
PRIME 32"Update

Subject: Subroutines, Rev. 18 Number: 78

Revision: 0

Date: December 1980

Applicable Hardware: *.. ©vs

Applicable Software:....,;

Documentation impact: Subroutines Reference Guide '(PDR3621)

Abstractir:- new file naming convention and suffixes are discussed. Subroutines

supporting this convention, APSFXS and SRSFXS, are included.

The subroutines GVSSET and GVSGET supporting global variables are given.

There is now a V-mode versions of the in-memory sort library -- VMSORT.

Named semaphores have been added to PRIMOS. This topic is covered in detail

along with supporting subroutines.

New conditions have been added to the condition mechanism.

There are minor changes, additional keys, and typographic corrections

to a number of subroutines.

This bulletin is one in a series of documentation supplements that supply current information on Prime hardware,
software and documentation products. Prime Technical Updatesintroduce product improvements and revisions, and
update existing Prime Computer user documentation.

PRIME Computer, inc. 145 Pennsylvania Avenue, Framingham, Mass. 01701

(617)879-2960

PTU78 REV. 18 SUBROUTINES

PTU 78

REV. 18 SUBROUTINES

ADD TO PAGE 1-2

THE FILE NAMING CONVENTION

Beginning at Rev. 18, a new file naming convention is being adopted by
PRIMOS. In this convention, file names may be seprated into one or
more components by the separator '.'. For example, the name A.BCD.EFGH
has three components: A, BCD and EFGH.

The last component of a name may be a standard suffix Standard

suffixes identify the primary purpose of the file. The remainder of
the name is called the base name, and is the file's principal
identifier. For example, F77.PL1 has the standard suffix PL1, which
indicates that the file is a PL] source file.

If two or more files in a directory have the same base name but
different suffixes, it can be assumed they are related files of the
same type : e.g. F77.PL1. F77. LIST, F77.BIN are the source Tieti

ci --7 oa aa mT NAL re ttwudi

and binary files for the PL1l program F77.

If two or more files in a directory have the same suffix but different
base names, they are unrelated files of the same type: e.g. F77.PLI1
and BAR.PL1 are both PL1 source files.

Certain Prime software has been changed at Rev. 18 to support this
convention, notably the compilers, loaders and RESUME command. See the

' updates to the language reference guides and the update to the LOAD and
SEG Guide for more details.

HHKKKEKEREEKEKREREEEKERERIKEEREREREEREEREERERERRREEEREREERERE

ADD TO PAGE 3-11

The R-mode FINLIB has been duplicated into two files FTNLIB and SVCLIB

KRREKKEKEKEKREEERKEEERREKEEREREEREEKERREREREKERERRERRERERRERERRREERREREE

ADD TO PAGE 3-11

Add the following modification to Segment Directory Formatting.

Segment directories are limited to 64K words and, therefore 32K
entries.

78 - 1 December 198¢

PTU78

KREKEKKEKKEKEEEKEREERKEKREREEREREEREREREREREERREREREREEREREREEREREEREEKEK

ADD TO PAGE 4-3

Add the following parameter to TRSCS$ subroutine.

CALL TSRCS$ (actiontnewfil, treename, funit, chrpos, type, code)

KSGETU Open treename on an unused file unit selected by PRIMOS

The unit number is returned in funit.

KKEKEKKEKEKERERKERRERERREEREERRERERERERRRRERRERERERERERREEREREREREEERE

ADD TO PAGE 4-3

APSFX$

The direct call APSFX$ appends a specified suffix to a pathname. The
pathname is checked for the prior existence of the suffix to avoid
overwriting on existing file.

DCL APSFX$ ENTRY (char (128) var, char(128) var, char(32) var, fixed

bin);

CALL APSFX$ (inpathname, out_pathname, suffix, status) ;

in pathname Pathname to use to process suffix checking. (Input)

out pathname Pathname returned to caller with desired suffix
appended. (Output)

suffix This is the suffix desired on the pathname. It
should include the period, and be capital letters,
e.g., ".F77". (Input)

status -1 - suffix already present, pathname remained
untouched. @ - suffix appended ok. eSnmlg -
pathnametsuffix > 128 chars or filenametsuffix is
longer than 32 chars. (Output)

KKKKKKKEREKRREEREREEREIEREREIREREEEIEEEERIERERERERERRERREERERERERERK

ADD TO PAGE 4-7

The command output unit depends on the FILUNT directive in the CONFIG
file at cold start.

REV. @ 78 - 2

PTU78 REV. 18 SUBROUTINES

HHKKEKRREREREREREREREREEREEERIEEREEREAIREREEERERIERA

ADD TO PAGE 4-27

In subroutine SRCHSS$ the sub-key, KSGETU, returns the PRIMOS file unit
(not FORTRAN unit) in funit.

KKKKKKKKKERKEERREEKEEKRAKEEEREREEERERRERREEREKEREKERERERRERE

ADD TO PAGE 4-27

SRSFXS

The direct call SRSFX$ searches for a file according to the file naming
standards. In addition to the normal search arguments, key, pathname,
unit, and type, the caller supplies a list of suffixes.

The suffix list defines both the su a
order. If the suffix already exists at the end of the filename then a
tree search is performed with the pathname as is.

Fh Hh f
a
l > 0) tn “t
T > n D 3

If none of the desired suffixes are found, a tree search is performed
in the following manner: attach to the appropriate directory, each
suffix in the list is appended to the filename a search is done. In
this way the suffix list defines the search order. The routine returns
if a "filename.suffix" is found or the suffix list is exhausted.

If a file is found, the index (in the suffix list) of the last suffix

in the filename is returned; if no file is found, or if none of the

suffixes in the list is on the found filename, an index of zero is
returned.

Restrictions and notes:

1. The null string is not allowed as an element of the suffix
‘list. The null suffix is assumed if no desired suffix is
found. In this case the suffix index is set to zero and a
processor may then chose to use old-style conventions, B, L_
etc., for its output files.

2. If the suffixlist contains ".F77", a pathname such as
“pathname>.F77" will be treated as a valid suffix found, i.e.,
".F77". The filename returned will be '', the null string.

3. If the filename + suffix > 32 chars or pathname + suffix > 128
chars, a search with suffix will not be done and the next
suffix is attempted. E.g. a filename = 32 chars will simply
be searched as is.

4. The suffixes in the suffix list, provided by the caller, must
contain the period and be all capital letters, e.g. ".F77".

78 - 3 December 198@

DCL SRSFXS$ ENTRY (fixed bin, char(*) var, fixed bin, fixed bin,

[returns(fixed bin(31));

fixed bin, (*) char(32) var, char(32) var,
fixed bin, fixed bin)

] (only used with the function call)

CALL SRSFX$ (key, pathname, unit, type, n_suffixes, suffixlist,
basename, suffix_used, status) ;

CHRPOS = SRSFX$ (key, pathname, unit, type, n suffixes,

key

pathname

unit

type

n suffixes

REV.

suffix list

basename

suffix used

status

chrpos

suffixlist, basename, suffixused, status);

Key(s) to use for the search. (Input)

Pathname to use for search (remains unchanged).
(Input)

File unit opened, with KSGETU. (Output)
File unit to use for SRCHSS action, i.e. without
KSGETU. (Input)

File type opened. (Output)

Number of suffixes in suffixlist. A value of zero
would indicate not to use the file naming standards
with suffixes for the search. (Input)

List of desired suffixes to use. Each suffix should
include the period and be capital letters, i.e.,
suffixlist(i) = ".F77". (Input)

This is the base filename, i.e., without a. suffix
according to the suffix list. This is useful to
callers that want to append a different suffix to the
base filename. For example, FIN PROG.TEST.FIN would
produce output files with "PROG.TEST" as the basename
used, 1.e€., "PROG.TEST.BIN". (Output)

The is the index, in the suffix list given, of the

suffix used for the search. As mentioned, a value of

zero denotes that the null suffix was used. (Output)

Status from the search operation. (Output)

When SRSFXS is used as a function call this is
returned. The first word points one past the
pathname component that caused the error. The second
word is the pathname length. (Output)

PTU78 REV. 18 SUBROUTINES

KREKKEKKEKEREREKEKEEEREREREEKEEEEKEEEKEREREEERERKEEREERKEERERERRERERERERER

ADD TO PAGE 5-1

GCHAR

Gets a character from an array.

CHAR = GCHAR (LOC (array), ptr)

array Array of characters

ptr Pointer to the location of character in array

The pointer is origined at zero and is incremented by 1 after the
operation is complete. (INT*2)

Stores a character into an array location.

CALL SCHAR (LOC (array), prt, char)

array Array of characters

ptr Pointer to the location of character in array

char Character to be stored

The pointer is origined at zero and is incremented by 1 after the
operation is complete. (INT*2)

The right half of the character word is stored, so the form of char

should be ' A', for example.

ISAA12.

Performs the same function as ISAA@1, but also allows the input to be f
rom a
cominput file.

CALL ISAA12 (@, buff, #words)

buff Buffer location

#words Number of words to input

GLOBAL VARIABLES

Two routines are available for the accessing and setting of global

78 - 5 December 1989

PTU78

variables from inside a user program. GVSSET sets the value of a

global variable, and GVSGET retrieves the value.

The GVSSET and GVSGET routines use PL/I data types and declaration
statements.

The PRIMOS command DEFINEGVAR must be used to define the global
variable file before either of these two procedures is called.

AKKKEREKEEKERKERIKERIRAEEREREERARERERERERERRRERERERERRERERKK

ADD TO PAGE 5-1

LOGOUT NOTIFICATION

logout Notification provides the creator of a Phantom process
information about the Phantom's activites. This information is
compiled at Phantom logout time and sent to the Spawner. ‘This is know
as notification.

Normally, the information will be displayed upon the creator's
terminal. The information contains the Phantom's user number, the time
of day of logout, the elapsed time, cpu time, and I/O time spent by the
Phantom, and an error code indicating normal or abnormal logout.
Normal logout occurs when a phantom completes with a LOGOUT command.
All other logout will generate abnormal logout.

Logout information will be compiled at this time and sent to the proper
Spawner. If a user is logged into more than one terminal, the

information will only be sent to the terminal from which the Phantom
was created. If the Spawner of the Phantom has logged out while the
Phantom was running, the information will not be sent. This means that
once a user has logged out, the Phantom will not notify the user of
logout even if the user was to log back in.

Sometimes it may become necessary for a user to record the Phantom
logout information via a program. The Logout Notification system
provides two subroutines that allow for this event. The first
subroutine, LOSCN, allows a user to turn off and/or on Logout
Notification. The second subroutine, LOSR, allows a user to fetch

Phantom logout information instead of having the information written to
their terminal.

When LOSCN is requested to turn off Logout Notification, Phantom logout
information is automatically queued for future access. This allows any
user to turn off notification without having to worry about either the
condition of their terminal screén or the loss of the status of their
Phantoms.

When LOSCN is requested to turn on logout Notification, Logout
Notification is enabled and any enqueued logout information is written
on the user's terminal.

REV. @ 78 - 6

PTU78 REV. 18 SUBROUTINES

AS waS mentioned above, a user may fetch Phantom logout information by
invoking LOSR. Normally, Logout Notification is enabled and invoking
LOSR will gain the user nothing. Therefore, when using LOSR, Logout
Notification should be turned off by invoking LOSCN.

When Logout Notification occurs a system default "on-condition" handler
named PH_LO$ is invoked to write the information upon the creator's
terminal. This “on-unit" is also invoked when LOSCN is requested to
turn on Logout Notification. Therefore, if a user does not ever wish
to see logout information written upon their terminal, they should
create their own "on-unit" and name it PH LOS. his user defined
PH LOS may wish to call LOSR to fetch Phantom logout information. The
default PHLOS does this.

KRKKKKEKEEKEKEEREERKEREKEREREREREEERRERRRERERRRRRRR

ADD TO PAGE 5-1

LIMITS

Allows the setting of various timers within PRIMOS each generating a
signal if expired. The timer values may also be read.

calling sequence

\CALL LIMITS (KEY, LIMIT, RES, CODE)

Parameters are INTEGER*2 except LIMIT which is INTEGER*4

KEY this key is split into two 8 bit functions. The right half
is as follows.

1 = read limit
2 = set limit

The left half is as follows:
cpu limit in seconds
login limit in minutes
CPU watchdog in seconds
real time watchdog in minutesO

U
I

N
M

F
H

W
o
n

LIMIT is the time to be set in minutes or seconds

RES reserved ~ must be zero

CODE is a returned standard error code

78 - 7 December 1989

PTU78

KEKKEKKEKKEREKEEKERKEREREEERKEKERERIEERREEREKERE

ADD TO PAGE 5-8

GVSSET

GVSSET sets the value of a global variable. Its calling sequence is:

DCL GVSSET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN)

CALL GVSSET (var-name, var-value, code)

var-name

var-value

code

GVSGET

is the name of the global variable to be set. This
name must follow the rules for CPL global variable
names. All letters must be upper case.

is the new value of the variable var-—name.

is a return error code. ESBFTS is returned if the
specified value is too big. ESUNOP is returned if the
global variable area is bad or uninitialized. ESROOM
is returned if an attempt to acquire more storage by
the variable management routines fails.

GVSGET retrieves the value of a global variable. Its calling sequence
is:

DCL GVSGET ENTRY (CHAR(*) VAR, CHAR(*) VAR, FIXED BIN, FIXED BIN)

CALL GVSGET (var-name, var-value, value-size, code)

var-name

var—-value

value-size

code

REV. @

is the name of the global variable whose value is to
be retrieved. The name must follow the rules for CPL
global variable names and must be in upper case.

is returned value of variable var-name.

is the length of the user's buffer var-value in
characters.

is a return error code. ESBFTS is returned if the
user buffer var-value is too small to hold the current

value of the variable. ESUNOP is returned if the
global variable storage is uninitialized or in bad
format. ESFNTF is returned if the variable is not
found.

PTU78 REV. 18 SUBROUTINES

LOSR

LOSR fetches or transfer logout information from storage to a

designated area. It will do this unless it finds no information to
transfer. The area to transfer the information to is designated by an
arguement to LOSR known as MSGPTR. The size of the area pointed to by
MSGPTR is designated by a second arguement known as MSGLEN. The area
should be of at least six words in length. If it is shorter than this,
LOSR will only fetch as much information as MSGLEN.

LOSR also passes back to its caller an indication that their have been
more Phantom logouts with their respective information stored in a
queue. This indication is contained within the arguement named MORE.

An error code that indicates the above situation or no error is passed
to the user via an arguement named CODE.

DCL LOSR ENTRY (pointer,fixed bin(15) ,bit(1) ,fixed bin(15));

msgptr area of memory in which to store message

msglen length of area in which to store message

more § indicates no more messages left on queue
1 indicate more messages left on queue

code error code ESNDAT-no data found in queue
ESBFTS-Some information lost during

transfer (msglen less than actual

message length)

Information Format

Word Number Information

1 Phantom's user number (fixed bin(15))

2 Time of day of logout (fixed bin(15))

3 Connect time in minutes (fixed bin(15))

4 CPU time in seconds (fixed bin(15))

5 I/O time in seconds (fixed bin(15))

6 Logout condition code (fixed bin(15))

@-Normal Logout
1-Abnormal Logout

78 - 9 December 19898

LOSCN

LOSCN is used to either turn off or turn on Logout Notification. When
notification is turned off, Phantom logout information is queued on a
FIFO basis. When notification is turned on, queuing will not be
performed, and the Logout Notification default "on-condition", PHLOS,
will be raised if there is any Logout Notification data to be received.

DCL LOSCN ENTRY (fixed bin(15));

DCL LOSCN (key) ;

key software interrupt status key

@—notify off
l=notify on

KHKKEKKKEKEREEREREKEREEREERERRERRERREEREEREREREREEERREEEKRERIEKEEEEEA

CHANGE TO PAGE 7-5

Change the Argument type for RND subroutine from INTEGER to REAL.

RRKKKKKKKEREEERREKKEREREEEREERIERRRREEEREEEREEREREERRERERERE

ADD TO PAGE 11-23

The value argument for CNVASA is returned as Integer*4.

value Returned converted binary value (INTEGER*4).

ADD TO PAGE 11-26

Whenever the APPLIB key, ASGETU, is specified, the PRIMOS file unit is
returned in the user's argument unit.

KERKEKEEEREREKEREREREEERERREKEEREKRERERRREREREREREREREREKEERRKEEEEKEKKE

ADD TO PAGE 11-29

OPENSA untkey should read "choose a PRIMOS file unit"

REV. 9 78 +- 18

PTU78 REV. 18 SUBROUTINES

KREAKKKKKEEKEERKEKEKRERKEEEKEKEREREREKEEREEREREEEEEERERERKREERERERREERERERKKE

ADD TO PAGE 11-39

OPNPSA untkey should read "choose a PRIMOS file unit"

OPNPSA unit should read "PRIMOS file unit"

OPNVSA untkey should read "choose a PRIMOS file unit"

KRREKEKRKEEEEREERREREREREREKREREEREERERREREREERRRREERRERRRRRERREREERERERE

ADD TO PAGE 11-31

nn Wf Panrasan £i a

unit Should read "PRIMOS file unit"

RAREKKEKEEEKREREEEKEREREREREREREEREREREREREEREREREERRERRREERREREERRRRRER

ADD TO SECTION 12 - SORT LIBRARIES

Al tT myTr TT 2 han
SORT and VSRTLI will now handian up to 64 keys as required by SPSS
(Statistical Package for the

le

Social Sciences).

VSRTLI

In V-mode up to 64 key fields may be specified. The parameter numkey
description also changes in the following subroutines: SUBSRT ASCSRT

SRTFSS MRG1SS SETUSS

Key Definitions

In V-mode, up to 64 key fields may be specified and the total length
may not exceed maximum record length.

The following additional key type may be specified as a parameter in
the SORT subroutines:

Key BYTE LENGTH RANGE

UNSIGNED INTEGER 2 @ to 65535

For the PACKED DECIMAL key, a negative sign is represented by a hex D
in the sign nibble; all other 4-bit combinations in the sign nibble
represent a positive sign.

78 - ill December 1988

Collating Sequence

ASCII keys may be sorted using the FBCDIC, rather than ASCII collating
Sequence. The sequence is specified in the spcls parameter (described
in SRTFSS and SETUSS.

VSRTLI Subroutines

The following parameters should be changed in SUBSRT, MRGISS, ASCSSS,
SRTFSS, and SETUSS:

numkey Number of pairs of starting and ending columns (starting
and ending bytes if binary). Maximum is 64, default=1.

ntype Vector containing type of each key. The additional ntype
for Rev. 17.6:

Type

13 UNSIGNED INTEGER

Spcls Parameter

The following parameter should be expanded in SRTFSS, SETUSS, and
MRG1SS.

spels Five word array containing:
spcls(1) = Space option

@ = include blank lines in sort
1 = delete blank lines
Default = @

spcls(2) = Collating sequence specification
1 = ASCII collating sequence
2 = EBCDIC collating sequence
Default = @ ASCII collating sequence

spcls(3) = Tag/non-tag option (For MRG1SS, must be Q)
1 = Tag sort
2 = Non-tag sort
Default = @ Tag sort

spcls(4-5) must be zero and are reserved for future use.

Subroutines

MRG2SS

MRG2$S returns the next merged record. MRG2SS should not be called for
output files.

REV. @ 78 - 12

PTU78 REV. 18 SUBROUTINES

CALL MRG2SS (rtbuff, length)

rtbuf£ Buffer containing next merged record (returned). Should
be large enough to hold longest record merged.

length Length of record (in characters) returned. Once all
records have been returned, calls to MRGsSS return a
length of @.

MRG3SS

MRG3SS closes all units opened by the merge routines. MRG3SS_ should
not be called for output files.

CALL MRG3SS

VMSORT

VMSORT, a V-mode version of MSORTS (in-memory sort library) is now
available. The PTABLE argument (common to more than one subroutine) in

VMSORT is a two word argument. ‘The R-mode version is still MSORTS and
there is no change in the contents of that library.

KRREKKEKKEKKERERKEREREREKEEREREREERKREREREEKEREREREEKREREKKERRERERERERRES

ADD TO PAGE 13-3

Tables 13-2 "Logical Device and Numbers" should be expanded to include
the information that FORTRAN unit number 29 is Funit. 17, FORTRAN unit
38 is Funit 18, ... FORTRAN unit 139 is Funit 127.

KRRREEKKEREERERRERREREREERERRRERRERREERREERREERERRERRERRERRERRRERREER

CHANGE TO PAGE 17-1

Revise the description of OSAD@7 to read: Multiple blank characters
are replaced with '221, followed by a wordcount.

KAKKKEKEKRKERKERREREEERERERRERREREEREREREERERERKREEERERRERRERRERRERREREREKE

CHANGE TO PAGE 19-7

Change the number of words argument in the calling sequence for TSVG to
read the limit is 512 words.

78 - 13 December 1984

PTU78

RARKKKKKEKEKEREKKEERERERREREREREREEREEEREREEREEEREEEERARER

ADD TO PAGE 19-7

MEGATEK

PRIMOS supports up to four Megatek devices. These devices are ASSIGNED
as MG@ - MG3. The user-callable driver is TSMG.

TSMG

CALL TSMG (unit, key, auxdat, buffer, buflen, statv)

unit unit number (@-3)

key action key

1 Read MEGRAPHIC memory (DMX)

Write MEGRAPHIC memory (DMX)
Peripheral read
Peripheral write
Poll/wait for interrupt
Reset display
Do physical I/O

1 OCP
2 SKS

3 INA
4 OTAmS

OK
OS

OM

auxdat Megatek memory address
or

if key = 5, auxdat specifies whether waiting,
polling or timed wait.

<@ = waiting
8 = polling

>@ = timed wait
or

if key = Do physical I/O, auxdat is function.

buffer Data buffer for DMC

buflen length of buffer (up to 5128 words)

statv 3 word status vector

statv (1) status flag

statv (2) hardware status word
statv (3) number of words transferred

REV. @ 78 - 14

PTU78 REV. 18 SUBROUTINES

VECTOR GENERAL

The system supports up to four Vector General devices. These devices
are ASSIGNED as GS8 - GS3. The user-callable driver is TSGS.

T$GS

CALL TSGS (unit, key, func, buff, buflen, code)

unit logical unit number (@-3)

key action key
‘18 = poll for interrupt
"11 = wait for interrupt
'28 = execute OCP
"21 = execute SKS
'22 = execute INA
'23 = execute OTA
'38 = DMC output
31 = controller busy check

func Vector General buffer address or Physical I/O function field.

buff data word or LOC(BUFFER) for DMC

buflen length of buffer (words)

code non-standard error code
@ OK (not busy for key = 31)
1 unit not @ thru 3
2 unassigned unit
3 invalid key
4 bad PIO function (keys '2@-'23)

5 unit busy (keys '3@-'31)

6 no skip outputting channel address (key '38)
7 no skip preparing for DMC (key '3@)
8 no skip outputting buffer address (key '3@)
9 no skip on SKS, INA, OTA function keys (keys '28-'23)

18 invalid DMC count (buflen) (key '38)

KRKRKKREREEKREEKREREREREREERERRERRREERRREREREEERREREREERERREERERERERKEREK

ADD TO PAGE 19-24

CHANGES TO TSMT

Instruction to get controller ID

A new command has been added to TSMT to return the controller
identification word. The controller ID may be used by software that
intends to support all tape drives, but takes advantage of special

78 - 15 December 1982

PTU78

features that are available only with a particular controller. For
example, the erase command is only available with version 2 and 3
controllers.

CALL TSMT (UNIT, INSTR, BUFF, BUFLEN, STATV, CODE)

INSTR = :149006

BUFF(1) = Controller ID

|d 3/4 8] 9 16|

Inot used |Revision |Device ID |

Revision = microcode E.C. level
Device ID = bits 9,19 - version of controller

bits 11-16 mag tape controller (:14)

Additional status words

At Rev. 17, the size of the STATV array was extended if the optional
CODE argument was present. TSMT has been changed to store the
additional hardware status in this array.

STATV Status vector. If this is the last argument, then only the
first three words are set. If the CODE argument was given,
then the additional words may be set depending on the
controller being used.

(1) 1 operation started; 9% = operation done.
(2) hardware status for all controllers

(3) number of words transferred

(4) hardware status for version 1, 2, and 3 controllers.

bits 6,1 = density of tape. (@@ = 880 bpi,
18 = 16@@bpi, 11 = 625@bpi)

(5,6) hardware status for version 3 controllr.

CODE Standard error code. If this optional argument is used, then
the STATV must be a 6 word array. If this argument is not
used, then any illegal instructions will result in an error
message being printed, and a return to command level.

KAKKKAKKEKRERERERERERRERRRKRIREREREEREREREREREREEEEARREREREEE

ADD TO PAGE 19-26

Add to subroutine TSMT

Bit 16 of status word 2 does not have any function with tape formatter
2271-981.

REV. @ 78 - 16

PTU78 REV. 18 SUBROUTINES

ADD TO PAGE 28-2

TSSLCO

The range of the line parameter is extended:

line Cctal line number @-7

KREKKKEKEKEREREKERREREEKEREREREARERRERIERIKREIRERREEEEERRERIR

ADD TO PAGE 21-1

NAMED SEMAPHORES

On timesharing systems where more than one process can be active at the
same time, there is often a need to coordinate the execution of
multiple processes with one another. Two times that such coordination
is required are when two or more processes cooperate to solve a common

problem; and when multiple processes must use a common, limited
resource.

When multiple processes are working together as a part of a larger
system or to solve a common problem, it sometimes happens that one or
more of the processes encounter a situation in which they can not do
any further work until some event, external to the process, happens.
An example of this is a spooler which picks up print requests from a
queue. When there are requests in the queue, the spooler services
them; however, when the queue becomes empty, it can no longer do
useful work and must wait for another process to give it something to
do.

There are many resources on a timesharing system that must be shared by
all of the running processes. Included in the list are such things as
devices that can have only one user at a time (e.g., a paper tape
punch), a section of code that performs a single atomic operation, or
files that are updated and read simultaneously by several programs.

The semaphore facility provides a means to coordinate multiple
processes, providing that the processes involved all use the facility
in the same way.

The semaphore facility consists of some blocks of memory, which are
called semaphores, and a set of software routines or hardware
instructions that perform various operations on these blocks. Note
that there is no real connection between a semaphore and the event or
resource with which it is associated. The use to which a semaphore is
put is determined solely by the application programs that use it. All
of the cooperating programs must agree on the meaning (or use) of a
semaphore and use it the same way.

The two basic operations that can be performed on a semaphore are
called WAIT and NOTIFY, which will be described later. There are other

78 - 17 December 1989

operations that can be done with semaphores, and they will also be
described.

USING SEMAPHORES

The operating system maintains a pool of semaphores which it can assign
to user processes. When a processes wishes to use one or more
semaphores, it must first ask the operating system to assign them to
the process. The process requests access to semaphores via an open
semaphore routine. The user can request that multiple semaphores be
assigned to it in a single call to this routine. The operating system
will return a set of numbers to the process if it decides that the
requested semaphores can be assigned to that process. The process will
use these numbers in all subsequent calls to semaphore routines to
indicate on which semaphore to perform the semaphore operation.

The operating system can tell when different processes wish to use the
same set of semaphores by examining the parameters that they include in
the call to the open routine.

[See the section on Semaphore Functions: Open Call for more details on
how to use the open call].

After a process has opened a set of semaphores, it can do any number of
Semaphore operations on those semaphores. The possible semaphore
operations are described is the section entitled Semaphore Functions.

When a process has finished using the semaphores that were assigned to
it, it requests that the operating system CLOSE those semaphores, thus
making them inaccessible to the process, unless another OPEN is done.

When all processes that were using a semaphore close it, then the space
in the operating system taken up by that semaphore is returned to the
operating system free pool and may be assigned to other processes at a
later time.

When a process logs out, all semaphores that were opened by the process
but not closed are closed automatically. If this process was the last
user of a semaphore, the space used by the semaphore is returned to the
free pool.

DESCRIPTION OF SEMAPHORES

A semaphore consists of two parts: a counter and a queue.

When a process wishes to wait for an event to happen or a resource to
become available, it issues a WAIT call for the semaphore associated
with that event or resource. The WAIT call will increment the counter
for that semaphore and test its value. If the counter is less than or
equal to zero, the process is allowed to proceed immediately and is not
placed on the semaphores queue. If, however, the count is greater than
or equal to one after being incremented, then the process is placed on
the wait queue for the semaphore. The process will not run again until

REV. @ 78 - 418

PTU78 REV. 18 SUBROUTINES

it leaves this queue. Processes are placed on the queue in priority
order with higher priority processes being placed closer to the head of
the queue. Within a given priority, the processes are queued first in
~ first out.

When a process wishes to report that an awaited event has occurred, or
that a resource has become available for use by other processes, it
will call a NOTIFY routine for the semaphore associated with that event
or resource. The NOTIFY routine will first test the value of the
counter for that semaphore. If the counter is greater than zero
(indicating that one or more processes are in the semaphores queue) ,
then the routine will remove one process from the top of the queue,
thereby allowing that process to run again. Whether a process was
dequeued or not, the routine will then decrement the counter by one.

Normally, a semaphore's counter is preset to some value before the
semaphore is used by any process. The value to which it is set depends
on the nature of the software that will use the semaphore and on the
purpose of the semaphore. Typical initial values are -l and @. A
value of -1 allows the first process that waits on the semaphore to
proceed immediately without being queued. This effect is desirable if
the semaphore is used to coordinate the use of a shared resource. ‘The
resource is considered available until a process indicates its intent
to use it. A value of zero is appropriate for wait for event
situations in which a process must wait until some condition exists or
until an event occurs. The process that must wait for an event to
happen does a wait operation on the semaphore, and is immediately put
on the queue since the counter becomes greater than zero. When another
process determines that the awaited event has occurred, it will notify
the same semaphore, thus allowing the queued process to run.

When a process opens a semaphore, and that process is the first to open
that semaphore, then the open routine will preset the semaphore's
counter to a value of zero. If an initial value of -1 is required,
then the process should notify the semaphore once after opening it. If
the semaphore must be reset to its initial value of zero at a later
time, then a call can be made to the drain semaphore routine.

[see Semaphore Functions: Drain Call]

PRIME SEMAPHORES

On Prime computers, a semaphore consists of two (16 bit) words of

memory. Any two consecutive words of memory can be used as a
semaphore, but these words must be non-pageable. The WAIT and NOTIFY
operations are implemented in firmware and are usable by ring @
software only. So that users can use the semaphore facility, ring
three calls have been created that perform the wait and notify
operation on a set of semaphores that are reserved by the operating
system for use by user programs.

Currently, there are 1824 semaphores available to user processes.

78 - 19 December 1989

PTU78

CODING CONSIDERATIONS

Cooperation of Processes

It should be remembered that a semaphore is a method that cooperating
processes can use to control their access to reSources, or to

coordinate their execution. ‘The operating system does not verify that
the semaphore is being used correctly since the association between the
semaphore and the event or resource is merely a convention adopted by
the processes involved.

In order for the semaphore facility to work correctly, all processes
that want to wait for an event or a resource must first wait on its
associated semaphore before using the resource or assuming that the
awaited event has occurred. Since the operating system does not get
involved in the internal affairs of the processes (at least as far as

semaphore usage is concerned), there is nothing to stop the careless
programmer from using a shared resource, for instance, without first

waiting on the appropriate semaphore. Such coding practices will most
likely cause the entire subsystem of processes to malfunction.

Named vS. Numbered Semaphores

There are two methods by which a process can specify which semaphores
it intends to use. Also, there are two sets of semaphores maintained

by the operating system. Me set is available to any process that
wishes to use it, and are identified by number. When a process wishes
to use one of these semaphores, it specifies the number of the desired

semaphore in the parameter list of the semaphore routines. This set of
semaphores is called numbered semaphores. Numbered semaphores are easy
to use; however, they have a major drawback: there is nothing to
prevent other processes from uSing the same semaphore for different
purposes. Therefore, all users of the system must agree on the usage
that each numbered semaphore will have; otherwise, confusion will
result.

To eliminate the problems caused by the sharing of numbered semaphores,
a second set of user accessible semaphores was created. Semaphores in
this set can not be used by a process until they are opened. Opening a
semaphore means that the process must call a routine (called SEMSOP)
which will assign semaphores from the pool for the process to use. The
routine returns a set of numbers which can be used instead of numbered
semaphore numbers in all other semaphore rotine calls. Mly valid
numbered semaphore numbers and semaphore numbers that have been
assigned to a process by SEMSOP can be used in subroutine calls that
manipulate semaphores. An attempt to use any other numbers will result
in an error return from the routine.

So that multiple processes can use the same semaphores for coordinating
their activities, the process must supply a unique name to the SEMSOP
routine which will be used to uniquely identify the semaphore. The
name supplied must be the name of a file in the UFD attached by the
process. All calls to SEMSOP that specify the same file will result in

REV. @ 78 - 26

PTU78 REV. 18 SUBROUTINES

the same semaphore numbers being returned.

Timers and Timeouts

When a process waits on a semaphore, it anticipates that it will be
notified within a reasonable amount of time. If for some reason, the
process that is going to notify the semaphore fails to do so, all
processes waiting on that semaphore will continue to wait, possibly for
a very long time.

To guard against processes waiting forever, a timer mechanism is used.

Named Semaphore Timers: To prevent a process from waiting forever on a
named semaphore, a special wait routine exists (called SEMSTW) which

takes a semaphore number and a time value as parameters. The process
will wait on the specified semaphore until the semaphore is notified or
until the specified amount of real time has passed. The routine
returns a vaiue to the process that indicates why the process was
allowed to continue. A value of zero (@) means that the semaphore was

removed from the wait queue because of notify by another process. A
value of one (1) means that the process was allowed to continue because

the the specifed time had elapsed without a notify on that semaphore.
It is also possible for a value of two (2) to be returned. This return
value indicates that the process was stopped by someone typing the
break key, or control-P, at the terminal controlling the process, and
then typing START. This sequence of things causes the operating system
to abort the process, thus removing it from the semaphore on which it
was waiting; followed by a restart of the process at the instruction
following the wait call. If a special value were not returned to the
process in this case, the process may think that the semaphore on which
it was waiting was notified by another process -- which is not the
case. The special return value allows the process to detect this
situation and to rewait on the semaphore, if that is appropriate.

Numbered Semaphore Timers: The timer facility for numbered semaphores
allows a semaphore to be automatically notified after a certain amount
of time has passed. A user process tells the operating system, via a
subroutine call, that a timer is to be associated with a numbered
semaphore. The process also specifies the amount of time that should
pass before the operating system notifies the semaphore. When this
amount of time has passed, the operating system notifies the semaphore.

Much care is needed when coding programs that use semaphores with this
kind of timer; if another method is not used besides the semaphore to
indicate that the awaited event has actually occurred, then a notify
caused by a timer can not be distinguished from a notify caused by a
process. The processes using the semaphore should, therefore, be coded
so that they can verify that a notify by another process has occurred
before using the resource protected by the semaphore. The action that
is taken when a timer notifies the semaphore is subsystem dependent and
should be agreed upon by all of the processes using the timed

78 - 2) December 1988

PTU78

semaphore.

PITFALLS AND HOW TO AVOID THEM

External Notifies: When a semaphore is notified for some reason other
than an explicit call to the notify routine, that notify is called
external; that is, it originated from a source external to the
processes that are using the semaphore. Some of the reasons that a
external notify may occur are listed here.

Expiration of a Timer: When a timer is set for a numbered semaphore,

and that timer expires, the operating system will notify the semaphore.
This semaphore will look like an external notify to the processes that
use the semaphore; the fact that the notify is external can be
detected if the processes are coded properly (see coding suggestion,
below) .

The notify caused by a time out can be useful in cases when the procses
that is supposed to notify the semaphore is prone to being aborted.
The operating system initiated notify will prevent processes from
waiting forever.

Use of timers with named semaphores causes a code to be returned to the
process that indicates when a timeout has occurred.

Malfunctioning Process

Processes that are supposed to be using a semaphore, like all other
programs, sometimes do not behave properly. Malfunctioning programs
can do extra notify calls, and cause what appears to be external

notifies. Also, processes that are not Supposed to be using a numbered
semaphore may decide to use it anyway. Unless the semaphore can be
protected from such interference, then what appears to be an external
notify will result.

Process Quit

The semaphores that a user proceSS can access on a Prime system are
called quittable semaphores. ‘This means that a process that is waiting
on a semaphore can be stopped by typing <BREAK> or <CONTROL-P> at the
terminal controlling the process. When a process is stopped by this
means, and then continued (by typing the PRIMOS START command), the
operating system will remove the process from the semphore wait queue
so that it can be returned to system command level. If the program is
them continued, it will not reexecute the wait operation. The process
will continue to run and will believe that it was notified from the
semaphore by another user process.

Since semaphores can be notifed by breaks and timeouts as well as by

REV. @ 78 - 22

PTU78 REV. 18 SUBROUTINES

explicit calls to SEMSNF, and since this could cause malfunctions in a
sub-system, it is always best to code in such a way that this situation
can be detected. This means that a process should not rely solely on
the semaphore to indicate that a resource is really available or that
an event has actually occurred. A good practice is to have one
additional method, besides the semaphore, to indicate what the current
state of the resource or event is.

One such method is to have a word in shared memory (accessible by all
cooperating processes) which is set to indicate that the event has
really occurred or that a resource is free. Before a process notifies
a semaphore, it sets this word to an agreed upon value. When the
process is allowed to proceed from a semaphore wait, it should check
the value contained in that word. If the word contains the agreed upon
value, it will know that the semaphore was notified by a cooperating
process, and not by the operating system. In this case, the process
will clear the word, do its processing, and reset the word to the
agreed upon value just before notifying the semaphore. If a process
proceeds from a wait cali and the wrd is not set to the agreed upon
value, it can assume that the operating system notified the semaphore
and can reissue the wait call.

Infinite Waits: It is possible to create a situation in which one or
more processes are waiting on a semaphore, and there are no processes
running that will ever notify that semaphore. Methods of creating this
situation include:

Multiple Waits

If a process issues a wait call, and is NOT queued, and then continues
to reissue the wait call without intervening notifies, that process
will eventually cause the semaphore count to become greater than zero
and the process will wait. This of course assumes that there is not
another processes somewhere doing multiple notifies!

In the case of a resource protecting semaphore, if all other processes
obey the rules, they will wait on this semaphore before they notify it.
They will therefore queue up behind the multiple waiter process.
Eventually, all the processes of the sub-system will become queued on
the semaphore queue, and no process will remain to notify the
semaphore.

Aborted Notifiers

Another way of causing infinite waits is to abort a process that would,
under normal circumstances, notify a semaphore. If this is the only
process that will do notifies on the semaphore, then all other
processes that wait on it will wait forever.

Infinite waits can be avoided by associating a timer with the
semaphore. This will guarantee that one or more processes will

78 - 23 December 1988

PTU78

eventually be removed from the wait queue. Extra coding must be done
in the processes, however, so that a time out can be identified as
such, and so that appropriate action can be taken. ‘This code should
determine whether the process that should have notified the semaphore
is still running or not. If it is running, the notify is considered
external and the process reissues the wait call. If the potential
notifiers have all been aborted, appropriate recovery action should be
initiated.

Deadly embrace: When multiple semaphores are being used, a situation
called deadly embrace can occur. ‘Ths happens when two processes each
gain rights to use a resource by waiting on the appropriate semaphore
for that resource, and then each attempt to acquire the resource that
is being used by the other process. Clearly, neither process will ever
notify the semaphore for the resource they hold (they are waiting to
get access to a second resource), and no other process will ever notify

the semaphores (since each resource is held already by one of the two
processes). Therefore, both processes will wait forever.

This situation can not be detected, nor can it be prevented by the

semaphore facility. It can be prevented, however, by the processes
using the semaphores if the following procedure is used.

Each semaphore that a system of processes will use is assigned a
different number; this number will be called the semaphore's level

number. Processes can only issue a wait call for a semaphore whose
level number is greater than the level number of any semaphores it has
waited on but has not yet notified. For example, if the level numbers

for three semaphores are 1,2, and 3, and a process has waited on the
second semaphore (level 2) but has not yet notified it, then the

process can legally issue a wait for the third semaphore (level 3) but
not for the first since level 1 is numerically less than level 2.

This technique, if strictly followed, makes deadly embrace situations
impossible. It is sometimes practical for processes to call a routine
which checks for level number violations and then issues the wait call
if it is ok todo so. If all processes use this routine, instead of
the wait routine, then deadly embrace is prevented.

SEMAPHORE FUNCTIONS (PRIME MACHINES)

The following semaphore operations are available to user processes.
Note that parameters that are not underlined in the calls are passed to
the semaphore routine; parameters that are underlined are returned to
the process by the routines.

Although data types for parameters are specified in PL/I terms, the
routines are also callable from FORTRAN programs.

REV. @ 78 - 24

PTU78 REV. 18 SUBROUTINES

Open Semaphores

CALL SEMSOP (fname, namlen, nbr, ids, code)

Fname (char(32)) is a file name, discussed below.

Namlen (fixed bin) is the number of characters in fname.

Nor (fixed bin) is a number that specifies how many semaphores are to
be opened by this call.

Ids ((nbr)fixed bin) is an array of semahore numbers; one number is

returned for each semaphore that was successfully opened.

Code (fixed bin) is a success/failure code. A value of @ indicates

success; ESBPAR indicates that an invalid value was supplied for snbr;
ESIREM means that a file that is on a remote disk was specified in the
fname parameter -—- remote files can not be used as parameters to this
call; ESFUIU means that either the user has all available file wits

opened, or that there are no available named semaphores. It is also
possible that code will be set to any error code that can be returned
by the SRCHSS routine.

On Prime systems running Rev. 19, or later, of PRIMOS, it is possible
for a number of processes to have access to a set of semaphores while
other processes are denied access to the same semaphores. These
semaphores are called protected or named semaphores.

To accesS a named semaphore, a call must be made to SEMSOP, which

grants or denies access to the semaphore. The process supplies a file
name to the call. If the specified file can be accessed for read
access, subject to file system and ACL protections, then the user is
given access to the requested semaphores. Multiple semaphores can be
opened in a single call by supplying the number of semaphores needed in
the nbr parameter.

If access is granted to the semaphores, then the call will return an
array of semaphore numbers in the ids parameter. One number will be
returned for each semaphore requested in nbr, assuming enough
semaphores exist in the system pool. A semaphore number of zero will
be returned if a semaphore could not be assigned. In addition, code

will be non-zero if one or more semaphore numbers could not be
assigned. The values returned in ids should be examined to determine
which semaphores were opened (non-zero value returned), and which were

not (zero value returned).

The semaphore numbers returned should be used in all other semaphore
calls as the semaphore number parameter. SEMSOP is the only call that
takes a file name and returns semaphore numbers; the rest of the calls

accept only a semaphore number.

If different processes call SEMSOP and specify the same file, the same
semaphore numbers will be returned to each process. This allows

78 - 25 December 1982

TU78

multiple processes of a subsystem to reference common semaphores.

If a call to the open routine specifies the same file as a previous
call to open, and a larger number of semaphores is requested, then new
semaphores are acquired from the system pool to make up the difference
between the number currently open (with that file name) and the number
requested in the call. Other processes can not use these newly
assigned semaphores unless they explicitly open them via a call to the
open routine.

When the first process opens a named semaphore, the operaing system
will set the value of the semaphore counter to zero (@). Subsequent
opens of the semaphore do not alter the value of the counter. If a
process opens the same semaphores more than once, then the same
semaphore numbers will be returned for each call. No matter how many
times a process opens a semaphore, it need only close that semaphore
once. This removes the burden of counting open and close calls to
being sure that equal numbers of calls are done.

Named semaphores can only be opened for files that reside on a local
computer system. Attempts to open named semaphores with file names
that are on remote disks will result in failure; no Semaphore numbers
will be assigned and code will be set to ESIREM.

If a file that was used in a call to SEMSOP is deleted or renamed while
the semaphores assigned by such a call are still open, or if the disk
on which that file resides is shut down, then the open semaphores will
continue to be accessable to the processes that already have them open.
New processes will not be given access to those semaphores, even if the
disk is added again, or if a file is created with the same name as_ the
one that was renamed or deleted. Processes that have the semaphores
open can continue to use them until they are closed via a call to
SEMSCL.

If a process logs out before all named semaphores have been closed,
then those that are still open will be automatically closed by the

operating system.

Notify/Wait

CALL SEMSNF (snbr, code)

CALL SEMSWT (snbr, code)

snbr (fixed bin) is a semaphore number; it can be either a number in

the allowable range for numbered semaphores (1 - 64), or it can be a

number assigned to a named semaphore by the SEMSOP routine.

code (fixed bin) is a success/failure code returned by the routine. A

value of @ indicates success; ESBPAR indicates that an invalid value
was supplied for snbr.

REV. @ 78 - 26

PTU78 REV. 18 SUBROUTINES

As explained in an earlier section, the notify and wait operations are

the basic functions that can be performed on a semaphore. NOTIFY
decrements the semaphore's counter and will release the first process
from the wait queue, if there are any processes waiting.

WAIT increments the semaphore's counter and places the process on the
semaphore's queue if the counter becomes greater than zero. Processes
are queued first in - first out within process priority; higher
priority processes are queue before those with lower priority.

Test

sval = SEMSTS (snbr, code)

sval (fixed bin) is the current value of the specified semaphor's

counter word.

snbr (fixed bin) is a semaphore number; it can be either a number in

the allowable range for numbered semaphores (1 - 64), or it can be a
number asSigned to a named semaphore by the SEMSOP routine.

code (fixed bin) is a success/failure code returned by the routine. A

value of @ indicates success; ESBPAR indicates that an invalid value
was supplied for snbr.

This operation returns the current value of the counter, for semaphore

numbered snbr in the variable sval.

The values of code are the same as for WAIT and NOTIFY.

Drain

CALL SEMSDR (snbr, code)

snbr (fixed bin) is a semaphore number; it can be either a number in

the allowable range for numbered semaphores (1 - 64), or it can be a

number assigned to a named semaphore by the SEMSOP routine.

code (fixed bin) is a success/failure code returned by the routine. A
value of @ indicates success; ESBPAR indicates that an invalid value
was supplied for snbr.

This operation resets the specified semaphore counter to zero. If, at
the time of the drain call, the semaphore's counter is less than or
equal to zero, the counter is set to zero. If, however, the counter is

greater than zero, then notifies are done on the semaphore until the
counter reaches zero. This causes all processes that were waiting on
the semaphore to be removed from the wait queue of the semaphore.

It is possible for processes to be placed on the wait queue while this

78 - 27 December 1988

PTU78

call is executing; these added processes may not be removed when the
drain call returns to its caller.

Set Timer (Numbered Semaphores)

This operation causes the operating system to notify the specified
semaphore on a periodic basis.

CALL SEMSTN (snbr, intl, int2, code)

snbr (fixed bin) is a Semaphore number; it must be a number in the

allowable range for numbered semaphores (1 - 64).

intl is the amount of clock time (in milliseconds) that will pass

before the system notifies the semaphore the first time.

int2 is the amount of clock time that will pass before the semaphore is
notified the second and subsequent times. If int2 is zero, then the
semaphore will only be notified once - after intl milliseconds.
Specifying both intl and int2 as zero will remove a previously timer
request from the semaphore. This is necessary when a previous SEMSTN
call was made with intl and int2 both non-zero.

If a call is made to SEMSTN which specifies a semaphore that already
has an active timer request, then the values of intl and int2 specified
in the latter call will overwrite the values stored in the active
timer. Note: it is possible to delay a timeout initiated notify of a
semaphore indefinitely by making repeated calls to SEMSTN.

code (fixed bin) is a_ success/failure code returned by the routine.

The values of code are the same as those returned by WAIT and NOTIFY.

The operating system maintains a limited number of timers for numbered
semaphores. Currently, there are a total of fifteen (15) such timers
per system.

Timed Wait (Named Semaphores Mly)

CALL SEMSTW (snbr, intl, code)

snbr (fixed bin) is a semaphore number; it must be a number assigned

to a named semaphore by the SEMSOP routine.

intl (fixed bin) is a time interval expressed in tenths of a second of

clock time.

code (fixed bin) is a success/failure code returned by the routine.

This routine allows a process to wait on the specified semaphore until
it is notified off of the wait queue, or until a specified amount of

REV. @ 78 - 28

PTU78 REV. 18 SUBROUTINES

real time has elapsed, whichever comes first. code is set to a value

which indicates why the process was allowed to continue. A value of
zero (@) indicates that the process was notified by a call to SEMSNF.

Avalue of one (1) indicates that the specified amount of time has
elapsed and the process has not yet been notified off of the wait
queue. A value of two (2) indicates that the process was aborted from
the controlling terminal by control-P or <BREAK> being typed and that
the process was then continued with the PRIMOS START command.

Close Named Semaphore

CALL SEMSCL (snbr, code)

snbr (fixed bin) is a semaphore number; it must be a number assigned
to a named semaphore by the SEMSOP routine.

code (fixed bin) is a success/failure code returned by the routine.

When a process no longer needs a named semaphore, it can tell the
operating system that it is done with it by calling SEMSCL, to CLOSE
the semaphore. After this call, the specified semaphore number can not
be used again by the process, unless that same number is reassigned by
another call to SEMSOP.

when a process logs out, all semaphores that were opened by that
process, but not explicitly closed, are automatically closed by the
operating system.

It is only neccessary to close a named semaphore once in a_ process
regardless of the number of times that it was opened.

If a file that was used in a call to SEMSOP is deleted or renamed while
the semaphores assigned by such a call are still open, or if the disk
on which that file resides is shut down, then the open semaphores will
continue to be accessable to the processes that already have them open.
New processes will not be given access to those semaphores, even if the
disk is added again, or if a file is created with the same name as the

one that was renamed or deleted. Processes that have the semaphores
open can use them until they are closed via a call to SEMSCL.

LOCKS

For a detailed description of locks, please consult a text on operating
system coding techniques. A brief discussion follows.

Locks, like semaphores, are a method which programs or processes can
use to coordinate their usage of some resource. Before a process
attempts to use a resource that is protected by a lock, it calls a
routine that grants or delies permission to use the resource or causes
the process to wait until the resource becomes free. When the process
has been given permission to use the resource, it is said to hold the

78 - 29 December 1988

PTU78

lock on that resource. When the process is through using the resource,
it calls another routine to indicate that it is done. This operation
is called giving up the lock, or releasing the lock on that resource.

Various types of locks exist, some of which will be discussed in this
section.

Some types of locks behave very much like semahores and, in fact, many
types of locks can be coded with the use of semaphores. Semaphores,
unlike locks, allow a small, well defined set of operations to be

performed while the uses and types of locks that can be coded vary
greatly.

Mutual Exclusion

Mutual exclusion locks are used when only one process, or possible
several, is allowed to use a resource at any given time. When a
process requests ownership of a lock for the resource, it is given the
lock if no other process currently holds it. I£ the lock is held by
another process, all others must wait until the one holding the lock
gives it up.

This type of lock can be implemented directly with the use of
semaphores. Requesting the lock is equivalent to a wait operation on a
semaphore; giving up the lock is equivalent to notifying’ that
semaphore.

Since external notifies may occur, it is a good practice to expect them
and to code in such a way that they can be detected and ignored.

Nl Locks

Nl locks are used to protect objects that can be both read and modified
simultaneously, such as files and data bases. This type of lock allows
any number of users to read the object, or one process to modify the
object. When a process requests permission to read the object, such
permission is granted immediately, as long as there is not currently a
process modifying it. Requests to gain access to the object for
modification are granted only if there are no other readers or writers
of the object. If another process is using the protected object, the
writer is placed on a queue and must wait until all current users of
the resource indicate that they are done. If a writer is waiting to
use the resource, then no other requests for use of the object are
granted until that process has used the object. This prevents readers
from gaining access to the object and causing the write request to be
delayed indefinitely.

When a writer is given access to the object, all other requests for
access are queued. When the writer finishes, the other requests are
processed.

Use of an Nl type lock on a file eliminates data lossage that can

PTU78 REV. 18 SUBROUTINES

sometimes occur when multiple processes are allowed to update the same
file simultaneously.

Producer—Consumer

In many computer systems, certain processes create work which must be
processed, such as device drivers that read data from a device which
must be routed to the correct place, or print programs that place data
files into spool queues to be printed. These work producing processes
are called producers.

Other processes in a system process the work created by the producers.
These processes are called consumers. Examples of consumers include a
user process that manipulates data coming into the system from a
peripheral device, or a spooler that prints files in response to user's
print requests.

The coordination required between producer processes and their
corresponding consumer processes can be achieved with the use of
producer-consumer locks.

Producers call a routine that indicates that there is work to process.
The routine keeps track of the number of producerers that have called
it; each call indicates that another unit of work is available.
Consumers, on the other hand, call a routine that checks to see if

there is any.work to do. If there is no work, the routine causes the
consumer process to wait until there is work, i.e., a producer calls

the "I have work to do" routine. If there is work to do, the consumer

process is allowed to continue, and the counter of units of work left
to do is decremented.

This lock can be coded directly with semaphores. A semaphore, with its
counter initialized to zero, serves as the locking mechanism.
Producers notify the semaphore, causing it to become negative;
consumers wait on the semaphore, causing it to rise toward zero. If
there is no work to do (Semaphore counter equal to @) then a consumer

will be queued, when it waits on the semaphore, until work becomes
available.

Note that there can be any number of producers or consumers. If
multiple consumers wait for work, and there is none to do, then the

semaphore counter will contain a value equal to the number of queued
consumer processes. A notify by a producer will allow one of the
consumers to proceed.

Since semaphores are subject to external notifies, it is advisable that
a counter, other that the counter that is a part of the semaphore, be

_ Maintained to indicate how much work is available for consumer

_ processes. Producers will increment this counter; consumers will take
work from the work queue and decrement this counter. If a consumer is
notified off the semaphore and the counter does not match the semaphore
counter, then it can assume that an external notify has occurred.

78 ~- 31 December 198¢

PTU78

Record Locks

When many processes must update a file, and speed is important, it is
not practical to use a lock which protects the entire file since any
update request would lock all other processes out of using the file.
Considerable overlap in processing can usually be achieved if just the
portion of the file that is being updated by a process is locked.
Usual units to lock are the record or page being updated.

If the file is at all large, then it becomes impractical or impossible
to have an individual lock for each record or page to be protected.
One way of overcoming this difficulty is to assign locks from a pool on
a temporary basis. When a process wishes to update a record, for
example, it requests a lock by passing the record number in question to
the lock routine. I£ there is currently no one holding a lock on that
record (the lock routine scans its list of locks being held by other
processes), then a lock is assigned from a free pool and the record

number supplied is remembered. If a lock is requested for a record
that is currently locked by another process, then the second and
subsequent requesters of the lock are forced to wait. When the last
holder of a lock gives up the lock, and there are no other processes
waiting to use the record protected by that lock, then the lock itself
is returned to the pool of free locks. It can then be used for other
record locks.

In general, the pool of locks needs to be as large as the expected
maximum number of records that can be locked at any given time. It is
the get a lock routines responsibility to manage the lock pool and to
deal with the problems that arise when there are no more free locks in
the pool. One method of dealing with this situation is to use a no
free locks semaphore. If there are no free locks in the pool, the
process requesting the lock is forced to wait on this semaphore. The
lock routine notifies this semaphore when a lock becomes available.

Notice that record locks are really mutual exclusion locks; however,

the object that is being protected by any given lock changes with time.
The lock routine must include a small data base that is used to

remember what is being protected by each lock.

KKKEKEEREKERRREREIKRIIREAERIAERIKIKEIIIISIIIKEIIBIIIIIASIII

ADD TO PAGE 23-1

REENTERS

This condition is raised by the PRIMOS REENTER (REN) command and

re-enters a subsystem that has been temporarily suspended due to
another condition (such as a QUIT signal).

If the interrupted operation can be aborted, the subsystem's on-unit
should perform a nonlocal goto back into the subsystem at the
appropriate point.

REV. @ 78 = 32

PTU78 REV. 18 SUBROUTINES

If the QUIT occurred during an operation that must be completed, the
on-unit should set the info.start sw to 'l'b, record the QUIT request

within the subsystem and return. The REN command will then execute a
START command which will restart the subsystem at the point of
interrupt. When the operation is complete, the subsystem should then
honor the recorded QUIT request.

The default on-unit returns without setting the info.start_sw. The REN
command will then print a diagnostic and return since it assumes’ there
was no subsystem on the stack able to accept re-entry. Information
structure:

dcl 1 info based

2 startsw bit(1) aligned;

This condition is detected by hardware and is raised when a fixed-point
decimal or binary result is too large to fit into the hardware register
or decimal field. The default on-unit prints a message and signals the
ERROR condition. User on-units may not return to the point of
interruption.

OVERFLOW

This condition is raised when the result of a floating-point binary
calculation is too large for representation. It may occur within a
register or as a store exception. The default on-unit prints a message
and signals the ERROR condition. User on-units may not return to the
point of interrupt. However, if the default on-unit is invoked, and if
the user types START, the register or memory location affected will be

set to the largest possible single-precision floating-point number, and
calculation will continue.

UNDEFINEDFILE (file)

This condition is raised when an OPEN statement cannot associate an
input file with an existing PRIMOS file or device. The default on-unit
prints a message and signals the ERROR condition.

UNDERFLOW

This condition is signalled when the result of the floating-point
binary or decimal calculation is too small for representation. The
default on-unit sets the floating-point accumulator to o.0eo. If the
underflow occurred as a store exception, the affected portion of memory
is also set to o.0eo. The default on-unit returns and the calculation
proceeds, using the o.oeo value.

78 - 33 December 1982

PTU78

ZBRODIVIDE

This condition is signalled when a division by zero (floating-point or
fixed-point) occurs. The default on-unit prints a message and signals
the ERROR condition. If the condition is the result of a
floating-point operation, the user may type START following the
printing of the message. The default on-unit will then set the
register involved to the largest possible Single-precision,
floating-point value and proceed with the calculation.

KAKKKKKKKIKEIKKERARERREEEREREAREERIEERIKSEEERARER

CHANGE TO PAGE 23-2

FORTRAN CONSIDERATIONS -

The second restriction on nonlocal gotos shoudl read (change is
underlined)

@ Nonlocal gotos will work only to a previous stack level since
the target statement label belongs to the called of the
subroutine performing the nonlocal goto.

ADD TO PAGE 23-7

MKONSP

The direct call MKONSP creates an on-unit.

DCL MKONSP ENTRY (char (*), fixed bin, entry);

CALL MKONSP (condname, namelen, handler;

condname is the name of the condition for which an on-unit
is desired. The name should not contaiun any
blanks. (Input)

namelen is the length of condname, in_- characters.

(Input)

handler is the internal or external entry (subroutine)
value which is to be invoked as the on-unit. If
the value is an internal procedure, it must be
immediately contained in the block calling
MKONSP. (Input)

This call functions as MKONUS and MKONSF: an on-unit for the specified
named condition is created for the calling block. If the block already

REV. @ 78 —- 34

PTU78 REV. 18 SUBROUTINES

has an on-unit for that condition, the on-unit is redefined.

This routine will not work properly if called from a FIN program: use
MKONSF for this purpose. Conversely, MKONSF will not work in a F77
program: MKONSP should be used.

KKEKRKERAEEKERRRERERERERRRRERRERRREREREIREERERREREAEEREREREREREREREE

ADD TO PAGE 23-8

MKONSF cannot be called from FORTRAN 77.

KAEKKEKKEKKEKEEREREEREEEKREREREEEREERRRERREREERRERREERERERERREEKRERERERKKE

CHANGE TO PAGE 23-21

Condition Mechanism example Ret PB and Ret SB ptr should both have
options short as part of their declaration for compatability.
Otherwise all offsets within the structure are shifted.

KKEKKKKEKKAAEKEREKEREREREEKEREREERERERERIEERERERERERERERERERERRERRE

ADD TO PAGE APPG-1

Add the following error codes:

ESBLUE 169 Bad LUTBL entry
ESNDFD 161 No driver for device
ESWFT 182 Wrong file type
ESFDMM 103 Format/data mismatch

ESFER 184 Bad formate

ESBDV 185 Bad dope vector
ESBFOV 186 FSIOBF over flow

78 - 35 December 1984

	001
	78-01
	78-02
	78-03
	78-04
	78-05
	78-06
	78-07
	78-08
	78-09
	78-10
	78-11
	78-12
	78-13
	78-14
	78-15
	78-16
	78-17
	78-18
	78-19
	78-20
	78-21
	78-22
	78-23
	78-24
	78-25
	78-26
	78-27
	78-28
	78-29
	78-30
	78-31
	78-32
	78-33
	78-34
	78-35

