
PRIME
THE BASIC/VM

 
 

GPROGRAMMER'S
PDR3058

DEte

   
 
 

 
 
  

 
 

 
 

 

 

P/N MAN3251-001

 

 
 

 
 

 

 



Description

FORTRAN
* The FORTRAN Programmer's Guide

Boundedition
Loose-leaf edition

¢ The FORTRAN Programmer's Companion
COBOL
« The COBOL Programmer's Guide
RPGII

¢ The RPGII Programmer's Guide
¢ The RPGII Debugging Template
BASIC/VM (COMPILED)

* The BASIC/VM Programmer's Guide
¢ The BASIC/VM Programmer's Companion
BASIC (INTERPRETIVE)
¢ The Interpretive BASIC Programmer's Guide

Technical update

ASSEMBLY LANGUAGE
¢ The Assembly Language Programmer's Guide

Boundedition
Loose-leaf edition

¢ The Assembly Language Programmer's Companion
¢ The System Architecture Reference Guide
PRIMOS OPERATING SYSTEM/UTILITIES

* The PRIMOS Commands Reference Guide
Bound edition
Loose-leaf edition

¢ The PRIMOS Commands Programmer's Companion
* The System Administrator's Guide
¢ The System Administrator's Programmer's

Companion

e The New User's Guide to EDITOR and RUNOFF
Boundedition
Loose-leaf edition
Change sheet update

« PRIMOSSubroutines Reference Guide
* LOAD and SEG Reference Guide
DATA MANAGEMENT

* DBMS Administrator's Guide
e DBMSSchema Reference Guide
* DBMS FORTRANReference Guide
¢ DBMS COBOLReference Guide
* The PRIME/POWERGuide
* The MIDAS Reference Guide

Technical update 5
¢ The FORMS Programmer's Guide
STATISTICS .
¢ The SPSS Programmer's Guide:
COMMUNICATIONS

* The PRIMENETGuide
¢ The RJE/2780 Guide
» Tee HASP Guide

4 ."00 Guide

SYS.. ‘INSTALLATION
* The System Installer’s Guide | _.

+~Denotes new orrevised title

Software

Rev. #

16

16

16

16

16

14-16

16

16

14,15

16

16

16

15,16

16

16

16

16

16

16

15

15

16

16

16

16

16

16

16

16

14

16

16

16

16

16

16

16

15

PRIME SOFTWARE DOCUMENTATION SUMMARY

Document

Number

FDR3057-101At
FDR3057-101Bt
FDR3338+

PDR3056t

PDR3031t

FDR3275

PDR3058t
FDR3341+

IDR1813
PTUS9t

FDR3059-101At
FDR3059-101 Bt

FDR3340

PDR3060t

FDR3108-101AtT

FDR3108-101Bt

FDR3250t

PDR3109+

FDR3622+

FDR3104-101A

FDR3104-101B

COR3104-001F

PDR3621t

IDR3524+

PDR3276t
PDR3044t

PDR3045t
PDR3046t
IDR3709
IDR3061
PTU60t
PDR3040t

PDR3173t

IDR3710+
PDR3067+
PDR3107+
IDR3431+

PDR3105t

Price

$15.00
$15.00
$ 2.00

$15.00

$15.00
$ 2.00

$15.00
$ 2.00

$15.00

$ 2.00

$15.00
$15.00
$ 2.00
$15.00

$15.00
$15.00

$ 2.00
$15.00

$ 2.00

$15.00
$15.00
$ 3.00
$15.00
$15.00

$15.00
$15.00

$15.00
$15.00
$15.00
$15.00
$ 2.00
$15.00

$15.00

$15.00

$15.00
$15.00
$15.00

$15.00



PRIME'S BASIC/VM PROGRAMMER'S GUIDE (REV. 9, April 1979)

This guide documents Prime BASIC/VM and the relevant PRIMOS operating

system features aS implemented at Master Disk Revision Level 16.

Information appearing in the Rev. 14 IDR and PTU57 (Rev. 15), has

been corrected aS necessary and incorporated into the text of this

guide.

This guide is organized to make life easier for you, the BASIC/VM

application programmer or casual user.

We assume you are familiar with BASIC in some form, and will easily

adapt to Prime's implementation and extensions, which are fully defined

in this guide.

Most PRIME system users will want to know something about our operating

system, PRIMOS. Deciding which of the many PRIMOS concepts are

important in BASIC/VM programming is not an easy task. Therefore, this

guide contains a summary of the most useful PRIMOS concepts, terms and

commands. Should additional details be required to complete special

programming tasks, we refer you to the appropriate PRIME documents in

which supplemental information can be found.

The result is a single document containing everything you need to know

to write, modify, compile, execute, and debug most BASIC/VM application

programs.

We hope you will find this a

_

helpful guide to the particulars of

BASIC/VM programming within the PRIMOS operating system. We invite

comments on the organization and philosophy of this guide, as well as

its contents, accuracy, and clarity.



All correspondence on suggested changes to this document should be
directed to:

Laura Douros, Technical Writer
Technical Publications Department
Prime Computer, Inc.
145 Pennsylvania Avenue
Framingham, Massachusetts @17@1

Acknowledgements:
 

We wish to thank the members of the BASIC/VM PROGRAMMER'S GUIDE team
and also the non-team members, both customer and Prime, who contributed
to and reviewed this PDR.

Copyright © 1979 by
Prime Computer, Incorporated

145 Pennsylvania Avenue
Framingham, Massachusetts 91701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
any may be used or copied only in accordance with the terms of such
license,

The following terms are registered trademarks of Prime Computer
Corporation:

The Programmer's Companion PRIMOS

First Printing April 1979



TABLE OF CONTENTS

 

 Section Title Page

SECTION 1 INTRODUCTION TO BASIC/VM 1-1

AUDIENCE 1-1

DESCRIPTION OF BASIC/VWM 1-1

BASIC/VM FEATURES 1-2

HOW TO USE THIS MANUAL 1-2

COMPATIBILITY WITH OTHER FORMS OF BASIC 1-3

SECTION 2 OVERVIEW OF PRIMOS 2-1

INTRODUCTION TO PRIMOS 2-1

CONVENTIONS 2-2

USING THE FILE SYSTEM 2-5

ACCESSING THE SYSTEM (LOGIN) 2-11

DIRECTORY OPERATIONS 2-12

SYSTEM INFORMATION 2-15

FILE OPERATIONS 2-18

LOGOUT 2-22

SECTION 3 USING BASIC/VM 3-1

ENTERING BASICV SUBSYSTEM 3-1

USING BASIC/VM COMMANDS 3-2

EXITING BASICV SUBSYSTEM 3-13

ACCESSING FILES IN REMOTE DIRECTORIES 3-14

RUNNING PROGRAMS FROM PRIMOS 3-16

MODES OF OPERATION IN BASICV 3-17

SECTION 4 ELEMENTS OF BASIC/\WM 4-1]

LANGUAGE ELEMENTS 4-]

OPERANDS 4-1

CONSTANTS 4-2

VARIAB LES 4-3

FUNCTIONS 4-4

OPERATORS 4-5

EXPRESSIONS 4-7

COMMANDS AND STATEMENTS 4-7

STATEMENT SYNTAX 4-8

COMMENTS 4-9

LIST OF COMMANDS 4-10

LIST OF STATEMENTS 4-11



SECTION 5 DATA INPUT/OUTPUT

DATA INPUT STATEMENTS

DATA INPUT FROM THE TERMINAL

ATA OUTPUT STATEMENTS

DEFAULT PRINTING

PRINTING WITH MODIFIERS

FORMATTING WITH PRINT USING

SECTION 6 PROGRAM CONTROL STATEMENTS

INTRODUCTION

STATEMENT MODIFIERS

BRANCHING WITHIN A PROGRAM

BRANCHING TO EXTERNAL PROGRAMS

CONDITIONAL PROGRAM BRANCHING

LOOP STATEMENTS

SECTION 7 EDITING AND DEBUGGING

INTRODUCTION

EDITING BASIC/VM PROGRAM

DEBUGGING A PROGRAM

TRAPPING EXECUTION ERRORS

SECTION 8 FILE HANDLING

INTRODUCTION

OPENING A DATA FILE

ACCESS METHODS

OAM FILE HANDLING

ADDING DATA TO SAM FILES

READING SAM FILES

TRAPPING ERRORS

CLOSING DATA FILES

DAM FILE HANDLING

WRITING DATA TO DAM FILES

READING DAM FILES

SEGMENT DIRECTORIES

MIDAS FILE ACCESS

SECTION 9 ARRAY AND MATRIX MANIPULATIONS

ARRAYS, MATRIX INTRODUCTION

DEFINING ARRAYS

. MATRIX OPERATIONS

~“ATRIX I/O

AATRIX -— DATA FILE I/O

SECTION 19 NUMERIC AND STRING FUNCTIONS

NUMERIC SYSTEM FUNCTIONS

STRING SYSTEM FUNCTIONS

USER-DEFINED FUNCTIONS



SECTION 11 NUMERIC DATA

NUMERIC CONSTANTS
NUMERIC VARIABLES
NUMERIC ARRAYS, MATRICES
NUMERIC EXPRESSIONS
EVALUATING EXPRESSIONS
NUMERIC OPERATORS

SECTION 12 STRING DATA

STRING CONSTANTS
STRING VARIABLES
STRING ARRAYS, MATRICES
STRING EXPRESSIONS
STRING OPERATORS
EVALUATING STRING EXPRESSIONS

SECTION 13 PRIMOS SYSTEM COMMANDS

ALPHABETICAL LIST OF PRIMOS COMMANDS

SECTION 14 BASIC/VWM SYSTEM COMMANDS

ALPHABETICAL LIST OF BASIC/VM SYSTEM COMMANDS

SECTION 15 BASIC/VM STATEMENTS

ALPHABETICAL LIST OF BASIC/VM STATEMENTS

APPENDIX A SAMPLE PROGRAMS

THREE SAMPLE BASIC/VM PROGRAMS

APPENDIX B ASCII CHARACTER SET

APPENDIX C RUN-TIME ERROR CODES

LIST OF BASIC/VM RUN-TIME ERROR MESSAGES

APPENDIX D ADDITIONAL PRIMOS FEATURES

GLOSSARY OF PRIME CONCEPTS AND TERMS
SETTING TERMINAL CHARACTERISTICS
SUMMARY OF EDITOR COMMANDS
SUMMARY OF COMMAND FILE FEATURES

APPENDIX E ADVANCED FILE HANDLING
ACCESS METHODS
DATA STORAGE PATTERNS
ACCOMODATING LARGE DATA ITEMS

READING ASCII FILES

11-1

11-1
11-2
11-3
11-3
11-5
11-6

12-1

12-1
12-1
12-2
12-3
12-4
12-5

13-1

13-1

14-1

14-1

15-1

15-1



3-1
8-1
8-2
8-3
9-1
9-2
11-1

2-1
2-2
4-1
4-2
8-1
9-1
19-1
1Q-2
18-3
11-1
15-1
15-2

15-3

ILLUSTRATIONS AND TABLES

TLLUSTRATIONS

Examples of Files and Directories
in PRIMOS Tree-Structured

File System
Process of a BASIC/VM Program
File Structures
Deleting a SEGDIR Data File
Configuration of MIDAS File
Matrix Addition
Matrix Inverse
Logical Expressions

TAB LES

Types of Files in PRIMOS
Useful System Information
Legal and Illegal Variables
List of Commands and Statements
File Type-Codes
Matrix Operations
Numeric System Funct ions
String System Functions
Masks for CVIss
Numeric Operators
File Type-Codes
Numeric Format Field Characters

String Format Field Characters

3-9
8-6
8-48
8-42
9-9
9-14
11~9

2-7

2-16
4-4
4-19
8-4
9-6
19-2
18-9
18-19
11-5
15-5
15-21
15-23



PDR3958 INTRODUCTION TO BASIC/VM

SECTION 1

INTRODUCTION TO BASIC/VM

AUDIENCE

This document has been prepared for the BASIC user or programmer who is

not acquainted with Prime's BASIC/VM. It is recommended that those

unfamiliar with any form of the BASIC language refer to a commercially

available text. For example:

Marateck, Samuel, BASIC; Academic Press, Inc.

Waite and Mather, Editors, BASIC, Sixth Edition; University Press

of New England.
 

This document defines the Prime BASIC/VM language and illustrates its

major uses with many examples. In addition, it introduces Prime's

operating system, PRIMOS, and enables new users to access and use the

system.

DESCRIPTION OF BASIC/VM

Prime's BASIC/VM, or virtual-memory BASIC, is a

_

high level

problem-solving language useful in research, business, and educational

facilities. Its simple and easily understood language structure makes

it suitable for writing programs to handle both simple and compl icated

mathematical problems. The language consists of system commands which

are directives to the BASIC/VM subsystem, and statements, which are the

fundamental components of programs. BASIC/VM programs are composed of

numbered statements and optional comments, which are notations to the

user.

BASIC/VM is a compiler for an extended form of the standard BASIC

language. It is an upward compatible extension of Prime's BASIC

Interpreter, employing the fast program execution and virtual memory

capabilities of the Prime 359 and higher central processors. Programs

previously written in interpretive BASIC will run under BASIC/VM

without modification.

The BASIC/VM Language Processor
 

The components of the BASIC processor are:

e BASIC Language Compiler

@ Command Processor
e Statement Editor

The command processor interprets and executes all system level

directives. The language compiler translates program source code into

1 - i March 1979



SECTION 1 PDR3958

executable machine language. The statement editor enables complete
modification of BASIC/VM programs on a line-by-line basis entirely
within the BASICV system.

Features

 

There are a number of features which distinguish BASIC/VM from other
forms of the BASIC language. These include:

1. ‘The ability to support multiple users without significant
per formance loss.

2. It is compiled, rather than interpreted, for rapid program
execution. .

3. The ability to run very large programs without compromising
small program efficiency.

4. The ability to access MIDAS keyed-index files.

5. Special methods of formatting output.

6. Extensive alphanumeric string support.

7. Matrix manipulations.

8. Multiple data segments and 128KB (64K word) procedure space.

9. Immediate mode for instant calculations.

19. An editor for complete program modification.

11. A library of mathematical functions to aid in calculations.

12. Recursive function capability.

13. Extended control functions (DO, DOEND, etc.) and statement
modifiers (WHILE, UNTIL, UNLESS, FOR, IF).

14. Double-precision floating-point numeric data.

HOW TO USE THIS MANUAL

This manual has been organized to accommodate several levels of user
experience. If you know BASIC in some form and have used it on othersystems but not Prime's, read Section 2 to familiarize yourself with
Prime's operating system. A ciscussion of the terms and conventionsappearing in this manual is located in the first part of Section 2,More information on Prime's embedded file management system (FMS),
useful PRIMOS features (e.g., EDITOR), as well as PRIMOS-relatedterminology, is found in Appendix D.

REV. @ 1 - 2



PDR3958 INTRODUCTION TO BASIC/VM

If you have previously used a Prime computer and do not need a review
of system access and file manipulation, proceed to Section 3, which
describes the important commands and concepts you need to work with
BASIC/VM. It might be helpful to familiarize yourself with the
conventions and terms in Section 2, however.

A capsule summary of the BASIC/VM language elements, including a
complete list of commands and statements, is found in Section 4.
Programmers who have previously used a Prime system and/or Prime's
Interpretive BASIC may need only Section 4 to get started.

Basic programming information, including details on program control
structure, data transfer, file handling, editing and debugging a
program, is discussed in Sections 5 through 8. Section 9 deals with
matrix and array manipulations. Section 18 contains a library of all
nuneric and string system functions and describes how to define and
implement user-defined functions. Sections 11 through 15 comprise a
complete reference to the BASIC/VM language, including numeric and
string data, commands and statements.

The Appendices contain run-time error messages, ASCII character set
list, glossary of PRIMOS concepts and terms, an overview of useful
PRIMOS features, (e.g. EDITOR, Command Files), and sample programs.

Compatibility with Other Forms of BASIC
 

While Prime BASIC/VM is generally compatible with other versions of
BASIC, users should be aware of the - following restrictions and
alternative implementation features:

e@ The ability to enter several statements on one line is not
Supported.

e There is no 'BYE' command. 'QUIT' is its equivalent in
BASIC/VM.

@ No lowercase input is accepted on command lines.

@ The double-quote character is not accepted by BASIC/VM as a
delimiter as it is the default PRIMOS erase Character. (See
Section 2, Conventions.) Single quotes are used as
delimiters, e.g., 'This is OK'.

e Prime's BASIC supports the use of statement modifiers like
WHILE, UNTIL, UNLESS with statements like IF, PRINT and
FOR-NEXT loops. :

e Prime's BASIC/VM supports double-precision floating-point
numeric data.

e ‘The assignment statement LET is optional in BASIC/VM.

1 - 3 March 1979



SECTION 1 PDR3958

e BASIC/VM has control features like two-branch deciders,

e.g., IF...THEN...ELSE, and logical loop control via the

modifiers WHILE, UNTIL, UNLESS, which allow the writing of

structured language.

REV. @ 1 _ 4



PDR3658 OVERVIEW OF PRIMOS

SECTION 2

OVERVIEW OF PRIMOS

INTRODUCTION TO PRIMOS

This section introduces Prime's operating system, PRIMOS, and its most
commonly used commands. All users of BASIC/VM will need some of the
information here to access the system and work with files. The
remainder of the information is necessary to accomplish more advanced
programming tasks. Users new to Prime's system are referred to the
glossary of terms in Appendix D.

Additional information on all the subjects discussed in this section
may be found in the following Prime documents:

New User's Guide To Editor And Runoff

PRIMOS Programmer's Companion

Reference Guide, PRIMOS Commands

Subroutine Reference Guide

2 - 1 March 1979



SECTION 2 PDR3958

CONVENTIONS

The conventions for PRIMOS commands are:

e@ WORDS-IN-UPPER-CASE

Capital letters identify command words or keywords. They are to be

entered literally. If a portion of an upper-case word is underlined,

the underlined letters indicate the minimum legal abbreviation.

e Words-in-lower-case

Lower case letters identify parameters. The user substitutes an

appropriate numerical or text value.

e Braces { }

Braces indicate a choice of parameters and/or keywords. Unless the

braces are enclosed by brackets, at least one choice must be selected.

e Brackets [ ]

Brackets indicate that the word or parameter enclosed is optional.

@e Hyphen -

A hyphen identifies a command line option, as in: SPOOL -LIST

e Parentheses ( )

When parentheses appear in a command format, they must be included

literally.

e Ellipsis ...

The preceding parameter may be repeated.

e Angle brackets < >

Used literally to separate the elements of a pathname. For example:

<FOREST>BEECH >BRANCH537 >TWIG 43 >LEAF4,

e option

The word option indicates one or more keywords or parameters can be

given, and that a list of options for the particular command follows.

e Spaces

Command words, arguments and parameters are separated in command lines

by one or more spaces. In order to contain a literal Space, a

REV. @ 2 - 2



PDR3058 OVERVIEW OF PRIMOS

parameter must be enclosed in single quotes. For example, a pathname

may contain a directory having a password:

'<FOREST>BERCH SECRET>BRANCH6'.

The quotes ensure that the pathname is not interpreted as tw items

separated by a space.

SPECIAL TERMINAL KEYS

e CONTROL

The key labeled CONTROL (or CTRL) changes the meaning of alphabetic

keys. Holding down CONTROL while pressing an alphabetic key generates

a Control Character. Control characters do not print. Some of them

have special meanings to the computer. Others are ignored.

e RETURN

The RETURN key ends a line. PRIMOS edits the line according to any

Erase (") or Kill (?) characters, and either processes the line aS a

PRIMOS command, or passes it to a utility such as the editor. RETURN

is also called CR or CARRIAGE-RETURN.

e BREAK

See CONTROL-P.

Special Characters
 

e cCaret (*)

Used in EDITOR to enter octal numbers and for literal insertion of

Erase and Kill characters. On some terminals and printers, prints as

up-arrow (4).

e Backslash (\)

Default EDITOR tab character.

e Double-qute (")

Default erase character for PRIMOS, EDITOR, and RUNOFF Command Mode.

Each double-quote erases a character from the current line. Erasure is

from right (the most recent character) to left. Two double quotes

erase two characters, three erase three, and so forth. You cannot

erase beyond the beginning of a line. The PRIMOS command TERM (See

Appendix D of this guide) allows the user to choose a different erase

character.

2 _ 3 March 1979



SECTION 2 PDR3658

@® Question mark (?)

Default kill character for PRIMOS, EDITOR, and RUNOFF Command Mode.
Each question mark deletes all previous characters on the line. The
PRIMOS command TERM (Appendix Dof this guide) allows the user to
choose a different kill character.

@ CONTROL-P

QUIT immediately (interrupt/terminate) from execution of current
command and return to PRIMOS level. Echoes as QUIT. Used to escape
from undesired processes. Will leave used files open in certain
circumstances. Equivalent to hitting BREAK key.

@ UNDERSCORE ()

On some devices, prints as a backarrow (<-).



PDR3858 OVERVIEW OF PRIMOS

SYSTEM PROMPTS

The OK Prompt

The OK prompt indicates that the most recent command to PRIMOS has been

successfully executed, and that PRIMOS is ready to accept another
command from the user.

PRIMOS supports type-ahead. The user need not wait for the "OK," after

one command before beginning to type the next command. However, since
each character echoes as the user types it, output from the previous
command may appear on the terminal to be jumbled with the command being

typed ahead. Type ahead is limited to 192 characters.

The ER! Prompt 

The ER! prompt indicates that PRIMOS was unable to execute the most
recent command, for one reason or another, and that PRIMOS is ready to
accept another command from the user. The ER! prompt usually is

preceded by one or more error messages indicating what PRIMOS thought
the trouble was.

Common errors include:

Typographical errors
Qnitting a password
Being in the wrong directory
Forgetting a parameter or argument

USING THE FILE SYSTEM

File and Directory Structures
 

A PRIMOS file is an organized collection of information identified by a
filename. The file contents may represent a source program, an object
program, a run-time memory image, a set of data, a program listing,

text of an on-line document, or anything the user can define and

express in the available symbols.

Files are normally stored on the disks attached to the computer system.

No detailed knowledge of the physical location of a file is required

because the user, through PRIMOS commands, refers to files by name.

some systems, files may also be stored on magnetic tape for backup or

for archiving.

PRIMOS maintains a separate user file directory (UFD) for each user to

avoid conflicts that might arise in assignment of filenames. A master
file directory (MFD) is maintained by PRIMOS for each logical disk

connected to the system. The MFD contains information about the

2 - 5 March 1979



SECTION 2 PDR3058

location of each User File Directory (UFD) on the disk. In turn, each
UFD contains information about the location and content of each file or
sub-UFD in that directory.

The types of files most often encountered are shown in Table 2-l. For
a primer on the PRIMOS file system and a description of the ordering of
information within files, refer to the Subroutine Reference Guide.

Directory Structure
 

The PRIMOS file directory system is arranged as a tree. At the root
are the disk volumes (also called partitions, or logical disks). Each
disk volume has a Master File Directory (MFD) containing the names of

User File Directories (UFDs). Each UFD may contain not only files, but
subdirectories (sub-UFDs), and they may contain subdirectories as well.
Directories may have subdirectories to any reasonable level.

Pathnames

A pathname (also called a treename) is a name used to specify uniquely
any particular file or directory within PRIMOS. It consists of the
names of the disk volume, the UFD, a chain of subdirectories, and the

target file or directory. For example,

 

<FOREST>BEECH>BRANCH5>SQUIRREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the
Sub-UFD BRANCH5. The file's name is SQUIRREL. Figure 2-1 illustrates
how pathnames show paths through a tree of directories and files.

Disk volume names, and the associated logical disk numbers, may be

found with the STATUS DISKS command, described later. A pathname can
be made with the logical disk number, instead of the disk volume name.
For example, if FOREST is mounted as logical disk 3,

<3 >BEECH>BRANCH5 >SQUIRREL

specifies the same file as the previous exanple.

Usually each UFD name is unique throughout all the logical disks. In

our example that would mean_ that there would be only one UFD named
BEECH in all the logical disks, @ through 17. When that is the case,
the volume or logical disk name may be omitted, and PRIMOS will search
all the logical disks, starting from 8, until the UFD is found. For

example, if there is no UFD named BEECH on disks @, 1, or 2, then

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last
form of pathname, in which the disk specifier is omitted, is called an

ordinary pathname because it is very frequently used.
 



PDR 3058 OVERVIEW OF PRIMOS

 

 

     
 

Table 2-1.
Types of Files in PRIMOS

File How How How Use
Type Created Accessed Deleted

ASCII, Programs Programs DELETE Source files,
uncompress—| SORT ED (examine only)|FUTIL DELETE text, data
ed COMOUTPUT SLIST records for

S POOL sequential
FTN READ/WRITE access

ASCII, CMPRES EXPAND to ASCII DELETE same aS un-
Compressed Some COBOL SPOOLer with FUTIL DELETE compressed

programs, ED EXPAND option ASTI
ED

Object Transl ators:RPG,} LOAD or SEG DELETE Input to
(Binary) FTN, PMA, COBOL,| Binary Editor FUTIL DELETE SEG or LOAD,

Binary Editor (EDB) Binary Editor Libraries

Saved LOAD TAP, PSD DE LETE Runfiles

Memory Applications Control panel FUTIL DELETE
Image programs

Segmented SEG SEG, VPSD SEG DELETE Run files
runfile Control panel FUTIL TREDEL

Segmented SGDRS$$ SGDRS$$ subroutine} FUTIL TREDEL! Data records
data file subroutine MIDAS MIDAS KIDDEL; for direct

MIDAS, DBMS DBMS access

UFD CREATE Contents: LISTF DELETE Used by

Sub-UFD FUTIL TREDEL| PRIMOS

MFD MAKE Contents: LISTF NO Used by

PRIMOS

Disk record] MAKE NO NO Used by

availabil- PRIMOS
ity table
DSKRAT file

BOOT MAKE: NO NO Used by

PRIMOS

CMDNC @ MAKE Contents: LISTF NO Used by

PRIMOS

2 - 7 March 1979

 

  



 

 

 

 

     
  

 

 

 

    

  
   
 

 

 

 

SECTION 2 PDR3058

PINE1 —_ (Not all the UFDs

PINE? | are shown.)

BEECH -

PINE3 oH

ELM om

This directory is the MFD of

the disk volume <-FOREST>.

—— +

1 (Not all subdirectories le
and files are shown.)

ORIOLE an TREEHOUSE —4

This directory is the BRANCH5

UFD ELM.

o
This is the

file ORIOLE.

    
This directory is
the UFD BEECH.

 c
 

 

 

 
 
      

TWIG14

SQUIRREL _

TW1G37 oo

This is the

subdirectory BRANCH 5.    
 

 

 

 

 

    
    

LEAF3 +P

LEAF8 ~

LEAF5 +

+

+.

+P

This is the

subdirectory

TW1G37.

This is the
file LEAF8.

 

_ 
This is the

file TREEHOUSE.

  c
[| 

This is the

file SQUIRREL.

 

 

 

    

 

   

LEAF] +

LEAF3 +

LEAF4 =

+

This is the

subdirectory

TWIG14

This is the

file LEAF4.

Pathnamesidentify files in a tree-structured file system. ‘he pathnames:
<FOREST>BEECII>BRANCH5>SQUIRREL

<FOREST>BEECH>BRANCH5>TWIG37>LEAF8

are illustrated.

Figure 2-l. Examples of Files and Directories

in PRIMOS Tree-structured File System.



PDR3858 OVERVIEW OF PRIMOS

Pathnames vs. Filenames
 

Most commands accept a pathname to specify a file or a directory; the

terms "filename" and “pathnane" may be used almost interchangeably. A

few commands, however, require a filename, not a pathname. It's easy

to tell a filename from a pathname. A pathname always contains a »",

while a filename or directory name never does.

Home vs. Current Directories
  

PRIMOS has the ability to remember two working directories for each

user: the “home” directory, and the "current" directory. With few

exceptions, the home and current directories are the same. All work

can be accomplished while treating them both under the single concept

of “working directory".

When the user logs in to a UFD, that UFD becomes the working directory.

The ATTACH command changes the working directory to any other directory

to which the user has access rights. A working directory may be an

The ATTACH command has a home-key option which allows the current

directory to change while the home directory remains the same. See

Reference Guide, PRIMOS Commands for details of this operation.

Relative pathnames
 

It is often more convenient to specify a file or directory pathname

relative to the home directory, rather than via a UFD. For example,

when the home directory is

BEECH>BRANCH5

the commands

OK, SLIST BEECH>BRANCH5>TWIG9>LEAF3
 

and

OK, SLIST *>TWIG9>LEAF3
 

have the same meaning. The symbol "*" as the first directory in a

pathname means “home directory”.

Current disk

Occasionally it will be necessary to specify a UFD on the disk volume

you are currently using, that is, where your home directory is. For

exanple, when developing a new disk volume with UFD names identical to

2 - 9 March 1979



SECTION 2 PDR3858

those on another disk, it is necessary to carefully specify which disk
is to be used each time a pathname is given. The currententdiskis
Specified by

<*>BEECH>BRANCH5

for example. Do not confuse "<*>", meaning current disk, with tk"
which means home directory.



PDR3058 OVERVIEW OF PRIMOS

SYSTEM ACCESS

Introduction

The remainder of this section is a brief overview of some of the
fundamental features of the PRIMOS operating system. It assumes that
you are a BASIC/VM programmer with previous experience on_ an
interactive computer system, although possibly not on a Prime computer.
It also assumes that you have read the concepts and definitions in
Appendix D, or that you are already familiar with PRIMOS terms. The
commands introduced here allow you to:

e Gain admittance to the computer system (LOGIN).

@ Change the working directory (ATTACH).

e Create new directories for work organization (CREATE).

e Secure directories against intrusion (PASSWD).

e Remove directories which are no longer needed (DELETE).

e Examine the location of the working directory and its contents
(LISTF).

e Look at the availability and current usage of system resources
—- space, users, etc. (AVAIL, STATUS, USERS).

e Create files at the terminal (also see Appendix D, EDITOR).

@ Rename files (CNAME).

e Determine file size (SIZE).

e Examine files (SLIST).

e Print files (SPOOL).

@ Remove unneeded files (DELETE).

e Allow controlled access to files (PROTEC).

e Complete a work session (LOGOUT).

ACCESSING THE SYSTEM

In order to access or work in the system, the user must first follow a

procedure known as ‘'‘login'. ‘Logging in' identifies the user to the
system and establishes the initial contact between system and user (via
a terminal). Once logged in, the user has access to a_ working
directory (work area), to files and to other system resources. The

2 - ll March 1979



SECTION 2 PDR3858

format of the LOGIN command is:

LOGIN ufd-name [password] [-ON nodename]

 

ufd-name The name of your login directory.

password Must be included if the directory has a
password.

-ON nodename Jsed for remote login across PRIMENET
network.

 

Example:
 

LOGIN DOUROS NIX

DOUROS (21) LOGGED IN AT 198'33 112878

The number in parentheses is the PRIMOS-assigned user number (also

called 'job' number). The time is expressed in 24-hour format. The
date is expressed as mmddyy (Month Day Year). The word NIX, in this
example, 1s the password on the login directory.

When logging into the system, typing errors, incorrect passwords, etc.,
may cause error messages to be displayed. Most are self-explanatory;
for a detailed discussion, see the New User's Guide to EDITOR and
RUNOFF.

DIRECTORY OPERATIONS

Changing the Working Directory
 

After logging in, the user's working directory is set to the login UFD
by PRIMOS. The user can move to another directory in the PRIMOS tree

structure (i.e., attach) with the ATTACH command. The format is:

ATTACH new-directory

new-directory is the pathname of the new working directory.

If any of the directories in the pathname have

passwords, the entire pathname must be enclosed in
single quotes, as in:

A "BEECH SECRET>BRANCHS

To set the MFD of a disk as the working directory, the format is
slightly different:

REV. @ 2 - 12



PDR3858 OVERVIEW OF PRIMOS

ATTACH '<volune>MFD mfd-password'

volume is either the literal volume name or the logical disk number,
and mfd-passwrd is the password of the MFD. A password is always
required for a MFD.

Recovering from Errors While Attaching: If an error message is
returned following an ATTACH command (for example, if a UFD is not
found), the user remains attached to the previous working directory.

 

Creating New Directories
 

To organize tasks and work efficiently, it is often advantageous to
create new sub-UFDs. These sub-UFDS can be created within UFDs or
other sub-UFDs with the CREATE command. ‘They can contain files and/or
other sub-directories. The format is:

CREATE pathname

The pathname specifies the directory in which the sub-UFD is being
created, as well as the name of the new directory.

Example:

CREATE <1 >TOPS>MIDDLE>BOTTOM

The sub-UFD BOTTOM is created in the UFD MIDDLE, which in turn is found
in the MFD TOPS.

Two files or sub-UFDs of the same name are not permitted in a
directory. If this is inadvertently attempted, PRIMOS will return the
message: ALREADY EXISTS.

Assigning Directory Passwords
 

Directories may be secured against unauthorized users by assigning
passwords with the PASSWD command. There are two levels of passwords:
owner and non-owmer. If you give the owner password in an ATTACH
command, you have ower status; if you give the non-owner password in
an ATTACH command, you have non-owner’ status. Files can be given
different access rights for owners and non-owmers with the PROTEC
command (see Controlling File Access).

The PASSWD command replaces any existing password(s) on the working
directory with one or two new passwords, or assigns passwords to this
directory if there are none. The format is:

PASSWD owner-password [non-owner-password]

The owner-password is specified first; the non-owner-password, if
given, follows. If a non-ower password is not specified, the default

 

2 - 13 March 1979



SECTION 2 PDR3058

is null; then, any password (except the owner password) or none allows

access to this directory as a non-owner.

Example:

OK, ADOUROS NIX
OK, PASSWDUSTHEM

The old password NIX is replaced by the owner password US, and_ the
non-owner password THEM.

Deleting Directories 

Wnen directories are no longer needed they may be removed from the

system to provide more room for other uses. The DELETE command can

also delete empty subdirectories from a given directory. The format
joeds

DELETE pathname

*

Sub-UFDs that are not empty, i.e., that still contain files or

subdirectories, cannot be deleted with this comand. All entries in

the directory must be deleted first. If an attempt is made to delete
directories containing files, PRIMOS prints the message:

DIRECTORY NOT EMPTY

Examining Contents of a Directory 

After logging in or attaching to a directory, the user can examine the
contents of this directory with the LISTF command which generates a
list of the files and sub-directories in the current directory. The

Format is:

LISTF

For example: the working directory is called LAURA; the following
list will be generated when LISTF is entered at the terminal:

OK, LISTF

FD=LAURA 6 OWNER

SQUERY BOILER EX LETTER QUERY OLISTF BASICPROGS

OUTLINE SOUTLINE MOL SMOL SLETTER MQL. LETTER FTN12

i XAMPLES FUTIL.190 SFUTIL. 19

OK,

The number following the UFD-name is the logical device number, in this

case, 6. The words OWNER or NONOWN follow this number, indicating the

REV. @ 2 - 14



PDR3858 OVERVIEW OF PRIMOS

user status in this directory. (See Securing Directories).

If there are no files contained in a directory, NULL. is printed

instead of a list of files.

SYSTEM INFORMATION

Table 2-2 summarizes useful information you may need about the system

and how to obtain it.

2 - 15 March 1979



SECTION 2

Number of users

User login UFD

User number

User line number

User physical device

Open file units

Disks in operation

Assigned peripheral
devices

User priorities

Other uSer numbers

Your phantom
user number

Network information

Login nodename

Records available

System time and date

Computer time used
Since login

REV. @

PDR 3058

Table 2-2

Useful

Used to
 

Indicate

resource

ex pected

system

usage and

performance.

Identify user who
spooled text file
(printed on banner).

Change terninal
characteristics.

Avoid conflict when

using files.

Tell if spool printer
is working; if devices
are available.

Log out your phantoms.

Tell if network is

available.

Tell if there is enough
room for file building,
sorting, etc.

Perform time logging
in audit files.

Measure program

execution time.

System Information

PRIMOS commands
 

STATUS USERS (user list)
USERS (number of users)

STATUS, STATUS UNITS

STATUS

STATUS

STATUS

STATUS, STATUS UNITS

STATUS, STATUS DISKS

STATUS USERS

STATUS USERS

STATUS USERS

STATUS USERS

STATUS, STATUS NET

STATUS, STATUS UNITS

AVAIL

TIME



PDR 3058 OVERVIEW OF PRIMOS

Spool queue contents Tell if job has been SPOOL ~—LIST

printed.

CX queue contents Tell if job has been CX -ALL

completed.

Note

 

Any information given by any STATUS command is also given by

the STATUS ALL command.

2 - 17 March 1979



SECTION 2 PDR3058

fZTLE OPERATIONS

Creatingand ModifyingFiles

Text files may be created and modified using the text editor (ED).
Files may be transferred from other systems uSing magnetic tape (MAGNET
command), or paper tape (BASINP command). See Reference Guide, PRIMOS
Commands for more details on these commands.

ChangingFileNames

it is often convenient or necessary to change the name of a file or a
directory. This is done with the CNAME command. The format is:

CNAME old-name new-name

old-name is the pathname of the file to be renamed, and new-nameis the
new filename.

Example:

CN TOOLS >FORTRANDTEST OLDTEST

The file named TEST in the sub-UFD FORTRAN in the UFD TOOLS is changed
to OLDTEST. Since no disk was specified all MFDs (starting with
Logical disk 8) are searched for the UFD TOOLS.

(f£ new-name already exists, PRIMOS will display the message:

ALREADY EXISTS

An incorrect old-name prompts the message:

NOT FOUND
ER!

veterminingFile Size

The size (in decimal records) of a file is obtained with the SIZE
command. This command returns the number of records in the file
specified by the given pathname. The number of records ina file is
defined as the total number of data words divided by 448, However, a
zero-word length file always contains one record. The format is:

3TZi pathname

example:

OK, SIZE GLOSSARY

REV. @ 2  - 18



PDR3958 OVERVIEW OF PRIMOS

GO

14 RECORDS IN FILE

OK,

Examining File Contents
 

Contents of a program or any text file can be examined at the terminal
with the SLIST command. The format is:

SLIST pathname

The file specified by the given pathname is displayed at the terminal.

Obtaining Copies of Files
 

Printed copies of files from a line printer are obtained with the SPOOL

command. It has several options, some of which will not apply to all

systems, as systems may be configured differently. The format is:

SPOOL pathname

PRIMOS makes a copy of pathname in the Spool Queue List for the line

printer, and displays the message:

YOUR SPOOL FILE IS PRTxxx (length)

xxx is a 3-digit number which identifies the file in the Spool Queue

List. The reason for a list, rather than just having each file spooled

out as the request comes, is that some requests are very long —-

hundreds of pages. PRIMOS spools out the shorter files as soon as

possible, rather than make the user wait while the long files are

printed. The length (SHORT or LONG) which follows the SPOOL message is

the category to which the file has been assigned. It is possible to

check the status of a SPOOL request by giving the command:

SPOOL -LIST

Example:

OK, SPOOL $82. 3057

GO
YOUR SPOOL FILE IS PRT@@6 (LONG) REV 15.2**

 

OK, SPOOL -LIST

 

GO

USER FILE DATE/TIME OPTS SIZE NAME FORM DEFER

SOPHIE PRT@@5 19/725 14:26 § 5 SUNFUNDED W.WIBA

TEKMAN PRI@@6 10/25 15:46 L 22 $$2.3057

2 - 19 March 1979



SECTION 2 PDR3858

OK,

To cancel a spool request, the command format is:

SPOOL -CANCEL PRIxXxx

For example:

OK, SPOOL -CANCEL PRT@13

GO

PRT@13 CANCELLED.

 

OK,

Deferring Printing: The —DEFER option tells the Spooler not to begin
printing the indicated file until the system time matches the time
specified with DEFER. This also permits you to enter SPOOL requests at
your convenience, rather than waiting for the appropriate hour.

 

Specify the DEFER option by:

SPOOL filename -DEFER 'time' 

The value for 'time' can be expressed either in 24-hour format (80:80 =
Midnight) or in 12-hour format followed by AM or PM (12:06 AM =
Midnight). The format for 'time' is 'HH:MM', where HH is hours, ":"
is any character, and MM is minutes. If you specify -DEFER but omit
time you will get the prompt:

ENTER DEFERRED PRINT TIME:

If ‘time' is not in the correct. format, you will get the above prompt
again, plus this informational message:

CORRECT FORMAT IS HH:MM AM/PM.

Printing on Special Forms: Line printers traditionally use one of two
types of paper -- "wide" listing paper, on which most program listings
appear, and 8-1/2xll-inch white paper, which is standard for memos and
documentation. Computer rooms often stock a variety of special paper
forms for special purposes, such as 5-copy sets, pre-printed forms

(checks, orders, invoices), or odd sizes or colors of paper.

 

Request a specific form by:

form-name is any Six-character (or less) combination of letters. A
list of available form names should be obtained from the system
Administrator.

REV, @ 2 - 29



PDR 3858 OVERVIEW OF PRIMOS

Deleting Files

When files or programs are no longer needed they may be removed from

the system to provide more room for other uses. “The DELETE command

deletes files from the working directory. The format is:

DELETE pathname

Controlling File Access
 

Assigning passwords to directories allows users working in a_ directory

to be classified as owners or non-owners, depending upon which password

they use with the ATTACH command. Controlled access can be established

for any file using the PROTEC command. This command sets the

protection keys for users with owner and non-owner status in the

directory (see Assigning Directory Passwords above). The format is:

PROTEC pathname [owner-rights] [non-owner-rights]

pathname The name of the file to be protected.

owner-rights A key specifying owner's access rights to file

(original value=7).

non-owner-rights A key specifying the non-owner's access rights

(original value=0).
 

The values and meanings of the access keys are:

 

key Rights
@ No access of any kind allowed

1 Read only
2 Write only
3 Read and Write
4 Delete and truncate
5 Delete, truncate and read

6 Delete, truncate and write

7 All access

Note

The default protection keys associated

with any newly created file or UFD are:
7 Os the owner is given ALL rights and
the non-owner is given none.

Example:
PROTEC <OLD>MYUFD>SECRET 7 1

2 - 21 March 1979



SECTION 2 PDR3058

In this example, protection rights are set on the file SECRET in the
UFD MYUFD so that all rights are given the owner and only read rights
are given the non-owner.

COMPLETING A WORK SESSION

When finished with a session at the terminal, give the LOGOUT command.
The format is:

LOGOUT

PRIMOS acknowledges the command with the following message:

UFD-name (uSer-number) LOGGED OUT AT (time) (date)
TIME USED = terminal-time CPU-time I/0-time

user-number The one asSigned at LOGIN.

cerminal-time The amount of elapsed clock time between LOGIN and
LOGOUT in hours and minutes.

CPU-time Central Processing Unit time consumed in minutes and
seconds.

(/o-time The amount of input/output time used in minutes and
seconds.

It is good practice to log out after every session. This closes all
files and releases the PRIMOS process to another user. However, if you
forget to log out, there is no serious harm done. The system will
automatically log out an unused terminal after a time delay. This
delay is set by the System Administrator (the default is 1000 minutes
but most System Administrators will lower this value).

22NO iREV. @



PDR 3058 USING BASIC/VM

SECTION 3

USING BASIC/VM

INTRODUCTION

This section is an overview of all the basic concepts and commands you
need to work with BASIC/VM. The first part discusses elementary tasks
and the commands needed to do them; the second part expands on some of
the features introduced in the first part.

ENTERING THE BASICV SUBSYSTEM

From PRIMOS command level, it is possible to access any of the
subsystems available under PRIMOS. To enter the BASICV subsystem, type
BASICV. The system then responds with the following message and
prompt:

OK, BASICV

BASICV REV 16.@

NEW OR OLD:

The "NEW or OLD:' prompt asks you to specify whether a new file is to
be created or if an OLD, or previously created file is to be called
from the current working directory to your working area in BASIC/WM.
Type either OLD or NEWfollowed by the name of the file you wish to
access or create. Remember that all command-line input must be in
upper case only.

Calling an OLD File
 

The directory from which you gave the 'BASICV' command is your current
working directory. It is referred to as 'the foreground' in BASIC/VM.
A file that is currently open (and being edited, created or run) in
this working directory is called the foreground file. Only one file
can be in the foreground at any time.

When you type OLD followed by a filename (or pathname) in response to
the first prompt, BASICV locates the file and makes it the foreground
file. For example, if you want to call a file named JUNK to the
foreground, type:

>OLD JUNK
>

3 - 1 March 1979



SECTION 3 PDR3958

The system responds with the right angle bracket, indicating that you

are now at BASICV command leve.. This angle bracket is the compiler's

prompt character. If a file or pathname is not specified after OLD,

the system prompts for it:

NEW OR OLD: OLD

OLD FILE NAME: JUNK

>

If the file is in your current directory, a filename is sufficient;

otherwise, a pathname (see Appendix D for definition) must be

specified. The latter part of this section outlines how to access

files in directories other than the current one.

Entering A New File
 

To enter a new program at the terminal, type NEW followed by a name for

the file you wish to create. If a filename is not specified, BASICV

will ask for one.

Example:

NEW OR OLD: NEW

NEW FILENAME: TEST

>

This new file becomes the foreground file. It remains in the

foreground until an OLD file is called in or you decide to create

another new file.

USING BASICV COMMANDS

Now that the preliminaries are out of the way, you can create a new

program or work with an existing one. Programming in BASIC/VM involves

several routine operations which every user needs to be familiar with.

The following is a list of these operations and the BASIC/VM commands

that can be used to accomplish them:

Displaying contents of current working directory (CATALOG)

e Displaying contents of foreground file (LIST)

e Displaying contents of non-foreground file (TYPE)

e Saving a NEW or modified file (FILE)

e Running a foreground program (RUN)

REV. @ 3 - 2



PDR 3958 USING BASIC/VM

e Checking for syntax errors (COMPILE)

e Translating source program into executable machine language

(COMPILE)

e Executing a compiled source program (EXECUTE)

e Editing a file (simple techniques, e.g., deleting lines)

e Combining two or more programs (LOAD)

e Renaming a foreground file (RENAME)

@ Removing files from a directory (PURGE)

e Exiting the BASICV subsystem (QUIT)

Examining Directory Contents: CATALOG
 

The BASIC/VM CATALOG command returns a list of all the files in the

current working directory. It has several options which provide

additional information about the files. The format of the command is:

CATALOG [options]

Where options are one or more of the following:

DATE Date and time the file was last modified.

PROTECTION Owner or non-owner protection attributes

(see PRIMOS, Section 2).

SIZE Number of records in each file.

TYPE Describes file type (DAM, SAM,

SEGSAM, SEGDAM, UFD; see Appendix D).

ALL Gives all of the above option information.

If no options are specified, only the filenames are displayed. Option

abbreviations are underlined.

3 - 3 March 1979



SECTION 3 PDR3058

 

Example:

CATALOGA
PASSWORD

Size Type Owner Nonowner Time Date
PRINTX 1 SAM O:RWD N: NIL 10: 48: 24 9/26/78
TAB 1 SAM O:RWD N: NIL 18:54:12 9/26/78
BASICPROGS UFD O:RWD N: NIL 14: 50:16 9/05/78
MAT 1 SAM O:RWD N: NIL 11: 32: 44 9/20/78
OUTLINE 3 SAM O:RWD N: NIL 16:54:36 8/25/78
SOUTLINE 3 SAM O: RWD N: NIL 14:20:36 8/07/78
AGES 1 SAM =O: RWD N: NIL 11:41:88 9/12/78
MATREX 3 DAM O: RWD N: NIL 11:36:12 9/20/78
ACCUM 1 SAM O:RWD N: NIL 12:17: 4@ 9/86/78
SECRET 1 SAM O: RWD N:R 9: 41:52 9/22/78
OTHER 1 SAM O:RD N: NIL 9:40: 40 9/22/78
COMPILEX 3 DAM O: RWD N: NIL 18:15: 48 9/37/78
PERSONAL 1 SAM O: RWD N: NIL 11:17:56 9/12/78

Displaying Contents of Foreground File
 

The LIST and LISTNH commands display all or part of the foreground file
at the terminal. LIST displays a program header including the program
name, date and time; LISTNH omits the header. The format is:

LIST

LISTNH [line-number-1,...‘Line-number-n]

Tf the line number options are specified, only the indicated line
numbers are displayed. If omitted, the entire program is displayed.

Displaying Non-Foreground Files
 

Non~foreground files can be listed at the terminal with the TYPE
command. This is useful for comparing programs. A TYPEd file does not
become the foreground file; its contents are merely displayed on the
user terminal. To modify or run the file (if it isa program), use the
OLD command to bring it to the foreground. The format of the TYPE
command is:

TYPE pathname

where pathname is the pathname or filename of a non-foreground file.

The following example illustrates a situation where the file called XYZ
is in the foreground and a list of the file AGES is needed.

REV. @ 3 - 4



PDR 3058 USING BASIC/VM

Example:

(XYZ is in the foreground)
>TYPE AGES

18 REM AGES

2@ DATA 1952, 1956, 1957
30 READ Y1,Y2,Y3
35 INPUT 'ENTER THE CURRENT YEAR': Y
49 Al=Y-Yl
5@ A2=Y-Y2
68 A3=Y-Y3
65 PRINT Al, A2, A3
70 END

>LIST (XYZ is still in foreground)
XYZ TUE, SEP 12 1978 11: 30: 38
(etc.)

Saving a Newor Modified File
 

A new file is entered into the system by typing the statements at the
terminal in proper BASIC/VM form. Section 4 explains all statement
syntax rules. All statements are preceded by line numbers to
distinguish them from commands, like LIST ard RUN, which are not
preceded by line numbers. Use the error correction characters (" and
?), discussed in Section 2, to correct typing mistakes. When the
entire program is entered, FILE it to ensure that a copy of it is saved
for future use. If a new program is not FILEd, it will vanish when you
leave the BASICV subsystem, or it will be overwritten when another file
is called to the foreground. The FILE command writes a copy of the
foreground file to disk under the name you specified in the NEW or OLD
Sequence. If you want to change the name of the file, simply specify a
new name after the FILE command. The format is:

FILE [filename]

Once a NEW program has been filed, it becomes an OLD program. However,
the file remains in the foreground until another replaces it.

3 - 5 March 1979



SECTION 3 PDR3058

Compiling the Source Code
 

In order for a program to be run or executed, the source code must be

translated, or COMPILEd, into executable machine language. During the

COMPILE process, the compiler parses the code for errors and produces a

binary version of the source file that can be EXHCUTed or RUN. This

binary file is kept in user memory until the EXECUTE command is issued;

it may optionally be named and saved to disk for future use by

specifying a filename with COMPILE. ‘The format of the COMPILE command

is:

COMPILE [filename]

If a filename is specified, the binary version of the foreground source

file will be stored on disk with the indicated name.

Checking for Syntax Errors
 

The COMPILE process also checks for syntax errors in a NEW or OLD

foreground file. Syntax errors include misspelling of statements or

referencing an undefined variable. During this process the compiler

parses each line in the file and weeds out the errors. These errors

are collectively referred to as ‘compile-time’ errors, as distinguished

from 'run-time' errors which are displayed when a program is actually

executed or run. The COMPILE process does not run the program; it

translates the source code to binary form, looks for faulty lines,

displays them, and indicates what is wrong with each one.

Most error messages are self-explanatory. For a complete list of error

messages, see APPENDIX D. Errors uncovered by the COMPILE process can

usually be corrected with simple edit procedures, discussed later in

this section.

Executing a Program
 

After a program has been COMPILEd, or translated into binary form, it

can be executed with the EXECUTE command. EXECUTE accepts a pathname

opt ion; therefore, it can run either a foreground or non-~ foreground

file. The format is:

EXECUTE [pathname]

If a pathname is specified, EXECUTE will do one of two things: if the

pathname is that of an executeble binary, the program will be executed

immediately; if the pathname is that of a non-compiled source program,

the compiler first translates the code into executable form, then

executes it.

REV. @ 3 - 6



PDR 3858 USING BASIC/VM

When the EXECUTE command is given without the pathname option, the

currently compiled code in user memory is executed. If no such

executable code exists, the foreground file is compiled, then executed.

Remember, an executable binary version (machine language) of any Source

program must exist before the program can be executed.

Run-time Errors
 

The EXECUTE process also performs the additional function of displaying

errors that occur during run-time. Run-time errors include faults in

program logic or control, such as a READ after a WRITE to a sequential

file. Usually, run-time errors impair program execution and can often

prevent a program from running at all. Each run-time error is

displayed at the terminal as it occurs, e.g., as the compiler attempts

to execute a faulty statement.

Should a program not run to completion, it should be examined for logic

errors and corrected as necessary. The BASIC/VM debugging commands,

discussed in Section 7, are often helpful in detecting and rectifying

such program control errors.

RUNning a Program
 

Foreground source programs can also be executed with the RUN command.

RUN combines both COMPILE and EXECUTE processes. It has no pathname

option, and therefore can run only foreground programs. RUN translates

source code to executable machine language and executes it immediately.

No binary file can be stored via this process.

Unlike EXECUTE, RUN displays both compile-time and run-time errors,

whereas EXECUTE displays only run-time errors. RUN also has a

no-header option, NH which suppresses the program header (name, date,

time, etc.) at run-time. Execution may be instructed to begin at a

specified point in the program by specifying the appropriate line

number. The format of the RUN command is:

RUN [NH] [statement-number]

Remember, only the foreground file can be run with this command.

3 - 7 March 1979



SECTION 3 PDR3858

EditingaFile

There are some simple editing techniques useful in correcting the
errors pointed out by COMPILE, EXECUTE and RUN. They include deleting
lines, inserting new lines, and retyping lines. More advanced editing
procedures are covered in Section 7. The procedures discussed here
allow you to add, delete or replace statement lines without specific
editing commards.

e To delete a specific statement line, type the line number
followed by a carriage return (CR).

e To insert a new statement line anywhere in the program, type the
appropriate line number, followed by statement text. The new
line is automatically placed in correct numerical sequence.

e To replace a statement line, type the line number followed by new
statement text. The new statement will overwrite the original.

After a file has been edited or modified, be sure to FILE it so that
the changes will be made permanent.

Process of a BASIC/W™ Program

The steps typically taken in the creation of a BASIC/VM program are
outlined in Figure 3-l. Not all the options that can be chosen in
Program development are included in this flow chart. Only the most
commonly exercised options are shown.

REV, @ 3 - 8



PDR3858 USING BASIC/VM

 

BASICV

   

   
   

  
   

SYSTEM PROMPT
OLD OR NEW:

 

  

WORK

 

 

 

 

 

 

  
 

 

    
 
 

    

  
  

 
 

 

>< WITH NEW OR SLEANE.
OLD FILE

INPUT
ENTER OLD TEXT

FILENAME

SAVE (FILE)
— PROGRAM

,

WANT YES EDITING
TO EDIT PROCESS

   

 

 

     
ENTER OLD

OR
NEW COMMAND

  

 

    

    
  

  

WANT TO
DELETE FILE

?   

 
   

    
FILE (SAVE) OMcuTE
PROGRAM Oe UN
 
 

 

     

  

  

  

  

MODIFY
PROGRAM

?

ANY
ERRORS

?

 

   

 

 

YES

BACK

TO DEBUG

PRIMOS YES (FIX ERRORS)    
 

Figure 3-l. Process of a BASIC/W Program

3 - 9 March 1979



SECTION 3 PDR3858

Sample Program

The following program demonstrates the use of Simple editing techniques
to correct errors displayed when the program is COMPILEd and EXBCUTEd.

OK, BASICV (enter BASICV subsystem)
Go

BASICVREV16, 2

NEW OR OLD: NEW SAMPLE (create NEW file)

>1@ DATA 12.1, 34,78
>20 READ X,Y,Z,A
>308 PINT X,Y,Z
>40 END

>COMPILE (check for syntax errors)
38 PINT X,Y,Z

 

 

INVALID WORD IN STATEMENT

>38 PRINT X,Y,Z (correct misspelling of 'PRINT')
>COMPT LE (no more syntax errors)
>EXECUTE

END OF DATA AT LINE 26 (run-time error: not
enough data. Program stops)

 

>15 DATA 10,20, 30 (insert new line to add more data)
>COMPT LE (program now compiles and

executes without errors)
DE XECUTE

12.1 34 78
>FILE (program is o.k.; FILE to save)
>QUIT (leave BASICV)

OK, (back to PRIMOS!)

Combining Two or More Programs
 

The LOAD command may be used to combine two or more BASICV programs to
form a Single executable program. Usually, LOAD is employed when
appending an external file to a foreground one. Line numbers which are
common to both programs are overwritten in the foreground file by those
line numbers in the external or LOADed program. Otherwise, line
numbers are interwoven.

If a binary version of a program (compiled source code) is LOADed, it
is stored in user memory but. does not become part of the foreground
file. If the EXECUTE command, with no pathname option, is issued
Susbsequent to this LOAD, the just-LOADed binary code will be executed.

REV. @ 3 - 180



PDR 3058 USING BASIC/VM

The following examples illustrate two ways in which programs can be

combined with LOAD.

Example 1 :

1. Source files:

Foreground file

GAME CALC
1Q PRINT 11@ B=23

20 REM A MATH GAME 120 PRINT A,B

38 A=7 .

° 200 END

100 PRINT A*A

>OLD GAME ! GAME is now in foreground

>LOAD CALC

now contains:

10 PRINT

108 PRINT A*A

110 B=23

120 PRINT A,B

200 END

3 - ll March 1979



SECTION 3 PDR3458

Example 2:

2. Source files:

PROG PROG1
18PRINT 'a? 1@ PRINT
20 A=1 15 REM PROGI
30 B=2 26 A=3
40 PRINT A*B 30 B=5

35 c=l1l
45 PRINT A,B,C
55 END

>OLD PROG ! PROG is now in foreground
>LOAD_PROGL

Foreground file now contains:

16 PRINT

15 REM PROG 1
20 A=3
38 B=5 Statements 18, 20 and 30
35 C=1l from PROG] overwrite
46 PRINT A*B those in PROG.

45 PRINT A,B,C
55 END

Renaming a Foreground File

The name of a foreground file can be changed with the RENAME command.
The format is:

RENAME new~-filename

Oniy the new name of the file need be specified. Be aware that this
command merely changes the name of the foreground file and does not
change the name of the file on disk unless it is FILEd. When the
renamed file is FILEd, two copies of the same file will exist: the
original file and the renamed file.

REV. @ 3 - 12



PDR 3858 USING BASIC/VM

Deleting a File from a Directory

To remove a file from a directory, use the PURGE command. The format

is:

PURGE [pathname]

If no pathname is specified; the foreground file is deleted, otherwise
the file indicated by pathnameis removed.

EXITING THE BASICV SUBSYSTEM

There are two ways to exit the BASICV subsystem and return to PRIMOS
command level. They are:

l. QUIT
2. CTRL-P, BREAK (see Section 2)

As explained in Section 2, CTRL-P and BREAK have the same overall
effects. Both leave files open and can cause files to be truncated or
otherwise garbled. It is advisable to type QUIT, which closes all open
files, protecting them from unwanted modification. The QUIT command
can only be used at command level, i.e., in response to the '>' prompt.

If one of the alternatives to QUIT is used, C ALL (short for CLOSE ALL)
can be typed upon returning to PRIMOS conmand level. In most cases,
this will ensure that all files are closed and that no damage will be

done to any of them unintentionally.

Sometimes temporary files are left in the directory by the BREAK or
CTRL-P methods. These are indicated by the characters T$ followed by
four digits, TSnnnn, where nnnn ranges from 9808 to 9999. To check for
these temporary files, type LISTF (at PRIMOS command level). To delete
them, simply type DELETE followed by the TS filename representation.
For purposes of file integrity, it is recommended that BREAK and CTRL-P

not be employed unless unavoidable (as in a long listing when the user

is not at command level).

3 - 13 March 1979



SECTION 3 PDR3058

ADDITIONAL FEATURES

The following information deals with other features of BASIC/VM which
may be of uSe to Some programmers. These features include:

e Accessing files in directories other than the current working

directory.

e Using the BASIC/VM ATIACH command to change the working
directory.

e Running BASIC/VM programs from PRIMOS level.

@e Modes of operation (or interpretation) in BASIC/VM.

ACCESSING FILES IN REMOTE DIRECTORIES

Accessing files in BASIC/WM is similar to the process’ previously

described in Section 2. However, there are some important variations.
The following examples illustrate file access procedures for all
possible file location situations. User input is underlined.

Accessing a File in the Current UFD

To access a file called OLDF1 in the current UFD the format is:

NEW OR OLD: OLD OLDF1

Accessing a file in a sub-UFD in current UFD

To access a file called OLDF2 in a sub-UFD called SUBS, located in the
current directory, the format is:

NEW OR OLD: OLD *>SUBSDOLDF2
 

The right angle brackets (>) indicate that the file is contained within
the sub-UFD. The asterisk (*) means ‘current UFD' and must be included
in the pathname.

Accessing a File in a UFD on Another Disk

The general format of this procedure is:

OLD <vol ume>

<ldisk>

The parameter volume is the name of the disk on which the file is
found.

REV. @ 3 - 14



PDR 3858 USING BASIC/VM

For example, to access a file called FILEOK listed in a UFD called

PROJECTS on a disk called SOFTWR, the following pathname would be
typed:

OLD <SOFTWROPROJECTS>FILEOK

If the disk number was 3, the following format would be used:

OLD <3>PROJECTS>FILEOK

If passwords are required on either the UFD or file, they are inserted
after the directory-name requiring the password.

Example:

OLD <3>PROJECTS SECRET>FILEOK

In this case, the UFD PROJECTS is protected by the password SECRET.

ATTACHing to a Directory
 

The ATTACH command, discussed in Section 2, is used in BASIC/VWM as well

as in PRIMOS. However, like all BASICV commands, ATTACH cannot be

abbreviated.

Attaching to a sub-UFD in the Current UFD

To ATTACH to a Sub-UFD in the current UFD, the asterisk symbol is used
to indicate the current directory. For example, to attach to a sub-UFD

called PLAYS in the current directory, the format is:

ATTACH *>PLAYS

Attaching to a sub-UFD in Another UFD
 

When attaching to sub-UFD in a UFD other than the current directory,
the UFD name, and password, if any, must be specified.

Example:

ATTACH NUMBERSDECIMAL

The UFD-name is NUMBERS and the sub-UFD-name is DECIMAL.

3 - 15 March 1979



SECTION 3 PDR 3958

Attaching to a UFD or Sub-UFD on Another Disk

Attaching to a UFD or sub-UFD on another disk is the same as in PRIMOS.
A volume name of the disk is given, or a logical disk number, (ldisk)
is specified in the pathname. For example, to attach to a sub- UFD
called PEONIES listed under a passworded UFD called FLOWERS on logical
disk number 5, the format would be:

ATTACH <5> FLOWERS PASSWD>PEONTES

The password on FLOWERS is PASSWD and is required in the pathname.

RUNNING PROGRAMS FROM PRIMOS

A previously created and filed 3ASIC/VM program can be run from PRIMOS
command level using the BASICV command. The format is:

OK, BASICV pathname

where pathname is either the source or binary form of a BASIC/VM
program. The specified file is then run, leaving the user at PRIMOS
comnand level.

Example:

The following is a BASIC/WM program, called 'T'.

1@ PRINT 'SAMPLE'

20 FOR I=l1 TO 10

3@ JaJ+I

49 PRINT I, J

5@ NEXT I

6@ PRINT 'END OF LOOP'

7@ PRINT 'YOU ARE NOW AT PRIMOS COMMAND LEVEL'

8% END

REV, @ 3 - 16



PDR 3058 USING BASIC/VM

The program is now run from PRIMOS conmard level:

OK, BASICV T

GO
SAMPLE
1 l
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55
END OF LOOP
YOU ARE NOW AT PRIMOS COMMAND LEVEL
OK,

MODES OF OPERATION IN BASIC/VM

There are three ways in which BASIC/VM can interpret terminal input:

@ aS a command (Command mode)
@e aS an executable statement (Immediate mode)

@ as a line-numbered statement (Program-statement mode)

Any response issued in response to the BASICV prompt '>" is interpreted
by the compiler as one of the above.

Command mode: If a command, e.g., RUN, is issued at this level, the

compiler interprets it aS a command and executes it immediately.
Commands are directives to the system. More details appear in Section
4,

Program-statement mode: Statements entered with preceding line numbers
are immediately stored in user memory as part of a program and are not

compiled or executed until the compiler is instructed to do So. More
details on program composition are found in Section 4.

 

Immediate mode: If a statement is entered without a line number, the
compiler checks to see if it is executable, then attempts to execute
it. Any errors in statement syntax are displayed immediately. These
Statements are not stored in user memory and cannot be stored as part

of a program.

3 - 17 March 1979



SECTION 3 PDR 3858

Immediate mode is useful for debugging programs, displaying local

variable contents and for performing quick calculations. Immediate
mode is also referred to as 'desk-calculator' mode.

When performing calculations, values for defined variables are placed
in temporary storage locations; they remain intact until the variable
is changed by some subsequent arithmetic operation. To clear all
storage locations, and thereby reset all strings and numeric variables
to null or zero values respectively, uSe the CLEAR command.

The following is an example of an Immediate mode terminal session.
User input is underlined for clarity.

Example:

>A=12 (performing simple calculations)
25
+B

wo k
V rm)

C9
a
1

2 ry aQ

 

37
>DIM A(3) (define matrix)

>A (1 )=13

>A (2)=45 (assign values to matrix elements)

>A (3)=56
>PRINT A

12 (variable A and matrix A have the same

name but different values)

B 45 56

>C LEAR (clear all variable storage locations)

>PRINT B (all variables are now zeroed)

B

>PRINT C

B

MAT PRINT A

UNDEFINED MATRIX AT LINE @ (no matrix definition exists

after CLEAR)

>QUIT

REV. @ 3 - 18



PDR 3058 ELEMENTS OF BASIC/VM

SECTION 4

ELEMENTS OF BASIC/VM

LANGUAGE ELEMENTS

BASIC/VM is composed of the following elements:

@ COMMANDS, which give directions to the system

e STATEMENTS, which make up programs

@ EXPRESSIONS, which are combinations of operators and operands:

e OPERANDS, which are data elements including:

constants

variables
functions
arrays
matrices

e OPERATORS, of four types, which manipulate operands:

arithmetic
logical
relational
string

The above elements are defined briefly in this section. Additional
information on each may be found in other sections of this manual as
indicated.

BASIC/VM uses the full ASCII character set including:

l. Letters from A-Z

2. Digits from 9-9

3. Special Characters (see list in Appendix B)

OPERANDS

Within the context of a program, constants, functions, (or function
references), variables and arrays are referred to as operands because
they are operated on or manipulated by operators. Operators, like
addition (+) or subtraction (-), tell a program what to do with the
operands they connect.

4 - 1 March 1979



SECTION 4 PDR3958

Constants

A constant can be either a number or a quoted literal string. Its
value does not change during the execution of a program.

Numeric Constants: are positive or negative integers, decimal or
exponential expressions. BASIC/VM supports double-precision, floating-
point numeric data, with a level of accuracy to 13 significant figures
in the mantissa and 2 significant figures in the exponent.

 

Examples:

8.88

~123

2.5E-2

Literal String Constants: are a sequence of characters enclosed within

Single quotes or apostrophes ('). All spaces enclosed in the quotes
are included in the string value. The maximum length of a= string
constant is 16@ characters. See Section 12.

 

Examples:

'X,Y,Z'

(a null string)

"BASIC IS FUN!'

'VOITCH'

Variables

Variables are representations of data to which values are assigned.
BASIC/VM supports both numeric and string scalar variables, and numeric
and string subscripted variables, also known as arrays. Table 4-1
gives examples of legal and illegal variables in BASIC/VM.

Numeric Scalar Variables: are single letters (A-Z) optionally followed
by a Single digit (8-9). There are 286 possible combinations. Numeric
scalar variables, also called simple numeric variables, are initialized
by the BASICV subsystem to @ at the start of the program in which they
are defined. See Section ll.

 

REV. @ 4 - 2



PDR3@58 ELEMENTS OF BASIC/VM

Examples:

A2 Initial Value: A2=@

X4 Initial Value: X4=@

String Scalar Variables: are single letters (A-Z) followed by a

decimal digit and a dollar sign($) or by a dollar sign alone. String

scalar variables, also called simple string variables, represent

character strings of various lengths and are initialized to null at the

beginning of the progran in which they are defined. See Section 12.

 

Examples:

BS

A2$

Numeric Subscripted Variables (arrays): are simple variables followed

by one or two values enclosed in parentheses. An array name is a

simple numeric variable, e.g., A. A single subscripted variable, e.g.,

A(1), refers to an element in a one-dimensional array named by A. A

variable with two subscripts, e.g., A(1,2) references an element in a

two dimensional array. Arrays and matrices are defined by the DIM

statement or a MAT statement. See Section 9 for details.

 

String Subscripted Variables (arrays): are simple string variables

followed by one or two values enclosed in parentheses. String arrays

or matrices are named by simple string variables, and are dimensioned

with a DIM or MAT statement. String array elements are represented by

singly or doubly subscripted string variables. See Section 9 for

details.

 

Examples:

A(4) one-dimensional numeric array element

AS (3,4) two-dimensional string array element

4 - 3 March 1979



SECTION 4 PDR3958

Table 4-1. Legal and Illegal Variables

Variable

Type Legal Illegal

numeric A2 A AB] AR

scalar x4 Z X14 BZ

string BS ABS AB3$
scalar A2S A21$

numeric A2(1) A(1,2) Al2(1) A(1,2,1)
subscripted A(1) A2 (1,2) AB(1,2)

string AS (1) AS (1,2) A12S (1,2)
subscripted A2$S (4) AzZS$ (1,2) ABS (1)

Functions

BASIC/VM provides a variety of numeric and string system functions
e€.g., TAN, COS, LEN, to operate on numeric and string data. Users may
also define their own numeric and string functions, know as
user-defined functions. See Section 10 for details.

Numeric Functions: are identified by a three or four letter name,
followed by parenthetically enclosed numeric items or parameters. They
specify an operation to be performed upon the numeric items to produce
a Single value. Table 10-2 lists all available numeric functions.
User-defined numeric functions are identified by the letters FN,
followed by a simple numeric variable. (e.g., FNA, FNA8).,

 

String Functions: are identified by a three to five letter name,
followed by parenthetically enclosed string or numeric parameters.
String functions are used to return information about strings and
portions of strings, or to convert a numeric item to its correspond ing
string representation, and vice-versa. All string system functions are
listed in Table 19-2. User-defined string functions are named by the
letter FN followed by a simple string variable, e.g., FNOQS.

 

REV. 9 4  - 4



PDR 3058 ELEMENTS OF BASIC/VM

OPERATORS

Within a program, the previously defined operands are combined with
operators to form expressions. Operators specify what is to be done
With the operands in these expressions, i.e., how they are to be

evaluated. There are four types of operators: arithmetic, relational,
logical and string. Operands, then, can be manipulated arithmetically,
logically, relationally, or by string operators.

Arithmetic Operators
 

Arithmetic operators are of two types, unary or binary. Unary
operators require only one operand, e.g., +7. They indicate the sign
of the number. Binary operators require at least two operands, e.g.,
Al+7. The following table lists the arithmetic operators for BASIC/WM.

Arithmetic Operators
 

OPERATOR DEFINITION EXAMPLE

+ addition (unary positive) A+B, +A

- subtraction (unary negative) A-B, A
* multiply A*B
/ divide A/B
“or ** exponentiation AB, A**B
MOD remainder from division modulus A MOD B
MIN select lesser value A MIN B
MAX select greater value A MAX B

Relational Operators
 

Relational operators are used with conditional statements and statement
modifiers. (See Section 6 for details.) There are six relational
operators, as listed in the following table:

4 - 5 March 1979



SECTION 4 PDR3958

Relational Operators
 

OPERATORS MEANING EXAMPLE

< less. than A<B

> greater than A>B

= equal AS=BS

<=

less than or equal AS<=C$
=<

>=

greater than or equal A=>C
=>

<> not equal AOD

><

String Operators
 

String operators include the above relational operators plus a
concatenation operator (+) for combining two strings. String operands
can only be used with string operators.

Logical Operators 

Logical operators are connectives for relational expressions, allowing
the testing of many relations at once.

Logical Operators 

OPERATOR MEANING EXAMPLE

AND true if both A and B are true A AND B

OR true if either A, B or both are true A ORB

NOT true if A is false NOT A

REV. @ 4 - 6



PDR3958 ELEMENTS OF BASIC/VM

EXPRESSIONS

Definition

Expressions are ordered combinations of operands and operators or other

expressions which are evaluated within a program to produce a single

result. Expressions can be arithmetic, e.g., A+B, relational, e.g.,

A>=B, or logical, e.g., A AND B.

Evaluation

Expressions are evaluated in order of operational priority. The

priority list from highest to lowest for BASIC/VM is listed below.

Within each level the evaluation order is from left to right.

( ) Parenthetical Expressions

System and User-defined Functions

(or **) Exponentiation

NOT, Unary (+ -)

*, /, MOD

+, -

MIN, MAX

Relationals (=, >, <, =>, <=, ©)

AND

OR

COMMANDS AND STATEMENTS

Commands

BASIC/VM system commands are directives to the BASICV subsystem to

perform some immediate function. They are distinguished from

Statements in that they are not preceded by a line number. A list of

all BASIC/VM commands and statements appears at the end of this

section. Some commands have optional parameters or arguments to

further define the operation which they perform. A complete list of

BASIC/VM command formats and definitions can be found in Section 14.

4 - 7 March 1979



SECTION 4 PDR3858

Statements

Statements are part of a program, and as such, are preceded by a line
number. When they appear without line numbers they are executed
immediately.

Example:

PRINT 12*154
1848

This 'desk calculator' utilization is called Immediate Mode.

Statement Syntax
 

Statements must adhere to the following rules:

1. Each statement must be entered in upper case letters.

2. Each statement must be contained on one line.

3. Statements must not exceed 168 ASCII characters in length.

4. Portions of the statement (i.e., string literals) which the
user wishes processed verbatim must be enclosed in single
quotes.

5. Statements cannot be abbreviated.

Statements should be separated from their identifying line numbers with
a blank space to avoid misinterpretations.

Statement Numbers
 

Statement numbers are one to five digit integers ranging from 1 to
99999, Successive statements are generally numbered in ascending
order. It is recommended that statements be numbered in increments of
ten, e.g., 10, 20, 30... A statement may be added between lines 1@ and
20, for example, without changing the other statements. Given the
following program:

1@ PRINT 'NAME'

2@ PRINT 'ADDRESS'

3@ PRINT 'CITy'

>RUNNH

NAME

ADDRESS

CITY

REV. @ 4 - 8



PDR3@58 ELEMENTS OF BASIC/VM

To insert a line between lines 18 and 28 and another between 29 and 39,

add PRINT statements as indicated:

>15 PRINT

>25 PRINT

>RUNNH

NAME
 

ADDRESS

CITY

Comments

Programs may contain comments or remarks which serve as explanatory

notes for the benefit of the reader. They are preceeded by the letters

REM or by the exclamation mark, (!). Comments may appear by themselves

on separate lines or may be appended to a line with the exclamation

mark. Comments may contain lower-case characters.

Example:

10 REM THIS IS A REMARK

20 ! THIS IS A REMARK ALSO

30 X=1 ! set x equal to one

LIST OF COMMANDS AND STATEMENTS

The following table lists all available BASIC/VM system commands and

language statements with a brief description of their functionality.

Also included are references to other sections in this guide where more

information on each command and statement may be found.

4 - 9 March 1979



SECTION 4

Command
neatencorevers

ALTER

ATTACH

BREAK JON

OFF

CATALOG

CLEAR

COMINP

COMPILE

CONTINUE

DELETE

EXECUTE

EXTRACT

FILE

REV. @

PDR 3858

Table 4-2

List of Commands and Statements

Description

Allows editing of a single line in a program
uSing subcommands, listed in Table 14-1.

Attaches to a directory in BASICV subsystem
specified by pathname (similar to PRIMOS ATTACH
but works in BASIC environment) .

Sets and unsets breakpoints at specified line
numbers for debugging. Maximum of 10
break points may be set. See LBPS.

Lists all filenames under current UFD; options
return other file-related information.

Resets all orevious numeric values to @, or string
values to null, deallocates previously defined
arrays and closes all open files.

Calls a specified command file to foreground;
reads and executes commands until a COMINP TTY
is reached.

Translates a source file into executable binary
form; displays syntax errors.

Resumes program execution after a breakpoint
or PAUSE.

Deletes specified statement lines.

Executes indicated program (binary or source);
displays run-time errors.

Deletes all except specified lines.

Saves all input and modifications to current
(foreground) a specified program file;
writes file to disk.

Lists currently set breakpoints.

Section 

7,14

3,14

7,14

3,14

5,14

6,14

3,14

7,14

7,14

3,14

7,14

3,14

7,14



LIST [NH]

LOAD

NEW

OLD

PURGE

QUIT

RENAME

RESEQUENCE

RUN[NH]

TRACE ON

OFF

TYPE

Statement

ADD #

CHAIN

CHANGE

PDR3058

Displays the contents of current file at
terminal. NH option suppresses header or program

title.

Merges or adds an external program to current
(foreground) program.

Indicates to compiler that a new file is to be
created in foreground. New filename
must be specified.

Calls pre-existing file to current working area

(foreground). Makes it current file.

Deletes specified file from UFD; file
must be closed.

Returns control to PRIMOS from BASICV command

level.

Changes name of foreground file.

Renumbers statement in current program.

Initiates compile and execute processes on
current source program.

Tests program logic; line numbers are displayed

as corresponding statements are executed.

Displays contents of specified non- foreground

file at terminal. TYPE progran does not replace

program currently in the foreground.

Description

Adds record to MIDAS file opened
on specified file unit.

Transfers progran control to specified
external program.

Converts ASCII character string to one-
dimensional numeric array or vice-versa.

ELEMENTS OF BASIC/VM

3,14

3,14

3,14

3,14

3,14,15

3,14

3,14

7,14

3,14

7,14

3,14

Section

8,15

6,15

19,15

APPB

March 1979



SECTION 4

CLOSE #

COMINP

DATA

DEFINE FILE #

DEF FN

DIM

DO. ..DOEND

ELSE DO

END

ENTER[# ]

FOR

GOSUB

GOTO

IF

REV. @

PDR3858

Closes file on specified unit(s).

Stops execution of current program: calls
Specified command file to foreground.

Contains numeric and string constants
to be accessed by READ statement.

Opens a file of specified type on indicated
unit number with optional access
restrictions (APPEND, READ, SCRATCH).

Without FNEND, defines one-line function
with numeric or string scalar variable
arguments; with FNEND, defines multi-line
function.

Defines dimensions of numeric or string
array or matrix.

Defines a set of statements to be
executed in association with

IF-THEN statement pair.

Optional alternative to DO-DOEND
statement set.

Terminates program execution; no message
is displayed.

A timed input statement: with # option,
returns user-number assigned at LOGIN;
also sets time-limit on input.

Defines beginning and end of loop
and loop index; used optionally with
STEP, WHILE, UNTIL, NEXT.

Transfers program control to internal
subroutine: used with RETURN.

Transfers program control
to specified line; can be used
conditionally with IF or ON.

Makes executable statements conditional;
can be used with GOTO, THEN, ELSE DO, etc.

8,15

6,14,15

5,15

8,15

10,15

9,15

6,15

6,15

6,15

5,15

6,15

6,15

6,15

6,15



INPUT [LINE]

LET

MARGIN (OFF)

CON
IDN

MAT NULL

ZER

MAT] INV

TRN

MAT INPUT

MAT PRINT

MAT READ

MAT READ [*] #

MAT WRITE #

NEXT

ON GOSUB
GOTO

PDR3058

Requests data to be entered from
terminal. LINE option accepts entire
line, including commas and colons,
as one entry.

Assignment statement: optional.

Changes width of output lines.
OFF option turns off margin checking.

Sets initial value of matrix elements

to zero, identity, null or one.

Performs addition, subtraction or
multiplication on two matrices.

Calculates INVERSE or TRANSPOSE values

of one matrix and assigns them
to another.

Reads data from a terminal and assigns
values to elements of specified
matrix or matrices.

Prints an entire matrix (or matrices)

at terminal.

Reads values from data list(s): assigns
them to elements of matrix or matrices.

Reads data from external file and assigns
them to a specified matrix or matrices.
Optional * forces all data in current
record to be read before new one is read.

Writes an entire matrix (or matrices) to

a file on specified unit.

Defines end of loop begun by a FOR statement.

Transfers program control to a subroutine
(GOSUB) or to one of a list of statement
numbers (GOTO).

March

ELEMENTS OF BASIC/VM

5,15

5,15

5,15

9,15

9,15

9,15

9,15

9,15

9,15

8,9,15

8,9,15

6,15

6,15

1979



SECTION 4

ON END # GOTO

ON ERROR [#]

GOTO

PAUSE

POSITION #

PRINT

PRINT USING

READ

READ [KEY] #

READ LINE #

READ [*] #

REM

REMOVE #

REPLACE #

REV. @

PDR3858

Establishes a line number to which
progran control will transfer
when an END OF FILE occurs in disk

file opened on specified unit.

Defines statement line to which program
control will transfer when a
run-time error occurs, in disk
file, if # specified.

Suspends program process at line where
PAUSE occurs; to resume, type

CONTINUE (command) .

For DA disk files; positions internal record
pointer to a specified record.

Can be used with LIN,TAB,SPA options
to print formatted data at terminal.

Prints data output formatted according
to format strings. See Table 15-2.

Reads numeric or string values from a
DATA statement in a program.

Reads data associated with record key
in MIDAS file opened on indicated unit.

Reads from é disk file an entire line of

text, including commas, colons, as one
data item.

Reads from current record in

file open on specified unit; pointer then
positions to next sequential record.
* allows one record to be finished before
a new one is read. (Holds pointer at current
record after READ is complete.)

Indicates a remark to the user only.

Removes specific key from MIDAS file;
if primary key, removes associated data
also.

Deletes data files referenced by a
segment directory. Moves pointer from
deleted file to another file; zeroes old
pointer.

6,15

6,8,15

8,15

5,14,15

5,15

8,15

8,15

8,15

8,15

4,15

8,15



RESTORE ,#
$

RETURN

REWIND #

WRITE #

WRITE USING #

PDR3058 ELEMENTS OF BASIC/VM

Reuses list of data items beginning with
first item in lowest numbered DATA
statement; # option reuses numeric items;

$ option reuses string items only.

Returns control from subroutine to statement

following GOSUB statement.

Repositions record pointer to top of DA or
MIDAS file open on specified unit.

Writes data to current record of disk file

opened on specified unit.

Generates formatted output including
tabs, spaces and column headings and writes
output to ASCII disk file file opened on
specified unit.

4 - 15 March 1979

5,15

5,15

8,15

8,15

8,15



PDR 3058 DATA INPUT/OUTPUT

SECTION 5

DATA INPUT/OUTPUT

INTRODUCTION

This section covers data exchange between programs and terminals,

including various methods of formatting data output. The first part of

this section deals with data input or the process of providing data to

a program either from within a progran or from the terminal. The

Statements involved in data input are:

e LET Assigns values to variables.

e TATA Provides data values for associated READ

statement.

e READ Reads values from DATA statement into a list

of variables.

@ RESTORE Tells program to reuse data values’ from

previous DATA statement.

e INPUT Requests user input from terminal.

e INPUT LINE Accepts entire line of terminal input as_ one

datum.

e@ ENTER[#] Timed input Statement; # option reads user
login number into an indicated variable.

The second part deals with data output, including the output of data

from a program to a terminal or other output device. Data output

involves the following statements:

e PRINT Prints data values verbatim or prints values

associated with specified variable.

@ PRINTITAB Prints data with spacing conventions (tabs,

LIN blank lines, etc.) dictated by modifiers.

SPA

e PRINT USING Prints data according to format indicated by
special format characters.

5 - 1 March 1979



SECTION 5 PDR 3858

@ MARGIN Alters data output line length by increasing

or decreasing right margin from the default
(88 characters positions).

Data exchange involving the transfer of information between a_ program
and external data files is covered in Section 8, FILE HANDLING,

DATA INPUT STATEMENTS

Assignment Statement
 

The LET statement can be used to preface statements that assign values
to variables and array elements; however, the use of LET is optional
in BASIC/W; it is not essential to the assignment process. The
statements 'LET A=5' and 'A=5' are equivalent.

 

Reading Data Lists
 

The READ and DATA statements are used when all data values are known in
advance and can be included directly in the program text. READ and
DATA must always be used together. The READ statement lists numeric or
string variables, separated by commas. The DATA statement contains
values which correspond to the type (numeric or string) and number of
variables listed by READ. If the items in a list exceed the length of
one line, they may be continued in subsequent READ or DATA statements.

Example:

10 DATA 5,10,15,10
20 DATA 2, 7.2
30 READ Al, A2, A3,B,C,X
4Q PRINT 'PARTIAL SUM =' ; Al+A24A3
45 PRINT 'PARTIAL SUM=';B4C4X
5@ PRINT 'AVERAGE='; (Al+A24A34B4C) /X
62 END
>RUNNH
PARTIAL SUM =30
PARTIAL SUM=29, 2
AVERAGE =7 , 222222222222

If there are more variables in the READ statement than items in the
DATA statement, an END OF [ATA AT LINE nnnn message, where nnnn is a
program line number, will appear at run-time.

REV. @ 5 - 2



PDR 3058 DATA INPUT/OUTPUT

Example:

10 READ X,Y,Z,V,B
20 DATA 12,67,89
30 R=X+Y¥+Z24B
49 PRINT R
>RUNNH
END OF DATA AT LINE 19

If the DATA statement contains more elements than there are variables

in the READ statement, the extra values are ignored.

Recycling Data Values
 

The RESTORE statement enables recycling of data values within a program

without the need to re-enter them. The subsequent READ statement is

directed to reuse the data beginning with the first value in the lowest

numbered DATA statement.

5 - 3 March 1979



SECTION 5 PDR39858

Example:

5 READ X
1@ PRINT 'LOOP = ':X:' TIMES'
20 PRINT ‘FIRST VALUES OF Y ARE:'
25 X=X-l
30 FORA =1 TO X
40 READ Y
5Q@ PRINT Y
60 NEXT A

70 RESTORE
88 PRINT 'SECOND VALUES OF Y ARE:'
98 FORA =1 TO X

10@ READ Y
11@ RINT Y
128 NEXT A
138 DATA 5, 1, 3, 5, 7
140 END

This program yields two different sets of values for Y, one for each
time the variable is passed through the loop.
produces the following output:

LOOP = 5 TIMES
FIRST VALUES OF Y ARE:
1
3
5
7
SECOND VALUES OF Y ARE:

M
W
e

u
o

When run, the program

Tt is also possible to RESTORE only numeric or string values, using the
alternate forms of the RESTORE statement.

RESTORE # reuSes all numeric items, and

RESTORE $ reuses all string items, beginning with
lowest-numbered DATA statement.



PDR 3858 DATA INPUT/OUTPUT

Data Input From Terminal
 

The INPUT statement accepts data values from the user terminal.
Multiple variables, both numeric and string, can be specified on the
INPUT statement line. Values for each variable are then entered from
the terminal at run-time. This feature allows data values to be varied
each time the program is run, providing increased program flexibility.
The default prompt is the exclamation point (!), which indicates that
the program is awaiting terminal input.

Example:

10 REM AVERAGE ANY 3 NUMBERS
20 PRINT 'GIVE ME 3 NUMBERS'
30 INPUT A, B, C
49 X = (A4B4C) /3
508 PRINT "THE AVERAGE IS:' :X
62 END

GIVE ME 3 NUMBERS
! 10, 30, 50
THE AVERAGE IS: 30

The program asks for the input of any three numbers’ separated by

commas. If the commas are omitted, the line is accepted as one entry

and a second exclamation mark is printed indicating a second value is

expected. If more items are entered than required, the extraneous ones

are ignored.

Since the default INPUT prompt (!) is not very informative, an

alternate form of the statement allows the inclusion of a prompt

string. The format is:

INPUT ['prompt-string',] var-1[,...var-n]

Example:

1@ INPUT 'INPUT YOUR FAVORITE COLOR', CS
20 PRINT CS: 'IS THE ICKIEST COLOR I EVER SAW!'

Of course, some sort of prompt statement may be printed prior to the
INPUT statement, as in the first example above.

If commas must be included as part of your input, use the INPUT LINE
statement which accepts an entire line, including commas, as one entry.

5 - 5 March 1979



SECTION 5 PDR3958

1@ PRINT 'WHAT IS YOUR NAME AND ADDRESS!
28 INPUT LINE CS
38 PRINT
48 PRINT C$: '-THANK YOU'
5@ END

A sample output might be:

WHAT IS YOUR NAME AND ADDRESS

(user inputs info in response to ! prompt)

'LOU PIAZZA, CLOUD NINE
 

LOU PIAZZA, CLOUD NINE ~—THANK YOU

Timed Terminal Input
 

The ENTER statement serves the same purpose as INPUT but allows the
user to specify a time limit om response requested from the terminal,
as well as a variable to indicate the actual time used. The ENTER
Statement has no prompt, and therefore it is helpful to include a
prompt of some sort prior to the ENTER statement itself. The format of
the ENTER statement is:

ENTER time-limit, time-limit-variable,) numeric~—variable |
string-variable

where the time-limit is expressed in seconds, time-limit-variable
 

represents the actual time the user needed to respond, and the
numeric-variable or string-variable is the variable for which a value
is expected from the terminal.
 
 

In the following example, a value for Z is expected from the terminal
and a limit of 5 seconds is placed on response time. T represents the
time-limit-variable.

Example:

1@ PRINT ‘Enter a value for 2Z'

20 ENTER 5,T,Z

3@ PRINT T

48 PRINT Z

>RUNNH

Enter a value for Z

22

3
22

STOP AT LINE 4@

REV. @ 5 - 6



PDR 3958 DATA INPUT/OUTPUT

The example shows that an input value of 22 was assigned to Z, and that

the value was input in 3 seconds (T). If the time limit had been

exceeded, the variable Z would have been set equal to zero and T wuld

have been reported as —5.

Another form of ENTER, ENTER #, gets the user's login number (assigned

at LOGIN time) and places it in a user-specified variable. The format

is:

ENTER # serra |tine-Lint,tine-Linit-var fumes 1
str-var

where user-num-var is the numeric variable which represents
the user number. Other options are the same as for ENTER (above).

Example:

>ENTER # U

>PRINT U

>28

The user's login number is 28 and is returned by printing the value of

U. If a user-variable is not specified with ENTER #, an error will be

displayed.

Example:

10 ENTER # T,5,H,P
20 PRINS "YOUR USER NUMBER IS: ':T
30 PRINT 'P=':P
48 PRINT 'YOUR RESPONSE TIME IN SECONDS WAS: ':H
5@ STOP
>RUNNH
112
YOUR USER NUMBER IS: 28
P=12
YOUR RESPONSE TIME IN SECONDS WAS: 2
STOP AT LINE 50

DATA OUTPUT STATEMENTS

The results of data manipulations performed within a program are not

displayed at the terminal unless some form of the PRINT statement is

included in the program. The remainder of this section describes

various methods of printing and formatting data using the PRINT

statement and the formatting modifiers, LIN, SPA, TAB, and MARGIN.

5 - 7 March 1979



SECTION 5 PDR3958

Default PRINTing
 

Without the use of formatting modifiers, the PRINT statement can
accomplish the following simple formatting tasks:

1. Inserting blank lines in the output.

2. Separating data into columns (using conmas).

3. Spacing data items on a line (using colons or semicolons) .

4, Conditionally printing a line (with WHILE, UNTIL, etc.).

The following program demonstrates the simple formatting of string and
numeric values in two columns by using commas:

1 PRINT 'MATH CALCULATIONS '
20 PRINT
30 PRINT 'ADD', "MULTIPLY!
49 A=3
50 B=7
6@ PRINT
70 PRINT A+B, A*B
80 END
>RUNNH
MATH CALCULATIONS

ADD MULTIPLY

1d 21

The PRINT statements on lines 20 and 60 each cause a single blank line
in the output. Enclosing a string in single quotes ina PRINT
Statement causes the string to be printed verbatim. Separating more
than one item with commas causes each item to be printed in a separate
column.

Column Separators: The output from the PRINT statement is normally
divided into zones or columns of 21 characters each. The first zone
starts in column 1, the second in column 22, etc. For the average
printing page, the maximum number of zones is five.

A comma in a print list causes the terminal to advance to the first
character position of the next available zone. If line overflow
occurs, the current line is printed and a new line is started. If£ the
last element of the print list is a comma, the partial line, if any, is
printed and the cursor is positioned to the start of the next available
zone.

REV. @ 3 - 8



PDR 3858 DATA INPUT/OUTPUT

Example:

1@ PRINT 'COL.1', 'COL.22', 'COL.43'
28 PRINT
38 AS = 'NAME'
48 BS = 'ADDRESS'
5@ CS = 'PHONE NO.'
608 PRINT AS, BS, C$
65 END

When run, the following output results:

COL.1 COL, 22 COL. 43

NAME ADDRESS PHONE NO.

Spacing Items: Using a colon (:) in a PRINT statement causes output
items to be separated by a single space. Using a semicolon (;) causes

no characters to be placed between output items. The following example

shows how a phrase can be output in at least three different ways by
using commas, semi-colons and colons in PRINT statements.

Example:

18 AS="COTTON!
20 BS="CANDY'!
38 CS="IS'
48 DS='"STICKY'
5@ PRINT AS,BS,C$,D$
55 PRINT
68 PRINT AS;B$;CS$;D$
70 PRINT
80 PRINT AS$:B$:CS$:D$
85 PRINT
98 END

>RUNNH
COTTON CANDY Is STICKY

COTTONCANDYISSTICKY

COTTON CANDY IS STICKY

5 - 9 March 1979



SECTION 5 PDR3958

PRINTing Data With Modifiers
 

In addition to the delimiters discussed above, the PRINT statement also
takes three optional modifiers. They format output by forcing items to
indicated tab positions, by inserting any number of spaces between
items, and by inserting any number of blank lines between lines of
out put.

TAB modifier: A specific tab position may be indicated by the TAB
modifier followed by a parenthetical value representing the column
number.

Example:

1@ PRINT'COL.1';TAB(4@); 'COL. 40'
2@ PRINT

30 X=3°2

46 Y=X*50

5@ PRINT X;TAB(4@);Y

6@ END

>RUNNH

COL. 1 COL. 40

9 450

SPA modifier: A specific number of spaces may be forced between items
in the output by the SPA modifier followed by a parenthetical value
representing the number of blank character positions.

 

Example:

1@ PRINT SPA(5): 'COL.5!
28 PRINT
38 X=5
40 Y=X*5
5@ PRINT X;SPA(5);Y

6@ END
>RUNNH

COL.5

5 25

LIN Modifier: A specific number of blank lines may be forced between
items in one PRINT statement using the LIN modifier followed by a
parenthetical value. This eliminates the need for consecutive PRINT

Statements.

REV. @ 5 - 10



PDR 3058 DATA INPUT/OUTPUT

Example:

1@ PRINT 'COL.1'
20 PRINT
38 X=3°2
48 Y=X*2
5@ PRINT X;LIN(3);Y
55 END
>RUNNH
COL. 1

9

81

Note

 

LIN (3) outputs three Carriage Return - Line Feed

combinations. LIN(-3) outputs three Line Feeds
Without Carriage Returns. LIN (8) outputS a
carriage return without a Line Feed.

Formatting With PRINT USING
 

Additional formatting capabilities are provided by the PRINT USING
statement in conjunction with a series of format characters. Both
numeric and string data output can be formatted according to a field of
special format characters, called a format string. This format string

is included on the PRINT USING statement line prior to the list of
items to be printed. The field may contain either numeric or string
format characters, depending on the type of data to be formatted.

There are seven special characters which define numeric format:

#.,  ~+-S$

Table 15-2 in the reference section lists each character and several

examples of its use.

The # Sign: One or more pound signs (#) in a format string represent
digit positions which will be occupied by the datum to be formatted.

which is filled with the data provided in the statement.

5 - ll March 1979



SECTION 5 PDR3858

Example:

PRINT USING '##', 25

Results in the output: 25

Including too few pound signs for a non-decimal datum causes a row of
asterisks to be printed. This indicates that the item to be formatted
was too large for the specified field. For example:

>PRINT USING '####', 123456
KhAK

The period (.): represents the position at which a decimal point should
occur in the datum to be printed:

PRINT USING '##,##', 20

Results in the output: 20.00

(Digit positions to the right of the decimal point will be filled with
zeroes.)

Note
 

If too few digit places are specified in the format
for a decimal number, the item will be rounded off

as follows:

49.325 = 48.32
49.327 = 40.33
49.323 = 40, 32

The comma (,): represents a coma in the corresponding position of the
output unless all digits prior to the comma are zero. In that case, a
space is printed in the corresponding comma position.

Examples:

PRINT USING '#,###.##', 2000

Results in the output: 2,980.00

PRINT USING '+#, ###. HE', @30.6

Results in the output: + 38.6

REV. 9 5 - 12



PDR 3058 DATA INPUT/OUTPUT

The up arrow (*): is used in sets of four. Four up arrows indicate an

exponent field which will be output as Etnn where nnis a two-digit
number depending on how many places the decimal is moved in the format.

 

Example:

PRINT USING '####°°°*', 17,35

Results in the output: 1735E-@2

Plus and minus signs (+ -): are used to indicate the value of a datum
to be printed. A single plus sign placed in either the first or last

character position of the format causes either a+ or - sign to be

printed in front of the item, depending on whether it is positive or
negative.

 

Examples:

PRINT USING '+##. ##', 25

Results in the output: +25. 00

PRINT USING '+##. ##', -12.3

Results in the output: -12.390
how about 'PRINT USING '##. ##-' -32

Two or more plus signs placed in the first character positions of the

format cause the appropriate sign to be output immediately to the left
of the most significant nonzero digit of the datum. The second through
last plus signs may be used as digit positions similar to a # sign as
required by the size of the item.

Examples:

PRINT USING '++##.##', 10.40

Results in the output: +10.40

PRINT USING '+++4+.##', 15.90

Results in the output: +15. 90

One or more minus signs have an effect similar to that described above.
However, a positive datum will be preceded by a blank instead of a +
Sign.

5 - 13 March 1979



SECTION 5 PDR 3058

Examples:

PRINT USING '—##.##', 20.90

Results in the output: 29.90

PRINT USING '—#, ###', —705

Results in the output: - 795

A dollar sign($): One or more dollar signs in a format string cause a
dollar sign to be placed at the appropriate position in the printed
item. This position will depend on other format characters included in
the format string. For example:

 

>PRINT USING 'S###, ###. ##', 4600
 

 

 

 

 

 

$4,600. 80
>PRINT USING '-S##. ##', 40. 325
S40. 32
>PRINT USING 'S##.##', 48,325
S40, 32
>PRINT USING '-SS, ###. #', —70
-~ $270.00
>PRINT USING '+SS###. ##', 70
+ S070. 00
>PRINT USING '+S###. ##', 70
+5 70.80
>

String Fields: There are three special characters for defining string
fields:

# > <

Table 15-3 in the Reference Section lists all string format characters

and examples of using each one. The examples below illustrate the
effects various combinations of these format characters have on string
item format.

REV. @ 5 - 14



PDR 3058 DATA INPUT/OUTPUT

The pound sign (#): Each # sign in the format string represents one

alphanumeric character to appear in the output. Including too few #
signs causes only the specified number of characters to be printed.

 

>PRINT USING '##', 'UGANDA'
UG
 

Left angle brackets (<): in a format string cause the indicated number
of characters from the left-most portion of the datum to be printed.
Other format characters in the string dictate how many characters will

be printed as well as the print field positions they will occupy.

 

>PRINT USING '<##', "UGANDA'
 

 

 

UGA
>PRINT USING '###', "YES'
YES
>PRINT USING '<###', 'YES'
YES

Right angle brackets (>): cause the specified number of characters from

the right-most portion of the item to be printed. Depending on the
other format string characters, the item may be printed in the first
character position of the print zone, or forced to another print
position as shown below.

 

>PRINT USING '>##', 'UGANDA'
 

 

NDA
>PRINT USING '>###', 'UGANDA'
ANDA
>PRINT USING '>###RHERHHH', 'YES'
 

YES

Placing more than one right or left angle bracket in the same format
string has the same effect as only one bracket:

>A S= "UGANDA'
>PRINT USING '>>##', AS

SPRINT USING '>>', AS

SPRINT USING '<', AS

SPRINT USING '<<#', AS

SPAINE USING '<>##', AS

 

 

 

 

 

5 - 15 March 1979



SECTION 5 PDR3858

The following program demonstrates several uses of the PRINT USING
statement. User input is underlined for clarity.

1@ REM EXAMPLE TO ILLUSTRATE PRINT USING
20 !
30 INPUT A,B,C
49 ES= 'STRING'
58 PRINT USING '<###H#EREHHHEHEERREEHE', ES
60 PRINT USING 'D#HFHEREHERHEEEREH EHH, ES
76 PRINT
80 FS='-##. #'
90 PRINT USING FS,A,B,C
108 PRINT USING 'SS#####. ##',A,B,C
11@ PRINT USING '>######t#4# EXPRESSION', ES
126 REM NOTE RESULT PLACED IN SPHCIFIED FIELD
125 PRINT
13@ INPUT X
135 PRINT USING '-##. ##',SOR (X)
>RUNNH
112,13, 14
STRING

STRING

12. 20
13. 08
14.80
S812. BO
$80013. 88
$80914,

STRING EXPRESSION

146
6. 78

STOP AT LINE 135

If a value for A,B or C is too large to fit in the specified field, a
row of asterisks appears when the relevant PRINT USING statement tries
to print the over-large value.

REV. @ 5 - 16



PDR 3858 DATA INPUT/OUTPUT

Example:

>RUNNH
11200, 45,7
STRING

STRING

KRKKKK

45. 0
7.88

$01200. 00
$00045. 08
$0207. 00

STRING EXPRESSION

$1456
38.16

STOP AT LINE 135

Changing Output Line Length
 

By uSing the MARGIN statement, the length of the output line can be
altered. Unless a MARGIN statement is included in the program, the
output line is assumed to be 88 characters. The choice of line length
depends on the terminal and can be any number of characters from 1 to
32767.

A BASIC/VM program can have any number of MARGIN statements. The

specifications set up by the first MARGIN statement will remain in

effect until a subsequent MARGIN statement or a MARGIN OFF statement is
encountered. MARGIN OFF turns off all previously set margins, leaving
only the default line length of 8@ characters in effect.

The following program sets the output line length to 45 characters:

10 REM OUTPUT A MATRIX USING MAT PRINT
28 MARGIN 45

38 DIM M(2,6)
49 MAT READ M
50 MAT PRINT M
60 DATA 1,2,3,4,5,6,7,8,9,10,11,12
70 REM EACH COMMA UP TO 9 MEANS TAB 22 CHARACTERS
80 REM THE NUMBERS AFTER 9 ARE SEPARATED BY 21 CHARACTERS

5 - 17 March 1979



SECTION 5 PDR3958

The following results are obtained when the program is run:

M
O
S

H
O
M
N

r
O
D
W

This program sets the output line to 4@ characters:

10 REM OUTPUT A MATRIX USING MAT PRINT
20 MARGIN 40
30 DIM M(2,6)
4Q MAT READ M
50 MAT PRINT M
60 DATA 1,2,3,4,5,6, 7,8, 9,14, 11,12

Results in:

m
r
O
N
A

D
Y

R
e

w
O
o
n
)
M
w

N
S

REV. @ 5 - 18



PDR3058 PROGRAM CONTROL STATEMENTS

SECTION 6

PROGRAM CONTROL STATEMENTS

INTRODUCTION

Program control statements establish the order in which program

statements are to be executed. These control statements direct program
branching (e.g., GOTO, GOSUB), define loops (e.g., FOR-NEXT), transfer

control to other programs (e.g., CHAIN, COMINP), and tell a program
when to stop (e.g., STOP, END).

There are three categories of control statements: conditional,
unconditional and loops. Conditional statements transfer program
control on the basis of a specified condition evaluating to true or
false. If a condition is true, one set of statements is executed; if

false, an alternative path is taken. Unconditional statements affect
execution control independent of conditions established by other
statements. Loop statements cause a program to loop or repeat a

section of code until a specified condition is attained. Below iS a

list of statements within each group.

 

Statement Type Statements Used

Unconditional GOTO, CHAIN, COMINP

STOP, END
GOSUB -RETURN

Conditional IF-THEN-E LSE, DO-DOEND

Structures ON- JGOTO

GOSUB

Loops FOR-jJWHILE [-NEXT

UNTIL

6 - 1 March 1979



SECTION 6 PDR3058

STATEMENT MODIFIERS

The statement modifiers IF, WHILE, UNTIL and UNLESS can be used with
any executable statement to establish conditions under which the
statement should be executed. Unconditional statements can be made
conditional with statement modifiers, increasing control structure
flexibility. Below is a list of modifiers and their respective effects
on companion statements. The general format of this statement -
modifier combination is:

statement modifier condition [modifier condition] *

statement is an executable statement; condition is a_ logical
expresSion; * means repeat as necessary, and modifier is one of the
following:

e IF - execute the statements if condition is true.

e UNLESS - execute the statement if condition is false.

e UNTIL — execute the statements repeatedly while condition is
false.

e WHILE ~ execute the statement repeatedly while condition
remains true.

More than one modifier may be included in a statement line. They are
processed from right to left.

BRANCHING WITHIN A PROGRAM

There are two types of unconditional statements: those which cause
branching within a single program, and those which branch to external
programs.

The STOP and END statements do not cause branching; instead they
affect program control by terminating program execution regardless of
any previously set conditions.



PDR3858 PROGRAM CONTROL STATEMENTS

Transfer To Another Statement 

One internal unconditional statement, GOTO transfers execution control

directly to a specified statement line regardless of the value of any
condition. The transfer may be either forward or backward.

Example:

19 INPUT A

20 GOTO 5@
38 A = SOR(A+14)
50 PRINT A, A*A
62 IF A<2@ GOTO 30

In this program segment, execution control is unconditionally
transferred to line 50 at line 20. At line 68, program control is
transferred to line 38, if a certain condition (i.e., A@@) is true;

if the condition is not met, executions continues with the next

sequential statement. If a GOTO transfers control to a previous
Statement, a loop can be created as in the following example. Should
the GOTO, be unconditional, an infinite loop may be eStablished.

Example:

1@@ PRINT ‘INITIAL VALUE'
11@ INPUT I
12@ PRINT 'TYPE CHANGE'
138 INPUT C
148 REM C IS +OR -
15@ IF C=0 THEN 200
log T=I+C
176 PRINT 'NEW VALUE IS', I
188 PRINT
19% GOTO 129
2008 STOP

The section between 128 and 190 is repeated until the value of C is
equal to @.

Transfer to Internal Subroutine
 

Like GOTO, the GOSUB statement transfers control directly to a

statement line number. This line is generally the beginning of a
multi-line subroutine which must always end with a RETURN statement.
The RETURN statement transfers program control back to the statement
following GOSUB which called it, and program execution continues. For
example, the following program conditionally transfers control to a
subroutine on the basis of a value input from the terminal:

6 - 3 March 1979



SECTION 6 PDR3958

Example:

5 PRINT 'INPUT A VALUE FOR A!
19 INPUT A
20 IF A<2@ THEN GOSUB 4@
38 GOTO 8¢
49 PRINT 'A LESS THAN 29!
5@ A=COS (A)
6@ PRINT 'COSINE OF A =': A
78 RETURN
80 PRINT 'FINAL VALUE OF A =': A
99 END
>RUNNH
INPUT A VALUE FOR A
123
FINAL VALUE OF A = 23

>RUNNH
INPUT A VALUE FOR A

112
A LESS THAN 20
COSINE OF A = .8438539587325
FINAL VALUE OF A = .8438539587325

This program illustrates the use of GOSUB-RETURN to set up two
alternate execution paths. If A is <20, the Subroutine is executed;
if A> or = to 20, control transfers directly to line 8@, then ENDs.

BRANCHING TO EXTERNAL PROGRAMS

The COMINP and CHAIN statements direct the flow of a program to
external command files or programs.

Control Transfer to Command Files
 

The COMINP statement, followed by a quoted argument (e.g., pathname),
stops the current program flow, calls the specified external file
(called command file), to the foreground, then reads and executes the

commands in it. The command file essentially takes the place of input
from the terminal. This is useful when repeated execution of a series
of commands is required by one or more programs. The series of
commands and associated data can be put in a command file and then be
called by any program as needed.

The BASIC/VM COMINP statement is much like the PRIMOS command COMINPUT
(see Appendix D). The argument following a COMINP statement must be a
legal BASIC string. COMINP may also be used aS a command, and, as

such, takes an unquoted string argument.



PDR3058 PROGRAM CONTROL STATEMENTS

The following program, TESTRUN, uses the COMINP statement to call an

external program, TEST to the foreground. BASICV reads commands from

this program until instructed by the command COMINP TTY to resume

accepting commands from the terminal. This must be the last command in

the external file. The commands COMINP PAUSE and COMINP CONTINUE can

be used to temporarily halt and then continue the process of the

command file.

Example:

The command file 'TEST' was created under the PRIMOS

EDITOR and exists in the same UFD as the BASICV program

'TESTRUN'. Both are listed below:

TESTRUN

OK, slist TESTRUN
GO
10 PRINT "TESTRUN'!
2@ COMINP 'TEST'

TEST

OK, slist TEST
GO
19 PRINT "THIS IS A COMINP FILE, TEST’
20 INPUT A
30 PRINT A
40 IFA < 18 GOTO 20
5@ PRINT 'DONE!'

The last command in the file 'TEST' is COMINP TTY
which returns program control to the terminal.

6 nn) March 1979



SECTION 6 PDR3058

Example: (continued)

At this point, the BASIC/VM prompt is returned, indicating that

The following output results when TESTRUN is executed:

NEW OR OLD:OLD TESTRUN
>RUNNH
TESTRUN

>10 PRINT 'THIS IS A COMINPFILE, TEST!
>20 INPUT A
>30 PRINT A
>40 IF A < 18 GOTO 29
>5@ PRINT 'DONE!'
PRUN

TESTRUN TUE, SEP @5 1978 14: 54: 31

THIS IS A COMINP FILE, TEST

O
v
e

‘
S
d

8

C
w
m

~
]
=

191
91
DONE!
STOP AT LINE 5@
>COMINP TTY
>

ready to accept input from the terminal.

& Oo
’ | O
V

it is



PDR3058 PROGRAM CONTROL STATEMENTS

Transferring Control to an External Program
 

A program external to the one currently in the foreground may be

executed by including a CHAIN statement in the foreground program.

When the CHAIN statement is encountered, execution of the foreground

program is halted, all currently open files are closed, all variables

and arrays are deallocated, and the specified external program is

loaded into the foreground and then executed. This external file may

be either a source or binary (compiled) file. The CHAINED program runs

until an END or any other control-transfer statement (e.g., CHAIN) is

encountered. CHAIN is useful in two situations:

1. If£ a single program is too large to be loaded into memory at one

time, it can be divided into more than one program, each one

being loaded in separately with CHAIN.

2. A particular program may be used by several others by including

CHAIN statements in each calling progam.

Example:

Assume that in a directory, there are three programs

named PROGA, SORT, and OUTPUT respectively. PROGA opens

and writes data to a file called COMMON; when the CHAIN

'SORT' command in PROGA is encountered, SORT is called to

the foreground and executed. SORT then writes to a data

file the values to be used by the file OUTPUT, then

conditionally CHAINs to OUTPUT.

10 ! PROGA - MAIN ROUTINE
100 DEFINE FILE #1 = 'COMMON', ASC SEP
110 INPUT A, B, C

168 MS = ‘DATA’ ! DATA FILE FOR SORT

260 WRITE #1, A, L, MS ! WRITE OUT PARAMETERS FOR SORT

999 CLOSE #1
1998 CHAIN ‘SORT!

BASIC/VM locates SORT, closes PROGA and loads SORT. It then executes

SORT beginning with the lowest-numbered line, in this case, line 100.

6 - 7 March 1979



SECTION 6 PDR3058

190 REM THIS PROG SORTS LATA, CHAINS TO OUTPUT
11@ DEFINE FILE #1= 'COMMON', ASC SEP
12@ READ #1, A, L, MS ! READ PARAMETERS FOR SCRT
130 DEFINE FILE #2 =MS ! OPEN DATA FILE

500 REWIND #1
919 WRITE #1, A, L, Z, X$  ! WRITE OUT PARAMETERS
515 !FOR OUTPUT ROUTINE
520 IF (A = 1) THEN CHAIN 'OUTPUT'!

If the value of A is equal to 1, the file OUTPUT is brought to the
foreground and executed.

CONDITIONAL PROGRAM BRANCHING

Conditional statements generally operate in pairs or groups: the first
Statement sets a condition and the second statement provides an
executable alternative depending on the value of the condition. ‘The IF
Statement, for example, is used in conjunction with other statements
such as GOTO, THEN, ELSE, and DO to establish conditional branches for
program control to follow.

Single Condition Branching: IF Structures
 

There are three general formats for the IF statement. These formats
allow control to be directed to a single statement, to a series of
Statements (subroutine), or to an alternate statement or subroutine
depending on whether a conditional expression is true or false.

Format 1: sets up two alternate paths for the program to take based on
whether the indicated logical expression (condition) is true or false.

IF expr THEN |stmt ELSE |jstmt-2

lin-num} lin-num

expr is a logical expression which is evaluated to true or false; stmt
is a legal BASIC statement and lin-num is a line number of a statement
in the program.

 

Format 2: is a simplified version of the previous format, designating
one line number to which control will be transferred if a condition is
true, If the expression evaluates to false and no ELSE clause is
included, the next sequential statement is executed. Statement is
executed.

IF expr GOTO lin-num [ELSE lin=num]

REV. @ 6 - 8



PDR3058 PROGRAM CONTROL STATEMENTS

Parameters are the same as in the previous format.

Format 3: sets up a multi-branched conditional structure:

IF log-expr THEN DO

DOEND
ELSE DO

DOEND

In this structure, if the logical expression (log-expr) is evaluated to
be true, the statements in the DO...DO END block are executed. If the

expression evaluates to false, the statements in the ELSE DO0...DOEND
block are executed. If no ELSE DO clause exists, the next sequential
statement is executed whether or not the DO...DOEND block has been
executed.

Examples:

200 IF AS = 'REENTER' THEN DO
210 M (I,J) =6
220 J=J-l
238 DOEND
249 ELSE DO
250 M (I,J) =K
268 = J+
270 PRINT J
280 DOEND

IF may be used in conjuction with one or more statements, as indicated
in the program. The series of IF statements first sets up a_ condition
specifying a string value for AS. If that condition is true, the
program is instructed to THEN DO the subsequent statements until a
DOEND is encountered. If the value of AS does not equal the specified
string, the program is instructed to ELSE DO the subsequent statements
until a DOEND is again encountered. A THEN DO or ELSE DO statement is
always used in conjunction with a DOEND statement.

6 - 9 March 1979



SECTION 6 PDR3958

Branching on Multiple Conditions
 

The ON-GOTO and ON-GOSUB statement pairs set up one or more conditions
for control transfer, by means of an arithmetic expression, and a

corresponding set or list of line numbers to which control will be
transferred when one of the indicated conditions occurs. Conditions
are set up by arithmetic expressions which evaluate to integer values.

Format 1: transfers control to a statement indicated by a line number
in the ON-GOTO statement.

ON expr GOTO lin-num-1 [,lin-num-2 —- lin-num—n]

expr is an arithmetic expression which is evaluated and truncated to an
integer. If the result is 1, control transfers to the first line
number listed. If the result is 2, control transfers to lin-num-2, and

so forth.

Example:

ON I GOTO 108, 208, 450

I. is evaluated and truncated to yield an integer less than or equal to
the number of statement lines listed with GOTO (i.e., 3). If I is

evaluated to greater than 3, a GOSUB OVERRANGE error message is
returned.

The ON-GOTO combination essentially operates like several IF
statements. For example, if 580 is the last statement in the program,

the previous ON-GOTO statement could be replaced by the following
series of IF statements:

49 IF I < 1 GOTO 50d
58 IF I > 3 GOTO 5088
68 IF I =1 GOTO 100
70 %XIF I = 2 GOTO 200
86 IF I = 3 GOTO 459

580 END

In this case, the 'GOTO 5@@' statements are necessary to prevent an
out-of-range error if the value of I is anything but 1, 2, or 3.

REV. @ 6 - I



PDR3058 PROGRAM CONTROL STATEMENTS

Format 2: transfers control to a subroutine beginning at the line

number chosen depending on the expression value:

ON expr GOSUB lin-num-l [,lin-num-2,...lin-nunrn]

RETURN

expr, an arithmetic expression, is evaluated and truncated to an
integer. Control transfer works as in the ON-GOTO statement. When a
RETURN statement is encountered in the subroutine, control returns to

the statement immediately following the ON-GOSUB statement. For every
GOSUB executed in a program, exactly one RETURN must be executed.

LOOP STATEMENTS

Creating Simple Loops
 

The FOR and NEXT statements together create a loop, or a series of
statements that are executed repeatedly until a previously determined
condition is met. The FOR statement begins the loop by initializing a
variable and setting a limit on its value. The NEXT statement ends the
loop and directs the program back to FOR at which point the variable is
incremented by one (unless otherwise specified). The FOR-NEXT loop
continues until the value of the variable has reached the set limit.
The format is:

FOR index = start TO end [STEP incr]

NEXT

index is a numeric variable representing the loop index. It is
initialized to start, a numeric expression; the loop is extended until
the end value for the index is reached. incr represents the increment
value; default = 1.

 

 

Example:

15 PRINT 'X', 'X*2'", 'X72'
20 FOR X=1 TO 10
30 PRINT X, X*2, X72
4Q NEXT X
58 END

6 - dl March 1979



SECTION 6 PDR3958

This program initializes the value of X to 1 (line 20), PRINTs’ the
value, its double, and its square (line 30), returns control to line 20
and increments the value of X to 2. The loop continues until the value
of X equals 19. When this happens, the program skips the NEXT X
statement line 40 and stops at line 59.

It is also possible to specify an increment value other than 1. This
is accomplished by including STEP in the FOR statement. In the program
above, the values of X can be set from 1 to 100 with increments of 5 as
follows:

19 PRINT 'X', 'X*2', "x72"
28 FOR X=1 TO 109 STEP 5
38 PRINT X, X*2, X72
40 NEXT X

In this case, the value of X is initialized to 1, incremented to 6, and
is incremented by 5 with each pass through the loop until the value is
equal to or greater than 100.

Note

 

The STEP value may be any value. Also, in
FOR-loops with statement modifiers, the step size
is assumed to be zero unless otherwise specified.

Conditional Loops
 

The statement modifiers WHILE and UNTIL may be used with the FOR- NEXT
Statements to place special conditions on loop execution. Instead of
assigning an end value to index, (the variable which is incremented
during loop execution), the loop is executed WHILE, or UNTIL a
specified condition exists.

WHILE: causes loop execution and variable incrementation to continue
as long as the specified condition is true.

Example:

X = 10

FOR I = 1 STEP 1 WHILE IX

X = X/2

PRINT I, X

NEXT I

STOP

On each pass through the loop, the value of X is divided by 2. The
value of I is incremented by 1 as long as it is less than the value of
X. If no STEP is specified, I would be incremented by zero, or
unchanged, creating an infinite loop.



PDR3858 PROGRAM CONTROL STATEMENTS

UNTIL: causes loop execution and variable incrementation to continue

until the specified condition is met.

Example:

1@ FOR I =1 STEP 1 UNTIL J = 1E4
20 J = J*2 + TAN (I)
38 NEXT I
49 END

On each pass through the loop, the value of J is squared and added to
the function of I. The value of I continues to be incremented by l
until the value of J is equal to 149,900.

6 - 13 March 1979



PDR 3858 EDITING AND DEBUGGING

SECTION 7

EDITING AND DEBUGGING

INTRODUCTION

Errors in a program are basically of three types: syntax errors, which

are violations of language rules: execution errors, which occur when a
program attempt is illogical or impossible action (sometimes fatal):
and logic errors, or faults in program logic which produce strange
results, posSibly including program failure. Errors can be detected by
inspection, compilation and execution, aS explained in Section 3.
Obvious errors in a program can be easily corrected with simple editing

procedures (discussed in Section 3), or with the editing commands

detailed in this section. Inconspicuous logic errors which cause a
program to execute improperly or not at all may be more difficult to
detect. The BASICV debugging tools presented here may be of use in

locating such errors.

EDITING A BASIC/VM PROGRAM

In addition to the simple edit features discussed in Section 3,

BASIC/VM provides commands to perform the following edit functions:

@e deleting one or more statements from a program (DELETE,

EXTRACT )

e editing individual lines (ALTER)

@® renumbering statements after edit (RESEQUENCE)

@ determining number of lines in a file (LENGTH)

Deleting Specific Lines
 

The DELETE command can be used to remove specific statement lines from

a program. The format is:

DELETE Hinenamely «efter?
Lin-num-i - lin-num-n

Example:

DELETE 100, 138-160, 195

7 ~ 1 March 1979



SECTION 7 PDR 3058

This deletes line 100, lines 130 through 168 (inclusive), and line 195.

Extracting Statement Lines
 

The EXTRACT command allows the user to delete all lines in a program
except those specified. The format is:

EXTRACT Lincnunra} «.{Lin-nan-n

lin-num-i - lin-num—n

For example, to delete all lines in a program except 19-50 (inclusive) ,
and line 59, type:

EXTRACT 10-58, 59

This will delete all lines in the program except those indicated.

Editing Within Lines
 

Instead of deleting and retyping a line completely, it is possible to
modify a portion of it. The ALTER command provides a series of
subcommands which enable editing within lines. The ALTER  subcommand
mode is entered by typing:

ALTER 1] ine-number

where line-number is the line to be modified. A complete list of ALTER
subcommands can be found in Section 15. Here are some of the more
useful ones:

Cx Copies line up to but not including xX, Where x is any
character.

Dx Deletes line up to but not including x.

F Copy to end of line,

I/str/ Insert string (str) at current position.

R/str/ Retype line with string from current position.

0 Exit from alter mode.

REV. @ yo = 2



PDR 3858 EDITING AND DEBUGGING

Using ALTER

The following example shows how the subcommands are used. They are

entered in response to the ':' prompt and several.may be packed on a
line without delimiters. ALTER returns the colon after every (CR),
allowing as many chances as you need to modify the line. Type Q to
return to BASIC/AW™M command level.

Examples:

l. > ALTER 100
100 IF X=¥ GOTO 2398

> CHILD/F Copy up to, but not
including the = sign.
Erase 1 character.

Insert >.

Copy the rest of the line.
10@ IF X>Y GOTO 230

3 Another chance to ALTER.

Leave ALTER ‘mode’.

2. >ALTER 230

230 PRINT 'TOO LOw'

: MILE3SA/HIGH '/ >Move 1l characters..

Erase 3 characters.

Append HIGH' to the end
of the line.

238 PRINT 'TOO HIGH'

2Q Another chance to ALTER,

Leave ALTER 'mode'.

7 - 3 March 1979



SECTION 7 PDR3858

Fixing a Simple Program
 

This example shows the process of editing, compiling, and executing a
new program:

1@ ! THIS PROGRAM DEMONSTRATES THE USE OF AN ACCUMULATOR
28 ! D= ACCUMULATED DEPOSITS
38 !X= DEPOSITS; N= NUMBER OF DEPOSITS
49 D=0
45 N=@
5@ READ X
60 D= D+X ! USE OF LET IS OPTIONAL
70 N=N +1 ! THE ACCUMULATOR
75 PRINT "TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ '; D
88 PINT 'NUMBER OF DEPOSITS', N
98 GOTO 50
19@ DATA 14.15, 234.56, 78.90, 12.00, @
>COMPI LE
8@ PINT 'NUMBER OF DEPOSITS', N
INVALID WORD IN STATEMENT
>ALTER 80
86 PINT 'NUMBER OF DEPOSITS', N
:CII/R/F
89 PRINT "NUMBER OF DEPOSITS', N
20
>COMPILE
>EXECUTE
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $14.15
NUMBER OF DEPOSITS 1
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 248,71
NUMBER OF DEPOSITS 2
TOTAL AMOUNT OF DEPOSITS OF DATE IS; $ 327.61
NUMBER OF DEPOSITS 3
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 5
END OF DATA AT LINE 50

 

>65 IF X= GOTO 119 (114 is END statement)

118 END (END statement removes ‘END OF DATA' message)
>COMPILE

>EXECUTE
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 14.15
NUMBER OF DEPOSITS 1
TOTAL AMOUNT OF DEPOSITS TO [TATE IS; $ 248.71
NUMBER OF DEPOSITS 2
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 327.61
NUMBER OF DEPOSITS 3
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4
>85 PRINT (makes printout format neater)
>COMPILE

REV. @ 7 =- 4



PDR 3058 EDITING AND DEBUGGING

>EXECUTE
TOTAL AMOUNT OF DEPOSITS TO DATE IS; $14.15
NUMBER OF DEPOSITS 1

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 248.71
NUMBER OF DEPOSITS 2

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 327.61
NUMBER OF DEPOSITS 3

TOTAL AMOUNT OF DEPOSITS TO DATE IS; $ 339.61
NUMBER OF DEPOSITS 4

Determining the Total Number of Statements
 

The LENGTH command can be used to determine the number of lines in the

foreground file. Its format is:

LENGTH

Example:

>LENGTH
25 LINES

Renumbering a Program:
 

After deleting and inserting statement lines in a program, it may be

necessary to renumber them in a logical sequence. The RESEQUENCE

command renumbers a program with default values or with supplied

values. Any BASICVM program can be renumbered with RESEQUENCE, The

format is:

RESEQUENCE [new-start, old-start, new-incr]

where new-start is the number with which to begin renumbering;

old-start is the line at which to begin the resequence and new-incr is
the new increment value with which to continue renumbering. If no
values are specified, the default values are 100, 1, 10.

7 - 5 March 1979



SECTION 7 PDR3958

Example:

> DELETE 20, 40, 80-120
> LISTNH
10 PRINT
30 PRINT "X', 'X°*K', 'xax!
50 LET X=9
60 PRINT
70 PRINT X, X*X, X*X
138 END

 

> RESEQUENCE 19, 10, 5
> LISTNH
1@PRINT
15 PRINT 'X', 'X*K', 'X*X!
20 LET X=9
25 PRINT
3@ PRINT X, X*X, X*X

 

Renumbering begins with number 18, at current program statement 19, in
increments of 5.

DEBUGGING A PROGRAM

Control errors in a program are sometimes difficult to locate. Finding
and rectifying these errors ina program is called debugging. The
debugging process can be simplified through the use of the commands
BREAK and TRACE, and the ON ERROR and PAUSE statements.

Debug Commands

The BREAK ON command sets up halts, or breakpoints, at specific lines
in a program. These breaks return the user to BASICV command level.
Values being passed within a program can be displayed at these
breakpoints. Program execution is resumed only if CONTINUE is typed.
BREAK ON is issued immediately following compilation and prior to
execution. The format is:

BREAK JON |lin-num-1[,...lin-numn]
OFF

BREAK OFF, typed prior to re-execution, can turn off any or all
previously set breakpoints. If no line numbers are specified with
BREAK OFF, all breakpoints are eliminated.

REV. @ 7 - 6



PDR 3858 EDITING AND DEBUGGING

The following source program demonstrates how to use break points to
cheat at a computer guessing game.

1@ PRINT 'WHAT NUMBER AM I THINKING OF!
15 N=INT (5@4RND (0 )+1)
20 FORC = @ TO 10
3@ INPUT X
5@ IF X<N GOTO 90
60 IF XN GOTO 119
70 PRINT 'RIGHT, ANOTHER!'
88 GOTO 140
99 PRINT 'TOO LOw'
1@@ GOTO 120
118 PRINT 'TOO HIGH'
12@ NEXT C
13@ PRINT 'TIME IS UP. ANOTHER'
14@ INPUT AS
150 IF LEFT(AS,1)="Y' THEN 15
160 STOP

>COMPT LE
>BREAK ON 59
>E XBCUTE

WHAT NUMBER AM I THINKING OF
! 27
BREAK AT LINE 50
>PRINT N
Al
>X=41
>CONTINUE
RIGHT, ANOTHER!
IN
STOP AT LINE 160
>BREAK OFF 58

The program is instructed to stop at line 58. The user finds out what
the number is (PRINT N) and sets an answer (X) equal to that number, in
this case, 41. Program execution is resumed with the CONTINUE command

at which point the system responds that the correct answer has_ been
given. When the answer '‘'N' (for ‘'NO') is given to the ‘RIGHT,

ANOTHER!' prompt, the user is returned to command level. "BREAK OFF

58' indicates that when the program is run again, no break will occur
at line 5@.

7 - 7 March 1979



SECTION 7 PDR3858

Inserting Program Halts
 

The PAUSE statement acts as an executable BREAK. It is used in
conjunction with CONTINUE. When the program halts at the line number
on which the PAUSE statement appears, the words "PAUSE AT LINE x;,
where x is the appropriate line number, are displayed, indicating the
temporary halt. CONTINUE is typed whenever the user wishes to resume
the program after a breakpoint.

Example:

18 PRINT 1
20 PAUSE
30 PRINT 3
48 END
>RUNNH;

PAUSE AT LINE 20
>CONTINUE
3

 

 

Tracing Statement Execution
 

The TRACE ON command is issued immediately after COMPILing, and

immediately prior to EXHCUTing a program. It is useful in tracing the
path of program execution, thereby expiating the debugging process.
The line number of each statement executed is displayed in brackets,
e.g., [120]. For example, if a specified condition is met, a GOTO or
GOSUB statement will be executed, and its line number will be

displayed. When program execution terminates, type TRACE OFF, and the
program can be re-executed normally.

REV. @ 7 - 8



PDR 3058 EDITING AND DEBUGGING

Example:

5 PRINT 'INPUT A VALUE FOR A'

1@ INPUT A

20 IF A<2@ THEN GOSUB 4@

3@ GOTO 80

4 PRINT 'A LESS THAN 20'

5@ A=COS (A)
60 PRINT 'COSINE OF A =': A

7@ RETURN

80 PRINT 'FINAL VALUE OF A =': A

98 END

>COMPILE

>TRACE ON

>E XECUTE

[5]
INPUT A VALUE FOR A

[10 ]
113
[20]
[40]
A LESS THAN 20

[50 ]
[68]
COSINE OF A = .987446781 4582

[78]
[38]
[80]
FINAL VALUE OF A = . 9874467814502

[90]
>TRACE OFF

>E XECUTE

INPUT A VALUE FOR A

123
FINAL VALUE OF A = 23

Notice that after TRACE OFF was typed, the program executed without

line number display.

7 - 9 March 1979



SECTION 7 PDR3858

TRAPPING EXECUTION ERRORS

There are several ways to set up error traps within a program. The ON
ERROR statement establishes a line number to which control will be
transferred when a

_

run-time error occurs. Variation of the ON ERROR
Statement provides for redirection of program flow if an I/O error
occurS on a specified unit. For example, if invalid data is input,
control can be transferred to a statement that will print out an
appropriate error message. The format is:

ON ERROR [#unit] GOTO lin-num

The #unit option is used in trapping If errors on a unit previously
opened by a DEFINE FILE statement. See Section 8 for details.

Turning Off Error Traps
 

The ERROR OFF statement can be employed to cancel all error traps
established by ON ERROR GOTO statements. The format is:

ERROR OFF

The example below uses the ERROR OFF functionality to turn off error
trapping after a certain point in the program.

Identifying Locations and Codes of Errors
 

The following special variables and functions can be used to identify
the location and nature of errors trapped:

ERR a variable set to the code number of the trapped
error.

ERL a variabie set to the line number at which an
error occurred.

ERRS (numexpr ) a function which outputs the text of the error
message associated with an_- error code,
represented by num-expr.

A complete list of run-time error codes and corresponding messages can
be found in Appendix C.

REV. @ 7 = 1@



PDR 3058 EDITING AND DEBUGGING

Using Error Traps
 

The following ex:mple uses several of the error trap features presented
above:

110 INPUT 'FILENAME ', AS
188 ON ERRCR GOTO 1900
120 DEFINE FILE #1 = AS
130 DEFINE FILE #2 = 'OUTFILE'

50@ ERROR OFF

998 STOP
1000 PRINT ERRS (ERR); ‘AT LINE' : ERL
1919 CLOSE #1, #2
1020 STOP

This program directs control to line 1000 if an error occurs between
line 118 and line 500. Line 1000 prints the text of the error via_ the
ERRS (ERR) function. It also identifies the error line via the ERL
function. Line 1818 instructs the program to close the opened files.
The program then stops at line 120. If no error occurs, the program
will stop at line 998. If the ERROR OFF statement is omitted, the ON

ERRCR will be effective throughout the entire program.

The statement to which control is transferred may also identify the
error by its code, and then instruct the program what to do next.

For example:

IF ERR = 13 THEN DO
PRINT LIN (2), 'END OF TEST'
END

DOEND

indicates that if an END OF DATA error, (error code 13), has occurred,

the message ‘END OF TEST' will be printed, and the program will stop.

7 - ll March 1979



PDR3858 FILE HANDLING

SECTION 8

FILE HANDLING

INTRODUCTION

BASIC/VM utilizes all of the file types provided by the File Management

System (FMS) of PRIMOS. These file types, and the type-codes by which

they are identified, are:

ASCII sequential (ASC, the default)
ASCII sequential separated (ASCSEP)
ASCII sequential line-numbered (ASCLN)
ASCII direct access (ASCDA)
Binary sequential (BIN)
Binary direct access (BINDA)

Segment directory (SEGDIR)
Multiple Index Data Access (MIDAS)

Because these files are all created under the auspices of FMS, file
compatibility between BASICV programs and programs written in other
Prime languages (e.g., COBOL, interpretive BASIC, FORTRAN) is assured.

Implementation of these data files in BASIC/VM programming is known as
"file handling'. File handling usually involves opening (or defining)
a file, writing data to the file for storage, and reading, or

retrieving, the data when needed.

The BASIC/VM default file type, ASCII sequential, provides storage and

access methods suitable for most programming needs. The seven other
file types offer alternate features which may optimize storage
efficiency and/or program execution when properly utilized.

This section describes the available file types, their features,

possible uses, and the statements needed to perform the routine file

handling operations, listed below. Only the basic information needed
to use these files in routine BASIC/VM programming is contained in this
section. Users requiring more details on file properties, features and
uses should consult Appendix E, Advanced File Handling.

8 - 1 March 1979



OPENING A DATA FILE

SECTION 8 PDR3858

Operation Statement Used

@ Opening a file DEFINE
e Writing data to a file WRITE
e Examining data storage TYPE, SLIST
e Reading data froma file READ [*], READLINE
e Moving the file pointer POSITION, REWIND
e Updating record data WRITE
e Trapping errors during file ON JBRROR| GOTO
operations END

e Write a matrix to a file MAT WRITE
e Reading data into a matrix MAT READ[*]
e Closing a data file CLOSE
e Deleting a data file REPLACE

The DEFINE FILE statement is the key to all data file operations in
BASIC/VM. DEFINEing a file is relatively simple but involves a number
of concepts which are important to all file handling operations. The
DEFINE process does several important things including:

e reserving buffer space in memory for data storage

@ naming a file

@® assigning a particular file type to the file

@ optionally changing the record size of the file

@e restricting I/O operations to reading or writing

The DEFINE Statement
 

The format of the DEFINE statement is:

DEFINE READ FILE #unit = filename [,type-code] [,record-size]
APPEND

The parameters are discussed below.

REV. @ 8 - 2



PDR3858 FILE HANDLING

File units

PRIMOS requires some buffer space in physical memory to serve aS an
intermediary storage area for each opened file. These buffers are
called file units. To open or define a file in BASIC/WM, a correlation

must be established between a filename and a file unit number. The
file unit number is’ specified by the unit parameter, a numeric
expression with a range of 1 to 12. The number assigned to the file is
used as a sort of shorthand reference to the file throughout subsequent
file operations. The # sign is a required part of the statement
proper, and signifies that a data file is to be opened on the specified
unit.

Up to 12 file units may be opened and active at one time per user in
the BASICV subsystem. If an attempt to open more than 12 units is

made, an error message will be displayed.

Filename

Each data file opened must be assigned a name, as represented by
filename, a legal BASIC string parameter.

Type-code

As mentioned in the introduction, each file type available under [FMS

has a particular type-code by which it is identified to BASIC/VM and
PRIMOS. All file types, their corresponding type-codes, and important
features, are listed in Table 8-1. Note that specification of

type-code is optional. The default type is ASCII sequential (ASC).

Record-si ze

Items in a data file are stored in logical units called records. The
size of a record determines how many characters it can contain. This
character limitation is measured in words at the rate of 2 characters
per word. The default record-size is 60 words, or 12@ characters. The
record size of a file may be increased or decreased by specifying the
appropriate numeric value for the record-size parameter. record-si ze
is specified in number of words per record, as opposed to number of
characters. The minimum record-size is four words for every file type
except MIDAS. The maximum record size is 512 words.

In some types of files, all records in the file are fixed to the
specified number of words, or to the default size, if the record-size
parameter iS omitted. Records in this type of file are called
fixed-length records. Each record in the file is the same length, even
though each record may not contain the same number of data characters.
Other types of files have variable-length records, in which each record
is only as long as the data it contains.

8 - 3 March 1979



SECTION 8 PDR3058

Access Restrictions
 

The optional arguments, READ and APPEND, place restrictions on I/0
operations that can be peformed on a file. The READ argument allows
the file to be read from only. No data can be written to the file
while the restriction is in effect. The APPEND argument postions the
read pointer to the bottom of the file when it is opened. Each file
has a pointer which keeps track of the record currently positioned to
for reading or writing. This restriction allows data to be written to
the bottom of the file only, unless the pointer is repositioned.

REV. @ 8 - 4



Access

Type-—Code Method

PDR 3858 FILE HANDLING

Table 8-1. File Type—Codes

Contents
 

ASC

(de fault)

ASCSEP

ASCLN

ASCDA

BIN

BINDA

SEGDIR

MIDAS

SAM

SAM

SAM

DAM

SAM

DAM

SPECIAL

SPECIAL

ASCII data, formatted like terminal output,
using BASICV PRINT conventions, e.g.,

commas, colons and semi-colons, all dictate

the appropriate number of spaces to be used
as data delimiters. Records variable-length
and easily inspected.

ASCII data stored with commas inserted
as data delimiters. Data are stored
and read back exactly as entered.
Records fixed-length, accessed sequentially.

ASCII data with comma delimiters,
and line numbers inserted in increments
of 18 at the start of each record.

Designed to be edited at BASICV command level.

Similar to ASCSEP. Records fixed-length
and blank-padded as necessary. Direct access
method used for quick, random access to
any record in the file.

Data storage transparent to user.

Records are fixed-length, accessed sequentially.
String data stored in ASCII code: numeric data
stored in four-word floating-point form.
Provide maximum precision and compactness of
numeric data, but cannot be inspected by TYPE etc.

Same as BIN but direct access method

is used for random record access.

Records not data-filled are zeroed out.

Identifies file as a segment directory.
Subordinate files, identified by number,

may be SAM, DAM or other SEGDIR files.
An additional DEFINE is required
to access a subordinate file.

Multiple Index Data Access files.
Created by Prime-supplied MIDAS utilities.

8 - 5 March 1979



SECTION 8 PDR3958

ACCESS METHODS

Retrieval of data from files is accomplished by one of the four access
methods provided by BASICV ard FMS:

e Sequential Access Method (SAM)

e Direct Access Method (DAM)
e Segment Directory Access Method (SEGDIR)
e Multiple Index Data Access Method (MIDAS)

Each access method corresponds directly to a particular file structure.
These structures are illustrated in Figure 8-1. For a representation
of MIDAS file structure, refer to Reference Guide, MIDAS or the

Subroutine Reference Guide.

Both file structures and access methods are built into the PRIMOS

operating system. Access methods determine how individual file records
are identified and retrieved from their storage place on disk. The two
fundamental access methods, Sequential (SAM) and direct (DAM), are

explained below. SEGDIR and MIDAS access methods expand upon SAM and
DAM features and are discussed in the latter part of this section.

The remainder of this section is divided into four parts. Fach part
describes the statements usec in dealing with files of a particular
access type. More details on the properties of each file type, as well
as extended examples of their use, can be found in Appendix E, Advanced
File Handling. In particular, the properties of the default type, ASC,
are discussed at length and then compared with the corresponding
features of other ASCII file types. Users considering serious file
handling should investigate the differences among file types before
working with data files.



PDR 3858 FILE HANDLING

  

  

   

 

RECORD 1

2

3 VARIABLE-LENGTH RECORDS:

4 ACCESSED SEQUENTIALLY

5

6

y SAM FILE

RECORD 1

2

3 FIXED LENGTH RECORDS:

4 ACCESSED DIRECTLY

5

6

y DAM FILE

SEGMENT DIRECTORY

(1)

(2)

(3) DATA FILE 2 (SAM)

(4)

(5)

(6)

DIRECTORY CONTAINS POINTER
FILES WHICH REFERENCE
DATA FILES (DAM/SAM)

 

2

3

4

5

DATA FILE 6 (DAM)

SEGDIR ORGANIZATION

Figure 8-l. File Structures

8 - 7 March 1979



SECTION 8 PDR3058

SAM FILE HANDLING

Sequential files can be opened and manipulated by the following set of
statements.

Statements Used in Sequential Access
 

DEFINE Opens, names and assigns a file type, either ASC,
ASCSEP, ASCLN or BIN and associates it with a file

unit.

WRITE, Writes data records of the appropriate type to the
WRITE USING opened file and advances the pointer to the next

record after each WRITE.

READ [¥*] Reads the record at the current pointer position
READ LINE and advances the pointer to the next record. Must

rewind in order to READ after a WRITE.

REWIND Returns the pointer to the first record of the
File.

ON END Determines the action to be taken if the pointer
reaches the end of the file.

CLOSE Makes sure the file is properly restored to disk
and frees the file unit for other use.

Opening a File

The first step in any file handling operation is to open or DEFINE a

file. Any of the file types listed in Table 8-1 can be opened with
DEFINE.

The type-codes which define SAM files are: ASC, ASCSEP, ASCLN and BIN.

For example, the following statement opens an ASCII sequential file
with comma separators (ASCSEP file):

DEFINE FILE #1 = 'ASCSEP', ASCSEP

Adding Data To SAM Files
 

Data values are written to a DEFINEd file one record at a time with

Successive WRITE statements. Each successive WRITE operation moves the
pointer to the next sequential record, where it awaits the next
instruction. Each new WRITE statement adds the indicated data to a new

record in the file.

REV. @ 8 - 8



PDR3058 FILE HANDLING

Below is an example of writing data to each sequential file type. By

TYPEing each file (using the TYPE command), the data storage patterns
of each file type (except binary) can be inspected.

For more details on data storage in each file type, refer to Appendix

 

E.

Example:

>DEFINE FILE #1 = ‘A'
>DEFINE FILE #2 = 'B', ASCSEP
 

>DEF INE FILE #3= 'C', ASCIN
>DEFINE FILE #4 = 'D', BIN
>A=12
>BS="HELLO!!
WRITE #1,A
DWRITE #2,A
WRITE $3,A
WRITE #4,A
>WRITE #1,B$
>WRITE #2,BS
>WRITE #3,BS
>WRITE #4,BS
CLOSE #1, 2,3,4
>TYPE A
12
HELLO!
>TYPE B
12,
HELLO! ,
>TYPE C

10 12,
20 HELLO!,

>TYPE D
__ “HELLO!>

 

 

WRITEing Formatted Data to a File
 

The WRITE USING statement is similar to PRINT USING (see Section 6) in
that it enables the formatting of data according to a format string.
Format strings are composed of special characters which are listed in
Table 15-2 and Table 15-3. A summary of PRINT USING features can also
be found in Section 15. Formatted data can be written to any type of
ASCII file. An attempt to write formatted data to a binary file will
generate an error message.

8 - 9 March 1979



SECTION 8 PDR3858

The WRITE USING statement has two formats:

WRITE # unit USING format~-string, item-l [,...item-n]
WRITE USING format-string, # unit, item-l [,...item—n]

In either case, the format-string may be numeric or string, depending
on the data, (item-l - itemn), to be formatted.
 

Example:

>DEFINE FILE #1 = "EXAMPLE!
DWRITE #1 USING 'S###. ##', 120
OWRITE #1 USING '<#####", "“FPUNNY'
DWRITE #1 USING '>#####', "FUNNY'
>WRITE #1, 120
>WRITE #1, '"FUNNY'
>CLOSE #1
>TYPE EXAMPLE
$120. 80
FUNNY
FUNNY

120
FUNNY

 

 

 

 

 

In the first WRITE USING statement, a numeric value is formatted with a
decimal point, two trailing zeroes, and a dollar Sign prior to the
left-most digit. The pound signs (#) indicate how many digits are to
be output. If the value was too large for the format string to
accomodate, a string of asterisks would appear in the output. For
example:

WRITE #1 USING 'S###. #', 12000
REWIND #1
READ #1, AS
PRINT AS
KEKKKEK

The second WRITE USING statement left-justifies a string datum in the
file with by using the '<' symbol. The third statement writes the same
item with right-justification by using the '>' symbol. . The data
written to a file with WRITE USING are stored in the format specified
by the format string as shown.

READing SAM Files
 

Data are retrieved from SAM files with the READ statement, as show in
the previous examples. The READ statement has two variations, READ*
and READLINE. All three are used to obtain information stored in a
data file. Specific examples of READing each file type are included in
Appendix E,.

REV. @ 3 - 1



PDR3058 FILE HANDLING

REWINDing The File Pointer
 

In order to READ a_ record above the record to which the pointer is

currently positioned, a REWIND statement can be used to reposition the

pointer to the top of the file. Records can not be positioned to at
random in sequential files.

In sequential files, READs cannot take place immediately after a WRITE

to the same file. An attempt to do so generates the following error

message:

READ AFTER WRITE ON SEQUENTIAL FILE

In order to READ after a WRITE, the file pointer must be returned to
the top of the file with REWIND. An alternative is to CLOSE the file,
re-open it and then READ sequentially until the desired record is
reached. When a file is opened, the pointer automatically positioins
to the top of the file unless otherwise instructed, as with the
"APPEND' option of the DEFINE command.

Example:

>DEFINE FILE #1 = 'ASC'
WRITE #1, 12
READ #1, A
READ AFTER WRITE ON SEQUENTIAL FILE AT LINE @

 

>REWIND #1
>READ #1, A
>PRINT A
12
>CLOSE #1
>DEFINE FILE #1 = 'ASC'
>READ #1,A
>PRINT A
12
CLOSE #1

 

The READ* Statement
 

A variation of the READ statement, READ*, forces the file pointer to

remain at the current record after a READ is completed, rather’ than

moving it to the next sequential record. This is advantageous when
performing a series of READs on a single record. If a record contains
several values which are to be retrieved individually during successive
READs, the pointer can be ‘put on hold' at the current record, enabling
another READ of this record to be performed. The details of READ* are
illustrated in the example below. Some points to keep in mind are:

8 - 11 March 1979



SECTION 8

Example:

PDR3958

If a READ with no * option follows a READ*, the pointer
automatically advances to the next record.

If a READ* follows a READ*, the current recerd is read wntil

all the given variables are satisfied. If necessary, the
pointer then advances to the next record to satisfy any
remaining variables.

1@ DEFINE FILE #1= 'ASC*!

20 DEFINE FILE #2 = 'SEP*', ASCSEP

3@ DEFINE FILE #3 = 'LN*', ASCLN
4Q DEFINE FILE #4 = 'BIN*', BIN

50 REWIND #1, 2,3,4
6@ READ A,B,C,D,E,F
70 DATA 10, 28,30, 40,50, 60, 70
86 PRINT 'FIRST READ WITHOUT *'!

98 PRINT

109
118
129
130
148
158
168
a)
188
198
200
2108
220
230
240
250
260
270
286
298
300
3108
329
338
348
350
360
3708
388

FOR N=1 TO 4
WRITE #N,A,B,C
WRITE #N,D,E,F
NEXT N
REWIND #1,2,3,4
FOR N= 1 TO 4
PRINT "THIS IS FILE ON UNIT #': N
PRINT 'BEGIN READ WITHOUT *!
READ #N,A
PRINT A
PRINT
READ #N,8
PRINT B
PRINT
REWIND #N
PRINT 'NOW READ WITH *'!
READ * #N,A
PRINT A
PRINT
READ * #N,B
PRINT B
PRINT
REWIND #N
PRINT 'END OF READ ON UNIT #':N
PRINT
NEXT N
CLOSE #1,2,3,4
PRINT 'END OF TEST!
END

>RUNNH

FIRST READ WITHOUT *



PDR3058

THIS IS FILE ON UNIT # 1
BEGIN READ WITHOUT *
182038

495860

NOW READ WITH *
10203d

495960

END OF READ ON UNIT # 1

THIS IS FILE ON UNIT # 2
BEGIN READ WITHOUT *

19

49

NOW READ WITH *
10

20

END OF READ ON UNIT # 2

THIS IS FILE ON UNIT # 3

BEGIN READ WITHOUT *

19

4G

NOW READ WITH *
19

20

END OF READ ON UNIT # 3

THIS IS FILE ON UNIT # 4
BEGIN READ WITHOUT *
1d

49

NOW READ WITH *

1d

20

END OF READ ON UNIT # 4

END OF TEST

FILE HANDLING

March 1979



SECTION 8 PDR3858

>TYPE ASC*

10 20 38
4D 58 68
>TYPE SEP*
10, 20,38,
40,590,608,
>TYPE LN*

10 18, 28,30,
20 49,50,60,

The READLINE Statement
 

READLINE is actually a variation of the READ statement that allows the
reading of an entire ASCII file record, including commas, colons,
semi-colons and spaces, as one data item. This is especially useful
when default ASCII or ASCSEP files contain data with internal commas.
READLINE ignores commas as data delimiters (unlike optionless READs).
Thus comma-containing strings will not be broken up by READLINE. For
example, if a record in an ASCII file opened on unit #1 contained the
following values:

MARCUS WELBY, M.D.

READ #1, AS would return:

MARCUS WELBY

READLINE #1, AS would return:

MARCUS WELBY, M.D.

READ vs. READLINE
 

The following exaaple emphasizes the differences between READ and
READLINE for all SAM file types. Note however, that READLINE will not
work on binary files.

"ASCRL!
'SEPRL', ASCSEP
'LNRL', ASCLN
'BINRL', BIN

1@ DEFINE FILE #1
20 DEFINE FILE #2
3@ DEFINE FILE #3
49 DEFINE FILE #4
58 READ AS,B,CS$
60 DATA "WELBY, MARCUS, M.D.; LIC.NO.:', 123001, 'PHONEY'
70 FOR N=1 TO 4
80 WRITE #N, AS,B,CS
90 NEXT N
100 REWIND #1,2,3,4
118 FOR I =1 70 4
128 PRINT 'READ FOR FILE ON UNIr #!: I
13@ READ #I, AS

REV. @ 8 - 14



PDR 3058 FILE HANDLING

148 PRINT
15@ PRINT AS
16@ REWIND # I
170 PRINT
180 PRINT 'READLINE FOR FILE ON UNIT #': I
19@ PRINT
200 READLINE #I, AS
218 PRINT AS
220 PRINT
230 REWIND # I
248 NEXT I
25@ CLOSE #1,2,3,4
>RUNNH
READ FCR FILE ON UNIT # 1

WELBY

READLINE FOR FILE ON UNIT # 1

WELBY, MARCUS, M.D.; LIC.NO.: 123001 PHONEY

READ FOR FILE ON UNIT # 2

WELBY

READLINE FOR FILE ON UNIT # 2

WELBY, MARCUS, M.D.; LIC.NO.:,123001,PHONEY,

READ FCR FILE ON UNIT # 3

WELBY

READLINE FOR FILE ON UNIT # 3

WELBY, MARCUS, M.D.; LIC.NO.:,123001,PHONEY,

READ FOR FILE ON UNIT # 4

WELBY, MARCUS, M.D.; LIC.NO.:

READLINE FOR FILE ON UNIT # 4

ILLEGAL OPERATION ON BINARY FILE AT LINE 200

The error message displayed indicates that READLINE is not a legal

operation on a binary file.

3 - 15 March 1979



SECTION 8 PDR3958

Reaching END OF FILE
 

When the file pointer reaches the end of a file during a READ, an END
OF FILE error message is generated. This causes program execution to
terminate abruptly. To avoid this, include an ON END statement to
transfer control to another program line where an appropriate action
will be taken. For example, the following ON END statement transfers
program control to a statement which closes the file unit:

1@ ON END #1 GOTO 2090

200 CLOSE #1

Trapping Errors 

Errors that occur during data file access can be trapped with the ON
ERROR-— GOTO statement, discussed in Section 7, or with the ON END #unit

— GOTO statement, designed specifically for data files. If the end of
the file is reached during a file READ, for example, an error message
will be generated, and the program or current operation will be halted.
Inclusion of the ON END statenent in a program will eliminate unwanted
program halts by transferring control to another program line or by
performing an appropriate action.

This statement is generally placed near the beginning of the program.
It can be used for both SAM and DAM files, and is especially helpful
when doing multiple READs from a binary file whose contents are not
easily monitored.

Example:

10 DEFINE FILE #1 = 'END1', ASCSEP
20 ON END #1 GOTO 90
30 WRITE #1, 'LAND VALUES AS OF 1976'
35 WRITE #1, 'CALIFORNIA', "NEW YORK'
48 REWIND #1
45 READ #1, AS
50 READ #1,BS
55 READ #1,C$
68 PRINT AS
65 PRINT
70 PRINT 8S,CS
75 GOTO 128
90 PRINT 'END OF FILE REACHED!
106 REWIND #1
105 READ #1,A$,BS,C$
118 GOTO 6

128 CLOSE #1
>RUNNH

END OF FILE REACHED
LAND VALUES AS OF 1976

REV. @ 8 - 16



PDR3058 FILE HANDLING

CALIFORNIA NEW YORK

STOP AT LINE 120

>!IIF WE REMOVE THE ON END STATEMENT, WE'RE IN TROUBLE

>20
>RUNNH

END OF FILE AT LINE 55

CLOSEing a File
 

When access to a file is completed, it is a good idea to CLOSE the

file. This ensures its proper restoration to disk, and releases the

file unit on which it was opened for other use. If the file is not

CLOSEd, it may be lost or truncated when a BREAK or QUIT occurs. A

single CLOSE statement can close one or many file units which have been

opened. Example:

CLOSE #1,2,3

Opening a Temporary File
 

A temporary or SCRATCH file may be opened with a short form of the

DEFINE statement:

DEFINE SCRATCH FILE #unit [,file-type] [,record-size]

The indicated unit is opened as a temporary file of any type except

MIDAS. When the unit is CLOSEd, the file is deleted. No filename need

be specifed. The record-size can be optionally modi fied.

8 - 17 March 1979



SECTION 8 PDR3858

DAM FILE HANDLING

The statements used in dealing with DAM files are identical to those
previously discussed under SAM file handling. The important exception
is POSITION. The following is a list of all available DAM file
handling statements.

Statements used in Direct Access
 

Statement Description
aeeee

DEFINE Opens, names and identifies a direct access file
as ASCII (ASCDA) or binary (BINDA); associates
it with a file unit and optionally sets the
record size (in words).

WRITE,WRITE USING Writes data records to the file opened on
specified unit; advances pointer to next
sequential record.

POSITION Moves the file pointer to any record in the file.
Records are positioned to by number.

READ [*] ,READ LINE Reads values from record to which pointer is

currently positioned; advances pointer to the
next record unless * is specified. Random reads
can be done by POSITIONing the file pointer.

REWIND Returns pointer to first record (top) of file.

ON END Establishes action to be taken when pointer
reaches the end of the file.

CLOSE Closes file to reading and writing and releases
file unit for other use.

Defining DAM Files
 

Direct access files are opened in the same manner as are SAM files.
(See the DEFINE statement, above.) Records in a DA file can be set to

a value larger or smaller than the default of 68 words (12@ characters)
when the file is first defined. The minimum is 4 words: the maximum
512, The record size of a DAM file is fixed to the supplied value, if
given, or to the default value. This value remains in effect for every

record added to the file. Details on adjusting the record size of a DA
file can be found in Appendix E.

REV. @ 8 - 18



PDR3058 FILE HANDLING

Direct access files are either ASCII or binary, as are sequential

files. Direct access files are identified in BASIC/VM by the
type-codes ASCDA or BINDA.

The following statement defines or opens an ASCII direct access file
with a record size of 35 words (70 characters):

DEFINE FILE #1='DIRECT', ASCDA, 35

Writing Data To DAM Files
 

Data are stored in ASCDA files just as they are in ASCSEP files, i.e.,
with comma delimiters. Commas are inserted as internal datamarkers in
both types, so string values containing commas will be broken up.
Semicolons, commas and colons used as delimiters in WRITE statements
are ignored, as shown below:

10 DEFINE FILE #1 'ASCDA', ASCDA
20 DEFINE FILE #2 = 'BINDA', BINDA
3@ READ AS,B,C,D
48 DATA "TRIANGLE DIMENSIONS',12,13,14
50 WRITE #1,AS
60 WRITE #1,B;C;D

78 WRITE #2, AS
80 WRITE #2,B,C,D
90 CLOSE #1,2
>RUNNH
STOP AT LINE 90
>TYPE ASCDA
TRIANGLE DIMENSIONS,

12,13,14,

>TYPE BINDA
<TRIANGLE DIMENSIONSF_1976

Random Access to DAM File Records
 

The major advantage of DAM files over SAM files lies in their record
access flexibility. The file pointer can be moved to any record in the
file with the POSITION statement. Records are positioned to by number.
The number corresponds to the position of the record relative to the
top of the file; i.e., record number one is at the top of the file,

and so forth. The data in the currently positioned record can then be
obtained with a READ statement.

8 - 19 March 1979



SECTION 8 PDR39858

The LIN#(unit) function can be used in DAM file access to check the

actual record ‘number to which the pointer is positioned. Instead of
returning a line number as it does in ASCLN files, LIN #(unit) returns
the number of the record in the file.

In the following example, a file is DEFINEd and data are added to it.
The actual file contents are inspected by TYPEing the data file. Next
the file is re-opened for READ access only and data are retrieved with
POSITION and READ.

Example:

>18 DEFINE FILE #1 = 'ASCDA2', ASCDA, 30
>28 WRITE #1, 'THIS IS THE INFORMATION FOR ROBERT SNCRK'
>30 WRITE #1,'NAME: ROBERT SNORK; TITLE: OPTHAMOLOGIST'
>40 WRITE #1, "ADDRESS: 12 MYOPIC LN, OCULAR, WISCONSIN'
>50 CLOSE #1
>RUNNH
STOP AT LINE 50
>TYPE ASCDA
THIS IS THE INFORMATION FOR ROBERT SNORK,
NAME: ROBERT SNORK; TITLE: OPTHAMOLOGIST,
ADDRESS: 12 MYOPIC LN, OCULAR, WISCONSIN,
>!
>!0pen a READ only file
>DEFINE READ FILE #1 = 'ASCDA2', ASCDA
>POSITION #1 TO 3
>PRINT LIN#(1)
3
>READ #1,CS
>PRINT CS
ADDRESS: 12 MYOPIC LN
>PRINT LIN#(1)
4
>READ #1,AS
END OF FILE AT LINE @

 

 

 

In this example, the record size was set to 38 words (6@ characters).

In direct access, the file pointer scans through the file until the
beginning of the desired record has been reached. The pointer
determines the actual location of this record by counting the number of
characters it has to bypass in order to reach it. The pointer knows
how many characters are in each record, so it counts, in this case 2

times 6@ characters, or 12@ characters, to reach the third record. ‘The

pointer will now be at character 121, which begins the third record.
The LIN# function clearly indicates that the pointer is now at the
third record. After the READ is done, the pointer is at record #4, as
indicated by the LIN #(unit) function. Note that when opening a file
for READing only, the record size need not be given; however if an
incorrect record-size is specified, the error message, DA RECORD SIZE

ERROR AT LINE 4 is returned.

REV. @ 8 - 20



PDR 3058 FILE HANDLING

Reading DAM Files
 

DAM file READs are done in the same manner as are SAM file READ, i.e.,
READ, READ* and READLINE work in direct access just as they do in
sequential access. Each READ statement advances the file pointer to

the next sequential record when the READ has been completed. READ*

holds the pointer at the current record until all the values specified

in the next READ statement are satisfied. In ASCDA files, READLINE

returns all the values in a record as one datum, commas, semi-colons,

etc, included.

If a file has been previously DEFINEd and written to, it can be opened

and restricted to READ or APPEND access by using the READ or APPEND

options of the DEFINE statement, as in the previous example.

Error Trapping in DAM FIles
 

END OF FILE errors, aS well as other execution mishaps, can be trapped

via the ON END and ON ERROR statements discussed earlier under SAM file

handling. These statements are applicable to diract access files as
well as sequential files.

CLOSEing a DAM File
 

Direct access files are closed in the same manner as are SAM files. It

is a good practice to close all data files when access to them has been

completed. This ensures against accidental truncation which could

occur if you break out of BASICV via CTRL-P or BREAK. When this

happens, all opened file units are left open. At PRIMOS command level,

these file units can be closed with the CLOSE ALL command, discussed in

Section 3.

8 - 21 March 1979



SECTION 8 PDR 3058

SEGMENT DIRECTORIES

A segment directory is actually a list of numbered entries which
contain the addresses of data files. These numbered entries,

referenced by number only (no names) are called 'pointers' because they
point to, or reference, data files. The files to which they point can
be of any BASICV file-type. Accessing the data files listed under a
segment directory requires an additional step in the DEFINE process.

Opening a Segment Directory Data File
 

The process of opening a data file contained in a segment directory is
best illustrated by example. Suppose we have in our current directory
a segment directory SEGA which contains several pointers to data files.
To access a certain ASCII data file referenced by one of these pointers
(in this case, File 3), the segment directory must first be opened on a
file unit as follows:

DEFINE FILE #1='SEGA', SEGDIR

The segment directory SEGA is now opened on file unit 1. Next, we must
choose the third entry, which contains the data file address:

POSITION #1 TO 3

The file pointer is now positioned to segment 3 and the address of the
data file we want to open. To open this data file, another file unit
must. be assigned with a DEFINE FILE statement. A special convention is
used to indicate that the data file being opened is part of the segment
directory opened on the previous unit:

DEFINE FILE #2='(SD1)', ASC

(SD1) refers to the file unit # 1 on which SEGA, the segment directory
(SD) has been opened. The ASCIT data file is now opened for reading or
writing on unit 2. Both file units must remain open as long as the
data file is being used.

Deleting Data Files From Segment. Directory
 

Data files in a segment directory can be deleted by using the REPLACE
statement. The format of the statement is:

REPLACE #unit SEG x BY SEG y

The pointers x and y point to two files, (x) and (y) respectively,

REPLACE deletes file (x), and mcves pointer y into pointer x, leaving
pointer y empty. The original (x) is gone, and the original (y) has
been renamed (x). Refer to Figure 8-2 for a visual interpretation.

REV. @ 8 - 22



PDR3958 FILE HANDLING

BEFORE:

 

 

    
 

  
 

  
 

AFTER:

 

 

    
 

DELETED

  
 

  
 

Figure 8-2. Deleting a SEGDIR Data File

8 - 23 March 1979



SECTION 8 PDR3858

MIDAS

MIDAS, or the Multiple Index Data Access System, is a collection of
interactive utilities and subroutines for the efficient management of
index-sequential and direct-access data files. MIDAS provides the
programmer with an efficient method of building, restructuring,
deleting, searching and accessing keyed-index data files. Data entry
lockout protection and multitple user access to files are also
Supported by MIDAS. BASIC/VM does not support the following MIDAS
features: direct-access and secondary-index data. For more
information on the features of MIDAS and the usage of the related
utilities, consult the REFERENCE GUIDE, MIDAS.

Brief Description of MIDAS Files
 

The first step in building a MIDAS file is the creation of a template,
or file descriptor, for the MIDAS file. The PRIME-supplied program
CREATK, is used to do this. It prompts the user for input describing
the file to be created. The parameters supplied include the filename,
access type (DA,SA), data subfile information including key type, key
size for both primary and secondary indices. A MIDAS file can contain
up to 28 indices, that is, 1 primary and 19 secondary indices.

Maintenance of the file can be done by multiple users simultaneously.
A lockout subroutine guards against simultaneous changes and deletions
of data entries. Other operations are done by exclusive single user
access. See the MIDAS reference manual for further information.

MIDAS File Configuration
 

Although MIDAS provides its own methods of accessing files, the
statements provided by BASIC/VM allow the user to access data ina
MIDAS file and use it in a BASIC program. These statements can be
thought of as operating on a MIDAS file configured as a rectangular
matrix or two-dimensional array. Each element of the matrix contains a
unique data record fointer. Access to these data records is
accomplished by specifying the correct 'coordinates' of a particular
element or key in the matrix. See Figure 8-3.

REV. @ 8 - 24



PDR3858 FILE HANDLING

INDEX SUBFILE (KEY NUMBER)(K)

   

1 KEY (0,1) KEY (1,1) KEY (2,1) |——-——>
\ \ \
\ \ X

ARROWSARE POINTERS
TO DATA RECORDS

         

  
 

        
 

 
 

 

       
  

POSITION

(KEY VALUE) 2 KEY (0,2) —_—-->
\ 4 4

(P) x x x

3 KEY (0,3) __-->
x x

\ \ \

The MIDAS File modeled as a matrix consisting of

index-subfile numbers (key numbers) on the X-axis,

and key-positions (key values) on the Y-axis.

Figure 8-3. Configuration of MIDAS file

8 - 25 March 1979



SECTION 8 PDR3858

The values of K and P (in the previous diagram) form the coordinates of
data record pointers.

During a file read, the 'READ' pointer moves around the array, allowing
the user to obtain either the key or the data record pointed to by the
key. Initially, the file 'READ' pointer is set to the first primary
key or the upper left corner of the matrix.

STATEMENTS

The statements used to access MIDAS files in BASIC/VM are similar in
function and format to those discussed earlier in this section. The
parameters and arguments must be supplied in legal BASIC form. These
statements are designed to perform a consistent and complete set of
movements around a MIDAS file structure, so that any sequence of
Statements may be used without inconsistent or unpredictable results.
Statements are listed below:

  

Statement Func tion

DEFINE Opens existing MIDAS file on specified wnit.

ADD Adds record to end of MIDAS file. Does not

change current record location.

READ [KEY ] Reads data from MIDAS file: optional

arguments specify record location. KEY option
returns value of key to which pointer is
currently positioned.

POSITION Moves read pointer to any record in file;
locks on record until pointer is
re-positioned.

REWIND Rewinds pointer to top of indicated column in
file (see figure 8-3) or to beginning of file.
(default).

UPDATE Adds data to current record.

REMOVE Deletes one or more keys from MIDAS file: if
primary key, deletes associated data.

 

CLOSE Closes MIDAS file on indicated unit.

REV. @ 8 - 26



PDR3058 FILE HANDLING

TERMS AND CONVENTIONS

The following is a list of special terms and conventions used in

defining the MIDAS access statements.

Definitions

{...} Select any one of the vertically stacked elements.

[...] Enclosed items are optional.

* Indicates repetition, 8 or more times.

+ Indicates repetition, 1 or more times.

#unit File unit on which MIDAS file is opened.

KEY @
PRIMKEY The primary key.

SAME KEY Positions to or returns datum only if next key

matches current one.

SEQ Supplied in lieu of key: next sequential record is

positioned amd read.

num-expr-X Represents numeric expressions.

str-expr-x Represents string expressions.

MIDAS FILE HANDLING

The BASIC/VM statements available for MIDAS file access are described

below. The examples supplied with the descriptions of each statement

are taken from the MIDAS-BASIC demonstration program that immediately

follows the presentation of statements.

Opening a MIDAS File
 

The DEFINE FILE statement opens a MIDAS file on an indicated file unit.

If the record size is specified, the internal buffers are dimensioned

to this value. The record size should be equal to the length of the

data record. This information is defined in the MIDAS file by the

CREATK utility.

8 - 27 March 1979



SECTION 8 PDR3858

DEFINE FILE #unit = str-expr, MIDAS [,num-expr-1]

f#funit = file unit number on which file is opened
str-expr MIDAS filename
numexpr-l = record size (in words)

Example:

DEFINE FILE #1= '"DIR', MIDAS, 64

Positioning the File Pointer
 

The position statement positions the read pointer to any record in the
MIDAS file. The record positioned té is locked up on positioning and
un~locked when the pointer is POSITIONed to another record. Note that
there are no specific lock and unlock statements in BASIC/VM,

SEQ
POSITION #unit, { KEY [num-expr] = str-expr }

SAME KEY

num-expr = secondary key number (index subfile number)
str-expr = key value(primary or secondary)

Example:

POSITION #1, SAME KEY

READing a MIDAS File
 

Data are retrieved from a MIDAS file via the READ statement. The KEY,
SAME KEY or SEQ options are used to specify the location of the record
to be read. The READ KEY statement gives the actual value of the
current key to which the pointer is positioned.

SEQ

READ [KEY] #unit [, {KEY [num-expr] = str-expr}], str-var
SAME KEY

num-expr = index subfile number
str-expr = key value
str-var = variable into which data is read from record



PDR3958 FILE HANDLING

Example:

READ #1, SEQ

If SEQ is used in place of a key, the next sequential record, in key

order, is read. SAME KEY returns a datum only if the next key is the

same as the current one. If the keys do not match, an error trap is

taken. READ statements pre~position and lock to the location specified

by the KEY, SAME KEY or SEQ (sequential )options. The data is then

read and returned in the specified string variable. In the optionless

form of READ, (e.g., READ #1, X$), no positioning occurs and only the

current record is read.

Writing to a MIDAS File
 

The ADD statement adds a record to the MIDAS data base. It does not

change the current record location.

PRIMKEY

ADD #unit, str-expr-l, { KEY [@-expr] } = str-exp-2 keylist

where keylist = [,KEY num-exp-l = str-expr-3] *

Y-exp expression evaluating to zero
str-expr-l = MIDAS filename
str-expr-2 actual primary key value
str-expr-3 value of secondary key

num-expr-1 secondary key number (index subfile

number)
list of secondary key numbers and valueskeylist

ADD #1, X$, KEY@ = IS$(1)

The UPDATE statement adds a string expression to the current record on

the specified file unit. If keys are being stored in the record, the

UPDATE statement should not be used for changing these keys. BASICV

does not monitor internal record structure and can not determine

changes in a key field.

UPDATE #unit, X$

X$ = string expression to be
written to current record.

8 - 29 March 1979



SECTION 8 PDR3058

Removing Data

The REMOVE statement deletes a given key from the MIDAS data base. If
the key is a primary key (where num-expr=@) then the data associated
with the primary key also is deleted. The language permits both
multiple and single key removal in a single statement.

REMOVE #unit [, KEY [num-expr] = str-expr ]+

Repositioning the File Pointer
 

The REWIND statement is used to reposition the file pointer from the
current index subfile to a specified point. This can be thought of as
positioning the pointer to the top of an indicated column. If the key
specification is omitted, the default KEY @ is assumed. This positions
the pointer to the upper left corner of the matrix. (equivalent to
REWIND #unit, KEY @.)

REWIND #unit [, KEY num-expr]

Example:

REWIND #1, KEY3 (Set pointer to top of index subfile [KEY]3)

Closing a MIDAS File
 

A MIDAS file is closed in the same manner as the data files previously
discussed. The format is:

CLOSE #unit

SAMPLE PROGRAM

The following program, MIDASDEMO, illustrates the use of the BASIC/VM
MIDAS access statements to retrieve record information from a MIDAS
file. This program is included on the Master Disk Shipped at Rev. 16
and is available for general use. A description of the functions
defined in the program follows:

1! ** A VERY SIMPLE 'MIDAS QUERY LANGUAGE! **
2!
3! MIDAS Demonstration Program
4}
5! This program demonstrates the use of MIDAS in a simple
6! application. Central ideas to note are the use of multiple
7! keys, storage of key fields as data, and the use of BASICV's
3 ! String functions to automatically control string lengths,
9! to perform space-padding, and facilitate string comparisons.
1g !
ll! The functions available via this program are:
12 ! FIND [ALL] field-name field-value
13! Finds one or all of the records with a the given value

REV. @ 8 - 368



14
15
16
17
18
19
20
21
22
23
180
110
115
116
117
120

1398
148
158
168
16l
162
170

188
190
200
210
220
221
222
230

231
240
250
268
270
280
290
300
310
311
312
320

PDR3858 FILE HANDLING

in the field specified by field-name. Field names
are requested from the user at the start of the program.

ADD

Allows the user to add a record to the data base.
The user is prompted with the field names before
being required to type in the record.
LIST

Lists out all records in the file.

ON ERROR GOTO 688 ! first set a single error handler
DIM I$(1@) ! the input array
t

! First define all needed functions
'

DEF FNPS(X$,N) ! pads X$ with spaces on right such that total

length is N

Y$=x$
YS=Y$+' ' UNTIL LEN (Y$)=N
FNPS=Y$
FNEND
t

!

DEF FNK(F$) ! returns a key (index subfile) number given a field
name

FOR I = 1 TO 18
FNK = I-l

IF K$(I)=FS THEN GOTO 2290
NEXT TI

FNEND
I

!

DEF FNI ! input function - gets space-separated strings from TTY

and

! stores the sequence in IS$(1)...1I$(n)
INPUTLINE '.',XS ! prompt with a '.'
XS=xX$+' !
MAT IS=NULL
FOR I = 1 STEP 1 UNTIL CvTS$ (X$,2)='' ! CVSS insures no blanks

IS (I) = LEFT (XS, INDEX (X$," ')-1)

XS = RIGHT (XS, INDEX(XS,' ')+1) ‘

NEXT I

FNEND
!

1
DEFINE FILE #1='DIR' ,MIDAS, 64

338 MATINPUT 'Fields:',KS(*) ! field names, in order from KEY @

331 !
332 ! ** main loop **
333 !
349 D=FNI ! input command string
345 !
346 ! FIND ALL

8 - 31 March 1979



SECTION 8 PDR3058

347 !
358 IF I$(1)='FIND' AND I$(2):='"ALL' THEN DO
368
378
380
398
400
419
411 !
412 !
413 !

POSITION #1, KEY FNK (IS (3))=I$ (4)

READ #1, XS
PRINT CVTSS (XS, 16) ! compress strings of blanks to one blank
POSITION #1, SAME KEY ! find all records with this key value
GOTO 37¢

DOEND

FIND

429 IF I$(1)='FIND' THEN DO
439
449
4508
460
461 !
462 !
463 !

READ #1, KEY FNK (IS (2))=I$ (3), X$
PRINT CvTSS (XS, 16)
GOTO 349
DOEND

ADD

470 IF I$(1)="ADD' THEN DO
480 PRINT KS(I): FOR I = 1 TO 4

49 PRINT ' ';

500 D = FNI

518 I$(1)=FNPS(IS(1),32) ! write data must be padded to correct
length

520 IS (2) =FNPS (IS (2) , 32)

530 I$ (3)=FNPS (I$ (3) ,32)

548 IS (4) =FNPS (IS (4) , 32)

558 ZS=IS(1)+1I$(2)4+1$(3)4+IS(4)
568 ADD #1,Z$,KEY@=IS (1) ,KEY1=IS$ (2) ,KEY2=IS (3) ,KEY3=I5 (4)

576 GOTO 34¢

538 DOEND

531 !

582 ! LIST

583 !

590 IF IS(1)='LIST' THEN DO

608 REWIND #1 ! default is KEY @
618 READ #1, XS
628 PRINT CvTss (X$,16)
630 POSITION #1, SEQ

648 GOTO 61¢
658 DOEND

651 !
652 |!
668 PRINT '?' ! command error

678 GOTO 3490
671 3
680! a single error handler !!!!
681 !
690 IF ERR=56 AND ERL=398 THEN GOTO 342

695 IF ERR=56 AND ERL=638 THEN GOTO 340

788 PRINT ERRS(ERR):'AT LINE':ERL ! fall through to system error
720 END

REV. @



PDR 3058 FILE HANDLING

Setting Up A MIDAS File
 

The MIDASDEMO program operates on a MIDAS file whose template is set up
by the CREATK utility. A command file, listed below, invokes the
CREATK utility and prompts the user for the template information. The

template is the skeleton for the file. It defines the keys on which

data will be searched.

After the template has been set up, the program can be run and_ the

record information can be added to the file.

OK, * FIRST MAKE AN EMPTY MIDAS FILE
OK, CO C CREATK
OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? DIR

NEW FILE? YES

DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : W 16
DATA SIZE =: 4

ee

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A

KEY SIZE = : W 16
USER DATA SIZE =: (CR)

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A
KEY SIZE = : W 16

ee,

USER DATA SIZE =: (CR)

INDEX NO.? 3

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A

KEY SIZE = : W 16

USER DATA SIZE =: (CR)

8 - 33 March 1979



SECTION 8 PDR3858

INDEX NO.? (CR)

OK, CO TTY
OK,

Description of MIDAS Demo Program
 

The MIDAS Demonstration program sets up a series of functions to make
record access more flexible. Most of the MIDAS access statements
described earlier are included in this program.

The user-defined functions in this program are:

FNPS (X$,N) - pads a given string, XS, with spaces to make it equal
to length N. Uses system function LEN(Y$) which
returns the number of characters of string YS.

FNK(FS) - returns a key (index subfile) number given a_ field
name.

FNI - the input function; accepts string input from the
terminal (TTY) and stores it in an array. Uses the
system functions: CV?S$ which reformats a given
string according to the indicated mask (listed in
table 19-3); INDEX(X$,Y$)- computes the starting
position of YS in X$.(In this case, finds first blank
Space in XS.) LEFT(XS$,Y)- returns the left-most Y
characters of string X$.(In this case, returns first

characters immediately to the left of the first
blank. ) RIGHT (X$,Y) -returns right-most Y characters
of string XS. In this case, those beginning after the
first blank found in XS.

After the functions that accept and organize input for the data file
have been defined, the program opens the MIDAS file called 'DIR' on
file unit #1. A record size of 64 words is specified, meaning that no

data in excess of 64 words will fit into one record. .

DEFINE FILE #1 = 'DIR',MIDAS, 64

The user is then prompted to input field names in order, as shown in
the sample dialogue below. The function FNI forms an array of these
input strings. The prompt character for user input is defined as a
Single dot.

REV. @ 8 - 34



PDR 38058 FILE HANDLING

The program then defines what will occur when the user inputs the

words, FIND or FIND ALL. The FIND ALL function incorporates the BASICV
Statements POSITION and READ.

POSITION #1, KEY FNK(IS(3)) = I$(4)

The POSITION statement tells the read pointer to find the record
referenced by the key(index subfile number), in this case FNK(I$(3)),
whose value is given by the expression IS (4).

After the record is read and printed out, the pointer is told to
position to the next record referenced by the previously specified key.
This accomodates the use of duplicate keys(i.e., having more than one
record or entry referenced by a single key).

POSITION #1, SAME KEY

Once a record is positioned to, the data in it can be READ into a
specified string variable. The READ statement places all the data in
the current record into string X$x.

READ #1, XS

In this case, the specified key is given by FNK(I$(3))=I$(4), and the
record associated with this key will be read. The function then prints
out the record and loops until all records corresponding to the given
key are read and returned.

The FIND function is similar to FIND ALL but only retrieves one
specific record, the first one it encounters fitting the description

given by the key.

POSITION is not necessary when READing a MIDAS file. The read pointer
will automatically position to the proper record when a key value is
supplied with a READ statement.

READ #1, KEY FNK (IS (2))= I$ (3) ,X$

Here, the key number and value are supplied and the record is
positioned to and read. The function then prints out the data in xX$
and returns the user to the input function (FNI) at line 340.

If the user types ADD at line 348, the program jumps to line 470 which
begins an '‘'ADD' sequence. Data can then be added to the MIDAS data
base with the ADD statement. First, the item must be padded to the
correct length, which is accomplished by FNPS. This key information is
then added to 'DIR' with the ADD statement.

8 - 35 March 1979



SECTION 8 PDR3658

ADD #1, ZS, KEY 0= I$(1), KEY1=I$ (2) ,KEY2=1$ (3) ,KEY3=I$ (4)

(The subset containing 'KEY1' through'I$(4)' is a KEYLIST.)

The LIST function makes use of the MIDAS access statements REWIND, READ

and POSITION to generate a listing of all the records in the MIDAS

file. The pointer is first wound to the beginning or (upper left

corner of the matrix) of the file:

REWIND #1

No key is specified, therefore, KEY @ is assumed. The program reads

the first record pointed to and prints it out. The next record is then

positioned to with the statement:

POSITION#1, SEQ

The SEQ parameter tells the pcinter to position to the next sequential

record in the file. It may have the same key value as the record just

read. This happens when c¢uplicate keys are being used. This

sequential 'position-read' routine is done until the end of the file is

reached.

The reanainder of the program handles errors, using the BASIC/VM error

functions, ERRS and ERR. See Section 15 for details.

The following is an example of an actual interactive terminal session

during which the DEMO program was run.

REV. @ 8 - 36



PDR3858 FILE HANDLING

NEW OR OLD: OLD DEMO

>RUN

DEMO FRI, SEP @1 1978 17: 463 24

Fields: NUM,NAME,CITY, STATE
NBD)
NUMNAME CITY STATE .1 JONES BOSTON MASS
.ADD
NUMNAME CITY STATE .2 JAMES NEWTON MASS
.ADD
NUMNAME CITY STATE .3 SMITH NYC NY

-ADD
NUM NAME CITY STATE .4 AMES ORANGE NJ
. LIST
1 JONES BOSTON MASS
2 JAMES NEWTON MASS
3 SMITH NYC NY
4 AMES ORANGE NJ
-FIND NAME JAMES
2 JAMES NEWTON MASS
.FIND ALL STATE MASS
1 JONES BOSTON MASS
2 JAMES NEWTON MASS
~FIND ALL NAME J (partial key access - finds all names starting with
'J')

2 JAMES NEWTON MASS
1 JONES BOSTON MASS
.FIND ALL STATE N
4 AMES ORANGE NJ
3 SMITH NYC NY
-controlc.

END OF DATA AT LINE 240
>QUIT

 

 

 

 

 

 

 

 

 

DEMO RUN

8 - 37 March 1979



SECTION 8 PDR3858

Running the MIDASDEMO
 

The MIDAS file template set up by CREATK contains no data; they are
entered by the user when the DEMO program is run. The first data
requested by the program are the field names, which correspond to the
primary amd secondary keys. Deta items are entered in response to the
"." character, which was established by the DEMO program as the input
prompt.

In the example session on the previous page, the 'ADD' function is used
to add four separate records) to the data base. The entries NUM,
NAME,CITY and STATE corresponc. to the primary key (KEY @), and
secondary keys, KEY 1-3, respectively. The various program-defined
functions discussed earlier are then utilized.

The Control-C break-out at the end of the program is possible only
during input mode, or when the program is waiting for input from the
terminal.

A complete summary of all the BASIC/VM MIDAS access statements can be
found in reference Section 15 ir. the rear of this manual.

REV. @ § - 38



PDR 3058 ARRAYS AND MATRICES

SECTION 9

ARRAYS AND MATRICES

INTRODUCTION

Arrays and matrices are one or two-dimensional tables of contiguous
numeric or string values. A matrix consists of those elements in an
array with non-zero’ subscripts. Fach array or matrix element is
represented by a subscripted value (integral only). In a
two-dimensional array element representation, the first subscript
represents rows, the second, columns. Thus, in array A, below, element

(2,2) is in row 2, column 2. This is the last element in the array.

Any non-integral subscript value entered is truncated to an integer
before being used to locate the specified element.

The DIM statement is used to dimension an array or matrix by setting a

limit on the number of elements it contains. For example, the
statement DIM A(2,2) sets up a two-dimensional array with the following
elements:

(0,8) (8,1) (8,2)
(1,0) (1,1) (1,2) (1,1) (1,2)
(2,8) (2,1) (2,2) (2,1) (2,2)

ARRAY A MATRIX A

(all subscripts non-zero)

Matrix A consists of those elements of array A having non-zero

subscripts. The dimensions of matrix A are 2 by 2, i.e., two rows by
two columns. The actual dimensions of array A are 3 by 3: three rows
by three columns.

ARRAYS

Numeric Arrays

A numeric array name is a simple numeric variable. An array name,
followed by one or two parenthesized values, indicates an element in
the array. For example, A(5) and B9(6) are elements in one-dimensional

arrays. The values of all elements in a numeric array are initialized
to @ at the beginning of the program in which they are defined.
Numeric array elements are assigned values like any other numeric
variable, e.g., B9(6)=2.

9 - 1 March 1979



SECTION 9 PDR3058

String Arrays

A string array is named bya simple string variable. String array
elements are represented by an array name followed by one or two values
enclosed in parentheses. For example, the following are elements in
String arrays:

AS (5) (one-d:mensional array element)
BS (I+1,3) (two-dimensional array element)

All elements of a String array are variable length character strings.
Each element of a string array is initialized to null by the compiler
at the beginning of program execution. String array elements are
assigned values like all string variables, e.g., A$(2)="steve'.

Declaring an Array 

Array dimensions are established either by the DIM statement, by a MAT
Statement (Such as MAT PRINT) which references the array, or by the

default value of (18) or (10,10;. The value of any subscript must be
within the range of the defined array dimensions.

The first element in any array is represented as (9) for a
one-dimensional array or (@,8) for a two-dimensional array. However,
these elements are not printed if MAT PRINT is used to output the
array; only the matrix portion of the array will be output.

Example:

DIM A (5)

defines a one-dimensional array of six elements: A(%) through A(5).
DIM statements may appear anywhere in the program. Before execution
begins, BASIC/VM sets up the arrays internally using the following
rules:

1. If an array element is reiierenced in a program, such as A(l), or
A({2,3) but the array A has not been defined in a DIM statement,

it is implicitly dimensioned to (18) or (10,10).

2. If an array is defined more than once by DIM, the first dimension
sets its size.

The following statement defines a 10 by 10 array where element (1,1)
has avalue of 2. All other e..ements are 8. Its dimensions are 10 by

10 (default) because it has not been previously dimensioned by DIM.

REV. @ 9 = 2



A(l,1) = 2

Below are examples of one-dimensional and
arrays defined by DIM.

One-dimensional:

18 DIM A(8)
20 FOR N = 8 TO 8
3@ A(N) =N
49 PRINT A (N)
5@ NEXT N

V
v

~
w

C
I
H
U
K
W
N
K
A
E

V
v

PDR 3858 ARRAYS AND MATRICES

two-dimensional numeric

Two-dimensional: (note that line 88 outputs matrix M, not array M)

10 DIM M (
20 FOR I =
30 FOR J =
4G M(I,J) =3

70 PRINT 'M'
88 MAT PRINT M
98 PRINT LIN (2);

198 FOR F = @ TO 3
118 FR G = @ To 4
12@ PRINT M (F,G)
138 NEXT G
148 NEXT F
150 PRINT LIN (2);
>COMPT LE
>EXECUTE

March 1979



SECTION 9 PDR3858

O
O
w
W

N

N
w
~
I
D
W
D
O
r
F
W
H
E
U
D
H
D
T
Q
H
N
W

D
A

DONE

String Array Example:

1@ DIM BS (2,2)
28 B8S(1,1)='MICHELLE'!
3@ BS (1,2) ='"BECKY'
48 BS(2,1)='"KAREN'
5@ BS (2,2)='"ARLENE'
55 MAT PRINT BS
60 END

?2RUNNH

MICHELLE BECKY

KAREN AR LENIE

REV. @ Q -

~~
)
m
F

N
W

®
&



PDR 3858 ARRAYS AND MATRICES

MATRICES

Matrices are dimensioned by the DIM statement, as are arrays, or are
automatically defined when referenced by a MAT (matrix) statement.
Such a matrix is assigned default dimensions of (18) or (18,10). The
dimensions of the matrix may be changed to larger or smaller than
original, using the MAT statement followed by new subscript values for
the parameters (dim-l, dim-2). See Table 9-1.

MATRIX OPERATIONS

Matrix operations are valid only for that part of an array defined as a
matrix, i.e., that portion with non-zero subscripts. Matrix operations
include initialization, redimensioning, addition, subtraction,

multiplication, inversion and transposition. All matrix operations
begin with the keyword MAT and are listed in Table 9-l. All of the
indicated operations, except MAT=NULL, can be performed on numeric
matrices. String matrices can only be initialized to NULL or
redimensioned with the (dim) option of the MAT statement.

Table of Matrix Operations
 

The following table lists all available BASIC/VM matrix operations.
The parameter dim, e.g., (dim-l [,dim-2]) represents a numeric constant
or expression defining the dimensions of a matrix; num-expr represents
a numeric expression by which a matrix may be multiplied.

9 a) March 1979



SECTION 9 PDR 3858

Table 9-1.

Type

Mathematical:

All elements are initialized

to zero. (Matrix may be
redimensioned.)

All elements are initialized

to one. (Matrix may be
redimensioned.

All elements are initialized
to zero except the main
diagonal (elements with equal
subscripts) which is all ones:
identity matrix. (Matrix
may be redimensioned.)

All elements of string array are
nulled. Matrix is optionally
redimensioned.

All elements of two matrices are

added to or subtracted from each

other.

All elements of a matrix
are multiplied by an expression.

Two matrices are multiplied.

All elements are transposed.

The square matrix is inverted.

Within the program.

Matrix Operations

Statements Used 

MAT X = ZER [(dim-1 [,dim-2])]

MAT X = CON [dinmr-l [,dim-2])]}

MAT X = IDN [(dim1 [,dim-2])]

MAT AS = NULL [(dim-l [,dim-2])]

MAT X =X + Y or

MAT X =X -Y

MAT A = (num-expr) *X

MAT A = X*Y

MAT X = TRN(Y)

MAT X = INV(Y)

MAT READ, CHANGE



PDR 3058 ARRAYS AND MATRICES

Between program and terminal. MAT INPUT, MAT PRINT

Between program and external
files or devices. MAT READ #, MAT WRITE #

9 - 7 March 1979



SECTION 9 PDR3858

Initializing Matrices
 

Matrices are assigned initial values by being equated to one of four
matrix constants in a MAT statement. The matrix constants are
identified by the mnemonics ZER, CQN, IDN and NULL. ‘The NULL constant
applies to string matrices only; the remaining constants are used only
for numeric matrices.

The constant ZER initializes each element of the specified matrix to Q.
The following statements define a5 by 7 matrix and initialize each
element to 9, respectively:

DIM A(5,7)

MAT A = ZER

The constant CON initializes each element of the specified matrix to 1.
The following statements define a 2 by 3 matrix and initialize each
element to 1, respectively:

DIM B(2,3)

MAT B = CON

The constant IDN initializes the matrix to the identity matrix. All
elements except those on the main diagonal are @. The diagonal
elements are 1. For IDN to be valid, the matrix must be square.

Example:

DIM A(3,3)

MAT A = IDN

results in:

Q
a
r
e

Q
e

o
e

Q
s

The constant NULL has the seme effect on string arrays as ZER has on. .
numeric arrays; it initializes; each element of the matrix to a null:
value. The matrix can then be redimensioned.

Example:

>DIM AS (5)
>DAS(I)='ABCD' FOR I =1 05
>MAT PRINT AS:
>ABCDABCD ABCD ABCD ABCD
MAT AS = NULL
>MATPRINT AS:

 

 

REV. @ 9 - 8



PDR 3058 ARRAYS AND MATRICES

Redimensioning Matrices
 

The constants ZER, CON, NULL and IDN can also be used to change the

dimensions of the matrix. By specifying subscripts after the constant,

the matrix is redimensioned and the value of each element within the

matrix is set according to the constant used. The following examples

illustrate this concept using CON and ZER:

Example 1:

DIM A(4,5)
MAT A = CON (3,3)

Changes the dimensions of A from (4,5) to (3,3) and sets the value of

each element to l:

P
e
e

a M
R
R

Example 2:

DIM X(3,3)

MAT X = ZER (4,2)

Changes the dimensions of X from (3,3) to (4,2) and sets the value of

each element to @:

R
e
a

R
a
Q
2
8
8

The dimensions of a matrix can also be changed by assigning to it a

matrix of other dimensions.

Example:

DIM A(6,6) !Total of 36 elements in matrix

DIM B(5,4) !Total of 20 elements in matrix
MAT A =B !A is a 5 by 4 matrix of 20 elements

9 - 9 March 1979



SECTION 9 PDR3058

Matrix Addition
 

The elements of two numeric matrices may be added and the values
assigned to the corresponding elements of a third matrix. The example
below adds the elements of matrix B to those of matrix C and stores the
results in matrix A (called the target matrix):

MATA =B+C

The source matrices (B and C) must have the same dimensions. The
target matrix (A) is converted to the same dimensions as B and C.

Figure 9-1 diagrams the addition of two matrices to produce values in
the corresponding elements of a third matrix.

One-dimensional Matrices:

MAT C =A + B

24 5 19
37 7 36
34 12 22

Two-dimensional Matrices:

MAT C = A + B

26 22 6 14 20 3 12 2 3
20 18 26 19 4 7 1 14 19
45 28 13 8 23 19 37 5 3

Figure 9-1, Matrix Addition



PDR 3058 ARRAYS AND MATRICES

Matrix Subtraction

The values in the elements of two matrices may be subtracted to produce

the values in corresponding elements of a third matrix as shown in the

following expression:

MATA =B -C

The elements of matrix A are set to the difference of the corresponding

elements of matrix B and matrix C. Source matrices B and C must have

the same dimensions. The dimensions of A become the same as those of B

and C.

Matrix Multiplication
 

A matrix can be multiplied by a numeric expression or by another

matrix. There are certain restrictions however, as explained below.

Scalar Multiplication: A matrix may be multiplied by a numeric scalar

expression and the results stored in a second or target matrix.

In the following example, each element of matrix Y is multiplied by 5

and the resulting values are assigned to matrix A. ‘The dimensions of

matrix Y then become those of matrix A.

MAT A = (5)*Y

Multiplication of Two Matrices: To multiply two matrices, both must be

two-dimenSional and the number of columns of the first matrix must

equal the number of rows of the second matrix. The result is a_ third

matrix with the same number of rows as the first matrix, and the same

number of columns as the second matrix.

The example below multiplies matrix B and matrix C to produce matrix A

with dimensions of 2 by 4.

DIM B(2, 3)
DIM C (3,4)
MATA =B*C !A is a 2 by 4 matrix

Fach element in matrix A is the result of multiplying the elements of

matrix B times the elements of matrix C in the following way:

1. Multiply each element in row 1 of B, by each element in

column 1 of C.

9 - ji March 1979



SECTION 9 PDR3658

2. Add the results to obtain the value of the element in matrix
A, row 1, column 1.

3. Continue the pattern by multiplying row 1 and column 2 to
produce element A(_.,2); row 1 and column 3 to produce
A(1,3); row 2 and column 1 to produce A(2,1)3 row 2 and
column 2 to produce A(2,2); and row 2 and column 3 to
produce A(2,3).

Example:

B C

1 2 7 8 9
3 4 18 11 12
5 6 16 17 18

A=B*C
A(1,1) = (1*7) + (3%8) + (5%*9)
A(1,1) = 7 + 24 + 45

The first element in matrix A = 76

The current values of the target matrix may not be used as part of the
multiplication expression:

MAT A = A*B (illegal)

REV. @ 9 =— 12



PDR 3058 ARRAYS AND MATRICES

Inverting and Transposing Matrices
 

Matrix inversion is accomplished by using the INV function. A matrix

can be inverted only if it is square and its determinant is not Zero.

Multiplying a matrix by its inverse yields the identity matrix. The

determinant of a matrix is determined by the DET function (a numeric

system function - see Section 18). More information on 'DET' and

matrix operations can be found in the following reference, or in most
Linear Algebra texts.

Thomas, George B., Calculus and Analytic Geometry, 4th edition,
Addison-Wesley, Reading, Mass., 1968
 

Zuckerberg, Hyam L., Linear Algebra,

Charles E. Merrill, Pub., Columbus, Ohio, 1972

The following example demonstrates the use of the inverse and

determinant functions:

MAT READ A
IF DET A = @ THEN PRINT 'CANT INVERT! ELSE PRINT 'CAN INVERT!
IF DET A <> @ THEN MAT C= B*INV(A)
PATA 1,2,3,1

It is often necessary to transpose a matrix so that it may be

multiplied by another matrix. (Remember that two matrices can be

multiplied only if the number of columns of the first matrix equals the

number of rows of the second matrix.) For example, if a company sells

four products and has three customers buying varying amounts of each

product, the quantities would be set up ina 3 by 4 matrix (A). The

cost of each product would be set up in a 1 by 4 matrix (B). To
determine the amount owed by each customer, matrix A must be multiplied
by matrix B. Since you cannot multiply (3,4) * (1,4), you must

transpose B:

C=A*TRN (B) or C=(3,4)* (4,1)

Figure 9-2 illustrates this concept.

9 - 13 March 1979



PDR 3858SECTION 9

Matrix A

Customer 1 100 108 68 g

Customer 2 @ @ 308 18

Customer 3 5@ 18 100 180

nuts bolts nails screws

Matrix B

Cost/item 10 05 81 ~82

nuts bolts nails screws

C =A * TRN(B)

=(3x4)* (4x1)

= (3x1)

Matrix C

Customer 1 Customer 2 Customer 3

Owes Owes Owes

15. 6@ 3.20 13. 8@

Figure

REV. @

9-2. Matrix Inverse



PDR 3058 ARRAYS AND MATRICES

Every two-dimensional matrix has a transpose. This is determined by

rolling the matrix on the main diagonal. If matrix A is:

42
31

its transpose is:

4 3
21

and can be assigned to another matrix with the statement:

MAT B = TRN(A)

Both matrices are two-dimensional. The dimensions of matrix B are set

to the reverse of those of matrix A. For example, if MATA is (2,3),

MAT B will become (3,2). It is not legal to assign the transpose of a

matrix to itself, i.e., MATA = TRN(A) is illegal.

Transmitting Matrix Data Within A Program
 

As with general I/O, data can be read via MAT READ from DATA statements

_ within the program. The values are assigned to each element of the

“matrix specified in MAT READ.

The dimensions of the matrix are first defined in a DIM statement.

Then data values are read from DATA statement(s) until each element of

the matrix has a value. The following example reads fifteen numbers

from consecutive DATA statements and assigns them to matrix A:

DIM A(3,5)
‘MAT A = ZER
MAT READ A
DATA 1,2, 3,4,5,6, 7,8, 9
DATA 10,11,12,13,14,15

The result is:

A(l,l) = 1
A(2,1) = 2

A(3,5) =15

9 - 15 March 1979



SECTION 9 PDR3858

Data Conversion
 

Data may also be changed from a string of ASCII characters to a
one-dimensional array containing the decimal equivalents of the
characters (including parity). Conversely, a decimal array may be
changed to its corresponding string of ASCII characters. Refer to
Appendix B for the ASCII character table. To do either, use the CHANGE
statement.

The following program changes t:he ASCII characters in D$ to an array of
their decimal equivalents:

18 DIM A(6)
28 DS = 'CHANGE'
30 CHANGE DS TOA
48 FOR I = 170 6
5@ PRINT A(T)
60 NEXT I

When run, the program prints:

195
200
193
296
199
197

If the array has not been previously dimensioned, the CHANGE statement
automatically dimensions the array to the length of the string. The
zeroth element of the array cortains the length of the string. In the
above example, A(@)=6, because 'CHANGE' is six characters in length.

The following program converts decimal values listed in a DATA
Statement, into their correspording ASCII characters and prints them:

18 FOR X = 1 TO 6
20 READ A(X)
3@ NEXT X
49 DATA 268, 2198, 197, 211, 212, 207
50 CHANGE A TO AS
6@ PRINT AS

When run, the program prints:

PRESTO

REV. @ 9 - 16



PDR 3858 ARRAYS AND MATRICES

Changing the zeroth element of a numeric array will alter the length of

the corresponding character string of ASCII letters accordingly. For
example, if AS="ABCDE' is converted to its numeric array equivalent,
the first array element, A(@), will be equal to 5 because the string is

five characters long. If the value of A(O) is changed to 3, a CHANGE

of A to A$ will result in a string only three characters in length,

e.g., AS='ABC'. :

Transmitting Matrix Data Between a Program and the Terminal
 

Data to be stored in a matrix may be entered from the terminal. The

MAT INPUT statement is identical to the INPUT statement except that the

values entered are stored in matrix format.

The following program segment defines matrix B as having six elements.

The MAT INPUT statement will expect six values to be entered. Each
value will then be assigned to an element in matrix B:

DIM B(2,3)
MAT INPUT B

MAT PRINT B

When run, the following occurs: (user input is underlined)

112

115
!7

120
$25

13
10 15 7

20 25 13

The MAT PRINT statement prints the values of the entire matrix at the

terminal.

The MAT INPUT mat (*) statement is a variant of the MAT INPUT
statement. It accepts one line of input and automatically dimensions
the matrix, named by mat, to the number of items input.

Matrix I/O to Data Files
 

Matrices can be written to and read from data files with the MAT READ
f#funit and MAT WRITE #unit statements. Only the file handling
statements which deal with matrix I/O are presented here. Other data
file handling operations are dealt with in Section 8 and Appendix E.

9 - iW7 March 1979



SECTION 9 PDR 3958

WRITEing a Matrix to a File
 

Matrices are written to a data file with the MAT WRITE statement.
First, the matrix is defined with a DIM statement. Values are then
assigned to each matrix element. The entire matrix is then written to
the indicated data file with a single MAT WRITE statement.

Example:

>DEFINE FILE #1 = 'MAT!
>DIM A(3)
>A (1)=10
>A(2)=20
>A(3)=38
>MAT WRITE #1, A
>TYPE MAT
eeaenates

19 20 30

 

 

Reading From a File To a Matrix
 

Values written to a file with MAT WRITE can be read back with any of
the READ statements covered in Section 8. They will be returned as any
other data values stored ina file. The contents of a record or
records in a_ file can be read into a matrix or matrices with the MAT
READ or MAT READ* statements. The indicated matrices must first be
defined with a DIM statement. Values are then retrieved from the
record or records of the indiceted file until the matrix or matrices
are filled.

The following example illustrates the use of MAT READ and MAT WRITE,
Notice that an error trap for an end of file is included for the
default ASCII file. An END OF FILE message is generated when a MAT
READ is attempted on an ASC file. Values from an ASC file can be read
into a matrix by defining the matrix and reading record values into the
indicated variable with a READ statement. MAT print can then be used
to obtain a list of the values read into the indicated variable.

Example:

5 ON END #1 GOTO 120
10 DEFINE FILE #1 = 'MAT!
20 DEFINE FILE #2 'MAT2', ASCSEP
3@ DEFINE FILE #3 'ASCDA', ASCDA
4@ WRITE #1, 20,20,20
50 WRITE #2, 20, 20,20
60 WRITE #3, 20,20,20
70 REWIND #1,2,3
88 DIM A(2)
90 PRINT 'READ MAT!
100 MAT READ #1, A
110 MAT PRINT A
120 MAT READ #2, A
130 PRINT 'READ MAT2!

REV. @ 2 - 18



PDR 3058 ARRAYS AND MATRICES

140 PRINT
15@ MAT PRINT A
16@ MAT READ #3, A
170 PRINT 'READ ASCDA'
18@ MAT PRINT A
199 REWIND #1,2,3
>RUNNH
READ MAT
READ MAT2

20 20

READ ASCDA
20 20

STOP AT LINE 190
>TYPE MAT
| 20 20
>TYPE MAT2
26, 20, 20,
>TYPE ASCDA
20,20,20,

MAT READ* Statement
 

The MAT READ* statement functions just like the READ* statement. ‘The

read pointer remains positioned at the current record after a MAT READ*

is executed rather than pre-positioning to the next record. This

allows the next MAT READ* statement to continue reading data from the

current record.

Example:

10 DEFINE FILE #1 = 'MATF', ASCSEP
20 WRITE#1, 10,10,10,10
30 WRITE #1, 20, 20,20, 20
40 WRITE #1,30, 30,38, 30
50 REWIND #1
55 DIM A(5)
6@ MAT READ * #1,A
62 MAT PRINT A
65 MAT READ * #1, A
70 MAT PRINT A
75 REWIND #1
8@ READ #1,A
85 MAT PRINT A
99 READ #1,A
95 MAT PRINT A
100 REWIND #1
105 MAT READ #1,A
119 PRINT A
115 PRINT

9 - 19 March 1979



SECTION 9

126 MAT PRINT A
138 REWIND #1
>MARGIN 20
>RUNNH
19
18
16
18
20

 

20
20
20
36
38

20
20
20
30
39

20
20
20
3a
38

28

1@
18
1@
1g
20

STOP AT LINE 130
MARGIN OFF
>RUNNH
is
D
20
g
20
0
29
g
20

19
20

REV. @

10

26

20

20

19

PDR3058

18

20

22

28

12

182

303

383

303

10



PDR 3058 ARRAYS AND MATRICES

Notice the difference between MAT PRINT and PRINT. PRINT merely prints

the value associated with a scalar variable. MAT PRINT outputs the

matrix named by a particular variable, e.g., A. This distinguishes the
variable A from matrix A, as shown in the example. Notice also that

the MARGIN statement can be used to alter the length of lines printed

at the terminal. This is useful for printing matrices in list, or

tablular form.

9 - 2i March 1979



PDR3958 NUMERIC AND STRING FUNCTIONS

SECTION 10

NUMERIC AND STRING FUNCTIONS

INTRODUCTION

Most arithmetic operations can be simplified by using pre-defined

numeric functions to handle routine calculations such as computing

square roots. String data handling can also be facilitated by

functions designed specifically for manipulating strings. BASIC/VM

provides both numeric and string system functions to perform operations

like calculating sine and cosine, generating random numbers, and

converting a string to its corresponding numeric value. In addition to

system provided functions, users can define their own functions to

perform special routines within a program. The functions available in

BASIC/VM are:

1. Numeric system functions
2. String system functions
3. Numeric and string user-defined functions:

This section lists all the currently defined system functions, (both

numeric and string), and provides information on defining and

implementing user-defined functions of both types. A detailed
discussion of call-by-value and call-by-reference functions is also
included.

NUMERIC SYSTEM FUNCTIONS

A numeric function is identified by a three or four letter name (such
as TAN) followed by one or more parameters enclosed in parentheses. If
more than. one parameter is required, they are separated by commas.
Numeric functions operate on numeric items or expressions. The result
of a function operation is a single numeric value. Therefore, the
function can be used anywhere in an expression where a numeric constant
or variable can be used.

The following table lists the numeric system functions provided by
BASIC/VM. In all of the descriptions, X represents any numeric
expression, and Y and Z represent any integers.

10 - 1 March 1979



SECTION 19

ABS (X)

ACS (X)

ASN (X)

ATN (X)

COS (X)

COSH (X)

DEG (X)

DET (X)

ENT (X)

ERL

ERR

EXP (X)

INT (X)

LIN# (X)

PI

REV. @

PDR3858

Table 19-1 Numeric System Functions

Computes the: absolute value of X.

Computes the principal arccosine of X. The result
is in radians in the range of @ to PI.
360 degrees = 2 PI radians.

Computes the principal arcsine of X. The result
is in radians in the range of -PI/2 to PI/2.

Computes the principal arctangent of X radians. The
result is in the range of -PI/2 to PI/2.

Computes the cosine of X. The argument is in
radians. Tre result is in the range -l to +l.

Computes the hyperbolic cosine of X
(defined as (EXP (X)+EXP (-X))/2).

Computes the number of degrees in X radians,
[ (180/PI*X)]. The result is in degrees.

Computes the determinant of matrix X. If DET(X)

unequal to @, matrix X has an inverse.

Computes the greatest integer that is less than or
equal to X.

Returns the statement number of the line which

caused an error.

Returns the error code number of the last error.

Computes e raised to the X power.

Performs integer truncation.
If X=>8, returns the greatest integer <=X.
If X<@, returns the least integer >-X.

For ASC LN files, returns the statement number
stripped frcem the last input on unit X. For BIN DA
files, returns the current record position of the
file on unit X.

Computes the natural logarithm (base e) of X.

Returns the actual number of entries to MAT INPUT
M(*) and MAT INPUT MS(*) statements. Matrix M is
one-dimensional .

Computes the value of PI (3.14159).

1@ - 2



RAD (X)

_ RND X)

SGN (X )

SIN (X)

SINH (X)

SOR (X)

TAN (X)

TANH (X )

PDR 3058 NUMERIC AND STRING FUNCTIONS

Computes the number of radians in X degrees.

If X58, uses X to initialize the random number
generator and returns X as the function value.
If X<@, uses X to initialize the random number

generator, and returns a value in the range zero
to one. If X=0, returns a random number in the
range zero result < l.

Computes a value based on the sign of X as follows:
X<@ SGN (X)=-1

X=0 SGN (X)=0
X>0 SGN (X)=1

Computes the sine of X. The argument is in
radians. The result is in the range -1 to +l.

Computes the hyperbolic sine of X defined as

(EXP (X) -EXP (~X)) /2.

Computes the positive square root of X.

Computes the tangent of X. The argument is in
radians.

Computes the hyperbolic tangent of X defined as
(EXP (X)-E XP (-X) /EXP (X) +2XP (-X)).

10 - 3 March 1979



SECTION 1d PDR3858

Using Some System Functions 

INT: The INT function can be used to round numbers:

INT (2.9 + .5) = INT (3.4) = 3.0

The INT function can also be used to round any numeric value to a
specific number of decimal places.

INT (18 * X1 + .5) AD

rounds Xl to 1 decimal place.

INT (108 * X1 + .5) JG

rounds Xl to 2 decimal places.

RND: The RND function generates random numbers.

The following program yields twenty random integers of three digits or
less:

1d
20
30
35
AQ
58

REM PROGRAM TO PRINT RANDOM NUMBERS OF 3 DIGITS OR LESS>
FOR I=l1 TO 20
L=RND(8)
L1=INT (L*1609)
PRINT Ll
NEXT I

The RND function can also be used to define random numbers within a

specific range. This is demonstrated by the following guessing game
program.

1¢
20
32
40
5a
68
70
86
9d

100
116
120
138
146
15@

PRINT ‘WHAT NUMBER AM I THINKING OF!

FOR C=@ TO 3

N=INT (50 * RND(O) + 1)

INPUT X

IF XN GOTO 98

IF X>N GOTO 118

PRINT 'RIGHT ANOTHER '

GOTO 1598
PRINT 'TOO LOw'
GOTO 120
PRINT 'TOO HIGH'
NEXT C
PRINT 'TIME IS UP, ANOTHER'
INPUT AS
IF AS = 'y' GOTO 120

The following program uses many of the system functions previously
described.

REV. @ 1.0 - 4



PDR 3058 NUMERIC AND STRING FUNCTIONS

108 ! EXAMPLE TO SHOW USE OF SYSTEM FUNCTIONS

118 !
120 ! DAH 12/13/77
130
148
158
160
170
180
198
200
210
220
238
248
250
260
270
280
290
308
318
320
330
348
350
3608
370
388
398
400

C7 t r
H

W
X

Y

Z

!

!

o
w

ow
oh

o
e

V = RAD(1)
DEGREE IN RADIANS
RAD (30)
RAD (45)
RAD (68)
RAD (98)

W,X,Y,Z EQUIVALENTS 30,45,60,90 DEGREES RESPECTIVELY

! 8. 01745329251994

! 0. 5235987755983
! 9. 7853981633974
! 1.047197551197
! 1.570796326795

! TRIGONOMETRIC FUNCTIONS CALCULATIONS
Sl
S2
S3
S4
S5
Cl
C2
C3
C4
C5
Tl
T2
T3
T4
T5
Al
A2
A3

418 A4
429
430
440
450
460
476
480
499
580
510
5206
5308
540
5508
560
570
586
596
000
619 }
620

A5

SIN

SIN

SIN

SIN

SIN

COS

COS

COS

COS

COS

TAN

TAN

TAN

TAN

TAN

ATN

ATN

ATN

ATN

ATN

(V)
(W)
(X)
(Y )
(Z)
(V)
(W)
(X)
(Y)
(Z)
(V)
(W)
(X)
(Y)
(Z)
(T1)
(T2)
(T3)
(T4)
(T5)

PRINT 'DEGREES', 'SIN', 'COS', "TAN', 'ARCTAN!
PRINT
PRINT 1, Sl, Cl, Tl, Al
PRINT 39,
PRINT 45,
PRINT 60,
PRINT 9G,

M
O
R
P
O
T
T
K
o

o
e

7.50

S2, C2,
S3, C3,
S4, C4,
S5, C5,

LOG (X)
EXP (X)
SQR (X)
ABS (X)
INT (X)
SGN (X)

e
s
Z
Z
r
e

T2, A2
T3, A3
T4, A4
T5, AS

PRINT ‘NUMBER =', X

ARITHMETIC FUNCTIONS (LOG ETC)

16 - 5 March 1979



SECTION 18 PDR3958

630 PRINT 'LOG(X)=', L
649 PRINT 'EXP (X)=', E
650 PRINT 'SQUARE ROOT', Q
660 PRINT
679 PRINT 'ABS(X)', 'INT(X)', 'SIGN(X)'
680 PRINT
690 PRINT A, I, P
706 PRINT
710 PRINT
720 ! RANDOM NUMBER FUNCTIONS
730 !
749 PRINT 'RANDOM NUMBER FUNCTIONS!
750 PRINT
760 PRINT 'RND(@)', 'RND(N)', 'RND(-N)'
770 PRINT
780 Z1 = RND(@)
798 Z2 = RND (1)
800 Z3 = RND(-1)
810 PRINT Zl, 22, 23

REV. @ 1@ -



PDR 3058 NUMERIC AND STRING FUNCTIONS

Sample Output:

>DEGREES SIN COS TAN ARCTAN

1 - @1745249643728 9998476951563 - 917455864 92 822 - 1745329251994

30 25 - 8660254837844 - 5773582691 896 - 526887991 8124

45 - 7871067811865 .7871067811866 - 999999999999 - 78788 73796115

60 - 8660254937844 .5 1. 732058807569 1. 847197551197

90 1 4,464471677451E-14 2.239996695809E+13 1.578796326795

NUMBER= 7.5

LOG (X) 2. 014983620542

EXP 1808. 042414456

' SQUARE ROOT 2. 738612787526

ABS (X) INT (X) SIGN (X)

7.5 7 1

RANDOM NUMBER FUNCTIONS

RND (@) RND (N) RND (-N)

- 2112731933594 1 2112731933594

10 - 7 March 1979



SECTION 19 PDR3958

STRING SYSTEM FUNCTIONS

String functions are used to obtain information about, or to operate

on, a string or portions of a string. For example, the function
SUB (X$,Y,[Z]), returns a substring, beginning with character Y, of a
larger string, X$. String functions, e.g., STRS(X), can alSo convert a
numeric item to its corresponding string representation; or they
convert the string representation of a number to the numeric value it
represents, e.g. VAL (X$). A string function is identified by a three
to five letter name followed by one or more parameters enclosed in
parentheses. Parameters can be numeric or string items depending on
the type of operation the funct.ion performs.

Table 108-2 alphabetically lists the string functions provided by
BASIC/VM. In all descriptions, X represents any numeric expression, Y
and Z represent any integers, and X$ represents any string expression.

REV. @ 10 - 8



CHAR(X)

CODE (X$)

CVTSS (XS$,Y)

DATES

INDEX (X$, YS, [Z])

LEFT (X$,Y)

TIMES

MID (X$,Y,Z)

LEN (X$)

RIGHT (X$,Y)

STRS (X)

SUB (X$,Y,[Z])

VAL (X$, [Y])

PDR 3058 NUMERIC AND STRING FUNCTIONS

Table 18-2 String System Functions

Returns the character whose ASCII code is X.

X is in the range 128-255.

Computes the decimal ASCII code of the first
character of X$. Codes are listed in Appendix B.
Note: the code of a null string is -l.

Reformats X$ according to the mask Y. (Masks
are listed in Table 10-3).

Returns the date as YYMMDD.

Computes the starting position of YS$ in XS,
optionally beginning at character Z.

Returns leftmost Y characters of XS.

Returns the time as HHMMSSFFF.

(FFF is milliseconds)

Returns Z characters of X$ starting at
position Y.

Returns the length (number of characters)

of string XS.

Returns rightmost characters of X$ beginning with
character number Y.

Returns the string representation of the

number X,.

Returns a substring composed of characters
in positions Y through Z of string XS.
If Z is not specified, the result is a
one character substring consisting of
character Y of string XS.

Converts a string, XS, to the numeric value it

represents. Y will have the conversion status:
@=successful, l=unsuccessful. If unsuccessful,

run-time error occurs.

18 - 9 March 1979



SECTION 14

MASK

32

64

128

PDR3658

Table 10-3. Masks For Cvrss

FUNCTION

force parity bit off

discard all spaces

discard .NUI.. ,.NL. ,.FF. ,.CR. ,.ESC.

discard leading spaces

reduce multiple spaces to one space

convert lower case to upper

convert [ to ( and ] to )

discard trailing spaces

(Masks can be combined additively)

REV. @ 18 - 1@



PDR3058 NUMERIC AND STRING FUNCTIONS

Using String Functions
 

The following example utilizes several string system functions.
Appendix A contains a sample program that uses string functions more
extensively to format a block of text.

Example:

18 REM USING SQME STRING FUNCTIONS
20 PRINT
38 XS='SOMEBODY KILLED HER HUSBAND'
4Q PRINT 'VALUE OF FOLLOWING STRING: '
58 PRINT
6@ PRINT X$
7@ PRINT
89 L1 =LEN (XS)
99 PRINT 'LENGTH OF STRING=':; Ll
119 PRINT
115 BS = SUB (XS, 21, 28)
128 PRINT "SUBSTRING IN POSITIONS 21 -28 IS:':BS
158 END

When run, the program results in the following output:

VALUE OF FOLLOWING STRING:

SOMEBODY KILLED HER HUSBAND

LENGTH OF STRING= 27

SUBSTRING IN POSITIONS 21 -28 IS: HUSBAND

1d - ll March 1979



SECTION 10 PDR3958

USER DEFINED FUNCTIONS

In some programs it is necessary to execute the same sequence of
Statements or mathematical fiormulas in several different places.
BASIC/VM allows you to define your own functions and use them just like
system functions.

Numeric User-Defined Functions
 

The name of a user-defined numeric function consists of the letters FN
followed by a letter or a letter and a digit as shown below:

FNA or FNA7

A reference to a user-defired function consists of the name of the
function followed by a parenthesized argument expression. A function
must be defined by a DEF statement. This definition must occur prior
to the place where the function is called or referenced in the program.

Example:

DEF FNA (X2) = 3.14 * X2+42

A user-defined function reference may be included as an operand in an
expression such as:

LET Al = 3.14/FNA (X1)

The argument of a user-defined function may be an arithmetic
expression. The expression is evaluated, and then the value of the
expression is substituted for the argument in the function definition.

Example:

LET Al = 3.14 * FNA (X1 + COS (B))

A user function may also be more than one line. After the last line of
the function, use the FNEND statement to indicate the end of the
function definition.

Example:

DEF FNA (I)
IF I=-@ THEN FNA=-1 ELS= FNA = I4T4I
FNEND

When program execution begins, the function definition is ignored until
the function is referenced. Each time it is referenced, program
control returns to the lines which defined the function.

REV. @ 1 - 12



PDR3058 NUMERIC AND STRING FUNCTIONS

String User-Defined Functions
 

As with numeric functions, you may define your own string functions.

The name of the function consists of the letters FN followed by a

letter (or a letter and a digit) and a dollar sign ($) as shown below:

FNAS or FNA7S

A user-defined function must be defined by a DEF statement. If it is

more than one line long, the last line must be FNEND, indicating

termination of the definition. When program execution begins, the

function definition is ignored until the function is referenced. Each

time it is referenced, program control returns to the lines which

defined the function.

Example:

1@ REM A PROGRAM WITH SUBROUTINES
28 REM AND STRING FUNCTIONS
30 DEF FNAS (XS, Y$)
49 FNAS=X$
5@ IF XS>Y$ THEN FNAS-YS
68 ENEND
70

108 IF A=l1 THEN 1000

150 XS=FNAS$(BS$,C$)4D$

1080 PRINT 'A EQUALS ONE'

2008 GOSUB 5000

2500 BS=FNAS (XS, YS)4B$
3000 GOTO 199

5002 ZS=FNAS (X$,Y$)+C$
501@ PRINT 'LINE 5@10'

6080 RETURN

10 - 13 March 1979



SECTION 18 PDR3058

Program executions begins at line 78. Assuming A=l, control jumps from
line 180@ to line 1080. At line 2000, control transfers to line 5000.

Because the function is referenced, control transfers to lines 30
through 69% where the function is defined. Control then returns to line
5010.

User-defined string functions may also be used in conjunction with
system functions, as in:

DEF FNFS (A,B,C) = LEFT (STRS (A4B+4C) ,5)

Defining Functions
 

A function in BASIC/W™M is defined with a parameter, e.g., DEF FNA(x),
where x is the parameter. The parameter must be an identifier for a
variable or for an array. A parameter is sometimes refered to as a
dummy variable.

A function is called in the program by an expression consisting of the
function name (e.g., FNA) followed by a parenthesized argument or set
of arguments.

Example:

DEF FNA (x) x iS a parameter of function FNA

x=5 dummy variable set equal to 5

FNEND denotes end of function

y=19 external program variable

Z=FNA(y) expression calling function FNA; y is argument ,
sharing valu2 with dummy variable x.

Call-By-Reference vs. Call-By-Value
 

Generally, there are two ways in whch an argument can reference or set
parameters in the function it calls: by value or by reference. This
relationship between arguments and parameters determines whether the
function is termed call-by-refarence or call-by-value. This, in turn,
is dependent upon the language in which the function is being used. In
BASIC/VM, functions are call-by-reference.

In call-by-reference functions, arguments set parameters by reference.
When a parameter is set by reference, every subsequent reference to

that parameter actually becomes a reference to the storage location

(slot where the value of the variable is stored in memory), of the
argument that set it when the function was called. In other words,
every assignment of a value to the parameter is in effect an assignment
of the same value to the argument that set the parameter. (The

REV. @ 13 - 14



PDR 3058 NUMERIC AND STRING FUNCTIONS

argument itself is essentially substituted for the parameter in the
function.)

In the case of call-by-value, however, the value of the argument is

actually copied to the storage location of the parameter called by the
argument. Assignment of a value to the parameter effectively results
in the value being placed in the parameter's storage location.

For example, the previous function call (above) will produce two
different end results (for y) depending on whether the parameter x is
called by reference or called by value.

Call Method End Result

1. Call-by-reference y=5

2. Call-by-value y=19

In the first case, argument y is essentially substituted for parameter
Xe Every subsequent reference to parameter x actually becames a
reference to the storage location of argument y. Each assignment of a
value to x is in effect an assignment of the same value to y. Thus y
is passed through the function and returns a new value (5) to y's
storage location. The argument y now has a new value in the external
program.

Call-by-reference functions obviously change the value of an argument
passed through them. This fact should be noted so that strange results
emanating from a program containing user-defined functions do not
unduly alarm the programmer.

_/ In. the call-by-value case, the argument y passes only its value (10) to
thédummy variable x. It does not itself pass through the function
PNA. At the end of the pass, y remains unchanged because the parameter
x does ‘not return a value to argument y's storage location. In this
example, y itself remains external to the function and thus retains its
original value of 18. It can be inferred that arguments cannot return
values from a function pass in call-by-value systems.

Forcing Call-by—Value
 

It is possible to force an argument to set a parameter by value ina
call-by-reference system, such as BASIC/WM., The parameter in the
function definition is modified to create a temporary value inside the
function which will be passed through with no affect on the calling
argument's original value.

19 - 15 March 1979



SECTION 190 PDR3058

 

Example:

Forced ‘

Call-by-Value Call—by-Reference

A = FNA(xX+9) A = FNA(x)

1) x is loaded into the 1) call FNA

accumulator

2) ® is added to it 2) argument pointer references x

3) the result is stored in a 3) the result is stored inA

temporary Storage location
Tl

call FNA 4) the arguments' storage location
is updated.
(direct correlation between

argument and parameter x,

no local value for x is

created)

the argument pointer
references Tl and the
function operates on va.ue
in Tl

the value is then stored in A

the arguments’ storage
location is not updated
because the storage location
for (x+@) is unchanged;

the argument pointer reterences
Tl only and is local to
the function.

The following program is an example of a call-by-reference function:

100 DEF FNA (X)

110 Y=X*X

120 X=Y+1

130 FNA = Y
148 FNEND

158 X=1

16@ Y=2

178 Z=3

18@ PRINT 'X': 'Y': 'Z': "PNA(Z)', "X's "Y's 'Z!
19@ PRINT X: Y: Z: FNA(2), X: Y: Z

2008 END

In this program, the following occurs:

REV. @



PDR 3058 NUMERIC AND STRING FUNCTIONS

The function of X is defined in lines 100-140. Since X is a
dummy parameter, changing X in the function definition does not
change the actual value of X.

Line 119 changes the variable Y to equal X2

Line 120 changes the argument which corresponds to the
parameter X.

Line 138 sets the value of the function to Y.

Line 188 references the function by using the argument Z which
is passed to parameter X. Therefore, when X changes, Z is also
changing.

The resulting output is:

XY
1 2

Z FNA(Z) XY
3 9 19 @

Function Definitions and Program Control

The following program demonstrates the transfer of program control via
function definitions and GOSUB statements:

1@ REM A PROGRAM WITH SUBROUTINES
206 REM AND FUNCTIONS
30 DEF FNA (X)
49 IF X=8 THEN FNA=-l1 ELSE FNA = X*X+J
69 FNEND
78

100 IF A=l1 THEN 1000

150 X=FNA (3)

1006 PRINT 'A EQUALS ONE'

2080 GOSUB 5000
2010

10 - 17 March 1979



SECTION 18 PDR3058

2500 Y=FNA(G)
3088 GOTO 180

5000 Z=FNA(T)
5010

6680 RETURN

Program executions begins at line 78. Assuming A=l, control jumps from
line 108 to line 1000. At line 2008, control transfers to line 5000.
Because the function is referenced, control transfers to lines 30

through 68 where the function is defined. Control then returns to line
5688 for the assignment and continues with 5010. After 6808, control
returns to 2010. Functions may also be recursive (i.e., they may call
themselves.) For example,

10@ DEF FNF (X) !Factorial

11@ IF X<=1 THEN FNF = 1 ELSE FNF = X*FPNF (X-1)

120 FNEND

Avoiding Function - If Interaction
 

Wnen user-defined functions are included in a= program, control
statements should not be made from inside a function definition out nor
from outside in. This can cause system stack difficulties leading to
memory overflow. Additionally, when dealing with functions...that |
perform I/O operations, (e.g., READS, WRITES, PRINTs, INPUTS) | the
programmer should avoid calling these functions within other.1I/0.
Statements. In other words, it is potentially confusing to the If.
handler to call a function to do a READ, for instance, while the

function is being printed. The resulting printout will reflect this
strange interaction of functior READS and 1/0 PRINTs.

In the following example, the function FNIS$ performs the If function
READ in both programs. In the first program, WRONGPROG, the function
is placed on the If list and is called to READ while it is being
printed. The second program solves the problem of potentially
ambiguous I/O by assigning the information returned by the function
READ process to a temporary variable. Then this information will not
be intermixed with the actual printout of the function.

Example:

WRONGPROG
1@ ! THIS IS WRONGPROG
26 ! THIS PROGRAM MAY CONFUSE THE I/O HANDLER

38 !

REV. @ 10 - 18



PDR3@58 NUMERIC AND STRING FUNCTIONS

55 ! THIS IS ONLY A PORTION OF A LARGER PROGRAM
60 DEF FNIS(A) ! READS A STRING FROM FILE UNIT A
70 !
75 READLINE #A,XS
80 FNIS = XS
99 !
100 !
118 FNEND

180 ! READ FILE 'YYY', PRINT ON TERMINAL
200 A=1
210 DEFINE FILE #A = 'yyy'
220 FOR I = 1 UNTIL 1=2
23@ PRINT FNIS (A)
235 ! NO TEMPORARY VARIABLE ASSIGNED TO FUNCTION READ
248 NEXT I

RIGHTPROG
1@ ! THIS IS RIGHTPROG
20 ! THIS PROGRAM DOES NOT CONFUSE THE I/O HANDLER
30 !
55 ! THIS IS ONLY A PORTION OF A LARGER PROGRAM
70 !
75 READLINE #A,X$
80 FNIS = XS
90 !
100-!
110 FNEND

-18@ ! READ FILE 'yyy', PRINT ON TERMINAL
208 A=1
210 DEFINE FILE #A = 'yyy'!
228 FOR I = 1 UNTIL 1=2
230 TS = FNIS(A) ! ASSIGN VALUE RETURNED BY READ FUNCTION
248 ! TO A TEMPORARY VARIABLE
250 PRINT TS
260 NEXT I

18 - 19 March 1979



PDR3858 NUMERIC DATA

SECTION 11

NUMERIC DATA

INTRODUCTION

The properties of numeric data as supported by BASIC/VM are described
in this section. Refer to Section 12 for string data properties.

BASIC/VM numeric data is double-precision and floating-point, having a
level of accuracy to 13 places in the mantissa and two places in the
exponent. Numeric items consist of constants, variables, arrays and
functions. They are also known aS operands because they are
manipulated or operated on within a program.

A numeric constant is a numeric item whose value does not change (and
cannot be changed) during program execution. A numeric variable is the
representation of a value which may or may not change during program
execution. Numeric arrays and matrices are one or two-dimensional
arrangements of data in rows and columns and are detailed in Section 9.
Numeric functions are discussed in Section 19.

Numeric Constants
 

A numeric constant may be an integer, a decimal, or an exponent. A

decimal may have an optional sign (+ or -), a decimal point or an
exponent specifier. Exponents consist of the letter E (signifying base
10), and an optional sign (+ or -) followed by one or two digits.
Exponential representation in BASIC/VM is very flexible; for example,
-@81 can be written as 1E-3, .@1E-1, or 10@E-5.

Note

 

If more than thirteen digits are generated during
any computation, the result of that computation is
automatically printed in E format. (If the
exponent is negative, a minus Sign is printed after
the E: lE-@4; if the exponent is positive, a plus
sign is printed: 1E+04.) ;

If decimal points are omitted, BASIC/VM assumes them to be located

immediately to the right of the last significant (i.e., rightmost)
digit. If the signs of either the constant or the exponent are
omitted, BASIC/VM assumes them to be positive.

11 - 1 March 1979



SECTION 11 PDR3858

The following are examples of acceptable numeric constants:

12

+5. 666

2. 56-2 (.@25)

Numeric Scalar Variables
 

A numeric scalar variable (also called simple numeric variable) is a
Single letter (A-Z), or a single letter followed by a single digit
(8-9). Each variable represents a single numeric value; there are 286
possible numeric scalar variables. A numeric Scalar variable is
initialized automatically to 9@ at the start of the BASIC/W™ program
that defines it. Examples of acceptable numeric scalar variables are:

A, Al, X.

Numeric Subscripted Variables : Arrays and Matrices
 

A numeric array or matrix is named by a simple numeric variable, e.g.,
A, A®6&. A simple variable followed by a parenthesized value or pair of
values, is known as a numeric subscripted variable or an array: element.
A singly subscripted variable or array name represents an element in a
one-dimensional array, e.g., A(5). A doubly subscripted variable
indicates a two-dimensional array element e.g., A(3,5). In a
two-dimensional array, the first subscripted value represents row
location; the second value represents column. For example the array
element in location A(3,5) is visualized as being in row 3, column 5,
of array A.

In BASIC/VM, a matrix is chat part of an array whose elements have
non-zero subscripts. For example, an array dimensioned as A(5)
actually has 6 elements; A(@)-A(5). Matrix A has only 5 locations:
A(1)-A(5).

Matrices and arrays also are dimensioned with the DIM statement, e.g.,
DIM A(5). Matrices can be defined or redimensioned with the MAT

statement. See Section 9 for details.

Distinguishing Variable and Ar:ay Names
 

A numeric variable and a numeric array may share the same name e.g., B,
in a program. The use of parentheses distinguishes one from the other.
For example:

B=2

defines and assigns a value to a numeric scalar variable, while

DIM B(2)

REV. @ Ll - 2



PDR 3058 NUMERIC DATA

defines a numeric array, B, with a dimension of 2 rows by 1 column

(assumed) .

It is possible to have an array and a simple scalar variable with the

same name ina program, but it is not possible to have both a

one-and-two dimensional array with the same name, i.e. A(1) and

A(i,1).

The following shows how numeric constants, variables, arrays, matrices

and array or matrix elements are defined.

Type Examples

Constant 12

12.5

5E 2

Scalar Variable A=3
A7=12

Array or Matrix DIM A(6)
DIM A(5,5)

, Array or Matrix A(6)=5
or A(3,5)=10
Element

NUMERIC EXPRESSIONS

Numeric expressions are constructed from numeric operands including:

numeric variables or array (matrix) elements

numeric constants

references to a numeric function

and numeric operators, including:

arithmetic operators
relational operators
logical operators

Expressions can be evaluated by arithmetic or string operators to a

single value which may be used elsewhere in the program; or, they can

be evaluated logically or relationally to a value of true or false.

Program control flow may be decided on the basis of this value, aS ina

conditional GOTO expression.

. OPERATORS

A numeric operator may be one of three main types depending on the kind

of operation it performs: arithmetic (unary or binary), relational,

and logical.

ll - 3 March 1979



SECTION 11 PDR3858

Operators which require one operand are called unary. They indicate
the sign, positive (+) or negative (-1), of a numeric item. Operators
which require two operands are called binary. Table 11-1 lists all
Operators according to type. Operators are evaluated according to a
Set priority list. See Order of Expression Evaluation, following.

REV. @ Lil - 4



PDR 3058

Table 11-1. Numeric Operators

Operator Meaning

Arithmetic RKKKKKK

Operators: *UNARY*
kkhkkkke

+ plus
- minus

kkRKKKRKK

*BINARY*
RKKKKKKE

+ addition

- subtraction
* multiplication
/ division

“(or **) exponentiation
MOD remainder from division

(Modul us)

MIN lesser value
MAX greater value

Relational
Operators: = equal

< less than
> greater than
=or = less than or equal to

=or = greater than or equal to
© or >< not equal

Logical
Operators: AND logical "and"

OR logical “or"
NOT logical complement

NUMERIC DATA

Example

+I

I+J

I-J
TJ
I/J
1*2
I MOD J

I MIN J

I MAX J

IsJ

I<J

ID>d

T<=J

I>=J

I<

I=J AND KS=LS$
I=J OR I=K
NOT (IJ)

March 1979



SECTION 11 PDR3058

Arithmetic Operators
 

Arithmetic operators come in two flavors, unary and binary. Unary
operators require only one operand. Therefore, if the operator is the
minus sign (-), the value of the operand will be negative. If the
operator is the plus sign (+), the value of the operand will be
positive. The operand can be a parenthetical expression. Examples:

PRINT —- (A+B)

PRINT -A

PRINT +3

Relational Operators
 

BASIC/VM has six relational operators:

Operator Meaning Examples

< less than X<Y

> greater than X1L>Y1

= equal I=Jl

St less than or equal J2<=33

= greater than or equal Z>=19
=>

© not equal D<>19
><

The interactions of relational operators and operands are referred to
as relational operations.

Logical Operators
 

The three logical operators, AND, OR, NOT are used in forming logical
expressions. Logical expressions can be composed of variables and/or
relational operations connected by one or more logical operators. They
are evaluated to true or false. Figure 11-1 illustrates the evaluation
of logical expressions under different true-false conditions. An
expression that is true has a value not equal to @; if false, it has a
value of @.

Relational operations are used with logical operators to form logical
expressions. The result of a logical expression evaluation (true or

oO
’REV. @ 1) -



PDR 3058 NUMERIC DATA

false) can be used to determine the flow of control within a program.

For example, the following simple program shows the use of relational

operations and logical expressions to form conditions for control

transfer.

19 INPUT A,B
20 IF A>B AND B<>@ GOTO 80
30 IF A<B GOTO 60
49 PRINT 'A=B'
58 GOTO 92
6@ PRINT 'A<B!
78 GOTO 90
80 PRINT 'A>B!
9% END

~The expression 'A>B' in line 20 is evaluated using the values input at

line 18. If the expression is true, a GOTO is executed. If false, the

next sequential statement is executed, and So on.

Order of Expression Evaluation
 

A numeric expression is evaluated in the order of operator priority.

This is determined by rules of precedence in BASIC/VM. These rules of

precedence are:

expressions in parentheses

system and user defined functions

(or **)

NOT, unary (+,-)

*,/ MOD

+,—

MIN ,MAX

relationals (=,<,>,<=,>=,<>)

AND

OR

Parenthetical expressions are always evaluated first. Then, operators

with higher precedence are evaluated before operators with lower

precedence.

ll — 7 March 1979



SECTION 11 PDR3858

Example:

(A +B) /2

The addition, A +B, being within parentheses, is performed first, then
the division by 2 is performed, even though the division operator has
higher precedence. Operators with equal precedence are evaluated from
left to right.

Example:

A+B-CF¥YDF®E* FTG

is interpreted as:

(A+B) - ((C * D) * (E*(F°G))

where the order of operation is:

1. A+B, C*D, F°G

2. The result of E” (FG)

3. The result of C*D multiplied by the result of step 2,

4, The result of A+B minus the result of step 3.

REV. @ ll - 8



|>

TRUE

TRUE

FALSE

FALSE

|>

TRUE
TRUE
FALSE
FALSE

[
>

TRUE
FALSE

Figure 11-1

li

PDR3058 NUMERIC DATA

 

AND

B A_AND B

TRUE TRUE
FALSE FALSE
TRUE FALSE
FALSE FALSE

OR

B A_OR B

TRUE TRUE
FALSE TRUE
TRUE TRUE
FALSE FALSE

NOT

NOT A

FALSE
TRUE

Logical Expressions

9 March 1979



SECTION 11 PDR3058

Evaluation of Logical Expressions
 

In a logical expression each expression is evaluated as true or false.
The logical operators determine whether the entire expression is false
or trues

Given the values:

V
W
N
A
P
E

H
E
G
h
a

E AND A-C/3 is evaluated as false since the first term in
the expression is equal to false.

A+B AND A*B is evaluated as true since both terms in the
expression are true.

A=B OR C=SIN (DD) is evaluated as false since both expressions

A OR E

NOT E

REV. @

are false.

is evaluated as true since one term of the

expression (A) is true.

is evaluated as true since E=@.

Note
Logical values can only be used in IF, WHILE,
UNLESS, or UNTIL statements. Expressions such as
LET A=B<>C or A=B AND C are not legal.



PDR3058 STRING DATA

SECTION 12

STRING DATA

INTRODUCTION

A string is a sequence of ASCII characters. BASIC/VM string operands
or data elements include constants, variables, arrays, matrices and
functions. String array and matrix operations are covered in Section
9, String functions are detailed in Section 10.

String Constants
 

A string constant or string literal is a sequence of characters
enclosed in single quotes or apostrophes ('). All spaces enclosed in
the quotes are included in the string value. The value of a string
constant does not change during program execution. The length of a

string constant ranges from 8 characters (a null string, ''), to 160
characters.

Examples:

'12345.6'
'I am a string constant’
'' (a null string)

‘Columbus, Ohio'

String Scalar Variables
 

A string scalar variable (or simple string variable) is a single letter
(A-Z) followed either by a dollar sign ($) or by a decimal digit (1-9)
and a dollar sign ($). String variables represent character strings of
varying lengths and are initialized to the null value at the beginning
of the program in which they are defined. Examples of string scalar
variables are:

AS
X2S

The following is a program excerpt using string scalar variables to

prompt for input:

12 - 1 March 1979



SECTION 12 PDR3058

Example:

16 !BS=USER NAME
20 AS="WHAT IS YOUR NAME'
38 PRINT AS;
48 INPUT BS
50 PRINT 'WELCOME TO BASIC,':BS
55 END
>RUNNH
WHAT IS YOUR NAME! BULLWINKLE
WELCOME TO BASIC, BULLWINKLE

String Subscripted Variables (Arrays): are simple string variables
followed by one or two values enclosed in parentheses. Subscripted
variables represent array or matrix elements. Singly subscripted
variables, e.g., AS$(1), indicate elements in a one-dimensional string

array, e.g., AS. A doubly subscripted variable, e.g., A2S(1,2),

represents an element in a two-dimensional array or matrix, e.g., A2S.
In a doubly subscripted variab..e, the first value represents rows, the
second, columns. For examp.e, the array location represented by
AS (1,2) is located in row 1, column 2.

 

String Arrays and Matrices 

String arrays and matrices are dimensioned and defined by a DIM
statement or a MAT statement. See Section 9 for details. For example:

DIM AS (6)

defines a one-dimensional array of seven elements: AS$(@) through
AS (6);

DIM A2$ (3,4)

defines a two-dimensional arrav of four rows (9 through 3) and five
columns (@ through 4).

All elements of a string array are character strings of variable
length. For example:

16 DIM BS (2,2)
2@ BS (1,1)="MICHELLE'
36 BS (1,2)='"BECKY'
46 BS (2,1)='KAREN'
50 BS$(2,2)='ARLENE'
55 MAT PRINT BS
60 END
>RUNNH
MICHELLE BECKY
KAREN ARLENE

REV. @ 22 - 2



PDR3058 STRING DATA

Naming Variables and Arrays

String variables and arrays may have the same name in a program, e.g.
BS. However, the way in which they are defined distinguishes a simple

variable from an array. For example:

BS='HELLO'

defines and sets a value for the string scalar variable, BS;

DIM BS (2,3)

defines a two-dimensional string array of three rows and four columns.

The following are examples of string data types:

Type Examples

'-125'

Constant ‘CONSTANT VALUE '

Scalar Variable BS

Array or Matrix DIM AS (4,6)

Array or Matrix AS (4,6)
Element AS (5)

STRING EXPRESSIONS

String expressions are constructed of string operands including:

string variables or array (matrix) elements

string constants

references to a string function

and string operators, including:

concatenation operator

relational operators

logical operators

12 - 3 March 1979



SECTION 12 PDR3858

String Operators
 

The following are BASIC/VM string operators:

Operator Meaning
 

+ concatenation (combines strings)

< less than

> greater than

== equal

<= less than or equal

>= greater than or equal

> not equal
P<

AND logical "and"

NOT logical complement

OR logical "or"

The above operators are the only legal string operators in BASIC/VM.
String operators may not be used with numeric operands; Similarly,
numeric operators cannot be used on string operands.

The Concatenation Operator: is used to combine two or more string
values to produce a single string.
 

Example:

1@ AS="TODAY IS: '!
20 PRINT 'ENTER TODAYS DATE: MONTH DAY YEAR!
30 INPUT LINE DS
4@ PRINT BS=AS + DS
45 END
>RUNNH
ENTERTODAYS DATE: MONTH DAY YEAR
IJANUARY 24, 1979
TODAY IS: JANUARY 24, 1976
 

REV. @ 12 - 4



PDR 3058 STRING DATA

Logical and Relational Operators: String data may be used. in
relational and logical expressions just as are numeric data. Logical
expressions can be composed of both string and numeric relationals.

 

Evaluation of String Relational Expressions
 

Comparison of string expressions or values is conducted on a_ character
by character basis. Ranking of characters is determined by ASCII code.
See Appendix B for a complete list of characters and their decimal
values. If the strings being compared are of different lengths, the
Shorter of the two is padded (internally) on the right with blanks
until the strings are the same length. The strings are then compared,
character by character, until the last common non-blank character
position is reached in both strings. At this point, a decision is made
on the basis of the relative decimal values of this last character.

For-example, if the strings 'Z' and 'AZ' are compared, ‘'Z' is
considered greater than 'AZ' because the decimal value of Z (value:218)
is greater than the decimal value of A (value:193).

Example:

Q5 PRINT 'THIS IS A COMPUTER TASTE-TEST'
18 AS="MICHELOB'
26 BS='"MILLER'
3@ IF AS>BS GOTO 55
4@ PRINT 'MILLER IS GREATER THAN MICHELOB '
5@ GOTO 6¢
55 PRINT 'MICHELOB IS GREATER THAN MILLER!
68 END
>RUNNH
THIS IS A COMPUTER TASTE-TEST
MILLER IS GREATER THAN MICHELOB

Lowercase letters havea higher decimal value than uppercase letters.
For example:

1@ AS='"bad'
20 BS='"BAD'
3@ IF AS=BS THEN PRINT 'EQUAL'
35 IF AS>BS THEN PRINT 'AS GREATER' ELSE PRINT 'AS LESSER’
49 END
>RUNNH
AS GREATER

If strings are to be compared on the basis of phySical length and not
relational value, uSe the LEN function:

12 - 5 March 1979



SECTION 12 PDR3658

Example:

1@ AS='HI'
20 BS='"HARVEY WALLBANGER'!
3@ IF LEN(AS) < LEN(BS) GOTO 60
48 PRINT 'WRONG'!
5@ PRINT
68 PRINT AS: ‘IS SHORTER THAN':BS
65 END
>RUNNH
HI IS SHORTER THAN HARVEY WALLBANGER

Operator Priority
 

String expressions are evaluated according to operator priority. The
rules of precedence are:

NOT
+

>< p=) >=, <=, O
AND
OR

Relational operators have equal priority and are evaluated in left to
right order if more than one appears on a_ statement line,
Parenthetical expressions are evaluated first. Within parentheses,
evaluation proceeds according to operator priority. For example, in
evaluating this expression:

IF AS<=BS$+ (CS (X)+X$) THEN GOTO 109d

the following steps are taken:

1. The parenthetical expression (CS$(X)+X$) is evaluated.

2. BS is concatenated to the result of step 1.

3. AS is compared to the result of step 2.

4. If AS is less than or equal (on the basis of character
rank) to the result of step 3, control transfers to line
100; If the condition is false, control transfers to the

next sequential statement.



PDR3858 PRIMOS SYSTEM COMMANDS

SECTION 13

PRIMOS SYSTEM COMMANDS

CONVENTIONS

The conventions for PRIMOS and BASIC/VM system commandsare:

@ WORDS-IN-UPPER-CASE

Capital letters identify command words or keywords. They are to be
entered literally. If a portion of an upper-case word is underlined,

the underlined letters indicate the minimum legal abbreviation.

e Words-in-lower-case

Lower case letters identify parameters. The user substitutes an
appropriate numerical or text value. Hyphens connecting parameter

phrases like the one above, are not literal components of the
parameter.

e Braces { }

Braces indicate a choice of parameters and/or keywords. Unless the

braces are enclosed by brackets, at least one choice must be selected.

e Brackets [ ]

Brackets indicate that the word or parameter enclosed is optional.

e Hyphen -

A hyphen preceding a parameter is a required part of that parameter or

option, e.g, SPOOL —-LIST.

e Parentheses ( )

When parentheses appear in a command format, they must be included
literally.

e Ellipsis ...

The preceding parameter may be repeated.

e Angle brackets < >

Used literally to separate the elements of a pathname. For example:
<FOREST>BEECH>BRANCH537>TWIG43 >LEAF4.

13 - 1 March 1979



SECTION 13 PDR3958

e option

The word option indicates one or more keywords or parameters can be
given, and that a list of options for the particular command follows.

e Underlines

For PRIMOS commands only, acceptable command abbreviations’ are
underlined in the given formats.

 

REV. @ 13 - 2



PDR3058 PRIMOS SYSTEM COMMANDS

 

new-directory is the pathname of the new working directory to which the
user wants to be attached; becomes the current working directory. If
any directories in the pathname are passworded, the entire pathname
should be enclosed in single quotes, as in:

A ‘FLOWER STEM>ROSE'

 

Returns the number of normalized disk records available on a specified
disk or the current disk (*), calculated at 449 words per record. The

number of words per normalized record may not correspond to the number
of words per physical record on the disk in question.

 

- Invokes the BASIC/VM subsystem from PRIMOS command level. The system
responds with the latest revision number and the query, NEW OR OLD:.

Once a NEW filename or an OLD filename has been entered, the system
responds with the BASIC/VM prompt character (>).

If the pathname option is given, this command runs the named BASIC/VM
program and returns the user to PRIMOS command level.

 

Changes oldname, a filename or the last portion of a pathname
identifying a sub-ufd or file, to newname, a new filename.

13 - 3 March 1979



SECTION 13 PDR3058

COMINPUT pathname
| | ~CONTINUE:

~END
~PAUSE

-TTY

If pathname is specified, calls in and reads commands from the

specified file (called a command file) rather than from the user's

terminal; otherwise, one of the following control options is
per formed:

-—CONTINUE Resumes execution of the command file after a -PAUSE.

-START

~-END Closes command file and causes PRIMOS to resume
-TTY taking commands from the terminal. Either CO -END or

CO -TTY should be the last command in the command
file,

—-PAUSE Temporarily suspends execution of the command file.
Allows commands to be given from the terminal without
closing the comand file.

COMOUTPUT pathnane
-CONTINUE
~END

) =NTTY
~PAUSE

 

If pathname is specified, creates a file in which all terminal I/0 is
stored; otherwise, performs one of the following control options:

-CONTINUE Continues command output to pathname.

-END Stops command output to the specified file and closes

command output file units.

-NITY Turns off terminal output. Does not display responses
to command lines. Terminal output is resumed when
COMO-TTY command is given.

-PAUSE Stops command output to pathname; however, the
command output file remains open.

 

REV. @ 13 - 4



PDR3658 PRIMOS SYSTEM COMMANDS

-TTY Turns on terminal output. (default)

 

Creates a new file directory (Sub-UFD) within specified directory. Two

files with the same name are not allowed in the same directory.

 

Deletes a specified file from the current UFD or sub-UFD. filename is
any existing file or empty directory to be deleted. If a ufd-name,
under which there are no files or sub-UFDs, is specified, the entire

UFD will be deleted.

Lists all entries under the current UFD, including all directories and
files.

Allows access to files and programs in a specified directory; ufd-name
is the name of a login directory. The LOGIN command must be typed
before any interaction with the system can take place. If no command
is given and interaction is attempted, (or if tthe wrong ufd-name is
given), PRIMOS responds with an error message. To a legal LOGIN
command, PRIMOS responds with the terminal number, the current time,

the current date, and finally the PRIMOS prompt 'OK,'.

13 - 5 March 1979



SECTION 13 PDR3958

 

Terminates all interaction with PRIMG.

PRIMOS responds to the command with the terminal number, the current
time of day, and the amount of computer (CPU) time used.

PASSWD owner-password (nonowner--password]

Protects the current directory by specifying owner and . nonower
(optional) passwords which are required in order to access (attach to)
the directory.

PROTEC pathname [owner-rights, [nonowner~rights]]

Sets protection (access) rights on the file specified by pathname.

owner-rights is an integer specifying owner's access rights to the.
file; nonowner-rights is an integer specifying nonowner's access
rights to file. Access rights are listed below:

  

 

fecess Rights

@ No access of any kind
1 Read only
2 Write only
3 Read and write
4 Delete and truncate
5 Delete, truncate and read

6 Delete, truncate and write

7 All access

Default: Keys are 7 8 (owner has all rights,
nonowner has none’.



PDR3858 PRIMOS SYSTEM COMMANDS

 

Returns the size in records (decimal) of a file specified by pathname.
The number of records per file is defined as the number of data words
in the file divided by 448, rounded up.

 

Displays the contents of file specified by pathname at the terminal.

 

If pathname is specified, causes the line printer to type out a
specified file. PRIMOS assigns the file a number in the form PRTxxx,

where xxx is a number between 901 and 208. The -LIST option returns a
list of all users whose files are in the queue to be spooled. The list

_ includes user name, filename, and file size. The -CANCEL PRTxxx option
removes file identified by PRTxxx from the spool queue. Binary files
cannot be spooled. Files are printed according to the time the file
was Spooled or according to file size.

 

 

 

Returns system status information indicated by specified options. ALL
returns all information, including disk names and physical-to-logical
disk correspondence (DISKS), network information (NETWORK) , user
information (USERS), and number of open file units on the current disk

(UNITS).

13 - 7 March 1979



SECTION 13

TERM [option (s) ]

PDR3858

The most commonly used options are:

-ERASE character

-KILL character

-XOFF

-NOXOFF

—-DISPLAY

Sets user's choice of erase character in place

of the default, ".

Sets user's choice of kill character in place of

default, ?.

Enables X-OFF/X-ON feature which allows programs

to halt without returning to PRIMOS command
level. Programs can be halted by hitting
CONTROL. Programs may be resumed at point of
halt by hitting CONTROL-Q. Also sets terminal
to full duplex (default value).

Disables; X-OFF/X-ON feature (default).

Returns currently set values of erase and kill

characters. Also displays current duplex
setting, Break and X-ON/X-OFF status.

If no options are specified, the TERM command will return a complete
list of TERM options.

USERS

See Appendix D.

Returns the number of users logged into PRIMOS at any given time.

REV. g 13, - 8



PDR3958 BAS IC-VM SYSTEM COMMANDS

SECTION 14

BASIC/VM SYSTEM COMMANDS

The following is an alphabetized description of all BASIC/VM system

commands. Commands are issued at BASICV command level, in response to
the BASICV system prompt character, '>'. Each command must be typed in
upper case and cannot be abbreviated. Some commands may also be used

as statements and are appropriately indicated.

Enters an editing mode to allow modification of indicated line.
Editing subcommands, listed below, are entered in response to the
Special ALTER mode colon (:) prompt. More than one such command can
be packed into a single line; no delimiter is necessary. The colon
prompt is returned until QUIT is typed.

Subcommand Effect

A/string/ Append string to end of line.

Bnn Move pointer back nn characters (were nn is any integer).

Cc Copy line up to but not including c (where c is any

character).

De Delete line up to but not including c.

Fn Erase n characters.

F Copy to end of line.

I/string/ Insert string at current position. (the slash may be any

delimiter not used as part of the string.

Mn Move n characters.

N Reverse meaning of next C or D parameter (copy until
character =<c, or delete until character =>c).

14 - 1 March 1979



SECTION 14 PDR3058

O/string/ Overlay string on line from current
position. A '!' changes a character to a space,

a space leaves character unchanged.

Q Exit from Alter moje.

R/string/ Retype line with string from current
position. (Similar to Overlay but '!' and space
have no special effects.)

n Move pointer to start of line.

Attaches to directory specified by pathname; may have one of the
following formats:

Format 1:

Format 2:

Format 3:

Example:

*> sub-ufd-name

where * indicates the current directory

<*> ufd-nane[ >sub-ufd—name]

<disk>

where <disk> is the logical disk number on which
directory named by ufd-name is located. <*> indicates
current disk. More than one sub-ufd-name may be
indicated if sub-ufds are nested.

ufd-name [>sub-ufd-name]

where directory named by ufd-name is located on the

current disk.

ATTACH<6 >MANUALS>REV1 6>PRCGCOMP>BAS ICV

Although similar to the PRIMOS ATTACH command, this command may not be
abbreviated and is issued at BASICV command level. If directories are

passworded, the passwords must be included.

REV. @ 14 - 2



PDR3858 BASIC-VM SYSTEM COMMANDS

 

Sets and unsets breakpoints at specified statement lines for debugging.

line-1 through line-n are statements at which the

=

program is

instructed to Stop. A maximum of 10 may be set. ‘The LBPS command

returns a list of all currently set breakpoints.

If a statement line at which a breakpoint is set is reached during

execution time, the program stops and returns to BASIC/VM command

level; type CONTINUE to resume execution. BASIC/VM resumes execution

with the statement specified by BREAK ON, and continues until the next

breakpoint, STOP, END, or error is encountered.

If statement numbers are not specified with BREAK OFF, all previously

set breakpoints are automatically turned off.

 

Lists all filenames under the current UFD, plus option information, if

specified. option(s) are any or all of the following:

DATE Returns the date and time of files' last modification.

PROTECTION Returns the files' protection attributes (owner and

nonowner rights). See Section 2.

SIZE Returns the size of each file in records.

TYPE Indicates whether the file is SAM, DAM, SEGSAM,

SEGDAM, or a UFD.

ALL Includes all of the above information.

If no options are specified, CATALOG returns only the filenames.

14 - 3 March 1979



SECTION 14 PDR3058

CLEAR

Resets all previously set numeric or string variables to zero or null
respectively. Also deallocates previously defined arrays and closes
all open files. Useful in Immediate mode calculations.

COMINP. |pathname

CONTINUE
PAUSE
TTY

Opens and reads commands in conmand file of specified pathname. If
control options (CONTINUE, PAUSE) are specified, command file halts at
COMINP PAUSE, resumes with COMINP CONTINUE. Commands in this file are
executed until a COMINP TTY command is reached. ‘This is generally the
last command in the COMINP file. CQMINP may also be used as a
Statement; see Section 15.

NOTE

AS a command, COMINP takes an unquoted argument:
aS a Statement, it takes a legal BASIC string
argument.

COMPILE [ pathname]

Translates the foreground source program into an executable binary
program (machine language) which can be named and saved by specifying
pathname. This binary file can be executed directly by specifying its
pathname with EXECUTE. See EXECUTE. If the filename (pathname) is
omitted, the system compiles) the code into user memory for use with
EXECUTE but no binary file is saved to disk. COMPILE also displays at
the terminal any syntax errors (e.g., bad statement format,
misspellings, etc) that may occur in the program. These are know as
‘compile-time’ errors, as distinguished from 'run-time' errors which
occur during program execution.



PDR3058 BASIC-VM SYSTEM COMMANDS

CONTINUE

Resumes program execution after a PAUSE or a breakpoint.

 

Deletes the specified statement lines from program. Jlin-num-1_ through
lin-num-n are statement numbers to be deleted. Statements may be

listed individually, separated by commas (as in first format), or they

may be specified in a range (as in second format), the beginning and
end of which are separated by a dash, as in 10-389.

 

If no pathname is specified, the currently compiled code in user memory

is executed. If none exists, the foreground source file is translated
into executable machine language and then executed. When a binary file
pathname is given, the binary file is immediately executed. If a
source file is specified, it is first compiled into machine language
and then executed. EXBHCUTE also displays at the terminal any run-time
errors that may occur during program execution. Run-time errors are

usually logic or control errors which interrupt or inhibit program
execution, e.g., a READ after a WRITE to a sequential file.

14 - 5 March 1979



SECTION 14 PDR3858

2 EXTRACT | 1 in-num-1[ --»lin—num-n]
lin=num-1 = lin-num-n

Deletes all except the specified lines. lin-num-1 through 1lin-num—-n
are statement numbers to be saved. Statements may be listed
individually separated by commas, or they may be specified in a range,
the beginning and end of which are separated by a dash. The statement
numbers must be in ascending order.

FILE [pathname]

Saves all input and modifications to current file under original name

(default) , or under new name scecified by pathname.

When filing a program, there are several points to remember:

l.

2e

_LBPS

If a pathname is not specified, BASIC/VM automatically uses the
name of the foreground file.

If a pathname different. trom the original name is specified, you
will have two versions o7 the same file. If the pathname already
exists, BASIC/VM returns the prompt:

OK TO REPLACE:

All responses other than Y, YE, YES or OK, are interpreted as NO,
and BASICV requests another pathname.

A program need not be complete to be FILEd. It is advisable to
FILE from time to time to avoid losing file modifications due to
an inadvertent typing error. However, be sure to FILE a modified
progran before calling in another file or exiting the system,
lest it be overwritten, truncated or generally garbled.

Lists currently set breakpoints. Breakpoints can be set by the BREAK
ON command.

REV. @ 14 - 6



PDR3858 BASIC-VM SYSTEM COMMANDS

 

Reports the number of statements in the current program.

 

Displays the contents of the foreground file at the terminal. MH
option suppresses program header (date, title etc). lin-num-l through

lin-num-n are statement numbers which may be listed individually with
command separators, or specified in a range, the beginning and end of
which are separated by a dash.

 

Merges external file, specified by pathname, with foreground file.

Line numbers in the external file which are duplicated in the
foreground file are overwritten by those in the external file;
otherwise, lines are inserted or appended in numerical sequence.

If the specified file is binary, it is loaded into user memory but does
not become part of the foreground file. After a binary file LOAD, an

EXECUTE with no pathname will run the just-LOADed binary file.

 

Indicates to BASIC/VM that a new foreground file is to be created with
the specified name. All lines previously in the foreground are erased.

14 - 7 March 1979



SECTION 14 PDR3858

OLD [pathname]

Calls an existing file, identixied by pathname, to the foreground. ‘The
last component of the pathneme is the name of the file being called to

the foreground. In the following example, STARTREK is the file called
to the foreground:

OLD GAMES>BAS IC>JUNK>STARREK

PURGE [pathname]

If pathname specified, deletes indicated file from directory.
Default: deletes the disk copy of the foreground file. A file
currently open cannot be PURCEd.

After the PURGE command is issued, the file remains in foreground until
another file replaces it. PURGE can also be uSed as a Statement; see

Section 15.

QUIT

Returns control to PRIMOS from BASIC/VM command level. Unlike CTRL-P

and BREAK, QUIT closes all files opened by BASIC/VM , and deletes

temporary files created by BASC/VM.

REV. @ 4 - 8



PDR3058 BASIC-VM SYSTEM COMMANDS

RENAMEnewname

Changes the name of the foreground file, but does not rename the

original disk copy of the file. If the renamed file is FILEd, two

copies of the file will exist with different names. The renamed file

will not be saved unless it is FILEd.

 

Renumbers statements in the foreground program. new-start is the

number which begins the new sequence. (Default: 108). old-start is

the existing line number at which to begin renumbering. (Default:

lowest numbered line). new-incr specifies increment value. (Default:

10).

Begins compilation and execution of the foreground source program, at

lin-num, if specified. No binary file is stored by the RUN process.

NH suppresses the program title, date and time usually displayed at

run-time. RUN also displays all compile-time errors (statement syntax,

spelling, etc) and run-time errors (faults in program logic) that may

occur during program translation and/or execution.

14 - 9 March 1979



SECTION 14 PDR3958

TRACE ( ON
OFF

Displays in brackets all statement numbers as they are executed until
the TRACE OFF command is typed. The statement numbers may be stored in
a Separate file (see the PRIMCS command COMOUT, Appendix D). TRACE ON
is issued immediately after canpilation (COMPILE) and immediately prior
to program execution (EXECUTE). Used to examine program logic or
control.

TYPE pathname

Displays the contents of the specified non-foreground file at the
terminal, but does not replace the file currently in foreground.

REV. @ 14 - 10



PDR3058 BASIC/VM STATEMENTS

SECTION 15

BASIC/VM STATEMENTS

The following is an alphabetized description of all BASIC/VM statements
and their formats. Conventions are the same as for BASIC/VM_ system
commands in Section 14. No abbreviations are accepted am all

statements must be typed in upper case. Statements which can be used
as commands are so indicated.

BASIC/VM Conventions
 

All PRIMOS command conventions, as listed in Section 2 or Section 13,

apply also to BASIC/VM commands and statements. In addition, the
following parameter representations are used throughout this section:

arg function argument

con constant (numeric or string)

(dim) © dimension for array or matrix; a numeric item

expr an expression; i.e., a combination of operands and
operators which can be evaluated. Can be either
numeric (num) or string (str).

str string

var variable

unit file unit number (a numeric constant) on which file

is opened for reading and/or writing.

15 - 1 March 1979



SECTION 15 PDR3@58

oe — PRIMEY
ADD #unit, Str-expr-1, KEY zevro-expr}= str-expr-2 keylist
- _ KEY

where keylist = [,KEY nur-expr-l = str-expr-3]*

Adds record, str-expr-l1, to MIDAS file, opened on unit. A primary key,
PRIMKEY, KEY zero-expr or KEY and its value, str-—expr-2, must be

supplied. Me or more secondary keys may be specified in keylist,
which contains the names, num-expr-l, and value(s), str-expr-3, of the

secondary key(s). * indicates repetition of expression as necessary.
 

CHAIN pathname

Closes all open files and transfers program control to external program

  ANGE num-array TO str-var
CHANGE str-expr TO num-array

Transforms ASCII character string , str-expr, into a one-dimensional
numeric array (num-array) containing the decimal values of the ASCII

codes of the string, or transforms a numeric array of ASCII codes to
its string equivalent, str-var. ASCII characters and their decimal
equivalents are listed in Appendix B. For example, when AS= 'WORD' is
changed to array A, A(@) contains the length of AS, or 4; A(1)

contains the decimal code of W, i.e., 215, etc. Conversely, if array A
is changed to AS, the resulting string length is controlled by the
value in A(@).



PDR3958 BASIC/VM STATEMENTS

 

Closes file previously opened on unit by a DEFINE FILE statement. unit

is maximum of 12.

 

Changes name of specified file. oldname is the pathname of the file to
be renamed; newname is the new pathname or filename given to the file.

 

Stops execution of current program and executes commands from command

file specified by pathname. COMINP PAUSE and COMINP CONTINUE
temporarily halt and restart the command file respectively. Commands
in file are executed until COMINP TTY, the last command in the file, is

reached. Also used aS a command; see Section 14.

Lists numeric and string constants to be accesed by a READ statement.
For example, given the following READ and DATA statements:

DATA 12, 45, 'BULL'

READ A, B, C$

The variables A, B and CS will be assigned the values 12, 45 and BULL,

respectively. There may be any number of DATA statements within the

same program.

15 - 3 March 1979



SECTION 15 PDR3858

READ ; ee |

DEFINE FILE #unit = filename [,type-code] [,record-size]
APPEND

Opens file, named by filename, a string expression, on specified unit.

Optionally assigns file type and access method, indicated by type-code.
Type-codes are listed in Table 15-1, following. If no type-codeis
given, the default (ASC) is assed. The default record length of 60
words (120 characters) may le increased or decreased by specifying
record-size, (a numeric expression) in number of words. For MIDAS
files, record-size should be set equal to the combined length of the
data record and the primary key; this is specified during CREATK when
the template is being creatsd. Access may be restricted to read or
append only with the READ and APPEND options respectively. A file
DEFINEd as a READ file is assum3d to exist.

DEFINESCRATCH FILE #unit (,file-type] [,record—size]

Opens a temporary file on soecified unit, of any type except MIDAS.
When unit is closed, the scratch file is automatically deleted.

DEF FN var [ (arg-l,...arg-n)] = expression

Defines a one line function named by var, a string or numeric variable,

(No FNEND statement necessary.) Arguments (arg-1 to arg-n) are numeric
or string scalar variables only.

DEF FN. var. [ (arg~l,...arg—n) ]

*

FNEND

Defines a user-defined numeric or string function, of one or more
lines. The last line must be FNEND. var is a simple numeric or string
variable. arg-l to arg-n are dummy arguments for the function; may be
numeric or string scalar variables. The defined function is not
executed until it is referenced in the program; control then shifts to
the function definition until FNEND is reached.

REV. 9 15 - 4



Access

Type-—Code Method

PDR3958 BASIC/VM STATEMENTS

Table 15-1. File Type-Codes

Contents 

ASC SAM

(default)

ASCSEP SAM

ASCLN SAM

ASCDA DAM

BIN SAM

BINDA DAM

SEGDIR SPECIAL

MIDAS SPECIAL

ASCII data, formatted like terminal output,

using BASICV PRINT conventions, e.g.,
commas, colons and semi-colons, all dictate
the appropriate number of spaces to be used
as data delimiters. Records variable-length
and easily inspected.

ASCII data stored with commas inserted

as data delimiters. Data are stored
and read back exactly as entered.
Records fixed-length, accessed sequentially.

ASCII data with comma delimiters,
and line numbers inserted in increments

of 18 at the start of each record.
Designed to be edited at BASICV command level.

Similar to ASCSEP. Records fixed-length
and blank-padded as necessary. Direct access
method used for quick, random access to
any record in the file.

Data storage transparent to user.

Records are fixed-length, accessed sequentially.

String data stored in ASCII code: numeric data
stored in four-word floating-point form.
Provide maximum precision and compactness of
numeric data, but cannot be inspected by TYPE etc.

Same as BIN but direct access method

is used for random record access.
Records not data-filled are zeroed out.

Identifies file as a segment directory.
Subordinate files, identified by number,

may be SAM, DAM or other SEGDIR files.
An additional DEFINE is required
to access a subordinate file.

Multiple Index Data Access files.
Created by Prime-supplied MIDAS utilities.

15 - 5 March 1979



SECTION 15 PDR3858

  
L num=-con=-2) |

Defines the dimensions of a numeric or string array or matrix, named by
a numeric or string variable, var. Dimensions are represented by
(numcon) and (num-con-1, num-con-2), numeric constants. Default:
(18) or (10,10). Variables are not legal dimension specifiers in DIM
statements. The lowest element of an array is always (@) or (0,8).
Arrays and matrices may be redimensioned within a program with the MAT
statement.

 

  
Sets up a series of statements in association with IF-THEN statements,
executed if a specified condition is met. DOEND indicates the end of
the series, ELSE DO is an optional alternative to previous set of DO
Statements. ELSE can also be used in conjunction with IF. (See IF
Statement). Dots (.) represent statements in program.

Terminates program execution: serves as messageless STOP.

REV. @ 15 - 6



PDR3058 BASIC/VM STATEMENTS

 

Allows a_ specified number of seconds, time-limit, (range 1 to 1800),

for user input of a value for a numeric or string variable, var. No
prompt is given. time-var, a numeric variable, returns the actual time
taken to enter value. Mly one value can be entered from the terminal.

 

Returns user number assigned at LOGIN in a numeric. variable,
user-—num-var. Other options are same as for ENTER.

“ERROROFF

Turns off all error traps in conjunction with the ON ERROR GOTO
mechanism.

 

Specifies beginning of loop. Used with NEXT statement. The loop

index, which changes during program execution, is specified by index, a
numeric variable. The initial value of the index is set to start, a
numeric expression; the increment value is set by incr: and the final

value of the index is represented by end, a numeric expression. When

the index attains this value, loop execution stops.

 

15 - 7 March 1979



SECTION 15 PDR3058

    

 

(= start [STEP incr] }WHILE|condition-expr
— UNTIL

Specifies the beginning of a loop with statement modifier. Used in
conjunction with NEXT. comlition-expr, a conditional expression,
determines how long the loop will be executed. The WHILE modifier
indicates that loop execution will continue as long as the specified
condition remains true. UNTII, specifies that loop execution will
continue until the specifiecl condition is met. start represents the
initial index value; incr optionally sets the increment value. The
default STEP size iszero. The following are examples of legal and
illegal loop nesting. Example of legal nesting techniques are shown
first:

 

Two-level Nesting
 

FOR I1 UNTIL I1=13

FOR I2 = 1 TO 13

NEXT I2

NEXT [1

Three-level Nesting
 

FOR Il = 1 TO 10

FOR I2 = 1 TO 10

FOR I3 = 1 TO 19

NEXT I3

NEXT I2

NEXT I1

REV. @ 15 - 8



PDR3058 BASIC/VM STATEMENTS

Examples of unacceptable nesting techniques are:

Two-level Nesting

FOR Il UNTIL 11=13

FOR I2 = 1 TO 10

NEXT I1
NEXT [2

Three-level Nesting

FOR Il = 1 TO 1@
FOR I2 = 1 TO 10

FOR I3 = 1 TO 10

NEXT I1

NEXT I2

NEXT I3

Note

 

The statement modifiers WHILE, UNTIL and UNLESS may

be used with other executable statements as well.

Note that UNLESS may not be used with FOR loops.

 

Unconditionally transfers program control to an internal subroutine

beginning at specified lin-num. A RETURN must be executed to terminate

the subroutine. Up to 16 GOSUB statements may be nested.

15 - 9 March 1979



SECTION 15 PDR3858

GOTO. lin-num

Transfers program control forward or backward to a specified lin-nun,
A loop may be created when the specified line number appears prior to
the GOTO statement. May be used with IF.

IF expr | GOTO lin-num-1
THEN Lin-num-1 | |
THEN statement-1}. [ELSE

(

statement-—2
me cS | { Tipe

i

Transfers program control depending on the value of a relational,
logical or numeric expression (expr). lin-num is the statement number
to which progran control is transferred if the expression is true.
statement-1l is executed if the preceding expression is true. If the
expression is not true, either statement-2 will be executed, or control
will transfer to lin—num-2, depending on which, if any, is specified.
If expr is not true, and no alternative is provided, the next
sequential statement is executed.

 

 

IF statements may be nested to any level. IF may be used in one of the
following combinations:

l. IF expr] GOTO line |

THEN line
THEN statement | ELSE | line

j stotenent |

2. IF condition THEN DO

DOEND

ELSE DO

DOEND

REV. @ 15 - 14



PDR3858 BASIC/VM STATEMENTS

 

Prompts user for input specified by var-l through var-n which are

either numeric or string variables or array elements, separated by

commas. If no prompt string is provided, the default prompt character

(!) is given; otherwise, the string is printed.

 

Trailing commas are ignored as are data in excess of variables

specified. Data must be input in the same order in which the variables

are given and must also match the variable type, or an INPUT DATA ERROR

will occur.

 

Prompts user, with optional ‘'prompt-string', for str-var, a string

variable or string array element. Accepts entire input line, including

colons, commas, and leading blanks as one entry.

 

The assignment statement, used to assign values to numeric or string

variables or array elements; the keywrd LET is optional. var

represents a numeric or string variable or array element. expr is

either a numeric value, string expression or another variable.
 

 

Sets number of characters per line to value, a numeric expression.

Range is 1 to 32767; the default is 80. MARGIN OFF turns off all

margin settings other than the default.

15 - ll March 1979



SECTION 15 PDR3958

  

| ZER
MAT mat 2CON \[ (dim-1) |

IDN ||(dim-1,dim--2)
(NULL J*

Sets initial valu. of matrix elements to zero, one, identity or null,
respectively. Also used to redimension a one-dimensional matrix to
(dim-1), a numeric expression, or a two-dimensional matrix to
(dim-1,dim-2). NULL can ony be used on string matrices; it
initializes all elements to a null value. IDN transforms a matrix into
an identity matrix, one in which all elements, except those on the main
diagonal, are @; the main diagonal elements each have a value of one
(1). ZER initializes all matrix elements to zero. CON sets all
elements equal to 1.

4

MAT mat-3 = oat “fnat-2
*

Adds, subtracts or multiplies the elements of mat-1 and mat-2 to form a
target matrix, mat-3. In multiplication, the target matrix dimensions
are the number of rows of mat-1l and the number of columns of mat-2.

 

Rules:

1. For addition and subtraction, the two matrices must have the
same dimensions, e.g., DIM A(2,2), DIM B(2,2).

2. For multiplication, tre number of columns in the first matrix
must equal the number of rows in the second matrix. The
result will be a matrix with the dimensions of the number of
rowS of the first matrix by the number of columns of the
second matrix.

3. A matrix may not be maltiplied by itself; nor can the current
value of the target matrix (the one appearing on left side of
equation) be used in the multiplication expression. For
example, MAT A= A*C is illegal.

REV. @ 25 = 12



PDR3858 BASIC/VM STATEMENTS

MATmat-1 = (expr) * mat~2

Multiplies each element of mat-2 by a specified numeric value (expr)
and assigns results to mat-l. If mat-1 is an existing matrix, its
elements will be redefined, and its dimensions will be changed to those
of mat-2.

 

 

MATmat-1 = INV(mat—2)

Assigns the inverse values of a square matrix mat-2, (determinant not
equal to 9) to the target matrix, mat-l. The resulting values in mat-l
can’ be multiplied by mat-2 to yield the identity matrix in which all
elements are equal to l.

 

 

MAT mat-1 = TRN (mat-2)

Calculates the transpose of the values of mat-2 and assigns them to
target matrix mat-l. A matrix is transposed by rotating it along the
main diagonal. For example:

 

14 7 12 3
258 456

369 789

mat—2 mat—1=TRN(mat-—2)

MAT INPUT ['prompt-string’,] mat-1 [ ,mat-2]|,...)mat-n

Reads data from the terminal and assigns the values to specified
matrices, mat-l through mat-n. mat (*) indicates that elements may be

input until a new line is typed. Matrix is automatically dimensioned
to number of input elements. Default prompt character is !, unless
prompt-string is specified. The type of data input must match the
matrix type (i.e., numeric or string).

 

15 - 13 March 1979



SECTION 15 PDR3858

MAT PRINT mat-1 [,...mat~n]

Prints indicated matrices, mat-1 to mat-n, at terminal. If a matrix
name is followed by a colon instead of a comma, the elements will be

separated by spaces instead of column tabs when printed. If more than
one matrix is listed, each begins on a new line. Commas are the only
delimiters which put matrix elements into columns, i.e., all columns,

or one print zone, apart. If .NL. (new line) is typed after each
input, output will occur in row order.

MAT READ mat-1 [,...mat—n]

Reads values from a data list and assigns them to the elements of the
specified matrix or matrices. Values are assigned until all matrices

are filled, or the data list is exhausted.

MAT READ [*] #unit, mat-l1 [,...mat~n]

Reads data items from an external file opened on unit and assigns them
to elements of specified matrix or matrices. Optional * indicates that
all data from current record should be read before a new record is

read.

 

MAT WRITE #unit, mat-1 [,...mat—n]

Writes an entire matrix or matrices to a file on the specified unit.

If matrix names are followed by colons instead of commas, elements of
the matrices are output one space apart instead of 21 spaces (one print
zone) apart.

 



PDR3958 BASIC/VM STATEMENTS

If two units have been opened, a matrix may be read from one unit and

written to the other. For example:

MAT READ #1, A
MAT WRITE #2, A

 

Defines the end of a loop beginning with a FOR statement. The num-var
matches the variable used with the companion FOR statement.

 

“ONnut-expr GOSUB Lin-num-1,...lin-num-n.

Transfers progran control to a subroutine at a specified line number

depending upon the value of the numeric expression, num-expr. When a
RETURN statement is reached in the subroutine, control returns to the
statement following the ON...GOSUB statement.

The value of the numeric expression must be less than or equal to the
number of statement lines listed. ‘Thus, if the value of the expression
is 1, control will be transferred to the statement indicated by
lin-num-l. If the value isn, control will be transferred to the

statement indicated by lin-nun-n. If the value of the expression is

out of range, an error message will be displayed.

 

ONnum-expr GOTOlin-nun-1,...lin-nun-n

Transfers progran control to one of a list of line numbers (lin-num-l
to lin-num-n) depending on the value of the numeric expression,
num-expr. If the value of num-expr is 1, control transfers to the
first line number given, lin-nun-l; if the value is 2, control
transfers to the second line number given, and so forth. The value of
num-expr must be less than or equal to the number of statement lines
listed. If the expression value exceeds the number of lines listed, an
error message is displayed.

15 - 15 March 1979



SECTION 15 PDR3858

ON. END: #unit GOTO lin-num

Establishes a line number to wiich program control will transfer when
an END OF FILE occurs on specified unit. This statement does not test
for END OF FILE; instead, it establishes the action to be taken when
the end of the last record in a file is reached during a READ,
POSITION, or other I/O operation.

ON BRROR GOTO. lin-num

Establishes a line number to wiich program control will transfer when a
run-time error occurs. Two variables, ERR and ERL, and the function
ERRS (num—expr) , are associated with ON ERROR GOTO.

ERR Variable set to the code number of the error
which activated the ON ERROR statement.

ERL Line number being executed when the error
occurred.

ERRS (num-—ex pr) Outputs actual text of the error message
associated with an error code represented by a
numeric expression, num—ex pr .

The ERROR OFF statement can be used to cancel all error traps set by ON
ERROR GOTO statements. See ERROR OFF.

ON ERROR #unit GOTO lin—nun

Establishes a statement line to which program control will transfer
when an I/O error occurs on tre specified unit, e.g., when an invalid
number is entered.



PDR3058 BASIC/VM STATEMENTS

PAUSE

Acts aS an executable BREAK command. Suspends program process at line
where PAUSE occurs. To resume program, type CONTINUE.

 

In direct access files (ASCDA, BINDA), positions the internal record
pointer to a specified record-number in a file on the specified unit.

When pointer is positioned “past last record, the ON END #unit GOTO
statement is activated (if specified) or the error message, END OF

FILE, is displayed.

  

     POSITION#unit,KEY. (mune:=str-exproeee S t SAMEKEY.

Positions a file read pointer to a specified record in a MIDAS file.
If a secondary key number, num-expr is not indicated, num-expr = 9 is
assumed. If SEQ is suppliedinlieu of key, the pointer positions to
the next sequential record SAME KEY positions to datum only if next key
matches current one. POSITION is similar to READ except that no data
is retrieved.

  

ooae soiier

 

Prints formatted information at the terminal. Item-1 to itemn

represent numeric and/or string values.

LIN forces the specified number (num) of carriage return - line feed

combinations between items in the output if num is greater than @. If
nun is less than @, it forces that many line feeds only: if num = @,
only a (CR) is generated.

15 - 17 March 1979



SECTION 15 PDR3958

TAB forces tab to specified column number. SPA forces number (nun) of
Spaces between items in output.

A comma in a print list causes the terminal to advance to the first
character position of the next print zone. Each print zone consists of
21 character positions. If data will not fit on one line, it is
continued on the next line. If a colon is used instead of a comma, the
items are separated by a single space in the output; if a semicolon is
used, no spaces are inserted between items.

When a numeric expression is printed, if the value of the expression is
positive, the sign is suppressed. If the value of the expression is
negative, a minus sign is printed for the sign character.

Tf used without any parameters, the PRINT statement causes a blank line
in the output.

PRINT USING format-string, iten-l[,...item-n]

Generates formatted output according to format characters in
format-string, including a dollar sign, plus or minus signs, decimal
polnts and right-left justification. Item-l through item-n represent
string or numeric values. Fomnat characters listed in Table 15-2.



Sample Using this format Will be

Ttem: Specification:

PDR3858 BASIC/VM STATEMENTS

Numeric Format Field Characters

printed as:Remarks: 

POUND SIGN FORMAT SPECIFICATIONS (#)

25 tHE HH

—30 iH tHHt

1.95 HTT

598745 HtHHH

25

30

KKK

Digits right justified
in field with leading
blanks

Sign is ignored because

item is positive.

Only integers are
printed; the
number is rounded

off.

If number is too large
for the specified
field, asterisks
are printed.

PERIOD (DECIMAL POINT) FORMAT SPECIFICATIONS (.)

20 THREE o HH

29.347 HEHE. FH

789812. 344 HEE. HH

COMMA FORMAT SPECIFICATIONS (,)

30.6 +9 HEH. tH

2008 tr ttt.

15

20.80

29.35

kKkKKK

Positions to right of
decimal point are
zero filled.

Item is rounded off.

If number is too large
for the specified field
asterisks are

printed.

+$ 39.60 A space is substituted

2,000.

for comma when the
leading digits are blank.

Comma is printed in
indicated position.

March 1979



SECTION 15 PDR3858

89033 HHH, HHH +90,933 Comma is printed

when the leading zeros
are not Suppressed.

VERTICAL (UP ARROW) FORMAT SPEC“-FICATIONS (7)

170.35 +H. HOO Oe +17. 03E+01

1.2 +HH. HHOOO +12.00E-01

6082.35 +H#HH HHOOOO +600. 23E+01

Note 

If more than four up arrowS are used, the
corresponding number of exponent digits will be
printed.

PLUS SIGN FORMAT SPECIFICATIONS (+)

20.5 +H#. HH +20.5@8 Plus sign printed where
indicated; item is

positive.

1.81 +##. #H + 1.81 Leading zero's print as
blanks.

-1.236 +##. HH ~ 1.24 Minus sign printed when
when item is negative.

—234.8 +##. HH kkkKK ©6Tf number is too large
for the specified
field, asterisks

are printed.

MINUS SIGN FORMAT SPECIFICATIONS (-)

20.5 Ht. ##- 20.50 Sign discarded if item
positive.

008.81 Ht. ##- -O1 Leading zeros
immediately to the
left of the decimal
point are suppressed.
Minus sign not printed
when item is positive.

REV. @ 5 - 20



PDR3858 BASIC/VM STATEMENTS

-234.0 Ht. #H- 234.00- Sign printed where indicated.

-20 =. HH -20.@0 Floating minus signs
are treated as digit
positions.

—208 ——-—.## xkkKKK ~Number does

not agree with the
format; asterisks
are printed.

2 —-—. HH 2.00 Item is positive;
. minus sign suppressed.

DOLLAR SIGN FORMATSPECIFICATIONS (S$)

30.512 SHE. HH $ 30.51 Dollar sign printed

-39.512 SHH. H+ $ 38.51-Negative item; minus
Sign printed where
indicated.

13.20 +$SSS#. ## + $13.2@Floating dollar sign
printed immediately
prior to leftmost
Significant digit.

Table 15-3. STRING FORMAT FIELD CHARACTERS

POUND SIGN (#) AND ANGLE BRACKETS (<,>) FORMAT SPECIFICATIONS

 

Sample Using this format Will be
item: specification: printed as: Remarks

TWELVE DHE TWELVE Right—justified

TWELVE <HHtHE TWELVE left—justified

GRAND HHH GRAN Only 4 characters
will fit into
specified field.
field.

15 - al March 1979



SECTION 15 PDR3858

READ var-l[,...var-n]

Reads numeric or string values From one or more DATA statements within
the program, beginning with the lowest numbered one. var-1 through
var-n are string or numeric variables separated by commas. Begins
accepting values with first item in lowest numbered DATA statement.
READ is alwayS associated with one or more DATA statements. If the
data items are exhausted before all variables are satisfied, an error
message is displayed. The RESTORE statement may be used to recycle
data values within a program.

S2Q

READ [KEY] #unit |, KEY[num-expr]=str—-expr], str-var

SAME KEY

Reads data from specified record in MIDAS file on unit. Data is read
into str-var. If READ KEY is soecified, the key value is read into
str-var. Num-expr and str-expr are the key numbers and values,
respectively, of the primary or secondary key. SEQ reads next
sequential record. SAME KEY returns datum only if next key matches
current one.

 

 

READ LINE funit, str-var

Accepts entire line of text (including commas and colons) as one data

item and puts it in str-var. Reads from a record in a file previously
opened on unit. Whenthe Statement has been executed, the internal
record pointer automatically moves to the next record.

REV. @ 5 - 22



PDR3858 BASIC/VM STATEMENTS

 

Forces program to read a newrecord from the file previously opened on
unit. var-1 through var-n are values to be read from current record.
READ accepts value of the first variable in the record to which pointer
is positioned. Pointer automatically moves to the next record after
indicated values have been read.

* signals program to continue reading data in current record before new
one is read. var-l through var-n are values to be read from current

record and subsequent records, as necessary to satisfy variables
listed.

REM string

Indicates remark to reader; ignored by system. Exclamation point (!)
is substituted for REM when comments are added to executable

statements.

REMOVE #unit[, KEY[nun-expr] =str-expr] +

Deletes specified key from MIDAS file. If primary key, num-expr = 9,

is specified, data associated with key are removed also. Multiple keys
may be deleted with one statement line; + indicates key specification

may be repeated one or more times.

15 - 23 March 1979



SECTION 15 PDR3958

 

Deletes file referenced by indicated segment (SEG x) on segment
directory opened on indicated unit. Pointer at SEG y (segment y) is
moved to segment x; old pointer at SEG y is zeroed.

 

Instructs program to reuse list of data items beginning with first item
in lowest numbered DATA statement. Numeric data items are reused by
specifying #; string items, by $. Both numeric and string items are
reused if neither symbol is specified. RESTORE must precede READ
statement indicating data items to be reused.

 

Causes control to be returned from GOSUB subroutine. For every GOSUB
in a program, exactly one RETURN must be executed.

 

Repositions record pointer to top of file on specified unit or wmnits.

REV. 0 15 —- 24



PDR3858 BASIC/VM STATEMENTS

 

Rewinds pointer to beginning of MIDAS file opened on unit, at column

specified by KEY num-expr. If num-expr=@ or is unspecified, pointer is

positioned to primary key (default).

stop
/

Causes termination of program execution. Returns message: STOP AT

LINE lin-—nun.

 

Writes string expression, str-expr, to current MIDAS file open on unit.

 

Beware of changing keys with UPDATE if keys are being stored in record.

BASICV does not monitor record composition and is not aware of changes

made to key fields within a record. UPDATE is not equivalent to a

REMOVE followed by an ADD.

 

Writes data, string or numeric, specified by item-1 through item-n,

(string or numeric variables), into the current record or output device

opened on unit. If no values are specified, a blank line appears in

the output. If a sequential file is closed after WRITE statement, all

subsequent records in file are truncated.

 

15 - 25 March 1979



SECTION 15 PDR3058

WRITE #unit USING format-string, item-l[,...item-n]
OR

WRITE USING format-string, #unit, item-1[,...item-n]

Generates formatted output, determined by format characters in format-
String, including tabs, spaces, and column headings. Output is written
to current record or output: device opened on unit. item-1 through
item-n are numeric or string variables or expressions. See Tables
15-2, 15-3 for format characters. If items are Separated by colons
instead of commas, they are printed one Space apart rather than tabbed
to the next print zone. Semicolons as separators cause items to be
printed with no intervening characters or spaces.

REV. @ 15 =- 26



PDR3058 SAMPLE PROGRAMS

APPENDIX A

SAMPLE PROGRAMS

SAMPLE PROGRAMS

BASIC/VM's flexible control structure and unique string handling

capabilities make it easily adaptable to many applications. The three

sample programs presented in this appendix utilize most of the features

discussed earlier in the manual. The first program enables you to plot

and print out a graph. The second can be used to test math skills, and

the third performs simple text formatting.

Sample Pogram 1:
 

GRAPHICS PROGRAM

100 ! GRAPH-DRAWING PROGRAM

118 !
128 ! GRAPH PROGRAM
130 !
140 ! SET UP ARRAYS

15@ DIM C(2) ! C(L) # OF HORIZ CHAR, C(2) = # VERT CHAR

168 DIM M(2) ! M(1) X MIN, M(2) = X MAX

176 DIM N(2) ! N(1) Y MIN, N(2) = Y MAX

18@ DIM P (120,120) ! POINT ARRAY, P(I,J) = 1 1F POINT IS DEFINED

198 DIM X(180) ! X VALUES

208 DIM Y (188) ! Y VALUES

218 !

228 DEF FNB (PS)

230 FNB = VAL (LEFT (PS, INDEX(PS,' ')-1))

240 PS = RIGHT (PS,INDEX(PS,' ') + 1)

2509 FNEND

200 !

270 PRINT 'TYPE INPUT FILE NAME.'

280 INPUT FS
296 DEFINE READ FILE #1 = FS, ASC

300 !
318 ON END #1 GOTO 40d
320 Z =O
330 FOR I = 1 STEP | WHILE Z = @
349 READ #1, X$
350 XS = CVTSS (X$,24) + ''
360 X (I) = FNB(XS)
370 ¥ (I) = FNB (XS)
389 NEXT I
390 1
400 N=I1I-1
418 PRINT 'DO AUTO SCALING?!
420 INPUT AS
430 ! .
449 PRINT "TYPE (# OF HORIZONTAL CHAR., # OF VERTICAL CHAR. ) '

450 INPUT C(1), C(2)

A - L March 1979



APPENDIX A PDR3858

468 IF AS = 'YES' THEN DO

47@ M(1) = X(1)

480 M(2) = X(1)

499 N(l) = Y(1)

508 N(2) = Y(1)

519 FOR I = 2 TON

528 IF X(I) > M(2) THEN M(2) = X(I)

5308 IF X(I) < M(1) THEN M(1) = X(I)

548 IF Y(I1) > N(2) THEN N(2) = Y(Z)

558 IF Y(I) <N(1) THEN N(1) = Y(I)

560 NEXT I

570 DOEND

588 ELSE DO ! MANUAL SCALING

598 PRINT "TYPE MIN X, MAX xX!
620 INPUT M(1) ,M(2)
619 PRINT "TYPE MIN Y, MAX Y!
628 INPUT N(1), N(2)
638  DOEND
648 !

658 ! SET SCALE FACTORS
668 K = (C(1) - 1)/(M(2) - M(1)) ! X SCALE FACTOR
6786 L = (C(2) - 1)/(N(2) - N(1)) ! Y SCALE FACTOR

688 A = (M(2) - M(1)*C(1))/(M(2) - M(1))
699 B = (N(2) - N(1)*C(2))/(N(2) - N(1))
708 MAT P = ZER ' CLEAR POINT ARRAY
710 !

720 FOR I =1 TON ! FILL POINT ARRAY
7130 R = INT (K*X(I) +A + .5)
748 S = INT(L*Y (I) +B + .5)
158 IF R>@ AND R<=C(1) AND S>@ AND S<=C(2) THEN P(R,S) = 1
76@ NEXT I
770 !
788 ! PRINT THE GRAPH
790 !
888 FOR J =C(2) TO 1 STEP -1l
818 XS = '' ! BLANK OUT THE LINE BUFFER
820 FOR I = 1 TO C(1)
830 IF P(I,J) = 1 THEN XS = XS + '#!
846 IF P(I,J) = @ THEN XS =XS +! '!
858 NEXT I

860 PRINT 'I':XS

$79 NEXT J

888 XS = '!

898 FOR IT =1TOC(1L) + 2

908 XS = XS + '-'
910 NEXT I

920 PRINT XS

938 END

>TYPE XXX

34 —
e

W
s
N
e

W
N

N

REV. @ A - 2



55

8.5

>RUN

GRAPH FRI, JAN 05 1979

TYPE INPUT FILE NAME,
1XXX
DOAUTO SCALING?
!YES
TYPE (# OF HORIZONTAL CHAR., # OF VERTICAL CHAR.)

130,10
I *

B
H
R
R
e

R
e

PDR3058

15:55:54

*

 

A

SAMPLE PROGRAMS

March 1979



APPENDIX A PDR39858

sample Program 2: 

100
1@1
118
129
1398
149
141
150
L160
lol
178
188
190
200

2108
229
230
246
2508
260
270
288
290
380
310
320
3308
349
358
368
378
380
381
398
400
402
419
420
43
449
459
460
479
480
490
508
518
528

REV. @

MATH DRILL PROGRAM

! MATH DRILL PROGRAM
t

DIM S$(3)
SS(1) = '+' |! INITIALIZE SYMBOL ARRAY
SS (2) = | a |

S$(3) = 'X!
!

! DEFINE FUNCTION TO SENERATE RANDOM OPERANDS.
DEF FNA(I,J) = INT (I*2ND() + J)

R=@ ! R -> # ANSWERS CORRECT
PRINT 'HELLO, WHO ARE YOU?!
INPUT NS
PRINT 'OK, ':NS:' I HAVE SOME MATH PROBLEMS FOR YOU,'
PRINT 'WHICH TYPE Of PROBLEMS WOULD YOU LIKE?'
PRINT 'L. ADDITION'
PRINT '2. SUBTRACTION '
PRINT '3. MULTIPLICATION'
PRINT '4, MIXED!
PRINT
PRINT "TYPE 1, 2, 3, OR 4!
INPUT T ! T IS PROBLEM CLASS |
PRINT "HOW MANY SECONDS SHALL I GIVE YOU TO ANSWER EACH PROBLEM?!
INPUT U
S = VAL (SUB(TIMES,7,9)) ! SEED RANDOM # GEN
S = RND(-14S)
PRINT 'READY?'
INPUT AS
IF AS = 'NO' THEN STOP

BEGIN MAJOR LOOP

I
Y

N
O

o
m

a
a

om
e

li 0

OR W = 1 STEP 1 WHILE Z = 0

W IS PROBLEM # AND Z IS EXIT FLAG,

RINT CHAR (140)

F T 1 THEN V

IF T 2 THEN V

IF T 3 THEN V

IF T 4 THEN V

B = FNM (9,3)

IF V = 1 THEN DO

r
i

Y
U

e
o

! V IS INDEX INTO SYMBOL ARRAY S$1
2

3

Fo
a

NA (3,1)



PDR3058 SAMPLE PROGRAMS

538 DOEND
549 IF V = 3 THEN DO
559 A = FNA(9,3)
562 Q = A*B

578  DOEND
586 PRINT B:SS(V):A:'=!':
598 ENTER U,M,C
608 IF C < Q THEN DO
610 IF M >= @ THEN DO

6208 PRINT 'WRONG':NS:'.'

630 DOEND

642 ELSE DO

650 PRINT "YOU TOOK TOO LONG, TRY AGAIN.'

660 DOEND

670 IF V = 1 THEN PRINT B:SS(V):A: '=':A+B

680 IF V = 2 THEN PRINT B:SS (V):A; '=':B-A
690 IF V = 3 THEN PRINT B:SS(V):A: '=':B*A

180 DOEND

710 ELSE DO

726 — D = INT (3*RND (@) + 1)

730 IF D = 1 THEN PRINT 'RIGHT,':NS:'.'

7408 IF D = 2 THEN PRINT 'VERY GOOD.'

158 IF D = 3 THEN PRINT NS:', YOU GOT IT!'

760 IF D > 3 THEN PRINT 'CORRECT!'

77 PRINT 'YOU TOOK':M: 'SECONDS TO GET THE ANSWER.'

780 R=R+1

792 DOEND

808 PRINT 'MORE?'

818 INPUT AS
820 IF AS = 'NO' THEN Z = 1
830 NEXT W

849 !
858 ! END OF MAJOR LOOP
860 !
870 PRINT 'YOU GOT':R: 'OUT OF ':W-l: 'CORRECT.'
88@ PRINT 'GOOD BYE.'
898 END

>RUN
MATH FRI, JAN @5 1979 15:57:31

HELLO, WHO ARE YOU?
{LAURA
OK, LAURA I HAVE SQME MATH PROBLEMS FOR YOU.
WHICH TYPE OF PROBLEMS WOULD YOU LIKE?
1. ADDITION
2. SUBTRACTION
3, MULTIPLICATION
4. MIXED
TYPE 1, 2, 3, OR 4
14
HOW MANY SECONDS SHALL I GIVE YOU TO ANSWER EACH PROBLEM?

A - 5 March 1979



APPENDIX A PDR3958

REV.

119
READY ?
!YES
6+6=12
VERY GOOD.
YOU TOOK 2 SECONDS TO GET THE ANSWER.
MORE?
!YES
4+6=10
LAURA , YOU GOT IT!
YOU TOOK 1 SECONDS TO GET THE ANSWER.
MORE?
!YES
3X6=12
WRONG LAURA .
3X 6=18
MORE?
1YES
T+4 = 90
WRONG LAURA .
7+4=11
MORE?
!NO
YOU GOT 2 OUT OF 4 CORRECT.
GOOD BYE.

>QUIT



PDR3058 SAMPLE PROGRAMS

Sample Program 3:
 

180
119
120
139
148
158
168
170
189
190
200
218
229
230
249
2598
260
270
280

290
309
310
320
330
349
350
3608
379
380
398
409
419
429
430
440
450
460
478
489
490
500
518

520
538
540
558
569
570
588

TEXT HANDLING WITH STRING FUNCTIONS

REM FNAS ~ SIMPLE TEXT JUSTIFICATION, 12-20-78

REM CALLING SEQUENCE:

REM STRING = FNAS (INPUT_STRING, OUTPUTSTRINGLENGTH)

DEF FNAS (XS, L)
L2 = LEN (XS)
N =9 ! N = # OF WORD DELIMITERS (SPACES)

FOR I2 = 1 TO L2 ! COUNT # OF WORDS

IF SUB(XS, I2) = " ' THENN =N +1 ! IF SPACE, INCREMENT

NEAT I2

IF N = 8 THEN DO

A2S = X$ + SPA(L ~ L2) ! HANDLE ONE WORD CASE

DO END

ELSE DO

Sl = INT( (L-L2)N ) +1 ! # SPACES TO PUT BETWIXT EACH WORD

S2 = (L-L2) MOD N ! # RESIDUAL SPACES
A2s = '! ! CLEAR OUT RESULT

FOR I2 = 1 TO L2 ! LOOP THRU INPUT STRING

IF SUB(XS, I2) <> ' ' THEN DO ! HIT SPACE?

A2S = A2S + SUB(XS, I2) ! NO, NORMAL CHARACTER
DO END
ELSE DO

A2S = A2S + SPA(S1) ! HIT SPACE, PUT IN Sl SPACES.

IF S2 <> @ THEN DO ! ANY RESIDUAL SPACES?

A2S =A2S+' ! ! YES, PUT A SPACE HERE.

S2 =S$2 - 1
DO END

DO END

NEXT [2

DO END

FNAS = A2$
FN END

REM
REM

REM — This is the main driver for the text justification system
REM

PRINT 'Very dumb text justification system'
PRINT

INPUT ‘Enter input file: ', FI1S
DEFINE READ FILE #1 = FLS

INPUT 'Margin: ',L9
ON END #1 GOTO 740

PRINT

PRINT

A - 7 March 1979



APPENDIX A PDR3058

599 SS = '! ! Clear out text input accumulator
608
619 IF LEN (S$) - 1 > L9 THEN CO ! Have we filled up enough input text ?
6208 SS = SUB(SS, 1, LEN (SS)-1) ! Yes, remove the blank on the end

638 FOR J =L9 STEP (-1) UNTIL SUB(SS,J) =' ' ! Find the last word

6408 NEXT J
6508 PRINT FNAS (SUB(SS, 1, J-1), L9) ! Call the justification routine
669 SS = SUB(SS, J+1, LEN(SS)) + ' ' ! Pickup unprocessed input
678 DO END ! And continue.

688 ELSE DO ! Come here when we are ready to do another read.

698 READ LINE #1, F1S ! Get a line of input text.
780 S$ =SS + Ccvrss(F1lS$, 152) + ' ' ! Concat with the unprocessed text
71@ DO END ! And continue.
728 GOTO 619 ! Try again, folks.
73@ REM ~- End of file processing
748 PRINT SS ! Print out unprocessed text (at bottom of paragraph)
758 PRINT

768 STOP

>TYPE XXX

Four score and seven years ago, our fathers brought forth
to this continent a new nation,

conceived in liberty, and dedicated to the proposition that
all men are created equal.

>RUN
JUST WED, JAN 10 1979 89:48:12

 

Very dumb text justification system

Enter input file: XXX
Margin: 35

Four score and seven years ago,
our fathers brought forth to this
continent a new nation, conceived

in liberty, and dedicated tc the
proposition that all men are
created equal.

STOP AT LINE 760

REV. @ A - 8



PDR3658 ASCII CHARACTER SET

APPENDIX B

ASCII CHARACTER SET

The following is a list of the ASCII character set with the

corresponding decimal equivalent and the meaning of each character.

Decimal

Value ASCII

(with parity on) Character Explanation

128 Null or fill character
129 . Start of heading
138 Start of text
131 End of text
132 End of transmission
133 Enquiry
134 Acknowledge
135 Bell

136 Backspace
137 Horizontal tab
138 Line feed
139 Vertical tab
140 Form feed
141 Carriage return
142 Shift out
143 Shift in
144 Data link escape

145 Device control 1
146 Device control 2
147 Device control 3
148 Device control 4
149 Negative acknowledge
158 Synchronous idle
151 End of transmission block
152 Cancel

153 End of medium
154 Substitute
155 Escape

156 File separator
157 Group separator

158 Record separator
159 Unit separator
1608 Space

161 ! Exclamation point
162 " Double quotation mark
163 # Number or pound sign
164 5 Dollar sign .
165 % Percent sign
166 & Ampersand
167 ' Apostrophe

“Boo. Y March 1979



APPENDIX B PDR3058

L168 ( Opening (left) parenthesis
169 ) Closing (right) parenthesis
1708 * Asterisk

171 + Plus
172 ’ Comma

L173 - Hychen or minus
174 . Period or decimal point
L175 / Forward slant
176 4) Zero
177 1 One
178 2 Two
L79 3 Three
182 4 Four
181 5 Five
182 6 Six

183 7 Seven

184 8 Bight
185 9 Nine
186 : Colon

187 ; Semicolon

188 < Left angle bracket (less than)
189 = Equal sign
199 > Right angle bracket (greater than)
191 ? Question mark
192 @ Commercial at sign
193 A (L93 through 218 are upper case characters)
194 B
195 C
196 D
197 E
198 F

i99 G
200 H
281 I

202 J
203 K
204 L
205 M

206 N
207 O
208 P
209 Q
2108 R
211 5

212 T
213 U

214 V
215 W
219 Xx

217 Y
218 Z
219 ( Opening bracket
229 \ Bac<ward slant

REV. @ 3 - 2



PDR3858 ASCII CHARACTER SET

221 ] Closing bracket

222 Circumflex or up arrow
223 Underscore or backarrow

224 Grave accent

225 (225 through 258 are lower case characters)

226

227

228

229
230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

256

251

)
4

Opening (left) brace

252 Vertical line
253 Closing (right) brace
254 Tilde
255 Delete

I
e
—
E
N
E
K
E
K
E
C
M
H
N
N
Q
T
O
D

S
H
E
P
W
T
U
r
T
O
A
M
D
a
r
t
a

B - 3 March 1979



Code Number

W
O
O
N
A
N
P
W
N

F
e

PDR3058 RUN-TIME ERROR CODES

APPENDIX C

RUN-TIME ERROR CODES

Message

GOSUBS NESTED TOO DEEP

RETURN WITHOUT GOSUB

EXCESS SUBSCRIPT

TOO FEW SUBSCRIPTS

SUBSCRIPT OUT OF RANGE

ARRAY TOO LARGE

STORAGE SPACE EXCEEDED

BAD I-O UNIT

BAD FILE RECORD SIZE

DA RECORD SIZE ERROR

UNDEFINED I-O UNIT

WRITE ON READ ONLY FILE

END OF DATA

END OF FILE

FILE IN USE

NO UFD ATTACHED

DISK FULL

NO RIGHT TO FILE

ILLEGAL FILE NAME

FILE I-O ERROR
FILE NOT FOUND

INPUT DATA ERROR

VAL ARG NOT NUMERIC
BAD LINE NUMBER IN ASC LN FILE

ILLEGAL OPERATION ON SEGMENT DIRECTORY

READ AFTER WRITE ON SEQUENTIAL FILE

ILLEGAL OPERATION ON BINARY FILE

UNDEFINED MATRIX

ILLEGAL SEG DIR REFERENCE

ILLEGAL FILE TYPE FOR POSITION

ILLEGAL POSITION RECORD NUMBER

WRITE USING TO NON-ASCII FILE

PRINT USING STRING IN NUMERIC FORMAT

PRINT USING NUMERIC IN STRING FORMAT

PRINT USING FORMAT WITH NO EDIT FIELDS

BAD MARGIN SPECIFIER

MATRIX NOT SQUARE

MISMATCHEDDIMENSIONS

OPERAND AND RESULT MUST BE DISTINCT

2 DIMENSIONAL MATRIX REQUIRED

INV MATRIX IS SINGULAR

MOD ~— SECOND ARGUMENT ZERO

EXPONENTIATION ~- BAD ARGUMENTS

SIN, COS — ARGUMENT RANGE ERROR

TAN — OVERFLOW

March 1979



APPENDIX C

46
47
48
49
58
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

PDR3058

ASN, ACS - ARGUMENT RANGE ERROR

EXP — OVERFLOW

EXP — ARGUMENT TOO LARGE

LOG - ARGUMENT < = 0

SORT - ARGUMENT < @

EXPONENT OVERFLOW, UNDERFLOW

DIVISION BY ZERO

STORE FLOATING ERROR

REAL TO INTEGER CONVERSION ERROR

ON GOTO-GOSUB OVERRANGE ERROR
RECORD NOT F'OUND

RECORD LOCKED

RECORD NOT LOCKED

KEY ALREADY EXISTS

SEGMENT FILE IN USE

INCONSISTENT RECORD LENGTH

RECORD FILE FULL

KEY FILE FULL

IMPROPER FILE TYPE

PRIMARY KEY NOT SUPPLIED

ILLEGAL OPERATION ON UNIT @

-FATAL MIDAS ERROR

@ RAISED TO @ OR A NEGATIVE POWER

CONSTANT ON LEFT SIDE OF ASSIGNMENT STATEMENT

MIDAS CONCURRENCY ERROR



PDR3858 ADDITIONAL PRIMOS FEATURES

APPENDIX D

ADDITIONAL PRIMOS FEATURES

This appendix contains a glossary of useful PRIMOS terms, an

introduction to the system EDITOR, an introduction to command files,

and a brief discussion of the TERM command, with which terminal

characteristics can be modified.

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

The following is a glossary of concepts and conventions basic to Prime

computers, the PRIMOS operating system, and the file system.

e abbreviation of PRIMOS commands

Only internal PRIMOS commands may be abbreviated.

e binary file

A translation of source file generated by a language translator

(BASICV, COBOL, FIN, RPG).

e byte

8 bits; 1 ASCII character.

e CPU

Central Processor Unit (the Prime computer proper as distinct from

peripheral devices or main memory) .

e current directory

A temporary working directory explained in the discussion on Home vs

Current Directory later in this section.
 

e directory

A file directory; a special kind of file containing a list of files

and/or other directories, along with information

=

on their

characteristics and location. MFDs, UFDs, and subdirectories

(sub-UFDs) are all directories. (Also see segment directory.)
 

e directory name

The file name of a directory.

D - l March 1979



APPENDIX D PDR3858

e external command

A PRIMOS command existing as a runfile in the command directory
(CMDNCO) . It is invoked by name, and executes in user address space.

External commands print GO when starting, and cannot be abbreviated.

e file

An organized collection of information stored on a disk (or. a
peripheral storage medium such as tape). Each file has an identifying
label called a filename.

e filename

A sequence of 32 or fewer characters which names a file or a directory.
Within any directory, each filename is unique. Directory names and a
filename may be combined into a pathname. Most commands accept a
pathname wherever a filename is required.

 

Filenames may contain only the following characters:

A-Z, 0-9, _. # S$ —™  e *

The first character of a filename must not be numeric. On some devices

under score () prints as backarrow (<-).

e filename conventions

Prefixes indicate various types of files. These conventions are
established by the compilers and loaders, or by common use, and not by
PRIMOS itself.

Bfilename Binary (Object) file

C_filename Command input file

Lfilename Listing file

Mfilename Load map file

Ofilename Command output file

filename Source file or text file

* filename SAVED (Executable) R-mode runfile

#filename SAVED (Executable) V-mode runfile

REV. @ D - 2



PDR3858 ADDITIONAL PRIMOS FEATURES

e file-unit

A number between 1 and 63 ('77) assigned aS a pseudonym to each open

file by PRIMOS. This number may be given in place of a filename in
certain commands, such as CLOSE. PRIMOS-level internal commands

require octal values. Each user may have up to 16 file units open at

the same time. Certain commands or activities use particular unit

numbers by default:

PRIMOS assigned units Octal Decimal
INPUT, SLIST 1 1
LISTING 2 2
BINARY 3 3
AVAIL 5 5
COMINPUT 6 6
SEG's loadmap 13 11
COMOUTPUT 77 63
EDITOR 1,2 1,2
SORT 1-4 1-4
RUNOFF 1-3 1-3

e file protection keys

See keys, file protection.

e home directory

The user's main working directory, initially the login directory. A

different directory may be selected with the ATTACH command.

e@ identity

The addressing mode plus its associated repertoire of computer

instructions. Programs compiled in 32R or 64R mode execute in the

R-identity; programs compiled in 64V mode execute in the V-identity.

R-identity and V-identity are also called R-mode and V-mode.

e internal command

A command that executes in PRIMOS address space. Does not overwrite

the user memory image. Internal commands can be abbreviated. See

"abbreviation of PRIMOS commands".

D - 3 March 1979



APPENDIX D PDR34858

e key, file protection

Specifies file protection, as in the PROTEC command.

@ No access

l Read

2 Write

3. Read/Write

4 Delete and truncate

5 Delete, truncate and read

6 Delete, truncate and write
7 All rights

e LDEV

logical disk device number as_ printed by the command STATUS DISKS.
(See ldisk.)

e ldisk

A parameter to be replaced by the logical unit number (octal) of a disk
volume. It is determined when the disk is brought up by a STARTUP or
ADDISK command. Printed as LDEV by STATUS DISKS.

e logical disk

A disk volume that has been assigned a logical disk number by the
operator or during system startup.
 

e MFD

The Master File Directory. A special directory that contains the names
of the UFDs on a particular disk or partition. There is one MFD for
each logical disk.

@ nodename

Name of system on a network; assigned wen local PRIMOS system is
built or configured.

@e number representations

XXXXX Decimal

"XXXXX Octal

SxXXXXX Hexadecimal

e object file

See binary file

REV. @ D - 4



PDR3058 ADDITIONAL PRIMOS FEATURES

@ open

Active state of a file-unit. A command or program opens a file-unit in

order to read or write it.

e output stream

Output from the computer that would usually be printed at a terminal

during command execution, but which is written to a file if COMOUTPUT

command was given.

@e packname

See volume-name.

@e page

A block of 1024 16-bit words within a segment (512 words on Prime 300).

® partition

A portion [or all] of a multihead disk pack. Each partition is treated

by PRIMOS as a separate physical device. Partitions are an integral

number of heads in size, offset an even number of heads from the first

head. A volume occupies a partition, and a "partition of a disk" and a

"Volume of files" are actually the same thing.
 

e pathname

A multi-part name which uniquely specifies a particular file (or

directory) within a file system tree. A pathname (also called

treename) gives a path from the disk volume, through directory and

subdirectories, to a particular file or directory. See the discussion

on Pathnames in this section.

e PDEV

Physical disk unit number as printed by STATUS DISKS. (See pdisk.)

e pdisk

A parameter to be replaced by a physical disk unit number. Needed only

for operator commands.

e phantom user

A process running independently of a terminal, under the control of a

command file.

D _~ 5 March 1979



APPENDIX D PDR3058

@ SEG

Prime's segmentation utility.

e segment

A 95,536-word block of address space.

e segment directory

A special form of directory used in direct-access file operations. Not
to be confused with directory, which means "file directory".

e segno

segment number.

e source file

A file containing programming language statements in the format
required by the appropriate canpiler or assembler.

@® subdirectory

A directory that is in a UFD or another o subdirectory.

e sub-UFD

same as subdirectory.

e treename

A synonym for pathname.

e UFD

A User File Directory, one of the Directories listed in the MFD of a
volume. It may be used as a LOGIN name.

e unit

see file-unit.

e volume

A self-sufficient unit of disk storage, including an MFD, a disk record
availability table, and associated files and directories. A volume may
occupy a complete disk pack or be a partition within a multi-head disk
pack.

REV. @ D - 6



PDR 3058 ADDITIONAL PRIMOS FEATURES

e volume—-name

A sequence of 6 or fewer characters labeling a volume. The name is

assigned during formatting (by MAKE). The STATUS DISKS command uses

this name in its DISK column to identify the disk.

e word

As a unit of address space, two bytes or 16 bits.

SETTING TERMINAL CHARACTERISTICS

Terminal characteristics may be set with the TERM command. These

characteristics remain in effect until you reset them or until you log

out. The commonly used TERM options are listed below. Typing TERM

with no options returns the full list of TERM options available. The

format is:

TERM options

The options are:

—ERASE character Sets user's choice of erase character in place

of the default, ".

-KILL character Sets user's choice of kill character in place

of default, ?.

-XOFF Enables X-OFF/X-ON feature, which allows

programs to halt without returning to PRIMOS

command level. Programs may be resumed at

point of halt by typing CONTROL-Q. Programs

are halted by typing CONTROL-S. Also sets

terminal to full duplex (default value.)

—NOXOFF Disables X-OFF/X-ON feature (default).

—DISPLAY Returns list of currently set TERM characters.

Also displays current Duplex, Break and

X-ON/X-OFF status.

D - 7 March 1979



APPENDIX D PDR3058

EDITOR

Prime's text EDITOR can be usecl to create and edit text files and
programs. It has two modes, INPUT and EDIT. Either blank line
followed by a carriage return, or two CR's in a row, Switches the
EDITOR from one mode to the other. EDITOR is handy for preparing
documents, reports, letters and programs, and for properly formatting
them via the RUNOFF feature of PRIMOS. It is also useful for creating
command files, discussed below. A complete description of all EDITOR
and RUNOFF features can be found in the New User's Guide To EDITOR and
RUNOFF.

Input Mode

INPUT mode is used for creatine new files or programs or for adding
more text to an existing file. It accepts lines of text that are
entered into the system by a CF, as are all PRIMOS commands. To create
a new file or program with the EDITOR, type:

ED

This automaticaly puts the EDITOR into INPUT mode.

Edit Mode

 

EDIT mode is used to modify the contents of a file or program file.
There are over fifty commands available for use in EDIT mode. A good
Summary of these commands is provided in the PRIMOS Programmer's
Companion. These commands allow you to move lines from one point to
another in a file, to delete lines, to load in other files or parts of
files, to format a file according to your particular needs (using
RUNOFF commands) and to make line-specific or general changes in
vocabulary, terms, etc. For BASIC/VM programmers, this is extremely
handy when changing program variables, when moving lines of code, and
when combining several programs.

To modify an existing file, type:

ED filename

The EDITOR opens the file, makes a copy of it in the current working
directory, and switches into EDIT mode. All changes made to this
"work' file will not be incorporated into the disk copy until the file
is 'FILEd', or saved, with the 7ILE command of the EDITOR. Separate
copies of the '‘work' file and the disk file may be maintained by
FILEing the 'work' file under a name of its own. For example, to save
an edited file under a nam2 other than the original, type FILE,
followed by a new filename:

FILE new-filename

REV. @ D - 8



PDR3058 ADDITIONAL PRIMOS FEATURES

Summary of Editor Commands
 

Command
eeem

APPEND

BOTTOM

CHANGE/stR1/str2/

DELETE{n]

DUNLOAD

FILE

FIND string

GMODIFY

INSERT newline

LOAD filename

NEXT [n]

OVERLAY string

POINT n

PRINT [n]

QUIT

RETYPE string

TOP

Function

Attaches specified text to end of current

line.

Positions pointer to bottom of file.

Replaces string l(strl) with string 2(str2).

Deletes n lines including the current line.

Copies specified # of lines from work file to
another file and deletes those lines from the

work file.

Saves current work file to disk. Takes
filename argument if current work file is not
to overwrite disk file copy.

Finds first line below current containing

given string.

String-oriented editing routine for individual

lines.

line.Inserts newline following current
newline becomes current line.

Copies contents of filename into work file
under current line.

Moves the pointer n_ lines. Positive or
negative values accepted.

Overlays given string over current line,

starting in column one.

Positions the pointer to line number n.

Prints n lines.

Quits out of an EDITOR session to PRIMOS
command level.

Deletes current line and replaces it with

string.

Repositions pointer to top of file.

D - 9 March 1979



APPENDIX D PDR39858

UNLOAD Similar to DUNLOAD but does not delete
indicated lines from work file.

WHERE Prints; current line number.

Using the EDITOR For BASIC Procrams
 

The EDITOR can easily be used to write BASIC programs, even though
BASIC/VM has its own 'Editor' facility. The advantage of the PRIMOS
EDITOR is the freedom to work and make changes without having to worry
about line numbers and other BASIC constraints. Programs should be
typed in upper-case letters, as: only upper-case commands and statements
are accepted by the BASIC ccmpiler. Also, all syntax rules, as
detailed in Section 4, should be followed. After a program has been
FILEd, it can be numbered for use in the BASIC subsystem by using the
PRIMOS NUMBER command. Full details on this command are found in The
Reference Guide to PRIMOS Commends.

Tne NUMBER command requests the name of the file to be numbered or re-
numbered, the name of the output file, which must differ from the

original, the starting number and the increment value. For example, to
number an Editor-created progrém starting with line number 10 and
continuing in increments of 19, do the following:

OK, slist_ exof x
INPUT A

INPUT B

PRINT A*B

H=A/B

IF H<@ THEN 10

PRINT H

END

OK, numbera to

INTREENAME, OUTTREENAME, START, INCR,

ex_ex3 1010
OK, slistex3
GO

18 INPUT A

20 INPUT B

3@ PRINT A*B

48 H=A/B

50 IF H<@ THEN 10

6@ PRINT H

7@ END

 

REV. @ D - 18



PDR 3858 ADDITIONAL PRIMOS FEATURES

COMMAND INPUT FILES (COMINPUT)

COMINPUT | pathname [funit]|
| -CONTINUE |

| -END |
| -PAUSE |

| ~START |

|-TTY

The COMINPUT command causes PRIMOS to take commands and data input from

a specified file rather than from the user's terminal. Command files

are usually created with the EDITOR.

filename is the name of the file from which input is to be read.

funit is the PRIMOS file unit number on which the input file is

to be opened. If omitted, File Unit 6 is assumed.

options Specify control flow. —-TTY tells PRIMOS resume accepting

input from the terminal. A command file should end with

COMINPUT -TTY. The other options and their effects are

discussed in Reference Guide, PRIMOS Commands, FDR3198.

Note

 

The COMINPUT command must be specified with at

least one parameter. If CO is specified with a

null parameter the message: NOT FOUND is printed

at the terminal. Note also that the inclusion of

CLOSE ALL in a COMINPUT file closes the file and

causes the error message COMINP FILE EOF to be

displayed.

Command input files are especially useful for repetitive processes such

as compiling and loading a_ series of programs, building libraries,

running production, and changing erase and kill characters at LOGIN

time. BASIC/VM has its own COMINP command, which is similar in

function to COMINPUT. The format and syntax are slightly different, as

explained in Section 6.

Comments can be included in a command file at PRIMOS level by preceding

each comment with the characters /*. The end of each comment is

delimited by the characters /*.

COMMAND OUTPUT FILES (COMOUTPUT)

The COMOUTPUT command tells PRIMOS to send a copy of all terminal input

and output to a specified file (called a "comout' file), as well as (or

instead of) to the user's terminal. ‘The format is:

 

D - il March 1979



APPENDIX D PDR3058

COMOUTPUT [treename] [option-l]...f[option—n]

The options are described below. Logical combinations of options are
permissable.

“CONTINUE Continues command output to a file. With the -—CONTINUE
option, subsequent terminal output is appended to the file
Specified by filename.

~END Stops command output to a file and closes the command
output file unit.

-NTTY Turns off the terminal output, i.e., does not print or
~ display responses to command lines, including the prompt

OK,. Once -NITY has been specified, terminal output is not
turned on until -T°Y is specified in a subsequent COMOUTPUT
command.

—PAUSE Stops command output to filename. However, the command
output file, filename, remains open.

-TTY turns on the terminal output.

Command output (comoutput) files are useful when the user wants to keep
a record of terminal transactions. PRIMOS opens File Unit 17 and
writes all command input and output responses to the file specified by
aes neenatepereine

OK, COMO OUTPUT

GO

This command line arranges for subsequent terminal output to be written
to the file named OUTPUT. Commands are echoed, and responses continue
to be displayed at the terminel. The file named OUTPUT is overwritten
if it already exists.

OK, COMO -NTTY

Terminal output continues to the file named OUTPUT, but no terminal
output is printed or displayed at the terminal.

OK, COMO -END

The file named OUTPUT is closed. Furthermore, since -TTY was not

REV. @ 2 - 12



PDR3858 ADDITIONAL PRIMOS FEATURES

specified following a -NITY, terminal output will not be printed or

displayed until the command line:

COMO -TTY

is issued

OK, COMO OUTPUT -C -P

The file named OUTPUT is opened and positioned to end-of-file, but no
terminal output is sent to the file.

Remember that command output files are not closed by CLOSE ALL; they

must be closed explicitly by COMO -END, CLOSE unit-number or CLOSE

filename.

D - 13 March 1979



PDR3058 ADVANCED FILE HANDLING

APPENDIX E

ADVANCED FILE HANDLING

CONTENTS

The information contained in this appendix is intended to supplement

that presented in Section 8. File handling operations such as READs
and WRITES are covered in more detail, with special attention given to
the default ASCII file type. Other information concerns access methods
and file properties, altering the record size in DA and SA files, and
truncation patterns observed in each file type. This information may
be useful in deciding which file types to use in various data handling

Situations.

ACCESS METHODS

Data files can be accessed by one of four basic methods: Direct
access, Sequential access, MIDAS and Segment directory (SEGDIR) access.
The direct and sequential access methods are detailed below. MIDAS and
SEGDIR protocols are more complex. More information on these access
methods can be found in the Subroutine Reference Guide, and in

Reference Guide, MIDAS.

Sequential Access Method
 

In sequential access, files are treated as a series of variable-length

records. In sequential access, a file pointer is maintained to
indicate the "current record" (the one that is involved in the current
I/O operation). After each access, the pointer is moved to the next

sequential record, which then becomes the current record. Thus, in
order to reach the end of the file, each record in the file, beginning
with the first, must be accessed in turn. It is not possible to skip
records or back up to a previous record in sequential access files,
except to return to the top of the file. This is known as "rewinding"
the file pointer.

Sequential files are space-efficient since the records are only as long
as the data they contain. However, random access to a particular
record is time-consuming, since all the records between the current
position and the desired position must be read.

Direct Access Method (DAM)
 

Files structured for direct access require an additional set of

pointers which point to each record in the file. These pointers are

automatically defined and maintained by the system, so the user needn't

worry about them.

E - 1 March 1979



APPENDIX E PDR3858

Direct access files must have fixed-length records. The record length
may be increased or decreased from the default size of 68 words. The
record length information is then stored in the header of the file for
use by the file pointer.

Data retrieval is extremely flexible in direct access files. Any
record in the file can be randomly positioned to by number. Records
are numbered consecutively from the top of the file to the bottom,
beginning with number 1. As data are added to the file, the number of
records increases as necessary. Positioning is done internally by the
system and involves counting the number of records (and therefore the
number of characters) which must be bypassed before the desired record
is reached. For example, if the record size is set to 48 words, (80
characters) and data from the third record are to be read, the pointer

"‘calculates' that 168 characters must be skipped before the third
record can be read. When 168 characters have been bypassed, the
pointer will be positioned to the beginning of the third record. The
importance of fixed-length records in direct access is readily
apparent.

DATA STORAGE PATTERNS

The following pages describe how data are stored in each file type.

Data Storage in ASCII and Binary Files
 

All files in BASIC/VM can be generally classified according to file
type and access method. File type refers to the manner in which a file
Stores data. This is known as data storage. There are two major data
storage methods: ASCII and Binary.

The main difference between ASCII and binary files is the way in which
they code data for disk storage. The same datum written to both an
ASCII and binary file is converted to a different format in each type
of file. Subsequently, when displayed at the terminal, the data in the
files will not appear identical.

ASCII: In ASCII files, all data, both numeric and_ string, are
represented in ASCII character code, packed two characters per 16-bit
word. Numeric values entered in decimal character format are converted
to floating point internal format. When a file is read, the data
values must be re-converted. String values are returned as the string
characters which correspond to the stored ASCII codes. Numeric values
are converted from floating point format to decimal representation, and
are formatted according to any print format conventions specified,
e.g., decimal points, dollar signs, etc.

 

The main feature of ASCII files is their ease of inspection, i.e., they
can be SLISTed, or TYPEd at =he terminal. They store data just like
terminal output. Thus, their record storage patterns can be easily
monitored for data integrity.

REV. @ Ig - 2



PDR3058 ADVANCED FILE HANDLING

Binary: String data are stored in binary files as they are in ASCII
files, i.e., in ASCII code, Numeric data are stored in internal
machine format, i.e., four-word floating-point representation. There
is no conversion to or from ASCII representation, So complete data
accuracy is retained.

However, binary files cannot be accurately inspected through SLIST,
TYPE or ED (the PRIMOS editor). Their storage patterns cannot be
easily assessed by the user.

Data Storage in Each File Type
 

Within the general ASCII and binary file groups, files are further
subdivided according to properties like record type, (variable or
fixed-length) and access methods. In addition to these previously
mentioned properties, distinctions can be made on the basis. of
intra-record data structure.

During file access, information is retrieved from a file one record at
atime. Usually, specific data items must be retrieved from a_ record
during a file READ. Therefore, there must be some way of internally
marking where one item ends and the next one begins within a record.
This is known as intra-record data structure.

Below is a description of the major features of each type of file, with
the exception of SEGDIR and MIDAS features which are dealt with later
in this section. These descriptions are intended to aid you in
Selecting the files best suited to your particular data storage and
access requirements.

ASC files: are the default file type in BASIC/VM. They store data
exactly like terminal output. Semi-colons, commas and colons force
data to be written to an ASC file exactly as they would be output by a
Similar PRINT statement. Each item written to the file is separated
from the next datum by the appropriate number of spaces forced by the
indicated delimiter. Thus, spaces are the actual data delimiters in
the intra-record structure of ASC files.

10 DEFINE FILE #1= 'SPACE!
15 READ A,B,C
28 DATA 20,21,22
25 WRITE #1, A,B,C
30 WRITE #1, A;B;C
35 WRITE #1, A:B:C
4® CLOSE #1
45 END
>TYPE SPACE
25° 21 22
262122
20 21 22

E - 3 March 1979



APPENDIX E - PDR3958

ASC files have variable-length records. The default size of 68 words
can be decreased or increased as necessary. In cases where items
larger than 68 words are being stored, record-size should be enlarged
appropriately.

ASCSEP files: are ASCII sequential files that use commas instead of
spaces as internal data markers. Data written to an ASCSEP file can be
read back in the same form as written. For example, if the following
values are written to an ASCSEP file:

12,13,14

They will be stored and read back as indicated:

>TYPE SEP
12,13,14,15,
>READ #1,A
>PRINT A
12

 

It should be noted that string items containing commas will be
fragmented when read back from the file. Commas, both verbatim and
inserted, are interpreted as data delimiters. For example, if the val
ue 'S12,000' is written to an ASCSEP file it is stored as:

$12,208,

When read back, following occurs:

READ#1, AS
PRINT AS
$12

The data has obviously been fragmented. This problem can be remedied
by using an alternate form of READ, READLINE. READLINE accepts the
entire contents of one ASCII record, including commas, semicolons,
colons and spaces, as one datur.

ASCSEP files are sequentially accessed, but they have fixed-length
records. Unlike ASCII direct access files, which also have

fixed-length records (discussed below), ASCSEP file records are not
blank-padded on the right to fill out any space not occupied by data.
Instead, the physical end of the records marked by a carriage return
(CR). The delimiters used to affect record structure in ASC default
files have no effect in ASCSEP files. Regardless of whether a WRITE
Statement is terminated by a ccmma, semicolon, colon or blank, the next

sequential WRITE statement will write data to the next record.

REV. @ E - 4



PDR3858 ADVANCED FILE HANDLING

ASCLN files: are ASCII sequential files with variable length records
and inserted line-numbers. Commas are inserted as delimiters in ASCLN
files, just as they are in ASCSEP files. Every record added to an
ASCIN file is preceded by a line-number. Records are numbered in
increments of 18, beginning with 18. When values are read back from
the file, line numbers are stripped away.

The LIN# (unit) function (See Section 10) can be used to determine the
actual line number at which the current I/O operation is being
performed.

>DEFINE FILE #1 = 'LINES', ASCLN
WRITE #1, 200, 300, 400
>WRITE #1, 34.56
>REWIND #1
>TYPE LINES

18 200, 300,400,
20 34.56,

DREAD #1, A
>PRINT LIN# (1)
19
>PRINT A
200
CLOSE #1

 

 

 

ASCIN files are the only data files which may be edited at BASICV

command level. Like a BASIC/VM program, they can be called to the
foreground, LISTed, edited with BASICV commands and resequenced. ASCLN

files are convenient for data that are continually being updated or
otherwise modified.

ASCDA files: are ASCII direct access files. They have fixed-length
records which are blank-padded to completely fill any record space not
filled with data. Commas are inserted as data delimiters just as in
ASCSEP files. A special file containing pointers to each record in the
ASCDA file is maintained by the system for use in random access to data
records. ,

The intra-record data structure is similar to that of an ASCSEP file.
Extra spaces and 'blips' are usually output at the terminal due to the
blank-padding factor. For example:

>19 DEFINE FILE #3 = 'DIR', ASCDA
>20 WRITE #3, 12,13,14
>30 WRITE #3, 123.45
>RUNNH
STOPAT LINE 30
>TYPE DIR
12,13,14,

123.45,

E - 5 March 1979



APPENDIX E PDR3058

As in ASCLN files, the LIN #(unit) function can be used to determine
the exact location of a record pointer in a direct access file.

BIN and BINDA files: of both types have fixed-length records. String
data are stored as in ASCII files, i.e., in ASCII code; numeric data

are Stored in internal machine formats, i.e., four-word floating-point
representation, ensuring complete data accuracy. Program execution is

also expedited because less translation time is required during numeric
data access.

 

Although BIN and BINDA files both have fixed-length records, BIN files
are accessed sequentially, while BINDA files are accessed by the direct
access method.

Data storage patterns in binary files cannot be accurately inspected at
the terminal. If a binary file is TYPED or LISTED, the data may or may
not be recognizable. Despite the inspection inconvenience, binary
files are extremely useful for scientific computations requiring
complete precision and data accuracy.

Any portion of a record not filled with data is zeroed out rather than
blank-filled.

Writing to ASC Files 

ASC files have special properties which distinguish them from others.
Some of the properties which affect data written to ASC files are
discussed below.

In ASC files only, successive WRITE statements can be forced to
continue writing data to the same record until the record is filled. A
line of data written to an ASC file can contain colon, comma, or

semicolon delimiters between data items. Data will be stored exactly
as if they had been output by a PRINT statement. Each delimiter
affects data storage differently:

® acomma — causes item to be placed in next print zone.

@® a semicolon —- causes next item to be placed in next character
position.

@e acolon —- causes next item to be placed one character position
from the preceding item.

REV. @ E - 6



PDR3058 ADVANCED FILE HANDLING

The following program writes data to an ASC file utilizing each
delimiter. Each line output after TYPE ASCII represents the contents
of a logical record. User input is underlined.

19 DEFINE FILE #1='ASCII'

20 READ A,B,C,D,E,F,G
25 DATA 22,23, 24, 25, 26,27, 28
38 WRITE #1,A,B,

35 WRITE #1,C:D:
AQ WRITE #1,E,F;
45 WRITE #1,G
50 WRITE #1,A:B:
55 WRITE #1,C:D:
60 WRITE #1,E:F:
65 WRITE #1,G
7@ WRITE #1,A,B,

75 WRITE #1, C:D:

88 WRITE #1,E;F;
85 WRITE #1,G

>TYPE ASCII
22 23 24 25 26 272
8
22 23 24 25 26 27 28
22 23 24 25 262728

ACCOMODATING LARGE DATA ITEMS

Altering Record Size For SAM Files
 

Increasing the record size in a default ASCII file allows data items
larger than 68 words to be stored in one record. If a string item in
excess of 120 characters is written to a file with default record
length, as much of the item as possible is written to the current
record; the rest is written to the next record. Records are added as
needed to accomodate this item.

>DEFINE FILE #1='T1',ASC,4
>WRITE #1, HARRY G. DORK'
TYPE TI
HARRY G.
DORK

 

 

If the combined length of several numeric items being written to an ASC
file exceeds the set record length, the way they will be stored depends
on their individual lengths and on the delimiters which separate them.
This example illustrates several ways in which large data items can be
stored by varying the delimiters. Note that the record size has been
set at 6 words.

>10 DEFINE FILE #1 = 'PLAIN',6

>20 READ A,B,C

E - 7 March 1979



APPENDIX E PDR3458

>30 DATA 12,13456, 7800000

>49 WRITE #1,A,B,C
>45 WRITE #1,A;B;C
>50 WRITE #1,A:B:C

>55 WRITE #1,A
>6@ CLOSE #1
>65 END
>RUNNH
>TYPE PLAIN
127
13456
7800000
1213456
7800080
12 13456
7800800
12

 

Data items will not be truncated when written to an ASC file, even

though the results of a file READ may create this impression.

ASCIN files: have the same properties as ASC default files in regard
to storagepatterns. In each ASCIN file record, four character
positions are occupied by the inserted line numbers. This should be
kept in mind when setting the record size for this type of file.
Overlarge data items are treated in the same manner as discussed above.

Example:

>DEFINE FILE #1 = 'SMALL', ASCLN, 5
DWRITE #1, "TOTALLY OUTRAGEOUS *
>TYPE SMALL
~18 TOTA|

20 LLY
30 OUTR
4% AGEO
50 US,

 

 

ASCSEP files: differ from ASC and ASCLN files both in structure and in
data Storage. Records in an ASCSEP file are fixed-length. Commas are
automatically inserted as data delimiters. Each one takeS up one
character position in the record. If a data item too large to fit in a
Single record is written to an ASCSEP file, it will be truncated.

>DEFINE FILE #1 = 'S1', ASCSEP, 5
WRITE #1, "TOTALLY OUTRAGEOUS !
>TYPE SI
TOTALLYOU

 

 

If several numeric items are written to the same file in a single WRITE
Statement, the length of each item relative to the record size will
determine whether it will be stored intact or truncated. If the
current record can accomodate only one item, the next item in the list

REV. @ E - 8



PDR 3058 ADVANCED FILE HANDLING

will be written to the next record. If it is too large to fit into
this record, it will betruncated.

Delimiters occurring at the end of a WRITE statement have no effect on
Subsequent WRITE statements as they do in ASC files.

BIN files: maintain data quite differently from ASCII files. Although
the exact nature of intra-record data storage is not readily know, the
following example indicates that data items larger than the set record
Size are not truncated. Instead, they are stored in a manner which
allows entire data items to be retrieved with a single READ, even if
the datum exceeds the set record length.

>DEFINE FILE #1 = 'BINARY', BIN, 5
WRITE #1,12345678910. 32
>TYPE BINARY

[{g="

REWIND #1.
>READ #1, A
>PRINT A
12345678910. 32
>CLOSE #1

 

 

Altering Record Size in DA Files
 

The method used to retrieve data from a direct access file requires all
the records in the file to have the same length. When records are
being added to the file, the record size should be kept in mind. If
data items written to an ASCDA record contain fewer characters than the
maximum set by the record size, the data are padded internally with
blanks until the record is entirely filled. In BINDA files, unused
record space is zero filled. If, on the other hand, data in excess of

the currently set record size are inadvertently written to a DA file,
one of two things can occur:

e If the current record is empty, and the datum exceeds the
record size, it will be truncated.

e If a series of items, e.g., A,B,C$, are included in a_ single
WRITE statement, and CS will not fit entirely into the
remainder of the record, the pointer moves to the next
sequential record and C$ is stored there. If CS is larger than
a Single record, it will be truncated.

Example:

1@ DEFINE FILE #1 = 'TRZ', ASCDA,8
28 WRITE #1,1234,5678,'MAGNIFICENT'
30 WRITE #1, 'I AM EIGHTEEN CHAR', 123,456
40 REWIND #1
>TYPE TRZ
1234,5678,

E - 9 March 1979



APPENDIX E PDR3058

MAGNIFICENT,
I AM EIGHTEEN C,
123, 456,

Writing Blank Lines to a File
 

‘If no variables or values are specified with WRITE, a blank record will

“be added to the file. This causes a blank line to occur in the output

when the file is TYPEd.

Example:

'BL1'
'BL2', ASCSEP

>DEFINE FILE #1
>DEFINE FILE #2
WRITE #1,12
WRITE #2,12
SWRITE #1
DWRITE #2
WRITE #1,13
WRITE#2,13
>TYPEBL1
Zz

 

 

13
>TYPE BL2
12,

13,

Truncating a File
 

Writing data to a record that already contains data results in the over

writing of the old data. If the file is CLOSE immediately subsequent
to the overwrite, the file will be truncated. The record just written
to thus becomes the last recorcl in the file.

Example:

>TYPE ASCSEP
TWAS THE NIGHT BEFORE CHRISTMAS,
AND ALL THROUGH THE HOUSE,
NOT A CREATURE WAS STIRRING,
NOT EVEN A MOUSE.,
>DEFINE FILE #1 = 'ASCSEP', ASCSEP
>READ #1, AS
>PRINT AS
TWAS THE NIGHT BEFORE CERISTMAS
WRITE #1, "AND SANTA WAS BROKE!
CLOSE #1
>TYPE ASCSEP
TWAS THE NIGHT BEFORE CHRISTMAS,
AND SANTA WAS BROKE,

 

 

REV. 9 E - 12



PDR3858 ADVANCED FILE HANDLING

Beyond this point, the original lines in the file have now been
overwritten or truncated, as shown above.

READING ASCII FILES

READing Default ASCII Files
 

The special properties of ASCII default files affect the results of
file READs in a manner worth explaining in some detail. These READ
features are not applicable to other file types.

READ results vary with the data delimiters within each record, as
explained earlier. The READ pointer looks for commas as end of data
markers in all file types. Thus, it does not consider the ASC spacing
delimiters to be delimiters. Because of the properties of ASC files,
they are the only ones adversely affected by this feature.

If several numeric items are written to a file with various delimiters,

as shown below:

1@ DEFINE FILE #1= "SPACE!

15 READ A,B,C
20 DATA 20,21,22
25 WRITE #1, A,B,C
38 WRITE #1, A;B;C

35 WRITE #1, A:B:C
40 CLOSE #1

45 END
>RUNNH

>TYPE SPACE

20 21 22
202122
2@ 21 22

E - ll March 1979



APPENDIX E PDR3058

The following may result when several READS are performed:

>DEFINE READ FILE #1 = 'SPACE'
>READ #1, A
>PRINT A
262122
>READ #1,B
>PRINT B
292122
>READ #1,A,B,C
END OF FILE AT LINE Q@

 

>REWIND #1
>READ #1,A,B,C
>PRINT A,B,C
202122 28212? 202122
>READ #1,A
END OF FILE AT LINE @

READing With Numeric and String Variables
 

When ASC data items are READ into a string variable, e.g., READ #1, AS,

all the values in the record, spaces included, are returned as one

datum. The first comma reached marks the end of the datum; however if

there are no verbatim commas in the data, a single string READ will
return the entire record as a Single datum. For example, if the values

12, 13 and 14 are written to an ASC file record, and numeric and string
READS are done, the results are as follows:

>DEFINE FILE #1 = 'JUNK'
WRITE #1, 12,13,14
>REWIND #1
>READ#1,A
>PRINTA
121314
>REWIND #1
>READ#1,AS
READ #1, AS
SPRINT AS
12 13 14
>TYPE JUNK
12 13 14
>

 

 

All spaces are discarded in a numeric READ because they are not
considered numeric in value. Therefore, all numeric items are
concatenated when READ into a numeric variable.

A record containing both string and numeric values with no commas
between data items, (commas can be inserted by writing them to the file

REV. @ FE; - 12



PDR 3058 ADVANCED FILE HANDLING

like this: 12,',',13...) can be read in its entirety with a_ single

string variable, but not with a single numeric variable.

Example:

>DEFINE FILE #1 = 'ASCII', ASC
WRITE #1, ‘SUGAR’, 12.00
>WRITE #1, "FLOUR', 5.00: 'COFFEE'
REWIND #1
>TYPE ASCTI
SUGAR 12
FLOUR 5 COFFEE
>READ #1,A
INPUT DATA ERROR AT LINE @

 

 

 

>READ #1,AS
>PRINT AS
FLOUR 5 COFFEE
>REWIND #1
>READ #1,AS$,B
INPUT DATA ERROR AT LINE @

>REWIND #1
>READ #1,A$,BS
>PRINT AS
SUGAR 12
>PRINT BS
FLOUR 5 COFFEE

The INPUT DATA ERROR message indicates that a string value can not be
read into the numeric variable specified.

READing From Other Sequential Files
 

Values from a record are READ into the given numeric or string
variable(s) specified with the READ statement. For sequential files,
the following READ properties are observed:

e If a record contains numeric data only, READ #unit, A returns
the first numeric datum in the record, as delimited by the
first comma.

e If a record contains string data only, READ #unit, AS reads
the first string value as delimited by the first comma in the
record. If a string item itself contains a comma, it will be
truncated at theposition where the comma occurs.

e If the record contains both string and numeric data, READ
#unit, A will return a numeric item only if it appears first
in the record: READ #unit, A$ will return either numeric or
string values, depending on which occurs first in the record.

e String data can only be read into string variables, .e.g, READ

Bp 2 43 March 1979



APPENDIX E PDR3858

#1, AS. Numeric data can be read into either numeric or
string variables, e.gj., either READ #1, A or READ #1,AS will
return a numeric value.

Example:

>DEFINE FILE #1 = 'ASCSEP', ASCSEP
DWRITE #1, 12
>REWIND #1
>READ #1, A
>PRINT A
12
>REWIND #1
>READ#1,AS

>PRINTAS
12
WRITE #1, 'STRINGY'
>REWIND #1
DREAD #1,A,BS
>PRINT A, BS
120 STRINGY
>REWIND #1
>READ #1,A,B
INPUT DATA ERROR AT LINE @

 

 

>REWIND #1

>READ #1,A
>READ #1,BS$
>PRINT BS
STRINGY

 READing ASCLN Files

Because ASCLN files insert line numbers in front of each record, it ‘1S

easy to tell where the file pointer is positioned during any I/O
operation. The system-provided function, LIN #(unit), can be used to
to display the current record number.

>DEFINE FILE #1 = 'LINE1', ASCLN
SWRITE #1, "HI!
>WRITE#1,'HOWT
SWRITE #1, 'ARE'
>WRITE #1, "YOUTr'
>REWIND #1
>TYPE LINE]
~16HII,

20 HOW,
38 ARE,
49 YOU!,

>READ #1,A$
>PRINT LIN# (1)

 

 

 

Ay ry < e S
Q

|

I 14



PDR 3058

10
>PRINT AS
HI!
>READ #1,B$,C$,D$
>PRINT LIN# (1)
4G
>PRINT AS$:B$:CS$:D$
Hi! HOW ARE YOU!

 

 

Summary of READs on Sequential Files
 

ADVANCED FILE HANDLING

The following example shows how the properties of sequential files

influence the results of simple file READs.

18 ON ERROR #1 GOTO 270
20 DEFINE FILE #1 = 'ASC'
30 DEFINE FILE #2 = 'ASCSEP', ASCSEP
4Q DEFINE FILE #3 'ASCLN', ASCLN
50 DEFINE FILE #4

=

'BINSAM', BIN
609 READ A,B,C$
70 DATA 123.45,48,'S100,000'
80 FOR I =1 TO 4
90 WRITE #I, A,B,C$
18@ REWIND #1
118 NEXT I
120 FOR N=1 TO 4
138 PRINT "NUMERIC READ FOR FILE ON UNIT #': N

.14@ PRINT
150 READ #N, A
16@ PRINT A
176 REWIND #N -
180 PRINT 'STRING READ FOR FILE ON UNIT #': N

198 PRINT
200 READ WN, AS
210 PRINT AS
220 PRINT
230 REWIND #N
240 NEXT N
250 CLOSE #1,2,3,4
268 END
270 PRINT ERRS (ERR)
280 GOTO 170

>TYPE ASC
123,45 48
>TYPE ASCSEP
123.45, 48,$100,280,
>TYPE ASCLN -: |
~18123,45,48,5100, 000,
>TYPE BINSAM

[$3333 °$100,000>.
>RUNNH
NUMERIC READ FOR FILE ON UNIT # 1

$188, BBO

March 1979



APPENDIX E PDR3058

INPUT DATA ERROR

STRING READ FOR FILE ON UNIT # 1

123.45 48 $180

NUMERIC READ FOR FILE ON UNIT # 2

123.45
STRING READ FOR FILE ON UNIT # 2

123.45

NUMERIC READ FOR FILE ON UNIT # 3

123.45

STRING READ FCR FILE ON UNIT # 3

123.45

NUMERIC READ FOR FILE ON UNIT # 4

123.45

STRING READ FOR FILE ON UNIT # 4

_{s3333°$100, 000

The INPUT DATA ERROR message appears because a numeric READ was
attempted on an ASC file record containing both numeric and string
data. Since this was expected, an error trap mechanism was included in
the program. The ON ERROR statement (line 10) is further described
below.

Note that a string READ of a binary file produces strange results. The
numeric data values are not converted to decimal form when read with a
string variable.

READ* With Default ASC Files
 

In default ASCII files, the READ* statement is most useful when records
contain only string values. The variables for READing thus must be
carefully chosen to avoid INPUT DATA ERROR messages. This requires
some familiarity with the data being READ or otherwise manipulated.

The following example DEFINEs and WRITEs string data to several
Sequential files. Both types of READs, with and without stars (*), are
performed to afford some comparison between the two forms of READs on
various SAM files.

Example:

1@ DEFINE FILE #1= 'ASsc#!

REV. 2 0 - 16



20
30
40
58
60
70
80
85
95
180

PDR3058

DEFINE FILE #2
DEFINE FILE #3
DEFINE FILE #4
REWIND #1,2,3,4
READ A$,BS,C$,D$
DATA 'RED','WHITE','BLUE','PURPLE'
PRINT 'FIRST READ WITHOUT *'
PRINT
FOR N=1 TO 4
WRITE #N,A$,BS

'SEP*', ASCSEP
'LN*", ASCLN
'BIN*', BIN

105 WRITE #N,CS,D$
11@ NEXT N
12@ REWIND #1,2,3,4
135 FOR N= 1 TO 4
136 PRINT 'THIS IS FILE ON UNIT #': N

137 PRINT 'BEGIN READ WITHOUT *'

140 READ #N,AS$
145 PRINT AS
158 PRINT

155 READ #N,B$
169 PRINT BS
162 PRINT

165 REWIND #N
166 PRINT 'NOW READ WITH *'!
178 READ * #N, AS
175 PRINT AS
178 PRINT

188 READ * #N,BS
185 PRINT BS
198 PRINT
200
201
202
205
220
230
240

REWIND #N

PRINT 'END OF READ ON UNIT #':N

PRINT

NEXT N

CLOSE #1,2,3,4 °

PRINT 'END OF TEST'

END

>RUNNH

FIRST READ WITHOUT *

THIS IS FILE ON UNIT # 1

BEGIN READ WITHOUT *
RED WHITE

* BLUE PURPLE

NOW READ WITH * |
RED WHITE

BLUE PURPLE

END OF READ ON UNIT # 1

ADVANCED FILE HANDLING

March 1979



APPENDIX E PDR3058

THIS IS FILE ON UNIT # 2

BEGIN READ WITHOUT *
RED

BLUE

NOW READ WITH *
RED

WHITE

END OF READ ON UNIT # 2

THIS IS FILE ON UNIT # 3

BEGIN READ WITHOUT *
RED

BLUE

NOW READ WITH *

RED

WHITE

END OF READ ON UNIT # 3

THIS IS FILE ON UNIT # 4

BEGIN READ WITHOUT *

RED

BLUE

NOW READ WITH *

RED

WHITE

END OF READ ON UNIT # 4

END OF TEST
>TYPE ASC*
RED— WHITE
BLUE PUR PLE!
>TYPE SEP*
RED,WHITE,
BLUE, PURPLE,
>TYPE [LN*

~ 1@ RED,WHITE,
28 BLUE, PURPLE,

>TYPE BIN*
REDWHITEBLUEPURPLE>

REV. @ E - 18



(usage) 2-5

$ (hexadecimal number) D--4

' (octal number) D-~4

* (in pathnames) 2-11

-CANCEL (SPOOL option) 2-21

-DEFER (SPOOL option) 2-21

-DISPLAY, TERM option 13--8

—ERASE, TERM option 13-8

-FORM (SPOOL option) 2-21

-KILL , TERM option 13-8

—~LIST (SPOOL option) 2-20

-NOXOFF, TERM option 13-8

-XOFF, TERM option 13-8

->SECTION 8

<*> (current disk) 2-11

> (in pathnames) 2-18

? (usage) 2-5

Abbreviations, command 2-2,

D-l

Access methods 8-6, E-l

Access restrictions 8-4

Access, direct E-l

Access, file 3-14

Access, random E-2

Access, sequential E-1

Accessing PRIMOS 2-12

INDEX

Accessing segment directories

8-22

Accessing sequential files

8-10

Accessing the system 2-12

ADD #unit, MIDAS 8-29

ADD statement 15-2

Adding data to MIDAS files

8-29

Adding matrices 9-8

ALTER command 7-2, 14-1

ALTER parameters 14-1

Altering record size E-7

Angle brackets, convention 2-2

APPEND, option (DEFINE) 8-3

Appendix B B-1

Appendix C, error codes C-1

Appendix D, Additional PRIMOS
features D-1

Arithmetic operators 4-5

Array names 11-3

Array names, string 12-3

Arrays, definition 9-1

ASC data storage E-3

ASC files, READ* E-16

ASC files, reading E-11

ASC, type-code 15-5

ASCDA data storage E-5



ASCDA files E-5

ASCDA files, accessing 8-20

ASCDA, type-code 15-5

ASCII character set B-1

ASCII data E-2

ASCII files E-2

ASCII to decimal conversion
9-16, Appendix B

ASCLN data sStroage E-~4

ASCLN files, accessing 8-11

ASCLN files, reading E-14

ASCLN, type-code 15-5

ASCSEP data storage E-4

ASCSEP files, accessing 8-L1

ASCSEP files, reading E-14

ASCSEP, type-code 15-5

Assigning directory passwords
2-14

Assigning file units 8-2

Assignment statement 5-2

ATTACH (PRIMOS command) 2-13,
13-3

ATTACH command (BASICV) 3-15,
14-2

Audience 1-1

Automatic logout 2-23

AVAIL command, PRIMOS 13-3

Backslash, usage 2-5

INDEX

BASIC/VM commands, list 4-1

BASIC/VM commands, reference
14-1

BASIC/VM file types 8-1

BASIC/VM statements, list 4-1

BASIC/VM statements, reference
15-1

BASIC/VM, features 1-1

BASICV command 3-]

BASICV command (PRIMOS) 3-16,
13-3

BIN files E-5

BIN files, accessing 8-11

BIN files, reading E-14

BIN, type-code 15-5

Binary data E-2

Binary files E-2

Binary operators 11-6

BINDA Files E-5

BINDA files, accessing 8-20

BINDA, type~-code 15-5

Blank lines, writing E-1@

Braces, convention 2-2

Brackets, convention 2-2

Branching in a program 6-2

Branching statements 6-1

BREAK :-Gammand 7-6, 14-3



Break key 2-4

BREAK OFF command 14-3

BREAK ON command 14-3

Breakpoints 7-6

Byte, definition D-1

Call-by-reference functions
10-14

Call-by-value functions 10-14

Cancelling spool request 2-21

Caret, usage 2-5

CATALOG command 3-3, 14-3

Central processor unit,
definition D-1

CHAIN statement 6-7, 15-2

Chain, directory 2-7

CHANGE statement 15-2

CHANGE statement 9-16,

Appendix B

Changing directory names 2-19

Changing file names 2-19

Changing kill and erase
characters D-7

Changing terminal characteristics
D-7

Changing working directory
2-13

Characters, format 15-19

Characters, special terminal
2-5 7

INDEX

Characters, string 15-21

CLEAR command 3-19, 14-4

CLOSE #unit statement E-10

CLOSE (MIDAS) statement, using

8-308

CLOSE statement 15-3

CLOSE statement, using 8-17

Closing DA files 8-21

Closing data files 8-17, E-19

Closing MIDAS files 8-38

CNAME (PRIMOS command) 2-19

CNAME command, PRIMOS 13-3

CNAME statement 15-3

Colons, delimiters 5-108

Column separators 5-8

Combining programs 3-18

COMINPcommand 6-4, 14-4

COMINP command, BASIC/VWM D-11l

COMINP statement 6-4, 15-3

COMINPUT (PRIMOS) 6-4

COMINPUT command, PRIMOS 13-4,

D-11

Command abbreviations 2-2, D-l

Command files, PRIMOS D-11

Command format conventions 2-2

Command input files D-11

Command mode 3-17



Command output files D-11

Commands, BASIC/VWM 14-1

Commas, delimiters 5-8

Comments 4-9

COMOUT command, PRIMOS 13—4

COMOUTPUT command, PRIMOS D-11

Compatability, BASIC/VM 1—4

COMPILE command 3-6, 14-4

Completing a work session 2-23

Concatenation operator 12-4

Concepts, glossary D-1

Conditional branching 6-8

Conditional statements 6-1

Conditionals, multi-branched
6-9

Conditionals, single-branched
6-8

Configuration, MIDAS file E—25

Constants, definition 4-2

Contents of directories 2-15

CONTINUE command 7-8, 14-5

Control key 2-4

Control, program 6-1

CONTROL-P, usage 2-5

Controlling file access 2-22

Conventions, BASIC/VM statement
15-1

INDEX

Conventions, command format
2-2

Conventions, filename D-2

Conventions, glossary D--1

Conventions, MIDAS files 8-27

Conventions, PRIMOS commands
13-1

Conversion, ASCII-decimal 9~16

CPU, definition D-1

CREATE (PRIMOS command) 2-14

CREATE command, PRIMOS 13-5

Creating files 3-1

Creating new directories 2-14

CREATK utility 8-24

CREATK utility, using 8-33

Current directory, definition
1-5, D-1l

Current disk 2-12

CVTSS function masks 10-18

DA files, altering record size
E-9 .

DAM files, defining 8-18

Data access, random 8-19

Data file handling 8-1

Data file, matrix I/O 9-18

Data files 8-1

Data files, deleting 8-22

Data files, error trapping

8-16 —



Data files, opening 8-2

Data files,. WRITE USING 8-9

Data files, writing to E-6

Data input/ouput 5-1

Data lists 5-2

Data output statements 5-7

Data retrieval E-2

DATA statement 5-2, 15-3

Data storage E-2

Data, input from terminal 5-4

Data, reference, numeric ll-1

Data, restoring 5-3

Data, truncation of E-7

Debugging 7-1

Debugging. commands 7-6

Declaring arrays 9-2

DEF FN statement 15-4

Default files (ASC) E-3

Default printing 5-8

Default protection keys 2-22

Default record size 8-3

Deferring spool printing 2-21

DEFINE FILE #unit statement

15-4

DEFINE FILE statement 8--2

DEFINE FILE, MIDAS format 8-28

INDEX

DEFINE SCRATCH FILE # statement

15-4

Defining arrays 9-2

Defining DAM files 8-18

Defining files 8-2

Defining matrices 9-2

Definitions D-1

Definitions, functions 10-17

DELETE (PRIMOS command) 2-15,

2-22

DELETE command 7-1, 14-5

DELETE command, PRIMOS 13-5

Deleting data files 8-22

Deleting directories 3-5

Deleting files 2-22, 3-13

Deleting lines 7-1

Deleting SEGDIR data files,

figure 8-23

Delimiters, colons 5-9

Delimiters, commas 5-8

Delimiters, data E-3

Delimiters, semi-colons 5-9

Demo program, MIDAS 8-30

Demo program, MIDAS, description
of 8-34

Demo program, running 8-37

DET function, reference 9-13

Determining file size 2-19



Device, see also disk

DIM statement 9-2, 15-6

Dimensioning arrays 9-2

Direct access files 8-18

Direct access files, writing to
8-19

Direct access method E-1

Direct access statements 8-18

Directories, creating 2-14

Directories, deleting 2-15

Directory chain 2-7

Directory name, definition
1-5, D-l

Directory names, changing 2-19

Directory operations 2-13

Directory structures 2-6

Directory, current, definition

1-5, D-1l

Directory, definition 1-5, D-1

Directory, examining contents
2-15

Directory, home vs. current
2-16

Directory, home, definition
D-3

Directory, segment, definition
D-6

Directory, user file, definition
D~-6

Disk see also device

INDEX

Disk, current 2-19

Disk, logical, definition D-4

Disk, physical, definition D-5

Disk, see also device

DO statement 15-6

DO-DOEND statement 6-9

Documents, related 2-1

Double-quote, usage 2-5

Edit mode, EDITOR D-8

Editing and debugging 7-1

Editing, simple 3-8

EDITOR commands, summary ..D-9

EDITOR, PRIMOS D-8

EDITOR, PRIMOS, for BASIC/VM -
programs D-1

Ellipsis, convention 2-2

End of file 8-16

END statement 6-2, 15-6

ENTER # statement 5-7, 15-7

ENTER statement 5-6, 15-7

Entering matrix values 9-17

ER! prompt 2-6

ERL variable 7-10, 15-16

ERR variable 15-16

ERR variable 7-18

ERRS (ERR) function 15-16



ERRS (x) function 7-10

Error codes, run-time C-1

Error location 7-10

ERROR OFF statement. 15-7

Error trapping, DA files 8-21

Error trapping, data files
8-16

Error traps 7-10

Error traps, using 7-12

Evaluating logical expressions
11-9

Evaluation of expressions 4-7

Evaluation, string expressions
12-5

Examining directory contents
° 3-3 4

Examining file contents 2-20

Examples, conventions 2-2

EXECUTE command 3-6, 14-5

Execution errors (3-6

Execution errors, trapping
7-19

Exiting BASICV 3-13

ExpresSion evaluation 11-7

Expressions, definition 4-1

a Expressions, evaluation of 4-7

Expressions, numeric 11-3

Expressions, string 12-3

X

INDEX

External branching 6-4

External command, definition

D-1, D-2

EXTRACT command 7-2, 14-6

Extracting program lines 7-2

Features, ASCDA files E-5

Features, ASCII file E-3

Features, ASCLN E-4

Features, ASCSEP file E-4

Features, BASIC/VWM 1-4

Features, BIN files E-6

Features, BINDA files E-6

File access, controlling 2-22

File access, remote 3-14

FILE command 3-5, 14-6

File contents, examining 2-28

File copies, obtaining 2-29

File directory, user, definition
D-6

File handling 8-1, E-l

- File handling, definition 8-1

File hierarchy 2-7

File Management System 8-1

File names, chang ing “2-19

File operations | 2-19, 8-2

File protection keys, definition
D~



File size, determining 2-19

File structures 2-6

File structures, figure 8-7)

File truncation E-10

File type-codes, table 8-5

File types 8-1

File types, PRIMOS, table 2-8

File types, table 15-5

File units 8-2

File, binary, definition Del

' File, definition D-2

File, object, definition D--4

File, source, definition D--6

File-unit, definition D-3

Filename 8-3

Filename conventions D-2

Filename, definition D-2

Files, ASC E-4

Files, ASCDA E-5

Files, ASCII E-2

Files, ASCLN E-3

Files, ASCSEP E-4

Files, BIN E-6

Files, Binary E-2

Files, BINDA E-6

Files, deleting 2-22

INDEX

Files, direct access 8-18

Files, printing 2-20

Files, SCRATCH 8-17

Files, temporary 8-17

FMS, PRIMOS 8-1

FOR loops 15-8

FOR statement 15-7

FOR-NEXT loop nesting: 15-9

FOR-NEXT statements 6-11

Forcing call-by-val ue . 19-15

Foreground file, listing _ 3-3

Format characters 5-11

Format characters, numeric |
5-11, 15-19.

Format characters, string
15-21 .

Format strings, WRITE USING

8-9

Format,command; conventions
252

Function-I/O interaction ~*‘i1g-f%

Functions, definition 4-4

Functions, numeric 10-1

Functions, string 19-8

Functions, string, table 19-9

Functions, user-defined 1@-12

Glossary, conceptsand
convent ions D-1



Glossary, concepts and
conventions D-l

Glossary, PRIMOS terms D-1

GOSUBstatement 6-3, 15-9

GOTO statement 6-3,15-10

Graph program, sample “Al

Halting a program 7-8

Hierarchyof files 2-7

‘Home directory, definition D-3 °

Homevs. current directory
2-10-

Hyphen, convention 2-2

1/O-function interaction 10-18

Identifying error codes 7-10

IF conditional 6-2
oe

IF statement 6-8, 15-10

IF structures 6-8, 15-192

Tllegal matrix multiplacation
9-11 “

. +Tumediage
wrod37

7

Indices, MIDAS 8-24

Initializing matrices 9-5

INPUT LINE statement 15-11

Input mode , EDITOR D-7

INPUT statement 5-5, 15-11

Input, data S71

Input, terminal 5-4

INDEX

Input, timed 5-6

INPUTLINE statement 5-5

Inserting program breaks 7-6

Inserting program halts 7-8

INT function, example 18-4

Internal command, definition

D-3

Internal subroutines 6-3

Intra-record structure E-2

INV matfiz function ‘9-13

Inverting matrices -12

Job number, definition 2-13

Keys, file protection, definition

 D-4

Keys, MIDAS 8-24

Keys, special terminal 2-4

Language elements 4-1

LBPS command 14-6

LDEV, definition D-4

Ldisk, definition D-4

Legal and illegal variables,
table 4-4

LENGTH command 7-5, 14-7

Length, record E-7 .

LET statement 5-2, 15-11

LIN #(unit) function E-4

LIN #(unit), using 8-298



LIN modifier 5-10

LIN#(unit), using with ASCLN
files E~-14

Line-numbered files E-4

Lines, renumbering 7-5

LIST command 3-4, 14-7

List of commands, BASIC/W™M

4-12

List of statements, BASIC/VWM
4-11

LISTF (PRIMOS command) 2-15

LISTF command, PRIMOS 13-5

Listing spool queue 2-20

Lists, data 5-2

LIST {NH} command 14-7

Literal string constants 4--)

LOAD command 3-16, 14~/7

Locating errors 7-10

Locations, errors 7-11

Logging in 2-13

Logging out 2-23

Logical disk, definition D--4

Logical expressions, evaluation
11-9

Logical expressions, table
11--9

Logical operators 4-6, 11-6

LOGIN (PRIMOS command) 27-13

INDEX

LOGIN command, PRIMOS 13-5

LOGOUT (PRIMOS command) _ 2-23

LOGOUT command, PRIMOS 13-6

Loop statements 6-11

Loops > 6-1

Loops, conditional §-12

Lower case convention 2-2

Manual organization / 1-1

MARGIN OFF statem@ht 15-11

MARGIN statement 5-17,°15-11

Markers, data, internal B-3

Masks, CVTSS function 10-18

Master file directory, definition
D-4

MAT (ZER,CON, IDN,NULL) statement

15-12 os

MAT INPUT * statement 9-17
0.

MAT INPUT statement 9-17,
15-13

MAT INV statement 15-13

MAT PRINT 15-14

MAT PRINT statement 9-17

MAT READ #unit statement - 9-18

MAT READ statement 9-15, 15-14

MAT statements 9-5, 15-12

MAT TRN statement15-13

MAT WRITE # statement 15-14

18



MAT WRITE #unit statement 9-18

Math program, sample A-4

Matrices, definition. 9-1]

Matrix addition 9-8

Matrix concepts 9-5:

Matrix determinants 9-13

Matrix dimensions 9-5

Matrix I/O 9417

Matrix initialization 9-5

“Matrix“inversion 9-12

Matr ix multiplication 9-19

Matrix multiplication, illegal
9-1)

Matr ix operations 9-5

Matrix subtract ion 9-10

Matrix, input 9-17.

Matrix, writing to file (9-18.

MAX operator 11-5, 1-7

Merging programs. 3-18

Methods, access 8-6

MFD, definition . D-4

MIDAS access statements 8-26

MIDAS demo program 8-30

MIDAS demo, running 8-37

MIDAS Eile ,,.con figuration’ 8-25

MIDAS file, definition 8-24

INDEX

MIDAS file, reading 8-28

MIDAS files, closing 8-30

MIDAS files, description of
8-11, 8-24

MIDAS files, opening 8-27

MIDAS files, removing data
8-308

MIDAS, rewinding pointer 8-28

MIDAS, type-code 15-5

MOD operator 11-5, 11-7

Mode, command 3-17

Mode, definition D-4

Mode, immediate 3-17

Mode, program-statement 3-17

Modes of operation 3-17

Modifiers 6-2

Modifying loops 6-11

Modifying program lines 7-2

Multi-branched conditionals
6-9

Multiple “Index Data Access System
8-24 |

Multiplying matrices 9-19

Nesting, FOR-NEXT loops 15-9

3-1, 14-7NEW command

New User's Guide To EDITOR And
RUNOFF D-8

NEXT statement 15-15

11



INDEX

Nodename, definition D-4 Object file, definition D-4

Non-foreground file, listing Obtaining file copies 2-29
3-3

OK, prompt 2-6
Non-owner password 2-14 .

OLD command 3-1, 14-8
Non-owner rights 2-22

ON END statement, using 8-16
Non-owner status 2-14

ON END-GOTO statement 15-16
NONOWN 2-15

ON ERROR statement 7-1

NULL 2-16

ON ERROR-GOTO statement 15-16
Number representations D—~4

ON-~GOSUB statement 6-11, 15-15

Number, job, definition 2-13
ON-GOTO statement 6-18, 15-15

Number, user 2-13

One-dimensional arrays 9-1
Numbers, statements 4-8

Opening DAM files 8-18
Numeric arrays 9-1, 11-3

Opening data files 8-2
Numeric constants 4-1, 1l-l

Opening MIDAS files. | 8-27
Numeric data 11-1

Opening SAM files 8-8
Numeric expressions 11-3

Opening temporary files 8-17
Numeric format characters 5-11

Operands, definition 4-1]
Numeric format characters, takle

15-19 Operations, directory 2-13

Numeric functions 4-4, 10-1 Operations, file 2-19, 8-1

Numeric operators, table 11-5 Operations, matrix 9-5

Numeric READs E-12 Operator priority 4-7

Numeric scalar variables 4-2, Operator priority, string 12-6
11-2

Operators 11-3

Numeric subscripted variables
4-2 Operators, definition 4-5

Numeric system functions 18-1 Operators, relational iedl-6

Numeric system functions, table Operators, relational, string
18-2 12-5



Operators, string 124

Option, convention 2-2

Options, program. 3-9

Ordinary pathname 2-7

Organization, manual 1-1

Output stream, definition D-5

Output, data 5-1, 5-7

Overview of Prime's BASIC/VM

1-1, 1-4

OWNER 2-15

Owner password 2-14

Ownerrights 2-22

Owner status 2-14

Packname, definition D-5

Page , definition D-5

Parentheses, convention 2-2

Parity masks, table 19-198

Partition, definition D-5

PASSWD (PRIMOS command) 2-14

PASSWD command, PRIMOS 13-6

Password, non-owner _ 2-14

Password, owner 2-14

Passwords in pathnames 2-13

Passwords, aSsigning directory
2-14

_Pathname vs. filename 2-10

Pathname, definition D-5

INDEX

Pathname, ordinary 2-7

Pathname, relative 2-18

Pathnames 2-7

Pathnames with passwords 2-14

PAUSE command 7-8

PAUSE statement 15-17

PLEV, definition 1-9, D-5

Pdisk, definition D-5

Phantom user, definition D-5

Physical disk, definition 1-9,
D-5

Pointer, rewinding 8-11

POSITION statement 15-17

Positioning MIDAS file pointer
8-28

Precedence, operators, of 11-7

PRIMOS command format 13-1

PRIMOS commands, reference to

13-1

PRIMOS EDITOR D-8

PRIMOS features D-l

PRIMOS file types, table 2-8

PRIMOS files 8-1

PRIMOS terms D-1

PRIMOS tree-structured file

system 2-9

PRINT (LIN, TAB,SPA) statement

15-17

13



PRINT statement 5-6, 15-17

PRINT USING characters 5-LiL

PRINT USING statement

15-18
5-11,

Print zones 5-8

Printing files 2-208

Printing matrices 9-17

Printing on special forms 2-21

Priority, expression evaluation
11-7

Priority, operational 4-7

Priority, string operator 12-6

Program control 6-1

Program editing 7-1

Program execution, tracing 7-8

Program halts 7-8

Program length 7-5

Program, process of 3-9

Program-statement mode 3-17

Programs, sample A-1

Prompts, system 2-6

PROTEC (PRIMOS command) 2-22

PROTEC command, PRIMOS 13--6

Protection keys, default 2-22

PURGE command 3-13, 14-8

Question mark, usage 2-5

QUIT command 3-13, 14-8

INDEX

Random data access 8-19

Reaching end of file 8-16

READ # statement 15-23 ©

READ #unit statement 8-18,
E-11

READ * # statement 15-23

READ LINE # statement 15-22

READ statement 5-2, 15-22

READ vs. READLINE 8-15

READ* statement 8-11

READ*, default files E-16

READ, option (DEFINE) 8-4

Reading ASC files E-11

Reading data into a matrix
9-15

Reading SAM files 8-168

Reading sequential files E-13

Reading with READ* 8-11

Reading, data files E-1l

READLINE statement, using 8-14

READs after WRITES 8-11

READ [KEY] statement 15-22

READ [KEY] statement, using
8-28

Record size 8-3

Record size, altering E-7

Records, default size 8-3

14



Records, fixed-length E-1

Records, overwriting E-12

Records, truncation E-7, E-10 ©

- Records, variable-length E-1

Recycling data 5-3

Redimensioning matrices 9-7

Reference, BASIC/VM commands

14-1 a

Reference, BASIC/VM statements

15-1

Reference, DET matrix function

9-13

Reference, numeric data 11-1

Reference, PRIMOS commands
13-1

Reference, string data 12-1

Related documents 2-1

Relational operators 4-5,

11-6, 12-5 ,

Relative pathname 2-18

REM statement 15-23

Remar ks 4-9

- Remote file access 3-14

REMOVE statement 15-23

RENAME command 3-12, 14-9

Renaming files 3-12

Renumber ing, program 7-5

REPLACE statement 15-24

INDEX

REPLACE statement, using 8-22

' Representations, number D-4

RESEQUENCE command 7-5, 14-9

_. RESTORE statement 5-3, 15-24

Restriction, APPEND 8-4

Restriction, READ 8-4

Restrictions, DEFINE 8-4

Return key 2-4

RETURN statement

15-24

6-3, 6-11,

REWIND (MIDAS) statement, using

8-30

REWIND statement 15-24

REWIND statement (MIDAS) 15-25

Rewinding pointer 8-11

Rights, non-owner 2-22

Rights, owner 2-22

RND function, example 19-4

Rules of precedence 11-7

RUN command 3-7, 14-10

Run-time error codes C-1

Run-time errors 3-7

Running a program 3-7

Running programs from PRIMOS

3-16

RUNOFF, PRIMOS D-8

Sample programs A-1

15



Saving files 3-5

Scalar multiplication, matrix
9-19

SCRATCH files 8-17

SEG, definition D-5, D-6

SEGDIR files 8-22

SEGDIR, type-code 15-5

Segment directories 8--22

Segment directory access 8-22

Segment directory, definition
D-6

Segment, definition D-6

Segno, definition D-6

Semi-colons, delimiters 5-9

Sequential access method 8--6,
E-l

Sequential access statements
8-8

Sequential files, altering record
size E-7

Sequential files, closing 8-17

Sequential files, opening E-8,
=-6

Sequential files, reading E-18

Sequential files, READing E-13

Sequential files, rewinding
8-18

Setting terminal charactereistics
D-7 .

Single branched conditionals
6-8

INDEX

SIZE (PRIMOS command) 2-19

SIZE command, PRIMOS 13-7

Size, record 8-3

SLIST (PRIMOS command) 2-20

SLIST command, PRIMOS 13-7

Source code, translation 3-6

source file, definition D-6

SPA modifier 5-18

Space separators 5-9

Spaces, convention 2-2

Special terminal characters
2-5

Special terminal keys 2-4

SPOOL (PRIMOS command) 2-208

SPOOL command, PRIMOS 13-7

SPOOL option -CANCEL 2-21

SPOOL option —DEFER 2-21

SPOOL option —FORM 2-21

SPOOL option -LIST 2-28

Spool printing, deferring 2-21

Spool queue, listing 2-20

Statement conventions 15-1

Statement modifiers 6-2

Statement numbers 4-8

Statement syntax 4-8

Statements, BASIC/VM 15-1

16



Statements, definition 4-8

Statements, editing 7-2

STATUS command, PRIMOS 13-7

STEP modi fier 6-11

STOP statement 6-2, 15-25

Storage patterns, data E-2

Stream, output, definition D-5

String array names 12-3

String arrays 4-2, 9-1, 12-2

String constants 12-1

String data, reference 12-1

String expression evaluation
12-5

String expressions 12-3

String format characters 5-14

String format field characters
15-21

String functions 4-4

String operators 4-6, 12-4

String READs E-12

String scalar variables 4-2,
12-1

String subscripted variables
4-2

String system functions 19-8

String variable names 12-3

ro e

nH

Structure, intra-record E-2 2,

Structure, segnent.difectory ~8-22 7

INDEX

Structures, directory 2-6

Structures, file 2-6, 8-7

_ Sub-UFD, definition D-6

‘Subdirectory, definition D-6

Subroutines, internal 6-3

Subscripted variables 11-2,

12-2

Subtracting matrices 9-10

Summary, PRIMOS EDITOR commands
D-9

Syntax errors 3-6

Syntax, statement 4-8.

System functions 18-2

System information, table 2-17

System prompts 2-6

TAB modifier 5-10

Table of numeric system functions
19-2

Table, file types 15-5

Table, matrix operations 9-6

Table, numeric format field

characters 15-19

Table, numeric operators 11-5

Table, string format characters
15-21

Table, string functions 18-9

Table, type-codes 8-5

Table, variables 4—4

17



Template, MIDAS file 8-33

Temporary files, defining 8-17

TERM command, options D-7

TERM command, PRIMOS 13-8, D-7

Terminal characteristics,
chang ing D-7

Terminal characters, special
2-5

Terminal input 5-4

Terminal keys, special 2-4

Terms, MIDAS 8-27

Text handling program, sample
A-7

Timed terminal input 5-6

TRACE command 7-8

TRACE OFF command 14-19

TRACE ON command 14-16

Tracing execution 7-8

Translating source code 3-6

TransposSing matrices 9-13

Trapping errors 7-108

Trapping errors in data files
8-16

Tree-structured file system,
figure 2-9

Treename 2-7

Treename, definition D-6

TRN matrix function 9-13

INDEX

Truncation, data E-7

Truncation, file E-10

Tutorial reference, BASIC 1-1

Two-dimensional arrays 9-2

TYPE command 3-3, 3-5, 14-19

Type-ahead 2-6

Type-code, definition 8-3

UFD, definition D-6

Unary operators 11-6

Unconditional statements 6-2

Underscore, usage 2-5

Unit, definition D-6

UNLESS modifier 6-2

UNTIL modifier 6-2, 6-12

UPDATE statement 15-25

UPDATE statement, using 8-29

Updating MIDAS files 8-29

Upper case convention 2-2

User file directory, definition
D-6

User number 2-13

User, phantom, definition D-5

User-defined functions 19-12

USERS command, PRIMOS 13-8

Using EDITOR for BASTC/VM

programs D-19

Using PRIMOS 2-12

18



INDEX

Variable names 11-3 \ (usage) 2-5

Variables, definition 4-2 -. ™ (usage) 2-5

Variables, string .~ 12-1 __ (usage) 2-5

Variables,table 4-4

Volume, definition |D-6
a

Volume-name, definition D-6,
D-7

WHILE modifier ° 6-2, 6-12

Word, definition D-7

Work session, completing 2-23

Wor king directory, changing
2-13

WRITE # USING statement 15-26

WRITE #unit statement 8-9, E-6

WRITE statement 15-25

WRITE USING # statement 15-26

WRITE USING, formats 8-9.

Writing matrix to file 9-18

Writing to DAM files 8-19

Writing to data files E-6

Writing to MIDAS files 8-29

Writing to SAM files 98-8

. Writing, ASC files E-6

Writing, ASCDA files E-9

Writing, ASCSEP files E-8

Writing, BIN files E-8

Writing, BINDA files E-9 owe.


	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	08-36
	08-37
	08-38
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19

