
MAN1674

FORTRAN IV

User Guide

| Revision D
June 1976

PRIME
Computer,Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

aS RAT Es Uo A
MeN EO / 4

Copyright 1976 by

Prime Computer, Incorporated

45 Pennsylvania Avenue

Ferformance characteristics are

subject to change without notice.

REV. D i - 2

CONTENTS

CONTENTS

Page

SECTION 1 INTRODUCTION

FORTRAN VERSIONS
REFERENCE DOCUMENTS
SCOPE OF MANUAL
COMPILING AND RUN TIME FEATURES
FORTRAN LIBRARY SUBROUTINES & FUNCTIONS
FORTRAN COMPILER SUBROUTINES
INDICATION AND CONTROL SUBROUTINES
INPUT/OUTPUT CONTROL SYSTEM (IOCS)
FORTRAN MATH LIBRARY (MATHLB)
PRIME FORTRAN IV: FEATURES e

e
|

P
o
p
P
B
W
W
W

DN
E
e

SECTION 2 SOURCE PROGRAM FORMAT

BASIC TERMINOLOGY 2-1
CHARACTER SET 2-2
PROGRAM FORM 2-4

SECTION 3 ASSIGNMENT STATEMENTS

GENERAL PRINCIPLES 3-1
CONSTANTS IN A FORTRAN STATEMENT 3-2

SECTION 4 CONTROL STATEMENTS

UNCONDITIONAL GO TO STATEMENT
COMPUTED GO TO STATEMENT
ASSIGNED GO TO STATEMENT
ASSIGN STATEMENT
ARITHMETIC IF STATEMENT
LOGICAL IF STATEMENT
DO STATEMENT
CONTINUE STATEMENT
STOP STATEMENT
PAUSE STATEMENT
END STATEMENT P

h
e
P
P
h

H
P
h

H
h
&
h
b

|
W
O
o
m
~

PS
P
P
W
N
H
N
N
N
E

SECTION 5 SPECIFICATION STATEMENTS

DATA TYPE MODE SPECIFICATION STATEMENTS 5-1

i - 3 July 1976

CONTENTS (Cont)

STORAGE SPECIFICATION STATEMENTS

COMPILATION AND RUN TIME CONTROL STATEMENTS
LISTING CONTROL STATEMENTS

SECTION 6 I/O AND FORMAT CONTROL

GENERAL PRINCIPLES

READ AND WRITE STATEMENTS

FORMATTED RECORDS

PRINT & PRINTER CONTROL

END AND ERROR RETURNS

3B FORMAT STATEMENT
UNFORMATTED (BINARY) RECORDS
DEVICE CONTROL STATEMENTS
ENCODE/DECODE STATEMENTS

SECTION 7 FUNCTIONS AND SUBPROGRAMS

GENERAL OVERVIEW
LIBRARY FUNCTIONS
INTRINSIC FUNCTIONS
STATEMENT FUNCTIONS
FUNCTION SUBPROGRAMS
SUBROUTINE SUBPROGRAMS
BLOCK DATA SUBPROGRAMS
LIBRARY SUBROUTINES
SENSE LIGHT/SWITCH SUBPROGRAMS
LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

SECTION 8 PROGRAMMING TECHNIQUES

MAXIMUMS

ATTACHING TO ANOTHER USER FILE DIRECTORY (UFD)
CLOSING AND OPENING FILES
RECORD LENGTH OPTION

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

REV. D

COMPILER ERROR MESSAGES

RUN-TIME ERROR MESSAGES

LIST OF STATEMENTS

PROGRAM EXAMPLES

PRIMOS SUBROUTINES SUMMARY

SUMMARY OF IOCS SUBROUTINES

c
0

C
O
© I

I
A
N
F

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

CONTENTS (Cont)

FORTRAN LIBRARY SUBROUTINES

FORTRAN MATH LIB SUMMARY

FORTRAN COMPILER SUBROUTINES

INDICATOR/CONTROLS

SUMMARY OF SORT ROUTINES

July 1976

ILLUSTRATIONS

ILLUSTRATIONS

Figure No. Title

3-1 Computer Internal Word Formats for
Constants and Variables

6-1] Format of External Input to Type
D,E,F, or G Field Descriptors

7-1 FORTRAN/AssSembly Language Argument
Transfer (Without FSAT)

REV. D 1 - 6

Page

TABLES

TABLES

Table No. Title Page

1-1 Reference Documents 1-2

3-] Operator Priority 3-18

3-2 Rules for Assignment of B to A 3-29

6-1 Characteristics of Formatted External Records
6-2 Logical Device and their IOCS Numbers
6-3 Summary of Output Field Descriptors
6-4 Summary of Input Field Descriptors
6-5 Interpretation of Gw.d Descriptors n

D
N
A

A
D

O
V

{
N
O
r
R
E
&

D
S

W
W
e

1 - 7 July 1976

FOREWORD

This handbook has been prepared as a handy reference guide to the
FORTRAN IV language as implemented by the Prime FORTRAN Compiler.
The handbook is organized for quick look-up of syntax conventions,
data formats and the effects of statement execution. New material
is usually presented in terms of elements that have already been
defined. However, the handbook is not intended as a basic primer
on FORTRAN programming. Novice FORTRAN programmers may find valuable
supplementary information in the many excellent FORTRAN textbooks
currently in print. A few samples are:

E. I. Organick: A FORTRAN IV Primer, Addition-Wesley Publishing
Company (1967)

D. A. McCracken: A Guide to FORTRAN Programming, Wiley

The following document is the definitive reference for FORTRAN IV
language conventions:

American National Standards Institute: USAS X3.9 - 1966
(USA Standard Fortran)

Revision A updates the handbook for compatibility with Prime FORTRAN
compilers supplied on Revision 3 master disks and paper tapes. Changes
are identified by bars in the margin of the page.

Revision B adds Appendix F which describes enhancements introduced on
Revision 4 and 5 master disks and paper tapes. Altered compiler
A-register settings are shown in a revised Figure 8-1.

Revision C adds Appendix G which describes enhancements introduced on
Revision 6 and 7 master disks.

Revision D incorporates changes to REV 18 of the master disk and
the incorporation of appendices F and G.

REV. D i - 8

MAN1674 INTRODUCTION

SECTION 1

INTRODUCTION

FORTRAN VERSIONS

Three versions of the FORTRAN Compiler are available: 1) a large
version (LFTN) (more than 16K PRIMOS system), 2) a small version

(SFTN) (a 16K PRIMOS system), 3) the PRIME 400 FORTRAN Compiler
(VFTN). A program compiled by one version can be compiled by another.
However, the large version performs additional functions not available
in the small version. These include:

Text error messages

Extended code optimization

In-line Desectorization option

Improved symbolic listing

. Undeclared variable check option

Cross-reference listing

VFTIN is a modification of LFTN that includes the ability to generate
code in the 4@@°s segmented addressing mode (64V). The hardware and

software features available at Rev. 1@ allow FORTRAN programs nearly

two megabytes long (15 segments of 128K bytes) to be executed under
PRIMOS IV. VFIN retains the ability to produce non-segmented code
identical to LFTN that runs on the entire family of Prime computers.
VFTN will execute on all PRIME computers with over 16k memory, but code
generated in 64V mode will execute on the PRIME 406 only.

NOTE:

After installation, the FORTRAN compiler version

becomes known to the user as FTN. However, a reference
to each version will be made in this manual when required

to distinguish the capability of one version over
another.

REFERENCE DOCUMENTS

Table 1-1 lists the publications that are recommended to accompany this

handbook.

1 - 1 July 1976

SECTION 1 MAN19074

Table 1-1. Reference Documents

Publication Prime Document No.

Prime CPU System Reference Manual lo7l

PRIMCS II & III Interactive 2602

User Guide

PRIMOS II & III Computer 2603

Room User Guide

PRIMOS II & III File System 2604
User Guide

Prime Program Development 1879
Software Guide

Prime CPU RTOS Reference Manual 1856

Prime Software Library User Guide 1882

USA Standard FORTRAN (USAS X3.9-1966) ---

American National Standards Institute

sc rere em eine acme ee cme ere me em cm ceca nee cm wee ene ce cee mene neeeee eee nmee ewe et nt ene we ee ee es

The procedures for loading the compiler, using it to compile source
programs, and loading and running object programs, are provided in the
Program Development Soft ‘are Guide (MAN 1879).

SCOPE OF MANUAL

This manual is a deteiled reference manual for the Prime FORTRAN IV
Compiler. It is organized in eight sections for ease of reference.

Section] introduces the features and special capabilities of Prime
FORTRAN IV.

Section 2 describes the format of source programs prepared for
processing by the Compiler.

Section 3 contains reference information on assignment statements. and
includes definitions of constants, variables, arrays, expressions, and
data formats.

Section 4 defines the control statements (GO TO, DO, etc.,) that guide
the sequence of program execution and provide for conditional program

REV. D 1 - 2

MAN16074 INTRODUCTION

branching, etc.

Section 5 describes the non-executable specifications statements which
supply information to the compiler concerning data mode typing, storage
allocation, data initializing, and run time TRACE.

Section 6 covers FORTRAN input/output and format control: the READ and
WRITE statements that transfer data between the processor and external
devices, ENCODE/DECODE, and formatting of input or output character s
strings. Device control statements (BACKSPACE, etc.) are also

covered.

Section 7 discusses statement functions, the intrinsic functions
(provided as a special feature of this Compiler), FUNCTION and
SUBROUTINE subprograms, and the available library subroutines.

Section 8 contains programming hints and miscellaneous usage details.

The Appendices provide concise reference information:

Appendix A defines the FORTRAN compiler error messages; Appendix B
defines the RUN-TIME error messages; Appendix C summarizes the
FORTRAN statements; Appendix D provides program examples;
Appendix E summarizes PRIMOS subroutines; Appendix F summarizes
IOCS subroutines; Appendix G summarizes FORTRAN Library
subroutines; Appendix H summarizes the FORTRAN Math Library
subroutines; Appendix I summarizes the FORTRAN compiler
subroutines; Appendix J summarizes indicator and control
subroutines, and Appendix K summarizes SORT routines.

This manual is concluded by a computer-generated subject index which
offers a quick cross reference to any subject covered in this manual.

COMPILING AND RUN TIME FEATURES

Refer to a summary in Appendix B and the compiler section of Prime’s
Program Development Software User Guide, MAN 1879 for general
information pertinent to compiling, debugging, and running of FORTRAN
programs.

FORTRAN LIBRARY SUBROUTINES & FUNCTIONS

Refer to Appendix G for a summary and to Prime’s Software Library User
Guide MAN 188@ for Prime’s Floating Point Arithmetic subroutines.

FORTRAN COMPILER SUBROUTINES

Refer to Appendix I for a summary and to Prime’s Software Library User
Guide, MAN 1880 for a detailed description of Prime’s FORTRAN compiler

1 - 3 July 1976

SECTION 1 MAN1674

subroutines.

INDICATION AND CONTROL SUBROUTINES

Refer to Appendix I for a summary and to Prime’s Software Library User
Guide, MAN 1886 for details of Prime’s Indication and Control
Subroutines,

INPUT/OUTPUT CONTROL SYSTEM (IOCS)

10CS 1S comprised of subroutines that perform input/output between the
Prime computer and the disks, terminals and peripheral devices within
the system configuration. IOCS is used by programs that use FORTRAN
READ and WRITE statements. The device numbers used in these statements
correspond to I0CCS logical device. Refer to Section 6 of Prime’s
Software Library User Guide, MAN 1880 or Appendix F of this manua for
a summary of IOCS subroutines.

FORTRAN MATH LIBRARY (MATHLB)

MATHLB provides a set of subroutines to perform commonly used
applications such as routines to perform matrix opertions, solve
systems of simultaneous linear equations, and generate permutations and
combinations of elements. Refer to Appendix H of this manual.

PRIME FORTRAN IV FEATURES

Prime°s FORTRAN IV Compiler processes source programs prepared in USA
Standard FORTRAN, as defined in American National Standard ANSI
X3.9-1966. In addition, Prime FORTRAN has several powerful extensions
which improve the language’s usefulness in writing high-level programs
such as disk or real time operating systems.

The one-pass compiler is compatible with PRIMOS II, PRIMOS III, PRIMOS
IV and Real Time Operating System, and is able to run in a_ stand-alone
environment as well. The compiler produces highly optimized code and
is supported by an extensive array of mathematical functions’ and
subroutines.

Object code generated by the compiler is in a binary format suitable
for loading by Prime’s (LOAD) Linking Loader. Library subroutines are
supplied in the same format.

Advantages of Prime FORTRAN
me cree ces came mm meee ms ees ceases ane my ee mt cees ti me es es

* Uses terms already familiar to the scientist, engineer
Or mathematician; easy to learn and use.

REV. D 1 - 4

MAN1674 INTRODUCTION

* Procedure-oriented terms and statements eliminate
the need for detailed coding and reduce the
chance of coding errors.

* One statement replaces many assembly language
instructions; this reduces time and cost normally
associated with programming.

* Programs are virtually self-documenting; this
permits the work of one user to be referenced,
maintained or altered by another with ease.

* Program correction is simplified by error
diagnostics automatically inserted into program
listing.

* Opens and closes PRIMOS files. This means that the code
is written within the FORTRAN program to update PRIMOS files.

* Assembly Language Prime library subroutines can be
called by a FORTRAN IV program.

Prime FORTRAN Extensions

* Intrinsic Functions: XOR, AND NOT, IABS, SHFT.”’
(In many cases, compiler generates in-line coding
instead of calling library subroutine.)

* Octal constants: allowed in forms nOdddd and :dddddd,

where n is the number of octal digits, °O° or “:”° indicates
an octal constant and dddd is the actual number.

* Quoted Hollerith Strings: can be stated between
apostrophes in addtion to the standard format
(nH---). Example: ‘ABCD’ (same as 4HABCD)

* Global Variable Type: if no argument appears in
a REAL, INTEGER, COMPLEX, DOUBLE PRECISION, or

LOGICAL mode type statement, all variables not
specifically designated as to type will be

in that mode.

* Protected Functions and Subroutines: the FUNCTION
Or SUBROUTINE statements may be preceded by the
word PROTECTED; interrupts are then inhibited
upon entry to the subroutine and enabled upon
return to the main program.

* Special Array LIST and LOC function: enables
FORTRAN user to reference absolute memory
locations, as an aid in systems programming.

] ~ 5 July 1976°-

SECTION 1 MAN1674

REV.

(Note: The LIST feature does not aoply to VFN.)

Library of Real-Time Functions: as defined by the
workshop of Standardization of Industriel Computer
Langueges, for operation under RTOS.

Concordance of symbol usage.

ENCODE, DECODE statements for format

conversion within program unit.

END= extensions for READ.

ERR= extensions for DECODE, READ & WRITE.

Mixed mode expressions permitted.

Provision for in-line comments.

Powerful format extensions (B specification).

D 1 - 6

MAN1674 SOURCE PROGRAM FORMAT

SECTION 2

SOURCE PROGRAM FORMAT

This section defines many of the basic features of FORTRAN: program
and subprogram organization, source statement line formats, the
character set, use of spaces, and other general features and

restrictions.

Line formats for comment, continuation, initial, and special control
lines are also described here. The general format of statement
lines is covered, but detailed requirements for the many different
types of FORTRAN statements are presented in later sections.

BASIC TERMINOLOGY

This section introduces some basic terminology and the meaning of
grammatical forms and particular words.

Program Units

The term program unit refers to either a main program or subprogram.

A program that can be used as a self-contained computing procedure
is called an executable program.

An executable program consists of precisely one main program and
possibly one or more subprograms.

A main program is a set of statements and comments not containing a

FUNCTION, SUBROUTINE, or BLOCK DATA statement.

A subprogram is similar to a main program but is headed by a BLOCK
DATA, FUNCTION, or SUBROUTINE statement. A subprogram headed by a
BLOCK DATA statement is called a specification subprogram. A
subprogram headed by a FUNCTION or SUBROUTINE statement is called a

procedure subprogram. (See Section 7).

Any program unit except a specificaton subprogram may reference an

external procedure.

An external procedure that is defined by FORTRAN statements is
called a procedure subprogram. External procedures also may be
defined by other means. An external procedure may be an external
function or an external subroutine. An external function headed by
a FUNCTION statement is called a function subprogram. An external

2 - 1 July 1976

SECTION 2 MAN1674

Subroutine headed by a SUBROUTINE statement is called a_ subroutine
Subprogram.

Any program unit consists of statements and comments. A statement
is divided into physical sections called lines, the first of which
is called an initial line and the rest of which are called
continuation lines. However, not all lines contain statements.
There is a type of line called a comment that is not a statement and
merely provides information for documentary purposes.

The statements in FORTRAN fall into two broad classes--executable
and nonexecutable. The executable statements specify the action of
the program while the nonexecutable statements describe the use of
the program, the characteristics of the operands, editing
information, statement functions, or data arrangement.

The syntactic elements of a statement are names and operators.
Names are used to reference objects such as data or procedures.
Operators, including the imperative verbs, specify action upon named
objects. One class of name, the array name, deserves special
mention. An array name must have the size of the identified array
defined in an array declarator. An array name qualified only by a
subscript is used to identify a particular element of the array.

Data names and the arithmetic (or logical) operations may be
connected into expressions. Evaluation of such an expression
develops a value. This value is derived by performing the specified
Operations on the named data.

The identifiers used in FORTRAN are names and numbers. Data and

Procedures are named. Statements are labeled with numbers and

input/output units are numbered.

At various places in this document, there are statements with
associated lists of entries. In all cases, the list is assumed to
contain at least one entry unless an explicit exception is stated.

Example:

SUBROUTINE s (al, a2, . .. an)

It is assumed that at least one symbolic name is included in the
list within parentheses. A list is a set of identifiable elements
each of which is separated from its successor by a comma.

CHARACTER SET

A program unit is written using the following characters: A, B, C,
D, Ey F, Gy H, I, J, K, L, M, N, O, P, Q, R, Sy T, U, V, W, Xr Y, Ze

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the following special characters:

REV. D 2 - 2

MAN1674 SOURCE PROGRAM FORMAT

Character Name of Character

Blank

Equals
Single Quote
Colon

Plus

Minus

Asterisk
Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Dollar Sign

i
l

W
e
s
w
e
N

H
I
t
e

NOTES:

1. The order in which the characters are listed does not imply a
collating sequence.

2. Blank (space) characters have no meaning (except in character
string constants) in Prime FORTRAN IV programs. However, each

blank space counts as a character position.

A digit is one of the ten characters: 9, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Unless specified otherwise, a string of digits will be interpreted
in the decimal base number system when a number system base
interpretation is appropriate.

An octal digit is one of the eight characters: 9@, 1, 2, 3, 4, 5, 6,

7.

Letters

A letter is one of the twenty-six characters: A, B, C, D, E, F, G,
H, I, J, K, L. M, N, O, P, Q, R, S, T, U, V, W, X, Y, @.

Alphanumeric Characters

An alphanumeric character is a letter or a digit.

Special Characters

2 - 3 July 1976

SECTION 2 MAN1674

A special character is one of the eleven characters: blank, equals,

plus, minus, asterisk, Slash, left parenthesis, right parenthesis,
comma, decimal point, dollar sign, single quote, and colon.

Blank Character
eta om me RO one em ue me me ee eS et

A blank character has no meaning except within Hollerith constants
and may be used freely to improve the intelligibility of the
program. However, with formatted inputs or outputs, a blank is
considered one character position. (See Section 6).

PROGRAM FORM

Every program unit is constructed of characters grouped into lines
and statements. The required ordering of FORTRAN statements is
Shown in Figure 2-1. TRACE and LIST control statements can be used
anywhere in the program.

The program can consist of any combination of statement, comment,
and special control lines, provided the last line contains an END
statement.

FORTRAN program may be handwritten on coding forms for unit record
keypunching or keyed directly into the computer with the aid of the
Text Editor. In either case, certain rules regarding column
boundaries must be observed. Figure 2-2 illustrates a section of a
FORTRAN program as entered at an on-line teleprinter keyboard. This
also illustrates each of of the line/control functions given below.

REV. D 2 - 4

MAN1674 SOURCE PROGRAM FORMAT

| Header for FUNCTION or SUBROUTINE |
| statements, if any (Section 7) |

Specification statements (Section 5)

EXTERNAL, DOUBLE PRECISION, INTEGER

| |
| . |
| DIMENSION, COMMON, EQUIVALENCE, |
| |
| REAL, COMPLEX, LOGICAL |
| |

| DATA statements (Section 5) |

| Statement Functions (Section 7) |
| --------==woe|

Executable Statements:

Arithmetic, logical (Section 3)

K=A+B*C

L=M .OR. N

Control (Section 4)

CONTINUE, PAUSE, STOP, RETURN

Input/Output (Section 6)

READ, WRITE, FORMAT,
REWIND, BACKSPACE, ENDFILE

| |
| |
| |
| |
| |
| |
| |
| |
| |
| GO TO, ASSIGN, IF, DO |

| |
| |
| |
| |
| |
| |
| |
| Subroutine References (Section 7) |
| |
| |

| END Statement (Main or sub programs) |

Figure 2-1. Order of Elements in a FORTRAN Source Program

2 - 5 July 1976

SECTION 2 MAN1674

COLUMN

1 2 3 4 5 6 7
1234567898012345678991234567899012345678980123456789812345678998123456789012

C PROGRAM
INTEGER P1,P2,P3
DIMENSION IAR(2@0) ,RAR(10@)
EQUIVALENCE (IAR(1) ,RAR(1)),(IAR(1),IAR1),(RAR(1),RAR1)
P1=100
P2=100
P3=190
DO 1090 I=1,Pl
DO 100 J=1,P2
DO 100 K=1,P3

180 CONTINUE
C FIXED POINT ARITHMETIC TEST

DO 208 T=1,Pl
DO 200 J=1,200
TAR(J)=((((P1*10)+(P2/10))+P3) /10080) *20

C RESULT SHOULD EQUAL 29325
280 CONTINUE
C FLOATING POINT ARITHMETIC TEST

DO 300 T=1,P2
DO 309 L=1,1980
AA=10000.0
BB=9999.99
CC=10.32
RAR (L) =((((AA*10.@)+(AA/10.@))+AA) /BB) *CC

C RESULT SHOULD EQUAL 114.552
308 CONTINUE

NOUT=1
WRITE (NOUT,4@0) IAR1, RARI1

400 FORMAT(15H FIXED VALUE IS,15,15H FLOAT VALUE IS F7.3)
CALL EXIT
END

Figure 2-2. Example of FORTRAN Source Program Input

REV. D 2 - 6

MAN1674 SOURCE PROGRAM FORMAT

A line is a string of up to 72 characters. All characters must be
from the FORTRAN character set except where otherwise stated.

The character positions in a line are called columns and are
consecutively numbered 1, 2, 3, through 72, from left to right.

Lines are subdivided into field, as shown in Figure 2-3.

STATEMENTS: MUST BE BLANK

COMMENTS: ANY CHARACTER

S=CONTROL SYMBOL CONTINUATION LINES: MUST CONTAIN A CHARACTER

C=COMMENT (ANY EXCEPT BLANK OR ZERO)

SEQUENCE

STATEMENT FIELD NUMBER

A
ee eee eee eeeeee nnaey peeeeee eee Pee

| i. LS
1 2 5 6 7 72 73 88

STATEMENT

NUMBER

Figure 2-3. Line Format

5 - 7. July 1976

SECTION 2 MAN1674

Comment Lines

If column 1 contains the letter C, the rest of the line is treated as
comments (i.e., is ignored by the compiler except for being reproduced on
the listing). The comment text may begin in column 2 and extend through
column 72. See example X5 in Appendix D for program example.

Inline Comments

Inline comments are permitted by using the following syntax:

/* comment */

The comments may not be used within Hollerith strings but may appear
anywhere else. The end of a source record terminates the comment.

Statement Line
on eee ree eeee ee ee ee

The statement field of a statement line contains any one of the statement
types defined elsewhere in this manual. The statement must begin in
column 7 and may extend to column 72. If a statement is longer than one
line, it may be continued. (See Continuation Line.)

Statement Number (Label)

Columns 1-5 of a statement line may be used for an optional statement
number. Statement numbers consist of 1 to 5 decimal digits positioned
anywhere in columns 1-5. Spaces and leading zeroes are ignored. A
statement number is requried only if the statement is referenced as a
label in a GO TO or similar statement.

Continuation Line

Continuation lines must be blank in columns 1-5 and must contain a
character (anything except blank or zero) in column 6. Columns 7-72 are
then interpreted as a continuation of the statment on the preceding line.
Any number of continuation lines for a given statement are permitted.

Sequence Number

Columns 73-88 may be used for sequential line identification numbers.
This field is ignoed by the compiler except for being reproduced on the
listing. It may be left blank.

ve
)
7 < oO NO | CO

MAN1674 SOURCE PROGRAM FORMAT

Spaces may be used freely between operators, constants, variables, etc.,
to improve legibility. Spaces have no meaning except within Hollerith

constants.

2 - 9 July 1976

MAN1674 ASSIGNMENT STATEMENTS

SECTION 3

ASSIGNMENT STATEMENTS

GENERAL PRINCIPLES

This section defines the form of the arithmetic. and logical
assignment statements that are the main calculating tools ina
FORTRAN program. These statements, which resemble equations in
familiar mathematical notation, apply arithmetic, logical, or

relational operators to data values. These include:

CONSTANTS

Integer

Logical
Real
Double precision
Complex

VARIABLES

Subscripted Array
Array Storage

OPERATORS AND EXPRESSIONS
ee ems em wens we mene em me meme cue De cme aD om eee ue coe om ee om ee eee

Arithmetic Operators
Relational Operators
Logical Operators
Mixed Expressions

In FORTRAN IV, data values take the form of arithmetic or logical
constants, variables, or expressions. This section also defines the
legal forms and ranges for numeric and logical data values.

Simple Statements

The arithmetic and logical statements take the basic form:

A=B

where A is a simple variable or array element, B is an arithmetic,
logical or relational expression, and the equals sign is the

replacement operator.

3 - 1 July 1976

SECTION 3 MAN1674

Arithmetic expressions use arithmetic operators, constants, and
numerically defined variables.

In the statement:

PI=3.14159

a variable PI is assigned the value of a constant, 3.14159, in real
format. Note that the equals sign has the meaning “let PI equal
--". or "assign PI the value of --",

A subsequent statement:

A=PI+1.2

would assign a value of the expression PI+1.2 to the variable A.

Logical expressions use relational operators on numerical constants
Or variables to form a logical truth value (TRUE or FALSE) asa
result. These truth values are used to control program direction
when used in IF and similar statements. A logical TRUE is stored
internally as an integer 1, and FALSE is stored as integer O.

In the expression:

A=PI.EQ.3.14159

the logical variable A is set TRUE if the variable PI equals the
real constant 3.14159. Relational expressions may also be used in
IF statements, as in:

IF (PI.EQ.3.14159) GO TO 128

Logical expressions also apply the common logical operators (AND,
OR, NOT) to logically defined (TRUE or FALSE) expressions. The
result is a logical TRUE or FALSE.

In the statement:

A=P.OR.Q

the variable A is assigned the truth value corresponding to the
logical OR of logical variables P and Q.

constant formats, rules for assigning variables, and rules for
forming arithmetic, logical, and relational expressions are defined
in detail in the following paragraphs.

CONSTANTS IN A FORTRAN STATEMENT

Constants maintain the same numerical, logical or ASCII value during
the execution of a program. Numerical constants may be expressed in

REV. D 3 - 2

MAN1674 ASSIGNMENT STATEMENTS

six different data type modes: integer (decimal or octal), logical,
ASCII, real, double precision, and complex. Computer word formats
for these data types are shown in Figure 3-l.

3 - 3 July 1976

SECTION 3 MAN1674

15 MAGNITUDE BITS

mn meme am ree ame me mentee Sree cams ey cnn mayan sme eta cee cen Se Sone Sm cent ee wetim mineeee m e eOR SD nOein eee e

15 16

A. INTEGER & LOGICAL

| | | | | | | | | | | | | | | |

1 2 3 4 5 6 7 8 9 18 ll 12 13 15 16

i JX _,
V Vv

FIRST CHARACTER SECOND CHARACTER
[{°24@(BLANK) WHEN ONE CHAR PER
WORD]

B. ASCII

WORD 1 (MANTISSA)

Q**—]

| s | | | | | MANTISSA | | | | | |

15 MOST SIGNIFICANT BITS OF FRACTION

WORD 2 (MANTISSA + EXP)

Q**~16 2**-23

| | |MANTISSA | | | | | | | | |

8 LEAST SIGNIFICANT EXPONENT (EXCESS
BITS OF FRACTION 128 NOTATION)

C. REAL

Figure 3-1. Computer Internal Word Formats
for Constants and Variables

REV. D 3 - 4

MAN1674 ASSIGNMENT STATEMENTS

EA (MANTISSA)

Hye 2 8 8 G7 8 8B ak a2 AS Ak aS os

Binary Point

BA+1 (MANTISSA)

eeceeeeee ere er we ete me crm ere neem ems ecm ame sete ces cemetary ree ees rey cee cei caemw enereeees

memes em name em mem erm me Mame cre mm eee weve em mm neem me cmon Sones wm mem em em ce rm me cee re erm em eeere ce cee me cree me ee ee cee res wes eeeee

msmeememe cee eee cre ee wee rem ems ce cee eeeee cee we ee oe eeece cee cee rm secee eee ee es em ee eeeee ee ee

Seuwe mms ee ween me cami aemmam emn seen esse Smee 7m amm emegSreaeyane eenee AeS COeecee ee eeeeeo

EA+3 EXPONENT (TWO’S COMPLEMENT)

D. DOUBLE PRECISION

Figure 3-1. Computer Internal Word Formats
for Constants and Variables (Continued)

3 - 5 July 1976

SECTION 3 MAN1674

Integer Data Types
rmmeeee ee ee ee ee ee

nd mayr data types occupy one internal computer word (Figure 3-1A) a
positive,agnitude from -32,768 to +32,767 (decimal). It may assume

negative, and zero values. It may only assume integer values.

Decimal integers are represented by up to 5 decimal digits
preceded by an optional + or - Sign. No decimal point is allowed.
Examples:

5 29 -13579 @ +900 -934

Octal integers are specified by the form:

:dddddd

where: dddddd is the actual number; or,

nOdddddd

where n 1S the number of octal digits, O is the letter O, and dddddd

is up to six octal digits ranging from 8 to 177777. Examples:

60177777 101 5010000

For program examples, see Xl and X14 in Appendix D.

Logical Data Types

Logical truth (data types) occupy one internal computer word. In
source programs, truth values are represented by the notation .TRUE.
or .FALSE.. The compiler represents the notation .TRUE. toa
memory location containing an integer 1 and represents the notation
. FALSE. to a location containing an integer zero. the notation
»-FALSE. to an integer zero.

Examples:

I = .TRUE. LOG = .FALSE. IF I .~EQ. LOG GO TO 5@

(Logical expressions are described in more detail later.)

ASCII Data Type

An integer may be assigned the character codes of one or two ASCII
characters, represented in either a Hollerith or “quoted” format.
The Hollerith format is the same as used for entering Hollerith data
in Format Statements:

nHcccece. ...

REV. D 3 - 6

MAN1674 ASSIGNMENT STATEMENTS

where n is the number of characters and each c is one of the ASCII
printing characters. The “quoted” format permits a string of
characters to be enclosed in single quotation marks, with no
character count or H designator required:

¢ 7

1HX 2HXY 6H-3.6E2 X "XY" “-3.6E2°

This will be discussed in more detail in Section 6.

ASCII data may be stored into any variable type. The number of
words associated with the type determines the number of I/O
characters. ASCII constants of one to two characters are assigned
type integer; 3-4 are real and 5-8 are double precision. Over
eight characters are allowed in only Subroutine calls or data
statements.

If only one character is assigned, it is left justified and a space
character (24@ octal) is placed in the right half of the integer
word. (See Figure 3-1B.)

Real Data Types

Real data types occupy two computer words (Figure 3-1C) uSing the
Single- precision floating-point data format. It may assume
positive, negative and zero values.

Real numbers are represented in source programs by ae series of
decimal d ndex Real numbers digits including a mandatory decimal
point. Any number of digits may be used but only the most
Significant 7 digits are retained. A sign is optional; if omitted,
the quantity is assumed to be positive. An exponent, in the form
E+nn, is also optional. Real values can range in magnitude from
approximately 19(-38) to 18(+38). Examples.

1. +1.23456 123.E5 -123.E-5 1.23 E 5

0. G.9 1234567.E32

Double Precision Data Types

Double precision data types occupy four computer words (Figure 3-1D)
using the double-precision floating-point format. The exponent
range is 10(-9982) to 1@(+9825). Notation used in source programs
to represent double precision values is the same as for real values
except that up to 14 digits of accuracy are retained, and the letter
D identifies the exponent:

123.4567899012D13 0. 90209000801D-37 -77.777D2 27.DO

3 - 7 July 1976

SECTION 3 MAN1674

Complex Data Types

Complex data types are represented internally as two consecutive
real numbers. In source programs, complex values are specified as
two real numbers separated by a comma and enclosed in parentheses.
The first value represents the real part of the complex constant,
the second value is the imaginary part:

(123.456,2.E-4) (2.E3,.01) (-79.,2.34E-7)

Address Constants

A constant of the form:

Sn

has a value equal to the memory address of the first line of code
generated by statement number ‘n’. If an address constant is used
in an expression the result is integer. These constants are mainly
used as alternate return address arguments in subroutine calls.

VARIABLES IN A FORTRAN STATEMENT

A variable is a numerical, logical, or ASCII value that has been
assigned an alphanumeric label or "symbolic name". The actual value
of a variable may change during program execution under control of
assignment statements, READ or ASSIGN statements, or function or
Subroutine calls.

Variable Name

A variable name consists of one to six alphanumeric characters, the
first of which must be alphabetic. Incorrect forms are detected
during compilation and cause an error message:

Correct Incorrect

A ALPHABET (too long)

ARG1 1ARG (first character

is a digit)

Variables may be assigned values in any of the modes specified for
constants. The first letter of the variable name causes an implicit
mode assignment in the absence of other mode control features. The

REV. D 3 - 8

implicit mode typing convention is:

First letter of

Variable Name

I,J,K,L,M, or N

Other

Implicit mode assignments can be overridden by the
DOUBLE PRECISION, COMPLEX,

double
INTEGER,

Section 5.

REAL,
Note that

MAN1674 ASSIGNMENT STATEMENTS

Implicit
Mode

Integer

Real

mode statements
and LOGICAL described in

precision, complex, and logical
variables always must be mentioned in an appropriate mode statement;
there is no implicit assignment for these modes.

Subscripted (Array)

The

a Single guantity.
variables described so far are scalar - that is,

Variable names may also be subscripted

Variables

they represent
so that

one symbolic name can identify a set of data items.

The name part of a subscripted variable follows the same rules as

the name of a scalar variable.

Subscripts follow the array name, are enclosed in
of integer constants, variabales, or expressions of certain

array
consist
limited forms. A given
separated by commas.

Examples:

DATA (1)

TABLE (1,4)

TABLE (I,J)

DATA (5*ALPHA+11)

ARRAY (K,5, 5*ALPHA+11)

parentheses, and

can have to seven subscriptsup

The first item of a one-dimen-
sional array named DATA

Identifies the data item in
row 1, column 4 of a two-dimen-
Sional array named TABLE

Identifies the data item in row
I, column J of the array named
TABLE

The expression 5*ALPHA+11
is evaluated as an integer expression
that specifies one item of the
one-dimensional array DATA.
ALPHA must be a defined integer.

Identifies a location in a

July 1976

SECTION 3 MAN1674

three-dimensional array ARRAY
aS in row K, column 5, and at
depth 5*ALPHA+11; K and ALPHA must
be defined as integers.

Each array must be assigned a storage area by a DIMENSION or COMMON
statement or as part of a mode declaration statement. These topics
are discussed in full detail in Section 5.

Rule:

All elements of a given array must be of the same type (i.e., all
integer or all complex).

Expressions used in subscripts are limited to the following forms:

C*V+K

C*¥V-K

C*V

V+K

V-K

K

V

where C and K are integer constants and V is the name of a variable
that is explicitly or implicitly defined as an integer. Expressions
and the rules for evaluating them are discussed in more detail in
the following paragraphs.

Array Storage Arrangement

In the object program, a two-dimentional array A is_ stored
sequentially in the order A(l,l), A(2,1),.---A(m,1; A(1,2),
A(2,2),.6+..,A(M,2)3.0., A(m,n). Note that the first of the
subscripts varies most rapidly, and the last varies least rapidly.
The same principle applies to the subscripts of dimensional arrays
up to seven dimensions.

All arrays are stored forward in storage; i.e., the following
array:

A(l1,l1l) A(2,1) A(3,1)
A(1,2) A(2,2) A(3,2)
A(1,3) A(2,3) A(3,3)

is stored in increasing absolute locations:

Location Array Element

1 A(1,1)
2 A(2,1)

REV. D 3 - 190

MAN1674 ASSIGNMENT STATEMENTS

3 A(3,1)
4 A(1,2)
5 A(2,2)
6 A(3,2)
7 A(1,3)
8 A(2,3)
9 A(3,3)

See Example in Appendix D for program illustration.

OPERATORS AND EXPRESSIONS IN FORTRAN STATEMENTS

Expressions consist of constants, variables (scalar or array),
expressions, or function references linked by operators. Arithmetic
logical, and relational expressions are distinguished by the types
of operator used.

Arithmetic Operators

Arithmetic expressions consist of arithmetic constants, variables,
or function references linked by one or more of the following
arithmetic operators:

* Exponentiation

- Unary minus

* and / Multiplication and Division

+ and - Addition and Subtraction

= Equals or Replacement

The compiler permits mixed mode arithmetic expressions except for
operations involving a complex and double-precision item. See
program examples X6 and X11 in Appendix D.

Order of Operations Rule:

Operations are performed in the order the operators are listed above
(from top to bottom). For operators of equal priority, operations
are performed from left to right:

Expression Result

3+5-7 1

3*5-7 8

3-5*7 -32

3 - dll July 1976

SECTION 3 MAN1074

Caution is required when integers are used within expressions.
FORTRAN performs "greatest integer" arithmetic on integers -
remainders after division are truncated. Inadvertent truncation can
be avoided by using real values, or by controlling the sequence of
evaluation.

Expression Result

3*4/2 6

3/2*4 4 (3/2 is evaluated

as the integer 1

3./2.*4, 6. (Real numbers are
evaluated)

3/6*4 Q (3/6 is evaluated
as @)

Parentneses Rule:

Parentheses may be used in much the same way they are used in
Ordinary arithmetic expressions, to group and clarify operations.
In FORTRAN expressions, parentheses may also affect the order in
which operations are performed. All operations within a set of
parentheses are carried out before the result is processed by
operators outside of the parentheses. When parentheses are nested,
the innermost expressions are evaluated first:

Expression Result

3*7-5 16

3* (7-5) 6

(3-5) *7 -14

3./(6.*4.) ~125

2+2*2**2 19

((2+2)*2)**2 64

The examples above use only integer and real numbers for simplicity.
FORTRAN arithmetic expressions can use constants of all modes, as
well as variables:

2*A/ (ALPHA-8) Integers

2.3*BETA** (B+C-4.7E3) Real

REV. D 3 - 12

MAN1674 ASSIGNMENT STATEMENTS

1.9275D3* (3.27D0-ARG1) Double Precision

(9.2,3.8)/3.7 Complex

Multiplication Rule:

Multiplication is never implied; the multiplication operator (*)
must be used. The expression AB means A*B in normal algebraic
notation, but will be interpreted by FORTRAN as a variable named AB.

Exponentiation Rule:

More than one stage of exponentiation requires parentheses for
correct evaluation. While the notation XYZ is valid in algebraic
notation, the FORTRAN expression X**Y**Z is illegal. To represent
(XY)Z, the FORTRAN expression (X**Y)**Z Should be used; X(YZ) is
represented correctly by the expression X**(Y**Z).

Two operators cannot follow in Succession:

X/-Y X/(-Y) or -X/Y

The relational operators process two arithmetic arguments to form a
logical truth value of .TRUE. or .FALSE. The arguments may be
constants, variabales, or expressions of any mode except logical.
Mixed mode is permissable except complex and double-precision.

The relational operators are:

~LT. Less than

. LE. Less than or equal to

~EQ. Equal to

-NE. Not equal to

-GT. Greater than

.GE. Greater than or equal to

All have equal priority. The periods are a part of the operator and

cannot be omitted.

Examples of relational operator applications:

3 - 13 July 1976

SECTION 3 MAN1674

In Logical Assignment Statements:

A=P.LT.Q The variable A is set to a logical
value of TRUE if arithmetic variable
P is less than arithmetic variable
Q. Otherwise P is set to FALSE.

B=P.EQ.2.4D-2 Variable B is set to a logical value
of TRUE if arithmetic variable P is
equal to the specified double-
precision constant. Otherwise P is
set to FALSE. In this example, P
must be in double-precision, real,
Or integer mode. The result is
logical mode.

NOTE

Logical variables (A and B, above) must be declared
by a LOGICAL specification statement.
See Appendix D, example Xl for program
example.

In Logical IF statements:

IF (P.LT.Q) GO TO 394

IF (I1.EQ.2HAB) GO TO 528

(For more information on this usage, see Section 4.

Logical Operators

A logical operator combines one or two operands to form a result
that is a logical truth value of .TRUE. or .FALSE. The arguments
may be defined by statements using relational logical operators, or
oy a LOGICAL specification statement. The logical operators are:

Operator Function
—— me em re eee os ae ee ene eeee

-NOT. Negates (reverses the logical
State of) the following argument,
as in:

A=.NOT.P

REV. D 3 - (14

MAN1674 ASSIGNMENT STATEMENTS

T F

- AND. Generates the logical AND function
of two logical arguments, as in:

A=ARG1.AND.ARG2

ARGL ARG2 A

F F F

F T F

T F EF

T T T

~OR. Generates the logical inclusive OR
function of two logical arguments,
as in:

A=ARG1.OR.ARG2

ARG1 ARG2 A

F F EF
F T T

T P T

T T T

Examples of logical operator applications:

In Logical Assignment Statements:

A=P .LT. Q .AND. Q .GT. R

B=P .LT. Q .OR. R «EQ. S

In Logical IF Statements:

IF (P.LT.Q.AND.R.EQ.S) GO TO 15

IF (P.LT.Q) GO TO 28

Integer values can be subjected to full-word logical operations
uSing the intrinsic logical functions described in Section 7.

Order of Evaluation

The order in which a complicated expression is evaluated can be
determined precisely if a few ground rules are kept in mind. Each
torp in the evaluation involves a group consisting of a single opera
tnd one or two arguments. The order in which these operator/argumen

3 - 15 July 1976

SECTION 3 MAN1674

derups are evaluated depends primarily on operator priority. The or
er,priority for all FORTRAN operators is listed in Table 3-1. Howev
position from left to right, and the presence of parentheses, may
affect the order of evaluation. For example, in the expression:

SQRT (A** (B-C+2.))

the SQRT function has highest priority, but its argument consists of
and expression, in parentheses, that must be evaluated first.
Within the outer parentheses, the exponential operator has priority,
but one of its arguments (B-C+2.) is also an expression that must
be evaluated. In the latter expression both operators have the same
level of priority so they are evaluated from left to right; the
expression B-C is evaluated first, producing an intermediate result
"RU" .

The complete evaluation sequence is:

Step Argument 1 Operator Argument 2 Result
— ee ee — ee oes ee em ee ve ee — ae ee mene ee om ee — ee ee con em wee — ea oe es

1 B - C Rl

2 RJ + 2 R2

3 A ** R2 R3

4 R3 SORT -- Final Result

An expression of any complexity can be analyzed in this manner’ to
detect possible error conditions such as use of mixed modes, etc.

Among operators of equal priority, the laws of commutativity and
associativity are used to rearrange the order of evaluation.

REV. D 3 - 16

MAN1674 ASSIGNMENT STATEMENTS

Table 3-1. Operator Priority

Priority Operator Operation

First FUNCTIONS Function subroutine

** Exponentiation

x / Multiply or divide

+ - Add or subtract

~-LT.,.LE.,.EQ.,

Relational operators
~NE.,.GT.,GE.

-NOT. Logical negate

~AND. Logical AND

Last ~OR Logical OR

Mixed Mode Expressions
eene ee ee eere re ee ee ee ee oe ee

nteger,tic and Relational operators may freely combine operands of i
real, double-precision, and complex modes. The restrictions are:

1) No operator can combine a complex and double precision
operand.

2) If operands of different modes are combined, the following

results:

Mixed Operands Results

Complex-Real Complex

3 - 17 oe July 1976

SECTION 3 MAN1674

Complex-Integer Complex

DP - Real DP

DP -Integer DP

Real-Integer Real

3) Subscripts of array variables must be in integer mode:

ARRAY (3,1,J)

4) Arguments supplied to subroutines (for example in
CALL statements) must be in the mode required by
the subroutine.

Assignment Rules
eseeoeree eeee

In arithmetic assignment statements of the form:

A = B

different data modes may be used on either side of the replacemnt
Operator, within the limits specified by Table 3-2.

REV. D 3 - 18

Table 3-2.

MAN1674 ASSIGNMENT STATEMENTS

Rules for Assignment Of B to A

ce ee a remnrcrmmevemmnscem cam ram rmmemcammmsremsmemvw ee mae uum mre emer ism mem eam mee mem arm cm remem we em ie cme eres sees cere weeeeeeeee ee ee es ee ee

Integer
Integer

Real

Real

Real

Real

Double
Double
Double
Double

Complex

Complex

Complex
Complex

Precision
Precision
Precision
Precision

Integer
Real

Double Precision
Complex

Integer
Real

Double Precision
Complex

Integer

Real

Double Precision
Complex

Integer

Real

Double Precision

Complex

Assign
Fix & Assign
Fix & Assign
Fix & Assign Real Part

Float & Assign
Assign
DP Evaluate & Real Assign
Assign Real Part

DP Float & Assign
DP Evaluate & Assign
Assign
P

Float & Assign Real Part
zero Image Part
Assign Real Part Zero
Image Part
Pp

Assign

em an =m mn eam Am mm cn ce ream -as wnm oel sam mh ee mm mm ewe Gomis 0s mh omits antl cma wena te mn sme Same me ome cm wae aD ee me “OD mE GSD we OME “UR Ge OR ED OE OE Ue OU ee ee

(1) P means prohibit combination.

(2) Assign means transmit the resulting value, without change,
to the entity.

(3) Real Assign means transmit to the entity as much precision
of the most significant part of the resulting value as a
real datum can contain.

(4) DP Evaluate means evaluate the expression, then DP Float.

(5) Fix means truncate any fractional part of the result and
transform that value to the form of an integer datum.

(6) Float means transform the value to the form of a real datum.

(7) DP Float means transform the value to the form of a double

precision datum.

July 1976

MAN1674 CONTROL STATEMENTS

SECTION 4

CONTROL STATEMENTS

The statements of a FORTRAN program are usually executed in the
order in which they are listed in the source program. Control
statements make it possible to alter the sequence of execution,
branch conditionally to different statements depending on the result
of computations, form execution loops, call and return from
subroutines, and stop program execution. The control statements
described in this section are:

GO TO (unconditional, computed, and assigned)

IF (arithmetic and logical)

DO

CONTINUE

STOP

PAUSE

END

Also described in this section is the ASSIGN statement which is used
only in conjunction with assigned GO TO statements. The CALL and
RETURN statements are described in Section 7, together with other
information on subroutine references.

Statement labels used as arguments in control statements must be
assigned to executable statements in the same program unit as_ the
control statement itself.

UNCONDITIONAL GO TO STATEMENT

An unconditional GO TO statement is of the form:

GO TO k

where k is a statement label.

This statement causes the statement identified by the statement
label to be executed next.

Examples: See example in Appendix D.

4 - 1] July 1976

SECTION 4 MANI1574

COMPUTED GO TO STATEMENT

A computed GO TO statement is of the form:

GO TO (kK(1l), K(2), ... , k(n)), 1

where the k°s are statement labels and i is an integer expression
reference.

This statement causes the statement identified by the statement
label k(j) to be executed next, where j is the value of i at the
time of the execution. The result is a conditional branch to one of
the k destinations, depending on the value of i. If i is less than
l or greater than n, then control will be transferred to the next
Sequential statement.

Example:

GO TO (15,25,7),d

If J is elsewhere assigned the value 2, control will be transferred

to statement 25. For a program example, see X10 in Appendix D.

ASSIGNED GO TO STATEMENT

An assigned GO TO statement is of the form:

GO TO i, (k1l,k2, ... , kn)

NOTE: The parenthesized statement label list is optional.

where 1 1S an integer variable reference, and the k’s are statement
labels. More than one statement reference is optional.

At the time an assigned GO TO statement is executed, the current

value of i must have been ASSIGNed to aie statement label. The

Statement identified by that label is executed next.

Example:

ASSIGN 2@ TO ADCON

GO TO ADCON, (7,20,10@)

ASSIGN STATEMENT

A GO TO assignment statement is of the form:

REV. D 4 - 2

MAN1674 CONTROL STATEMENTS

ASSIGN k TO i

where k iS a statement label and i is an integer variable neme.
After execution of such a statement, subsequent execution of any
assigned GO TO statement using that integer variable will cause the
Statement identified by the assigned statement label to be executed
next, provided the variable has not been redefined.

Example:

ASSIGN 328 TO I

20 GO TO I,(100,31%6,328,409)
320 A=B+C

ASSIGN 1@8 TO I
GO TO 28

1606 Y = A*X

Once it has been mentioned in an ASSIGN statement, an integer

variable may not be referenced in any statement other than an
assigned GO TO statement (or as a statement number parameter in a

subroutine call) until it has been redefined.

ARITHMETIC IF STATEMENT

An arithmetic IF statement is of the form:

IF (e) K(1),k(2),k(3)

where e is any arithmetic expression of integer, real, or double
precision type, and the k’s are statement labels.

The arithmetic IF is a three-way branch conditional upon the value
of expression e:

Value of e Statement Executed Next

<@ (negative) k(1)

=@ k (2)

>@ (positive) k (3)

Example:

IF (TIME) 20,25,30

Here, if TIME is elsewhere assigned the value 2.5, control is

4 - 3 July 1976

SECTION 4 MAN1674

transferred to statement 3@. Other examples of the format:

IF (A+B-C) 20,25,30

IF (A+1.133) 7,58,100

Additional examples are Example X2 and X9, Appendix D.

LOGICAL IF STATEMENT

A logical IF statement is of the form:

IF (e) S

where e is a logical expression and S is any executable statement
except a DO statement or another logical IF statement.

The logical expression e is evaluated. If e has the value .TRUE.,
statement S is executed. Otherwise, control passes to the next

statement. Examples:

IF (P.OR.Q) C=P1*D

IF (X.GT.Y) CALL XFER (A,B)

IF (K.LT.L) GO TO 190

IF (INPT.EQ.°X’) BFR=INPT

See Program example Xl in Appendix D.

DO STATEMENT

A DO statement is of one of the forms:

DO ni = m(1l), m(2), m(3)

where:

(1) n is the label of an executable statement following the
DO statement in the same program unit. This statement, called
the terminal statement of the associated DO, must not be a
GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE, or

Do statement, nor a logical IF containing any of these forms.

(2) 1 is an integer variable called the index.

REV. D 4 - 4

MAN1674 CONTROL STATEMENTS

(3) m(1l), m(2), and m(3) are the initial, limit, and increment
values of the index, respectively. They are each either an
integer constant or integer variable reference. If the
second form of the DO statement is used, m(3) 1S assumed

to be 1. At time of execution of the DO statement,

m(3) must be greater than zero.

A DO statement causes looping or repeated execution of a series of
statements. The range associated with DO statement consists of all
executable statements following the DO, to (and including,) the
terminal statement.

During execution of a DO statement, i is set equal to m(1l), and all
executable statements within the range of the DO are executed at
least once, After each execution, the value of 1 1S increased by
m(3) and if i is equal to or less than m(2), the same group of
statements iS executed again. This process repeats until i is
greater than m(2) (the limit). After the last execution, control

passes to the statement following the terminal statement and the
index variable is left at an undefined value. This is called the
normal exit from the range. A control statement within the range
may also cause exit. Examples:

DO 15 I = 1, 10, 1

This loop is executed 16 times. I is 10 during the last
execution.

DO 15 I = 3, 10, 2

This loop is executed 4 times. I is 9 during the last
execution.

During execution, the index variable is available for use in
arithmetic statements to control the results of computation. For
example:

DO 5¢@ I 1, 9

538 A(T) I*3.14159

sets up a table of integer multiples of PI.

Nested DO Loops

A DO loop may include other DO loops which in turn may contain other
DO loops. The main rule for nesting is that the terminating
Statement of an inner loop must occur before the terminating
statement of the next higher loop. An exception is that a single
terminator can terminate two or more loops. (See statement 5 in the
second example.) DO loops can be nested to any depth.

4 - 5 July 1976

SECTION 4 MAN1674

First example of Nested DO’s

DO 26 K=1,14,2
A(K,1) = @.9@
DO 15 +=4,31.3

15 A(K,1)=A(K,1)+K,L)
A(K,2)=A(K,1)/3.14

20 A(K,3)=A(K,1)/503.7

Second Example of Nested DO Loops:

PERMITTED NOT PERMITTED

DO 5,1=1,5 DO 1,1=1,20,2

DO 1,J=2,10,2 DO 2,J=1,5

l CONTINUE 1 CONTINUE

DO 4,K=1,5 DO 3,K=2,20,2

DO 2,L=1,18,2 2 CONTINUE

2 CONTINUE 3 CONTINUE

DO 3,M=2,20,3

3 CONTINUE

4 CONTINUE

DO 5,N=1,3

5 CONTINUE

Extended Range

A DO is said to have an extended range if:

(1) A GO TO statement or arithmetic IF statement within the

of the innermost DO of a nest can cause control to pass

the next, and;

(2) A GO TO statement or arithmetic IF statement not within
st nest will cause control to return into the range of the

DO of the first nest.

range

out of

the

innermo

If both of these conditions apply, the extended range is defined as
ali statements that may be executed from the time control leaves
the nest to the time control returns to the nest.

REV. D 4 - 6

MAN1674 CONTROL STATEMENTS

Restrictions

A GO TO statement or an arithmetic IF statement may not cause

control to pass into the range of a DO unless it is being executed
as part of the extended range of the DO.

The extended range of a DO may not contain another DO that has an
extended range.

When a procedure reference occurs in the range of a DO, that

procedure is considered to be temporarily within that range during
the execution of that reference.

The control variable, initial parameter, terminal parameter, and
incrementation parameter of a DO may not be redefined during the
execution of the range or extended range of that DO.

A statement label that is the terminal statement of more than one DO
statement may not be used in any GO TO or arithmetic IF statement
except one withinthe range of the DO most deeply contained within
that terminal statement.

CONTINUE STATEMENT

A CONTINUE statement is of the form:

CONTINUE

This statement terminates the current execution of a DO loop. If no
DO loop is in effect, control. transfers to the next executable
statement. CONTINUE may be used as a labelled entry point, for
example as the target of a conditional GO TO statement. Example:

If A.EQ.B GO TO 120

12@ CONTINUE

For additional program examples, see Xl] and X14 in Appendix D.

STOP STATEMENT

4 - 7 July 1976

SECTION 4 MAN1674

A STOP statement is of the form:

STOP [n]

where “n° is an optional string of one to five decimal digits. This
statement transfers control to the subroutine FSHT, which types’ the
letters *KkXkKST (followed by the octal equivalent of ‘n’ if

Specified) on the user terminal, and returns to the operating

system (or halts the CPU when paper tape). After a START command,
the message 1S printed again.

PAUSE STATEMENT

A PAUSE statement is of the form:

PAUSE [n]

where n is an optional decimal constant. This statement transfers
control to the FSHT subroutine, which types the nessage ****PA,
followed by the octal eguivalent of the specified number. This
feature can be used to stop the program temporarily and allow the
operator to change tape, set Sense switches, etc. It is customary
for n to identify the PAUSE statement that caused the halt.

After a START command, the program continues operation at the first
executable statement following the PAUSE statement.

END STATEMENT

This statement must be placed at the end of every subprogram:

END

REV. D 4 - 8

MAN1674 SPECIFICATION STATEMENTS

SECTION 5

SPECIFICATION STATEMENTS

Specification statements are non-executable statements which supply
information to the compiler. For convenience, they are divided into
the following functional categories:

Data Type Mode Specification Statements

INTEGER
REAL
DOUBLE PRECISION
COMPLEX
LOGICAL

Storage Specification Statements

DIMENSION
EQUIVALENCE
COMMON

External Procedure Specificaton Statements

EXTERNAL

Data Defining Statements

DATA

Compilation and Run Time Control Statements

TRACE

LIST

NOLIST

FULL LIST

SINSERT

DATA TYPE MODE SPECIFICATION STATEMENTS

These statements are used to override the implicit mode assignments
controlled by the first letter of a variable name. Thus, variables
with names that begin with I, J, K, L, M, N,can be defined as REAL

5 - Jl July 1976

SECTION 5 MAN1674

or DOUBLE PRECISION, and so on.

A mode specification statement is of the form:

Mode vl, v2, ... vn

where Mode is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL,

and each v is a variable name, an array name, a function name, or an
array declarator.

A mode statement is used to override or confirm the implicit mode
assignment specified by the first letter of the name (I, J, K, L, M,

N, for integer), to declare entities to be double precision,
complex, or logical modes, and to supply array dimension
information.

A global mode assignment may be made by a mode statement without a
list of names. All variables that do not appear in another mode
specification statement are defined as the global mode.

NOTE:

The global mode assignment does not affect variables, arrays,
or function name occuring before a global mode statement.

INTEGER statements are used to declare integer mode for variables,
arrays, or functions.

INTEGER A5, MATRIX, B37

REAL statements may be used to assign real (single precision
floating point) mode to variables, arrays, or functions.

REAL J22, NEXT, MATRIX, IFX

DOUBLE PRECISION statements assign variables, arrays, or functions
to the double precision floating point mode:

DOUBLE PRECISION AMT, INT, STAT25

COMPLEX statements assign variables, arrays, or functions to complex
floating point mode:

LOGICAL statements assign variables, arrays or functions to logical
mode:

LOGICAL P, Q, R, XOR, IMPL

Alternate Methods of Declaring Arrays

The array is specified in the same manner as in the DIMENSION
Statement, by following the array name with the maximum size of each
dimension within parenthesis. Examples:

REV. D 5 - 2

MAN1674 SPECIFICATION STATEMENTS

INTEGER X(10),Y,2, (5,3,2)

REAL Kl, K2(4,3)

DOUBLE PRECISION D(18)-

COMPLEX Cl, C2(3,7)

LOSICAL L(4,4,4)

COMMON Al, B(6)

STORAGE SPECIFICATION STATEMENTS

As previously stated in Secton 3, arrays can have up to seven
subscripts separated by commas. Each array must be assigned a
Storage area by a DIMENSION cr COMMON statement, or as part of a
mode declaration statement.

These statements provide the compiler with information on the size
of arrays, specify common storage areas for use by two or more
programs, and identify external subprogram names.

DIMENSION Statement

The DIMENSION statement is used to declare arrays and define their
sizes.

A DIMENSION statement is of the form:

DIMENSION vl(I1l), v2(1I2), ..., vn(iIn)

where each v is a variable that is assigned as the name of an array
(See Section 3), and each i is a series of one to seven dimensions
that define the dimensions of the array. The maximum number of
array dimensions is seven. The dimensions are positive non-zero
integer constants, or dummy variables, separated by commas. The
value of each dimension defines the maximum value for that
dimension. The DIMENSION statement thus establishes the name and
maximum storage requirement of an array. Example:

DIMENSION LST1(1908), TABLE(10,19,4), ARRAY(4@,18)

For program example, see X13 in Appendix D.

An alternate way to define arrays is described under Data Mode
Specificetion Statements.

An array must be re-declared when it is passed to a subprogram. In
both declarations, the mode, number of dimensions, and size of each

5 - 3 July 1976

SECTION 5 MAN1674

dimension must agree, but the name of the array need not agree. For
axample:

DIMENSION TABL(100)

CALL STAT (TABL, PARAM)

SUBROUTINE STAT(JOB, J)

DIMENSION JOB(100)

In a FORTRAN subprogram where the calling program provides (and
declares) the array name and all variable subscripts, the
subscripts in a DIMENSION statement may be integer variables instead
of constants.

This feature adds to the flexibility of general purpose subroutines
that process arrays. Rather than specifying an array of fixed size
within the subroutine itself, the calling program can declare the
Size of an array of any size (memory space permitting). Constant
dimensions must beused in the calling program, however. Example:

DIMENSION MATRIX (25,25)

CALL EVAL (MATRIX, 25, 2)

SUBROUTINE EVAL (TYPE, I,B)

DIMENSION TYPE (TI, I)

In the subprogram’s DIMENSION statement, both the array’s name and
all variable subscripts must be dummy names.

EQUIVALENCE Statement

The EQUIVALENCE statement permits a program to Share memory storage

oy two or more variables or array elements within a single set of
parentheses.

An EQUIVALENCE statement is of the form:

EQUIVALENCE (k11,k12,k13...),(k21,k22,k23...)

where each k iS a variable, subscripted variable, or array name
separated by commas. Each element in the list is assigned the
same memory storage by the compiler. Subscripts appearing in an
equivalence list must be integer, positive, non-zero constants.

REV. D 5 - 4

MAN1574 SPECIFICATION STATEMENTS

An EQUIVALENCE statement equates single variables to each other,

entire arrays to each other, elements of an array to single

variables, or vice versa.

An element of an array may be expressed in an EQUIVALENCE statement

in any of three ways:

1. It may be expressed exactly as in a DIMENSION statement. Assume
the element X (1,1) of the two-dimensional array X(5,5) is to
be eguated to variable Y (3) of the one-dimensional array Y (190)

the statement could be:

=
e

EQUIVALENCE (X(1,1),Y¥(3))

Note that this statement also equates X (2,1) with Y (4),

X (3,1) with Y (5) etc.

2. It may be expressed as the equivalent fictitious single-

dimensional subscript that indicates the order in which the

element is stored in memory. Again assuming
element X (1,1) is to be equated to variable Y (3),

the statement could be written:

EQUIVALENCE (X(1),Y(3))

where X (1) specifies that the element X (1,1) is stored in the

first location of the storage block reserved for the two-

dimensional array X (5,5).

3. The array name may be stated without a subscript; a subscript

of 1 is assumed. Thus, elements X (1) and Y (3) could be

equated by:

EQUIVALENCE (X,Y(3))

The data type (mode) assigned to each element determines the number

of memory cells occupied by each element: .

Number of

Data Type (Mode) Memory Words

Integer, Logical 1

Real 2

Double Precision 4

Complex 4

If an INTEGER or LOGICAL data type (mode) variable is made

eguivalent to a REAL, DOUBLE PRECISION or COMPLEX mode variable, the

former variable shares memory storage with the first of the words

5 - 5 July 1976

SECTION 5 MAN1674

required by the latter variable.

Variables and array elements appearing in EQUIVALENCE statements may
also appear in COMMON) statements. However, the EQUIVALENCE
Statements must not re-origin a common block, as in:

REAL Y(1@)
COMMON X(5) (Not permitted)

EQUIVALENCE (Y(9),X(2)°

and must not re-order common, as in:

COMMON X,Y

EQUIVALENCE (X,Y)

or (Not permitted)

COMMON X,Y
EQUIVALENCE (X,A)
EQUIVALENCE (A,Y)

Dummy arguments for a Subprogram cannot be used as elements’ within
an EQUIVALENCE statement contained in that Subprogram.

COMMON Statement

A COMMON statement enables a program to share memory storage among
two Or more program units, and =o specify the names of variables and
arrays that are to occupy this area.

A COMMON statement is of the fo-rm:

COMMON/xl/al/ . . ./xn/an

where each a iS a nonempty list of variable names, array names, or
array characters (no dummy arguments are permitted) and each x is a
COMMON block name or is empty.

A COMMON block name may be unspecified (called blank common); if
such a block appears first in a COMMON statement, the first two
Slashes may be omitted.

Names of COMMON blocks must not be identical with the name of a
Subprogram called on by the program job, or the name of a subroutine
in the FORTRAN library. The following example illustrates some
acceptable COMMON statements:

COMMON P,Q,R (280)

COMMON // P,Q,R (28)

REV. D 5 - 6

MAN1674 SPECIFICATION STATEMENTS

COMMON / R1/X,Y,2

18 COMMON P,Q,R(20)/R1/S,T,U

COMMON // P,Q,R(28)/R1/S,T,U

X /R2/V,W(21,4) ,J

20 COMMON /R1/S,T//P/R1/U//Q,R(28)

C STATEMENTS 18 AND 2@ ARE EFFECTIVELY IDENTICAL

Data items are assigned sequentially within a COMMON block in the
order of appearance. The loader program assigns all COMMON blocks
with the same name to the same area, regardless of the program or
subprogram in which they are defined. Blank common data is assigned
in such a way that it overlaps the loader program, thereby making
the memory area occupied by the leader program available for data

storage.

NOTE:

The form // (with no characters except blanks between
slashes) may be used to denote blank common.

The number of words that a COMMON block occupies depends on the
number of elements, the mode of the elements, and the interrelations

between the elements specified by an EQUIVALENCE statement. COMMON
blocks that appear with the same block name (or no name) in various
programs or subprograms of the same job are not required to have the
elements within the block agree in name, mode, or order but the
blocks must agree in total words.

Special Common Block, “LIST’*
meeeeeee Seer ee re ee ce neeeoe es we ee oe ee

As an aid to system-level programming, this compiler defines

absolute memory location °@0001 as the origin of a common. block

named “LIST.

It is customary to assign an array called LIST into the labeled

common area called LIST, such that the first word in this array is
location “°@0901, the sixth word location “80006, etc., as in:

COMMON/LIST/LIST (68)

Effectively, the subscript of array LIST is the actual memory
address.

*This feature is not required when compiling in 64V mode with VFTN.

5 - 7 July 1976

SECTION 5 MAN1674

EXTERNAL PROCEDURE SPECIFICATION STATEMENT

The EXTERNAL statement permits the name of an external FUNCTION
Subprogram (library or user defined) to be passed as an argument in
a Subroutine call or function reference. An EXTERNAL statement is
of the form:

EXTERNAL vl, v2, ... , vn

where each v_ is declared to be an external procedure name. If an
external procedure name is used aS an argument to another external
procedure, it must appear in an EXTERNAL statement in the program
unit in which it is so used. Only subprogram names used as
arguments need to be declared by an EXTERNAL statement. Example:

Main Program:

EXTERNAL SIN, COS

A=EVAL(SIN,X)

B=EVAL(COS,Y)

END

FUNCTION Subprogram EVAL:
0 mm) emma mie ssn met meme meme rn hamsee em nce nee es nes renee et ty

FUNCTION EVAL(F,ARG)

EVAL=F (ARG) +F (ARG/2)

RETURN

END

In this example, the FUNCTION subroutine EVAL uses a dummy argument
F to be replaced by an external function name. In the main program,
the first reference to EVAL specifies SIN as the function name. In
the second reference, COS is specified.

DATA DEFINING STATEMENTS

The initial state of variables or array elements may be set up at
the time of loading by DATA statements.

REV. D 5 - 8

MAN1674 SPECIFICATION STATEMENTS

DATA Statement

The DATA statement sets variables or array elements to initial
values during loading of the object program. (The variables are not
re- initialized if the program is restarted without reloading.) A
DATA initialization statement is of the form:

DATA k1/d1/,k2/d2/,...... , kn/dn/

where k is a list containing names of non-dummy variables or array
elements (with constant subscripts) separated by commas. Each d is
a corresponding list of constants with optional signs.

The name list and the data list must correspond in order and data
type. If the data list consists of a squence of identical
constants, the constant need only be written once and preceded by a
repeat count (integer constant) and an asterisk. For example:

/1.4,3*2.80,0.9

is equivalent to:

/1.4,2.0,2.8,2.9,0.0/

Acceptable formats for constants used in data lists are:

Data Type Examples

INTEGER /11,-4896,1,+8,6*9/

REAL /11.0,-4.096E3,89E-2,+6.0,6*9./

DOUBLE /11.D,-4.096D3,89D-2,+8.6D1,6*8.D/

COMPLEX /(1.6,-4.096E3) ,(89E-2,+6.0) ,6*(0.,8.)/

LOGICAL /.TRUE.,.TRUE.,.FALSE./

The first DATA statement in the example below assigns the value

Q@.10762 to Al (4), 1.0E5 to X, 1 to K, etc. The assignment is done

at load time, not at execution time. A DATA statement is not

executable. Examples:

DIMENSION A1(10) ,B4(10)

DOUBLE PRECISION Dl

LOGICAL Ll, L2, L3

COMPLEX Cl

5 - 9 July 1976

SECTION 5 MAN1674

INTEGER I(10)

DATA Al1(4),X,K,D1,L1,Jl,
1 C1/@.19762,1.80E5,1,1.@D,
2 ~TRUE., “XY°,(4,3,9.9)/

DATA P/23.7/, Q/0.1E-3/,
1 R/®./, J/4095/, L3/.F./

)
)

2 B4(1),B4(2) ,B4(3) ,B4(4
3 B4(5) ,B4(6) ,B4(7) ,B4(8),
4 B4(9) ,B4(19) ,/10*9.08/
DATA I/10*9/

An ASCII constant may appear in the data list as a string of up to 8
characters (using either the nHxx format or the ‘xx’ format). The
characters will be stored as ASCII codes, left justified if
necessary.

The variable or array element must be of a data type appropriate to
the number of characters:

DATA I/°AB’/ (Integer)
DATA A/’ABCD’/ (Real)
DATA D/° ABCDEFGH ’/ (Double Precision)
DATA C/°ABCDEFGH “/ (Complex)

An atray or part of an array may be filled with a long’ Hollerith
string, as in:

INTEGER I(5)
DATA I/° 0123456789 “/
DATA I/°@1234°,°56789°/

The following form is not permitted:

DATA I(1),1(2). . 1(5)/°0123456789 °/

dederical and ASCII values can be mixed within the same array, provi
enough items are specified to fill the entire array:

INTEGER A(7)
DATA A/3, 12345" ,32767, 6789 “/

DEBUGGING AIDS

The following statements determine functions that take place while a
program is being compiled or executed. The TRACE function causes
Diagnostic printouts of the results of computation to facilitate
debugging. Three listing control statements, NOLIST, LIST and FULL
LIST are provided.

REV. D 5 - 19

MAN1674 SPECIFICATION STATEMENTS

TRACE Statements

TRACE statements are used as a program debugging function. TRACE

allows a listing of each of the current value of each assigned

variable.

TRACE statements can be used in two formats, item trace and area

trace.

Example:

The following is a partial program and a corresponding TRACE listing

format which contains both item trace and area trace.

PARTIAL PROGRAM TRACE LISTING

DIMENSION A(3,3) Y = §@.4740000000E 91
TRACE Y,A A (4) = 0@.2370000000E O1
X = 3.24 Y = 0.5740000000E O61

Y=xX+1.5 (5) = @.2870000000E O1

Z = Y**2 Y = 9.7740000000E @1
DO 48 ;=1,3 A (6) = @.3370000000E 1
A(1,2)= Y/1 Y = 0.7740000000E 81

48 Y = Y +1.@ (50)
X = 9.0 X = 8@.1000000000E 01

K = 2 () =-G@.2000000000E 01

TRACE 62 (51)
5@ X = X+1.0 K = 4

IF(X-3.9) 51,53,53 (50)
51 K = K*K K = 16

GO TO 58 (58)
53 IF(X.LE.Y) X=X+100.0 x = 0.3000000000E O1

62 X = X-1.0 () = Q@.OO90O0B0000E 00

Z=2 * X (53)

Y = 0.9 () = 1

eos X= O.1030000000E 03

(62)
X = 8.1920000000E 03
Y = 0. O0000000000E

Item Trace

Item trace allows the values of the variables to be listed in the

order of execution.In the above example, TRACE Y,A illustrate how

the values of Y and A are listed in the TRACE listing.

Item trace is in the form:

5 - ll July 1976

SECTION 5 MAN1674

TRACE Vi , V2 fee vn

where each V is a variable name or array name. When a program
containing such a TRACE statement is compiled, coding is inserted
into the object program following every statement where one of the
specified variables is redefined, until another TRACE statement that
Specifies the same variable is encountered. During execution, the
TRACE statement causes a printout of the state of modified variable.
An item trace statement can be placed anywhere in a program, but
trace coding is not inserted until the TRACE statement is compiled.
Any number of item trace statements may be included. The following
example illustrates the on-off action of item trace:

K=19 (No tracing yet)
TRACE K (Enables tracing of kK)

(
(

K=15*R Result is printed)
TRACE K Inhibits tracing of kK)
K=ALP (No printout)

TRACE statements take effect in source program physical order, not
tne logical order of execution.

Area Trace
om ee ee emee oe ee

Area trace allows the values of the variables associated with a
statement number to be listed. In the above example, TRACE 62
causes the values of X and Y to be listed starting with the TRACE
statement and ending with statement 62.

Area trace iS specified by the form:

TRACE n

where n is any statement number that follows the TRACE statement.

Coding is also inserted after each statement number to cause a
printout that enables the programmer to follow the sequence in which
statements are executed.

An area trace statement should not be placed within the range of
another area trace statement, unless both statements refer to the
same statement number.

LISTING CONTROL STATEMENTS

These statements enable the programmer to choose the amount of
detail to be present in the listing file for different sections of a
program. The statements may appear anywhere in the source’ program,
but they only affect the listing of subsequent source statements.
These statements override the A register settings made prior to
compilation.

REV. D 5 - 12

MAN1674 SPECIFICATION STATEMENTS

NOLIST - No source listing, No symbolic listing

LIST - Source listing, No symbolic listing

FULL LIST - Source listing, symbolic listing

Inserting Files

The INSERT statement accepts a tree file name specifier which allows

the insert of a file located in a different file directory or the

same file directory.

Format: SINSERT <treename>

The SINSERT statement must start in column 1 followed by the tree

name of the file.

Usage: A file containing COMMON specifications for an
executable program, insert statement in each program
unit rather than repeating COMMON specification.

5 - 13 July 1976

MAN1674 I-O AND FORMAT CONTROL

SECTION 6

IT-O AND FORMAT CONTROL

GENERAL PRINCIPLES

Input/Output and format control statements are used to transfer and

control the flow of data between internal storage and an

input/output device such aS a user terminal, printer, punch,

magnetic tape unit or disk storage unit.

Input/Output in FORTRAN IV is accomplished mainly by three types of

Statements: READ for input, WRITE for output, and FORMAT for input

or output format specifications. In addition, device control

statements are provided for use with sequential access devices such

aS magnetic tape transports and ENCODE/DECODE statements convert to

and from ASCII data.

The Input/Output statements described in this section are:

READ/WRITE STATEMENTS

READ
WRITE
FORMAT
PRINT

DEVICE CONTROL STATEMENTS

REWIND
BACKS PACE
ENDFILE

ENCODE/DECODE STATEMENTS
eeiiiitalia

ENCODE
DECODE

READ AND WRITE STATEMENTS

Input/Output statements in FORTRAN perform data transfers between

storage locations defined in a FORTRAN program and records which are

external to the program. On input, a READ statement transfers data

from an external device (unit) to storage locations. On output, a

WRITE statement transfers data from diverse storage locations to an

external device (unit). An I/O list is used to specify which

6 - 1 July 1976

SECTION 6 MAN1674

storage locations are used.

The READ and WRITE statements are identical in format; READ is used
for data input, and WRITE is used for data output.

The format is:

READ (u,f) list

or

WRITE (u,f) list

where “u’ is the unit number of the I/0 device, ‘f° is the number of
a format statement included in the program being compiled, and
‘list’ is a list of the variables to supply or receive the data.

List

An I/O list specifies which storage locations are used. An I/O list
can contain variable names, array elements, array names or aie form
called an implied DO.

4

Unit Number “u

The unit number is an integer constant or variable between 1 and 28
that is used by the I/O Control System (IOCS) to refer to a logical
I/O device. The actual device used depends on the current setting
of the 1I0CS Logical Unit Table (LUTBL). Default logical device
assignments are listed in Table 6=t.

NOTE: Only user terminal, paper tape and Funits 1-16 are supported.eo?

Reading Data Into Arrays
cereeeee ee eee ee ee

The following example illustrates how data is read into arrays. See
Section 3 for storage arrangement and Appendix D for illustrative
program examples.

Example:

Write a single statement to read 288 numbers from a paper tape,
placing the first 198 numbers in the xX array and the next 1800
numbers read in the Y array. The paper tape reader will be
referenced by the number "2".

Solution:

READ(2,1) (X(1I),I = 1,100),(Y(1I),I = 1,100)

REV. D 6 - 2

MAN1674 I-O AND FORMAT CONTROL

Two basic forms of the READ and WRITE statements are:

Form Purpose

WRITE (u,f) list formatted WRITE

“WRITE (u) list unformatted WRITE
READ (u,f) list formatted READ
READ (u) list unformatted READ

Table 6-1. Logical Device and their IOCS Numbers

FORTRAN Number Device

(Unit No.)

1 user terminal
2 paper tape reader or punch
3 MPC card reader
4 serial line printer
5 Funit 1
6 Funit 2
7 Funit 3
8 Funit 4
9 Funit 5

19 Funit 6
ll Funit 7
12 Funit 8
13 Funit 9
14 Funit 12
15 Funit 11
16 Funit 12
17 Funit 13
18 Funit 14
19 Funit 15
20 Funit 16 |
21 9-track magnetic tape unit @
22 9-track magnetic tape unit 1
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit @
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3

6 - 3 July 1976

SECTION 6 MAN1674

Reading a Variable List
ee mene ee cere meet ee ee ee ete me oe aee

A variable list consists of one or more variables, subscripted
variables, or array names, separated by commas, as in:

READ (1,10) A,B,X(B), ARRAY

Variables may be of any mode provided each item is matched by an
appropriate format specification in the format statement.

The order of items in the list is significant. On output, (WRITE),
each item is delivered to the output device in the specified order.
On input (READ), the first data item in the input record is entered
into the first item on the list, and so on.

In the list of a READ statement, an integer variable used as a
subscript may appear as a variable in the same list to the left of
the subscripted variable. (See B and X(B) in the above example.)

Example:

Write a statement to read ten numbers and place them in the
variables A, B, C, D, E, F, G, #8, O, and P, respectively. Use
associated statement number 1 in the READ statement.

Solution:

READ (1,1)A,B,C,D,E,F,G,H,0,P

Implied DO-Loops
em ee ee ees mms ee ee ee ie em ee

This notation provides a concise way to specify sequential input or
output of array elements at the same level of subscripting. A
Starting and ending value for a subscript is specified in much the
same way as in a DO loop. Consecutive items of the array at that
Subscript level are processed as the subscript variable is stepped
through its range of values. For example, in:

READ (1,50) J, (Y(1I),X(I,J) ,I=1,190)

The expression I=1,18 specifies the starting and ending values’ for
the subscript variable, I. The starting and ending values may be
integer constants or variables. An increment of +1 is assumed.
This statement reads items in the following order:

J, Y(1) pX(1,5) p¥(2) -X(2,)d) yp 6 ew ee e¥(1B) ,X (16,9)

The name ‘implied do loop” comes from the resemblance to DO
statements. Note that the implied do loop statement and all items
containing the controlled variable as subscript are nested within

REV. D 6 ~ 4

MAN1674 I-O AND FORMAT CONTROL

the same outer parentheses. Two or more implied DO loops may appear
in a single statement, if they are properly grouped in parentheses:

WRITE (1,25) ((ARGH(I,J), I=1,3), J=1,18)

This statement outputs items in the following order:

ARGH(1,1) ,ARGH(2,1),ARGH(3,1),ARGH(1,2) . . .etc.

Items in the list are processed from left to right, with indexing
taking place at each open parenthesis (excluding the parentheses

containing subscripts).

While processing arrays, it is possible to select row-column or
column-row order by incrementing the subscripts in the proper order.

Processing Entire Arrays

To read or write an entire array, only the array name need be

specified; the subscripts can be omitted. For example, to process
a matrix of m * n elements named ARRAY, it is only necessary to
include the name ARRAY in the input/output list. This causes a

transfer of the entire array in its natural order, which is the

order that would be achieved by the following list entry: (The

innermost entry varies most rapidly.) See example Xl, line 9001, in
Appendix D of this manual.

((ARRAY(I,J) ,T=1,m) ,J=1,n)

Positioning Data in Formatted Records

READ and WRITE statements specify the input or output device to be

used, select a FORMAT statement, and name the variables or arrays

containing, or to contain, the transferred data. The variables are

named in an input or output list. The specified FORMAT statement

must provide a format descriptor for each of the items in the input

Or output list, in the same order. For example, in:

WRITE (1, 1@) ARGH, TEMP, DATO1

10 FORMAT (15, 3X, F8.5, 20X, E8.2)

the WRITE statement sets up the transfer of an output record on unit
l, (typically the Teletype) according to format statement 18. The
items in the output list are the variables ARGH, TEMP, and DATOl1.

Format statement 18 contains a format descriptor for each of the
variables, and in addition provides some vertical and horizontal
spacing control as follows:

Assume that,

6 - 5 July 1976

SECTION 6 MAN1674

the I/O device is at the beginning of the next record. For a
Teletyoe, that is equivalent to being at column 1 of a new line.

oY .

b. the first descriptor in the list, 15, applies to the first
variable, ARGH, in the output list of the WRITE statement; 15
treats ARGH as an integer and allows it a field of 5 spaces in
the output record. In this case, the field occupies Teletype
columns 1 through 5.

c. the 3X descriptor inserts three spaces in columns 6 through 8.

qd. the F8.5 descriptor interprets the variable TEMP as a real
(Single precision floating point) datum and allows it a field
8 characters wide in columns 9-16, with 5 digits to the right of
the decimal point.

e. 20 more spaces are inserted by the 20@X specification. These
occupy columns 17 through 36.

f. DAT@1 (also assumed to be a real number) is output in columns

37-44. The E8.2 specification arranges for DATO] to be output
in scaled format (using a decimal exponent), in a field 8 spaces

wide and with 2 digits to the right of the decimal point.

The resulting Teletype output line might look like:

Column a 1 2 3 4 5 Cl
123456789012345678901234567890123456738901234567890

32767 12.34567 1.23E 93

For an illustrative program example, see examples xX7 and X12 in
Appendix D.

The same principles apply for input. To read a line of data from
the user terminal, for example, the following READ statement might
be used:

READ (1,10) ARGH, TEMP, DATO1

The same format statement could be used, with the following effect:

Assume tnat,

a. the input is at the beginning of the next record.

Oo. the I5 descriptor causes the next Five characters to be read,
converted to an integer, and stored as variable ARGH (the
corresponding item on the READ statement input list).

c. the 3X descriptor skips the next three characters on the input

REV. D 6 - 6

MAN1674 I-O AND FORMAT CONTROL

file.

d. the F8.5 descriptor causes tne next 8 characters to be read,
converted from mixed-number notation into a real guantity, and
stored as variable TEMP.

e. the 20X descriptor skips 2@ more characters on the input file.

f. the E8.2 descriptor causes the next 8 characters to be read,
converted from scaled notation to a real quantity, and stored

as variable DAT@1.

FORMAT statements may also include literal text strings to be output
as comments or messages. For example, the message TEST could be
output by the following statements:

WRITE (1,20)

20 FORMAT (4HTEST)

Note that the WRITE statement does not require an output list, since
the only item output by the FORMAT statement is the Hollerith string

"TEST".

FORMATTED RECORDS

Summary

Format statements do the translation between the external form of
data and the way it is stored internally within the processor.
FORMAT statements also provide for vertical and horizontal spacing
control. Internally, data is stored in one of six formats -

integer, real, double precision, complex, logical, or ASCII. These
are described in Section 4. The external form depends on the
peripheral device and the type of record.

Format statements have the general form:

SN FORMAT (dFl dF2 dF3....Fn)

where SN is a mandatory statement number, each F is a format field
description and each d is a delimiter. The first d may be null.
The closing parenthesis of the format statement selects the next

record.

Delimiters will be discussed next followed by a discussion of the

field descriptors.

Delimiters (Slash and Comma)

The delimiters are the slash (/), meaning proceed to the next

o
v I ~
~ July 1976

SECTION 6 MAN1674

record, or the comma, meaning remain within the current record. ‘Two

Or more slashes may appear ina row to skip several records. A
slash at the beginning of the specification can be used for
additional vertical spacing.

Examples:

WRITE (1,198) I,J,K

10 FORMAT (16/16/16)

could print:

0 1 2
Column 1234567898123456789012345.

1
32767

-32767

The affect of a statement such as:

FORMAT (16///16)

depends on whether it is being used for input or output.

During output, two blank records are written; during input, two
records are skipped. For output, the statement writes a 5-column
integer in the current record, writes two blank records, and writes
another 5-column integer at the beginning of the next record. For
input, the statement reads a 5-column integer from the current
record, skips two records, and reads another 5-column integer from

the next record.

Record Length Options
reeeeeeeeee eee re ee ee

See Section 8 for record length option details.

Format Field Descriptors
ee eeAeeee

Execution of a formatted READ or formatted WRITE statement initiates
format control. Each action of format control depends upon format
field descriptors. These are of the forms:

srFw.d

SrEw.d

srGw.d

scrDw.d

REV. D 6 - 8

MAN1674 I-O AND FORMAT CONTROL

B’<character string>’

riw

rLw

r Aw

nHhhhhhh...
nx

Tn

where:

(1) The letters F,E,G,D,1I,L,A,H,X, and T indicate the manner of

conversion and editing between the internal and external
representations and are called the conversion modes.

(2) w and n are nonzero integer constants representing the width

of the field in the external character string.

(3) d is an integer constant representing the number of digits in

the fractional part of the external character string (except

for G conversion code).

(4) r, the repeat count, is an optional nonzero integer constant

indicating the number of times to repeat the succeeding basic

field descriptor.

(5) s is optional and represents a scale factor designator.

(5) Each h is one of the characters capable of representation

py the processor.

For all descriptors, the field width must be specified. For

descriptors of the form w.d, the d must be specified even if it is

zero. Further, w must be greater than or equal to d.

cee een erent we ee ee a ee re re ne em eeee ee tm ee eo to

Table 6-2 summarizes the output field descriptor and Table 6-3

summarizes the input field descriptor.

6 - 9 July 1976

SECTION 6 MAN1674

Table 6-2. Summary of Output Field Descriptors

FIELD KEKKK EXAMPLES ****xkxk

DESCRIPTOR CONVERSION INTERNAL STATEMENT OUTPUT

niw INTEGERS NUMERALS

Converts internally stored +12345 16 b12345
integers to a group of
numerals (8 to 32767).

Without decimal point . ~12345 7 b-12345
only negative signs are
output.

nX n spaces are written
into current record

Tn Tabulation settings 1976 T10,14 1976
(note: For output, the

1 in 1976 starts in
Column 16)

nAw INTEGER, REAL or DOUBLE XY A2 XY

PRECISION variables ASCII

Lw LOGIC-IF NONZERO-TRUE +] Ll T

-IF GERO-FALSE 0 L5 bbbbF

nHstring Outputs headings, String 3Q0HTEXTb- TEXTb-
messages, etc, in a STRING STRING

“string” of ASCII
characters

rFw.d REAL or DOUBLE

PRECISION MIXED-

The Number of characters 1@ digits F1@.5
specified by w is con- 5 places 1234.56789
verted from real or
Jouble precision format
to a mixed number
without an exponent.
Where n represents no.
of times to be repeated
and d represents the
number of characters
to the right of the
decimal point.

tEw.d REAL or DOUBLE +123.456 E10.4 0.1235Eb@3

PRECISION SCALED (scale factor)

external no.= internal

No. X 10, where the
power of 1@ is the

REV. D 6 - 180

srGw.d

srDw.d

MAN1674 I-O AND

No. X 1%, where the
power of 18 is the
scale factor.

FIELD WIDTH COMPAR- 123456 G11.6

ISON - The magnitude of X10(1)
the input number is
compared with output field
width and either an E or F
conversion is made according
to available space.

DOUBLE PRECISION or

COMPLEX SCALED- The +123.456- D15.9

number of characters

specified by w is
converted from internal

double precision or
complex number to a
scaled number.

FORMAT CONTROL

1.23456-
bbb

@.1234-
56789D03

July 1976

SECTION 6 MAN1674

Table 6-3. Summary of Input Field Descriptors

FIELD KkKKKKKE EXAMPLES#KRKKAKKEK

DESCRIPTOR CONVERSION EXTERNAL FORMAT INPUT

niw Numerical Integers bb123 15 +123
(0 to 32767). Number
assumed positive when
no sign given. The
number is truncated
accordingly.

nx Skip n columns

Lw LOGIC-T set to +1 T Ll +1

-F set to @ F

srFw.] REAL or DBL PREC 123.456789 F10.6 123.456789
MIXED. The number of

characters specified
by w is converted from
REAL or DOUBLE PRECI-

SION format to a mixed

number without an
exponent. N is
number of characters
and d is number of

characters after

decimal point and w
is field width.

srEw.d REAL or DBL PREC @.12345E83 E10.4 +123.456
SCALED. The number of
cnaracters specified
by w is converted to
scaled and n.

nAw REAL, INTEGER or XY A2 XY

DBL PREC variables

to ASCII.

Integer-I Field Descriptor

The I field descriptor is used to process numerical quantities that
are represented internally as integers.

The format is:

REV. D 6 - 12

MAN1674 I-O AND FORMAT CONTROL

niw

where n specifies the number of times the descriptor is to be

repeated, and w specifies the width of field (number of character

positions to be read or written).

I format descriptors convert internally stored integers to a group

of numerals ranging from @ to 32767, without a decimal point. Only

negative signs are output.

Each number is right justified within the specified field width.

Thus, if the specified field is wider than the number of digits to

be output, the number is effectively spaced away from the preceding

item. This feature can be used to space items on a line so that

Successive lines form vertical columns of numbers, as illustrated in

preceding examples. (See the X descriptor for another method of

inserting horizontal spaces.) A + or - sign or blank uses one

character position.

If specified field width is less than the number of digits in the

number (including the sign, if negative), the number is truncated.

To show that truncation has occurred, a positive number is preceded

by a dollar sign ($) and a negative number is preceded by an equals

Sign (=). Examples:

Internal No. I Conversion

(Integer) Descriptor Resulting Output

+12345 16 b12345
15 12345
14 $123

-12345 17 b-12345

16 -12345
15 =1234

0 Tl g
15 bbbb@

NOTE

In these and subsequent examples, the letter “b’
represents blanks (space characters).

See example Xl in Appendix D for program example.

6 - 13 July 1976

SECTION 6 MAN1674

I format descriptors convert numerical fields in a data record into
internally stored integers. The external representation may range
from 9 to 32767. If no sign is present, the number is assumed to be
positive, a plus sign is interpreted as a blank. A + or - sign or
blank uses one character position. Numbers align from right to
left. There must be no decimal point. Spaces between numerals or
to the right of the number are ignored. If the specified field
width has fewer positions than the number, the number is truncated
accordingly. Examples:

Characters in I Format Converted
Input Record Descriptor Integer

bb123 T5 +bb123
b123b +bb123
123bb +bb123
12345 +12345
123456 +12345
b+123 +b123
+b123 +b123
b1b23 +b1b23
b-123 -b123
-123b ~b123
-1234 -1234
~12345 -1234

NOTE

Space characters (blanks) do not count as zeros.

Spaces-X Field Descriptor
em ree meme eee er ee ee ce ee oe eeaeeee

The X field specification provides another way to insert spaces
opetween entries on a single line.

The format is:

nx

where “n” is an integer constant that specifies number of spaces:

REV. D 6 - 14

MAN1674 I-O AND FORMAT CONTROL

5X I3 15 15 I5 20X I5

Column 1234567898123456789012345678901234567899812345678901...

Ll 37 99 3278 24

19 FORMAT (5X,13 315,20X,15)

On input, n columns are skipped; on output, n spaces are written
into the current record.

A negative value for ‘n’ is permitted. During output, this has’ the
effect of backspacing and overprinting. For example, ae real
variable with the value 123.90@ would be printed as follows:

Descriptor | Characters Output

F6.9 123.

F6.0,-1X,° * 123

(The F6.@ format descriptor and © ° Hollerith string are described

later.)

During input, a negative value for ‘n° can cause the program to read
part of an input record twice. For example, in:

READ (1,198) I,J

1@ FORMAT (15,-5X,5A1)

Five characters entered at the Teletype keyboard are both converted
to an integer value in variable I and stored as a 5-character ASCII
string in integer array J.

(TAB) -T Field Descriptor

The T field descriptor operates like a tabulation (tab) control.
The form is:

Tn

6 - 15 July 1976

SECTION 6 MAN1674

where “n’ is an integer constant that specifies the column where the
next format descriptor will take effect.

Example:

Column 1234567390123456789012345678901234567890123456789812. . .
12345 32767 123

20 FORMAT (T10,15, T25,15, T45,13)

Numerical data stored internally in real or double precision format
is processed by the E, F, or G field descriptors. Data stored
internally in real, double precision or complex format is processed
by the D field descriptor. Field specifications using’ these
descriptors have the following form:

nKw.d

where:

1. The letter n is a positive integer representing the number of
times the format descriptor is to be repeated. If n isl,
it may be omitted.

2. The letter K specifies the type of conversion to be used:

3. The letter w specifies the width of the field (number of
characters).

4. The letter d represents the number of characters to the right
of the decimal point.

NOTE

Scale factors will be described in subsequent
paragraphs.

Type F conversion is used when a number stored internally in real or
double precision format is represented externally as a mixed number

REV. D 6 - 16

MAN1674 I-O AND FORMAT CONTROL

(has a decimal point but no exponent), as in: 123.456, +3., 9.246,
-99.2.

Example:

Write a FORMAT statement to control the reading of three real
numbers, according to the following specification:

first number: 1@ digits, 5 decimal places
second number: 8 digits, 3 decimal places
third number: 12 digits, no decimal places

Solution:

1 FORMAT(F10.5,F8.3,F12.6)

Type E conversion is used when an internal real or double precision
number is externally represented in scaled number format, i.e., as a
decimal fraction multiplied by a power of 10, as in:

Q@.12345E12

Q.13524E-3

Type G conversion compares the magnitude of the internal number with
the external field width, and performs either a type E or type F
conversion according to the space available.

Complex numbers are stored internally as two consecutive real
numbers and consequently are handled by two consecutive field
descriptors of type F, E, or G.

Type D conversion is used for numbers stored internally in double
precision or complex format. The external notation is the same as
the scaled format of E output, but uses the letter D to identify the
decimal exponent:

9.123456789D12

@.123456789D-3

Because the output formats of these types differ, rules and examples
for each type of output statement will be presented. These types
have Similar input characteristics, described following the
different output forms.

Mixed Number-F Output

A type F field descriptor causes a real or double precision number
to be output as a mixed number, with the decimal point and no
decimal exponent. Values less than 1 are preceded by a zero (8.123,
etc.). The sign is output only if it is negative.

6 - 17 July 1976

SECTION 6

If the
be output,

If the field width is
the decimal point and

As in the case of integers,truncated.

field width,

the number

MAN1674

w, iS greater th

is right justifi

smaller than req
the negative sig

an the number of characters to

ed in the field.

uired by the number (including
n, if present), the number is

a truncated positive number
is preceded by a dollar sign (S$), and a truncated negative number is
preceded by an equals sign (=). Thus:

TRUNCATION

SIGN REASON FOR TRUNCATION

S Field width in format specification
smaller than positive

Field width in format
smaller than negative

number inputted.

specification
number inputted.

If the number of decimal places is wider than necessary, the field
is filled with zeroes to the right of the number. If the number of
decimal places is smaller than necessary, the number is rounded up
(if the field width permits).

Examples:

Internal No. F Conversion Resulting
(Real or DP) Specification Output

+123.456 F8.4 123.4560
F8.3 b123.456
F7.4 $123.45
F7.3 123.456
F7.2 b123.46
F6.3 $123.4
F6.2 123.45

~123.456 F9.4 -123.4560
F9.3 b-123.456
F8.4 =123.456
F8.3 -123.456
F8.2 b-123.46
F7.3 =123.45
F7.2 -123.46

+.123456 F8.6 8.123456
F7.6 $@.1234
F7.3 bb@.123

g F6.2 bb@.808
F4.2 8.60

REV. D 6 - 18

MAN1674 I-O AND FORMAT CONTROL

F4.0 bb@.

Example:

Using the statement READ(1,1)A,B,C,D,E, construct a suitable FORMAT
to specify the location of five real numbers, 14 digits per number
with 3 decimal places each.

Solution:

1 FORMAT (5F14.3)

Scaled Number-E Output

A type E field descriptor causes a real or double precision number
to be output as a scaled number, i.e., as a decimal fraction
beginning with @, a decimal point, and up to seven significant
digits, followed by the letter E, a space, and a decimal exponent
(power of 10) of one or more digits. Examples:

9.1234567EbD02

@.234EbD99

®.9G601Eb12

Field width and the number of decimal places are specified in the
same way as type F descriptors. For type E, however, it is also
essential to allow room for the leading 8, the decimal point, and
the four characters of the exponent. Truncated numbers are preceded
by $ or =, aS in type F. Examples:

Internal No. E Conversion Resulting
(Real or DP) Specification Output

+123.456 E13.6 b@.123456Eb@3
E12.6 0.123456EbD03
E11.4 b®@.1235Eb@3
E10.4 @.1235Eb93
£9.4 $@.1235Eb
E8.4 $@.1235E
E7.4 $@.1235
E2.4 $@
E1.4 3

-123.456 E14.6 b-9.123456Eb@3
E13.6 -=8.123456Eb903
E12.4 b-@.1235Eb@3
E11.4 -@.1235Eb93
E1@.4 =8.1235Eb0
E9.4 =@.1235Eb

6 - 19 July 1976

SECTION 6 MAN1674

E8.4 =9.1235E
E7.4 =9@.1235
E3.0 —=Q.

Q E9.4 $0. 800BEb
E6.0 0.EDOO
E5.@ $@.Eb

NOTE: For illustrative program example, see X12 in Appendix D.

Mixed Number or Scaled Number-G Output
— es ae mem eee emt crm meme teen mem em em nes cece me me eee cee ein eh a tee we cami en, came ee

A type G field descriptor causes a real or double precision number
to be output in the same way as either an F or ane€E field
descriptor, depending on the magnitude of the number and the ‘d’
part of the Gw.d field descriptor.

Table 6-4 shows how the descriptor is interpreted. If the magnitude
of the internal number lies between 9.1 and 1, the G descriptor acts
as an effective F conversion, in which w is reduced by d and 4
Spaces are added at the right. Values between 1 and 18 are
converted in the same manner but 4d is reduced by 1. For other
ratios of magnitude and field d specification, see Table 6-4. Note
the values outside a particular range are output by an equivalent E
conversion. Examples:

Actual
Internal Data Magnitude Conversion Equivalent Examples of

(Real or DP) Specification Conversion Output

$.123456x16(9) G12.6 F8.6,4X 8.123456bbbb
(1=<S=<18)

G11.6 F7.6,4X $8.123456bb

@.123456x10(1) G11.6 F7.5,4X 1.23456bbbb
(.1=<S=<1)

G10.6 F6.5,4X $1.23456bb

@.123456x10(5) G11.6 F7.1,4X 12345.6bbbb
(10** (S-2)=
<S=<10** (S-1))

G19.6 F6.1,4X $1.23456bb

@.123456x10(6) G11.6 F7.0,4X 123456.bbbb
(10**(S-1)=
<S=<10**(S))

G10.6 F6.8,4X $12345.6bb

@.123456c19(7) G12.6 E12.6 @.123456EbD97

REV. D 6 - 20

MAN1674 I-O AND FORMAT CONTROL

G11.6 E11.6 $8.123456Eb

Decimal Exponent-D Output
sem memeeeee ee ee ee eee ee ee ee oe

A type D field descriptor converts an internal double precision or
complex number to a scaled number, as in E conversions. However,

the letter D identifies the decimal exponent to show that the
internal value is double precision. Type D values may contain up to
14.5 significant figures. Type D is identical to type E with regard
to truncation. Examples:

Internal No. D Conversion Resulting
(Double Precision) Specification Output

+123.456789 D15.9 0@.123456789Db03
D12.6 @.123457Db83
D8.4 $@.1235D

-123.456789 D16.9 -0.123456789Db03
D13.6 -8.123457Db93
D8.4 =9.1235D

D,E,F, and G Input

External numbers to be input under control of ,these field
descriptors can be expressed in integer, mixed, or scaled notation.
The format is quite flexible; blanks are ignored; blanks contained
within number strings, or trailing, are ignored; a decimal point
and decimal exponent are optional. (See Figure 6-1). If a decimal
point is present, it overrides the positional decimal point set by
the format specification. The implied decimal point is assumed to
be placed to the left of the first D places from the right (i.e.,
count from right to left.

6 - 21 July 1976

SECTION 6 MAN1674

All external numbers are converted to the internal double-precision
floating point format, but if the descriptor is type E, F, or G, the
result is truncated to a single-precision real value.

If the input string contains any format errors, range errors, or
illegal characters, an error flag is set and a message is printed.
(See Appendix A.) The flag can be checked and reset by the OVERFL
function (See Section 7). The result of such an input is undefined.

Examples:

Input Input Format Resulting Internal
Characters Specification Number

bbbbbbb D,E,F or G7.3 +0.9
bbbbbbl +9.801
bbbbbl. +1.@
1.23bbb +1.23
bblobbb +9.001
bb1b23b +9.123
bb1023b +18.23
1234567 +1234.567
123456 +1234.567
b123456 +123.456
12345678 +1234.567
1.23453 +1234.0090
1.234D3 +1234.000
1.23D3b +1.23X19(3)
1.23E-3 +0.123X19(-2)
1234E-3 +91234X10(-2)
12345-3 +9.12345X1@(-1)
b123456 E7.3 +123.456

F7.2 +1234.56
G7.1 +12345.6

REV. D 6 - 22

MAN1674 | I-O AND FORMAT CONTROL

Table 6-4. Interpretation of Gw.d
Descriptors

Internal Data Effective
Magnitude Conversion

1—»10 F(w-4) .(d-1) ,4xX

- l—jpm 1 F(w-4) .d,4xX

10(d-2) ®10@(d-1) F(w-4) .1,4X

18 (d-1) 18 (d) F(w-4) .0,4X

Other Ew.d

6 - 23 July 1976

SECTION 6 MAN1674

LEADING SPACES
ARE TREATED STRING OF DIGITS. OPTIONAL TRAILING SPACES
AS ZEROES SPACES ARE DECIMAL ARE IGNORED

vv EXPONENT

\ D
bbbb-12345b6789.123b456 -12bbby :

NUMBER IS ASSUMED OPTIONAL MAY BE + OR SPACE
POSITIVE UNLESS DECIMAL POINT FOR POSITIVE
MINUS SIGN IS EXPONENT
PRESENT

NOTE:

D or I is not optional if the exponent is specified.

Figure 6-1. Format of External Input to
Type D,E,F, or G Field Descriptors

REV. D 6 - 24

MAN1674 I-O AND FORMAT CONTROL

F,E,G, and D Scale Factor Designator
etene)

A scale factor designator for use with the F,E,G, and D descriptors
causes a multiplication by a power of 10. The form is:

nP

where n, the scale factor, is an integer constant with an optional minus

sign.

Once a scale factor has been specified, it applies to all subsequent
F,E,G, and D field descriptors, until another’ scale factor is
encountered. If n=@, an existing scale factor is removed. The scale
factor has no effect on type I,A,H,X, or L descriptors.

E and D Output Scale Factor

Before output conversion, the fractional part of the internal number is
multiplied by 10**n and the exponent is decreased by n. Examples:

Format

Internal No. Descriptor Resulting Output

+123.456 E£12.6 0.123456EbO3
2PE12.6 12.34560Eb01

-2PE12.6 @.001235Eb05
-~2PE14.6 bb@.@01235Eb05
7PE12.6 1234560.E-@4

+123.456789 D15.9 @.123456789Db03
7PD15.9 1234567.898D-04

F Output Scale Factor

The internal number is multiplied by 10**n, as in:

Format

Internal No. Descriptor Resulting Output

+123.456 F7.3 123.456
3PF7.@ 123456.

-2PF7.3 1.235

G Output Scale Factor

6 - 25 July 1976

SECTION 6 MAN1674

The scale factor has an effect only if the internal number is in a_ range
that uses effective E conversion for output. In this case, the effect of
the scale factor is the same as in the corresponding E conversion:

Format
Internal No. Descriptor Resulting Internal No.

9.123456X1@(7) G12.6 @.123456Eb97

3PG12.6 123.4560Eb@4

D,E,F,G Input Scale Factor

The internal value is formed by dividing the external number by 10**n.
However, if the external number contains a Dor E exponent, the scale
factor has no effect.

Examples:

Input Format Resulting Internal
Input Characters Descriptor Number

b123456 F7.3 +123.456

3PF7.3 +.123456
-3PF7.3 +123456.

H‘(Hollerith) Field Descriptor

The type H descriptor is used primarily to output headings, messages, and
other literal text strings. This descriptor also provides vertical
spacing control for the Teletype and line printer. The standard form is:

nHstring

where “string” is a series of ASCII characters and n is a non-zero
integer equal to the number of characters following the H. If is
omitted it is assumed to be l. This compiler also accepts Hollerith
strings enclosed by single quotes, as in:

“string”

The H symbol and character count are not required.

H Output

The character string following H is written in the output record:

REV. D 6 - 26

MAN1674 I-O AND FORMAT CONTROL

H Descriptor Characters Output

LIHTEXTDSTRING TEXTbDSTRING

“TEXTDSTRING ©

L5HbbTEXTDSTRINGbb bbTEXTbSTRINGbb

“bbTEXTDSTRINGbb*

The H descriptor does not require a corresponding item in the output list

of a WRITE statement:

WRITE (1,18) A, AARGH, MAT(1)

19 FORMAT (SHLABEL,113,110,F15.5)

Other types of descriptor may follow a Hollerith string without an

intervening comma or slash. The statement:

50 FORMAT (’INCOME=bSb‘F8.2)

could be used to print a line:

INCOME= $ 12345.67

A (Alphanumeric) Field Descriptor

Type A conversion transfers ASCII character codes between integer, real,

or double-precision variables or arrays and external devices.

The form is:

nAw

where n is the repeat count and wis the number of characters to be

transferred per variable or array element. ASCII characters are stored

two per integer variable, four per real variable, or eight per double

precision variable.

ASCII-A Output

Each type A descriptor provides for output of the ASCII character content

of one variable in the output list of the accompanying WRITE statement.

If n is greater than the number of characters in the variable, spaces

precede the content of the variable.

Examples:

Internal Data Descriptor Resulting Output

6 - 27 July 1976

SECTION 6

Xb

XY

ASCII-A Input

Al

A2

Al

A2

A3

MAN1674

Xb

XY

bXY

Each Type A descriptor provides for input of one or two ASCII characters
to one variable in the input list of the accompanying READ statement.

If more characters are input than the variable can hold,
characters are accepted.

Examples:

Input Data

XY

DXY

bXYb

bXYb

XYbb

Descriptor

Al

A2

A3

Al

A2

A3

A3

A3

A4

A4

Resulting

Character Array String Transfer

If a repeat count is specified,
of ASCII characters to or from an
statements

Teletype keyboard:

REV. D

Xb

Xb

bb

Xb

XY

Yb

XY

Yb

Yb

bb

Internal Data

For example,

Only the last n

the

a type A descriptor can transfer strings
array.

could be used to enter a line of up to 72 characters from the
following

MAN1674 I-O AND FORMAT CONTROL

INTEGER LINE (36)

READ (1,190) LINE

1@ FORMAT (36A2)

If fewer than 72 characters are entered, the rest of the array is filled

with blanks.

Logical-L Field Descriptor
owe wees eee ere cee meee me cme cei owe wes em eeeeee ee oeee

Logical variables are represented internally by integer variables and

externally by the letters T and F:

Internal Value External Representation

-FALSE. F

- TRUE. T

Truth values formed by the logical and relational operators are +1 for

TRUE. and @ for .FALSE.

Logical-L Output

The internal value is converted to the letter F (if zero) or the letter

T (if non-zero) and output right-justified in a field w characters wide.

Examples:

Internal Format Resulting
Value Descriptor Output

~FALSE. Ll F

- TRUE. Ll T

L5 bbbbT

L@ (None)

Logical-L Input

6 - 29 July 1976

SECTION 6 MAN1674

A field w characters from the external record is examined. Leading
spaces are ignored. The internal variable is set according to the first
non-space character:

Character Effect on Variable

T Set to +l

F Set to @

Other Set to @ and error

flag 1S set

Any other characters in the field are ignored. The flag can be sensed by
the OVERFL function described in Section 7.

Repetition |of Descriptors

All descriptors except H and X can be assigned a repeat count, n, that
causes the descriptor to be used n times in succession:

FORMAT (3D18.5)

is equivalent to:

FORMAT (D19.5,D10.5,D19.5)

Using Parentheses

Groups of descriptors including H and X descriptors may also be enclosed
in parentheses and assigned in repeat count:

FORMAT (2(3D190.5,X3))

is equivalent to:

FORMAT (3D18.5,X3,3D18.5,X3)

Nesting Repeat Groups
a ee a eee Oe mr come ey eee nee nee com em) vou <a ee en ee em wee

Repeat groups may be nested up to two levels deep:

FORMAT (3(2(10F.7,3X) ,12,5X))

Example of Formatted Output
ee ee cae we ee ay my tees cow seme cantina ee ane mh ermemee,

The following example illustrates the repetition of format descriptors
and the resulting typewriter or line printer output:

REV. D 6 - 386

MAN 16

K
L
WRITE (1,196)
WRITE (1,196)
FORMAT (/4H A
WRITE (1,106)
WRITE (1,186)
WRITE(1,106)

O
n
A
M

O
l
m
W
F
N
F

The following output on a typewrite

ABC

XY 567 8 5 6 Result
XY 785 6 7

ABC

XY 567 8 5 6 Result
XY

ABC

XY 567 8 5 6 Result
XY 785 6 7 8

ABC

XY 567 8 5 6 Result
XY 785 6 7 8

XY 5

ABC

XY 567 8 5 6 Result
XY 785 6 7 8

XY 567 8 5 6

Rescanning Format Lists

If a format list is exhausted be
are processed, the format list is
parenthesis that matches the last
parentheses around the format list
other parentheses.) Any repeat
parenthesis is effective as usual.

During output, when a rescan of a f
record is padded with blanks and a
if a rescan is required, the rest o

74 I-O AND FORMAT CONTROL

I,J,K

12) ,3(13)/))
I,J,K,L
L,1,J,L,1

cr or line printer would result:

of statement 1

statement 2

statement 3

of statement 4

Statement 5

fore all items on an input/output list

repeated, starting at the opening
closing parenthesis in the list. (The

itself are used only if there are no

count preceding the selected opening

ormat list is required, the current

new record is started. During input,

f the current record is skipped and

31 July 1976

SECTION 6 MAN1674

the device is advanced to the beginning of the next record.

Entering Format Statements at Run Time

It is possible to enter format statements at run time by using a READ
statement to load the format statement into an array. The array can
later be referenced in lieu of a FORMAT statement, by the READ or WRITE
Statement that handles the data. Arrays to be used for this purpose must
be assigned as integer type and must be dimensioned to accomodate the
format description, at two characters per word. The format description
is loaded into the array by a READ statement that references a type A
format statement:

DIMENSION FORM (6) , TEXT(8@)
INTEGER FORM
READ (1,20) FORM

20 FORMAT (6A2) |

WRITE(1,FORM) (ARG(I) ,K(I) ,I=1,3)

These statements provide for an output format specification such as
(3(F7.3,17)) to be entered at run time. Note that the specification
must include opening and closing parentheses but not the word FORMAT.

REV. D 6 - 32

MAN1674 I-O AND FORMAT CONTROL

PRINT & PRINTER CONTROL

PRINT Statement

PRINT is an alternate method of specifying information be printed at the
user console.

The compiler supplies the logical unit number of 1 (user console). The
format is:

PRINT f£ list

where “f° is the number of a format statement included in the program
being compiled, and ‘list’ is the list of variables to be printed at the
user console.

Example:

PRINT 5,1,J,K

is equivalent to:

WRITE(1,5) I,J3,K

Vertical Spacing Control Symbols (Line Printer)

The first character of each ASCII output record controls the number of
vertical spaces to be inserted before printing begins on a line printer.
The codes are:

First Character Vertical Spacing

Space One line

@ Two lines

1 Form feed (advance to

first line of next page) *

*Note: Effective only on devices with
mechanical form feed.

+ No advance - print over
previous line (line printer
only)

Other One line (character is

6 - 33 July 1976

SECTION 6 MAN1674

printed also)

A @, 1, or + character is used for vertical spacing only and is not
printed.

A straight forward way to control spacing is to start a FORMAT statement
for an ASCII record with 1H@, where c is the desired spacing control
character, as in:

WRITE (4,20) TEXT

26 FORMAT (1H, 36A2)

The 1H®@ entry inserts two line feeds before the output line is printed.

REV. D 6 - 34

MAN1674 I-O AND FORMAT CONTROL

END AND ERROR RETURNS

End and Error Returns in READ/WRITE Statements

READ and WRITE statement syntax has been extended to allow the following
forms:

READ (d, END=a) READ (d,f£,END=a)

READ (d,ERR=b) READ (d,f£,ERR=b)

READ (d,ERR=b, END=a) READ(d,f£,ERR=b, END=a)

READ (d,END=a,ERR=b) READ (d,f£,END=a,ERR=b)

WRITE (d,ERR=b) WRITE (d,£,ERR=b)

where:

d- device specifier —

f - format specifier

a - statement number that control is to be transferred to

if an end of file condition is detected in the READ

b - statement number that control is to be transferred to
if a device error occurs in the READ/WRITE operation

B FORMAT STATEMENT

The B format has the form:

B’<character string>’

No repeat count is allowed associated with format specifier itself, but a
B format may be included in a parenthetical repeat group. The length of
the character string defines the length of the field in the output
record. The character string is a template for the output field and may

consist of the following characters:

+ ~_ $ ’ * Z # e CR

The characters are interpreted as follows:

Plus sign (+):

1) A single leading plus sign (fixed sign) will be replaced
by a plus sign if the output number is positive; a minus
sign if the output number is negative.

2) Multiple leading plus signs indicate a floating sign. As
many of the plus signs as are required by the magnitude of
the output number will be used for digits of the number. The

6 - 35 July 1976

SECTION 6 MAN1674

3)

one preceding the M.S.D. of the number will contain a-sign
character as above, the remainder will be replaced with
spaces.

A trailing plus sign will be replaced by a sign character
as described above.

Minus sign (-):

The minus sign behaves the same as a plus sign except that for
positive numbers a space is inserted instead of a plus sign.

Dollar sign (S$):

1)

2)

A leading dollar sign (preceded by at most a single fixed
Sign) will cause a dollar sign to be placed in the corre-
sponding position in the output field.

Multiple leading dollar signs (preceded by at most a single
fixed sign) indicate a floating dollar sign. As many of the
dollar signs as required by the magnitude of the output number
will be used for digits of the number. The dollar sign will be
placed to the left of the M.S.D. and the rest will be replaced
with spaces.

Asterisk (*):

Multiple asterisks will be used for digits of the output
number as required and the remainder will be included in the
output field. Asterisks may be preceded by at most a fixed
sign and/or a fixed dollar.

Z is used to indicate a zero suppress digit position. If
the corresponding digit in the output number is a leading
zero, a space will be placed in the output field. Otherwise,
the digit in the number will be used.

#°s are used to indicate non-zero suppress digit positions.
The corresponding digit in the output number will be placed
in the output field.

Decimal Point (.):

A decimal point indicates the placement of the decimal point
in the output number. The decimal point may be followed
only by # characters and/or trailing sign.

Comma (,):

REV. D 6 - 36

MAN1674 I-O AND FORMAT CONTROL

Commas may be placed in the field after any leading characters
and prior to the decimal point. If a significant digit precedes

a comma, a comma will be placed in the output field; iff not, a
space will be output unless the comma is contained in an asterisk
field in which case an asterisk will be output.

Credit (CR):

The characters CR may be used as the final two characters in
the string. If the output number is positive, they will be
replaced with spaces; if negative, they will be printed.

Examples:

Number Format Output Field

123 BotHHH “ 9123
12345 B’RHHE kk KK
Q BoeHEE © QOBO
123 B’2Z222° 123
1234 B’Z2Z22~ 1234
g B’Z222-
Q B’ZZZ#~ g

1.035 B’t. tH’ 1.04
U B’¢. dH’ 0.90
1234.56 B°2Z2ZZ,222,22#.4#- 1,234.56
123456.78 B°Z2ZZ,222,22¢.4#- 123,456.78
0 B’2Z2Z2,222,224.#4#- 0.88
2 B°+##H +002
-2 Bo+#H# “ -092
2 B’-Z24#" 2
-2 B’-Z224° - 2
234 B’ZZZZZ+" 234+
-234 B°ZZZ2Z22+- 234-
234 B’°ZZ2Z22-~ 234
-234 B’ZZ2Z22-- 234-
12345 B‘’2Z2Z2,2Z2#CR° 12,345
-12345 B’°2Z22,Z2Z#CR° 12,345CR
123 B’+t++,++#. #4" +123.00
-123 Bi+t+,++# eH’ -123.00
98 B’SZZZZ2Z24#- S$ 98
98 B’SSSSSSS#° $98
156789 B’S#kKK ke KEE EH S****156,789.00

UNFORMATTED (BINARY) RECORDS

Memory-image data consisting of 16-bit binary words can be processed

6 - 37 July 1976

SECTION 6 MAN1674

READ and WRITE statements without reference to a FORMAT statement. The

READ and WRITE statements are in the form:

READ (u) List

WRITE (u) List

where “u’ iS a logical device number and ‘List’ is a list of variables or
array names containing the data to be transferred.

An unformatted WRITE operation writes all words specified by the list in
binary format. If the list elements do not fill a record, the record is
padded with zero bits. If the list elements reguire more than one
record, multiple records are written automatically. The last record is
padded with zeroes, if necessary.

An unformatted READ operation reads records from the specified device and
enters the binary information into the items in the list. Enough records
are read to satisfy all the list items. If a record contains more items
than are required by the items in the list, the surplus items are
ignored. If no list is present, one record is read but ignored, for an
effective one-record forward spacing operation.

DEVICE CONTROL STATEMENTS

The REWIND, BACKSPACE, and ENDFILE statements are used for physical
positioning of sequential access devices such as magnetic tape
transports. DOS disk files are also treated as sequential records.

REWIND Statement

A REWIND statement of the form:

REWIND u

causes unit u to be positioned at its initial point.

BACKSPACE Statement

A BACKSPACE statement for a magnetic tape unit is of the form:

BACKSPACE u

If the unit iS positioned at its initial point, this statement has no
effect. Otherwise, the statement positions unit u so that the preceding
record becomes the next record.

ENDFILE Statement

REV. D 6 - 38

MAN1674 I-O AND FORMAT CONTROL

An ENDFILE statement for a magnetic tape unit is of the form:

ENDFILE u

causes the recording of an endfile record on unit u. The endfile record
is a unigue record signifying a demarcation of a sequential file. Action
is undefined when an endfile record is encountered during execution of a
READ statement.

ENCODE/DECODE STATEMENTS

The ENCODE statement converts the elements of the I/O list into ASCII
data according to the specified format and store the first c characters
of the resultant line buffer into the specified array. The DECODE
Statement has the opposite effect, converting the c character record in
the specified array into the I/O list elements according to the specified

format.

Their syntax is:

ENCODE (c,f,@a) list

DECODE (c,f,a) list

where:

c - number of ASCII characters to be transferred

f - format specifier

a - array name

list - I/O list (as in READ/WRITE statements)

DECODE Statement ERR=Option

The DECODE statement accepts an “ERR=sn”° parameter as in the READ/WRITE
statements. At run-time, the ERR= branch will be taken if a FORMAT/ DATA
mismatch is detected in processing the DECODE operation.

6 - 39 | July 1976

MAN1574 FUNCTIONS AND SUBPROGRAMS

SECTION 7

FUNCTIONS AND SUBPROGRAMS

GENERAL OVERVIEW

Programming efficiency is usually increased if often-used calculations
or data processing operations can be coded once, and then referenced at
several points in a main program by a brief calling statement. New
arguments, which are the only elements that are different each time the

operation is performed, are supplied by each calling Statement.
Programs organized in this way do not need to repeat identical sections
of code, and the same building blocks may be used in other programs, or
in alternate versions of the same program.

This effect can be obtained within a single program by using GO TO
statements which refer to the same statement number. However, code
used in this way iS not accessible to other programs. An alternate way
is to define the operation as a function or Subprogram. Either of
these can be invoked by a simple calling statement. In addition,
subprograms can be compiled separately and placed on a library tape for
use with other programs.

Functions are called by specifying a symbolic name followed by a list
of the arguments, in parentheses. For example, in the statement Y=SIN
(A), Y is set equal to the SIN (trigonometric sine) function of the
argument A. The function name may refer to one of the Prime FORTRAN
library functions, a user-defined statement function, or a subprogram
defined by a FUNCTION statement. As an extension to FORTRAN IV, Prime
also provides several intrinsic functions (XOR, AND, LOC, etc.) to aid
system programming.

Functions and subprograms discussed so far have in common the fact that
they produce a single output, or result. Calculations that produce
multiple results must be defined by SUBROUTINE statements and be
compiled separately from the main program. A subroutine subprogram is
referenced within a main program by a CALL statement which identifies
the subroutine by name and provides a list of arguments. For example:

CALL GRAPH (X,Y)

might involve a subprogram that calculates point plotting data for
arrays X and Y.

This section provides functions, subprograms and subroutines that are
available for use during compilation time. These include:

7 - 4 | July 1976

SECTION 7 MAN1674

PRIMOS SUBROUTINES,

LIBRARY FUNCTIONS,

INTRINSIC FUNCTIONS,

STATEMENT FUNCTIONS,

FUNCTIONS SUBPROGRAMS,

PROTECTED FUNCTIONS AND SUBROUTINES,

BLOCK DATA SUBPROGRAM,

LIBRARY SUBROUTINES,

SENSE LIGHT/SWITCH SUBROUTINES,

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS.

PRIMOS SYSTEM SUBROUTINES

PRIMOS subroutines are those which invoke PRIMOS II or PRIMOS III to do
the actual work. Each of these subroutines are identified in Appendix
E. Each subroutine does a specific job from attaching to a file
directory to transferring data from one device to another. These
System routines greatly enhance the capability of a user’s FORTRAN
program.

LIBRARY FUNCTIONS

Supplied with the Prime FORTRAN IV compiler is a collection of library
subroutines, These are identified in Appendix G of this manual. Some
of these subroutines are required by the compiler itself; they are
called during compilation and appended to the main program during
loading. The library also includes a collection of mathematical
subroutines that can be called as functions by statements within a main
program. Subroutines that execute library functions referenced in a
main program are also appended during loading.

Using the Library Subroutines
ees eens cena seme sms vem wees cme we wes may mee com em ee mem ems mee en emit im cen ne wa sans

Library function references are of the form:

NAME (ARGI1, ARG2,ARGn)

where NAME is one of the library function names listed in Prime’s
Software Library User Guide, and each ARG is one of the arguments to be
processed by the function. Functions require at least one argument.

Arguments may be constants, variables, or expressions. Constants and

REV. D 7 - 2

MAN1674 FUNCTIONS AND SUBPROGRAMS

variables must be of the modes specified in Prime’s Software Library
User's Guide. Expressions within the argument parentheses are
evaluated and the function is performed on the result. The mode of
expression must. also agree with expected mode. Following are some
examples of the use of functions:

M=SIN (+ B)

VORT=AMOD (A, B*72.921+V)

PRIPE=AMAX1(A,B,C,D 5.,ARGH/37.31E3,PI**3)

Argument lists may contain references to other library functions (or
statement functions or FUNCTION subprograms, defined later). Examples:

R=SIN(B+AMOD(D,D))

P=ABS (R* FUNC (1. 2E3+S))

INTRINSIC FUNCTIONS

This group of functions is an extension feature to increase the
efficiency of Prime FORTRAN IV in logical processing and system-level
programming on 16-bit integers. Also in this group is the LOC function
which returns absolute memory addresses.

Many of these functions are executed by two or three instructions of
in-line assembly language code; others result in calls to library

subroutines.

All of these functions except LOC are intended to process integer

arguments and form integer results. (If any argument is non-integer,

an error message will result.)

XOR (Logical Exclusive OR)

This function performs a logical exclusive OR of any number of

arguments. The result is integer mode. Examples:

XOR(ARG, TI)

XOR(J, K, L, M)

XOR(T)

AND (Logical AND)

This function performs a logical AND of any number of arguments.
The result is integer mode. Examples:

7 - 3 July 1976

SECTION 7 MAN1674

AND(ARG, 1)

AND(J, K, L, M)

AND (1)

OR (Logical OR)

This function performs a logical OR of two arguments, forming an
integer-mode result. Examples:

OR(ARG, I)

OR(J, 16)

NOT (Logical Negation)

The NOT function generates an integer mode value consisting of the 1s
complement of its single argument. Examples:

NOT (T)

NOT (ARG)

SHFT (Logical Shift)

The logical shift function is capable of fetching an integer variable
and performing one or two independent logical shifting operations in
either direction. The form is:

SHFT (IVAR,I,J)

where VAR is’ the name of an integer variable and I and J are integer
constants or variables that represent the number and direction of
shifts to be performed.

The function may have one, two, or three arguments. If only the first
variable is identified, the result of the function is the variable
itself (no function is performed). If I is specified, one shift
Operation is performed. The sign of I determines the direction (+ is
right, - is left) and the absolute value of I determines the number of
places. Shifting is logical - i.e., vacated bit positions are filled
with zeroes. If J is also specified, a second independent shift
operation is performed, according to the sign and magnitude of J.

When three arguments are present, the first argument is fetched,
shifted I places, then shifted again by J places. This double shift
feature is useful for masking or masking-and-positioning as shown in
the following examples:

REV. D 7 - 4

MAN1674 FUNCTIONS AND SUBPROGRAMS

SHFT(IVAR,11,-11) Set the right 11 bits to zero.

SHFT(IVAR,-l1,11) Set the left 11 bits to zero.

SHFT(IVAR,-4,8) .eeeee Set the left 4 bits to zero and
position to the right byte.

SHFT(IVAR,4,-8)-. Set right 4 bits to zero and
position to the left byte.

If I and/or J is not a constant, a call to the SHFT library subroutine
is generated. Otherwise the function is implemented by in-line code.

Examples:

SHFT(IVAR, -6)

SHFT (A, 3)

SHFT(INT, +3, -18@)

SHFT(K(5,27) ,J)

SHFT (M,4,K)

SHFT(1HX, 8)

SHFT(15, -7)

LOC (Location)

The LOC function generates an integer value that represents the

computer memory address where the function’s argument is located. Only

one argument (a constant, a variable r array name, a subscripted array

element) is allowed. Examples:

NOTE:

Allowed only in arguments to functions or subroutines

of P400 64V mode. In 64V mode, result of LOC is
two word quantity representing segment number,
and word number of argument.

I = LOC(A)

J = LOC(3)

K = LOC(DUM) + l

L = LOC (AR(3,115))

7 - 5 July 1976

SECTION 7 MAN1674

These functions are special versions of the SHFT function and are
provided for compatibility with other FORTRAN compilers. These
functions result in an integer mode value and require two arguments, as
in:

I = RS(IVAR,TI)

where VAR is the value to be shifted, and I specifies the amount and
direction of the shift. The equivalent SHFYT for each of the functions
is shown in the following table:

Operation Function Equivalent SHFT Function

Right Shift RS (IVAR,1) SHFT(I,S)

Left Shift LS (IVAR,TI) SHFT(I, -S)

Right Truncate RT (IVAR,TI) SHFT(I, S-16, 16-S)

Left Truncate LT (IVAR,T) SHFT(K, 16-S, S-16)

Intrinsic Function Library Subroutines

Several of the functions previously described will generate a call to a
library subroutine if any arguments are non-constant. In all cases,
the compiler assumes the result is an integer value in the A register
on exit from the subroutine. The subroutines are:

Library Function Procedure

OR(A1,A2) OR 16-bit values Al and A2

SHFT(Al1,A2) Shift Al by A2 bits

SHFT(A1,A2,A3) Double shift Al and A2 then
by A3 (bits)

LT(Al1,A2) Save left A2 bits of Al

RT (A1,A2) Save right A2 bits of Al

LS (Al ,A2) Shift Al left by A2 bits

RS (Al ,A2) Shift Al right by A2 bits

REV. D 7 - 6

MAN1674 - FUNCTIONS AND SUBPROGRAMS

STATEMENT FUNCTIONS

Any calculation that can be expressed in a single statement, and
produces a single result, may be assigned a function name. and
referenced in the same way as a library function. A statement function
is defined in the form: |

NAME (ARG1, ARG2, ARGn) = Expression

where NAME is the symbolic name assigned to the function, and each ARG
is a dummy variable that represents one of the arguments. The
following rules apply to statement functions:

1. The name may consist of one to six alphanumeric characters, the
first of which is alphabetic. It must differ from all other
function names and variable names used in the main program.

2. The argument list follows the name and is enclosed in parentheses.
There must be at least one argument. Multiple arguments
are separated by commas. Each argument must
be a single nonsubscripted variable. These arguments are only
dummy variables, so their names may be the same as names
appearing elsewhere in the program. The dummy variable names
do indicate argument mode, however, by implicit or explicit
mode typing.

3. During each call of a function, the values supplied as the
argument variables must be in the same mode as the arguments were
when the function was defined.

4.Implicit mode typing of the result of a function is determined
by the first letter of the function name. Functions that begin
with I,J,K,L,M, or N product INTEGER results; others produce
real results. Regardless of the first letter, the result mode

can be set to REAL, INTEGER, DOUBLE PRECISION, COMPLEX or LOGICAL

by an appropriate mode specification preceding the statement.
(See Section 5.)

5. The expression that defines the function may use library functions,
previously defined function statements, or FUNCTION subprograms, but
not the function itself. Dummy variables cannot be subscripted.

6. Variables in the expression that are not stated as arguments are
treated as parameters - i.e., are assumed to be variables
appearing elsewhere in the main program.

7. Statement functions must be defined following specification and
DATA statements but before the first executable statements of

a program.

The following example shows how a statement function HYP might be
defined and used:

7 - 7 July 1976

SECTION 7 MAN1674

AYP (A,B) =SQRT (A**2+3B** 2)

A=P1I*1.23

5@ YDS=HYP(HGT,3.724)

60 MAT=1+ABS (HYP (A,3.724))

In statement 5@ the HYP function is defined. using A and B as dummy
variables. In statement 5@, the actual variable HGT is substituted for
the dummy variable A, and the dummy variable B is equated to 3.724.
Statement 6@ shows the HYP function nested within a standard library
ABS function. Note that an actual variable A, defined elsewhere in the
main program, has no relationship to the dummy variable A (except the
Same mode).

FUNCTION SUBPROGRAMS

Statement functions are limited to a single statement and must be coded
within and compiled with a main program. FUNCTION subprograms, on the
other hand, can consist of many statements and be coded and compiled
separately. This permits them to be used in the same way as library
functions.

FUNCTION subprograms must pe prepared as separately compiled
subprograms that produce a single result, in the following format:

Mode FUNCTION “Name” (Argl, Arg2, . . .Argn)

(Any number of FORTRAN statements which
perform the required calculations, using
the supplied arguments as values.)

“Name” = Final Calculation

RETURN

FUNCTION Statement

The FUNCTION statement, which must be the first statement of a FUNCTION

Subprogram, assigns the name of the function and identifies the dummy
arguments. In the preceding example, “Name” is a symbolic name
assigned to identify the function, and each ‘Arg’ is a dummy argument.

The function name must conform to the normal rules for all_ symbolic

REV. D 7 - 8

MAN1674 FUNCTIONS AND SUBPROGRAMS

names (Section 2) with regard to number of characters, etc. Implicit
result mode typing occurs according to the first letter of the name.
Implicit mode typing can be overridden by preceding the word FUNCTION
with one of the mode specifications, INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or LOGICAL. The function name must differ from any variables
used in the function subprogram or in any main program which references
the function.

There must be at least one dummy argument, in the form of a non-
subscripted variable or array name. Array names must be cited ina
DIMENSION statement within the Subprogram. The arguments may be any of
the variable names that appear in executable statements of the function
subprogram.

Body of Subprogram

The body of the function Subprogram can consist of any legal FORTRAN
statements except SUBROUTINE, BLOCK DATA, or other FUNCTION statements.

The statements that evaluate the function use constants, variables, and

expression in the normal way. The program must produce a single result

for a given set of argument values. The subprogram must equate the

assigned symbolic function name ‘name’ to the result, by using ‘name’
on the left side of an assignment statement. It is the function name

itself, used as a variable, that returns the result to the main

program.

RETURN Statement

The RETURN statement consists of a single word RETURN. It terminates
the subprogram and returns control to the main program. The RETURN

statement must be the last statement in the subprogram (logically, not

physically; that is it must be the last statement to which control

passes).

Calling Function Subprograms

FUNCTION subprograms are referenced within main program expressions in

the following form:

Name (Vl, V2, . . ». Vn)

where “Name” is the function name assigned by the FUNCTION statement
that begins the subprogram, and each V is a value expression to be
substituted for the corresponding dummy argument in the argument list
of the FUNCTION statement.

The list of values may contain any legitimate constant, variable

(subscripted or not), expression, subprogram name, or name of any array

provided the corresponding dummy variable in the subprogram has the

same mode. The argument list following the function name in the main

7 - 9 July 1976

SECTION 7 MAN1674

program and the list of dummy variables in the FUNCTION statement must
agree in number, order and mode. The subprogram must contain the same
DIMENSION statements as the main program. Function names included in
argument lists must also appear in an EXTERNAL statement in the main
program.

For example, a function Subprogram that determines the Ith root of a
real number R might start with the following statement:

FUNCTION ROOT (I1,R)

A main program would call this function with a statment such as:

ANS=ROOT (9,1.22793E-11)

In this example, 9 is substituted for the dummy variable I and the
Other value is substituted for dummy variable R. The function
Subprogram calculates the root using these for arguments I and R, and
returns control to the main program with the answer in variable ANS.

Values contained in arrays are passed to subprogram functions in the
same way. For example, a subprogram that determines the median value
of data in a 10@-item array might begin with the statement:

FUNCTION MED (DAT)

where DAT refers to a 160-item array dimensioned within the subprogram.
The calling main program might call this function with a statement
like:

I=J+MED (STD)

where STD is a 1@@-item array dimensioned and assigned values by the
main program. STD (in the main program) and DAT (in the subprogram)
must be of the same mode.

Examples:

Function subprogram for function AVRG:

1 FUNCTION AVRG(ALIST,N)

DIMENSION ALINT (N)

SUM = ALIST(1)

DO 18 I=2,N

1@ SUM = SUM + ALIST(I)

AVRG = SUM/FLOAT(N)

REV. D 7 - 186

MAN1674 FUNCTIONS AND SUBPROGRAMS

RETURN

END

Main program call to AVRG function:

DIMENSION SET(5@0)

READ(2,5) (SET(I), I=1,200)

5 FORMAT (6F12.8)

TEXT = AVRG(SET, 209)

WRITE (2,19) TEXT

10 FORMAT(2@0H1 AVERAGE OF SET IS E14.5)

STOP

END

SUBROUTINE SUBPROGRAMS

Subroutine subprograms are very similar to FUNCTION subprograms. They
are prepared in the form:

SUBROUTINE NAME (ARGI1, ARG2, . . . ARGn)

(any number of FORTRAN statements which perform

the required calculations, using the supplied
arguments (if any) as values).

RETURN

END

SUBROUTINE Statement

The SUBROUTINE statement, which must be the first statement of a

SUBROUTINE Subprogram, assigns the name of the subprogram and
identifies the dummy arguments, if any.

The subprogram name must conform to the normal rules for symbolic names
with regard to number of characters, but the first letter does not set
the data mode of the results. The name must be unique to both the
supbrogram and a main program which calls it.

7 - ll . July 1976

SECTION 7 MAN1674

The argument list usually consists of a series of dummy variables which
are processed by the Subroutine and return arguments to the main
program. Each argument may be a variable, array, or function name. If
an argument is the name of an array, it must be mentioned ina
DIMENSION statement following the SUBROUTINE statement. Arguments that
return values to the main program must not be constant or expressive in

call.

A subroutine with no arguments is allowable. Such a subroutine might
obtain arguments from, and return results to, common. Or it might be
used to output a message or control function to a peripheral device.

Body of Subroutine

The body of the subroutine can consist of any legal FORTRAN statements
except SUBROUTINE, BLOCK DATA, or FUNCTION statements. The results of
calculations may be stored in variables used by both the subprogram and
main program, or they may be placed in common. Variables may be used
freely on either the right or left side of the equals sign in
assignment statements. Each variable that represents a result must
appear on the left side of at least one assignment statement, in order
to present the result to the main program.

The subroutine is terminated by a RETURN statement (descriped

previously). The last physical record in a subroutine must be an END
statement.

Calling Subroutines (CALL Statement)

SUBROUTINE functions are referenced within main programs by CALL
statements, of the form:

CALL Name (Vl, V2... «+. « Vn)

where ‘Name’ is the symbolic name assigned by the SUBROUTINE statement
that begins the subroutine, and each V is a value expression to be
substituted for the corresponding dummy argument in the argument list
of the SUBROUTINE statement. Each value may be a constant, variable
(including array name), sSubscripted variable, array, expression, or
function name. Arguments used by the Subroutine and the main program
must agree in number, order, and mode; and the main program must
contain the same DIMENSION statements as the subroutine. Address
constants (Sn) can be used to specify statement numbers of alternate
returns Examples:

REV. D 7 - 12

MAN1674 FUNCTIONS AND SUBPROGRAMS

Main Program:

1 DIMENSION X(1@,15), ¥(15,12), 2(1@,12), JOB(3)

DATA JOB/“MATMPY “/

READ(2,4) ((X(I,J), J=1,15), I=1,19),

X ((X(1,J), J=1,12), I=1,15)

4 FORMAT(6E12.6)

5 CALL MATMPY(X,19,15,12,2)

DO 13 J=1,12

13 WRITE(4,15) (Z(1I,3), I=1,10

15 FORMAT(2H@ 6E17.6)

CALL EXIT (JOB)

END

Subroutine MATMPY:
eeee ew ee ee ee ee ee oe ee eee ee

1 SUBROUTINE MATMPY(A,N,M,B,L,C)

DIMENSION A(N,M), B(M,L), C(N,L)

DO 5 I=1,N

DO 5 J=1,L

C(I,J) = 0.0

DO 5 K=1,M

5 C(I,J) = C(I,J) + A(I,K)*B(K,J)

RETURN

END

Subroutine EXIT:

SUBROUTINE EXIT (JOBA)

7 = 13 July 1976

SECTION 7 MAN1674

DIMENSION JOBA(3)

WRITE(1,5) LIST

59 FORMAT(12H END OF JOB , 3A2, /)

RETURN

END

PROTECTED FUNCTIONS AND SUBROUTINES

This feature prevents FUNCTION and SUBROUTINE subprograms used in a
real time environment from being interrupted before they have completed
their calculations. It is only necessary to place the word PROTECTED
before the statement that introduces the SUBROUTINE or FUNCTION.
Interrupts are disabled when a_ protected subroutine is entered and
enabled when control returns to the main program. Examples:

PROTECT/PROTECTED SUBROUTINE ALPHA (Al, A2)

PROTECTED SUBROUTINE BELL

PROTECTED FUNCTION BETA (X,Y,2Z)

PROTECTED DOUBLE PRECISION FUNCTION JAM (M)

BLOCK DATA SUBPROGRAMS

This type of subprogram labels common areas and then initializes data
values within the area by means of DATA statements. Any COMMON block
area that overlaps memory used by loader cannot be initialized.

The first statement of such a program must be a BLOCK DATA statement of
the form:

BLOCK DATA

BLOCK DATA subprograms are processed per ANSI standard.

The body of the block data subprogram may contain only type statements
plus EQUIVALENCE, DATA, DIMENSION, and COMMON statements.

If any element of a given common block is initialized, the subroutine
must include a complete set of specification statements for the entire
block, even though some of the elements do not appear in DATA
Statements. More than one block may be initialized by a single
subprogram. Examples:

BLOCK DATA

COMMON /COM1/C2,C3,ARR/COM2/X,2Z,C

REV. D 7 - 14

MAN1674 FUNCTIONS AND SUBPROGRAMS

DIMENSION ARR (40)
EQUIVALENCE (C1,ARR(1) ,(C4,ARR(2))
INTEGER X
COMPLEX C
DATA Cl, C2, C3, C4 /4*8.0/,

X 1,C/45,(1.3,3.14)/
END

LIBRARY SUBROUTINES

Library subroutines are referenced using the CALL statement described
previously. Standard Prime library subroutines are summarized in
Appendix B.

SENSE LIGHT/SWITCH SUBROUTINES

Subroutines identified in Appendix J permit the program to communicate
with the control panel sense switches, lights, and error flag.

These routines allow the program to test for error conditions” and
report any errors to the front panel lights.

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

FORTRAN and assembly language programs may be intermixed freely ina
memory load, provided the proper calling conventions (Reference MAN
1880) are observed and communication links are set up to pass the
arguments back and forth.

In the object code of a compiled FORTRAN program, every subroutine call
(CALL statement) is converted into an assembly-language CALL
pseudo-operation. (The actual object coding is equivalent to a JST
instruction followed by an EXT pseudo-op, both of which specify the
subroutine name.) If any arguments are specified, the compiler enters
a series of DACS containing pointers to the argument variables. This
can be seen in Figure 7-1, which illustrates a FORTRAN bench- mark
program timed by two assembly language routines that turn the real time

clock on and off.

7 - 15 July 1976

SECTION 7 MAN1674

SENSE LIGHT/SWITCH SUBROUTINES

Subroutines identified in Appendix J permit the program to
communicate with the control panel sense switches, lights, and error
flag.

These routines allow the program to test for error conditions’ and
report any errors to the front panel lights.

LINKING FORTRAN AND ASSEMBLY LANGUAGE PROGRAMS

FORTRAN and assembly language programs may be intermixed freely in a
memory load, provided the proper calling conventions (Reference MAN
1886) are observed and communication links are set up to pass_ the
arguments back and forth.

In the object code of a compiled FORTRAN program, every subroutine
call (CALL statement) is converted into an assembly-language CALL
pseudo-operation. (The actual object coding is eguivalent to a JST.
instruction followed by an EXT pseudo-op, both of which specify the
Subroutine name.) If any arguments are specified, the compiler
enters a series of DACS containing pointers to the argument
variables. This can be seen in Figure 7-1, which illustrates a
FORTRAN bench- mark program timed by two assembly language routines
that turn the real time clock on and off.

REV. D 7 - 16

FORTRAN

PROGRAM

DIMENSION F180?
5 CALL CLKON
aengea ELM
BoGGe. JNP sagan SiBBeRAa

LINK 9Bnned 4788014
goaz1Z CALL CLKON

po 4 J = 4,100
eaG313 LDA ="eRaqoL ezaqgaae. <—
AGez14 sta J SsacaenaL

DO 4 I=4, 140
8062145 LDA =-sendeL @2083132
eaesie STA I S4a0ReR1

x=I
eaazi7 LOA I e2anz162
Ge0z2q CALL cC#12
90321 CALL H#22
eaaz22 DRICY egeceass L__

pomenenn

CALL CLKOFFCID
e6eT55 CALL CLKOFF
GaGz56 CACO eanezsizae—

MRITE (4.2) I |
eoaz57 LDA =“eeReDL 92003152
BOBZEO CALL FSM
guazéei OAC _2 eonsenas
aees62 CALL Fst
@a0%63 CCT seg0R4 eosuAzeD
enazc4 on egea2se2
eaezesS CALL FSce
2 FORMAT ¢/7/7HTIME = 16)

LINK 2 17802614
euezes «IMP BEGG e1isagaaa

MAN1674

Figure 7-1 FORTRAN/Assembly Language

FUNCTIONS AND SUBPROGRAMS

HBBSD:

AWD:

OGUGI2 :
GG:

HBAS :

Banas:
Bgaas :

ABQ07 :

HABLG:
ABAL7:

Has:

BagwAE
BHOGRS

Ga. BA308
149549

44. GUGS1
82294823

41. Gagan
a9, Gagne

AS82259
2. SaNed
35. QORBS
64. GHR008
21. GHnG1
O8GG13

Argument Transfer (Without FSAT)

17

ASSEMBLY LANGUAGE
SUBROUTINES

£BO01L> SUBR CLKON, ON
CagilZ > SUER CLKOFF,. OFF
CHRey > REL
fega4> GN DAC +
CBB0S > CRA
COU> STAR “éL
CHIO7 > ocP “20
CBG0S> JUP* ON
(8a09> OFF DAC 4
CAL OCP “229
Caa11> LDA “E41
C8G1z2> LOX OFF
{8B13) STA* G21
Codd > JMUP 244
@O15) END

July 1976

SECTION 7 MAN1674

In the assembly language subroutine, entry points are defined by
SUBR pseudo-ops. A DAC is provided at each entry point to hold an
address value, to be deposited by a JST from the calling program.
If no arguments are to be passed, the value is a pointer to the next
executable instruction of the calling program. Customarily, the
Subroutine returns to the calling program by an indirect jump
through this address vector.

However, if arguments are to be passed, the value deposited by the
JST is a pointer to the first of the argument variables. That is
the case for the CALL CLKOFF statement; the CLKOFF subroutine
returns one argument (the elapsed time count) to the FORTRAN
program. This is done by storing the A register indirectly through
the pointer placed in the OFF entry point by the FORTRAN program.
The subroutine then returns to that location plus one. Note the use
of indexing to obtain the offset.

Assembly Language Interface

To call a FORTRAN subprogram from an assembly language program, use
the PCL (procedure call) instruction followed by APs (argument
pointers) for each argument. The last bit must be set in the AP of
the last argument.

Example:

SEG
EXT FTNSUB

PCL FTNSUB
AP ARG1,S
AP ARG2,S
AP ARG3,SL

An assembly language subprogram callable from a FORTRAN program must
contain an ECB pseudo-op. If the subprogram has arguments, ARGT
(argument transfer) must be the first instruction in the procedure
frame.

Example:

SEG
SUBR PMASUB

ENTRY ARGT

PRTN
DYMN ARG1(3), ARG2(3), ARG3(3)

REV. D 7 - 18

MAN1674 FUNCTIONS AND SUBPROGRAMS

LINK
PMASUB ECB ENTRY,, ARG1,3

END

Using FSAT*

The library subroutine FSAT may be used in assembly language
subroutines to simplify the tracking down of argument addresses.
The assembly language calling sequence is:

CALL FSAT

OCT n

ARG1 DAC **

ARG2 DAC **

ARGn DAC **

* Does not apply to P4080 64V mode program.

where “n° is the number of arguments to be transferred, and each ARG
is an argument name. The CALL FSAT statement must be the first
Statement in the subroutine following the DAC ** entry point. FSAT
could have been used in the CLKOFF subroutine of Figure 7-l as
follows:

OFF DAC **
CALL FSAT
OocT 1

TIME OCT Q FSAT WILL PUT ADDRESS LINK HERE
OCP “2290
LDA °61
STA* TIME.
JMP* OFF NORMAL RETURN

,hnis coding has exactly the same effect as the example in Figure 7-1
but execution time is slower. However, it is more convenient to use
FSAT when several arguments are involved.

NOTE:

If the subroutine has more than one argument,
DAC in call is followed by @ word.

7 - 419 July 1976

MAN1674 PROGRAMMING TECHNIQUES

SECTION 8

PROGRAMMING TECHNIQUES

MAXIMUMS

Accuracy of Numbers:

Single Precision: Any number of digits may be used and the seven
most significant digits are stored internally.

Double Precision: Any number of digits may be used and fourteen
most significant digits are stored internally.

ATTACHING TO ANOTHER USER FILE DIRECTORY (UFD)

A user program can operate in more than one UFD by calling the

ATTACH subroutine. However, care should be taken that the rules for

ATTACH (see Section 3, PRIMOS II and III File System User Guide (MAN

2604).

The ATTACH subroutine has the same effect as the ATTACH internal

command. The calling sequence is:

CALL ATTACH (Ufd, Ldisk, Password, Key, Altrtn)

NOTE:

The reference subkeys are shown in Appendix E.

In attaching to a directory, the subroutine ATTACH specifies where

to look for the directory. ATTACH either specifies a user file

directory in the master file directory (MFD) on a particular

logical disk or a file directory in the current UFD, or the home UFD

as the directory to be attached. ATTACH may specify a file unit

number on which a segment directory is open. In the segment

directory reference, the file directory to be attached is the one

whose beginning disk address is given by the word at the file

pointer of the file unit.

8 - 1 July 1976

SECTION 8 MAN1674

CLOSING AND OPENING FILES

CONTROL Subroutine

A CONTROL subroutine call (i.e., CALL CONTRL (key, name,
logical-device, altrtn) is a method of operning and closing files.
Functions not applicable to a certain device are ignored. This
means that with CONTRL subroutine calls, functions can be requested
in a device independent way.

SEARCH Subroutine

A SEARCH subroutine call (i.e., CALL SEARCH (KEY, NAME, FUNIT,
ALTRIN) can be written within a FORTRAN program to either open or
close a PRIMOS File.

The following information describes the search operation. However,
the rules for using the SEARCH subroutine are describd in Section 3
of the PRIMOS II and PRIMOS III File System Users Guide (MAN 26@4).

SEARCH is used to connect a file to a file unit (open a file) or
disconnect a file from a file unit (close a file). After a file is
connected to a unit; PRWFIL and other routines may be called,
either to position the current- position pointer of a file unit
(file pointer) or to transfer information to or from the file
(using the file unit to reference the file).

On opening a file, SEARCH specifies allowable operations that may be
performed by PRWFIL, and other routines. These operations are read
only, write only or both read and write.

On opening a file, SEARCH also specifies where to look for the file
Or where to add the file, if the file does not already exist, and
also SEARCH specifies the file is to be opened for writing or both
reading and writing. SEARCH either specifies a filename in the
currently attached user file directory or a file unit number. on
which a segment directory is open. In the segment directory
reference, the file to be opened or closed is the one whose
beginning disk address is given by the word at the current position
pointer of the file unit.

On creating a newfile, the user specifies to SEARCH the file type of
the new file.

The subroutine SEARCH may be used to perform actions other than
Opening and closing a file. SEARCH may delete a file, rewind a file
unit, or truncate a file.

On a call to close a file, SEARCH attempts to close file NAME and
generates an error message or goes to the alternate return if NAME
is not found. FUNIT is ignored unless NAME is @. If NAME is @,

REV. D 8 - 2

MAN1674 PROGRAMMING TECHNIQUES

SEARCH ensures that FUNIT is closed. That is, it closes FUNIT if

FUNIT iS open but does not generate an error message if the file
unit is closed. Example:

CALL SEARCH (1, “OBJECT ’m 1, ERR)

Searches for a file, OBJECT, in the current UFD and opens it for
reading.

The user is allowed to open the current UFD for reading via a call
to SEARCH. The calling sequence for this feature is:

CALL SEARCH (1, -l, Funit, Altrtn)

This call opens the current UFD for reading on Funit. The user must
have owner access rights to the UFD; i.e., the owner password must
have been given in the most recent call to ATTACH (or ATTACH
command). Control goes to Altrtn if there is no UFD attached, if
Funit is already in use, or the user does not have owner rights to

the UFD.

Direct Positioning Subroutine - “POSFIL’
— eee ee oe ee se eeee ee ce ee re we ee oe we reee ee ee oe ee ee oe ee ee ee oe

A standard FORTRAN IV (or assembly language) library subroutine
exists that allows direct positioning to any record in a disk file.
This subroutine “’POSFIL’, functions with both seguential access
(SAM) and direct access (DAM) files, although it is most often
used with the latter. The only requirement in file organization is
that all records in a file must be of equal length. This presents
no problem with unformatted (binary) files, as the binary disk
output routine (@SBD067) automatically generates fixed length
records. Formatted (ASCII) files must be specified by the
programmer as fixed length records when defining the record size.

See example below.

“POSFIL” operates under control of any of Prime’s operating systems
(single user DOS, multi-user DOS/VM, Real Time Operating System and,
virtual DOS running is a background task under RTOS).

Calling Sequence:

CALL POSFIL (I,J,K)

wheres

I = FORTRAN logical unit number. This must be a disk
file open for reading only or, open for reading
and writing.

J = Integer expression representing desired record.
(Record numbering starts a 1)

8 - 3 - July 1976

SECTION 8 MAN1674

K = Optional alternate return. If present, this
represents the statement to which control is
passed if error or end of file conditions are
detected. If this value is @ or omitted, errors
will cause the program to abort to operating
system level and print an error message.

End of file positioning may be done with ‘“POSFIL’ by specifying a
record number of 32767 and an alternate return value corresponding
to the normal return statement. An appropriate error statement
should immediately follow the “CALL POSFIL’.

“POSFIL” postions the file pointer at the start of the desired
record by locating the record size in IOCS, adding 1 to compensate
for the word added by the FORTRAN disk output drivers, multiplying
by the record number minus 1, dividing by the number of words per
physical record and making a call to “PRWFIL” to position the file
at an absolute record and word.

Examples: The following program illustrates how to create an ASCII
file suitable for direct access and reading, which is performed in
the second part of the program. The exact same coding could be used
with unformatted reads and writes in the case of a binary file.

REV. D 8 - 4

MAN1674 PROGRAMMING TECHNIQUES

Example:

Q
A
a
n

A
A
D

QO
Q
a

A
a
A
N

10
1900

20

25

W
A
a
A
A
D

W
a
A
A
A

O81

A
r
a

PROGRAM TO WRITE AN ASCII FILE SUITABLE FOR POSFIL
AND TO READ BACK RANDOM RECORDS

INTEGER TEXT (6)

DEFINE UNIT #5 AS DISK FILE OF FIXED LENGTH ASCII RECORDS, DOS
FILE UNIT #1, SIX WORDS PER LOGICAL RECORD

CALL ATTDEV (5,8,1,6) /* 6 IS RECORD LENGTH

OPEN NEW DAM FILE ON DOS FILE UNIT #1 FOR READING AND WRITING

CALL SEARCH (:2003, SAMPLE’ ,1)

WRITE 9999 FIXED LENGTH ASCII RECORDS

DO 18 I=1,9999
WRITE (5,1000) I
FORMAT (°’RECORD #’,14)

ASK FOR RECORD NUMBER, LOCATE, READ, AND WRITE TO USER TERMINA

CALL TNOU (“ENTER RECORDS S$’,I4)
CALL TIDEC (I)
IF (I) 20,30,25 /* @® CAUSES PROGRAM TO TERMINATE
CALL POSFIL (5,1,$35)
READ (5,1001) TEXT
CALL TNOU (TEXT,12)
GO TO 20

CLOSE FILE AND EXIT

CALL SEARCH (4,@,1)
CALL EXIT
GO TO 20

CONTROL PASSES TO HERE IF POSFIL ENCOUNTERSAN ERROR OR EOF

CALL PRERR /* PRINT ERROR MESSAGE
GO TO 20 /* TRY AGAIN

FORMAT (6A2)

END

8 - 5 July 1976

SECTION 8 MAN1674

RECORD LENGTH OPTION

ATTDEV Subroutine

While the formatted record length is 12@ characters (maximum), a

user can define a larger size using ATTDEV subroutine.

CALL ATTDEV (logical unit, device, unit, buffer size)

Subroutine ATTDEV can be used:

1) To change the record size associated with a unit number.

2) To change the unit number to physical device mapping.

ATTDEV performs these functions by manipulating entries in tables
in library module CONIOC.

Argument Explanation

logical unit FORTRAN unit number (used in
READ and WRITE statements)

(See Table 6-1 in Section 6)

device - Position of physical device in CONIOC
device-type tables. The default configuration:

1 -> user terminal

7 -> file system (disk)

unit - For multi-unit devices (i.e.,
mag tape). If device is the file system,
the unit is FUNIT (See Table 6-1)

buffer size The maximum record size in words
(number of characters plus 1)/divided
by two) for logical unit.

FSIO Subroutine
eeeeee es ee oe ee

FSIO provides a buffer equal to the maximum record length to be used
for FORTRAN transfers. The default buffer size is 132 characters.
When a larger buffer is required, it is defined by the following
statement:

COMMON/FSIOBF/IBUF (size)

where: SIZE is number of characters divided by 2.

REV. D 8 - 6

MAN1674 PROGRAMMING ‘TECHNIQUES

NOTE: Only the common block name, FSIOBF, and the size of the array
specified in the common block are significant; the array name
itself is arbitrary.

8 - 7 July 1976

MAN1674 COMPILER ERROR MESSAGES

APPENDIX A

COMPILER ERROR MESSAGES

COMPILER ERROR MESSAGES FOR LARGE SYSTEMS (LFTN)

Table A-1 lists each compiler error and the corresponding definition
of the error.

The general format of the error messages is:

**KXKXLINE nnonn [context] name - message

where:

LINE nnnn - nnn is the source line number that the statement

in error started on. All lines read from an insert
file have the same source line number. In the case

of an undefined statement number error, nnnn is the

line number of the last reference to the undefined

statement number, not the line number of the END

statement where it was detected. If an error

detected in an EQUIVALENCE statement, the word

‘EQUIVALENCE’ is substituted for “LINE nnnn’.

context - context consists of the last 1-18 nonblank
characters processed by the compiler before detecting
the error. This field can be used to isolate the
position in the statement that error occurs.

name - If the error is directly related to the misuse of a
specific name, that name will be included in the
error message. Otherwise the field will be
omitted.

message ~ A message of up to 2@ characters in length
describing the error. A list of all messages is
included below.

COMPILER ERROR MESSAGES FOR SMALL SYSTEMS (SFTN)

Table A-2 lists each compiler error message code and the

corresponding error definition.

A - 1 July 1976

APPENDIX A

Table A-l.

ARG LIST REQUIRED

ARRAY NAME REQUIRED

CHAR STRING SIZE

COMMON NAME ILL.

COMPILER OVERFLOW
CONSTANT REQUIRED

CONSTANT TOO LARGE
DATA MODE ERROR

EXCESS SUBSCRIPTS

FUNCT VAL UNDEFINED

ILL.DO TERMINATION

ILL. EQUIVALENCE

ILL. LOGICAL IF

ILL.
ILL.
ILL.

STMT NO. REF
UNARY OP USAGE
USE OF ARG

ILL. USE OF STMT

INCONSISTENT USAGE

REV. D

MAN1674

Compiler Error Messages (LFTN)

ems ame eee em tei cece em Sr emcee cree emcee cm cs me ee cneeee eee eeeeeeee nee

Argument list not specified in FUNCTION
statement.

Something other than an array name appeared
in a position where only an array name
is allowed.
A character string was not terminated, or a
string in a DATA statement was longer than the
associated name list.
Illegal use of a name already declared in
common.
Insufficient memory to compile program.
A name appeared where only a constant
is allowed.
Constant exponent excessive for data type.
Illegal mode mixing in an expression,
expression mode not of required type, or
constant in DATA statement is of different
mode than associated name in variable list.
Too many subscripts in EQUIVALENCE or
DATA list item.
The function name was not assigned a
value in a FUNCTION subprogram.
Improper DO loop nesting, or an illegal
statement terminating a DO loop.
EQUIVALENCE group violates EQUIVALENCE
rules or specifies an impossible
egquivalencing.
A logical IF contained in a logical IF,
or a DO statement contained in a logical IF.
Reference to a specification statement number.
Improper use of an operator in an expression.
SUBROUTINE or FUNCTION argument used in
COMMON, EQUIVALENCE, or DATA statement.

Statement illegal in context of the program.
For example, RETURN in a main program,
SUBROUTINE not the first statement, or

specification statements out of order. If
an undeclared array name is used on the left
in an assignment statement, the compiler will
assume it is a statement function definition
and therefore generate this error.
The use of the name listed in the
error message conflicts with earlier usage.
This message also will be generated at the END

INTEGER REQUIRED

MULT DEF STMT NO.

NAME REQUIRED

NO END STMT

NO PATH TO STMT

NONCOMMON DATA

PARENTHESIS MISSING

STMT NAME SPELLING

STMT NO. MISSING

SUBPGM/ARR NAME ILL
SUPBROGRAM NAME ILL
SYMBOLIC SUBSCR ILL

SYNTAX ERROR

UNDECLARED VARIABLE

UNDEFINED STMT NO.

UNRECOGNIZED STMT

MAN1674 COMPILER ERROR MESSAGES

statement in a SUBROUTINE subprogram if the
subroutine name is used within the subprogram.
A non-integer name or constant appeared
where only an integer name or constant is
allowed.
The statement number of the current line
has already been defined.
A constant appeared where only a name is
allowed.
The last statement in a subprogram was not
an END statement.

The current statement does not have a
statement number d the previous statement was
an unconditional transfer of control.
A BLOCK DATA subprogram initialized
data not defined in common or contained
executable statements.
Incorrect parenthesis used in an
implied DO loop in an I/O statement.
A statement name was recognized by its
first four characters, but the remaining
spelling was incorrect.
A FORMAT statement appeared without a
statement number.
Illegal usage of subprogram or array name.
Illegal usage of subprogram name.
Illegal usage of a symbolic subscript
in a specification statement.
General syntax error, context usually shows
offending character(s).
The listed variable did not appear in a
specification statement (generated when the
undeclared variable check option is
enabled).
The listed statement number was not
defined in the subprogram. Thelisted line
number is the line number of the last
reference to the statement number.
The compiler could not identify the statment.

A - 3 July 1976

APPENDIX A MAN1674

Table A-2. Compiler Error Messages (SFTN)

ce mh eth arms moms em cam my sams ame ame mS nes orem mms mints cams sect emcees res cum cma mre aeeanemcemynetiy ey e aeh ee cmnmaenemeem em eme teeeeweee e we

CODE DEFINITION

AR Item not an array name.

BD Code generated within a block data subprogram.
BL Block data not first statement.
CE Constant’ s exponent exceeds 8 bits (Over 255).

CH Improper terminating character (punctation).
CM Comma outside parenthesis, not in a DO statement.
CN Improper constant (data initialization).
CR Illegal common reference.
DA Illegal use of dummy argument.
DD Dummy item appears in an equivalence or data list.
DM Data and Data Name mode do not agree.
DT Improper DO termination.
EC Equivalence group not followed by comma or CR.
EQ Expression to left of equals, or multiple equals.
EX Specification statement appears after cleanup.
FA Function has no arguments.
FD Function name not defined by an arithmetic statment.
FS Function/Subroutine not the first statement.
HD Hollerith string too long in DATA statement.
HS Hollerith data string extends past end of statement.
IC Impossible common egquivalencing.
ID Unrecognizable statement.
IE Impossible Equivalence grouping.
IF Illegal IF statement type.
IN Integer required at this position.
IO Error in Read/Write statement syntax.
IT Item not an integer.
MM Mode mixing error.
MO Data pool overflow.
MS Multiply defined statement number.
NA Name required.
NC Constant must be present.
ND Wrong number of dimensions.
NE No END statement prior to Control statement.
NS Subroutine name not allowed
NT Logical NOT, not an unary operator.
NU Name already being used.
OP More than one operator in a row.
PA Operation must be within parenthesis.
PH No path leading to this statement.
PR Parenthesis missing in a DO statement.
PW * preceded by an operator other than a *.
RL More than 1] relational operator in a relational example.
RN Reference to a specification statement’s number.
RT Return not allowed in main program.

SC Statement number on a continuation card.

MAN1674 COMPILER ERROR MESSAGES

SP Statement name misspelled.
ST Illegal statement number format.
SU Subscript incrementer not a constant.
TF "TYPE" not followed by "FUNCTION" or List.
TO Assign statement has word TO missing.
UO Multiple + or - signs, not as unary operators.
US Undefined statement number.
VD Symbolic subscript not dummy in dummy array, or

symbolic subscript appears on a non-dummy array.
em cme cern re reer eee wee eeeee we eee ee eee rereeeeee wee ne ee ee ee eeeeeee eeeeae

A _ 5 July 1976

MAN1674 RUN-TIME ERROR MESSAGE

APPENDIX B

RUN-TIME ERROR MESSAGE

When a library subroutine detects an error condition, it types a two

character error message on the ASR, then continues, usually with

unpredictable results. Some subroutines do not check for errors but

call other subroutines which do. For example, DLOG1@ does not check

for arguments less than or equal to @, but it calls DLOG2 which

does. Error codes are preceded by "****",

B - 1 July 1976

APPENDIX B MAN1674

Code Definition

AD Overflow/underflow occurred (AS66) (SS$66).

AT ARG = ARG2 = @ for ATAN2

BN Device error in REWIND command (Note 1).

DE Double precision exponent overflow
decode FORMAT/DATA MISMATCH (literal)

DL Argument is not greater than zero (DLOG, DLOG2).

DN Device error (end file). (Note l).

DT Second argument is zero (DATAN2).

DZ Division by zero (D$22).

EQ - Exponent overflow occurred (A$81).

EX Exponent overflow (EXP).

FE Format error (FSIO).

FN Device error in BACKSPACE command, (Note 1).

II Improper power value (E$11).

IM Overflow or underflow occurred (MS$11, ES$11).

LG Argument is not greater than @ (ALOG, ALOG1@).

RI Number too large for integer conversion (C$12).

RN Device error or end of file in READ statement. (Note l.)

SE Single precision exponent overflow.

SQ Argument is negative (SQRT).

SZ Single precision divide by zero.

WN Device eror or end of file in WRITE statement. (Note 1.)

XX ARG > 32767

REV. D B - 2

MAN1674 RUN-TIME ERROR MESSAGE

Notes:

1. Device error codes are printed in the form: ****cc n

where n is the FORTRAN logical unit number of the device.

B - 3 July 1976

APPENDIX B

P-300 P-400

DT DATAN

SQ DSORT

RI DSIN/DCOS

EX DEXP

RI DEXP

DL DLOG/DLOG2

SQ SORT

RI SIN/COS

AT ATAN2

LG ALOG1/ALOG19

RI EXP

EX EXP
Il I**]T

BN FSBN

FE FSIO
-- FSIO

-- FSIO

ST STOP (n)

REV.

MAN1674

Definition

Bad Argument

Argument < @

Argument range

error

Over flow/under-
flow

Argument too

large

Argument < = @

Argument < @

Argument too

large

Both arguments
= 9g

Argument < = @

Argument too

large

Overflow

Argument error

Bad logical unit

Format error

Null Read Unit

Format/Data

Mismatch

Explanation

A2 = 0

A < @

A too hi/too low

Result too lg/sm

A too lg

A < or = @

A < @

A too lg

Al & A2 = @

li B
SA < or

A >> @

Result >> Q
A1l**A2 > 32767

LU out of range

Bad FMT stmt
Read Lunit not
configured

Input data doesn’t

correspond with FMT
statement

STOP Start

Encountered

PA PAUSE

ATTDEV

(n)

MAN1674

Bad Unit

RUN-TIME ERROR MESSAGE

PAUSE Start

Encountered

Bad Lunit to

ATTDEV

July 1976

MAN1674 LIST OF STATEMENTS

APPENDIX C

LIST OF STATEMENTS

ENCODE (c,f,a) list

The ENCODE statement converts the elements of the I/0 list into
ASCII data according to the specified format and stores the first c
characters of the resultant line buffer into the specified array
where c is the number of ASCII characters to be transferred, f is

the format specifier and a is the array name.

DECODE (c,f,a) list

The DECODE statement converts the c character in the specified array
into the I/O list elements according to the specified format, where
c is the number of ASCII characters to be transferred, f the format
specifier, and a the array name.

PRINT £ list

The PRINT statement performs the same function as_ the WRITE
statement.

FORMAT SN FORMAT (dF1l dF2 dF3....... Fn)

The FORMAT STATEMENTS DO THE TRANSLATION BETWEEN THE EXTERNAL FORM

OF DATA AND THE WAY IT IS STORED INTERNALLY WITHIN THE PROCESSOR,

where SN is a mandatory statement number, each F is a format field
description and each d is a delimiter (slash or comma).

REWIND u

A REWIND statement causes unit u to be positioned at its initial
point.

BACKSPACE u

A BACKSPACE statement positions unit u so that the preceding record
becomes the next record.

ENDFILE u

Cc - 1 July 1976

APPENDIX C MAN1674

The ENDFILE statement causes the recording of an ENDFILE record on
unit u.

Mode vl,v2,v3...,vn

where mode is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOGICAL

and each v iS a variable name, an array name, a function name, or an

array declarator.

DIMENSION vl(il), v2(i2),...,vn(in)

Establishes the name and maximum storage requirement of an array.

The variable ‘v’ is an assigned name of an array. Each ‘i’ is a
series of one, two or three subscripts that define the dimensions
and size of the array.

EQUIVALENCE (kl), (k2),...,(kKn)

Egquates single variables to each other. Each k is a list of 2 or
more variables, subscripted variables or array nameS separated by
commas.

COMMON/x/al/.../xn/an/

Data items are assigned sequentially within a COMMON block in the
order of appearance. Each a is a nonempty list of variable names,
array names, or array declarators and each x is a COMMON block name
or 1s empty.

EXTERNAL vl,v2,...,vn

Permits the name of an external function subprogram (library or user
defined) to be passed aS an argument in a Subroutine call or
function reference, where each v is. declared to be an external
procedure name.

DATA k1/d1/,k2/d2/,....,kn/dn/

Sets variables or array elements k to initial values during loading
of the object program along with corresponding constants d.

TRACE vl,v2,...vn

Causes diagnostic printouts of the results of computation to
facilitate debugging, where each v is a variable name or array.

REV. D C - 2

MAN1674 LIST OF STATEMENTS

GO TO k

Causes the statement identified by the statement label k to be
executed next.

GO TO (k1,k2, ... ,kn), i

A computed GO TO statement causes the selection of the lst, 2nd,...
or nth label according to the computed value of i (1,2,....,n).

GO TO 1, (k1,k2,...,Kn)

Assigned GO TO statement which assigns a current value of i to a
statement label. The statement identified by that label is executed
next.

ASSIGN k TO i

A GO TO assignment statement causes the statement identified by the
assigned statement label to be executed next.

IF (e) k1,k2,k3

An arithmetic IF statement where e is any arithmetic expression of
integer real, or double precision type, and the k’s are statement
labels. The value of e determines one of 3 possible branches as
follows:

value of e Statement Executed Next

< @ (negative) kl

= Q k2

> ®@ (positive) k3

IF (e) S

A logical IF statement where e is a logical expression and S is any
executable statement except a DO statement or another logical If
statement. The logical expression e is evaluated. If e has the
value .TRUE., statement S is executed. Otherwise, control passes to
the next statement.

C - 3 July 1976

APPENDIX C MAN1674

DO n i = ml,ml,m3 or DO ni = ml,m2

A DO statement where n is the label of an executable statement
following the DO statement in the same program unit; i is an
integer variable called the index and ml,m2,and m3 are the initial,
limit, and increment values of the index respectively. Default
value of m3 iS one.

CONTINUE

The CONTINUE Statement terminates the current execution of a DO
loop. If no DO loop is in effect, control transfers to the next
executable statement.

STOP (n)

where n is an optional string of one to five decimal digits. A STOP
statement transfers control to the subroutine FSHT.

PAUSE (n)

where n iS an optional decimal constant. A PAUSE statement
transfers control to FSHT. A subsequent START command continues the
Operation.

END

The END statement is placed at the end of every program.

FULL LIST

The FULL LIST statement specifies a source listing, and a symbolic
listing.

SINSERT Filename

The INSERT statement causes the text in file to be compiled in place
of the SINSERT statement.

WRITE (u,f)list

The WRITE statement is used for data output where u is the unit
number of the I/O device and f is the format statement number.

NOLIST

REV. D C - 4

MAN1674 LIST OF STATEMENTS

The NOLIST statement specifies no source listing, and no symbolic
listing.

LIST

The LIST statement specifies a source listing and no_- symbolic
listing.

END AND ERROR RETURNS IN READ/WRITE STATEMENTS

READ (d,END=a) READ (d,f,END=a)

READ (d,ERR=b) READ (d,f,ERR=b)

READ (d, ERR=b, END=a) READ (d,f,ERR=b, END=a)

READ (d,END=a,ERR=b) READ(d,f£,END=a,ERR=b)

WRITE (d,ERR=b) WRITE(d,f£,ERR=b)

where:

d - device specifier

f - format specifier

a - statement number that control is to be transferred to

if an end of file condition is detected in the READ

b - Statement number that control is to be transferred to

if a device error occurs in the READ/WRITE operation

C - 5 July 1976

Appendix D contains numerous FORTRAN IV

MAN1674

APPENDIX D

PROGRAM EXAMPLES

illustrated

PROGRAM EXAMPLES

examples that

serve as an aid in understanding the FORTRAN IV specification.

Xl ARRAY EXAMPLE

A. PROGRAM

(2001)
(8062)
(9003) 31
(0804)
(0005)
(0006)
(8007) 20

(6098)
(0089)
(@G619) 21
(@@11) 1
(0012)
(8013)
(2014)
(0015)
(0616)

Q08@ ERRORS (FTN-1082.L11)

B. COMPILE

OK, FTN Xl
GO

OK, LOAD
GO
$ LO BXl
SLI
LC
S$ SA *Xl

INTEGER 1T(108) ,L(180) ,A,B
DO 31 I=1,18@
T(1I)=0
DO 20 I=1,100
L(1I)=1**2
T(I)=T(1I)+L(T)
CONTINUE
A=1
B=5
WRITE (1,1) (L(K) ,K=A,B) , (L (KK) ,KK=A,B)

FORMAT (2(5(15)))
A=A+5
B=B+5
IF (A. GE.
GO TO 21
END

& RUN

100) CALL EXIT

July 1976

APPEND

SQU

OK, R
GO

IX D

*X1

C. OUTPUT

1
36

121
256
44]
676
961

1296
1681
2116
2601
3136
3721
4356
5841
5776
6561
7396
8281
9216

REV. D

4
49

144
289
484
729

1824
1369
1764
2209
2704
3249
3844
4489
5184
5929
6724
7569
8464
9499

9
64

169
324
529
784

1089
1444
1849
2304
2809
3364
3969
4624
5329
6084
6889
7744
8649
9604

16
81

196
361
576
841

1156
1521
1936
2401
2916
3481
4096
4761
5476
6241
7656
7921
8836

25
108
225
480
625
900

1225
1600
2025
2500
3025
3600
4225
4909
5625
6406
7225
8190
9825

980110008

1
36

121
256
441
676
961

1296
1681
2116
2601
3136
3721
4356
5841
5776
6561
7396
8281
9216

MAN1674

4
49

144
289
484
729

1924
1369
1764
2209
2704
3249
3844
4489
5184
5929
6724
7569
8464
9499

9
64

169
324
529
784

1989
1444
1849
2304
2809
3364
3969
4624
5329
6084
6889
7744
8649
9604

16
81

196
361
576
841

1156
1521
1936
2401
2916
3481
4896
4761
5476
6241
7856
7921
8836

25
100
225
400
625
a)

1225
1600
2925
2500
3025
3688
4225
4900
5625
6400
7225
8100
9825

980110008

MAN1674 PROGRAM EXAMPLES

X2 FORMAT STATEMENTS

A. PROGRAM

(@881) C THIS PROGRAM ILLUSTRATES THE USE OF IF STATEMENTS
(@882) C AND FORMAT STATEMENTS.
(8003) I=100
(8004) 5 WRITE (1,19)
(08005) READ(1,2@) X
(0006) IF(X-I) 30,480,590
(0807) 38 WRITE(1,60)I1
(0868) GOTO5
(8809) 40 WRITE (1,70)1
(0010) GOTO5
(@011) 58 WRITE (1,80) 1
(88012) GOTO5
(0813) 190 FORMAT (“INPUTANYNUMBER’)
(0814) 20 FORMAT (I6)
(6815) 60 FORMAT (“YOURNUMBERWASLESSTHAN , 16)
(9816) 70 FORMAT (“YOURNUMBERWAS” , 16)
(0017) 8@ FORMAT(“YOUR NUMBER WAS GREATER THAN “,I6)
(0818) CALL EXIT
(0019) END

B. COMPILE & RUN

OK,

FTN X2

GO
0808 ERRORS (FTN-1082.1L11)

OK, LOAD
GO
$ LO BX2
S$ LI
LC
S$ SA *X2
$ QU

OK, R *X2
GO

C. OUTPUT

INPUT ANY NUMBER

D - 3 July 1976

APPENDIX D MAN1674

77
YOUR NUMBER WAS LESS THAN 100
INPUT ANY NUMBER
-77
YOUR NUMBER WAS LESS THAN 1890
INPUT ANY NUMBER
g
YOUR NUMBER WAS LESS THAN 100
INPUT ANY NUMBER

QUIT,

REV. D D - 4

X3 ASSIGN GO TO

A. PROGRAM

(0001) C
(Q@0082) 205 WRITE (1,58)
(2883) 50

MAN1674

COMPUTED GO TO EXAMPLE

FORMAT (“TYPE I HERE’)
(2004) READ(1,55) I
(9605) 55 FORMAT (15)
(0006) X =48
(0007) B= I[*5
(8008) C = I+5
(9009) A=B+#+C
(2010) Y=xX+t+A
(9011) 20 GO T0(188,310,320) ,I
(09812) WRITE (1,105)
(9813) 105 FORMAT(“ERROR - I OUT OF
(0014) GO TO 206
(@815) 100 WRITE(1,106) Y
(9916) 196 FORMAT(‘Y = ‘13,
(8017) GO TO 205
(@818) 320 PRINT 110,Y

¢

WHEN I

(@@19) 110 FORMAT(’Y = °I3,° WHEN I
(0820) GO TO 265
(Q@@21) 310 PRINT 115,Y
(9022) 115 FORMAT(’Y = ‘13,
(8823) GO TO 265
(89024) 200 CALL EXIT
(8825) END
8008 ERRORS (FTN-1082.L11)

B. COMPILE & RUN

OK, FTN X3
GO
@98@ ERRORS (FTN-1082.1L11)

OK, LOAD
GO
$ LO BX3
SLI
LC
$ SA *X3
$ QU

OK, R *X3
GO

o

WHEN I

RANGE“)

1°)

3°)

2°)

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

C. OUTPUT

TYPE I HERE

Y = 59 WHEN I = 1
TYPE I HERE
2
Y = 65 WHEN I = 2
TYPE I HERE
3
Y = 71 WHEN I = 3
TYPE I HERE
4
ERROR - I OUT OF RANGE
OK,

REV. D D -

MAN1674 PROGRAM EXAMPLES

X4 SIMPLE CALCULATION

This example illustrates format statements within a simple program
to compute and print the square of a number.

A. PROGRAM

ON@B1) C
(0802) C
(0003) 5
(9004)
(8005)
(00906)
(8007)
(0008) 120
(0809) 20
(8018) 30
(8011)

B. COMPARE

OK, FTN X4
GO
0800 ERRORS
OK, LOAD
GO
$ LO BX4
$ LI
LC
S SA *X4
$ QU

OK, R *X4
GO

C. OUTPUT

THIS IS A SIMPLE PROGRAM WHICH ILLUSTRATES THE INTERACTI
BETWEEN THE READ, THE WRITE AND THE FORMAT STATEMENTS.
WRITE(1,190)
READ(1,20)R
R=R**2
WRITE(1,390)R
GO TO 5
FORMAT(’GIMME A NUMBER!!”)
FORMAT (F20.6)
FORMAT(’THE SQUARED NUMBER IS: “F20.6/)
END

(FTN-1082.L11)

GIMME A NUMBER!!
37.999
THE SQUARED NUMBER IS: 1443.9233490
GIMME A NUMBER! !
45.987
THE SQUARED NUMBER IS: 2114.803711

July 1976

APPENDIX D MAN1674

X5 FORMULA CALCULATION

Given:

The equation for determining the current flowing through an
alternate current circuit is:

E
J =

R?+(20nfL- —1_)?
zZutc

A. PROGRAM

(9081) C THIS PROGRAM NAME IS X5
(0802) C
(@803) C
(0004) WRITE(1,1@)
(@005) 10 FORMAT (/ “GIVE ME THE FOLLOWING VALUES’)
(9906) WRITE(1,15)
(9007) 15 FORMAT (/ “OHMS: ”)
(0988) READ(1,28) OHMS
(0089) 20 FORMAT (E2@.6)
(8019) WRITE(1,25)
(@@11) 25 FORMAT (’ FREQ: “)
(0812) READ(1,30) FREQ
(8813) 36 FORMAT (E20.6)
(8014) WRITE (1,35)
(0815) 35 FORMAT (// “HENRY: ”)
(9016) READ(1,30) HENRY
(0817) WRITE (1,36)
(0818) 36 FORMAT(“VOLTS: “*)
(9019) READ(1,4@) VOLT
(0820) 40 FORMAT (E5. 2)
(8021) WRITE(1,45)
(@822) 45 FORMAT(’FARADS: “)
(9623) READ(1,50) FARAD
(0824) 50 FORMAT (E20.12)
(0825) AMPS = VOLT/SQRT(OHM**2 + ((6.2832*FREQ*HENRY) -1/
(6026) X(6.2832* FREQ*FARAD)) **2)
(0827) WRITE(1,55) AMPS
(8828) 55 FORMAT(“AMPS =" ,E2@.12)
(8629) CALL EXIT
(0030) END

B. COMPILE & RUN

REV. D D - 8

MAN1674

OK, FTN X5
GO
9288 ERRORS 8FTN-18082.1L11)

OK, LOAD
GO
S$ LO
S LI
LC
S SA *X5
SQU

OK, R *X5
GO

C. OUTPUT

GIVE ME THE FOLLOWING VALUES

OHMS: 75 FREQ: 60.

HENRY: 9.9875 VOLTS: 68. FARADS:
Q2

OK,

D _

9.809057 AMPS

PROGRAM EXAMPLES

0.372357025146E

July 1976

APPENDIX D

X6 FLOATING POINT FORMAT

MAN1674

This example illustrates input and output formats.

A. PROGRAM

(@801) C *CALCULATES VOLUME OF A BOX.*
(8062) REAL LENGTH
(9003) WRITE (1,59)
(8004) 50 FORMAT(“GIVE LENGTH, WIDTH, AND HEIGHT’)
(0005) READ(1,1@0) LENGTH, WIDTH, HEIGHT
(@806) 100 FORMAT(3F10@.3)
(0007) VOLUME = LENGTH*WIDTH*HEIGHT
(0008) WRITE(1,105) LENGTH, WIDTH,HEIGHT, VOLUME
(0909) 105 FORMAT(°LGTH:°,F6.2,° X W:°,F6.2,° X HT:’,F6.2,‘=VOL
C F1d.3)
(8019) CALL EXIT
(0011) END

B. COMPILE & RUN
—— en ceeeeee eeees

OK, FTN X6 8900 ERRORS (FTN-1082.L11)
GO
$ LO BX6
S$ LI
LC
S SA *X6
S$ QU

OK, R *X6
GO

C. OUTPUT

GIVE LENGTH, WIDTH, AND HEIGHT

12.,56.,87.

LGTH: 12.00 X W: 56.90 X HT:

REV. D — Dp

87.90=VOL:

OK, LOAD

58464.000

7

’

MAN1674 PROGRAM EXAMPLES

X7 DO LOOP

This example illustrates output formats.

A. PROGRAM

(9091) C *THIS PROGRAM EXAMPLE DEMONSTRATES A DO LOOP*
(2602) C *CALCULATES VOLUME OF A BOX.*
(9003) REALLENGTH
(8004) WRITE(1,18)
(8805) 18 FORMAT (°HOW MANY BOXES?)
(0006) READ(1,19) N
(Q@007) 19 FORMAT (I5)
(9298) DO 1008 I = 1,N
(9009) 5 FORMAT(’ENTER LENGTH: “)
(96198) WRITE(1,5)
(0011) READ (1,6) LENGTH
(@812) 6 FORMAT (F6. 3)
(8813) WRITE (1,10)
(@014) 12 FORMAT(’ENTER WIDTH: “*)
(9015) READ(1,7) WIDTH
(9816) 7 FORMAT (F6. 3)
(0017) WRITE (1,15)
(8818) 15 FORMAT(’ENTER HEIGHT: “)
(09019) READ (1,8)HEIGHT
(9820) 8 FORMAT (F6.3)
(@@21) 9 VOLUME = LENGTH*WIDTH*HEIGHT
(0022) WRITE(1,2@) LENGTH, WIDTH,HEIGHT, VOLUME
(@823) 20 FORMAT (“LGTH: ’,F1@.3,3X, WI:°,F10.3,3X, HT: F10.3,3X,
(9024) *°VOL: °,F10.3,5X,///,5X)
(8825) 100 CONTINUE
(9026) WRITE(1,105) N
(0627) 105 FORMAT(°I HAVE CALCULATED’ ,12,3X “BOXES’)
(@828) 21 CALL EXIT
(0029) END

B. RUN AND COMPILE

OK, FTN X7 @0@0 ERRORS (FTN-19082.L11) OK, LOAD
GO
$ L@ BX7
$ LI
LC
S SA *X7
$ QU

OK, R*X7
GO

D - dll July 1976

APPENDIX D MAN1674

C. PROGRAM OUTPUT

HOW MANY BOXES?

ENTER LENGTH:

ENTER WIDTH:
5. ENTER HEIGHT:

COTE: 3.9000 WI: 5.000 HT: 6.008 VOL: 90.900

ENTER LENGTH:

BNTER WIDTH:

ENTER HEIGHT:

LGTH: 5.000 wi: 7.000 HT: 9.000 VOL: 315.000

ENTER LENGTH:

ENTER WIDTH:

ENTER HEIGHT:

noe 5.008 WI: 2.000 HT: 9.808 VOL: 90.000

I HAVE CALCULATED 3 BOXES

OK,

REV. D D - 12

MAN1674 PROGRAM EXAMPLES

X8 FINDING THE SQUARE ROOT

A. PROGRAM

MAT@1) C THIS PROGRAM ILLUSTRATES A VARIETY OF READ/WRITE AND FOR
C STATEMENTS
(@882) 5 WRITE(1,190)
(8803) WRITE (1,20)
(8004) READ(1,30)A
(8005) WRITE (1,390)
(0006) WRITE (1,40)
(9007) READ(1,58@)B
(9908) WRITE (1,60)
(8209) READ(1,78)C
(08190) R=SQRT (A** (B-C+2))
(8011) WRITE(1,90)A
(8012) WRITE(1,100)B

(8013) WRITE(1,110)C
(0614) WRITE(1,80)R
(@815) GO TO 5
(0016) 10 FORMAT (/°FIND YOUR SQRT OF FUNCTION A’)
(9817) 20 FORMAT(’INPUT A a)
(0018) 30 FORMAT (F5. 3)
(0819) 48 FORMAT (/° INPUT B’)
(0828) 5 FORMAT (FS. 3)
(9021) 60 FORMAT (/’° INPUT C’”)
(0822) 70 FORMAT (F5.3)
(0823) 9@ FORMAT (// “A="F5.3)
(9624) 100 FORMAT(’B="F5.3)
(9825) 110 FORMAT(’C=’FS5.3)
(9026) 80 FORMAT (// “ANSWERIS: “F7. 3)
(0027) CALL EXIT
(9028) END

B. COMPILE & RUN

OK, FIN X8
0200 ERRORS (FTN-1682,L11)

OK, LOAD
GO
$ LO BX8
$ LI
LC
S$ SA *X8
$ QU

OK, R *X8
GO

D - 13 July 1976

APPENDIX D MAN1674

C. OUTPUT

FIND YOUR SQRT OF FUNCTION A
INPUT A
9.5

INPUT B
8.7

INPUT C
7.7

9.500
‘8.798
7.700Q

W
LY

t
o
w

tt

ANSWER IS: 29.281

REV. D D - 14

MAN1674 PROGRAM EXAMPLES

X9 IF EXAMPLE

This example illustrates the use of IF statements and the
corresponding output. The following program examines each given
number to determine if the number is negative, zero or positive.
With the appropriate GO TO statement, it directs the sequence to the
appropriate output.

A. PROGRAM

(@@@1) C IF STATEMENT EXAMPLE.
(@8G82) C *THIS IS AN EXAMPLE DEMONSTRATING THE ARITHMETIC IF

C STATEMENT*
(0603) DO 400 I=1,5
(9004) WRITE(1,5)
(@805) 5 FORMAT(’GIVE ME A NUMBER’//)
(0006) READ(1,190) Y
(9007) 10 FORMAT (I5)
(0008) IF (Y) 100,310,320
(9609) 100 WRITE(1,35)
(9018) 35 FORMAT(’°YOU GAVE A NEGATIVE NUMBER!!°//)
(Q@@11) GO TO 498

(@812) 310 WRITE(1,490)

(9813) 40 FORMAT(’YOU GAVE A ZERO!!°//)
(8014) GO TO 400
(0815) 320 WRITE(1,25)
(0816) 25 FORMAT(“YOU GAVE A POSITIVE NUMBER!! °//)
(9017) 480 CONTINUE
(9018) 900 CALL EXIT
(6819) END

B. COMPILE & RUN

OK, FIN x9
00808 ERRORS (FTN-19082.L11)

OK, LOAD
GO
S$ LO BX9
$ LI
LC
S$ SA *x9
$ QU

OK, R*X9
GO

D - 15 July 1976

APPENDIX D MAN1674

C. OUTPUT

GIVE ME A NUMBER

45
YOU GAVE A POSITIVE NUMBER!!

GIVE ME A NUMBER

~99
YOU GAVE A NEGATIVE NUMBER!!

GIVE ME A NUMBER

0
YOU GAVE A ZERO!!

GIVE ME A NUMBER
YOU GAVE A POSITIVE NUMBER!!

GIVE ME A NUMBER

19
YOU GAVE A POSITIVE NUMBER! !

REV. D D - 16

MAN1674

X10 COMPUTED GO TO EXAMPLE

A. PROGRAM

(9001) 310 xX =48
(0092) B = I*5
(8803) C = 5-I
(0004) I=3
(2805) 20 GO T0(108,318,320),1
(0006) 320 A=B+C
(8007) I=1
(8008) GO TO 29
(9009) 100 Y = A*xX
(080190) WRITE (1,110)Y
(9@11) 110 FORMAT(TI5)
(0812) CALL EXIT
(8913) END

B. COMPILE & RUN

OK, FIN X10
@90@ ERRORS (FTN-1982-L11)
OK, LOAD
GO
$ LO B_X10
S$ LI |
LC
S$ SA *X10
$ QU

OK, R *X10

GO

C. OUTPUT

240

OK,

17

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X11 SIMPLE CALCULATIONS

This example illustrates the relationships of
output statements.

Simple input and

A. PROGRAM

AG0@1) C *THIS PROGRAM WILL CALCULATE THE AREA OF A RECTANGLE OR
Cc TRIANGLE*

(9802) 5 FORMAT(“ENTER BASE: ”)
(90903) WRITE(1,5)
(0804) READ (1,6) BASE
(0005) 6 FORMAT (F6. 3)
(0806) 10 FORMAT (’ENTER HEIGHT: “)
(8007) WRITE(1,10)
(0008) READ(1,12) HEIGHT
(9809) 12 FORMAT (F6. 3)
(8818) 15 AREA=BASE*HEIGHT
(8811) WRITE(1,28) BASE,HEIGHT,AREA
(0012) 20 FORMAT “BA: °,3X,F6.3,5X, “TIMESHT: “3X,F6.3,5X, = AREA:

C F1d.3)
(8013) CALL EXIT
(0814) END

B. COMPILE & RUN

OK, FTN X11
@000 ERRORS (FTN-1982.L11)
OK, LOAD
GO
$ LO BX11
$ LI
LC
S$ SA *X11
$ QU

OK, R *X1ll
GO

C. OUTPUT

ENTER BASE:
3.8698
ENTER HEIGHT:
9.435
BA: 3.010 TIMES HT: 9.435 = AREA: 28.397

REV. D D - 18

MAN1674 PROGRAM EXAMPLES

X12 OPENING & CLOSING FILES

The following example illustrates how files are opened and closed in a

FORTRAN program.

A. PROGRAM

(9921) DOUBLE PRECISION ANSWER(19)
(49992) CALL CONTRL(1,°DATA °,6,$29)

(4993) READ(6,10,END=190) (ANSWER(I) ,I=1,7)
(0004) GO TO 1982
(9005) 10 FORMAT (E20.7/E20.7,6X,E20.7,6X,E20.7/E20.7,6X,E20.7/E20.7)
(0006) 102 WRITE(1,5) (ANSWER(I) ,I=1,7)
(8807) 5 FORMAT(“HERE IS YOUR DATA ” //(E20.7,5X,E20.7,5X,E2Q0.7))
(0008) GO TO 200
(2089) 20 CALL TNOU(’ ERROR’ ,5)
(0810) GO TO 200
(0911) 1090 WRITE(1,101)
(G12) 101 FORMAT(‘END OF FILE READ BEFORE DATA TERMINATED’)
(9913) 200 CALL CONTRL(4,°DATA “,6)
(9014) CALL EXIT
(8015) END

B. DATA

OK, SLIST DATA GO
1234567890987.7654321
2976546789075. 7654321 -987654321234.9876543 -9.9905678
1234567890123.1234567 1234567899123.1234567
1234567890123.1234567

C. COMPILE & RU

OK, FTN X12
0820 ERRORS (FTN-1082.L11)

OK, LOAD
GO
$ LO BX12
$ LI
LC
S SA *X12

D - 19 July 1976

APPENDIX D MAN1674

$ QUIT

OK, R *X12
GO

D. OUTPUT

HERE [5 YOUR DATA

@.1234568E 13 0.2976547E 13-0.9876543E 12
-8.5678000E-83 @.1234568E 13 @.1234568E 13

OK,

REV. D D - 20

MAN1674 PROGRAM EXAMPLES

X13 EXAMPLE OF SUBROUTINE CALLS

subroutines are called. The

the program was
The following example illustrataes how
purpose of this program is to print out the time when
started, the time the program ended and the time used. The actual time
to run this program was 68 ticks. Two subroutines were called: SEARCH
and TIMDAT. SEARCH (line 0907) opens the file called “OUTPUT” and the
TIMDAT routine calculates the actual time.

A. PROGRAM

(Q0@1) INTEGER OUTPUT
(0062) INTEGER UTM,UTS, UTT,UCS,UCT,UPS,UPT
(9003) INTEGER STM,STS,STT,SCS,SCT,SPS,SPT
(0004) INTEGER TIM,TTS,TTT,TCS,TCT,TPS,TPT
(9805) DIMENSION IAREA(9) , ITIME(15)
(0006) DATA IAREA/1,2,3,4,5,6,7,8,9/
(0007) CALL SEARCH(2, OUTPUT’ ,2,$190)
(QG@8) CALL TIMDAT(ITIME,15)
(0009) UTM=ITIME (4)
(0910) UTS=ITIME(5)
(00811) UTT=ITIME (6)
(0012) UCS=ITIME(7)
(9813) UCT=ITIME (8)
(0014) UPS=ITIME (9)
(9015) UPT=ITIME(10)
(6016) WRITE (6,1) (ITIME(I) ,I=1,15)
(9017) 1 FORMAT “DATE: °,1@X,2A2,Al1,/
(9818) * “TIME MINUTES: “ ,2X,15,/
(08019) * “TIME SECONDS: ”’,2X,15,/
(9020) *°TIME TICKS: °,4X,15,/
(0021) *°CPU SECS USED: ,1X,15,/
(0022) *“CPU TICKS USED: ’,1I5,/
(0023) * “PAGING SECONDS: ”’,15,/
(0024) * “PAGING TICKS: °,2X,15,/
(8025) *“TICKS PER SEC:°,1X,15,/
(0026) * USER NUMBER: ,3X,15,/
(0827) * “USER NAME: ,5X,3A2)
(0028) DO 98 K=1,10
(8829) 98 WRITE(6,2) IAREA
(@838) 2 FORMAT (912)
(60831) CALL TIMDAT(ITIME,15)
(0032) STM=ITIME (4)
(8833) STS=ITIME (5)
(9034) STT=ITIME (6)
(9035) SCS=ITIME (7)
(8036) SCT=ITIME (8)
(8037) SPS=ITIME (9)
(0038) SPT=ITIME (19)
(8639) WRITE (6,1) (ITIME(I) ,I=1,15)

July 1976

APPENDIX D MAN1674

(86640) TTM=STM-UTM
(0041) TTS=STS-UTS
(0842) TTT=STT-UTT
(09843) TCS=SCS-UCS
(0044) TCT=SCT-UCT
(0845) TPS=SPS-UPS
(0046) TPT=SPT-UPT
(0847) WRITE (6,3) TTM,TTS, TTT, TCS, TCT, TPS , TPT
(9848) CALL SEARCH(4, “OUTPUT” , 2)
(6849) 3 FORMAT(“TOTAL TIME MINUTES: ’,1I5/
(0858) “TOTAL TIME SECONDS: ’,I5/
(0851) * “TOTAL TIME TICKS: °,I5/
(0052) * “TOTAL CPU SECONDS: “°,15/
(0853) * “TOTAL CPU TICKS: °,15/
(8654) * “TOTAL PAGING SECS: °,I5/
(8855) * “TOTAL PAGING TICKS: ’,I5)
(0856) CALL EXIT
(6957) 10 CALL TNOU(PROBLEMS WITH OPENING FILE’ ,25)
(0058) END
0908 ERRORS (FTN-19082.1L11)

B. OUTPUT

DATE: 05846
TIME MINUTES: 8898
TIME SECONDS: 33
TIME TICKS: 169
CPU SECS USED: 19
CPU TICKS USED: 82
PAGING SECONDS: 28
PAGING TICKS: 135
TICKS PER SEC: 3396
USER NUMBER: 9
USER NAME: DAWES

123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
123456789
1234567849

DATE: 05046
TIME MINUTES: 808
TIME SECONDS: 33

TIME TICKS: 237

CPU SECS USED: 19
CPU TICKS USED:15@

REV. D D - 22

MAN1674

PAGING SECONDS: 28
PAGING TICKS: 135
TICKS PER SEC: 338
USER NUMBER: 9
USER NAME: DAWES
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

TIME MINUTES: @
TIME SECONDS: 486
TIME TICKS: 68
CPU SECONDS: 490
CPU TICKS: 68
PAGING SECS: 9
PAGING TICKS: 9

23

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X14 INTEGER/DO LOOP EXAMPLE

The object of this example is to illustrate a simple DO loop and to show
the relationship of the format statement and actual output.

A. PROGRAM

(0001) INTEGER BUFF (18,3)
(8802) NUM=1
(0003) L=1
(8004) M=2
(9805) N=3
(0806) DO 18 I=1,18
(0807) DO 29 II=1,3
(0808) BUFF (I,II)=NUM
(0899) NUM=NUM+1
(8810) 20 CONTINUE
(@811) 10 CONTINUE
(0812) DO 30 I=1,18
(8013) WRITE (1,15) BUFF (1I,L) ,BUFF(I,M) ,BUFF(I,N)
(0014) 38 CONTINUE
(@015) 15 FORMAT (313)
(9016) CALL EXIT
(0017) END

B. RUN & COMPILE

OK, FIN X14
0800 ERRORS (FTN-1982.L11)
OK, LOAD
GO
$ LO BX14
$ LI
LC
$ SA *X14
$ QU

OK, R *X14

C. OUTPUT

1 2 3
4 5 6
7 8 9

10 11 12
13 14 15

18
21
24
27
30
33

39
42
45
48
51
54

MAN1674

25

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X15 OVERLAY EXAMPLE

The following example illustrates a simple program overlay. Program B
in this example overlays program A. B is called using a CALL RESUME
routine after program A has been run. Each program is compiled
separately.

A. PROGRAM
se oe ow es es

(@@81) C PROGRAM A
(8082) COMMON /A/P1D,IC1,I1C2,1C3,1C4,IC5
(8803) INTEGER P1D(10) ,P2D(19)
(0804) DATA P2D/1HA,1HB,1HC,1HD,1HE,1HF,1HG,1HH,1H1I,1Hd/
(0885) WRITE (1,100)
(9006) 1866 FORMAT(“START PROGRAM A’)
(@807) DO 5 I=1,18
(@888) 5 P1D(I)=P2D(TI)
(9089) WRITE (1,1)
(@01G) 1 FORMAT (“INPUT ANY FIVE CHARACTERS’)
(0011) READ(1,2)1IC1,1IC2,1C3,1C4,IC5
(0812) 2 FORMAT (5A1)
(9013) WRITE(1,3)P1D
(9014) 3 FORMAT (19@(1X,Al1))
(80815) WRITE (1,4) IC1,1C2,1C3,1C4,1IC5
(Q816) 4 FORMAT (5 (1X,Al1))
(0817) WRITE (1,101)
(0818) 181 FORMAT(’°END PROGRAM A’)
(0819) CALL RESUME(°PROGB ”)
(0020) CALL EXIT
(9821) END
0900 ERRORS (FTN-1082.1L11)

(@081) C PROGRAM B
(8002) COMMON /A/ P1D,IC1,1C2,1C3,IC4,IC5
(0883) INTEGER P1D(10)
(8094) WRITE (1,100)
(9605) 108 FORMAT(“START PROGRAM B”)
(@006) WRITE(1,1)
(9007) 1 FORMAT “OUTPUT FROM PROGRAM B’)
(0008) WRITE (1,2) IC1,1IC2,1C3,1C4,IC5
(0809) 2 FORMAT (5(1X,A1))
(0819) WRITE(1,3)P1D
(@811) 3 FORMAT (1@(1X,Al1))
(8812) WRITE (1,4)
(@813) 4 FORMAT (“END PROGRAM B’)

REV. D

MAN1674

(0014) CALL EXIT
(0015) END
Q20@ ERRORS (FTN-1082.L11)

C. OUTPUT

OK, R PROGA
GO
START PROGRAM A
INPUT ANY FIVE CHARACTERS

DUMMY
ABCDEFGHI J
DUMMY
END PROGRAM A
START PROGRAM B
OUTPUT FROM PROGRAM B
DUMMY
ABCDEFGHIJ

END PROGRAM B

OK,

27

PROGRAM EXAMPLES

July 1976

APPENDIX D MAN1674

X16 ASSIGN STATEMENT

A. PROGRAM

GO EXAMPLE 16

C *THIS IS AN EXAMPLE DEMONSTRATING THE ASSIGN STATEMENT*
ASSIGN 329 TO I

28 GO TO I, (100,310,320)
ASSIGN 3186 TO I
GO TO 26

100 WRITE (1,35)
35 FORMAT(’I = 106°)
3198 WRITE(1,4@)
40 FORMAT(“I = 310°)
320 WRITE(1,25)
25 FORMAT(“STATEMENT 32@ RSULTED IN THIS ACTION’)

CALL EXIT
END

B. COMPILE & RUN

OK,

FTN17
GO
@09@ ERRORS (FTN-1082.L11)

OK,

LOAD
GO
$ LO B X18
S$ LI
LC
S$ SA *X17
$ QU

OK, R *X17
GO

Cc OUTPUT

STATEMENT 320 RESULTED IN THIS ACTION

OK,

REV. D D - 28

MAN1674 PRIMOS SUBROUTINES SUMMARY

APPENDIX E

PRIMOS SUBROUTINES SUMMARY

The following table summarizes most of the PRIMOS subroutines. For a

detailed description of each subroutine, refer to the PRIMOS II and III

interactive users guide (MAN 2682).

owen coms cams cmb smn nS Ss “S00U Ve Sma aah ens IOS time rei meme emma rmameet mh sce See) cm SUDOaeeee So Se ee ee ee eeeeeeee

FUNCTION SUBROUTINE Calling Sequence

ATTACH to a UFD ATTACH CALL ATTACH (Ufd,Ldisk,

Passwd,Key,Altrtn)

To interrupt a BREAKS CALL BREAKS(.TRUE.) or’
running program CALL BREAKS (.FALSE.)

Command line READ CMREAD CALL CMREAD (Array)
Rename File CNAMES CALL CNAMES (Oldnam,

Newnam,Altrtn)

Reads a Command Line COMANL CALL COMANL |

Allows PRIMOS to read COMINP CALL COMINP(Name,Funit,

commands from a file Altrtn)

Compares left-most COMEQV Value-COMEQV
characters of 2 strings (Stringl,String2)

Gets next character C1IN CALL C1lIN(Char)

from terminal

Initialize disk devices DSINIT CALL DSINIT(Pdisk)

Sets system vector ERRSET CALL ERRSET(Altval,

then takes an alter- Altrtn,Messag,Num)
native return CALL ERRSET(Altval,

Altrtn,Name,Messag,Num)

ERRSET CALL ERRSET(Altval,

Altrtn)

Return to PRIMOS EXIT CALL EXIT

Updates disk FORCEW CALL FORCEW(@,Funit)

July 1976

APPENDIX E

Moves words from ERRVEC

into Xervec

Moves character

buffer

Moves n words in Xervec

Compares two 6-
acter names

Prints error me

on user termina

Copies a file

Inserts characters into

a buffer to form a six-

character name

Tells system to
next user

Reads up to 8@
characters

Inverse of the

Same as RESUME

READS one disk

SAVES disk file

Connects a file

file unit

Reads a char and echoes

Supplies time i
ation

Reads a number

a terminal

Moves a card of

REV. D

s from

char-

ssage
1

cycle

SAVE

command

record

to a

nform-

from

data

GETERR

GETWRD

GINFO

NAMEQV

PRERR

PRWFIL

PUTC

RECYCL

RDCOM

RESTOR

RESUME

RREC

SAVE

SEARCH

T1IN

TIMDAT

TIOCT
TIDEC
TIMEX

TSCMPC

MAN1674

CALL GETERR(Xervec,n)

CALL GETWRD(Buff,Array)

CALL GINFO(Xervec,n)

Value=NAMEQV(namel,

name 2)

CALL PRERR

CALL PRWFIL(Key, Funit,
Pouff,Nwords,Position,
Altrtn)

CALL PUTC (Buf ,Char)

CALL RECYCL

CALL RDCOM (Buf)

CALL RESTORE (Rvec,Name,

Altrtn)

CALL RESUME(Filname)

CALL RREC(Bptrs,Blen,

N,Ra,Pdisk,Altrtn)

CALL SAVE(Vect,

Filename)

CALL SEARCH (Key,Name,
Funit,Altrtn)

CALL T1IN(Char)

CALL TIMDAT(Array,Num)

CALL TIOCT, TIDEC,
TIMEX (Num)

CALL TSCMPC (Unit ,Buffer-

from Card Reader

One line of data from

terminal to line

printer |

Magnetic tape input or
output, read a “Raw”
tape

Provides control over

a SYN multi-line

communications device

Gould Printer/Plotter

control

Types out character

Prints characters from
array with carriage
return

Types octal converted
ASCII number

Prints characters from

array-no carriage return

Updates current UFD

TSLMPC

TSMT

TSSLC

TSVG

T1OU

TNOU

TOOCT

TNOUA

UPDATE

Writes record onto disk WREC

MAN1674

Address,Word-Count,
Instruction,Status Vector)

CALL TSLMPC (Unit ,Buffer-

Address,Word-Count,

Instruction,Status-Vector)

CALL TSMT(Unit,Buffer-
Address,Word-Count,

Instruction,Status-Vector)

CALL TSSLC(Key,Line,
Loc, (block) ,Mwds)

CALL TSVG(Unit,Loc
(buffer) ,words,inst,statv)

CALL T10U (Char)

CALL TNOU(Array,Nchars)

CALL TOOCT (Number)

CALL TNOUA(Array,Nchar)

CALL UPDATE (Key,1,9)

CALL WREC(Bptrs,Blen,
N,Ra,Altrtn)

PRIMOS SUBROUTINES SUMMARY

July 1976

MAN1674 SUMMARY OF IOCS SUBROUTINES

APPENDIX F

SUMMARY OF IOCS SUBROUTINES

The following tables summarize the input and output device handling

subroutines. Refer to Section 6 of the Software Library User Guide (MAN

18890) for detailed information. Because this summary does not include

the respective rules for each element in subroutine calls, it is

necessary that the Software Library User Guide be consulted before using

these subroutines.

DEVICE SUBROUTINE

OPERATION FUNCTION CALL

Disk Open named file CALL SEARCH(1, Name’ ,Funit,

files for reading Altrtn)

Disk Open named file CALL SEARCH(2, Name’,Funit,

files for writing Altrtn)

Disk Open named file CALL SEARCH(3, Name’,Funit,

files for both reading
and writing

Disk Close named file CALL SEARCH(4, Name’ ,Funit,

files Altrtn)

Disk Delete named file CALL SEARCH(5, Name’,Funit,

files Altrtn)

Disk Rewind file CALL SEARCH(7, Name’ ,Funit,

files (repositions to Altrtn)

first record of
FUNIT)

Disk Truncate named CALL SEARCH(8, Name’,Funit,

files file Altrtn)

Disk Performs a tree CALL TRSRCH(Func,’ Name’,

files search(performs funit,Altrtn)

ATTACH and SEARCH

calls) needed to

open the specified
file. Use SEARCH
function numbers.

F - 1 July 1976

APPENDIX F

Disk

files

Write

Disk

files

Write

Disk

files

Read

Disk

files

Write
Disk

files

Moves

Raw Data

GETA

Terminal

ATTACH
DEVICE

ATTACH
DEVICE

WRITE
DEVICE

REV. D

MAN1674

Read or write

disk file

‘Write ASCII data

from Buff onto
a disk file(in

compressed ASCII
format) opened on
unit.

Write ASCII data
from Buff onto

a disk file (in
fixed length records).

Read ASCII data

from file open
on unit

Write Binary data
to a file opened
on unit

Move raw data from

the terminal, or

command file n to user
program’s address space

Gets next character
from the terminal
data
Attaches specified
device by initializing
both LUTEL, associating
logical device to
physical device.

Attaches logical units
1-5 under control of the
rightmost five octal
.digits of the argument
to SETIOS, FLAG

Contents of Buff
(ASCII data) moved
from memory to named
output device.

CALL PRWFIL (Key, Funit,
Pbuffer,Nwords,Position,Altrtn)

CALL OSAD@7(Unit,buff,

Count,Altrtn)

CALL OSAD@8 (Unit,Buff,
Count,Altrtn)

CALL ISAD@7)Unit,Bufft,

Count ,Altrtn)

CALL OSBD@7(Unit,Buff,
Count,Altrtn)

CALL CNINS (Buffer ,Char-

Count,Actual Count)

CALL ClIN(char)

CALL ATTDEV(logical-device,
physical-device,unit,
FTN-Buff-size)

where FTN-Buf-Size is the
maximum size of the I/0
Buffer. Default is 1220
bytes (248 bytes with
VETN)

CALL SETIOS (FLAG)

CALL WRASC(logical-device,
Buff,Count,Altrtn)

READ
DEVICE

WRITE
DEVICE

READ
DEVICE

SEARCH
DISK

POSITION
DISK

USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
USER
TERMINAL

CONTROL
H.S. Paper

Tape
Reader or

Punch

CONTROL
H.S. Paper
Tape Reader
or Punch

CONTROL
H.S. Paper

Tape Reader
or Punch

MAN1674

Fetches one (ASCII)

record into memory

Count of words of

Buff are written to
the specified named
output device

Count of words of

Buff are init-

iealized to zero.

Calls SEARCH with
same arguments

Allows direct posi-
tioning to any record
in a disk.

Outputs ASCII data
to user terminal

or ASR Punch.

Close Device

Turn on Punch

and Punch Leader

Punch Trailer

Close Device

Turn on Punch

1& Punch Leader

Punch trailer

(W
d

SUMMARY OF IOCS SUBROUTINES |

CALL RDASC(logical-device,
Buf£,Count,Altrtn)

CALL WREIN(logical-device
Buff, ,Count,Altrtn)

CALL RDBIN(logical-device,
Buf£,Count,Altrtn)

CALL CONTRL(Key,Name,

Logical-device,Altrtn)

CALL POSFIL(Logical-device,
Rec ,Altrtn)

CALL OSAA@1(Sub-unit,
Buff,Count,Altrtn)

CALL CSA@1(1,Name,Unit,Altrtn)

CALL CSA@1(2,Name,Unit,Altrtn)

CALL CSA@1(4,Name,Unit,Altrtn)

CALL CSP@2(1,Name,Unit,Altrtn)

CALL CSP@2(12,Name,Unit,Altrtn)

CALL CSP92(4,Name,Unit,Altrtn)

July 1976

APPENDIX F

CONTROL

9-track

mag tape

READ
USER
TERMINAL

READ
USER
TERMINAL
OR STORAGE
DEVICE

WRITE
TERMINAL

WRITE
H.S.Paper

Tape Punch

READ

H.S.Paper

Reader

WRITE

H.S.Paper
Tape Ptnch

CONTROL
LINE
PRINTER

CONTROL

Line

Printer

DEVICE
OPERATION

MAN1674

Open for Read

Input ASCII data
from user terminal

Or ASR reader

Input ASCII data
from the command

stream(either
from a user terminal

or from a command

file)

Outputs binary data
to an ASCR Punch

Outputs ASCII data
to the H.S.Punch

Inputs ASCII data
From the H.S.

Outputs binary data
to the H.S.Punch

Centronics line

Printer

Parallel Interface

line printer

FUNCTION

CALL CSM@5(1,Name,Unit,Altrtn)

CALL ISAA@1(Sub unit,Buff,
Count,Altrtn)

CALL ISAA1(Sub unit,Buff,

Count,Altrtn) .

CALL OSBA@1(Sub unit,Buff,
Count ,Altrtn)

CALL OSAP@2(Sub unit,Buff,

Count,Altrtn)

CALL ISAP@2(Sub unit,Buff,

Count,Altrtn)

CALL OSBP@2(Sub unit,Buff

Count,Altrtn)

CALL @SAL@4(Unit,Buftf,

Count ,Altrtn)

CALL OSAL#@6(Unit,Buff,

Count,Altrtn)

CALLING SEQUENCE

READ H.S.

Paper Tape

reader

WRITE H.S.

Paper Tape

Punch

READ H.S.

Paper Tape

Reader

REV. D

Input 1 character
to the A register

Output 1 character
from A register
to punch

Input 1 character
from paper tape

CALL P1LIB(Char)

CALL P1@B(Char)

CALL PLIN(Char)

WRITE H.S.

Punch

Write

User

Terminal

Read

user

terminal

WRITE

user

terminal

Read

user

terminal

Control

Line

Printer

Read

Card

Reader

Read

Card

reader

Writes

User

terminal

Read

Card

Reader

Read or

Write a

Mag tape

User

terminal

to line
printer

MAN1674

Output 1 character
to H.S.Punch

Outputs Count

characters to

the user terminal

Reads one character

from the user

terminal to the

A register

Writes one character

from A register
to user terminal

Reads one character

from user terminal

(New line for

CR)

Versatec Printer/
Plotter

Reads input from
parallel card

Reads input
from serial

card Reader

Writes one character

to the users terminal

Raw data mover

from MPC card

reader to user’s
spare

Moves Raw Data

between Mag
tape and user
address space

Moves information

from the user to

the line printer

SUMMARY OF IOCS SUBROUTINES

CALL P10U (Char)

CALL TNOU(Buff,Count)

CALL TNOUA(Buff,Count)

CALL T1IB(Char)

CALL T1LOB(Char)

CALL T1IN(Char)

CALL OSAL14(Unit,Buff,

Count ,Altrtn)

CALL ISAC@#3(Unit,Buff-Address,
Name ,Word-Count,Altrtn)

CALL ISAC@9 (Unit,Buffer-Name,
Word-Count ,Altrtn)

CALL T10U (Char)

CALL TSCMPC

CALL TSMT(Unit,Poa,Word-Count,
instruction, statv)

CALL TSLMPC(Unit ,Buffer-

Address,word-count,instruction
statv)

5 July 1976

APPENDIX F

Raw Data Moves data from

to Versatec Buffer to

Printer/

Plotter

DEVICE

CONTROL

9-track

mag tape

CONTROL

9-track

mag tape

CONTROL

9-track

mage tape

9-track Tape
(ASCII &

BINARY)

9-Track Tape
EBCDIC &
BINARY

REV. D

Versatec Printer

MAN1674

CALL TSVG(unit,LOC(Buff),
Nwds, instruction,statv)

MAGNETIC TAPE OPERATIONS

FUNCTION

Open for Write

Open for Read
& Write

Rewind and

Close file

Write ASCII

Read ASCII

Write Binary

Read Binary

Control
see Key
Functions)

Write EBCDIC

Read EBCDIC

Write Binary

Read Binary

CALLING SEQUENCE

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CSM@5(2,Name,Unit, Altrtn)

CSM05(3,Name,Unit,Altrtn)

CSM05(4,Name,Unit,Altrtn)

OSAMO5

ISAM@5

OSBM®95

ISBM@5

CSM@5(Key,Name,Altrtn)

OSAM13

ISAM13

OSBM13

ISBM13

MAN1674 SUMMARY OF IOCS SUBROUTINES

Control CALL CSM13(Key,Name,Unit,

(See Key Altrtn)

functions)

7-Track Tape Write ASCII CALL OSAM1@
ASCII &

BINARY

Read ASCII CALL ISAM1@

Write Binary CALL OSBM19@

Read Binary CALL ISBM1@

Control CALL CSM1@(Key,Name,Unit,

(see Key Altrtn)

functions)

Control Open for Read CALL CSM10(1,Name,Unit,Altrtn)

7-track mag
tape.

ASCII Drivers
Read BCD data

format

Control Open for Write CALL C$M10(2,Name,Unit,Altrtn)

7-track mag
tape. ASCII
drivers read
BCD data

format

Control Open for Read CALL CSM10(3,Name,Unit,Altrtn)

7-track mag & Write
tape. ASCII
drivers read
BCD data format

Control Rewind & Close CALL CSM10(4,Name,Unit,Altrtn)

7J-track mag file
tape. ASCII

drivers Read
BCD data
format

SEARCH Open for Read CALL SEARCH(1,Name,Unit,Altrtn)

Mag tape

SEARCH Open for Write CALL SEARCH(2,Name,Unit,Altrtn)

Mag tape

SEARCH Open for Read CALL SEARCH(3,Name,Unit,Altrtn)

F - 7 July 1976

APPENDIX F MAN1674

Mag tape & Write

SEARCH Rewind & Close CALL SEARCH(4,Name,Unit,Altrtn)
Mag Tape file

7-track tape Write BCD CALL O$AM11
BCD &
Binary

Read BCD CALL ISAM11

Write Binary CALL O$BM11

Read Binary CALL I$BM11

Control CALL CSM11(Key,Name,Unit
(see Key Altrtn)

functions)

Key Functions:

Since the subroutines are similar, they will be described in groups.

CSM@5 (Key, Name, Unit, Altrtn)
CSM16
CS$M11

Select Key for appropriate operation:

Key = -4 for
-3 for

-2 for

-l for

1 for

2 for

3 for

4 for

5 for

6 for

7 for

8 for

Name

Unit 0, 1,

Rewind to BOT (Beginning of Tape)
Backspace one file mark
Backspace one record
Write file mark
Open to read
Open to write
Open to read/write
Close (Write file mark and rewind)

Move forward one record
Move forward one file mark
Rewind to BOF (Beginning of File)
Select device and read status

Not Applicable (may be anything)

2, or 3 (Depending on which device
is ASSIGNed)

Altrtn = Is the alternate return. If Altrtn=90,
it means that alternate return is not desired.

REV. D

MAN1674 FORTRAN LIBRARY FUNCTIONS

APPENDIX G

FORTRAN LIBRARY FUNCTIONS

The following list of functions are available to perform a variety of
mathematical operations. Refer to Section 2, Prime Software Library
Users Guide (MAN188@) for more details on the FORTRAN library functions

(e.g., arguments).

DESCRIPTION FUNCTION

Compute absolute value ABS
of SP number giving
SP result

Convert the imaginary AIMAG
part of a CP number
to an SP number

Truncate fractional AINT

bits of an SP number

Compute logarithm ALOG
(base e) of an SP

number

Compute logarithm ALOG1@
(base 10) of an SP

number giving an SP
number

Find maximum of a list AMAX®@

of integers

Find maximum of a list AMAX1

of SP numbers

Find a minimum of a list AMIN@

of integers

Find minimum of a list AMINI1

of SP numbers

Compute remainder of AMOD

G - 1 July 1976

APPENDIX G

REV.

quotient of two SP
numbers

Compute the principal
value of the arctangent
of a SP number

Compute the principal
value of the arctangent
of an SP number divident
byu an SP number

Compute the absolute

Compute cosine of a CP
number

Compute the exponential
of a CP number

Convert two SP numbers

to a CP number

Compute the conjugate
of a CP number

Compute the cosine
of an SP number

Compute sine of a CP
number

Compute the square root
of a CP number

Compute the absolute
value of a DP number

Compute the principal
value of the arctangent
of a DP number

Compute the principal
value of the arctangent
of a DP number divided
by another

Convert SP number

to DP number

Compute the cosine

of a DP number

aD

MAN1674

ATAN

ATAN2

CABS

CCOS

CEXP

CMPLX

CONJ

COs

CSIN

CSORT

DABS

DATAN

DATAN2

DBLE

DCOS

Compute exponential
of a DP number

Compute positive
difference of two SP

numbers

Truncate fractional

Compute logarithm
(base e) of a DP

number giving a DP
number

Compute logarithm
(based 2) of a DP

number

Compute logarithm
(base 1@) of a DP

number

Find MAX of a variable

list of DP numbers

Find MIN of a variable

list of DP numbers

Compute the remainder
of a DP number
divided by another DP
number

Combine magnitude of
a DP number and the
Sign of another DP
number

Compute the sine
of a DP number

Compute the square
root of a DP number

Compute exponential
of SP number giving
SP result

Convert integer to
SP number

Compute positive
difference of two

MAN1674

DEXP

DIM

DINT

DLOG

DLOG2

DLOG10

DMAX1

DMIN1

DMOD

DSIGN

DSIN

DSQRT

EXP

FLOAT

IDIM

FORTRAN LIBRARY FUNCTIONS

July 1976

APPENDIX G

REV.

integers

Convert DP number

to an integer

Convert user specified
SP number to an integer

Convert an SP number
number to an integer

Invoke REAL random
number generator giving
integer result

Combine magnitude of an
integer with sign of
another integer

Shift an integer left
by a specified number
of bits (1.e.,
left shift

Save the specified
number of left most

bits of an integer
(l1.e., left-truncated

Find maximum of

a variable list of

integers

Finde maximum of a

variable list of

SP numbers

Find minimum of a

variable list of

integers

Find minimum of a

variable list of

SP numbers

Compute the remainder
of one integer
divided by another

Perform a logical OR
of 2 16-bit integers
giving an integer
result

D

MAN1674

IDINT

IFIX

INT

IRND

ISIGN

LS

LT

MAX@

MAX1

MING

MINI

MOD

OR

Convert real part of
a CP number to an
SP number

Invoke REAL random
number generator
giving SP result

Shift an integer
right by a specified
number of bits (i.e.,
right shift

Save a specified
number of right-most
bits of an integer
(i.e., right truncate)

Shift an integer
by a specified number
of bits

Combine magnitude of
an SP number and the
sign of another SP
number giving an SP
result

Compute the sine
of a SP number

Convert a DP number

to a SP fixed point
number

Compute square root

of an SP number
giving SP result

Compute hyperbolic
tangent of an SP
number

MAN1674

REAL

RND

RS

RT

SHFT

SIGN

SIN

SNGL

SORT

TANH

FORTRAN LIBRARY FUNCTIONS

July 1976

MAN1674 FORTRAN MATH LIB SUMMARY

APPENDIX H

FORTRAN MATH LIB SUMMARY

The Math Library contains subroutines to solve math problems such

_

as

determinants, permutations, and combinations. For more detailed

information about each subroutine, refer to Section 9 of the Software

Library User Guide (MAN 1888).

FUNCTION

Sets the sgare matrix MAT
equal to the N by N identity
Matrix.

Sets the N by M matrix MAT
equal to the constant
value CON.

Sets the N by M matrix
MATO equal to the scalar
product of the N by M
Matrix MATI and the
scalar constant SCON.

Sets the N by N square
Matrix MATD equal to the
transpose of the N by N
matrix MATI.

Sets the N by M matrix
MATS equal to the matrix
sum of the N by M matrices
MAT1 and MAT2.

Sets the N by M matrix MATD
equal to the matrix
difference of the N by M
matrices MAT] and MAT2.

Sets the Nl by N3 matrix

CALL SEQUENCE

CALL MIDN [DMIDN, IMIDN,CMIDN]
(MAT ,N)

CALL MCON [DMCON, IMCON,CMCON]

(MAT ,N,M,CON)

CALL MSCL [DMSCL,IMSCL,CMSCL]
(MATO,N,M,SCON)

CALL MTRN [DMTRN, IMTRN,CMTRN]
(MATO,MATI,N)

CALL MADD [DMADD,IMADD,CMADD]
(MATS ,MAT1,MAT2,N,M)

CALL MSUB [DMMSUB,IMSUB,CMSUB]
(MATD,MAT1,MAT2,N,M)

CALL MMLT [DMMLT,IMMLT,CMMLT]

H - 4 July 1976

APPENDIX 4H

MATP equal to the matrix
product of the Nl by N2
matrix MATL (left) and the

N2 by N3 matrix MATR (right).

Sets N by N Square matrix
MATO equal to the inverse
of the N by N matrix MATRI.

Sets N by N square matrix
MATO equal to the adjoint
of the N by n matrix MATI.

Sets DET equal to the
determinant of the N by N
square size N used as
work arrays.

Sets COF equal to the
(I,J) signed cofactor of
the square N by N matrix MAT.

Sets the N by L column
vector XVECT equal to the
solutions (X1,X2,X3,..., Xn)
of the system linear
equations,

PERM is a loopless algorithm
for computing the next
permutation of N elements
(N>2) with a single
interchange of adjacent
elements.

COMB is a algorithm (not
loopless) for computing the
next combination of NR out
of N elements with single
interchange of elements.

REV. D

MAN1674

(MATP,MATL,MATR,N1,N2,N3)

CALL MINV [DMINV,CMINV]
(MATO,MATI,N,WORK,NPI1,
NPPN,IERR)

CALL MADJ [DMADJ,IMADJ,CMADJ[
(MATO,MATI,N,IW1,IW2,IW3,IW4,IERR)

CALL MDET [DMDET,IMDET,CMDET]
(DET,MAT,N,IW1,IW2,1IW3,1IW4,IERR)

CALL MCOF [DMCOF,IMCOF,CMCOF]
(COF,MAT,N,IW1,1IW2,1W3,1W4,1,J3,IERR)

CALL LINEQ [DLINEQ,CLINEQ]
(XVECT,YVECT,CMAT, ,WORK<N<NP1, IERR)

CALL PERM (IPERM,N,IW1,1W2,I1W3,
LAST, RESTRT)

CALL COMB (ICOMB,N,NR,IW1,I1W2,
IW3, LAST, RESTRT)

MAN1674 FORTRAN COMPILER SUBROUTINES

APPENDIX I

FORTRAN COMPILER SUBROUTINES

SUBROUTINES INTERNAL TO FORTRAN The following programs are called by the

compiler:

Subroutine Function

FSTR Performs the function of the FORTRAN TRACE routine.

FSRN Read with no alternate returns.

FSRNX Read with ERR= and END= alternate returns.

FSWN- Write with no alternate returns.

FSWNX Write with ERR= alternate return.

FSDN Close (END-FILE) logical device specified.

FSEN Provides backspace function to FORTRAN run-time

programs.

FSBN Rewinds logical device specified.

FSIO
FSCB Interprets the format last character by character.

FSAL

FSA2

FSA3
FSA5

FSA6

FSIOBX Checks record size.

FSCG FORTRAN computed GOTO processor.

FSRA Read ASCII, no alternate returns

FSRB Read BINARY, no alternate returns

FSRAX Read ASCII, with ERR= and END= alternate returns

FSRBX Read BINARY, with ERR= and END= alternate returns

FSRX Common rad handler.

FSWA Write ASCII, no alternate returns
FSWB Write BINARY, no alternate returns

I - 1 July 1976

APPENDIX I MAN1674

FSWAX Write ASCII with ERR= and END= alternate returns
FSWBX Write BINARY, with ERR= and END= alternate returns
FSWX Common write handler

FSEN Encode statement processor
FSDE Decode statement processor
FSDEX Decode statement processor with ERR=
FSIOBF FSIO buffer definition
AC1
AC2 Storage locations to hold complex accumulator
AC3
AC4
AC5 Storage locations to hold error code

FSRTE FORTRAN RETURN statement processor
FSAT FORTRAN argument transfer subroutine
FSATI FORTRAN argument transfer subroutine for
PROTECTED subroutine

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN library intrinsic function
handlers:

FSLT Left truncate

FSRT Right truncate

FSLS Left shift

FSRS Right shift

FSSH General shift

FSOR Inclusive OR

FLOATING POINT EXCEPTIONS

The FLEX (and FSFLEX) Subroutines are invoked by the compiler or
System. This subroutine is the floating point exception interrupt
processor. It determines the exception type, which may be:

Exponent overflow/under flow

Divide by zero

Store exception

Real-integer exception

REV. D I - 2

MAN1674 INDICATOR

APPENDIX J

INDICATOR/CONTROLS

SUMMARY

The Indicator and Control subroutines allow a program to test for error
conditions and report errors to the front panel lights. For more
details, see the Software Library User Guide (MAN 18890).

FUNCTION CALLING SEQUENCE

Updates the sense light CALL DISPLY (Al)
settings according to an CALL DISPLY (@)
argument Al: 1=ON; 9@=OFF CALL DISPLY (1)

Check the overflow condition. CALL OVERFL (Al)
If an error has occurred,
Al is set to 1. Otherwise
it is set to 2

Sets specified sense light CALL SLITE (Al)
ON or sets all sense lights CALL SLITE (@)
OFF. Iff Al=0, all sense

lights are reset to off.

Tests the setting of a sense R=SLITET (Al)
light specified by the :
argument Al. The result of
this test (1 for ON, 2 for
OFF) is stored in the
location specified by the
argument R.

Tests the setting of a R=SSWTCH (Al)
sense switch specified |
by the argument Al. The
result of this test (1 for
ON, 2 for OFF) is stored in
the location specified~by the
argument R.

J - 1 July 1976

MAN1674 SUMMARY OF SORT ROUTINES

APPENDIX kK

SUMMARY OF SORT ROUTINES

This appendix summarizes the SORT and SEARCH LIBRARY routines
in Section 8 of the Software Library User Guide (MAN 1880).

TYPE OF SORT

Based on a non-threaded
binary tree structure

Partition exchange
sort

Diminishing increment
sort. SHELL utilizes
the straight inser-
tion sort (INSERT)
on each of its passes.

Straight insertion
sorting is based
upon ‘percolating’ each
element into its final
position.

A simple interchange
SORT.

Binary Sort

PARAMETERS

PTABLE

NENTRY

NWORDS

NKWORDS

contained

CALLING SEQUENCE

CALL HEAP (PTABLE,NENTRY,NWRDS,FWORDS,
NKWORDS , TARRAY, NPASS ,ALTBP)

QUICK (PTABLE,NENTRY,NWRDS,FWORD,
NKWORDS , TARRAY, NPASS, ALTBP)

SHELL (PTABLE,NENTRY,NWORDS, FWORD,NKWORDS,
NPASS , ALTBP)

INSERT (PTABLE,NENTRY,NWORDS,FWORD,NKWRDS,
NPASS ,ALTBP, INCR)

BUBBLE (PTABLE,NENTRY,NWORDS,FWORD,
NKWORDS , ARRAY , NPASS, ALTBP, INCR)

BNSRCH (PTABLE,NENTRY,NWORDS,FWORD,
NKWORDS, SKEY, FENTRY, INDEX,OPFLAG,ALTNF,
ALTBP)

DESCRIPTION

Integer pointer to thefirst word of the
table.

Numbers of tadle entries (not words).

Number of words per entry.

Number of words in key field.

July 1976

$ 2-9

SINSERT 5-12

SINSERT STATEMENT 5-12

SN 7-12

“LIST” 5-7

@SBD@7 7-14

16-BIT INTEGERS 7-3

5-COLUMN INTEGER 6-9

A FIELD DESCRIPTOR
6-27

A INPUT 6-28

A OUTPUT 6-28

ABSOLUTE MEMORY
ADDRESSES 7-3

ABSOLUTE RECORD 7-15

AC] I-2

AC2 I-2

AC3 I-2

AC4 1-2

ACS I-2

ACCESS FILES 8-2

ADDRESS CONSTANTS 3-8,
7-12

ADDRESS VALUE 7-18

ADVANTAGES OF FORTRAN

1-5

ALPHANUMERIC
CHARACTERS 2-3

ALPHANUMERIC FIELD
DESCRIPTOR 6-27

INDEX

ALTERNATE METHODS OF
DECLARING ARRAYS 5-2

AND 3-16, 7-2, 7-3

ANS 7-18

ARCTANGENT G-2

AREA TRACE 5-11

AREA TRACE STATEMENT

5-12

ARGUMENT LIST 7-7,

7-19

ARGUMENTS 7-1,
7-18

7-3,

ARITHMETIC ASSIGNMENT

STATEMENTS 3-1

ARITHMETIC CONSTANTS
3-1

ARITHMETIC EXPRESSION

5-12

ARITHMETIC IF
STATEMENT 4-3, 4-7

ARITHMETIC OPERATORS

3-12, 3-18

ARRAY 3-18, 7-12

ARRAY DECLARATOR 2-2

ARRAY ELEMENTS 5-6,
6-28

ARRAY NAME 2-2,
5-1ll, 6-5

5-5,

ARRAY STORAGE
ARRANGEMENT 3-11, 8-1

ARRAY X 7-2

ARRAY Y 7-2

ASCII 3-6, 6-1, 6-8

ASCII CHARACTERS 6-2,
6-28

ASCII CONSTANTS 3-7

ASCII DATA 3-7

ASCII FILES 7-14

ASCII-A INPUT 6-28

ASCII-A OUTPUT 6-28

ASSIGN STATEMENT 4-1,
4-2

ASSIGNED GO TO

STATEMENT 4-2

ASSIGNMENT RULES 3-19

ASSIGNMENT STATEMENTS

3-1

ATTACH 8-2

ATTACH DEVICE F-2

ATTACHING TO ANOTHER

USER FILE DIRECTORY

8-1

B FORMAT STATEMENT

6-35

BACKSPACE STATEMENT
6-39

BASIC TERMINOLOGY 2-1

BINARY FILES 7-14

BINARY RECORDS 6-38

BLANK CHARACTER 2-4

BLANK COMMON 5-6, 5-7

BLANK RECORDS 6-9

BLOCK DATA STATEMENT

2-1, 7-9, 7-12,

BLOCK DATA SUBPROGRAM
7-17

BLOCK NAME 5-7

BODY OF SUBPROGRAM 7-9

BODY OF SUBROUTINE
7-12

BRIEF CALLING
STATEMENT 7-1

CALL ABS G-l

CALL AIMAG G-1l

CALL AINT G-l

CALL ALOG G-l

CALL ALOG19® G-1l

CALL AMAX@ G-1

CALL AMAX1 G-1l

CALL AMIN@ G-1l

CALL AMINI] G-l

CALL AMOD G-2

CALL ATAN G-2

CALL ATAN2 G-2

CALL CABS G-2

CALL CCOS G-2

CALL CEXP G-2

CALL CLKOFF STATEMENT
7-18

CALL CMPLX G-2

CALL CONJ G-2

CALL COS G-2

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL
7-19

CALL

CALL

INDEX

CSIN G-2

CSQRT G-2

DABS G-2

DATAN G-2

DATAN2 G-2

DBLE G-2

DCOS G-2

DEXP G-3

DIM G-3

DINT G-3

DISPLY J-1l

DLOG G-3

DLOG18 G-3

DLOG2 G-3

DMAX1 G-3

DMINI1 G-3

DMOD G-3

DSIGN G-3

DSIN G-3

DSQRT G-3

EXP G-3

FSAT STATEMENT

FLOAT G-3

FUNCTION
SUBPROGRAMS 7-9

CALL

CALL

IDIM G-4

IDINT G-4

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL
7-12,

CALL

IFIX G-4

INT G-4

IRND G-4

ISIGN G-4

LS G-4

LT G-4

MAX® G-4

MAX1 G-4

MIN@ G-4

MINI G-4

MOD G-4

OR G-4

OVERFL J-1l

POSFIL 7-14

REAL G-5

RND G-5

RS G-5

RT G-5

SHFT G-5

SIGN G-5

SIN G-5

SLITE J-l

SNGL G-5

SQRT G-5

STATEMENT 7-2,
7-18

TANH G-5

CALLING CONVENTIONS
7-18

CALLING SUBROUTINES

7-12

CARD EQUIPMENT 6-2

CARDS 6-2

CARRIAGE RETURN 6-2

CASE A 8-1

CASE B 8-l

CENTRONICS LINE
PRINTER F-4

CHARACTER ARRAY STRING
TRANSFER 6-29

CHARACTER ARRAYS 6-29

CHARACTER SET 2-2

CLKOFF SUBROUTINE
7-18, 7-19

CLOSE DEVICE F-3

CLOSE NAMED FILE F-1l

CLOSING AND OPENING
FILES 8-3

CODING 5-11

CODING FORMS 2-4

COMB H-3

COMBINATIONS H-1

COMMA 6-9

COMMENT LINES 2-9

COMMENTS 2-9

COMMON 5-1, 5-3

COMMON AREAS 7-17

INDEX

COMMON BLOCKS 5-6,

5-7 ’ 5-17

COMMON I 5-2

COMMON STATEMENT 5-6,
7-17

COMMON STORAGE AREAS
5-3

COMMUNICATION LINKS

7-18

COMPILATION AND RUN
TIME CONTROL 5-1

COMPILATION AND RUN
TIME CONTROL
STATEMENTS 5-11

COMPILING AND RUN TIME
FEATURES 1-4

COMPLEX 3-9,
6-8, 7-7

5-1, 5-3,

COMPLEX DATA TYPES 3-8

COMPLEX
5-6

MODE VARIABLE

COMPLEX MODES 3-18

COMPLEX NUMBERS 6-18

COMPLEX STATEMENTS 5-2

COMPLEX VALUES 3-8

COMPUTE ABSOLUTE VALUE
OF SP NUMBER G-l

COMPUTE COSINE OF A CP
NUMBER G-2

COMPUTE LOGARITHM OF
AN SP NUMBER G-l

COMPUTE REMAINDER OF
QUOTIENT OF TWO SP
NUMBERS G-2

COMPUTE THE ABSOLUTE
G-2

COMPUTE THE
EXPONENTIAL OF A CP
NUMBER G-2

COMPUTE THE PRINCIPAL
VALUE G-2

COMPUTED GO TO
STATEMENT 4-2

CONSECUTIVE ITEMS OF
THE ARRAY 6-5

CONSOLE TELETYPE 6-2

CONSTANT 7-12

CONSTANTS 7-3

CONSTANTS IN A FORTRAN
STATEMENT 3-2

CONTIGUOUS CHARACTERS
6-2

CONTINUATION LINE 2-9

CONTINUE STATEMENT 4-7

CONTROL F-5

CONTROL LINES 2-9

CONTROL PANEL SENSE
SWITCHES 7-18

CONTROL STATEMENTS 4-1

CONTROL VARIABLE 4-7

CONVERT THE IMAGINARY
PART OF A CP G-l

CORRECTING TYPING
ERRORS 2-120

COS 5-8

CREATING A NEW FILE

8-3

CURRENT UFD 8-2

D FIELD DESCRIPTORS

6-17

D OUTPUT 6-21

D, E, F, G, INPUT 6-26

D, E, F, G, INPUT

SCALE FACTOR 6-26

DAC ** 7-19

DACS 7-18

DAM 7-14

DAT 7-18

DATA 5-1

DATA DEFINING 5-1

DATA DEFINING
STATEMENTS 5-9

DATA MODE 7-12

DATA MODE
SPECIFICATION 5-1

DATA MODE
SPECIFICATION
STATEMENTS 5-4

DATA NAMES 2-2

DATA STATEMENTS 5-9,
7-7, 7-17

DATA TRANSFERS 6-2

DATA TYPE MODE
SPECIFICATION
STATEMENTS 5-1

DATA VALUES 3-1, 7-17

DECODE STATEMENT 6-39,
6-48

DELETE A FILE 8-3

INDEX

DELETE NAMED FILE F-1l

DELIMITERS 6-9

DETERMINANTS H-1

DEVICE CONTROL 6-1

DEVICE CONTROL
STATEMENTS 6-39

DIAGNOSTIC PRINTOUTS
5-ll

DIGITS 2-3

DIMENSION 5-1

DIMENSION STATEMENT
5-3, 5-4, 5-5, 7-12,
7-17

DIRECT POSITIONING
SUBROUTINE 7-14

DIRECTORY 8-2

DISK 6-2

DISK OPERATING SYSTEM
1-5

DO LOOP 4-5

DO STATEMENT 4-4

DOLLAR SIGN 2-9

DOS 6-39, 7-14

DOS/VM 7-14

DOUBLE PRECISION 3-9,

3-18, 5-1, 5-2, 5-3,

6-8, 7-7

DOUBLE PRECISION DATA
TYPES 3-7

DOUBLE PRECISION MODE
VARIABLE 5-6

DOUBLE PRECISION

STATEMENTS 5-2

DOUBLE PRECISION
VARIABLE 6-28

DOUBLE SHIFT FEATURE
7-5

DUMMY ARGUMENT 5-8,
7-12

DUMMY ARGUMENTS FOR A
SUBPROGRAM 5-6

DUMMY NAMES 5-4

DUMMY VARIABLES 5-3,
7-7

E AND D OUTPUT 6-25

E AND D OUTPUT SCALE
FACTOR 6-25

E FIELD DESCRIPTORS
6-17

E OUTPUT 6-19

ELAPSED TIME COUNT
7-18

ELEMENT X 5-5

ENCODE STATEMENT 6-39

ENCODE/DECODE 6-1

END AND ERROR RETURNS
6-35

END OF FILE
POSITIONING 7-14

END STATEMENT 2-4,
4-8, 7-12

ENDFILE STATEMENT 6-39

ENTERING FORMAT
STATEMENTS AT RUN TIME
6-32

EQ 3-14

EQUIVALENCE 5-1

EQUIVALENCE STATEMENT

5-4, 5-6, 5-7, 7-17

ERASE CHARACTER " 2-18

ERR=OPTION 6-49

ERROR FLAG 7-18

ERROR FLAG SET 6-22

ERROR MESSAGE 8-1

ERROR STATEMENT 7-14

EVAL 5-8

EVALUATION SEQUENCE
3-17

EXECUTABLE 2-2

EXECUTABLE PROGRAM 2-1

EXIT 7-13

EXPONENTIATION 3-14

3-12, 4-3, 7-3, 7-7,
7-12, 7-18

EXT PSEUDO-OP 7-18

EXTENDED RANGE 4-6

EXTERNAL 5-1

EXTERNAL DEVICE 6-2

EXTERNAL FORM 6-8

EXTERNAL FUNCTION 2-1

EXTERNAL PROCEDURE 2-1

EXTERNAL PROCEDURE
NAME 5-8

INDEX

EXTERNAL PROCEDURE
SPECIFICATION
STATEMENT 5-8

EXTERNAL PROCEDURE
SPECIFICATION 5-1

EXTERNAL STATEMENT
5-8, 7-19

EXTERNAL SUBPROGRAM
NAMES 5-3

EXTERNAL SUBROUTINE
2-1

F FIELD DESCRIPTORS

6-17

F OUTPUT 6-18, 6-25

F OUTPUT SCALE FACTOR
6-25

FSAI

FSA2 I-1l

FSA3 I-1

FSA5 I-1l

FSA6

FSAT I-2

FSATI I-2

FSBN I-1

FSCB I-1l

FSCG I-l

FSDE I-2

FSDEX I-2

FSDN I-1l

FSEN I-2

FSFLEX I-2

FSFN I-1

FSHT SUBROUTINE 4-8

FSIO 6-35

FSIO 6-8

FSIO I-1

FSIOBF 6-8

FSIOBF I-2

FSIOBX I-1l

FSRA I-1

FSRAX I-1

FSRB I-1

FSRBX I-1

FSRN I-1

FSRNX I-1

FSRTE I-2

FSRX I-1

FSTR I-1

FSWA I-1

FSWAX I-2

FSWB I-1

FSWBX I-2

FSWN I-1l

FSWNX I-1l

FSWX I-2

F,E,G, AND D SCALE
FACTOR DESIGNATOR 6-25

FALSE 3-2

FIELD 2-7

FIND MAXIMUM OF A LIST

OF INTEGERS G-1l

FIND MAXIMUM OF A LIST

OF SP NUMBERS G-1l

FIND MINIMUM OF A LIST
OF SP NUMBERS G-1

FLEX I-2

FLOATING POINT

EXCEPTIONS I-2

FORMAT 6-1

FORMAT CONTROL 6-1

FORMAT CONVERSION
SUBROUTINE 6-8, 6-35

FORMAT DESCRIPTOR 6-6

FORMAT ERRORS 6-22

FORMAT FIELD
DESCRIPTOR SUMMARY
6-18

FORMAT FIELD
DESCRIPTORS 6-9

FORMAT SPECIFICATION
6-5

FORMAT STATEMENT 6-5,
6-7, 6-8, 6-27, 6-32,
6-38

FORMATTED FILES 7-14

FORMATTED RECORD 6-2

FORMATTED RECORD
LENGTH 6-8

FORTRAN COMPILER
SUBROUTINES 1-4, I-1

FORTRAN DISK OUTPUT
DRIVERS 7-15

INDEX

FORTRAN IV 6-1, 7-2

FORTRAN IV COMPILER

7-2

FORTRAN LIBRARY

FUNCTIONS 7-2

FORTRAN LIBRARY
SUBROUTINES &
FUNCTIONS 1-4

FORTRAN MATH LIBRARY

1-5

FORTRAN STATEMENT 7-12

FORTRAN SUBPROGRAM 5-4

FORTRAN VERSIONS 1-2

FULL LIST 5-1, 5-11

FUNC 7-3

FUNCTION AVRG 7-18

FUNCTION NAME 7-2,
7-8, 7-10, 7-12

FUNCTION STATEMENT

2-1, 7-2, 7-8, 7-9,

7-18, 7-12

FUNCTION SUBPROGRAM

5-8, 7-3, 7-7, 7-8,

7-17

FUNCTIONS 5-11, 7-2

FUNCTIONS AND
SUBPROGRAMS 7-1

FUNIT 8-3

G FIELD DESCRIPTORS
6-17

G OUTPUT 6-280, 6-25

G OUTPUT SCALE FACTOR
6-25

GE 3-14

GETS NEXT CHARACTER
F-2

GLOBAL MODE ASSIGNMENT
5-2

GO TO ASSIGNMENT
STATEMENT 4-2

GO TO STATEMENT 4-7,
7-2

GT 3-14

H FIELD DESCRIPTOR
6-26

H INPUT 6-27

H OUTPUT 6-26

HOLLERITH DESCRIPTOR
6-27

HOLLERITH FIELD
DESCRIPTOR 6-26

HORIZONTAL SPACING
CONTROL 6-6, 6-8

I FIELD DESCRIPTOR
6-13

I INPUT 6-15

I OUTPUT 6-14

I/O CHARACTERS 3-7

I/O CONTROL SYSTEM 6-3

I/O LIST 6-2, 6-3

IDENTIFIERS 2-2

IF 3-2

IF STATEMENT 5-12

IMPERATIVE VERBS 2-2

IMPLICIT MODE 3-9, 7-7

IMPLICIT MODE
ASSIGNMENT 3-9

IMPLIED DO 6-3

IMPLIED DO-LOOPS 6-5

INCREMENTATION
PARAMETER 4-7

INDICATION AND CONTROL
SUBROUTINES 1-5, J-1l

INITIAL PARAMETER 4-7

INLINE COMMENTS 2-9

INPUT ASCII DATA FROM
THE COMMAND STREAM F-4

INPUT ASCII DATA FROM
USER TERMINAL F-4

INPUT F-1 CHARACTER
F-7

INPUT F-]1 CHARACTER
FROM PAPER TAPE F-7

INPUT FIELD DESCRIPTOR
6-10

INPUT STRING 6-22

INPUT/OUTPUT 6-1

INPUT/OUTPUT CONTROL

SYSTEM 1-5

INPUT/OUTPUT

STATEMENTS 6-2

INPUTS ASCII DATA FROM
THE H.S.READER F-4

INSERT 5-1

INSERT STATEMENT 5-12

INSERTING FILES 5-12

INDEX

INTEGER 3-9, 3-18,
5-1, 5-3, 6-8, 7-7

INTEGER CONSTANT 5-5,
6-3

INTEGER DATA TYPES 3-6

INTEGER MODE 7-6

INTEGER MODE VARIABLE
5-6

INTEGER STATEMENTS 5-2

INTEGER VARIABLES 5-4,
6-28

INTRINSIC FUNCTION
LIBRARY SUBROUTINES

7-6

INTRINSIC FUNCTIONS
7-3, I-2

ITEM TRACE 5-11

ITEM TRACE STATEMENTS
5-11

JST INSTRUCTION 7-18

KEY 8-3

KILL CHARACTER ? 2-10

L FIELD DESCRIPTOR
6-29

L INPUT 6-39

L OUTPUT 6-29

LABEL 2-9

LE 3-14

LETTERS 2-3

LIBRARY FUNCTIONS 7-2,

7-7

LIBRARY SUBROUTINES
7-2, 7-18

LIGHTS 7-18

LINE PRINTER 6-2, 6-33

LINEQ H-3

LINES 2-7

LINKING FORTRAN AND
ASSEMBLY LANGAUGE
PROGRAMS 7-18

LIST 5-1, 5-11, 6-3

LIST CONTROL STATEMENT
2-4

LISTING CONTROL
STATEMENTS 5-12

LISTING FILE 5-12

LITERAL TEXT STRINGS
6-26

LOC 7-2, 7-5

LOCATION “@9601 5-7

LOCATION “@8986 5-7

LOCATION 7-5

LOG FUNCTION 7-3

LOGICAL 3-9,
6-8, 7-7

5-1, 5-3,

LOGICAL AND 7-3

LOGICAL ASSIGNMENT
STATEMENTS 3-1, 3-15,
3-16

LOGICAL CONSTANTS 3-1

LOGICAL DATA TYPES 3-6

LOGICAL EXCLUSIVE OR

7-3

LOGICAL EXPRESSIONS

3-2, 3-6

LOGICAL FIELD
DESCRIPTOR 6-29

LOGICAL IF STATEMENTS
3-15, 4-4

LOGICAL MODE VARIABLE
5-6

LOGICAL NEGATION 7-4

LOGICAL OPERATOR
APPLICATIONS 3-16

LOGICAL OPERATORS 3-15

LOGICAL OR 7-4

LOGICAL SHIFT 7-4

LOGICAL STATEMENTS 5-2

LOGICAL TRUE 3-2

LOGICAL
3-6

TRUTH VALUES

LOGICAL UNIT TABLE 6-3

LOGICAL-L INPUT 6-38

LOGICAL-L OUTPUT 6-29

LS 7-6

LT 3-14, 7-6

LUTBL 6-3

MADD H-2

MADJ H-3

MAGNETIC TAPE 6-2

MAGNETIC TAPE
TRANSPORTS 6-39

MASKING 7-5

INDEX

MASKING AND
POSITIONING 7 5

MASTER FILE DIRECTORY
8-2

MATH LIB H-1]

MATHEMATICAL

SUBROUTINES 7-2

MATHLB 1-5

MATMPY 7-13

MAXIMUM VALUES 8-1

MAXIMUMS 8-1

MCOF H-3

MCON H-2

MDET H-3

MEMORY LOAD 7-18

MEMORY STORAGE 5-5

MFD 8-2

MIDN H-2

MINV H-3

MIXED MODE EXPRESSIONS
3-18

MIXED NUMBER-F OUTPUT
6-18

MMLT H-2

MODE DECLARATION
STATEMENT 5-3

MODE SPECIFICATION
STATEMENT 5-2

MODE STATEMENT 5-2

MOVE RAW DATA F-2

- MOVES DATA FROM BUFFER

F-8

MOVES INFORMATION F-8

MOVES RAW DATA F-8

MSCL H-2

MSUB H-2

MTRN H-2

MULTIPLICATION 3-14

NAME 7-2

NAME 7-7

NE 3-14

NESTED 3-13

NESTED DO LOOPS 4-5

NOLIST 5-1, 5-11

NON-ZERO CONSTANT 5-5

NONEXECUTABLE 2-2

NONOWNER STATUS 8-2

NOT 3-16, 7-4

NOT FUNCTION 7-4

NUMBER OF ELEMENTS 5-7

NUMERICAL CONSTANTS
3-2

OBJECT 8-3

OBJECT CODE 1-5

OCTAL DIGIT 2-3

OCTAL INTEGERS 3-6

OFF ENTRY POINT 7-18

ONE-DIMENSIONAL ARRAY

Y 5-5

ONE-PASS COMPILER 1-5

OPEN

F-4 ’

FOR
F-6

READ & WRITE

OPEN FOR READ F-4, F-6

OPEN
F-~6

FOR WRITE F-4,

OPEN NAMED FILE FOR
BOTH READING AND
WRITING F-1l

OPEN NAMED FILE FOR
READING F-1l

OPEN NAMED FILE FOR
WRITING F-1l

OPENING A FILE 8-3

OPERATORS 2-2

OPERATORS ‘IN FORTRAN

STATEMENTS 3-12

OR 3-16, 7-4

ORDER OF EVALUATION

3-16

OUTPUT CONVERSION 6-25

OUTPUT F-1 CHARACTER
F-7

OUTPUT F-1 CHARACTER
TO H.S. PUNCH F-7

OUTPUT FIELD
DESCRIPTOR 6-19

OUTPUT FIELD
DESCRIPTORS 6-11

OUTPUT OF ARRAY
ELEMENTS 6-5

OUTPUTS ASCII DATA TO
THE H.S.PUNCH F-4

INDEX

OUTPUTS BINARY DATA
F-4

OUTPUTS COUNT
CHARACTERS TO THE USER
TERMINAL F-7

OWNER PASSWORD 8-2

OWNER RIGHTS 8-3

OWNER STATUS 8-2

PAPER TAPE 6-2

PAPER TAPE UNIT 6-2

PARALLEL INTERFACE
LINE PRINTER F-4

PARENTHESES 3-13

PAUSE STATEMENT 4-8

PERFORMS A TREE SEARCH

F-2

PERM H-3

PERMUTATIONS H-1

PHYSICAL RECORD 7-15

POINT PLOTTING DATA

7-2

POSFIL 7-14

POSITIONING DISK F-3

POSITIVE CONSTANT 5-5

POSITIVE NON-ZERO
INTEGER CONSTANTS 5-3

PRIME FORTRAN
EXTENSIONS 1-6

PRIME FORTRAN IV
FEATURES 1-5

PRINT & PRINTER
CONTROL 6-33

PRINT STATEMENT 6-33

PROCEDURE SUBPROGRAM
2-1

PROCESSING ARRAYS 6-8

PROCESSING ENTIRE

ARRAYS 6-8

PROGRAM FORM 2-4

PROGRAM UNITS 2-1

PROGRAMMER 5-12

PROGRAMMING EFFICIENCY

7-1

PROTECTED 7-17

PROTECTED FUNCTIONS
AND SUBROUTINES 7-16

PROTECTED SUBROUTINE

7-17

PUNCH TRAILER F-3, F-4

R=SSWTCH J-l

RANGE ERRORS 6-22

RAW DATA MOVER F-8

READ 6-1

READ ASCII DATA F-2

READ ASCII F-5

READ BCD F-6

READ BINARY F-5, F-6

READ DEVICE F-3

OR WRITE DISK
F-2

READ
FILE

READ
6-27,
6-38,

STATEMENT 6-2,
6-28, 6-32,
6-39

READ/WRITE STATEMENTS
6-35

READING DATA INTO
ARRAYS 6-3

READS INPUT FROM
PARALLEL CARD READER
F-§

READS INPUT FROM
SERIAL CARD READER F-8

READS ONE CHARACTER
F-7

REAL 3-

5-2, 5

REAL

REAL I 5-2

REAL MODE VARIABLE 5-6

REAL NUMBERS 3-7, 3-8

REAL STATEMENTS 5-2

REAL TIME OPERATING
SYSTEM 1-5, 7-14

REAL VARIABLE 6-28

RECORD CHARACTERISTICS
6-1

RECORD LENGTH OPTION
6-7

RECORD NUMBER 7-15

RECORD SIZE 6-2

REFERENCE DOCUMENTS
1-2

REFERENCE SUBKEYS 8-3

RELATIONAL OPERATORS
3-2, 3-14, 3-18

RESCANNING FORMAT

INDEX

LISTS 6-32

RETURN STATEMENT 7-9

REWIND
F-6

& CLOSE FILE

REWIND A FILE UNIT 8-3

REWIND FILE F-1

REWIND STATEMENT 6-39

RIGHTS 8-2

RS 7-6

RT 7-6

RTOS 7-14

SAM 7-14

SCALAR 3-18

SCALE FACTOR 6-25,
6-26

SCOPE OF HANDBOOK 1-3

SEARCH 8-3

SEARCH DISK F-3

SEARCH SUBROUTINE 8-3

SEARCHES FOR A FILE
8-3

SENSE LIGHT/SWITCH
SUBROUTINES 7-18

SEQUENCE NUMBER 2-198

SEQUENTIAL ACCESS
DEVICES 6-39

SEQUENTIAL INPUT 6-5

SHFT 7-4

SHFT FUNCTION 7-6

SHFT LIBRARY
SUBROUTINE 7-4

SIMILAR STATEMENTS 3-2

SIMPLE STATMENTS 3-1

SIN 5-8, 7-2

SINGLE VARIABLE 3-1

SINGLE-BIT TRUTH
VALUES 7-3

SIZE OF ARRAYS 5-3

SLASH 6-9

SLASHED CHARACTERS
2-18

SLITET J-1

SOURCE PROGRAMS 3-7

SPACES 2-19, 6-15

SPECIAL CHARACTERS 2-3

SPECIAL COMMON BLOCK
5-7

SPECIFICATION
STATEMENTS 5-1, 7-17

SPECIFICATION
SUBPROGRAM 2-1

STANDARD PRIME LIBRARY
SUBROUTINES 7-18

START SWITCH 4-8

STATEMENT FUNCTIONS

7-6, 7-7, 7-8

STATEMENT LABELS 4-1,
4-7

STATEMENT LINE 2-9

STATEMENT NUMBER 2-9

STD 7-10

STOP COMPILATION 2-9

STOP STATEMENT 4-7

STORAGE 6-3

STORAGE LOCATIONS 6-2

STORAGE SPECIFICATION
5-l

STORAGE SPECIFICATION
STATEMENTS 5-3

STRING 2-7

SUBPROGRAM 2-]

SUBR PSEUDO-OPS 7-18

SUBROUTINE CALL 8-2

SUBROUTINE CALLS 3-7

SUBROUTINE
5-2

INTEGER §S

STATEMENT

7-9, 7-1ll,

SUBROUTINE
2-1, 7-2,

7-12

SUBROUTINE SUBPROGRAM
2-2, 7-11, 7-17

SUBROUTINES INTERNAL
TO FORTRAN I-1l

SUBSCRIPTED VARIABLES
3-10, 5-5, 6-5,. 7-12

SUBSCRIPTS 3-19

SUBSEQUENT SOURCE
STATEMENTS 5-12

SUMMARY OF INPUT FIELD
DESCRIPTION 6-13

SYMBOLIC NAME 3-1, 7-2

SYNTACTIC ELEMENTS 2-2

INDEX

TAB 6-16

TABULATION CONTROL

6-16

TERMINAL PARAMETER 4-7

TEXT EDITOR 2-4

TRACE 5-1

TRACE CONTROL
STATEMENT 2-4

TRACE OBJECT CODING

5-12

TRACE STATEMENT 5-11,

5-12

TRANSLATION 6-8

TREE FILE NAME 5-12

TREE FILE NAME
SPECIFIER 5-12

TRIGONOMETRIC SINE 7-2

TRUNCATE A FILE 8-3

TRUNCATE FRACTIONAL
BITS OF AN SP G-l

TRUNCATE NAMED FILE
F-1]

TRUNCATION 3-13

TURN ON PUNCH AND
PUNCH LEADER F-3

TWO-DIMENSTONAL ARRAY
3-11

TWO-DIMENSIONAL ARRAY
X 5-5

TYPE A DESCRIPTOR 6-28

TYPE A FORMAT
STATEMENT 6-32

TYPE D CONVERSION 6-18

TYPE D FIELD
DESCRIPTOR 6-21

TYPE E CONVERSION 6-18

TYPE E FIELD
DESCRIPTOR 6-20

TYPE F CONVERSION 6-17

TYPE G CONVERSION 6-18

TYPE G FIELD
DESCRIPTOR 6-21

TYPEWRITER 6-2

UNCONDITIONAL GO TO
STATEMENT 4-1

UNFORMATTED FILES 7-14

UNFORMATTED
6-38

RECORDS

UNIT NUMBER JU

UNIT RECORD
KEYPUNCHING

USER PROGRAM 8-2

USER TERMINAL F-3

USER-DEFINED STATEMENT
FUNCTION 7-2

USING FSAT 7-18

VALUE EXPRESSION 7-12

VAR 7-4, 7-6

VARIABLE 5-5, 5-12,
6-3, 6-28, 7-12

VARIABLE LIST 6-4

VARIABLE NAME 3-8

VARIABLE SUBSCRIPTS

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	C-05
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	D-26
	D-27
	D-28
	E-01
	E-02
	E-03
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	G-02
	G-03
	G-04
	G-05
	H-01
	H-02
	I-01
	I-02
	J-01
	K-01
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11

