MAN1879

PROGRAM DEVELOPMENT SOFTWARE
User Guide

Revision A
February, 1977

PRIME
Computer. Inc.

145 Pennsylvania Ave.
Framingham, Mass. 61701

REV. A

Copyright 1977 by
Prime Computer, Incorporated
145 Pennsylvania Avenue

Framingham, Massachusetts 1701

Lerformance char.ctaristics are
subject to change without notice.

CONTENTS

Section Title Page
SECTION 1 INTRODUCTION 1-1
SCOPE ‘ 1-1
SUMMARY OF PROGRAM DEVELOPMENT SOFTWARE 1-1
SYMBOL AND ABBREVIATIONS 1-7
COMMAND FORMATS 1-8
SECTION 2 EDITOR 2-1
INTRODUCTION 2-1
INPUT MODE 2-1
EDIT MODE 2-1
SOFTWARE DEVELOPMENT TIPS 2-2
EDITOR COMMAND SUMMARY 2-3
SECTION 3 BINARY EDITOR (EDB) 3-1
INTRODUCTION ' 3-1
USING EDB 3-1
EDB COMMAND SUMMARY 3-3
EXAMPLES 3-6
SECTION 4 PRIME MACRO ASSEMBLER (PMA) 4-1
INTRODUCTION 4-1
SOURCE PROGRAMS - 4-1
OPERATION UNDER PRIMOS 4-3.
ACTION OF ASSEMBLER 4-3
ASSEMBLER MESSAGES 4-3
LISTING FORMAT = - - 4-4
CROSS-REFERENCE LISTING (CONCORDANCE) 4-7
ERROR DIAGNOSTICS . 4-9
A REGISTER (DETAILS) 4-1°
SECTION 5 FORTRAN COMPILER (FTN) 5-1
INTRODUCTION 5-1
SOURCE PROGRAMS 5-1
OPERATION UNDER PRIMOS 5-1
ACTION OF COMPILER 5-2
COMPILER MESSAGES 5-5
LISTINGS 5-6
LIBRARY ERRQR MESSAGES 5-8
TRACE PRINTOUIS 5-8
A REGISTER DETAILS 5-10
B REGISTER DETAILS 5-14

i - 3 February, 1977

CONTENTS (Cont)

SECTION 6 PRIMOS COBOL COMPILER

COMPILATION

LOADING

EXECUTION

DISK FILE ASSIGNMENT

MAGNETIC TAPE FILE ASSIGNMENTS

SECTION 7 LINKING LOADER (LOAD)
INTRODUCTION
FEATURES

USING LOADER UNDER PRIMOS

COMMAND DEFINITIONS

SUMMARY AND INTRODUCTION TO COMMANDS
LOADER MESSAGES

SECTION 8 DEBUGGING UTILITIES

~OCTAL (TAP) AND SYMBOLIC (PSD)

INTRODUCTION TO PRIME DEBUGGING UTILITIES
USING TRACE AND PATCH (TAP)

USING PRIME SYMBOLIC DEBUG (PSD)

COMMAND DESCRIPTIONS

SECTION 9 SEG (SEQUENTATION UTILITY)

INTRODUCTION

SEGMENTED RUN FILES AND THE SEGMENT LOADER
USING SEG

'SEG COMMAND SUMMARY

SEG COMMANDS

" LOAD. SUBCOMMANDS

SAVE COMMANDS

REV. A _ i - 4

Figur.e

1-1
1-2

4-1
4-2
4-3

5-1
5-2
5-3
5-4

7-1
7-2

ILLUSTRATIONS

Title

Typical Program Development Files
Typical Program Development Operation

Assembler A-Register Settings
Example of Assembly Listing
Example of Cross-Reference Listing

FULL LIST Example

TRACE Example

Compiler A-Register Settings
Compiler B-Register Setting

FO and IO - Base Area Orientation
Storage MAP Example

February, 1977

Table

REV. A

TABLES

Title
Symbols and Abbreviations

Typicel A-Register Default Values
Typical B-Register Default Values

Ioad State Definition

TAP and PSD Command Summary

FOREWORD

This user guide describes the Rev. 11 Prime Program Development
Software used to generate, compile or assemble, load and debug FORTRAN,
COBROL or assembly language programs. It consists of the following

sections:
Section
Section
Section
Section
Section
Section
Section
Section
Section

Information
file system

8

9

Introduction

Editor

Binary Editor

Prime Macro Assembler (PMA)
FORTRAN Compiler

COBOL Compiler

Linking Loader

Debug Aids (TAP and PSD)

Segmentation Utility for Prime 408 and 560

in this guide applies to systems with operating system and
support. -

i - 17 February, 1977

MAN1879 INTRODUCTION

SECTION 1

INTRODUCTION

SCOPE

This user guide contains detailed reference information on using the
editors, translators and utilities that are the essential items of
Prime program development software. This family of software is
required to compose the source file of a FORTRAN or assembly language
program, compile or assemble it, load the resulting object file and
related library routines, and simulate execution and debug the result.

Related Publications

The following Prime documents should be available for reference:

Title Document No.
FORTRAN User Guide | MAN 1674
COBOL Reference Guide MAN 2797
PRIME MACRO ASSEMBLER User Guide MAN 1673
PRIMOS Interactive User Guide MAN 2602

SUMMARY OF PROGRAM DEVELOPMENT SOFTWARE

The following paragraphs summarize the main functions of the program
development software as used in a PRIMOS environment with file system
support. L o

Editor (Section 2)

The Editor is the means by which a prbgrammer cre‘étes a program or
edits a program file for the purpose of making changes. R

Binary Editor (EDB) Lséction 3)

The Binary Editor examines loader—compatible object‘:"téxt blocks
generated by Prime ‘s FORTRAN campiler and Macro Assembler. It is
useful for creating library subroutine files. : :

Macro Assembler (PMA) (Séction 4)

Source programs in the Macro assembly language are processed by the
Macro Assembler program to form object program files. The assembler
reads the source file and translates the symbolic codes of the source
program” into the object code required by the loader. This two-pass

1 - 1 “ Pebruary, 1977

SECTION 1 MAN1879

assembler reads the source file twice - the first time to build a table
of all symbolic addresses used, and the second time to translate the
mnemonic expressions into an object program file. An optional listing
file shows both the source symbolic code and the translated binary

equivalent of each entry.

FORTRAN IV Compiler (Section 5)

Source programs in the FORTRAN IV language are processed in the same
way as assembly language programs. The FORTRAN Compiler controls a
one-pass reading of the source program file. The output object file is
similar in format to the assembly language output file. An optional
listing file, either a straight listing of the source statements or an
expanded listing showing the assembly language breakdown of each
statement, may also be created.

COBOL Caompiler (Section 6)

Source programs in the COBOL language are processed by the COBOL
campiler, which creates the COBOL object file and a listing file.

The object file is loaded into memory and executed in the same manner
as FORTRAN.

Linking Loader (Section 7)

Object files generated by the assembler or campiler require the Linking
Loader to interpret and complete the addressing information. Indirect
address links must be formed in sector zero (or another specified base
sector) when address references happen to fall across sector
boundaries. Once the loader is invoked by the LOAD external command,
it prints a prompt character and awaits commands from the user
terminal. Through keyboard commands, the user can load main program or
library files, specify addresses where loading is to start, define base
areas for cross-sector address references, and do many special-purpose
operations. The loader keeps track of instructions of the class which
may be unimplemented in a particular machine, and automatically.
generates object code blocks to simplify loading of the appropriate
segments of the VIP (Virtual Instruction Package) library.

The user can request the loader to print a memory map, which defines
the memory areas. occupied by the program and lists all subroutine calls
~and external references.

Once a program has been loaded by the Linking Loader, it is fully
translated into 16-bit machine language codes and is ready to execute
or be saved in PRIMOS SAVE file format. -

Debug Aids (TAP and PSD) (Section 8)

During the earlir’,s’tages of program development and checkout, TAP and
PSD permit the programmer to examine, alter, and list the content of
memory locations in response to simple terminal keyboard commands. A

REV. A 1 - 2

MAN1879 INTRODUCTION

"trace" function controls dynamic execution of object programs, with
diagnostic printout of register contents at selected intervals (for
example, whenever a specified effective address is formed).

SEGMENTATION UTILITY (SEG) (Section 9)

SEG is a PRIMOS IV or IV utility module for loading and running
segmented programs and making modifications to segmented run files.
FILE USAGE IN PROGRAM DEVELOPMENT

File types encountered during program development under PRIMOS are
illustrated in Figure 1-1. A typical collection of program development
files within a user 's UFD is shown in Figure 1-2.

Source Files

Source files are ASCII data files created by the text editor or entered
into the system fram unit record devices or magnetic tape. They are
the text of the program in the appropriate source language - PMA,
FORTRAN, or COBOL, for example.

Object Files

Object files are the result of a translation process by one of the
PRIMOS language translators (PMA, FIN, COBOL). They are in a
compatible binary format suitable for processing by LOAD (to run in any
addressing mode except 64V) or SEG (to run in 64V mode). All library
files (such as those cont.ained in FINLIB and UII) are in object format.
Object files can be examined and altered by the binary editor, EDB.
Prime ‘s translators all use the convention of naming object files by
prefixing the first four characters of the source filename by B<.
(However, the user can assign other names by using the PRIMOS BINARY
command before starting translation.) . el

Listing Files ' ol ' Ry

Listing files are optionally produced by the translators. They contain
a listing of the source program with error lines flagged and with other
optional details such as the assembly-language translation of the :
source statements. Prime’s translators follow the convention ‘of.naming -
listing files by prefixing the first four characters.of the source. e
filename by Le. (However, the user can assign other names by using the
PRIMOS LISTING command before starting translation.) : T

Map Files

The loader and segmentation utility both have the option of generating
load maps and writing them to files specified by the user. Maps can-
also be printed at the user s terminal, but in the case of large maps,
this is time consufiing. Large maps can be written to a file, then
spooled for printing on the system’s high-speed. line printer.

1 -3 " February, 1977

SECTION 1

Source File

EDITOR
Source
Input
o
REV. A

—

MAN1879

LANGUAGE PROCESSOR

FORTRAN

PRIME MACRO ASSEMBLER
COBOL

BASIC

BeFile

LOADER

List L«-FILE
BE—

OR
SEG

Diagnostics

Figure 1-1. Typical Program Developmght Files

> *FILE-

MAN1879 INTRODUCTION

MFD
User UFD User UFD User UFD User UFD User UFD User UFD User UFD
User UFD B<-name L<—n|ame User UFD User UFD *name User UFD

Figure 1-2. Typical Program Development Operation

1 - 5 ‘ February, 1977

SECTICON 1 MAN1879

Run Files

Run files are the end result of the translation and loading process.
Run files created by LOAD are in memory-image format with a header
block that specifies the starting address, register contents, keys
parameters, and other run-time parameters. Run files created by SEG
are in segmented run-file format,

Prime ‘s convention is to name run files by prefixing the first four
letters of the source filename with an asterisk (*).

Other Files
Files used as input during program execution, or files generated as a

result of execution, may be in any format compatible with PRIMOS file
systems. These files are entirely under control of the user.

REV. A _ 1 -6

MAN1879 INTRODUCTION

SYMBOLS AND ABBREVIATIONS

Symbols and abbreviations used throughout the text are defined in Table
1—1 . -

Table 1-1. Symbols and Abbreviations
Symbol Definition

Number Representations:

1000 1000 decimal
1000 10006 octal
$1000 1008 hexadecimal

Terminal Keyboard Functions:

.CR. Carriage Return

LF. Line Feed

.NL. Next Line (Carrlage Return or
Line Feed)

\ ‘Backslash (upper case L) -
used as tab character

" ‘Delete character (cancels last
typed character)

? O OKill character (deletes current

' line)
Miscellaneous: ‘
EA Effective Address
(EA) - Contents of Effective Address

1 -7 . February, 1977

SECTION 1 MAN1879

COMMAND FORMATS

All software described in this guide communicates with the user through
. a series of commands entered at the user terminal. This guide uses the
following conventions to define command syntax:

COMMAND Filename Paraml [Param2] | LITERAL |
| Param3 |

The command name is shown in capital letters. The underlined letters
are mandatory. The remaining letters are optional.

Following the command name are parameters and/or literals, separated
from the command name and each other by at least one space. Generally,
parameters have the first letter capitalized. (These are occasional
exceptions such as the use of n for an integer value.) Optional
parameters are enclosed in brackets and may be omitted. For each
parameter, the user must substitute an alpha or numeric value required
by the specific command definition.

Literals are shown in capital letters with the permissible abbreviation
underlined.

Parameters or literals stacked between vertical bars are alternatives,
of which one must be chosen.

when Filename appears as a parameter, the user must specify a filename
existing (or to be created) within the current UFD.

REV. A 1 - 8

MAN1879. EDITOR

SECTION 2

EDITOR
INTRODUCTION

This section defines the use of Prime ‘s Editor for developing software.
It briefly describes the Editor modes and commands for reference
purposes.

The Bditor provides two modes of operation: the INPUT mode and the
EDIT mode.

INPUT MODE

The INPUT mode is used when typing information into a file (e.g., when
creating a program). The word ‘INPUT is displayed at the user ‘s
terminal to indicate that the Editor is in the INPUT mode.

The INPUT mode also provides a line terminator capability, a character
or line erase capability, and tabulation.

The RETURN key terminates the current line and prepares the Editor to
receive a new line.

Corrections can be made on the current line while in INPUT mode. When
it is desired to erase one or more characters, the erase symbol is
typed (default is "). For each " typed, a prev1ous character is
erased. \

If the entire current line is to be deleted, the line erase symbol is
typed (default is ?). Note that these symbols may be changed using a
symbol assign command (SYMBOL) while in the EDIT mode.

Tabulation is achieved with a backslash (\) character. Each backslash
represents the first, second, third, etc. tab setting. Default values
are at columns 6, 15, and 38. Up to eight tab settings can be made.

EDIT MODE

The EDIT mode is used when the contents of one or more lines are to be
changed. ~ More than 45 commands are available and described in the
EDITOR OOMMAND SUMMARY.

In Edlt mode, the Editor keeps track of the current line by maintaining
an internal line pointer. Commands such as TOP, BOTTOM, FIND and
LOCATE, move the pointer. Use WHERE to find out what line number is
current, Use POINT to move to another line number. Specify MODE
NUMBER to display the line number. ‘

2 - 1 February, 1977

SECTION 2 MAN1879

SOFTWARE DEVELOPMENT TIPS

The following tips should aid the programmer in quickly adapting to
Prime ‘s software development technigues. A summary of the Editor
commands appears at the end of this section.

1. TO MOVE LINES OF CODE TO ANOTHER LOCATION

A programmer can move any number of lines from one location in a
program to another. The DUNLOAD command deletes the 1lines as it
unloads and creates a file. A IOAD command loads the new file at the
desired point.

A programmer may copy any number of lines of code with the UNLOAD
command rather than DUNLOAD and use the LOAD commend to load the copy
at the desired point.

2. TO SAVE TIME USING TAE SETTINGS

when writing source code, much time can be saved by making use of the
TABSET command. When entering the source program, each backslash
character represents one tab setting. If the TABSET command was not
used to define the tab settings, the default values of columns 6, 15
and 30 are used.

3. TO OVERLAY COMMENTS AFTER CODE IS WRITTEN

A useful technigue of adding comments to an existing source program is
with the OVERLAY command using tabs.

4. TO FIND A LINE BY STATEMENT NUMBER

Use the FIND command to locate a statement number in a FORTRAN program
or a symbol in & PMA program.

5. TO MODIFY A LINE WITHOUT CHANGING CHARACTER POSITIONS

The MODIFY command is used when a line modification ié required, but
the relative column alignment must remain the same. ’ '

REV-A 2 - 2

EDITOR COMMAND SUMMARY

MAN1879

EDITOR

The following is an alphabetic list of each Editor command and its
function. Acceptable command abbreviations are underlined.

Command

APPEND String

BOTTOM

BRIEF

gHANGE/Stringl/StringZ/

DELETE [n]

DELETE TO String
DUNLOAD Filename n

ERASE Character
FILE [Filename]
FIND String

CMODIFY

INPUT| (ASR) |
T 1 (FIR) |
| (TTY) |

INSERT String

Function

Appends String to the
end of the current line.

Moves the pointer beyond
the last line of the file.

Speeds editing by
minimizing responses to
Editor commands.

Changes the text of Stringl
to String2.

Deletes n lines,
including the current line.

Deletes all lines
up to but not including 11ne
containing String.

Deletes n lines from
current file and writes them
into F11ename.

Changes current erase character
to Character. . -

Writes the‘contentsfof the current
file into Filename. ~

Moves the pointer to the first .
line beginning with String.

Allows user to enter a string of
subcommands which modify characters
within a line.

Reads text from the specified
input device: ASR (Teletype paper
tape reader), PTR (high-speed paper
tape reader) or TTY (terminal) .

Inserts String after current

line without switching to INPUT
mode.

February,

1977

SECTION 2

KILL Character
LOAD Filename
LOCATE String

MODE COLUMN
MODE NCOLUMN

MODE NUMBER

MODE NNUMBER

MODE PRALL

MODE PRUPPER

MODE PROMPT

MODE NPROMPT

MODIFY/Stringl/String2/

MOVE Bufferl Buffer2

gE)('I‘n

OVERIAY String

PAUSE

POINT Line

REV. A

MAN1879

Changes current kill Character
to Character.

ILoads Filename into text
following the current line.

Moves pointer forward to the first
line containing String.

Displays column numbers.
Turns off the column display.

Displays line numbers with a
PRINT or VERIFY command.

Turns off line number display.

Prints lower case characters

if device has that capability or
precedes lower case characters
with an "L and precedes upper
case characters with an “U if
the device is upper case only.

Prints all characters as upper case.
Prints prompt character.
Stops printing prompt character.

Super imposes String2 on top of
Stringl.

Moves one line of text from Buffer2
into Bufferl. Buffer names are STRA,
STRB, STRC, INLIN and

EDLIN.

Moves the pointer n lines forward.

Super imposes String on

current line. Use tabs to start
in middle of line. Use ! to
delete existing characters.

Returns to operating system
without changing the Bditor state.

Relocates the pointer to
Line.

PRINT (n]

PSYMBOL

PTABSET Tabl...Tab8

PUNCH |§ASR; (n]

|
= 1 (@EDI
QUIT

RETYPE String

§XMBOL Name Character

TABSET Tabl...Tab8

TOP

UNLOAD Filename n
VERIFY

WHERE

MAN1879 EDITOR

Prints the current line or n
lines beginning with the
current line,

Prints a list of current
symbol characters and their function.

Provides for a setup of tabs
on devices that have physical
tab stops.

Punches n lines on high- or
low-speed paper-tape punch.

Returns control to PRIMOS
without filing text.

The current line is replaced
by String.

Changes a symbol Name to
Character. Current default values
are:

Name pefault Characters
KILL ?
ERASE "
WILD !
BLANK ¥
TAB \
ESCAPE ~
SYMBOL :
CPROMPT -8
&

DPROMPT

Sets up to eight logical tabstops |
to be invoked by the tab symbol
).

Moves the pointer one line before
the first line of text.

Copies n lines into
Filename.

‘Displays each line after

completion of a command.

Prints the current line
number .

February, 1977

SECTION 2

_X_F::_Q Buffer

*n]

REV. A

MAN1879

Executes the contents of
Buffer. See MOVE.

Repeat symbol. Causes
preceding command to be repeated n
times as in:

F /:D;N;*10

which deletes the next ten lines
beginning with / . If n is omitted,
the command repeats until the
bottom of file is reached.

MAN1879 BINARY EDITOR (EDB)

SECTION 3

BINARY EDITOR (EDB)

INTRODUCTION

EDB is a binary editor for operation on loader-compatible object text
blocks generated by the Prime language translators. EDB is useful for
creating and updating library subroutine files on disk or paper tape.
Input may be from disk or paper tape; output may be to disk or paper
tape. Multiple input files may be open concurrently. EDB provides a
large command set and issues explicit error messages.

USING EDB

Loading and Starting Under Primos

EDB is loaded and initialized by a command line beginning with EDB. In
general, the command line for initialization is as follows:

EDB [|Inputfile [1[| Outputfile |]
| (PTR) | | (PTR) |

If either the input or output file is on paper tape, the appropriate
entry is (PTR). An output file

need not be specified. When Outputfile is specified, a file of that
name is created in the current UFD. ' ‘ ; :

Wwhen properly initialized, EDB types ENTER' and t_:hén waits for user
command input. ' ‘

Positioning Pointer

The user selects the next item to be processed by positioning a binary
location pointer at the beginning of the desired subrout ine name or
entry point label. When EDB is initialized, or after a NEWINF command,
the pointer is at the top of the input file. The pointer position can
be changed by the FIND and TOP commands. During execution of the COPY,
GENET and OMITET commands (which copy blocks from the input file to an
output file), the pointer moves to the subroutine or entry-point
following the last item copied. :

Printing Modes -

In VERIFY mode, EDB prints the name of each subroutine or entry point
reached by the pointer. From this printout, the user can determine the
current pointer location. EDB is initialized in this mode. To speed

3 - 1 February, 1977

SECTION 3 MAN1879

names only) or BRIEF mode (no printing).

Special Action Blocks

Special action blocks ET, RFL, and SFL are written to the output file
by the commands of the same name. These blocks are ignored (not
copied) by the COPY, INSERT and OMITET commands. Thus, each user can
insert the special action blocks he requires.

An end-of-tape mark is written by the GENET command as well as the ET
command. On paper tape, the end-of-tape mark consists of two succesive
characters, both “223. On disk, the end-of-tape mark is represented by
a zero word.

SFL, the set-force-load-flag block, is used in files to force loading
of subroutines even if not called by a main program.

RFL, the reset-force-load-flag block, resets the SFL condition and
allows the main program to specify which subroutines within a file are
to be loaded.

Error Messages

EDB prints ENTER to show that it is ready to accept commands. Most
errors in command string input cause EDB to print a question mark (?).
Other messages include:

FILE NAME DOES NOT EXIST OR ALREADY OPEN

USER MUST SPECIFY INPUT FILE

YOUR INPUT FILE LOOKS LIKE SOURCE CODE

CHECKSUM ERROR - UNRECOVERABLE

BLOCK ERROR -~ UNRECOVERABLE

REV. A 3 - 2

MAN1879 BINARY EDITOR (EDB)

EDB COMMAND SUMMARY

EDB responds to the following commands, listed in alphabetical order.
Commands may be abbreviated to the underlined letters. Items enclosed
in brackets are optional.

BRIEF

Inhibits printout of subroutine names and entry points as they are
encountered by EDB. (See TERSE and VERIFY.)

PY | Name |
| ALL |
Copies to the output file, all main programs and subroutines (other
than special action blocks) from the pointer to (but not including) the
subroutine called Name or containing Name as an entry point. If Name
is not encountered or COPY ALL is specified, EDB copies to the end of
the input file and types .BOTTOM. on the terminal. The pointer moves
past the last copied item.

ET
Writes an end-of-tape mark on the output file (223, “223 on paper
tape; =zero word on disk).

FIND | Name |
| ALL |

Moves the binary location pointer to a position on the input file
corresponding to the beginning of a subroutine called Name or
containing Name as an entry point. If Name is not found, the pointer
is moved to the end of the input file and .BOTTOM. is typed on the
terminal. In the VERIFY mode, the FIND ALL command can be used to
print all subroutines and entry names in the input file.

GENET [G)

Copies the subroutine to which the binary location pointer is currently
positioned and follows it with an end-of-tape mark. The optional
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied, each followed by an end-of-tape
mark. Wwhen the bottom of the input file is encountered, .BOTTOM. is
printed on the terminal. The pointer moves to the next subroutine.

INSERT Name
Opens a second file, Name, for reading only and copies it to the output
file (omitting all special action blocks). After the copy, the second

input file is closed. The binary location pointer remains positioned
in the original input file. An INSERT command operates only when the

3 - 3 February, 1977

SECTION 3 MAN1879

second input file and the output file are both on disk (however, the
original input file may be paper tape).

NEWINF [Filename]

Closes the current binary input file and opens a new input file,
Filename, for reading only. The binary location pointer is placed at
the top of the new file. on disk.

OMITET [G]

Copies the subroutine to which the binary location pointer is currently
positioned. The optional letter G specifies a global copy; all
subroutines from the current position of the pointer are copied
(omitting all special action blocks). When the bottom of the input
file is encountered, .BOTTOM. is printed on the terminal. The pointer
moves to the next subroutine.

OPEN [Filename]

Opens an output file, Filename, for writing only.

QUIT

Closes all files and exits to PRIMOS. When paper tape is the output
file, an end-of-tape mark is punched before closing.

REL

Writes a reset-force-load-flag (library mode) block on the output file.
This block initializes a true library file by enabling the loader to
determine which subroutines within the file will be loaded (see SFL).
This command operates only when output is to disk.

SFL

Writes a set-force-load-flag block on the output file. This block
places LDR (the Loader) in force-load mode; all subroutines in the
files are loaded, whether or not they are called. SFL mode is in
effect until the loader encounters an RFL block. A true library file
should be terminated by an SFL block followed by an end-of-tape mark.
This command operates only when output is to disk. ’

TERSE

Places the editor into TERSE mode. Only the first name of each
subroutine name block encountered by EDB is output to the terminal.

REV. A 3 - 4

MAN1879 BINARY EDITOR (EDB)

(see BRIEF, VERIFY).

TOP

Moves the binary location pointer to the top of the input file which is
useful only when the input file is on disk.

VERIFY

Places EDB into VERIFY mode. All subroutine names and entry points, as
they are encountered by EDB, are printed on the terminal. EDB is
initialized in the VERIFY mode (see BRIEF and TERSE).

3 - 5 February, 1977

SECTION 3 MAN1879

EXAMPLES

The following examples illustrate typical uses of EDB and show many of
the commands in action.

Deleting Routines from a Library

A user named USER] has a subroutine library under the filename LIBE
that contains six subroutines: ROUT1, TEST1, TEST2, ROUT2, MORE, and
AGAIN.

The following EDB commands create another version of the library under
the name LIBEV2, having the following contents: ROUT1, ROUT2, MORE,
and AGAIN.

The commands are:

OK, A USER1

OK, EDB LIBE LIBEV2
@

ENTER, BRIEF
ENTER, COPY TEST1
ENTER, FIND ROUT

ENTER, COPY ALL
ENTER, ET
ENTER, QUIT

OK,

After attaching to the UFD, USER]1, the user invokes EDB, with LIBE
specified as the input file and LIBEV2 as the output file. A BRIEF
command simplifies the terminal output. The first COPY command copies
subroutines ROUT1 and TEST1, and the pointer stops at the beginning of
TEST2. The FIND command skips all of TEST2 by moving the pointer to
the beginning of ROUT2. A COPY ALL from that point copies the
remainder of the file, An ET command is given to insert an end-of-tape
block. The user then quits and returns to PRIMOS.

Distributing Routines to Different Files

Assume the user has a collection of subroutines in a library file named
FILIN containing FILE1l, FILE2, and FILE3.

The following commands distribute these files to three different output
files, named LIB1, LIB2, and LIB3, respectively:

OK, EDB FILIN LIB1
@

ENTER, BRIEF
ENTER, COPY FILE2
ENTER, ET

REV. A 3 - 6

MAN1879 BINARY EDITOR (EDB)

ENTER, OPEN LIB2
ENTER, COPY FILE3
ENTER, ET
ENTER, OPEN LIB3
ENTER, COPY ALL

ENTER, ET

ENTER, QUIT

OK, LISTF

UFD=USER1
FILIN LIB1 LIB2 LIB3

OK,

After the first output filename (LIB1) is specified by the initial
PRIMOS command to start EDB, subsequent output filenames are set up by
OPEN commands (it is not necessary to return to PRIMOS). Each OPEN
command closes the previous output file. The user must be careful to
issue an ET command after each file is copied. Remember that these
files contain the object version of the specified subroutines.

Combining Subroutines or Files Under One File Name

Assume that the same user wants to combine the separate object files
LIBl, LIB2, and LIB3 under a single filename, CLIB:

OK, EDB LIB] CLIB
ENIER,

ENTER, COPY ALL
.BOTTOM.

ENTER, INSERT LIB2
.BOTTOM,

ENTER, INSERT LIB3
.BOTTOM.

ENTER, ET

ENTER, QUIT

OK,

The first file to be inserted into CLIB is specified by the PRIMOS
command string that starts EDB. Thereafter, EDB INSERT commands
specify new input files to be appended. End-of-tape marks at the end
of the input files are not copied. The user issues an ET command to
mark the end of file CLIB.

Obtaining Subroutine and Entry Point Listings

With the aid of the VERIFY mode of operation, a FIND command can be
used to print all subroutine and entry point names in a given file.
Example:

OK, EDB FILIN

(¢ 0]

ENTER, FIND XXX

3 - 7 February, 1977

SECTION 3 MAN1879

FILEl

FILE2

FILE3
+BOTTOM.
ENTER, QUIT
OK,

In the FIND command, XXX is a dummy entry name that does not exist in
the file.

Adding a Subroutine to a Library

Any subroutine can be added to any library. The following example
illustrates this technique:

OK, A LIB
OK, EDB FINLIB TEMP
@
ENTER I SUB
ENTER COPY ALL

enter, QUIT
OK, CNAME FINLIB ELSE
OK, E'NAME':"'Tm' EMP FINLIB
OK, A TED
OK, IDAD
$ LO B<-PQM
$LIB
Ic
$

REV. A 3 - 8

MAN1879 PRIME MACRO ASSEMBLER (PMA)

SECTION 4

PRIME MACRO ASSEMBLER (PMA)

INTRODUCTION

This section describes the necessary procedure for assembling source
programs for PMA up to and including Rev. 1l.

SOURCE PROGRAMS

Source programs must meet the requirements of the Prime Macro Assembly
Language reference manual.

OPERATION UNDER PRIMOS

Loading and Starting Assembler

The Macro Assembler is loaded and started by the PMA external commarx
to PRIMOS:

PMA Filename [1/A-register]

where Filename is a Prime Macro Assembly Language source program in the
current UFD, A-register is an A-Register setting that specifies listing
detail, I/O devices, and other assembly control parameters. (See
Figure 4-1.) '

If A-register is not specified by the command string, the assembler
uses the default values set up in the RVEC vector at the time the
assembler was SAVEd. This valuve is usually:

A-register ‘990777 Normal listing detail, all input
and output files on disk :

If in doubt, issue the following command sequence:
OK, A CMDNC@
OK, REST PMA
Ok, M |
PM will print the correct RVEC vector and the value from A-register may

be determined from this information. Bit assignments are described in
detail at the end of this section.

4 - 1 February, 1977

SECTION 4

MAN1879

DEVICE OPTIONS

LISTING CONTROIL, EXPANDED @=NONE
OVERRIDE SYMBOL _ 1=USER TERMINAL
TABLE 3=Reserved for CARDS
LIST 4=Reserved for LINE PRINTER

ERRORS ONLY

5=Reserved for MAGNETIC TAPE

6=Reserved for CASSETTE
7=DISK
| r A aY
| |EL |Lco| | | |[EST| SOURCE | LISTING | OBJECT
1 2 3 4 5 6 7 8 9 18 11 12 13 14 15 16
Figure 4-1. Assembler A-Register Settings
REV. A 4 - 2

MAN1879 PRIME MACRO ASSEMBLER (PMA)

ACTION OF ASSEMBLER
PMA is a two-pass assembler that reads the source program twice:
once to generate a symbol table and identify external references,

and a second time to generate object code blocks for input to the
linking loader. During the second pass, a listing output is optional.

File Usage
Three files may be involved during a assembly:

File Type PRIMOS File Unit

Source 1
Listing 2
Object 3

PMA will automatically open files for the listing and object output,
provided disk is specified as the destination for those files. The
names are formed by prefixing the first four letters of the source
filename with B<- for the object output file (binary file) and with L<-
for the listing output. If the user prefers other names, he can used
the PRIMOS BINARY and LISTING commands to open files on units 2 and 3
before invoking PMA,

Opening File Unit 2 before the PMA command allows the listing output of
more than one source file to be concatenated, the file to be written in
other than the current UFD, and the filename to be other than L<-XXXX.
File Unit 2 is opened by using the PRIMOS LISTING command.

all file units opened by PMA are closed before PMA returns control to
PRIMOS. However, files opened by the user are not closed or truncated
by PMA,

ASSEMBLER MESSAGES

When the assembler reads the END statement of the input file on the
second pass, it prints a message, terminates assembly, and returns
control to PRIMOS command level. The message contains a decimal error

count and version of the assembler, as in:

@001 ERRORS (PMA-1080,.019)

4 - 3 February, 1977

SECTION 4 MAN1879

LISTING FORMAT

Figure 4-2 shows a section of a typical assembly listing and
illustrates the main features.

Each page begins with a header and a sequential page number. The first
statement in a program is used as the initial page header. If column 1
of any source statement contains an apostrophe (°), columns 16-72 of
that statement became the header for all pages that follow, until a new
title is specified.

User-generated messages may be inserted into the listing output by SAY
pseudo-operations in the source program itself. Such messages can be
used to document the progress of a complex conditional assembly
operation.

REV. A 4 - 4

MAN1879

UCOMP, MSORTS, MLG, 4 JULY 1974

000000
000001:
000002:
000003:
900604 :
000005:
P000R6:
000007 :
000010:
000011:
000012:
000013:

000014:
000015:

000016:
000017:

000020
000021

000022:

(0001)
(0002)
(00803)
(0004)
(60805)

(0020)
(9021)
(8822)
(0023)
(0024)
(0825)
(0026)
(0827)
(0028)
(0029)
(8030)
(8031)
(0032)
(0033)
(0034)
(8035)
(0036)
(8037)
(0038)
(0039)
(£040)
(0041)
(0042)
(8043)
(0044)
(9045)
(0046)
(8047)
(8048)

000000 (9056)
(0057)

(0058)

(6059)

(0860)

(0061)

(0962)

00.000000A (0063)
35.000000 (0064)
22.900000A (0065)
42,900001A (0066)
140024 (0067)
140104 (00668)
22.000001A (0069)
42,000001A (0070)
140024 (0071)
11.0000027 (0072)
01.000020 (0073)
01.000016 (0074)
(8975)

(0076)

(8077)

(2078)

14p417 (6079)
21.000003A (0080)
(0@81)

(0082)

(9083)

140040 (0084)
21.000003A (0085)
(0086)

(0987)

(0088)

02.000822 (0089)
21.000003 (6090)
(B091)

(60892)

(8093)

177777 (8094)
(0095)

(0896)

(8097)

000023 (0098)

Figure 4-2.

PRIME MACRO ASSEMBLER (PMA)

* UCOMP, MSORTS, MLG, 4 JULY 1974

* UNSIGNED INTEGER COMPARISON

* PRIME COMPUTER INC., SRCQQQQ.000

* COPYRIGHT 1974, PRIME COMPUTER INC., FRAMINGHAM, MASS.

*

* FROM PMA PROGRAM

*

* CALL UCOMP

* DAC FWORD] ADDRESS OF FIRST WORD

* DAC . FWORD2 ADDRESS OF SECOND WORD

> ocT 0

*

*

*

*

*

* FROM FORTRAN PROGRAM

* N

* CALL UCOMP (FWORD1, FWORD2)

> WHERE THE PARAMETERS ARE DEFINED AS ABOVE.

*

*

*

*

* UCOMP IS USED AS A FORTRAN INTEGER FUNCTION. IT SHOULD BE USED

* IN ARITHMETIC "IF" STATEMENTS AS:

*

* IF (UCOMP (ARG1,ARG2)) -,@,+

*

* IN PLACE OF:

*

* 1F (ARG1-ARG2) -,0,+

*
SUBR UCOMP UNSIGNED INTEGER COMPARISON

*

* .
C64R
REL

*

*

UCOMP DAC *k ENTER
LDX UCOMP POINT TO PARAMETER LIST
LDA 2,1 FIRST WORD ADDRESS
Lpa* 1 FIRST WORD
CHS PREPARE FOR COMPARISON
XCA SAVE IN B-REG
LDA 1,1 SECOND WORD ADDRESS
LpA* 1 SECOND WORD
CHS PREPARE FOR COMPARISON
cas 2 COMPARE WITH FIRST WORD IN B-REG
JMP NRETN WORDL < WORD2 (=)
JmMp ZRETN WORD1 = WORD2 (8)

* WORD1 > WORD2 (+)

* .

* POSITIVE RETURN (WORD1 ~ WORD2 = +)

*
LT RETURN VALUE UCOMP=+1
Jup 3,1 RETURN

*

* ZERO RETURN (WORD1 - WORD2 = 8)

*

ZRETN CRA RETURN VALUE UCOMP=0
JMP 3,1 RETURN

*

* NEGATIVE RETURN (WORD1 —- WORD2 = -)

*

NREIN LDA MONE RETURN VALUE UCOMP=-1
Jmp 3,1 RETURN :

*

* DATA

*

MONE DEC -1 =-1

ke
FIN

*
END

Example of Assembly Listing

February, 1977

SECTION 4

MAN1879

Column Allocation for Assembly Listing

Column

Description

1-2
3-8

11-24

Error codes

six digits of 16-bits each, containing the octal address
or displacement

Contains address mode

: procedure
> link frame (Seg mode only)
. common

Are dependent on the instruction types (i.e., memory ref.
& non memory ref.):

non-memory ref- 17-22 contain octal representation
of the instruction or data

1-word memory ref- 15-24 contain: AA.BBBBBBC

The first two digits (AA) represent a six-bit binary
field consisting of the indirect bit, the index bit, and
(for memory reference instructions) the four op-code bits

The next six digits (BBBBBB) represent the displacement
field of the instruction of a 16-bit address value. The
last digit (C) indicates the mode of the address value.

Blank Relative

A

L

X

Absolute

Stack relative/stack base relative (SB) - seg mode
External

Common

Procedure-base relative (PB) - seg mode

Link-base relative (LB) - seg mode

Temp-base relative (XB) - seg mode

Two-word memory reference (columns 11-24) as follows:

AAARAA .BBBBBBC - A is opcode

REV. A

B is address
C is address qualifier

MAN1879 PRIME MACRO ASSEMBLER (PMA)

CROSS-REFERENCE LISTING (CONCORDANCE)

At the end of the assembly listing appears a cross-reference listing
of each symbol ‘s name (in alphabetical order), the symbol ‘s location
or address value, and a list of all references to the symbol (see
Figure 4-3). The location and address values are in octal unless the
PCVH pseudo-operation specifies hexadecimal listing. Each reference is
identified by a four-digit line number. If listing is inhibited

by the NLST pseudo-operation, the cross-reference is not listed.

4 - 7 February, 1977

SECTION 4 MAN1879

MONE 000022 0089 0094
NRETN 000020 0073 0089
UCOMP 000000 9063 0064
ZRETN 000016 0074 0084

#0080 ERRORS (PMA-1080.919)

Figure 4-3. Example of Cross-Reference Listing

REV. A 4 - 8

ERROR DIAGNOSTICS
ERR
c
F

MAN1879 PRIME MACRO ASSEMBLER (PMA)

DESCRIPTION

INST IMPROPERLY TERMINATED

BAD TERMINATOR ON ARGUMENT # EXPRESSION (MACRO CALL)
ILLEGAL OPERATOR ON STACK PUSH/POP

FAIL PSEUDO-OP

GOTO ERROR WITHIN MACRO

END/ENDM PSEUDO-OP WITHIN ‘GOTO SKIP AREA

GENERIC, I/O, OR SHIFT HAS TAG MODIFIER

TAG MODIFIER FIELD NOT PERMITTED ON 32I MODE
FIELD INSTR

SHORT INSTRUCTION SPECIFIER (#), CAN'T MAKE SHORT
64V MODE, LDX CIASS INSTR, BAD TAG MODIFIER FIELD
64V MODE, TAG MODIFIER NOT PERMITTED ON BRANCH INSTR

SEG MODE, COMMON OR EXTERNAL REF, BAD INDIRECT
OR INDEX

AP/IP, INDEX SPECIFIER INVALID

TAG MODIFIER NOT PERMITTED ON 321 BRANCH

IMPROPER LABEL (CONSTANT/TERMINATOR IN LABEL FIELD)
EXTERNAL VARIABLE PRESENT IN LITERAL

BAD ARGUMENT IN EQU, SET, OR XSET

MULTIPLY DEFINED LABEL

‘END ° WITHIN MACRO OR IF

UNRECOGNIZED OPCODE OR 32I-ONLY OPCODE IN NON-32I
MODE

64V MODE MEMORY REF, NOT IN 64V MODE
S/R MODE MEMORY REFM NOT IN S/R MODE

MISMATCHED PARENTHESIS

4 - 9 February, 1977

SECTION 4 MAN1879

Q AP, NOT IN 64V/32I MODE
IP, NOT IN 64V/321 MODE
ENDM PSEUDO-OP NOT IN MACRO
R STACK OVERFLOW
MULTIPLY DEFINED MACRO OR MACRO NAME FIELD EMPTY

S LOAD * MODE, INSTRUCTION WOULD REQUIRE
DESECTORIZATION

INDIRECT DAC IN C64R MODE
T 32I MODE TAG MODIFIER SYNTAX ERROR

U UNDEFINED VARIABLE IN ADDRESS FIELD / EXPRESSION
UNDEFINED VARIABLE IN ORG/SETB
\Y BIT FIELD IN BIT INST OUT OF RANGE
UNRECOGNIZED OPERATOR IN EXPRESSION
FIELD ADDRESS INST, FAR OUT OF RANGE
I/0 INST, FUNCTION CODE / DEVICE ADDR OUT OF RANGE
SHIFT INST, SHIFT COUNT OUT OF RANGE
FIELD ADDRESS INST, NO COMMA FOLLOWING FAR SPEC
32I MODE REGISTER GENERIC, NO COMMA AFTER REGISTER #

321 MODE FPR REGISTER GENERIC, NO COMMA AFTER
REGISTER #

321 MODE BIT TEST INSTR, NO COMMA AFTER REGISTER $
321 MODE BIT TEST INSTR, NO COMMA AFTER BIT #

321 MODE GEN REGISTER MEMORY REF, BAD DELIMITER
321 MODE SHIFT INSTR, BAD DELIMITER

BAD SHIFT COUNT IN 32I MODE SHIFT INSTR

BAD TAG MODIFIER IN 321 MODE SHIFT

BAD DELIMITER AFTER REGISTER # IN 32I MODE PIO INSTR

REV. A 4 - 19

MAN1879 PRIME MACRO ASSEMBLER (PMA)

OPEN PARENTHESIS MISSING ON DFTB ARGUMENT
CLOSE PARENTHESIS MISSING ON DFTB ARGUMENT
LABEL MISSING ON IFTF, IFTT, IFVT, IFVF

NAME NOT FOUND IN IFTF, IFTT, IFVT, IFVF
ABS/REL ILLEGAL IN SEG MODE

SEG/SEGR AFTER CODE HAS BEEN GENERATED
PROC/LINK FOUND OUTSIDE OF SEG MODE

FIELD OUT OF RANGE ON DDM PSEUDO-OP

BAD ARGUMENT FOLLOWING ‘EXT’

‘END ° WITHIN MACRO

SYNTAX ERROR IN ‘DYNM® PSEUDO-OP

BAD ARGUMENT ON SUBROUTINE (SUBR) STATEMENT
VFD PSEUDO-OP, 16 BITS NOT DEFINED
UNTERMINATED CHARACTER STRING

EXPRESSION OVERFLOW ON FLOATING PT NORMALIZE
EXPRESSION OVERFLOW ON FLOATING PT RE-NORMALIZE
SCALED BINARY LOSS OF SIGNIFICANCE

FLOATING POINT NUMBER OUT OF RANGE

BCI REPEAT COUNT ERROR

BCI COUNT VARIABLE TYPE ERROR

CALL CONTAINS CONSTANT OR TERMINATOR IN ADDR FIELD
COMMON (COMN) PSEUDO-OP HAS BAD ADDRESS FIELD
DEC, DATA, ‘DBP, HEX, OR OCT REPEAT COUNT ERROR
DEC/OCT PSEUDO OP HAS BAD OPERATOR

RLIT FOUND AFTER CODE HAS BEEN GENERATED

NO LABEL ON DFTB

4 - 11 February, 1977

SECTION 4

REV, A

MAN1879

321 MODE GENERAL REGISTER SPECIFICATION ERROR

PHASE ERROR

ILLEGAL ABSOLUTE REFERENCE IN SEG MODE

SEG MODE, ABSOLUTE REF NOT PERMITTED UNLESS @-7
AP/IP, RBSOLUTE REF INVALID

MORE THAN 1 EXTERNAL NAME IN AN EXPRESSION

INCORRECT' EXPRESSION MODE FOR GIVEN INSTRUCTION
EXPRESSION MODE ERROR

>1 OPERATOR NON-ABS/REL OR RIGHT-HAND OP NOT ABS/REL

EXTERNAL NAME NOT PERMITTED

MAN1879 PRfME MACRO ASSEMBLER (PMA)

A REGISTER (DETAILS)

Error Listing (Bit 2)

If this bit is set, only the lines containing errors are listed.
Otherwise, listing is controlled by pseudo-operations in the source
program.

Listing Control Override (Bit 3)

If this bit is set, the assembler overrides any listing control
pseudo-operations in the source program and lists all statements,
including lines within macro expansions and lines that would be skipped
by conditional assembly. Otherwise, listing is controlled by
pseudo-operations in the source program.

Expanded Symbol Table Area (Bit 7)

when bit 7 is set, the assembler uses the entire 64K virtual space for
symbol and macro storage during assembly.

NOTE
Bit 7 should be set only for a PRIMOS III or IV system.

Device Options (Bits 8-16)

The last three octal digits of the A Register select source, listing
input, and object output devices respectively, as shown in Figure 4-1.

4 - 13 February, 1977

MAN1879 FORTRAN COMPILER (FIN)

SECTION 5

FORTRAN COMPILER (FIN)

INTRODUCTION

This section describes the run and compile procedures for Prime’s Rev.
11 FORTRAN compiler.

prime ‘s FORTRAN IV Compiler processes source programs prepared in USA
Standard FORTRAN, as defined in American National Standard ANSI
X3.9-1966. In addition, many powerful extensions improve the
language ‘s usefulness.

The one-pass compiler operates in PRIMOS II, III, or IV environments.

The compiler produces highly optimized code and is supported by an
extensive library of mathematical functions and subroutines.

Object code generated by the compiler is in a format suitable for
loading by Prime 's Linking Loader or segmentation utility. Library
subroutines are in the same format. The FORTRAN compiler also

generates object code in segmented (64V) mode suitable for processing
by SEG on a Prime 400.

SOURCE PROGRAMS

Source programs must meet the requirements of the Prime FORTRAN IV
Language Reference Manual (MAN 1674).

A source program is typically prepared at a user terminal, using the

Prime text editor. It must be accessible in the users UFD under the
assigned filename.

OPERATION UNDER PRIMOS

The FORTRAN compiler is invoked by the FIN command to PRIMOS:

FTN Filename [1/A-register] [1/B-register]

The FIN command loads the compiler and starts compilation of an object
program by reading an ASCII source file, Filename, in the current UFD.

A- and B-Register Options

The A-register and B-register parameters control compiler functions
such as input and output device selection, listing detail, trace
enable, concordance enable, and others. The functions and default

5 - 1 February, 1977

SECTION 5 MAN1879

values are summarized in Tables 5-1 and 5-2 and described in detail at
the end of this section. Some common options are:

A-Register Option
1777 Lists errors on terminal and generates listing file

48777 Generates listing file that includes
symbolic listing

B-Register Option

10 List errors on terminal and create cross-
reference listing

400 Generate Prime 400 64vV-mode code

File Usage
Three files may be involved during a compilation:

File Type PRIMOS File Unit

Source 1l
Listing 2
Object 3

FIN will automatically open files for the listing and object output,
provided disk is specified as the destination for those files. The
names are formed by prefixing the first four letters of the source
filename with B<- for the object output file (binary file) and with L<-
for the listing outut. If the user prefers other names, he can used
the PRIMOS BINARY and LISTING commands to open files on units 2 and 3
before invoking FIN.

Opening File Unit 2 before the FIN command allows the listing output of
more than one source file to be concatenated, the file to be written in
other than the current UFD, and the filename to be other than L<-XXXX.
File Unit 2 is opened by usirg the PRIMOS LISTING command.

All file units opened by FIN are closed before FIN returns control to
PRIMOS. However, files opened by the user are not closed or truncated
by FIN.

ACTION OF COMPILER

The compiler does a one-pass compilation of the specified input file,
and generates object and listing outputs to the devices specified by
the A Register. A message is printed on the user ‘s terminal after each
END statement. The object file is in relocatable binary block format,

REV. A 5 - 2

Bit

8-160

11-13

14-16

MAN1879

FORTRAN COMPILER (FTN)

Table 5-1. Typical A-Register Default Values

ggtion

Special Library Compilation Flag

Symbolic Instructions

Error Listing Only

Global Trace

64R Mode

In-Line Desectorization
Print Errors at User Terminal

Select Source Device

Select Listing Device
[}
%}

Select Output Device

0

Default

February, 1977

SECTION 5 MAN1879

Table 5-2. Typical B-Register Default Values

Bit Option Default
8 Prime 406 Segment Addressing Mode]

10 Long Integers 2

12 Partial Concordance 2

13 Generate Concordance /]

15 Suppress Floating Point]

16 Flag Undeclared Variables]

REV. A 5 - 4

MAN1879 FORTRAN COMPILER (FIN)

The object output is campiled to run in 32R addressing mode unless bit
5 of the A Register is set, or bit 8 of the B Register is set.

COMPILER MESSAGES

When the compiler reads the END statement of the source program, it
prints a message and the version of the compiler on the user s

terminal. In PRIMOS systems, control returns to command level after
the last END statement. An end of file also terminates compilation.

The @@@¢@ ERRORS message indicates that the program has been compiled
without errors. If any errors are encountered, the number of ERRORS is
printed. If bit 7 of the A Register is set, error lines and error
messages are printed on the user terminal. Otherwise, the user must
print the listing file to find where the errors occurred.

5 - 5 February, 1977

SECTION 5 MAN1879

LISTINGS

Listing Options

Listings may be obtained at several different levels of detail.

To create a List File: an L<-File is created when the listing device
on the A Register (bits 11, 12 and 13) specifies the Disk.

Bits 2 and 3 of the A Register and the NOLIST, LIST, or FULL LIST

statements in a program determine the detail level of the listing.

To print a listing atthe user terminal rather than disk file or other
device, set A-register bits 14-15-16 to octal 1.

Figure 5-1 is an example of a full listing at the user terminal.

Compiler Error Messages

Coding errors and misprints are flagged on the listing by a line
containing a set of asterisks (to attract attention) and an error
message containing the source context at the point the error was
detected. Error messages are self-explanatory text comments.

The following example contains one error. The error is denoted by four
asterisks followed by the line number and the context when error was
detected. (The expression in a computed GO TO statement must yield an
integer result).

Example:
SLIST POO
@
314 X=48
B=I*5
C=5-1
I1=3

20 GO TO (196,31@,3208),X
320 A=B + C

100 Y=A*X
WRITE (1,110)Y
110 FORMAT (I5)
CALL EXIT
END

OK, FIN POO

€] C

(0006) 320 A=B + C

**%x* LINE 0005 [310,320),X] DATA MODE ERROR
0001 ERRORS (FIN=1082.L13)

REV. A 5 - 6

FIN POO
(e o)

310 X=48
(9001) 310
(0902)

(0003)
(0004)
(0005) 20

(0006) 320

(0007)

(0908)

(8009) 100
(0819)

**x%% [,INE 9010
(Pg11) 110
k% [INE 0011
(8012)

(9013)

(0014)

000041:
000042:
000042:
000043:
000044:
0000844
000045
000046:
000046 :
000047
000050 :
000050
000051:
000051 :
900052:
000053:
000053:
000054:
008054
200055:
000055:
0200056
200041 :
**%%x LLINE 0011
**xkk [, INGOOB22:
000001:
000030

1/40717

X=48
B=I*5
C=5-1
I=3

MAN1879 - FORTRAN COMPILER (FTN)

GO TO (10¢,310,320),1

A=B + C
I-1

GO TO 20
Y=A*X

WRXTE (1,

[WRXT)

119)X
UNRECOGNIZED STMT

FRMAST (I5)

[FRMA]

UNRECOGNIZED STMT

FULL LIST
CALL EXIT

END
JST
LINK
ocT
OCT
LINK
OCT
OCT
LINK
oCT
OCT
LINK
OCT
LINK
OCT
OCT
LINK
oCT
LINK
OCT
LINK
oCT
OCT
DAC

[END]
[DAC]
DAC
DAC

EXIT
A
000000
200000
B
000000
200000
C
000000
000000
I
200080
X
000000
000000
=3
000003
=5
000005
=24576
060080
000206
190
T 119 - UNDEFINED STMT NO.
_2010 - UNDEFINED STMT NO.
~310
320

0003 ERRORS (FIN-1082.L13) @003 ERRORS (FIN-1082,L13)

OK,

Figure 5-1. FULL LIST Example

February, 1977

SECTION 5 MAN1879

LIBRARY ERROR MESSAGES

During program execution, certain library subroutines may detect error
conditions and invoke printing of an error message through the PRIMOS
error message facility. All error codes are self-explanatory text
messages and include the name of the subroutine fram which they
originate.

TRACE PRINTOUTS

At object program run time, any trace coding inserted by the compiler
causes a line to be typed consisting of a variable name, an array name,
or a statement number, followed by an equal sign, followed by the
current decimal value assigned to that name. The decimal value is
typed in INTEGER, FLOATING POINT, or COMPLEX format. See Figure 5-2
for sample lines of trace information as typed at object run-time.

REV. A 5 - 8

MAN1879 FORTRAN COMPILER (FTN)

FIN PRIME 1/11707

GO
0000 ERRORS [<.MAIN.>FTN-REV13.1]
OK, LOAD
GO
$ 1O B_PRIME
$ LI
IC
$ SA *PRIME
$ EX
FOLLOWING IS A LIST OF PRIME NUMBERS FROM 2 TO 50
2 .
3
5
7
= 3
(2)
11
(4)
= 3
(2)
13
= 6
(4)
= 6
(2)
(2)
47
(4)
= 7

THIS IS THE END OF THE LIST

* ke ke kG

CK,

Figure 5-2. TRACE Example

5 - 9 February, 1977

SECTION 5 MAN1879

A REGISTER DETAILS

The A Register provides a variety of FORTRAN options, as defined in
Figure 5-3.

when new values are required, use the following FORTRAN compiler
command with option:

FTN Filename [1/Areg]
where Filename is a FORTRAN source program in the current UFD, and Areg
is an A Register setting that specifies listing detail and input/output

devices.

Input and Output Device Options (Bits 8-16)

The normal input and output device is disk. However, other devices can
be specified using the A-Register bits 8 through 16, when the system is
configured to include other devices such as the mag tape and line
printer.

Listing Detail Options (Bits 2, 3)

The listing detail options are selected using bits 2 and 3 as follows:

A Register

Bit 2 Bit 3
LIST (source statements) 2
W/LINE NOS. and error messages)
NO LIST (error messages %] 1

only)
FULL LIST (Assembly 1 (]
Language type

listing plus
source statements
and error messaces)

Bits 2 and 3 have no effect unless bits 12 through 13 are used to
specify the output device for the listing file.

REV. A 5 - 10

MAN1879 FORTRAN COMPILER (FIN)

DEVICE OPTIONS

1 = IN LINE DESECTORIZATION 9 = NONE
1 = USER TERMINAL
2 = PTR/PTP
3 = Reserved for CARD READER/
PUNCH
4 = Reserved for LINE PRINTER
5 = Reserved for MAGNETIC TAPE
1=FORCE 6 = Not used
GENERATE ERRORS 7 = DISK (FILE SYSTEM)
ONLY LISTING
1=INCLUDE
SYMBOLIC
INSTRUCTIONS
IN LISTING
SOURCE LISTING OBJECT
INPUT OUTPUT OUTPUT
DEVICE DEVICE DEVICE
Vo ~ \
|LC |SY |EOLITR |64R|ILDIAS | SOURCE | LISTING | OBJECT |
1 2 3 4 5 6 7 8 9 16 11 12 13 14 15 16
SPECIAL 1=PRINT ERRORS ON USER TERMINAL
LIBRARY
COMPILATION 1=COMPILE IN 64R MODE
FLAG

— 1=GLOBAL TRACE

Figure 5-3. Compiler A Register Settings

5 - 11 February, 1977

SECTION 5 MAN1879

Printing Errors at a User Terminal (Bit 7)

The normal system (default) allows each statement containing an error
to be printed at the user terminal. This feature is especially useful
when a corrected program is being recompiled, to confirm that the
errors have been corrected properly.

Library Mode Flag (Bit 1)

When the Library Mode Flag is set, certain statements and program
formats that would normally be flagged as errors are permitted. It
also causes reinterpretation of some statements. This bit is used on
the compilation of some Prime-supplied software and is not recommended
for general use.

Global Trace (Bit 4)

When this option is selected, a trace printout is generated at all
assignment statements and at every statement number in the program
unit. The global trace option affects only the program unit being
campiled. It has no effect on other program units in the same
executable program.

Utilizing 128K Bytes of User Space (Bit 5)

64K bytes of user space is available to each FORTRAN user under the 32R
mode (default). This means that if the main program, subprograms, ,
all local storage, the library routines, and the common blocks all
require a sum total of less than 64K bytes, the 32R mode default is
sufficient. However, a larger user area can be utilized when required
by setting bit 5 of the A Register (64R mode) when compiling the main
programs and all subprograms. The MODE command in the LOADER utility
must also be used to change load mode to 64R. This assures the user
128K bytes of user space.

Generally, it can be determined if the 64R mode must be selected by
looking at the storage areas. Each area requiring space such as the
common blocks can be examined. If the common blocks require more than
64K bytes, then the 64R mode decision is obvious. For example, if it
is on the boundary and a load is attempted resulting in an overflow, it
is likely that the addresses for the common are overlapping the program
area.

Reducing Sector Zero Requirements of a Large Program (Bit 16)

In-Line Desectorization (bit 6) when set, reduces the sector zero
requirements of large programs. The compiler generates double-word
memory reference instructions and uses the second word as an indirect
link for all references to the same item within the relative reach.

Use of this option reduces sector zero usage by 70 to 84. Programs
campiled with this option can be loaded only in the relative addressing
modes (a loader NS diagnostic is generated if an attempt is made to

REV. A 5 - 12

MAN1879 FORTRAN COMPILER (FIN)

load in a sectored addressing mode).

5 - 13 February, 1977

SECTION 5 MAN1879

B REGISTER DETAILS

Additional options are available through the octal value of the B
Register (see Figure 5-4 and Table 5-2). These include: 64V mode,
32-bit integer, full concordance, suppresing floating-point skip
instructions, flagging undeclared variables, etc.

FIN Filename 1/Areg Breg
or
FIN Filename 1/Areg 2/Breg
or
FIN Filename 2/Breg {(Default Areg is used)

Utilizing Segmented Addressing Space (Bit 8)

When large programs require more than 128K bytes of user space, any
Prime 400 (or higher) system allows a FORTRAN program to run by
providing a user area up to two megabytes long. This is called the 64V
mode and is selected by setting bit 8 in the B Register (see Figure
5-2) .

When bit 8 is set, software features allow FORTRAN programs of up to
two megabytes long (15 segments of 128K bytes) to be executed under
PRIMCS 1V.

Each common block can be up to 128K bytes long. The local sum of
storage (local variable, arrays, indirect pointers) of any program unit
(Main program or subprogram) can be up to 128K bytes.

NOTE

—————

The size restriction on COMMON blocks (128 bytes) and total
program size (15 segments) are limitations of REV 11 software.
These size restrictions will be eased on later revisions,

The LOAD utility and load modes are dictated by the options selected at
campile time, as shown in the following table:

UTILITY COMPILER OPTION LOAD OPTION
LOAD 32R (default) 32R
64R 64R, 32R
SEG 64V 64V

Any PRIMOS system can use either the 32R or 64R addressing mode. Only
a Prime 409 (and up) can have 64V addressing mode.

REV. A 5 - 14

MAN1879 FORTRAN COMPILER (FTN)

Long Integer (Bit 10)

The normal INTEGER data type in PRIME FORTRAN is a 16-bit word. A
32-bit INTEGER data type is available through use of the INTEGER* 4
type statement.

The long integer default bit is used to ease conversions of Fortran
programs to PRIME computers. When this bit is set all variables,
arrays, and functions explicitly or implicitly as INTEGER will be
32-bit INTEGER. Additionally, all integer constants will be treated as
32-bit integers. Only those names appearing in INTEGER*2 type
statements will be 16-bit integers.

The 32-bit integer has a greater range than the 16-bit integer (2, 147,
483 vs 32,767). The 32-bit integer hs the same storage requirement as
the REAL data type.

WARNING:

FORTRAN requires that the type of actual argument in a
function reference or CALL statement must agree with the
corresponding dummy argument in the referenced subprogram.
Note that a subprogram expecting a long integer must NOT be
called with a short integer (and vice versa). Most
Prime-supplied subroutines expect short integer arguments.
Care should be taken when calling these routines (e.g.,
SEARCH) in a program compiled with the LONG INTEGER default
option.

Example:
CALL SEARCH (INTS(1) °‘FILENM ,INTS(1)

INTS is a built-in function that connects its arguments to a short
integer. If the INTS are omitted, the integer constants are compiled
as long integers, providing B Register bit 18 was set during
compilation.

Suppressing Floating Point Skip Instructions (Bit 15)

The compiler will generate instructions from the floating point skip
set when testing the result of a floating-point operation. This may be
suppressed by setting bit 15 in the compiler ‘s B Register setting when
campiling for machines that do not have the floating- point option
(programs will still execute on such machines even if.the bit was not
set; the UII time will just be higher). :

5 - 15 February, 1977

SECTION 5 MAN1879

1 = SUPRESS GENERATION OF
1 = 64V MODE FLOATING POINT SKIP
INSTRUCTION

\ \J
Lt b 111 | 164Vl |LI | |PC |CON| INFPIFUV |

1 2 3 4 5 6 7 8 9 19 11 12 13 14 15 16

! |

1 = LONG INTEGER

1 = PARTIAL CONCORDANCE

1 = INVOKE CONCORDANCE~——————- 1 = FIAG
UNDECLARED
WHEN SET VARIABLES
NOTE

The default B-Register is @.

Figure 5-4. Compiler B-Register Setting

REV. A 5 - 16

MAN1879 FORTRAN COMPILER (FTN)

Flag Undeclared Variables (Bit 16)

1f bit 16 in the compiler ‘s B Register is set for a compilation, the
compiler will generate an error message when a variable is used in the
program, but not included in a specification statement. The message
will be generated once per undeclared variable.

Concordance (Bits 12, 13)

A concordance (symbol cross-reference) can be added to the listing
under control of B-register bits 12 and 13:

Bit 12 Bit 13 Selected Option

0 0 No concordance
] 1 Full concordance
1 1 Partial concordance

The partial concordance does not include symbols that are referenced
only in specification statements.

5 - 17 February, 1977

MAN1879 PRIME COBOL COMPILER

SECTION 6

PRIME COBOL COMPILER

COMPILATION
When it is desired to compile a COBOL program, the user simply types

in:
COBOL Filename

Filename is a COBOL source file in the current UFD. The result of this
command will be the creation of two new files:

L<-XXXX (COBOL listing file)
B<-XXXX (COBOL object file)

L<-XXXX is a listing file containing the COBOL source with line numbers
followed by an error list for the compilation.

B<-XXXX is a binary file suitable for loading by the system and
subsequent execution.

XXXX are the first four characters of Filename.

LOADING

Loading of Prime COBOL programs for execution utilizes the output from
the COROL compiler and the Prime Linking Loader.

The commands are:

Indexed and Relative (MIDAS) Sequential (Non-MIDAS)

HILOAD LOAD

MODE D64R LO B<-XXXX -
LO B<-XXXX : LIB COBLIB

AU 20 LIB FTNLIB

LIB COBKID : SAVE *XXXX

LIB FTNLIB QUIT

SAVE *XXXX '

QUIT

Either of these command sequences invokes the Prime Linking Loader,
loads the binary file, ties in the necessary files from the UFD LIB,
and saves the memory image. The Loader creates an executable (saved
memory image) file. If the program is large, set MODE to D64R after
invoking the Loader and use the AU command following the loading of the
binary file. Refer to the Loader utility in Section 7.

6 - 1 February, 1977

SECTION 6 MAN1879

EXECUTION
Execution of a COBOL program is initiated with the command:
R *XXXX

where *XXXX is the name of the file containing the saved memory image
from the loading process. Upon execution of this command, the user
will be asked questions regarding run-time file assignments.

The program will ask:
ENTER FILENAME AND UNIT

The proper response is to give the name of the file, as stated in the
VALUE OF FILE-ID clause in the FILE DESCRIPTION, followed by a file
system treename or a magnetic tape descriptor.

For example, suppose that in the COBOL program the following statements
existed:

FD TEST-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS FILE]l
Then the proper response would be:

ENTER FILENAME AND STANDARD
>FILE=PETERS>T1

>FILE1=$MI'1,S,T1,000001

The first statement will go to a UFD named PETERS and use a file named
Tl as input to TEST-FILE in the program.

The second statement requires magnetic tape unit number one to be
assigned and the tape mounted that contains TAPE-ID of Tl and a volume
serial number of 000001.

A COBOL utility program, CMSL, will do all the pre-screening of the
files and display the character >, as a prampt character waiting for
more input. When no files remain to be entered, the single character /
will conclude CMSL. Execution of the program will start, using the
files that were previouslv entered.

CMSL will display the followirg error messages:
FILENAME TOO LONG (no equal sign found)
INVALID TREE SYNTAX (see allowable format)

NO FILE NAME ENTERED (equal sign with no file name)
INVALID TAPE UNIT (format did not contain MTX)

REV. A 6 - 2

MAN1879 PRIME COBOL COMPILER

NO TAPE NAME ENTERED (standard label specified)

INVALID STANDARD/NON LABEL (not S or N)
TAPE NAME GREATER THAN 17
TAPE NUMBER GREATER THAN 6

DISK FILE ASSIGNMENT

The procedure for assigning a disk file follows the rules of tree
names. For additional information about treenames, refer to the FUTIL

section of the PRIMOS File System Users Guide.
Format :

|Ufdname [Password] [Logical-disk-number (octal)] > Filename|
FILE-ID= |* > Filename |
| Filename [
|Volumename > Ufdname [Password] > Filename |
MAGNETIC TAPE FILE ASSIGNMENTS

The format of magnetic tape file assignments is:

FILE-ID=$MTIn, |N | ,Tape-number

Where SMTn is a 9 track drive number.

N specifies no label information.

S specifies the tape contains
standard labels and is
pre~numbered.

Tape-id is a 1 to 17-character field.

If the tape is being read it is compared to the ID
on the tape. If the tape is being created

it is written into the label of the

tape. The label variable must

be specified as S.

Tape-Number is a 6-character field which is
checked at open time when
reading a tape, and is not needed
when creating a tape. ‘

6 - 3 February, 1977

MAN1879 LINKING LOADER (LOAD)

SECTION 7

LINKING LOADER (LOAD)

INTRODUCTION

This section defines Prime ‘s linking loader and provides user
instructions and diagnostic information up to and including Rev.

FEATURES

Prime ‘s linking loader offers the following features:

11.

1. The loader is capable of loading code anywhere in 64K, above or

below itself or COMMON (except on top of itself!).

2. The location of COMMON is movable by a keyboard command.

3. An indefinite number of base areas can be specified; the

loader automatically uses the first available area which can be

reached, in preference to the sector @ linkage area.

4. The user can specify the instruction execution hardware

available in the CPU on which the loaded program will execute.
This is coordinated with the UII object blocks in load modules

so that the proper UII library routines will load
automatically.

5. Partial or full load maps can be displayed on the user terminal

or written to a disk file.

Overview

The function of the Linking Ioader is to combine into an executable

program, a number of program units or subroutines that have been

independently compiled. Some of the subroutines may have been held in

a library; the linking loader provides the facility for automatic

incorporation of any library subroutines that have been referenced in
the main program, as well as resolving the cross-references between

them.

7 - 1 ' February, 1977

SECTION 7 MAN1879

Desectorization

The loader performs a function during loading called desectorization.
The need for this function arises because one-word memory reference
instructions cannot directly reference all of memory. The loader
compensates for this by generating a pointer to the operand in a base
area and then modifies the instruction to reference through the
pointer.

The pointer default base area is from memory location ‘200 to "777.
For many programs, this area will be sufficient. However, for larger
programs this area might be inadequate. The loader has a number of
commands to enlarge the default base area and create local base areas.

The base area below location 1060 can be used to desectorize any
instruction, no matter what its location. Iocal base areas (above
location ‘1000) can be used only to desectorize instructions in a
window around the local base area. The window extends approximately
‘400 locations above and below the base area. (See Figure 7-1).

The loader uses local base areas when possible in preference to base
area below location ‘10P@. The location in base areas used by the
loader are not available for any other use during program loading or
execution.

USING LOADER UNDER PRIMOS

All loader functions are available through user terminal keyboard
commands. When the the LOAD command is typed, the linking loader is in
command; the loader prints the "$" prompt character on the user
terminal and awaits a command line.

Example:

LOAD
$

The § prompt character means that the loader is in command mode until a
QUIT cammand is received. Each prompt character may be followed by a
Toader command, according to the command definitions.

When a system error is encountered, on disk access, the loader will
print the system errc: and return to its command request symbol ($).

REV. A 7 - 2

MAN1879 LINKING LOADER (LOAD)

Initial location of * PBRK

g

Area

File Length

Location of * PBRK at end of load

|
|
|
|
|
|
|
|
|
|
|
|
Base Area |
|

Location of * PBRK for start of next load

Figure 7-1. FO and IO - Base Area Orientation

7 - 3 February, 1977

SECTION 7 MAN1879

NOTE

The loader also accepts commands from a command file.

COMMAND DEFINITIONS

Each loader command consists of a command name followed by a series of
arguments in the same format as the PRIMOS command line:

COMMAND Namel Name2 Argl Arg2 . . .Argn

where COMMAND is the command name, each Name is a text string which may
be a PRIMOS filename or UFD name, and each Arg is an octal argument
(numeric only) of up to six octal digits. Command names may be
abbreviated to two characters. Arguments are separated by spaces. Up
to three alphanumeric fields (non-numeric first) and nine (numeric
only) arguments are allowed. In some cases, it is possible to omit
arguments. The kill (?) ard erase (") are supported.

SUMMARY AND INTRODUCTION TO COMMANDS

The commands are summarized below and described in detzil in
alphabetical order following the summary.

Command Function

ATTACH Attach to different Ufd

AUTOMATIC XXXXXX .Autornatic generation of Setbase areas
* Comment line

COMMON Relocate common address

EXECUTE Direct program execution

HARDWARE Hardware definition

INITIALIZE Reinitialization

LIBRARY I.oéds library files

REV. A 7 - 4

Lonb

MAP

MODE
SAVE

SETBASE

MAN1879 LINKING LOADER (LOAD)

Loads object files

[oad state map

Select addressing mode
Saves loaded memory image

Defines a new linkage area

VIRTUAL BASE Controls the deletion of symbols

February, 1977

SECTION 7 MAN1879

ATTACH [Ufd] [Password] [Ldisk] [Key]

Attaches to different UFD’s. This command is converted into a CALL to
the PRIMOS subroutine ATTACH and has exactly the same effect.

Ufd: Any User File Directory. However,the user attached is
to the home Ufd when no Ufd name is specified.

Password: The user gets owner status if he gives the owner password
and nonowner status if he gives a non-owner password.
The password parameter is necessary only when the UFD is
password-protected.

Idisk: If the Idisk parameter is omitted, the loader searches
only device @ for the specified UFD. If an Ldisk value
of ‘100000 is specified, the loader searches all started
devices in logical unit order.

Key: The values for Key most likely to be useful during
loading are:

Do not change home UFD.
1 Adopt named UFD as hame UFD.

2 Attach to a subUFD in the current UFD;
do not set as home.

3 Attach to subUFD in the current UFD;
set as home.

AUTOMATIC XXXXXX

Causes the loader to insert a base area of length XXXXXX whenever the
loader detects the end of a routine and more than 380 (octal) locations
have been loaded since the last base area was inserted.

The value of XXXXXX may be changed between load files. This autamatic
feature may be turned off with an AU @ command.

AUtomatic helps to reduce the number of loads which run out of Sector @
link space, by instructing the loader to insert linkage areas
autamatically.

REV.A 7 - 6

MAN1879 LINKING LOADER (LOAD)

: Comments

Comments may be included in a command file when an asterisk preceeds
the comment. This line is not processed by the loader.

Example:

* COMMAND.FILE.TO.LOAD.THE, LOADER
FILMEM

* INVOKE.OLD.LOADER.

LOAD

SLO B<-LOAD 174000

$SA HILOAD

g* NOW.USE . NEW. TO. CREATE . NEW. LOAD
EX

$* NOW.WE.ARE.IN,HILOAD

$LO B<- LOAD 60000

$SA LOAD

$QU

NOTE

The <- (left arrow) is used in place of the left arrow which
was not available on the printer terminal.

COMMON Address

Moves the top or starting location of FORTRAN-compatible COMMON to the
address specified. Space for COMMON items is allocated downward from
but not including the starting location.

The top of COMMON is the last location used for COMMON by the loader.
The default COMMON load address is the last location in the last loader
sector. This means, for example, that the top of COMMON for LOAD is
63777 (for HILOAD, it is 177777).
NOTE
To specify a COMMON load point, (top or starting location) give
the location desired + 1. For example, CO 40008 specifies 37777

as the top location in COMMON. This is for compatibility with
previous releases of the LOADER.

7 - 7 February, 1977

SECTION 7 MAN1879

EXECUTE [Aregq] [Breg] [Xreg]

Enables the user to start execution of the loaded program with optional
values preset into the A, B, and X registers. Execution starts at the
location specified by the START entry of the load map.

FORCELOAD Filename [Loadpoint] [Base-start] [Base-range] (Format 1)
or
FORCELOAD Filename * Prebase Filesize Postbase (Format 2)

Same as LOAD but Filename is loaded unconditionally. However, all
subroutine references must be satisfied.

HARDWARE Definition

Defines the instruction execution hardware of the CPU on which the
removed from the UII requirement. The Definition parameter is one of
the following octal values:

CPU Definition

P40p 17
P300/FP 17
P300
P200/HSA
P100/HSA
P20¢
P109

VWS W

FP: with optional floating - point. HSA: with optional high ~ speed
arithmetic.

PMA and FIN both output an object group which informs the loader of any
need for high-speed arithmetic, floating point, etc., in a given
module. The object group contains one data word, in the same format as
the loader ‘s HARDWARE command argument. The loader maintains an
internal summary of UII requirements for all modules loaded, for
camparison with the user ‘s hardware definition (if any).

Example:

HA 3
The 3 selects a Prime 3@@ without floating-point.

In the event that a program requires hardware which is not present in
the user “s system, these outstanding nardware requirements may be
satisified by the command, LI UII, which should be the last LOAD
command before the program is saved. The appropriate routines will be
selected from this library to satisfy the additional hardware
requirements of the program.

REV. A 7 - 8

MAN1879 LINKING LOADER (LOAD)

The user may determine whether it is necessary to load the UII package
by examining the value for *UII in a Load Map.

INITIALIZE [Filename] [Other Options]

Initializes the loader and then optionally performs the same actions as
a LOAD command. In the loader s initialized state, the load state
parameters (Table 7-1) return to their default p values. If no
Filename is provided, the loader repeats its prompt character (§).

Other options: Refer to the loadpoint, linkstart and linkrange options
available under the LOAD command.

LIBRARY [Filename] [Loadpoint]

Temporarily attaches to the LIBRARY UFD, loads from the specified
filename, and returns to the original UFD. Loadpoint is an optional
starting address. If no Filename is provided FINLIB is loaded by
default, .

LOAD Filename [Loadpoint] [Base-start] [Base-range] (Format 1)
EQAD Filename * Prebase Filesize Postbase (Format 2)
Format 1

Loads the specified object file (Filename) into memory starting at at
loadpoint or, if loadpoint is omitted, at the current *PBRK location.
Base-start and Base-range define a base area as in a SETBASE command.
when loading is camplete, *PBRK points to the location following the
highest location used by the object file.

Default Load Parameters

If the load parameters are not assigned by the command string, the
following default values apply:

Ioadpoint *PBRK (initially °1000)
Base-start 200
Base-range ‘600

" NOTES

1. 1If all of the symbols in the load module have been previously
defined, the loader skips the module. A load module is
defined to terminate with an "END" statement. To force load
a module which contains only previously defined symbols, use

. FO Fname. The FO command will ensure loading of the first
module in an object file.

7 - 9 . February, 1977

SECTION 7 MAN1879

2. Since the campiler (e.g., FORTRAN, COBOL) converts the
program to binary format, a new name (e.g., B<-MUX) is
created by the compiler. This binary version must be
specified in the LOAD command.

Example:

A FORTRAN program called MUX when compiled would be converted to binary
format and assigned a name of B<-MUX. The programmer loads this
program as follows:

OK, LOAD

$ LO B<-MUX
STT
IC

$

Format 2
Loads the specified object file (Filename) and defines a base area
before and/or after the loaded file (see Figure 7-1). The current

*PBRK is used as the first location for this operation.

Prebase is the length of the base area that is to precede
the file to be loaded (X may be zero).

Filesize is the length of the file to be loaded (in octal).

Postbase is the length of the base area to follow
the loaded file.

MAN1879 LINKING LOADER (LOAD)

If Postbase is zero, there will be no terminal setbase area. The
loader remembers the location of the end of the second setbase area.
Before loading the next object file (if any), PBRK is left unmodified
so that the programmer may easily verify that the specified length of
the object file is correct. The next module, however, will be loaded
after the terminal setbase area (if any).

The loader ‘s remembered PBRK may, of course, be overridden by a regular
IO command for the next object file.

MAP [Filename] [Option]

Lists a load map. Filename is the name of the map file to be opened,
and Option is an octal value that selects one of four map options. The
loader will close the map file if it opened it. 1In any case, the map
file is truncated.

Option
Number
None Ioad state, base area, and symbol
storage map
1 Load state only
2 Load state and base area
3 Unsatisfied references only

MAP Option 1 - Load State Map

The load state map identifies the lowest and the highest storage memory
location, the location at which the program execution will begin, the
next location available for loading, the high and low common area, the
lowest location used by the symbol table, and the net hardware UII
package requirement.

These eight parameters are printed in the load state map with a
corresponding storage address. (See Table 7-1.)

7 - 11 February, ,1977

SECTION 7 MAN1879
Table 7-1. Load State Definition
Parameter Definition Default
*LOW The lowest location in memory loaded 177777
*HIGH The highest location in memory loaded)
*START The location at which execution will begin)
*PBRK The next location in memory to be loaded 1000
*CMLOW The lowest location in COMMON XX777
*CMHIGH The highest location in COMMON XxX777
*SYM The lowest location used by the symbol table YY000
*UII The net hardware/UII package reguirement 7}
(see HARDWARE ccmmand for meaning)
NOTE:
XX = Last Sector in loader
Occupied by ILoader
YY = First Sector
Occupied by Loader
Example:
OK, LOAD
e o]
$ LO B<-FTND
sIT
IC
SMA 1
*START 001000 *LOW 000074 *HIGH ©07277 *PBRK 007360
*OMLOW 063753 *CMHGH @063753 *SYM 957331 *UII 000015
$HA1
$MAl
*START 001000 *LOW 900074 *HIGH 907277 *PBRK 007300
*OMLOW 063753 *QMHGH 063753 *SYM 057331 *UII 000014
REV. A 7 - 12

MAN1879 LINKING LOADER (LOAD)

MAP Option 2 - Load State Map and Base Area Map

The base area map includes the lowest and the highest locations and the
next available locations. Each line contains four addresses as
follows: '

*BASE XXXXXX YYYYYY 2222227 WWWWWIW

XXXXXX = Lowest location defined for this area

YYYYYY = Next available location if starting up
from XXXXXX

27227227 = Next available location if starting down
from WWWWWW

WWWWWIW = Highest location defined for this area

The base area map includes a load state map

MAP Option Number Omitted - Full Map

A full map contains all components of a load map including a full
symbol storage listing.

The symbol storage listing consists of every defined label or external
reference name printed four per line in the following format:

Namexx NNNNNN
or

Namexx NNNNNN**
was referenced)

NNNNNN is a six-digit octal address. The ** flag means the reference
is unsatisfied (i.e., has not been loaded). Every map begins with a
reference to the special FORTRAN array LIST, which is defined as
starting at location 1.

Examgle:

This example illustrates how the loaded memory image can be stored as a
file (RUNFIL) in the UFD, and a map saved to a file MAP].

7 - 13 February, 1977

SECTION 7

Load State Map 1

OK, LOAD

Q@

$ LO B<-SIMP

$ IT
C
SMA 1]
*START
*CMLOW

001000
063777

*LOW
*CMHGH

000200
063777

Load State and Linkage Area Map

MAN1879

*HIGH
*SYM

$ MA 2
*START
*CMLOW

*BASE
*BASE
*BASE
*BASE

001000
063777

000200
001527
0902515
003404

*LOW
*CMHGH

000220
901571
082557
003427

000200
063777

000777
901570
002556
003434

Unsatisfied References Only MAP

*HIGH
*SYM

000777
001570

002556
083435

3

SMA 3 (No unsatisfied references, therefore no printout)

006512
957401

006512
057401

*PBRK
*UII

*PBRK
*UII

Load State, Linkage Area and Instruction Storage MAP 4

$ MA
*START
START

*BASE
*BASE
*BASE
*BASE

LIST
F$Al
F$A6
FSHT
AC4
IOCSST
LUTBL

REV. A

001000
963777

000200
081527
002515
003404

000001
001501
001512
004767
005052
005160
005256

*LOW 000200
*CMHGH 063777
000220 000777
901571 001570
902557 002556
003427 003434
FSWA 201020
F$A3 901501
FSCB 002034
AC1 005047
AC5 905853
FSAT 805172
PUITBL 005313
Figure 7-2.

*HIGH
*SYM

000777
001570
902556
003435

FSWX
FSA2
FSIOBF
AC2
WRASC
F$AT1
RSTBL

006512
057401

001026
001505
004660
005059
005054
995174
005350

*PBRK
*UIl

F$I0
F$AS
FSER
AC3
I0CS$
WATBL
0$AD@7

Storage MAP Example

006513
900001

006513
000001

006513
000001

001102
001505
004762
0050851
085061
095237
005405

MAN1879 LINKING LOADER (LOAD)

OK, LOAD

0

$ LO B<-SIMP
$ L

IC

SMA MAP 1
$SA RUNFIL

$ EX

TEST MESSAGE

Filename RUNFIL is now stored in the current UFD and filename XX
contains the MAP.

MODE parameter

Directs the loader to desector in one of the five CPU addressing modes:

Parameter Addressing Mode

D16S 16K Sectored

D32s 32K Sectored

D32R 32K Relative (default value)

D64R 64K Relative

D64V 64K Virtual (executable on P-400 only)
N,
NOTE

The mode command is used when an addressing mode other than
32k relative is required.

The mode set by this command may be overridden by mode control
pseudo-operations in the object text., If the program contains an ELM
(Enter Loader ‘s Addressing Mode), this command enables the user to
select the addressing mode at load time.

7 - 15 February, 1977

SECTION 7 MAN1879

QUIT

Returns to the operating system command level with the user attached to
the home UFD or the last UFD specified in an ATTACH command. If the
loader has opened a MAP file, it is closed and truncated at this time.

SAVE Filename [Aregister] [Bregister] [Xregister]

Saves the loaded memory image from *LOW to *HIGH, including all
initialized COMMON areas, under the name Filename in the current UFD.
Also saved with the program are the low, high, start, and keys
parameters obtained from the loader (there is no option to set them).

OK, slist xx

GO

*START 0010900 *LOW P00209 *HIGH 006603 *PBRK 006604
*CMLOW 063777 *CMHGH ©63777 *SYM @#57374 *UII poGoB1

SETBASE | Base-start | Base-range
I * (

Defines a base area that begins at Base-start and includes the number
of locations specified by Base-range. If the range is not specified,
the end of the area is location “777 of the sector containing the
Base-start location., Multiple Base areas are allowed. A command to
create a linkage area that overlaps a previously defined area is
ignored.

The user may wish to increase the size of the sector zero base area by
the conmand: SE 100 at the start of his load session. The beglnnlng
of the sector zero base area should not be made lower than °100.

The default valuves are:

Base-start ‘200

Base-range ‘600
Base-start can be set at the current location by effectively defining
Base-start as "*". The command SE * will tguse the creation of a
setbase area of the specified length to be inserted at the current
location. Thus, if PBRK (Base-start) is 1765, the command SE * 20 will

create a setbase area of length 20 at 1?65 and the PBRK will be set at
2085 after the command has been executed.

REV. A 7 - 16

MAN]1879 LINKING LOADER (LOAD)

VIRTUALBASE Base-start To-sector

Copies the base sector (from the Base-start location to the end) to the
corresponding locations of To-sector. This command is intended for use
in building RTOS modules using dedicated sector zero or base sector
relocation.

XPUNGE Dsymbols Dbase

Delete COMMON symbols, other defined symbols and base areas. Dsymbols
controls the deletion of symbols as follows:

Ds 1s

@ causes all symbols except undefined
symbols to be deleted.

1 causes all symbols except undefined
symbols and symbols for COMMON areas to be deleted.

Dbase controls the deletion of base areas;

Dbase

P deletes all defined base areas
from the symbol table.

1 deletes all defined base areas except
sector zero base areas.

2 retains all defined base areas
NOTE

When a symbol is defined at any time as in COMMON, the entry
in the symbol table will appear as a COMMON symbol.

7 -17 February, 1977

SECTION 7 MAN1879

LOADER MESSAGES

After executing a command successfully, the loader types the $ prompt
character. Under some circumstances, one of the following messages may
be printed. (Note that the MR message of previous loader versions is
no longer issued.)

Message Meaning
LC Load complete, All external references are satisif
ied.

(This does not imply satisfaction of all UII
requirements,)

Error Messages

Message Meaning

CM COMmand error. 1Illegal command format or non—
existent filename specified.

GT Group Type error. The loader has encountered an
unrecognizable piece of object text. ILoading is
discontinued.

MI XXXXXX Multiple Indirect. While linking in 64R mode,

the loader attempted to add indirection to an
already indirect instruction at location xxxxxx.
The contents of xxxxxx are the proper flag, tag,
and op code with an address of zero. ILoading
continues.

The source module is not an object file (output of
FIN, PMA, etc.) or is a P400 object file.

MO Memory Overflow Errors

As users * programs become larger MO (memory
overflow) errors become more common. This section
contains a description of the several causes of
these errors and suggested solutions to these
causes,

When an MO error occurs, the user should do a ‘MA
2° and examine the map for the following possible
situations:

a. The address of the bottom of the symbol table
(*SYM) is at or close to PBRK. This indicates
that there is not enough room below the loader for
the whole program. HILOAD will probably solve the
problem - assuming the user is not already using
HILOAD.

REV. A 7 - 18

OR

NS

N6

MAN1879 LINKING LOADER (LOAD)

b. The sector zero base area is full - the next
free location is ’1008. The size of the sector
zero base may be increased by a SETB ‘10@ command
at the beginning of the load - if locations 100 to
200 are free - or an AU command may be used to
insert base areas throughout the load.

C. *CMLOW is near *PBRK. COMMON should be moved
to higher memory using the COmmon command. If
COMMON must be moved above 10000¢, it may be
necessary to recompile or reassemble the load
program in 64R mode and the program load must
begin with a MO D64R command.

d. None of the above. The user ‘s program
requires initialized common. Common is usually
defaulted to overwrite the space used by the
Loader. Those locations between the bottom of the
symbol table and the top of the Loader cannot be
initialized as this would destroy the loader. The
solution is to use a CO(mmon) command to move
COMMON out of the way of the loader. Possibly the
user will want to use HILOAD to permit COMMON to
use the locations normally used by the Loader.

Out of Reach. An attempt has been made to
reference a common area that is out of reach of
the load mode.

Begin the load with an MO D64R command, or move
COMMON to ‘100090 or lower with the CO command.

Never Sectored. Code is being loaded in 16S or
32S mode, which will not properly execute in a
sectored mode. Loading is discontinued.

Don’t include the MO D16S or MO D32S command in
the load session, or check the PMA source module
to see if it includes one these commands.

Never 64R mode. Code is being loaded in 64R mode,
which will not execute properly. Loading is
discontinued. '

Recampile or reassemble the source files in 64R
mode, or remove a MO D64R command from the load
session, or look for a PMA module which has set
the load mode to 64R.

7 - 19 February, 1977

MAN1879 DEBUGGING UTILITIES

SECTION 8
DEBUGGING UTILITIES

OCTAL (TAP) AND SYMBOLIC (PSD)

INTRODUCTION TO PRIME DEBUGGING UTILITIES

Prime supplies two types of debugging programs: TAP (Trace and Patch) and
PSD (Prime Symbolic Debugger). Both are used to examine or alter locations
in memory-resident binary run files.

TAP is a compact, one-sector, octal-mode routine that examines, dumps, or
updates programs from the user terminal. It includes trace and breakpoint
insertion features for dynamic debugging under conditions of simulated
execution (in sectored addressing modes only.)

PSD is a 4-,5-, or 6-sector (addressable up to 64K) version that performs
the same functions as TAP except for EXECUTE and PATCH. In addition,

it examines, dumps, or updates memory locations in octal, hexadecimal,
alpha-numeric, binary, or symbolic notation. In symbolic form, instructions
are disassembled into an instruction mnemonic and an address value, plus
symbols for indirection (*) or indexing (,1). Instructions of the extended
classes (long reach, stack relative, push-pop) are identified by a symbol
followed by a class code of @ to 3, as in LDA% 2, which signifies an LDA
instruction operating in extended addressing class 2 (stack postincrement).
Furthermore there is an option to interpret memory maps and use symbol
table names in address expressions.

The selected debugging program resides in memory along with the binary
run file to be examined. Care must be taken not to write over part of the
run file when TAP or PSD is invoked.

Command Summary

Table 8-1 summarizes all TAP and PSD commands according to their functions.
The commands are defined in full detail at the end of this section in
alphabetical order. - ' ‘

g8 -~ 1 o February, 1977

SECTION 8 MAN1879

TABLE 8-1. TAP AND PSD COMMAND SUMMARY

Function Command
Memory Words:
Access and print or alter contents ACCESS

Inserts breakpoint link in the object BREAKPOINT

program
List (print) contents LIST
Update (alter) contents UPDATE
Memory Blocks:
Copy block to block | CopY
Print contents of block (or, in PSD, DuMP
write to optional file)
Fill block with constant FILL
Search block for contant under mask SEARCH
Verify block to block VERIFY
Notl—(equal search for constant under NOT EQUAL
mas

Executable Programs:
Breakpoint set BREAKPOINT
Execute a subroutine EXECUTE (TAP only)

Jump trace (print diagnostic after
JMP, JST, or HLT instructions) JUMPTRACE

Monitor for effective address (execute MONITOR
program and print diagnostic if
location is referenced.)

Patch object program (insert JMP in PATCH (TAP Only)
specified location)

Run object program (print diagnostic RUN
if breakpoint is reached)

REV. A 8 - 2

MAN1879 DEBUGGING UTILITIES

TABLE 8-1 (Cont.)

Function Command
Executable Programs (Cont.)

Trace object program (print diagnostic TRACE
at specified intervals)

Update memory word UPDATE
Advanced Features (PSD Only)

Load symbols from map file and enter LS (Load Symbols)
symbolic address mode

Address mode selection MODE

Open file for memory dump or symbol OPEN

tables _

CPU/PSD Parameter Printout PARAMETERS
Relocation constant alteration RELOCATE or X
Quit to PRIMOS ' QUIT

Search for effective address under EFFECTIVE
mask

Enable/disable symbolic input/output SYMBOL

Update CPU status keys N KEYS

Compare contents of one memory bloék VERIFY

with another

8‘ - 3 February, 1977

SECTION 8 MAN1879

USING TRACE AND PATCH (TAP)

Before starting TAP, the binary program to be debugged must be made memory -
resident, through a PRIMOS LOAD or RESTORE command.

Starting TAP

Enter the PRIMOS command TAP. When ready, TAP prints the $ prompt
character and waits for command strings from the user terminal. See
COMMAND DESCRIPTIONS for further requirements.

Terminating Long Operations

To terminate long operations such as DUMP, type CTRL P for a
return to PRIMOS.

Restarting

Restart at 'XX@@@, where XX is the sector occupied by TAP (to determine
this value, RESTORE TAP and do a PM to print the starting location.)

Multiple Copies of TAP

During program development, it may be useful to load TAP into more than
one sector of memory. The following command string replicates TAP in
every sector of an 8K memory from location '2@@@ up:

$C 1¢p¢ 16777 2098 (CR)

MAN1879 DEBUGGING UTILITIES

USING PRIME SYMBOLIC DEBUG (PSD)

Before starting PSD the binary program to be debugged must be made memory-
resident, through a PRIMOS LOAD or RESTORE command.

Starting PSD

PSD is supplied in the CMDNCO UFD of PRIMOSE master disks in three
versions. The command PSD starts a version that runs below PRIMOS

in a 32K memory. The command PSD20 loads and starts a version that rums
below PRIMOS in a 16K memory. The command HPSD loads and starts a
version that resides in the upper 32K. PSD is not relocatable.

Enter the appropriate PRIMOS command (PSD, PSD20 or HPSD). When ready,
the symbolic debugger prints the § prompt character and waits for command
strings from the user terminal. See COMMAND DESCRIPTIONS for further
requirements.

Terminating Long Operations

To terminate long operations such as DUMP, type CIRL P for a return
to PRIMOS. :

Restarting

Restart at XX000 where XX is the sector occupied by PSD, (to determine
this value, RESTORE the version of PSD to be used and do a PM to print
the starting location.)

PSD Input/Output Formats

PSD has the ability to accept input parameters and print output values in
six different formats. The format is established by ending any command
with a colon followed by a single letter, as in:

A 1¢¢¢:0

This accesses location '1000 and establishes the octal format for all
subsequent input/output. The following format-changing letters are
assigned:

ASCII
Binary
Decimal
Hexadecimal
Octal

Symbolic

noTUw>

8 - 5 ’ February, 1977

SECTION 8 MAN1879

The effects during input and output are described below.

ASCIT Input: Two characters are accepted, followed by a terminator.
Any even number of characters will be accepted with the last two as
the final value. The first character (or any odd character) must not be:

> =@%, .nl1. / 2?2+ -: % () blank

e

The second character is required and must not be:
/ ? , .nl.

ASCII constants may be input in any mode. Use the form 'cc (single
quote followed by two characters).

ASCITI Output: Two characters are printed - an @ is substituted for any
non-printing character. In a DUMP, up to eight character pairs are
printed per line.

Binary Input: Any sequence of 1's and 0's is accepted, with the last
sixteen being used for the final value (if less than sixteen are input,
leading 0's are assumed).

Binary Output: A sequence of sixteen 1's and ('s is printed. In a DUMP,
up to four words are printed per line.

Decimal Input: 0 - 9, up to five characters.

Decimal Output: In a DUMP, the addresses are printed in octal; their content
in decimal.

Hex Input: Any sequence of characters from the set , 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, F, is accepted, with the last four being used for the final
value (if less than four are input, leading 0's are assumed).

Hex Output: A sequence of four hexadecimal characters is printed. Leading
zeroes are suppressed. In a DUMP, up to eight words are printed per line.

Octal Input: Any expression is accepted (octal number of mnemonic op code).

Octal Output: A sequence of six characters (0-7) is printed, with leading
0's replaced by blanks. In a DUMP, up to eight words are printed per line.

Symbolic Format - General Features: Symbolic format enables the user to
reference instructions using memonics rather than octal op codes. In
addition, if a load map is properly converted and loaded, the user may
use load map symbols in expressions. (See LS command for details.)

REV. A 8 - 6

MAN1879 DEBUGGING UTILITIES

The general form for symbolic instruction representation is:
Mnem{*] [%] [<]Expr[,1]
where:

Mnem is any legal instruction mnemonic
* Represents indirect addressing
% Indicates that the instruction is of the extended class

< Specifies that the address expression is relative to the
relocation count

Expr is an expression
,1 Specifies indexing
Expressions: An expression is:

a. A signed octal number of up to six digits. If more than
six digits are entered, the most recently entered six are
kept. Leading zeroes may be omitted and, in the absence
of an explicit indicator, + is assumed.

Examples:
+123 ; -765 ; 127102700 (value is 102700)

b. The character * whose value is the Access Mode location
count. o

c. A symbol from a memory map properly converted, loaded, and
enabled by the LS command.

d. An arithmetic expression which specifies the addition or
subtraction of any number of expressions of type a, b, or c.

Examples:

*+123 ; *-1 ; *+1000-2 ; ZILCH + 77

8 -~ 7 February, 1977

SECTION 8 MAN1879

Symbolic Input: The following examples show the format for most of the forms
of a LDA instruction that addresses absolute location 1017:

oA 1017 Direct addressing
Lba* 1017 Indirect

oA 1917,1 Indexed

LbA* 1917,1 Indirect and indexed

Extended-class instructions (identified by the % symbol) contain,
instead of an octal address, information which specifies one of the

following codes to represent the class code in bits 15 and 16 of the
instruction word:

Long reach

Stack relative
Stack postincrement
Stack predecrement

W=D

The displacement field of the instruction is set to -255+n, where n is
the class code.

A relative addressing mode (32R or 64R) must be set by the MODE command
for extended instructions to be input properly.

The first two classes are the two-word instruction types, for which the
second word is expected to contain an address value. Indirection and
indexing can be specified as usual.

Examples:
LDA %0 Long reach
pac 1017 Address word
Lpa* %0 Same, indirect
paC 1617
LDA %0,1 Samé, indexed
DAC 1017
Loa %1 Stack relative '
DacC 100 Offset from stack pointer
LDA* %1 Same, indirect
DAC 100
e_tc .

The stack postincrement and predecrement instructions are one-word
types.

REV. A 8 - 8

Examples:

LDA
LDA*
LDA
LDA
etc.

MAN1879

Post Increment
Same, indirect
%2,1 Same, indexed
Predecrement

DEBUGGING UTILITIES

If a load map has been converted and the LS command given, symbol table
labels may be used in place of octal address values, as in:

LDA

LDA
DAC

LDA

START

%0
START

START+5

Symbolic Output: Symbolic output is in the same form as the input but the %
symbol for extended instructions is shown as part of the mnemonic field and
the address value is in octal.

LDA% 0
DAC 1017

LDA*S 1,1
DAC 1017

LDA% 2

LDA*% 3,1

Long reach

Stack relative, indirect and indexed

Stack postincrement

Stack predecrement, :indirect and indexed

Printouts of consecutive locations during DUMP commands are formatted
four per line, with the octal address of the first item at the

beginning of the-line.

February, 1977

SECTION 8 MAN1879

Example:

$D 1815 1100:5
1615 JST 1032,1 EPMJ . HLT LDA 1817
102] LDA 1617,1 LDA* 1017 LDA* 1017 LDA* 1017,1
1925 LDA* 1917,1 LDA* 30,1 LDA % o DAC 1017

1031 LDA*% 0 DAC 1017 LDA % #,1 DAC 1017
1035 LDA*$ 2,1 DAC 1017 LDA*$ 8,1 DAC 1017
1041 LDA*% 8,1 DAC 1017 LDA*% 2,1 DAC 30
1845 LDA% 1 DAC 3 LDA% 1,1 DAC 3
1051 LDA*% 1 DAC 3 LDA*% 3,1 DAC 3
1055 LDA*% 1,1 DAC 3 LDA % 1 DAC 126
1061 LDA% 2 LDA% 2,1 LDA*% 2 LDA% 2
1066 LDA% 3 LDA% 3,1 LDA*% 3 LCA% 3
1673 LDA 1973 LDA 170 LDA% 1 HLT

1077 LDA 77 LDA 100

If a load map has been converted and the LS command given, address
values are printed using symbol table labels wherever possible, as in:

TEMP LDA START
TEMP+10 JMP START+37
TEMP+30 JMP* START-1

Offset values are in octal.

REV. A 8 - 10

MAN1879 DEBUGGING UTILITIES

COMMAND DESCRIPTIONS

Following are detailed descriptions of all TAP and PSD commands, in
alphabetical order.

Once started from PRIMOS command level, both TAP and PSD print a $
prompt character and wait for keyboard input.

Each TAP or PSD command consists of a one or two function code followed
by one or more parameters, separated by spaces or commas. Each command
string is entered for execution by a CR (carriage return) terminator.

The ACCESS command differs from the others in that it remains in control
and allows the user to examine and/or alter more than one location without
returmning to command mode (signalled by the prompt character). The next
location to be accessed is selected by the termination used. (See ACCESS
for details).

For TAP (and for PSD in octal input/output format) all values are
right-justified octal integers. If a value is unspecified, it is
assumed to be a zero. For example, if the parameters Value-1,,Value-3
are given, the omitted item, Value-2, is assumed to be zero.

A slash (/) or question mark (?) may be used to abort a command string
and return to command mode.

To cancel an incorrect parameter, type an asterisk (*). If more than five
octal digits are entered, only the last 16 bits are used.

In TAP, if the wrong function code letter is entered, simply follow it with

the correct character. (Only the last input letter of the command field is
interpreted.)

8 =1 February, 1977

SECTION 8 MAN1879

ACCESS Start-address

Accesses word(s) in memory starting at Start-address. For both PSD
and TAP, the program types Start-address and its contents, then waits
for keyboard input, in the following form:

TAP: [Value] Temminator

PSD: [Format] [Value] Terminator

Format is an optional format symbol to select one of the PSD input/
output formats:

Format Symbol Input/Output Mode

ASCII

Binary

Decimal

Hexadecimal

Octal (default value)
Symbolic

noTowr

The new format takes effect immediately. For example, :HAF enters the
hex value AF, regardless of the previous mode.

Value, if specified, replaces the contents of the accessed location. In
TAP, Value must be in octal; for PSD, value must be in the current input/
output formats.

See PSD INPUT/OUTPUT FORMATS for information on the different formats.

Terminator is one or more characters selected from the following list:

TERMINATOR FUNCTION
TAP PSD
CRor ,CRor , Alters contents of current location (if a value

is given), moves to current location +1 and prints
its contents.

0 4 Alters contents of current 1ocat10n (if a value is
glven) , moves to current irdtatlon -1 and prints
its contents. ;

/or? /or? Exits from access mode

NOT q (& Moves to current location +1.and prints its
USED contents fi is octal)

NOT ~n (CR) Moves to current location - N and prints its
USED contents (nis octal)

REV. A 8 - 12

MAl‘i1879 DEBUGGING UTILITIES

TERMINATOR FUNCTION

TAP PSD

NOT For memory reference instructions of the form
USED ¢ INST* location only: saves a return address

(current location + 1), moves to the effective
address location, and prints its contents.
Subseauent accesses (terminated by CR, comma,

s or . -) are relative to the effective
address. A returns to the return address.

NOT (Same as @, but saves current location as

USED return address.

NOT \ Returns to the return address saved by the last @.

USED

NOT) Returns to the return address saved by the last (.

USED

NOT = For memory reference instructions only: calculates

USED and prints the effective address and its contents.
No change is made to the current location or its
contents.

Effective Address Formation (PSD Only)

PSD processes input and output in all four Prime-300 addressing modes. The
mode is set by the MODE command.

When the index register is needed, the current value of the X Register
is used (it may be changed by using the RUN or XREG commands).

When PSD prints an address, it applies the sameygdress formation process
as the hardware, using the current values of the X and S Registers. For
relative addresses, ‘the access-mpde current location counter is used as the
value of the P Register:) :

Current Locatiofi ‘€ounter (PSD only)

In Access mode, a cugrent location count is maintained, starting with the value
of the Start-address parameter of the ACCESS command. The location count
determines._.the next location to be accessed.

) .
‘During each access operation, PSD replaces the valu;*!l‘the open location
- with the new value (if specified) and uses the line terminator to compute
the next value of the current location counter. For the comma or CR line
terminators, the cownter is incremented after each access. Other line

terminators provide different options.

g - 13 February, 1977

SECTION 8 MAN1879

Relocation Constant (PSD Only)

PSD has the ability to process addresses in a relocatable mode
(equivalent to assembler REL) by maintaining a relocation constant
which points to the start of a module. All addresses that are pre-
ceded by > are relative to this relocation constant. For a
relocation constant of 3121, both $A > @ and $A 3121 would open
location 3121.

The relocation constant is set by the RELOCATE command. Setting
the relocation constant to @ disables this mode.

For all output, any address which is larger than the relocation
address is printed as > n, where n is the address minus the
relocation address.

BREAKPOINT Location

Inserts a breakpoint link in the restored program at Location. If
restored program is later executed, and if control reaches Location,
TAP or PSD prints CPU status, then awaits further commands.

CPU status is printed in the following format:
Start-address (A-register) (B-register) (X-register) (Keys).

Only one breakpoint can be inserted in a program. The actual breakpoint
jump is placed in the object program only at execution time, and is
removed after each use. However, the breakpoint address is retained
for reuse and requires user action only to change it. To remove the
breakpoint completely, key in B 17 (CR).

COPY Blockstart Blockend Newblock

This command copies memory block at locations Blockstart through Blockend

into a new block starting at Newblock. If Blockend does not exceed Blockstart,
only the word at location Blockstart is copied. If Newblock lies between
Blockstart and Blockend, the block between Newblock + Blockend - Blockstart

is reached.

Example:
$C 55504 55577 613@2
DUMP Blockstart Blockend
Dumps the memory block at locations Blockstart through Blockend to user
terminal or (for PSD only) to an external file. The basic typing format

is eight octal words per line, preceded by the octal address of the first
word printed on the line. Repetitious words are suppressed as follows:

REV. A 8 - 14

MAN1879 DEBUGGING UTILITIES

1. If the remainder of the current line is identical
to word last printed, the line is terminated.

2. If one or more subsequent lines are identical to
word last printed, one line is skipped.

Example:
$D 55584 55577

In order to DUMP to a file in PSD, a file must be OPENED for writing on
wnit 2. After the dump, the unit should be closed.

Example:

$0 DMPFIL 1 2
$D 1p¢9 2099
$0 g 14

EFFECTIVE Blockstart Blockend Address [Mask]

Searches for an effective Address in the block from Blockstart to
Blockend under an optional Mask. If no Mask is specified, the entire
word is tested. When a match is found, the effective address and its
contents are printed at the user terminal. The search continues until
location Blockend has been tested.

EXECUTE Subr [A-register] [B-register] [X-register] [Keys]

Executes a subroutine by performing a JST to location Subr. Prior to
subroutine entry, the A, B, and X registers and Keys are optionally
preset. (See KEYS command for Keys parameter format.) The subroutine
getgrnlshoulg be via indirect jump through its entry point, incremented
y 0, 1, or 2. '

FILL Blockstart Blockend Constant

Fills the memory block at locations Blockstart through Blockend with an
octal constant. If Blockend does not exceed Blockstart, only the first
location is filled.

JUMPTRACE Startadd [A-register] [B-register]
Dynamically traces the object program, starting at location Startadd, with
an optional preset of the A and B registers. A diagnostic printout is

produced prior to the interpretive execution of any JMP or JST or HLT
(see function T for format). _

8 - 15 February, 1977

SECTION 8 MAN1879

KEYS Value (PSD Only)

Sets the CPU status keys to the specified octal Value. The bit
assignments are:

fClp * *| ADR * | * (| |

1 2 3 4 5 6 7 8 9 16

where:

(@}
1

State of C (Carry) Bit

e
1]

Arithmetic mode; 0 - single precision, 1 - double precision

*
]

Must be zero

ADR = Addressing Mode

Bit 5 Bit 6 Mode
0 0 16S
0 1 328
1 1 32R
1 0 64R
1 0 64V (Prime-400 only)

Shift = Bits 9-16 of location 6, which may
Count contain a normalized shift count

LIST Address
List the content of Address.
LS (LOAD SYMBOLS) (PSD Only)

Enables true symbolic address references during ACCESS input and output
or DUMP output. In order to use symbols from a load map, three steps
are required. First, load the program and specify the load map to be
sent to a file. Second, convert the load map file so that PSD can read
it, by running (NVIMA. Third, restore the user program, invoke PSD,
and request PSD to load the converted file. These steps are given in
the following example: :

REV. A o 8 - 16

MAN1879 DEBUGGING UTILITIES

1. Create load map and send it to a file.

OK,LISTING LMAP
OK,LOAD
$LOAD B PROG
$LIB

LC

$LIB UII
c
$SAVE*PROG
$MAP $F

$QU

OK,CLOSE 2

2. Convert loader load map to PSD load map.

OK,CNVIMA LMAP PMAP

3. Restore program and use LS command to enter full symbolic
format:

OK,RESTOR *PROG

OK,P3D

$0 PMAP 1 1 (open PMAP on unit 1 for reading)
$LS (load symbols

$0014

The LS command puts PSD into symbolic mode. All addresses are typed
as symbol and offset number or simply symbol if the address matches the
value of the symbol exactly.

Once the load map is prepared in this manner, the user can enable or
disable symbol interpretation with the SYMBOL Command.

MODE [D16S] (PSD Only)
[D32S] |
[D32R]
[D64R]
[D64V]

Selects the addressing mode in which address values are computed in
symbolic input/output format, sets bits 4, 5 and 6 of the CPU keys
accordingly, and resets all other keys bits to zero.

MONITOR Startadd A-register B-register Address

Dynamically monitors the object program starting at Startadd,

with registers A and B preset. A diagnostic printout is produced
prior to the interpretive execution of any object memory-reference
instruction with an effective equal to Address. (See TRACE function
for printout format.) coo

8 =17 February, 1977

SECTION 8 MAN1879

NOT-EQUAL Blockstart Blockend Nmatch [Mask]

Searches memory block between Blockstart and Blockend for words not equal
to Nmatch under an optional Mask. The masking function is a 16-bit
logical AND. If no mask is specified, the entire word is tested. When
a non-match is found, the address and its contents are typed out, and
the search continues.

OPEN Filename Funit Key (PSD Only)

Opens a file to be used as a DUMP output file or symbol table input file.
The parameters are the same as the PRIMOS OPEN Command:

Filename A PRIMOS filename existing (or to be created)
in the current UFD.

Funit PRIMOS file wnit (1-16)

Key Action Key; octal values are:

1. Open for reading
2. Open for writing
3. Open for reading and writing

PATCH Patchloc Branchloc

Simplifies insertion of a patch in the executable program. The instruction
at Branchloc is replaced by a jump to Patchloc, the displaced instruction
is stored at Patchloc, and the ACCESS function is entered with the current
location set to Patchloc. The user can then enter the desired patch,

including a suitable return. Patchloc must either be in the same sector as
Branchloc or in sector {.

PRINT (PSD Only)
Prints CPU/PSD parameters in octal as follows:

Breakpoint Breakpoint A-register B-register X-register Keys Relcon
Contents

Relcon is the current value of the access mode relocation constant.
QUIT (PSD Only)

Returns to the operating system.

RELOCATE Value (PSD Only)

Sets a new Value for the access-mode relocation counter. (Can also be
entered as X Value.)

RE;V;A 8 - 18

MAN1879 DEBUGGING UTILITIES

RUN Startadd [A-register] [B-register] [X-register] [Keys]

Runs the executable program starting at Startadd location. Prior to program
entry, registers A, B, X, and Keys are optionally loaded. Control does not
return to the TAP program unless a breakpoint is encountered.

SEARCH Blockstart Blockend Matchword [Mask]

Searches memory block from Blockstart to Blockend for words equal to_Matchword
under an optional Mask. (If Mask is not Specifieq, the entire word is
tested.) When a match is found, the address and its contents are typed out,
and the search continues until location Blockend has been tested.

t dd [A-register] [B-register] [|Pval [#]]
IRACE Starta [A-reg I & 177777 Interval

Dynamically traces executable program starting at-Startadd with registers
A and B optionally preset. A diagnostic printout 1s pyoduced}prlor to the
interpretive execution of each object instruction. Printout is formatted
as eight octal words, representing:

(P) INSTR EA (EA) (A-register) (B-register) (X-register) (Keys)

For non-memory reference instructions, the third word is pg@@@g@ggd and the
fourth repeats the instruction word.

When Pval is specified, the printout occurs only when P=Pval.
If Pval is followed by @, printout occurs the first time P=Pval,
and every instruction thereafter.

When 177777 Interval is specified, printout occurs every Interval
instructions. If interval is negative, its absolute value is used;
if zero, it is treated as 65536.

T, J AND M Function Restrictions

a. HLT instructions always cause printout, followed by a return
to command mode.

b. Interrupts are executed in real time, not in interpretive
mode. Tracing resumes when the interrupt routine exits.

c. Tracing of input/output routines is possible, but timing
» should be investigated. Processing speed is reduced by a
factor of 6§ to 8@ percent when no printout is involved.

d. Programs to be traced can operate only in sectored addressing
modes (16S or 32S). o

8 - 19 February, 1977

SECTION 8 MAN1879

UPDATE Location Contents
Sets Contents into Location and prints old and new contents of Location.
VERIFY Blockstart Blockend Copy

Verifies memory block from Blockstart through Blockend against a copy starting
at Copy. The program types the address and content of each location in the
block value which does not match the corresponding word in Copy.
The format of a VERIFY printout is:

Location Block-contents Copy-contents

XREGISTER Value (PSD Only)

Sets X Register to contain Value - for example, before executing a RUN
command or doing an effective address calculation.

REV. A 8 - 20

MAN1879 SEG LOADER

SECTION 9
SEG (SEGMENTATION UTILITY)

INTRODUCTION

This section describes the use of Rev. 11 SEG. Seg is the Primos IV
utility module for loading, modifying, and running segmented programs.

A segment is a 64K word block of a user's virtual address space. Segment
14000 is the segment that SEG and other external commands occupy when
invoked. SEG creates a run file of up to fifteen segments, starting at
segment '4001.

PRIMOS at Rev. 11 assigns memory segments to a user as they are accessed.
They are kept until logout. Because Rev. 11 PRIMOS IV makes only 64
segments available for all users, extra segments should not be invoked,
unless the user is actually executing or examining a segmented program.
Most of the functions of SEG use only one segment; only those options
which restore a run file use extra segments, i.e., RESTORE, RESUME, LOAD,
and EXECUTE.

SEG permits the user to perform many of the operations on segmented Tun
files which are normally done to Prime 300 run files at command level.
Since the run files are different from Prime 300 run files, the operations
themselves have some different effects than the Prime 300 operations.

SEGMENTED RUN FILES AND THE SEGMENT LOADER

A segmented run file consists of segment subfiles in a segment directory.
For this reason, you should not delete a SEG run file with a PRIMOS IV DELETE
command. Instead, use FUTIL's TREDEL.

Segment subfile 0 of the run file is used for startup information, for the
load map, and for a map of the memory image subfiles. The memory image
subfiles begin in segment subfile 1. Each memory image subfile contains
2048 words. Each 2048-word block of memory in the 15-segment user space
is assigned a position in the segment directory. Thirty-two memory
subfile are reserved for each memory segment; however, only those required
for the run file are actually stored on disk. K
SEG has a virtual loader (loads to a file rather than memory) which
requires the name of the run file before anything is loaded. The run

file may be new or may be a previously used SEG run file and may be in any
UFD. An old unsegmented SAVE file may not be used.

As the symbol table is always available, SEG's loader may be used to add

modules to an existing run file. Similarly, a partial load may be saved
with the SEG SAVE command and the load completed later.

9 - 1 February, 1977

SECTION 9 MAN1879
Loading Object Files

The object file of the main program must have been created by PMA using
the pseudo-op 'SEG', or by FIN with the 64V code option (B-register bit

8 set) because the entry point will be treated as an ECB (Entry Control
Block). The load mode is 64V. The following commands found in the Prime
300 loader are not supported:

AUTOMATIC - Automatically insert base areas

COMMON - Set the top of common

HARDWARE - Define the current hardware

MODE - Set the Load Mode

SETB - Define a base area

VIRTUALBASE - Establish a virtual sector zero base area

To support reentrant procedures, code and data are loaded in separate
segments. Data consists of all COMMON blocks and link frames. The
loader assigns code and data segments. The first segment ('4001) is
used for code. Usually segment '4002 will be used for data. The loader
loads data and code into appropriate segments and opens new segments as
required.

The Stack

The loader assigns a stack when SAVE is invoked. The stack is usually
assigned as the next free location in the first procedure segment with
'6000 free words. If no such segment exists, a new data segment will be
assigned with the first location in the stack set to 4. The user may
force the location of the stack and/or may change its size.

The Load Map

The following is a sample of the format of the SEG load map for a multi-
segment run file: (All segment numbers and word numbers are in octal).

*START 004002 008001 *STACK 004001 001242 *SYM 016632

SEG. # TYPE LOW HIGH TOP

0040601 PROC## 061600 £01242 001242

004002 DATA vpovoY 000252 000252

ROUTINE ECB PROCEDURE ST. SIZE LINK FR.

#H4d 4062 000001 4001 001000 00001z 177400
TNCU 4002 0PRLR63 4001 £010827 800020 177463
TNOUA 4006z 000187 4601 091841 0e0RZo 1775@7
TONL 4002 00127 4061 041176 pEOEL1Z 177527
110U 4002 000151 4001 001204 PpYe16 177551
EXIT 4002 000173 4001 001224 000012 177573
TI1IB 4p02 606213 4001 001227 000012 177613
T10B 4002 ©@0B233 4001 061235 20612 177613

4002 200025 NAMED 4602 0006051

MAN1879 SEG LOADER

Symbols are divided into two classes: those that relate to ECBs and those
that do not. Those that relate to ECBs are listed separately with addi-
tional information about the procedures to which they apply. This part of
the symbol table is sorted on procedure address. The remainder of the
synmbols (e.g., FORTRAN COMMON block names) are listed with their addresses.

Addresses are given in two-word form. The high order word is the segment
number in octal, the low order word is the location. *START should be the
address of the ECB for the main program. If this routine has no name,

it is called #### in the map. The address supplied for *STACK is the first
available location of the stack. The CMHGH, CMLOW, and PBRK entries of
LOAD - style load maps do not appear. Instead, LOW, HIGI and TOP are
listed separately for each segment. TOP is the last assigned location in
the segment rather than the first tree location. HIGH and TOP will
frequently be the same.

The type of each segment is shown. The segment chosen for the stack is

identified by the characters ## following the type entry. The base area
map includes segment number as well as word addresses.

USING SEG

SEG is a command under CMDNCO which can be invoked as SEG [Filename]. SEG
Filename is equivalent to R Filename for a Prime 300 run file. The run file
is loaded into segmented memory and execution started. If the user enters
SEG only, its other functions may be invoked.

All SEG functions are listed under SEG COMMAND SUMMARY and detailed in the
SEG COMMAND, LOAD SUBCOMMAND, and SAVE SUBCOMMAND paragraphs.

SEG displays a # on the terminal as a prompt character. The SAVE and LOAD
commands display a $§ as a prompt character to solicit subcommands.

SEG COMMAND SUMMARY

Command Subcommand Description

HELP List SEG commands

LOAD Invoke the LOAD SchQmmand processor
ATTACH Attach to another UFD
EXECUTE Execute the loaded program
FORCE Force load an object file
INITIALIZE Reinitialize the loader and start over
LIBRARY Library load
LOAD _ Load an object file

MAP ‘ Produce a load map

9 - 3 February, 1977

SECTION 9 MAN1879

Command Subcommand Description
QUIT Return to PRIMOS command level
RETURN Return to SEG command level
SAVE Save the run file
XPUNGE Expunge symbols from the Symbol Table
MAP Generate a load map
PARAMS Display SAVE parameters
PSD Starts a simple debug utility for rumn
file examination and patching
QUIT Return to PRIMOS command level
RESTORE Restore, but don't execute
RESUME Restore (if necessary) and execute
SAVE Invoke the SAVE subcommand processor
A Change the initial A Register setting
B Change the initial B Register setting
END Return to SEG command level
KEYS Change the initial Key setting
NEW Create a new run file
START Change the Entry Control Block (ECB) start
address
WRITE Write the whole run file to disk
X Change the initial X Register setting
TIME Report date and time of last file save

REV. A 9 - 4

MAN1879 SEG LOADER

SEG COMMANDS

HELP

Causes SEG to print a brief list of its commands.

LOAD [#] [Filename]

Invokes the LOAD subecommand processor that permits the user to load
segmented programs. In addition, it can be used to complete an incomplete
load from a previous load session, or to add routines to a completed load.
Carefully used with suitable patching of the original ECB, it can be used
to replace a routine in a existing run file.

The optional arguments determine the file to which binary code will be
written during a load operation. The choices are:

LOAD Filename Select Filename in the current UFD.
If Filename exists, it is initialized
(previously loaded material is deleted).

LOAD * Filename Selects Filename in the current UFD but
does not initialize it. Loading continues
using the current state of Filename's load
map.

LOAD * Continues loading to the current load file
(specified by the original SEG command)
using the current state of its stored load
map.

LOAD SEG responds with:

SAVE FILE TREE NAME.
Enter the tree name of a file in the

current UFD or one of its sub-UFD's. The
file is initialized if it already exists.

MAP [|Run£ile|] [Mapfile] [Option] - . o

Generates a load map at the user terminal or in a;specified file.

Runfile specifies the run file for whiéh‘é’mapfié to be generated. If
the asterick is specified, the current named run file is mapped.

Mapfile specifies an ASCIT file in Qﬁich the map will be written. If -
Mapfile is omittqg, the map is disp}ayed at the yser terminal. ¢

9 - 5 February, 1977

SECTION 9

MAN1879

The Option parameter determines the extent of the map:

Option
Omitted

1
2
3

PARAMS [Filename]

Map extent

Full map

Extent map only

Extent map plus base areas
Undefined symbols only

Displays six parameters from the last SAVE operation of Filename or, by
default, of the current named run file as:

START(2), STACK (2), A, B, X, KEYS

START(2) is a two-word starting address (address of the ECB of
the main program).

STACK(2) is a two-word address of the stack.

A, B, X are the contents of the specified registers

KEYS

PSD

are the CPU keys.

Activates a simplified debugging utility similar to PSD to examine or
patch the current run file. The following subcommands are provided:

S

L
U
D

Segment
Location
Value

Start End

Select a Segment number
Look at a location
Update the location to a new octal value

Dump locations from Start to End.

All input and output values are octal.

QUIT

Closes all files opened by SEG and returns to PRIMOS command level.

REV. A

MAN1879 SEG LOADER

RESTORE [Filename]

Restores a run file, Filename, or by default, the current named run
file, for examination or patching with PSD. A patched file may be
executed later without SEG attempting to restore the file, so long as
no new file name has been entered since the RESTORE Command.

RESUME [Filename]

Executes a Tun file Filename or by default, the current named run
file. Also performs a restore if a RESTORE command was not previously
executed. RESUME may follow any combination of SEG commands.

SAVE [Filename]

Invokes the SAVE subcommand processor to operate on run file Filename,
or by default on the current named run file. The $ prompt is used to
request SAVE subcommands that can assign a stack, change a save vector,
patch a run file, and write from memory all or parts of a run file.
These subcommands are detailed in the SAVE SUBCOMMANDS paragraph.

TIME [Filename]
Displays on the terminal the time and date the run file, Filename, was

last saved or, by default, when the current named run file was last
saved.

9 - 7 _ - February, 1977

SECTION 9 MAN1879

LOAD SUBCOMMANDS

When the user enters a LOAD command, the prompt § is used to request
LOAD subcommands. These subcommands are:

ATTACH [U£d] [Password] [Ldisk] [Key]

Attaches to different UFD's. This subcommand is converted into a CALL
to the PRIMOS subroutine ATTACH and has the same values.

ufd Any user file directory. The default is the
home UFD.
Password Necessary only when UFD is password-

protected. An owner password provides owner
status; a non-owner password provides non-
cwner status.

Ldisk The logical disk on which the MFD is to be
searched for the Ufd. '100000 specifies
a search of all started devices in logical
unit order. '177777 specifies search the MFD
of the Ldisk on which the current UFD resides.

If Ldisk is omitted, logical wnit 0 is
searched.

Key Describes how to attach to the Ufd:

0 = Attach to Ufd in MFD on Ldisk.

1 = Attach to Ufd in MFD on Ldisk and set
home UFD to current UFD after attaching.

2 = Attach to sub-Ufd in current UFD.

3 = Attach to sub-Ufd in current UFD and

set home UFD to current UFD after attaching.

EXECUTE

Runs a loaded program and exits to PRIMOS command level. The SAVE command
must be invoked first, because EXECUTE does not invoke the SAVE command.

FORCE Filename Address

Loads a file regardless of any factors which would usually cause the loader
‘to bypass the module. . o

REV. A 9 - 8

MAN1879 SEG LOADER

Filename is the name of the object file to be loaded, and Address is the
address at which loading is to start.

INITIALIZE [

Filenamel]
1

Causes the loader to reinitialize itself. This subcommand may be used to
abort a bad load (starting over with either the same file or a new one)
or begin a new load after a SA(ve).

Filename Open run file Filename
! Ask for a new tree name
Null Initialize current run file

LIBRARY [Filename] [Address]

Loads the named file from the UFD LIB and reattaches the user to the
home UFD. If no file is specified, the library file PRIMOS 4 FORTRAN
Subroutine Library (See MAN 1880) is assumed.

Filename is the name of the object file to be loaded, and Address is
the address at which the module is to be loaded (f implies the current
load point).

LOAD Filename [Address]

Loads the named file. Filename is the name of the object file to be
loaded, and Address is the address at which loading is to start. If
Address is 0 or omitted, loading starts at the current load point. If the
Address is specified, the user is responsible to determine whether the
module will fit in the segment.

MAP [IMapfue] [Option]

Writes a map of the current run file to Mapfile (if specified) or to the
currently open map file (if * is specified). The map file is left open,
so that any number of maps can be written to the file if * is specified
each time. If, prior to invoking SEG, the user OPENs a file on unit 13,
that file will be used as the map file when * is specified.

If Mapfile or * is not specified, the map is listed at the user terminal.

The option parameter determines the contents of the map:

9 - 9 February, 1977

SECTION 9 MAN1879

Option Contents of Map
1 Extent map only
2 Extent plus base areas
3 Undefined symbols only
Omitted Full map

Note that only one map file may be open per Load session, and that QUIT,
EXECUTE and RETURN truncate any open map file.

QUIT

Exits from the loader and return to PRIMOS command level. If the user
intends to run the loaded module, the SAVE command must be invoked first
because QUIT does not SAVE the module.

RETURN
Exits from the loader and returns to SEG command level. If the user

intends to run the loaded module, the SAVE command must be invoked first
because RETURN does not SAVE the module.

SAVE
Finishes writing all buffers to the run file and sets the stack into the

first available segment, if the user has not specified the stack with the
ST command.

XP [Dsymbols Dbase]

Allows the user to remove some or all of the defined symbols from the
symbol table. Undefined symbols may not be removed.

Dsymbols controls the deleticn of symbols and Dbase controls the deletion
of base areas:

Dsymbols = 0 - Delete only entry points, leaving common areas
="1 - Delete all symbols - including entry points
Dbase =0 - Retain all base area information
- = 1 - Retain only sector zero information
= 2 - Delete all base area information

-REV.VA-‘ 9 - 10

MAN1879 SEG LOADER

SAVE SUBCOMMANDS

SAVE Subcommands are invoked when SA is typed at the user terminal.
SAVE functions include: assign a Stack enabling the user to change the
Save Vector, patch the run file, and write out from memory all or part

of the run file. When the user is in the SAVE subprocessor, the prompt
$ is used. The SAVE subcommands are:

A Value

Changes the contents of the A Register. Value is the new value, in octal.

B Value

Changes the contents of the B Register. Value is the new value, in octal.

END

Returns to SEG Command Level.

KEYS Value

Sets the CPU status keys to the octal Value. The bit assignments are:

lciep *)| AR x| % | B |
1 2 3 4 5 6 7 8 9 16
where:
C = State of C (Cerry) bit

jael
"

Arithmetic mode; @ - single precision;
1 double precision - '

Must be zero

9 - 1 Februar?}Jl???

SECTION 9 MAN1879

ADR = Addressing Mode:

Bit 4 Bit 5 Bit 6 Mode

g g) 16S

g g 1 3258

g 1 1 32R

g 1 g 64R

1 1 g 64V
NEW Filename

Creates a new run file with the name Filename. If necessary, NEW copies
the current run file and writes out a new run file under the name Filename.
It may be used to save a patched version of a Tun file already in
existence.

START Segment Address

Sets a new ECB address for the start of execution. Segment is the new
segment and Address is the ECB location.

WRITE

Copies the entire run file to disk without changing any previously
declared segment ranges.

WRITE ensures that all patches on the RUN file have made it to the
disk. This is useful when there are many of them and no segment ranges
have been changed.

§BEGISTER Value

Sets the CPU X register. Value 1is the new octal value.

INDEX

A B REGISTER OPTIONS,
FORTRAN 5-1

A REGISTER DEFAULT VALUES,
FORTRAN 5-3

A REGISTER DETAILS, PMA 4-13

A REGISTER DETAILS,
FORTRAN 5-10

A VALUE, SEG 9-11
A-REGISTER, PMA 4-1
ACCESS MEMORY WORDS 8-2

ACCESS START-ADDRESS,
PSD/TAP 8-12

ACTION OF COMPILER, FORTRAN 5-2

ADDING A SUBROUTINE TO A
LIBRARY 3-8

ADDRESS SELECTION MODE 8-3
APPEND STRING 2-3
ASCII FORMAT IN PSD 8-6

ASCII INPUT/OUTPUT FORMAT,
PSD 8-6

ASSEMBLER MESSAGES, PMA 4-3
ATTACH, LOADER 7-6

ATTACH, SEG 9-8

AUTOMATIC, LOADER 7-6

B REGISTER DEFAULT VALUES,
FORTRAN 5-4

B REGISTER DETAILS,
FORTRAN 5-14

B VALUE, SEG 9-11 |
BASE AREA MAP, LOADER 7-13

BASE AREA, LOADER

ORIENTATION 7-2

BINARY INPUT/OUTPUT FORMAT 8-6

_BOTTOM, MOVE POINTER TO BOTTIOM OF

FILE 2-3
BREAKPOINT 8-2

BREAKPOINT LOCATION,
TAP/PSD 8-14

BRIEF, EDB 3-3
BRIEF,MINIMIZE RESFONSES 2-3
CHANGE A STRING ON A LINE 2-3
CHARACTER DELETE

COBOL LISTING FILE 6-1

COBOL MAGNETIC TAPE FILE
ASSIGNMENTS 6-3

COBOL OBJECT FILE 6-1
COBOL PROGRAM, LOADING OF 6-1
COBOL SOURCE FILE 6-1

COMBINING FILES UNDER ONE FILE
NAME 3-7

COMBINING SUBROUTINES UNDER ONE
FILE NAME 3-7

COMMAND .DESCRIPTION, TAP AND
PSD 8-11

COMMAND FORMATS 1-8

COMMENTS, LOADER 7-7
COMPILATION, COBOL = 6-1,
CONCORDANCE, FORTRAN 5-17

COPY MEMORY BLOCK, PSD/TAP 8-14.
COPY _MﬁMéRy BLOCKS ~ 8-2

COPY, EDB = 3-3

1

INDEX

CROSS REFERENCE LISTING EDB, NEWINF 3-4
(CONCORDANCE) , PMA 4-7

EDB, OBTAINING SUBROUTINE AND
CURRENT LOCATION COUNTER, ENTRY POINT LISTINGS 3-7
PSD 8-13

EDB, OMITET 3-4
DECIMAL INPUT/OUTPUT FORMAT,

PSD 8-6 EDB, OPEN 3-4

DELETE N LINES 2-3 EDB, POSITIONING POINTER 3-1
DELETE TO STRING 2-3 EDB, TERSE 3-4
DESECTORIZATION, LOADER 7-2 EDB, TOP 3-5

DEVICE OPTIONS, PMA 4-13 EDB, VERIFY 3-5

DISK FILE ASSIGNMENT 6-3 EDIT 2-1

DISPLAY TIME AT TERMINAL 9-7 EDITOR 2-1

DUMP 8-2 EDITOR COMMAND SUMMARY 2-3
DUMP MEMCRY BLOCK, PSD 8-14 EFFECTIVE ADDRESS, PSD 8-13
DUNLOAD 2-3 EFFECTIVE ADDRESS, PSD/TAP 8-15
EDB 3-1 : EFFECTIVE, SEARCH FOR EFFECTIVE

ADDRESS UNDER MASK 8-3
EDB COMMAND SUMMARY 3-3

END, SEG 9-11
EDB ERROR MESSAGES 3-3

ERASE A CHARACTER 2-3
EDB ERROR MESSAGES 3-2

ERASE CHARACTER 2-3
EDBR EXAMPLES 3-6

ERROR DIAGNOSTICS, PMA 4-7
EDB PRINTING MODES 3-1

ERROR MESSAGES, FORTRAN
EDB SPECIAL ACTION BLOCKS 3-2. LIBRARY 5-8

EDB, ADDING A SUBROUTINE TO A ET, EDB 3-3
LIBRARY 3-8
EXAMPLES, EDB 3-6

EDB, COMBINING FILES UNDER ONE
FILE NAME 3-7 - EXECUTE SUBROUTINE,

o PSD/TAP 8-15
EDB, COMBINING SUBROUTINES UNDER

ONE FILE NAME 3-7 : EXECUTE, RUN A LOADED

o PROSRAM - 9-8 =~

EDB, DISTRIBUTING ROUTINES 3-6 £
- - EXECUTE, SEG i-9-8

 EDB, HOW TO USE 3-1

EXECUTING A COBOL PROGRAM 6-2

EXPANDED SYMEOL TAELE AREA,
PMA 4-13

EXPRESSIONS, PSD 8-7

EXTENDED-CLASS INSTRUCTIONS,
PSD 8-8

FILE 2-3

FILE USAGE 1-3

FILE USAGE, FORTRAN 5-2

FILE USAGE, PMA 4-3

FILL 8-2

FILL MEMORY BLOCK, PSD/TAP 8-15
FIND A LINE 2-2

FIND A STRING ON A LINE 2-3
FIND, EDB 3-3

FLAG UNDECLARED VARIABLES,
FORTRAN 5-17

FORCE LOAD, SEG 9-8

FORCELOAD, LOADER 7-8

FORTRAN A B REGISTER
OPTIONS 5-1
FORTRAN A B REGISTER
VALUES 5-3

FORTRAN A REGISTER DETAILS 5-10
FORTRAN ACTION OF COMPILER 5-2
FORTRAN COMPILER 5-1

FORTRAN COMPILER ERROR
MESSAGES 5-6

FORTRAN COMPILER MESSAGES. . 5-5

FORTRAN CONCORDANCE 5-17 -

INDEX

FORTRAN FILE USAGE 5-2
FORTRAN GLOBAL TRACE 5-12
FORTRAN I/@ DEVICE OPTIONS 5-10

FORTRAN LIBRARY ERROR
MESSAGES 5-8

FORTRAN LIBRARY MODE 5-12

FORTRAN LISTING DETAIL
OPTIONS 5-10

FORTRAN LISTING FILE 5-2
FORTRAN LISTINGS 5-6
FORTRAN OBJECT FILE 5-2

FORTRAN SEGMENTED ADDRESS
SPACE 5-14

FORTRAN SOURCE FILE 5-2
FORTRAN TRACE EXAMPLE 5-9
FORTRAN TRACE PRINTOUTS 5-8
FORTRAN USER SPACE 5-12

FORTRAN, B REGISTER
DETAILS 5-14

FORTRAN, FLAG UNDECLARED
VARIABLES 5-17

FORTRAN, IARGE PROGRAMS 5-12
FORTRAN, LONG INTEGER 5-15

FORTRAN, OPERATION UNDER
PRIMOS ~ 5-1

FORTRAN,' SUPPRESSING FP 5-15
FULL MAP EXAMPLE, LOADER 7-14
GENET, EDB 3-3

‘GLOBAL TRACE, FORTRAN ~ 5-12

GMODIFY . 2-3

HARDWARE DEFINITION,
I.DADER I} 7-8

HELP, SEG 9-5

HEX INPUT/OUTPUT FORMAT,
PSD 8-6

1/0 DEVICE OPTIONS,
FORTRAN 5-10

INITIALIZE, LOADER 7-9
INITIALIZE, SEG 9-9
INPUT ASR 2-3

INPUT MODE 2-1

INPUT PIR 2-3

INPUT TTY 2-3

INSERT STRING 2-3
INSERT, EDB 3-3
JUMPTRACE 8-2

KEYS, SET CPU STATUS KEYS,
PSD 8-16

KEYS, UPDATE CPU STATUS
KEYS 8-3

KEYS, VALUE, SEG 9-11
KILL CHARACTER 2-4
LARGE FORTRAN PROGRAMS 5-12

LIBRARY ERROR MESSAGES,
FORTRAN - 5-8

LIBRARY MODE, FORTRAN 5-12
LIBRARY, SEG 9-9

LINE DELETE 2-1

LINKING LOADER 7-1

LIST ADDRESS, PSD/TAP 8-16

INDEX

LIST CONTENTS 8-2

LISTING CONTROL OVERRIDE,
PMA 4-13

LISTING DETAIL OPTIONS,
FORTRAN 5-1¢

LISTING FILE, COBOL 6-1
LISTING FILE, FORTRAN 5-2
LISTING FILE, PMA 4-3
LISTING FILES, DEFINTION OF 1-3
LISTING FORMAT, PMA 4-4
LISTINGS, FORTRAN 5-6
LOAD A FILE 2-4

LOAD EXAMPLE 7-19

LOAD MAP OPTION 2 7-13
LOAD MAP, SEG 9-2

LOAD STATE MAP 7-11

LOAD STATE MAP FILE
EXAMPLE 7-15

LOAD SUBCOMMANDS 9-8

LOAD SYMBOLS (LS) 8-3

LOAD SYMBOLS (LS), PSD 8-16
LOAD, SEG 9-5

LOAD, SEG 9-9

LOADER 7-1

LOADER BASE AREA
ORIENTATION 7-2

LOADER COMMAND DEF INITIONS 7-4

LOADER COMMANDS 7-4

- LOADER DESEC’IORIZATION 7-2

LOADER FORCELOAD 7-8

LOADER FULL MAP 7-13

LOADER HARDWARE DEFINITION 7-8
LOADER INITIALIZE 7-9

LOADER MAP 7-11

LOADER MESAGES 7-18

LOADER, FULL MAP EXAMPLE 7-14
LOADER, OVERVIEW 7-1

LOADER, QUIT AND RETURN TO
PRIMOS 7-16

LOADER, SAVE LOADED MEMORY
IMAGE 7-16

LOADER, USING UNDER PRIMOS 7-2
LOADER, XPUNGE SYMBOLS, 7-17
LOADING A COBOL PROGRAM 6-1
LOADING AND STARTING PMA 4-1

LOADING OBJECT FILES UNDER
SEG 9-2

LOCATE A STRING 2-4
LONG INTEGER, FORTRAN 5-15

MAGNETIC TAPE FILE
ASSIGNMENTS 6-3

MAP FILES, DEFINITION OF 1-3

MAP, FULL MAP EXAMPLE,
LOADER 7-14

MAP, FULL, LOADER 7-13
MAP, LOAD MAP, SEG 9-2"
MAP, LOADER 7-11

MAP, SEG 9-5

INDEX

MAP, SEG 9-9
MESSAGES, FORTRAN 5-5
MESSAGES, LOADER 7-18
MODE COLUMN 2-4

MODE NCOLUMN 2-4

MODE NNUMBER 2-4
MODE NPROMPT 2-4

MODE NUMBER 2-4

MODE PRALL 2-4

MODE PROMPT 2-4

MODE PRUPPER 2-4
MODE, ADDRESS SELECTION 8-3

MODE, SELECT ADDRESSING MODE,
PSD 8-17

MODE, SELECT ADDRESSING MODE,
LOADER 7-15

MODIFY 2-4
MODIFY A LINE 2-2
MONITOR 8-2

MONITOR OBJECT PROGRAM,
PSD/TAP 8-17

MVE 2-4

NEW, SEG 9-12

 NEWINF, EDB 3-3

NEWINF, EDB 3-4

NEXT - 5,—4

£

NOT EQUAL 8-2

" NOT-EQUAL SEARCH, PSD/TAP B-17

OBJECT FILE, FORTRAN 5-2

OBJECT FILE, PMA 4-3
OBJECT FILES, DEFINITION OF 1-3

OBTAINING SUBROUTINE AND ENTRY
POINT LISTINGS 3-7

OMITET, EDB 3-3
OMITET, EDB 3-4

OPEN FILE FOR MEMORY DUMP 8-3
OPEN, EDB 3-3
OPEN, EDB, 3-4
OPEN, FILENAME, PSD 8-18

OPERATION OF FORTRAN UNDER
PRIMOS 5-1

OVERLAY 2-2
OVERLAY STRING 2-4

PARAMETERS, CPU/PSD PARAMETER

PRINTOUT 8-3

PARAMS, SEG 9-6

PATCH 8-2

PATCH, PSD/TAP 8-18
PATCH, TAP/PSD 8-18 .

PAUSE 2-4 "
PMA A REGISTER DETAILS 4-13
IMA ASSEMBLER MESSAGES™ 4-3

IMA COLUMN ALLOCATION FOR
ASSEMBLY LISTING 4-6

PMA CROSS REFERENCE LISTING 4-7
PMA DEVICE OPTIONS 4-13

PMA ERROR DIAGNOSTICS 4-7

INDEX

PMA EXPANDED SYMBOL TABLE
AREA 4-13
PMA FILE USAGE 4-3

PMA LISTING CONTROL
OVERRIDE 4-13

PMA LISTING FORMAT 4-4
PMA OPERATION UNDER PRIMOS
PMA SOURCE PROGRAMS 4-1
PMA, ACTION OF ASSEMBLER
PMA, LOADING AND STARTING
POINT 2-4

POSITIONING POINTER, (EDB)
PRIME MACRO ASSEMBLER

PRINT CPU/PSD PARAMETERS IN
OCTAL 8-18
PRINT N LINES 2-5

PRINT, PSD 8-18

4-1 .

4-1

4-3

4-1

3-1

PRINTING ERRORS AT USER TERMINAL,

FORTRAN 5-12

PSD 8-1

PSD AND TAP COMMAND
DESCRIPTION 8-11
PSD COMMAND SUMMARY 8-1

PSD CURRENT LOCATION
COUNTER 8-13
PSD EFFECTIVE ADDRESS ~ 8-13

PSD EXPRESSIONS 87

PSD RELOCATION CONSTANT . 8-13

. PSD SYMBOLIC FORMAT . 8-6

" PSD, ASCII FORMAT 8-6

PSD, ASCII INPUT/OUTPUT
FORMAT 8-6

PSD, BINARY INPUT/OUTPUT
FORMAT 8-6

PSD, DECIMAL INPUT/OUTPUT
FORMAT 8-6

PSD, DUMP 8-2
PSD, DUMP MEMORY BLOCK 8-14

PSD, EXTENDED-CLASS
INSTRUCTIONS 8-8

PSD, FILL 8-2

PSD, HEX INPUT/OUTPUT
FORMAT 8-6

PSD, HOW TO USE 8-5

PSD, INPUT/OUTPUT FORMATS 8-5
PSD, JUMPTRACE 8-2 |
PSD, LOAD SYMBOLS (IS) 8-16

PSD, MODE, SELECT ADDRESSING
MODE 8-17

PSD, MONITOR 8-2

PSD, NOT EQUAL 8-2

PSD, OPEN FILE FOR DUMP 8-3
PSD, PARAMETERS 8-3

PSD, PRINT 8-18

PSD, PRINT CPU/PSD PARAMETERS IN -

OCTAL 8-18

PSD, QUIT AND RETURN TO.
PRIMGS 8-18 S

PSD, RELOCATE VALUE. 818
PSD, RESTARTING, . 8-5,

PSD, RUN 8-2

INDEX

PSD, SEARCH 8-2

PSD, SEG 9-6

PSD, STARTING 8-5

PSD, SYMBOLIC INPUT 8-7
PSD, SYMBOLIC OUTPUT 8-9

PSD, TERMINATING LONG
OPERATIONS 8-5

PSD, VERIFY 8-2

PSD, XREGISTER, SET TO CERTAIN
VALUE 8-20

PSD/TAP ACCESS
START-ADDRESS 8-12

PSD/TAP BREAKPOINT
LOCATION 8-14

PSD/TAP EFFECTIVE ADDRESS 8-15
PSD/TAP PATCH 8-18

PSD/TAP PATCH 8-18

PSD/TAP TERMINATOR 8-12

PSD/TAP, EXECUTE .
SUBROUTINE ~ 8-15

PSD/TAP, LIST ADDRESS 8-16

PSD/TAP, MONITOR OBJECT

 PROGRAM 8-17
PSD/TAP, NOT-EQUAL SEARCH 8-17

.., PSD/TAP, RUN THE EXECUTABLE ;
PRQGRAM - 8-1B .

PSD/TAP, TRACE EXECUTABLE
ROGRAM ~ 8-19 .

3

PSD/TAP;, “IRACE OBJECT
PROGRAM ~ 8-15

PSD/TAP, UPDATE _".8-‘2&)

INDEX

PSYMBOL 2-5 PSD/TAP 8-18
PTABSET 2-5 SAVE LOADED MEMORY IMAGE,
LOADER 7-16

PUBLICATIONS, RELATED 1-1
SAVE SUBCOMMANDS, SEG 9-11
PUNCH =%
SAVE, SEG 9-19
QUIT 2-5
SAVE, SEG 9-7
QUIT PSD AND RETURN TO

PRIMOS 8-18 SCOPE OF USER GUIDE 1-1
QUIT TO PRIMOS 8-3 SEARCH 8-2
QUIT, EDB 3-3 SEARCH FOR EFFECTIVE ADDRESS

UNDER MASK 8-3
QUIT, EDB 3-4

SEG ATTACH 9-8
QUIT, LOADER 7-16

SEG COMMAND SUMMARY 9-3

SEG EXECUTE 9-8
QUIT, SEG 9-6

SEG FORCE LOAD 9-8
R*XXXX 6-2

SEG HELP 9-5
RELATZI. PUBLICATIONS 1-1

SEG LIBRARY 9-9
RELOCATE VALUE, PSD 8-18

SEG LOAD 9-5
RELOCATION CONSTANT

ALTERATION 8-3 SEG LOAD 9-9
RELOCATION CONSTANT, PSD 8-13 SEG LOAD MAP 9-5
RESTORE, SEG 9-7 - SEG MAP 9-9
RESUME, SEG 9-7 - SEG PARAMS 9-6
RETURN, SEG 9-10 ™ ' SEG PROMPT CHARACTER 9-3
RETYPE STRING 2-5 | SEG PSD 9-6
RFL, EDB 3-3 E SEG QUIT 9-16
RFL, EDB 3-4 ; L - SEG QUIT 9-6
RN 8-2 o SEG RESTORE -9-7
RUN FILES, DEFINITION OF 1-3 . SEG RESUME - 9-7
RUN THE EXECUTABLE PROGRAM, © SBG RETURN 9-10

SEG SAVE 9-10

SEG SAVE 9-7

SEG STACK 9-2

SEG START 9-12

SEG SYMBOL CLASSES 9-3

SEG SYMBOL TABLE 9-1

SEG UTILITY 9-1

SEG VIRTUAL LOADER 9-1

SEG XP 9-10

SEG, A VALUE, 9-11

SEG, B VALUE 9-11

SEG, END 9-11

SEG, INITIALIZE 9-9

SEG, KEYS, VALUE 9-11

SEG, LOADING OBJECT FILES 9-2
SEG, NEW 9-12

SEG, SAVE SUBCOMMANDS 9-11

SEG, TIME, DISPLAY AT
TERMINAL ~ 9-7

SEG, WRITE 9-12
SEG, XREGISTER VALUE 9-12

SEQGMENTED ADDRESS SPACE,
FORTRAN 5-14

SEGMENTED RUN FILES 9-1
SFL, EDB 3-3

SFL, EDB 3-4

SOURCE FILE, COBOL 6-1

SOURCE FILE, FORTRAN, 5-2.

INDEX

SOURCE FILE, PMA 4-3

SOURCE FILES, DEFINITION OF
1-3

SOURCE PROGRAMS, FORTRAN 5-1
STACK, SEG 9-2

START, SEG 9-12

SUMMARY OF PDS 1-1

SYMBOL CLASSES, SEG 9-3
SYMBOL NAME CHARACTGER 2-5
SYMBOL TABLE, SEG 9-1

SYMBOL, ENABLE/DISABLE SYMBOLIC
INPUT/OUTPUT 8-3

SYMBOLIC FORMAT, PSD 8-6
SYMBOLIC INPUT, PSD 8-7
SYMBOLIC OUTPUT, PSD 8-9
SYMBOLS AND ABBREVIATIONS 1-7
TAB SETTING 2-2

TABSET ~ 2-5

TAR 8-1

TAP AND PSD COMMAND

DESCRIPTION - 8-11
“TAP COMMAND SUMMARY 8-1

TAP, EXECUTE 8-2

TAR, MULTIPLE COPIES OF 84

TAP, "ATCH * 8-2
TAP, RESTARTING 8-4
'TAP, STARTING OF 8-4 +

‘TRP, TERMINATING LONG

OPERATIONS 8-4

TAP/PSD PATCH 8-18
TAP/PSD, UPDATE 8-20
TAPE ID 6-3

TAPE MOUNTING 6-3

TAPE NUMBER 6-3
TERMINATOR, PSD/TAP 8-12
TERSE, EDB 3-4

TIME, SEG, DISPLAY AT
TERMINAL 9-7

TIPS, SOFIWARE DEVELOPMENT 2-2
TOP OF FILE 2-5

TOP, EDB 3-5

TRACE AND PATCH, USING 8-4

TRACE EXECUTABLE PROGRAM,
PSD/TAP 8-19

TRACE OBJECT PROGRAM,
PSD/TAP 8-15

TRACE PRINTOUTS, FORTRAN 5-8
UNLOAD 2-5

UPDATE CONTENTS . 8-2

UPDATE, PSD/TAP 8-20

USAGE OF FILES 1-3

USER SPACE, FORTRAN 5-12
USING SEG 9-3.

VERIFY 2-5

VERIFY, 8-2-

VERIFY¥, COMPARE CONTENTS OF ONE
MEMORY -BLOCK WITH ANOTHER 8-3

VERIEY, EDB - 3-5

INDEX

WHERE 2-5

WRITE, SEG 9-12

XEQ BUFFER

XpP, SEG 9-10

XPUNGE SYMBOLS, LOADER 7-17
XREGISTER VALUE, SEG 9-12

XREGISTER, SET TO CERTAIN VALUE,
PSD 8-20

10

	001
	002
	003
	004
	005
	006
	007
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10

