
 IIInnntttrrroooddduuuccctttiiiooonnn tttooo ttthhheee SSSoooffftttwwwaaarrreee TTToooooolllsss TTTeeexxxttt EEEdddiiitttooorrr

 T. Allen Akin
 Terrell L. Countryman
 Perry B. Flinn
 Daniel H. Forsyth, Jr.
 Jeanette T. Myers
 | Arnold D. Robbins
 Peter N. Wan

 | School of Information and Computer Science
 | Georgia Institute of Technology
 | Atlanta, Georgia 30332

 | September, 1984

 | ___TTT___AAA___BBB___LLL___EEE___ ___OOO___FFF___ ___CCC___OOO___NNN___TTT___EEE___NNN___TTT___SSS

 TTTuuutttooorrriiiaaalll ... 1
 Starting an Editing Session 1
 Entering Text - the Append Command 1
 Writing text on a file - the Write command 2
 Finishing up - the Quit command 2
 Reading files - the Enter command 3
 Errors - the Query command 4
 Printing text - the Print command 5
 More Complicated Line Numbers 6
 Deleting Lines .. 8
 Text Patterns ... 8
 Making Substitutions - the Substitute command 13
 Line Changes, Insertions, and Concatenations 16
 Moving Text ... 17
 Global Commands 17
 Marking Lines ... 18
 Undoing Things -- the Undo Command 20
 More Line Number Syntax 21
 Escaping to the Shell 22
 Summary ... 23

 TTThhheee SSSuuubbbsssyyysssttteeemmm SSScccrrreeeeeennn EEEdddiiitttooorrr 24
 Invoking the Screen Editor 24
 Using ’Se’ .. 24
 Extended Line Numbers 26
 Case Conversion 26
 Tabs .. 27
 Full-Screen Editing 27
 Horizontal Cursor Motion 28
 Vertical Cursor Motion 28
 Character Insertion 29
 Character Deletion 29
 Terminating a Line 30
 Non-printing Characters 30
 The .serc File .. 30

 SSScccrrreeeeeennn EEEdddiiitttooorrr OOOppptttiiiooonnnsss 32

 SSScccrrreeeeeennn EEEdddiiitttooorrr CCCooonnntttrrrooolll CCChhhaaarrraaacccttteeerrrsss 37

 EEEdddiiitttooorrr CCCooommmmmmaaannnddd SSSuuummmmmmaaarrryyy 41

 EEEllleeemmmeeennntttsss ooofff LLLiiinnneee NNNuuummmbbbeeerrr EEExxxppprrreeessssssiiiooonnnsss 48

 - iii -

 SSSuuummmmmmaaarrryyy ooofff PPPaaatttttteeerrrnnn EEEllleeemmmeeennntttsss 49

 - iv -

 | FFFooorrreeewwwooorrrddd

 ’Ed’ is an interactive program that can be used for the
 creation and modification of "text." "Text" may be any collec-
 tion of character data, such as a report, a program, or data to
 be used by a program.

 This document is intended to provide the beginning user of
 ’ed’ with a tutorial, an aid to becoming familiar with editing.
 It does not attempt to cover the editor in full; only the most
 frequently used aspects are mentioned. For details on advanced
 uses, a careful reading of _S_o_f_t_w_a_r_e _T_o_o_l_s and the _S_o_f_t_w_a_r_e _T_o_o_l_s
 _S_u_b_s_y_s_t_e_m _R_e_f_e_r_e_n_c_e _M_a_n_u_a_l is recommended.

 HHHooowww TTTooo UUUssseee TTThhhiiisss GGGuuuiiidddeee

 This tutorial includes a step-by-step journey through an
 editing session. You should be sitting at a terminal and running
 the Software Tools Subsystem, so that you can perform the sug-
 gested exercises as you go.

 Throughout the text of this guide are sample editing com-
 mands, which you can execute on your terminal to get a feel for
 their actual effect. If at any time your terminal session
 produces results different from those shown in the text,
 carefully re-check what you have typed, or consult someone in
 charge of your installation.

 - v -

 Introduction to ’Ed’

 TTTuuutttooorrriiiaaalll

 SSStttaaarrrtttiiinnnggg aaannn EEEdddiiitttiiinnnggg SSSeeessssssiiiooonnn

 We assume that you have successfully logged in to your com-
 puter and are running the Software Tools Subsystem. If you need
 assistance, see the _S_o_f_t_w_a_r_e _T_o_o_l_s _S_u_b_s_y_s_t_e_m _T_u_t_o_r_i_a_l. We
 further assume that you know how to use the character erase and
 line delete characters, so that you will have no trouble correct-
 ing typographical errors, and that you have some idea of what a
 "file" is.

 Since you are in the Subsystem, the command interpreter
 should have just printed the prompt "]". To enter the text
 editor, type

] eeeddd (followed by a newline)

 (Throughout this guide, boldface is used to indicate information
 that you should type in. Things typed by ’ed’ are shown in the
 regular font.) You are now in the editor, ready to go. Note
 that ’ed’ does not print any prompting information; this quiet
 behavior is preferred by experienced users. (If you would like a
 prompt, it can be provided; try the command "op/prompt/".)

 At this point, ’ed’ is waiting for instructions from you.
 You can instruct ’ed’ by using "commands," which are single let-
 ters (occasionally accompanied by other information, which you
 will see shortly).

 EEEnnnttteeerrriiinnnggg TTTeeexxxttt --- ttthhheee AAAppppppeeennnddd CCCooommmmmmaaannnddd

 The first thing that you need is text to edit. Working with
 ’ed’ is like working with a blank sheet of paper; you write on
 the paper, alter or add to what you have written, and either file
 the paper away for further use or throw it away. In ’ed’s
 terminology, the blank sheet of paper you start with is called a
 "buffer." The buffer is empty when you start editing. All edit-
 ing operations take place in the buffer; nothing you do can
 affect any file unless you make an explicit request to transfer
 the contents of the buffer to a file.

 So the first problem reduces to finding a way to put text
 into the buffer. The "append" command is used to do this:

 aaa

 This command appends (adds) text lines to the buffer, as they are
 typed in.

 To put text into the buffer, simply type it in, terminating
 each line with a newline:

 - 1 -

 Introduction to ’Ed’

 TTThhheee qqquuuiiiccckkk bbbrrrooowwwnnn fffoooxxx
 jjjuuummmpppsss ooovvveeerrr
 ttthhheee lllaaazzzyyy dddoooggg...
 ...

 To stop entering text, you must enter a line containing only a
 period, immediately followed by a newline, as in the last line
 above. This tells ’ed’ that you are finished writing on the
 buffer, and are ready to do some editing.

 The buffer now contains:

 The quick brown fox
 jumps over
 the lazy dog.

 Neither the append command nor the final period are included in
 the buffer -- just the text you typed in between them.

 WWWrrriiitttiiinnnggg ttteeexxxttt ooonnn aaa fffiiillleee --- ttthhheee WWWrrriiittteee cccooommmmmmaaannnddd

 Now that you have some text in the buffer, you need to know
 how to save it. The write command "w" is used for this purpose.
 It is used like this:

 www fffiiillleee

 where "file" is the name of the file used to store what you just
 typed in. The write command copies the contents of the buffer to
 the named file, destroying whatever was previously in the file.
 The buffer, however, remains intact; whatever you typed in is
 still there. To indicate that the transfer of data was success-
 ful, ’ed’ types out the number of lines written. In this exam-
 ple, ’ed’ would type:

 3

 It is advisable to write the contents of the buffer out to a file
 periodically, to insure that you have an up-to-date version in
 case of some terrible catastrophe (like a system crash).

 FFFiiinnniiissshhhiiinnnggg uuuppp --- ttthhheee QQQuuuiiittt cccooommmmmmaaannnddd

 Now that you have saved your text in a file, you may wish to
 leave the editor. The "quit" command "q" is provided for this:

 qqq

 The next thing you see should be the "]" prompt from the Sub-
 system command interpreter. If you did not write out the
 contents of the buffer, the editor would respond:

 ?
 (not saved)

 - 2 -

 Introduction to ’Ed’

 This is to remind you to write out the buffer, so that the
 results of your editing session are not lost. If you intended
 that the buffer be discarded, just enter "q" again and ’ed’ will
 throw away the buffer and terminate.

 When you receive the "]" prompt from the Subsystem command
 interpreter, the buffer has been thrown away; there is absolutely
 no way to recover it. If you wrote the contents of the buffer to
 a file, then this is of no concern; if you did not, it may mean
 disaster.

 To check if the text you typed in is really in the file you
 wrote it to, try the following command:

] cccaaattt fffiiillleee

 where "file" is the name of the file given with the "w" command.
 ("Cat" is a Subsystem command that can be used to print files on
 the terminal. If, for example, you wished to print your file on
 the line printer, you could say:

] ppprrr fffiiillleee

 and the contents of "file" would be queued for printing.)

 RRReeeaaadddiiinnnggg fffiiillleeesss --- ttthhheee EEEnnnttteeerrr cccooommmmmmaaannnddd

 Of course, most of the time you will not be entering text
 into the buffer for the first time. You need a way to fill the
 buffer with the contents of some file that already exists, so
 that you can modify it. This is the purpose of the "enter" com-
 mand "e"; it enters the contents of a file into the buffer. To
 try out "enter," you must first get back into the editor:

] eeeddd

 "Enter" is used like this:

 eee fffiiillleee

 "File" is the name of a file to be read into the buffer.

 Note that you are not restricted to editing files in the
 current directory; you may also edit files belonging to other
 users (provided they have given you permission). Files belonging
 to other users must be identified by their full "pathname"
 (discussed fully in _U_s_e_r_’_s _G_u_i_d_e _t_o _t_h_e _P_r_i_m_o_s _F_i_l_e _S_y_s_t_e_m). For
 example, to edit a file named "document" belonging to user "tom,"
 you would enter the following command:

 e //tom/document

 After the file’s contents are copied into the buffer, ’ed’
 prints the number of lines it read. In our example, the buffer

 - 3 -

 Introduction to ’Ed’

 would now contain:

 The quick brown fox
 jumps over
 the lazy dog.

 If anything at all is present in the buffer, the "e" command
 destroys it before reading the named file.

 As a matter of convenience, ’ed’ remembers the file name
 specified on the last "e" command, so you do not have to specify
 a file name on the "w" command. With these provisions, a common
 editing session looks like

] eeeddd
 eee fffiiillleee
 {editing}
 www
 qqq

 The "file" command ("f") is available for finding out the remem-
 bered file name. To print out the name, just type:

 fff
 file

 You might also want to check that

] eeeddd fffiiillleee

 is exactly the same as

] eeeddd
 eee fffiiillleee

 That is, ’ed’ performs an "e" command for you if you give it a
 file name on the command line.

 EEErrrrrrooorrrsss --- ttthhheee QQQuuueeerrryyy cccooommmmmmaaannnddd

 Occasionally, an error of some kind is encountered.
 Usually, these are caused by misspelled file names, although
 there are other possibilities. Whenever an error occurs, ’ed’
 types

 ?

 Although this is rather cryptic, it is usually clear what caused
 the problem. If you need further explanation, just enter "?"
 and ’ed’ responds with a one-line explanation of the error. For
 example, if the last command you typed was an "e" command, ’ed’
 is probably saying that it could not find the file you asked for.
 You can find out for sure by entering "?":

 - 4 -

 Introduction to ’Ed’

 eee mmmyyyfffiiillleee
 ?
 ???
 I can’t open the file to read

 Except for the messages in response to "?", ’ed’ rarely gives
 other, more verbose error messages; if you should see one of
 these, the best course of action is to report it to whoever
 maintains the editor at your installation.

 PPPrrriiinnntttiiinnnggg ttteeexxxttt --- ttthhheee PPPrrriiinnnttt cccooommmmmmaaannnddd

 You are likely to need to print the text you have typed to
 check it for accuracy. The "print" command "p" is available to
 do this. "P" is different from the commands seen thus far; "e",
 "w", and "a" have been seen to work on the whole buffer at once.
 For a small file, it might be easiest to print the entire buffer
 just to check on some few lines, but for very large files this is
 clearly impractical. The "p" command therefore accepts "line
 numbers" that indicate which lines to print. Try the following
 experiment:

] eeeddd fffiiillleee
 3
 111ppp
 The quick brown fox
 333ppp
 the lazy dog.
 111,,,222ppp
 The quick brown fox
 jumps over
 111,,,333ppp
 The quick brown fox
 jumps over
 the lazy dog.

 "1p" tells ’ed’ to print line 1 ("The quick brown fox"). "3p"
 says to print the third line ("the lazy dog."). "1,2p" tells
 ’ed’ to print the first _t_h_r_o_u_g_h the second lines, and "1,3p" says
 to print the first _t_h_r_o_u_g_h the third lines.

 Suppose we want to print the last line in the buffer, but we
 don’t know what its number is. ’Ed’ provides an abbreviation to
 specify the last line in the buffer:

 $$$ppp
 the lazy dog.

 The dollar sign can be used just like a number. To print
 everything in the buffer, we could type:

 111,,,$$$ppp
 The quick brown fox
 jumps over
 the lazy dog.

 - 5 -

 Introduction to ’Ed’

 If for some reason you want to stop the printing before it
 is done, press the BREAK key on your terminal. If you receive no
 response from BREAK, ’ed’ is waiting for you to enter a command.
 Otherwise, ’ed’ responds with

 ?

 and waits for your next command.

 MMMooorrreee CCCooommmpppllliiicccaaattteeeddd LLLiiinnneee NNNuuummmbbbeeerrrsss

 ’Ed’ has several ways to specify lines other than just num-
 bers and "$". Try the following command:

 ppp
 the lazy dog.

 ’Ed’ prints the last line. Does ’ed’ always print the last line
 when it is given an unadorned "p" command? No. The "p" command
 by itself prints the "current" line. The "current" line is the
 last line you have edited in any way. (As a matter of fact, the
 last thing we did was to print all the lines in the buffer, so
 the last line was edited by being printed.) ’Ed’ allows you to
 use the symbol "." (read "dot") to represent the current line.
 Thus

 ...ppp
 the lazy dog.

 is the same as

 ...,,,...ppp
 the lazy dog.

 which is the same as just

 ppp
 the lazy dog.

 "." can be used in many ways. For example,

 111,,,222ppp
 The quick brown fox
 jumps over
 111,,,...ppp
 The quick brown fox
 jumps over
 ...,,,$$$ppp
 jumps over
 the lazy dog.

 This example shows how to print all the lines up to the current
 line (1,.p) or all the lines from the current line to the end of
 the buffer (.,$p). If for some reason you would like to know the

 - 6 -

 Introduction to ’Ed’

 number of the current line, you can type

 ...===
 3

 and ’ed’ displays the number. (Note that the last thing we did
 was to print the last line, so the current line became line 3.)

 "." is not particularly useful when used alone. It becomes
 much more important when used in "line-number expressions." Try
 this experiment:

 ...---111ppp
 jumps over

 ".-1" means "the line that is one line before the current line."

 ...+++111ppp
 the lazy dog.

 ".+1" means "the line that is one line after the current line."

 ...---222,,,...---111ppp
 The quick brown fox
 jumps over

 ".-2,.-1p" means "print the lines from two lines before to one
 line before the current line."

 You can also use "$" in line-number expressions:

 $$$---111ppp
 jumps over

 "$-1p" means "print the line that is one line before the last
 line in the buffer, i.e., the next to the last line."

 Some abbreviations are available to help reduce the amount
 of typing you have to do. Typing a newline by itself is
 | equivalent to typing ".+1p"; typing a caret, "^", or a single
 | minus sign, "-", followed by a newline is equivalent to typing
 ".-1p"; and typing a line-number expression followed by a newline
 is equivalent to typing that line-number expression followed by
 | "p". Examples:

 {type a newline by itself}
 the lazy dog.
 ^̂̂
 jumps over
 | ---
 | The quick brown fox
 111
 The quick brown fox

 - 7 -

 Introduction to ’Ed’

 It might be worthwhile to note here that almost all commands
 expect line numbers of one form or another. If none are sup-
 plied, ’ed’ uses default values. Thus,

 w file

 is equivalent to

 1,$w file

 and

 a

 is equivalent to

 .a

 (which means, append text _a_f_t_e_r the current line.)

 DDDeeellleeetttiiinnnggg LLLiiinnneeesss

 As yet, you have seen no way of removing lines that are no
 longer wanted or needed. To do this, use the "delete" command
 "d":

 1,2d

 deletes the first through the second lines. "D" expects line
 numbers that work in the same way as those specified for "p",
 deleting one line or any range of lines.

 d

 deletes only the current line. It is the same as ".d" or ".,.d".

 After a deletion, the current line pointer is left pointing
 to the first line _a_f_t_e_r the group of deleted lines, unless the
 last line in the buffer was deleted. In this case, the current
 line is the last line _b_e_f_o_r_e the group of deleted lines.

 TTTeeexxxttt PPPaaatttttteeerrrnnnsss

 Frequently it is desirable to be able to find a particular
 "pattern" in a piece of text. For example, suppose that after
 proofreading a report you have typed in using ’ed’ you find a
 spelling error. There must be an easy way to find the misspelled
 word in the file so it can be corrected. One way to do this is
 to count all the lines up to the line containing the error, so
 that you can give the line number of the offending line to ’ed’.
 Obviously, this way is not very fast or efficient. ’Ed’ allows
 you to "search" for patterns of text (like words) by enclosing
 the pattern in slashes:

 - 8 -

 Introduction to ’Ed’

 ///jjjuuummmpppsss///
 jumps over

 ’Ed’ looks for the pattern you specified, and moves to the first
 line which contains the pattern. Note that if we had typed

 ///jjjuuummmpppeeeddd///
 ?

 ’ed’ would inform us that it could not find the pattern we
 wanted.

 ’Ed’ searches _f_o_r_w_a_r_d from the current line when it attempts
 to find the pattern you specified. If ’ed’ reaches the last line
 without seeing the pattern, it "wraps around" to the first line
 in the file and continues searching until it either finds the
 pattern or gets back to the line where it started (line ".").
 This procedure ensures that you get the "next" occurrence of the
 pattern you were looking for, and that you don’t miss any
 occurrences because of your current position in the file.

 Suppose, however, that you do not wish to find the "next"
 occurrence of a word, but the _p_r_e_v_i_o_u_s one instead. Very few
 text editors provide this capability; however, ’ed’ makes it sim-
 ple. Just surround the pattern with backslashes:

 \\\qqquuuiiiccckkk\\\
 The quick brown fox

 Remember: _b_a_c_kslashes search _b_a_c_kward. The backward search (or
 backscan, as it is sometimes called) wraps around the file in a
 manner similar to the forward search (or scan). The search
 begins at the line before the current line, proceeds until the
 first line of the file is seen, then begins at the last line of
 the file and searches up until the current line is encountered.
 Once again, this is to ensure that you do not miss any
 occurrences of a pattern due to your current position in the
 file.

 | In pattern searches, and in other commands which we will get
 | to later, ’ed’ allows you to leave off the trailing the
 | delimiter. I.e., instead of typing

 | ///jjjuuummmpppsss///

 | you can type

 | ///jjjuuummmpppsss

 | to search forward for the first occurrence of the pattern
 | "jumps". Similarly, to search backwards, you may type

 | \\\qqquuuiiiccckkk

 | instead of

 - 9 -

 Introduction to ’Ed’

 | \\\qqquuuiiiccckkk\\\

 | This feature can save considerable time and frustration when you
 | are doing some involved editing, and accidentally leave off the
 | trailing delimiter ("/" or "\"). The rest of this guide will
 | continue to use examples with the trailing delimiter, but you do
 | not have to in your actual editing.

 ’Ed’ also provides more powerful pattern matching services
 than simply looking for a given string of characters. (A note to
 beginning users: this section may seem fairly complicated at
 first, and indeed you do not really need to understand it com-
 pletely for effective use of the editor. However, the results
 you might get from some patterns would be mystifying if you were
 not provided with some explanation, so look this over once and
 move on.)

 The pattern that may appear within slashes (or backslashes)
 is called a "regular expression." It contains characters to look
 for and special characters used to perform other operations. The
 following characters

 % ? $ [* @ {

 have special meaning to ’ed’:

 % Beginning of line. The "%" character appearing as the
 first element in a pattern matches the beginning of a
 line. It is most frequently used to locate lines with
 some string at the very beginning; for example,

 /%The/

 finds the next line that begins with the word "The".
 The percent sign has its special meaning _o_n_l_y _i_f _i_t _i_s
 _t_h_e _f_i_r_s_t _e_l_e_m_e_n_t _o_f _t_h_e _p_a_t_t_e_r_n; otherwise, it is
 treated as a literal percent sign.

 ? Any character. The question mark "?" in a regular
 expression matches _a_n_y character (except a beginning-
 of-line or a newline). It can be used like this:

 /a?b/

 to find strings like

 a+b
 a-b
 a b
 arbitrary

 However, "?" is most often used with the "closure"
 operator "*" (see below).

 - 10 -

 Introduction to ’Ed’

 $ End of line. The dollar sign appearing as the last
 element of a pattern matches the newline character at
 the end of a line. Thus,

 /today$/

 can be used to find a line with the word "today" at the
 very end. Like the percent sign, the dollar sign has
 no special meaning in positions other than the end of a
 pattern.

 [] Character classes. The square brackets are used to
 match "classes" of characters. For example,

 /[A-Z]/

 finds the next line containing a capital letter,

 /%[abcxyz]/

 finds the next line beginning with an a, b, c, x, y, or
 z, and

 /[˜0-9]/

 finds the next line which contains a non-digit.
 Character classes are also frequently used with the
 "closure" operator "*".

 * Closure. The asterisk is used to mean "any number of
 repetitions (including zero) of the previous pattern
 element (one character or a character class in brac-
 kets)." Thus,

 /a?*b/

 finds lines containing an "a" followed by any number of
 characters and a "b". For example, the following lines
 are matched:

 ab
 abnormal
 Recording Media, by Dr. Joseph P. Gunchy

 As another example,

 /%=*$/

 matches only those lines containing all equal-signs (or
 nothing at all). If you wish to ensure that only non-
 empty lines are matched, use

 /%==*$/

 Always remember that "*" (closure) matches _z_e_r_o or more
 repetitions of an element.

 - 11 -

 Introduction to ’Ed’

 @ Escape. The "at" sign has special meaning to ’ed’. It
 is the "escape" character, which is used to prevent
 interpretation of a special character which follows.
 Suppose you wish to locate a line containing the string
 "a * b". You may use the following command:

 /a @* b/

 The "at" sign "turns off" the special meaning of the
 asterisk, so it can be used as an ordinary text charac-
 ter. You may have occasion to escape any of the
 regular expression metacharacters (%, ?, $, [, *, @, or
 {) or the slash itself. For example, suppose you
 wished to find the next occurrence of the string "1/2".
 The command you need is:

 /1@/2/

 {} Pattern tags. As seen in the next section, it is
 sometimes useful to remember what part of a line was
 actually matched by a pattern. By default, the string
 matched by the entire pattern is remembered. It is
 also possible to remember a string that was matched by
 only a part of a pattern by enclosing that part of the
 pattern in braces. Hence to find the next line that
 contains a quoted string and remember the text between
 the quotes, we might use

 /"{?*}"/

 If the line thus located looked like this

 This is a line containing a "quoted string".

 then the text remembered as matching the tagged part of
 the pattern would be

 quoted string

 The last important thing you need to know about patterns is
 the use of the "default" pattern. ’Ed’ remembers the last pat-
 tern used in any command, to save you the trouble of retyping it.
 To access the remembered pattern, simply use an "empty" string.
 For example, the following sequence of commands could be used to
 step through a file, looking for each occurrence of the string
 "ICS":

 /ICS/
 //
 //
 (and so on)

 - 12 -

 Introduction to ’Ed’

 One last comment before leaving pattern searching. The
 constructs

 /pattern/
 \pattern\

 are not separate commands; they are components of line number
 expressions. Thus, to print the line after the next line
 containing "tape", you could say

 /tape/+1p

 Or, to print a range of lines from one before to one after a line
 with a given pattern, you could use

 /pattern/-1,/pattern/+1p

 MMMaaakkkiiinnnggg SSSuuubbbssstttiiitttuuutttiiiooonnnsss --- ttthhheee SSSuuubbbssstttiiitttuuuttteee cccooommmmmmaaannnddd

 This is one of the most used editor commands. The "sub-
 stitute" command "s" is used to make small changes within lines,
 without retyping them completely. It is used like this:

 | starting-line,ending-line s [/pattern/new-stuff[/]]

 For instance, suppose our buffer looks like this:

 111,,,$$$ppp
 The quick brown fox
 jumps over
 the lazy dog.

 To change "jumps" to "jumped,"

 222sss///jjjuuummmpppsss///jjjuuummmpppeeeddd///ppp
 jumped over

 Note the use of the trailing "p" to print the result. If the "p"
 had been omitted, the change would have been performed (in the
 buffer) but the changed line would not have been printed out.

 If the last string specified in the substitute command is
 empty, then the text matching the pattern is deleted:

 sss///jjjuuummmpppeeeddd//////ppp
 over
 sss///%%% ***/// jjjuuummmpppsss ///ppp
 jumps over

 Recalling that a missing pattern means "use the last pattern
 specified," try to explain what the following commands do:

 - 13 -

 Introduction to ’Ed’

 sss/////////ppp
 jumps over
 sss////// ///ppp
 jumps over

 (Note that, like many other commands, the substitute command
 assumes you want to work on the current line if you do not
 specify any line numbers.)

 What if you want to change "over" into "over and over"? You
 might use

 sss///ooovvveeerrr///ooovvveeerrr aaannnddd ooovvveeerrr///ppp
 jumps over and over

 to accomplish this. There is a shorthand notation for this kind
 of substitution that was alluded to briefly in the last section.
 (Recall the discussion of "tagged" patterns.) By default, the
 part of a line that was matched by the whole pattern is remem-
 bered. This string can then be included in the replacement
 string by typing an ampersand ("&") in the desired position. So,
 instead of the command in the last example,

 s/over/& and &/

 could have been used to get the same result. If a portion of the
 pattern had been tagged, the text matched by the tagged part in
 the replacement could be reused by typing "@1":

 sss///jjjuuummmppp{{{???***}}}///vvvaaauuulllttt@@@111///ppp
 vaults over and over

 It is possible to tag up to nine parts of a pattern using braces.
 The text matched by each tagged part may then be used in a
 replacement string by typing

 @n

 where n corresponds to the nth "{" in the pattern. What does the
 following command do?

 s/{[˜]*} {?*}/@2 @1/

 | Some more words on substitute: the slashes are known as
 | "delimiters" and may be replaced by any other character except a
 newline, as long as the same character is used consistently
 throughout the command. Thus,

 sss###vvvaaauuullltttsss###vvvaaauuulllttteeeddd###ppp
 vaulted over and over

 is legal. Also, note that substitute changes only the first
 occurrence of the pattern that it finds; if you wish to change
 all occurrences on a line, you may append a "g" (for "global") to
 the command, like this:

 - 14 -

 Introduction to ’Ed’

 sss/// ///***///gggppp
 ****vaulted*over*and*over

 | In the replacement part of a substitute command, the character
 | "&", _a_s _t_h_e _o_n_l_y _c_h_a_r_a_c_t_e_r _i_n _t_h_e _p_a_t_t_e_r_n, means "the replacement
 | part of the previous substitute command". (This allows an empty
 | replacement pattern as well.) Thus, to step through the buffer,
 | and change selected occurrences of one pattern into another, you
 | might do the following:

 | ///pppaaattt111///
 | Line containing pat1.
 | sss///pppaaattt111///ssstttuuuffffff111///ppp
 | Line containing stuff1.
 | //////
 | Another line with pat1.
 | //////
 | Yet another line with pat1.
 | sss//////&&&///ppp
 | Yet another line with stuff1.

 | You may leave off the trailing delimiter in the substitute com-
 | mand. This will cause ’ed’ to print out the changed line. I.e.,
 | "s/stuff/junk" is the same as "s/stuff/junk/p".

 | ///qqquuuiiiccckkk///
 | The quick brown fox
 | sss///qqquuuiiiccckkk///rrreeeaaallllllyyy fffaaasssttt
 | The really fast brown fox

 | If you wish to delete an occurrence of a pattern, you may leave
 | it off. ’Ed’ will delete the pattern, and then print the line.
 | In other words, "s/stuff" is the same as "s/stuff//p".

 | ppp
 | The quick brown fox
 | sss///qqquuuiiiccckkk
 | The brown fox

 | Finally, you may leave off the search pattern and replacement
 | string entirely. If you do, ’ed’ will behave as though you had
 | typed "s//&/p", in other words, substitute the previous
 | replacement pattern for the previous search pattern, and print.

 | 111,,,$$$ddd
 | aaa
 | llliiinnneee 111
 | llliiinnneee 222
 | ...
 | 111sss///llliiinnneee///ttthhhiiisss iiisss &&&///ppp
 | this is line 1
 | 222sss
 | this is line 2

 | This can save considerable typing.

 - 15 -

 Introduction to ’Ed’

 | LLLiiinnneee CCChhhaaannngggeeesss,,, IIInnnssseeerrrtttiiiooonnnsss,,, aaannnddd CCCooonnncccaaattteeennnaaatttiiiooonnnsss

 Two "abbreviation" commands are available to shorten common
 operations applying to changes of entire lines. These are the
 "change" command "c" and the "insert" command "i".

 The change command is a combination of delete and append.
 Its format is

 starting-line,ending-line c

 This command deletes the given range of lines, and then goes into
 append mode to obtain text to replace them. Append mode works
 exactly the same way as it does for the "a" command; input is
 terminated by a period standing alone on a line. Examine the
 following editing session to see how change might be used:

 111,,,$$$ccc
 EEEddd iiisss aaannn iiinnnttteeerrraaaccctttiiivvveee ppprrrooogggrrraaammm uuussseeeddd fffooorrr
 ttthhheee cccrrreeeaaatttiiiooonnn aaannnddd mmmooodddiiifffiiicccaaatttiiiooonnn ooofff """ttteeexxxttt...
 ...
 ccc
 ttthhheee cccrrreeeaaatttiiiooonnn aaannnddd mmmooodddiiifffiiicccaaatttiiiooonnn ooofff """ttteeexxxttt..."""
 """TTTeeexxxttt""" mmmaaayyy bbbeee aaannnyyy cccooolllllleeeccctttiiiooonnn ooofff ccchhhaaarrraaacccttteeerrr
 dddaaatttaaa...
 ...

 As you can see, the current line is set to the last line entered
 in append mode.

 The other abbreviation command is "i". "I" is very closely
 related to "a"; in fact, the following relation holds:

 starting-line i

 is the same as

 starting-line - 1 a

 In short, "i" inserts text _b_e_f_o_r_e the specified line, whereas "a"
 | inserts text _a_f_t_e_r the specified line.

 | The join command "j" can be used to put two or more lines
 | together into a single line. It works like this:

 | starting-line,ending-line j[/string[/]]

 | The defaults for starting-line and ending-line are "^" and "."
 | respectively, that is, "join the line before the current line to
 | the current line". You may specify in "string" what is to
 | replace the newline(s) which currently separate the lines which
 | are to be joined. If you do not specify any string, ’ed’ will
 | replace the newline with a single blank. If you do specify a
 | string, you may leave off the trailing delimiter (which can be
 | any character), and ’ed’ will print out the resulting joined
 | line. An extended example should make this clear:

 - 16 -

 Introduction to ’Ed’

 | 111,,,$$$ppp
 | The quick brown fox
 | jumps over
 | the lazy dog.
 | 222,,,$$$sss///%%% ***//////
 | 111,,,$$$ppp
 | The quick brown fox
 | jumps over
 | the lazy dog.
 | 111,,,222jjj
 | The quick brown fox jumps over
 | 111,,,222jjj/// ttthhheee bbbaaaccckkk ooofff ///ppp
 | The quick brown fox jumps over the back of the lazy dog.

 MMMooovvviiinnnggg TTTeeexxxttt

 Throughout this guide, we have concentrated on what may be
 called "in-place" editing. The other type of editing commonly
 used is often called "cut-and-paste" editing. The move command
 "m" is provided to facilitate this kind of editing, and works
 like this:

 starting-line,ending-line m after-this-line

 If you wanted to move the last fifty lines of a file to a point
 after the third line, the command would be

 $-49,$m3

 Any of the line numbers may, of course, be full expressions with
 search strings, arithmetic, etc.

 You may, if you like, append a "p" to the move command to
 cause it to print the last line moved. The current line is set
 to the last line moved.

 GGGlllooobbbaaalll CCCooommmmmmaaannndddsss

 The "global" command "g" is used to perform an editing com-
 mand on all lines in the buffer that match a certain pattern.
 For example, to print all the lines containing the word "editor",
 you could type

 g/editor/p

 If you wanted to correct some common spelling error, you would
 use

 g/old-stuff/s//new-stuff/gp

 which makes the change in all appropriate lines and prints the
 resulting lines. Another example: deleting all lines that begin
 with an asterisk could be done this way:

 - 17 -

 Introduction to ’Ed’

 g/%@*/d

 "G" has a companion command "x" (for "exclude") that per-
 forms an operation on all lines in the buffer that do _n_o_t match a
 given pattern. For example, to delete all lines that do _n_o_t
 begin with an asterisk, use

 x/%@*/d

 "G" and "x" are very powerful commands that are essential
 for advanced usage, but are usually not necessary for beginners.
 Concentrate on other aspects of ’ed’ before you move on to tackle
 global commands.

 MMMaaarrrkkkiiinnnggg LLLiiinnneeesss

 During some types of editing, especially when moving blocks
 of text, it is often necessary to refer to a line in the buffer
 that is far away from the current line. For instance, say you
 want to move a subroutine near the beginning of a file to
 somewhere near the end, but you aren’t sure that you can specify
 patterns to properly locate the subroutine. One way to solve
 this problem is to find the first line of the subroutine, then
 use the command ".=":

 ///sssuuubbbrrrooouuutttiiinnneee///
 subroutine think
 ...===
 47

 and write down (or remember) line 47. Then find the end of the
 subroutine and do the same thing:

 ///eeennnddd///
 end
 ...===
 71

 Now you move to where you want to place the subroutine and enter
 the command

 444777,,,777111mmm...

 which does exactly what you want.

 The problem here is that absolute line numbers are easily
 forgotten, easily mistyped, and difficult to find in the first
 place. It is much easier to have ’ed’ remember a short "name"
 along with each line, and allow you to reference a line by its
 name. In practice, it seems convenient to restrict names to a
 single character, such as "b" or "e" (for "beginning" or "end").
 It is not necessary for a given name to be uniquely associated
 with one line; many lines may bear the same name. In fact, at

 - 18 -

 Introduction to ’Ed’

 the beginning of the editing session, all lines are marked with
 the same name: a single space.

 To return to our example, using the ’k’ command, we can mark
 the beginning and ending lines of the subroutine quite easily:

 ///sssuuubbbrrrooouuutttiiinnneee///
 subroutine think
 kkkbbb
 ///eeennnddd///
 end
 kkkeee

 We have now marked the first line in the subroutine with "b" and
 the second line with "e".

 To refer to names, we need more line number expression
 elements: ">" and "<". Both work in line number expressions
 just like "$" or "/pattern/". The symbol ">" followed by a
 single character mark name means "the line number of the first
 line with this name when you search _f_o_r_w_a_r_d". The symbol "<"
 followed by a single character mark name means "the line number
 of the first line with this name when you search _b_a_c_k_w_a_r_d".
 (Just remember that ’<’ points backward and ’>’ points forward.)

 Now in our example, once we locate the new destination of
 the subroutine, we can use "<b" and "<e" to refer to lines 47 and
 71, respectively (remember, we marked them). The "move" command
 would then be

 <<<bbb,,,<<<eeemmm...

 Several other features pertaining to mark names are
 important. First, the ’k’ command _d_o_e_s _n_o_t _c_h_a_n_g_e the current
 line ’.’. You can say

 $$$kkkxxx

 (which marks the last line with "x") and "." will not be
 changed. If you want to mark a range of lines, the ’k’ command
 accepts two line numbers. For instance,

 555,,,111000kkkaaa

 marks lines 5 through 10 with "a" (i.e., gives each of lines 5
 through 10 the markname "a").

 The ’n’, ’!’ and apostrophe commands also deal with marks.
 The ’n’ command performs two functions. If it is invoked without
 a mark name following it, like

 $$$nnn

 it prints the mark name of the line. In this case, it would
 print the mark name of the last line in the file. If the ’n’

 - 19 -

 Introduction to ’Ed’

 command is followed by a mark name, like

 444nnnqqq

 it marks the line with that mark name, and erases the marks on
 any other lines with that name. In this case, line 4 is marked
 with "q" and it is guaranteed that no other line in the file is
 marked with "q".

 The ’!’ and apostrophe commands are both global commands
 that deal with mark names. The apostrophe command works very
 much like the ’g’ command: the apostrophe is followed by a mark
 name and another command; the command is performed on every line
 marked with that name. For instance,

 ’’’aaasss///fffoooxxx///rrraaabbbbbbiiittt///

 changes the first "fox" to "rabbit" on every line that is named
 "a". The ’!’ command works in the same manner, except that it
 performs the command on those lines that _a_r_e _n_o_t marked with the
 specified name. For example, to delete all lines not named "k",
 you could type

 !!!kkkddd

 UUUnnndddoooiiinnnggg TTThhhiiinnngggsss ------ ttthhheee UUUnnndddooo CCCooommmmmmaaannnddd

 Unfortunately, Murphy’s Law guarantees that if you make a
 mistake, it will happen at the worst possible time and cause the
 greatest possible amount of damage. ’Ed’ attempts to prevent
 mistakes by doing such things as working with a copy of your file
 (rather than the file itself) and checking commands for their
 plausibility. However, if you type

 ddd

 when you really meant to type

 aaa

 ’ed’ must take its input at face value and do what you say. It
 is at this point that the "undo" command ’u’ becomes useful.
 "Undo" allows you to "undelete" the last group of lines that was
 deleted from the buffer. In the last example, some inconvenience
 could be avoided by typing

 ^̂̂uuuddd

 which restores the deleted line. (By default "undo" _r_e_p_l_a_c_e_s the
 specified line by the last group of lines deleted. Specifying
 the "d", as in "ud", causes the group to be inserted _a_f_t_e_r the
 specified line instead.)

 - 20 -

 Introduction to ’Ed’

 The problem that arises with "undo" is the answer to the
 question: "What was the last group of lines deleted?" This ans-
 wer is very dependent on the implementation of ’ed’ and in some
 cases is subject to change. After many commands, the last group
 of lines deleted is well-defined, but unspecified. It is not a
 good idea to use the "undo" command after anything other than
 ’c’, ’d’, or ’s’. After a ’c’ or ’d’ command,

 uuuddd

 places the last group of deleted lines _a_f_t_e_r _t_h_e _c_u_r_r_e_n_t _l_i_n_e.
 After an ’s’ command (which by the way, deletes the old line,
 replacing it by the changed line),

 uuu

 deletes the current line and replaces it by the last line deleted
 -- it exactly undoes the effects of the ’s’ command. But beware!
 If the ’s’ command covered a range of lines, ’u’ can only restore
 the last of the lines in which a substitution was made; the
 others are gone forever.

 You should be warned that while "undo" works nicely for
 repairing a single ’c’, ’d’, or ’s’ command, it cannot repair the
 damage done by one of these commands under the control of a
 global prefix (’g’, ’x’, ’!’ and apostrophe). Since the global
 prefixes cause their command to be performed many times, only the
 very last command performed by a global prefix can be repaired.

 MMMooorrreee LLLiiinnneee NNNuuummmbbbeeerrr SSSyyynnntttaaaxxx

 So far, the commands that you have seen can be given either
 no line numbers elements (the command tries to make an intel-
 ligent assumption about the line(s) on which to perform an
 operation), one line number element (the command acts only on
 that line), or two line numbers separated by a comma (the command
 acts on the given range of lines). There is one more way to
 specify line number elements, and that is to separate them by a
 semicolon. When line number elements are separated by
 semicolons, each line number element encountered sets the
 "current line" marker before the next line number element is
 evaluated. This is especially useful when using patterns as line
 number elements; some examples will illustrate what we mean.

 Suppose that you wanted to print all the lines which lie
 between two lines, each containing the string "fred". An initial
 effort might yield the following command line:

 /fred/,/fred/p

 This, however, will only print out the first line which contains
 "fred" after the current line. This is because both patterns
 will start their search after the current line where the command
 was executed, instead of the second one starting where the first
 pattern was found. To correct this, we would issue the fol-

 - 21 -

 Introduction to ’Ed’

 lowing:

 /fred/;/fred/p

 | When the first occurrence of "fred" is found, the "current line"
 | is set to that line, and the second occurrence of "fred" will be
 | found starting at this new line. This will print the lines
 | between two succeeding occurrences of "fred" from the current
 | line.

 As a final example, suppose that we wanted to print the
 | lines between the second and third occurrence of "fred" after the
 | current line; to do this, we would do:

 /fred/;//;//p

 The first pattern search would find "fred", the next two null
 strings will cause the previous pattern ("fred") to be searched
 for again, each time resetting the "current line" marker. Of
 course, the command "p" may be replaced by any command you wish.

 For both comma-separated and semicolon-separated line number
 elements, you may specify more than two such elements, as the
 above example shows; only the last two such elements will be used
 as the range for the given command. In general, using more than
 two line number elements separated by commas is not too useful,
 because the "current line" is not modified for any of the line
 number expression evaluations. Also, using integer line numbers
 means that multiple expressions (more than two) are not useful,
 since the equivalent behavior can be obtained by specifying only
 | the last two line numbers.

 | EEEssscccaaapppiiinnnggg tttooo ttthhheee SSShhheeellllll

 | With Version 9 of Software Tools and Revision 19.2 or later
 | of PRIMOS, it is now possible to call the Software Tools Sub-
 | system command interpreter (the shell) from within a program.

 | ’Ed’ provides access to this facility with the shell escape
 | "˜" command. It works like this:

 | ˜[<Software Tools Command>]

 | If present, the <Software Tools Command> is passed to the shell
 | to be executed. Otherwise, an interactive shell is created.
 | After either the command or the shell exits, ’ed’ prints a "˜" to
 | indicate that the shell escape has completed. If the first
 | character of the <Software Tools Command> is a "!", then the "!"
 | is replaced with the text of the previous shell command. An
 | unescaped "%" in the <Software Tools Command> will be replaced
 | with the current saved file name. If the shell command is expan-
 | ded, ’ed’ will echo it first, and then execute it.

 | This feature is useful when you want to temporarily stop
 | editing and do something else, or find something out, without

 - 22 -

 Introduction to ’Ed’

 | having write your file and leave the editor.

 | {editing session}
 | ˜̃̃lllfff ---lll %%%
 | lf -l file
 | sam a/r 06/17/84 16:25:08 19463 sys file
 | ˜

 | For a deeper discussion of using the shell from within a
 | program, see the help on the ’shell’ subroutine. In particular,
 | due to operating system constraints, you _m_u_s_t _n_o_t run another
 | instance of the editor from the new shell, or you will end up
 | clobbering your current edit buffer.

 | WWWAAARRRNNNIIINNNGGG::: Until Prime supports EPFs, and the editor is
 | reloaded in EPF format, you _m_u_s_t _n_o_t run any external commands
 | (like ’lf’) from a shell started from ’ed’. If you do, the new
 | program will load _o_v_e_r ’ed’, and wipe out your current editing
 | session. You can use commands which are internal to the shell
 | (like ’cd’), without any ill effect. This restriction, for
 | various arcane reasons, does _n_o_t apply to the Subsystem screen
 | editor, ’se’.

 | In essence, this feature is provided in the editor with an
 | eye to the future.

 SSSuuummmmmmaaarrryyy

 This concludes our tour through the world of text editing.
 In the section that follows, you will find a brief introduction
 to the Software Tools Subsystem screen editor ’se’, which sup-
 ports all of the line-oriented commands of ’ed’ as well as full
 screen editing capabilities, while giving you a "window" into
 your edit buffer. Following that, we have included for your con-
 venience a short summary of all available line editing commands
 supported by ’ed’ and ’se’, many of which were not discussed in
 this introduction, but which you will undoubtedly find useful.

 - 23 -

 Introduction to ’Ed’

 TTThhheee SSSuuubbbsssyyysssttteeemmm SSScccrrreeeeeennn EEEdddiiitttooorrr

 The screen editor, ’se’, is an extended version of the Sub-
 system line editor, ’ed’. Although ’se’ contains a number of
 additional features, it accepts all ’ed’ commands (almost without
 exception), and is therefore easily used by anyone familiar with
 ’ed’. This section outlines the differences between ’ed’ and
 | ’se’.

 | The screen editor has a built-in "help" facility, which
 | documents all the commands and options. When in doubt, type
 | "help", and the help screens should guide you to further informa-
 | tion on what you need to know.

 IIInnnvvvoookkkiiinnnggg ttthhheee SSScccrrreeeeeennn EEEdddiiitttooorrr

 You can invoke the screen editor with either of the follow-
 ing commands:

] ssseee

 or

] ssseee mmmyyyfffiiillleee

 ’Se’ will automatically fetch your terminal type from the Sub-
 system. If you never told the Subsystem your terminal type or
 set an unknown terminal type with the ’term’ command, ’se’ will
 prompt you for another terminal type; if you type a ’?’, ’se’
 will give you a list of possible terminal types and prompt you
 again for yours.

 ’Se’ can also be invoked by the command ’e’. ’E’ remembers
 the name of the last file you edited, so if you don’t specify a
 file, ’e’ will enter the last file you edited.

 UUUsssiiinnnggg ’’’SSSeee’’’

 | ’Se’ first clears the screen, draws in its margins, and
 | executes the commands in the file "=home=/.serc", if it exists.
 | It then processes the command line, obeying the options given
 | there, and begins reading your file (if you specified one). The
 screen it draws looks something like this. (The parenthesized
 numerals are not part of the screen layout, but are there to aid
 in the following discussion.)

 - 24 -

 Introduction to ’Ed’

 (1) (2) (3)
 A |
 B *| integer a
 C |
 . -> | for (a = 1; a <= 12; a = a + 1)
 E | call putch (NEWLINE, STDOUT)
 F | stop
 $ | end
 cmd> _ (4)
 11:39 myfile(5)..................................

 The display is divided into five parts: (1) the line number
 area, (2) the mark name area, (3) the text area, (4) the command
 line, and (5) the status line. The current line (remember ".")
 is indicated by the symbol "." in the line number area of the
 screen. In addition, a rocket ("->") is displayed to make the
 current line more obvious. The current mark name of each line is
 shown in the markname area just to the left of the vertical bar.
 Other information, such as the number of lines read in, the name
 of the file, and the time of day, are displayed in the status
 line.

 The cursor is positioned at the beginning of the command
 line, showing you that ’se’ awaits your command. You may now
 enter any of the ’ed’ commands and ’se’ will perform them, while
 making sure that the current line is always displayed on the
 screen. There are only a few other things that you need know to
 successfully use ’se’.

 ... ’Se’ always recognizes BS (control-h) and DEL as the
 erase and kill characters, regardless of your Subsystem
 erase and kill character settings.

 ... If you make an error, ’se’ automatically displays an
 error message in the status line. It also leaves your
 command line intact so that you may change it using in-
 line editing commands (we’ll get to this a little
 later). If you don’t want to bother with changing the
 command, just hit DEL and ’se’ will erase it.

 ... The "p" command has a different meaning than in ’ed’.
 When used with line numbers, it displays as many of the
 lines in the specified range as possible (always
 including the last line). When used without line num-
 bers, "p" displays the previous page.

 ... The ":" command positions a specified line at the top
 of the screen (e.g., "12:" positions the screen so
 that line 12 is at the top). If no line number is
 specified, ":" displays the next page.

 ... The "v" command can be used to modify an entire line
 rather than just add to the end of the line. Also, if
 you use "v" over a range of lines and find that you
 want to terminate the command before all lines have
 been considered, the control-f key is used instead of a

 - 25 -

 Introduction to ’Ed’

 period.

 ... If a file name is specified in the "w" command and the
 file already exists, ’se’ will display "file already
 exists"; entering the command again (by typing a
 NEWLINE) will cause the file to be overwritten. Given
 the command "w! <file>", ’se’ will never warn about the
 destruction of an existing file.

 Keeping these few differences in mind, you will see that ’se’ can
 perform all of the functions of ’ed’, while giving the advantage
 of a "window" into the edit buffer.

 EEExxxttteeennndddeeeddd LLLiiinnneee NNNuuummmbbbeeerrrsss

 ’Se’ has a number of features that take advantage of the
 window display to minimize keystrokes and speed editing. In the
 line number area of the screen, ’se’ always displays for each
 line a string that may be used in a command to refer to that
 line. Normally, it displays a capital letter for each line, but
 in "absolute line number" mode (controlled by the "oa" command;
 see the section on options for more details), it displays the
 ordinal number of the line in the buffer.

 The line number letters displayed by ’se’ may be used in any
 context requiring a line number. For instance, in the above
 example, a change to the first line on the screen could be
 specified as

 As/%/# my new program/

 You could delete the line before the first line on the screen by
 typing

 A-1d

 Finally, ’se’ accepts "#" as a line number element; it
 always refers to the first line on the screen; like the line num-
 ber letters, it may be used in any context which requires a line
 number element or expression.

 CCCaaassseee CCCooonnnvvveeerrrsssiiiooonnn

 When ’se’ is displaying upper-case letters for line numbers,
 | it accepts command letters only in lower case. For those who
 | edit predominantly upper-case text this is somewhat inconvenient;
 for those with upper-case only terminals this is a disaster. For
 this reason, ’se’ offers several options to alleviate this
 situation.

 First of all, typing a control-z causes ’se’ to invert the
 case of all letters (just like the alpha-lock key on some
 terminals). Upper-case letters are converted to lower-case,

 - 26 -

 Introduction to ’Ed’

 lower-case letters are converted to upper-case, and all other
 characters are unchanged. You can type control-z at any time to
 toggle the case conversion mode. When case inversion is in
 effect, ’se’ displays the word "CASE" in the status line.

 One drawback to this feature is that ’se’ still expects line
 numbers in upper case and commands in lower case, so you must
 shift to type the command letter -- just the reverse of what
 you’re used to. A more satisfactory solution is to specify the
 "c" option. Just type

 oc

 on the command line and ’se’ toggles the case conversion mode,
 and completely reverses its interpretation of upper and lower
 case letters. In this mode, ’se’ displays the line number let-
 ters in lower case and expects its command letters in upper case.
 Unshifted letters from the terminal are converted to upper case
 and shifted letters to lower case.

 TTTaaabbbsss

 In the absence of tabs, program indentation is very costly
 in keystrokes. So ’se’ gives you the ability to set arbitrary
 tab stops using the "ot" command. By default, ’se’ places a stop
 at column 1 and every third column thereafter. Tabs correspond-
 ing to the default can be set by enumerating the column positions
 for the stops:

 ot 1 4 7 10 13 16 19 22 25 28 31 34 ...

 This is almost as bad as typing the blanks on each line. For
 this reason, there is also a shorthand for such repetitive
 specifications.

 ot +3

 sets a tab stop at column 1 and at every third column thereafter.
 Fortran programmers may prefer the specification

 ot 7 +3

 to set a stop at column 7 and at every third thereafter.

 Once the tab stops are set, the control-i and control-e keys
 can be used to move the cursor from its current position forward
 or backward to the nearest stop, respectively.

 FFFuuullllll---SSScccrrreeeeeennn EEEdddiiitttiiinnnggg

 Full screen editing with ’se’ is accomplished through the
 use of control characters for editing functions. A few, such as
 control-h, control-i, and control-e have already been mentioned.
 Since ’se’ supports such a large number of control functions, the

 - 27 -

 Introduction to ’Ed’

 mnemonic value of control character assignments has dwindled to
 almost zero. About the only thing mnemonic is that most sym-
 metric functions have been assigned to opposing keys on the
 keyboard (e.g., forward and backward tab to control-i and
 control-e, forward and backward space to control-g and control-h,
 skip right and left to control-o and control-w, and so on). We
 feel pangs of conscience about this, but can find no more satis-
 factory alternative. If you feel the control character
 assignments are terrible and you can find a better way, you may
 | change them by modifying the definitions in ’se’ and recompiling.

 Except for a few special purpose ones, control characters
 can be used anywhere, even on the command line. (This is why
 erroneous commands are not erased -- you may want to edit them.)
 Most of the functions work on a single line, but in overlay mode
 (controlled by the "v" command), the cursor may be positioned
 anywhere in the buffer.

 HHHooorrriiizzzooonnntttaaalll CCCuuurrrsssooorrr MMMoootttiiiooonnn

 There are quite a few functions for moving the cursor.
 You’ve probably used at least one (control-h) to backspace over
 errors. None of the cursor motion functions erase characters, so
 you may move forward and backward over a line without destroying
 it. Here are several of the more frequently used cursor motion
 characters:

 control-g Move forward one column.

 control-h Move backward one column.

 control-i Move forward to the next tab stop.

 control-e Move backward to the previous tab stop.

 control-o Move to the first column beyond the end of the line.

 control-w Move to column 1.

 VVVeeerrrtttiiicccaaalll CCCuuurrrsssooorrr MMMoootttiiiooonnn

 ’Se’ provides two control keys, control-d and control-k, to
 move the cursor up and down, respectively, from line to line
 through the edit buffer. The exact function of each depends on
 ’se’s current mode: in command mode they simply move the current
 line pointer without affecting the cursor position or the
 contents of the command line; in overlay mode (viz. the "v" com-
 mand) they actually move the cursor up or down one line within
 the same column; finally, in append move, these keys are ignored.
 Regardless of the mode, the screen is adjusted when necessary to
 insure that the current line is displayed.

 - 28 -

 Introduction to ’Ed’

 control-d Move the cursor up one line.

 control-k Move the cursor down one line.

 CCChhhaaarrraaacccttteeerrr IIInnnssseeerrrtttiiiooonnn

 Of course the next question is: "Now that I’ve moved the
 cursor, how do I change things?" If you want to retype a charac-
 ter, just position the cursor over it, and type the desired
 character; the old one is replaced. You may also _i_n_s_e_r_t charac-
 ters at the current cursor position instead of merely overwriting
 what’s already there. Typing a control-c inserts a single blank
 _b_e_f_o_r_e the character under the cursor and moves the remainder of
 the line one column to the right; the cursor remains in the same
 column over the newly-inserted blank. Typing a control-x inserts
 enough blanks at the current cursor position to move the charac-
 ter that was there to the next tab stop. This can be handy for
 aligning items in a table, for example. As with control-c, the
 cursor remains in the same column.

 A more general way of handling insertions is to type
 control-a. This toggles "insert mode" -- the word "INSERT"
 appears on the status line, and all characters typed from this
 point are inserted in the line (and characters to the right are
 moved over). Typing control-a again turns insert mode off. Here
 is a summary of these control characters:

 control-a Toggle insert mode.

 control-c Insert a blank to the left of the cursor.

 | control-x Insert blanks to the next tab stop.

 | control-_ Insert a newline.

 CCChhhaaarrraaacccttteeerrr DDDeeellleeetttiiiooonnn

 There are many ways to do away with characters. The most
 drastic is to type DEL; ’se’ erases the current line and leaves
 the cursor in column 1. Typing control-t causes ’se’ to delete
 the character under the cursor and all those to its right. The
 cursor is left in the same column which is now just beyond the
 new end of the line. Similarly, control-y deletes all the
 characters to the left of the cursor (not including the one under
 it). The remainder of the line is moved to the left, leaving the
 cursor over the same character, but now in column 1. Control-r
 deletes the character under the cursor and closes the gap from
 the right, while control-u does the same thing after first moving
 the cursor one column to the left. These last two are most com-
 monly used to eat characters out of the middle of a line.

 - 29 -

 Introduction to ’Ed’

 DEL Erase the entire line.

 control-t Erase the characters under and to the right of the
 cursor.

 control-y Erase the characters to the left of the cursor.

 control-r Erase the character under the cursor.

 control-u Erase the character immediately to left of the cur-
 sor.

 TTTeeerrrmmmiiinnnaaatttiiinnnggg aaa LLLiiinnneee

 After you have edited a line, there are two ways of
 terminating it. The most commonly used is the control-v. A
 newline (or carriage-return) can be used but beware that it
 deletes all characters over and to the right of the cursor.

 control-v Terminate.

 NEWLINE Erase characters under and to the right of the cursor
 and terminate.

 NNNooonnn---ppprrriiinnntttiiinnnggg CCChhhaaarrraaacccttteeerrrsss

 ’Se’ displays a non-printing character as a blank (or other
 user-selectable character; see the description of "ou" in the
 section on options). Non-printing characters (such as ’se’s
 control characters), or any others for that matter, may be
 entered by hitting the ESC key followed immediately by the key to
 generate the desired character. Note, however, that the charac-
 ter you type is taken literally, exactly as it is generated by
 your terminal, so case conversion does not apply.

 ESC Accept the literal value of the next character,
 regardless of its function.

 | TTThhheee ...ssseeerrrccc FFFiiillleee

 | When ’se’ starts up, it tries to open the file
 | "=home=/.serc". If that file exists, ’se’ reads it, one line at
 | a time, and executes each line as a command. If a line has "#"
 | as the _f_i_r_s_t character on the line, or if the line is empty, the
 | entire line is treated as a comment, otherwise it is executed.
 | Here is a sample ".serc" file:

 | # turn on unix mode, tabs every 8 columns, auto indent
 | opu
 | ot+8
 | oia

 - 30 -

 Introduction to ’Ed’

 | The ".serc" file is useful for setting up personalized options,
 | without having to type them on the command line every time, and
 | without using a special shell file in your bin. In particular,
 | it is useful for automatically turning on UNIX mode for Software
 | Tools users who are familiar with the UNIX system.

 | Command line options are processed _a_f_t_e_r commands in the ".serc"
 | file, so, in effect, command line options can be used to over-
 | ride the defaults in your ".serc" file.

 | NNNOOOTTTEEE: Commands in the ".serc" file do _n_o_t go through that part
 | of ’se’ which processes the special control characters (see
 | above), so _d_o _n_o_t use them in your ".serc" file.

 - 31 -

 Introduction to ’Ed’

 SSScccrrreeeeeennn EEEdddiiitttooorrr OOOppptttiiiooonnnsss

 Options for ’se’ can be specified in two ways: with the "o"
 command or on the Subsystem command line that invokes ’se’. To
 specify an option with the "o" command, just enter "o" followed
 immediately by the option letter and its parameters. To specify
 an option on the command line, just use "-" followed by the
 option letter and its parameters. With this second method, if
 there are imbedded spaces in the parameter list, the entire
 option should be enclosed in quotes. For example, to specify the
 "a" (absolute line number) option and tab stops at column 8 and
 every fourth thereafter with the "o" command, just enter

 oa
 ot 8 +4

 when ’se’ is waiting for a command. To enter the same options on
 the invoking command line, you might use

 se -t regent myfile -a "-t 8 +4"

 The following table summarizes the available ’se’ options:

 | _O_p_t_i_o_n _A_c_t_i_o_n

 a causes absolute line numbers to be displayed in the
 line number area of the screen. The default behavior
 is to display upper-case letters with the letter "A"
 corresponding to the first line in the window.

 c inverts the case of all letters you type (i.e., con-
 verts upper-case to lower-case and vice versa). This
 option causes commands to be recognized only in upper-
 case and alphabetic line numbers to be displayed and
 recognized only in lower-case.

 d[<dir>] selects the placement of the current line pointer fol-
 lowing a "d" (delete) command. <dir> must be either
 ">" or "<". If ">" is specified, the default behavior
 is selected: the line following the deleted lines
 becomes the new current line. If "<" is specified, the
 line immediately preceding the deleted lines becomes
 the new current line. If neither is specified, the
 current value of <dir> is displayed in the status line.

 f selects Fortran oriented options. This is equivalent
 to specifying both the "c" and "t7 +3" (see below)
 | options.

 | g controls the behavior of the "s" (substitute) command
 | when it is under the control of a "g" (global) command.
 | By default, if a substitute inside a global command
 | fails, ’se’ will not continue with the rest of the

 - 32 -

 Introduction to ’Ed’

 | lines which might succeed. If "og" is given, then the
 | global substitute will continue, and lines which failed
 | will not be affected. Successive "og" commands will
 | toggle this behavior. An explanatory message is placed
 | in the status line.

 h[<baud>] lets the editor know at what baud rate you are receiv-
 ing characters. Baud rates can range from 50 to 19200;
 the default is 9600. This option allows the editor to
 determine how many, if any, delay characters (nulls)
 will be output when the hardware line insert/delete
 functions of the terminal are being used (if
 available). Use of the built-in terminal capabilities
 to insert/delete lines speeds up editing over slow-
 speed lines (i.e., dialups). Entering ’oh’ without an
 argument will cause your current baud rate to appear on
 | the status line.

 | i[a | <indent>] selects indent value for lines inserted with "a",
 | "c" and "i" commands (initially 1). "a" selects auto-
 | indent which sets the indent to the value which equals
 | the indent of the previous line. If <indent> is an
 | integer, then the indent value will be set to that num-
 | ber. If neither "a" nor <indent> are specified, the
 | current value of indent is displayed.

 | k Indicates whether the current contents of your edit
 | buffer has been saved or not by printing either a
 | "saved" or "not saved" message on your status line.

 | l[<lop>] sets the line number display option. Under control of
 | this option, ’se’ continuously displays the value of
 | one of three symbolic line numbers in the status line.
 | <lop> may be any of the following:

 | . display the current line number

 | # display the number of the top line on the screen

 | $ display the number of the last line in the buffer

 | If <lop> is omitted, the line number display is
 | disabled.

 lm[<col>] sets the left margin to <col> which must be a positive
 integer. This option will shift your entire screen to
 the left, enabling you to see characters at the end of
 the line that were previously off the screen; the
 characters in columns 1 through <col> - 1 will not be
 visible. You may continue editing in the normal
 fashion. To reset your screen enter the command ’olm
 | 1’. If <col> is omitted, the current left margin
 | column is displayed in the status line.

 - 33 -

 Introduction to ’Ed’

 | m[d] [<user>] displays messages sent to you by other users (via
 | the ’to’ command) while you are editing. When a mes-
 | sage arrives while you are editing, the word "message"
 | appears on your status line. To send other users mes-
 sages while inside of the editor, you can insert the
 text of your message into the edit buffer, and then
 issue the command "line1,line2om <user>", where "line1"
 and "line2" are the first and last lines, respectively,
 of where you appended your message in the edit buffer
 and "<user>" is the login name or process id of the
 person to whom you want to send a message. The given
 | lines are sent and deleted from the edit buffer. To
 | prevent the lines from being deleted after they are
 | sent, use the command line "line1,line2omd <user>"

 | p[s | u] converts to or from UNIX (tm) compatibility mode. The
 | "op" command, by itself, will toggle between normal
 | (Software Tools mode) and UNIX mode. The command "opu"
 | will force ’se’ to use UNIX mode, while the command
 | "ops" will force ’se’ to use Software Tools mode.

 | When in UNIX mode, ’se’ uses the following for its pat-
 | terns and commands:

 | ?pattern[?] searches backwards for a pattern.

 | ^ matches the beginning of a line.

 | . matches any character.

 | ^ is used to negate character classes.

 | % used by itself in the replacement part of a sub-
 | stitute command represents the replacement part of
 | the previous substitute command.

 | \(<regular expression>\) tags pieces of a pattern.

 | \<digit> represents the text matched by the tagged sub-
 | pattern specified by <digit>.

 | \ is the escape character, instead of @.

 | t copies lines.

 | y transliterates lines.

 | ˜ does the global exclude on markname (see the "!"
 | command, in the help on ’ed’).

 | ![<Software Tools Command>] will create a new instance
 | of the Software Tools shell, or execute <Software
 | Tools Command> if it is present (see the "˜" com-
 | mand, in the help on ’ed’).

 | All other characters and commands are the same for both

 - 34 -

 Introduction to ’Ed’

 | UNIX and normal (Software Tools) mode. The help com-
 | mand will always call up documentation appropriate to
 | the current mode. UNIX mode is indicated by the mes-
 | sage "UNIX" in the status line.

 | UNIX mode is available _o_n_l_y in ’se’. This extension is
 | not available in ’ed’.

 s[pma | ftn | f77 | s | f] sets other options for case, tabs,
 etc., for one of the three programming languages
 listed. The option "oss" is the same as "ospma" and
 the option "osf" is the same thing as "osftn" (the
 corresponding command line options are "-ss" and
 "-sf"). If no argument is specified the options effec-
 ted by this command revert to their default value.

 t[<tabs>] sets tab stops according to <tabs>. <tabs> consists of
 a series of numbers indicating columns in which tab
 stops are to be set. If a number is preceded by a plus
 sign ("+"), it indicates that the number is an
 increment; stops are set at regular intervals separated
 by that many columns, beginning with the most recently
 specified absolute column number. If no such number
 precedes the first increment specification, the stops
 are set relative to column 1. By default, tab stops
 are set in every third column starting with column 1,
 corresponding to a <tabs> specification of "+3". If
 <tabs> is omitted, the current tab spacing is displayed
 in the status line.

 u[<chr>] selects the character that ’se’ displays in place of
 unprintable characters. <chr> may be any printable
 character; it is initially set to blank. If <chr> is
 omitted, ’se’ displays the current replacement charac-
 ter on the status line.

 v[<col>] sets the default "overlay column". This is the column
 at which the cursor is initially positioned by the "v"
 command. <Col> must be a positive integer, or a dollar
 sign ($) to indicate the end of the line. If <col> is
 omitted, the current overlay column is displayed in the
 status line.

 w[<col>] sets the "warning threshold" to <col> which must be a
 positive integer. Whenever the cursor is positioned at
 or beyond this column, the column number is displayed
 in the status line and the terminal’s bell is sounded.
 If <col> is omitted, the current warning threshold is
 displayed in the status line. The default warning
 threshold is 74, corresponding to the first column
 beyond the right edge of the screen on an 80 column
 crt.

 - 35 -

 Introduction to ’Ed’

 -[<lnr>] splits the screen at the line specified by <lnr> which
 must be a simple line number within the current window.
 All lines above <lnr> remain frozen on the screen, the
 line specified by <lnr> is replaced by a row of dashes,
 and the space below this row becomes the new window on
 the file. Further editing commands do not affect the
 lines displayed in the top part of the screen. If
 <lnr> is omitted, the screen is restored to its full
 size.

 - 36 -

 Introduction to ’Ed’

 SSScccrrreeeeeennn EEEdddiiitttooorrr CCCooonnntttrrrooolll CCChhhaaarrraaacccttteeerrrsss

 (Files can be edited with control characters only when you
 are in overlay mode, which you can enter with the ’v’ command. A
 control-v will exit overlay mode and put you back into command
 mode. While in command mode you can use these characters to edit
 your command.)

 _C_h_a_r_a_c_t_e_r _A_c_t_i_o_n

 control-a Toggle insert mode. The status of the insertion
 indicator is inverted. Insert mode, when enabled,
 causes characters typed to be inserted at the current
 cursor position in the line instead of overwriting the
 characters that were there previously. When insert
 mode is in effect, "INSERT" appears in the status line.

 control-b Scan right and erase. The current line is scanned from
 the current cursor position to the right margin until
 an occurrence of the next character typed is found.
 When the character is found, all characters from the
 current cursor position up to (but not including) the
 scanned character are deleted and the remainder of the
 line is moved to the left to close the gap. The cursor
 is left in the same column which is now occupied by the
 scanned character. If the line to the right of the
 cursor does not contain the character being sought, the
 terminal’s bell is sounded. ’Se’ remembers the last
 character that was scanned using this or any of the
 other scanning keys; if control-b is hit twice in a
 row, this remembered character is used instead of a
 literal control-b.

 control-c Insert blank. The characters at and to the right of
 the current cursor position are moved to the right one
 column and a blank is inserted to fill the gap.

 control-d Cursor up. The effect of this key depends on ’se’s
 current mode. When in command mode, the current line
 pointer is moved to the previous line without affecting
 the contents of the command line. If the current line
 pointer is at line 1, the last line in the file becomes
 the new current line. In overlay mode (viz. the "v"
 command), the cursor is moved up one line while remain-
 ing in the same column. In append mode, this key is
 ignored.

 control-e Tab left. The cursor is moved to the nearest tab stop
 to the left of its current position.

 control-f "Funny" return. The effect of this key depends on the
 editor’s current mode. In command mode, the current
 command line is entered as-is, but is not erased upon
 completion of the command; in append mode, the current

 - 37 -

 Introduction to ’Ed’

 line is duplicated; in overlay mode (viz. the "v" com-
 mand), the current line is restored to its original
 state and command mode is reentered (except if under
 control of a global prefix).

 control-g Cursor right. The cursor is moved one column to the
 right.

 control-h Cursor left. The cursor is moved one column to the
 left. Note that this _d_o_e_s _n_o_t erase any characters; it
 simply moves the cursor.

 control-i Tab right. The cursor is moved to the next tab stop to
 the right of its current position.

 control-k Cursor down. As with the control-d key, this key’s
 effect depends on the current editing mode. In command
 mode, the current line pointer is moved to the next
 line without changing the contents of the command line.
 If the current line pointer is at the last line in the
 file, line 1 becomes the new current line. In overlay
 mode (viz. the "v" command), the cursor is moved down
 one line while remaining in the same column. In append
 mode, control-k has no effect.

 control-l Scan left. The cursor is positioned according to the
 character typed immediately after the control-l. In
 effect, the current line is scanned, starting from the
 current cursor position and moving left, for the first
 occurrence of this character. If none is found before
 the beginning of the line is reached, the scan resumes
 with the last character in the line. If the line does
 not contain the character being looked for, the message
 "NOT FOUND" is printed in the status line. ’Se’ remem-
 bers the last character that was scanned for using this
 key; if the control-l is hit twice in a row, this
 remembered character is searched for instead of a
 literal control-l. Apart from this, however, the
 character typed after control-l is taken literally, so
 ’se’s case conversion feature does not apply.

 control-m Newline. This key is identical to the NEWLINE key
 described below.

 control-n Scan left and erase. The current line is scanned from
 the current cursor position to the left margin until an
 occurrence of the next character typed is found. Then
 that character and all characters to its right up to
 (but not including) the character under the cursor are
 erased. The remainder of the line, as well as the cur-
 sor are moved to the left to close the gap. If the
 line to the left of the cursor does not contain the
 character being sought, the terminal’s bell is sounded.
 As with the control-b key, if control-n is hit twice in
 a row, the last character scanned for is used instead
 of a literal control-n.

 - 38 -

 Introduction to ’Ed’

 control-o Skip right. The cursor is moved to the first position
 beyond the current end of line.

 control-p Interrupt. If executing any command except "a", "c",
 "i" or "v", ’se’ aborts the command and reenters com-
 mand mode. The command line is not erased.

 control-q Fix screen. The screen is reconstructed from ’se’s
 internal representation of the screen.

 control-r Erase right. The character at the current cursor posi-
 tion is erased and all characters to its right are
 moved left one position.

 control-s Scan right. This key is identical to the control-l key
 described above, except that the scan proceeds to the
 right from the current cursor position.

 control-t Kill right. The character at the current cursor posi-
 tion and all those to its right are erased.

 control-u Erase left. The character to the left of the current
 cursor position is deleted and all characters to its
 right are moved to the left to fill the gap. The cur-
 sor is also moved left one column, leaving it over the
 same character.

 control-v Skip right and terminate. The cursor is moved to the
 current end of line and the line is terminated.

 control-w Skip left. The cursor is positioned at column 1.

 control-x Insert tab. The character under the cursor is moved
 right to the next tab stop; the gap is filled with
 blanks. The cursor is not moved.

 control-y Kill left. All characters to the left of the cursor
 are erased; those at and to the right of the cursor are
 moved to the left to fill the void. The cursor is left
 in column 1.

 control-z Toggle case conversion mode. The status of the case
 conversion indicator is inverted; if case inversion was
 on, it is turned off, and vice versa. Case inversion,
 when in effect, causes all upper case letters to be
 converted to lower case, and all lower case letters to
 be converted to upper case. Note, however, that ’se’
 continues to recognize alphabetic line numbers in upper
 case only, in contrast to the "case inversion" option
 (see the description of options above). When case
 inversion is on, "CASE" appears in the status line.

 control-_ Insert newline. A newline character is inserted before
 the current cursor position, and the cursor is moved
 one position to the right. The newline is displayed
 according to the current non-printing replacement

 - 39 -

 Introduction to ’Ed’

 character (see the "u" option).

 control-\ Tab left and erase. Characters are erased starting
 with the character at the nearest tab stop to the left
 of the cursor up to but not including the character
 under the cursor. The rest of the line, including the
 cursor, is moved to the left to close the gap.

 control-^ Tab right and erase. Characters are erased starting
 with the character under the cursor up to but not
 including the character at the nearest tab stop to the
 right of the cursor. The rest of the line is then
 shifted to the left to close the gap.

 NEWLINE Kill right and terminate. The characters at and to the
 right of the current cursor position are deleted, and
 the line is terminated.

 DEL Kill all. The entire line is erased, along with any
 error message that appears in the status line.

 ESC Escape. The ESC key provides a means for entering
 ’se’s control characters literally as text into the
 file. In fact, any character that can be generated
 from the keyboard is taken literally when it
 immediately follows the ESC key. If the character is
 non-printing (as are all of ’se’s control characters),
 it appears on the screen as the current non-printing
 replacement character (normally a blank).

 - 40 -

 Introduction to ’Ed’

 EEEdddiiitttooorrr CCCooommmmmmaaannnddd SSSuuummmmmmaaarrryyy

 _R_a_n_g_e _S_y_n_t_a_x _F_u_n_c_t_i_o_n

 . a[:text] Append
 Inserts text after the specified line.
 Text is inserted until a line containing
 only a period and a newline is
 encountered. In ’se’, if the command is
 followed immediately by a colon, then
 whatever text follows the colon is
 inserted without entering "append" mode.
 The current line pointer is left at the
 last line inserted.

 .,. c[:text] Change
 Deletes the lines specified and inserts
 text to replace them. Text is inserted
 until a line containing only a period and
 a newline is encountered. In ’se’, if
 the command is followed immediately by a
 colon, then whatever text follows the
 colon is inserted without entering
 "append" mode. The current line pointer
 is left at the last line inserted.

 .,. d[p] Delete
 Deletes all lines between the specified
 | lines, inclusive. The current line
 | pointer is left at the line after the
 | last one deleted. If the "p" is
 included, the new current line is
 printed.

 none e[!] [filename] Enter
 Loads the specified file into the buffer
 and prepares for editing. Automatically
 invoked if a filename is specified as an
 argument on the command line used to
 invoke the editor. The current line
 pointer is positioned at the first line
 in the buffer. An error message is
 generated if the editing buffer contains
 text that has not been saved. The enter
 command may be resubmitted after the
 error message, in which case it will be
 obeyed. The "enter now" command "e!"
 may be used to avoid the error message.

 none f [filename] File
 Print or change the remembered file name.
 If a name is given, the remembered file
 name is set to that value; otherwise, the
 remembered file name is printed.

 - 41 -

 Introduction to ’Ed’

 .,$ g/pat/command Global on pattern
 Performs the given command on all lines
 in the specified range that match a
 certain pattern.

 none h[stuff] Help
 In ’se’, provides access to online
 documentation on the screen editor.
 "Stuff" may be used to select which
 information is displayed.

 . i[:text] Insert
 Inserts text before the specified line.
 Text is inserted until a line containing
 only a period and a newline is
 encountered. In ’se’, if the command is
 immediately followed by a colon, then
 whatever text follows is inserted without
 entering "append" mode. The current line
 pointer is left at the last line
 | inserted.

 | ^,. j[/stuff[/]][p] Join
 | The specified lines are joined into a
 | single line. You may specify in "stuff"
 | what is to replace the newlines that
 | previously separated the lines. The
 | default is a single blank. If you use
 | the default, ’ed’ automatically prints
 | out the result. If the "p" option is
 used, the resulting line (which becomes
 | the new current line) is printed. Thus
 | "j" and "jp" are equivalent to "j/ /p".
 | In general, ’ed’ and ’se’ will supply
 | trailing delimiters for you. So "j/" is
 | the same as "j//", i.e. replace the
 | newline(s) with nothing (delete them).

 .,. km marK
 The specified lines are marked with ’m’
 which may be any single character other
 than a newline. If ’m’ is not present,
 the lines are marked with the default
 name of blank. The current line pointer
 | is never changed.

 | none l Locate
 | "l" will print the first line of the file
 | =installation=. This is so that one can
 | tell what machine he is using from within
 | the editor. This is particularly useful
 | for installations with many machines that
 | can run the editor, where the user can
 | switch back and forth between them, and
 | become confused as to where he is at a
 | given moment.

 - 42 -

 Introduction to ’Ed’

 .,. m<line>[p] Move
 Moves the specified block of lines after
 <line>. <Line> may not be omitted. The
 current line pointer is left at the last
 line moved. If the "p" is specified, the
 new current line is also printed.

 .,. n[m] Name
 If ’m’ is present, the last line in the
 specified range is marked with it and all
 other lines having that mark name are
 given the default mark name of blank. In
 ’ed’, if ’m’ is not present, the mark
 name of each line in the range is
 printed; in ’se’ the names of all lines
 in the range are cleared.

 none o[stuff] Option
 Editing options may be queried or set.
 "Stuff" determines which options are
 | affected. In ’ed’, options "d", "g",
 | "k", and "p" are available. Options "d",
 | "g", and "k" are the same as in ’se’. In
 | ’ed’, option "p" sets the prompt to be
 | used (useful for the user who is distur-
 | bed by ’ed’s quiet behavior). The prompt
 | can be set by the command "op/string[/]",
 | which sets the prompt to "string". The
 | trailing delimiter is optional. If no
 | string is given, the prompt is set to
 | "* ". An empty string ("op//") restores
 | ’ed’s no prompting behavior. Successive
 | "op" commands will toggle prompting mode.
 | In ’se’, the "op" command controls what
 | metacharacters are used for pattern
 | matching.

 .,. p Print
 Prints all the lines in the given range.
 In ’se’, as much as possible of the range
 is displayed, always including the last
 line; if no range is given, the previous
 page is displayed. The current line
 pointer is left at the last line printed.

 none q[!] Quit
 Exit from the editor. An error message
 is generated if the editing buffer
 contains text that has not been saved.
 The quit command may be resubmitted after
 the error message, in which case it will
 be obeyed. The "quit now" command "q!"
 may be used to avoid the error message.

 - 43 -

 Introduction to ’Ed’

 . r [filename] Read
 Insert the contents of the given file
 after the specified line. The current
 line pointer is left at the last line
 | read.

 | .,. s[/pat/sub[/][g][p]] Substitute
 Substitutes "sub" for each occurrence of
 the pattern "pat". If the optional "g"
 is specified, all occurrences in each
 line are changed; otherwise, only the
 first occurrence is changed. The current
 line pointer is left at the last line in
 the range in which a substitution was
 made. This line is also printed if the
 | "p" is used. In ’ed’, if you leave off
 | the trailing slash, the result of the
 | substitute will be printed automatically.
 | Thus "s/junk/stuff" is entirely
 | equivalent to "s/junk/stuff/p". If you
 | type an "s" by itself, without a pattern
 | and replacement string, ’ed’ will behave
 | as though you had typed "s//&/p", i.e.
 | substitute the previous replacement pat-
 | tern for the previous search pattern, and
 | print.

 | .,. t[/from/to[/][p]] Transliterate
 The range of characters specified by
 ’from’ is transliterated into the range
 of characters specified by ’to’. The
 last line on which something was
 transliterated is printed if the "p"
 option is used. The last line in the
 | range becomes the new current line.
 | Again, if you leave off the trailing
 | delimiter, ’ed’ will print the result of
 | the transliteration. In addition, like
 | the "s" command, both the ’from’ and ’to’
 | parts are saved; "t//&/" will perform the
 | same transliteration as the last one, and
 | "t" is the same as "t//&/". The "&" is
 | special if it is the only character in
 | the ’to’ part, otherwise it is treated as
 | a literal "&". In Unix mode (for ’se’
 | only), use "%" instead of "&". See
 | _S_o_f_t_w_a_r_e _T_o_o_l_s and the help on ’tlit’ for
 | some examples of character
 | transliterations.

 . u[d][p] Undo
 The specified range of lines is replaced
 by the last range of lines deleted. If
 the "d" is used, the restored text is
 inserted after the last line in the
 specified range. The current line

 - 44 -

 Introduction to ’Ed’

 pointer is set at the last line that was
 restored; this line is also printed if
 the "p" is specified.

 .,. v oVerlay
 In ’ed’, each line in the given range is
 printed without its terminating newline
 and a line of input is read and added to
 the end of the line. If the first and
 only character on the input line is a
 period, no further lines are printed. In
 ’se’, "overlay mode" is entered and the
 control characters may be used to modify
 text anywhere in the buffer. A control-v
 may be used to quit overlay mode. A
 control-f may be used to restore the
 current line to its original state and
 terminate the command.

 1,$ w[’+’|’!’] [filename] Write
 Writes the portion of the buffer
 specified to the named file. The current
 line pointer is not changed. If "+" is
 given, the portion of the buffer is
 appended to the file; otherwise the por-
 tion of the buffer replaces the file. In
 ’se’ only, if "!" is present, an exist-
 ing file specified in the command is
 overwritten without comment. If
 "filename" is not present, the specified
 lines will be written to the current file
 name specified on the status line.

 1,$ x/pat/command eXclude on pattern
 Performs the command on all lines in the
 given range that do not match the
 specified pattern.

 .,. y<line>[p] copY
 Makes a copy of all the lines in the
 given range, and inserts the copies after
 <line>. As with the "m" command, <line>
 may not be omitted. The current line
 pointer is set to the new copy of the
 last line in the range; this line is
 printed if the "p" is present.

 .,. zb<left>[,<right>][<char>] draw Box
 In ’se’ only, a box is drawn using the
 given <char> (blank by default, allowing
 erasure of a previously-drawn box). Line
 numbers are used to specify top and bot-
 tom row positions of the box. <Left> and
 <right> specify left and right column
 positions of the box. If second line
 number is omitted, the box degenerates to

 - 45 -

 Introduction to ’Ed’

 a horizontal line. If right-hand column
 is omitted, the box degenerates to a
 vertical line.

 . =[p] Equals
 The number of the specified line is
 printed. The line itself is also printed
 if the "p" option is used. The current
 line pointer is not changed.

 none ? Query
 In ’ed’ only, a verbose description of
 the last error encountered is printed.

 1,$!mcommand Exclude on markname
 Similar to the ’x’ prefix except that
 ’command’ is performed for all lines in
 the range that do not have the mark name
 ’m’.

 1,$ ’mcommand Global on markname
 Similar to the ’g’ prefix except that
 ’command’ is performed for all lines in
 the range that have the mark name ’m’.

 . : Print next page
 In ’ed’, 23 lines beginning with the
 current line are printed (equivalent to
 ".,.+23p"). In ’se’, the next page of
 the buffer is displayed and the current
 line pointer is placed at the top of the
 | window.

 | none ˜[<Software Tools Command>] Escape to the shell
 | If present, the <Software Tools Command>
 | is passed to the shell to be executed.
 | Otherwise, an interactive shell is
 | created. After either the command or the
 | shell exits, ’ed’ prints "˜" to indicate
 | that the shell escape has completed. For
 | a command, ’se’ asks you to type a
 | newline before redrawing the screen, but
 | for an interactive shell, ’se’ will
 | redraw the screen immediately. If the
 | first character of the <Software Tools
 | Command> is a "!", then the "!" is
 | replaced with the text of the previous
 | shell command. An unescaped "%" in the
 | <Software Tools Command> will be replaced
 | with the current saved file name. If the
 | shell command is expanded, both ’ed’ and
 | ’se’ will echo it first, and then execute
 | it.

 | Until EPFs are supported, when using
 | ’ed’, do not use the shell to execute

 - 46 -

 Introduction to ’Ed’

 | external commands. Internal commands
 | (like ’cd’) are OK. This does not apply
 | to ’se’.

 | For a deeper discussion of using the
 | shell from within a program, see the help
 | on the ’shell’ subroutine.

 - 47 -

 Introduction to ’Ed’

 EEEllleeemmmeeennntttsss ooofff LLLiiinnneee NNNuuummmbbbeeerrr EEExxxppprrreeessssssiiiooonnnsss

 _F_o_r_m _V_a_l_u_e

 integer value of the integer (e.g., 44).

 . number of the current line in the buffer.

 $ number of the last line in the buffer.

 ^ number of the previous line in the buffer (same as
 | .-1).

 | - number of the previous line in the buffer (same as
 | ^).

 # number of the first line on the screen (only in
 | ’se’)

 | /pattern[/] number of the next line in the buffer that matches
 the given pattern (e.g., /February/); the search
 proceeds to the end of the buffer, then wraps
 around to the beginning and back to the current
 | line. The trailing "/" is optional.

 | \pattern[\] number of the previous line in the buffer that
 matches the given pattern (e.g., \January\);
 search proceeds in reverse, from the current line
 to line 1, then from the last line back to the
 | current line. The trailing "\" is optional.

 >name number of the next line having the given markname
 (search wraps around, like //).

 <name number of the previous line having the given mark-
 name (search proceeds in reverse, like \\).

 expression any of the above operands may be combined with
 plus or minus signs to produce a line number
 expression. Plus signs may be omitted if desired
 (e.g., /parse/-5, /lexical/+2, /lexical/2, $-5,
 .+6, .6).

 - 48 -

 Introduction to ’Ed’

 SSSuuummmmmmaaarrryyy ooofff PPPaaatttttteeerrrnnn EEEllleeemmmeeennntttsss

 _E_l_e_m_e_n_t _M_e_a_n_i_n_g

 % Matches the null string at the beginning of a
 line. However, if not the _f_i_r_s_t element of a pat-
 tern, is treated as a literal percent sign.

 ? Matches any single character other than newline.

 $ Matches the newline character at the end of a
 line. However, if not the _l_a_s_t element of a pat-
 tern, is treated as a literal dollar sign.

 [<ccl>] Matches any single character that is a member of
 the set specified by <ccl>. <Ccl> may be composed
 of single characters or of character ranges of the
 form <c1>-<c2>. If character ranges are used,
 <c1> and <c2> must both belong to the digits, the
 upper case alphabet or the lower case alphabet.

 [˜<ccl>] Matches any single character that is _n_o_t a member
 of the set specified by <ccl>.

 | * In combination with the immediately preceding pat-
 | tern element, matches zero or more characters that
 are matched by that element.

 @ Turns off the special meaning of the immediately
 following character. If that character has no
 special meaning, this is treated as a literal "@".

 {<pattern>} Tags the text actually matched by the sub-pattern
 specified by <pattern> for use in the replacement
 part of a substitute command.

 & Appearing in the replacement part of a substitute
 command, represents the text actually matched by
 the pattern part of the command. If "&" is the
 only character in the replacement part, however,
 then it represents the replacement part used in a
 previous substitute command.

 @<digit> Appearing in the replacement part of a substitute
 command, represents the text actually matched by
 the tagged sub-pattern specified by <digit>.

 - 49 -

	Title Page
	i
	ii
	Table of Contents
	iii
	iv
	Foreword
	v
	Tutorial
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	The Subsystem Screen Editor
	24
	25
	26
	27
	28
	29
	30
	31
	Screen Editor Options
	32
	33
	34
	35
	36
	Screen Editor Control Characters
	37
	38
	39
	40
	Editor Command Summary
	41
	42
	43
	44
	45
	46
	47
	Elements of Line Number Expressions
	48
	49

