 4 

Local Resources 

Node 1 
(Source of request) 

Node 2 

Node 3 	 Mode 4 

Task Graph Maintained 
At This Node 

Local Resources 

Task Graph Maintained 
At This Node 

Local Resources 

Page 70 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

Request = RUN A 	STEP 1 

  

STEP 2 

        

I Task Graph Maintained I 	I Task Graph Maintained 
At This Node 	 At This Node 

I 	I I 	1 
A 	 1 

/1\ 
c-->d(?) 

Task Graph Maintained 
At This Node 

A 
/I\ 

o—>d(2?) 

a 

Task Graph Maintained 
At This Node 

0(1)--,(1?)d 

Local Resources Local Resources Local Resources 	I 	Local Resources 
A [c-->d] 	x d [7, 2 ] A (o—>d] 	x 	1 	I 	d (y,a) 
c (x] 7 	2 o 7 	2 

Node 1 Node 2 Node 1 Node 2 
(Source of request) (Source of request) 

I I 
Task Graph Maintained I Task Graph Maintained 	 Task Graph Maintained I 	I Task Graph Maintained 

At This Node At This Node 	I 	 At This Node 	i 	I 	At This Node 
I 	I 

I 	I 
I 

I 	I 

	  I 	I --- 	  
Local Resources Local Resources 	 Local Resources

1 	
Local Resources 	I 

1 
I 	I 
I 

Node 3 	 Node 4 

Comments: 
A more complex request: 

1) Contains an explicit reference to IPC. 
2) Resource files located on different modes. 

First layer is built. 

Node 3 	 Node 4 

Comments: 
File d is located on mode 2 and responsibility 
for d is tentatively delegated to that node. 

STEP 3 STEP 4 

I 
Task Graph Maintained I 

At This Node 	I 

I 
I Task Graph Maintained 
, 	At This Node 
I 

Task Graph Maintained 
At This Node 

1 
I Task Graph Maintained 
1 	At This Node 

A . ■ , 	o(1)-->(1)d A I 0(1)—)(1)d 

0-->d(2) 
. 
. I 

, 

. I 
/I' 

0-->d(2) 
/ \ 

7 	z 
I 

I I I 
I I I 

I I 

I 

/ I 
I 

I 

k 	  
Local Resources Local Resources , 	Local Resources i Local Resources 

A In -->d] 	x I I 	d [7.4 ( 0-0.0 	x 	I d Cy's] 
: 	c DO I tys 0 [z] 	 I Y 	A 

1 1 1 

Comments: 
	

Comments: 
Responsibility for d is acoepted by mode 2. 	 The graph below d is CoMpletod. 

Figure 26. Example 6 

Georgia Institute of Technology 	 FDPS Control Models 



Task Graph Maintained 
At This Node 

Local Resources 

Task Graph Maintained 
At This Node 

Local Resources 

Task Graph Maintained I 
At This Node 

------------- ---------- I 
Local Resouroes 	I 

VARIATIONS IN FDPS CONTROL MODELS 	 Page 71 Section 7 

Request . ION A 	STEP 0 

I 
I 
I 

STEP 1 

I 
I 
I 
1 
, 
1 
I 
i 

I 

.  

.   

1 	 I 	I 

	

I Task Graph Maintained I 	I Task Graph Maintained 
. 	At This Node 	I 	! 	At This Node 
. 	 . 
' 	 I 	I 
, 	 I 	i 

I 
I 	 I 	 I 

	

I 	 I 

	

I 	 I 

	

1 	 II 

	

I 	I 

Local Resources 	. 	I 	Local Resources 
A[b] 	b(x,y} 	1 	1 
x 	y 	 . 	. 

I 

Task Graph Maintained 
At This Nods 

A 

b 

Local Resources 
A[b] 	b(m,y) 
I 	y 

Task Graph Maintained I 
At This Node 

Local Resources 

Node 1 	 Node 2 
(Source of request) 

Node 1 
(Source of request) 

Node 2 

I 	 I 	I 
I Task Graph Maintained I 	: Task Graph Maintained 

At This Node 	I At This Node 
. 	 I 	, 
. 	 , 	I g 	 . g  . 	 , . 	 . g 	 . 

. 	. 
. 	 . 	I , 	 . 

! Local Resources Resources 	I 	Local Resources 
. t ) 	 o 	

; 

i 
i 	 1 	1 

. , 	 . 1 	1 

. 

I 
, 

I  
I Task Graph Maintained 
, 	At This Node 
1 
I 
I 
I 

1 
I 
I 

Local Resources 
I 	 . 
I 
. g 

. , 
I Task Graph Maintained : 
1 	At This Node 	I 
. 
I 
I 
, 
I 
I 
I 	 . . 
I 	 I 

I 	Local Resources 
. 	 I 
I 
1 

Node 3 	 Node 4 

Comments: 
A simple request demonstrating •invisible' embedded 
referenoes. 

Node 3 	 Node 4 

Comments: 
The visible portions of the task graph are 
expanded. 

STEP 2 

I 
1 Task Graph Maintained : 

	

, 	
I Task Graph Maintained I 

At This Node 	. 	. 	At This Node 

	

I 	, 	 I 
I , 	A 	 . . 	 . 

I 	 . 

	

. 	 I . 
b 	 I  

/ 	 I 	 I . x 	 . 	I 	 I . 	 ' 	I 	 I , 
I 	 1 	 I 

	

I 1 	- 	-- 	-- 	-- 	--: 
Local Resources 	, 	I 	Local Resources 	1 

I A[b] 	b(x,y) 	I 	. 	 I 
!  1g 	7 	I 	I 	 I 

	

I 	I 	 I 
Node 1 	 Node 2 

(Source of request)  

STEP 3 

	

I 	I 

	

I Task Graph Maintained I 	I Task Graph Maintained 
At This Node 	I 	

i 	
At This Node 

A 	 I 	I 1 

	

I 	I 
/\ 

y 

I 	Local Resources 	1 	i 	Local Resources 
1 A[b] 	b(x,y} 	I 	I 
I x 	y 	 I 
	 I 	I 	  

Node 1 	 Node 2 
(Source of request) 

Node 3 	 Node 4  

Task Graph Maintained 
At This Node 

Local Resources 

	 1 
Node 3 	 Node 4 

Comments: 
After some emeoution, • reference to x is 
disoovered and x is added to the task graph. 

Comments: 
After further execution, • reference to y is 
discovered and entered into the task graph. 
The task graph is now complete. 

Figure 27. Example 7 

npnrais Institute of Technology 	 FDPS Control Models 



Page 72 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

Multiple steps, though, are required to construct the task graph because not 

all of the resources are visible and thus cannot be identified until after 

execution has progressed to the point where the reference is encountered. 

Example 8 (Figure 28) is slightly more complex with resources spread over mul-

tiple nodes. Again multiple steps are required since parts of the task graph 

cannot be constructed until their references are observed. In addition since 

resources are distributed on different nodes, negotiation must occur. 

The last three examples demonstrate three different techniques for stor-

ing task graphs. In each example, the same work request is utilized. This 

request has all visible references to resources distributed over multiple 

nodes. In the first eight examples and example 9 (Figure 29), the parts of 

the overall task graph are stored on the nodes executing their processes. In 

addition, each subgraph contains a small portion of information linking it to 

the rest of the overall task graph. Example 10 (Figure 30) maintains these 

subgraphs and in addition retains a complete task graph at the source node. 

Finally, example 11 (Figure 31) maintains complete task graphs at all nodes 

where processing occurs. The motivation for the last two techniques in which 

a large amount of redundant information is maintained is to enhance the 

ability to recover from failures. 

Now that we have taken a look at the construction of task graphs in a 

broad sense, let us examine the details of the task of processing a work 

request. This is illustrated in two figures. Figure 32 outlines the basic 

steps involved in work request processing. Finally, Figure 33 depicts the 

steps involved in processing a specific work request. In this case, the work 

request is the same as that from example 6 (c.f., Figure 26). 

Georgia Institute of Technology 	 FDPS Control Models 



Section 7 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 73 

Request . RUN A 	STEP 1 STEP 2 

I Task Graph Maintained 
1 	At This Node 

A 

b 
/ \ 

1 	x y 

Task Graph Maintained 
At This Node 

1 
Task Graph Maintained 1 

At This Mode 

A 	 1 
/ \ 

c(?) 
/ 

Task Graph Maintained 
At This Node 

1 

!- 
- 1 

Local Resources Local Resources 	 Local Resources 1 	Local Resources 
A(b)ic) 	brx,y) 	1 	o[v,w] 	 i[t]io) c(v,w] 

1 	x 	y 	 1 	v 	w 	 y v 	w 
1 

Node 1 Node 2 Node 1 Node 2 
(Source of request) 	 (Source of request) 

! Task Graph Maintained 
At This Node 

. 
I 

.. 	  
t 	Local Resources 

0 (v,w] 

. 

. . 
: 
' 

1 
1 
. 

. . 
I 
I 

I I 

. , 

i 

, . 

	  . . 
1 Task Graph Maintained 1 
1 	At This Node 
1 	 , . 
1 	 . . 
. 
. . 	 1 . 	 1 
I 	 . 

1 
I 
I 	 1 
1  	1 
. 	Local Resources 	1 
I 

, 
1 	

. 
, 	 I 

1 Task Graph Maintained 
At This Node 

1 
1 
1 

Local Resources 
I 	o Iv,v) 

Node 3 Node 4 Node 3 

1 Task Graph Maintained 
At This Node 

1 

1 

Local Resources 

1 	  
Node 4 

Comments: 
This request has embedded references, references 
to distributed resources, and a reference to a 
resource that is available at two locations. 
First the visible portion of the teak graph 
is expanded. 

Comments: 
After execution has begun, the reference to 
c is encountered. 

STEP 3 STEP 4 

1 
Task Graph Maintained f 

At This Node 
1 	 1 

! 	
A 
/\ 

	
1 

. . 	b 	c(2,3?) 	. 
1 	/ 	\ 	 1 

; 	
I 	y 	 I 

1 
■ , 	 1 

- I 1 	Local Resources 
1 	A(b)(c} 	b(x,y] 	I 
1 	x 	y 	 1 
1 	 1 

Task Graph Maintained 
At This Node 

(1? ) o 

Local Resources 
c[v,w) 
• 	w 

1 
1 Task Graph Maintained 1 
1 	At This Node 	I 
1 	 I 

	

A 	 I 

f. 
	/\ 	 I 

	

b 	0(2) 	, 
. 	/ 	\ 	 1 
. . 	a 	y 	

! 1 
, . 

1 	--- 	 
1 	Local Resources 	■ 
1 	AIbliol 	p[x,y) 	I 
I 	x 	7 	 I 
I 	 I 

1 
1 Task Graph Maintained 1 
I 	At This Node 	. , 
1 
1 	(1)c 	 ' , 
I 	/\ 	' , 
. , 	v 	w  
I 	 ■ ' 

I 
■ 	 . . 
. 	 . . 	 . 
1 
1 	Local Resources 
I 	c[v,w] 	 . 

I 	v 	w 	 , 
I  .. 

Node 1 
(Source of request) 

Node 2 Node 1 
(Source of request) 

Node 2 

Task Graph Maintained 
At This Node 

( 1 7)0 

	 --- 

Teak Graph Maintained 
At This Node 

Task Graph Maintained 
At This Node 

Task Graph Maintained 1 
At This Node 

1 
1 

----- --------1 
Local Resources Local Resources Local Resources Local Resources 

o [v,w) o (v,w) 1 
1 

Node 3 Node 4 Node 3 Node 4 

Comments: 	 Comments: 
It is determined that o exists on two modes. 	 Responsibility for o is delegated to node 2, 

and the task graph is completed. 

Figure 28. Example 8 

Georgia Institute of Technology 	 FDPS Control Models 



STEP 1 

Task Graph Maintained 
At This Node 

I 1 
I Task Graph Maintained 

At This Nods 

A 1 1 (17)b 
1 1 I 
b(2T) I I 

I I 
I I 
1 1 

 	: 1 
Local Resources I Local Resources 

A [b] I I b [o,x] 
I I 
I : 

Node 1 Node 2 
(Source of request) 

Local Resources 
0 [Y] 

Task Graph Maintained 
At This Node 

I Task Graph Maintained 
1 	At This Node 

I------------ ----------- I 
I 	Local Resources 	1 
I 
1 

Node 3 	 Node 4 

Comments: 
Pile b is located on node 2 and a tentative 
delegation of responsibility is aside to node 2. 

Task Graph Maintained 	I Task Graph Maintained 
At This Node 	 I 	At Thia Node 

(1)b 
/ 

o(3) x(4) 

A 

b(2) 

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 Page 74 

Request . RUN A STEP 0 a 
• 

1 I i • 
1 Task Graph Maintained I Task Graph Maintained I • 

At This Node 1 	At This Node I • 
• 
• 
• 
• 

; • 
• 

Local Resources I 	Local Resources I • 
A 	[1:] 1 	b 	(c,x] • 

I • 
• 

Node 1 Node 2 • 
(Source of request) • • 

• 

Task Graph Maintained I Task Graph Maintained I • 
At This Node I 	At This Node 

• 
• 
• 

• 
• 

	

Local Resources 	I 	• 
1z 	 I 	• 

• 
Node 3 	 Node 4 	 • 

Comments: 	 • 

	

This request has all visible references, but 	 • 

	

the references are distributed on all nodes. 	 • 

Local Resources 
c [Y] 

I r 

• 

STEP 2 

1 Task Graph Maintained 	! Task Graph Maintained 
At This Node 	At This Node 

A 
I 	 1 
	(1)b 

/ \ 
b(2) 	 I 	c(3?) x( 11?)  

STEP 3 

Local Resources Local Resources Local Resources Local Resources 
1 	A 	[h] 1 	b Ec,x) A [0] b [cod 

Node 1 Node 2 Node 1 Node 2 
(Source of request) (Source of request) 

1 Task Graph Maintained 
At This Node 

(2?)c 

1- 	

Task Graph Maintained 
At This Node 

(27 ) x 

Task Graph Maintained 
At This Node 

(2)0 

7 

--I 

Task Graph Maintained 
At This Node 

(2)x 

I 	Local Resources 
I 	0 [Y] 

Local Resources Local Resources 	I 	Local Resources 
o [P] 

1 7 

Node 3 Node 4 Node 3 Node 4 

Comments: 
	

Comments: 
Responsibility for b is attempted 1)7=402. 	 lodes 3 and 4 swept responsibility for o and 
?ilea o and a are located and responsibility is 

	 respeotively and the graph in oespleted. 
tentatively delegated to the soda as indicated. 

Figure 29. Example 9 

Georgia Institute of Technology 	 FDPS Control Models 



Task Graph Maintained 1 
At This Node 	1 

(2)z 

1 
1 

Local Resources 	I 

Task Graph Maintained 
At This Node 

(2)x 

Local Resources 

Task Graph Maintained 
At This Node 

(2)c 

r 

Local Resources 
o 173 
7 

VARIATIONS IN FDPS CONTROL MODELS 	 Page 75 Section 7 

Request RUN A 	STEP 1 

1 

	

! Task Graph Maintained 1 	1 Task Graph Maintained 
At This Node 	 . 	At This Node 

1 

	

A
1 	

(1?)b 
1  

	

b(2?) 	, , 

1 

1 	 ! 

1 	  ! 	1---- 	-- ------ ----- 

Local Resources 	1 	Local Resources 
I A [0 

	

; 	
I b [0,x] 

. 	  . 	 ;. 	 . 

	

Node 1 	 Node 2 
(Source of request)  

STEP 2 

	

1 	1 	 ' , 

	

Task Graph Maintained 1 	1 Task Graph Maintained ! 
At This Node 	I 	. 	At This Node 

	

1 	I 	 . 
A 	 1 	 (1)b 	, 
1 

1 
I 	 /\ 

b(2) 	 I 	o(3?) z(4?) 
I 

	

1 	1 

	

1 	. 
I 	 , . 

--- ---- -- ---- : 1--- 	 , 
Local Resources 	1 	/ 	Local Resources 

A [b] 	 I 	I b [o,x] 
 

I 	 . 

, 	  
Node 1 	 Node 2 

(Source of request) 

I Task Graph Maintained 
At This Node 

Local Resources 
a [r] 
y 

Task Graph Maintained I 
At This Node 

I 	Local Resources 
: 

Node 3 	 Node 4 

Comments: 
In this example a complete copy of the task graph 
is to be maintained at the node receiving the request. 
File b is located on node 2 and a tentative 
delegation of responsibility is made to node 2. 

I 	 I 

	

I Task Graph Maintained I 	I Task Graph Maintained : 
, 	At This Node 	. 	. 	At This Node 	, 
1 	 1 	' , 
1 	(22)0 	I 	, , 	 (2?)x 	, . 

	

1 	1 	 , , 
1 	 1 	1  

. 

	

.1 	I  
I 	 I 	1 I 
I 	 I 	I 	 1 I 
I  I I I  

	

1   I 	I .. 	  
1 	Local Resources 	I 	I 	Local Resources 

0 [Y] 	 I 	I x  
: 	7 	 1 	,  
	  1 	I 	   . 

	

Node 3 	 Node A 

Comments: 
Responsibility for b is accepted by node 2. 
Files o and x are located and responsibility is 
tentatively delegated to the nodes as indicated. 

STEP 3 

	

1 	1 	 1 

	

1 Task Graph Maintained : 	: Task Graph Maintained I 
At This Node 	1 	1 	At This Node 	1 

, 1 	 1 .  
A 	. 	 (1)b  
I 	. , 	 / \ 	I 

	

, 	, b(2) 	 . 	. 	0(3) x(4) 	I 
. 	 . 

I c(3) x(4) 	. . 

	

. 	 I . 	 . . 	 . 	 , . 	 . 	. 	 . 

■ 	 I 	: ----- 	--- 	I 
Local Resources 	I 	1 	Local Resources 	I 

! A (b) 	 I 	I 	b tc,x] 	 I 

	

1 	I 
1 	 1 

Node 1 	 Node 2 
(Source of request)  

STEP 4 

	

1 	1 	 ' . 

	

Task Graph Maintained I 	1 Task Graph Maintained 1 
At This Node 	1 	, 	At This Node 	. , 

	

1 	1 	 ' . 
A 	 1 	. 	 (1)b 	' , 
I 	 , 	1 	 / \ 	' . 
b(2) 	, 	1 

	

. 	. 	c(3) x(4) 	' , 
/ \ 	' 

	

. 	I 	 ' 
0(3) x(4) 	1 	1 	 ' . 
I 	 1 	. , 	 ' . 
7(3) 	 1 	1 	 ' . 
	  1 	 1 

Local Resources 	1 	1 	Local Resources 	, 
A CO 	 I 	I b (c.x) 	 I 

	

I 	I 	 I 
	  I 	I 	 I 

Node 1 	 Node 2 
(Source of request) 

1 Task Graph Maintained 
At This Node 

1 
(2)c 

	  ■■■■■ 

Local Resources 
I c [y] 
I r 

Node 3 	 Node 4 

Comments: 
Nodes 3 and 4 accept responsibility for a and 
respectively. This is also noted in the copy of 
the task graph at the source node. 

Node 3 	 Node 4 

Comments: 
The rest of the task graph is completed. 

Figure 30. Example 10 

Georgia Institute of Technology 	 FDPS Control Models 



VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

STEP 2 

A( 1) 	 I 	 A (1) 

      

 

Local Resources 
A [b] 

   

Local Resources 
b [0,x] 

 

Node 1 	 Node 2 
(Source of request) 

      

: Task Graph Maintained 
	

Task Graph Maintained 
At This Node 
	

At This Node 

Local Resources 
O [7] 

Local Resources 

Node 3 	 Node 4 

Comments: 
In this example, a comolete copy of the task graph 
is to be maintained at every AQ involved. 
File b is located on node 2 and a tentative 
delegation of responsibility is made to node 2. 

STEP 2 

Node 1 	 Node 2 
(Source of request) 

Teak Graph Maintained 	I Task Graph Maintained 
At This Node 	I 	At This Node 

Local Resources 
A [b] 

STEP 2 

I 
1 Task Graph Maintained 	I Task Graph Maintained 

At This Node 	 At This Node 

A 	 i 	i 	A(1) 
, , 	 I 	 i 

b(2) 	I 	I 	(1)b 
/ \ 	 / \ 

, 	0(3) x(4) 	I 	1 	o(3) x(4) 

1 	Local Resources 	 Local Resources 	1 
I A [b] 	 I 	i b [0,4 

Node 1 	 Node 2 
(Source of request) 

Local Resources 
b (0,4 

Local Resources Local Resources 	I 
O Ey] 

Node 3 	 Node 4 Node 3 	 Node 4 

Task Graph Maintained 
At This Node 

A(1) 

b(2) 
/ 

0(3) (2): 

Y(3) 

Local Resources 

Task Graph Maintained 
At This Node 

Task Graph Maintained 
It This Node 

Task Graph Maintained 
At This Node 

Local Resources 
O [Y] 
I 

Page 76 

Request . RUN A 	STEP 

	

Task Graph Maintained I 	Teak Graph Maintained 
At This Node 	I 	At This Node 

A 	 1 	1 	A(1) 

b(2?) 	I 	(1?)b  

Task Graph Maintained 	I Task Graph Maintained 
At This Node 	I 	At This Node 

A 	 I 	A(1) 

b(2) (1)b 
/ \ 

o(3?) x(4?) 

I - 	  
Local Resources 	I 	Local Resources 

A [b] 	 I b [00] 

1 	  
Node 1 	 Node 2 

(Source of request) 

	

Task Graph Maintained I 	1 Teak Graph Maintained 
At This Node 	I 	I 	At This Node 

A(1) 

b(2) 

(22)c 

 

   

Local Resources 	I 	Local Resources 
O [Y] 

Node 3 	 Node 4 

Comments: 
Node 2 accepts responsibility for b. Piles c 
and x are located and responsibility is 
tentatively delegated as shown. 

Comments: 
	

Comments: 

	

lodes 3 and 4 accept responsibility far a and x 
	

The rest of the teak graph is oanploted. 
respectively. 

Figure 31. Example 11 

	

Georgia Institute of Technology 	 FDPS Control Models 



▪ Check local and 
1<-_---- 

▪ I< 	I 
• I 	DOS waiting 

I 	>1 for replies 
>I 

NOS waiting 
for replies 
. • 
. < 

I< ----I 
. 

• 

>1 	• 
>I

• . I then, *beck externally as required. 
. I 	>I 
. 	• 	• 	I 	>I 
▪ • 	

• 	

I 	>I 
NOS waiting for 

• 	

. 	 I 
responses from 
distant nodes 	 . 	l< 

a 	 1< 	I 	. 
• . 

• 

l< 
• 

b) Obtain information on 
resources available 

distant nodes simultaneously.. 
—>1 . 
. I------>I 
▪ • 	I 	

• 	

>1 

I< 
▪ I< 

.

• 	

l< 
I 

Determine work distribution 
and allocation. 	. 

• 

. 

>I 	. 
I . 

*Al• l• 
distant 

nodes 
involved 

VARIATIONS IN FDPS CONTROL MODELS 	 Page 77 Section 7 

bait Una Ammo= 

I< 
	

Local Node 	>1< 	Distant Nodes ------>I 

. Users 8 . LOS . NOS . Nag . NOS . LOS . Users 8 . 

.1basonroes. 	 .Resources. 

	

I User generates. 	. 	. 	. 

	

I a Work Request. 	. 	. 	. 
I 	>1 	. 	• 	 • 

. I Work Request processed by LOS Command. 

. I Interpreter and passed to NOS 	. 

. I 	> 	• 	. 	. 	. 

. 	. 	NOS initiates information gathering 

. 	. 	a) Obtain information on . 

	

First, check . 	resources required (Dover all 

	

local resources 	visible nodes of task graph) 
. l< 	 . 	. 	. 

• . 	• 	. 
. Make work assignments. 	. 
. l< 	 >I 	. 	. 

. l< 	I 	.• 	. 	I 	>I 	. 

. I 	NOS waiting . 	• 	I 	>1 

	

>I for replies . 	. 	• 	I 	>1 
1 	>1 	. 	. 	. 	 1 

NOS waiting . 	• 	• 	I< 	I 

	

for replies . 	. 	1< 	I 

	

. 	 • 	. 	l< 	I 	. 

. <—•••••—•I .  
. I All assignments accepted 

	

. 	. 	 . 	. 

	

Initiate! execution . 	• 

	

. 	. 	< 	I 	>I 	. 	• 
< . • 	• 	I 	>I 	• 

• • 	 I 	>1 
< > NOS awaits 	• 	. 	I 	> 

. < 	> termination 	. 	. 	I 	. 

. < 	> 	of all 	 . LOS monitorsI<------> 
. tasks 	 . 	local I<—> 

	

> 
	• • • 	 • 	exeontionl<------> 

. ------>1 	 . 	. 	I 	. 

	

. 	 . 	I 	• 	. 	. 	I< 
• • • 	 . 	l< 	I • 

	

. 	 . • . I< ---..-I 	• 

	

. 	. 	. 	l< 	I 	. 	• 

	

. 	. 	• 	I 	• 	• 

. Signal user that' this . 	• 	• 

	

. 	Work BequestI has • 	• 	• 

. been oompletedl 	• 	• 	• 

	

. 	. 14.----.1 	. 	• 

. < 	I 	. 	. 	• 	• 

	

. 	• 	. 	• 	• 	• 

  

  

Selected 
distant 

nodes 
. I 
• I 
• I 

Selected 
distant 

nodes 

• 
• 
• 
• 
• 

• • 	 • 

Figure 32. Basic Steps in Work Request Processing 

Georgia Institute of Technology 	 FDPS Control Models 



Page 78 
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 

• maim on aa isma,10 fr. =ars. ZU 

l< 	Local Rode 	 >1<— Distant Nodes 	>1 	l< 	Local Node 	>I<— Distant Nodes ------->1 

. Users s . LOS . 	NOS . Nag • 	MOS • LOS . Users & 	. 	. Opera & . LOS . NOS 	. gag . 	NOS 	. LOS . Users & . 

.Resources. 	 •Reacuross. 	•beaouross. 	 .Resources. 

• • 	• 	 (oontinuod free diagram on the left) . 
I .dy..4 • 	• 

>1 	. 7 	• , 	• 	 • 	• 	 • 
• U • 	

• 	

. I establish IPC fres s to 0 and . 
• . 1 Transmit delegation request . 

• • 	

▪ 	

. I for teak d to node 2 . 

.--- 
. /(o—>d). I 	 Initial. 
. o(xl 	• 1< 	locations of 	 
. S 	,--I 	• 	file reaourosa 

. 	• 	• 	• 
. 	. 	• 	• 	• 
. MT 1• . 	 • 	. 
. Inner generates 	. 	. 
. I a Work Request 	• 	. 
• I 	>I LOS Command Interpreter 

. I processes the Request 

. 	I----->1 	• 	• 
. 1105 analyzes the 

.. 	. I Work Request 	. 

. 	. 	1<-----I 	 . 

. 	. 	!Search for A . 	. 	. 	. 
. 	1<-----I locally 	. 	. 	. 	. 	• 	• 

A 	1 	. 	. 	• 	• 	. 	. 	• 	• 
I------>Il found 	. 	. 	. 	. 	• 	• 

. 	. 	I locally 	. 	. 	. 	. 	• 	• 

. 	• 	1.---> 	 . 	. 	• 	• 

	

Start to build 	. 	. 	• 	• 

	

teak graph . 	 • 	. 

• 
• 
• 
• 
• 

• • 

	

A . 	 • 	• 
. 	 /1\ 	• 	 . 
. 	. 	. 	,009-->d(?) . 	. 	. 
. 	. 	I<---- 	• 	. 	. 	. 	• 	• 
. 	. 	1Searoh for c & d 	. 	. 	• 	• 	• 
. 1<------I locally 	• 	• 	. 	. 	• 	• 

O I 	. 	 . 	. 	• 	• 

A 	. 	. 
/I\ • 	• 

e-->d(?) 	• 
I 	• 
aft) • 	• 	. 	. 

. 	. 	. 	.
• Search for . 	. 	. 	.--- • 

4 externally 	 . 	• A • 
>1 	. 	.. 	• 1 	• 

>I 	. 	. 	•All• 
I 	• 	. 	Distant . 
I 	>I 	 Nodes . 

I 	>1 	• I 	• 
I d 	. I 	• 

• l< 	1 	. 1 	. 
. 	. 	l< 	1 	. 	. I 	. 

4 round I< 	I 	. 	 • 1 . 
on model 2 (and possibly others) 	• I • 

< 	 I 	. 	. 	• 1 • 

Nun •ork Dintribotion 	. 

▪ 	

• 	• 
and Took Allocation. . 	. 	. 	. 

	

(le this mime, declaim is . 	. 	. 
made not to move any files) . 

lode 2 'sleeted for task d • 

had tentative Wootton 
la teak graph 	. 	. 

A 
•

. 	. 	. 
/I\ . 	. 	. 	. 

e.->d(2T) 	 . 	. 
I 	. 	 . 
I 	. 

. I 	 

. • 

. • 
NOS waits 
acceptance of 
delegation 

. 

▪  

< 
. Node 2 accepts 
▪ delegation 
. for task d . 
• 

▪ . 

▪ 	

Update 	. 
task graph . 

gamut* 
• I<— 

<-----1 

• • 	 • 
• • 	• 	. 
• • 	 . 
• • 	• 	• 	Execute d 	. 

—>1 . 	. 	. 	 >1 
• I----->1 	• 	• 	 1-----> 
. 	. I 	>1 
. Manama 	. 1-21 

----->1 	. 	fro. 	• 1 
• 1-21 	0 to d 	. 
• • I 	>1 	• 
• . 	1 --->1 	. 

• . .I 
----->1Taak c 	 . 

• I—>1 
. monist, 	 >1 • 	.  

• 

• 	. 1—>1 
• . a 	. 	. I 

• e •  

0 

d 

1 ------>le found 	 • 	• 
I 1001117 	. 
I— > 	• 	• 

Update 	. 
. 	task graph . 

•

▪ 	

I<---- 
• ISearob for x . 

I< —I 100017 • 

. 	 • 	• 	. 

. 	 • 	• 	. 

. 	 . 	 • 	• 	 . 

. 	 . 	 • 	• 	. 

. 	 . 	 • 	• 	. 

. 	 . 	 • 	• 	 . 

. 	 . 	 • 	• 	. 

>I 
/ I \ . 	. 	• 	IY 

e-->d(2) . 7  A s found 	I a 
I 	• 	. looally l<—I 
I 	. 

'smut, d . Update local • 
>I • 	task graph 	• 

. I—> 
. 	0(I)-->(1)0 	• 

• / \ . 
• 7 

	

›I 	. 

	

. 	 . 
I 	>1 	. 

▪ . Node 2. 	I ------>1 
. decides to 	. 	Id 
. aeoept d. 	1<------I 

. 	I 

Builds local 
task graph 

Search for 7 
locally 

>1 
1 

0(1)-->(1)4 	. 
▪ / \ 

7(?) 	2(?) 

I s 

• 
• 
• 

. 	NOS waits . 	. 

. 	empletion of d 	. 
• • 	. 	. 

• . • • 	• l< 
• • Teak d 1<---I 
▪ 1< 

• I aomplot• . 
•

▪  

1<-----I 
• • 	<-11lignal miler . 

• 

Rode 2 

  

(ematiaased no tae diagram on Wm Fiat) 

Figure 33. An Example of Work Request Processing 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 79 

SECTION 8 

MODELS OF CONTROL 

In this section, we demonstrate how both existing and proposed models of 

control fit into the classification scheme described in Section 7. With the 

exception of the first model, these controls are designed to service work 

requests that specify multiple concurrent communicating processes. The first 

model considers work requests that involve only a single process. 

8.1 ARAMIS  

A decentralized operating system model for the ARAMIS Distributed Com-

puter System is described in [Caba79a,b]. A brief outline of how this model 

fits into the classification scheme of Section 7 is provided by Table 3. 

8.1.1 Architecture  

The ARAMIS Distributed Computer System consists of two types of 

machines, hosts and managers. Users are connected to hosts which in turn are 

connected to managers. The managers are connected to each other in a virtual 

ring. Execution of work requests is provided by the hosts while control 

decisions are made by the managers. 

8.1.2 Work Requests  

This system is designed to handle a work request that is less 

sophisticated than those handled by the other systms described in this sec-

tion. The work request must specify only a single process or task and the 

list of resources (sharable and nonsharable) required by that task. 

8.1.3 The Control Model  

Control of the system is accomplished through the managers. Each 

manager maintains a data structure called the resource state table (RST) which 

contains state information for every resource available on the system. To 

insure that these redundant copies remain consistent, two vectors are 

utilized. The control vector (CV) cycles around the virtual ring. Only the 

manager possessing the CV is permitted to allocate and deallocate resources. 

Upon completing this work, a manager can pass the CV along. In addition, 

modifications made to the RST (information describing the allocation and deal-

location of files) are passed along to the other managers on the virtual ring 

in the form of an update vector (UPV). 

Georgia Institute of Technology 	 FDPS Control Models 



Page 80 
	

MODELS OF CONTROL 	 Section 8 

Table 3. The Decentralized Control Model of the ARAMIS 
Distributed Computer System 

imic GRAPH CONSTRUCTION:  

Who builds the task graph? 
A manager on each node builds the task graph for the work requests 
arriving at that node. 

What is the nature of the task graph? 
A single structure. 

Where is the task graph stored? 
On the node initially receiving and analyzing the work request 
and the node where execution of the task occurs. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE AVAILABILITY INFORMATION:  

Who maintains this information? 
All nodes maintain common information. 

Where is the information maintained? 
In multiple redundant copies. 

ALLOCATION  DI RESOURCES:  

How is concurrency control provided? 
Resources are locked before the work distribution decision is made. 

PROCESS INITIATION:  

How is responsibility distributed? 
Each node has a manager. The node initially receiving and analyzing 
the work request retains enough information to restart the task if 
the execution node dies. 

How is refusal of a request to execute a process by a 
node handled? 

This possibility is not discussed. 

_PROCESS MONITORING:  

What type of interprocess communication is provided? 
IPC is not supported. 

How are task graphs resulting from additional work requests handled? 
Additional requests cannot occur. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 81 

When a work request arrives at a host, it is passed along to the local manager 

to which the host is connected. This manager is in charge of resource alloca-

tion and task routing. It first identifies the resources that are needed and 

allocates sharable resources. After the CV has arrived and various algorithms 

insuring mutual exclusion and the prevention of deadlocks have been executed, 

the nonsharable resources are allocated. Next the optimal site for execution 

of the task is determined taking into account the burden various choices place 

on the communication system. Finally, the information concerning the alloca-

tion of resources is transmitted in the form of a UPV, and the information 

describing the task routing is sent to the hosts needing the information. 

8.1. 1  Conclusion  

This model represents a simplified approach to the control problem. All 

nodes are provided with a complete global view of the system via their copy of 

the RST. Modifications to the state are carefully controlled by permitting 

only one manager at a time to change this information. The capability to per-

form modifications on the RST is passed around the virtual ring in the form of 

the CV. 

8.2 MEDUSA  

Medusa [Oust80a,b] is a distributed operating system for the Carnegie-

Mellon Cm* multimicroprocessor. This system differs from an FDPS in that it 

allows multiple nodes to share primary memory. Table 1 describes how this 

control model fits into the classification scheme of Section 7. 

8.2.1 Architecture  

Cm* consists of a number of relatively independent processors or com-

puter modules (Cm) and a number of communication controllers (Kmap). The Cm's 

are arranged in clusters with a Kmap presiding over each cluster. A switch, 

Slocal, connects a Cm with the interprocessor communication structure. Each 

Slocal contains tables that allow it to decide on each memory reference 

whether to access local memory or pass the reference along to the Kmap to 

locate the desired information in either the local cluster or a distant 

cluster. Thus, any processor can access the memory of any other processor. 

It must be kept in mind, though, that a substantial time delay results from 

accessing the memory of distant processors. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 82 
	

MODELS OF CONTROL 	 Section 8 

Table 4. The Medusa Control Model 

MK GRAPH CONSTRUCTION: 

Who builds the task graph? 
The node containing an activation of the task force manager. 

What is the nature of the task graph? 
Multiple structures (the task force control block is stored in the 
SDL and the activity control block is stored in the PDLs). 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
A number of utilities each realized as a task force. 

Where is the information maintained? 
In a shared data structure. 

ALLOCATION  sz RESOURCES: 
How is concurrency control provided? 

By means of locks. 

PROCE4S INITIATION: 

How is responsibility distributed? 
The task force manager keeps overall control, but other special 
managers are available to provide specific services. 

How is refusal of a request to execute a process by a node handled? 
This is not discussed in the literature. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
It is not clear if additional work can be requested. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 83 

8.2.2 Work Reauests  

Work requests are used to describe task forces. A task force consists 

of a number of relatively independent communicating processes capable of 

concurrent execution that are working toward the solution of some task. 

Interprocess communication is accomplished via pipes which differ slightly 

from those found in UNIX [Ritc78]. There are two unique features found in 

these pipes: 1) they insure that only whole messages are read, and 2) they 

identify the sender of the message to the receiver. 

In addition to processes and pipes, a task force contains a shared 

descriptor list (SDL) and a number of private descriptor lists (PDL). These 

structures contain descriptors which are basically capabilities for certain 

system objects. There is only one SDL per task force. This provides access 

to objects that are shared among all processes of a task force. For each 

process, there is a PDL which provides access to private objects. Thus, the 

significant feature of the task force concept is the capability to directly 

share objects by means of the SDL. 

8.2.3 The Control Model  

The distributed control is composed of a series of five utilities each 

of which is implemented as a task force. The five utilities are as follows: 

1. Memory Manager:  allocates primary memory and aids the Kmap in 
descriptor list manipulation. 

2. File System:  acts as a controller for all I/O devices of the 
system and implements a hierarchical file system. 

3. Task Force Manager:  creates, schedules, and deletes task for- 
ces and the processes that comprise task forces. 

4. Exception. Reporter: 	communicates information about unusual 
occurrences to those processes that need to know this 
information. 

5. Debugger/Tracer: 	holds symbol table and 	performance 
measurement information for all utilities and provides 
facilities for on-line debugging of the system and gathering of 
performance data. 

Communication between user processes and utilities is accomplished by 

means of pipes. There is one pipe for each utility. Access to these pipes is 

provided by the utility descriptor list (UDL) which is present on all nodes. 

A process utilizes this structure to locate the proper pipe into which a mes-

sage for a particular utility is to be placed. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 84 
	

MODELS OF CONTROL 	 Section 8 

8.2.4 Conclusion  

Medusa introduces two features that are pertinent to this discussion. 

These are the concept of a task force and the concept of sharing primary 

memory. A task force provides concurrent communicating processes to solve a 

common task. In addition to communicating by means of messages, processes are 

permitted to share data. The idea of shared memory is also seen in the hard-

ware by the ability to directly reference memory on distant processors. 

8.3 CNET 

CNET [Smit79, Smit80] is a distributed problem solver consisting of a 

collection of loosely coupled knowledge sources located on a number of 

distinct processors. Table 5 depicts how this model fits into the classifica-

tion scheme of Section 7. 

8.3.1 Architecture  

The system is intended for use on a network of loosely coupled asynch-

ronous processors. Communication between nodes is realized through broadcast 

messages. 

8.3.2 Work Reauests  

Applications for CNET can potentially take the form of cooperating 

processes. An individual work request specifies the work that must be accom-

plished. Depending upon decisions of the control, a task may be divided into 

subtasks, and the subtasks may be further divided. 

8.3.3 The Control Model  

CNET utilizes a hierarchical form of control for each task. At the top 

level is the manager for the task that is described in the original work 

request. This manager attempts to find a suitable contractor to execute the 

task. This is accomplished by means of a negotiation that begins with a mes-

sage from the manager. This message can take the form of a general broadcast, 

a limited broadcast, or a point-to-point announcement. The contents of the 

message include an eligibility specification (a list of criteria required of a 

node to execute the task), a task abstraction (a brief description of the 

task), a bid specification (describes the expected form of a bid from a pos-

sible contractor), and an expiration time (describes the time period that the 

announcement is valid). A general broadcast is utilized when the manager has 

no knowledge concerning the nodes capable of executing the task. A limited 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 85 

Table 5. The CNET Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
Separate pieces of information concerning a particular resource type 
may be kept on different nodes. 

ALLOCATION  Q RESOURCES: 

How is concurrency control provided? 
Resources are locked before the work distribution decision is made. 

PROCESS INITIATION: 

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
Once a contract is made it is binding. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Not specified. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 86 
	

MODELS OF CONTROL 	 Section 8 

broadcast can be utilized when the manager knows a specific group of nodes is 

capable of executing the task. Finally, a point-to-point announcement is made 

when the manager knows about the availability of a single suitable node. This 

knowledge is obtained from idle nodes that broadcast messages indicating their 

availability. 

The manager sends these messages and waits for the arrival of bids from 

possible contractors. When the bids arrive, they are examined in order to 

determine a choice for the task assignment. All bids are binding so the 

manager can make a choice with confidence that a chosen node will accept the 

task. Once a node is chosen, the contract is awarded and the chosen node 

becomes known as a contractor. The contractor may further divide the task and 

utilize other contractors for the various pieces. Thus, a node can act both 

as a manager and a contractor. 

A contractor provides the manager with reports that contain information 

concerning partial execution (interim report) or completion (final report). A 

report contains a result description that specifies execution results. A 

manager has complete authority over a contractor and thus may terminate 

contracts at any time with a termination message. This terminates execution 

of a contract and all outstanding subcontracts. 

8.3.1 Conclusion  

CNET utilizes a hierarchical control scheme with a manager supervising 

the work of possibly multiple contractors working to solve a given task. A 

manager locates contractors by broadcasting an announcement for bids. It then 

waits for the bids from the contractors to arrive. After this negotiation 

phase, a bid is accepted, a contract is awarded, and execution of the task is 

begun. The manager can terminate execution of a task at any time and is the 

recipient of interim and final reports from the contractors. 

8.4 THE XFDPS SERIES  DE.MODELS  

In Section 7, a list of design alternatives for an FDPS executive 

control is presented (See Table 2). The rest of this section is devoted to 

the presentation of a series of control models designed by this research team 

by choosing among these alternatives. Each of the models is referred to as 

XFDPS.i where i is an identifying numeral. It is neither possible nor prac-

tical to present all possible models for an FDPS executive control. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 87 

Therefore, only a few models are investigated. 	The models were chosen by 

selecting a collection of design alternatives which were both logical and 

provided significant distinction among the various models. 

The models are described in such a manner as to give the reader a feel-

ing for the overall control strategy. A more complete comparison of the 

models can be obtained through tables 6 through 8 which contain a list of 

design alternatives for each model. 

8.4.1 Architecture  

An FDPS is composed of a multiplicity of independent processors 

physically connected by a network providing communication by means of a two-

party protocol. There is no sharing of primary memory, and, thus, the proces-

sors are considered to be loosely coupled. The processors operate in an 

autonomous but cooperative manner. Therefore, it is the responsibility of the 

control to insure that there is a unification of operation in the system. 

8.4.2 Work Requests  

Work requests describe concurrent communicating processes and are 

assumed to provide the functionality available with the command language 

described in Figure 10. 

8.4.3 XFDPS.1  

The XFDPS.1 model [Sapo80] (see Table 6 for a characterization of this 

model and Figure 34 for a view of the model's components) is a distributed and 

decentralized control model that is designed to shield the user from the 

system. In other words, it provides the system transparency that is fun-

damental to the FDPS definition. It is designed to encapsulate each proces-

sor's local operating system as advocated by Kimbleton [Kimb76]. This is the 

meta-system approach to implementing distributed operating systems discussed 

above and has been practiced in several systems including ADAPT [Peeb80]. The 

XFDPS.1 model is composed of a set of cooperating processes called managers 

and is similar in this respect to Medusa [Oust80] and ADAPT [Peeb80]. Each 

manager is designed to control a subset of the system's resources (logical and 

physical). 

Each manager requires reliable message communication with the other 

managers in order to perform its responsibilities. The XFDPS.1 model does not 

assume the presence of any particular interconnection of processors or for 

that matter any particular technique of message communication. This means 

Georgia Institute of Technology 	 FDPS Control Models 



Page 88 
	

MODELS OF CONTROL 	 Section 8 

Table 6. The XFDPS.1 Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
The source node. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph with one copy of 
the complete task graph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE  AVAILABILITY INFORMATION:  

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
At the node which contains the resource. 

ALLOCATION QE. RESOURCES: 

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS  „INITIATION:  

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 

Georgia Institute of Technology 	 FDPS Control Models 



FILE 

SYSTEM 

MANAGER 

I 	 I 
---->1 FILE SET 1 1 
<----1 MANAGER 

1 	 1 

 

I 	 1 
---->1 FILE SET i 
<----1 MANAGER 	1 

1 	 I 

 

PROCESSOR 

UTILIZATION 

MANAGER 

1 
---->1 PROCESSOR 1 

1 UTILIZATION 
< 	MONITOR 

1 	  

 

• 

 

1 
---->1 PROCESSOR j 

1 UTILIZATION 
<----1 MONITOR 

1 	  

 

PROCESS 

MANAGER 

1 
---->1 PROCESSOR 1 

I PROCESSING 
<----1 MANAGER 

1 	  

 

• 
• 
• 

 

1 
---->1 PROCESSOR k 

1 PROCESSING 
<----1 MANAGER 

1 	  

 

< 

< ••••••■■■ 

MODELS OF CONTROL 	 Page 89 Section 8 

Figure 34. The XFDPS.1 Control Model 

Georgia Institute of Technology 	 FDPS Control Models 



Page 90 
	

MODELS OF CONTROL 	 Section 8 

that the model is applicable to systems that are interconnected in a variety 

of ways including loops, stars, regular networks, irregular networks, or fully 

interconnected networks [Ande75] and utilizing various message communication 

techniques including the ISO model [Bach78, Desj78] and Ethernet [Metc76]. 

The XFDPS.1 model is composed of several types of processes called 

managers which are responsible for various aspects of the control problem. 

These managers include the Task Set Manager, the File System Manager, the 

Processor Utilization Manager, and the Process Manager. 

8.4.3.1 Task Set Manager 

The Task Set Manager is responsible for handling work requests arriving 

from either users or active processes. A Task Set Manager is assigned to 

every work request. It must first identify the tasks comprising the Task Set 

which are needed to satisfy the work request and then communicate with the 

File System Manager to obtain information concerning the availability of 

files. The Processor Utilization Manager is also consulted in order to 

determine the relative utilization of the processors. Using the information 

acquired in this manner, a work allocation decision is made that results in 

the assignment of tasks to processors. This decision involves an optimization 

problem similar in many respects to that discussed by Morgan [Morg77]. 

The second phase of the Task Set Manager's responsibility concerns 

carrying out the decision arrived at in the first phase. This again involves 

communication with the File System Manager to allocate needed files and to 

deallocate these files when they are no longer needed. In addition, com-

munication is required with the Process Manager which activates the processes 

and observes when these processes have terminated. The last act of the Task 

Set Manager is to inform the original requester as to the completion status of 

the request. In doing so it will either indicate that it was successful in 

completing the request or provide a description concerning why the request 

could not be completed. 

8.4.3.2 File System Manager 

The File System Manager is responsible for maintaining the file system 

for the entire FDPS. Instances of the File System Manager are found on all 

processors. Management of the file system is achieved through communication 

among these instances of the File System Manager. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 91 

The implication of this design is that several requests to the file 

system can be acted upon simultaneously provided these requests arrive at 

different processors. These requests may either elicit availability informa-

tion or ask that the file status information be updated (i.e., making a reser-

vation, placing a lock, or releasing a lock on a file). This simultaneity is 

in marked contrast to the resource allocation found in the ARAMIS Distributed 

Computer System [Caba79a,b] in which all nodes possess a Resource State Table 

containing the state of all resources in the system. This system only permits 

resource allocation by at most one node at any one time. 

In the XFDPS.1 model, the file system is divided into several disjoint 

sets. The design of the control does not restrict how this division is 

realized. For example, these sets can be defined by processor boundaries. 

For each set, there is a separate manager called a File Set Manager. In order 

to perform its management duties, the File System Manager must communicate 

with each File Set Manager. 

The File System Manager handles three types of requests, all originating 

from the Task Set Manager. The first type of request is for availability 

information concerning a collection of files. The File System Manager con-

verts this request into a series of requests concerning individual files and 

presents these requests to the File Set Managers. The File System Manager 

waits for responses from all File Set Managers before returning its response. 

A File Set Manager will return an indication of the file's availability. If a 

file is available, the File Set Manager will reserve the file for the Task Set 

from which the request originated. This reservation remains effective for a 

limited period of time, and it is the responsibility of the Task Set Manager 

to confirm the reservation before its effectiveness has expired. 

The second request that can be made to the File System Manager concerns 

the allocation of a series of files. Again this request is converted into a 

number of requests concerning the reservations of individual files and is sent 

to specific File Set Managers which in turn perform the necessary locking of 

the files. 

Finally, the File System Manager can receive requests for the dealloca-

tion of files. These requests'are handled in a manner similar to allocation 

requests and result in the release of locks or reservations on specific files. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 92 
	

MODELS OF CONTROL 	 Section 8 

8.4.3.3 Processor Utilization Manager 

Another type of process found in the control is the Process Utilization 

Manager. Instances of this manager are replicated on all processors. The 

main function of the Process Utilization Manager is the maintenance of a data 

base of processor utilization information for the processors comprising the 

FDPS. The information in this data base is not intended to be complete and 

accurate but rather is designed to provide the work assignment algorithm in 

the Task Manager with an estimate of the utilization of the processors in the 

system. 

The Processor Utilization Manager obtains the information needed to 

update its data base from periodic messages directed to it from Processor 

Utilization Monitors located on each processor. These processes monitor the 

utilization of the processor in which they are located and issue periodic mes-

sages reporting their findings. If a Processor Utilization Manager does not 

receive a report from a Processor Utilization Monitor within a certain period 

of time, a message from the Manager is sent to the Monitor asking for an 

immediate response concerning the processor's state. If a response to this 

request is not received within a certain time period, it is assumed the 

processor is lost, and the Processor Utilization Manager updates its data base 

to reflect this. This will prevent the Task Set Manager from attempting to 

assign processes to a processor that has apparently been lost. 

8.4.3.4 Process Manager 

The last process type found in the control is the Process Manager. A 

Process Manager is activated for each Task Set Manager. This process accepts 

requests from the Task Set Manager for the activation of processes for the 

Task Set. The Process Manager identifies which processors are to receive 

processes. It then issues requests to Processing Managers on each processor. 

Each Processing Manager is responsible for controlling the processes assigned 

to its processor. 

In addition to assigning processes and waiting for the notification of 

their termination, the Process Manager is responsible for providing 

interprocess communication between executing processes. In this model, 

interprocess communication is provided by means of ports [Balz71, Have78, 

Suns77, Zuck77J. A port provides a common location where communicating 

processes can either send or fetch messages without knowing about the other's 

Georgia Institute of Technology 	 FDPS Control Models 



Section 8 
	

MODELS OF CONTROL 	 Page 93 

location. 	Buffer space is also required in order to allow the communicating 

processes to operate as independently as possible. This type of interprocess 

communication is similar to the stream communication utilized in TRIX 

[Ward803. The Process Manager must therefore decide where a buffer for the 

port resides and then provide the necessary linkages within the communicating 

processes in order for them to address the port. 

8.4.3.5 Conclusion 

The fundamental philosophy of the XFDPS.1 model is that the control over 

logical and physical resources must be distributed among various processes or 

managers. The reason for taking this approach is to provide better utiliza-

tion of system resources by making use of the inherent parallelism found in 

distributed processing systems. 

8.4.4 XFDPS.2.  

XFDPS.2 is a variation of model XFDPS.1. The main difference between 

the two models exists in the technique used to construct the task graph. A 

complete outline of the characteristics of XFDPS.2 is found in Table 7. 

The construction of task graphs in XFDPS.2 is performed by multiple 

nodes resulting in a task graph that consists of multiple structures each of 

which is a subgraph of the complete task graph. The overall strategy works as 

follows. After a work request arrives at a particular node, work on construc-

ting a task graph is begun. When a node is chosen to perform part of a task 

graph, responsibility for that portion of the task graph is given to a control 

component on that node. This component will maintain that portion of the task 

graph and in so doing may also choose other nodes to perform part of the work 

that the subgraph represents. 

Thus, there are two main differences between XFDPS.2 and XFDPS.1: 1) 

the task graph is not maintained in one location but rather on multiple nodes, 

and 2) this construction is performed in a piecemeal fashion in XFDPS.2. This 

means that the components of XFDPS.2 possess greater independence than those 

of XFDPS.1. 

8.4.5 XFDPS.3,  

XFDPS.3 (see Table 8) is a variation on the XFDPS.2 model. In this 

case, the difference exists in the maintenance of resource availability 

information. In both XFDPS.1 and XFDPS.2, each physical node maintains 

information about its own resources. XFDPS.3, though, utilizes the approach 

Georgia Institute of Technology 	 FDPS Control Models 



Page 94 
	

MODELS OF CONTROL 	 Section 8 

Table 7. The XFDPS.2 Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
Separate pieces of information concerning a particular resource type 
may be kept on differentt nodes. 

ALLOCATION  DE RESOURCES: 

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS INITIATION: 

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 

Georgia Institute of Technology 
	 rnps rnylfrn1 MnAcOo 



Section 
	

MODELS OF CONTROL 	 Page 95 

Table 8. The XFDPS.3 Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
Components for each type of resource. 

Where is the information maintained? 
Information concerning a particular resource type is kept on a 
single node. 

ALLOCATION DE RESOURCES: 

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS INITIATION: 

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 96 
	

MODELS OF CONTROL 	 Section 8 

taken in Medusa which assigns a control component to each type of resource and 

maintains information concerning a particular type of resource in a single 

location. 

Thus, when resource availability information is required, a resource 

needs allocation, or a resource needs deallocation, it is only necessary to 

determine the type of the resource in order to determine the proper control 

component to perform the desired operation. This is in contrast to XFDPS.1 

and XFDPS.2 both of which require a search for the correct component. 

neorvis Institute of Technology 	 FDPS Control Models 



Section 9 
	

THE EVALUATION OF THE MODELS 	 Page 97 

SECTION 9 

THE EVALUATION OF THE MODELS 

9.1 EVALUATION PLAN  

As stated earlier in this report, it was planned from the initiation of 

this survey of control models that it would be followed immediately by an 

evaluation study of the various models identified or developed. It was also 

anticipated that this evaluation would cover both the quantitative and 

qualitative aspects of the various models. 

To support the quantitative evaluation of the various forms of system 

control, a distributed control model simulator is being developed. 

9.2 EVALUATION CRITERIA  

A number of evaluation criteria have already been identified. The 

tentative list is summarized in Table 9. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 98 
	

THE EVALUATION OF THE MODELS 	 Section 9 

Table 9. Possible Evaluation Criteria for 
Distributed Control Models 

RESOURCE UTILIZATION  
Memory Space Utilization 

By the Control Algorithm 
Complexity 
Redundancy 

By the Control Information 
Time 

Local Processing Time 
Communications Delays 
Delays in Work Initiation 

Communication 
Complexity 
Quantity 

PERFORMANCE  
Throughput 
Response Time 
Bottlenecks 

SYSTEM, FLEXIBILITY . 

Reconfiguration Potential 
Modularity 

Logical Complexity 
Maintainability 
Problem Partitioning and Algorithm Design 

FAULT-TOLERANCE  
Detection 
Recovery 
Extent to Which Processed Work Can Be Recovered 

PROTECTION  
Privacy 
Security 

n.annrvin TrIc4-44-114-= 
	 nfln n 



References 	 Page 99 

REFERENCES  

Akin78 	Akin, T. Allen, Flinn, Perry B., Forsyth, Daniel H., "A Prototype 
for an Advanced Command Language," Proceedings  21 the 16th Annual  
Southeastern Regional ACM Conference (April, 1978): 96-102. 

Ande75 	Anderson, George A., and Jensen, E. Douglas., "Computer Interconnec- 
tion Structures: Taxonomy, Characteristics, and Examples," Computing 
Surveys 4 (December, 1975): 197-213. 

Bach78 	Bachman, Charles, and Canepa, Mike, "The Session Control Layer of an 
Open System Interconnection," COMPCON Fall Ili (September, 1978): 
150-156. 

Balz7l 	Balzer, R. M., "PORTS - A Method for Dynamic Interprogram Communica- 
tion and Job Control," AFIPS Conference Proceedings 38 (1971 Spring 
Joint Computer Conference): 485-489. 

Brin78 	Brinch Hansen, Per, "Distributed Processes: A Concurrent Programming 
Concept," Communications 91 thq ACM 21 (November, 1978): 934-941. 

Caba79a 	Cabanel, J. P., Marouane, M. N., Besbes, R., Sazbon, R. D., and 
Diarra, A. K., "A Decentralized OS Model for ARAMIS Distributed Com-
puter System," Proceedings 91 the First International Conference 9n 
Distributed Computing Systems (October, 1979): 529 -535. 

Caba79b 	Cabanel, J. P., Sazbon, R. D., Diarra, A. K., Marouane, M. N., and 
Besbes, R., "A Decentralized Control Method in a Distributed 
System," Proceedings 91 the First International Conference 912. 
Distributed Computing Systems (October, 1979): 651 -659. 

Clar80 	Clark, David D., and Svobodova, Liba, "Design of Distributed Systems 
Supporting Local Autonomy," COMPCON Spring la (February, 1980): 438-
444. 

Cook80 	Cook, Robert P., "The STARMOD Distributed Programming System," 
COMPCON Fall  11 (September, 1980): 729-735. 

Davi79 	Davies, D. W., Barber, D. L. A., Price, W. L., and Solomonides, C. 
M., Computer Networks and Their Protocols, John Wiley and Sons, 
1979. 

Denn78 	Denning, Peter J., "Operating Systems Principles for Data Flow 
Networks," Computer (July, 1978): 86-96. 

Desj78 	desJardins, Richard, and White, George, "ANSI Reference Model for 
Distributed Systems," COMPCON Fall ill (September, 1978): 144-149. 

Ens174 	Enslow, Philip H., Jr. (ed.), 	Multiprocessors and 	Parallel  
Processing, New York: John Wiley and Sons, 1974. 

Ens178 	Enslow, Philip H., Jr., "What is a 'Distributed' Data Processing 
System?" Computer (January, 1978): 13-21. 

Farb73 	Farber, D. J., Feldman, J., Heinrich, F. R., Hopwood, M. D., Larson, 
K. C., Loomis, D. C., and Rowe, L. A., "The Distributed Computing 
System," COMPCON Spring  la (February, 1973): 31-34. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 100 

Feld79 

Garc79 

Have78 

Hoar78 

Hopp79 

Jens78 

Kimb76 

Lein58 

Macc80 

Metc76 

Morg77 

Nels78 

Oust80 

Oust80 

Peeb80 

Ritc78 

References 

Feldman, J. A., "High Level Programming for Distributed Computing," 
Communications  of the  Mt 22 (June, 1979): 353-368. 

Garcia-Molina, H., "Performance Comparison of Update Algorithms for 
Distributed Databases, Crash Recovery in the Centralized Locking 
Algorithm," Progress Report No. 7, Stanford University, 1979. 

NIX,I:t=170N 	 R. ,/a7f=rtegoe7,s794713172-f;Tns 

A. 	R., 	"Communicating Sequential 	Processes," 
DI the ACM  21 (August, 1978): 666-677. 

Hopper, K., Kugler, H. J., and Unger, C., "Abstract Machines Model-
ling Network Control Systems," Operating Systems Review  13 (January, 
1979): 10-24. 

Jensen, E. Douglas., "The Honeywell Experimental Distributed Proces-
sor - An Overview," Computer  (January, 1978): 28-38. 

Kimbleton, Stephen R., and Mandell, Richard L., "A Perspective on 
Network Operating Systems," AFIPS Conference Proceedings  45 (1976 
National Computer Conference): 551-559. 

Leiner, A. L., and Weinberger, A., "PILOT, the NBS Multicomputer 
System," Proceedings  of the Eastern Joint Computer Conference  
(1958): 71-75. 

Maccabe, Aurthur B., and Leblanc, Richard J., "A Language Model for 
Fully Distributed Systems," COMPCON Fall  (September, 1980): 723-
728. 

Metcalfe, R. M., and Boggs, D. R., "Ethernet - Distributed Packet 
Switching for Local Computer Networks," Communications  91' the ACM  19 
(July, 1976): 395-404. 

Morgan, Howard L., and 
Locations in Computer 
1977): 315-322. 

Nelson, David L., and 
Architecture for Data 
1978): 296-301. 

Ousterhout, John K., "Partitioning and Cooperation in a Distributed 
Multiprocessor Operating System: Medusa," Ph.D. Thesis, Carnegie-
Mellon University, April, 1980. 

Ousterhout, John K., Seelza, Donald A., and Sindhu, Pradeep S., 
"Medusa: An Experiment in Distributed Operating System Structure," 
Communicatio s  of the ACM  23 (February, 1980): 92-105. 

Peebles, Richard, and Dopirak, Thomas, "ADAPT: A Guest System," 
COMPCON Spring  .8.11 (February, 1980): 445-454. 

Ritchie, D. M., and Thompson, K., "The UNIX Time-Sharing System," 
The Bell System Technical Journal  57 (July-August, 1978): 1905-1929. 

Haverty, J. F., 
for a Server in 

Hoare, 	C. 
Communications  

Levin, K. Dan, "Optimal Program and Data 
Networks," Communications  sal the ACM  20 (May, 

ZWoCOmrprtirntg, 1,; . 6=111Cellis -(Slek4:M= 

Georgia Institute of Technology 	 FDPS Control Models 



References 	 Page 101 

Sapo80 	Saponas, 	Timothy G., 	and Crews, Phillip L., "A Model for 
Decentralized Control in a Fully Distributed Processing System," 
COMPCON Fall  fia (September, 1980): 307-312. 

Smit79 	Smith, Reid G., "The Contract Net Protocol: High-Level Communication 
and Control in a Distributed Problem Solver," Proceedings  91 the 1st  
International Conference  gai Distributed Computing  (October, 1979): 
185-192. 

Smit80 	Smith, Reid G., "The Contract Net Protocol: High-Level Communication 
and Control in a Distributed Problem Solver," IEEE Transactions  on 
Computers  C-29 (December, 1980): 1104-1113. 

Suns77 	Sunshine, Carl, "Interprocess Communication Extensions for the UNIX 
Operating System: I. Design Considerations," Rand Technical Report 
R-2064/1-AF, June 1977. 

Thom78 	Thomas, Robert H., Schantz, Richard E., and Forsdick, Harry C., 
"Network Operating Systems," Bolt Beranek and Newman Report No. 3796 
(March, 1978). 

Ward80 	Ward, Stephen A., "TRIX: A Network-Oriented Operating System," 
COMPCON Spring  aa (February, 1980): 344-349. 

Zuek77 	Zucker, Steven, "Interprocess Communication Extensions for the UNIX 
Operating System: II. Implementation," Rand Technical Report 
R-2064/2-AF, June, 1977. 

Georgia Institute of Technology 	 FDPS Control Models 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254

