

THECOBOL
PROGR 3R’S GUIDE
PDR3056 oe

P/N MAN3251-001

PRIME SOFTWARE DOCUMENTATION
HIGH LEVEL ASSEMBLY
LANGUAGE LANGUAGE
PROGRAMMER'’S REFERENCE
GUIDES GUIDES

e FORTRANIV e SYSTEM
PDR3057 ARCHITECTURE
PTU47 INSTRUCTIONS

IDR3060
e COBOL MAN1812*

PDR3056

PTU48 e PRIME MACRO
ASSEMBLER

e RPGH PDR3059

IDR3031 PTUSO
FDR3275*

PTU49

e BASIC/VM
IDR3085

e INTERPRETIVE

BASIC

IDR1813

PRIME DOCUMENTATION TYPES

OPERATING
SYSTEM
REFERENCE
GUIDES

e PRIMOS
COMMANDS
PDR3108
FDR3250*

e SYSTEM

ADMINISTRATOR

GUIDE

IDR3109

e FILE SYSTEM

PDR3110

PTUS1

© SOFTWARE

LIBRARY

PDR3106

PTU52

SOFTWARE
SUBSYSTEM
REFERENCE
GUIDES

COMMUNICATIONS
SUBSYSTEM
REFERENCE
GUIDES

e DATA BASE

MANAGEMENT

IDR3043

IDR3044

IDR3045

IDR3046

PTU55

e RJE/2780
PDR3067

e HASP

IDR3107

e EDITOR &

RUNOFF

FDR3104

e MIDAS

PDR3061

PTU54

e SPSS

PDR3173

e FORMS

IDR3040

PTU45

PTU53

IDR Initial Documentation Release: provides usable,accurate advanced information.

PDR Preliminary Documentation Release: provides more complete and accurate information about the product,
but is not in final format.

FDR Final Documentation Release: a complete product description; edited, formatted and presented in Prime's
highest standards. The Programmer's Companton*is another type of FDR; a series of pocket-size, quick
reference guides on Prime software products.

PTU Prime Technical Update:interim updates to existing documents.

PRIME 'S COBOL PROGRAMMER'S GUIDE (Rev. A, September 1978)

This guide documents Prime COBCL and all Supporting PRIMOS operating
system features as implemented at Master Disk Revision Level 14.
Enhancements to COBCL, PRIMOS, and supporting utilities at Revision 15
are given in Appendix K. The index reflects this new organization.
Typographic errors, corrections, etc. in the Rev. 14 PDR have been
incorporated into the text of this guide.

-This guide is organized to make life easier for you, the COBOL
application programmer.

We assume you know COBOL, and will easily adapt to Prime's
implementation and extensions, which are fully defined in the reference
sections of this guide.

PRIMOS, on the other hand, is a large and versatile operating system.
It is no small task to sift through all the reference documentation for
PRIMOS and its file system, libraries, utilities, and supporting
software to find what you need to get a COBOL application running.

To save you trouble, we've done all that for you in the early sections
of this guide, by:

@ Selecting the PRIMOS capabilities that are of key importance to
the COBOL programmer.

e Presenting these capabilities in the usual order of COBOL
program development.

e@ Including all the details on the essential tools.

@® Summarizing optional, convenience, and advanced features.

@e Leaving out what is irrelevant.

The result is a single document containing everything you need to’ know
to write, modify, compile, load, execute, and debug most COBOL
application programs..

In exceptional cases, you may need to refer to supporting reference
documents. For example, this guide gives enough information on Prime's
DBMS, MIDAS, and FORMS subsystems for you to evaluate whether they are
useful to your application. To develop applications using these
complex subsystems, however, you need access to the complete details in
the reference documents. .

We hope you will find this to be a helpful guide to the particulars of
COBOL programming within the PRIMOS operating system. We invite
comments on the organization and philosophy of this guide, as well as
its contents, accuracy, and clarity.

All correspondence on suggested changes to this document should be

directed to:

Anthony Lewis, Technical Writer

Technical Publications Department

Prime Computer, Inc.
145 Pennsylvania Avenue

Framingham, Massachusetts 91701

Acknowledgements:

We wish t6thank the members of the COBOL PROGRAMMER'S GUIDE team and

also the non-team members, both customer and Prime, who contributed to

and reviewed this PDR.

Copyright ©) 1978 by
Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 91761 _

The information in this document is subject to change without notice

and should not be construed as a commitment by Prime Computer

Corporation. Prime Computer Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a license

any may be used or copied only in accordance with the terms of such

license.

The following terms are registered trademarks of Prime Computer

Corporation:

The Programmer's Companion PRIMOS

First Printing November 1977

Corrected and reprinted September 1978

CONTENTS

section Title

PART I AN OVERVIEW OF PRIME'S COBOL

SECTION 1 INTRODUCTION

THIS DOCUMENT

Purpose and Audience
Organization and Usage
This Version

PRIME CONVENTIONS
RELATED DOCUMENTS

SECTION 2 PRIME COBOL SUMMARY

PEATURES
SYSTEM FILES
VCOBLB

SECTION 3. COBOL AND PRIMOS

OPERATING SYSTEM MODES

64R Mode, Prime 300, 400, 500
64V Mode, Prime 400, 500

FILE SYSTEM SUMMARY
PROGRAM ENVIRONMENTS
SYSTEM RESOURCES SUPPORTING COBOL

PART II USING THE PRIME SYSTEM

SECTION 4 SYSTEM ACCESS

SYSTEM CONCEPTS

Basic Concepts

ACCESSING THE SYSTEM

Logging In
Accessing Files
Sub-UFDs
Examining Files
Renaming and Deleting Files and Empty Sub-UPDs
Closing Files and Logging Out
Sample PRIMOS Session

November 1977

CONTENTS (Cont)

Section Title

PRIMOS COMMAND SUMMARY
CREATING AND ENTERING SOURCE PROGRAMS

Entry from Other Media
The EDITOR/Entering and Modifying Programs
Editor Command Summary
Listing Programs
Renaming and Deleting Program Files

SECTION 5 COMPILING A SOURCE PROGRAM

INTRODUCTION
USING THE COMPILER

End of Compilation Message
Compiler Error Messages
Compiler Warning Messages
Program Statistics (64V)

COMPILER FUNCTIONS

Specify Input/Output Devices
Addressing Mode
Listings

SECTION 6 LOADING AND LINKING

INTRODUCTION

Desectorization
Clearing The User Address Space

INVOKING THE LOADER
USING THE LOADER UNDER PRIMOS
COMMAND FORMATS

Loader Commands
Most Frequently Used Loader Commands

Less Frequently Used Loader Commands

LOADER ERROR MESSAGES

SECTION 7 LOADING SEGMENTED PROGRAMS

INTRODUCTION

Segmented Runfiles
SEG's Loader
Functional Structure of SEG's Loader
Object File as Input
The Stack
SEG Commands
Vestigal Commands
SEG Messages

REV. 0 i - 4

Page

4-12
4-14

4-14
4-18
4-25
4-29
4-30

w
m t _

w
m

o
n

I
J
e

m
u
m
w
n
n
m

1
'

\
m
m
a

w
n

1
{

w
o

>
t
A
O
N
D
O
D
O

o
O

a
n

I
t

_
—

o
O
O
N

' W
N
D
O

I
w
n
W
N

. ay
I
~
]
S
I
I
N
N

N
I
M

\
o
t

W
U

W
N
W
P
D

P
e

CONTENTS. (Cont)

Section Title

USING SEG

Command Files
Filenames
Frequently Used and Essential Commands Applications

Functions

SECTION 8 EXECUTING THE LOADED PROGRAM

INTRODUCTION
EXECUTION OF PROGRAM MEMORY IMAGES SAVED BY THE

LINKING LOADER (64R)
EXECUTION OF SEGMENTED RUNFILES SAVED BY SEG'S

LOADER (64V)
CM$L (64R)/C$IN (64V) UTILITY PROGRAMS
RUN-TIME ERROR MESSAGES

SECTION 9 SORT PROCEDURES

EXTERNAL/INTERNAL SORT ROUTINES

' . External Operating System COBOL Sort Procedures
Internal Application Sort Subroutines
Sort Considerations

PART III ADVANCED CONCEPTS

SECTION 10 COBOL PROGRAM ENVIRONMENTS, EXPANDED

INTRODUCTION
INTERACTIVE
COMMAND FILES
PHANTOM USERS
CX MODE
SHARED PROCEDURES

SECTION 11 MANAGEMENT SYSTEMS AND LANGUAGE INTERFACE

INTRODUCTION
MIDAS (Multiple Keyed Index Direct Access System)

Requirements
Using MIDAS
The Template
Creating the Template (CREATK)
Minimum Dialogue
REMAKE Program
KIDDEL Program

Page

7-5

7-6
7-6

7-6

November 1977

CONTENTS (Cont)

Section Title
eransetae

DBMS (Database Management System)
FORMS (Forms Management System)
OTHER PROGRAMMING LANGUAGES

PART IV REFERENCE

CONCEPTS

SECTION 12 FUNDAMENTAL CONCEPTS OF COBOL

DIVISIONS OF A COBOL PROGRAM: A SUMMARY

Sample Program
Sample Listing

LANGUAGE CONSIDERATIONS

Format Notation
Punctuation Rules
Coding Rules
Prime Character Set
Collating Sequence

LANGUAGE SPECIFICATIONS

COBOL Character Set
Character Strings
Picture Character - Strings
Word Formation
Reserved Words
Programmer-Defined Words
Qualification of Names
Classes of Data
Data Levels
Data Representation
Standard Alignment Rules
Algebraic Signs
Arithmetic Expressions
Arithmetic Statements
Overlapping Operands
Conditional Expressions
Subscripting
Direct and Relative Indexing

NUCLEUS

SECTION 13. IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

REV. 0

Example: REF2

12-1

12-1

12-4
12-7

12-9

12-9
12-10
12-10
12-11
12-12

12-12

12-12
12-12
12-12
12-12
12-15
12-17
12-21
12-23
12-24
12-25
12-26
12-27
12-28
12-31
12-31
12-31
12-37
12-38

13-1

13-1

13-3

CONTENTS (Cont)

Section Title

SECTION 14 ENVIRONMENT DIVISION

ENVIRONMENT DIVISION

Configuration Section
Input-Output Section
Example: REF2

SECTION 15 DATA DIVISION

DATA DIVISION

File Section
File Description
Record Description
Working-Storage Section
Linkage Section
Example: REF2

SECTION 16 PROCEDURE DIVISION

PROCEDURE DIVISION
COBOL VERBS QUICK INDEX

Example: REF2
Compile Sequence For REF2 - 64R, 64V
Listing File For REF2 - 64R
Load Sequence For REF2 - 64R, 64V
CREATK Sequence For REF2 - 64R, 64V
Execute Sequence for REF2 - 64R, 64V

FUNCTIONAL PROCESSING MODULES

SECTION 17 INTER-PROGRAM COMMUNICATION

DEFINITION
LINKAGE SECTION
PROCEDURE DIVISION

CALL
EXIT PROGRAM
ENTER
Example

Page

14-1

14-1

14-3
14-5
14-9

15-1

15-1

15-3
15-4
15-15
15-46
15-48
15-50

16-1

16-1
16-6

16-73
16-79
16-80
16-88
16-89
16-91

November 1977

CONTENTS (Cont)

Section Title

SECTION 18 TABLE HANDLING

DEFINITION
DATA DIVISION

OCCURS
INDEXED BY
Subscripting

PROCEDURE DIVISION

SET
SEARCH

SECTION 19 INDEXED SEQUENTIAL FILES/INDEXED I-O

DEFINITION
FILE CONTROL
PROCEDURE DIVISION

CLOSE
DELETE
OPEN
READ
REWRITE
START
WRITE

SECTION 20 RELATIVE FILE PROCESSING/RELATIVE I-0O

DEFINITION
FILE CONTROL
PROCEDURE DIVISION

CLOSE
DELETE
OPEN
READ
REWRITE
START
WRITE

UTILITIES

SECTION 21 COMPILER REFERENCE INFORMATION

COBOL COMPILER PARAMETERS

REV. 0 i - 8

21-1

21-1

CONTENTS (Cont)

Section Title

Prime COBOL Compiler Mnemonics
Explicit Setting of the A Register

COMPILER-GENERATED FILES

SECTION 22 SEG REFERENCE

COMMAND SUMMARY

APPENDIX A PRIME COBOL SUMMARY

APPENDIX B FILE ORGANIZATION

APPENDIX C CREATING ISAM AND RELATIVE FILES

APPENDIX D REFERENCE TABLES

COBOL VERB INDEX
FILE STATUS KEY DEFINITIONS
PERMISSIBLE INPUT/OUTPUT STATEMENTS
PERMISSIBLE MOVES

APPENDIX E ASCII CHARACTER SET

COLLATING SEQUENCE
ASCII CHARACTER SET

APPENDIX F COBOL SYMBOLS

APPENDIX G ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES
COMPILE-TIME WARNING MESSAGES
RMODE RUN-TIME ERROR MESSAGES
VMODE RUN-TIME ERROR MESSAGES
SEG LOADER ERROR MESSAGES

APPENDIX H RESERVED WORDS

November 1977

CONTENTS. (Cont)

Section Title

APPENDIX I CONVERSION TABLES

HEXADECIMAL AND DECIMAL CONVERSION
OCTAL AND DECIMAL CONVERSION
HEXIDECIMAL ADDITION TABLE

APPENDIX J EXPANDED LISTING FOR VMODE

V-MODE
SAMPLE (REF2)

APPDENDIX K REVISION 15 COBOL

LANGUAGE ENHANCEMENTS
PRIME AND UTILITIES
USING PRIMOS WITH NETWORKS
MODIFIED COMMANDS AND SUBSYSTEMS
SHARED LIBRARIES “

P
e

Figure

6-1

11-1

12-1

12-2

12-3

15-1

15-2

16-1

16-2

16-3

21-2

— 21-2

TLLUSTRATIONS

Title

Base Area Orientation

. User's Functional Overview of the MIDAS File
System

Standard COBOL Coding Sheets

COBOL Characters

Classes of Data

Examples: PICTURE Clause

Examples: BLANK WHEN ZERO

Rounding Results

Nested IF Tree Structure

SEARCH Operation Flowchart

Bit Conversion, Binary/Octal

Bit-Mnemonic Correspondence, A Register

Page

6-2

11-2

12-11

12-14

12-23

15-35

15-42

16-5

16-31

16-51

21-4

21-5

November 1977

Table

6-1

12-1

12-2

12-3

14-1

15-1

15-2

15-3

15-4

16-1

16- t
A

16-4

19-1

19-2

20-1

20-2

21-1

21-2

REV. 0

TABLES

Title

Load State Definition

Special-Character Words: Arithmetic Operators/
Relation Characters

Data Representation and Usage

Symbol Combinations in Arithmetic Expressions

Device Specifications

Label Options

Categories of Data and Editing

Results of Sign Control Symbols in Editing

Sign Representation

Prime COBOL Verb Index

Permissible Moves

OPEN Statements and Access Modes

Carriage Control Integer Values

File Status Key Definitions, Indexed Sequential
Files

OPEN Statements Vs. Access Mode, Indexed I-O

File Status Key Definitions, Relative I-O

OPEN Statements Vs. Access Mode, Relative I-0O

Compiler File Specifications

Input/Output Device Bit Specification

PRIMOS File Units

Prime COBOL Verb Index

File Status Key Definitions

Permissible Input/Output Statements - OPEN
Statements and Access Modes

Permissible Moves

12-16

12-26

12-30

14-6

15-7

15-30

15-31

15-38

16-6

16-35

16-38

16-70

19-5

19-9

20-4

20-8

21-2

21-4

21-6

D-1

D-2

D-4

ACKNOWLEDGMENT

Any organization interested in reproducing the COBOL report and speci-
fications in whole or in part, using ideas taken from this report as the
basis for an instruction manual or for any other purpose is free to do
so. However, all such organizations are requested to reproduce this
section as part of the introduction to the document. Those using a short

passage, as in a book review, are requested to mention 'COBOL' in acknow-

ledgement of the source, but need not quote this entire section.

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

Procedures have been established for the maintenance of COBOL. Inquiries

concerning the procedures for proposing changes should be directed to the
Executive Committee of the Conference on Data System Languages.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation, Programming
for the UNIVAC (R) I and II, Data Automation Systems copyrighted
1958, 1959, by Sperry Rand Corporation; IBM Commercial Translator,
Form No. F23-8013, copyrighted 1959 by IBM; FACT, DSI 27A5260-
2760, copyrighted 1960 by Minneapolis -Honeywell :

have specifically authorized the use of this material in whole or in part,

in the COBOL specification in programming manuals or similar publications.

--from the ANSI COBOL Standard

(X3.23-1974)

i - 13 November 1977

PART |

AN OVERVIEW OF PRIME’S COBOL

PDR3056 INTRODUCTION

SECTION 1

INTRODUCTION

THIS DOCUMENT

Purpose and Audience

The purpose of this manual is to provide the experienced COBOL program-
mer with a guide to efficient COBOL usage in the Prime Environment.

Newcomers to Prime will find in Parts 1 and 2 the introduction and guide
they require to apply COBOL in the new environment.

The user familiar with Prime may wish to skim Parts 1 and 2 of this man-
ual.

Advanced concepts and reference are geared to all COBOL users.

Organization and Usage

It is envisioned that this manual will be examined from several different
viewpoints. For maximum benefit in any application, the user should be
familiar with its organization.

In this connection, the Table of Contents is a guide not only to content,
but to order as well; while the index will provide the most direct access
to specifics.

The reader should also familiarize himself with the kinds of information
available in the Appendices, since they represent a capsule form of re-
peatedly used data. Various versions of tables are here incorporated

_ into one format, error messages are alphabetically stated, COBOL symbols
are presented in capsule form, as are Reserved Words.

This manual is cross-referenced and contains frequent pointers to other
documentation for in-depth discussion of system features.

This document is organized into four major parts:

1. An overview of Prime's COBOL (Sections 1 through 3).

2. Using the Prime System (Sections 4 through 9).

3. Advanced Concepts (Sections 10-11)

4. Reference (Sections 12-22 and Appendices A-J).

1 - 1 November 1977

SECTION 1 PDR3056

Part 1, An Overview of Prime's COBOL, discusses Prime's system features,
the PRIMOS interactive environment, and Prime's COBOL. As an overview,
this part is meant to introduce the uninitiated user to a time-shared,
multi-user, interactive system, with its potential for COBOL. The ex-
perienced user will here find a summary of Revision 14 enhancements to
the COBOL language and Prime system facilities.

Part 2, Using the Prime System, is a tutorial. Its sections will take
a new Prime user through those stages required to successfully create
and execute COBOL programs on a Prime system.

The first concern is system access. System level commands are listed
and summarized in Section 4. The system Editor is then presented as a
means for entering and modifying data in general, and source programs
in particular. |

The remainder of Part 2 is organized to reflect the sequence of steps
necessary to compile, load, execute and sort COBOL programs. System

utility programs useful in this connection are explained in detail,
with in-line examples and complete command summaries. These are organ-
ized into self-contained sections on the Compiler, the Linking Loader,
SEG, and Sort procedures.

When a quick reference rather than a tutorial is wanted, the user will

find capsulized versions of the Compiler and SEG sections repeated in

Part 4.

Part 3, Advanced Concepts, addresses system and time efficient proce-
dures. Its audience is boththe new and the experienced Prime COBOL
user.

Treatement of COBOL program environments is here expanded, with discus-
sion including command files, phantom users, CX mode, and shared pro-

cedures.

Management systems are introduced and discussed in relation to COBOL
interface. Those aspects of MIDAS (Multiple Keyed Index Data Access
System) most commonly utilized in COBOL applications are treated in

detail.

Throughout Part 3, the approach remains tutorial, including many exam-

ples. To accomodate the large spectrum of user applications, frequent
reference is made to additional sources of information.

Part 4, Reference, provides syntactical and general COBOL specifications:
it is patterned after the ANSI standards. Its four main subdivisions
are:

Fundamental Concepts of COBOL
Nucleus
Functional Processing Modules
Utilities

REV. 0 1 - 2

PDR3056 INTRODUCTION

Fundamental Concepts of COBOL defines and enhances the Nucleus and
Functional Progressing Modules. The Nucleus sets forth the structure
and governing rules for COBOL's four divisions: Identification |
Environment, Data, and Procedure. The Functional Processing Modules
include Inter-program Communication, Table Handling, Indexed I-0, and
Relative I-0. Utilities is a reference presentation of the Prime
COBOL Compiler and the SEG utility program.

Effective usage of the Reference requires considerable knowledge of
its organization:

In Fundamental Concepts, the user will find a generalized COBOL pro-
gram summary, together with a skeletal component structure for such a
program. These are expanded in the example program, SAMPLE which follows
follows with its Listing File. This summary is a thimb-nail presenta-
tion of required and optional program structure, which is expanded
throughout the Nucleus.

The Nucleus presents information related to the Identification, Environ-
ment, Data and Procedure Divisions (Section 13 through 16 respectively).

Each sections begins with a thumb-nail, skeletal component format for
the program division it discusses. This is expanded throughout the
section in the sequence in which it must appear.

COBOL verbs are presented alphabetically in Section 16, the Procedure
Division. A quick verb index precedes this data and appears also in
Appendix D.

At the close of each division section, the user will find an example of
source coding for that given division. These examples form a functional
program, REFZ, which illustrates the interrelationship of component
parts. The COMPILE, LOAD, CREATK, and EXECUTE sequences for REF2 are
presented immediately following the program example at the close of
Section 16. These, and the compiled Listing File which accompanies them,
form an integrated COBOL picutre. They relate both to program division
discussion in Part 4, and to their corresponding tutorial sections in
Part 2.

A VMODE Expanded Listing for REF2 appears in Appendix J.

Functional Processing Modules are self-contained, often restating concepts,
data descriptions, and COBOL statenent formats elsewhere described. The
reader will here find all related data in a single location for maximum
utility and efficiency. For example, the READ verb is presented in the
Procedure Division. It is restated in the Indexed I-O Functional Process-
ing Module, together with related data pertinent to Indexed I-0 process-
ing.

1 - 3 November 1977

SECTION 1 PDR3056

This Version

This is a Preliminary Documentation Release (PDR). It represents a

SECOND draft, providing more complete and accurate information about

the product than previously available, but not in itself complete.

Thus, those sections still incomplete are listed in the Table of

Contents and outlined in place. Such sections will be finalized and

incorporated into a Final Documentation Release (FDR). The FDR will

represent the complete product description up to the stated software
revision number and be produced in typeset format.

PRIME CONVENTIONS

Symbols , abbreviations, special characters and conventions frequently

used in Parts 1, 2, and 3 of this document are defined below.

Terminal Functions:

Character Function

(CR) Carriage return.

\ Backslash. Used as Editor's
tab character.

" Delete or erase symbol to delete
one preceding character.

? Kill character to delete all
characters in current command

line.

Prime Filename Conventions:

Filename Function

B<«filename Binary (object) file.

L*filename Listing file.

C*filename Command file.

filename Source file.

*filename SAVED (Executable) file.

M+filename Map file.

#£i1lename SEG runfile.

PDR3056

NOTES:

INTRODUCTION

1. New file partitions accept a maximum of 32 characters for
filename.

2. The two character sequence «+ in a filename represents only a
Single character. This character is the back-arrow on the
terminal keyboard which prints as an underscore on output
devices. Since this is inconvenient in text examples which
use underlining, the ''<«'' convention has been adopted.

Text Conventions:

ALL CAPS An item which must be included verbatim.
Underlines indicate acceptable abbreviations.

Underlining Indicates user input in examples.

RELATED. DOCUMENTS

The following documents include information on the PRIMOS system and
Prime Utility programs. They will be important adjuncts to this
release:

Title

Reference Guide, PRIMOS Commands
The System Administrator's Guide
FORMS Management System (FORMS)
User Guide for the Data base Administrator
Reference Guide for DBMS Schema DDL
COBOL Reference Guide forDBMS
The PMA Programmer's Guide
Reference Guide, Multiple Index

Data Access System (MIDAS)
The New User's Guide to Editor

and Run off
Reference Guide, Software Library
Reference Guide, File Management

System (FMS)

Manual No.

PDR 3108
IDR 3109
IDR 3040
IDR 3043
TDR 3044
IDR 3046
PDR 3059
PDR 3061

FDR 3104

PDR 3106
PDR 3110

November 1977

PDR3056 PRIME COBOL

SECTION 2

PRIME COBOL

FEATURES

Prime COBOL is based upon American National Standard X3.23-1974. Ele-
ments of the COBOL language are allocated to twelve different functional
processing "modules".

Each module of the COBOL Standard has two non-null 'levels''--level 1
represents a subset of the full set of capabilities and features con-
tained in level-2.

In order for a given system to be called COBOL, it must provide at least
level 1 of the Nucleus, Table Handling and Sequential I-O modules.

The following summary specifies the content of Prime COBOL with respect
to the Standard.

Module Features Available in Prime COBOL

Nucleus All of level 1, plus these features of level 2:
Levels 77, 01-30, 88;
Value series or range, level 88 conditions;
AND OR = < > in conditions;
Procedure-names consisting of digits only;
COMPUTE with multiple receiving fields;
PERFORM VARYING one index;
Mnemonic-names for ACCEPT or DISPLAY devices;
Qualification of Names (Procedure Division);
Sign test;
STRING; (supported in V-Mode only)
UNSTRING; (supported in V-Mode only)

DAY
ACCEPT TIME

DATE

Sequential I-O All of level 1 plus these features of level 2:
RESERVE clause and variable form of BLOCK;
Multiple operands in OPEN §& CLOSE, with individual

‘ option per file.

Relative I-O All of level 1 plus:
RESERVE clause;
DYNAMIC access mode (with READ next);
START (with key relations EQUAL, GREATER, or NOT

LESS) .

2 - 1 November 1977

SECTION 2 PDR3056

Module Features Available in Prime COBOL

Indexed I-O All of level 1 plus:
RESERVE clause;
DYNAMIC access (with READ next);
RANDOM access mode with READ by KEY;
START (with key relations EQUAL, GREATER,
NOT LESS).

Library Level 1

Table Handling All of level 1 plus:
SEARCH

Inter-program
Communication Level 1

SYSTEM FILES

To utilize COBOL, the following files must be available on the system
in the UFD's specified:

UFD FILE-NAME

CMDNCO COBOL

SYSOVL C$$DAT
C$$DAR
C$$GEN
C$$FIN
C$$END
C$$64v

LIBRARY COBLIB
COBKID
VCOBLB
FTNLIB (RMONE)
PETNIB
IFTNLB \ (VMODE)

REV. 0 2-2

PDR3056 PRIME COBOL

VCOBLB

The new VCOBLB Library contains the following common COBOL subroutines.

C$ADAT = returns current data in format YMMDD

CS$ADAY = returns Julian date in format YYDDD

C$ATIM = returns current time in format HHMMSSFF

H = Hour

M = Minutes
S = Seconds
F = Hundreth of seconds

C$ INSP = INSPECT statement

C$UNSL/C$UNS2: = UNSTRING statement

C$STR1/C$STR2 = STRING statement

C$IN = File assignment initialization

C$OS = Open sequential file

C$CS = Close sequential file

C$RS = Read sequential file

C$XS = Rewrite sequential file

C$WS = Write sequential file

C$O1I/C$OR = Open indexed/relative file

CCI/CCR = Close indexed/relative file

CRI/CRR = Read indexed/relative file

CWI /CWR = Write indexed/relative file

C$X1I/C$XR = Rewrite indexed/relative file

CSI/CSR = Start indexed/relative file

CDI /CDR = Delete indexed/relative file

2-3 November 1977

PDR3056

SECTION 3

COBOL AND PRIMOS

OPERATING SYSTEM MODES

64R Mode, Prime 300, 400, 500

64V Mode, Prime 400, 500

FILE SYSTEM SUMMARY

PROGRAM ENVIRONMENTS

Interactive

Queued Jobs Using Command Files

Phantom Users

CX, Sequential Job Processor

Shared Procedures

SYSTEM RESOURCES SUPPORTING COBOL

COBOL AND PRIMOS

The portions of SECTION 3 outlined above were incomplete at this
printing.

November 1977

PART I]

USING THE PRIME SYSTEM

PDR30856 SYSTEM ACCESS

SECTION 4

SYSTEM ACCESS

This section treats the following topics:

e Accessing the system

@ PRIMOS command summary

@ Program and data entry from other media

@ Entering and modifying data: the Editor

SYSTEM CONCEPTS

Certain Prime system conventions and concepts are employed throughout
this document.

Basic Concepts

file

UFD

sub-UFD

They. are basic to effective usage of COBOL and PRIMOS.

An organized collection of information stored on a disk
(or a peripheral storage medium such as tape). Each
file on a disk has an_ identifying label called a
filename.

A User File Directory. A special type of file
containing a list of filenames and the location of the
corresponding files. A file whose name is on this list
is said to be "in this directory”.

The Master File Directory. A special UFD which
contains the names of the UFDs on a particular disk.
There is one MFD for each logical disk.

A User File Directory in a UFD or other sub-UFD.

Note

File directories with names in the MFD are UFDs;

all other file directories are sub-UFDs.

logical disk

volume name

A division of the computer's disk memory. It may be
all or part of a physical disk. The logical disk is
labelled by an octal number called the logical disk
number (obtainable from STATUS DISKS command) .

A literal name corresponding to a logical disk, e.g.,
logical disk 4 may have volume name DOCUMN. (Also
obtainable from STATUS DISKS command) .

4 - dt September 1978

SECTION 4 PDR3956

treename An extended form of the filename which completely
describes the location of a file in the directory
structure. Treenames may be one of the following:

e filename

e ufd-name [password] >...>sub-ufd-name [password] >filename

e@ <volume-name>ufd-name [password]>...sub-ufd-name [password] >filename

@ <logical-disk>ufd-name [password] >...sub-ufd-name [password] >filename

where:

filename is the name of the file.

ufd-name is the name of the UFD or sub-UFD in which the

sub-ufd-name file (or sub-UFD) to right of it on the line is
located.

password is the password of the UFD or sub-UFD, if it has
been protected with a password.

volume—-name is the literal name of the disk on which the file
is located; if volume-name is specified as <*>,
this is the same as using the name of the disk the
user is currently attached to.

logical-disk is the octal number of the logical disk.

source file The program file created by the user consisting of
text, program statements, comments, etc.

binary file A translation of the source file generated by the COBOL
object file compiler. Such files are in the format required as

input to the linking loader or segmented loader.

runfile The loaded, executable version of a program consisting
of the binary file, subroutines and library entries
used by the program, COMMON areas, initial settings,
etc. This file is created using LOAD and SEG.

mocle An addressing scheme. The mode used determines’ the
construction of the computer instructions by the
compiler. Modes available to the COBOL programmer are
relative-addressed (RMODE or 64R) and
segmented-addressed (VMODE or 64V). (The number is the
user memory size in K's of 16-bit words.)

identity The addressing mode plus its associated repertoire of
computer instructions. Programs compiled in 64R mode
execute in the R-identity; programs compiled in 64V
mode execute in the V-identity.

REV. A 4 - 2

PDR39856 SYSTEM ACCESS

byte 8 bits; 1 ASCII character.

word 16 bits; 2 bytes; 2 ASCII characters.

ACCESSING THE SYSTEM

The most basic commands for an interactive session with PRIMOS are
outlined below; a PRIMOS command summary follows.

This is not intended as an exhaustive presentation. The reader should
consult REFERENCE GUIDE, PRIMOS COMMANDS (PDR3188) for a complete
discussion.

Logging In

‘Logging In' identifies the user to the system and establishes initial
contact; it provides access to a work area, files, and all the general
resources of the computer.

The format of the LOGIN command is:

LOGIN ufd-name [password]

where ufd-name is the name of a User File Directory in the system.
PRIMOS will respond with the message:

ufd-name (job or term#) LOGGED IN AT time date.

Example:

LOGIN PENNY PROTECT

PENNY (38) LOGGED IN AT 16'33 012478

The number in parenthesis is the PRIMOS-assigned job number. The LOGIN
time (here 10'33) is expressed in the 24-hour system. The date (here
012478) is expressed as Month Day Year.

Accessing Files

Having logged in, the user now has a work space and direct access to a
User File Directory.

The LISTF Command: The UFD contains the files to 'work on'. To list
these files, the LISTF command should be used. Its format is:

LISTF

For example, when logged into a UFD named STAFF which contains the
files FRANK, MARTHA, ALBERT, giving the LISTF command would have this
effect:

4 - 3 September 1978

SECTION 4 PDR3856

LISTF

UFD=STAFF 3 9

FRANK MARTHA ALBERT

OK,

The number after the ufd-name identifies the logical device; the

letter following the number will be either O (for owner) or N (for

non-owner). See the PASSWD and PROTEC commands for details.

If there were no files in the STAFF UFD, a LISTF would have this

result:

OK, LISTE
UFD=STAFF 3 @

- NULL.

OK,

Logging into the system has the effect of 'attaching' the user to a

UFD. At any time, the UFD to which you are currently attached is known

as the current UFD.

The ATTACH Command: When access is required to files in other UFDs,

the ATTACH command should be used:

ATTACH ufd-name [password]

At this point, the ufd-name specified in the ATTACH command becomes the

current UFD.

Spelling errors or other improper data cause the system to respond with

one of the following messages:

ufdname NOT FOUND

or

BAD PASSWORD

Or

NO UFD ATTACHED

In such instances, correct the ufd-name or password and reissue the

ATTACH command.

REV. A 4 - 4

PDR3856 SYSTEM ACCESS

Sub-UFDs

A sub-UFD is a selection of files in a UFD which have been grouped
together. This grouping has a name called sub-UFD-name. Once logged
into a UFD, the ATTACH command can be used to access any sub-UFD within
it. This sub-UFD would then be the current directory. At this
juncture, giving a LISTF command provides a list of only those files
within the current directory (sub-UFD).

The ATTACH Command: When applied to a sub-UFD, the ATTACH command
requires at least one additional parameter:

ATTACH sub-UFD-name [password] [ldisk] [key]

where ldisk is logical disk number and is usually omitted for sub-UFDs.
When Idisk is omitted, key is specified with a numeric positional
character, i.e., 1/n. 1/n means, "skip over one numerical parameter
and use what follows as the second parameter"; n is the value of key.

For most applications, the COBOL programmer will set the value of key
at 2. A complete list of key values and their meanings is provided in
REFERENCE GUIDE, PRIMOS COMMANDS (PDR31@8).

Example:

OK, LISTF

UFD=STAFF 3 @

JAMES JOHNSTON JONES

OK, ATTACH JOHNSTON 1/2
OK,

The CREATE Command: Sub-UFDs can be created within UFDs or sub-UFDs.
A sub-UFD can contain files and sub-UFDs.

The command to define and name a sub-UFD is the CREATE command. This
command creates a sub-UFD in the current directory.

The format of the CREATE command is:

CREATE sub-ufd-name

Two files or sub-UFDs with the same name are not permitted in the
current UFD. Should this be attempted inadvertently, PRIMOS will
respond with the message: ALREADY EXISTS.

4 - 5 . September 1978

SECTION 4 PDR3056

Example:

OK, ATTACH SALES
OK, LiSTF

UFD=SALES 3 8

«NULL.

OK, CREATE EAST.COAST
OK, CREATE WEST.COAST
OK, CREATE EAST .COAST
ALREADY EXISTS
ER! LISTF

UFD=SALES 3 @

FAST.COAST WEST.COAST

OK,

Examining Files

Contents of a file can be examined with the SLIST and SPOOL commands.

The SLIST command displays a file on the terminal; the SPOOL command

has a file printed out on the line printer.

The SLIST Command: The format of the SLIST command is:

SLIST treename

This command causes the treename specified (in the current UFD or

sub-UFD) to be displayed.

The format of the SPOOL command is:

SPOOL filename

PRIMOS makes a copy of filename in the Spool Queue List for the line

printer, and displays the message:

YOUR SPOOL FILE IS PRTxxx (length)

where xxx is a 3-digit number wich identifies the file in the Spool

Queue List. The reason there is a list, rather than just having each

file spooled out as the request comes, is that some requestS are very

long - hundreds of pages. PRIMOS spools out the shorter files as soon

as possible, rather than make the user wait while the long files are

printed. The word (SHORT or LONG) which follows the SPOOL message

indicates the category to which the file has been assigned.

REV. A 4 -- 6

PDR3056 SYSTEM ACCESS

It is possible to check the status of a SPOOL request by giving the
command :

SPOOL -LIST

Example:

OK, SPOOL POEM
GO
YOUR SPOOL FILE IS PRT@13 (LONG) REV 14.0@

OK, SPOOL -LIST

GO

USER FILE DATE/TIME OPTS SIZE NAME FORM

COSMO PRT@@5 11/09 18:03 Ss 5 RIN1L68 WHITE
MARTHA PRT@@7 11/09 15:34 § 3 RINI72 WHITE
HAMPSO PRT@@9 11/11 10:25 § 6 PAGTUR
LAWLER PRI@1@ 11/11 10:26 s§ 9 LAM9600
RANDI PRT@11l 11/11 18:26 § 1 WKINFO
MORRIS PRT@12 11/11 18:27 § 3 L_CMPSSR
ALICE PRT@13 11/11 10:28 L 17 POEM

To cancel a spool request, the command format is:

SPOOL ~—CANCEL PRIxxx

where xxx is the number of your Spool File.

For example:

OK, SPOOL -—CANCEL PRT@13
GO
PRT@13 CANCELLED.

OK,

September 1978

SECTION 4 PDR3056

Notes

1. If PRIMOS has already begun SPOOLing a file, it

is not possible to cancel the SPOOL request.

Instead, PRIMOS will display the message:

CAN'T CANCEL REQUEST - FILE IS OPEN OR

CURRENTLY PRINTING

2. If the file has already been spooled, or the

PRT number given is incorrect, the message will

read:

PRTxxx NOT IN QUEUE

3. If the name of the file is specified instead of

the PRT number, the message will read:

BAD PRINT FILE NAME

Renaming and Deleting Files and Empty Sub-UFDs

The CNAME Command: Files and sub-UFDs can be renamed with the CNAME

command. The format is:

CNAME old-name new-name

If new-name already exists, PRIMOS will display the message:

ALREADY EXISTS

An incorrect old-name prompts the message:

NOT FOUND
ER!

The DELETE Command: The DELETE command enables the deletion of files

and empty sub-UFDs. Its format is:

filename

DELETE

sub-UFd-—name

Sub-UFDs containing files cannot be deleted with this command.

Instead, all files contained within the sub-UFD must first be DELETEd.

PRIMOS warns the user if an attempt is made to DELETE sub-UFDs

containing files; it displays the message:

DIRECTORY NOT EMPTY

REV. A 4 - 8

PDR3056 SYSTEM ACCESS

Closing Files and Logging Out

The CLOSE Command: Files are automatically opened by PRIMOS when
accessed by the user. Certain conditions, such as quitting out of
EDITOR via the BREAK key or CONTROL-P, will leave these files open. If
an attempt is made to re-access them, PRIMOS will respond with the
message:

FILE IN USE

The CLOSE command must be given in such instances. Its format is:

filename
CLOSE ALL

file—unit-number

Once closed, the file is ready to be reacessed by the user.

The CLOSE command is discussed again in this section under Entry From
Other Media.

The LOGOUT Command: When finished with a session at the terminal, give
the LOGOUT command. Its format is:

LOGOUT

PRIMOS acknowledges the command with the following message:

UFD-name (user-#) LOGGED OUT AT (time) (date)
TIME USED = terminal-time CPU-time I/O-time

user~# is the same as the one assigned at LOGIN

terminal-time is the amount of elasped clock time between
logging in and 1 gging out (hours and minutes).

CPU-time refers to Central Processing Unit time consumed
(minutes and seconds).

I/O-time is the amount of input/output processing time used
(minutes and seconds) .

4 - 9 September 1978

SECTION 4 PDR3856

Sample PRIMOS Session

LOGIN STAFF

STAFF (15) LOGGED IN AT 10'35 118579

LISTF

UFD=STAFF 3 8

FRANK MARTHA ROSEMARY

OK, ATTACH SALES
~ OK, LISTE
UFD=SALES 3 @
-NULL.

OK, CREATE EAST.COAST
OK, CREATE WEST.COAST
OK, CREATE EAST.COAST
ALREADY EXISTS.
ER! LISTF

UFD=SALES 3 @

EAST.COAST WEST.COAST

OK, ATTACH EAST.COAST 1/2
OK, CREATE NORTH
OK, CREATE SOUTH
OK, CREATE CENTRAL
OK, LISTE

UFD=EAST.COAST 3 @

NORTH SOUTH CENTRAL

OK, ATTACH NORTH 1/2
OK, CREATE MAIN
OK, CREATE BRANCH1
OK, CREATE BRANCH3
OK, DELETE BRANCH3
OK, CREATE BRUNCH2
OK, CNAME BRUNCH2 BRANCH2
OK, ATTACH SALES
OK, ATTACH EAST.COAST 1/2
OK, ATTACH NORTH 1/2
OK, LISTE

UFD=NORTH 3 @

MAIN BRANCH1 BRANCH2

OK, LOGOUT

REV. A 4 - 16

PDR3856 SYSTEM ACCESS

STAFF (15) LOGGED OUT AT 11'28 119579
TIME USED=@'12 @'@6 @'@32

4 - dll September 1978

SECTION 4 PDR3856

PRIMOS COMMAND SUMMARY

An alphabetic list of PRIMOS commands of special interest to the COBOL
programmer follows (acceptable abbreviations are underlined):

*

ASSIGN
ATTACH
AVAIL
BINARY
CLOSE
CMPF
CMPRES.
CNAME
COBOL
COMINPUT

COMOUTPUT
CPMPC

CREATE
CREATK
CRMPC

CRSER

CSUBS

x
DATE

DELETE

DELSEG
ED

EDB
EXPAND

FAP
FDL

FILMEM

FILVER
FUTIL

INPUT

KBUILD

KIDDEL

LABEL

LISTF
LISTING
LOAD
LOGIN
LOGOUT
MAGNET
MAGRST
MAGSAV

REV. A

Command line comment designator

Obtains exclusive control of a peripheral device
Attaches to UFD or sub-UFD
Gives records available on specified disk
Opens a file for writing on PRIMOS unit 3 (Obs.)
Closes files
Compares ASCII files
Compresses ASCII file
Changes a filename
Invokes COBOL compiler
Switches command stream from
vice-versa
Switches terminal output to file and vice-versa
Punch cards on parallel interface card punch
Creates a sub-UFD in the current UFD
Defines MIDAS template file.

Reads cards from the parallel interface card reader
Reads cards from the serial interface card reader
Interfaces COBOL with DBMS (data base management
system)

Invokes the sequential phantom job execution utility
Prints system time and date at terminal
Deletes a filename from the UFD
Deassigns segments assigned by SEG.
Invokes Prime's text editor

Invokes the binary editor (for library building)
Expands a file previously compressed with CMPRES
Updates and maintains FORMS directory.
Converts data descriptors for FORMS into format usable
by routine program.
Fills the user memory space with zeros
Compares two binary files for equivalence and prints
differences
Invokes Prime's file manipulation utility
Opens file for reading on PRIMOS unit 1
Builds MIDAS data file.
Deletes MIDAS file.
Creates an ANSI COBOL level-l volume label on a
Magnetic tape.
Prints list of entries in current UFD
Open a file for writing on PRIMOS unit 2
Invokes the Linking Load (R-identity)
Logs the user into the system
Logs the user off the system
Invokes the magtape/disk transfer/translation utility
Transfers files from 9-track tape to disk
Transfer files from disk to 9-track tape

terminal file and

PDR3056 SYSTEM ACCESS

MDL Punches paper tape of specified locations of memory in
self-loading format _

MESSAGE Transmits message from user terminal to system console
MRGF Merges ASCII files.
OPEN Opens a file by name on a specified PRIMOS unit for

specified operations
PASSWD Sets passwords for current UFD
PHANTOM Spawns a user to execute the specified command file
PM Prints program start and end addresses, register

contents
PRERR Prints error message in ERRVEC
PRMPC Prints on parallel interface driven line printer
PROTEC Sets owner/non-owner rights for files and sub-UFDs
PRSER Print on serial interface driven line printer
PSD Invokes the Prime Symbolic Debug utility
PTCPY Duplicates and verifies paper tapes
REMAKE Maintains MIDAS file.
REPAIR Rebuilds damaged MIDAS file.
RESTORE Restores a file from disk to user's memory space
RESUME Restores a file to user's memory and begins execution
RUNOFF Invokes Prime's text output formetter
SAVE Writes memory into a disk runfile with the address

values and register settings
SEG Invokes the segmented-address (V-identity) utility
SIZE Gives size of file
SLIST Prints contents of file to user's teminal
SORT Sorts an ASCII file
SPOOL Spools output files to line printer
START Sets registers and keys and begins program execution
STATUS Prints status of specified system parameters
TA Attaches to UFD with treename specified as in FUTIL
TAP Invokes octal mode debugging routine
TERM Sets/Displays terminal kill and erase characters, set

duplex
TIME Prints connect time, compute time, and disk I/O time at

terminal
UNASSIGN Relinguishes control of a peripheral device
UPCASE Reformats files by changing lower-case letters to

upper-case
USERS Prints number of users currently logged in
VPSD Invokes Debugging utility for V~-identity
VPSD16 Used when the program is so large that it overlays

VPSD.

For a complete treatment of all commands, see the REFERENCE GUIDE,

PRIMOS COMMANDS, PDR3108.

September 1978

SECTION 4 PDR3656

CREATING AND ENTERING SOURCE PROGRAMS

Entry From Other Media

source programs existing on punched cards, magnetic tape, or punched
paper tape can easily be read onto disk files using PRIMOS-level
utilities. In addition, the punched card and magnetic tape transfer
utilities will translate from BCD or EBCDIC representation into ASCII
representation, saving considerable time and effort.

Subroutines and other installation-dependent operations may be altered
to conform to PRIMOS using the Editor (described later in this
section).

The general order of operations for input from a peripheral device is:

1. Obtain exclusive use of the device (Assigning at PRIMOS
level).

2. Transfer programs with appropriate utility.

3. Release device to other users (Unassigning at PRIMOS level).

Assigning A Device: Assigning a device gives the user exclusive
control over that peripheral device. The PRIMOS-level ASSIGN command
is given at the terminal:

ASSIGN device [-WAIT]

where device is a mnemonic for the appropriate peripheral:

CARDR Serial Card Reader

CRn Parallel Card Reader n (@-3)

MIn Magnetic Tape Unit n (@-7)
PTR Paper Tape Reader

and WAIT is an optional parameter. If included, it queues the ASSIGN
command if the device is already in use. The assignment request
remains in the queue until the device becomes available or the user
types the CONTROL-P or BREAK key at the terminal; both occurrences
return the user to PRIMOS. If the requested device is not available
and the -WAIT parameter has not been included, the error message:

DEVICE IN USE

will be printed at the terminal.

After all I/O operations are completed, exclusive use if relinquished
by the command:

UNASSIGN device

REV. A 4 - 14

PDR3056 SYSTEM ACCESS

where device is the same mnemonic used in the ASSIGN command.

Reading Punched Cards: Assign use of the parallel interface card

reader with the ASSIGN command:

AS CR@ -WAIT

To read cards from the card reader, load the card deck into the device
and enter the command:

CRMPC treename

where treename is the name of the file into which the card images are
to be loaded.

Source deck header control cards are set up as follows:

Source deck Columns 1 and 2 of

representation deck header card

BCD $6

EBCDIC $9
ASCII no header card

Reading continues until a card with SE in columns 1 and 2 is
encountered (end of deck). Control returns to PRIMOS and the file is
closed. If the cards are exhausted (or the reader is halted by the
user), control returns to PRIMOS but the file is not closed.

If more cards are to be read into the file at this point, the reader

should be reloaded. Reading is resumed by the START command given at

the terminal: START.

The format of the command to close the file is:

filename

CLOSE
ALL

To close all files and units, the CLOSE command should be given in the

form:

CLOSE ALL

Example of a card reading session:

OK, AS CRO -WAIT
OK, CRSER old-program—1
OK, UN CR@
OK,

4 - 15 September 1978

SECTION 4 PDR3@56

If a serial interface card reader is used, the process is similar with
slightly different reader commands. CARDR may be abbreviated to CAR.

OK, AS CARDR -WAIT

OK, CRSER old-program-2

OK, UN CAR

OK,

Reading Magnetic Tape/The MAGNET Utility: Assign use of the magnetic
tape drive by:

AS MTx -WAIT

where x is the tape drive unit number: 9@,1...7.

Mount the tape on the selected drive unit and read the tape with
PRIMOS' MAGNET utility:

OK, MAGNET
GO

MAGNET 14.0 19-MAY-77

OPTION: READ

MTU# = unit number [/tracks]

where:

unit—number is the number of the magnetic tape drive unit which
. was previously assigned and

tracks is either 7 or 9; if this parameter is omitted,
9-track tape is assumed.

MAGNET than asks a series of questions about the tape format (user
responses are underlined):

Prompt Response Remarks

MIFILE# = tape-file—number This is the number on the

tape. A positive integer
causes the tape to be re-
wound and then positioned
te the file number; a 9
causes no repositioning
of the tape.

LOGICAL RECORD SIZE = number This is the number of
bytes/line image; normally
this is 8@ for COBOL
source program

REV. A 4 - 16

PDR38@56

BLOCKING FACTOR = blocking factor

ASCIT

EBCDIC

ASCII, BCD, BINARY, OR@®BCD
EBCDIC?

INARY

FULL OR PARTIAL RECORD FULL
TRANSLATION? PARTIAL

OUTPUT FILENAME: filename

4 -~ 17

SYSTEM ACCESS

Blocking-factor is the
number of logical records
per record.

indicates that no transle-
tion is to occur between
tape and disk. The data
is written to the disk
file in ASCII format.

indicates that the data on
the tape is to be transla-
ted from EBCDIC to ASCII

before written to
the disk file.

specifies that the data is
to be translated from BCD
(6-bit) to ASCII before
being written to the disk
file. This option
is only meaningful
when used with a 7-track
tape. Note that no 6-6-5
unpacking is done by Mag-
net when this option is
specified

Indicates that the data is

to be written verbatim to

a binary disk file.
The record size is
the specified logical
record size. No transla-

tion occurs.

The question is asked
only for BCD or EBCDIC
representations. PARTIAL
allows specified bytes in
the record to be transfer-
red to disk without trans-
lation to ASCII. This is
useful when transferring
data files. Most source
programs will be transfer-
red with the FULL option.

This is the name of the

file in the UFD into which
the magnetic tape is read.

September 1978

SECTION 4 PDR3056

filename? asked only if the filename
specified already exists
in a UFD. A YES will
cause the transfer to
being

OK TO DELETE OLD YES This question will be

Upon completion of the dialogue, the following message will be printed:

DONE, tape-records RECORDS READ, disk-records DISK RECORDS OUTPUT

OK,

Use of the tape drive unit should then be relinquished by the command:

UN MTx.

Reading Punched Paper Tape: Source programs punched on paper tape in
ASCII representation can be read onto a disk file with the Editor
utility.

OK, AS PTR -WAIT assign tape reder
OK, ED invoke Editor
GO

INPUT

(CR) Switch to EDIT mode

EDIT

INPUT (PTR) input from tape reader
tape is being read

EDIT

FILE filename file input under filename
OK, UN PIR

The EDITOR/Entering and Modifying Programs

Programs are normally entered into the computer using Prime's Text
Editor (ED). This editor is a line-oriented text processor whose line
pointer is always located at the last line processed (whether the
processing is printing, locating, moving pointer, etc). The Editor
operates in two modes, INPUT and EDIT.

Using the Editor: When creating a new file, the Editor is invoked by
the command:

ED

which places the Editor in the INPUT mode. To modify an existing file,
use the expanded command format:

ED filename

This places the Editor in the EDIT mode.

A CARRIAGE RETURN with no preceding characters on that line switches
the Editor from one mode to another.

REV. A 4 - 18

PDR3956 SYSTEM ACCESS

Input Mode: The INPUT mode is used when entering text information into
a file (e.g., creating a program). The word INPUT is displayed at the
user's terminal to indicate the Editor has entered that mode. The
RETURN key terminates the current line and prepares the Editor to
receive a new line. Tabulation is performed with the backslash (\)
character. Each backslash represents the first, second, etc. tab
setting; the default tabs are at positions 6, 15, and 38. These
setting may be overridden, and up to 8 tab settings may be specified by
the user with the TABSET command (described later). A RETURN with no
text preceding it puts the Editor into EDIT mode.

Edit Mode: . The EDIT mode is used when the contents of the file are to
be modified. More than fifty commands are available, however, a_ small
subset of these will suffice for most purposes. Commands are listed
and described later in this section.

In EDIT mode, the Editor maintains an internal line pointer at the
current line (the last line processed). Commands such as TOP, BOTTOM,
FIND, and LOCATE, move this pointer. WHERE prints out the current line
number; POINT moves the pointer to a specified line number. The MODE
NUMBER command causes the line number to be printed out whenever a line
of text is printed. All commands for location and modification begin
processing with the current line.

A CARRIAGE RETURN without any preceding characters on that line puts
the Editor into INPUT mode.

Special Characters: Unless modified at the user's installation, the
Editor's erase and kill symbols are those of PRIMOS. The Editor's
default erase character is the double-quote ("), and the default kill
character is the question-mark (?). For each " typed, a character is
erased (from right to left). The entire current line may be deleted by
typing the kill character. A line followed by a ? is null, anda
RETURN at that point will switch the EDITOR into the other mode.

The semicolon character (;) is interpreted as a carriage return by the
Editor in INPUT mode. While this places restrictions on entering
semicolons as part of a file, it does provide a 'brief' format for
inputting multiple short entries or blank lines.

Example:

INPUT

; TEST-FILE; *

will become:

*

* TEST-FILE
*

A more detailed discussion of special characters and how to manipulate
them is provided in the New User's Guide to EDITOR and RUNOFF, FDR3104.

4 - 19 September 1978

SECTION 4 PDR3056

Saving Files: Orderly termination of an Editor session is done from
EDIT mode. The command:

FILE filename

writes the current version of the edited file to the disk under the
name filename. The specified file will be created if it did not
previously exist, or overwritten if did exist. If an existing file is
being modified, the command should be given as:

FILE

This writes the new version to the disk under the old filename. After
execution of the filing command, control is returned to PRIMOS.

Useful Techniques: The following are highlights of some Prime Editor
techniques which will be of particular interest to the COBOL user:

e Tab Settings: When entering source code, much time can be saved
using the TABSET command. In INPUT mode, each backslash character
(\) is interpreted as one tab setting; the default values are
positions 6, 15, and 3@. Tabs may be set to whatever values each
programmer finds useful.

e Column Display: Entering source code and other data is also
facilitated by the Editor's column display feature. A banner of
column numbers can be displayed across the top of the terminal
screen providing alignment guides. The command MODE COLUMN, given
in Edit mode, causes the column header display to be printed each
time Input mode is entered during an Editor session.

e Moving Lines of Code: Several Editor commands enable the transfer
of coded lines to and from Editor work files.

The LOAD command inserts (load) a copy of filename into the Editor's
work file below the current line, repositioning the pointer Just
below the end of the LOADed text.

The UNLOAD command copies (unloads) the specified number of lines in
the Editor work file into filename

The DUNLOAD command copies (unloads) the specified lines the work
file into filename, and then deletes those lines from the work file.

e Finding A Line By Statement Label: The FIND command may be used to
locate a statement label in a COBOL program.

@e Modifying A Line Without Changing Character Positions: The MODIFY
command is used when a line must be modified but the absolute column
alignment must remain the same.

REV. A 4 - 20

PDR3856 SYSTEM ACCESS

Sample Editing Session 1

See the list following these examples for an explanation of the commands.

OK, ED
GO
INPUT
(CReTuAN)
EDIT
C"MODE COLUMN

(CReTuAN”)
INPUT

1 2 3 4 5 6 7
1234567890123456789012345678981234567890123456789812345678901234567890123456789

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST2. Source coding is keyed in,
INSTALLATION. PRIME. aligned by column.

\ *

. The first tab default is

. position 6. A space after the

. backslash character positions
\ * the asterisk in the continua-

tion column 7.
PROCEDURE DIVISION.

OPEN-FILES.

OPEN INPUT INPUT-FILE.

(CCretuan)

EDIT The PRINT command in EDIT

mode displays entered source
P28 statements.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST2.
INSTALLATION. PRIME.

x

*

PROCEDURE DIVISION.

OPEN-FILES.
OPEN INPUT INPUT-FILE.

4 - 21 September 1978

SECTION 4 PDR3656

INPUT

1 2 3 4 5 6 7
1234567899123456789912345678901234567890123456789012345678901234567890123456789

DONE.

CLOSE INPUT-FILE.

STOP RUN.
Each time INPUT is invoked,

there is an automatic column
number display. This
convention may be used at
terminal scrolling (when the
column display scrolls or roll
off the screen).

Cea)
EDIT

FILE TEST2 The FILE command writes the
contents of the edited file to
the filename specified (in
this case, TEST2). The FILE
command also causes a return

from the Editor to PRIMOS.

OK,

REV. A 4 —- 22

Sample Editing Session 2:

OK, ED
GO
INPUT
Creruan)
EDIT
TABSET 8 17

INPUT
*

* THIS IS A RECORD STREAM FOR

*\A COBOL PROGRAM
*\\USING FORMS
k

RECORD STREAM
*\MACRO DEFF"INITIONS
FI\DEF\FIELD

V\DEF\VALLIDATE

END\STREAM
Keke kek

Creruan”)
EDIT
T

FIND FI
FI DEF FIELD
MODIFY/FI/F
F DEF FIELD

FIND V
V DEF. VALLIDATE
C/LE/L
V DEF VALIDATE

T
P30

NULL.
*

* THIS IS A RECORD STREAM FOR
* A COBOL PROGRAM
* USING FORMS
*

*

RECORD STREAM
MACRO DEFINITIONS

F DEF FIELD

PDR3056 SYSTEM ACCESS

Set tabs

Begin entering data

‘Use backslash character for

tabulation

Erase errors

Semicolons enable multiple
entries with a single line

Position pointer at beginning
of file.

Locate statement to be modified.

Modification complete;
Absolute alignment remains
intact

Change is complete; relative |
alignment remains intact.

Print corrected file (3@

lines).

23 September 1978

SECTION 4 PDR3@56

V DEF VALIDATE

END STREAM

*
+

OF

*

FILE FORMSTREAM
OK,

REV. A 4 -

PDR3056 SYSTEM ACCESS

Editor Command Summary

The following is an alphabetic list of each Editor command and its
function. Acceptable command abbreviations are underlined. Especially
useful commands are indicated with a bullet (e). For a detailed
description of all commands, see the Editor Reference Section of THE
NEW USER'S GUIDE TO EDITOR AND RUNOFF, FDR3104.

Note

The string parameter in a command is any series of
ASCII characters including leading, trailing, or
embedded blanks.

Command Function

@ APPEND string Appends string to the end the
current line.

@ BOTTOM Moves the pointer beyond the
last line of the file.

BRIEF Speeds editing by suppressing
the (default) verification
responses to certain Editor
commands.

@ CHANGE/string-l1/string-2/[G] [n] Replaces string-l with string-2
for n lines. If G is omitted,
only the first occurrence of
string-l on each line is
changed; if Gis present, all
occurrences on n lines’ are
changed.

e DELETE [n] Delete n lines, including the
current line (default n=1).

DELETE TO string Deletes all lines up to but not
including line containing
string.

e@ DUNLOAD filename [n] Deletes n lines and writes them
into filename. (default n=l.)

DUNLOAD filename TOstring Same as DELETE...TO, but writes
deleted lines into filename.

ERASE Resets current erase character
to character.

4 - 25 September 1978

SECTION 4

e FILE filename

FIND string

FIND (n) string

GMODIFY

(ASR)
INPUT j(PTR)

(TTY)

INSERT string

KILL character

LINESZ n

LOAD filename

LOCATE string

MODE COLUMN

MCDE COUNT start increment width

MODE NCOLUMN

REV. A 4

PDR39056

Writes the contents of the

current file into filename and

exits to PRIMOS.

Moves the pointer down to next
line beginning with string.

Moves the pointer down to next
line with string beginning in

column n.

Allows the user to enter a
string of subcommands which
modify characters within a line.

Reads text from the specified
input device: ASR (Teletype
paper tape reader), PIR
high-speed peper tape reader)
or TTY (terminal). Default

is TTY.

Inserts string after current

line.

Sets kill character to

character.

Changes maximum line length.

Loads filename into text
following the current line.

Moves pointer forward to the
next line containing string,
which may contain leading and
trailing blanks.

Displays column numbers whenever
INPUT mode is entered. (The
command is given in EDIT mode.)

PRINT
BLANK
SUPPRESS

Turns on the automatic

incremented counter.

Turns off the column display
(default). (The command is
given in EDIT mode.)

26

PDR3056

MODE NCOUNT

MODE NUMBER

MODE NNUMBER

(Case Modes)

MODE PRALL

f >

PRUPPER

MODE

PRLOWER
MODE PROMPT

MODE NPROMPT'

MODIFY/string-l1/string-2/ [n] [G]

MOVE buffer-l buffer-2

string

e NEXT [n]

SYSTEM ACCESS

Disables the MODE COUNT

function.

Displays line numbers in front

of printed line.

Turns off the line number
display (default).

Case-flagging is done by
preceding each new case with
either “U (for Upper-Case) or “L
(for Lower-Case). PRUPPER and
PRLOWER are intended for use on
Upper-Case-only Terminals.

Prints letters without

flagging (default).

case

Accepts/prints case-flagged
Upper-Case letters. Each
line of input/output begins
implicitly flagged as Upper-
Case.

Accepts/prints case-flagged
Upper-Case Letters. Each
line of input/output begins
implicitly flagged as Lower-
Case.

Prints prompt characters for
INPUT and EDIT modes.

Inhibits printing of INPUT and
EDIT prompt characters
(default).

Superimposes string-2 onto

string-l for nlines. If Gis
omitted, only the first
occurrence of string-l on each

line is modified, otherwise all
occurrences of string-l are

modified.

Move string or contents of

buffer-2 into buffer-l.

Moves’ the

forward or

n=l).

pointer n_ lines
backward (default

27 September 1978

SECTION 4

@ NFIND string

NFIND(n) string

OVERLAY string

PAUSE

POINT 1ine-number

PRINT n

PSYMBOL

PTABSET tab-l1...tab-8

(ASR) n
PUNCH feat

QUIT

RETYPE string

SYMBOL name character

REV. A

PDR3656

Moves the pointer down to next
line NOT beginning with string.

Moves pointer to next line in
which string does not start in

column n.

Superimposes string on current
line. Use tabs to start in
middle of line. An ! forces a
space in its corresponding
column.

Returns to operating system
changing the Editor

Type START to continue.
without

state.

Relocates the pointer to
line-number.

Prints the current line or n
lines beginning with the current
line.

Prints a list of current symbol
characters and their function.

Provides for a setup of tabs on
devices that have physical tab
stops.

Punches n lines on high- or low-
speed paper-tape punch.

Returns control to PRIMOS.

Replace current line by string.

Changes a symbol name to
character. Current default

values are:

Name Default Characters

KILL ?
ERASE "
WILD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

7
s
e
=

a
r

t
f
)
~
e

- 28

PDR3056 SYSTEM ACCESS

@ ‘TABSET tab-l...tab-8 Sets up to eight logical
tabstops to be invoked by the
tab symbol.

e ‘TOP Moves the pointer one line
before the first line of text.

e@ UNLOAD filename n Copies n lines into filename.

UNLOAD filename TOstring Unload lines from current file
into filename until string is
found.

@ VERIFY Displays each line after
completion of certain commands.
(default.)

@ WHERE Prints the current line number.

XEQ buffer Executes the contents of buffer
as a command line. See MOVE.

*n Repeat symbol. Causes preceding
command to be repeated n times
as in:

F /:D;*1@

which deletes the next ten lines

beginning with /. If n is
omitted, the command repeats

until the bottom of file is
reached.

Listing Programs

Techniques for listing files are also discussed earlier in this section
under Examining Files.

Terminal Listing: Programs may be listed at the terminal by the PRIMOS
command :

SLIST treename

where treename is the name of the file to be listed. Upon completion
of the listing, control is returned to PRIMOS.

Line Printer Listing: To obtain a copy of a source file on the system
line printer, enter the command:

SPOOL filename [-option-l...-option-—n]

4 - 29 September 1978

SECTION 4 PDR3056

which creates a copy of the user's file filename in the line printer
spool queue. The options are mnemonics specifying printer options.
The most useful options for COBOL programmers are:

—~LNUM Prefixes a line number to the left of the file

contents; these numbers are enclosed in

parentheses.

-DEFER 'time' Defers printing of the file until the specified

time. The time may be entered in 24-hour format
meee

(13:05) or 12-hour format (9:25 PM).

After a file has been spooled; the system returns the message:

YOUR SPOOL FILE IS PRTxxx

where Xxx is a 3-digit number identifying the file on the spool queue.
If a file has been spooled in error, it may be removed from the spool
queue by the command:

SPOOL -CANCEL PRTXxx

where xxx is the identifying number of the spooled file.

The contents of the spool queue may be examined by the command:

SPOOL —-LIST

A complete description of the SPOOL COMMAND with all its options will
be found in the documentation on the PRIMOS system.

Renaming and Deleting Program Files

Renaming Program Files: Program files can be renamed or deleted in the
manner of other files. Use the PRIMOS-level command, CNAME:

CNAME oldname newname

where oldname is the current name of the file and newname is the new

name of the file. The user must have owner status in the UFD in order

to use this command.

Deleting: Program files can be deleted with the PRIMOS-level command:

DELETE filename

where filename is the name of the file to be deleted; the user must

have owner status in order to use this command.

Note

You cannot use the DELETE command to delete a UFD,

sub-UFD, or segmented runfile (see Section 7).

REV. A 4 - 30

PDR3056 COMPILING A SOURCE PROGRAM

SECTION5

COMPILING A SOURCE PROGRAM

INTRODUCTION

There is one COBOL compiler for all Prime computers and PRIMOS levels.

Source programs must meet the requirements of Prime's COBOL as specified
in this manual.

Object code generated by the compiler in 64R mode is in a format suitable
for loading by Prime's Linking Loader (LOAD) (see Section 6). The COBOL
compiler can also generate object code in the segmented-addressing (64V)
mode suitable for processing by Prime's segmented-addressing loader (SEG)
utility on Prime 400 (or higher) computers.

USING THE COMPILER

The COBOL compiler is invoked by the COBOL command to PRIMOS:

COBOL Treename [-parameter-1 -parameter-2 ... -parameter-n]

or

COBOL [-parameter-1 ...] -I treename [... -parameter-n]

where treename is the treename of the COBOL source program file

Parameter-1, etc. are the mnemonics for the options controlling
compiler functions such as I/O device specifi-
cation, listings, and others.

EXAMPLE:

COBOL MYPROG -64V -L PRGLST

or its equivalent

COBOL -64V -I MYPROG -L PRGLST

The mnemonics, e.g., -64V, are explained in COMPILER FUNCTIONS in this
section.

All mnemonic parameters must be preceded by a hyphen (-). The name of
the source program file must be specified either as the first expression
following the command COBOL, or as -I treename, but not both.

5 -] . November 1977

SECTION 5 PDR3056

End of Compilation Message

After the compiler has done a pass at the specified input file, and gen-
erated code and listing output to the devices specified by the mnemonic
parameters, it prints a message at the user's terminal. The message for-
mats are:

64R mode

xxxx ERRORS yyyy WARNINGS (VER 04)

64V mode

xxxx ERRORS yyyy WARNINGS P400/500, COBOL VER 14.0 < PROGRAM>

where XXXX is the number of errors encountered

during compilation

yyyy is the number of warnings

PROGRAM is the name of the program (ID)
compiled.

An error is a mistake in syntax, an omission or the like which makes exe-
cution of the program impossible.

A warning occurs when a statement is encountered which, although legal,
may cause unexpected and/or undesirable results,

After compilation, control returns to PRIMOS.

Compiler Error Messages

The general format of the error message is:

n:message []

where n is the line reference number

message is the standard COBOL compiler error
message, A complete list is given in
the Error Reference Section, Appendix
G.

[]. when stated, this is a variable describ-
ing the problem.

EXAMPLE;

112:UNRESOLVED PROCEDURE NAME; STATEMENT DELETED, [READ-PAYROLL]

An in-line error message takes the format:

** SYNTAX ERROR ** variable - in-line-message

REV. 0 ‘ 5 - 2

PDR3056 COMPILING A SOURCE PROGRAM

Compiler Warning Messages

The general format of the message is:

line#/W/message

where line# is the line reference number
/W/ indicates WARNING
message is the standard COBOL compiler warning message.

A complete list is given in the Error Reference
Section, Appendix G.

EXAMPLE:

150/W/MOVE ID DONE WITHOUT CONVERSION.

Program Statistics (64V Mode Only)

When programs are compiled in 64V mode, program statistics are appended
to the listing. These statistics relate to storage allocations. They
take the form:

EXECUTABLE CODE SIZE: (in words)

CONSTANT POOL SIZE: (in words)

TOTAL PURE PROCEDURE SIZE: (in words)

WORKING-STORAGE SIZE: (in bytes)

TOTAL LINKFRAME SIZE: (in words)

STACK SIZE: (in words)

The trace mode status is given by (on or off).

TRACE MODE:

The number of arguments expected is given by:

xxx ARGUMENTS EXPECTED.

where XXX is the number of arguments expected.
If xxx=0, then the message is:

NO ARGUMENTS EXPECTED.

The source program length is given by:

yyy SOURCE LINES

where yyyy is the number of lines in the source
program.

5 - 3 November 1977

SECTION 5 PDR3056

COMPILER FUNCTIONS

The compiler functions enabled by the mnemonic parameters fall into three

groups:

e Specify Input/Output Devices

BINARY
INPUT
LISTING

e Addressing Mode

64R
64V

° Enable Expanded Listings (64V mode only)

EXPLIST
NOEXPLIST

The defaults listed in this sections are those supplied by PRIME. The

system manager may change these at any particular installation. The pro-

grammer should check with the system manager at this installation to de-

termine if defaults have been changed and, if so, which parameters are

the new defaults.

Specify Input/Output Devices

The parameters below allow the user to inform the compiler of the input

source filename and to specify the listing and binary object files.

-INPUT Define input file/device (example -I TEST).

-I treename The source program file is treename.

-BINARY To override default, define binary (object
file device.

-B treename The binary file will be created with the

~ treename specified (example: -B OUTPUT>TEST,
where the binary file is created on the UFD
OUTPUT under the filename TEST).

-B NO No binary file will be created; only a syn-
tax check will occur.

-B YES The binary file is created with the default

name B+filename, where filename is the name

of the source program file in the UFD in
which the source program file resides. The
binary file, however, is created in the UFD

to which the user is attached when invoking
the compiler.

REV, 0 5 - 4

PDR3056 COMPILING A SOURCE PROGRAM

NOTE: If the BINARY parameter is not included in the command line, it
1S equivalent to -B YES.

~LISTING To override default, define listing file.

-L treename The listing file will be created with the
treename specified (example: -L ELM>LTEST),

-L NO No listing file will be created. At later
stages in program development or when minor
modifications are made to programs, it may
not be considered necessary to get a source
program listing.

-L YES The listing file is created with the default
name «filename, where filename is the name
of the source program file in the UFD in which
the source program file resides. The listing
file, however, is created in the UFD to which
the user is attached when invoking the compiler.

-L TTY The listing is printed at the user's terminal.

-L_ SPOOL The listing file is spooled directly to the
line printer.

NOTE: If the LISTING parameter is not included in the command line, it is
equivalent to -L YES,

Addressing Mode

~64R Generates relative-addressed code suitable
for loading with Prime's Linking Loader for
the Prime 300 or higher.

-64V Generates segmented-addressed code suitable
for loading with SEGts loader. This mode
must be used for programs exceeding 64K
words, and/or for programs intended to be
loaded as shared procedure, Code is suitable
for execution on a Prime 350 or higher.

Listings

There are two forms of listing; regular and expanded,

The regular listing consists of source code with line numbers appended for
_ reference purposes. This may be obtained in both 64Rand 64V mode by the
mnemonic parameter -NOEXPLIST,

5 - 5 November 1977

SECTION 5 PDR3056

-NOEXPLIST Suppress generation of the expanded listing.
This is the normal default.

The expanded listing is a combination of a regular listing and machine-

generated code. The expanded listing is only valid for compilation in

64V mode; it may be obtained by the mnemonic parameter -EXPLIST.

-EXPLIST Generates an expanded listing at the end of
the listing file. User defined names are
NOT used, machine-generated labels are placed
in the listing. The label format is:

<TYPE>$HHHH[+N Character Offset]

HHHH = is the HEXADECIMAL IDENTIFIER

TYPE:

Label types fall into the following category:

Paragraph or section
Alter or perform indirect word
Perform count variable
Decimal constant

: Picture string (const)
Character string (const)
Generate label for branch instruction

: Passed parameter
Generate label - any usage allowed
File control block
File bufferN

K
N
T
O
A
A
M
O
a
N
e
S

h
u
n
d
w
u
u
t
t

Ub
Wb
u
e

Other labels used:

SB% = Stack base relative - used for
temporary storage

XB% = Temporary base relative - used
linkage section address

WRKST$ =Working storage

|WSEXT$ = Working storage extension, etc.
under indexes, tallying and work
area as needed by the compiler.

FOR EXAMPLE:

003233: 001310 EAFA 1 ,2$0027+72C
003234:001000,000725L

Says, at relative location ‘3233in the proce-
dure area, EAFA 1, file buffer (ID=$0027 with
a +72 character offset. Note that the word
offset is '725 in the link frame.

REV, 0 5 - 6

PDR3056 COMPILING A SOURCE PROGRAM

In order to utilize this expanded listing, a knowledge of PMA is
necessary (see: PDR3059, PMA User Guide).

A complete list of all the compiler memonic parameters with more
detailed comments on the consequences of their usage will be found
in Section 21.

5 - 7 November 1977

PDR3056 LOADING AND LINKING

SECTION 6

LOADING AND LINKING

INTRODUCTION

The Prime Linking Loader utility (LOAD) operates on code produced by the
COBOL compiler in the 64R mode; code produced in the 64V (segmented
addressing) mode must be processed by the SEG utility (Section 7).

The Linking Loader combines into an executable program a number of program
units or subroutines which have been independently canpiled. Some of the
subroutines may reside in a library; the Linking Loader provides the
facility for incorporation of any library subroutines which have been
referenced in the main program, as well as resolving the addresses between
then.

Prime's Linking Loader offers the following features:

e The loader is capable of loading code anywhere within the 64K in
which it resides, except on top of itself or in its symbol table.

e The location of COMMON is moveable by a keyboard command.
(COMMON)

e Partial or full load maps can be displayed on the user terminal
or written to a disk file. (MAP)

e An indefinite number of base areas can be specified; the loader
automatically uses the first available area which can be reached,
in preference to the sector 0 linkage area. (AUTOMATIC)

e The user can specify the instruction execution hardware avail-
able in the CPU on which the loaded program will execute. This
1s coordinated with the UII object blocks in load modules so
that the proper UII library routines will load automatically.
(HARDWARE) (UII - Unimplemented Instruction Interrupt)

e The user can execute the program from the keyboard in the loader
without having to return to the PRIMOS command level. (EXECUTE)

6-1 November 1977

SECTION 6 PDR3056

Desectorization

The loader performs a function during loading called desectorization.

The need for this function arises because one-word memory reference

instructions cannot directly reference all of memory. The loader com-

pensates for this by generating a pointer to the operand in a base

area and then modifies the instruction to reference through the pointer.

The pointer default base area is from memory location '200 to '777.

For many programs, this area is sufficient. However, for larger pro-

grams this area might be inadequate. The loader has a number of commands

to enlarge the default base area to create local base areas (SETBASE

and AUTOMATIC).

The base area below location '1000 can be used to desectorize any in-

struction, no matter what its location. Local base areas (above location

'1000) can be used only to desectorize instructions in a window around

the local base area. The window extends approximately '400 locations

above and below the base area. (See Figure 6-1.)

The loader uses local base areas when possible in preference to a base

area below location '1000. The location in base areas used by the loader

is not available for any other use during program loading or execution.

po------------too Initial location of *PBRK

1 Base Area !

Code and
! Length !
Data

po n------- Heei oe Location of *PBRK at end of load

| Base Area |!
pe ne---- eee ee1g Location of *PBRK for start of next load

Figure 6-1. Base Area Orientation

REV. 0 6-2

PDR3056 LOADING. AND LINKING

Clearing the User Address Space

The PRIMOS level command FILMEM clears the user address space (for non-
segmented programs). It is suggested that this command be invoked prior
to the first use of the Linking Loader and after unsuccessful loading
attempts. FILMEM will clear the user address space and assure the user
of a clean start.

The command format is:

FILMEM (RMODE (Prime 300 or higher) 32K))

or

FILMEM ALL (RMODE (Prime 300 or higher) 64K))

and has the result below:

Command Operating System
PRIMOS ITI PRIMOS III, IV, V

FILMEM Clears locations '100 to Clears locations '100 to
"47777 "77777

FILMEM ALL Clear all user space Clears locations '100 to
"177777

When FILMEM is employed prior to loading, all memory locations will
initially be set to zero. If no other characters are ever moved to
the data area, the zeroes will remain, possibly as unwanted characters.

INVOKING THE LOADER

When the COBOL program is using sequential files (non-MIDAS), the Loader
is invoked by the PRIMOS command:

LOAD

This loads the Linking Loader into locations '60000 to '63777 in the user's
address space. When the COBOL program uses indexed and relative files
employing MIDAS, the Loader should be invoked by the PRIMOS command:

HILOAD

This loads the Linking Loader into locations '174000 to '177777. Except
for the relocation, HILOAD is identical to LOAD as far as the user is
concerned.

6 - 3 November 1977

SECTION 6 PDR3056

USING THE LOADER UNDER PRIMOS

All loader functions are available through user terminal keyboard commands.

When the LOAD (or HILOAD) command is typed, the Linking Loader is in

command; the loader prints the $ prompt character on the user terminal and

awaits a command line.

EXAMPLE:

LOAD
$.

The $ prompt character means that the loader is in command mode until a

QUIT command is received. (The QUIT command returns control to PRIMOS

level). Each prompt character may be followed by a loader command, ac-

cording to the command definitions. After each successful execution of

a command, the loader types the $ prompt character. If the load is

complete (i.e., there are no missing routines or modules) the loader will

return the message LC, indicating that all external references have been

satisfied.

EXAMPLE:

OK, LOAD invoke loaderco

$ LO B«TEST load object program
$ LI COBLIB load COBOL library

$ LI load FORTRAN library
LC load is complete will be returned by the Loader
$ QUIT ready for next command
OK,

If an error occurs in the loader itself during an operation, a two-letter

error code will be printed followed by the $ prompt character. Loader

error messages and suggested handling techniques are discussed immediately

following the discussion on most frequently used loader commands.

When a system error (FILE NOT FOUND, etc.) is encountered, the loader
prints this system error and returns prompt symbol ($).

NOTE: The loader also accepts commands from a command file. Comments
may be used in this file; an asterisk (*) is the first character of a
comment line.

REV. 0 6 - 4

PDR3056 LOADING AND LINKING

Example of a Command File:

* COMMAND .FILE.TO. LOAD. THE. LOADER
FIIMEM
* INVOKE LOADER.
LOAD B+PRGM
LI COBLIB
LI
SAVE *PRGM
QUIT
* INSTRUCT. COMPUTER .TO.READ.NEXT.FROM. TERMINAL
CO TTY

COMMAND FORMATS

Eachloader command consists of a command name followed by a series of
arguments, in the same format as the PRIMOS command line:

COMMAND name-l1 name-2 arg-l arg-2.. . arg-n

where COMMAND is the command name, each name is a text string, and each
Arg is an octal number of up to six octal digits.

Long filenames (up to 32 characters) are supported; treenames may not be
used. Command names may be abbreviated to two characters. Arguments
are separated by spaces. Up to three alphanumeric fields (non-numeric
first) and nine (numeric only) arguments are allowed. In many cases, it
is possible to omit arguments. (If any argument is included all arguments
to the left of it in the command line must also be included).

A Camplete list of the LOAD commands is given below. (Underlining indicates
minimum required abbreviation).

Command | Function

ATTACH Attach to different UFD

AUTOMATIC Automatic generation of base areas

COMMON Relocate common address

EXECUTE Direct program execution

6 - 5 November 1977

SECTION 6

Command

FORCELOAD

HARDWARE

INITIALIZE

LIBRARY

LOAD

g
e
s

&

SETBASE

VIRTUALBASE

XPUNGE

Loader Commands

PDR3056

Function

Unconditionally loads object files

Hardware definition

Reinitialization (default load state)

Loads library files (i.e., object files in UFD=
LIB)

Loads object files

Generates Load state map

Select addressing mode

Returns command to PRIMOS

Saves loaded memory image

Defines a new linkage area

Relocates base sector

Deletes symbol

It is convenient to discuss the loader commands under three categories:

1. Commands the programmer uses quite often:

MODE (mostly with MIDAS files)
COMMON (mostly with MIDAS files)
LOAD
LIBRARY
SAVE
QUIT
MAP
EXECUTE

2. Commands the programmer uses less often, usually in response to
specific program requirements (as overflowing memory, etc.)

AUTOMATIC
INITIALIZE
ATTACH

REV. 0

PDR3056 LOADING AND LINKING

Commands designed for the use of the systems programmer.
These are normally of very little use to the applications
programmer. They are described in the PMA Programmer's
Guide, PDR 3059. |

FORCELOAD
VIRTUALBASE
XPUNGE
SETBASE
HARDWARE

Most Frequently Used Loader Commands

MODE

COMMON

MODE parameter

Specifies which of the CPU addressing modes the Loader is
to use.

File Type Parameter

MIDAS D64R
non-MIDAS (small program) D32R (Default)
non-MIDAS (large program) D64R

NOTES:

1. D32R is the default parameter. It is not necessary
to use a MODE command, as the Loader is in the mode
when it is invoked.

2. If a program loaded with the default mode parameter
- Causes a memory overflow (MO) error, it is too large
for 32K and should be reloaded with the mode set
using a MO D64R command. The MODE command, when used,
should precede any other command.

COMMON Address

Moves the top or starting location of FORTRAN-compatible
COMMON to the address specified. This is done before
loading any object modules. COMMON is a FORTRAN concept
and is usually of no concern to the COBOL applications
programmer. However, the COBOL libraries use the FORTRAN
library, which, in turn, requires a COMMON area. When
MIDAS files are used, the COBOL library COBKID location
would interfere with the normal location of the FORTRAN
library COMMON. The programmer therefore moves COMMON with
the command:

CO 50000

6 - 7 November 1977

SECTION 6

LOAD

LIBRARY

SAVE

QUIT

REV. 0

PDR3056

LOAD Filename

Loads an object file into memory. Filename is the name
of the binary object file. Thefile name usually is
of the form B-Program-name.

LIBRARY [Filename]

Temporarily attaches to the LIBRARY UFD, loads the spec-
ified file, and returns to the original UFD.

Filename is the name of the library file to be loaded;
if omitted, the FORTRAN library FTNLIB is loaded.

The normal library loading order is:

 MIDAS non-MIDAS

LI COBKID LI COBLIB

LI LI

NOTE: LI is equivalent to LI FINLIB.

SAVE Filename

Saves the loaded memory image under the name Filename in
the current UFD. Filename is the name under which the
memory image is to be stored.

NOTE: Prime's convention is to use * as the first char-
acter of the Filename for the stored memory image. The
user is not restricted to this convention.

QUIT

Returns to the operating system command level with the
user attached to the home UFD or the last UFD specified
in an ATTACH command (see ATTACH). If the loader has
opened a MAP file, it is closed at this time (see MAP).

PDR3056 LOADING AND LINKING

Examples of load (user input is underlined):

MIDAS files

OK, HILOAD invoke Loader
$ MO D64R set mode
$ CO 50000 move COMMON out of the way
$ LO B<SAM load COBOL object file
$ AU 20 (see AUTOMATIC command)
$ LI COBKID load COBOL MIDAS library
$ LI load FORTRAN library
LC load is complete
$ SAVE *SAM save memory image
$ QUIT return to PRIMOS
0

non-MIDAS files

OK, LOAD invoke Loader
[$ MO D64R] [set mode if program is large]
$ LO B«SAM load COBOL object file

[$ AU 20] [if program is large - see AUTOMATIC]
$ LI COBLIB load COBOL library
$ LI load FORTRAN library
LC load is complete
$ SAVE *SAM save memory image
$ QUIT return to PRIMOS
OK

6 - 9 November 1977

SECTION 6 PDR3056

Less Frequently Used Loader Commands

Such commands are generally used for one or more of the following reasons:

1. Solving a specific problem in loading a program (see Loader
error messages) ;

2. Optimizing the loading of a program;

3. Portability between different levels of Prime computers;

4. Added convenience to the programmer.

Load state parameters and their starting values are given in Table 6-1 below:

-—eame ee ewe eee eee ewewrOr earEOErrTeeeeeeeS

t

| Value at Start|
i of load ;

! *LOW ' The lowest location in memory loaded | 177777

| *HIGH ' The highest location in memory loaded i 0
' *START |! The location at which execution will begin , 0

‘| *PBRK '- The next location in memory to be loaded , 1000

| *CMLOW { The lowest location in COMMON | XX777 ;

| *CMHIGH | The highest location in COMMON | XX777

; *SYM ' The lowest location used by the symbol table ; YY000 :

i *UII | The net hardware/UII package requirement ; O

; ; (see HARDWARE command for meaning) i
Loe ee eeeeLeeeeee ee me ee ee ee ee eee ee eeeeeeSe,]

Table 6-1. Load State Definition

NOTE: XX = Last Sector in loader occupied by loader

YY = First Sector occupied by loader

REV. 0 6 - 10

AUTOMATIC

INITIALIZE

ATTACH

PDR3056 LOADING AND LINKING

AUTOMATIC XXXXXX

Causes the loader to insert a base area of length XXXXXX
whenever the loader detects the end of a routine and more
than 300 (octal) locations have been loaded since the
last base area was inserted.

The value of XXXXXX may be changed between load files.
This automatic feature is turned off with an AU 0
command.

AUtomatic helps to reduce the number of memory references
through sector 0 by supplying base areas between load
modules.

INITIALIZE [Filename]

Initializes the loader and then optionally performs the
same actions as a LOAD command. In the loader's initial-
ized state, the load state parameters (Table 6-1) return
to their default values. If no Filename is provided,
the loader repeats its prompt character ($). This
allows the programmer to restart a LOAD session without
the necessity of returning to the PRIMOS level and re-
invoking the loader.

ATTACH [UFD] [Password] [Ldisk] [Key]

Attaches to different UFD's.

UFD: Any User File Directory. However, the user
is attached to the home UFD when no UFD name
is specified.

Password: The user gets owner status if he gives the
owner password and non-owner status ifhe
gives a non-owner password. The password
parameter is necessary only when the UFD
is password-protected.

Ldisk: If the Ldisk parameter is omitted, the
loader searches only device 0 for the
specified UFD. If an Ldisk value of
'100000 is specified, the file system searches
all initiated devices in logical unit order.

Key: The values for Key most likely to be useful
during loading are:

6-11 November 1977

SECTION 6

MAP

REV. 0

PDR3056

0 Do not change home UFD (Default).

1 Adopt named UFD as home UFD.

2 Attach to sub-UFD in the current
UFD; do not set as home.

3 Attach to subUFD in the current UFD;
set as home.

If key was specified as 0 or 2, the user may
return to the home UFD by entering AT.

The ATTACH command allows the programmer to load
program modules stored in different UFDs without the
need of explicitly copying these program modules into
the UFD invoking LOAD.

NOTE: The LIBRARY command automatically attaches to
the library UFD in order to load the library module and
then re-attaches to the UFD in which LOAD was invoked.

MAP [Filename] [option]

Lists a load map. Filename is the name of the map to be
opened, and option is an octal value which selects one
of four map options. The loader will close the map
file(s), if any, at the end of the load session.

Option Number Load Map Information

None Load state, base area, and
symbol storage map; symbols
sorted by address (full map).

1 Load state only

2 Load state and base area

3 Unsatisfied references only

Map Option 1 - Load State Map

The load state map identifies:

1. The lowest and the highest storage memory
locations;

2. The location at which the program execution
begins;

6 - 12

PDR3056 LOADING AND LINKING

3. The next location available for loading;

4. Thehigh and low common area;

5. The lowest location usedby the symbol table;

6. The net hardware UII package requirement.

These parameters are printed in the load state map with
a corresponding storage address (See Table 6-1).

Load State Map 1

OK, LOAD
Go”
$ LO B+SIMP
$ LICOBLIB
$ LI
LC
$ MA 1
*START 001000 *LOW 000200 *HIGH 006512 *PBRK 006513
*CMLOW 063777 *CMHIGH 063777 ¥*SYM 057401 *UII 000001

Map Option 2 - Load State Map and Base Area Map

The base area map includes the lowest, highest, and
next available locations. Each line contains four
addresses as follows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXX = Lowest location defined for this area
YYYYYY = Next available location if starting up

from XOXXX
ZZZZZZ = Next available location if starting down

from WWWWWW
WWWWWW = Highest location defined for this area

The base area map includes a load state map:

Load State and Linkage Area Map 2

$ MA 2
‘START 001000 *LOW 000200 *HIGH 006512 *PBRK 006513
XCMLOW 063777 *CMHIGH 063777 *SYM 057401 *UII 000001

*BASE 000200 000220 000777 000777
*BASE 001527 001571 001570 001570
*BASE 002515 002557 002556 002556
*BASE 003404 003427 003434 003435

6 - 13 November 1977

SECTION 6

REV. 0

PDR3056

MAP Option 3 - Unsatisfied References Only

Lists the labels and external reference names which have

been referenced but not loaded.

Unsatisfied References Only MAP 3

$MA 3 (No unsatisfied references, therefore no printout)

MAP Option Number Omitted - Full Map

A full map contains all components of a load map including
a full symbol storage listing.

The symbol storage listing consists of every defined label
or external reference name, printed four per line in the
following format:

namexx NNNNNN

or

Namexx NNNNNN**

NNNNNN is a six-digit octal address.
reference is unsatisfied (i.e., has not been loaded).
map begins with a reference to a special FORTRAN COMMON
block LIST, defined as starting at location 1.

Load State, Linkage Area and Instruction Storage Map

$MA
*START 001000 *LOW 000200 *HIGH 006512 *PBRK
*CMLOW 063777 *CMHIGH 063777 *SYM 057401 *UII

*BASE 000200 000220 000777 000777
*BASE 001527 001571 001570 001570
*BASE 002515 002557 002556 002556
*BASE 003404 003427 003434 003435

LIST 000001 FS$WA 001020 FS$wx 001026 F$IO
F$A1 001501 F$A3 001501 F$A2 001505 F$A5
F$A6 001512 FS$CB 002034 F$IOBF 004660 FS$ER
F$HT 004767 ACL 005047 AC2 005050 AC3 -
AC4 005052 ACS 005053 WRASC 005054 IOCS$
IOCS$T 005160 F$AT 005172 F$AT1 005174 WATBL
LUTBL 005256 PUTBL 005313 RSTBL 005350 O$AD07

6 - 14

The ** flag means the
Every

0065"
000001

001102
001505
004762
005051
005061
005237
005405

EXECUTE

PDR3056 LOADING AND LINKING

Load maps may be sent to a file instead of the user's
terminal.

EXAMPLE:

This example illustrates how the loaded memory image
can be SAVEd as a file (RUNFIL) in the UFD, and a Load
Map stored in a file MAPI.

OK, LOAD invoke loader
GO |
$ LO B+SIMP load object file
$ LTCOBLIB load COBOL library
$ LT load FORTRAN library
LC
$ MA MAP1 send map to file MAP1
$ SA RUNFIL save loaded memory image
$ EX execute program

TEST MESSAGE output of program

Filename RUNFIL is now stored in the current UFD, and
Filename MAP1 contains the map.

OK, SLIST MAP1
GO
*START 001000 *LOW 000200 *HIGH 006603 *PBRK 006604
*CMLOW 063777 *CMHIGH 063777 ¥*SYM 057374 *UII 000001

EXECUTE

Enables the user to start execution of the loaded
program. Execution starts at the location shown by
the *START entry of the load map.

LOADER ERROR MESSAGES

Message

CM

* GT

Meaning

Command error. Illegal command format.

Group Type error. The loader has encountered an un-
recognizable piece of object text. Loading is dis-
continued. If object moduleis COBOL, make sure that
it was compiled without errors.

The source module is not an object file (output of
FIN, PMA, etc.) or is a segmented-address object
file (64V).

6 - 15 November 1977

SECTION 6

* MI XXxXxxxx

N6

REV. 0

PDR3056

Multiple Indirect. While linking in 64R mode, the
loader attempted to add indirection to an already
indirect instruction at location xxxxxx. The contents
of xxxxxx are the proper flag, tag, and object.

Memory Overflow Errors.

As users' programs become larger, MO (memory overflow)
errors become more frequent. This section contains a
description of the several typical causes of these
errors and suggested solutions to these causes.

When MO error occurs, the user should do a 'MA 2' and
examine the map for any of the following possible
Situations (see MAP):

a. The address of the bottom of the symbol table
(*SYM) is at or close to *PBRK. This indicates
that there is not enough room below the loader
for the whole program. HILOAD will probably solve
the problem - assuming the user is not already using
HILOAD.

b. (For P400/500 only) The programand data are too
large to fit into 64K of memory. The program
modules should be recompiled in 64V mode and
loaded using SEG (see Section 7).

Never 64R mode. Code is being loaded in 64R mode,
which will not execute properly. Loading is discontinued.

Recompile or reassemble the source files in 64R mode,
or remove a D64R command from the load session, or
Took for a PMA module which has set the load modeto
64R (see MODE).

These are hard errors; the load process cannot
be renewed. Correct errors and begin the load
process anew.

6 - 16

PDR3056 LOADING SEGMENTED PROGRAMS

SECTION 7

LOADING SEGMENTED PROGRAMS

INTRODUCTION

This section describes the use of SEG, which is Prime's utility module
for loading, modifying, and running segmented programs. A segment can
be up to 64K word block of user's virtual address space. Segment '4000
is that segment which SEG and other external commands occupy when invoked.
SEG creates a runfile of up to 15 or 31 segments. (Check with the systems
manager. to determine which version has been implemented.)

PRIMOS assigns memory segments to a user as they are accessed. These
are not released until logout. Since only a fixed number of segments
are available for all users, additional segments should not be invoked
unless the user is actually executing or examining a segmented program.
Most of the functions of SEG use only one segment; only those options
which restore a runfile use extra segments, i.e., RESTORE, RESUME, and
EXECUTE .

SEG must perform many of the operations on segmented runfiles which are
performed on relative-addressed runfiles at the command level or by the
Linking Loader. Since the nature of SEG rumfiles differs from that of
the relative-addressed runfiles, separate SEG commands are required.

Segmented Runfiles

A segmented runfile consists of segment subfiles in a segment directory.
For this reason, the reader cannot delete a SEG runfile with a PRIMOS-
level DELETE command; instead, use the DELETE command in SEG. (The
TREDEL command in FUTIL can also be used to delete a SEG runfile, but
it operates much more slowly than SEG's DELETE.) Each segment of the
runfile consists of 32 ('40) subfiles of '4000 words each. Subfile 0
of the runfile is used for startup information, the load map, and the
memory image subfile map. Memory image subfiles begin in segment sub-
file 1. Only the subfiles actually required for the runfile are stored
on the disk.

SEG's Loader

SEG has a virtual loader (i.e., it loads to a file rather than memory)
which requires the name of the runfile before anything is loaded. The
runfile may be new, or it may be a previously used SEG runfile; it can
be in any UFD. An old unsegmented SAVE file cannot be used.

7 - Jd November 1977

SECTION 7 PDR3056

As the symbol table is always available, SEG's loader may be used to add

modules to an existing runfile. Similarly, a partial load may be saved

with the SEG SAVE command and the load completed later. In addition,

selected modules may be replaced in a SEG runfile.

Functional Structure of SEG's Loader

SEG's Loader has three types of commands:

1. Commands which load object files;

2. Commands which override the Loader's defaults ("how'', 'where",
"what", "how much", ''from where");

3. Commands which perform operations with the current state of the

load and/or with SEG itself (e.g., getting a load map, executing the
program.)

Type 1: Commands which load object file (LO, LI, RL, PL, IL)

These commands all have the possibility of having modifiers included in

their command line. These modifiers are never used in the basic SEG load
sessions. For the most part, only LO and LI are needed.

Modifiers are:

A. Prefixes - P/, S/, D/, F/

B. Three numeric field suffixes

The form of these modifiers is exactly the same for all loading commands.

Type 2: Commands which override Loader Defaults (AT, A/SY, R/SY, SY, SP,
ST, XP, OP, CO)

Each of these commands requires an argument list unique to itself. These
commands are never required in the basic SEG Load session.

Type 3: Commands operating with the current state of LOAD or SEG (MA,

SA, EX, IN, QU, RE)

One or more of these commands is necessary to complete the load and leave

the Loader in an orderly manner. The most useful commands are EX, SA, MA,

and QU. Some of the type 3 commands have optional arguments; no arguments

are required in the basic SEG Load session.

Object File As Input

The object file of the program modules must have been created using 64V

mode of the COBOL compiler. Modules written in other languages may also

be loaded, if they have been compiled or assembled properly.

REV. 0 7 - 2

PDR3056 LOADING SEGMENTED PROGRAMS

Data consists of all COMMON blocks and link frames. Code and data are
loaded in separate segments to support re-entrant procedures. The
Loader assigns code and data segments. The first segment ('4001) is
used for code. Usually segment '4002 will be used for data. The Loader
loads data and code into appropriate segments and opens new segments
as required. (It is possible to put both data and procedure in the
same segment to save space. Care is required not to create an incorrect
load.)

The Stack

The Loader assigns a stack (which is a dynamic work area) when SAVE is
invoked. The stack is usually assigned as the next free location in the
first procedure segment with '6000 free words. If no such segment exists,
a new data segment will be assigned with the first location in the stack
set to 4. The user may force the location of the stack and/or may change
its size. (See the Loader's STACK command and the Modification sub-
processor's SK command.)

SEG Commands

When invoking one of SEG's functions, the form of the command is:

COMMAND Fname-1 Fname-2 Par-1 Par-2 Par-3

Fname-1 is the filename or the treename of the file to be accessed. Tree-
name enables files outside the current UFD to be accessed. SEG remembers
the name, and if the name is not changed, it becomes the default. If no
current file name has been established, SEG will request a treename.
In order to reference a new runfile, any SEG command may be invoked
with a new Filename-1. The nature of the other parameters depend on the
function.

A complete list of SEG commands is given below. Those commands discussed
in this section are preceded by the greater than character (>). Those
commands discussed in the shared code section are preceded by the plus
sign (+). Permissable abbreviations are underlined. Commands not
flagged require a knowledge of PMA and/or are specifically designed for
in-house use.

Command Function

> DELETE delete a SEG runfile
> HELP print a list of SEG commands at user's terminal
> MAP generate a load map
> MODIFY (SAVE) invoke modification sub-processor
> ~~ NEW write new copy of SEG runfile to disk

PATCH modify save range of existing segment
> RETURN return to SEG command level
> Sk alter stack size and/or location
> START change program execution start address

WRITE rewrite all segments to disk (to preserve patches)

7 - 3 November 1977

SECTION 7

Command

PSD
QUIT
RESTORE
RESUME or RESUME

SHARE
SINGLE
TIME
VLOAD (LOAD)

VEOAD *(LOAD*)
ATTACH
A/SYMBOLt

+
V
V
V

V
P
E
M
V
V

8

COMMON ABS
COMMON REL
D/**

EXECUTE
F/**

IL
INITIALIZE
LIBRARY
LOAD
MAP
OPERATOR
PL
p/*x

QUIT
RETURN
RL
R/SYMBOL

¥
V
V
V
V
t
t
M
V
V
V
O

+
V
V
t
v

SAVE
SPLIT
STACK
SYMBOL
S7#e
XP+

+
V
V

+
V

PDR3056

Function

invoke VPSD debugging utility
return to PRIMOS command level
bring SEG runfile into user memory
restore SEG runfile and begin execution
write shared code and data into separate files
create RMODE file image of single segment
print time and date of last runfile modification
define runfile and invokes loader for creation
define runfile and invokes loader for appending

attach to another UFD
define a symbol in memory and reserve space for
it using absolute segment numbers

relocate COMMON using absolute segment numbers
relocate COMMON using relative segment assign-
ment

perform load using previous parameters
save load to disk and execute program
forceload all routines in object file
load the impure FORTRAN library
initialize and restart SEG's loader
load library file (UFD=LIB)
load object file (user UFD)
generate loadmap
relax/impose high level restrictions
load the pure FORTRAN library
load on a page boundary
return to PRIMOS command level
return to SEG command level
reload a routine
define a symbol in memory and reserve space
for it using relative segment assignment

save load to disk
break segment in data and procedure portions
change stack size
define a symbol at a specific location in memory
expunge symbols from symbol table; delete base
information

For clarity, the user may prefer to use command names in full rather than in
abbreviated form. This will not adversely affect SEG's operation.

PDR3056 LOADING SEGMENTED PROGRAMS

Vestigial Commands

A number of commands exist whose functionality have been superceded,
either by improvements in SEG, improvements in PRIMOS itself, or for
increased clarity. For compatibility with previous revisions, these
commands are still supported and will perform exactly as before.
However, they will no longer be documented.

Typing these letter combinations will not generate error messages,
but users cannot be certain of the result. Do not use them.

Commands at SEG level: LO, LO *, PA, SA

Commands in the loader: AS, FO, SH

Commands in the Modi-
fication subprocessor: A, B, EN, KE, X

SEG Messages

When a load is complete, i.e., all references have been satisfied,
SEG's Loader prints the message LC at the user's terminal.

The message COMMAND ERROR and a new prompt character will be printed
at the user's terminal in response to an unrecognized command or a
command format error. The SEG Loader also has a series of error
messages which will be printed at the terminal. These are listed
in Appendix H, along with probable causes of the errors and sug-
gestions for correcting or eliminating them.

USING SEG

SEG is a command under CMDNCO; the COBOL programmer will invoke SEG
in one of two ways:

1. SEG Filename - where Filename is the filename (or treename)
of a SEG runfile. This command loads the runfile into segmented
memory and starts execution. This is analogous to the R Filename
command for programs loaded with Prime's linking loader (see
Section 8 - Execution).

2. SEG - accesses the SEG commands allowing the user to load,
modify, and/or execute a SEG runfile. These are discussed in
this section.

SEG displays a # on the terminal as a prompt character; the Loader and
Modification subprocessors display a $ as a prompt character to solicit
subcommands.

7 - 5§ November 1977

SECTION 7 PDR3056

Command Files

SEG accepts commands from a command file. —

NOTE: Command file comments, i.e., commands of the form:

* THIS.IS.A.COMMENT

are supported only in SEG's loader. Use of comments in any other portion
of SEG will give a non-fatal COMMAND ERROR and a prompt character.

Filenames

SEG supports both long filenames and treenames. Treenames conform to the
PRIMOS standard with one exception. If a password is required to obtain
access, the entire treename must be preceded and followed by single quotes.

EXAMPLE:

An object file SECRET in UFD CYPHER is protected by the password CRYPTO.
To load such a file, the command would be structured:

$LOAD 'CYPHER CRYPTO > SECRET'

(where user input is underlined)

I£ a command is given and a SEG runfile name is required, the request

SAVE FILE TREENAME:

will be printed out. The user should enter a SEG runfile filename (or
treename).

The first time a SEG runfile is entered, it is remembered by SEG and becomes
the established runfile name. In most commands, it is then unnecessary to
reference any SEG runfile if the established one is meant. This remains
the established runfile name unless a new SEG runfile name is established
by the user. (This is discussed under each specific command.)

Frequently Used and Essential Commands - Applications Functions

The commands herein outlined are presented in the order in which they would
normally be used.

REV. 0 7 - 6

HELP

VLOAD

PDR3056 LOADING SEGMENTED PROGRAMS

HELP

Prints a list of the SEG commands at the user's terminal.

VLOAD [filename]

This command accesses the SEG loader. Filename is the
filename (or treename) of a SEG runfile. If filename is
omitted, the established runfile will be used. If file
name as specified is the name of an existing SEG runfile,
that runfile will be reinitialized before control is
passed to the loader.

NOTE: Prime's convention is to use # as the first char-
acter of a SEG runfile name (e.g., #TEST). Although the
system does not require this, the user should follow this
convention unless there are compelling reasons not to do
sO.

The VLOAD (or VLOAD *) command performs three functions:

1. Defines (explicitly or implicitly) the name of
the SEG runfile.

2. Specifies whether a new file is to be written or
an existing file is to be added to.

3. Transfers operations to the SEG Loader. The SEG
Loader prints the prompt character $ to differ-
entiate itself from SEG-level commands.

The Loader has a large number of subfunctions. Most of these subfunctions,
specifically designed for use in creating very large applications packages,
shared procedures, and Prime in-house systems, will probably be of little
consequence to most users. Frequently-used Loader commands are discussed
below in their most common form.

LOAD LOAD filename

Where filename is the filename (or treename) of the file
to be loaded. Usually filename will be of the form
B+Prgname. The file should be an object file created
by the COBOL compiler with the 64V option. If filename
is not given, or is an incorrect type (not an object file),
an error will be generated.

The Loader will process the object file, making it part
of the runfile being created, and linking it to other
modules already loaded. Ail questions of memory manage-
ment are handled by the Loader.

7 - 7 November 1977

SECTION 7

LIBRARY

MAP

SAVE

EXECUTE

REV. 0

PDR3056

NOTE: If a treename is used, the Loader remains attached
to the UFD (or sub-UFD) in which that file resides. The
user must explicitly re-attach to the original UFD if
desired, by typing AT in response to the $ prompt.

LIBRARY [filename|

Where filename is the name of the file in UFD=LIB which
is to be loaded into the runfile. The file filename must
be one containing object text compiled (or assembled) in
64V mode; if not, an error will be generated. If filename
is not supplied, the FORTRAN library files PFINLB and
IFTNLB will be used. The Loader will then process the
library file in the same manner as LOAD processed object
files. In most cases, any libraries needed are loaded
after other object files.

NOTE: LOAD and LIBRARY are part of the Loader's family
of load commands. Both may be modified by optional numeric
parameters and/or command modifiers S/, F/, D/, to give
the user greater control over placement of modules in the
runfile. These options are described later in Sections
11 and 12.

MAP 3

This command prints a list of the unsatisfied references
(i.e., procedures called which have not been loaded) at
the user's terminal. This command is especially useful
if the user does not get the LC (Load Complete) message
from the Loader. Loadmaps are discussed in detail in
Section ll.

SAVE
This command saves the result of the load by writing all
buffers out to the runfile on the disk. A location for
the stack is assigned at this time. (A MAP command prior
to SAVE will show no stack assigned; a MAP command after-
wards will give the assigned location of the stack.

EXECUTE

First SAVEs the program, if necessary, then executes it.
After execution, control returns directly to PRIMOS. An
EXECUTE command may follow a SAVE command.

QUIT

EXAMPLE:

PDR3056 LOADING SEGMENTED PROGRAMS

QUIT

Returns the user to PRIMOS command level. QUIT does not
SAVE the runfile. To keep the established runfile, per-
form a Loader SAVE prior to QUITting.

The user has compiled a main program, MAIN; a subroutine in a separate
source file SUBR has also been compiled. Both have been compiled in 64V
mode using the default object filenames. They could be loaded as fol-
lows (user input is underlined):

OK, SEG bring SEG into memory
GO
VLOAD #MAIN invoke the Loader and establish a runfile
$ LO BeMAIN load the main program
$ LO B<«SUBR load any separately compiled subroutine
$ LI VCOBLB load the COBOL library

($ LIT VKDALB load this system library if MIDAS files
are used) ,

$ LI load the FORTRAN library
LC Loader indicates all references are satisfied
$ SAVE user saves runfile
$ QUIT return to PRIMOS level
OK,

DELETE DELETE filename (1)

or

DELETE (2)

Where filename is the name (or treename) of a SAVE SEG
runfile. This command deletes the SEG runfile filename
(1) or the currently established runfile (2).

NOTE: Do not attempt to delete a SEG runfile with the
PRIMOS level DELETE command. It will delete the segment
directory, but not the subsidiary files in the directory,
which you then cannot delete. If necessary to delete a
runfile outside the SEG utility, use FUTIL'S TREDEL
command .

7 - 9 November 1977

PDR3056 EXECUTING THE LOADED PROGRAM

SECTION 8

EXECUTING THE LOADED PROGRAM

INTRODUCTION

This section treats the following topics:

e Execution of program memory images saved by the Linking Loader
(64R).

e Execution of segmented runfiles saved by SEG's Loader (64V).

e CM$L (64R)/CS$IN (64V) utility programs.

e Run-time error messages.

EXECUTION OF PROGRAM MEMORY IMAGES SAVED BY THE LINKING LOADER (64R)

Execution of a COBOL program in 64R mode is performed at the PRIMOS level
using the RESUME command:

OK, RESUME *filename

where *filename is the name of the file containing the saved memory
image from the loading process and is in the current UFD to be executed.

RESUME brings the memory-image program *filename from the disk into the
user's memory, and begins execution of the program after a dialogue with
CM$L (see below).

The START command allows programs to be executed which have been made
resident in the user's memory by a previous RESUME command. This is
usually occasioned by a STOP literal statement in the COBOL program.

The START command is given as:

OK, START

The program resumes at the address value at which execution was
interrupted.

8 - Jj November 1977

SECTION 8 PDR3056

EXAMPLE:

OK, R *PRGRM Begin execution
GO

QUIT User hit CTRL/P to stop.
OK, S Restart program from last point of
GO execution.

Execution restarted

Upon completion of the program, control returns to PRIMOS command level.

For a complete discussion of these commands, see the PRIMOS Interactive
User Guide, MAN 2602.

EXECUTION OF SEGMENTED RUNFILES SAVED BY SEG'S LOADER (64V)

Execution of a COBOL program in 64V mode is performed at the PRIMOS level
using the SEG command:

OK, SEG #filename

where #filename is the filename (or treename) of a SEG runfile. SEG
loads the runfile into segmented memory and begins execution of the pro-
gram after a dialogue with C$IN (see below). SEG should be used for
runfiles created by SEG's loader; it should not be used for program
memory images created by the Linking Loader.

EXAMPLE:

OK, SEG #PRGRM Begin execution
GO

OK, Program complete; PRIMOS requests next
command.

CM$L (64R)/C$IN (64V) UTILITY PROGRAMS

Immediately following the execute commands of RESUME for 64R mode and
SEG for 64V mode, a series of questions will be asked concerning run-
time file assignments. These questions are prompted by the utility
programs CM$L for 64R mode, and C$IN for 64V mode. To the user, there
will be no noticeable difference between the two.

REV. 0 8 - 2

PDR3056 EXECUTING THE LOADED PROGRAM

The utility programs will ask on the terminal:

ENTER FILENAME AND UNIT

All succeeding lines will begin with the prompt character >. The proper
response to the request above is to give the name of the file (as stated
in the VALUE OF FILE-ID clause of the FILE DESCRIPTION), followed by the
treename desired. For example, suppose that in a COBOL program the
following statements existed:

FD TEST-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'FILE1'

then the proper dialogue with CM$L or C$IN would be:

ENTER FILENAME AND UNIT
>FILE] = PETERS>T1

or

>FILE] = $MT1, S, T1, #99901

The first statement would go to aUFD called PETERS and use a file called
Tl as input to TEST-FILE in the program.

The second statement requires MAG TAPE unit one to be assigned, with the
tape mounted to contain a TAPE-ID of Tl and a volume serial of #APOf1.

The utility programs CM$L and C$IN will do all pre-screening of the files
and display the prompt character > while waiting for user input. There
should be one entry for each FD in the program. When no files remain
to be entered, the single slash character (/) will conclude the session.
Execution of the program will begin, using the file assignments which
were just entered.

Disk Formats (Filenames and Treenames)

A treename in a disk format entry is an extended form of the filename,
which describes the location of the file in the directory structure.
Filenames and treenames may be of the following forms:

1. FILE-ID=UFDNAME [password] [logical disk number (octal) |]

2. FILD-ID=* > filename

3. FILE-ID=filename

4, FILE-ID=<volumename>UFDNAME [password] > filename

Everything to the right of the equal sign follows the rules for TREENAME
formation (see PE-T-341 for detailed treatment of TREENAMEs).

In 1 above, the volume with the specified logical disk number is searched
for the specified UFDNAME.

8 - 3 November 1977

SECTION 8 : PDR3056

In 2 above, the current UFD is the starting UFD.

In 3 above, the current UFD is searched for the specified filename.

In 4 above, the volume with the specified name is searched for the
specified UFD name. If the volume name is a Single asterisk (*), the
MFD in the current volume is searched.

Tape Format

FILE- ID=MAGTAPE, LABEL, TAPE-ID, TAPE-NUMBER

MAGTAPE: $MT(X) X being a 9-track drive number

LABEL : N: for no label information
S: specifies the tape contains standard labels and is

pre-numbered.

TAPE-ID: is up to a 17 character field which is written in the
label of the tape being created; or is used for
comparison if the tape is being read. Label must
have been specified as S.

TAPE NUMBER: is a 6 character field which is checked at open-time
when reading a tape, but is not needed when creating
a tape.

CML/CIN Error Messages

The following are error messages which may be output by the CM$L or C$IN
utility programs: |

FILENAME TOO LONG (no equal sign found)
INVALID TREE SYNTAX (see allowable format)
NO FILENAME ENTERED (equal sign with no filename)
INVALID TAPE UNIT (format did not contain MTx)
NO TAPE NAME ENTERED (standard label specified)
INVALID STANDARD/NON LABEL (non S or N)
TAPE NAME GREATER THAN 17
TAPE NUMBER GREATER THAN 6

RUN-TIME ERROR MESSAGES

Alphabetic lists of both RMODE and VMODE run-time error messages areavailable in Appendix G. |

REV. 0 | 8 - 4

PDR3056 SORT PROCEDURES

SECTION 9

SORT PROCEDURES

EXTERNAL/INTERNAL SORT ROUTINES

Various utilities are available to effect COBOL sort procedures. Theseinclude external and internal methods as outlined below:

NOTE: The ANSI Sort-Merge Module is not supported by Prime COBOL.

@ External operating system COBOL sort procedures

e Internal application sort subroutines

e Sort considerations

External Operating System COBOL Sort Procedures

The External Sort utility of the Prime Operating System (PRIMOS) is
easily accessed by a COBOL program. First, the user must specify thepoint in a program at which a sort is to be done. This is accomplishedin the Procedure Division by employing a STOP statement at the desiredlocation, followed by any valid literal.

EXAMPLE :

PROCEDURE DIVISION.
BEGIN-PROGRAM

PERFORM CREATE-FILE THRU FILE-CREATED.
STOP 'READY FOR EXTERNAL SORT’.

STATE-TWO
PERFORM ADDRESS- CHANGE

At this point, control will shift from COBOL execution to the operatingsystem command level. The user will then enter an interactive session
on the terminal.

In the following dialogue example, all underlined items must be typedby the user on the terminal:

9-] November 1977

SECTION 9 PDR3056

SAVE *TEMP 1/777777

SORT

GO
SORT program parameters are:

Input File Name - Output File Name

followed by pairs of starting and

ending colums.

INFILE OUTFILE 2

Input pairs of starting and ending

columns one per line. For reverse

sorting enter "'R'' after ending

columns.

j
r

Beginning SORT

Passes 3 items 2010

OK,

RESTOR *TEMP

START

This will save memory image

locations of all necessary

address registers in a file

named *TEMP.

This command invokes the SORT

utility program.

The operating system responds
with this documentation on the

user terminal.

This entry specifies the input

file name to be sorted, and the

output file; both must be

resident within your UFD. The

2 indicates the number of columns

to sort on.

This specifies that the columns

to be sorted are columns 1 through

5, with a reverse SORT on columns

15 through 25.

The computer responds, indicating

the SORT has begin and providing

PASS and Item data.

OK, indicates the SORT is complete.

Control is returned to PRIMOS.

This comand will restore the

memory image address register

locations of the previously

saved file.

This command will return control to

the next source line of the

application program, which

immediately follows STOP literal.

NOTE: The interactive dialogue above may be established as a COMMAND file.

REV. 0 9-2

PDR3056 SORT PROCEDURES

Internal Application Sort Subroutines

SUBSRT is a sort subroutine available to a COBOL program through a CALL
STATEMENT. It is particularly effective and efficient when sorting
5000 or fewer records. For larger applications, its simple calling
sequence and Data Division Entries may outweigh time considerations.

1. Calling Sequence:

The calling sequence for SUBSRT contains eight required
parameters. Use of this call may appear as follows:

Call 'SUBSRT' using SORT-INPUT-FILE, SORT-OUTPUT-
FILE, SORT-PAIRS, SORT-START-COLUMN,
SORT-END-COLUMN, SORT-PASSES, SORT-
ITEMS.

Any valid COBOL data-names may be used.

2. Data Division Structure

Using the above data-names the following DATA-DIVISION
entries would be used.

02 SORT INPUT FILE PIC X(6) VALUE 'SORTIN'.
02 SORT-OUTPUT-FILE PIC X(6) VALUE ‘SORTOT'.
02 SORT-PAIRS COMP VALUE 1.
02 SORT-START-COLUMN COMP VALUE 1.
02 SORT-END-COLUMN COMP VALUE 35.
02 SORT-PASSES : COMP .
02 SORT- ITEMS COMP .

Using the CALL sequence outlined above in 1, and the related Data
Division entries described in 2, the following would occur:

An input file by the name of 'SORTIN' would be stored in
Columns 1 through 35, with the sorted file being designated
as output "SORTOT’. The number of passes and items sorted
would be returned to the user from the "SUBSRT" utility.

Data-name parameters of the calling sequence above are defined as
follows:

@ SORT-INPUT-FILE

The actual file system name of the block of records to be
sorted must be placed within this six character field.

@ SORT-OUTPUT-FILE

The actual file system name for the sorted output file must be
placed within this six character field. It may be the same name
as the input file and may also be a file previously used by the
COBOL application.

9 - 3 November 1977

SECTION 9 PDR3056

e SORT-PAIRS

This field must be specified as computational and must contain the

value of the total number of pairs of columns on which the sub-

routine will sort.

@ SORT-START-COLUMN

This field must be specified as computational and must contain the

value of the column on which to begin the sort.

e SORT-END-COLUMN

This field must be specified as computational and must contain the

value of the column on which to end the sort.

e SORT-PASSES

This field must be specified as computational, with no VALUE clause.

This is a returned argument, stating how many passes the utility

took to complete the sort.

e SORT-ITEMS

This field must be specified as computational but cannot contain

4 VALUE clause. This is a returned argument stating how many lines

(or records) were actually sorted.

Sort Considerations

Job analysis for SORT utility selection should take into account a variety

of factors. These include file size, processing mode, data type spec-

ifications, command file specifications, loading factors, etc.

As previously mentioned, internal sort subroutine, SUBSRT, is partic-

ularly efficient when sorting 3000 or fewer records. Time efficiency

decreases as record number increases. This should be considered when

determining the most efficacious sort for the user's application.

SUBSRT is not available for 64V mode.

The PRIMOS External Sort utility allows specification of data type. That

is, ASCII, Binary, Single Precision Integer, Single Precision REAL,

Double Precision REAL may be specified. SUBSRT permits no such spec-

ification.

Command files used in conjunction with the External sort should be started

on a unit greater than 6. The system default for running a command file

is unit 6, however, SORT may also open unit 6. This conflict can result

in the error message 'PRWFIL, UNIT NOT OPEN! This problem is avoided

i£ a command file relating to a sort application is started on a unit

greater than 6.

REV. 0 9-4

PDR3056 SORT PROCEDURES

When using the internalSUBSRI subroutine, the SORT library must be
loaded with the object program. The Linking Loader commands to ac-
complish this are as follows (underlined entries indicate user require-ments, $ indicates loader prompt): :

OK, HILOAD call loader

GO

$ COMMON 199999 set common

$ MODE D64R

$ LOAD B<filename load object program file

$ LIB COBLIB load COBOL library

$ LIB SRTLIB load SORT library

$ LIB FINLIB load system subroutines

LC the system will respond with LOAD COMPLETE

$ SAVE *filename save the loaded program

$ QUIT | quit the loader; return to operating
system

9-5 November 1977

PART ITI

ADVANCED CONCEPTS

PDR3056 PROGRAM ENVIRONMENTS , EXPANDED

SECTION 10

COBOL PROGRAM ENVIRONMENTS , EXPANDED

INTRODUCTION

INTERACTIVE

COMMAND FILES

PHANTOM USERS

CX MODE

The portions of SECTION 10 outlined above were incomplete at this printing.

10 - 1 | November 1977

SECTION 10 PDR3056

SHARED PROCEDURES

The following steps should be taken to create and load programs as shared
procedures: (Each step will later be considered in detail.)

@ Determine whether shared procedure is applicable and desirable

@ Write source code. Program must be identified with PROGRAM-ID
where the program name must be MAIN.

e Load to the runfile using the SEG Loader's. Debug the program.

With this information, initialize and load to the rimfile,
splitting procedure and data portions of programs.

e Load for shared procedure and return to SEG command level.

@e Separate out segments below '4001 into separate RMODE runtiles
using SEG's SHARE command.

e Incorporate runfiles below '4000 into segments for sharing using
PRIMOS' SHARE command.

APPLICABILITY

In general, programs which are small, or which will normally only be run
by one user at a time, are not candidates for shared procedure. Programs
which are expected to be run by many operators simultaneously, especially
large procedures which use relatively small amounts of data, are excellent
candidates for shared procedures. Examples of the latter type include
Prime's Shared Editor or a user-written order entry system.

The advantages of shared procedures are:

@e Only one copy of code is necessary for all users

@e Decreases restore time

e Program is more likely to be in cache memory; operation is much
faster for multiple users

e Decreased memory usage, reducing paging

Once it is determined that a program will be loaded as shared procedure,
the programmer must obtain from the system manager the segment numbers
which are to be used for the particular program being loaded. Currently,
segments '2000 to '2037 are available as public shared segments. Some of
these segments may be occupied by Prime-supplied programs. For example,
if the Shared Editor is installed, it will reside in segment '2000.

REV. 0 10 - 2

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

System Considerations for the Manager

Public shared segments are a large but finite resource; their allocation
should be made carefully and only for those programs which will benefit
by being loaded as shared procedure. It is possible to incorporate more
than one program in the same segment; the manager is responsible that
no conflict will exist from overwriting, etc.

CAUTION

The public shared segments are re-initialized in a
cold start of PRIMOS. The systems manager should
include in the cold start command file the PRIMOS
SHARE commands necessary to reload these segments.
This also means the system manager must maintain
copies of the SEG runfiles for each program.

SOURCE CODE

The main program which is loaded first must be identified with a PROGRAM-
ID clause as MAIN.

COMPILING

The source program is compiled with the 64V mode option; this produces
code to be loaded with SEG.

LOADING

Loading for shared procedure is a multi-phase process. The aim is to

obtain an optimized load with the program operating properly as designed.

It will be instructive to follow an example illustrating some general

principles.

Consider a program BENCH, with 3 large QMMON blocks AA, BB, and AABB.
The FORTRAN library is required. The simplest load, using SEG's defaults
would be: (user input underlined)

OK, SEG invoke SEG
#VL_ #PGRM establish runfile and access loader
$LO B«PGRM load main program
$LT VCOBLB load COBOL library

($LT VKDALB for MIDAS files)
$LT load FORTRAN library
LC load is complete
SA save result :
MAMAPFIL generate a map in file MAPFIL to be examined
$QU return to PRIMOS
OK,

10 - 3 November 1977

SECTION 10 PDR3056

At this point the program will be executed and, if necessary, debugged.
The number of segments used can be decreased by moving the location by
moving the location of COMMON blocks and the stack. The load would be:
(user input underlined)

OK, SEG invoke SEG
#VL_ #PGRM establish runfile and access loader
$SY AA 4000 60000 locate COMMON block in Segment '4000

above SEG
$SY BB 4002 1000 put BB in segment '4002
$SY AABB 4001 10000 put AABB in segment '4001
$LO BePGRM load user program
$LT load FORTRAN library
LC load complete
$SA save load
$RE return to SEG command level
#MO invoke Modification subprocessor
$SK 4001 170000 place stack above AABB in segment

"4001 and assign it '170000 locations
#RE return to SEG command level
#MA * MAPFIL get a loadmap
#QU return to PRIMOS command level

Since the user has taken over some of SEG's functions, he must check the
loadmap to see if the load is reasonable. It would not be amiss at this
point to be certain that the program executes properly.

CAUTION

Relative assignment numbers and absolute segment
numbers must not both be used in the same load.

LOADING FOR SHARED CODE

Loading for shared code requires the capability of being able to separate
the procedure frame from the linkage frames. This capability exists in
the advance functionality of the loader commands. Other commands in the
loader allow placing of COMMON and other symbols using absolute segment
numbers, expunging defined symbols from SEG's symbol table, and
forceloading.

The loader also allows segments to be split into procedure and data
portions to conserve segments and/or to load into segment '4000 the RMODE
Interlude program RUNIT. RUNIT allows the segmented program to be invoked
as an RMODE program from the user's UFD or installed in UFD=CMDNC@.
These commands will be discussed later in this section.

REV. 0 10 - 4

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

SPLIT segno addr Note l.

or

SPLIT addr Note 2.

Breaks a segment into procedure (lower) and (upper) portions. This
operation conserves segments. It also allows the loading of RUNIT as
an aid to creating shared programs.

Segno is the absolute octal segment number.

- Addr is the location of the split in the segment. Addr must be a
multiple of '4000.

NOTES:

1. Splits the segment into procedure and data portions as specified;
used to decrease number of segments used.

EXAMPLE:

SP '4000 '10000 - splits segment '4000, with locations below '10000
for procedure and rest of the segment for data.

2. This is the form used for shared procedure. Segment '4000 is
assumed. In addition to splitting the segment, the interlude pro-
gram RUNIT is loaded (in 64V mode) beginning at location '1000.

No data or procedure may be assigned to locations above '172000 in
segment '4000, as this is where RUNIT places its stack.

After splitting, RUNIT and RESUME will exist in SEG's symbol table.
RUNIT is the normal starting address; RESUME may be used as a
starting address if the existing stack is to be preserved.

NOTE: Once a segment has been split, it is addressable only specifically,
i1.e., with the S/xx or P/xx command (or with D/xx following an S/xx or
P/xx command). Loading must use absolute segment numbers. See S/xx,
D/xx, P/xx.

CAUTION

SEG's Loader does not keep track of split segments and
may assign the stack to the top of the procedure
portion of a split segment. This may cause problems
if there is not enough space between the end of the
procedure portion and the start of the data portion.

10 - 5 November 1977

SECTION 10 PDR3056

A/SYMBOL

A/SYMBOL sname [segtype] segno size

where: sname is the name of the symbol.
segtype is the type of segment, either DATA.

or PROCEDURE; if omitted, a datasegment is assumed.
segno is the absolute octal segment number.
size is the number of locations to be reserved for

the symbol if omitted; 0 is assumed.

This command places a symbol and reserved 0 or more locations in memory
for it. If the segment specified does not exist, it will be created.

CAUTION

The user must verify that the number of locations
reserved for the symbol are adequate for its
intended use, and that there is actually sufficient
room in the segment for the size specified.

This command may not be used to satisfy unsatisfied references already
existing in the load.

Example: (TOP+1 is the next available location in a given segment.)

A/SY KELVIN 4002 1000 place symbol KELVIN at the current TOP+1
in data segment '4002 reserving 1000
(octal) locations for it.

A/SY KELVIN PR 4001 1000 place symbol KELVIN at current TOP+L in
rocedure segment '4001 reserving 1000
octal) locations for it.

The example above illustrates one way of placing a COMMON block in a
procedure segment.

A/SY KELVIN DA 4001 1000 place symbol KELVIN at current TOP+1 in
data segment '4001 reserving 1000 (octal)
locations for it.

If the segment specified above did not exist, it would be created and
the address of KELVIN in it would be 0. (A special case of TOP+1.)

COMMON ABSsegno

Where segno is the absolute octal segment number into which COMMON will
be loaded.

When loading into specific segments, this command should be used to
specify the COMMON segment either as the one into which the link frames
are loaded, or another if there is some reason to move COMMON away
from the link frames.

REV. 0 10 - 6

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

CO ABS 4015

Will cause the Loader to load all COMMON into segment '4015 so long as
it will fit, then into segment '4016, '4017, etc. This bypasses SEG's
normal default segment assignments.

CAUTION

Since SEG's normal defaults are bypassed by this
command , it is the user's responsibility to be
certain that segments being reserved for loading
COMMON have not been reserved for other uses.

ADVANCED FUNCTIONALITY OF THE LOADER'S FAMILY OF LOADING COMMANDS

The complete family of loading commands are:

LOAD load an object file (user UFD)
LIBRARY load a library object file (UFD=LIB)
RL reload an object module
PL load the PFTNLB file (UFD=LIB)
IL load the IFTNLB file (UFD=LIB)

PL and IL load pure and impure FORTRAN libraries, respectively. (Relative

segment assignments may be used with PL and IL, but there would rarely be

a need for this.) Relative and absolute loading must not be mixed in the

same load.

Modules may be loaded into specific segments for procedure and link frames

by use of the S/ prefix modifier.

The command format is:

S/xx [filename] addr psegno lsegno

where xx is LO, LI, RL, PL, or IL.

If LO or RL is used, filename is mandatory.

If LI is used, filename is optional. (Omission loads PFINLB and IFINLB.)

If PL or IL is used, filename should be omitted.

Addr is the starting load address in the procedure segment.

An addr of 0 is interpreted as start loading at the current pointer
position in the procedure segment. This is the usual value.

Psegno is the procedure segment number.

Lsegno is the data linkage segment number.

10 - 7 November 1977

SECTION 10 PDR3056

Both psegno and lsegno are absolute (octal) segment numbers; both must
be supplies. When loading shared code, procedure will be loaded in
segments '2000 - '2037 as allocated by the system manager.

As with the load into relative segment commands, the segments required
will be created if they do not already exist. If a required segment
runs out of room, the next segment in sequence will be created and used
to continue the load. For example, if the user has declared psegno to
be '2000 and segment '2000 becomes too full for the next routine to be
loaded, segment '2001 will be created as a procedure segment and the
load will precede in segment '2001. Note that some smaller routines
may subsequently be loaded in segment '2000. The S/xx modifier does
not place COMMON areas; this should be done using the CO ABS command
prior to the load.

EXAMPLE:

S/LO BeJUNK 0 2000 4002 - Load object file B«JUNK with its procedure
beginning at the current load pointer
location in segment '2000 and its data
linkage areas beginning at the current load
pointer in segment '4002. Previously COMMON
was located with a CO ABS command.

S/IL 0 4000 4000 - Load the impure portion of the FORTRAN
library into the split segment '4000.

As with the relative assignment numbers, the D/ modifier prefix may be
used.

EXAMPLE :

S/LO B«BENCH 0 2000 4000
D/PL

is equivalent to

S/LO B«BENCH 0 2000 4000
S/PL 0 2000 4000

CAUTION

When using this modifier (S/) some of SEG's checking
mechanisms are overridden. Therefore, the user must
carefully examine the loadmap to make sure there is
no inconsistency or confusion.

The S/ modifier may not be combined with the D/
modifier either as D/S/xx or S/D/xx.

REV. 0 10 - 8

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

Forceloading

When a file is loaded, normally only those routines referenced by
previously loaded modules (or by routines in the library) are loaded.
When building templates or creating partial loads, it is often
desirable to force all routines in a file to be loaded. Forceloading
in SEG's Loader is accomplished with the F/ modification prefix as:

F/xx (filename) [addr psegno lsegno] Note 1.

or

F/S/xx (filename) [addr psegno lsegno] Note 2.

where xx is one of the loading commands, LO, LI, RL, PL, or IL.

Filename is the filename (or treename) of the object file. It is
mandatory for LO and RL, optional for LI, and should be omitted for
PL and IL.

Addr is the start address for forceloading in the procedure segment.

Psegno is the procedure segment number.

Lsegno is the data segment number.

NOTES:

1. This is a simple forceload of the object file filename. Both
psegno and lsegno are relative assignment numbers. The defaults
resulting if parameters are omitted are the same as for the commands
without the F/ prefix.

EXAMPLE :

F/LO B<«THINGS - forceload all modules in B<THINGS. in default segment.

F/LI - forceload all the FORTRAN library in default. segments.

2. Forceloads object file to specific segments. Both psegno
and lsegno are absolute (octal) segment numbers (see S/xxfor
details). This format would be used for forceloading shared
procedures.

EXAMPLE:

F/S/PL 4000 2000 4002 - Forceload all of the procedure of the
FORTRAN library PFTNLB beginning at
location '4000 in segment ‘2000 with
linkage area in segment '4002.

10 - 9 November 1977

SECTION 10 PDR3056

NOTE:

S/F/xx is identical to F/S/xx.

The D/ prefix may be combined with F/.

S/LO B«BENCH 0 2001 4002
F/S/PL 0 2001 4002

is equivalent to

S/LO B«BENCH 0 2001 4002
F/D/PL

RETURN

Returns the user to the SEG command level. This command does not SAVE
the runfile; the user should perform the SEG SAVE subcommand before
the RETURN if the established runfile is to be kept. After loading
for shared procedure has been completed, the load must be SAVED; control
returned to the SEG level and SEG's SHARE command invoked.

SPLITTING OUT

After the load has been completed, the portions of the SEG runfile
corresponding to segments below '4001 must be transformed into RMODE
runfiles using SEG's SHARE command. These files are similar to the
relative addressed mode save files having a conventional save file
header. No files are created for segments above '4000. If segment
'4000 exists and it includes RUNIT (see SPLIT), it may be executed at
PRIMOS command level. The command format is:

SHARE [filename]

Filename is the filename (or treename) of the SEG runfile. If omitted,
the established runfile name is split out.

The RUNIT interlude program sets the correct addressing mode; starting
location and registers are set to the standard default values.

SEG responds to the SHARE command by asking for a two-character ID. SHARE
will use this ID to build the save files with the name yyxxxx, where yy
is the ID given to SHARE, and xxxx is the segment number.

EXAMPLE: (user input is underlined)

#SH #TEST (use default values)
TWO CHARACTER FILE ID: BE
CREATING BE2000
CREATING BE4000
(ready for next SEG command)

REV. 0 10 - 10

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

SINGLE

SEG's SHARE command creates an RMODE runfile for all segments below '4001.
The SINGLE command creates an RMODE runfile for any specified segment,
even those above '4000. This command is:

SINGLE [filename] segno

where filename is the SEG runfile name; if omitted, the established
runfile 1s used.

Segno is the segment number to be used to create the runfile.

As in the SHARE command, the user is asked for a two character ID.

EXAMPLE: (user input is underlined)

#SI 4001
TWO CHARACTER FILE ID: IX
CREATING IX 4001
it

The SINGLE command only works for segments loaded with the S/xx command,
including the RMODE interlude in the SEG runfile.

This method is of particular use in three cases:

1. The user's program has a small procedure part requiring a large
data area.

2. The user has a large program, most of which is loaded below
segment '4000 as shared procedure.

3. The user's program is primarily a 'transaction processing'
system. Most of the user's (large) program can be loaded at
LOGIN time, or is loaded below segment '4000 as shared procedure.

In case 1 the user will force all of the loaded portion of the program
to reside in segment ‘4000. Unitialized COMMON blocks will be declared
in other segments and need not be ‘loaded' into memory.

In case 2 the user will load only the impure parts of the procedure
(such as IFTNLB) into segment '4000 and will place all link frames and
initialized COMMON in segment '4000.

In case 3 the external LOGIN program will load most of the user's SEG
runfile (the portions residing above '4000) into memory at LOGIN time.
The user's specific applications, referencing the fixed portions above
and below '4000, will be loaded into segment '4000. This case requires
the user to create a 'template' of the fixed portion of the applica-
tion on top of which specific applications are loaded.

10 - il November 1977

SECTION 10 PDR3056

When the user's procedure is loaded with SEG's loader, segment '4000
is declared as a split segment using the loader's SPLIT command, and
specifying only the location at which the segment is to be split. This
causes SHG's loader to create a procedure area below the designated
location, and a data link frame area above it. Then the RMODE interlude
RUNIT is automatically loaded into the procedure portion. At run-time,
RUNIT will initialize the stack, and transfer control to the user's
routine, MAIN. The user may load other procedure and link-data
information into segment '4000 using the loader's S/xx command.

The user must determine via a previous load where to split segment
"4000.

A slightly different load sequence from that given earlier in this
section:

OK, *
OK, * THE FOLLOWING EXAMPLE ILLUSTRATES USING SEG TO
OK, * LOAD A NON-SHARED PROCEDURE.
OK, *
OK, SEG
GO
#VLOAD #DISPL.NONSHARED
$ LO B DISPL
S$ LI VCOBLB
$ LI
LC
$ SAVE
S MAP 6

S$ MAP 7
*START 04002 00006 *STACK @04001 02494 *SYM 171716

SEG. # TYPE LOW HIGH TOP
604001 PROC## 281080 002403 002403
004002 DATA geeR00 980325 080325

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.
CSNCLT 4802 900306 4901 9882216 GVG020 17776
MAIN 4002 00006 4001 9018090 G0O0072 177486

DIRECT ENTRY LINKS
EXIT 4901 982374 TNOU 4001 982400

COMMON BLOCKS

OTHER SYMBOLS

$ QUIT

REV. 0 10 - 12

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

would load the program as non-shared procedure. The resulting RMODE
runfile BE4000 can be invoked with the PRIMOS command RESUME as R BE4000
or it may be placed in the command UFD.

Finally, when the load is complete and saved, the user returns to SEG
via the RETURN command and enters SH on the terminal. When all appro-
priate segments have been turned into separate runfiles, the one with
the appended segment number '4000 may be run (suitably renamed if
desired) from PRIMOS command level either from CMDNCO or by a PRIMOS
RESUME command.

EXAMPLE:

Programmer has been assigned segment '2000 by the systems manager.

OK, *
OK, * THE FOLLOWING EXAMPLE DEMONSTRATES USING SEG TO
OK, * GENERATE A SHAREABLE) PROCEDURE.
OK, *
OK, SEG
GO
VLOAD #DISPL.SHAREDVERSION
S SP 4000
$ S/LO BDISPL 2000 4000
S$ D/LI VCOBLB
D/PL

Ic

S$ S/IL @ 4800 4990
S SAVE
S MAP 6

S MAP 7

*START @@4900 @@4006 *STACK @@4000 0801616 *SYM 171556

SEG. # TYPE LOW HIGH TOP

PLAGHO DATA## OL4000 084431 004431
GZ40GH PROC## 0B19080 Q01615 081615
OB200O PROC GL1O02 Q02451 @02451

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.

CSNCLT 4088 084306 2008 002216 OBAH20 003786
MAIN 4908 884006 2088 801900 G200072 003406
T1IB 49008 984372 2008 002436 G00G12 083772
T1OB 4000 904412 2008 002444 O2GG12 983772
T10U 40080 984350 2000 802402 Q80G16 923758
TONL 4080 904326 2800 982374 GLGVH12 903726

DIRECT ENTRY LINKS

EXIT 2008 002422 TNOU 2008 002426 TNOUA 2008 @02432

10 - November 1977

SECTION 10 PDR3056

COMMON BLOCKS

OTHER SYMBOLS
FSFLEX 4808 981174 RESUME 4900 601042 RUNIT 4008 0881000

S RE
SH
TWO CHARACTER FILE ID: DI
CREATING DI400@
CREATING DI2600
QU

OK,

INCORPORATING FILES INTO SHARED SEGMENTS

Using SEG's SHARE command creates one RMODE runfile for each segment
of the SEG runfile below segment '4001. The RMODE runfiles for segments
below '4000 must actually be incorporated into those segments using the
PRIMOS SHARE command. This operation can only be performed at the system
operator's console. The command format is:

SHARE filename segno access-rights

where filename is the name of the RMODE runfile to be incorporated into
the segment.

Segno is the segment number to be shared.

Access-rights are the access rights assigned to this segment.

Access Rights Permitted Operations

0 none
200 read
600 read and execute
700 read, write, and execute

Segments 'l to '12 and '2000 to '2037 are the current range of sharable
segments; specification of segments other than these will give unpre-
dictable results.

CAUTION

Since PRIMOS IV resides in segments 'l to '12, users
should not create files which need to be incorporated
into these segments.

If no value is specified, the default is '600.

REV. 0 10 - 14

PDR3056 PROGRAM ENVIRONMENTS, EXPANDED

The PRIMOS command OPR 1 must precede SHARE commands; OPR 0 must follow

the last SHARE command.

EXAMPLE: (user input is underlined)

OK, OPR 1
OK, SHARE BE2000 2000
OK, OPR 0 default access

The program BENCH can now be executed from the user's UFD by the command

R BE4000 (the name of the RMODE runfile BE4000 may be changed if desired

using the CNAME command).

CNAME BE4000 BENCH

The RMODE image of segment '4000 may also be put into the command UFD and

invoked as a command.

OK, FUTIL invoke FUTIL
>TO CMDNCO define TO UFD
>COPY BE4000 BENCH copy BE4000 into UFD=CMDNCO

under the name BENCH

>QU return to PRIMOS
OK,

It was not necessary to specify the FROM UFD; the default is the current

UFD.

10 - 15 November 1977

PDR3056 MANAGEMENT SYSTEMS

SECTION 11

MANAGEMENT SYSTEMS AND LANGUAGE INTERFACE

INTRODUCTION

This section discusses interfaces of the COBOL language to the following
Prime systems:

e MIDAS, Multiple Index Data Access System

e DBMS, Database Management System

@ FORMS, Forms Management System

e Other Programming Languages

MIDAS

Multiple (Keyed) Index Data Access System, MIDAS, provides a series
of programs and subroutines for the creation and maintenance of keyed-
index and/or kéyed-index direct access (KI/DA) files.

Keyed-index files are sometimes referred to as ISAM (Indexed Sequential

Access Mode) files. Prime COBOL utilizes MIDAS for its ISAM files.

NOTE: KI/DA is the file access method used by MIDAS. At present, MIDAS

and KI/DA are identical.

Requirements

MIDAS usage requires that the UFD LIB contain the COBKID library (for

non-segmented addressing use, 64R mode), and the VKDALB library (for

segmented-addressing use, 64V mode). At load-time, these libraries

are loaded just prior to loading the FORTRAN library.

Using MIDAS

MIDAS usage falls into four areas (see Figure 11-1).

e Creating/modifying the template - the user defines the data
file, indices, etc. (CREATK)

e Building the data file - data existing in a text or binary
file are converted to a MIDAS file. (KBUILD)

e Maintaining the file - data entries are added, deleted,

changed, or viewed.

ll - Il November 1977

SECTION 11 PDR3056

 ENTER

| REBUILD
BUILD FILE DOES BROKEN FILES
TEMPLATE FILE TEMPLATE { WITH REPAIR

WITH CREATK E |

MODIFY FILE
TEMPLATE YES MODIFY SuILD oar

PARAMETERS TEMPLATE USER PROGRAMWITH CREATK ? -__eeee
T PRIBLD

SECBLD
REBUILD BILD$R

INDEXES, ETC.
WITH REMAKE

iS
DOES INPUT BUILD DATA

OAD= FILE STRUCTURED FILE USING
FOR KBUILD KBUILD

?

y

DELETE MIDAS KEY?DELETE
FILE WITH MIDAS FILE PRIME-SUPPLIEDKIDDEL ? PROGRAM

NO
EXIT TO ~ USER - SUPPLIED
PRIMOS PROGRAM

PRIME -SUPPLIED
SUBROUTINES

MAINTAIN
FILE

¥ y y
CHANGE/ INQUIRE /

Rep DELETE UPDATE RETRIEVE
RECORD RECORD Es

Pee Pee7 PTTTTT) OT Beings77 PRIMOS
BILD$R UPDAT$
ADDIS DELETS (LOCK$) (teaKe)

y ¥ t, j

Figure 11-1. User's Functional Overview

REV. 0

of the Midas File System

ll - 2

PDR3056 MANAGEMENT SYSTEMS

e Performing housekeeping - files are restructured after signif-

icant maintenance (REMAKE), deleted in part or full (KIDDEL),

or rebuilt after crashes (REPAIR).

Maintenance of the file may be accomplished by more than one user simul-

taneously. A lockout subroutine protects data entries from attempts at

simultaneous changes/deletions. All other operations require the user

to have exclusive access to the MIDAS file.

The COBOL user will be most concerned with CREATK, REMAKE and KIDDEL;

where after the initial dialogues later described, interaction with

MIDAS is virtually transparent.

The Template

In order to initiate an Indexed or Relative file for Prime COBOL, the

user must build a MIDAS Template File. This will minimally contain

a segment directory, a file descriptor subfile, a one-level primary

index subfile which contains the index descriptor block, and an empty

last level index block. If the file is organized for direct access,

data segments must be allocated and initialized. For each secondary

index defined, there must be a corresponding index descriptor block and

an empty last level index block.

Creating the Template (CREATK)

A template (file descriptor) for a keyed-index file can be created with

the interactive utility program CREATK. The functions of CREATK are:

e Create a new file

@ Modify index or data description for an old file

@ Add new secondary indices to a file

e Display existing index or data descriptors.

When constructing a template, the user engages in an interactive dialogue.

ll - 3 November 1977

SECTION 11 PDR3056

Minimum Dialogue (user responses are underlined):

Prompt Response Remarks

OK, CREATK

MINIMUM OPTIONS? YES If minimum options is
selected, all index
level keys will have the
same length as the full
key for the last index
level. The primary key
will be stored with the
data and not in the
index entries of the
secondary indices, All
index blocks will default
to a length of 440 words.

FILE NAME? [Volume name>UFD Passwd Ldisk]>filename

Volume name>UFD: spec-
ifies the name of the
disk and the User File
Directory (UFD) on which
the file is to be
created. Filename is
the user assigned file
name.

NEW FILE? If NO, see NOTE 2 at
conclusion of dialogue.

DIRECT ACCESS? S For a new relative file
(goes to dialogue 2)

For a new indexed file
(goes to dialogue 1)

REV. 0 ll - 4

PDR3056 MANAGEMENT SYSTEMS

(Dialogue 1) Data Subfile Questions

(PRIME INDEX/RECORD KEY)

Prompt Response Remarks

KEY TYPE B

KEY SIZE=: Bnumber Number is the number of
bits in the primary key.
It is equal to 8 times
the number of characters
in the key; e.g., 2
characters in a key
= 16 bits. The maximum
size for an indexed file
is 32 characters, or

256 bits.

DATA SIZE=: number Number of words for a
data record, where number
equals the record length
divided by 2. For COBOL
programs, this includes
the key size, and a
remainderfactor of 1
if it applies.

(SECONDARY INDEX/ALTERNATE RECORD KEYS - this section is repeated for
each alternate record key.)

Prompt Response Remarks

INDEX NO.? 1-5 The numeric variable is
(CR) the number of the

alternate record key.
Carriage return (CR)
will exit from CREATK,
specifying no alter-
nate indexes.

DUPLICATE KEYS PERMITTED? YES Yes allows the data in
NO this key field to be
_ duplicated. No indi-

cates that if the data
in the key field is
duplicated, the file
will not be updated and
the INVALID KEY clause, or
the USE DECLARATIVE
section will be activated.

ll - 5 . November 1977

SECTION 11 PDR3056

Prompt Response

KEY TYPE: B

KEY SIZE =: B

USER DATA SIZE =: 0

(CR)

(Dialogue 2) Data Subfile Questions

KEY TYPE: B

KEY SIZE =: B number

DATA SIZE =: number

NUMBER OF ENTRIES TO ALLOCATE? number

INDEX NO.? (CR)

REV. 0 ll - 6

Remarks

Enter the number of bits
in the key; use same
formula as for primary
index.

No data may be entered
for secondary keys.
The response must be 0,
(CR), or 0 (CR).
Either option will
return the user to the
prompt INDEX NO? above,
from which he may exit
CREATK, or continue
with alternate key
specifications.

Number is the number of
bits in the relative key;
1.e., characters in the
key X 8. The maximum
Size is 6 characters,
or 48 bits. In seq-
uential mode with no
key, size must be
specified at maximum: 48.

Number is the number of
words in a data record:
record length + 2 plus
the remainder factor of
1 if it applies.

Number is the number of
entries to allocate in
the new KI/DA file.
Entries are numbered 1-n
inclusive; any reference
outside this range
results in an error.

This concludes template
creation and returns to

command level.

PDR3056 MANAGEMENT SYSTEMS

NOTES :

1. If an invalid response is entered by the user, the question
(prompt) will be repeated.

2. If CREATK is not being run for a new file, and the response
to the prompt NEW FILE? is NO, the succeeding prompt will be:

ADD
MODIFY DATA
PRINT

FUNCTION? HELP

FILE
UIT

USAGE

CR
The response options to the FUNCTION prompt have the following
Significance:

ADD

Resulting dialogue is similar to the secondary index dialogue,
except that an error message will be generated if the subfile
already exists. The return at the end of the dialogue is to the
prompt, INDEX NO.?

MODIFY DATA

This sequence allows the user to redefine the data. The length of
a data entry may be changed (shorter or longer). It follows the
Data Subfile Section above. At the end of the data dialogue, return
is made to the prompt, INDEX NO.?

PRINT

numeric, 0-17
Results in the prompt: INDEX NO.? {Tits }

The current configuration of the index subfile or data subfile
given will be displayed on the user's terminal. The configuration
displayed will be that in the file descriptor subfile. At the end
of the display question, the prompt INDEX NO.? will be repeated.

HELP

The currently available options, and their functions, will be listed
in the user's terminal.

ll - 7 November 1977

SECTION 11 PDR3056

FILE

This option will allow the user to specify a new working file

without leaving and then re-entering CREATK. The program returns

to the beginning of the dialogue with the prompt, FILE NAME?

QUIT

Exits

USAGE

This option will allow the user to display the number of entries
currently available through any defined index. The number of
entries are displayed as 'ENTRIES INDEXED', ‘ENTRIES IN OVERFLOW',
and 'ENTRIES DELETED'. These values are summed to provide
"TOTAL ENTRIES IN FILE'.

This option is of particular significance to the COBOL programmer.

It indicates the state of overflow and helps determine the need
for REMAKE.

REMAKE Program

This program can perform four levels of restructuring:

e Restructure selected secondary indices

e Restructure all indices

e Restructure all indices and data sub-file

e Rewrite file into new file with new template.

The programmer should run REMAKE after substantial numbers of data
entries have been added to or deleted from the file. This restructuring
clears out the index overflow areas (which when overloaded slow the

searching process) and frees for use the space occupied by data

entries flagged as deleted. See PDR 3061 Reference Guide, Multiple

Index Data Access System (MIDAS).

KIDDEL Program

This program will delete all or part of a MIDAS file; the PRIMOS DELETE

command should not be used for indexed files. KIDDEL allows deletion

of:

e Selected secondary indices

e Unwanted segments at the end of the data sub-file

e The entire file

REV. 0 11 - 8

PDR3056 MANAGEMENT SYSTEMS

An example of an actual CREATK dialogue for sample program REF2 appears
at the close of Section 16.

Complete information on programs outlined above, and KBUILD and REPAIR is
presented in the Reference Guide, Multiple Index Data Access System
(MIDAS) PDR 3061.

DBMS

For complete information relating to COBOL interface to Database
Management System (DBMS), the user is referred to IDR 3046, COBOL
Reference Guide to DBMS.

FORMS

The Prime Forms Management System (FORMS) provides a convenient and
natural method of defining a form in a language specifically designed
for such a purpose. These forms may then be implemented by any
applications program which uses Prime's Input-Output Control System
(IOCS) , including programs written in COBOL. Applications programs
communicate with FORMS through input/output statements native to the
host language. Programs which currently run in an interactive mode
can easily be converted to use FORMS. See PTU 45 and IDR 3040, Forms
Management System (FORMS).

OTHER PROGRAMMING LANGUAGES

The reader is directed to Section 17, Inter-Program Communication.

11 - 9 November 1977

PART IV

REFERENCE

COBOL CONCEPTS

REFERENCE

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

SECTION 12

FUNDAMENTAL CONCEPTS OF COBOL

DIVISIONS OF A COBOL PROGRAM: A SUMMARY

Every COBOL program consists of four divisions: Identification Division,
Environment Division, Data Division, and Procedure Division.

e The Identification Division assigns a name to the program and allows
the programmer to enter other documentary information, such as the
programmer's name, the date the program was written, and so on.

e The Environment Division specifies a standard method of expressing
those aspects of a data-processing problem which depend upon the
physical characteristics of a specific computer.

Two sections make up the Environment Division; the Configuration Section
and the Input-Output Section.

The Configuration Section describes the computer configuration on which
the source program is compiled, and the configuration on which the com-
piled program is to be run. It also relates system names used by the
compiler to names introduced by the programmer in the source program.

The Input-Output Section contains the information needed to control
transmission and handling of data between external media and the pro-
gram. This section. describes the name, type of organization, and access
mode of each data file, and associates the file with a peripheral device.

e The Data Division provides the compiler with a detailed description of
the characteristics of every data item used within the program. There
are three sections of the Data Division: the File Section, the Working-
Storage Section and the Linkage Section.

The File Section describes the structure of data files. Each file is
defined by a File Description entry and one or more Record Description
entries.

The Working-Storage Section describes records and noncontiguous data
items which are not part of external files, but are developed and pro-
cessed internally. It also defines data items whose values do not change
during the execution of the program (i.e., constants).

The Linkage Section of a COBOL program is meaningful only in a called
program. This section, appearing in the called program, describes data
items which may be referred to by both the called and calling programs.

12 - 1 November 1977

SECTION 12 PDR3056

REV.

The Procedure Division contains instructions (COBOL statements)
required to solve a data processing problem.

This division contains two sections: declarative sections and

procedural sections.

Declarative sections are optional. When used, they must be grouped
at the beginning of the Procedure Division. Declarative sections
permit the execution of procedures which are not performed in the
regular sequence of coding. Such out-of-sequence procedures are
usually initiated by a condition which the program does not test
directly.

Procedural sections follow declaratives in a logical sequence. Each
procedural section comprises one or more paragraphs. Each paragraph
consists of one or more COBOL sentences. Sentences, in turn, are
comprised of one or more COBOL statements.

Execution of the procedures in the Procedure Division begins with
the first statement in the division, excluding declaratives. State-
ments are executed in the order in which they are presented for com-
pletion, unless the rules indicate an exception.

The Procedure Division ends at that point in the source program after
which no further procedures appear. This coincides with the physical
end in the program.

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

The following skeletal coding defines program component structure and

order:

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. comment-entry...]

[INSTALLATION. comment-entry...]

[DATE-WRITTEN. comment-entry...]

[DATE-COMPILED. comment-entry...]

[SECURITY. comment-entry...]

[REMARKS. comment-entry...]

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE- COMPUTER. entry.|

[OBJECT-COMPUTER. entry.|

[SPECIAL-NAMES. entry.]]

[INPUT-OUTPUT SECTION.

FILE CONTROL. entry...

[I-O-CONTROL. entry...]]]

DATA DIVISION.

[FILE SECTION.

[file description entry

record description entry ...]...]

[WORKING-STORAGE SECTION.

[data item description entry]...]

[LINKAGE SECTION.

[data item description entry]...]

PROCEDURE DIVISION [USING identifier-1...].

[DECLARATIVES.

{section-name SECTION. use-sentence. }

[paragraph-name. [sentence]...]...

END DECLARATIVES.|

[section-name SECTION.]

{paragraph-name. [sentence]...}...

12 - 3 November 1977

SECTION 12 PDR3056

The source program on the following pages, SAMPLE, illustrates program
component structure and order. SAMPLE creates and reads a relative file
sequentially.

A Listing File for SAMPLE is provided after the source program coding
example. SAMPLE was compiled in 64R mode.

REV. 0 12 - 4

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Sequence COBOL Statement
Y

|
(SERIAL)

4 4 4

0/1

0|2

o
l
o
t
a
j
l
o

la
te

s
fo

[p
y

[—
Jo

jo
FO

I
N
O

[
o
a

6

7

8

9

0

]

2

3
12-5 November 1977

SECTION 12 PDR3056

 Sequence

COBOL Statement
(PAGE)

314
36 40 44 48

O11

0j2

1:8

19

210

1
2
3
4

5
6
7
g
9
0
|
2
3
4

5
6
7
8
9|
0

REV. 0 12 - 6

REV 14 COBOL

(9921)
(G2P2)
(993)
(9224)
(9225)
(9926)
(9227)
(2228)
(D229)
(9219)
(9911)
(#12)
(913)
(914)
(915)
(P16)
(017)
(0018)
(0919)
(2929)
(9021)
(022)
(923)
(0024)
(G825)
(BG26)
(0627)
(6828)
(6829)
(6830)
(6931)
(032)
(6833)
(6034)
(6835)
(936)
($037)
(6838)
(8639)
(6840)
(6641)
(6842)
(6843)
(6944)
(6645)
(6646)
(6647)
(648)
(6049)
(G5)
(6951)
(6052)
(253)

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

SOURCE FILE: SAMPLE 08/18/77 10:23

IDENTIFICATION DIVISION.

PROGRAM-ID. SAMPLE.

INSTALLATION. PRIME.

REMARKS. THIS PROGRAM CREATES AND READS A RELATIVE FILE

SEQUENTIALLY.
*
*

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOQURCE-COMPUTER. PRIME.

OBJECT-COMPUTER. PRIME.

SPECIAL-NAMES. CONSOLE IS TTY.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT LIST-FILE ASSIGN TO PRINTER.

SELECT CARD-FILE ASSIGN TO PFMS.

SELECT DIRECTORY-FILE ASSIGN TO PFMS, ORGANIZATTON

RELATIVE

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD LIST-FILE, LABEL RECORDS ARE OMITTED.

Ql PRINT-LINE, PICTURE X(121).

Ql PRINT-REC.

g2 FILLER PIC X.
@2 PRINT-INPUT PIC X(8).

@2 PRINT-ERROR PIC X(4@)

FD CARD-FILF, LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS '‘INDATA'.
Ql CARD-IMAGE, PICTURE X(8f).

FD DIRECTORY-FILE, LABEL RECORDS ARE STANDARD, VALUE OF FILE-ID

IS 'REFILE'
OWNER IS 'LDAVIS'.

@1 DIRECTORY-RECORD.
02 NAME.

03 LAST-NAME PIC X(15).
@3 FIRST-NAME PIC X(15).

02 FILLER PICTURE X(1).
@2 ADDRESS PICTURE X(25).
@2 FILLER PICTURE X(1).
g2 CITY PICTURE X(4).
Q@2 FILLER PICTURE X(3).
@2 PHONE-NO PICTURE 9(7).
@2 FILLER PICTURE X(9).

*

WORKING-STORAGE SECTION.
77 FILE-STATUS, PICTURE X(2), VALUE IS SPACE.

Ql HEADER.
@2 41, PICTURE X(4), VALUE IS 'NAME'.
Q2 FILLER, PICTURE X(27), VALUE IS SPACE.

Q2 #2, PICTURE X(6), VALUE IS 'STREET'.
Q2 FILLER, PICTURE X(26), VALUE IS SPACE.

12 - 7 November 1977

SECTION 12

REV 14 COBOL

(0054)
(0955)
(656)
(0957)
(6658)
(659)
(66)
(6661)
(6062)
(6663)
(6664)
(@065)
(6866)
(6867)
(6868)
(0869)
(6872)
(6971)
(6672)
(6073)
(8974)
(6875)
(0676)
(6877)
(6978)
(6979)
(G68G)
(6881)
(6882)
(0083)
(6884)
(G85)
(0886)
(6687)
(6688)
(689)
(8292)
(6991)
(6892)
(6893)
(8894)
(295)

$290 ERRORS.

REV. 0

PDR3056

SOURCE FILE: SAMPLE 08/18/77 10:23
g2 H3, PICTURE X(4), VALUE IS 'cIty'.
G2 FILLER, PICTURE X(3) , VALUE IS SPACE.
g2 H4 PICTURE X(5), VALUE IS 'PHONE'.

*

*

PROCEDURE DIVISION.
BEGIN SECTION.
CREATE-FILE.

OPEN OUTPUT LIST-FILE DIRECTORY-FILE.
OPEN INPUT CARD-FILE.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PACE.
READ-NEXT.

READ CARD-FILE AT END GO TO
LIST-DIRECTORY.

MOVE CARD-IMAGE TO PRINT—LINE.
MOVE CARD-IMAGE TO DIRECTORY-RECORD.
WRITE PRINT-LINE.
WRITE DIRECTORY-RECORD INVALID KEY

DISPLAY ‘INVALID KEY',
GO TO READ-NEXT.

LIST—DIRECTORY.
CLOSE CARD-FILE, DIRBCTORY-FITE.
DISPLAY 'END TEST TO CREATE FILE'.
OPEN INPUT DIRECTORY-FILE.
PERFORM LIST THRU LIST~DONE.

LAST-SECTTION.
CLOSE-ALL.

CLOSE DIRECTORY-FILE, LIST-FILE.
DISPLAY 'END TEST SEQUENTIAL READ AFTER A START’.
STOP RUN.

LIST.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT~DIRECTORY—RECORD.
READ DIRECTORY-FILE NEXT RECORD, AT END

GO TO LIST—DONE.
MOVE DIRECTORY-RECORD TO PRINT-LINE.
WRITE PRINT—LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

*
*

$600 WARNINGS (COBOL VER #4)

12 - 8

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

LANGUAGE CONSIDERATIONS

Format Notation

Throughout the Reference portion of this document, basic formats are
prescribed for various clauses or statements. These generalized
descriptions guide the programmer in writing his own statements. They
are presented in a uniformsystem of notation:

1. All words printed entirely in capital letters are Reserved
Words. These are words which have preassigned meanings. In all
formats, words in capital letters represent an actual occurrence
of those words.

Z. All underlined reserved words are required unless the portion
of the format containing them is itself optional. These are key
words. If any key word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved Words not under-
lined may be included or omitted at the option of the programmer.
These words are optional words; they are used solely for improving
readability of the program.

3. The characters <, >, and = when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters represent the
actual occurrence of those characters. Punctuation is essential
where it is shown. Additional punctuation can be inserted, accord-
ing to the rules for punctuation specified in this publication.
In general, terminal periods are shown in formats in the manual
because they are required; semicolons and commas are not shown
generally because they are optional.

9. Words printed in lower-case letters in formats represent generic
parts (e.g., data-names) of which a valid representation must appear.

6. Parts of a statement or Data Description entry which are enclosed
in brackets [] are optional. Parts between matching braces ({ })
represent a choice of mutually exclusive options, of which one must
be chosen. When brackets or braces enclose a portion of a format,
but only one possibility is shown, the function of the brackets or
braces is to delimit that portion of the format to which a following
ellipsis applies.

7. Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement". These designate clauses
or statements which are described in other formats in appropriate
sections of the text.

8. In order to facilitate reference to them in the text, some lower
case words are followed by a hyphen and a digit or letter. This mod-
ification does not change the syntactical definition of the word.

12 - 9 November 1977

SECTION 12 PDR3056

9. The ellipsis (...) indicates that the immediately preceding unit

may occur once, or any number of times in succession. A unit means

either a single lower-case word, or a group of lower-case words and

one or more Reserved Words enclosed in brackets or braces. If a term

is enclosed in brackets or braces, the entire unit of which it is part

must be repeated when repetition is specified.

10. Comments, restrictions, and clarifications on the use and meaning

of every format are contained in the appropriate portions of the

manual.

11. Multiple formats for a given COBOL verb are mutually exclusive op-

tions, of which only one may be chosen.

Punctuation Rules

The following general rules of punctuation apply in writing source programs:

1. A period, semicolon, or comma, when used, can not be preceded

by a space, but must be followed by a space.

2. A left parenthesis can not be followed immediately by a space;

a right parenthesis can not be preceded immediately by a space.

3. At least one space must appear between two successive words

and/or literals. Two or more successive spaces are treated as a

single space, except in non-numeric literals.

4. Relation characters should always be preceded by a space and

followed by another space.

5. When the period, comma, plus, or minus characters are used in

the PICTURE clause, they are governed solely by rules for report

items.

6. A comma may be used as a separator between successive operands

of a statement, or between two subscripts.

7. A semicolon or comma may be used to separate a series of state-

ments or clauses.

Coding Rules

Since Prime COBOL is a subset of American National Standards Institute (ANST)

COBOL, programs are written on standard COBOL coding sheets (Figure 12-1).

The following rules are applicable:

1. Each line of code should have a six-digit sequence number in posi-

tions 1-6, such that the source statements are in ascending order.

Blanks are also permitted in positions 1-6.

REV. 0 12 - 10

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Z. Reserved Words for division, section, and paragraph headers
must begin in the A Area (positions 8-11). Procedure-names must
also appear in the A Area (at the point where they are defined).
Level numbers may appear in the A Area.

3. All other program elements must be confined to positions 12-72,
governed by the other rules of statement punctuation.

4. Positions 73-80 are ignored by the compiler. Frequently, these
positions are used to contain the program identification.

5. Position 7 is used for special coding symbols. Explanatory
comments may be inserted on any line within a source program by
placing an asterisk (*) in position 7 of the line. Any combination
of characters may be included in the A and B Areas of that line.
The asterisk and the characters will be produced on the source list-
ing but serve no other purpose. If a slash (/) appears in position
7, the next line will be printed at the top of a new page when the
compiler lists the program. A hyphen (-) is used to continue a non-
numeric literal from one line to another. Refer to Non-Numeric
Literals for coding rules.

fromm Goma uaa: Sm; eens. ies. Weinman oem teas

A | B AREA | COMMENTS|| SEQUENCE } Cy |
, | |

| | Pe ES(etjL------6 | 7) 8-11, 12---- ----72; 73----8f;
l | | | |

| I | | |
| [| | |
; 1 p>, 2 | 3 p 4| 1 | | | |

Figure 12-1. Standard COBOL Coding Sheets

Prime Character Set

The standard character set utilized by Prime is the ANSI, ASCII, 7-bit
character set. The entire set of characters, with octal, hexadecimal,
and punched card equivalents, is presented in Appendix E.

12 - tdi November 1977

SECTION 12 PDR3056

Collating Sequence

Each character in the Prime character set has a unique octal value

which establishes the collating sequence for the character set. This

sequence conforms. to the America Standards Code for Information Inter-

change (ASCII). The characters in Appendix E, the ASCII Character

Set, are arranged in ascending order from top to bottom.

LANGUAGE SPECIFICATIONS

COBOL Character Set

The standard COBOL language character set utilizes 52 characters as

follows: The numbers 0 through 9, the 26 uppercase letters of the English

alphabet, the space (blank), and 14 special characters. (A fifteenth

special character, the apostrophe, is used by Prime COBOL as an alternate

for the quotation mark). The complete COBOL character set is illustrated

in Figure 12-2. An outline of Prime COBOL symbol usage is given in

Appendix‘F.

The individual characters of the COBOL language are the basic units used

to form the major elements of COBOL, i.e., character-strings, separators,

words, statements, sentences, paragraphs, sections.

Character Strings

A character-string is a character or a sequence of contiguous characters

which forms a COBOL word, a literal, a PICTURE character-string, or a

comment-entry. A character-string is delimited by separators.

Picture Character-Strings

A PICTURE character-string consists of certain combinations of characters

in the COBOL character set used as symbols. See Data Division, PICTURE

for a description of the PICTURE character-string and the rules governing

its use. A punctuation character which is part of the specification of

4 PICTURE character-string is not considered as a punctuation character,

but as a symbol in that PICTURE character-string.

Word Formation

A COBOL word is a character-string of not more than 30 characters chosen

from the following set of 37 characters:

0 through 9 (digits)
A through Z (letters)
- (hyphen)

REV. 0 12 - 12

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

A word must begin with a letter; it may not end with a hyphen. Aword
is ended by a space, or by proper punctuation. A word may contain more
than one embedded hyphen; consecutive embedded hyphens are also permitted.

All words are either Reserved Words or programmer-defined words.

If a programmer-defined word is not unique, there must be a unique method
of reference to it by use of name qualifiers, e.g., TAX-RATE IN STATE-
TABLE. Primarily, a non-reserved word identifies a data item or field,
and is called a data-name. Other cases of non-reserved words are file-
names, condition-names, mnemonic-names.

Paragraph-name and section-name are programmer-defined words which are
not required to begin with an alphabetic character.

12 - 13 November 1977

SECTION 12 PDR3056

CHARACTER MEANING SPECIAL USAGE

0, 1,.., 9 digit COBOL word formation

figurative LOW-VALUE (s) value (nul) figurative constant
constants ZERO,ZEROS, ZEROES value (zero) figurative constant

(A, B,.., Z letter COBOL word formation

space blank punctuation

figurative SPACE(s) value (blank) figurative constant
| constants

r+ plus sign sign symbol/arithmetic/editing

- minus sign sign synbol/arithmetic/coding
symbol/editing/COBOL word formation.

* asterisk coding symbol/arithmetic/editing

= equal sign arithmetic/relation tests/editing

$ currency sign editing

> comma punctuation/editing

43 semicolon punctuation

period punctuation

" quotation mark punctuation

' apostrophe (quotation mark punctuation
substitution)

(left parenthesis punctuation

) right parenthesis punctuation

> greater-than relation tests

< less- than relation tests

/ virgule (slash) arithmetic/editing/coding symbol

q figurative QUOTE(s) value (quotation) figurative constant

constant HIGH-VALUE(s) value (delete) figurative constant

Figure 12-2. COBOL CHARACTERS

When the figurative constant LOW-VALUES is used with binary

In all other instances, it is
NOTE :

data, it is interpreted as numeric.
interpreted as alphanumeric.

REV. 0 12 - 14

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Reserved Words

A Reserved Word is one of a specified list of words which may be used
in COBOL source programs, but which may not appear as programmer-
defined words. They may only be used as specified in the general
formats.

The types of Reserved Words are:

Key words
Optional words
Connectives
Figurative constants
Special-character words

e Key Words

A key word is one whose presence is required when the statement in
which the word appears is used in a source program. Within each
statement, such words are uppercase and underlined.

e Optional Words

Within each format, uppercase words which are not underlined are
called optional words; i.e., they may appear at the user's option.
The presence or absence of an optional word does not alter the
meaning of the COBOL program in which it appears, but is required
as written when used.

e Connectives

The three types of connectives are:

1. Qualifier-connectives used to associate a data-name, condition-
name, text-name, or paragraph-name with its qualifier: OF, IN

2. Series connectives which may be used to link two or more con-
secutive operands: , (comma) or ; (semicolon)

3. Logical connectives used in the formation of conditions:
AND, OR

e Figurative Constants

Figurative constants are Reserved Words used to name and reference
specific constant values. <A figurative constant represents as many
instances of the associated character as are required in the context
of the statement.

The singular and plural forms are equivalent and may be used inter-
changeably.

12 - 15 November 1977

SECTION 12 PDR3056

A figurative constant may be used wherever "literal" appears in a
format description; except that, whenever the literal is restricted
to numeric characters, the only figurative constant permitted is
ZERO (ZEROS, ZEROES). A figurative constant must not be bounded
by quotation marks.

Values, and the Reserved Words used to reference them are:

ZERO
ZEROS = the ASCII character represented by Octal 260
ZEROES

LOW-VALUE __ < -.TOW-VALUES 7~ the character whose Octal representation is 000

HIGH-VALUE = the character whose Octal representation is 377
HIGH-VALUES

QUOTE = the quotation mark, whose Octal representation
QUOTES is 242 °
SPACE _SPACES the blank character represented by Octal 240

NOTE: ALL literal is not currently available.

e Special-Character Words

The arithmetic operators and relation characters are Reserved Words.
They comprise the following:

OPERATORS MEANING

Arithmetic:

+ Addition

- Subtraction
* Multiplication
/ Division

Relation:

= is equal to
< is less than

> is greater than
Table 12-1. Special-Character Words:

Arithmetic Operators/Relation Characters

REV. 0 12 - 16

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Programmer-Defined Words

A programmer-defined word is one supplied by the user to satisfy the
format of a clause or statement. Each is constructed according to the
rules for WORD FORMATION. The categories for programmer-defined words
include:

Level -numbers
Data-names

File-names
Condition-names
Mnemonic-names
Paragraph-names
Section-names

e Level Numbers

For the purposes of processing, the contents of a file are divided
into logical records. The level concept is inherent in the structure
of a logical record, in that it allows the specification of record
subdivisions for the purpose of data reference.

Once a subdivision is specified, it may be further subdivided to
permit more detailed data referral. The most basic subdivision of
a record, that which cannot be further subdivided, is an elementary

item. Data items which contain subdivisions are known as group items.

Level numbers are one or two character, programmer-definded words. All
level-numbers are numeric. They group items within the data hier-
archy of the Record Description. Since records are the most inclusive
data items, level~numbers for records begin at 01.

Less inclusive groups are assigned numerically higher level-nunbers.

Level-numbers of items within groups need not be consecutive. A
group whose level is 02 includes all groups and elementary items
described under it until a level number less than or equal to 02
is encountered.

Separate entries are written in the source program for each level.

The range of levels is 01 through 30. 1 through 9 may be written as

single nunbers.

Level numbers 77 and 88 are used in certain applications and are

defined together with additional level-number information in Section

15, DATA DIVISION.

A weekly timecard record illustrates the level concept. It is divided

into four major items: name, employee-number, date, and hours, with

more specific information appearing for name and date.

12 - 17 November 1977

SECTION 12 PDR3056

LAST NAME
NAME |FIRST-INIT _

 MIDDLE-INIT

EMPLOYEE NUM

TIME CARD -
DATE MONTH

DAY
YEAR

HOURS WORKED

The timecard record might be described (in part) by Data Division
entries having the following level-numbers, data names, and picture
definitions:

01 TIME-CARD.
02 NAME.

03 LAST-NAME PICTURE X(18).
03 FIRST-INIT PICTURE X.
03 MIDDLE-INIT PICTURE X.

02 EMPLOYEE-NUM PICTURE 99999.
02 DATE

03 MONTH PIC 99.
03 DAY PIC 99.
03 YEAR PIC 99.

02 HOURS-WORKED PICTURE 99V9

€ Data-names

In the preceding timecard example, TIME CARD, NAME, LAST NAME,
FIRST-INIT., etc. are data-names supplied by the programmer.

A data-name is a word assigned by the user to identify a data item
used in a program. A data-name always refers to a field of data,
not to a particular value.

A data-name is formulated according to the rules for WORD FORMATION;
it must begin with an alphabetic character.

A data-name or the Key Word FILLER must be the first word following
the level-number in each Record Description entry, as shown in the
following general format:

data-namelevel FILLER

REV. 0 12 - 18

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

This data-name is the defining name of the entry. It is the means
by which references to the associated data area (containing the
value of a data item) are made.

If some of the characters in a record are not used in the processing
steps of a program, then the data description for these characters
need not include a data-name. In this case, FILLER is written in
lieu of a data-name after the level number. FILLER can be used
only at the elementary level; ANSI standards do not permit its use
at a group level.

File-names

A file is a collection of data records containing individual records
of a similar class or application. A file-name is defined by an FD
entry in the Data Division's File Section. FD is a Reserved Word
which must be followed by a unique programmer-supplied word called
the file-name. Rules for composition of the file-name word are
identical to those for data-names (see WORD FORMATION). References
to a file-name appear in Procedure statements OPEN, CLOSE andREAD,
as well as in the Environment Division.

Condition-names

A condition-name is a name assigned to a specific value, set of
values, or range of values, within a complete set of values which
a data item may assume.

A condition-name is defined within the Data Division in level 88
entries. Rules for the formation of condition-name words are the
same as those specified in WORD FORMATION. Additional information
concerning condition-names, and those procedural statements em-
ploying them, is given in the sections on the DATA and PROCEDURE
DIVISIONS.

Mnemonic-names

A mnemonic-name is assigned in the ENVIRONMENT DIVISION under SPECIAL-
NAMES for reference in ACCEPT or DISPLAY statements. A mnemonic-
name is composed according to the rules for WORD FORMATION.

Paragraph-names and Section-names

Paragraph-names and Section-names are words which identify paragraphs
and sections, respectively, in the Procedure Division.

They may be up to 30 characters long, and may be all alphabetic, all
numeric, or some combination of the two.

12 - 19 November 1977

SECTION 12 PDR3056

REV.

Literals

Literals are not, strictly speaking, words; they are actual values.

A literal is a programmer-defined constant value. It is not iden-
tified by a data-name in a program, but is completely defined by
its own identity. A literal is either non-numeric or numeric.

1. Non-Numeric Literals

A non-numeric literal must be bounded by matching quotation
marks or apostrophes and may consist of any combination of
characters in the ASCII set, except apostrophe or quotation
marks, respectively. All spaces enclosed by the quotation
marks are included as part of the literal. A non-numeric
literal must not exceed 120 characters in length.

The following are examples of non-numeric literals:

"TLLEGAL CONTROL CARD"
"CHARACTER-STRING'
MMOS & DON'T'S'"

"PLEASE DON'T SQUEEZE THE CHARMIN'

Each character of a non-numeric literal (following the intro-
ductory delimiter) may be any character other than the delimiter.
That is, if the literal is bounded by apostrophes, then quotation
(") marks may be within the literal, and vice versa. Length of,
a non-numeric literal excludes the delimiters; length minimum is
one.

A succession of two "delimiters" within a literal is interpreted
as a single representation of the delimiter within the literal.
The last example above illustrates this point.

Only non-numeric literals may be ''continued'' from one line to
the next. When a non-numeric literal is of a length such that
it cannot be contained on one line of a coding sheet, the fol-
lowing rules apply to the next line of coding (continuation line):

A. A hyphen is placed in position 7 of the continuation
line.

B. A delimiter is placed in B Area preceding the con-
tinuation of the literal.

C. All spaces at the end of the previous line and any
spaces following the delimiter in the continuation
line and preceding the final delimiter of the literal
are considered to be part of the literal.

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

D. On any continuation line, A Area should be blank.

2. Numeric Literals

A numeric literal must contain at least one and not more than 18
digits, exclusive of sign and decimal point. A numeric literal may
consist of the characters 0 through 9 (optionally preceded by a
sign) and the decimal point. It may contain only one sign char-
acter and only one decimal point. The sign, if present, must
appear as the leftmost character of the numeric literal. If a
numeric literal is unsigned, it is assumed to be positive.

A decimal point may appear anywhere with the numeric literal, except
as the rightmost character. If a numeric literal does not contain
a decimal point, it is considered to be an integer.

The following are examples of numeric literals:

72 +1011 3.14159 -6 -.333 0.5

By use of the Environment specification DECIMAL-POINT IS COMMA, the
functions of the period and comma characters are interchanged, putting
the ''European'' notation into effect. In this case, the value of "pi"
would be 3,1416 when written as a numeric literal.

Qualification of Names

The user must be able to identify, uniquely, every name which defines an
element in a COBOL source program. The name may be made unique in its
spelling or hyphenation; or, procedural reference may be accomplished by
use of qualifier names.

In the example following, the data-name, YEAR, will require qualification
for procedural reference.

O01 EMPLOYEE-RECORD
02 NAME
02 ADDRESS
02 HIRE-DATE

03 YEAR
03 MONTH
03 DAY

02 TERMINATION-DATE
03 YEAR
03 MONTH
03 DAY

YEAR OF HIRE-DATE is a qualified reference which would differentiate between
year fields in HIRE-DATE and TERMINATION-DATE.

12 - 21 November 1977

SECTION 12 PDR3056

Qualifiers are preceded by the word OF or IN. Successive data-name or
condition-name qualifiers must designate lesser level-numbered groups
which contain all preceding names in the composite reference. That is,
HIRE-DATE must be a group item (or file-name) containing an item called
YEAR. Paragraph-names may be qualified by their containing section-
name. Therefore, two identical paragraph-names cannot appear in the
same section.

The rules for qualification are:

1. Each qualifier must be of a successively more inclusive level
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or a condition-name is assigned to more than
one data item in a source program, the data-name or condition-
name must be qualified each time it is referred to in the Proce-
dure Division (except in the REDEFINES clause where qualification
must not be used).

4. A paragraph-name must not be duplicated within a section.
When a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need not be qualified
when referred to from within the same section.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualifi-
cation. If more than one combination of qualifiers can make a name
unique, only one combination can be used. The complete set of
qualifiers for a data name must not be the same as any partial set
of qualifiers for another data-name.

7. A qualified name may only be written in the Procedure Division.

8. The maximum number of qualifiers is one for a paragraph-name,
five for a data-name or condition-name. File-names, mnemonic-names,
and section-names must be unique.

REV. 0 12 - 22

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Classes of Data

The five categories of data-items (alphabetic, numeric, numeric edited,
alpha-numeric, and alphanumeric edited), as specified in the PICTURE
clause, are grouped into three classes: Alphabetic, numeric, and alpha-
numeric. For alphabetic and numeric data items, classes and categories
are the same. The alphanumeric class includes the categories of alpha-
numeric edited, numeric edited and alphanumeric (without editing). Every
elenentary item except for an index data item belongs to one of the
classes and further to one of the categories. The class of a group item
is treated at object time as alphanumeric regardless of the class of ele-
mentary items subordinate to that group item. The following chart depicts
the relationship of the class and categories of data items.

LEVEL OF ITEM CLASS CATEGORY

Alphabetic Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Nonelementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited Alphanumeric

Figure 12-3. Classes of Data

12 - 23 November 1977

SECTION 12 PDR3056

Data Levels

The two major levels of data are group and elementary:

Group Item

A group item is defined as one having further subdivisions, so that it
contains one or more elementary items. In addition, a group item may
contain other groups. An item is a group item if, and only if, its
level number is less than the level number of the immediately succeeding
item. If an item is not a group item, then it is an elementary item.
The maximum size of a group is 32,767 characters. A group cannot contain
a PICTURE clause.

Elementary Item

An elementary item is a data item containing no subordinate items. An
elementary item must contain a PICTURE clause, except when usage is des-
cribed as COMPUTATIONAL (binary), or INDEX.

The classes of data are: Alphabetic, mumeric, alphanumeric. Within these,
the categories of data are: Alphabetic, numeric, numeric edited, alpha-
numeric.

Alphabetic Item

An alphabetic item consists of any combination of the 26 characters of the
English alphabet and the space character.

Numeric Item

A maximum number of 18 digits is permitted; the exact number of digit
positions is defined by the specification of 9's in the picture-string.
For example, PICTURE 999 defines a 3-digit item whose maximum decimal
value is nine hundred and ninety-nine.

Numeric Edited or Report Item

A report item is an edited mumeric item containing only digits and/or
special editing characters. It must not exceed 30 characters in length.
A report item can be used only as a receiving field for numeric data.

Alphanumeric Edited Item

This is an alphanumeric item with editing characters contained in the
PICTURE description.

Alphanumeric Item

An alphanumeric item consists of any combination of characters, making a
character string.

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Data Representation

Data is further categorized by the format in which it is stored in the
computer. The formats are: external decimal, internal decimal, binary
and index. These formats are directly related to usage, as outlined
in the Table 12-2.

External Decimal Item

An external decimal item is one in which one byte (8 binary bits) is
employed to represent one digit. It can be a group or an elementary
item. The USAGE for an external decimal item is always DISPLAY.

Internal Decimal Item (Packed DECIMAL)

An internal decimal item is packed decimal format. It is attained
by inclusion of the COMPUTATIONAL-3 USAGE clause.

A packed decimal item defined by n 9's in its PICTURE occupies a+]
bytes in memory. All bytes, except the rightmost, containa
pair of digits, each digit being represented by the binary equi-
valent of a valid digit value from f to 9. For this reason, when
using packed decimal, the optimum space allocation should be an
odd size field.

In the rightmost byte of a packed item, the left half contains the
item's low-order digit, while the right half contains a representation
of the sign. An operational. sign capabilityis always present for
‘a packed field, even if the picture lacks the leading character S.

Binary Item

A binary item uses the base 2 system to represent an integer not in
excess of 32,767. It occupies one 16-bit word. The leftmost bit of
the reserved area is the operational sign. No picture clause is
required; usage is COMPUTATIONAL. If a PICTURE clause is specified,
and a decimal point is included, DISPLAY usage is assumed.

Index Item

An index item has no picture; usage is INDEX. It is equivalent to
COMPUTATIONAL.

12 - 25 November 1977

SECTION 12 PDR3056

USAGE IS MACHINE DESCRIPTION

DISPLAY EXTERNAL DECIMAL

COMPUTATIONAL BINARY

INDEX BINARY

COMPUTATIONAL

-

3 INTERNAL DECIMAL -

Table 12-2. Data Representation and Usage

Standard Alignment Rules

1. If the receiving data item is described as numeric:

A. The data is aligned by decimal point and is moved to the

receiving digit positions with zero fill or truncation

at either end, as required.

B. When an assumed decimal point is not explicitly spec-

ified, the data item is treated as if it had an assumed

decimal point immediately following its rightmost digit.

It is aligned as in Rule 1-A above.

2. If the receiving data item is numeric edited, the data moved

to the edited data item is aligned by decimal point. Zero filling

or truncation, at either end, occurs as required within the re-

ceiving character positions of the data item, except where editing

requirements cause replacement of the leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric

edited data item), alphanumeric edited or alphabetic, the sending

data is moved to the receiving character positions and aligned at

the leftmost character position in the data item. Space fill or

truncation occurs to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these standard

rules are modified as described under JUSTIFIED, Data Division.

REV. 0 12 - 26

EXAMPLES: (f=blank, (*)=implied decimal

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

DATA TO BE RECEIVING FIELD RECEIVING FIELD
STORED BEFORE TRANSFER AFTER TRANSFER

ABC PQRSTUVWXYZ ABCBBBBRBBE
ABCDEF1 234 PQRSTUVWXYZ ABCDEF1234%
AAABBBCCCDD PQRSTUVWXYZ AAABBBCCCDD
AAABBBCCCDDDE PQRSTUVWXYZ AAABBBCCCDD

The examples above show the results of moving various length alphabetic
and alphanumeric items into an eleven-character field.

DATA TO BE RECEIVING FIELD RECEIVING FIELD
STORED BEFORE TRANSFER AFTER TRANSFER

34 987°654 003*400
345°678 9877654 545°678
12345*67890 987°654 345°678
34% 9877654 034~000
374 ABC234 SAPBRB
"1234567890! ABC234 123456
1234567890 987°654 890~000
1234567890 9876°54 7890700

The examples above show the results of moving various length numeric
items into a six-character field. The compiler assumes a decimal point
at the rightmost end of the field to be stored.

Algebraic Signs

Algebraic signs fall into two categories: operational signs and editing
Signs. Operational signs are associated with Signed numeric data items
and signed numeric literals to indicate their algebraic properties.
Editing signs appear on edited reports to identify the sign of the item.

November 1977

SECTION 12 PDR3056

The SIGN clause permits the programmer to state explicitly the location

of the operational sign. Editing signs are inserted into a data item

through the use of the control symbols of the PICTURE clause.

Arithmetic Expressions

e Definition

An arithmetic expression can be an identifier of a numeric elementary

item, a numeric literal, such identifiers and literals separated by

arithmetic operators, two arithmetic expressions separated by an

arithmetic operator, or an arithmetic expression enclosed in paren-

theses. Any arithmetic expression may be preceded by a unary operator.

Permissible combinations of variables, numeric literals, arithmetic

operator and parentheses are given in Table 12-3.

Identifiers and literals appearing in an arithmetic expression must

represent either numeric elementary items or numeric literals on

which arithmetic may be performed.

e Arithmetic Operators

The specific characters below represent the binary and unary arith-

metic operators.
space.

Binary Arithmetic
Operators

+

*

/

Unary Arithmetic
Operators

+

Parenthesis

()

REV. 0 12

They must be preceded and followed by at least one

Meaning

Addition
Subtraction
Multiplication
Division

Meaning

The effect of multiplication by
numeric literal +1.

The effect of multiplication by
numeric literal -l.

Meaning

Used to enclose expressions to

control the sequence in which
conditions are evaluated.

28

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Rules

1. Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within paren-
theses are evaluated first; and within nested parentheses, evaluation
proceeds from the least inclusive set to the most inclusive set. When
parentheses are not used, or parenthesized expressions are at the same
level of inclusiveness, the following hierarchical order of execution
is implied:

Ist - Unary plus and minus
2nd - Multiplication and Division
3rd - Addition and subtraction

When the sequence of execution is not specified by parentheses, the
order of execution of consecutive operations of the same hierarchical
level is from left to right.

EXAMPLE:

A+B/ (C-D*E)

This expression is evaluated in the following ordered sequence:

(1) Compute the product D times E, considered as intermediate
result RI.

(2) Compute intermediate result R2 as the difference C-R1.

(3) Divide B by R2, providing intermediate result R3.

(4) The final result is computed by addition of A to R3.

Without parentheses, the expression

At+B/C-D*E

is evaluated as:

Rl = B/C
R2 = A+R1
R3 = D&*E

final result = R2-R3

When parentheses are employed, the following punctuation rules should
be used:

(1) A left parenthesis is preceded by one or more spaces.

(2) A right parenthesis is followed by one or more spaces.

12 - 29 November 1977

SECTION 12 PDR3056

The expression A-B-C is evaluated as (A-B)-C. Unary operators

are permitted, e.g.:

COMPUTE A = +C +4.6. COMPUTE X = -Y.

2. Operators, variables, and parenthesis may be combined in arith-

metic expressions as summarized below in Table 12-3.

FIRST SECOND SYMBOL

SYMBOL Variable

|

* / - + Unary + or - ()

Variable X P X X P

x / = - P X P P X

Unary + or - P X X P X

(P X P P X

a) X P X X P

Table 12-3. Symbol Combinations in Arithmetic Expressions

In the table above, P = permissible, X = invalid, Variable indicates

an identifier or literal.

3. An arithmetic expression may begin only with the symbol (+ -

or a variable; it may end only with a) or a variable. There must

be one-to-one correspondence between left and right parentheses of

an arithmetic expression such that each left parenthesis is to the

left of its corresponding right parenthesis.

REV. 0 12 - 30

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. These have several common features.

1. The data descriptions of the operands need not be the same;
any necessary conversion and decimal point alignment is supplied
throughout the calculation.

2. The maximum size of each operand is eighteen (18) decimal digits.
The composite of operands, which is a hypothetical data item resulting
from the superimposition of specified operands in a statement aligned
on their decimal points, must not contain more than eighteen decimal
digits.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an INSPECT ,
MOVE, SET, STRING; UNSTRING, or other statements share a part of their storage

_ areas, the result of the execution of such a statement is undefined and un-
predictable.

Conditional Expressions

Definition

Conditional expressions identify conditions which are nested to enable
the object program to select between alternate paths of control depend-
ing upon the truth value of the condition. Conditional expressions are
specified in the IF, PERFORM and SEARCH statements. There are two cate-
gories of conditions associated with conditional expressions: simple
conditions and compound conditions.

Simple Conditions

The simple conditions are the relation, class, condition-name, and sign
conditions. A simple condition has a truth value of 'true' or 'false'.
The inclusion in parentheses of simple conditions does not change the
simple truth value.

1. Relation Condition

A relation condition has the format:

operand relation operand

Where operand is a data-name, literal or figurative-constant.

12 - 31 November 1977

SECTION 12 PDR3056

A relation condition has a truth value of 'true' if the relation

exists between the operands. Comparison of two numeric operands

is permitted regardless of the formats specified in their respective

USAGE clauses. However, for all other comparisons, the operands

must have the same usage.

Relation has three basic forms, expressed by the relational symbols:

equals (=), less than (<), or greater than (>).

Another form of relation which may be used involves the Reserved Word

NOT, preceding any of the three relational symbols. Thus, the six

relations in conditions are:

Relation Meanin

is equal to
< is less than
> is greater than

NOT = is not equal to

NOT < is greater than, or equal to

NOT > is less than, or equal to

Usages of Reserved Word phrasings EQUAL TO, LESS THAN, and GREATER

THAN are accepted equivalents of = < > respectively. Any form of the

relation may be preceded by the word IS, optionally.

NOTE: Although required where indicated in formats, the relational

characters '>', '<', and '=' are not underlined in this text.

The first operand of a conditional expression is called the subject

of the condition; the second operand is called the object of the

condition. The relation condition must contain at least one reference

to a variable.

The relational operator specifies the type of comparison to be made

in a relation condition. A space must precede and follow each reserved

word comprising the relational operator. When used, 'NOT' and the

next key word or relation character form one relational operator de-

fining the comparison to be executed for truth value; e.g., "NOT EQUAL'

is a truth test for an 'unequal' comparison; 'NOT GREATER' is a truth

test for an 'equal' or 'less' comparison.

The relational condition may take two forms; numeric comparisons and

non-numeric comparisons.

A. Numeric Comparisons

For numeric operands, a comparison is made with respect to

their algebraic value. The length of the literal or arith-

metic expression operands, in terms of number of digits re-

presented, is not significant. Zero is considered a unique

value regardless of the sign.

REV. 0

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Comparison of these operands‘is permitted irrespective
of the manner in which their usage is described. Unsigned
numeric operands are considered positive for purposes of
comparison.

The data operands are compared after alignment of their
decimal positions.

An index-name or index item may appear in a numeric
comparison.

Non-Numeric Comparisons

For non-numeric Comparisons, non-equi-length comparisons are
permitted, with spaces being assumed to extend the length of
the shorter item, if necessary. Relationships are defined
in the ASCII code; in particular, the letters A-Z are in an
ascending sequence, and digits are less than letters. Refer
to Appendix F for all ASCII character representations and
the Prime collating sequence.

The data class (see Data Representation) of the two operands,
where one is a literal, must be the same. For example, a
numeric operand may not be compared to a non-numeric literal.

EXAMPLE:

§1 TEST-FIELD PIC 9

MOVE 1 TO TEST-FIELD

IF TEST-FIELD = '1'

The coding above will fail. The data class of the literal
should be set up as numeric. Thus,

IF TEST-FIELD = 1

will execute properly.

SECTION 12 | PDR3056

2. Class Condition

The class condition determines whether the operand is numeric or
alphabetic. If numeric, it consists entirely of the characters
To's t1', '2', ..., '9', with or without the operational sign. If
alphabetic, it consists entirely of the characters 'A', 'B', 'C',

., 'Z' and space. The general format for the class conditions is
as follows:

data-name IS [NOT] (AAA

The NUMERIC test is valid only for a group, decimal, or character
item. The ALPHABETIC test is valid only for a group or character
item.

The class condition is equivalent to comparing the data contained
in data-name to zero in order to determine the truth or falsity of
the stated condition. .

3, Condition-name Condition

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The general format for the
condition-name condition is as follows, where condition-name is
defined by a level 88 Data Division entry:

IF condition-name statement(s).

If the condition-name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not
its value falls in this range, including the end values.

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to
the condition-name equals the value of its associated conditional
variable. Condition-names are allowed in the File Section and
Linkage Section where VALUE clauses are not.

4. Sign-Conditicn

The sign condition determines whether or not the algebraic value of
an arithmetic expression is less than, greater than, or equal to
zero. The general format for a sign condition is as follows:

POSITIVE}
data-name IS [NOT] NEGATIVE

ZERO

REV. 0 12 - 34

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

Compound Conditions

A compound condition is a concatenation of simple conditions,
combined conditions and/or complex conditions with logical con-
nectors (logical operators 'AND' and 'OR') or negating these
conditions with logical negation (the logical operator 'NOT').
The truth of a complex condition is that truth value which results
from the interaction of all the stated logical operators on the
individual truth values of simple conditions, or the intermediate
truth values of conditions logically connected or logically negated.
Five levels of parenthesis are permitted in compound conditions.

A compound condition has the format:

condition-1 aa [NOT] condition-2

The logical operators and their meanings are:

Logical Operator Meaning

AND -. Logical conjunction; the truth value is 'true' if
both of the conjoined conditions are true; 'false'
if one or both of the conjoined conditions is false.

OR Logical inclusive OR; the truth value is 'true' if
one or both of the included conditions is true;
'false' if both included conditions are false.

The reserved words AND or OR permit the specification of a series
of relational tests, as follows:

Individual relations connected by AND specify a compound
condition which is met (true) only if all the individual
relationships are met. |

Individual relations connected by OR specify a compound
condition which is met (true) if any of the individual
relationships are met.

The compound condition below contains both AND and OR connectors.

IF X = Y AND FLAG = 'Z' OR SWITCH = §@ GO TO PROCESSING.

Execution will be as follows, depending on various data values:

12 - 35 November 1977

SACTION 12 PDR3056

Data Value EXECUTES
X Y FLAG SWITCH PROCESSING?

16; 19 'Z! 1 YES
1p} 11 'Z! 1 NO
14; 11 'Z! p YES
19 16 'pt 1 NO
6 3 'p! p YES
6 6 ‘pr 1 NO

1. Evaluation

A. Evaluation of individual simple conditions is done first.

B. AND-connected simple conditions are next evaluated as a
Single result.

C. OR and its adjacent conditions (or previously evaluated
results) are then evaluated.

EXAMPLES:

REV. 0

(1) A< BORC DORE NOT > F

The evaluation is equivalent to (A<B) OR (C=D) OR (E<F) and is
true if any of the three individual parenthesized simple condi-
tions is true.

(2) WEEKLY AND HOURS NOT = @

The evaluation is equivalent, after expanding level 88 condi-
tion-name WEEKLY, to

(PAY-CODE = 'W') AND (HOURS = 9)

and is true only if both the simple conditions are true.

(3) A= 1 AND B= Z ANDG > -3

OR P NOT EQUAL TO "SPAIN"

is evaluated as

[(A = 1) AND (B = 2) AND (G >-3)]

OR (P = ''SPAIN")

12 - 36

_ PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

If P = "SPAIN", the compound condition can only be true if all

three of the following are true:

A
B
G

1
2

Vv -3

However, if P is not equal to ''SPAIN", the compound condition is

true regardless of the values of A, B and G. |

Other Considerations

A. Multiple Condition

Multiple Condition refers to compound conditions grouped in

parenthesis. Where more than 5 levels of parenthesis are

required, implicit grouping, condition-names, nested IF

statements, or some combination should be substituted.

For example, in the statement

IF A=B AND (C=D or E=F)

implicit grouping may be achieved by coding

IF A=B AND C=D OR A=B AND E=F.

Negating Conjunction

The use of NOT as a negating conjunction is not permitted

in this compiler at this time. That is, IF A=B AND NOT |

C=D, is invalid. The reader should substitute suggested

solutions for multiple conditions outlined above.

The use of NOT as a relation is permitted. Therefore, it

is correct to code IF A=B AND C NOT=D, but incorrect to

code IF A=B AND NOT C=D.

Implied Subjects (Abbreviated Combined Relation Conditions)

EXAMPLES:

IF A=B or C OR D (IMPLIED SUBJECT)

IF A=B OR A=C OR A=D (EXPLICIT SUBJECT)

Implied subjects or relations will be available at Revision

14.1. At this time, the statement IF A=B ORC, is invalid.

It is suggested that the user employ condition-names, nested

IF's, or full coding as alternatives.

12 - 37 November 1977

SECTION 12 PDR3056

Subscripting

Subscripts can be used only when reference is made to an individual ele-
ment within a list or table of like elements which have not been assigned
individual data-names (see the OCCURS clause, DATA DIVISION).

The subscript can be represented either by a numeric literal which is an
integer, or by a data-name. The data-name must be a numeric elementary
item representing an integer. When the subscript is represented by a
data-name, data-name may be qualified but not subscripted.

The subscript may be signed and, if signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first ele-
ment of the table. The next sequential elements of the table are pointed
to by subscripts whose values are 2, 3, The highest permissible
subscript value, in any particular case, is the maximum number of occur-
rences of the item as specified in the OCCURS clause.

The subscript which identifies the table element is delimited by the
balanced pair of separators, left parenthesis and right parenthesis,
following the table element data-name. When more than one subscript
is required, they are written in the order of successively less in-
clusive dimensions of the data organization.

The format is:

{28earane (subscript-1 | subscript-2 [, sabscript-5]])

Indexing

References can be made to individual elements within a table of like ele-.
ments by specifying indexing for that reference. An index is assigned to
that level of the table by using the INDEXED BY phrase in the definition
of a table. A name given in the INDEXED BY phrase is known as an index-
name and is used to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the associated
table. An index-name must be initialized before it is used as a table
reference. An index-name can be given an initial value by either a SET,
or a Format 4 PERFORM statement.

Direct and Relative Indexing

Direct and Relative indexing are supported by Prime COBOL as follows:
‘Direct indexing is specified by using an index-name in the form of a sub-
script. Relative indexing is specified when the index-name is followed
by the operator + or -, followed by an unsigned integer numeric literal
all delimited by the balanced pair of separators left parenthesis and
right parenthesis following the table element data-name. The occurrence
number resulting from relative indexing is determined by incrementing

REV. 0 . 12 - 38

PDR3056 FUNDAMENTAL CONCEPTS OF COBOL

or decrementing by the value of the literal, the occurrence number re-

presented by the value of the index. When more than one index-name is

required, they are written in the order of successively less inclusive

dimensions of the data organization.

When a statement is executed which refers to an indexed table element,

the value in the associated index must neither be less than zero, nor

greater than the highest occurrence number of an element in the table.

This restriction also applies to the values resultant from relative
indexing.

Restrictions on Qualification, Subscripting and Indexing Are:

e A data-name must not itself be subscripted nor indexed when that data-
name is being used as an index, subscript or qualifier.

e Indexing is not permitted where subscripting is not permitted.

e An index may be modified only by the SET, SEARCH, and PERFORM state-

ments. Data items described by the USAGE IS INDEX clause permit

storage of the values associated with index-names. Such data items

are called index data items.

The general format for indexing is:

condition-name literal-1
{2at6tion | (eer-1 [{+} literal-2 1}

—

index-name-2 [{+} literal-4 | wee)
literal-3

L.

index-name-3 [{+} literal-6] —)
literal-5 L

12 - 39 November 1977

NUCLEUS

REFERENCE

Sections 13, 14, 15, and 16, which follow, concern themselves with
the four divisions of a COBOL program: The Identification Division,
The Environment Division, The Data Division, The Procedure Division,
respectively.

At the completion of each section, source coding for the corresponding
division of a sample program, REF2, is presented as an example. At
the close of Section 16, PROCEDURE DIVISION, the reader will find a
print-out of the 64V mode Listing File for the entire REF2 program.

PDR3056 IDENTIFICATION DIVISION

SECTION 13,

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION

FUNCTION:

The Identification Division must be included in every COBOL source program
as the first entry. This division identifies the source program and the
resultant output listings. Additional user information, such as the date
the program was written or the program author, may be included under the
appropriate paragraph(s) in the general format shown below.

FORMAT :

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name. (no special characters in name)

[AUTHOR. comments.]

[INSTALLATION. comments.]

[DATE-WRITTEN. comments.]

[DATE-COMPILED. comments. |

[SECURITY. comments.]

[REMARKS. comments.]

SYNTAX RULES:

1. The {dentification Division must begin with IDENTIFICATION
DIVISION followed by a period and a space.

2. The PROGRAM-ID paragraph is required and must follow immed-
iately after the division header.

3. Program-name follows the general rules for WORD FORMATION.
It may be any alphanumeric string, but the first must be alpha-
betic. Special characters, including the hyphen, are prohibited.
(Only the first six characters of program-name are retained by
the compiler.)

4. All remaining paragraphs are optional. When included, these
must be presented in the order shown above.

13 - il November 1977

SECTION 13 PDR3056

GENERAL RULES:

1. Fixed paragraph names identify the type of information contained
in the paragraph.

2. The comments entry can be any combination of characters. Use of
the hyphen in the continuation indicator area is not permitted;
however, the comments entry can appear on one or more lines.

REV. 0 13 - 2

PDR3056 IDENTIFICATION DIVISION

equence
(PAGE) [(SERIAL)

4

zIA BEKAMPLE. COBOL Statement
rat:) 36 4 44 4

011

012

0:3

014

0;5

Of

0|7

8

‘9

14

12:

14

13 - 3 November 1977

PDR3056 ENVIRONMENT DIVISION

SECTION 14

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION

FUNCTION:

The Environment Division defines those aspects of a data processing
problem which are dependent upon hardware configurations and con-
siderations.

FORMAT:

[ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.:
[SOURCE-COMPUTER. computer-name.|

[OBJECT-COMPUTER. computer-name.|

[SPECITAL-NAMES. [CONSOLE IS mnemonic-name]

[,CURRENCY SIGN ISliteral]

[, DECIMAL-POINT IS_COMMA]

[ASCII IS NATIVE]].]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{SELECT filename ASSIGN TO device

AREA
[;RESERVE integer [as]

SEQUENTIAL
[;ORGANIZATION IS 4INDEXED

RELATIVE

SEQUENTIAL
[;ACCESS MODE IS RANDOM]

DYNAMIC

[FILE STATUS IS data-name-1] }...

[T-O-CONTROL.

SAME AREA FOR filename-1, filename-2,...]]

14 - I November 1977

SECTION 14 PDR3056

SYNTAX RULES;

1. The Enyironment Division must begin with the header ENVIRONMENT
DIVISION, followed by a period and a space.

2. Mandatory sequence of required and optional paragraphs is shown
in the above format.

NOTE: In the rare instance when hardware-dependant configurations
and considerations do not apply, the entire ENVIRONMENT DIVISION may
be omitted.

GENERAL RULES:

1. Each section within the Environment Division begins with its
section-name, followed by the word SECTION, and each paragraph within
each section begins with its paragraph-name.

2. The sections and paragraphs in the Environment Division are dis-
cussed separately under their appropriate headings on the following
pages.

REV. 0 14 - 2

PDR3056 ENVIRONMENT DIVISION

{CONFIGURATION SECTION.

This section is optional. It is required only if one or more of the following
three paragraphs is used.

1. [SOURCE-COMPUTER. computer-name.]

Computer-name serves only as a comments entry. It is used to identify
the computer for which the COBOL program is written.

2. [OBJECT-COMPUTER. computer-name.|

Computer-name serves only as a comments entry. It is used to identify
the computer on which the COBOL program will be executed.

3. [SPECIAL-NAMES.

This paragraph is optional. It is required only if one or more of the
following four statements is used.

A. [CONSOLE IS memonic-name]

Mnemonic-name is a programmer-defined word which will be
associated with CONSOLE throughout the program.

EXAMPLE:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS TTY.

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY.

The coding above would cause the field, YEAR OF HIRE-DATE, to be
output on the CONSOLE.

NOTE: CONSOLE IS is an optional statement. If omitted, the
computer will automatically associate CONSOLE (terminal) with

ACCEPT and DISPLAY.

14 - 3 November 1977

SECTION 14 PDR3056

REV.

B. [CURRENCY SIGN JSliteral]

Literal represents the currency sign to be used in the PICTURE
Clause. It is a single character, non-numeric literal which will
be used to replace the dollar sign as the currency sign. The
designated character may not be a quote mark, or any of the char-
acters defined for PICTURE representations.

C. [DECIMAL-POINT IS COMMA]

The ''European'' convention of separating integer and fraction posi-
tions of numbers by the comma character, rather than the decimal
point or period, is specified by employment of the DECIMAL-POINT
IS COMMA clause.

NOTE: The Reserved Word IS, is required in entries for currency
sign definition and decimal-point convention specification.

D. [ASCII IS NATIVE]].]

The entry, ASCII IS NATIVE, specifies that the data representation |
adheres to the American Standard Code for Information Interchange
as shown in Appendix F. This convention is assumed even if the
entry is not present.

14 - 4

PDR3056 ENVIRONMENT DIVISION

[INPUT-OUTPUT SECTION.

The INPUT-OUTPUT SECTION is used when there are external data files. It

allows specification of peripheral devices and information needed to

transmit and handle data between the devices and the program. The section

has two paragraphs: FILE-CONTROL and I-O-CONTROL.

FILE-CONTROL

This entry names each file and specifies its device medium, allowing

specific hardware assignments. It can also specify other file-related

information, such as number of input-output areas allocated, file

organization, and method of file access. The format chosen is dependent

upon file organization. Each file requires one SELECT statement and the

appropriate sequence of optional clauses.

FORMAT 1:

SELECT file-name

ASSIGN TO device |

[; RESERVE integer-1 ares]

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name].

FORMAT 2:

SELECT £file-name

ASSIGN TO device

. . _ AREA
[; RESERVE integer-1 Ama.| |

; ORGANIZATION IS RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-1]

; ACCESS MODE IS
RANDOM

[; FILE STATUS IS data-name-2].

14 - 5 November 1977

SECTION 14 PDR3056

FORMAT 3:

SELECT file-name

ASSIGN TO device ...

[; RESERVE integer-1 Ee]

; ORGANIZATION IS INDEXED

SEQUENTIAL
; ACCESS MODE IS. «RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

[; FILE STATUS IS data-name-3]

A. SELECT filename ASSIGN TO device ...

Filename is a programmer-defined name described in the DATA
DIVISION. Each DATA DIVISION FD entry must be specified
once in a SELECT statement and only as a filename. The
ASSIGN to devices clause associates the file with a storage
medium or input/output hardware. Allowable devices appear
in Table 14-1.

ical Device
aximum No.

Device of Unit Hardware Device

TERMINAL - CRT TERMINAL
TTY TERMINAL

READER - CARD READER (for. future designation)
PRINTER - SYSTEM PRINTER
PUNCH - CARD PUNCH (for future designation)
MT‘7 - 7? TRACK MAG. TAPE DRIVE (MT7 is currently

interpreted as MT9
MT9 9 TRACK MAG. TAPE DRIVE
PFMS* 0-7 DISK STORAGE
OFFLINE-PRINT 0-7 FORMS PRINTER OUTPUT

*PFMS = PRIME FILE MANAGEMENT SYSTEM

Table 14-1. Device Specifications

REV. 0 14 - 6

PDR3056 ENVIRONMENT DIVISION

EXAMPLES: SELECT filename ASSIGN TO TERMINAL.
: SELECT filename ASSIGN TO PFMS.

SELECT FILENAME ASSIGN TO MT9.

B. [RESERVE integer a|

The RESERVE clause allows the user to specify the number of input-

eutput buffer areas to be allocated. For tape applications only,

the integer value can be from 1 to 7, permitting up to 7 buffers

in memory at one time.

If tape is not involved, the integer must be specified as one.

Should the RESERVE clause be omitted, the default of one buffer

area will be assigned by the compiler.

SEQUENTIAL
C. [ORGANIZATION IS RELATIVE]

INDEXED

The ORGANIZATION clause specifies the type of file organization.

When omitted, the default is sequential.

SEQUENTTAL
D. [ACCESS MODE IS RANDOM |

DYNAMIC

The sequence in which records are accessed is described through

the use of the ACCESS MODE clause. When omitted, the default is

sequential. |

E. [FILE STATUS IS data-name].

The FILE STATUS clause permits the user to specify a two character,

unsigned field (data-name) described in the Working Storage Section.

When the FILE STATUS clause is specified in the FILE-CONTROL para-

graph, a value is moved by the operating system into data-name. This

occurs after the execution of every statement which references that

file either explicitly or implicitly. Specifically, the FILE STATUS

data item is updated during the execution of the OPEN, CLOSE, READ,

WRITE, REWRITE, DELETE or START statement. This value in data-name

indicates to the COBOL program the status of execution of the state-

ment.

14 - 7 November 1977

SECTION 14 PDR3056

The leftmost character of the FILE STATUS data item is known as
status key 1; the rightmost character is status key 2. Status
key 1 is set to indicate a specific condition upon completion of
the input-output operation; status key 2 further describes the
results of the operation.

Status Key 1 settings:

'0' indicates Successful’ Completion -
'1' indicates At End
'3' indicates Permanent Error
'9' indicates Implementor Defined

NOTE: A setting of 9 indicates that the input-output statement
was unsuccessfully executed as a result of a condition which is
specified by the implementor. This value is used only to indicate
a condition not otherwise specified by the values of status key 1,
or by valid combinations of the values of status key 1 and status
key 2. When status key 1 contains a value of '9', indicating an
implementor-defined condition, the value of status key 2 is defined
by Prime.

Valid combinations of key values for each typeof file organization
are shown in Appendix D, File Status Key Definitions.

[1-0-CONTROL.
The I-O-CONTROL paragraph is optional unless SAME AREA is used.

SAME AREA FOR filename-2, filename-3... .]

The SAME AREA clause allows the programmer to share the same I-O buffer
areas for files which are not open concurrently. No file may be listed
in more than one SAME AREA clause.

REV. 0 14 - 8

PDR3056 ENVIRONMENT DIVISION

. Sequence . COBOL Statement

(PAGE) 36 40 44 4

iA
|e

j
o
o

In
[
—

gw
fo

o
[
t
m
=

Jo
[
0
f
o
[N
t]

oO
So

fo
o

[N
E

TO
O

jo
r

|

|

j

|

1

]

1

|

l

1!

2 o
14-9 November 1977

DPR3056 DATA DIVISION

SECTION 15

DATA DIVISION

DATA DIVISION

FUNCTION:

The Data Division of the COBOL source program defines the nature and
characteristics of the data to be processed by the program. Data to
be processed falls into three categories:

1. That which is contained in files and enters or leaves the
internal memory of the computer from a specified area or areas.

2. That which is developed internally and placed into inter-
mediate or working storage.

3. Constants which are defined by the user.

The Data Division consists of three optional sections. If used, they
must appear in the following order:

1. FILE SECTION. Files and records in files are described.

2. WORKING-STORAGE SECTION. Memory space is allocated for the
storage of intermediate processing results.

3. LINKAGE SECTION. Data available to a called program is described.

FORMAT :

DATA DIVISION.

[FILE SECTION.

[file description entry
record description entry...]...]

[WORKING-STORAGE SECTION.

level 77 data description entry
data item description entry

[LINKAGE SECTION.

level 77 data description entry
data item description entry ore

15 - 1 November 1977

SECTION 15 PDR3056

SYNTAX RULES:

1. The Data Division must begin with the header DATA DIVISION, fol-

lowed by a period and a space.

2. When included, optional sections of the Data Division must be
in the same order as shown above.

GENERAL RULES:

REV.

1. Each section within the Data Division begins with its section-
name, followed by a period and a space.

2. Sections and statements in the Data Division are discussed on

the following pages in the same order in which they occur in the

division. File and Record Description entries are presented in the

File Section; the same Record Description entry format is also applied

to the Working-Storage and Linkage Sections.

PDR3056 DATA DIVISION

FILE SECTION

FUNCTION:

The File Section of the Data Division defines the structure of data
files. Each file is defined by a File Description entry, and by one
or more Record Description entries.

FORMAT:

FILE SECTION.

ttite-description-entxy frecord-description-entry]...

SYNTAX RULES:

1. The File Section is optional. If used, it must begin with the
words FILE SECTION, followed by a period and a space.

2. The section consists of the header, followed by one or more
File Description entries (FD). Each FD must be followed by Record
Description entries for all records within the file described by
the FD entry.

GENERAL RULE:

Each file associated with an input-output device must be represented
by a File Description entry (see FILE-CONTROL.)

15 - 3 November 1977

SECTION 15 PDR3056

FILE DESCRIPTION

FUNCTION :

The file description provides information concerning the physical struc-

ture, identification, and record names pertaining to a given file.

FORMAT :

FD file-name [UNCOMPRESSED]

| RECORD IS TANDARD
LABEL FEDORDS ane} {cane

, CHARACTERS
[BLOCK CONTAINS integer-1 {ReOoRS}]

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS|

[VALUE OF FILE-ID IS literal-1]

[OWNER IS literal-2]

[LIFE-CYCLE IS integer-4]

roars {RECORDSARE data-name-1 [data-name-2] ...]

[CODE-SET IS ASCII].

SYNTAX RULES:

1. The level indicator FD identifies the beginning of a File Des-

cription and must precede the file-name.

2. File-name follows the general rules for WORD FORMATION.

3. The UNCOMPRESSED option is used only with READ files. It allows
a PRWFIL READ, rather than an RDASC READ.

4. The FD entry is a sequence of clauses which must be terminated

by a period.

5. The LABEL RECORD clause is required; other clauses which follow

file-name are optional.

REV. 0 15 - 4

PDR3056 DATA DIVISION

6. If the DATA RECORD clause is used, one or more Record Description
entries must follow the File Description entry.

7. These rules apply to the overall File Section. Clauses in the
File Description are presented on the following pages in the same
order as they appear above.

8. The LIFE-CYCLE IS clause is not implemented at this revision.
However, this clause is acceptable to the compiler.

15 - 5 November 1977

SECTION 15 PDR3056

UNCOMPRESSED

FUNCTION:

The UNCOMPRESSED clause enables a disk READ based on record length,
rather than on compression control characters.

FORMAT:

FD file-name [UNCOMPRESSED]

GENERAL RULES:

1. The UNCOMPRESSED clause is optional. When used, it enables a
READ based on record length (PRWFIL), rather than compression
control characters (RDASC).

2. The UNCOMPRESSED option must be used when reading sequential I-0
files containing packed or binary data.

REV. 0 15 - 6

PDR3056 | _ DATA DIVISION

LABEL RECORDS

FUNCTION:

The LABEL RECORDS clause specifies whether labels are present for the
file.

FORMAT :

RECORD IS STANDARDwast. {Poers aeey (Se
SYNTAX RULE:

This clause is required in every File Description entry.

GENERAL RULES:

1. OMITTED specifies that no explicit labels exist for the file or
device to which the file is assigned.

2. STANDARD specifies that a label exists for the file, and that
the label conforms to system specifications. The STANDARD option
must be specified for all files assigned to DISK (PFMS) or tape.
See Table 15-1 below.

DEVICE STANDARD OMITTED

TERMINAL
READER
PRINTER
PUNCH
MI7 (TAPE)
MT9 (TAPE)
PFMS (DISK)

PS
PS

OS
OS

 PS
Ps

OS

Table 15-1. Label Options

15 - 7 November 1977

SECTION 15 PDR3056

BLOCK CONTAINS

FUNCTION:

The BLOCK CONTAINS clause specifies the size of a physical record.

FORMAT :

; RECORDS[BLOCK CONTAINS integer-1 4aaapacters/ |

SYNTAX RULES:

1. The BLOCK CONTAINS clause is optional.

2. The clause can only be used in connection with tape files.

GENERAL RULES:

1. The clause may be omitted if the physical record contains one, and
only one, complete logical record.

2. Omission of this clause assumes records are unblocked.

3. When the RECORDS option is used, the compiler assumes that the block
size provides for integer-1 records of maximum size and then provides
additional space for any required control words.

4. When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to re-
present the items within the physical record.

5. When neither the CHARACTERS nor the RECORDS option is specified, the
CHARACTERS option is assumed.

REV. 0 15 - 8

PDR3056 DATA DIVISION

RECORD CONTAINS

FUNCTION:

The RECORD CONTAINS clause specifies the size of data records.

FORMAT:

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]

GENERAL RULES:

1. Since the size of each data record is defined fully by the set
of data description entries constituting the record (level 01)
declaration, this clause is always optional.

2. Integer-2 may not be used by itself unless all the data records
in the file have the same size. In this case, integer-2 represents
the exact number of characters in the data record. If integer-2
and integer-3 are both shown, they refer to the minimum number of
characters in the smallest size data record, and the maximum number
of characters in the largest size data record, respectively.

15 - 9 November 1977

SECTION 15 PDR3056

VALUE OF FILE ID

FUNCTION:

The VALUE OF clause particularizes the description of an item in the label
records associated with a file; thus allowing for the linkage of internal
and external program names.

FORMAT:

[VALUE OF FILE-ID is literal-1]

SYNTAX RULE:

This clause is mandatory if labels are standard.

GENERAL RULES:

1. Literal-1 is the name which is used by Prime at run-time to dynami-
cally allocate files. It is a non-numeric value which may not exceed
8 characters.

2. If further definition does not occur at run-time, literal-1 will
become the default value for internal filename designation.

PDR3056 DATA DIVISION

OWNER IS

FUNCTION:

The OWNER IS clause points to the User File Directory (UFD) in a Prime
system, in which literal-1 of VALUE OF FILE-ID is contained.

FORMAT :

[OWNER IS literal-2]

SYNTAX RULE:

The OWNER IS clause may be used only with disk files.

GENERAL RULES:

1. Literal-2 is a non-numeric value which may not exceed 6
characters.

2. The clause is essentially ignored in this compiler in 64R mode;
and it may be overridden in both 64R and 64V mode by explicit de-
finition at run-time.

3. If the clause is omitted, a default of the current UFD will
apply.

15 - Il November 1977

SECTION 15 PDR3056

LIFE-CYCLE

FUNCTION:

LIFE-CYCLE allows for the development of an expiration date as "today
plus integer" for output files.

FORMAT :

[LIFE-CYCLE IS integer-4]

SYNTAX RULE:

Integer-4 can contain a value of 0 to 32,767 inclusive.

GENERAL RULE:

If LIFE-CYCLE is omitted, integer-4 is assumed to be zero.

REV. 0 15 - 12

PDR3056 DATA DIVISION

DATA RECORDS

FUNCTION:

The DATA RECORDS clause serves only as documentation for the names of

data records and their associated file.

FORMAT:

[DATA SEORDSSRE data-name-1 [,data-name-2] ...]

SYNTAX RULE:

Data-name-1 and data-name-2 are the names of data records. They

must be defined by 01 level-number Record Description entries and

follow the general rules for WORD FORMATION,

GENERAL RULES:

1. If the file contains more than one type of data record, each

type should be indicated by a data-name in this clause. These

records may be different in format. The order in which they are

listed is not significant.

2. Conceptually, all data records within a file share the same area,

regardless of the number of types of data records within the file.

15 - 13 November 1977

SECTION 15 PDR3056

CODE -SET

FUNCTION:

The CODE-SET clause specifies the character code set used to represent
data on the external media.

FORMAT:

[CODE-SET IS ASCIT].

GENERAL RULE:

The CODE-SET clause serves only as documentation in this compiler,
reflecting the fact that both internal and external data is re-
presented in ASCII code.

REV. 0 15 - 14

PDR3056 DATA DIVISION

RECORD DESCRIPTION

FUNCTION:

A Record Description entry describes all elementary and group items

in a record, and their relationship. It is comprised of a set of

Data Description entries, each of which defines the particular char-

acteristics of a unit of data, utilizing a series of clauses to detail

such characteristics.

FORMAT 1:

data-name-1
level-number FILLER [REDEFINES data-name-2]

[OCCURS-Clause]

PICTURE
PIC IS picture-string |

DISPLAY
COMPUTATIONAL
COMP ———OC~S[USAGE IS toy]

COMPUTATIONAL-3

COMP-3

LEADING[SEGN IS aaaiting

(

[SEPARATE CHARACTER]]

{SYNCHRONIZED LEFT | y |
SYNC L RIGHT

JUSTIFIEDL <Sqar— ?RIGHT]

[BLANK WHEN ZERO]

[VALUE IS literal].

15 - 15 November 1977

SECTION 15 PDR3056

FORMAT 2:

88 condition-name; ee literal-1 { ROUGH literal-2,

[literal-3 re| literal-4]...

FORMAT 3:

ae . JVALUE IS _ <88 condition-name; {Vas ARE literal-1, [literal-n]...

SYNTAX RULES:

1. The level-number in Format 1 may contain a value of 01 through
30, or 77.

2. In Format 1, clauses can be written in any order with two ex-
ceptions: The data-name-1 or FILLER clause must immediately fol-
low the level-number; and the REDEFINES clause, when used, must
immediately follow tthe data-name-1 clause.

3. In Format 1, PICTURE clause must be specified for every ele-
mentary item except when USAGE is described as binary (COMPUTATIONAL).
A group item cannot contain a PICTURE clause.

4. The OCCURS clause cannot be specified in a Data Description
entry which has an 01, 77, or 88 level-number.

9. Formats 2 and 3 are used only for condition-names which must
have a level-number 88. Formats 2 and 3 may not be combined for a
single, level 88 entry.

6. The words THRU and THROUGH are equivalent and interchangeable
Reserved Words.

GENERAL RULES:

1. A detailed discussion of each clause in the Data Description
entry appears under the appropriate clause heading on the following
pages.

2. A Record Description entry can appear in the File, Working-
Storage, or Linkage Section of the Data Division. All records in
each file referenced by a File Description entry (FD) must be
described by Record Description entries.

REV. 0 I5 - 16

PDR3056 DATA DIVISION

LEVEL -NUMBER

FUNCTION:

The level-number shows the position of a data-item within the hierarchy
of data in a logical record. It also identifies entries for condition-
names, and data items in the Working-Storage and Linkage Sections.

FORMAT:

level-number

SYNTAX RULES:

1. <A level-number is required as the first element in each Data
Description entry (see Record Description).

2. Data Description entries subordinate to an FD entry must have
level-numbers 01 through 30, or 88.

53. Data Description entries in the Working-Storage and Linkage
Sections must have level-numbers 01 through 30, 77, or 88.

GENERAL RULES:

1. Level-numbers are used to subdivide a record so that each item
in the record may be referred to. A record can be divided, and each
subdivision further divided, until a basic level is reached which
cannot be further divided. An item at this basic level is called an
elementary item. A record can itself be an elementary item.

2. <A group consists of one or more consecutive elementary items;
groups can, in turn, be combined into other groups of two or more
group items. Agroup consists of a specified group item and all fol-
lowing group and elementary items with level-numbers greater than
that of the specified group item, and continuing until the next iten
with a level-number less than or equal to that of the specified group
item is reached.

3. Level-numbers range from 01, the most inclusive level, to 30,
the least inclusive level. Any level-number except 30 can denote
a group.

4. The level number 01 identifies the first entry in each Data
Description. Reference to level-number 01 data-name in the Pro-
cedure Division causes the entire record to be accessible.

5. Multiple level 01 entries subordinate to one FD level indi-
cator represent implicit redefinitions of the same area.

15 - 17 November 1977

SECTION 15 PDR3056

6. Special level-numbers have been assigned to certain entries
where there is no real concept of hierarchy:

A. Level-number 77 is assigned to identify noncontiguous
working storage or linkage data items. They may be used
only as described in Format 1 of the Data Description
entry.

Level-number 77 data items are independent elementary
items which cannot be subdivided.

B. Level-number 88 is assigned to entries which define condi-
tion-names associated with a conditional variable. They
can be used only with Format 2 of the Data Description
entry.

Level 88 entries can contain individual values, series of
individual values, or a range of values. Such entries
cannot combine ranges and individual values.

EXAMPLE:

01 Test-Area PIC X
88 Test-Value-1 Value '1'
88 Test-Value-2 Value '1', '2'
88 Test-Value-3 Value '1' thru '8'
88 Test-Value-4 Value '1' thru '4', '6', '7!

In the example above, the last 88 level definition is
invalid.

A level 88 entry must be preceded by one of the following:

1. Another level 88 entry, where there are several con-
secutive condition-names pertaining to an elementary item;

2. An elementary item.

Every condition-name pertains to an elementary item in such
a way that the condition-name may be qualified by the name
of the elementary item and the elementary item's qualifiers.
A condition-name is used in the Procedure Division in place
of a simple relational condition.

A condition-name may not pertain to an elementary item (a
conditional variable) requiring subscripts. In this case,
the condition-name, when written in the Procedure Division,
cannot be subscripted according to the same requirements
as the associated elementary item.

REV. 0 15 - 18

PDR3056 DATA DIVISION

The type of literal in a condition-name entry must be
consistent with the data type of the conditional variable.
In the following example, PAYROLL-PERIOD is the conditional
variable. The picture associated with it limits the value
of the 88 condition-name to one digit.

OZ PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural
condition-name test:

ITF MONTHLY GO TO DO-MONTHLY

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition-name
entry must be expressed in the form of non-numeric literals.

15 - 19 November 1977

SECTION 15 PDR3056

DATA-NAME/FILLER

FUNCTION:

A data-name specifies the name of the data being described, FILLER spec-

ifies an elementary item of the logical record which cannot be referred

to explicitly.

FORMAT:

data-name
FILLER

SYNTAX RULE:

In the File, Working-Storage, and Linkage Sections of the Data
Division, a data-name or the keyword FILLER must be the first word
following the level-number in each Data Description entry.

GENERAL RULES:

1. FILLER can be used to name an elementary item in a record.

Under no circumstances can a FILLER item be referred to explicitly.
However, FILLER can be used as a conditional variable because such
use does not require explicit reference to the FILLER item, but
rather to its value.

2. A VALUE clause can be used with a FILLER item.

REV. 0 15 - 20

PDR3056 DATA DIVISION

REDEFINES

FUNCTION:

The REDEFINES clause allows the same computer storage area to be des-
cribed by different Data Description entries.

FORMAT :

data-name-1
level -number {ree } ; [REDEFINES data-name-2]|

NOTE: Level-number, data-name-1 and the semicolon are not part of
the REDEFINES clause, but are included to show the context.

SYNTAX RULES:

1. The REDEFINES clause is optional; when specified, it must im-
mediately follow data-name-1.

2. Level-numbers of data-name-1 and data-name-2 must be identical,
but must not be 77 or 88.

3. This clause must not be used in level-number 01 entries in the

File Section.

4. The Data Description entry for data-name-1 must not contain a
REDEFINES clause.

5. The Record Description entry for data-name-2 may not contain
an OCCURS clause, nor may data-name-1 be subordinate to an entry
which contains an OCCURS clause.

6. Data-name-2 can be qualified, but not subscripted.

GENERAL RULES:

1. Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered. In the
following example, redefinition of the data-name-2 area by data-
name-1 ends when data-name-3 is encountered:

02 data-name-2 PICTURE A(3).

02 data-name-1; REDEFINES data-name-2.

03 ITEM-A PICTURE A.

03 ITEM-B PICTURE AA.

02 data-name-3 PICTURE X.

15 - 21 November 1977

SECTION 15 PDR3056

2. The entries giving the new description of the area must not
contain VALUE clauses except in condition-name entries.

NOTE: The REDEFINES clause specifies the redefinition of a storage
area, not of the data items therein contained.

Redefinition to a depth greater than one level is not permitted (see
SYNTAX RULE 4, above). Thus, the nested REDEFINES outlined below is
invalid:

02 A PIC X(10).

02 3B REDEFINES A.

03 C PIC X(5).

03 D REDEFINES C.

04 E PIC X(5),

03 F PIC X(5).

Identical results may be achieved with the following definition:

02 A PIC X(10).

02 B REDEFINES A.

03 C PIC X(5).

03 F PIC X(5).

02 FILLER-1 REDEFINES A.

03 D.

04 E PIC X(5).

03 FILLER PIC X(5).

Notice that the clauses B REDEFINES A, and FILLER-1 REDEFINES A
are at the same level. Such definition is valid.

REV. 0 15 - 22

PDR3056 DATA DIVISION

OCCURS

FUNCTION :

The OCCURS clause permits the definition of related sets of repeated
data, such as tables, arrays, lists, supplying required information for
the application of subscripts or indexes.

FORMAT:

OCCURS integer-1 TIMES [INDEXED BY index-name-1 [, index-name-2] ...]

SYNTAX RULES:

1. The OCCURS clause must not be used in any Data Description entry
having a level number 01, 77, or 88.

2. The maximum OCCURS specification (integer-1) is 1024.

3. When the OCCURS clause is used without the INDEXED BY option,
the data-name which is the subject of the OCCURS clause is referred
to by subscripting (see General Rule 4 below). If this data-name
is the name of a group item, all data-names belonging to the group
must be subscripted whenever used.

4. An INDEXED BY phrase is required if the subject of this entry,
or an entry subordinate to this entry, is to be referred to by
indexing. Neither index-name-1 nor index-name-2 are defined else-
where, since their allocation and format are dependent on the system;
not representing data, the index-names cannot be associated with
any data hierarchy (see General Rule 5 below).

GENERAL RULES:

1. The OCCURS clause defines tables and other homogenous sets of re-
peated data items. Whenever the clause is used, the data-name that
is its subject must be either subscripted or indexed whenever it is
referenced.

2. Except for the OCCURS clause, all data description clauses asso-
Ciated with an item whose description includes an OCCURS clause
apply to each occurrence of the item described.

3. Integer-1l represents the exact number of occurrences of the
subject entry.

4. When the INDEXED BY option is omitted, subscripting is used to
indicate an individual item within a list, or within a table of
like items which do not have individual data-names.

15 - 23 November 1977

SECTION 15 PDR3056

REV.

The format for a subscript is:

data-name (subscript-1, [subscript-2 [, subscript-3]])

The subscript can be represented either by a positive numeric
literal or by a data-name. The data-name must be a numeric ele-
mentary item which represents an integer. The data-name may be
qualified but not subscripted. The subscript must be delimited
by a pair of parentheses following the table element data-name..
When two or more subscripts are required, they are written in
the order of successively less inclusive dimensions of the data
organization, and should be separated by commas. A maximum of
three levels of subscripting is permitted for any given data item.

The value of the subscript indicates the position of the item in
a table. The lowest possible value of a subscript is 1, indi-
cating the first position in the table. Subsequent positions are
indicated by sequential values 2, 3, 4 ..., up to the highest
permissible value, which is the maximum number of occurrences of
the item specified in the OCCURS clause.

A data-name may not be subscripted if it is being used for any
of the following functions:

A. When it is being used as a subscript.

B. When it appears as the defining name of a Data Description
entry.

C. When it appears as data-name-2 in a REDEFINES clause.

A subscript value is’ changed via the MOVE, ADD, or SUBTRACT verbs.
The SET verb cannot be used on a subscript data-name. (See TABLE
HANDLING.)

5. When INDEXED BY is used, an index is assigned to a table of
like elements, with individual items in the table being identified
by index-name.

PDR3056 DATA DIVISION

The general format for indexing is:

data-name (index-name-1 [{+} literal-2] /
condition-name literal-1

- | “

index-name-2 [{+} literal-4]
literal -3 vee)

hoonn,

o— i
t

5 index-name-3 [{+} literal-6]
literal-5 vss) in

An index-name is declared not by the usual method of level number,
name, and Data Description clauses, but implicitly by appearance
in the ''INDEXED BY index-name'' appendage to an OCCURS clause. Index-
name is equivalent to an index-item. The compiler assigns a full
word for each index-name defined.

An index-name must be uniquely named. An index item may only be re-
ferred to by a SET statement, a CALL statement's USING list, a Pro-
cedure header USING list, as the variation item in PERFORM VARYING
and PERFORM UNITL, or in a relational condition. In all cases, the
process is equivalent to dealing with a binary word integer subscript.
(See TABLE-HANDLING.) |

Direct indexing is specified by using an index-name in the form of a
subscript. Relative indexing is specified by a parenthetic statement
following data-name, in which index-name is followed by the operator
+ or - and an unsigned integer numeric literal.

When a statement referring to an indexed table element is being exe-
cuted, the value in the index referred to by the index-name must be
from 1 to the highest permissible occurrence number specified in the
OCCURS clause. This restriction applies also to the value resulting
from relative indexing. See TABLE HANDLING for more detailed discus-
sion.

15 - 25 November 1977

SECTION 15 PDR3056

PICTURE

FUNCTION:

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

FORMAT :

[{He IS picture-string]

SYNTAX RULES:

1. A PICTURE clause can be specified only at the elementary item
level.

2. <Apicture-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The allow-
able combinations determine the category of the elementary item.

3. The maximum number of character positions allowed in the
picture-string is 30. As an example, PICTURE X(89) consists of
five PICTURE characters.

4. The PICTURE clause must be specified for every elementary item
except binary items.

S. PIC is a valid abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry.

GENERAL RULES:

1. Data. Five categories of data can be described with a PICTURE
clause: Alphabetic, numeric, alphanumeric, alphanumeric edited,
and numeric edited.

A. Alphabetic:

e Picture-string can only contain the characters A and B;
and

e Item contents must be any combination of the letters
of the English alphabet and the COBOL space character.

B. Numeric:

e Picture-string can only contain the symbols 9, P, S,
and V. The number of digit positions which may be re-
presented by picture-string is from 1 to 18;
and

REV. 0 15 - 26

PDR3056 DATA DIVISION

@e Item contents must be a combination of the digits 0
through 9. These may be signed, or not. If signed,
the item may be positive or negative.

C. Alphanumeric:

e Picture-string is a combination of data description
characters X, A, or 9, and the item is treated as if
the string contained all X's. Alphanumeric picture-
strings may not employ all 9's or all A's;
and

e Item contents may be any character from the computer's
ASCII character set.

D. Alphanumeric edited:

@e Picture-string is restricted to certain combinations of
the following symbols: A, X, 9, B, 0, /;
and

e Item contents are any character from the computer's
ASCII character set.

E. Numeric Edited:

e The picture-string is a certain combination of the edit-
ing symbols: Z.CRDB,$+* BO=-/9VP;
and

e The picture-string must contain at least one of the
editing symbols in conjunction with numeric symbols;
and.

e Item contents must be one of the digits.

2. Size. The size of an elementary item (the number of character
positions occupied by the item in standard data format) is deter-
mined by the number of allowable symbols which represent character
positions.

An integer, enclosed in parentheses, following the symbols A , X
9PZ* B/ 0+ - or the currency symbol, indicates the number of
consecutive occurrences of that symbol. The following symbols can
appear only once in a given PICTURE: S V . CR DB.

3. Decimal-Point Clause. When DECIMAL-POINT IS COMMA is specified,
the explanations for period and comma are understood to apply to
comma and periods, respectively.

15 - 27 November 1977

SECTION 15

4.

REV. 0

PDR3056

Symbols. Symbols used in a picture-string to define an ele-
mentary item have the following functions (see also Appendix F,
SYMBOLS).

A -

BR -

Each A represents a character position which contains only
a letter of the alphabet, or a space.

Each B represents a character position into which the space
character will be inserted.

Each P indicates an assumed decimal scaling position. It
specifies the location of an assumed decimal point when the
point is not within the number that appears in the data
item. The P is not counted in the size of the data item,
but is counted in determining the maximum number of digit
positions (18) in numeric edited items or numeric items.

The scaling position character P may appear only to the left
or right of the other characters in the string as a con-
tinuous string of P's within a PICTURE description. The
sign character S and the assumed decimal point V are the
only characters which may appear to the left of a leftmost
string of P's. Since the scaling position character P
implies an assumed decimal point (to the left of the P's
if the P's are leftmost PICTURE characters, and to the right
of the P's if the P's are rightmost PICTURE characters),
the assumed decimal point symbol V is redundant as either
the leftmost or rightmost character within such a PICTURE
description.

If a field in memory contains the digits 37, and the
picture-string for the field is PPP99, the field has the
implied value of .00037. The same field, with a picture-
string 99000 has an implied value of 37000. In both
instances, only digits 37 are actually stored in memory.

The picture-string symbol S indicates the presence of a sign
in a data item, but implies nothing about the actual format
or location of the sign in storage.

The symbol S is not counted in determining the size of the
elementary item, unless the entry is subject to a SIGN
clause. (See SIGN.)

When used, the S symbol must be written as the leftmost
character in picture-string.

The character V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide informa-
tion concerning the alignment of items involved in computa-
tions. Storage is never reserved for the character V. Only
one V, if any, is permitted in any single picture.

CR
DB

PDR3056 DATA DIVISION

Each X represents a character position which contains any
allowable character from the computer's character set.

Each character Z is a replacement character which represents
a digit position. Leading data item zeros are suppressed
and replaced by blanks if corresponding picture-string posi-
tions are defined by Z. Zero suppression terminates upon
encountering the decimal point (.), or a non-zero digit.

Each Z is counted in the size of the item.

Each 9 in a picture-string represents a character position
which contains a numeral and is counted in the size of the
item.

Each § in the character-string represents a character posi-
tion into which the numeral zero will be inserted. The ''
is counted in the size of the item.

Each stroke, or virgule (/), in the picture-string represents
a character position into which the stroke character will be
inserted. / is counted in the size of the item.

The comma character (,) specifies insertion of a comma
between digits. Each insertion character is counted in the

size of the data item, but does not represent a digit posi-

tion. The comma may also appear in conjunction with a

floating string.

A period character (.) in a picture-string is an editing
symbol representing the decimal point for alignment purposes.
The character also serves to indicate the position for
decimal point insertion.

Numeric character positions to the right of an actual
decimal point in a PICTURE must consist of characters of one

type.

The period character (.) is counted in the size of the item.

For a given program, the functions of the period and comma

are exchanged if the clause DECIMAL-POINT IS COMMA is stated

in the SPECIAL-NAMES paragraph. In this exchange, the rules
for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE

clause.

The decimal insertion character (.) must not be the last
character in the picture-string.

These symbols are used as editing sign control symbols and

represent the character position into which the editing sign

control symbol is placed. The symbols are mutually exclu-

sive in any one picture-string, and each character used in

the symbol is counted in determining the size of the data

item, i.e., CR and DB = 2 character positions each; + and

- = 1 character position each.

15 - 29 November 1977

SECTION 15 PDR3056

* - Each * (asterisk) in a picture-string is a replacement char-
acter. Leading data item zeros are suppressed and replaced
by *. Each * is counted in the size of the item.

5. Editing.

A. The PICTURE clause provides two basic methods for editing:
Character insertion and character suppression/replacement.
The type of editing which may be performed upon an item is
dependent upon the category to which the item belongs. The
table below specifies which type of editing may be performed
upon a given category:

CATEGORY OF DATA TYPE OF EDITING

Alphabetic Simple insertion 'B' only

Numeric None

Alphanumeric None

Alphanumeric Edited Simple insertion 9, B and /

Numeric Edited All, subject to rules in Rule 3 below

Table 15-2. Categories of Data and Editing

B. Insertion Editing includes the following types:

Simple insertion
Special insertion
Fixed insertion
Floating insertion

1) Simple insertion editing utilizes B g , / as insertion
characters. The insertion characters are counted in
the size of the item and represent the position in the
item into which the character will be inserted.

2) Special insertion editing refers to decimal point inser-
tion (.) and resulting receiving item alignment. The
insertion character used for the actual decimal point is
counted in the size of the item. The use of the assumed
decimal point - represented by the symbol V, and the use
of an actual decimal point - represented by the inser-
tion character, is disallowed in the same picture-string;

REV. 0 15 - 30

3)

PDR3056 DATA DIVISION

the two are mutually exclusive. The result of special
insertion editing is that the insertion character is
placed in an item in the same position in which it
appears in the picture-string.

Fixed insertion editing employs the currency sign and
editing sign control symbols as insertion characters.
The editing sign control symbols are: + - CR DB.

Only one currency symbol, and only one of the editing
sign control symbols, can be used in a given picture-
string. When the symbols CR or DB are used, they re-
present two character positions in determining the size
of the item. They must represent the rightmost char-
acter positions to be counted in the size of the item.
The symbol + or -, when used, must be either the left-
most or rightmost character position to be counted in
the size of the item. The currency symbol must be the
leftmost character position to be counted in the size of
the item, except that it can be preceded by either a +
or a - symbol. Fixed insertion editing results in the
insertion character occupying the same character posi-
tion in the edited item as it occupied in the picture-
string. Editing sign control symbols produce the
following results depending upon the value of the data
item:

RESULT
EDITING SYMBOL IN
PICTURE-STRING DATA ITEM DATA ITEM

POSITIVE OR ZERO NEGATIVE

+ ”

space -

CR 2 spaces CR

DB 2 spaces DB
Table 15-3. Results of Sign Control Symbols in Editing

4) Floating insertion editing utilizes the currency symbol
and editing sign control symbols + or - as floating
insertion characters. These are mutually exclusive in
a given picture-string.

15 - 31 November 1977

SECTION 15

REV. 0

PDR3056

A floating picture-string is defined as a leading, con-
tinuous series of either $ + or -, or a string composed
of one such character interrupted by one or more inser-
tion commas and/or decimal point.

For example:

$$ $$$ $$$

+(8) +4

$$ $$$ $$$

Floating insertion editing is indicated in a picture-
string by using a string of at least two of the float-
ing insertion characters. The leftmost character of
the floating insertion string represents the leftmost
limit of the floating symbol in the data item. The
rightmost character of the floating string represents
the rightmost limit of the floating symbols in the data
item.

The second floating character from the left represents
the leftmost limit of the numeric data which can be
stored in the data item. Non-zero numeric data may
replace all the characters at or to the right of this
limit.

In a picture-string, there are only two ways of repre-
senting floating insertion editing. One way is to re-
present any or all of the leading numeric character
positions on the left of the decimal point by the
insertion character. The other way is to represent all
of the numeric character positions in the picture-string
by the insertion character.

If the insertion characters are only to the left of the
decimal point in the picture-string, the result is that
a single floating insertion character will be placed
into the character position immediately preceding the
first non-zero digit in the data-item. If all data
item digits to the left of the decimal are zero, the
floating insertion character will be placed into the
character position immediately preceding the decimal
point. The character positions preceding the insertion
character are replaced with spaces.

If all numeric character positions in the picture-string
are represented by the insertion character, the result
depends upon the value of the data. If the value is
zero, the entire data item will contain spaces.

If the value is not zero, the result is the same as
when the insertion character is only to the left of the
decimal point.

15 - 32

PDR3056 DATA DIVISION

To avoid truncation, the minimum size of the picture-
string for the receiving data item must be the number
of characters in the sending data item, plus the number
of non-floating insertion characters being edited into
the receiving data item, plus one for the floating
insertion character. That is, a floating string con-
taining n + 1 occurrences of $ or + or - defines n digit
positions.

In the following examples, / represents a blank in the
developed items.

EXAMPLES:

Picture-string Numeric Value Developed Item

$$$999 14 pbS14
--,---,999 -456 BBBEPP-456
$$$$$$ 14 bb$14

A floating string need not constitute the entire
PICTURE of a report item, as shown in the preceding
examples. However, the characters to the right of a
decimal point and up to the end of a PICTURE, excluding
the fixed insertion characters +, -, CR, DB (if present),
are subject to the following restrictions:

Only one type of digit position character may
appear. That is, Z * 9 and floating-string digit
position characters $ + - are mutually exclusive.

If any of the mmeric character positions to the
right of a decimal point is represented by + or -
or $ or Z, then all the numeric character positions
in the PICTURE must be represented by the same
character.

The PICTURE character 9 can never appear to the left
of a floating string, or replacement character. In
fact, nothing can precede a floating string.

When a comma appears to the right of a floating
string, the string character floats through the
comma in order to be as close to the leading digit
as possible.

Suppression/replacement editing includes two types: Zero
suppression and replacement with spaces, and zero suppres-
sion and replacement with asterisks.

Floating insertion editing and editing by zero suppression/
replacement are mutually exclusive in a PICTURE clause.

15 - 33 November 1977

SECTION 15

REV. 0

PDR3056

The suppression of leading zeros in numeric character posi-

tions is indicated by the use of the alphabetic character
Z, or the character * (asterisk) as suppression symbols in
a picture-string. These symbols are mutually exclusive in

a given picture-string. Each suppression symbol is counted
in determining the size of the item. If Z is used, the
replacement character will be the space. If the asterisk
is used, the replacement character will be *.

Zero suppression and replacement are indicated in a picture-

string by one or more of the allowable symbols (Z or *),

representing leading numeric character positions. These,

in turn, are to be replaced when the associated character

position in the data contains a zero. Any simple insertion
character embedded in the string of symbols, or to the
immediate right of this string, is part of the string.

The two ways of representing zero suppression in a character-

string are:

Represent any or all leading numeric character positions
to the left of the decimal point by suppression symbols;

Represent all numeric character positions in the picture-
string by suppression symbols.

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which corresponds
to a symbol in the string is replaced by the replacement
character. Suppression terminates either at the first non-
zero digit in the data represented by the suppression symbol
string, or at the decimal point, whichever is first.

If all numeric character positions in the picture-string are
represented by suppression symbols, and the value of the
data is not zero, the result is the same as if the suppres-
sion characters were only to the left of the decimal point.
If the value is zero, the entire data item will be spaces if
the symbol is Z, or all asterisks (except for the actual
decimal point) if the symbol is *.

A picture-string must consist of at least one of the char-
acters ZA * X9 _, or at least two consecutive appearances

of the characters + - $.

The examples below illustrate the use of the PICTURE clause.
In each example, a movement of data is implied, as indicated
by the column headings.

15 - 34

PDR3056 DATA DIVISION

Source Area | Receiving Area

Data |
PICTURE Value PICTURE Edited Data

9(5) 12345 $$$,$$9 .99 $12,345.69

9(5) p23 $$$ $99.99 $123.90

9(5) DODDD — $$$,$$9.99 $0. pp

9(4) V9 12345 $$$,$$9.99 $1,234.59

V9(5) 12345 $$$,$$9.99 $6.12

S9(5) pgi23 ------- .99 123.00

S9(5) -$00f1 ------- 99 -1. 09

S9(5) 69123 ++4++4+4++, 99 +123. 00

S9 (5) POOP. ------- .99 1. pp

9(5) $9123 ++++4+4,99 +123. 09

9(5) Of123 ------- 99 123.69

S9(5) 12345 HRRKEKKOOCR #412345. 00

S999V99_ 2345 ZZZVZZ 2345

S999V99 APPA ZZZVZZ 4

S9(5) -12345 RKKKKKE OOCR **] 2345 .POCR
Figure 15-1. Examples of PICTURE Clauses

15 - 35 November 1977

SECTION 15 PDR3056

USAGE

FUNCTION:

The USAGE clause describes the form in which numeric data is represented.

FORMAT:

DISPLAY
COMPUTATIONAL
COMP

[USAGE IS TNDEX J
COMPUTATIONAL-3
COMP-3

SYNTAX RULES:

1. COMP is a valid abbreviation for COMPUTATIONAL.

2. COMP-3 is a valid abbreviation for COMPUTATIONAL-3.

3. The PICTURE clause cannot be used if USAGE is specified as
COMPUTATIONAL or INDEX.

GENERAL RULES:

1. The USAGE clause can be written at any level. If the USAGE clause
is written at a group level, it applies to each elementary item in the
group. The USAGE clause of an elementary item cannot contradict the
USAGE clause of a group item to which it belongs.

2. A COMPUTATIONAL item can represent a value to be used in Computations
and must be numeric. When a group item is described as COMPUTATIONAL,
only the elementary items in that group are COMPUTATIONAL; the group
item itself cannot be used in computations.

3. DISPLAY is the system default if the USAGE clause is not specified.

4. If USAGE is specified as COMPUTATIONAL for an item, and a PICTURE
clause is included for the same item, the computer will ignore the USAGE
clause.

NOTE: See Data Representation for additional information.

REV. 0 15 - 36

PDR3056 DATA DIVISION

SIGN

FUNCTION:

The SIGN clause specifies the position and the mode of representation of
the operational sign when it is necessary to describe these properties
explicitly.

FORMAT:

LEADING
[SIGN IS RATTING [SEPARATE CHARACTER]]

SYNTAX RULES:

1. The SIGN clause may be specified only for a numeric Data Description
entry whose PICTURE contains the character S, or for a group item contain-
ing at least one such numeric Data Description entry. If an S is not
present in the data item picture-string, the item is considered unsigned
(capable of storing only absolute values), and the SIGN clause is prohib-
ited.

2. Numeric Data Description entries to which the SIGN clause applies
must be described by USAGE IS DISPLAY.

3. Only one SIGN clause can apply to any given numeric Data Description
entry.

GENERAL RULES:

1. When S appears in a picture-string, but no SIGN clause is included
in an item's description, the system default is SIGN IS TRAILING.

2. If the optional SEPARATE CHARACTER phrase is not present, then:

A. The operational sign is presumed associated with the leading
(or, respectively, trailing) digit position of the elementary
numeric data item.

B, The character S in picture-string is not counted in determining
item size.

3. If the SEPARATE CHARACTER phrase is present, then:

A. The operational sign will be presumed the leading (or, respect-
ively, trailing) character position of the elementary numeric
data item; this character position is not a digit position.

B. The letter S in a picture-string is counted in determining the
size of the item (in terms of standard data format characters).

C. The operational signs for positive and negative are the standard
data format characters + and -, respectively.

15 - 37 November 1977

SECTION 15 PDR3056

4. Every numeric Data Description entry whose PICTURE contains the
character S is a signed numeric Data Description entry. If a SIGN
Clause applies to such an entry and conversion is necessary for
purposes of computation or comparisons, conversion takes place auto-
matically.

S. Table 15-4 depicts sign representations for the various SIGN
clause options.

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte

LEADING Embedded in leftmost byte

TRAILING SEPARATE Stored in separate rightmost byte

LEADING SEPARATE Stored in separate leftmost byte

Table 15-4. Sign Representation

6. At a group level, an attribute of SEPARATE will cause a group type
error at compile-time. Such attributes must be specified at the ele-
mentary level.

REV. 0 15 - 38

PDR3056 DATA DIVISION

SYNCHRONIZED

FUNCTION:

The SYNCHRONIZED clause specifies the alignment of an elementary item on
its natural addressing boundaries in the computer memory.

FORMAT:

SYNCHRONIZED LEFT
SYNC . RIGHT

SYNTAX RULES:

1. SYNC is a valid abbreviation for SYNCHRONIZED.

2. In this compiler, the SYNCHRONIZED specification is treated as
commentary.

15 - 39 November 1977

SECTION 15 PDR3056

JUSTIFIED

FUNCTION:

The JUSTIFIED clause specifies nonstandard positioning of data within a
receiving data item.

FORMAT :

JUSTIFIEDUST RIGHT

SYNTAX RULES:

1. This clause can be specified only at the elementary level.

2. JUST is a valid abbreviation of JUSTIFIED.

3. The JUSTIFIED clause cannot be used for data items described as
numeric, or for those for which editing is specified.

GENERAL RULES:

1. When the JUSTIFIED clause option is taken, values are stored in
right-to-left fashion. The clause is effective in connection with a
MOVE statement. In a MOVE operation, if the sending field is shorter
than the receiving field, space filling occurs in the left-most posi-
tions. If the sending field is longer than the receiving field, the
left-most characters are truncated.

2. When the JUSTIFIED clause is omitted, Standard Alignment Rules
apply.

REV. 0 15 - 40

PDR3056 DATA DIVISION

BLANK WHEN ZERO

FUNCTION:

The BLANK WHEN ZERO clause permits the blanking of an item when its value
is zero.

FORMAT:

xa WHEN 2eR0

SYNTAX RULE:

The BLANK WHEN ZERO clause can be used only for an elementary numeric
or numeric edited (report) item.

GENERAL RULES:

1. When used, the BLANK WHEN ZERO clause specifies that the data iten
will be set to blanks when the value is all zeros. Leading zeros are
not suppressed by this clause.

2. If the clause is specified for a numeric item, the category of the
item is interpreted as numeric edited.

3. The BLANK WHEN ZERO clause may be used in conjunction with editing
characters. In such instances, editing occurs according to PICTURE
specifications if data item values are not zero. For example, if a
data item value is 0000.04, and the editing PICTURE is ****,99 BLANK
WHEN ZERO, the result will be ****,04,. Since leading zeros are not
affected by the BLANK WHEN ZERO clause, the asterisk editing char-
acters take precedence, and leading zeros are replaced by the character *.

15 - 41 November 1977

SECTION 15 PDR3056

EXAMPLES: ()=blank)

VALUE DESCRIPTION OF RESULT
OUT- COST

0012. 34 9999.99 BLANK WHEN ZERO 0012.34
0123.45 $9999.99 BLANK WHEN ZERO $0123.45
01.2345 $9999.99 BLANK WHEN ZERO $0001.23
0000.00 ARKQO ARKK0
0000.00 *#k** 99 BLANK WHEN ZERO PERBEBE
0012.34 **** 99 BLANK WHEN ZERO RRL 34
0000.04 $$¢$¢.99 BLANK WHEN ZERO $.04
0000.00 $$¢¢¢.99 BLANK WHEN ZERO | BPPBBEE
0000.00 ZZZZVZZ BLANK WHEN ZERO BUBEBEE
0000.04 ZZZZVZZ BLANK WHEN ZERO 4
0000.00 ZZZZ.ZZ BLANK WHEN ZERO BERREEB
0000.04 ZZZZ.ZZ BLANK WHEN ZERO 04

Figure 15-2. Examples: BLANK WHEN ZERO

REV. 0 15 - 42

PDR3056 DATA DIVISION

VALUE

FUNCTION:

The VALUE clause defines the value of constants, the initial values of
WORKING STORAGE items, and the values associated with a condition-name.

FORMAT 1:

|vawe15 Literat|

FORMAT 2:

VAWE TSN iteral-if THRUiteral-2
(rv

SYNTAX RULES:

1. The words THROUGH and THRU are equivalent.

2. The VALUE clause is not permitted in a Data Description entry speci-
fying an OCCURS or REDEFINES clause, or in any entry subordinate to one
specifying an OCCURS or REDEFINES clause.

3. Numeric literals in a VALUE clause must have a value which is within
the range of values indicated by the PICTURE clause, and must not have a
value which would require truncation of nonzero digits. Non-numeric
literals in a VALUE clause must not exceed the size indicated by the
PICTURE clause.

4. The type of literal written in a VALUE clause depends on the type of
data item, as specified in the data item formats earlier in this text.
For edited items, values must be specified as non-numeric literals. A
type conflict, producing a compile time error, will arise if a figurative
constant or literal is not compatible with the PICTURE. For example,
PICTURE X VALUE ZERO will produce a type conflict error, since ZERO is
a numeric figurative constant, but PICTURE X specifies an alphanumeric
item. |

5. In a data item with a VALUE clause, the size of the data item cannot
exceed 128 characters; e.g., PIC X(129) VALUE SPACES is invalid.

6. A VALUE clause may not occur in the FILE SECTION of the Data Division
except in level 88 condition-name entries.

15 - 43 November 1977

SECTION 15 PDR3056

GENERAL RULES:

1. The positioning of the literal within a data area is the same as
would result from specifying a MOVE of the literal to a data area.

2. The VALUE clause may be specified at the group level in the form
of a correctly sized, non-numeric literal, or a figurative constant.

3. When an initial value is not specified, no assumption should be
made regarding the initial contents of an item in Working-Storage.

4. <Afigurative constant may be specified in both Format 1 and Format
2 instead of a literal.

5. Format 1 is required to define an initial value for a data item
or a constant.

6. Format 2 is required for condition-name entries. The VALUE clause
and the level-number 88 condition-name itself are the only two items
permitted in the entry. The characteristics of a condition-name are
implicitly those of its conditional variable. Wherever the THRU phrase
is used, literal-1 must be less than literal-2, literal-3 less than
literal-4, etc.

7. Rules governing the VALUE clause differ in the respective sections
of the Data Division:

A. In the File and Linkage Sections, the clause can be used only
in condition-name entries.

B. In the Working-Storage Section, the clause must be used in
condition-name entries; it can also be used to specify the
initial value of any other data item, with the result that
the item assumes the specified value at the start of the
object program.

8. Level 88 condition-name entries specify a value, list of values, or
a range of values which an elementary item may assume.

A. A level 88 entry must be preceded either by another level 88
entry (in the case of several consecutive condition-names per-
taining to an elementary item) or by an elementary item.

B. Every condition-name pertains to an elementary item in such a
way that the condition-name may be qualified by the name of
the elementary item and the elementary item's qualifiers.

C.

PDR3056 DATA DIVISION

A condition-name is used in the Procedure Division in place
of a simple relational condition.

A condition-name may pertain to an elementary item (a condi-
tional variable) requiring subscripts. In such a case, the
condition-name, when written in the Procedure Division, must
be subscripted according to the same requirements as the
associated elementary item.

88 Level specifications can contain individual values, series
of individual values, a range of values, or a series of ranges
of values, but not a combination of ranges and individual
values. (See also LEVEL-NUMBER.)

EXAMPLE :

02 PAYROLL-PERIOD PICTURE IS 9.

88 WEEKLY VALUE IS 1.

88 SEMI-MONTHLY VALUE IS 2.

88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural
condition-name test:

IF MONTHLY GO TO DO-MONTHLY.

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

NOTE: For an edited elementary item, values in a condition-name
entry must be expressed in the form of non-numeric literals.

15 - 45 November 1977

SECTION 15 PDR3056

WORKING-STORAGE SECTION

FUNCTION:

The WORKING-STORAGE SECTION of the Data Division describes noncontiguous
data (level 77), and records which are not part of external files, but
are developed and processed internally. This section also contains data
assigned fixed or constant values.

FORMAT:

[WORKING-STORAGE SECTION.

level 77 data description entry}
data item description entry ..]

SYNTAX RULES:

1. The Working-Storage Section is optional. If included, it must
begin with the words WORKING-STORAGE SECTION, followed by a period and
a space.

2. Noncontiguous item names and record names in the Working-Storage
Section must be unique; they cannot be qualified. Subordinate data-
names need not be unique if they can be made unique by qualification.

3. The level-number 77 is applied to noncontiguous elementary data
items, each defined in a separate data description entry which must
contain the level-number 77, a data-name, and a PICTURE clause or
USAGE IS INDEX clause, with other optional data description clauses
as necessary.

4. Data items in the Working-Storage Section with a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. Any clause used in a record
description in the File Section can be used in a record description in
the Working-Storage Section (see Record Description) .

GENERAL RULES:

1. Working-Storage items described in this section include the
following:

A. Noncontiguous elementary items with the level-number of 77.
These items and constants have no hierarchical relationship to one
another and cannot be grouped into records because they cannot be
further subdivided.

REV. 0 15 - 46

PDR3056 DATA DIVISION

B. Data items in records not associated with an input-output device
and not part of external data files, but developed and processed
internally. These items employ level numbers 01 through 30.

2. VALUE clauses, prohibited in the FILE SECTION, are permitted through-
out Working-Storage to specify the initial value of an item, except for
an index data item.

15 - 47 November 1977

SECTION 15 PDR3056

LINKAGE SECTION

FUNCTION:

The Linkage Section describes data previously defined in a calling program,
which is available to a called program.

FORMAT:

[LINKAGE SECTION.

level 77 data description entry:
data item description entry]

SYNTAX RULES:

1. The Linkage Section is optional. If included, it must begin with
the words LINKAGE SECTION followed by a period and a space.

2. Hach Linkage Section record-name and noncontiguous item name must
be unique within the called program; it cannot be qualified.

3. Level-number 77 refers to noncontiguous elementary data items, with
no hierarchic relationship to one another, and therefore not grouped
into records. Each level-number 77 data item is defined in a separate
data description entry which must include the level-number 77, a data-
name, and a PICTURE clause or USAGE IS INDEX clause. Other optional
data description clauses may be included as necessary.

4, Data items in the Linkage Section, which have a definate hierarchic
relationship to one another, must be grouped into records according to
the rules for formation of Record Descriptions.

5. The VALUE clause must not be specified in the Linkage Section
except in level 88 condition-name entries.

GENERAL RULES:

1. The Linkage Section of the Data Division is meaningful if and
only if the object program is to function under the control of a CALL
statement, and the CALL statement in the calling program contains a
USING phrase.

2. The Linkage Section is used to describe data which is available
through the calling program, but is to be referred to in both the
calling program and the called program. No space is allocated in the
program. for data items referenced by data-names in the Linkage
Section of that program. Procedure Division references to these data
items are resolved at load time by equating the reference in the called
program to the location used in the calling program.

REV. 0 15 - 48

PDR3056 DATA DIVISION

3. Data items defined in the Linkage Section of the called pro-
gram may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header, or are subordinate
to such operands, and the object program is under the control of
a CALL statement which specifies a USING phrase.

4. <A Linkage Section example is presented in Section 17, INTER-
PROGRAM COMMUNICATION.

15 - 49 November 1977

SECTION 15 PDR3056

sequence{8 A IB EXAMPLE: COBOL Statement

4 8 2 36 4 44 4

]

0j\2

0'3

4

O15

6

a
o

c
o

y
N

O
N

|
r

m
e

[
©

i
r

[~
~

|
O

[
0

a
e

f
e

p
e
e
f
e

1:7

1:8)

119

2|0

REV. 0 15 ~ 50

PDR3056 DATA DIVISION

Sequence COBOL Statement
(PAGE) r 3

I

9

0

M1

£2!
3

id

5;
6°

©
I
N

15 - 51 November 1977

PDR3056 PROCEDURE DIVISION

SECTION 16

PROCEDURE DIVISION

PROCEDURE DIVISION

FUNCTION:

The Procedure Division contains instructions specifying the data pro-
cessing steps to be performed by the program. COBOL instructions are
written as sentences which are combined to form paragraphs under para-
graph names. These, in turn, are combined to form sections under
section names.

Within COBOL sentences, verbs (commands), are employed to denote actions.
Statements and sentences denote procedures.

FORMAT:

PROCEDURE DIVISION [USING data-name-1 [data-name-2]...].

[DECLARATIVES.

{section-name SECTION. USEsentence.

[paragraph-name . [sentence] ...] ... }...

END DECLARATIVES.]

[section-name SECTION.]

{paragraph-name . [sentence] ... }...

SYNTAX RULES:

1. The first entry in the Procedure Division must be the words
PROCEDURE DIVISION.

2. The USING clause is specified only if:

A. The program being written is a CALLable subprogram which is
to function under the control of a CALL statement.

B. The CALL statement in the calling program contains a USING
clauses

3. Each of the data-name operands in the USING clause must be
defined as a data item in the Linkage Section of the subprogram.

16 - I November 1977

SECTION 16 PDR3056

4, Within the subprogram, Linkage Section data items are processed
according to their data descriptions as given in the subprogram.

5. Data-name level-numbers in the USING clause must be 01 or 77.
See Section 18, INTER-PROGRAM COMMUNICATION for complete discussion.

6. Declarative sections are optional. When included, they must be
grouped at the beginning of the Procedure Division, preceded by the
key word declaratives and followed by the key words END DECLARATIVES.
These entries must appear on separate lines.

7. A SECTION entry is optional. When included, it must consist of
section-name, followed by the word SECTION and a period. Each
section header must appear on a line by itself; each section-name
must be unique.

8. A paragraph is a logical entity consisting of one or more
sentences. A paragraph-name must precede the first sentence.

9. A sentence is a single statement or a series of statements
terminated by a period and followed by a space.

10. A statement consists of a COBOL verb followed by appropriate
operands (data-names or literals) and other words necessary for the
completion of the statement. There are two types of statements,
the Imperative and Conditional:

A. Imperative Statements

An imperative statement specifies an unconditional action
to be taken by the object program. An imperative statement
consists of a verb and its operands, excluding the IF condi-
tional statement, the READ statement and any I/O statement
which has an INVALID KEY clause.

B. Conditional Statements

A conditional statement stipulates a condition which is
tested to determine whether an alternate path of program
flow is to be taken. The IF statement provides this
capability. READ statements, and any I/O statement having
an INVALID KEY clause are also considered to be conditional.
When an arithmetic statement possesses a SIZE ERROR suffix,
the statement is considered to be conditional rather than
imperative.

Arithmetic statements may be imperative or conditional. The five
arithmetic verbs are: ADD, SUBTRACT, MULTIPLY, DIVIDE, COMPUTE.

PDR3056 PROCEDURE DIVISION

GENERAL RULES:

1. The sections under the DECLARATIVES header provide a method for
including procedures which are invoked when a condition occurs which
cannot normally be tested by the programmer. Each Declaratives Sec-
tion comprises a section header, a USE compiler-directing sentence,
and, optionally, one or more paragraphs.

Although the system automatically handles checking and creation of
standard labels, and executed error recovery in the case of input/
output errors, additional procedures may be specified, here, by
the COBOL programmer.

Since such procedures are executed only at the time an error in
reading and writing occurs, they cannot appear in the regular
sequence of procedural statements. Instead, they must appear in
the DECLARATIVES section. Related procedures are preceded by a USE
sentence.

Within a USE procedure, there must be no reference to non-declara-
tive procedures. Conversely, in the non-declarative portion, there
must be no reference to procedure-names which appear in the declara-
tive portion, except that PERFORM statements may refer to the pro-
cedures associated with a USE statement. For additional informa-
tion, see USE statement.

2. After END DECLARATIVES is specified, no text can appear before
the next section header.

3. The Procedure Division is usually, though not necessarily,
written in sections, each with a section header followed optionally
by one or more successive paragraphs.

4, Section-name and paragraph-name follow the general rules for
WORD FORMATION.

5. Arithmetic statements in the Procedure Division are governed
by the following rules:

A. All data-names used in arithmetic statements must be ele-
mentary numeric data items which are defined in the Data
Division of the program, except when they are the operands
of GIVING. The data item may be numeric edited. Index-
names and index items are not permissable in these arith-
metic statements.

B. Decimal point alignment is supplied automatically through-
out the computations.

C. Intermediate result fields generated for the evaluation of
arithmetic expressions assure the accuracy of the result
field, except where high-order truncation is necessary.

16 - 3 _ November 1977

SECTION 16

6.

REV. 0

PDR3056

The maximum size of each operand is eighteen (18) decimal
digits. The composite of operands, which is a hypothe-
tical data item resulting from the superimposition of
specified operands in a statement aligned on their decimal
points, must not contain more than eighteen decimal digits.

When arithmetic is attempted with one or more non-numeric
operands in VMODE, the program will execute, but results
are invalid. In RMODE, the program will terminate with
an error message ''NON-NUMERIC DATA".

NOTE: With UII (Unimplemented Instruction Package) on Prime
400and Prime 500 units, SPACES is interpreted as zeros when
utilized in arithmetic statements.

The three statement components which may appear in all arith-
metic statements are: The GIVING option, the ROUNDED option, the
SIZE ERROR option.

A. If the GIVING option is written, the value of the data-
name which follows the word GIVING is made equal to the
calculated result of the arithmetic operation. The data-
name which follows GIVING is not used in the computation
and may be a report item.

When the ROUNDED option is specified, if the most signi-
ficant digit of the excess is greater than or equal to 5,
the least significant digit of the resultant data-name
has its value increased by 1. If the ROUNDED option is
not taken, truncation will occur after decimal-point
alignment if the result is greater than the size of the
receiving data item.

Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and then
making the. final result negative.

The following chart illustrates the relationship between
a calculated result and the value stored in an item which
is to receive the calculated result, with and without
rounding.

16 - 4

PDR3056 PROCEDURE DIVISION

Item to Receive Calculated Result

Calculated Value After Value After
Result PICTURE} Rounding Truncating

-12.36 S99V9 -12.4 -12.3
8.432 9V9 8.4 8.4
35.6 99V9 35.6 35.6
65.6 S99V 66 65
-0055 SV999 .006 005

Figure 16-1. Rounding Results

The SIZE ERROR option is written immediately after any
arithmetic statement, as an extension of the statement.
The format of the SIZE ERROR option is:

[ON SIZE ERROR imperative statement ...]

If, after decimal-point alignment and any low-order trunca-
tion, the value of a calculated result exceeds the largest
value which the receiving field is capable of holding, a
size error condition exists.

If the SIZE ERROR option is present, and a size error condi-
tion arises, the value of the resultant data-name is un-
altered and the series of imperative statements specified
for the condition is executed.

If the SIZE ERROR option has not been specified and a size
error condition arises, no assumption should be made about
the final result.

An arithmetic statement, if written with a SIZE ERROR
option, is not an imperative statement. Rather, it is a
conditional statement since it is data-dependent and is
prohibited in contexts where only imperative statements
are allowed.

An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occurs (in this case, it is ap-
parent that RECORD-COUNT HAS Picture 99, and cannot hold
a value of 100), both the MOVE and DISPLAY statements are

Otherwise, the MOVE and DISPLAY statements are

not executed.
executed.

November 1977

SECTION 16 PDR3056

PROCEDURE STATEMENTS

COBOL statements (verbs) are described on the following pages alpha-
betically as presented in the index below. This index is designed
as a quick reference to assist the user in locating format descriptions
and in determining verb category and special applications.

PRIME COBOL VERBS

CATEGORY Special
VERB (Depending on Format) Application PAGE

ACCEPT I/O 16-7
ADD Arithmetic or Conditional 16-9
ALTER Procedure Branch 16-11
CALL Procedure Branch Interprogram Communication| 16-12
CLOSE I/O File Handling 16-14
COMPUTE Arithmetic or Conditional 16-16
COPY Compiler Directing 16-17
DELETE I/O or Conditional File Handling 16-19
DISPLAY I/O 16-20
DIVIDE Arithmetic or Conditional 16-21
ENTER Compiler Directing Interprogram Communication 16-23
EXHIBIT I/O Debugging 16-24
EXIT Procedure Branch 16-25
EXIT PROGRAM Procedure Branch Interprogram Communication 16-26
GO TO Procedure Branch 16-27
IF@ Conditional or Arithmetic 16-28
INSPECT Data Movement 16-32
MOVE Data Movement 16-34
MULTIPLY Arithmetic or Conditional 16-36
OPEN I/O File Handling 16-37
PERFORM Procedure Branch 16-39
READ I/O or Conditional File Handling 16-42
READY TRACE TRACE MODE Directing Debugging 16-44
RESET TRACE TRACE MODE Directing Debugging 16-45
REWRITE I/O or Conditional File Handling 16-46
SEARCH Table Handling 16-48
SET Table Handling 16-52
START I/O or Conditional File Handling 16-54
STOP I/O or Ending 16-56
STRING Data Movement 16-57
SUBTRACT Arithmetic or Conditional 16-60
UNSTRING Data Movement 16-62
USE .- I/O Conditional File Handling 16-67
WRITE I/O or Conditional File Handling 16-69
“TE is a verb in COBOL, although not a verb in the grammatical sense in English.

REV. 0

Table 16-1. Prime COBOL Verb Index

16 - 6

PDR3056 PROCEDURE DIVISION

ACCEPT

FUNCTION:

The ACCEPT statement causes low-volume data to be made available to the
specified data item.

FORMAT 1:

ACCEPT data-name [FROM mnemonic-name]

FORMAT 2:

DATE

DAY
TIME
ne

ACCEPT data-name FROM

SYNTAX RULE:

The mnemonic-name in Format 1 must be specified also in the SPECIAL-
NAMES paragraph of the Environment Division, and must be associated
with the console (terminal).

GENERAL RULES:

1. The ACCEPT statement causes transfer of data from the hardware
device. The transferred data replaces the contents of the field spe-
cified by data-name.

2. One line is read, and as many characters as necessary (depending
on the size of the named data field) are moved, without change, to the
indicated field. The maximum number of characters which can be read
is 72.

3. Omission of FROM mnemonic-name implies that input is from the
terminal.

4. When FROM mnemonic-name is specified, input is keyed-in at the
terminal by the operator; mnemonic-name must be assigned to CONSOLE
in the special-names paragraph.

When input is to be accepted from the terminal, execution consists of
the following steps:

A. Execution is suspended.

B. When the operator enters a response, the program stores the
acquired data in the field designated by data-name, and normal
execution proceeds.

16 - 7 November 1977

SECTION 16 PDR3056

C. The data size is controlled by the size specified for data-
name.

D. For unequal sizes of data-name and terminal input the result
is treated as an alphanumeric to alphanumeric move with space
fill on the right or right truncation.

5. The Format 2 ACCEPT statement causes the requested information to
be transferred to the data item specified by data-name according to
the rules of the MOVE statement. DATE, DAY, and TIME are conceptual
data items and are therefore not described in the COBOL program.

6. DATE has the following data elements: Year, month, and day of the
month, in that sequence, from high to low order (left to right).
July 1, 1974 is expressed as 740701. DATE, when accessed by a COBOL
program, is treated as though described in the COBOL program as an un-
Signed elementary numeric integer data item six digits long.

7. DAY has the following data elements: Year, and day of year, in
that sequence, from high to low order (left to right). July 1, 1974
would be expressed as 74183. DAY, when accessed by a COBOL program,
is treated as though described in a COBOL program as an unsigned ele-
mentary numeric integer data item five digits long.

8. TIME has the following data elements: Hours, minutes, seconds,
and hundreds of a second. TIME is based on time elasped after mid-
night on a 24-hour basis; thus:2:41 p.m., or 1441 hours, is expressed
as 14410000. TIME, when accessed by a COBOL program, is treated as
though described in a COBOL program as an unsigned elementary numeric
integer data item eight digits long. The minimum value of TIME is
00000000; maximum value is 23595999,

REV. 0 16 - 8

PDR3056 PROCEDURE DIVISION

ADD

FUNCTION:

The ADD statement adds together two or more numeric values and stores the
resulting sum.

FORMAT 1:

data-name-1| ,data-name-2ADD siteral-1 \ psteral-2 i . . . TO data-name-n [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 2:

ADD data-name-1 ,data-name-2 ,data-name-3
—— |literal-1 literal-2 ,literal-3

GIVING data-name-m [ROUNDED] [; ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. In Formats 1 and 2, each data-name must refer to an elementary
numeric item, except that in Format 2 each item following GIVING can
be either an elementary numeric item or an elementary numeric edited
item.

2. Each literal must be a numeric literal. —

3. The maximum size of each operand is 18 decimal digits. If all
operands, excluding those following the word GIVING, were to be super-
imposed upon each other, aligned by their implied decimal points, their
composite can not exceed 18 decimal digits in length.

GENERAL RULES:

1. In Format 1, the values of the operands preceding the word TO are
added, the sum is added to the current value of data-name-m and the
result is stored immediately in data-name-m.

2. In Format 2, the values of the operands preceding the word GIVING
are added, and the sum is stored as the new value of data-name-m fol-
lowing GIVING.

3. See the rules for arithmetic statements under Procedure Division,
General Rules. The ROUNDED and ON SIZE ERROR options may be used when
truncation of the results could occur.

16 - 9 November 1977

SECTION 16 PDR3056

REV.

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS
OF COBOL, Algebraic Signs.

EXAMPLES:

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED
ADD REGULAR-TIME OVERTIME GIVING GROSS-PAY.

The first statement would result in the total sum of INTEREST, DEPOSIT,
and BALANCE being placed at BALANCE, while the second would result in
the sum of REGULAR-TIME and OVERTIME earnings being placed in item
GROSS-PAY.

PDR3056 PROCEDURE DIVISION

ALTER

FUNCTION:

The ALTER statement modifies a simple GO TO statement elsewhere in the
Procedure Division, thus changing the sequence of execution of program
statements.

FORMAT :

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2

SYNTAX RULES:

1. Paragraph-name-1 contains a single GO TO sentence without the
DEPENDING phrase.

2. Paragraph-name-2 is the name of another paragraph or section in
the Procedure Division.

GENERAL RULE:

Execution of the ALTER statement modifies the GO TO statement in
paragraph-name-1 so that subsequent executions of the modified GO TO
statements cause transfer of control to paragraph-name-2.

EXAMPLE:

GATE.
GO TO MF-OPEN.

M-F-OPEN.
OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEDE TO NORMAL.

NORMAL .
READ MASTER-FILE, AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique for providing
for a one-time initializing program step.

NOTE: ALTER is fully supported in this COBOL. Its use, however, is
inconsistent with structured programming techniques. The reader
should be aware that the ALTER statement presents difficulties in
the debugging process.

November 1977

SECTION 16 PDR3056

CALL

FUNCTION:

The CALL statement allows one program to communicate with one or more other
programs. It causes control to be transferred from one loaded program to
another within a run unit, with both programs having access to data items
referred to in the CALL statement.

FORMAT :

CALL literal-1 sit data-name-1 [, data-name-2] . . |

SYNTAX RULES:

1. The CALL statement appears in the calling program. The called
program, which must be known at compile time, is specified by name as
literal-1. The program represented by literal-1 may have been written
in a source language other than COBOL. :

2. Literal-1 must be a non-numeric literal.

3. The USING phrase is included in the CALL statement only if there is
a USING phrase in the Procedure Division header of the called program.
Corresponding USING phrases in the calling and the called programs must
have the same number of operands.

4. Each operand in the USING phrase must have been defined as a data
item in the File Section, Working-Storage Section, or Linkage Section
and must have a level-number of 01 or 77. Data-name-1, data-name-
2, .+., may be qualified wherl they refer to data items defined in the
File Section.

GENERAL RULES:

1. The execution of a CALL statement transfers control to the called
program.

2. A program is in its initial state the first time it is called within
a run unit. On all other entries into the called program, the state of
the program remains the same as when control last past from its EXIT
statement back to the calling program. This includes all data fields,
the status and positioning of all files, and all alterable switch
settings.

3. Called programs can contain CALL statements. However, a called pro-
gram must not contain a CALL statement that directly or indirectly calls
the calling program.

REV. 0 16 - 12

PDR3056 PROCEDURE DIVISION

4. The data-names specified by the USING phrase of the CALL state-
ment indicate those data items available to a calling program, that
may be referred to in the called program. The order in which the
data-names appear in the USING phrases of the two programs is
critical; the data-names in the USING phrase of the CALL statement in
the calling program are interpreted as corresponding on a one-to-one
basis with those in the USING phrase in the Procedure Division header
of the called program. Corresponding data-names refer to a single set
of data which is available to the called and calling programs. Cor-
respondence is positional, not by name. There is no such correspondence
for index-names, however, since index-names in the calling and called
programs always refer to separate indexes.

5. See Section 17, Interprogram Communication for additional infor-
mation and examples.

16 - 13 November 1977

SECTION 16 PDR3056

CLOSE

FUNCTION:

The CLOSE statement terminates the processing of files, reels/units, with
optional rewind and/or lock or removal where applicable.

FORMAT 1:

. REEL |[with NO REWIND
CLOSE file-name-1 {fart ss AMOVAL

FORMAT 2:

CLOSE file-name-1 rm LOCK. |

FORMAT 3:

CLOSE index-file-name

SYNTAX RULES:

1. The REEL or UNIT phrase must be used only for sequential files.

2. The files referenced in the CLOSE statement need not all have the
same access or organization.

3. Except where specifically stated, the terms UNIT and REEL are
synonomous and interchangeable.

GENERAL RULES:

1. Format 3 is the only option possible for both Indexed and Relative
files.

2. A CLOSE statement must be executed upon completion of file processing,
or before a STOP RUN is executed.

3. Files are divided into the following categories to show the effect
of various types of CLOSE statements as applied to various storage media:

A. Nonreel/unit - A file on an input or output medium (a printer,
a disk).

B. Sequential single-reel/unit - A file wholly contained on one
reel/unit.

REV. 0 16 - 14

PDR3056 PROCEDURE DIVISION

C. Sequential multireel/unit - A sequential file which is contained
on more than one reel/unit.

D. Nonsequential single/multireel/unit - A relative or indexed file,
residing on a disk device, which may be a single or multiunit
file. |

4. For this compiler, CLOSE statement options are treated as comments.

16 - 15 November. 1977

SECTION 16 PDR3056

COMPUTE

FUNCTION:

‘The COMPUTE statement evaluates an arithmetic expression and then stores
the result in a designated numeric or report item.

FORMAT:

data-name-2

COMPUTE data-name-1 [ROUNDED] = numeric-literal [SIZE-ERROR-clause]
arithmetic-expression

SYNTAX RULE:

In general, data-names appearing to the left of = must refer to either

an elementary numeric item or an elementary numeric edited item.

GENERAL RULE:

The COMPUTE statement is governed by the regulations imposed by the
statement components GIVING, ROUNDED, SIZE ERROR, as outlined in the

General Rules, PROCEDURE DIVISION. It is also governed by the general

regulations for Arithmetic Statements and LANGUAGE SPECIFICATIONS.

REV. 0 16

PDR3056 PROCEDURE DIVISION

COPY

FUNCTION:

The COPY statement provides a means of including pre-written COBOL
source coding in the programs at compile time.

FORMAT :

COPY text-name [TH} library-name]

SYNTAX RULES:

1. OF and IN are interchangeable and mutually exclusive.

2. A COPY statement may occur anywhere in the source program, in
any Division where a character-string or a separator might usually
occur, except that it may not occur within another COPY statement.

GENERAL RULES:

1. Text-name must be a unique name on the UFD (User's File
Directory) which contains the COBOL program if the library-name
is not specified.

2. If the text name is not on the same UFD as the program,
library-name must be specified and must be the UFD name which
contains the text-name.

EXAMPLES:

A. FILE-CONTROL. COPY text-name.

B. FD MASTER-FILE COPY text-name OF SUB.

C. $1 MASTER-RECORD. COPY text-name IN SUB.

D. SECTION-NAME SECTION. COPY text-name.

E. PARAGRAPH-NAME. COPY text-name IN SUB.

Of the examples above, A and D have copy members contained on the
same UFD as the source program. B, C, and D have copy members not
contained in the source program UFD; these have copy members con-
tained in a UFD named SUB.

3. The data preceding the COPY statement must not be contained
within the copy member.

16 - 17 November 1977

SECTION 16 PDR3056

EXAMPLE:

The following is from Data Division coding in a source program.

1 MASTER-DESCRIPTION. COPY MASDES.

The text-name MASDES exists in the same UFD as the source program.
It must not contain the §1 MASTER-DESCRIPTION entry; it might
have the format:

@2 BADGE-NO PIC 9(5).
$2 NAME.

§3 LAST-NAME PIC X(15).
63 FIRST-NAME PIC X(15).

After compilation, examination of the listing file would reveal:

f1 MASTER-DESCRIPTION. (COPY MASDES.) (where the copy member is
$2 BADGE-NO PIC 9(5). comment only.)
$2 NAME.

§3 LAST-NAME PIC X(15).
$3 FIRST-NAME PIC X(15).

REV. 0 16 - 18

PDR3056 PROCEDURE DIVISION

DELETE

FUNCTION:

The DELETE statement logically removes a record from a disk file.

FORMAT :

DELETE file-name [INVALID KEY imperative-statement]

SYNTAX RULE:

The INVALID KEY option must not be specified for a DELETE state-
ment referencing a file in SEQUENTIAL access mode.

' GENERAL RULES:

1. A DELETE statement logically removes a data record from a file.
When operating on an indexed file, the DELETE statement removes
all corresponding indices as well.

2. Execution of a DELETE statement does not affect the contents
of a record area associated with file-name.

3. In SEQUENTIAL access, the record to be deleted must have been
successfully read before a DELETE can be executed.

4. In indexed files with RANDOM or DYNAMIC access modes, the value
of the record to be deleted must be placed in the RECORD KEY field.

5. In relative files with RANDOM or DYNAMIC access modes, the value
of the record to be deleted must be placed in the RELATIVE KEY
field.

6. For additional discussion, see Sections 19 and 20.

16 - 19 November 1977

SECTION 16 PDR3056

DISPLAY

FUNCTION:

The DISPLAY statement causes low-volume data to be output to the appro-
priate hardware device.

FORMAT:

data-name
DISPLAY literal ... [UPON mnemonic-name|

figurative-constant

SYNTAX RULES:

1. Mnemonic-name must be specified in the SPECIAL-NAMES paragraph
in the Environment’ Division.

2. The maximum total number of characters which may be output is 72.

GENERAL RULES:

1. When the UPON suffix is omitted, the system default is the
standard display device, the on-line terminal.

2. If a figurative-constant is given as an operand, it will be
displayed as a single character.

3. If a data item operand is packed, it is displayed as a series
of digits followed by a separate trailing sign.

EXAMPLES:

Type © Statement Output

data-name DISPLAY BADGE-NO 52207

data-name DISPLAY 'BADGE-NO = 'BADGE-NO BADGE-N = 52297
literal

literal DISPLAY 'END-JOB' ENDJOB

literal
figurative-constant DISPLAY 'SELECT' ZERO SELECT#

REV. 0 16 - 20

PDR3056 PROCEDURE DIVISION

DIVIDE

FUNCTION:

The DIVIDE statement divides one numeric data item into another and
stores the quotient. |

FORMAT 1:

~ Jdata-name-1
DIVIDE literal-1

INTO data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

FORMAT 2:
“

DIVIDE data-name-1 BY scene [ROUNDED]

literal-1 —]|literal-2

[; ON SIZE ERROR imperative-statement]

FORMAT 3:

DIVIDE data-name-1 data-name-2
literal-1 INTO

}

jsteral-2 GIVING data-name-3 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. Each data-name must refer to an elementary numeric item, except that
a data-name associated with the GIVING phrase can refer either to an ele-
mentary numeric item or to an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all rec-
ceiving data items were to be superimposed upon each other, aligned by
their decimal points, their composite should not exceed 18 decimal digits
in length.

4. Division by zero always causes a size-error condition.

16 - 21 November 1977

SECTION 16 PDR3056

GENERAL RULES:

1. In FORMAT 1, data-name-1 or literal-1 is divided into data-
name-2; the quotient then replaces the divident (data-name-2).

2. In FORMAT 2, data-name-1 or literal-1 is divided by data-
name-2 or literal-2. The quotient replaces the first operand,
data-name-1.

3. In FORMAT 3, division occurs as in A or B below, and the
quotient is stored in the data items following the word GIVING.

A. If the keyword INTO is used, the value of data-name-1 or
literal-1 is divided into data-name-2 or literal-2 and
the result is stored in data-name-3. |

B. If the keyword BY is used, data-name-1 or literal-1 is
divided by data-name-2 or literal-2 and the result is
stored in data-name-3.

4. The REMAINDER clause of DIVIDE statement is not supported.
The user may substitute by a simple modification:

For the statement:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3 REMAINDER data-name-4

Substitute:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3
COMPUTE data-name-4 = data-name-1 MINUS
(data-name-2 TIMES data-name-3).

REV. 0 16 - 22

PDR3056 PROCEDURE DIVISION

ENTER

FUNCTION:

The ENTER statement is classified as a compiler-directing statement; it

acts as a modifier to a subsequent CALL statement and permits the use of

more than one language in the same program.

FORMAT:

COBOL
ENTER 4ASSEMBLER

SYNTAX RULES:

1. A CALLed subprogram may be written in COBOL, FORTRAN, or Assembly

Language. The parameter ASSEMBLER in the ENTER statement signifies a

subprogram is other than COBOL.

2. The form ENTER COBOL may be used following a CALL statement; this

traditional usage is optional. After any CALL statement, ENTER COBOL

is assumed.

3. Each CALL upon an Assembler Language subroutine must be preceded

by its own ENTER ASSEMBLER statement.

GENERAL RULES:

1. The other language statements are executed in the object program

as if they had been compiled in the object program following the ENTER

statement. See INTER-PROGRAM COMMUNICATION for additional information.

2. The ENTER statement is optional in this compiler.

16 - 23 November 1977

SECTION 16 PDR3056

EXHIBIT

FUNCTION:

The EXHIBIT statement provides a means for receiving critical data at specified
points in a procedure.

FORMAT :

literal

EXHIBIT NAMED data-name

GENERAL RULES:

1. The EXHIBIT statement is injected at critical points in the Procedure
Division to provide check-pointing information. Specified data is
EXHIBITED on the terminal.

2. The EXHIBIT statement differs from DISPLAY in that data-name is printed
as well as its value and an = character.

EXAMPLE:

Statement OUTPUT

EXHIBIT NAMED EMPLOYEE-NO EMPLOYEE-NO = 950

REV. 0 16 - 24

PDR3056 PROCEDURE DIVISION

EXIT

FUNCTION:

The EXIT statement provides an end-point for a procedure.

FORMAT :

EXIT

SYNTAX RULES:

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

GENERAL RULES:

1. An EXIT statement serves only to enable the user to assign a

procedure-name to a given point in a program. Such an EXIT state-

ment has no other effect on the compilation or execution of the

program.

16 - 25 November 1977

SECTION 16 PDR3056

EXIT PROGRAM

FUNCTION:

The EXIT PROGRAM statement marks the logical end of a called program.

FORMAT:

EXIT PROGRAM.

SYNTAX RULES:

1. The EXIT PROGRAM statement must appear in a sentence by itself.

2. The EXIT PROGRAM sentence must be the only sentence in the
paragraph.

GENERAL RULES:

1. An execution of an EXIT PROGRAM statement in a called program
causes control to be passed to the calling program. Execution of
an EXIT PROGRAM statement in a program which is not called behaves
as if the statement were an EXIT statement.

REV. 0 to 2

PDR3056 PROCEDURE DIVISION

GO 10

FUNCTION:

The GO TO statement transfers control from one part of the PROCEDURE DIVISION

to another, overriding the normal sequential execution of sentences.

FORMAT 1:

TO procedure-name.
eR

FORMAT 2:

GO TO procedure-name-1 [procedure-name-2]...

DEPENDING ON data-name.

SYNTAX RULES:

1. A paragraph referenced by an ALTER statement can consist only of a

paragraph header followed by a format 1 GO TO statement.

2. In Format 2, data-name must be an elementary, numeric integer.

GENERAL RULES:

1. AGO TO statement must not branch out of a range of the PERFORM

statements.

2. When a Format 1 GO TO statement is executed, control is transferred

to procedure-name, or to another paragraph-name if the GO TO statement

has been modified by an ALTER statement.

3. When a GO TO statement represented by Format 2 is executed, control

is transferred to procedure-name-1, procedure-name-2, etc., depending on

the value of the identifier being 1, 2, ..., n. If the value of the

identifier is anything other than the positive or unsigned integers I,

2, ..-, n, then no transfer occurs and control passes to the next state-

ment in the normal sequence for execution.

4. Ina Format 2 GO TO statement, there is no limitation to the total

number of characters permitted in procedure-names. The aggregate

number of acceptable characters is unlimited.

16 - 27 November 1977

SECTION 16 PDR3056

I F

FUNCTION :

The IF statement causes the evaluation of a condition, permitting the
execution of specified procedural statements if the condition is true.

FORMAT:

NEXT SENTENCEIF condition TT} [ELSE

§

NEXT SENTENCE
statement (s) -| ;

j

SYNTAX RULE:

The conditions in the IF statement must conform to the rules and
outlining of conditions specified in Conditional Expressions,
Section 12.

GENERAL RULES:

1. If the condition is true, any ELSE phrase is bypassed and either
Statement-1 or the NEXT SENTENCE (whichever was specified in the
statement) is executed, as follows:

A. Statement-1, if specified, is executed. Control then
passes to the next executable sentence following the IF
Statement, unless statement-1 contains a procedure-branch
or conditional statement, in which case control is trans-
ferred according to the rules for that statement.

B. If the NEXT SENTENCE phrase is specified, control passes
to the next executable sentence.

2. If the condition is false, any statement-1l or its replacement
NEXT SENTENCE which may be specified is bypassed, and control passes
as follows:

A. Statement-2, if specified, is executed. Control then passes
to the next executable sentence, unless statement-2 contains
a procedure-branch or conditional statement, in which case
control is transferred according to the rules for that
statement.

B. If no ELSE statement-2 phrase is specified, or if the ELSE
NEXT SENTENCE phrase is specified, control passes to the
next executable sentence.

REV. 0

PDR3056 PROCEDURE DIVISION

3. The IF statement is said to be nested whenever statement-1 and/or
statement-2 contains another IF statement. IF statements within IF
statements are considered as paired IF and ELSE combinations, proceeding
from left to right. Thus, any ELSE encountered applies to the imme-
diately preceding IF which has not been already paired with an ELSE.
It is not required that the number of ELSE's in a sentence be the same
as the number of IF's.

4. The relation condition has the format:

IF operand relation operand

The six relations in conditions are:

Relation Meaning

is equal to
< is less than
> is greater than

NOT = is not equal to
NOT < is not less than
NOT > is not greater than

5. The class condition determining whether an operand is numeric or
alphabetic. Its format is:

NUMERIC
IF data-name IS [NOT] ALPHABETIC

The NUMERIC test is valid only for a group, decimal, or character item.
The ALPHABETIC test is valid only for a group or character iten.

6. The condition-name condition tests the value or status of a condi-
tional variable. Its format is:

IF [NOT] condition-name

The condition-name is defined as a level 88 data item in the Record
Description entry in the Data Division.

In a condition-name condition, the first series of statements is executed
if, and only if, the designated condition is true. The second series of
statements is executed if, and only if, the designated condition is false.
The second series (ELSE part) is terminated by a sentence-ending period.
If there is no ELSE part to an IF statement, then the first series of
statements must be terminated by a sentence-ending period.

Whether the condition is true or false, the next sentence is executed
after execution of the appropriate series of statements. If a GO TO
is contained in the imperatives which are executed, or the normal flow
of program steps is superseded because of an active PERFORM statement,
the next sentence is not executed.

16 - 29 November 1977

SECTION 16 PDR3056

EXAMPLES:

IF BALANCE = # GO TO NOT-FOUND.

IF X = 1.743 MOVE 'M' TO FLAG.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE GO TO BYPASS.

7. The sign condition tests an arithmetic expression to determine

whether its value is greater than, less than, or equal to zero.

The format is:

NEGATIVE

IF data-name IS [NOT] ZERO
POSITIVE

8. Two or more conditions can be combined by the logical operators
AND and OR. The format for a combined condition is:

IF condition {Ge} condition { oe condition

9. Comparisons employing the IF statement can be made involving

indexed data items.

10. A "nested IF'' exists when, in a single sentence, more than one

IF precedes the first ELSE.

EXAMPLE :

IFX=Y IFA=

MOVE '"'*'' TO SWITCH
ELSE MOVE "A"! TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by the tree

structure in Figure 16-2.

16 - 30
REV. 0

PDR3056 PROCEDURE DIVISION

F

Space ———_-®Switch

Next

Sentence . .
A-———» Switch *&——&Switch

Next Next

Sentence Sentence

Figure 16-2. Nested IF Tree Structure

Another useful way of viewing nested IF structures is based on
numbering IF and ELSE verbs to show their priority.

IF(1) X=Y

IF(2) A=B
true-action(2): MOVE "'A'' TO SWITCH |

ELSE(2) false-action(2): MOVE "A" TO SWITCH |
weaweeeee eeeeeeeeee ee I

true
action(1):

ELSE(1) false-action(1): MOVE SPACE TO SWITCH.

The above illustration shows clearly the fact that IF(2) is wholly
nested within the true-action side of IF(1).

11. It is not required that the number of ELSEs in a sentencebe
the same as the number of IFs; there may be fewer ELSE branches.

EXAMPLES:

IF M=1 IF K= gf
GO TO M1K# ELSE GO TO MN@T1.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO: CLOSE-OUT.

In the latter case, IF(2) could equally well have been written
as AND.

16 - 31 November 1977

SECTION 16 PDR3056

INSPECT

FUNCTION:

The INSPECT statement enables the programmer to examine a character-string

item, to tally, replace, or tally and replace occurrences of single char-

acters in a data item.

FORMAT:

INSPECT data-name-1 TALLYING data-name-2 FOR ALL operand-2
LEADING)

CTERS

[JBEFORE |INITIAL operand-3]

AFTER

REPLACING

|}|

ALL operand-4] BYoperand-5
LEADING
FIRST

CHARACTERS

[fBEFORE\ INITIAL operand-7]
AFTER

SYNTAX RULE:

Data-name operands must be described (implicitly or explicitly) as

USAGE IS DISPLAY.

GENERAL RULES:

1. When both TALLYING and REPLACING clauses are present, the two clauses

behave as if two INSPECT statements were written. The first contains

only a TALLYING clause, the second containing only a REPLACING clause.

2. The INSPECT statement enables examination of a character-string item,

permitting various combinations of the following actions:

A. Counting appearances of a specified character;

B. Mapping a specified character into an alternative.

C. Qualifying and limiting the above actions by keying those actions
to the appearance of other specific characters.

PDR3056 PROCEDURE DIVISION

3. The TALLYING clause causes character-by-character comparison,
from left to right, of data-name-1. When an AFTER INITIAL operand-
3 subclause is present, the counting process begins only after
detection of a character in data-name-1 matching operand-3, If
BEFORE INITIAL operand-3 is specified, the counting process terminates
upon encountering a character in data-name-1 which matches operand-3.
The count is accumulated in data-name-2. Data-name-2 is not initializ-
ed prior to the operation.

4, The REPLACING clause causes replacement of characters under
specified conditions. If BEFORE INITIAL operand-7 is present,
replacement does not continue after detection of a character in
data-name-1 matching operand-7, If AFTER INITIAL operand-7 is
present, replacement does not commence until detection of a charac-
ter in data-name-1 matching operand-7.

16 - 33 November 1977

SECTION 16 PDR3056

MOVE

FUNCTION:

The MOVE statement transfers data from one area of main storageto another,

performing conversion and editing as indicated.

FORMAT:

MOVE data-name-1\ 1 gata-name-2 [data-name-n...]
———

|

literal — woe

SYNTAX RULE:

Data-name-1 and literal represent the sending area; data-name-2,
data-name-n represent the receiving area.

GENERAL RULES:

1. When a group item is a receiving field, characters are moved without

conversion and without editing.

2. During elementary moves, data is converted as necessary, editing

occurs, andalignment is performed according to Standard Alignment Rules,

LANGUAGE SPECIFICATIONS.

3. For numeric (external or internal decimal, binary, numeric literal)

to numeric or report:

A. The items are aligned by decimal points, with generation of
zeros or truncation on either end, as required.

B. When the types of the source field and receiving field differ,

conversion to the type of the receiving field takes place.

C. The items may have special editing performed on them with sup-

pression of zeros, insertion of a dollar sign, etc., and decimal

point alignment, as specified by the receiving area.

4. For non-numeric source and targets:

A. The characters are placed in the receiving area from left to
right (unless JUSTIFIED RIGHT applies).

B. If the receiving field is not completely filled by data being
moved, the remaining positions are filled with spaces.

REV. 0 16 - 34

PDR3056 PROCEDURE DIVISION

C. If the source field is longer than the receiving field, the
move is terminated as soon as the receiving field is filled.

5. When overlapping fields are involved, results are not predictable.

6. Table 16-2 summarizes the various types of moves permitted with
the MOVE statement.

RECEIVING | a

So Eg
Q re a oe

Bi. Se] 2 go2 2/25/21
S| ei)s")e}/s8] &SENDING A =

ALPHABETIC X X X
BINARY X X X X (A)
ALPHANUMERIC X xX (C) X

EDITED
NUMERIC X X X X (B)
NUMERIC EDITED X (C) X (C)
ALPHANUMERIC

|

X X x (D)

|

x

NOTES:
(A) If receiving operand length L is less than or

equal to 18, target Picture 9(L) is assumed.
Otherwise, the MOVE is disallowed.

(B) The source is converted to DISPLAY form with
separate trailing sign (blank for positive),
then moved as a character string source subject
to truncation or blank padding depending on
receiving its length.

(C) The source is considered as a character string.

(D) If source length L is less than or equal to 18,
source Picture 9(L) is assumed. Otherwise, the
MOVE is disallowed.

Table 16-2. Permissible Moves

16 - 35 November 1977

SECTION 16 PDR3056

MULTIPLY

FUNCTION:

The MULTIPLY statement computes the product of two numeric data items.

FORMAT :

data-name-1
MULTIPLY numeric-literal-1

BY data-name-2 [GIVING data-name-3]
numeric-literal-2 GIVING data-name-3

[ROUNDED [ON SIZE ERROR imperative-statement|

SYNTAX RULES:

1. Each data-name must refer to an elementary numeric item, except
that data-name-3 may be an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. The
composite of operands, excluding those following GIVING, must not contain
more than 18 decimal digits.

GENERAL RULES:

1. If the GIVING option is omitted, the second operand must be a data-
name; the product will replace the second operand data-name.

EXAMPLE :

If the field BALANCE is to be multiplied by 1.03, it must be written
as:

MULTIPLY 1.03 BY BALANCE

Where the result will be stored in the data item named BALANCE.

2. When the GIVING option is taken, the product is stored in data-
name-3.

3. The rules for signs are those presented in FUNDAMENTAL CONCEPTS OF
COBOL, Algebraic Signs.

REV. 0 16 - 36

PDR3056 PROCEDURE DIVISION

OPEN

The OPEN statement initiates the processing of files, and enables other
input/output operations, such as label checking andwriting.

FORMAT 1:

INPUT
OPEN I-O filename ...

OUTPUT

FORMAT 2:

INPUT
OPEN I-0 index-file-name-1 ...

OUTPUT

SYNTAX RULES:

1. There must be an OPEN statement for each file prior to a READ,
WRITE, or REWRITE statement.

Zz. The files referred to in the OPEN statement need not all have the
same organization or access.

GENERAL RULES:

1. Format 1 is used for Sequential I-O (SAM files).

2. Format 2 is used for Indexed I-0 and Relative I-0.

3. A file opened as INPUT can only be accessed in a READ statement.

4. A file opened as OUTPUT can only be accessed in a WRITE statement.

5. A file opened as I-O can be accessed by a READ, REWRITE (disk only)
or WRITE statements.

6. I the OPEN statement does not produce access to the file (i.e.,
it cannot locate the desired file), the program will terminate
abnormally at execution time.

7. See Sections 19 and 20 for additional information on Indexed
I-O and Relative I-0, respectively.

8. OPEN statements vs. Access Mode for Indexed and Relative files
are presented in Table 16-3 below.

16 - 37 November 1977

SECTION 16 PDR3056

OPEN Option in Effect |

FILE ACCESS Procedure ~~

ORGANIZATION

|

MODE IS Statement Input {| Output

|

I-0

READ X X

SEQUENTIAL WRITE X

INDEXED SEQUENTIAL REWRITE X

RELATIVE START X X

DELETE x

READ X xX

WRITE X X

INDEXED RANDOM REWRITE X

RELATIVE START
DELETE xX

READ X xX

WRITE xX X

INDEXED DYNAMIC REWRITE X

RELATIVE START X X

DELETE X

Table 16-3. OPEN Statements and Access Modes

REV. 0

PDR3056 PROCEDURE DIVISION -

PERFORM

FUNCTION:

The PERFORM statement is used to transfer control explicitly to one or
more procedures, and to return control implicitly to the normal sequence
after transfer execution.

FORMAT 1:

PERFORM procedure-name-1 [THROUGH procedure-name-2 |
THRU

[jJinteger TIMES]
data-name-1 .

FORMAT 2:

PERFORM procedure-name-1 [THROUGH procedure-name-2 |]
THRU

[VARYING data-name-2 FROM |data-name-3 BY
index-name-1 index-name-2

literal-1

data-name-44] [UNTIL condition-1]
literal-2

SYNTAX RULES:

1. The words THROUGH and THRU are equivalent.

2. Each data-name represents an elementary numeric item described in
the. Data Division. |

3. Each literal represents a numeric literal.

4. In Format 2, if an index-name is specified in the VARYING or AFTER
phrase, then:

A. Data-name in the associated FROM and BY phrases must be an
integer data item.

16 - 39 November 1977

SECTION 16 PDR3056

B. The literal in the associated FROM phrase must be a positive
integer.

C. The literal in the associated BY phrase must be a non-zero
integer.

5. In Format 2, if an index-name is specified in the FROM phrase,
then:

A. Data-name in the associated VARYING or AFTER phrase must be an
integer data item.

B. The data-name in the associated BY phrase must be an integer
data item.

C. The literal in the associated BY phrase must be an integer.

6. In Format 2, literal in the BY phrase must not be zero.

7. In Format 2, condition-1... condition-n may be any conditional
expression as described in FUNDAMENTAL CONCEPTS OF COBOL, Conditional
Expressions.

GENERAL RULES:

1. If procedure-name-n is a paragraph-name, control is returned to the
next sequential instruction after the last sentence of that paragraph.

2. If procedure-name-n is a section-name, control is returned to the
next sequential instruction after the last sentence of the last paragraph
of that section.

3. If the PERFORM statement is written with no options, control is
transferred to procedure-name-1. At the completion of procedure-name-1,
control is implicitly returned to the next executable statement following
the PERFORM statement.

4. If the THROUGH option in Format 1 is taken, multiple paragraphs or
sections can be executed before control is returned to the next sequential
statement.

5S. In Format 1, if the TIMES option is taken, procedures are performed
the number of times specified by data-name-1 or integer. At the comple-
tion of procedure-name-2, control is returned to the statement following
PERFORM.

Data-name-1 or integer must be a positive numeric integer which cannot
be greater than 32,767.

REV. 0 16 - 40

PDR3056 PROCEDURE DIVISION

If data-name-1 or integer is initially zero or negative, the PERFORM
is not executed; control passes to the statement following PERFORM.

6. If the UNTIL option in Format 2 is taken, successive execution of
procedures occurs until a condition is satisfied.

The statement is coded as:

PERFORM procedure-name-1[THRU procedure-name-2] UNTIL condition-1.

Condition-1 must be a simple condition, excluding an ELSE or OTHERWISE
phrase.

The condition is tested prior to execution of the PERFORM statement.
If the condition is not met, PERFORM is executed until the condition
is satisfied. If the condition is satisfied prior to execution of the
PERFORM statement, PERFORM is not executed and control passes to the
next sequential instruction.

7. Format 2 with all options is used to vary the values referred to
by data-name-2 or index-name-1.

The condition is tested prior to execution of the PERFORM statement.
If the condition is true, PERFORM is not executed; control passes to
the next sequential instruction.

If the condition is false, data-name-2 is set to the current value of
data-name-3 or literal-1 at the point of initial execution of the
PERFORM statement. If the condition is still false, procedure-name-1
THRU procedure-name-2 are executed once.

The value of data-name-2 is incremented or decremented by the value in
data-name-4 or literal-2. The condition is reevaluated. The cycle
continues until the condition is satisfied, at which point control is
transferred to the next executable statement following PERFORM.

8. At the termination of a Format 2 PERFORM statement, data-name-2
or index-name-1 have a value which exceeds the last used setting by
the value of data-name-4 or literal-2. If the condition was true
before initial execution of PERFORM, data-name-2 or index-name-1
contain the current value of data-name-3 or index-name-2.

November 1977

SECTION 16 | PDR3056

READ

FUNCTION:

The READ statement makes available a record from a file.

FORMAT 1:

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative statement] .

FORMAT 2:

READ file-name [INTO data-name-1] [KEY IS data-name-2]

[INVALID KEY imperative-statement].

SYNTAX RULES:

1. Format 1 is used for all sequentially read files.

2. The NEXT phrase option in Format 1 is used only for Indexed and
Relative I-O files, in sequential or Dynamic access modes, when records
are to be retrieved sequentially.

3. Format 2 is used only for Indexed I-O and Relative I-O files.

4. The KEY IS option of Format 2 is used only for Indexed I-0O files.

GENERAL RULES:

1. <A file must be OPEN in the INPUT or I-O mode whena READ statement
for that file is executed.

2. The READ statement makes a record available to the program before
execution of any subsequent statement, provided AT END or INVALID KEY
are not invoked.

3. Format 1, without the NEXT option, is used for sequential I-O files.
The INTO option permits the user to specify that a copy of the data
record is to be placed into a data area immediately after the read state-
ment. The data-name must not be defined in the file itself.

REV. 0 16 - 42

PDR3056 PROCEDURE DIVISION

If end-of-file occurs, but there is no AT END clause in the READ
statement, an applicable Declarative procedure is performed. If
neither AT END nor Declarative exists, an execution I-O error
occurs.

4, Format 1, without the NEXT option, is used for sequential reads
of indexed I-O files in sequential access mode. The read is based
on the primary index (RECORD KEY).

5. Format 1, without the NEXT option, is used for sequential reads
of Relative I-0 files in sequential access mode. The read is based
on the RELATIVE KEY.

6. Indexed and Relative I-O0 files in Dynamic mode, may be read
sequentially, rather than randomly, by use of the NEXT option.

7. For General Rules 4, 5, and 6 above, if the INTO clause is
used, the data record is automatically moved into data-name-1. When
AT END is specified, control is passed to the imperative-statement
after the complete file has been read.

8. For Indexed I-0 files in Dynamic and Random mode, if NEXT is
not specified, and the file is to be read sequentially, the value
of the record to be retrieved must be placed in the RECORD KEY
data-name.

9. For Relative I-O files, if NEXT is not specified, and the file
is to be read sequentially, the value of the record to be retrieved
must be placed in the RELATIVE KEY data-name.

10. For Indexed I-O0 files read sequentially, if one of the secondary
index sequences is to be used, the index must first be established
with a Format 2 statement. Thereafter, a Format 1 statement may
be used.

11. NOTE: For sequential I-O disk files containing packed or binary
data, the user should specify UNCOMPRESSED in the FD entry for that
file.

12. Further detailed discussion of READ statement formats as they
apply to Indexed I-O files and Relative I-O files will be found in
Sections 19 and 20, respectively.

16 - 43 November 1977

SECTION 16 PDR3056

READY TRACE

FUNCTION :

The READY TRACE statement turns on a Prime tracing function to assist in

determining the point at which actual flow departs from expected flow.

FORMAT:

READY TRACE

SYNTAX RULE:

The execution of the trace mode may be set or reset dynamically.

GENERAL RULES:

1. Each time a paragraph or section in the Procedure Division is
entered, that paragraph or section name is output to the terminal.

2. In 64R mode the format printed is:

Program name/subprogram name section-name/paragraph-name

3. In 64V mode, the format printed is:

ENTER: section-name/paragraph-name.

4. At Rev. 14, the output from the READY TRACE statement can be
directed to a separate file in addition to the user terminal output.
The system command COMOUT is used for this purpose. The command is
given just prior to program execution; its format is:

COMO file-name

where file-name is a programmer supplied word.

At program completion, the system command, COMO -E will close the file.
close the file.

All data resulting from READY TRACE will be output to file-name and

can be SPOOLed or SLISTed at program termination.

5. It is a good technique to TRACE only a limited number of records,

such that the output will not be too large to handle, thereby dimin-

ishing its value for debugging purposes.

REV. 0 16 - 44

PDR3056 PROCEDURE DIVISION

RESET TRACE

FUNCTION:

This statement turns off the Prime tracing function.

FORMAT:

RESET TRACE

GENERAL RULE:

The RESET TRACE statement may be coded anywhere in the Procedure
Division when a READY TRACE statement has been previously coded.

16 - 45 November 1977

SECTION 16 PDR3056

REWRITE

FUNCTION:

The REWRITE statement logically replaces a record existing in a disk

file.

FORMAT :

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement]

SYNTAX RULES:

1. Record-name and data-name must not refer to the same storage area.

2. Record-name is the name of a logical record in the File Section

and may be qualified.

GENERAL RULES:

1. The file containing record-name must be a disk file and must be

open for I-O (in all access methods) prior to execution of a REWRITE

statement.

2. If the FROM option is used, the information in data-name is moved

to the record area prior to the REWRITE. For indexed I-O files, the

primary RECORD KEY must equal the key from the previous READ, or the

INVALID KEY conditions will occur.

3. A record must have been READ successfully prior to a REWRITE state-

ment. This is required to lock the record to ensure that it cannot be

updated by another program running concurrently.

4. The INVALID KEY option is not used for sequential I-0 files. The

file status field, if specified, is updated by the REWRITE statement.

5. For Indexed I-0 files, control is passed to the INVALID KEY state-

ment if the primary key is changed. If this option is not written,

control passes to the USE DECLARATIVE. One or the other of these options

must be taken for indexed files. Refer to Appendix E for status codes.

6. For Relative I-O files, control is passed to the INVALID KEY state-

ment if the RELATIVE KEY is changed after a successful READ. If the

INVALID KEY option is not taken, control passes to the USE DECLARATIVE.

One or the other of these options must be taken.

REV. 0 16 - 46

PDR3056 PROCEDURE DIVISION

7. A sequential file using REWRITE must be a COBOL-created file
other than a printer file, or any uncompressed file.

8. See Sections 19 and 20 for additional information on Indexed
I-O and Relative I-0, respectively.

16 - 47 November 1977

SECTION 16 PDR30 56

SEARCH

FUNCTION:

The SEARCH statement is used to search a table for a table element which
satifies the specified condition, and to adjust the associated index-name
to indicate that table element.

FORMAT :

SEARCH data-name-1 | VARYING data-name-2
-__ —— index-name-1l

[; AT END imperative-statement-1]

- WHEN condition-1 imperative-statement-2
7 —— NEXT SENTENCE

imporeenee}. WHEN condition-2
[; MN condition=< VEX SENTENCE

SYNTAX RULES:

1. Data-name-1 must not be subscripted or indexed, but its description
must contain an OCCURS clause and an INDEXED BY clause.

2. Data-name-2, when specified, must be described as USAGE IS INDEX
or as a numeric elementary item without any positions to the right of
the assumed decimal point.

3. Condition-name-1, condition-name-2 may be any condition as described
under Conditional Expressions in Section 12.

GENERAL RULES:

1. A SEARCH statement enables a serial type of search operation, start-
ing with the current index setting.

A. If, at the start of execution of the SEARCH statement, the index-
name associated with data-name-1 contains a value which cor-
responds to an occurrence number greater than the highest per-
missible occurrence number for data-name-1, the SEARCH is termi-
nated immediately. If the AT END phrase is specified, imperative-
statement-1 is executed; if the AT END phrase is not specified,
control passes to the next executable sentence.

B. If, at the start of execution of the SEARCH statement, the
index-name associated with data-name-1 contains a value cor-
responding to an occurrence number not greater than the highest
permissible occurrence number for data-name-1, the SEARCH state-
ment operates by evaluating the conditions in the order in which

REV. 0 16 - 48

PDR3056 PROCEDURE DIVISION

they are written, making use of the index settings, wherever
specified, to determine the occurrence of those items to be
tested. If none of the conditions are satisfied, the index-
name for data-name-1 is incremented to obtain reference to
the next occurrence. The process is repeated, using the new
index-name settings. If the new value of the index-name set-
tings for data-name-1 corresponds to a table element outside
the permissible range of occurrence values, the search termi-
nates as indicated in 1A above. If one of the conditions is
satisfied upon its evaluation, the search terminates immedi-
ately and the imperative statement associated with that condi-
tion is executed; the index-name remains set at the occurrence
which caused the condition to be satisfied.

2. If imperative-statement-1, imperative-statement-2, or imperative-
statement-3, that does not terminate with a GO TO statement, control
passes to the next executable sentence.

3. If the VARYING phrase is not used, the index-name which is used
for the search operation is the first (or only) index-name appearing
in the INDEXED BY phrase of data-name-1. Any other index-names for
data-name-1 remain unchanged. |

4. If the VARYING index-name-1 phrase is specified, and if index-
name-1 appears in the INDEXED BY phrase of data-name-1, that index-name
is used for this search. If this is not the case, or if the VARYING
data-name-2 phrase is specified, the first (or only) index-name given
in the INDEXED BY phrase of data-name-1 is used for the search. In
addition, the following operations will occur:

A. If the VARYING index-name-1 phrase is used, and if index-name-1
appears in the INDEXED BY phrase of another table entry, the
occurrence number represented by index-name-1 is incremented
by the same amount as, and at the same time as, the occurrence
number represented by the index-name associated with data-name-1l.

B. If the VARYING data-name-2 phrase is specified, and data-
name-2 is an index data item, then the data item referenced
by data-name-2 is incremented by the same amount as, and at the
same time as, the index associated with data-name-1l. If
data-name-2 is not an index data item, the data item referenced
by data-name-2 is incremented by the value one (1) at the same
time as the index referenced by the index-name associated with
data-name-1.

16 - 49 November 1977

SECTION 16 PDR3056

5. I£ data-name-1 is a data item subordinate to another containing
an OCCURS clause (providing for a two or three dimensional table),
an index-name must be associated with each dimension of the table.
This is accomplished through the INDEXED BY phrase of the OCCURS
clause. Only the setting of the index-name associated with data-
name-1 (and data-name-2 or index-name-1, if present) is modified
by the execution of the SEARCH statement. To search an entire two
or three dimensional table, it is necessary to execute a SEARCH
statement several times. Prior to each execution of a SEARCH state-
ment, SET statements must be executed to adjust index-names to
appropriate settings.

6. A flow chart of the SEARCH operation containing two WHEN phrases
is presented in Figure 16-3.

7. Additional information may be found in Section 18, Table
Handling.

16 - 50
REV. 0

PDR3056
START

!
Index setting:
highest permissible AT_END*
occurrence number E

Y

5

Vv.

condition-1 - True

False

. oe * True
condition-2 r

False

(i)
.

Increment index-
name for

data-name-1
(index-name-1
if applicable)

Increment index-name-1
(for a different
table) or

data-name-2

PROCEDURE DIVISION

imperative-
statement-1 | >

imperative-
statement-2

imperative- *

statement-3 >

* These operations are options included only when specified in the SEARCH
statement.

** Fach of these control transfers is to the next executable sentence unless
the imperative-statement ends with a GO TO statement.

Figure 16-3. SEARCH Operation Flowchart

16 - 51 November 1977

RK

SECTION 16 PDR3056

SET

FUNCTION :

The SET statement establishes reference points for table handling
operations by setting index-names associated with table elements.

FORMAT 1:

-_. index-name-3ser {imdocnane-1}9 data-nane:3
-integer-1

FORMAT 2:

. | index-name-6
index-name- UP BY

SET indexnape, (Bae data-name-6
integer-2

SYNTAX RULES:

1. All references to index-name-1, data-name-1, index-name-4 and
data-name-4 apply equally to index-name-2, data-name-2, index-name-5,
and data-name-5, respectively.

2. Data-name-6 must be described as an elementary numeric integer.

GENERAL RULES:

1. In any SET statement, data-names are restricted to binary items,
except that a decimal item may follow on the word TO.

2. An index-name should only apply to the OCCURS which defines it.

3. The SET verb cannot be used on a subscripted data-name.

4, Index-names are considered related to a given table and are defined
by being specified in the INDEXED BY clause.

5. If index-name-3 is specified, the value of the index before the
execution of the SET statement must not exceed the oc@urrence

number of an element in the associated table.

REV. 0 16 - 92

PDR3056 PROCEDURE DIVISION

In Format 1, the following action occurs:

A. Index-name-1 is set to a value causing it to refer to a
table element. That element corresponds in occurrence
number to the table element referenced by index-name-3,
data-name-3, or integer-1. If data-name-3 is an index
data item, or if index-name-3 is related to the same table
as index-name-1, no conversion takes place.

If data-name-1 is an indexdata item, it may be set equal
to either the contents of index-name-3 or data-name-3,
where data-name-3 is also an index data item; no conversion
takes place in either case.

If data-name-1 is not an index data item, it may be set only
to an occurrence number which corresponds to the value of
index-name-3, Neither data-name-3 nor integer-1 can be used

in this case.

The process is repeated for index-name-2, data-name-2, etc.,

if specified. Each time, the value of index-name-3 or data-

name-2 is used as it was at the beginning of the execution
of the statement.

In Format 2, the contents of index-name-4 are incremented (UP BY)

or decremented (DOWN BY) by a value corresponding to the number of

occurrences represented by the value of integer-2 or data-name-6;
thereafter, the process is repeated for index-name-5, etc. Each time

the value of data-name-6 is used as it was at the beginning of the
execution of the statement.

See Section 18, TABLE HANDLING for additional information.

16 - 53 | November 1977

SECTION 16 PDR3056

START

FUNCTION:

The START statement provides a basis for logical positioning, within
an Indexed I-O or Relative I-0 file, for subsequent sequential or
dynamic retrieval of records.

FORMAT :

GREATER THAN
START file-name [KEY IS [NOT LESS THAN? | data-name]

EQUAL TO

[INVALID KEY imperative-statement...]

SYNTAX RULE:

File-name must be the name of a file with sequential or dynamic
access.

GENERAL RULES:

1. Option 1: START file-name.

A. In an Indexed file, this option positions the file to the
value contained in the RECORD KEY data-name.

B. Ina Relative file, this option positions the file to a
value contained in the RELATIVE KEY data-name.

C. In either file structure, if the indicated record is not
present on the file, control is passed to the DECLARATIVES
section if present; otherwise, the program terminates.

2. Option 2: START file-name KEY IS data-name.

A. In an Indexed file, this option will position the file to
the value contained in data-name (data-name is the name of
either RECORD KEY or one of the ALTERNATE RECORD KEYs).

B. Ina Relative file, this option will position the file to
the file to the value contained in data-name as defined in

RELATIVE KEY.

C. In either file structure, if the indicated record is not
present on the file, control is passed to the DECLARATIVES
section if present; otherwise, the program terminates.

REV. 0 16 - 54

PDR3056 PROCEDURE DIVISION

GREATER THAN

3. Option 3: START file-name [KEY IS [}NOT LESS THAN?] data-name]
EQUAL TO

[INVALID KEY imperative-statement...].

For both Indexed I-O and Relative I-O files, if the option GREATER

or NOT LESS is specified, the file is positioned for the next access

to be greater than or less than the value specified in the data-
name. This option allows the keys to contain partial values.

4. The INVALID clause or DECLARATIVES is taken if there is no data

satisfying data-name and the STATUS code returned is a 23 on a full

key.

16 - 55 November 1977

SECTION 16 PDR3056

STOP

FUNCTION:

The STOP statement is used to terminate or delay execution of the object
program.

FORMAT:

RUN
STOP Tteral

SYNTAX RULE:

If a STOP RUN statement appears in a consecutive sequence of imper-
ative statements within a sentence, it must appear as the last state-
ment in that sequence.

GENERAL RULES:

1. STOP RUN terminates execution of a program, returning control
to the operating system.

2. STOP RUN cannot be used in a called program.

3. If STOP literal is specified, the literal is communicated on
the console, and execution is suspended. Execution is resumed at
the next executable statement in sequence after operator interven-
tion. Presumably, the operator performs a function suggested by
the contents of the literal, prior to resuming program execution.

REV. 0 16 - 56

PDR3056 PROCEDURE DIVISION

STRING

FUNCTION:

The STRING statement provides juxtaposition of the partial or complete
contents of two or more data items into a single data item.

FORMAT:

data-name -3
data-name-1| |, data-name-2 :

STRING {data-nane i , literal-2 i ... DELIMITED BY literal-3
SIZE

data-name -4 . data-name-5 data-name-6
» {datanan ; } literal-5 ; ..-. DELIMITED BY literal-6

SIZE

INTO data-name-7 [WITH POINTER data-name-8]

[; ON OVERFLOW imperative-statement|

SYNTAX RULES:

1. Each literal may »e any figurative constant (without the optional
word ALL).

2. All literals must be described as nonnumeric literals. All data-
names, except data-name-8, must be described implicitly or explicitly
as usage is DISPLAY.

3. Data-name-7 must represent an elementary alphanumeric data item
without editing symbols or the JUSTIFIED clause.

4. Data-name-8 must represent an elementary, numeric, integer data
item of sufficient size to contain a value equal to the size of data-
name-7 + 1. The symbol P may not be used in the PICTURE character-
string of data-name-8.

5S. Where data-name-1, data-name-2, ..., or data-name-3 is an ele-
mentary numeric data item, it must be described as an integer with-
out the symbol P in its PICTURE character-string.

GENERAL RULES:

1. All references to data-name-1, data-name-2, data-name-3, literal-l,
literal-2, literal-3 apply equally to data-name-4, data-name-5, data-
name-6, literal-4, literal-5, and literal-6, respectively, and all
recursions thereof.

16 - 57 November 1977

SECTION 16 PDR3056

2. Data-name-1, literal-1, data-name-2, literal-2, represent the
sending items. Data-name-7 represents the receiving item.

3. Literal-3, data-name-3, indicate the character(s) delimiting
the move. If the SIZE phrase is used, the complete data item de-
fined by data-name-1, literal-1, data-name-2, literal-2, is moved.
When a figurative constant is used as the delimiter, it stands for
a single character nonnumeric literal.

4. When a figurative constant is specified as literal-1, literal-2,
literal-3, it refers to an implicit, one character data item whose
usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is
governed by the following rules:

A. Those characters from literal-1, literal-2, or from the
contents of the data item referenced by data-name-1, data-
name-Z, are transferred to the contents of data-name-7 in
accordance with the rules for alphanumeric to alphanumeric
moves, except that no space-filling will be provided.

B. If the DELIMITEDphrase is specified without the SIZE
phrase, the contents of the data item referenced by data-
name-1, data-name-2, or the value of literal-1, literal-2,
are transferred to the receiving data item, this occurs
in the sequence specified in the STRING statement, begin-
ning with the leftmost character and continuing from left
to right until the end of the data item is reached, or
until the character(s) specified by literal-3, or by the
contents of data-name-3 are encountered. The character(s)
specified by literal-3 or by the data item referenced by
data-name-3 are not transferred.

C. If the DELIMITED phrase is specified with the SIZE phrase,
the entire contents of literal-1, literal-2, or the
contents of the data item referenced by data-name-1, data-
name-2, are transferred. The transferr proceeds in the
sequence specified in the STRING statement to the data item
referenced by data-name-7, until all data has been trans-
ferred or the end of the data item referenced by data-
name-7 has been reached.

6. If the POINTER phrase is specified, data-name-8 is explicitly
available to the programmer. He is then responsible for setting its
initial value. The initial value must not be less than one.

7. If the POINTER phrase is not specified, the following general
rules apply as if the user had specified data-name-8 with an initial
value of 1:

8. When characters are transferred to the data item referenced by
data-name-7, the following occurs. The transfer behaves as though
characters were moved, one at a time, from the source to the data

REV. 0 16 - 98

PDR3056 PROCEDURE DIVISION

item character position referenced by data-name-7 and designated by

the value of data-name-8. Data-name-8 is increased by one prior to

the move of the next character. The value associated with data-

name-8 is changed during execution of the STRING statement only by

the behavior specified above.

9, At the end of execution of the STRING statement, only the por-

tion of the data item referenced by data-name-7 (that which was

referenced during the execution of the STRING statement) is changed.

All other portions of the data item referenced by data-name-7 will

contain data which was present before this execution of the STRING

statement.

10. Data transfer to data-name-7 terminates when the value in data-

name-8 is either less than 1, or exceeds the number of character

positions in data-name-7. Such termination may occur at any point

at or after initialization of the STRING statement. If termination

occurs as a result of such a condition, the imperative statement

in an ON OVERFLOW phrase is executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions

described in General Rule 10 above are encountered, control is

transferred to the next executable statement.

16 - 59 November 1977

SECTION 16 PDR3056

SUBTRACT

FUNCTION :

The SUBTRACT statement subtracts one or more numeric data items from
a specified item and stores the difference.

FORMAT 1:

SUBTRACT ‘itera ; data-name-

a >

2
literal-l literal-2 | ... FROM data-name-m [ROUNDED]

[ON SIZE ERROR imperative-statement]

FORMAT 2:

data-name-1 , data-name-2
susmeacr {¢9t2-n0m6 } f literal -2 |

FROM data-name -m
literal-m } GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement]

SYNTAX RULES:

1. Each data-name must refer to a numeric elementary item, except
that data-name-n (following GIVING) may be an elementary numeric
edited item (report item).

2. Each literal must be a numeric literal.

3. The maximum size of each operand is 18 decimal digits. If all
receiving data items were to be superimposed upon each other,
aligned by their decimal points, their composite should not exceed
18 decimal digits in length.

GENERAL RULES:

REV.

1. In Format 1, the effect of the SUBTRACT statement is to sum the
values of all the operands which precede FROM, and then to subtract
that sum from the value of the item following FROM. The result is
stored in data-name-m.

0 16 - 60

PDR3056 PROCEDURE DIVISION

2. In Format 2, all literals and data-names preceding FROM are
added together, the sum is subtracted from data-name-m or literal-m,
and the result is stored in data-name-n.

3. See the rules for arithmetic statements under Procedure Division,
General Rules. The ROUNDED and ON SIZE ERRORoptions may be used
when truncation of results could occur.

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS
OF COBOL, Algebraic Signs.

16 - 61 November 1977

SECTION 16 PDR3056

UNSTRING

FUNCTION:

The UNSTRING statement causes contiguous data in a sending field to be

separated and placed into multiple receiving fields. :

FORMAT:

UNSTRING data-name-1

data-name-2 data-name-3
DELIMITED BY [ALL] 417iteral-1 } [OR [ALL] {ata-nane] ve

INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

: data-name-7 [, DELIMITER IN data-name-8| [, COUNT IN éata-nane-]..

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

[; ON OVERFLOW imperative-statement]

SYNTAX RULES:

1. The ALL phrase option is not the figurative constant ALL.

2. Each literal must be a nonnumeric literal. In addition, each

literal may be any figurative constant without the optional word ALL.

3. Data-name-1, data-name-2, data-name-3, data-name-5, data-name-8,

must be described, implicitly or explicitly, as an alphanumeric data

item.

4. Data-name-4 and data-name-7 may be described as either alphabetic

(except that the symbol B may not be used in its picture-string),

alphanumeric, or numeric (except that the symbol P may not be used

in its picture-string), and must be described as usage is DISPLAY.

5S. Data-name-6, data-name-9, data-name-10, data-name-11 must be

described as elementary numeric integer data items (except that the

symbol P may not be used in their picture-strings).

6. No data-name may name a level 88 entry.

7. The DELIMITER IN phrase and the COUNT IN phrase may be specified

only if the DELIMITED BY phrase is specified.

REV. 0 16 - 62

PDR3056 PROCEDURE DIVISION

GENERAL RULES:

1. All references to data-name-2, liateral-1, data-name-4, data-
name-5, and data-name-6, apply equally to data-name-3, literal-2,
data-name-7, data-name-8, and data-name-9, respectively, and all
recursions thereof.

2. Data-name-1 represents the sending area.

3. Data-name-4 represents the data receiving area. Data-name-5
represents the receiving area for delimiters.

4. lLiteral-1 or the data item referenced by data-name-2 specifies
a delimiter.

5. Data-name-6 represents the count of the number of characters
within data-name-1, isolated by the delimiters for the move to
data-name-4. This value does not include a count of the delimiter
character(s).

6. The data item referenced by data-name-10 contains a value
which indicates a relative character position within the area de-
fined by data-name-1.

7. The data item referenced by data-name-11 is a counter which
records the number of data items acted upon during the execution
of an UNSTRING statement.

8. When a figurative constant is used as the delimiter, it stands
for a single character, nonnumeric literal.

When the ALL phrase is specified, one ocairrence (or two or more
contiguous occurrences) of literal-1 (figurative constant or not),
or the contents of the data item referenced by data-name-2, are
treated as if it were only one occurrence. This occurrence is
moved to the receiving data item according to the rules in General
Rule 13D below.

9. When any examination encounters two contiguous delimiters, the
current receiving area is either space or zero filled according
to the description of the receiving area.

10. Literal-1, or the contents of the data item referenced by data-
name-2, can contain any character in the computer's character set.

11. Each literal-1 or the data item referenced by data-name-2
represents one delimiter. When a delimiter contains two or more
characters, all of the characters must be present in contiguous
positions of the sending item and in the order given to be recog-
nized as a delimiter.

16 - 63 November 1977

SECTION 16 PDR3056

12. When two or more delimiters are specified in the DELIMITED BY
phrase, an OR condition exists between them. Each delimiter is
compared to the sending field. If a match occurs, the character(s)
in the sending field is considered to be a single delimiter. No
character(s) in the sending field can be considered a part of more
than one delimiter.

Each delimiter is applied to the sending field in the sequence
specified in the UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving
area is the data item referenced by data-name-4. Data is trans-
ferred from data-name-1 to data-name-4 according to the following
rules:

A. If the POINTER phrase is specified, the string of characters
referenced by data-name-1 is examined beginning with the
relative character position indicated by the contents of
data-name-10. If the POINTER phrase is not specified, the
string of characters is examined beginning with the left-
most character position.

B. If the DELIMITED BY phrase is specified, the examination
proceeds, left to right, until either a delimiter specified
by the value of literal-1 or the data item referenced by
data-name-2 is encountered. (See General Rule 11.) If the
DELIMITED BY phrase is not specified, the number of char-
acters examined is equal to the size of the current receiv-
ing area. However, if the sign of the receiving item is
defined as occupying a separate character position, the
number of characters examined is one less than the size of
the current receiving area.

If the end of the data item referenced by data-name-1 is
encountered before the delimiting condition is met, the
examination terminates with the last character examined.

C. The characters thus examined (excluding the delimiting char-
acter(s), if any) are treated as an elementary alphanumeric
data item, and are moved into the current receiving area
according to the rules for the MOVE statement.

D. If the DELIMITER IN phrase is specified, the delimiting
character(s) are treated as an elementary alphanumeric data
item and are moved into the data item referenced by data-
name-5 according to the rules for the move statement. If
the delimiting condition is the end of the data item
referenced by data-name-1, then the data-name-5 is space-
filled.

REV. 0

PDR3056 PROCEDURE DIVISION

E. If the COUNT IN phrase is specified, a value equal to the
number of characters thus examined (excluding the delimiter
character(s), if any) is moved into the area referenced by
data-name-6 according to the rules for an elementary move.

F. If the DELIMITED BY phrase is specified, the string of char-
acters is further examined, beginning with the first char-
acter to the right of the delimiter. If the DELIMITED BY
phrase is not specified, the string of characters is further
examined, beginning with the character to the right of the
last character transferred.

G. After data is transferred to data-name-4, the current re-
ceiving area is data-name-7. The behavior described in
paragraphs 13C through 13F is repeated until either all the
characters are exhausted in the data item referenced by data-
name-1, or until there are no more receiving areas.

14. The initialization of the contents of the data items associated
with the POINTER phrase or the TALLYING phrase is the responsibility
of the user.

15. The contents of the data item referenced by data-name-10 will be
incremented by one for each character examined in the data item
referenced by data-name-1. When the execution of an UNSTRING state-
ment with a pointer phrase is completed, data-name-10 will contain
a value equal to the initial value, plus the number of characters
examined in the data item referenced by data-name-1.

16. When the execution of an UNSTRING statement with a TALLYING phrase
is completed, the contents of the data-name-11 will be a value equal
to its initial value, plus the number of data receiving items acted
upon.

17, Either of the following situations causes an overflow condition:

A. An UNSTRING is initiated, and the value in the data item
referenced by data-name-10 is less than 1 or greater than
the size of the data item referenced by data-name-1.

B. If, during execution of an UNSTRING statement, all data
receiving areas have been acted upon, and the data item
referenced by data-name-1 contains characters which have
not been examined.

18. When an overflow condition exists, the UNSTRING operation is
terminated. If an ON OVERFLOW phrase has been specified, the im-
perative-statement is executed. If the ON OVERFLOW phrase is not
specified, control is transferred to the next executable statement.

19. The evaluation of subscripting and indexing for the identifiers
is as follows:

16 - 65 November 1977

SECTION 16 PDR3056

20.

REV. 0

A. Any subscripting or indexing associated with data-name-1,

data-name-10, data-name-11 is evaluated only once, im-

mediately before any data is transferred as the result of
the execution of the UNSTRING statement.

B. Any subscripting or indexing associated with data-name-2

through data-name-6 is evaluated immediately before the
transfer of data into the respective data item.

Up to five delimiters may be specified.

PDR3056 PROCEDURE DIVISION

USE

FUNCTION:

The USE statement specifies procedures for input-output error handling
which are in addition to the standard procedures provided by the input-
output control system.

FORMAT:

file-name
EXCEPTION

USE AFTER STANDARD aoe PROCEDURE ON aUTeT

— co

SYNTAX RULES:

1. A USE statement, when present, must immediately follow a section
header in the Declaratives section, followed by a period and a space.
The remainder of the section must consist of zero, one, or more
procedural paragraphs which define the procedures to be used.

EXAMPLE:

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.

paragraph-nane. [sentence| | weed ace

2. The USE statement itself is never executed; rather, it defines
the conditions for the execution of the USE procedures.

3. A given file-name may not be associated with more than one
DECLARATIVES section.

4. The words EXCEPTION and ERROR are interchangeable.

5. The files implicitly or explicitly referended in a USE state-
ment nced not all have the same organization or access.

GENERAL RULES:

1. The DECLARATIVES section is executed (by the PERFORM mechanism)
after the standard I-O recovery procedures for the files designated,
or after the invalid key condition arises on a statement lacking
the INVALID KEY clause. |

16 - 67 November 1977

SECTION 16 PDR3056

2. After execution of a USE procedure, control is returned to the
invoking routine.

3. Within a USE procedure, there must be no reference to any non-
declarative procedures. Conversely, in the nondeclarative portion,
there must be no reference to procedure-names which appear in the
declarative portion, except that PERFORM statements may refer to
the procedures associated with such a USE statement.

4. Within a USE procedure, no statement may be executed which
would result in the execution of a USE procedure previously invoked
but not completed (that is, a USE procedure, which through pre-
viously invoked, had not yet returned control to the invoking
routine).

REV. 0

PDR3056 PROCEDURE DIVISION

WRITE

FUNCTION:

The WRITE statement releases a logical record for an output or I-0
file. It can also be used for vertical positioning of lines within
a logical page.

FORMAT 1:

WRITE record-name [FROM data-name-1]

AFTER integer LINE(s)
BEFORE { ADVANCING {Paes]

FORMAT 2:

WRITE record-name [FROM data-name-1]|

[INVALID KEY imperative-statement]

SYNTAX RULES:

1. Format 1 can only be used for sequential files.

2. Format 2 can only be used for Relative I-O and Indexed I-O files.

3. Record-name and data name must not refer to the same storage area.

4. Record-name is the 01 level record-name of a logical record,
described in a Record Description entry in the File Section of the
Data Division.

GENERAL RULES:

1. For both WRITE statement formats, the associated file must be
openas OUTPUT or I-0.

2. In Format 1, if the FROM option is taken, the information is
moved to the record area prior to the WRITE. If the data being moved
is longer than the receiving field, the data is truncated to the
size of the receiving field. If the receiving field is longer than
the data, the remaining area is filled with spaces.

16 - 69 November 1977

SECTION 16 PDR3056

3. In Format 1, if the ADVANCING option is taken, print control
spacing is indicated. The first position in the record must be
reserved as FILLER for the print control character being generated.

A. If the BEFORE option is taken, a line is written before
advancing.

B. If the AFTER option is taken, spacing occurs, and then

the line is written.

C. Integer LINE(s) is the number of spacing lines required
between data lines. Integer may be # to 62.

D. PAGE skips to a new page, then a line is written.

If the ADVANCING option is not taken, the default is one line.

4. In Format 1, the value of integer is as described in Table 16-4.

Integer Carriage Control Actions

0 Overprinting
1 Single spacing
2 Double spacing
3 Triple spacing
4 4-line spacing
5 5-line spacing
6 6-line spacing

62 62-line spacing
PAGE Skips to top of new page

Table 16-4. Carriage Control Integer Values

5. In Format 2 for Relative I-O files: prior to a WRITE statement,
a valid unique value must be in the primary RECORD KEY data-name.
If the FROM option is used, the unique value in RECORD KEY data-
name must be in the relative location of data-name-1. If the
primary key is not unique, the invalid statement or the DECLARATIVE
section will be executed. Refer to Table 19-1 for Error Conditions.

6. In Format 2 for Indexed I-O files: the INVALID KEY clause must
be specified if the DECLARATIVE section is not applicable. The pro-
gram will terminate if an error code condition arises (refer to
Table 20-1.)

REV. 0 16 - 70

PDR3056 PROCEDURE DIVISION

For Sequential Access:

If a file is opened as OUTPUT, records are placed in the
file in sequential order. The first record would have a
position of 1, and the record number returned into the
RELATIVE KEY data-name would be 1, etc.

For Dynamic and Random Access:

The value of the record number must be placed in the
RELATIVE KEY data-name-1.

16 - 71 November 1977

SECTION 16 PDR3056

Sequence |5 IB CYAMOLE 7 OO Statement
(PAGE) |(SERIAL)

{ 4 7 12 i 20 }G 44 4

0/1

012:

3.
Oi4:

015

O'6

0!7

o'8!

9!

1:9

Vi

n
N

3)
/4:

S

6
17!

3:
‘9

2.0

PDR3056 PROCEDURE DIVISION

Sequence IB COBOL Statement REF
“9AGE)

36 40 44 4 64

ope

O
j
f
o

|
W
i
o
a
l
a
y
a

jo
f
o
f
=

l
o
j
o
l
o
y
N

yo
[
a
y
s

jo
[r
n
|

i]

121
3

‘Ai

21

6
7

8
5!

1:0

il {
I

16 - 73 November 1977

SECTION 16 PDR3056

Sequence
Cee een

era

(PAGE) A
. COBOL Statement

REF2

6 4 4 4

p
o

-

PDR3056 PROCEDURE DIVISION

Sequence 1 - COBOL Statement REED
: 36 4 4 46

O
S
M

IN
S}

Oo
];
O
i
®

[G
@

I
p
—

p
l
o

lm
i
p

l
—

to

 ! ep pds
| Id 1G

16 -— 75 November 1977

SECTION 16 PDR3056

Sequence {5 COBOL Statement
(PAGE)

Ac 36 4 4 4

REV. 0 16 - 76

PDR3056 PROCEDURE DIVISION

COBOL Statement

36 40 44... 4

'5

ao
l
a
t
o

T
o

fo
Jo
|
T
o

l
a
t
a

[o
e
j
y

[=
f
o

[
o

16 - 77 November 1977

SECTION 16 PDR3056

Sequence COBOL Statement
PAGE) 36 40 44 4

REV. 0 16 - 78

PDR3056 PROCEDURE DIVISION

COMPILE SEQUENCE FOR REF2

64R
OK, COBOL REF2 -64R

GO,

$909 ERRORS $96 WARNINGS (COBOL VER #4)

6av
OK, COBOL REF2 -64V

GO,

$000 ERRORS 99% WARNINGS, P400/500 COBOL REV 14.0 <REF2>

Print Listing File

OK, SPOOL L+REF2

16 - 79 November 1977

SECTION 16 PDR3056

LISTING File For Sample Program REF2 Compiled In 64V Mode

REV 14 COBOL SOURCE FILE: REF2 89/20/77 11:51

(@691) *
(2082) *
(9023) *
(8204) IDENTIFICATION DIVISION.
(8895) PROGRAM~-ID. REF2.
(8886) AUTHOR. PRIME COMPUTER.
(2287) INSTALLATION. FRAMINGHAM.
(@288) DATA-WRITTEN. SEPTEMBER, 1977.
(8229) DATE-COMPILED. SEPTEMBER, 1977.
(@61€) REMARKS. THIS AREA IS USED TO DESCRIBE THE PROGRAM.

(@011) *
(@@12) *
(8813) *
(2814) ENVIRONMENT DIVISION.
(@215) CONFIGURATION SECTION.
(0816) SOURCE-COMPUTER. PRIME.
(2017) OBJECT-COMPUTER. PRIME.
(8018) SPECIAL-NAMES. CONSOLE IS TTY.
(8619) ASCII IS NATIVE.

(8820) INPUT-OUTPUT SECTION.
(8021) FILE-CONTROL.
(8022) SELECT LIST-FILE ASSIGN TO PRINTER.
(0823) SELECT CARD-FILE ASS<GN TO PFMS.
(8624) SELECT DIRECTORY-FILE ASSIGN TO PFMS,
(8825) ORGANIZATION IS INDEXED
(9026) ACCESS MODE IS DYNAMIC, RECORD KEY IS PHONE-NO,
(8027) ALTERNATE RECORD KEY LAST-NAME
(8828) ALTERNATE RECORD KEY STATE
(@229) ALTERNATE RECORD KEY BIRTHD
(2030) ALTERNATE RECORD KEY FIRST-NAME
(0631) FILE STATUS IS FILE-STATUS.
(8832) *

(@833) *
(0834) *
(8035) *

(8936) *
(8837) DATA DIVISION.
(8838) FILE SECTION.
(8839) FD LIST-FILE, LABEL RECORDS ARE OMITTED.
(0848) 81 PRINT-LINE, PICTURE X(10@).
(0841) 81 PRINT-LINE1.
(8842) G2 FILLER PIC X.
(8843) @2 PRINT-LIN PIC X(99).
(8044) FD CARD-FILE, LABEL RECORDS ARE STANDARD
(8045) VALUE OF FILE-ID IS ‘INDATI'.
(8846) @1 CARD-IMAGE, PICTURE X(8@).
(8047) 81 CARD-D1.
(8048) @2 DATA-D1 PIC X(64).
(2949) @2 PHONE-D1l PIC X(8).
(0052) 62 D2 PIC X(8).
(@851) FD DIRECTORY-FILE, LABEL RECORDS ARE STANDARD, VALUE OF FILE-ID
(8952) IS ‘INDXFILE'
(2053) OWNER IS 'LDAVIS'.

REV. 0 16 - 80

PDR3056 PROCEDURE ' DIVISION

REV 14 COBOL SOURCE FILE: REF2 09/20/77 11:51

(@@54) 61 DIRECTORY~-RECORD.

(0855) @2 PHONE-NO PIC X(8).
(@656) @2 NAME.
(6257) Q3 LAST-NAME PIC X(14).
(2858) 03 FILLER PIC X.

(@059) @3 FIRST-NAME PIC X(13).

(G062) Q3 FILLER PIC XX.
(@261) @2 FILLER, PICTURE X.

(G262) @2 ADDRESS, PICTURE X(25).

(@863) @2 FILLER, PICTURE X.

(9064) @2 CITY, PICTURE X(4).

(@265) @2 FILLER, PICTURE X(3).
(0866) Q2 STATE, -PICTURE XX.

(067) @2 BIRTHD, PICTURE 9(6).
(2068) @2 FILLER, PICTURE X(2@).
(2269) @l DIR-l.
(@278) @2 DISPLAY-~DIR PIC X(72).
(0871) @2 FILLER PIC X(28).

(2272) @1 SOME-D1.
(9073) @2 Dil PIC xX(8).
(0674) @2 D2 PIC X(64).
(@075) @2 D4 PIC X(8).
(0276) @2 FILLER PIC xX(20).
(8077) WORKING~STORAGE SECTION.

(@278) 77 GO-TO-READ PICTURE 9 VALUE @.

(@079) 77 CREATE-UPDATE PICTURE X VALUE SPACE.

(@880) 77 GO-TO-NAME PICTURE 9 VALUE @.
(@881) 77 FILE-STATUS PICTURE X(2) VALUE IS SPACE.

(@082) 77 CHAR-1 PICTURE X VALUE SPACE.

(8883) @1 PERFORM-COUNTI.
(9884) @2 PERFORM-COUNT PIC 999,
(@@85) @2 PER-CO REDEFINES PERFORM-COUNT

(886) PICTURE X, OCCURS 3 TIMES.
(2887) 81 WS-RECORD.
(0288) @2 WS-LAST-—NAME PIC X(14).
(9289) §2 FILLER PIC X.
(0290) @2 WS-FIRST-NAME PIC X(13).
(@091) 02 FILLER PIC XXX.

(0892) @2 WS-ADDRESS PIC X(25).
(0893) Q@2 FILLER PIC X.
(2894) Q@2 WS-CITY PIC X(4).
(2895) Q2 FILLER PIC XXX.
(2896) Q2 WS-PHONE-NC PIC X(8).
(897) Q@2 WS-STATE — PIC XxX.
(2298) @2 WS-BIRTHD PIC X(6).
(8899) 61 HEADER.
(@18@) G2 FILLER PICTURE X VALUE SPACE.

(8181) @2 He PIC X(8) VALUE 'PHONE'.
(@182) @2 Hl PICTURE X(4) VALUE IS 'NAME'.

(@1@3) 82 FILLER PICTURE X(27) VALUE IS SPACE.

(@1@4) 02 H2 PICTURE X(6) VALUE IS 'STREET'.

(8105) G2 FILLER PICTURE X(2@) VALUE IS SPACE.

(9106) 92 H3 PICTURE X(4) VALUE IS ‘'CITY'.

(6187) 82 FILLER PICTURE X(3) VALUE IS SPACE.

16 - 81 November 1977

SECTION 16 PDR3056

REV 14 COBOL SOURCE FILE: REF2 09/20/77 11:51

(6198) *
(8169) *
(@11@) PROCEDURE DIVISION.
(8111) START-PROGRAM.
(8112) DISPLAY ‘ENTER] TO CREATE NEW FILE’.
(8113) DISPLAY ‘ENTER 2 TO UPDATE OLD FILE’.
(8114) ACCEPT CREATE-UPDATE.
(8115) IF CREATE-UPDATE = '2'
(8116) OPEN OUTPUT LIST-FILE

(@117) GO TO UPDATE-ONLY.
(8118) CREATE-FILE.
(8119) MOVE SPACES TO WS-RECORD.
(8122) OPEN INPUT CARD-FILE, OPEN OUTPUT LIST-FILE,
(8121) DIRECTORY-FILE.
(@122) WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

(@123) READ-NEXT.
(8124) READ CARD-FILE AT END GO TO LIST~DIRECTORY.
(8125) MOVE CARD-IMAGE TO PRINT-LINE.
(6126) WRITE PRINT-LINE.
(@127) MOVE SPACES TO DIR-1.
(8128) MOVE DATA-D] TO D3.
(8129) MOVE PHONE-D1 TO Dl.
(8139) MOVE D2 TO D4.
(9131) WRITE DIRECTORY-RECORD
(8132) INVALID KEY DISPLAY FILE-STATUS.
(8133) GO TO READ-NEXT.
(@134) LIST-DIRECTORY.
(@135) CLOSE CARD-FILE, DIRECTORY-FILE.

(8136) MOVE ‘END OF CREATE FILE' TO PRINT-LINE.
(8137) WRITE PRINT-LINE AFTER ADVANCING 3 LINES.
(8138) UPDATE-ONLY.
(8139) MOVE SPACES TO PRINT—LINE.
(6140) DISPLAY 'END TEST ONE'
(@141) OPEN I-O DIRECTORY-FILE.
(8142) IF CREATE-UPDATE = '2'
(8143) GO TO GET-NEXT-INQUIRY.
(8144) LIST-DIR.
(8145) MOVE LOW-VALUE TO PHONE-NO.
(8146) PERFORM LIST THRU LIST-DONE.
(8147) MOVE LOW-VALUE TO LAST-NAME.
(2148) PERFORM LIST] THRU LIST-DONE.
(@149) MOVE LOW-VALUE TO STATE.
(2156) PERFORM LIST2 THRU LIST-DONE.
(8151) MOVE ZEROS TO BIRTHD.
(8152) PERFORM LIST3 THRU LIST-DONE.
(0153) MOVE LOW-VALUE TO FIRST-NAME.
(8154) PERFORM LIST4 THRU LIST-DONE.
(6155) LIST-DIR-EXIT.
(6156) EXIT.
(8157) START-PAR.
(8158) MOVE 'END OF TEST FOR START VERB' TO PRINT~LINE.
(8159) WRITE PRINT-LINE AFTER ADVANCING 3 LINES.
(8168) MOVE SPACES TO PRINT-LINE.
(€161) DISPLAY 'END OF TEST TWO'.

REV. 0 16 - 82

REV 14 COBOL

(@162)
(8163)
(8164)
(8165)
(8166)
(@167)
(8168)
(0169)
(6172)
(0171)
(€172)
(8173)
(0174)
(€175)
(8176)
(@177)
(2178)
(@179)
(8188)
(€181)
(@182)
(8183)
(9184)
(8185)
(8186)
(8187)
(@188)
(9189)
(9199)
(8191)
(@192)
(8193)
(8194)
(@195)
(8196)
(9197)
(8198)
(@199)
(8208)
(@2@1)
(8202)
(8283)
(0204)
(8285)
(0206)
(@207)
(8288)
(8209)
(6210)
(8211)
(9212)
(8213)
(8214)
(8215)

*

*

PDR3056 PROCEDURE DIVISION

SOURCE FILE: REF2 09/20/77, 11:51

LIST.

LIST1.

LIST2.

LIST3.

LIST4.

GO TO GET-NEXT-INQUIRY. .
START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE-NO.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT~DIRECTORY-RECORD.
START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD. —
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-—NAME.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT-DIRECTORY-RECORD.
READ DIRECTORY-FILE NEXT RECORD AT END GO TO

LIST-—DONE.
MOVE DIRECTORY-RECORD TO PRINT-LIN.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

GET-NEXT-INQUIRY.
DISPLAY "ENTER TRAN TYPE'.
DISPLAY ' # = READ FILE SEQ'.
DISPLAY ' + = ADD'.
DISPLAY '- = DELETE'.
DISPLAY ' / = CHANGE’.
DISPLAY ' * = QUIT’.
ACCEPT CHAR-1 FROM TTY.
IF CHAR-1 = '+', GO TO ADDITION.
IF ChB] = wie GO TO DELETION.
IF CHAR-l = GO TO CHANGE.
IF CHAR-1 = aa GO TO WRAPUP.
IF CHAR~1 = '#', GO TO READ-FILE.
DISPLAY 'INVALID TRANS TYPE = '‘ CHAR-1.
DISPLAY 'TRY AGAIN’.
GO TO GET-NEXT-INQUIRY.

NO-SUCH-NAME.

te
+
+

DISPLAY " NO SUCH RECORD = ' DISPLAY-DIR.
GO TO GET-NEXT-INQUIRY.

ADDITION.
DISPLAY 'ENTER DATA RECORD FOR ADD".
PERFORM FORMAT-INPUT.
PERFORM MOVE-REC.
WRITE DIRECTORY-RECORD INVALID KEY

DISPLAY FILE-STATUS

16 - 83 November 1977

SECTION 16 PDR3056

REV 14 COBOL SOURCE FILE: REF2 09/20/77. 11:51
(6216) DISPLAY DISPLAY-DIR.
(8217) GO TO GET-NEXT-INQUIRY.

(8218) *
(8219) *
(8228) DELETION.
(8221) DISPLAY 'ENTER PHONE NUMBER TO BE DELETED’.

(8222) ACCEPT PHONE-NO FROM TTY.
(8223) READ DIRECTORY-FILE INVALID KEY GO TO
(@224) NO-SUCH~NAME.
(8225) DELETE DIRECTORY-FILE RECORD INVALID KEY GO TO
(8226) NO-SUCH-NAME.
(@227) GO TO GET-NEXT-INQUIRY.

(8228) *
(8229) *
(8236) CHANGE.
(8231) DISPLAY 'ENTER KEY TO BE CHANGED’.
(8232) DISPLAY 'LAST-NAME = 1’.
(8233) DISPLAY 'STATE = 2'.
(9234) DISPLAY 'BIRTHD = 3'.
(8235) DISPLAY 'FIRST-NAME = 4'.
(8236) ACCEPT GO-TO-NAME.

(8237) GO TO READ-ALT1 READ-ALT2 READ-ALT3 READ-ALT4
(8238) DEPENDING ON GO-TO-NAME.
(8239) DISPLAY ‘WRONG TYPE ENTERED TRY AGAIN'.
(8240) GO TO GET-NEXT-INQUIRY.

(8241) *
(8242) READ-ALT1.
(8243) DISPLAY ‘ENTER LAST NAME’.
(8244) ACCEPT WS-LAST-NAME.
(8245) MOVE SPACES TO DIRECTORY-RECORD.
(8246) MOVE WS-LAST-NAME TO LAST-NAME.
(8247) READ DIRECTORY-FILE KEY IS LAST-NAME

(8248) INVALID KEY DISPLAY 'LAST-NAME = ' LAST-NAME

(9249) DISPLAY 'STATUS = ' FILE-STATUS
(82568) DISPLAY DISPLAY-DIR
(@251) GO TO GET-NEXT-INQUIRY.
(6252) GO TO CHANGE-RECORD.

(8253) *
(9254) READ-ALT2.
(8255) DISPLAY 'ENTER STATE '.
(8256) ACCEPT WS-STATE.
(8257) MOVE SPACES TO DIRECTORY-RECCRD.
(8258) MOVE WS-STATE TO STATE.
(6259) READ DIRECTORY-FILE KEY IS STATE
(6268) INVALID KEY DISPLAY, 'STATE = ' STATE
(8261) DISPLAY 'STATUS = ' FILE-STATUS
(8262) DISPLAY DISPLAY-DIR
(9263) GO TO GET-NEXT-INQUIRY.
(8264) GO TO CHANGE-RECORD.
(6265) *
(8266) READ-ALT3.
(8267) DISPLAY 'ENTER BIRTHDAY’.
(8268) ACCEPT WS-BIRTHD.
(8269) MOVE SPACES TO DIRECTORY-RECORD.

REV. 0 16 - 84

PDR3056 PROCEDURE DIVISION

REV 14 COBOL SOURCE FILE: REF2 09/20/77. 11:51
(@278) MOVE WS-BIRTHD TO BIRTHD.
(6271) READ DIRECTORY-FILE KEY IS BIRTHD
(0272) INVALID KEY DISPLAY 'BIRTHD = ' BIRTHD
(0273) DISPLAY 'STATUS = ' FILE-STATUS
(0274) DISPLAY DISPLAY-DIR
(@275) GO TO GET-NEXT~INQUIRY.
(0276) GO TO CHANGE-RECORD.
(8277) *

(8278) READ~ALT4.

(8279) DISPLAY 'ENTER FIRST-NAME'.
(8280) ACCEPT WS-FIRST-NAME.
(@281) MOVE SPACES TO DIRECTORY-RECORD.
(0282) MOVE WS-FIRST-NAME TO FIRST-NAME.
(8283) READ DIRECTORY-FILE KEY IS FIRST-NAME
(0284) INVALID KEY DISPLAY 'FIRST-NAME = ' FIRST-NAME
(@285) DISPLAY 'STATUS = ' FILE-STATUS
(8286) DISPLAY DISPLAY-DIR
(@287) GO TO GET-NEXT-INQUIRY.
(8288) *
(8289) *
(8290) CHANGE-RECORD.
(0291) DISPLAY DISPLAY-DIR.
(8292) PERFORM FORMAT-INPUT.
(8293) *

(8294) *
(8295) MOVE-REC.
(6296) IF WS-RECORD = SPACES
(8297) DISPLAY 'NO DATA ENTERED TRY AGAIN!
(2298) GO TO GET-NEXT~INQUIRY.
(6299) IF WS-LAST-NAME NOT = SPACES
(@300) MOVE WS-LAST-NAME TO LAST—NAME.
(0301) IF WS-FIRST-NAME NOT = SPACES
(Q382) MOVE WS-FIRST-NAME TO FIRST-NAME.
(0393) IF WS-ADDRESS NOT = SPACES
(@324) MOVE WS-ADDRESS TO ADDRESS.
(9305) IF WS-CITY NOT = SPACES
(0326) . MOVE WS-CITY TO CITY.
(8307) IF WS-PHONE-NO NOT = SPACES
(8328) MOVE WS-PHONE-NO TO PHONE-NO.
(8389) IF WS-STATE NOT = SPACES
(0310) MOVE WS-STATE TO STATE.
(8311) IF WS-BIRTHD NOT = SPACES
(8312) MOVE WS-BIRTHD TO BIRTHD.
(8313). MOVE-EXIT.
(8314) EXIT.
(9315) *
(0316) REWRITE-RECORD.
(8317) REWRITE DIRECTORY-RECORD INVALID KEY
(0318) GO TC NO-SUCH-NAME.
(0319) GO TO GET-NEXT-INQUIRY.
(@32@) *

(8321) Os
(0322) *
(0323) READ-FILE.

16 - 85 November 1977

SECTION 16 PDR3056

REV 14 COBOL SOURCE FILE: REF2 09/20/77 11:51

(8324) MOVE ZEROS TO PERFORM-COUNT.
(8325) DISPLAY 'ENTER NUMBER OF RECORDS TO BE READ'.
(8326) ACCEPT PERFORM-COUNT.
(8327) IF PERFORM-COUNT = ZEROS
(8328) DISPLAY 'NO RECORD COUNT ENTERED'
(Q329) GO TO GET-NEXT-INQUIRY.
(8339) IF PERFORM-COUNT1 NOT NUMERIC
(8331) NEXT SENTENCE
(8332) ELSE
(8333) GO TO READ-TYPE.
(8334) IF PER-CO (1) NOT NUMERIC AND
(8335) PER-CO (2) NOT NUMERIC AND
(9336) PER-CO (3) NOT NUMERIC
(0337) MOVE @£22 TO PERFORM-COUNT
(0338) GO TO READ-TYPE.
(8339) IF PER-CO (1) NUMERIC AND
(8348) PER-CO (2) NOT NUMERIC AND
(9341) PER-CO (3) NOT NUMERIC
(8342) MOVE PER-CO (1) TO PER-CO (3)
(8343) MOVE ‘@' TO PER-CO (1) PER-CO (2)
(8344) GO TO READ-TYPE.
(0345) IF PER-CO (1) NUMERIC AND
(0346) PER-CO (2) NUMERIC AND
(8347) PER-CO (3) NOT NUMERIC
(8348) MOVE PER-CO (2) TO PER-CO (3)
(@349) MOVE PER-CO (1) TO PER-CO (2)
(8356) MOVE '@' TO PER-CO (1).
(8351) *
(8352) *

(8353) *
(8354) *
(9355) READ-TYPE.
(8356) DISPLAY 'ENTER KEY TO BE READ'.
(8357) DISPLAY 'PHONE-NO =1'.
(2358) DISPLAY 'LAST-NAME = 2°.
(8359) DISPLAY ‘STATE = 3'.
(@368) DISPLAY '"BIRTHD = 4',
(8361) DISPLAY 'FIRST-NAME = 5°.
(8362) ACCEPT GO-TO-READ.
(8363) IF GO-TO-READ NOT NUMERIC
(8364) DISPLAY "INVALID KEY TRY AGAIN’
(@365) GO TO READ-TYPE.
(8366) GO TO READ-1 READ-2 READ-3 READ-4 READ-5
(9367) DEPENDING ON GO-TO-READ.

(8368) *
(8369) *
(8378) READ-1.
(8371) MOVE LOW-VALUES TO PHONE-NO.
(8372) START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE-NO.
(8373) GO TO READ-FILE-GO.
(6374) READ-2.
(6375) MOVE LOW-VALUES TO LAST-NAME.
(8376) START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.
(0377) GO TO READ-FILE-GO.

REV. 0 16 - 86

REV 14 COBOL

(0378)
(@379)
(9380)
(#381)
(6382)
(@383)
(0384)
(8385)
(9386)
(9387)
(Q388)
(2389)
(0398)
(2391)
(8392)
(6393)
(8394)
(8395)
(2396)
(2397)
(€398)
(9399)
(9400)
(2401)
(2482)
(0423)
(0404)
(8425)
(2486)
(8407)
(8428)
(8409)
(8410)
(9411)
(8412)
(8413)
(0414)
(8415)
(9416)
(@417)
(8418)
(@419)
(8420)
(8421)
(8422)
(8423)
(0424)

9600 ERRORS

PDR3056 PROCEDURE DIVISION

SOURCE FILE: REF2 09/20/77. 11:51

READ-3.
MOVE LOW-VALUES TO STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.

GO TO READ-FILE-GO.
READ-4.

MOVE ZEROS TO BIRTHD.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
GO TO READ-FILE-GO.

READ-5.
MOVE LOW-VALUES TO FIRST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.

READ-FILE-GO.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-COUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
READ-FILE-EXIT.

EXIT.

+
F
e

F

WRAPUP.
PERFORM LIST-DIR.
MOVE 'END OF INDEXED TEST TO CHANGE FILE' TO PRINT-LINE.
DISPLAY 'END OF INDEXED TEST'.
CLOSE LIST-FILE, DIRECTORY-FILE.

STOP RUN.
*
*

*

FORMAT-INPUT.
MOVE SPACES TO WS-RECORD.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME'.
ACCEPT WS-FIRST-NAME.
DISPLAY 'ENTER ADDRESS '.
ACCEPT WS-ADDRESS.
DISPLAY ‘ENTERCITY '.
ACCEPT WS-CITY.
DISPLAY 'ENTER PHONE NUMBER '.
ACCEPT WS-PHONE-NO.
DISPLAY 'ENTER STATE XX'.
ACCEPT WS-STATE.
DISPLAY ‘ENTER BIRTHDAY MMDDYY'.
ACCEPT WS-BIRTHD.

Q@02@ WARNINGS, P400/500 COBOL REV.14.0 <REF2>

16 - 87 November 1977

SECTION 16

LOAD SEQUENCE FOR REF2

64R

OK, HILOAD
$ MO D64R

$ CO 120000

LO BeREF2

AU 20

LI COBKID

G
F

H
A

F
H
&

LI

$ SAVE *REF2

$ QUIT

64V/SEG

OK, SEG

VLOAD #REF2

LO BeREF2

LIB VKDALB
RL

#

$

$ LIB VCOBLB

$

§ LI

$ SAVE

$ QT

REV. 0

PDR3056

set mode

move common

load COBOL MIDAS library

load FORTRAN library

load complete

save memory image

return to PRIMOS

load SEG COBOL library

load SEG, COBOL MIDAS library

load the FORTRAN library

load complete prompt

the memory image is saved as #REF2

return to PRIMOS

PDR3056 PROCEDURE DIVISION

CREATK SEQUENCE FOR REF2

The following represents the minimum dialogue to create the MIDAS template
for sample program REF2 (underlining indicates user response):

OK, CREATK

MINIMUM OPTIONS? YES

FILENAME? DIRECTORY-FILE The name of the file in the COBOL
program which is to be indexed.

NEW FILE? YES

DIRECT ACCESS? NO

KEY TYPE: B Key type is Binary

KEY SIZE=: B 64 Eight times the characters in the
primary key, PHONE-NO.

DATA SIZE=: 50

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: B 112

USER DATA SIZE=:

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: 16

USER DATA SIZE=: 9

INDEX NO.? 3

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: 48

16 - 89 November 1977

SECTION 16 PDR3056

REV.

USER DATA SIZE=: f
s
a

INDEX NO.? 4

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: B

KEY SIZE=: 104

USER DATA SIZE=: h
s

INDEX NO? (CR)

) 16 - 90

PDR3056

EXECUTE SEQUENCE FOR REFZ

64R

6av

OK, R *RER2
ENTER FILENAME AND UNIT

> INDAT1=INDATI1

> INDXFILE=DIRECTORY- FILE

of

OK, SEG #REF2

ENTER FILENAME AND UNIT

> INDAT1=INDAT1

> INDXFILE=DIRECTORY-FILE

>/

16 - 91

PROCEDURE DIVISION

November 1977

FUNCTIONAL PROCESSING MODULES

REFERENCE

PDR3056 INTER-PROGRAM COMMUNICATION

SECTION 17

INTER-PROGRAM COMMUNICATION

DEFINITION

Inter-Program Communication provides a facility by which a program can
communicate with one or more programs. Control may be transferred from
one program to another within a run unit, and both programs may have
access to the same data items.

Inter-module communication of data is made possible through the use of
the LINKAGE SECTION of the Data Division, and by the CALL statement and
USING list appendage to the Procedure Division header of a subprogram
module.

17 - 1 November 1977

SECTION 17 PDR3056

LINKAGE SECTION

The LINKAGE SECTION in a program is meaningful if, and only if, the
object program is to function under the control of a CALL statement,
and the CALL statement in the calling program contains a USING phrase.

The LINKAGE SECTION describes data made available in memory from another
program module, but which is to be referred to in both the calling and
the called program.

No space is allocated in the program for data items referenced by data-
names in the Linkage Section of that program. Procedure Division re-
ferences to these items are resolved at load time, equating the
references in the called program to the location used in the calling
program by passing address parameters. Thus, Record Description entries
in the LINKAGE SECTION provide data-names by which data-areas reserved
in memory by other programs may be referenced.

Data items defined in the LINKAGE SECTION of the called program may be
referenced in the Procedure Division of that called program only if:
they are specified as operands of the USING phrase of the Procedure
Division header or are subordinate to such operands, and the object
program is under the control of a CALL statement which specifies a
USING phrase (see the example at the close of this section).

The structure of the LINKAGE SECTION is that described for the WORKING-
STORAGE SECTION.

Any Record Description clause may be used to describe items in the
LINKAGE SECTION except that:

1. The VALUE clause may not be specified for other than level 88
items ;

2. Data-names used in the LINKAGE SECTION must be unique (may not
be qualified);

3. Level 01 and 77 items must start on a computer word boundary.
The programmer must ensure proper alignment between an argument
(pointer to data) in a CALL statement and the corresponding data-
name in a USING list on a subprogram Procedure header;

4. Items in the LINKAGE SECTION which bear no hierarchy re-
lationship to one another need not be grouped into records. These
are classified and defined as noncontiguous elementary items.
They may be defined in separate level 77 entries.

Such Data Description entries must include a level-number 77, a
data-name, and a PICTURE clause or the USAGE IS INDEX clause.

REV. 0 17 - 2

PDR3056 INTER-PROGRAM COMMUNICATION

PROCEDURE DIVISION

In addition to LINKAGE SECTION entries, inter-program communication re-
quires certain Procedure Division entries.

Using List Appendage to Procedure Header

The Procedure Division header of a CALLable subprogram is written as:

PROCEDURE DIVISION [USING data-name...]

where each of the data-name operands is an entry in the LINKAGE SECTION
of the subprogram, having level 77 or 01. Addresses are passed from
an external CALL in one-to-one correspondence to the operands in the
USING list of the Procedure header so that data in the calling program
may be manipulated in the subprogram.

CALL Statement

The CALL statement format is:

CALL 'literal' [USING data-name-1 data-name-n]

where literal is a subprogram name defined as the PROGRAM-ID of a sep-
arately compiled program and must be enclosed in quote marks. (The
relationship of literal and PROGRAM-ID is illustrated in the example
at the end of this section.)

Data-name(s) in the USING list are made available to the called sub-
program by passing addresses to the subprogram; these addresses are
assigned to the LINKAGE SECTION items declared in the USING list of
that subprogram. Therefore, the number of data-names specified in
matching. CALL and Procedure Division USING lists must be identical.
At this time, data-name-n must not exceed 15.

NOTE: Correspondence between caller and callee lists are positional, not
by identical spelling of names. For additional information, see CALL
statement in the PROCEDURE DIVISION SECTION.

EXIT PROGRAM Statement

The EXIT PROGRAM statement, appearing in a called subprogram, causes
control to be returned to the next executable statement after a CALL
in the calling program. This statement must be a paragraph by itself.

ENTER Statement

An ENTER statement is classified as a compiler-directing statement; it
acts as a modifier to a subsequent CALL statement.

A subprogram which is called may have been written in COBOL, FORTRAN,
or ASSEMBLER language. The ENTER statement provides the means to
identify the language in which a subprogram is written.

17 - 3 November 1977

SECTION 17 PDR3056

The general format is:

COBOL
ENTER ASSEMBLER

ENTER ASSEMBLER tells the compiler that the ensuing callee is not a

COBOL subprogram.

ENTER COBOL tells the compiler that the ensuing callee is a COBOL

subprogram.

ENTER COBOL may also be used following a CALL statement. This tradi-

tional usage is optional; after any CALL statement, ENTER COBOL is

assumed.

REV. 0 17 - 4

PDR3056

EXAMPLE:

Filename = CALLER

IDENTIFICATION DIVISION.
PROGRAM-ID. CALL1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
$1 WS-ITEM PICTURE 9(5).
PROCEDURE DIVISION.
FIRST-PARAGRAPH.

CALL 'CALLED1' USING WS-ITEM.
STOP RUN.

Filename = CALLED

IDENTIFICATION DIVISION.
PROGRAM-ID. CALLED1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
fl WS-TEST PICTURE 9(5).
LINKAGE SECTION.
$1 WS-ITEM PICTURE 9(5).

INTER-PROGRAM COMMUNICATION

Parameter being passed

The name in quotations must be
the Program-Id-name, not the
file-name.

*WS-ITEM MUST BE DESCRIBED IN THE SAME MANNER
*IN BOTH THE CALLING AND THE CALLED PROGRAM.
*ONLY $1 AND 77 LEVEL ITEMS MAY BE CODED HERE.
PROCEDURE DIVISION USING WS-ITEM.
FIRST-PARAGRAPH. _

MOVE WS-TEST TO WS-ITEM.
EXIT PROGRAM,

17 - November 1977

PDR3056 TABLE HANDLING

SECTION 18

TABLE HANDLING

DEFINITION

Table Handling provides a capability for defining tables of contiguous
data items and accessing those items relative to their position in
the table. The OCCURS clause is the language facility provided for
specifying how many times an item is to be repeated. Each item may
be identified through use of a subscript or an index.

18 - JI November 1977

SECTION 18 PDR3056

DATA DIVISION

OCCURS

The OCCURS clause eliminates the need for separate entries for repeated
data items. Further, it supplies information required for the applica-
tion of subscripts or indices. The OCCURS clause cannot be used on a
level 77 or 88.

Data Description clauses associated with an item whose description
includes an OCCURS clause apply to each repetition of the item being
described. When OCCURS is used, the data-name which is the defining
name of the entry must be subscripted (or if the INDEXED BY phrase is
specified, must be indexed) whenever it appears in the Procedure
Division. If the data-nama applies to a group item, all data-names
belonging to the group must be subscripted (or indexed) whenever they
are used.

The OCCURS clause format is:

[OCCURS integer TIMES[INDEXED BY index-name-1

[index-name-2...]]]

INDEXED BY

The format of the INDEXED BY clause appears directly above. Index-name
is not declared in the usual method of: INDEXED BY.

The format of the INDEXED BY phrase is:

[INDEXED BY index-name-1 [index-name-2...]]

when used, the INDEXED BY phrase is appended to the OCCURS clause. It
is required if the subject of this entry, or one subordinate to this
entry, is to be referred to by indexing. The index-name identified by
this phrase is not defined elsewhere; allocation and format are defined
by the compiler.

For this reason, index-name is not declared in the usual method of:
level number, name, Data Description clauses. Rather, the declaration
is implicit in the appearance of an 'INDEXED BY index-name" appendage
to an OCCURS clause.

Index-name is equivalent to an index-item; it must be uniquely named.
This compiler assigns a full word for each index-name defined.

An index item may only be referred to by a SET statement, a CALL state-
ment USING list, a Procedure header USING list, as the variation item
in PERFORM VARYING, by a SEARCH statement, or in a relational condition.
In all cases, the process is equivalent to dealing with a binary word
integer subscript. A maximum of 3 indexes may be used on any given
data-name.

REV. 0 18 - 2

PDR3056 TABLE HANDLING

Relative indexing may be specified wherever indexing can be specified.
In this instance, index-name is followed by one of the operators + or -,
followed by an unsigned, integer numeric literal, all.delimited by the
balanced pair of separators left parenthesis and right parenthesis.

The occurrence number resulting from relative indexing is determined by
incrementing or decrementing by the value of the literal, the occur-
rence number represented by the value of the index.

When a statement is executed which refers to an indexed table element,
the value in the associated index must neither be less than zero, nor
greater than the highest occurrence number of an element in the table.
This restriction applies equally to indexing and relative indexing.

The general format for indexing is:

{ata-nane } ({indexnane-1 [{+} Literal-2)}
condition-name literal-1l

index-name-2 [{+} Literal-]})
{ literal-3 “*

= ~_

index-name-3 [{+} literal-6]
literal-5 hoe _

18 - 3 November 1977

SECTION 18 PDR3056

Subscripting

When an OCCURS clause is specified for an item in the Data Division,
that item must be subscripted or indexed whenever it is used.

Subscripting provides the facility for referring to those data items
in a table or list which have not been assigned individual data-names.

The format is:

data-name (subscript-1 [,subscript-2 [,subscript-3]])

The subscript can be represented either by a positive numeric literal
or by a data-name. Such a data-name must be a numeric, elementary item
which represents an integer. The data-name as subscript may be quali-
fied but not itself subscripted.

The subscript data-name may be signed, but the value must be positive.
The lowest value which the subscript can contain is 1 (this would point
to the first occurrence of the data within a table.) Thus, the sub-
script contains the numeric 'OCCURS' number within a table; its value
must not exceed the 'OCCURS' integer for the table with which it is
associated. The subscript can be used on any table.

EXAMPLE:

O01 ARRAY
03 ELEMENT, OCCURS 3, PICTURE S9(4), SIGN TRAILING SEPARATE.

The example above would be allocated storage as shown below:

ELEMENT (1) ARRAY consisting of fifteen
characters; each item has 4

ELEMENT (2) digits and a separate sign.

ELEMENT (3)

A data-name may not be subscripted if it is being used for any of the
following functions:

1. When it is being used as a subscript;

2. When it appears as the defining name of a Data Description
entry;

3. When it appears as data-name-2 in a REDEFINES clause.

REV. 0 18 - 4

PDR3056 . TABLE HANDLING

A maximum of three (3) subscripts can be used on any given data item.
Multiple subscripts are separated by a comma.

A subscript value is changed in the Procedure Division via MOVE, ADD,
or SUBTRACT verbs. The SET verb cannot be used on a subscript data-
name.

PROCEDURE DIVISION

SET Statement

The SET statement permits the manipulation of index-names and index
items, for table-handling purposes. There are two formats:

FORMAT 1:

index-name -3index-name-1
SET {indexnane: 1} ... TO data-name-3

integer-1

FORMAT 2:

SET index-name -4 UP undex-nane©
data-name-4 ""* DOWN BY ata-name-

So integer-2

Format 1 is equivalent to moving the value in index-name-3, data-name-3,
or integer-1 to multiple receiving fields written immediately after the
SET verb.

Format 2 is equivalent to reduction (DOWN), or increase (UP), applied
to each of the quantities written immediately after the SET verb. The
amount of the reduction or increase is specified by a name or value
immediately following the word BY.

An index-name should only apply to the OCCURS which define it.

SEARCH statement

The SEARCH statement is used to search a table for:a table element
which satisfies the specified condition. The associated index-name is
adjusted to indicate that table element.

18 - 5 November 1977

SECTION 18 PDR 3056

The format is:

data-name-2SEARCH data-name-1 [VARYING (37407) |

. pe imperative-statement-2
[; WHEN condition-1 NEXT SENTENCE] }

. eee imperative-statement-3[; WHENcondition-2 NEXT SENTENCE }

A SEARCH statement enables a serial type of search operation, start-
ing with the current index setting.

Data-name-1 must not be subscripted or indexed, but its description
must contain an OCCURS clause and an INDEXED BY clause. Data-name-2,
when specified, must be described as USAGE IS INDEX, or as a numeric
elementary item without any positions to the right of the assumed
decimal point.

A complete discussion of the SEARCH verb is presented in Section 16,
Procedure Division.

REV. 0 18 - 6

PDR3056 INDEXED SEQUENTIAL FILES

SECTION 19

INDEXED SEQUENTIAL FILES

DEFINITION

The indexed sequential system incorporates the concept of accessing data
selectively in a sequentially structured file. (Only the index which
points to the data is sequential.) The data base is created in ascending
sequential order on a direct access device, and concurrently a hierarchy
of indices is constructed. The indices can be used to directly locate a
given record within the file.

The sequence of the indices relating to a record depends on a field within
the data records which is specified by the programmer in a RECORD KEY
clause. The record key(s) are the elements which identify each record in
a file.

19 - |] November 1977

SECTION 19 PDR3056

FILE CONTROL

FORMAT:

SELECT file-name ASSIGN TO PFMS

ORGANIZATION IS INDEXED

SE TAL
[ACCESS MODE IS]
— DYNAMIC

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

[FILE STATUS IS data-name-3]

GENERAL RULES:

1. SELECT file-name

The SELECT clause specifies the name of the indexed sequential file.
Refer to Environment Division for rules.

2. ORGANIZATION IS INDEXED

This clause specifies that the file named in the SELECT statement
contains data organized by indices, and that it is to be processed
by the Multiple Index Data Access System, MIDAS.

SEQUENTTAL

3. [ACCESS MODE IS RANDOM]
DYNAMIC

The ACCESS MODE clause specifies how an indexed file is written or
retrieved.

A. SEQUENTIAL

If access mode is not specified, the default is sequential.
This access mode specifies that records will be written or
retrieved sequentially. When a WRITE statement is used, the
record must be submitted in ascending sequence by RECORD KEY
value. A READ statement retrieves the records sequentially.

REV. 0 19 - 2

PDR3056 INDEXED SEQUENTIAL FILES

RANDOM

When RANDOM is specified, the records are to be written or
retrieved randomly, based on the value placed in the RECORD
KEY field prior to a READ or WRITE. The complete RECORD KEY
value must be placed in data-name-n, prior to a READ, otherwise
the record will not be found. Random mode precludes a
sequential READ or WRITE.

DYNAMIC

When DYNAMIC access method is specified, a program can read
or write randomly or sequentially.

4. RECORD KEY IS dataneme-1

The RECORD KEY clause specifies the data item within each record which
is used for the primary index.

A.

B.

Data-name-1 must be defined in the Record Description FD entry.

Data-name-1 must be the first entry in the Record Description.
Multiple Record Descriptions must have the same corresponding
data: description for the record key.

Data-name-1 must not be specified with an OCCURS clause, or
be contained within a group affected by an OCCURS clause.

Data-name-1 must not be spec?fied with a P character in its
PICTURE clause, with a separator sign (/).

Data-name-1 must have the same description and relative location
as when the file was created.

Data-name-1 cannot exceed 32 characters.

The value contained within data-name-1 must be unique, duplicates
are invalid.

5. [ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]].....

This key field allows secondary indices. There may be up to 5 additional
key fields.

See Rules C through F under RECORD KEY.

Seconday indices cannot be embedded within the primary index.

19 - 3 November 1977

SECTION 19 PDR3056

Specification of WITH DUPLICATES for an ALTERNATE RECORD allows keys
containing the same value to be placed in the file. WITH DUPLICATES
must be specified when the file template is created; it cannot be
changed at the program level.

6. [FILE STATUS IS data-name-3]

The FILE STATUS is a two-character (one word) unsigned field described
in the Working-Storage section. After each access to the operating
system, a status code is placed in this field. For a successful read
or write, etc., the status code contains 00. If the INVALID KEY or
DECLARATIVES were involved, the error status code is returned. The
programmer then can determine what action to take. Refer to the
following table for error codes:

REV. 0 19 - 4

PDR3056 INDEXED SEQUENTIAL FILES

FILE |
ORGANIZATION STATUS KEY 1 STATUS KEY 2

Indexed f |- Successful completion - No further information

End of file@ - No further information

Ne
]

R
e

I Invalid key - Sequence error!

- No record found®

Boundary violation®

3 |- Permanent I-O errorD - No further information

- Locked record®c
o 1 Implementor - defined

- Unlocked record”

m
l
e
i
m
i
e
l

a
l
u
a
l
e
l
a
l
«
a

1

- Value in key already in the database and
duplicates not specified when CREATK
was run.@

3 |- Indices specified in the program do not
match indices used when CREATK was run.

5 |- Index size does not size used on

creation.

6 j- The disk is full.
 9 |- System error, call analyst.

7 “End of file. A READ statement was unsuccessful because there was no logical next
record in the file.

bpermanent I-O error. An I-0 statement was unsuccessful because of an I-O error,
such as data check, parity error, or transmission error. For sequential
file only, a boundary violation.

“Boundary violation. Attempt was made to read or write beyond the externally defined
boundaries of a file. Disk space full.

y

| dpuplicate key. Attempt was made to write (or, for an indexed file, rewrite) a
| record which would create a duplicate key in the file. For an indexed

file, when file status is 92, a duplicate key condition exists if the
key value of the current key of reference is equal to the value of that
same key in the next record within the current key of reference.

| No record found. Attempt was made to access a record, identified by key, but the
record does not exist in the file.

fSequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For an indexed file: trying to write a record
containing a key which already exists on the file.

| 8Locked record. The record is locked and being updated by another program.
_ unlocked record. The record is not locked by a READ prior to a REWRITE. w

Table 19-1. File Status Key Definitions, Indexed Sequential Files

19 - 5 November 1977

SECTION 19 PDR3056

PROCEDURE DIVISION

The COBOL statements listed in this section apply to their application
in Indexed file processing.

A complete description of all COBOL verbs, their functions, formats,
and rules, is provided in Section 16, PROCEDURE DIVISION.

The INVALID KEY clause may be written for Indexed Files in the START,
READ, WRITE, REWRITE or DELETE statements. Its format is:

ce ee [INVALID KEY imperative-statement]

The INVALID KEY clause is executed if there is an error status code condi-

tion, in which case control is transferred to imperative-statement. If

this clause is not present, control is passed to the DECLARATIVE section

for the corresponding file. If neither is specified, the program will

abort during execution. The result for the INVALID condition is returned
via the ERROR STATUS code. See Table 19-1.

REV. 0 19 - 6

PDR3056 INDEXED SEQUENTIAL FILES

CLOSE STATEMENT

FORMAT :

CLOSE index-file-name.

GENERAL RULE:

This is the only option possible for an indexed file.

19 - 7 November 1977

SECTION 19 PDR3056

DELETE STATEMENT

FORMAT:

DELETE file-name [INVALID KEY imperative-statement]

GENERAL RULES:

1. The DELETE statement logically removes a data record from the
indexed file together with all the indices.

2. In sequential access, the record to be deleted must have been
successfully read before a delete can be executed. The primary
RECORD KEY cannot be changed between the READ and DELETE statement,
otherwise the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RECORD KEY field. If that record
does not exist in the file, the INVALID KEY statement is executed
and the ERROR STATUS field will contain a value of 23.

REV. 0 19

PDR3056 INDEXED SEQUENTIAL FILES

OPEN STATEMENT

FORMAT:

1-0
OPEN INPUT index-file-name-1l...}...

OUTPUT

GENERAL RULES:

1. <A file opened as INPUT can only be accessed in a READ statement.

2. A file opened as OUTPUT can only be accessed in a WRITE statement.

3. A file opened as I-O can be either read or written with lock
record.

4, The table below specifies the types of OPEN statements which are
permissible with the different ACCESS modes.

Open Option in Effect

 ACCESS Procedure
MODE IS Statement Input Output I-O

READ X
WRITE X

SEQUENTIAL REWRITE
START X
DELETE a

s
s

READ X
WRITE X

RANDOM REWRITE
START
DELETE S
O

READ X
WRITE X

DYNAMIC REWRITE
START X
DELETE Po

PS
PS

OS
OS

Table 19-2. OPEN Statements vs. Access Mode, Indexed I-0O

19 - 9 November 1977

SECTION 19 PDR3056

READ STATEMENT

FORMAT 1: (SEQUENTIAL or DYNAMIC)

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement].

FORMAT 2: (SEQUENTIAL, RANDOM or DYNAMIC)

READ filename [INTO data-name-1]

[KEY IS data-name-2]
[INVALID KEY imperative-statement].

GENERAL RULES:

1. Format 1, Option 1 (SEQUENTIAL ACCESS ONLY):

READ file-name [INTO data-name-1] [AT END imperative-statement].

A file is read sequentially based on the primary index (RECORD KEY).
If one of the secondary index sequences is to be used, the index must
be established via a Format 2, Option 2 READ statement. Thereafter,
the file can be read with a Format 1, Option 1 format. If the INTO
clause is used, the data record is automatically moved into data-name-l.
When AT END is specified, control is passed when the complete file has
been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL ACCESS):

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement .. .].

A. FOR DYNAMIC ACCESS:

This option allows the programmer to change from a random mode
to sequential reading with the NEXT record clause. The INTO
clause automatically moves the data-record into data-name-1.
The AT END clause transfers control at the end of the file.

If the NEXT RECORD option is not specified, the value of the
record to be retrieved must be placed in the RECORD KEY data-
name.

REV. 0 19 - 10

PDR3056 INDEXED SEQUENTIAL FILES

B. FOR SEQUENTIAL ACCESS:

The NEXT RECORD is not required with sequential access; it
is automatically accessed.

3. Format 2, Option 1:

READ file-name [INTOdata-name-1]

[INVALID KEY imperative-statement] .

A. FOR SEQUENTIAL ACCESS:

The format will read the file sequentially based on the spe-
cified index, or be defaulted to the primary index. The INTO
moves data into data-name-1. INVALID KEY transfers control if
any of the status codes listed in Table 19-1 are encountered.

B. FOR DYNAMIC and RANDOM ACCESS:

The format will retrieve data based on the value contained in
data-name (primary or secondary index). If the record is not
found or, any other error status is encountered, control is
passed to the INVALID KEY (refer to Table 19-1). The

INTO clause moves data to data-name-1.

4, Format 2, Option 2:

READ filename [INTO data-name-1]

[KEY IS data-name-2]
[INVALID KEY imperative-statement].

This format is used for sequential access, allowing the file to be
retrieved sequentially based on the ALTERNATE RECORD KEYS (secondary
indexes) via the KEY IS clause. Once this format is executed, the
Format 1 READ statement should be used, The index is used for each
READ until another secondary index is specified via the KEY IS clause
of a READ statement.

19 - ti November 1977

SECTION 19 PDR3056

REWRITE STATEMENT

FORMAT:

REWRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement . . .]

GENERAL RULES:

1. The REWRITE statement physically replaces an existing record.

2. The REWRITE statement can change any or all data-fields in the
record except the prime record key.

3. The file must be opened for I-O for all access methods.

4. A record must have been READ successfully prior to the REWRITE.
This is required to lock the record and ensure that it cannot be
updated by another program running concurrently.

5. In the FROM data-name-1 option, the primary RECORD KEY must equal
the key from the previous READ or the INVALID KEY conditions will
occur. The FROM option allows the record to be created in another
area. It 1s equivalent to MOVE data-name-1 TO record-name prior to
the execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the primary key
is changed. If this statement is not present, control is then passed
to the USE DECLARATIVE. One or the other of these statements must be
present, or the program will terminate if the invalid statement is
activated. Refer to Table 19-1 for status codes.

REV. 0 19 - l2

PDR3056 INDEXED SEQUENTIAL FILES

START STATEMENT

FORMAT :

GREATER THAN
START file-name [KEY IS [4NOTLESS THAN] data-name]

EQUALTO

[INVALID KEY imperative-statement .. .].

GENERAL RULES:

1. The START statement enables an Indexed organized file to be posi-
tioned for reading at a specified key value. This is permitted for
files open in either sequential or dynamic access modes. The START
verb is not allowed with the RANDOM access.

Z. Option 1:

START file-name.

This option positions the file to the value contained in the RECORD
KEY data-name. If that record is not present on the file, control is
passed to the DECLARATIVE section if present; otherwise the program
terminates.

3. Option 2:

START file-name KEY IS data-name.

This option will position the file to the value contained in data-name
(data-name is the name of either RECORD KEY or one of the ALTERNATE

RECORD KEYs). If the record is not contained on the file, control
is passed to the DECLARATIVES - otherwise the program terminates.

4. Option 3:

GREATER THAN
START file-name [KEY IS [¢NOTLESS THAN?] data-name]

EQUAL TO

[INVALID KEY imperative-statement . . .]

If the option GREATER or NOT LESS is specified, the file is positioned
for the next access to be greater than or less than the value specified
in the data-name. This option allows the keys to contain partial
values.

The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is 23 on a full
key.

19 - 13 November 1977

SECTION 19 PDR3056

5. START does not retrieve a record, but only positions to a
desired record.

EXAMPLE:

Consider the following short indexed file. Each record contains
just two fields: A NAME field which serves as primary key, and
a COMPANY field:

| NAME | COMPANY |

Source coding relating to the file might be:

ENVIRONMENT DIVISION.

SELECT FILE-1 ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS NAME.

DATA DIVISION
FILE SECTION.
FD FILE-1 LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE-1'.
$1 FILE-1-RECORD.

$3 NAME PIC X(10).
$3 COMPANY PIC X(25).

A pictoral view of this file is presented below.

data-name NAME COMPANY

PICTURE PIC X(10) PIC X(25)

Values: BLYE REPORTCO
CLAPP MERGANTHALER
GRIER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

REV. 0 19 - 14

PDR3056 INDEXED SEQUENTIAL FILES

If a sequential traverse of this file is performed, records are
returned in sequence based on primary key:

BLYE REPORTCO
CLAPP MERGANTHALER
GRIER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

To obtain specific records with a START statement, a partial (or
full) key is placed in the key field (NAME).

If the intent is to obtain records of people whose name begins
with the characters F, G, H, and I, program actions should include

the following type of logic:

MOVE 'F' to NAME.

START FILE-1 KEY IS NOT LESS THAN NAME.

READ FILE-1 NEXT RECORD.

READ FILE-1 NEXT RECORD.

READ FILE-1 NEXT RECORD.

Place partial key value
in key field.

Find the first record
whose key is not less
than 'F', This positions
the file to the record.

This action will retrieve
the desired record. In
this example, it will be
the record 'GRIER
AUTOMATION! .

This action will retrieve
the next sequential
record, ‘HARPER DESIGNERS'.

This action will retrieve
the next sequential record,
"KEANE REPORTCO'.
Examination will indicate
all desired records have
been obtained.

November 1977

SECTION 19 PDR3056

WRITE STATEMENT

FORMAT:

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement] .

GENERAL RULES:

1. The WRITE function releases a logical record for an output or
I-O file.

2. Prior to the WRITE statement, a valid, unique value must be in
the primary RECORD KEY data-name. If the FROM option is used, the
unique value in RECORD KEY data-name must be in the relative loca-
tion of data-name-1. If the primary key is not unique, the invalid
statement or the DECLARATIVE section will be executed. Refer to
Table 19-1 for error conditions.

REV. 0 19 - 16

PDR3056 RELATIVE FILE PROCESSING

SECTION 20

RELATIVE FILE PROCESSING

DEFINITION

Relative file organization is permitted only with disk storage
devices. Records are stored and retrieved based on a relative
record number. For example, the 10th record is the one addressed
by relative record number 10 and is the 10th record area whether
or not records 1 through 9 have been written.

20 - Lt November 1977

SECTION 20 PDR3056

FILE CONTROL

FORMAT:

SELECT file-name ASSIGN TO PFMS

ORGANIZATION IS RELATIVE

SEQUENTIAL
[ACCESS MODE IS RANDOM]

DYNAMIC

RELATIVE KEY IS data-name-1

[FILE STATUS IS data-name-3]

GENERAL RULES:

1. SELECT file-name

This clause specifies the name of the relative file. Refer to
Environment Division for rules.

2. ORGANIZATION IS RELATIVE

This specifies that the file named in the SELECT statement contains
data organized by record number and processed by the File Processing
facility of the operating system.

SEQUENTIAL
3. [ACCESS MODE IS RANDOM]

~ DYNAMIC

This clause specifies how a relative file is written or retrieved.

A. SEQUENTIAL:

If access mode is not specified, the access mode will
default to sequential. This access mode specifies that
records will be written or retrieved sequentially. A READ
statement retrieves the records sequentially.

B. RANDOM:

Specifies that the records are to be written or retrieved
randomly based on the value placed in the RELATIVE KEY
field prior to a READ or WRITE. When RANDOM access is
used, the complete RELATIVE KEY value must be placed in
RELATIVE KEY, or the record will not be found. Random
mode precludes a sequential READ or WRITE.

REV. 0 20 - 2

PDR3056 RELATIVE FILE PROCESSING

C. DYNAMIC:

When this access method is specified, the program can read
or write randomly or sequentially.

4. RELATIVE KEY IS data-name-1

The RELATIVE KEY clause specifies the data item within Working-
Storage which is used for the primary index.

A. Data-name-1 must not be defined in the Record Description.

B. Data-name-1 must not be specified with an OCCURS clause,
or be contained within a group affected by an OCCURS
clause.

C. Data-name-1 must not be specified with a P character in
its PICTURE clause, or be described with a separator

sign (/).

D. Data-name-1 must be a valid numeric integer, and cannot
contain a value greater than 999,999.

E. The value contained within data-name-1 must be unique;
duplicates are invalid.

The RELATIVE KEY is optional if access is sequential. In this case,
no RELATIVE KEY need be specified. However, in the creation of the
template, a RELATIVE KEY size equal to the maximum (48 bits), must
be given.

5. [FILE STATUS IS data-name-3]

The FILE STATUS is a two-character (one word), unsigned field
described in the Working-Storage section. After each access to
the operating system, a status code is placed in this field. For
a successful read or write, etc., the status code contains 00.
If the INVALID KEY or DECLARATIVES were involved, the error status
code is returned. The programmer then can determine what action
to take. Refer to Table 20-1 for error codes.

20 - 3 November 1977

SECTION 20 PDR3056

FILE
ORGANIZATION STATUS KEY 1 STATUS KEY 2

Relative - Successful completion - No further information

1!- End of file@ - No further information

Invalid key - Sequence error!

- No record found’

Boundary violation©

3|- Permanent I-O errorD - No further information

9|- Implementor - defined - Locked record®

- Unlocked record

- Record already exits on Data Base

A
l
L
P
r
m
l

r
y

o
l
i

se
l

S
l

v
w
n
l
L
r
|
s
a
y
a

1

- Space relative key contains larger
value than used when CREATK was used.

9]- System error, call analyst.

4&nd of file. A READ statement was umsuccessful because there was no logical next

record in the file.

bpermanent I-0 error. An I-O statement was unsuccessful because of an I-O error,
such as data check, parity error, or transmission error. For sequential
file only, a boundary violation.

Boundary violation. Attempt was made to read or write beyond the externally
defined boundaries of a file. Disk space full.

"No record found. Attempt was made to access a record, identified by key, but
the record does not exist in the file.

fSequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For indexed file: trying to write a record
containing a key which already exists on the file.

SLocked record. The record is locked and being updated by another program.

hUnlocked record. The record is not locked by a READ prior to a REWRITE.

Table 20-1. File Status Key Definitions, Relative I-0

REV. 0 20 - 4

PDR3056 RELATIVE FILE PROCESSING

PROCEDURE DIVISION

The COBOL statements listed in this section apply to their application
in RELATIVE file processing.

A complete description of all COBOL verbs, their functions, formats, and
rules, is provided in Section 16, PROCEDURE DIVISION.

The INVALID KEY clause may be written for Relative Files in the START,
READ, WRITE, REWRITE or DELETE statements. Its format is:

[INVALID KEY imperative-statement]

The INVALID KEY clause is executed if there is an error status code condi-
tion, in which case control is transferred to imperative-statement. If
this clause is not present, control is passed to the DECLARATIVE section
for the corresponding file. If neither is specified, the program will abort
during execution. The result for the INVALID condition is returned via the
ERROR STATUS code (see Table 20-1).

20 - § November 1977

SECTION 20 PDR3056

CLOSE STATEMENT

FORMAT:

CLOSE index-file-name.

GENERAL RULE:

This is the only option possible for a Relative file.

REV. 0 20 - 6

PDR3056 RELATIVE FILE PROCESSING

DELETE STATEMENT

FORMAT:

DELETE file-name [INVALID KEY imperative-statement]

GENERAL RULES:

1. The DELETE statement logically removes a data recordfrom the
relative file.

2. In sequential access, the record to be deleted must have been
successfully read before a DELETE can be executed. The RELATIVE KEY
cannot be changed between the READ and DELETE statement, otherwise
the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RELATIVE KEY field. If that record
does not exist in the file, the INVALID KEY statement is executed and
the ERROR STATUS field will contain a value of 23.

20 - 7 November 1977

SECTION 20 PDR3056

OPEN STATEMENT

FORMAT:

1-0
OPEN INPUT index-file-name-1 .

OUTPUT

GENERAL RULES:

1. A file opened as INPUT can only be accessed in a READ statement.

2. A file opened as OUTPUT can only be accessed in a WRITE statement.

3. A file opened as I-O can be either read or written.

4. The table below specifies the types of OPEN statements which are
permissible with the different ACCESS modes.

Open Option in Effect

 ACCESS Procedure
MODE IS Statement Input Output T-O

READ X
WRITE X

SEQUENTIAL REWRITE
START X
DELETE P

r
e

READ X
WRITE X

RANDOM REWRITE
START
DELETE Di

bd
bd

><

READ ! X
WRITE X

DYNAMIC REWRITE
START X
DELETE PS

PS
PS

OM
PS

Table 20-2. OPEN Statements vs. Access Mode, Relative I-0.

PDR3056 RELATIVE FILE PROCESSING

READ STATEMENT

FORMAT 1 (SEQUENTIAL or DYNAMIC):

READ file-name [NEXT RECORD] [INTO data-name-1]

[AT END imperative-statement ... |].

FORMAT 2 (SEQUENTIAL, RANDOM or DYNAMIC):

READ filename [INTO data-name-1]

[INVALID KEY imperative-statement] .

GENERAL RULES:

1. Format 1, Option 1 (SEQUENTIAL ONLY):

READ file-name [INTO data-name-1] [AT END imperative-statement].

For a sequential read, the file is read sequentially. If the INTO
clause is used, the data record is automatically moved into data-
name-1. When AT END is specified, control is passed to the imperative-
statement when the complete file has been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL):

READ file-name [NEXT RECORD] [INTO data-name-1].

[AT END imperative-statement ...].

A. FOR DYNAMIC ACCESS:

This option allows the programmer to change from a random mode
to sequential reading with the NEXT record clause. The INTO
clause automatically moves the data-record into data-name-1.
The AT END clause transfers control at the end of the file.

If the NEXT RECORD option is not specified, the value of the
record to be retrieved must be placed in the RELATIVE KEY data-
name.

B. FOR SEQUENTIAL ACCESS:

The NEXT RECORD is not required with sequential access.

20 - 9 November 1977

SECTION 20 PDR3056

3. Format 2, Option 1:

REV. 0

READ filename [INTO data-name-1]

[INVALID KEY imperative-statement] .

FOR SEQUENTIAL ACCESS:

The format reads the file sequentially. The RELATIVE KEY is
updated with the record number after each successful READ.
The INTO moves data into data-name-1. The INVALID KEY transfers
control if any of the status codes listed in Table 20-1 are
encountered.

FOR DYNAMIC and RANDOM ACCESS:

This format retrieves data based on the value contained in
RELATIVE KEY or data-name. If the record is not found, or any
other error status is encountered, control is passed to the
INVALID KEY clause. Refer to Table 20-1.
The INIO clause moves data to data-name-1.

PDR3056 RELATIVE FILE PROCESSING

REWRITE STATEMENT

FORMAT:

REWRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement .. .]

GENERAL RULES:

1. The REWRITE statement physically replaces an existing record.

2. The REWRITE statement can change any or all data-fields in the
record.

3. The file must be opened for I-O for all access methods.

4. A record must have been READ successfully prior to the REWRITE
statement. This ensures that the record cannot be updated by another
program running concurrently.

5S. The FROM data-name-1 option allows the record to be created in
another area. It is equivalent to a MOVE data-name-1 TO record-name
prior to the execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the RELATIVE KEY
is changed since the successful read. If this statement is not present,
control is then passed to the USE DECLARATIVE. One or the other of
these statements must be present. Refer to Table 20-1 for status codes.

20 - 11 November 1977

SECTION 20 PDR3056

START STATEMENT

FORMAT:

GREATER THAN
START file-name [KEY IS [NOT LESS THAN >] data-name]

~~ EQUAL ‘TO

[INVALID KEY imperative-statement .. .]|

GENERAL RULES:

1. The START statement enables a relative file to be positioned for
reading at a specified key value. This is permitted for files open
in either sequential or dynamic access modes. The START verb is not
allowed with RANDOM access (see INVALID KEY).

2. Option 1:

START file-name

This option positions the file to the value contained in the RELATIVE
KEY data-name. If that record is not present on the file, control is
passed to the DECLARATIVE section if present; otherwise, the program
terminates.

3. Option 2:

START file-name KEY IS data-name

This option will position the file to the value contained in data-name
as defined in RELATIVE KEY. If the record is not contained on the
file, control is passed to the DECLARATIVES, otherwise they will
terminate.

4. Option 3:

| GREATER THAN
START file-name [KEY IS [¢{ NOT LESS THAN?] data-name]

| EQUAL TO

[INVALID KEY imperative-statement .. .]

The option GREATER or NOT LESS is specified, the file is positioned for
the next access to be greater than or less than the value specified in
the data-name. This option allows the keys to contain partial values.

REV. 0 20 - 12

PDR3056 RELATIVE FILE PROCESSING

The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is a 23.

5. START does not retrieve a record, but only positions to a
desired record.

20 - 13 November 1977

SECTION 20 PDR3056

WRITE STATEMENT

FORMAT:

WRITE record-name [FROM data-name-1|

[INVALID KEY imperative-statement]

GENERAL RULES:

1. The WRITE statement releases a logical record to a file.

2. In the FROM option, data-name-1 and record-name cannot reference
the same memory location.

3. The file must be open for OUTPUT or I-0.

4. The INVALID KEY clause must be specified if the DECLARATIVE section
is not applicable. The program will terminate if an error code condi-
tion arises. Refer to Table 20-1 for error codes.

5. FOR SEQUENTIAL ACCESS:

If the file is opened as OUTPUT, the records are placed in the file in
sequential order. The first record would have a position of 1, and
the record number returned into the RELATIVE KEY data-name would be
1, etc.

6. FOR DYNAMIC and RANDOM ACCESS:

The value of the record number must be placed in the RELATIVE KEY data-
name-1.

REV. 0 20 - 14

UTILITIES

REFERENCE

PDR3056 COMPILER REFERENCE INFORMATION

SECTION 21

COMPILER REFERENCE INFORMATION

COBOL COMPILER PARAMETERS

Prime COBOL Compiler Mnemonics

Mnemonic parameters, which are the Prime-supplied default parameters
(i.e., those which need not be included), are underlined. The system
manager may have changed the defaults; if so, the programmer should
obtain a list of the installation-specific defaults.

treename -

B[INARY] YES

NO

EXP [LIST]

I[NPUT] creename

treename

YES
L[ISTING] NO”

TTY
SPOOL

Specifies the binary (object output file. If
<treename> is given, that will be the name
of the binary file. If YES is used, the
name of the binary file will be B«PROGRAM
(where PROGRAM is the source filename). If
NO is used, then no binary file is created
and it is a syntax check only. Omitting the
parameter is equivalent to the inclusion of
~BINARY YES. (See Table 21-1.)

Prints an expanded listing (in addition to
the source code listing) in the listing file.
This parameter has no effect for compilations
in 64R mode. No listing is generated unless
an output device file is specified using
LISTING (see NOEXPLIST).

Specifies the name of the input source pro-
gram (see Table 22-1). This parameter must
not be used if the source filename immediately
follows the COBOL command; otherwise, it must
be included in the parameter list.

Specifies the listing device/filename.
treename - opens this file for the listing.

NO - no listing file is created.
TTY - the listing file is printed on

the user terminal.
SPOOL - the listing file is spooled

directly to the line printer.
If this parameter is omitted from the para-
meter list, it is equivalent to the -LISTING
YES parameter inclusion.

21 - 1 November 1977

SECTION 21 PDR3056

COMPTLER
MNEMONICS INPUT LISTING BINARY

treename looks for file named opens file named treename opens file named
‘treename as source as listing file ‘treename as
file binary (object)

file.

YES uses default filename for uses default file-
listing file. name for binary
L«PROGRM file.

BePROGRM

NO no listing file. . no binary file.

TTY print listing on user
terminal.

SPOOL spool listing directly to
line printer

option source filename must same as YES same as YES
not be first option after
invoked COBOL command

Table 21-1. Compiler File Specifications

NOEXPLIST Do not generate an expanded listing. This para-
meter is meaningful only for completion in 64V
mode.

64R Generates binary code suitable for loading with
the Linking Loader. The user is given 64K words
(128K bytes) of user memory. When loading the
loader's MOVE command must be used to change load
mode to 64R. (See 64V.)

64V Generates binary code which must be loaded with
the SEG loader. This must be used for gener-
ating shared procedures and/or programs requir-
ing more than 128K bytes of user space; it
provides a user area up to 1.9 (or 3.9) mega-
bytes (15 or 31 segments of 128K bytes each).
It may be run on any Prime 400 (or higher
system) under PRIMOS IV or V. (See 64R.)

REV. 0 21 - 2

PDR3056 COMPILER REFERENCE INFORMATION

Explicit Setting of the A Register

The COBOL compiler is invoked by the COBOL command to PRIMOS

COBOL treename [1/A-register]

where treename is the treename of the COBOL source file, and A-register
is the (octal) value of the A Register.

The default value of the A Register is:

"000777 (binary = 0000000111111111)

Input file is on disk
No expanded listing
Listing file is on disk
Binary file is on disk
Compile in 64R mode

If the default values are used, the A-register parameter may be omitted.

Bit values corresponding to the mnemonic parameters are: (defaults are
underlined).

MNEMONIC BIT(S) SET TO

B[INARY] 14, 15, 16 000,001,111 (see table 21-2)
EXP[LIST] 4 1
I [NPUT] 8, 9, 10 000,001,111 (see table 21-2)
L[ISTING] 11, 12, 13 000,001,111 (see table 21-2)
NOEXPLIST | 4 0
64k 6 0
64V 6 1

Binary bit settings are converted to octal A-register values by:

1. Grouping bits by threes, starting from bit 16.

2. Converting each group to its octal value.

21 - 3 November 1977

SECTION 21 PDR3056

EXAMPLE:

Bit 10 #11 ,12 ,13 114,15 16
Number

Binary Li 1, 1, 1
Value ,

Octal 7

Value

Figure 21-1. Bit Conversion, Binary/Octal

Bit specifications for input/output devices are given in the table below:

! Bits Octal Device Mnemonic Parameter

000 0 None NO

001 1 User Terminal TTY

111 7 Disk (PRIMOS file system)

Table 21-2. Input/Output Device Bit Specification

NOTE: Other values (2-6) are reserved for future use. The default is 7.

REV. 0 21 - 4

PDR3056 COMPILER REFERENCE INFORMATION

default (octal)

000 00 0 21 1 1 #212 1 21 +I 1 1 default (binary)

bit position |, [2 3 4 15 6 7/8 910/11 12 13/1415 16

numbers | -

" A A & aN - LF MNEMONICS (given in
| capital letters)

binary file
BINARY SEE:

File
listing file |Values
LISTING below.

source file
INPUT:

compilation mode
64R=0 64V=2

expanded listing
NOEXPLIST=0
EXPLIST=1

FILE VALUES

8 9 10
Bits¢l1 12 13) Octal Device/File | Mnemonic

14 15 16 |

0 0 0 0 None NO

0 01 1 User Terminal TTY

1i1ii1 7 Disk

Others 2-6 Reserved for future use

Figure 21-2. Bit-Mnemonic Correspondence, A Register

21 o- 5 November 1977

SECTION 21 PDR3056

COMPILER-GENERATED FILES

File Types

Three types of files may be involved during compilation. They are:

source file, listing file, object file. Of these, the listing and

object files are compiler-generated. Corresponding PRIMOS file units
are given in Table 21-3 below.

File Type PRIMOS file unit

source

Listing

Object
Table 21-3. PRIMOS File Units

File Names

If disk is specified as the device for the listing and/or object file,
the COBOL compiler causes these files to be opened under the filename
specified in the compile command. The default convention for a listing
file is I«file-name. The default convention for an object file is
B«file-name.

Thus, for a source file named SAM, following the compile command COBOL

SAM, the listing and object files would exist in the current UFD as L<«SAM

and B«SAM, respectively.

If the source file is given as a treename, e.g., [MFD]>UFD1 ...>SAM, where

the file SAM does not reside in the current UFD (that in which compilation

is occuring), the listing and object files will still be opened as L«SAM

and B+SAM, respectively. Although the source exists in another UFD, L+SAM
and B+SAM will, nevertheless, be opened in the current UFD.

If the user desires the listing or object files to have other than default

names as outlined above, the PRIMOS command, LISTING, must be invoked prior

to compilation. Its format is:

LISTING filename-2

where filename-2 is the actual name under which the listing file will be
stored.

REV. 0 21 - 6

PDR3056 COMPILER REFERENCE INFORMATION

The command LISTING SAMLST would open a listing file in the current UFD,
on PRIMOS file unit 2, under the filename SAMLST instead of L«SAM. NOTE:
In this instance, A-register bits 11-13 must be set to '7 or nothing will
be written into the file.

File Manipulation

The listing output(s) of more than one source file can be concatenated if
all listings are generated prior to closing the listing file. For example:

LISTING filename-2

COBOL Source-1 1/A-register

COBOL Source-n1/A-register

CLOSE ALL

NOTE: System responses are not printed in the example above. Filename-2
will contain the concatenation of all listing outputs from Source-l, ...,
Source-n (for those compilations wherein listings were specified).

BINARY Filename-3 opens a binary (object) file with the specified name (in
the current UFD) on PRIMOS file unit 3. This inhibits the compiler instruc-
tion COBOL from opening a default object file.

NOTE: The default value of bits 14-16 of the A-register is '7 - disk file
system. If not using the default A-register values
14-16 to '7 or nothing will be written into the object file. Object files
can also be concatenated in the same manner as listing files.

If the BINARY or LISTING commands are used prior to COBOL to establish non-
default files, then the COBOL command does not close these files upon comp-
letion.

After COBOL returns command to PRIMOS, these files should be closed by the
user by:

2 3
C[LOSE] {stedane-»} {sstesane3}

or

C{LOSE] ALL

271 - 7 November 1977

PDR3056 SEG REFERENCE

SECTION 22

SEG REFERENCE

COMMAND SUMMARY

A complete list of SEG commands is given in this section in alphabetical
order. Underlining shows the acceptable command abbreviations. Items
in brackets ([]) are optional.

SEG Commands

ATTACH [ufd-name] [password] [1ldisk] [key]

Attaches to another UFD.

ufd-name is the name of the UFD to be attached to; omission
is home UFD.

password is password of UFD to be attached to if password-
protected.

ldisk is logical disk on which MFD is to be searched for
UFD specified.

'0 (or omitted) search logical disk 0
‘100000 search all logical disks
"177777 search logical disk on which

current UFD is located

key is key for attach/set information.

0 attach to UFD; do not set home
1 attach to UFD; set home to new current file
2 attach to sub-UFD in current UFD; do not

set home to new current UFD
3 attach to sub-UFD in current UFD; set home

to new current UFD

A/SYMBOL sname [segtype] segno size

Places a symbol and reserves 0 or more locations in memory for it.

sname 1s the name of the symbol

segtype is the type of segment either DATA or PROCEDURE; if
omitted, a data segment is assumed. Ifthe segment
does not yet exist, it will be created.

22 - Il November 1977

SECTION 22 PDR3056

sepgno is the absolute octal segment number

size is the number of locations (octal) to be reserved
for the symbol; if omitted 0 is assumed.

COMMON ABS segno

Specifies segment into which COMMON will be loaded.

segno is the absolute octal segment number into which COMMON

will be loaded.

COMMON REL segno

Establishes a relative assignment number for segment(s) into which

COMMON will be loaded.

segno is the segment number into which COMMON will be loaded;

it is a small octal nunber.

DELETE [filename]

Deletes saved SEG runfile with name filename. If filename is omitted,

the established runfile is deleted.

p/xx
Perform load operation with same numeric parameters as previous load

command.

xx represents one of the load commands: LOAD, LIBRARY,
RL, PL, IL.

D/ may be combined with P/ as either D/P/xx or P/D/xx

EXECUTE [1/a-reg] [2/b-reg] [3/x-reg]

First SAVEs the program with the register settings specified by the user,

or the default values if the register setting is not specified. It then

executes the program. After execution command is returned directly to

PRIMOS. The default values are almost always used.

a-reg initial value of A register
b-reg initial value of B register
x-reg initial value of X register

PDR3056 SEG REFERENCE

F/xx [filename] [addr psegno lsegno]

F/S/xx [filename] [addr psegno lsegno]

Forceloads all routines in an object file.

xX is one of the load commands LOAD, LIBRARY, RL, PL, or
IL. filename is the object file to be forceloaded.

xX filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted PFTNLB

and IFTNLB forceloaded)

addr is the starting address in psegno for the procedure part
of the binary file. If 0 is specified, the current PBRK
is used.

NOTES:

1. Simple forceload of object file.

psegno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used.

2. Forceload of object file to specific segments.

psegno absolute octal number of segment into which pro-
cedure is to be loaded.

lsegno absolute octal number of segment into which link
frame is to be loaded.

F/S/xx may be written S/F/xx

F/ may also be combined with D/ or P/ as D/F/xx (or F/D/xx) and P/F/xx

(or F/P/xx).

"HELP
Prints a list of the SEG commands at the user's terminal.

22 - 3 November 1977

SECTION 22 PDR3056

IL [addr psegno lsegno]

Loads the impure FORTRAN library IFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

segno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which
link is to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

INITIALIZE [filename]

Initializes SEG's loader and restarts it.

filename is name of SEG runfile to be initialized and/or opened.
If omitted, the established runfile name is used.

LIBRARY [filename] [addr psegno lsegno]

Loads a library file from UFD=LIB.

filename is the name of the library file to be loaded; if
omitted, the FORTRAN library files PFINLB and
IFINLB are loaded.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

segno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/XX, F/xx, P/xx.)

REV. 0 22 - 4

PDR3056 SEG REFERNECE

LOAD synonym for VLOAD
LOAD * synonym for VLOAD *

LOAD filename [addr psegno lsegno]

Loads a binary file.

filename is the name of the binary file to be loaded.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

segno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which

link frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See

S/xx, F/xx, P/xx.)

MAP filename-1 [filename-2] map-option
MAP * [filename-2] map-option

Prints specified loadmap of SEG runfile to user's terminal or to a

file.

filename-1 name of SEG runfile for which map is to be generated.

filename-2 name of file into which map is to be written. If
omitted, map is printed at user's terminal.

map-option type of loadmap to be generated

0 (or omitted) Full map
1 Extent map only

2 Extent map and base areas
3 Undefined symbols
4 Full map (identical to 0)

5 System programmer's map

6 Undefined symbols, alphabetical order

7 Full map, sorted alphabetically

1. Used to get a loadmap of a runfile other than the established

runfile.

2. Used to get a loadmap of the established runfile.

22 - 5 November 1977

SECTION 22 PDR3056

MAP [filename] map-option

Prints a loadmap of currently established runfile to user's terminal or
to a file.

filename is name of file into which load map is to be
written; if omitted, map is printed at user's
terminal.

map-option type of load map to be generated. Map-options
are the same as in SEG's MAP command.

MODIFY [filename]

Invokes the modification sub-processor.

filename is the name of the SEG runfile to be processed;
if omitted, the established runfile is used.

NEW filename

Duplicates all portions of the established runfile resident above segment
"4000, under the specified new name. The full map and all references
to segments below '4000 are preserved.

filename is the name of the new SEG runfile which is to be
created.

OPERATOR option

Allows the creators of specialized software to override basic restric-
tions in SEG's loader. Its use is dangerous unless the programmer is
very careful. It is not considered to be useful for the applications
programmer. The actual implementation of OPERATOR may change from
revision to revision and it is not considered to be a supported function
of SEG.

Option Function

0 reinstate restrictions
1 relax restrictions

PATCH segno baddr taddr

Modifies the save range of an existing segment. Writes to the disk the
portion of the runfile specified as patched. It may not be used with
specifically addressed segments.

segno is absolute octal number of patched segment

REV. 0 22 - 6

PDR3056 SEG REFERENCE

baddr is lowest octal location of the patch

taddr is highest octal location of the patch

PL [addr psegno lsegno]

Loads the pure FORTRAN library PFTNLB. This form of the command is
rarely used; loading to specific segments is more usual.

addr is the starting address in psegno for the procedure
part of the binary file. If 0 is specified, the
current PBRK is used.

segno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which
link frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/xXX, ET, P/xx.)

PSD

Invokes the VPSD debugging utility.

P/xx [filename] option [psegno lsegno]

Loads an object file on a page boundary. A page boundary is an address
of the form 'yy000 where yy is an even number.

Xx is a load command: LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

xXx filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted, PFINLB and IFTNLB

are loaded)

option determines what shall be loaded

PR load only procedure on a page boundary

DA load only link frames on a page boundary

(omitted) load both procedure and link frames on a page
boundary

22 - 7 November1977

SECTION 22 PDR3056

segno absolute octal number of segment into which procedure
will be loaded.

lsegno absolute octal number of segment into which link
frames will be loaded.

Default segments will be those of the current procedure and/or link
frame pointers; if necessary SEG will create new segments. If either
PR or DA is specified for option, loading in the non-specified segment
begins at its current load point. Only the first routine in the file
is placed on a page boundary.

P/ may be compounded with F/ to forceload on a page boundary F/P/xx or.

P/F/xx (see F/xx).

QUIT

Returns user to PRIMOS command level (in SEG).

QUIT

Returns user to PRIMOS command level. Does not SAVE runfile (in SEG's
Loader).

RESTORE [filename]

Restores a SEG runfile to user memory.

filename is the SEG runfile to be restored; if omitted, the
established runfile is used.

RESUME [filename]

or

RESUME [filename|

Restores runfile to memory, if necessary, and then executes it.

filename is the name of the SEG runfile; if omitted, the
established runfile is used.

RETURN

Returns the user to the SEG command level. Unlike the RETURN command in
the Modification sub-processor this command does not SAVE the runfile.

REV. 0 22 - 8

PDR3056 SEG REFERENCE

RETURN

Writes entire runfile to disk and then transfers control to the SEG
command level (in SEG's Modification subprocessor).

RL filename [addr psegno lsegno]

Logically replaces a binary subprogram in the established runfile.

filename is the name of the module to be replaced.

addr is the starting address in the psegno for the
procedure of the binary file. If 0 is specified,
the current PBRK is used.

segno relative assignment number of segment into which
procedure is to be loaded.

lsegno relative assignment number of segment into which$s5egno -
link frames are to be loaded.

If psegno and/or lsegno are 0, SEG's default segments are used. (See
S/xx, F/xx, P/xx.)

R/SYMBOL sname [segtype] segno size

Places a symbol and reserves 0 or more locations in memory for it.

sname is the symbol name

segtype is the type of segment, either DATA or PROCEDURE;
if omitted, a data segment is assumed.

segno is relative segment reference number. If 0, the
first available segment of current type is used.
If segment does not yet exist, a new segment will
be created.

size is number of locations to be reserved for the

symbol; if omitted, 0 is assumed.

SAVE synonym for MODIFY

SAVE [1/a-reg] [2/b-reg] [3/x-reg]

SAVEs the result of the load by writing all buffers to the disk and
setting the stack into the first available segment (unless the user
has specified the stack with the loader's ST command). The user has
the option of setting the initial register values, but this is rarely
ever done.

22 - 9 November 1977

SECTION 22 PDR3056

a-reg value of A register to be saved
b-reg value of B register to be saved
x-re value of X register to be saved

SEG filename

SEG

SEG filename 1/1

SEG1/1

Invokes the segmented-address runfile utility.

1. filename is the name of the SEG runfile to be executed.
Loads the runfile into memory and starts execution.

2. Accesses the SEG commands to load, modify, and/or
execute a SEG runfile.

3. filename is the name of the SEG runfile restored to
memory prior to transfer of control to the VPSED
debugging utility. Control may be returned to SEG by
VPSD's, Q, or QU command and the program may then be
executed.

4. Allows the currently existing memory image to be examined
and/or modified with the VPSD debugging utility. Control
may be returned to SEG by VPSD's, Q, or QU command but the
resulting memory image cannot be executed at the SEG
command level.

SHARE [filename]

Converts portions of the SEG runfile corresponding to segments below
‘4001 into runfiles resembling those for RMODE.

filename is the name of the SEG runfile which is to be split
out for sharing. If omitted, the established runfile

will be used.

SEG responds to the SHARE command by asking for a two-character ID as:

TWO CHARACTER FILE ID:

A separate runfile is created for each segment below '4001; the file-
names are the two-character ID followed by the (octal) segment number.

PDR3056 SEG REFERENCE

SINGLE [filename] segno

Creates a runfile for specified segment number resembling one for

RMODE runfile is to be split.
the name of the SEG runfile from which an

If omitted,

the established runfile is used.

RMODE.

filename is

segno is the absolute octal number of the segment
for which the RMODE runfile is to be created.

SEG responds to the SINGLE command by asking for a two-character ID as:

TWO CHARACTER FILE ID:

The RMODE runfile is created with a filename composed of the two-char-
acter ID followed by the (octal) segment number specified.

SK Ssize

SK Ssize 0 segno

NOTES:

1. Specifies

ssize

Specifies

segno

addr

Specifies

ssize

segno

Specifies
stack.

ssegno

stack size

is minimum required stack size in octal
words; if 0 is specified, the default value
of '6000 is used. ssize = '177774 reserves
an entire segment for the stack.

stack location

is absolute octal segment number for the
stack.

is octal starting address for the stack in the
specified segment. Addr must be at least 4;
locations 0 to 3 mustbe reserved with R/SY.

stack size and segment for extension stack

is minimum size of stack to be allocated.

is absolute octal number of first segment avail-
able for the extension stack.

primary stack location and segment for extension

is absolute octal number of segment in which stack

begins.

22 - dil November 1977

SECTION 22 PDR3056

addr is octal starting location of stack in starting
segment.

segno is absolute octal number of first segment avail-

able for extension stack.

In 3 and 4, the extension stack-frame begins in segno followed by
segnotl, segno+2, etc., if needed.

At least '15 (12) words must be available in the starting stack segment.

SPLIT segno addr

SPLIT addr

SPLIT addr ssegno saddr esegno

Breaks a segment into procedure (lower) and data (upper) portions.

segno is the absolute octal number of the segment to be
split.

addr is the octal location of the split in the segment.

addr must be a multiple of '4000.

NOTES:

1. Splits segment as specified.

2. Splits segment '4000 and loads RMODE interlude program RUNIT
starting at location '4000.

3. Splits segment '4000, loads RUNIT and supports extension

stacks.

addr is address (octal) of split in segment '4000.

ssegno is absolute octal number of segment in which stack
will begin.

saddr is address (octal) at which stack begins in segno.

esegno is absolute octal number of first segment avail-
able for stack extensions.

At least '15 (12) words must be available in the
starting stack segment.

STACK ssize

Sets the minimum stack size.

ssize is the minimum required stack size (octal). ssize =
'177774 forces use of an entire segment for the stack.

REV. 0 22 - 12

PDR3056 SEG REFERENCE

START segno addr

Sets a new address for start of execution.

segno is the absolute octal segment number.

addr is the new ECB address word (octal) in the specified
segment for start of execution.

SYMBOL [sname] segno addr

Defines a symbol at a specific location in memory (actually an entry in
the symbol table). SYMBOL may only be used to define a symbol before
it is referenced. It cannot be used to define initialized COMMON or to
satisfy unsatisfied references. _ :

sname is the symbol name.

segno is the absolute octal segment number in which the
symbol is to be located.

addr is the octal address of the symbol in the specified
segment.

S/xx [filename] addr psegno lsegno

Loads an object file to specified absolute segments.

XX is a load command LOAD, LIBRARY, RL, PL, or IL.

filename is the object file to be loaded.

XX filename
LOAD or RL required
PL or IL omitted
LIBRARY optional (if omitted, PFTNLB and IFTNLB

are loaded)

addr is the starting load address (octal in the procedure
segment. If 0 is specified, loading starts at the
current pointer position (PBRK).

psegno is the absolute octal segment for loading procedure.

lsegno is the absolute octal segment for loading the link
frames.

If segments do not already exist, they will be created.

22 - 13 November 1977

SECTION 22 PDR3056

S/ may be combined with F/ as either S/F/xx or F/S/xx.

TIME [filename]

Prints at user's terminal, time of creation or last saved modification
of the runfile.

filename is the SEG runfile name; if omitted, the established
runfile is used.

VLOAD [filename]

Accesses the SEG loader.

filename name of SEG runfile; if omitted, established runfile
is used. If filename is name of an existing SEG
runfile, that runfile is initialized.

VLOAD *[filename]

Access the SEG Loader, preserving the contents of the specified runfile.

filename is the name of the SEG runfile to be accessed; if
omitted, the established runfile is used.

WRITE

Rewrites to the disks all segments of the established runfile above
segment ‘4000.

If NEW is given before WRITE, the segments will be written into the new
runfile; otherwise, the established runfile name will be used.

XPUNGE dsymbol dbase

Expunges some or all defined symbols from the symbol table.

dsymbol Action
0 delete only entry points, leaving COMMON areas

1 delete all defined symbols - including COMMON area

dbase Action
0 retain all base information
1 retain only sector zero information
2 delete all base area information

XP dsymbol is equivalent to XP Dsymbol 0
XP is equivalent to XP 0 0

REV. 0 22 - 14

PDR3056 PRIME COBOL SUMMARY

APPENDIX A

PRIME COBOL SUMMARY

FEATURES

Prime COBOL is based upon American National Standard X3.23-1974. Ele-
ments of the COBOL language are allocated to twelve different functional
processing 'modules''.

Each module of the COBOL Standard has two non-null "levels''-- level 1
represents a subset of the full set of capabilities and features con-
tained in level-2.

In order for a given system to be called COBOL, it must provide at least
level 1 of the Nucleus, Table Handling and Sequential I-O modules.

The following summary specifies the content of Prime COBOL with respect
to the Standard.

Module Features Available in Prime COBOL

Nucleus All of level 1, plus these features of level 2:
Levels 77, 01-30, 88; |
Value series or range, level 88 conditions;
AND OR = < > in conditions;
Procedure-names consisting of digits only;
COMPUTE with multiple receiving fields;
PERFORM VARYING one index;
Mnemonic-names for ACCEPT or DISPLAY devices;
Qualification of Names (Procedure Division);
Sign test;
String;
Unstring;

DAY
ACCEPT TIME

DATE

Sequential I-O All of level 1 plus these features of level 2:
RESERVE clause and variable form of BLOCK;
Multiple operands in OPEN & CLOSE, with individual

option per file.

Relative I-O All of level 1 plus:
RESERVE clause;
DYNAMIC access mode (with READ next);
START (with key relations EQUAL, GREATER, or NOT

LESS).

A -- JI November 1977

APPENDIX A PDR3056

Module Features Available in Prime COBOL

Indexed I-O All of level 1 plus:
RESERVE clause;
DYNAMIC access (with READ next);
RANDOM access mode with READ by KEY;
START (with key relations EQUAL, GREATER, NOT

LESS).

Library Level 1

Table Handling All of level 1 plus:
SEARCH 7

Inter-program
Communication Level 1

SYSTEM FILES

To utilize COBOL, the following files must be available on the system in

the UFD's specified:

UED FILE-NAME

CMDNCO COBOL

SYSOVL C$$DAT
C$$DAR
C$$GEN
C$$FIN
C$$END
C$$64V (*)

LIBRARY COBLIB
COBKID
VCOBLB (*)

*Denotes new files for 64V mode.

REV. 0

PDR3056 PRIMARY COBOL SUMMARY

VCOBLB

The new VCOBLB Library contains the following common COBOL subroutines.

C$ADAT = returns current date in format YMMDD

C$ADAY = returns Julian date in format YYDD

C$ATIM = returns current time in format HHMMSSFF

H = Hour
M = Minutes
S = Seconds
F = Hundreth of seconds

C$ INSP = INSPECT statement

C$UNSI/C$UNS1 = STRING statement

C$STRI/C$STR2 = STRING statement

C$IN = File assignment initialization

C$0S = Open sequential file

C$CS = Close sequential file

C$RS = Read sequential file

C$XS = Rewrite sequential file

C$Wws =Write sequential file

C$O1/C$OR =QOpen indexed/relative file

CSI/CCR =(Close indexed/relative file

A - 3 November 1977

APPENDIX B PDR3056

APPENDIX B

FILE ORGANIZATION

ACCESS METHODS

Sequential Access Method (SAM)

SAM files require that all entries in a file preceding a desired entry
be accessed in order to reach that entry. In other words, the file must
be read sequentially. This is most useful for files in which information
is normally entered into the file sequentially and retrieved from it in
the same manner.

Direct Access Method (DAM)

DAM files (RELATIVE) permit access to a specific entry in a file by spe-
cification of physical disk record number. This permits the user to
locate an entry within a known position in the file more quickly than
does the SAM file structure. The size is restricted to 999,999 entries.

Indexed Sequential Access Method (INDEXED)

INDEXED method locates file entries through a key field search. The user
may retrieve a data entry with only a few disk accesses, regardless of
the position of the entry in the file. The primary index is based on the
description of the record key. The key value is embedded in the first
data field in the record. The secondary indexes are referenced by alter-
nate record keys; up to five additional indexes may be specified. The
user must know in advance which index is to be used to locate a data entry.

REV. 0 B-1

PDR3056 THE MIDAS TEMPLATE

APPENDIX C

CREATING ISAM AND RELATIVE FILES
THE MIDAS TEMPLATE

THE ISAM FILE

To initiate an INDEXED file for COBOL, a program called CREATK must be
run. This program creates a template for the ISAM file. The following
is a summary of CREATK, modified to reflect COBOL terms. For more
complete information, see Section 11 of this manual and PDR 3061
Reference Guide, Multiple Index, Data Access System (MIDAS).

CREATK is a conversational program. A typical dialogue is as follows
(all user responses are underlined) :

Minimum Dialogue

User responses are underlined. —

Prompt : Response Remarks

OK, | CREATK

MINIMUM OPTIONS? YES If minimum options is selec-
ted, all index level keys
will have the same length
as the full key for the last
index level. The primary
key will be stored with the
data and not in the index
entries of the secondary
indices. All index blocks
will default to a length of
440 words.

FILENAME? [volume name>ufd passwd ldisk>] filename

Volume name>UFD: specifies
the name of disk and the
User File Directory (UFD)
on which the file is to
be created. Filename is
the user assigned filename.

NEW FILE? YES

DIRECT ACCESS? NO For a new, indexed file.

c - il November 1977

APPENDIX C

Data Subfile Questions
(PRIME INDEX/RECORD KEY)

Prompt

KEY TYPE:

KEY SIZE=:

DATA SIZE=:

PDR3056

Response

B

B number

number

Remarks

Number is the number of bits
in the primary key. It is
equal to 8 times the number
of characters in the key;
e.g., 2 characters in a key
= 16 bits. The maximum size
for an indexed file is 32
characters or 256 bits.

Number of words for a data
record, where number equals
the record length divided
by 2. For COBOL programs,
this includes the key size,
and a remainder factor of 1
if it applies.

(SECONDARY INDEX/Alternate Record Keys - this section is repeated for each
alternate record key.)

INDEX NO.?

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE=:

1-5
(CR)

CF
{o
o

B number

The numeric variable is the
number of the alternate
record key. Carriage return
(CR) will exit from CREATK,
specifying no alternate
indexes.

YES allows the data in
this key field to be
duplicated. NO indicates
that if the data in the key
field is duplicated, the
file will not be updated
and the INVALID KEY clause
or the USE DECLARATIVE
section will be activated.

Enter the number of bits
in the key; use same
formula as for primary
index.

PDR3056

Prompt Response

USER DATA SIZE=: p

(CR)

THE MIDAS TEMPLATE

Remarks

No data may be entered for
secondary keys. The
response must be #, (CR),
or @ (CR). Either option
will return the user to
the prompt INDEX NO.? above,
from which he may exit from
CREATK, or continue with
alternate key specifications.

An actual example for sample program REF2 appears at the close of
Section 16.

November 1977

APPENDIX C PDR3056

THE RELATIVE FILE

To initiate a relative file, a program called CREATK must be run. This

program creats a template for the relative file. The following is a

summary of a CREATK run used in creation of a relative file template.

For more information, refer to Section 11 of this manual, and PDR 3061

Reference Guide, Multiple Index Data Access System (MIDAS).

CREATK is a conversational program. A typical dialogue is as follows

(all user responses are underlined):

Minimum Dialogue

User responses are underlined.

Prompt

OK,

MINIMUM OPTIONS?

FILE NAME? [volume name>ufd passwd

NEW FILE?

DIRECT ACCESS?

KEY TYPE:

KEY SIZE=:

REV. 0 . C -

-Response

CREATK

YES

Remarks

If minimum options is selec-
ted, all index level keys
will have the same length
as the full key for the last
index level. The primary
key will be stored with the |
data and not in the index
entries of the secondary
indices.

ldisk>] filename

I
E

IB

B number

Volume name>UFD: specifies
the name of disk and the
User File Directory (UFD)
on which the file is to be
created. Filename is the
user assigned filename.

For a new, relative file.

Number is the number of bits
in the relative key; i.e.,
characters in the key X 8.
The maximum size is 6
characters, or 48 bits. In
sequential mode with no key,
size must be specified at
maximum: 48.

PDR3056

Prompt Response

DATA SIZE=: number

NUMBER OF ENTRIES TO ALLOCATE? number

INDEX NO.? (CR)

THE MIDAS TEMPLATE

Remarks

Number of words for a data
record, where number equals
the record length divided
by 2 plus the remainder
factor of 1 if it applies.

number is the number of
entries to allocate in the
new KI/DA file. Entries
are numbered 1-n inclusive;
any references outside this
range results in an error.

This concludes template
creation and returns to
command level.

NOTE: If an invalid response is entered by the user, the question
(prompt) will be repeated.

November 1977

PDR3056

APPENDIX D

REFERENCE TABLES

PRIME COBOL VERBS INDEX

REFERENCE TABLES

CATEGORY Special
VERB (Depending on Format Application PAGE

ACCEPT 1/0 16-7
ADD Arithmetic or Conditional 16-9
ALTER Procedure Branch 16-11
CALL Procedure Branch Interprogram Communication 16-12, 17-3
CLOSE I/O File Handling 16-14, 19-7, 20-6
COMPUTE Arithmetic or Conditional 16-16
COPY Compiler Directing 16-17
DELETE I/O or Conditional File Handling 16-19, 19-8, 20-7
DISPLAY I/O 16-20
DIVIDE Arithmetic or Conditional 16-21
ENTER Compiler Directing Interprogram Communication 16-23, 17-3.
EXHIBIT I/O Debugging 16-24
EXIT Procedure Branch 16-25
EXIT PROGRAM Procedure Branch Interprogram Communication |16-26, 17-3
GO TO Procedure Branch | 16-27
IF4 Conditional or Arithmetic 16-28
INSPECT Data Movement 16-32
MOVE Data Movement 16-34
MULTIPLY Arithmetic or Conditional 16-36
(OPEN I/O File Handling 16-37, 19-9, 20-8
PERFORM Procedure Branch 16-39
READ I/O or Conditional File Handling 16-42, 19-10, 20-9
READY TRACE TRACE MODE Directing Debugging 16-44
RESET TRACE TRACE MODE Directing Debugging 16-45
REWRITE I/O or Conditional File Handling 16-46, 19-12, 20-11
SEARCH Table Handling 16-48, 18-5
SET Table Handling 16-52, 18-5
START I/O or Conditional File Handling 16-54, 19-13, 20-12
STOP I/O or Ending 16-56
STRING Data Movement 16-57
SUBTRACT Arithmetic or Conditional 16-60
UNSTRING Data Movement 16-62
USE I/O Conditional File Handling 16-67
WRITE I/O or Conditional File Handling 16-69, 19-16, 20-14

@1F is a verb in COBOL, although not a verb in the grammatical sense in English.

Table D-1l. Prime COBOL Verb Index

D- 1 November 1977

APPENDIX D

FILE STATUS KEY DEFINITIONS

PDR3056

ORGANIZATION STATUS KEY 1 STATUS KEY 2

Sequential §\- Successful completion $\- No further information

1!- End of file# §\|- No further information

3|- Permanent I-O ErrorP fi- No further information

4\- Boundary violation©®

Relative §\- Successful completion §\- No further information

1/- End of file@ §|)- No further information

Z2|- Invalid key 1|- Sequence error!

3|- No record found®

4!- Boundary violation©

3|- Permanent I-O0 errorb §|- No further information

9!- Implementor - defined O\- Locked record&

1}- Unlocked record”

2i- Record already exists on Data Base

6|- Space relative key contains larger
value than used when CREATK was used.

9|- System error, call analyst.

Indexed §\- Successful completion §\- No further information

1]- End of file# 6\- No further information

Invalid key 1|- Sequence error!

2|- Duplicate key?

31- No record found®

4\- Boundary violation©

Permanent I-O error? §\- No further information

Implementor - defined §\- Locked record

1{- Unlocked record®

2|- Value in key already in the database
and duplicates not specified when
CREATK was run.d

3|- Indices specified in the program do not match indices used when CREATK
was run.

Index size does not match size used

on creation.

The disk is full
 System error, call analyst

REV. 0

PDR3056 REFERENCE TABLES

4tnd of file. A READ statement was unsuccessful because there was no logical
next record in the file.

bpermanent I-0 error. An I-O statement was unsuccessful because of an I-0
error, such as data check, parity error, or transmission error.
For sequential file only, a boundary violation.

“Boundary violation. Attempt was made to read or write beyond the externally
defined boundaries of a file. Disk space full.

Gymlicate key. Attempt was made to write (or, for an indexed file, rewrite)
a record which would create a duplicate key in the file. For an
indexed file, when file status is 92, a duplicate key condition
exists if the key value of the current key of reference is equal to
the value of that same key in the next record within the current key
of reference.

“No record found. Attempt was made to access a record, identified by key, but
the record does not exist in the file.

fsequence error. For a relative file: trying to write beyond the predefined
boundaries of the file. For an indexed file: trying to write a
record containing a key which already exists in the file.

SLocked record. The record is locked and being updated by another program.

Kuniocked record. The record is not locked by a READ prior to a REWRITE.

Table D-2. File Status Key Definitions

D - 3 November 1977

APPENDIX D PDR3056

PERMISSIBLE INPUT/OUTPUT STATEMENTS

Statement

File File Access Procedure
Organization Mode Statement Input Output I-O

Sequential READ X X
Indexed SEQUENTIAL WRITE X
Relative REWRITE X

START X
DELETE X

Indexed READ X
Relative RANDOM WRITE X X

REWRITE X
START
DELETE X

Indexed READ X
Relative DYNAMIC WRITE X X

REWRITE X

START X
DELETE X

Table D-3. Permissible Input/Output Statements-

REV. 0

Open Statements and Access Modes.

PDR3056 REFERENCE TABLES

PERMISSIBLE MOVES

RECEIVING

Q

oO Fs oO
re] ei ei

c jaa A ad

FR O O

2/2 2B 2 |g
Ay S Ay a S s Py

SENDING az oq ia a

ALPHABETIC X X X

BINARY X X X X (A)

ALPHANUMERIC |X X (C) X
EDITED

NUMERIC X X X X (B)

NUMERIC EDITED X (C) X (C)

ALPHANUMERIC |X X X (D)| xX

NOTES:

(A) If receiving operand length L is less than or equal
to 18, target Picture 9(L) is assumed. Otherwise,
the MOVE is disallowed.

(B) The source is converted to DISPLAY form with
separate trailing sign (blank for positive), then
moved as a character string source subject to
truncation or blank padding depending on receiving
its length.

(C) The source is considered as a character string.

(D) If source length L is less than or equal to 18,
source Picture 9(L) is assumed. Otherwise, the
MOVE is disallowed.

Table D-4. Permissible Moves

D- 5 November 1977

PDR3056 ASCII CHARACTER SET

APPENDIX E

ASCII CHARACTER SET

COLLATING SEQUENCE

The Prime COBOL collating sequence conforms to the American Standard
Code for Information Interchange (ASCII) collating sequence. The
octal value associated with each character in the Prime computer is
the basis for the sequence, where characters are arranged in ascending
value from top to bottom as in Table.

E-1 November 1977

APPENDIX E PDR3056

ASCIT CHARACTER SET

PRIME REPRESENTATION

ASCIT

Character Hexadecimal Octal Punched

NUL (low-value) 80 200
(space) AO 240 No Punch

! (exclamation) Al 241 12-8-2

'" (quote) A2 242 7-8

(number) A3 243 8-3

$ AA 244 11-3-8
' (apostrophe) A7 247 5-8

(A8 250 12-5-8

) A9 251 11-5-8

* AA 252 11-4-8

+ AB 253 12-6-8

, (comma) AC 254 0-3-8

- (minus) AD 255 11

. (period) AE 256 12-3-8

/ (virgule, slash, stroke) AF 257 0-1

0 (zero) BO 260 0

1 Bl 261 1

2 B2 262 2
3 B3 263 3
4 B4 264 4

5 B5 265 5

6 B6 266 6

7 B7 267 7

8 B8 270 8

9 B9 271 9

: (colon) BA 272 8-2

; (semicolon) BB 273 11-6-8

< BC 274 12-4-8

= BD 275 6-8

> BE 276 0-6-8

? BF 277 0-7-8

@ (at) CO 300 8-4
A C1 301 12-1
B C2 302 12-2
C C3 303 12-3
D C4 304 12-4
E C5 305 12-5
F Co 306 12-6
G C7 307 12-7
H C8 310 12-8
I C9 311 12-9
J CA 312 11-1
K CB 313 11-2
L CC 314 11-3
M CD 315 11-4

(Characters with no punched card codes are not supported for punched card entry.)

REV. 0 E- 2

PDR3056 ASCII CHARACTER SET

ASCII CHARACTER SET

PRIME REPRESENTATION
ASCII

Character Hexadecimal Octal Punched Cards

N CE 316 11-5
O CF 317 11-6
P DO 320 11-7
Q D1 321 11-8
R D2 322 11-9
S D3 323 0-2
T D4 324 0-3
U DS 325 0-4
V D6 326 0-5
W D7 327 0-6
X Ds 330 0-7
Y D9 331 0-8
Z DA 332 0-9
a El 341
b E2 342
c E3 343
d E4 344
e ES 345
£ E6 346
g E7 347
h E8 350
i E9 351
j EA 352
k EB 353
1 EC 354
m ED 355
n EE 356
oO EF 357
P FO 360
q Fl 361
Yr F2 362
S F3 363
t F4 364
u F5 365
Vv F6 366
W F7 36 7
x F8 370
y F9 371
Zz FA 372
0 (+zer9) FB 373 12-0
0 (-zero) FD 375 11-0
DEL (high-value) FF 377

E- 3 November 1977

LL
6T

LO
qU

Ie
AO

N

COBOL SYMBOLS

PUNCTUATION SYMBOLS - Used to punctuate programentries.

- period

, comma

: semicolon

 " quotation mark
" apostrophe

1. Used to terminate entries. Usually required.
2. Used to signify the decimal in numeric literals.

1. Used to separate operands or clauses in a series. Usually optional.
2. "European" notation for the decimal in numeric literals.

Used to separate operands or clauses in a series. Usually optional.

Used to enclose non-numeric literals.

CODING SYMBOLS - Compiler symbols.

* asterisk

/ Virgule

- hyphen

Denotes an explanatory comment line when inserted in column 7 of a source
program line.

Denotes a skip to the top of a new page during a compiler listing. This
is coded in colum7 of a source program line.

Denotes a continuation-line for non-numeric literals when coded in colum 7

of a source programline.

SIGN SYMBOLS/UNARY OPERATORS - Found in numeric literals and arithmetic formulas.

 + positive

— negative

1. Used as a sign character in the high-order (left-most) position of a
numeric literal.

2. AS a unary operator, the effect of multiplication by numeric literal +1.

1. Used as a sign character in the high-order (left-most) position of a
numeric literal.

2. AS a unary operator, the effect of multiplication by numeric literal -1.

4H
X
I
G
N
A
d
d
V

O
“
A
d
a

COBOL SYMBOLS

ARTTHMETIC SYMBOLS - Found in arithmetic formulas.

+ plus

- minus

* asterisk

/ virgule

= equal

() parenthesis

Addition.

Subtraction

multiplication

Division

"Make equal to"

Used to enclose expressions to control the sequence in which they are

performed.

CONDITION SYMBOLS - Used in conditional test expressions.

= equal

> greater than

< less than

() parenthesis

Denotes "is equal to".

Denotes "is greater than".

Denotes "is less than"

Used to enclose expressions to control the sequence in which conditions

are evaluated.

REPORT ITEM OR EDIT SYMBOLS - Used

in report item picture clauses.

 . decimal point
(insertion character)

, comma
(insertion character)

$ dollar sign
(floating character)

Usedto insert an actual decimal in the indicated position of a report

item.

Used to insert a comma in the indicated position(s) of a report item.

(May be used in conjunction with floating characters.)

Used to float an actual dollar sign (from left to right) in a report item,

so that exactly one $ is developed inmediately to the left of the most

significant nonzero digit in any position where the symbol has been used.

L
L
6
T

LO
qu
Ui
cA
ON

COBOL SYMBOLS

REPORT ITEM OR EDIT SYMBOLS (continued . . .)

(insertion character)

/ virgule
(insertion character)

* asterisk
(replacement character)

+ plus
- minus or dash (fixed

sign control, or floating
character)

B letter B

(insertion character)

@ ZERO

(insertion character)

4 ZED

(replacement character)

CR credit
(fixed sign control
character)

DB debit
(fixed sign control
character)

P letter P

(decimal scaling
character)

Used to insert an actual equal symbol in the indicated position of a
report item.

Used to insert an actual slash in the indicated position(s) of an edited
item.

Used to replace leading zeros with an actual asterisk. Each * represents
a digit position in a report item.

1, Used as a fixed sign control character in the low-order (right-most)
position of a report item picture. The symbol does not replace a digit
position.

2, Used to float an actual plus or minus character (from left to right)
in a report item, so that exactly one + or - is developed immediately
to the left of the most significantnonzero digit in any position where
the symbol has been used,

Used to insert blanks in the indicated position(s) of an edited item.

Used to insert zero(s) in the indicated position(s) of an edited item.

Used to replace leading zero(s) with blank(s) in the indicated position(s)
of a report item.

Used as a fixed sign control character in the low-order (right-most)
position of a report item picture, It occupies 2 character positions in
the picture.

Used as a fixed sign control character in the low-order (right-most) position
of a report item picture. It occupies 2 character positions in the picture.

Used to position the assumed decimal point away from the number; e.g., an item
whose actual value is 25 will be treated as 25000 if its picture is 99PPPV.

PDR3056 ERROR MESSAGES

APPENDIX G

ERROR MESSAGES

TYPES OF ERROR MESSAGES

This Appendix contains the following categories of errors:

Error messages appear alphabetically within each category.

COMPILE-TIME ERRORS

COMPILE-TIME WARNING MESSAGES

RMODE RUN-TIME ERROR MESSAGES

VMODE RUN-TIME ERROR MESSAGES

SEG ERROR MESSAGES

G - 1 November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES

' 1)!" REQUIRED AFTER SUBSCRIPTS.'

The close parenthesis following a subscript has been omitted.

Correct the coding and recompile.

'AREA-A VIOLATION; RESUMES AT NEXT PARAGRAPH/SECTION/DIVISION/VERB. '

Data was ignored.

"BLANK WHEN ZERO IS DISALLOWED. '

The BLANK WHEN ZERO clause is not permitted here. Use zero

suppression or other editing functions as indicated. Recompile.

"CONDITIONAL I/O STATEMENT DISALLOWED WITHIN "'IF"'.'

Implied conditional such as SEARCH, AT END is invalid.

"DATA DIVISION ASSUMED.'

DATA DIVISION omitted; correct and recompile.

'DELETE/START NOT VALID FOR THIS FILE.'

See Table 16-3 OPEN Statements and Access Modes. Correct

coding, recompile.

"DISPLAY LIMITED TO 72 ON CONSOLE, 132 ON PRINTER. '

The file exceeds limitations. Correct and recompile.

"ERRONEOUS ASSIGNMENT. '

Device does not match file; correct and recompile.

REV. 0 G

PDR3056 ERROR MESSAGES

COMPTLE-TIME ERROR MESSAGES

"ERRONEOUS FILE-NAME. '

SELECT file-name does not match FD file-name.

"ERRONEOUS QUALIFICATION; LAST DECLARATION USED. '!

Data-name not unique, needs qualification.

"ERRONEOUS SELECT-SENTENCE; RESUMES AT NEXT SELECT OR AREA-A.!

The flagged SELECT is ignored. Correct errors, recompile.

"ERRONEOUS SUBSCRIPTING; STATEMENT DELETED. '

Refer to rules governing subscripting, Section 12, and
subscripting, OCQURS clause. Correct errors, recompile.

"EXCESSIVE OCCURS NESTING IS IGNORED. '

Restate, using a 'long-hand' form; recompile.

'FD-VALUE IGNORED SINCE LABELS OMITTED.'

Value of File-ID or owner ID specified with labels omitted.
Correct and recompile.

"FILE NEVER CLOSED.'

Include a CLOSE statement for the file, recompile.

"FILE NEVER OPENED.'

Include an OPEN statement for the file, recompile.

G- 3 November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

"FILE NOT SELECTED; ENTRY BYPASSED. '

FD entry has no corresponding SELECT statement. Correct

and recompile.

"FILE SECTION ASSUMED. '

Correct and recompile.

'GROUP ITEM; PIC/VALUE/JUST/BLANK/SIGN/SYNC IGNORED.'

These clauses are not permitted at the group level. Delete

and recompile.

"GROUP SIZE >32,767; SET TO 1.'

Group and/or record size exceeds maximum. Correct and

recompile.

"ILLEGAL MOVE OR COMPARISON IS DELETED. '

Check IF and MOVE statements. Correct errors, recompile.

"IMPROPER OCCURS COUNT IGNORED. '

OCCURS is greater than 1024. Check rules for OCCURS clause;

correct and recompile.

"IMPROPER REDEFINITION IGNORED. '

Check rules for REDEFINES clause. Correct errors;

recompile.

REV. 0 : G - 4

PDR3056 ERRORMESSAGES

COMPILE-TIME ERROR MESSAGES

"INCOMPLETE/TOO LONG STATEMENT DELETED. '

Check syntax; correct and recompile.

"INCONSISTENT READ USAGE. '

OPEN statement and USAGE do not agree.

"INCONSISTENT WRITE USAGE.'

OPEN statement and USAGE do not agree.

"INVALID BLOCKING IS IGNORED.'

BLOCK CONTAINS clause in error; correct and recompile.

"INVALID RECORD. SIZE(S) IGNORED. '

RECORD CONTAINS clause in error; correct and recompile.

"ITEM ASSUMED TO BE BINARY.'

Elementary item with no PICTURE clause assumed binary.
Check coding.

"KEY DECLARATION OF THIS FILE IS INCORRECT. '

Correct coding and recompile.

"KEY MUST BE DECIMAL OR CHARACTER ITEM, MAX. 255 BYTES. STATEMENT DELETED.'

Key specification in error. Correct and recompile.

G - § November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

'LABEL RECORDS OMITTED ASSUMED FOR UNIT-RECORD FILE.'

Check LABEL clause vis a vis device.

"LABELS ASSUMED FOR DISK FILE.'

Check LABEL clause vis a vis device.

"LEVEL 01 ASSUMED.'

Check coding; correct and recompile.

'MISORDERED/REDUNDANT SECTION PROCESSED AS IS.'

Correct coding sequence; recompile.

"NAME OMITTED; ENTRY BYPASSED.'

Unrecognizable data-name/syntax error. Correct and recompile.

'NON-UNIQUE SUBSCRIPT; LAST DECLARATION USED. '

Non-unique data-name. Qualification is required; recompile.

‘OCCURS DISALLOWED AT LEVEL 01.'

Delete error and recompile.

"PARAGRAPH DECLARATION REQUIRED HERE. '

Paragraph-name required; recompile.

REV. 0 G - 6

PDR3056 ERROR MESSAGES

COMPTLE-TIME ERROR MESSAGES

"PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION. '

Period missing after a paragraph-name. Correct and recompile.

"PICTURE IGNORED FOR INDEX ITEM. '

PICTURE disallowed on USAGE IS INDEX. Correct and recompile.

"RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS; LATER SIZES PREVAIL.'

Correct discrepancy, recompile.

"REDUNDANT CLAUSE IGNORED. '

Remove and recompile.

"REDUNDANT FD.'

Multiple FD's. Delete and recompile.

'WSECTION' ASSUMED HERE. '

Insert SECTION and recompile.

"SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT. '

Advancing count is greater than 62. Correct and recompile.

"SOURCE BYPASSED UNTIL NEXT FD/SECTION.'

This relates to previous error. Correct previous error(s),
recompile.

G - 7 November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES

"STATEMENT DELETED DUE TO ERRONEOUS SYNTAX. '

Correct and recompile.

"STATEMENT DELETED DUE TO OMISSION OF RELATIONAL SYMBOL.'

Correct and recompile.

"STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.'

Incompatible data types must be reconciled; recompile.

"STATEMENT DELETED; OPERAND IS NOT A FILE-NAME.'

Correct syntax and recompile.

"UNIT-RECORD FILE BLOCKING IS IGNORED. '

Device and BLOCK clause are incompatible.

"UNRECOGNIZABLE ELEMENT IS IGNORED. '

Correct and recompile.

"UNRESOLVED PROCEDURE-NAME; STATEMENT DELETED.'

Correct and recompile.

"USING-LIST LEVELS MUST BE 01/77.'

Correct and recompile.

REV. 0 G - 8

PDR3056 ERROR MESSAGES

COMPTLE-TIME ERROR MESSAGES

"VALUE CLAUSE IGNORED. '

Delete and recompile.

"VALUE DELETED DUE TO TYPE CONFLICT. '

PICTURE and VALUE disagree. Correct and recompile.

"VALUE DISALLOWED DUE TO OCCURS/REDEFINES. '

Remove VALUE clause and recompile.

"VALUE DISALLOWED IN FILE/LINKAGE SECTION. '

Remove VALUE clause and recompile.

"VARYING ITEM MAY NOT BE SUBSCRIPTED.'

Correct and recompile.

G - 9 November 1977

APPENDIX G PDR3056

COMPILE-TIME ERROR MESSAGES, System Level

INCONSISTENT READ USAGE
INCONSISTENT WRITE USAGE

A file has been defined to have usage of READ, WRITE or both,
but I/O statements in the program show differently. For
example, a file opened for I/O with only READ statements
present will generate one of these errors. Correct errors;
recompile.

PRWFIL UNIT NOT OPEN

Several conditions may prompt this error:

1. UFD full condition.

2. Misspelled or missing division header.

3. Unrecognized division. This problem is related to the
one above. A division is not being recognized because of
some other error. For example:

A. No period on last item in Working-Storage causes
the Procedure Division to be unrecognized.

B. Erroneous literal or continuations in the vicinity
of a division will cause an item to be unrecognized.

Check to see that at least two temporary files will fit in the
current UFD. Correct errors, recompile.

TBL-GROUP-ERROR

This error indicates an overflow of an internal table in the
COBOL compiler. Possible causes:

1. An excessive number of literals in one paragraph.
Separate the sentences into two paragraphs.

REV. 0

PDR3056 ERROR MESSAGES

COMPILE-TIME ERROR MESSAGES, System Level

2. A SELECT clause does not match an FD statement.
For example, the specified key does not exist in the
Record Description.

3. An IF statement has an implied subject, implied
relation, or parentheses. Correct and recompile.

G - 11 November 1977

APPENDIX G PDR3056

COMPILE-TIME WARNING MESSAGES

COMPILE-TIME WARNING MESSAGES

"'COMP"' IGNORED FOR DECIMAL ITEM.'

COMP has been specified, although the item appears to be
decimal; the compiler is ignoring the COMP designation.
Results may be incorrect. Determine the correct specifica-
tion and recompile.

"DATA RECORDS CLAUSE WAS INACCURATE. '

The DATA RECORDS clause does not agree with Record Description
Entries for the file. Correct and recompile.

"ITEM IS UNSIGNED. '

The item in this statement is unsigned, but appears to require
Sign designation. Results may be indeterminate.

"LITERAL TRUNCATED TO ITEM SIZE'

The literal is too large as specified. Reduce its size or
enlarge the item size; recompile.

"MOVE IS DONE WITHOUT CONVERSION.'

Data representation does not agree. Conversion will not occur;
results are indeterminate.

"PERIOD ASSUMED ABOVE. '

Statement syntax suggests a period; one has been generated by
the compiler.

REV. 0 G - 12

PDR3056 ERROR MESSAGES

RMODE RUN-TIME ERROR MESSAGES

RMODE RUN-TIME ERROR MESSAGES

BASE REGISTER = 0

GENERATED CODE

A program item referenced by a Base Register is finding the
register clobbered or unset. Each 01 in the Linkage Section
and each FD in the File Section will use Base Registers.
Possible problems are:

1. A reference to data item located in a file description
before that file is opened or after it is closed;

2. A reference to an item in the Linkage Section when that
item was not present in the CALL statement;

3. A reference to a table entry with an out of range
subscript resulting in a faulty Base Register setting
for the next physical item.

4. An improper REDEFINES on item prior to an 01 with
Base Register problems.

Determine and correct the error. Recompile.

Incorrect source program coding is causing the compiler to
generate faulty object code.

Determine and correct faulty coding. Recompile.

INPUT/OUTPUT ERROR LINE XXXX

This error is caused by one of the following I/O statements:

OPEN, READ, WRITE, REWRITE, DELETE, START.

xxxx refers to the program line number. If the error involves
an OPEN statement, file assignments are incorrect. The program
is attempting to open for reading a file which does not exist.

Determine and correct the error. Recompile.
G - 13 November 1977

APPENDIX G PDR3056

RMODE RUN-TIME ERROR MESSAGES

NON-NUMERIC DATA ERROR LINE XXX

Possible causes include the figurative constant, SPACES,
erroneous subscripting, incorrect redefinition of data areas,
signed data in an unsigned field, etc.

PERFORM OVERFLOW

The program has encountered a nesting of PERFORM statements
in excess of current capacity; the maximum depth is 24.

Rewrite the appropriate program sections. Recompile.

PERFORM OVERLAP

The program is performing a section of code which contains
the end point of execution for another section of code. See -
the PERFORM statement in the COBOL REFERENCE SECTION.

Rewrite the appropriate program section. Recompile.

REDUNDANT OPEN

The program is attempting to OPEN a file which the program
has currently open.

Remove the OPEN statement or insert a CLOSE. Recompile.

SUBSCRIPT FAULT

The user has attempted to reference a table item with a
subscript value of zero or a negative number.

Correct the program. Recompile.

REV. 0 G - 14

PDR3056 ERROR MESSAGES

RMODE RUN-TIME ERROR MESSAGES

BAD SVC

KIDA- generated

This error is most often caused by an incorrect specification
of parameters for system subroutine calls from the COBOL pro-
gram. For example, a CALL to TIMDAT with incorrect parameters

will produce this error. The incorrect parameters may be:

1. Item not in word boundary;

2. Use of external decimal in COBOL program when
subroutine expects a single precision integer.

Correct the errors; recompile.

messages

Error messages relating to MIDAS (KIDA) are described in a
separate document; PDR 3061, MIDAS.

Consult MIDAS manual. Correct errors; recompile program if

necessary.

G - 15 November 1977

APPENDIX G PDR3056

VMODE RUN-TIME ERROR MESSAGES

VMODE RUN-TIME ERROR MESSAGES

The general format for run-time I-O errors generated by a 64V mode COBOL
program is:

KI/DA FILE SYSTEM ERROR n, FILE-STATUS CODE f

PILE-ID: file-id OWNER-ID: owner-id DEVICE: device-name

FATAL RUN-TIME I-O ERROR (C$ER)
ER!

The first line of the message is omitted unless the error was caused by an
indexed or relative I-0 operation which involved a call to the MIDAS file
system. If printed, n represents the error code returned from MIDAS. For
a complete discussionof MIDAS error messages, refer to PDR3061 Reference
Guide, Multiple Index Direct Access System. Further, f is the COBOL file-
status code, as defined in this manual. ~

The diagnostic message is one-line which briefly describes the probable cause
of the error. Most of the time the message will point directly to the problem.
A list of diagnostics and further explanations are provided below.

The next line identifies the file on which the error occurred. Information
printed includes file-id and owner-id, if specified, and device-name (specified
in SELECT clause). :

A list of the COBOL run-time I-0 error messages follow.

ATTEMPTED DELETE FROM UNOPENED FILE

The user attempted to delete a record from an unopened file.

ATTEMPTED READ FROM ILLEGAL DEVICE

The user attempted to read a record from the printer.

ATTEMPTED READ FROM UNOPENED FILE

The user attempted to read a record from an unopened or a
write-only file.

REV, 0 G - 16

PDR3056 ERROR MESSAGES

VMODE RUN-TIME ERROR MESSAGES

ATTEMPTED REWRITE TO NON-DISK FILE

The user attempted to rewrite a record to a non-disk file
(a file not assigned to Prime File Management System).

ATTEMPTED REWRITE TO UNOPENED FILE

The user has attempted to rewrite a record to an input-only
or an unopened file.

ATTEMPTED START ON UNOPENED FILE

The user program executed a START statement on an unopened
file.

ATTEMPTED WRITE TO UNOPENED FILE

The user attempted to write a record to an unopened or a
read-only file.

END OF FILE ENCOUNTERED

An EOF mark was encountered on a sequential read statement.

ERROR ADDING SECONDARY INDEX, UNABLE TO DELETE PRIMARY

An error occurred adding a secondary index to an index file

on a WRITE statement. When the error was noticed by the COBOL

run-time package, an attempt was made to remove the primary

index entry which failed. This error is always fatal and may

indicate a problem with the MIDAS file structure or the COBOL
run-time package.

ERROR PROCESSING DELETE STATEMENT:

An error occurred attempting to delete a record from an
indexed or a relative file.

G - 17 November 1977

APPENDIX G PDR3056

VMODE RUN-TIME ERROR MESSAGES

ERROR PROCESSING START STATEMENT

An unexpected error occurred while executing a START statement
on an indexed or relative file.

ERROR UNLOCKING RECORD

A MIDAS error occurred (from UPDAT$) in an attempt to unlock
a record.

FILE READ ERROR

General message indicating a sequential file read error.

FILE REWRITE ERROR

General message indicating a sequential file re-write error.

FILE WRITE ERROR

General message indicating a sequential file write error.

NO READ PRIOR TO DELETE

A READ statement must be executed prior to a DELETE on an
indexed or relative file in sequential access mode.

TO READ PRIOR TO REWRITE

A READ statement must be executed prior to a REWRITE when an
indexed or relative file is used in sequential access mode.

REV. 0 G - 18

PDR3056 ERROR MESSAGES

VMODE RUN-TIME ERROR MESSAGES

NO UNITS AVAILABLE

All available file units are in use. Note that units 13-16 are
reserved for use by MIDAS and FORMS.

REDUNDANT OPEN ATTEMPTED

The program tried to open a file which was already open.

SEQUENTIAL WRITE TO RANDOM FILE OPENED IN I-O MODE

Attempt to use the sequential WRITE statement on a file opened
in I-O mode for random access is not permitted.

G - 19 November 1977

APPENDIX G PDR3056

SEG LOADER ERROR MESSAGES

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

(VLOAD) User is attempting to load file which has faulty code. The
file may not be an object file or it may be incorrectly
compiled. FATAL, the load must be aborted

CAN'T LOAD IN SECTORED MODE

(VLOAD) The Loader is attempting to load code in sectored mode which
has not been compiled in sectored mode. This could arise if
trying to load a module compiled or assembled in 16S or 325
mode. It is unlikely the average applications programmer will
encounter this. FATAL, abort load.

CAN'T LOAD IN 64V OR 64R MODE

(VLOAD) The Loader is attempting to load code in 64V mode which is
not compiled in that mode. This would arise if:

l. <Aprogram was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and
its mode is not specified.

In case 1, the user should recompile the program. In case 2,
which the average applications programmer is unlikely to
encounter, the PMA module must be modified. FATAL, abort load.

COMMAND ERROR

(SEG) An unrecognized command was entered or the filenames/parameters
following the command are incorrect. Usually not fatal.

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

(VLOAD) An attempt was made to load a 64R mode program, causing a
reference to an illegal segment number. Recompile in 64V
mode. FATAL, abort load.

REV. 0 G - 20

PDR3056 ERROR MESSAGES

SEG LOADER ERROR MESSAGES

ILLEGAL SPLIT ADDRESS

(VLOAD) Incorrect use of the Loader's SPLIT command. Segments may be
split only at '4000 boundaries only (i.e., '4000, '10000,
14000, etc.). Not FATAL; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT’

(VLOAD) An attempt was made to load a 64R mode program wherein
COMMON would be allocated to an illegal segment number.
Recompile in 64V mode. FATAL, abort load.

NO FREE SEGMENTS TO ASSIGN

(VLOAD) All SEG's segments have been allocated; no more are available
at present. Use SYMBOL command to eliminate COMMON from
assigned segments, thus reducing the number of assigned segments
required. (User may need larger version of SEG and PRIMOS.)
Fatal, abort load.

NO ROOM IN SYMBOL TABLE

(VLOAD) Unlikely to occur; no user solution. A new issue of SEG with
a bigger symbol table is required; check with analyst. As a
temporary measure, user may try to reduce number of symbols
used in program. FATAL, abort load.

REFERENCE TO UNDEFINED SEGMENT

(VLOAD) Almost always caused by improper use of the SYMBOL command to
allocate initialized COMMON. Initialized COMMON cannot be
located with the SYMBOL command; use R/SYMBOL or A/SYMBOL
instead.

Gc - 21 | November 1977

APPENDIX G PDR3056

SEG LOADER ERROR MESSAGES

SECTOR ZERO BASE AREA FULL

(VLOAD) Extremely unlikely to occur. Not correctable at applications
level. Check with analyst. FATAL, abort load.

SEGMENT WRAP AROUND TO ZERO

(VLOAD) An attempt has been made to load 64R mode program. The pro-
gram has exceeded 64K and is trying to be loaded over code
previously loaded. Recompile in 64V mode. FATAL, abort load.

REV. 0 G

PDR3056

APPENDIX H

RESERVED WORDS

RESERVED WORDS

ACCEPT DATA HIGH-VALUES NEXT
ACCESS DATE I-0 NOT
ADD DATE-COMPILED T-O-CONTROL NUMBER
ADVANCING DATE-WRITTEN ID * NUMERIC
AFTER DAY IDENTIFICATION OBJECT-COMPUTER
ALL DECIMAL-POINT IF OCCURS
ALPHABETIC DECLARATIVES IN OF
ALTER DELETE INDEX OFF
ALTERNATE DELIMITED INDEXED OFFLINE-PRINT *
AND DELIMITER INITIAL OMITTED
ARE DEPENDING INPUT ON
AREA DISPLAY INPUT-OUTPUT OPEN
AREAS DIVIDE INSPECT OR
ASCII * DIVISION INSTALLATION ORDS
ASSEMBLER* DOWN INTO ORGANI ZATION
ASSIGN DUPLICATES INVALID OUTPUT
AT DYNAMIC IS OWNER *
AUTHOR ELSE JUST PAGE
BEFORE END JUSTIFIED PERFORM
BLANK ENTER KEY PFMS *
BLOCK ENVIRONMENT LABEL PIC
BY EQUAL LEADING PICTURE
CALL ERROR LEFT POINTER
CHARACTER EVERY LENGTH POSITION
CHARACTERS EXCEPTION LESS POSITIVE
CLOSE EXHIBIT * LIFE-CYCLE *
COBOL EXIT LINE PRINTER *
CODESET EXTEND LINES PROCEDURE
COMMA FD LINKAGE PROCEDURES
COMP * FILE © LOCK PROCEED
COMP3 FILE- CONTROL LOW-VALUE PROGRAM
COMPUTATIONAL FILE-ID * LOW-VALUES PROGRAM- ID
COMPUTATIONAL-3 * FILLER MODE PUNCH *
COMPUTE FIRST MOVE QUOTE
CONFIGURATION FOR MI7 * QUOTES
CONSOLE * FROM Mr9 * RANDOM
CONTAINS GIVING MULTIPLY READ
COPY GO NAMED * READER *
COUNT GREATER NATIVE READY *
CURRENCY HIGH-VALUE NEGATIVE RECORD

* Prime reserved words

H- 1 November 1977

APPENDIX H PDR3056

RESERVED WORDS

RECORDS
REDEFINES
REEL
REFERENCES
RELATIVE
REMARKS *
REMOVAL
REPLACING
RERUN
RESERVE
RESET
RESTART-FILE *
REVERSED
REWIND
REWRITE
RIGHT
ROUNDED
RUN
SAME
SEARCH
SECTION
SECURITY
SELECT
SENTENCE
SEPARATE
SEQUENTIAL
SET
SIGN
SIZE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
START
STATUS
STOP
STRING

SUBTRACT
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
THAN
THEN *
THROUGH
THRU
TIME
TIMES
TO
TRACE *
TRAILING
UNCOMPRESSED *
UNIT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
WHEN
WITH
WORKING - STORAGE
WRITE
ZERO
ZEROES
ZEROS

 * Prime reserved words

REV. 0

PDR3056

APPENDIX I

CONVERSION TABLES

HEXADECIMAL AND DECIMAL CONVERSION

CONVERSION TABLES

XX XX XX XX XX XX XX XX
HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5

© 6 24576 6 1536 6 96 6 6
2 7 28672 7 1792 7 112 7 7
in 8 32768 8 2048 8 128 8 8
So 9 36864 9 2304 9 144 9 9

A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

16° 164 167 16°

OCTAL AND DECIMAL CONVERSION

XXX XXX XXX XXX XXX

OCT DEC} Oct DEC| ocr DEC

|

ocr| pec

|

ocr! vec

0 0 0 0 0 0 0 0 0 0
1 4096 1 512 1 64 1 8 1 1
2 192 2 1024 2 128 2| 16 2 2
3 12288 3 1536 3 192 3] 24 3 3

0 4 16384 4 2048 4 256 4| 32 4 4
5 20480 5 2560 5 320 5} 40 5 5

o 6 24576 6 3072 6 384 6} 48 6 6
7 28672 7 3584 7 448 7| 56 7 7

84 g3 g2 gl 80

I-1 November 1977

PDR3056APPENDIX I

HEXADECIMAL ADDITION TABLE

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

10

11

12

13

14

15

16

17

18

19

1A

1B

1c

10

11

12

13

14

15

16

17

18

19

1B

19

11

12

13

14

15

16

17

18

19

10

11

12

13

14

15

16

17

18

19

10

11

12

13

14

15

16

17

18

10

11

12

13
14
15
16

17

10

11

12

13

14

15

16

10

11

12

13

14

15

10

11

12

13

14

10

11

12

13

10

11

1z

10

11

10

NOTE: All Numbers in Hex.

REV.

PDR3056 EXPANDED LISTING FOR V MODE

APPENDIX J

EXPANDED LISTING FOR V MODE

V-MODE

In 64V mode (Prime 400 and Prime 500 units), COBOL can optionally
generate an expanded listing following the errors and warnings section
in the listing file. The expanded listing is fairly 'PMA-like', easily
readable, and is obtained by employing the mnemonic parameter -EXPLIST.
For example: COBOL program-name -EXPLIST.

For the expanded listing, instead of using source code identifiers,
Prime COBOL uses machine-generated labels in the listing. The
general format of these labels is X$HHHH

where: X is the label type (see below)
HHHH is a hexadecimal identifier.

LABEL TYPES

- Paragraph or section entry point
- Alter or Perform indirect word
- Iteration variable
- Decimal constant
- Picture string
Character string .

- Generated label for program flow control
- Passed parameter
~ Generated label - any usage allowed
- FCB - See VCOBLB listing for FCB formats
- File bufferN

K
O
T
A

m
M
m
M
o
O
o
O
w
>
D
>

i

Other labels used are:

SB% - Stack base relative - used for temporary storage.
XB% - Temporary base relative - used for LINKAGE SECTION address.
WRKST$ - Working-Storage
WSECT$ - Working-Storage extension - used for items that are

statically allocated but not explicitly in working
storage. For example, the declaration ‘indexed by
data-name', would place 'data-name' in WSEXT$.

EXAMPLE:

003233: 001310 EAFA 1, Z$0027+72C
003234: 001000.000725L

J-1 November 1977

APPENDIX J PDR3056

The example above says: At Relative Location'3233 in the procedure area
EAFA 1, File Buffer (ID=X0027) + 72 character offset. Note that the
word offset is '725 in the link frame.

An expanded listing file example is presented on the next several pages.
It represents a portion of an actual listing for sample program REF2
presented earlier.

For additional information pertaining to expanded code, and the Program
Statistics page which follows it, the user is referred to Section 5
COMPILING A SOURCE PROGRAM, and the PMA User Guide, PDR 3059.

REV. 0 J- 2

(6378)
(0379)
(Q382)
(@381)
(9382)
(8383)
(8384)
(@385)
(8386)
(0387)
(2388)
(8389)
(@390)
(@391)
(6392)
(2393)
(2394)
(8395)
(0396)
(2397)
(8398)
(@399)
(2420)
(8421)
(G42)
(2423)
(8484)
(2405)
(G4£6)
(2407)
(2428)
(2489)
(8414)
(@411)
(2412)
(€413)
(0414)
(8415)
(8416)
(8417)
(8418)
(0419)
(2428)
(€421)
(@422)
(8423)
(0424)
EXPANDED

+
+

HF
F

*

*

*

READ-3.

READ-4.

READ-5.

PDR3056 EXPANDED LISTING FOR V MODE

MOVE LOW-VALUES TC STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
GO TC READ-FILE-GO.

MCVE ZEROS TO BIRTHD.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTHD.
GO TO READ-FILE-GO.

MOVE LOW-VALUES TC FIRST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.

READ-FILE-GO.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-CCUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
READ-FILE-EXIT.

WRAPUP.

EXIT.

PERFORM LIST~DIR.
MOVE 'END OF INDEXED TEST TO CHANGE FILE' TC PRINT-LINE.
DISPLAY 'END OF INDEXED TEST’.
CLOSE LIST-FILE, DIRECTORY-FILE.
STOP RUN.

FORMAT-INPUT.
MCVE SPACES TO WS-RECORD.
DISPLAY ‘ENTER LAST NAME‘.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME’.
ACCEPT WS-FIRST-NAME.
DISPLAY ‘ENTERADDRESS '.
ACCEPT WS-ADDRESS.
DISPLAY 'ENTER CITY '.
ACCEPT WS-CITY.
DISPLAY 'ENTER PHONE NUMBER '.
ACCEPT WS-PHONE-NO.
DISPLAY ‘ENTER STATE XX'.
ACCEPT WS-STATE.
DISPLAY ‘ENTER BIRTHDAY MMDDYY'.
ACCEPT WS-BIRTHD.

LISTING FOR -~- REF2
861326 EAFA @,WRKSTS+6C

OLERH1: PBH1IOLHL .OLL427L
801320 STFA @,YS@@27+20C

COOGG4: CO1GLG.COO564L
901308 EAFA &@,Z2S@@27+8C

EGOHLA7: BC1CLS.CMC664L

J- 3 November 1977

APPENDIX J

GOOG11:
BEOCH12:
OGCG14:
QOLC15:
GOO017:
OBLO20:
BQLEG22:
APBG22:
BOEA25:
GO9A26:
OBEO30:
GELE31:
OCAB33:
GOLV34:
COPE36:

ABEO4C:
COCH41:
CEOC43:
CEGO44:
COOH4E:
ALORS5SS:
CERES]:
(OGRS3:
C@CR55:

SRC
GEOO57:
OOBCEB:
CUDH62:
HOGL63:

CLEEES:
AGABG7T:
COCHTE:
CAGAT2:
OLOET4:

SRC

ACCO76:
CHE1OE:
AAG1A2:
CEF104:
OAP1GE:
PEA1G7:
oe
(20112:
068114:
AGBC116:

SRC
AG@E117:
CAGI120:
QGF122:
G60124:
AEC125:
C2C127:

REV. 0

LINE 112

LINE 113

LINE 114

LINE 115

001328
GV1EHE .COC626L

601328
O01E08.680724L

061320
CV1IGHS.CEL632L

PC1360
801088. 600725L

801320
OC1000 .€ACE36L

8013282
1G1G60 .@00673L

C01220
BC1OKE .COCE42L
861432.2006376L

Q0138°
ALLEOS . GLARBOF

901310
BHO40R. CELG12S
01313. @86032A

#01115
061432. 000374L
COL500 . 2008125
OOL3ILO .GOGLOOF

821300
BLOCH. CROOLEF

G01316
C20408 .C00812S
(01313. 80@@32A

@81115
(61432. 00374L
COG5HG.C0GG12S
GPAO300 . CECOSEF

661432. 000372L
COC1ON.LECEEMF
FOP5SCA.PLEL12S
EQK308.GOQLHOF

FH1L3IEE
O20408 .B0ER12S

AGL 31€
CG1LECS.GEA425L
(01313. 60GRB1A

A@1115

001306
OC1 E60. AOCE425L
PC13E3.020EB1A

G61314
OCDEOO.COCHOOF
001313.2006G1A

PDR3056

STFA

EAFA

STFA

EAFA

STFA

FAFA

STFA

PCL
EQU

EAFA

ASBOG1

ASOAGB2

EAFA

LFLI
ZMVD
PCL
AP
AP

FAFA

EAFA

LFLI
ZMVD
PCL
AP
AP

PCL
AP
AP
AP
EAFA

EAFA

LFLI
ZMVD

FAFA

LFLI
EAFA

LFLI

J - 4

8, YS@027+88C

@ , ZS0027+72C

8, Y$S8@27+96C

6, 2S0827+74C

6, YS8227+164C

6, Z$0027+23C

6, YS@@27+112C

=CSIN ,*
*

0,FS81F1

1,SB

1,26

=TNOU ,*
SB

0, F$8209

1,SE

1,26

=TNOU ,*
SB
='32,SL

=ISAA12,*
='8,S
SB
='1,SL
0,SB

1 ,WRKST$+2C

1,1

@ ,WRKSTS+2C

1,F$8224

1,1

SRC

SRC

SRC

SRC

SRC

SRC

SRC

SRC

SRC

SRC

020131: 01117
600132: 141603. 00000OF
LINE 116
$20134: 061432. 620370L
02G136: O01108.962262L
A2G140: POC1GO.HOOLOEE
OM0142: OLL30L. COOROLE
LINE 117
G80144: 91. GL2OLECE

LINE 119
OE0145: G2. GOELORF
M00146: G21318
G00147: CL1GLOS.LO0433L
#9151: @91313.LGG120A
82@153: 01116
LINE 120
988154: #61432.€00370L
000156: OC11E.602104L
GEC1E0: HLG1OM.COP1OSF
GOOi62: CUS3LO.CLB143F
LINE 12¢
900164: 061432. e00376L
020166: OC11EG2.802262L
GOC17E: CLC1OS.COC141F
800172: CYO3C0.CG8163F
LINE 121
GO0174: G2. 980121F
LINE 121
@8G175: 74.¢62620L
#00176: 061432. 000366L
@AG202: GG11EH.CBA552L
GBOA202: COV3CH.CCO171F
LINE 122
AAC284:
GOG205:
COC207:
GLO210:
RLAP212:
OGC214:
GOG216:
LINE 122
GOG217:
BEG221:
080223:
9EC225:
GEE227:

AG13E0
SEL EOE.COO5SO3L

601316
OC1OCE .CH2370L
091313.008144A
O71303.G@G111A

| €@1114

061432. 00@364L
GG1106.602262L
G20108.COLOOGF
COCO. CEOHROF
PO0306 . OLGHOOF

LINE 124
@8G231:
M0VO233:

GHE235:
AGC237:
CG0241:

061432. 000362L
2011068 .CE2104L

OEC1EE.CONOARE
OHA3I00. OCLOEOE

61. 60@OORF

PDR3056

ZCM
BCNE

PCL
AP
AP
AP

JMP

EQU

LDA
FAFA

G$8614

ASOQGA

LFLI
ZPIL

PCL
AP
AP
AP

PCL
AP
AP
AP

LDA

STA
PCL
AP
AP

FAFA

EAFA

LFLI
LFLI
ZMV

PCL
AP
AP
AP
AP
EQU

PCL
AP
AP
AP

S$8681 IMP

SSORAO

AS8@11

J - 5

EXPANDED LISTING FOR V MODE

GSA014

=CSOS_ ,*
Y$S6001,S
='2,S
F$8238,SL

ASO@I1F
*

='246
1,WRKST$+14C

1,88

=C$OS_,*
Y$0011,S
='1,8
F$8230,SL

=CSOS_ ,*
Y$00@1,S
='2,5S.
F$8239,SL

='g

YSQG27+76C
=CSOI_ ,*
Y$8627,S
='2,SL

@ ,WRKSTS+94C

1,2$0601

1,186
6,73

=CSwS ,*
Y$@HGEC1,S
SS8606,S
='62,S
='40077,SL
*

=CSRS_ ,*
Y$@@11,S
SSO022,S
S$6601,SL
GS$@815

November 1977

APPENDIX J PDR3056

SRC LINE 124
@0@242: 61.@CGB20F SS$G8G2 IMP AS#G17

SRC LINE 125
Q68243: 061380 G$0015 EAFA @,ZS#@11
O0C244: 881000.002212L
COE246: #01319 EAFA 1,ZS68@1
000247: 081000.002370L
G00251: @01313.800144A LFLI 1,10
088253: 081303.208120A IFLI @,8%
080255: 601114 ZMV

SRC LINE 126
GO@256: 061432. 008364L PCL =CSWS ,*
OOG268: O1102.062262L AP YS@@81,S
GEO262: OHC1OL.LOGLOOF AP SS0283,S
G20264: OOC100.060226F AP ='62,S
002266: OLO300.080174F AP ='9§,SL

SRC LINE 127
COG276: @2.000145F SSO8@3 LDA ='240
BO8271: 001318 EAFA 1,2$8827
BO2272: LO1OLA.E2066OL
Q00274: 061313.981224A LFLI 1,668
800276: 001116 ZFIL

SRC LINE 128
§OO277: 821308 EAFA @,2Z$8011
BE0300: CH1GLO. 0022121.
C@O382: 8013198 EAFA 1,2S8627+8C
6G0303: AL1LOCL.COCEE4L
(80305: 801313. 080180A LFLI 1,64
@OE387: 661115 ZMVD

SRC LINE 129

QOO318: 001386 EAFA @,ZS6811+64C
GEG311: 8G1000.@G22521,
(00313: 68131¢ FAFA 1,250027
Q60314: CC1OEE.COGE6OL
260316: 881313. 208G18A LFLI 1,8
820320: 601115 ZMVD

SRC LINE 138
608321: 061309 FAFA @,2Z$8@11+72C
OGN322: BG1CEL.2E2256L

G00324: 061312 EAFA 1,25@@27+72C
OOC325: LL1GCE.BOR724L
000327: 8681313.8A0810A LFLI 1,8
@86331: 601115 ZMVD

SRC LINE 131

€G9332: 061432.8008360L PCL =CSWI_ ,*
900334: &81100. 2685521, AP YSC27,S
B2H336: LOC1AG.CLOGEOF AP SS0004,S
FEA340: COC300.AOCOREE AP G$0016,SL
E@OG342: 91.@0C341F JMP GS$@016

SRC LINE 132
000343: P01 320 SSOC@4 EAFA @,WRKSTS+6C
CLE344: OL1OGES.CH8427L
E00346: @0131€¢ FAFA 1,SE
M6347: COR4O08.HAGG12S

REV. 0 J- 6

SRC

SRC

SFC

SRC

SRC

SRC

SRC

SRC

SRC

CEE351:
HEO353:
EAR354:
BEE356:
REA36Es
LINE 133
GO8362:
LINE 135

GBE363: 061432. @00356L
OH2365: OB1LIN.CO21C4L
LINE 135
OGC367: €61432.008354L
CQ0371: OP13G08.088552L
LINE 136
BEG373:
CHG374:
GE2376:
MGG377:
COC461:
OB0403:
G20405:
LINE 137
COG406: 661432. 900364L
GOZ410: OL11E0.A62262L
OFG412: COOLS. LLOLCOF
O00414: CHOA1OR. CER265F
OO0G416: COL3EG0. CELLLOF

@G1313.CAOEH2A
OG1115

G61432.800374L
POO5ER COLB12S
FEO30E . CEM203F

1.890231

GG1300
HOGAHBS. MELEROF

H21310
2G1000.802370L
601313.0@0144A
#01303 .CHOK22A

001114

LINE 129
GON426: 62 .90C270F
OOC421: 001318
OOC422: LOLOL. C2370L
OG0424: 001313.¢00144A
BCC426: 001116
LINE 14@
COG427: CH1326
OOG438: CLOLHH. AOLROOF
802432: 201310
OO0433: EHOB4EE.CLCE12S
000435: @21313. 0200140
920437: 961115
C9440: 061432. €06374L
OEG442: PCLL5EL.OGEA12S
GOC444: LEO3I0O.GOOLOOF
LINE 141
020446: 02.8@8267F
LINE 141
@80447: 64. 0@0620L
060458: 0861432. 00L366L
@29452: O21100.@00552L
O00454: LOC308.CO417F
LINE 142
O0G456: 001380
GO0457: OL1G00.0OG425L

PDR3056

GS@G16

ASOE17

SS@eE5

ASQG1F

LFLI
ZMVD
PCL
AP
AP

JMP

PCL
AP

PCL
AP

EAFA

EAFA

LFLI
LFLI
Z2MV

PCL
AP
AP
AP
AP

EQU

LDA
EAFA

LFLI
ZFIL

FAFA

FAFA

LFLI
ZMVD
PCL
AP
AP

LDA

STA
PCL
AP
AP

EAFA

EXPANDED LISTING FOR V MODE

1,2

=TNCU ,*
SB
='2,SL

AS#@11

=CSCS_ ,*
Y$#011,SL

=CSCI_ ,*
Y$@027,SL

@,FS825D

1,2S0@01

1,186

=CcSwS ,*
¥$#001,S
S$O005,S
='62,S
='3,SL
*

='240
1,Z2S580@1

1,186

0, FS826C

Y$@6027+76C
=CSOI_ ,*
Y$8027,S
='3,SL

®,WRKSTS+2C

November 1977

APPENDIX J PDR3056

AC227&> PALAGT OocT 7
@G2271> PERARER OCT f¢
902272> IP ZSACA1
AG2274> 1neare oct 1eerer
(02275> HEALER ocT
(02276> ErOOGA ocT @
(02277> OAG862 OCT 62
GH2388> PAEEE2 ocr 62
1823@1> FHOCHE oct
§82302> eoarrE ocT f¢
G02383> eeeeoE ccT 6
GE2384> FHOOH3 ocr 2
02305> ACKER OCT @
A62306> CEOCHL ocr &@
GM2307> BELEAE OCT @
@02378> ZS0GG1 DATA 5@(' ‘)

_PROGRAM STATISTICS

EXECUTABLE CODE SIZE: 2588 WORDS.
CONSTANT POOL SIZE: 511 WCRDS.
TOTAL PURE PROCEDURE SIZE: 30899 WORDS.

WORKING-STORAGE SIZE: 168 BYTES.
TOTAL LINKFRAME SIZE: 1€196 WORDS.

STACK SIZE: 182 WORDS.

TRACE MODE: OFF.

NO ARGUMENTS EXPECTED.

424 SOURCE LINES.

GG@8 ERRORS @A@@ WARNINGS, P4(!@/5@@ COBOL REV 14.¢ <REF2>

REV. 0

PDR3056 REVISION 15 COBOL

APPENDIX K

REVISION 15 COBOL

This appendix is composed of pages 1-17 of PIU48. The remainder of the

PTU: corrections, typographic errors, etc. have been incorporated
into the guide itself.

System Files

To utilize COBOL, the following files must be available in the UFD SYSOVL:

CS$$COB_ (*)
CSSENV (*)
CSSDAT
CSSDAR
CSSGEN
CSSFIN
CSSEND
CS$64V

(*) Denotes new files at Rev. 15.

NOTE: Rev. 14 and earlier COBOL libraries are incompatible with the Rev. 15
compiler.

Streamlined Compiler

The Rev. 15 COBOL compiler is roughly twice as fast as older compilers.
In addition, the working set size has been significantly reduced. This
should improve campilation speed considerably on small memory systems.

At Rev. 15, the campiler will flag milestones during compilation: Phases I
through VI.

OK, COBOL -INPUT READ.IF -64V

GO

PHASE I Environment Division
PHASE II Data Division
PHASE III Procedure Division

PHASE IV Intermediate Code Generation
PHASE V File Control Block Generation
PHASE VI Final Code Generation

0000 ERRORS 0000 WARNINGS, P400/500 COBOL REV 15.00 <TEST>

K - 41 September 1978

APPENDIX K PDR3056

Messages relating to unsuccessful compilations are provided in one or both

of the following forms:

l. On the terminal, after Phase VI:

PHASE VI

UNSUCCESSFUL COMPILATION; TERMINAL ERROR ON LINE 20 .

0002 ERRORS 0000 WARNINGS, P400/500 COBOL REV 15.00 <TEST>

COMPILATION ABORTED (COBOL)

ER!

NOTE: PRIMOS will return with the error prompt (ER!) rather than OK.

The user should never attempt to LOAD or SEG the output of an
ABORTED or UNSUCCESSFUL compilation.

In such instances, the listing file will confirm the unsuccessful
compilation and provide additional diagnostics.

Example:

REV 15.0 COBOL SOURCE FILE: READ.IF

REV 15.0 COBOL SOURCE FILE: READ.IF

(0001) XXXXXX IDENTIFICATION DIVISION.
(0002) XXXXXX PROGRAM-ID.
(0003) XXXXxXxX DRWIST.
(0004) ENVIRONMENT DIVISION.
(0005) INPUT-OUTPUT SECTION.
(0006) FILE-CONTROL.
(0007) SELECT IN-FILE ASSIGN TO PFMS.
(0008) XXXXXX DATA DIVISION.
(0009) FILE SECTION.
(0010) FD IN-FILE
(0011) LABEL RECORDS ARE STANDARD
(0012) VALUE OF FILE-ID IS “INPUT~.
(0013) Ol IN-REC1 PIC X(40).
(0014) XXXXXX WORKING-STORAGE SECTION.
(0015) 77 ACT-VALUE PIC X VALUE SPACE.
(0016) PROCEDURE DIVISION.
(0017) OPEN-FILES.
(0018) OPEN INPUT IN-FILE.
(0019) IF ACT-VALUE = 717
(0020) READ IN-FILE AT END GO TO END-PAR.
(0021) GO TO OPEN-FILES.
(0022) END-—PAR.
(0023) CLOSE IN-FILE.
(0024) STOP RUN.

REV. A K - 2

04/05/78

04/05/78

PDR3856 REVISION 15 COBOL

0020 CONDITIONAL I/O STATEMENT DISALLOWED WITHIN "IF".
UNSUCCESSFUL COMPILATION; TERMINAL ERROR ON LINE 20.

***k* COMPILATION TERMINATED (INTERNAL ERROR 106). OBJECT FILE UNUSABLE. **#**

0002 ERRORS 0000 WARNINGS, P400/500 COBOL REV 15.00 <DRWIST>

2. At the end of the listing file.

Example:

(5001) 05 RN-COMPLETION-CD.
(5002) 07 RN-ID PIC XX.
(5003) 07 RN-ERR-CO PIC 99.
(5004) 03 RN-STUDENT-DATA.

*** ERROR *** UNSUCCESSFUL COMPILATION
INTERNAL ERROR = FULL DIRECTORY

0001 ERROR 0000 WARNINGS

NOTE: In both instances, the object file is unusable!

The COBOL compiler issues a newwarning:

'LITERAL TRUNCATED TO ITEM SIZE'.

VALUE OF FILE-ID has been specified by a literal of greater than
8 characters; or,

OWNER IS has been specified by a literal of greater than 6
characters.

The literal is truncated to the correct size.

Larger Address Space

At Rev. 14 and earlier, COBOL programs were restricted to a maximum of a
64K byte total address space. This was further diminished by 4K bytes for
each file declared and for each argument passed. The size of a data iten
(group or elementary) could not exceed 4K bytes.

At Rev. 15, these restrictions have been relaxed or removed. The new
characteristics are:

e@ The total address space which a program uses no longer has an
implicit limit.

@ The maximum record size is now 32K bytes.

K - 3 September 1978

APPENDIX K PDR3056

e The OCCURS count may not exceed 32,767. The maximum table size is

32,767 bytes.

@ Up to 126 declared files are permitted.

In R mode, the total program together with library size must not exceed

64K words. In V mode, extended addressing is manipulated through compiler

generated common blocks.

Language Extensions

e OPEN EXTEND for sequential disk files

OPEN EXTEND filename-l...[filename-n]

The EXTEND phrase option can be used only for sequential disk files in

connection with the WRITE statement.

When the EXTEND phrase is specified, the OPEN statement opens the file,

then positions to the bottom of the file (immediately following the last

logical record). Subsequent WRITE statements to the file will add

records to that file as though it had been opened with the OUTPUT phrase.

e Full IF statements (except arithmetic expression operands)

‘ The logical connective NOT .

Negated simple conditions.

Combined and negated combined conditions.

Implied subjects on IF statements (simple

relation condition and combined relation

condition).

V Mode Mag Tape Support

LABEL is a PRIMOS utility which creates ANSI level 1 volume labels on

magtape for R mode and V mode. For information on the LABEL utility, the

USER should issue the command:

OK, LABEL —HELP

The LABEL utility will respond with:

GO

The LABEL program is used to create an ANSI level 1 volume label on

a magtape. To use, enter the command :

LABEL Mfn -VOLID volume-id -OWNER owner-id -ACC access

following the 'OK,' prompt issued by PRIMOS.

Min specifies the unit number of the tape to be labelled...

n must be within the range 9-7.

volume-id is a 1-6 character alphanumeric string which uniquely

identifies this tape volume.

REV. A K - 4

PDR3056 REVISION 15 COBOL

owner~-id is a 1-14 character string which identifies the owner
of the reel. If omitted, the user login-name is
defaulted.

access is a single alphanumeric character which defines
accessibility to this volume. This is disregarded by
Prime software and is provided only for the sake of
completeness. If omitted, this field is left blank.

LABEL will also print the volume and file label information by
typing:

LABEL Mfn

OK,

Enhancements and Corrections

@ 'DECIMAL POINT IS COMMA' is functional in 64V.

@ level 88 (decimal) is functioning properly in all cases.

@ Syntax only compilation (-B NO) is now working correctly.

@ COPY statements may contain text after the COPY clause.

In the listing file, the line numbering of the COPY file is now
independent of the line numbers of the source.

For example, in the current UFD a file MASTER contains the following:

02 BADGE-ID.
03 FILLER PIC XX.
03 ID-INC PIC 9(5) VALUE ZERO.

02 NAME
03 LAST-NAME PIC X(14).
03 FIRST-NAME PIC xX(14).
03 MIDDLE-INIT PIC xX.

and a source program reads:

Ol MASTER-RECORD COPY MASTER.
Ol EMPLOYMENT-HISTORY.

K - 5 september 1978

APPENDIX K PDR3856

the corresponding listing file would look like:

(0059) :

(0060) .

(0061) .
(0062) 01 MASTER-RECORD COPY MASTER.
[0001] 02 BADGE-ID.
[0002] 03 FILLER PIC XX.

[0003] 03 ID-INC’ PIC 9(5) VALUE ZERO.

[0004] 02 NAME.
[0005] 03 LAST-NAME PIC X(14).

[0006] 03 FIRST-NAME' PIC X(14).

[0007] 03 MIDDLE-INIT PIC X.

(0062) 01 MASTER-RECORD COPY MASTER.
(0063) O01 EMPLOYMENT-HISTORY.
(0064) .
(0065) .
(0066) :

@ Compiler now performs all rounding operations properly.

@ Magnetic tape input-output is now supported in virtual mode.

e Varying a single digit subscript in a perform statement will now

function properly.

e The figurative constant SPACES will not abort the compiler if placed on

an alpha-numeric group level.

@ Comparison of a numeric field with a non-numeric literal now functions

properly.

@ Signed data-names will now be considered numeric in level 88

conditional testing.

e A nested conditional within an IF statement will be flagged as

illegal.

e Closing an unopened sequential disk file will not produce misleading

diagnostics.

@ Problems existing with Rev. 14.2 SORT libraries for calling internal

sort subroutines from COBOL have been fixed.

@ Overwriting a sequential disk file will properly truncate the old

file.

@ A single digit level 88 conditional will now work as expected.

REV. A K - 6

PDR3056 REVISION 15 COBOL

Using an invalid level number will now be flagged by the compiler as
illegal, rather than abending.

Attempts to add to a group level will now properly be flagged as
illegal.

Expanded code statistics for number of source lines no longer tally
only to 2047 and then wrap around to zero.

Compiler aborted when a VALUE ZERO clause was placed on an alpha-
numeric group item. Abort occured when processing the Data Division
with a table group error. |

A VALUE clause not followed by a period and followed by the Procedure
Division on the next line will no longer cause the compiler to write to
the listing file until the disk is filled.

The optional word 'SIGN' is no longer flagged as required in the
following statement. (CURRENCY 'SIGN' IS '>'),

SEARCH verb now functions correctly in virtual mode.

Opening a sequential disk file with the OPEN EXTEND verb will now
execute properly.

An erroneous period in a SELECT statement will now be flagged as
illegal.

Writing to a sequential disk file with an invalid key clause will now
be properly flagged as illegal.

K - 7 September 1978

APPENDIX K PDR3056

REV. 15 PRIMOS AND UTILITIES

At Rev. 15 many PRIMOS commands and subsystems have been enhanced. This

part describes new features that may be of interest to the COBOL

programmer.

The Virtual Loader (RMODE)

At Rev. 15, the virtual loader can be used to replace all copies of the

loader under PRIMOS IV, PRIMOS III, and 64K PRIMOS IT.

While functionality has been enhanced, the command format of the new

Loader is the same as that of the old Loader. For the average COBOL

application, the new Loader behaves exactly as the old Loader does;

changes required should be minimal.

@ Temporary File

If additional buffer space is required by the Loader, buffers may be

paged out of memory into a temporary file which is opened when

LOAD is first invoked and not closed until a QUIT or EXECUTE command

is given. This temporary file is opened in the HOME UFD, where the

user remains attached. For this reason, a conflict may result with

existing command files "counting" on a temporary attach point; such

command files must be changed.

If a BREAK or CNTL-P is used to exit from the Loader, the temporary

file will remain open on unit 4. The file should be deleted by the

user after it has been closed.

e Treenames

The new Loader will accept either treenames or local file names.

@e CommandFiles

Command files using temporary attach points must be modified. See

Temporary File above.

Command files using HILOAD must be modified. HILOAD is no longer

supported and should be changed to LOAD.

REV. A K - 8

PDR3856 REVISION 15 COBOL

@ SAving and EXecuting LOAD Programs

Although LOAD is a virtual loader, when possible it uses the actual
memory locations referenced as its buffers. Programs lying entirely
within its buffer space can be started by the EXECUTE command without
first SAving the runfile. As delivered, the buffer space is all of
memory below '122000.

For most COBOL programs compiled in 64R mode, the user will be
required to save the loaded image before executing.

@ Error Messages

Error reporting for the new Loader has been improved over older
versions to include short text descriptions; most, therefore, are self-
explanatory. The following are of particular interest to the COBOL
user: oe

PROGRAM-COMMON OVERLAP - the module being loaded is attempting to
load code into an area reserved for common. Use the loader's COMMON
command to increase the octal location of common (maximum setting is
177777) .

XXXXXX MULTIPLE INDIRECT - a module loading in 64R mode requires a
second level of indirection at location XXXXXX. Insert a Mode D64R
command in the load sequence.

BASE SECTOR @ FULL - all locations in the sector zero base area have

been used. Use the AUtomatic command to generate additional base areas.

@ EXAMPLES

Toad sequence for COBOL application without MIDAS (underlining
indicates user input):

OK, LOAD invoke loader
GO

S LO B«PROGRAM load COBOL object file
$ LI COBLIB load COBOL library
9 LI load FORTRAN library
LOAD COMPLETE load is complete
S SAVE *PROGRAM save memory image
$ QUIT return to PRIMOS
OK,

K - 9 September 1978

APPENDIX K PDR3856

Load sequence for large COBOL application, and/or one using MIDAS:

OK, LOAD invoke loader
GO

S$ MO D64R set mode if program is large
S COMMON '177777 move common out of the way
$ LO B«PROGRAM load COBOL object file
$ AU20 set automatic base areas
$ LI COBKID load COBOL MIDAS library
$ LI load FORTRAN library
LOAD COMPLETE load is complete
S SAVE *PROGRAM save memory image
S QUIT return to PRIMOS
 &

NOTE: The map of the new loader has been reformatted. COMMON block
names are now in a separate section of the map. Two numeric fields
follow the common block name. The first is the location of the
COMMON block. The second is the length of the COMMON block in octal,
if this value is known. Such information is useful in determining
where to set COMMON for large applications.

SEG Enhancements

There are several enhancements to the SEG utility at Rev. 15. These should
have little application to COBOL users except for the following:

Load times are significantly reduced.

Map format has been slightly changed. 8-character filenames are
accepted, and the COMMON block section has been reformatted to

include the length of the COMMON block, when known, in octal.

Ail commands which leave SEG's Loader (QUIT, RETURN, EXECUTE) now

perform a SAVE function.

REV. A K - 10

PDR3056 REVISION 15 COBOL

USING PRIMOS WITH NETWORKS (Rev. 15)

Many Prime installations contain two or more processors connected in a
network - a combination of communications hardware and PRIMOS software
called PRIMENET. If your system is using PRIMENET, you can do_ the
following:

@ LOGIN to a UFD on a remote system and use that CPU to do your

processing. (Only terminal I/O is sent across the network.)

@ ATTACH to directories on disk volumes connected to any other

processor in the network, and access files in such directories.
(File data is transmitted across the network; your local CPU
does the processing.)

@ knter a CX job in one of your local directories into the CX queue
on another processor in the network.

@ Make sure a spool file is printed on your local spool queue (if
more than one processor is running a spool queue).

In a network, the processor your terminal is connected to is your
"local" processor, while all other processors are considered "remote".
Each processor in the system is assigned a "nodename" during system
configuration. You must know the nodenames of any remote processors
you want to access. You may also need to know the local logical disk
numbers of disks connected to remote processors. (These are also

assigned by your system operator during system configuration.) You can
determine the nodename and local logical disk numbers for remote
processors with the STATUS command (described later).

For more information on the inner workings of PRIMENET, see the System

Administrator's Guide, IDR3199. PRIMENET also supports
network-primitive subroutine calls for program-level communication
between processes running on different processors. These subroutines
are described in PTU52.

Remote in

The LOGIN command accepts a nodename argument that enables you to log
in to a remote system:

LOGIN ufd-name [password] [-ON nodename]

If -ON nodename is omitted, an attempt is made to log into ufd-name on
the local system only. If nodename is the name of the local node, the
login attempt is done locally without the use of PRIMENET.

If the LOGIN command fails for any reason (e.g., NOT FOUND, NO RIGHT,
BAD PASSWORD), the user's PRIMENET connection is’ broken, and the
terminal is reconnected to the local process (not logged in).

On a terminal logged in to a remote processor, the command LOGOUT logs

K - li September 1978

APPENDIX K PDR30856

out the process, breaks the remote connection over PRIMENET, and
reconnects the terminal to its local process (not logged in). Due to
network delays, all input characters typed between the LOGOUT command
and the response OK are discarded.

Forced Logout

The operator of the local processor system can enter the supervisor
terminal command

LOGOUT -userno

to force the logout of a specified user connected via PRIMENET. userno
is the number of a local user process, as shown in the NO column of a
STATUS USERS listing (described later).

This command unconditionally logs out the specified user and returns
the process to a pool of available remote login server processes; the
PRIMENET connection for this terminal/process is broken, and_ the
terminal is reconnected to its local process (not logged in).

Network Information in STATUS Printouts

The STATUS command prints network-related information that identifies

local and remote user numbers, logical and physical disk assignments,
and line number assignments.

STATUS USERS distinguishes between local and remote users:

OK, STATUS USERS

USER NO LIN PDEVS
PENNY 7 5 58460
CLEMLI 11 11 214698
SUREN 12 12 61969
DOUG.V 14 14 61869
DOUROS 17 17 610860
BD 20 22 10460
COTTON 21 23 21468

HANIF 22 24 61060
HOWIEC 26 30 10468
EMBERS 28 32 21469
TEKMAN 29 33 50468
TEKMAN 38 34 58468
LINDA 32 36 610690
TEKMAN 33 37 58468
SPORER 39 45 21468
BARRIE 48 46 214608
MAGGIE 41 47 58468
TEKMAN 43 51 58466
BD 45 53 468 21460
STEVEN 49 75 19468 (FROM SYSD USR#43)
SYSTEM 57 77 468
FAM 58 77 468 (2)

REV. A K - 12

PDR39056 REVISION 15 COBOL

SYSTEM 59 77 61860
SYSTEM 62 77 460

This example shows that user STEVEN is local user number 49, is a
remote login on line 75 (one of the PRIMENET lines), is currently
accessing local physical device 18460, and is logged in from nodename
SYSD, where he is user number 43.

STATUS DISKS now shows logical disk number assignments for the local
system, including disk volumes on other nodes:

OK, STATUS DISKS

DISK LDEV PDEV SYSN

SPOOLH 9 460
PERIPH 1 18460
CPUGRP 2 21468
DOCUMN 3 58460
PRI55@ 4 61960
SPOOLB 5 460 SYSB

SOFTWR 6 3462 SYSB
DBTEST 7 71063 SYSB
MI5@A1 18 60468 SYSB
M15@B1 11 70468 SYSB
SPOOLD 12 460 SYSD
TRANS 13 21468 SYSD
DBGRP 14 51868 SYSD
TEST 15 71961 SYSD
DTEST 16 2062 SYSD

This example shows the status of a three-node system. The first two
columns are the packnames and logical device numbers for the local
system, and the fourth column shows the nodenames of the remote
processors.

The STATUS NETWORK command gives the names and states of all nodes in
the network:

OK, STATUS NETWORK

SMLC NETWORK

NODE STATE
HARDWR ****
RSRCH1 UP

IPC NETWORK

NODE STATE
HARDWR ****
SYSB UP
SYSD UP

K - 13 September 1978

APPENDIX K PDR30856

This shows the state of a four-node network as it would be printed for
a local user on the HARDWR node. The UP state means that the node is
configured and functioning.

Attaching to Remote Directories

To attach to a directory located in a disk volume at another node,
specify the logical disk number of the remote disk (determined from a
STATUS DISKS printout) as the ldisk parameter of the ATTACH command:

ATTACH directory [password] [ldisk] [key]

If ldisk is not specified, the attempt to ATTACH to the remote disk
will work only if there is no directory of the same name on aé_ lower
logical device number.

Selecting CX Queues on Other Nodes

The CX command line now allows you to place jobs on, or check status
of, the CX queue on a remote system:

CX/£ilename \I-on ldisk]
option

ldisk is the (local) logical disk number of a remote disk containing a
CX queue.

Selecting Home Spool Queue

In a network with more than one spool queue in operation, any SPOOL
request is intercepted by the first spooler which is ready to accept a
job and has the right form type. To make sure the printout takes place
on your local spooler, use the —-HOME argument in the SPOOL COMMAND:

SPOOL filename [-HOME]

MODIFIED COMMANDS AND SUBSYSTEMS

Commands and subsystems that have user-visible changes at Rev. 15 are
described below in alphabetical order. (See the preceding section on
networks for changes to ATTACH, CX, LOGIN,, and SPOOL.)

DELSEG

DELSEG is an internal command which releases segments assigned to the
user by SEG. The command format is:

DELSEGsegne \
ALL

where segno is the number of the segment to be freed. segno must be

REV. A K - 14

PDR3056 REVISION 15 COBOL

greater than or equal to 20@@ (octal) and not equal to 60@@ (octal).

Specifying ALL as the argument frees all segments assigned to the user

issuing the command. Deleting an already nonexistent segment has no

effect. Attempting to delete an illegal segment number yields the

error message BAD PARAMETER.

FUTIL

Three new commands have been put into FUTIL at Revision 15. These
commands are SRWLOC, TRESRW and UFDSRW. They set the per-file
read-write lock for a file, a tree, and all files in the current UFD,

respectively. The format of these commands correspond to the format of

the protect-class commands, i.e.:

SRWLOC filename lock-number
TRESRW pathname lock-number
UFDSRW lock-number n-levels

lock-number is the read-write lock. If omitted, @ is the default.
n-levels is the number of levels to go down doing the setting. The

read-write lock is interpreted as follows: @ means use the system

read-write lock, 1 means allow multiple readers or one writer, 2 means
allow multiple readers and one writer, 3 means allow multiple readers
and multiple writers.

To output a file's read-write lock, use the RWLOCK option in the LISTF

command in FUTIL. A read-write lock of @ appears as "SYS", 1 appears
as "W/NR", 2 appears as "1WNR", and 3 is shown by "NWNR".

FUTIL now ignores null lines and accepts lower case input. However,

passwords must be entered in the same case as they were assigned.

The CLEAN command no longer leaves protection for files below current

level at 7 @. Instead, it leaves them the way they were.

‘Volume names or numbers used as a prefix (i.e., beginning with <) must

now also end with >.

The first digit of a segment directory file or sub-segment directory,
(i.e., the first digit of the number in parentheses) must be a digit.

MIDAS

MIDAS for Rev. 15 contains no new features. The only enhancement to

MIDAS has been the creation of a version of MIDAS which can be shared

on the Prime 488 (or higher) for V-mode programs. For details, see

PTU54.

SORT

Sort accepts upper and lower case characters. Lower case characters

are sorted as if they were upper case, but they appear as lower case

K - 15 September 1978

APPENDIX K PDR30856

characters in the output file.

TERM COMMAND

The TERM command is a useful tool to control the duplex of a terminal
as well as setting the kill and erase characters and enabling or
disabling the BREAK key or enabling the X-ON/X-OFF option. The command
line for the REV. 15 TERM command will look for options to be preceded
by a dash (-), the old way (options without the dash) will still work
for compatibility. The rest of this document will be dedicated to
explaining the different command line formats for the TERM command.

A.) TERM

Typing TERM without any options will have the program print a
general list of possible command line formats.

B.) TERM -ERASE (char)

This will set the erase character from its current value to that

of char which is specified in the command line.

C. TERM -KILL (char)

This will set the kill character from its current value to that of

char which is specified in the command line.

Note:

char must be a single character and the parenthesis are not
to be specfied.

D.) TERM —BREAK ON

This enables the BREAK or [CONTRL-P] key.

E.) TERM —BREAK OFF

This disables the BREAK or [CONTRL-P] key.

F.) ‘TERM -HALF —[XOFF or NOXOFF] -—[LF or NOLF]

The parameters in the brackets are optional. The HALF duplex key
will not echo back input from the terminal. The NOLF will not echo a
line feed after a carriage return. A LF will echo a line feed after a
carriage return. An XOFF will enable the X-OFF/X-ON feature, a NOXOFF

will disable the X-OFF/X-ON feature. If the [XOFF or NOXOFF] option is
omitted the TERM command will default to the state of the X-OFF/X-ON
that existed before the TERM command was invoked. When enabled,
CONTROL-S performs the X-OFF and CONTROL-Q the X-~ON function.

G.) TERM -FULL —[XOFF or NOXOFF]

REV. A K - 16

PDR3056 REVISION 15 COBOL

The FULL duplex key will echo back input from the keyboard to the
terminal screen. The [XOFF or NOXOFF] feature will work as described
in paragraph F.

H.) TERM -—[XOFF or NOXOFF]

This form will set the terminal to FULL duplex (default value) and
enable or disable the X-OFF/X-ON according to the specified command in
the command line.

I.) TERM —DISPLAY

This format will print out the terminal's kill and_- erase
chacacters as well as whether the terminal is in full or half duplex or
if the X-ON/X-OFF feature is enabled, or if an X-OFF (CONTRL-S) has
been received.

SHARED LIBRARIES

At Rev. 15 certain V-Mode libraries can be established as_ shared

libraries by the System Administrator. For more information see the
Rev. 15 version of IDR3109, the System ADministrator's Guide.

K - 17 September 1978

INDEX

-ON K-11

-WAIT 4-14

/*, PRIMOS 4-12

A-REGISTER SETTING, EXPLICIT 21-3

A-REGISTER SETTING, MNEMONIC 21-1

ACCEPT STATEMENT 16-7

ACCESS MODE IS 14-5, 14-7

ACCESS, SYSTEM 4-1

ADD 16-9

ADDRESS SPACE, LARGER K-3

ADVANCING PHRASE, WRITE STATEMENT
16-69

AFTER PHRASE, WRITE STATEMENT
16-69

ALGEBRAIC SIGNS 12-27

ALIGNMENT RULES, STANDARD 12-26

ALL 12-16

ALPHABETIC ITEM 12-24

ALPHANUMERIC EDITED ITEM 12-24

ALPHANUMERIC ITEM 12-24

ALTER STATEMENT 16-11, 16-27

ALTERNATE RECORD KEY
INDEXED I-O 19-13, 19-11

PHRASE ,

AMERICAN NATIONAL STANDARD 2-1

ANSI LEVEL 1 LABEL K-4

ANSI STANDARDS 2-1, 12-10

APPLICATIONS FUNCTIONS, SEG 7-6

ARITHMETIC EXPRESSIONS 12-28

ARITHMETIC EXPRESSIONS, RULES
12-29

ARITHMETIC OPERATORS 12-28

ARITHMETIC STATEMENTS 12-31

ASCII CHARACTER SET E-1l

ASCII IS NATIVE 14-4

ASSIGN 14-5, 14-6

ASSIGN, PRIMOS 4-12

ASSIGNING DEVICES 4-14

ATTACH, PRIMOS 4-4, 4-12

ATTACHING 4-4

ATTACHING TO REMOTE DIRECTORIES
K-14

ATTACHING TO SUB-UFDS 4-5

AUTHOR 13-1

AUTOMATIC LOADER 6-1

AVAIL, PRIMOS 4~12

BASE AREA ORIENTATION, LOADER 6-2

STATEMENTBEFORE PHRASE, WRITE
16-69

BINARY ARITHMETIC OPERATORS 12-28

BINARY FILE 4-2

BINARY ITEM 12-25

BINARY, PRIMOS 4-12

BLANK WHEN ZERO 15-15, 15-41

BLANK WHEN ZERO, EXAMPLES 15-42

INDEX

BLOCK CONTAINS 15-4, 15-8

BYTE 4-3

UTILITYCSIN (64V), EXECUTION
PROGRAM 8-2

CALL STATEMENT 16-1, 16-12, 17-1

CARRIAGE CONTROL 16-78

CHARACTER SET, ASCII E-1l

CHARACTER SET, PRIME'S 12-11

CHARACTER STRINGS 12-12

CLASS CONDITION 12-34, 16-29

CLASSES OF DATA 12-23 |

CLEARING THE USER ADDRESS SPACE
6-3

CLOSE STATEMENT 16-14

CLOSE, PRIMOS 4-9, 4-12

CLOSING FILES 4-9

EXECUTIONCMSL (64R), UTILITY
PROGRAM 8-2

CMSL/CSIN ERROR MESSAGES 8-4

CMPF, PRIMOS 4-12

CMPRES, PRIMOS 4-12

CNAME, PRIMOS 4-8, 4-12

COBKID 11-1

COBOL CHARACTER SET 12-1z, 12-14

COBOL COMPILER PARAMETERS 21-1

COBOL CONCEPTS 12-1

COBOL PROGRAM, SAMPLE 12-5

COBOL PROGRAM, SUMMARY 12-1, 12-3

COBOL STATEMENTS 16-1, D-1

COBOL SYMBOLS F-1

COBOL VERBS 16-1, D-1

COBOL, PRIMOS 4-12, 5-1

CODE-SET IS 15-4, 15-14

CODING RULES 12-10

COLLATING SEQUENCE 12-12, E-1

COLUMN DISPLAY 4-20

COMINPUT, PRIMOS 4-12

COMMAND FILES 7-6

COMMAND FILES IN LOADER K-8

COMMAND SUMMARY, EDITOR 4-25

COMMAND SUMMARY, PRIMOS 4-12

COMMON, LOADER 6-1

COMOUTPUT, PRIMOS 4-12

COMP 15-36

COMP-3 15-36

COMPARISONS 12-32

COMPARISONS ,, NON-NUMERIC
12-33

12-32,

COMPARISONS, NUMERIC 12-32

COMPILE SEQUENCE, REF2 16-79

COMPILE-TIME ERROR MESSAGES G-12

COMPLLE-TIME WARNING MESSAGES
G-12

COMPILER K-1

INDEX

COMPILER ERROR MESSAGES 5-2, G-2

COMPILER FUNCTIONS 5-4

COMPILER MNEMONICS 5-4, 21-1

COMPILER WARNING MESSAGES 5-3,
G-12

COMPILER-GENERATED FILES 21-6

COMPILING A SOURCE PROGRAM 5-1

COMPOUND CONDITION 12-35

COMPUTATIONAL 12-25, 15-36

COMPUTATIONAL-3 12-25, 15-36

COMPUTE STATEMENT 16-16

CONDITION, CLASS 12-34, 16-29

CONDITION, COMPOUND 12-35

CONDITION, MULTIPLE 12-37

CONDITION, SIGN 12-34

CONDITION-NAME CONDITIONS 12-34,
15-44, 15-45, 16-29

CONDITION-NAMES 12-19

CONDITIONAL EXPRESSIONS 12-31

CONDITIONAL STATEMENTS 16-2

CONDITIONS, RELATION 12-31,
12-32, 16-29

CONDITIONS, SIMPLE 12-31

CONFIGURATION SECTION,
ENVIRONMENT DIVISION 14-3

CONJUNCTION, NEGATING 12-37

CONNECTIVES 12-15

CONSOLE IS 14-3

CONTROL-Q K-16

‘CONTROL-S K-16

CONVERSION TABLES I-1

COPY K-5

COPY STATEMENT 16-17

COUNT IN PHRASE 16-62

CPMPC, PRIMOS 4-12

CREATE, PRIMOS 4-5, 4-12

CREATING DIRECTORIES 4-5

CREATING THE TEMPLATE
MIDAS 11-3

(CREATK),

| CREATK SEQUENCE, REF2 16-89

CREATK, MIDAS 11-1, 11-3

CREATK, MINIMUM DIALOGUE 11-4

CREATK, PRIMOS 4-12

CRMPC, PRIMOS 4-12

CRSER, PRIMOS 4-12

CSUBS, PRIMOS 4-12

CURRENCY 'SIGN' IS '>' K-7

CURRENCY SIGN IS 14-4

CX MODE 3-1

CX QUEUES, REMOTE K-14

CX, PRIMOS 4-12

DATA DIVISION 15-1

DATA DIVISION, REF2 15-59

DATA LEVELS 12-24

INDEX

DATA RECORD IS 15-4, 15-13

DATA REPRESENTATION 12-25

DATA, ACCEPT STATEMENT 16-8

DATA, CLASSES OF 12-23

DATA-NAMES 12-18, 15-20

DATABASE MANAGEMENT SYSTEM (DBMS)
11-9

DATE, PRIMOS 4-12

DATE-COMPILED 13-1

DATE-WRITTEN 13-1

DAY, ACCEPT STATEMENT 16-8

DBMS 11-9

DECIMAL-POINT IS COMMA 14-4, K-5

DECLARATIVES 16-1

DECLARED FILES K-4

DEFERRING SPOOLED FILES 4-30

DELETE STATEMENT 16-19

DELETE, PRIMOS 4-8, 4-12

DELETE, SEG 7-3

DELETING DIRECTORIES 4-8

DELETING FILES 4-8

DELETING PROGRAMS 4-30

DELIMITED BY PHRASE 16-57, 16-62

DELIMITER IN PHRASE 16-62

DELSEG, PRIMOS 4-12, K-14

DEPENDING ON PHRASE 16-27

DESECTORIZATION 6-2

DEVICE IN USE 4-14

DEVICE SPECIFICATIONS, SELECT
CLAUSE 14-6

DIRECT ACCESS METHOD, DAM B-1

DIRECT INDEXING 12-38

DISK FORMATS, EXECUTION 8-3

DISK, LOGICAL 4-1

DISPLAY ITEM 12-25

DISPLAY STATEMENT 16-20

DIVIDED STATEMENT 16-21

DIVISIONS OF A COBOL PROGRAM: A
SUMMARY 12-1

DOWN BY 16-52

DUPLICATES PHRASE,
19-3

INDEXED I-O

DYNAMIC, INDEXED I-O 19-3, 19-18,
19-11

DYNAMIC, RELATIVE I-O 20-2

ED, PRIMOS 4-12

EDB, PRIMOS 4-12

EDIT MODE, EDITOR 4-19

EDITING CATEGORIES 15-30

EDITING, INSERTION 15-30

EDITING, PICTURE CLAUSE 15-28,
15-38

EDITING, SIGN CONTROL SYMBOLS
15-31

EDITING, SUPPRESSION 15-33

INDEX

EDITOR 4-18

EDITOR COMMAND SUMMARY 4-13, 4-25

ELEMENTARY ITEM 12-24

END DECLARATIVES 16-1

END OF COMPILATION MESSAGE 5-2

ENTER STATEMENT 16-23, 17-3

ENTRY FROM OTHER MEDIA 4~14

ENVIRONMENT DIVISION 14-1

ENVIRONMENT DIVISION, REF2 14-9

ERASE CHARACTER K-16

ERROR MESSAGES G-1

ERROR MESSAGES, CMSL/CSIN 8-4

ERROR MESSAGES, COMPILER 5-2, G-l

ERROR MESSAGES, LOADER K-9

ERROR MESSAGES ,
G-13, G-16

RUN-TIME 8-4,

ERROR MESSAGES, SEG LOADER G-20@

ERROR STATUS CODE, SEE FILE
STATUS KEY SETTINGS

EXECUTE SEQUENCE, REF2 16-91

EXECUTE, LOADER 6-1

EXECUTING LOAD PROGRAMS K-9

EXECUTING THE LOADED PROGRAM 8-1

EXECUTION 64R 8-1

EXECUTION 64V 8-2

EXECUTION DISK FORMATS 8-3

EXECUTION TAPE FORMATS 8-4

EXECUTION UTILITY PRORAMS,
CMSL(64R) /CSIN (64V) 8-2

EXHIBIT STATEMENT 16-24

EXIT PROGRAM STATEMENT 16-26,
17-3

EXIT STATEMENT 16-25

EXPAND, PRIMOS 4-12

EXPANDED LISTING FILE, REF2 J-1

EXTERNAL DECIMAL ITEM 12-25

EXTERNAL OPERATING SYSTEM COBOL
SORT PROCEDURES 9-1

FAP, PRIMOS 4-12

FD 15-4

FDL, PRIMOS 4-12

FIGURATIVE CONSTANTS 12-15

FILE 4-1

FILE CONTROL 14-5

FILE DESCRIPTION, DATA DIVISION
15-4

FILE MANIPULATION, COMPILER 21-7

FILE ORGANIZATION B-1

FILE SECTION, DATA DIVISION 15-3

FILE STATUS IS 14-5, 14-7

FILE STATUS KEY SETTINGS 14-8,
D-2

FILE STATUS KEY SETTINGS, INDEXED
I-O 19-5

FILE STATUS KEY
RELATIVE I-O 20-4

SETTINGS,

INDEX

FILE SYSTEM SUMMARY 3-1

FILENAMES 4-1, 7-6, 12-19

FILLER 12-18, 15-20

FILMEM ALL, PRIMOS 6-3

FIIMEM, PRIMOS 4-12, 6-3

FILVER, PRIMOS 4-12

FINDING LINES 4-28

FORCED LOGOUT K-12

FORMAT NOTATION 12-9

FORMS MANAGEMENT SYSTEM 11-9

FULL DUPLEX K-16

FUNCTIONAL PROCESSING MODULES 2-1

FUNDAMENTAL CONCEPTS OF COBOL
12-1

FUTIL, PRIMOS 4-12

GIVING OPTION 16-4

GO TO STATEMENT 16-27

GROUP ITEM 12-24

HALF DUPLEX K-16

HELP 7-3

HEXADECIMAL ADDITION TABLE I-2

HEXADECIMAL AND
CONVERSION I-1

DECIMAL

HIGH-VALUE 12-16

HILOAD, PRIMOS 6-3

HOME SPOOL QUEUE K-14

I-O CONTROL 14-8

IDENTIFICATION DIVISION 13-1

IDENTIFICATION DIVISION, REF2
13-3

IDENTITY 4-2

IF K-4

IF STATEMENT 16-28

ILLEGAL NESTING K-6

IMPERATIVE STATEMENTS 16-2

IMPLIED SUBJECT 12-37

INDEX 12-25

INDEX ITEM 12-25

INDEXED BY CLAUSE 15-23,
16-52, 18-2

16-49,

INDEXED I-O 2-2, 19-1

INDEXED SEQUENTIAL ACCESS METHOD,
ISAM B-l

INDEXED SEQUENTIAL FILES 19-1

INDEXING 12-38, 18-2

INDEXING, DIRECT 12-38

INDEXING, RELATIVE 12-38

INPUT MODE, EDITOR 4-19

INPUT, PRIMOS 4-12

INPUT-OUTPUT SECTION, ENVIRONMENT
DIVISION 14-5

INSERTION EDITING 15-39

INSPECT STATEMENT 16-32

INSTALLATION 13-1

INIER-PROGRAM COMMUNICATION 2-2,
17-1

INDEX

INTERACTIVE 3-1

INTERNAL APPLICATION SORT
PROCEDURES 9-3

INTERNAL DECIMAL ITEM 12-25

INVALID KEY PHRASE 16-19,
16-46, 16-54, 16-69, 19-6

16-42,

INVOKING THE LOADER 6-3

JUSTIFIED 12-26,
16-34

15-15, 15-48,

KBUILD, PRIMOS 4-12, 11-1

KEY WORDS 12-15

KI/DA, KEYED INDEX DIRECT ACCESS
1i-l

KIDDEL, MIDAS 11-3, 11-8

KIDDEL, PRIMOS 4-12

KILL CHARACTER K-16

LABEL CLAUSE 15-4, 15-7

LABEL OPTIONS 15-7

LABEL, PRIMOS 4-12, K-4

LANGUAGE CONSIDERATIONS 12-9

LANGUAGE SPECIFICATIONS 12-12

LEVEL 88 (DECIMAL) K-5

LEVEL NUMBERS 12-17

LEVEL-NUMBER PHRASE 15-15, 15-17

LIBRARY 2-2 |

LIFE-CYCLE 15-12

LINKAGE SECTION EXAMPLE 17-5

LINKAGE SECTION,
17-2

15-48, 17-1,

LINKING LOADER 6-1

LISTF, PRIMOS 4-3, 4-12.

LISTING DIRECTORY 4-3

LISTING FILE, REF2 16-80

LISTING FILE, SAMPLE 12-7

LISTING FILES 4-6

LISTING PROGRAMS 4-17, 4-29

LISTING, COMPILER 5-5

LISTING, PRIMOS 4-12

LITERALS 12-26

LOAD SEQUENCE, REF2 16-88

LOAD STATEMENT DEFINITION 6-198

LOAD, PRIMOS 4-12, 6-1, 6-3

LOADER COMMAND FORMATS 6-5

LOADER COMMANDS 6-6

LOADER ERROR MESSAGES 6-15, K-9

LOADER, VIRTUAL K-8

LOADING SEGMENTED PROGRAMS 7-1

LOGGING IN 4-3

LOGGING OUT 4-9

LOGICAL DISK 4-1

LOGICAL OPERATOR 12-35

LOGIN, PRIMOS 4-2, 4-3, 4-12

LOGIN, REMOTE K-11

LOGOUT, FORCED K-12

LOGOUT, PRIMOS 4-9, 4-12

INDEX

LOW-VALUE 12-16

LOW-VALUES 12-16

MAGNET, PRIMOS 4-12, 4-16

MAGNETIC TAPE 4-16

MAGNETIC TAPE, V-MODE K-4

MAGRST, PRIMOS 4-12

MAGSAV, PRIMOS 4-12

MAP, LOADER 6-1

MAP, SEG 7-3

MASTER FILE DIRECTORY 4-1

MAXIMUM RECORD SIZE K-3

MDL, PRIMOS 4-13

MEMORY MODE, COMPILER 5-5

MESSAGE, PRIMOS 4-13

MED 4-1

MIDAS SHARED LIBRARIES K-15

MIDAS, 11-1

MIDAS, CREATK 11-1, C-1l

MIDAS, KBUILD 11-1

MIDAS, KIDDEL 11-8

MIDAS, MINIMUM DIALOGUE 11-4, C-1

MIDAS, REMAKE 11-8

MIDAS, TEMPLATE 11-3, C-1

MNEMONIC-NAMES 12-9, 16-20

MNEMONICS, COMPILER 5-4, 21-1

MODE 4-2

MODIFY, SEG 7-3

MODIFYING LINES 4-26

MOVE STATEMENT 16-34

MOVES, PERMISSIBLE 16-35, D—5

MOVING LINES OF CODE 4-20

MRGF, PRIMOS 4-13

INDEXMULTIPLE (KEYED) DATA

ACCESS SYSTEM 11-1

MULTIPLE CONDITION 12-37

MULTIPLY STATEMENT 16-36

NEGATING CONJUNCTION 12-37

NESTED IF'S 16-30, 16-31

NETWORK STATUS K-12

NETWORKS K-11

NEXT SENTENCE PHRASE 16-48

NON-NUMERIC COMPARISONS
12-33

12-32,

NON-NUMERIC LITERALS 12-20

NUCLEUS 2-1

NUMERIC COMPARISONS 12-32

NUMERIC EDITED OR REPORT ITEM
12-24

NUMERIC ITEM 12-24

NUMERIC LITERALS 12-21

OBJECT COMPUTER 14-3

OBJECT FILE 4-2

OBJECT FILE AS INPUT, SEG 7-2

INDEX

OCCURS CLAUSE 15-15, 15-23, 18-2

OCCURS COUNT K-4

OCTAL AND DECIMAL CONVERSION I-l

ON OVERFLOW PHRASE 16-57

OPEN EXTEND K-4

OPEN STATEMENT 16-37

OPEN STATEMENTS VS ACCESS MODES
16-38, D-4

OPEN, PRIMOS 4-13

OPERANDS, OVERLAPPING 12-31

OPERATING SYSTEM MODES 3-1

OPERATOR, LOGICAL 12-35

OPERATOR, RELATIONAL 12-32

OPERATORS 12-16

OPERATORS, ARITHMETIC 12-28

OPTIONAL WORDS 12-15

ORGANIZATION IS 14-5, 14-7

OVERWRITING DISK FILE K-6

PACKED DECIMAL 12-25, 15-6

PAGE, WRITE STATEMENT 16-69

PAPER TAPE 4-18

PARAGRAPH-NAMES 12-19

PASSWD, PRIMOS 4-13

PERFORM STATEMENT 16-39

PHANTOM USERS 3-1

PHANTOM, PRIMOS 4-13

PICTURE CHARACTER-STRINGS 12-12

PICTURE CLAUSE 15-15, 15-26

PICTURE CLAUSE SYMBOLS 15-28

PICTURE CLAUSE, EXAMPLES 15-35

PM, PRIMOS 4-13

PRERR, PRIMOS 4-13

PRIMENET K-11

PRIMOS COMMAND SUMMARY 4-12

PRINTING FILES 4-6

PRINTING PROGRAMS 4-29

PRMPC, PRIMOS 4-13

PROCEDURE DIVISION 16-1

PROCEDURE DIVISION, REF2 16-72

PROGRAM ENVIRONMENTS 3-1

PROGRAM STATISTICS (64V) 5-3

PROGRAM, SAMPLE 12-5

PROGRAM-ID 13-1

PROGRAMMER-DEFINED WORDS
12-17

12-13,

PROTEC, PRIMOS 4-13

PRSER, PRIMOS 4-13

PSD, PRIMOS 4-13

PSD, SEG 7-4

PTCPY, PRIMOS 4-13

PUNCHED CARDS 4-15

PUNCTUATION RULES 12-10

INDEX

QUALIFICATION OF NAMES 12-21

QUALIFICATION RULES 12-22

QUEUED JOBS USING COMMAND FILES
3-1

QUIT, SEG 7-4

QUOTES 12-16

RANDOM, INDEXED I-O 19-3, 19-11

RANDOM, RELATIVE I-O 20-2

READ STATEMENT 16-42

READ/WRITE LOCKS K-15

READY TRACE STATEMENT 16-44

RECORD CONTAINS 15-4, 15-9.

RECORD KEY PHRASE, INDEXED I-O
19-3

REDEFINES CLAUSE 15-15, 15-21

REF2, COMPILE SEQUENCE 16-79

REF2, CREATK SEQUENCE 16-89

REF2, DATA DIVISION 15-58

REF2, ENVIRONMENT DIVISION 14-9

REF2, EXECUTED SEQUENCE 16-91

REF2, EXPANDED LISTING FILE J-1

REF2,
13-3

IDENTIFICATION DIVISION

REFZ, LISTING FILE 16-80

REF2Z, LOAD SEQUENCE 16-88

REF2, PROCEDURE DIVISION 16-72

RELATION CHARACTERS 12-16

RELATION CONDITIONS 12-31, 16-29

RELATIONAL OPERATOR 12-32

RELATIVE FILE PROCESSING 20-1

RELATIVE I-@ 2-1, 20-1

RELATIVE INDEXING 12-38, 18-3

RELEASING SEGMENTS K-14

REMAINDER CLAUSE 16-22

REMAKE, MIDAS 4-3, 11-3, 11-8

REMARKS 13-1

REMOTE CX QUEUES K-14

REMOTE LOGIN K-11

RENAMING FILES 4-8

RENAMING PROGRAMS 4-39

REPAIR, PRIMOS 4-13, 11-3

REPORT ITEM 12-24

RESERVE 14-5, 14-7

RESERVED WORDS 12-11, 12-15, H-l

RESET TRACE STATEMENT 16-45

RESTORE, PRIMOS 4-13

RESTORE, SEG 7-4

RESUME, EXECUTING 8-1

RESUME, PRIMOS 4-13

RESUME, SEG 7-4

REV.15 ADDRESS SPACE K-3

REV.15 COMPILER K~-1

REV.15 COMPILER WARNING K-3

19

INDEX

REV.15 SEG K-10

REWRITE STATEMENT 16-46

RMODE RUN-TIME ERROR
G-13

MESSAGES

ROUNDED OPTION 16-4

ROUNDING RESULTS 16-5

RUN-TIME ERROR MESSAGES 8-4

RUNFILE 4-2

RUNOFF, PRIMOS 4-13

SAME AREA 14-8

SAMPLE, PROGRAM EXAMPLE 12-5

SAVE, PRIMOS 4-13

SAVING FILES, EDITOR 4-20

SAVING LOAD PROGRAMS K~9

SEARCH K~7

SEARCH STATEMENT
18-5

16-48, 18-2,

SECTION-NAMES 12-19

SECURITY 13-1

SEG 7-1

SEG COMMAND SUMMARY 22-1

SEG COMMANDS 7-3

SEG ENHANCEMENTS K-19

SEG LOADER ERROR MESSAGES G-16

SEG MESSAGES 7-5 |

SEG, FREQUENTLY USED AND
ESSENTIAL COMMANDS 7-6

SEG, OBJECT FILE AS INPUT 7-2

SEG, PRIMOS 4-13

SEGMENTED RNFILS 7-1

SEGS LOADER 7-1

SEGS LOADER, FUNCTIONAL STRUCTURE —
7-2

SELECT 14-5, 14-6, K-7

SELECT CLAUSE, DEVICE
SPECIFICATIONS 14-6

SEQUENTIAL ACCESS METHOD (SAM)
B-1

SEQUENTIAL I-O 2-1

SET STATEMENT 16-52, 18-2, 18-5

SHARE, SEG 7-4

SHARED LIBRARIES K~17

SHARED LIBRARIES, MIDAS K-15

SHARED PROCEDURES 3-1

SIGN K-7

SIGN CONDITION 12-34

SIGN IS CLAUSE 15-15, 15-37

SIGN IS SEPARATE 15-15, 15-37

SIGN REPRESENTATION 15-38

SIGNS, ALGEBRAIC 12-27

SIMPLE CONDITIONS 12-31

SINGLE, SEG 7-4

SIZE ERROR OPTION 16-4, 16-5

SIZE, PRIMOS 4-13

li

INDEX

SLIST, PRIMOS 4-6, 4-13

SORT 9-2, K-6

SORT CONSIDERATIONS 9-4

SORT PROCEDURES 9-1

SORT ROUTINES ,
9-1

EXTERNAL/INTERNAL

SORT, PRIMOS 4-13

SORT, PRIMOS K-15

SORT-END-COLUMN 9-4

SORT-INPUT-FILE 9-3

SORT-ITEMS 9-4

SORT-OUTPUT-FILE 9-3

SORT-PAIRS 9-4

SORT-PASSES 9-4

SORT-START-COLUMN 9-4

SOURCE COMPUTER 14-3

SOURCE FILE 4-2

SPACES 12-16, 16-4, K-6

SPECIAL CHARACTERS, EDITOR 4-19

SPECIAL NAMES 14-3

SPECIAL-CHARACTER WORDS 12-16

SPECIFY INPUT/OUTPUT
COMPILER 5-4

DEVICES,

SPOOL QUEUE, HOME K-14

SPOOL QUEUE, LOCAL K-14

SPOOL, PRIMOS 4-6, 4-13

SPOOLING FILES 4-6

SPOOLING PROGRAMS 4-29

STACK 7-3

STANDARD ALIGNMENT RULES 12-26

START STATEMENT 16-54

START, EXECUTING 8-1

START, PRIMOS 4-13

STATEMENTS, COBOL 16-6, D-1

STATUS KEY SETTINGS 14-8, D-2

STATUS, PRIMOS 4-13

STOP STATEMENT 16-56

STRING STATEMENT 16-57

SUB-UFD 4-1

SUBJECT, IMPLIED 12-37

SUBSCRIPTING 12-38, 18-4

SUBSRT 9-3, 9-4

SUBTRACT STATEMENT 16-66

SYMBOLS, PICTURE CLAUSE 15-28

SYNC 15-39

SYNCHRONIZED CLAUSE 15-15, 15-39

SYSTEM ACCESS 4-1

SYSTEM FILES 2-2, K-1

SYSTEM RESOURCES SUPPORTING COBOL
3-1

TA, PRIMOS 4-13

TAB SETTING 4-20

TABLE HANDLING 2-2, 18-1

12

TALLYING IN PHRASE 16-62

TALLYING PHRASE 16-32

TAP, PRIMOS 4-13

TAPE FORMATS, EXECUTION 8~4

TEMPLATE, MIDAS 11-3

TEMPORARY FILE IN LOADER K-8

TERM, PRIMOS 4-143, K-16

TERMINAL LISTING 4-17

TIME, ACCEPT STATEMENT 16-8

TIME, PRIMOS 4-13

TIME, SEG 7-4

TREENAMES 4-2, 7-6

TREENAMES IN LOADER K-8

UFD 4-1

UNARY ARITHMETIC OPERATORS 12-28

UNASSIGN, PRIMOS 4-13

UNASSIGNING DEVICES 4-14

UNCOMPRESSED 15-6

UNSTRING STATEMENT 16-62

UP BY 16-52

UPCASE, PRIMOS 4-13

USAGE IS CLAUSE 15-15, 15-36

USE STATEMENT 16-67

USER FILE DIRECTORY 4-1

USERS, PRIMOS 4-13

USING MAGNET 4-16

INDEX

USING MIDAS 11-1

USING SEG 7-5

USING STATEMENT
17-3, 18-2

16-1, 16-12,

USING THE COMPILER 5-1

USING THE EDITOR 4-18

USING THE LOADER 6-4

VALUE K-7

VALUE IS 15-15, 15-43

VALUE OF FILE-ID IS 15-4, 15-18

VALUE ZERO K-7

VARYING PHRASE 16-39, 16-48,
16-49

VCOBLB 2-3

VERBS, COBOL 16-6, D-1l

VESTIGIAL COMMANDS, SEG 7-5

VIRTUAL LOADER K-8

VKDALB 11-1

VLOAD, SEG 7-4

VMODE LISTING FILE, REF2 J-1

MESSAGESVMODE RUN-TIME ERROR
G-16

VOLUME 4-1

VOLUME NAME 4-1

VPSD, PRIMOS 4~13

VPSD16, PRIMOS 4-13

WAIT 4-14

13

INDEX

WARNING MESSAGES, COMPILER G-12

WITH POINTER PHRASE 16-57, 16-62

WORD 4-3

WORD FORMATION 12-12

WORKING-STORAGE SECTION 15-46

WRITE STATEMENT 16-69

X~OFF/X-ON K-16

ZERO 12-16

ZEROES 12-16

ZEROS 12-16

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	03-01
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	12-001
	12-002
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	13-00
	13-01
	13-02
	13-03
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-45
	15-46
	15-47
	15-48
	15-49
	15-50
	15-51
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	16-43
	16-44
	16-45
	16-46
	16-47
	16-48
	16-49
	16-50
	16-51
	16-52
	16-53
	16-54
	16-55
	16-56
	16-57
	16-58
	16-59
	16-60
	16-61
	16-62
	16-63
	16-64
	16-65
	16-66
	16-67
	16-68
	16-69
	16-70
	16-71
	16-72
	16-73
	16-74
	16-75
	16-76
	16-77
	16-78
	16-79
	16-80
	16-81
	16-82
	16-83
	16-84
	16-85
	16-86
	16-87
	16-88
	16-89
	16-90
	16-91
	17-00
	17-01
	17-02
	17-03
	17-04
	17-05
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	21-00
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	G-17
	G-18
	G-19
	G-20
	G-21
	G-22
	H-01
	H-02
	I-01
	I-02
	J-01
	J-02
	J-03
	J-04
	J-05
	J-06
	J-07
	J-08
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	K-10
	K-11
	K-12
	K-13
	K-14
	K-15
	K-16
	K-17
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14

