

FDR3057

PRIME
THE FORTRAN
PROGRAMMER’S GUIDE

a

%

ae nam

ae

‘
ee:
ae

his is your PRIME FORTRAN
Programmer’s Guide. This one
document contains everything

you need to write, modify, compile, load,
execute and debug most FORTRAN
applications using the PRIMOS Oper-
ating System.

e have extracted from the PRIME
Reference Documentation Fam-
ily all the commands and

functions you will need as a FORTRAN
programmer.

 lease read the next few pag
carefully. They tell you what this
document is, how to use it, and

where you can find whatyou need.

The FORTRAN Programmer’s Guide
contains the following parts:

@ An Overview of PRIME FORTRAN

@ How toUseFORTRAN underPRIM.

@ Advanced FORTRAN Programming
Techniques

@ A Complete Reference to the
FORTRAN Language.

@ A Complete Reference to related
Utilities

 “DR Cover Design by William Agush, PRIME
staff

TheFORTRAN Programmer's Guide

Published by Prime Computer, Incorporated

Technical Publications Department

145 Pennsylvania Avenue, Framingham, MA 01701

Copyright ©1979 by Prime Computer, Inc.

All rights reserved.

The information contained in this:documentis subject

to change without notice and should not be construed

as a commitment by Prime Computer, Incorporated.

Prime Computer assumesno responsibility for any
errors that may appear in this document.

This documentreflects the software as of Master Disk

Revision Level 16.

PRIMOS®is a trademark of Prime Computer, Inc.

Credits.

Concept and Production

William I. Agush

Typesetting.

Allied Systems

Covers.

Mark-Burton

Text.

Eusey Press

The
FORTRAN

alaTeTeTeTeTetelalerelezeeseselazece races acacesolacezezezatelateleteteletatareters) atatatatatetatatatatatatatetatetetalatatatatetatere@etatatetatetatatererosutarecateetersrarerersrst.0s8stsesestimanatetssatateatatetarererstesatetotasenersronettensage ecasmsmancegegeancecncnceceseawansecasedecncecedetasalacecoceneaeatatatatatetetatetatatetetotatetetetatetetetotototetetetesmsosssasatesesetetetesetopeestnncoasanaaraseseceeseeneonsmsnressssscasesesnenentateoctstseatatetetetstesses
teteerereasnansnssennneseccerseeesectessaseateenetencteneesnstssseneceetereeeeeoeeeeeneneatatatatst
ataGRASPEDLACEATETEENALESURE EPO UMD OTRO RED TEEDneseneattetatotstatetsttanatasetvbatetatetaretatateraratats!epeenssetneatatasetabetecetatecsratetererannes

FDR 3057

Description

FORTRAN
* The FORTRANProgrammer's Guide

Boundedition
Loose-leaf edition

* The FORTRAN Programmer’s Companion
COBOL
* The COBOL Programmer’s Guide
RPGII
* The RPGII Programmer's Guide
* The RPGII Debugging Template
BASIC/VM (COMPILED)

* The BASIC/VM Programmer’s Guide
* The BASIC/VM Programmer’s Companion
BASIC (INTERPRETIVE)

* The Interpretive BASIC Programmer's Guide

Technical update
ASSEMBLY LANGUAGE

* The Assembly Language Programmer’s Guide
Boundedition

Loose-leaf edition

* The Assembly Language Programmer’s Companion

* The System Architecture Reference Guide
PRIMOS OPERATING SYSTEM/UTILITIES

¢ The PRIMOS CommandsReference Guide

Boundedition
Loose-leaf edition

The PRIMOS Commands Programmer’s Companion

The System Administrator's Guide
* The System Administrator’s Programmer's

Companion
* The New User’s Guide to EDITOR and RUNOFF

Boundedition
Loose-leaf edition
Change sheet update

* PRIMOS Subroutines Reference Guide
* LOAD and SEG Reference Guide
DATA MANAGEMENT

DBMSAdministrator’s Guide
DBMSSchemaReference Guide
DBMS FORTRANReference Guide
DBMS COBOLReference Guide
The PRIME/POWER Guide
The MIDAS Reference Guide

Technical update
* The FORMS Programmer's Guide
STATISTICS

* The SPSS Programmer's Guide
COMMUNICATIONS

* The PRIMENETGuide

* The RJE/2780 Guide
* The HASP Guide
* The UT200 Guide
SYSTEM INSTALLATION

* The System Installer’s Guide

+-Denotes new orrevisedtitle

i-5

Software

Rev. #

16

16

16

16

16

14-16

16

16

14,15

16

16

16

15,16

16

16

16

16

16

16

15

15

16

16

16

16

16

16

16

16

14

16

16

16

16

16

16

16

15

PRIME SOFTWARE DOCUMENTATION SUMMARY

Document

Number

FDR3057-101At
FDR3057-101Bt
FDR3338+

PDR3056+

PDR3031+
FDR3275

PDR3058+
FDR3341+

IDR1813
PTU59t

FDR3059-101At
FDR3059-101Bt
FDR3340
PDR3060+

FDR3108-101At
FDR3108-101Bt
FDR3250+
PDR3109+

FDR3622t

FDR3104-101A
FDR3104-101B
COR3104-001+
PDR3621+
IDR3524+

PDR3276t+
PDR3044+
PDR3045+
PDR3046+
IDR3709
IDR3061
PTU60t
PDR3040+

PDR3173+

IDR3710+
PDR3067+
PDR3107+
IDR3431t

PDR3105+

Price

$15.00

$15.00

$ 2.00

$15.00

$15.00

$ 2.00

$15.00

$ 2.00

$15.00

$ 2.00

$15.00
$15.00
$ 2.00
$15.00

$15.00
$15.00
$ 2.00
$15.00

$ 2.00

$15.00
$15.00
$ 3.00
$15.00
$15.00

$15.00
$15.00
$15.00
$15.00
$15.00
$15.00

$ 2.00
$15.00

$15.00

$15.00
$15.00
$15.00
$15.00

$15.00

1 January, 1979

Part I

1 OVERVIEW OF PRIME’S FORTRAN
Introduction 1-1

Figure 1-1. Sequence of FORTRAN program development1-3
FORTRANunderPRIMOS1-4
System resources supporting FORTRAN 1-5

Table 1-1. FORTRAN mathematical functions 1-6
Table 1-2. Matrix operations subroutines 1-6

2 OVERVIEW OF PRIMOS
Introduction 2-1
Glossary of Primeconcepts and conventions 2-1
Commandformat conventions 2-4
Special terminal keys 2-5

System prompts 2/6
Using the file system 2-6

Table 2-1. Types offiles in PRIMOS 2-8
Figure 2-1. Examples of files and directories in PRIMOStree-structured
file system 2+9

Part II

3 ACCESSING PRIMOS
Introduction 3-1 |
Accessing the system 3~2
Directory operations 3-2
System information 3-4
File operations 3-4

Table 3-1. Useful system information 3-4

Completing a work session 3-8

4 ENTERING AND MANIPULATING SOURCE PROGRAMS
Entry from other media 4-1
Entering and modifying programs—the Editor 4-4
Listing programs 4+10
Renamingand deleting programs4-11

9 COMPILING
Introduction 5-1 |
Using the compiler 5-1
Endof compilation message 5-2
Compile error messages 5-2
Compiler parameters 5-3

Table 5-1. Compiler parameter mnemonics 5-3
Table 5-2. Concordance codes 5-9

Optimization 5-12

6 LOADING R-MODE PROGRAMS
Introduction 6-1
Using the loader under PRIMOS6-1
Normalloading 6-2

1 January, 1979 i-6 FDR 3057

Load maps6-3
Figure 6-1. Examples of load maps 6-5

Loading details 6-6
Command summary6-9

7 LOADING SEGMENTED PROGRAMS
Introduction 7-1
Using SEG under PRIMOS7-1
Normal loading 7-2
Load maps 7-3

Figure 7-1. Example of load map 7-5

Advanced SEGfeatures 7-7
Command summary 7-8
SEG-level commands 7-9
LOAD subprocessor commands 7-10

MODIFYsubprocessor commands 7-13

8 EXECUTING PROGRAMS
Introduction 8-1
Execution of R-mode memory images 8-1
Executing segmented runfiles 8-2
Run-time error messages 8-2

Installation in the command UFD (CMDNCO) 8-4

9 DEBUGGING
Introduction 9-1
Coding strategy 9-1
Compiler usage 9-2

Part III

10 OPERATING SYSTEM FEATURES
Commandfile operations 10-1
Phantom users 10-8
Sequential job processor (CX) 10-11
Magnetic tape utilities 10-15
Using PRIMOSwith networks 10-17
File copying, deleting, and listing (FUTIL) 10-18

Figure 10-1. Overview of FUTIL commands10-20

Figure 10-2. FUTIL: COPYing, DELETing, and PROTECtion commands

10-21

Figure 10-3. Typical tree structure 10-22

File manipulation 10-27
Setting terminal characteristics 10-30

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Advancedfeatures of LOAD subprocessor 11-1
The modification subprocessor 11-6
Shared code 11-7
COMMONblocks over 64K words long 11-12

FDR 3057 i-7 1 January, 1979

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES
Introduction 12-1
Multiple Index Data Access System (MIDAS) 12-1

Figure 12-1, User’s functional overview of the MIDASfile system 12-3
Figure 12-2, Sample of CREATK dialogue 12-4

Database Management System (DBMS) 12-6
Forms management system (FORMS) 12-6

Figure 12-3. Example of data maintenance program 12-7

Other languages 12-8

13 OPTIMIZATION AND OTHER HELPFUL HINTS

Introduction 13-1
DO loops 13-1
Statement numbers 13-3
Multi-dimensionéd arrays 13-3
Load sequence memoryallocation 13-3
Function calls 13-4
V-mode vs. R-mdde compilation 13-4
64V-mode COMMON13-4
IF statements 13-5

Input/Output 13-5
Statement sequence 13-5

Parameter statements 13-6

Inefficient library calls 13-6
Statement functions and subroutines 13-6
Integer divides 13-6
Logical vs. arithmetic IF 13-6
Use of the compiler’s -DYNM option 13-7
Conclusion 13-7
Requestfor contributions to this section 13-7

Part IV

14 FORTRAN LANGUAGE ELEMENTS
Legal character get 14-1
Line format 14-1

Figure 14-1. Program line format 14-2
Operands 14-2
Generalized subscripts 14-5
Operators 14-6

Program composition 14-8
Figure 14-2. Source program composition 14-8 °

15 FORTRAN STATEMENTS
Implemented statements 15-1
Header statements for subprograms 15-3

Specification statements 15-4
Storage statements 15-6
External procedure statements 15-7
Data definition statement 15-8
Compilation and run-time control statements 15-8
Assignment statements 15-9
Control statements 15-10

Table 15-1. Data moderules for assignment statements 15-11
Input/out statements 15-12

Table 15-2. Devices and their default FORTRAN unit numbers 15-15

1 January, 1979 i-8 FDR 3057

Coding statements 15-18
Format statements 15-19

Table 15-3. Results of formats in output statements 15-20

Table 15-4. Results of formats in input statements 15-22

Table 15-5. Examples of B-format usage 15-24

Device control statements 15-25

Function calls 15-25
Subroutine calls 15-25

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE
Functions 16-1

Subroutines 16-3

Part V

17 COMPILER REFERENCE
Prime FORTRANcompiler parameters 17-1

Table 17-1. Compiler file specifications 17-2

Explicit setting of the A and B registers 17-6
Figure 17-1. Bit-mnemonic correspondence (A and registers) 17-7
Table 17-2. A- and B-register bit correspondences of Parameter
mnemonics 17-8

Table 17-3, Bit/device correspondence 17-9

18 FORTRAN FUNCTION REFERENCE

FORTRANfunction library 18-1

19 LIBRARIES REFERENCE
FORTRAN matrix (math) library 19-1
Sort and search library 19-7
Applications library 19-9
Operating system library 19-14

Appendices

A ERROR MESSAGES
Introduction A-1
Compiler error messages A-1
Loader error messages A-5

SEG loader error messages A-6
Run-time error messages A-8

B SYSTEM DEFAULTS AND CONSTANTS

CC ASCTI CHARACTER SET
Prime usage C-1
Keyboard input C-1 .

Table C-1. ASCII character set (non-printing) C-2
Table C-2. ASCII characterset (printing) C-3

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

Introduction D-1

Data types D-2

FDR 3057 i-9 1 January, 1979

Overview of
Prime’s FORTRAN

INTRODUCTION

This documentis a comprehensive guide for the Prime FORTRAN programmer.It contains

everything normally necessary for writing, compiling, loading, and executing FORTRAN

programs. The user is assumedto be familiar with the FORTRANlanguage butnot with its

implementation and use on a Prime computer. Users unfamiliar with the language should

read one of the commercially available instruction books; two examplesare:

McCracken, Daniel D., A Guide to FORTRAN IV Programming,
John Wiley and Sons,Inc.

Organick, Elliott I, A FORTRANIV Primer, Addison-Wesley

Publishing Company.

The current definitive standard for the FORTRAN IV language is the American National

StandardsInstitute publication X3.9-1966 (USA Standard FORTRAN).

This version

This is a Final Documentation Release, documenting Prime FORTRANIV and supporting

utilities at software revision level 16 (Rev. 16). It replaces the following documents:

The FORTRANprogrammer’s Guide, PDR3057.

Rev. 15 FORTRAN, PTU47.

Organization

The guide is composed of five majorparts:

Part 1. Anintroductory section including an overview of FORTRANasit

is implemented on the Prime computer. This includes Prime

extensions to the language, supporting utilities, systems, and

software, plus whereto find information in this document(Section

1). An introductory section explains the basic concepts and fea-

tures of the PRIMOSoperating system (Section 2).

Part 2. Using the Prime computer for FORTRAN programming. This is a

tutorial, arranged to follow the normal sequence of program

development. A single pass throughthis part will enable the user

to perform all the usual FORTRAN programming functions. The

order of information presentedis (see Figure 1-1):

e Accessing the system (Section 3)

e Creating a program (Section 4)

¢ Compiling (Section 5)

¢ Loadingfor relative address code (Section 6) or

segmented-address code (Section 7)

1 January, 1979 1-1 FDR 3057

1 OVERVIEW OF PRIME’S FORTRAN

¢ Executing (Section 8)

¢ Debugging concepts and the use of debugging
tools (Section 9)

System utilities are introduced and all concepts and PRIMOS-
level commands necessary for the large majority of uses are
discussed, with examples. A user wishing to go beyond these
concepts for special programming needs, moreefficient program
creation, program optimization, etc., will find references to the
information (either in this document or another reference docu-
ment) at the appropriate place. In mostcases,it is unnecessary to
use any documentother than this one.

Part 3. Advanced Techniques. Sections 10-13 cover a rangeof specialized
topics including program optimization with the segmentedloader,
loading for shared procedure, introduction to the MIDAS, DBMS,
and FORMSsystems in the FORTRAN environment, and addi-
tional details on extended use of the operating system andfile
Management system.

Part 4. FORTRANlanguagereference. Sections 14-16 form a reference
for the FORTRANlanguage as implemented on Prime computers.
The Prime extensions to the standard language are given along
with examples of their usage.

Part5. Utility reference. Provides more detailed and extended informa-
tion about the use of the utilities supporting FORTRAN.In addi-
tion, libraries are listed and the library functions and subroutines
which are particularly useful are described in detail. The useris
told of the existence and functionality of other useful subroutines
and whereto find complete information about them.

Appendices A complete list of compiler, loader, and run-time error messages
and their meanings (Appendix A); system defaults and constants
(Appendix B); ASCII character set (Appendix C): and FORTRAN
data type storage (Appendix D).

Related documents

The following documents contain detailed reference information on the PRIMOS system
and utilities.

Operating System Reference

Reference Guide, PRIMOS Commands

Reference Guide, PRIMOS Subroutines

Software Subsystem Reference

The FORTRAN Programmer's Companion

The New User’s Guide to EDITOR and RUNOFF

LOAD and SEG Reference Guide

Reference Guide, Multiple Index Data Access System (MIDAS)

Reference Guide for DBMS Schema DDL

FORTRANReference Guide for DBMS

FORMSProgrammer’s Guide

FDR 3057 1-2 1 January, 1979

OVERVIEW OF PRIME’S FORTRAN 1

1 OVERVIEW OF PRIME’S FORTRAN

FORTRAN UNDER PRIMOS

Program conversion

There are a numberoffactors which mustbe taken into account when converting FORTRAN
programs from one computer system to another. These are the language statements,
extensions, input/output, functions, subroutines, and control flow. Any particular program
may have special conversion needs, but these are the major areasto consider.

Language: Makecertain that all statements perform the same operations on both systems.
The major sources of possible incompatibility are device and input/output statements. The
1966 standard FORTRANdoesnot fully describe certain statements such as ENDFILE or
REWIND, consequently, their exact performanceis installation-dependent. Prime’s FOR-
TRAN supports both the ANSI and IBM formats for direct access READ and WRITE
statements. Levels of nesting in DO loops and IF statements will present no problemsas
there is no syntactical limit on such nesting in Prime FORTRAN. Similarly, there is no
syntactical limit to the numberof statement labels in computed GO TO statements.

Extensions: Extensions to standard FORTRANwhichthe user should inspectare:

° Use of the $INSERT commandforfile insertion at compilation
e B Format

e TRACEinstruction for debugging

e List-directed input/output

e Direct file access READ/WRITEstatements

e Long integers

e Parameters

e IMPLICIT specification

¢ Subprogram structure

¢ Generalized subscripting

Input/Output: FORTRANlogical unit numbers must agree with those given in Section 15 of
this document(or such othersas are established by the system administrator). As PRIMOS
is an interactive multi-user system, there is no need for a job control language; all users have
access to disk files. Use of peripheral storage devices is obtained by assigning the device to
the user (see Section 4) after whichfile operations may be performed.

Functions: Prime supplies a large number of the normal mathematical functions plus a set
of Boolean(logical) functions. Thesearelisted in Section 18. The user should checktheseto
be sure all functionsin the original source program are implemented under PRIMOS.It is
unlikely that the average programmerwill be using functions not on this list. User-defined
functions should be written as specified in Section 16.

Subroutines: Inasmuchas all operating system orfile system calls are installation-depen-
dent, all such calls must be replaced by their PRIMOS equivalents. Subroutines for normal
usage will be foundin Section 19, especially in the Applications Library, whichis given here
in summary. Subroutines for extended usage or special cases will be found in Reference
Guide, PRIMOS Subroutines. User-defined subroutines should be written to the specif-
ications in Section 16.

Control flow: To insure an orderly return from the main program to the PRIMOSlevel, the
last logical statement of a main program must be

CALL EXIT

FDR 3057 1-4 1 January, 1979

OVERVIEW OF PRIME’S FORTRAN 1

This is analogous to the RETURNstatement, whichis the last logical statementof a function

subprogram or subroutine.

Programs executing in the R-identity may be “chained” by use of the RESU$$ subroutine

described in Section 19, Operating System Library.

Program environments

Under PRIMOS, FORTRANprograms may execute in one ofthree environments:

e Interactive

e Phantom user

e Sequential job processing

Interactive: Program executionis initiated directly by the user (Section 8). The terminalis

dedicatedto the program during execution. The program will accept input from the terminal

andwill print at the terminal any output specified by the program as well as user- or system-

generated error messages. This environmentis the one most often used. Major uses are:

¢ Program development and debugging.

° Programs requiring short execution time.

e Data entry programs suchas orderentry, payroll, etc.

e Interactive programssuch asthe Editor, etc.

Phantom user: The phantom environment(Section 10) allows programsto be executed while

“disconnected” from a terminal. This frees the terminal for other uses. Phantom users

accept input from a commandfile instead of a terminal; output directed to a terminal is

either ignored or directed to a file.

Users may interrupt a program running as a phantom. Major uses of phantomsare:

* Programs requiring long execution time (such assorts).

° Certain system utilities (such as line printer spooler).

¢ Freeing terminals for interactive uses.

Sequential job processing: The number of phantom users on a system is fixed. The

sequential job processor queues requests for phantom users and then executes these jobs

one at a time (Section 10).

This environment is especially useful when phantom usage is heavy and interactive

execution of programsis not a requirement.

File system summary

PRIMOSallowsthe user to access upto 16 files at one time. These disk files may be created,

modified and deleted throughthe use of the Applications Library subroutines andthefile

management subroutines of the Operating System (Section 19). The file system is discussed

in Section 2. Files, opened by these subroutines, may be accessed by FORTRAN I/O

statements such as READ, WRITE, ENCODE, DECODE. See Section 15 for a complete

discussion of these commands.

SYSTEM RESOURCES SUPPORTING FORTRAN

There are a large number of libraries and utilities in PRIMOS supporting the use of

FORTRANon the Prime computer. A brief description of some of the major onesfollows.

1 January, 1979 1-5 FDR 3057

1 OVERVIEW OF PRIME’S FORTRAN

_Table 1-1. FORTRAN Mathematical Functions
es - Data ModeofArgumentand Va

Operation Integer [Precision_

Cosine {| B/fa | COS|DECOS
Arctangent= =| n/a ATAN| DATA‘Arctangentofratio = | n/a |ATAN2 — [DAT,Hyperbolictangent

=

=| n/a | TANH

Log-basee(Ln) | n/a|ALOG|DLOG
Log-base2. nf |e |DLO
Log-baselo = |fa| ALOG10| DLOG1Exponential ==| ss n/a]EXP X
Squareroot n/a.....|. SQRT._|DSQR’
Absolute value=——s||_~“‘TABS”—s | ABS|_‘DABS.Remainder (modulus) | MOD | AMOD|DMOTruncationto=| n/a ANT

Integral valueft
Positive difference = | IDIM |DIM|.Magnitudeoffirst. =| ‘ISIGN |sIGN| ps

ofsecond ee|Complex Conjugate — n/a|n/a

Randomnumber =| IRND(Z),|RND| |
Maximum of List. | AMAXo(2) |AMAX1__| DMAX

‘MinimumofList’| AMINo(2) | AMIN1_| DMID

n/a -Not applicable. oe eee _1~Acceptsshort integer argumentonly;all otherintegerfu neti

_ combinationsof short and longintegers. . oe

(2-Valuemodeis single-precision. 3-Value mode is integer. |

Libraries

Library functions and subroutines of use to the FORTRAN applications programmerare inSection 19 of this document. A complete treatment ofall library and system subroutinesisin Reference Guide, PRIMOS Subroutines.

A summary of the FORTRAN mathematical functionsis given in Table 1-1. There are alsoFORTRANfunctions for the Boolean (logical) operations of AND, OR, XOR. NOT,rightshift, right truncate, left shift, and left truncate. Conversion between data modes issupported bya set of conversion functions. For more advanced mathematicalusage, a matrixlibrary is provided (See Table 1-2 fora summary). A complete description of the In-memory

FDR 3057 1-6 1 January, 1979

OVERVIEW OF PRIME’S FORTRAN 1

1 OVERVIEW OF PRIME’S FORTRAN

Editor

Prime’s text editor is a line-oriented editor enabling the programmerto enter and modify
source code and text files. Information for these purposes is in Section 4: a complete
description of the Editor is in The New User's Guide to EDITOR and RUNOFF.

Multiple index direct access system (MIDAS)

MIDASis a system of utilities and subroutines for creating and maintaining keyed-
index/direct-accessfiles. All housekeeping functions on the index and data sub-files are
performed by MIDASsubroutines called from FORTRAN programs. An overview of MIDAS
is in Section 12, the complete documentation is Reference Guide, Multiple Index Data
Access Systems (MIDAS).

Database Managementsystem (DBMS)

Prime’s DBMSis a CODASYL-compliant system for managementof large amountsof data.
DBMScanbeaccessed from either FORTRAN or COBOL programs. Complete information
on using DBMSin the FORTRANenvironmentis in Reference Guide for DBMS Schema
DDL and FORTRANReference Guide for DBMS.

Forms management system (FORMS)

FORMSis a system for creation, maintenance, and use of screen formsforinteractive file
maintenance. These screen forms are an extremely useful tool for the applications
programmerwriting data entry programs.Details are in FORMS Programmer's Guide.

Language interfaces

Under the PRIMOSoperating system, FORTRAN programs maycall or be called by PMA
(Prime Macro Assembly) language programs. FORTRAN subroutines may be called from
COBOLprograms. Details are in The PMA Programmer's Guide and The COBOL Program-
mer’s Guide.

FDR 3057 1-8 1 January, 1979

Overview of PRIMOS

Overview of PRIMOS

INTRODUCTION

This section is an introduction to the basic concepts of Prime’s Operating System (PRIMOS)

and its embedded file management system (FMS). This information is basic to the efficient

usage of PRIMOS.Contents include:

¢ A glossary of Prime concepts and terms.

¢ Command format conventions.

e Special terminal keys.

e System prompts.

¢ Using the file system.

GLOSSARY OF PRIME CONCEPTS AND CONVENTIONS

The following is a glossary of concepts and conventions basic to Prime computers, the

PRIMOSoperating system, and the file system.

abbreviation of PRIMOS commands: Only internal PRIMOS commands may be ab-

breviated.

binary file: A translation of source file generated by a language translator (PMA, COBOL,

FTN, RPG). Suchfiles are in the format required as inputto the loaders. Also called object

file.

byte: 8 bits; 1 ASCII character.

CPU: Central Processor Unit (the Prime computer proper as distinct from peripheral

devices or main memory).

current directory: A temporary working directory explained in the discussion on Home vs

current directories later in this section.

directory: A file directory; a special kind of file containing a list of files and/or other

directories, along with information on their characteristics and location. MFDs, UFDs, and

subdirectories (sub-UFDs)are all directories. (Also see segment directory.)

directory name: Thefile nameofa directory.

external command: A PRIMOS commandexisting as a runfile in the commanddirectory

(CMDNCO). It is invoked by name, and executes in user address space. External commands

print GO whenstarting, and cannot be abbreviated.

file: An organized collection of information stored on a disk (or a peripheral storage medium

such as tape). Each file has an identifying label called a filename.

1 January, 1979 2-1 FDR 3057

2 OVERVIEW OF PRIMOS

filename: A sequence of 32 or fewer characters which names a file or a directory. Within
any directory, each filenameis unique. Directory namesanda filename may be combined
into a pathname. Most commandsaccept a pathname wherevera filenameis required.
Filenames may contain only the following characters:

A-Z, 0-9, __#$-.* &

Thefirst character of a filename must not be numeric. On some devices underscore (__)
prints as backarrow (+).

filename conventions: Prefixes indicate various types of files. These conventions are
established by the compilers and loaders, or by commonuse, and not by PRIMOSitself.

B__ filename Binary (Object) file
C_. filename Commandinputfile
L__ filename Listing file
M_ filename Load mapfile
O__ filename Commandoutputfile
filename Source file or text file
*filename SAVED (Executable) R-mode runfile
#filename SAVED (Executable) V-mode runfile

file-unit: A number between1 and 63 (‘77) assigned as a pseudonym to each openfile byPRIMOS. This number maybegiven in place of a filenamein certain commands, such as
CLOSE. PRIMOS-level internal commands require octal values. Each user may have upto16 file units open at the same time. Certain commands or activities use particular unit
numbers by default:

PRIMOSassigned units Octal Decimal
INPUT, SLIST 1 1

LISTING 2 2
BINARY 3 3
AVAIL 5 5

COMINPUT 6 6
SEG’s loadmap 13 11
COMOUTPUT 77 63

EDITOR 1,2 1,2
SORT 1-4 1-4

RUNOFF 1-3 1-3

file protection keys: See keys,file protection.

homedirectory: The user’s main workingdirectory,initially the login directory. A different
directory may be selected with the ATTACH command. See the discussion on Home vscurrent directory later in this section.

identity: The addressing mode plus its associated repertoire of computer instructions.
Programs compiled in 32R or 64R modeexecutein the R-identity; programs compiled in 64Vmode execute in the V-identity. R-identity and V-identity are also called R-mode and V-
mode.

internal command: A commandthatexecutes in PRIMOS address space. Doesnot overwritethe user memory image. Internal commands can be abbreviated. See abbreviation of
PRIMOS commands.

FDR 3057 2-2 1 January, 1979

OVERVIEW OF PRIMOS 2

keys, file protection: Specify file protection, as in the PROTEC command.

No access

Read
Write

Read/Write
Delete and truncate
Delete, truncate and read
Delete, truncate and write
All rightsN

o
o
r
t

O
W
N

F
R

O
S

LDEV:Logical disk device numberas printed by the command STATUSDISKS.(See Idisk.)

Idisk: A parameter. to be replaced by the logical unit number (octal) of a disk volume.It is

determined whenthe disk is brought up by a STARTUP or ADDISK command. Printed as

LDEV by STATUSDISKS.

logical disk: A disk volume that has been assigneda logical disk number by the operator or

during system startup.

MED:The MasterFile Directory. A special directory that contains the namesof the UFDs on

a particular disk or partition. There is one MFDfor each logical disk.

mode: An addressing scheme. The mode used determinesthe construction of the computer

instructions by a compiler or assembler. (See identity.)

nodename: Nameof system on a network; assigned when local PRIMOS system is built or

numberrepresentations:

XXXXX Decimal

‘XXXXX Octal

$xXXXX Hexadecimal

object file: See binary file

open:Active state of a file-unit. A command or program opensa file-unit in order to read or

write it.

output stream: Output from the computerthat would usually be printed at a terminal during

commandexecution, but which is written to a file if COMOUTPUT commandwasgiven.

packname: See volume-name.

page: A block of 1024 16-bit words within a segment (512 words on Prime 300).

partition: A portion [or all] of a multihead disk pack. Each partition is treated by PRIMOS

as a separate physical device. Partitions are an integral numberof headsinsize, offset an

even numberof heads from the first head. A volume occupies

a

partition, and a “partition

of a disk” and a “volumeoffiles’ are actually the samething.

pathname: A multi-part name which uniquely specifies a particular file (or directory)

within a file system tree. A pathname(also called treename) gives a path from the disk

volume, through directory and subdirectories, to a particular file or directory. See the

discussion on Pathnamesin this section.

PDEV:Physical disk unit numberas printed by STATUS DISKS. (See pdisk.)

pdisk: A parameter to be replaced by a physical disk unit number. Neededonly for operator

commands.

1 January, 1979 2-3 FDR 3057 ©

2 OVERVIEWOF PRIMOS

phantom user: A process running independently of a terminal, under the control of a
commandfile.

runfile: Executable version of a program,consisting of the loaded binaryfile, subroutines
and library entries used by the program, COMMONareas,initial settings, etc. (Created
using LOAD or SEG.)

SEG: Prime’s segmentationutility.

segment: A 65,536-word block of address space.

segmentdirectory: A special form of directory used in direct-accessfile operations. Not to
be confused with directory, which means “file directory”.

segno: Segment number.

source file: A file containing programming language statements in the format required by
the appropriate compiler or assembler.

subdirectory: A directory that is in a UFD or another subdirectory.

sub-UFD: Same as subdirectory.

treename: A synonym for pathname.

UFD:A UserFile Directory, one of the Directories listed in the MFD of a volume.It may be
used as a LOGIN name.

unit: See file-unit.

volume: A self-sufficient unit of disk storage, including an MFD,a disk record availability
table, and associatedfiles and directories. A volume may occupy a complete disk pack or be
a partition within a multi-head disk pack.

volume-name: A sequenceof6 or fewer characters labeling a volume. The nameis assigned
during formatting (by MAKE). The STATUS DISKS command uses this name in its DISK
column to identify the disk.

word: As a unit of address space, two bytes or 16 bits.

COMMAND FORMAT CONVENTIONS

The conventions for PRIMOS command documentation are:

WORDS-IN-UPPER-CASE:Capitalletters identify command wordsor keywords. They are
to be entered literally. If a portion of an upper-case word appears in rust, the rust
colored letters indicate the minimum legal abbreviation.

Words-in-lower-case: Lower case letters identify parameters. The user substitutes an
appropriate numerical or text value.

Braces { }: Braces indicate a choice of parameters and/or keywords. Unless the braces are
enclosed by brackets, at least one choice must be selected.

Brackets []: Brackets indicate that the word or parameter enclosedis optional,

Hyphen -: A hyphenidentifies a commandline option, as in: SPOOL -LIST

Parentheses (): When parentheses appear in a command format, they must be included
literally.

Ellipsis ...: The preceding parameter mayberepeated.

Angle brackets < >: Used literally to separate the elements of a pathname. For example:

<FOREST>BEECH>BRANCH37>TWIG43>LEAF4.

FDR 3057 2-4 1 January, 1979

OVERVIEW OF PRIMOS 2

option: The word option indicates one or more keywords or parameters can begiven, and

that a list of options for the particular commandfollows.

Spaces: Command words, arguments and parameters are separated in commandlines by

one or more spaces. In order to contain a literal space, a parameter must be enclosed in

single quotes. For example, a pathname maycontain a directory having a password:

‘<FOREST>BEECH SECRET>BRANCH6’.

The quotes ensure that the pathnameis not interpreted as two items separated by a space.

Conventions in examples

In all examples, the user’s input is rust-colored, and the system’s outputis not. For example:

OK, ATTACH GOUDY
OK, ED SEGINFO
GO
EDIT

Userinput usually may be either in lower case or in UPPER CASE.Therare exceptions will

be specified in the commands wherethey occur.

SPECIAL TERMINAL KEYS

CONTROL:The key labeled CONTROL(or CTRL) changes the meaningof alphabetic keys.

Holding down CONTROLwhile pressing an alphabetic key generates a control character.

Control characters do not print. Some of them have special meaningsto the computer. (See

CONTROL-P, CONTROL-Q and CONTROL-S, below.) Others are ignored.

RUBOUT: The key labeled RUBOUThas a special use in RUNOFF.It is not generally

meaningful to other standard Prime software. On some terminalsit is labeled DELETE or

DEL.

RETURN: The RETURNkeyends a line. PRIMOSedits the line according to any erase (")

or kill (?) characters, and either processesthe line as a PRIMOS command,orpassesit to a

utility such as the editor. RETURNis also called CR or CARRIAGE-RETURN.

BREAK, ATTN, INTRPT: See CONTROL-P.

Special terminal characters

Caret(*):

|

Used in EDITORto enter octal numbersandforliteral insertion of Erase and

Kill characters. On some terminals andprinters, prints as up-arrow (T).

Backslash (\): Default EDITOR tab character.

Double-quote (‘‘): Default erase character for PRIMOS, EDITOR, and RUNOFF Command

Mode. Each double-quote erases a character from the currentline. Erasureis from right (the

most recent character) to left. Two double-quotes erase two characters, three erase three,

and so forth. You cannot erase beyond the beginning of a line. The PRIMOS command

TERM (Section 10 of this guide) allows the user to choose a different erase character.

Question mark (?): Default kill character for PRIMOS, EDITOR, and RUNOFF Command

Mode. Each question mark deletes all previous characters on the line. The PRIMOS

command TERM (Section 10 of this guide) allows the user to choose a different kill

character.

1 January, 1979 2-9 FDR 3057

2 OVERVIEW OF PRIMOS

CONTROL-P: QUIT immediately (interrupt/terminate) from execution of current command
and return to PRIMOSlevel. Echoes as QUIT. Used to escape from undesired processes.
Will leave used files open in certain circumstances. Equivalent to hitting BREAK key.

CONTROL-S: Halt output to terminal, for inspection. No commandsother than CONTROL-
P (QUIT) or CONTROL-Q (Continue) may be given. This special function is activated by the
command TERM -XOFF.

CONTROL-Q: Continue output to terminal following a CONTROL-S (if TERM -XOFFis in
effect).

UNDERSCORE(_): On somedevices,prints as a backarrow (<).

SYSTEM PROMPTS

The OK prompt: The OK prompt indicates that the most recent command to PRIMOS has
been successfully executed, and that PRIMOSis ready to accept another commandfrom the
user. The punctuation mark following the “OK” indicates to the user whether heis
interfacing with a single-user level of PRIMOS. The prompt ‘“‘OK:” indicates single-user
PRIMOS (a version of PRIMOS II); the prompt ‘“OK," indicates multi-user PRIMOS.

PRIMOSIII and PRIMOSsupport type-ahead. The user neednotwait for the ‘OK,’ afterone
command before beginning to type the next command. However, since each character
echoesas the usertypesit, output from the previous command mayappearonthe terminal
to be jumbled with the commandbeingtyped ahead. Typeaheadis limited to 192 characters.

PRIMOSII doesnot support type-ahead. The user mustwait for “OK:” before beginning to
enter the next command.

The ER! prompt: The ER! prompt indicates that PRIMOS was unable to execute the most
recent command, for one reason or another, and that PRIMOSis ready to accept another
commandfrom the user. The ER! prompt usually is preceded by oneor more error messages
indicating what PRIMOSthought the trouble was.

Commonerrors include:

¢ Typographical errors

e Omitting a password

e Being in the wrong directory

e Forgetting a parameter or argument \

USING THE FILE SYSTEM

File and directory structures: A PRIMOSfile is an organized collection of information
identified by a filename. The file contents may represent a source program, an object
program, a run-time memory image, a set of data, a program listing, text of an on-line
document, or anything the user can define and express in the available symbols.

Files are normally stored on the disks attached to the computer system. No detailed
knowledge of the physical location of a file is required because the user, through PRIMOS
commands,refers to files by name. On somesystems, files may also be stored on magnetic
tape for backuporfor archiving.

PRIMOSmaintains a separate userfile directory (UFD) for each userto avoid conflicts that
might arise in assignment of filenames. A master file directory (MFD) is maintained by
PRIMOSfor each logical disk connected to the system. The MFDcontainsinformation about
the location of each User File Directory (UFD) on the disk. In turn, each UFD contains
information about the location and contentof each file or sub-UFDin that directory.

FDR 3057 2-6 1 January, 1979

OVERVIEW OF PRIMOS 2

The types of files most often encountered are shownin Table 2-1. For a description of the
PRIMOSfile system and a description of the ordering of information within files, refer to
the Reference Guide, PRIMOSSubroutines.

Pathnames: The PRIMOSfile directory system is arrangedas a tree. At the root are the disk
volumes (also called partitions, or logical disks}. Each disk volume has a MasterFile
Directory (MFD) containing the namesof several User File Directories (UFDs). Each UFD
may contain notonly files, but subdirectories (sub-UFDs), and they may contain subdirec-
tories as well. Directories may have subdirectories to any reasonablelevel.

A pathname(also called a treename) is a name usedto specify uniquely any particular file
or directory within PRIMOS.It consists of the names of the disk volume, the UFD,a chain
of subdirectories, and the target file or directory. For example,

<FOREST>BEECH>BRANCH5>SQUIRREL

specifies a file on the disk volume FOREST, under the UFD BEECH and the sub-UFD
BRANCHS.Thefile’s name is SQUIRREL.Figure 2-1 illustrates how pathnamesshowpaths
through a tree of directories andfiles.

Disk volume names, and the associated logical disk numbers, may be found with the
STATUS DISKS command,described later. A pathname can be made with the logical disk
number,instead of the disk volume name. For example, if FOREST is mountedaslogical
disk 3,

<3>BEECH>BRANCH5>SQUIRREL

specifies the samefile as the previous example.

Usually each UFD nameis unique throughoutall the logical disks. In our example that

would mean that there would be only one UFD named BEECHinall the logical disks, 0

through 17. When thatis the case, the volume orlogical disk name may be omitted, and

PRIMOSwill search all the logical disks, starting from 0, until the UFD is found. For

example, if there is no UFD named BEECHondisks0,1, or 2, then

BEECH>BRANCH5>SQUIRREL

will specify the same file as the previous two examples. This last form of pathname, in
which the disk specifier is omitted, is called an ordinary pathname becauseit is very

frequently used.

Pathnamesvs filenames: Most commandsaccept a pathnameto specify a file or a directory.
So the terms “filename” and “pathname” may be used almost interchangeably. A few
commands, however, require a filename,not a pathname.It is easyto tell a filename from
a pathname.A pathnamealways contains a ‘‘ >", while a filenameor directory name never

does.

Homevs current directories: PRIMOShasthe ability to remembertwo working directories

for each user: the “home”directory, and the “current” directory. With few exceptions, the

home andcurrentdirectories are the same. All work can be accomplished while treating
them both underthe single conceptof ‘‘working directory’.

Whenthe user logs in to a UFD, that UFD becomesthe working directory. The ATTACH

command changesthe working directory to any other directory to which the user has access

rights. A working directory may be an MFD, UFD,or sub-UFD.

The ATTACH command has a home-keyoption whichallowsthe currentdirectory to change

while the homedirectory remains the same. See Reference Guide, PRIMOS Commandsfor

details of this operation.

1 January, 1979 2-7 FDR 3057

2 OVERVIEW OF PRIMOS

Relative pathnames:It is often more convenient to specify a file or directory pathname
relative to the homedirectory, rather than via a UFD.For example, when the homedirectory
is

BEECH>BRANCH5

the commands

OK, SLIST BEECH>BRANCH5>TWIG9>LEAF3

and

OK, SLIST *>TWIG9>LEAF3

have the same meaning. The symbol‘‘*”as the first directory in a pathname means ‘“‘home
directory”.

moasennenertavamerneathiton

2-1.TypesofFiles inPRIMOS_
[How How.
redted Accessed

 [Programs ————=—=s«| Programs) «= sss DEEL

‘|SORT. . JED(examine only)
: comouTPuT [SLIsT” ee: — Ispoor ae

RINREAD/WRITE:
: ne~ TEXPANDto ASCIL.
‘|Some COBOL ~~ |SPOOLerwith. FUTI
|programs,ED |EXPANDD optionae

| Translators= LOAD«or SEG
| FTN,PMA,COBOL, | Binary.Editor. gee
BinaryEditor (EDR)

 = Er :
Control panel

ye SEG: VESD
{Control panel

18G SGDR$$.subroutine
‘subroutine | oh -| MIDAS— oes

|MIDA , DBMS_ {DBMS oe
¥, TE Seeean‘USTF

 = Contents:LIST: TN -

[NO |

FDR 3057 2-8 1 January, 1979

OVERVIEW OF PRIMOS 2

2 OVERVIEW OF PRIMOS

Current disk: Occasionally it will be necessary to specify a UFD on the disk volumeyou are

currently using; this is, where your homedirectoryis. For example, when developing a new

disk volume with UFD namesidentical to those on another.disk,it is necessary to carefully

specify whichdiskis to be used, each time a pathnameis given. The currentdiskis specified

by .

<*> BEECH>BRANCH5

for example. Do not confuse ‘‘<*>’’, meaning current disk, with the asterisk alone, which

means homedirectory.

FDR 3057 2-10 1 January, 1979

USING
FORTRAN

a satistesteeaianaasiasteasiantaciusenrtareumeareursatautegutnateueeateateteauneueeseeieteeicecstel alteltattefattattateatiugusenteseiueaeseeseeleezeeseeseeseaseestsitacuususeaeetnsonauteeteeloattallataetateatautaasaataysssetszeeteeceeteatoatetatoateatotatutattattattettetetatetteateellaitetaelahceeteeteeteataaaat

seston eceteseceansetetenenenatsseeeeenneeteteneseeeteteceneeetetoneeenmeeaetege

Accessing PRIMOS

INTRODUCTION

Purpose of this section

This section is a brief overview of some of the fundamental features of the PRIMOS

operating system for the FORTRAN programmer. It assumes that you are a FORTRAN

programmer who hasprevious experience with an interactive computer system, although

possibly not on a Prime computer.If you are not familiar with interactive computers, you

mayprefer to start with the New User’s Guide to EDITOR and RUNOFF.This section also

assumes you have read the concepts and definitions in Section 1.

Using the PRIMOS Programmer’s Companion

In this section we introduce the essential PRIMOS commandsso that you can begin working

on the system. We recommend that you keep a Programmer’s Companion handy as a

summary of the commandsexplainedin this section plus other PRIMOS commands.Inthis

user’s guide we have selected only those PRIMOS commands weknow will be ofuseto the

FORTRANprogrammer. Depending upon your application, there are many other PRIMOS

commandsthat may simplify your task or increase efficiency.

Using PRIMOS

PRIMOSrecognizes more than one hundred commands, some of which invoke subsystems

which themselves respond to subcommandsor extensive dialogs. However, most FORTRAN

users can do 99% of their program developmentusing about a dozen commands. This section

introduces the essential commandsneeded by all users. These commands allow you

to:

¢ Gain admittance to the computer system (LOGIN).

¢ Change the working directory (ATTACH).

¢ Create new directories for work organization (CREATE).

¢ Secure directories against iatrusion (PASSWD).

e Removedirectories which are no longer needed (DELETE).

e Examinethe location of the working directory and its contents (LISTF).

e Look at the availability and current usage of system resources—

space, users, etc. (AVAIL, STATUS, USERS).

* Create files at the terminal or enter them from tape, etc. (MAGNET, CRSER,ED.

See Section 4).

¢ Rename files (CNAME).

¢ Determinefile size (SIZE).

e Examinefiles (SLIST).

e Print files (SPOOL).

¢ Remove unneededfiles (DELETE).

¢ Allow controlled access to files (PROTEC).

¢ Complete a work session (LOGOUT).

1 January, 1979 3-1 FDR 3057

3 ACCESSING PRIMOS

ACCESSING THE SYSTEM

In order to access or work in the system, the user must first follow a procedure known as
‘login’. ‘Logging in’ identifies the user to the system and establishes the initial contact
between system and user (via a terminal). Once loggedin, the user has access to a working
directory (work area), to files and to other system resources. The format of the LOGIN |
commandis:

LOGIN ufd-name [password] [-ON nodename]

ufd-name The nameof yourlogin directory.

password Mustbe includedif the directory has a password.

-ON nodename Used for remote login across PRIMENETnetwork.

Example:

LOGIN DOUROS NIX

DOUROS (21) LOGGED IN AT 198'33 112878

The numberin parenthesesis the PRIMOS-assigned user number(also called ‘job’ number).
The time is expressed in 24-hour format. The date is expressed as mmddyy (Month Day
Year). The word NIX,in this example, is the password on the login directory.

When logging into the system, typing errors, incorrect passwords, or similar errors may

cause error messagesto be displayed. Most are self-explanatory. For a detailed discussion,
see the New User’s Guide to EDITOR and RUNOFF.

DIRECTORY OPERATIONS

Changing the working directory

After logging in, the user’s working directory is set to the login UFD by PRIMOS.The user
can moveto anotherdirectory in the PRIMOStreestructure(i.e., attach) with the ATTACH
command. The formatis:

ATTACHnew-directory

new-directory is the pathname of the new workingdirectory.

Note

If any of the directories in the pathname have passwords, the
entire pathname mustbe enclosedin single quotes,as in:

A ‘BEECH SECRET>BRANCHS'

To set the MFD of a disk as the working directory, the formatis slightly different:

ATTACH ‘<volume>MFD mfd-password’

volumeis either the literal volume nameorthelogical disk number, and mfd-passwordis
the password of the MFD. A passwordis always required for a MFD.

Recovering from errors while attaching: If an error message is returned following an
ATTACH command(for example, if a UFD is not found), the user remainsattachedto the
previous working directory.

FDR 3057 3-2 1 January, 1979

ACCESSING PRIMOS 3

Creating new directories

To organize tasks and workefficiently, it is often advantageous to create new sub-UFDs.
These sub-UFDs can be created within UFDs or other sub-UFDs with the CREATE
command. Theycan contain files and/or other sub-directories. The formatis:

CREATE pathname

The pathnamespecifies the directory in which the sub-UFDis being created, as well as the
nameof the new directory.

Example:

CREATE <1>TOPS>MIDDLE>BOTTOM

The sub-UFD BOTTOMis created in the sub-UFD MIDDLE, whichin turn is found in the

UFD TOPS, whichis in the MFD of disk volume1.

Two files or sub-UFDs of the same name are not permitted in a directory. If this is
inadvertently attempted, PRIMOSwill return the message: ALREADY EXISTS.

Assigning directory passwords

Directories may be secured against unauthorized users by assigning passwords with the
PASSWD command.Thereare twolevels of passwords: owner and non-owner.If you give
the owner password in an ATTACH command, you have ownerstatus; if you give the non-
owner password in an ATTACH command,you have non-ownerstatus. Files can be given
different access rights for owners and non-owners with the PROTEC command (see

Controlling file access).

The PASSWD commandreplaces any existing password (s) on the working directory with
one or two new passwords, or assigns passwordsto this directory if there are none. The

formatis:

PASSWD owner-password [non-owner-password]

The owner-passwordis specified first; the non-owner-password,if given, follows. If a non-
ownerpasswordis not specified, the default is null; then, any password (except the owner
password) or noneallowsaccessto this directory as a non-owner.

Example:

OK, A DOUROS NIX

OK, PASSWD US THEM

The old password NIX is replaced by the owner password US, and the non-owner password
THEM.

Deleting directories

Whendirectories are no longer needed they may be removedfrom the system to provide
more room for other uses. The DELETE commandcanalso delete empty subdirectories from
a given directory. The formatis :

DELETE pathname

Sub-UFDsthatare not empty,ie., that still contain files or subdirectories, cannot be deleted

with this command.All entries in the directory must be deletedfirst. If an attempt is made

to delete directories containing files, PRIMOSprints the message:

DIRECTORY NOT EMPTY

1 January, 1979 3-3 FDR 3057

3 ACCESSING PRIMOS

Examining contents of a directory

After logging in or attaching to a directory, the user can examine the contents of this
directory with the LISTF command which generates a list of the files and sub-directories in
the current directory. The formatis:

LISTF

For example, the working directory is called LAURA.The following list will be generated
when LISTFis entered at the terminal:

OK, LISTF

UFD=LAURA 6 OWNER

SQUERY BOILER EX LETTER QUERY OLISTF BASICPROGS
OUTLINE SOUTLINE MOL SMOL SLETTER MOL. LETTER
EXAMPLES FUTIL. 10 SFUTIL. 12

OK,

The numberfollowing the UFD-nameis the logical device number,in this case, 6. The words
OWNERor NONOWNfollow this number,indicating the user status in this directory. (See
Securing Directories).

If no files are contained in a directory, .NULL.is printed insteadofa list of files.

SYSTEM INFORMATION

Table 3-1 summarizes useful information you may need aboutthe system and howto obtain
it.

FILE OPERATIONS

Creating and modifyingfiles

Text files may be created and modified using the text editor (ED), Files may be transferred
from other systems using magnetic tape (MAGNET command), paper tape (ED command),
or punched cards (CRSER command). These commandsare described in Section 4.

Changingfile names

It is often convenientor necessary to change the nameofa file ora directory. This is done
with the CNAME command.The format is:

CNAMEold-name new-name

old-nameis the pathnameof thefile to be renamed, and new-nameis the new filename.

Example:

CN TOOLS>FORTRAN>TEST OLDTEST

The file named TEST in the sub-UFD FORTRAN in the UFD TOOLSis changed to
OLDTEST. Since no disk wasspecified all MFDs(starting with logical disk 0) are searched
for the UFD TOOLS.

FDR 3057 3-4 1 January, 1979

ACCESSING PRIMOS 3

3 ACCESSING PRIMOS

Determiningfile size

The size (in decimal records) of a file is obtained with the SIZE command. This commandreturns the numberof recordsin thefile specified by the given pathname. The numberofrecordsin a file is defined as the total number of data words divided by 448. However,azero-word length file always contains one record. The format is:

SIZE pathname

Example:

OK, SIZE GLOSSARY
GO

14 RECORDS IN FILE

OK,

Examining file contents

Contents of a program or anytext file can be examined at the terminal with the SLISTcommand. The format is:

SLIST pathname

The file specified by the given pathnameis displayed at the terminal. It is possible tosuspend the terminal display asit is printing. This procedure is explained in Section 10(Terminal operations).

Obtaining copiesoffiles

Printed copiesof files from a line printer are obtained with the SPOOL command.It hasseveral options, some of which will not apply to all systems, as systems may be configureddifferently. The formatis:

SPOOL pathname

PRIMOS makesa copyof pathnamein the Spool QueueList for the line printer, and displaysthe message:

YOUR SPOOLFILE IS PRTxxx (length)

xxx is a 3-digit number whichidentifies thefile in the Spool QueueList. The reasonfora list,rather than just having eachfile spooled out as the request comes,is that some requests arevery long—hundreds of pages. PRIMOS spools out the shorter files as soon as possible,rather than make the user wait while the long files are printed. The length (SHORT orLONG) which follows the SPOOL message is the category to which the file has beenassigned. It is possible to check the status of a SPOOL request by giving the command:

SPOOL -LIST

FDR 3057 3-6 1 January, 1979

ACCESSING PRIMOS 3

Example:

OK, SPOOL $$2.3057
GO
YOUR SPOOL FILE IS PRT@26 (LONG) REV 15.2**

OK, SPOOL -LIST

GO

USER FILE DATE/TIME OPTS SIZE NAME FORM DEFER

SOPHIE PRT@@5 19/25 14:26 S 5 SUNFUNDED W.WIBA
TEKMAN PRT@#@6 18/25 15:46 L 22 $S2.3057

OK,

To cancel a spool request, the commandformatis:

SPOOL -CANCEL PRTxxx

xxx is the numberof your spoolfile.

For example:

OK, SPOOL -CANCEL PRT@13

GO.

PRT#@13 CANCELLED.

OK,

Deferring printing: The -DEFER option tells the Spooler not to begin printing the indicated
file until the system time matches the time specified with DEFER.This also permits you to
enter SPOOL requests at your convenience, rather than waiting for the appropriate hour.

Specify the DEFER optionby:

SPOOLfilename -DEFER ‘time’

The value for ‘time’ can be expressed either in 24-hour format (00:00 = Midnight) or in 12-
hour format followed by AM or PM (12:00 AM = Midnight). The format for ‘time’ is
‘HH:MM’, where HHis hours, “':” is any character, and MM is minutes. If you specify
-DEFERbut omit time you will get the prompt:

ENTER DEFERRED PRINT TIME:

If ‘time’ is not in the correct format, you will get the above prompt again, plus this
informational message:

CORRECT FORMAT IS HH:MM AM/PM.

Printing on special forms: Line printers traditionally use one of two types of paper — ‘‘wide’”’

listing paper, on which most program listings appear, and 8-12 x 11-inch white paper, which
is standard for memos and documentation. Computer roomsoften stock a variety of special
paper formsfor special purposes, such as 5-copysets, pre-printed forms (checks, orders,
invoices), or odd sizes or colors of paper.

FDR 3057w
o I N1 January, 1979

3 ACCESSING PRIMOS

Requesta specific form by:

SPOOLfilename -FORM form-name

form-nameis any six-character (or less) combination of letters. A list of available form
names should be obtained from the System Administrator.

Deleting files

Whenfiles or programs are no longer needed they may be removed from the system to
provide more room for other uses. The DELETE commanddeletes files from the working
directory. The formatis:

DELETE pathname

Controlling file access

Assigning passwordsto directories allows users working in a directory to be classified as
owners or non-owners, depending upon which password they use with the ATTACH
command. Controlled access can be established for any file using the PROTEC command.
This commandsets the protection keys for users with owner and non-ownerstatus in the
directory (see Assigning directory passwords above). The formatis:

PROTEC pathname [owner-rights] [non-owner-rights]

pathname The nameof the file to be protected.

owner-rights A key specifying owner's accessrights to file (original
value = 7}.

non-owner- A key specifying the non-owner’s access rights (original
rights value = 0).

The values and meanings of the access keysare:
key Rights
0 No access of any kind allowed
1 Read only
2 Write only
3 Read and Write
4 Delete and truncate
5 Delete, truncate and read
6 Delete, truncate and write

7 All access

Note

The default protection keys associated with any newly
created file or UFD are: 7 0. The owneris given ALL rights
and the non-owneris given none.

Example:

PROTEC <OLD>MYUFD>SECRET 7 1

In this example, protection rights are set on the file SECRET in the UFD MYUFDsothatall
rights are given to the ownerandonly read rights are given to the non-owner.

COMPLETING A WORK SESSION

Whenfinished with a session at the terminal, give the LOGOUT command.The formatis:

LOGOUT

FDR 3057 3-8 1 January, 1979

ACCESSING PRIMOS 3

PRIMOS acknowledges the commandwith the following message:

UFD-name(user-number) LOGGED OUTAT(time) (date)

TIME USED = terminal-time CPU-time I/O-time

user-number The numberassigned at LOGIN.

terminal-time The amount of elapsed clock time between LOGIN and

LOGOUTin hours and minutes.

CPU-time Central Processing Unit time consumedin minutes and seconds.

I/O-time The amountof input/output time used in minutes and seconds.

It is a good practice to log out after every session. This closesall files and releases the

PRIMOSprocessto another user. However, if you forgetto log out, there is no serious harm

done. The system will automatically log out an unused terminal after a time delay. This

delay is set by the System Administrator (the default is 1000 minutes but most System

Administrators will lower this value).

1 January, 1979 3-9 FDR 3057

Entering and
manipulating

source programs

ENTRY FROM OTHER MEDIA

Existing source programsresident on punched cards, magnetic tape, or punched papertape

can easily be readinto disk files using PRIMOS-levelutilities. In addition, the punched card

and magnetic tape transfer utilities will translate from BCD or EBCDIC representation into

ASCII representation saving considerable time andeffort.

Subroutines and other installation-dependent operations may be altered to conform to

PRIMOSbyusing Editor (described later in this section).

The general order of operations for input from a peripheral deviceis:

1. Obtain exclusive use of the device (Assigning).

2. Transfer programs with appropriate utility.

3. Relinquish exclusive use of the device (Unassigning).

Assigning a device

Assigning a device gives the user exclusive control over that peripheral device. The

PRIMOS-level ASSIGN commandis given from the terminal:

ASSIGNdevice [-WAIT]

device is a mnemonic for the appropriate peripheral:

CR Card Reader
MTn Magnetic Tape Unit n (0-7)
PTR Paper Tape Reader

-WAITis an optional parameter.If included,it queues the ASSIGN commandif the device

is already in use. The assignment request remains in the queue until the device becomes

available or the user types the BREAKkeyatthe terminal; both occurrences return the user

to PRIMOS.If the requested deviceis not available and the -WAIT parameterhasnot been

included, the error message:

DEVICE IN USE

will be printed at the terminal

After all I/O operations are completed, exclusive use is relinquished by the command:

UNASSIGN device

device is the same mnemonic used in the ASSIGN command.

1 January, 1979 4-1 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

Reading punchedcards

Assign use of the parallel interface card reader by:

AS CR -WAIT

To read cards from the card reader, load the card deck into the device and enter the
command:

CRMPC deck-image

deck-image The pathnameofthe file into which the card imagesareto
be loaded.

Source deck headercontrol cards are set up as follows:
Source deck Columns1 and 2 of
representation deck header card
BCD $6

EBCDIC $9
ASCII no header card

Reading continues until a card with $E in columns 1 and 2 is encountered (end of deck);
control returns to PRIMOSandthefile is closed. If the cards are exhausted (or the reader
is halted by the user), control returns to PRIMOSbutthefile is not closed. If more cards are
to be read into thefile, the reader should be reloaded: reading is resumed by the command
STARTat the terminal.

The command:

CLOSE ALL

or

CLOSE deck-image

will close the file.

Example of card readingsession:

OK, AS CR -WAIT
OK, CRMPC old-program-1
OK, UN CR
OK,

If a serial interface card readeris used,the processis similar, with slightly different reader
commands.

OK, AS CARDR -WAIT

OK, CRSER old-program-—2
OK, UN CARDR
OK,

CARDRmaybe abbreviated to CAR.

FDR 3057 4-2 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

Reading magnetic tape

Assign use of the magnetic tape drive by:

AS MTx -WAIT

x is the tape drive unit number: 0-7.

Mountthe tape onthe selected drive unit and read the tape with PRIMOS’ MAGNETutility:

OK, MAGNET

GO

MAGNET 15.2 15-JULY-78

OPTION: READ

MTU¢ = unit-number [/tracks]

unit-number The number of the magnetic tape drive unit which was pre-

viously assigned.

tracks Either 7 or 9; if this parameter is omitted, 9-track tape is

assumed.

MAGNETthenasksa series of questions about the tape format:

MTFILE¢ = tape-file-number

tape-file-number The file number on the tape. A positive integer causes the tape

to be rewoundandthenpositionedto the file number; a 0 causes

no repositioning of the tape.

LOGICAL RECORDSIZE = 80

This is the numberof bytes/line image; normally this is 80 for a FORTRAN source program.

BLOCKING FACTOR= blocking-factor

blocking-factor is the numberof logical records per tape record.

ASCII, BCD, BINARY, OR EBCDIC? data-representation

data-representation action

ASCII Transfer.

BCD Translate to ASCII from 7-track tape.

BINARY Transfer verbatim.

EBCDIC Translate to ASCII.

FULL OR PARTIAL RECORD TRANSLATION? answer

answer is FULL or PARTIAL. The question is asked only for BCD or EBCDIC representa-

tions. Partial translation allows specified bytes in the record to be transferred to disk

without translation to ASCII. The partial option is useful when transferring data files, but

almost all source programswill be transferred with the full option.

OUTPUT FILENAME:filename

filename The nameofthefile in the UFD into which the magnetic tapeis

to read.If the filenamealready exists in the UFD,the question:

OK TO DELETE OLDfilename? answer

will be asked. A NO will cause the requestfor an outputfilenameto be repeated. A YESwill

cause the transfer to begin; upon completion, the following message will be printed out:

1 January, 1979 4-3 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

DONE,tape-records RECORDS READ,disk-records DISK RECORDS OUTPUT

Use of the tape drive unit should then be relinquished by UN MTx.

Reading punched papertape

First load tape into reader; then assign tape reader. Source programs punchedon papertape
in ASCII representation can be read into a disk file with the Editor utility.

OK, AS PTR -WAIT Assign tape reader
OK, ED Invoke Editor
GO

INPUT

(CR) Switch to EDIT mode
EDIT

INPUT (PTR) Input from tape reader
EDIT Tape is being read
FILE filename File input underfilename
OK, UN PTR Unassign tape reader

ENTERING AND MODIFYING PROGRAMS—THE EDITOR

Programsare normally enteredinto the computerusing Prime’s Text Editor (ED). This editor
is a line-oriented text editor whoseline pointer is alwayslocatedat thelastline processed
(whether the processing action is printing, locating, moving pointer, etc). The Editor
operates in two modes, INPUT and EDIT.

Using the editor

Whencreating a newfile, the Editor is invoked by

ED

which places the Editor in the INPUT mode. When modifying an existing filename, the
Editor is invoked by

ED filename

which places the Editor in the EDIT mode.

A RETURNwith no preceding characters on that line switches the Editor from one modeto
another.

Input mode

The INPUT mode is used when entering text information into a file (e.g., creating a
program). The word INPUTis displayed at the user's terminal to indicate the Editor has
entered that mode. The RETURNkeyterminates the currentline and preparesthe Editorto
receive a new line. Tabulation is done with the backslash (\) character. Each backslash
represents the first, second, etc., tab setting; the default tabs are at columns6, 15, and 30.
These settings may be overridden and up to 8 tab settings may be specified by the user with
the TABSET command (described later). A RETURN with notext preceding it puts the
Editor into EDIT mode.

Edit mode

The EDIT modeis used when the contents of the file are to be modified. More than 50
commandsare available, although userswill find that a small subset of these will suffice for
most purposes. The commandsarelisted and describedlater in this section.

FDR 3057 4-4 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

In EDIT mode,the Editor maintains aninternal line pointerat the currentline (the last line

processed). Commands such as TOP, BOTTOM, FIND, and LOCATE, movethis pointer.

WHEREprints out the current line number; POINT movesthe pointer to a specified line

number. The MODE NUMBER command causes the line number to be printed out

whenever a line of text is printed. All commands for location and modification begin

processing with the currentline.

A RETURNwithout any preceding characters puts the Editor into the INPUT mode.

Special characters

In either mode,a single character can be erased with the erase character (default is ’’). For

each " typed, a character is erased (from right to left). The entire current line may be

deleted by typing the kill character (default is ?). A line followed by a ? is null, and a

RETURNat that point will switch the Editor into the other mode.

In input mode, the semicolon(;) is equivalent to a CR (endsa line of input). In edit mode,

semicolons in a character string are treated as a printing character, otherwise, semicolons

separate multiple commandsentered on the sameline.

Saving files

Orderly termination of an Editor session is done from EDIT mode. The command:

FILE filename

writes the current version of the edited file to the disk under the namefilename. The

specified file will be createdif it did not previously exist or overwritten if it does exist. If

an existing file is being modified, the command

FILE

writes the edited version to the disk with the old filename. After execution of the filing

command,control is returned to PRIMOS.

Useful techniques

The following will aid the user in adapting to Prime’s Editor.

Tab settings: When entering source code, much time can be saved using the TABSET

command, In INPUT mode, each \ character is interpreted as one tab setting; the default

values are columns6, 15, and 30. Tabs maybeset to whatever values each programmerfinds

useful. Setting a tab near column 45 makesentryof in-line comments simple; the use of such

comments in programsis strongly advised.

Movinglines of code: Any numberoflines can be movedfrom onelocationto another using

the DUNLOAD command. DUNLOADdeletestheselines asitwrites them into an auxiliary

file. A LOAD commandloadsthe newfile at the desired point. Any numberoflines can be

copied from onelocation in a program to another using the UNLOAD command. UNLOAD

does not delete these lines as it writes them into an auxiliary file. ALOAD commandloads

the copy from the newfile at the desired point.

Overlaying comments after code is written: Comments maybeeasily addedto an existing

source program with the OVERLAY commandin conjunction with the TABSET command.

Finding a line by statement number: The FIND command maybeusedto locate a statement

number in a FORTRANprogram.

Modifying a line without changing character positions: The MODIFY commandis used

whena line must be modified but the absolute column alignment must remain the same.

Sample editing session
See thelist following this example for an explanation of the commands.

1 January, 1979 4-5 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

OK, ED
GO
INPUT

EDIT
TABSET 7 45

INPUT
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 and 45
Cc

\PRINT 1, 'THIS IS A TEX"ST'\/* NOTE USE OF ERASE CHARACTER
1 ?C THIS LINE HAS BEEN DELETED

EDIT
TOP
PRINT 20

NULL.
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C

PRINT 1, 'THIS IS A TEST! /* NOTE USE OF ERASE CHARACTER
C THIS LINE HAS BEEN DELETED
BOTTOM
FILE TEST99

OK, ED TEST99
GO
EDIT
TABSET 7 45
FIND(8) LINE
C THIS LINE HAS BEEN DELETED
DELETE
INSERT \CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMOS
INSERT \END

INPUT
P" TOP
PRINT 26
-NULL.
C THIS IS A SIMPLE TEST TO DEMONSTRATE USE OF THE EDITOR
C THE TABS HAVE BEEN SET TO COLUMNS 7 AND 45
C

PRINT 1, 'THIS IS A TEST! /* NOTE USE OF ERASE CHARACTER
CALL EXIT /* FOR AN ORDERLY EXIT TO PRIMOS
END

BOTTOM
FILE

OK,

FDR 3057 4-6 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

Editor command summary

The following is an alphabetic list of each Editor commandandits function. Acceptable
command abbreviations are underlined. Especially useful commandsare indicated with a
bullet (¢). For a detailed description of all commands, see the Editor Reference Section of
The New User's Guide to EDITOR and RUNOFF (FDR3104).

Note

The string parameter in a commandis any series of ASCII
characters including leading, trailing, or embedded blanks.

eAPPENDstring

Appendsstring to the endof the currentline.

*BOTTOM

Movesthe pointer beyondthelastline ofthefile.

BRIEF

Speeds editing by suppressing the (default) verification responses to certain Editor com-
mands.

*CHANGE/string-1/string-2/[G] [n]

Replacesstring-1 with string-2 for n lines. If G is omitted, only the first occurrenceof string-1
on eachline is changed; if G is present, all occurrences on n lines are changed.

eDELETE [n]

Deletes n lines, including the currentline (default n= 1).

DELETETOstring

Deletes all lines up to but not including line containing string.

*DUNLOADfilename[n]

Deletes n lines from current file and writes them into filename. (Default n= 1.)

DUNLOADfilenameTOstring

Same as DELETE. . .TO, but writes deleted lines into filename.

ERASE character

Sets erase character to character.

eFILE [filename]

Writes the contents of the currentfile into filename and QUITs to PRIMOS.

FINDstring

Movesthe pointer downto thefirst line beginning with string.

eFIND(n) string

Movesthe pointer downtofirst line with string beginning in column n.

GMODIFY

Allows the user to enter a string of subcommands which modify characters within a line.

1 January, 1979 4-7 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

! rn
INPUT (PTR)

(TTY)

Reads text from the specified input device: ASR (Teletype paper-tape reader), PTR (high-
speed paper tape reader) or TTY (terminal). Default is TTY.

eINSERTstring

Inserts string after currentline.

KILL character

Sets kill character to character.

LINESZ [n]

Changes maximumlinelength.

eLOADfilename

Loads filenameinto text following the currentline.

*LOCATEstring

Movespointer forward to thefirst line containing string, which maycontain leading and
trailing blanks.

MODE COLUMN

Displays column numbers whenever INPUT modeis entered.

PRINT
BLANK
SUPPRESS

MODE COUNTstart increment width

Turns on the automatic incremented counter.

MODE NCOLUMN

Turns off the column display (default).

MODE NCOUNT

Suspends counter incrementing (default).

MODE NUMBER

Displays line numbersin front of printed line.

MODE NNUMBER

Turns off the line numberdisplay (default).

MODE PRALL

Prints lower case charactersif device has that capability.

MODE PRUPPER

Prints all characters as uppercase. Precedes lower case characters withan “Land precedes
uppercase characters with an *U if the device is upper case only.

MODE PROMPT

Prints prompt characters for INPUT and EDIT modes.

FDR 3057 4-8 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

MODE NPROMPT

Stops printing of INPUT and EDIT prompt characters (default).

MODIFY/string-2/string-1/[G] [n]

Superimposesstring-1 onto string-2 for n lines. If G is omitted, only the first occurrence of

string-1 on each line is modified; otherwise all occurrencesof string-1 are modified.

MOVEbuffer-1 { buffer-2 |
/string/

Movestring or contents of buffer-2 into buffer-1.

*NEXT [n|

Movesthe pointer n lines forward or backward (default n = 1).

NFINDstring

Movespointer downto first line NOT beginning with string.

NFIND(n)string

Movespointer downtofirst line in which string does not start in column n.

*OVERLAYstring

Superimposesstring on current line. Use tabs to start in middle of line. Use ! to delete

existing characters.

PAUSE

Returns to operating system without changing the Editorstate.

POINT line-number

Relocates the pointer to line-number.

ePRINT [n]

Prints the current line or n lines beginning with the currentline.

PSYMBOL

Prints a list of current symbol characters and their function.

PTABSETtab-1... tab-8

Provides for a setup of tabs on devices that have physical tab stops.

(ASR)
PUNCH (PTP) | [n]

Punches lines of high- or low-speed paper-tape punch.

QUIT

Returns control to PRIMOSwithoutfiling text.

RETYPEstring

The current line is replaced bystring.

SYMBOLnamecharacter

Changes a symbol nameto character. Current default values are:

1 January, 1979 4-9 FDR 3057

4 ENTERING AND MANIPULATING SOURCE PROGRAMS

Name Default Characters

KILL ?
ERASE “
WILD
BLANK
TAB
ESCAPE
SEMICO
CPROMPT
DPROMPT

TABSETtab-1 ... tab-8

Sets up to eight logical tab stops to be invoked by the tab symbol(\).

eTOP

Movesthe pointer oneline before thefirst line of text.

*UNLOADfilename [n]

Copies n lines into filename.

UNLOADfilename TOstring

Unloads lines from currentfile into filename until string is found.

eVERIFY

Displays each line after completion of certain commands.
(Default).

WHERE

Prints the current line number.

XEQ buffer

Executes the contents of buffer. See MOVE.

*[p]
Repeat symbol. Causes preceding commandto be repeated n times.

>
7
3

Ro
t
A
:

LISTING PROGRAMS

Terminallisting

Source programs maybelisted at the terminal, by using the SLIST commanddescribedin
Section 3.

Line printer listing

Use the SPOOL command(Section 3) to obtain a copy of a sourcefile on the system line
printer. Additional options of use to the FORTRAN programmerare:

-FTN Causes the FORTRANoutput conventions to control the line
printer when printing a file. These control characters are
discussed in Section 16 under Formatted Printer Control.

-~-LNUM Prefixes a line numberto the left of the file contents. These

numbers are enclosed in parentheses.

The -FTN and -LNUM optionsare incompatible.

FDR 3057 4-10 1 January, 1979

ENTERING AND MANIPULATING SOURCE PROGRAMS 4

RENAMING AND DELETING PROGRAMS

Renaming

Programs may be renamed with the PRIMOS command CNAME(Section 3). You must have
ownerstatus in the UFD in order to use this command.

Deleting

Programs may be deleted with the PRIMOS command DELETE(Section 3). You must have
ownerstatus in order to use this command.

FDR 3057 4-11 1 January, 1979 —

ompiling

INTRODUCTION

Prime’s FORTRAN Compiler, a one-pass compiler, produces highly-optimized code andis
supported by extensive function and subroutine libraries to do file-handling, and both
mathematical and logical operations.

Source programs must meet the requirements of Prime FORTRANasspecified in this
manual.

The compiler generates object code for either the R-identity or V-identity. R-identity codeis
loaded with Prime’s Linking Loader (LOAD), described in Section 6; V-identity code is
loaded with Prime’s segmented-addressingutility (SEG), described in Section 7. Segmented-
addressing code can be executed on Prime 350 (or higher) computers.

USING THE COMPILER

The FORTRAN Compiler is invoked by the FTN command to PRIMOS:

FTN pathname[-parameter-1] [-parameter-2] . . . [-parameter-n]

or

FTN [-parameter-1] -I pathname.. . [-parameter-n]

pathname The pathname of the FORTRANsource program file.

parameter-1, etc. The mnemonicsfor the options controlling compiler func-
tions such as I/O device specification, listings, and others.

All mnemonic parameters must be precededbya dash ‘‘~’’. The nameof the source program
file must be specified either as the first expression following FTN or as -I pathname
(alternatively, -S pathname) but not both.

Examples:

FTN TEST1 ~XREFL -64V -LISTING SPOOL

and

FTN -LISTING SPOOL -XREFL —-INPUT TEST1 -64V

are equivalent.

The meanings of the parameters will be discussedlater in this section.

1 January, 1979 5-1 FDR 3057

5 COMPILING

END OF COMPILATION MESSAGE

After the compiler has completed a pass of the specified input file, and generated object
code andlisting output to the devices specified by the parameterlist, it prints one End ‘of
Compilation message at the user’s terminal after each END statement encountered.

The format of the compiler messageis:

xxxx ERRORS [<yyyyyy>FTN-REVzz.z]

XXXX The number of compilation errors; 0000 indicates a successful
compilation.

YYYYYy Program module identification:

.MAIN.for a main program,

.DATA. for a BLOCK DATAsubprogram,

the program entry name (up to 6 characters) for a subroutine or
function.

ZZ.Z The PRIMOSrevision number.

Example:

@@@@ ERRORS [<.MAIN.>FIN-REVI16.@]

indicates the successful compilation of a main FORTRANprogram by the REV.16 Compiler.

After compilation of all routines in the sourcefile, control returns to PRIMOS.

COMPILE ERROR MESSAGES

The general formatof the error messageis:

**** LINE nnnn [context] name - message

nnnn The source line numberthat the statementin errorstarted on.

All lines read from an insert file have the same source line

numberasthe line with the $INSERT commandonit.

If an error is detected in an EQUIVALENCEstatement, the word
‘EQUIVALENCE!’is substituted for ‘LINE nnnn’.

context The last 1-10 nonblank characters processed by the compiler
before detecting the error. This field can be used to isolate the
position in the statement that error occurs.

name If the erroris directly related to the misuse of a specific name,that
namewill be includedin the error message. Otherwise, the field
will be omitted.

message A message upto 20 characters in length describingthe error. A list
of all messages is given in Appendix A.

Example:

**** LINE 0010 (WRUT] UNRECOGNIZED STMT

Note that the namefield has been omitted.

FDR 3057 5-2 1 January, 1979

COMPILING 5

COMPILER PARAMETERS

Normally, the sourcefile will be stored in the disk file system, the binary (object) file will
be created on the disk, and the listing file (if any) will be created either on the disk, at the
user terminal, or spooled directly to the line printer. In these cases,all instructions to the
compiler are given by mnemonics in the FTN commandline.

The A- and B-register settings are the instructions to the FORTRAN compiler (set at
compilation time) telling it which functions and modesareto be enabled,and specifying the
I/O files. Using the mnemonic parametersestablishes the values of these registers for the
user automatically. (Most users will have no need to set the octal values in these registers
explicitly.)

It is possible for a user to employ other peripheral devices (paper tape punch/reader,card
punch/reader, magnetic tape) for making source,listing, or binary files. It would generally
be preferable to bring the source program onto the disk, compile using the parameter
mnemonics, and thentransfer the listing and/or binary files to the desired device using
PRIMOS commands.If for some reasonthis is not possible, the user may explicitly set the
A- and B-register values to allow direct access to and from these devices. The previous
methodof specifying compiler options (by setting A-and B-register values explicitly)is still
valid. This means existing commandfiles which set the A- and B- registers need not be
changed. (See Section 17).

Compiler functions
The compiler functions enabled by the mnemonic parameters may beconsideredtofall into
four groups (Table 5-1).

¢ Specify Input/Output Devices

e Enable Listings/Cross References

e Memory Usage

e Operations
The defaults listed in this section are those supplied by Prime. The System Administrator
may change these at any particular installation. The. programmer should check with the
System Administrator to determine if defaults have been changed (and, if so, which
parameters are the new defaults).

Specify input/output devices

These parametersallow the user to inform the compiler of the input source filename and to
specify the listing and binary (object) files.

-INPUT pathname Define input file/device. (alternatively -SOURCE)
(example: -I TEST or -S TEST).

-I pathname The source program filenameis pathname.

-BINARY To override default, define binary (object)
file/device.

-B pathname The binary file will be created with the pathname
specified. (example -B BTEST).

-B NO No binaryfile will be created. This might be chosenif
only the listing file were desired at earlier stages of
program development.

-B YES The binary file is created with the default name B_
filename, where filename is the name of the source
program file in the UFD in which the source program
file resides. The binary file, however, is created in
the UFD to whichtheuseris attached wheninvoking
the compiler.

1 January, 1979 5-3 FDR 3057

5 =COMPILING

:|Table|5-1,Compiler Parameter MnemonicsceindicatesPrime-suppl. iedd

QSpecify input/outputdevices

.BINARY Pye’. - Specify inne (object) file”aS
_«INPUTSpecifysource program file’
LISTING —_._ Specify listing file
+SOURCE|; 2 : 2 Speclly3sourcee file(same

Print error-only listing
Print error messagesatuser

~~ Printfull listing Se
Printsource program|anderro

- Suppress error messages toterm
- Suppressglobaltrace
- Suppresscross-referencelis!

‘Enableglobaltrace
Print full cross-reference1 ting.
Print partial cross-reference li

| Handle’arrays spanningsegment

— ConserveLoaderbaseareas.
- Enable dynamic allocatic n of

_ Noarrays spanning segme
- Loads ECBs (Entry GontrolBlo
frame (64Vsubroutines only} |
Static allocationof local storag

82Kwords.of relative-address:
64K wordsofrelative-addresse
Upto256 x64K< wordsof,segm

ae FP. a -.... Generatefloating--pointskipins
INTL ~—~————_s INTEGERdefaultisINTEGE
© INTS.._..__ INTEGER defaultis.INTEC
—«NO CLVAR|Donotflagundeclaredvar
odsNOFPoo— Suppress generation.offloating

If the BINARY narameter is nat ineluded in tha

COMPILING 5

-L YES The listing file is created with the default name L—
filename, wherefilename is the name of the source
program file in the UFD in which the source program
file resides. Thelisting file, however,is created in the
UFDto which the useris attached when invoking the
compiler.

-L TTY The listing is printed at the user terminal.

-L SPOOL Thelisting file is spooled directly to the line printer.

If this parameteris not included in the commandline parameterlist, it is equivalent to -L
NO.

Enablelistings/cross references

These parameters enable or suppress program listings, error listings, and cross-reference
listings (concordances). In all cases except ERRTTY (defined below) the enabling has no
effect unless an output device orfile is specified by the -L parameter.

The program-, error-, and cross-reference listings discussed below are generated for the
following FORTRAN program example, POOH:

OK, SLIST POOH
GO
318 X=48

B=I*5
C=5-I
IT=3

28 GO TO (109,318,328), I
320 A=B+C

T=]
GO TO 20

180 Y=A*X
WRUTE (1,110) X

110 FROMAT (15)
CALL EXIT
END

In all the cases that follow, the usual default error messages are suppressed by including
NOERRTTYin the parameterlist to avoid duplication since the listing device is the user
terminal.

Three errors will be found in this program:

1. The unrecognized statement WRUTE(1,110) X, where WRITE has been
misspelled.

2. The unrecognized statement 110 FROMAT(15), where R and O have
been interchanged.

3. Statement 110 has an error in it and consequently thereis no label 110.
This will generate an undefined statement numbererror.

ERRTTY/NOERRTTY: ERRTTY, which is the default, prints error messages at the user’s
terminal. This feature may be suppressed by including NOERRTTYin the parameterlist.

In these examples,the error total is printed twice:as the last statement ofthe listing, and in
the compiler message to the user, which is always printed at the user’s terminal after

compilation.

1 January, 1979 5-5 FDR 3057

5 =COMPILING

Thefirst line of the program is printed at the top. The system printing routine doesthis for
all files assuming thatthe first line of a file is to be treated as a header.

LIST/ERRLIST/EXPLIST: These are mutually exclusive parameters; each creates a type of
listing in the listing file/device. These parameters override the program statements LIST,
FULL LIST, and NO LIST.

ERRLIST prints only the error messagesonthelisting device/file.

OK, FTN POOH -L TTY -NOERRTTY -ERRLIST
GO

319 X=48
**kkk LINE 8018 [WRUT] UNRECOGNIZED STMT
ek LINE O11 [FROM] UNRECOGNIZED STMT
***k* LINE 0011 [END] 118 — UNDEFINED STMT NO.
0003 ERRORS [<.MAIN.>FTN-REV16.@]
0003 ERRORS [<.MAIN.>FTN-REV16.9]

LIST prints the source program with line numbers, and the error messages. This is the
default condition (if a listing file/device is specified).

OK, FIN POOH -L TTY -NCERRTTY -LIST

GO
318 X=48
(@0G1) 318 X=48
(8802) B=I*5
(8803) C=5-I
(804) I=3
(0805) 286 GO TO (188,310,328) ,I
(9006) 320 A=B+C
(8007) I=1
(8888) GO TO 20
(9289) 188 Y=A*X
(8810) WRUTE (1,110) X
**k*k* LINE 9018 [WRUT] UNRECOGNIZED STMT
(9@11) 118 FROMAT (15)
**k*k* TINE 0811 [FROM] UNRECOGNIZED STMT
(8012) CALL EXIT
(9213) END
*#kkk LINE 0811 [END] 110 -— UNDEFINED STMT NO.
0883 ERRORS [<.MAIN.>FTN-REV16.9]
9003 ERRORS [<.MAIN.>FTN-REVI16. 9]

EXPLIST prints the full listing: the source program, with line numbers, the Prime Macro
Assembler (PMA) code generated by the FORTRANstatements and the error messages.

FDR 3057 9-6 1 January, 1979

COMPILING 5

OK, FTN POOH -L TTY -NOERRTTY —EXPLIST

BBOLWO
080001

O TO (180,310,328), I
=24576

X
I

=5

C$12

FSCG
000004
_109
_319
320

__320

P
w
o

I
_20
100

UNRECOGNIZED STMT

UNRECOGNIZED STMT

GO
319 -X=48
(2001) 318 x=48

900000: ELM
Q00001: IMP
900001: LINK

(8602) B=I*5
(0093) C=5-I
(0004) 1=3
(9005) 20 G

@00001: FLD
000003: FST
@00005: LDA
008006: MPY
000007: PIM
000018: JST
009011: FST
909013: LDA
900014: SUB
090015: JST
000016: FST
000020: LDA
Q00021: STA

(0006) 328 A = BHC
900022: LDA
090023: JST
009024: OT
008025: DAC
009026: DAC
907027: DAC
900039: LINK

(9897) I=1
(208) GO TO 20
(009) 100 Y = AX

000030: FLD
900032: FAD
000034: FST
900036: LT
000037: STA
000040: JMP
000041: LINK _

(9010) WRUTE (1,110) X
**** LINE 0919 (WRUT]
(8011) 118 FROMAT (I5)
**** LINE @@11 [FROM]
(0012) CALL EXIT
(0013) END

1 January, 1979

880041: JST

@O0842: LINK

BOBH4A2: OCT
G00043: OCT
GO0044: LINK

B00044; OCT
OB0845: OCT

ABWCAG: LINK

BB0046: OCT
800047: OCT
G2B0058: LINK

888050: OCT
B8GB51: LINK

000051: OCT

@OO052: OCT
880053: LINK

880053: OCT

888054: LINK
880854: OCT

@80855: LINK

@80055: OCT
608056: oct
000041: DAC

EXIT

A

OBGACO
GOBB00

B
GBBBNO

GBO0008

Cc

OOOBOBO
BOBAAE

I
BOBOHO

x
BOBOHO

BBGABO
=3

9GOBB3

=5
2808085
=24576

GEB0B0
080206
1808

5-7 FDR 3057

5 COMPILING

***%* LINE 9@11 [END] _11@ - UNDEFINED SIMT NO.
000022: DAC 20
090001: DAC _310
900030: DAC 320

0003 ERRORS [<.MAIN.>FIN-REV15.1]
0803 ERRORS [<.MAIN. >FIN-REV15. 1]

NOXREF/XREFL/XREFS: NOXREFis the default. XREFS and XREFL generate con-
cordances (cross-references); they are mutually exclusive in the parameter list. XREFS
appends a partial concordanceto the end of the listing in the listing file/device; XREFL
appends a complete concordance. Concordancesarecross-reference tables between pro-
gram symbols, their line numbers and storage locations in memory. In the partial con-
cordance, symbols referenced only in specification statements are not included. This is
useful if there are COMMONblocks with manyvariables, of which only a few are used in
the particular program unit being compiled. The default condition, which is no concordance,
can be obtained by not specifying any cross-reference parameteror by including NOXREF
in the parameterlist.

An example of the concordanceis:

OK, FIN POOH -L TTY -NOERRTTY ~XREFS

GO
318 X=48
(0201) 318 X=48
(2082) B=I*5
(8803) c=5-I
(@884) I=3
(8805) 29 GO TO (186,318,328), I
(2086) 320 A = BH
(2827) I=]
(8288) GO TO 20
(9089) 100 Y = A*X
(80108) WRUTE (1,110) X
**** LINE 8810 [WRUT] UNRECOGNIZED STMT

(611) 118 FROMAT (15)
**** LINE 0811 [FROM] UNRECOGNIZED STMT

(@812) CALL EXIT

(8813) END

**** LINE 0811 [END] _11@ - UNDEFINED STMT NO.

A R 000042 G006M 2099
B R 090044 9002M e606
C R 900046 003M 2006
EXIT R EXTERNAL 608000 0012
I I 000058 8802 2003 8004M 005
Xx R 000051 001M 9099
Y R 989000 009M

_1e¢ 900041 6085 909D
110 o00000 69011
720 080822 8905D 2008
318 820001 8001D 9005
7320 020038 9885 s986D

8803 ERRORS [<.MAIN.>FTN-REV15.1]

8603 ERRORS [<.MAIN.>FTN-REV15.1]

FDR 3057 5-8

8007M

1 January, 1979

COMPILING 5

The first column is the symbol, the secondis the data mode (Rforreal, I for integer,etc.).
The first numerical columnis the storage address, the following numbersare line numbers
of the statements in which the symbols appear.If a symbolis modified (appearson theleft
handside of the = sign) the letter M is suffixed. The letter D suffix for statement label line
numbersidentifies the line numberat which that statementlabel is defined. A completelist
of data mode codes and line numbersuffixes appears in Table 5-2.

NOTRACE/TRACE: NOTRACEis the default. The TRACE mnemonic producesa trace for
each variable in the program. This parameter takes precedence over any TRACEstatement
within the source program.

At object program run time(see Section 8), any trace coding inserted by the compiler causes
a line to be typed consisting of a variable name, an array name, or a statement number,
followed by an equals sign, followed by the current decimal value assigned to that name.
The decimal value is typed in INTEGER, FLOATING POINT, or COMPLEX format.

Example: A FORTRAN program PRIMEhasbeenwritten to print a list of prime numbers
between 2 and 50. The program will be compiled with the TRACE parameter(the default
binary file name B__PRIMEis used). After the program has been successfully compiledit will
be loaded and executed using the Prime Linking Loader. (See Section 5 for an explanation
of this.) Sample lines of TRACE information as typed at object run-time are shown.

OK, FIN PRIME -TRACE
@
@060 ERRORS [<.MAIN. >FIN-REVIS,1]

OK, LOAD
GO
$ LO B_PRIME
$ LI
LOAD COMPLETE
$ SA *PRIME
$ EX
FOLLOWING 1S A LIST OF PRIME NUMBERS FROM 2 TO 56

S
I
s

t
h

k= 3
(2)

1
(4)
K= 3
(2)

13
(4)
Ke 3
(4)
K= 4
(2)

17
(4)
k= 4
(2)

19
(4)
Ke 4
(4)
K= 4
(2)

23
(4)
K= 5
(2)
(4)
k= 5
(4)
Ke 5
(2)
(2)

29
(4)
K= 5
(2)
(2)

31
(4)
Ke 5
(4)
k= 5
(2)
(4)
K= 6
(2)
(2)

37
(4)
Ka 6
(4)
Ku 6

41

1 January, 1979 5-9 FDR 3057

5 COMPILING

Ka 6
(2)
(2)

43
(4)
Ke 6
(4)
K= 6
(2)
(2)

47
(4)
K= 7

THIS IS THE END OF THE LIST

sehagy

|"Table 5-2. Concordance Codes. | oe
oe Code_ Data Mode (second concordancecolumn)

‘¢ 5 COMPLEX me [oe
Dp ~DOUBLE PRECISION (REAL*8)
1.SHORT INTEGER (INTEGER*2)Ss
J]=LONG INTEGER (INTEGERA)
Obs LOGICAL) .

DRE os REAL. (REAL*4) = singleprecisions:

= Code—_ Line NumberSuffixes” a
ASymbolis contained inthe.argumentlis

Lo De OSs, subroutine.op

BeMSfeSymbolis modified (left handsideof.assign)n
Be Symboliisina data mode specificationalent.

Memory usage

32R/64R/64V: 32R modeis the default. The complier modes 32R, 64R, and 64V are mutually
exclusive. They cause the compiler to generate object code suitable for operations in a user
address space of 32K words(relative-address), 64K words (relative-address), and 256 x 64K
words (segmented-address) respectively.

NOBIG/BIG: BIG treats all dummyarrays as arrays that span segment boundaries. BIG
forces the 64V mode and thus cannotbe usedin the 32R or 64R modes.If a dummy argument
array may becomeassociated with an array spanning a segment boundary (through a
subroutinecall or function reference) the compiler must be made awareofthis by including
BIG in the parameterlist. The code generated will work whetheror not the array actually
spans segment boundary.

NOBIG is the default parameter (see Section 11 for details on large arrays).

SAVE/DYNM: In the 64V mode, the inclusion of DYNM in the parameter list enables
dynamic allocation of local storage. This allows the use of recursive subroutines (sub-
routines which call themselves). DYNMforces the 64V modeand thus cannotbe used in the
32R and 64R modes.If recursive subroutines are used, DYNM is mandatory.

The default parameter is SAVE whichenablesstatic local storage allocation. Static storage
allocation is the only method used in the 32R and 64R modes.

DEBASE: Conserves loader base areas. This parameter may be included for programs
compiled in 32R or 64R mode.It should not be used for programs compiled in 64V mode.

FDR 3057 5-10 1 January, 1979

COMPILING 5

The default is obtained by omitting DEBASE from the parameterlist. (See the LOAD Section

6 for explanation of base areas.})

PBECB:Generates code to load ECBs (Entry Control Blocks) into procedure frame,allowing

ECBs to be shared (64V subroutines only).

Operations

NODCLVAR/DCLVAR:Flags variables which have not been declared in specification
statements. NODCLVARisthe default.

FP/NOFP: Suppresses generation of floating-point skip operation. FP is the default. The

compiler will normally generate instructions from the floating point skip set whentesting

the result of a floating-point operation. If the CPU does not have the floating-point

hardware, suppressing these instructions will speed up execution.

INTS/INTL: The Prime FORTRAN system has both Long (INTEGER*4) and Short (IN-

TEGER*4) integers. In the default (or INTS) condition the INTEGERstatementin a program

is taken to be INTEGER®*2. If INTL is included in the parameter list then the INTEGER

statement is taken to be INTEGER*4. This parameter eases the conversion of existing

programsto the Prime FORTRANSystem.

A completelist of all parameters with more detailed comments on the consequencesoftheir

usage will be found in the reference section (Section 17).

Prohibited parameter combinations

The following combinations of parameters should not be used in a commandline:

Parameter Used Conflicting Parameter(s)

<parameter> NO<parameter>
NO<parameter> <parameter>
BIG 32R or 64R

DEBASE BIG, DYNM,64V
DYNM NOBIG, SAVE,32R, or 64R
ERRLIST EXPLIST or LIST
EXPLIST ERRLIST or LIST
INTL INTS
INTS INTL
LIST ERRLIST or EXPLIST
NOBIG DYNMor 64V
NOXREF XREFL or XREFS
PBECB 32R or 64R
SAVE DYNM
XREFL NOXREFSor XREFS
XREFS NOXREFSor XREFL
32R BIG, DYNM,64R, or 64V
64R BIG, DYNM,32R, or 64V
64V DEBASE, NOBIG,32R, or 64R

The command line is parsed from left to right. Thus, the right-most mnemonics take

precedence overthose to the left of them. Using the prohibited combinations above will

yield diverse results depending uponthe specific case. In almostall cases, the result will be

undesirable.

1 January, 1979 5-11 FDR 3057

5 =COMPILING

OPTIMIZATION

An extended version of the FORTRAN compiler optimizes DO loops. It is invoked by
entering:

FTNOPT source-file [options]

source-file is the pathnameof the source program to be compiled. options are identical to
those of the FTN compiler with two additional options. These new options are:

-OPT Optimizes all DO loops that do not contain GO TO statements.

-UNCOPT Unconditionally optimizes all DO loops.

If any DOloop in the program has an extended range, the -UNCOPToption should not be
used; use the -OPT option instead. The optimized object program will be longer than the
non-optimized version butit will execute faster.

FDR 3057 5-12 1 January, 1979

Loading

R-modeprograms

INTRODUCTION

The PRIMOS LOAD utility converts object modules (such as those generated by the

FORTRAN compiler) into runfiles that execute in the 32R or 64R addressing modes.

(Runfiles to execute in the 64V mode must be loaded using the segmentation utility, SEG.)

The following description emphasizes the loader commandsandfunctionsthat are of most

use to the FORTRAN programmer. For a complete description of all loader commands,

including those for advanced system-level programming, refer to Reference Guide, LOAD

and SEG.

USING THE LOADER UNDER PRIMOS

The PRIMOS command:

LOAD

transfers control to the R-mode loader, which prints a $ prompt character and awaits a

loader subcommand. After executing a command successfully, the loader repeats the $

prompt character.

If an error occurs during an operation, the Loaderprints an error message, then the $ prompt

character. Loader error messages and suggested handling techniques are discussed

elsewhere in this section and in Appendix A. Most of the errors encountered are caused by

_large programs wherethe useris not making full use of the loader capabilities.

Whena system error (FILE IN USE, ILLEGAL NAME, NO RIGHT,etc.) is encountered,the

loader prints this system error and returns its prompt symbol, §$.

The loader remains in control until a QUIT or PAUSE subcommandreturns control to

PRIMOS,or an EXECUTE subcommandstarts execution of the loaded program.

Load subcommands can be used in commandfiles, but comment lines result in a CM

(commanderror) message.

1 January, 1979 6-1 FDR 3057

6 LOADING R-MODE PROGRAMS

NORMAL LOADING

Loadingis normally a simple operation with only a few straightforward commandsneeded.
The loader also has many additional features to optimize runfile size or speed, perform
difficult loads, and deal with possible complications. The most frequently used load
commands and operations are presented first; this enables immediate use of the loader.
Advanced features are then described followed by a summaryof all loader commands.

The following commands (shownin abbreviated form) accomplish most loading functions:

PRIMOS-Level Commands:

FILMEM ; Initializes user space in preparation for load.

LOAD Invokes loader for entry of subcommands.

RESUME Starts execution of a loaded, SAVEdrunfile.

LOAD Subcommands

MODEoption Sets runfile addressing mode as D32R (default) or
D64R.

LOAD pathname Loadsspecified object file.

LIBRARY[filename] Loads library object files from UFD LIB. (Defaultis
FTNLIB.)

MAP[option] Prints loadmap. Option 3 shows unresolved refer-
ences.

INITIALIZE Returns loader to starting condition in case of com-
manderrorsor faulty load.

SAVE pathname Saves loaded memoryimageas runfile.

QUIT or PAUSE Return to PRIMOS.

Most loads can be accomplished by the following basic procedure:

1. Use the PRIMOS FILMEM commandtoinitialize memory.

2. Invoke LOAD.

3. Use the MODE commandto setthe addressing mode,if necessary. (The
default is 32R mode.)

4. Use loader’s LOAD subcommandto load the objectfile (B_filename)
and any separately compiled subroutines.

5 Use loader’s LIBRARY subcommandto load subroutines called from
libraries (the default is FTNLIB in the UFD =LIB). Otherlibraries, such
as SRTLIB or APPLIB, must be namedexplicitly.

6. If you do not have a LOAD COMPLETE,do a MAP3 to identify the
unsatisfied references, and load them.

7. SAVEthe runfile under an appropriate name.

If these commandsproduce a LOAD COMPLETEmessage, then loading was accomplished.
If there is a problem, it will become apparent by the absence of a LOAD COMPLETE
message or some other loader error message. (See Appendix A for a completelist of all
loader error messages and their probable cause andcorrection.)

FDR 3057 6-2 1 January, 1979

LOADING R-MODE PROGRAMS 6

After a successful load, you can either start runfile execution from LOAD commandlevel,
or quit from the loader and start execution through the PRIMOS RESUME command. An
example of such a loadis:

OK, LOAD
GO
S$ MO D64R
$ DC
$ LO BARRAY
S$ LI
S SA *ARRAY
S MA MARRAY
S QU

OK,

Order of loading

The following loading order is recommended:

1. Main program

2. Separately compiled user-generated subroutines (preferably in order

of frequencyof use).

3. Other Prime libraries (LI filename)

4. Standard FORTRANlibrary (LI)

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-

routinesin the library file FTNLIB in the LIB UFD. The appropriate subroutines from this

file are loaded by the LIBRARY commandgiven without a filename argument. If sub-

routines from other libraries are used, such as MATHLB, SRTLIB, or APPLIB, additional

LIBRARY commandsare required which include the desired library as an argument.

LOAD MAPS

During loading, the loadercollects information about the results of the load process, which

can be printed at the terminal (or written to a file) by the MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problemsin loading, or to optimize

placementof modules, linkage areas and COMMONin complex loads.

1 January, 1979 6-3 FDR 3057

6 LOADING R-MODE PROGRAMS

Load information is printed in four sections, as shown in Figure 6-1. The amountof
information printed is controlled by MAPoption codes, suchas:

Option Load MapInformation

None, 0 or 4 Load state, base area, and symbolstorage;
symbols sorted by address

1 Load state only

2 Loadstate and base areas

3 Unsatisfied references only

6 Undefined symbols, sorted in alphabetical order

7 All symbols, sorted in alphabetic order

Load State

The load state area shows where the program has been loaded, the start-of-execution
location, the area occupied by COMMON,thesize of the symbol table, and the UIIstatus.
All locations are octal numbers.

“START: The location at which execution of the loaded program will begin. The default for
FORTRANprogramsis ’1000.

*LOW: The lowest memory image location occupied by the program. Executable code
normally starts at '1000, but sector 0 address links (if any) begin at ’200.

*HIGH: The highest memory image location occupied by the program (excluding any area
reserved for COMMON).

*PBRK:‘‘Program Break’”’: The next available location for loading. It normally is the location
following the last loaded module, but can be moved by PBRK or the LOAD family of
commands.

*CMLOW:The low end of COMMON.

*CMHGH:The top of COMMON.

“SYM: The numberof symbols in the loader’s symbol table. This is usually of no concern
unless the symbol space crowdsoutthe last remaining runfile buffer area. (There is room
for about 4000 symbols before this is a risk.)

*UII: A code representing the hardware required to execute the instructions in loaded
modules. Codes andother information are described later in ths section.

Base areas

The base area mapincludes the lowest, highest and next available locations for all defined
base areas. Each line contains four addressesas follows:

*BASE XXXXXX YYYYYY ZZZZZZ WWWWWW

XXXXXXK lowest location defined for this area

YYYYYY Next available location if starting up from XXXXXX

ZLZZZZZ Next available location if starting down from WWWWWW

WWWWWWw Highest location defined for this area

FDR 3057 6-4 1 Tanuarv. 1979

LOADING R-MODE PROGRAMS 6

6 LOADING R-MODE PROGRAMS

Symbol storage

The symbol storage listing consists of every defined label or external reference name
printed four per line in the following format:

namexx NNNNNN

or

**namexx NNNNNN

NNNNNNisa six-digit octal address. The ** flag meansthe referenceis unsatisfied(i.e., has
not been loaded).
Symbols are listed by ascending address (default) or in alphabetical order (MA 6 or MA7).
The list may be restricted to unsatisfied references only (MA 3 or MA6).

COMMONblocks

The low end and size of each COMMONareaarelisted, along with the name(if any). Every

map includes a reference to the special COMMONblock LIST, defined as starting at

location 1.

LOADING DETAILS

When standard loading goes well, the user can ignore most of the loader’s advanced
features. However,situations can arise where some detailed knowledgeof the loader’s tasks
can optimize size or performance of a runfile, or even makea critical load possible. From
that viewpoint, the main tasks of the loaderare:

¢ Convert block-format object code into a run-time version of the program (ex-
ecutable machine instructions, binary data and data blocks).

e Resolve address linkages (translate symbolic namesof variables, subroutine entry
points, data items, etc. into appropriate binary address values).

¢ Perform address resolution (discussed later).

¢ Detect and flag errors such as unresolved external references, memory overflow,

etc.

¢ Build (and, on request, print) a load map. The map mayalso be writtento file.

e Reserve COMMONareasasspecified by object modules.

¢ Keeptrack of runfile’s hardware execution requirements and makeuser aware of
need to load subroutines from UII library.

Virtual loading

The loader occupies the upper 32K words of the user's 64K-word virtual address space.
Programs up to 32K wordsare loaded directly into the memory locations from which they
execute. Programsloadedin this mannercanbestarted by the loader’s EXECUTE command
without being saved. For larger 64R-mode programs,the loaderuses the available memory
as buffer space and transfers loaded pages of memoryto a temporaryfile that accomodates
a full 64K-word memory image. When loading is complete,the file must be assigned a name
by the loader’s SAVE command; it can then be executed either through the loader's
EXECUTE command or the PRIMOS RESUME command.

The loader remainsattached to the working directory throughout loading, for accessto the
temporaryfile. Files in other directories can be loaded by giving a pathname in a LOAD

command.

FDR 3057 6-6 1 January, 1979

LOADING R-MODE PROGRAMS 6

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filenameof a file within the LIB UFD.

Object code

Inputs to the loaderare in the form of object code—a symbolic, block-formatfile generated
by all of Prime’s language translators. Prime’s standard library files consist of subroutines
in this format.

The loader combines the user’s main program object file with the object files of all
referenced subroutines (either those in the library, or those generated and separately
compiled by the user) irito a single runfile. The runfile is then ready for execution, either
directly through the loader’s EXECUTE command or through the PRIMOS RESUME
command.

Runfiles

A runfile consists of a header block followed by the runfile text in memory image format.
The headercontains information that enables the runfile to be brought into memorybythe
PRIMOS RESTORE or RESUME command.Contents of the header can be examinedafter a
RESTOREby the PM command.(See Reference Guide, PRIMOS Commands.)

Selecting the addressing mode

The 32R addressing modeis retained as the loader’s default for compatibility with existing
commandfiles. The only significant difference between 32R and 64R for small programsis
that 32R permits multiple indirect links, while 64R allows only one level of indirection. In
certain situations such as processing of multi-dimensional arrays, 32R mode may enable the
compiler to produce a runfile that is somewhat more compact or runsslightly faster.
However,for programsthat approach the 32K word boundary, 64R mode ensuressuccessful

loading with no significant penalties of size or speed. Thus MODE D64Ris recommendedfor

most applications.

Base areas

“Base Area” is an assembly language concept that can be disregarded by the FORTRAN

programmer except when oneofthe following is printed:

BASE SECTOR 0 FULL

symbolname XXXXXX NEED SECTOR0 LINK

This condition, usually encountered only when loading large programs, can be avoided in

several ways:

e Give the AUTOMATIC commandto enablethe loaderto assign local linkage areas

before and after individual subroutines.

e Use setbase parameters with a LOAD or LIBRARY commandto insert local

linkage areas wherethey are needed.

¢ Use the SETBASE commandto designate a base area whereit is required.

¢ During compilation, use the -DEBASEoption.

Locating COMMON

By default, the loader sets the high end of FORTRAN COMMONat '077777 (the 32K word

boundary) and allocates it downward from there. If a PROGRAM-COMMON OVERLAP

message occurs, COMMONcanbe movedhigher by the COMMONor DC (Defer Common)

subcommands. DC is recommended.(If DC is used, aLOAD COMPLETE messagewill not

occur until a SAVE or EXECUTE commandis given.)

1 January, 1979 6-7 FDR 3057

6 LOADING R-MODE PROGRAMS

UII handling

The loader can keep track of the CPU hardware required to execute the instructions
generated by the modules already loaded. This is shown in the UII entry in the load-state
section of a load map. The codesare:

UII Value CPU Required

100 Prime 450 and up
57 Prime 350 or 400

17 Prime 300 with FP Hardware

3 Prime 300

1 Prime 100 with HSA or 200 with HSA

0 Prime 100 or 200

If the UII code on the load mapis greater than the value for the target CPU,thenit will be
necessaryto load part of the UII library to make execution possible. When a CPU encounters
an instruction not implemented by hardware, a UII (Unimplemented Instruction Interrupt)
occurs and controlis transferred to the appropriate UII routine. This routine simulates the
missing hardware with software routines.

However,the UII routine must be loaded by the commandLI UII, which should bethelast
LOAD commandbefore the program is saved. The appropriate routines will be selected
from this library to satisfy the additional hardware requirements of the program.

To make sure that only the required subroutines are loaded, the user can “subtract”
hardwarefeatures that are present in the CPU by entering a HARDWARE command.For
example, assume:

e A load session produces a load map UII valueof 57.

¢ The target CPU is a Prime 300 with floating point (UII value 17).

The command:

HA 17

reduces the load state UII value to 40 (i.e., '57-'17) and ensuresthat the floating point
subroutines do not occupy spacein the runfile.

If, after a HARDWARE command,the load state UII valueis 0, the UII library need not be
loaded.

System programming features

The following commands are primarily of interest to assembly language and systems
programmers. They are described in more detail in Reference Guide, LOAD and SEG:

F/ Prefix to LOAD and LIBRARY which forceloads unreferenced
modules.

P/ Prefix to LOAD and LIBRARYwhichstarts loading on next page
boundary. (Can reduce paging time.)

PBRK Program Break. Resumeloading at a new location.

CH,SS,SY,XP Symbol control commands.

EN ' ENtire save; saves copy of load session for building of program
overlays.

ER Controls action taken by loaderfollowing errors.

SZ Controls use of Sector 0.

FDR 3057 6-8 1 January, 1979

LOADING R-MODE PROGRAMS 6

COMMAND SUMMARY

Following is a summaryof all LOAD commands,in alphabetical order. All file and directory
names may be specified by pathnames, except in the LIBRARY command. All numerical
values must be octal.

ATTACH[pathname]

Attaches to specified directory.

AUTOMATIC base-length

Inserts base area of specified length at end of routine if >‘300 locations loaded sincelast
base area.

CHECK [symbol-name][offset-1]. . .[offset-9]

Checks value of current PBRK against symbol or number. symbol-nameis a 6 character
symbol defined in the symboltable. offset-1 through 9 are summedto form an addressor
offset from symbol name. Numbers precededby‘‘-”’ are negative.

COMMONaddress

Movestop/starting COMMONlocation to address.

DC [END]
Defers definition of COMMON block until SAVE commandis given. (Low end of COMMON
follows top of load.) [END] turns off DC.

ENTIRE pathname

Saves entire state of loader as runfile, along with temporaryfile, for building overlays.

ERROR n

Determinesaction taken in case of load errors.

n Meaning

0 SZ errors treated as multiple indirect, others act as n=1.

1 Display multiple indirects on TTY but continue LOAD; abortloadoffile for
all other errors.

2 Abort to PRIMOS

EXECUTE[a] [b] [x]

Starts execution with specified register values.

LIBRARY
LOAD

Forceloads all modules in specified object file. See LOAD for parameters.

FORCELOAD
F/ [pathname] [parameters]

1 January, 1979 6-9 FDR 3057

6 LOADING R-MODE PROGRAMS

HARDWAREdefinition

Specifies expected level of instruction execution.

CPU Definition

P500 100

P350,P400 37

P300/FP 17 FP = Floating Point
P300 3

P200/HSA 1 HSA = High-speed arithmetic
P100/HSA 1

P200 0

P100 0

HARDWARE,if given, must precede loading of UII library.

INITIALIZE [pathname] [parameters]

Initializes LOADERand,optionally, does a LOAD. See LOADfor parameters.

LIBRARY [filename] [loadpoint]

Attaches to LIB=UFD,loadsspecified library file (FTNLIB is default), and re-attachesto
homedirectory.

LOAD [pathname] [parameters]

Loadsthe specified object module. The parameters may be enteredin three formats:

1. loadpoint [setbase-1]. . .[setbase-8]

2. * [setbase-1]. . .[setbase-9]

3. symbol [setbase-1]. . .[setbase-9]

In form 1, loadpoint is the starting location of the load. In form 2, the load starts at the
current PBRKlocation (*). In form 3, the load address can be stated symbolically (symbol).
The remaining numeric parameters(setbase-1, etc.) specify the size of linkage areas to be
inserted before and after modules during loading.If the last parameteris ‘177777, the loader
requests more setbase values.

MAP[pathname] [option]

Generates load-state map on terminal, orin a file, if pathnameis specified.

Option Meaning

0 Load state, base area, symbol storage map; symbols sorted by address
(default)
Load state only
Load state and base area
Unsatisfied references only
Sameas 0

System Programmer map

Undefined symbols sorted alphabetically
All symbols sorted alphabetically
Special symbol mapfor PSD(in file)

N
O

G
1
®

G
&
D
e

—
_
S
o

FDR 3057 6-10 1 January, 1979

LOADING R-MODE PROGRAMS 6

D32R
D64R
Dié6S
D32S

Specifies address resolution modefor next load module (32K Relative, D32R, is default). If
used, MODE must precede other LOAD commands.

MODE

FORCELOAD
P/ LIBRARY [pathname] [parameters]

LOAD

Begins loading at next page boundary. See LOADfor parameters.

PAUSE

Leaves loader to execute internal PRIMOS command. Return via START.

PBRK)[symbol-name] [offset-1]. . .[offset-9]
* offset-1 [offset-2]. . .[offset-9]

Sets a program breakto value of symbolplus offset or a number.* treats sum of numbersas
offset from current PBRK. Offsets may be negative.

QUIT
Deletes temporary file, closes mapfile (if loader openedit), and returns to PRIMOS.

SAVE pathname

Writes a memory image of the loaded runfile to the disk.

[base-start] [base-range]
SETBASE *

Defines starting location and size of base area. * is current value of PBRK.

base-range

SS symbol-name

Save symbol. Exempts specified symbol from action of XPUNGE.

symbol-name[offset-1]. . .[offset-6]
SYMBOL)* offset-1 [offset-2]. . .[offset-6]

Establishes locations in memory map for commonblocks,relocation load points,or to satisfy
references. * is current value of PBRK. Offsets are summed and maybenegative.

YES
SZ)NO

Permits/prohibits links in sector zero.

VIRTUALBASEbase-start to-sector

Copies base sector to correspondinglocationsin to-sector. Used for building RTOS modules.

XPUNGE dsymbols dbase

Deletes COMMONsymbols, other defined symbols, and baseareas.

1 January, 1979 6-11 FDR 3057

Loading
segmented programs

INTRODUCTION

The PRIMOS SEG utility converts object modules (such as those generated by the

FORTRANCompiler) into segmented runfiles that execute in the 64V addressing mode and

take full advantage of the architecture and instruction set of the Prime 350 and up.

Segmented runfiles offer the following advantages:

¢ Muchlarger programs:up to 256 segments per user program (32 Megabytes)

° Access to V-mode instructions and architecture (Prime 350 and up) for faster

execution.

¢ Ability to install shared code: single copy of a procedure can service many users,

significantly reducing paging time.

¢ Reentrant procedures permitted: procedure and data segments can be kept

separate.

The following description emphasizes the commandsand functionsthat are of most use to

the FORTRAN programmer. Extendedfeatures are described in Section 11. Fora complete

description of all SEG commands,including those for advanced system-level programming,

refer to Reference Guide, LOAD and SEG.

USING SEG UNDER PRIMOS

SEG is invoked by the PRIMOS command:

SEG [pathname]

A pathnameis given only when an existing SEG runfile is to be executed. Otherwise, the

commandtransfers control to SEG commandlevel, which prints a ‘‘#’’ prompt character and

awaits a subcommand.After executing a subcommandsuccessfully, the loader repeats the

prompt character. SEG employs two subprocessors, LOAD and MODIFY, which accept

further subcommands. The subprocessors use the “$’’ prompt character.

If an error occurs during an operation, SEG prints an error message, then the prompt

character. Error messages and suggested handling techniques are discussed elsewhere in

this section and in Appendix A.

Whena system error (FILE IN USE, ILLEGAL NAME, NO RIGHT,etc.) is encountered, SEG

prints the system error and returns the prompt symbol. SEG remainsin control until a QUIT

subcommandreturns control to PRIMOS,or an EXECUTE subcommandstarts execution of

the loaded program.

SEG subcommands can be used in commandfiles, but comment lines are accepted only

within the LOAD subprocessor.

1 January, 1979 7-1 FDR 3057

7 LOADING SEGMENTED PROGRAMS

NORMAL LOADING

Loading is normally a simple operation with only a few straightforward commands needed.
SEG also has many additional features to optimize runfile size or speed, perform difficult
loads, load for shared procedures, and deal with possible complications. The most frequent-
ly used commandsand operations are describedfirst; this enables the immediate use of
SEG. Advancedfeatures are then described, followed by a summary of all SEG commands.

The following commands (shownin abbreviated form) accomplish most loading functions:

SEG-Level Commands:

DELETE. Deletes segmented runfile.
HELP Prints a list of SEG commandsat terminal.
LOAD Invokes loader subprocessor for entry of subcom-

mands.

LOAD Subcommands:

LOAD pathname Loads specified objectfile.
LIBRARY [filename] Loads library object files from UFD LIB. (Defaultis

PFTNLB and IFTNLB,in that order.)
MAP[option] Prints loadmap. Option 3 shows unresolved refer-

ences.
INITIALIZE Returns loader to starting condition in case of com-

manderrorsorfaulty load.
SAVE Saves loaded memory image as runfile.
RETURN Returns to SEG commandlevel.

QUIT Returns to PRIMOS.

Most loads can be accomplished by the following basic procedure:

1. Invoke SEG from PRIMOSlevel.

2. Enter the LOAD commandtostart the LOAD subprocessor ($ prompt).

3. Use the load subprocessor’s LOAD subcommandto loadthe objectfile
(B_filename) andanyseparately compiled subroutines.

4. Use load subprocessor’s LIBRARY subcommandto load subroutines
called from libraries (the default is PFTNLB and IFTNLB in the UFD
LIB). Other libraries, such as VSRTLB or VAPPLB, must be named
explicitly.

5. If you do not have a LOAD COMPLETE,do a MAP3 to identify the
unsatisfied references, and load them.

6. SAVEthe runfile.

If these commands produce a LOAD COMPLETEmessage, then loading was accomplished.
If there is a problem,it will become apparent by the absence of a LOAD COMPLETE
message or some other SEG error message. (See Appendix A for a completelist of all SEG
error messages andtheir probable cause and correction.)

After a successful load, you caneither start runfile execution from loader commandlevel,
or quit from the loader and start execution through the PRIMOS SEG command. An
example of such a loadis:

FDR 3057 7-2 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

OK, SEG
GO
LOAD
SAVE FILE TREE NAME: #ARRAY
$ LO B ARRAY
$ LI
$ SA
S$ MA M ARRAY
S QU

OK,

Order of loading /

The following loading order is recommended:

1. Main program
Separately compiled user-generated subroutines (preferably in order
of frequencyof use).

3. Other Prime Libraries (LI filename)

4, Standard FORTRANlibrary (LI)

Loading library subroutines

Standard FORTRAN mathematical and input/output functions are implemented by sub-

routines in the library files PFTNLB and IFTNLB in the LIB UFD. The appropriate

subroutines from this file are loaded by the LIBRARY commandgiven without a filename

argument. If subroutines from other libraries are used, such as VSRTLB or VAPPLB,

additional LIBRARY commands are required which include the desired library as an

argument.

LOAD MAPS

During loading, SEG collects (andstores, as part of the segmented runfile) information about

the results of the load process. This can be printed at the terminal (or written to a file) by

the load subprocessor’s MAP command:

MAP [pathname] [option]

The information in the map can be consulted to diagnose problemsin loading,or to optimize
placement of modules, linkage areas and COMMONin complexloads.If a file pathnameis
given, the mapis written to a file instead of being printed at the terminal. The loadmapis
particularly useful for:

¢ Location where program halted (LB addressafter a crash).

¢ Modules not loaded (MA 3 or MA6).

¢ Reason for stack overflow (SB addressafter a crash}.

1 January, 1979 7-3 FDR 3057

7 LOADING SEGMENTED PROGRAMS

Whena mapfile is specified, it is opened on PRIMOSunit 13 and remains open until the
load session is completed. Any additional MAP commandsspecifying outputto file will use
the one already opened; exiting from the loader (via EXECUTE, QUIT, or RETURN)closes
the mapfile. If the user has openeda file on PRIMOSunit13 prior to invoking SEG’s loader,
then this file will be used for the map.In this case, leaving the loader doesnot closethefile.

The full SEG load mapconsists of seven sections, not all of which maybe presentin any
load. (See Figure 7-1) In particular, Section IJI may not be present in small SEG loads. The
amountof information printed is controlled by MAPoption codes:

Option Load Map Information

None,0 or 4 Extent, segment assignments, base areas, symbol storage (symbols
sorted by address), direct entry links, common blocks, and other
symbols.

1 Extent and segment assignments only

2 Extent, segment assignments and base areas

3 Undefined symbols, sorted by address

6 Undefined symbols, sorted alphabetically

7 Full map, symbols, sorted in alphabetic order

10 Symbols, sorted by ascending address

11 Symbols, sorted alphabetically

Section I - Extent

The extent area shows wherethe program has beenloaded,the start-of-execution location,
and the size of the symboltable. All locations are octal numbers.

“START: The segment numberand wordlocation forthe start-of-execution. At the beginning
of a load, the start addressis initialized to 000000 000000. SEGfills in *STARTforthefirst
segmented procedure encountered (usually the main program).

“STACK: Segment number and word location of the start of the stack: initialized to
177777 000000 at the start of a load. This value is not changed until a Loader SAVE or
EXECUTEcommandis invoked. Thedefault stack is in the first procedure segmentwith 6000
(octal) free locations at the top of memory.

“SYM: Address of the bottom of the symbol table (one word only as it is a 64R mode
address). Indicates to the user how much spaceisleft for the symbol table. To determinethe
location of the top of the symboltable, generate a mapprior to loading; the top and bottom
of the symboltable will be identical and *SYM will also be the location of the top.

Section II - Segment assignments

Each segmentis labeled as procedure (PROC) or data (DATA); the segment chosenfor the
stack is identified by ## following the segmenttype. Thelist is sorted in order of segment
assignment.

LOW:Lowestloadedlocation in the segment. (Not necessarily the lowest assignedlocation.)
Initialized to '177777 (-1) at segmentcreation; if the segmentis used only for uninitialized
COMMONareas, LOWis not changed.

HIGH: Highest loaded location in the segment. (Not necessarily the highest assigned
location.) Initialized to '000000 at segment creation: if the segment is used only for
uninitialized COMMONareas, HIGHis not changed.

TOP: Highest assigned location in the segment. TOP should not be lower than HIGH.Ifitis,
the user may havespecified incorrect load addresses. When not using default values, the
user is responsible for loading into correct areas. TOPis initialized to 177777 (-1) at segment

FDR 3057 7-4 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

7 LOADING SEGMENTED PROGRAMS

creation. When spaceis reserved for large COMMONblocks,the loader will only set TOP

to a maximum of ‘177776 even though the entire segment to ‘177777 is reserved.

The reason for this is: a LOW, HIGH, and TOP of 177777. 000000 177777 labels an empty
segment.

Section III - Base areas

*BASE VVVVVV WWWWWW XXXXKXX YYYYYY ZZ2Z22Z

VVVVVV Segment number.

WWWWWW Lowestlocation for base area.

XXXXXX Next available location if starting down from highestlocation.

YYYYYY Next available location if starting down from highest location.
ZZZZ2ZZ, Highest location for base area.

The lowest default location for the sector zero base area is '100.

There maybea sectorzero basearea in each procedure segment; there must be nonein data
segments. Base areasother than sector zero ones are generated by PMA modules.

Section IV - Symbols

A main program or subroutine compiled in 64V modeis called a procedure. A procedureis
composedof a procedureframe(the executable code), and ECB (the entry control block), a
link frame (static storage, constants, transfer vectors) and a stack frame (dynamically
allocated storage which is assigned whentheroutine is called and released upon return
from the routine). This section of the map describes these items. For FORTRANprocedures,
the ECBis part of the link frame. The procedure framewill be located in a segment reserved
for procedure frames. Link frames and COMMONblocks will be located in segments
reservedfor data.

The first pair of numbersin this section of the map is the segment and word addressfor the
ECB;the secondpair is the segment and word addressfor the procedure.

ST. SIZE: is the size of the stack frame (working area) created whenevertheroutineis
called. Its segment (and location therein) are assigned at execution time.

LINK FR.: is the size of the link frame.

The last two columns are the link frame segment and offset. Note that the offset is 400
locations lowerthan the actual position for compatibility with the information printed by the
PRIMOS PM command. The segment numberis usually that for the ECB.

Procedureswith no names,specifically a FORTRAN mainprogram,are identified by #444 in
the namefield.

Section V - Direct entry links

PRIMOS supports direct entry calls to the supervisor for certain routines. These are
created as fault pointers in the SEG runfile. Where referencesare satisfied by these fault
pointers, they will appear in the DIRECT ENTRYLINKSsection of the map. The FORTRAN
programmeris not concerned with this map section.

Section VI - COMMONblocks

Lists each COMMONblock, its segment number,starting word address in the segment, and
size.

FDR 3057 7-6 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

Section VII - Other symbols (including undefined symbols)

Lists the symbol, its segment, and word addressin that segment.Asin Section VI, the format
is three symbols perline. Unsatisfied references are preceded by**.

The numbersfor unsatisfied references (segment and word address) locate the last request
for the routine processed by the Loader.This allowsthe routines calling missing routines to
be identified.

ADVANCED SEG FEATURES

Whenstandard loading goes well, the user can ignore most of the SEG’s advancedfeatures.
However, situations can arise where some detailed knowledge of SEG and segmented
runfile organization can optimize size or performanceof a runfile, or even makea critical

load possible. The following topics are of particular use to the FORTRAN programmer.

Segment usage

A segmentis a 64K word block of user’s virtual address space. Segment 4000 is the segment
that SEG and other external commands occupy wheninvoked. Segment '4000 is the lowest-
valued non-shared segment in the PRIMOSsystem. SEG creates a runfile of up to 256
segments.

PRIMOSassigns memory segmentsto a useras they are accessed. Theseare notre-assigned
until logout. Since only a fixed number of segments are available for all users, extra
segments should not be invoked unless the user is actually executing or examining a
segmented program. Most of the functions of SEG use only one segment;only those options
which restore a runfile use extra segments, i.e, RESTORE, RESUME, and EXECUTE.

Segmented runfiles

A segmented runfile consists of segment subfiles in a segment directory. For this reason, you
cannot delete a SEG runfile with a PRIMOS-level DELETE command.Instead, use the
DELETE commandin SEG. (The TREDEL commandin FUTILalso worksbut is slower than
SEG’s DELETE.)

Note

It is good practice to use the PRIMOS DELSEG commandto
release segments assigned by SEG during a load session.
Otherwise those segments remain assigned to the useruntil
logout, precluding their use by anyoneelse.

Each segmentof the runfile consists of 32 ('40) subfiles of '4000 wordseach. Subfile 0 of the
runfile is used for startup information, the load map, and the memory imagesubfile map.
Memoryimage subfiles begin in segment subfile 1. Only the subfiles actually required for
the runfile are stored on thedisk.

SEG’s loader

SEG has virtual loader(i.e., it loads to a file rather than to memory) which requires the
name of the runfile before anything is loaded. The runfile may be new or may be a
previously used SEG runfile, and maybein any directory. A runfile compiled and loadedin
32R or 64R mode maynot beused.

As the symbol table is always available, SEG’s loader may be used to add modulesto an
existing runfile. Similarly, a partial load may be saved with the SEG SAVE commandand
the load completed later. In addition, selected modules may be replaced in a SEG runfile.

1 January, 1979 7-7 FDR 3057

7 LOADING SEGMENTED PROGRAMS

Objectfiles

Objectfiles of the program modules must have been created using the FORTRANcompiler’s
-64V option. Modules written in other languages mayalso be loaded, if they have been
compiled or assembled in 64V mode.

Code and data areloaded in separate segments to support re-entrant procedures. Data
includes all COMMONblocks and link frames. The loaderassigns code and data segments.
The first segment ('4001) is used for code. Usually segment '4002 will be used for data. The
loader loads data and code into appropriate segments and opens new segmentsas required.
It is possible to put both data and procedure in the same segmentto save space, using the
MIXUP subcommandof the LOAD subprocessor.

The stack

The loaderassigns a stack (a dynamic work area) when SAVE or EXECUTEis invoked. The
stack is usually assigned as the next free location in the first procedure segment with ’6000
free words. If no such segmentexists, a new data segmentis assigned with thefirst location
in the stack set to 4; locations 0 to 3 are used for internal SEG information. The user may
force the location of the stack and/or may changeits size.

Use of pathnames

Pathnames can be used to specify object files in all commands except LIBRARY, which
accepts only a simple filenameof a file within the LIB UFD.

Base areas

‘Base area” is an assembly language concept that can be disregarded by the FORTRAN
programmerunlessthe following messageis printed:

SECTOR 0 BASE AREA FULL

This condition, which is extremely unlikely to occur, can be avoided by using the SETBASE
commandto designate a base area whereit is required.

Locating COMMON

SEG makessure there is no overlap of program and COMMON.Theuserhasthe option of
moving COMMONby a COMMONor SYM command,but hetakes on the responsibility of
making sure it doesn’t run into the stack.

COMMAND SUMMARY

Following is a summaryof all SEG commands,in alphabetical order within three groups:
1. SEG-level commands

2. LOAD-subprocessor

3. MODIFY subprocessor,

Files and directory names may be specified by pathnames, except in the LIBRARY
command. All numerical values must be octal. The following conventionsare followed for
parameters.

addr Wordaddress within a segment.

segno Segment number.

psegno Procedure segment number.

Isegno Linkage segment number.

[a] [b] [x] Values for A, B, and X registers.

FDR 3057 7-8 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

Note

Segment numbers maybeabsoluteorrelative. See Section 11
for further information.

SEG - LEVEL COMMANDS

Commandsat SEGlevel are entered in responseto the ‘'#’’ prompt.

DELETE [pathname]

Deletes a saved SEG runfile.

HELP

Prints abbreviated list of SEG commandsat terminal.

[VJLOAD [pathname]

Defines runfile name and invokesvirtual loaderfor creation of new runfile (if name did not
exist) or appendingto existing runfile (if name exists). If pathnameis omitted, SEG requests
one.

MAPpathname-1 [pathname-2] [map-option]

Prints a loadmap of runfile (pathname-1) or currentloadfile (*) at terminal or optionalfile
(pathname -2).

Option

Full map [default|
Extent map only
Extent map and base areas
Undefined symbols only
Full map [identical to 0]
System programmer's map

Undefined symbols, alphabetical order

Full map, sorted alphabetically
Symbols by ascending address
Symbols alphabeticallyr

P
r
e
E
N
D
o
h

W
D
N
R
©

n
e
)

MODIFY [pathname]

Invokes MODIFY subprocessor to create a new runfile or modify an existing runfile.

PARAMS[pathname]

Displays the parameters of a SEG runfile.

PSD

Invokes VPSD debuggingutility.

QUIT
Returns to PRIMOS commandlevel andclosesall openfiles.

RESTORE [pathname]

Restores a SEG runfile to memory for examination with VPSD.

1 January, 1979 7-9 FDR 3057

7 LOADING SEGMENTED PROGRAMS

RESUME[pathname]

Restores runfile and begins execution.

SAVE [pathname]

Synonym for MODIFY.

SHARE [pathname]

Converts portions of SEG runfile corresponding to segments below ‘4001 into R-mode-like
runfiles. (See Section 11 for more information.)

SINGLE [pathname] segno

Creates an R-mode-like runfile for any segment.

TIME [pathname]

Prints time and date of last runfile modification.

VERSION

Displays SEG version number.

VLOAD

See LOAD.

LOAD SUBPROCESSOR COMMANDS

ATTACH[ufd-name] [password] [Idisk] [key]

Attaches to directory.

A/SYMBOL symbolname[segtype] segno size

Defines a symbol in memoryandreserves spacefor it using absolute segment numbers.

‘ [ABS]
COMMON (REL segno

Relocates COMMONusing absolute or relative segment numbers.

IL

LOAD

D/< LIBRARY

FORCELOAD

PL or RL

Continues a load using parametersof previous load command.

Note

D/ and F/ may be combined,as in D/F/LI.

EXECUTE[a] [b] [x]
Performs SAVEand executes program.

FDR 3057 7-10 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

IL
LOAD

F/ LIBRARY [pathname] [addr psegno Isegno]
FORCELOAD
PL
RL

Forceloadsall routines in objectfile.

IL [addr psegno lsegno]

Loads impure FORTRANlibrary IFTNLB.

INITIALIZE [pathname]

Initializes and restarts load subprocessor.

LIBRARY [filename] [addr psegno Isegno]

Loads library file (PFTNLB and IFTNLBif no filenamespecified).

LOAD[pathname] [addr psegno Isegno]

Loads objectfile.

MAP[pathname] option

Generates load map (see SEG-level MAP command).

lor|MIXUP
OFF

Mixes procedure anddata in segments and permits loading of linkage and commonareasin
procedure segments. Not reset by INITIALIZE.

MV[start-symbol move-block desegno]

Movesportion of loadedfile (for libraries). If options are omitted information is requested.

OPERATORoption

Enables or removes system privileges 0 = enable, 1 = remove. Caution: this commandis
intended only for knowledgeable creators of specialized software.

PL {addr psegno [segno]

Loads pure FORTRANlibrary, PFTNLB.

IL
LOAD

P/ J/LIBRARY [pathname]option [psegno] lsegno]
FORCELOAD
PL
RL

Loads on a page boundary. The options are: PR = procedure only. DA = link framesonly.
none = both procedure andlink frames.

1 January, 1979 7-11 FDR 3057

7 LOADING SEGMENTED PROGRAMS

QUIT

Performs SAVE and returns to PRIMOS commandlevel.

RETURN

Performs SAVEandreturns to SEG commandlevel.

RL pathname[addr psegnoIsegno]

Replaces a binary module in an established runfile. |

R/SYMBOLsymbol-name[segtype] segno size

Defines a symbol in memory andreservesspaceforit using relative segment assign-
ment.(Default = data segment).

SAVE[a] [b] [x]

Saves the results of a load on disk.

SETBASEsegno length

Creates base area for desectorization.

segno addr
SPLIT <addr

addr segno addr Isegno

Splits segment into data and prodecureprotions. Formats 2 and 3 allow R modeexecutionif
all loaded information is in segment 4000.

SS symbol-name

Saves symbol; prevents XPUNGEfrom deleting symbol-name.

STACK Size

Sets minimum stacksize.

SYMBOL [symbol-name] segno addr

Defines a symbolat specific location in a segment.

LIBRARY
S/

)

FORCELOAD [pathname] [addr psegno Isegno]
PL or IL
RL or LOAD

Loads an objectfile in specified absolute segments.

XP dsymbol dbase

Expunges symbol from symbol table and deletes base information.

dsymbol Action

0 Delete all defined symbols—including COMMONarea.

1 Delete only entry points, leaving COMMONareas.

FDR 3057 7-12 1 January, 1979

LOADING SEGMENTED PROGRAMS 7

dbase Action

0 Retain all base information.

1 Retain only sector zero information.
2 Delete all base information.

MODIFY SUBPROCESSOR COMMANDS

NEW pathname

Writes a new copy of SEG runfile to disk.

PATCHsegno baddr taddr

Adds a patch (loaded between baddr andtaddr) to an existing runfile and savesit on disk.

RETURN

Returns to SEG commandlevel.

ssize
segno addr

SK ssize 0 esegno
ssegno addr esegno

Specifies stack size (ssize) and location. esegno specifies an extension stack segment.

START segno addr

Changes program execution starting address.

WRITE

Writes all segments above ‘4000 of current runfile to disk.

1 January, 1979 7-13 FDR 3057

Executing programs

INTRODUCTION

This section treats the following topics:

e Execution of program memory images saved by the Loader

¢ Execution of segmented runfiles saved by SEG’s Loader

e Run-time error messages
¢ Installation of programs in Command UFD (CMDNCO0)

EXECUTION OF R-MODE MEMORY IMAGES

For programs loaded in 32R or 64R mode bythe loader, execution is performed at the
PRIMOSlevel using the RESUME command. Programs which are already resident in the
user’s memory may be executed by a START command.

RESUMEpathname

RESUME brings the memory-image program pathname from the disk into the user’s
memory, loads theinitial register settings, and begins execution of the program.

Example:

OK, R *TEST User requests program

GO Execution begins
THIS IS A TEST Output of program

OK, PRIMOSrequests next command

Note

RESUMEshould not be used for segmented (64V mode)
programs. Use the SEG command(discussedlater) instead.

START [start-address]

If a program has been maderesident in memory (for example, by a previous RESUME
command) START maybeusedtoinitialize the registers and begin execution.

START can also restart a program that has returned control to PRIMOS (for example,
because of an error, a FORTRAN PAUSE or CALL EXIT statement). If START is typed
without a value for start-address, the program resumes at the address value at which
execution was interrupted. To restart the program at a different point, specify an octal
starting location as the start-address value; the usual default value for the beginning of
FORTRANprogramsis 1000.

.1 January, 1979 8-1 FDR 3057

8 EXECUTING PROGRAMS

Example:

OK, R *TEST1 Begin
GO Execution starts
INPUT NEW KEY: 5 Program asks for input
QUIT User hit BREAK to stop
OK, S 1800 Restart program from beginning

GO Execution restarted
INPUT NEW KEY:

The FORTRAN programmerwill almost always use the default forms of the RESUME and
START commands(the form discussed here). For a complete treatment of these commands,
see the Reference Guide, PRIMOS Commands.

Upon completion of the program, control returns to PRIMOS commandlevel.

EXECUTING SEGMENTED RUNFILES

For programsloaded and saved by SEG,execution is performed at the PRIMOS command
level using the SEG command:

SEG pathname

where pathnameis the name of a SEG runfile. SEG loadsthe runfile into segmented memory
and starts execution. SEG should be used for runfiles created by SEG’s loader; it should not
be used for program memory images created by the R-mode loader.

Example:

OK, SEG #TEST User requests program
GO Execution begins
THIS IS A TEST Output of program

OK, PRIMOSrequests next command

Upon completion of program execution, control returns to PRIMOS commandlevel.

A SEG runfile may be restarted by the command:

S 1000

if both the SEG runfile and the copy of SEG usedto invokeit are in memory.

RUN-TIME ERROR MESSAGES

During program execution, error conditions may be generated and detected by the
FORTRANmathematical functions, file system subroutine calls, or the operating system. A
list of run-time errors is included in Appendix A.

R-mode FORTRANfunctions

FORTRANfunctions (COS,SIN, etc.) used for programs compiled in the 32R and 64R mode
generate error messagesin this format:

eEKEOG {n|

whereccis a two-letter code and n is the FORTRANlogical unit number; n is printed out
only for I/O errors. Whenanerroris encountered, the error messageis printed at the user
terminal. Most errors return command to PRIMOSlevel.

FDR 3057 8-2 1 January, 1979

EXECUTING PROGRAMS 8

V-mode FORTRANfunctions

FORTRANfunctions (COS,SIN, etc.) used for segmented (64V mode) programs generate
error messagesin this format:

**** error-message

Errors detected are generally of the same type as those in the R-modefunctions; dueto less
restrictive program size constraints, error messages have been madeclearer. Mosterrors

return control to the PRIMOSlevel.

File system calls

In the file system, subroutines return an integer error codeas part of their argumentlist. A
non-zero value indicates the type of error which has occurred. The error code value may be

used to transfer control in the program. The error message can beprinted to the terminal

using the ERRPR$ subroutine. The error
message formatis:

standard-text user’s-text-if-any (name-if-any)

standard-text The file system standard error message(listed in Appendix A).

user’s-text-if-any An optional message which the user mayelect to have printed.

(name-if-any) The program/subsystem detecting or reporting the error. Again,

the user selects this text.

Example:

Following a call to PRWF$$, CODE wasreturned as CODE=E$UNOP;thecall:

CALL ERRPRS (KSSRTN,CODE,'DO A STATUS',11,'PRWFSS', 6)

results in the message:

UNIT NOT OPEN. DO A STATUS (PRWESS)

Note

The error code should always be checked for zero/non-zero
value to ensure thaterrors do not go unnoticed.

The file system is described in Reference Guide, PRIMOS Subroutines. In the list of

standard error messagesforfile calls, parentheses enclose a list of subroutines most likely

to generate that error; brackets enclose the name of the error code correspondingto its

numeric value. (See Appendix A.)

Others

Error messages may be printed by other subroutines or by the operating system. Error

messages specific to execution of segmented programsare labelled 64V mode. Someerror

messages imply system problems beyond the scope of the applications programmer.If so,

this is indicated in the explanation of a given error message.

1 January, 1979 8-3 FDR 3057

8 EXECUTING PROGRAMS

INSTALLATION IN THE COMMAND UFD (CMDNCO)

Run-time programs in the command UFD (CMDNCO) can be invoked by keying in the
program namealone, This feature of PRIMOSis useful if a number of users invokethis
program. Only one copy of the program need reside on the disk in UFD=CMDNCO.

Even more space is saved during execution by multiple users if the program uses shared
code (64V modeonly). (See Section 11).

Program memory images saved by the loader

Installation in the command UFDis extremely simple. The runtime version of the program
is copied into UFD=CMDNCOusing PRIMOS’ FUTILfile handling utility.

Example: Assume you have written a utility program called FARLEY.This utility acts as a
“tickler’’ for dates. Using FARLEY, each user builds a file with important dates. The
FARLEYutility program, upon request, prints out upcoming events or occasionsof interest
to the user.

Note

This utility does not exist; it is used as a plausible example.

First, compile the program:

OK, FIN FARLEY -64R Compile in 64R mode
GO

G088 ERRORS [<.MAIN.>FTN-REV16. 9] Compiler message

OK, LOAD Invoke the Loader
GO

SLO BFARLEY Load the objectfile; the default

nameis used
$ Load other required modules

SLI Load the FORTRANlibrary
LOAD COMPLETE Load is complete
SSA *FARLEY Save the memory image
$QU Return to PRIMOS

OK, FUTIL Invokethefile utility
GO

>TO CMDNC@ ORDER Defines the TO UFD as CMDNCo;
password is ORDER

>COPY *FARLEY FARLEY Copies the runtime program
*FARLEY into UFD=CMDNCo

under the name of FARLEY
> QUIT Return to PRIMOS Commandlevel

OK,

It was not necessary to define a FROM UFD;the default (home) was used.

Any user can now invoke this program:

FDR 3057 8-4 1 January, 1979

EXECUTING PROGRAMS 8

OK, FARLEY Invoke program
GO Execution begins

HOW FAR: Asks for future time period

etc.

Segmentedrunfiles saved by SEG’s loader

A segmented program cannot be run directly from UFD=CMDNCO because PRIMOS'
commandprocessor cannotdirectly handle the SEG runfiles, The segmented program may
be invoked by meansof a non-segmentedinterlude program in CMDNCO.

The procedurefor creating an interludeis:

1. Create the desired SEG runfile.

2. Attach to UFD=SEG, which contains the commandfile CMDSEG.

3. Run the command file CMDSEG using COMINPUT;it will ask for
runfile pathname as the new SEGrunfile name. This commandfile will
create the interlude program under the name *TEST.

4. If you did not give a pathnamefor the runfile, make a copy of the SEG
runfile in UFD=SEG using FUTIL’s TRECPY command. The nameof
the new SEG runfile should be the name by whichit will be invoked.

5. A copy of *TEST should be placed in UFD=CMDNCO using FUTIL's
COPY command. Thefile name should be that by which the program
will be invoked.

Example:

1. Extensions to the FARLEYutility described above makeit desirable to
compile and load it as a segmented program.

OK, FIN FARLEY -64V
GO
0000 ERRORS [<.MAIN.>FTN-REV16.@]

Compile in 64V mode

2. ATTACH to UFD=SEG

1 January, 1979 8-5

OK, SEG Invoke SEGutility
GO
LOAD #FARLEY Establish runfile name
S$ LO B FARLEY Load objectfile

S e

S$ LI Load 64V mode FORTRANlibrary
S SA Save thefile
$ QU Return to PRIMOS
OK,

FDR 3057

8 EXECUTING PROGRAMS

FDR 3057

OK, A SEG
OK,

The commandfile CMDSEGcreatesthe interlude program.

OK, CO CMDSEG

OK, * CMDSEG,SEG,CEH. 04/05/78
OK, * COMMAND.FILE.TO.CREATE. 'CMDNCO' .SEG.RUNFILES
OK, R *CMDIMA
GO
RUN FILE NAME: FARLEY
OK, FTN SSSSEG 1/5707
GO
0000 ERRORS [<.MAIN. >FIN-REV16.9]
OK, FILMEM
OK, LOAD
SSZ
SER 2
SMO D64R
SCO 1734080
SLO B_SSSSEG 173400
SAU 2
SLO CMDLIB * 12 1414001290980 12
SAU @
SLI
SMA 2
SSAVE *TEST
SAT
SQU
OK, DELETE SSSSEG
OK, DELETE B_SS$SEG
OK, CO TTY

OK,

UFD=SEGcontains the SEG runfiles which are actually executed by the
interlude programs. The SEG runfile is copied here from the UFD in
which it was SAVEd. There is no TO UFD defined, as the default

(home) is being used.

OK, FUTIL Invoke FUTIL
GO

>FROM MYUFD FROM UFDis user’s old home UFD
>TRECPY #FARLEY FARLEY Make a copy underthe invocation
> name

8-6 1 January, 1979

EXECUTING PROGRAMS 8

5. The interlude program *TESTis copied into the Command UFD under
the name by whichit will be invoked.

>FROM * New FROM UFD—the current home
>TO CMDNC@ ORDER TO UFD=CMDNCO; password here

is assumed to be ORDER

>COPY *TEST FARLEY Copythe interlude
>QUIT Return to PRIMOS commandlevel

OK,

When FARLEYis enteredat the user terminal, theFARLEYinterlude program in CMDNCO
is executed. This program attaches to the SEG UFD,restores the segmented runfile FARLEY,
re-attaches to the user’s home directory and begins execution of the SEG runfile.

If the SEG runfile requires only one segmentof loaded information (procedure,link frames,
and initialized common) in user space (segment '4000 and above)it is possible to include the
interlude in the SEG runfile. This is discussed in Section 11.

1 January, 1979 8-7 FDR 3057

INTRODUCTION

This section discusses the various debugging tools and strategies available to the Prime
FORTRAN programmer. For a good discussion of debugging techniques (as well as
preventive programming methodology), the readeris referred to The Elements of Program-
ming Style, Kernigan and Plauger, McGraw-Hill, 1978 (Second Edition).

Debugging is discussed in the following areas:

* Coding strategy

* Compiler usage

¢ Program execution

* The PM command

¢ Program validation

CODING STRATEGY

Coding strategy involves avoiding traditional errors so as to eliminate the need for
debugging later. (Section 13 contains information on coding optimization.) The four major
techniques for coding are:

1. Modular program structure.

2. Proper use of comments.

3. Effective use of indention and spacing.

4. Inserting TRACE statements to monitor program control flow.

Modular program structure

Modular program structure is the building up of a large program or system from set of
small, self-contained program modules. Each module performsa discrete, specific task, and
contains all necessary comments, diagnostics and error messages. This permits the program-
merto design, code, compile, load, execute, debug and maintain each portion of the master
program individually (though certain programs may needto be runin “artificial” environ-
ments or with test routines that simulate other portions of the master program).

Once the master program nears completion, modular structure allows the programmerto
isolate problems back to specific modules, permitting simpler and morereliable bugfixes.

Proper use of comments

As pointed out in Elements of Programming Style, the proper use of comments can vastly
improve a program's usability by its own and other programmers, while bad comments can
seriously interfere. Commentsshould,as a rule, offer succinct information as to the purpose
and intent of upcoming code, and not simply restate the code.

1 January, 1979 9-1 FDR 3057

9 FORTRAN—DEBUGGING

Note

One method of commenting worth consideration is that of
placing the majority of comments on the right-handside of
the file (the actual code being on the left). This allows the
programmer to cover over comments when re-inspecting

code, leading to the possible discovery that it does not
perform the claimed task as stated in the accompanying
comment.

Effective use of indention and spacing

Indention and spacing, when properly used, help display the parallelism, symmetry and/or
consistency (or lackthereof) in a given portion of code.

Inserting TRACE statements to monitor program control flow

The FORTRAN TRACE statement permits the monitoring of program control flow by
displaying values of specified variables whenever they are changed during program
execution. TRACEis explained in Section 15. By monitoring the values of given variables,
you can often determine at what places your program is not working as desired, and from
there investigate the cause.

COMPILER USAGE

Compile-time debugging consists of the following operations:

1. Syntax checking and compile-time errors.

2. DCLVARand global TRACE compiler options.

Syntax checking

The FORTRANcompiler automatically performs syntax checking as part of the compiling
process. Syntax errors are usually due to coding or typing errors. (Rememberthat what the
compiler perceives as a syntax error may often bethe result of some other error elsewhere
in the program; e.g., the compiler will flag the statement GOTO 140if there is no statement
140, or if there is an error in statement 140.)

If your program hassyntaxerrors, do not attempt to load and execute it; make the necessary
correctionsfirst.

Other compile-time errors

The compiler also checks for non-syntactical errors, such as program length exceeding
available user space. As with syntactical errors, do not attempt to load and execute a
program which has non-syntactical errors.

The DCLVARand global TRACE compiler options

The DCLVARoption to the FTN commandcausesthe compilerto flag all variables which
are not explicitly declared in specification statements. This procedure often uncovers minor
spelling errors in the sourcefile (e.g., you defined the variable TEMP.A1, but elsewhere
typed it as TEMPA.1).

The TRACEoption produces a trace for every variable in the program. This option takes
precedence over any TRACEstatement in your FORTRANprogram,andis particularly
helpful in conjunction with the PRIMOS COMOUTPUT command(given prior to the FTN
command), which will thus send all TRACE outputto a file. (See Section 10 for COMOUT-
PUT information).

See Section 5 for more information on these compiler options.

FDR 3057 9-2 1 January, 1979

ADVANCED
PROGRAMMING

CaerrerrreeSieteetnieseerneeearenenetneeertenereeneteeemeeenemeeteeeeeemeeeeeeeteetersetterreneeiene eeeetceteratenereenaeroenerreret

nacerecetetetateteteveterete’atoteretefereterareaTetTatefotetetatatatatettatatsforstotatatetarevetetefernvetete’sfereveteteve‘erevefevecscacaracacet

Operating system features

This section discusses some PRIMOSutilities that are useful to most FORTRAN program- .
mers. These are:

¢ Commandfile operations (COMINPUT, COMOUTPUT, PHANTOMand CX)

e Phantom users (PHANTOM)

¢ Sequential job processing (CX)

e Magnetic tape utilities (MAGNET, MAGSAV, MAGRST)

e PRIMENET

¢ File utility (FUTIL)
e SORTutility

e File compare and merge commands (CMPF, MRGF)

¢ Terminal control (TERM)

For more details on these and other topics, see Reference Guide, PRIMOS Commands.

COMMANDFILE OPERATIONS

PRIMOSoffers threeutilities that allow command sequencesto run from files rather than

from direct user interaction. Theyare:

COMINPUT Reads commandsfrom a specified file. Commands and responses
appear on terminal. Terminalis dedicated to this operation during
execution.

PHANTOM Reads commands from file but executes as another PRIMOS
process, freeing terminal for other use. Limited numberof phan-
tom processesare available, so user may have to wait for a free

process.

CX Sequential job processor. Operates like PHANTOMbut queuesa
large number of commandfiles and can be interrogated about job

status, —

All of these utilities read commands from a commandfile, which is a file containing

PRIMOS commands,utility subcommands, and dialog responses. The usercreatesthefile

with the editor, runs it under COMINPUTto verify operation, edits it to make changes, and

thereafter runs it under COMINPUT, PHANTOMorCX.Thisis particularly useful for long

program developmentoperations that must be repeated wheneversourcecodeis changed,

building libraries, production job runs,etc.

Supporting the three commandprocessing utilities is the COMOUTPUT command which

maintains an auditfile of the dialog between PRIMOSand the commandfile. Other useful

PRIMOS commands are TIME and DATE. These commandsare described later in this

section.

1 January, 1979 10-1 FDR 3057

10 OPERATING SYSTEM FEATURES

Commandfile requirements

Commandinput files may contain any legal PRIMOS commands, utility subcommands,or
dialog responses, on a line-for-line basis i.e., each line in the file must correspondto a line
as it would be typed at a terminal. Each utility imposes certain requirements:

¢ For COMINPUT,the last command should be COMINPUT -TTY or COMINPUT

-END.

e For PHANTOM,the last command must be LOGOUT.

¢ For CX,the first command must be an ATTACHtothe desired workingdirectory
and the last command must be CO -TTY, CX -E, or LOGOUT.

Comments: commandinputfiles can be made self-documenting by including commentlines
at PRIMOS commandlevel. A line beginning with a slash and asterisk, (/*), is interpreted
as a commentandis ignored by PRIMOS.If a command outputfile is open, any comments
entered at the terminal by the user or from a commandfile are written into the command
output file. Any character may be used in a commentline. A comment mayalso be appended
to a command at PRIMOS commandlevelasin:

SLIST MBENCHO7 /* PRINT MAP FILE

The COMINPUT Command

The COMINPUT command causes PRIMOSto read input from a specified commandfile
rather than from the terminal. Commandsare executed as if they were entered at the
terminal. The formatis:

COMINPUT[command-file] [-options] [file-unit]

command-file The pathnameofthe file from which input is to be read.
options Specify commandcontrol flow asdetailed below.
file-unit The PRIMOSfile unit number on which the inputfile is to be

opened.If omitted, file unit 6 is used. File units must be octal(i.e.,
decimal 8 is entered as 10).

Options:

-TTY Either one switches the commandinputstream to the user termi-
-END nal and closes the commandinputfile.

-PAUSE Switches commandinputstream to the user terminal but does not
close the commandinput file.

~CONTINUE Returns control to commandinputfile following a CO -PAUSEor
an error.

-~START Resumes commandfollowing a BREAKinterruption of execution
of a commandfile.

The -TTY, -END and -PAUSE options are used only within command files. The
-CONTINUEand -STARToptions are typed by the user.

The -TTY, -END option must be the final command in the commandfile (or in the last
commandfile, if files are chained as described below.)

FDR 3057 10-2 1 January, 1979

OPERATING SYSTEM FEATURES 10

Chaining commandfiles: The -CONTINUEoption of COMINPUTallows commandfiles to

be chained. The following example illustrates the chaining of three commandfiles, and

shows how file unit conflicts can be avoided. The commandfile C__GO contains the

following commands:

/* COMPILE THE PROGRAM IN 64V MODE
FIN FIN. TEST -64V
/* LOAD THE PROGRAM
COMINPUT C LOADTEST 7
CLOSE 7
/* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY

The commandfile C_LOADTESTcontains the following commands:

/* LOADTEST COMMAND FILE
SEG
VLOAD #FIN.TEST
LO BFIN.TEST
LI
SA
QU
COMINPUT C_MAPS 10
CLOSE 8
COMINPUT -CONTINUE

The commandfile C_MAPScontains the following commands:

/* GET FULL MAP AND UNSATISFIED REFERENCES
SEG
VLOAD * #FTN. TEST
MAP M_LOADTEST 7
MAP MUNSATISFIED 3
QU
/* RETURN TO 'CALLING' COMMAND FILE
COMINPUT -CONTINUE

Typing COMINPUT C__GO causesthe commandsin C_GOto be executed; the COMINPUT

C__LOADTEST 7 commandcausesinputto be read from C_LLOADTEST(openedonfile unit

7). The COMINPUT -CONTINUE commandin C_LOADTESTcausesinputto be read from

the commandfile opened on unit 6 (C__GO). Since C_GOwasnotclosed,its file pointeris at

the commandfollowingthe one invoking input from C_LOADTEST.In a similar mannerthe

commandfile C_MAPSis invoked from C_LOADTESTonfile unit 8 (’10). Execution of CO

—GOresults in the following terminal output:

1 January, 1979 10-3 FDR 3057

10 OPERATING SYSTEM FEATURES

OK, CO C GO
OK, /* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST —64V
GO
Q000 ERRORS [<.MAIN.>FIN-REVI16.1]

OK, /* LOAD THE PROGRAM
COMINPUT C_LOADTEST 7
OK, /* LOADTEST COMMAND FILE
SEG
GO
VLOAD #FIN. TEST
$ LO BFIN.TEST
$ LI
LOAD COMPLETE
$ SA
$ QU

OK, COMINPUT CMAPS 1¢
OK, /* GET FULL MAP AND UNSATISFIED REFERENCES
SEG
GO
VLOAD * #FIN. TEST
$ MAP M LOADTEST 7
$ MAP MUNSATISFIED 3
S QU

OK, /* RETURN TO 'CALLING' COMMAND FILE
COMINPUT —CONTINUE
OK, CLOSE 7
OK, /* RETURN COMMAND TO USER TERMINAL
COMINPUT -TTY
OK,

Errors: Non-recoverable errors return input control to the terminal, leaving the command
file open. The user may typea correct version of the offendingline, and then resume input
from the commandfile by the command CO -CONTINUE.

Closing commandinputfiles: In chaining commandfiles, the ‘called’ files should be closed
uponreturningto the ‘calling’ files, either by file unit number(asin the example above) or
by filename. The user should makecertain thatthe file units to be used for the command
input files are not already opened(or going to be opened) by user programs,utilities, or
other commandinputfiles.

FDR 3057

Note

The CLOSE ALL commandshould not be used in a command
inputfile, as it closes all files, including the commandinput
file from which this commandis read. The message COMINP
FILE EOFwill be printed and input control will be switched
to the terminal.

10-4 1 January, 1979

OPERATING SYSTEM FEATURES 10

The COMOUTPUT command

The COMOUTPUT commandwrites, into a specified file, both the output stream directed to

the terminal by PRIMOSandthe input presented to PRIMOS.The input mayoriginate as

direct typing, or come from a commandfile running under COMINPUT, PHANTOMorCx.

The resulting output file is a permanent record of the entire dialog.

Output to the terminal can be suppressed. Print suppression increases speed since it

normally takes more time to write to a terminal than to

a

diskfile.

The command formatis:

COMOUTPUT[output-file] [-options]

output-file is the pathnameof the file to which the output stream is sent. options specify

terminal andfile output and control flow as described below.

Terminal options: These can be used when the output file is first opened, or at any time

before the commandoutputfile is closed. User input is always echoedat the terminal even

if the -NTTY option is used.

-NTTY Turn off terminal output.
-TTY Turn on terminal output (default).

Error messagesare printed in the output file and at the terminal, regardless of the terminal

option selected. Any inter-user terminal output (e.g., messages from the supervisor termi-

nal) is printed at the terminal but not in the output file.

File options: These stop or restart output to the commandfile. They may also be used to

appendoutputto an existingfile.

-PAUSE Stop output to commandfile; leave file open.

-CONTINUE Resume output (halted by -PAUSE) to the commandoutputfile.

Or, if at PRIMOSlevel, re-open an existing COMINPUTfile and

position the pointer so that new output will be appended.

-END Stop output to commandfile; closefile.

A BREAKturns terminal output on, but does not close the file. A LOGOUTturns terminal

output on and also closes the command outputfile, as well as any other files the user has

currently open.

Examples:

COMO O_FTNTEST

opensthe file O_FTNTESTfor output and positions the pointerto the start of the file. If O

__FTNTESTalreadyexists, its previous contents will be deleted. To open an existing file for

appending, typing:

COMO O_FTNTEST -C

opens the file O_FTNTESTandpositions the pointer at the end ofthefile.

1 January, 1979 10-5 FDR 3057

10 OPERATING SYSTEM FEATURES

Closing commandoutput files: The commandoutputfile is normally closed by the COMO
~END command.The user maydesireto close the file at other times (say, after a BREAK).
Since COMOUTPUTusesfile unit 63 ('77), the CLOSE ALL commandwill not closethisfile.
The file may be closed with:

CLOSE output-file

or

CLOSE 77 (must be octal value)

or

COMO -END

Using DATEand TIMEin commandfiles

The DATE command: The command DATEprints the system date and timeat the user
terminal.

OK, DATE

GO

Wednesday, June 7, 1978 18:11 AM

This feature allows command outputfiles to be stamped with date/time information for
identification, as an aid to program development and debugging. For example, the sequence
of commands:

COMO O_TEST1

DATE

DATE

COMO -END

creates a file, O_TEST1. Thefirst line of this file is the DATE command;the nextline is the
time and dateof this interactive session.

DATE mayalso be included in commandinputfiles or in commandfiles for the sequential
job processor (CX).

The TIME command: The command TIMEenteredat the user terminal prints the current
values in the time accountingregisters. These are: connect time, compute time, and disk I/O
time.

OK, TIME
1'32)) @'ll G'88

OK,

FDR 3057 10-6 1 January, 1979

OPERATING SYSTEM FEATURES 10

Connect time is the time since LOGIN (in hours and minutes). Compute time is the time

accumulated executing commandsor using programs(in minutes and seconds). This does

not include disk I/O time. Disk I/O time (in minutes and seconds) is the accumulated time

for disk input and output. Disk I/O includes paging I/O time generated onthe user's behalf.

All times include system supervisor overhead caused by user requirements.

The TIME command can be given before and after executing a program. The time

differences can be used to benchmark the program and measureefficiency as the program

is optimized.

Example: the commandinput file C_BENCH07contains the following:

COMO OBENCH97
/* TIMING TEST OF BENCH@7 PROGRAM
DATE
/* GET START TIME VALUES
TIME
SEG #FTN.TEST
/* GET STOP TIME VALUES
TIME
COMO —END
CO -TTY

The command CO C_BENCH07executes this commandfile. Upon completion, the output

file O_._BENCH0?7containsthe following:

OK, /* TIMING TEST OF BENCH@7 PROGRAM

DATE
GO

Wednesday, June 7, 1978 9:59 AM

OK, /*
Ma GET START TIME VALUES
*

TIME
1'12 G'93 8'O3

OK, /*
SEG #FTN. TEST
GO
THIS IS A TEST

OK, /*
/* GET STOP TIME VALUES
/*

TIME
1'12) «-8'@4 =@'5

OK, /*
COMO -END

1 January, 1979 10-7 FDR 3057

10 OPERATING SYSTEM FEATURES

PHANTOM USERS

The phantom user feature allows commandfile processing without tieing up a terminal.
Once a phantom processhasbeeninitiated,it is treated by PRIMOSasa separate process.
that is not associated with a terminal. The terminal is then madeavailable for other uses.

The commandfile run by the phantom processspecifies the commandsandtheir sequence,
program invocations and necessary input data required to complete a particular job.
Phantomsare used for long compilations, loadings, and executions that are debugged and
require no interactive terminal input. Certain PRIMOSsystem utilities (e.g., FAM, SPOOL)
are implemented as phantom processes.

Using PHANTOM

A phantom userprocessis initiated by the command:

PHANTOMfilename[file-unit]

filenameis the nameof a commandinputfile, and file-unit is the PRIMOSfile unit number
on which the commandfile is to be opened.If omitted, file unit 6 is used.

The PHANTOM commandchecksfor available phantom processes. The numbervaries with
each installation. The message

NO FREE PHANTOMS

is returned if no processes are available. Control is then returned to PRIMOS. When a
phantom processis available, the message

PHANTOM USERIS user-number

is returned and the phantom useris logged in (under the same login-nameasthe invoker).
The home and current directories of the phantom areset to the currentdirectory of the
originating user. User-number is the number assigned by PRIMOS to the PHANTOM
process. Cortrol returns to PRIMOS,the terminalis freed for other use, and the phantom
commandfile is opened on the specified (or default) unit. PRIMOSthen readsall further
commandsfor the phantom user from the commandfile.

Phantom operation

Phantom processes should not execute programs which require input from an actual
terminal. Such an instruction will abort and log out the phantom process. This logout
information is printed only at the supervisor terminal.

While a phantom processis in operation, generated output is suppressed unless a command
outputfile has been opened by aCOMOUTPUT commandin the phantom commandfile.
Output is then written to the COMOUTPUTfile.

It is possible to initiate another phantom from a running phantom,in a mannersimilarto
chained COMINPUTfiles. However,there is no guarantee that a phantom userprocesswill
be available when the process is requested by a commandfile.

The final commandin the last executed phantom commandfile should be LOGOUT.

Phantom logout

At the completion of a job process, phantom users are automatically logged out. To cancel a
phantom userprocess before completion, use the command:

LOGOUT -usernumber

usernumberis the PRIMOS-assigned phantom user number

FDR 3057 10-8 1 January, 1979

10 OPERATING SYSTEM FEATURES

Any phantom can be logged out from the supervisor terminal. From a user terminal, a
phantom can be logged out only if the terminal has the same login UFD as that which
initiated the phantom.

Phantom STATUSinformation

The STATUS USER command(discussed in Section 2), providesa list of all the users in the
system, their login numbers,assigned line numbers,etc. Phantom usersare distinguished by
the line number 77 in a STATUSlist. In the following example, the phantom users are
numbers 57 and 58, as indicated by LIN = 77. These phantom processes wereinitiated by -
users logged into SYSTEM and FAMrespectively.

Example:

OK, STATUS USER

USER NO LIN PDEVS
TEKMAN 43 51 598460
SILVA 44 52 16460
BD 45 53 61062
SYSTEM 57 77 460
FAM 58 77 468 (2)
SYSTEM 59 77 61868

OK,

Example of phantom commandfile

The phantom commandfile PH.TESTcontains the following commands:

/* BEGIN TEST OF PHANTOM
COMOUTPUT O PH. TEST
DATE -
/* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/* LOAD THE PROGRAM
SEG
VLOAD #FIN. TEST
LO BFTN.TEST
LI
SA
MAP M_LOADTEST 7
MAP MUNSATISFIED 3

QU
/* PHANTOM TEST COMPLETED
DATE
LOGOUT

1 January, 1979 10-9 FDR 3057

10 OPERATING SYSTEM FEATURES

Whena phantomis invoked at the terminal by PH PH.TEST,the terminalinteractive dialog
1S:

The contents of the commandfile, O_PH.TESTcreated by the phantom are:

OK, PH PH. TEST

PHANTOM IS USER 61
OK,

OK, DATE
GO

Wednesday, June 7, 1978 3:27 PM

OK, /* COMPILE THE PROGRAM IN 64V MODE
FIN FIN. TEST -64V
GO

Q000 ERRORS [<.MAIN.>FTN-REV15.1]

OK, /* LOAD THE PROGRAM
SEG
GO
VLOAD #FTN. TEST
S$ LO B FTN.TEST
SLI
LOAD COMPLETE
S$ SA |
S MAP MLOADTEST 7
S$ MAP M_UNSATISFIED 3
S$ QU

OK, /* PHANTOM TEST COMPLETED

DATE:

GO

Wednesday, June 7, 1978 3:28 PM

OK, LOGOUT

TEKMAN (61) LOGGED OUT AT 15'28 860778
TIME USED= @'@1 6'84 6'10

FDR 3057 10-10 1 January, 1979

OPERATING SYSTEM FEATURES 10

SEQUENTIAL JOB PROCESSOR(CX)

The CXutility handles the queuing of jobs for sequential execution as phantoms. Jobs may
be:

e Run simultaneously (multiple job streams).

* Queued accordingto priority (priority levels).

¢ Restricted to a specified amount of CPU time.

Using CX

Jobs are submitted by passing the name of a commandinputfile to the CX queue manager.
The command formatis:

CX pathname [-PRIORITYlevel] [-CPULIMIT cpu-seconds]

pathname The name of the command input file from which the Cx
processor will read commands.

-PRIORITY level Optional assignmentof job priority. Standard priority range is
0-7. Default is level 3 (median).

-CPULIMIT Time allowedfor job to run, in CPU seconds. A numberfrom 1
to 2147483647 (0 is illegal). Default = NONE(notimelimit). Job is
logged out after the limit is reached.

The rangeof priority levels and CPU-limits are installation configurable. Check with your
System Administrator for the range of values implemented on your system.

Job file number

When the CX command andoptions have been specified, the system responds with the
following message:

YOURJOB FILE IS CX##queue-number

queue-numberis a 2-digit number identifying the job in the CX queue. This numberis
assigned by the CX queue manager.

1 January, 1979 10-11 FDR 3057

10 OPERATING SYSTEM FEATURES

Job ID

A CX job may be given an ID for ease of identification in the CX queue. Thefirst six
characters immediately following the first * (the second symbol of a commentindicator}
occurring in the command file are taken as the job ID label. This ID label is printed in
STATUSinterrogation requests. (see below}.

Example:

/* CXTEST IS JOB ID

The letters CXTEST will be taken as the job ID of the commandfile called CXTEST.

CX commandfiles

A CX commandfile is a command inputfile. It is the same as a commandfile used for
PHANTOMexecution with the following exceptions:

¢ The first executable command must be an ATTACHto the desired working
directory. (CX initially logs in the job in its own UFD.)

¢ The last command may be either CO -TTY, LOGOUT,or CX -E. A job will be
listed as ABORTEDin the queueif it terminates without one of these commands.

CX queue information

Thestatus of the CX queue can be determined by issuing the CX command,followed by one
of these options:

-A Lists entire activity file.
-P Lists all jobs belonging to user.
-Q Prints job queue.
-Snn Prints status of job nn.

For example,

OK, CX -A
GO

CX JOB FILE LISTING 78/06/08 2:07 PM

FILE ID OWNER STATE DATE/TIME

CX##07 .TIMDA LSMITH COMPLETED 78/04/18 1:47
CX##06 .TIMDA LSMITH ABORTED 78/04/18 1:38
CX##05 .TIMDA LSMITH COMPLETED 78/04/18 1:35
CX##04 .TIMDA LSMITH COMPLETED 78/04/18 1:26
CX##03 .TIMDA LSMITH ABORTED 78/04/18 1:18
CX##02 .TIMDA LSMITH COMPLETED 78/04/14 5:23
CX##01 .TIMDA LSMITH COMPLETED 78/04/14 5:15

FDR 3057 10-12

PM

PM

PM

1 January, 1979

OPERATING SYSTEM FEATURES 10

Dropping jobs from the queue

A job waiting in the CX queue may be dropped by the command:

CX -Dnn

nn specifies which job is to be dropped from the waiting queue.

A job cannot be dropped from the queueif the job is executing. A user may only drop from
the queue jobs which were entered underthe user's login name. For example:

GO

?CAN'T — NOT YOUR JOB

OK,

Example of CX usage

The commandfile CXTEST in UFD=TEKMAN>PDR3057>FDR3057 contains the following

commands:

/* CXTEST IS JOB ID
A TEKMAN>PDR3057>FDR3057
COMOUTPUT O.CXTEST
DATE .
/* COMPILE THE PROGRAM IN 64V MODE
FTN FTN.TEST -64V
/* LOAD THE PROGRAM
SEG
VLOAD #FTN. TEST
LO B FTN.TEST
LI
SA
MAP M_LOADTEST 7
MAP MUNSATISFIED 3
QU
CX -Q°
/* CX TEST COMPLETED
DATE
COMOUTPUT -END
CX -E

When the CX processor is invoked the interactive session at the terminalis:

OK, CX CXTEST

GO
YOUR JOB FILE IS Cx##24

[CX, REV 16.9]

OK,

1 January, 1979 10-13 FDR 3057

10 OPERATING SYSTEM FEATURES

The commandoutput file created by the CX commandfileis:

OK, DATE
GO

Thursday, June 8, 1978 2:89 PM

OK, /* COMPILE THE PROGRAM IN 64V MODE
FIN FIN.TEST -64V
GO
0200 ERRORS [<.MAIN.>FTN-REV16]

OK, /* LOAD THE PROGRAM
SEG
GO
VLOAD #FIN. TEST
$ LO BFTN.TEST
$ LI
LOAD COMPLETE
S$ SA |
$ MAP MLOADTEST 7
$ MAP M_UNSATISFIED 3

S$ QU

OK, /*
CX -Q
GO
CX JOB QUEUE LISTING 78/06/08 2:09 PM

FILE OWNER ID DATE/TIME

* CX##25 TEKMAN CXTEST 78/06/88 2:88 PM

(CX, REV 16]

OK, /* CX TEST COMPLETED

DATE

GO

Thursday, June 8, 1978 2:89 PM

OK, COMOUTPUT -END

(* denotes execution)

FDR 3057 10-14 1 January, 1979

OPERATING SYSTEM FEATURES 10

MAGNETIC TAPE UTILITIES

The Prime magnetic tapeutilities allow the duplication of magnetic tapes, the transfer of
files from disk to tape and vice-versa, andthe transfer andtranslation of tapes in non-Prime
format to and from PRIMOSdiskfiles.

Duplicating magnetic tapes

The following utilities are available for duplicating magnetic tapes:

MAGNET

¢ Copying from tape to tape.

¢ Translating from EBCDIC or BCD to ASCII.

e Copying binaryfiles.

MAGSAV

e Archiving Prime-formatfiles, directory-trees or disk volumesto tape.

MAGRST

¢ Restoring Prime-formatfiles, directory-trees or disk volumes from tape.

Copying tapes with MAGNET:If there are two tape drives at the programmer's disposal, the
COPY option of MAGNETcanbe used to generate duplicates of magnetic tapes. This option
copies one tape directly to another. The MAGNETutility may be used for tapes in Prime or
non-Prime format.

The essential steps in the copy procedureare:

1. Assign two magnetic tape drive units from terminal

2. Mount the FROM tape(original) and TO tape (blank) on their respec-
tive drive units.

3. Use COPY option of MAGNET: supply FROM and TO tape unit
numbersandstarting file number and numberoffiles to be copied, as
requested.

4. Dismount both tapes and unassign tape drives when EOT(endof tape)
message is returned.

For information on MAGNET,see Reference Guide, PRIMOS Commands.

Copying tapes with MAGRST/MAGSAV: Whenonly one tape drive is available, the
MAGSAV/MAGRSTutilities can be used to duplicate tapes as follows:

1. Assign a tape drive unit from the terminal.

Mount FROM(original) tape on drive unit.

Copytape to files on disk using MAGRST.

Remove FROMtapeandreplace with TO (blank) tape on drive unit.

Transfer files from disk to TO tape using MAGSAV.

6. Dismount tape and unassign drive unit from terminal.

A summary of MAGRST and MAGSAVdialogues follows.

ao
FP
O
N

MAGRSTdialogue summary

The Magnetic Tape Restore Utility restores files, directory, trees and partitions from a
magnetic tape (7- or 9-track) to a disk.

The command formatis:

MAGRST[-7TRK] (option specifies 7-track tape: default = 9)

1 January, 1979 10-15 FDR 3057

10 OPERATING SYSTEM FEATURES

The MAGRSTutility asks the user a series of questions which are summarized, along with
appropriate response, below.

Question

TAPE UNIT:

ENTER LOGICAL TAPE #

READY TO RESTORE

TREENAME:

MAGSAVdialogue summary

Response

Specify number from 0-7.

Specify number from 1 to n: tape is rewound and
positioned. Enter 0 if tape already rewound and
positioned.

Enter YES to restore entire tape: NO causes request

for new tape drive numberandlogical tape number.
PARTIAL restores part of tape as defined by the
following:

$I [filename] n - print index to n levels to terminal or
optional filename.

NW [n] - print n-level index at terminal but do not
update disk.

Requested when PARTIALrestore is specified. Enter
pathname(s) for file(s) to be restored.

The Magnetic Tape Save Utility writes PRIMOSfiles from disk to a 7- or 9-track magnetic
tape. Several options may be specified with the MAGSAV command:

-LONG

-INC

files.

-UPDT

Sets record size to 1024-words (Default = 512). Useful for long

Indicates update. DUMPED switch set for files and directories
saved from disk to tape.
Indicates incremental dump. Only files and directories with
DUMPEDswitch set to 0 will be saved. (Default = save all)

The MAGSAVdialogue is summarized below. Advisable user responsesare indicated.

FDR 3057

Question

TAPE UNIT:

ENTER LOGICAL TAPE #:

TAPE NAME:

DATE:

REV. NO.

NAME:

Response

Specify physical tape unit number from 0-7.

Specify number from 1 to n: rewinds and positions
tape. Specify 0 if tape is already rewound andposi-
tioned.

Positions tape. Specify 0 if tape is already rewound
and positioned.

Specify date in format: mm dd_ yy. Default (CAR-
RIAGE RETURNonly) is system date.

Enter appropriate REV. number.

Possible responses include:
$A - change home UFD
$Q - terminate logical tape and return to PRIMOS
$R - do $Q and rewind tape
$I [filename] n - saves index to n levels
MFD- save entire disk
* _ save current directory

10-16 1 January, 1979

OPERATING SYSTEM FEATURES 10

USING PRIMOS WITH NETWORKS

Many Primeinstallations contain two or more processors connected in a network—a
combination of communications hardware and PRIMOSsoftware called PRIMENET. On a
system using PRIMENET,the following operationsare possible:

¢ LOGIN to a UFD on a remote system and use that CPU for processing. (Only
terminal I/O is sent across the network.)

¢ ATTACHto directories on disk volumes connected to any other processorin the
network, and accessfiles in such directories. (File data is transmitted across
the network; the local CPU doesthe processing.)

¢ Make sure a spoolfile is printed on the local spool queue (if more than one
processoris running a spool queue).

In a network,the processorthe user terminal is connectedto is the local processor,while all
other processors are considered remote. Each processor in the system is assigned a
nodenameduring system configuration. Disks connected to remote processorsare identified
by local logical disk numbers. (These are assigned by the local system operator during
system configuration.) To determine the nodenameandlogical disk numbers for remote
processors use the STATUS command(describedlater in this section).

For more information on the inner workings of PRIMENET,see the System Administrator's
Guide. PRIMENETalso supports network-primitive subroutine calls for program-level
communication between processes running on different processors. These subroutines are
described in Reference Guide, PRIMOS Subroutines.

Remote login

The LOGIN commandaccepts a nodename argumentthat enables login to a remote system:

LOGIN ufd-name [password] [-ON nodename]

If -ON nodenameis omitted, an attempt is madeto log into ufd-nameonthelocal system
only. If nodenameis the nameofthe local node,the login attemptis donelocally withoutthe
use of PRIMENET.

If the LOGIN command fails for any reason (e.g., NOT FOUND, NO RIGHT, BAD
PASSWORD), the user’s PRIMENETconnectionis broken, and the terminal is reconnected
to the local process (not loggedin).

Ona terminallogged in to a remote processor, the command LOGOUTlogs out the process,
breaks the remote connection over PRIMENET,and reconnects the terminal to its local
process (not logged in). Due to network delays, all input characters typed between the
LOGOUT commandandthe response OKare discarded.

Networkstatus

The STATUS NETWORKcommandgives the namesandstatesofall nodesin the network:

OK, STATUS NETWORK

SMLC NETWORK

NODE STATE
HARDWR ****
RSRCH1 UP

1 January, 1979 10-17 FDR 3057

10 OPERATING SYSTEM FEATURES

RING NETWORK

NODE STATE
HARDWR ****
SYSB UP
SYSD UP

This showsthe state of a four-node network as it would be printed for a local user on the

HARDWRnode. The UPstate meansthat the nodeis configured and functioning.

Attaching to remote directories

To attach to a directory located in a disk volume at another node, specify the logical disk

number of the remote disk (determined from a STATUS DISKSprintout) within the

pathname of an ATTACH command,asin:

ATTACH <3>JONES

which attaches to a UFD=JONESonlogical disk number3.

Selecting home spool queue

In a network with more than one spool queue in operation, any SPOOL request is

intercepted by the first spooler which is ready to accept a job and hastheright form type.

To makesure the printout takes place on thelocal spooler, use the -HOME argumentin the

SPOOL command:

SPOOLfilename [-HOME]

FILE COPYING, DELETING, AND LISTING (FUTIL)

FUTILis

a

file utility commandfor copying, deleting, andlisting files and directories. FUTIL

is most often used for copying files and directories from one directory to another.It is also

useful for deleting groups of files and entire directories. Its list option allows the user to

examine file and directory properties and to keep track of the contents of directories

involved in the copy or delete processes. FUTIL allows operationsonfiles within user file

directories (UFDs) and segmentdirectories.

Invoking FUTIL

To invoke FUTIL, type FUTIL. When ready, FUTIL prints the prompt character >, and waits

for a commandstring from the user terminal. FUTIL accepts either upper or lower case

input, but passwords must be entered exactly as they have been created, i.e., in UPPER

CASEforalmostall instances. (Most other commandswill convert passwordsto upper case

before attempting the match. FUTIL does not.) To abort long operations (such as LISTF),

type BREAK,andrestart FUTIL by typing S$ 1000.

To use FUTIL, type a commandfollowedbya carriage return, and wait for the prompt

character before issuing the next command. The erase (") and kill (?) characters are

supported in both command and subcommandlines.

FUTIL commands

Although only the major FUTIL commandsare discussedin detail here, the following figures

illustrate the function of all available FUTIL commands. Figure 10-1 is an overview ofall

FUTIL commands.Figure 10-2 outlines the COPY, DELETE and PROTECtion commands and

how they operate on files and directories. A typical FROM and TOdirectory outline is

included to show how commandsmovefiles and directories from one location to another.

FDR 3057 10-18 1 January, 1979

OPERATING SYSTEM FEATURES 10

The following are examples of the most commonly used FUTIL commands. An overview of
FUTIL commandsappearsat the endofthis section.

For complete details on all FUTIL commands,listed at the end of this section, see Reference
Guide, PRIMOS Commands.

Copying

FUTIL provides several commands whichallow the userto copyfiles, and formatsarelisted
below:

COPY Copies files (as many as will fit on line).

TRECPY Copies directory trees.

UFDCPY Copies entire UFD structure (complete with all files).

TO Specifies directory to whichfile(s) or directories are to be copied.
Accepts a pathname. Default is home directory.

FROM Specifies directory from which files or directories are to be
copied. Accepts a pathname. Default is homedirectory.

The general format of these commandsare:

COPY pathname [new-name], [pathname new-name]...

TRECPY pathname

UFDCPY

To copy a file, the user must have read accessrights. The nameof a file may be changed by
indicating the desired new name immediately after the current name has been specified.
Filename pairs are separated by commas on the commandline.

Example: The tree structures in figure 10-3 illustrates the positions of various files and
directories which will be copied from one point to anotherin the following examples.

Situation 1: Suppose we want to copy the files HITS and MISSES from the directory
NAUTILUS,into our current directory, SECRETS. Weare currently attached to SECRETS
and havealso set it as home. The pathname of SECRETSis represented as follows: <*>
SECRETS.In pathnames, <*> represents the currentdisk. In this case, it represents disk 2.
This pathname can also be represented as <MONITOR>SECRETS. MONITORis the
volume-nameof the logical device, whereas 2 is the volume-number.Similarly, in figure
10-3, the volume-name and numberofthe other logical disk are 1 and NAVYrespectively.
The volume-name and numbercan be used interchangeably in a pathname,and both appear
in the following examples. Any directory subordinate to SECRETS would bedescribed by a
relative pathname, as in, *>DOMESTIC.In relative pathnames,the use of * indicates the
homedirectory.

Wedo the following:

1. Invoke FUTIL.

2. Define the FROM directory.

3. Define the files to be copied and indicate new filenames(optional).

1 January, 1979 10-19 FDR 3057

10 OPERATING SYSTEM FEATURES

REDEL
SS tence)

FDDEL

4

j
e
n
.

(COPYSAM)———PS
(copvoam) “4 DIRE

TRECPY

EON TE ot FROM‘*TAEPRO>} pinecTORY

LISTFISCAN)

\o ATARI

TERMINAL

 »
| CURRENT |

| DIRECTORY

OPERATING SYSTEM FEATURES 10

10 OPERATING SYSTEM FEATURES

ee LOGICAL DISKNUMBER.
<NAVY> “MOLUMENAME_<MONITOR’

Feo

“MARINE ffsecrets||ore
po WFO) FILES spURED)

 -ponauticus| [| Hoteano ||pomestic “FOREIGN
(sue-urb)| [| (SuB-UFD) | = | (suB-UFD) || (suB-UFO)

 ry

 “MISSES

OPERATING SYSTEM FEATURES 10

The FUTIL dialogueis as follows:

OK, FUTIL
GO
> FROM <1>MARINE>NAUTILUS
> COPY HITS, MISSES ZEROES
> QUIT
OK,

The files HITS and ZEROES (formerly MISSES) are now in our homedirectory SECRETS,
as well as in the FROM directory NAUTILUS.(The file MISSES is not renamed in the
FROMdirectory.)

Situation 2: Suppose we wantto copyall the contents of the directory HOLLANDto another
directory CLASSIFIED, on the current disk. The files and directories contained in
HOLLANDare called a directory tree. The FUTIL dialogue would beas follows:

OK, FUTIL
GO
> FROM <1>MARINE
> TO <*>CLASSIFIED
> TRECPY HOLLAND

This copies the directory HOLLAND (with its subordinate files and directories) to the
directory CLASSIFIED.the <*> indicates the current disk. HOLLANDis now a subdirectory
in CLASSIFIED.

Situation 3: Suppose we wish to copy the entire directory tree MARINEinto the UFD
REPORTS. The FUTIL dialogue would be:

OK, FUTIL

GO

> FROM <NAVY>MARINE

> TO <MONITOR>REPORTS

> UFDCPY

> QUIT

The entire batch of files and directories listed under the UFD MARINEare nowlisted as a

subdirectory under the UFD REPORTS.

Situation 4: We canalso copyfiles from our home(current) directory to another. It is not
necessary to specify a FROM name.Simply specify the directory TO whichthefiles are to
be copied. If we want to copy the directory REPORTSto the directory MARINE, the
following dialogue results. If the files to be copied are located in the homedirectory, the
FROM nameneednot be defined. Whenthe TOdirectory alone is defined, FUTIL assumes
the FROM directory to be the home directory. If the FROM directory specification is
omitted, the homedirectory is assumed, and FUTIL searchesforthefiles to be copied in the
homedirectory. This is the default. Note that both a TO and FROMdirectory mustbe given
in this case. REPORTSis not our homeor currentdirectory.

1 January, 1979 10-23 FDR 3057

10 OPERATING SYSTEM FEATURES

OK, FUTIL
GO
> FROM <*>REPORTS
> TO <1>MARINE
> UFDCPY
> QUIT

Deleting files

Commandsfor deleting files, directory trees and UFDsare:

DELETE Deletes specified files from FROM directory

TREDEL Deletes specified directory trees from FROM directory.

UFDDEL Deletes entire specified UFD.

The user must have read, write, and delete/truncate accessrights to delete anyfile.

Examples:

Situation 1: In order to delete the file HITS from the subUFD NAUTILUS,the following
dialogue could be used:

OK, FUTIL

GO

> FROM <NAVY>MARINE>NAUTILUS

> DELETE HITS

> QUIT

Situation 2: If we wantedto delete the directory tree rooted in the subUFD HOLLAND,we
would do the following:

OK, FUTIL

GO

> FROM <1 >MARINE
> TREDEL HOLLAND

> QUIT

OK,

This deletes the directory HOLLANDandits entry in MARINE.

Situation 3: To delete the contents of CLASSIFIED appearing on ourcurrentdisk, 2, the
following dialogue could be implemented:

OK, FUTIL

GO

> FROM <*>CLASSIFIED
> UFDDEL

> QUIT

OK,

FDR 3057 10-24 1 January, 1979

OPERATING SYSTEM FEATURES 10

This effectively deletes the entire UFD CLASSIFIED and all of its subordinate directories

andfiles.

Listing contents of a directory

The LISTF commandin FUTIL displaysa list of all the files and directories in the FROM

directory. It also displays the FROM directory pathname and the TO directory pathname

(default). The various options of the LISTF command provide information on allthefiles

contained in the FROM directory.

FUTIL Command Summary

ATTACH pathname

Changes working directory to pathname.

CLEANprefix [level]

Deletesfiles beginning with prefix, for indicated numberof levels (default=1).

COPY from-name[to-name][,from-name [to-name]] ...

Copies namedfiles from FROM directory to TO directory. If to-names are omitted, copies

have same namesasoriginals.

COPY (from-position) [(to-position)]

Copies from one segmentdirectory to another. If to-position is omitted, copy goes to same

position as original.

COPYDAM

Same as COPYbutsets file type of copy to DAM.

COPYSAM

Same as COPYbutsets file type of copy to SAM.

CREATEdirectory [owner-password [non-owner-password]]

Creates directory in current TO directory (with optional passwords).

DELETE Jfile-a [file-b] ...
(position-a) [(position-b)] ...

Deletes from FROM directory, named files or, in segment directories, deletes files at

specified positions.

FORCE)ON
[OFF]

ONforces read-access rights in FROM directory for LISTF, LISTSAVE, SCAN, UFDCPY,

and TRECPY. OFF stops FORCEaction (default).

1 January, 1979 10-25 FDR 3057

10 OPERATING SYSTEM FEATURES

FROM pathname

Defines FROM directory for subsequent commandssuch as COPY,LISTF,etc.

LISTF [level] [FIRST] [SIZE] [PROTEC] [RWLOCK] [TYPE][DATE] [PASSWD] [LSTFIL]
Lists files and attributes at terminal (and into optionalfile called LSTFIL).

LISTSAVEfilename[level] [FIRST] [SIZE] [PROTEC] [RWLOCK][TYPE] [DATE] [PASSWD]
Same as LISTF, with the LSTFIL option specified, but writes output to filename.

PROTECfilename [owner-access [non-owner-access]]
Sets protection attributes for filename.

SCANfilename[level] [FIRST] [LSTFIL] [SIZE] [PROTEC]
[RWLOCK] [TYPE] [DATE] [PASSWD]

Searches FROM directory tree for all occurrences of specified filename and

_

prints
requested attributes.

SRWLOCfilename lock-number

Sets per-file read/write lock.

TO pathname

Defines TO directory for subsequent commands such as CREATE and all copying com-mands.

TRECPYdirectory-a [directory-b] [,directory-c [directory-d]]...
Copies directory tree(s) in FROM directory into TO directory.

TREDELdirectory-a [directory-b] .. .

Deletes directory tree(s) in FROM directory.

TREPRO pathname [owner-access [non-owner-access]]
Sets protection rights for directory and contents (default 1 0).

TRESRW pathnamelock-number

Sets per-file read/write lock for all files in pathname.

UFDCPY

Copies entire FROMdirectory into TO directory.

UFDDEL

Deletes entire FROM directory.

FDR 3057 10-26 1 January, 1979

OPERATING SYSTEM FEATURES 10

UFDPRO [owner-access [non-owner-access [level]]]

Sets protection attributes for entire FROM directory.

UFDSRWlock-number n-levels

Sets per-file read/write lock for n-levels in FROM directory.

Lock-number Meaning Code

0 Use system read/write lock SYS

1 n readers OR 1 writer W/NR

2 n readers AND 1 writer 1WNR

3 n readers AND n writers NWNR

FILE MANIPULATION

PRIMOSprovidesutilities for comparing, merging, and sortingfiles.

File comparison

The PRIMOS command CMPFpermits the simultaneous comparison of up to five ASCIIfiles

of varying lengths. The formatis:

CMPFfile-1 file-2 [.....file-5] [options]

Thefirstfile, file-1, is treated as the original file against which the other files are compared.

The CMPF commandproducesoutputindicating which lines have been added, changedor

deleted in the otherfiles.

The options which maybespecified are:

-BRIEF Suppresses the printing of differing lines of text of files being

compared. Only identification letters and line numbers are

printed.

-MINL number Sets the minimum numberof lines that must match after a

discrepancy betweenfiles is found. Needed in order to re-

synchronize file comparison. Default = 3 lines.

-REPORTfilename Produces a file with specified filename, containing the dif-

ferences found between comparedfiles (in lieu of displaying

them at the terminal during the comparison process).

After a difference betweentheoriginal file and anotherspecifiedfile has been discovered,

CMPFattempts to resynchronize thefiles for comparison. This occurs only whena certain

numberof lines match in all the files being compared. The default value is 3, but can be

changed in the -MINLoption. The comparison process continues until another differenceis

found.

Whenline differences are reported, either at the terminal or in a report file, each line from

the original file is indicated by the letter A, followed by the line numberof the line

containing discrepancies. The correspondinglines of other files are indicated in the same

mannerusingletters B through E respectively.

1 January, 1979 10-27
FDR 3057

10 OPERATING SYSTEM FEATURES

Example: Consider the following twofiles:

FILEA FILEB

The The
quick swift
brown red

fox fox

jumps jumps
over over
the the

lazy dog

dog

A CMPFcomparison of these twofiles works as follows:

OK, CMPF FILEA FILEB

GO

A2 quick
A3 brow
CHANGED TO
B2 swift
B3 red

A8 lazy
DELETED BEFORE
B8 dog.

COMPARISON FINISHED.
2 DISCREPANCIES FOUND.

Mergingtextfiles

The MRGF command mergesupto five ASCII files. The formatis:

MRGFfile-1 [file-2 . . .file-5] outfile [options]

Thefirst file specified is treated as the original file, and it is assumed that changes have
been madetothis file to produce the otherfiles. Pathnames may beused to specifyfiles to
be merged. Unchanged lines of text and nonconflicting changes between files are auto-
matically copied to the outputfile, outfile. When correspondinglines of text in the files
differ, the user is asked by the MRGF program to solve the conflicts. This is done via a series
of questions to which the user must respond appropriately.

The options taken by the MRGF commandaresimilar to those for the CMPF command.
There is an additional option, -FORCE, which causes file-2 to be the preferredfile if
conflicts exist between several files. No MRGFinteractive dialogue will be generated when
conflicts arise if the -FORCE optionis used. File-2 is assumed ‘correct’ and the otherfiles
forced to comply withit.

FDR 3057 10-28 1 January, 1979

Sorting files

OPERATING SYSTEM FEATURES 10

The SORT commandsorts variousfile types (default is ASCII), in ascending or descending

order. Lower case characters are sorted as upper case characters but are printed out as

lowercaseafter being sorted. Information required by the SORT program is the following:

1. INPUT TREENAME—OUTPUT TREENAME

2. NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS(one

pair per line, separated by spaces)

3 SPECIFIC DATA TYPE - code entered at end of last line of column

keys. Up to 10 keys may bespecified.

Codes

‘A’ ASCII
‘T’ Single Precision Integer
‘F’ Single Precision Real
‘D’ Double Precision Real
‘Jy’ Double Precision Integer

Default is ASCII

Example:

OK, SORT
GO

SORT PROGRAM PARAMETERS ARE:

INPUT TREE NAME -- OUTPUT TREE NAME FOLLOWED BY

NUMBER OF PAIRS OF STARTING AND ENDING COLUMNS.

INFILE OUTFILE 3
INPUT PAIRS OF STARTING AND ENDING COLUMNS

ONE PAIR PER LINE--SEPARATED BY A SPACE.

FOR REVERSE SORTING ENTER "R" AFTER DESIRED

ENDING COLUMN--SEPARATED BY A SPACE.

FOR A SPECIFIC DATA TYPE ENTER THE PROPER CODE

AT THE
" A"

" Tt"

we F"

"pH"

"J "

END OF THE LINE--SEPARATED BY A SPACE.

- ASCII
SINGLE PRECISION INTEGER

SINGLE PRECISION REAL
DOUBLE PRECISION REAL

- DOUBLE PRECISION INTEGER

DEFAULT IS ASCII.
15
15 25
38 35

BEGINNING SORT

PASSES 2 ITEMS 401

[SORT-REV16.8]

OK,

1 January, 1979 10-29
FDR 3057

10 OPERATING SYSTEM FEATURES

Options

Several options may be specified with the SORT command. BRIEF suppresses SORT
program messages. SPACEeliminates blank lines in the output. MERGEallowsthe merger
of up to ten files. The R option (for reverse sorting) is placed after the column pairs which
are to be sorted in descendingorder.

SETTING TERMINAL CHARACTERISTICS

Terminal characteristics may be set with the TERM command.These characteristics remain
in effect until you reset them or until you log out. The commonly used TERM options are
listed below. Typing TERM with no options returnsthefull list of TERM options available.
The formatis:

TERM options

The options are:

-ERASEcharacter Sets user's choice of erase character in place of the default, ”.
-KILL character Sets user's choice of kill character in place of default, ?.
-XOFF Enables X-OFF/X-ON feature, which allows programsto halt

without returning to PRIMOS commandlevel. Programs may be
resumedat point of halt by typing CONTROL-Q. Programs are
halted by typing CONTROL-S.Also sets terminal to full duplex
(default value.)

-~-NOXOFF Disables X-OFF/X-ONfeature (default).
-DISPLAY Returns list of currently set TERM characters. Also displays

current Duplex, Break and X-ON/X-OFFstatus.

FDR 3057 10-30 1 January, 1979

segmented program
techniques

ADVANCED FEATURES OF LOAD SUBPROCESSOR

Relative segment assignment feature

User-controlled placement of modules with a load can be desirable for reasons including:

e moreefficient runfile

¢ aid in debugging.

e isolation of potential trouble spots

Two mechanismsare provided in SEG’s loader for this purpose: relative segment assign-

ment and absolute segment assignment.

Relative segment assignmentassigns reference numbers to SEG’s default segments; these

reference numbers remain associated with their assigned segments during a Loadsession.

Since the loader assigns and keeps track of those segment numbers, the user retains the

benefits of the Loader’s internal checking functions (except as specifically noted). Assign-

ments are made by the COMMONREL commandorin conjunction with the Loader’s family

of load commands (LOAD, LIBRARY,RL,etc.). Reference numbers should be small positive

values.

For example:

COMMONREL3

or

LOAD B_MAIN 0 1 2

The numbers 1, 2, and 3 are relative segment reference numbers. The 0 where segment

reference number is expected, tells the Loader to use the default segments without

reference numbers. For example, the sequence of load commands:

LO B_MAIN

LO B_SUBR 001

LI

can be used to separate SUBR’slink frame from thelink framesof the rest of the program.

This might be doneif it were thought that SUBR had a local array with incorrectly specified

dimensions.

Another form of the COMMON command:

COMMONREL segno

allows the userto establish a reference numberfor segments into which COMMON will be

loaded. segno is the segment numberinto which COMMON will be loaded. It is always a

small octal number.

1 January, 1979 11-1 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Example:

CO REL1

If data segment wasassigned a relative value of 1, then COMMON will be loaded into a
segment with this relative segment assignment number. If no such segment has been
assigned, then this commandwill declare one of SEG’s default segments to be data segment
(relative) 1 and useit for loading COMMON.

Whenusing SEG’s default segment assignments, the COMMON RELATIVE command will
cause SEG to load the COMMONblocksinto a different segment than that usedforthe link
frames. This often decreasesthesize of the runfile which has to be restored. The user may
also desire to reserve space for certain COMMONblocks ina selected segmentwith specific
link frames. (See SYMBOL, R/SYMBOL.)

Load placement control

The Loader’s family of Load commands, LOAD, LIBRARY,and RL,has optional numeric
arguments for load placementcontrol:

LOADfilename [addr psegno Isegno]

LIBRARY[filename] [addr psegno Isegno]

RL filename [addr psegno Isegno]

addr is the starting point for procedurein the segmentspecified by psegno. If addris 0, the
current PBRK for that segment is used (TOP+1). Users ordinarily specify 0 for this
parameter. psegnois a relative segment assignment numberto be usedin loading procedure
(the code). Isegnois a relative segment assignment numberto beusedin loadinglink frames.
COMMONwill not be loaded with the link frames unless a CO REL commandspecifying
this same relative segment reference number has been given prior to loading this module.
If psegno and/or Isegno are specified as 0, the ordinary SEG default segments without
relative segment assignment numbersareused.Inall cases, the Loadercreatesthe original
(and additional) segments with appropriaterelative segment reference numbers as needed.
The reference numbers are incremented by the Loaderas necessary; thus,it is possible that
some COMMONandlink frame information will appearin the same segmentsif suitable
(possibly not the same) relative segment assignment numbersare chosen.

Example:

For a specific program,it is known (from the loadmap) that the link frames occupy 2-1/2segments and COMMONwill occupy about 1/2 segment. The following commands willpermit the last half segmentof link frames to occupy the top of the COMMONsegment:

CO REL3

LO B_MAIN 01 1

LO B_SUB1 01 1

LO B_SUBLAST 011

LI 011

The use of 1 for both psegno andIsegnois non-conflicting, as the loader keeps track of which
are procedure and whichare link segments.

FDR 3057 11-2 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

Implicit parameter assignment: the D/ prefix

The D/ modifier tells the loader to use the same numeric parameters as were usedfor the

preceding load family command. The example in the preceding paragraph is equivalentto:

CO REL 3

LO B_MAIN 011

D/LO B__SUB1

D/LO B__SUBLAST

D/LI

The commands:

LO B_MAIN

LO B__SUB1011

D/LO B_SUB2 (orLOB_SUB2 0 1 1)
LI

cause MAIN and the FORTRANlibraries to be loaded in the same pair of segments

(procedure and link). SUB1 and SUB2will be loadedin a different pair of segments.

The D/ modifier is especially useful for large loads and in commandfiles. Use of D/

decreases input typing and time, and minimizes errors; editing commandfiles is made

simpler (fewer changes) with less chanceof error.

Specific segment assignment: the S/ prefix

Modules maybe loadedinto specific segments for procedureandlink frames by use of the

S/ prefix modifier.

The command formatis:

S/xx [pathname] addr psegno Isegno

xx is LO, LI, RL, PL,or IL. If LO or RL is used pathnameis mandatory;if LI is used pathname

is optional (omission loads PFTNLB). If PL or IL is used pathnameshould be omitted.

addr is the starting load address in the procedure segment. An addr of0 is interpreted as

start loading at the current pointer position in the procedure segment. This is the usual

value. psegnois the procedure segment number.lsegnois the data linkage segment number.

Both psegno and Isegnoare absolute (octal) segment numbers; both must be supplied. When

loading shared code, procedure will be loaded in segments'2000 - ' 2037 as allocated by the

system administrator.

As with relative segment assignment commands,the segmentswill be created if they do not

already exist. If a segment runs out of room the next segment in sequence is created and

used to continue the Load. For example, if the user has declared psegno to be '2000 and

segment '2000 becomestoofull for the next routine to be loaded, segment'2001 is created as

a procedure segment and the Load will proceed in segment ‘2001. Note that some smaller

routines may subsequently be Loaded in segment '2000. The S/xx modifier does not place

COMMONareas: this should be done using the CO ABS commandpriorto theload. _

Examples:

S/LO B_JUNK 0 2000 4002

1 January, 1979 11-3 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

This loads object file B_JUNK with its procedure beginning at the current load pointer
location in segment ‘2000 andits data linkage areas beginningat the currentload pointer in
segment ‘4002. (Previously COMMONwaslocated with a CO ABS command.]

S/IL 0 4000 4000

This loads the impure portion of the FORTRANlibrary into the split segment 4000.

As with relative assignment numbers the D/ modifier prefix may be used.

Example:

S/LO B__BENCH 0 2000 4000

D/PL

is equivalentto

S/LO B_.BENCH 0 2000 4000

S/PL 0 2000 4000

CAUTION

Whenusing the S/ modifier, some of SEG’s checking mecha-
nisms are overridden. Therefore, the user must carefully
examine the loadmapto makesurethereis no inconsistency
or confusion. The S/ modifier may not be combined with the
D/ modifier either as D/S/xx or S/D/xx.

Forceloading (TheF/ Modifier)

When file is loaded, normally only those routines referenced by previously loaded
modules (or by routines in the library) are selected. When building templates or creating
partial loadsit is often desirable to force all routines in file to be loaded. Forceloadingin
SEG’s Loaderis accomplished with the F/ modifieras in:

F/xx [filename] [addr psegno Isegno] Form 1

or

F/S/xx [filename] [addr psegno Isegno] Form 2

xx is one of the loading commands, LO, LI, RL, PL, or IL. filenameis the filename (or
pathname)of the objectfile. It is mandatory for LO and RL,optional for LI and should be
omitted for PL andIL. addris the start address for forceloading in the procedure segment.
psegnois the procedure segment number.Isegnois the data segment number.

Form 1 is a simple forceload ofthe object file filename. Both psegno and lsegno are relative
assignment numbers. The defaults resulting if parameters are omitted are the same as for
the commandswithout the F/ prefix.

Examples:

F/LOB__THINGS Forceloadall modules in B_THINGSin default segment.
F/LI Forceload all the FORTRANlibrary in default segments

Form 2 forceloads object file to specific segments. Both psegno and Isegno are absolute
(octal) segment numbers(see S/xx for details). This format would be usedfor forceloading
shared procedures.

Example:

F/S/PL 4000 2000 4002

This forceloadsall of the procedure of the FORTRAN library PFTNLB beginningat location
‘4000 in segment '2000 with linkages area in segment '4002.

FDR 3057 11-4 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

S/F/xx is identical to F/S/xx, and the D/ prefix may be combined with F/.

S/LO B__BENCH 0 2001 4002

F/S/PL 0 2001 4002

is equivalent to

S/LO B__BENCH0 2001 4002

F/D/PL

Relocating uninitialized COMMON

COMMON blocks which are not initialized by a DATA statement or a BLOCK DATA

subprogram mayberelocated in the load with the SYMBOL command.Thisprocess reduces

the numberof segmentsusedby the load and, therefore, decreases the time to restore prior

to execution. The formatis:

SYMBOL[sname] segno addr

snameis the symbol name; here,it is the name of the COMMON block. segnois the absolute

segment(octal) in which the symbolis to be located. addr is the address (octal) in the

specified segment for the symbol.

Examples:

SY CYMBAL4001 12000

Locates the COMMONblock CYMBALat segment '4001, location °12000.

SY 4015 1000

Defines blank COMMONasbeginning in segment ‘4015 at location ‘1000. Here the user has

located blank COMMONabove the other program procedure anddata segments so that

overflow of blank COMMON(indexesoutof range) will not overwrite other code. The user_

must determine which segments andlocations are to be used by examining SEG’s loadmaps.

Example of Use: A program BENCH has 3 large (over 33K) COMMONblocks.It is desired

to reduce time required to restore the runfile to memory and also reduce the numberof

segments used. It has been determined that segment '4000 (SEG’s segment) is available

above location 60000. A previous load of BENCH determinedthat the procedure loaded in

segment '4001 ended well below '60000. Finally, the link frames in segment'4002 would end

well below '60000 if some of them did not get loaded after the large COMMON blocks were

declared. .

The COMMONblocks are AA, BB, and AABB; none are initialized. They will fit in the

‘420000 locations above ’60000. The following load sequence will reduce the numberof

segments used from 5 (including SEG’s)to 3. :

SY AA 4000 60000

SY BB 4001 60000

SY AABB 4002 60000

LO B_BENCH

The user is responsible for placing the COMMON blocks and afterwards must examinethe

loadmapto be sure that it conforms to expectations.

Initializing the load

The load subprocessor’s INITIALIZE command may be used to abort a bad loador to begin

a new load after a SAVE command:

IN Initialize currently established runfile (bad load)

IN filename Open newSEGrunfile filename (pathnameis allowed)

1 January, 1979 11-5 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

Replacing modules

The RL subcommand‘replaces’a routine or routines ina SEG runfile, makingit possible to
replace a defective subroutine without having to completely rebuild the runfile.

The new module logically and functionally replaces the old module of the same name by
patching the entry point. The new module need not be the same length as the old sinceitis
not physically reloaded on top of the old module. However, the old module still occupies
space in the runfile. Overuse of the RL command maysignificantly increase runfile size as
well as restore and execution times.

Example: RL B_MODULE

This places MODULEin SEG’s default segments and logically replaces the old BLMODULE
subroutine with the new one.

Redefinition of COMMONblocksis not allowed; however, new COMMON blocks may be
added.

CAUTION

To access an existing runfile for reloading, use SEG’s VL* (or
LO *) Load command.It is advisable to use a copy of the
runfile for reloading, as a mistake may destroy the runfile’s
integrity. The NEW subcommand of MODIFY (SAVE) may be
used forthis.

Altering stack size

The STACK command changes the amountof space required for the stack. The size
parameteris the minimum requiredstack size in words (octal).

Example: ST 100000

This reservesat least '100000 free locations in the segment used for the stack. To force use
of a whole segment,set size to '177774.

Note

This commandcanonly changestacksize: changesof stack
location must be done with the SK commandin the MODIFY
(SAVE) subprocessor.

Extension Stack Segments: FORTRANprograms using the -DYNM parameterfor automatic
storage of local arrays in the stack may require extension stack segments to prevent
overflow. Extension stacks are supported by the SK command(Modification sub-processor)
and by the SPLIT command (Loader sub-processor). SK and SPLIT perform their normal
function if no extension parameters are supplied.

When extension stack segments are specified, the user supplies the first available free
segment; SEG thenallocates additional extension stack segments sequentially as needed.If
an allocated segment is not needed for an extensionit is not assigned to the runfile. For
complete details, see Reference Guide, LOAD and SEG.

THE MODIFICATION SUBPROCESSOR

SEG’s modification sub-processor is accessed by the SEG level command MODIFY:
MODIFY [filename] or SAVE[filename]

filename is the filename (or pathname) of the SEG runfile: if omitted, the established
runfile nameis used.

FDR 3057 11-6 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

The commandinvokesthe modification subprocessor, which allowsthe user to create a new
runfile or modify and rewrite to the disk an old runfile. Modifications permitted are:

e Change starting ECB address (not of consequence in FORTRAN).

e Changestack size and/orlocation.

e Save a copy of arunfile modified with VPSD to the sameor to a new runfile.

e Create a new copy of a shared proceduretemplate file for creation of a program

using the template.

SHARED CODE

In general, programs whichare small or which will normally only be run by one userat a

time are not candidates for shared procedure. Programs which are expected to be run by
many operators simultaneously, especially large procedures which use relatively small

amountsof data, are excellent candidates for shared procedures. Examplesofthe latter type

include Prime’s shared editor or a user-written order entry system.

The advantages of shared proceduresare:

e Only one copy of code is necessaryfor all users.

e Decreasesrestore time.

¢ Program is more likely to be in cache memory. Operation is much faster for

multiple users.

e Decreased memory usage, reducing paging.

Onceit is determined that a program will be loaded as shared procedure the programmer

must obtain from the system administrator the segment numberswhichareto be usedfor
the particular program being loaded. Public shared segmentsare a large but finite resource.
Their allocation will be made only for those programswhichwill benefit by being loaded as

shared procedure. Currently, segments '2000 to '2017 are reserved for Prime-supplied shared

subsystems (Shared Editor, FORMS,etc.). Segments '2030 to '2037 are available as public

shared segments.

The following steps should be taken to create and load programs as shared procedures:

(Each step will later be considered in detail.)

¢ Determine whether shared procedureis applicable and desirable.

e Write source code. Program mustbe identified as CALLable with name MAIN.

FORTRAN header SUBROUTINE MAIN.

¢ Compile in 64V mode.

e Load to the runfile using the SEG loader’s defaults to determine size and

placement of COMMON,procedure,etc.

e With this information, initialize and load to the runfile, splitting procedure and

data portions of programs. Debug the program.

¢ Load for shared procedure and return to SEG commandlevel.

¢ Separate out segments below ‘4001 into separate R-mode runfiles using SEG’s

SHARE command.

¢ Incorporate runfiles below ‘4000 into segments for sharing using the PRIMOS

SHARE command. This is done by the System Operator at the Supervisor

Terminal.

Source code

The main program, whichis loaded first, must be identified as a subroutine named MAIN;

ie., the first statement of the program should be SUBROUTINE MAIN.

This header will work for either shared or unshared loading. In unshared operations SEG

will call the main program as a subroutine; in shared operations the interlude program

1 January, 1979 11-7 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

RUNITwill call the main program. A loadmap will show the main routine as MAIN rather
than #### as would be the case if the main program had no header.It is not necessary to
include a RETURNstatement as the CALL EXIT statementat the end of the main program
insures an orderly exit to PRIMOS commandlevel.

Since the main program is labelled as subroutine MAIN,no other subroutine may havethat
name. There is no subroutine or function named MAIN in any of the Prime-supplied
libraries; be sure that no user subroutines involved in the load have the name MAIN.

Compiling

The source program is compiled with the -64V mode option producing code to be loaded
with SEG.If an array or COMMONblockexceeds 64K wordsin length, the program must be
compiled with the -BIG option. If recursive subprograms(ones that call themselves) are
used, the program must be compiled with the -DYNMoption. Both -BIG and -DYNM may
be used in the same compilation; either one forces compilation in the 64V mode. Detailsof
over 64K COMMONaretreated elsewherein this section. Extension stacks, which may be
necessary in certain cases of recursive subprogramsor if programs are chained,are also
discussed in this section.

Loading

Loading for shared procedure is a multi-phase process. The goal is an optimized load with
the program operating as designed. It will be instructive to follow an exampleillustrating
some general principles.

Consider a program BENCH, with 3 large COMMON blocks AA, BB, and AABB. The
FORTRANlibrary is required. The simplest load, using SEG’s defaults would be:

OK, SEG Invoke SEG.

#VL #BENCH Establish runfile and access Loader.
$LO B BENCH Load main program.
SLI Load FORTRANlibrary.
LOAD COMPLETE Load is complete.
SSA Save result.
SMA MAPFIL, Generate a mapin file MAPFIL to be examined.
SQU Return to PRIMOS.
OK, ©

At this point the program will be executed and, if necessary, debugged. The numberof
segments used can be decreased by movingthe location of COMMONblocksandtheStack.
The load would be:

OK, SEG Invoke SEG.

#VL #BENCH Establish runfile and access loader.
SSY AA 4608 60000 Locate COMMONblock in Segment ’4000

above SEG.
SSY BB 4892 1000 Put BB in segment ’4002.
SSY AABB 4001 19009 Put AABBin segment ’4001.
SLO B_BENCH Load user program. :
SLI Load FORTRANlibrary.
LOAD COMPLETE Load complete.
SSA Save load.
SRE Return to SEG commandlevel.

FDR 3057 11-8 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

#MO Invoke Modification Subprocessor.
SSK 4801 178800 Place stack above AABB in segment '4000

and assign it ’170000 locations.
#RE Return to SEG Commandlevel.
#MA * MAPFIL Get a loadmap.
#QU Return to PRIMOS commandlevel.

Since the user has taken over some of SEG’s functions, the user must check the loadmapto

see if the load is reasonable. It would not be amissat this point to be certain that the program

executes properly.

Loading for shared code

Loading for shared code requires the separation of the procedure frame from the linkage

frames. This capability exists in the advanced functionality of the loader commands. Other

commandsin the loader allow placing of COMMON andother symbols using absolute

segment numbers, expunging defined symbols from SEG's symboltable, and forceloading.

SEG’s Loaderalso allows segments to be split into procedure and data portions to conserve

segments and/orto load into segment ‘4000 the R-modeinterlude program RUNIT. RUNIT

allows the segmented program to be invoked as an R-modeprogram from the user's UFD or

installed in UFD=CMDNCO.Splitting is accomplished by the SPLIT command,which breaks

a segment into procedure (lower) and data (upper) portions. This operation conserves

segments.It also allows the loading of RUNIT as an aid to creating shared programs:

SPLIT segno addr Form 1

or

SPLIT addr Form 2

segnois the absolute octal segment number.addris the location of the split in the segment.

addr must be a multiple of ’4000.

Form 1 splits the segment into procedure and data portionsto decrease numberof segments

used. Example:

SP 4000 10000

This splits segment 4000, with locations below '10000 for procedure and the rest of the

segmentfor data. |

Form 2 is the form used for shared procedure. Segment '4000 is assumed. In addition to

splitting the segment, the interlude program RUNITis loaded (in 64V mode) beginning at

location '1000.

No data or procedure maybe assignedto locations above ‘172000 in segment '4000,as this is

where RUNITplacesits stack.

After splitting, RUNIT and RESUMEwill exist in SEG’s symbol table. RUNITis the normal

starting address; RESUMEmaybeusedasa starting addressif the existing stack is to be

preserved.

Once a segmenthas beensplit it is addressable only specifically, i.e., with the S/xx or P/xx

command(or with D/xx following an S/xx or P/xx command). Loading must use absolute

segment numbers. See S/xx, D/xx, P/xx.

1 January, 1979 11-9 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

CAUTION

SEG's Loaderdoesnot keep track of split segments and may
assign the stack to the top of the procedureportion of

a

split
segment. This may cause problems if there is not enough
space between the end of the procedure portion andthestart
of the data portion.

Splitting out

After the load has been completed, the portions of the SEG runfile corresponding to
segments below '4001 must be transformed into R-mode runfiles using SEG’s SHARE
command. These files are similar to the relative addressed mode savefiles having a
conventionalsavefile header. Nofiles are created for segments above '4000. If segment ’4000
exists and it includes RUNIT (see SPLIT), it may be executed at PRIMOS commandlevel.
The commandformatis:

SHARE[runfile]

runfile is the pathnameof the SEG runfile. If omitted, the established runfile nameis split
out.

The RUNIT interlude program sets the correct addressing mode; starting location and
registers are set to the standard default values.

SEG respondsto the SHARE commandbyaskingfor a two-character ID. SHAREwill use this
ID to build the save files with the name yyxxx:yy is the ID given to SHAREand xxxxis the
segment number.

Example:

#SH #TEST (using default values)
TWO CHARACTER FILE ID: BE

CREATING BE206d

CREATING BE40@@¢
(ready for next SEG command)

SEG’s SHARE commandcreates a R-mode runfile for all segments below °4001.

Including the R-modeinterlude in the SEG runfile

This methodis of particular use in three cases.
1. The user’s program has a small procedure part requiring a large data

area,

2. The user has a large program, most of which is loaded below segment
4000 as shared procedure.

3. The user’s program is primarily a ‘transaction processing’ system and
most of the user's (large) program can be loaded at LOGINtime,oris
loaded below segment'4000 as shared procedure.

In case 1 the user will force all of the loaded portion of the program to reside in segment
‘4000. Uninitialized COMMONblockswill be declared in other segments and need not be
‘loaded’ into memory.

In case 2 the user will load only the impure parts of the procedure (such as IFTNLB)into
segment '4000 andwill placeall link frames andinitialized COMMONin segment’4000.

In case 3 the external LOGIN program will load most of the user’s SEG runfile (the portions
residing above '4000) into memory at LOGIN time. The user’s specific applications,

FDR 3057 11-10 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

referencing the fixed portions above and below ’4000,will be loaded into segment '4000. This
case requiresthe userto create a ‘template’ of the fixed portion of the application on top of
which specific applications are loaded.

Whenthe user’s procedureis loaded with SEG’s Loader, segment'4000 is declared asa split
segmentusing the Loader’s SPLIT command,andspecifying only the location at which the
segmentis to be split. This causes SEG’s Loader to create a procedure area below the
designated location and a data link frame area aboveit. Then the R-modeinterlude RUNIT
is automatically loaded into the procedure portion. At run time, RUNIT will initialize the
stack, and transfer control to the user’s routine, MAIN. The user may load other procedure
and link-data information into segment '4000 using the Loader’s S/xx command.

The user must determine via a previous load whereto split segment '4000.

A slightly different load sequence from that given earlier in this section:

OK, SEG

VL #BENCH

SP 4880
SY AA 4808 5880
SY BB 4862

SY AABB 4001
S/LO BBENCH @ 4800 4000 difference
D/LI difference

SAVE
RE

SH

TWO CHARACTER FILE ID: BE

CREATING BE400@

QU
OK,

N
A
M
H
U
M
1
1

F
E

would load the program as non-shared procedure. The resulting R-mode runfile BE4000 can
be invoked with the PRIMOS command RESUMEasR BE4000 or it may be placed in the
command UFD.

Finally, when the load is complete and saved, the user returns to SEG via the REturn
commandand enters SH on the terminal. Whenall appropriate segments have been turned
into separate runfiles, the one with the appended segment number '4000 may be run
(renamedif desired) from PRIMOS commandlevel either from CMDNCOor by a PRIMOS

RESUMEcommand.

Example:

Programmerhas been assigned segment '2031 by the systems manager.

OK, SEG Invoke SEG.

VL #BENCH Establish runfile and access Loader.

S SP 4880 Split segment ‘4000 at location '4000;
for impure FORTRANlibrary and data.

S SY AA 4900 5880 Locate AA in segment ‘4000 at location
5000.

S$ SY BB 4002 Locate BB in segment '4002.
$S SY AABB 4991 Locate AABB in segment ’4001.

1 January, 1979 11-11 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

$ S/LO BBENCH @ 2031 4888 Load the procedure portion of the user
program into segment ’2031; load link
frames into ’4000.

$ D/PL Load the pure FORTRANlibrary with the
same parameters.

$ S/IL 8 4008 4900 Load impure FORTRANlibrary.
S SAVE Savethe runfile.
S$ RE Return to SEG commandlevel.
S SH Ask SEGto split out segments below ‘4001.

TWO CHARACTER FILE ID: BE SHAREasksfor ID.
CREATING BE48@@
CREATING BE2@31

QU Return to PRIMOS commandlevel.

OK,

Incorporating files into shared segments

Using SEG’s SHARE command creates one R-moderunfile for each segment of the SEG
runfile below segment '4001.The R-moderunfiles for segments below '4000 mustactually be
incorporated into those segments using the PRIMOS SHARE command.This operation can
only be performed at the supervisor terminal by the System Operator. See System
Administrator's Guide for details.

COMMONBLOCKS OVER 64K WORDS LONG

The size of COMMONblocksandthe arrays within them are limited only by the numberof
segments available to the user. A total of 256 segments are available for assignmentto users.
The size of a 64V mode program includes COMMONblocksandthe procedure, linkage and
stack frames of the main program, subprogramsand requiredlibrary routines.

Usage

Any named COMMONor blank COMMONmaybeover64K;nospecial syntax is required.
Theonly indication thata COMMONblockis over 64K is in the concordance, generated with
the compiler’s -XREFL option. The concordance addressfield for all items in an over 64K
COMMONblock contains two 6-digit octal numbers rather than one. The first number
corresponds to a segmentoffset; the second numberis the wordoffset.

Arrays in a COMMONblock over64Karetreated as if they spanned a segment boundary
regardless of their size. Code normally generated for array references will not work for
these arrays. Programs (and subprograms) referencing these arrays must be compiled with
the -BIG option. (This also forces compilation in 64V mode),

A COMMONblock over 64K must be explicitly declared over 64K in every program that
references the COMMON.Otherwise, the compilerwill not generate special code for arrays
within that COMMONblock.

Dummy argumentarrays

If a dummy argument array may becomeassociated with an array that spans a segment
boundary (through a CALL statement or function reference), the compiler must be made
aware of this when the subroutine or function is compiled (see below).

Example:

COMMONIBUF(1000,200)
CALL SUB (IBUF, 1000, 200)

FDR 3057 11-12 1 January, 1979

EXTENDED SEGMENTED PROGRAM TECHNIQUES 11

END
SUBROUTINE SUB(IDUM,N, M)
DIMENSION IDUM (N, M)

END

When subroutine SUB is being compiled, the compiler must be notified that dummy
argument array IDUM becomesassociated with an array that spans a segment boundary
(IBUF).

Code generated for an array that spans a segment boundarywill work whetheror not the
array actually spans a segment boundary. Thereare two methodsto notify the compilerthat
a dummy argument array may becomeassociated with an array that spans a segment
boundary.

1. Within the subroutine or function, dimension the dummy argument
array over 64K words. This method cannot be used when there are
dummy arguments or COMMONdimensions. Example:

SUBROUTINE5 (IARRAY}

DIMENSION IARRAY (100000)

2. Compile the subprogram with the -BIG option. All dummy argument
arrays will be treated as arrays spanning segment boundaries. -BIG
also forces compilation in 64V mode. Example:

FTN SUB -BIG

The above discussion relates only to dummy argumentarrays. A dummyargumentvariable
may becomeassociated with an element of an over segment boundaryarray, and the code
normally generated by the compiler will work correctly.

System andLibrary routines that require arrays as arguments mustnotbe called with arrays
that span segment boundaries, unless these routines are recompiled with the -BIG option.
This includes the matrix manipulation routines in MATHLB.

Restrictions

There are a numberofrestrictions on over 64K COMMONblocks and segment boundary
spanning arrays. The compiler will issue an error message if any of these restrictions are
violated. .

e An array may span segment boundaries, but no array elementor variable may
cross a segment boundary.If the first word of a real numberis in one segment, the
second word must be in the same segment. For this reason, the compiler must
enforce the following restriction: Any multiword variable or array of multiword
elements must be offset a multiple of its element length from the start of the
COMMONblock. |
Thus, a double-precision variable or array (regardless of its dimension) must be
offset 0 or 4 or 8 words,etc. from the start of an over 64K COMMONblock. This
restriction also applies to items EQUIVALENCEd to elements in an over 64K
COMMONblock.

e Items in COMMONblocks over 64K cannot be initialized by a DATA statement.
Any initialization of COMMONblocks over 64K must be done by assignment

1 January, 1979 . 11-13 FDR 3057

11 EXTENDED SEGMENTED PROGRAM TECHNIQUES

statements. This restriction applies even if the item is in the first segment of an
over 64K COMMONblock.

e A segment boundary spanning array must not appear unsubscriptedin thelist of
an I/O or ENCODE/DECODEstatement. The equivalent functionality can be
achieved by using implied DO Loops.

Implementation notes and programmingconsiderations

The code generated for a subscripted array reference normally consists of instructions to
load an index register with the subscript followed by an indexedinstruction that references
the array element. This code sequence cannot be used for a segment boundary spanning
array reference becausetheindexregisters are only 16 bits wide and indexing neveraffects
the segment number. A segment boundary spanningarray subscript is computedusing 32-bit
integer arithmetic and then addedto the array base address. This resultant addressis stored
in a temporary location and the array element is referenced indirectly through the
temporary location. Thus, on évery reference to an over segment boundary array, an
execution speed and program size penalty is paid relative to a normalarray. For efficiency,
all arrays under 64K words should be placed in COMMONblocks under 64K.

The compiler requires that any COMMON block over 64K be allocated in contiguous
segments.It also requires that starting address to be a multipleof 4, the largest data type size
(complex and double precision floating point).

Calculating array size in words

Thesize of an arrayis the productof its dimensions multiplied by the numberof wordsper
element. The number of words per element is determined by the type of the arrays as
follows:

Type Numberof Words Per Item

INTEGER*2 1

LOGICAL 1

INTEGER*4 2

REAL (REAL*4) 2
COMPLEX 4

DOUBLE PRECISION (REAL*8) 4

Example: REAL A(1000,44)

Numberof Words = 1000 x 44 x 2 = 88000

FDR 3057 11-14 1 January, 1979

 Interfiree
systems andlanguages

INTRODUCTION

This section discusses interfaces of the FORTRANlanguageto the following Prime systems:

¢ Multiple Index Data Access System (MIDAS)

¢ Database Management System (DBMS)

¢ Forms Management System (FORMS)

e Other Programming Languages (COBOL, PMA)

MULTIPLE INDEX DATA ACCESS SYSTEM (MIDAS)

Introduction

MIDASis a system of interactive utilities and high-level subroutines enabling the use of

index-sequential and direct-access data files at the application level. Handling of indices,

keys, pointers, andtherestof the file infra-structure is performed automatically for the user

by MIDAS. Major advantages of MIDASare:

e Large data files may be constructed.

e Efficient search techniques.

¢ Rapid data access.

e Compatibility with existing Prime file structures.

e Ease of buildingfiles.

¢ Primary key and up to 19 secondarykeys possible.

e Multiple user accesstofiles.

e¢ Data entry lockout protection.

e Partial/full file deletion utility (KIDDEL).

This section introduces the programmer to the major concepts and usage of MIDAS.

Sufficient information is presented to allow the programmerto determine if MIDAS would

be applicable to specific situations.

Note

This section does not contain all the information necessary to

implement a MIDASapplication. The extensive features of

MIDAS and the actual implementation and usage are de-

scribed in detail in Reference Guide, Multiple Index Data

Access System (MIDAS).

Requirements

The MIDASsystem requires the UFD=LIB contain the KIDAFMlibrary, the KIDALBlibrary

(for non-segmented addressing use) and the VKDALBlibrary (for segmented-addressing

use). The library is loaded just prior to loading the FORTRANlibrary when loading

1 January, 1979 12-1 FDR 3057

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

programs. The files PARM.K and OFFCOM,which contain mnemonicsfor flags and keys
used in MIDASsubroutines, must be located in UFD=SYSCOM.

Using MIDAS

MIDAS usage is implemented in four major steps through Prime-supplied interactive
utilities (see Figure 12-1).

¢ Creating/modifying the template—the user defines the data sub-file, indices, etc.
(CREATK).

¢ Building the data sub-file—data existing in a text or binaryfile are converted toa
MIDASfile (KBUILD).

e Maintaining the file—data entries are added, deleted, changed or viewedatthe
application program level, using MIDASdata access subroutines.

e Performing housekeeping—files are deleted in part or full (KIDDEL).

Maintenance of the file may be done by more than oneuser simultaneously. A lockout
subroutine protects data entries from attempts at simultaneous changes/deletions. All other
operations require the user to have exclusive access to the MIDASfile.

Creating and modifying template

The interactive program CREATKallows the user to build, examine, and modify or
restructure a MIDAS template file. This template contains the information the MIDAS
programsand subroutinesrequire to build and maintain the data sub-file and its associated
index sub-file(s) and directories.

When constructing the template, the user specifies filename, direct access support(if
supplied), block length, and index requirements (both primary index and secondaryindices,
if any). For many parameters, the system will supply default values in lieu of the user’s
specifications if so desired. Secondary indices allow duplicate keys; the primary index key
data record association must be unique.

If there are no data files to be converted to the MIDAS format, the user may begin file
maintenance (addition, updating, deletions) at this point.

The CREATKprogram canalso be used to examine andreset the template parametersfor
an existing file. Certain restrictions exist in modifying parameters, especially in converting
to long indices.

An example of the template creation dialogue is shownin Figure 12-2.

Building the data sub-file

The MIDASdatafile may be constructed with the Prime-supplied program KBUILD,or the
user may write a file creation program (with the appropriate Prime-supplied subroutines
BILD$R, PRIBLD, SECBLD). The use of KBUILDis simpler but it places certain restrictions
on the input data files and the resulting output MIDASdata sub-file.

KBUILD Program: KBUILD maybe used to generate or add data to MIDASfiles; it cannot
alter data in existing files. KBUILD expects the input data files to be sequential, fixed-
record-length disk files.

Input data files may be text (created by FORTRAN WRITEstatementsorthe text editor) or
binary (created by disk I/O subroutines).

During its processing KBUILDprints (to the user’s terminal andto a file) non-fatal error
messages and milestones. The rate at which milestones are printed is user-specified.
Milestone information is: records processed, run time, CPU time,disk time,total time, and
time used since the last milestone report. Milestone reports are also generatedatthestart
and endof file processing.

FDR 3057 12-2 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

OK,‘CREAT

MINIMUM options? YES —

LE NAME? POLITC.
W FILE? YES” ae

DIRECT‘ACCESS?-NO.

oyTATA SUBFILE‘QUESTIONS |

a =KEY‘TYPE:A.

 aeeNex

KEY TYPE:aAa
KEYSIZE=:1 |
USERDATA.SIZE= 20

om.2ae

KEYTYPE: A.
. eeBURa20?

oo INDEXN07ci|

_ creatinganewfile

"ASCIITheya
See 2-word key length

5 40)wordsugcha

S ‘DUPLICATE Keys PERMITTED?2 YESEeee

‘DUPLICATE KEYSPERMITTED? ‘ves. a

aFiguri al2 12-2SampleofCREATK dialoguea

The MIDASfile created by KBUILD hasfixed-length rerecords andt completely ssorted indexes,
The user mayalter these records to variable-length data records by the use of CREATK.

Sample KBUILD dialog: Supposethefile is sorted on the primary keyonly,that there is one
input file containing 10100 entries called FILE01 in the current UFD,andthat the outputfile
is a MIDAS template file called CUSTFIL.KIDA whichis on a new partition UFD called
NEWPAR.Theerror file ERRFIL.KIDA will also be written to this UFD.

SECONDARIES ONLY? NO
ENTER INPUT FILE NAME: FILE@1
ENTER INPUT RECORD LENGTH (WORDS):
INPUT FILE TYPE: B
ENTER NUMBER OF INPUT FILES: 1

NEWPAR>CUSTFIL. KIDAENTER OUTPUT FILE NAME:

63

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 51
SECONDARY KEY NUMBER: 1

ENTER STARTING CHARACTER POSITION: 61
SECONDARY KEY NUMBER: 3

FDR 3057 12-4 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

ENTER STARTING CHARACTER POSITION: 1
IS FILE SORTED? (CR)
IS THE PRIMARY KEY SORTED? (CR)
ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
NUMBER OF RECORDS IN INPUT FILE: 10190
ENTER LOG/ERROR FILE NAME: NEWPAR>ERRFIL.KIDA
ENTER MILESTONE COUNT: (CR=0)

Userfile-building program:If the input data file is not in the format expected by KBUILD,

the user must write a program to create the MIDASfile. Before building the data file the

user must first create a template using CREATK. Three major subroutines (BILD$R,

PRIBLD, and SECBLD) are supplied to assist the programmer.

If the input file is unsortedorif the user wishes to add datato an existingfile, the subroutine

BILD$R should be used. BILD$R addsall entries in the index overflow area and periodically

merges and reorganizes the index files. It may be used with PRIBLD and SECBLD

concurrently.

PRIBLD assumesthat the input file data is sorted on the primary key: it is much faster than

BILD$R whenthe inputfile is about 2000 records or greater.

If the input file is sorted on any secondary keys SECBLD may be usedto create those

secondary indexfiles.

Maintaining and usingthefile

A numberof subroutines are supplied to enable the programmerto makeeffective useof the
MIDASfile. These subroutines are designed to allow more than one userto access the data

file simultaneously. All the subroutines require the file PARM.K beinserted in the user

program with:

$INSERT SYSCOM>PARM.K

ADD1$ Adds a data entry to the file and modifies the index sub-files
appropriately. Insertion is by primary key only; the file is locked
during insertion.

DELET$ Deletes a data entry and modifies the index sub-file accordingly.

Deletion may not occurif the data entry is locked.

FIND$ Locates a data entry and readsits contents into a buffer. Look-up

is by primary and secondarykeys. If there exist data entries with

the same secondary key (synonyms)the oldest data entry(i.e., first

one in the file) is retrieved.

NEXT$ Retrieves the data entry with the next higher key. Search may be

on primary or secondary keys. This subroutine allows synonyms

whichare not oldest to be accessed.

LOCK$ Locates a data entry and,if not locked, then locks the data entry.

The data entry is unlocked by a successful call to UPDATS, FIND$,

or NEXT$.

UPDAT$ Re-writes a data entry. This subroutine should not be called before

a successful call to LOCK$.

1 January, 1979 12-5 FDR 3057

12 INTERFACE TO OTHER SYSTEMS AND LANGUAGES

An example of a subroutine using NEXT$, LOCK$, and UPDAT$is shownin Figure 12-3. The
SINSERT file KIDINS is one the applications programmerhascreated to facilitate com-
munication between the main program and various subroutines. In the example, the user
would probably checkthe error return from LOCK$to seeif the record wasalready locked.
If this is the case, it would be appropriate to recycle a few timesuntil the record is unlocked
and then proceed with the update.

Performing housekeeping

KIDDEL Program: This program will delete all or part of the MIDASfile: the PRIMOS
DELETE commandshould not be used. KIDDELallowsdeletion of:

¢ selected secondary indices,

* unwanted segments at the end of the data sub-file, or

¢ the entire file.

DATABASE MANAGEMENT SYSTEM (DBMS)

FORTRAN/DBMSinterface

The FORTRANinterface to the DBMSincludes two major processors andtheir respective
languages: the FORTRAN SubschemaData Definition Language (DDL) Compiler and the
FORTRAN DATA Manipulation Language (DML) Preprocessor.

The application programmer's ‘view’ of a schemais written in the FORTRAN Subschema
DDL. The Subschema Compilertranslates the DDL into an internal, tabular form called the
subschematable which is used by the DML Preprocessor.

Commandsforlocating, retrieving, deleting, and modifying the contents of a database are
written in the FORTRAN DML. These commands are interspersed with FORTRAN
statements in the application source program and translated into FORTRANdeclarations
and statements by the FORTRAN DMLPreprocessor. The outputof the preprocessoris the
source input for the FORTRANcompiler.

See: Reference Guide For. DBMS Schema Data Definition Language (DDL), and the
FORTRANReference Guide For DBMS.

FORMS MANAGEMENT SYSTEM (FORMS)

The Prime Forms Management System (FORMS)providesa convenient and natural method
of defining a form in a language specifically designed for such a purpose. These forms may
then be implementedbyany applications program which uses Prime’s Input-Output Control
System (IOCS), including programs written in FORTRAN. Applications programs com-
municate with the FORMSthrough input/output statements native to the host language.
Programsthat currently run in an interactive mode can easily be converted to use FORMS.

FORMSallows cataloging and maintenance of form definitions available within the
computer system. To facilitate use within an applications program, all form definitions
reside within a centralized directory in the system. This directory, under control of the
system administrator, may be easily changed, allowing the addition, modification, or
deletion of form definitions.

FDR 3057 12-6 1 January, 1979

INTERFACE TO OTHER SYSTEMS AND LANGUAGES 12

12° INTERFACE TO OTHER SYSTEMS AND LANGUAGES

FORMSis device independent. If certain basic criteria are met, any mix of terminals
attached to the Prime computer may be used with the FORMSsystem. Terminal configura-
tion is governed by a control file in the centralized FORMSdirectory. This file is read by
FORMSat run-time to determine which device driver to use, depending on the userterminal
type. This means that multiple terminal types may be driven by the same applications
program without change. Certain terminal types are supported by FORMSasreleased by
Prime. Should the user have another terminal capable of supporting FORMS,all that need
be doneis to write a low-level device driver for the terminal and incorporate it into the
FORMSrun-timelibrary.

OTHER LANGUAGES

COBOLprograms

FORTRANsubroutines may be called by COBOL programs; the responsibility for proper
coding is at the COBOLprogramlevel.

See: The COBOL Programmer's Guide

PMA programs

FORTRANsubroutines maybe called by PMA programs; properinstructions must be placed
in the calling program by the PMA programmer. FORTRANprograms maycall subroutines
written in PMA. The FORTRAN programmer must ascertain the subroutine name, the
calling sequence and the data modesof the subroutine arguments.

See: The Assembly Language Programmer’s Guide

FDR 3057 12-8 1 January, 1979

Optimization an
other helpful hints

INTRODUCTION

This section presents some programminghints for improving the performance of FORTRAN
routines. Some of them are merely remindersof good codingpractice; others take advantage
of implementation techniques in the FTN compiler. All offer some speedup in program

execution.

DO LOOPS

1. Remove invariant expressions from DOloops. For example,

18 CONTINUE

should be changedto:

A = 3.01

DO 189 I =1, 5

18 CONTINUE

2. Optimize unnecessary subscript calculations. The first source code sequence is more
efficient than the second one below.

SUM = @

DO 1@ I=1, 9
SUM = SUM + ARRAY (T)

18 CONTINUE

ARRAY (N) = ARRAY(N) + SUM

DO 16 I=1, 9
ARRAY (N) = ARRAY(N) + ARRAY (I)

18 CONTINUE

1 January, 1979 13-1 FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

3. Minimize DO Loop Setup Time. When nesting DO Loops (also any hand-codedcontrol
structures), order the loops so that the feweriteration count loops are on the outside, and the
higheriteration count loops are on the inside.

Example 1: -

DO 28 I=1, 5
D016 J =1, 100

loop-body

.18 CONTINUE

28 CONTINUE

Example 2:

DO 2 J =1, 100
DO1@1I=1, 5

loop-body

18 CONTINUE
28 CONTINUE

Example 1 is the preferred control structure for the following reasons. The execution time
for a DO loop consists of three major items:

1. Setup time (Ts)—the time requiredto initialize the index.

2. Increment andtest time (Ti)—the time taken each time the
flow of control hits the bottom of the loop.

3. Time to execute the body of the loop (Tb).

For examples 1 and 2 above,the time required to execute the DO 10 loopsis:

1. Time(1)=5 x (Ts + 100Ti + 100Tb)
2. Time(2) =100 x (Ts + 5Ti + 5Tb)

whichyields:

1. Time(i)=5Ts + 500Ti + 500Tb

2. Time(2) =100Ts + 500Ti + 500Tb

Time (1) is smaller, making it the preferred structure.

4. Use CONTINUEStatements. Always end DO loops with a CONTINUEstatement. Thisis
a special case of statement numberusage,described below.

FDR 3057 13-2 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

STATEMENT NUMBERS

Eliminate all unnecessary statement numbers,i.e., those that program contro! will never
access. Most optimizations are performed between statement numbers; therefore the fewer
statement numbers, the more optimization possible. For example,

IF (I .EQ. O) J =K

can be moreefficient andis easier to read than:

IF (I .NE. O) GOTO 14

J =K

128 next-statement

MULTI-DIMENSIONED ARRAYS

Reference memory as sequentially as possible. For multi-dimensionedarrays, the leftmost
subscript varies the fastest in FORTRAN, so when addressing large portions of an array,
paging and working set can be significantly reduced by indexing the leftmost subscript the
fastest (e.g., in the innermost loop). Thus,

DO 20 I =1, 108
D0 1839 = 1, 180
ARRAY (J, I) = 3.0

18 CONTINUE
20 CONTINUE

is more efficient than accessing the structure as ARRAY(I, J) =3.0.

If the program can be coded CLEANLY without multiple-dimension structures, memory
addressing can be moreefficient. For each dimension overone,this saves one ‘multiply’ per
effective address calculation; i.e., number-of-multiplies = number-of-dimensions - 1. For
instance, the example above could be written as:

DIMENSION JUNKARRAY (1)
EQUIVALENCE (ARRAY (1,1), JUNKARRAY(1))

DO 10 I =1, 10800
JUNKARRAY (1) = 3.9

1@ CONTINUE

saving considerable CPU time.

LOAD SEQUENCE AND MEMORY ALLOCATION

Paging time can besignificantly reduced by ordering routines by frequencyof use (rather
than, say, alphabetically). The Main routine must alwaysbe loadedfirst for LOAD or SEG
to work properly.

1 January, 1979 13-3 FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

A suitable loading scheme would allocate memoryas:

MAIN

END

most common subroutines

occasionally used subroutines

infrequently used subroutines

Paged memory fragmentation can be reduced by loading routines on page boundaries using
SEG’s P/LO command.

In subroutine libraries, the top down tree structure must be preservedif ‘reset force load’
is in use.

This ordering method mayalso be used to order COMMONblocks in memory by frequency
of use. See Section 11 for details.

FUNCTION CALLS

Eliminate redundant function calls with equal arguments. For example:

TEMP = SIN (X)
A = TEMP * TEMP

is significantly faster than:

A = SIN(X) * SIN(X)

Makesure that the function has no side effects which might modify the argument(s) or
anything else in the environment.

V-MODE VS. R-MODE COMPILATION

In almost all cases, V-mode code executes faster than R-mode code. If a V-mode program
plus data is less than 64K words, andtheroutineis not to be shared, use the MIX command
of SEG to compact the memory image.

64V-MODE COMMON

The FORTRANcompiler and SEG allow some 64V mode FORTRANprogramsfaster access
to variables in COMMON. If a COMMONblock is loaded into the same segmentas the
procedure area or link area which accesses it, the compiled program will address the
COMMONvariables directly, rather than through a two-word indirect pointer. Thus,
careful loading of routines with frequently accessed COMMONareasinto the same segment
in 64V mode will cause an appreciable increase in execution speed.

FDR 3057 13-4 . 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

IF STATEMENTS

Minimize compoundlogical connectives within an IF statement whenpossible. For example,

IF (A.EQ.B .OR. C.EQ.D) GOTO 10

has the sameeffect as, but is slower than:

IF (A.EQ.B) GOTO 10
IF (C.EQ.D) GOTO 10

INPUT/OUTPUT

Significant speed improvement in raw data transfers can be achieved by using the
equivalent IOCSorfile system routine instead of formatted input/output. For example,

INTEGER TEXT (4@)
READ (5, 20, END = 99) TEXT

20 FORMAT (4@A2)

is slower than

INTEGER TEXT (48)

CALL RDASC(5, TEXT, 48, $99)

but the fastest yetis...

INTEGER TEXT(48) , CODE
CALL RDLINS (1, TEXT, 48, CODE)

IF(CODE .NE. @) /* Any error?
X GOTO 99 /*Yes, go process error.

There are also routines for reading/writing octal, decimal, and one-unit hexadecimal

numbers from/to the terminal. For example, CALL TIHEX(N), will read a hexadecimal
integer from the terminal into the 16-bit integer namedN.Forprinting out text efficiently,
use the TNOU/TNOUAroutines. See the Reference Guide, PRIMOS Subroutines for more
specific information about these lowerlevel routines.

STATEMENT SEQUENCE

The compiler can doregister tracking, but cannot reorder statements. For example, given the
sequence:

A=B

X= Y

R=B

the generated codeis

LDA B

STA A

LDA Y (6 instructions long)
STA X
LDA B
STA R

1 January, 1979 13-5 FDR 3057

13 OPTIMIZATION AND OTHER HELPFUL HINTS

If the source had been rearrangedto

A=B

R=B

X=Y

the generated codeis reducedto:

LDA B

STA A

STAR (5 instructions long)
LDA Y

STA X

PARAMETER STATEMENTS

Initializing named constants via PARAMETERstatements allows the compiler to perform
constant-folding optimizations. The compiler does not fold normal variables initialized by
DATA statements into constants.

INEFFICIENT LIBRARY CALLS

Someof the library routines are not optimized for time-critical operations. The get and store
character routines (GCHR$A,etc.) are convenient, but comparatively slow. Some of the
APPLIB routines are by definition slow. Avoid using the MAX and MINcalls especially in
V-mode. It may be moreefficient to code it yourself.

Rememberthe 80/20 rule, which states: ‘80 percent of a program’s time is spent in 20
percent of the code” (exact numbers subject to debate). Therefore, standardlibrary routines
are adequate in the non-time-critical 80 percent of the program.

STATEMENT FUNCTIONS AND SUBROUTINES

Use statement functions instead of formal FUNCTION subprograms whenpractical. In V-
mode this eliminates a lengthy PCL/PRTN sequence. Try to minimize the number of
arguments passed to and from a function or subroutine regardless of whetherit is a
statement function or a separate function subprogram.

INTEGER DIVIDES

Whendividing a non-negative integer by a powerof two, use the RS (right shift) binary
intrinsic function. For example:

I= RS(J, 3)

Is much faster than:

I=]J/8

LOGICAL VS. ARITHMETICIF

Logical IFs are preferred to arithmetic IF statements. Many FORTRAN programs have
sections which look like:

IF (I- J) 1, 2,1

1 next-statement

2 some-other-statement

FDR 3057 13-6 1 January, 1979

OPTIMIZATION AND OTHER HELPFUL HINTS 13

A more optimal code sequence would be:

IF (1. EQ. J) GOTO 2

1 next-statement

2 some-other-statement

which is also more readable.

USE OF THE COMPILER’S -DYNM OPTION

V-mode programsrunfaster, better, and cleaner if local variables are placed in the stack

through the -DYNM option. These variables are not guaranteed to be valid after a return.

For example:

INTEGER COUNT

DATA COUNT /8/

IF(COUNT .NE. 12) GOTO 1

CALL TONL

COUNT = @

1 COUNT = COUNT + 1

some—more—code

RETURN

END

The above example would not work if compiled with the -DYNMoption, because the value

of COUNT would notbe saved after execution of the RETURN statement.

CONCLUSION

These are some of the more common guidelines to keep in mind while programming in

Prime FORTRAN.If you keep these ideas in mind while writing, or while ‘tweaking’

FORTRANprograms, your programswill be generally smaller and faster. Some of these

rules are not necessarily permanent. As Prime FORTRANevolves more and moreoptimiza-

tions, the user will have more freedom to choose codingstyles.

Generally it is easier to apply these techniquesatinitial coding time,as opposed to ‘going

back and optimizing’. While some of these changes can be done easily with a few Editor

tricks, others may require extensive changesto source code. Manyother useful examplesof

good FORTRANprogrammingpractice appear in the following text:

Kernigan and Plaugher, The Elements of ProgrammingStyle, McGraw-Hill, 1974

REQUEST FOR CONTRIBUTIONS TO THIS SECTION

If you have optimizing techniques in Prime FORTRANthat you would like to share with

future readers, please submit them to: Technical Publications, Prime Computer, Inc., 145

Pennsylvania Avenue, Framingham, MA 01701.

1 January, 1979 13-7 , FDR 3057

FORTRAN
LANGUAGE

SodeiiieeananeiccecanesaeoeusouataeeaeeeaesaSLT
es

language elements

LEGAL CHARACTER SET

The characters allowed in Prime FORTRANare:

¢ The 26 upper-caseletters: A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,§,T,U,V,W,X,Y,Z.

¢ The 10 digits: 0,1,2,3,4,5,6,7,8,9.

Letters and digits together are called alphanumeric characters.

¢ These 12 special characters:

= equals
’ single quote (apostrophe)

colon
plus
minus

asterisk
slash
left parenthesis
right parenthesis
comma

. decimal point
$ dollar sign

+
-
-

-_—
o
N

C
d

¢ Blanks or spaces.

Blanksin Hollerith constants (character strings) or in formatted input/output statements are

treated as character positions. Elsewhere in Prime FORTRAN,blanks have no meaning and

can be used asdesired to improve program legibility.

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character position in the line is

called a column, numbered fromleft to right starting with 1. These are three typesoflines:

Comments, statements (and their continuations), and control statements. (See Figure 14-1.)

1 January, 1979 14-1 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

er COLUMNNUMBER

| 1C1 COMMENTTEXTtho

Geebe-STATEMENT : en el
s wey oof
oo eeLe—STATEMENT CONTINUATION—s4

oe | oeoa
Ls stMCONTROL-<- 7 a

 aaaaao “Statement label (optional),
ooaeBlanks :
ye Blank or zero. , | | a
oe _Any character except blank«or zero eee

_NOTE:Comments may be extended pastcolumn 72 tocolumn8 "Figure14-1.‘Program Line Format |

Comments

Commentlines are identified by the letter C in column 1. The remainderof the line may
contain anything. A commentline is ignored by the compiler, except that it is printed in the
program listing. A comment may beplaced on a statement line (except inside a Hollerith
constant) using the format:

/*comment*/

Statements

Columns 1-5 are reserved for the numerical statement label, if any. (Blanks and leading
zeros are ignored.) Column 6 must be a blankor a zero. Columns 7-72 contain the statement.
The statement may begin with leading blanks; this is often done to make the program easier
to read, as for indention of nested DO loops or nested IF statements. In the continuation of
a statement, columns1-5 must be blank, column 6 maybe any character EXCEPT0 (zero) or
a blank, and the statement continuation is in columns 7-72.

Control

Column 1 must contain the special character $. Other columns are specified by the
individual control operation. (See, for example, $INSERTin Section 16.)

Columns 73 to 80 are available for line order sequence numbersorotheridentification
(usage is optional). These columns,like comments, are ignored by the compiler exceptthat
they are printed in the programlisting.

OPERANDS

Operandsare those elements which are manipulated by the program. Theyare constants,
parameters, variables, arrays, and address constants.

FDR 3057 ° 14-2 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

Constants

See appendix D for details of constant storage.

Constants may be any of the following types:

Memory

Mode Words Range
INTEGER(short) 1 -32768 to +32767

INTEGER(long) 2 ~2147483648 to +2147483647

(-2**31 to +2**31-1)
REAL 2 + (10**-38 to 10**38)
DOUBLE PRECISION 4 + (10**-9902 to 10**9825)

COMPLEX 2x2 . same as for Real

LOGICAL 1 0 or 1 (ie.,FALSE. or .TRUE.)

Integers: may be decimal or octal numbers. In either case, no decimal point appears in the

representation. Short integers may have up to 5 decimaldigits or 6 octal digits, plus a sign,

within the magnitude range.

decimal 12345 or -23579

octal :13752 or -:156, or

5013752 or -30156

(The O notation is obsolete. It is supported for compatibility; use is not

recommended)

Short integers range in magnitude from 0 to 32767 (decimal); i.e., :0 to :177777 (octal).

Long integers may have up to 10 decimaldigits or octal digits plus a sign.

The representation is the same as short integers. Long integers range from 0 (:000000) to

2147483647 (:17777777777) and from -2147483648 (:20000000000) to -1 (:37777777777). The
range is from -(2**+31) to +(2**31-1).

Integer constants are treated as short integers unless:

¢ Their magnitude exceeds 32767 or :177777 (octal).

¢ Their representation exceeds 5 decimaldigits or 6 octal digits; leading zerosare

counted in determining the numberofdigits in the constant.

Example:

30 short integer

000030 long integer

If the program is compiled with INTL then all integer constants are treated as long integers.

(See Sections 5 and 17 for details.)

Long integers may be used in the FORTRANprogram anywherethat short integers are used,

This includes subscripts, ASSIGNed GOTOs, computed GOTOs, FORTRAN I/O unit

numbers, DO-loop index values, and character counts.

CAUTION

Some subroutines expect short integers as arguments. In

these cases, convert any longintegersto short integers via the

INTS function (see Section 17 for details).

1 January, 1979 . 14-3 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Real numbers: may be written as

1357.924, or 0.3579 E 02

The decimal point is mandatoryin thefirst case. In the exponential form the decimal point
is optional; the exponent ranges from —38 to +38. The position following the E must contain
a blank, a plus sign, or a minus sign. The blankis interpreted as a plus sign.

Only the seven mostsignificant digits are retained.

Double precision numbers: are similar to real numbers except that fourteen significant
digits are retained, and the exponential (or floating point) representation uses D in place of
E, e.g.,

12345.9253 D-11

The exponent(following D) may take on values from -9902 to +9825. Only 2 digits can be
printed from the exponents.

Complex numbers: are an orderedpair of two real numbersenclosed in parentheses and
separated by a comma:

(REAL1, REAL2) e.g., (1.345, 0.59 E-2)

The rules for real numberrepresentation apply to each element of the complex number.

Logical constants: logical constants have only two possible values:

0 (zero) corresponding to .FALSE.

1 (one) corresponding to .TRUE.

ASCII: ASCII constants are character strings. They are stored as follows:

Maximum Numberof

Mode ASCII Characters Stored
Integer, short 2
Integer, long 4
Real 4
Double Precision 8

Complex 8

Whencharacterstrings are compared,bit-by-bit checking is only done for those stored in
integers; hence storage in modesotherthan integer(long or short) should be avoided.

Charactersare left justified and the remainder of the word(s) are packed with blanks.

ASCII constants are represented in either of two ways:

1. A character count followed by the letter H andthestring:

23HTHIS IS AN ASCII STRING

2. The string enclosed in single quotes:

"THIS IS AN ASCII STRING'

A single quote mayberepresentedin string by using two single quotes("’) (NOT a double
quote.) This will count as one character.

FDR 3057 14-4 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

Example:

WRITE (1,1)
1 FORMAT ('AB''C')

will print AB'C at the terminal.

Parameters

Parameters are named constants and may be of any data mode. They may be usedin the

program anywherea constant can be used, except in FORMATstatements; they mayalso

appear in DATA and DIMENSIONstatements. Parameters are loaded at compile time, and

the code generated for them is identical to that generated for constants (see the PARAME-

TER statement in Section 15).

Variables

Variable names have from 1 to 6 characters. Character 1 must be alphabetic; characters 2-5

(if any) must be alphanumeric.

If no modesare specifically declared,then all variables whose namesbegin with theletters

I, J, K, L, M,N,are integer mode, and variables whose namesbegin with A-H,or O-Z are real

mode. Check Section 15, Specification Statements, for instructions on how to override this

implicit convention and also specify double precision, complex and logical modes.

Arrays

Arrays are ordered multidimensional sets of data representedas:

ANAME(11,12,. . .,In).

The I’s are the indexes (subscripts) of the array, and must be positive integers (constants,

parameters, or variables). All elements of the array must be of the same mode—integer

(short or long), real, double precision, complex, or logical.

GENERALIZED SUBSCRIPTS

Thereis no syntactical limitation on subscript expressions. The FORTRAN compiler allows

any integer-valued expression as an array subscript.

Use of generalized subscripts

Array references have the form

A(S1,82,. . .,Sn)

A is the array name

Si is a subscript expression (1<=i<=7}

A subscript expression is any legal FORTRANlong- or short-integer-valued expression.It

may contain constants, variables, function references, intrinsic references, and other array

references. The nesting limit on any expression is 32 levels of parentheses, whether

syntactical, array, or function reference parentheses. Non-integer constants and variables

are not allowed within subscript expressions.

1 January, 1979 14-5 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Note
Conversion functions (such as IDINT,IFIX, INT) may be used
to convert non-integer expressions to integer within a sub-
script expression.

No more than seven subscripts may be used to index an
array.

Example:

The following FORTRAN program illustrates the use of generalized subscripts. It de-
liberately contains somerather bizarre expressions which show the flexibility of subscript-
ing, but is not intended as a model of good coding practice. (POOP, is a REAL-valued
function.)

Cc
Cc GENERALIZED SUBSCRIPTS
C

REAL A(100,180) ,B(1@) ,Z
INTEGER G(3,4,5) ,H(3008) ,I,J,K

C
Cc ASSIGNMENT
Cc

Z2=A(G (H (25**K**2) ,2,RS(I,H(2))) , INTS(Z-A(1,10*H(J))))
* +B(INTS (POOP (2)))

Cc
Cc IF
Cc

IF(Z.NE.B(RS (K,H(K*5)))) GOTO 1000

CALL

CALL POOP] (A(H(INTS (POOP(1))) ,G(1,J*2,1)) ,Z)

ETC.

Q
A
a
A
g
A
e
E
A
A
N

S S

END

Address constants

Addressconstantsconsist of a statementlabel prefixed by a dollarsign ($). They contain the
memory addressof the first line of code generated by the statement label whosevalueis that
of the addressconstant. For example, if, 100 A=B*C is a statementin the program, then $100
is the address of the code generated by that statement. The address constantis an integer
value. It is usually used in conjunction with the ALTRTN from external subroutines (these
are alternate returns generated by encounteringerrors in executing the subroutines).

OPERATORS

Operators modify an operandor concatenate two operands.

Logical operators

FORTRAN’slogical operators are: NOT., .AND., .OR. (in this section, P and Q have been
specified as logical variables.

FDR 3057 14-6 1 January, 1979

FORTRAN LANGUAGE ELEMENTS 14

.NOT.: .NOT.Q negates the value of Q.

Q NOT.Q
-TRUE. .FALSE.

.FALSE. .TRUE.

-AND.: P .AND.

Q

is the logical ANDingof the bits of P and Q (set intersection).

Pp

Q TRUE. .FALSE.

-TRUE. .TRUE. .FALSE.

.FALSE. .FALSE. .FALSE.

.OR.: P .OR. Q is the logical non-exclusive ORing of P and Q.(set union).

Pp

Q .TRUE. FALSE.

-TRUE. -TRUE. -TRUE.

FALSE. .TRUE. .FALSE.

Arithmetic operators

xe Exponentiation
Unary minus

Multiplication
Division
Addition

- Subtraction
= Equality or replacement

+
™

*
I

Relational operators

.LT. Less than

.LE. Less than or equalto

.EQ. Equal to
NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

Operatorpriority

FORTRANevaluates operators within expressions in the following order:

** Exponentiation
- Unary Minus

* or / Multiplication or division
+ or- Addition or subtraction

.LT.,.LE.,.EQ.,
Relational operators

.NE,,.GT.,.GE.

NOT, Logical negation
AND. Logical intersection
OR. Logical union

At equal level of operators, priority evaluation generally proceeds from left to right.

However, the compiler takes advantage of groupings of elements (in accordance with

mathematical rules) and, as a result of this, evaluation may sometimesnot be strictly left-to-

right (See note below). Expressions within parentheses are evaluated before operations

outside the parentheses are performed.

1 January, 1979 14-7 FDR 3057

14 FORTRAN LANGUAGE ELEMENTS

Note

Whentwo elements are combined by an operator,the order
of evaluation of the elementsis optional. If mathematical use
of operatorsis associative, commutative, or both, full use of
these facts may be made to revise orders of combination,
provided only that integrity of parenthesized expressions is
not violated. The results of different permissible orders of
combination even though mathematically identical need not
be computationally identical. See: Section 6.4, para.2, ANSI

X3.9-1966

PROGRAM COMPOSITION

Each program (or subroutine or external function) consists of a numberof program lines.
Program lines are grouped and ordered by type of statement as shown in Figure 14-2.
Comments and TRACEandLISTcontrol statements can be used anywherein the program.
The ENDstatement mustbethelast statementof a program; nothing may follow ENDexcept
FUNCTION or SUBROUTINEof another subprogram. The types of statements are dis-
cussed in Section 15.

"Headerstatement, if required:

SS | FUNCTION, SUBROUTINE, BLOCK DATA

A Storage and Specification Statements: .

COMMON, DIMENSION, EQUIVALENCE, SAVE, EXTERNA co}
DOUBLE PRECISION, INTEGER, INTEGER*2,INTEGER*4, LOGI
_REAL*4, REAL*8, IMPLICIT, PARAMETER oe |

:DATA Statements

| fStatement: Function Definitions

| Executable Statements

"Arithmetic and logical assignments

: _ Control Statements! GOTO. ASSIGN,TF,DO.CONTI Se

| ae STOP. RETURN

“Input/Output Statements: READ, WRITE, PRINT,FORMA
BACKSPACE, END FILE __

| ‘Subroutines: CALL subrname (arg.

: END Statement

_ Figure 14-2. Source Program Composition

FDR 3057 14-8 1 January, 1979

 FORTRAN statements

IMPLEMENTED STATEMENTS

Legal statements for Prime FORTRANIVarelisted below with their functional category.

Statement

ASSIGN

BACKSPACE

BLOCK DATA

CALL

COMMON

COMPLEX

CONTINUE

DATA

DECODE

DIMENSION

DO

DOUBLE PRECISION

ENCODE

END

ENDFILE

EQUIVALENCE

EXTERNAL

FORMAT

FULL LIST

FUNCTION

GO TO

IF

IMPLICIT

INTEGER

INTEGER*2

INTEGER*4

LIST

LOGICAL

mode FUNCTION

NO LIST

PARAMETER

PAUSE

PRINT

READ

REAL

REAL*4

REAL*8

1 January, 1979

Category

Control
Device Control
Header
External Procedure
Storage

Specification
Control
Data initialization
Coding
Storage

Control
Specification
Coding
Control
Device Control
Storage
External Procedure
Format

Compilation/Run-Time Control
Header
Control
Control
Specification
Specification
Specification
Specification
Compilation/Run-Time Control
Specification
Header
Compilation/Run-Time Control
Specification
Control
Input/Output
Input/Output
Specification
Specification
Specification

15-1 FDR 3057

15 FORTRAN STATEMENTS

RETURN Control
REWIND Device Control
SAVE Storage
STOP Control
SUBROUTINE Header
TRACE Compilation/Run-Time Control
WRITE Input/Output
$INSERT Compilation/Run-Time Control

In this reference, section statements are groupedin functional orderto clarify and simplify
discussion, as follows:

]. Header Statements:

e BLOCK DATA

¢ FUNCTION

¢ SUBROUTINE

2. Specification Statements:

e IMPLICIT

e mode: COMPEX, LOGICAL, DOUBLE PRECISION, REAL, REAL*4, REAL*8,
INTEGER, INTEGER*2, INTEGER*4,

e PARAMETER

3. Storage Statements:

¢ COMMON

® DIMENSION

e EQUIVALENCE

© SAVE

4. External Statements:

e CALL

e EXTERNAL

5. Data Definition Statements:

« DATA

6. Compilation and Run-Time Control Statements:

» FULL LIST

e LIST

e NO LIST

« TRACE

« $INSERT

7. Assignment Statements

8. Control Statements

« ASSIGN

« CONTINUE

° DO

e END

* GO TO

s IF

FDR 3057 15-2 1 January, 1979

FORTRAN STATEMENTS 15

¢ PAUSE

e RETURN

¢ STOP

9. Input/Output Statements:

e PRINT

e READ |

e WRITE

10. Coding Statements:

¢ DECODE

¢ ENCODE

11. Format Statements:

e FORMAT

12. Device Control Statements:

¢ BACKSPACE

e ENDFILE

e REWIND

13. Functions

14. Subroutines

HEADER STATEMENTS FOR SUBPROGRAMS

BLOCK DATAstatement

BLOCK DATA

The BLOCK DATAstatementlabels a block data subprogram. This type of subprogram
labels COMMONareas and then initializes data values within these areas via DATA
statements.. Block data subprograms are compiled separately and linked to the main
program bythe Loader.

FUNCTIONstatements

[mode] FUNCTION name (argument-1[, argument-2, .. . argument-n])

The arguments are a non-emptylist of the arguments passed bythe calling program. There

is no syntactical upper limit to the number of arguments. However, long lists will slow

execution.The nameis both the nameofthe function in the calling program andthe variable
that returns the value calculated by the function. The modeis an optional specification of
one of the data types, selected from the followinglist:

COMPLEX LOGICAL
INTEGER REAL*4 (REAL)
INTEGER*2 REAL*8 (DOUBLE PRECISION)
INTEGER*4

If no modeis specified, FORTRANwill assign one implicitly based uponthefirst letter of

the function name(i.e., I-N=Integer, A-H or O-Z=REAL).

SUBROUTINEstatements

SUBROUTINEname[(argument-1,argument-2... argument-n)|

1 January, 1979 15-3 FDR 3057

15 FORTRAN STATEMENTS

The argumentsare a list of arguments, some of which are passed by the calling program:
others are dummy arguments whosevaluesare calculated by the subroutine and returned
to the calling program. There is no syntactical upper limit to the number of arguments.
However,long lists will slow execution.

CAUTION

Under PRIMOS,subroutinesare called by address(location)
rather than by name. Thus,it is extremely important not to
place constants or parameters in the argumentlist as argu-

ments whichwill be returned,since this will alter their value.
Also, returned arguments maynot be expressed.

Example:

T=5 prints on user terminal

PRINT 16,1 o
CALL SUB1 (1,5)
I=5
PRINT 10,1 25

19 FORMAT (12)

SUBROUTINE SUB1 (J,K)
K5J**2
RETURN
END

SPECIFICATION STATEMENTS

FORTRANautomatically assigns modesto all variables, parameters, arrays, and functions
(except intrinsics) that do not appear in modespecification statements. The FORTRAN
language default is as follows: if the symbol’s first character is I through N (inclusive), the
symbolis typedas integer; all others (A~H, O-Z) are typed asreal. (The default integers are
short integers unless the program is compiled with the long integer default - see Section 5.

IMPLICIT statements

iMPLICIT mode-1 (list-1), mode-2 (list-2), ..., mode-n (list-n)

The IMPLICIT statement allows the programmerto override the language convention for
default data typing. Each modeis a data mode such as REAL*4, COMPLEX,etc. Eachlistlists
the letters to be typed as the modespecification. Letters may be separated by a commaor
an inclusive group of letters may be indicated with a dash.

Symbolsnot typed in this statement and not specified in modespecification statementswill
revert to the FORTRAN language default.

Example:

IMPLICIT DOUBLE PRECISION (A,M-Z), LOGICAL(B}

First letter of symbol Type

A, or M through Z Double Precision
B Logical
C through H Real
I through L Integer

FDR 3057 15-4 1 January, 1979

FORTRAN STATEMENTS 15

If used, the IMPLICIT statement mustbethefirst statement of a main program,or the second

statement of a subprogram. IMPLICIT typing does notaffect intrinsic or basic external

functions. IMPLICIT affects all symbols not otherwise typed. This includes dummy vari-

ables in the first statement of a subroutine or function. The user should take care to make

sure that these dummyvariable symbolswill be of the proper data type.

Modespecification statements

mode [V1,V2,...,Vn]

The mode specification statement allows override of the implicit mode assignments of

symbol names which was doneeither by IMPLICIT or language default.

The word modeis replaced by oneof the nine data modespecifications:

e COMPLEX

¢ DOUBLE PRECISION (same as REAL*8)

e INTEGER

¢ INTEGER*2

e INTEGER*4

e LOGICAL

* REAL (same as REAL*4)
e REAL*4 (same as REAL)

°e REAL*8 (same as DOUBLE PRECISION)

The V’s are a list of variable names, parameter names, array names, function names, or

array declarers.

Recognition of synonymousspecificationsis designed to ease conversion of extant programs

to the Prime FORTRAN system. INTEGER will normally default to INTEGER*2 (short

integer) unless the program is compiled including the INTL option. In this case, INTEGER

will default to INTEGER*4 (long integer). It is recommended in new programs that the

programmerexplicitly use INTEGER*2 and INTEGER*4 specifications. (See Section 5 for

compiler information.) .

Global mode definition occurs if a mode specification does not include a symbollist. In this

case, all symbols which do not appear in specification statements and whosefirst ap-

pearance follows this global mode statement are declared to be of this globally-specified

mode.

CAUTION

The use of global mode and the IMPLICIT statementin the

same program unit is prohibited. The global modeis func-

tionally replaced by the IMPLICIT statement. The use of the

IMPLICIT statement is strongly recommendedas a superior

programming technique. The global modeis still supported

by the FORTRANsystem to allow the use of existing pro-

gramsutilizingit.

PARAMETERstatement

PARAMETER(V1=C2,... ,Vn=Cn)

Wherethe V’s are variables (arrays are not allowed) and the C’s are constants or constant

expressions of the same modeasthe corresponding variables. The operandsin the constant

expressions may be constants or previously defined parameters. Allowed operations

include +, -,.*, and / on INTEGER*2, REAL*8, and REAL*4 operands. INTEGER*2 XOR,OR,

AND, MOD,shift, and truncate function referencesare also allowed. An error message, ILL.

1 January, 1979 15-5 FDR 3057

15 FORTRAN STATEMENTS

CONSTANTEXPR.,is generatedif these restrictions are violated. The variable names must
be typed explicitly prior to the PARAMETERstatementor default-typed implicitly. All other
uses of the PARAMETER names must follow the PARAMETER statement. PARAMETER
names maybe used wherevera constant would be used (including DATA and DIMENSION
statements) except in FORMATstatements. Since the parameters are named constants,
PARAMETERnames maynot be used in COMMONor EQUIVALENCEstatements.
Enclosing the parameter list in parentheses is required by the FORTRAN 77standard.
Prime’s FORTRANwill accept a PARAMETERstatementwith or without the parentheses.

STORAGE STATEMENTS

COMMONstatement

COMMON /X1/A1/,../Xn/An

Where each A is a non-empty list of variable names or array names, and each X is a
COMMONblock nameoris empty (blank COMMON). The COMMONblock names must
not be identical with namesof subprogramscalled or FORTRAN library subroutines. Data
items are assigned sequentially within a COMMONblockin the orderof appearance. The
loader program assigns all COMMON blocks with the same name to the same area,
regardless of the program or subprogram in which they are defined. Blank COMMON data
are assigned in such a waythat they overlap the loader program, thereby making the
memory area occupied bythe loader program available for data storage.

Note

The form // (with no characters except blanks between
slashes) may be used to denote blank COMMON,

The numberof words that a COMMONblock occupies dependson the numberof elements,
the mode of the elements, and the interrelations between the elements specified by an
EQUIVALENCEstatement. COMMONblocksthat appear with the same block name(or no
name) in various programs or subprograms of the same job are not required to have
elements within the block agree in name, mode,or order, but the blocks mustagreeintotal
words.

As an aid to system-level programming, the compiler defines absolute memory location
'00001 as the origin of a COMMONblock named ‘LIST’.

It is customaryto assign an array called LIST into the labeled COMMONareacalled LIST,
such thatthe first word in this array is location 00001, the sixth wordlocation '00006,etc., as
in:

COMMON/LIST/LIST(1)

Effectively, the subscript of array LIST is the actual memory address. This feature is not
required when compiling in 64V mode.

Note

Techniques for handling COMMONareaslarger than 64K
words (64V modeonly) are discussed in Section 11.

DIMENSIONstatement

DIMENSIONVi(Ii), V2(I2),... Vn(In)
Declares the nameofthe array, the numberof subscripts (IJ=J1, J2,... Jn; n=1 to 7), and the
maximum valuefor the subscripts. This allocates the maximum storage requirementfor the

FDR 3057 15-6 1 January, 1979

FORTRAN STATEMENTS 15

array. In a subroutine, the subscript(s) in a dimension statement may be a variable,

providedthis value is passed to the subroutine from the calling program.

EQUIVALENCEstatement

EQUIVALENCE(k11, k12, k13...), (k21, k22, k23...)

Whereeachk is a variable, subscripted variable or array name. Each elementin thelist is

assigned the same memorystorage by the compiler. An EQUIVALENCEstatement equates

single variables to each other, entire arrays to each other, elements of an array to single

variables and vice-versa. If equivalences are established between variables of different

modes, the shorter modeis stored in the first words of the longer mode.

SAVE statement

SAVE V1, V2,... Vn

Wherethe V’s are local variables or array names. Arrays cannot be dimensioned in a SAVE

statement. Any symbol nameappearing in a SAVEstatement cannot appear ina COMMON

statement or be EQUIVALENCEd to a COMMONelement. A labeled COMMONblock(not

blank COMMON) mayappearin thelist if it is enclosed in slashes.

Note

In the currentrevision, inclusion of aCOMMONblock name
has no effect. This feature is included to allow compatibility
with the FORTRAN 77standard.

Variables listed in the SAVE statement are assigned local storage in the linkage frame

(static) rather than the stack frame (dynamic). Thus, the SAVE command has meaningonly

when the program is compiled including the DYNM command (64V mode only). Symbol

names in DATA statements, SAVE statements or EQUIVALENCEdto names in these

statements are stored in the linkage frame. Only variables in the linkage frame can be

initialized. Variables allocated to the stack frame are not preserved from one subroutine

CALLto the next.

If the SAVE statement appears without a list of symbol names thenall local storage is

allocated to the linkage frame.

A further discussion of local storage allocation will be found in Section 17.

EXTERNAL PROCEDURE STATEMENTS

CALL statement

CALL subroutine [(argument-1, argument-2,..., argument-n])

Where subroutine is a subroutine name and the argumentsarea list (possibly empty) of the

arguments passed andto be returned. Subroutines may not CALL themselves unless the

program units are all compiled with the DYNM parameter (64V modeon Prime350 or higher

computers).

EXTERNALstatement

EXTERNALV1, V2,..., Vn

Where each

V

is declared to be an external procedure name. This permits the name of an

external function (such as COS)to be passed as an argumentin a subroutinecallor function

reference.

1 January, 1979 15-7 FDR 3057

15 FORTRAN STATEMENTS

DATA DEFINITION STATEMENT

DATA statement

DATA k1/d1/,k2/d2/,...kn/dn/

Allowsinitialization of variables or array elementat load time. Each

k

is a list of variables
or array elements (with constant subscripts) separated by commas; each

d

is a correspond-
ing list of constants of the same data modeasthe variables and array elementsin thelist.

COMPILATION AND RUN-TIME CONTROL STATEMENTS

The following statements provide diagnostic tools for the programmerandare discussed in
more detail in the Debugging section (9) and the Compiler Section (5).

FULL LIST statement

Causesa listing of subsequentsource code with a symbolic listing. Overridden by compiler
parameters.

INSERT statement

See $INSERT.

LIST statement

Causesa listing of subsequentsource code with no symbolic listing. Overridden by compiler
parameters.

NO LIST statement

Causesa cessation of subsequentsource codelisting and of symboliclisting. Overridden by
compiler parameters.

FULL LIST, LIST, and NO LIST may be used anywherein the source program.

Item TRACEstatement

TRACEV1, V2,...Vn

Each V is a variable or array name. Prints the value of the variable at each point in the
program wherethe variable is modified. Printout of a variable may be altered by another
TRACE commandwith that variable name. Trace coding is inserted into the program at
compilation; TRACEtakes effect in source program physical order, not logical execution
order.

Area TRACEstatement

TRACE n

Causes valuesof the variables used in statementlabel n to be printed out during execution
of the code betweenthe area TRACEstatementand statementlabeln.

Note

Do not place an area trace statementin the range of another
area trace statement, unless both refer to the same statement
label.

TRACEis overridden by the compiler global trace parameter(see Section 5). It is possible
to have the TRACE output written into a file instead of at the user terminal. Prior to
executing the program, switch the outputto a file by the PRIMOS-level command.

FDR 3057 15-8 1 January, 1979

FORTRAN STATEMENTS 15

COMOfilename

wherefilenameis the file into which terminal outputis to be written. After the program has
halted, output to a filename is stopped andthefile closed by:

COMO -END

The form of the commandgiven here doesnotturn off output to the terminal. A complete
description of this commandis given in Section 10.

$INSERT statement

$INSERT insert-file

Insert into the program, at compilation time, the file whose pathnameis insert-file. The
$INSERT commandshould not be nested; do not include a $INSERT commandina file
which will be inserted into a program by a $INSERT command.

SINSERT is used for:

¢ Insertion of COMMONspecification into programs.

¢ Commonly used one-line functions.

e Data initialization statements.

¢ Parameter definitions, especially for the file management system, applications
library, MIDAS,ete.

ASSIGNMENT STATEMENTS

Assign a valueto a variable

1. arithmetic A=B**2

2. logical (P, Q, R are logical variables) P=Q.OR.R, P=A.GT.B

Mixed mode

Data of different modes may be combinedwith one another with the following restrictions:

1. Logical data should not be combined with any other mode.

2. No operator can combine Double Precisions and Complex data.

3. Subscripts and Control statement indexes must be integers (short or
long).

4. : Arguments of functions and subroutines must be of the mode expected
by the called subprogram.

It is convenient to think of the arithmetic data modes as forming a hierarchy:

¢ COMPLEX or DOUBLE PRECISION

e REAL

e LONG INTEGER

e SHORT INTEGER

Whenevertwo data of differing modes are concatenated by an operator, the resulting mode
is that of the higherin thelist, as in:

REAL + SHORT INTEGERis a REAL

CAUTION

If LONG INTEGERSare converted to REALs, there may bea
loss of precision. The rules for data mode conversion via
assignments(i.e., A=B) are given in Table 15-1. Conversion of

1 January, 1979 15-9 FDR 3057

15 FORTRAN STATEMENTS

long (short) to short (long) integers by assignment is not
recommended as good practice; use the INTL and INTS
functions instead.

CONTROL STATEMENTS

ASSIGN statement

ASSIGN k TO i

Where k andi are integer variables whose values are statement label numbers. An ASSIGN
statement must be executed prior to an assigned GO TO.

CONTINUEstatement

[statement-number] CONTINUE

Transfers control to the next executable statement. With the optional statement-numberit
is usually used to indicate the end of the range of a DO loop.

DO statement

DO n i=m1, m2 [,m3]

Executes statements until and including the statement with label n; m1, m2, m3 are positive
integers (constants, parameters, or variables only - no expression or array elements) with
m2<m1; iis an integer variable which assumes the values m1, m1+m3, m1+2*m3, etc. m1 is
the initial value, m2 the limit value, and m3 the increment. If m3 is not specified, the
incrementis defaulted to 1.

DO loops may be nested; there is no syntactical limit to the nesting of DO loops.

It is an undesirable programming techniqueto have the index variabie appearastheinitial,
limit, or increment values in the DO statement.

After the last execution of the loop, control passes to the next executable statement
following the terminal statement of the DO loop. This is called a normalexit.

CAUTION

ANSI standard FORTRANspecifies that the value of the
index variable is undefined after a normal exit from a DO
loop. The value of the index variable at this pointis complete-
ly dependent upon the specific compiler and howit performs
its limit tests; hence, the terminal value of the index variable
will differ at different installations. It is extremely bad
programming to use the terminal value of this variable as
implicitly set. If the user needs the valueof this variable after
a normal exit, its value should be explicitly set by an
assignment statement.

Note

The DO loop in Prime FORTRANis a one-trip DO loop. That
is, the loop commandswill be executedat least once even if
the initial value is not less than the limit value.If it is desired
to skip the loop under certain conditions, an IF statement
preceding the DO statement should be used. Control should
be transferred to a statement subsequent to the terminal
statement of the DO loop, not to the terminal statement.

FDR 3057 15-10 1 January, 1979

FORTRAN STATEMENTS 15

END statement

Thefinal statement of program, subroutine, or external function. Tells the compilerthatit

has reached the end of the source program.

Unconditional GO TO statement

GO TO k

Transfers control to statement labelled k.

15 FORTRAN STATEMENTS

Transfers control to statement labelled i. Prior to executing, the assigned GO TO a value
mustbe assigned to i using the ASSIGN command.

Thereis no syntactical limit to the numberof labels in a computed or assigned GO TO.

Arithmetic IF statement

IF (e) k1, k2, k3

Wheree is an arithmetic expression with an integer, real, or double precision value. If e<
0 (negative) control is transferred to statement labelled k1, if e =0 (exactly), control is
transferred to statementlabelled k2, andif e>0 (positive), control is transferred to statement
labelled k3.

Logical IF statement

IF (e) statement

Wheree is a logical expression which may be .TRUE.or .FALSE.: statementis any valid
executable statement except a DO ora logical IF statement. If e is true, the statementis
executed; if e is false, control passes to the next executable statement.

Note

An arithmetic IF may be the statementin a logical IF but this
is not recommendedas a good programmingpractice.

PAUSEstatement

PAUSE[n]

Where

n

is an optional decimal numberof upto five digits. Halts the program,transfers
control to subroutine F$HT andprints ****PA n (R-identity) or ****PAUSE n (V-identity) at
the keyboard. The valueof

n

is printedin octal representation. Keying in START continues
operation of the program at the next executable statement following PAUSE.

RETURNstatement

RETURN

Returns to the main program from a subroutine or external function. It must be the last
logical statement in the subroutine or external function.

STOP Statement

STOP [n]

Where is an optional decimal numberof upto five digits. Halts the program,transfers
control to subroutine F$HT, prints ****ST n (R-identity) or ****STOP n (V-identity) at the
keyboard and returns control to the PRIMOS level. The value of n is printed in octal
representation.

INPUT/OUTPUT(I/O) STATEMENTS

See Table 15-2 for list of FORTRAN device units.

Direct access READ and WRITEstatements

The FORTRAN compiler and run-time library support direct access READ and WRITE
statements. READ and WRITEstatements maycontain a record numberto randomly access
file records. With sequential access, record n-1 mustbe read or written before record n. The
syntax implemented is compatible with both IBM FORTRAN and new ANSI standard
FORTRAN.

FDR 3057 15-12 1 January, 1979

FORTRAN STATEMENTS 15

Usage: Special action is required by the user when creating and openingfiles to be used for
direct access I/O. Files used for direct access I/O should be DAMfiles. (Direct access I/O
statements may be used with SAM files but execution time will be longer.) If the file is
formatted, the ATTDEV subroutine mustbecalled so that fixed length records are written.
(The ATTDEVsubroutine is also used to set the record length.) DAMfiles are created by
opening a newfile using the K$NDAM subkey in either a SRCH$$ or TSRC$§ call. (See
Reference Guide, PRIMOS Subroutinesfor details.)

The ATTDEVsubroutine maybe usedto alter the mapping of FORTRANunits to file system
units or to change the record size from the default of 60 words (120 characters). The records
of a direct access formatted file must be fixed length. This is done by setting the second
argument of ATTDEVto 8. The records of an unformatted file are fixed length by default.
If the record length of any file exceeds 66 words (132 characters), a COMMONdeclaration
for FSIOBF must be included. The size of FSIOBF mustbeaslarge as the largest recordsize.
(See Changing record size below fordetails.)

A program that creates a direct access file cannot write record n before record n-1 has been
written. A separate program should be used. Oncethefile has been created,it can be read
or written in random order.

After a direct access I/O statement, thefile is positioned at the record following the one just

transferred. If the direct accessfile is then accessed sequentially, using other formsof the

READor WRITEstatement,it is not necessary to include the record number. This enhances

performance by eliminating the positioningcall.

Formatted files used for direct access I/O may be examinedbythe editor. They must not be

modified using the editor. The editor compressesrecords, giving them variable lengths; files

used for direct access I/O must have fixed length records.

IBM compatibility: The READ and WRITEstatementsare identical to IBM FORTRAN.The

DEFINEFILE and FINDstatements of IBM FORTRANarenot supported. Therecordsize in

the DEFINE FILE statement must appear in the ATTDEV call. The record size in the

DEFINE FILE statement is measured in bytes or 32-bit words rather than 16-bit words

required by ATTDEV.If the U specifier is used in the DEFINE FILE statement, the record

size of the DEFINE FILE statementshould be doubled for the ATTDEVcall; otherwise the

record size should be halved.

The ATTDEV call requires INTEGER*2 arguments. If the INTL option is used during
compilation, constants used as arguments in the ATTDEVcalls must be converted to

INTEGER®*2 by the INTS function (e.g., INTS (8)).

There is no equivalent of the DEFINE FILEassociated variable in Prime's implementation

of direct access files. In IBM FORTRAN,the valueof the associated variable is the number

of the record that follows the record just transferred.

Changing record size: The default formatted record length is 60 words (120 characters). A

larger record size can be set with the ATTDEV subroutine. This subroutine has two

functions:

° Change record size associated with a FORTRANlogical I/O unit number.

¢ Change the correspondence between the I/O unit number and the physical

device.

1 January, 1979 15-13 FDR 3057

15 FORTRAN STATEMENTS

The syntax is:

CALL ATTDEV(logical-unit,device,unit,record-size)

logical-unit The FORTRAN I/O unit number. This is the number used in
READ and WRITE statements (1=terminal, 2=paper tape
punch/reader,etc. (See table 15-2.)

device The position of the physical device in the device-type tables
(CONIOC). The acceptable valuesare:

1 User terminal
2 Paper tape punch/reader
7 Disk file system (Compressed ASCII)
8 Disk file system (Uncompressed ASCII)

unit The unit numberfor multi-unit devices (e.g., magnetic tape drive
0-3). If device is the disk file system (7 or 8) then unit is the file
unit number(1--16).

record-size The maximum record size in INTEGER*2 wordsfor the logical-
record. Each word will store 2 characters.

If the record size is to exceed 128 words (256 characters), the buffer used by internal
FORTRANsubroutines must be increased. This is done by loading a user-created F$IOBF
COMMONbefore loading the FORTRANlibrary.Insert this statement in the
user program:

COMMON/FS$IOBF/array-name(size)

array-name An arbitrary name.
size The desired buffer size in INTEGER*2 words. Each wordstores 2

characters.

CAUTION

It is not possible to increase the buffer size by loading a user-
created F$IOBFif the shared libraries are used.

PRINT statement

PRINTf [list]

Prints the list of elements at the user terminal accordingto the formatspecified in statement
f. Equivalent to WRITE(1,f) [list].

READ statements

For all READ statements: if END=a is included, then control is transferred to statement
numbera if an end-of-file condition is encountered during the read. If ERR=b is included,
then control is transferred to statement numberb if a device or format error is encountered

during the READstatement.

list A list of variables and array names (separated by commas)into
which data are read.

FDR 3057 15-14 1 January, 1979

FORTRAN STATEMENTS 15,

15 FORTRAN STATEMENTS

r The long or short integer expression whose value is the record
numberto be accessed.

f The statement numberof the formatspecifier (optional).
b The statement number to which control is transferred if a device

or formaterror is encountered during transfer (optional).

The END=specifier is not allowed in the direct access READ statement. This restriction is
consistent with both IBM FORTRANandthe new ANSI standard FORTRAN.

Binary READ statement

READ (u [, END = a] [, ERR = bj]list

Causes data on FORTRANunitu to be read into the variables/array namesspecificationlist.
Enough recordsarereadto satisfy all the list items. If more items are on the record than are
required bythelist, the excess items are ignored.If no list is given, one record is read and
ignored.

CAUTION

If the list requires more data than arein the currentrecord,

then the next record(s) are read until the list is satisfied. This
is not a clean programming technique and should be avoided.

List-directed READ statement

READ(u,* [, END = a] [, ERR = bj) list

List-directed I/O frees the programmerfrom including format statements for READs from
free-format input devices such as the user terminal. The input data is converted according
to the data type of items in the I/O list. Additionally, this feature provides a method to
indicate in the input data that an item in the I/O list is to remain unchanged by the READ
statement.

Delimiters: Valuesin list-directed input are separated by a blank, comma,orslash. A slash
or comma may be preceded and followed by any numberof blanks. An end of recordis
treated as a blank. A slash terminates a READ andleaves the values of the remaining items
in the I/O list unchanged. Two adjacent commas with no intervening characters except
blanks will leave the corresponding item in the I/O list unchanged. A list-directed READ
will read any numberofrecords until a slash is encounteredoruntil all items in the I/Olist
have beensatisfied.

Example 1:

Sourceline: READ(1,*)A,B,C
Input Data: 151,,2E2
Result: A=151. B is unchanged. C=2.E2

Example 2:

Sourceline: READ (1,*)1,J,K
Input Data: 5 -3 /
Result: I=5. J=-3. K is unchanged.

Numerical input: If an item in the I/O list is a long or short integer variable or array
element, the corresponding input fic’1 must contain a string of decimal digits optionally
preceded by a + or — sign, as in:

-357 100514 +12387

FDR 3057 15-16 1 January, 1979

FORTRAN STATEMENTS 15

If a real or double precision item is in the I/O list, the corresponding input field must

contain a string of decimal digits with an optionally embedded decimal point. An exponent

field may follow in either E or D format,as in:

51 -27.68 7.65E-14 863D2

503 +265.

The input field corresponding to a complex item must contain two real numbers (as

described above), separated by a commaand enclosed in parentheses, as in

(1E2, -2.) (5.67E-6,8.09)

Character string input: A variable or array of any type can be set equalto a characterstring

using list-directed READ. A character string must be enclosedin single quotation marksin

the input data. Within a characterstring, a quotation markis represented by two consecutive

quotation marks. A characterstring, regardless of length, matches a single item in the I/O

list whether it is a variable, array element, or whole array (represented by including the

unsubscripted array namein the I/Olist). If the character string is shorter than the list item,

the rightmost charactersof the list item are blankfilled. If the characterstring is longer than

the list item, the rightmost characters of the character string are ignored. Characters are

packed two per word,asin:

Example 1:

Source: INTEGER*2 IBUF(2)
READ(1,*) IBUF

Input Data: "ABC’

Result: IBUF(1)=AB. IBUF(2)=C.

Example 2:

Source: READ(1,*) (IBUF(I), I=1,2),J

Input Data: ’GHIJ’, 5 /

Result: IBUF(1)='GH’. IBUF(2)=5. J is unchanged.

Note

If the I/O list has been satisfied, a slash in the input data is

optional. A carriage return is the end of a record on a READ

from a user terminalandis treated as a blankonlist-directed

READS.

WRITE statements

For all WRITE statements, if ERR=b is present, control is transferred to statementb if a

device error is encountered during the WRITE statement.

list A list of variables and array names (separated by commas) from

which data are printed.

Formatted WRITE statement

WRITE(u,f [,ERR=b]) list

Causes data in the list to be written out on FORTRAN unit u according to the format

statementf.

Direct-access WRITE statements

WRITE(u’r,f,ERR=b)list IBM format

WRITE(u,f,REC=r,ERR=b)list ANSI format

1 January, 1979 15-17 FDR 3057

15 FORTRAN STATEMENTS

u A long or short integer constant or variable whose value is the
FORTRANunit number.

Note

The apostrophe(’) is required in the IBM form of the direct
access WRITEstatements.

r The long or short integer expression whose value is the record
numberto be accessed.

f The statement numberof the format specifier (optional).
b The statement number to which control is transferred if a device

or formaterror is encountered during transfer (optional).

The END= specifier is not allowed in the direct access read statement. This restriction is
consistent with both IBM FORTRANandthe new ANSI standard FORTRAN.

Binary WRITE statement

WRITE(u [,ERR=b]) list

All wordsin the list are written into a record in binary format.If there are insufficient data
to fill the record, it is padded out with zeroes;if there are more items than a record can hold,
multiple records are written automatically. If necessary, the last record is padded with
zeroes.

Both READ and WRITEstatements allow implied DO loops for transferred data between
arrays and device. In this case, the list could have a form suchas:

(NAME1 (INDEX1), INDEX1 = 1, 5, 2)
or,

(NAME1 (INDEX1}, NAME2 (3, INDEX1), INDEX1 = 1, 5)
or

(NAME1 (INDEX1, INDEX2), INDEX 1 =1, m), INDEX2 = 1, n,p)
where m,n, and p are constantpositive integers (constants, parameters, or variables).

CODING STATEMENTS

c number of ASCII characters to be transferred
f format statementlabel
a array name
list I/O list of elements (same as in a READ or WRITE statement)

Formatted DECODEstatement

DECODE(c,f,a[, ERR=sn]) list

Converts the first c characters in the array a from ASCII data into the I/O list elements
according to the specified format f. If the optional error branch is inserted, a FOR-
MAT/DATA mismatch will cause a transfer to the statement labelled sn.

List-directed DECODEstatement

DECODE(ce, *, a [, ERR=sn]) list

Allows the user to input/decode data from free-format input devices such as the user
terminal. The requirements on input and delimiters are the same asfor the list-directed
READ statement (see READ).

FDR 3057 15-18 1 January, 1979

FORTRAN STATEMENTS 15

ENCODEstatement

ENCODE(c,f,a) list

Converts the elements of the I/O list into ASCII data according to format f and stores the
first c characters of the resultant string into arraya.

FORMAT STATEMENTS

FORMATstatement

sn FORMAT(dF1 dF2 dF3... Fn)

sn Mandatory statement number.
Fi, etc. A formatfield description.
d A format delimiter (, or /). The first d may be null.

The right parentheses marks the endof a record.

Delimiters: |

/ (slash) proceed to next record
, (comma) remain within current record

The maximum record length is determined by the type of device or storage unit.

Format field descriptor: Tables 15-3 and 15-4 summarize the field descriptors available in
Prime FORTRAN, where n (positive integer constant) is the number of times the basic
field descriptor is to be repeated, w (positive integer constant) is the total width of the field

- in columns(or characters).

d (non-negative integer constant) is the numberofdigits to the right of the decimalpoint.
(See format G output for an exception to this.)

Repetition: All field descriptors except those marked by an in Tables 15-3 and 15-4 (X,H,B)
can be assigned a repeat count causing the descriptor to be used that numberoftimesin

succession.

FORMAT(3E10.5)

and

FORMAT(E10.5, E10.5, E10.5)

are equivalent.

Groups of descriptors (including X,H,B) may be enclosed in parentheses and the entire
group assigned a repeat count.

FORMAT(2(3G11.6,5X)]

and

FORMAT (3G11.6,5X ,3G11.6,5X)

are equivalent.

Repeat groups have a maximum nesting of twolevels.

FORMAT(3(2(10F.7,3X),12,5X))

is permissible.

Rescanning formatlines: If the format list is exhausted before the input/outputlist, the

formatlist is repeated. Repetition starts at the opening (left) parenthesis that matches the

last closing (right) parenthesis in the format list. The parentheses around the formatlist

1 January, 1979 15-19 FDR 3057

15 FORTRAN STATEMENTS

itself are used only if there are no other parentheses. Any repeat count preceding the
rescanned formatis in effect.

Output

Input

The current record is padded with blanks and a new record is
started.

The remainderof the current record is skipped and the device
advanced to the beginning of the next record.

 ae15-3..Resultsoeineeoe. Co

ae “ekponeni) withas ‘manyGaigi
allows.wisthe totalfieldwidthand must
adecimalpointandonefor aminussign(
8ceto be© printed’. disthe numberofa;

Qatotal field width is: tooama theoo :
printed if positive, a = ifnegative. Ifthe.decimal se:
____ small, the numberis rounded. _ oe

‘Exponential ae

Le Prints Real or DoublePrecision‘numbers|
|magnitude between0.1and0.9999999time
field widthwmustallowforaminus

__printed), adecimal point, E (theexponent)
_ sign, and one ortwopositionsforthe
number d sets the number ofplaces toth

point ~ the maximum is seven. ‘The:Fepre

 - ~~ Prints Real or Double “Precision
accordingto the magnitudeofthennu
- _ specifier -d. | ae

ce

 Magnitude
Sees 0.1 to 1.0 - ee

-10to100

‘10**(d-2) to 10d4)
to"de1) to 10**d -
Outside Range _

 a aTruncation is BenormetasforE2k

anne spaces into theouiputrecoroe
for replacing) .*

FORTRAN STATEMENTS 15

Formats as variables: It is possible to enter format statements at run time by any methodof
building this format as text string and loading it into an array. The array can later be
referenced in lieu of a FORMATstatement, by the READ or WRITEstatements that handle
the data. Arrays to be used for this purpose must be assigned as integer type and must be
dimensioned to accomodatethe format description, at two characters per word. The format

description is loaded into the array by a READ statementthat references a type A forma
statement:

DIMENSION FORM (6), TEXT (89)
INTEGER FORM
READ (1,20) FORM

20 FORMAT (6A2)
WRITE (1,FORM) (ARG (I) , I=1,3)

These statements provide for an output format specification such as (3(F7.3,17)) to be
entered at run time. Note that the specification must include opening and closing paren-
theses but not the word FORMAT.

B-Format: The B-Format is used in printing business reports whereit is desirable to fill

number fields to prevent unauthorized modifications (as on checks), suppress leading

zeroes and plussigns,printtrailing minus signs (accounting convention) and convert minus
signs to CR (for indicating credit entries on bills). The form of the B-field specifiers is:

B’string’ ;

The length of the string determinesthe field width.If the width is too small for the number,
then the outputwill be a string of asterisks filling the field. Legal characters for the

string are:

+ — $,*Z#.CR

1 January, 1979 15-21 FDR 3057

15 FORTRAN STATEMENTS

15-4. Resultsof Formats in Input Statements~

External numbers may be
tegers, or scaled numbers(with
treated as zeroes; imbedded and
The implieddecimal point. i

. digits counting fromthe right
external number). A deci
overrides the positional
(D or E)-and the exponent

included or omitted. All ‘n
minus sign is present. © nce

All numbers are initially converted
cision numbers; if enterediin E,F
cated.

Ww columns in the jin
_reload record).*

abs to nw inf el

OT USED

otores. aracters:

ion variables.Ifinput
ables, only the leftmo

Stores true/falsein | repre
non-space charactersin

itis set to +1; if F it is setto 0;
the r flag is set (use.

Stores ext numbers.
sign is A sign or. bl

position.. No decimal
numbers than the field
are stored.”

NOT USED?

at count lowed with the format specifier tse
uded p repétition. :

Plus (+):

If only the first character is +, then the sign of the number (+ or —) is printedin
the leftmost portion of the field. (Fixed sign). If the string begins with more than one
+ sign, then these will be replaced by printing characters and the sign of the
number (+ or —) will be printedin the field position immediately to the left of the
first printing character of the number(floating sign). If the rightmost characterof the

FDR 3057 15-22 1 January, 1979

FORTRANSTATEMENTS 15

string is +, then the sign of the number (+ or —) will be printed in that field

position following the number(Trailing sign).

Minus (—):

Behaves the sameas a plus sign except that a space (blank) is printed instead of a

+ if the numberis positive (Plus sign suppression).

Dollar sign ($):

A dollar sign ($) may at most be precededin the string by an optionalfixed sign. A

single dollar sign will cause a $ to be printed in the corresponding position in the

output field (Fixed dollar).

Multiple dollar signs will be replaced by printing characters in the number and a

single $ will be printed in the position immediately to the left of the leftmostprinting

character of the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign and/or a fixed dollar.

Asterisks in positions used by digits of the numberwill be replaced by those digits;

the remainderwill be printed as asterisks (Field filling).

Zed (Z):

If the digit corresponding to a Z in the output numberis a leading zero, a space

(blank) will be printed in that position; otherwise the digit in the numberwill be

printed (Leading-zero suppression).

Numbersign (#):

#’s indicate digit positions not subject to leading-zero suppression; the digit in the

numberwill be printed in its corresponding portion whetherzero or not (Zero non-

suppression).

Decimal point(.):

Indicatesthe position of the decimal point in the output number. Only #'s and either

trailing signs or credit (CR) may follow the decimalpoint.

Comma(,):

Commas maybeplaced after any leading character, but before the decimal points.

If a significant character of the number(not

a

sign or dollar) precedes the comma,

a, will be printed in that position.If not preceded bya significant character, a space

will be printedin this position unless the ‘commais in an asterisk field; then an * will

be printed in that position.

Credit (CR):

The characters CR mayonly be usedasthe last two (rightmost) of the string. If the

numberis positive, 2 spaces will be printed following it; if negative, the letters CR

will be printed.

See Table 15-5 for examples of B-Format usage.

Scale factors (D,E,F, and G Formats): A scale factor designator for use with the F,E,G, and

D descriptors causes a multiplication by a powerof 10. The form is:

nP (represented as s in Tables 15-3 and 15-4)

Where n,the scale factor, is an integer constant with an optional minus sign. Once a scale

factor has been specified, it appies to all subsequentF,E,G, and

D

field descriptors, until

1 January, 1979 15-23 FDR 3057

15 FORTRAN STATEMENTS

another scale factor is encountered. If n=0, an existing scale factor is removed. The scale
factor has no effect on type I,A,H,X,L, or B descriptors.

E and D outputscale factor: Before output conversion, the fractional part of the internal
number is multiplied by 10**n and the exponentis decreased byn.

F output scale factor: The internal numberis multiplied by 10**n.

G outputscale factor: The scale factor has an effectonly if the internal numberis ina range
that uses effective E conversion for output. In this case, the effect of the scale factor is the
sameasin the corresponding E conversion.

D,E,F,G, input scale factor: The internal value is formed by dividing the external number by
10**n. However,if the external numbercontains a D or E exponent, the scale factor has no
effect.

Table 15-5.Examples of B-Format Usage

Format OutputField ik
etLL
BET a
 BY2z7z" 8
 B'2Z222!' ee DBA,
Se BNZZZ28

oe

eo
B'ZZZH
BRPeedd
BMH 8

234.56 .B'ZZZ,222,228.4#"
123456.78 = B'ZZZ,Z2ZZ,ZZ#.48!
O —. B'ZZZ,Z222,228.44"

— BY=Zze" GE 2 oe
— BYZZzzz+t 8ALo : B'2Z272+" — Ee - 234-0

Bi'Zzzaz-"— 84
B'Zzzzz-" 8A
B'ZZZ,2Z2#CR'= sd, 845

— B'ZZZ.2Z#CR' 12,345CR
BiHHHH! $123.00
Ba++,HEH!si00
 BYSZZZzzz#" 8
_ BIS$$ssss#' | oe 898

BIS kee AeAeHBE! S****156,789.

oO
(1234.56

Formatted printer control: The first character of each ASCII output record controls the
numberof vertical spaces to be inserted before printing begins on the line printer.

First Character Effect

Space

0

1

FDR 3057

Oneline
Twolines
Form feed - first line of next page

15-24 1 January, 1979

FORTRAN STATEMENTS 15

(effective only on devices with mechanized form feed)

+ No advance - print over previous line
(line printer only)

Other Oneline

In the case of space, 0, 1, and +, the control character is not printed. In all other cases, the
character is printed as well as spacinga line.

DEVICE CONTROL STATEMENTS

For physical positioning of sequential access devices.

BACKSPACEstatement (for magnetic tape unit only)

BACKSPACEu |

Repositions FORTRANunit u so that the preceding recordis now the next record.If the unit
is at its initial point, this commandhasnoeffect. Backspace has no effect on diskfiles.

ENDFILE statement

ENDFILE u

Writes an endfile record on FORTRAN unit u indicating the end of a sequentialfile for
magnetic tape. Closes a disk file on FORTRANunit u.

REWINDstatement

REWIND u

Repositions FORTRANunit u to its initial point. Does not close or truncate diskfile.

FUNCTION CALLS

Functions are called by means of assignment statements in whichthe right-handside is an
expression in the form:

name (argument-1,argument-2, ... argument-n)

Where nameis the nameof the function called (COS,SIN,etc.) and argumentis a non-empty
list of arguments to the function separated by commas. The data modesof the arguments
must be the sameasthe data modesin the definition of the function. There is no syntactical
limit to the numberof arguments.

SUBROUTINE CALLS

Subroutines are called from a program bythe statement:

CALL name[(argument-1,argument-2, ... ,argument-n)]}

name is the symbolic name assigned by the SUBROUTINE statement beginning the
subroutine subprogram. The argumentis a list of arguments, someof whichare passedto the
subroutine by the calling program, and the remainder are dummy arguments whose values
are calculated by the subroutine and returned to the main program. The argumentsin the
main program must agree in number, order, and mode with the arguments used in the
subroutine subprogram. Thereis no syntactical limit to the number of arguments.

CAUTION

Do not place constants in the argumentlist of a subroutine or
function where a value is to be returned to the calling
program. This will cause the constant to be altered and
produce undesirable results.

1 January, 1979 15-25 FDR 3057

FORTRAN function
and subroutine structure

FUNCTIONS

There are four types of functions; all are called in the same manner(see Section 15).

Prime FORTRANlibrary functions

These library subprograms(see Section 18) which are called automatically by the compiler

as required and appendedto the main program during loading.

Prime extendedintrinsic functions

These are a collection of functions designed to increase the efficiency of Prime FORTRAN

in logical processing of integers. They are automatically inserted in the program by the

compiler as required.

User-defined function subprograms

FUNCTIONsubprograms can be created by the user and compiled separately. This permits

them to be used in the same wayaslibrary functions.

FUNCTION subprograms must be prepared as separately compiled subprograms that

produce a single result, in the following format:

mode FUNCTION name (argument-1, argument-2,.. -argument-n)

(Any number of FORTRANstatements which perform the required calcu-

lations, using the supplied arguments as values.)

name = Final calculation

RETURN

FUNCTION statement: The FUNCTIONstatement, which must be the first statement of a

FUNCTION subprogram, assigns the name of the function and identifies the dummy

arguments. In the preceding example, name is a symbolic name assigned to identify the

function, and each argument is a dummy argument. There is no syntactical limit to the

numberof arguments. The function name must conform to the normalrulesfor all symbolic

names with regard to number of characters, etc. Implicit result mode typing occurs

according to the first letter of the name. Implicit mode typing can be overridden by

1 January, 1979 16-1 FDR 3057

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

preceding the word FUNCTIONwith one of the modespecifications. The function name
must differ from any variables used in the function subprogram orin any main program
which references the function.

Body of subprogram: The body of the function subprogram can consist of any legal
FORTRAN statements except SUBROUTINE, BLOCK DATA, or other FUNCTION
statements. The statements that evaluate the function use constants, parameters, variables,
and expressions in the normal way. The program must produce a single result for a given set
of argumentvalues. The subprogram must equate the assigned symbolic function name to
the result, by using nameon theleft side of an assignmentstatement.It is the function name
itself, used as a variable, that returns the result to the main program.

RETURN statement: The RETURN statement consists of a single word RETURN.It
terminates the subprogram and returns control to the main program. The RETURN
statement mustbe the last statementin the subprogram (logically, not physically; that is, it
must be the last statement to which control passes).

Statement functions

Statement functions are embeddedin the coding of the main program and are compiled as
part of the main program. Anycalculation that can be expressed in a single statement, and
producesa single result, may be assigned a function nameandreferencedin the same way
as a library function. A statement function is defined in the form:

name (argument-1, argument-2,. . .argument-n) = expression

where nameis the symbolic nameassignedto the function and each argumentis a dummy
variable that represents one of the arguments.

The following rules apply to all functions:

1. The namemayconsist of oneto six alphanumeric characters,thefirst of
whichis alphabetic. It must differ from all other function names and
variable names usedin the main program.

2, The argumentlist follows the name and is enclosed in parentheses.
There mustbe at least one argument. Multiple arguments are separated
by commas. Each argument must bea single nonsubscripted variable.
These arguments are only dummyvariables, so their names may be the
same aS names appearing elsewhere in the program. The dummy
variable names do indicate argument mode, however, by implicit or
explicit mode typing. There is no syntactical limit to the numberof
arguments.

3. During each call of a function, the values of the variables supplied as
the arguments mustbe in the same modeasthe arguments were when
the function wasdefined.

4. Implicit mode typing of the result of a function is determined by the
first letter of the function name. Functions that begin with [,J,K,L,M,or
N produce INTEGERresults; others produce REALresults. Regardless
of the first letter, the result mode can be set by an appropriate mode
specification preceding the FUNCTIONstatement.

5. The expression that defines the function may use library functions,
previously defined function statements, or FUNCTION subprograms;
but not the function itself. Dummy variables cannot be subscripted.

6. Variables in the expressionthat are not stated as arguments are treated
as coefficients—i.e., are assumedto be variables appearing elsewhere
in the main program.

FDR 3057 16-2 1 January, 1979

FORTRAN FUNCTION AND SUBROUTINE STRUCTURE 16

7. Statement functions must be defined following specification and DATA
statements but before the first executable statement of a program.

SUBROUTINES

Some types of subroutines include:

PRIMOSsystem subroutines

These invoke the PRIMOSsystem to perform the actual work. They allow file transfer,

attaching, etc. (See Section 19 and Reference Guide, PRIMOS Subroutines).

Application library subroutines

These handle file manipulation (opening and closing, reading, and writing, etc.) and data

transfers, greatly enhancing the capability of the FORTRAN language (Section 19 and

Reference Guide, PRIMOS Subroutines).

FORTRANmath subroutines

These handle mathematical calculations such as matrix multiply and inversion per-

mutations, etc. (See Section 19).

User-defined subroutines

Called in the same manneras those supplied with the system. They are constructed as

follows:

SUBROUTINE name[(argument-1, argument-2, .. .argument-n)|

(Any number of FORTRANstatements which perform the required calculations,

using the supplied arguments, if any, as values.)

RETURN

END

SUBROUTINEstatement: The SUBROUTINEstatement, which must.be thefirst statement

of a SUBROUTINE subprogram,assigns the name of the subprogram and identifies the

dummy arguments,if any.

The subprogram namemust conform to the normalrules for symbolic nameswith regard to

the number of characters, but the first letter does not set the data mode of the result. The

name must be unique to both the subprogram and a main program whichcallsit.

The argumentlist usually consists of a series of dummyvariables which are processed by

the subroutine and return arguments to the main program. Each argument may be a

variable, array, or function name. If an argument is the name of an array, it must be

mentioned in a DIMENSIONstatement following the SUBROUTINEstatement.

Thereis no syntactical limit to the numberof arguments. A subroutine with no argumentsis

allowable. Such a subroutine might obtain arguments from, and return results to, COM-

MON.Orit might be used to output a messageor control function to a peripheral device.

1 January, 1979 | 16-3 FDR 3057

16 FORTRAN FUNCTION AND SUBROUTINE STRUCTURE

CAUTION

Arguments that return values to the main program must not
be constants or expressions in the calling sequence.

Body of a subroutine: The body of the subroutine can consist of any legal FORTRAN
statements except SUBROUTINE, BLOCK DATA,or FUNCTIONstatements. The results of
calculations maybestored in variables used by both the subprogram and main program,or
they may be placed in COMMON.Variables maybe usedfreely on either the right or left
side of the equal sign in assignment statements. Each variable that represents a result must
appearon theleft side of at least one assignment statement, in orderto present the result to
the main program.

The subroutine is terminated by a RETURNstatement (described previously}. The last
physical statement in a subroutine must be an ENDstatement.

FDR 3057 16-4 1 January, 1979

UTILITY

ompiler reference

PRIME FORTRAN COMPILER PARAMETERS

All parameters are precededbya dash, ‘‘-"’, in the command line. Parametersthat are the
PRIME-supplied default parameters(i.e., those that need not be included) are indicated.
The system administrator may have changed the defaults; if so, the programmer should
obtain a list of the installation-specific defaults. (See figure 17-1).

BIG

Treats all dummyarraysas arrays that span segment boundariesandalso sets the compiler
to produce 64V modeobject code. If a dummyargument array may becomeassociated with
an array spanning a segment boundary (through a subroutine CALLstatementor function
reference) the compiler must be aware of this by including BIG in the parameterlist. The
code generated here will work whetherornot the array actually spans a segment boundary.
See also NOBIG, 64V. See Section 11 for more information on this requirement.

pathname
B[INARY] YES

NO

Specifies the binary (object) outputfile. If pathnameis given, then that will be the nameof
the binary file. If YES is used, the nameof the binary file will be B_LPROGRAM (where
PROGRAMisthesource filename). If NO is used, then no binaryfile is created. Omitting
the parameteris equivalent to the inclusion of -BINARY YES. (See Table 17-1.)

DCLVAR

Flags undeclared variable. If included in the parameterlist, the compiler will generate an

error message whena variable is used in the program, but not included in a specification

statement. The message will be generated once per undeclared variable.
See NODCLVAR.

DEBASE

Conserves Loader base areas. When enabled,it reduces the sector zero requirements of

large programs. The compiler generates double-word memory reference instructions and

uses the second word as an indirect link for all references to the same item within the

relative reach. Use of this option reduces sector zero usage by 70% to 80%. Programs

compiled with this option can be loadedonlyin the relative addressing modes (32R or 64).

DYNM

Enableslocal storage in Stack Frame (Prime 350 and higheronly). Allows dynamicallocation

of local storage and also sets the compiler to generate 64V mode object code. The DYNM

parameterallows better memoryutilization in the 64V mode.It also allowsthe creation of

recursive FORTRANsubroutines (subroutines which call themselves). See SAVE, 64V.

1 January, 1979 17-1 FDR 3057

17 COMPILER REFERENCE

Table 17-1.‘Compiler File Bpecitieatians

S Compilercs eee ae 2
_ Mnemonics— | INPUT. or SOURCE : LISTING_ue

_pathname _| looks for file named —_| opens filecane
|pathnameassource pathnameas‘isting

| file: : file

not applicable. “fuses defaultfllenanie
: . lforlisting file.
ee - |LLPROGRAM.

‘|mot applicable. _[nolisting fi eeea

{compiles. | prints listing¢on. usera
[programas terminal, a,
| enteredfrom the Os

ee :| terrminal. USO eee

EOEDOL - neeapplicable ~ spools ietaeaires
| aae | {to line printer, .
: ‘option Dee 80 urcefilenamemust same asNO_-

not ce befirst option SO
o invoked— ||after FTN command.

To use other peripheral devices such as magnetic tape, card reader, or paper tape
punch/readerforfile location, see Table 17-2 for A- and B-register settings.

ERRLIST

Prints only error messagesin the listing file. See EXPLIST, LIST.

Note

This parameter has noeffect unless an output device/file is
specified using LISTING.

ERRTTY Default

Prints error messagesat the user terminal. The normal system default causes each statement
containing anerrorto be printedat the user terminal. This feature is especially useful when
a corrected program is being recompiled, to confirm that the errors have been properly
corrected. See NOERRTTY.

EXPLIST

Prints full listing in the listing file. The full listing consists of an assembly language type
listing, the source statements (with line numbers), and error messages. See ERRLIST, LIST.

Note

This parameter has noeffect unless an output device/file is
specified using LISTING.

FP

Generate instructions from the floating-point skip set whentesting the result of a floating-
point operation.

FDR 3057 17-2 1 January, 1979

COMPILER REFERENCE 17

I[NPUT] pathname

Specifies the pathnameof the input source program (See Table 17-1). This parameter must

not be used if the source filename immediately follows the FTN command; otherwise, it

must be included in the parameterlist. See SOURCE.

INTL

Long integer default. Sets the long integer (INTEGER*4) as the default for the INTEGER

statement instead of the short integer (INTEGER*2). The normal INTEGERdata type in

Prime FORTRANis a 16-bit word. A 32-bit integer data type is available through the use of

the INTEGER*4 statement.

The long integer default parameter is used to simplify conversion of extant FORTRAN

programs to Prime computers. Whenthis is enabled all variables, arrays, and functions

explicitly or implicitly specified as INTEGERwill be 32-bit integers. All integer constants

will be treated as 32-bit integers. Only names specifically appearing in INTEGER*2

statements will be 16-bit integers. The 32-bit integer has a greater range than the 16-bit

integer (-2147483648 to 2147483647 vs. -32768 to 32767). The 32-bit integer has the same

storage requirement as the REAL*4 (REAL) data type. See INTS.

CAUTION

FORTRANrequires that the type of actual argumentin a

function reference of CALL statement must agree with the

corresponding dummy argumentin the referenced subpro-

gram. A subprogram expecting a long integer must NOT be

called with a short integer (and vice versa). Most Prime-

supplied subroutines expect short integer arguments. Care

should be taken whencalling these routines (e.g., RESU$$) in

a program compiled with the LONG INTEGERdefault op-

tions.

Example:

CALL RESUSS ('AUDIT YEAR', INTS(1@))

INTS (long-integer) is a built-in function that converts its

argumentsto a short integer. If the INTS conversion functions

are omitted, the integer constants are compiled as long

integers, providing INTLis included in the parameterlist. Do

not confuse the function INTS (long-integer) with the com-

piler parameter INTS.

INTS Default

Shortinteger default. Sets the INTEGER default to INTEGER*2 rather than INTEGER*4. See

INTL.

LIST Default

Print sourcelisting. Prints a listing of the source statements (with line numbers) and error

messagesin the listing file. See ERRLIST, EXPLIST.

Note

This parameter has no effect unless an output device/file is

specified using LISTING.

{ January, 1979 17-3 FDR 3057

17 COMPILER REFERENCE

pathname
YES

L[ISTING] <NO
— FTTY

SPOOL

Specifies the listing device/filename:

pathname Opensthis file for the listing.

YES Uses the default nameforthe listing file L_PROGRAM (where
PROGRAMisthesource).

NO Nolisting file is created.

TTY The listing file is printed on the user terminal.

SPOOL Thelisting file is spooled directly to the line printer.

If this parameter is omitted from the parameterlist, it is equivalent to the -LISTING NO
parameterinclusion(i.e., no listing file is created).

NOBIG Default

Utilizes relative addressing. This is the usual memory addressing mode.See BIG.

NOCLVAR Default

Suppresses undeclared variable flagging. Does not generate error messages when un-
declared variables are detected. See DCLVAR.

NOERRTTY

No terminal error messages. Suppresses the printing of error messages on the users
terminal. See ERRTTY.

NOFP

Suppresses generation of floating-point skip instructions when testing the result of a
floating-point operation. Include NOFPin the parameterlist when compiling for machines
that do not havethe floating-point options. Without NOFP, the programswill still execute on
such machines but the UII time will be longer. See FP.

NOTRACE Default
Suppressesglobal trace. Does not enable the global trace. See TRACE.

NOXREF Default
Suppresses concordance. Do not generate any concordance (cross-reference) listing. See
XREFL, XREFS.

OPT FTNOPTonly

Optimizes all DO loopsthat do not contain GO TO expressions. The loops are optimized by
removalof invariant expressions andby strength reduction of expressions involving the DO-
loop index. Strength reduction can be doneif the loop index is altered in the normal loop
incrementonly and if the loop incrementis invariant within the loop. See UNCOPT.

PBECB

Generates code to load Entry Control Blocks (ECBs) into procedure frame. For 64V-mode
subroutines only. See 64V.

FDR 3057 17-4 1 January, 1979

COMPILER REFERENCE 17

SAVE Default

Local storage allocation. Performslocal storage allocation statically. See DYNM.

S[OURCE]

Same as I[NPUT]. See INPUT.

TRACE

Enable global trace. When this parameteris included, a trace printout is generated at all

assignmentstatements andat every labelled statement in the program unit. The global trace

affects only the program unit being compiled;it has no effect on other program units in the

same executable program. See NOTRACE.

UNCOPT FTNOPTonly

Unconditionally optimizes all DO loops. The optimization is performedin the same manner

as for the OPT option. If the loop GO TO statements transfer control within the loop or

simply exit the loop, then the code generated by the compiler will execute correctly.

However, if any loop contains a GO TO statement that exits to a code sequence which

transfers control back inside the loop, then the optimized code will mostlikely not execute

correctly. This is especially true if the code sequence modifies any operands invariant

within the loop or modifies the loop index or loop index increment.It is the programmer's

responsibility to insure that these operations are not performedif the UNCOPToptionis to

be used. See OPT.

XREFL

Enable full concordance. Appendsa full concordance (symbolcross-reference) listing to the

end of the program listing. The full concordance includes all symbols in the program unit.

See NOXREF, XREFS.

Note

This parameter has noeffect unless an output device/file is

specified using LISTING.

XREFS

Enable partial concordance. Appendsa partial concordance (symbolcross-reference)listing

to the endofthe programlisting. The partial concordance doesnot include symbols that are

referenced only in specification statements. See NOXREF, XREFL.

Note

This parameter has noeffect unless an output device/file is

specified using LISTING.

32R Default

32K words(64K bytes) mode. In the 32R (default) mode 64K bytes of user space are available

to each FORTRANuser. This space must accomodate the main program, subprograms,all

local storage, library routines, and the COMMON blocks. More spaceis available to the user

in the 64R and 64V modes. See 6G4R, 64V.

64R

64K words (128 bytes) mode. The mode gives the user 128K bytes of user space. All main

programs and all subprograms executed must be compiled with the 64R parameter. When

using the linking loader utility (LOAD), the MODE command mustalso be used to change

the load mode to 64R. This assures the user of 128K bytes of user space. See 32R, 64V.

Generally, it can be determined if the 64R mode must be selected by looking at the storage

1 January, 1979 17-5 FDR 3057

17 COMPILER REFERENCE

areas. Each area requiring space such as the COMMONblocks can be examined.If the
COMMONblocks require more than 64K bytes, then the 64R mode decisionis obvious. For
example,if it is on a segment boundaryanda load is attempted resulting in an overflow,it
is likely that the addresses for the COMMONare overlapping the program area.

64V

Segmented Memory Mode. Puts the FORTRANuserinto the 64V Segmented Memory mode
and allows the SEGutility to be used in lieu of the LOAD utility. This is for large programs
requiring more than 128K bytes of user space; it provides a user area up to 256 segments of
128K bytes each. It may be run on anyPrime350(or higher system).
See BIG, NOBIG, 32R, 64R.

The LOAD utility and load modesare dictated by the options selected at compile time, as
shownin the following table:

Utility Compiler Option Load Option

LOAD 32R (default) D32R (default)
64R D64R, D32R (default)

SEG 64V 64V (only mode)

Any PRIMOSsystem canuseeither the 32R or 64R addressing mode. Only a Prime 350 (and
higher) can have 64V addressing mode.

EXPLICIT SETTING OF THE A AND B REGISTERS

Note

If you will not be using the paper tape punch/reader, card
punch/reader or magnetic tape for I/O devices at compila-
tion time you need notread this section.

Operation

The FORTRANcompiler is invoked by the FTN command to PRIMOS.

FTN pathname[1/a-register| (2/b-register]|

wherepathnameis the pathnameof the FORTRANsource file; a-register and b-register are
the values of the A and B registers.

The default values of the registers are:

A ‘1707 (binary = 0000001111000111)
Input file is on disk
Nolistingfile
Binaryfile is on disk
Print error messagesat user terminal
32R mode

B 0 (binary = 0000000000000000)

Short integers
No concordance

If the default values of a register are used that parameter may be omitted.

FTN pathname default A andB registers
FTN pathname 1/a-reg default B register
FTN pathname 2/b-reg default A register

FDR 3057 17-6 1 January, 1979

COMPILER REFERENCE 17

For non-default values include both parameters:

FTN pathname1/a-reg 2/b-reg
or

FTN pathname1/a-reg b-reg

Spaces should be used to separate components of the command line. The bit values

corresponding to the mnemonic parametersare given in Table 17-2.

Input/output specifications

Additional devices are accessible to users explicitly setting the A and

B

registers. I/O is

specified by the A-register setting as:

Type Bits

Input (source) 8-10
Listing 11-13

Binary (object) 14-16

The settings correspondingto I/O files and devices are given in Table 17-3.

 (0fe] NOBIG,a2R- BIG, DYN AES

17 COMPILER REFERENCE

TAMEsupplied defaults are indicated) _

cin the A register to be 0.{or1).

Boxy)=- Or 1): same as‘above for the Bregister.
is . B89) =1—

oe PRIMOS BINARY command .
—peLvAR sig)=10
-DEBASE ———soA(6) =1
ee-DYNM = - BE3,8) =1

|ERRLIST = AQ)=
oe _ERRTTY : 4 oe A(7) =1; default
aaAQ)=1
eeFRO & / B(15) = 0); default |

a “INTL ee 2 B(10)=1

INTS | B(10) = 0; default

pee De PRIMOS LISTING command
a 2 -NOBIG. Sees B(8,9) = 0; default : oO

_NODCLVAR_B(16) =0.
oe NOERRTTY| AZ)=0
_ NOFP—séi(f5) = 1 oe
oe NOTRACE —s A(4)=0; default

--NOXREF —_—_B(12,13) = 0; default _ PBECBsi) =. G
SAVE _B(3) =0; default =

cee Same as I[NPUT] -

oe TRACE| oe Ae=1

XREFL ae B(18) =1 |
|MBERS|- pitas) <4

wRAa1wv B(8) =1

‘Table 17-2.A- and B-register Bit Correspondences: ofParameter§Nino

Absy) - Aor 1): the mnemonic parametercausess thevalue.(

—oere . A{14,15, 16):= object file definition‘(GeeTabl

| NPT] Be | A(8,9,10) = input file definition(SeeTable473)

 s Lesh .) A(11,12,18) = listing file definition(see ’ a]

OPT—sCé#BYS= 1: (FTNOPT only) Oe ae

—S{OURCE] 3 a | A(8,9,10) =input file.definition.(see.Table

FDR 3057 17-8

1 January, 1979

COMPILER REFERENCE 17

17 COMPILER REFERENCE

The PRIMOS commands

LISTING pathname-2 opensa listing file with the specified name pathname-2 on PRIMOS
file unit 2. This inhibits FTN from opening a defaultlistingfile.

Note

Unlessbits 11-13 of the A-register are set to '7, nothing will be
written into thisfile.

The listing output(s) of more than one source file can be concatenated ifall listings are
generated prior to closing the listing file. For example:

LISTING pathname

FTN source-1 1/areg 2/breg

FTN source-n 1/areg 2/breg

CLOSE ALL

(note: system responsesare notprinted in this example)

The listing file, pathname, will contain the concatenation of all listing outputs from
source-1,..., source-n (for those compilations wherein listings were specified).

BINARY pathname-3 opensa binary (object) file with the specified name pathname-3 on
PRIMOSfile unit 3. This inhibits FTN from opening a default objectfile.

Note

The default value of bits 14-16 of the A-registeris ’7 — diskfile
system. If not using the default A-register values be sure to
set bits 14-16 to '7 or nothing will be written into the object
file. Object files can also be concatenated in the same
manneraslisting files.

If the BINARY or LISTING commandsare usedprior to FTNto establish non-default file,
then FTN doesnotclose these files upon completion.

After FTN returns command to PRIMOS,thesefiles should be closed by the userby typing:

2 3

C[LOSE] pathname-2 pathname-3

or

C[LOSE] ALL

FDR 3057 17-10 1 January, 1979

functio

n refer
ence

FORTRAN FUNCTION LIBRARY

The following functions are available to perform mathematical and logical operations.
These functions are part of the FTNLIBlibrary file for the R-identity and the PFTNLB and
IFTNLBlibraryfiles for the V-identity. The data mode(s) expected in the argumentlist and
the data mode of the value returned are shownfor each functionin the list. The following
abbreviations are used:

cP Complex number
DP Double-precision floating-point number
I Integer (short or long)
J Integer (long)
SP Single-precision floating-point number

Additional detail on the functions themselves(rather than their operations) will be found in
the Reference Guide, PRIMOS Subroutines.

V-Mode FORTRANlibrary

Certain single-argument scientific subroutines in the V-mode FORTRANlibrary will be
automatically replaced by the compiler with their short call versions, identified by the suffix
$X. These $X versions execute faster than their regular counterparts.

The $X versions are not directly accessible to the FORTRAN programmer (and have
different calling sequences). They will only be noticeable at the load-maplevel.

Mixing long and short integers

Short integers occupy one word of memory,long integers two words. Whenlongintegers are
converted to short integers, the 16 low orderbits of the long integer are stored in the short
integer. When a short integer is converted to a long integer, the low order wordis set equal
to the short integer; the high order wordis sign-extended (padded with 0's or 1's according
to the sign of the short integer, + or —). If itis necessary, in a program, to convert between
integer modes,it is strongly recommendedthat this be done with the intrinsic functions:
INTL, INTS. (In the following, it is assumed that all variable names beginning with I have
been declared to be short integers and all variable names beginning with J to be long
integers.)

To convert between integer modes,use:

— INTL(I)

1 =INTS{j)

If a long (or short) integer is assigned the value of a short (or long) integer, mode conversion
will also occur. This is not considered to be good programmingpractice andis discouraged.
(See Assignment Statements in Section 15.).

1 January, 1979 18-1 FDR 3057

18 FORTRAN FUNCTION REFERENCE

In functions which accept mixturesof short and longintegers in the argumentlist, the short
integers will be internally converted to long integers (with sign-extension) and the value
determined. The value will be calculated as a long integer. For these functions it is
recommended that the left-hand side of the assignment statement be a long integer.
conversion to a short integer should be explicit, not implicit.

JX = AND (JA,JB, IC)
is less desirable than

JX = AND(JA, JB, INTL (IC))

and

TY = AND(JA,JB, IC)

is less desirable than

TY = INTS (ANDJJA, JB, INTL (IC)))

In general, the logical functions AND, OR, and XORand the minimum/maximum functions
will return a long integer if any of the arguments are long integers. The NOT function
returns an integer of the same modeasits argument. Theshifting and truncating functions
LS, LT, RS, RT, and SHFT return an integer of the same mode astheir first argument, that
is, the integer on which shifting and/ortruncationis to take place.

FORTRANfunctions

ABS Calculates the absolute value of the argument.
SP = ABS (SP)

AIMAG Converts the imaginary part of a complex numberto a single-
precision floating-point number.
SP = AIMAG(CP)

AINT Truncates a single-precision floating-point numberto a single-
precision floating-point number whosevalueis integral.
SP = AINT (SP)

ALOG Computes the natural logarithm (base e) of the argument. If the
argumentis not positive, the error LG is generated.
SP = ALOG(SP)

ALOG10 Computesthe base-10 logarithm of the argument. If the argument
is not positive, the error LG is generated.
SP = ALOG10 (SP)

AMAX0 Finds the maximum valuein a variable list of integers. Thelist
may be a mixture of long and shortintegers.
SP = AMAXO(I1,12,. . .,In)

AMAX!1 Finds the maxmum value in a variable list of single-precision
floating-point numbers.
SP = AMAX1 (SP1,SP2,. . .,SPn)

AMINO Finds the minimum valuein

a

variablelist of integers. Thelist may
be a mixture of long and short integers.
SP = AMINO(11,I2,. . .,In)

AMIN1 Finds the minimum value in a variable list of single-precision
floating-point numbers.
SP = AMINi(SP1,SP2,. . .,SPn)

FDR 3057 18-2 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

AMOD

AND

ATAN

ATAN2

CABS

ccos

CEXP

CLOG

CMPLX

CONJG

cos

CSIN

CSQRT

DABS

DATAN

DATAN2

1 January, 1979

Computes the remainder whenonesingle-precision floating-point

number (SP1) is divided by another (SP2).

SP = AMOD(SP1,SP2)

Performs a logical AND operation,bit by bit, on a variablelist of

integers, long and/orshort.
I= AND (11,12,.. In)

Calculates the principal value, in radians, of the arctangent of the

argument.

SP = ATAN (SP)

Calculates the principal value,in radians, of the arctangent of one

single-precision floating-point number (SP1) divided by another

(SP2). If both arguments are zero, the error message AT is

generated.
SP = ATAN2 (SP1,SP2)

Computes the absolute value of a complex number, returning a

single-precision floating-point numberas the result.

SP = CABS(CP)

Computes the cosine of a complex number.

CP = CCOS(CP)

Calculates the exponential of a complex number.

CP = CEXP (CP)

Calculates the natural logarithm (base e) of the argument.

CP = CLOG (CP)

Converts two single-precision floating-point numbers into a com-

plex number. The first argument becomes the real part of the

complex number; the second argument becomes the imaginary

part.
CP = CMPLX (SP1,SP2)

Computes the conjugate of a complex number.

CP = CONJG (CP)

Computesthe cosine of a single-precision floating-point number.

SP = COS (SP)

Computes the sine of complex number.

CP = CSIN (CP)

Calculates the square root of a complex number.

CP = CSQRT (CP)

Computes the absolute value of a double-precision floating-point

number.
DP = DABS(DP)

Computes, in radians, the principal value of the arctangentof the

argument.
DP = DATAN(DP)

Calculates the principal value, in radians,of the arctangent of one

double-precision floating-point (DP1) divided by another (DP2). If

both arguments are zero, the error message DT is generated.

DP = DATAN2 (DP1,DP2)

18-3 FDR 3057

18 FORTRAN FUNCTION REFERENCE

DBLE

DCOS

DEXP

DIM

DINT

DLOG

DLOG2

DLOG10

DMAX1

DMIN1

DMOD

DSIGN

DSIN

DSQRT

EXP

FDR 3057

Converts a single-precision floating-point number to a double-
precision floating-point number.
DP = DBLE(SP)
Computesthe cosine of a double-precision floating-point number.
DP = DCOS(DP)

Computes the exponential of a double-precision floating-point
number.
DP = DEXP (DP)
Computesthe positive difference between two single-precision
floating-point numbers.
SP = DIM (SP1,SP2)
Truncates the fractional part of a double-precision floating-point
number.
DP == DINT (DP)

Computes the natural logarithm (base e) of a double-precision
floating-point number. If the argumentis not positive, the error
message DLis generated.
DP = DLOG(DP)

Computes the base-2 logarithm of a double-precision floating-
point number. If the argumentis not positive, the error message
DL is generated.
DP = DLOG2(DP)
Computes the base-10 logarithm of a double-precision floating-
point number. If the argumentis not positive, the error message
DL is generated.
DP = DLOG10 (DP)

Finds the maximum value among a variable list of double-pre-
cision floating-point numbers.
DP = DMAX1 (DP1,DP2.. . ».DPn)

Finds the minimum value amonga variable list of double-pre-
cision floating-point numbers.
DP = DMIN1 (DP1,DP2,. . ..DPn)
Computes the remainder when one double-precision floating-
point number (DP1)is divided by another (DP2). If DP2 is zero,the
error message DZis printed.
DP = DMOD(DP1,DP2)

Combines the magnitude of one double-precision floating-point
number (DP1) with sign of a second (DP2).
DP = DSIGN (DP1,DP2)
Computesthe sine of a double-precision floating-point number.
DP = DSIN (DP)
Computes the square root of a double-precision floating-point
number. If the argumentis negative, the error message SQ is
generated.
DP = DSQRT (DP)

Computes the exponential of a single-precision floating-point
number.If there is an exponent underflow or overflow, the error
message EX is generated.
SP = EXP(SP)

18-4 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

FLOAT

TABS

IDIM

IDINT

IFIX
INT

INTL

INTS

IRND

ISIGN

LOC

1 January, 1979

Converts an integer to a single-precision floating-point number.
The function will accept either a short or a long integer as the
argument. .
SP = FLOAT(1)

Computes the absolute value of an integer. The argument may be
either a long or short integer.
I = IABS(I) |
Computes the positive difference between two integers. The
function will accept any mixture of short and long integers.
I = IDIM (11,12)
Converts a double-precision floating-point to an integer.
I = IDINT (DP)

Converts a single-precision floating-point number to an integer.
Both functionsare includedin the library to ease conversions from
other systems.
I = IFIX (SP)

I=INT (SP)

Converts its argumentto a long integer.

J =INTL (D

Converts its argument to a short integer.
I= INTS(J)

Invokes the random numbergenerator
I2 = IRND(11)

Ii Operation 12

>0 Initializes the random numbergen- I2=11
erator

= 0 Generates a random number 0 <12 < 32767

<0 Initializes the random numbergen- 0 <12 < 32767
erator and returnsthe first random
number

Combines the magnitude of one integer (I1) with the sign of a
second (I2).
I = ISIGN (11,12)

Generates an integer value representing the memory address
where the argument of LOC is located. The argument may be a
constant, variable or array name, or a subscripted array element.

constant

variable name
I=LOC array name

array element

Note
In the 64V mode, LOC maybepassed as
an argumentin functions or subroutines,
e.g., I= AND(LOC(A),LOC(B)). In this
mode, LOC returns a two-word value:
the first word represents the segment
number;the second is the word number
in the segment.

18-5 "FDR 3057

18 FORTRAN FUNCTION REFERENCE

LS

LT

MAX0

MAX1

MINO

MIN1

MOD

NOT

OR

REAL

RND

RS

FDR 3057

Shifts an integer variable left by a specified numberof bits;
vacated bits are filled with zeroes.
12 = LS (11, IP)
whereIP is the numberofbits to be shifted to the left. If IP <0, no
change is madeto the integer.

Preserves a specified numberof left-most bits and sets the rest to
zero (left truncation). Saves the first IP from the left and sets the
rest of the bits to zero. If IP<0, the entire integer is set to zero.
I2 = LT (11, IP)

Finds the maximum value among variablelist of integers. (see
AMAX0)
I = MAXO(11,12,. . .,In)
Finds the maximum value amonga variablelist of single-precision
floating-point numbers and convertsit to an integer.
I = MAX1 (SP1,SP2,. . .,SPn)

Finds the minimum value amonga variable list of integers. (see
AMINO).
I = MINO(11,12... .,In)
Finds the minimum value among a variablelist of single-precision
floating-point numbers and converts it to an integer (see AMIN1)
I = MIN1 (SP1,SP2,. . .,SPn)
Computes the remainder when one integer (I1) is divided by
another (12).
I = MOD(11,12)

Performsa logical NOT operation (1's complement) on its argu-
ment.

I = NOT(I)

Performsa logical (inclusive) OR operation on twointegers.
I= OR(11,12)

Converts the real part of a complex numberto a single-precision
floating-point number.
SP = REAL(CP)
Invokes the random numbergenerator.
SP = RND (1)

I Operation SP

>0 Initializes the random number SP = FLOAT(I)
generator

=0 Generates a random number 0.0<SP<1.0

<0 Initializes the random number 0.0<SP<1.0
generator andreturnsthefirst
random number

Shifts an integer variable right by a specified numberofbits:
vacatedbits are filled with zeros.
12 = RS (I1,IP)
whereIP is the numberof bits to be shifted to the right. If IP <0,
no changeis madeto the integer.

18-6 1 January, 1979

FORTRAN FUNCTION REFERENCE 18

RT

SHFT

SIGN

SIN.

SNGL

SQRT

TANH

XOR

1 January, 1979

Preserves a specified numberof right-most bits and sets therest to
zero (right truncation). Saves the first IP bits from the right and
sets the rest of the bits to zero. If IP<0, the entire integeris set to
zero. .

12 = RT (11,1P)

Performslogical shift operations on integer variables.

1, IS = SHFT(I): In this form, the variable is unchanged and the

value is the variable itself; this form has no realuse.

2, IS = SHFT(1,IP1): performsa shift operation on the variable.If

IP1>0, the shift is to the right; if IP1<0, no shift occurs. This form

is equivalent to the RS and LS functions.

Operation Function Equivalent SHFT function

Right shift RS (LIP) SHFT(I,IP)
Left shift LS (LIP) SHFT (1,-IP)
Right truncate RT (1, IP) SHFT(I,IP-16,16-IP)
Left truncate LT (1,IP) SHFT (1,16-IP,IP-16)

3, IS = SHFT(I,IP1, IP2): Performs two shift operations, first by

IP1 (setting zeroes in vacated bits), then by IP2 (setting zeroes in

vacated bits). The sign of IP1 and IP2 determinethe direction of

the shift while their magnitude determines the numberofbitsto

be shifted. As seen above, the RT and LT functions are

equivalent to special forms of SHFT with three arguments.

Combines the magnitude of one single-precision floating-point

number(SP1) with the sign of a second (SP2).
SP — SIGN (SP1,SP2)

Computesthe sine of a single-precision floating-point number.

SP = SIN (SP)
Converts a double-precision floating-point numberto a single-

precision floating-point number.

SP = SNGL(DP)
Computes the square root of a single-precision floating-point

number.
SP = SQRT (SP)

Computes the hyperbolic tangent of a single-precision floating-

point number.
SP = TANH(SP)

Performsa logical exclusive OR on a variable list of integers.

I = XOR(11,12,. . .,In)

18-7 FDR 3057

Libraries reference

FORTRAN MATRIX (MATH) LIBRARY

The following subroutines are available to the user for matrix manipulation, solution of sets

of linear equations and generation of combinations and permutations. In the subroutines

whenever the modeof an argumentis explicitly specified as integer, it is taken to be a short

integer (indexes, error flags, etc.). However, the mode of the matrix elements for integer

matrices maybeeitherlongorshortintegers. This library exists only in the R-modeversion,

whose name is MATHLB.

For further details on the COMB and PERM subroutines, see “Loopless Algorithms for

Generating Permutations, Combinations, and Other Combinatorial Configurations,” Gideon

Ehrlich, Journal of the ACM, 20 No. 3 (July 1973) pp. 5000-5113.

Matrix operations subroutines

CALL COMB(icomb,n,nr,iw1,iw2,iw3,last[,restrt])

COMBcomputesthe next combinationof nr out ofn elementswith a single interchange each

time itis called. Thefirst call to COMBreturns the combination1,2,3,nr. This subroutine

is self-initializing and proceeds through all n!/(nr!*(n-nr}!) combinations. At the last

combination, it returns a value of last = 1 and resets itself. The COMB subroutine may be

re-initialized by the user by passing a new value of n and/ornr, or by passing the restrt

parameter with a value of 1. (The restrt parameteris optional; if re-initialization is not

desired, either omit this parameter from thecalling sequenceorsetit to a value of 0.) COMB

is not loopless.

Argument Mode Subscript(s)

|

Dimension(s) Comments

icomb Integer 1 nr return

n Integer pass

nr Integer pass

iwl Integer 1 n work

iw2 Integer 1 n work

iw3 Integer 1 n work

last Integer return

restrt Integer pass (optional)
The calling program should not attempt to modify icomb, iw1, iw2, or iws.

CLINEQ
CALL

<

DLINEQ> (xvect, yvect, cmat, work, n, npl, ierr)

LINEQ

1 January, 1979 19-1 FDR 3057

19 LIBRARIES REFERENCE

Solves the set of n linear equations in n unknownsrepresented by

(cmat) (xvect) = (yvect)

where cmatis the nxn square matrix of coefficients, yvect is the nx1 column vector of
constants, and xvect is the nx1 column vector of unknownsin whichthesolutionis stored.
The user is required to provide as a work area, a nplxnpl matrix work (np1 =n+1). The
integer error flag ierr returns one of three possible values.

ierr

0 solution found
1 coefficient matrix singular
2 npl #4n+1

If ierr + 0 no modifications are madeto xvect.

Argument Mode Subscript(s) Dimension(s) Comments

xvect * 1 n returned
yvect * 1 n passed
cmat * 2 n,n passed
n Integer passed
work * 2 npi,np1 work
np1 Integer passed (=n+1)
ierr Integer returned
* all of the same mode which determine the subroutine used.

CMADD
DMADD

CALL IMADD (mats, mati, mat2, n,m)
MADD

Adds the nxm matrix mat2 to the nxm matrix mat1 and returns the sum ina nxm matrix mats.
In component form:

mats (i,j) = matt (i,j) + mat2 (i,j)

as i goes from 1 to n and j goes from 1 to m.

Argument | Mode | Subscript(s) | Dimension(s) | Comments

mats * 2 n,m returned
matl * 2 n,m passed
mat2 * 2 n,m passed
n Integer passed
m Integer passed

* all of the same mode which determines the subroutine used.

CMADJ
DMADJ

CALL

)

IMADJ

(

(mato, mati, n, iw1, iw2, iw3, iw4, ierr)
MADJ

Calculates the adjoint of the nxn matrix mati and stores it in the nxn matrix mato. Each
elementof the output matrix is the signed cofactor of the corresponding elementofthe input
matrix. The error flag, ierr, may have one of two values.

ierr

0 adjoint successfully constructed
1 n<2-no adjoint may be constructed

FDR 3057 19-2 1 January, 1979

LIBRARIES REFERENCE 19

Note

mato and mati must be distinct.

Argument Mode Subscript(s) |Dimension(s) Comments

mato * 2 n,n returned

mati * 2 n,n passed

iwl * 1 n work

iw2 * 1 n work

iw3 * 1 n work

iw4 * 1 n work

ierr Integer returned
* all of the same mode which determines the subroutine used.

CMCOF
DMCOF

CALL)IMCOF
MCOF

(cof, mat, n, iw1, iw2, iw3, iw4,i,j, ierr)

Calculates the signed cofactor of the element mat (i,j) of the nxn matrix mat and storesthis

value in cof. Ifi = 0 andj = 0,the determinant of matis calculated. The integererrorflag

ierr has two possible values.

ierr

0 cofactor calculated successfully ’
1 no cofactor calculated for any of the following reasons:

1. n<2- no cofactor possible

2.i=j=n=0- no determinant

3.i=0 andj <0 ori +0 and j =0 - subscript error

4.i>n and/or j>n - subscript error

Argument Mode Subscript(s) _|Dimension(s) Comments

cof * returned

mat * 2 n,n passed

n Integer passed

iwl * 1 n work

iw2 * 1 n work

iw3 * 1 n work

iw4 * 1 n work

i Integer passed

j Integer passed

ierr Integer returned
* all of the same mode which determines the subroutine used.

CMCON
DMCON

CALL)IMCON
MCON

(mat, n, m, con)

Sets every element of the nxm matrix mat equalto a constant con.

19-31 January, 1979 FDR 3057

19 LIBRARIES REFERENCE

Argument —_|Mode__[Subscript(s) |Dimension(s) |Comments
mat * 2 nm returned
n Integer passed
m .| Integer passed
con -|* passed

* all of the same mode which determine which subroutine is used.

CMDET
) DMDET

CALL }IMDET

|

(det, mat, n, iw1, iw2, iw3, iw4, ierr)
MDET

Calculates the determinant of the nxn matrix mat andstoresit indet. The integer errorflag
ierr may have oneor two values.

ierr

0 determinant formed successfully
1 n =0- no determinant possible

Argument =| Mode Subscript(s) |Dimension(s) Comments
det ‘|* returned
mat |s 2 n,n passed
n -| Integer passed
iwl * 1 n work
iw2 * 1 n work
iw3 * 1 n work
iw4 * 1 n work
ierr Integer returned
* all of the same mode which determinethe subroutine used.

CMIDN
DMIDN

CALL)IMIDN((mat, n)
MIDN

Sets the nxn matrix mat equal to the nxn identity matrix. That is,

mat (i,j) =0 if i #j
mat (i,j) =1 if i =]

Argument [Mode _|Subscript(s) |Dimension(s) |Comments
mat * 2 n,n returned
n Integer passed

* the modeof this argument determines which subroutineis used and the represen-
tation of 1 in the matrix.

CMINV
CALL{ DMINV? (mato, mati, n, work, np1, npn,ierr)

MINV

There is no integer form of this subroutine as there is no guarantee that the inverse of an
integer matrix will be an integer matrix. Calculates the inverse of the nxn matrix mati and

FDR 3057 19-4 1 January, 1979

LIBRARIES REFERENCE 19

stores it in mato if successful. (The inverse of mati is mato if and onlyif

mati*mato = mato* mati =I

where * denotes matrix multiplication and I is the nxn identity matrix). The user must
supply a np1 x npnscratch matrix work, where np1 = n+1 and npn = n+n.Theinteger error
flag ierr will return one of the following values.

ierr

0 matrix inverted - inverted matrix stored in mato.
1 matrix is singular - no inversion possible. matois filled with zeroes.
2 np1 #n+1 and/or npn #n+n - return from subroutines with no calculations

performed.

Argument Mode Subscript(s) _{|Dimension(s) Comments

mato * 2 nn returned

mati * 2 nn passed

n Integer passed
work * 2 np1,npn work
np1 Integer passed
npn Integer passed
ierr Integer returned

CMMLT)
DMMLT |

CALL IMMLT
MMLT

((matp, mat], matr, n1, n2, n3)

Multiplies the n1xn2 matrix mat] (on the left) by the n2xn3 matrix matr (on the right) and
stores the resulting nixn3 product matrix in matp.

Note

matp mustbe distinct from mati and matr, although mati and
matr may be the same. For example:

CALL MMLT(A, B, GC, N1, N2, N3)

CALL MMLT(A,B, B, N, N, N) Legal

CALL MMLT(A, A, A, N, N, N

CALL MMLT(A, A, B, N, N, N) legal
CALL MMLT(A, B, A, N, N, N

Argument |Mode |[Subscript(s) |Dimension(s) | Comments

matp * 2 n1,n3 returned
mat! * 2 n1,n2 passed
matr * 2 n2,n3 passed
nl Integer passed
n2 Integer passed
n3 Integer passed

* are of the same mode which determines which subroutineis used.

CMSCL
DMSCL

CALL)IMSCL
MSCL

1 January, 1979 19-5

(mato, mati, n, m, scon)

FDR 3057

19 LIBRARIES REFERENCE

Multiplies the nxm matrix mati by scalar constant scon andstoresthe resulting nxm matrix
in mato. By components scalar multiplication is understoodto be:

mato (i,j) = scon*mati(i,j)

for i from 1 to n, j from 1 to m.

Argument |Mode _|Subscript(s) |Dimension(s) _| Comments

mato * 2 n,m returned
mati * 2 n,m passed
n Integer passed
m Integer passed
scon * passed

* all of the same mode which determines which subroutineis used.

CMSUB
DMSUB

CALL IMSUB (matd, mati, mat2, n,m)
MSUB

Subtracts the nxm matrix mat2 from the nxm matrix mati andstores the difference in the
nxm matrix matd.

Argument |Mode |Subscript(s) |Dimension(s) | Comments

matd * 2 n,m returned
mat * 2 n,m passed
mat2 * 2 n,m passed
n Integer passed
m Integer passed

* all of the same mode which determine the subroutine to be used.

CMTRN |]
DMTRN

CALL) IMTRN ((mato, mati, n)
| MTRN

Calculates the transpose of the nxn matrix mati andstores it in the nxn matrix mato. The
relationship between mati and matois:

mato (i,j) = mati (j,i)

for i, j =1 to n. mato and mati must bedistinct.

Argument | Mode _|Subscript(s) |Dimension(s) _| Comments

mato * 2 nn returned
mati * 2 n,n passed
n Integer passed

* all of the same mode which determines the subroutine used.

CALL PERM (iperm, n, iw1, iw2, iw3, last [, restrt])

PERM computesthe next permutation of n elements with a single interchange of adjacent
elements each timeit is called. Thefirst call to PERM returns the permutation 1, 2, 3,...,
n. This subroutine is self-initializing and proceeds through all n! permutations. At thelast
permutation it returns a value of last = 1 andresets itself. The PERM subroutine maybere-
initialized by the user by passing a new valueof n or by passing the restrt parameter with

FDR 3057 19-6 1 January, 1979

LIBRARIES REFERENCE 19

a value of 1. (The restrt parameteris optional. If re-initialization is not desired, either omit

this parameterfrom thecalling sequenceorsetit to a value of 0). The calling program should

not attempt to modify iperm, iw1, iw2, or iw3.

Argument Mode Subscript(s) _|Dimension(s) Comments

iperm Integer 1 n returned

n Integer | pass

iw1 Integer 1 n work

iw2 Integer 1 n work

iw3 Integer 1 n work

last Integer return

restrt Integer passed
(optional)

SORT AND SEARCH LIBRARY

The subroutines listed here are contained in the library MSORTSin UFD=LIB. This is an R-

mode library. There is, at present, no V-mode version. A complete discussion of these

subroutines will be found in Reference Guide, PRIMOS Subroutines.

See Knuth, Donald The Art of Computer Programming, vol. 3 for complete discussion of

these types ofsorts.

Characteristics of the sorts

Approximate

Sort relative running time Comments

Average Maximum

BUBBLE N**2 - only good for very small N

HEAP 23N* In(N) 26N *In(N) inefficient for N<2000

INSERT N**2 - small N; very good on
nearly ordered tables

QUICK 12N *In(N) N**2 fastest but very slow on
nearly orderedtables

SHELL N*¥*1.25 N**1.5 good for N<2000

N is the numberof entries in the table (nentry).

These routinesall sort the table in increasing order with the key treated as a single, signed

multiple-word integer.

RADXEX, however, treats the key as a single, unsigned multi-word(or partial word) integer.

For example:

If the keys were 5, -1, 10, -3,

RADXEX would sort them to: 5, 10, -3, -1

The other routines would sort them to: -3, -1, 5, 10

Parameters commonto more than one subroutine

ptable Pointer to first word of table of entries. Example: the table is an

array ITABLE(I), then ptable=LOC(TABLE). (type: INTEGER)

nentry Number of entries in the table (e.g., items to be sorted or

searched). (type: INTEGER)

nwords Numberof words/entry. (type: INTEGER)

fword Starting wordofthe keyfield in the entry. 0<fword<nwords(type:

INTEGER)

1 January, 1979 19-7 FDR 3057

19 LIBRARIES REFERENCE

nkwrds Number of words in the key field. 0<nkwrds<nwords. fword +
nkwrds-1<nwords (the key field must be contained within the
entry). (type: INTEGER)

tarray A temporary one-dimensional array used as a work area. Size
varies with sort used.

npass Returned pass counter. (type: INTEGER)

altbp An optional alternate return addressfor an error caused by a bad
parameter(type: address constant). If altbp is not specified, then
an error causes a normalreturn with npass=0.

General requirements for using in-memorysorts
1. All entries must be equallength.

2. Key words must be contiguous(no secondary keys).

Sorts

BUBBLE- interchange sort

CALL BUBBLE(ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp,incr)

tarray has dimension nkwrds.
incr is used to sort non-adjacententries in the tables.

Default is INCR=1 (adjacent) (type: INTEGER)

HEAP - heapsort

CALL HEAP(ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

tarray has dimension nwords

INSERT - straight insertion sort

CALL INSERT (ptable,nentry,nwords,fword,nkwrds,npass,altbp,incr)

incr is used to sort non-adjacent entries in the table.
Default is incr=1 (adjacent). (type: INTEGER)

QUICK- partition exchange sort

CALL QUICK (ptable,nentry,nwords,fword,nkwrds,tarray,npass,altbp)

tarray has dimension nwords

RADXEX- radix exchangesort

CALL RADXEX(ptable,nentry,nwords,fword,fbit,nbit,tarray,npass,altbp)

fbit is the first bit within fword of the key

nbit is the numberof bits in the key

Note

fword+(nbit+fbit-2)/16<nwords

tarray has dimension 2*nbit

SHELL - diminishing incrementsort

CALL SHELL (ptable,nentry,nwords,fword,nkwrds,npass,altpb)

FDR 3057 19-8 1 January. 1979

LIBRARIES REFERENCE 19

Search

BNSRCH- search/maintain orderedtable

CALL BNSRCH (ptable,nentry,nwords,fword,nkwrds,skey,fentry,index,

opflag,altnf,altbp)

skey a search key array of dimension nkwrds

fentry array of dimension nwordsinto which the foundentryis read (see

. below under opflag=3 for special use)

index entry numberof the found entry

opflag operation flag

0 locate

1 locate and delete

2 locate and insert

3 locate and update

altnf alternate return if entry is not found

Simple binary searching (opflag=0) tests each entry’s key field for a match with skey.If the

entry is found,it is returned in fentry and the entry numberis putinto index. If the entry is

not found,the not found alternate return (altnf) is taken.If altnf is not specified, the normal

return is taken with index=0.

The operation for opflag=1 is the same as opflag=0 except that if the entry is found,it is

deleted from the table as well as returnedin fentry. In this case, index specifies where the

entry was.

The operation for opflag=2 is the same as opflag=0 if the entryis found. If, however, the

entry is not found, the contents of fentry will be inserted into the table and index will

indicate the position of the new element. Also altnf will be taken.

The operation for opflag=3 is the same as opflag=0if the entry is not found. If the entry is

found, the contents of fentry and the found entry are interchanged, thus updating the table

and returning the old entry.

APPLICATIONS LIBRARY

The applications library provides programmers with easy-to-use functions and service

routines falling between very high-level constructs and very low-level systemsroutines. The

applications library is located in UFD=LIB in the files APPLIB (R-mode programs) and

VAPPLB (V-mode programs). All routines in.VAPPLB are pure procedure and may be

loaded into the shared portion of a shared procedure. The applications library should be

loaded before loading the FORTRANlibrary.

Programsusing the applications library subroutines mustdefine the values of the keys used

in these routines. This definition is performed byplacingthe instruction $INSERT SYSCOM

>A$KEYS in each module which uses anyof these subroutines.

The applications routines may be used as functions or as subroutine calls as desired. The

function usage gives additional information. The type of value of the function (LOGICAL,

INTEGER,etc.) is specified for each function.

A detailed description of this library will be found in Reference Guide, PRIMOS sub-

routines.

1 January, 1979 19-9 : FDR 3057

19 LIBRARIES REFERENCE

The applications library subroutines may be grouped by their functions:

File System TEMP$A, OPEN$A, OPNP$A, OPNV$A, OPVP$A,
CLOS$A, RWND$A, GEND$A, TRNC$A, DELE$A,
EXST$A, UNIT$A, RPOS$A, POSNS$A, TSCN$A.

String Manipulation FILL$A, NLEN$A, MCHR$A, GCHR$A, TREE$A,
TYPE$A, MSTR$A, MSUB$A, CSTR$A, CSUB$A,
LSTR$A, LSUB$A, JSTR$A.

User query YSNO$A, RNAM$A, RNUM$A.

System Information TIME$A, CTIM$A, DTIM$A, DATE$A, EDATS$A,
DOFY$A.

Conversions ENCD$A, CNVA$A, CNVB$A.

Mathematical Routines RNDI$A, RAND$A.

Parsing CMDLS$A.

A brief description of these routines follows, in alphabetical order.

CLOS$A LOGICAL
Attempts to close a file by the file unit numberon whichit was opened. Reports on success
or failure of attempt.

CMDL$A LOGICAL

Parses a PRIMOS-like command line and returns information for each -keyword (and
optional argument) entry in the line (one entry percall).

CNVASA | LOGICAL

Converts an ASCII digit string to a numerical value for octal, decimal, and hexadecimal
numbers. Reports whether the conversion was madesuccessfully or not.

CNVB$ INTEGER*2

Converts a binary number (INTEGER*4) to an ASCII digit string for decimal, octal, and
hexadecimal numbers. The function value is the numberofdigits in the string (or 0 if the
conversion is unsuccessful).

CSTR$A LOGICAL
Compares two characterstrings for equality and returns .TRUE.as the function valueif they
are equal.

CSUB$A _ LOGICAL

Comparestwosubstrings of character strings for equality and returns .TRUE. as the function
value if they are equal.

CTIM$A REAL*8

Returns the CPU time since login in centiseconds (argument returned) and in seconds
(function value).

DATE$A REAL*8

Returns the system date as DAY MON DD 19YR(argumentreturned) and as MM/DD/YY
(function value).

FDR 3057 19-10 1 January, 1979

LIBRARIES REFERENCE 19

DELE$A LOGICAL

Attempts to delete a file specified by the filename. If successful the function is .TRUE.,

otherwise .FALSE..

DOFY$A REAL*8

Returns the day of the year as a 3-digit number (argument returned) and as YR.DDD

(function value). Thelatter is suitable for printing in FORMATF6.3.

DTIM$A REAL*8

Returns disk time since login in centiseconds (argument returned) and in seconds(function

value}.

EDAT$A REAL*8

Returns the date as DAY, DD MON 19YR(argumentreturned) and as DD/MM/YR(function

value). This is the European/military format.

ENCD$A LOGICAL

Encodes a value in FORTRANfloating-point print format (Fw.d) and reports whether the

encoding wassuccessful or not.

EXST$A LOGIGAL

Checks for the existence of a file specified by name and reports whetherthe file exists or

not.

FILL$A INTEGER

Fills a buffer with a specified ASCII character.

GCHR$A INTEGER

Accesses a character in a specified array position. The function value is the character in

FORTRAN Al FORMAT(right padded with blanks).

GEN$A LOGICAL

Positions a file pointer opened on specifiedfile unit to the End-of-File. The function value

tells whether the positioning was successful or not.

JSTR$A LOGICAL

Right- or left-justifies a string and reports whether the operation is successful.

LSTR$A LOGICAL

Locates a string within another string. The function value reports on whetherthe substring

wasfoundornot.

LSUB$A LOGICAL

Locates one substring within another substring. The function value reports on whetherthe

substring was foundornot.

1 January, 1979 19-11 FDR 3057

19 LIBRARIES REFERENCE

MCHR$A INTEGER

Replaces a character in one array with a specified character from another. The function
value is the character moved in FORTRAN A1 FORMAT,right padded with blanks.

MSTR$A INTEGER

Movesonestring to another string. The function value is equal to the numberof characters
moved. ,

MSUB$A INTEGER

Movesa substring into a substring in another string. The function value is equal to the
number of characters moved.

NLEN$A INTEGER*2

Returns the operational length of string in a buffer, excludingtrailing blanks.

OPEN$A | LOGICAL
Opensa file on a specified file unit. The function value reports whether the operation was
successful or not.

OPNP$A LOGICAL

Gets a filename from the user terminal and opensthatfile on a specified file unit. The
function value reports whether the operation was successful or not.

OPNV$A LOGICAL

Opensa file on a specifiedfile unit, verifies the operation.If thefile is in use the operations
are re-tried. The function value reports on the ultimate success of the operations.

OPVP$A LOGICAL

Gets a file name from the user terminal and opensthatfile on a specified file unit. The
operations are verified. If the file is in use the operations are re-tried. The function value
reports on the ultimate success of the operations.

POSN$A_ LOGICAL

Positions the pointer in the file open on a specifiedfile unit. The function value reports on
the success of the operation.

RAND$A REAL*8

Updates the seed of a random number generator. The old seed is passed and a new seed
returned. The function value is a random number between 0.0 and 1.0.

RNAM$A LOGICAL

Prints a prompt messageat the terminal and accepts a name from theterminal. The function
value reports on the validity of the name.

FDR 3057 19-12 1 January, 1979

LIBRARIES REFERENCE 19

RNDI$A REAL*8

Generatestheinitializing seed for a random numbergenerator. The information returnedis
time of day in centiseconds (argumentreturned) and in seconds (function value).

RNUM$A LOGICAL

Prints a prompt message at the terminal and accepts a number (octal, decimal, or
hexadecimal) string from the terminal. If successful the value is returned in one of the
subroutine arguments and the function value is .TRUE..

RPOS$A LOGICAL

Returns the current absolute position of the pointer in the file opened on a specifiedfile
unit. The function value reports on the success of the operation.

RWND$A LOGICAL

Rewindsthe file opened on the specifiedfile unit. The function value reports on the success
of the operation.

TEMP$A LOGICAL

Opensa temporaryfile with a unique namein the current UFD for reading and writing on
a specified file unit. The name is returned as an argument in the subroutine call. The
function value reports on the successof the operation.

TIME$A REAL*8

Returns the time of day as HR:MN:SC (argument returned) and in decimal hours (function
value).

TREE$A LOGICAL

Scansa string to check whetherit is a valid pathname and,if so, locates the final part of the
namein the string. The function value reports whetherthe test is successful or not.

TRNC$A LOGICAL

Truncates the file opened on a specified file unit. The function value reports on the success
of the operation.

TSCNS$A LOGICAL

Scans the file system tree-structure (starting with the home directory) to read UFDs and
segmentdirectory entries. Each call returns the nextfile on the currentlevelorthefirstfile
on the next lower level. The function value is .TRUE.until an error occurs or an endoffile
is reached.

TYPE$A LOGICAL

Tests a character string to see whetherit can be interpreted as a number(octal, decimal, or
hexadecimal) or a name. The function value reports whetherthe string meets the specified
criterion.

UNIT$A LOGICAL

Tests whetheranyfile is open on a specified file unit. The function value reports whether

the unit is in use or not.

1 January, 1979 19-13 FDR 3057

19 LIBRARIES REFERENCE

YSNO$A LOGICAL

Prints a question at the user terminal which can be answered YES (or OK) or NO. The
function value is .TRUE. for YES (or OK) and .FALSE. for NO. Any other answercauses the
question to be repeated.

OPERATING SYSTEM LIBRARY

These subroutines are used mainly by PRIMOS. However, a numberof them useful at the
applications level are described in detail here. Complete details will be found in Reference
Guide, PRIMOS Subroutines.

File access

Files are structured to be accessed in either of two ways: SAM, or Sequential Access
Method, and DAM,or Direct Access Method. SAM files are the most commontypeoffile
created and processed by PRIMOS.Mostfiles likely to be dealt with by the user are SAM
files,

SAM files: A SAM file consists of records threaded together with forward and backward
pointers. Each recordin the file contains a pointer to the beginning record address (BRA)of
the file. The beginning record of the file contains a pointerto the file directory in whichit
is listed. Since records are strung together in this manner, they can only be accessed
sequentially; the entire file must be searched from the beginning in orderto find a record.
This is time consuming when many random accesses must be done. However, SAM files are
more compact and require less disk storage space than DAMfiles. SAMfiles are accessed
by PRIMOS commandssuchasED,etc.

DAM files: DAMfiles have a multi-level index containing pointers to every record on the
file. If the file is short, the record addresspointers point directly to records containing data.
If the file is long, these pointers reference other records containing a lower level index.
Those indices in turn have pointers to records containing data.

DAMstructure is more suitable to rapid, random access of data than SAMstructure. Each
individual record can be referenced by a uniquepointer connecting the record and a pointer
index at the beginning of the file. Searching the pointer index for a particular record is
quicker than hunting through each entire record in sequence.

DAMfiles are less compact than SAM files. The MIDAS subsystem oruser applications
programs mustbe used to access them. DAMfiles occur in the MIDASand SEG subsystems.

Names

In the file system calls, names are either ASCII, packed two characters per word, or
character strings (the actual name precededandfollowedby a single quote)). If the name
length specified in acall is longer than the actual length of the name, the name must be
followed by a numberoftrailing blanks sufficient to match the given length.

Passwords

Passwords can be at most 6 characters long. Passwords less than 6 characters must be
paddedwith blanks for the remaining characters. Passwordsare not restricted by filename
conventions and maycontain any charactersorbit patterns.It is strongly recommendedthat
passwords not contain blanks, commas, the characters = !’ @ {}[] () or lowercase
characters. Passwords should not start with a digit. If passwords contain any of the above
charactersor begin with digit, the passwords maynot be given on a PRIMOS commandline
to the ATTACH command.

FDR 3057 19-14 1 January, 1979

LIBRARIES REFERENCE 19

Keys anderror codes

All keys and error codes are specified in symbolic, rather than numeric form. These
symbolic names are defined as PARAMETERSfor FORTRANprogramsin $INSERTfiles in
a UFD on the master disk called SYSCOM.The key definition file is named KEYS.F for
FORTRAN.Theerror definition file is ERRD.F.

Error handling

Errors occurring from a subroutine call cause a non-zero valueof the argument CODEto be
turned. Users should always test CODE after a call for non-zero values to be certain no
errors are missed. Error printing and control are performed by the ERRPR$ subroutine:

CALL ERRPR$ (key,code,text,text-lengthhname,name-length)

key Action to be taken after printing message.

K$NRTN Exit to PRIMOS;do not allow return to calling program.

K$SRTN Exit to PRIMOS; return to calling program following a START
command.

K$IRTN Return immediately to calling program.

code An integer variable containing the error code returned by the
subroutine generating the error.

text User’s message to be printed following standard error message (up
to 64 characters).

text-length Length of text in characters. To omit text, specify both text and
text-length as 0.

name User-specified name of program or sub-system, detecting or re-
porting the error (up to 64 characters).

name-length Length of name in characters. To omit name, specify both name
and name-length as 0.

The message format for non-zero values of CODEis:

standard text. user’s text, if any (name,if any)

ILLEGAL NAME. OPENING NEWFILE (NEWWRT)

These errors are includedin the list of run-time errors in Appendix A. Theyare labelled as

File System errors.

Operating System Subroutines

A list of all operating system subroutines with a brief description of their function is given

below. Subroutines marked with a bullet (¢) are described in detail following this list.

¢ ATCH$$ Attaches to a UFD and optionally makesit the home UFD.

¢ CNAM$$ Changes a filename.

COMI$$ Switches commandinput stream from terminal to commandfile

and vice-versa. .

COMO$$ Switches output stream from terminalto file and vice-versa.

CREA$$ Creates a sub-UFD in the current UFD.

ERKL$$ Readsor sets the erase and kill characters.

GPAS$$ Returns passwords of sub-UFDin the current UFD.

NAMEQ$ Comparesfilenamesfor equivalence.

e PRWF$$ Reads, writes, and positions pointer in a SAM or DAMfile.

RDEN$$ Reads entry in UFD.

1 January, 1979 19-15 FDR 3057

19 LIBRARIES REFERENCE

RDLIN$ Readsline of characters from compressed or uncompressed ASCII
diskfile.

RDTK$$ _ Parses the commandline, token by token.

REST$$ Restores an R-mode memory image to user memory froma disk
file.

e RESU$$. Restores an R-mode memory imagefrom file,sets initial values,
and begins execution. Anerrorin this call causes an error message
to be printed automatically and then returns command to
PRIMOS.

SATR$$ Sets attributes (protection, date, time, etc.) in a UFD entry.

SAVE$$ Saves an R-mode memory image in user memorybywritingit‘into
a disk file.

SGDR$$ Positions and reads segmentdirectory entries.

SPAS$$ Sets the passwordsin the current UFD.

¢ SRCH$$ _ Opensorclosesa file.

TEXTO$ | Checksthe validity of a filename.

¢ TSRC$$ | Opensorcloses a file anywhere in the PRIMOSfile structure.

WTLIN$ Writes a line of ASCII characters to a disk file in compressed
format.

ATCH$$

CALL ATCH$$§ (ufd-name,name-length,logical -disk,password,key,code)

ufd-name =— Nameof UFDto be attachedto (if ufd-name=K$HOMEand key=
0, attachment is to home UFD).

name-length —s Length in characters of ufd-name(if ufd-name=K$HOME,name-
' length is ignored).

logical-disk - Logical disk to searched for ufd-name when key=K$IMEFD.

logical-disk Action

K$ALLD Searchall started-up
logical devices.

K$CURR Search MFDof currentdisk.

password —_s3-word array containing the owneror non-owner passwordof ufd-
name(if attaching to home UFD, password maybe0).

key reference-key + set-key

reference key Action

K$IMFD Attach to ufd-name in MFD on
logical-disk.

K$ICUR Attach to ufd-namein current
UFD.

set-key Action
K$SETH Set current UFD to homeafter

attaching.

code Returns integer-valued error code.

CNAM$$

CALL CNAM$$§(old-name,old-name-length,new-name,new-name-length,code)

old-name Nameoffile to be changed.

old-name-length Numberof characters in old-name.

FDR 3057 19-16 1 January, 1979

LIBRARIES REFERENCE 19

new-name

new-name-length

code

Nameto be changedto.

Numberof characters in new-name.

Returns integer-valued error code.

Note

CNAM$$ requires owner-rights in the current UFD. The

names of the MFD,BOOT,BADSPT,or the packname may not

be changed.

PRWF$$

CALL PRWF$$ (read-write-key+position-key+mode,file-unit,LOC(buffer),

number-of-words,position-value,words-transferred,code)

read-write-key

K$READ

K$WRIT

K$POSN

K$TRNC

K$RPOS

position-key

K$PRER

K$POSR

K$PREA

K$POSA

Action to be taken (mandatory).

Read number-of-wordsfrom file-unit into buffer.

Write number-of-words from bufferto file-unit.

Set currentposition to value at 32-bit integer in position-value.

Truncate files open on file-unit at current position.

Return current positions as a 32-bit integer in position-value.

Indicates positioning (optional).

Movefile pointer of file-unit position-value wordsrelative to

current position; then perform read-write-key operation.

Performs read-write-key operation then movefile pointer of

file-unit position-value wordsrelative to current position.

Movefile pointer of file-unit to absolute position-value then

perform read-write-key operation.
Perform read-write-key operation, then movepointer of file-

unit to absolute position-value.

If position-key is omitted, K$PRERis used.

mode

omitted

K$CONV

K$FRCW

file-unit

| buffer

number-of-words

position-value

words-transferred

code

1 January, 1979

Transfer all or convenient numberof words(optional).

Read/write numberof words.

Read/write convenient number of words up to number-of-

words. See Reference Guide, PRIMOSsubroutinesfor a

discussion of ‘“‘convenient”.

Perform write to disk from buffer before executing next instruc-

tion in the program. Increases disk I/O time.

File unit on which the file has been opened (by SRCH$9,

PRIMOS command,etc.).

Data buffer for read/write. If not needed, specify as LOC(0).

number of words to be transferred (mode=0) or maximum

numberof wordsto be transferred (mode=K$CONV). number-

of-words may range from 0 to 65535.

Relative or absolute position value (32-bit integer, INTEGER*4).

If not needed, specify long-integer zero as 000000 or INTL{(0).

The numberof wordsactually transferred when read-write-key

~K$READ;other keys leave this parameter unmodified. (IN-

TEGER*2).

Returns integer-valuederror code.

19-17 FDR 3057

19 LIBRARIES REFERENCE

RESU$$

CALL RESU$$ (filename,name-length)

filename

name-length

SRCH$$

CALL SRCH$$ (action+reference+newfile,filename,name-length,file-unit,file-

FDR 3057

type,code)

action

K$READ

K$WRIT

K$RDWR |

K$CLOS

K$DELE

K$EXST

reference

K$IUFD

K$ISEG

K$CACC

K$GETU

new-file

K$NSAM

K$NDAM

K$NSGS

K$NSGD

filename

name-length

file-unit

file-type

code

Nameofthe file containing the memory image.
Numberof characters in filename.

Action to be taken (mandatory).

Openfilename for reading onfile-unit.
Open filename for writing on file-unit.
Open filename for reading and writing on file-unit.
Close file by filenameorbyfile-unit.

Delete filename.

Check existenceof filename.

Modifies action (optional).

Search for filename in current UFD(this is the default).
Perform the action onthefile that is a segment directory entry in
the directory which is open on filename.
Change accessrights of file open on file-unit to action.
Open filename on an unusedfile-unit selected by PRIMOS. The
unit numberis returnedin file-unit.
Specifies type offile to create if file-name does not already exist.
SAMfile (this is the default).

DAMfile.

SAM segmentdirectory.

DAM segment directory.
Nameofthe file to be opened.If reference=K$ISEG,filenameis a
file unit on which a segmentdirectory is already open.
Numberof characters of filename.

File unit number on whichfile is to be openedor closed.
Returns typeoffile opened.If call does not openfile, its value is
unchanged. The valuesareintegers.

0 SAMfile
1 DAM file
2 SAM segmentdirectory
3 DAM segmentdirectory
4 UFD

Returns an integer-valued error code.

Note

A UFD may be opened only for reading. A UFD cannot be
deleted unless it is empty. A segment directory cannot be
deleted unlessit is of length 0.

19-18 1 January, 1979

LIBRARIES REFERENCE 19

TSRC$$

CALL TSRC$$ (action+new-file,pathname,file-unit,character-position, code)

action

K$READ

K$WRIT

K$RDWR

K$DELE

K$EXST

new-file

K$NSAM

K$NDAM

K$NSGS

K$NSGD

pathname

file-unit

character-position

file-type

code

Action to be taken (mandatory).

Open pathnamefor reading on file-unit.

Open pathnamefor writing on file-unit.

Open pathnamefor reading and writing on file-unit.

Delete file pathname.

Check on existence of pathname.

Specifies type of file to create if pathname does not already

exist,

SAMfile (this is the default).

DAMfile.

SAM segmentdirectory.

DAM segmentdirectory.

A specification of any file in any directory or subdirectory

stored in array pathname packedtwo characters per word.

File unit number on whichthe file is to be openedor deleted.

The file-unit is closed before any action is taken.

A two-elementinteger array. word

1

of entry:the first character

in the array that is part of the pathname (countstarts at 0)

returns: one past the last character that was part of the

pathname. word 2- the numberof characters in the pathname.

Returns type of file opened.If call does not open file, its value

is unchanged. Thevaluesare integers.

0 SAMfile

1 DAMfile

2 SAM segmentdirectory
3 DAM segmentdirectory
4 UFD

returns an integer valued error code

Note

TSRC$$ alwaysclosesthe file unit, then attaches to the user's

home UFD before attempting any action.

1 January, 1979 19-19 FDR 3057

APPENDICES

Krror messages

INTRODUCTION

Error messages are given in the following order:

1. FORTRAN Compiler Error Messages

2. Loader Error Messages

3. SEG Loader Error Messages

4. Run-Time Error Messages

In each grouperrors are listed alphabetically.

Run-time error messages beginning with a filename, device name, UFDname,etc., are

alphabetized accordingto the first word which is constant. The user should havenotrouble

in determining this word (the second word in the message). Leadingasterisks, etc., are

ignoredin alphabetizing. All run-time errors have been groupedtogetherto facilitate lookup

by the user.

COMPILER ERROR MESSAGES

ARG LIST REQUIRED

Argumentlist not specified in FUNCTIONstatement.

ARRAY NAME REQUIRED

Something other than an array name appearedin

a

position where only an array

nameis allowed. (example: ENCODE or DECODEstatement)

ARRAY/BLOCK OVERFLOW

Array/block exceeds space allocated to user.

ARRAY NESTING OVFLO

Use of arrays as subscripts in other arrays exceeds allowable nesting limit (32).

CHAR STRINGSIZE

A character string was not terminated,or a string in a DATAstatement was longer

than the associated variable list.

COMMON NAMEILL.

Illegal use of a namealready declared in COMMON.

COMPILER OVERFLOW

Insufficient memory to compile program.

1 January, 1979 A-1 FDR 3057

A ERROR MESSAGES

CONFLICTING DECLARN

Name(s) declared as more than one data mode.

CONSTANT REQUIRED
A name appeared whereonly a constant or parameteris allowed(i.e., DIMENSION
statement in a main program).

CONSTANT TOO LARGE

Constant exponentexcessive for data type.

DATA MODE ERROR

Illegal mode mixing in expression, expression modenotof requiredtype,or constant
in DATA statementis of different mode than associated namein variablelist.

DIVISION BY ZERO

Attempt has been madeto divide by a zero constant.

END/REC PROHIBITED

The END=statement-numberexpression cannot be used in a direct access READ or
WRITE statement.

EXCESS CONSTANTS

Numberof constants in DATA statement exceed variables for storing them,

EXCESS SUBSCRIPTS
Too many subscripts in EQUIVALENCEor DATAlist item.

FUNCT VAL UNDEFINED

The function name wasnotassigned a value in a FUNCTION subprogram,

GBL MDE/IMPL CNFLCT

IMPLICIT statement and global modespecification may not be used in the same
program unit.

ILL. CONSTANT EXPR.

Variables found in a PARAMETERstatement.

ILL. DO TERMINATION

Improper DOloop nesting, or an illegal statement terminating a DO loop.

ILL. EQUIVALENCE

EQUIVALENCEgroup violates EQUIVALENCErules or specifies an impossible
equivalencing.

ILL. LOGICAL IF

A logical IF containedin a logical IF, or a DO statement contained in a logical IF.

ILL. OVER 64K COMMON

A COMMONarea exceeds 64K wordsof user memory.

FDR 3057 A-2 1 January, 1979

ERROR MESSAGES A

ILL. STMT NO. REF

Reference to a specification statement number.

ILL. UNARY OP USAGE

Improperuse of an operator in an expression.

ILL. USE OF ARG

SUBROUTINE or FUNCTIONstatement usedin COMMON, EQUIVALENCE,or

DATA statement.

ILL. USE OF CLMN.6

Continuation line found without a continuation or statementline precedingit.

ILL. USE OF STMT

Statementillegal within the contextof the program;for example, RETURNina main

program, SUBROUTINE not the first subprogram statement, or specification

statements out of order. If an undeclared array name is used on the left in an

assignment statement, the compiler will assumeit is a statement function definition

and will therefore generate this error.

INCONSISTENT USAGE

The use of the namelisted in the error message conflicts with earlier usage. This

message also will be generated at the END statementin a SUBROUTINEsubpro-

gram if the subroutine nameis used within the subprogram.

INTEGER REQUIRED

A non-integer nameor constant appeared where only an integer nameor constantis

allowed.

INTERNAL ERROR

Some combination of source code statements has generated an unresolvableerror.

The programmershould neverseethiserror.

MULT DEF STMT NO.

The statement numberofthe current line has already been defined.

NAME REQUIRED

A constant appeared where only a nameis allowed.

NO END STMT

The last statement in the source was not an ENDstatement.

NO PATH TO STMT

The current statement does not have a statement numberandthe previousstatement

was an unconditional transfer of control.

NONCOMMONDATA

A BLOCK DATAsubprograminitialized data not defined in COMMONorcontained

executable statements.

1 January, 1979 A-3 FDR 3057

A ERROR MESSAGES

PAREN NESTING>31

Nesting of parentheses(syntactical, array, or function reference) in expressions may
not exceed 31.

PARENTHESIS MISSING

Incorrect parenthesis used in an implied DO loop in an I/O statement,

PROG SIZE OVERFLOW

Program toolarge for allocated user space.

SAVE ITEM ILLEGAL

Improper item in SAVE statement (function name, array element,etc.).

STMT NAMESPELLING

A statement name was recognizedbyits first four characters, but the remaining
spelling was incorrect.

STMT NO. MISSING

A FORMATstatement appeared without a statement number.

SUBPGM/ARR NAMEILL

Illegal usage of subprogram or array name.

SUBPROGRAM NAMEILL

Illegal usage of subprogram name.

SYMBOLIC SUBSCR ILL

Illegal usage of symbolic subscript in a specification statement.

SYNTAX ERROR

General syntax error, context usually shows offending character(s}.

TOO FEW SUBSCRIPTS

Numberof subscripts used in an array is fewer than the number originally declared
in a DIMENSIONor modespecification statement.

UNDECLARED VARIABLE

Thelisted variable did not appearin a specification statement (generated whenthe
undeclared variable check option is enabled).

UNDEFINED STMT NO.

The listed statement number wasnot defined in the subprogram. Thelisted line
numberis the line numberof the last reference to the statement number.

UNRECOGNIZED STMT

The compiler could not identify the statement.

FDR 3057 A-4 1 January, 1979

ERROR MESSAGES A

LOADER ERROR MESSAGES

ALREADY EXISTS!

An attempt is being made to define a new symbol; however, the symbol nameis

already a defined symbol in the symboltable.

BAD OBJECT FILE.

The object text is not recognizable. This usually occurs when an attemptis madeto

load source code or whenthe object text was compiled or assembledfor segmented

loading.

BASE SECTOR 0 FULL

All locations in the sector zero base area have been used. Use the AU commandto

generate base areas at regular intervals, or use the SETB or LOAD commandsto

specifically place base areas.

CAN’T DEFER COMMON,OLD OBJECT TEXT

The Defer Common commandhasbeengiven and a modulecreated with a pre-Rev.

14 compiler or assembler has been encountered.It is not possible to defer Common

in this case. The module must be recreated with a Rev. 15 or later compiler or

assembler.

CAN’T - PLEASE SAVE

The EXecute command has been given for a run file which has required virtual

loading. SAve the runfile and give the EXecute command.

CM$

Commandline error. Unrecognized commandgiven. Notfatal.

COMMON OUT OF REACH

COMMONabove "100000 is out of reach of the current load mode(168,325 or 32R).

Use the MOde commandto set the load modeto 64R.

COMMON TOO LARGE

Definition of this COMMONblock causes COMMONto wraparoundthroughzero.

Moving the top of COMMON- with the COMMON command - mayhelp.

sname ILLEGAL COMMON REDEFINITION

An attempt is being made to redefine COMMONblock snameto a longer length. The

user’s program should be examined for consistent COMMON definitions. At the

very least the longest definition for a COMMON block should be first.

xxxxxx MULTIPLE INDIRECT

A module loading in 64R mode requires a secondlevel of indirection at location

xxxxxx, This message usually results when an attempt is madeto load code compiled

or assembled for 32R modein 64R mode.It can also happenif code has accidentally

been loaded into base areas as the result of a bad load commandsequence. .

sname xxxxxx NEED SECTOR ZERO LINK

At location xxxxxx a link is required for desectoring the instruction. No base areas

are within reach except sector zero. The last referenced symbol was sname. This

messageis only generated when the SZ commandhas been given. Sname maybe the

1 January, 1979 A-5 FDR 3057

A. ERROR MESSAGES

name of a COMMONblock, the name of the routine to which the link should be
made, or the nameof the module being loaded.

xxxxxx NO POST BASE AREA, OLD OBJECT TEXT

A post base area has been specified for module which wascreated witha pre-Rev.14
compiler or assembler. No base area is created. Recreate the object text with a
Rev. 15 or later compiler or assembler. This is not a fatal error.

PROGRAM-COMMON OVERLAP

The module being loaded is attempting to load code into an area reserved for
COMMON.Usethe loader’s COmmon command to move COMMON up higher.

PROGRAM TOO LARGE

The program has loadedinto the last location in memory and has wrapped around
to load in Location 0. The program size must be decreased. Alternatively, compile in
64V mode and use SEG.

REFERENCE TO UNDEFINED COMMON

An attempt is being madeto link to a COMMONnamewhich hasnotbeendefined,
This usually happensto users creating their own translators.

SECTORED LOAD MODEINVALID

A module compiled or assembledto load in R modehas been loaded in S mode. Use
the MOde commandto reset the load mode.It might be a good ideato be surethat
all modulesare correctly written, since the default load modeis 32R.

SYMBOL NOT FOUND

An attempt is being made to equate two symbols with the SYmbol command and the
old symbol does notexist.

SYMBOL TABLE FULL

The symbol table has expanded downto location '4000. The last buffer cannot be
assigned to the symbol table, Rebuild LOADto loadin higher memorylocations, or
reduce the numberof symbolsin the load.

SYMBOL UNDEFINED

An attempt is being made to equate two symbols: however, the old symbol is an
undefined symbol in the symboltable.

64R LOAD MODE INVALID

A module compiled or assembledto run in only 32K of memoryis being loaded in
64R mode. Recompile or reassemble or change the load mode with the loader’s
MOde command.

SEG LOADER ERROR MESSAGES

BAD OBJECT FILE

Useris attempting to load file which has faulty code. Thefile may not be an object
file or it may be incorrectly compiled. Fatal error, the load must be aborted.

FDR 3057 A-6 1 January, 1979

ERROR MESSAGES A

CAN’T LOAD IN SECTORED MODE

The Loaderis attempting to load code in sectored modewhichhasnot been compiled
in sectored mode.This could arise if trying to load a module compiled or assembled
in 16S or 32S mode.It is unlikely that the average applications programmerwill
encounter this. Fatal error, abort load.

CAN’T LOADIN 64V OR 64R MODE

The Loader is attempting to load code in 64V mode whichis not compiled in that —

mode. This wouldariseif:

1. A program was compiled in a mode other than 64V.

2. A PMA module is written in code other than 64V andits modeis not

specified.

In case 1, the user should recompile the program.

In case 2, which the average applications programmeris unlikely to encounter, the

PMA module must be modified. Fatal error, abort load.

COMMAND ERROR

An unrecognized commandwasenteredorthe filenames/parameters following the

commandareincorrect. Usually not fatal.

EXTERNAL MEMORYREFERENCE TO ILLEGAL SEGMENT

An attempt was madeto load a 64R mode program,causing a referenceto anillegal

segment number. Recompile in 64V mode.Fatal error, abort load.

ILLEGAL SPLIT ADDRESS

Incorrect use of the Loader’s SPLIT command. Segments may besplit at '4000

boundaries only (i.e., 4000, 10000, '14000, etc.). Not fatal; resplit segment.

MEMORY REFERENCE TO COMMONIN ILLEGAL SEGMENT

An attempt was made*to load a 64R mode program wherein COMMONwould be

allocated to an illegal segment number. Recompile in 64V mode.Fatal error, abort

load.

NO FREE SEGMENTSTO ASSIGN

All SEG’s segments have beenallocated; no moreare available at present. Use

SYMBOL commandto eliminate COMMONfromassigned segments, thus reducing

the numberof assigned segments required. (User may need larger version of SEG

and PRIMOS). Fatal error, abort load.

NO ROOM IN SYMBOL TABLE

Unlikely to occur; no user solution. A new issue of SEG with a bigger symboltable

is required. Check with analyst. As a temporary measure, user maytry to reduce

numberof symbols used in program.Fatal error, abortload.

REFERENCETO UNDEFINED SEGMENT

Almost always caused by improper use of the SYMBOL commandto allocate

initialized COMMON.Initialized COMMONcannotbe located with the SYMBOL

command; use R/SYMBOL or A/SYMBOLinstead.

1 January, 1979 A-7 FDR 3057

A ERROR MESSAGES

SECTOR ZERO BASE AREA FULL

Extremely unlikely to occur. Not correctable at applications level. Check with
analyst. Fatal error, abort load.

SEGMENT WRAP AROUND TO ZERO

An attempt has been madeto load a 64R modeprogram. The program has exceeded
64K andis trying to be loaded over code previously loaded. Recompile in 64V mode.
Fatal error, abort load.

RUN-TIME ERROR MESSAGES

ACCESS VIOLATION 64V mode

Attempt to perform operations in segments to which user has noright.

****AD R-mode function

Overflow or underflow in double-precision addition/subtraction (A$66,S$66).

ALL REMOTE UNITS IN USE File System

Attempt made to assign a remote unit when noneare available. (Network error)
[ESFUIU] |

**** ALOG/ALOG 10 - ARGUMENT <=0 V-modefunction

Argumentnot greater than zero used in logarithm (ALOG, ALOG 10) function.

filename ALREADY EXISTS Old file call

Attempt to create a file or UFD with the nameof one alreadyexisting. [CZ]

ALREADYEXISTS File System
Attempt madeto create,in the UFD, a sub-UFD with the same nameas onealready
existing. (CREA$$) [E$EXST|

*e*KAT | R-mode function

Both arguments are zero in the ATAN2 function. |

**** ATANZ - BOTH ARGUMENTS= 0 V-mode function

Both arguments are zero in the ATAN2 function.

**** ATTDEV - BAD UNIT V-modecall

Incorrect logical device unit number in the ATTDEV subroutinecall.

BAD CALL TO SEARCH Oldfile call

Error in calling the SEARCHsubroutine, e.g., incorrect parameter. [SA|

BAD DAM FILE Old file call

The DAM file specified has been corrupted - either by the programmeror bya
system problem.[SS]

BAD DAM FILE File System

The DAMfile specified has been corrupted - either by the programmeror by a
system problem. (PRWF$$, SRCH$$). [E$BDAM|]

FDR 3057 A-8 1 January, 1979

ERROR MESSAGES A

BAD FAM SVC File System

System problem;will not be seen by applications programmer. [E$BFSV]

BAD KEY File System —

Incorrect key value specified in subroutine argument. (ATCH$$, RDENS$, SATRS$$,

SRCH$$, SGDR$$) [ES$BKEY]

BAD PARAMETER Old file call

Incorrect parameter value in subroutine call. [SA|

BAD PASSWORD Old file call

Incorrect password specified in ATTACH subroutine. Returns to PRIMOS level

attached to no UFD.[AN]

BAD PASSWORD File System

Incorrect password specified in ATCH$$ subroutine. Returns to PRIMOS level

attached to no UFD. [ATCH$$] [ESBPAS]

Note

To protect UFD privacy the system doesnotallow the userto

trap BAD PASSWORDerrors.

BAD RTNREG PRIMOS

System error.

BAD SEGDIR UNIT File System

Error generated in accessing segment directory, i.e, PRIMOS file unit specified is

not a segment directory. (SRCH$$) [ESBSUN]

BAD SEGMENT NUMBER File System

Attempt made to access segment numberoutside valid range. [ESBSGN]

BAD SVC PRIMOS

Bad supervisor call. In FORTRAN usually caused by program writing over itself.

BAD TRUNCATE OF SEGDIR File System

Error encountered in truncating segment directory. (SGDR$$) [ESBTRN|

BAD UFD File System

UFD has become corrupted. (ATCH$$, CREA$$, GPAS$$, RDEN$$, SATRS$,

SRCH$$) [E$BUFD]. Calls to RDEN$$ return this as a trappable error; other

commandsreturn to the PRIMOS commandlevel.

BAD UNIT NUMBER File System

PRIMOSfile unit number specified is invalid - outside legal range. (PRWF$$,

RDEN$$, SRCH$$, SGDR$$). [ESBUNT]

BEGINNING OF FILE File System

Attempt was madeto access locations before the beginning of the file. (PRWF$$,

RDEN$$, SGDR$$) [E$BOF]

1 January, 1979 A-9 FDR 3057

A ERROR MESSAGES

****BN n R-mode function

Device error in REWIND command on FORTRAN logical unit n.

BUFFER TOO SMALL File System

Buffer as defined is not large enough to accomodate entry to be read into it.
(RDEN$$) [E$BFTS]

**** DATAN - BAD ARGUMENT V-modefunction

The second argument in the DATAN2function is zero.
****DE

R-modefunction

The exponentof a double-precision numberhas overflowed.

DEVICE IN USE File System
Attempt was made to ASSIGN a device currently assigned to anotheruser. [E$DVIU]

DEVICE NOT ASSIGNED File System

Attempt was made to perform I/O operations on a device before assigning that
device. [ESNASS]

DEVICE NOT STARTED File System

Attempt was madeto access a disk not physically or logically connected to the
system. If disk must be accessed, systems manager muststartit up. {[E$DNS]

**** DEXP - ARGUMENT TOO LARGE V-modefunction
The argument of the DEXP functionis too large; i.e., it will give a result outside the
legal range.

**** DEXP - OVERFLOW/UNDERFLOW V-modefunction

An overflow or underflow condition occurred in calculating the DEXP function.

DIRECTORY NOTEMPTY File System
Attempt was madeto delete a non-empty directory. (SRCH$$) [ESDNTE]

DISK FULL Old file call

No more room for creating/extending anytypeoffile on disk. [DJ]

DISK FULL File System

No more room for creating/extending any type of file on disk. (CREA$$, PRWF$$,
SRCH$$, SGDR$$). [ES$DKFL]

Note

Space may be made available. Use the internal PRIMOS
commands ATTACH, LISTF, and DELETE to removefiles
which are no longer needed.

DISK I/O ERROR File System

A read/write error was encountered in accessing disk. Returns immediately to
PRIMOSlevel. Not correctable by applications programmer. (ATTCH$$, CREA$$,
GPAS$$, PRWF$$, RDEN$$, SATR$$, SRCH$$, SGDR$$). [E$DISK]

FDR 3057 A-10 1 January, 1979

ERROR MESSAGES A

DISK WRITE-PROTECTED File System

An attempt has been made towrite to a disk whichis WRITE-protected. [ESWTPR]

DK ERROR Oldfile call

A read/write error was encountered in accessing disk. [WB]

****DL R-mode function

Argument wasnot greater than zero in DLOG or DLOG2 function.

**** DLOG/DLOG2 - ARGUMENT< = 0 V-mode function

Argumentnotgreater than zero was used in DLOG or DLOG2 function.

****DN n R-mode function

Device error (end of file) on FORTRANlogical unit n.

**** DSIN/DCOS - ARGUMENT RANGE ERROR V-modefunction

Argumentoutside legal range for DSIN or DCOS function.

**** DSQRT - ARGUMENT <0 V-modefunction

Negative argument in DSQRT function.

aeet DT R-mode function

Second argumentis zero in DATAN2function. (D$22)

DUPLICATE NAME
Old file call

Attempt to create/renamea file with the name of an existing file. [CZ]

#***T)Z,
R-mode function

Attempt to divide by zero (double-precision).

END OF FILE
File System

Attempt to access location after the end of the file. (PRWF$$, RDEN$$, SGDR$$)

[E$EOF]

*#*** FQ
R-mode function

Exponentoverflow. (A$81)

*#*e* EX
R-mode function

Exponentfunction value too large in EXP or DEXP function.

#*** EXP — ARGUMENT TOO LARGE V-mode function

The argument of the EXP function is too large, i.e., it will give a result outside the

legal range.

**** EXP - OVERFLOW V-mode function

Overflow occurred in calculating the EXP function.

FAM ABORT
File System

System error. [E$FABT]

1 January, 1979 A-11 FDR 3057

A ERROR MESSAGES

FAM - BAD STARTUP File System

System error. [E$FBST]

FAM OP NOT COMPLETE File System
Networkerror. [E$FONC]

****PE R-modefunction
Error in FORMATstatement. FORMATstatements are not completely checkedat
compile time. (F$IO)

FILE IN USE File System
Attempt made to open a file already opened orto close/delete a file opened by
another user, etc. (SRCH$$) [E$FDEL]

FILE OPEN ON DELETE File System
Attempt madeto delete a file which is open. (SRCH$$) [E$FDEL]

FILE TOO BIG File System
Attempt made to increase size of segment directory beyond size limit. (SGDR$$)[E$FITB]

****EN n R-modefunction
Device error in BACKSPACE command on FORTRAN logical unit n.

**** FSBN - BAD LOGICAL UNIT V-modefunction
FORTRANlogical unit numberout of range.

**** F§$FLEX - DOUBLE-PRECISION DIVIDE BY ZERO 64V mode
Attempt has been madeto divide byzero.

““** F$SFLEX - DOUBLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponent of a double-precision number has exceeded maximum,

**** FEFLEX - REAL => INTEGER CONVERSION ERROR 64V mode
Magnitude of real numbertoo greatfor integer conversion.

**** F$EFLEX - SINGLE-PRECISION DIVIDE BY ZERO 64V mode
Attempt has been madeto divide byzero.

**** FSFLEX - SINGLE-PRECISION EXPONENT OVERFLOW 64V mode
Exponentof a single-precision number has exceeded maximum.

**** F$IO - FORMAT ERROR V-modefunction
Incorrect FORMATstatement. FORMATstatements are not completely checked at
compile time.

**** FSIO - FORMAT/DATA MISMATCH V-modefunction
Input data does not correspond to FORMATstatement.

**** F$IO - NULL READ UNIT V-mode function
FORTRANlogical unit for READ statement not configured properly.

1 January, 1979 A-12 FDR 3057

ERROR MESSAGES A

eeeeTT | R-mode function

Exponentiation exceedsinteger size. (E$11)

ILLEGAL INSTRUCTIONAToctal-location R mode and 64V mode

Aninstruction at octal-location cannot be identified by the computer.

ILLEGAL NAME File System

Illegal namespecified for a file or UFD. (CREA$$, SRCH$$) [ESBNAM]

ILL REMOTE REF File System

Attempt to perform network operations by user not on network. [E$IREM]

ILLEGAL SEGNO 64V mode

Program references a non-existent segment or a segment numbergreaterthan those

available to the user.

ILLEGAL TREENAME File System

The string specified for a treenameis syntactically incorrect. [E$ITRE]

****TM R-modefunction

Overflow or underflow occurred during a multiply. (M$11, E$11)

filename IN USE Old file call

Attempt made to opena file already opened, or to close/delete a file opened by

another user,etc. [SI]

INVALID FAM FUNCTION CODE File System

System error. [E$FIFC]

#e** T**T — ARGUMENT ERROR V-modefunction

Exponentiation exceedsintegersize.

*eEFTG R-mode function

Argumentnot greater than zero in ALOG or ALOG10 function.

MAX REMOTE USERS EXCEEDED File System

No more users may access the network. [ESTMRU]

NAME TOO LONG File System

Length of name in argumentlist exceeds 32 characters. [ESNMLG]

NO AVAILABLE SEGMENTS 64V mode

Additional segment(s) required - none available. User should log out to release

assigned segments andtry again later.

NO PHANTOMSAVAILABLE File System

An attempt has been made to spawn a phantom. All configured phantoms are

already in use. [E$NPHA]

FDR 3057 A-13 1 January, 1979

A ERROR MESSAGES

NO RIGHT File System
User does not have accessrightto file, or does not have write access in UFD when
attempting to create a sub-UFD. (CREA$$, GPAS$$, SATR$$, SRCH$$, SGDR$$)
[ESNRIT]

NO ROOM File System
An attempt has been madeto addto

a

table of assignable devices with a DISKS or
ASSIGN AMLC command andthetable is already filled. [ESROOM]

NO TIME File System
Clock not started. System error. [ESNTIM]

NO UFD ATTACHED Old file call
User not attached to a UFD [AL, SL]. Usually occurs after attemptto attach with a
bad password.

NO UFD ATTACHED File System
User not attached to a UFD. (ATCH$$, CREA$$, GPAS$$, SATR$$, SRCH$$).
[ESNATT] Usually occurs after attempt to attach with a bad password.

NO VECTOR R and 64V mode
User error in program has caused PRIMOS to attempt to access an unloaded
element.

1. A UII, PSU, or FLEX to location 0
2. Trap to location 0

3. SVC switch on, SVC trap and location '65is 0.

NOT A SEGDIR | ' File System
Attempt to perform segmentdirector operations on a file which is not a segment
directory. (SRCH$$) [ESNTSD]

NOT A UFD : Old file call
Attempt to perform UFDoperations on

a

file which is not a UFD. [AR]

NOT A UFD | File System
Attempt to perform UFDoperations on

a

file which is not a UFD. (ATCH$$, GPAS$$,
SRCH$$). [ESNTUD]

device-name NOT ASSIGNED PRIMOS
User program has attemptedto access an I/O device which has not been assigned to
the user by a PRIMOS command.

filename NOT FOUND Old file call
File specified in subroutine call not found. [AH, SH]

filename NOT FOUND File System
File specified in subroutine call not found. (ATCH$$, GPAS$$, SATR$$, SRCH$$)
[ESFNTF]

FDR 3057 A~-14 1 January, 1979

ERROR MESSAGES A

filename NOT FOUND IN SEGDIR File System

Filename specified in subroutine call not found in specified segment directory.

(SRCH$$, SGDR$$) [E$FNTS]

NULL READ UNIT | PRIMOS

Program has attempted to read with a bad unit number. This may be caused by a

program overwriting itself (array out of bounds).

OLD PARTITION File System

Attempt to perform,in anold file partition, an operation possible only in a new file

partition; e.g., date/time information access. (SATR$$) [E$OLDP]

****PA n R-mode function

PAUSEstatement n (octal) encountered during program execution

**** PAUSE n V-mode function

PAUSEstatement n (octal) encountered during program execution.

POINTER FAULT 64V mode

Reference has been made to an argumentor instruction not in memory. The two

usual causes of this are an incomplete load (unsatisfied references), or incomplete

argumentlist in a subroutine or function call.

POINTER MISMATCH PRIMOS

Internal file pointers have become corrupted. No user remedial action possible.

System Administrator must correct. [PC, DC, AC]

PROGRAM HALTAToctal-location R mode and 64V mode

Program control has beenlost. The program has probably written over itself or the

load was incomplete (R-mode).

PRWFIL BOF Old file call

Attempt by PRWFILsubroutine to access location before beginningof file. [PG]

PRWFIL EOF Old file call

Attempt by PRWFIL subroutine to access location after end offile. [PE]

PRWFIL POINTER MISMATCH
Old file call

The internalfile pointers in the PRWFIL subroutine have becomecorrupted.

PRWFIL UNIT NOT OPEN Old file call

The PRWFIL subroutine is attempting to perform operations using a PRIMOSfile

unit number on which nofile is open.

PTR MISMATCH
File System

Internal file pointers have become corrupted. No user remedial action possible.

(ATCH$$, CREA$$, GPAS$$, PRWF$$, RDENS$$, SATR$$, SRCH$$, SGDR$$).

[E$PTRM]. Consult system manager.

REMOTE LINE DOWN File System

Remote call-in access to computer not enabled. [E$RLDN]

1 January, 1979 A-15 FDR 3057

A ERROR MESSACES

FEEERT
R-modefunction

Argumentis too large for real-to-integer conversion. (C$12)
****RN n

R-modefunction

Device error or end-of-file in READ statement on FORTRAN logical unit n.

****OE R-mode function
Single precision exponent overflow.

SEG-DIR ER Oldfile call

Error encountered in segmentdirectory operation. [SQ]

SEGDIR UNIT NOT OPEN File System
Attempt has been made to reference a segment directory which is not open.
(SRCH$$) [ESSUNO]

SEM OVERFLOW File System
System error. [E$SEMO]

**** SIN/COS - ARGUMENT TOO LARGE V-mode function
Argumenttoo large for SIN or COSfunction.

****SQ R-modefunction
Negative argument in SQRT or DSQRTfunction.

**** SQRT - ARGUMENT<0 V-mode function
Negative argument in SQRTfunction.

#**KOT 1
R-mode function

STOP statementn (octal) encountered during program execution.
**** STOP n

V-mode function
STOP statement n (octal) encountered during program execution.

FHEEOT
R-mode function

Attempt to divide by zero (single-precision).

TOO MANYUFD LEVELS File System
Attemptto create more than 72 levels of sub-UFDs. This error occurs only on old file
partitions; new file partitions have no limit on UFDlevels. [ESTMUL]

UFD FULL Oldfile call

No more room in UFD. [SK]

UFD FULL File System
UFDhasno roomfor morefiles and/or sub-UFD’s. Occurs only in oldfile partitions.
(CREA$$, SRCH$$) [E$FDFL]

FDR 3057 A-16 1 January, 1979

ERROR MESSAGES A

UFD OVERFLOW Old file call

No more room in UFD.

UNIT IN USE Old file call

Attempt to open file on PRIMOSfile unit already in use. [SI].

UNIT IN USE File System

Attemptto open file on PRIMOSfile unit already in use. (SRCH$$). [ESUIUS]

UNIT NOT OPEN Old file call

Attemptto perform operations with a file unit number on which no file has been

opened. [PD, SD]

UNIT NOT OPEN File System

Attempt to perform operations with a file unit number on which no file has been

opened. (PRWF$$, RDEN$$, SRCH$$, SGDR$$). [ESUNOP]

UNIT OPEN ON DELETE Oldfile call

Attemptto delete file without havingfirst closedit. [SD]

+KWN n R-mode function

Device error or end-of-file in WRITE statement on FORTRANlogical unit n.

EREEXX R-mode function

Integer argument >32767.

1 January, 1979 A-17 FDR 3057

Sys

te
m

an
d con

sta
nts

TERMINAL
full duplex

X-ON/X-OFF disabled

EDITOR (ED)
INPUT(TTY)
LINESZ 144
MODE NCOLUMN
MODE NCOUNT
MODE NNUMBER
MODE NPROMPT
MODEPRALL
VERIFY

SYMBOLS

BLANKS

COUNTER
CPROMPT
DPROMPT

ERASE

ESCAPE .

KILL ?

SEMICO - end of line or command

TAB \

WILD |

ge
&

(
Q
)
t

-

VIRTUAL LOADER (LOAD)

Memory Location: '122770 - '144000

Loading address: current *PBRK value

Library: FTNLIB FORTRANlibrary

MODE: D32R

Sector Zero Base Area:
Base start at location ‘200

Base range '600 words

COMMON:Top = '077777

1 January, 1979 B-1 FDR 3057

B SYSTEM DEFAULTS AND CONSTANTS

SEGMENTED-LOADER(SEG)
Loading address: current TOP+1 in current procedure segment
Stack size: 6000 words

Library: PFTNLB and IFTNLBlibraries

EXECUTION

A-register value 0

B-register value 0

X-register value 0

Program start address ’1000

Bits 4-6 of Keys:

000 16K, sector-address

001 32K, sector-address

010 64K, relative-address

011 32K, relative-address

110 64K, segmented-address

PRIMOS

ERASE a

INTERRUPT CONTROL-P or BREAK

KILL ?

Files: created with protection, owner all access rights (7), non-owner no
accessrights(0).

FORTRAN COMPILER (FTN)

BINARY disk-file

ERRTTY

FP

INPUT disk-file
INTS
LISTING NO no listing file
NOBIG

NODCLVAR
NOTRACE

NOXREF

SAVE

32R

FDR 3057 B-2 1 January, 1979

ASCII character set

The standard character set used by Prime is the ANSI, ASCII 7-bitset.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with devices. The

following points are particularly important to Prime usage.

¢ Output Parity is normally transmitted as a zero (space) unless the device requires

otherwise, in which case software will compute transmitted parity. Some con-

trollers (e.g, MLC) may have hardwareto assist in parity generations.

¢ Input Parity is ignored by hardware and by standard software. Input drivers are

responsible for making the parity bit suit the host software requirements. Some

controllers (e.g., MLC) mayassist in parity error detection.

° The Prime internal standardfor the parity bit is one, i-e., '200 is addedto the octal

value.

KEYBOARD INPUT

Non-printing characters may be enteredinto text with the logical escape character * and

the octal value. The characteris interpreted by output devices accordingto their hardware.

Example: Typing °207 will enter one character into the text.

CTRL-P ('220) is interpreted as a BREAK.

.CR. ('215) is interpreted as a newline (.NL.)

" ('242) is interpreted as a character erase

? (277) is interpreted asline kill

\ (334) is interpreted as a logical tab (Editor)

1 January, 1979 C-1 FDR 3057

C ASCII CHARACTER SET

TableC-.ASCIICharacter Set (Non-Printing)

‘h arComments/Prime Usageee

 L Null charatier- filler.7 ae
__.Startof header (communications)
_ Startof text (communications)

~ End of text (communications) SE
ind of transmission (communications) EES

dof LD. (communications) S
LC nowledge affirmative (communications)

ible alarm(bell) — oe
Kspaceonposition (carriage control)

oe sical horizontal tab- oo
oees feed; ignoredas.terminal input.

Physicalvertical tab (carriage control]
aForm feed(carriage control)

CRCarriagereturn (carriage control} (ay
es RR&-red ribbonshift
_BRS-black ribbon shift
GeceR CP-relative copy (2)0.

1. -RHT-relative horizontal tab(3) Se
o OWLEhalf line feed forward (carriagecontrol),

_ RVT-relative vertical tab(4)
HLR-half line feed reverse (carriage.control)Q

oe Negative.acknowledgement{communication
Y. Synchronocity (communications]_ oo
Endoftransmissionblock. (communications) |

_ Cancel ~ Bees |
End.of Medium eae

S
y

‘Ss. File separator~
35 GS Group separator.

R __ Recordseparator
S Untseparator

Ntes

ASCII CHARACTER SET C

Prime memory %

of FORTRANdata types

INTRODUCTION

Prime machines use a 16-bit memory word which is addressable by word. Prime's

FORTRANdata types departslightly from the ANSI standard whichstates that LOGICAL,

INTEGER, and REALitems occupy onestorage unit each.If a storage unit is 32 bits (4 bytes

=? words), then the requirements of ANSI are met except for the LOGICALtype whichis

only 16 bits. Below is a representation of the sizes of data entities, for the purposes of

EQUIVALENCEstatements, used by Prime. Detailed descriptions of each type are pres-

ented separately.

Ewe Bee "Ti |) ROUBLE PRECISION.

D PRIME MEMORY FORMATS OF FORTRAN DATA TYPES

DATA TYPES

LOGICAL16bits. Bits 1-15=0, Bit 146=0=,.FALSE., 1=.TRUE.

These values are equivalent to INTEGER*2 values of 0 and1 respectively. Any other values
are illegal for LOGICALvariables.

INTEGER*2 16 bits. Bit 1=sign bit.INTEGER numbersarein 2’s complementrepresentation
with a value range of -32768 to 32767. These numbersin octal are 100000 and ‘077777
respectively. Note that -0=0, and -(-32768)=-32768.

Integer arithmetic is always exact. Integer division truncates, rather than rounds.
INTEGER*4 32 bits. Bit 1=sign bit. Integer numbersare in 2's complement representation
with a value range of -2147483648 to 2147483647. These numbers,in octal (word 1, word 2) are
(°100000, '000000) and ('077777, 177777) respectively. Note that -0=0 and ~(-2147483648) =
-2147483648.

Integer arithmetic is always exact. Integer division truncates, rather than rounds.

CAUTION

Explicit use of DBLE (FLOAT(I*4)}) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, how-
ever, will not lose precision.

REAL*4 32 bits. Bit 1=sign bit. Bits 2~24—mantissa.Bits 25-32=exponent. The mantissa and
sign are treated as a 2’s complement numberandthe exponentis an unsigned, excess 128,
binary exponent. In general, any floating point numberis represented as:

N=M * 2**(E-128)

where

-1<M<-1/2 or 1/2<M<1

0<E<255

Zero is represented as M=0, E=0.

The value range, in octal (word1, word2) is:

('100000, '000377) [See Note] to (077777, '177777}
corresponding to -1*2**(127) and (1-e)*2**(127).

The valuesclosest to zero, in octal are:

(137777, 177400) and ('040000, '000000) [See Note]
corresponding to (-1/2+e)*2**-128 and 1/2*2**-128

Normalization ensuresthatbits 1 and 2 are different and is achieved by shifting left 1 bit at
a time. Hence,the effective precision is between 22 and 23bits.

Note

These numberswill cause exponentoverflow if negated due
to the asymmetry of 2's complementnotation.

DOUBLE PRECISION 64 bits. Bit 1 = sign bit. Bits 2-48 = mantissa. Bits 49-64 — exponent.
The mantissa andsign are treated as a 2’s complement numberandthe exponentis a signed,

FDR 3057 D-2 1 January, 1979

PRIME MEMORY FORMATSOF FORTRAN DATA TYPES D

excess 128, binary exponent. In general, any double precision floating point numberis

representedas:

N =M * 2 (E-128)

where

—~1<M< — 1/2 or 1/2<M<1

— 32768<E<32767.

Zero is represented as M =0, E=0.

The value range, in octal (word1, word2, word3, word4) is:

(100000, ’000000, 000000, 077777) [See Note]to

(077777, °177777, °177777, ’077777)

corresponding to -1*2**32639 and (1-e)*2**32639

The values closest to zero, in octal, are:

('137777, 177777, ‘177777, 100000) and
(040000, 000000, '000000, ’100000) [See Note]

correspondingto (-1/2+e)*2**-32896 and 1/2*2**-32896

Normalization ensuresthat bits 1 and 2 are different and is achievedbyshifting left 1 bit at

a time. Hence,the effective precision is between 46 and 47bits.

Note

These numberswill cause exponentoverflowsif negated due

to the asymmetryof 2’s complement notation.

COMPLEX 64 bits. A complex number is defined as two REAL*4 entities (see above)

representing the real and imaginaryparts.

CHARACTERSPrime uses ASCIIas its standard internal and external charactercode.It is

the 8-bit, marking variety (parity bit always on). Thus, Prime’s codesetis effectively a 128-

character code set. (ASCII spacing representation, parity bit always off, can be entered into

the system, but most system softwarewill fail to recognize the characters as their terminal

printing equivalent.)

Characters packed into numeric items will always be negative numbers if accessed

numerically. Also, if the data item is not completely filled (e.g., A2 formatinto a REAL*4

item), the item will be right padded with blanks (ASCII '240).

The positions of the exponents for REAL and DOUBLE PRECISIONitemsprecludessorting

character data as REAL items, but is quite legitimate in integer items. However, EQUAL

comparisons in REALitemsare valid.

1 January, 1979 D-3 FDR 3057

Index xX

A
Ainput format 15-22
A output format 15-21
Aregister 17-6
A register defaults 17-6
A$KEYSfile 19-9

Abbreviations, command 2-1
Access,file 19-14
Access,file, controlling 3-8
Accessing PRIMOS 3-1
Accessing the system 3-2
ADD1§, MIDASsubroutine 12-5
Addition, matrix, subroutine 19-2
Address constants 14-6
Address, callby 15-4
Addressing mode 6-7
Adjoint, matrix, subroutine 19-2
Advanced features, SEG LOAD

subprocessor 11-1
Advanced SEGfeatures 7-7
Advantages of MIDAS 12-1
Advantagesof shared

procedures 11-7
Altering stack size 11-6
AND truth table 14-7
Angle brackets, convention 2-4
ANSI standard data storage D-1
APPLIB 19-9

Application library
subroutines 16-3

Applications library 19-9
Applications library subroutines,

list 19-10

Area TRACEstatement 15-8
Areas, base 6-4
Areas, base (SEG) 7-6, 7-8
Arguments, function 16-2
Arguments, subroutine 16-3
Arithmetic

IF statement 15-12
mixed mode 15~9
operators 14-7

vs. logicalIF 13-6
Arrays 14-5

in over 64K word
COMMON 11-12

dummy argument, over 64K
word COMMON 11-12

segment-spanning 5-10
ASCII card decks, reading 4-2

character set C-~1
characterstrings 14-4
characters, non-printing C-2
characters, printing C-3
data storage format D-3
keyboard input C-1
magnetic tape, reading

from 4-3
parity C-1
Prime usage C-1

Assembly language,interface
to 12-8

ASSIGN (PRIMOS command) 4-1
ASSIGN option-WAIT 4-1
ASSIGNstatement 15-10
Assigned GO TO statement 15-11
Assigned segments, releasing 7-7
Assigning adevice 4-1
Assigning directory

passwords 3-3
Assignment statements 15-9

1 January, 1979

statements, data moderules,
table 15-11

device, queuing 4-1
parameter, implicit 11-3
segment 7-4
segment, relative 11-1
segment, specific 11-3

ATCH$$ subroutine 19-16
ATTACH (PRIMOS

command] 3-2
Attaching to remote

directories 10-18
ATTDEVsubroutine 15-14
Attn key 2-5
Audience 1-1
Automatic logout 3-9

B
B format, details 15-21
Boutputformat 15-21
Bregister 17-6
B register defaults 17-6
Backslash, usage 2-5
BACKSPACEstatement 15-25
Base area error messages 6-7
Base areas 6-4

(SEG) 7-6, 7-8
conservation 5-10

BCD card decks, reading 4-2
magnetic tape, reading

from 4-3
BIG (compiler option) 5-10, 17-1
BILD$R, MIDASsubroutine 12-2
BINARY(compiler option) 5-3,

17-1

(PRIMOS command) 17-10
Binaryfile, compiler (unit 3) 5-3,

17-9

file, definition 2-1
files, concatenating 17-10
magnetic tape, reading

from 4-3
READstatement 15-16
search subroutine 19-9
WRITEstatement 15-18

Bit-device correspondence,
compiler 17-9

Bit-mnemonic correspondence, A
register 17-7

Bit-mnemonic correspondence, B
register 17-7

Blank COMMON 15-6
Blank COMMON,relocating 11-5
BLOCK DATAstatement 15-3
Block data subprogram 15-3
BLOCKDATAstatement 15-3
BNSRCH subroutine 19-9
Braces, convention 2-4
Brackets, convention 2-4
Break key 2-5
BUBBLEsubroutine 19-8
Building MIDASdata

subfile 12-2
Byte, definition 2-1

C
Call by address 15-4
Call byname 15-4
CALL EXIT 1-4

CALLstatement 15-7, 15-25
CANCEL (SPOOLoption) 3-7

Cancelling spool request 3-7
Card decks, ASCII, reading 4-2

BCD, reading 4-2
EBCDIC, reading 4-2

Cards, punched, reading 4-2
Caret, usage 2-5
Central processorunit,

definition 2-1
Chain, directory 2-7
Chaining commandfiles 10-3
Change I/O unit physical device

correspondence 15-13
Changing

directory names 3-5
editormodes 4-4
file names 3-5
file names during

copying 10-19
record size 15-3
working directory 3-2

CHARACTERdata storage
format D-3

Character set, ASCII C-1
legal 14-1

Characterstring input,list
directed 15-17

Characters, special terminal 2-5
Circular reasoning see proof by

assumption
CLINEQ subroutine 19-1
CLOSE (PRIMOS

command} 17-10
CLOSE ALL 17-10

Closing commandinputfiles 10-4
Closing commandoutput

files 10-6
Closing deck image files 4-2
Closing files 17-10
CM error 6-1

CMADDsubroutine 19-2
CMADJ subroutine 19-2
CMCOFsubroutine 19-3
CMCONsubroutine 19-3
CMDETsubroutine 19-4
CMDNCO0 8-4
CMDSEG 8-5

CMIDNsubroutine 19-4
CMINV subroutine 19-4
CMMLTsubroutine 19-5
CMPF (PRIMOS command}
CMSCLsubroutine 19-5
CMSUBsubroutine 19-6
CMTRNsubroutine 19-6
CNAM$$ subroutine 19-16
CNAME (PRIMOS command) 3-5
CO see COMINPUT

COBOL, interface to 12-8
Code,lines of, modifying 4-5

moving linesof 4-5
relative address 5~9
segmented address 5-9

Codes, concordance 5-10
Codes, error 19-15
Coding statements 15-18
Coding strategy 9-1
Cofactor, matrix, subroutine 19-3
Collating sequence 19-7
Column 6forcontinuation 14-2
Columns 73-80 14-2
COMBsubroutine 19-1
Combination subroutine 19-1

10-27

FDR 3057

X Index

COMINPUT (PRIMOS
command) 10-2

options 10-2
Command

abbreviations 2-1
external, definition 2-1
file operations 10-1
file requirements 10-2
files, chaining 10-3
files, CX 10-12
files, errorsin 10-4
format conventions 2-4
input files, closing 10-4
internal, definition 2-2
output files, closing 10-6
sequencesfromfiles , 10-1
summary, editor 4-7
summary, FUTIL 10-25
summary, LOAD 6-9
summary, SEG 7-8
summary, SEG LOAD

subprocessor 7-10
summary, SEG MODIFY

subprocessor 7-13
UFD, installation of program

in 8-4

UFD,installing R-mode
programsin 8-4

UFD,installing V-mode
programsin 8-5

Commands, FUTIL 10-18
Comment lines 14-2

inSEG 7-1

loader 6-1
incommandfiles 10-2
overlaying 4-5
use of 9-1

COMMON
blank, relocating 11-5
block FSIOBF 15-14
block LIST 15-6

blocks 15-6
blocks (load map) 6-6, 7-6
blocks over 64K words 11-12
blocks, reserving space

for 11-2
locating 6-7
locating (SEG) 7-8
locating into specified

segments 11-1

location, deferring 6-7
statement 15-6
uninitialized, relocating 11-5

Common SEGcommand :
parameters 7-8

Common sort parameters 19-7
COMOseeCOMOUTPUT
COMO,use with TRACE 15-9
COMOUTPUT (PRIMOS

command) 10-5
file options 10-5
terminal options 10-5

Companion, Programmer's 3-1
Comparing files 10-27
Compilation

end of, message 5-2
Statements 15-8
V-mode vs. R-mode 13-4

Compile error message 5-2
Compiler

binaryfile (unit 3} 5-3, 17-9

FDR 3057

devices, default 17-9
-DCLVAR usage 9-2
-DYNMoption, use of 13-7
error messages A-i
error messages,print at

terminal 5-5
error messages, suppress

printing 5-5
file specifications, table 17-2
file unit usage 17-9
FORTRAN,defaults B-2
functions 5-3 .
global trace 9-2
input file 5-3
input/output

specifications 5-3
invoking 5-1
listing file (unit 2} 5-4,17-9
listing, default 5-6
listing, enable 5-5
listing, expanded 5-6
listing, full 5-6
object file (unit 3) 5-3, 17-9
operations 5-11
optimizing 5-12
optimization 5-12
option -32R 5-9
option -64R 5-9
option -64V 5-9
option -BIG 5-10
option -BINARY 5-3
option-DCLVAR 5-11
option-DEBASE 5-10
option -DYNM_ 5-10
option -ERRLIST 5-6
option-ERRTTY 5-5
option -EXPLIST 5-6
option -FP 5-11
option -INPUT 5-3
option -INTL 5-11
option -INTS 5-11
option -LIST 5-6
option -LISTING 5-4
option-NOBIG 5-10
option-NODCLVAR 5-11
option -NOERRTTY 5-5
option -NOFP. 5-11
option -NOTRACE 5-9
option -NOXREF 5-8
option -OPT 5-12
option -PBECB 5-11
option -SAVE 5-10
option -SOURCE 5-3
option-TRACE 5-9
option -UNCOPT 5-12
option -XREFL 5-8
option -XREFS 5-8
parameter combinations,

prohibited 5-11
parameter mnemonics,

table 5-4
parameters 5-3
reference 17-1
sourcefile (unit1) 5-3, 17-9
syntax 5-1
syntax checking 9-2
description 1-7

Compiling 5-1
for shared procedures 11-8
from peripheral devices 5-3
to peripheral devices 5-3

Complete crossreference 5-8
Completing a work session 3-8
COMPLEXdatastorage

format D-3
COMPLEX mode 15-5
Complex numbers 14-4
Composition, program 14-8
Computed GO TO

statement 15-11

Concatenating binary files 17-10
Concatenatinglisting files 17-10
Concepts, glossary 2-1
Concordance address, over 64K

word COMMON 11-12
Concordance codes 5-10
Concordanceseealso cross

reference
Concordances, compiler,

enable 5-5
CONIOC 15-14
Conserveloader base areas’ 5-10
Constants 14-3

address 14-6
range 14-3

system B-1

Contents
directory,listing with

FUTIL 10-25
file,examining 3-6
of directories 3-4

Continuation lines 14-2
CONTINUEstatement 15-10
Controlflow,

conversion 1-4

flow, program, monitoring 9-2
key 2-5
lines 14-2
load placement 11-2
statements 15-10

CONTROL-P, usage 2-6
CONTROL-Q, usage 2-6
CONTROL-S, usage 2-6
Controlling file access 3-8
Conventions,

command format 2-4
filename 2-2
glossary 2-1

Conversion, control flow 1-4
functions 1-4
input/output 1-4
program 1-4
source language 1-4
subroutines 1-4

Copies, file, obtaining 3-6
Copying

directories 10-19
directories trees 10-19
files 10-18
files and changing

names 10-19
tapes with MAGNET 10-15
tapes with

MA-
GRST/MAGSAV_ 10-15

UFDs 10-19
with FUTIL 10-19

CPU, definition 2-1
CR (in Bformat) 15-23
CREATE (PRIMOS

command) 3-3
Creating MIDAS template 12-2

1 January, 1979

Index X

new directories 3-3
new programs 4-4

R-moderunfiles 11-10
GREATK(MIDASutility) 12-2

dialogue 12-5
CRMPC (PRIMOS command) 4-2

Cross reference codes 5-9
see also concordance
compiler, enable 5-5
complete 5-8
example 5-8
explanation 5-8
full 5-8
partial 5-8
short 5-8
suppression 5-8

Current directory, definition 2-1
Current disk 2-10
CX (PRIMOS command) 10-11

commandfiles 10-12
options 10-11
queue information 10-12
queue, dropping jobs

from 10-13
see also sequential job

processor

D
Dinput format 15-22
D output format 15-20
D/ prefix 11-13
DAMfiles 19-14

see also direct access method
Data definition

mode convention, FORTRAN,
overriding 15-4

mode of function 15-3
moderulesfor assignment

statements, table 15-11
mode typing, parameter 15-6 -
modes 15-5
segment 11-2

statement 15-8
DATA statement 15-8
Data storage format,

ASCII D-3
CHARACTER D-3
COMPLEX D-3
DOUBLE PRECISION D-2
INTEGER*2 D-2
INTEGER*4 D-2
LOGICAL D-2
REAL*4 D-2

Data storage, ANSI standard D-1
Data subfile, MIDAS,

building 12-2
Datatypes 15-5

FORTRAN, memory
formats D-1

Database Management System see
also DBMS

description 1-8
interface to 12-6

DATE (PRIMOS command) 10-6
Date/time stamping of output

files 10-6

DBMSseealso Database
Management System

DBMS,description 1-8
DCLVAR(compiler option) 5-11,

17-1

1 January, 1979

DEBASE(compiler option) 5-10,
17-1

Debugging 9-1
DECODE,formatted,

statement 15-18

list directed, statement 15-18
Decreasing numberof

segments 11-9

Default
characters, editor 4-10
compiler devices 17-9
compilerlisting 5-6
object code 5-9
protection keys 3-8
record size 15-13

Defaults,
Aregister 17-6
Bregister 17-6
ED B-1
editor B-~1
execution B-2
FORTRANcompiler B-2
FTN B-2
LOAD B-1
loader B-1
PRIMOS_ B-2
SEG loader B-2
segmented loader B-2
system B-1

terminal B-1
DEFER (SPOOLoption) 3-7
Deferring COMMON

location 6-7
Deferring spool printing 3-7
Definitions 2-1
DELET$, MIDASsubroutine 12-5
DELETE (PRIMOS

command) 3-8
Deleting

directories 3-3, 10-24
directory trees 10-24
files 3-8, 10-18

MIDASfiles 12-6
programs 4-11

UFDs 10-24
with FUTIL 10-24

Delimiters, format 15-19
Delimiters,list directed 15-16
DELSEG (PRIMOS

command) 7-7
Descriptor repetition 15-19
Details, loading 6-6
Determinant subroutine 19-4
Determiningfile size 3-6
Development, program 1-3
Device assignment, queuing 4-1
Device control statements 15-25
Device see also disk
Device, assigning 4-1
Device-bit correspondence,

compiler 17-9
Devices, compiler, default 17-9
Devices, unassigning 4-1
Dialogue, CREATK 12-5
Dialogue, KBUILD 12-4
DIMENSIONstatement 15-6
Dimensioning,not allowed in

SAVE statement 15-7
Diminishing incrementsort

subroutine 19-8
Direct access 15-12

and ATTDEV
subroutine 15-13

and the Editor 15-13
IBM compatibility 15-13
READstatements 15-15
WRITEstatements 15-17
use of 15-13

Direct entry links 7-6
Directories,

creating 3-3

deleting 3-3
remote, attaching to 10-18

Directory

chain 2-7
contents 3-4
contents,listing with

FUTIL 10-25
current, definition 2-1
definition 2-1
examining contents 3-4
file, master, definition 2-3
homevs. current 2-7
home, definition 2-2
name, definition 2-1
names, changing 3-5
operations 3~2
passwords, assigning 3-3
segment, definition 2-4
structures 2-6

userfile, definition 2-4
working, changing 3-2

Disk
see also device
current 2-10

logical, definition 2-3
physical, definition 2-3

DLINEQ subroutine 19-1
DMADDsubroutine 19-2
DMADJsubroutine 19-2
DMCOFsubroutine 19-3
DMCONsubroutine 19-3
DMDETsubroutine 19-4
DMIDNsubroutine 19-4
DMINVsubroutine 19-4
DMMLTsubroutine 19-5
DMSCLsubroutine 19-5
DMSUBsubroutine 19-6
DMTRNsubroutine 19-6
DO loop

index 15-10
optimization 5-12, 13-1
one-trip 15-10

DO loops, implied 15-18
nesting 15-10

DO statement 15-10
Documents, related 1-2
DOUBLEPRECISIONdatastorage

format D-2
DOUBLE PRECISION mode 15-5
Double precision numbers 14~4
DOUBLEPRECISIONseealso

REAL*8

Double-quote, usage 2-5
Dropping jobs from CX

queue 10-13
Dummyargumentarrays, over 64K

word COMMON 11-12
Duplicating magnetictapes 10-15

runfiles 11-6
Dynamicallocation of local

storage 5-10

FDR 3057

X Index

DYNM(compileroption) 5-10,
17-1

option, compiler, use of 13-7

E
Einput format 15-22
Eoutputformat 15-20
EBCDICcard decks, reading 4-2
EBCDIC magnetic tape, reading

from 4-3
ECBs,load into proceduré

frame 5-11
ED (PRIMOS command) 4-4

defaults B-1
Edit mode, editor 4-4
Editing session, sample 4-5
Editor

command summary 4-7
defaults 4-10, B-1
description 1-8
edit mode 4-4
input mode 4-4
modes, changing 4-4
special characters 4-5
symbol names 4-10
techniques 4-5
usage of"’ 4-5
usage of ; 4-5
usage of ? 4-5
usage of / 4-5
text 4-4

use of on direct access |
files 15-13

Ellipsis, convention 2-4
Enable compiler

concordances 5-5
Enable compilercross

references 5-5
Enable compilerlistings 5-5
Enable flagging of undeclared

variables 5-11
Enable global trace 5-9
ENCODEstatement 15-19
End of compilation message 5-2
END statement 15-11

END= 15-14 ,
ENDFILE statement 15-25

Ending main program 1-4

Entering programsfrom other

media 4-1
Entering source programs 4-1

Entry control block 7-6
Environment, interactive,

description 1-5
Environment,

phantom user, description 1-5
program,list 1-5
sequential job processing,

description 1-5
Equations,linear,

subroutine 19-1
EQUIVALENCEstatement 15-7
ER! prompt 2-6
ERR= 15-14
ERRD.F 19-15

ERRLIST (compiler option) 5-6,
17-2

Error codes 19-15
Error handling,

file 19-15
loader 6-1

FDR 3057

loader, table 6-9
SEG 7-1

Error message, compiler 5-2
Error messages A-1

base areas 6-7
compiler A-1
compiler, print atterminal 5-5
compiler, printonly 5-6
filesystem A-8
FORTRANlibrary A-8
loader A-5
run-time 8-2, A-8

SEG loader A-6
Errorsin command files 10-4
Errors, file system 8-3

FORTRANfunction, R-
mode 8-2

FORTRANfunction, V-
mode 8-3

ERRTTY (compiler option) 5-5,
17-2

Examining file contents 3-6
Examples, conventions 2-5
Executing programs 8-1
Execution

defaults B-2
from SEG's loader 7-2
of R-mode memory images 8-1
of R-mode programs 8-1
of segmented runfiles 8-2
of V-mode programs 8-2
program, fromthe loader 6-2

Exit, normal 15-10
Expanded compilerlisting 5-6
EXPLIST (compiler option) 5-6,

17-2

Extendedintrinsic functions 16-1
range, optimization 5-12
segmented program

techniques 11-1
Extension stack segments 11-6
Extensions 1-4

Extent 7-4
External command,

definition 2-1
External procedure

statements 15-7

EXTERNALstatement 15-7

F
Finputformat 15-22
F output format 15-20
FSIOBF COMMONblock 15-14
F/modifer 11-4
FALSE 14-4

Field descriptor, format 15-19
File

access 19-14
access, controlling 3-8
action keys 19-15
binary, definition 2-1
command,operations 10-1
comparison 10-27
contents, examining 3-6
copies, obtaining 3-6
copying 10-18
definition 2-1
deleting 10-18
directory, master,

definition 2-3
directory, user, definition 2-4

error handling 19-15
hierarchy 2-6
listing 10-18
manipulation 10-27
names 19-14

names, changing 3-5
object, definition 2-3
operations 3-4
protection keys, definition 2-3
size, determining 3-6
specifications, compiler,

table 17-2
source, definition 2-4
structures 2-6
system error messges A-8
systemerrors 8-3
system summary 1-5
types, PRIMOS,table 2-8
unit usge, compiler 17-9

File-unit, definition 2-2
Filename conventions 2-2
Filename, definition 2-2
Files,
DAM 19-14

deleting 3-8
incorporating into shared

segments 11-12

object (SEG) 7-8
printing 3-6
SAM 19-14
saving 4-5
sorting 10-28
text, merging 10-28

FILMEM (PRIMOS
command) 6-2

FIND$, MIDASsubroutine 12-5
Finding line numbers 4-5
Floating point skip operations,

generate 5-11

Floating point skip operations,
suppress 5-11

Forceloading 11-4
FORM (SPOOLoption} 3-8
Format

delimiters 15-19
field descriptor 15-19
lines, rescanning 15-19
statement 15-19

command, conventions 2-4
line 14-1
use of parametersnot

allowed 15-6
Formats

asvariables 15-21
in input statements,

table 15-22
in output statements,

table 15-20
memory, FORTRANdata

types D-1
Formatted

DECODEstatement 15-18
printer control 15-24
READstatement 15-15
WRITEstatement 15-17

Forms ManagementSystem see

also FORMS
Forms managementsystem,

interface to 12-6
FORMSseealso Forms

Management System

1 January, 1979

Index X

description 1-8
Forms,special, printingon 3-7
FORTRAN

compiler defaults B-2
data mode convention,

overriding 15-4
data types, memory

formats D-1
extensions, Prime 1-4
function errors, R-mode 8-2
function errors, V-mode 8-3
function library 18-1
function reference 18-1
functions 16-1
functions,list 18-2
language elements 14-1
languagetutorial books 1-1
library error messages A-8
library functions 16-1
library, V-mode 18-1
math library 19-1
math subroutines 16-3
mathematical functions,

table 1-6
matrix library 19-1
Prime’s, overview 1-1

statements 15-1

under PRIMOS_ 1-4
unit number,physical devices,

table 15-15

FP (compiler option) 5-11, 17~2
Frame,

link 7-6
procedure 7-6
stack 7-6

FTN
(PRIMOS command) 5-1
{SPOOL option) 4-10

defaults B-2
FORTRANcompiler 5-1

FTNLIB 18-1

FTNOPT (PRIMOS

command) 5-12
Full compilerlisting 5-6
Full cross reference 5-8
FULL LIST statement 15-8

Function
arguments 16-2

calls 15-25
calls, optimization 13-4
mode 15-3
mode typing 16-1
reference, FORTRAN 18-1
rules 16-2

FUNCTIONstatement 15-3, 16-1

Function subprograms,user-
defined 16-1

Function, structure of 16-1
Functions,

compiler 5-3
conversion 1-4
extended intrinsic 16-1
FORTRAN 16-1
FORTRANlibrary 16-1
FORTRAN,list 18-2
statement 16-2

FUTIL
(PRIMOS command) 10-18
command summary 10-25
commands 10-18
commands,overview,

figure 10-20

1 January, 1979

prompt character > 10-18
invoking 10-18

G
Ginput format 15-22
G output format 15-20
Generalized subscripts 14-5
Generatefloating point skip

operations 5-11
Global

modespecification 15-5
SAVE 15-7
trace,enable 5-9
trace, suppress 5-9

Global/IMPLICIT conflict 15-5
Glossary, concepts and

conventions 2-1
GOTO,

assigned, statement 15-11
computed, statement 15-11
unconditional,

statement 15-11

H
H outputformat 15-20
HARDWARE (LOAD

subcommand) 6-8
Hardware requirements for

loading 6-8
Hardwaretable 6-10
Headerstatements for

subprograms 15-3
HEAPsubroutine 19-8
Heapsort subroutine 19-8
Hierarchyof files 2-6
HIGH 7-4
Hollerith constants 14-4
Homedirectory, definition 2-2
Homespool queue 10-18
Homevs. current directory 2-7
Housekeeping, MIDAS file 12-6
Hyphen, convention 2-4

I
Tinputformat 15-22
Ioutput format 15-21
I/O unit physical device

correspondence,
change 15-13

IBM compatibility, direct access
files 15-13

Identity, definition 2-2
matrix, subroutine 19-4

IF arithmetic, statement 15-12
logical vs. arithmetic 13-6
logical, statement 15-12
statements, optimization 13-5

IFTNLB 18-1

IMADDsubroutine 19-2
IMADJ subroutine 19-2
IMCOFsubroutine 19-3
IMCONsubroutine 19-3
IMDET subroutine 19-4
IMIDN subroutine 19-4
IMMLTsubroutine 19-5
Implementation, over 64K word

COMMON 11-14
Implemented statements,

list 15-1

Implicit parameter
assignment 11-3

IMPLICIT statement 15-4

X-5

IMPLICIT/global conflict 15-5
Implied DO loops 15-18
Important load commands 6-2
Important SEG subcommands 7-2
IMSCL subroutine 19-5
IMSUBsubroutine 19-6
IMTRNsubroutine 19-6
In-line comments, use of 9-2
Including R-modeinterlude in SEG

runfile 11-10
Incorporatingfiles into shared

segments 11-12

Indention, use of 9-2
Index, DO loop 15-10
Information, system, table 3-5
INITIALIZE (SEG’s loader) 11-5
Initializing aload 11-5
Initiating phantoms froma

phantom 10-8
INPUT (compiler option) 5-3,

17-3

Input file, compiler 5-3
Input

mode, editor 4-4
scale factors 15-24
specifications, compiler 5-4,

17-7

statements 15-12

statements, formatsin,
table 15-22

Input/output optimization 13-5
forconversion 1-4

INSERTsee $INSERT
INSERT subroutine 19-8
Insertion sort subroutine 19-8
Installation of programs in

command UFD 8-4
Installing R-mode programsin

command UFD 8-4
Installing V-mode programsin

command UFD 8-5
Integer division

optimization 13-6
INTEGER mode 15-5
Integer random number

generator 18-5—
INTEGERsee also INTEGER*2,

INTEGER*4
Integer sign extension 18-1
Integer truncation 18-1
INTEGER*2

data storage format D-2
default 5-11
mode 15-5
see also INTEGER, INTEGER*4

INTEGER*4
data storage format D-2
default 5-11
mode 15-5
see also INTEGER, INTEGER*4

Integers 14-3
in subroutine calls 17-3
long 14-3
short 14-3

Interactive environment,
description 1-5

Interchange sort subroutine 19-8
Interface

to assembly language 12-8
to COBOL 12-8
to database management

system 12-6

FDR 3057

X Index

to FORMS management
system 12-6.

to other languages 12-1
toPMA 12-8
to systems 12-1

Interfaces, languages,
description 1-8

Interlude program 8-5
R-mode,including in SEG

runfile 11-10
Internal command,definition 2-2
INTL (compiler option) 5-11, 17-3
Intrinsic functions, extended 16-1
Intrptkey 2-5
INTS (compiler option)
Inversion, matrix,

subroutine 19-4
Item TRACE statement ‘15-8

5-11, 17-3

Job filenumber 10-11
ID 10-12

number,definition 3-2

K
KBUILD (MIDASutility} 12-2

dialogue 12-4
Keyboardinput, ASCII]

characters C-1
Keys, file 19-15
Keys,file protection,

definition 2-3
Keys, protection, default 3-8
Keys, special terminal 2-5
KEYS.F 19-15
KIDDEL (MIDASutility) 12-6

L
Linputformat 15-22
Loutputformat 15-21
Language

elements, FORTRAN 14-1
interfaces, description 1-8
source, conversion 1-4

LDEV,definition 2-3 ©
Ldisk, definition 2-3
Legal character set 14-1.
Libraries reference 19-1
Libraries, description 1-7
LIBRARY(SEG's loader) 11-2
Librarycalls

applications 19-9 |
FORTRANfunction 18-1
FORTRAN math 19-1
FORTRANmatrix 19-1

functions, FORTRAN 16-1
optimization 13-6
operating system 19-14
search 19-7
sort 19-7

subroutines, applications,
list 19-10

subroutines, loading 6-3
subroutines, loading

(SEG) 7-3
Line

format 14-1
numbers 4-5 ;
numbers, finding 4-5
printerlisting of

programs 4-10

FDR 3057

Linear equations subroutine 19-1
LINEQ subroutine 19-1
LINK FR. 7-6
Link frame 7-6
Link segment 11-2
LIST (COMMONblock) 15-6
LIST (compiler option) 5-6, 17-3
LIST (SPOOLoption) 3-6
List directed

character stringinput 15-17
DECODEstatement 15-18
delimiters 15-16
numerical input 15-16
READstatement 15-16

LIST statement 15-8
List, FORTRAN functions 18-2
LISTF (PRIMOS command) 3-4
LISTING (compiler option) 5-4,

17-4

LISTING {PRIMOS
command) 17-10

Listing

directory contents with
FUTIL 10-25

file, compiler (unit 2)
file, spooling 5-5
files 10-18
files, concatenating 17-10
programs 4-10

programs atterminal 4-10
programs online printer 4-10
spool queue 3-6
compiler, default 5-6
compiler, expanded 5-6
full, compiler 5-6

Listings, compiler, enable 5-5
LNUM (SPOOLoption) 4-10
LOAD (PRIMOS command) 6-1

(SEG’s loader) 11-2
command summary 6-9
commands, important 6-2

LOAD COMPLETE 6-2, 7-2

Load ECBsinto procedure
frames 5-11

5-4, 17-9

Load map
(LOAD) 6-3
(LOAD), example 6-5
(SEG) 7-3
(SEG), example 7-5
(SEG), types 7-4
types (LOAD) 6-10
types (SEG) 7-9

Load maps, type 6-4
Load modules, replacing 11-6
Load placement control 11-2
Load sequence 6-2
Load sequence,optimization 13-3
Load state 6-4
LOAD

subcommand
HARDWARE 6-8

subcommand MAP 6-3
subcommands,use of

pathnamesin 6-7
subprocessor command

summary, SEG 7-10
subprocessor, SEG, advanced

features 11-1
defaults B-1
error messages A-5

Load,initializing 11-5

Loader commands, SEG’s 11-2
Loader

defaults B-1
errorhandling 6-1
error handling, table 6-9
error messages A-5
functions 6-6
prompt $ 6-1
conservation of base

areas 5-10
description 1-7
SEG 7-7

SEG, defaults B-2
SEG, error messages A-6
SEG, execution from 7-2
segmented, defaults B-
usage 6-1

Loading
details 6-6
for shared procedures 11-8
library subroutines 6-3
library subroutines (SEG) 7-3
main program 6-3
modes 6-11
R-mode programs 6-1
RUNIT into segment

"4000 11-9
segmented programs 7-1
sequence (SEG) 7-2
templates 11-4
to specific segments 11-3
Ulllibrary 6-8
V-mode programs 7-1
normal 6-2
normal (SEG) 7-2
order of 6-3
order of (SEG) 7-3
virtual 6-6

Loadmap,use of 7-3
Loads, partial 11-4
Local processor 10-17
Local storage, dynamic

allocation 5-10
Local storage, static

allocation 5-10
Locating
COMMON 6-7
(SEG) 7-8
into specified segments 11-1
see also relocating COMMON

Location, stack, RUNIT 11-9
LOCK$, MIDAS subroutine 12-5
Login 3-2
Log out 3-8
Logging in 3-2
Logging out 3-8
Logical

constants 14-4.
disk definition 2-3
functions, mixed integers

in 18-2

IF statement 15-12
mode 15-5
operators 14-6
shift operator 18-7
vs. Arithmetic IF 13-6

LOGICAL,data storage
format D-2

LOGIN (PRIMOS command) 3-2
Login, remote 10-17

LOGOUT (PRIMOS command) 3-8

2

1 January, 1979

Index X

Logout, automatic 3-9
Logout, phantom 10-8
Long and shortintegers,

mixing 18~1
Long integers 14-3
LOW 7-4
Lower case convention 2-4

M
MADDsubroutine 19-2
MADJsubroutine 19-2
MAGNET(PRIMOS

command) 4-3
MAGNET,copying tapes

with 10-15

Magnetic tape
ASCII, readingfrom 4-3
BCD, readingfrom 4-3
binary, readingfrom 4-3
duplicating 10-15
EBCDIC, reading from 4-3
readingfrom 4-3
utilities 10-15

MAGRST (PRIMOS

command) 10-15
MAGRSTdialogue

summary 10-15 :
MAGRST/MAGSAV,copying

tapes with 10-15
MAGSAV(PRIMOS

command) 10-16
MAGSAVdialogue

summary 10-16

MAGSAV/MAGRST,copying
tapes with 10-15

Main program, ending 1-4
loading 6-3

Maintaining MIDASfiles 12-5
Manipulating source

programs 4-1

MAP (LOAD subcommand) 6-3
MAP (SEG subcommand) 7-3
Mapseealso load map
Masterfile directory,

definition 2-3
Math library, FORTRAN 19-1
Math subroutines,

FORTRAN 16-3

Mathematical functions,
FORTRAN,table 1-6

MATHLB 19-1
Matrix

addition subroutine 19-2
adjoint subroutine 19-2
cofactor subroutine 19-3
identity subroutine 19-4
inversion subroutine 19-4
library, FORTRAN 19-1
multiplication subroutine 19-5
subroutines, table 1-6
subtraction subroutine 19-6
transpose subroutine 19-6

MCOFsubroutine 19-3
MCONsubroutine 19-3
MDETsubroutine 19-4
Memory

allocation, optimization - 13-3
formats, FORTRANdata

types D-1
images, R-mode, execution

of 8-1
usage 5-9

1 January, 1979

Mergingtext files 10-28
Message, end of compilation 5-2
Message, error, compiler 5-2
Messages,

compiler A-1
error A-1

filesystem A-8
FORTRANlibrary A-8
loader A-5
run-time 8-2, A-8
SEG loader A-6

MFD,definition 2-3
MIDAS

advantages of 12-1
description 1-8
data subfile, building 12-2
file housekeeping 12-6
files, deleting 12-6
files, maintaining 12-5
parameterfilePARM.K 12-5
requirementsfor 12-1
see also Multiple Index Direct

Access System
subroutine ADD1$ 12-5
subroutine BILD$R 12-2
subroutine DELET$ 12-5
subroutine FIND$ 12-5
subroutine LOCK$ 12-5
subroutine NEXT$ 12-5
subroutine PRIBLD 12-2
subroutine SECBLD 12-2
subroutine UPDAT$ 12-5
template, creating 12-2
template, modifying 12-2
usage 12-1

utility CREATK 12-2
utility KBUILD 12-2
utility KIDDEL 12-6

MIDNsubroutine 19-4
MINVsubroutine 19-4
Mixedintegers in logical

functions 18-2
Mixed mode arithmetic 15-9
Mixing long and short

integers 18-1
MMLITsubroutine 19-5
Mnemonic-bit correspondence, A

register 17-8
Mnemonic-bit correspondence,B

register 17-8
MODED64R,preference for 6-7
Mode

mixingrules 15-9
of function 15-3
specification statement 15-5
specification, global 15-5
typing, function 16-1
addressing 6-7
data see data type
definition 2-3

Modes, data 15-5
Modes, loading 6-11
Modification subprocessor 11-6
MODIFY (SEG command) 11-6
MODIFYsubprocessor command

summary, SEG 7-13
Modifying

lines of code 4-5
MIDAS template 12-2
programs 4-4

Modularprogram structure 9-1
Modules, replacing 11-6

X-7

Monitoring program control
flow 9-2

Moving lines of code 4-5
MRGF (PRIMOS

command) 10-28
MSCLsubroutine 19-5
MSORTS 19-7

MSUBsubroutine 19-6
MTRNsubroutine 19-6
Multi-dimensioned arrays,

optimization 13-3
Multiple Index Direct Access

System see also MIDAS
Multiplication,

matrix, subroutine 19-5
scalar, subroutine 19-5

N
Name, callby 15-4
Name,directory, definition 2-1
Names,file 19-14
Nesting DO loops 15-10
Nesting, not allowed in $INSERT

files 15-9
Network status 10-17
Networks 10-17
New programs, creating 4-4
NEXT$, MIDASsubroutine 12-5
NOLIST statement 15-8
NOBIG (compiler option) 5-10,

17-4

NODCLVAR(compiler

option} 5-11, 17-4
Nodename 10-17
Nodename,definition 2-3
NOERRTTY (compiler

option) 5-5, 17-4
NOFP(compiler option) 5-11,

17-4

Non-owner

password 3-3
rights 3-8
status 3-3

Non-printing ASCII
characters C-2

NONOWN 3-4

Normal exit 15-10
Normal loading 6-2
Normal loading (SEG) 7-2
NOT truthtable 14-7
NOTRACE(compiler option) 5-9,

17-4

NOXREF(compiler option} 5-8,
17-4

NULL 3-4
Numberrepresentations 2-3
Number,job, definition 3-2
Number, user 3-2
Numbers, line 4-5
Numerical input,list

directed 15-16

O
Object code 6-7

generation 5-9
default 5-9

Objectfile,
compiler (unit 3) 5-4, 17-9
definition 2-3
(SEG) 7-8

Obtaining file copies 3-6
OK, prompt 2-6

FDR 3057

X Index

OK: prompt 2-6
One-trip DO loop 15-10
Open,definition 2-3
Operands 14-2
Operating system

features 10-1
library 19-14
subroutines, list 19-15

Operations, directory 3-2
Operations, file 3-4
Operator priority 14-7
Operators 14-6

arithmetic 14-7
logical 14-6
relational 14-7

OPT (compiler option)
Optimization 13-1

64V-mode COMMON 13-4
compiler 5-12
DO loops 5-12, 13-1
function calls 13-4
IF statements 13-5, 13-6
input/output 13-5
integer division 13-6
library calls 13-6
load sequence 13-3
memory allocation 13-3
multi-dimensioned

arrays 13-3
parameter statements 13-6

statementfunctions and
subroutines 13-6

statementnumbers 13-3
statement sequence 13-5
unconditional 5-12

Optimizing compiler 5-12
Optimizing load for shared

procedures 11-9
Option, convention 2-5
Options, compiler see also

parameters, compiler
OR truthtable 14-7
Order of loading 6-3

(SEG) 7-3
Orderof statements ina

program 14-8
Ordinary pathname 2-7
Organization 1-1

Otherlanguages, interface
to 12-1

Other media, entering programs
from 4-1

Output scale factors 15-24
specifications, compiler 5-4,

17-7

statements 15-12

statements, formatsin,
table 15-20

stream,definition 2-3
Output/input optimization 13-5
Over 64K word COMMON

blocks 11-12
arrays 11-12
concordance address 11-12
dummy argumentarrays 11-12
implementation 11-14
programming

considerations 11-14
restrictions 11-13

Overlaying comments 4-5
Overriding FORTRANdata mode

convention 15-4

9-12, 17-4

FDR 3057

Overview of FUTIL commands,
figure 10-20

Prime's FORTRAN 1-1
PRIMOS 2-1

OWNER 3-4
Owner password 3-3

rights 3-8
status 3-3

Packname,definition 2-3
Page, definition 2-3
Papertape, punched,reading

from 4-4
Parameter

assignment, implicit 11-3
combinations, compiler,

prohibited 5-11
compiler 5-3
data mode typing 15-6
statement 15-5
statements optimization 13-6
usage 15-5

SEG command, common 7-8
Parameters 14-5

compiler see also options, compiler
not allowed in FORMAT

statement 15-6

Parentheses, convention 2-4
Parity, ASCII C-1
PARM.K, MIDASparameter

file 12-5

Partial crossreference 5-8
Partial loads 11-4
Partition exchangesort

subroutine 19-8
Partition, definition 2-3
PASSWD (PRIMOS

command) 3-3
Password, non-owner 3-3
Password, owner 3-3
Passwords 19-14
PasswordsinFUTIL 10-18
Passwordsinpathnames 3-2
Passwords, assigning

directory 3-3
Pathnamevs. filename 2-7
Pathname,definition 2-3
Pathname, ordinary 2-7
Pathname,relative 2-8
Pathnames 2-7
Pathnames in LOAD

subcommands 6-7
Pathnames inSEG commands 7-8
Pathnames with passwords 3-2
PAUSEstatement 15-12
PAUSE,recovering from 15-12
PBECB (compiler option) 5-11,

17-4

PDEV,definition 2-3
Pdisk, definition 2-3
Peripheral devices with

compiler 5-3
PERM subroutine 19-6
Permutation subroutine 19-6
Petitio principii see circular

reasoning

PFTNLB 18-1
PHANTOM

(PRIMOS command) 10-8
Phantom abort 10-8
logout 10-8

X-8

operation 10-8
status information 10-9
user environment,

description 1-5
user, definition 2-4
users 10-8

Physical device FORTRANunit
numbers, table 15-15

Physical device I/O unit
correspondence,
change 15-13

Physical disk, definition 2-3
PMAseealso Prime Macro

Assembly language
PMA,interface to 12-8
PRIBLD, MIDASsubroutine 12-2
Prime extensionsto

FORTRAN 1-4

Prime Macro Assembly language
see also PMA

Prime usage, ASCII C-1
PRIMOS commands

ASSIGN 4-1
ATTACH 3-2
BINARY 17-10

CLOSE 17-10

CMPF 10-27

CNAME 3-5

COMINPUT 10-2
COMOUTPUT 10-5
CREATE 3-3

CRMPC 4-2

CX 10-11
DATE 10-6

DELETE 3-3, 3-8
DELSEG 7-7

ED 4-4

FILMEM 6-2

FTN 5-1
FTNOPT 5-12

FUTIL 10-18
LISTF 3-4

LISTING 17-10
LOAD 6-1

LOGIN 3-2
LOGOUT 3-8

MAGNET 4-3
MAGRST 10-15
MAGSAV 10-16

MRGF 10-28

PASSWD 3-3

PHANTOM 10-8
PROTEC 3-8

RESUME 8-1
SEG 7-1, 8-2

SIZE 3-6

SLIST 3-6
SORT 10-28

SPOOL 3-6
START 8-1
TERM 10-30

TIME 10-6
UNASSIGN 4-1

PRIMOS

defaults B-2
file types, table 2-8
FORTRAN under 1-4
Il 2-6
innetworks 10-17
overview 2-1

system subroutines 16-3
tree-structured file system 2-9

1 January, 1979

Index X

Print compiler error messagesat
terminal 5-5

Print only error messages 5-6
PRINT statement 15-14
Printer control, formatted 15-24
Printing

ASCII characters C-3
deferring 3-7
files 3-6
on special forms 3-7

Priority of operators 14-7
Procedure

frame 7-6
frames, load ECBsinto 5-11
segment 11-2

Program

composition 14-8
control flow, monitoring 9-2
conversion 1-4
development 1-3
environments, list 1-5
execution from SEG's

loader 7-2
execution from the loader 6-2
installation in command

UFD 8-4

structure, modular 9-1
techniques, extended

segmented 11-1
order of statementsin 14-8

Programmer's Companion 3-1
Programmingconsiderations, over

64K word COMMON 11-14
Programs

creating 4-4

deleting 4-11
entering from other media 4-1
entry from terminal 4-4
executing 8-1
in memory, restarting 8-1
listing 4-10
modifying 4-4
R-mode, execution of 8-1
R-mode, loading 6-1
renaming 4-11

segmented, loading 7-1
source, entering 4-1
source, manipulating 4-1
terminal entry 4-4
V-mode, execution of 8-2
V-mode, loading 7-1

Prohibited compiler parameter
combinations 5-11

Prompts, system 2-6
Proof by assumption seepetitio

principii
PROTEC (PRIMOS

command) 3-8
Protection keys, default 3-8
PRWF$$ subroutine 19-17
Punched cards, reading 4-2
Punched papertape, reading

from 4-4

Q
Question mark, usage 2-5
Queue information,

CX 10-12
CX, dropping jobs from 10-13
spool, listing 3-6

Queuing device assignment 4-1
QUICK subroutine 19-8

1 January, 1979

R
R-mode

FORTRANfunction errors 8-2
interlude, including in SEG

runfile 11-10
memory images, execution

of 8-1
programs, execution of 8-1
programs,installation in

command UFD 8-4
programs, loading 6-1
runfiles, creating 11-10
vs. V-mode compilation 13-4

Radix exchangesort
subroutine 19-8

RADXEX subroutine 19-8
Random numbergenerator,

integer 18-5
Random numbergenerator,

real 18-6
Range of constants 14-3
READstatements 15-14

binary, statement 15-16
direct access,

statements 15-15
formatted, statement 15-15
list directed, statement 15-16

Read/write lock table 10-27
Reading

ASCll card decks 4-2
BCD card decks 4-2
EBCDIC card decks 4-2
from 7-track tape 4-3
from 9-track tape 4-3
from ASCII magnetic tape 4-3
from BCD magnetictape 4-3
from binary magnetic tape 4-3
from EBCDIC magnetic

tape 4-3

from magnetic tape 4-3
from punched paper tape 4-4
punched cards 4-2

REAL mode 15-5
Real numbers 14-4
Real random number

generator 18-6
REALsee alsoREAL *4
REAL *4

data storage format D-2
mode 15-5
see also REAL

REAL *8 mode 15-5
see also DOUBLE PRECISION

REC= 15-15, 15-17

Recordsize
changing 15-3
default 15-13
over 128 words 15-14

Recovering from PAUSE 15-12
Recursive subroutines 15-7
Reference, compiler 17-1
Related documents 1-2
Relational operators 14-7
Relative

addresscode 5-9
pathname 2-8
segment assignment 11-1

Releasing assigned segments 7-7
Relocating

blank COMMON 11-5
COMMONseealso locating

COMMON

X-9

uninitialized COMMON 11-5
Remote

directories, attaching to 10-18
login 10-17
processor 10-17

Renaming programs 4-11
Repetition, field descriptor 15-19
Replacing modules 11-6
Representation,

ASCII characterstrings 14-4
complex numbers 14-4
double precision

numbers 14-4
realnumbers 14-4

Representations, number 2-3
Requirements for MIDAS 12-1
Requirements, command

file 10-2
Rescanning formatlines 15-19
Reserving space for COMMON

blocks 11-2
Resources, system,list 1-5
Restarting programsin

memory 8-1

Restarting segmented
programs 8-2

Restrictions on over 64K word
COMMON 11-13

RESU$$ subroutine 19-18
RESUME (PRIMOS

command) 8-1
Return key 2-5
RETURNstatement 15-12
REWINDstatement 15~25
Rights, non-owner 3-8
Rights, owner 3-8
RL (SEG’s loader)
Rubout key 2-5
Rules

forfunctions 16-2
for subroutines 16-3
forvariables 14-5
mode mixing 15-9

Run-time error messages 8-2, A-8
Run-time statements 15-8

Runfile, definition 2-4
SEG, including the R-mode

interlude 11-10
Runfiles 6-7

duplicating 11-6
segmented 7-7
segmented, execution of 8-2

RUNITprogram 11-8
RUNITstack location 11-9
Rust color, convention 2-5

S
S/ prefix 11-3
SAM files 19-4
SAMseealso sequential access

method
Sample editing session 4-5
SAVE(compiler option) 5-10,

17-5
SAVE (SEG command) 11-6
SAVE statement 15-7
SAVEstatement, dimensioning not

allowed in 15-7
SAVE,global 15-7
Saving files 4-5
Scalar multiplication

subroutine 19-5

11-2, 11-6

FDR 3057

xX Index

Scale factors 15-23
Search library 19-7
Search,binary, subroutine 19-9
SECBLD, MIDASsubroutine 12-2
Second color, convention 2-5
SEG

command parameters,
common 7-8

command summary 7-8
commands, use of pathnames

in 7-8
error handling 7-1
LOAD subprocessor command

summary 7-10.
LOADsubprocessor, advanced

features 11-1
loader defaults B-2
loader error messages A-6
loader subprocessor prompt

$ 7-1

loading sequence 7-
modification subprocessor

prompt § 7-1
MODIFY subprocessor

command summary 7-13
(PRIMOS command) 7-1, 8-2
prompt# 7-1

runfile, including theR-mode
interlude 11-10:

subcommand MAP 7-3
subcommands, important 7-2
(UFD) 8-5
utility, description 1-7

SEG's loader 7-7
commands 11-2
executionfrom 7-2

SEG, definition 2-4
usage 7-1

Segment ‘4000,
'4000, splitting 11-11
assignment, relative 11-1
assignment, specific 11-3
assignments 7-4
directory, definition 2~4
usage 7-7

data 11-2
definition 2-4
link 11-2

loading RUNITinto 11-9
procedure 11-2

Segment-spanning arrays 5-10

Segmented
address code 5-9
loader defaults B-2
program techniques,

extended 11-1
programs, loading 7-1
programs,restarting 8-2
runfiles 7-7 :
runfiles, execution of 8-2

Segments,

assigned, releasing 7-
decreasing number used 11-9
shared, incorporatingfiles

into 11-12
specific, loadingto 11-3
splitting 11-9
stack, extension 11-6

Segno, definition 2-4
Selecting home spool

queue 10-18

Sequence numbers 14-2

FDR 387

Sequence, load 6-2
Sequence, loading (SEG) 7-2
Sequential job processing

environment,
description 1-5

Sequential job processor 10-11
Sequential job processor see also

CX
Setting Aregister 17-6
Setting Bregister 17-6
Settngtabs 4-5
Setting terminal

characteristics 10-30
SHARE (SEG command) 11-10
Shared code 11-7

Shared codeseealso shared
procedure

proceduresee also shared code
procedure, advantages of 11-7
procedures, loading 11-8
procedures,optimizing

load 11-9
procedures, source code 11-7
segments, incorporatingfiles

into 11-12
procedures, compiling 11-8

SHELL subroutine 19-8
Short and longintegers,

mixing 18-1
Short call subroutines 18-1
Short crossreference 5-8
Short integers 14-3
Sign extension, integer 18-1
SIZE (PRIMOS command} 3-6
Size, file, determining 3-6
Skip operations, floating point,

generate 5-11

Skip operations,floating point,
suppress 5-11

SLIST (PRIMOS command) 3-6
SORT (PRIMOS command} 10-28
Sort characteristics 19-7
Sort library 19-7
Sort parameters,common 19-7
Sorting files 10-28
SOURCE(compiler option) 5-3,

17-5

code for shared
procedures 11-7

file, compiler (unit 1)
file, definition 2-4
language conversion 1-4
programs, entering 4-1

programs, manipulating 4-1
Spaces, convention 2-5
Spacing, using of 9-2
Special characters, editor 4-5
Special forms, printingon 3-7
Special terminal

characters 2-5
Special terminal keys 2-5
Specific segment assignment 11-:
Specific segments, loading to 11-:
Specification statements 15-4
SPLIT (SEG’s loader) 11-9
Splitting out 11-10
Splitting segment 4000 11-11
Splitting segments 11-9
SPOOL (PRIMOS command) 3-6

5-3, 17-9

Spool
-CANCEL 3-7
~DEFER 3-7

X-10

file with FORTRANprint
conventions 4-10

-FORM 3-8
-FTN 4-10
~LIST 3-6
-LNUM 4-10
printing, deferring 3-7
program withline

numbers 4-10
queue, home 10-18
queue,listing 3-6
request, cancelling 3-7

Spooling thelisting file 5-5
SRCH$$ subroutine 19-18
ST.SIZE 7-6
Stack 7-8
STACK (SEG's loader}
Stack

frame 7-6
location 7-4
location, RUNIT 11-9
segments, extension 11-6
size, altering 11-6

START (PRIMOS command} 8-1
State,

functions 16-2
functions and subroutine

optimization 13-6
load 6-4
lines 14-2
numbers, optimization 13-3
sequence optimization 13-5
data definition 15-8

Statements 15-1
assignment 15-9
coding 15-18
compilation 15-8
control 15-10
device control 15-25
external procedure 15-7
grouped,list 15-2
header,for subprograms
implemented,list 15-1
input 15-12
orderof in programs
output 15-12

READ 15-14
run-time 15-8
specification 15-4
storage 16-6
WRITE 15-17

Static allocation of local
storage 5-10

Status information, phantom 10-9

Status, network 10-17

11-6

15-3

14-8

STOP statement 15-12

Storage format,
data, ASCII D-3
data, CHARACTER D-3
data, COMPLEX D-3
data, DOUBLE

PRECISION D-2
data, INTEGER*2 D-2
data, INTEGER*4 D-2
data, LOGICAL D-2
data, REAL*4 D-2

Storage statements 15-6
Storage,

ANSIstandard D-1
local, dynamicallocation 5-10
local, static allocation 5-10
symbol 6-6

1 January, 1979

Index X

Strategy, coding 9-1
Stream, output, definition 2-3
Structure of function

subprogram 16-1
Structure of subroutine

subprograms 16-3
Structure, program, modular 9-1
Structures, directory 2-6
Structures, file 2-6
Sub-UFD,definition 2-4
Subdirectory, definition 2-4
Subprocessor, modification 11-6
Subprogram, block data 15-3
Subprograms,function, user-

defind 16-1
Subprograms, header statements

for 15-3
Subroutine

arguments 16-3
calls 15-25
calls,integersin 17-3
rules 16-3

SUBROUTINEstatement 15-3,
16-3

. Subroutine subprogram,structure
of 16-3

Subroutine,
ATTDEV 15-14
MIDAS, ADD1$ 12-5

MIDAS, BILD$R_ 12-2

MIDAS, DELET$ 12-5

MIDAS, FIND$ 12-5

MIDAS, LOCK$ 12-5

MIDAS, NEXT$ 12-5
MIDAS, PRIBLD 12-2

MIDAS, SECBLD 12-2
MIDAS, UPDAT$ 12-5

Subroutines 16-3
Subroutines

$X versions 18-1
application library 16-3
conversion 1-4
reference 19-1
FORTRAN math 16-3
library, loading 6-3
library, loading (SEG) 7-3
matrix, table 1-7
operating system,list 19-15
PRIMOS system 16-3
recursive-15-7
short call 18-1
user-defined 16-3

Subscripts, generalized 14-5
Subscripts, maximum number

of 14-5
Subtraction, matrix,

subroutine 19-6
Summary,

command, editor 4-7
commands, FUTIL 10-25
commands, LOAD 6-9
commands, SEG-7-8
commands, SEG LOAD

subprocessor 7-10
commands, SEG MODIFY

subprocessor 7-13
Suppress crossreference 5-8
Suppressflagging of undeclared

variables 5-11
Suppressfloating point skip

operations 5-11
Suppress global trace 5-9

1 January, 1979

Suppressprinting of compiler
error messages 5-5

SYMBOL(SEG’s loader) 11-5
Symbol names, editor 4-10
Symbol storage -6
Symbol table 6-4, 7-4
Symbols 7-6
Symbols, undefined 7-7
Syntax checking, compiler 9-2
Syntax, compiler 5-1
System

constants B-1
defaults B-1
information, table 3~4
programmingfeatures,

LOAD 6-8
prompts 2-6

resources 1-5
interface to 12-1

T
Tinput format 15-22
Toutputformat 15-20
Tab setting 4-5
Table, symbol 6-4, 7-4
Tape, 7-track, reading from: 4-3
Tape, 9-track, readingfrom 4-3
Tape, magnetic, readingfrom 4-3
Tape, punchedpaper,reading

from 4-4
Techniques, editor 4-5
Template, MIDAS,creating 12-2
Template, MIDAS,

modifying 12-2
Templates, loading 11-4
TERM (PRIMOS

command} 10-30
Terminal

characteristics, setting 10-30
character, special 2-5
defaults B-1
entry of programs 4-4
keys, special 2-5
listing of programs 4-10

Text editor 4-4
Text files, merging 10-28
TIME (PRIMOS command) 10-6
Time/date stamping of output

files 10-6
TOP 7-4
TRACE ©

area, statement 15-8
(compiler option) 5-9, 17-5
global, compiler 9-2
global, enable 5-9
global, suppress 5-9
item, statement 15-8

statements, useof 9-2
use with COMO 15-9

Transpose, matrix,
subroutine 19-6

Tree-structured file system,
figure 2-9

Treename 2-7

Treename, definition 2-4
TRUE 14-4

Truncation, integer 18-1
Truthtables 14-7
TSRC$$ subroutine 19-19
Tutorial books, FORTRAN

language 1-1
Type, data see also data mode

X-11

Type-ahead 2-6
Types, data 15-5

U
UFD,definition 2-4
Ull handling 6-8
Ul library, loading 6-8
UII see also unimplemented

instruction interrupt
Uli table 6-8
UNASSIGN (PRIMOS

command} 4-1
Unassigning devices 4-1
Unconditional GO TO

statement 15-11

Unconditional optimization 5-12
UNCOPT (compiler option) 5-12,

17-5

Undeclaredvariables, enable
flagging 5-11

Undeclared variables, suppress
flagging 5-11

Undefined symbols 7-7
Underscore, usage 2-6
Unimplementedinstruction

interruptsee also UII
Uninitialized COMMON,

relocating 11-5
Unit, definition 2-4
Unsatisfied reference 6-6, 7-7
UPDAT$, MIDAS

subroutine 12-5
Upper case convention 2-4
Usage of over 64K word

COMMON 11-12
Usage, segments 7-7
Use of ATTDEVwith direct

access 15-13

Use of comments 9-1
Use of COMO with TRACE 15-9
Use of compiler -DYNM

option 13-7
Use of direct access 15-13
Use of loadmap 7-3
Use of TRACE with COMO 15-9
Userfile directory, definition 2-4
User number 3-2
User, phantom,definition 2-4
User-defined function

subprograms 16-1
User-defined subroutines 16-3
Using MIDAS 12-2
Using PHANTOM 10-8
Using PRIMOS 3-1
UsingSEG 7-1
Using the Loader 6-1

V
V-mode FORTRANfunction

errors 8-3

V-mode FORTRANlibrary 18-1
V-mode program,

installation in command UFD,
example 8-5

execution of 8-2
installation in command

UFD 8-5
loading 7-1

V-modevs. R-mode
compilation 13-4

V-mode, advantages of 7-1
VAPPLB 19-9

FDR 3057

4 Index

Variable rules 14-5
Variables 14-5

Variables, formatsas 15-21

Virtual loading 6-6
Volume, definition 2-4
Volume-name,definitian 2-4

WwW
WAIT (ASSIGNoption) 4-1
Word,definition 2-4
Worksession, completing 3-8
Working directory, changing 3-2
WRITEstatements 15-17

binary, statement 15-17
direct access,

statements 15-17

formatted, statement 15-17
Write/read lock table 10-27
Writing terminal output toa

file 10-5

X
Xinputformat 15-22
X output format 15-20
XREFL (compiler option) 5-8,

17-5

XREFS(compiler option} 5-8,
17-5

Z
Z (in Bformat) 15-23

SYMBOLS
” (usage ineditor] 4-5

(usage) 2-5

#{in Bformat) 15-23
(SEG prompt) 7-1

(FORTRAN main program
id.) 7-6 :

$ (FORTRANaddress
constants} 14-6

(hexadecimal number) 2-3
(in Bformat) 15-23
{LOAD prompt) 6-1
(SEG loader subprocessor

prompt) 7-1

(SEG modification
subprocessor
prompt) 7-1

$INSERT statement 15-9
nesting not allowed 15-9

$X version, subroutines 18-1
‘{octal number) 2-3

(single quote in IBM format
direct access
READ) 15-15

"’ (single quote representation in
ASCII string) 14-4

FDR 3057

*(inBformat) 15-23
(in MAGSAVdialogue) 10-16
(inpathnames) 2-8

** (unsatisfied reference) 6-6,
7-7

**** (FORTRANfunction error
indicator} 8-2

*CMHGH 6-4

*CMLOW 6-4
*HIGH 6-4

*LOW 6-4
*PBRK 6-4
*STACK 7-4
*START 6-4, 7-4
*SYM_ 6-4, 7-4

*TEST 8-5
*UIl 6-4

+(in Bformat) 15-22
, {in Bformat) 15-23

{in FORMATstatement) 15-19

-finBformat) 15-23
-32R (compiler option) 5-9,
-64R (compiler option) 5-9,
-64V (compiler option) 5-9
-BIG (compiler option) 5-10, 17-1
-BINARY(compiler option) 5-3,

17-1
~CANCEL (SPOOLoption} 3-7

-~DCLVAR(compiler
option) 5-11, 17-1

~DBASE(compiler option) 5-10,
17-1

-DEFER {SPOOLoption) 3-7
-DYNM (compiler option} 5-10,

17-1

-DYNMoption, compiler, use
of 13-7

~ERRLIST (compiler option) 5-6,
17-2

-ERRTTY (compiler option) 5-5,
17-2

-EXPLIST (compiler option] 5-6,
17-2

-FORM (SPOOLoption) 3-8
-FP (compiler option) 5-11, 17-2
~FTN (SPOOL option) 4-10
-HOME(SPOOLoption) 10-18

-INPUT (compiler option} 5-3,
17-3

-INTL (compiler option) 5-11,
17-3

-INTS (compiler option) 5-11,
17-3

~LIST (compiler option) 5-6, 17-3
-LIST (SPOOL option) 3-6
-LISTING (compiler option) 5-4,

17-4
-LNUM (SPOOL option) 4-10

X-12

-~NOBIG (compiler option) 5-10,
17-4

-~NODCLVAR (compiler
option) 5-11, 17-4

-NOERRTTY (compiler
option) 5-5, 17-4

-NOFP (compiler option) 5-11,
17-4

~NOTRACE(compiler
option) 5-9, 17-4

-NOXREF(compiler option) 5-8,
17-4

-ON (LOGIN option) 10-17
-OPT (compiler option) 5-12,

17-4

-PBECB (compiler option) 5-11,
17-4

-SAVE(compiler option 5-10,
17-5

-SOURCE(compiler option) 5-3,
17-3

-TRACE(compiler option) 5-9,
17-5

-UNCOPT(compiler
option) 5-12, 17-5

-WAIT (ASSIGNoption) 4-1
-XREFL (compiler option) 5-8,

17-5
-XREFS(compiler option) 5-8,

17-5
.(inBformat) 15-23
.AND. truth table 14-7
FALSE. 14-4
NOT. truth table 14-7

“NULL. 3-4

.OR. truth table 14-7
TRUE. 14-4
/ (in FORMATstatement) 15-19
/* {comment line) 10-2
// (blank COMMON) 15-6
32R (compiler option} 5-9, 17-5
64R (compiler option) 5-9, 17-5
64V (compiler option) 5-9, 17-6
64V-mode COMMON,

optimization 13-4
7-track tape, readingfrom 4-3
9-track tape, readingfrom 4-3
: (FORTRAN octal numbers} 14-3
; (usageineditor) 4-5
<*> (current disk} 2-10
> (FUTIL prompt

character) 10-18
{in pathnames) 2-7

? (usage in editor) 4-5
(usage} 2-5

/ (usage in editor) 4-5
(usage) 2-5

A (usage) 2-5
—-({usage} 2-6

1 January, 1979

Technical publications
y ~uests your

Bertiments...

Now that you've finished reading this new

final documentation release, we're very inter-

ested in hearing what you haveto say about

it. We'd like your commentson anyfacet of

this document — technical content, writing

style, graphics, general philosophy, as well as

your suggestions for improvements and your

editorial additions.

You can write a letter, make a telephonecall,

send a telex or make an appointment to come

in. We'll guarantee that you get a personal

response from the writer directly responsible

wethis document.

Our address and telephone numberis: Prime

Computer, Inc. 145 Pennsylvania Avenue,

Framingham, MA 01701, telephone number

(617)-879-2960, TELEX 94-8482, TWX 710-

380-6567.

While you're working on detailed comments,

_ ‘d like to receive your initial reactions. The

‘westage paid reply card will direct those

reactions to the team responsible for this

document.

Keep your FDR’s current with our new

Automatic Updating Service.

Through our unique Automatic Individual

~ ycumentation Update Service (AIDUS) we'll

Yesvtp your FDR’s updatedfor a nominalfee.

You'll receive change sheet packages that

correct, expand, and update your FDR’s,

keeping you abreast of changes and improve-

ments in Prime products. Even if we

completely rewrite an FDR, you're covered —

we'll send you a copy of the new manual.

AIDUSis also available to keep your

Programmer's Companions updated.

To subscribe to this service, check the box at

the bottom of the reply card. We'll send you

an order form. If both cards have been used,

call us directly.

H
e
r
e
a
r
e
m
y
i
m
m
e
d
i
a
t
e
r
e
a
c
t
i
o
n
s
t
o
t
h
e

(
W
r
i
t
e

in
d
o
c
u
m
e
n
t
n
a
m
e
)

(
W
r
i
t
e

in
d
o
c
u
m
e
n
t
n
a
m
e
)

P
o
o

G
o
o
d

Fa
ir

Ex
ce
ll
en
t

P
o
o
r

G
o
o
d

Fa
ir

Ex
ce
ll
en
t

DOU

DOO

OOO

OOO

e
T
h
e
te
ch
ni
ca
l
i
n
f
o
r
m
a
t
i
o
n
c
o
n
t
e
n
t
w
a
s

e
T
h
e
u
s
e

of
co
lo
r
a
n
d
g
r
a
p
h
i
c
s
w
e
r
e

e
|
t
h
o
u
g
h
t
t
h
e
ov
er
al
l
qu
al
it
y
w
a
s

DOO

OOO

OO0

OOd

e
T
h
e

te
ch
ni
ca
l
i
n
f
o
r
m
a
t
i
o
n
c
o
n
t
e
n
t
w
a
s

e
T
h
e
u
s
e

of
co
lo
r
a
n
d
g
r
a
p
h
i
c
s
w
e
r
e

e
|
t
h
o
u
g
h
t
t
h
e
ov
er
al
l
qu
al
it
y
w
a
s

e
|
t
h
i
n
k
P
r
i
m
e
’
s
m
i
x
t
u
r
e

of
“
h
o
w
-
t
o
”
w
i
t
h

r
e
f
e
r
e
n
c
e
i
n
f
o
r
m
a
t
i
o
n

is

O

O

e
I
th
in
k
P
r
i
m
e
’
s
m
i
x
t
u
r
e

of
“
h
o
w
-
t
o
”
w
i
t
h

r
e
f
e
r
e
n
c
e
i
n
f
o
r
m
a
t
i
o
n

is
Ti
tl
e

D
e
p
t

®
&
w
Z

=

Ti
tl
e

D
e
p
t

N
a
m
e

a

C
o
m
p
a
n
y
.

A
d
d
r
e
s
s

C
o
m
p
a
n
y

A
d
d
r
e
s
s

a
Ci
ty
,
St
at
e,

Z
i
p

Ci
ty
,
St
at
e,

Zi
p

T
e
l
e
p
h
o
n
e

Co
un
tr
y.

T
e
l
e
p
h
o
n
e

C
o
u
n
t
r
y

i
b
e
d
a
s

0
My
j
o
b

fu
nc
ti
on

is
be
st

de
sc
ri

My
j
o
b

fu
nc
ti
on

is
be
st

de
sc
ri
be
d
as

C
)
P
l
e
a
s
e
s
e
n
d
m
e
a
n
A
u
t
o
m
a
t
i
c
U
p
d
a
t
e
S
e
r
v
i
c
e
o
r
d
e
r
f
o
r
m

C
]
P
l
e
a
s
e
s
e
n
d
m
e
a
n
A
u
t
o
m
a
t
i
c
U
p
d
a
t
e
S
e
r
v
i
c
e
o
r
d
e
r
f
o
r
m

|
|
|

|
N
O
P
O
S
T
A
G
E

|
||
|

|
N
O
P
O
S
T
A
G
E

N
E
C
E
S
S
A
R
Y

N
E
C
E
S
S
A
R
Y

IF
M
A
I
L
E
D

IF
M
A
I
L
E
D

_IN
T
H
E

:
.

IN
T
H
E

a
e

UNITED
STATES

UNITED
STATES

B
U
S
I
N
E
S
S
R
E
P
L
Y
M
A
I
L

B
U
S
I
N
E
S
S
R
E
P
L
Y
M
A
I
L

F
I
R
S
T
C
L
A
S
S

P
E
R
M
I
T
N
O
.

5
3
1

F
R
A
M
I
N
G
H
A
M
,
M
A

F
I
R
S
T
C
L
A
S
S

P
E
R
M
I
T
N
O
.

5
3
1

F
R
A
M
I
N
G
H
A
M
,
M
A

P
O
S
T
A
G
E
W
I
L
L

BE
P
A
I
D
B
Y
A
D
D
R
E
S
S
E
E

P
R
I
M
E

P
R
I
M
E

C
o
m
p
u
t
e
r
,
I
n
c
o
r
p
o
r
a
t
e
d

Technical
Publications

D
e
p
a
r
t
m
e
n
t

145
P
e
n
n
s
y
l
v
a
n
i
a
A
v
e
n
u
e

F
r
a
m
i
n
g
h
a
m
,
M
A

01701

POSTAGE
W
I
L
L

BE
PAID

BY
ADDRESSEE

P
R
I
M
E

P
R
I
M
E

C
o
m
p
u
t
e
r
,
I
n
c
o
r
p
o
r
a
t
e
d

T
e
c
h
n
i
c
a
l
P
u
b
l
i
c
a
t
i
o
n
s
D
e
p
a
r
t
m
e
n
t

1
4
5
P
e
n
n
s
y
l
v
a
n
i
a
A
v
e
n
u
e

F
r
a
m
i
n
g
h
a
m
,
M
A

0
1
7
0
1

«

Part One
OVERVIEWOF
PRIME’S FORTRAN

Part Two
USING FORTRAN
UNDER PRIMOS

Part Three

ADVANCED PROGRAM-
MING TECHNIQUES

Part Four

FORTRAN
LANGUAGE REFERENCE

Part Five
UTILITYREFERENCE

PRIME Computer, Inc. 145 Pennsylvania Ave., Framingham, Mass. 01701

PRIME
P/N FDR 3057-101

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	1 Overview
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	11-001
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	12-001
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	13-001
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	14-001
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	15-001
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	16-001
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	17-001
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	18-001
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	19-001
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	A-000
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	a-09
	a-10
	a-11
	a-12
	a-13
	a-14
	a-15
	a-16
	a-17
	b-00
	b-01
	b-02
	b-03
	c-00
	c-01
	c-02
	c-03
	d-00
	d-01
	d-02
	d-03
	d-04
	x-01
	x-02
	x-03
	x-04
	x-05
	x-06
	x-07
	x-08
	x-09
	x-10
	x-11
	x-12
	zreplyA
	zreplyB
	zzBack

