PRIME

THE FORTRAN
PROGRAMMER’S GUIDE

y

i

FDR3057

his is your PRIME FORTRAN

Programmer’s Guide. This one

document contains everything
you need to write, modify, compile, load,
execute and debug most FORTRAN
applications using the PRIMOS Oper-
ating System.

¢ have extracted from the PRIME

Reference Documentation Fam-

ily all the commands and
functions you will need as a FORTRAN
programmer.

lease read the next few pag

carefully. They tell you what this

document is, how to use it, and
where you can find what you need.

The FORTRAN Programmer’s Guide
contains the following parts:

® An Overview of PRIME FORTRAN

@ IHow to Use FORTRAN under PRIM

® Advanced FORTRAN Programming
Techniques

® A Complete Reference to the
FORTRAN Language.

® A Complete Reference to related
Utilities

YDR Cover Design by William Agush. PRIME
Staff

The FORTRAN Programmer’s Guide

Published by Prime Computer, Incorporated
Technical Publications Department
145 Pennsylvania Avenue, Framingham, MA 01701

Copyright ©1979 by Prime Computer, Inc.
All rights reserved.

The information contained in this document is subject
to change without notice and should not be construed
as a commitment by Prime Computer, Incorporated.
Prime Computer assumes no responsibility for any
errors that may appear in this document.

This document reflects the software as of Master Disk
Revision Level 16.

PRIMOS® is a trademark of Prime Computer, Inc.
Credits.

Concept and Production
William I. Agush
Typesetting.

Allied Systems

Covers.

Mark-Burton

Text.
Eusey Press

T
B R R e

PRIME SOFTWARE DOCUMENTATION SUMMARY

Description Software Document Price
Rev. # Number
FORTRAN
¢ The FORTRAN Programmer's Guide
Bound edition 16 FDR3057-101At $15.00
Loose-leaf edition 16 FDR3057-101Bt $15.00
¢ The FORTRAN Programmer’s Companion 16 FDR3338% $ 2.00
COBOL)
¢ The COBOL Programmer's Guide 16 PDR30567 $15.00
RPGII
¢ The RPGII Programmer's Guide 16 PDR3031% $15.00
* The RPGII Debugging Template 14-16 FDR3275 $ 2.00
BASIC/VM (COMPILED)
¢ The BASIC/VM Programmer’s Guide 16 PDR3058t $15.00
¢ The BASIC/VM Programmer’s Companion 16 FDR3341% $ 2.00
BASIC (INTERPRETIVE)
* The Interpretive BASIC Programmer’s Guide 14,15 IDR1813 $15.00
Technical update 16 PTU59t $ 2.00

ASSEMBLY LANGUAGE
e The Assembly Language Programmer's Guide

Bound edition 16 FDR3059-101At $15.00
Loose-leaf edition 16 FDR3059-101Bt $15.00
* The Assembly Language Programmer’s Companion 15,16 FDR3340 $ 2.00
* The System Architecture Reference Guide 16 PDR30607 $15.00

PRIMOS OPERATING SYSTEM/UTILITIES
e The PRIMOS Commands Reference Guide

Bound edition 16 FDR3108-101At $15.00

Loose-leaf edition 16 FDR3108-101Bf $15.00
¢ The PRIMOS Commands Programmer’s Companion 16 FDR3250t $ 2.00
* The System Administrator’s Guide 16 PDR3109t $15.00
¢ The System Administrator’s Programmer’s

Companion 16 FDR3622f $ 2.00
e The New User's Guide to EDITOR and RUNOFF

Bound edition 15 FDR3104-101A $15.00

Loose-leaf edition 15 FDR3104-101B $15.00

Change sheet update 16 COR3104-001t $ 3.00
* PRIMOS Subroutines Reference Guide 16 PDR3621f $15.00
* LOAD and SEG Reference Guide 16 IDR3524t $15.00
DATA MANAGEMENT
¢ DBMS Administrator’s Guide 16 PDR3276% $15.00
* DBMS Schema Reference Guide 16 PDR30447 $15.00
¢ DBMS FORTRAN Reference Guide 16 PDR3045t1 $15.00
* DBMS COBOL Reference Guide 16 PDR3046% $15.00
* The PRIME/POWER Guide 16 IDR3709 $15.00
* The MIDAS Reference Guide 14 IDR3061 $15.00

Technical update 16 PTU60t $ 2.00
¢ The FORMS Programmer’s Guide 16 PDR3040t $15.00
STATISTICS
* The SPSS Programmer’'s Guide 16 PDR3173t $15.00
COMMUNICATIONS
* The PRIMENET Guide 16 1IDR3710¢t $15.00
* The RJE/2780 Guide 16 PDR3067¢ $15.00
* The HASP Guide 16 PDR3107% $15.00
* The UT200 Guide 16 IDR3431} $15.00
SYSTEM INSTALLATION '
* The System Installer's Guide 15 PDR3105t $15.00

t+-Denotes new or revised title

FDR 3057 i-5 1 January. 1979

Part I

1 OVERVIEW OF PRIME’S FORTRAN

[ntroduction 1-1

Figure 1-1. Sequence of FORTRAN program development 1-3
FORTRAN under PRIMOS 1-4
System resources supporting FORTRAN 1-5

Table 1-1. FORTRAN mathematical functions 1-6

Table 1-2. Matnx operations subroutines 1-6

2 OVERVIEW OF PRIMOS

Introduction 2-1

Glossary of Prime concepts and conventions 2-1

Command format conventions 2-4

Special terminal keys 2-5

System prompts 216

Using the file system 2-6
Table 2-1. Types of files in PRIMOS 2-8
Figure 2-1. Examp]es of files and directories in PRIMOS tree-structured
file system 2-9

Part II

3 ACCESSING PRIMOS

Introduction 3-1 |
Accessing the system 3-2
Directory operatlons 3-2
System 1nformat10n 3-4
File operations 3-4
Table 3-1. Useful system information 3-4

Completing a work session 3-8

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

Entry from other media 4-1
Entering and modifying programs—the Editor 4-4
Listing programs 4-10
Renaming and deleting programs 4-11
\

9 COMPILING

Introduction 5-1

Using the compiler 5-1

End of compilation message 5-2

Compile error messages 5-2

Compiler parameters 5-3
Table 5-1. Compiler parameter mnemonics 5-3
Table 5-2. Copcordance codes 5-9

Optimization 5-12 i

6 LOADING R-MODE PROGRAMS

Introduction 6-1
Using the loader under PRIMOS 6-1
Normal loading 6-2

1 January, 1979 i-6 FDR 3057

Load maps 6-3

Figure 6-1. Examples of load maps 6-5
Loading details 6-6
Command summary 6-9

7 LOADING SEGMENTED PROGRAMS

Introduction 7-1
Using SEG under PRIMOS 7-1
Normal loading 7-2
Load maps 7-3
Figure 7-1. Example of load map 7-5
Advanced SEG features 7-7
Command summary 7-8
SEG-level commands 7-9
LOAD subprocessor commands 7-10
MODIFY subprocessor commands 7-13

8 EXECUTING PROGRAMS

Introduction 8-1

Execution of R-mode memory images 8-1
Executing segmented runfiles 8-2

Run-time error messages 8-2

Installation in the command UFD (CMDNCO0) 8-4

9 DEBUGGING

Introduction 9-1
Coding strategy 9-1
Compiler usage 9-2

Part III

10 OPERATING SYSTEM FEATURES

Command file operations 10-1

Phantom users 10-8

Sequential job processor (CX) 10-11

Magnetic tape utilities 10-15

Using PRIMOS with networks 10-17

File copying, deleting, and listing (FUTIL) 10-18
Figure 10-1. Overview of FUTIL commands 10-20
Figure 10-2. FUTIL: COPYing, DELETing, and PROTECtion commands
10-21
Figure 10-3. Typical tree structure 10-22

File manipulation 10-27

Setting terminal characteristics 10-30

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Advanced features of LOAD subprocessor 11-1
The modification subprocessor 11-6

Shared code 11-7

COMMON blocks over 64K words long 11-12

FDR 3057 i-7 1 January, 1979

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

Introduction 12-1

Multiple Index Data Access System (MIDAS) 12-1
Figure 12-1, User’s functional overview of the MIDAS file system 12-3
Figure 12-2. Sample of CREATK dialogue 12-4

Database Management System (DBMS) 12-6
Forms management system (FORMS) 12-6
Figure 12-3. Example of data maintenance program 12-7

Other languages 12-8
13 OPTIMIZATION AND OTHER HELPFUL HINTS

Introduction 13-1

DO loops 13-1

Statement numbers 13-3
Multi-dimensioned arrays 13-3

Load sequence memory allocation 13-3
Function calls 13-4

V-mode vs. R-mode compilation 13-4
64V-mode COMMON 13-4

IF statements 13-5

Input/Output 13-5

Statement sequence 13-5

Parameter statements 13-6

Inefficient library calls 13-6

Statement functions and subroutines 13-6
Integer divides 13-6

Logical vs. arithmetic IF 13-6

Use of the compiler’s -DYNM option 13-7
Conclusion 13-7

Request for contributions to this section 13-7

Part IV

14 FORTRAN LANGUAGE ELEMENTS

Legal character get 14-1
Line format 14-1
Figure 14-1. Program line format 14-2
Operands 14-2
Generalized subscripts 14-5
Operators 14-6
Program composition 14-8
Figure 14-2. Source program composition 14-8°

15 FORTRAN STATEMENTS

Implemented statements 15-1
Header statements for subprograms 15-3
Specification statements 15-4
Storage statements 15-6
External procedure statements 15-7
Data definition statement 15-8
Compilation and run-time control statements 15-8
Assignment statements 15-9
Control statements 15-10
Table 15-1. Data mode rules for assignment statements 15-11

Input/out statements 15-12
Table 15-2. Devices and their default FORTRAN unit numbers 15-15

1 January, 1979 i-8 FDR 3057

Coding statements 15-18

Format statements 15-19
Table 15-3. Results of formats in output statements 15-20
Table 15-4. Results of formats in input statements 15-22
Table 15-5. Examples of B-format usage 15-24

Device control statements 15-25

Function calls 15-25

Subroutine calls 15-25

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

Functions 16-1
Subroutines 16-3

Part V

17 COMPILER REFERENCE

Prime FORTRAN compiler parameters 17-1
Table 17-1. Gompiler file specifications 17-2

Explicit setting of the A and B registers 17-6
Figure 17-1. Bit-mnemonic correspondence (A and B registers) 17-7
Table 17-2. A- and B-register bit correspondences of Parameter
mnemonics 17-8
Table 17-3. Bit/device correspondence 17-9

18 FORTRAN FUNCTION REFERENCE
FORTRAN function library 18-1

19 LIBRARIES REFERENCE

FORTRAN matrix (math) library 19-1
Sort and search library 19-7
Applications library 19-9

Operating system library 19-14

Appendices

A ERROR MESSAGES
Introduction A-1
Compiler error messages A-1
Loader error messages A-5
SEG loader error messages A-6
Run-time error messages A-8

B SYSTEM DEFAULTS AND CONSTANTS

C ASCII CHARACTER SET

Prime usage C-1

Keyboard input C-1 ‘
Table C-1. ASCII character set (non-printing) C-2
Table C-2. ASCII character set (printing) C-3

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

Introduction D-1
Data types D-2

FDR 3057 i-9 1 January, 1979

; s

Overview of

Prime’'s FORTRAN

INTRODUCTION

This document is a comprehensive guide for the Prime FORTRAN programmer. It contains
everything normally necessary for writing, compiling, loading, and executing FORTRAN
programs. The user is assumed to be familiar with the FORTRAN language but not with its
implementation and use on a Prime computer. Users unfamiliar with the language should
read one of the commercially available instruction books; two examples are:

McCracken, Daniel D., A Guide to FORTRAN IV Programming,
John Wiley and Sons, Inc.

Organick, Elliott I, A FORTRAN IV Primer, Addison-Wesley
Publishing Company.

The current definitive standard for the FORTRAN IV language is the American National
Standards Institute publication X3.9-1966 (USA Standard FORTRAN].

This version

This is a Final Documentation Release, documenting Prime FORTRAN IV and supporting
utilities at software revision level 16 (Rev. 16). It replaces the following documents:

The FORTRAN programmer’s Guide, PDR3057.
Rev. 15 FORTRAN, PTU47.

Organization
The guide is composed of five major parts:

Part 1. An introductory section including an overview of FORTRAN as it
is implemented on the Prime computer. This includes Prime
extensions to the language, supporting utilities, systems, and
software, plus where to find information in this document (Section
1). An introductory section explains the basic concepts and fea-
tures of the PRIMOS operating system (Section 2).

Part 2. Using the Prime computer for FORTRAN programming. This is a
tutorial, arranged to follow the normal sequence of program
development. A single pass through this part will enable the user
to perform all the usual FORTRAN programming functions. The
order of information presented is (see Figure 1-1):

e Accessing the system (Section 3)

e Creating a program (Section 4)

e Compiling (Section 5)

e Loading for relative address code (Section 6) or
segmented-address code (Section 7)

1 January, 1979 1-1 FDR 3057

1 OVERVIEW OF PRIME'S FORTRAN

Related documents

Part 3.

Part 4.

Part 5.

Appendices

* Executing (Section 8)

* Debugging concepts and the use of debugging
tools (Section 9)

System utilities are introduced and all concepts and PRIMOS-
level commands necessary for the large majority of uses are
discussed, with examples. A user wishing to go beyond these
concepts for special programming needs, more efficient program
creation, program optimization, etc., will find references to the
information (either in this document or another reference docu-
ment) at the appropriate place. In most cases, it is unnecessary to
use any document other than this one.

Advanced Techniques. Sections 10-13 cover a range of specialized
topics including program optimization with the segmented loader,
loading for shared procedure, introduction to the MIDAS, DBMS,
and FORMS systems in the FORTRAN environment, and addi-
tional details on extended use of the operating system and file
management system.

FORTRAN language reference. Sections 14-16 form a reference
for the FORTRAN language as implemented on Prime computers,
The Prime extensions to the standard language are given along
with examples of their usage.

Utility reference. Provides more detailed and extended informa-
tion about the use of the utilities supporting FORTRAN. In addi-
tion, libraries are listed and the library functions and subroutines
which are particularly useful are described in detail. The user is
told of the existence and functionality of other useful subroutines
and where to find complete information about them.

A complete list of compiler, loader, and run-time error messages
and their meanings (Appendix A); system defaults and constants
(Appendix B); ASCII character set (Appendix C); and FORTRAN
data type storage (Appendix D).

The following documents contain detailed reference information on the PRIMOS system
and utilities.

FDR 3057

Operating System Reference

Reference Guide, PRIMOS Commands
Reference Guide, PRIMOS Subroutines

Software Subsystem Reference

The FORTRAN Programmer’s Companion

The New User’s Guide to EDITOR and RUNOFF

LOAD and SEG Reference Guide

Reference Guide, Multiple Index Data Access System (MIDAS)
Reference Guide for DBMS Schema DDL

FORTRAN Reference Guide for DBMS

FORMS Programmer’s Guide

1-2 1 January, 1979

OVERVIEW OF PRIME'S FORTRAN 1

1 OVERVIEW OF PRIME'S FORTRAN

FORTRAN UNDER PRIMOS

Program conversion

There are a number of factors which must be taken into account when converting FORTRAN
programs from one computer system to another. These are the language statements,
extensions, input/output, functions, subroutines, and control flow. Any particular program
may have special conversion needs, but these are the major areas to consider.

Language: Make certain that all statements perform the same operations on both systems.
The major sources of possible incompatibility are device and input/output statements. The
1966 standard FORTRAN does not fully describe certain statements such as ENDFILE or
REWIND; consequently, their exact performance is installation-dependent. Prime’s FOR-
TRAN supports both the ANSI and IBM formats for direct access READ and WRITE
statements. Levels of nesting in DO loops and IF statements will present no problems as
there is no syntactical limit on such nesting in Prime FORTRAN. Similarly, there is no
syntactical limit to the number of statement labels in computed GO TO statements.

Extensions: Extensions to standard FORTRAN which the user should inspect are:

* Use of the $INSERT command for file insertion at compilation
e B Format

e TRACE instruction for debugging

e List-directed input/output

e Direct file access READ/WRITE statements

e Long integers

e Parameters

» IMPLICIT specification

e Subprogram structure

e Generalized subscripting

Input/Output: FORTRAN logical unit numbers must agree with those given in Section 15 of
this document (or such others as are established by the system administrator). As PRIMOS
is an interactive multi-user system, there is no need for a job control language; all users have
access to disk files. Use of peripheral storage devices is obtained by assigning the device to
the user (see Section 4) after which file operations may be performed.

Functions: Prime supplies a large number of the normal mathematical functions plus a set
of Boolean (logical) functions. These are listed in Section 18. The user should check these to
be sure all functions in the original source program are implemented under PRIMOS. It is
unlikely that the average programmer will be using functions not on this list. User-defined
functions should be written as specified in Section 16.

Subroutines: Inasmuch as all operating system or file system calls are installation-depen-
dent, all such calls must be replaced by their PRIMOS equivalents. Subroutines for normal
usage will be found in Section 19, especially in the Applications Library, which is given here
in summary. Subroutines for extended usage or special cases will be found in Reference
Guide, PRIMOS Subroutines. User-defined subroutines should be written to the specif-
ications in Section 16.

Control flow: To insure an orderly return from the main program to the PRIMOS level, the
last logical statement of a main program must be

CALL EXIT

FDR 3057 1-4 1 January, 1979

OVERVIEW OF PRIME'S FORTRAN 1

This is analogous to the RETURN statement, which is the lastlogical statement of a function
subprogram or subroutine.

Programs executing in the R-identity may be ‘“‘chained” by use of the RESU$$ subroutine
described in Section 19, Operating System Library.

Program environments
Under PRIMOS, FORTRAN programs may execute in one of three environments:

e Interactive
e Phantom user
e Sequential job processing

Interactive: Program execution is initiated directly by the user (Section 8). The terminal is
dedicated to the program during execution. The program will accept input from the terminal
and will print at the terminal any output specified by the program as well as user- or system-
generated error messages. This environment is the one most often used. Major uses are:

e Program development and debugging.

» Programs requiring short execution time.

 Data entry programs such as order entry, payroll, etc.
e Interactive programs such as the Editor, etc.

Phantom user: The phantom environment (Section 10) allows programs to be executed while
“disconnected’”’ from a terminal. This frees the terminal for other uses. Phantom users
accept input from a command file instead of a terminal; output directed to a terminal is
either ignored or directed to a file.

Users may interrupt a program running as a phantom. Major uses of phantoms are:

o Programs requiring long execution time (such as sorts).
e Certain system utilities (such as line printer spooler}.
¢ Freeing terminals for interactive uses.

Sequential job processing: The number of phantom users on a system is fixed. The
sequential job processor queues requests for phantom users and then executes these jobs
one at a time (Section 10).

This environment is especially useful when phantom usage is heavy and interactive
execution of programs is not a requirement.

File system summary

PRIMOS allows the user to access up to 16 files at one time. These disk files may be created,
modified and deleted through the use of the Applications Library subroutines and the file
management subroutines of the Operating System (Section 19). The file system is discussed
in Section 2. Files, opened by these subroutines, may be accessed by FORTRAN 1/0
statements such as READ, WRITE, ENCODE, DECODE. See Section 15 for a complete
discussion of these commands.

SYSTEM RESOURCES SUPPORTING FORTRAN

There are a large number of libraries and utilities in PRIMOS supporting the use of
FORTRAN on the Prime computer. A brief description of some of the major ones follows.

1 January, 1979 1-5 FDR 3057

1 OVERVIEW OF PRIME'S FORTRAN

le 1-1, FORTRAN Mathematical Functions
; S D Mode

 |aMaxogz)
| maxo

Libraries

Library functions and subroutines of use to the FORTRAN applications programmer are in
Section 19 of this document. A complete treatment of all library and system subroutines is
in Reference Guide, PRIMOS Subroutines.

A summary of the FORTRAN mathematical functions is given in Table 1-1. There are also
FORTRAN functions for the Boolean (logical) operations of AND, OR, XOR, NOT, right
shift, right truncate, left shift, and left truncate Conversion between data modes is
supported by a set of conversion functions. For more advanced mathematical usage, a matrix
library is provided (See Table 1-2 for a summary). A complete description of the In-memory

FDR 3057 1-6 1 January, 1979

OVERVIEW OF PRIME'S FORTRAN 1

1 OVERVIEW OF PRIME’'S FORTRAN

Editor

Prime’s text editor is a line-oriented editor enabling the programmer to enter and modify
source code and text files. Information for these purposes is in Section 4: a complete
description of the Editor is in The New User's Guide to EDITOR and RUNOFF.

Multiple index direct access system (MIDAS)

MIDAS is a system of utilities and subroutines for creating and maintaining keyed-
index/direct-access files. All housekeeping functions on the index and data sub-files are
performed by MIDAS subroutines called from FORTRAN programs. An overview of MIDAS
is in Section 12, the complete documentation is Reference Guide, Multiple Index Data
Access Systems (MIDAS).

Database Management system (DBMS)

Prime’s DBMS is a CODASYL-compliant system for management of large amounts of data.
DBMS can be accessed from either FORTRAN or COBOL programs. Complete information
on using DBMS in the FORTRAN environment is in Reference Guide for DBMS Schema
DDL and FORTRAN Reference Guide for DBMS.

Forms management system (FORMS)

FORMS is a system for creation, maintenance, and use of screen forms for interactive file
maintenance. These screen forms are an extremely useful tool for the applications
programmer writing data entry programs. Details are in FORMS Programmer’s Guide.

Language interfaces

Under the PRIMOS operating system, FORTRAN programs may call or be called by PMA
(Prime Macro Assembly) language programs. FORTRAN subroutines may be called from
COBOL programs. Details are in The PMA Programmer’s Guide and The COBOL Program-
mer's Guide.

FDR 3057 1-8 1 January, 1979

Overview of PRIMOS

Overview of P

INTRODUCTION

This section is an introduction to the basic concepts of Prime’s Operating System (PRIMOS)
and its embedded file management system (FMS). This information is basic to the efficient
usage of PRIMOS. Contents include:

o A glossary of Prime concepts and terms.

e Command format conventions.

» Special terminal keys.

¢ System prompts.

e Using the file system.

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS
The following is a glossary of concepts and conventions basic to Prime computers, the
PRIMOS operating system, and the file system.

abbreviation of PRIMOS commands: Only internal PRIMOS commands may be ab-
breviated.

binary file: A translation of source file generated by a language translator (PMA, COBOL,
FTN, RPG). Such files are in the format required as input to the loaders. Also called object
file.

byte: 8 bits; 1 ASCII character.
CPU: Central Processor Unit (the Prime computer proper as distinct from peripheral
devices or main memory).

current directory: A temporary working directory explained in the discussion on Home vs
current directories later in this section.

directory: A file directory; a special kind of file containing a list of files and/or other
directories, along with information on their characteristics and location. MFDs, UFDs, and
subdirectories (sub-UFDs) are all directories. (Also see segment directory.)

directory name: The file name of a directory.
external command: A PRIMOS command existing as a runfile in the command directory

(CMDNCO). It is invoked by name, and executes in user address space. External commands
print GO when starting, and cannot be abbreviated.

file: An organized collection of information stored on a disk (or a peripheral storage medium
such as tape). Each file has an identifying label called a filename.

1 January, 1979 2-1 FDR 3057

2 OVERVIEW OF PRIMOS

filename: A sequence of 32 or fewer characters which names a file or a directory. Within
any directory, each filename is unique. Directory names and a filename may be combined
into a pathname. Most commands accept a pathname wherever a filename is required.

Filenames may contain only the following characters:
A-Z,0-9, _#8-.%&

The first character of a filename must not be numeric. On some devices underscore (_)
prints as backarrow ().

filename conventions: Prefixes indicate various types of files. These conventions are
established by the compilers and loaders, or by common use, and not by PRIMOS itself.

B__ filename Binary (Object) file

C__ filename Command input file

L__filename Listing file

M__ filename Load map file

O_ filename Command output file

filename Source file or text file

*filename SAVED (Executable) R-mode runfile
#filename SAVED (Executable) V-mode runfile

file-unit: A number between 1 and 63 ('77) assigned as a pseudonym to each open file by
PRIMOS. This number may be given in place of a filename in certain commands, such as
CLOSE. PRIMOS-level internal commands require octal values. Each user may have up to
16 file units open at the same time. Certain commands or activities use particular unit
numbers by default:

PRIMOS assigned units Octal Decimal
INPUT, SLIST 1 1
LISTING 2 2
BINARY 3 3
AVAIL 5 5
COMINPUT 6 6
SEG’s loadmap 13 11
COMOUTPUT 77 63
EDITOR 1,2 1,2
SORT 1-4 1-4
RUNOFF 1-3 1-3

file protection keys: See keys, file protection.

home directory: The user’s main working directory, initially the login directory. A different
directory may be selected with the ATTACH command. See the discussion on Home vs
current directory later in this section.

identity: The addressing mode plus its associated repertoire of computer instructions.
Programs compiled in 32R or 64R mode execute in the R-identity; programs compiled in 64V
mode execute in the V-identity. R-identity and V-identity are also called R-mode and V-
mode.

internal command: A command that executes in PRIMOS address space. Does not overwrite
the user memory image. Internal commands can be abbreviated. See abbreviation of
PRIMOS commands.

FDR 3057 2-2 1 January, 1979

OVERVIEW OF PRIMOS 2

keys, file protection: Specify file protection, as in the PROTEC command.

No access

Read

Write

Read/Write

Delete and truncate
Delete, truncate and read
Delete, truncate and write
All rights

N O Ul W= O

LDEV: Logical disk device number as printed by the command STATUS DISKS. (See ldisk.)

1disk: A parameter to be replaced by the logical unit number (octal) of a disk volume. It is
determined when the disk is brought up by a STARTUP or ADDISK command. Printed as
LDEV by STATUS DISKS.

logical disk: A disk volume that has been assigned a logical disk number by the operator or
during system startup.

MFD: The Master File Directory. A special directory that contains the names of the UFDs on
a particular disk or partition. There is one MFD for each logical disk.

mode: An addressing scheme. The mode used determines the construction of the computer
instructions by a compiler or assembler. (See identity.)

nodename: Name of system on a network; assigned when local PRIMOS system is built or

number representations:

XXXXX Decimal
‘XXXXX Octal
$XXXXX Hexadecimal

object file: See binary file

open: Active state of a file-unit. A command or program opens a file-unit in order to read or
write it.

output stream: Output from the computer that would usually be printed at a terminal during
command execution, but which is written to a file if COMOUTPUT command was given.

packname: See volume-name.
page: A block of 1024 16-bit words within a segment (512 words on Prime 300).

partition: A portion [or all] of a multihead disk pack. Each partition is treated by PRIMOS
as a separate physical device. Partitions are an integral number of heads in size, offset an
even number of heads from the first head. A volume occupies a partition, and a “‘partition
of a disk” and a “volume of files” are actually the same thing.

pathname: A multi-part name which uniquely specifies a particular file (or directory)
within a file system tree. A pathname (also called treename) gives a path from the disk
volume, through directory and subdirectories, to a particular file or directory. See the
discussion on Pathnames in this section.

PDEV: Physical disk unit number as printed by STATUS DISKS. (See pdisk.)

pdisk: A parameter to be replaced by a physical disk unit number. Needed only for operator
commands.

1 January, 1979 2-3 FDR 3057

2 OVERVIEW OF PRIMOS

phantom user: A process running independently of a terminal, under the control of a
command file.

runfile: Executable version of a program, consisting of the loaded binary file, subroutines
and library entries used by the program, COMMON areas, initial settings, etc. (Created
using LOAD or SEG.)

SEG: Prime’s segmentation utility.
segment: A 65,536-word block of address space.

segment directory: A special form of directory used in direct-access file operations. Not to
be confused with directory, which means “file directory”.

segno: Segment number.

source file: A file containing programming language statements in the format required by
the appropriate compiler or assembler.

subdirectory: A directory that is in a UFD or another subdirectory.
sub-UFD: Same as subdirectory.
treename: A synonym for pathname.

UFD: A User File Directory, one of the Directories listed in the MFD of a volume. It may be
used as a LOGIN name.

unit: See file-unit.

volume: A self-sufficient unit of disk storage, including an MFD, a disk record availability
table, and associated files and directories. A volume may occupy a complete disk pack or be
a partition within a multi-head disk pack.

volume-name: A sequence of 6 or fewer characters labeling a volume. The name is assigned
during formatting (by MAKE). The STATUS DISKS command uses this name in its DISK
column to identify the disk.

word: As a unit of address space, two bytes or 16 bits.

COMMAND FORMAT CONVENTIONS
The conventions for PRIMOS command documentation are:

WORDS-IN-UPPER-CASE: Capital letters identify command words or keywords. They are
to be entered literally. If a portion of an upper-case word appears in rust, the rust
colored letters indicate the minimum legal abbreviation.

Words-in-lower-case: Lower case letters identify parameters. The user substitutes an
appropriate numerical or text value.

Braces {}: Braces indicate a choice of parameters and/or keywords. Unless the braces are
enclosed by brackets, at least one choice must be selected.

Brackets []: Brackets indicate that the word or parameter enclosed is optional.
Hyphen - : A hyphen identifies a command line option, as in: SPOOL -LIST

Parentheses (): When parentheses appear in a command format, they must be included
literally.

Ellipsis . . .: The preceding parameter may be repeated.
Angle brackets < >: Used literally to separate the elements of a pathname. For example:
<FOREST>BEECH>BRANCH37>TWIG43>LEAF4.

FDR 3057 2-4 1 January, 1979

OVERVIEW OF PRIMOS 2

option: The word option indicates one or more keywords or parameters can be given, and
that a list of options for the particular command follows.

Spaces: Command words, arguments and parameters are separated in command lines by
one or more spaces. In order to contain a literal space, a parameter must be enclosed in
single quotes. For example, a pathname may contain a directory having a password:

‘<FOREST>BEECH SECRET>BRANCHS'.

The quotes ensure that the pathname is not interpreted as two items separated by a space.

Conventions in examples

In all examples, the user’s input is rust-colored, and the system's output is not. For example:

OK, ATTACH GOUDY
OK, ED SEGINFO
GO

EDIT

User input usually may be either in lower case or in UPPER CASE. The rare exceptions will
be specified in the commands where they occur.

SPECIAL TERMINAL KEYS

CONTROL: The key labeled CONTROL (or CTRL) changes the meaning of alphabetic keys.
Holding down CONTROL while pressing an alphabetic key generates a control character.
Control characters do not print. Some of them have special meanings to the computer. (See
CONTROL-P, CONTROL-Q and CONTROL-S, below.) Others are ignored.

RUBOUT: The key labeled RUBOUT has a special use in RUNOFF. It is not generally
meaningful to other standard Prime software. On some terminals it is labeled DELETE or
DEL.

RETURN: The RETURN key ends a line. PRIMOS edits the line according to any erase (*)
or kill (?) characters, and either processes the line as a PRIMOS command, or passes it to a
utility such as the editor. RETURN is also called CR or CARRIAGE-RETURN.

BREAK, ATTN, INTRPT: See CONTROL-P.

Special terminal characters

Caret("): Used in EDITOR to enter octal numbers and for literal insertion of Erase and
Kill characters. On some terminals and printers, prints as up-arrow (1).

Backslash (\): Default EDITOR tab character.

Double-quote (*): Default erase character for PRIMOS, EDITOR, and RUNOFF Command
Mode. Each double-quote erases a character from the current line. Erasure is from right (the
most recent character) to left. Two double-quotes erase two characters, three erase three,
and so forth. You cannot erase beyond the beginning of a line. The PRIMOS command
TERM (Section 10 of this guide) allows the user to choose a different erase character.

Question mark (?): Default kill character for PRIMOS, EDITOR, and RUNOFF Command
Mode. Each question mark deletes all previous characters on the line. The PRIMOS
command TERM (Section 10 of this guide) allows the user to choose a different kill
character.

1 January, 1979 2-5 FDR 3057

2 OVERVIEW OF PRIMOS

CONTROL-P: QUIT immediately (interrupt/terminate) from execution of current command
and return to PRIMOS level. Echoes as QUIT. Used to escape from undesired processes.
Will leave used files open in certain circumstances. Equivalent to hitting BREAK key.

CONTROL-S: Halt output to terminal, for inspection. No commands other than CONTROL-
P (QUIT) or CONTROL-Q (Continue) may be given. This special function is activated by the
command TERM -XOFF.

CONTROL-Q: Continue output to terminal following a CONTROL-S (if TERM -XOFF is in
effect).

UNDERSCORE (_): On some devices, prints as a backarrow («).

SYSTEM PROMPTS

The OK prompt: The OK prompt indicates that the most recent command to PRIMOS has
been successfully executed, and that PRIMOS is ready to accept another command from the
user. The punctuation mark following the “OK" indicates to the user whether he is
interfacing with a single-user level of PRIMOS. The prompt “OK:" indicates single-user
PRIMOS (a version of PRIMOS II); the prompt “OK,” indicates multi-user PRIMOS.

PRIMOS III and PRIMOS support type-ahead. The user need not wait for the “OK," after one
command before beginning to type the next command. However, since each character
echoes as the user types it, output from the previous command may appear on the terminal
to be jumbled with the command being typed ahead. Type ahead is limited to 192 characters.

PRIMOS II does not support type-ahead. The user must wait for “OK:"’ before beginning to
enter the next command.

The ER! prompt: The ER! prompt indicates that PRIMOS was unable to execute the most
recent command, for one reason or another, and that PRIMOS is ready to accept another
command from the user. The ER! prompt usually is preceded by one or more error messages
indicating what PRIMOS thought the trouble was.

Common errors include:

» Typographical errors

e Omitting a password

» Being in the wrong directory

e Forgetting a parameter or argument \

USING THE FILE SYSTEM

File and directory structures: A PRIMOS file is an organized collection of information
identified by a filename. The file contents may represent a source program, an object
program, a run-time memory image, a set of data, a program listing, text of an on-line
document, or anything the user can define and express in the available symbols.

Files are normally stored on the disks attached to the computer system. No detailed
knowledge of the physical location of a file is required because the user, through PRIMOS
commands, refers to files by name. On some systems, files may also be stored on magnetic
tape for backup or for archiving.

PRIMOS maintains a separate user file directory (UFD) for each user to avoid conflicts that
might arise in assignment of filenames. A master file directory (MFD) is maintained by
PRIMOS for each logical disk connected to the system. The MFD contains information about
the location of each User File Directory (UFD) on the disk. In turn, each UFD contains
information about the location and content of each file or sub-UFD in that directory.

FDR 3057 2-6 1 January, 1979

OVERVIEW OF PRIMOS 2

The types of files most often encountered are shown in Table 2-1. For a description of the
PRIMOS file system and a description of the ordering of information within files, refer to
the Reference Guide, PRIMOS Subroutines.

Pathnames: The PRIMOS file directory system is arranged as a tree. At the root are the disk
volumes (also called partitions, or logical disks). Each disk volume has a Master File
Directory (MFD) containing the names of several User File Directories (UFDs). Each UFD
may contain not only files, but subdirectories (sub-UFDs), and they may contain subdirec-
tories as well. Directories may have subdirectories to any reasonable level.

A pathname (also called a treename) is a name used to specify uniquely any particular file
or directory within PRIMOS. It consists of the names of the disk volume, the UFD, a chain
of subdirectories, and the target file or directory. For example,

<FOREST>BEECH>BRANCH5>SQUIRREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the sub-UFD
BRANCHS. The file’s name is SQUIRREL. Figure 2-1 illustrates how pathnames show paths
through a tree of directories and files.

Disk volume names, and the associated logical disk numbers, may be found with the
STATUS DISKS command, described later. A pathname can be made with the logical disk
number, instead of the disk volume name. For example, if FOREST is mounted as logical
disk 3,

<3>BEECH>BRANCHS5>SQUIRREL

specifies the same file as the previous example.

Usually each UFD name is unique throughout all the logical disks. In our example that
would mean that there would be only one UFD named BEECH in all the logical disks, 0
through 17. When that is the case, the volume or logical disk name may be omitted, and
PRIMOS will search all the logical disks, starting from 0, until the UFD is found. For
example, if there is no UFD named BEECH on disks 0, 1, or 2, then

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last form of pathname, in
which the disk specifier is omitted, is called an ordinary pathname because it is very
frequently used.

Pathnames vs filenames: Most commands accept a pathname to specify a file or a directory.
So the terms “filename” and “pathname” may be used almost interchangeably. A few
commands, however, require a filename, not a pathname. It is easy to tell a filename from
a pathname. A pathname always containsa *“ > ", while a filename or directory name never
does.

Home vs current directories: PRIMOS has the ability to remember two working directories
for each user: the “home” directory, and the “current” directory. With few exceptions, the
home and current directories are the same. All work can be accomplished while treating
them both under the single concept of ‘‘working directory’'.

When the user logs in to a UFD, that UFD becomes the working directory. The ATTACH
command changes the working directory to any other directory to which the user has access
rights. A working directory may be an MFD, UFD, or sub-UFD.

The ATTACH command has a home-key option which allows the current directory to change
while the home directory remains the same. See Reference Guide, PRIMOS Commands for
details of this operation.

1 January, 1979 2-7 FDR 3057

2 OVERVIEW OF PRIMOS

Relative pathnames: It is often more convenient to specify a file or directory pathname
relative to the home directory, rather than via a UFD. For example, when the home directory
is

BEECH >BRANCH5

the commands

OK, SLIST BEECH>BRANCHS>TWIG9>LEAF3
and

OK, SLIST *>TWIG9>LEAF3

have the same meaning. The symbol “*" as the first directory in a pathname means ““home
directory”.

~ |FTN READ/WRITE

~ |EXPAND to ASCIL

- -|SPOOLer with -

-~ |EXPAND option
ED S o

{Control ‘pa'rié"i L
SGDR$$ subroutin

FDR 3057 2-8 1 January, 1979

OVERVIEW OF PRIMOS 2

2 OVERVIEW OF PRIMOS

Current disk: Occasionally it will be necessary to specify a UFD on the disk volume you are
currently using; this is, where your home directory is. For example, when developing a new
disk volume with UFD names identical to those on another disk, it is necessary to carefully
specify which disk is to be used, each time a pathname is given. The current disk is specified
by '

<*>BEECH>BRANCHS5

for example. Do not confuse "'<*>", meaning current disk, with the asterisk alone, which
means home directory.

FDR 3057 : 2-10 1 January, 1979

USING
FORTRAN
UNDER PRIMOS

Accessing PRIMOS

INTRODUCTION

Purpose of this section

This section is a brief overview of some of the fundamental features of the PRIMOS
operating system for the FORTRAN programmer. It assumes that you are a FORTRAN
programmer who has previous experience with an interactive computer system, although
possibly not on a Prime computer. If you are not familiar with interactive computers, you
may prefer to start with the New User’s Guide to EDITOR and RUNOFF. This section also
assumes you have read the concepts and definitions in Section 1.

Using the PRIMOS Programmer’s Companion

In this section we introduce the essential PRIMOS commands so that you can begin working
on the system. We recommend that you keep a Programmer’s Companion handy as a
summary of the commands explained in this section plus other PRIMOS commands. In this
user’s guide we have selected only those PRIMOS commands we know will be of use to the
FORTRAN programmer. Depending upon your application, there are many other PRIMOS
commands that may simplify your task or increase efficiency.

Using PRIMOS

PRIMOS recognizes more than one hundred commands, some of which invoke subsystems
which themselves respond to subcommands or extensive dialogs. However, most FORTRAN
users can do 99% of their program development using about a dozen commands. This section
introduces the essential commands needed by all users. These commands allow you
to:

* Gain admittance to the computer system (LOGIN).

¢ Change the working directory (ATTACH).

* Create new directories for work organization (CREATE).

¢ Secure directories against i atrusion (PASSWD).

e Remove directories which are no longer needed (DELETE).

e Examine the location of the working directory and its contents (LISTF).

e Look at the availability and current usage of system resources—
space, users, etc. (AVAIL, STATUS, USERS).

e Create files at the terminal or enter them from tape, etc. (MAGNET, CRSER, ED.
See Section 4).

¢ Rename files (CNAME]).

* Determine file size (SIZE).

* Examine files (SLIST).

¢ Print files {SPOOL).

* Remove unneeded files (DELETE).

¢ Allow controlled access to files (PROTEC]).

* Complete a work session (LOGOUT).

1 January, 1979 3-1 FDR 3057

3 ACCESSING PRIMOS

ACCESSING THE SYSTEM

In order to access or work in the system, the user must first follow a procedure known as
‘login’. ‘Logging in’ identifies the user to the system and establishes the initial contact
between system and user (via a terminal). Once logged in, the user has access to a working
directory (work area), to files and to other system resources. The format of the LOGIN
command is:

LOGIN ufd-name [password] [-ON nodename]

ufd-name The name of your login directory.
password Must be included if the directory has a password.
-ON nodename Used for remote login across PRIMENET network.

Example:

LOGIN DOUROS NIX
DOUROS (21) LOGGED IN AT 10'33 112878

The number in parentheses is the PRIMOS-assigned user number (also called ‘job’ number).
The time is expressed in 24-hour format. The date is expressed as mmddyy (Month Day
Year). The word NIX, in this example, is the password on the login directory.

When logging into the system, typing errors, incorrect passwords, or similar errors may
cause error messages to be displayed. Most are self-explanatory. For a detailed discussion,
see the New User’s Guide to EDITOR and RUNOFF.

DIRECTORY OPERATIONS

Changing the working directory

After logging in, the user's working directory is set to the login UFD by PRIMOS. The user
can move to another directory in the PRIMOS tree structure (i.e., attach) with the ATTACH
command. The format is:

ATTACH new-directory
new-directory is the pathname of the new working directory.

Note

If any of the directories in the pathname have passwords, the
entire pathname must be enclosed in single quotes, as in:

A 'BEECH SECRET>BRANCHS'

To set the MFD of a disk as the working directory, the format is slightly different:
ATTACH ‘<volume>MFD mfd-password’

volume is either the literal volume name or the logical disk number, and mfd-password is
the password of the MFD. A password is always required for a MFD.

Recovering from errors while attaching: If an error message is returned following an
ATTACH command (for example, if a UFD is not found), the user remains attached to the
previous working directory.

FDR 3057 3-2 1 January, 1979

ACCESSING PRIMOS 3

Creating new directories

To organize tasks and work efficiently, it is often advantageous to create new sub-UFDs.
These sub-UFDs can be created within UFDs or other sub-UFDs with the CREATE
command. They can contain files and/or other sub-directories. The format is:

CREATE pathname

The pathname specifies the directory in which the sub-UFD is being created, as well as the
name of the new directory.

Example:
CREATE <1>TOPS>MIDDLE>BOTTOM

The sub-UFD BOTTOM is created in the sub-UFD MIDDLE, which in turn is found in the
UFD TOPS, which is in the MFD of disk volume 1.

Two files or sub-UFDs of the same name are not permitted in a directory. If this is
inadvertently attempted, PRIMOS will return the message: ALREADY EXISTS.

Assigning directory passwords

Directories may be secured against unauthorized users by assigning passwords with the
PASSWD command. There are two levels of passwords: owner and non-owner. If you give
the owner password in an ATTACH command, you have owner status; if you give the non-
owner password in an ATTACH command, you have non-owner status. Files can be given
different access rights for owners and non-owners with the PROTEC command (see
Controlling file access).

The PASSWD command replaces any existing password (s) on the working directory with
one or two new passwords, or assigns passwords to this directory if there are none. The
format is:

PASSWD owner-password [non-owner-password]

The owner-password is specified first; the non-owner-password, if given, follows. If a non-
owner password is not specified, the default is null; then, any password (except the owner
password) or none allows access to this directory as a non-owner.

Example:

OK, A DOUROS NIX
OK, PASSAD US THEM

The old password NIX is replaced by the owner password US, and the non-owner password
THEM.

Deleting directories

When directories are no longer needed they may be removed from the system to provide
more room for other uses. The DELETE command can also delete empty subdirectories from
a given directory. The format is :

DELETE pathname

Sub-UFDs that are not empty, i.e., that still contain files or subdirectories, cannot be deleted
with this command. All entries in the directory must be deleted first. If an attempt is made
to delete directories containing files, PRIMOS prints the message:

DIRECTORY NOT EMPTY

1 January, 1979 3-3 FDR 3057

3 ACCESSING PRIMOS

Examining contents of a directory

After logging in or attaching to a directory, the user can examine the contents of this
directory with the LISTF command which generates a list of the files and sub-directories in
the current directory. The format is:

LISTF

For example, the working directory is called LAURA. The following list will be generated
when LISTF is entered at the terminal:

OK, LISTF

UFD=LAURA 6 OWNER

SQUERY BOILER EX LETTER QUERY OLISTF BASICPROGS
OUTLINE $OUTLINE MQL $MQL SLETTER MQL.LETTER
EXAMPLES FUTIL.10 SFUTIL.10

OK,

The number following the UFD-name is the logical device number, in this case, 6. The words
OWNER or NONOWN follow this number, indicating the user status in this directory. (See
Securing Directories).

If no files are contained in a directory, .NULL. is printed instead of a list of files.

SYSTEM INFORMATION

Table 3-1 summarizes useful information you may need about the system and how to obtain
it.

FILE OPERATIONS

Creating and modifying files

Text files may be created and modified using the text editor (ED). Files may be transferred
from other systems using magnetic tape (MAGNET command), paper tape (ED command),
or punched cards (CRSER command). These commands are described in Section 4.

Changing file names

Itis often convenient or necessary to change the name of a file or a directory. This is done
with the CNAME command. The format is:

CNAME old-name new-name

old-name is the pathname of the file to be renamed, and new-name is the new filename.

Example:

CN TOOLS>FORTRAN>TEST OLDTEST

The file named TEST in the sub-UFD FORTRAN in the UFD TOOLS is changed to
OLDTEST. Since no disk was specified all MFDs (starting with logical disk 0) are searched
for the UFD TOOLS.

FDR 3057 3-4 1 January, 1979

ACCESSING PRIMOS 3

3 ACCESSING PRIMOS

Determining file size

The size (in decimal records) of a file is obtained with the SIZE command. This command
returns the number of records in the file specified by the given pathname. The number of
records in a file is defined as the total number of data words divided by 448. However, a
zero-word length file always contains one record. The format is:

SIZE pathname

Example:

OK, SIZE GLOSSARY
GO
14 RECORDS IN FILE

OK,

Examining file contents

Contents of a program or any text file can be examined at the terminal with the SLIST
command. The format is:

SLIST pathname

The file specified by the given pathname is displayed at the terminal. It is possible to
suspend the terminal display as it is printing. This procedure is explained in Section 10
(Terminal operations).

Obtaining copies of files

Printed copies of files from a line printer are obtained with the SPOOL command. It has
several options, some of which will not apply to all systems, as systems may be configured
differently. The format is:

SPOOL pathname

PRIMOS makes a copy of pathname in the Spool Queue List for the line printer, and displays
the message:

YOUR SPOOL FILE IS PRTxxx (length)

xxx is a 3-digit number which identifies the file in the Spool Queue List. The reason for a list,
rather than just having each file spooled out as the request comes, is that some requests are
very long—hundreds of pages. PRIMOS spools out the shorter files as soon as possible,
rather than make the user wait while the long files are printed. The length (SHORT or
LONG) which follows the SPOOL message is the category to which the file has been
assigned. It is possible to check the status of a SPOOL request by giving the command:

SPOOL -LIST

FDR 3057 3-6 1 January, 1979

ACCESSING PRIMOS 3

Example:

OK, SPOOL $S52.3057
GO
YOUR SPOOL FILE IS PRT@@6 (LONG) REV 15.2%*

OK, SPOOL -LIST

GO

USER FILE DATE/TIME OPTS SIZE NAME FORM DEFER
SOPHIE PRTA05 10/25 14:26 S 5 SUNFUNDED W.WIBA
TEKMAN PRT@@6 10/25 15:46 L 22 $52.3@57

OK,

To cancel a spool request, the command format is:
SPOOL -CANCEL PRTxxx
xxx is the number of your spool file.

For example:

OK, SPOOL -CANCEL PRT913
GO
PRT#13 CANCELLED.

OK,

Deferring printing: The -DEFER option tells the Spooler not to begin printing the indicated
file until the system time matches the time specified with DEFER. This also permits you to
enter SPOOL requests at your convenience, rather than waiting for the appropriate hour.

Specify the DEFER option by:
SPOOL filename -DEFER ‘time’

The value for ‘time’ can be expressed either in 24-hour format (00:00 = Midnight) or in 12-
hour format followed by AM or PM (12:00 AM = Midnight). The format for ‘time’ is
‘HH:MM', where HH is hours, ‘“:” is any character, and MM is minutes. If you specify
-DEFER but omit time you will get the prompt:

ENTER DEFERRED PRINT TIME:

If ‘time’ is not in the correct format, you will get the above prompt again, plus this
informational message:

CORRECT FORMAT IS HH:MM AM/PM.

Printing on special forms: Line printers traditionally use one of two types of paper — “‘wide"
listing paper, on which most program listings appear, and 8-z x 11-inch white paper, which
is standard for memos and documentation. Computer rooms often stock a variety of special
paper forms for special purposes, such as 5-copy sets, pre-printed forms (checks orders,
invoices), or odd sizes or colors of paper.

1 January, 1979 3-7 FDR 3057

3 ACCESSING PRIMOS

Request a specific form by:
SPOOL filename -FORM form-name

form-name is any six-character (or less) combination of letters. A list of available form
names should be obtained from the System Administrator.

Deleting files

When files or programs are no longer needed they may be removed from the system to
provide more room for other uses. The DELETE command deletes files from the working
directory. The format is:

DELETE pathname

Controlling file access

Assigning passwords to directories allows users working in a directory to be classified as
owners or non-owners, depending upon which password they use with the ATTACH
command. Controlled access can be established for any file using the PROTEC command.
This command sets the protection keys for users with owner and non-owner status in the
directory (see Assigning directory passwords above). The format is:

PROTEC pathname [owner-rights] [non-owner-rightc]

pathname The name of the file to be protected.
owner-rights A key specifying owner's access rights to file (original
value = 7).
non-owner- A key specifying the non-owner’s access rights (original
rights value = 0).
The values and meanings of the access keys are:
key Rights
0 No access of any kind allowed
1 Read only
2 Write only
3 Read and Write
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write
7 All access

Note

The default protection keys associated with any newly
created file or UFD are: 7 0. The owner is given ALL rights
and the non-owner is given none.

Example:
PROTEC <OLD>MYUFD>SECRET 7 1

In this example, protection rights are set on the file SECRET in the UFD MYUFD so that all
rights are given to the owner and only read rights are given to the non-owner.

COMPLETING A WORK SESSION
When finished with a session at the terminal, give the LOGOUT command. The format is:
LOGOUT

FDR 3057 3-8 1 January, 1979

ACCESSING PRIMOS 3

PRIMOS acknowledges the command with the following message:
UFD-name (user-number) LOGGED OUT AT (time) (date)
TIME USED = terminal-time CPU-time I/0-time

user-number The number assigned at LOGIN.

terminal-time The amount of elapsed clock time between LOGIN and
LOGOUT in hours and minutes.

CPU-time Central Processing Unit time consumed in minutes and seconds.

1/0-time The amount of input/output time used in minutes and seconds.

It is a good practice to log out after every session. This closes all files and releases the
PRIMOS process to another user. However, if you forget to log out, there is no serious harm
done. The system will automatically log out an unused terminal after a time delay. This
delay is set by the System Administrator (the default is 1000 minutes but most System
Administrators will lower this value).

1 January, 1979 3-9 FDR 3057

Entering and
manipulating
sSource programs

ENTRY FROM OTHER MEDIA

Existing source programs resident on punched cards, magnetic tape, or punched paper tape
can easily be read into disk files using PRIMOS-level utilities. In addition, the punched card
and magnetic tape transfer utilities will translate from BCD or EBCDIC representation into
ASCII representation saving considerable time and effort.

Subroutines and other installation-dependent operations may be altered to conform to
PRIMOS by using Editor (described later in this section).

The general order of operations for input from a peripheral device is:
1. Obtain exclusive use of the device (Assigning).
2. Transfer programs with appropriate utility.
3. Relinquish exclusive use of the device (Unassigning).

Assigning a device
Assigning a device gives the user exclusive control over that peripheral device. The
PRIMOS-level ASSIGN command is given from the terminal:

ASSIGN device [-WAIT]

device is a mnemonic for the appropriate peripheral:
CR Card Reader
MTn Magnetic Tape Unit n (0-7)
PTR Paper Tape Reader

_WAIT is an optional parameter. If included, it queues the ASSIGN command if the device
is already in use. The assignment request remains in the queue until the device becomes
available or the user types the BREAK key at the terminal; both occurrences return the user
to PRIMOS. If the requested device is not available and the ~-WAIT parameter has not been
included, the error message:

DEVICE IN USE

will be printed at the terminal

After all I/O operations are completed, exclusive use is relinquished by the command:
UNASSIGN device

device is the same mnemonic used in the ASSIGN command.

1 January, 1979 4-1 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

Reading punched cards
Assign use of the parallel interface card reader by:
AS CR -WAIT

To read cards from the card reader, load the card deck into the device and enter the
command:

CRMPC deck-image

deck-image The pathname of the file into which the card images are to
be loaded.
Source deck header control cards are set up as follows:
Source deck Columns 1 and 2 of
representation deck header card
BCD $6
EBCDIC $9
ASCII no header card

Reading continues until a card with $E in columns 1 and 2 is encountered (end of deck);
control returns to PRIMOS and the file is closed. If the cards are exhausted (or the reader
is halted by the user), control returns to PRIMOS but the file is not closed. If more cards are
to be read into the file, the reader should be reloaded: reading is resumed by the command
START at the terminal.

The command:
CLOSE ALL

or
CLOSE deck-image
will close the file.

Example of card reading session:

OK, AS CR -WAIT

OK, CRMPC old-program-1
OK, UN CR

OK,

If a serial interface card reader is used, the process is similar, with slightly different reader
commands.

OK, AS CARIR -WAIT
OK, CRSER old-program-2
OK, UN CARDR

OK,

CARDR may be abbreviated to CAR.

FDR 3057 4-2 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

Reading magnetic tape
Assign use of the magnetic tape drive.by:
AS MTx -WAIT
x is the tape drive unit number: 0-7.
Mount the tape on the selected drive unit and read the tape with PRIMOS’ MAGNET utility:

OK, MAGNET
GO

MAGNET 15.2 15-JULY-78
OPTION: READ

MTU# = unit-number [/tracks]

unit-number The number of the magnetic tape drive unit which was pre-
viously assigned.

tracks Either 7 or 9; if this parameter is omitted, 9-track tape is
assumed.

MAGNET then asks a series of questions about the tape format:
MTFILE# = tape-file-number

tape-file-number The file number on the tape. A positive integer causes the tape
to be rewound and then positioned to the file number; a 0 causes
no repositioning of the tape.

LOGICAL RECORD SIZE =80
This is the number of bytes/line image; normally this is 80 for a FORTRAN source program.
BLOCKING FACTOR = blocking-factor
blocking-factor is the number of logical records per tape record.
ASCII, BCD, BINARY, OR EBCDIC? data-representation

data-representation action

ASCII Transfer.

BCD Translate to ASCII from 7-track tape.
BINARY Transfer verbatim.

EBCDIC Translate to ASCIL

FULL OR PARTIAL RECORD TRANSLATION? answer

answer is FULL or PARTIAL. The question is asked only for BCD or EBCDIC representa-
tions. Partial translation allows specified bytes in the record to be transferred to disk
without translation to ASCII. The partial option is useful when transferring data files, but
almost all source programs will be transferred with the full option.

OUTPUT FILENAME: filename

filename The name of the file in the UFD into which the magnetic tape is
to read. If the filename already exists in the UFD, the question:

OK TO DELETE OLD filename? answer

will be asked. A NO will cause the request for an output filename to be repeated. A YES will
cause the transfer to begin; upon completion, the following message will be printed out:

1 January, 1979 4-3 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

DONE, tape-records RECORDS READ, disk-records DISK RECORDS OUTPUT
Use of the tape drive unit should then be relinquished by UN MTx.
Reading punched paper tape

First load tape into reader; then assign tape reader. Source programs punched on paper tape
in ASCII representation can be read into a disk file with the Editor utility.

OK, AS PTR -WAIT Assign tape reader

OK, ED Invoke Editor

GO

INPUT

(CR) Switch to EDIT mode
EDIT

INPUT (PTR) Input from tape reader
EDIT Tape is being read

FILE filename File input under filename
OK, UN PTR Unassign tape reader

ENTERING AND MODIFYING PROGRAMS—THE EDITOR

Programs are normally entered into the computer using Prime’s Text Editor (ED). This editor
is a line-oriented text editor whose line pointer is always located at the last line processed
(whether the processing action is printing, locating, moving pointer, etc). The Editor
operates in two modes, INPUT and EDIT.

Using the editor
When creating a new file, the Editor is invoked by
ED

which places the Editor in the INPUT mode. When modifying an existing filename, the
Editor is invoked by

ED filename
which places the Editor in the EDIT mode.

A RETURN with no preceding characters on that line switches the Editor from one mode to
another.,

Input mode

The INPUT mode is used when entering text information into a file (e.g., creating a
program). The word INPUT is displayed at the user's terminal to indicate the Editor has
entered that mode. The RETURN key terminates the current line and prepares the Editor to
receive a new line. Tabulation is done with the backslash (\) character. Each backslash
represents the first, second, etc., tab setting; the default tabs are at columns 6, 15, and 30.
These settings may be overridden and up to 8 tab settings may be specified by the user with
the TABSET command (described later). A RETURN with no text preceding it puts the
Editor into EDIT mode.

Edit mode

The EDIT mode is used when the contents of the file are to be modified. More than 50
commands are available, although users will find that a small subset of these will suffice for
most purposes. The commands are listed and described later in this section.

FDR 3057 4-4 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

In EDIT mode, the Editor maintains an internal line pointer at the current line (the last line
processed). Commands such as TOP, BOTTOM, FIND, and LOCATE, move this pointer.
WHERE prints out the current line number; POINT moves the pointer to a specified line
number. The MODE NUMBER command causes the line number to be printed out
whenever a line of text is printed. All commands for location and modification begin
processing with the current line.

A RETURN without any preceding characters puts the Editor into the INPUT mode.
Special characters

In either mode, a single character can be erased with the erase character (defaultis). For
each " typed, a character is erased (from right to left). The entire current line may be
deleted by typing the kill character (default is ?). A line followed by a ? is null, and a
RETURN at that point will switch the Editor into the other mode.

In input mode, the semicolon (;) is equivalent to a CR (ends a line of input). In edit mode,
semicolons in a character string are treated as a printing character, otherwise, semicolons
separate multiple commands entered on the same line.

Saving files
Orderly termination of an Editor session is done from EDIT mode. The command:
FILE filename

writes the current version of the edited file to the disk under the name filename. The
specified file will be created if it did not previously exist or overwritten if it does exist. If
an existing file is being modified, the command

FILE

writes the edited version to the disk with the old filename. After execution of the filing
command, control is returned to PRIMOS.

Useful techniques

The following will aid the user in adapting to Prime’s Editor.

Tab settings: When entering source code, much time can be saved using the TABSET
command. In INPUT mode, each \ character is interpreted as one tab setting; the default
values are columns 6, 15, and 30. Tabs may be set to whatever values each programmer finds
useful. Setting a tab near column 45 makes entry of in-line comments simple; the use of such
comments in programs is strongly advised.

Moving lines of code: Any number of lines can be moved from one location to another using
the DUNLOAD command. DUNLOAD deletes these lines as it writes them into an auxiliary
file. A LOAD command loads the new file at the desired point. Any number of lines can be
copied from one location in a program to another using the UNLOAD command. UNLOAD
does not delete these lines as it writes them into an auxiliary file. A LOAD command loads
the copy from the new file at the desired point.

Overlaying comments after code is written: Comments may be easily added to an existing
source program with the OVERLAY command in conjunction with the TABSET command.

Finding a line by statement number: The FIND command may be used to locate a statement
number in a FORTRAN program.

Modifying a line without changing character positions: The MODIFY command is used
when a line must be modified but the absolute column alignment must remain the same.

Sample editing session
See the list following this example for an explanation of the commands.

1 January, 1979 4-5 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

OK, ED
GO
INPUT

EDIT
TABSET 7 45

INPUT

C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR

C THE TABS HAVE BEEN SET TO COLWMNS 7 and 45

C

\PRINT 1, 'THIS IS A TEX"ST'\/* NOTE USE OF ERASE CHARACTER
1 ?C THIS LINE HAS BEEN DELETED

EDIT
TOP
PRINT 20
.NULL.
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C
PRINT 1, 'THIS IS A TEST' /* NOTE USE OF ERASE CHARACTER
C THIS LINE HAS BEEN DELETED
BOTTOM
FILE TEST99

OK, ED TEST99

GO

EDIT

TABSET 7 45

FIND(8) LINE

C THIS LINE HAS BEEN DELETED

DELETE

INSERT \CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMOS
INSERT \END

INPUT

P"TOP

PRINT 20

.NULL.

C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45

Cc
PRINT 1, 'THIS IS A TEST' /* NOTE USE OF ERASE CHARACTER
CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMOS
END

BOTTOM

FILE

OK,

FDR 3057 4-6 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

Editor command summary

The following is an alphabetic list of each Editor command and its function. Acceptable
command abbreviations are underlined. Especially useful commands are indicated with a
bullet (*). For a detailed description of all commands, see the Editor Reference Section of
The New User's Guide to EDITOR and RUNOFF (FDR3104).

Note

The string parameter in a command is any series of ASCII
characters including leading, trailing, or embedded blanks.

*APPEND string

Appends string to the end of the current line.
*BOTTOM

Moves the pointer beyond the last line of the file.
BRIEF

Speeds editing by suppressing the (default) verification responses to certain Editor com-
mands.

*CHANGE/string-1/string-2/[G] [n]

Replaces string-1 with string-2 for n lines. If G is omitted, only the first occurrence of string-1
on each line is changed; if G is present, all occurrences on n lines are changed.

*DELETE [n]
Deletes n lines, including the current line (default n = 1).
DELETE TO string
Deletes all lines up to but not including line containing string.
*DUNLOAD filename [n]
Deletes n lines from current file and writes them into filename. (Default n = 1.)
DUNLOAD filename TO string
Same as DELETE. . .TO, but writes deleted lines into filename.
ERASE character

Sets erase character to character.
*FILE [filename]

Writes the contents of the current file into filename and QUITs to PRIMOS.
FIND string

Moves the pointer down to the first line beginning with string.
*FIND(n) string

Moves the pointer down to first line with string beginning in column n.
GMODIFY

Allows the user to enter a string of subcommands which modify characters within a line.

1 January, 1979 4-7 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

% (ASR)}
INPUT! (PTR)
(TTY)

Reads text from the specified input device: ASR (Teletype paper-tape reader), PTR (high-
speed paper tape reader) or TTY (terminal). Default is TTY.

*INSERT string
Inserts string after current line.
KILL character
Sets kill character to character.

LINESZ [n]
Changes maximum line length.
*LOAD filename

Loads filename into text following the current line.

*LOCATE string

Moves pointer forward to the first line containing string, which may contain leading and
trailing blanks.

MODE COLUMN
Displays column numbers whenever INPUT mode is entered.

PRINT
MODE COUNT start increment width { BLANK
SUPPRESS

Turns on the automatic incremented counter.
MODE NCOLUMN

Turns off the column display (default).
MODE NCOUNT

Suspends counter incrementing (default).
MODE NUMBER
Displays line numbers in front of printed line.
MODE NNUMBER
Turns off the line number display (default).
MODE PRALL
Prints lower case characters if device has that capability.

MODE PRUPPER

Prints all characters as upper case. Precedes lower case characters withan “L and precedes
upper case characters with an "U if the device is upper case only.

MODE PROMPT
Prints prompt characters for INPUT and EDIT modes.

FDR 3057 4-8 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

MODE NPROMPT
Stops printing of INPUT and EDIT prompt characters (default).
MODIFY/string-2/string-1/[G] [n]

Superimposes string-1 onto string-2 for n lines. If G is omitted, only the first occurrence of
string-1 on each line is modified; otherwise all occurrences of string-1 are modified.

MOVE buffer-1 { buffer-z}
/string/

Move string or contents of buffer-2 into buffer-1.
*NEXT [n]
Moves the pointer n lines forward or backward (default n = 1).
NFIND string
Moves pointer down to first line NOT beginning with string.
NFIND(n) string
Moves pointer down to first line in which string does not start in column n.
*OVERLAY string

Superimposes string on current line. Use tabs to start in middle of line. Use ! to delete
existing characters.

PAUSE
Returns to operating system without changing the Editor state.

POINT line-number
Relocates the pointer to line-number.
*PRINT [n]
Prints the current line or n lines beginning with the current line.

PSYMBOL

Prints a list of current symbol characters and their function.

PTABSET tab-1. .. tab-8

Provides for a setup of tabs on devices that have physical tab stops.

(ASR)
PUNCH (PTP) [n]
Punches n lines of high- or low-speed paper-tape punch.
QUIT

Returns control to PRIMOS without filing text.
RETYPE string

The current line is replaced by string.

SYMBOL name character

Changes a symbol name to character. Current default values are:

1 January, 1979 4-9 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

Name Default Characters
KILL ?
ERASE *
WILD !
BLANK 4
TAB \
ESCAPE)
SEMICO ;
CPROMPT $
DPROMPT &

TABSET tab-1 ... tab-8
Sets up to eight logical tab stops to be invoked by the tab symbol (\).

*TOP

Moves the pointer one line before the first line of text.

*UNLOAD filename [n]

Copies n lines into filename.

UNLOAD filename TO string

Unloads lines from current file into filename until string is found.

*VERIFY

Displays each line after completion of certain commands.
(Default).

WHERE

Prints the current line number.

XEQ buffer
Executes the contents of buffer. See MOVE.

*[n]

Repeat symbol. Causes preceding command to be repeated n times.

LISTING PROGRAMS

Terminal listing

Source programs may be listed at the terminal, by using the SLIST command described in

Section 3.

Line printer listing

Use the SPOOL command (Section 3) to obtain a copy of a source file on the system line

printer. Additional options of use to the FORTRAN programmer are:

-FTN Causes the FORTRAN output conventions to control the line
printer when printing a file. These control characters are
discussed in Section 16 under Formatted Printer Control.

-LNUM Prefixes a line number to the left of the file contents. These

numbers are enclosed in parentheses.
The -FTN and -LNUM options are incompatible.

FDR 3057 4-10

1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

RENAMING AND DELETING PROGRAMS

Renaming

Programs may be renamed with the PRIMOS command CNAME (Section 3). You must have
owner status in the UFD in order to use this command.

Deleting

Programs may be deleted with the PRIMOS command DELETE (Section 3). You must have
owner status in order to use this command.

FDR 3057 4-11 1 January, 1979

ompiling

INTRODUCTION

Prime’s FORTRAN Compiler, a one-pass compiler, produces highly-optimized code and is
supported by extensive function and subroutine libraries to do file-handling, and both
mathematical and logical operations.

Source programs must meet the requirements of Prime FORTRAN as specified in this
manual.

The compiler generates object code for either the R-identity or V-identity. R-identity code is
loaded with Prime’s Linking Loader (LOAD), described in Section 6; V-identity code is
loaded with Prime’'s segmented-addressing utility (SEG), described in Section 7. Segmented-
addressing code can be executed on Prime 350 (or higher) computers.

USING THE COMPILER
The FORTRAN Compiler is invoked by the FTN command to PRIMOS:

FTN pathname [-parameter-1] [-parameter-2] . .. [-parameter-n]

or
FTN [-parameter-1] -1 pathname . . . [-parameter-n]
pathname The pathname of the FORTRAN source program file.
parameter-1, etc. The mnemonics for the options controlling compiler func-
tions such as I/0 device specification, listings, and others.
All mnemonic parameters must be preceded by a dash “-". The name of the source program

file must be specified either as the first expression following FTN or as -I pathname
(alternatively, -S pathname) but not both.
Examples:

FTN TEST1 -XREFL -64V -LISTING SPOOL

and

FIN -LISTING SPOOL -XREFL -INPUT TEST1 -64V

are equivalent.

The meanings of the parameters will be discussed later in this section.

1 January, 1979 5-1 FDR 3057

5 COMPILING

END OF COMPILATION MESSAGE

After the compiler has completed a pass of the specified input file, and generated object
code and listing output to the devices specified by the parameter list, it prints one End of
Compilation message at the user’s terminal after each END statement encountered.

The format of the compiler message is:
xxxx ERRORS [<yyyyyy>FTN-REVzz.z]

XXXX The number of compilation errors; 0000 indicates a successful
compilation.
YYYYYY Program module identification:

.MAIN. for a main program,
.DATA. for a BLOCK DATA subprogram,

the program entry name (up to 6 characters) for a subroutine or
function.

zZ.2Z The PRIMOS revision number.

Example:

P00 ERRORS [<.MAIN.>FTN-REV16.0]

indicates the successful compilation of a main FORTRAN program by the REV.16 Compiler.

After compilation of all routines in the source file, control returns to PRIMOS.

COMPILE ERROR MESSAGES
The general format of the error message is:
**** LINE nnnn [context] name - message

nnnn The source line number that the statement in error started on.
All lines read from an insert file have the same source line
number as the line with the $INSERT command on it.

If an error is detected in an EQUIVALENCE statement, the word
‘EQUIVALENCE' is substituted for ‘LINE nnnn’.

context The last 1-10 nonblank characters processed by the compiler
before detecting the error. This field can be used to isolate the
position in the statement that error occurs.

name If the error is directly related to the misuse of a specific name, that
name will be included in the error message. Otherwise, the field
will be omitted.

message A message up to 20 characters in length describing the error. A list
of all messages is given in Appendix A.

Example:

%%% LINE 0010 [WRUT] UNRECOGNIZED STMT

Note that the name field has been omitted.

FDR 3057 5-2 1 January, 1979

COMPILING 5

COMPILER PARAMETERS

Normally, the source file will be stored in the disk file system, the binary (object) file will
be created on the disk, and the listing file (if any) will be created either on the disk, at the
user terminal, or spooled directly to the line printer. In these cases, all instructions to the
compiler are given by mnemonics in the FTN command line.

The A- and B-register settings are the instructions to the FORTRAN compiler (set at
compilation time) telling it which functions and modes are to be enabled, and specifying the
I/0 files. Using the mnemonic parameters establishes the values of these registers for the
user automatically. (Most users will have no need to set the octal values in these registers
explicitly.)

It is possible for a user to employ other peripheral devices (paper tape punch/reader, card
punch/reader, magnetic tape) for making source, listing, or binary files. It would generally
be preferable to bring the source program onto the disk, compile using the parameter
mnemonics, and then transfer the listing and/or binary files to the desired device using
PRIMOS commands. If for some reason this is not possible, the user may explicitly set the
A- and B-register values to allow direct access to and from these devices. The previous
method of specifying compiler options (by setting A-and B-register values explicitly) is still
valid. This means existing command files which set the A- and B- registers need not be
changed. (See Section 17).

Compiler functions
The compiler functions enabled by the mnemonic parameters may be considered to fall into
four groups (Table 5-1).

e Specify Input/Output Devices

» Enable Listings/Cross References

¢ Memory Usage

e Operations
The defaults listed in this section are those supplied by Prime. The System Administrator
may change these at any particular installation. The programmer should check with the
System Administrator to determine if defaults have been changed (and, if so, which
parameters are the new defaults).

Specify input/output devices

These parameters allow the user to inform the compiler of the input source filename and to
specify the listing and binary (object) files.

-INPUT pathname Define input file/device. (alternatively -SOURCE)
(example: -I TEST or -S TEST).

-1 pathname The source program filename is pathname.

-BINARY To override default, define binary (object)
file/device.

-B pathname The binary file will be created with the pathname
specified. (example -B BTEST).

-B NO No binary file will be created. This might be chosen if

only the listing file were desired at earlier stages of
program development.

-B YES The binary file is created with the default name B__
filename, where filename is the name of the source
program file in the UFD in which the source program
file resides. The binary file, however, is created in
the UFD to which the user is attached when invoking
the compiler.

1 January, 1979 5-3 FDR 3057

5 COMPILING

If the BINARY narameter ic nnt inecludad in tha

COMPILING 5

-L YES The listing file is created with the default name L__
filename, where filename is the name of the source
program file in the UFD in which the source program
file resides. The listing file, however, is created in the
UFD to which the user is attached when invoking the

compiler.
-L TTY The listing is printed at the user terminal.
-L SPOOL The listing file is spooled directly to the line printer.

If this parameter is not included in the command line parameter list, it is equivalent to -L
NO.

Enable listings/cross references

These parameters enable or suppress program listings, error listings, and cross-reference
listings (concordances). In all cases except ERRTTY (defined below) the enabling has no
effect unless an output device or file is specified by the -L parameter.

The program-, error-, and cross-reference listings discussed below are generated for the
following FORTRAN program example, POOH:

OK, SLIST POOH

GO
310 X=48
B=I*5
C=5-1
I=3
20 GO TO (109,319,320), I
320 A=B + C
I=1
GO TO 20
100 Y=A*X

WRUTE (1,110) X
11¢ FROMAT (I5)

CALL EXIT

END

In all the cases that follow, the usual default error messages are suppressed by including
NOERRTTY in the parameter list to avoid duplication since the listing device is the user
terminal.

Three errors will be found in this program:

1. The unrecognized statement WRUTE (1,110) X, where WRITE has been
misspelled.

2. The unrecognized statement 110 FROMAT (I5), where R and O have
been interchanged.

3. Statement 110 has an error in it and consequently there is no label 110.
This will generate an undefined statement number error.

ERRTTY/NOERRTTY: ERRTTY, which is the default, prints error messages at the user’s
terminal. This feature may be suppressed by including NOERRTTY in the parameter list.

In these examples, the error total is printed twice: as the last statement of the listing, and in
the compiler message to the user, which is always printed at the user’s terminal after
compilation.

1 January, 1979 5-5 FDR 3057

5 COMPILING

The first line of the program is printed at the top. The system printing routine does this for
all files assuming that the first line of a file is to be treated as a header.

LIST/ERRLIST/EXPLIST: These are mutually exclusive parameters; each creates a type of
listing in the listing file/device. These parameters override the program statements LIST,
FULL LIST, and NO LIST.

ERRLIST prints only the error messages on the listing device/file.

OK, FIN POOH -L TTY -NOERRTTY -ERRLIST
GO
310 X=48
**x%* LINE 0010 [WRUT] UNRECOGNIZED STMT
**x%x* LINE ¢@11 [FROM] UNRECOGNIZED STMT
**%* LINE 0011 [END] 11¢ - UNDEFINED STMT NO.
@003 ERRORS [<.MAIN.>FTN-REV16.0]
@003 ERRORS [<.MAIN.>FIN-REV16.0]

LIST prints the source program with line numbers, and the error messages. This is the
default condition (if a listing file/device is specified).

OK, FIN POOH -L TTY -NCERRTTY -LIST

GO

310 X=48

(0001) 310 X=48
(6002) B=I*5
(9003) C=5-1
(0004) I=3

(09@5) 286 GO TO (1¢@,310,320),I
(0006) 320 A=B + C

(0007) I=1

(P0028) GO TO 20

(9009) 100 Y=A*X

(99109) WRUTE (1,1198) X

**%% INE 9218 [WRUT] UNRECOGNIZED STMT
(0611) 119 FROMAT (I5)

**%% [INE 9911 [FROM] UNRECOGNIZED STMT
(8012) CALL EXIT

(0913) END

**%* LINE @011 [END] 11¢ - UNDEFINED STMT NO.
@073 ERRORS [<.MAIN.>FTN-REV16.0]

@003 ERRORS [<.MAIN.>FTN-REV16.0]

EXPLIST prints the full listing: the source program, with line numbers, the Prime Macro
Assembler (PMA) code generated by the FORTRAN statements and the error messages.

FDR 3057 5-6 1 January, 1979

COMPILING 5

OK, FTN POOH -L TTY -NOERRTTY -EXPLIST

Go

319 x=48

(6001) 310 X=48
000000: EIM
000001: JMP 000000
000001: LINK 000001

(8002) B=I*5

(0003) C=5-1

(0004) 1=3

(6005) 20 GO TO (100,316,320), I
0@P00l: FLD =24576
000003: FST X
000005: LDA I
000006: MPY =5
000007: PIM
00001@: JST CS12
00@011: FST B
000013: [DA =
000@l4: SUB I
000015: JST C$12
000016: FST C
000020: DA =
000821: STA I

(0006) 320 A = B+C
000022: LDA I
000023: JST FSCG
000024: OCT 000004
000025: DAC 100
000026: DAC 310
00A027: DAC 320
000030: LINK 320

(0007) 1=1

(0008) GO TO 20

(0009) 100 Y = A*X
000@30: FLD C
000032: FAD B
000034: FST A
000036: LT
000937: STA I
000040: JMP 20
00PP4l: LINK _100

(@010) WRUTE (1,110) X

*#%#% LINE 0918 [WRUT] UNRECOGNIZED STMT

(#011) 118 FROMAT (I5)

#%%* LINE @011 [FROM] UNRECOGNIZED STMT

(9012) CALL EXIT

(9013) END
@00041: JST EXIT
000042: LINK A
A00A42: OCT 000000
900043: OCT 000000
000044: LINK B
000044: OCT 000000
6EO245: OCT BP00AD
70@046: LINK C
600046: OCT 000000
000047: OCT @000A0
000056: LINK I
000050: OCT 000000
000051: LINK X
00@051: OCT 000000
000052: OCT P00NA0
000053: LINK =3
000053: OCT A00P03
000054: LINK =5
800054: OCT 000005
000055: LINK =24576
000055: OCT @60000
000056: OCT 000206
090041: ©DAC 100

1 January, 1979

5-7

FDR 3057

B COMPILING

*x** [INE @011 [END] ~_11@0 - UNDEFINED STMT NO.
000022: DAC 20
0000@l: DAC 310
@0003¢: DAC 320

@003 ERRORS [<.MAIN.>FIN-REV15.1]

@003 ERRORS [<.MAIN.>FTN-REV1S.1]

NOXREF/XREFL/XREFS: NOXREF is the default. XREFS and XREFL generate con-
cordances (cross-references); they are mutually exclusive in the parameter list. XREFS
appends a partial concordance to the end of the listing in the listing file/device; XREFL
appends a complete concordance. Concordances are cross-reference tables between pro-
gram symbols, their line numbers and storage locations in memory. In the partial con-
cordance, symbols referenced only in specification statements are not included. This is
useful if there are COMMON blocks with many variables, of which only a few are used in
the particular program unit being compiled. The default condition, which is no concordance,
can be obtained by not specifying any cross-reference parameter or by including NOXREF
in the parameter list.

An example of the concordance is:

OK, FIN POOH -L TTY -NOERRTTY -XREFS

GO

316 X=48

(0001) 310 X=48

(8002) B=I*5

(0003) C=5-1

(0004) I=3

(6005) 20 GO TO (1¢9@,310,328), I
(6006) 320 A = B+C

(2007) 1=1

(6008) GO TO 20

(0009) 102 Y = A*X

(0010) WRUTE (1,110) X

**** LINE 0019 [WRUT] UNRECOGNIZED STMT

(6@11) 119 FROMAT (I5)

***%* LINE 0011 [FROM] UNRECOGNIZED STMT

(9012) CALL EXIT

(0013) END

****x LINE @011 [END] 119 - UNDEFINED STMT NO.

A R 000042 QOD6M 0009
B R 000044 @OO2M BO06

c R 000046 0003M 0006

EXIT R EXTERNAL 000000 0012

1 I 000050 0002 0003 0004M 0005 0OO7M
X R 060051 0081M @009

Y R 000000 00O

_loe 000041 0005 @OEID

110 000000 0011

20 009022 000D 0008

310 000001 001D 0005

320 000930 0005 0PO6D

9003 ERRORS [<.MAIN.>FIN-REV15.1]
#0603 ERRORS [<.MAIN.>FIN-REV1S.1]

FDR 3057 5-8 1 January, 1979

COMPILING D

The first column is the symbol, the second is the data mode (R for real, I for integer, etc.).
The first numerical column is the storage address, the following numbers are line numbers
of the statements in which the symbols appear. If a symbol is modified (appears on the left
hand side of the = sign) the letter M is suffixed. The letter D suffix for statement label line
numbers identifies the line number at which that statement label is defined. A complete list
of data mode codes and line number suffixes appears in Table 5-2.

NOTRACE/TRACE: NOTRACE is the default. The TRACE mnemonic produces a trace for
each variable in the program. This parameter takes precedence over any TRACE statement
within the source program.

At object program run time (see Section 8), any trace coding inserted by the compiler causes
a line to be typed consisting of a variable name, an array name, or a statement number,
followed by an equals sign, followed by the current decimal value assigned to that name.
The decimal value is typed in INTEGER, FLOATING POINT, or COMPLEX format.

Example: A FORTRAN program PRIME has been written to print a list of prime numbers
between 2 and 50. The program will be compiled with the TRACE parameter (the default
binary file name B__PRIME is used). After the program has been successfully compiled it will
be loaded and executed using the Prime Linking Loader. (See Section 5 for an explanation
of this.) Sample lines of TRACE information as typed at object run-time are shown.

OK, FIN PRIME -TRACE

@

2800 ERRRS [<.MAIN,>FTN-REV1S. 1]
OK, LOAD

(<)

$ LO B_PRIME

$ LI

LOAD COMPLETE

$ SA *PRIME

$ EX

FOLLOWING IS A LIST OF PRIME NUMBERS FROM 2 TO 56

NuvwN

1

K= 3
)
13
“)
K= 3
“)
K= 4
2)
17
)
K= 4
(2)
19
(4)
K= 4
(4)
K= a
(2)
23
(4)
K= 5
(2)
(4)
K= 5
)
K= 5
2)
)
29
(4)
K= 5
(2)
)
3
(4)
K= 5
(4)
K= S
(2)
(4)
K= 6
(2)
@)
37
(4)
K= 6
4)
K 6

41

1 January, 1979 5-9 FDR 3057

5 COMPILING

K= 6
2)
(2)
43
()
K= 6
)
K= 6
()
2)
47
4)
K= 7

THIS IS THE END OF THE LIST

kdkGT

Data Mode (second concordance

‘DOUBLE PRECISION (REAL*
SHORT INTEGER (INTEGER®
'LONG INTEGER (INTEGER*4)
LOGICAL
_ REAL (REAL*4) - sing]
Line Number Suffixes o
_Symbol is contained in the argum
- subroutine. ...

- Symbol is defined at this line numb
~ Symbol is initialized at this
~ Symbol is modified (left hand si
. Symbol is in a data mode speci

Memory usage

32R/64R/64V: 32R mode is the default. The complier modes 32R, 64R, and 64V are mutually
exclusive. They cause the compiler to generate object code suitable for operations in a user
address space of 32K words (relative-address), 64K words (relative-address), and 256 x 64K
words (segmented-address) respectively.

NOBIG/BIG: BIG treats all dummy arrays as arrays that span segment boundaries. BIG
forces the 64V mode and thus cannot be used in the 32R or 64R modes. If a dummy argument
array may become associated with an array spanning a segment boundary (through a
subroutine call or function reference) the compiler must be made aware of this by including
BIG in the parameter list. The code generated will work whether or not the array actually
spans segment boundary.

NOBIG is the default parameter (see Section 11 for details on large arrays).

SAVE/DYNM: In the 64V mode, the inclusion of DYNM in the parameter list enables
dynamic allocation of local storage. This allows the use of recursive subroutines (sub-
routines which call themselves). DYNM forces the 64V mode and thus cannot be used in the
32R and 64R modes. If recursive subroutines are used, DYNM is mandatory.

The default parameter is SAVE which enables static local storage allocation. Static storage
allocation is the only method used in the 32R and 64R modes.

DEBASE: Conserves loader base areas. This parameter may be included for programs
compiled in 32R or 64R mode. It should not be used for programs compiled in 64V mode.

FDR 3057 5-10 1 January, 1979

COMPILING D

The default is obtained by omitting DEBASE from the parameter list. (See the LOAD Section
6 for explanation of base areas.)

PBECB: Generates code to load ECBs (Entry Control Blocks) into procedure frame, allowing
ECBs to be shared (64V subroutines only).

Operations

NODCLVAR/DCLVAR: Flags variables which have not been declared in specification
statements. NODCLVAR is the default.

FP/NOFP: Suppresses generation of floating-point skip operation. FP is the default. The
compiler will normally generate instructions from the floating point skip set when testing
the result of a floating-point operation. If the CPU does not have the floating-point
hardware, suppressing these instructions will speed up execution.

INTS/INTL: The Prime FORTRAN system has both Long (INTEGER*4) and Short (IN-
TEGER*4) integers. In the default (or INTS) condition the INTEGER statement in a program
is taken to be INTEGER*2. If INTL is included in the parameter list then the INTEGER
statement is taken to be INTEGER*4. This parameter eases the conversion of existing
programs to the Prime FORTRAN System.

A complete list of all parameters with more detailed comments on the consequences of their
usage will be found in the reference section (Section 17).

Prohibited parameter combinations
The following combinations of parameters should not be used in a command line:

Parameter Used Conflicting Parameter(s)

<parameter> NO<«parameter>
NO«<parameter> <parameter>

BIG 32R or 64R

DEBASE BIG, DYNM, 64V

DYNM NOBIG, SAVE, 32R, or 64R
ERRLIST EXPLIST or LIST

EXPLIST ERRLIST or LIST

INTL INTS

INTS INTL

LIST ERRLIST or EXPLIST
NOBIG DYNM or 64V

NOXREF XREFL or XREFS

PBECB 32R or 64R

SAVE DYNM

XREFL NOXREFS or XREFS
XREFS NOXREFS or XREFL

32R BIG, DYNM, 64R, or 64V
64R BIG, DYNM, 32R, or 64V
64V DEBASE, NOBIG, 32R, or 64R

The command line is parsed from left to right. Thus, the right-most mnemonics take
precedence over those to the left of them. Using the prohibited combinations above will
yield diverse results depending upon the specific case. In almost all cases, the result will be
undesirable.

1 January, 1979 5-11 FDR 3057

5 COMPILING

OPTIMIZATION

An extended version of the FORTRAN compiler optimizes DO loops. It is invoked by
entering:

FTNOPT source-file [options]

source-file is the pathname of the source program to be compiled. options are identical to
those of the FTN compiler with two additional options. These new options are:

-OPT Optimizes all DO loops that do not contain GO TO statements.
-UNCOPT Unconditionally optimizes all DO loops.

If any DO loop in the program has an extended range, the -UNCOPT option should not be
used; use the -OPT option instead. The optimized object program will be longer than the
non-optimized version but it will execute faster.

FDR 3057 5-12 1 January, 1979

R'mode programs

INTRODUCTION

The PRIMOS LOAD utility converts object modules (such as those generated by the
FORTRAN compiler) into runfiles that execute in the 32R or 84R addressing modes.
(Runfiles to execute in the 64V mode must be loaded using the segmentation utility, SEG.)

The following description emphasizes the loader commands and functions that are of most
use to the FORTRAN programmer. For a complete description of all loader commands,
including those for advanced system-level programming, refer to Reference Guide, LOAD
and SEG.

USING THE LOADER UNDER PRIMOS

The PRIMOS command:

LOAD

transfers control to the R-mode loader, which prints a $ prompt character and awaits a
loader subcommand. After executing a command successfully, the loader repeats the $
prompt character.

If an error occurs during an operation, the Loader prints an error message, then the $ prompt

character. Loader error messages and suggested handling techniques are discussed

elsewhere in this section and in Appendix A. Most of the errors encountered are caused by
large programs where the user is not making full use of the loader capabilities.

When a system error (FILE IN USE, ILLEGAL NAME, NO RIGHT, etc.) is encountered, the
loader prints this system error and returns its prompt symbol, $.

The loader remains in control until a QUIT or PAUSE subcommand returns control to
PRIMOS, or an EXECUTE subcommand starts execution of the loaded program.

Load subcommands can be used in command files, but comment lines result in a CM
(command error) message.

1 January, 1979 6-1 FDR 3057

6 LOADING R-MODE PROGRAMS

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
The loader also has many additional features to optimize runfile size or speed, perform
difficult loads, and deal with possible complications. The most frequently used load
commands and operations are presented first; this enables immediate use of the loader.
Advanced features are then described followed by a summary of all loader commands.

The following commands (shown in abbreviated form) accomplish most loading functions:

PRIMOS-Level Commands:

FILMEM
LOAD
RESUME

LOAD Subcommands
MODE option

LOAD pathname
LIBRARY [filename]

MAP [option]
INITIALIZE

SAVE pathname
QUIT or PAUSE

Initializes user space in preparation for load.
Invokes loader for entry of subcommands.
Starts execution of a loaded, SAVEd runfile.

Sets runfile addressing mode as D32R (default) or
D64R.
Loads specified object file.

Loads library object files from UFD LIB. (Default is
FTNLIB.)

Prints loadmap. Option 3 shows unresolved refer-
ences.

Returns loader to starting condition in case of com-
mand errors or faulty load.

Saves loaded memory image as runfile.
Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:
1. Use the PRIMOS FILMEM command to initialize memory.

2. Invoke LOAD.

3. Use the MODE command to set the addressing mode, if necessary. (The

default is 32R mode.)

4. Use loader’s LOAD subcommand to load the object file (B_filename)
and any separately compiled subroutines.

5 Use loader’'s LIBRARY subcommand to load subroutines called from
libraries (the default is FTNLIB in the UFD = LIB). Other libraries, such
as SRTLIB or APPLIB, must be named explicitly.

6. 1If you do not have a LOAD COMPLETE, do a MAP 3 to identify the
unsatisfied references, and load them.

7. SAVE the runfile under an appropriate name.

If these commands produce a LOAD COMPLETE message, then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or some other loader error message. (See Appendix A for a complete list of all
loader error messages and their probable cause and correction.)

FDR 3057

6-2 1 January, 1979

LOADING R-MODE PROGRAMS 6

After a successful load, you can either start runfile execution from LOAD command level,
or quit from the loader and start execution through the PRIMOS RESUME command. An
example of such a load is:

OK, LOAD
GO

$ MO D64R

$ IC

$ LO B_ARRAY
$ LI

$ SA *ARRAY
$ MA M ARRAY
$ Qu

OK,

Order of loading

The following loading order is recommended:

1. Main program
2. Separately compiled user-generated subroutines (preferably in order
of frequency of use).

3. Other Prime libraries (LI filename)
4. Standard FORTRAN library (LI)

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library file FTNLIB in the LIB UFD. The appropriate subroutines from this
file are loaded by the LIBRARY command given without a filename argument. If sub-
routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional
LIBRARY commands are required which include the desired library as an argument.

LOAD MAPS

During loading, the loader collects information about the results of the load process, which
can be printed at the terminal (or written to a file) by the MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas and COMMON in complex loads.

1 January, 1979 6-3 FDR 3057

6 LOADING R-MODE PROGRAMS

Load information is printed in four sections, as shown in Figure 6-1. The amount of
information printed is controlled by MAP option codes, such as:

Option Load Map Information

None, 0 or 4 Load state, base area, and symbol storage;
symbols sorted by address

1 Load state only
2 Load state and base areas
3 Unsatisfied references only
6 Undefined symbols, sorted in alphabetical order
7 All symbols, sorted in alphabetic order
Load State

The load state area shows where the program has been loaded, the start-of-execution
location, the area occupied by COMMON, the size of the symbol table, and the UII status.
All locations are octal numbers.

*START: The location at which execution of the loaded program will begin. The default for
FORTRAN programs is '1000.

*LOW: The lowest memory image location occupied by the program. Executable code
normally starts at 1000, but sector 0 address links (if any) begin at '200.

*HIGH: The highest memory image location occupied by the program (excluding any area
reserved for COMMON).

*PBRK: ‘Program Break”: The next available location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW: The low end of COMMON.
*CMHGH: The top of COMMON.

*SYM: The number of symbols in the loader’s symbol table. This is usually of no concern
unless the symbol space crowds out the last remaining runfile buffer area. (There is room
for about 4000 symbols before this is a risk.)

*UIl: A code representing the hardware required to execute the instructions in loaded
modules. Codes and other information are described later in ths section.

Base areas

The base area map includes the lowest, highest and next available locations for all defined
base areas. Each line contains four addresses as follows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXX lowest location defined for this area
YYYYYY Next available location if starting up from XXXXXX
277777 Next available location if starting down from WWWWWW

WWWWww Highest location defined for this area

FDR 3057 6-4 1 Tanuarv. 1979

LOADING R-MODE PROGRAMS 6

6 LOADING R-MODE PROGRAMS

Symbol storage

The symbol storage listing consists of every defined label or external reference name
printed four per line in the following format:

namexx NNNNNN
or
**namexx NNNNNN

NNNNNN is a six-digit octal address. The ** flag means the reference is unsatisfied (i.e., has
not been loaded).

Symbols are listed by ascending address (default) or in alphabetical order (MA 6 or MA 7).
The list may be restricted to unsatisfied references only (MA 3 or MA 6).

COMMON blocks

The low end and size of each COMMON area are listed, along with the name (if any). Every
map includes a reference to the special COMMON block LIST, defined as starting at
location 1.

LOADING DETAILS

When standard loading goes well, the user can ignore most of the loader’s advanced
features. However, situations can arise where some detailed knowledge of the loader’s tasks
can optimize size or performance of a runfile, or even make a critical load possible. From
that viewpoint, the main tasks of the loader are:
e Convert block-format object code into a run-time version of the program (ex-
ecutable machine instructions, binary data and data blocks).
» Resolve address linkages (translate symbolic names of variables, subroutine entry
points, data items, etc. into appropriate binary address values).
¢ Perform address resolution (discussed later),
e Detect and flag errors such as unresolved external references, memory overflow,
etc.
e Build (and, on request, print) a load map. The map may also be written to a file.
e Reserve COMMON areas as specified by object modules.

 Keep track of runfile's hardware execution requirements and make user aware of
need to load subroutines from UII library.

Virtual loading

The loader occupies the upper 32K words of the user’s 64K-word virtual address space.
Programs up to 32K words are loaded directly into the memory locations from which they
execute. Programs loaded in this manner can be started by the loader’'s EXECUTE command
without being saved. For larger 64R-mode programs, the loader uses the available memory
as buffer space and transfers loaded pages of memory to a temporary file that accomodates
a full 64K-word memory image. When loading is complete, the file must be assigned a name
by the loader’s SAVE command; it can then be executed either through the loader's
EXECUTE command or the PRIMOS RESUME command.

The loader remains attached to the working directory throughout loading, for access to the
temporary file. Files in other directories can be loaded by giving a pathname in a LOAD
command.

FDR 3057 6-6 1 January, 1979

LOADING R-MODE PROGRAMS 6

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filename of a file within the LIB UFD.

Object code

Inputs to the loader are in the form of object code—a symbolic, block-format file generated
by all of Prime’s language translators. Prime’s standard library files consist of subroutines
in this format.

The loader combines the user’'s main program object file with the object files of all
referenced subroutines (either those in the library, or those generated and separately
compiled by the user) irito a single runfile. The runfile is then ready for execution, either
directly through the loader's EXECUTE command or through the PRIMOS RESUME
command.

Runfiles

A runfile consists of a header block followed by the runfile text in memory image format.
The header contains information that enables the runfile to be brought into memory by the
PRIMOS RESTORE or RESUME command. Contents of the header can be examined after a
RESTORE by the PM command. (See Reference Guide, PRIMOS Commands.)

Selecting the addressing mode

The 32R addressing mode is retained as the loader’s default for compatibility with existing
command files. The only significant difference between 32R and 64R for small programs is
that 32R permits multiple indirect links, while 64R allows only one level of indirection. In
certain situations such as processing of multi-dimensional arrays, 32R mode may enable the
compiler to produce a runfile that is somewhat more compact or runs slightly faster.
However, for programs that approach the 32K word boundary, 64R mode ensures successful
loading with no significant penalties of size or speed. Thus MODE D64R is recommended for
most applications.

Base areas

“Base Area’ is an assembly language concept that can be disregarded by the FORTRAN
programmer except when one of the following is printed:

BASE SECTOR 0 FULL
symbolname XXXXXX NEED SECTOR 0 LINK

This condition, usually encountered only when loading large programs, can be avoided in
several ways:
e Give the AUTOMATIC command to enable the loader to assign local linkage areas
before and after individual subroutines.
e Use setbase parameters with a LOAD or LIBRARY command to insert local
linkage areas where they are needed.
e Use the SETBASE command to designate a base area where it is required.
e During compilation, use the -DEBASE option.

Locating COMMON

By default, the loader sets the high end of FORTRAN COMMON at '077777 (the 32K word
boundary) and allocates it downward from there. If a PROGRAM-COMMON OVERLAP
message occurs, COMMON can be moved higher by the COMMON or DC (Defer Common)
subcommands. DC is recommended. (If DC is used, a LOAD COMPLETE message will not
occur until a SAVE or EXECUTE command is given.)

1 January, 1979 6-7 FDR 3057

6 LOADING R-MODE PROGRAMS

UII handling

The loader can keep track of the CPU hardware required to execute the instructions
generated by the modules already loaded. This is shown in the UII entry in the load-state
section of a load map. The codes are:

UII Value CPU Required

100 Prime 450 and up
57 Prime 350 or 400
17 Prime 300 with FP Hardware
3 Prime 300
1 Prime 100 with HSA or 200 with HSA
0 Prime 100 or 200

If the UII code on the load map is greater than the value for the target CPU, then it will be
necessary to load part of the UII library to make execution possible. When a CPU encounters
an instruction not implemented by hardware, a UII (Unimplemented Instruction Interrupt)
occurs and control is transferred to the appropriate UII routine. This routine simulates the
missing hardware with software routines.

However, the UII routine must be loaded by the command LI UII, which should be the last
LOAD command before the program is saved. The appropriate routines will be selected
from this library to satisfy the additional hardware requirements of the program.

To make sure that only the required subroutines are loaded, the user can ‘“subtract”
hardware features that are present in the CPU by entering a HARDWARE command. For
example, assume:

* A load session produces a load map UII value of 57.

e The target CPU is a Prime 300 with floating point (UII value 17).

The command:
HA 17

reduces the load state UII value to 40 (i.e., '57-'17) and ensures that the floating point
subroutines do not occupy space in the runfile.

If, after a HARDWARE command, the load state UII value is 0, the UII library need not be
loaded.

System programming features

The following commands are primarily of interest to assembly language and systems
programmers. They are described in more detail in Reference Guide, LOAD and SEG:

F/ Prefix to LOAD and LIBRARY which forceloads unreferenced
modules.

P/ Prefix to LOAD and LIBRARY which starts loading on next page
boundary. (Can reduce paging time.)

PBRK Program Break. Resume loading at a new location.

CH,SS,SY,XP Symbol control commands.

EN ~ ENtire save; saves copy of load session for building of program
overlays.

ER Controls action taken by loader following errors.

SZ Controls use of Sector 0.

FDR 3057 6-8 1 January, 1979

LOADING R-MODE PROGRAMS 6

COMMAND SUMMARY

Following is a summary of all LOAD commands, in alphabetical order. All file and directory
names may be specified by pathnames, except in the LIBRARY command. All numerical
values must be octal.

ATTACH [pathname]

Attaches to specified directory.

AUTOMATIC base-length

Inserts base area of specified length at end of routine if >‘300 locations loaded since last
base area.

CHECK [symbol-name] [offset-1]. . .[offset-9]

Checks value of current PBRK against symbol or number. symbol-name is a 6 character
symbol defined in the symbol table. offset-1 through 9 are summed to form an address or
offset from symbol name. Numbers preceded by ‘- are negative.

COMMON address
Moves top/starting COMMON location to address.

DC [END]

Defers definition of COMMON block until SAVE command is given. (Low end of COMMON
follows top of load.) [END] turns off DC.

ENTIRE pathname

Saves entire state of loader as runfile, along with temporary file, for building overlays.

ERROR n
Determines action taken in case of load errors.
n Meaning
0 SZ errors treated as multiple indirect, others act as n=1.
1 Display multiple indirects on TTY but continue LOAD; abort load of file for
all other errors.
2 Abort to PRIMOS

EXECUTE [a] [b] [x]

Starts execution with specified register values.

LIBRARY
LOAD

Forceloads all modules in specified object file. See LOAD for parameters.

FORCELOAD
F/ [pathname] [parameters]

1 January, 1979 6-9 FDR 3057

6 LOADING R-MODE PROGRAMS

HARDWARE definition

Specifies expected level of instruction execution.

CPU Definition

P500 100

P350,P400 57

P300/FP 17 FP = Floating Point

P300 3

P200/HSA 1 HSA = High-speed arithmetic
P100/HSA 1

P200 0

P100 0

HARDWARE, if given, must precede loading of UII library.

INITIALIZE [pathname] [parameters]
Initializes LOADER and, optionally, does a LOAD. See LOAD for parameters.

LIBRARY [filename] [loadpoint]

Attaches to LIB=UFD, loads specified library file (FTNLIB is default), and re-attaches to
home directory.

LOAD [pathname] [parameters]

Loads the specified object module. The parameters may be entered in three formats:
1. loadpoint [setbase-1].. .[setbase-8]
2. * [setbase-1]. . .[setbase-9]
3. symbol [setbase-1]. . .[setbase-9]

In form 1, loadpoint is the starting location of the load. In form 2, the load starts at the
current PBRK location (*}. In form 3, the load address can be stated symbolically (symbol).
The remaining numeric parameters (setbase-1, etc.) specify the size of linkage areas to be
inserted before and after modules during loading. If the last parameter is 177777, the loader
requests more setbase values.

MAP [pathname] [option]

Generates load-state map on terminal, or in a file, if pathname is specified.

Option Meaning
0 Load state, base area, symbol storage map; symbols sorted by address
(default)
Load state only
Load state and base area
Unsatisfied references only
Same as 0
System Programmer map
Undefined symbols sorted alphabetically
All symbols sorted alphabetically
Special symbol map for PSD (in a file)

N U s W -

-
o

FDR 3057 6-10 1 January, 1979

LOADING R-MODE PROGRAMS 6

D32R
D64R
D16S
D32S

Specifies address resolution mode for next load module (32K Relative, D32R, is default). If
used, MODE must precede other LOAD commands.

MODE

LOAD

Begins loading at next page boundary. See LOAD for parameters.

FORCELOAD
P/ { LIBRARY [pathname] [parameters]

PAUSE

Leaves loader to execute internal PRIMOS command. Return via START.

* offset-1 [offset-2]. . .[offset-9]

Sets a program break to value of symbol plus offset or a number. * treats sum of numbers as
offset from current PBRK. Offsets may be negative.

PBRK {[symbol-name] [offset-1]. . .[offset-s]}

QUIT

Deletes temporary file, closes map file (if loader opened it), and returns to PRIMOS.

SAVE pathname

Writes a memory image of the loaded runfile to the disk.

{[base-start] [base-range] }

SETBASE base-range

Defines starting location and size of base area. * is current value of PBRK.

SS symbol-name

Save symbol. Exempts specified symbol from action of XPUNGE.

symbol-name [offset-1]. . .[offset-6]
SYMBOL) * offset-1 [offset-2]. . .[offset-6]

Establishes locations in memory map for common blocks, relocation load points, or to satisfy
references. * is current value of PBRK. Offsets are summed and may be negative.

YES
SZ) NO
Permits/prohibits links in sector zero.

VIRTUALBASE base-start to-sector

Copies base sector to corresponding locations in to-sector. Used for building RTOS modules.

XPUNGE dsymbols dbase
Deletes COMMON symbols, other defined symbols, and base areas.

1 January, 1979 6-11 FDR 3057

Loding
segmented programs

INTRODUCTION

The PRIMOS SEG utility converts object modules (such as those generated by the
FORTRAN Compiler) into segmented runfiles that execute in the 64V addressing mode and
take full advantage of the architecture and instruction set of the Prime 350 and up.
Segmented runfiles offer the following advantages:
* Much larger programs: up to 256 segments per user program (32 Megabytes)
e Access to V-mode instructions and architecture (Prime 350 and up) for faster
execution.
* Ability to install shared code: single copy of a procedure can service many users,
significantly reducing paging time.
» Reentrant procedures permitted: procedure and data segments can be kept
separate.

The following description emphasizes the commands and functions that are of most use to
the FORTRAN programmer. Extended features are described in Section 11. For a complete
description of all SEG commands, including those for advanced system-level programming,
refer to Reference Guide, LOAD and SEG.

USING SEG UNDER PRIMOS
SEG is invoked by the PRIMOS command:
SEG [pathname]

A pathname is given only when an existing SEG runfile is to be executed. Otherwise, the
command transfers control to SEG command level, which prints a “#" prompt character and
awaits a subcommand. After executing a subcommand successfully, the loader repeats the
prompt character. SEG employs two subprocessors, LOAD and MODIFY, which accept
further subcommands. The subprocessors use the “$’ prompt character.

If an error occurs during an operation, SEG prints an error message, then the prompt
character. Error messages and suggested handling techniques are discussed elsewhere in
this section and in Appendix A.

When a system error (FILE IN USE, ILLEGAL NAME, NO RIGHT, etc.) is encountered, SEG
prints the system error and returns the prompt symbol. SEG remains in control until a QUIT
subcommand returns control to PRIMOS, or an EXECUTE subcommand starts execution of
the loaded program.

SEG subcommands can be used in command files, but comment lines are accepted only
within the LOAD subprocessor.

1 January, 1979 7-1 FDR 3057

7 LOADING SEGMENTED PROGRAMS

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
SEG also has many additional features to optimize runfile size or speed, perform difficult
loads, load for shared procedures, and deal with possible complications. The most frequent-
ly used commands and operations are described first; this enables the immediate use of
SEG. Advanced features are then described, followed by a summary of all SEG commands.

The following commands (shown in abbreviated form) accomplish most loading functions:

SEG-Level Commands:

DELETE Deletes segmented runfile.

HELP Prints a list of SEG commands at terminal.

LOAD Invokes loader subprocessor for entry of subcom-
mands.

LOAD Subcommands:

LOAD pathname Loads specified object file.

LIBRARY [filename] Loads library object files from UFD LIB. (Default is
PFTNLB and IFTNLDB, in that order.)

MAP [option] Prints locadmap. Option 3 shows unresolved refer-
ences.

INITIALIZE Returns loader to starting condition in case of com-
mand errors or faulty load.

SAVE Saves loaded memory image as runfile.

RETURN Returns to SEG command level.

QUIT Returns to PRIMOS.

Most loads can be accomplished by the following basic procedure:
1. Invoke SEG from PRIMOS level.
2. Enter the LOAD command to start the LOAD subprocessor ($ prompt).

3. Use the load subprocessor’s LOAD subcommand to load the object file
(B_filename) and any separately compiled subroutines.

4. Use load subprocessor's LIBRARY subcommand to load subroutines
called from libraries (the default is PFTNLB and IFTNLB in the UFD
LIB). Other libraries, such as VSRTLB or VAPPLB, must be named
explicitly.

5. If you do not have a LOAD COMPLETE, do a MAP 3 to identify the
unsatisfied references, and load them.

6. SAVE the runfile.

If these commands produce a LOAD COMPLETE message, then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or some other SEG error message. (See Appendix A for a complete list of all SEG
error messages and their probable cause and correction.)

After a successful load, you can either start runfile execution from loader command level,
or quit from the loader and start execution through the PRIMOS SEG command. An
example of such a load is:

FDR 3057 7-2 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

OK, SEG

GO

LOAD

SAVE FILE TREE NAME: #ARRAY
$ LO B ARRAY

$ LI

$ SA

$ MA M _ARRAY

$ QU

OK,

Order of loading .
The following loading order is recommended:

1. Main program .
Separately compiled user-generated subroutines (preferably in order
of frequency of use).

3. Other Prime Libraries (LI filename)

4. Standard FORTRAN library (LI)

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-
routines in the library files PFTNLB and IFTNLB in the LIB UFD. The appropriate
subroutines from this file are loaded by the LIBRARY command given without a filename
argument. If subroutines from other libraries are used, such as VSRTLB or VAPPLB,
additional LIBRARY commands are required which include the desired library as an
argument.

LOAD MAPS

During loading, SEG collects (and stores, as part of the segmented runfile) information about
the results of the load process. This can be printed at the terminal (or written to a file) by
the load subprocessor's MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problems in loading, or to optimize
placement of modules, linkage areas and COMMON in complex loads. If a file pathname is
given, the map is written to a file instead of being printed at the terminal. The loadmap is
particularly useful for:

* Location where program halted (LB address after a crash).
e Modules not loaded (MA 3 or MA 6).
* Reason for stack overflow (SB address after a crash).

1 January, 1979 7-3 FDR 3057

7 LOADING SEGMENTED PROGRAMS

When a map file is specified, it is opened on PRIMOS unit 13 and remains open until the
load session is completed. Any additional MAP commands specifying output to a file will use
the one already opened; exiting from the loader (via EXECUTE, QUIT, or RETURN) closes
the map file. If the user has opened a file on PRIMOS unit 13 prior to invoking SEG's loader,
then this file will be used for the map. In this case, leaving the loader does not close the file.

The full SEG load map consists of seven sections, not all of which may be present in any
load. (See Figure 7-1) In particular, Section IIIl may not be present in small SEG loads. The
amount of information printed is controlled by MAP option codes:

Option Load Map Information

None, 0 or 4 Extent, segment assignments, base areas, symbol storage (symbols
sorted by address), direct entry links, common blocks, and other
symbols.

1 Extent and segment assignments only

2 Extent, segment assignments and base areas
3 Undefined symbols, sorted by address

6 Undefined symbols, sorted alphabetically

7 Full map, symbols, sorted in alphabetic order
10 Symbols, sorted by ascending address

11 Symbols, sorted alphabetically

Section I - Extent

The extent area shows where the program has been loaded, the start-of-execution location,
and the size of the symbol table. All locations are octal numbers.

*START: The segment number and word location for the start-of-execution. At the beginning
of a load, the start address is initialized to 000000 000000. SEG fills in *START for the first
segmented procedure encountered (usually the main program).

*STACK: Segment number and word location of the start of the stack; initialized to
177777 000000 at the start of a load. This value is not changed until a Loader SAVE or
EXECUTE command is invoked. The default stack is in the first procedure segment with 6000
(octal) free locations at the top of memory.

*SYM: Address of the bottom of the symbol table (one word only as it is a 64R mode
address). Indicates to the user how much space is left for the symbol table. To determine the
location of the top of the symbol table, generate a map prior to loading; the top and bottom
of the symbol table will be identical and *SYM will also be the location of the top.

Section II - Segment assignments

Each segment is labeled as procedure (PROC) or data (DATA); the segment chosen for the
stack is identified by ## following the segment type. The list is sorted in order of segment
assignment.

LOW: Lowest loaded location in the segment. (Not necessarily the lowest assigned location.)
Initialized to 177777 (-1) at segment creation; if the segment is used only for uninitialized
COMMON areas, LOW is not changed.

HIGH: Highest loaded location in the segment. (Not necessarily the highest assigned
location.) Initialized to '000000 at segment creation; if the segment is used only for
uninitialized COMMON areas, HIGH is not changed. '

TOP: Highest assigned location in the segment. TOP should not be lower than HIGH. If it is,
the user may have specified incorrect load addresses. When not using default values, the
user is responsible for loading into correct areas. TOP is initialized to '177777 (-1) at segment

FDR 3057 7-4 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

7 LOADING SEGMENTED PROGRAMS

creation. When space is reserved for large COMMON blocks, the loader will only set TOP
to a maximum of 177776 even though the entire segment to '177777 is reserved.

The reason for this is: a LOW, HIGH, and TOP of 177777 000000 177777 labels an empty
segment.

Section III - Base areas
*BASE VVVVVV WWWWWW XXXXXX YYYYYY ZZZZZZ

VVVVVV Segment number.

WWWWWW Lowest location for base area.

XXXXXX Next available location if starting down from highest location.
YYYYYY Next available location if starting down from highest location.
727777 Highest location for base area.

The lowest default location for the sector zero base area is '100.

There may be a sector zero base area in each procedure segment; there must be none in data
segments. Base areas other than sector zero ones are generated by PMA modules.

Section IV - Symbols

A main program or subroutine compiled in 64V mode is called a procedure. A procedure is
composed of a procedure frame (the executable code), and ECB (the entry control block), a
link frame (static storage, constants, transfer vectors) and a stack frame (dynamically
allocated storage which is assigned when the routine is called and released upon return
from the routine). This section of the map describes these items. For FORTRAN procedures,
the ECB is part of the link frame. The procedure frame will be located in a segment reserved
for procedure frames. Link frames and COMMON blocks will be located in segments
reserved for data.

The first pair of numbers in this section of the map is the segment and word address for the
ECB; the second pair is the segment and word address for the procedure.

ST. SIZE: is the size of the stack frame (working area) created whenever the routine is
called. Its segment (and location therein) are assigned at execution time.

LINK FR.: is the size of the link frame.

The last two columns are the link frame segment and offset. Note that the offset is '400
locations lower than the actual position for compatibility with the information printed by the
PRIMOS PM command. The segment number is usually that for the ECB.

Procedures with no names, specifically a FORTRAN main program, are identified by ####in
the name field.

Section V - Direct entry links

PRIMOS supports direct entry calls to the supervisor for certain routines. = These are
created as fault pointers in the SEG runfile. Where references are satisfied by these fault
pointers, they will appear in the DIRECT ENTRY LINKS section of the map. The FORTRAN
programmer is not concerned with this map section.

Section VI - COMMON blocks

Lists each COMMON block, its segment number, starting word address in the segment, and
size.

FDR 3057 7-6 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

Section VII - Other symbols (including undefined symbols)

Lists the symbol, its segment, and word address in that segment. As in Section VI, the format
is three symbols per line. Unsatisfied references are preceded by **.

The numbers for unsatisfied references (segment and word address) locate the last request

for the routine processed by the Loader. This allows the routines calling missing routines to
be identified.

ADVANCED SEG FEATURES

When standard loading goes well, the user can ignore most of the SEG’s advanced features.
However, situations can arise where some detailed knowledge of SEG and segmented
runfile organization can optimize size or performance of a runfile, or even make a critical
load possible. The following topics are of particular use to the FORTRAN programmer.

Segment usage

A segment is a 64K word block of user’s virtual address space. Segment '4000 is the segment
that SEG and other external commands occupy when invoked. Segment '4000 is the lowest-
valued non-shared segment in the PRIMOS system. SEG creates a runfile of up to 256
segments.

PRIMOS assigns memory segments to a user as they are accessed. These are not re-assigned
until logout. Since only a fixed number of segments are available for all users, extra
segments should not be invoked unless the user is actually executing or examining a
segmented program, Most of the functions of SEG use only one segment; only those options
which restore a runfile use extra segments, i.e., RESTORE, RESUME, and EXECUTE.

Segmented runfiles

A segmented runfile consists of segment subfiles in a segment directory. For this reason, you
cannot delete a SEG runfile with a PRIMOS-level DELETE command. Instead, use the
DELETE command in SEG. (The TREDEL command in FUTIL also works but is slower than
SEG’'s DELETE.)

Note

It is good practice to use the PRIMOS DELSEG command to
release segments assigned by SEG during a load session.
Otherwise those segments remain assigned to the user until
logout, precluding their use by anyone else.

Each segment of the runfile consists of 32 ('40) subfiles of '4000 words each. Subfile 0 of the
runfile is used for startup information, the load map, and the memory image subfile map.
Memory image subfiles begin in segment subfile 1. Only the subfiles actually required for
the runfile are stored on the disk.

SEG’s loader

SEGhas a virtual loader (i.e., it loads to a file rather than to memory) which requires the
name of the runfile before anything is loaded. The runfile may be new or may be a
previously used SEG runfile, and may be in any directory. A runfile compiled and loaded in
32R or 64R mode may not be used.

As the symbol table is always available, SEG’s loader may be used to add modules to an
existing runfile. Similarly, a partial load may be saved with the SEG SAVE command and
the load completed later. In addition, selected modules may be replaced in a SEG runfile.

1 January, 1979 7-7 FDR 3057

7 LOADING SEGMENTED PROGRAMS

Object files

Object files of the program modules must have been created using the FORTRAN compiler’s
-64V option. Modules written in other languages may also be loaded, if they have been
compiled or assembled in 64V mode.

Code and data are loaded in separate segments to support re-entrant procedures. Data
includes all COMMON blocks and link frames. The loader assigns code and data segments.
The first segment ('4001) is used for code. Usually segment ‘4002 will be used for data. The
loader loads data and code into appropriate segments and opens new segments as required.
It is possible to put both data and procedure in the same segment to save space, using the
MIXUP subcommand of the LOAD subprocessor.

The stack

The loader assigns a stack (a dynamic work area) when SAVE or EXECUTE is invoked. The
stack is usually assigned as the next free location in the first procedure segment with '6000
free words. If no such segment exists, a new data segment is assigned with the first location
in the stack set to 4; locations 0 to 3 are used for internal SEG information. The user may
force the location of the stack and/or may change its size.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filename of a file within the LIB UFD.

Base areas

“‘Base area’” is an assembly language concept that can be disregarded by the FORTRAN
programmer unless the following message is printed:

SECTOR 0 BASE AREA FULL

This condition, which is extremely unlikely to occur, can be avoided by using the SETBASE
command to designate a base area where it is required.

Locating COMMON

SEG makes sure there is no overlap of program and COMMON. The user has the option of
moving COMMON by a COMMON or SYM command, but he takes on the responsibility of
making sure it doesn’t run into the stack.

COMMAND SUMMARY

Following is a summary of all SEG commands, in alphabetical order within three groups:
1. SEG-level commands
2. LOAD-subprocessor
3. MODIFY subprocessor.

Files and directory names may be specified by pathnames, except in the LIBRARY
command. All numerical values must be octal. The following conventions are followed for
parameters.

addr Word address within a segment.
segno Segment number.

psegno Procedure segment number.
Isegno Linkage segment number.

[a] [b] [x] Values for A, B, and X registers.

FDR 3057 7-8 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

Note

Segment numbers may be absolute or relative. See Section 11
for further information.

SEG - LEVEL COMMANDS

Commands at SEG level are entered in response to the "“#’ prompt.

DELETE [pathname]

Deletes a saved SEG runfile.

HELP

Prints abbreviated list of SEG commands at terminal.

[VILOAD [pathname]

Defines runfile name and invokes virtual loader for creation of new runfile (if name did not
exist) or appending to existing runfile (if name exists). If pathname is omitted, SEG requests
one.

MAP pathname-1 [pathname-2] [map-option]

Prints a loadmap of runfile (pathname-1) or current loadfile (*) at terminal or optional file
(pathname-2).

Option
Full map [default]
Extent map only
Extent map and base areas
Undefined symbols only
Full map [identical to 0]
System programmer’s map
Undefined symbols, alphabetical order
Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabetically

|l BN =20 L B SR SUR R

= o

MODIFY [pathname]

Invokes MODIFY subprocessor to create a new runfile or modify an existing runfile.

PARAMS [pathname]

Displays the parameters of a SEG runfile.

PSD
Invokes VPSD debugging utility.

QUIT

Returns to PRIMOS command level and closes all open files.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

1 January, 1979 7-9 FDR 3057

7 LOADING SEGMENTED PROGRAMS

RESUME [pathname]

Restores runfile and begins execution.

SAVE [pathname]
Synonym for MODIFY.

SHARE [pathname]

Converts portions of SEG runfile corresponding to segments below '4001 into R-mode-like
runfiles. (See Section 11 for more information.)

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD
See LOAD.

LOAD SUBPROCESSOR COMMANDS
ATTACH [ufd-name] [password] [ldisk] [key]

Attaches to directory.

A/SYMBOL symbolname [segtype] segno size

Defines a symbol in memory and reserves space for it using absolute segment numbers.
{ [ABS]
COMMON | REL segno

Relocates COMMON using absolute or relative segment numbers.

IL

LOAD
D/<{LIBRARY

FORCELOAD

PL or RL

Continues a load using parameters of previous load command.

Note
D/ and F/ may be combined, as in D/F/LI.

EXECUTE [a] [b] [x]

Performs SAVE and executes program.

FDR 3057 7-10 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

IL
LOAD
F/] LIBRARY [pathname] [addr psegno lsegno]
FORCELOAD
PL
RL

Forceloads all routines in object file.

IL [addr psegno lsegno]
Loads impure FORTRAN library IFTNLB.

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY [filename] [addr psegno Isegno]
Loads library file (PFTNLB and IFTNLB if no filename specified).

LOAD [pathname] [addr psegno lsegno]
Loads object file,

MAP [pathname] option

Generates load map (see SEG-level MAP command).

{ }

Mixes procedure and data in segments and permits loading of linkage and common areas in
procedure segments. Not reset by INITIALIZE.
MV [start-symbol move-block desegno]

Moves portion of loaded file (for libraries). If options are omitted information is requested.

OPERATOR option

Enables or removes system privileges 0 = enable, 1 = remove. Caution: this command is
intended only for knowledgeable creators of specialized software.

PL [addr psegno [segno]
Loads pure FORTRAN library, PFTNLB.

IL
LOAD
P/ JLIBRARY [pathname] option [psegno] Isegno]
FORCELOAD
PL
RL

Loads on a page boundary. The options are: PR = procedure only. DA = link frames only.
none = both procedure and link frames.

1 January. 1979 7-11 FDR 3057

7 LOADING SEGMENTED PROGRAMS

QUIT
Performs SAVE and returns to PRIMOS command level.

RETURN

Performs SAVE and returns to SEG command level.

RL pathname [addr psegno lsegno]

Replaces a binary module in an established runfile.

R/SYMBOL symbol-name [segtype] segno size

Defines a symbol in memory and reserves space for it using relative segment assign-
ment.(Default = data segment).

SAVE [a] [b] [x]
Saves the results of a load on disk.

SETBASE segno length

Creates base area for desectorization.

segno addr }

SPLIT { addr
addr segno addr Isegno

Splits segment into data and prodecure protions. Formats 2 and 3 allow R mode execution if
all loaded information is in segment 4000.

SS symbol-name
Saves symbol; prevents XPUNGE from deleting symbol-name.

STACK Size

Sets minimum stack size.

SYMBOL [symbol-name] segno addr

Defines a symbol at specific location in a segment.

LIBRARY

S/) FORCELOAD [pathname] [addr psegno lsegno]
PL or IL

RL or LOAD
Loads an object file in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symbol table and deletes base information.

dsymbol Action
0 Delete all defined symbols—including COMMON area.
1 Delete only entry points, leaving COMMON areas.

FDR 3057 7-12 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

dbase Action
0 Retain all base information.
1 Retain only sector zero information.
2 Delete all base information.

MODIFY SUBPROCESSOR COMMANDS

NEW pathname
Writes a new copy of SEG runfile to disk.

PATCH segno baddr taddr

Adds a patch (loaded between baddr and taddr) to an existing runfile and saves it on disk.

RETURN
Returns to SEG command level.

ssize
segno addr

SK) ssize 0 esegno
ssegno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above '4000 of current runfile to disk.

1 January, 1979 7-13 FDR 3057

Executing programs

INTRODUCTION

This section treats the following topics:
e Execution of program memory images saved by the Loader
e Execution of segmented runfiles saved by SEG’s Loader
* Run-time error messages
* Installation of programs in Command UFD (CMDNCO)

EXECUTION OF R-MODE MEMORY IMAGES

For programs loaded in 32R or 64R mode by the loader, execution is performed at the
PRIMOS level using the RESUME command. Programs which are already resident in the
user's memory may be executed by a START command.

RESUME pathname

RESUME brings the memory-image program pathname from the disk into the user’s
memory, loads the initial register settings, and begins execution of the program.

Example:
OK, R *TEST User requests program
GO Execution begins
THIS IS A TEST Output of program
OK, PRIMOS requests next command

Note

RESUME should not be used for segmented (64V mode)
programs. Use the SEG command (discussed later) instead.

START [start-address]

If a program has been made resident in memory (for example, by a previous RESUME
command) START may be used to initialize the registers and begin execution.

START can also restart a program that has returned control to PRIMOS (for example,
because of an error, a FORTRAN PAUSE or CALL EXIT statement). If START is typed
without a value for start-address, the program resumes at the address value at which
execution was interrupted. To restart the program at a different point, specify an octal
starting location as the start-address value; the usual default value for the beginning of
FORTRAN programs is 1000.

1 January, 1979 8-1 FDR 3057

8 EXECUTING PROGRAMS

Example:
OK, R *TEST1 Begin
GO Execution starts
INPUT NEW KEY: 5 Program asks for input
QUIT User hit BREAK to stop
OK, S 10009 Restart program from beginning
GO Execution restarted

INPUT NEW KEY:

The FORTRAN programmer will almost always use the default forms of the RESUME and
START commands (the form discussed here). For a complete treatment of these commands,
see the Reference Guide, PRIMOS Commands.

Upon completion of the program, control returns to PRIMOS command level.

EXECUTING SEGMENTED RUNFILES

For programs loaded and saved by SEG, execution is performed at the PRIMOS command
level using the SEG command:

SEG pathname

where pathname is the name of a SEG runfile. SEG loads the runfile into segmented memory
and starts execution. SEG should be used for runfiles created by SEG's loader; it should not
be used for program memory images created by the R-mode loader.

Example:
OK, SEG #TEST User requests program
GO Execution begins
THIS IS A TEST Output of program
OK, PRIMOS requests next command

Upon completion of program execution, control returns to PRIMOS command level.
A SEG runfile may be restarted by the command:

S 1000
if both the SEG runfile and the copy of SEG used to invoke it are in memory.

RUN-TIME ERROR MESSAGES

During program execution, error conditions may be generated and detected by the
FORTRAN mathematical functions, file system subroutine calls, or the operating system. A
list of run-time errors is included in Appendix A.

R-mode FORTRAN functions

FORTRAN functions (COS, SIN, etc.) used for programs compiled in the 32R and 64R mode
generate error messages in this format:

****Cc [n]

where cc is a two-letter code and n is the FORTRAN logical unit number; n is printed out
only for I/0 errors. When an error is encountered, the error message is printed at the user
terminal. Most errors return command to PRIMOS level.

FDR 3057 8-2 1 January, 1979

EXECUTING PROGRAMS 8

V-mode FORTRAN functions

FORTRAN functions (COS, SIN, etc.) used for segmented (64V mode) programs generate
error messages in this format:

**%* error-message

Errors detected are generally of the same type as those in the R-mode functions; due to less
restrictive program size constraints, error messages have been made clearer. Most errors
return control to the PRIMOS level.

File system calls

In the file system, subroutines return an integer error code as part of their argument list. A
non-zero value indicates the type of error which has occurred. The error code value may be
used to transfer control in the program. The error message can be printed to the terminal
using the ERRPR$ subroutine. The error

message format is:

standard-text user’s-text-if-any (name-if-any)

standard-text The file system standard error message (listed in Appendix A}.
user’s-text-if-any An optional message which the user may elect to have printed.
(name-if-any) The program/subsystem detecting or reporting the error. Again,

the user selects this text.
Example:

Following a call to PRWF$$, CODE was returned as CODE=E$UNOP; the call:

CALL ERRPRS (K$SRTN,CODE,'DO A STATUS',11,'PRWFSS', 6)

results in the message:

UNIT NOT OPEN. DO A STATUS (PRWFSS)

Note

The error code should always be checked for zero/non-zero
value to ensure that errors do not go unnoticed.

The file system is described in Reference Guide, PRIMOS Subroutines. In the list of
standard error messages for file calls, parentheses enclose a list of subroutines most likely
to generate that error; brackets enclose the name of the error code corresponding to its
numeric value. (See Appendix A.)

Others

Error messages may be printed by other subroutines or by the operating system. Error
messages specific to execution of segmented programs are labelled 64V mode. Some error
messages imply system problems beyond the scope of the applications programmer. If so,
this is indicated in the explanation of a given error message.

1 January, 1979 8-3 FDR 3057

8 EXECUTING PROGRAMS

INSTALLATION IN THE COMMAND UFD (CMDNCO0)

Run-time programs in the command UFD (CMDNCO0) can be invoked by keying in the
program name alone. This feature of PRIMOS is useful if a number of users invoke this
program. Only one copy of the program need reside on the disk in UFD=CMDNCO.

Even more space is saved during execution by multiple users if the program uses shared
code (64V mode only}. (See Section 11).

Program memory images saved by the loader

Installation in the command UFD is extremely simple. The runtime version of the program
is copied into UFD=CMDNCO0 using PRIMOS’ FUTIL file handling utility.

Example: Assume you have written a utility program called FARLEY. This utility acts as a
“tickler”” for dates. Using FARLEY, each user builds a file with important dates. The
FARLEY utility program, upon request, prints out upcoming events or occasions of interest
to the user.

Note
This utility does not exist; it is used as a plausible example.

First, compile the program:

OK, FIN FARLEY -64R Compile in 64R mode

GO

9009 ERRORS [<.MAIN.>FTN-REV16.d] Compiler message

OK, LQAD Invoke the Loader

GO

SLO B FARLEY Load the object file; the default

name is used

$ Load other required modules

$LI Load the FORTRAN library

LOAD COMPLETE Load is complete

SSA *FARLEY Save the memory image

$QU Return to PRIMOS

OK, FUTIL Invoke the file utility

GO

>TO CMDNC@ ORDER Defines the TO UFD as CMDNCQ;
password is ORDER

>COPY *FARLEY FARLEY Copies the runtime program

*FARLEY into UFD=CMDNGC0
under the name of FARLEY
>QUIT Return to PRIMOS Command level

OK,

It was not necessary to define a FROM UFD; the default (home) was used.

Any user can now invoke this program:

FDR 3057 8-4 1 January, 1979

EXECUTING PROGRAMS 8

OK, FARLEY Invoke program

GO Execution begins

HON FAR: Asks for future time period
etc.

Segmented runfiles saved by SEG’s loader

A segmented program cannot be run directly from UFD=CMDNCO because PRIMOS’
command processor cannot directly handle the SEG runfiles, The segmented program may
be invoked by means of a non-segmented interlude program in CMDNCO0.

The procedure for creating an interlude is:

1. Create the desired SEG runfile.

2. Attach to UFD=SEG, which contains the command file CMDSEG.

3. Run the command file CMDSEG using COMINPUT; it will ask for
runfile pathname as the new SEG runfile name. This command file will
create the interlude program under the name *TEST.

4. If you did not give a pathname for the runfile, make a copy of the SEG
runfile in UFD=SEG using FUTIL's TRECPY command. The name of
the new SEG runfile should be the name by which it will be invoked.

5. A copy of *TEST should be placed in UFD=CMDNCO using FUTIL's
COPY command. The file name should be that by which the program
will be invoked.

Example:

1. Extensions to the FARLEY utility described above make it desirable to
compile and load it as a segmented program.

OK, FIN FARLEY -64V
GO
@00@ ERRORS [<.MAIN.>FTN-REV16.0]

Compile in 64V mode

OK, SEG

GO

LOAD #FARLEY
$ LO B FARLEY

Invoke SEG utility

Establish runfile name
Load object file

$.

$ LI Load 64V mode FORTRAN library
S SA Save the file

$ QU Return to PRIMOS

OK,

2. ATTACH to UFD=SEG

1 January, 1979 8-5

FDR 3057

8 EXECUTING PROGRAMS

OK, A SEG
OK,

3. The command file CMDSEG creates the interlude program.

OK, CO CMDSEG

OK, * (MDSEG,SEG,CEH.@4/#5/78
OK, * COMMAND.FILE.TO.CREATE.'CMDNC@'.SEG.RUNFILES
OK, R *(MIMA

GO

RUN FILE NAME: FARLEY

OK, FTN S$$SEG 1/5707

GO

@202 ERRORS [<.MAIN.>FIN-REV16.0]
OK, FILMEM

OK, LOAD

$SZ

SER 2

$MO D64R

$CO 173400

$LO B_SS$SSEG 173400

SAU 2

SLO CMDLIB * 12 14 14 9 ¢ 12 9 @ 12
SAU @

SLI

SMA 2

$SAVE *TEST

SAT

SQu

OK, DELETE SSSSSEG

OK, DELETE B S$$SEG

OK, CO TTY

OK,

4. UFD=SEG contains the SEG runfiles which are actually executed by the
interlude programs. The SEG runfile is copied here from the UFD in
which it was SAVEd. There is no TO UFD defined, as the default
(home) is being used.

OK, FUTIL Invoke FUTIL

GO

>FROM MYUFD FROM UFD is user’s old home UFD
>TRECPY #FARLEY FARLEY Make a copy under the invocation
> name

FDR 3057 8-6 1 January, 1979

EXECUTING PROGRAMS 8

5. The interlude program *TEST is copied into the Command UFD under
the name by which it will be invoked.

>FROM * New FROM UFD—the current home

>TO CMDNC@ ORDER TO UFD=CMDNCQ0; password here
is assumed to be ORDER

>COPY *TEST FARLEY Copy the interlude

>QUIT Return to PRIMOS command level

OK,

When FARLEY is entered at the user terminal, the FARLEY interlude program in CMDNCO0
is executed. This program attaches to the SEG UFD, restores the segmented runfile FARLEY,
re-attaches to the user’s home directory and begins execution of the SEG runfile.

If the SEG runfile requires only one segment of loaded information (procedure, link frames,
and initialized common) in user space (segment '4000 and above) it is possible to include the
interlude in the SEG runfile. This is discussed in Section 11.

1 January, 1979 8-7 FDR 3057

Debugging

INTRODUCTION

This section discusses the various debugging tools and strategies available to the Prime
FORTRAN programmer. For a good discussion of debugging techniques (as well as
preventive programming methodology), the reader is referred to The Elements of Program-
ming Style, Kernigan and Plauger, McGraw-Hill, 1978 (Second Edition).

Debugging is discussed in the following areas:

* Coding strategy
* Compiler usage
®* Program execution
* The PM command
* Program validation

CODING STRATEGY

Coding strategy involves avoiding traditional errors so as to eliminate the need for
debugging later. (Section 13 contains information on coding optimization.) The four major
techniques for coding are:

1. Modular program structure.

2. Proper use of comments.

3. Effective use of indention and spacing.

4. Inserting TRACE statements to monitor program control flow.

Modular program structure

Modular program structure is the building up of a large program or system from a set of
small, self-contained program modules. Each module performs a discrete, specific task, and
contains all necessary comments, diagnostics and error messages. This permits the program-
mer to design, code, compile, load, execute, debug and maintain each portion of the master
program individually (though certain programs may need to be run in “artificial” environ-
ments or with test routines that simulate other portions of the master program).

Once the master program nears completion, modular structure allows the programmer to
isolate problems back to specific modules, permitting simpler and more reliable bug fixes.

Proper use of comments

As pointed out in Elements of Programming Style, the proper use of comments can vastly
improve a program's usability by its own and other programmers, while bad comments can
seriously interfere. Comments should, as a rule, offer succinct information as to the purpose
and intent of upcoming code, and not simply restate the code.

1 January, 1979 9-1 FDR 3057

9 FORTRAN—DEBUGGING

Note

One method of commenting worth consideration is that of
placing the majority of comments on the right-hand side of
the file (the actual code being on the left). This allows the
programmer to cover over comments when re-inspecting
code, leading to the possible discovery that it does not
perform the claimed task as stated in the accompanying
comment.

Effective use of indention and spacing

Indention and spacing, when properly used, help display the parallelism, symmetry and/or
consistency (or lack thereof) in a given portion of code.

Inserting TRACE statements to monitor program control flow

The FORTRAN TRACE statement permits the monitoring of program control flow by
displaying values of specified variables whenever they are changed during program
execution. TRACE is explained in Section 15. By monitoring the values of given variables,
you can often determine at what places your program is not working as desired, and from
there investigate the cause.

COMPILER USAGE
Compile-time debugging consists of the following operations:

1. Syntax checking and compile-time errors.
2. DCLVAR and global TRACE compiler options.

Syntax checking

The FORTRAN compiler automatically performs syntax checking as part of the compiling
process. Syntax errors are usually due to coding or typing errors. (Remember that what the
compiler perceives as a syntax error may often be the result of some other error elsewhere
in the program; e.g., the compiler will flag the statement GOTO 140 if there is no statement
140, or if there is an error in statement 140.)

If your program has syntax errors, do not attempt to load and execute it; make the necessary
corrections first,

Other compile-time errors

The compiler also checks for non-syntactical errors, such as program length exceeding
available user space. As with syntactical errors, do not attempt to load and execute a
program which has non-syntactical errors.

The DCLVAR and global TRACE compiler options

The DCLVAR option to the FTN command causes the compiler to flag all variables which
are not explicitly declared in specification statements. This procedure often uncovers minor
spelling errors in the source file (e.g., you defined the variable TEMP.A1, but elsewhere
typed it as TEMPA.1}.

The TRACE option produces a trace for every variable in the program. This option takes
precedence over any TRACE statement in your FORTRAN program, and is particularly
helpful in conjunction with the PRIMOS COMOUTPUT command (given prior to the FTN
command), which will thus send all TRACE output to a file. (See Section 10 for COMOUT-
PUT information).

See Section 5 for more information on these compiler options.

FDR 3057 9-2 1 January, 1979

ADVANCED

PROGRAMMING
TECHNIQUES

Operating system features

This section discusses some PRIMOS utilities that are useful to most FORTRAN program-
mers. These are:

e Command file operations (COMINPUT, COMOUTPUT, PHANTOM and CX)
¢ Phantom users (PHANTOM]

¢ Sequential job processing (CX)

e Magnetic tape utilities (MAGNET, MAGSAV, MAGRST)

e PRIMENET

¢ TFile utility (FUTIL)

e SORT utility _

¢ File compare and merge commands (CMPF, MRGF)

¢ Terminal control (TERM)

For more details on these and other topics, see Reference Guide, PRIMOS Commands.

COMMAND FILE OPERATIONS

PRIMOS offers three utilities that allow command sequences to run from files rather than
from direct user interaction. They are:

COMINPUT Reads commands from a specified file. Commands and responses
appear on terminal. Terminal is dedicated to this operation during
execution.

PHANTOM Reads commands from a file but executes as another PRIMOS

process, freeing terminal for other use. Limited number of phan-
tom processes are available, so user may have to wait for a free
process.

CX Sequential job processor. Operates like PHANTOM but queues a
large number of command files and can be interrogated about job
status. -

All of these utilities read commands from a command file, which is a file containing
PRIMOS commands, utility subcommands, and dialog responses. The user creates the file
with the editor, runs it under COMINPUT to verify operation, edits it to make changes, and
thereafter runs it under COMINPUT, PHANTOM or CX. This is particularly useful for long
program development operations that must be repeated whenever source code is changed,
building libraries, production job runs, etc.

Supporting the three command processing utilities is the COMOUTPUT command which
maintains an audit file of the dialog between PRIMOS and the command file. Other useful
PRIMOS commands are TIME and DATE. These commands are described later in this
section.

1 January, 1979 10-1 FDR 3057

10 OPERATING SYSTEM FEATURES

Command file requirements

Command input files may contain any legal PRIMOS commands, utility subcommands, or
dialog responses, on a line-for-line basis i.e., each line in the file must correspond to a line
as it would be typed at a terminal. Each utility imposes certain requirements:

e For COMINPUT, the last command should be COMINPUT -TTY or COMINPUT
~-END.
e For PHANTOM, the last command must be LOGOUT.

e For CX, the first command must be an ATTACH to the desired working directory
and the last command must be CO -TTY, CX -E, or LOGOUT.

Comments: command input files can be made self-documenting by including comment lines
at PRIMOS command level. A line beginning with a slash and asterisk, (/*), is interpreted
as a comment and is ignored by PRIMOS. If a command output file is open, any comments
entered at the terminal by the user or from a command file are written into the command
output file. Any character may be used in a comment line. A comment may also be appended
to a command at PRIMOS command level as in:

SLIST M BENCH@7 /* PRINT MAP FILE

The COMINPUT Command

The COMINPUT command causes PRIMOS to read input from a specified command file
rather than from the terminal. Commands are executed as if they were entered at the
terminal. The format is:

COMINPUT [command-file] [-options] [file-unit]

command-file ~ The pathname of the file from which input is to be read.
options ; Specify command control flow as detailed below.
file-unit The PRIMOS file unit number on which the input file is to be

opened. If omitted, file unit 6 is used. File units must be octal (i.e.,
decimal 8 is entered as 10).

Options:
-TTY . Either one switches the command input stream to the user termi-
-END nal and closes the command input file.
-PAUSE Switches command input stream to the user terminal but does not

close the command input file.

-CONTINUE Returns control to command input file following a CO ~-PAUSE or
an error,

-START Resumes command following a BREAK interruption of execution
of a command file.

The -TTY, -END and -PAUSE options are used only within cdmmand files. The
-~CONTINUE and -START options are typed by the user.

The -TTY, -END option must be the final command in the command file (or in the last
command file, if files are chained as described below.)

FDR 3057 10-2 1 January, 1979

OPERATING SYSTEM FEATURES 10

Chaining command files: The -CONTINUE option of COMINPUT allows command files to
be chained. The following example illustrates the chaining of three command files, and
shows how file unit conflicts can be avoided. The command file C_GO contains the
following commands:

/* COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V

/* LOAD THE PROGRAM

COMINPUT C LOADTEST 7

CLOSE 7

/* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY

The command file C_LOADTEST contains the following commands:

/* LOADTEST COMMAND FILE
SEG

VLOAD #FTN.TEST

LO B _FTN.TEST

LI

SA

u

COMINPUT C_MAPS 10
CLOSE 8

COMINPUT ~CONTINUE

The command file C__MAPS contains the following commands:

/* GET FULL MAP AND UNSATISFIED REFERENCES
SEG

VLOAD * #FTN.TEST

MAP M _LOADTEST 7

MAP M_UNSATISFIED 3

Qu

/* RETURN TO 'CALLING' COMMAND FILE
COMINPUT —CONTINUE

Typing COMINPUT C_GO causes the commands in C_GO to be executed; the COMINPUT
C_LOADTEST 7 command causes input to be read from C__LOADTEST (opened on file unit
7). The COMINPUT -CONTINUE command in C_LOADTEST causes input to be read from
the command file opened on unit 6 (C_GO). Since C__GO was not closed, its file pointer is at
the command following the one invoking input from C__LOADTEST. In a similar manner the
command file C__MAPS is invoked from C_LOADTEST on file unit 8 ('10). Execution of CO
—GO results in the following terminal output:

1 January, 1979 10-3 FDR 3057

10 OPERATING SYSTEM FEATURES

OK, CO C GO

OK, /* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V

GO

9009 ERRCRS [<.MAIN.>FIN-REV16.1]

OK, /* LOAD THE PROGRAM
COMINPUT C_LOADTEST 7

OK, /* LOADTEST COMMAND FILE
SEG

GO

VLOAD #FIN.TEST

$ LO B_FTN.TEST

$ LI

LOAD COMPLETE

$ sa

$ QU

OK, COMINPUT C_MAPS 10

OK, /* GET FULL MAP AND UNSATISFIED REFERENCES
SEG

Go

VLOAD * #FIN.TEST

$ MAP M_LOADTEST 7

$ MAP M_UNSATISFIED 3

$ Qu

OK, /* RETURN TO 'CALLING' COMMAND FILE
COMINPUT —CONTINUE

OK, CLOSE 7

OK, /* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY

OK,

Errors: Non-recoverable errors return input control to the terminal, leaving the command
file open. The user may type a correct version of the offending line, and then resume input
from the command file by the command CO -CONTINUE.

Closing command input files: In chaining command files, the ‘called’ files should be closed
upon returning to the ‘calling’ files, either by file unit number (as in the example above) or
by filename. The user should make certain that the file units to be used for the command
input files are not already opened (or going to be opened) by user programs, utilities, or
other command input files.

FDR 3057

Note

The CLOSE ALL command should not be used in a command
input file, as it closes all files, including the command input
file from which this command is read. The message COMINP
FILE EOF will be printed and input control will be switched

to the terminal.

10-4

1 January, 1979

OPERATING SYSTEM FEATURES 10

The COMOUTPUT command

The COMOUTPUT command writes, into a specified file, both the output stream directed to
the terminal by PRIMOS and the input presented to PRIMOS. The input may originate as
direct typing, or come from a command file running under COMINPUT, PHANTOM or CX.
The resulting output file is a permanent record of the entire dialog.

Output to the terminal can be suppressed. Print suppression increases speed since it
normally takes more time to write to a terminal than to a disk file.

The command format is:
COMOUTPUT [output-file] [-options]

output-file is the pathname of the file to which the output stream is sent. options specify
terminal and file output and control flow as described below.

Terminal options: These can be used when the output file is first opened, or at any time
before the command output file is closed. User input is always echoed at the terminal even
if the -NTTY option is used.

-NTTY Turn off terminal output.
-TTY Turn on terminal output (default).

Error messages are printed in the output file and at the terminal, regardless of the terminal
option selected. Any inter-user terminal output (e.g., messages from the supervisor termi-
nal) is printed at the terminal but not in the output file.

File options: These stop or restart output to the command file. They may also be used to
append output to an existing file.

-PAUSE Stop output to command file; leave file open.

-CONTINUE Resume output (halted by -PAUSE) to the command output file.
Or, if at PRIMOS level, re-open an existing COMINPUT file and
position the pointer so that new output will be appended.

-END Stop output to command file; close file.

A BREAK turns terminal output on, but does not close the file. A LOGOUT turns terminal
output on and also closes the command output file, as well as any other files the user has

currently open.
Examples:
COMO O_FTNTEST

opens the file O_FTNTEST for output and positions the pointer to the start of the file. If O
__FTNTEST already exists, its previous contents will be deleted. To open an existing file for

appending, typing:
.COMO O_FTNTEST -C

opens the file O__FTNTEST and positions the pointer at the end of the file.

1 January, 1979 10-5 FDR 3057

10 OPERATING SYSTEM FEATURES

Closing command output files: The command output file is normally closed by the COMO
-END command. The user may desire to close the file at other times (say, after a BREAK).
Since COMOUTPUT uses file unit 63 ('77), the CLOSE ALL command will not close this file.
The file may be closed with:

CLOSE output-file
or
CLOSE 77 (must be octal value)
or
COMO -END
Using DATE and TIME in command files
The DATE command: The command DATE prints the system date and time at the user

terminal.

OK, DATE
GO

Wednesday, June 7, 1978 10:11 aM
OK,
This feature allows command output files to be stamped with date/time information for

identification, as an aid to program development and debugging. For example, the sequence
of commands:

COMO O__TEST1
DATE

DATE
COMO -END

creates a file, O_TEST1. The first line of this file is the DATE command; the next line is the
time and date of this interactive session.

DATE may also be included in command input files or in command files for the sequential
job processor (CX).

The TIME command: The command TIME entered at the user terminal prints the current
values in the time accounting registers. These are: connect time, compute time, and disk 1/0
time.

OK, TIME
1'32 ¢'11 0'o8
OK,

FDR 3057 10-6 1 January, 1979

OPERATING SYSTEM FEATURES 10

Connect time is the time since LOGIN (in hours and minutes). Compute time is the time
accumulated executing commands or using programs (in minutes and seconds). This does
not include disk I/0 time. Disk 1/O time (in minutes and seconds) is the accumulated time
for disk input and output. Disk I/0 includes paging I/O time generated on the user’s behalf.
All times include system supervisor overhead caused by user requirements.

The TIME command can be given before and after executing a program. The time
differences can be used to benchmark the program and measure efficiency as the program
is optimized.

Example: the command input file C_BENCHO07 contains the following:

COMO O_BENCH@7

/* TIMING TEST OF BENCH@7 PROGRAM
DATE

/* GET START TIME VALUES

TIME

SEG #FTN.TEST

/* GET STOP TIME VALUES

TIME

COMO -END

CO -TTY

The command CO C__BENCHO07 executes this command file. Upon completion, the output
file O__BENCHO07 contains the following:

OK, /* TIMING TEST OF BENCH#7 PROGRAM
DATE
GO

Wednesday, June 7, 1978 9:59 AM

OK, /*
;* GET START TIME VALUES
*
TIME
1'12 ¢'g3 0'e3
OK, /*
SEG #FTN.TEST
GO
THIS IS A TEST

OK, /*
/* GET STOP TIME VALUES
/*
TIME

1'12 90'04 0'05
OK, /*
COMO -END

1 January, 1979 10-7 FDR 3057

10 OPERATING SYSTEM FEATURES

PHANTOM USERS

The phantom user feature allows command file processing without tieing up a terminal.
Once a phantom process has been initiated, it is treated by PRIMOS as a separate process
that is not associated with a terminal. The terminal is then made available for other uses.

The command file run by the phantom process specifies the commands and their sequence,
program invocations and necessary input data required to complete a particular job.
Phantoms are used for long compilations, loadings, and executions that are debugged and
require no interactive terminal input. Certain PRIMOS system utilities (e.g., FAM, SPOOL)
are implemented as phantom processes.

Using PHANTOM
A phantom user process is initiated by the command:
PHANTOM filename [file-unit]

filename is the name of a command input file, and file-unit is the PRIMOS file unit number
on which the command file is to be opened. If omitted, file unit 6 is used.

The PHANTOM command checks for available phantom processes. The number varies with
each installation. The message

NO FREE PHANTOMS

is returned if no processes are available. Control is then returned to PRIMOS. When a
phantom process is available, the message

PHANTOM USER IS user-number

is returned and the phantom user is logged in (under the same login-name as the invoker).
The home and current directories of the phantom are set to the current directory of the
originating user. User-number is the number assigned by PRIMOS to the PHANTOM
process. Control returns to PRIMOS, the terminal is freed for other use, and the phantom
command file is opened on the specified (or default) unit. PRIMOS then reads all further
commands for the phantom user from the command file.

Phantom operation

Phantom processes should not execute programs which require input from an actual
terminal. Such an instruction will abort and log out the phantom process. This logout
information is printed only at the supervisor terminal.

While a phantom process is in operation, generated output is suppressed unless a command
output file has been opened by a COMOUTPUT command in the phantom command file.
Output is then written to the COMOUTPUT file.

It is possible to initiate another phantom from a running phantom, in a manner similar to
chained COMINPUT files. However, there is no guarantee that a phantom user process will
be available when the process is requested by a command file.

The final command in the last executed phantom command file should be LOGOUT.

Phantom logout

At the completion of a job process, phantom users are automatically logged out. To cancel a
phantom user process before completion, use the command:

LOGOUT -usernumber

usernumber is the PRIMOS-assigned phantom user number

FDR 3057 10-8 1 January, 1979

10 OPERATING SYSTEM FEATURES

Any phantom can be logged out from the supervisor terminal. From a user terminal, a
phantom can be logged out only if the terminal has the same login UFD as that which
initiated the phantom.

Phantom STATUS information

The STATUS USER command (discussed in Section 2), provides a list of all the users in the
system, their login numbers, assigned line numbers, etc. Phantom users are distinguished by
the line number 77 in a STATUS list. In the following example, the phantom users are
numbers 57 and 58, as indicated by LIN = 77. These phantom processes were initiated by -
users logged into SYSTEM and FAM respectively.

Example:

OK, STATUS USER

USER NO LIN PDEVS
TEKMAN 43 51 50460
SILVA 44 52 10460
BD 45 53 61069
SYSTEM 57 77 460
FAM 58 77 460 (2)
SYSTEM 59 77 61060

OK,

Example of phantom command file

The phantom command file PH.TEST contains the following commands:

/* BEGIN TEST OF PHANTOM
COMOUTPUT O PH.TEST

DATE B

/* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V

/* LOAD THE PROGRAM

SEG

VLOAD #FTN.TEST

LO B _FTN.TEST

LI

sA

MAP M_LOADTEST 7

MAP M UNSATISFIED 3

Qu

/* PHANTOM TEST COMPLETED
DATE

LOGOUT

1 January, 1979 10-9 FDR 3057

10 OPERATING SYSTEM FEATURES

When a phantom is invoked at the terminal by PH PH.TEST, the terminal interactive dialog

18!

The contents of the command file, O_PH.TEST created by the phantom are:

OK, PH PH.TEST

PHANTOM IS USER 61
OK,

OK, DATE
GO

Wednesday, June 7, 1978 3:27 PM

OK, /* COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V

GO

2009 ERRORS [<.MAIN.>FTN-REV15.1]

OK, /* LOAD THE PROGRAM
SEG

GO

VLOAD #FTN.TEST

$ LO B FTN.TEST

$ LI

LOAD COMPLETE

$ sA ‘

$ MAP M _LOADTEST 7

$ MAP M UNSATISFIED 3
S QU

OK, /* PHANTOM TEST CCMPLETED
DATF
GO

Wednesday, June 7, 1978 3:28 PM
OK, LOGOUT

TEKMAN (61) LOGGED OUT AT 15'28 268778
TIME USED= @'0l 0'p4 9'l0

FDR 3057 10-10

1 January, 1979

OPERATING SYSTEM FEATURES 10

SEQUENTIAL JOB PROCESSOR (CX)

The CX utility handles the queuing of jobs for sequential execution as phantoms. Jobs may
be:

¢ Run simultaneously (multiple job streams).

¢ Queued according to priority (priority levels).

¢ Restricted to a specified amount of CPU time.

Using CX

Jobs are submitted by passing the name of a command input file to the CX queue manager.
The command format is:

CX pathname [-PRIORITY level] [-CPULIMIT cpu-seconds]
pathname The name of the command input file from which the CX
processor will read commands.

-PRIORITY level Optional assignment of job priority. Standard priority range is
0-7. Default is level 3 (median).

~-CPULIMIT Time allowed for job to run, in CPU seconds. A number from 1
to 2147483647 (0 is illegal). Default = NONE (notime limit). Job is
logged out after the limit is reached.

The range of priority levels and CPU-limits are installation configurable. Check with your
System Administrator for the range of values implemented on your system.

Job file number

When the CX command and options have been specified, the system responds with the
following message:

YOUR JOB FILE IS CX##queue-number

queue-number is a 2-digit number identifying the job in the CX queue. This number is
assigned by the CX queue manager.

1 January, 1979 10-11 FDR 3057

10 OPERATING SYSTEM FEATURES

Job ID

A CX job may be given an ID for ease of identification in the CX queue. The first six
characters immediately following the first * (the second symbol of a comment indicator)
occurring in the command file are taken as the job ID label. This ID label is printed in
STATUS interrogation requests. (see below).

Example:

/* CXTEST IS JOB ID

The letters CXTEST will be taken as the job ID of the command file called CXTEST.

CX command files

A CX command file is a command input file. It is the same as a command file used for
PHANTOM execution with the following exceptions:

* The first executable command must be an ATTACH to the desired working
directory. (CX initially logs in the job in its own UFD.)
* The last command may be either CO -TTY, LOGOUT, or CX -E. A job will be
listed as ABORTED in the queue if it terminates without one of these commands.

CX queue information

The status of the CX queue can be determined by issuing the CX command, followed by one

of these options:

-A Lists entire activity file.

-P Lists all jobs belonging to user.
-Q Prints job queue.

-Snn Prints status of job nn.

For example,

OK, CX -A
GO

CX JOB FILE LISTING 78/06/88 2:07 PM

FILE ID OWNER STATE DATE/TIME
CX##07 .TIMDA LSMITH COMPLETED 78/04/18 1:47
CX##06 .TIMDA [LSMITH ABORTED 78/04/18 1:38
CX##05 .TIMDA LSMITH COMPLETED 78/04/18 1:35
CX##04 .TIMDA LSMITH COMPLETED 78/04/18 1:26
CX##03 .TIMDA LSMITH ABORTED 78/04/18 1:18
CX##02 .TIMDA [LSMITH CCMPLETED 78/04/14 5:23
CX##01 .TIMDA LSMITH COMPLETED 78/04/14 5:15
FDR 3057 10-12

PM

PM

PM

1 January, 1979

OPERATING SYSTEM FEATURES 10

Dropping jobs from the queue

A job waiting in the CX queue may be dropped by the command:
CX -Dnn

nn specifies which job is to be dropped from the waiting queue.

A job cannot be dropped from the queue if the job is executing. A user may only drop from
the queue jobs which were entered under the user’'s login name. For example:

OK, CX -Dd1
GO

?CAN'T - NOT YOUR JOB

OK,

Example of CX usage

The command file CXTEST in UFD=TEKMAN>PDR3057>FDR3057 contains the following
commands:

/* CXTEST IS JOB ID

A TEKMAN>PDR3@57>FDR3057
COMOUTPUT O.CXTEST

DATE :
/* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V

/* LOAD THE PROGRAM

SEG

VLOAD #FTN.TEST

LO B_FTN.TEST

LI

SA

MAP M _LOADTEST 7

MAP M UNSATISFIED 3

U

CX -0

/* CX TEST COMPLETED
DATE

COMOUTPUT -END

CX -E

When the CX processor is invoked the interactive session at the terminal is:
OK, CX CXTEST
GO
YOUR JOB FILE IS CX##24
[CX, REV 16.0]

OK,

1 January, 1979 10-13 FDR 3057

10 OPERATING SYSTEM FEATURES

The command output file created by the CX command file is:

FDR 3057

OK, DATE
GO

Thursday, June 8, 1978 2:09 PM

OK, /* COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V

GO

#0009 ERRORS [<.MAIN,.>FTN-REV16]

OK, /* LOAD THE PROGRAM
SEG

GO

VLOAD #FTN.TEST

$ LO B_FTN.TEST

$ LI

LOAD CCMPLETE

$ sA

$ MAP M _LOADTEST 7

$ MAP M UNSATISFIED 3

$ QU
OK, /*
CX -0
GO
CX JOB QUEUE LISTING 78/86/88 2:09 PM
FILE OWNER D DATE/TIME
* CX##25 TEKMAN CXTEST 78/06/08 2:08 PM
[CX, REV 16]

OK, /* CX TEST CQMPLETED

DATE

GO

Thursday, June 8, 1978 2:09 PM

OK, COMOUTPUT -END

(* denotes execution)

10-14

1 January, 1979

OPERATING SYSTEM FEATURES 10

MAGNETIC TAPE UTILITIES

The Prime magnetic tape utilities allow the duplication of magnetic tapes, the transfer of
files from disk to tape and vice-versa, and the transfer and translation of tapes in non-Prime
format to and from PRIMOS disk files.

Duplicating magnetic tapes
The following utilities are available for duplicating magnetic tapes:
MAGNET

¢ Copying from tape to tape.
¢ Translating from EBCDIC or BCD to ASCII.
* Copying binary files.

MAGSAV

e Archiving Prime-format files, directory-trees or disk volumes to tape.
MAGRST

* Restoring Prime-format files, directory-trees or disk volumes from tape.

Copying tapes with MAGNET: If there are two tape drives at the programmer’s disposal, the
COPY option of MAGNET can be used to generate duplicates of magnetic tapes. This option
copies one tape directly to another. The MAGNET utility may be used for tapes in Prime or
non-Prime format.

The essential steps in the copy procedure are:

1. Assign two magnetic tape drive units from terminal

2. Mount the FROM tape (original) and TO tape (blank) on their respec-
tive drive units.

3. Use COPY option of MAGNET: supply FROM and TO tape unit
numbers and starting file number and number of files to be copied, as
requested.

4. Dismount both tapes and unassign tape drives when EOT (end of tape)
message is returned.
For information on MAGNET, see Reference Guide, PRIMOS Commands.

Copying tapes with MAGRST/MAGSAV: When only one tape drive is available, the
MAGSAV/MAGRST utilities can be used to duplicate tapes as follows:

1. Assign a tape drive unit from the terminal.

Mount FROM (original) tape on drive unit.

Copy tape to files on disk using MAGRST.

Remove FROM tape and replace with TO (blank) tape on drive unit.
Transfer files from disk to TO tape using MAGSAV.

6. Dismount tape and unassign drive unit from terminal.

A summary of MAGRST and MAGSAV dialogues follows.

ST AR

MAGRST dialogue summary

The Magnetic Tape Restore Utility restores files, directory, trees and partitions from a
magnetic tape (7- or 9-track) to a disk.

The command format is:
MAGRST [-7TRK] (option specifies 7-track tape: default =9)

1 January, 1979 10-15 FDR 3057

10 OPERATING SYSTEM FEATURES

The MAGRST utility asks the user a series of questions which are summarized, along with

appropriate response, below.

Question
TAPE UNIT:
ENTER LOGICAL TAPE #

READY TO RESTORE

TREENAME:

MAGSAYV dialogue summary

Response

Specify number from 0-7.

Specify number from 1 to n: tape is rewound and
positioned. Enter 0 if tape already rewound and
positioned.

Enter YES to restore entire tape: NO causes request
for new tape drive number and logical tape number.
PARTIAL restores part of tape as defined by the
following:

$I [filename] n - print index to n levels to terminal or
optional filename.

NW [n] - print n-level index at terminal but do not
update disk.

Requested when PARTIAL restore is specified. Enter
pathname(s) for file(s) to be restored.

The Magnetic Tape Save Utility writes PRIMOS files from disk to a 7- or 9-track magnetic
tape. Several options may be specified with the MAGSAV command:

-LONG Sets record size to 1024-words (Default =512). Useful for long
files.

-UPDT Indicates update. DUMPED switch set for files and directories
saved from disk to tape.

-INC Indicates incremental dump. Only files and directories with

DUMPED switch set to 0 will be saved. (Default = save all)

The MAGSAV dialogue is summarized below. Advisable user responses are indicated.

Question

TAPE UNIT:

ENTER LOGICAL TAPE #:
TAPE NAME:

DATE:

REV. NO.
NAME:

FDR 3057

Response

Specify physical tape unit number from 0-7.
Specify number from 1 to n: rewinds and positions
tape. Specify 0 if tape is already rewound and posi-
tioned.

Positions tape. Specify 0 if tape is already rewound
and positioned.

Specify date in format: mm dd yy. Default (CAR-
RIAGE RETURN only) is system date.

Enter appropriate REV. number.

Possible responses include:

$A - change home UFD

$Q - terminate logical tape and return to PRIMOS
$R - do $Q and rewind tape

$I [filename] n - saves index to n levels

MFD - save entire disk

* - save current directory

10-16 1 January, 1979

OPERATING SYSTEM FEATURES 10

USING PRIMOS WITH NETWORKS

Many Prime installations contain two or more processors connected in a network—a
combination of communications hardware and PRIMOS software called PRIMENET. On a
system using PRIMENET, the following operations are possible:

* LOGIN to a UFD on a remote system and use that CPU for processing. (Only
terminal I/0 is sent across the network.)

* ATTACH to directories on disk volumes connected to any other processor in the
network, and access files in such directories. (File data is transmitted across
the network; the local CPU does the processing.)

* Make sure a spool file is printed on the local spool queue (if more than one
processor is running a spool queue).

In a network, the processor the user terminal is connected to is the local processor, while all
other processors are considered remote. Each processor in the system is assigned a
nodename during system configuration. Disks connected to remote processors are identified
by local logical disk numbers. (These are assigned by the local system operator during
system configuration.) To determine the nodename and logical disk numbers for remote
processors use the STATUS command (described later in this section),

For more information on the inner workings of PRIMENET, see the System Administrator's

Guide. PRIMENET also supports network-primitive subroutine calls for program-level

communication between processes running on different processors. These subroutines are

described in Reference Guide, PRIMOS Subroutines.

Remote login

The LOGIN command accepts a nodename argument that enables login to a remote system:
LOGIN ufd-name [password] [-ON nodename]

If -ON nodename is omitted, an attempt is made to log into ufd-name on the local system
only. If nodename is the name of the local node, the login attempt is done locally without the
use of PRIMENET.

If the LOGIN command fails for any reason (e.g, NOT FOUND, NO RIGHT, BAD
PASSWORD), the user’s PRIMENET connection is broken, and the terminal is reconnected
to the local process (not logged in).

On a terminal logged in to a remote processor, the command LOGOUT logs out the process,
breaks the remote connection over PRIMENET, and reconnects the terminal to its local
process (not logged in). Due to network delays, all input characters typed between the
LOGOUT command and the response OK are discarded.

Network status
The STATUS NETWORK command gives the names and states of all nodes in the network:

OK, STATUS NETWORK

SMIC NETWORK
NODE STATE

HARDWR %
RSRCH1 UP

1 January, 1979 10-17 FDR 3057

10 OPERATING SYSTEM FEATURES

RING NETWORK

NODE STATE
HARDWR *%**
SYSB UP
SYSD upP

This shows the state of a four-node network as it would be printed for a local user on the
HARDWR node. The UP state means that the node is configured and functioning.

Attaching to remote directories

To attach to a directory located in a disk volume at another node, specify the logical disk
number of the remote disk (determined from a STATUS DISKS printout) within the
pathname of an ATTACH command, as in:

ATTACH <3>]JONES
which attaches to a UFD=]JONES on logical disk number 3.

Selecting home spool queue

In a network with more than one spool queue in operation, any SPOOL request is
intercepted by the first spooler which is ready to accept a job and has the right form type.
To make sure the printout takes place on the local spooler, use the -HOME argument in the
SPOOL command:

SPOOL filename [-HOME]

FILE COPYING, DELETING, AND LISTING (FUTIL)

FUTIL is a file utility command for copying, deleting, and listing files and directories. FUTIL
is most often used for copying files and directories from one directory to another. It is also
useful for deleting groups of files and entire directories. Its list option allows the user to
examine file and directory properties and to keep track of the contents of directories
involved in the copy or delete processes. FUTIL allows operations on files within user file
directories (UFDs) and segment directories.

Invoking FUTIL

To invoke FUTIL, type FUTIL. When ready, FUTIL prints the prompt character >, and waits
for a command string from the user terminal. FUTIL accepts either upper or lower case
input, but passwords must be entered exactly as they have been created, i.e., in UPPER
CASE for almost all instances. (Most other commands will convert passwords to upper case
before attempting the match. FUTIL does not.) To abort long operations (such as LISTF),
type BREAK, and restart FUTIL by typing S 1000.

To use FUTIL, type a command followed by a carriage return, and wait for the prompt
character before issuing the next command. The erase () and kill (?) characters are
supported in both command and subcommand lines.

FUTIL commands

Although only the major FUTIL commands are discussed in detail here, the following figures
illustrate the function of all available FUTIL commands. Figure 10-1 is an overview of all
FUTIL commands. Figure 10-2 outlines the COPY, DELETE and PROTECtion commands and
how they operate on files and directories. A typical FROM and TO directory outline is
included to show how commands move files and directories from one location to another.

FDR 3057 10-18 1 January, 1979

OPERATING SYSTEM FEATURES 10

The following are examples of the most commonly used FUTIL commands. An overview of
FUTIL commands appears at the end of this section.

For complete details on all FUTIL commands, listed at the end of this section, see Reference
Guide, PRIMOS Commands.

Copying

FUTIL provides several commands which allow the user to copy files, and formats are listed
below:

COPY Copies files (as many as will fit on line).

TRECPY Copies directory trees.

UFDCPY Copies entire UFD structure (complete with all files).

TO Specifies directory to which file(s) or directories are to be copied.
Accepts a pathname. Default is home directory.

FROM Specifies directory from which files or directories are to be

copied. Accepts a pathname. Default is home directory.

The general format of these commands are:

COPY pathname [new-name], [pathname new-name]. ..
TRECPY pathname
UFDCPY

To copy a file, the user must have read access rights. The name of a file may be changed by
indicating the desired new name immediately after the current name has been specified.
Filename pairs are separated by commas on the command line.

Example: The tree structures in figure 10-3 illustrates the positions of various files and
directories which will be copied from one point to another in the following examples.

Situation 1: Suppose we want to copy the files HITS and MISSES from the directory
NAUTILUS, into our current directory, SECRETS. We are currently attached to SECRETS
and have also set it as home. The pathname of SECRETS is represented as follows: <*>
SECRETS. In pathnames, <*> represents the current disk. In this case, it represents disk 2.
This pathname can also be represented as <MONITOR>SECRETS. MONITOR is the
volume-name of the logical device, whereas 2 is the volume-number. Similarly, in figure
10-3, the volume-name and number of the other logical disk are 1 and NAVY respectively.
The volume-name and number can be used interchangeably in a pathname, and both appear
in the following examples. Any directory subordinate to SECRETS would be described by a
relative pathname, as in, *>DOMESTIC. In relative pathnames, the use of * indicates the
home directory.

We do the following:

1. Invoke FUTIL.
2. Define the FROM directory.
3. Define the files to be copied and indicate new filenames (optional).

1 January, 1979 10-19 FDR 3057

10 OPERATING SYSTEM FEATURES

SRR T

| erom L N (copvsam
| DIRECTORY — >

LISTF (SCAN)

“TERMINAL

| ‘curmenT
| pIRECTORY

OPERATING SYSTEM FEATURES 10

10 OPERATING SYSTEM FEATURES

NAUTILU:
-UED

s |

HOLLAND |+
“(suB-UFD) |

- pomestic |
(SUB-UFD) |-

misses | o

OPERATING SYSTEM FEATURES 10

The FUTIL dialogue is as follows:

OK, FUTIL

GO

> FROM <1>MARINE>NAUTILUS
> COPY HITS, MISSES ZEROES
> QUIT

OK,

The files HITS and ZEROES (formerly MISSES) are now in our home directory SECRETS,
as well as in the FROM directory NAUTILUS. (The file MISSES is not renamed in the
FROM directory.)

Situation 2: Suppose we want to copy all the contents of the directory HOLLAND to another
directory CLASSIFIED, on the current disk. The files and directories contained in
HOLLAND are called a directory tree. The FUTIL dialogue would be as follows:

OK, FUTIL
GO

> FROM <1>MARINE

> TO <*>CLASSIFIED
> TRECPY HOLLAND

This copies the directory HOLLAND (with its subordinate files and directories) to the
directory CLASSIFIED. the <*> indicates the current disk. HOLLAND is now a subdirectory
in CLASSIFIED.

Situation 3: Suppose we wish to copy the entire directory tree MARINE into the UFD
REPORTS. The FUTIL dialogue would be:

OK, FUTIL

GO

> FROM <NAVY>MARINE

> TO <MONITOR>REPORTS
> UFDCPY

> QUIT

The entire batch of files and directories listed under the UFD MARINE are now listed as a
subdirectory under the UFD REPORTS.

Situation 4: We can also copy files from our home (current) directory to another. It is not
necessary to specify a FROM name. Simply specify the directory TO which the files are to
be copied. If we want to copy the directory REPORTS to the directory MARINE, the
following dialogue results. If the files to be copied are located in the home directory, the
FROM name need not be defined. When the TO directory alone is defined, FUTIL assumes
the FROM directory to be the home directory. If the FROM directory specification is
omitted, the home directory is assumed, and FUTIL searches for the files to be copied in the
home directory. This is the default. Note that both a TO and FROM directory must be given
in this case. REPORTS is not our home or current directory.

1 January, 1979 10-23 FDR 3057

10 OPERATING SYSTEM FEATURES

OK, FUTIL

GO

> FROM <*>REPORTS
> TO <1>MARINE

> UFDCPY

> QUIT

Deleting files

Commands for deleting files, directory trees and UFDs are:

DELETE Deletes specified files from FROM directory
TREDEL Deletes specified directory trees from FROM directory.
UFDDEL Deletes entire specified UFD.

The user must have read, write, and delete/truncate access rights to delete any file.
Examples:

Situation 1: In order to delete the file HITS from the subUFD NAUTILUS, the following
dialogue could be used:

OK, FUTIL

GO

> FROM <NAVY>MARINE>NAUTILUS
> DELETE HITS

> QUIT

Situation 2: If we wanted to delete the directory tree rooted in the subUFD HOLLAND, we
would do the following:

OK, FUTIL

GO

> FROM <1>MARINE
> TREDEL HOLLAND
> QUIT

OK,

This deletes the directory HOLLAND and its entry in MARINE,

Situation 3: To delete the contents of CLASSIFIED appearing on our current disk, 2, the
following dialogue could be implemented:

OK, FUTIL

GO

> FROM <*>CLASSIFIED
> UFDDEL

> QUIT

OK,

FDR 3057 10-24 1 January, 1979

OPERATING SYSTEM FEATURES 10

This effectively deletes the entire UFD CLASSIFIED and all of its subordinate directories
and files.

Listing contents of a directory

The LISTF command in FUTIL displays a list of all the files and directories in the FROM
directory. It also displays the FROM directory pathname and the TO directory pathname
(default). The various options of the LISTF command provide information on all the files
contained in the FROM directory.

FUTIL Command Summary

ATTACH pathname

Changes working directory to pathname.

CLEAN prefix [level]

Deletes files beginning with prefix, for indicated number of levels (default=1).

COPY from-name [to-name] [,from-name [to-name]] . ..
Copies named files from FROM directory to TO directory. If to-names are omitted, copies
have same names as originals.

COPY (from-position) [(to-position)]

Copies from one segment directory to another. If to-position is omitted, copy goes to same
position as original.

COPYDAM
Same as COPY but sets file type of copy to DAM.

COPYSAM
Same as COPY but sets file type of copy to SAM.

CREATE directory [owner-password [non-owner-password]]
Creates directory in current TO directory (with optional passwords).

DELETE) file-a [file-b] . ..

(position-a) [(position-b)] . ..

Deletes from FROM directory, named files or, in segment directories, deletes files at
specified positions.

FORCE) ON

[OFF]

ON forces read-access rights in FROM directory for LISTF, LISTSAVE, SCAN, UFDCPY,
and TRECPY. OFF stops FORCE action (default).

1 January, 1979 10-25 FDR 3057

10 OPERATING SYSTEM FEATURES

FROM pathname
Defines FROM directory for subsequent commands such as COPY, LISTF, etc,

LISTF [level] [FIRST] [SIZE] [PROTEC] [RWLOCK] [TYPE]
[DATE] [PASSWD] [LSTFIL]

Lists files and attributes at terminal (and into optional file called LSTFIL).

LISTSAVE filename [level] [FIRST] [SIZE] [PROTEC] [RWLOCK]
[TYPE] [DATE] [PASSWD]

Same as LISTF, with the LSTFIL option specified, but writes output to filename.

PROTEC filename [owner-access [non-owner-access]]

Sets protection attributes for filename.

SCAN filename [level] [FIRST] [LSTFIL] [SIZE] [PROTEC]
[RWLOCK] [TYPE] [DATE] [PASSWD]

Searches FROM directory tree for all occurrences of specified filename and prints
requested attributes.

SRWLOC filename lock-number

Sets per-file read/write lock.

TO pathname

Defines TO directory for subsequent commands such as CREATE and all copying com-
mands.

TRECPY directory-a [directory-b] [,directory-c [directory-d]] . ..
Copies directory tree(s) in FROM directory into TO directory.

TREDEL directory-a [directory-b] . . .
Deletes directory tree(s) in FROM directory.

TREPRO pathname [owner-access [non-owner-access]]

Sets protection rights for directory and contents (default 1 0).

TRESRW pathname lock-number

Sets per-file read/write lock for all files in pathname.

UFDCPY
Copies entire FROM directory into TO directory.

UFDDEL
Deletes entire FROM directory.

FDR 3057 10-26 1 January, 1979

OPERATING SYSTEM FEATURES 10

UFDPRO [owner-access [non-owner-access [level]]]

Sets protection attributes for entire FROM directory.

UFDSRW lock-number n-levels
Sets per-file read/write lock for n-levels in FROM directory.

Lock-number Meaning Code
0 Use system read/write lock SYS
1 n readers OR 1 writer W/NR
2 n readers AND 1 writer 1TWNR
3 n readers AND n writers NWNR

FILE MANIPULATION

PRIMOS provides utilities for comparing, merging, and sorting files.

File comparison

The PRIMOS command CMPF permits the simultaneous comparison of up to five ASCII files
of varying lengths. The format is:

CMPF file-1 file-2 [. file-5] [options]
The first file, file-1, is treated as the original file against which the other files are compared.

The CMPF command produces output indicating which lines have been added, changed or
deleted in the other files.

The options which may be specified are:

-BRIEF Suppresses the printing of differing lines of text of files being
compared. Only identification letters and line numbers are
printed.

-MINL number Sets the minimum number of lines that must match after a

discrepancy between files is found. Needed in order to re-
synchronize file comparison. Default = 3 lines.

-REPORT filename Produces a file with specified filename, containing the dif-
ferences found between compared files (in lieu of displaying
them at the terminal during the comparison process).

After a difference between the original file and another specified file has been discovered,
CMPF attempts to resynchronize the files for comparison. This occurs only when a certain
number of lines match in all the files being compared. The default value is 3, but can be
changed in the -MINL option. The comparison process continues until another difference is
found.

When line differences are reported, either at the terminal or in a report file, each line from
the original file is indicated by the letter A, followed by the line number of the line
containing discrepancies. The corresponding lines of other files are indicated in the same
manner using letters B through E respectively.

1 January, 1979 10-27 FDR 3057

10 OPERATING SYSTEM FEATURES

Example: Consider the following two files:

FILEA FILEB
The The
quick swift
brown red
fox fox
jumps Jjumps
over over
the the
lazy dog
dog

A CMPF comparison of these two files works as follows:

OK, CMPF FILEA FILEB

GO

A2 quick
A3 brown
CHANGED TO

B2 swift
B3 red
A8 lazy
DELETED BEFORE
B8 dog.

COMPARISON FINISHED.
2 DISCREPANCIES FOUND.

OK,

Merging text files
The MRGF command merges up to five ASCII files. The format is:
MRGF file-1 [file-2 . . file-5] outfile [options]

The first file specified is treated as the original file, and it is assumed that changes have
been made to this file to produce the other files. Pathnames may be used to specify files to
be merged. Unchanged lines of text and nonconflicting changes between files are auto-
matically copied to the output file, outfile. When corresponding lines of text in the files
differ, the user is asked by the MRGF program to solve the conflicts. This is done via a series
of questions to which the user must respond appropriately.

The options taken by the MRGF command are similar to those for the CMPF command.
There is an additional option, -FORCE, which causes file-2 to be the preferred file if
conflicts exist between several files. No MRGF interactive dialogue will be generated when
conflicts arise if the ~-FORCE option is used. File-2 is assumed ‘correct’ and the other files
forced to comply with it.

FDR 3057 10-28 1 January, 1979

OPERATING SYSTEM FEATURES 10

Sorting files

The SORT command sorts various file types (default is ASCII), in ascending or descending
order. Lower case characters are sorted as upper case characters but are printed out as
lower case after being sorted. Information required by the SORT program is the following:

1. INPUT TREENAME—OUTPUT TREENAME

2. NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS (one
pair per line, separated by spaces)

3 SPECIFIC DATA TYPE - code entered at end of last line of column
keys. Up to 10 keys may be specified.

Codes

‘A’ ASCII

‘I'" Single Precision Integer
‘F’ Single Precision Real

‘D’ Double Precision Real
‘7" Double Precision Integer

Default is ASCII

Example:

OK, SORT

GO

SORT PROGRAM PARAMETERS ARE:
INPUT TREE NAME —-- OUTPUT TREE NAME FOLLOWED BY

NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.
INFILE OUTFILE 3

INPUT PAIRS OF STARTING AND ENDING COLUMNS

ONE PAIR PER LINE--SEPARATED BY A SPACE.

FOR REVERSE SORTING ENTER "R" AFTER DESIRED

ENDING

COLUMN--SEPARATED BY A SPACE.

FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE

AT THE
" All
” I"
” Fll
llDll
“J L]

END OF THE LINE--SEPARATED BY A SPACE.
- ASCII

- SINGLE PRECISION INTEGER

SINGLE PRECISION REAL

- DOUBLE PRECISION REAL

- DOUBLE PRECISION INTEGER

DEFAULT IS ASCII.

15
15 25
30 35

BEGINNING SORT

PASSES

2 ITEMS 421

[SORT-REV16.0]

OK,

1 January, 1979

10-29 FDR 3057

10 OPERATING SYSTEM FEATURES

Options

Several options may be specified with the SORT command. BRIEF suppresses SORT
program messages. SPACE eliminates blank lines in the output. MERGE allows the merger
of up to ten files. The R option (for reverse sorting) is placed after the column pairs which
are to be sorted in descending order.

SETTING TERMINAL CHARACTERISTICS

Terminal characteristics may be set with the TERM command. These characteristics remain
in effect until you reset them or until you log out. The commonly used TERM options are
listed below. Typing TERM with no options returns the full list of TERM options available.
The format is:

TERM options
The options are:

-ERASE character Sets user's choice of erase character in place of the default, .
-KILL character Sets user’s choice of kill character in place of default, ?.
-XOFF Enables X-OFF/X-ON feature, which allows programs to halt
: without returning to PRIMOS command level. Programs may be
resumed at point of halt by typing CONTROL-Q. Programs are
halted by typing CONTROL-S. Also sets terminal to full duplex
(default value.)

~-NOXOFF Disables X-OFF/X-ON feature (default).

-DISPLAY Returns list of currently set TERM characters. Also displays
current Duplex, Break and X-ON/X-OFF status.

FDR 3057 10-30 1 January, 1979

segmented program
techniques

ADVANCED FEATURES OF LOAD SUBPROCESSOR

Relative segment assignment feature
User-controlled placement of modules with a load can be desirable for reasons including:

e more efficient runfile
* aid in debugging
e isolation of potential trouble spots

Two mechanisms are provided in SEG’s loader for this purpose: relative segment assign-
ment and absolute segment assignment.

Relative segment assignment assigns reference numbers to SEG’s default segments; these
reference numbers remain associated with their assigned segments during a Load session.
Since the loader assigns and keeps track of those segment numbers, the user retains the
benefits of the Loader’s internal checking functions (except as specifically noted). Assign-
ments are made by the COMMON REL command or in conjunction with the Loader’s family
of load commands (LOAD, LIBRARY, RL, etc.). Reference numbers should be small positive
values.

For example:
COMMON REL 3
or
LOADB_MAIN 0 1 2

The numbers 1, 2, and 3 are relative segment reference numbers. The 0 where segment
reference number is expected, tells the Loader to use the default segments without
reference numbers. For example, the sequence of load commands:

LO B__MAIN

LO B_SUBR 001

LI

can be used to separate SUBR’s link frame from the link frames of the rest of the program.
This might be done if it were thought that SUBR had a local array with incorrectly specified
dimensions.

Another form of the COMMON command:
COMMON REL segno

allows the user to establish a reference number for segments into which COMMON will be
loaded. segno is the segment number into which COMMON will be loaded. It is always a
small octal number.

1 January, 1979 11-1 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Example:
CO REL 1

If data segment was assigned a relative value of 1, then COMMON will be loaded into a
segment with this relative segment assignment number. If no such segment has been
assigned, then this command will declare one of SEG’s default segments to be data segment
(relative) 1 and use it for loading COMMON.

When using SEG’s default segment assignments, the COMMON RELATIVE command will
cause SEG to load the COMMON blocks into a different segment than that used for the link
frames. This often decreases the size of the runfile which has to be restored. The user may
also desire to reserve space for certain COMMON blocks in a selected segment with specific
link frames. (See SYMBOL, R/SYMBOL,)

Load placement control

The Loader’s family of Load commands, LOAD, LIBRARY, and RL, has optional numeric
arguments for load placement control:

LOAD filename [addr psegno Isegno]
LIBRARY [filename] [addr psegno Isegno]
RL filename [addr psegno Isegno]

addr is the starting point for procedure in the segment specified by psegno. If addr is 0, the
current PBRK for that segment is used (TOP+1). Users ordinarily specify 0 for this
parameter. psegno is a relative segment assignment number to be used in loading procedure
(the code). Isegno is a relative segment assignment number to be used in loading link frames.
COMMON will not be loaded with the link frames unless a CO REL command specifying
this same relative segment reference number has been given prior to loading this module.

If psegno and/or lsegno are specified as 0, the ordinary SEG default segments without
relative segment assignment numbers are used. In all cases, the Loader creates the original
(and additional) segments with appropriate relative segment reference numbers as needed.

The reference numbers are incremented by the Loader as necessary; thus, it is possible that
some COMMON and link frame information will appear in the same segments if suitable
(possibly not the same) relative segment assignment numbers are chosen.

Example:

For a specific program, it is known (from the loadmap) that the link frames occupy 2-1/2
segments and COMMON will occupy about 1/2 segment. The following commands will
permit the last half segment of link frames to occupy the top of the COMMON segment:

CO REL 3
LO B_MAIN 01 1
LO B_SUB1011

LO B_SUBLAST 01 1
LI 011

The use of 1 for both psegno and Isegno is non-conflicting, as the loader keeps track of which
are procedure and which are link segments.

FDR 3057 11-2 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

Implicit parameter assignment: the D/ prefix
The D/ modifier tells the loader to use the same numeric parameters as were used for the
preceding load family command. The example in the preceding paragraph is equivalent to:
CO REL 3
LO B_MAIN 011
D/LO B_SUB1

D/LO B_SUBLAST
D/LI

The commands:
LO B_MAIN
LO B_SUB1011
D/LO B_SUB2 (orLOB_SUB2 01 1)
LI

cause MAIN and the FORTRAN libraries to be loaded in the same pair of segments
(procedure and link). SUB1 and SUB2 will be loaded in a different pair of segments.

The D/ modifier is especially useful for large loads and in command files. Use of D/
decreases input typing and time, and minimizes errors; editing command files is made
simpler (fewer changes) with less chance of error.

Specific segment assignment: the 8/ prefix

Modules may be loaded into specific segments for procedure and link frames by use of the
S/ prefix modifier.

The command format is:
S/xx [pathname] addr psegno lsegno

xx is LO, LI, RL, PL, or IL. If LO or RL is used pathname is mandatory; if LI is used pathname
is optional (omission loads PFTNLB). If PL or IL is used pathname should be omitted.

addr is the starting load address in the procedure segment. An addr of 0 is interpreted as
start loading at the current pointer position in the procedure segment. This is the usual
value. psegno is the procedure segment number. Isegno is the data linkage segment number.

Both psegno and Isegno are absolute (octal) segment numbers: both must be supplied. When
loading shared code, procedure will be loaded in segments "2000 - "2037 as allocated by the
system administrator.

As with relative segment assignment commands, the segments will be created if they do not
already exist. If a segment runs out of room the next segment in sequence is created and
used to continue the Load. For example, if the user has declared psegno to be '2000 and
segment '2000 becomes too full for the next routine to be loaded, segment '2001 is created as
a procedure segment and the Load will proceed in segment '2001. Note that some smaller
routines may subsequently be Loaded in segment '2000. The S/xx modifier does not place
COMMON areas: this should be done using the CO ABS command prior to the load.

Examples:
S/LO B__JUNK 0 2000 4002

1 January, 1979 11-3 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

This loads object file B__JUNK with its procedure beginning at the current load pointer
location in segment '2000 and its data linkage areas beginning at the current load pointer in
segment '4002. (Previously COMMON was located with a CO ABS command.)

S/IL 0 4000 4000
This loads the impure portion of the FORTRAN library into the split segment '4000.
As with relative assignment numbers the D/ modifier prefix may be used.

Example:
S/LOB_BENCH 0 2000 4000
D/PL

is equivalent to
S/LOB_BENCH 0 2000 4000
S/PL 0 2000 4000

CAUTION
When using the 8/ modifier, some of SEG’s checking mecha-
nisms are overridden. Therefore, the user must carefully
examine the loadmap to make sure there is no inconsistency
or confusion. The S/ modifier may not be combined with the
D/ modifier either as D/S/xx or S/D/xx.

Forceloading (The F/ Modifier)

When a file is loaded, normally only those routines referenced by previously loaded
modules (or by routines in the library) are selected. When building templates or creating
partial loads it is often desirable to force all routines in a file to be loaded. Forceloading in
SEG’s Loader is accomplished with the F/ modifier as in:

F/xx [filename] [addr psegno lsegno] Form 1
or
F/S8/xx [filename] [addr psegno Isegno] Form 2

xx is one of the loading commands, LO, LI, RL, PL, or IL. filename is the filename (or
pathname) of the object file. It is mandatory for LO and RL, optional for LI and should be
omitted for PL and IL. addr is the start address for forceloading in the procedure segment.
psegno is the procedure segment number. Isegno is the data segment number.

Form 1 is a simple forceload of the object file filename. Both psegno and Isegno are relative
assignment numbers. The defaults resulting if parameters are omitted are the same as for
the commands without the F/ prefix.

Examples:
F/LOB__THINGS Forceload all modules in B_THINGS in default segment.
F/LI Forceload all the FORTRAN library in default segments

Form 2 forceloads object file to specific segments. Both psegno and Isegno are absolute
(octal) segment numbers (see S/xx for details). This format would be used for forceloading
shared procedures.

Example:
F/S/PL 4000 2000 4002

This forceloads all of the procedure of the FORTRAN library PFTNLB beginning at location
'4000 in segment "2000 with linkages area in segment '4002.

FDR 3057 11-4) 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

S/F/xx is identical to F/S/xx, and the D/ prefix may be combined with F/.
S/LO B__BENCH 0 2001 4002 '
F/S/PL 0 2001 4002

is equivalent to
S/L.O B__BENCH 0 2001 4002
F/D/PL

Relocating uninitialized COMMON

COMMON blocks which are not initialized by a DATA statement or a BLOCK DATA
subprogram may be relocated in the load with the SYMBOL command. This process reduces
the number of segments used by the load and, therefore, decreases the time to restore prior
to execution. The format is:

SYMBOL [sname] segno addr

sname is the symbol name; here, it is the name of the COMMON block. segno is the absolute
segment (octal) in which the symbol is to be located. addr is the address (octal) in the
specified segment for the symbol.

Examples:
SY CYMBAL 4001 12000

Locates the COMMON block CYMBAL at segment '4001, location '12000.
SY 4015 1000

Defines blank COMMON as beginning in segment '4015 at location '1000. Here the user has
located blank COMMON above the other program procedure and. data segments so that
overflow of blank COMMON (indexes out of range) will not overwrite other code. The user
must determine which segments and locations are to be used by examining SEG's loadmaps.

Example of Use: A program BENCH has 3 large (over 33K) COMMON blocks. It is desired
to reduce time required to restore the runfile to memory and also reduce the number of
segments used. It has been determined that segment '4000 (SEG's segment) is available
above location '60000. A previous load of BENCH determined that the procedure loaded in
segment '4001 ended well below '60000. Finally, the link frames in segment '4002 would end
well below '60000 if some of them did not get loaded after the large COMMON blocks were
declared. ,
The COMMON blocks are AA, BB, and AABB; none are initialized. They will fit in the
'120000 locations above '60000. The following load sequence will reduce the number of
segments used from 5 (including SEG's) to 3. .

SY AA 4000 60000

SY BB 4001 60000

SY AABB 4002 60000

LO B_BENCH

The user is responsible for placing the COMMON blocks and afterwards must examine the
loadmap to be sure that it conforms to expectations.

Initializing the load

The load subprocessor’s INITIALIZE command may be used to abort a bad load or to begin
a new load after a SAVE command:

IN Initialize currently established runfile (bad load)
IN filename Open new SEG runfile filename (pathname is allowed)

1 January, 1979 11-5 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Replacing modules

The RL subcommand ‘replaces’ a routine or routines in a SEG runfile, making it possible to
replace a defective subroutine without having to completely rebuild the runfile.

The new module logically and functionally replaces the old module of the same name by
patching the entry point. The new module need not be the same length as the old since it is
not physically reloaded on top of the old module. However, the old module still occupies
space in the runfile. Overuse of the RL command may significantly increase runfile size as
well as restore and execution times.

Example: RL B_MODULE

This places MODULE in SEG’s default segments and logically replaces the old B_MODULE
subroutine with the new one.

Redefinition of COMMON blocks is not allowed; however, new COMMON blocks may be
added.

CAUTION
To access an existing runfile for reloading, use SEG’s VL * (or
LO *). Load command. It is advisable to use a copy of the
runfile for reloading, as a mistake may destroy the runfile’'s
integrity. The NEW subcommand of MODIFY (SAVE) may be
used for this.

Altering stack size

The STACK command changes the amount of space required for the stack. The size
parameter is the minimum required stack size in words (octal).

Example: ST 100000

This reserves at least 100000 free locations in the segment used for the stack. To force use
of a whole segment, set size to '177774.

Note
This command can only change stack size: changes of stack

location must be done with the SK command in the MODIFY
(SAVE) subprocessor.

Extension Stack Segments: FORTRAN programs using the -DYNM parameter for automatic
storage of local arrays in the stack may require extension stack segments to prevent
overflow. Extension stacks are supported by the SK command (Modification sub-processor)
and by the SPLIT command (Loader sub-processor). SK and SPLIT perform their normal
function if no extension parameters are supplied.

When extension stack segments are specified, the user supplies the first available free
segment; SEG then allocates additional extension stack segments sequentially as needed. If
an allocated segment is not needed for an extension it is not assigned to the runfile. For
complete details, see Reference Guide, LOAD and SEG.

THE MODIFICATION SUBPROCESSOR
SEG’s modification sub-processor is accessed by the SEG level command MODIFY:
MODIFY [filename] or SAVE [filename]

filename is the filename (or pathname) of the SEG runfile; if omitted, the established
runfile name is used.

FDR 3057 11-6 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

The command invokes the modification subprocessor, which allows the user to create a new
runfile or modify and rewrite to the disk an old runfile. Modifications permitted are:

e Change starting ECB address (not of consequence in FORTRAN).
* Change stack size and/or location.
 Save a copy of a runfile modified with VPSD to the same or to a new runfile.

e Create a new copy of a shared procedure template file for creation of a program
using the template.

SHARED CODE

In general, programs which are small or which will normally only be run by one user at a
time are not candidates for shared procedure. Programs which are expected to be run by
many operators simultaneously, especially large procedures which use relatively small
amounts of data, are excellent candidates for shared procedures. Examples of the latter type
include Prime’s shared editor or a user-written order entry system.

The advantages of shared procedures are:
» Only one copy of code is necessary for all users.
¢ Decreases restore time.
e Program is more likely to be in cache memory. Operation is much faster for
multiple users.
* Decreased memory usage, reducing paging.

" Once it is determined that a program will be loaded as shared procedure the programmer
must obtain from the system administrator the segment numbers which are to be used for
the particular program being loaded. Public shared segments are a large but finite resource.
Their allocation will be made only for those programs which will benefit by being loaded as
shared procedure. Currently, segments ‘2000 to '2017 are reserved for Prime-supplied shared
subsystems (Shared Editor, FORMS, etc.). Segments '2030 to '2037 are available as public
shared segments.

The following steps should be taken to create and load programs as shared procedures:
(Each step will later be considered in detail.)
e Determine whether shared procedure is applicable and desirable.

e Write source code. Program must be identified as CALLable with name MAIN.
FORTRAN header SUBROUTINE MAIN.

e Compile in 64V mode.

e Load to the runfile using the SEG loader’'s defaults to determine size and
placement of COMMON, procedure, etc.

o With this information, initialize and load to the runfile, splitting procedure and
data portions of programs. Debug the program.

¢ Load for shared procedure and return to SEG command level.

e Separate out segments below '4001 into separate R-mode runfiles using SEG's
SHARE command.

e Incorporate runfiles below '4000 into segments for sharing using the PRIMOS
SHARE command. This is done by the System Operator at the Supervisor
Terminal.

Source code

The main program, which is loaded first, must be identified as a subroutine named MAIN;
i.e., the first statement of the program should be SUBROUTINE MAIN.

This header will work for either shared or unshared loading. In unshared operations SEG
will call the main program as a subroutine; in shared operations the interlude program

1 January, 1979 11-7 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

RUNIT will call the main program. A loadmap will show the main routine as MAIN rather
than #### as would be the case if the main program had no header. It is not necessary to
include a RETURN statement as the CALL EXIT statement at the end of the main program
insures an orderly exit to PRIMOS command level.

Since the main program is labelled as subroutine MAIN, no other subroutine may have that
name. There is no subroutine or function named MAIN in any of the Prime-supplied
libraries; be sure that no user subroutines involved in the load have the name MAIN.

Compiling

The source program is compiled with the -64V mode option producing code to be loaded
with SEG. If an array or COMMON block exceeds 64K words in length, the program must be
compiled with the -BIG option. If recursive subprograms (ones that call themselves) are
used, the program must be compiled with the -DYNM option. Both -BIG and -DYNM may
be used in the same compilation; either one forces compilation in the 64V mode. Details of
over 64K COMMON are treated elsewhere in this section. Extension stacks, which may be
necessary in certain cases of recursive subprograms or if programs are chained, are also
discussed in this section.

Loading

Loading for shared procedure is a multi-phase process. The goal is an optimized load with
the program operating as designed. It will be instructive to follow an example illustrating
some general principles.

Consider a program BENCH, with 3 large COMMON blocks AA, BB, and AABB. The
FORTRAN library is required. The simplest load, using SEG’s defaults would be:

OK, SEG Invoke SEG.

#VL #BENCH Establish runfile and access Loader.

$LO B BENCH Load main program.

SLI Load FORTRAN library.

LOAD CQMPLETE Load is complete.

$sA Save result.

$MA MAPFIL Generate a map in file MAPFIL to be examined.
SQu Return to PRIMOS.

OK, -

At this point the program will be executed and, if necessary, debugged. The number of
segments used can be decreased by moving the location of COMMON blocks and the Stack.
The load would be:

OK, SEG Invoke SEG.

#VL #BENCH Establish runfile and access loader.

$SY AA 4000 60000 Locate COMMON block in Segment '4000
above SEG.

$SY BB 4002 1000 Put BB in segment '4002.

$SY AABB 4001 10000 Put AABB in segment '4001.

$LO B_BENCH Load user program. -

$LI Load FORTRAN library.

LOAD CCMPLETE Load complete.

$SA Save load.

SRE Return to SEG command level.

FDR 3057 11-8 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

#MO Invoke Modification Subprocessor.

$SK 4001 170000 Place stack above AABB in segment '4000
and assign it '170000 locations.

#RE Return to SEG Command level.

#MA * MAPFIL Get a loadmap.

#QU Return to PRIMOS command level.

Since the user has taken over some of SEG’s functions, the user must check the loadmap to
see if the load is reasonable. It would not be amiss at this point to be certain that the program
executes properly.

Loading for shared code

Loading for shared code requires the separation of the procedure frame from the linkage
frames. This capability exists in the advanced functionality of the loader commands. Other
commands in the loader allow placing of COMMON and other symbols using absolute
segment numbers, expunging defined symbols from SEG's symbol table, and forceloading.

SEG’s Loader also allows segments to be split into procedure and data portions to conserve
segments and/or to load into segment '4000 the R-mode interlude program RUNIT. RUNIT
allows the segmented program to be invoked as an R-mode program from the user’'s UFD or
installed in UFD=CMDNCO. Splitting is accomplished by the SPLIT command, which breaks
a segment into procedure (lower) and data (upper) portions. This operation conserves
segments, It also allows the loading of RUNIT as an aid to creating shared programs:

SPLIT segno addr Form 1
or
SPLIT addr Form 2

segno is the absolute octal segment number. addr is the location of the split in the segment.
addr must be a multiple of '4000.

Form 1 splits the segment into procedure and data portions to decrease number of segments
used. Example:

SP 4000 10000

This splits segment 4000, with locations below '10000 for procedure and the rest of the
segment for data. ‘

Form 2 is the form used for shared procedure. Segment '4000 is assumed. In addition to
splitting the segment, the interlude program RUNIT is loaded (in 64V mode) beginning at
location '1000.

No data or procedure may be assigned to locations above 172000 in segment ’4000, as this is
where RUNIT places its stack.

After splitting, RUNIT and RESUME will exist in SEG’s symbol table. RUNIT is the normal
starting address; RESUME may be used as a starting address if the existing stack is to be
preserved.

Once a segment has been split it is addressable only specifically, i.e., with the 8/xx or P/xx
command (or with D/xx following an S/xx or P/xx command). Loading must use absolute
segment numbers. See S/xx, D/xx, P/xx.

1 January, 1979 11-9 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

CAUTION
SEG's Loader does not keep track of split segments and may
assign the stack to the top of the procedure portion of a split
segment. This may cause problems if there is not enough
space between the end of the procedure portion and the start
of the data portion.

Splitting out

After the load has been completed, the portions of the SEG runfile corresponding to
segments below '4001 must be transformed into R-mode runfiles using SEG’s SHARE
command. These files are similar to the relative addressed mode save files having a
conventional save file header. No files are created for segments above '4000. If segment 4000

exists and it includes RUNIT (see SPLIT), it may be executed at PRIMOS command level.
The command format is:

SHARE [runfile]

runfile is the pathname of the SEG runfile. If omitted, the established runfile name is split
out.

The RUNIT interlude program sets the correct addressing mode; starting location and
registers are set to the standard default values.

SEG responds to the SHARE command by asking for a two-character ID. SHARE will use this
ID to build the save files with the name yyxxx:yy is the ID given to SHARE and xxxx is the
segment number.

Example:

#SH #TEST (using default values)

TWO CHARACTER FILE ID: BE

CREATING BE2000

CREATING BE4000

(ready for next SEG command)

SEG's SHARE command creates a R-mode runfile for all segments below '4001.

Including the R-mode interlude in the SEG runfile

This method is of particular use in three cases.
1. The user’s program has a small procedure part requiring a large data
area.
2. The user has a large program, most of which is loaded below segment
'4000 as shared procedure.

3. The user’s program is primarily a ‘transaction processing’ system and
most of the user’s (large) program can be loaded at LOGIN time, or is
loaded below segment '4000 as shared procedure.

In case 1 the user will force all of the loaded portion of the program to reside in segment
'4000. Uninitialized COMMON blocks will be declared in other segments and need not be
‘loaded’ into memory.

In case 2 the user will load only the impure parts of the procedure (such as IFTNLB) into
segment '4000 and will place all link frames and initialized COMMON in segment '4000.

In case 3 the external LOGIN program will load most of the user's SEG runfile (the portions
residing above '4000) into memory at LOGIN time. The user's specific applications,

FDR 3057 11-10 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

referencing the fixed portions above and below '4000, will be loaded into segment '4000. This
case requires the user to create a ‘template’ of the fixed portion of the application on top of
which specific applications are loaded.

When the user’s procedure is loaded with SEG’s Loader, segment '4000 is declared as a split
segment using the Loader’s SPLIT command, and specifying only the location at which the
segment is to be split. This causes SEG’s Loader to create a procedure area below the
designated location and a data link frame area above it. Then the R-mode interlude RUNIT
is automatically loaded into the procedure portion. At run time, RUNIT will initialize the
stack, and transfer control to the user’s routine, MAIN. The user may load other procedure
and link-data information into segment '4000 using the Loader’s S/xx command.

The user must determine via a previous load where to split segment '4000.

A slightly different load sequence from that given earlier in this section:

OK, SEG

VL #BENCH

$ SP 4000

$ SY AA 4000 5000

$ SY BB 4002

$ SY AABB 4001

$ S/LO B BENCH 0 4000 4000 difference
$ D/LI difference
$ SAVE

$ RE

$ SH

TWO CHARACTER FILE ID: BE

CREATING BE4000

QU

OK,

would load the program as non-shared procedure. The resulting R-mode runfile BE4000 can
be invoked with the PRIMOS command RESUME as R BE4000 or it may be placed in the
command UFD.

Finally, when the load is complete and saved, the user returns to SEG via the REturn
command and enters SH on the terminal. When all appropriate segments have been turned
into separate runfiles, the one with the appended segment number '4000 may be run
(renamed if desired) from PRIMOS command level either from CMDNCO or by a PRIMOS
RESUME command.

Example:

Programmer has been assigned segment '2031 by the systems manager.

OK, SEG Invoke SEG.

VL #BENCH Establish runfile and access Loader.

S SP 4000 Split segment '4000 at location '4000;
for impure FORTRAN library and data.

$ SY AA 4000 5000 Locate AA in segment '4000 at location
'5000.

$ SY BB 4002 Locate BB in segment '4002.

$ SY AABB 4001 Locate AABB in segment '4001.

1 January, 1979 11-11 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

$ S/LO B BENCH @ 2031 4008 Load the procedure portion of the user
program into segment '2031; load link
frames into '4000.

$ D/PL Load the pure FORTRAN library with the
same parameters.

$ S/IL 0 4000 4000 Load impure FORTRAN library.

$ SAVE Save the runfile.

$ RE Return to SEG command level.

$ SH Ask SEG to split out segments below "4001.

TWO CHARACTER FILE ID: BE SHARE asks for ID.

CREATING BE4000

CREATING BE2031

$ QU Return to PRIMOS command level.
0K,

Incorporating files into shared segments

Using SEG’s SHARE command creates one R-mode runfile for each segment of the SEG
runfile below segment '4001.The R-mode runfiles for segments below '4000 must actually be
incorporated into those segments using the PRIMOS SHARE command. This operation can
only be performed at the supervisor terminal by the System Operator. See System
Administrator’s Guide for details.

COMMON BLOCKS OVER 64K WORDS LONG

The size of COMMON blocks and the arrays within them are limited only by the number of
segments available to the user. A total of 256 segments are available for assignment to users.
The size of a 64V mode program includes COMMON blocks and the procedure, linkage and
stack frames of the main program, subprograms and required library routines.

Usage

Any named COMMON or blank COMMON may be over 64K; no special syntax is required.
The only indication thata COMMON block is over 64K is in the concordance, generated with
the compiler’s -XREFL option. The concordance address field for all items in an over 64K
COMMON block contains two 6-digit octal numbers rather than one. The first number
corresponds to a segment offset; the second number is the word offset.

Arrays in a COMMON block over 64K are treated as if they spanned a segment boundary
regardless of their size. Code normally generated for array references will not work for
these arrays. Programs (and subprograms) referencing these arrays must be compiled with
the -BIG option. (This also forces compilation in 64V mode).

A COMMON block over 64K must be explicitly declared over 64K in every program that
references the COMMON. Otherwise, the compiler will not generate special code for arrays
within that COMMON block.

Dummy argument arrays

If a dummy argument array may become associated with an array that spans a segment
boundary (through a CALL statement or function reference), the compiler must be made
aware of this when the subroutine or function is compiled (see below).

Example:

COMMON IBUF (1000,200)
CALL SUB (IBUF, 1000, 200)

FDR 3057 11-12 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

END
SUBROUTINE SUB (IDUM, N, M)
DIMENSION IDUM (N, M)

END

When subroutine SUB is being compiled, the compiler must be notified that dummy
argument array IDUM becomes associated with an array that spans a segment boundary
(IBUF).

Code generated for an array that spans a segment boundary will work whether or not the
array actually spans a segment boundary. There are two methods to notify the compiler that
a dummy argument array may become associated with an array that spans a segment
boundary.

1. Within the subroutine or function, dimension the dummy argument
array over 64K words. This method cannot be used when there are
dummy arguments or COMMON dimensions. Example:

SUBROUTINE S (IARRAY)
DIMENSION IARRAY (100000)
2. Compile the subprogram with the -BIG option. All dummy argument

arrays will be treated as arrays spanning segment boundaries. -BIG
also forces compilation in 64V mode. Example:
FTN SUB -BIG
The above discussion relates only to dummy argument arrays. A dummy argument variable
may become associated with an element of an over segment boundary array, and the code
normally generated by the compiler will work correctly.

System and Library routines that require arrays as arguments must not be called with arrays
that span segment boundaries, unless these routines are recompiled with the -BIG option.
This includes the matrix manipulation routines in MATHLB.

Restrictions

There are a number of restrictions on over 64K COMMON blocks and segment boundary
spanning arrays. The compiler will issue an error message if any of these restrictions are
violated. ‘

e An array may span segment boundaries, but no array element or variable may
cross a segment boundary. If the first word of a real number is in one segment, the
second word must be in the same segment. For this reason, the compiler must
enforce the following restriction: Any multiword variable or array of multiword
elements must be offset a multiple of its element length from the start of the
COMMON block. i
Thus, a double-precision variable or array (regardless of its dimension) must be
offset 0 or 4 or 8 words, etc. from the start of an over 64K COMMON block. This
restriction also applies to items EQUIVALENCEd to elements in an over 64K
COMMON block.

e Items in COMMON blocks over 64K cannot be initialized by a DATA statement.
Any initialization of COMMON blocks over 64K must be done by assignment

1 January, 1979 11-13 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

statements. This restriction applies even if the item is in the first segment of an
over 64K COMMON block.

¢ A segment boundary spanning array must not appear unsubscripted in the list of
an I/O or ENCODE/DECODE statement. The equivalent functionality can be
achieved by using implied DO Loops.

Implementation notes and programming considerations

The code generated for a subscripted array reference normally consists of instructions to
load an index register with the subscript followed by an indexed instruction that references
the array element. This code sequence cannot be used for a segment boundary spanning
array reference because the index registers are only 16 bits wide and indexing never affects
the segment number. A segment boundary spanning array subscript is computed using 32-bit
integer arithmetic and then added to the array base address. This resultant address is stored
in a temporary location and the array element is referenced indirectly through the
temporary location. Thus, on évery reference to an over segment boundary array, an
execution speed and program size penalty is paid relative to a normal array. For efficiency,
all arrays under 64K words should be placed in COMMON blocks under 64K.

The compiler requires that any COMMON block over 64K be allocated in contiguous
segments. It also requires that starting address to be a multiple of 4, the largest data type size
(complex and double precision floating point).

Calculating array size in words

The size of an array is the product of its dimensions multiplied by the number of words per
element. The number of words per element is determined by the type of the arrays as
follows:

Type Number of Words Per Item
INTEGER*2
LOGICAL
INTEGER*4
REAL (REAL*4)
COMPLEX
DOUBLE PRECISION (REAL*8)

Example: REAL A(1000,44)
Number of Words = 1000 x 44 x 2 = 88000

B R NN =

FDR 3057 11-14 1 January, 1979

Interface to other
systems and languages

INTRODUCTION

This section discusses interfaces of the FORTRAN language to the following Prime systems:
e Multiple Index Data Access System (MIDAS)
e Database Management System (DBMS)
¢ Forms Management System (FORMS)
e Other Programming Languages (COBOL, PMA)

MULTIPLE INDEX DATA ACCESS SYSTEM (MIDAS)

Introduction

MIDAS is a system of interactive utilities and high-level subroutines enabling the use of
index-sequential and direct-access data files at the application level. Handling of indices,
keys, pointers, and the rest of the file infra-structure is performed automatically for the user
by MIDAS. Major advantages of MIDAS are:

e Large data files may be constructed.

o Efficient search techniques.

* Rapid data access.

e Compatibility with existing Prime file structures.

e Ease of building files.

¢ Primary key and up to 19 secondary keys possible.
e Multiple user access to files.

e Data entry lockout protection.

o Partial/full file deletion utility (KIDDEL).

This section introduces the programmer to the major concepts and usage of MIDAS.
Sufficient information is presented to allow the programmer to determine if MIDAS would
be applicable to specific situations.

Note
This section does not contain all the information necessary to
implement a MIDAS application. The extensive features of
MIDAS and the actual implementation and usage are de-
scribed in detail in Reference Guide, Multiple Index Data
Access System (MIDAS).

Requirements

The MIDAS system requires the UFD=LIB contain the KIDAFM library, the KIDALB library
(for non-segmented addressing use) and the VKDALB library (for segmented-addressing
use). The library is loaded just prior to loading the FORTRAN library when loading

1 January, 1979 12-1 FDR 3057

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

programs. The files PARM.K and OFFCOM, which contain mnemonics for flags and keys
used in MIDAS subroutines, must be located in UFD=SYSCOM.

Using MIDAS

MIDAS usage is implemented in four major steps through Prime-supplied interactive
utilities (see Figure 12-1).
* Creating/modifying the template—the user defines the data sub-file, indices, etc.
(CREATK).
* Building the data sub-file—data existing in a text or binary file are converted to a
MIDAS file (KBUILD).

* Maintaining the file—data entries are added, deleted, changed or viewed at the
application program level, using MIDAS data access subroutines.

* Performing housekeeping—files are deleted in part or full (KIDDEL).

Maintenance of the file may be done by more than one user simultaneously. A lockout
subroutine protects data entries from attempts at simultaneous changes/deletions. All other
operations require the user to have exclusive access to the MIDAS file.

Creating and modifying template

The interactive program CREATK allows the user to build, examine, and modify or
restructure a MIDAS template file. This template contains the information the MIDAS
programs and subroutines require to build and maintain the data sub-file and its associated
index sub-file(s) and directories.

When constructing the template, the user specifies filename, direct access support (if
supplied), block length, and index requirements (both primary index and secondary indices,
if any). For many parameters, the system will supply default values in lieu of the user’s
specifications if so desired. Secondary indices allow duplicate keys; the primary index key
data record association must be unique.

If there are no data files to be converted to the MIDAS format, the user may begin file
maintenance (addition, updating, deletions) at this point.

The CREATK program can also be used to examine and reset the template parameters for
an existing file. Certain restrictions exist in modifying parameters, especially in converting
to long indices.

An example of the template creation dialogue is shown in Figure 12-2.
Building the data sub-file

The MIDAS data file may be constructed with the Prime-supplied program KBUILD, or the
user may write a file creation program (with the appropriate Prime-supplied subroutines
BILDSR, PRIBLD, SECBLD). The use of KBUILD is simpler but it places certain restrictions
on the input data files and the resulting output MIDAS data sub-file.

KBUILD Program: KBUILD may be used to generate or add data to MIDAS files; it cannot
alter data in existing files. KBUILD expects the input data files to be sequential, fixed-
record-length disk files.

Input data files may be text (created by FORTRAN WRITE statements or the text editor) or
binary (created by disk I/0 subroutines).

During its processing KBUILD prints (to the user’s terminal and to a file) non-fatal error
messages and milestones. The rate at which milestones are printed is user-specified.
Milestone information is: records processed, run time, CPU time, disk time, total time, and
time used since the last milestone report. Milestone reports are also generated at the start
and end of file processing.

FDR 3057 12-2 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

The MIDAS file created by KBUILD has fixed-length records and completely sorted indexes.
The user may alter these records to variable-length data records by the use of CREATK.

Sample KBUILD dialog: Suppose the file is sorted on the primary key only, that there is one
input file containing 10100 entries called FILE01 in the current UFD, and that the output file
is a MIDAS template file called CUSTFIL.KIDA which is on a new partition UFD called
NEWPAR. The error file ERRFIL.KIDA will also be written to this UFD.

SECONDARIES ONLY? NO

ENTER INPUT FILE NAME: FILEQ]

ENTER INPUT RECCRD LENGTH(WORDS): 63

INPUT FILE TYPE: B

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILE NAME: NEWPAR>CUSTFIL.KIDA

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 51
SECONDARY KEY NUMBER: 1

ENTER STARTING CHARACTER POSITION: 61

SECONDARY KEY NUMBER: 3

FDR 3057 12-4 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

ENTER STARTING CHARACTER POSITION: 1

IS FILE SORTED? (CR)

IS THE PRIMARY KEY SORTED? (CR)

ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
NUMBER OF RECORDS IN INPUT FILE: 10100

ENTER LOG/ERROR FILE NAME: NEWPARDERRFIL.KIDA
ENTER MILESTONE COUNT: (CR=0)

User file-building program: If the input data file is not in the format expected by KBUILD,
the user must write a program to create the MIDAS file. Before building the data file the
user must first create a template using CREATK. Three major subroutines (BILD$R,
PRIBLD, and SECBLD) are supplied to assist the programmer.

If the input file is unsorted or if the user wishes to add data to an existing file, the subroutine
BILDS$R should be used. BILD$R adds all entries in the index overflow area and periodically
merges and reorganizes the index files. It may be used with PRIBLD and SECBLD
concurrently.

PRIBLD assumes that the input file data is sorted on the primary key: it is much faster than
BILD$R when the input file is about 2000 records or greater.

If the input file is sorted on any secondary keys SECBLD may be used to create those
secondary index files.

Maintaining and using the file

A number of subroutines are supplied to enable the programmer to make effective use of the
MIDAS file. These subroutines are designed to allow more than one user to access the data
file simultaneously. All the subroutines require the file PARM.K be inserted in the user
program with:

$INSERT SYSCOM>PARM.K

ADD1$ Adds a data entry to the file and modifies the index sub-files
appropriately. Insertion is by primary key only; the file is locked
during insertion.

DELETS$ Deletes a data entry and modifies the index sub-file accordingly.
Deletion may not occur if the data entry is locked.
FIND$ Locates a data entry and reads its contents into a buffer. Look-up

is by primary and secondary keys. If there exist data entries with
the same secondary key (synonyms) the oldest data entry (i.e., first
one in the file) is retrieved.

NEXT$ Retrieves the data entry with the next higher key. Search may be
on primary or secondary keys. This subroutine allows synonyms
which are not oldest to be accessed.

LOCKS$ Locates a data entry and, if not locked, then locks the data entry.
The data entry is unlocked by a successful call to UPDATS, FINDS,
or NEXTS.

UPDATS$ Re-writes a data entry. This subroutine should not be called before

a successful call to LOCKS.

1 January, 1979 12-5 FDR 3057

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

An example of a subroutine using NEXT$, LOCKS, and UPDATS$ is shown in Figure 12-3. The
$INSERT file KIDINS is one the applications programmer has created to facilitate com-
munication between the main program and various subroutines. In the example, the user
would probably check the error return from LOCKS to see if the record was already locked.
If this is the case, it would be appropriate to recycle a few times until the record is unlocked
and then proceed with the update.

Performing housekeeping

KIDDEL Program: This program will delete all or part of the MIDAS file; the PRIMOS
DELETE command should not be used. KIDDEL allows deletion of:

* selected secondary indices,
* unwanted segments at the end of the data sub-file, or
¢ the entire file.

DATABASE MANAGEMENT SYSTEM (DBMS)

FORTRAN/DBMS interface

The FORTRAN interface to the DBMS includes two major processors and their respective
languages: the FORTRAN Subschema Data Definition Language (DDL) Compiler and the
FORTRAN DATA Manipulation Language (DML) Preprocessor.

The application programmer’s ‘view’' of a schema is written in the FORTRAN Subschema
DDL. The Subschema Compiler translates the DDL into an internal, tabular form called the
subschema table which is used by the DML Preprocessor.

Commands for locating, retrieving, deleting, and modifying the contents of a database are
written in the FORTRAN DML. These commands are interspersed with FORTRAN
statements in the application source program and translated into FORTRAN declarations
and statements by the FORTRAN DML Preprocessor. The output of the preprocessor is the
source input for the FORTRAN compiler.

See: Reference Guide For. DBMS Schema Data Definition Language (DDL), and the
FORTRAN Reference Guide For DBMS.

FORMS MANAGEMENT SYSTEM (FORMS)

The Prime Forms Management System (FORMS) provides a convenient and natural method
of defining a form in a language specifically designed for such a purpose. These forms may
then be implemented by any applications program which uses Prime’s Input-Output Control
System (IOCS), including programs written in FORTRAN. Applications programs com-
municate with the FORMS through input/output statements native to the host language.
Programs that currently run in an interactive mode can easily be converted to use FORMS.

FORMS allows cataloging and maintenance of form definitions available within the
computer system. To facilitate use within an applications program, all form definitions
reside within a centralized directory in the system. This directory, under control of the
system administrator, may be easily changed, allowing the addition, modification, or
deletion of form definitions.

FDR 3057 12-6 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

FORMS is device independent. If certain basic criteria are met, any mix of terminals
attached to the Prime computer may be used with the FORMS system. Terminal configura-
tion is governed by a control file in the centralized FORMS directory. This file is read by
FORMS at run-time to determine which device driver to use, depending on the user terminal
type. This means that multiple terminal types may be driven by the same applications
program without change. Certain terminal types are supported by FORMS as released by
Prime. Should the user have another terminal capable of supporting FORMS, all that need
be done is to write a low-level device driver for the terminal and incorporate it into the
FORMS run-time library.

OTHER LANGUAGES

COBOL programs

FORTRAN subroutines may be called by COBOL programs; the responsibility for proper
coding is at the COBOL program level.

See: The COBOL Programmer’s Guide
PMA programs

FORTRAN subroutines may be called by PMA programs; proper instructions must be placed
in the calling program by the PMA programmer. FORTRAN programs may call subroutines
written in PMA. The FORTRAN programmer must ascertain the subroutine name, the
calling sequence and the data modes of the subroutine arguments.

See: The Assembly Language Programmer’s Guide

FDR 3057 12-8 1 January, 1979

Optimization and

other helpful hints

INTRODUCTION

This section presents some programming hints for improving the performance of FORTRAN
routines. Some of them are merely reminders of good coding practice; others take advantage
of implementation techniques in the FTN compiler. All offer some speedup in program

execution.

DO LOOPS

1. Remove invariant expressions from DO loops. For example,

19 CONTINUE

should be changed to:

A= 3.01

DO 10 I=1, 50

19 CONTINUE

2. Optimize unnecessary subscript calculations. The first source code sequence is more

efficient than the second one below.

SlM =290
DO1WI=1, 9

SM = SUM + ARRAY (I)
10 CONTINUE

ARRAY (N) = ARRAY(N) + SUM

DO1g I =1, 99
ARRAY(N) = ARRAY(N) + ARRAY (I)
10 CONTINUE

1 January, 1979 13-1

FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

3. Minimize DO Loop Setup Time. When nesting DO Loops (also any hand-coded control
structures), order the loops so that the fewer iteration count loops are on the outside, and the
higher iteration count loops are on the inside.

Example 1: -
DO 20 I=1,5
DO 16 J =1, 100
loop-body
.10 CONTINUE
20 CONTINUE
Example 2:
DO 26 J =1, 100
pDo1gIr=1,5
loop-body

19 CONTINUE
20 CONTINUE

Example 1 is the preferred control structure for the following reasons. The execution time
for a DO loop consists of three major items:

1. Setup time (Ts)—the time required to initialize the index.

2. Increment and test time (Ti)—the time taken each time the
flow of control hits the bottom of the loop.

3. Time to execute the body of the loop (Tb).
For examples 1 and 2 above, the time required to execute the DO 10 loops is:

1. Time(1) =5 x (Ts + 100Ti + 100Tb)
2. Time(2) =100 x (Ts + 5Ti + 5Th)

which yields:

1. Time(1) =5Ts + 500Ti + 500Tb
2. Time(2) =100Ts + 500Ti + 500Tb

Time (1) is smaller, making it the preferred structure.

4. Use CONTINUE Statements. Always end DO loops with a CONTINUE statement. This is
a special case of statement number usage, described below.

FDR 3057 13-2 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

STATEMENT NUMBERS

Eliminate all unnecessary statement numbers, i.e., those that program control will never
access. Most optimizations are performed between statement numbers; therefore the fewer
statement numbers, the more optimization possible. For example,

IF (I .EQ. 0) J =K

can be more efficient and is easier to read than:

IF (I .NE. O) GOTO 10
J =K
19 next-statement

MULTI-DIMENSIONED ARRAYS

Reference memory as sequentially as possible. For multi-dimensioned arrays, the leftmost
subscript varies the fastest in FORTRAN, so when addressing large portions of an array,
paging and working set can be significantly reduced by indexing the leftmost subscript the
fastest (e.g., in the innermost loop). Thus,

DO 20 I =1, 100
DO 193 =1, 108
ARRAY (J, I) = 3.0
19 CONTINUE
20 CONTINUE

is more efficient than accessing the structure as ARRAY (I,]J) = 3.0.

If the program can be coded CLEANLY without multiple-dimension structures, memory
addressing can be more efficient. For each dimension over one, this saves one ‘multiply’ per
effective address calculation; i.e., number-of-multiplies = number-of-dimensions - 1. For
instance, the example above could be written as:

DIMENSION JUNKARRAY (1)
EQUIVALENCE (ARRAY (1,1), JUNKARRAY (1))

DO 16 I =1, 10000

JUNKARRAY (1) = 3.0
12 CONTINUE

saving considerable CPU time.

LOAD SEQUENCE AND MEMORY ALLOCATION

Paging time can be significantly reduced by ordering routines by frequency of use (rather
than, say, alphabetically). The Main routine must always be loaded first for LOAD or SEG
to work properly.

1 January, 1979 13-3 FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

A suitable loading scheme would allocate memory as:
MAIN

END
most common subroutines

occasionally used subroutines

infrequently used subroutines

Paged memory fragmentation can be reduced by loading routines on page boundaries using
SEG's P/LO command.

In subroutine libraries, the top down tree structure must be preserved if ‘reset force load’
is in use.

This ordering method may also be used to order COMMON blocks in memory by frequency
of use. See Section 11 for details.

FUNCTION CALLS

Eliminate redundant function calls with equal arguments. For example:

TEMP = SIN (X)
A = TEMP * TEMP

is significantly faster than:
A = SIN(X) * SIN(X)

Make sure that the function has no side effects which might modify the argument(s) or
anything else in the environment.

V-MODE VS. R-MODE COMPILATION

In almost all cases, V-mode code executes faster than R-mode code. If a V-mode program
plus data is less than 64K words, and the routine is not to be shared, use the MIX command
of SEG to compact the memory image.

64V-MODE COMMON

The FORTRAN compiler and SEG allow some 64V mode FORTRAN programs faster access
to variables in COMMON. If a COMMON block is loaded into the same segment as the
procedure area or link area which accesses it, the compiled program will address the
COMMON variables directly, rather than through a two-word indirect pointer. Thus,
careful loading of routines with frequently accessed COMMON areas into the same segment
in 64V mode will cause an appreciable increase in execution speed.

FDR 3057 13-4 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

IF STATEMENTS

Minimize compound logical connectives within an IF statement when possible. For example,

IF (A.EQ.B .OR. C.EQ.D) GOTO 10

has the same effect as, but is slower than:

IF (A.EQ.B) GOTO 19
IF (C.EQ.D) GOTO 10

INPUT/OUTPUT

Significant speed improvement in raw data transfers can be achieved by using the
equivalent IOCS or file system routine instead of formatted input/output. For example,

INTEGER TEXT (49)
READ (5, 20, END = 99) TEXT
20 FORMAT (40A2)

is slower than

INTEGER TEXT (40)
CALL RDASC(5, TEXT, 40, $99)

but the fastest yet is. . .

INTEGER TEXT (40), CODE
CALL RDLINS (1, TEXT, 40, CODE)

IF(CODE .NE. @) /* Any error?
X GOTO 99 /*Yes, go process error.

There are also routines for reading/writing octal, decimal, and one-unit hexadecimal
numbers from/to the terminal. For example, CALL TIHEX(N), will read a hexadecimal
integer from the terminal into the 16-bit integer named N. For printing out text efficiently,
use the TNOU/TNOUA routines. See the Reference Guide, PRIMOS Subroutines for more
specific information about these lower level routines.

STATEMENT SEQUENCE

The compiler can do register tracking, but cannot reorder statements. For example, given the
sequence:

A=B

X=Y

R=B

the generated code is
LDA B
STA A
LDAY (6 instructions long)
STA X
LDA B
STA R

1 January, 1979 13-5 FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

If the source had been rearranged to

A=B
R=B
X=Y

the generated code is reduced to:

LDA B
STA A
STAR (5 instructions long)
LDAY
STA X

PARAMETER STATEMENTS

Initializing named constants via PARAMETER statements allows the compiler to perform
constant-folding optimizations. The compiler does not fold normal variables initialized by
DATA statements into constants.

INEFFICIENT LIBRARY CALLS

Some of the library routines are not optimized for time-critical operations. The get and store
character routines (GCHRS$A, etc.) are convenient, but comparatively slow. Some of the
APPLIB routines are by definition slow. Avoid using the MAX and MIN calls especially in
V-mode. It may be more efficient to code it yourself.

Remember the 80/20 rule, which states: “80 percent of a program’s time is spent in 20
percent of the code” (exact numbers subject to debate). Therefore, standard library routines
are adequate in the non-time-critical 80 percent of the program.

STATEMENT FUNCTIONS AND SUBROUTINES

Use statement functions instead of formal FUNCTION subprograms when practical. In V-
mode this eliminates a lengthy PCL/PRTN sequence. Try to minimize the number of
arguments passed to and from a function or subroutine regardless of whether it is a
statement function or a separate function subprogram.

INTEGER DIVIDES

When dividing a non-negative integer by a power of two, use the RS (right shift) binary
intrinsic function. For example:

I=RS(], 3)
Is much faster than:
1=1]/8

LOGICAL VS. ARITHMETIC IF

Logical IFs are preferred to arithmetic IF statements. Many FORTRAN programs have
sections which look like:

IF(I-])1, 2 1
1 next-statement
2 some-other-statement

FDR 3057 13-6 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

A more optimal code sequence would be:

- IF (I. EQ. J) GOTO 2
1 next-statement

2 some-other-statement

which is also more readable.

USE OF THE COMPILER’S -DYNM OPTION

V-mode programs run faster, better, and cleaner if local variables are placed in the stack
through the -DYNM option. These variables are not guaranteed to be valid after a return.
For example:

INTEGER COUNT
DATA COUNT /8/

IF(COUNT .NE. 12) GOTO 1

CALL TONL
COUNT = 0

1 COUNT = COUNT + 1
some-more—code
RETURN
END

The above example would not work if compiled with the -DYNM option, because the value
of COUNT would not be saved after execution of the RETURN statement.

CONCLUSION

These are some of the more common guidelines to keep in mind while programming in
Prime FORTRAN. If you keep these ideas in mind while writing, or while ‘tweaking’
FORTRAN programs, your programs will be generally smaller and faster. Some of these
rules are not necessarily permanent. As Prime FORTRAN evolves more and more optimiza-
tions, the user will have more freedom to choose coding styles.

Generally it is easier to apply these techniques at initial coding time, as opposed to ‘going
back and optimizing’. While some of these changes can be done easily with a few Editor
tricks, others may require extensive changes to source code. Many other useful examples of
good FORTRAN programming practice appear in the following text:

Kernigan and Plaugher, The Elements of Programming Style, McGraw-Hill, 1974

REQUEST FOR CONTRIBUTIONS TO THIS SECTION

If you have optimizing techniques in Prime FORTRAN that you would like to share with
future readers, please submit them to: Technical Publications, Prime Computer, Inc., 145
Pennsylvania Avenue, Framingham, MA 01701.

1 January, 1979 13-7 ’ FDR 3057

FORTRAN

LANGUAGE
. REFERENCE

e
R R R S S R " : : R R : 2 :: : e -.-.-.:.:‘:-.-.'-'~'---'--::1:2:3:2:2:k::?:!:2:3:5'3!.-.:Z:::Ktifs::-:::Z:Z:i:1.-:1:3:3:::3:::3:3:

language elements

LEGAL CHARACTER SET

The characters allowed in Prime FORTRAN are:

* The 26 upper-case letters: A,B,C,D,E,F,GHIL]K,LM,N,OP,QR,STUVWXY,Z
* The 10 digits: 0,1,2,3,4,5,6,7,8,9.

Letters and digits together are called alphanumeric characters.
* These 12 special characters:

= equals

' single quote (apostrophe)
colon

plus

minus

asterisk

slash

left parenthesis
right parenthesis
comma

. decimal point

$ dollar sign

+ -

-w,—‘*|

* Blanks or spaces.

Blanks in Hollerith constants (character strings) or in formatted input/output statements are
treated as character positions. Elsewhere in Prime FORTRAN, blanks have no meaning and
can be used as desired to improve program legibility.

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character position in the line is
called a column, numbered from left to right starting with 1. These are three types of lines:
Comments, statements (and their continuations), and control statements. (See Figure 14-1.)

1 January, 1979 14-1 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

'COLUMN NUMBER

,e: 1t may be extended past .column 72 to e

Vrogram Line Format

Comments

Comment lines are identified by the letter C in column 1. The remainder of the line may
contain anything. A comment line is ignored by the compiler, except that it is printed in the
program listing. A comment may be placed on a statement line (except inside a Hollerith
constant) using the format:

/*comment*/
Statements

Columns 1-5 are reserved for the numerical statement label, if any. (Blanks and leading
zeros are ignored.) Column 6 must be a blank or a zero. Columns 7-72 contain the statement.
The statement may begin with leading blanks; this is often done to make the program easier
to read, as for indention of nested DO loops or nested IF statements. In the continuation of
a statement, columns 1-5 must be blank, column 6 may be any character EXCEPT 0 (zero) or
a blank, and the statement continuation is in columns 7-72.

Control

Column 1 must contain the special character $. Other columns are specified by the
individual control operation. (See, for example, $INSERT in Section 16.)

Columns 73 to 80 are available for line order sequence numbers or other identification
(usage is optional). These columns, like comments, are ignored by the compiler except that
they are printed in the program listing.

OPERANDS

Operands are those elements which are manipulated by the program. They are constants,
parameters, variables, arrays, and address constants.

FDR 3057 14-2 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

Constants
See appendix D for details of constant storage.

Constants may be any of the following types:

Memory
Mode Words Range
INTEGER (short) 1 -32768 to +32767
INTEGER (long) 2 -2147483648 to +2147483647
(-2**31 to +2**31-1)
REAL 2 + (10%*-38 to 10**38)
DOUBLE PRECISION 4 + (10%*-9902 to 10**9825)
COMPLEX 2x2 same as for Real
LOGICAL 1 0 or 1 (i.e., .FALSE. or . TRUE.)

Integers: may be decimal or octal numbers. In either case, no decimal point appears in the
representation. Short integers may have up to 5 decimal digits or 6 octal digits, plus a sign,
within the magnitude range.

decimal 12345 or -23579
octal 113752 or -:156, or
5013752 or -30156

(The O notation is obsolete. It is supported for compatibility; use is not
recommended)

Short integers range in magnitude from 0 to 32767 (decimal); i.e., :0 to :177777 (octal).
Long integers may have up to 10 decimal digits or octal digits plus a sign.

The representation is the same as short integers. Long integers range from 0 (:000000) to
2147483647 (:17777777777) and from -2147483648 (:20000000000) to -1 (:37777777777). The
range is from -(2**+31) to +(2**31-1).

Integer constants are treated as short integers unless:

e Their magnitude exceeds 32767 or :177777 (octal).

o Their representation exceeds 5 decimal digits or 6 octal digits; leading zeros are
counted in determining the number of digits in the constant.

Example:
30 short integer
000030 long integer

If the program is compiled with INTL then all integer constants are treated as long integers.
(See Sections 5 and 17 for details.)

Long integers may be used in the FORTRAN program anywhere that short integers are used.
This includes subscripts, ASSIGNed GOTOs, computed GOTOs, FORTRAN I/O unit
numbers, DO-loop index values, and character counts. .

CAUTION

Some subroutines expect short integers as arguments. In
these cases, convert any long integers to short integers via the
INTS function (see Section 17 for details).

1 January, 1979 . : 14-3 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Real numbers: may be written as
1357.924, or 0.3579 E 02

The decimal point is mandatory in the first case. In the exponential form the decimal point
is optional; the exponent ranges from -38 to +38. The position following the E must contain
a blank, a plus sign, or a minus sign. The blank is interpreted as a plus sign.

Only the seven most significant digits are retained.

Double precision numbers: are similar to real numbers except that fourteen significant
digits are retained, and the exponential (or floating point) representation uses D in place of
E, eg,

12345.9253 D-11

The exponent (following D) may take on values from -9902 to +9825. Only 2 digits can be
printed from the exponents.

Complex numbers: are an ordered pair of two real numbers enclosed in parentheses and
separated by a comma:

(REAL1, REAL2) e.g., (1.345, 0.59 E-2)
The rules for real number representation apply to each element of the complex number.
Logical constants:]Jogical constants have only two possible values:

0 (zero) corresponding to .FALSE.

1 (one) corresponding to .TRUE.
ASCII: ASCII constants are character strings. They are stored as follows:

Maximum Number of

Mode ASCII Characters Stored
Integer, short 2
Integer, long 4
Real 4
Double Precision 8
Complex 8

When character strings are compared, bit-by-bit checking is only done for those stored in
integers; hence storage in modes other than integer (long or short) should be avoided.

Characters are left justified and the remainder of the word(s) are packed with blanks.
ASCII constants are represented in either of two ways:

1. A character count followed by the letter H and the string:

23HTHIS IS AN ASCII STRING

2. The string enclosed in single quotes:

'THIS IS AN ASCII STRING'

A single quote may be represented in a string by using two single quotes (") (NOT a double
quote.) This will count as one character.

FDR 3057 14-4 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

Example:

WRITE (1,1)
1 FORMAT ('AB''C')

will print AB'C at the terminal.

Parameters

Parameters are named constants and may be of any data mode. They may be used in the
program anywhere a constant can be used, except in FORMAT statements; they may also
appear in DATA and DIMENSION statements. Parameters are loaded at compile time, and
the code generated for them is identical to that generated for constants (see the PARAME-
TER statement in Section 15).

Variables

Variable names have from 1 to 6 characters. Character 1 must be alphabetic; characters 2-5
(if any) must be alphanumeric.

If no modes are specifically declared, then all variables whose names begin with the letters
1], K, L, M, N, are integer mode, and variables whose names begin with A-H, or O-Z are real
mode. Check Section 15, Specification Statements, for instructions on how to override this
implicit convention and also specify double precision, complex and logical modes.

Arrays

Arrays are ordered multidimensional sets of data represented as:
ANAME (I3,12,. . .,In).

The I's are the indexes (subscripts) of the array, and must be positive integers (constants,
parameters, or variables). All elements of the array must be of the same mode—integer
(short or long), real, double precision, complex, or logical.

GENERALIZED SUBSCRIPTS

There is no syntactical limitation on subscript expressions. The FORTRAN compiler allows
any integer-valued expression as an array subscript.

Use of generalized subscripts
Array references have the form
A(S1,S2,. . .,Sn)
A is the array name
Si is a subscript expression (1<=i<=7)

A subscript expression is any legal FORTRAN long- or short-integer-valued expression. It
may contain constants, variables, function references, intrinsic references, and other array
references. The nesting limit on any expression is 32 levels of parentheses, whether
syntactical, array, or function reference parentheses. Non-integer constants and variables
are not allowed within subscript expressions.

1 January, 1979 14-5 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Note
Conversion functions (such as IDINT, IFIX, INT) may be used

to convert non-integer expressions to integer within a sub-
script expression.

No more than seven subscripts may be used to index an
array.

Example:

The following FORTRAN program illustrates the use of generalized subscripts. It de-
liberately contains some rather bizarre expressions which show the flexibility of subscript-
ing, but is not intended as a model of good coding practice. (POOP, is a REAL-valued
function.)

C
C GENERALIZED SUBSCRIPTS
C
REAL A(10@,100) ,B(10),2
INTEGER G(3,4,5) ,H(3000),1,J,K
C
C ASSIGNMENT
C
Z=A(G (H(25**K**2) ,2,RS(I,H(2))) ,INTS(Z-A(1,10*H(J))))
* +B(INTS (POOP (2)))
C
C IF
C
IF(Z.NE.B(RS (K,H(K*5)))) GOTO 1000
C
C CALL
C
1900 CALL POOP1 (A(H(INTS(POOP(1))),G(1,J*2,1)),2)
C
C ETC.
C
END

Address constants

Address constants consist of a statement label prefixed by a dollar sign ($). They contain the
memory address of the first line of code generated by the statement label whose value is that
of the address constant. For example, if, 100 A=B*C is a statement in the program, then $100
is the address of the code generated by that statement. The address constant is an integer
value. It is usually used in conjunction with the ALTRTN from external subroutines (these
are alternate returns generated by encountering errors in executing the subroutines).

OPERATORS
Operators modify an operand or concatenate two operands.
Logical operators

FORTRAN's logical operators are: .NOT., .AND., .OR. (in this section, P and Q have been
specified as logical variables.

FDR 3057 14-6 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

.NOT.: .NOT.Q negates the value of Q.

Q NOT.Q
.TRUE. .FALSE.
.FALSE. . TRUE.
.AND.: P .AND. Q is the logical ANDing of the bits of P and Q (set intersection).
P
Q .TRUE. .FALSE.
.TRUE. . TRUE. JFALSE.
.FALSE. .FALSE. .FALSE.
.OR.: P .OR. Q is the logical non-exclusive ORing of P and Q. (set unionj.
P
Q .TRUE. .FALSE.
.TRUE. .TRUE. .TRUE.
JFALSE. . TRUE. .FALSE.

Arithmetic operators

*E Exponentiation

Unary minus
Multiplication

Division

Addition

Subtraction

Equality or replacement

I+ N * |

Relational operators

.LT. Less than

.LE. Less than or equal to
.EQ. Equalto

NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

Operator priority

FORTRAN evaluates operators within expressions in the following order:

o Exponentiation
- Unary Minus
*or/ Multiplication or division
+ or - Addition or subtraction
.LT.,.LE.,.EQ.,

Relational operators
.NE.,.GT.,.GE.
.NOT. Logical negation
.AND. Logical intersection
.OR. Logical union

At equal level of operators, priority evaluation generally proceeds from left to right.
However, the compiler takes advantage of groupings of elements (in accordance with
mathematical rules) and, as a result of this, evaluation may sometimes not be strictly left-to-
right (See note below). Expressions within parentheses are evaluated before operations
outside the parentheses are performed.

1 January, 1979 14-7 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Note

When two elements are combined by an operator, the order
of evaluation of the elements is optional. If mathematical use
of operators is associative, commutative, or both, full use of
these facts may be made to revise orders of combination,
provided only that integrity of parenthesized expressions is
not violated. The results of different permissible orders of
combination even though mathematically identical need not
be computationally identical. See: Section 6.4, para.2, ANSI
X3.9-1966

PROGRAM COMPOSITION

Each program (or subroutine or external function) consists of a number of program lines.
Program lines are grouped and ordered by type of statement as shown in Figure 14-2.
Comments and TRACE and LIST control statements can be used anywhere in the program.
The END statement must be the last statement of a program; nothing may follow END except
FUNCTION or SUBROUTINE of another subprogram. The types of statements are dis-
cussed in Section 15.

nt 1f required:.
; FUNCTION SUBROUTINE, BLOCK DATA
f‘t’_Storage and Spec:fication Statements . :

COMMDN DIMENSION, EQUIVALENCE SAVE
- DOUBLE- 'PRECISION, INTEGER, INTEGER*2, INTE ER
REAL*4 REAL*S IMPLICIT PARAMETER S

: DATA ‘Statements

5 Statement Functmn Definitions

:_V"“ﬂtable Statements o :
o »Artthmetxc and logical assignments
jantml Statements GOTO, ASSIGN, IF,
~ STOP, RETURN
- Input/ Output Statements READ, WRITE, PRINT
i ‘ 'BACKSPACE, END |
‘.._gt’?Subroutmes CALL subrname [(ar
2 ND Statement ' : RO ;

Flgure 14-2. Source Program Composltlon

FDR 3057 14-8 1 January, 1979

FORTRAN tes

IMPLEMENTED STATEMENTS
Legal statements for Prime FORTRAN IV are listed below with their functional category.

Statement

ASSIGN
BACKSPACE
BLOCK DATA
CALL
COMMON
COMPLEX
CONTINUE
DATA
DECODE
DIMENSION
DO

DOUBLE PRECISION
ENCODE
END
ENDFILE
EQUIVALENCE
EXTERNAL
FORMAT
FULL LIST
FUNCTION
GO TO

IF

IMPLICIT
INTEGER
INTEGER*2
INTEGER*4
LIST
LOGICAL
mode FUNCTION
NO LIST
PARAMETER
PAUSE
PRINT

READ

REAL
REAL*4
REAL*8

1 January, 1979

Category

Control

Device Control
Header

External Procedure
Storage
Specification
Control

Data initialization
Coding

Storage

Control
Specification
Coding

Control

Device Control
Storage

External Procedure
Format
Compilation/Run-Time Control
Header

Control

Control
Specification
Specification
Specification
Specification
Compilation/Run-Time Control
Specification
Header
Compilation/Run-Time Control
Specification
Control
Input/Output
Input/Output
Specification
Specification
Specification

15-1 FDR 3057

15 FORTRAN STATEMENTS

RETURN
REWIND
SAVE

STOP
SUBROUTINE
TRACE
WRITE
$INSERT

Control

Device Control

Storage

Control

Header

Compilation/Run-Time Control
Input/Output
Compilation/Run-Time Control

In this reference, section statements are grouped in functional order to clarify and simplify

discussion, as follows:
1. Header Statements:

» BLOCK DATA
« FUNCTION
» SUBROUTINE

2. Specification Statements:
o IMPLICIT

» mode: COMPEX, LOGICAL, DOUBLE PRECISION, REAL, REAL*4, REAL*S,
INTEGER, INTEGER*2, INTEGER*4.

+ PARAMETER
3. Storage Statements:

« COMMON

+ DIMENSION

» EQUIVALENCE
« SAVE

4. External Statements:

s CALL
» EXTERNAL

5. Data Definition Statements:
« DATA

6. Compilation and Run-Time Control Statements:

s FULL LIST
s LIST

» NO LIST
« TRACE

« S$INSERT

7. Assignment Statements

8. Control Statements

+» ASSIGN

+ CONTINUE
* DO

s END

+ GO TO

s IF

FDR 3057

15-2

1 January, 1979

FORTRAN STATEMENTS 15

* PAUSE
* RETURN
e STOP

9. Input/Output Statements:

e PRINT
* READ
* WRITE

10. Coding Statements:

e DECODE
* ENCODE

11. Format Statements:
e FORMAT
12. Device Control Statements:

¢ BACKSPACE
e ENDFILE
e REWIND

13. Functions

14. Subroutines

HEADER STATEMENTS FOR SUBPROGRAMS

BLOCK DATA statement
BLOCK DATA

The BLOCK DATA statement labels a block data subprogram. This type of subprogram
labels COMMON areas and then initializes data values within these areas via DATA
statements. Block data subprograms are compiled separately and linked to the main
program by the Loader.

FUNCTION statements
[mode] FUNCTION name (argument-1[, argument-2, . . . argument-n})

The arguments are a non-empty list of the arguments passed by the calling program. There
is no syntactical upper limit to the number of arguments. However, long lists will slow
execution. The name is both the name of the function in the calling program and the variable
that returns the value calculated by the function. The mode is an optional specification of
one of the data types, selected from the following list:

COMPLEX LOGICAL

INTEGER REAL*4 (REAL)

INTEGER*2 REAL*8 (DOUBLE PRECISION)
INTEGER*4

If no mode is specified, FORTRAN will assign one implicitly based upon the first letter of
the function name (i.e., I-N=Integer, A-H or O-Z=REAL).

SUBROUTINE statements
SUBROUTINE name [(argument-1,argument-2 . . . argument-n)]

1 January, 1979 15-3 FDR 3057

15 FORTRAN STATEMENTS

The arguments are a list of arguments, some of which are passed by the calling program;
others are dummy arguments whose values are calculated by the subroutine and returned
to the calling program. There is no syntactical upper limit to the number of arguments.
However, long lists will slow execution.

CAUTION

Under PRIMOS, subroutines are called by address (location)
rather than by name. Thus, it is extremely important not to
place constants or parameters in the argument list as argu-
ments which will be returned, since this will alter their value.
Also, returned arguments may not be expressed.

Example:
I=5 prints on user terminal
PRINT 10,1 5
CALL SUBL (I,5)
I=5
PRINT 14,I 25

10 FORMAT (I2)

SUBROUTINE SUB1 (J,K)
K=J*%2

RETURN

END

SPECIFICATION STATEMENTS

FORTRAN automatically assigns modes to all variables, parameters, arrays, and functions
(except intrinsics) that do not appear in mode specification statements. The FORTRAN
language default is as follows: if the symbol's first character is I through N (inclusive), the
symbol is typed as integer; all others (A-H, O-Z) are typed as real. (The default integers are
short integers unless the program is compiled with the long integer default - see Section 5.

IMPLICIT statements
IMPLICIT mode-1 (list-1), mode-2 (list-2), . .., mode-n (list-n)

The IMPLICIT statement allows the programmer to override the language convention for
default data typing. Each mode is a data mode such as REAL*4, COMPLEX, etc. Each list lists
the letters to be typed as the mode specification. Letters may be separated by a comma or
an inclusive group of letters may be indicated with a dash.

Symbols not typed in this statement and not specified in mode specification statements will
revert to the FORTRAN language default.

Example:
IMPLICIT DOUBLE PRECISION (A,M-Z), LOGICAL (B)
First letter of symbol Type .
A, or M through Z Double Precision
B Logical
C through H Real
I through L Integer

FDR 3057 15-4 1 January, 1979

FORTRAN STATEMENTS 15

If used, the IMPLICIT statement must be the first statement of a main program, or the second
statement of a subprogram. IMPLICIT typing does not affect intrinsic or basic external
functions. IMPLICIT affects all symbols not otherwise typed. This includes dummy vari-
ables in the first statement of a subroutine or function. The user should take care to make
sure that these dummy variable symbols will be of the proper data type.

Mode specification statements
mode [V1,V2,...,Vn]

The mode specification statement allows override of the implicit mode assignments of
symbol names which was done either by IMPLICIT or language default.

The word mode is replaced by one of the nine data mode specifications:
e COMPLEX
e DOUBLE PRECISION (same as REAL*8)
* INTEGER
e INTEGER*2
¢ INTEGER*4
e LOGICAL
e REAL (same as REAL*4)
¢ REAL*4 (same as REAL)
e REAL*8 (same as DOUBLE PRECISION)]

The V’s are a list of variable names, parameter names, array names, function names, or
array declarers.

Recognition of synonymous specifications is designed to ease conversion of extant programs
to the Prime FORTRAN system. INTEGER will normally default to INTEGER*2 (short
integer) unless the program is compiled including the INTL option. In this case, INTEGER
will default to INTEGER*4 (long integer). It is recommended in new programs that the
programmer explicitly use INTEGER*2 and INTEGER*4 specifications. (See Section 5 for
compiler information.)

Global mode definition occurs if a mode specification does not include a symbol list. In this
case, all symbols which do not appear in specification statements and whose first ap-
pearance follows this global mode statement are declared to be of this globally-specified
mode.

CAUTION

The use of global mode and the IMPLICIT statement in the
same program unit is prohibited. The global mode is func-
tionally replaced by the IMPLICIT statement. The use of the
IMPLICIT statement is strongly recommended as a superior
programming technique. The global mode is still supported
by the FORTRAN system to allow the use of existing pro-
grams utilizing it.

PARAMETER statement
PARAMETER (V1=C2,... ,Vn=Cn)

Where the V’s are variables (arrays are not allowed) and the C’s are constants or constant
expressions of the same mode as the corresponding variables. The operands in the constant
expressions may be constants or previously defined parameters. Allowed operations
include +, -, %, and / on INTEGER*2, REAL*8, and REAL*4 operands. INTEGER*2 XOR, OR,
AND, MOD, shift, and truncate function references are also allowed. An error message, ILL.

1 January, 1979 15-5 FDR 3057

15 FORTRAN STATEMENTS

CONSTANT EXPR., is generated if these restrictions are violated. The variable names must
be typed explicitly prior to the PARAMETER statement or default-typed implicitly. All other
uses of the PARAMETER names must follow the PARAMETER statement. PARAMETER
names may be used wherever a constant would be used (including DATA and DIMENSION
statements) except in FORMAT statements. Since the parameters are named constants,
PARAMETER names may not be used in COMMON or EQUIVALENCE statements.

Enclosing the parameter list in parentheses is required by the FORTRAN 77 standard.
Prime’s FORTRAN will accept a PARAMETER statement with or without the parentheses.

STORAGE STATEMENTS

COMMON statement
COMMON /X1/A1/,../Xn/An

Where each A is a non-empty list of variable names or array names, and each X is a
COMMON block name or is empty (blank COMMON). The COMMON block names must
not be identical with names of subprograms called or FORTRAN library subroutines. Data
items are assigned sequentially within a COMMON block in the order of appearance. The
loader program assigns all COMMON blocks with the same name to the same area,
regardless of the program or subprogram in which they are defined. Blank COMMON data
are assigned in such a way that they overlap the loader program, thereby making the
memory area occupied by the loader program available for data storage.

Note

The form // (with no characters except blanks between
slashes) may be used to denote blank COMMON.

The number of words that a COMMON block occupies depends on the number of elements,
the mode of the elements, and the interrelations between the elements specified by an
EQUIVALENCE statement. COMMON blocks that appear with the same block name (or no
name) in various programs or subprograms of the same job are not required to have
elements within the block agree in name, mode, or order, but the blocks must agree in total
words.

As an aid to system-level programming, the compiler defines absolute memory location
'00001 as the origin of a COMMON block named ‘LIST'.

It is customary to assign an array called LIST into the labeled COMMON area called LIST,
such that the first word in this array is location '00001, the sixth word location '00008, etc., as
in:

COMMONY/LIST/LIST(1)

Effectively, the subscript of array LIST is the actual memory address. This feature is not
required when compiling in 64V mode.

Note

Techniques for handling COMMON areas larger than 64K
words (64V mode only) are discussed in Section 11.

DIMENSION statement
DIMENSION V1(I1), V2(12), . .. Vn(In)

Declares the name of the array, the number of subscripts (IJ=]1,]2, . .. Jn; n=1 to 7}, and the
maximum value for the subscripts. This allocates the maximum storage requirement for the

FDR 3057 15-6 1 January, 1979

FORTRAN STATEMENTS 15

array. In a subroutine, the subscript(s) in a dimension statement may be a variable,
provided this value is passed to the subroutine from the calling program.

EQUIVALENCE statement
EQUIVALENCE (k11, k12, k13 .. .), (k21, k22, k23 .. .)

Where each k is a variable, subscripted variable or array name. Each element in the list is
assigned the same memory storage by the compiler. An EQUIVALENCE statement equates
single variables to each other, entire arrays to each other, elements of an array to single
variables and vice-versa. If equivalences are established between variables of different
modes, the shorter mode is stored in the first words of the longer mode.

SAVE statement
SAVE V1, V2,...Vn

Where the V’s are local variables or array names. Arrays cannot be dimensioned in a SAVE
statement. Any symbol name appearing in a SAVE statement cannot appear ina COMMON
statement or be EQUIVALENCEd to a COMMON element. A labeled COMMON block (not
blank COMMON) may appear in the list if it is enclosed in slashes.

Note

In the current revision, inclusion of a COMMON block name
has no effect. This feature is included to allow compatibility
with the FORTRAN 77 standard.

Variables listed in the SAVE statement are assigned local storage in the linkage frame
(static) rather than the stack frame (dynamic). Thus, the SAVE command has meaning only
when the program is compiled including the DYNM command (64V mode only). Symbol
names in DATA statements, SAVE statements or EQUIVALENCEd to names in these
statements are stored in the linkage frame. Only variables in the linkage frame can be
initialized. Variables allocated to the stack frame are not preserved from one subroutine
CALL to the next.

If the SAVE statement appears without a list of symbol names then all local storage is
allocated to the linkage frame.

A further discussion of local storage allocation will be found in Section 17.

EXTERNAL PROCEDURE STATEMENTS
CALL statement

CALL subroutine [(argument-1, argument-2, . . ., argument-n])

Where subroutine is a subroutine name and the arguments are a list (possibly empty) of the
arguments passed and to be returned. Subroutines may not CALL themselves unless the
program units are all compiled with the DYNM parameter (64V mode on Prime 350 or higher
computers).

EXTERNAL statement
EXTERNAL V1, V2,...,Vn

Where each V is declared to be an external procedure name. This permits the name of an
external function (such as COS) to be passed as an argument in a subroutine call or function
reference.

1 January, 1979 15-7 FDR 3057

15 FORTRAN STATEMENTS

DATA DEFINITION STATEMENT

DATA statement
DATA k1/d1/,k2/d2/, ... kn/dn/

Allows initialization of variables or array element at load time. Each k is a list of variables
or array elements (with constant subscripts) separated by commas; each d is a correspond-
ing list of constants of the same data mode as the variables and array elements in the list.

COMPILATION AND RUN-TIME CONTROL STATEMENTS

The following statements provide diagnostic tools for the programmer and are discussed in
more detail in the Debugging section (9) and the Compiler Section (5).

FULL LIST statement

Causes a listing of subsequent source code with a symbolic listing. Overridden by compiler
parameters.

INSERT statement

See $INSERT.

LIST statement
Causes a listing of subsequent source code with no symbolic listing. Overridden by compiler
parameters.

NO LIST statement

Causes a cessation of subsequent source code listing and of symbolic listing. Overridden by
compiler parameters.

FULL LIST, LIST, and NO LIST may be used anywhere in the source program.

Item TRACE statement
TRACE V1, V2,...Vn

Each V is a variable or array name. Prints the value of the variable at each point in the
program where the variable is modified. Printout of a variable may be altered by another
TRACE command with that variable name. Trace coding is inserted into the program at
compilation; TRACE takes effect in source program physical order, not logical execution
order.

Area TRACE statement
TRACE n

Causes values of the variables used in statement label n to be printed out during execution
of the code between the area TRACE statement and statement label n.

Note

Do not place an area trace statement in the range of another

area trace statement, unless both refer to the same statement
label.

TRACE is overridden by the compiler global trace parameter (see Section 5). It is possible
to have the TRACE output written into a file instead of at the user terminal. Prior to
executing the program, switch the output to a file by the PRIMOS-level command.

FDR 3057 15-8 1 January, 1979

FORTRAN STATEMENTS 1H

COMO filename

where filename is the file into which terminal output is to be written. After the program has
halted, output to a filename is stopped and the file closed by:

COMO -END

The form of the command given here does not turn off output to the terminal. A complete
description of this command is given in Section 10.

$INSERT statement
$INSERT insert-file

Insert into the program, at compilation time, the file whose pathname is insert-file. The
$INSERT command should not be nested; do not include a $INSERT command in a file
which will be inserted into a program by a $INSERT command.

$INSERT is used for:

e Insertion of COMMON specification into programs.
* Commonly used one-line functions.
e Data initialization statements.

* Parameter definitions, especially for the file management system, applications
library, MIDAS, etc.

ASSIGNMENT STATEMENTS
Assign a value to a variable

1. arithmetic A=B**2
2. logical (P, Q, R are logical variables) P=Q.OR.R, P=A.GT.B

Mixed mode
Data of different modes may be combined with one another with the following restrictions:

1. Logical data should not be combined with any other mode.
2. No operator can combine Double Precisions and Complex data.

3. Subscripts and Control statement indexes must be integers (short or
long).

4. ' Arguments of functions and subroutines must be of the mode expected
by the called subprogram.
It is convenient to think of the arithmetic data modes as forming a hierarchy:

e COMPLEX or DOUBLE PRECISION
* REAL

e LONG INTEGER

e SHORT INTEGER

Whenever two data of differing modes are concatenated by an operator, the resulting mode
is that of the higher in the list, as in:

REAL + SHORT INTEGER is a REAL

CAUTION

If LONG INTEGERS are converted to REALs, there may be a
loss of precision. The rules for data mode conversion via
assignments (i.e., A=B) are given in Table 15-1. Conversion of

1 January, 1979 15-9 FDR 3057

15 FORTRAN STATEMENTS

long (short) to short (long) integers by assignment is not
recommended as good practice; use the INTL and INTS
functions instead.

CONTROL STATEMENTS

ASSIGN statement
ASSIGN k TO i

Where k and i are integer variables whose values are statement label numbers. An ASSIGN
statement must be executed prior to an assigned GO TO.

CONTINUE statement
[statement-number] CONTINUE

Transfers control to the next executable statement. With the optional statement-number it
is usually used to indicate the end of the range of a DO loop.

DO statement
DO n i=m1, m2 [,m3]

Executes statements until and including the statement with label n; m1, m2, m3 are positive
integers (constants, parameters, or variables only - no expression or array elements) with
m2<m1; iis an integer variable which assumes the values m1, m1+m3, m1+2*m3, etc. m1 is
the initial value, m2 the limit value, and m3 the increment. If m3 is not specified, the
increment is defaulted to 1.

DO loops may be nested; there is no syntactical limit to the nesting of DO loops.

It is an undesirable programming technique to have the index variable appear as the initial,
limit, or increment values in the DO statement.

After the last execution of the loop, control passes to the next executable statement
following the terminal statement of the DO loop. This is called a normal exit.

CAUTION

ANSI standard FORTRAN specifies that the value of the
index variable is undefined after a normal exit from a DO
loop. The value of the index variable at this point is complete-
ly dependent upon the specific compiler and how it performs
its limit tests; hence, the terminal value of the index variable
will differ at different installations. It is extremely bad
programming to use the terminal value of this variable as
implicitly set. If the user needs the value of this variable after
a normal exit, its value should be explicitly set by an
assignment statement.

Note

The DO loop in Prime FORTRAN is a one-trip DO loop. That
is, the loop commands will be executed at least once even if
the initial value is not less than the limit value. If it is desired
to skip the loop under certain conditions, an IF statement
preceding the DO statement should be used. Control should
be transferred to a statement subsequent to the terminal
statement of the DO loop, not to the terminal statement.

FDR 3057 15-10 1 January, 1979

FORTRAN STATEMENTS 15

END statement

The final statement of program, subroutine, or external function. Tells the compiler that it
has reached the end of the source program.

Unconditional GO TO statement
GO TO k

Transfers control to statement labelled k.

15 FORTRAN STATEMENTS

Transfers control to statement labelled i. Prior to executing, the assigned GO TO a value
must be assigned to i using the ASSIGN command.

There is no syntactical limit to the number of labels in a computed or assigned GO TO.
Arithmetic IF statement
IF (e) k1, k2, k3

Where e is an arithmetic expression with an integer, real, or double precision value. If e<
0 (negative] control is transferred to statement labelled ki, if e = 0 (exactly), control is
transferred to statement labelled k2, and if e>0 (positive), control is transferred to statement
labelled k3.

Logical IF statement
IF (e) statement

Where e is a logical expression which may be .TRUE. or .FALSE.; statement is any valid
executable statement except a DO or a logical IF statement. If e is true, the statement is
executed; if e is false, control passes to the next executable statement.

Note

An arithmetic IF may be the statement in a logical IF but this
is not recommended as a good programming practice.

PAUSE statement
PAUSE [n]

Where n is an optional decimal number of up to five digits. Halts the program, transfers
control to subroutine F$HT and prints ****PA n (R-identity) or ****PAUSE n (V-identity) at
the keyboard. The value of n is printed in octal representation. Keying in START continues
operation of the program at the next executable statement following PAUSE.

RETURN statement
RETURN

Returns to the main program from a subroutine or external function. It must be the last
logical statement in the subroutine or external function.

STOP Statement
STOP [n]

Where n is an optional decimal number of up to five digits. Halts the program, transfers
control to subroutine F$HT, prints ****ST n (R-identity) or ****STOP n (V-identity) at the
keyboard and returns control to the PRIMOS level. The value of n is printed in octal
representation.

INPUT/OUTPUT (1/0) STATEMENTS
See Table 15-2 for list of FORTRAN device units.

Direct access READ and WRITE statements

The FORTRAN compiler and run-time library support direct access READ and WRITE
statements. READ and WRITE statements may contain a record number to randomly access
file records. With sequential access, record n-1 must be read or written before record n. The
syntax implemented is compatible with both IBM FORTRAN and new ANSI standard
FORTRAN.

FDR 3057 15-12 1 January, 1979

FORTRAN STATEMENTS 15

Usage: Special action is required by the user when creating and opening files to be used for
direct access 1/0. Files used for direct access I/0 should be DAM files. (Direct access 1/O
statements may be used with SAM files but execution time will be longer.) If the file is
formatted, the ATTDEV subroutine must be called so that fixed length records are written.
(The ATTDEV subroutine is also used to set the record length.) DAM files are created by
opening a new file using the KSNDAM subkey in either a SRCH$$ or TSRC$$ call. (See
Reference Guide, PRIMOS Subroutines for details.)

The ATTDEV subroutine may be used to alter the mapping of FORTRAN units to file system
units or to change the record size from the default of 60 words (120 characters). The records
of a direct access formatted file must be fixed length. This is done by setting the second
argument of ATTDEV to 8. The records of an unformatted file are fixed length by default.
If the record length of any file exceeds 66 words (132 characters), a COMMON declaration
for F$IOBF must be included. The size of F$IOBF must be as large as the largest record size.
(See Changing record size below for details.)

A program that creates a direct access file cannot write record n before record n-1 has been
written. A separate program should be used. Once the file has been created, it can be read
or written in random order.

After a direct access I/0 statement, the file is positioned at the record following the one just
transferred. If the direct access file is then accessed sequentially, using other forms of the
READ or WRITE statement, it is not necessary to include the record number. This enhances
performance by eliminating the positioning call.

Formatted files used for direct access I/O may be examined by the editor. They must not be
modified using the editor. The editor compresses records, giving them variable lengths; files
used for direct access I/0 must have fixed length records.

IBM compatibility: The READ and WRITE statements are identical to IBM FORTRAN. The
DEFINE FILE and FIND statements of IBM FORTRAN are not supported. The record size in
the DEFINE FILE statement must appear in the ATTDEV call. The record size in the
DEFINE FILE statement is measured in bytes or 32-bit words rather than 16-bit words
required by ATTDEV. If the U specifier is used in the DEFINE FILE statement, the record
size of the DEFINE FILE statement should be doubled for the ATTDEV call; otherwise the
record size should be halved.

The ATTDEV call requires INTEGER*2 arguments. If the INTL option is used during
compilation, constants used as arguments in the ATTDEV calls must be converted to
INTEGER*2 by the INTS function (e.g., INTS (8)).

There is no equivalent of the DEFINE FILE associated variable in Prime's implementation
of direct access files. In IBM FORTRAN, the value of the associated variable is the number
of the record that follows the record just transferred.

Changing record size: The default formatted record length is 60 words (120 characters). A
larger record size can be set with the ATTDEV subroutine. This subroutine has two
functions:

 Change record size associated with a FORTRAN logical I/0 unit number.

o Change the correspondence between the I/O unit number and the physical
device.

1 January, 1979 15-13 FDR 3057

15 FORTRAN STATEMENTS

The syntax is:
CALL ATTDEV (logical-unit,device,unit,record-size)

logical-unit The FORTRAN I/0 unit number. This is the number used in
READ and WRITE statements (1=terminal, 2=paper tape
punch/reader, etc. (See table 15-2.)

device The position of the physical device in the device-type tables
(CONIOC). The acceptable values are:
1 User terminal
2 Paper tape punch/reader
7 Disk file system (Compressed ASCII)
8 Disk file system (Uncompressed ASCII)

unit The unit number for multi-unit devices (e.g., magnetic tape drive
0-3). If device is the disk file system (7 or 8) then unit is the file
unit number (1-16).

record-size The maximum record size in INTEGER*2 words for the logical-
record. Each word will store 2 characters.

If the record size is to exceed 128 words (256 characters), the buffer used by internal
FORTRAN subroutines must be increased. This is done by loading a user-created F$IOBF
COMMON before loading the FORTRAN library. Insert this statement in the

user program:

COMMONY/FS$IOBF/array-name (size)

array-name An arbitrary name.
size The desired buffer size in INTEGER*2 words. Each word stores 2
characters.
CAUTION

It is not possible to increase the buffer size by loading a user-
created F$IOBF if the shared libraries are used.

PRINT statement

PRINT f [list]

Prints the list of elements at the user terminal according to the format specified in statement
f. Equivalent to WRITE (1.f) [list].

READ statements

For all READ statements: if END=a is included, then control is transferred to statement
number a if an end-of-file condition is encountered during the read. If ERR=b is included,
then control is transferred to statement number b if a device or format error is encountered
during the READ statement.

list A list of variables and array names (separated by commas) into
which data are read.

FDR 3057 15-14 1 January, 1979

FORTRAN STATEMENTS 15

15 FORTRAN STATEMENTS

r The long or short integer expression whose value is the record
number to be accessed.

f The statement number of the format specifier (optional).

b The statement number to which control is transferred if a device

or format error is encountered during transfer (optional).

The END= specifier is not allowed in the direct access READ statement. This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.

Binary READ statement
READ (u [, END = a] [, ERR = b] list

Causes data on FORTRAN unitu to be read into the variables/array names specification list.
Enough records are read to satisfy all the list items. If more items are on the record than are
required by the list, the excess items are ignored. If no list is given, one record is read and
ignored.

CAUTION

If the list requires more data than are in the current record,
then the next record(s) are read until the list is satisfied. This
is not a clean programming technique and should be avoided.

List-directed READ statement
READ (u,* [, END = a] [, ERR = b]) list

List-directed 1/0 frees the programmer from including format statements for READs from
free-format input devices such as the user terminal. The input data is converted according
to the data type of items in the I/0 list. Additionally, this feature provides a methed to
indicate in the input data that an item in the I/0 list is to remain unchanged by the READ
statement.

Delimiters: Values in list-directed input are separated by a blank, comma, or slash. A slash
or comma may be preceded and followed by any number of blanks. An end of record is
treated as a blank. A slash terminates a READ and leaves the values of the remaining items
in the I/0 list unchanged. Two adjacent commas with no intervening characters except
blanks will leave the corresponding item in the I/0O list unchanged. A list-directed READ
will read any number of records until a slash is encountered or until all items in the I/0 list
have been satisfied.

Example 1:

Source line: READ(1,*)A,B,C

Input Data: 151,,2E2

Result: A=151. B is unchanged. C=2.E2
Example 2:

Source line: READ(1,*)L,],K

Input Data: 5-3/

Result: I=5. J=-3. K is unchanged.

Numerical input: If an item in the I/O list is a long or short integer variable or array
element, the corresponding input fic'1 must contain a string of decimal digits optionally
preceded by a + or — sign, as in:

-357 100514 +12387

FDR 3057 15-16 1 January, 1979

FORTRAN STATEMENTS 15

If a real or double precision item is in the I/O list, the corresponding input field must
contain a string of decimal digits with an optionally embedded decimal point. An exponent
field may follow in either E or D format, as in:

51 -27.68 7.65E-14 863D2
503 +265.

The input field corresponding to a complex item must contain two real numbers (as
described above), separated by a comma and enclosed in parentheses, as in

(1E2, -2.) (5.67E-6,8.09)

Character string input: A variable or array of any type can be set equal to a character string
using list-directed READ. A character string must be enclosed in single quotation marks in
the input data. Within a character string, a quotation mark is represented by two consecutive
quotation marks. A character string, regardless of length, matches a single item in the I/0
list whether it is a variable, array element, or whole array (represented by including the
unsubscripted array name in the I/0 list). If the character string is shorter than the listitem,
the rightmost characters of the list item are blank filled. If the character string is longer than
the list item, the rightmost characters of the character string are ignored. Characters are
packed two per word, as in:

Example 1:
Source: INTEGER*2 IBUF(2)
READ(1,*) IBUF
Input Data: "ABC
Result: IBUF(1)=AB. IBUF(2)=C.
Example 2:
Source: READ(1,*) (IBUF(I), I=1,2).]
Input Data: "GHIJ', 5/
Result: IBUF(1)='GH’. IBUF(2)=5.] is unchanged.

Note

If the I/0 list has been satisfied, a slash in the input data is
optional. A carriage return is the end of a record on a READ
from a user terminal and is treated as a blank on list-directed
READS.

WRITE statements

For all WRITE statements, if ERR=b is present, control is transferred to statement b if a
device error is encountered during the WRITE statement.

list A list of variables and array names (separated by commas) from
which data are printed.
Formatted WRITE statement
WRITE (u,f [,ERR=D]) list

Causes data in the list to be written out on FORTRAN unit u according to the format
statement f.

Direct-access WRITE statements
WRITE (u'r,f,ERR=b) list IBM format
WRITE (u,f,REC=r,ERR=b) list ANSI format

1 January, 1979 15-17 FDR 3057

15 FORTRAN STATEMENTS

u A long or short integer constant or variable whose value is the
FORTRAN unit number.
Note

The apostrophe (') is required in the IBM form of the direct
access WRITE statements.

r The long or short integer expression whose value is the record
number to be accessed.

f The statement number of the format specifier (optional).

b The statement number to which control is transferred if a device

or format error is encountered during transfer {optional).

The END= specifier is not allowed in the direct access read statement, This restriction is
consistent with both IBM FORTRAN and the new ANSI standard FORTRAN.

Binary WRITE statement
WRITE (u [,ERR=b]) list

All words in the list are written into a record in binary format. If there are insufficient data
to fill the record, it is padded out with zeroes; if there are more items than a record can hold,
multiple records are written automatically. If necessary, the last record is padded with
zeroes.

Both READ and WRITE statements allow implied DO loops for transferred data between
arrays and device. In this case, the list could have a form such as:

(NAME1 (INDEX1), INDEX1 = 1, 5, 2)
or,

(NAME1 (INDEX1), NAME2 (3, INDEX1), INDEX1 = 1, 5)
or

(NAME1 (INDEX1, INDEX2), INDEX 1 =1, m), INDEX2 = 1, n, p)

where m, n, and p are constant positive integers (constants, parameters, or variables).

CODING STATEMENTS

c number of ASCII characters to be transferred

f format statement label

a array name

list I/0 list of elements (same as in a READ or WRITE statement)

Formatted DECODE statement

DECODE (c,f,a], ERR=sn]) list
Converts the first ¢ characters in the array a from ASCII data into the 1/O list elements
according to the specified format f. If the optional error branch is inserted, a FOR-
MAT/DATA mismatch will cause a transfer to the statement labelled sn.
List-directed DECODE statement

DECODE (c, *, a [, ERR=sn]) list

Allows the user to input/decode data from free-format input devices such as the user
terminal. The requirements on input and delimiters are the same as for the list-directed
READ statement (see READ).

FDR 3057 15-18 1 January, 1979

FORTRAN STATEMENTS 15

ENCODE statement
ENCODE (c,f,a) list

Converts the elements of the I/0 list into ASCII data according to format f and stores the
first ¢ characters of the resultant string into array a.

FORMAT STATEMENTS

FORMAT statement
sn FORMAT (dF1 dF2 dF3... Fn)

sn Mandatory statement number.

F1, etc. A format field description.

d A format delimiter (, or /). The first d may be null.
The right parentheses marks the end of a record.
Delimiters:

/ (slash) proceed to next record

, (comma) remain within current record

The maximum record length is determined by the type of device or storage unit.

Format field descriptor: Tables 15-3 and 15-4 summarize the field descriptors available in
Prime FORTRAN, where n (positive integer constant) is the number of times the basic
field descriptor is to be repeated, w (positive integer constant) is the total width of the field
- in columns (or characters).

d (non-negative integer constant) is the number of digits to the right of the decimal point.
(See format G output for an exception to this.)

Repetition: All field descriptors except those marked by an * in Tables 15-3 and 15-4 (X,H,B)
can be assigned a repeat count causing the descriptor to be used that number of times in
succession.

FORMAT (3E10.5)
and

FORMAT (E10.5, E10.5, E10.5)
are equivalent,

Groups of descriptors (including X,H,B) may be enclosed in parentheses and the entire
group assigned a repeat count.

FORMAT (2(3G11.6,5X]))
and
FORMAT (3G11.6,5X,3G11.6,5X)
are equivalent.
Repeat groups have a maximum nesting of two levels.
FORMAT (3(2(10F.7,3X),12,5X))
is permissible.
Rescanning format lines: If the format list is exhausted before the input/output list, the

format list is repeated. Repetition starts at the opening (left) parenthesis that matches the
last closing (right) parenthesis in the format list. The parentheses around the format list

1 January, 1979 15-19 FDR 3057

15 FORTRAN STATEMENTS

itself are used only if there are no other parentheses. Any repeat count preceding the
rescanned format is in effect.

Output The current record is padded with blanks and a new record is
started.
Input The remainder of the current record is skipped and the device

advanced to the beginning of the next record.

‘ai“e“to be prmted} d is th
”emmal pomt} Numbe

sigr twe posl
numberd sets the number »of lace

”spaces mto the output‘ ‘
; for replacing).* &

FORTRAN STATEMENTS 15

Formats as variables: It is possible to enter format statements at run time by any method of
building this format as text string and loading it into an array. The array can later be
referenced in lieu of a FORMAT statement, by the READ or WRITE statements that handle
the data. Arrays to be used for this purpose must be assigned as integer type and must be
dimensioned to accomodate the format description, at two characters per word. The format
description is loaded into the array by a READ statement that references a type A forma
statement: :

DIMENSION FORM (6), TEXT (80)
INTEGER FORM
READ (1,20) FORM
20 FORMAT (6A2)
WRITE (1,FORM) (ARG (I) , I=1,3)

These statements provide for an output format specification such as (3(F7.3,17)) to be
entered at run time. Note that the specification must include opening and closing paren-
theses but not the word FORMAT.

B-Format: The B-Format is used in printing business reports where it is desirable to fill
number fields to prevent unauthorized modifications (as on checks), suppress leading
zeroes and plus signs, print trailing minus signs (accounting convention) and convert minus
signs to CR (for indicating credit entries on bills). The form of the B-field specifiers is:

B’string’ .
The length of the string determines the field width. If the width is too small for the number,
then the output will be a string of asterisks filling the field. Legal characters for the
string are:

+ — $,*Z#.CR

1 January, 1979 15-21 FDR 3057

15 FORTRAN STATEMENTS

Table 15-4 ‘Results of Formats in Input Statements. '
R FORMAT ‘

External numbers may be repres
tegers, or scaled numbers (with expone
‘treated as zeroes; imbedded and:
The implied decimal point. is plac
- - digits counting from the right
external number). A decxm
overrides the posmonal decimal po
(D or E) and the exponent v
mcluded or omitted. All numhers ar
minus sign is present. - :

- All numbers are inmally converted

- cision numbers, 1f entered m E F, ¢
- cated: Len ;

;_”Sklps w columns in the mput dat
reload record).*

“Tabs to column w in the mput recor,

T Notuser

- Stores ASCII characters in Inte
Precision variables, If input is gr.
variables, only the leftmost characters
~Stores true/false in internal repres
non-space characters in the i
it-is set to +1; if F it is set to 0;
the error flag is set (use 'OVERF

Stores external numbers in integ
~ sign is assumed. A sign or b
- position. No decimal points a
_-numbers than the fleld width, w
~_are stored.

: NOT USE’D* =

epeﬂt count is cxHowed w:th the format specxfler 1tseif
uded ina group repetition. : ;

Plus (+):

If only the first character is +, then the sign of the number (+ or —) is printed in
the leftmost portion of the fleld (Fixed sign). If the string begins with more than one
+ sign, then these will be replaced by printing characters and the sign of the
number (+ or —) will be printed in the field position immediately to the left of the
first printing character of the number (floating sign). If the rightmost character of the

FDR 3057 15-22 1 January, 1979

FORTRAN STATEMENTS 15

string is +, then the sign of the number (+ or —) will be printed in that field
position following the number (Trailing sign).

Minus (—):

Behaves the same as a plus sign except that a space (blank) is printed instead of a
+ if the number is positive (Plus sign suppression).

Dollar sign ($):

A dollar sign ($) may at most be preceded in the string by an optional fixed sign. A
single dollar sign will cause a § to be printed in the corresponding position in the
output field (Fixed dollar).

Multiple dollar signs will be replaced by printing characters in the number and a
single $ will be printed in the position immediately to the left of the leftmost printing
character of the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar.
Asterisks in positions used by digits of the number will be replaced by those digits;
the remainder will be printed as asterisks (Field filling).

Zed (2):

If the digit corresponding to a Z in the output number is a leading zero, a space
(blank) will be printed in that position; otherwise the digit in the number will be
printed (Leading-zero suppression).

Number sign (#):

#s indicate digit positions not subject to leading-zero suppression; the digit in the
number will be printed in its corresponding portion whether zero or not (Zero non-
suppression).

Decimal point (.):
Indicates the position of the decimal point in the output number. Only #'s and either
trailing signs or credit (CR) may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before the decimal points.
If a significant character of the number (not a sign or dollar) precedes the comma,
a, will be printed in that position.If not preceded by a significant character, a space
will be printed in this position unless the comma is in an asterisk field; then an * will
be printed in that position.

Credit (CR):

The characters CR may only be used as the last two (rightmost) of the string. If the
number is positive, 2 spaces will be printed following it; if negative, the letters CR
will be printed.

See Table 15-5 for examples of B-Format usage.

Scale factors (D,E,F, and G Formats): A scale factor designator for use with the F,E,G, and
D descriptors causes a multiplication by a power of 10. The form is:

nP (represented as s in Tables 15-3 and 15-4)

Where n, the scale factor, is an integer constant with an optional minus sign. Once a scale
factor has been specified, it appies to all subsequent F.E,G, and D field descriptors, until

1 January, 1979 15-23 FDR 3057

15 FORTRAN STATEMENTS

another scale factor is encountered. If n=0, an existing scale factor is removed. The scale
factor has no effect on type I,A,H,X,L, or B descriptors.

E and D output scale factor: Before output conversion, the fractional part of the internal
number is multiplied by 10**n and the exponent is decreased by n.

F output scale factor: The internal number is multiplied by 10**n.

G output scale factor: The scale factor has an effect only if the internal number is in a range
that uses effective E conversion for output. In this case, the effect of the scale factor is the
same as in the corresponding E conversion.

D,E,F,G, input scale factor: The internal value is formed by dividing the external number by
10**n. However, if the external number contains a D or E exponent, the scale factor has no
effect.

oi—

Examples of B-Format Usage

Format

B
B'###4'
B'###4
- B'Z722'
~ B'7222'
~B'zz22'
B'zzz#'
B'#.##
B'#.#'
B'22Z,22Z,2Z#.4%"
- B'22Z,222,72#.#%"
| B'222,22Z,22#.4#
Bl+4d4'

z‘ B'S$ZZ72224' ; :
B'S$SSSSSH

BISkh® hkk hah ppr

Formatted printer control: The first character of each ASCII output record controls the
number of vertical spaces to be inserted before printing begins on the line printer.

First Character Effect

Space One line
0 Two lines
1 Form feed - first line of next page

FDR 3057 15-24 1 January, 1979

FORTRAN STATEMENTS 15

(effective only on devices with mechanized form feed)

+ No advance - print over previous line
(line printer only)
Other One line

In the case of space, 0, 1, and +, the control character is not printed. In all other cases, the
character is printed as well as spacing a line.

DEVICE CONTROL STATEMENTS

For physical positioning of sequential access devices.

BACKSPACE statement (for magnetic tape unit only)
BACKSPACE u '

Repositions FORTRAN unit u so that the preceding record is now the next record. If the unit
is at its initial point, this command has no effect. Backspace has no effect on disk files.

ENDFILE statement
ENDFILE u

Writes an endfile record on FORTRAN unit u indicating the end of a sequential file for
magnetic tape. Closes a disk file on FORTRAN unit u.

REWIND statement
REWIND u

Repositions FORTRAN unit u to its initial point. Does not close or truncate disk file.

FUNCTION CALLS

Functions are called by means of assignment statements in which the right-hand side is an
expression in the form:

name (argument-1,argument-2, ... argument-n)

Where name is the name of the function called (COS, SIN, etc.) and argument is a non-empty
list of arguments to the function separated by commas. The data modes of the arguments
must be the same as the data modes in the definition of the function. There is no syntactical
limit to the number of arguments.

SUBROUTINE CALLS ,
Subroutines are called from a program by the statement:
CALL name [(argument-1,argument-2, . . . argument-n]]

name is the symbolic name assigned by the SUBROUTINE statement beginning the
subroutine subprogram. The argument is a list of arguments, some of which are passed to the
subroutine by the calling program, and the remainder are dummy arguments whose values
are calculated by the subroutine and returned to the main program. The arguments in the
main program must agree in number, order, and mode with the arguments used in the
subroutine subprogram. There is no syntactical limit to the number of arguments.

CAUTION

Do not place constants in the argument list of a subroutine or
function where a value is to be returned to the calling
program. This will cause the constant to be altered and
produce undesirable results.

1 January, 1979 15-25 FDR 3057

FORTRAN funl()

and subroutine structure

FUNCTIONS

There are four types of functions; all are called in the same manner (see Section 15).

Prime FORTRAN library functions

These library subprograms {see Section 18) which are called automatically by the compiler
as required and appended to the main program during loading.

Prime extended intrinsic functions

These are a collection of functions designed to increase the efficiency of Prime FORTRAN
in logical processing of integers. They are automatically inserted in the program by the
compiler as required.

User-defined function subprograms

FUNCTION subprograms can be created by the user and compiled separately. This permits
them to be used in the same way as library functions.

FUNCTION subprograms must be prepared as separately compiled subprograms that
produce a single result, in the following format:
mode FUNCTION name (argument-1, argument-2,. . .argument-n)

(Any number of FORTRAN statements which perform the required calcu-
lations, using the supplied arguments as values.)

name = Final calculation

RETURN

FUNCTION statement: The FUNCTION statement, which must be the first statement of a
FUNCTION subprogram, assigns the name of the function and identifies the dummy
arguments. In the preceding example, name is a symbolic name assigned to identify the
function, and each argument is a dummy argument. There is no syntactical limit to the
number of arguments. The function name must conform to the normal rules for all symbolic
names with regard to number of characters, etc. Implicit result mode typing occurs
according to the first letter of the name. Implicit mode typing can be overridden by

1 January, 1979 16-1 FDR 3057

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

preceding the word FUNCTION with one of the mode specifications. The function name
must differ from any variables used in the function subprogram or in any main program
which references the function.

Body of subprogram: The body of the function subprogram can consist of any legal
FORTRAN statements except SUBROUTINE, BLOCK DATA, or other FUNCTION
statements. The statements that evaluate the function use constants, parameters, variables,
and expressions in the normal way. The program must produce a single result for a given set
of argument values. The subprogram must equate the assigned symbolic function name to
the result, by using name on the left side of an assignment statement. It is the function name
itself, used as a variable, that returns the result to the main program.

RETURN statement: The RETURN statement consists of a single word RETURN. It
terminates the subprogram and returns control to the main program. The RETURN
statement must be the last statement in the subprogram (logically, not physically; that is, it
must be the last statement to which control passes).

Statement functions

Statement functions are embedded in the coding of the main program and are compiled as
part of the main program. Any calculation that can be expressed in a single statement, and
produces a single result, may be assigned a function name and referenced in the same way
as a library function. A statement function is defined in the form:

name (argument-1, argument-2,. . .argument-n) = expression

where name is the symbolic name assigned to the function and each argument is a dummy
variable that represents one of the arguments.

The following rules apply to all functions:

1. The name may consist of one to six alphanumeric characters, the first of
which is alphabetic. It must differ from all other function names and
variable names used in the main program.

2. The argument list follows the name and is enclosed in parentheses.
There must be at least one argument. Multiple arguments are separated
by commas. Each argument must be a single nonsubscripted variable.
These arguments are only dummy variables, so their names may be the
same as names appearing elsewhere in the program. The dummy
variable names do indicate argument mode, however, by implicit or
explicit mode typing. There is no syntactical limit to the number of
arguments.

3. During each call of a function, the values of the variables supplied as
the arguments must be in the same mode as the arguments were when
the function was defined.

4. Implicit mode typing of the result of a function is determined by the
first letter of the function name. Functions that begin with LI K,L,M, or
N produce INTEGER results; others produce REAL results. Regardless
of the first letter, the result mode can be set by an appropriate mode
specification preceding the FUNCTION statement.

5. The expression that defines the function may use library functions,
previously defined function statements, or FUNCTION subprograms;
but not the function itself. Dummy variables cannot be subscripted.

6. Variables in the expression that are not stated as arguments are treated
as coefficients—i.e., are assumed to be variables appearing elsewhere
in the main program.

FDR 3057 16-2 1 January, 1979

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE 16

7. Statement functions must be defined following specification and DATA
statements but before the first executable statement of a program.

SUBROUTINES

Some types of subroutines include:

PRIMOS system subroutines

These invoke the PRIMOS system to perform the actual work. They allow file transfer,
attaching, etc. (See Section 19 and Reference Guide, PRIMOS Subroutines).

Application library subroutines

These handle file manipulation (opening and closing, reading, and writing, etc.) and data
transfers, greatly enhancing the capability of the FORTRAN language (Section 19 and
Reference Guide, PRIMOS Subroutines).

FORTRAN math subroutines

These handle mathematical calculations such as matrix multiply and inversion per-
mutations, etc. (See Section 19).

User-defined subroutines

Called in the same manner as those supplied with the system. They are constructed as
follows:

SUBROUTINE name [(argument-1, argument-2, . . .argument-n)|

(Any number of FORTRAN statements which perform the required calculations,
using the supplied arguments, if any, as values.)

RETURN
END

SUBROUTINE statement: The SUBROUTINE statement, which must.be the first statement
of a SUBROUTINE subprogram, assigns the name of the subprogram and identifies the
dummy arguments, if any.

The subprogram name must conform to the normal rules for symbolic names with regard to
the number of characters, but the first letter does not set the data mode of the result. The
name must be unique to both the subprogram and a main program which calls it.

The argument list usually consists of a series of dummy variables which are processed by
the subroutine and return arguments to the main program. Each argument may be a
variable, array, or function name. If an argument is the name of an array, it must be
mentioned in a DIMENSION statement following the SUBROUTINE statement.

There is no syntactical limit to the number of arguments. A subroutine with no arguments is
allowable. Such a subroutine might obtain arguments from, and return results to, COM-
MON. Or it might be used to output a message or control function to a peripheral device.

1 January, 1979 ‘ 16-3 FDR 3057

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

CAUTION

Arguments that return values to the main program must not
be constants or expressions in the calling sequence.

Body of a subroutine: The body of the subroutine can consist of any legal FORTRAN
statements except SUBROUTINE, BLOCK DATA, or FUNCTION statements. The results of
calculations may be stored in variables used by both the subprogram and main program, or
they may be placed in COMMON. Variables may be used freely on either the right or left
side of the equal sign in assignment statements. Each variable that represents a result must
appear on the left side of at least one assignment statement, in order to present the result to
the main program.

The subroutine is terminated by a RETURN statement (described previously). The last
physical statement in a subroutine must be an END statement.

FDR 3057 16-4 1 January, 1979

UTILITY
FERENCE

SR

Compiler reference

PRIME FORTRAN COMPILER PARAMETERS

All parameters are preceded by a dash, “-"", in the command line. Parameters that are the
PRIME-supplied default parameters (i.e., those that need not be included) are indicated.
The system administrator may have changed the defaults; if so, the programmer should
obtain a list of the installation-specific defaults. (See figure 17-1).

BIG

Treats all dummy arrays as arrays that span segment boundaries and also sets the compiler
to produce 64V mode object code. If a dummy argument array may become associated with
an array spanning a segment boundary (through a subroutine CALL statement or function
reference) the compiler must be aware of this by including BIG in the parameter list. The
code generated here will work whether or not the array actually spans a segment boundary.
See also NOBIG, 64V. See Section 11 for more information on this requirement.

pathname
B[INARY] YES
NO

Specifies the binary (object) output file. If pathname is given, then that will be the name of
the binary file. If YES is used, the name of the binary file will be B_PROGRAM (where
PROGRAM is the source filename). If NO is used, then no binary file is created. Omitting
the parameter is equivalent to the inclusion of -BINARY YES. (See Table 17-1.)

DCLVAR

Flags undeclared variable. If included in the parameter list, the compiler will generate an
error message when a variable is used in the program, but not included in a specification
statement. The message will be generated once per undeclared variable.

See NODCLVAR.

DEBASE

Conserves Loader base areas. When enabled, it reduces the sector zero requirements of
large programs. The compiler generates double-word memory reference instructions and
uses the second word as an indirect link for all references to the same item within the
relative reach. Use of this option reduces sector zero usage by 70% to 80%. Programs
compiled with this option can be loaded only in the relative addressing modes (32R or 64).

DYNM

Enables local storage in Stack Frame (Prime 350 and higher only). Allows dynamic allocation
of local storage and also sets the compiler to generate 64V mode object code. The DYNM
parameter allows better memory utilization in the 64V mode. It also allows the creation of
recursive FORTRAN subroutines (subroutines which call themselves). See SAVE, 64V.

1 January, 1979 17-1 : FDR 3057

17 COMPILER REFERENCE

11\fPUT or SOURCE - |LIS
| looks for file named |opens fi
- :pathname as source =
Hile e

4 not applicable

ot apphcabie

| compiles

| programas
’ tered from the

- |spools listing
~ _ |toline printe
s f irce fxlename must an

e first option -
after FTN command

To use other peripheral devices such as magnetic tape, card reader, or paper tape
punch/reader for file location, see Table 17-2 for A- and B-register settings.

ERRLIST
Prints only error messages in the listing file. See EXPLIST, LIST.

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

ERRTTY Default

Prints error messages at the user terminal. The normal system default causes each statement
containing an error to be printed at the user terminal. This feature is especially useful when
a corrected program is being recompiled, to confirm that the errors have been properly
corrected. See NOERRTTY.

EXPLIST

Prints full listing in the listing file. The full listing consists of an assembly language type
listing, the source statements (with line numbers), and error messages. See ERRLIST, LIST.

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

FP

Generate instructions from the floating-point skip set when testing the result of a floating-
point operation.

FDR 3057 17-2 1 January, 1979

COMPILER REFERENCE 17

I[NPUT] pathname

Specifies the pathname of the input source program (See Table 17-1). This parameter must
not be used if the source filename immediately follows the FTN command; otherwise, it
must be included in the parameter list. See SOURCE.

INTL

Long integer default. Sets the long integer (INTEGER*4) as the default for the INTEGER
statement instead of the short integer (INTEGER*2). The normal INTEGER data type in
Prime FORTRAN is a 16-bit word. A 32-bit integer data type is available through the use of
the INTEGER*4 statement.

The long integer default parameter is used to simplify conversion of extant FORTRAN
programs to Prime computers. When this is enabled all variables, arrays, and functions
explicitly or implicitly specified as INTEGER will be 32-bit integers. All integer constants
will be treated as 32-bit integers. Only names specifically appearing in INTEGER*2
statements will be 16-bit integers. The 32-bit integer has a greater range than the 16-bit
integer (-2147483648 to 2147483647 vs. -32768 to 32767). The 32-bit integer has the same
storage requirement as the REAL*4 (REAL) data type. See INTS.

CAUTION

FORTRAN requires that the type of actual argument in a
function reference of CALL statement must agree with the
corresponding dummy argument in the referenced subpro-
gram. A subprogram expecting a long integer must NOT be
called with a short integer (and vice versa). Most Prime-
supplied subroutines expect short integer arguments. Care
should be taken when calling these routines (e.g., RESU$§) in
a program compiled with the LONG INTEGER default op-
tions.

Example:

CALL RESUSS ('AUDIT YEAR', INTS(10))

INTS (long-integer) is a built-in function that converts its
arguments to a short integer. If the INTS conversion functions
are omitted, the integer constants are compiled as long
integers, providing INTL is included in the parameter list. Do
not confuse the function INTS (long-integer) with the com-
piler parameter INTS.

INTS Default

Short integer default. Sets the INTEGER default to INTEGER*2 rather than INTEGER*4. See
INTL.

LIST Default

Print source listing. Prints a listing of the source statements (with line numbers) and error
messages in the listing file. See ERRLIST, EXPLIST.

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

I January, 1979 17-3 FDR 3057

17 COMPILER REFERENCE

pathname
YES
L[ISTING] <{NO
- JTTY
SPOOL

Specifies the listing device/filename:

pathname Opens this file for the listing.

YES Uses the default name for the listing file L_PROGRAM (where
PROGRAM is the source).

NO No listing file is created.

TTY The listing file is printed on the user terminal.

SPOOL The listing file is spooled directly to the line printer.

If this parameter is omitted from the parameter list, it is equivalent to the -LISTING NO
parameter inclusion (i.e., no listing file is created).

NOBIG Default
Utilizes relative addressing. This is the usual memory addressing mode. See BIG.
NOCLVAR Default

Suppresses undeclared variable flagging. Does not generate error messages when un-
declared variables are detected. See DCLVAR.

NOERRTTY

No terminal error messages. Suppresses the printing of error messages on the users
terminal. See ERRTTY.

NOFP

Suppresses generation of floating-point skip instructions when testing the result of a
floating-point operation. Include NOFP in the parameter list when compiling for machines
that do not have the floating-point options. Without NOFP, the programs will still execute on
such machines but the UII time will be longer. See FP.

NOTRACE Default

Suppresses global trace. Does not enable the global trace. See TRACE.
NOXREF Default

Suppresses concordance. Do not generate any concordance (cross-reference) listing. See
XREFL, XREFS.

OPT FTNOPT only

Optimizes all DO loops that do not contain GO TO expressions. The loops are optimized by
removal of invariant expressions and by strength reduction of expressions involving the DO-
loop index. Strength reduction can be done if the loop index is altered in the normal loop
increment only and if the loop increment is invariant within the loop. See UNCOPT.

PBECB

Generates code to load Entry Control Blocks (ECBs) into procedure frame. For 64V-mode
subroutines only. See 64V.

FDR 3057 17-4 1 January, 1979

COMPILER REFERENCE 17

SAVE Default

Local storage allocation. Performs local storage allocation statically. See DYNM.

S[OURCE]
Same as I[NPUT]. See INPUT.
TRACE

Enable global trace. When this parameter is included, a trace printout is generated at all
assignment statements and at every labelled statement in the program unit. The global trace
affects only the program unit being compiled; it has no effect on other program units in the
same executable program. See NOTRACE.

UNCOPT FTNOPT only

Unconditionally optimizes all DO loops. The optimization is performed in the same manner
as for the OPT option. If the loop GO TO statements transfer control within the loop or
simply exit the loop, then the code generated by the compiler will execute correctly.
However, if any loop contains a GO TO statement that exits to a code sequence which
transfers control back inside the loop, then the optimized code will most likely not execute
correctly. This is especially true if the code sequence modifies any operands invariant
within the loop or modifies the loop index or loop index increment. It is the programmer's
responsibility to insure that these operations are not performed if the UNCOPT option is to
be used. See OPT.

XREFL

Enable full concordance. Appends a full concordance (symbol cross-reference) listing to the
end of the program listing. The full concordance includes all symbols in the program unit.
See NOXREF, XREFS.

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

XREFS

Enable partial concordance. Appends a partial concordance (symbol cross-reference) listing
to the end of the program listing. The partial concordance does not include symbols that are
referenced only in specification statements. See NOXREF, XREFL.

Note

This parameter has no effect unless an output device/file is
specified using LISTING.

32R Default

32K words (64K bytes) mode. In the 32R (default) mode 64K bytes of user space are available
to each FORTRAN user. This space must accomodate the main program, subprograms, all
local storage, library routines, and the COMMON blocks. More space is available to the user
in the 64R and 64V modes. See 64R, 64V.

64R

64K words (128 bytes) mode. The mode gives the user 128K bytes of user space. All main
programs and all subprograms executed must be compiled with the 64R parameter. When
using the linking loader utility (LOAD), the MODE command must also be used to change
the load mode to 64R. This assures the user of 128K bytes of user space. See 32R, 64V.
Generally, it can be determined if the 64R mode must be selected by looking at the storage

1 January, 1979 17-5 FDR 3057

17 COMPILER REFERENCE

areas. Each area requiring space such as the COMMON blocks can be examined. If the
COMMON blocks require more than 64K bytes, then the 64R mode decision is obvious. For
example, if it is on a segment boundary and a load is attempted resulting in an overflow, it
is likely that the addresses for the COMMON are overlapping the program area.

64V

Segmented Memory Mode. Puts the FORTRAN user into the 64V Segmented Memory mode
and allows the SEG utility to be used in lieu of the LOAD utility. This is for large programs
requiring more than 128K bytes of user space: it provides a user area up to 256 segments of
128K bytes each. It may be run on any Prime 350 (or higher system).

See BIG, NOBIG, 32R, 64R.

The LOAD utility and load modes are dictated by the options selected at compile time, as
shown in the following table:

Utility Compiler Option Load Option
LOAD 32R (default) D32R (default)

64R D64R, D32R (default)
SEG 64V 64V (only mode)

Any PRIMOS system can use either the 32R or 64R addressing mode. Only a Prime 350 (and
higher) can have 64V addressing mode.

EXPLICIT SETTING OF THE A AND B REGISTERS

Note
If you will not be using the paper tape punch/reader, card
punch/reader or magnetic tape for /0 devices at compila-
tion time you need not read this section.

Operation
The FORTRAN compiler is invoked by the FTN command to PRIMOS.
FTN pathname [1/a-register| [2/b-register|

where pathname is the pathname of the FORTRAN source file: a-register and b-register are
the values of the A and B registers.

The default values of the registers are:

A "1707 (binary = 0000001111000111)
Input file is on disk
No listing file
Binary file is on disk
Print error messages at user terminal
32R mode

B 0 [binary = 0000000000000000)
Short integers
No concordance

If the default values of a register are used that parameter may be omitted.

FTN pathname default A and B registers
FTN pathname 1/a-reg default B register
FTN pathname 2/b-reg default A register

FDR 3057 17-6 1 January, 1979

COMPILER REFERENCE 17

For non-default values include both parameters:

FTN pathname 1/a-reg 2/b-reg
or

FTN pathname 1/a-reg b-reg
Spaces should be used to separate components of the command line. The bit values
corresponding to the mnemonic parameters are given in Table 17-2.

Input/output specifications

Additional devices are accessible to users explicitly setting the A and B registers. I/0 is
specified by the A-register setting as:

Type Bits
Input (source) 8-10
Listing 11-13
Binary (object) 14-16

The settings corresponding to 1/0 files and devices are given in Table 17-3.

17 COMPILER REFERENCE

e 17-2. A- and B-regxster Bit Correspondence :
supplied defaults are indmated) i

ﬁ[or 1) ‘the mnemomc paramet‘
~in the A reglster to be 0

q(or 1)4 4 same as above for the
S Bm =1
: l A{14,15 16},_ob1ect fﬂe’,d in
PRIMOS BINARY comman &
S 113{16) =1
. A@)=1
. BB8 =1
CA@=1
f A(7).~1 default
- A@R=1
. B(15)=0; default
A[8910) mput fzie deflmtmn
~>::A‘B’[10] k
: {'10).- default

;""A{ll 12, 13} = hstlng" file defi
. PRIMOS LISTING command

B89 = O default
fB(m) =0
, A{7)

S (15]~.1f
S A() =0 default
B(12,13) = 0; default !
. BE)=1; (FTNOPT on}y; ‘
 BE=1
'._V:ZB[B} 0 defauIt

. A[(8,9,10) = input {“f'14
. same as I[NPUT}

L A@=1 S
B =1; (FTNOPT only)"»':f‘
_Bay=-1
. B(213)=1
S A(B)= [8)-0 deu ul
Al =1
BB =1

FDR 3057 17-8 1 January, 1979

COMPILER REFERENCE 17

17 COMPILER REFERENCE

The PRIMOS commands

LISTING pathname-2 opens a listing file with the specified name pathname-2 on PRIMOS
file unit 2. This inhibits FTN from opening a default listing file.

Note

Unless bits 11-13 of the A-register are set to’7, nothing will be
written into this file.

The listing output(s) of more than one source file can be concatenated if all listings are
generated prior to closing the listing file. For example:

LISTING pathname
FTN source-1 1/areg 2/breg
FTN source-n 1/areg 2/breg

CLOSE ALL
(note: system responses are not printed in this example)

The listing file, pathname, will contain the concatenation of all listing outputs from
source-1,..., source-n (for those compilations wherein listings were specified).

BINARY pathname-3 opens a binary (object) file with the specified name pathname-3 on
PRIMOS file unit 3. This inhibits FTN from opening a default object file.

Note

The default value of bits 14-16 of the A-register is '7 - disk file
system. If not using the default A-register values be sure to
set bits 14-16 to '7 or nothing will be written into the object
file. Object files can also be concatenated in the same
manner as listing files.

If the BINARY or LISTING commands are used prior to FTN to establish non-default file,
then FTN does not close these files upon completion.

After FTN returns command to PRIMOS, these files should be closed by the user by typing:

2 3
C[LOSE] pathname-2 pathname-3

or

C[LOSE] ALL

FDR 3057 17-10 1 January, 1979

function reference

FORTRAN FUNCTION LIBRARY

The following functions are available to perform mathematical and logical operations.
These functions are part of the FTNLIB library file for the R-identity and the PFTNLB and
IFTNLB library files for the V-identity. The data mode(s) expected in the argument list and
the data mode of the value returned are shown for each function in the list. The following
abbreviations are used:

CP Complex number

DP Double-precision floating-point number
I Integer (short or long)

J Integer (long)

SP Single-precision floating-point number

Additional detail on the functions themselves (rather than their operations) will be found in
the Reference Guide, PRIMOS Subroutines.

V-Mode FORTRAN library

Certain single-argument scientific subroutines in the V-mode FORTRAN library will be
automatically replaced by the compiler with their short call versions, identified by the suffix
$X. These $X versions execute faster than their regular counterparts.

The $X versions are not directly accessible to the FORTRAN programmer (and have
different calling sequences). They will only be noticeable at the load-map level.

Mixing long and short integers

Short integers occupy one word of memory, long integers two words. When long integers are
converted to short integers, the 16 low order bits of the long integer are stored in the short
integer. When a short integer is converted to a long integer, the low order word is set equal
to the short integer; the high order word is sign-extended (padded with 0's or 1's according
to the sign of the short integer, + or —).If it is necessary, in a program, to convert between
integer modes, it is strongly recommended that this be done with the intrinsic functions:
INTL, INTS. (In the following, it is assumed that all variable names beginning with I have
been declared to be short integers and all variable names beginning with] to be long
integers.)

To convert between integer modes, use:
] = INTL()
I=INTS(])

If a long (or short) integer is assigned the value of a short (or long) integer, mode conversion
will also occur. This is not considered to be good programming practice and is discouraged.
(See Assignment Statements in Section 15.).

1 January, 1979 18-1 FDR 3057

18 FORTRAN FUNCTION REFERENCE

In functions which accept mixtures of short and long integers in the argument list, the short
integers will be internally converted to long integers (with sign-extension) and the value
determined. The value will be calculated as a long integer. For these functions it is
recommended that the left-hand side of the assignment statement be a long integer.
conversion to a short integer should be explicit, not implicit.

JX = AND (JA, JB, IQ)
is less desirable than
JX = AND (JA, JB, INTL (IC))
and
IY = AND (JA,]B, IC)
is less desirable than
IY = INTS (AND (JA, JB, INTL (IC)))

In general, the logical functions AND, OR, and XOR and the minimum/maximum functions
will return a long integer if any of the arguments are long integers. The NOT function
returns an integer of the same mode as its argument. The shifting and truncating functions
LS, LT, RS, RT, and SHFT return an integer of the same mode as their first argument, that
is, the integer on which shifting and/or truncation is to take place.

FORTRAN functions

ABS Calculates the absolute value of the argument.
SP = ABS (SP)
AIMAG Converts the imaginary part of a complex number to a single-

precision floating-point number.
SP = AIMAG (CP)

AINT Truncates a single-precision floating-point number to a single-
precision floating-point number whose value is integral.
SP = AINT (SP)

ALOG Computes the natural logarithm (base e) of the argument. If the
argument is not positive, the error LG is generated.
SP = ALOG (SP)

ALOG10 Computes the base-10 logarithm of the argument. If the argument
is not positive, the error LG is generated.
SP = ALOG10 (SP)

AMAXo0 Finds the maximum value in a variable list of integers. The list
may be a mixture of long and short integers.
SP = AMAX0 (I1,12,. . .,In)

AMAX1 Finds the maxmum value in a variable list of single-precision
floating-point numbers.
SP = AMAX1 (SP1,SP2,. . .,SPn)

AMINo Finds the minimum value in a variable list of integers. The list may
be a mixture of long and short integers.
SP = AMINO (I1,12,. . .,In)

AMIN1 Finds the minimum value in a variable list of single-precision
floating-point numbers.
SP = AMIN1 (SP1,SP2,. . ..SPn)

FDR 3057 18-2 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

AMOD

AND

ATAN

ATAN2

CABS

CCOS
CEXP
CLOG

CMPLX

CONJG
cos
CSIN

CSQRT

DABS

DATAN

DATAN2

1 January, 1979

Computes the remainder when one single-precision floating-point
number (SP1) is divided by another (SP2).
SP = AMOD (SP1,SP2)

Performs a logical AND operation, bit by bit, on a variable list of
integers, long and/or short.
1= AND (I1,12,. . .In)

Calculates the principal value, in radians, of the arctangent of the
argument.
SP — ATAN (SP)

Calculates the principal value, in radians, of the arctangent of one
single-precision floating-point number (SP1) divided by another
(SP2). If both arguments are zero, the error message AT is
generated.

SP = ATAN2 (SP1,SP2)

Computes the absolute value of a complex number, returning a
single-precision floating-point number as the result.
SP = CABS (CP)

Computes the cosine of a complex number.
CP = CCOS (CP)

Calculates the exponential of a complex number.
CP = CEXP (CP)

Calculates the natural logarithm (base e) of the argument.
CP = CLOG (CP)

Converts two single-precision floating-point numbers into a com-
plex number. The first argument becomes the real part of the
complex number; the second argument becomes the imaginary
part.

CP = CMPLX (SP1,SP2)

Computes the conjugate of a complex number.

CP = CONJG (CP)

Computes the cosine of a single-precision floating-point number.
SP = COS (SP)

Computes the sine of complex number.
CP = CSIN (CP)

Calculates the square root of a complex number.
CP = CSQRT (CP)

Computes the absolute value of a double-precision floating-point
number.

DP = DABS (DP)

Computes, in radians, the principal value of the arctangent of the

argument,
DP = DATAN (DP)

Calculates the principal value, in radians, of the arctangent of one
double-precision floating-point (DP1) divided by another (DP2). If
both arguments are zero, the error message DT is generated.

DP = DATAN2 (DP1,DP2)

18-3 FDR 3057

18 FORTRAN FUNCTION REFERENCE

DBLE

DCOS

DEXP

DIM

DINT

DLOG

DLOG2

DLOG10

DMAX1

DMIN1

DMOD

DSIGN

DSIN

DSQRT

EXP

FDR 3057

Converts a single-precision floating-point number to a double-
precision floating-point number.
DP - DBLE (SP)

Computes the cosine of a double-precision floating-point number.
DP = DCOS (DP)

Computes the exponential of a double-precision floating-point
number.
DP = DEXP (DP)

Computes the positive difference between two single-precision
floating-point numbers.
SP = DIM (SP1,SP2)

Truncates the fractional part of a double-precision floating-point
number.

DP == DINT (DP)

Computes the natural logarithm (base e) of a double-precision
floating-point number. If the argument is not positive, the error
message DL is generated.

DP - DLOG (DP)

Computes the base-2 logarithm of a double-precision floating-
point number. If the argument is not positive, the error message
DL is generated.

DP = DLOG2 (DP)

Computes the base-10 logarithm of a double-precision floating-
point number. If the argument is not positive, the error message
DL is generated.

DP = DLOG10 (DP)

Finds the maximum value among a variable list of double-pre-
cision floating-point numbers.

DP = DMAX1 (DP1,DP2,. . ., DPn)

Finds the minimum value among a variable list of double-pre-

cision floating-point numbers.
DP = DMIN1 (DP1,DP2,. . .,DPn)

Computes the remainder when one double-precision floating-
point number (DP1) is divided by another (DP2j. If DP2is zero, the
error message DZ is printed.

DP = DMOD (DP1,DP2)

Combines the magnitude of one double-precision floating-point
number (DP1) with sign of a second (DP2).

DP = DSIGN (DP1,DP2)

Computes the sine of a double-precision floating-point number.
DP = DSIN (DP)

Computes the square root of a double-precision floating-point
number. If the argument is negative, the error message SQ is

generated.
DP = DSQRT (DP)

Computes the exponential of a single-precision floating-point
number. If there is an exponent underflow or overflow, the error
message EX is generated.

SP = EXP (SP)

18-4 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

FLOAT

TABS

IDIM

IDINT

IFIX
INT

INTL
INTS

IRND

ISIGN

LOC

1 January, 1979

Converts an integer to a single-precision floating-point number.
The function will accept either a short or a long integer as the
argument. ’

SP = FLOAT (J)

Computes the absolute value of an integer. The argument may be
either a long or short integer.

1=1ABS (I)

Computes the positive difference between two integers. The
function will accept any mixture of short and long integers.

I =IDIM (I1,I2)

Converts a double-precision floating-point to an integer.

I = IDINT (DP)

Converts a single-precision floating-point number to an integer.
Both functions are included in the library to ease conversions from
other systems.

I =1FIX (SP)

I=INT (SP)

Converts its argument to a long integer.
J=1INTL (I)

Converts its argument to a short integer.
I=INTS (])

Invokes the random number generator
I2 = IRND (I1)

Il Operation I2
>0 Initializes the random number gen- I2=01
erator
=0 Generates a random number 0 <12 32767
<0 Initializes the random number gen- 0 <12 32767
erator and returns the first random
number

Combines the magnitude of one integer (I1) with the sign of a
second (I2).
I=ISIGN (I1,I2)

Generates an integer value representing the memory address
where the argument of LOC is located. The argument may be a
constant, variable or array name, or a subscripted array element.

constant

variable name
I=LOC array name

array element

Note

In the 64V mode, LOC may be passed as
an argument in functions or subroutines,
e.g., I=AND(LOC(A),LOC(B)). In this
mode, LOC returns a two-word value:
the first word represents the segment
number; the second is the word number
in the segment.

18-5 " FDR 3057

18 FORTRAN FUNCTION REFERENCE

LS

LT

MAX0

MAX1

MINO

MIN1

MOD

NOT

OR

REAL

RND

RS

FDR 3057

Shifts an integer variable left by a specified number of bits;
vacated bits are filled with zeroes.

12 = LS (I1, IP)

where IP is the number of bits to be shifted to the left. If IP <0, no
change is made to the integer.

Preserves a specified number of left-most bits and sets the rest to
zero (left truncation). Saves the first IP from the left and sets the
rest of the bits to zero. If IP0, the entire integer is set to zero.
12 = LT (I1,IP)

Finds the maximum value among a variable list of integers. (see
AMAXo)
1= MAX0 (I112,. . .,In)

Finds the maximum value among a variable list of single-precision
floating-point numbers and converts it to an integer.
I =MAX1 (SP1,SP2,. . .,SPn)

Finds the minimum value among a variable list of integers. (see
AMINGo).
I = MINo0 (I1,12,.. .,In)

Finds the minimum value among a variable list of single-precision
floating-point numbers and converts it to an integer (see AMIN1)
I =MIN1 (SP1,SP2,...,SPn)

Computes the remainder when one integer (I1) is divided by
another (I12).
I = MOD (I1,12)

Performs a logical NOT operation (1's complement) on its argu-
ment.

I1=NOT (I)

Performs a logical (inclusive) OR operation on two integers.
I=OR (I1,I2)

Converts the real part of a complex number to a single-precision
floating-point number.
SP — REAL (CP)

Invokes the random number generator.

SP =RND ()
I Operation SP
>0 Initializes the random number SP = FLOAT (I)
generator
=0 Generates a random number 0.0<SP1.0
<0 Initializes the random number 0.0<SP<1.0

generator and returns the first
random number

Shifts an integer variable right by a specified number of bits;
vacated bits are filled with zeros.

12 = RS (I1,IP)

where IP is the number of bits to be shifted to the right. If IP <0,
no change is made to the integer.

18-6 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

RT

SHFT

SIGN

SIN

SNGL

SQRT

TANH

XOR

1 January, 1979

Preserves a specified number of right-most bits and sets the rest to
zero (right truncation). Saves the first IP bits from the right and
sets the rest of the bits to zero. If IP<0, the entire integer is set to
Zero. '

12 = RT (I1,IP)

Performs logical shift operations on integer variables.

1. IS = SHFT (I): In this form, the variable is unchanged and the
value is the variable itself; this form has no real use.

2. IS = SHFT (L,IP1): performs a shift operation on the variable. If
IP1>0, the shift is to the right; if IP1<0, no shift occurs. This form
is equivalent to the RS and LS functions.

Operation Function Equivalent SHFT function
Right shift RS (LIP) SHFT (L,IP)

Left shift LS (LIP) SHFT (I,-IP)

Right truncate RT (LIP) SHFT (1,IP-16,16-1P)

Left truncate LT (LIP) SHFT (1,16-IP,IP-16)

3, 1S = SHFT (1IP1, IP2): Performs two shift operations, first by
IP1 (setting zeroes in vacated bits), then by IP2 (setting zeroes in
vacated bits). The sign of IP1 and IP2 determine the direction of
the shift while their magnitude determines the number of bits to
be shifted. As seen above, the RT and LT functions are
equivalent to special forms of SHFT with three arguments.

Combines the magnitude of one single-precision floating-point
number (SP1) with the sign of a second (SP2).
SP = SIGN (SP1,SP2)

Computes the sine of a single-precision floating-point number.
SP = SIN (SP)

Converts a double-precision floating-point number to a single-
precision floating-point number.
SP — SNGL (DP)

Computes the square root of a single-precision floating-point
number.
SP = SQRT (SP)

Computes the hyperbolic tangent of a single-precision floating-
point number.
SP = TANH (SP)

Performs a logical exclusive OR on a variable list of integers.
I-XOR (11,12, . .,In)

18-7 FDR 3057

Libraries reference

FORTRAN MATRIX (MATH) LIBRARY

The following subroutines are available to the user for matrix manipulation, solution of sets
of linear equations and generation of combinations and permutations. In the subroutines
whenever the mode of an argument is explicitly specified as integer, it is taken to be a short
integer (indexes, error flags, etc.). However, the mode of the matrix elements for integer
matrices may be either long or short integers. This library exists only in the R-mode version,
whose name is MATHLB.

For further details on the COMB and PERM subroutines, see ‘‘Loopless Algorithms for
Generating Permutations, Combinations, and Other Combinatorial Configurations,” Gideon
Ehrlich, Journal of the ACM, 20 No. 3 (July 1973) pp. 5000-5113.

Matrix operations subroutines
CALL COMB (icomb,n,nr,iw1,iw2,iw3,last[,restrt])

COMB computes the next combination of nr out of n elements with a single interchange each
time it is called. The first call to COMB returns the combination 1,2,3, . . .,nr. This subroutine
is self-initializing and proceeds through all n!/(nr!*(n-nr)!) combinations. At the last
combination, it returns a value of last = 1 and resets itself. The COMB subroutine may be
re-initialized by the user by passing a new value of n and/or nr, or by passing the restrt
parameter with a value of 1. (The restrt parameter is optional; if re-initialization is not
desired, either omit this parameter from the calling sequence or set it to a value of 0.) COMB
is not loopless.

Argument Mode Subscript(s) |Dimension(s) Comments
icomb Integer 1 nr return

n Integer pass

nr Integer pass

iwl Integer 1 n work

iw2 Integer 1 n work

iw3 Integer 1 n work

last Integer return

restrt Integer pass (optional)

The calling program should not attempt to modify icomb, iw1, iw2, or iw3.

CLINEQ
CALL < DLINEQ ; (xvect, yvect, cmat, work, n, npl, ierr)
LINEQ

1 January, 1979 19-1 FDR 3057

19 LIBRARIES REFERENCE

Solves the set of n linear equations in n unknowns represented by

(cmat) (xvect) = (yvect)

where cmat is the nxn square matrix of coefficients, yvect is the nx1 column vector of
constants, and xvect is the nx1 column vector of unknowns in which the solution is stored.
The user is required to provide as a work area, a nplxnpl matrix work (np1 =n+1). The
integer error flag ierr returns one of three possible values.

ierr
0 solution found
1 coefficient matrix singular
2 npl #n+1

If ierr # 0 no modifications are made to xvect.
Argument Mode Subscript(s) |Dimension(s) Comments
xvect * 1 n returned
yvect * 1 n passed
cmat * 2 n,n passed
n Integer passed
work * 2 npl,npi work
np1 Integer passed (=n+1)
ierr Integer returned

* all of the same mode which determine the subroutine used.

CMADD

DMADD
CALL | IMADD

MADD

Adds the nxm matrix mat2 to the nxm matrix mat1 and returns the sum in a nxm matrix mats.
In component form:

(mats, matl, mat2, n,m)

mats (i,j) = mat1 (i,j) + mat2 (i,j)

as i goes from 1 to n and j goes from 1 to m.

Argument Mode Subscript(s) | Dimension(s) Comments
mats * 2 n,m returned
matl * 2 n,m passed
mat2 * 2 n,m passed

n Integer passed

m Integer passed

* all of the same mode which determines the subroutine used.

CMAD]
DMAD]

CALL) IMAD]

MAD]

Calculates the adjoint of the nxn matrix mati and stores it in the nxn matrix mato. Each
element of the output matrix is the signed cofactor of the corresponding element of the input
matrix. The error flag, ierr, may have one of two values.

ierr

0 adjoint successfully constructed

1 n<2 - no adjoint may be constructed
FDR 3057 19-2

(mato, mati, n, iw1, iw2, iw3, iw4, ierr)

1 January, 1979

LIBRARIES REFERENCE 19

Note

mato and mati must be distinct.
Argument Mode Subscript(s) |Dimension(s) Comments
mato * 2 n,n returned
mati * 2 n,n passed
iw1 * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iw4 * 1 n work
ierr Integer returned
* all of the same mode which determines the subroutine used.

CMCOF
DMCOF

CALL) IMCOF

MCOF

(cof, mat, n, iwl, iw2, iw3, iw4, i,j, ierr)

Calculates the signed cofactor of the element mat (i,j) of the nxn matrix mat and stores this
0andj = 0, the determinant of mat is calculated. The integer error flag
ierr has two possible values.

value in cof. If i =

ierr
0 cofactor calculated successfully’
1 no cofactor calculated for any of the following reasons:

1. n<2 - no cofactor possible

2.i=j=n=0- no determinant

3.i=0andj=0ori=0andj=0-subscript error

4. i>n and/or j>n - subscript error
Argument Mode Subscript(s) |Dimension(s) Comments
cof * returned
mat * 2 n,n passed
n Integer passed
iw1 * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iwd * 1 n work
i Integer passed
j Integer passed
ierr Integer returned

* all of the same mode which determines the subroutine used.

CMCON
DMCON

CALL JIMCON

MCON

(mat, n, m, con)

Sets every element of the nxm matrix mat equal to a constant con.

1 January, 1979

19-3

FDR 3057

19 LIBRARIES REFERENCE

Argument | Mode |Subscript(s) |Dimension(s) |Comments
mat * 2 n,m returned
n Integer passed

m - | Integer passed
con * passed

* all of the same mode which determine which subroutine is used.

CMDET
DMDET

CALL jIMDET |\ (det, mat, n, iwl, iw2, iw3, iw4, ierr)
MDET

Calculates the determinant of the nxn matrix mat and stores it in det. The integer error flag
ierr may have one or two values.

ierr

0 determinant formed successfully

1 n =0 - no determinant possible

Argument | Mode Subscript(s) |Dimension(s) Comments
det | returned
mat 1 2 n,n passed
n [Integer passed
iwl * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iw4 * 1 n work
ierr Integer returned

* all of the same mode which determine the subroutine used.

CMIDN
DMIDN

CALL)IMIDN ((mat, n)
MIDN

Sets the nxn matrix mat equal to the nxn identity matrix. That is,

mat (i,j) =0 if i %]
mat (ij) =1 if i =j

Argument |Mode |Subscript(s) |Dimension(s) |Comments
mat * 2 n,n returned
n Integer passed

* the mode of this argument determines which subroutine is used and the represen-
tation of 1 in the matrix.

CMINV
CALL| DMINV . (mato, mati, n, work, np1, npn, ierr)
MINV

There is no integer form of this subroutine as there is no guarantee that the inverse of an
integer matrix will be an integer matrix. Calculates the inverse of the nxn matrix mati and

FDR 3057 19-4 1 January, 1979

LIBRARIES REFERENCE 19

stores it in mato if successful. (The inverse of mati is mato if and only if

mati*mato = mato*mati =1

where * denotes matrix multiplication and I is the nxn identity matrix). The user must
supply a np1 x npn scratch matrix work, where np1 = n+1 and npn = n+n. The integer error
flag ierr will return one of the following values.

ierr

0 matrix inverted - inverted matrix stored in mato.

1 matrix is singular - no inversion possible. mato is filled with zeroes.

2 npl = n+1 and/or npn # n+n - return from subroutines with no calculations

performed.

Argument Mode Subscript(s) |Dimension(s) Comments

mato * 2 n,n returned

mati * 2 n,n passed

n Integer passed

work * 2 npl,npn work

npl Integer passed

npn Integer passed

ierr Integer returned
CMMLT
DMMLT

CALL) IMMLT

MMLT

(matp, matl, matr, n1, n2, n3)

Multiplies the n1xn2 matrix matl (on the left) by the n2xn3 matrix matr (on the right) and
stores the resulting n1xn3 product matrix in matp.

Note

matp must be distinct from mat1 and matr, although mat1 and
matr may be the same. For example:

CALL MMLT (A, B, C, N1, N2, N3)

CALL MMLT (A, B, B, N, N, N) Legal

CALL MMLT (A, A, AN, N, N)

CALL MMLT (A, A, B, N, N, N) Illegal

CALL MMLT (A, B, A, N, N, N)
Argument Mode Subscript(s) |Dimension(s) Comments
matp * 2 n1,n3 returned
matl * 2 n1,n2 passed
matr * 2 n2,n3 passed
nl Integer passed
n2 Integer passed
n3 Integer passed

* are of the same mode which determines which subroutine is used.

CALL) IMSCL

1 January, 1979

CMSCL
DMSCL

MSCL

19-5

(mato, mati, n, m, scon)

FDR 3057

19 LIBRARIES REFERENCE

Multiplies the nxm matrix mati by scalar constant scon and stores the resulting nxm matrix
in mato. By components scalar multiplication is understood to be:

mato (i,j) = scon*mati (i,j)

for i from 1 to n, j from 1 to m.

Argument Mode Subscript(s) |Dimension(s) Comments
mato * 2 n,m returned
mati * 2 n,m passed

n Integer passed

m Integer passed
scon * passed

* all of the same mode which determines which subroutine is used.

CMSUB

DMSUB
CALL) IMSUB

MSUB

(matd, mat1l, mat2, n,m)

Subtracts the nxm matrix mat2 from the nxm matrix matil and stores the difference in the
nxm matrix matd.

Argument Mode Subscript(s) |Dimension(s) | Comments
matd * 2 n,m returned
matl * 2 n,m passed
mat2 * 2 n,m passed

n Integer passed

m Integer passed

* all of the same mode which determine the subroutine to be used.

CMTRN ?
DMTRN
CALL 2 IMTRN
(MTRN

(mato, mati, n)

Calculates the transpose of the nxn matrix mati and stores it in the nxn matrix mato. The
relationship between mati and mato is:

mato (i,j) = mati (j,i)

for i, j =1 to n. mato and mati must be distinct.

Argument | Mode |Subscript(s) |Dimension(s) | Comments
mato * 2 n,n returned
mati * 2 nn passed

n Integer passed

* all of the same mode which determines the subroutine used.

CALL PERM (iperm, n, iwl, iw2, iw3, last [, restrt])

PERM computes the next permutation of n elements with a single interchange of adjacent
elements each time it is called. The first call to PERM returns the permutation 1, 2, 3, . . .,
n. This subroutine is self-initializing and proceeds through all n! permutations. At the last
permutation it returns a value of last =1 and resets itself. The PERM subroutine may be re-
initialized by the user by passing a new value of n or by passing the restrt parameter with

FDR 3057 19-6 1 January, 1979

LIBRARIES REFERENCE 19

a value of 1. (The restrt parameter is optional. If re-initialization is not desired, either omit
this parameter from the calling sequence or set it to a value of 0). The calling program should
not attempt to modify iperm, iw1, iw2, or iw3.

Argument Mode Subscript{s) |Dimension(s) Comments

iperm Integer 1 n returned

n Integer pass

iwl Integer 1 n work

iw2 Integer 1 n work

iw3 Integer 1 n work

last Integer return

restrt Integer passed
{optional)

SORT AND SEARCH LIBRARY

The subroutines listed here are contained in the 'library MSORTS in UFD=LIB. This is an R-
mode library. There is, at present, no V-mode version. A complete discussion of these
subroutines will be found in Reference Guide, PRIMOS Subroutines.

See Knuth, Donald The Art of Computer Programming, vol. 3 for complete discussion of
these types of sorts.

Characteristics of the sorts

Approximate
Sort relative running time Comments
Average Maximum

BUBBLE N**2 - only good for very small N
HEAP 23N*In(N) 26N *In(N) inefficient for N <2000
INSERT N**2 - small N; very good on

. nearly ordered tables
QUICK 12N *In (N) N**2 fastest but very slow on

nearly ordered tables

SHELL N**1.25 N**1.5 good for N<2000

N is the number of entries in the table (nentry).

These routines all sort the table in increasing order with the key treated as a single, signed
multiple-word integer.

RADXEX, however, treats the key as a single, unsigned multi-word (or partial word) integer.
For example:

If the keys were 5, -1, 10, -3,
RADXEX would sort them to: 5, 10, -3, -1

The other routines would sort them to: -3, -1, 5, 10

Parameters common to more than one subroutine

ptable Pointer to first word of table of entries. Example: the table is an
array ITABLE(I), then ptable=LOC(TABLE). (type: INTEGER)

nentry Number of entries in the table (e.g., items to be sorted or
searched). (type: INTEGER)

nwords Number of words/entry. (type: INTEGER)

fword Starting word of the key field in the entry. 0<fword<nwords (type:
INTEGER)

1 January, 1979 19-7 FDR 3057

19 LIBRARIES REFERENCE

nkwrds Number of words in the key field. 0<nkwrds<nwords. fword +
nkwrds-1<nwords (the key field must be contained within the
entry). (type: INTEGER)

tarray A temporary one-dimensional array used as a work area. Size
varies with sort used.

npass Returned pass counter. (type: INTEGER)

altbp An optional alternate return address for an error caused by a bad

parameter (type: address constant). If altbp is not specified, then
an error causes a normal return with npass=0.

General requirements for using in-memory sorts
1. All entries must be equal length.
2. Key words must be contiguous (no secondary keys).

Sorts

BUBBLE - interchange sort
CALL BUBBLE (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp,incr)

tarray has dimension nkwrds.
incr is used to sort non-adjacent entries in the tables.
Default is INCR=1 (adjacent) (type: INTEGER)

HEAP - heapsort
CALL HEAP (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

tarray has dimension nwords

INSERT - straight insertion sort
CALL INSERT (ptable,nentry,nwords,fword,nkwrds,npass,altbhp,incr)

incr is used to sort non-adjacent entries in the table.
Default is incr=1 (adjacent). (type: INTEGER)

QUICK - partition exchange sort

CALL QUICK (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

tarray has dimension nwords

RADXEX- radix exchange sort
CALL RADXEX (ptable,nentry,nwords,fword,fbit,nbit,tarray,npass,altbp)
fbit is the first bit within fword of the key
nbit is the number of bits in the key

Note
fword+(nbit+fbit-2)/16 <nwords

tarray has dimension 2*nbit

SHELL - diminishing increment sort
CALL SHELL (ptable,nentry,nwords,fword,nkwrds,npass,altpb)

FDR 3057 19-8 1 January. 1979

LIBRARIES REFERENCE 19

Search

BNSRCH - search/maintain ordered table

CALL BNSRCH (ptable,nentry,nwords,fword,nkwrds,skey,f entry,index,
opflag,altnf,altbp)

skey a search key array of dimension nkwrds
fentry array of dimension nwerds into which the found entry is read (see
below under opflag=3 for special use)
index entry number of the found entry
opflag operation flag
0 locate
1 locate and delete
2 locate and insert
3 locate and update
altnf alternate return if entry is not found

Simple binary searching (opflag=0) tests each entry’s key field for a match with skey. If the
entry is found, it is returned in fentry and the entry number is put into index. If the entry is
not found, the not found alternate return (altnf) is taken. If altnf is not specified, the normal
return is taken with index=0.

The operation for opflag=1 is the same as opflag=0 except that if the entry is found, it is
deleted from the table as well as returned in fentry. In this case, index specifies where the
entry was.

The operation for opflag=2 is the same as opflag=0 if the entry is found. If, however, the
entry is not found, the contents of fentry will be inserted into the table and index will
indicate the position of the new element. Also altnf will be taken.

The operation for opflag=3 is the same as opflag=0 if the entry is not found. If the entry is
found, the contents of fentry and the found entry are interchanged, thus updating the table
and returning the old entry.

APPLICATIONS LIBRARY

The applications library provides programmers with easy-to-use functions and service
routines falling between very high-level constructs and very low-level systems routines. The
applications library is located in UFD=LIB in the files APPLIB (R-mode programs) and
VAPPLB (V-mode programs). All routines in VAPPLB are pure procedure and may be
loaded into the shared portion of a shared procedure. The applications library should be
loaded before loading the FORTRAN library.

Programs using the applications library subroutines must define the values of the keys used
in these routines. This definition is performed by placing the instruction $INSERT SYSCOM
>A$KEYS in each module which uses any of these subroutines.

The applications routines may be used as functions or as subroutine calls as desired. The
function usage gives additional information. The type of value of the function (LOGICAL,
INTEGER, etc.) is specified for each function.

A detailed description of this library will be found in Reference Guide, PRIMOS sub-
routines.

1 January, 1979 19-9 . FDR 3057

19 LIBRARIES REFERENCE

The applications library subroutines may be grouped by their functions:

File System TEMPSA, OPEN$A, OPNP$A, OPNV$A, OPVP$A,
CLOS$A, RWND$A, GENDS$A, TRNC$A, DELES$A,
EXSTS$A, UNIT$A, RPOS$A, POSN$A, TSCNSA.

String Manipulation FILL$A, NLEN$A, MCHR$A, GCHR$A, TREES$A,
TYPE$SA, MSTR$A, MSUBS$SA, CSTR$A, CSUBSA,
LSTR$A, LSUBSA, JSTRS$A.

User query YSNOSA, RNAMS$SA, RNUMSA.

System Information TIMES$A, CTIMS$A, DTIM$A, DATE$A, EDATSA,
DOFY$A.

Conversions ENCD$A, CNVASA, CNVBS$A.

Mathematical Routines RNDI$A, RANDS$A.

Parsing CMDLS$A.

A brief description of these routines follows, in alphabetical order.

CLOSS$A LOGICAL

Attempts to close a file by the file unit number on which it was opened. Reports on success
or failure of attempt.

CMDL$A LOGICAL

Parses a PRIMOS-like command line and returns information for each -keyword (and
optional argument) entry in the line (one entry per call).

CNVASA LOGICAL

Converts an ASCII digit string to a numerical value for octal, decimal, and hexadecimal
numbers. Reports whether the conversion was made successfully or not.

CNVB$ INTEGER*2

Converts a binary number (INTEGER*4) to an ASCII digit string for decimal, octal, and
hexadecimal numbers. The function value is the number of digits in the string (or 0 if the
conversion is unsuccessful).

CSTR$A LOGICAL

Compares two character strings for equality and returns .TRUE. as the function value if they
are equal.

CSUBS$A LOGICAL

Compares two substrings of character strings for equality and returns .TRUE. as the function
value if they are equal.

CTIMS$SA REAL*8

Returns the CPU time since login in centiseconds (argument returned) and in seconds
{(function value]).

DATES$A REAL*8

Returns the system date as DAY MON DD 19YR (argument returned) and as MM/DD/YY
(function value).

FDR 3057 19-10 1 January, 1979

LIBRARIES REFERENCE 19

DELESA LOGICAL

Attempts to delete a file specified by the filename. If successful the function is .TRUE.,
otherwise .FALSE..

DOFY$A REAL*8

Returns the day of the year as a 3-digit number (argument returned) and as YR.DDD
(function value). The latter is suitable for printing in FORMAT F6.3.

DTIM$A REAL*8

Returns disk time since login in centiseconds (argument returned) and in seconds (function
value]).

EDATS$A REAL*8

Returns the date as DAY, DD MON 19YR (argument returned) and as DD/MM/YR (function
value). This is the European/military format.

ENCDS$A LOGICAL

Encodes a value in FORTRAN floating-point print format (Fw.d) and reports whether the
encoding was successful or not.

EXSTS$A LOGICAL

Checks for the existence of a file specified by name and reports whether the file exists or
not.

FILL$A INTEGER
Fills a buffer with a specified ASCII character.

GCHRS$A INTEGER

Accesses a character in a specified array position. The function value is the character in
FORTRAN A1 FORMAT (right padded with blanks).

GENSA LOGICAL

Positions a file pointer opened on a specified file unit to the End-of-File. The function value
tells whether the positioning was successful or not.

JSTR$A LOGICAL

Right- or left-justifies a string and reports whether the operation is successful.

LSTR$A LOGICAL

Locates a string within another string. The function value reports on whether the substring
was found or not.

LSUBS$A LOGICAL

Locates one substring within another substring. The function value reports on whether the
substring was found or not.

1 January, 1979 19-11 FDR 3057

19 LIBRARIES REFERENCE

MCHRS$A INTEGER

Replaces a character in one array with a specified character from another. The function
value is the character moved in FORTRAN A1 FORMAT, right padded with blanks.

MSTR$A INTEGER

Moves one string to another string. The function value is equal to the number of characters
moved. '

MSUB$A INTEGER

Moves a substring into a substring in another string. The function value is equal to the
number of characters moved.

NLENS$A INTEGER*2

Returns the operational length of string in a buffer, excluding trailing blanks.

OPEN$A LOGICAL

Opens a file on a specified file unit. The function value reports whether the operation was
successful or not.

OPNP$SA LOGICAL

Gets a filename from the user terminal and opens that file on a specified file unit. The
function value reports whether the operation was successful or not.

OPNV$A LOGICAL

Opens a file on a specified file unit, verifies the operation. If the file is in use the operations
are re-tried. The function value reports on the ultimate success of the operations.

OPVP$A LOGICAL

Gets a file name from the user terminal and opens that file on a specified file unit. The
operations are verified. If the file is in use the operations are re-tried. The function value
reports on the ultimate success of the operations.

POSNS$A - LOGICAL

Positions the pointer in the file open on a specified file unit. The function value reports on
the success of the operation.

RANDS$A REAL*8

Updates the seed of a random number generator. The old seed is passed and a new seed
returned. The function value is a random number between 0.0 and 1.0.

RNAMSA LOGICAL

Prints a prompt message at the terminal and accepts a name from the terminal. The function
value reports on the validity of the name.

FDR 3057 19-12 1 January, 1979

LIBRARIES REFERENCE 19

RNDISA REAL*8
Generates the initializing seed for a random number generator. The information returned is
time of day in centiseconds (argument returned) and in seconds (function value).

RNUMS$A LOGICAL

Prints a prompt message at the terminal and accepts a number (octal, decimal, or
hexadecimal) string from the terminal. If successful the value is returned in one of the
subroutine arguments and the function value is .TRUE..

RPOS$A LOGICAL
Returns the current absolute position of the pointer in the file opened on a specified file
unit. The function value reports on the success of the operation.

RWND$A LOGICAL

Rewinds the file opened on the specified file unit. The function value reports on the success
of the operation.

TEMPS$SA LOGICAL
Opens a temporary file with a unique name in the current UFD for reading and writing on
a specified file unit. The name is returned as an argument in the subroutine call. The
function value reports on the success of the operation.

TIMES$A REAL*8
Returns the time of day as HR:MN:SC (argument returned) and in decimal hours (function
value).

TREE$A LOGICAL
Scans a string to check whether it is a valid pathname and, if so, locates the final part of the
name in the string. The function value reports whether the test is successful or not.

TRNC$A LOGICAL
Truncates the file opened on a specified file unit. The function value reports on the success
of the operation.

TSCNS$A LOGICAL

Scans the file system tree-structure (starting with the home directory) to read UFDs and
segment directory entries. Each call returns the next file on the current level or the first file
on the next lower level. The function value is . TRUE. until an error occurs or an end of file
is reached.

TYPESA LOGICAL

Tests a character string to see whether it can be interpreted as a number (octal, decimal, or
hexadecimal) or a name. The function value reports whether the string meets the specified
criterion.

UNIT$A LOGICAL

Tests whether any file is open on a specified file unit. The function value reports whether
the unit is in use or not.

1 January, 1979 19-13 FDR 3057

19 LIBRARIES REFERENCE

YSNOS$A LOGICAL

Prints a question at the user terminal which can be answered YES (or OK) or NO. The
function value is .TRUE. for YES (or OK) and .FALSE. for NO. Any other answer causes the
question to be repeated.

OPERATING SYSTEM LIBRARY

These subroutines are used mainly by PRIMOS. However, a number of them useful at the
applications level are described in detail here. Complete details will be found in Reference
Guide, PRIMOS Subroutines.

File access

Files are structured to be accessed in either of two ways: SAM, or Sequential Access
Method, and DAM, or Direct Access Method. SAM files are the most common type of file
created and processed by PRIMOS. Most files likely to be dealt with by the user are SAM
files.

SAM files: A SAM file consists of records threaded together with forward and backward
pointers. Each record in the file contains a pointer to the beginning record address (BRA) of
the file. The beginning record of the file contains a pointer to the file directory in which it
is listed. Since records are strung together in this manner, they can only be accessed
sequentially; the entire file must be searched from the beginning in order to find a record.
This is time consuming when many random accesses must be done. However, SAM files are
more compact and require less disk storage space than DAM files. SAM files are accessed
by PRIMOS commands such as ED, etc.

DAM files: DAM files have a multi-level index containing pointers to every record on the
file. If the file is short, the record address pointers point directly to records containing data.
If the file is long, these pointers reference other records containing a lower level index.
Those indices in turn have pointers to records containing data.

DAM structure is more suitable to rapid, random access of data than SAM structure. Each
individual record can be referenced by a unique pointer connecting the record and a pointer
index at the beginning of the file. Searching the pointer index for a particular record is
quicker than hunting through each entire record in sequence.

DAM files are less compact than SAM files. The MIDAS subsystem or user applications
programs must be used to access them. DAM files occur in the MIDAS and SEG subsystems.

Names

In the file system calls, names are either ASCII, packed two characters per word, or
character strings (the actual name preceded and followed by a single quote)). If the name
length specified in a call is longer than the actual length of the name, the name must be
followed by a number of trailing blanks sufficient to match the given length.

Passwords

Passwords can be at maost 6 characters long. Passwords less than 6 characters must be
padded with blanks for the remaining characters. Passwords are not restricted by filename
conventions and may contain any characters or bit patterns. It is strongly recommended that
passwords not contain blanks, commas, the characters = !’ @ {} [] () or lowercase
characters. Passwords should not start with a digit. If passwords contain any of the above
characters or begin with a digit, the passwords may not be given on a PRIMOS command line
to the ATTACH command.

FDR 3057 19-14 1 January, 1979

LIBRARIES REFERENCE 19

Keys and error codes

All keys and error codes are specified in symbolic, rather than numeric form. These
symbolic names are defined as PARAMETERS for FORTRAN programs in $INSERT files in
a UFD on the master disk called SYSCOM. The key definition file is named KEYS.F for
FORTRAN. The error definition file is ERRD.F.

Error handling

Errors occurring from a subroutine call cause a non-zero value of the argument CODE to be
turned. Users should always test CODE after a call for non-zero values to be certain no
errors are missed. Error printing and control are performed by the ERRPRS subroutine:

CALL ERRPRS$ (key,code,text,text-length,name,name-length)

key Action to be taken after printing message.
K$NRTN Exit to PRIMOS; do not allow return to calling program.
K$SRTN Exit to PRIMOS; return to calling program following a START

command.
K$IRTN Return immediately to calling program.

code An integer variable containing the error code returned by the
subroutine generating the error.

text User's message to be printed following standard error message (up
to 64 characters).

text-length Length of text in characters. To omit text, specify both text and
text-length as 0.

name User-specified name of program or sub-system, detecting or re-
porting the error (up to 64 characters).

name-length Length of name in characters. To omit name, specify both name

and name-length as 0.
The message format for non-zero values of CODE is:

standard text. user’s text, if any (name, if any)
ILLEGAL NAME. OPENING NEWFILE (NEWWRT)

These errors are included in the list of run-time errors in Appendix A. They are labelled as
File System errors.

Operating System Subroutines

A list of all operating system subroutines with a brief description of their function is given
below. Subroutines marked with a bullet (¢} are described in detail following this list.

* ATCH$$ Attaches to a UFD and optionally makes it the home UFD.

e CNAMSS Changes a filename.
COMIS$ Switches command input stream from terminal to command file

and vice-versa.

COMOS$$ Switches output stream from terminal to file and vice-versa.
CREAS$$ Creates a sub-UFD in the current UFD.
ERKL$$ Reads or sets the erase and kill characters.
GPAS$$ Returns passwords of sub-UFD in the current UFD.
NAMEQS$ Compares filenames for equivalence.

e PRWF$$ Reads, writes, and positions pointer in a SAM or DAM file.
RDENS$$ Reads entry in UFD.

1 January, 1979 19-15 FDR 3057

19 LIBRARIES REFERENCE

RDLINS$ Reads line of characters from compressed or uncompressed ASCII
disk file.
RDTK$$ ' Parses the command line, token by token.
REST$$ Restores an R-mode memory image to user memory from a disk
file.
* RESU$$ Restores an R-mode memory image from a file, sets initial values,

and begins execution. An error in this call causes an error message
to be printed automatically and then returns command to

PRIMOS.
SATR$$ Sets attributes (protection, date, time, etc.) in a UFD entry.
SAVE$$ Saves an R-mode memory image in user memory by writing itinto
a disk file.
SGDR$$: Positions and reads segment directory entries.
SPASS$$ Sets the passwords in the current UFD.
* SRCH$$. Opens or closes a file.
TEXTO$ Checks the validity of a filename.
* TSRC$$ Opens or closes a file anywhere in the PRIMOS file structure.
WTLIN$ Writes a line of ASCII characters to a disk file in compressed
format.
ATCHS$$
CALL ATCH$$ (ufd-name,name-length,logical-disk,password,key,code)
ufd-name Name of UFD to be attached to (if ufd-name=K$HOME and key=
0, attachment is to home UFD).
name-length - Length in characters of ufd-name (if ufd-name=K$HOME, name-
. length is ignored).
logical-disk : Logical disk to searched for ufd-name when key=K$IMFD.
logical-disk Action
K$ALLD Search all started-up
logical devices.
K$CURR Search MFD of current disk.
password = 3-word array containing the owner or non-owner password of ufd-
name (if attaching to home UFD, password may be 0).
key reference-key + set-key
reference key Action
K$IMFD Attach to ufd-name in MFD on
logical-disk.
K$ICUR Attach to ufd-name in current
UFD.
set-key Action
K$SETH Set current UFD to home after
attaching.
code Returns integer-valued error code.
CNAMS$$
CALL CNAMS$$ (old-name,old-name-length,new-name,new-name-length,code)
old-name Name of file to be changed.
old-name-length Number of characters in old-name.

FDR 3057 19-16 1 January, 1979

LIBRARIES REFERENCE 19

new-name
new-name-length
code

Name to be changed to.
Number of characters in new-name.
Returns integer-valued error code.

Note

CNAMS$ requires owner-rights in the current UFD. The
names of the MFD,BOOT,BADSPT, or the packname may not

be changed.

PRWF$$

CALL PRWF$$ (read-write-key+position-key+mode,file-unit, LOC(buffer),
number-of-words,position-value,words-transferred,code)

read-write-key
K$READ
K$WRIT
K$POSN
K$TRNC
K$RPOS

position-key
K$PRER

K$POSR

K$PREA

K$POSA

Action to be taken (mandatory).

Read number-of-words from file-unit into buffer.

Write number-of-words from buffer to file-unit.

Set current position to value at 32-bit integer in position-value.
Truncate files open on file-unit at current position.

Return current positions as a 32-bit integer in position-value.

Indicates positioning (optional).

Move file pointer of file-unit position-value words relative to
current position; then perform read-write-key operation.
Performs read-write-key operation then move file pointer of
file-unit position-value words relative to current position.
Move file pointer of file-unit to absolute pesition-value then
perform read-write-key operation.

Perform read-write-key operation, then move pointer of file-
unit to absolute position-value.

If position-key is omitted, K$PRER is used.

mode
omitted
K$CONV

K$FRCW

file-unit
buffer

number-of-words

position-value

words-transferred

code

1 January, 1979

Transfer all or convenient number of words (optional).
Read/write number of words.

Read/write convenient number of words up to number-of-
words. See Reference Guide, PRIMOS subroutines for a
discussion of ‘“‘convenient’.

Perform write to disk from buffer before executing next instruc-
tion in the program. Increases disk I/O time.

File unit on which the file has been opened (by SRCHSS$.
PRIMOS command, etc.).
Data buffer for read/write. If not needed, specify as LOC(0).

number of words to be transferred (mode=0) or maximum
number of words to be transferred (mode=K$CONV). number-
of-words may range from 0 to 65535.

Relative or absolute position value (32-bit integer, INTEGER*4).
If not needed, specify long-integer zero as 000000 or INTL(0).
The number of words actually transferred when read-write-key
—K$READ; other keys leave this parameter unmodified. (IN-
TEGER*2).

Returns integer-valued error code.

19-17 FDR 3057

19 LIBRARIES REFERENCE

RESU$$
CALL RESUS$$ (filename,name-length)

filename

name-length

SRCHS$$

CALL SRCH$$ (action+reference+newfile,filename,name-length,file-unit,file-

FDR 3057

type,code)

action
K$READ
K$WRIT

K$RDWR

K$CLOS
K$DELE
K$EXST
reference
K$IUFD
KS$ISEG

K$CACC
K$GETU

new-file
K$NSAM
K$NDAM
K$NSGS
K$NSGD

filename
name-length

file-unit
file-type

code

Name of the file containing the memory image.
Number of characters in filename.

Action to be taken (mandatory).

Open filename for reading on file-unit.

Open filename for writing on file-unit.

Open filename for reading and writing on file-unit.
Close file by filename or by file-unit.

Delete filename.

Check existence of filename.

Modifies action (optional).

Search for filename in current UFD (this is the default).

Perform the action on the file that is a segment directory entry in
the directory which is open on filename.

Change access rights of file open on file-unit to action.

Open filename on an unused file-unit selected by PRIMOS. The
unit number is returned in file-unit,

Specifies type of file to create if file-name does not already exist.
SAM file (this is the default).

DAM file.

SAM segment directory.

DAM segment directory.

Name of the file to be opened. If reference=K$ISEG, filename is a
file unit on which a segment directory is already open.

Number of characters of filename.
File unit number on which file is to be opened or closed.

Returns type of file opened. If call does not open file, its value is
unchanged. The values are integers.

0 SAM file

1 DAM file

2 SAM segment directory
3 DAM segment directory
4 UFD

Returns an integer-valued error code.

Note

A UFD may be opened only for reading. A UFD cannot be
deleted unless it is empty. A segment directory cannot be
deleted unless it is of length 0.

19-18 1 January, 1979

LIBRARIES REFERENCE 19

TSRC$$

CALL TSRC$$ [action+new-file,pathname,file-unit,character-position, code)

action
K$READ
K$WRIT
K$RDWR
K$DELE
K$EXST

new-file

K$NSAM
K$NDAM
K$NSGS
K$NSGD

pathname
file-unit

character-position

file-type

code

Action to be taken (mandatory).

Open pathname for reading on file-unit.

Open pathname for writing on file-unit.

Open pathname for reading and writing on file-unit.

Delete file pathname.

Check on existence of pathname.

Specifies type of file to create if pathname does not already
exist.

SAM file (this is the default).

DAM file.

SAM segment directory.

DAM segment directory.

A specification of any file in any directory or subdirectory
stored in array pathname packed two characters per word.
File unit number on which the file is to be opened or deleted.
The file-unit is closed before any action is taken.

A two-element integer array. word 1 of entry: the first character
in the array that is part of the pathname (count starts at 0)
returns; one past the last character that was part of the
pathname. word 2 - the number of characters in the pathname.
Returns type of file opened. If call does not open file, its value
is unchanged. The values are integers.

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD

returns an integer valued error code
Note

TSRC$$ always closes the file unit, then attaches to the user’s
home UFD before attempting any action.

1 January, 1979

19-19 FDR 3057

Error messages

INTRODUCTION
Error messages are given in the following order:

1. FORTRAN Compiler Error Messages
2. Loader Error Messages

3. SEG Loader Error Messages

4. Run-Time Error Messages

In each group errors are listed alphabetically.

Run-time error messages beginning with a filename, device name, UFDname, etc., are
alphabetized according to the first word which is constant. The user should have no trouble
in determining this word (the second word in the message). Leading asterisks, etc., are
ignored in alphabetizing. All run-time errors have been grouped together to facilitate lookup
by the user.
COMPILER ERROR MESSAGES
ARG LIST REQUIRED

Argument list not specified in FUNCTION statement.
ARRAY NAME REQUIRED

Something other than an array name appeared in a position where only an array
name is allowed. (example: ENCODE or DECODE statement)

ARRAY/BLOCK OVERFLOW
Array/block exceeds space allocated to user.
ARRAY NESTING OVFLO
Use of arrays as subscripts in other arrays exceeds allowable nesting limit (32).

CHAR STRING SIZE

A character string was not terminated, or a string in a DATA statement was longer
than the associated variable list.

COMMON NAME ILL.
Tlegal use of a name already declared in COMMON.

COMPILER OVERFLOW

Insufficient memory to compile program.

1 January, 1979 A-1 ‘ FDR 3057

A ERROR MESSAGES

CONFLICTING DECLARN
Name(s) declared as more than one data mode.
CONSTANT REQUIRED

A name apﬁeared where only a constant or parameter is allowed (i.e., DIMENSION
statement in a main programj.

CONSTANT TOO LARGE

Constant exponent excessive for data type.

DATA MODE ERROR

Illegal mode mixing in expression, expression mode not of required type, or constant
in DATA statement is of different mode than associated name in variable list.

DIVISION BY ZERO

Attempt has been made to divide by a zero constant.

END/REC PROHIBITED

The END=statement-number expression cannot be used in a direct access READ or
WRITE statement.

EXCESS CONSTANTS
Number of constants in DATA statement exceed variables for storing them.

EXCESS SUBSCRIPTS
Too many subscripts in EQUIVALENCE or DATA list item.

FUNCT VAL UNDEFINED

The function name was not assigned a value in a FUNCTION subprogram.

GBL MDE/IMPL CNFLCT

IMPLICIT statement and global mode specification may not be used in the same
program unit.

ILL. CONSTANT EXPR.

Variables found in a PARAMETER statement.
ILL. DO TERMINATION

Improper DO loop nesting, or an illegal statement terminating a DO loop.
ILL. EQUIVALENCE

EQUIVALENCE group violates EQUIVALENCE rules or specifies an impossible
equivalencing.

ILL. LOGICAL IF

A logical IF contained in a logical IF, or a DO statement contained in a logical IF.

ILL. OVER 64K COMMON
A COMMON area exceeds 64K words of user memory.

FDR 3057 A-2 1 January, 1979

ERROR MESSAGES A

ILL. STMT NO. REF

Reference to a specification statement number.

ILL. UNARY OP USAGE

Improper use of an operator in an expression.

ILL. USE OF ARG

SUBROUTINE or FUNCTION statement used in COMMON, EQUIVALENCE, or
DATA statement.

ILL. USE OF CLMN. 6

Continuation line found without a continuation or statement line preceding it.

ILL. USE OF STMT

Statement illegal within the context of the program; for example, RETURN in a main
program, SUBROUTINE not the first subprogram statement, or specification
statements out of order. If an undeclared array name is used on the left in an
assignment statement, the compiler will assume it is a statement function definition
and will therefore generate this error.

INCONSISTENT USAGE

The use of the name listed in the error message conflicts with earlier usage. This
message also will be generated at the END statement in a SUBROUTINE subpro-
gram if the subroutine name is used within the subprogram.

INTEGER REQUIRED

A non-integer name or constant appeared where only an integer name or constant is
allowed.

INTERNAL ERROR

Some combination of source code statements has generated an unresolvable error.
The programmer should never see this error.

MULT DEF STMT NO.
The statement number of the current line has already been defined.
NAME REQUIRED

A constant appeared where only a name is allowed.

NO END STMT
The last statement in the source was not an END statement.

NO PATH TO STMT

The current statement does not have a statement number and the previous statement
was an unconditional transfer of control.

NONCOMMON DATA

A BLOCK DATA subprogram initialized data not defined in COMMON or contained
executable statements.

1 January, 1979 A-3 FDR 3057

A ERROR MESSAGES

PAREN NESTING>31

Nesting of parentheses (syntactical, array, or function reference) in expressions may
not exceed 31.

PARENTHESIS MISSING

Incorrect parenthesis used in an implied DO loop in an I/O statement.

PROG SIZE OVERFLOW

Program too large for allocated user space.

SAVE ITEM ILLEGAL
Improper item in SAVE statement (function name, array element, etc.).
STMT NAME SPELLING

A statement name was recognized by its first four characters, but the remaining
spelling was incorrect.

STMT NO. MISSING
A FORMAT statement appeared without a statement number.

SUBPGM/ARR NAME ILL

Illegal usage of subprogram or array name.

SUBPROGRAM NAME ILL

Illegal usage of subprogram name.

SYMBOLIC SUBSCR ILL

Illegal usage of symbolic subscript in a specification statement.

SYNTAX ERROR

General syntax error, context usually shows offending character(s).

TOO FEW SUBSCRIPTS

Number of subscripts used in an array is fewer than the number originally declared
in a DIMENSION or mode specification statement.

UNDECLARED VARIABLE

The listed variable did not appear in a specification statement (generated when the
undeclared variable check option is enabled).

UNDEFINED STMT NO.

The listed statement number was not defined in the subprogram. The listed line
number is the line number of the last reference to the statement number.

UNRECOGNIZED STMT

The compiler could not identify the statement.

FDR 3057 A-4 1 January, 1979

ERROR MESSAGES A

LOADER ERROR MESSAGES
ALREADY EXISTS!

An attempt is being made to define a new symbol; however, the symbol name is
already a defined symbol in the symbol table.

BAD OBJECT FILE

The object text is not recognizable. This usually occurs when an attempt is made to
load source code or when the object text was compiled or assembled for segmented
loading.

BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use the AU command to
generate base areas at regular intervals, or use the SETB or LOAD commands to
specifically place base areas.

CAN’T DEFER COMMON, OLD OBJECT TEXT

The Defer Common command has been given and a module created with a pre-Rev.
14 compiler or assembler has been encountered. It is not possible to defer Common
in this case. The module must be recreated with a Rev. 15 or later compiler or
assembler.

CAN'T - PLEASE SAVE

The EXecute command has been given for a run file which has required virtual
loading. SAve the runfile and give the EXecute command.

CM$
Command line error. Unrecognized command given. Not fatal.
COMMON OUT OF REACH

COMMON above '100000 is out of reach of the current load mode (16S, 325 or 32R).
Use the MOde command to set the load mode to 64R.

COMMON TOO LARGE

Definition of this COMMON block causes COMMON to wrap around through zero.
Moving the top of COMMON - with the COMMON command - may help.

sname ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine COMMON block sname to a longer length. The
user’s program should be examined for consistent COMMON definitions. At the
very least the longest definition for a COMMON block should be first.

xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a second level of indirection at location
xxxxxx. This message usually results when an attempt is made to load code compiled
or assembled for 32R mode in 64R mode. It can also happen if code has accidentally
been loaded into base areas as the result of a bad load command sequence.

sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the instruction. No base areas
are within reach except sector zero. The last referenced symbol was sname. This
message is only generated when the SZ command has been given. Sname may be the

1 January, 1979 A-5 FDR 3057

A ERROR MESSAGES

name of a COMMON block, the name of the routine to which the link should be
made, or the name of the module being loaded.

xxxxxx NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for module which was created with a pre-Rev.14
compiler or assembler. No base area is created. Recreate the object text with a
Rev. 15 or later compiler or assembler. This is not a fatal error.

PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area reserved for
COMMON. Use the loader’s COmmon command to move COMMON up higher.

PROGRAM TOO LARGE

The program has loaded into the last location in memory and has wrapped around
to load in Location 0. The program size must be decreased. Alternatively, compile in
64V mode and use SEG.

REFERENCE TO UNDEFINED COMMON

An attempt is being made to link to a COMMON name which has not been defined.
This usually happens to users creating their own translators.

SECTORED LOAD MODE INVALID

A module compiled or assembled to load in R mode has been loaded in S mode. Use
the MOde command to reset the load mode. It might be a good idea to be sure that
all modules are correctly written, since the default load mode is 32R.

SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYmbol command and the
old symbol does not exist.

SYMBOL TABLE FULL

The symbol table has expanded down to location '4000. The last buffer cannot be
assigned to the symbol table. Rebuild LOAD to load in higher memory locations, or
reduce the number of symbols in the load.

SYMBOL UNDEFINED

An attempt is being made to equate two symbols; however, the old symbol is an
undefined symbol in the symbol table.

64R LOAD MODE INVALID

A module compiled or assembled to run in only 32K of memory is being loaded in
64R mode. Recompile or reassemble or change the load mode with the loader's
MOde command.

SEG LOADER ERROR MESSAGES
BAD OBJECT FILE

User is attempting to load file which has faulty code. The file may not be an object
file or it may be incorrectly compiled. Fatal error, the load must be aborted.

FDR 3057 A-6 1 January, 1979

ERROR MESSAGES A

CAN'T LOAD IN SECTORED MODE

The Loader is attempting to load code in sectored mode which has not been compiled
in sectored mode. This could arise if trying to load a module compiled or assembled
in 16S or 32S mode. It is unlikely that the average applications programmer will
encounter this. Fatal error, abort load.

CAN’'T LOAD IN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode which is not compiled in that '
mode. This would arise if:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V and its mode is not
specified.

In case 1, the user should recompile the program.

In case 2, which the average applications programmer is unlikely to encounter, the
PMA module must be modified. Fatal error, abort load.

COMMAND ERROR

An unrecognized command was entered or the filenames/parameters following the
command are incorrect, Usually not fatal.

EXTERNAL MEMORY REFERENCE TO ILLEGAL SEGMENT

An attempt was made to load a 64R mode program, causing a reference to an illegal
segment number. Recompile in 64V mode. Fatal error, abort load.

ILLEGAL SPLIT ADDRESS

Incorrect use of the Loader’s SPLIT command. Segments may be split at '4000
boundaries only (i.e., ‘4000, '10000, ‘14000, etc.). Not fatal; resplit segment.

MEMORY REFERENCE TO COMMON IN ILLEGAL SEGMENT

An attempt was made“to load a 64R mode program wherein COMMON would be
allocated to an illegal segment number. Recompile in 64V mode. Fatal error, abort
load.

NO FREE SEGMENTS TO ASSIGN

All SEG's segments have been allocated; no more are available at present. Use
SYMBOL command to eliminate COMMON from assigned segments, thus reducing
the number of assigned segments required. (User may need larger version of SEG
and PRIMOS). Fatal error, abort load.

NO ROOM IN SYMBOL TABLE

Unlikely to occur; no user solution. A new issue of SEG with a bigger symbol table
is required. Check with analyst. As a temporary measure, user may try to reduce
number of symbols used in program. Fatal error, abort load.

REFERENCE TO UNDEFINED SEGMENT

Almost always caused by improper use of the SYMBOL command to allocate
initialized COMMON. Initialized COMMON cannot be located with the SYMBOL
command; use R/SYMBOL or A/SYMBOL instead.

1 January, 1979 A-7 FDR 3057

A ERROR MESSAGES

SECTOR ZERO BASE AREA FULL

Extremely unlikely to occur. Not correctable at applications level. Check with
analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been made to load a 64R mode program. The program has exceeded
64K and is trying to be loaded over code previously loaded. Recompile in 64V mode.
Fatal error, abort load.

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode
Attempt to perform operations in segments to which user has no right.

****AD R-mode function
Overflow or underflow in double-precision addition/subtraction (A$66,5$66).

ALL REMOTE UNITS IN USE File System
Attempt made to assign a remote unit when none are available. (Network error)
[E$FUIU|

*¥*** ALOG/ALOG 10 - ARGUMENT <=0 V-mode function
Argument not greater than zero used in logarithm (ALOG, ALOG 10) function.

filename ALREADY EXISTS ' Old file call
Attempt to create a file or UFD with the name of one already existing. [CZ]

ALREADY EXISTS File System

Attempt made to create, in the UFD, a sub-1JFD with the same name as one already
existing. (CREA$$) [E$EXST]

*EEXAT ' R-mode function
Both arguments are zero in the ATAN2 function. v

**** ATAN2 - BOTH ARGUMENTS =0 V-mode function
Both arguments are zero in the ATAN2 function.

**** ATTDEV - BAD UNIT V-mode call
Incorrect logical device unit number in the ATTDEV subroutine call.

BAD CALL TO SEARCH Old file call
Error in calling the SEARCH subroutine, e.g., incorrect parameter. [SA|

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the programmer or by a
system problem. [SS]

BAD DAM FILE File System

The DAM file specified has been corrupted - either by the programmer or by a
system problem. (PRWF$$, SRCH$$). [ESBDAM|

FDR 3057 A-8 1 January, 1979

ERROR MESSAGES A

BAD FAM SVC File System
System problem; will not be seen by applications programmer. [E$BFSV]
BAD KEY File System

Incorrect key value specified in subroutine argument. (ATCH$$, RDEN$$, SATR$S,
SRCH$$, SGDR$$) [ESBKEY]

BAD PARAMETER Old file call
Incorrect parameter value in subroutine call. [SA]
BAD PASSWORD Old file call

Incorrect password specified in ATTACH subroutine. Returns to PRIMOS level
attached to no UFD. [AN]

BAD PASSWORD File System

Incorrect password specified in ATCHS$$ subroutine. Returns to PRIMOS level
attached to no UFD. [ATCH$$] [E$BPAS]

Note

To protect UFD privacy the system does not allow the user to
trap BAD PASSWORD errors.

BAD RTNREC PRIMOS
System error.
BAD SEGDIR UNIT File System

Error generated in accessing segment directory, i.e., PRIMOS file unit specified is
not a segment directory. (SRCH$$) [ESBSUN]

BAD SEGMENT NUMBER File System
Attempt made to access segment number outside valid range. [E$BSGN]

BAD SVC PRIMOS
Bad supervisor call. In FORTRAN usually caused by program writing over itself.

BAD TRUNCATE OF SEGDIR File System
Error encountered in truncating segment directory. (SGDR$$) [ESBTRN]

BAD UFD File System

UFD has become corrupted. (ATCH$$, CREA$S, GPAS$$, RDENSS, SATRSS,
SRCH$$) [E$BUFD]. Calls to RDENS$$ return this as a trappable error; other
commands return to the PRIMOS command level.

BAD UNIT NUMBER File System

PRIMOS file unit number specified is invalid - outside legal range. (PRWF$$,
RDENS$$, SRCH$$, SGDRSS). [ESBUNT]

BEGINNING OF FILE File System

Attempt was made to access locations before the beginning of the file. (PRWFS,
RDEN$$, SGDR$$) [E$BOF]

1 January, 1979 A-9 FDR 3057

A ERROR MESSAGES

****BN n R-mode function
Device error in REWIND command on FORTRAN logical unit n.
BUFFER TOO SMALL File System

Buffer as defined is not large enough to accomodate entry to be read into it.
(RDENSS$) [E$BFTS]

**** DATAN - BAD ARGUMENT V-mode function
The second argument in the DATAN?2 function is zero.

****DE R-mode function
The exponent of a double-precision number has overflowed.

DEVICE IN USE File System
Attempt was made to ASSIGN a device currently assigned to another user. [E$DVIU]

DEVICE NOT ASSIGNED File System

Attempt was made to perform 1/0 operations on a device before assigning that
device. [E$NASS]

DEVICE NOT STARTED File System

Attempt was made to access a disk not physically or logically connected to the
system. If disk must be accessed, systems manager must start it up. [ESDNS]

**** DEXP - ARGUMENT TOO LARGE V-mode function

The argumeht of the DEXP function is too large; i.e., it will give a result outside the
legal range.

¥*** DEXP - OVERFLOW/UNDERFLOW V-mode function
An overflow or underflow condition occurred in calculating the DEXP function.

DIRECTORY NOT EMPTY File System
Attempt was made to delete a non-empty directory. (SRCH$$) [E$DNTE]

DISK FULL Old file call
No more room for creating/extending any type of file on disk. [D]]

DISK FULL File System

No more room for creating/extending any type of file on disk. (CREA$$, PRWFS,
SRCHS$$, SGDR$$). [E$DKFL]

Note

Space may be made available. Use the internal PRIMOS
commands ATTACH, LISTF, and DELETE to remove files
which are no longer needed.

DISK 1/0 ERROR File System

A read/write error was encountered in accessing disk. Returns immediately to
PRIMOS level. Not correctable by applications programmer. (ATTCH$$, CREA$S,
GPAS$$, PRWF$$, RDENS$$, SATR$$, SRCHSS, SGDRS$$). [E$DISK]

FDR 3057 A-10 1 January, 1979

ERROR MESSAGES A

DISK WRITE-PROTECTED File System
An attempt has been made to write to a disk which is WRITE-protected. [ESWTPR]

DK ERROR 0ld file call
A read/write error was encountered in accessing disk. [WB]

****DL R-mode function

Argument was not greater than zero in DLOG or DLOG2 function.

#*** DL,OG/DLOG2 - ARGUMENT< =0 V-mode function
Argument not greater than zero was used in DLOG or DLOG2 function.

****DN n ' R-mode function
Device error (end of file) on FORTRAN logical unit n.

#*** DGIN/DCOS - ARGUMENT RANGE ERROR V-mode function
Argument outside legal range for DSIN or DCOS function.

#% DGQRT - ARGUMENT <0 V-mode function
Negative argument in DSQRT function.

**%% DT R-mode function
Second argument is zero in DATAN2 function. (D$22)

DUPLICATE NAME Old file call
Attempt to create/rename a file with the name of an existing file. [CZ]

**¥¥DZ R-mode function

Attempt to divide by zero (double-precision).

END OF FILE File System
Attempt to access location after the end of the file. (PRWF$$, RDEN$$, SGDR$$)
[E$EOF]

**rrEQ R-mode function
Exponent overflow. (A$81)

*rerEX R-mode function
Exponent function value too large in EXP or DEXP function.

#*++ EXP - ARGUMENT TOO LARGE V-mode function

The argument of the EXP function is too large, i.e., it will give a result outside the
legal range.

**%% EXP - OVERFLOW V-mode function

Overflow occurred in calculating the EXP function.

FAM ABORT File System
System error. [ESFABT]

1 January, 1979 A-11 FDR 3057

A ERROR MESSAGES

FAM - BAD STARTUP File System
System error. [E§FBST]|

FAM OP NOT COMPLETE File System
Network error. [E$FONC]

****FE R-mode function

Error in FORMAT statement. FORMAT statements are not completely checked at
compile time. (F$IO)

FILE IN USE File System

Attempt made to open a file already opened or to close/delete a file opened by
another user, etc. (SRCH$$) [E$FDEL|

FILE OPEN ON DELETE File System
Attempt made to delete a file which is open. (SRCH$$) [E$FDEL|

FILE TOO BIG File System
Attempt made to increase size of segment directory beyond size limit. (SGDR$$)
[E$FITB|

****FN n R-mode function
Device error in BACKSPACE command on FORTRAN logical unit n.

**** F$BN - BAD LOGICAL UNIT V-mode function
FORTRAN logical unit number out of range.

**** F$FLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode
Attempt has been made to divide by zero.

**** F$FLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponent of a double-precision number has exceeded maximum.

**** F$FLEX - REAL => INTEGER CONVERSION ERROR 64V mode
Magnitude of real number too great for integer conversion.

**** F$FLEX - SINGLE-PRECISION DIVIDE BY ZERO ‘ 64V mode
Attempt has been made to divide by zero.

**** F$FLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponent of a single-precision number has exceeded maximum.,

**** F$10 - FORMAT ERROR V-mode function

Incorrect FORMAT statement. FORMAT statements are not completely checked at
compile time.

**** F$10 - FORMAT/DATA MISMATCH V-mode function
Input data does not correspond to FORMAT statement,
**** F$10 - NULL READ UNIT V-mode function

FORTRAN logical unit for READ statement not configured properly.

1 January, 1979 A-12 FDR 3057

ERROR MESSAGES A

il | R-mode function
Exponentiation exceeds integer size. (E$11)

ILLEGAL INSTRUCTION AT octal-location R mode and 64V mode
An instruction at octal-location cannot be identified by the computer.

ILLEGAL NAME File System
Illegal name specified for a file or UFD. (CREA$$, SRCH$$) [E$BNAM]

ILL REMOTE REF File System
Attempt to perform network operations by user not on network. [E$IREM]

ILLEGAL SEGNO ' 64V mode

Program references a non-existent segment or a segment number greater than those
available to the user.

ILLEGAL TREENAME File System
The string specified for a treename is syntactically incorrect. [ESITRE]
***IM R-mode function

Overflow or underflow occurred during a multiply. (M$11, E$11)
filename IN USE Old file call

Attempt made to open a file already opened, or to close/delete a file opened by
another user, etc. [SI]

INVALID FAM FUNCTION CODE File System
System error. [ESFIFC]
#xxx [**] _ ARGUMENT ERROR V-mode function

Exponentiation exceeds integer size.

*R**] G R-mode function

Argument not greater than zero in ALOG or ALOG10 function.

MAX REMOTE USERS EXCEEDED File System

No more users may access the network. [ESTMRU]

NAME TOO LONG File System
Length of name in argument list exceeds 32 characters. [E§NMLG]
NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log out to release
assigned segments and try again later.

NO PHANTOMS AVAILABLE File System

An attempt has been made to spawn a phantom. All configured phantoms are
already in use. [E§NPHA]

FDR 3057 A-13 1 January, 1979

A ERROR MESSAGES

NO RIGHT File System

User does not have access right to file, or does not have write access in UFD when
attempting to create a sub-UFD. (CREA$$, GPAS$$, SATR$$, SRCHSS, SGDR$$)
[E$NRIT]

NO ROOM File System

An attempt has been made to add to a table of assignable devices with a DISKS or
ASSIGN AMLC command and the table is already filled. [ESROOM|

NO TIME File System
Clock not started. System error. [E$NTIM]|
NO UFD ATTACHED Old file call

User not attached to a UFD [AL, SL]. Usually occurs after attempt to attach with a
bad password.

NO UFD ATTACHED File System

User not attached to a UFD. (ATCH$$, CREA$$, GPASS$S, SATR$$, SRCHS).
[E$NATT] Usually occurs after attempt to attach with a bad password.

NO VECTOR R and 64V mode
User error in program has caused PRIMOS to attempt to access an unloaded
element.

1. A UII, PSU, or FLEX to location 0
2. Trap to location 0
3. SVC switch on, SVC trap and location '65 is 0.

NOT A SEGDIR " File System

Attempt to perform segment director operations on a file which is not a segment
directory. (SRCH$$) [E$NTSD]

NOT A UFD Old file call
Attempt to perform UFD operations on a file which is not a UFD. [AR]
NOT A UFD . File System

Attempt to perform UFD operations on a file which is not a UFD. (ATCHS$$, GPASS$S,
SRCH$$). [ESNTUD)]

device-name NOT ASSIGNED PRIMOS

User program has attempted to access an I/0 device which has not been assigned to
the user by a PRIMOS command.

filename NOT FOUND Old file call
File specified in subroutine call not found. [AH, SH]

filename NOT FOUND File System
File specified in subroutine call not found. (ATCH$$, GPASSS, SATR$$, SRCHS)
[E$FNTF]

FDR 3057 A-14 1 January, 1979

ERROR MESSAGES A

filename NOT FOUND IN SEGDIR File System

Filename specified in subroutine call not found in specified segment directory.
(SRCH$$, SGDR$$) [ESFNTS]

NULL READ UNIT ' PRIMOS

Program has attempted to read with a bad unit number. This may be caused by a
program overwriting itself (array out of bounds).

OLD PARTITION File System

Attempt to perform, in an old file partition, an operation possible only in a new file
partition; e.g., date/time information access. (SATR$$) [E$OLDP]

**¥*PA n R-mode function
PAUSE statement n (octal) encountered during program execution

**#%* PAUSE n V-mode function
PAUSE statement n (octal) encountered during program execution.

POINTER FAULT 64V mode

Reference has been made to an argument or instruction not in memory. The two
usual causes of this are an incomplete load (unsatisfied references), or incomplete
argument list in a subroutine or function call.

POINTER MISMATCH PRIMOS

Internal file pointers have become corrupted. No user remedial action possible.
System Administrator must correct. [PC, DG, AC]

PROGRAM HALT AT octal-location R mode and 64V mode

Program control has been lost. The program has probably written over itself or the
load was incomplete (R-mode).

PRWFIL BOF 0ld file call
Attempt by PRWFIL subroutine to access location before beginning of file. [PG]|

PRWFIL EOF Old file call
Attempt by PRWFIL subroutine to access location after end of file. [PE]

PRWFIL POINTER MISMATCH 0ld file call
The internal file pointers in the PRWFIL subroutine have become corrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a PRIMOS file
unit number on which no file is open.

PTR MISMATCH File System

Internal file pointers have become corrupted. No user remedial action possible.
(ATCH$$, CREAS$$, GPASSS, PRWF$$, RDENS$$, SATRS$$, SRCHSS, SGDRS$$).
[E$PTRM]. Consult system manager.

REMOTE LINE DOWN File System

Remote call-in access to computer not enabled. [ESRLDN]

1 January, 1979 A-15 FDR 3057

A ERROR MESSAGES

*REER] R-mode function

Argument is too large for real-to-integer conversion. (C$12)

****RN n R-mode function

Device error or end-of-file in READ statement on FORTRAN logical unit n.

****SE R-mode function
Single precision exponent overflow.

SEG-DIR ER Old file call
Error encountered in segment directory operation. [SQ]

SEGDIR UNIT NOT OPEN File System

Attempt has been made to reference a segment directory which is not open.
(SRCHS$$) [E$SUNO]

SEM OVERFLOW File System
System error. [E$SEMO]

**** SIN/COS - ARGUMENT TOO LARGE V-mode function
Argument too large for SIN or COS function.

****¥5Q R-mode function
Negative argument in SQRT or DSQRT function.

**** SQRT - ARGUMENT <0 V-mode function

Negative argument in SQRT function.

**¥%QT 1 R-mode function

STOP statement n (octal) encountered during program execution.

**%% STOP n V-mode function
STOP statement n (octal) encountered during program execution.
*rkRG7 R-mode function

Attempt to divide by zero (single-precision).

TOO MANY UFD LEVELS File System

Attempt to create more than 72 levels of sub-UFDs. This error occurs only on old file
partitions; new file partitions have no limit on UFD levels. [ESTMUL]

UFD FULL Old file call
No more room in UFD. [SK]
UFD FULL File System

UFD has no room for more files and/or sub-UFD’s. Occurs only in old file partitions.
(CREAS$$, SRCHS) [E$FDFL]

FDR 3057 A-16 1 January, 1979

ERROR MESSAGES A

UFD OVERFLOW Old file call

No more room in UFD.

UNIT IN USE Old file call
Attempt to open file on PRIMOS file unit already in use. [SI].

UNIT IN USE File System
Attempt to open file on PRIMOS file unit already in use. (SRCHS$$). [E$UIUS]

UNIT NOT OPEN Old file call

Attempt to perform operations with a file unit number on which no file has been
opened. [PD, SD]

UNIT NOT OPEN File System

Attempt to perform operations with a file unit number on which no file has been
opened. (PRWF$$, RDENS$$, SRCH$$, SGDRS$S). [ESUNOP]

UNIT OPEN ON DELETE Old file call
Attempt to delete file without having first closed it. [SD]

#*%*WN n R-mode function

Device error or end-of-file in WRITE statement on FORTRAN logical unit n.

0 ¢ R-mode function

Integer argument >32767.

1 January, 1979 A-17 FDR 3057

System defaults
and constants

TERMINAL
full duplex
X-ON/X-OFF disabled

EDITOR (ED)
INPUT (TTY)
LINESZ 144
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPROMPT
MODE PRALL
VERIFY

SYMBOLS

BLANKS
COUNTER
CPROMPT
DPROMPT
ERASE
ESCAPE -

KILL ?

SEMICO : end of line or command
TAB \

WILD !

o 2 @™

VIRTUAL LOADER (LOAD)

Memory Location: 122770 - "144000
Loading address: current *PBRK value
Library: FTNLIB FORTRAN library
MODE: D32R
Sector Zero Base Area:

Base start at location '200

Base range '600 words
COMMON: Top ='077777

1 January, 1979 B-1 FDR 3057

B SYSTEM DEFAULTS AND CONSTANTS

SEGMENTED-LOADER (SEG)

Loading address: current TOP+1 in current procedure segment

Stack size: '6000 words
Library: PFTNLB and IFTNLB libraries

EXECUTION
A-register value 0
B-register value 0
X-register value 0

Program start address '1000
Bits 4-6 of Keys:
000 16K, sector-address
001 32K, sector-address
010 64K, relative-address
011 32K, relative-address
110 64K, segmented-address

PRIMOS
ERASE "
INTERRUPT CONTROL-P or BREAK
KILL ?

Files: created with protection, owner all access rights (7), non-owner no

access rights (0).

FORTRAN COMPILER (FTN)

BINARY disk-file
ERRTTY

FP

INPUT disk-file
INTS

LISTING NO no listing file
NOBIG

NODCLVAR

NOTRACE

NOXREF

SAVE

32R

FDR 3057 B-2

1 January, 1979

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with devices. The
following points are particularly important to Prime usage.

e Output Parity is normally transmitted as a zero (space) unless the device requires
otherwise, in which case software will compute transmitted parity. Some con-
trollers (e.g., MLC) may have hardware to assist in parity generations.

o Input Parity is ignored by hardware and by standard software. Input drivers are
responsible for making the parity bit suit the host software requirements. Some
controllers (e.g., MLC) may assist in parity error detection.

e The Prime internal standard for the parity bit is one, i.e., '200 is added to the octal
value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical escape character " and
the octal value. The character is interpreted by output devices according to their hardware.

Example: Typing "207 will enter one character into the text.

CTRL-P ('220) is interpreted as a .BREAK.

.CR. ('215) is interpreted as a newline (.NL.)

" ('242) is interpreted as a character erase

? ('277) is interpreted as line kill

\ ('334) is interpreted as a logical tab (Editor)

1 January, 1979 C-1 FDR 3057

C ASCII CHARACTER SET

‘text {commumcanons}
of transmission fcommumcatxo
of LD, (commumcatwn&]‘ .
\cknowledge aff:rmanve (com 1
: : hle alarm (bell}
space on posmon {carrxag:
yylcal horizontal tab -

d; ignored as termmal mpat 4
ical vertical tab (carraage control
feed (carriage control)

arriage return (carriage contm } (;
RS-red ribbon shift
black ribbon shift:
P—teiatlve ‘copy (2}
V fre}atxve honzontal tab {3}5
half line feed forw

~ ASCII CHARACTER SET C

Prime memor ats

of FORTRAN data types

INTRODUCTION

Prime machines use a 16-bit memory word which is addressable by word. Prime’s
FORTRAN data types depart slightly from the ANSI standard which states that LOGICAL,
INTEGER, and REAL items occupy one storage unit each. If a storage unit is 32 bits (4 bytes
=2 words), then the requirements of ANSI are met except for the LOGICAL type which is
only 16 bits. Below is a representation of the sizes of data entities, for the purposes of
EQUIVALENCE statements, used by Prime. Detailed descriptions of each type are pres-
ented separately.

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

DATA TYPES
LOGICAL 16 bits. Bits 1-15=0, Bit 16=0=.FALSE., 1= TRUE.

These values are equivalent to INTEGER*2 values of 0 and 1 respectively. Any other values
are illegal for LOGICAL variables.

INTEGER*2 16 bits. Bit 1=sign bit. INTEGER numbers are in 2's complement representation
with a value range of -32768 to 32767. These numbers in octal are '100000 and '077777
respectively. Note that -0=0, and -(-32768)=-32768.

Integer arithmetic is always exact. Integer division truncates, rather than rounds.

INTEGER*4 32 bits. Bit 1=sign bit. Integer numbers are in 2's complement representation
with a value range of 2147483648 to 2147483647. These numbers, in octal (word 1, word 2) are
("100000, "000000) and ('077777, '177777) respectively. Note that -0=0 and -(-2147483648)—
-2147483648. "

Integer arithmetic is always exact. Integer division truncates, rather than rounds.

CAUTION

Explicit use of DBLE (FLOAT(I*4)) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, how-
ever, will not lose precision.

REAL*4 32 bits. Bit 1=sign bit. Bits 2-24=mantissa. Bits 25-32=exponent. The mantissa and
sign are treated as a 2's complement number and the exponent is an unsigned, excess 128,
binary exponent. In general, any floating point number is represented as:

N=M * 2**(E_128)
where
—1<M<—1/2_0r 1/2<M<1
0<E<255
Zero is represented as M=0, E=0.
The value range, in octal (word1, word2) is:

(100000, '000377) [See Note| to (1077777, '177777)
corresponding to -1*2**(127) and (1-e)*2**(127).

The values closest to zero, in octal are:

('187777, '177400) and ('040000, '000000) [See Note]|
corresponding to (-1/2+e)*2**-128 and 1/2*2**-128

Normalization ensures that bits 1 and 2 are different and is achieved by shifting left 1 bit at
a time. Hence, the effective precision is between 22 and 23 bits.

Note

These numbers will cause exponent overflow if negated due
to the asymmetry of 2's complement notation.

DOUBLE PRECISION 64 bits. Bit 1 = sign bit. Bits 2-48 = mantissa. Bits 49-64 — exponent.
The mantissa and sign are treated asa 2’s complement number and the exponent is a signed,

FDR 3057 D-2 1 January, 1979

PRIME MEMORY FORMATS OF FORTRAN DATA TYPES D

excess 128, binary exponent. In general, any double precision floating point number is
represented as:

N=M* 2 (E-128)

where
—1<M< — 1/2 or 1/2M<1
— 32768<E<32767.

Zero is represented as M =0, E=0.

The value range, in octal (word1, word2, word3, word4) is:
(100000, '000000, '000000, '077777) [See Note] to
(077777, °177777, '177777, '077777)

corresponding to -1*2**32639 and (1-e)*2**32639

The values closest to zero, in octal, are:

(137777, 177777, '177777, '100000) and
('040000, '000000, ‘000000, '100000) [See Note]

corresponding to (-1/2+e)*2**-32896 and 1/2*2**-32896

Normalization ensures that bits 1 and 2 are different and is achieved by shifting left 1 bit at
a time. Hence, the effective precision is between 46 and 47 bits.

Note

These numbers will cause exponent overflows if negated due
to the asymmetry of 2's complement notation.

COMPLEX 64 bits. A complex number is defined as two REAL*4 entities (see above)
representing the real and imaginary parts.

CHARACTERS Prime uses ASCII as its standard internal and external character code. It is
the 8-bit, marking variety (parity bit always on). Thus, Prime’s code set is effectively a 128-
character code set. (ASCII spacing representation, parity bit always off, can be entered into
the system, but most system software will fail to recognize the characters as their terminal
printing equivalent.)

Characters packed into numeric items will always be negative numbers if accessed
numerically. Also, if the data item is not completely filled (e.g., A2 format into a REAL*4
item), the item will be right padded with blanks (ASCII "240).

The positions of the exponents for REAL and DOUBLE PRECISION items precludes sorting
character data as REAL items, but is quite legitimate in integer items. However, EQUAL
comparisons in REAL items are valid.

1 January, 1979 D-3 FDR 3057

Index X

A

A input format 15-22
A output format 15-21
Aregister 17-6
A register defaults 17-6
ASKEYS file 19-9
Abbreviations, command 2-1
Access, file 19-14
Access, file, controlling 3-8
Accessing PRIMOS 3-1
Accessing the system 3-2
ADD1$, MIDAS subroutine 12-5
Addition, matrix, subroutine 19-2
Address constants 14-6
Address, callby 15-4
Addressing mode 6-7
Adjoint, matrix, subroutine 19-2
Advanced features, SEG LOAD
subprocessor 11-1
Advanced SEG features 7-7
Advantages of MIDAS 12-1
Advantages of shared
procedures 11-7
Altering stack size 11-6
AND truth table 14-7
Angle brackets, convention 2-4
ANSI standard data storage D-1
APPLIB 19-9
Application library
subroutines 16-3
Applications library 19-9
Applications library subroutines,
list 19-10
Area TRACE statement 15-8
Areas, base 6-4
Areas, base (SEG) 7-6,7-8
Arguments, function 16-2
Arguments, subroutine 16-3
Arithmetic
IF statement 15-12
mixed mode 15-9
operators 14-7
vs. logical IF 13-6
Arrays 14-5
in over 64K word
COMMON 11-12
dummy argument, over 64K
word COMMON 11-12
segment-spanning 5-10
ASCII card decks, reading 4-2
character set C-1
character strings 14-4
characters, non-printing C-2
characters, printing C-3
data storage format D-3
keyboard input C-1
magnetic tape, reading
from 4-3
parity C-1
Prime usage C-1
Assembly language, interface
to 12-8
ASSIGN (PRIMOS command) 4-1
ASSIGN option -WAIT 4-1
ASSIGN statement 15-10
Assigned GO TO statement 15-11
Assigned segments, releasing 7-7
Assigning a device 4-1
Assigning directory
passwords 3-3
Assignment statements 15-9

1 January, 1979

statements, data mode rules,
table 15-11
device, queuing 4-1
parameter, implicit 11-3
segment 7-4
segment, relative 11-1
segment, specific 11-3
ATCHS$$ subroutine 19-16
ATTACH (PRIMOS
command] 3-2
Attaching to remote
directories 10-18
ATTDEV subroutine 15-14
Attn key 2-5
Audience 1-1
Automatic logout 3-9

B

B format, details 15-21
B output format 15-21
B register 17-6
B register defaults 17-6
Backslash, usage 2-5
BACKSPACE statement 15-25
Base area error messages 6-7
Base areas 6-4
(SEG) 7-6,7-8
conservation 5-10
BCD card decks, reading 4-2
magnetic tape, reading
from 4-3
BIG (compiler option) 5-10, 17-1
BILD$R, MIDAS subroutine 12-2
BINARY (compiler option) 5-3,
17-1
(PRIMOS command] 17-10
Binary file, compiler (unit3) 5-3,
17-9
file, definition 2-1
files, concatenating 17-10
magnetic tape, reading
from 4-3
READ statement 15-16
search subroutine 19-9
WRITE statement 15-18
Bit-device correspondence,
compiler 17-9
Bit-mnemonic correspondence, A
register 17-7
Bit-mnemonic correspondence, B
register 17-7
Blank COMMON 15-6
Blank COMMON, relocating 11-5
BLOCK DATA statement 15-3
Block data subprogram 15-3
BLOCKDATA statement 15-3
BNSRCH subroutine 19-9
Braces, convention 2-4
Brackets, convention 2-4
Break key 2-5
BUBBLE subroutine 19-8
Building MIDAS data
subfile 12-2
Byte, definition 2-1

C

Call by address 15-4

Call by name 15-4

CALL EXIT 1-4

CALL statement 15-7, 15-25
CANCEL (SPOOL option) 3-7

Cancelling spool request 3-7
Card decks, ASCI], reading 4-2
BCD, reading 4-2
EBCDIC, reading 4-2
Cards, punched, reading 4-2
Caret, usage 2-5
Central processor unit,
definition 2-1
Chain, directory 2-7
Chaining command files 10-3
Change I/0 unit physical device
correspondence 15-13
Changing
directory names 3-5
editor modes 4-4
file names 3-5
file names during
copying 10-19
record size 15-3
working directory 3-2
CHARACTER data storage
format D-3
Character set, ASCII C-1
legal 14-1
Character string input, list
directed 15-17
Characters, special terminal 2-5
Circular reasoning see proof by
assumption
CLINEQ subroutine 19-1
CLOSE (PRIMOS
command) 17-10
CLOSE ALL 17-10
Closing command input files 10-4
Closing command output
files 10-6
Closing deck image files 4-2
Closing files 17-10
CM error 6-1
CMADD subroutine 19-2
CMAD] subroutine 19-2
CMCOF subroutine 19-3
CMCON subroutine 19-3
CMDET subroutine 19-4
CMDNCO0 8-4
CMDSEG 8-5
CMIDN subroutine 19-4
CMINV subroutine 19-4
CMMLT subroutine 19-5
CMPF (PRIMOS command)
CMSCL subroutine 19-5
CMSUB subroutine 19-6
CMTRN subroutine 19-6
CNAMS$$ subroutine 19-16
CNAME (PRIMOS command) 3-5
CO see COMINPUT
COBOL, interface to 12-8
Code, lines of, modifying 4-5
moving linesof 4-5
relative address 5-9
segmented address 5-9
Codes, concordance 5-10
Codes, error 19-15
Coding statements 15-18
Coding strategy 9-1
Cofactor, matrix, subroutine 19-3
Collating sequence 19-7
Column 6 for continuation 14-2
Columns 73-80 14-2
COMB subroutine 19-1
Combination subroutine 19-1

10-27

FDR 3057

X Index

COMINPUT (PRIMOS
command) 10-2
options 10-2

Command
abbreviations 2-1
external, definition 2-1
file operations 10-1
file requirements 10-2
files, chaining 10-3
files, CX 10-12
files, errorsin 10-4
format conventions 2-4
input files, closing 10-4
internal, definition 2-2
output files, closing 10-6
sequences from files . 10-1
summary, editor 4-7
summary, FUTIL 10-25
summary, LOAD 6-9
summary, SEG 7-8
summary, SEG LOAD

subprocessor 7-10
summary, SEG MODIFY
subprocessor 7-13
UFD, installation of program
in 8-4
UFD, installing R-mode
programsin 8-4
UFD, installing V-mode
programsin 8-5

Commands, FUTIL 10-18

Comment lines 14-2
in SEG 7-1
loader 6-1
in command files 10-2
overlaying 4-5
use of 9-1

COMMON
blank, relocating 11-5
block FSIOBF 15-14
block LIST 15-6
blocks 15-6
blocks (load map) 6-6, 7-6
blocks over 64K words 11-12
blocks, reserving space

for 11-2
locating 6-7
locating (SEG) 7-8
locating into specified
segments 11-1
location, deferring 6-7
statement 15-6
uninitialized, relocating 11-5

Common SEG command
parameters 7-8

Common sort parameters 19-7

COMO see COMOUTPUT

COMO, use with TRACE 15-9

COMOUTPUT (PRIMOS
command] 10-5
file options 10-5
terminal options 10-5

Companion, Programmer's 3-1

Comparing files 10-27

Compilation
end of, message 5-2
statements 15-8
V-mode vs. R-mode 13-4

Compile error message 5-2

Compiler
binary file (unit3) 5-3,17-9

FDR 3057

devices, default 17-9

-DCLVAR usage 9-2

-DYNM option, use of 13-7

error messages A-1

error messages, print at
terminal 5-5

error messages, suppress
printing 5-5

file specifications, table 17-2

file unit usage 17-9

FORTRAN, defaults B-2

functions 5-3

global trace 9-2

input file 5-3

input/output
specifications 5-3

invoking 5-1

listing file (unit2) 5-4,17-9

listing, default 5-6

listing, enable 5-5

listing, expanded 5-6

listing, full 5-6

object file (unit3) 5-3,17-9

operations 5-11

optimizing 5-12

optimization 5-12

option -32R 5-9
option -64R 5-9
option -64V 5-9

option -BIG 5-10
option -BINARY 5-3
option -DCLVAR 5-11
option -DEBASE 5-10
option -DYNM 5-10
option -ERRLIST 5-6
option -ERRTTY 5-5
option -EXPLIST 5-6
option -FP 5-11
option -INPUT 5-3
option -INTL 5-11
option -INTS 5-11
option -LIST 5-6
option -LISTING 5-4
option -NOBIG 5-10
option -NODCLVAR 5-11
option -NOERRTTY 5-5
option -NOFP. 5-11
option -NOTRACE 5-9
option -NOXREF 5-8
option -OPT 5-12
option -PBECB 5-11
option -SAVE 5-10
option -SOURCE 5-3
option-TRACE 5-9
option -UNCOPT 5-12
option -XREFL 5-8
option -XREFS 5-8
parameter combinations,
prohibited 5-11
parameter mnemonics,
table 5-4
parameters 5-3
reference 17-1
source file {unit1) 5-3,17-9
syntax 5-1
syntax checking 9-2
description 1-7
Compiling 5-1
for shared procedures 11-8
from peripheral devices 5-3
to peripheral devices 5-3

Complete cross reference 5-8
Completing a work session 3-8
COMPLEX data storage
format D-3
COMPLEX mode 15-5
Complex numbers 14-4
Composition, program 14-8
Computed GO TO
statement 15-11
Concatenating binary files 17-10
Concatenating listing files 17-10
Concepts, glossary 2-1
Concordance address, over 64K
word COMMON 11-12
Concordance codes 5-10
Concordance see also cross
reference
Concordances, compiler,
enable 5-5
CONIOC 15-14
Conserve loader base areas’ 5-10
Constants 14-3
address 14-6
range 14-3
system B-1
Contents
directory, listing with
FUTIL 10-25
file, examining 3-6
of directories 3-4
Continuation lines 14-2
CONTINUE statement 15-10
Control flow,
conversion 1-4
flow, program, monitoring 9-2
key 2-5
lines 14-2
load placement 11-2
statements 15-10
CONTROL-P, usage 2-6
CONTROL-Q, usage 2-6
CONTROL-S, usage 2-6
Controlling file access 3-8
Conventions,
command format 2-4
filename 2-2
glossary 2-1
Conversion, control flow 1-4
functions 1-4
input/output 1-4
program 1-4
source language 1-4
subroutines 1-4
Copies, file, obtaining 3-6
Copying
directories 10-19
directories trees 10-19
files 10-18
files and changing
names 10-19
tapes with MAGNET 10-15
tapes with
MA-
GRST/MAGSAV 10-15
UFDs 10-19
with FUTIL 10-19
CPU, definition 2-1
CR (in B format) 15-23
CREATE (PRIMOS
command) 3-3
Creating MIDAS template 12-2

1 January, 1979

Index X

new directories 3-3
new programs 4-4
R-mode runfiles 11-10
CREATK (MIDAS utility) 12-2
dialogue 12-5
CRMPC (PRIMOS command) 4-2
Cross reference codes 5-9
see also concordance
compiler, enable 5-5
complete 5-8
example 5-8
explanation 5-8
full 5-8
partial 5-8
short 5-8
suppression 5-8
Current directory, definition 2-1
Current disk 2-10
CX (PRIMOS command) 10-11
command files 10-12
options 10-11
queue information 10-12
queue, dropping jobs
from 10-13
see also'sequential job
processor

D

D input format 15-22
D output format 15-20
D/ prefix 11-13
DAM files 19-14
see also direct access method
Data definition
mode convention, FORTRAN,
overriding 15-4
mode of function 15-3
mode rules for assignment
statements, table 15-11
mode typing, parameter 15-6
modes 15-5
segment 11-2
statement 15-8
DATA statement 15-8
Data storage format,
ASCII D-3
CHARACTER D-3
COMPLEX D-3
DOUBLE PRECISION D-2
INTEGER*2 D-2
INTEGER*4 D-2
LOGICAL D-2
REAL*4 D-2
Data storage, ANSI standard D-1
Data subfile, MIDAS,
building 12-2
Data types 15-5
FORTRAN, memory
formats D-1
Database Management System see
also DBMS
description 1-8
interface to 12-6
DATE (PRIMOS command] 10-6
Date/time stamping of output
files 10-6
DBMS see also Database
Management System
DBMS, description 1-8
DCLVAR (compiler option] 5-11,
17-1

1 January, 1979

DEBASE (compiler option) 5-10,
17-1
Debugging 9-1
DECODE, formatted,
statement 15-18
list directed, statement 15-18
Decreasing number of
segments 11-9
Default
characters, editor 4-10
compiler devices 17-9
compiler listing 5-6
object code 5-9
protection keys 3-8
record size 15-13
Defaults,
Aregister 17-6
Bregister 17-6
ED B-1
editor B-1
execution B-2
FORTRAN compiler B-2
FTN B-2
LOAD B-1
loader B-1
PRIMOS B-2
SEG loader B-2
segmented loader B-2
system B-1
terminal B-1
DEFER (SPOOL option) 3-7
Deferring COMMON
location 6-7
Deferring spool printing 3-7
Definitions 2-1
DELETS$, MIDAS subroutine 12-5
DELETE (PRIMOS
command] 3-8
Deleting
directories 3-3, 10-24
directory trees 10-24
files 3-8, 10-18
MIDAS files 12-6
programs 4-11
UFDs 10-24
with FUTIL 10-24
Delimiters, format 15-19
Delimiters, list directed 15-16
DELSEG (PRIMOS
command) 7-7
Descriptor repetition 15-19
Details, loading 6-6
Determinant subroutine 19-4
Determining file size 3-6
Development, program 1-3
Device assignment, queuing 4-1
Device control statements 15-25
Device see also disk
Device, assigning 4-1
Device-bit correspondence,
compiler 17-9
Devices, compiler, default 17-9
Devices, unassigning 4-1
Dialogue, CREATK 12-5
Dialogue, KBUILD 12-4
DIMENSION statement 15-6
Dimensioning, not allowed in
SAVE statement 15-7
Diminishing increment sort
subroutine 19-8
Direct access 15-12

and ATTDEV
subroutine 15-13
and the Editor 15-13
IBM compatibility 15-13
READ statements 15-15
WRITE statements 15-17
use of 15-13
Direct entry links 7-6
Directories,
creating 3-3
deleting 3-3
remote, attaching to 10-18
Directory
chain 2-7
contents 3-4
contents, listing with
FUTIL 10-25
current, definition 2-1
definition 2-1
examining contents 3-4
file, master, definition 2-3
home vs. current 2-7
home, definition 2-2
name, definition 2-1
names, changing 3-5
operations 3-2
passwords, assigning 3-3
segment, definition 2-4
structures 2-6
user file, definition 2-4
working, changing 3-2
Disk
see also device
current 2-10
logical, definition 2-3
physical, definition 2-3
DLINEQ subroutine 19-1
DMADD subroutine 19-2
DMAD] subroutine 19-2
DMCOF subroutine 19-3
DMCON subroutine 19-3
DMDET subroutine 19-4
DMIDN subroutine 19-4
DMINV subroutine 19-4
DMMLT subroutine 19-5
DMSCL subroutine 19-5
DMSUB subroutine 19-6
DMTRN subroutine 19-6
DO loop
index 15-10
optimization 5-12, 13-1
one-trip 15-10
DO loops, implied 15-18
nesting 15-10
DO statement 15-10
Documents, related 1-2
DOUBLE PRECISION data storage
format D-2
DOUBLE PRECISION mode 15-5
Double precision numbers 14-4
DOUBLE PRECISION see also
REAL*8
Double-quote, usage 2-5
Dropping jobs from CX
queue 10-13
Dummy argument arrays, over 64K
word COMMON 11-12
Duplicating magnetic tapes 10-15
runfiles 11-6
Dynamic allocation of local
storage 5-10

FDR 3057

X Index

DYNM (compiler option) 5-10,
17-1
option, compiler, use of 13-7

E

E input format 15-22
E output format 15-20
EBCDIC card decks, reading 4-2
EBCDIC magnetic tape, reading
from 4-3
ECBs, load into proceduré
frame 5-11
ED (PRIMOS command) 4-4
defaults B-1
Edit mode, editor 4-4
Editing session, sample 4-5
Editor
command summary 4-7
defaults 4-10,B-1
description 1-8
edit mode 4-4
input mode 4-4
modes, changing 4-4
special characters 4-5
symbol names 4-10
techniques 4-5

usageof " 4-5

usage of ; 4-5

usage of ? 4-5

usage of / 4-5

text 4-4

use of on direct access
files 15-13

Ellipsis, convention 2-4
Enable compiler
concordances 5-5
Enable compiler cross
references 5-5
Enable compiler listings 5-5
Enable flagging of undeclared
variables 5-11
Enable global trace 5-9
ENCODE statement 15-19
End of compilation message 5-2
END statement 15-11
END= 15-14
ENDFILE statement 15-25
Ending main program 1-4
Entering programs from other
media 4-1
Entering source programs 4-1
Entry control block 7-6
Environment, interactive,
description 1-5
Environment,
phantom user, description 1-5
program, list 1-5
sequential job processing,
description 1-5
Equations, linear,
subroutine 19-1
EQUIVALENCE statement 15-7
ER! prompt 2-6
ERR= 15-14
ERRD.F 19-15
ERRLIST (compiler option) 5-6,
17-2
Error codes 19-15
Error handling,
file 18-15
loader 6-1

FDR 3057

loader, table 6-9
SEG 7-1
Error message, compiler 5-2
Error messages A-1
base areas 6-7
compiler A-1
compiler, print at terminal 5-5
compiler, printonly 5-6
file system A-8
FORTRAN library A-8
loader A-5
run-time 8-2, A-8
SEG loader A-6
Errors in command files 10-4
Errors, file system 8-3
FORTRAN function, R-
mode 8-2
FORTRAN function, V-
mode 8-3
ERRTTY (compiler option) 5-5,
17-2
Examining file contents 3-6
Examples, conventions 2-5
Executing programs 8-1
Execution
defaults B-2
from SEG's loader 7-2
of R-mode memory images 8-1
of R-mode programs 8-1
of segmented runfiles 8-2
of V-mode programs 8-2
program, from the loader 6-2
Exit, normal 15-10
Expanded compiler listing 5-6
EXPLIST (compiler option) 5-6,
17-2
Extended intrinsic functions 16-1
range, optimization 5-12
segmented program
techniques 11-1
Extension stack segments 11-6
Extensions 1-4
Extent 7-4
External command,
definition 2-1
External procedure
statements 15-7
EXTERNAL statement 15-7

F

Finput format 15-22

F output format 15-20

F$IOBF COMMON block 15-14
F/ modifer 11-4

FALSE 14-4
Field descriptor, format 15-19
File

access 19-14

access, controlling 3-8

action keys 19-15

binary, definition 2-1

command, operations 10-1

comparison 10-27

contents, examining 3-6

copies, obtaining 3-6

copying 10-18

definition 2-1

deleting 10-18

directory, master,
definition 2-3

directory, user, definition 2-4

error handling 19-15
hierarchy 2-6
listing 10-18
manipulation 10-27
names 19-14
names, changing 3-5
object, definition 2-3
operations 3-4
protection keys, definition 2-3
size, determining 3-6
specifications, compiler,
table 17-2
source, definition 2-4
structures 2-6
system error messges A-8
system errors 8-3
system summary 1-5
types, PRIMOS, table 2-8
unit usge, compiler 17-9
File-unit, definition 2-2
Filename conventions 2-2
Filename, definition 2-2
Files, '
DAM 19-14
deleting 3-8
incorporating into shared
segments 11-12
object (SEG) 7-8
printing 3-6
SAM 19-14
saving 4-5
sorting 10-28
text, merging 10-28
FILMEM (PRIMOS
command) 6-2
FIND$, MIDAS subroutine 12-5
Finding line numbers 4-5
Floating point skip operations,
generate 5-11
Floating point skip operations,
suppress 5-11
Forceloading 11-4
FORM (SPOOL option) 3-8
Format
delimiters 15-19
field descriptor 15-19
lines, rescanning 15-19
statement 15-19
command, conventions 2-4
line 14-1
use of parameters not
allowed 15-6
Formats
as variables 15-21
in input statements,
table 15-22
in output statements,
table 15-20
memory, FORTRAN data
types D-1
Formatted
DECODE statement 15-18
printer control 15-24
READ statement 15-15
WRITE statement 15-17
Forms Management System see
also FORMS
Forms management system,
interface to 12-6
FORMS see also Forms
Management System

1 January, 1979

Index X

description 1-8
Forms, special, printingon 3-7
FORTRAN)
compiler defaults B-2
data mode convention,
overriding 15-4
data types, memory
formats D-1
extensions, Prime 1-4
function errors, R-mode 8-2
function errors, V-mode 8-3
function library 18-1
function reference 18-1
functions 16-1
functions, list 18-2
language elements 14-1
language tutorial books 1-1
library error messages A-8
library functions 16-1
library, V-mode 18-1
math library 19-1
math subroutines 16-3
mathematical functions,
table 1-6
matrix library 19-1
Prime's, overview 1-1
statements 15-1
under PRIMOS 1-4
unit number, physical devices,
table 15-15
FP (compiler option) 5-11, 17-2
Frame,
link 7-6
procedure 7-6
stack 7-6
FTN
(PRIMOS command) 5-1
(SPOOL option) 4-10
defaults B-2
FORTRAN compiler 5-1
FTNLIB 18-1
FTNOPT (PRIMOS
command) 5-12
Full compiler listing 5-6
Full cross reference 5-8
FULL LIST statement 15-8
Function
arguments 16-2
calls 15-25
calls, optimization 13-4
mode 15-3
mode typing 16-1
reference, FORTRAN 18-1
rules 16-2
FUNCTION statement 15-3, 16-1
Function subprograms, user-
defined 16-1
Function, structure of 16-1
Functions,
compiler 5-3
conversion 1-4
extended intrinsic 16-1
FORTRAN 16-1
FORTRAN library 16-1
FORTRAN, list 18-2
statement 16-2
FUTIL
(PRIMOS command) 10-18
command summary 10-25
commands 10-18
commands, overview,
figure 10-20

1 January, 1979

prompt character > 10-18
invoking 10-18

G
G input format 15-22
G output format 15-20
Generalized subscripts 14-5
Generate floating point skip
operations 5-11
Global
mode specification 15-5
SAVE 15-7
trace, enable 5-9
trace, suppress 5-9
Global/IMPLICIT conflict 15-5
Glossary, concepts and
conventions 2-1
GO TO,
assigned, statement 15-11
computed, statement 15-11
unconditienal,
statement 15-11

H

H output format 15-20

HARDWARE (LOAD
subcommand) 6-8

Hardware requirements for
loading 6-8

Hardware table 6-10

Header statements for
subprograms 15-3

HEAP subroutine 19-8

Heapsort subroutine 19-8

Hierarchy of files 2-8

HIGH 7-4

Hollerith constants 14-4

Home directory, definition 2-2

Home spool queue 10-18

Home vs. current directory 2-7

Housekeeping, MIDAS file 12-6

Hyphen, convention 2-4

I

linput format 15-22

I output format 15-21

1/0 unit physical device
correspondence,
change 15-13

IBM compatibility, direct access
files 15-13

Identity, definition 2-2

matrix, subroutine 19-4
IF arithmetic, statement 15-12
logical vs. arithmetic 13-6
logical, statement 15-12

statements, optimization 13-5
IFTNLB 18-1
IMADD subroutine 19-2
IMAD] subroutine 19-2
IMCOF subroutine 19-3
IMCON subroutine 19-3
IMDET subroutine 19-4
IMIDN subroutine 19-4
IMMLT subroutine 19-5
Implementation, over 64K word

COMMON 11-14
Implemented statements,

list 15-1
Implicit parameter

assignment 11-3 ‘
IMPLICIT statement 15-4

X-5

IMPLICIT/global conflict 15-5
Implied DO loops 15-18
Important load commands 6-2
Important SEG subcommands 7-2
IMSCL subroutine 19-5
IMSUB subroutine 19-6
IMTRN subroutine 19-6
In-line comments, use of 9-2
Including R-mode interlude in SEG
runfile 11-10
Incorporating files into shared
segments 11-12
Indention, use of 9-2
Index, DO loop 15-10
Information, system, table 3-5
INITIALIZE (SEG’s loader) 11-5
Initializing a load 11-5
Initiating phantoms from a
phantom 10-8
INPUT (compiler option) 5-3,
17-3
Input file, compiler 5-3
Input
mode, editor 4-4
scale factors 15-24
specifications, compiler 5-4,
17-7
statements 15-12
statements, formats in,
table 15-22
Input/output optimization 13-5
for conversion 1-4
INSERT see $INSERT
INSERT subroutine 19-8
Insertion sort subroutine 19-8
Installation of programs in
command UFD 8-4
Installing R-mode programs in
command UFD 8-4
Installing V-mode programs in
command UFD 8-5
Integer division
optimization 13-6
INTEGER mode 15-5
Integer random number
generator 18-5°
INTEGER see also INTEGER*2,
INTEGER*4
Integer sign extension 18-1
Integer truncation 18-1
INTEGER*2
data storage format D-2
default 5-11
mode 15-5
see also INTEGER, INTEGER*4
INTEGER*4
data storage format D-2
default 5-11
mode 15-5
see also INTEGER, INTEGER*4
Integers 14-3
in subroutine calls 17-3
long 14-3
short 14-3
Interactive environment,
description 1-5
Interchange sort subroutine 19-8
Interface
to assembly language 12-8
to COBOL 12-8
to database management
system 12-6

FDR 3057

X Index

to FORMS management
system 12-6
to other languages 12-1
toPMA 12-8 i
to systems 12-1
Interfaces, languages,
description 1-8
Interlude program 8-5
R-mode, including in SEG
runfile 11-10
Internal command, definition 2-2
INTL (compiler option) 5-11,17-3
Intrinsic functions, extended 16-1
Intrptkey 2-5
INTS (compiler option)
Inversion, matrix,
subroutine 19-4
Item TRACE statement 15-8

5-11, 17-3

Job file number 10-11
ID 10-12
number, definition 3-2

K
KBUILD (MIDAS utility) 12-2
dialogue 12-4
Keyboard input, ASCII
characters C-1
Keys, file 19-15
Keys, file protection,
definition 2-3
Keys, protection, default 3-8
Keys, special terminal 2-5
KEYS.F 19-15
KIDDEL (MIDAS utility) - 12-6

L

L input format 15-22
L output format 15-21
Language
elements, FORTRAN 14-1
interfaces, description 1-8
source, conversion 1-4
LDEV, definition 2-3
Ldisk, definition 2-3
Legal character set 14-1.
Libraries reference 19-1
Libraries, description 1-7
LIBRARY (SEG's loader) 11-2
Library calls
applications 19-9
FORTRAN function 18-1
FORTRAN math 19-1
FORTRAN matrix 19-1
functions, FORTRAN - 16-1
optimization 13-6
operating system 19-14
search 19-7
sort 19-7
subroutines, applications,
list 19-10
subroutines, loading 6-3
subroutines, loading
(SEG) 7-3
Line
format 14-1
numbers 4-5 ,
numbers, finding 4-5
printer listing of
programs 4-10

FDR 3057

Linear equations subroutine 19-1
LINEQ subroutine 19-1
LINK FR. 7-6
Link frame 7-6
Link segment 11-2
LIST (COMMON block) 15-6
LIST (compiler option} 5-6,17-3
LIST (SPOOL option) 3-6
List directed
character string input 15-17
DECODE statement 15-18
delimiters 15-16
numerical input 15-16
READ statement 15-16
LIST statement 15-8
List, FORTRAN functions 18-2
LISTF (PRIMOS command) 3-4
LISTING (compiler option) 5-4,
17-4
LISTING {(PRIMOS
command) 17-10
Listing
directory contents with
FUTIL 10-25
file, compiler (unit 2)
file, spooling 5-5
files 10-18
files, concatenating 17-10
programs 4-10
programs at terminal 4-10
programs on line printer 4-10
spool queue 3-6
compiler, default 5-6
compiler, expanded 5-6
full, compiler 5-6
Listings, compiler, enable 5-5
LNUM (SPOOL option) 4-10
LOAD (PRIMOS command) 6-1
(SEG's loader) 11-2
command summary 6-9
commands, important 6-2
LOAD COMPLETE 6-2,7-2
Load ECBs into procedure
frames 5-11

5-4,17-9

Load map
(LOAD) 6-3
(LOAD]), example 6-5
(SEG) 7-3

(SEG), example 7-5
{SEG), types 7-4
types (LOAD) 6-10
types (SEG} 7-9
Load maps, type 6-4
Load modules, replacing 11-6
Load placement control 11-2
Load sequence 6-2
Load sequence, optimization 13-3
Load state 6-4
LOAD
subcommand
HARDWARE 6-8
subcommand MAP 6-3
subcommands, use of
pathnamesin 6-7
subprocessor command
summary, SEG 7-10
subprocessor, SEG, advanced
features 11-1
defaults B-1
error messages A-5
Load, initializing 11-5

Loader commands, SEG’s 11-2

Loader
defaults B-1
error handling 6-1
error handling, table 6-9
error messages A-5
functions 6-6
prompt § 6-1
conservation of base

areas 5-10

description 1-7
SEG 7-7
SEG, defaults B-2
SEG, error messages A-6
SEG, execution from 7-2
segmented, defaults B-
usage 6-1

Loading
details 6-6
for shared procedures 11-8
library subroutines 6-3
library subroutines (SEG) 7-3
main program 6-3
modes 6-11
R-mode programs 6-1
RUNIT into segment

4000 11-9

segmented programs 7-1
sequence (SEG) 7-2
templates 11-4
to specific segments 11-3
Ull library 6-8
V-mode programs 7-1
normal 6-2
normal (SEG) 7-2
order of 6-3
order of (SEG) 7-3
virtual 6-6

Loadmap, use of 7-3

Loads, partial 11-4

Local processor 10-17

Local storage, dynamic
allocation 5-10

Local storage, static
allocation 5-10

2

Locating
COMMON 6-7
(SEG) 7-8

into specified segments 11-1

see also relocating COMMON
Location, stack, RUNIT 11-9
LOCKS$, MIDAS subroutine 12-5
Login 3-2
Log out 3-8
Logging in 3-2
Logging out 3-8
Logical

constants 14-4

disk definition 2-3

functions, mixed integers

in 18-2

IF statement 15-12

mode 15-5

operators 14-6

shift operator 18-7

vs. Arithmetic IF 13-6
LOGICAL, data storage

format D-2

LOGIN (PRIMOS command) 3-2
Login, remote 10-17
LOGOUT (PRIMOS command) 3-8

1 January, 1979

Index X

Logout, automatic 3-9

Logout, phantom 10-8

Long and short integers,
mixing 18-1

Long integers 14-3

LOW 7-4

Lower case convention 2-4

M

MADD subroutine 19-2
MADYJ subroutine 19-2
MAGNET (PRIMOS
command) 4-3
MAGNET, copying tapes
with 10-15
Magnetic tape
ASCII, reading from 4-3
BCD, reading from 4-3
binary, reading from 4-3
duplicating 10-15
EBCDIC, reading from 4-3
reading from 4-3
utilities 10-15
MAGRST (PRIMOS
command) 10-15
MAGRST dialogue
summary 10-15
MAGRST/MAGSAV, copying
tapes with 10-15
MAGSAV (PRIMOS
command) 10-16
MAGSAYV dialogue
summary 10-16
MAGSAV/MAGRST, copying
tapes with 10-15
Main program, ending 1-4
loading 6-3
Maintaining MIDAS files 12-5
Manipulating source
programs 4-1
MAP (LOAD subcommand) 6-3
MAP (8EG subcommand) 7-3
Map see also load map
Master file directory,
definition 2-3
Math library, FORTRAN 19-1
Math subroutines,
FORTRAN 16-3
Mathematical functions,
FORTRAN, table 1-6
MATHLB 19-1
Matrix
addition subroutine 19-2
adjoint subroutine 19-2
cofactor subroutine 19-3
identity subroutine 19-4
inversion subroutine 19-4
library, FORTRAN 19-1
multiplication subroutine 19-5
subroutines, table 1-6
subtraction subroutine 19-6
transpose subroutine 19-6
MCOF subroutine 19-3
MCON subroutine 19-3
MDET subroutine 19-4
Memory
allocation, optimization - 13-3
formats, FORTRAN data
types D-1
images, R-mode, execution
of 8-1
usage 5-9

1 January, 1979

Merging text files 10-28
Message, end of compilation 5-2
Message, error, compiler 5-2
Messages,
compiler A-1
error A-1
file system A-8
FORTRAN library A-8
loader A-5
run-time 8-2, A-8
SEG loader A-6
MFD, definition 2-3
MIDAS
advantages of 12-1
description 1-8
data subfile, building 12-2
file housekeeping 12-6
files, deleting 12-6
files, maintaining 12-5
parameter file PARM.K 12-5
requirements for 12-1
see also Multiple Index Direct
Access System
subroutine ADD1$ 12-5
subroutine BILD$R 12-2
subroutine DELET$ 12-5
subroutine FIND$ 12-5
subroutine LOCK$ 12-5
subroutine NEXT$ 12-5
subroutine PRIBLD 12-2
subroutine SECBLD 12-2
subroutine UPDAT$ 12-5
template, creating 12-2
template, modifying 12-2
usage 12-1
utility CREATK 12-2
utility KBUILD 12-2
utility KIDDEL 12-6
MIDN subroutine 19-4
MINYV subroutine 19-4
Mixed integers in logical
functions 18-2
Mixed mode arithmetic 15-9
Mixing long and short
integers 18-1
MMLT subroutine 19-5
Mnemonic-bit correspondence, A
register 17-8
Mnemonic-bit correspondence, B
register 17-8
MODE D64R, preference for 6-7
Mode
mixing rules 15-9
of function 15-3
specification statement 15-5
specification, global 15-5
typing, function 16-1
addressing 6-7
data see data type
definition 2-3
Modes, data 15-5
Modes, loading 6-11
Modification subprocessor 11-6
MODIFY (SEG command) 11-6
MODIFY subprocessor command
summary, SEG 7-13
Modifying
lines of code 4-5
MIDAS template 12-2
programs 4-4
Modular program structure 9-1
Modules, replacing 11-6

X-7

Monitoring program control
flow 9-2
Moving lines of code 4-5
MRGF (PRIMOS
command) 10-28
MSCL subroutine 19-5
MSORTS 19-7
MSUB subroutine 19-6
MTRN subroutine 19-6
Multi-dimensioned arrays,
optimization 13-3
Multiple Index Direct Access
System see also MIDAS
Multiplication,
matrix, subroutine 19-5
scalar, subroutine 19-5

N

Name, call by 15-4
Name, directory, definition 2-1
Names, file 19-14
Nesting DO loops 15-10
Nesting, not allowed in $INSERT
files 15-9
Network status 10-17
Networks 10-17
New programs, creating 4-4
NEXTS$, MIDAS subroutine 12-5
NO LIST statement 15-8
NOBIG (compiler option) 5-10,
17-4
NODCLVAR (compiler
option} 5-11, 17-4
Nodename 10-17
Nodename, definition 2-3
NOERRTTY (compiler
option) 5-5, 17-4
NOFP (compiler option) 5-11,
17-4
Non-owner
password 3-3
rights 3-8
status 3-3
Non-printing ASCII
characters C-2
NONOWN 3-4
Normal exit 15-10
Normal loading 6-2
Normal loading (SEG) 7-2
NOT truth table 14-7
NOTRACE (compiler option] 5-9,
17-4
NOXREF (compiler option) 5-8,
17-4
NULL 3-4
Number representations 2-3
Number, job, definition 3-2
Number, user 3-2
Numbers, line 4-5
Numerical input, list
directed 15-16

o

Object code 6-7
generation 5-9
default 5-9
Object file,
compiler (unit3) 5-4,17-9
definition 2-3
(SEG) 7-8
Obtaining file copies 3-6
OK, prompt 2-6

FDR 3057

X Index

OK: prompt 2-6
One-trip DO loop 15-10
Open, definition 2-3
Operands 14-2
Operating system
features 10-1
library 19-14
subroutines, list 19-15
Operations, directory 3-2
Operations, file 3-4
Operator priority 14-7
Operators 14-6
arithmetic 14-7
logical 14-6
relational 14-7
OPT (compiler option)
Optimization 13-1
64V-mode COMMON 13-4
compiler 5-12
DO loops 5-12,13-1
function calls 13-4
IF statements 13-5, 13-6
input/output 13-5
integer division 13-6
library calls 13-6
load sequence 13-3
memory allocation 13-3
multi-dimensioned
arrays 13-3
parameter statements 13-6
statement functions and
subroutines 13-6
statement numbers 13-3
statement sequence 13-5
unconditional 5-12
Optimizing compiler 5-12
Optimizing load for shared
procedures 11-9
Option, convention 2-5
Options, compiler see also
parameters, compiler
OR truth table 14-7
Order of loading 6-3
(SEG) 7-3
Order of statements in a
program 14-8
Ordinary pathname 2-7
Organization 1-1
Other languages, interface
to 12-1
Other media, entering programs
from 4-1
Output scale factors 15-24
specifications, compiler 5-4,
17-7
statements 15-12
statements, formats in,
table 15-20
stream, definition 2-3
Qutput/input optimization 13-5
Over 64K word COMMON
blocks 11-12
arrays 11-12
concordance address 11-12
dummy argument arrays 11-12
implementation 11-14
programming
considerations 11-14
restrictions 11-13
Overlaying comments 4-5
Overriding FORTRAN data mode
convention 15-4

5-12,17-4

FDR 3057

Overview of FUTIL commands,
figure 10-20
Prime's FORTRAN 1-1
PRIMOS 2-1

OWNER 3-4

Owner password 3-3
rights 3-8
status 3-3

Packname, definition 2-3

Page, definition 2-3

Paper tape, punched, reading
from 4-4

Parameter
assignment, implicit 11-3
combinations, compiler,

prohibited 5-11

compiler 5-3
data mode typing 15-6
statement 15-5
statements optimization 13-6
usage 15-5

SEG command, common 7-8
Parameters 14-5

compiler see also options, compiler

not allowed in FORMAT
statement 15-6

Parentheses, convention 2-4

Parity, ASCII C-1

PARM.K, MIDAS parameter
file 12-5

Partial cross reference 5-8

Partial loads 11-4

Partition exchange sort
subroutine 19-8

Partition, definition 2-3

PASSWD (PRIMOS
command} 3-3

Password, non-owner 3-3

Password, owner 3-3

Passwords 19-14

Passwords in FUTIL 10-18

Passwords in pathnames 3-2

Passwords, assigning
directory 3-3

Pathname vs. filename 2-7

Pathname, definition 2-3

Pathname, ordinary 2-7

Pathname, relative 2-8

Pathnames 2-7

Pathnames in LOAD
subcommands 6-7

Pathnames in SEG commands 7-8

Pathnames with passwords 3-2

PAUSE statement 15-12

PAUSE, recovering from 15-12

PBECB (compiler option) 5-11,
17-4

PDEV, definition 2-3

Pdisk, definition 2-3

Peripheral devices with
compiler 5-3

PERM subroutine 19-6

Permutation subroutine 19-6

Petitio principii see circular
reasoning

PFTNLB 18-1

PHANTOM
(PRIMOS command) 10-8
Phantom abort 10-8
logout 10-8

X-8

operation 10-8

status information 10-9

user environment,

description 1-5

user, definition 2-4

users 10-8
Physical device FORTRAN unit

numbers, table 15-15
Physical device I/0 unit

correspondence,

change 15-13
Physical disk, definition 2-3
PMA see also Prime Macro

Assembly language
PMA, interface to 12-8
PRIBLD, MIDAS subroutine 12-2
Prime extensions to

FORTRAN 1-4
Prime Macro Assembly language

see also PMA
Prime usage, ASCII C-1
PRIMOS commands

ASSIGN 4-1

ATTACH 3-2

BINARY 17-10

CLOSE 17-10

CMPF 10-27

CNAME 3-5

COMINPUT 10-2

COMOUTPUT 10-5

CREATE 3-3

CRMPC 4-2

CX 10-11

DATE 10-6

DELETE 3-3, 3-8

DELSEG 7-7

ED 4-4

FILMEM 6-2

FTN 5-1

FTNOPT 5-12

FUTIL 10-18

LISTF 3-4

LISTING 17-10

LOAD 6-1

LOGIN 3-2

LOGOUT 3-8

MAGNET 4-3

MAGRST 10-15

MAGSAV 10-16

MRGF 10-28

PASSWD 3-3

PHANTOM 10-8

PROTEC 3-8

RESUME 8-1

SEG 7-1, 8-2

SIZE 3-6

SLIST 3-6

SORT 10-28

SPOOL 3-6

START 8-1

TERM 10-30

TIME 10-6

UNASSIGN 4-1
PRIMOS

defaults B-2

file types, table 2-8

FORTRAN under 1-4

II 2-6

in networks 10-17

overview 2-1

system subroutines 16-3

tree-structured file system 2-9

1 January, 1979

Index X

Print compiler error messages at
terminal 5-5
Print only error messages 5-6
PRINT statement 15-14
Printer control, formatted 15-24
Printing
ASCII characters C-3
deferring 3-7
files 3-6
on special forms 3-7
Priority of operators 14-7
Procedure
frame 7-6
frames, load ECBs into 5-11
segment 11-2
Program
composition 14-8
control flow, monitoring 9-2
conversion 1-4
development 1-3
environments, list 1-5
execution from SEG's
loader 7-2
execution from the loader 6-2
installation in command
UFD 8-4
structure, modular 9-1
techniques, extended
segmented 11-1
order of statementsin 14-8
Programmer's Companion 3-1
Programming considerations, over
64K word COMMON 11-14
Programs
creating 4-4
deleting 4-11
entering from other media 4-1
entry from terminal 4-4
executing 8-1
in memory, restarting 8-1
listing 4-10
modifying 4-4
R-mode, execution of 8-1
R-mode, loading 6-1
renaming 4-11
segmented, loading 7-1
source, entering 4-1
source, manipulating 4-1
terminal entry 4-4
V-mode, execution of 8-2
V-mode, loading 7-1
Prohibited compiler parameter
combinations 5-11
Prompts, system 2-6
Proof by assumption see petitio
principii
PROTEC (PRIMOS
command) 3-8
Protection keys, default 3-8
PRWF$$ subroutine 19-17
Punched cards, reading 4-2
Punched paper tape, reading
from 4-4

Q

Question mark, usage 2-5
Queue information,
CX 10-12
CX, dropping jobs from 10-13
spool, listing 3-6
Queuing device assignment 4-1
QUICK subroutine 19-8

1 January, 1979

R

R-mode
FORTRAN function errors 8-2
interlude, including in SEG
runfile 11-10
memory images, execution
of 8-1
programs, execution of 8-1
programs, installation in
command UFD 8-4
programs, loading 6-1
runfiles, creating 11-10
vs. V-mode compilation 13-4
Radix exchange sort
subroutine 19-8
RADXEX subroutine 19-8
Random number generator,
integer 18-5
Random number generator,
real 18-6
Range of constants 14-3
READ statements 15-14
binary, statement 15-16
direct access,
statements 15-15
formatted, statement 15-15
list directed, statement 15-16
Read/write lock table 10-27
Reading
ASCII card decks 4-2
BCD card decks 4-2
EBCDIC card decks 4-2
from 7-track tape 4-3
from 9-track tape 4-3
from ASCII magnetic tape 4-3
from BCD magnetic tape 4-3
from binary magnetic tape 4-3
from EBCDIC magnetic
tape 4-3
from magnetic tape 4-3
from punched paper tape 4-4
punched cards 4-2
REAL mode 15-5
Real numbers 14-4
Real random number
generator 18-6
REAL see also REAL *4
REAL *4
data storage format D-2
mode 15-5
see also REAL
REAL *8 mode 15-5
see also DOUBLE PRECISION
REC= 15-15, 15-17
Record size
changing 15-3
default 15-13
over 128 words 15-14
Recovering from PAUSE 15-12
Recursive subroutines 15-7
Reference, compiler 17-1
Related documents 1-2
Relational operators 14-7
Relative
address code 5-9
pathname 2-8
segment assignment 11-1
Releasing assigned segments 7-7
Relocating
blank COMMON 11-5
COMMON see also locating
COMMON

X-9

uninitialized COMMON 11-5
Remote

directories, attachingto 10-18

login 10-17

processor 10-17
Renaming programs 4-11
Repetition, field descriptor 15-19
Replacing modules 11-6
Representation,

ASCII character strings 14-4

complex numbers 14-4

double precision

numbers 14-4

real numbers 14-4
Representations, number 2-3
Requirements for MIDAS 12-1
Requirements, command

file 10-2
Rescanning formatlines 15-19
Reserving space for COMMON

blocks 11-2
Resources, system, list 1-5
Restarting programs in

memory 8-1
Restarting segmented

programs 8-2
Restrictions on over 64K word

COMMON 11-13
RESU$$ subroutine 19-18
RESUME {(PRIMOS

command) 8-1
Return key 2-5
RETURN statement 15-12
REWIND statement 15-25
Rights, non-owner 3-8
Rights, owner 3-8
RL (SEG's loader)
Rubout key 2-5
Rules

for functions 16-2

for subroutines 16-3

for variables 14-5

mode mixing 15-9
Run-time error messages 8-2, A-8
Run-time statements 15-8
Runfile, definition 2-4

SEG, including the R-mode

interlude 11-10

Runfiles 6-7

duplicating 11-6

segmented 7-7

segmented, execution of 8-2
RUNIT program 11-8
RUNIT stack location 11-8
Rust color, convention 2-5

S

S/ prefix 11-3

SAM files 19-4

SAM see also sequential access
method

Sample editing session 4-5

SAVE (compiler option} 5-10,
17-5

SAVE (SEG command) 11-6

SAVE statement 15-7

SAVE statement, dimensioning not
allowed in 15-7

SAVE, global 15-7

Saving files 4-5

Scalar multiplication
subroutine 19-5

11-2, 11-6

FDR 3057

X

Index

Scale factors 15-23
Search library 19-7
Search, binary, subroutine 19-9
SECBLD, MIDAS subroutine 12-2
Second color, convention 2-5
SEG
command parameters,
common 7-8
command summary - 7-8
commands, use of pathnames
in 7-8
error handling 7-1
LOAD subprocessor command
summary 7-10
LOAD subprocessor, advanced
features 11-1
loader defaults B-2
loader error messages A-6
loader subprocessor prompt
$ 7-1
loading sequence 7-
modification subprocessor
prompt § 7-1
MODIFY subprocessor
command summary 7-13
(PRIMOS command} 7-1, 8-2
prompt# 7-1
runfile, including the R-mode
interlude 11-10
subcommand MAP 7-3
subcommands, important
(UFD) 8-5
utility, description 1-7
SEG's loader 7-7
commands 11-2
execution from 7-2
SEG, definition 2-4
usage 7-1
Segment '4000,
'4000, splitting 11-11
assignment, relative 11-1
assignment, specific 11-3
assignments 7-4
directory, definition 2-4
usage 7-7
data 11-2
definition 2-4
link 11-2
loading RUNIT into 11-9
procedure 11-2
Segment-spanning arrays 5-10
Segmented
address code 5-9
loader defaults B-2
program techniques,
extended 11-1
programs, loading 7-1
programs, restarting 8-2
runfiles 7-7
runfiles, execution of 8-2
Segments, :
assigned, releasing 7-
decreasing number used 11-9
shared, incorporating files
into 11-12
specific, loading to 11-3
splitting 11-9
stack, extension 11-6
Segno, definition 2-4
Selecting home spool
queue 10-18
Sequence numbers

7-2

14-2

FDR 3057

]

Sequence, load 6-2
Sequence, loading (SEG)
Sequential job processing
environment,
description 1-5
Sequential job processor 10-11
Sequential job processor see also
CX
Setting A register 17-6
Setting B register 17-6
Settng tabs 4-5
Setting terminal
characteristics 10-30
SHARE (SEG command) 11-10
Shared code 11-7
Shared code see also shared
procedure
procedure see also shared code
procedure, advantages of 11-7
procedures, loading 11-8
procedures, optimizing
load 11-9
procedures, source code 11-7
segments, incorporating files
into 11-12
procedures, compiling 11-8
SHELL subroutine 19-8
Short and long integers,
mixing 18-1
Short call subroutines 18-1
Short cross reference 5-8
Short integers 14-3
Sign extension, integer 18-1
SIZE (PRIMOS command] 3-6
Size, file, determining 3-6
Skip operations, floating point,
generate 5-11
Skip operations, floating point,
suppress 5-11
SLIST {PRIMOS command)
SORT (PRIMOS command)
Sort characteristics 19-7
Sort library 19-7
Sort parameters, common 19-7
Sorting files 10-28

7-2

3-6
10-28

SOURCE {compiler option) 5-3,
17-5
code for shared
procedures 11-7
file, compiler (unit1) 5-3,17-9

file, definition 2-4
language conversion 1-4
programs, entering 4-1
programs, manipulating 4-1
Spaces, convention 2-5
Spacing, using of 9-2
Special characters, editor 4-5
Special forms, printingon 3-7
Special terminal

characters 2-5
Special terminal keys 2-5
Specific segment assignment

Specification statements 15-4
SPLIT (SEG’s loader) 11-9
Splitting out 11-10
Splitting segment '4000 11-11
Splitting segments 11-9
SPOOL (PRIMOS command)
Spool

-CANCEL 3-7

-DEFER 3-7

3-6

X-10

11~
Specific segments, loadingto 11-!

file with FORTRAN print
conventions 4-10
-FORM 3-8
-FTN 4-10
-LIST 3-6
-LNUM 4-10
printing, deferring 3-7
program with line
numbers 4-10
queue, home 10-18
queue, listing 3-6
request, cancelling 3-7
Spooling the listing file 5-5
SRCHS$$ subroutine 19-18
ST.SIZE 7-6
Stack 7-8
STACK (SEG's loader)
Stack
frame 7-6
location 7-4
location, RUNIT 11-9
segments, extension 11-6
size, altering 11-6
START (PRIMOS command)
State,
functions 16-2
functions and subroutine
optimization 13-6
load 6-4
lines 14-2
numbers, optimization 13-3
sequence optimization 13-5
data definition 15-8
Statements 15-1
assignment 15-9
coding 15-18
compilation 15-8
control 15-10
device control 15-25
external procedure 15-7
grouped, list 15-2
header, for subprograms
implemented, list 15-1
input 15-12
order of in programs 14-8
output 15-12
READ 15-14
run-time 15-8
specification 15-4
storage 16-6
WRITE 15-17
Static allocation of local
storage 5-10
Status information, phantom 10-9
Status, network 10-17

11-6

8-1

15-3

STOP statement 15-12
Storage format,
data, ASCII D-3

data, CHARACTER D-3
data, COMPLEX D-3
data, DOUBLE
PRECISION D-2
data, INTEGER*2 D-2
data, INTEGER*4 D-2
data, LOGICAL D-2
data, REAL*4 D-2
Storage statements 15-6
Storage,
ANSI standard D-1
local, dynamic allocation 5-10
local, static allocation 5-10
symbol 6-6

1 January, 1979

Index X

Strategy, coding 9-1
Stream, output, definition 2-3
Structure of function
subprogram 16-1
Structure of subroutine
subprograms 16-3
Structure, program, modular 9-1
Structures, directory 2-6
Structures, file 2-6
Sub-UFD, definition 2-4
Subdirectory, definition 2-4
Subprocessor, modification 11-6
Subprogram, block data 15-3
Subprograms, function, user-

defind 16-1
Subprograms, header statements
for 15-3
Subroutine
arguments 16-3
calls 15-25
calls, integersin 17-3
rules 16-3
SUBROUTINE statement 15-3,
16-3
. Subroutine subprogram, structure
of 16-3
Subroutine,

ATTDEV 15-14
MIDAS, ADD1$ 12-5
MIDAS, BILD$R 12-2
MIDAS, DELET$ 12-5
MIDAS, FIND$ 12-5
MIDAS, LOCK$ 12-5
MIDAS, NEXT$ 12-5
MIDAS, PRIBLD 12-2
MIDAS, SECBLD 12-2
MIDAS, UPDAT$ 12-5
Subroutines 16-3
Subroutines
$X versions 18-1
application library 16-3
conversion 1-4
reference 19-1
FORTRAN math 16-3
library, loading 6-3
library, loading (SEG) 7-3
matrix, table 1-7
operating system, list 19-15
PRIMOS system 16-3
recursive~15-7
short call 18-1
user-defined 16-3
Subscripts, generalized 14-5
Subscripts, maximum number
of 14-5
Subtraction, matrix,
subroutine 19-6
Summary,
command, editor 4-7
commands, FUTIL 10-25
commands, LOAD 6-9
commands, SEG-7-8
commands, SEG LOAD
subprocessor 7-10
commands, SEG MODIFY
subprocessor 7-13
Suppress cross reference 5-8
Suppress flagging of undeclared
variables 5-11
Suppress floating point skip
operations 5-11
Suppress global trace 5-9

1 January, 1979

Suppress printing of compiler

error messages 5-5
SYMBOL (SEG's loader) 11-5
Symbol names, editor 4-10
Symbol storage -6
Symbol table 6-4, 7-4
Symbols 7-6
Symbols, undefined 7-7
Syntax checking, compiler 9-2
Syntax, compiler 5-1
System

constants B-1

defaults B-1

information, table 3-4

programming features,

LOAD 6-8

prompts 2-6

resources 1-5

interface to 12-1

T

Tinput format 15-22
T output format 15-20
Tab setting 4-5
Table, symbol 6-4, 7-4
Tape, 7-track, reading from " 4-3
Tape, 9-track, reading from 4-3
Tape, magnetic, reading from 4-3
Tape, punched paper, reading
from 4-4
Techniques, editor 4-5
Template, MIDAS, creating 12-2
Template, MIDAS,
modifying 12-2
Templates, loading 11-4
TERM (PRIMOS
command) 10-30
Terminal
characteristics, setting 10-30
character, special 2-5
defaults B-1
entry of programs 4-4
keys, special 2-5
listing of programs 4-10
Text editor 4-4
Text files, merging 10-28
TIME (PRIMOS command) 10-6
Time/date stamping of output
files 10-6
TOP 7-4
TRACE
area, statement 15-8
(compiler option) 5-9, 17-5
global, compiler 9-2
global, enable 5-9
global, suppress 5-9
item, statement 15-8
statements, use of 9-2
use with COMO 15-9
Transpose, matrix,
subroutine 19-6
Tree-structured file system,
figure 2-9
Treename 2-7
Treename, definition 2-4
TRUE 144
Truncation, integer 18-1
Truth tables 14-7
TSRC$$ subroutine 19-19
Tutorial books, FORTRAN
language 1-1
Type, data see also data mode

X-11

Type-ahead 2-6
Types, data 15-5

u

UFD, definition 2-4

Ull handling 6-8

UlIl library, loading 6-8

UII see also unimplemented
instruction interrupt

Ull table 6-8

UNASSIGN (PRIMOS
command} 4-1

Unassigning devices 4-1

Unconditional GO TO
statement 15-11

Unconditional optimization 5-12

UNCOPT (compiler option) 5-12,
17-5

Undeclared variables, enable
flagging 5-11

Undeclared variables, suppress
flagging 5-11

Undefined symbols 7-7

Underscore, usage 2-6

Unimplemented instruction
interrupt see also UII

Uninitialized COMMON,
relocating 11-5

Unit, definition 2-4

Unsatisfied reference 6-6, 7-7

UPDATS$, MIDAS
subroutine 12-5

Upper case convention 2-4

Usage of over 64K word
COMMON 11-12

Usage, segments 7-7

Use of ATTDEV with direct
access 15-13

Use of comments 9-1

Use of COMO with TRACE 15-9

Use of compiler -DYNM
option 13-7

Use of direct access 15-13

Use of loadmap 7-3

Use of TRACE with COMO 15-9

User file directory, definition 2-4

User number 3-2

User, phantom, definition 2-4

User-defined function
subprograms 16-1

User-defined subroutines 16-3

Using MIDAS 12-2

Using PHANTOM 10-8

Using PRIMOS 3-1

Using SEG 7-1

Using the Loader 6-1

Vv
V-mode FORTRAN function
errors 8-3
V-mode FORTRAN library 18-1
V-mode program,
installation in command UFD,
example 8-5
execution of 8-2
installation in command
UFD 8-5
loading 7-1
V-mode vs. R-mode
compilation 13-4
V-mode, advantages of 7-1
VAPPLB 19-9

FDR 3057

X Index

Variable rules 14-5
Variables 14-5

Variables, formats as 15-21
Virtual loading 6-6
Volume, definition 2-4
Volume-name, definition 2-4

w

WAIT (ASSIGN option) 4-1
Word, definition 2-4
Work session, completing 3-8
Working directory, changing 3-2
WRITE statements 15-17
binary, statement 15-17
direct access,
statements 15-17
formatted, statement 15-17
Write/read lock table 10-27
Writing terminal output to a
file 10-5

X

X input format 15-22

X output format 15-20

XREFL (compiler option) 5-8,
17-5

XREFS (compiler option} 5-8,
17-5

Z

Z (in B format) 15-23

SYMBOLS

" (usage in editor} 4-5
(usage) 2-5
{(in Bformat) 15-23
(SEG prompt) 7-1
(FORTRAN main program
id) 7-6 :
$ (FORTRAN address
constants] 14-6
(hexadecimal number) 2-3
(in B format) 15-23
(LOAD prompt) 6-1
(SEG loader subprocessor
prompt) 7-1
(SEG modification
subprocessor
prompt] 7-1
$INSERT statement 15-9
nesting not allowed 15-9
$X version, subroutines 18-1
' {octal number) 2-3
(single quote in IBM format
direct access
READ) 15-15
{single quote representation in
ASCII string) 14-4

"

FDR 3057

* (in B format) 15-23
(in MAGSAV dialogue) 10-16
(in pathnames) 2-8
** (unsatisfied reference) 6-6,
7-7
**** (FORTRAN function error
indicator} 8-2
*CMHGH 6-4
*CMLOW 6-4
*HIGH 6-4
*LOW 6-4
*PBRK 6-4
*STACK 7-4
*START 6-4,7-4
*SYM 6-4,7-4
*TEST 8-5
*UIl 6-4
+(in B format) 15-22
, (in B format) 15-23
(in FORMAT statement) 15-19
- (in Bformat] 15-23

-32R (compiler option) 5-9, 17-5
-64R (compiler option) 5-9, 17-5
-64V (compiler option) 5-9,17-6
-BIG (compiler option) 5-10,17-1

-BINARY {compiler option) 5-3,
17-1

~CANCEL (SPOOL option} 3-7

~-DCLVAR (compiler
option) 5-11, 17-1

-DBASE (compiler option) 5-10,
17-1

-DEFER {SPOOL option) 3-7

-DYNM (compiler option) 5-10,
17-1

-DYNM option, compiler, use
of 13-7

-ERRLIST (compiler option) 5-6,
17-2

-ERRTTY {compiler option} 5-5,
17-2

-EXPLIST (compiler option) 5-6,
17-2

_FORM (SPOOL option) 3-8

-FP (compiler option) 5-11, 17-2

-FTN (SPOOL option) 4-10

-HOME (SPOOL option) 10-18

~-INPUT (compiler option) 5-3,

17-3

-INTL (compiler option) 5-11,
17-3

-INTS (compiler option) 5-11,
17-3

-LIST (compiler option) 5-6,17-3

-LIST (SPOOL option) 3-6

-LISTING (compiler option) 5-4,
17-4

-LNUM (SPOOL option) 4-10

X-12

~-NOBIG (compiler option) 5-10,
17-4

-NODCLVAR (compiler
option) 5-11, 17-4

-NOERRTTY (compiler
option) 5-5, 17-4

~NOFP (compiler option} 5-11,
17-4

-NOTRACE (compiler
option) 5-9, 17-4

~-NOXREF (compiler option) 5-8,
17-4

-ON (LOGIN option) 10-17

-OPT (compiler option) 5-12,
17-4

-PBECB (compiler option) 5-11,
17-4

-SAVE (compiler option 5-10,
17-5

-SOURCE (compiler option) 5-3,
17-5

-TRACE (compiler option) 5-9,
17-5

-UNCOPT (compiler
option) 5-12, 17-5

-WAIT (ASSIGN option) 4-1

-XREFL (compiler option) 5-8,
17-5

-XREFS (compiler option) 5-8,
17-5

. (in Bformat) 15-23

.AND. truth table 14-7

FALSE. 14-4

.NOT. truth table 14-7
.NULL. 3-4

.OR. truth table 14-7
.TRUE. 14-4

/ (in FORMAT statement) 15-19
/* (comment line) 10-2
// (blank COMMON) 15-6
32R (compiler option) 5-8,17-5
64R (compiler option) 5-9, 17-5
64V (compiler option) 5-9, 17-6
64V-mode COMMON,
optimization 13-4
7-track tape, reading from 4-3
g-track tape, reading from 4-3
: (FORTRAN octal numbers] 14-3
: (usage in editor) 4-5
<*> (current disk) 2-10
> (FUTIL prompt
character) 10-18

(in pathnames) 2-7
? {usage in editor) 4-5

(usage] 2-5
/ (usage in editor) 4-5

(usage) 2-5
A (usage) 2-5
—(usage) 2-6

1 January, 1979

ooo o

Poo

ooo A

Fair

Technical publications’
r ~uests your
Swnments . . .

Now that you've finished reading this new
final documentation release, we're very inter-
ested in hearing what you have to say about
it. We'd like your comments on any facet of
this document — technical content, writing
style, graphics, general philosophy, as well as
your suggestions for improvements and your
editorial additions.

oogo 0O

Good
Title
Dept

ooo d

Excellent

(Write in document name)

Telephone

You can write a letter, make a telephone call,
send a telex or make an appointment to come
in. We'll guarantee that you get a personal
response from the writer directly responsible
vthis document.

Our address and telephone number is: Prime
Computer, Inc. 145 Pennsylvania Avenue,
Framingham, MA 01701, telephone number
(617)-879-2960, TELEX 94-8482, TWX 710-
380-6567.

While you're working on detailed comments, l
'd like to receive your initial reactions. The I .
Nwwrtstage paid reply card will direct those
reactions to the team responsible for this
document.

pany.

reference information is
[pPlease send me an Automatic Update Service order form

Here are my immediate reactions to the

e 1 thought the overall quality was

¢ The technical information content was
o The use of color and graphics were

e I think Prime’s mixture of “how-to” with
My job function is best described as

Country.

Address
[| City, State, Zip

@

E

©
Z
]

] Com

ooo d

Poor

ooo O

Fair

Keep your FDR’s current with our new
Automatic Updating Service.

ooo 0O

Good
Title
Dept

Through our unique Automatic Individual

- ,cumentation Update Service (AIDUS) we'll
“wrtp your FDR'’s updated for a nominal fee.

You'll receive change sheet packages that

correct, expand, and update your FDR’s,

keeping you abreast of changes and improve-

ments in Prime products. Even if we

]
|
1
i
1
|
|
|
| |
|
i ooo O
(|
|
|
i

completely rewrite an FDR, you're covered — =
|
|
|
1
|
1
|
|
|
i
|
|
1
i

Excellent

(Write in document name)

Telephone

we'll send you a copy of the new manual.
AIDUS is also available to keep your
Programmer’s Companions updated.

To subscribe to this service, check the box at
the bottom of the reply card. We'll send you

an order form. If both cards have been used,
call us directly.

reference information is
[please send me an Automatic Update Service order form

Here are my immediate reactions to the

¢ I thought the overall quality was

e The technical information content was
e The use of color and graphics were

e [think Prime’s mixture of “how-to” with
My job function is best described as

Name
Company
Address

City, State, Zip
Country

— = = _ NO POSTAGE _ _ _ = _ NO POSTAGE
NECESSARY NECESSARY
IF MAILED IF MAILED
"IN THE v IN THE
- UNITED STATES UNITED STATES
BUSINESS REPLY MAIL BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 531 FRAMINGHAM. MA ﬂ_mm.ﬂ,O_u)wm PERMIT NO. 531 FRAMINGHAM, MA

POSTAGE WILL BE PAID BY ADDRESSEE
PRIME

PRIME Computer, Incorporated
Technical Publications Department

145 Pennsylvania Avenue
Framingham, MA 01701

POSTAGE WILL BE PAID BY ADDRESSEE
PRIME

PRIME Computer, Incorporated
Technical Publications Department

145 Pennsylvania Avenue
Framingham, MA 01701

IO
I

Part One

OVERVIEW OF
PRIME’S FORTRAN

Part Two

USING FORTRAN
UNDER PRIMOS

Part Three

ADVANCED PROGRAM-
MING TECHNIQUES

Part Four
FORTRAN
LANGUAGE REFERENCE

Part Five
UTILITY REFERENCE

PRIME Computer, Inc. 145 Pennsylvania Ave., Framingham, Mass. 01701

PRIME

P/N FDR 3057-101

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	1 Overview
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	A-000
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	b-00
	b-01
	b-02
	b-03
	c-00
	c-01
	c-02
	c-03
	d-00
	d-01
	d-02
	d-03
	d-04
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	x-07
	x-08
	x-09
	x-10
	x-11
	x-12
	zreplyA
	zreplyB
	zzBack

