

Prime Computer,Inc.
Reference Guide FDR3056-101A

COBOL

TheCOBOL Reference Guide

Published by Prime Computer,Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701

Copyright © 1980 by Prime Computer

Printed in USA.All rights reserved.

The information contained in this documentis subject to
change without notice and should not be construed as a
commitment by Prime Computer, Incorporated. Prime

Computer assumesno responsibility for any errors that
may appearin this document.

First printing, January 1980

Production information: This book was composedin 10
and 11 point Melior and 10 point Helvetica by Allied
Systems. The covers were printed in 6 colors by
MacDonald & Evans with separations by Spectrum. The
cover stock was 100# Warren LOE Gloss Cover. The text
wasprintedin 2 colors by Federated Lithographers. The
text stock was 50# MohawkVellum, Creme White.
Layout and design was by William Agush of Prime
Computer.

TheCOBOL
Reference Guide

by Grace T. Na

CONTENTS

PART I — OVERVIEW

OVERVIEW OF PRIME’S COBOL

This Document 1-1
Related Document 1-2
Language Specifications 1-2

Prime Extensions to the Level 2 Standard 1-4
COBOL Under PRIMOS 1-4
Program Environments 1-5

System Resources Supporting COBOL 1-6

PART II — LANGUAGE-SPECIFIG SYSTEM INFORMATION

COMPILING THE PROGRAM

Introduction 2-1

Using the Compiler 2-1
Compiler Functions 2-4
Compiler Generated Files 2-7

LOADING AND EXECUTING PROGRAMS

Loading Programs 3-1

Executing Loaded Programs 3-2

PART III — COBOL LANGUAGE REFERENCE

FUNDAMENTAL CONCEPTS OF COBOL

Divisions of aCOBOL Program: ASummary 4-1

Language Considerations 4-4

Language Specifications 4-7

Arithmetic Expressions 4-18

Conditional Expressions 4-20

IDENTIFICATION DIVISION

Identification Division 5-1

ENVIRONMENTDIVISION

Environment Division 6-1

7 DATA DIVISION

Data Division 7-1

File Section 7-2

File Description 7-2
Uncompressed 7-3
Label Records 7-4

Block Contains 7-4

Record Contains 7-5

Value of File-ID 7-6

Owner Is_ 7-6

Data Records 7-6

Code-Set 7-7

Record Description 7-7
Level-Number 7-10

Data-Name/Filler 7-12

Redefines 7-12

Renames 7-13

Occurs 7-14

Picture 7-15

Usage 7-22

Sign 7-23
Synchronized 7-24
Justified 7-25
Blank When Zero 7-25

Value 7-27

Working-Storage Section 7-28
Linkage Section 7-30

8 PROCEDUREDIVISION

Procedure Division 8-1

Procedure Statements 8-4

ACCEPT 8-4

ADD 8-6

ALTER 8-7

CALL 8-8

CLOSE 8-8

COMPUTE 8-9

COPY 8-9

DELETE 8-11

DISPLAY 8-12

DIVIDE 8-12

ENTER 8-14

EXHIBIT 8-14

EXIT 8-15

EXIT PROGRAM 8-15

GOTO 8-15

IF 8-16

INSPECT 8-19

MOVE 8-22

MULTIPLY 8-23

OPEN 8-23

PERFORM 8-24

READ 8-32

O
e
a
S

°n
e

10

11

12

READY TRACE 8-34

RELEASE 8-34

RESET TRACE 8-34

RETURN 8-35

REWRITE 8-35

SEARCH 8-36

SET 8-37

SORT 8-38

START 8-39

STOP 8-40

STRING 8-40

SUBTRACT 8-42

UNSTRING 8-44

USE 8-48

WRITE 8-49

INTER-PROGRAM COMMUNICATION

Definition 9-1

Linkage Section 9-1
Procedure Division 9-2

CALL 9-2

EXIT PROGRAM 9-3

ENTER 9-3

TABLE HANDLING

Definition 10-1

Data Division 10-1

OCCURS 10-1

Procedure Division 10-7

SET 10-7

SEARCH 10-9

SORT MODULE

Definition 11-1

Data Division 11-1

Procedure Division 11-2

RELEASE 11-2

RETURN 11-2

SORT 11-3

INDEXED SEQUENTIALFILES

Definition 12-1

File Control 12-1

Procedure Division 12-3

CLOSE 12-3

DELETE 12-3

OPEN 12-4

READ 12-4

REWRITE 12-6

START 12-6

WRITE 12-9

13 RELATIVE FILE PROCESSING
Definition 13-1

File Control 13-1

Procedure Division 13-2

CLOSE 13-3

DELETE 13-3

OPEN 13-3

READ 13-3

REWRITE 13-5

START 13-5

WRITE 13-6

APPENDICES

> FILE ORGANIZATION

Access Methods A-1

~) CREATING INDEXED AND DAMFILES: THE MIDAS TEMPLATE

Dialog for INDEXEDFile B-1

Dialog for DAM File B-1

REFERENCE TABLES

Whatis in This Appendix C-1

COBOL SYMBOLS

m
o

ERROR MESSAGES

Types of Error Messages E-1
Compile-Time Error Messages E-1
Compile-Time Warning Messages E-5
Run-Time Error Messages E-6

a EXPANDED LISTING

Expanded Listing F-1

G LABEL COMMAND

Overview of Label G-1
Using Label G-1
Errors Using Label G-2

Help Facility G-3

H COBOL SYSTEM FILES

System Files H-1

ACKNOWLEDGMENT

The following acknowledgmentis a reprint from the American National Standard Program-

ming Language COBOL, ANSI X3.23-1974:

“Anyorganization interested in reproducing the COBOLstandardandspecificationsin whole

or in part, using ideas from this documentasthe basis for an instruction manualor for any

other purpose, is free to do so. However,all such organizations are requested to reproduce the

following acknowledgment paragraphsin their entirety as part of the preface to any such

publication (any organization using a short passage from this document, such as in a book

review,is requested to mention ‘COBOLin acknowledgmentof the source, but need not quote

the acknowledgment):

COBOLis an industry language andis not the property of any companyor group of companies,

or of any organization or group of organizations.

No warranty, expressedor implied, is made by any contributor or by the CODASYLProgram-

ming Language Committee as to the accuracy and functioning of the programming system and

language. Moreover, no responsibility is assumed by any contributor, or by the committee,in

connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC(trademark of Sperry Rand Corporation), Programmingfor the

UNIVAC® I and II, Data Automation Systems copyrighted 1958, 1959, by

Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,

copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted by

Minneapolis-Honeywell

have specifically authorized the use of this material in wholeorin part, in the COBOLspecifi-

cations. Such authorization extendsto the reproduction and use of COBOLspecifications in

programming manualsor similar publications.”

OVERVIEW

Overview of
Prime’s COBOL

THIS DOCUMENT

Purpose and audience

The COBOL Reference Guideis a Final Documentation Release at software revision level 17

(Rev. 17). This document and a companion document, The Prime User's Guide, replace the

COBOL Programmer's Guide PDR3056 Rev.B.

This documentfully describes Prime COBOL, and provides the necessary information for

compiling, loading, executing and debugging COBOL programs on a Prime system.It is

designed to be used as a reference guide for an experienced COBOL programmer. Users

unfamiliar with the language should read one of the many commercially available instruc-

tion books; examplesare:

Feingold, Carl, Fundamentals of Structured COBOL programming, WM.C. Brown

Company Publishers

Stern, N. and Stern, R., COBOL Programming, John Wiley and Son,Inc.

Organization and usage

This document has three majorparts:

Part one Overview.Introduces Prime’s COBOL,including Prime extensions

to the language, supporting utilities, systems and software (Section

1).
Part two Language-Specific System Information. Provides complete in-

formation on the use of the COBOL compiler (Section 2), and

describes the process of loading and executing COBOL programs

(Section 3).

Part three Language Reference. Provides syntactical and general COBOL

specifications, patterned after the ANSI standard. The three main

sub-divisionsare:

Fundamental Concepts of COBOL (Section 4)
Nucleus (Sections 5-8)
Functional Processing Modules (Sections 9-13)

Fundamental Concepts of COBOLdefines the Nucleus and Func-

tional Processing Modules. The Nucleuspresentsthe structure and

governing rules of COBOL’s four divisions: Identification, En-

vironment, Data and Procedure. The Functional Processing Mod-

ules include Inter-program Communication, Table Handling, Sort,

Indexed I/O, Relative I/O, Sequential I/O, and Library.

Effective usage of the Language Reference sections requires

knowledge of its organization:

¢ Fundamental Concepts begins with a generalized COBOL

program summary. This is expandedin the sample listing

file, SAMPLE. Fundamental COBOL concepts, including

1 January 1980 1-1 FDR 3056

1 OVERVIEW OF PRIME’S COBOL

standard format notation, punctuation rules, etc. are here
set forth.

e The Nucleus expands upon the previous presentation of

Fundamental Concepts. It provides detailed information
related to the Identification, Environment, Data, and Pro-
cedure Divisions.

PROCEDURE DIVISION (Section 8) presents COBOL

verbs alphabetically. A quick verb index is in Appendix C.

Each division section closes with an example of source
coding for that given division. These examples form a
functional program, REF2, whichillustrates the interrela-
tionship of componentparts.

e Functional Processing Modules are self-contained, often
restating concepts, data descriptions, and COBOL
statement formats elsewhere described. The reader will
find hereall related data in a single location for maximum
utility and efficiency. For example, the READ verb is
presented in the Procedure Division. It is restated in the
Indexed I/O Functional Processing Module, together with
related data pertinent to Indexed I/O processing.

In addition to the body of text, the Table of Contents is a guide to content and order; the
index provides the most direct access to specifics. Appendices present a capsule form of
repeatedly used data as follows:

¢ The file organization

* Two sets of typical CREATK dialog for INDEXED and SAMfiles, along
with examples

* Important reference tables: COBOL Verb Index, COBOL Reserved Words,
ASCII Character Set, File Status Key Definitions, Permissible I/O
Statements, Permissible Moves, and Numeric Conversion Tables.

e A list of COBOL punctuation, arithmetic and edit symbols

e A list of compile-time and run-time error messages and their meanings

¢ An introduction to expandedlisting for COBOL programs

¢ The LABEL commandfor magnetic tapes

e A list of system files required by COBOL

RELATED DOCUMENT

The Prime User's Guide describes all supporting PRIMOS utilities for programming in
Prime COBOLorany other Prime language. The COBOL Reference Guide and The Prime
User's Guide are complementary documents: both areessential to the COBOL programmer.

LANGUAGESPECIFICATIONS

Prime COBOLis based upon American National Standard Programming Language COBOL,
X3.23-1974. Elements of the COBOL language are allocated to the following 12 different
functional processing ‘‘modules”’: Nucleus, Table Handling, Sequential I/O, Relative I/O,
Indexed I/O, Sort-Merge, Report Writer, Segmentation, Library, Debug, Inter-Program
Communication, and Communication.

Each module of the COBOL Standard has two non-null ‘“‘levels’’: level 2 contains the full set

of capabilities and features; level 1 contains a subsetof level 2.

In order for a given system to be called COBOL,it must provide at least level 1 of the
"Nucleus, Table Handling and Sequential I/O modules.

FDR 3056 1-2 1 January 1980

OVERVIEW OF PRIME’S COBOL 1

The following summary specifies the content of the eight modules supported by Prime

COBOLwith respect to the Standard.

Module Features Available in Prime COBOL

Nucleus Full level 1, plus these features of level 2:

e Levels 01-49, 77;

e Level 66 with RENAMESclause

permits alternate, possibly overlapping
or regrouping of elementary items;

e Value series or range for level 88 conditions;

¢ AND OR NOT = < > inconditions;

e IF statements,

¢ Procedure-namesconsisting of digits only;

° PERFORM VARYINGwith AFTER (upto 3 indexes

allowed);

¢ Mnemonic-names for ACCEPT or DISPLAYdevices;

* Qualification of Names (Procedure Division);

e Sign test;

e STRING;

¢ UNSTRING;

e COMPUTEwith multiple receiving fields;

e CORRESPONDINGoperations for MOVE, ADD, SUB-

TRACT;

DAY
¢ ACCEPT <TIME>;

DATE

e ADD with TO identifier, and GIVING identifier;

e SUBTRACT with FROMidentifier,

and GIVING identifier;

* MULTIPLY with GIVING identifier, and BY identifier;

° DIVIDE with INTO identifier, BY identifier, and

GIVINGidentifier.

Sequential I/O Full level 1, plus these features of level 2:

e RESERVEclause and variable form of BLOCK;

¢ Multple file-name in OPEN and CLOSEstatements,

¢ WRITE statement with BEFORE/AFTER ADVANCING

identifier LINES;

¢ OPEN EXTENDfor Sequential Disk Files.

Relative I/O Full level 1, plus these features of level 2:

e RESERVEclause;

e DYNAMICaccess mode (with READ next);

¢ START (with key relations EQUAL, GREATER,

or NOTLESS).

Indexed I/O Full level 1, plus these features of level 2:

e RESERVEclause;

¢ DYNAMICaccess (with READ next);

e RANDOMaccess mode with READ by KEY;

1 January 1980 1-3 FDR 3056

1 OVERVIEW OF PRIME’S COBOL

¢ START (with key relations EQUAL, GREATER,or
NOT LESS);

¢ ALTERNATE RECORDKEYclause with
WITH DUPLICATESphrase (upto 5 additional
key fields supported).

Sort Full level 1 and full level 2 excluding Collating Sequence.
Library Full level 1, plus these features of level 2:

¢ COPY text-name OF/IN library-name.

Table Handling Full level 1, plus these features of level 2:

¢ SEARCH;

¢ SEARCH ALL.

Inter-program
Communication Full level 1.

PRIME EXTENSIONS TO THE LEVEL 2 STANDARD

¢ ASSEMBLER(enter assembler);

¢ COMP-3

¢ COMPUTATIONAL-3

¢ EXHIBIT NAMEDstatement:

¢ OWNERIS;

e READY TRACE;

e RESET TRACE;

¢ REMARKS;

¢ UNCOMPRESSED/COMPRESSEDfile format:

¢ Comprehension Cross Reference Listing.

\ (packed decimal format);

COBOL UNDER PRIMOS

Implementation

Prime’s COBOL runs on Prime models 350 and above, operating under PRIMOS. COBOL
runfiles operate in segmented mode (V-MODEor 64V). Code generated in V MODEonthe
Prime is pure, and is the sameforall processor models.

Prime's processors with XIS (Extended Instruction Set hardware) execute an extendedsetof
instructions directly, including decimal arithmetic and character edits. They maximize
execution time efficiency. Other processors recognize the code as an unimplemented
instruction trap and automatically substitute an equivalent software routine (UII, Un-
implemented Instruction package).

Operation

Prime’s COBOLoperates on an integrated, interactive virtual memory system based on
demandpaging from disk. It supports up to 63 simultaneoususers.

All phases of COBOL compilation can be handled through anyof the interactive terminals.
Therefore, source programscan be entered and modified directly at a terminal. A COBOL
programmercan compile, list, execute, and save his program in single interactive session.
Features such as the interactive text editor enable simplified debugging and enhanced
program handling.

The Prime operating system supporting COBOLis called PRIMOS. Only oneversion of
PRIMOSexists for all Prime models. It features paged and segmentedvirtual memory,

FDR 3056 1-4 1 January 1980

OVERVIEW OF PRIME’S COBOL

management; it supports up to 63 simultaneoususers. The system is based on demand paging

from disk with 2048 bytes per page. A page-sharing feature reduces overhead time. For

example, several COBOLusers mayshare onecopyof the Editor to enter, modify, or debug

their programs, rather than individually having their own copy.

Prime’s segmentation schemeusesa virtual address consisting of a segment number (one of

4096), a page number, and a word number.Thevirtual addressis translated into a physical

address by a series of segment tables and page maps. Paging requirements for the

application program are thus met immediately and automatically.

COBOL under PRIMOS has advanced segmentation capability, expanded compilation

options, sharable code, and DBMScapability.

Compatibility

Because a commonoperating system architecture is used throughout the Prime processor

line, COBOL programscreated on one Prime computercan be used on any larger or smaller

Prime computer without modification. Compatibility holds true at both the source level and

the memory imagelevel.

PROGRAM ENVIRONMENTS

Under PRIMOS, COBOLprograms mayexecute in one of three environments:

¢ Interactive

¢ Phantom user

e Batch job processing

Interactive

Program execution is initiated directly by the user. Programs run in real time and are

“connected” to the terminal. Program outputis printed at the terminal, as well as user- or

system-generated error messages. This environmentis the one most often used. Major uses

are:

Program development

¢ Programs requiring short execution time

¢ Data entry programssuchasorderentry, payroll, etc.

° (nteractive programssuch asthe Editor, etc.

Phantom user

The phantom environmentallows programs to be executed while ‘‘disconnected” from a

terminal. This frees the terminal for other uses. Phantom users accept input from a

commandfile instead of a terminal; output directed to a terminal is either ignored or

directed to afile.

Major uses of phantomsare:

¢ Programs requiring long execution time (such assorts]

° Certain system utilities (such as line printer spooler)

e Freeing terminals for interactive uses

Batch job processing

Since the number of phantom users on a system is limited, phantoms are not always

available. The Batch environmentallowsusers to submit non-interactive commandfiles as

Batch jobs at any time. The Batch monitor(itself a phantom) queues these jobs and runs

them, one to six at a time, as phantoms becomefree.

1 January 1980 1-5 FDR 3056

1 OVERVIEW OF PRIME’S COBOL

SYSTEM RESOURCES SUPPORTING COBOL
Prime COBOLshares equally with all Prime programming languages a broad range of
system and file managementresources.

Such resourcesas system libraries, the text editor, or the SEG utility expandthe scope and
efficiency of Prime’s interactive environment.

Compatible file management systems enhance the mixing capabilities of the system while
providing standardized file management functions. Files are created and maintained
separately from the applications program.

Libraries

The COBOL programmermayfind system library functions and subroutines of use in some
applications. A list of VCOBLBlibrary subroutines and functionsis presented in Appendix
H. A complete treatment of all library and system subroutines is in The Subroutine
Reference Guide.

Compiler

Prime's COBOLcompiler operates on COBOLsource codeto generate object code. It is also
possible to generate a program listing only. Since syntax checking can be achieved in a
shorter period of time, this feature can produce a quick and useful reference to the source
program. The user has the additional compiler options to control I/O specifications. The
compiler is described in detail in Section 2.

SEGutility
SEG is the V-identity program loading and execution utility. It combines separately
compiled program modules, subroutines, and libraries into an executable program. Program
modules can be up to 64K wordslong. All memory management, symboltables, linkages, etc.
are handled by SEG’s loader. Various types of loadmaps may be obtained. The SEG utility
has many functions; they are described as follows:

Normalusage (Section 3)

Advanced usage (LOAD and SEG Reference Guide)

Editor

Prime’s text editor is a line-oriented editor enabling the programmerto enter and modify
source code andtext files. Information for these purposes is in The Prime User's Guide: a
complete description of the Editor is in The New User's Guide to EDITOR and.RUNOFF.

Database Management System (DBMS)

Prime's DBMS is a CODASYL-compliant system for managementof large amountsofdata.
DBMScan be accessed from either COBOL or FORTRANprograms.It is compatible with
MIDAS and FORMS.

As a system resource available to COBOL, Prime’s DBMSprovides generalized database
managementcapabilities for describing, creating, manipulating, and maintaining structured
datahases in a diverse range of applications.

It is particularly useful for:

e Interactive business data processing applications with complex rela-
tionships among data.

e On-line transaction processing

* Standardization of data meaning and usage
¢ A high degree of protected, concurrent usage

FDR 3056 1-6 1 January 1980

OVERVIEW OF PRIME’S COBOL

e Minimized data redundancy

e Integrity, backup and automatic recovery

Complete information on using DBMSin the COBOL environmentis in DBMS Adminis-

trator’s Guide, DBMS SCHEMAReference Guide, and DBMS COBOLReference Guide.

Multiple Index Data Access System (MIDAS)

MIDAS is a management software system of utilities and subroutines for creating and

maintaining keyed-index/direct-accessfiles.

MIDASprovides the COBOL programmerwith a transparent multi-level file structure. All

housekeeping functions on the index and data sub-files are performed by MIDASsub-

routines called from COBOL programs.

Prime programmingfiles created by programswritten in one language maybe accessed and

manipulated by programswritten in other languages, insuring compatability.

MIDAS Access Manageris reentrant. All active programs on Prime models 350 and above

share a single copy of the manager, minimizing redundancy.

¢ There can be upto 5 alternate record keys for a COBOL MIDASfile

¢ Duplicate keys let MIDASretrieve multiple records for a single key value

e LOCK prevents concurrent usage conflicts

KEYScan be constructed from concatenated information

¢ A single program can make segmented and random accessesto a singlefile

Basic MIDAS template construction information is presented in Appendix B. The complete

documentation is The MIDAS Reference Guide.

Forms Management Systems (FORMS)

FORMSis a system for creation, maintenance, and use of screen formsforinteractive file

maintenance. These screen forms are an extremely useful tool for the applications

programmerwriting data entry programs, wheredatafields are to be displayed in one or

more formats.

FORMSkeeps application programs, the forms and devices they use separated until run

time. Thus, changes can beeffected in one area withoutnecessarily affecting the other two.

FORMSis compatible with DBMS and MIDAS,it is available to up to 63 concurrentusers.

It facilitates making accurate data available at widely dispersed locations for inquiry and/or

update by transactions which can represent all elements of a business.

Details are in The FORMSProgrammer's Guide.

Language interfaces

Since all Prime high-level languages are alike at the object-code level, and since all use the

samecalling conventions, object modules produced by the COBOL compiler can call and be

called by modules produced by the F77, FTN, or PL1G compilers, provided that certain

restrictions are observed:

* All I/O routines must be written in the same language.

* There must be no conflict of data types for variables being passed as

arguments.

* Modules in 64V or 32I may call each other if they are otherwise com-

patible.

COBOLprogramscanalso call PMA (Prime Macro Assembler) routines, andvice versa. For

information, see Section 9 of this manual and The Assembly Language Programmer’s Guide.

1 January 1980 1-7 FDR 3056

LANGUAGE-
SPECIFIC
SYSTEM

INFORMATION

Compiling the program

INTRODUCTION

There is one COBOL compilerfor all Prime computers and PRIMOSlevels.

Source programs must meetthe requirements of Prime’s COBOLasspecified in this manual.

The COBOL compiler generates object code in the segmented-addressing (64V) mode
suitable for processing by Prime’s segmented-addressing loader (SEG) utility on Prime

models 350 and up.

USING THE COMPILER

The COBOL compileris invoked by the COBOL command to PRIMOS:

COBOL pathname[-parameter-1 -parameter-2 ... -parameter-n]

where pathnameis the pathname of the COBOLsource programfile

parameter-1 etc. are the mnemonicsfor the options controlling com-
piler functions such as I/O device specification,
listings, and others.

For example:

COBOL MYPROG -L PRGLST

The mnemonics are explained in COMPILER FUNCTIONSin this section. All mnemonic
parameters must be precededby a hyphen(-). The nameof the source programfile must be
specified as the above expression following the command COBOL.

Compilation messages

The Prime COBOL compiler flags milestones during compilation: PhasesI through VI. Phase
markers are output to the user’s terminal in the following manner:

OK, COBOL pathname

Phase I Environment Division
Phase II Data Division
Phase III Procedure Division
Phase IV Intermediate code generation

Phase V File Control Block generation
Phase VI Final code generation
No Errors, No Warnings, Prlme V-Mode COBOL, Rev 17.1 <program>

If errors occur during compilation, an appropriate message will be outputto the console, the
listing file, or both. For example:

On the terminal:

OK, COBOL SAMPLE. SORT

Phase I

Phase II

Phase III

Phase IV

1 January 1980 2-1 FDR 3056

2 COMPILING THE PROGRAM

Phase V

Phase VI

1 Error, No Warnings, Prime V-Mode COBOL, Rev 17.1 <SORTIT>

In the listing file:

0009 AREA-A VIOLATION; RESUMES AT NEXT PARAGRAPH/SECTION/DIVISION/VERB.

1 Error, No Warnings, Prime V-Mode COBOL, Rev 17.1 <SORTIT>

Note

If there are compilererrors, the objectfile is unusable.

End of compilation messages: After the compiler has completed a passatthe specified input
file, generated code andlisting output as specified by the mnemonic parameters,it prints a
message at the user’s terminal (see examples above). The message formatis:

where

XxXXX Errors, yyyy Warnings, Prlme V-Mode COBOL, Rev 17.1 <program>

XXXX is the numberof errors encountered during com-

pilation.
YYVy is the number of warnings.

program is the name of the program (ID) compiled.

An error is a mistake in a statement which makes execution of the program impossible.

A warning occurs when a statement is encountered which, although legal, may cause

unexpected and/or undesirable results.

Note that the compiler does not support a SYSTEM READ/WRITE LOCKOF5. Consequent-

ly, this will cause miscellaneous compiler aborts.

After compilation, control returns to PRIMOS.

Compiler error messages: The general formatof the error messageis:

n message.|[|

where

n Is the line reference number.

message Is the standard COBOL compiler error message. A

complete list is given in the Error Reference Sec-

tion, Appendix E.

[| Is a variable describing the problem.

For example:

Q@82 UNRESOLVED PROCEDURE-NAME; STATEMENT DELETED. [SORT-DATA J

?Unsuccessful Compilation; Terminal Error Line 82.

FDR 3056 2-2 1 January 1980

COMPILING THE PROGRAM 2

*kkkK Compilation Terminated (Internal Error 106). Object File Unusable. *****

Note

The example above is a semantic compiler error message
accompaniedby aninternal error message.

If an internal error occurs on a line containing a semantic

error, the semantic error, not the internal error, is probably
the sole source of the problem. Correct the semantic error
and recompile.

If an internal error occurs by itself, correct all previous
semantic errors and recompile. If. the internal error persists,
report the internal error code numberto your local field

analyst.

An in-line error message takes the format:

SYNTAXX ERRORvariable - in-line-message

For example:

** SYNTAX ERROR ** PIC = X

Compiler Warning Messages: The general format of the messageis:

n /W/ message.[]

where

n is the line reference number.
/W/ indicates WARNING.

message is the standard COBOL compiler warning message.
A complete list is given in the Error Reference
Section, Appendix E.

[| is a variable describing the problem.

For example:

9023 /W/ LITERAL TRUNCATED TO ITEM SIZE. [FILE-RECORD-IN]

Program statistics

When programs or modules are compiled, program statistics are appended tothelisting.

These statistics relate to fixed storage allocations for specified aspects of the program as

compiled.

These can be useful in determining the numberof segments a program mayrequire,or in

setting up shared procedures.

It should be noted that while the storage allocation descriptions which follow are fixed for

a given compilation, they do not include storage allocations for required libraries, sub-

routines,etc.

All sizes are stated in words.

Executable Code Size: The number of wordsof code generated from the
Procedure Division of the source program.

Constant Pool Size: The size of any non-changing information required
at run-time (e.g., quoted literals or decimal and
binary constants).

1 January 1980 2-3 FDR 3056

2 COMPILING THE PROGRAM

Total Pure Procedure Size: The sum of the two values above. Thisis the size of

the sharable portion of a program.

Working-Storage Size: The size of the user-defined Working-Storage.

Total LinkframeSize: The total size of static storage needed by the
program (i.e., file buffers, File Control Block’s,
etc.).

Stack Size: The total size of stack needed. It is comprisedof:

e Standard stack header.
e¢ Arguments to this routine (if any).
¢ Compiler-generated temporaries.

Trace Mode: The trace modestatus given by onoroff.

The numberof arguments expectedis given by:

xxx Arguments Expected.

where xxx is the number of arguments expected. If xxx=0, then the message is: No
Arguments Expected.

The source program lengthis given by:

yyy Sourcelines.

where yyy is the numberoflines in the source program.

COMPILER FUNCTIONS

The compiler functions enabled by the mnemonic parametersfall into three groups:

e Specify I/O Devices

BINARY

INPUT

LISTING

e Addressing Mode

64V

e Enable ExpandedListings/Cross References

EXPLIST

NOEXPLIST

XREF

NOXREF

The defaults listed in this section are those supplied by PRIME andare precededbythe
‘‘e’' symbol. The system manager may change these at any particular installation. The
programmer should check with the system manager to determine if defaults have been
changed and,if so, which parameters are the new defaults.

Rust colored letters indicates minimum permissible abbreviations.

Specify input/output devices

The parameters below allow the user to inform the compiler of the input source filename
and to specify the listing and binary objectfiles.

-INPUT Specifies input file/device (example -I] TEST).
-] pathname Specifies the name of the input source program.

FDR 3056 2-4 1 January 1980

COMPILING THE PROGRAM 2

-BINARY

-B pathname

-B NO

-B YES

-LISTING
-L pathname

-L NO

-L YES

-L TTY
-L SPOOL

-SOURCE

Addressing mode

-64V

(See Table 2-1.) This parameter mustnot be usedif

the source filename immediately follows the

COBOL command; otherwise, it must be included

in the parameterlist.

To override default, specifies binary (object) out-

put file/device.

The binaryfile will be created with the pathname

specified (example: -B OUTPUT > TEST, where

the binary file is created on the UFD OUTPUT

under the filename TEST).

No binaryfile will be created; only a syntax check

will occur.
The binaryfile is created with the default name B

-filename, where filename is the name of the

source program file in the UFD in whichthe source

program file resides. The binary file, however,is

created in the UFD to which the useris attached

when invoking the compiler.

If the BINARY parameter is not included in the

commandline, it is equivalent to -B YES. (See

Table 2-1.)

To override default, specifies listing file/device.

Thelisting file will be created with the pathname

specified (example: -L ELM > LTEST).

No listing file will be created. At later stages in

program development or when minor mod-

ifications are made to programs, it may not be

considered necessary to get a source program list-

ing.
Thelisting file is created with the default name L—

filename, wherefilenameis the nameof the source

program file in the UFD in which the source

program file resides. The listing file, however,is

created in the UFD to which the useris attached

when invoking the compiler.

Thelisting file is printed on the user’s terminal.

The listing file is spooled directly to the line

printer.
If the LISTING parameteris not included in the

commandline,it is equivalent to -L YES.

Same as -INPUT. See -INPUT.

Generates segmented-addressed code which must

be loaded with the SEG loader. It provides a user

area up to 32 megabytes (256 segments of 128K

bytes each). It may be run on any Prime model 350

or above under PRIMOS.

Enable expandedlistings/cross references

-Expandedlisting: The expandedlisting is a combination of a regular listing (source code

with line number appended) and machine-generated code.

1 January 1980 2-5 FDR 3056

2 COMPILING THE PROGRAM

Table 2-1. Compiler File Specifications

COMPILER

MNEMONICS INPUT — LISTING BINARY

pathname Looksforfile Opensfile named Opens file named
named pathname pathname as pathname as
as sourcefile listing file binary (object)

file.

YES Uses default file- Uses default file-
nameforlisting name for binary
file L-PROGRM. file B-PROGRM.

NO Nolisting file. No binaryfile.

TTY Print listing on
user terminal.

SPOOL Spoollisting
directly to line
printer.

Option Source filename Same as YES Same as YES
not must befirst
invoked option after

COBOL command.

¢ -NOEXPLIST Suppresses generation of the expanded listing.
This is the normaldefault.
Generates an expandedlisting at the end of the
listing file. User defined names are NOT used,
machine-generatedlabels are placed in thelisting.

-EXPLIST

An expandedlisting example forSAMPLEappearsin Appendix F. Tofully utilize the listing,
a knowledge of PMA is necessary. The reader| is referred to The Assembly Language
Programmer’s Guide.

Cross-reference listing: The Cross Reference has two compile-time options, -NOXREFor
-XREF.

e -NOXREF Suppresses generation of any cross-referencelist-
ing. This is the normal default.

-XREF Generatesa cross-referencelisting at the end of the
listing file. A line number with a suffix ‘D’ in-
dicates a paragraph or section namein the Pro-

cedure Division.

For example:

OK, COBOL SAMPLE.SORT -XREF -L TTY

(2673) PROCEDURE DIVISION.
(0074) START—PARA.

(8115) GET-TOTALS SECTION.
(8116) GET-TOTAL.

FDR 3056 2-6 1 January 1980

COMPILING THE PROGRAM 2

(117) DISPLAY 'ENTER MONTH XX (@1-12) OR ENTER 99 TO QUIT’.
(9118) ACCEPT MONTH-ACCEPT.
(0119) IF MONTH-ACCEPT = 99
(0128) GO TO DONE-PARA.
(121) IF NOT VALID-MONTH
(8122) GO TO GET-TOTAL.

(0148) DONE-PARA.
(0149) STOP RUN.
ADD-TOTALS 9129 9139D

DONE-PARA 9120 9148D

GET-TOTAL @116D @122 6135
GET-TOTALS 9093 115D

START-PARA 974D
SUM-DEPT 0041 9130 9132 6140
TABLE-AREA 6062
TABLE-VALUE 0044 9057
VALID-MONTH 0043 9121

PROGRAM STATISTICS

Anactuallisting for SAMPLE.SORTis shown in Section 11.

COMPILER GENERATED FILES

File types

Three types of files may be involved during compilation. They are: sourcefile, listing file,

object file. Of these, the listing and object files are compiler-generated. Corresponding

PRIMOSfile units are given below.

File Type PRIMOSfile unit

Source 1

Listing 2

Object 3

1 January 1980 2-7 FDR 3056

2 COMPILING THE PROGRAM

File names

If disk is specified as the device for the listing and/or object file, the COBOL compiler
causesthesefiles to be opened underthe filenamespecified in the compile command. The
default convention for a listing file is L-filename. The default convention for an objectfile
is B—filename. Thus, for a source file named SAM,following the compile command COBOL
SAM,thelisting and object files would exist in the current UFD as L-SAM and B-SAM,
respectively.

If the sourcefile is given as a pathname, e.g., [MFD] > UFD1... > SAM, wherethe file SAM
does not reside in the current UFD (that in which compilation is occuring}, the listing and
object files will still be opened as L-SAM and B-—SAM,respectively. Although the source
exists in another UFD, L-SAM and B-SAMwill, nevertheless, be opened in the current
UFD.

If the user desires the listing or object files to have other than default names as outlined
above, the PRIMOS command, LISTING, must beinvokedprior to compilation.

File manipulation

LISTING filename-2 opens a listing file in the current UFD, on PRIMOSfile unit 2,
underthe specified name filename-2. This inhibits the compiler instruction COBOL from
opening a default listingfile.

The listing output(s) of more than one source file can be concatenatedif all listings are
generated prior to closing thelistingfile.

For example,

LISTING filename-2

COBOL source-1l mnemonics

COBOL source—-n mnemonics

CLOSE ALL

Note

System responses are not printed in the example above.

Filename-2 will contain the concatenation of all listing out-
puts from source-1, ..., source-n (for those compilations
whereinlistings were specified).

BINARYfilename-3 opens a binary (object) file with the specified name (in the current
UFD) on PRIMOSfile unit 3. This inhibits the compiler instruction COBOL from opening a
default objectfile.

If the BINARY or LISTING commandsare used prior to the COBOL commandto establish
non-default files, then COBOL doesnotclose these files upon completion.

FDR 3056 2-8 1 January 1980

COMPILING THE PROGRAM 2 =

After COBOL returns command to PRIMOS,thesefiles should be closed by the user by

typing:

2 3
CLOSE | tenene-2 | lencme-s }

or

CLOSE ALL

1 January 1980 2-9 FDR 3056

Loading and

executing programs

LOADING AND EXECUTING PROGRAMS

The PRIMOSSEGutility loads and executes all COBOL programs. This section describes

normal loading and execution, and specifies some techniques required for COBOLpro-

grams. The loading concept is described in more detail in the Prime User’s Guide. For

extended loading features, as well as a complete description of all SEG commands,
including those for advanced system-level programming, refer to the LOAD and SEG

Reference Guide.

LOADING PROGRAMS

Normal Loading

Most loads can be accomplishedbythe following basic procedure:

1. Invoke the SEG loader with the SEG command.(A ‘#’ sign will be the

prompt symbol.)

2. Enter the SEG-level LOAD commandtostart the load subprocessor and
to set up the runfile (LO #filename). (A ‘$’ sign will appear as the next
prompt symbol.)

3. Use the load subprocessor’s LOAD commandto load the objectfiles in
the following order:

¢ The object file of the main program (LO B_filename)

¢ The object files of any separately compiled subroutines
(preferably in order to frequencyof use)

4. Use the load subprocessor’s LIBRARY commandto load subroutines
called from libraries in the following order:

e Shared COBOLlibrary (LI VCOBLB)

¢ Non-shared COBOLlibrary, if user written subroutines are
loaded (LI NVCOBLB)

¢ Other Primelibraries, if required (LI filename)

¢ Standard FORTRANlibrary (LI)

At this point, you should receive a LOAD COMPLETEmessage.If the message is absent. do
a MAP3 to identify the unsatisfied references and load them.In the unlikely event some
other SEG error message appears, refer to the LOAD and SEG Reference Guide for the
probable cause andcorrection.

5. SAVE the runfile.

6. The QUIT commandexits from theutility.

As an example of loading, assume that the user has compiled a main program, MAIN,and
a subroutine in a separate source file, SUBR. Both have been compiled using the default
object filenames. They could be loaded asfollows:

1 January 1980 3-1 FDR 3056

OK, SEG brings SEG into memory
[SEG rev 17.1]
LO #MAIN invokes the loader and establish a runfile
S$ LO B MAIN loads the main program
$ LO B SUBR loads any separately compiled subroutine
$ LI VCOBLB loads the shared COBOL library
$ LI NVCOBLB loads the non-shared COBOL library
$ LI loads the FORTRAN library
LOAD COMPLETE Loader indicates all references are satisfied
S SA user saves runfile
$ Q returns to PRIMOS level

OK,

EXECUTING LOADED PROGRAMS

Execution of Runfiles

For programs loaded and saved by SEG,execution is performed at the PRIMOSlevelusing
the SEG command:

SEG #filename

where #filenameis the filename (or pathname) of a SEG runfile. SEG loads the runfile into
segmented memory and begins execution of the program after a dialog with C$IN (see
below).

A shortcut to saving and executing a loaded program is available. Immediaely after
receiving the LOAD COMPLETE message, enter the load subprocessor’s EXECUTE com-
mand. This commandwill then save the loaded program andstart executing the program
after a dialog with the C$IN utility program (see below). EXECUTEwill also work if a SAVE
has been given explicitly.

Upon completion of program execution, control returns to PRIMOS commandlevel.

C$IN utility program

Immediately following the execute command of SEG or EXECUTE, a series of questions will
be asked concerning run-timefile assignments. These questions are promptedbythe utility
program C$IN.

The utility programs will ask on the terminal:

ENTER FILE ASSIGNMENTS:

>

The proper response to the request aboveis to give the nameofthefile {as stated in the
VALUEOFFILE-ID clause of the File Description), followed by the pathnameof the actual
fiile to be associated with the ID. The pathnamecan be a filenameif the file resides in the
current UFD. For example, suppose that in a COBOL program the following statements
existed:

FDR 3056 3-2 1 January 1980

LOADING AND EXECUTING PROGRAMS 3

FD TEST-FILE

LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE1'.

then the proper dialog with C$IN would be:

ENTER FILE ASSIGNMENTS:

>FILE1=REED>T1

OR

>FILE1=SMT1, S, Tl, OBOH91

The first statement would go to a UFD called REED andusea diskfile called T1 as input to

TEST-FILE in the program.

The second statement requires MAG TAPE unit 1 to be assigned, with the tape mountedto

contain a TAPE-ID of T1 and a volumeserial of 000001.

The utility program C$IN will do all prescreening of the files and display the prompt

character while waiting for user input. There should be oneentry for each FD if its FILE-ID

is to be reassigned. Whennofiles remain to be entered, the single slash character /L will

conclude the session. Execution of the application program will then begin, using the file

assignments which werejust entered.

If there are nofiles in the program orif the main program contains an EXIT PROGRAM

statement, C$IN will not ask for file assignment. In the latter case, CSIN will take the default

VALUEOFFILE-ID valuesas defined in the FDs.If there are no VALUE OFFILE-ID clauses

in the program, the compiler will generate files with the name F1 F2, F3, ete.

Note that when using standard magnetic tape labels the tape will automatically rewindafter

a CLOSEstatement. With non-standard labels the tape will stay positioned to the end of the

file.

Disk formats (filenames and pathnames): A pathnameina disk format entry is an extended

form of the filename which describes the location of the file in the directory structure.

Pathnamesspecified as parameters to external commands should not contain spaces. The

space or commais used to separate one parameter from another. If a space must be

specified due to a password, enclose the entire pathnamein single quotes.

For example:

UPCASE UFDI>FILE UFD2>FILE

UPCASE 'UFD1 PASSWORD>FILE' UFD2>FILE

FILE-ID=MAGTAPE, LABEL, TAPE-ID, TAPE-NUMBER

MAGTAPE: $MT(X} being a 9-track drive number

LABEL: N: for no label information

S: specifies the tape contains standard labels and is pre-num-

bered.

1 January 1980 3-3 FDR 3056

3 LOADING AND EXECUTING PROGRAMS

TAPE-ID: is up to a 17-characterfield whichis written in the label of the tape
being created; or is used for comparison if the ape is being read.
Label must have beenspecifiedasS.

TAPE NUMBER:is a 16-character field which is checked at open-time when reading
a tape, but is not needed whencreating a tape.

Note

Appendix G explains how to create and read a VOL1 label on
a magtape.

C$IN error messages: The following are error messages which maybe output by the C$IN
utility program:

FILENAME TOO LONG (no equal sign found)

INVALID TREE SYNTAX (See allowable format)

NO FILENAME ENTERED (equal Sign with no filename)
INVALID TAPE UNIT (format did not contain MTx)

NO TAPE NAME ENTERED (Standard label specified)
TAPE NAME GREATER THAN 17

TAPE NUMBER GREATER THAN 5

Run-time error messages

Alphabetic list of the run-time error messages are provided in Appendix E of this document.

FDR 3056 3-4 1 January 1980

COBOL
LANGUAGE
REFERENCE

Fundamentalconcepts ofCO

BOL

DIVISIONS OF A COBOL PROGRAM: A SUMMARY

Every COBOL program consists of four divisions:

¢ Identification Division

¢ Environment Division

¢ Data Division

e Procedure Division

Identification Division

The Identification Division (ID Division) assigns a name to the program andallows the
programmerto enter other documentary information, such as the programmer's name,the

date the program was written, and so on.

Environment Division

The Environment Division specfies a standard method of expressing those aspectsof a data-

processing problem which depend uponthe physical characteristics of a specific computer.

Two sections make up the EnvironmentDivision; the Configuration Section and the Input-

Output Section.

Configuration section: describes the computer configuration on which the source program is
compiled, and the configuration on which the compiled programis to be run.It also relates

system namesused by the compiler to namesintroduced by the programmerin the source

program.

Input-output section: contains the information neededto control transmission and handling
of data between external media and the program.This section describes the name,type of
organization, and access modeof each datafile, and associates the file with a peripheral

device.

Data Division

The Data Division provides the compiler with a detailed description of the characteristics of
every data item used within the program.Thereare three sections of the Data Division; the
File Section, the Working-Storage Section and the Linkage Section.

File section: describes the structure of data files. Each file is defined by a File Description
entry and one or more Record Description entries.

Working-storage section: describes reecords and noncontiguous data items which are not
part of externalfiles, but are developed and processed internally. It also defines data items
whosevalues do not change during the execution of the program [(i.e., constants).

Linkage section: of a COBOL program is meaningful only in a called program. This section,
appearingin the called program, describes data items which maybereferredto by both the
called and calling programs.

1 January 1980 4-1 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Procedure Division

The Procedure Division contains instructions (COBOL statements) required to solve a data
processing problem.

This division contains two typesof sections: declarative sections and proceduralsections.

Declarative sections: are optional. When used, they must be groupedatthe beginning of the
Procedure Division. Declarative sections permit the execution of instructions which are not
performedin the regular sequence of coding. Such out-of-sequence proceduresare usually
initiated by a condition which the program doesnottest directly.

Procedural sections: follow declaratives in a logical sequence. Each procedural section
comprises one or more paragraphs. Each paragraph consists of one or more COBOL

sentences. Sentences, in turn, are comprised of one or more COBOLstatements.

Execution of the instructions in the Procedure Division begins with thefirst statement in the
division, excluding declaratives. Statements are executed in the order in which they are
presented for compilation, unless the rules indicate otherwise.

The Procedure Division ends at that point in the source program after which no further
procedures appear. This coincides with the physical end in the program.

The following skeletal coding defines the program format and order:

ID DIVISION.
PROGRAM-ID. program-name.
[AUTHOR. [comment-entry]...]
[INSTALLATION. [comment-entry] ...]
[DATE-WRITTEN. [comment-entry]...]
[DATE-COMPILED. [comment-entry] ...]
[SECURITY. [comment-entry]...]
(REMARKS.[comment-entry]...]
ENVIRONMENTDIVISION.
[CONFIGURATION SECTION.
[SOURCE COMPUTER.entry.]
[OBJECT COMPUTER.entry.]
[SPECIAL-NAMES.entry.1]
[INPUT-OUTPUT SECTION.
FILE CONTROL.{entry}.
[Il-O-CONTROL.entry]]
_DATA DIVISION.
[FILE SECTION.
[file-description-entry.

[record-description-entry] ...] ...
[sort-file-description-entry.

{record-description-entry} ...]...]
[WORKING-STORAGE SeeTON.
[77-level-description-entry]..
[record-description-entry]... 1
[LINKAGE SECTION.
[77-level-description-entry]...
{record-description-entry] ...]
PROCEDUREDIVISION [USINGIdentifler-1 ...].
[DECLARATIVES.
{section-name SECTION. use-sentence.
[paragraph-name.[sentence] ...]... } ...
END DECLARATIVES.

{section-name SECTION.
[paragraph-name.[sentence] ...] ... } ...

FDR 3056 4-2 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

The following listing file for sample program SAMPLE,illustrates the program format and

order. SAMPLEcreates andreadsa relative file sequentially.

Rev 17.2 COBOL

(8681)
(8002)
(90863)
(9084)
(8885)
(8806)
(8887)
(8088)

(909)
(3818)
(6611)
(8612)

(3018)
(2819)
(8628)
(8621)
(0822)
(0923)
(4624)
(0825)
(0825)
(8827)
(9628)
(0029)
(3633)
(2031)
(4032)
(9033)
(4834)
(0635)
(3036)
(0637)
(0838)
(6839)
(3048)
(0041)
(3042)
(0843)
(3844)
(0845)
(9845)
(9847)
(3848)
(6049)
(9058)

1 January 1980

Source File: SAMPLE 11/65/79 13:55

ID DIVISION.
PROGRAM-ID. SAMPLE.
INSTALLATION. PRIME COMPUTER TECHNICAL PUBLICATIONS DIVISION.

DATE-WRITTEN. OCT 26, 1979.
SECURITY. NONE.
REMARKS. THIS PROGRAM CREATES AND READS A RELATIVE FILE

SEQUENTIALLY.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
OBJECT—COMPUTER. PRIME-75@.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PEMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS,

ORGANIZATION IS RELATIVE,
RELATIVE KEY IS RELATIVE-KEY,
ACCESS MODE IS SEQUENTIAL,
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD PRINT-FILE, LABEL RECORDS ARE OMITTED,

DATA RECORD IS PRINT-LINE,
RECORD CONTAINS 132 CHARACTERS.

Ql PRINT-LINE PIC X(132).
FD CARD-FILE, LABEL RECORDS ARE STANDARD,

VALUE OF FILE-ID IS ‘INDATA'.
@1 CARD-IMAGE PIC X(8@).
FD DIRECTORY-FILE, LABEL RECORDS ARE STANDARD,

VALUE OF FILE-ID IS 'D-FILE'.
61 DIRECTORY-RECCRD.

@5 CARRIAGE-CONTROL PIC X.
G5 NAME.

1@ LAST-NAME PIC X(15).
10 FIRST-NAME PIC X(15).

@5 FILLER PIC X(1).
@5 ADDRESS PIC X(25).
@5 FILLER PIC X(1).
@5 CITY PIC x(4).
QS FILLER PIC X(3).
85 PHONE-NO PIC 9(7).
@5 FILLER PIC X(8).

WORKING-STORAGE SECTION.
@1 RELATIVE-KEY PIC XX.
77 FILE-STATUS PIC XX VALUE SPACES.
@1 HEADER.

85 Hl PIC X(5), VALUE IS " NAME’.

QS FILLER PIC X(27), VALUE IS SPACE.

@5 H2 PIC X(6), VALUE IS ‘STREET’.

4-3 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

(@651) @5 FILLER PIC X(19), VALUE IS SPACE.
(6852) 5 H3 PIC X(4), VALUE IS 'CITY'.
(8853) @5 FILLER PIC X(4), VALUE IS SPACE.
(8854) @5 H4 PIC X(5), VALUE IS 'PHONE'.
(8855) PROCEDURE DIVISION.
(8056) BEGIN SECTION.
(8857) CREATE-FILE.
(8058) OPEN INPUT CARD-FILE.
(859) OPEN OUTPUT PRINT-FILE, DIRBCTORY-FILE.
(8862) WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
(2061) READ-NEXT.
(8862) READ CARD-FILE AT END GO TO LIST-DIRECTORY.
(2063) MOVE CARD-IMAGE TO PRINT-LINE.
(6064) MOVE CARD-IMAGE TO DIRECTORY-RECORD.
(8065) WRITE PRINT-LINE.
(0066) WRITE DIRECTORY-RECORD INVALID KEY DISPLAY ‘INVALID KEY'.
(0067) GO TO READ-NEXT.
(3068) LIST-DIRECTORY.
(2069) CLOSE CARD-FILE, DIRECTORY-FILE.
(6070) DISPLAY 'END TEST TO CREATE FILE’.
(0071) OPEN INPUT DIRECTORY-FILE.
(6072) LAST-SECTION SECTION.
(0873) LIST.
(074) WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
(8075) READ-NEXT-DIRECTORY-RECORD.
(3076) READ DIRECTORY-FILE NEXT RECORD AT END GO TO CLOSE-ALL.
(2077) MOVE DIRECTORY-RECORD TO PRINT-LINE.
(60878) WRITE PRINT-LINE.
(2079) GO TO READ-NEXT-DIRECTCRY-RECORD.
(6880) CLOSE-ALL.
(0081) CLOSE DIRECTORY-FILE, PRINT-FILE.
(0082) DISPLAY 'END TEST SEQUENTIAL READ AFTER A START’.
(8083) STOP RUN.

No Errors, No Warnings, Prlme V-Mode COBOL, Rev 17.2 <SAMPLE>

LANGUAGE CONSIDERATIONS

Formatnotation

Throughout the Reference portion of this document, basic formats are prescribed for
various clauses or statements. These generalized descriptions guide the programmerin
writing his (or her} own statements. Theyare presented in a uniform system of notation:

¢ All words printed entirely in capital letters are Reserved Words. These are
words which have preassigned meanings. In all formats, wordsin capital
letters represent an actual occurrence of those words.

e All underlined Reserved Words are required unless the portion of the
format containing themis itself optional. Such underlined Reserved Words
are Key Words. If any Key Wordis missingor is incorrectly spelled,it is
considered an error in the program. Reserved Words not underlined may
be included or omitted at the option of the programmer. These words are

FDR 3056 4-4 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

optional words; they are used solely for improving readability of the

program.

e The characters <, >, and = when appearing in formats, although not

underlined, are required when such formats are used.

e All punctuation and other special characters represent the actual occur-

rence of those characters. Punctuation is essential where it is shown.

Additional punctuation can beinserted, according to the rules for punctua-

tion specified in this publication. In general, terminal periods are shownin

formats in the manual because they are required; semicolons and commas

are not shown generally because theyare optional.

e Words printed in lower-case letters in formats represent programmer

defined variables.

e Parts of a statement or Data Description entry which are enclosed in

brackets | | are optional. Parts between matching braces | { represent a

choice of mutually exclusive options, of which one must be chosen. When

brackets or braces enclose a portion of a format, but only onepossibility is

shown,the function of the brackets or bracesis to delimit that portion of

the format to which a followingellipsis applies.

e Certain entries in the formats consist of a capitalized word(s) followed by

the word Clause or Statement . These designate clauses or statements

which are described in other formats in appropriate sections of the text.

¢ In orderto facilitate reference to them in the text, some lower case words

are followed by a hyphenanda digit or letter. This modification does not

change the syntactical definition of the word.

¢ Theellipsis (...) indicates that the immediately preceding unit may occur

once, or any numberof times in succession. A unit meanseither a single

lower-case word, or a group of lower-case words and one or more

Reserved Words enclosed in brackets or braces. If a term is enclosed in

brackets or braces, the entire unit of which it is part must be repeated

whenrepetition is specified.

e Comments,restrictions, and clarifications on the use and meaningof every

format are contained in the appropriate portions of the manual.

¢ Multiple formats for a given COBOL verb are mutually exclusive options,

of which only one may be chosen.

Punctuation rules

The following general rules of punctuation apply in writing source programs:

¢ A period, semicolon, or comma, when used, cannot be preceded by a

space, but must be followed by space.

e Left and right parentheses must appearin balancedpairs. Theyare usedto

delimit subscripts, indexes, arithemetic expressions, or conditions.

e At least one space must appear between twosuccessive words and/or

literals. Two or more successive spaces are treated as a single space,

except in non-numeric literals.

© Relation characters should always be preceded by a space andfollowed by

another space.

e When the period, comma, plus, or minus characters are used in the

PICTUREclause, they are governed solely by rules for numeric edited

items.

¢ A comma maybe used as a separator between successive operands of a

statement, or between two subscripts.

1 January 1980 4-5 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

¢ A semicolon or comma maybeused to separatea series of statements or
clauses.

Coding rules

Since Prime COBOLis a subset of American National Standards Institute (ANSI) COBOL,
programsare written on standard COBOLcoding sheets (Figure 4-1). The following rules are
applicable:

¢ Each line of code should havea six-digit sequence numberin positions1-6,
such that the source statements are in ascending order. Blanks are also
permitted in positions 1-6.

Reserved Wordsfor division, section, and paragraph headers must begin in
the A Area (positions 8-11). Procedure-names must also appear in the A
Area(at the point where they are defined). Level numbers may appearin
the A Area. .

by the other rules of statement punctuation.

¢ Positions 73-80 are ignored by the compiler. Frequently, these positions are
used to contain the program identification.

All other program elements must be confinedto positions 12-72, governed

* Position 7 is used for special coding symbols. Explanatory comments may
be inserted on any line within a source program by placingan asterisk (*)
in position 7 of the line. Any combination of characters may be includedin
the A and B Areas of that line. The asterisk and the characters will be
produced on the source listing but serve no other purpose.If a slash (/)
appearsin position 7, the nextline will be printed at the top of a new page
when the compiler lists the program. A hyphen (-) is used to continue a
non-numericliteral from oneline to another. Refer to Non-numericliterals
(later on in this section) for coding rules.

COBOL. Cading Form

SYSTEM PUNCHING INSTRUCTIONS PAGE... OF
PROGRAM Grapnic | | a a *
PROGRAMMER [Lear PUNCH | | ee a

PSEQUENCE [5 A 5 COBOL STATEMENT IDENTIFICATION

I eS . ‘ t "a 6 po 7% 28 iz = o i @ 57 56 toe ee sy

| | :\
| | |

|| I
| | |
po
i |
| |
}

} | |
po |

fe |
| | |
| |

|
| { |
| {

|
{ |
' i
| | |

ft 3-8 47 fs L 1, 0 Re R a. oa & sf WF Ae “a

MG ot terein per: pal may vary ulegitty

Figure 4-1. Standard COBOLcoding sheet

FDR 3056 4-6 1 January 1980

Prime character set

The standard charactersetutilitized by Prime is the ANSI, ASCII, 7-bit character set. The

entire set of characters, with octal, hexadecimal, and punched card equivalents, is

presented in Appendix C.

Collating sequence

Each character in the Prime character set has a unique octal value which establishes the

collating sequencefor the character set. This sequence conformsto the American Standards

Code for Information Interchange (ASCII). The characters in Appendix C, the ASCII

Character Set, are arranged in ascending order from top to bottom.

LANGUAGESPECIFICATIONS

COBOLcharacterset

The standard COBOL language charactersetutilizes 52 characters as follows: The numbers

0 through 9, the 26 uppercase letters of the English alphabet, the space (blank), and 14

special characters. (A fifteenth special character, the apostrophe, is used by Prime COBOL

as an alternate for the quotation mark). The complete COBOLcharactersetis illustrated in

Figure 4-2.

The individual characters of the COBOL language arethe basic units used to form the major

elements of COBOL,i.e., character-string, separators, words, statements, sentences, para-

graphs, and sections.

Character strings

A character-string is a character or a seqence of contiguous characters which forms a

COBOLword, a literal, a PICTURE character-string, or a comment-entry. A character-string

is delimited by separators.

Picture character-strings

A PICTUREcharacter-string (picture-string) consists of certain combinations of characters

in the COBOL character set used as symbols. See DATA DIVISION, PICTURE, for a

description of the PICTUREcharacter-string and the rules governing its use. A punctuation

character whichis part of the specification of a PICTUREcharacter-string is not considered

as a punctuation character, but as a symbolin that PICTUREcharacter-string.

Word formation

A COBOL word is a character-string of not more than 30 characters chosen from the

following set of 37 characters:

0 through 9 (digits)

A through Z (letters)

- hyphen

A word must not begin or end with a hyphen. A wordis ended by a space, or by proper

punctuation. A word maycontain more than one embeddedhyphen: consecutive embedded

hyphensare also permitted.

All words are either Reserved Words or programmer-defined words.

If a programmer-defined wordis not unique, there must be an unique methodof referencing

it by using name qualifiers, e.g., TAX-RATE IN STATE-TABLE.Primarily, a programmer-

defined word identifies a data item or field, and is called a data-name. Other cases of

programmer-defined wordsare file-names, condition-names, and mnemonic-names.

1 January 1980 4-7 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

CLASS CHARACTER MEANING SPECIAL USAGE

0,1,...9 digit COBOLword formation
numeric figurative |LOW-VALUE(s) value (nul) figurative constant

constants] ZERO,ZEROS,ZEROES value (zero} figurative constant

A,B,..,2 letter COBOE word formation
alphabetic space ‘blank punctuation

figurative4°PACEIs) value(blank) figurative constant
constants

fi + plus sign sign symbol/arithmetic/editing
- minus sign sign symbol/arithmetic/coding

symbol/editing/COBOL. word formation
alpha- * asterisk coding symbol/ arithmetic/editing
numeric = equal sign arithmetic/relation tests/ editing

$ currency sign editing

' comma punctuation/ editing

; semicolon punctuation

special 4 period punctuation
characters quotation mark punctuation

apostrophe (quotation mark punctuation
substitution)

(left parenthesis punctuation

) right parenthesis punctuation

> greater-than relation tests

< less-than relation tests :

/ virgule (slash) arithmetic/editing/ coding symbol
figurative QUOTE(s) value (quotation) figurative constant

\ constant {hichvatuete value (delete) figurative constant

Note
When the. figurative constant LOW-VALUES is used with
binary data, it is interpreted as numeric. in all other instances,it

is interpreted as alphanumeric. Figure 4-2 COBOL Character Set

FDR 3056 4-8 1 January 1980

C ~

FUNDAMENTAL CONCEPTS OF
a

With the exception of paragraph-name andsection-name, all programmer-defined words
must contain at least one alphabetical character.

Reserved words

A Reserved Wordis one of a specified list of words which may be used in COBOLsource

programs, but which may not appear as programmers-defined words. They may only be

used as specified in the general formats. The types of Reserved Wordsare:

¢ Key words

¢ Optional words

¢ Connectives

¢ Figurative constants

¢ Special-character words

Key words: A key word is one whose presenceis required when the statement in which the

word appearsis used ina source program. Within each statement, such wordsare uppercase

and underlined.

Optional words: Within each format, uppercase words whichare not underlinedare called

optional words; they may appear at the user’s option. The presence or absence of an

optional word doesnot alter the meaning of the COBOLprogram in whichit appears, butis

required as written when used.

Connectives: The three types of connectives are:

1. Qualifier-connectives used to associate a data-name, condition-name,

text-name, or paragraph-namewith its qualifier: OF, IN

2. Series connectives which may be used to link two or more consecutive

operands: , (comma) or; (semicolon)

3. Logical connectives used in the formation of conditions: AND, OR

Figurative constants: Figurative constants are Reserved Words used to name andreference

specific constant values. A figurative constant represents as many instances of the as-

sociated character as required in the context of the statement.

The singular and plural forms are equivalent and may be used interchangeably.

A figurative constant may be used wherever literal appears in a format description;

except that, wheneverthe literal is restricted to numeric characters, the only figurative

constant permitted is ZERO (ZEROS, ZEROES). A figurative constant must not be bounded

by quotation marks.

Values, and the Reserved Words used to reference them are:

ZERO

ZEROS = The ASCII character represented by Octal 260
ZEROES

LOW-VALUE

LOW-VALUES

HIGH-VALUE
HIGH-VALUES

QUOTE

The character whose Octal representation is 200

= The character whose Octal representation is 377

The quotation mark, whose Octal representation is 242
QUOTES
SPACE = The blank character represented by Octal 240
SPACES
All literal = The literal is a single character, used in MOVE

statements; the receiving field is filled with the given

character

Special character words: The arithmetic operators and relation characters are Reserved

Words. They comprise the following:

1 January 1980 4-9 FDR 3056

UNDAMENTAL CONCEPTS OF COBOL

Operators Meaning

Arithmetic
+ Addition

Subtraction
* Multiplication
/ Division

Relation
= is equal to
< is less than
> is greater than

Programmer-defined words

A programmer-defined word is one supplied by the userto satisfy the format of a clause or
statement. Each is constructed accordingto the rules for Word Formation. Thecategories for
programmer-defined words include:

¢ Level-numbers

¢ Data-names

e File-names

¢ Condtion-names

¢ Mnemonic-names

e Paragraph-names

¢ Section-names

Level numbers:For the purposesof processing, the contents of a file are dividedinto logical
records. The level conceptis inherentin the structureof a logical record, in thatit allows the
specification of record subdivisions for the purpose of data reference.

Once a subdivision is specified, it may be further subdivided to permit more detailed data
referral. The most basic subdivision of a record, that which cannotbe futher subdivided, is
an elementary item. Data items which contain subdivisions are knownasgroupitems.

Level-numbersare one or two character, programmer-defined words.All level-numbersare
numeric. They group items within the data hierarchy of the Record Description. Since
records are the most inclusive data items, level-numbersfor records begin at 01.

Less inclusive groups are assigned numerically higher level-numbers. Level-numbers of
items within groups need not be consecutive. A group whoselevelis 02 includesall groups
and elementary items described underit until a level numberless than or equal to 02 is
encountered.

Separate entries are written in the source program for each level. The rangeof levels is 01
through 49. 1 through 9 may be written as single numbers.

Level numbers66, 77 and 88 are usedin certain applications and are defined together with
additional level-number information in Section 7, DATA DIVISION.

A weeklytime card recordillustrates the level concept. It is divided into four major items:
name, employee-number, date, and hours, with more specific information appearing for
name anddate.

LAST-NAME

NAME FIRST-INIT

MIDDLE-INIT

EMPLOYEE~—NUM

TIME-—CARD

FDR 3056 4-10 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

MONTH
DATE DAY

YEAR
HOURS-WORKED

The time card record might be described (in part) by Data Division entries having the

following level-numbers, data-names,and picture definitions.

G1 TIME-CARD.
@5 NAME.

16 LAST-NAME PICTURE X (18).

16 FIRST-INIT PICTURE X.
18 MIDDLE-INIT PICTURE X.

@5 EMPLOYEE-NUM PICTURE 99999.

@5 DATE.
16 MONTH PIC 99.
10 DAY PIC 99.

16 YEAR PIC 99.
@5 HOURS-WORKED PICTURE 99V9.

Data names: In the preceding time card example, TIME-CARD, NAME, LAST-NAME

FIRST-INIT, etc., are data-names supplied by the programmer.

A data-nameis a word assignedby theuserto identify a data item used in a program.A data-

namealwaysrefersto a field of data, not a particular value.

A data-nameis formulated accordingto the rules for Word Formation;it must begin with an

alphabetic character.

A data-nameor the Key Word FILLER mustbethe first word following the level-numberin

each Record Description entry, as shownin the following general format:

data-name

level

FILLER
This data-nameis the defining nameofthe entry.It is the means by which referencesto the

associated data area (containing the value of a data item) are made.

If someof the characters in a recordare not usedin the processing steps of a program, then

the data description for these characters need not include a data-name.In this case, FILLER

is written in lieu of a data-nameafter the level number. Note that FILLER can be used only

at the elementary level; ANSI standards do not permit its use at a group level.

File-names: A file is a collection of data records containing individual recordsof a similar

class or application. A file-name is defined by an FD entry in the Data Division's File

Section. FD is a Reserved Word which mustbe followed by an unique programmer-supplied

word called the file-name. Rules for composition of the file-name wordareidentical to those

for data-names (see Word Formation). References to a file-name appear in Procedure

statements OPEN, CLOSE and READ,aswell as in the EnvironmentDivision.

Condition-names: A condition-nameis a nameassignedto a specific value, set of values,or

range of values, within a complete set of values which a data item may assume.

A condition-name is defined within the Data Division in level 88 entries. Rules for the

formation of condition-name words are the same as those specified in Word Formation.

Additional information concerning condition-names, and those procedural statements

‘employing them,is given in the sections on the Data and Procedure Divisions.

1 January 1980 4-11 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Mnemonic-names: A mnemonic-name is assigned in the Enviornment Division under
SPECIAL-NAMESfor reference in ACCEPT or DISPLAY statements. A mnemonic-nameis
composed accordingto the rules for Word Formation.

Procedure names: Procedure-namesin the form of paragraph-namesandsection-namesare
words which identify paragraphs andsections, respectively, in the Procedure Division.

They may be up to 30 characters long, and maybeall alphabetic, all numeric, or some
combination of the two.

Literals

A literal is a programmer-defined constantvalue.It is not identified by a data-namein a
program, but is completely defined by its own identity. A literal is either non-numeric or
numeric.

Non-numericliterals: A non-numeric literal must be bounded by matching quotation marks
or apostrophes and mayconsist of any combination of characters in the ASCII set, except
apostropheor quotation marks,respectively. All spaces enclosed by the quotation marksare
included as part of the literal. A non-numeric literal must not exceed 120 characters in
length.

The following are examples of non-numericliterals:

"ILLEGAL CONTROL CARD"
'CHARACTER-STRING'
"723"

"1001"
"3.1414"
'_ 6!

"DO'S & DON'TS"
"PLEASE DON''T SQUEEZE THE CHARMIN'

Each character of a non-numericliteral (following the introductory delimiter) may be any
character other than the delimiter. Thatis, if the literal is bounded by apostrophes, then
quotation (‘) marks may be within theliteral and vice versa. Length of a non-numericliteral
excludes the delimiters; length minimum is one.

A succession of two delimiters ('’) within a literal is interpreted as a single representation
of the delimiter within the literal. The last example aboveillustrates this point.

Only non-numeric literals may be “continued” from one line to the next. When a non-
numericliteral is of a length such that it cannot be contained on oneline of a coding sheet,
the following conventions apply to the next line of coding (continuation line):

¢ A hyphenis placed in position 7 of the continuationline.

¢ A delimiter is placed in B Area preceding the continuation of the literal.

In the absence of continuation characters and delimeters, the non-numeric literal is
required to continuefor five lines. On any continuation line, A Area should beblank.

Numeric literals: A numeric literal must contain at least one and not more than 18 digits. A
numeric literal may consist of the characters (digits) 0 through 9 (optionally preceded by a
sign) and/or the decimal point. It may contain only one sign character and only one decimal
point. The sign, if present, must appearasthe leftmost character of the numeric literal. If a
numeric literal is unsigned,it is assumed to be positive.

A decimal point may appear anywhere within the numericliteral, except as the rightmost
character. If a numeric literal does not contain a decimal point, it is considered to be an
integer.

FDR 3056 4-12 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4 =

If a literal conformsto the rules for the formation of numericliterals, but is enclosed in

quotation marks,it is a nonnumericliteral andit is treated as such by the compiler.

The following are examples of numericliterals:

72 +1811 3.14159 -6 - .333 6.5

By use of the Environmentspecfication DECIMAL-POINT IS COMMA, the functionsof the

period and commacharactersare interchanged,putting the “European” notationinto effect.

In this case, the value of ‘‘pi’” would be 3,1416 when written as a numeric literal.

Qualification of names

The user must be able to identify, uniquely, every name which defines an elementin a

COBOLsource program. The name may be made uniqueinits spelling or hyphenation; or,

procedural reference may be accomplished by use of qualifier names.

In the following example, the data-name, YEAR,will require qualification for procedural

reference:

81 EMPLOYEE-RECORD

85 NAME

@5 ADDRESS

@5 HIRE-DATE

18 YEAR

18 MONTH

18 DAY

65 TERMINATION-DATE

16 YEAR

18 MONTH

10 DAY

YEAR OF HIRE-DATEis a qualified reference which would differentiate between year

fields in HIRE-DATE and TERMINATION-DATE.

Qualifiers are preceded by the word OFor IN. Successive data-name or condition-name

qualifiers must designate lesser level-numbered groups which contain all preceding names

in the composite reference. That is, HIRE-DATE must be a group item (or file-name)

containing an item called YEAR. Paragraph-names maybe qualified by their containing

section-name. Therefore, two identical paragraph-namescannot appearin the samesection.

The rules for qualification are:

¢ Each qualifier must be of a successively more inclusive level within the

same hierarchy as the nameit qualifies.

e The same name must not appearat two levels in a hierarchy.

¢ If a data-nameor a condition-nameis assigned to more than oneitem ina

source program, the data-nameor condition-name must be qualified each

time it is referred to in the Procedure, Environment, and Data Divisions

(except in the REDEFINES clause where qualification must not be used).

¢ A data-name cannot be subscripted whenit is being used as a qualifier.

e A name can be qualified even though it does not need qualification.If

more than one combination of qualifiers can make a name unique, any

combination can be used. The complete set of qualifiers for a data name

must not be the same asanypartial set of qualifiers for another data-name.

¢ A qualified name mayonly be written in the Procedure Division.

1 January 1980 4-13 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

e The maximum numberof qualifiers is one for a paragraph-name,five for
a data-name or condition-name. File-names, mnemonic-names,and sec-
tion-names must be unique.

Classes of data

The five categories of data-items (alphabetic, numeric, numeric edited, alphanumeric, and
alphanumeric edited), as specified in the PICTUREclause, are groupedinto threeclasses:
alphabetic, numeric, and alphanumeric. For alphabetic and numericdata items, classes and
categories are the same. The alphanumeric class includes the categories of alphanumeric
edited, numeric edited and alphanumeric (without editing). Every elementary item except
for an index data item belongsto oneofthe classes and, further,to one of the categories. The
class of a group item is treated at object time as alphanumeric regardless of the class of
elementary items subordinate to that group item. The following chart depicts the rela-
tionship of the class and categories of data items.

Level of data Class Category

Alphabetic Alphabetic

Numeric Numeric

Elementary Numeric Edited

Alphanumeric Alphanumeric Edited

Alphanumeric

Alphabetic

Numeric

Nonelementary Alphanumeric Numeric Edited

(Group) Alphanumeric Edited

Alphanumeric

Data levels

The two majorlevels of data are group and elementary:

Group item: A groupitem is defined as one having further subdivisions, so that it contains
one or more elementaryitems. In addition, a group item may contain other groups. An item
is a group item if, and only if, its level number is less than the level number of the
immediately succeeding item. If an item is not a group item,then it is an elementary item.
The maximumsize of a groupis 32,767 characters.

Elementary item: An elementary item is a data item containing no subordinate items. An
elementary item must contain a PICTURE clause, except when usage is described as
COMPUTATIONAL(binary), or INDEX.

Categories of data

Theclasses of data are: alphabetic, numeric, alphanumeric. Within these, the categories of
data are: alphabetic, numeric, numeric edited, alphanumeric edited and alphanumeric.

Alphabetic item: An alphabetic item consists of any combination of the 26 charactersof the
English alphabet and the space character.

Numeric item: A maximum numberof 18 digits is permitted; the exact numberof digit

positions is defined by the specification of 9’s in the picture-string. For example, PICTURE
999 defines a 3-digit item whose maximum decimalvalue is nine hundred andninety-nine.

FDR 3056 4-14 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

Numeric edited item: An edited numeric item contains only digits and/or special editing

characters. It must not exceed 30 characters in length. A numeric edited item can be used
only as a receiving field for numeric data.

Alphanumeric edited item: This is an alphanumeric item with editing characters contained

in the PICTUREdescription.

Alphanumeric item: An alphanumeric item consists of any combination of characters,

making a characterstring.

Data representation

Data is further categorized by the format in whichit is stored in the computer. The formats
are: external decimal, internal decimal, binary and index. These formats are directly
related to usage, as outlined below.

Usageis Machine description
DISPLAY External decimal
COMPUTATIONAL Binary
INDEX Binary

COMPUTATIONAL-3 Internal decimal

External decimal item: An external decimal item is one in which onebyte (8 binarybits)is

employed to represent onedigit as well as the sign. It can be a group or an elementaryitem.

The USAGEfor an external decimal item is always DISPLAY.

Internal decimal item: An internal decimal item is packed decimal format. It is defined by

inclusion of the COMPUTATIONAL-3 USAGEclause.

A packed decimalitem defined by n 9’s in its PICTURE occupies n/2+1 bytes in memory.All

bytes, except the rightmost, contain a pair of digits, each digit being represented by the

binary equivalent of a valid digit value from 0 to 9. For this reason, when using packed

decimal, the optimum space allocation should be an oddsizefield.

In the rightmost byte of a packeditem,theleft half contains the item's low-orderdigit, while

the right half contains a representationof the sign. An operational sign capability is always

present for a packedfield, even if the picture lacks the leading characterS.

Binary item: A binary item uses the base 2 system to represent an integer not in excess of

32,767. It occupies one 16-bit word. The leftmost bit of the reserved areais the operational

sign. No PICTUREclause is required; usage is COMPUTATIONAL.If a PICTUREclauseis

specified, and a decimal point is included, DISPLAY usage is assumed and a warning

messageis printed out.

Note that the user is responsible for aligning binary items on word boundaries.

Index item: An index item may not have a PICTUREclause. It also uses a 16-bit binary

representation.

Standard aligmentrules
The standardrules for positioning data within an elementary item dependonthe category
of the receiving item. These rulesare:

1. If the receiving data item is described as numeric:

¢ The data is aligned by decimal point and is moved to the
receiving digit positions with zero fill or truncation at
either end, as required.

¢ Whenan assumeddecimalpointis not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost digit. It is aligned
as in the rule directly above.

2. If the receiving data item is numeric edited, the data movedto the edited
data item is aligned by decimal point. Zerofilling or truncation,at either

1 January 1980 4-15 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

end, occurs as required within the receiving character postions of the
data item, except where editing requirements cause replacementof the
leading zeros.

3. If the receiving data item is alphanumeric (other than a numericedited
data item), alphanumeric edited or alphabetic, the sending data is moved
to the receiving character positions andalignedat the leftmost character
position in the data item. Spacefill or truncation occursto the right, as
required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified as described under JUSTIFIED, Data Division. Examples:

(b =blank, * =implied decimal)
Data to be Receiving field Receiving field
stored before transfer. after transfer

ABC PORSTUWXYZ ABCbbbbbbbb

ABCDEF1] 234 PORSTUWXYZ ABCDEF1234b

AAABBBCCCDD PORSTUWXYZ AAABBBCCCDD

AAABBBCCCDDDE PORSTUWXYZ AAABBBCCCDD

The examples above show the results of moving various length alphabetic and alphanumeric
items into an eleven-characterfield.

Data to be Receiving field Receiving field
stored before transfer after transfer

374 987°654 0437408
345 °678 9877654 345°678
12345767892 9877654 345°678
347 987654 934880
374 ABC234 34bbbb
1234567896 987 °654 898 “800

1234567898 9876754 7892 “BO

The examples above show the results of moving various length numeric items into a six-
characterfield.

Algebraic signs

Algebraic signs fall into two categories: operational signs and editing signs. Operational
signs are associated with signed numeric data items and signed numericliterals to indicate
their algebraic properties. Editing signs appear on edited reports to identify the sign of the
item.

The SIGN clause permits the programmerto state explicitly the location of the operational
sign. Editing signs are inserted into a data item throughthe use of the control symbols of the
PICTUREclause.

Subscripting

Subscripts can be used only whenreference is madeto an individual elementwithin list
or table of like elements which have not been assigned individual data-names (see the
OCCURSclause in DATA DIVISION and TABLE HANDLING).

The subscript can be represented either by a numeric literal which is an integer, or by a

data-name which maybe qualified but not subscripted.

The subscript may be signed and,if signed, it must be positive. The lowest possible subscript
‘ value is 1. This value points to the first element of the table. The next sequential elements

FDR 3056 4-16 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

of the table are pointed to by subscripts whose valuesare 2,3, The highest permissible
subscript value, in any particular case, is the maximum numberof occurrencesof the item
as specified in the OCCURSclause.

The subscript which identifies the table element is delimited by the balanced pair of
separators, left parenthesis and right parenthesis, following the table element data-name.
Whenmorethan one subscipt is required, they are written in the order of successively less
inclusive dimensions of the data-organization.

The formatis:

data-name

(subscript-1 £, subscript-2 [, subscript-3]])
condition-name

Indexing

References can be madeto individual elements within a table of like elements by specifying
indexing for that reference. An index is asigned to that level of the table by using the
INDEXEDBYphrasein the definition of a table. A namegiven in the INDEXEDBYphrase
is known as an index-nameandis usedto refer to the assigned index. The valueof an index
correspondsto the occurrence numberof an elementin the associated table. An index-name
mustbe initialized before it is used as a table reference. An index-name can be given an
initial value by either a SET, a SEARCH ALL,or a Format three Perform statment.

Prime COBOL supports two types of indexing: direct and relative. Direct indexing is
specified by using an index-namein the form of a subscript. Relative indexing is specified
when the index-name is followed by a space, followed by one of the operators + or -,
followed by anotherspace, followed by an usigned integer numericliteral all delimited by
the balanced pair of separators left parenthesis and right parenthesis following the table
element data-name. The occurrence numberresulting from relative indexing is determined
by incrementing or decrementing by the value of the literal, the occurrence number
represented by the value of the index. When more than one index-nameis required, they
are written in the order of successively less inclusive dimensions of the data organization.

Whena statement, which refers to an indexed table element,is executed, the value in the
associated index must neither be less than zero, nor greater than the highest occurrence
numberof an elementin the table. This restriction also applies to the values resultant from
relative indexing.

The general format for indexingis:

data-name index-name-1 [+ literai-2]

condition-name literal-1

index-name-2 [+ {iiteral-4)
[,]

literal-3

index-name-3 [+ literal-6]

[))
literal-5

1 January 1980 4-17 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Restrictions on qualification, subscripting and indexing.

¢ A data-name must not itself be subscripted nor indexed whenthat data-

name is being used as an index, subscript or qualifier.

e Indexing is not permitted where subscripting is not permitted.

° An index may be modified only by the SET, SEARCH, and PERFORM

statements. Data items described by the USAGE IS INDEXclause permit

storage of the values associated with index-names. Such data items are

called index data items.

ARITHMETIC EXPRESSIONS

Definition

An arithmetic expression must be an identifier or a numeric elementary item, a numeric

literal, such identifiers and literals separated by arithmetic operators, two arithmetic

expressions separated by an arithmetic operator, or an arithmetic expression enclosed in

parentheses. Any arithmetic expression may be preceded by a unary operator. The

permissible combinations of variables, numeric literals, arithemetic operators and paren-

theses are given in Table 4-1.

Table 4-1. Symbol combinations in Arithmetic Expressions

FIRST SECOND SYMBOL
SYMBOL Variable */—+ Unary + OR — ()
Variable x P x xX P
fe — P xX P P Xx

Unary + or — P x xX P x
(P X P P X
) xX P xX xX P

In the table above, P = permissible, X = invalid, Variable indicates an identifier or literal.

Identifiers and literals appearing in an arithmetic expression must representeither numeric

elementary items or numeric literals on which arithmetic may be performed.

Arithmetic operators

The specific characters below represent the binary and unary arithmetic operators. They

must be preceded and followed byat least one space.

Binary arithmetic Meaning
+ Addition
— Subtraction
* Multiplication
/ Division
Unaryarithmetic Meaning
+ The effect of multiplication by numeric literal +1.

— The effect of multiplication by numeric literal —1.

Parenthesis Meaning

() Used to enclose expressions to control the se-

quence in which conditions are evaluated.

Follow these general rules on arithmetic expressions:

Parentheses may be usedin arithmetic expressions to specify the order in which elements

are to be evaluated. Expressions within parentheses are evaluatedfirst; and within nested

parentheses, evaluation proceedsfrom the leastinclusive set to the most inclusive set. When

FDR 3056 4-18 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

parenthesesare not used, or parenthesized expressionsare at the same level of inclusive-

ness, the following hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Multiplication and Division
3rd - Addition and Subtraction

Whenthe sequence of execution is not specfied by parentheses, the order of execution of

consecutive operations of the samehierarchicallevel is from left to right. Example:

A+B/ (C-D * E)

This expression is evaluated in the following ordered sequence:

1. Compute the product D times E, considered as intermediate result R1.

2. Compute intermediate result R2 as thedifference C — R1.

3. Divide B by R2, providng intermediate result R3.

4. The final result is computed by addition of A to R3.

Without parentheses, the expression

A+B/C-D*E

is evaluated as:

R1 = B/C

R2=A+R1

R3 = D*E

final result = R2 — R3

When parentheses are employed, the following punctuation rules should be used:

1. A left parenthesis is preceded by one or morespaces.

2. A right parenthesis is followed by one or morespaces.

The expressions ‘A — B — C’ is evaluated as ‘(A — B) — C’. Unaryoperatorsare permitted,

Example:

COMPUTE A = + C + 4.6 COMPUTE X = - Y¥

Operators, variables, and parenthesis may be combined in arithmetic expressions as

summarized in Table 4-1.

Anarithmetic expression maybegin only with the symbol (+ — or variable; it may end only

with a) or a variable. There must be one-to-one correspondence betweenleft and right

parentheses of an arithmetic expression such that eachleft parenthesisis to the left of its

corresponding right parenthesis.

Arithmetic statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT

statements. These have several commonfeatures.

1. The data descriptions of the operands need not be the same; any

necessary conversion and decimal point alignment is supplied through-

out the calculation.

2. The maximumsize of each operandis 18 decimaldigits. The composite of

operands, which is a hypothetical data item resulting from the super-

imposition of specified operandsin a statementaligned on their decimal

points, must not contain more than 18 decimaldigits.

1 January 1980 4-19 FDR3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Overlapping operands

Whena sending and receiving item in an arithmetic statement or an INSPECT, MOVE,
SET, STRING, UNSTRING,or other statements sharea partof their storage areas, the result
of the execution of such a statement is undefined and unpredictable.

CONDITIONAL EXPRESSIONS

Definition

Conditional expressions identify conditions which are nested to enable the object program
to select between alternate paths of control depending uponthetruth valueof the condition.
Conditional expressions are specified in the IF, PERFORM, and SEARCHstatements.

Simple conditions

The simple conditions arethe relation, class, condition-name, and sign conditions. A simple
condition has a truth value of ‘true’ or ‘false’. The inclusion in parentheses of simple
conditions does not changethe simple truth value.

Relation condition: A relation condition has this format:

operand relation operand

where operandis a data-name, literal or figurative-constant. A relation condition has a truth
value of ‘true’ if the relation exists between the operands. Comparison of two numeric
operands is permitted regardless of the formats specified in their respective USAGE
clauses. However,for all other comparisons, the operands must have the same usage.

Relation has three basic forms, expressedby the relational symbols: equals {=}. less than
{ < }. or greater than { > }.

Relational Operator Meaning
= is equal to
< is less than
> is greater than
NOT = is not equal to
NOT < is greater than, or equalto
NOT > is less than, or equal to

Usages of Reserved Word phrasings EQUAL TO, LESS THAN, and GREATER THANare
accepted equivalents of = < >, respectively. Any form of the relation may be preceded by
the wordIS, optionally.

Note

Although required whereindicated in formats, the relational
characters ‘ <’, ‘>’, and ‘=are not underlinedin this text.

The first operand of a conditional expression is called the subject of the condition; the
second operandis called the object of the condition. The relation condition must contain at
least one reference to a variable.

The relational operator specifies the type of comparison to be madein a relation condition.
A space must precede and follow each reserved word comprisng the relational operator.
Whenused, ‘NOT’ and the next key word or relation character form onerelational operator
defining the comparison to be executed for truth value; e.g., ‘NOT EQUALis a truth test for
an ‘unequal’ comparison; ‘NOT GREATER’is a truth test for an ‘equal’ or ‘less’ comparison.

FDR 3056 4-20 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

Numeric comparisons: For numeric operands, a comparison is made with respectto their
algebraic value. The length of the literal or arithmetic expression operands, in terms of
number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operandsis permitted irrespective of the mannerin which their usage
is described. Unsigned numeric operands are considered positive for purposes of com-
parison.

The data operands are comparedafter assignment of their decimal positions.

An index-name or index item may appear in a numeric comparison

(See Section 7 for details.)

Non-numeric comparisons: For non-numeric operands, a comparison is made with respect

to Prime collating sequence of characters. The octal value associated with each ASCII
character in the Prime computeris the basis for the sequence. (Refer to Appendix C forall
ASCII character representations and the Prime collating sequence.)

If the operands are of unequal size, comparison proceeds as though the shorter operand
were extended on the right by sufficient spaces to make the operandsof equal size.

The data class (see Data Representation of this Section) of the two operands, whereoneis
a literal, must be the same.

Class condition: The class condition determines whether the contents of a data-name are
numeric or alphabetic. A numeric data item consists entirely of the digits 0 through 9, with
or without the operational sign. An alphabetic data item consists entirely of the alphabetic
characters A through Z and the space. The general format for the class conditionsis:

NUMERIC
data-name IS [NOT]

ALPHABETIC
The data-name must be described, implicitly or explicity, as USAGE IS DISPLAY.

The NUMERICtest cannot be used with a data-name described as alphabetic or as a group
item composed of signed elementary items.

If the PICTUREclause of the data-name being tested does not contain an operational sign,
the data-name is determined to be numeric only if the contents are numeric and an
operational sign is not present.

If the PICTUREclause of the data-name being tested does contain an operational sign, the
data-name is determined to be numeric only if the contents are numeric and a valid
operational sign is present.

The ALPHABETICtest cannot be used with a data-name described as numeric. Thedata-
name being tested is determined to be alphabetic only if the contents consists of any
combination of the alphabetic characters and the space.

Condition-namecondition: In a condition-name condition,a conditional variable is tested to

determine whetherornotits value is equal to one of the values associated with a condition-
name. The general format for the condition-name condition is as follows, where condition-
nameis defined by a level 88 Data Division entry:

IF condition-name statement(s) |

If the condition-nameis associated with a range or rangesof values, then the conditional
variable is tested to determine whetherornotits value falls in this range, including the end
values. (See Section 7 for details.)

1 January 1980 4-21 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

The rules for comparing a conditional variable with a condition-namevalueare the same as
those specified for relation conditions.

The result of the test is true if one of the values corresponding to the condition-name equals
the value of its associated conditional variable. Condition-names are allowed in the File
Section and Linkage Section where VALUEclausesare not.

Sign condition: The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to zero. The general format for a
sign condition is as follows:

POSITIVE
data-name IS [NOT] NEGATIVE

ZERO

Complex conditions

A complex condition is a concatenation of simple conditions, combined conditions and/or
complex conditions with logical connectors (logical operators ‘AND’ and ‘OR’) or negating
these conditions with logical negation (the logical operator ‘NOT’).The truth of a complex
condition is that truth value which results from the interaction of all the stated logical
operators on the individual truth values of simple conditions, or the intermediate truth
values of conditions logically connected orlogically negated. Five levels of parentheses are
permitted in complex conditions.

The logical operators are:

Logical operator Meaning
AND Logical conjunction; the truth valueis ‘true’ if both

of the conjoined conditions are true; ‘false’ if one
or both of the conjoined conditionsis false.

OR Logical inclusive OR;the truth valueis ‘true’ if one
or both of the included conditionsis true; ‘false’ if
both included conditions are false.

NOT Logical negation is the reversal of the truth value;
i.e., the truth valueis ‘true’ if the conditionis false,
and ‘false’ if condition is true.

Logical operators must be preceded andfollowed by a space.

Negated simple conditions: The general format of a negated simple conditionis:

NOT simple-condition

Thus, the simple condition is negated through the use of the logical operator NOT.

Thetruth value of a negated simple condition is the opposite of the truth value for a simple
condition; i.e., true if the simple condition is false,and false if the simple conditionis true.

Inclusion in parenthesis of a negated simple condition does not affect the truth value.

Combined and negated combined conditions: Combined conditions are simple conditions
connected by one of the logical operators AND or OR. A combined condition has the format:

AND
condition-1 [NOT] condition-2

OR
——

FDR 3056 4-22 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

where condition is:

¢ A simple condition

e A negated simple condition

e A combined condition

¢ A negated combinedcondtion, i.e., the logical operator NOT followedby a

combined condition enclosed in parentheses

e Combinations of the above.

Table 4-2 below sets forth the permissible combinationsof conditions, logical operators and

parentheses.

Table 4-2. Permissible combinations of conditions, logical operations and parentheses

Conditional Using a left to right sequence of elements

ELEMENT Expression Whennotfirst, When notlast,

Location the element can be the element can be

immediately preceded immediately followed

First Last only by: only by:

Simple-condition Yes Yes OR, NOT, AND,[OR, AND,}

OR and AND No No Simple-condition,} Simple-condition,

NOT,(
NOT Yes No OR, AND,(Simple-condition, [

{ Yes No OR, NOT, AND,(Simple-condition,
NOT,[

) No Yes Simple-condition,} OR, AND,}
Multiple conditions: Multiple conditions refer to complex conditions grouped in paren-

theses: as previously stated, parentheses are permittedto five levels.

When morethanfive levels of parentheses are required, explicit grouping, condition-names.

nested IF statements, or some combination of the above should be substituted.

For example, in the statement

IF a=b AND (c=d OR =f)

explicit grouping may be achieved by coding

IFa=bANDc=dORa=bANDe=f

Abbreviated combinedrelation conditions

Abbreviated combinedrelation conditions refer to conditions with implied subjects. Thatis.

the omission of the subject of the relation, or the omission of both the subject and the

relational operator of the relation condition.

The format for a abbreviated combinedrelation conditionis:

AND
relation-condition [NOT] [relational-operator] object...

OR
Within a sequence as described above, either form of abbreviation may be used: the

omission of subject, or the omission of subject and relational operator.

The effect of such abbreviationsis that of inserting the previously stated subject in place of

the omitted subject, or the previousstated relational operator.

1 January 1980 4-23 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

All insertions terminate once a complete simple condition is encountered within a complex
condition.

In all instances, the results must comply with the rules outlined in Table 4-2 above.

Negatedrelation conditions arise from the use of the word NOTin an abbreviated combined
relation condition. They are evaluated as follows:

* NOTparticipates as part of the relational operatorif the word immediately
following NOT is GREATER, >, LESS, <, EQUAL,or eq;

¢ Not is interpreted as a logical operator if the above condition does not
apply, with the result that the implied insertion of subject or relational
operator results in a negated relation condition.

Below are examples of abbreviated combinedrelation conditions:

Abbreviated Combined
and Negated Combined
Relation Conditions Expanded Equivalent
a=boORc ORd a= boORa=cORa dq

a> b AND NOT < c ORG ((a > b) AND (a NOT < c)) or (a NOT < d)

NOT a= bORc (NOT (a = b)) OR (a Cc)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c NOT (((a NOT > b) AND (a NOT > c))

AND NOT qd) AND (NOT (a NOT > d)))

Note

The reader is cautioned about the ambiguities which arise
from such coding.

Condition evaluation rules

Parentheses can be used to specify the order in which individual conditions of complex
conditions can be evaluated whenit is necessary to depart from the implied evaluation
precedence. Conditions within parentheses are evaluatedfirst, and, within nested paren-
theses, evaluation proceeds from the least inclusive condition to the most inclusive
condition. When parentheses are not used, or when parenthesized conditions are at the
samelevel of inclusiveness, the following hierarchical order of logical evaluation is implied
until the final truth value is determined.

1. Truth values for simple conditions are evaluated in the following order:

Relation (following the expansion of any abbreviated relation condition}

Class

Condition-name

Sign

2. Truth values for negated simple conditions are established.

3. Truth values for combined conditions are established:

ANDlogical operators, followed by

OR logical operators

4. Truth values for negated combined conditions are established.

FDR 3056 4-24 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

5. When the sequence of evaluation is not completely specified by paren-

theses, the order of evaluation of consecutive operations of the same
hierarchical level is from left to right.

The following examples apply to the condition evaluation rules:

1. The condition below contains both AND and OR connectors.

IF x = y AND FLAG = 'z' OR SWITCH = 9, GO TO PROCESSING

Execution will be as follows, depending on various data values:

Data Value EXECUTES

xX Y FLAG SWITCH PROCESSING

10 10 ‘Z 1 YES

10 11 ‘Z 1 NO

10 11 ‘ZL 0 YES

10 10 ‘Dp 1 NO
6 3 ‘D' 0 YES
6 6 ‘D' 1 NO

2A <BORC=DORENOT> F:Theelvaluation is equivalent to (A

< B)OR(C=D)ORNOT(E < F) and is true if any of the three

individual parenthesized simple conditionsis true.

3. WEEKLY AND HOURS NOT = 0: The evaluation is equivalent, after
expandinglevel 88 condition-name WEEKLY,to (PAY-CODE = ‘W’) AND
NOT (HOURS= 0) andis true only if both the simple conditions are true

4.A =1AND B= 2 AND Gd —3 OR P NOT EQUAL TO “SPAIN”: is

evaluated as

(A = 1) AND (B = 2) AND (G <—3) OR NOT (P = “‘SPAIN")
If P = “SPAIN”, the complex condition can only be trueif all three of the

following are true:

However, if P is not equal to SPAIN, the complex condition is true
regardless of values of A, B and G.

1 January 1980 4-25 FDR 3056

aeE

Identification dtvision

IDENTIFICATION DIVISION

| Function

The Identification Division must be included in every COBOLsource program asthefirst

entry. This division identifies the source program and the resultant output listings.

Additional user information, such as the date the program was written or the program

author, may be included under the appropriate paragraph(s) in the general format shown

below.

Format

ID DIVISION. (or IDENTIFICATION DIVISION.)

PROGRAN-ID. program-name.(no special characters in name)

{[AUTHOR. comments.]

[INSTALLATION. comments.]

[DATE-WRITTEN. comments]

[DATE-COMPILED. comments.]

[SECURITY. comments.]

REMARKS. comments.]

> Syntax rules

1. The Identification Division must begin with ID DIVISION or IDENTI-

FICATION DIVISION followed by a period and a space.

2. The PROGRAM-ID paragraphis required and mustfollow immediately

after the division header.

3. Program-name follows the general rules for Word Formation. It may

be any alphanumeric string. However, the first character must be

alphabetic. Special characters, including the hyphen, are prohibited.

(Only the first six characters of program-name are retained by the

compiler.]}

4, All remaining paragraphs are optional. When included, these must be

presented in order shown above.

5. The comments entry can be any combination of characters. Use of the

hyphenin the continuation indicator area is not permitted; however,the

comments entry can appear on one or more lines.

1 January 1980 5-1 FDR 3056

5 IDENTIFICATION DIVISION

& General rule

Fixed paragraph namesidentify the type of information contained in the paragraph.

Example

FDR 3056

ID DIVISION.

PROGRAM-ID. REF2.
AUTHOR. PRIME COMPUTER.
INSTALLATION. CORPORATE TECHNICAL PUBLICATIONS DIVISION.
DATE-WRITTEN. SEPTEMBER 1, 1979.

DATE-COMPILED. SEPTEMBER 1, 1979.
SECURITY. NONE. ;
REMARKS. THIS AREA IS USED TO DESCRIBE THE PROGRAM.

5-2 1 January 1980

Environment division

ENVIRONMENTDIVISION

| Function

The Environment Division defines those aspects of.a data processing problem which are

dependent upon hardware configurations and considerations.

Format

ENVIRONMENTDIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER.computer-name.]

[OBJECT-COMPUTER. computer-name.]

[SPECIAL-NAMES. [CONSOLE IS mnemonic-name]

[, CURRENCYSIGNIS literal]

[, DECIMAL-POINT IS COMMA]

[, ASCII IS NATIVE]}. }
[INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT file-name ASSIGN TO device

a |
[; RESERVEinteger-1]

AREAS

SEQUENTIAL
[; ORGANIZATION IS <INDEXED]

RELATIVE

SEQUENTIAL
[; ACCESS MODE !IS_ <RANDOM J

DYNAMIC [; FILE STATUSIS data-name-1}| ...

1 January 1980 6-1 FDR 3056

6 ENVIRONMENTDIVISION

[1-O-CONTROL.

SAME AREAFORfile-name-1j file-name-2}, ...]]
p Syntax rules

1. The EnvironmentDivision must begin with the header, ENVIRONMENT
DIVISION,followed by a period and a space.

2. Mandatory sequence of required and optional paragraphs is shown in
the above format.

Note

In the rare instance when hardware-dependent configura-
tions and consideratins do not apply, the entire ENVIRON-
MENT DIVISION may be omitted. However, the header,
ENVIRONMENTDIVISION, must be presentedall the time.

& General rule

Eachsection within the EnvironmentDivision begins with its section-name,followed by the
word SECTION,and each paragraph within each section begins with its paragraph-name.

[CONFIGURATION SECTION.

This section is optional. It is required only if one or moreof the following three paragraphs
is used,

1. [SOURCE-COMPUTER.computer-name.]

Computer-nameserves only as a commententry.It is used to identify the
computer for which the COBOL programis written.

2. [OBJECT-COMPUTER.computer-name.]

Computer-nameserves only as a commententry.It is used to identify the
computer on which the COBOL program will be executed.

3. [SPECIAL-NAMES.

This paragraph is optional. It is required only if one or more of the
following four statements is used.

¢ [CONSOLE ISmnemonic-name]

Mnemonic-nameis a programmer-defined word whichwill
be associated with CONSOLE throughout the program.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS TTY.

FDR 3056 6-2 1 January 1980

ENVIRONMENTDIVISION 6

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY.

The coding above would causethe field, YEAR OF HIRE-

DATE,to be output on the CONSOLE.

Note

CONSOLEIS is an optional statement. If omitted, the com-

puter will automatically associate CONSOLE (terminal) with

ACCEPT and DISPLAY.

e [CURRENCYSIGNIS literal]

Literal represents the currency sign to be used in the
PICTURE clause. It is a single character, non-numeric

literal which will be used to replace the dollar sign as the

currencysign. The designated character may notbe a quote

mark, or any of the characters defined for PICTURErepre-

sentations.

e [DECIMAL-POINT IS COMMA]

The ‘‘European”’ convention of separating integer andfrac-
tion positions of numbers by the commacharacter, rather
than the decimal point or period, is specified by use
of the DECIMAL-POINT IS COMMAclause.

Note

The Reserved Word,IS, is required in entries for currency
sign definition and decimal-point convention specification.

e [ASCII IS NATIVE }}]

The entry, ASCII IS NATIVE,specifies that the data repre-
sentation adheres to the American Standard Code for
Information Interchange as shown in Appendix C. This
convention is assumed evenif the entry is not present.

[INPUT-OUTPUT SECTION.

The INPUT-OUTPUT SECTION is used when there are external data files. It allows

specification of peripheral devices and information neededto transmit and handle data

betweenthe devices and the program. Thesection has two paragraphs: FILE-CONTROL and

I]-O-CONTROL.

FILE-CONTROL.

This entry names each file and specifies its device medium, allowing specified hardware

assignments. It can also specify other file-related information, such as numberof input-

output areasallocated, file organization, and methodoffile access. The format chosenis

1 January 1980 6-3 FDR 3056

6 ENVIROMENTDIVISION

dependent upon file organization. Each file requires one SELECT statement and the
appropriate sequence of optional clauses.

Format one

SELECTfile-name

ASSIGN TO device

AREA

[; RESERVE integer-1]

AREAS

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUSIS data-name-1].
Format two

SELECTfile-name

ASSIGNTOdevice

AREA

[; RESERVEinteger-1]
AREAS

; ORGANIZATION IS RELATIVE

SEQUENTIAL[, RELATIVE KEY IS data-name-1]
[; ACCESS MODEIS ova

, RELATIVE KEY IS data-name-1
DYNAMIC [; FILE STATUS IS data-name-2].

Format three

SELECTfile-name

ASSIGN TO device

AREA

[; RESERVE Integer-1]

AREAS

; ORGANIZATION IS INDEXED

FDR 3056 6-4 1 January 1980

ENVIRONMENTDIVISION 6

SEQUENTIAL

[; ACCESS MODEIS RANDOM J

DYNAMIC

; RECORD KEYIS data-name-1

[; ALTERNATE RECORDKEYIS data-name-2 [WITH DUPLICATES]]...

[; FILE STATUS IS data-name-3].

Format four

SELECTfile-name

ASSIGN TOdevice

1. SELECTfile-name ASSIGN TO device

File-name is a programmer-defined namedescribed in the Data Division.
Each Data Division FD entry must be specified once in a SELECT
statement and only as a file-name. The ASSIGN TO device clause
associates the file with a storage medium or input/output hardware.

Device Hardware Device

TERMINAL CRT TERMINAL

TTY TERMINAL

READER CARD READER(for future designation)

PRINTER SYSTEM PRINTER

PUNCH CARD PUNCH(for future designation)

MT9 9 TRACK MAG. TAPE DRIVE

PFMS* DISK STORAGE

OFFLINE-PRINT FORMSPRINTER OUTPUT

* PFMS = PRIME FILE MANAGEMENT SYSTEM

Examples:

SELECT file-name ASSIGN TO TERMINAL.

SELECT file-name ASSIGN TO PFMS.

SELECT file-name ASSIGN TO MT9.

AREA
2. [RESERVEinteger-1 J

AREAS

1 January 1980 6-5 FDR 3056

6 ENVIRONMENT DIVISION

The RESERVEclause allows the user to specify the number of input-
output buffer areas to be allocated. For tape applications only, the
integer value can be from 1 to 7, permitting up to 7 buffers in memoryat

one time.
If tape is not involved, the integer must be specified as one. Should the
RESERVEclause be omitted, the default of one buffer area will be
assigned by the compiler.

SEQUENTIAL
[ORGANIZATIONIS RELATIVE J

INDEX

The ORGANIZATION clause specifies the type of file organization.
When omitted, the default is SEQUENTIAL.

SEQUENTIAL
[ACCESS MODEIS RANDOM J

DYNAMIC

The sequencein which recordsare accessedis described through the use

of the ACCESS MODEclause. When omitted, the default is SEQUEN-

TIAL.

. [FILE STATUS IS data-name-1}

The FILE STATUSclause permits the user to specify a two character,

unsigned field (data-name-1) described in the Working-Storage Section.

When the FILE STATUS clause is specified in the FILE-CONTROL

paragraph, the operating system moves a value into data-name-1 after the

execution of every statement which referencesthatfile either explicitly

or implicitly. Specifically, the FILE STATUSdata item is updated during

the execution of the OPEN, CLOSE, READ, WRITE, REWRITE, DELETE

or STARTstatement. This value in data-name-1 indicates to the COBOL

program thestatus of execution of the statement. The left most character

of the FILE STATUSdata item is knownasstatus key 1; the rightmost

characteris status key 2. Status key 1 is set to indicate a specific condition

upon completion of the input-output operation; status 2 further describes

the results of the operation.

Valid combinations of key values for each type of file organization are

shownin the File Status Key Definitions, Table C-4, Appendix C.

[I-O-CONTROL.

The I-O-CONTROLparagraphis optional unless SAME AREAis used.

FDR 3056 6-6 1 January 1980

ENVIRONMENTDIVISION 6

The SAMEAREAclause allows the programmerto share the same I/O bufferareasforfiles
which are not open concurrently. No file may be listed in more than one SAME AREA
clause.

~ #£§Example

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
OBJECT-COMPUTER. PRIME-75@.
SPECIAL-NAMES. CONSOLE IS TTY ,

ASCII IS NATIVE.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PFMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS,

ORGANIZATION IS INDEXED,
ACCESS MODE IS DYNAMIC,
RECORD KEY IS PHONE-NUMBER,
ALTERNATE RECORD KEY LAST-NAME,
ALTERNATE RECORD KEY STATE,
ALTERNATE RECORD KEY BIRTH-DATE,
ALTERNATE RECORD KEY FIRST-NAME,
FILE STATUS IS FILE-STATUS.

1 January 1980 6-7 FDR 3056

Data division

Rn

DATA DIVISION

Function

The Data Division of the COBOL source programdefines the nature and characteristics of

the data to be processed by the program. Data to be processedfalls into three categories:

1. Data is containedin files and enters or leaves the internal memoryof the

computer from a specified area or areas.

2. Data is developed internally and placed into intermediate or working

storage.

3. Constants which are defined by the user.

The Data Division consists of three optional sections. If used, they must appear in the

following order:

1. FILE SECTION.Files and recordsin files are described.

2. WORKING-STORAGE SECTION. Memory space is allocated for the

storage of intermediate processing results.

3. LINKAGE SECTION.Data available to a called program is described.

Format

DATA DIVISION.

[FILE SECTION.

[file-description-entry.
[record-description-entry] ...] ...
{sort-file-description-entry.

{record-description-entry}...]...]

[WORKING-STORAGE SECTION.

[{level-77-data-description-entry] ...
[data-item-description-entry]...]

(LINKAGE SECTION.

[level-77-data-description-entry]...
[data-item-description-entry]...]

» Syntax rules
1. The Data Division must begin with the header DATA DIVISION,fol-

lowed by a period and a space.

1 January 1980 7-1 FDR 3056

7 DATA DIVISION

2. When included, optional sections of the Data Division must be in the
same order as shown above.

> General rules

1, Each section within the Data Division begins with its section-name,
followed by a period and space.

2. The record description entry format used in the File Section is also
applied to the Working-Storage and Linkage Sections.

FILE SECTION

> Function

The file section of the Data Division defines the structure of data files.Eachfile is defined
by a file description entry (FD) or a sort file description entry (SD), and by one or more
associated record description entries.

Format

FILE SECTION.

pene[record-description-entry] ...

sort-file-description-entry | record-description-entry

~ Syntax rules
1. The File Section is optional. If used, it must begin with the header, FILE

SECTION, followed by a period and a space.

The File Section contains FD and SD entries, each one must be im-
mediately followed by one or more associated record description entries.
The total number of FD and/or SD entries in the File Section cannot
exceed 126.

> General rule

Hach file associated with an I/O device must be represented by an FD or an SD entry.

Note

The format and the clauses required in an FD entry for a
typical file are described in this section. For a complete
discussion of an SD entry for a sort-file, see section 11, SORT
MODULE.

FILE DESCRIPTION

> Function

The FD file description provides information concerning the physical structure. identi-
fication, and record namespertaining to a typicalfile.

i

FDR 3056 7-2 1 January 1980

DATA DIVISIon7 =

Format

[FD ftile-name [UNCOMPRESSED]

RECORDIS STANDARD

> LABEL
RECORDS ARE OMITTED

RECORDS

[; BLOCK CONTAINS[integer-1 TO] integer-2]
CHARACTERS

[; RECORD CONTAINS[integer-3 TO] integer-4 CHARACTERS]

[; VALUE OF FILE-IDISliteral-1]

[; OWNERISliteral-2]

RECORDIS

[; DATA data-name-1 [, data-name-2]...]
RECORDSARE

[; CODE-SET IS ASCII]}

> Syntax rules

1. The level indicator FD identifies the beginning of a file description and

must precede the file-name.

2 File-name follows the general rules for Word Formation.

3. The UNCOMPRESSEDoption is used only with READfiles. It allows a

PRWFIL READ,rather than an RDASC READ.

4. The FD entry is a sequence of clauses which must be terminated bya

period: up to 126 FD entries are permitted.

5. The LABEL RECORDclauseis required; other clauses whichfollowfile-

name are optional.

6. If the DATA RECORDclauseis used, one or more record description

entries must follow the file description entry.

7. These rules apply to the overall File Section of a typicalfile.

8. If there are no files in the program or if the main program contains an

EXIT PROGRAMstatement then C$IN will not ask for file assignments

and will take the default VALUE OF FILE-ID value as defined in the FD.

If there is not a VALUE OFFILE-ID in the program the compiler will

generate files with the name F1, F2, F3...ete.

UNCOMPRESSED

> Function

The UNCOMPRESSEDclause‘enables a disk READ based on record length. rather than on

compression control characters.

Format

FD file-name (UNCOMPRESSED]

1 January 1980 7-3

7 DATA DIVISION

General rules
1. The UNCOMPRESSEDclauseis optional. When used, it enables a READ

based on record length (PRWFIL}, rather than compression control
characters (RDASC).

2. The UNCOMPRESSEDoption must be used when reading sequential
I/O files containing packed or binary data.

Note

The UNCOMPRESSEDreserved word is non-ANSI and is
peculiar to Prime.

Never use the standard utilities such as EDITOR on file

which is to be accessed UNCOMPRESSED for a COBOL

program.

LABEL RECORDS

> Function

The LABEL RECORDSclause specifies whether labels are presentforthefile.

Format

RECORDIS STANDARD
LABEL

RECORDS ARE OMITTED

Syntax rule

This clause is required in every file description entry.

| General rules

1. OMITTEDspecifies that no explicit labels exist for the file or device to

whichthefile is assigned.

2. STANDARDspecifies that a label exists for the file and that the label

conforms to system specifications. The STANDARD option must be

specified for all files assigned to DISK (PFMS) or tape. See Table 7-1

below.

Note

Standardlabels are automatically provided fordisk files. See
Appendix G, LABEL COMMAND,for information on stan-
dard labels for magtape.

Table 7-1. Label Options

Device Standard Omitted

Terminal

Reader

Printer

Punch

MT9 (Tape)
PFMS(Disk)

A
A
N
A

V
A
N

BLOCK CONTAINS

Function

The BLOCK CONTAINSclause specifies the size of a physical record.

FDR 3056 7-4 1 January 1980

DATA DIVISION 7

Format

RECORDS

[BLOCK CONTAINS[integer-1 TO] integer-2 J

CHARACTERS

& Syntax rules

1. The BLOCK CONTAINSclauseis optional.

2. The clause can only be used in connection with tapefiles.

> General rules

1. The clause may be omitted if the physical record contains one, and only
one, complete logical record.

2. Omission of this clause assumesrecords are unblocked.

3. When the RECORDSoptionis used, the compiler assumesthat the block
size provides for integer-2 records of maximum size and then provides
additional space for any required control words.

4. When the word CHARACTERSis specified, the physical record size is
specified in terms of the numberof character positions required to store
the physical record, regardless of the types of characters used to
represent the items within the physical record.

5. When neither the CHARACTERSnor the RECORDSoptionis specified,
the CHARACTERSoption is assumed.

6. When both integer-1 and integer-2 are used, integer-1 is for documenta-
tion purpose only.

RECORD CONTAINS

> Function

The RECORD CONTAINSclause specifies the size of data records.

Format

RECORD CONTAINS[integer-3 TO] integer-4 CHARACTERS

| General rules

1. Since the size of each data record is defined fully by the set of data
description entries constituting the record (level 01) declaration, this
clause is always optional.

2. Integer-4 may not be usedbyitself unless all the data recordsin thefile
have the samesize.In this case, integer-4 represents the exact numberof
characters in the data record. If integer-3 and integer-4 are both shown,
they refer to the minimum numberof charactersin the smallest size data
record, and the maximum numberof charactersin the largest size data
record, respectively.

3. The maximum size of a single data record is 32,767 characters.

1 January 1980 7-5 FDR 3056

7 DATA DIVISION

VALUEOFFILE - ID

> Function

The VALUEOFFILE-ID clause particularizes the description of an item in the label records
associated with a file, thus allowing for the linkage of internal and external program names.

Format

(VALUE OF FILE-IDisliteral-1]

P Syntax rule

This clause is mandatory if labels are standard.

General rules

1. Literal-1 associates the internal FD file-name with an external file-name.

It is a non-numeric value which maynot exceed eight characters.

2. If there are no file assignments at run-time (explained in Section 3).
literal-1 will become the default value for the internal file-name.

OWNERIS

YP Function

The OWNERIS clause specifies the User File Directory (UFD) in a Prime system, in which
VALUE OFFILE-ID value is contained.

Format

[OWNERisliteral-2]

> Syntax rule

The OWNERIS clause may be used only with disk files.

> General rules

1. Literal-2 is a non-numeric value which may not exceedsix characters.

2. The clause is overridden by explicit definition at run-time.

3. If the clause is used, it must follow the aboverules. If omitted, a default

of the current UFD mayapply.

DATA RECORDS

> Function

The DATA RECORDSclause serves only as documentation for the names of data records

and their associatedfile.

FDR 3056 7-6 1 January 1980

DATA DIVISION 7

Format

RECORDIS
[DATA data-name-1 [, data-name-2] ...]

RECORDS ARE

Syntax rule

Data-name-1 and data-name-2 are the namesof the data records. They must be specified

by subsequent 01 level-numbers and follow the generalrules for Word Formation.

> General rules

1. The presence of more than one data-nameindicatesthat thefile contains

more than one type of data record. These records may have different

sizes, different formats, etc. The order in which theyarelisted is not

significant.

2, Conceptually, all data records within a file share the same area,

regardless of the numberof types of data records within the file.

CODE- SET

> Function

The CODE-SET clause specifies the character code set used to represent data on the

external media.

Format

[CODE-SETIS ASCII].

> General rule

The CODE-SETclause serves only as documentation in this compiler.

RECORD DESCRIPTION

> Function

A record description entry describes all elementary and group itemsin a record, andtheir

relationship. It is comprised of a set of data description entries, each of which defines the

particular characteristics of a unit of data, utilizing a series of clauses to detail such

characteristics.

1 January 1980 7-7 FDR 3056

7 DATA DIVISION

Format one

data-name-1
level-number [; REDEFINES data-name-2]

FILLER

[; OCCURSinteger-1 TIMES

ASCENDING

DESCENDING

[INDEXED BYindex-name-1[, index-name-2] ...]]

PICTURE
[; IS picture-string] (or character-string)

PIC
DISPLAY
COMPUTATIONAL

[; (USAGE IS} }COMP]
INDEX
COMPUTATIONAL-3
COMP-3

LEADING

[; [SIGN IS J [SEPARATE CHARACTER] J

TRAILING

SYNCHRONIZED LEFT

[]
SYNC j RIGHT

JUSTIFIED

G RIGHT J
JUST

[; BLANK WHEN ZERO]

[; VALUEISliteral].

KEY IS data-name-3 [, data-name-4] ...]

Format two

THROUGH
66 data-name-1; RENAMESdata-name-2 [data-name-3].

THRU

FDR 3056 7-8 1 January 1980

DATA DIVISION 7

Format three

VALUEIS THROUGH
88 condition-name; literal-1 [literal-2]

VALUES ARE THRU

THROUGH
[, literal-3 [literal-4]]

THRU

Format four

VALUEIS
88 condition-name; literal-1 [, literal-2]

VALUES ARE

>

Syntax rules
1. The level-numberin Format one maycontain a value of 01 through 49, or

77.

2. In Formatone, clauses can be written in any order with two exceptions:
The data-name-1 or FILLER clause must immediately follow the level-
number: and the REDEFINESclause, when used, must immediately
follow the data-name-1 clause.

3. In Format one, PICTUREclause mustbe specified for every elementary

item except when USAGEis described as binary (COMPUTATIONAL).
A group item cannot contain a PICTUREclause.

4. The OCCURSclause cannot be specified in a data description entry

which has a 01, 66, 77, or an 88 level-number.

5. Format two permits alternative possible overlapping groups of elemen-

tary items.

6. Formats three and four are used only for condition-names which must

have a level-number88. Formats three and four may not be combinedfor

a single level 88 entry.

7. The words THRU and THROUGHare equivalent and interchangeable

Reserved Words.

Generalrule

A record description entry can appearin the File, Working-Storage, or Linkage Sectionof

the Data Division. All records in each file referenced by a file description entry (FD) must

be described by record description entries.

1 January 1980 7-9 FDR 3056

7 DATA DIVISION

> Function

The level-numbershowsthe position of a data-item within the hierarchyof data in a logical
record. It also identifies entries for condition-names, and data items in the Working-Storage

and Linkage Sections.

Format

level-number

> Syntax rules
1. A level-numberis required asthe first element in each data description

entry (see RECORD DESCRIPTION).

2. Data description entries subordinate to an FD entry must have level-
numbers 01 through 49, 66, or 88.

3. Data description entries in the Working-Storage and Linkage Sections
must have level-numbers 01 through 49, 66, 77 or 88.

> General rules

1. Level-numbers are used to subdivide a record so that each item in the
record may bereferredto. A record can be divided, and each subdivision
further divided, until a basic level is reached which cannotbe further
divided. An item at this basic level is called an elementaryitem. A record
can itself be an elementary item.

2. A group consists of one or more consecutive elementary items; groups

can, in turn, be combinedinto other groups of two or more group items.
A group consists of a specified group item andall following group and
elementary items with level-numbers greater than that of the specified
group item, and continuing until the next item with a level-numberless
than or equalto that of the specified group item is reached.

3. Level-numbers range from 01, the most inclusive level, to 49, the least

inclusive level. Any level-number except 49 can denote a group.

4. The level number01 identifies the first entry in each Data Description. A

reference to level-number 01 data-name in the Procedure Division is

a reference to the entire record.

5. Multiple level 01 entries subordinate to one FD level indicator represent

implicit redefinitions of the samearea.

6. Special level-numbers have been assignedto certain entries where there

is no real concept of hierarchy.

7. Level-number77is assigned to identify noncontiguous working storage or

linkage data items. They maybe usedonly as described in Format oneof

the data description entry.

Level-number 77 data items are elementary items which cannot be

subdivided.

8. Level-number 88 is assigned to entries which define condition-names

associated with a conditional variable. They can be used only with

Formats three and four of the data description entry.

FDR 3056 7-10 1 January 1980

DATA DIVISION

Level 88 entries can contain individual values, series of individual

values, or a range of values. Such entries cannot combine ranges and
individual values.

Example:

Q@1 Test-Area PIC X.

88 Test-Value-1 Value 'l'.

88 Test-Value-2 Value 'L', '2'.
88 Test-Value-3 Value '1' thru '8'.

88 Test-Value-4 Value '1L' thru '4', '6', '7',

In the example above, the last 88 level definition is invalid.

A level 88 entry must be preceded by one of the following: Anotherlevel
88 entry, where there are several consecutive condition-names per-
taining to an elementary item, or, an elementary item.

Every condition-namepertains to an elementary item in such a waythat
the condition-name be qualified by the name of the elementary item and
the elementary item's qualifiers. A condition-name is used in the
Procedure Division in place of a relational condition.

A condition-name may pertain to an elementary item (a conditional
variable] requiring subscripts. In this case, the condition-name, when
written in the Procedure Division, must be subscripted accordingto the
same requirements as the associated elementary item.

The type of literal in a condition-name entry must be consistent with the
data type of the conditional variable. In the following example, PAY-
ROLL-PERIODis the conditional variable. The picture associated with it
limits the value of the 88 condition-nameto onedigit.

82 PAYROLL-PERIOD PIC IS 9.

88 WEEKLY VALUE IS l.

88 SEMI-MONTHLY VALUE IS 2.

88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural condition-
nametest:

IF MONTHLY GO TO DO-MONTHLY.

An equivalent statementis:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item,values in a condition-name entry must be
expressed in the form of non-numericliterals.

9, Level number66 is assigned to identify RENAMESentries. They can be
used only with Format two of the data description entry.

1 January 1980 7-11 FDR 3056

7 DATA DIVISION

Any number of RENAMESentries may bewritten for a logical record.
They must all immediately follow the last entry of that record.

Data-name-1 cannot be used as a qualifier. Neither data-name-2 nor
data-name-3 may have an OCCURSclausenorbe subordinate to an item
with an OCCURSclause. Data-name-2 and data-name-3 must be names
of elementary items or groups of elementary items in the samelogical
record and cannot be the same data-name.

The beginning of the area described by data-name-3 mustbeto the right

of the area described by data-name-2.

A level 66 entry cannot RENAMEanotherlevel66 entry or a 77, 88 or 01

level entry.

DATA-NAME/FILLER

& Function

A data-namespecifies the name of the data being described, FILLER specifies an elemen-

tary item of the logical record which cannotbe referred to explicitly.

Format

data-name

FILLER

> Syntax rule

In the File, Working-Storage, and Linkage Sections of the Data Division, a data-nameor the

keyword FILLER must bethefirst word following the level-numberin each data description

entry.

> General rules

1. FILLER can only be used to name an elementary item in a record. Under

no circumstances can a FILLER item be referred to explicitly. However,

FILLER can be used as a conditional variable because such use does not

require explicit reference to the FILLER item, but ratherto its value.

2. A VALUEclause can be used with a FILLER item.

REDEFINES

Function

The REDEFINESclause allows the same computerstoragearea to be described by different

data description entries.

Format

level-number data-name-1 [; REDEFINES data-name-2]

Note

Level-number, data-name-1 and the semicolonare notpart of

the REDEFINESclause, but are included to show the context.

FDR 3056 7-12 1 January 1980

DATA DIVISION 7

> Syntax rules
1. The REDEFINESclauseis optional; when specified, it must immediately

follow data-name-1.

2. Level-numbers of data-name-1 and data-name-2 mustbe identical, but

must not be 66 or 88.

3. This clause must not be used in level-number 01 entries in the File

Section.

4. The data description entry for data-name-1 may contain a REDEFINES

clause.

5. The data description entry for data-name-2 may not contain an OCCURS

clause, nor may data-name-1 be subordinate to an entry which contains

an OCCURSclause.

6. Data-name-2 can be qualified, but not subscripted.

Pp General rules

1. Redefinition starts at data-name-2 and ends when level-numberless

than or equal to that of data-name-2 is encountered. In the followning

example, redefinition of the data-name-2 area by data-name-1 ends when

data-name-3 is encountered:

85 data-name-2 PICTURE A(3).

85 data-name-l REDEFINES data-name-2.

1@ ITEM-A PICTURE A.

16 ITEM-B PICTURE AA.

05 data-name-3 PICTURE X.

2. The entries giving the new description of the area must not contain

VALUEclauses except in condition-nameentries.

3. Redefinition to a depth greater than one level is permitted (see Syntax

Rule 4, above). Thus, the nested REDFINESoutlined belowisvalid:

1 FIELD-A PIC X(190).

Q@1 FIELD-B REDEFINES FIELD-A.

@5 FIELD-C PIC X(5)

85 FIELD-D REDEFINES FIELD-C.

10 FIELD-El PIC X(3).

1@ FIELD-E2 PIC X(2).

95 FIELD-F PIC X(5).

Note

The REDEFINESclausespecifies the redefinition of a storage
area, not of the data items contained therein.

RENAMES

> Function

The RENAMESclausepermits alternative possibly overlapping groups of elementary items.

1 January 1980 7-13 FDR 3056

7 DATA DIVISION

Format

THROUGH
66 data-name-1 RENAMESdata-name-2 data-name-3

THRU

Note

Level-number 66 and data-name-1 are notpart of the
RENAMESclause, but are included to show the context.

> Syntax rules
1. Any number of RENAMESentries may bewritten for a logical record.

They must all immediately follow the last entry of that record.

2, Data-name-1 cannot be used as a qualifier but can be qualified to the 01
or FD entries. Neither data-name-2 nor data-name-3 may have an

OCCURSclause nor be subordinate to an entry that has an OCCURS

clause in its data description entry.

3. Data-name-2 and data-name-3 mustbe the namesof elementary items or

groups of elementary itemsin the samerecord and cannot have the same

data-name.

4. A level 66 entry cannot rename anotherlevel 66 entry or a 77, 88 or 01

level entry.

5. The beginning of the area described by data-name-3 must beto theright

of the area described by data-name-2.

P Example

O1 MASTER.

Q5 EMP-REC.

1 EMP-NO PIC 9(4).

18 EMP-NAME.

15 LASTT PIC X(14).

15 FIRSTT PIC X(1l).

18 DEPT-CODE PIC 99.

19 TEL-EXT PIC 9 (4).

45 WORKED-PER-WEEK PIC 9(4).

65 NAME-TAG RENAMES EMP-NAME THRU DEPT-CODE.

OCCURS

> Functions

The OCCURSclause permits the definition of related sets of repeated data, such as tables,

arrays, lists, supplying required information for the application of subscripts or indexes.

FDR 3056 7-14 1 January 1980

DATA DIVISION 7

Format

OCCURSinteger-1 TIMES

ASCENDING
KEY IS data-name-1 [, data-name-2] ...]

DESCENDING

(INDEXEDBY index-name-1 [, index-name-2] ...]

> Syntax rules

1. Integer-1 must be greater than one and less than 32,767.

2. The OCCURSclause mustnot be used in a data description entry having
a 01, 66, 77, or an 88 level-number.

3. If the data-name applies to a group item, then all data-names belonging
to the group must be subscripted or indexed whenever they are used.

> General rules

1, When the OCCURSclauseis used, the data-name whichis the defining
name of the entry must be subscripted whenever it appears in the
Procedure Division. If the INDEXED BY phrase is specified, then the
data-name mustalso be indexed. However,if the data-nameis referred
to in a SEARCHStatement, it must not be subscripted or indexed.

2. The OCCURSclause specification causes a fixed length table to be
generated.Its length is equal to the value of integer-1 times the size of
each element. The size of the table illustrated below is 10 x 10 (100):

$1 FIRST-TABLE.

$5 ELEMENT PIC X(1@) OCCURS 10 TIMES.

See Section 10, TABLE HANDLING, for further detailed

discussion of the OCCURSclause.

PICTURE

Function

The PICTURE clause describes the general characteristics and editing requirements of an
elementary item.

Format

PICTURE
[IS picture-string] (or character-string)

PIC

1 January 1980 7-15 FDR 3056

7 DATA DIVISION

p Syntax rules
1. A PICTUREclause can bespecified only at the elementary item level.

2. A picture-string consists of certain allowable combinations of characters

in the COBOL character set used as symbols. The allowable combina-

tions determine the category of the elementary item.

3. The maximum numberof characterpositions allowed in a picture-string

is 30. For example, PIC X(35) and PIC X(3) consist of 5 and 4 PICTURE

characters, respectively.

4. The PICTUREclause must be specified for every elementary item except

binary items.

5. PIC is a valid abbreviation for PICTURE.

6. The asterisk when used as the zero suppression symbol and the clause

BLANK WHEN ZERO maynot appearin the sameentry.

| General rules

1. Data: Five categories of data can described with a PICTUREclause:

Alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric

edited.

¢ Alphabetic: Picture-string can only contain the characters

A and B: and, item contents must be any combination of the

letters of the English alphabet and the COBOL space

character.

Numeric: Picture-string can only contain the symbols 9,P,

S, and V. The number of digit positions which may be

represented by picture-string is from 1 to 18; and item

contents must be a combination of the digits 0 through 9.

These may be signed, or not. If signed, the item may be

positive or negative.

Alphanumeric: Picture-string is a combination of data de-

scription characters X, A, or 9, and the item is treated as if

the string contained all X’s. Alphanumeric picture-strings

may not employall 9’s orall A's; and, item contents may be

any character from the computer's ASCII characterset.

Alphanumeric edited: Picture-string is restricted to certain

combinations and the following symbols: A, X, 9, B, 0, /:

and, item contents are any character from the computer's

ASCII characterset.

Numeric Edited: The picture-string is a certain combina-

tion of the editing symbols: Z.CRDB,$+*BO=—/9V

P; and, the picutre-string must contain at least one of the

editing symbols in conjunction with numeric symbols; and,

item contents mustbe oneof thedigits.

2. Size: The size of an elementary item (the numberof character positions

occupied by the item in standard data format) is determined by the

number of allowable symbols which represent character positions.

Aninteger, enclosed in parentheses, following the symbols A, X 9 P X *

B / 0 + — or the currency symbol, indicates the numberof consecutive

occurrencesof that symbol. The following symbols can appearonly once

in a given PICTURE: S V . CR DB.

3. Decimal-Point Clause: When DECIMAL-POINT IS COMMAisspecified,

the explanations for period and comma are understood to apply to

commaandperiods, respectively.

FDR 3056 7-16 1 January 1980

DATA DIVISION 7

4. Symbols: Symbols used in a picture-string to define an elementary item

have the following functions:

A Each A represents a character position which contains

only a letter of the alphabet, or a space.

B Each B represents a character position into which the

space character will be inserted.

P Each P indicates an assumed decimal scaling position. It

specifies the location of an assumed decimal point when

the point is not within the number that appears in the

data item. The P is not countedin thesize of the data item,

but is counted in determining the maximum numberof

digit positions (18) in numeric edited items or numeric

items.

The scaling position character P may appearonly to theleft

or right of the other characters in the string as a continuous

string of P’s within a PICTUREdescription. The sign charac-

ter S and the assumed decimalpoint V are the only charac-

ters which may appearto theleft of a leftmoststring of P's.

Since the scaling position character P implies an assumed

decimal point (to the left of the P's if the P’s are leftmost

PICTUREcharacters, andto the right of the P’s if the P’s are

the rightmost PICTURE characters), the assumed decimal

point symbol V is redundantaseither the leftmost or right-

most character within such a PICTUREdescription.

Example: If a field in memory containsthe digits 37, and the

picture-string for the field is PPP99, the field has the implied

value of .00037. The samefield, with a picture-string 99ppp

has an implied value of 37000. In both instances, onlydigits 37

are actually stored in memory.

S The picture-string symbol S indicates the presence of a sign

in a data item, but implies nothing aboutthe actual formator

location of the sign in storage.

The symbol S is not counted in determining the size of the

elementary item,unlessthe entry is subject to a SIGN clause.

(See SIGN.)

When used, the S symbol must be written as the leftmost

character in picture-string.

V The character V indicates the position of an assumed decimal

point. Since a numeric item cannot contain an actual decimal

point, an assumeddecimalpointis used to provide informa-

tion concerning the alignmentof items involved in computa-

tions. Storage is never reservedfor the character V. Only one

V, if any, is permitted in any single picture.

X Each X represents a character position which contains any

allowable character from the computer's characterset.

Z Each character Z is a replacement character which repre-

sents a digit position. Leading data item zeros are suppressed

and replaced by blanks if correspondingpicture string posi-

tions are defined by Z. Zero suppression terminates upon

' encountering the decimalpoint(.), or a non zerodigit. Each Z

is counted in the size of the item.

1 January 1980 7-17 FDR 3056

7 DATA DIVISION

|
DB

5. Editing:

Each 9 in a picture-string represents a character position
which contains a numeral andis counted in the size of the
item.

Each stroke,or virgule (/), in the picture-string represents a
character position into which the stroke character will be
inserted. (/) is counted in the size of the item.

The comma character (,} specifies insertion of a comma
betweendigits. Each insertion characteris counted in the size
of the data item, but does not represent a digit position. The
comma mayalso appearin conjunction with a floating string.

A period character(.) in a picture-string is an editing symbol
representing the decimal point for alignment purposes. The
character also serves to indicate the position for decimal
point insertion.

Numeric characterpositions to the right of an actual decimal
point in a PICTURE must consist of characters of one type.
The period character (.} is counted in the size of the item.

For a given program,the functions of the period and comma
are exchangedif the clause DECIMAL-POINT IS COMMAis
stated in the SPECIAL-NAMESparagraph.In this exchange,
the rules for the period apply to the commaand the rulesfor
the commaapply to the period whenever they appear ina
PICTUREclause.

The decimal insertion character (.) must not be the last
character in the picture-string.
These symbols are used as editing sign control symbols and
represent the character position into which the editing sign
control symbol is placed. The symbols are mutually exclusive
in any one picture-string, and each character used in the
symbol is counted in determining the size of the data item,
i.e, CR and DB = 2 character positions each; + and — = 1
character position each.

Each * (asterisk) in a picture-string is a replacement charac-
ter. Leading data item zeros are suppressed and replaced by
*_ Each * is countedin the size of the item.

¢ The PICTUREclause provides two basic methodsforedit-
ing: character insertion and character sup-
pression/replacement. The type of editing which may be
performed uponan item is dependent uponthecategoryto
which the item belongs. The table below specifies which
type of editing may be performed upona given category:

Numeric Edited

Table 7-2. Categories of Data and Editing.

Category Of Data Type Of Editing
Alphabetic Simple insertion ‘B’ only
Numeric None
Alphanumeric None
Alphanumeric Edited Simple insertion 0, B and / All, subject to rules for Fixed insertion editing

FDR 3056 7-18 1 January 1980

DATA DIVISION 7

Insertion Editing includes the following types: Simple in-
sertion, special insertion, fixed insertion, and floating in-
sertion.

Simple insertion editing: utilizes B 0, / as insertion charac-
ters. The insertion characters are counted in thesize of the
item and represent the position in the item into which the
character will be inserted.

Special insertion editing: refers to decimal point insertion
(.) and resulting receiving item alignment. The insertion
character used for the actual decimal point is counted in
the size of the item. The use of the assumed decimal point
- represented by the symbol V, and the use of an actual
decimal point - represented by the insertion character, is
disallowed in the same picture-string; the two are mutually
exclusive. The result of special insertion editing is that the
insertion character is placed in an item in the sameposition
in which it appears in the picture-string.

Fixed insertion editing: employs the currency sign and
editing sign control symbols as insertion characters. The
editing sign control symbols are: + — CR DB.

Only one currency symbol, and only oneofthe editing sign
control symbols, can be used in a given picture-string.
Whenthe symbols CR or DB are used, they represent two
character positions in determining the size of the item.
They must representthe rightmost character positions to be
counted in the size of the item. The symbol + or —, when
used, must be either the leftmost or rightmost character
position to be countedin the size of the item. The currency
symbol must be the leftmost character position to be
counted in the size of an item, except that it can be
preceded byeither a + or — symbol. Fixedinsertion editing
results in the insertion character occupying the same char-
acter position in the edited item as it occupied in the
picture-string. Editing sign control symbols produce the
following results depending upon the value of the data
item:

Table 7-3. Results of Sign Control Symbols in Editing
RESULT

EDITING SYMBOLIN DATA ITEM DATA ITEM

PICTURE-STRING POSITIVE OR ZERO NEGATIVE

+ +
— space —
CR 2 spaces CR
DB 2 spaces DB

1 January 1980

Floating insertion editing: utilizes the currency symbol and
editing sign control symbols + or — as floating insertion
characters. These are mutually exclusive in a given picture-
string.

A floating picture-string is defined as a leading, continuous
series of either $ + or —, or a string composed of one such
character interrupted by one or more insertion commas

and/or decimal point.

7-19. FDR 3056

7 DATA DIVISION

FDR 3056

e For example:

$$,S58,$$$
++++

’ f

+(8) .4+

$$,SSS.S$$

¢ Floating insertion editing is indicated in a picture-string by
using a string of at least two of the floating insertion
characters. The leftmost character of the floating insertion
string represents the leftmost limit of the floating symbolin
the data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the
data item.

The second floating character from the left represents the
leftmost limit of the numeric data which can be stored in
the data item. Non-zero numeric data may replaceall the
charactersat or to the right of this limit.

In a picture-string, there are only two waysof representing
floating insertion editing. One wayis to represent anyorall
of the leading numeric characterpositions on the left of the
decimal point by the insertion character. The other wayis
to represent all of the numeric character positions in the
picture-string by the insertion character.

If the insertion characters are onlyto the left of the decimal
point in the picture-string, the result is that a single floating
insertion character will be placed into the character posi-
tion immediately preceding the first non-zero digit in the
data item. If all data item digits to the left of the decimal are
zero, the floating insertion character will be placed into the
character position immediately preceding the decimal
point. The characterpositions preceding the insertion char-
acter are replaced with spaces.

If all numeric character positions in the picture-string are
represented bythe insertion character, the result depends
upon the value of the data. If the value is zero, the entire
data item will contain spaces.

If the value is not zero, the result is the same as when the

insertion character is only to the left of the decimal point.

To avoid truncation, the minimumsize of the picture-string
for the receiving data item must be the numberof charac-
ters in the sending data item, plus the number of non-
floating insertion characters being edited into the receiving
data item, plus one for the floating insertion character. That
is, a floating string containing n + 1 occurrences of $ or + or
— defines n digit positions.

e In the following examples, b represents a blank in the
developed items.

7-20 1 January 1980

DATA DIVISION 7

1 January 1980

e Examples:
Picture-string Numeric Value Developed Item

$$$999 14 bbS914
--,---,999 ~456 bbbbbb-4'

SSSS$$ 14 bbb$ 14

A floating string need not constitute the entire PICTUREof
a numeric edited item, as shown in the preceding ex-
amples. However, the characters to the right of a decimal
point and upto the end of a PICTURE,excluding the fixed
insertion characters +, —, CR, DB(if present), are subjectto
the following restrictions:

Only one typeof digit position character may appear. That
is, Z * 9 and floating-string digit position characters $ + —
are mutually exclusive.

If any of the numeric character positions to the right of a
decimalpoint is represented by + or — or $ or Z, thenall the
numeric character positionsin the PICTURE mustbe repre-
sented by the same character.

The PICTUREcharacter 9 can never appearto the left of a
floating string, or replacement character. In fact, nothing
can precede a floating string.

When a commaappearsto the right of a floating string, the
string character floats through the commain orderto be as
close to the leading digit as possible.

Suppression/replacementediting includes two types: zero
suppression and replacement with spaces, and zero sup-
pression and replacementwith asterisks.

Floating insertion editing and editing by zero sup-
pression/replacement are mutually exclusive in a PIC-
TUREclause.

The suppression of leading zeros in numeric character
positionsis indicated bythe use of the alphabetic character
Z, or the character * (asterisk) as suppresion symbols in a
picture-string. Each suppression symbol is counted in de-
termining the size of the item. If Z is used, the replacement
character will be the space. If the asterisk is used, the
replacement character will be *

Zero suppression and replacementare indicated in a pic-
ture-string by one or moreof the allowable symbols (Z or
*), representing leading numeric character positions.
These, in turn, are to be replaced when the associated
character position in the data contains a zero. Any simple
insertion character embeddedin the string of symbols. orto
the immediate right of this string, is part of the string.

The two waysof representing zero suppressionin a charac-
ter-string are:

Represent anyorall leading numeric characterpositionsto
the left of the decimal point by suppression symbols; and,
represent all numeric character positions in the picture-
string by suppression symbols.

7-21 FDR 3056

7 DATA DIVISION

If the suppression symbols appear only to theleft of the
decimal point, any leading zero in the data which cor-
responds to a symbol in the string is replaced by the
replacement character. Suppression terminates either at
the first non-zero digit in the data represented by the
suppression symbolstring, or at the decimal point, which-
everis first.

If all numeric character positions in the picture-string are
represented by suppression symbols, and the value of the
data is not zero, the result is the sameas if the suppression
characters were only to the left of the decimal point. If the
value is zero, the entire data item will be spaces if the
symbolis Z, or all asterisks (except for the actual decimal
point) if the symbolis *.

A picture-string must consist of at least one of the charac-
ters Z A * X 9, or at least two consecutive appearancesof

the characters + ~— §.

The examples belowillustrate the use of the PICTURE
clause. In each example, a movementof data is implied, as
indicated by the columnheadings.

Source Area Receiving Area
PICTURE Data Value PICTURE Edited data

9 (5) 12345 $$$,$$9.99 $12,345.80
9(5) 00123 $$$,$$9.99 $123.60
9 (5) BBBOS $$$,$$9.99 $8.08
9 (3)V99 JBGOO $$$.$$
9 (4)V9 12345 $$$,$$9.99 $1,234.58
V9(5) 12345 $$$,$$9.99 $0.12
S9 (5) 9@O123 en99 123.008
$9 (5) “OBB. em99 -1.98
S9 (5) $8123 ++++4++4+.99 +123.90
$9 (5) BOBO ree99 1.99
S9 (5) -12345 +ZZ,ZZZ.99 -12,345.088
$9 (5) 12345 -ZZ ,ZZZ.99 . 12,345.00
S9 (5) -12345 ZZ ,229.99- 12345.93-
S9(5) 12345 ZZ ,229.99+ 12,345. 90+
39 (5) GBOBB $ZZ,Z22Z.Z2

9 (5) 88123 ++++++,.99 +123.00
9 (5) 00123 aRae== 99 123.080
9 (5) A008C Sakokk kk KkRKKRKKK

9 (5) BOOBS S**RK OO SEKKERK HO
$9 (5) 12345 KHKKKEK QOCR *¥*1 2345.00
S999V99 62345 ZZZVZZ 2345
S999V99 89084 ZZZV2ZZ 4
S9 (5) -12345 KKKKKK QOCR **12345.00CR
S9 (5) 12345 SSSS$$.99CR $12345 00

Figure 13-1. Examples of PICTURE Clauses

USAGE

‘> Function

The USAGEclause describes the form in which numeric data is represented.

FDR3056 7-22 1 January 1980

DATA DIVISION 7

Format

[USAGEIS

DISPLAY
COMPUTATIONAL
COMP]
INDEX
COMPUTATIONAL-3
COMP-3

> Syntax rules

1. COMPis a valid abbreviation for COMPUTATIONAL.

2. COMP-3 is a valid abbreviation for COMPUTATIONAL-3.

3. The PICTURE clause cannot be used if USAGEis specified as COM-

PUTATIONALor INDEX.

> General rules

1. The USAGEclause can be written at any level. If the USAGEclauseis

SIGN

written at a grouplevel, it applies to each elementary item in the group.

The USAGEclause of an elementary item cannot contradict the USAGE

clause of a group item to whichit belongs.

_ A COMPUTATIONALitem can represent a valueto be used in computa-

tions and must be numeric. When a group item is described as COM-

PUTATIONAL,only the elementary items in that group are COMPUTA-

TIONAL;the group item itself cannot be used in computations.

3. DISPLAYis the system default if the USAGEclauseis not specified.

4. If USAGEis specified as COMPUTATIONALfor an item, and a PIC-

TUREclause is included for the same item, the computerwill ignore the

USAGEclause.

Note

See Data Representation in section 4 for additional informa-

tion.

Pp Function

The SIGN clause specifies the position and the mode of representation of the operational

sign whenit is necessary to describe these properties explicitly.

Format

[SIGN IS

LEADING
[SEPARATE CHARACTER]]

TRAILING

Syntax rules

1. The SIGN clause may be specified only for a numeric data description

entry whose PICTURE contains the character S, or for a group item

containing at least one such numeric data description entry. If an is not

presentin the data item picture-string., the item is considered unsigned

(capable of storing only absolute values), and the SIGN clause is

prohibited.

1 January 1980 7-23

7 DATA DIVISION

2. Numeric data description entries to which the SIGN clause applies must
be described by USAGE IS DISPLAY.

3. Only one SIGN clause can apply to any given numeric data description
entry.

> General rules

1. WhenS appearsin a picture-string, but no SIGN clauseis included in an
item's description, the system default is SIGN IS TRAILING.

2. If the optional SEPARATE CHARACTERphraseis not present, then:

¢ The operational sign is presumed associated with the lead-
ing (or, respectively, trailing) digit position of the elemen-
tary numeric data item.

¢ The character S in picture-string is not counted in de-
termining item size.

3. If the SEPARATE CHARACTERphraseis present, then:

¢ The operational sign will be presumed the leading (or
respectively, trailing) character position of the elementary
numeric data item; this character position is not a digit
position.

¢ The letter S in a picture-string is counted in determining
the size of the item (in terms of standard data format
characters).

* The operational signs for positive and negative are the
standard data format characters + and —, respectively.

4, Every numeric data description entry whose PICTURE contains the
character S is a signed numeric data description entry. If a SIGN clause
applies to such an entry and conversion is necessary for purposes of
computation or comparisons, conversion takes place automatically.

5. Table 7-4 depicts sign representations for the various SIGN clause
options.

Table 7-4. Sign Representation
SIGN Clause Sign Representation

TRAILING Embeddedin rightmost byte
LEADING Embeddedin leftmost byte
TRAILING SEPARATE Stored in separate rightmost byte
LEADING SEPARATE Stored in separate leftmost byte
6. At a group level, an attribute of SEPARATEwill cause a group type error

at compile-time. Such attributes must be specified at the elementary
level.

SYNCHRONIZED

> Function

The SYNCHRONIZEDclause specifies the alignment of an elementary item on its natural
"addressing boundaries in the computer memory.

FDR 3056 7-24 1 January 1980

DATA DIVISION 7

Format

SYNCHRONIZED /| LEFT

SYNC RIGHT

> Syntax rules

1. SYNC is a valid abbreviation for SYNCHRONIZED.

2. In this compiler, the SYNCHRONIZEDspecification is treated as com-

mentary.

JUSTIFIED

| Function

The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data

item.

Format

JUSTIFIED

[RIGHT]

JUST

Syntax rules
1. This clause can be specified only at the elementary level.

2. JUST is a valid abbreviation of JUSTIFIED.

3. The JUSTIFIED clause cannot be used for data items described as

numeric, or for those for which editing is specified.

> General rules

1. When the JUSTIFIED clauseoption is taken, values are storedin right-to-

left fashion. The clause is effective in connection with a MOVE

statement. In a MOVEoperation,if the sending field is shorter then the

receiving field, space filling occurs in the left-most-positions. If the

sendingfield is longer than the receivingfield, the left-most characters

are truncated.

2. When the JUSTIFIED clauseis omitted, Standard Alignment Rules apply.

BLANK WHEN ZERO

| Function

The BLANK WHEN ZEROclause permits the blanking of an item whenits value is zero.

Format

[BLANK WHEN ZERO]

1 January 1980 7-29 FDR 3056

7 DATA DIVISION

> Syntax rule

The BLANK WHEN ZEROclause can be used only for an elementary numeric or numeric
edited item.

> General rules

1. When used, the BLANK WHENZEROclausespecifies that the data item
will be set to blanks when the valueis all zeros. Leading zeros are not
supressed bythis clause.

2. If the clause is specified for a numeric item, the category of the item is
interpreted as numeric edited.

 Figure 13-2. Examples: BLANK WHEN ZERO

VALUE DESCRIPTION OF RESULT
OUT-COST

0012.34 9999.99 BLANK WHEN 0012.34
0123.45 $9999.99 BLANK WHEN $0123.45
01.2345 $9999.99 BLANK WHEN $0001.23
0000.04 SSS.99 BLANK WHEN $.04
0000.00 SSS$S.99 BLANK WHEN DODO
0000.00 S$$S$.99 $.00
0012.34 kkEKOQ BLANK WHEN *#*12.34
0012.34 #eKKQQ **12.34
0900.00 kkk _ 99 BLANK WHEN RRKKkK
0000.00 #kREQO ekEK00
0000.00 ZZZINZZ, BLANK WHEN A610
0000.04 ZLZIVZZ BLANK WHEN 4
0000. 00 ZZZZ.22 BLANK WHEN BEDS
0000. 04 ZZ2ZZ.22Z BLANK WHEN .04
0000.00 ZZZZ.99 BLANK WHEN AAA
0000.00 2222.99 -00

FDR 3056 7-26 1 January 1980

DATA DIVISION 7

VALUE

> Function

The VALUE clause defines the value of constants, the initial values of WORKING-

STORAGEitems, and the values associated with a condition-name.

Format one

[VALUEISliteral]

Format two

literal-1 [literal-2 ...]

[VALUE IS THRU]
literal-1 literal-2

THROUGH

> Syntax rules

1.

2.

The words THROUGHand THRUareequivalent.

The VALUEclauseis not permitted in a data description entry specifying
an OCCURS or REDEFINESclause.

Numeric literals in a VALUE clause must have a value whichis within
range of values indicated by the PICTUREclause, and must not have a
value which would require truncation of nonzero digits. Non-numeric
literals in a VALUE clause must not exceed the size indicated by the
PICTUREclause.

. The type of literal written ina VALUEclause dependsonthetypeof data
item, as specified in the data item formats earlier in this text. For edited
items, values must be specified as non-numeric literals. A type conflict,
producing a compile time error, will arise if a figurative constant or
literal is not compatible with the PICTURE. For example, PICTURE X
VALUE ZERO will produce a type conflict error, since ZERO is a
numeric figurative constant, but PICTUREX specifies an alphanumeric

item.

_In a data item with a VALUEclause, the size of the data item cannot

exceed 32,767 characters.

. A VALUE clause may not occur in the FILE SECTION of the Data
Division except in level 88 condition-nameentries.

> General rules

1,

2.

3,

4.

3.

1 January 1980 7-27 FDR 3056

The positioning of the literal within a data area is the same as would
result from specifying a MOVEofthe literal to a data area.

The VALUEclause maybe specified at the group level in the form of a
correctly sized, non-numericliteral, or figurative constant.

Whenan initial value is not specified, no assumption should be made
regarding the initial contents of an item in Working-Storage.

A figurative constant maybe specified in both Format one and Format
two instead of a literal.

Format one is required to define an initial value for a data item or a
constant.

7 DATA DIVISION

6. Format two is reqired for condition-name entries. The VALUE clause
and the level-number 88 condition-nameitself are the only two items
permitted in the entry. The characteristics of a condition-name are
implicitly those of its conditional variable. Wherever the TRHUphraseis
used, literal-1 must be less thanliteral-2, literal-3 less than literal-4, etc.

7. Rules governing the VALUEclausediffer in the respective sectionsof the
Data Division:

In the File and Linkage Sections, the clause can be used
only in condition-nameentries.

In the Working-Storage Section, the clause must be used in
condition-name entries; it can also be used to specify the
initial value of any other data item, with the result that the
item assumesthe specified value at the start of the object
program.

8. Level-88 condition-nameentries specify a value, list of values, or a range
of values which an elementary item may assume.

A level 88 entry must be precededeither by another level
88 entry (in the case of several consecutive condition-
names pertaining to an elementary item) or by an elemen-

tary item.

Every condition-name pertains to an elementary item in
such a waythat the condition-name may be qualified bythe
name of the elementary item and the elementary item's
qualifiers.

A condition-name is used in the Procedure Division in
place of a simple relational condition.

A condition-name may pertain to an elementary item (a
conditional variable) requiring subscripts. In such a case,
the conditional-name, when written in the Procedure
Division, must be subscripted according to the samere-
quirements as the associated elementary item.

88 Level specifications can contain individual values, series
of individualvalues, a range of values, or a series of ranges
of values, but not a combination of ranges and individual
values. (See also LEVEL-NUMBER.}

WORKING-STORAGE SECTION

> Function

The WORKING-STORAGE SECTION of the Data Division describes noncontiguous data
(level 77), and records whicharenotpart of externalfiles, but are developed and processed
internally. This section also contains data assigned fixed or constant values.

Format

WORKING-STORAGE SECTION.

77-level-description-entry

record-description-entry

FDR 3056 7-28 1 January 1980

DATA DIVISION 7

>

>

Syntax rules

1. The Working-Storage Sectionis optional. If included, it must begin with

the words 1WORKING-STORAGESECTION,followed by a period and a

space.

_ Noncontiguous item names and record names in the Working-Storage

Section must be unique; they cannot be qualified. Subordinate data-

namesneed not be uniqueif they can be made unique by qualifications.

3. The level-number77 is applied to noncontiguous elementary data items,

each defined in a separate data description entry which must contain the

level-number 77, a data-name, and a PICTUREclause or USAGE IS

INDEXclause, with other optional data description clauses as necessary.

Data items in the Working-Storage Section with a definite hierarchic

relationship to one another mustbe groupedinto recordsaccordingto the

rules for formation of record descriptions. Any clause used in a record

description in the File Section can be used in a record description in the

Working-Storage Section (see RECORD DESCRIPTION).

General rules

1. Working-Storage items described in this section include the following:

¢ In the File and Linkage Sections, the clause can be used

only in condition-nameentries.

¢ In the Working-Storage Section, the clause must be used in

condition-nameentries; it can also be used to specify the

initial value of any other data item, with the result that the

item assumesthe specified value at the start of the object

program.

2. Level 88 condition-nameentries specify a value, list of values, or a range

of values which an elementary item may assume.

¢ A level 88 entry must be preceded either by anotherlevel

88 entry (in the case of several consecutive condition-

namespertaining to an elementary item) or by an elemen-

tary item.

¢ Every condition-name pertains to an elementary item in

such a waythat the condition-name maybequalified by the

name of the elementary item and the elementary item's

qualifiers.

¢e A condition-name is used in the Procedure Division in

place of a simple relational condition.

¢ A condition-name may pertain to an elementary item (a

conditional variable} requiring subscripts. In such a case,

the conditional-name, when written in the Procedure

Division, must be subscripted according to the same re-

quirements as the associated elementary item.

* 88 Level specifications can contain individualvalues,series

of individual values, a range of values,or a series of ranges

of values, but not a combination of ranges and individual

values. (See also LEVEL-NUMBER.]

1 January 1980 7-29 FDR 3056

7 DATA DIVISION

LINKAGE SECTION

> Function

The Linkage Section describes data previously defined in a calling program which is
available to a called program.

Format

LINKAGE SECTION.

77-level-description-entry

record-description-entry

> Syntax rules

1.

2.

The Linkage Sectionis optional. If included, it must begin with the words
LINKAGE SECTIONfollowed by a period and a space.

Each Linkage Section record-name and noncontiguous item name must
be unique within the called program; it cannot be qualified.

. Level-number77 refers to noncontiguous elementary data items, with no
hierarchic relationship to one another, and therefore not grouped into
records. Each level-number 77 data item is defined in a separate data
description entry which must include the level-number77, a data-name,
and a PICTURE clauses may be included as necessary.

. Data items in the Linkage Section, which have a definite hierarchic
relationship to one another, must be groupedinto records according to
the rules for formation of Record Description.

. The VALUEclause must not be specified in the Linkage Section except
in level 88 condition-nameentries.

> General rules

1. The Linkage Section of the Data Division is meaningful if and only if the
called program is to function under the control of a CALL statement, and
the CALL statement in the calling program contains a USING phrase.

. The Linkage Section is used to describe data whichis available through
the calling program, but is to be referred to in both the calling program
and the called program. No spaceis allocated in the program for data
items referenced by data-namesin the Linkage Section of that program.
Procedure Division references to these data items are resolved at load
time by equating the referencein the called program to the location used
in the calling program.

. Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if
they are specified as operands of the USING phrase of the Procedure
Division header, or are subordinate to such operands, and the called
program is under the control of a CALL statement which specifies a
USING phrase.

1 January 1980 7-30 FDR 3056

DATA DIVISION

>

FDR 3056

Note

A Linkage Section exampleis presented in Section 9, INTER-

PROGRAM COMMUNICATION.

Example

DATA DIVISION.

FILE SECTION.

FD

Bl
$1

FD

Bl
Ol

FD

91

G1

Jl

PRINT-FILE, LABEL RECORDS ARE OMITTED

DATA RECORDS ARE PRINT-LINE, PRINT-LINE1.

PRINT-LINE PICTURE IS X(190).

PRINT-LINE1.

05 USER-CARRIAGE-CONTROL PICTURE IS X.

@5 PRINT-LINE-DETAIL PICTURE IS X(99).

CARD-FILE , LABEL RECORDS ARE STANDARD

DATA RECORDS ARE CARD-IMAGE , CARD-RECORD ,

RECORD CONTAINS 80 CHARACTERS ,

VALUE OF FILE-ID IS 'DATAIN'.

CARD-IMAGE PICTURE IS X(8f).

CARD-RECORD.

05 PHONE-IN PICTURE IS X(8).

05 DATA-IN PICTURE IS X(64).

5 STATE-IN PICTURE IS XxX.

05 D-O-B-IN PICTURE IS X(5).

DIRECTORY-FILE, LABEL RECORDS ARE STANDARD,

DATA RECORDS ARE DIRECTORY-RECORD-OUTPUT,

DISPLAY-RECORD, DIRECTORY-RECORD-INPUT,

RECORD CONTAINS 108 CHARACTERS,

VALUE OF FILE-ID IS 'INDXFILE'.

DIRECTORY—RECORD-OUTPUT.

85 PHONE-NUMBER PICTURE IS X(8).

05 NAME.
19 LAST-NAME PICTURE IS X(14).

1@ FILLER PICTURE IS X.

10 FIRST-NAME PICTURE IS X(13).

19 FILLER PICTURE IS XXX.

05 ADDRESS PICTURE IS X(25).

95 FILLER PICTURE IS X.

95 CITY PICTURE IS X(4).

095 FILLER PICTURE IS X(3).

95 STATE PICTURE IS XX.

85 BIRTH-DATE PICTURE IS 9(6).

65 FILLER PICTURE IS X(29).

DISPLAY~-RECORD.

85 DISPLAY-DIR PICTURE IS X(72).

95 FILLER PICTURE IS X(28).

DIRECTORY-RECORD-INPUT.

05 PHONE-IN PICTURE IS X(8).

85 DATA-IN PICTURE IS X(454).

85 STATE-IN PICTURE IS XxX.

%5 D-O-B-IN PICTURE IS X(5).

95 FILLER PICTURE IS X(29).

7-31 1 January 1980

7 DATA DIVISION

WORKING-STORAGE SECTION.

AT-END-SWITCH PICTURE

GO-TO-READ

GO-TO-NAME

77
77
77

77
77
77
Ol

1

31

1 January 1980

CREATE-UPDATE

FILE-STATUS

ACCEPT-TRANSACTION-TYPE PIC X

PERFORM-COUNT 1.

85 PERFORM-COUNT

PICTURE

PICTURE

PICTURE

PICTURE

IS

IS

IS

IS

IS BE
PS

O
1
0
O

PICTURE IS 999.

85 PER-CO REDEFINES PERFORM-COUNT

PICTURE IS X, ©

WS-RECORD.

05 WS-LAST-NAME PICTURE I5

85 FILLER PICTURE IS

05 WS-FIRST-NAME PICTURE IS

05 FILLER PICTURE IS

Q5 WS-ADDRESS PICTURE IS

85 FILLER PICTURE IS

35 WS-CITY PICTURE IS

85 FILLER PICTURE IS

95 WS-PHONE-NUMBER PICTURE [5

05 WS-STATE PICTURE IS

85 WS-BIRTH-DATE PICTURE [S

HEADER.

45 CARRIAGE-CTRL PICTURE IS XX

95 HEADER-@ PICTURE IS X(3)

05 FILLER PICTURE IS X

95 HEADER-1 PICTURE IS X(4)

05 FILLER PICTURE IS X(27)

85 HEADER-2 PICTURE IS X(6)

05 FILLER PICTURE IS X(26)

95 HEADER-3 PICTURE IS X(4)

5 FILLER PICTURE IS X

7-32

VALUE IS ZERO.

VALUE IS ZERO.

VALUE IS ZERO.

VALUE IS SPACE.

VALUE IS SPACE.

VALUE IS SPACE.

CURS 3 TIMES.

X(14).
Xe

X(13).

XXX.

X(25).

X.

X(4).

XXX.

X(3).

XX.

X(5).

VALUE IS SPACE.

VALUE IS 'PHONE'.

VALUE IS SPACE.

VALUE IS 'NAME'.

VALUE IS SPACE.

VALUE IS 'STREET'

VALUE IS SPACE.

VALUE IS ‘CITY’.

VALUE IS SPACE.

FDR 3056

Procedure division

PROCEDUREDIVISION

> Function

The procedure division contains instructions specifying the data processing steps to be

performed by the program. COBOLinstructions are written as sentences which are

combinedto form paragraphs under paragraph names. These,in turn, are combined to form

sections under section names.

Within COBOL sentences, verbs (commands) are employed to denote actions. Statements

and sentences denote procedures.

Format

PROCEDUREDIVISION [USING data-name-1 [, data-name-2] ...].

[DECLARATIVES.

| section-name SECTION. USE sentence.

[paragraph-name.[sentence] ...] ... wee

END DECLARATIVES.]

} section-name SECTION.

[paragraph-name.[sentence] ...]... t a

— Syntax rules

1. The first entry in the Procedure Division must be the words PRO-

CEDUREDIVISION.

2. The USINGclauseis specified only if:

e The program being written is a CALLable subprogram

whichis to function underthe control of a CALL statement.

e The CALL statement in the calling program contains a

USING clause.

3. Each of the data-nameoperandsin the USINGclause must be defined as

a data item in the Linkage Section of the subprogram.

4. Within the subprogram, Linkage Section data items are processed ac-

cording to their data descriptions as given in the subprogram.

5. Data-name level-numbers in the USING clause must be 01 or 77. See

Section 9, INTER-PROGRAM COMMUNICATIONfor complete dis-

cussion.

1 January 1980 8-1 FDR 3056

8 PROCEDURE DIVISION

6. Declarative sections are optional. Whenincluded, they must be grouped
at the beginning of the Procedure Division, preceded by the key word
DECLARATIVESandfollowed by the key words END DECLARATIVES.
These entries must appear on separatelines.

7. A SECTIONentryis optional. Whenincluded, it must consist of section-
name,followed by the word SECTIONanda period. Eachsection header
must appear ona linebyitself; each section-name must be unique.

8. A paragraph is a logical entry consisting of one or more sentences. A
paragraph-name must precedethefirst sentence.

9. A sentence is a single statementor a series of statements terminated by
a period and followed by a space.

10. A statementconsists of a COBOLverb followed by appropriate operands
(data-namesorliterals) and other wordsnecessary for the completion of
the statement. There are two types of statements, the Imperative and
Conditional:

¢ Imperative Statements: An imperative statement specifies

an unconditional action to be taken by the object program.
An imperative statement consists of a verb andits oper-
ands, excluding the IF conditional statement, the READ
statement and any I/O statement which has an INVLAID
KEY clause.

¢ Conditional Statements: A conditional statement stipulates
a condition whichis tested to determine whetheranalter-
nate path of program flowis to be taken. The IF statement
provides this capability. READ statements, and any I/O
statement having an INVALID KEYclause are also con-
sidered to be conditional. When an arithmetic statement
possesses a SIZE ERROR suffix, the statement is con-
sidered to be conditional rather than imperative.

11. Arithmetic statements may be imperative or conditional. The five
arithmetic verbs are: ADD, SUBTRACT, MULTIPLY, DIVIDE, COM-
PUTE.

General rules

1. The sections under the DECLARATIVESheader provide a method for
including procedures which are invoked whena condition occurs which
cannot normally be tested by the programmer. Each Declaratives Section
comprises a section header, a USE compiler-directing sentence, and,
optionally, one or more paragraphs.

Although the system automatically handles checking and creation of
standard labels, and executed error recovery in the case of input/ output
errors, additional procedures may be specified, here, by the COBOL
programmer.

Since such proceduresare executedonlyat the time an error in reading

and writing occurs, they cannot appear in the regular sequence of
procedural statements. Instead, they must appear in the DECLAR-

ATIVESsection. Related procedures are preceded by a USEsentence.

Within a USE procedure, there must be no reference to non-declarative
procedures. Conversely, in the non-declarative portion, there must be no
reference to procedure-names which appearin the declarative portion,
except that PERFORMstatements mayreferto the proceduresassociated
with a USE statement. For additional information, see USE statement.

FDR 3056 8-2 1 January 1980

PROCEDUREDIVISION 8 =a

2. After END DECLARATIVESis specified, no text can appear before the

next section header.

3. The Procedure Division is usually, though not necessarily, written in

sections, each with a section headerfollowed optionally by one or more

successive paragraphs.

4, Section-name and paragraph-namefollow the general rules for WORD

FORMATION.

5. Arithmetic statements in the Procedure Division are governed by the

following rules:

¢ All data-names used in arithmetic statements must be

elementary numeric data items which are defined in the

Data Division of the program, except when they are the

operands of GIVING. The data item may be numeric

edited. Index-names andindexitemsare not permissible in

these arithmetic statements.

¢ Decimal point alignmentis supplied automatically through-

out the computations.

° Intermediate result fields generated for the evaluation of

arithmetic expressions assure the accuracy of the result

field, except where high-ordertruncation is necessary.

* The maximum size of each operand is 18 decimal digits.

The composite of operands, which is a hypothetical data

item resulting from the superimposition of specified oper-

ands in a statement aligned on their decimal points, must

not contain more than 18 decimaldigits.

¢ When arithmetic is attempted with one or more non-

numeric operands, the program will execute, but results

are invalid.

6. The three statement components which may appearin all arithmetic

statements are: The GIVING option, the ROUNDEDoption, the SIZE

ERRORoption.

° If the GIVING optionis written, the value of the data-name

which follows the word GIVING is made equalto the

calculated result of the arithmetic operation. The data-

name whichfollows GIVINGis not used in the computation

and may be a numeric edited item.

* When the ROUNDED option is specified, if the most

significant digit of the excess is greater than or equalto 5,

the least significantdigit of the resultant data-namehasits

value increased by 1. If the ROUNDEDoptionis not taken,

truncation will occur after decimal-point alignmentif the

result is greater than thesize of the receiving data item.

* Rounding of a computed negative result is performed by

rounding the absolute value of the computed result and

then making the final result negative.

° The following chartillustrates the relationship between a

calculated result and the valuestored in an item whichis to

receive the calculated result, with and without rounding.

1 January 1980 8-3 FDR 3056

8 PROCEDURE DIVISION

Calculated

Result

-12.36
8.432

35.6
65.56

-8055

Item to Receive Calculated Result

Value After Value After
Picture Rounding Truncating
S99V9 -12.4 -12.3

9V9 8.4 8.4
99V9 35.5 35.5
S99V 66 65
SV999 - 906 895

The SIZE ERRORoption is written immediately after any
arithmetic statement, as an extension of the statement. The

format of the SIZE ERRORoptionis:

[ON SIZE ERRORimperative- statement...]

If, after decimal-point alignment and any low-ordertrunca-
tion, the value of a calculated result exceeds the largest
value whichthereceiving field is capable of holding, a size
error condition exists.

If the SIZE ERROR option is present, and a size error
condition arises, the value of the resultant data-nameis
unaltered andthe series of imperative statements specified
for the condition is executed.

If the SIZE ERRORoptionhas notbeen specified and a size
error condition arises, no assumption should be made
aboutthe final result.

An arithmetic statement, if written with a SIZE ERROR
option, is not an imperative statement. Rather, it is a
conditional statement since it is data-dependent and is
prohibited in contexts where only imperative statements
are allowed.

An example of a conditional arithmetic statementis:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occcurs(in this case, it is apparent
that RECORD-COUNThasPicture 99, and cannot hold a
value of 100), both the MOVE and DISPLAYstatements are
executed. Otherwise, the MOVE and DISPLAY statements
are not executed.

PROCEDURE STATEMENTS

COBOLstatements (verbs) are described on the following pages in alphabetic sequence.For
a brief reference, see the Prime COBOL Verb Index, Table C-1, in Appendix C.

ACCEPT

~& Function

The ACCEPTstatementcauses low-volume data to be madeavailable to the specified data
item.

FDR 3056 1 January 1980

PROCEDUREDIVISION 8 —

Format one

ACCEPT data-name [FROM mnemonic-name]

Format two

DATE

ACCEPT data-name FROM /DAY
TIME

> Syntax rule

The mnemonic-name in Format one must be specified also in the SPECIAL-NAMES

paragraphof the EnvironmentDivision, and must be associated with the console (terminal).

> General rules

1. The ACCEPT statement causes transfer of data from the hardware

device. The transferred data replaces the contentsof the field specified

by data-name.

2. One line is read, and as many characters as necessary (depending on the

size of the named datafield) are moved, without change,to the indicated

field. The maximum numberof characters which can bereadis 72.

3. Omission of FROM mnemonic-name implies that input is from the

terminal.

4. When FROM mnemonic-nameis specified, input is keyed-in at the

terminal by the operator; mnemonic-name must be assigned to CON-

SOLE in the SPECIAL-NAMESparagraph.

Wheninputis to be accepted from the terminal, execution consists of the

following steps:

e Execution is suspended.

e Whenthe operator enters a response, the program stores

the acquired datain the field designated by data-name, and

normal execution proceeds.

¢ The data size is controlled by the size specified for data-

name.

¢ For unequal sizes of data-name and terminal input the

result is treated as an alphanumeric to alphanumeric move
with spacefill on the right or right truncation.

5. The Format two ACCEPTstatement causes the requested information to

be transferred to the data item specified by data-nameaccordingto the

rules of the MOVEstatement. DATE, DAY, and TIMEareconceptual

data items and are therefore not described in the COBOL program.

6. DATE has the following data elements: Year, month, and day of the

month,in that sequence, from high to low order(left to right). July 1, 1974

is expressed as 740701. DATE, when accessed by a COBOLprogram,is

treated as though described in the COBOL program as an unsigned

elementary numeric integer data item six digits long.

7, DAY has the following data elements: Year, and day of year, in that

sequence, from high to low order(left to right). July 1, 1974 would be

expressed as 74183. DAY, when accessed by a COBOLprogram,is treated

as though described in a COBOL program as an unsigned elementary

numeric integer data item five digits long.

1 January 1980 8-5 FDR 3056

8 PROCEDURE DIVISION

8. TIME has the following data elements: Hours, minutes, seconds and
hundreds of a second. TIMEis based on time elapsed after midnight on
a 24-hour basis; thus 2:41 p.m., or 1441 hours, is expressed as 14410000.
TIME, when accessed by a COBOL program,is treated as though
described in a COBOL program as an unsigned elementary numeric
integer data item eight digits long. The minimum value of TIMEis
00000000; maximum value is 23595999.

ADD

» Function

The ADDstatement adds together two or more numeric valuesandstores the resulting sum.

Format one

data-name-1 ; data-name-2

ADD eos TOdata-name-3 [ROUNDED]

literal-1 ‘| , literal-2

[; ON SIZE ERROR Imperative-statement]

Format two

data-name-1 , data-name-2 , data-name-3

ADD 4
literal-1 , literal-2 ~ , literal-3 GIVING data-name-4 [ROUNDED] [; ON SIZE ERROR Imperative-statement]

Format three

CORRESPONDING

ADD identifier-1 TO identifier-2

CORR

[ROUNDED] [; ON SIZE ERROR imperative-statement]

& Syntax rules

1. In Formats one and two, each data-name must refer to an elementary
numeric item, except that in Format two each item following GIVING can
be either an elementary numeric item or an elementary numeric edited.

2. Each literal must be a numericliteral.

3. The maximumsize of each operandis 18 digits. If all operands, excluding
those following the word GIVING, were to be superimposed upon each
other, aligned by their implied decimal points, their composite could not
exceed 18 decimaldigits in length.

4. In Format three, elementary items under group nameidentifier-1 are
added to and stored into the corresponding elementary items under
group nameidentifier-2.

FDR 3056 8-6 1 January 1980

PROCEDURE DIVISION 8

> General rules

1. In Format one, the values of the operands preceding the word TO are

added, the sum is added to the current value of data-name-3 and the

result is stored immediately in data-name-3.

2. In Format two, the values of the operands preceding the word GIVING

are added, and the sum is stored as the new value of data-name-4

following GIVING.

3. In Format three, data items in identifier-1 are added to andstored in

corresponding data itemsin identifier-2.

4. See the rules for arithmetic statements under PROCEDUREDIVISION,

General Rules. The ROUNDED and ON SIZE ERRORoptions may be

used whentruncation of the results could occur.

5. The rules for signs are those presented in FUNDAMENTAL CONCEPTS

OF COBOL, Algebraic Signs.

> Examples

ADD INTEREST, DEPOSIT TO BALANCE ROUNDED.

ADD REGULAR-TIME, OVERTIME GIVING GROSS—PAY.

The first statement would result in the total sum of INTEREST, DEPOSIT, and BALANCE

being placed at BALANCE,while the second would result in the sum of REGULAR-TIME

and OVERTIMEearnings being placed in item GROSS-PAY.

ALTER

> Function

The ALTER statement modifies a simple GO TO statement elsewhere in the Procedure

Division, thus changing the sequence of execution of program statements.

Format

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2

> Syntax rules

1. Paragraph-name-1 contains a single GO TO sentence without the DEPEN-

DING phrase.

2. Paragraph-name-2 is the name of another paragraph or section in the

Procedure Division.

General rule

Execution of the ALTER statement modifies the GO TO statement in paragraph-name-1 so

that subsequent executions of the modified GO TO statements cause transfer of control to

paragraph-name-2.

> Example

GATE.
GO TO M-F-OPEN.

M-F-OPEN.
OPEN INPUT MASTER-F ILE.
ALTER GATE TO PROCEED TO NORMAL.

1 January 1980 8-7 FDR 3056

8 PROCEDURE DIVISION

NORMAL.

READ MASTER-FILE, AT END GO TO EOF-MASTER.

Examination of the above code reveals the technique for providing for a one-time
initializing program step.

Note

ALTERis fully supported in PRIME COBOL.Its use, how-
ever, is inconsistent with structured programming techni-
ques. The reader should be awarethat the ALTER statement
presents difficulties in the degugging process.

CALL

> Function

The CALLstatement allows one program to communicate with one or more other programs.

It causes control to be transferred from one loaded program to another within a run unit,

with both programs having accessto data items referred to in the CALL statement.

Format

CALLliteral-1 [USING data-name-1 [, data-name-2] ...]

& Syntax rule

The literal-1 must be a non-numeric literal which is a subprogram name defined as the
PROGRAM-ID of a separately compiled program; it must be enclosed in quote marks.

Note

The relationship of literal-1 and PROGRAM-IDisillustrated
in the example at the end of Section9.
Whencalling subroutines, literal-1 is the subroutine name
(for example, ‘SUBSRT’) and data-names in the USINGlist
are the arguments passed and returned. For available sub-
routines and calling sequences, refer to the PRIMOS Sub-
routines Reference Guide.

> General rule

Data-name(s) in the USINGlist are made available to the called subprogram by passing
addresses to the subprogram; these addresses are assigned to the Linkage Section items
declared in the USING list of that subprogram. Therefore, the number of data-names
specified in matching CALL and Procedure Division USINGlists must be identical. Up to 14
data-names are permitted.

Note

Correspondence between caller and callee lists are posi-
tional, not by identical spelling of names. For additional
information, see CALL statement in Section 9, INTER-PRO-
GRAM COMMUNICATION.

CLOSE

> Function

‘The CLOSE statement terminates the processing of files with optional lock where ap-

plicable.

FDR 3056 8-8 1 January 198¢

PROCEDURE DIVISION 8

Format one

CLOSEfile-name-1 [, flle-name-2] ...

Format two

CLOSEfile-name-1 [WITH LOCK]...
> Syntax rule

The files referenced in the CLOSE statement need not all have the same access or

organization.

| General rules

1. Format oneis the only option possible for both indexed andrelativefiles.

2. A CLOSEstatement must be executed upon completion of file process-
ing, or before a STOP RUNis executed.

3. For this compiler, CLOSE statement options are treated as comments.

COMPUTE

> Function

The COMPUTEstatement evaluates an arithmetic expression, a numeric-literal, or a data-
name, and thenstoresthe result in a designated numeric or numeric edited item.

Format

data-name-2
COMPUTEdata-name-1 [ROUNDED] = numeric-literal

arithmetic-expression

[; ON SIZE ERROR Imperative-statement]
> Syntax rule

In general, data-name appearingto the left of = mustrefer to either an elementary numeric

item or an elementary numericedited item.

Generalrule
The COMPUTE statement is governed by the regulations imposed by the statement
components GIVING, ROUNDED,SIZE ERROR,as outlined in the General Rules, PRO-
CEDURE DIVISION. It is also governed by the general regulations for Arithmetic
Statements as described in FUNDEMENTAL CONCEPTS OF COBOL.

COPY

> Function

The COPY statementprovides a meansof including pre-written COBOLsource coding in the

programsat compile time; this is a compiler-directing function.

1 January 1980 8-9 FDR 3056

8 PROCEDURE DIVISION

Format

COPYtext-name[< __

>

library-name]

> Syntax rules

1. OF and IN areinterchangeable and mutally exclusive.

2. A COPY statement may occur anywhere in the source program,in any

Division where a character-string or a separator might usually occur,

except that it may not occur within another COPY statement.

> General rules

1. Text-name must be a unique name on the UFD (User’s File Directory)

which contains the COBOLprogramif the library-nameis not specified.

2. If the text name is not on the same UFDasthe program,library-name

must be specified and must be the UFD name which containsthe text-

name.

Examples:

FILE-CONTROL. COPY text-name.

FD MASTER-FILE COPY text-name OF SUB.

Ql MASTER-RECORD. COPY text-name IN SUB.

SECTION-NAME SECTION. COPY text-name.

PARAGRAPH-NAME. COPY text-name IN SUB.

Of the examples above, the first and fourth ones have copy members

contained on the same UFDasthe source program.Therest of them have

copy members not contained in the source program UFD; these have

copy members contained in a UFD named SUB.

3. The data preceding the COPY statement mustnotbe contained within the

copy member.

> §Example

The following is from Data Division coding in a source program.

@1 MASTER-DESCRIPTION. COPY MASDES.

The text-name MASDESexists in the same UFDasthe source program.It must not contain

the 01 MASTER-DESCRIPTIONentry; it might have the format:

FDR 3056 8-10 1 January 1980

PROCEDUREDIVISION 8

95 BADGE-NO PIC 9(5).
5 NAME.

18 LAST-NAME PIC X(15).
1@ FIRST-NAME PIC X(15).

After compilation, examination of the listing file would reveal:

91 MASTER-DESCRIPTION. (COPY MASDES.) (where the copy member is
@5 BADGE-NO PIC 9(5). comment only).
85 NAME.

16 LAST-NAME PIC X(15).

10 FIRST-NAME PIC X(15).

Line numbering of the COPYfile in the listing file is independentof the line numbersof the

source.

Using the example above, the correspondinglisting file might look like:

(8859) .
(9060) .
(9061) .
(9862) @1 MASTER-DESCRIPTION. COPY MASDES.
[3881] @5 BADGE-NO PIC 9(5).
[8882] 95 NAME.
[8203] 18 LAST-NAME PIC X(15).
{3004} 18 FIRST-NAME PIC X(15).
(8862) @1 MASTER-DESCRIPTION. COPY MASDES.
(2863) @1 EMPLOYMENT-HISTORY.
(9064) .
(8965) .
(9866) .

DELETE

~ Function

The DELETE statement logically removes a record from an indexedorrelative file.

Format

DELETEfile-name RECORD[; INVALID KEYimperative-statement]

> Syntax rule

The INVALID KEYoption must not be specified for a DELETEstatementreferencing file

in SEQUENTIALaccess mode. This was not allowed in the ANSI standard X3.23-1974.

> General rules

1. A DELETEstatement logically removes a data record from a file. When

operating on an indexedfile, the DELETE statement removesall cor-

respondingindices as well.

2. Execution of a DELETEstatementdoesnotaffect the contents of a record

area associated with file-name.

3. In SEQUENTIAL access, the record to be deleted must have been
successfully read before a DELETE can be executed.

1 January 1980 8-11 FDR 3056

8 PROCEDURE DIVISION

4. In indexed files with RANDOM or DYNAMICaccess modes,the value of

the record to be deleted must be placed in the RECORD KEYfield.

5. In relative files with RANDOM or DYNAMICaccess modes,the value of

the record to be deleted must be placed in the RELATIVEKEYfield.

6. For additional discussion, see Sections 12 and 13.

DISPLAY

> Function

The DISPLAY statement causes low-volumedatato be output to the appropriate hardware

device.

Format

data-name
DISPLAY literal ... [UPON mnemonic-name]

figurative-constant

> Syntax rules

1. The mnemonic-name must be specified in the SPECIAL-NAMESpara-
graphin the EnvironmentDivision.

2. The maximum total number of characters which maybe outputis 72.

> General rules

1. When the UPONsuffix is omitted, the system default is the standard
display device, the on-line terminal.

2. If a figurative-constant is given as an operand,it will be displayed as a
single character.

3. If a data item operand is packed, it is displayed as a series of digits
followed by a separate trailing sign.

Examples

Type Statement Output

data-name DISPLAY BADGE-NO 52207

data-name , DISPLAY 'BADGE-NO = ' BADGE-NO BADGE-NO = 52207

literal DISPLAY 'END-JOB' END-JOB

figurative-constant DISPLAY ‘SELECT’ ZERO SELECT@

DIVIDE

> Function

The DIVIDE statementdivides one numericdata item into another and stores the quotient.

FDR 3056 8-12 1 January 1980

PROCEDUREDIVISION 8

Format one

data-name-1

DIVIDE INTO data-name-2 [ROUNDED]

literal-1

[; ON SIZE ERROR imperative-statement]

Format two

data~-name-1 INTO data-name-2

DIVIDE GIVING data-name-3 [ROUNDED]

literal-1 BY literal-2

[; ON SIZE ERRORimperative-statement]

> Syntax rules

1. Each data-name mustrefer to an elementary numeric item, except that a
data-name associated with the GIVING phrase can refer either to an
elementary numeric item or to an elementary numericedited item.

2. Each literal must be a numericliteral.

3. The maximum size of each operandis 18 decimal digits. If all receiving
data items were to be superimposed upon eachother, aligned by their
decimal points, their composite should not exceed 18 decimal digits in

length.

4. Division by zero always causesa size-error condition.

> General rules

1. In Format one, data-name-1 orliteral-1 is divided into data-name-2; the
quotient then replaces the dividend, data-name-2.

2. In Format 2, division occurs as in the cases below, and the quotientis
stored in the data items following the word GIVING.

e If the keyword INTOis used, the value of data-name-1 or
literal-1 is divided into data-name-2 or literal-2 and the

result is stored in data-name-3.

e If the keyword BY is used, data-name-1 or literal-1 is
divided by data-name-2 orliteral-2 and the result is stored
in data-name-3.

3. The REMAINDERclause of the DIVIDE statementis not supported. The
user may substitute by a simple modification:

For the statement:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3

REMAINDER data-nane-4.

Substitute:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3.

COMPUTE data-name-4 = data-name-1 - (data-name-2 *

data-name-3).

1 January 1980 8-13 FDR 3056

8 PROCEDURE DIVISION

ENTER

> Function

The ENTERstatementis classified as a compiler-directing statement; it acts as a modiferto
a subsequent CALL statement and permits the use of more than one language in the same

program.

Format

COBOL

ENTER

ASSEMBLER
> Syntax rules

1. A CALLed subprogram may be written in COBOL, FORTRAN,or
Assembly, language, etc.. The parameter ASSEMBLER in the ENTER
statement signifies a subprogram is other than COBOL.

2. The form ENTER COBOL maybeused following a CALL statement;this
traditional usage is optional. After any CALL statement, ENTER COBOL

is assumed.

3. Each CALL uponan assembly Language subroutine must be preceded by
its own ENTER ASSEMBLERstatement.

4. The ENTERstatementis optional in PRIME compiler.

> General rule

The other language statements are executed in the called program as if they had been

compiled in the called program following the ENTER statement. See INTER-PROGRAM

COMMUNICATIONfor additional information.

EXHIBIT

> Function

The EXHIBITstatement provides a meansfor displaying critical data at specified points in

a procedure.

Format

literal

EXHIBIT

NAMED data-name
ag General rules

1. The EXHIBIT statementis injected at critical points in the Procedure
Division to provide debugging information. Specified data is EXHIBITED
on the terminal.

2. The EXHIBIT statement differs from DISPLAY in that both the data-
nameandits value, connected by an ‘=’ character, are printed. The ‘=’
character is preceded and followed bya space.

Example:

Statement Output

EXHIBIT NAMED EMPLOYEE-NO EMPLOYEE-NO = 958

FDR 3056 8-14 1 January 1980

PROCEDURE DIVISION 8

EXIT

> Function

The EXIT statement provides an end-point for a procedure.

Format

EXIT.

Syntax rules

1. The EXIT statement must appearin a sentencebyitself.

2. For documentation purpose, the EXIT sentence maybetheonly sentence
in the paragraph.

> General rule

An EXIT statement serves only to enable the use to assign a procedure-nameto a given point
in a program. Such an EXIT statement has noother effect on the compilation or execution
of the program.

EXIT PROGRAM

a Function

The EXIT PROGRAMstatement marksthe logical end of a called program.

Format

EXIT PROGRAM.

> Syntax rules

1. The EXIT PROGRAMstatement must appearin a sentencebyitself.

2. For documentation purpose, the EXIT PROGRAMsentence maybe the
only sentence in the paragraph. However, Prime COBOL does not
requireit.

> General rules

1. The execution of an EXIT PROGRAMstatementin a called program
causes control to be passedto the calling program. Execution of an EXIT
PROGRAMstatementin a program whichis not called behavesasif the
statement were an EXIT statement.

2. If a main program contains an EXIT PROGRAMstatement, C$IN will not
ask for file assignments and will take the default VALUE OF FILE-ID
value as defined in the FD.

GO TO

> Function

The GO TOstatementtransfers control from one part of the PROCEDURE DIVISION to
another, overriding the normal sequential execution of sentences.

Format one

GO TO procedure-name.

1 January 1980 8-15 FDR 3056

8 PROCEDURE DIVISION

Format two

GO TO procedure-name-1 [procedure-name-2]...

DEPENDINGON data-name.

> Syntax rules

1. A paragraph referenced by an ALTERstatement can consist only of a

paragraph headerfollowed by a Format one GO TO statement.

2. In Format two, data-name must be an elementary, numeric integer.

> Generalrules

1. A GO TO statement must not branch outof a range of the PERFORM

statements.

2. A procedure-name must follow the GO TO statement. Otherwise, the

compiler will abort with internal code.

3. When a Format one GO TOstatementis executed, control is transferred

to procedure-name, or to another paragraph-name if the GO TO

statement has been modified by an ALTERstatement.

4. When a GO TO statement represented by Format twois executed, control

is transferred to procedure-name-1, procedure-name-2, etc., depending

on the value of the identifier being 1, 2, ..., n. If the value of the identifier

is anything otherthan the positive or unsignedintegers1, 2, ... n, then no

transfer occurs and control passes to the next statement in the normal

sequence for execution.

IF

> Function

The IF statement causes the evaluation of a condition (see Section 4, Conditional Ex-

pressions), permitting the execution of specified procedural statementsif the condition is

true.

Format

NEXT SENTENCE statement(s)-2
IF condition [ELSE

statement(s)-1 NEXT SENTENCE

> Syntax rule

The conditions in the IF statement must conform to the rules and outlining of conditions

specified in Conditional Expressions, Section 4.

> General rules

1. If the condition is true, any ELSE phrase is bypassed and either

statement-1 or NEXT SENTENCE (whichever was specified in the

statement) is executed as follows:

* Statement-1, if specified, is executed. Control then passes
to the next executable sentence following the IF statement,
unless statement-1 contains a procedure-branchor condi-
tional statement, in which case control is transferred ac-
cording to the rules for that statement.

FDR 3056 8-16 1 January 1980

PROCEDUREDIVISION 8 =

e If the NEXT SENTENCEphraseis specified, control passes

to the next executable sentence.

2. If the condition is false, any statement-1 or its replacement NEXT

SENTENCEwhich maybespecified is bypassed, and contro] passes as

follows:

¢ Statement-2, if specified, is executed. Control then passes

to the next executable sentence, unless statement-2 con-

tains a procedure-branch or conditional statement, in

which case control is transferred accordingto the rules for

that statement.

e If no ELSE statement-2 phrase is specified, or if the ELSE

NEXT SENTENCEphraseis specified, control passesto the

next executable sentence.

3. The IF statement is said to be nested whenever statement-1 and/or

statement-2 contains another IF statement. If statements within IF

statements are consideredas paired IF and ELSE combinations, proceed-

ing from left to right. Thus, any ELSE encountered applies to the

immediately preceding IF which has not been already paired with an

ELSE.It is not required that the numberof ELSE’s in a sentence be the

same as the numberof IF s.

4. The relation condition has the format:

Relation Meaning
= is equal to
< is less than

> is greater than
NOT = is not equal to
NOT < is not less than
NOT > is not greater

than

5. The class condition determining whether an operand is numeric or

alphabetic. Its formatis:

NUMERIC
IF data-name IS [NOT]

ALPHABETIC

The NUMERICtestis valid only for a group, decimal, or character item.

The ALPHABETICtest is valid only for a group or characteritem.

6. The condition-name condition tests the value or status of a conditional

variable. Its formatis:

IF [NOT] condition-name

The condition-name is defined as a level 88 data item in the record

description entry in the Data Division.

In a condition-namecondition,the first series of statements is executed

if, and only if, the designated condition is true. The second series of

statements is executedif, and only if, the designated condition is false.

The secondseries (ELSE part) is terminated by a sentence-ending period.

If there is no ELSE part to an IF statement, then the first series of

statements must be terminated by a sentence-endingperiod.

Whetherthe conditionis true or false, the next sentenceis executed after

1 January 1980 8-17 FDR 3056

PROCEDURE DIVISION

10.

11.

FDR 3056

execution of the appropriate series of statements. If a GO TO is
contained in the imperatives which are executed, or the normalflow of
program stepsis superseded because of an active PERFORMstatement,
the next sentence is not executed.

Example:

IF BALANCE = @ GO TO NOT-FOUND.

IF X = 1.74 MOVE 'M' TO FIAG.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO

SKIP-COUNT ELSE GO TO BYPASS.

The sign condition tests an arithmetic expression to determine whether
its value is greater than, less than, or equal to zero. The formatis:

NEGATIVE

IF data-nameIS [NOT] ZERO

POSITIVE
. Two or more conditions can be combinedbythe logical operators AND
and OR.The format for a combined conditionis:

AND |
IF condition condition

OR

. Comparisons employing the IF statement can be madeinvolving indexed

data items.

A nested IF_ exists when,in a single sentence, morethan oneIF precedes

the first ELSE.

Example:

IF X=Y IFA=B

MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH

ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be representedbythetree structure
in Figure 8-1.

Anotheruseful way of viewing nested IF structure is based on numbering
IF and ELSE verbsto showtheir priority.

IF (1) xX=Y
IF (2) A=B

true true-action (2): MOVE ‘“*” TO SWITCH
action (1): ELSE(2) false-action(2): MOVE ‘A’ TO SWITCH

ELSE(1) false-action(1): MOVE SPACE TO SWITCH

The aboveillustration showsclearly the fact that IF(2) is wholly nested
within the true-action side of IF(1).

It is not required that the number of ELSEs in a sentence be the same as
the numberof IFs; there may be fewer ELSE branches.

8-18 1 January 1980

PROCEDUREDIVISION 8

F T

SPACE ———= SWITCH Sao

one a ™~,

SENTENCE
A SWITCH +»SWITCH

NEXTa Non
SENTENCE . SENTENCE Figure 8-1. Nested IF Tree Structure

Examples:

IF M=1 IF K=89
GO TO M1K@ ELSE GO TO MNOT1.

IF AMOUNT IS NUMERIC IF AMOUNT

IS ZERO GO TO CLOSE-OUT.

In the latter case, IF(2] could equally well have been written as AND.

INSPECT

| Function

The INSPECT statement enables the programmer to examine a character-string item, to

tally, replace, or tally and replace occurrences of single-characters in a data item.

Format

ALL ,
operand-2

INSPECT data-name-1 TALLYING data-name-2 FOR/

/

LEADING

CHARACTERS

BEFORE
INITIAL operand-3]

AFTER ‘

ALL
LEADING }operand-4

REPLACING FIRST BY operand-5

CHARACTERS

BEFORE
INITIAL operand-7]

AFTER

1 January 1980 8-19 FDR 3056

8 PROCEDURE DIVISION

& Syntax rules
1.

> General rules

FDR 3056

e Counting appearancesof a specified character

e Replacing a specified character by an alternative

¢ Qualifying and limiting the above actions by keying those
actions to the appearanceof other specific characters

but this is not required.

¢ When AFTERINITIAL operand-3 sub-clauseis present, the
counting process begins only after detection of a character
in data-name-1 matching operand-3. If BEFORE INITIAL
operand-3 is specified, the counting process terminates
upon encountering a character in data-name-1 which
matches operand-3. The count is accumulated in data-
name-2.

If the ALL phraseis specified, the content of data-name-2is
incremented by one for each occurrence of operand-2
matched within the content of data-name-1.

If the LEADING phrase is specified, the content of data-
name-2 is incremented by one for each contiguous occur-
rence of operand-2 matched within the content of data-
name-1, providedthat the leftmost such occurrenceis at the
point where the comparison began and wherin operand-2
waseligible to participate.

e If the CHARACTERSphraseis specified, the content of
data-name-2 is incremented by one for each character in
data-name-1.

does not continue after detection of a character in data-
name-1 matching operand-7. If AFTER INITIAL operand-7
is present, replacement does not commenceuntil detection
of a character in data-name-1 matching operand-7.

8-20

Data-name-1 must be a group item or an elementary item described
(implicitly or explicitly) as USAGE IS DISPLAY.

. Data-name-2 must be an elementary numeric data item.

. Operands may either be data items orliterals. If they are data items,
operands must reference elementaryalphabetic, alphanumeric or numeric
items described (implicitly or explicitly) as USAGE IS DISPLAY.If they
are literals, each operand must be a nonnumericliteral and may be any
figurative constant, except ALL.

1. When both TALLYING and REPLACINGclauses are present, the two
clauses behave as if two INSPECT statements were written. Thefirst
contains only a TALLYINGclause, the second contains only a REPLAC-
ING clause.

. The INSPECTstatement enables examination of a character-string item,
permitting various combinations of the following actions:

. The TALLYING clause causes character-by-character comparison, from
left to right, of data-name-1.

¢ the user mayinitialize data-name-2 prior to the operation,

4. The REPLACINGclause causes replacementof characters under speci-
fied conditions.

e If BEFORE INITIAL operand-7 is present, replacement

1 January 1980

PROCEDURE DIVISION 8

1 January 1980

If the ALL phrase is specified, each occurrence of oper-

and-4 matched within the content of data-name-1 is

placed by operand-s.

re-

If the LEADINGphraseis specified, each contiguous occur-

rence of operand-4 matched within the content of data-

name-1 is replaced by operand-5,providedthat the leftmost

occurrenceis at the point where the comparison began

wherein operand-4 waseligible to participate.

If the FIRST phraseis specified, the leftmost occurrenc

operand-4 matched within the content of data-name-

replaced by operand-s.

and

e of

1 is

When the CHARACTERSphraseis specified, each charac-

ter in data-name-1 is replaced by operand-s.

INSPECT name TALLYING countr FOR ALL 'L'.

name Before countr After name After

LILLY 3 LILLY

SMALL 2 SMALL

INSPECT name TALLYING countr FOR LEADING 'B'

AFTER INITIAL 'A'

REPLACING CHARACTERS BY 'X'.

nane Before countr Affter name After

ABACK 1 XXXXX

CABBAGE 2 XXXXXXX

INSPECT name REPLACING CHARACTERS BY 'S'

BEFORE INITIAL '.'.

name Before countr After name After

AB D.99 S$$$$.99

INSPECT name TALLYING countr FOR CHARACTERS

AFTER INITIAL 'E'
REPLACING ALL 'B' BY 'A’.

nane Before countr After name After

DEBATE 4 DEAATE

IBEX 1 TAEX

INSPECT name REPLACING FIRST 'A' BY 'P'

AFTER INITIAL 'M'.

name Before countr After name After

LLAMAA LLAMPA

LLOYD LLOYD

8-21
FDR 3056

8 PROCEDURE DIVISION

MOVE

> Function

The MOVEstatementtransfers data from one area of main storage to another, performing
conversion andediting as indicated.

Format one

data-name-1

MOVE TO data-name-2 [, data-name-3] ...
literal

Format two

CORRESPONDING
MOVE identifier-1 TO identifier-2

CORR
> Syntax rule

Data-name-1, identifier-1, and literal represent the sending area; data-name-2,identifier-2,
and data-name-3 representthe receiving area.

Pp Generalrules

1. When a group item is a receiving field, characters are moved without
conversion and without editing.

2. During elementary moves,data is converted as necessary,editing occurs,

and alignment is performed according to Standard Alignment Rules,
LANGUAGE SPECIFICATIONS.

3. For numeric (external or internal decimal, binary, numeric literal) to
numeric or numericedited:

¢ The itemsare aligned by decimalpoints, with generation of
zeros or truncation on either end, as required.

e When the types of the source field and receiving field
differ, conversion to the type of the receiving field takes
place.

e The items may have special editing performed on them
with suppression ofzeros, insertion of dollar signs, etc., and
decimalpoint alignment,as specified by the receiving area.
(This rule is only for numeric edited.)

4. For non-numeric source andtargets:

e The characters are placed in the receiving areafrom left to
right (unless JUSTIFIED RIGHT applies).

e If the receiving field is not completely filled by data being
moved, the remaining positions are filled with spaces.

e If the source field is longer than the receiving field, the
move is terminated as soon as thereceivingfield is filled.

5. When overlappingfields are invoked, results are not predictable.

6. When MOVEALLliteral is used, the literal must be a single character.
The receivingfield is filled with the specified character.

7. When the CORRESPONDINGoptionis used, identifier-1 and identifier-2
must be group items. Elementary items underidentifier-1 are moved to
the corresponding items underidentifier-2.

FDR 3056 8-22 1 January 1980

PROCEDUREDIVISION 8

If no correspondence is found, the compiler will return a warning
message.

Note

Table C-6 in Appendix C summarizes the various types of
moves permitted with the MOVEstatement.

MULTIPLY

> Function

The MULTIPLY statement computes the product of two numeric data items.

Format

data-name-1

MULTIPLY

numeric-literai-1

data-name-2 [GIVING data-name-3]
BY

numeric-literal-2 GIVING data-name-3 [ROUNDED] [ON SIZE ERRORimperative-statement]

> Syntax rules

1. Each data-name mustrefer to an elementary numeric item, exceptthat

data-name-3 may be an elementary numeric edited item.

2. Each literal must be a numericliteral.

3. The maximumsize of each operandis 18 decimaldigits. The composite of

operands, excluding those following GIVING, must not contain more

than 18 decimal digits.

P General rules

1. If the GIVING option is omitted, the second operand must be a data-

name; the product will replace the second operand data-name.

2. Example:

If the field BALANCEis to be multiplied by 1.03, it must be written as:

MULTIPLY 1.03 BY BALANCE.

Wherethe result will be stored in the data item named BALANCE.

3. When the GIVINGoption is taken, the productis stored in data-name-3.

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS

OF COBOL, Algebriac Signs.

OPEN

~ Function

The OPENstatement initiates the processing of files, and enables other input/output
operations, such as label checking and writing.

1 January 1980 8-23 FDR 3056

§ PROCEDURE DIVISION

Format one

INPUT

OPEN 1-0 file-name-1 [, flle-name-2] ...

\

..-

OUTPUT
EXTEND

Format two

INPUT

OPEN 1-0 > flle-name-1 [, file-name-2] ...

7

-.-

OUTPUT

> Syntax rules

1. There must be an OPENstatementfor eachfile prior toa READ, WRITE,

or REWRITEstatement.

> The files referred to in the OPEN statementneednotall have the same

organization or access.

3. The EXTENDphrase can be used only for sequentialfiles.

> General rules

_ Format one is used for Sequential I/O.

Format 2 is used for Indexed I/O andRelative I/O.

_ A file opened as INPUT can only be accessed in a READstatement.

_ A file opened as OUTPUTcan only be accessed in a WRITE statement.

_ A file opened as J-O can be accessed by a READ, REWRITE (disk only)

or WRITEstatement.

6. When the EXTENDphraseis specified, the OPEN statement opens the

file, then positions to the bottom ofthatfile (immediately following the

last logical record). Subsequent WRITE statements to the file will add

records as though the file had been opened with the OUTPUT phrase.

7. No statement which references a given file can be executed, either

explicitly or implicitly, until an OPEN statementis successfully executed

for thatfile.

8. An OPENstatement mustbe successfully executed prior to the execution

of any of the permissible input-output statements. (For permissible

statements, see Table C-5 in Appendix C.)

9. If the OPEN statementdoesnot produceaccesstothefile {i.e., it cannot

locate the desired file), the program will terminate abnormally at

execution time.

Note

See Sections 12 and 13 for additional information on Indexed

1/O and Relative I/O, respectively.

PERFORM

> Function

The PERFORMstatementis used to transfer control explicitly to one or more procedures,

and to return control implicitly to the normal sequenceafter transfer execution.

FDR 3056 8-24 1 January 1980

PROCEDUREDIVISION 8 =

Format one

THROUGH

PERFORM procedure-name-1 [procedure-name-2]
THRU

integer
[TIMES]

data-name-1

Format two

THROUGH
PERFORM procedure-name-1 [procedure-name-2]

THRU

data-name-1 data-name-2

[VARYING | FROM Index-name-2 BY
index-name-1 literal-1

data-name-3
] UNTIL condition-1

literal-2
Format three

THROUGH

PERFORM procedure-name-1 [procedure-name-2]
THRU

data-name-1 data-name-2
VARYING FROM Index-name-2

index-name-1 literal-1

data-name-3

BY UNTIL condition-1
literal-2

data-name-4 data-name-5

[AFTER FROM index-name-4
index-name-3 literal-3

data-name-6
BY UNTIL condition-2

literal~4

\ data-name-7 | data-name-8
[AFTER FROM < index-name-8

index-name-7 literal-5

data-name-9
BY UNTIL condition-3]] |

literal-6

1 January 1980 8-25 FDR 3056

8 PROCEDURE DIVISION

>

>

FDR 3056

Syntax rules

1. The words THROUGHand THRUare equivalent.

2. Each data-namerepresents an elementary numeric item describedin the
Data Division.

3. Each literal represents a numericliteral.

4. If an index-nameis specified in the VARYING or AFTER phrase, then:

e The data-name in the associated FROM and BY phrases
must be an integer data item.

e The literal in the. associated FROM phrase must be a
positive integer.

¢ The literal in the associated BY phrase must be a non-zero.

5. If an index-nameis specified in the FROM phrase, then:

e The data-name in the associated VARYING or AFTER

phrase must bean integer data item.

e The data-name in the associated BY phrase must be an
integer data item.

e The literal in the associated BY phrase mustbe aninteger.

Note

Integer is a numericliteral or a numeric data item that does
not include any character positions to the right of the as-
sumed decimal point.

6. Literal in the BY phrase mustnotbe zero.

7. Condition-1, condition-2, condition-3 may be any conditional expression
as described in FUNDAMENTAL CONCEPTS OF COBOL, Simple Con-
ditional Expressions.

General rules

1. If the PERFORMstatement is written with no options, control is trans-

ferred to the first statement of procedure-name-1. At the completion of

procedure-name-1, control is implicitly returned to the next executable

statement following the PERFORMstatement.

2. If procedure-name-2 is specified and it is a paragraph-name, then the
control is returned to the next sequential instruction after the last
statement of that paragraph.

3. If procedure-name-2 is specified and it is a section-name, then the
control is returned to the next sequential instruction after the last
statement of the last paragraph of that section.

4. In Format one:

e If the THROUGHoption is taken, multiple paragraphs or
sections can be executed before control is returned to the
next sequential statement.

If the TIMESoptionis taken, procedures are performed the
numberof times specified by data-name-1 or integer. At the
completion of procedure-name-2, control is returned to the
statement following PERFORMstatement.

Data-name-1 or integer must be a positive numeric integer
which cannotbe greater than 32,767.

If data-name-1 or integeris initially zero or negative, the
PERFORMstatementis not executed; control passesto the
statement following PERFORM statement.

8-26 1 January 1980

PROCEDURE DIVISION 8

5. In Format two:

e If the UNTIL option is taken, successive execution of

procedures occurs until a condition is satisfied.

e The statementis coded as:

PERFORMprocedure-name-1 [THRU procedure-name-2]

UNTIL condition-1.

© Condition-1 must be a simple condition, excluding an ELSE

phrase. The condition is tested prior to execution of the

PERFORMstatement. If the condition is not met, PER-

FORM is executed until the condition is satisfied. If the

condition is satisfied prior to execution of the PERFORM

statements, PERFORMis not executed and control passes

to the next sequential instruction.

e If all options are used to vary the values referred to by

data-name-1 or index-name-1:

* The conditionis tested prior to execution of the PERFORM

statement. If the condition is true, PERFORM is not ex-

ecuted; control passes to the next sequential instruction.

e If the condition is false, data-name-1 is set to the current

value of data-name-2 or literal-1 at the point of initial

execution of the PERFORMstatement. If the condition is

still false, procedure-name-1 THRU procedure-name-2 are

executed once.

° The value of data-name-1 is incremented or decremented

by the value in data-name-3orliteral-2. The condition is

reevaluated. The cycle continues until the condition is

satisfied, at which point controlis transferred to the next

executable statement following PERFORMstatement. See

Figure 8-3.

e At the termination of PERFORMstatement, data-name-1 or

index-name-1 has a value which exceeds the last used

setting by the value of data-name-3 or literal-2. If the

condition was true before initial execution of PERFORM

statement, data-name-1 or index-name-1 contains the cur-

rent value of data-name-2 or index-name-2.

6. In Formatthree:

e The rules related to varying one identifier are shownin

Rule 5 above.

° When two identifiers are varied, data-name-1 and data-

name-4 are set to the current value of data-name-2 and

data-name-5, respectively. After the identifiers have been

set, condition-1 is evaluated; if true, controlis transferred

to the next executable statements; if false, condition-2 is

evaluated. If condition-2 is false, procedure-name-1

through procedure-name-2 is executed once, then data-

name-4 is augmented by data-name-6orliteral-4 and condi-

tion-2 is evaluated again. This cycle of evaluation and

augmentation continues until this condition is true. When

' condition-2 is true, data-name-4 is set to the value of

literal-3 or the current value of data-name-5, data-name-1 is

augmented by data-name-3 and condition-1 is reevaluated.

1 January 1980 8-27 FDR 3056

8 PROCEDURE DIVISION

FDR 3056

The PERFORM statement is completed if condition-1 is
true; if not, the cycles continue until condition-1 is true.

During the execution of the procedures associated with the
PERFORMstatement, any change to the VARYINGvari-
able (data-name-1 and index-name-1), the BY variable
(data-name-3), the AFTER variable (data-name-4 and in-
dex-name-3), or the FROM variable (data-name-2 and in-
dex-name-2) will be taken into consideration and will
affect the operation of the PERFORMstatement.

At the termination of the PERFORM statement, data-

name-4 contains the current value of data-name-5. Data-

name-1 has a value that exceedsthelast used setting by an
increment or decrement value, unless condition-1 was true
when the PERFORMstatement wasentered, in which case

data-name-1 contains the current value of data-name-2.

Whentwoidentifiers are varied, data-name-4 goes through
a complete cycle (FROM, BY, UNTIL) each time data-
name-1 is varied. See Figure8-4.

Whenthree identifiers are varied, the mechanism is the
same as for two identifiers except that data-name-7 goes
through a complete cycle each time that data-name-4 is
augmented by data-name-6 orliteral-4, which in turn goes
through a complete cycle each time data-name-1 is varied.
See Figure 8-5.

After the completion of PERFORM statement, each data
item varied by an AFTER phrasecontains the current value
of the data-name in the associated FROM phrase. Data-
name-1 has a value that exceedsits last used setting by one
increment or decrement value, unless condition-1 is true
when the PERFORMstatementis entered, in which case
data-name-1 contains the current value of data-name-2.

An example for a Format three PERFORMstatementis
shown below:

START—PARA.
PERFORM INT-PARA

VARYING INDX1 FROM 1 BY 1
UNTIL INDX1 > 2

AFTER INDX2 FROM 1 BY l
UNTIL INDX2 > 12

AFTER INDX3 FROM 1 BY 1
UNTIL INDX3 > 7.

GO TO SORT-PARA.

INT-PARA.

MOVE ZEROS TO DEPT-TOTAL(INDX1, INDX2, INDX3).

8-28 1 January 1980

PROCEDUREDIVISION 8

7. The only necessary relationship between procedure-name-1 and pro-

cedure-name-2 is that the sequenceof operations is executed, beginning

at the procedure-name-1 and ending with procedure-name-2, so that

control can be implicitly transferred to the next executable statement

following the PERFORM statement.

GO TO, PERFORMand CALLstatements may occur betweenprocedure-

name-1 and the end of procedure-name-2.If there are two or morelogical

paths to the commonreturn point, then, for documentation purposes,

procedure-name-2 maybe the nameof a paragraphconsisting of an EXIT

statement, to which all of these paths may lead. For example:

PERFORM-1
PERFORM INT-PARA THRU EXIT-PARA.

ADD TOTAL-1, TOTAL-2, TOTAL-3 GIVING DEPT-TOTAL.

INT-PARA.
IF INDX1 = 2 GO TO PATH-l.
IF INDX2 = 12 GO TO PATH-2.
IF INDX3 = 7 GO TO PATH-3.

PATH-1.

GO TO EXIT-PARA.
PATH-2.

GO TO EXIT-PARA.

PATH-3 e

EXIT—PARA.
EXIT.

8. If a sequence of statements referred to by a PERFORM statement

includes another PERFORMstatement, the sequence of procedures

associated with the included PERFORM mustitself either be totally

includedin,ortotally excluded from,the logical sequencereferred to by

the first PERFORM.Thus, an active PERFORMstatement, whose execu-

tion point begins within the range of another active PERFORM

statement, must not allow control to pass to the exit of the other active

PERFORMstatement; furthermore, two or more such active PERFORM

statements may not have a commonexit. See Figure 8-2.

1 January 1980 8-29 FDR 3056

8 PROCEDURE DIVISION

x PERFORM a THRU m

a

d PERFORM f THRUj
' .

;____]
m
x PERFORM a THRU m

a

f

m

 j

d PERFORM f THRU j

Figure 8-2 Permissible PERFORM Sequences

x PERFORM a THRU m

a

d PERFORM f THRUj

h

; _]

 t

ENTRANCE

SET DATA-NAME-1

EQUAL TO
CURRENT FROM VALUE

TEST

CONDITION-1

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

AUGMENT
DATA-NAME-1 WITH
CURRENT BY VALUE

Figure 8-3. Logic of PERFORMStatement (one identifier varied)

FDR 3056 8-30 1 January 1980

PROCEDUREDIVISION 8

ENTRANCE

SET
DATA-NAME-1 AND
DATA-NAME-4 TO

CURRENT FROM VALUES

O—
TEST

CONDITION-1

EXIT

TEST TRUE

CONDITION-2

EXECUTE SET

PROCEDURE-NAME-1 DATA-NAME-4

THROUGH TO ITS CURRENT

PROCEDURE-NAME-2 FROM VALUE

AUGMENT | AUGMENT

DATA-NAME-4 DATA-NAME-1

_WITH ITS CURRENT WITH ITS CURRENT

BY VALUE BY VALUE

©
Figure 8-4. Logic of PERFORM Statement(two identifiers varied)

1 January 1980 8-31 FDR 3056

8 PROCEDURE DIVISION

@)}——|

ENTRANCE

SET
DATA-NAME-1
DATA-NAME-4
DATA-NAME:7

TO-CUR RENT FROM VALUES

TEST
CONDITION-1

EXIT

TEST TRUE

CONDITION:2

TEST

CONDITION-3

y

EXECUTE SET

PROCEDURE-NAME-1 DATA-NAME-7
THROUGH TO ITS CURRENT

PROCEDURE-NAME-2 FROM VALUE —
SET

DATA-NAMEA
TOITS CURRENT
FROM VALUE

 AUGMENT AUGMENT
DATA-NAME-7 DATA-NAME4

WITH ITS CURRENT WITH ITS CURRENT
BY VALUE BY VALUE

AUGMENT
DATA-NAME-1

WITH ITS CURRENT
BY VALUE

Figure 8-5. Logic of PERFORM Statement(three identifiers varied)

READ

> Function

The READstatement makesavailable a record from file.

> Format one

READfile-name [NEXT]RECORD [INTO data-name-1]

[AT END imperative statement]

FDR 3056 8-32 1 January 1980

PROCEDUREDIVISION 8 =

Format two

READfile-name RECORD [INTO data-name-1] [KEY IS data-name-2]

[INVALID KEY imperative-statement]

> Syntax rules

1. Format oneis usedfor all sequentially readfiles.

2. The NEXT phrase option in Format one is used only for Indexed and

Relative I/O files, in SEQUENTIAL or DYNAMICaccess modes, when

records are to be retrieved sequentially.

3, Format two is used only for Indexed I/O andRelative I/Ofiles.

4. The KEY IS option of Formattwois used only for Indexed I/Ofiles.

| General rules

1. A file must be OPEN in the INPUT or I/O mode when a READstatement

for that file is executed.

2. The READ statement makes arecord available to the program before

execution of any subsequent statement, provided AT END or INVALID

KEYare not invoked.

3. Format one, without the NEXT option, is used for Sequential I/O files.

The INTO option permits the user to specify that a copy of the data

record is to be placed into a data area immediately after the READ

statement. The data-name must notbe definedin thefileitself.

If end-of-file occurs, but there is no AT END clause in the READ

statement, an applicable Declaratives procedureis performed.If neither

AT END nor Declaratives exists, an execution I/O error occurs.

4. Format one, without the NEXT option, is used for sequential reads of

Indexed I/O files in SEQUENTIAL access mode.The readis based on

the primary index (RECORD KEY).

5. Format one, without the NEXT option, is used for sequential reads of

Relative I/O files in SEQUENTIALaccess mode. Theread is based on

the RELATIVE KEY.

6. Indexed and Relative I/O files in DYNAMIC mode, may be read

sequentially, rather than randomly, by use of the NEXT option.

7. For General Rules4, 5, and 6 above,if the INTO clauseis used, the data

record is automatically moved into data-name-1. When AT END is

specified, control is passed to the imperative-statement after the com-

plete file has been read.

8. For Indexed I/O files in DYNAMIC and RANDOM mode,if NEXTis not

specified, andthefile is to be read sequentially, the value ofthe record

to be retrieved must be placed in the RECORD KEY data-name.

9. For Relative I/O files, if NEXT is not specified, and the file is to be read

sequentially, the valueof the recordto be retrieved must be placed in the

RELATIVE KEY data-name.

10. For Indexed I/O files read sequentially, if one of the secondary index

sequencesis to be used,the index mustfirst be established with a Format

two statement. Thereafter, a Format one statement may beused.

11. For Sequential I/O disk files containing packed or binary data, the user

should specify UNCOMPRESSEDin the FDentry for thatfile.

1 January 1980 8-33 FDR 3056

8 PROCEDURE DIVISION

12. Further detailed discussion of READ statement formats as they apply to
Indexed I/Ofiles and Relative I/O files will be found in Sections 12 and
13, respectively.

READY TRACE

> Function

The READY TRACEstatementturns on a Primetracing functionto assist in determining the
point at which actual flow departs from expected flow.

Format

READY TRACE.

& Syntax rule

The execution of the trace mode maybesetor reset dynamically.

> General rule

After a READY TRACEstatement is executed, each time a paragraph or section in the
Procedure Division is entered, that paragraph or section nameis output to the terminal to
‘ rovide debugging information. The format printedis:

ENTER: section-name/paragraph-name

RELEASE

> Function

The RELEASEstatement transfers recordsto the initial phase of a SORT operation.

Format

RELEASErecord-name [FROM Identifier]

Syntax rule

A RELEASEstatement may only be used within an input procedure associated with a SORT
statement for a file whose SD entry contains the record-name.

Note

For complete discussion, see Section 11, SORT MODULE.

RESET TRACE

| Function

This statement turns off the Prime tracing function.

Format

RESET TRACE.

> General rule

The RESET TRACEstatement can only occur after the execution of a READY TRACE
statement.

FDR 3056 8-34 1 January 1980

PROCEDURE DIVISION 8 imal

RETURN

> Function

The RETURNstatement obtains sorted records from the final phase of a SORT operation.

Format

RETURNfile-name RECORD[INTOidentifier]

 AT END imperative-statement

> Syntax rule

A RETURNstatement maybe used only within an output procedureassociated with a SORT

statementfor filename described by an SD entry.

Note

For complete information, see Section 11, SORT MODULE.

REWRITE

| Function

The REWRITEstatementlogically replaces a record existing in a diskfile.

Format

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement]

> Syntax rules

1. Record-name and data-name must notrefer to the samestorage area.

2. Record-nameis the nameofa logical record in the File Section and may

be qualified.

> General rules

1. The file containing record-name mustbea disk file and must be openfor

I/O (in all access methods) prior to execution of a REWRITEstatement.

2. If the FROMoptionis used, the information in data-nameis movedto the

record area prior to the REWRITE.For IndexedI/O files, the primary

RECORD KEY must equal the key from the previous READ,or the

INVALID KEYconditions will occur.

3. A record must have been READ successfully prior to a REWRITE

statement. This is required to lock the record to ensurethatit cannot be

updated by another program running concurrently.

4. The INVALID KEYoptionis not used for Sequential I/O files. The file

status field, if specified, is updated by the REWRITEstatement.

5. For Indexed I/Ofiles, control is passed to the INVALID KEY statement

if the primary key is changed.If this option is not written, control passes

to the USE DECLARATIVES.Oneorthe other of these options must be

taken for indexed files. Refer to Appendix C for status codes.

6. The REWRITE statement must not change or rewrite the primary

RECORDKEYin Indexed I/Ofiles.

1 January 1980 8-35 FDR 3056

8 PROCEDURE DIVISION

7. For Relative I/O files, control is passed to the INVALID KEYstatement
if the RELATIVE KEY is changed after a successful READ. If the
INVALID KEY option is not taken, control passes to the USE DECLAR-

ATIVES. Oneorthe other of these options mustbe taken.

8. A sequential file using REWRITE must be a COBOL-createdfile other
than a printer file, or any uncompressedfile.

Note

See Sections 12 and 13 for additional information on Indexed

I/O and Relative I/O, respectively.

SEARCH

| Function

The SEARCHstatementis used to search a table for a table element whichsatisfies the
specified condition, and to adjust the associated index-nameto indicate that table element.

Format one

identifier-2
SEARCHidentifier-1 [VARYING]

Iindex-name-1

[; AT END imperative-statement-1]

imperative-statement-2
; WHEN condlition-1 .

NEXT SENTENCE

imperative-statement-3
[; WHEN condition-2

NEXT SENTENCE

Format two

SEARCH ALLIdentifier-1 [; AT END imperative-statement-1]

EQUALS identifier-3

data-name-1 IS EQUAL TO tos
; WHEN IS = literal-1

condition-name-1

EQUALS identifier-4
data-name-2 IS EQUAL TO

{ AND IS = literal-2 J

condition-name-2

imperative-statement-2

NEXT SENTENCE

FDR 3056 8-36 1 January 1980

PROCEDURE DIVISION 6

Pp Syntax rules

1. In both Formats one and two, identifier-1 must not be subscripted or

indexed, but its description must contain an OCCURS clause and an

INDEXEDBYclause.

9 Identifier-2, when specified, must be described as USAGE IS INDEX,or

as a numeric elementary item without any positions to the right of the

assumed decimal point.

3 In Format two, the description of identifier-1 must contain the KEY IS

phrase in its OCCURSclause.

Note

A complete discussion of the SEARCH verb is presented in

Section 10, TABLE HANDLING.

SET

» Function

The SET statement establishes reference points for table handling operations by setting

index-namesassociated with table elements.

Format one

index-name-1 [, index-name-2]... index-name-3

SET TO

{

data-name-3

data-name-1 [data-name-2] ... integer-1

Format two

UP BY data-name-6

SET

_

index-name-4 [: index-name-5| Bs
DOWN BY integer-2

p Syntax rules

1. There must not be a namespecifying an index data item after UP BY or

DOWNBYoption.

> Data-name-4 must be described as an elementary numericinteger.

3. Integer-1 and integer-2 may be signed. Integer-1 must be

a

positive value.

> General rules

1. Format one is equivalent to moving the value in index-name-3, data-

name-3 orinteger-1 to multiple receiving fields written immediately after

the SET verb.

2. Format two is equivalentto reduction (DOWN), or increase (UP), applied

to each of the quantities written immediately after the SET verb. The

amount of the reduction or increase is specified by a name or value

immediately following the word BY.

3. An index-name should only apply to the OCCURSwhich definesit.

Note

See Section 10, TABLE HANDLING,for complete informa-

tion.

1 January 1980 8-37 FDR 3056

8 PROCEDUREDIVISION

SORT

Function

The SORT statementcreates a sort-file by executing input procedures or by transferring
records from anotherfile, sorts the records in the sort-file on a set of specified keys, and
makes available the sorted records to output proceduresorto an outputfile.

Format

ASCENDING

SORT file-name-1 ON KEY data-name-1 [, data-name-2] ...

DESCENDING

THROUGH

INPUT PROCEDUREIS section-name-1 [section-name-2]

THRU

USING file-name-2

THROUGH

OUTPUT PROCEDUREISsection-name-3 [section-name-4]

THRU

GIVING file-name-3
> Syntax rules

1. SORT statements may appear anywhere except in the Declaratives
portion of the Procedure Division or in an input or output procedure
associated with a SORTstatement.

2. In the Data Division,file-name-1 must be described in an SD entry;file-
name-2 andfile-name-3 must be described in an FD entry.

> _ General rules

1. At the time of execution of the SORT statement, neither file-name-2 nor
file-name-3 may be open.

2. If the USING phraseis specified, all the records in file-name-2 are
automatically transferred to file-name-1.

3. If the GIVING phrase is specified, all the sorted records are auto-
matically written on file-name-3 as the implied output procedurefor the
SORT statement.

Note

A complete discussion of the SORT statementis presented in
Section 11, SORT MODULE.

In addition to the SORT statement, two othersuitable sort
facilities are available to COBOL programs—the PRIMOS
external sort utility (explained in the Prime User’s Guide)
and the internal sort subroutines (explained in the PRIMOS
Subroutines Reference Guide).

FDR 3056 8-38 1 January 1980

PROCEDUREDIVISION 8

START

> Function

The START statementprovides a basis for logical positioning, within an Indexed I/O or
Relative I/O file, for subsequent sequential or dynamic retrieval of records.

> Format

GREATER THAN

STARTfile-name KEY IS [NOT LESS THAN] data-name]

EQUAL TO

[INVALID KEY imperative-statement]

> Syntax rule

File-name must be the nameof a file with sequential or dynamic access.

| General rules

1. Option 1:

STARTfile-name.

¢ In an Indexedfile, this option positions the file to the value
contained in the RECORD KEYdata-name.

¢ In a Relative file, this option positions the file to the
value contained in the RELATIVE KEY data-name.

¢ In eitherfile structure,if the indicated record is not present
in the file, control is passed to DECLARATIVESsectionif
present; otherwise, the program terminates.

2. Option 2:

STARTflile-name KEY IS data-name.

¢ In an Indexedfile, this option will position the file to the
value contained in data-name (data-nameis the name of
either RECORD KEYor one of the ALTERNATE RECORD

KEYs).
e In a Relative file, this option will position the file to the
value contained in data-name as defined in RELATIVE
KEY.

¢ In eitherfile structure,if the indicated recordis not present
in the file, control is passed to the DECLARATIVESsection
if present; otherwise, the program terminates.

3. Option 3:

START file-name

GREATER THAN

[KEY IS[NOT LESS THAN]data-name]
EQUAL TO

[INVALID KEY imperative-statement]

1 January 1980 8-39 FDR 3056

8 PROCEDURE DIVISION

For both Indexed I/O and Relative I-O files, if the option GREATER or

NOTLESSis specified, the file is positioned for the next access to be

greater than or less than the value specified in the data-name.

4. The INVALID clause or DECLARATIVESis taken if there is no data

satisfying data-name and the STATUScodereturnedis a 23.

STOP

Function

The STOPstatementis used to terminate or delay execution of the object program.

Format

RUN

STOP

literal

> Syntax rule

If a STOP RUNstatement appears in a consecutive sequence of imperative statements

within a sentence, it must appearasthe last statementin that sequence.

General rules

1. STOP RUNterminates execution of a progam, returning control to the

operating system.

2. STOP RUNcannotbeusedin a called program.

3. If STOPliteral is specified, the literal is communicated on the console,

and execution is suspended. Execution is resumedat the next executable

statement in sequence after operator intervention. Presumably, the

operator performs a function suggested by the contents of the literal,

prior to resuming program execution.

STRING

Function

The STRINGstatementprovides juxtaposition of the partial or complete contents of two or

moredata itemsinto a single data item.

Format

data-name-1 ; data-name-2 data~name-3

STRING -i. DELIMITED BY iteral-3

Iteral-1 ; Hteral-2 SIZE

data-name-4 , date-name-5 data-name-6

’ .., DELIMITED BY Hteral-6 ¥

iteral-4 ; literal-5 SIZE

INTO data-name-7 [WITH POINTER data-name-8]

 [; ON OVERFLOW imperative-statement)

FDR 3056 8-40 1 January 1980

PROCEDUREDIVISION 8

Syntax rules

1. Eachliteral may be anyfigurative constant (without the optional word
ALL).

. All literals must be described as nonnumericliterals. All data-names,

except data-name-8, mustbe described implicitly or explicitly as usage is
DISPLAY.

. Data-name-7 must represent an elementary alphanumeric data item

without editing symbols or the JUSTIFIED clause.

Data-name-8 must represent an elementary numericinteger data item of
sufficient size to contain a value equalto the size of data-name-7 + 1. The
symbol P may not be used in the PICTURE character-string of data-
name-8.

. Where data-name-1, data-name-2, ..., or data-name-3 is an elementary

numeric data item, it must be described as an integer without the symbol
P in its PICTURE character-string.

> General rules

1. All references to data-name-1, data-name-2, data-name-3,literal-1, liter-
al-2, literal-3 apply equally to data-name-4, data-name-5, data-name-6,
literal-4, literal-5, and literal-6, respectively, and all recursions thereof.

Data-name-1, literal-1, data-name-2, literal-2, represent the sending
items. Data-name-7 represents the receiving item.

. Literal-3, data-name-3, indicate the character(s) delimiting the move.If
the SIZE phraseis used, the complete data item defined by data-name-1,
literal-1, data-name-2, literal-2, is moved. Whena figurative constantis
used as the delimiter, it stands for a single character nonnumericliteral.

. Whena figurative constantis specified as literal-1, literal-2, literal-3, it
refers to an implicit one character data item whose usage is DISPLAY.

by the following rules:

e Those characters from literal-1, literal-2, or from the con-
tents of the data item referenced by data-name-1, data-
name-2, are transferred to the contents of data-name-7 in
accordance with the rules for alphanumeric to
alphanumeric moves, except that no space-filling will be
provided.

e If the DELIMITED phrase is specified without the SIZE
phrase, the contents of the data item referenced by data-
name-1, data-name-2, or the valueofliteral-1, literal-2, are
transferred to the receiving data item, this occurs in the
sequence specified in the STRING statement, beginning
with the leftmost character and continuing from leftto right
until the end of the data item is reached, or until the
character(s) specified by literal-3, or by the contents of
data-name-3 are encountered. The character(s) specified
by literal-3 or by the data item referenced by data-name-3
are not transferred.

e If the DELIMITED phrase is specified with the SIZE
phrase, the entire contents of literal-1, literal-2, or the
contents of the data item referenced by data-name-1, data-
name-2, are transferred. The transfer proceeds in the

1 January 1980 8-41

. Whenthe STRINGstatementis executed,the transferof data is governed

FDR 3056

8 PROCEDURE DIVISION

sequence specified in the STRINGstatementto the data

item referenced by data-name-7, until all data has been

transferred or the end of the data item referenced by data-

name-7 has been reached.

6. If the POINTERphraseis specified, data-name-8 is explicitly available to

the programmer. The programmeris then responsible for setting its

initial value. The initial value must not be less than one.

7. If the POINTERphraseis not specified, the following general rules apply

as if the user had specified data-name-8 with aninitial value of1.

8. When characters are transferred to the data item referenced by data-

name-7, the transfer behaves as though characters were moved, one at a

time, from the source to the data item characterposition referenced by

data-name-7 and designated bythe value of data-name-8. Data-name-8is

increased by one prior to the move of the next character. The value

associated with data-name-8 is changed during execution of the STRING

statementonly by the behavior specified above.

9. At the end of execution of the STRINGstatement,only the portion of the

data item referenced by data-name-7 (that which was referenced during

the execution of the STRING statement) is changed.All other portions of

the data item referenced by data-name-7 will contain data which was

present before this execution of the STRING statement.

10. Data transfer to data-name-7 terminates when the value in data-name-8

is either less than 1, or exceeds the numberof characterpositionsin data-

name-7. Such termination may occurat any pointat orafterinitialization

of the STRING statement. If termination occurs as a result of such a

condition, the imperative statement in an ON OVERFLOWphraseis

executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions

described in General Rule 10 above are encountered, control is trans-

ferred to the next executable statement.

12. If delimiters exceed the maximum numberoffive, the compiler will

abort with error code 113.

SUBTRACT

>
The SU

Function

BTRACT statementsubtracts one or more numeric data items from a specified item

and stores the difference.

Format one

data-name-1 , data-name-2

SUBTRACT wee

literal-1 , literal-2

FROM data-name-3 [ROUNDED]

[ON SIZE ERROR imperative-statement]

FDR 3056 §-42 1 January 1980

PROCEDUREDIVISIOv8 =

Format two

data-name-1 , data-name-2

SUBTRACT
literal-1 , literal-2

data-name-3

FROM GIVING data-name-4 [ROUNDED]

literal-3

[ON SIZE ERRORimperative-statement]

Format three

CORRESPONDING

SUBTRACT identifier-1
CORR

FROMidentifier-2 [ROUNDED]

[ON SIZE ERRORImperative-statement]

Syntax rules

1. Each data-name mustrefer to a numeric elementary item, except that

data-name-4 (following GIVING) may be an elementary numeric edited

item.

2. Each literal must be a numericliteral.

3. The maximumsize of each operandis 18 decimal digits. If all receiving

data items were to be superimposed upon eachother,aligned by their

decimal points, their composite could not exceed 18 decimal digits in

length.

4. In Formatthree, both identifier-1 and identifier-2 must be group items.

Generalrules

1. In Format one, the effect of the SUBTRACTstatement is to sum the

values of all the operands which precede FROM,and thento subtract

that sum from thevalueof the item following FROM.Theresultis stored

in data-name-3.

2. In Format two,all literals and data-names preceding FROM are added

together, the sum is subtracted from data-name-3 or literal-3, and the

result is stored in data-name-4.

3. See the rules for arithmetic statements under PROCEDUREDIVISION,

General Rules. The ROUNDED and ON SIZE ERRORoptions may be

used whentruncation of results could occur.

4, The rules for signs are those presented in FUNDAMENTAL CONCEPTS

OF COBOL, Algebraic Signs.

5. In Format three, each elementary item underidentifier-1 is subtracted

from andstored into the corresponding elementary item under identi-

fier-2.

1 January 1980 8-43

8 PROCEDURE DIVISION

UNSTRING

> Function

The UNSTRINGstatement causes contiguous data in a sending field to be separated and

placed into multiple receiving fields.

Format

UNSTRING

tings BY [ALL]

[, data-name-7 [,

[WITH

{[; ON

> Syntax rules

1. The ALL phrase option is not the figurative constant ALL.

2. Each literal must be a nonnumericliteral. In addition, each literal may

be any figurative constant without the optional word ALL.

3, Data-name-1, data-name-2, data-name-3, data-name-5, and data-name-8,

mustbe described, implicitly or explicitly, as an alphanumeric data item.

4. Data-name-4 and data-name-7 may be described as either alphabetic

(except that the symbol B may not be used in its picture-string},

alphanumeric, or numeric (except that the symbol P may notbe usedin

its picture-strings), and must be described as usage is DISPLAY.

5. Data-name-6, data-name-9, data-name-10, data-name-11 must be de-

scribed as elementary numericinteger data items (except that the symbol

P may not be used in their picture-strings).

6. No data-name may namea level 88 entry.

7. The DELIMITERIN phrase and the COUNTINphrase maybe specified

only if the DELIMITED BYphraseis specified.

> General rules

1. All references to data-name-2, literal-1, data-name-4, data-name-5, and

data-name-6, apply equally to data-name-3, literal-2, data-name-7, data-

name-8, and data-name-9, respectively, and all recursions thereof.

2. Data-name-1 represents the sending area.

3. Data-name-4 represents the data receiving area. Data-name-5 represents

the receiving area for delimiters.

4. Literal-1 or the data item referenced by data-name-2 specifies a de-

limiter.

5. Data-name-6 represents the count of the numberof characters within

data-name-1, isolated by the delimiters for the move to data-name-4. This

value does not include a countof the delimiter character(s).

FDR 3056 8-44 1 January 1980

PROCEDURE DIVISION 8 a

6. The data item referenced by data-name-10 contains a value which

indicates a relative character position within the area defined by data-

name-1.

7. The data item referenced by data-name-11 is a counter which records the

numberof data items acted upon during the execution of an UNSTRING

statement.

8. Whena figurative constantis used as the delimiter, it stands for a single

character, nonnumericliteral.

9. When the ALL phrase is specified, one occurrence (or two or more

contiguous occurrences) ofliteral-1 (figurative constant or not), or the

contents of the data item referenced by data-name-2,are treatedasifit

were only one occurrence. This occurrence is movedto the receiving

data item according to the rules for DELIMITERIN phrase in General

Rule 14 below.

10. When an examination encounters two contiguous delimiters, the current

receiving areais either space or zerofilled according to the description

of the receiving area.

11. Literal-1, or the contents of the data item referenced by data-name-2, can

contain any character in the computer's characterset.

12. Eachliteral-1 or the data item referenced by data-name-2 represents one

delimiter. When a delimiter contains two or more characters,all of the

characters must be present in contiguouspositions of the sending item

and in the ordergiven to be recoginized as a delimiter.

13. When two or more delimiters are specified in the DELIMITED BY

phrase, an OR condition exists between them. Each delimiter is com-

pared to the sending field. If a match occurs, the character(s) in the

sendingfield is considered to be a single delimiter. No character(s) in the

sending field can be considered as part of more than one delimiter.

Each delimiter is applied to the sending field in the sequence specified

in the UNSTRINGstatement.

14. When the UNSTRINGstatementis initiated, the current receiving areais

the data item referenced by data-name-4. Data is transferred from data-

name-1 to data-name-4 according to the followingrules:

¢ If the POINTERphraseis specified, the string of characters

referenced by data-name-1 is examined beginning with the

relative character position indicated by the contents of

data-name-10. If the POINTER phraseis not specified, the

string of characters is examined beginning with theleft-

most character position.

¢ If the DELIMITEDBYphraseis specified, the examination

proceeds,left to right, until either a delimiter specified by

the value of literal-1 or the data item referenced by data-

name-2 is encountered. (See General Rule 12.) If the

DELIMITED BY phrase is not specified, the number of

characters examined is equal to the size of the current

receiving area. However,if the sign of the receiving item is

defined as occupying a separate character position, the

numberof characters examinedis one less than the size of

the current receiving area.

e If the end of the data item referenced by data-name-1 is

encountered before the delimiting condition is met, the

examination terminates with the last character examined.

1 January 1980 8-45 FDR 3056

8 PROCEDURE DIVISION

¢ The characters thus examined (excluding the delimiting
character(s), if any) are treated as an elementary
alphanumeric data item, and are moved into the current
receiving area according to the rules for the MOVE
statement.

e If the DELIMITER IN phrase is specified, the delimiting
character(s} are treated as an elementary alphanumeric
data item and are movedinto the data item referenced by
data-name-5 according to the rules for the MOVE
statement. If the delimiting condition is the end of the data
item referenced by data-name-1, then the data-name-5 is
space filled.

¢ If the COUNTIN phraseis specified, a value equal to the
number of characters thus examined (excluding the de-
limiter character(s}, if any) is moved into the area refer-
enced by data-name-6 accordingto the rules for an elemen-
tary move.

e If the DELIMITED BY phrase is specified, the string of
characters is further examined, beginning with the first
character to the right of the delimiter. If the DELIMITED
BY phrase is not specified, the string of characters is
further examined, beginning with the characterto theright
of the last character transferred.

e After data is transferred to data-name-4, the current receiv-
ing area is data-name-7. The behavior described in the
preceding four paragraphsis repeated until either all the
characters are exhausted in the data item referenced by
data-name-1, or until there are no morereceiving areas.

15. The initialization of the contents of the data items associated with the
POINTERphrase or the TALLYING phraseis the responsibility of the
user.

16. The contents of the data item referenced by data-name-10 will be
incremented by one for each character examined in the data item
referenced by data-name-1. When the execution of an UNSTRING
statement with a pointer phrase is completed, data-name-10 will contain
a value equal to the initial value, plus the number of characters
examined in the data item referenced by data-name-1.

17. When the execution of an UNSTRING statement with a TALLYING
phrase is completed, the contents of the data-name-11 will be a value
equal to its initial value, plus the numberof data receiving items acted
upon.

18. Either of the following situations causes an overflow condition:

¢ An UNSTRINGis initiated, and the value in the data item
referenced by data-name-10 is less than oneor greater than
the size of the data item referenced by data-name-1.

¢ If, during execution of an UNSTRINGstatement,all data
receiving areas have been acted upon, and the data item
referenced by data-name-1 contains characters which have
not been examined.

FDR 3056 8-46 1 January 1980

PROCEDUREDIVISION 8

19. When an overflow condition exists, the UNSTRING operaion is termi-

nated. If an ON OVERFLOWphrasehasbeenspecified, the imperative-

statement is executed. If the ON OVERFLOWphraseis not specified,

control is transferred to the next executable statement.

20. The evaluation of subscripting and indexing for the data-namesis as

follows:

¢ Any subscripting or indexing associated with data-name-1,
data-name-10, data-name-11 is evaluated only once, im-
mediately before any datais transferredas the resultof the
execution of the UNSTRINGstatement.

* Any subscripting or indexing associated with data-name-2
through data-name-6 is evaluated immediately before the
transfer of data into the respective data item.

21. Up to five delimiters may bespecified. If more than five are specified,
the compiler will abort with error code 113.

Note

Binary counter must not be used with the UNSTRING

statement.

> Example

ID DIVISION.
PROGRAM-ID. UNSTRING.
ENVIRONMENT DIVISION.
SOURCE-COMPUTER. PRIME17-1.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ID-SEND PIC X(17) VALUE '123 45678**9@ABC'.
77 D-LIMITER PIC X VALUE '*'.
77 POINTR PIC 99 VALUE @1.
77 TALLY PIC 99 VALUE ZEROES.
Ql FIELDS.

92 FIELD-1 PIC X(6).
@2 FIELD-2-PIC X(6).
§2 FIELD-3 PIC X(3).
@2 FIELD-4 PIC X(5).

@1 DELIMS.
@2 DELIM-1 PIC X VALUE IS SPACE.
Q2 DELIM-2 PIC X VALUE IS SPACE.
Q2 DELIM-3 PIC X VALUE IS SPACE.

G1 COUNTS.
G2 COUNT-1 PIC 9 VALUE IS ZERO.
@2 COUNT-3 PIC 9 VALUE IS ZERO.
@2 COUNT-4 PIC 9 VALUE IS ZERO.

PROCEDURE DIVISION.
MAIN-PARA.

UNSTRING ID-SEND DELIMITED BY D-LIMITER OR ALL ' '
INTO FIELD-1 DELIMITER IN DELIM-1 COUNT IN COUNT-1

FIELD-2 DELIMITER IN DELIM-2
FIELD-3 DELIMITER IN DELIM-3 COUNT IN COUNT-3
FIELD-4 COUNT IN COUNT-4

1 January 1980 8-47 FDR 3056

8 PROCEDURE DIVISION

WITH POINTER POINTR

TALLYING IN TALLY

OVERFLOW GO TO O-FLOW-PARA.

GO TO DISPLAY-PARA.

O-FLOW-PARA.

DISPLAY
"OVERFLOW ENCOUNTERED, DISPLAY OF VARIABLES FOLLOWS:'.

DISPLAY~PARA.

DISPLAY 'FIELD 1=' FIELD-1.

DISPLAY 'FIELD 2=" FIELD-2.

EXHIBIT NAMED FIELD-3.

EXHIBIT NAMED FIELD-4.

EXHIBIT NAMED DELIM-1.

DISPLAY 'DELIM 2=' DELIM-2.

DISPLAY 'DELIM 3=' DELIM-3.

DISPLAY 'COUNT 1=' COUNT-1.

DISPLAY 'COUNT 3=' COUNT-3.

DISPLAY 'COUNT 4=' COUNT-4.

EXHIBIT NAMED POINTR.

EXHIBIT NAMED TALLY.

STOP RUN.

USE

> Function

The USE statement specifies procedures for input/output error handling which are in

addition to the standard procedures provided by the input/output control system.

PP Format

EXCEPTION filename

USE AFTER STANDARD PROCEDUREON INPUT

ERROR OUTPUT

I-O
> Syntax rules

1. A USE statement, when present, must immediately follow a section
headerin the Declaratives section, followed by a period and a space. The
remainder of the section must consist of zero, one, or more procedural
paragraphs which define the proceduresto be used.

Example:

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.

[paragraph-name. [sentence] ...] ...} ...

2 The USE statement itself is never executed; rather, it defines the

conditions for the execution of the USEprocedures.

FDR 3056 8-48 1 January 1980

PROCEDUREDIVISION 8

3. A given file-name may not be associated with more than one DECLAR-
ATIVESsection.

4. The words EXCEPTION and ERRORareinterchangeable.

5. The files implicitly or explicitly referenced in a USE statement need not
all have the same organization or access.

| General rules

1. The DECLARATIVESsection is executed (by the PERFORM mechanism)
after the standard I/0 recovery procedures for the files designated, or
after the invalid key condition arises on a statement lacking the INVALID
KEY clause.

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must be no reference to any non-
declarative procedures. Conversely, in the nondeclarative portion, there
must be no reference to procedure-names which appear in the declar-
ative portion, except that PERFORM statements mayreferto the pro-
cedures associated with such a USEstatement.

4, Within a USE procedure, no statement may be executed which would
result in the execution of a USE procedure previously invoked but not
completed (that is, a USE procedure, which throughpreviously invoked,
had not yet returned control to the invoking routine).

WRITE

Pp Function

The WRITEstatementreleases a logical record for an output or I/O file.It can also be used
for vertical positioning of lines within a logical page.

Format one

WRITE record-name [FROM data-name-1]

Arter ADVANCING {integerme? [tines]]
BEFORE PAGE

Format two

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement]

> Syntax rules

1. Format one can only be used for sequentialfiles.

2. Format two can only be usedfor Relative I/O and Indexed I/Ofiles.

3. Record-name and data-name must not refer to the same storagearea.

4 . Record-nameis the 01 level record-nameofa logical record, described in
a record description entry in the File Section of the Data Division.

1 January 1980 8-49 FDR 3056

8 PROCEDURE DIVISION

p> General rules

FDR 3056

1. For both WRITEstatement formats, the associated file must be open as

OUTPUTor IJ/0.

_ In Format one if the FROM option is taken, the information is moved to

the record area prior to the WRITE.If the data being movedis longer

than the receiving field, the data is truncatedto the size of the receiving

field. If-the receiving field is longer than the data, the remaining areais

filled with spaces.

_ In Format one if the ADVANCINGoptionis taken, print control spacing

is indicated. Thefirst position in the record must be reserved as FILLER

for the print control character being generated.

¢ If the BEFORE option is taken, a line is written before

advancing.

If the AFTER option is taken, spacing occurs, and then the

line is written.

° Data-name-2 LINE(s) is the number of spacing lines re-

quired between data lines. data-name-2 may be

0

to 62.

e PAGEskips to a new page, thena line is written.

If the ADVANCINGoption is not taken, the default is oneline.

_ In Formatone, the value of integer is as described below.

Integer Carriage Control Actions

0 Overprinting

1 Single spacing
2 Double spacing
3 Triple spacing
4 4-line spacing
5 5-line spacing
6 6-line spacing

62 62-line spacing

PAGE Skips to top of new page

_ In Formattwofor Relative I/O files: prior toa WRITEstatement, a valid

unique value must be in the primary RECORD KEY data-name. If the

FROMoptionis used, the unique value in RECORD KEY data-name must

be in the relative location of data-name-1. If the primary key is not

unique, the invalid statement or the DECLARATIVESsection will be

executed. Refer to C-4 in Appendix C for Error Conditions.

_In Format two for Indexed I/O files: the INVALID KEY clause must be

specified if the DECLARATIVEsection is not applicable. The program

will terminate if an error code condition arises.

¢ For sequential access: If a file is opened as OUTPUT,

records are placedin thefile in sequential order. Thefirst

record would have a position of 1, and the record number

returned into the RELATIVE KEY data-name would be1,

etc.

8-50 1 January 1980

PROCEDURE DIVISION 8

e For dynamic and random access: The value of the record
number must be placed in the RELATIVE KEY data-

name-1.

Example

PROCEDURE DIVISION.
REQUIRED-PARA.

DISPLAY 'ENTER 1 TO CREATE NEW FILE’.
DISPLAY 'ENTER 2 TO UPDATE OLD FILE’.

ACCEPT CREATE-UPDATE.
IF CREATE-UPDATE = '2'

OPEN OUTPUT PRINT-FILE
GO TO UPDATE-ONLY.

CREATE-FILE.
MOVE SPACES TO WS-RECORD.
OPEN INPUT CARD-FILE,

OUTPUT PRINT-FILE, DIRECTORY-FILE.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT.
READ CARD-FILE AT END GO TO LIST-DIRECTORY.
WRITE PRINT-LINE FROM CARD-IMAGE.

MOVE SPACES TO DISPLAY-RECORD.

MOVE CORR CARD~RECORD TO DIRECTORY-RECORD-INPUT.
WRITE DIRECTORY-RECORD-OUTPUT

INVALID KEY DISPLAY 'FILE STATUS = ' FILE-STATUS.

GO TO READ-NEXT.
LIST-DIRECTORY.

CLOSE CARD-FILE, DIRECTORY-FILE.

MOVE ' NEWLY CREATED FILE' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 3 LINES.

UPDATE-ONLY.
MOVE SPACES TO PRINT-LINE.
DISPLAY ‘END TEST ONE’.
OPEN I-O DIRECTORY-FILE.
IF CREATE-UPDATE = '2'

GO TO GET-NEXT-INQUIRY.
CLOSE DIRECTORY-FILE, PRINT-FILE.
GO TO REQUIRED-PARA.

LIST-DIR.
MOVE LOW-VALUES TO PHONE-NUMBER, LAST-NAME, BIRTH-DATE,

STATE, FIRST-NAME.

LIST.
MOVE LOW-VALUES TO PHONE-NUMBER, AT-END-SWITCH.

START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE~NUMBER.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

GO TO READ-NEXT-DIRECTORY-RECORD.

LIST 1.
MOVE LOW-VALUES TO LAST-NAME, AT-END-SWITCH.

START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

GO TO READ-NEXT~DIRECTORY-RECORD.

1 January 1980 8-51 FDR 3056

8 PROCEDURE DIVISION

FDR 3056

LIST 2.
MOVE LOW-VALUES TO STATE, AT-END-SWITCH.

START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

GO TO READ-NEXT-DIRECTORY-RECORD.

LIST3.

MOVE LOW-VALUES TO BIRTH-DATE, AT-END-SWITCH.

START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTH-DATE.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

GO TO READ-NEXT-DIRECTORY-RECORD.

LIST4.
MOVE LOW-VALUES TO FIRST-NAME, AT-END-SWITCH.

START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ~NEXT-—DIRBECTORY—-RECORD.

READ DIRECTORY-FILE NEXT RECORD AT END

MOVE 1 TO AT-END-SWITCH.

MOVE DIRECTORY-RECORD-OUTPUT TO PRINT-LINE.

WRITE PRINT-LINE.

GO TO READ-NEXT-DIRECTORY-RECORD.

LIST—DONE.

EXIT.

GET-NEXT-INQUIRY.
DISPLAY 'ENTER TRANSACTION TYPE’.

DISPLAY ' # = READ FILE SEQ'.
DISPLAY ' + = ADD'.
DISPLAY ' -— = DELETE’.
DISPLAY ' / = CHANGE’.
DISPLAY ' * = QUIT’.
ACCEPT ACCEPT-TRANSACTION-TYPE FROM TTY.

IF ACCEPT-TRANSACTION~TYPE '+' GO TO ADDITION.
IF ACCEPT-TRANSACTION-TYPE '-' GO TO DELETION.

IF ACCEPT-TRANSACTION-TYPE '/', GO TO CHANGE.

IF ACCEPT-TRANSACTION-TYPE '*' | PERFORM WRAPUP, STOP RUN.

IF ACCEPT~-TRANSACTION-TYPE "#', GO TO READ-FILE.

DISPLAY ‘INVALID TRANSACTION TYPE = '
ACCEPT-TRANSACTION-TYPE.

DISPLAY 'TRY AGAIN'.
GO TO GET-NEXT-INQUIRY.

NO-SUCH-NAME.
DISPLAY ' NO SUCH RECORD = ' DISPLAY-DIR.
GO TO GET-NEXT-INQUIRY.

ADDITION.
DISPLAY 'ENTER DATA RECORD FQR ADD’.

PERFORM FORMAT-INPUT.
PERFORM MOVE-REC.
WRITE DIRECTORY-RECORD-OUTPUT INVALID KEY

DISPLAY FILE-STATUS
DISPLAY DISPLAY-DIR.

GO TO GET-NEXT-INQUIRY.

8-52 1 January 1980

PROCEDURE DIVISION

*

DELETION.

DISPLAY 'ENTER LAST NAME OF ENTRY TO BE DELETED'.

ACCEPT LAST-NAME FROM TTY.

READ DIRECTORY-FILE KEY IS LAST-NAME

INVALID KEY GO TO NO-SUCH-NAME.

DELETE DIRECTORY-FILE RECORD INVALID KEY

GO TO NO-SUCH-NAME.

GO TO GET-NEXT-INQUIRY.
*

CHANGE.

DISPLAY 'ENTER KEY TO BE CHANGED'.

DISPLAY 'LAST-NAME = lL'.

DISPLAY 'STATE = 2',

DISPLAY 'BIRTU-DATE = 3'.

DISPLAY 'FIRST-NAME = 4'.

ACCEPT GO-TO-NAME.
GO TO READ-ALT1 READ-ALT2 READ-ALT3 READ-ALT4

DEPENDING ON GO-TO-NAME.

DISPLAY ‘WRONG TYPE ENTERED TRY AGAIN', GO TO CHANGE.
x

READ-ALT1.

DISPLAY 'ENTER LAST-NAME'.

ACCEPT WS-LAST-NAME.

MOVE SPACES TO DIRECTORY-RECORD-OUTPUT.

MOVE WS-LAST-NAME TO LAST~-NAME.

READ DIRECTORY-FILE KEY IS LAST-NAME

INVALID KEY DISPLAY 'LAST-NAME = ' LAST-NAME
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
*

READ-ALT2.
DISPLAY 'ENTER STATE '.
ACCEPT WS-STATE.
MOVE SPACES TO DIRECTORY-RECORD-OUTPUT.
MOVE WS-STATE TO STATE.
READ DIRECTORY-FILE KEY IS STATE

INVALID KEY DISPLAY 'STATE = ' STATE
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
*

READ-ALT3.
DISPLAY 'ENTER BIRTH-DATE'.
ACCEPT WS-BIRTH-[ATE.
MOVE SPACES TO DIRECTORY-RECORD-OUTPUT.
MOVE WS-BIRTH-DATE TO BIRTH-DATE.
READ DIRECTORY-FILE KEY IS BIRTH-DATE

INVALID KEY DISPLAY 'BIRTH-DATE = ' BIRTH-DATE

1 January 1980 8-53 FDR 3056

8 PROCEDURE DIVISION

DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
*

READ-ALT4,
DISPLAY 'ENTER FIRST-NAME'.
ACCEPT WS-FIRST-NAME.
MOVE SPACES TO DIRECTORY-RECORD-OUTPUT.
MOVE WS-FIRST-NAME TO FIRST-NAME.
READ DIRECTORY-FILE KEY IS FIRST-NAME

INVALID KEY DISPLAY 'FIRST-NAME = ' FIRST-NAME
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

*

CHANGE-RECORD.
DISPLAY DISPLAY-DIR.
PERFORM FORMAT-INPUT.

*

MOVE-REC.
IF WS-RECORD = SPACES

DISPLAY 'NO DATA ENTERED TRY AGAIN'
GO TO GET-NEXT-INQUIRY.

IF WS-LAST-NAME NOT = SPACES
MOVE WS-LAST-NAME TO LAST-NAME.

IF WS-FIRST-NAME NOT = SPACES
MOVE WS-FIRST-NAME TO FIRST-NAME.

IF WS-ADDRESS NOT = SPACES
MOVE WS-ADDRESS TOADDRESS.

IF WS-CITY NOT = SPACES
MOVE WS-CITY TO CITY.

IF WS-PHONE-NUMBER NOT = SPACES
MOVE WS-PHONE-NUMBER TO PHONE-NUMBER.

IF WS-STATE NOT = SPACES
MOVE WS-STATE TO STATE.

IF WS-BIRTH-DATE NOT = SPACES
MOVE WS-BIRTH-DATE TO BIRTH-DATE.

MOVE-NEXT.
EXIT.

*

REWRITE-RECORD.
REWRITE DIRECTORY-RECORD-OUTPUT INVALID KEY,

GO TO NO-SUCH-NAME.
GO TO GET-NEXT-INQUIRY.

*

READ-FILE.
MOVE ZEROS TO PERFORM-COUNT.
DISPLAY 'ENTER NUMBER OF RECORDS TO BE READ’.
ACCEPT PERFORM-COUNT.
IF PERFORM-COUNT = ZEROS

DISPLAY 'NO RECORD COUNT ENTERED'

FDR 3056 8-54 1 January 1980

PROCEDUREDIVISION 8

GO TO GET-NEXT-INQUIRY.
IF PERFORM-COUNT1 NOT NUMERIC

PERFORM RIGHT-JUSTIFY.
x

READ-TYPE.
DISPLAY 'ENTER SECONDARY KEY TO BE READ’.

DISPLAY 'PHONE-NUMBER = 1'.
DISPLAY 'LAST-NAME = 2'.
DISPLAY ‘STATE = 3'.
DISPLAY 'BIRTH-DATE = 4'.
DISPLAY 'FIRST-NAME = 5'.
ACCEPT GO-TO-READ.

IF GO-TO-READ IS LESS THAN 1 OR GO-TO-READ IS GREATER THAN

DISPLAY 'INVALID SECONDARY KEY TRY AGAIN'
GO TO READ-TYPE.

IF GO-TO-READ = 1 PERFORM READ-1
ELSE IF GO-TO-READ = 2 PERFORM READ-2

ELSE IF GO-TO-READ = 3 PERFORM READ-3
ELSE IF GO-TO-READ = 4 PERFORM READ-4

ELSE IF GO-TO-READ = 5 PERFORM READ-5.
PERFORM READ-FILE-GO THROUGH READ-FILE-EXIT.

*

READ-1.
MOVE LOW-VALUES TO PHONE-NUMBER.
START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE-NUMBER.

READ-2.
MOVE LOW-VALUES TO LAST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.

READ-3.
MOVE LOW-VALUES TO STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.

READ-4.
MOVE ZEROS TO BIRTH-DATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTH-DATE.

READ-5.
MOVE LOW-VALUES TO FIRST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.

READ-F ILE-GO.
IF PERFORM-COUNT = 8 GO TO READ-FILE-EXIT.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-COUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
SUBTRACT 1 FROM PERFORM-COUNT.
GO TO READ-FILE-GO.

READ-FILE-EXIT.
GO TO GET-NEXT-INQUIRY.

*

WRAPUP.
PERFORM LIST-DIR.

1 January 1980 8-55 FDR 3056

8 PROCEDURE DIVISION

MOVE 'END OF INDEXED TEST TO CHANGE FILE' TO PRINT-LINE.
DISPLAY 'END OF INDEXED TEST’.
CLOSE PRINT-FILE, DIRECTORY-FILE.

x

FORMAT-INPUT.
MOVE SPACES TO WS-RECORD.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME’.
ACCEPT WS-F IRST-NAME.
DISPLAY 'ENTER ADDRESS'.
ACCEPT WS-ADDRESS.
DISPLAY 'ENTER CITY’.
ACCEPT WS-CITY. |
DISPLAY 'ENTER PHONE NUMBER'.
ACCEPT WS-PHONE-NUMBER.
DISPLAY 'ENTER STATE XX’.
ACCEPT WS-STATE.
DISPLAY 'ENTER BIRTH-DATE MMDDYY'.
ACCEPT WS-BIRTH-DATE.

RIGHT-JUSTIFY.

IF PER-CO(1) NUMERIC AND

PER-CO (2) NOT NUMERIC AND

PER-CO(3) NOT NUMERIC

MOVE PER-CO(1) TO PER-CO (3)

MOVE '@' TO PER-CO(1) PER-CO(2)

GO TO READ-TYPE.

IF PER-CO(1L) NUMERIC AND

PER-CO(2) NUMERIC AND

PER-CO(3) NOT NUMERIC

MOVE PER-CO(2) TO PER-CO (3)

MOVE PER-CO(1) TO PER-CO(2)

MOVE '@' TO PER-CO(1).

FDR 3056 8-56 1 January 1980

Inter-program
communication

DEFINITION

Inter-Program Communication provides a facility by which a program can communicate

with one or more other programs. Control may be transferred from one program to another

within a run unit, and both programs may have accessto the same data items.

Inter-module communication of data is made possible through the use of the LINKAGE

SECTIONof the Data Division, and by the CALL statement and USINGlist appendageto the

Procedure Division header of a subprogram module.

LINKAGE SECTION

The LINKAGE SECTIONin a program is meaningfulif, and only if, the called programis to

function under the control of a CALL statement, and the CALL statement in the calling

program contains a USING phrase.

The LINKAGE SECTION describes data made available in memory from another program

module, but which is to be referred to in both the calling and the called program.

Nospaceis allocated in the program for data items referenced by data-namesin the Linkage

Section of that program. Procedure Division references to such items are resolved at load

time, equating the references in the called program to the location used in the calling

program by passing address parameters. Thus, Record Description entries in the LINKAGE

SECTIONprovide data-names by which data-areas reserved in memory by other programs

may be referenced.

Data items defined in the LINKAGE SECTIONofthe called program may be referenced in

the Procedure Division of that called program only if: they are specified as operands of the

USINGphraseof the Procedure Division header or are subordinate to such operands, and

the called program is under the control of a CALL statement which specifies a USING

phrase (see the exampleat the closeof this section).

The structure of the LINKAGE SECTIONis that described for the WORKING-STORAGE

SECTION.

Any Record Description clause may be used to describe items in the LINKAGE SECTION

except:

1. The VALUEclause mayonly be specified for level 88 items.

> Data-names used in the LINKAGE SECTION mustbe unique (may not be

qualified).

3. The programmer mustensure proper correspondence between an argu-

ment (pointer to data) in a CALL statement and the data-name in a

USING list on a subprogram Procedure header. Arguments and data-

names must be either level 01 or level 77 items. (See Rule 4 aboutlevel

77 entries.]}

4. Items in the LINKAGE SECTION which bearnohierarchyrelationship to

one another neednot be groupedinto records. These are classified and

defined as noncontiguous elementary items. They may be defined in

separate level 77 entries.

1 January 1980 9-1 FDR 3056

9 INTER-PROGRAM COMMUNICATION

Such Data Description entries must include a level-number 77, a data-
name, and a PICTUREclause or the USAGE IS INDEXclause.

PROCEDUREDIVISION |

In addition to LINKAGE SECTIONentries, inter-program communication requires certain

Procedure Division entries.

Using list appendage to procedure header

The Procedure Division header of a CALLable subprogramis written as:

PROCEDUREDIVISION [USING data-name...]

where each of the data-name operands is an entry in the LINKAGE SECTION of the
subprogram, having level 77 or 01. Addresses are passed from an external CALL in one-to-
one correspondenceto the operands in the USINGlist of the Procedure Division header so
that data in the calling program may be manipulated in the subprogram.

CALL

The CALL statementallows one program to communicate with one or moreother programs.
It causes control to be transferred from one loaded program to another within a run unit.

Format

CALLliteral-1 [USING data-name-1 [, data-name-2] ...]

Syntax rules
1. The CALL statement appearsin the calling program. The called program,

which must be knownat compile time,is specified by nameasliteral-1.
The program representedbyliteral-1 may have been written in a source
language other than COBOL.

2. Literal-1 must be a non-numericliteral.

3. The USING phraseis included in the CALL statementonlyif there is a
USING phrase in the Procedure Division header of the called program.
Corresponding USING phrases in the calling and the called programs
must have the same number of operands. Up to 14 data-names are

allowed.

4. Each operand in the USING phrase must have been defined as a data
item in the File Section, Working-Storage Section, or Linkage Section and
must have a level-numberof 01 or 77. Data-name-1, data-name-2, etc.,

may be qualified when they refer to data items defined in the File
Section.

> General rules

1. The execution of a CALL statement transfers control to the called

program.

2. A programisin its initial state the first time it is called within a run unit.

On all other entries into the called program,the state of the program

remains the same as when controllast past from its EXIT statement back

to the calling program. This includes all data fields, the status and

positioning of all files, and all alterable switch settings.

FDR 3056 9-2 1 January 1980

INTER-PROGRAM COMMUNICATION 9

3. Called programs can contain CALL statements. However, a called pro-
gram must not contain a CALLstatementthatdirectly or indirectly calls
the calling program.

4, The data-namesspecified by the USING phrase of the CALL statement
indicate those data items available to a calling program, that may be
referred to in the called program. The order in which the data-names
appear in the USING phrasesof the two programsis critical; the data-
names in the USING phraseof the CALL statementin the calling program
are interpreted as corresponding on a one-to-one basis with those in the
USINGphrase in the Procedure Division headerof the called program.
Corresponding data-namesreferto a single set of data whichis available
to the called and calling programs. Correspondenceis positional, not by
name. Thereis no such correspondencefor index-names, however,since
index-namesin the calling and called programs alwaysrefer to separate
indexes.

Note

See Section 8, PROCEDURE DIVISION,for additional in-
formation.

EXIT PROGRAM

The EXIT PROGRAMstatement specifies the logical end of a called program.

Format

EXIT PROGRAM.

> Syntax rule

The EXIT PROGRAMstatement maybe in a paragraphbyitself. However, Prime COBOL

does not requireit.

> General rule

The EXIT PROGRAMstatement, appearing in a called subprogram, causes control to be
returned to the next executable statement after a CALLin the calling program. See Section

8 for detailed discussion.

ENTER

An ENTERstatementis classified as a compiler-directing statement; it acts as a modifier to

a subsequent CALLstatement.

Format

COBOL
ENTER

ASSEMBLER

> Syntax rules
1. A called subprogram may have been written in COBOL, FORTRAN,
ASSEMBLER,etc. language. The ENTERstatement provides the means
to identify the language in which a subprogramis written.

1 January 1980 9-3 FDR 3056

9 INTER-PROGRAM COMMUNICATION

2. ENTER ASSEMBLERtells the compiler that the ensuing callee is not a

COBOL subprogram.

3. ENTER COBOLtells the compiler that the ensuing callee is a COBOL
subprogram.It may also be used following a CALL statement. This
traditional usage is optional; after any CALL statement, ENTER COBOL
is assumed.

Note

Additional information for ENTER statementis presented in

Section 8.

> Example

Filename = CALLER

ID DIVISION.
PROGRAM-ID. CALLER.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

G1 WS-ITEMS.
@5 WS-VALUE-1 PIC 99.
@5 WS-VALUE-2 PIC 9(5).

@5 WS-VALUE-3 PIC 9.
@5 WS-VALUE-4 PIC X(6).
@5 WS-VALUE-5 PIC AAA.

PROCEDURE DIVISION.
MAIN-PARA.

MOVE 'ABC' TO WS-VALUE-5.
MOVE 11111 TO WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-5.
CALL 'CALLED' USING WS-ITEMS.

DISPLAY
'VALUES AFTER CALL STATEMENT IS EXECUTED’.

EXHIBIT NAMED WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-5.

Filename = CALLED

ID DIVISION.
PROGRAM-ID. CALLED.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
@1 WS-TEST PIC 9(5) VALUE 22222.

LINKAGE SECTION.

FDR 3056 9-4 1 January 1980

1 January 1980

G1 WS-ITEM.
95 WS-VALUE-1 PIC 99.
@5 WS-VALUE-2 PIC 9(5).
@5 WS-VALUE-3 PIC X(7).
05 ANY-NAME PIC AAA.

PROCEDURE DIVISION USING WS-ITEM.
MAIN—-PARA.

MOVE WS-TEST TO WS-VALUE-2.
MOVE ‘'DEF' TO ANY-NAME.

EXIT-—PARA,
EXIT PROGRAM.

OPTIONAL-STOP-PARA,
STOP RUN.

INTER-PROGRAM COMMUNICATION 9

FDR 3056

10
Table handling

DEFINITION

Table Handling provides a capability for defining tables of contiguous data items and

accessing those itemsrelative to their position in the table. The OCCURSclause is the

language facility provided for specifying how many times an item is to be repeated. Each

item may be identified through use of a subscript or an index.

DATA DIVISION

The maximum table size permissible in this compiler is 32,767 bytes.

OCCURS

The OCCURSclause eliminates the need for separate entries for repeated data items.

Furthur, it supplies information required for the application of subscripts or indexes.

Format

OCCURSinteger-1 TIMES

ASCENDING
[KEY IS data-name-1 [, data-name-2] ...]

DESCENDING

[INDEXEDBY index-name-1 [, index-name-2]...]

> Syntax rules

1. The OCCURSclause must not be used in a data description entry having

a level number01, 66, 77, or 88.

2. The maximum OCCURSspecification (integer-1} is 32,766.

3. The minimum OCCURSspecification (integer-1) is 2.

4. Data-name-1 must either be the nameof the subject entry containing the

OCCURSclause, or the name of an entry subordinate to the subject

entry.

5. Data-name-2,etc., must be the nameof an entry subordinate to the group

item whichis the subject of this entry.

6. Data-names in the KEY IS phrase must not contain an OCCURSclause

except where data-name-1is the subjectof the entry.

7. There must not be any entry that contains an OCCURSclause between

the data-namesin the KEYIS phrase and the subjectof the entry, except

where data-name-1 is the subject of the entry.

1 January 1980 10-1 FDR 3056

10 TABLE HANDLING

8. All data-names used in the OCCURSclause maybe qualified; however,
they must not be subscripted or indexed.

9. An INDEXED BYphraseis required if the subject of this entry, or an
entry subordinates to this entry, is to be referenced by indexing. The
index-namesidentified by this phrase are not defined elsewhere, since
their allocation and format are dependent on the hardware (system); not
representing data, the index-names cannot be associated with any data
hierarchy.

10. Each index-name must be an unique word within the program.

> General rules

1. The OCCURS clause defines tables and other homogenous sets of
repeated data items. When the OCCURSclauseis used, the data-name
whichis the subject of the entry must be referred to by subscripting or
indexing.

. Except for the OCCURS clause itself, all data description clauses
associated with an item containing an OCCURSclause apply to each
occurrence of the item being described.

3. The value of integer-1 represents the exact numberof occurrencesof the
subject entry.

4, The KEY IS phrase indicates that the repeated data is arranged in
ascending or descending order accordingto the values contained in data-
name-1, data-name-2, etc. The ascending or descending orderis de-
termined by the rules for the comparison of operands. (See Section 4,
Numeric Comparisons and Non-Numeric Comparisons.} The data-names
are listed in their descending orderof significance.

5. When the INDEXED BY phrase is omitted, subscripting is used to
indicate an individual element within list, or within a table of like
elements which do not have individual data-names.

6. When the INDEXED BYphraseis used,an indexis assignedto a table of
like elements, with individual items in the table being identified by
index-name. For example:

B
h

@5 MON-TAB OCCURS 12 TIMES INDEXED BY INDX
ASCENDING KEY MONTH-NO.
18 MONTH-NO PIC 99.
1@ MONTH-VALUE PIC XXX.

FIND-MONTH.
SEARCH ALL MON-TAB

WHEN MONTH-NO(INDX) = MONTH-ACCEPT
MOVE MONTH-VALUE (INDX) TO PRINT-MONTH.

FDR 3056 10-2 1 January 1980

TABLE HANDLING 10

Table initialization

Table initialization, if required, may be achieved either in the Working-Storage Section

(explained below) or in the Procedure Division by using appropriate MOVEstatements.

In the Working-Storage Section of the Data Division, tables can beinitialized in one of two

ways:

° If the elements in a table do not needto be individually initialized, then

the VALUEclauseis specified in the data description entry containing the

table name. The subordinate data description entry will then be given an

OCCURSclause defining the structure of the table.

Examples:

Ql A-TABLE VALUE ZEROS.

85 B-TABLE PIC X(3) OCCURS 100 TIMES.

91 STATE-TABLE VALUE 'CALAMAPAVA'.

@5 STATE PIC XX OCCURS 5 TIMES.

° If the elements in

a

table needto be individuallyinitialized, then a VALUE

clause is specified in each table element entry. The table will then be

redefined by using the REDEFINES entry with the subordinate entry

containing an OCCURSclause.

Example:

81 WAREHOUSE.

@5 FILLER PIC 99 VALUE 10.

@5 FILLER PIC X(22) VALUE 'BOSTON DISTRICT BRANCH'.

@5 FILLER PIC 99 VALUE ll.

@5 FILLER PIC X(22) VALUE 'NEW YORK CITY BRANCH '.

@5 FILLER PIC 99 VALUE 12.

@5 FILLER PIC X(22) VALUE 'HOUSTON HOME OFFICE ‘.

$1 WARE-HOUSE REDEFINES WAREHOUSE.

@5 HOUSES OCCURS 3 TIMES.
18 HOUSE-NO PIC 99.
19 HOUSE-NAME PIC X(22).

Note

The VALUE clause is not permitted in a data description

entry specifying an OCCURS or REDEFINES clause, or in

any entry subordinate to one specifying an OCCURSor

REDEFINESclause.

Indexing and subscripting

Indexing and subscripting are the two methods of accessing the individual elements in a

table established by the OCCURSclause. To specify a desired individual table element,

follow the table element’s data-nameby a parenthesized index or subscript.

An index is an index-name coded in an INDEXED BYphrase in an OCCURSclause. The

_ value of an index correspondsto the occurrence numberof the desired element.

1 January 1980 10-3 FDR 3056

10 TABLE HANDLING

A subscript is an integer appended in parenthesis to a data-name. The subscript value
represents the occurrence of the desired element.

INDEXEDBYphrase: The positioning of the INDEXED BYphrase appearsin the OCCURS
clause format. As indicated, the INDEXED BYphraseis appended to the OCCURSclause.
The INDEXED BYphraseis required if the subject of an entry, or one subordinatesto that
entry, is to be referred to by indexing. The index-name identified by this phrase is not
defined elsewhere; allocation and format are defined by the compiler. In other words, an
index-nameis declared not by the usual method of level-number, name and Data Descrip-
tion clauses, but implicitly by appearance in the “INDEXED BY index-name” appendageto
an OCCURSclause.

The format of the INDEXED BYphraseis:

(INDEXED BYindex-name-1 [, Index-name-2] ...]

Index-name is equivalent to an index-item; it must be uniquely named. This compiler
assigns a full word for each index-namedefined.

An index-item mayonly be referred to by a SET statement, a SEARCHstatement, a CALL
statement USINGlist, a Procedure header USINGlist, as the variation item in PERFORM
VARYING and PERFORM UNTIL,or in a relational condition. In all cases, the process is
equivalent to dealing with a binary word integer subscript. A maximum of three indexes
may be used on any given data-name.

Direct indexing: Direct indexing is specified by using an index-name in the form of a
subscript, for example, ELEMENT (INDX-1).

Consider the followingillustration:

Ql TABLE-A.
95 ELEMENT OCCURS 6 TIMES INDEXED BY INDX-l.

SET INDX-1 TO 4.

MOVE ELEMENT (INDX-1) TO PRINT-FIELD.

ELEMENT(INDX-1) in the example above would refer to the fourth element of the table.
The MOVEstatement would movethe contents of the ELEMENTto a field called PRINT-
FIELD.

Relative indexing: Relative indexing may be specified wherever indexing can be specified.
Using the sample TABLE-A defined in the example above, the same results could be
achieved with relative indexing; namely,

MOVE ELEMENT (INDX-1 + 3) TO PRINT-FIELD.

will move the contents of the fourth ELEMENTto a field named PRINT-FIELD (assuming
that INDX-1 has a value of 1).

FDR 3056 10-4 1 January 1980

TABLE HANDLING 10 —_

In the instance above, index-nameis followed by a space, followed by oneof the operators

+ or —, followed by another space, followed by an unsigned, integer numeric literal, all

delimited by the balanced pair of separators left parenthesis and right parenhesis.

The occurrence numberresulting from relative indexing is determined by incrementing or

decrementing the index by the value of the literal.

When a statement is executed which refers to an indexed table element, the value in the

associated index must neither be less than one, nor greater than the highest occurence

numberof an elementin the table. This restriction applies equally to direct indexing and

relative indexing.

The general formatfor direct indexing andrelative indexing is:

data-name index-name-1 [1 + literal-2]

condition-name literal-1

index-name-2 [1 + {iteral-4)

L
literal-3

index-name-3 [+ literal-6]

[})
literal-5

Subscripting: Subscripting may be used in lieu of indexing. In such instances, the INDEXED

BY phrase is omitted.

The format for subscriptingis:

data-name (subscript-1 [, subscript-2 [, subscript-3]])

The subscript can be represented either by a positive numeric literal or by a data-name. The

data-name must be a numeric elementary item which represents an integer. Further, the

data-name as subscript may be qualified but notitself subscripted.

The subscript data-name maybesigned,but the value must be positive. The subscript value

indicates the position of the item ina table. The lowest value permittedis one. indicating the

first position in the table. Subsequentpositions are indicated by sequential values 2. 3, 4.

etc., up to the highest permissible value, whichis the maximum numberofoccurrencesof

the item specified in the OCCURSclause.

The subscript can be used on anytable. For example:

Ql ARRAY.

@5 ELEMENT, OCCURS 3, PICTURE S9(4), SIGN TRAILING SEPARATE.

The coding in the example above would cause the allocation of storage as shown below:

ELEMENT (1) ARRAY consisting of fifteen

characters; each item has 4

ELEMENT (2) digits and a separate sign.

ELEMENT (3)

1 January 1980 10-5 FDR 3056

10 TABLE HANDLING

e For literal subscripting, the following MOVEstatement could be written:

MOVE ELEMENT(2) TO QUANTITY.

This would result in moving the contents of the second ELEMENT in
ARRAY (previous example) to a field named QUANTITY.

e For data-name subscripting, additional data description entries are re-
quired; an exampleis illustrated below:

G1 ARRAY.
@5 ELEMENT, OCCURS 3, PICTURE X(4).

81 SUBSCRIPTNO PIC 99.
@1 PART-NO PIC X(4).

MOVE 2 TO SUBSCRIPINO.
GO TO TABLERUN.

TABLERUN.
MOVE ELEMENT (SUBSCRIPTNO) TO PART-NO.

The MOVEstatements in the example above would results in the data-
namesubscript, SUBSCRIPTNO,beingset to a value of 2, and the contents
of the second ELEMENTof ARRAYbeing movedto the field called PART-
NO.

The data-name maynot be subscriptedif it is being used for any of the
following functions:

e Whenit is being used as a subscript

e Whenit appearsas the defining nameof a data description
entry

e Whenit appears as data-name-2 in a REDEFINESclause

A subscript must be delimited by a pair of parenthesis following the table element data-
name. When two or more. subscripts are required, they are written in the order of
successively less inclusive dimensions of the data organization, and should be separated by
commas. A maximum of threelevels of subscripting is permitted for any given data item.

A subscript value is changed in the Procedure Division via the MOVE, ADD, SUBTRACT,
MULTIPLY, DIVIDE, or COMPUTEverbs. The SETverb cannot be used on a subscript data-
name.

Multi-dimensional tables

The following example presents Data Division entries for a multi-dimensional table,
TABLE-PLUS.

FDR 3056 10-6 1 January 1980

TABLE HANDLING 10

G1 TABLE-PLUS.
85 TYPE OCCURS 18 TIMES.

18 PART-NO PIC X(4).

18 COLOR PIC xX OCCURS 18 TIMES.

18 CONTROL OCCURS 7 TIMES.

15 Cl PIC X.

15 C2 PIC XX OCCURS 4 TIMES.

Whena table has more than one dimension,the data-nameof the desired item is followed

by a list of subscripts, one for each OCCURS clause to which the item is subordinate.

In sucha list, the first subscript applies to the first OCCURS clause to which the item is

subordinate. The second subscript applies to the next most encompassinglevel. The third,

and last, subscript applies to the lowest level OCCURS clause being accessed.

Therefore, using the table depicted in the example above, the statement

MOVE C2(8, 6, 4) TO TEMP.

would MOVEthecontentsof the fourth occurrenceofthefield C2,in the sixth repetition of

the field CONTROL,in the eighth occurrenceof the field TYPE to a field called TEMP.

Similarly, the statement

MOVE C2(10, 7, 4) TO TEMP.

would movethe contents of the last occurrence of the field C2 to the field labeled TEMP.

PROCEDUREDIVISION

SET

The SET statement permits the manipulation of index-names and index items,for table-

handling purposes.

Format one

index-name-3

index-name-1 [, index-name-2] ...

SET TO

<

data-name-3

data-name-1 [, data-name-2]...

integer-1

Format two

UP BY data-name-4

SET index-name-4 L index-name-5 ee
DOWNBY integer-2

1 January 1980 10-7 FDR 3056

10 TABLE HANDLING

> Syntax rules

1. All references to index-name-1, data-name-1 and index-name-4 apply
equally to index-name-2, data-name-2, and index-name-5, respectively.

2. Data-name-4 must be described as an elementary numericinteger.

3. There must not be a name specifying an index data item after UP BY or
DOWNBYoption.

4. Integer-1 and integer-2 may be signed. However, integer-1 must have
positive value.

> General rules

1. In any SET statement, data-namesare restricted to binary items, except
that a decimal item may follow on the word TO.

An index-name should only apply to the OCCURS which definesit.

The SET verb cannot be used on a subscripted data-name.

w
e

C
c

t
e

Index-names are considered related to a given table and are defined by
being specified in the INDEXED BY clause.

If inex-name-3 is specified, the value of the index before the execution of
th SET statement must not exceed the occurrence numberof an element
in the associated table.

6. In Format one, the following action occurs:

o
n

e Index-name-1 is set to a value causingit to refer to a table
element. That element corresponds in occurrence number
to the table element referenced by index-name-3, data-
name-3, or integer-1. If data-name-3 is an index data item,
or if index-name-3 is related to the same table as index-
name-1, no conversion takes place.

e If data-name-1 is an index data item, it may be set equal to

either the contents of index-name-3 or data-name-3. where
data-name-3 is also an index data item: no conversion takes
place in either case.

e If data-name-1 is not an index data item, it maybe set only
to an occurrence numberwhich correspondsto the value of
index-name-3. Neither data-name-3 nor integer-1 can be
used in this case.

¢ The process is repeated for index-name-2, data-name-?2,
etc., if specified. Each time, the value of index-name-3 or
data-name-3 is used as it was at the beginning of the
execution of the statement.

7. In Format two, the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value corresponding to the numberof
occurrences represented by the value of integer-2 or data-name-4: there-
after, the process is repeated for index-name-5, etc. Each time the valueof
data-name-4 is used as it was at the beginning of the execution of the
statement.

8. Data in the following table represents the validity of various operand
combinations in the SET statement.

FDR 3056 10-8 1 January 1980

TABLE HANDLING 10 —_

Table 10-1. Validity of operand combinations in the SET statement

Sending Item Receiving Item

Integer Data Index-name
Item .

Integer Literal Valid

Integer Data Item Valid

Index-name Valid Valid

Index Data Item Valid* * - No conversion takes place.

Index Data

Item

Valid*

Valid*

SEARCH

The SEARCHstatementis used to search a table for a table element which satisfies the

specified condition. The associated index-nameis adjustedto indicate that table element.

Format one

identifier-2

SEARCHidentifier-1 [VARYING J

index-name-1

[; AT END imperative-statement-1]

imperative-statement-2

; WHEN condition-1
NEXT SENTENCE

imperative-statement-3

[; WHEN condition-2 j

NEXT SENTENCE

Format two

SEARCHALLidentifier-1 [; AT END imperative-statement-1]

EQUALS identifier-3

data-name-1 IS EQUAL TO

; WHEN IS = literal-1

condition-name-1

EQUALS identifier-4

data-name-2 iS EQUAL TO

[AND IS = literal-2]

condition-name-2

imperative-statement-2

NEXT SENTENCE

1 January 1980 10-9 FDR 3056

10 TABLE HANDLING

Syntax rules

1. In both Formats one and two, identifier-1 must not be subscripted or
indexed, but its description must contain an OCCURSclause and an
INDEXEDBYclause. The description of identifier-1 in Format two must
also contain the KEY IS phrase in its OCCURSclause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX,or
as a numeric elementary data item without anypositionsto the right of
the assumed decimalpoint.

3. In Format one, condition-1, condition-2, may be any condition as

described under Conditional Expressions in Section 4.

4. In Format two, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition-name
must appear in the KEY clause of identifier-1. Each data-name-1, data-
name-2 may be qualified. Futher, each data-name-1, data-name-2 must
be indexed by the first index-name associated with identifier-1 along
with other indices or literals as required.

5. In Format two, when a data-namein the KEYclause of identifier-1 is

referenced, or when a condition-name associated with a data-namein

the KEY clauseof identifier-1 is referenced, all preceding data-namesin
the KEY clause of identifier-1 or their associated condition-names must

also be referenced.

> General rules

1. Format one SEARCHstatementenablesa serial type of search operation,
starting with the current index setting.

e If, at the start of execution of the SEARCHstatement, the
index-name associated with identifier-1 contains a value
which corresponds to an occurrence numbergreater than
the highest permissible occurrence numberforidentifier-1,
the specified imperative-statement-1 is executed; if the AT
END phrase is not specified, control passes to the next
executable sentence.

e If, at the start of execution of the SEARCHstatement, the
index-name associated with identifier-1 contains a value
corresponding to an occurrence numbernot greater than
the highest permissible occurrence numberforidentifier-1,
the SEARCHstatement operates by evaluating the condi-
tions in the order in which they are written making use of
the index settings, wherever specified, to determine the
occurrence of those items to be tested. If none of the
conditions are satisfied, the index-namefor identifier-1 is
incremented to obtain reference to the next occurrence.

The process is repeated, using the new index-nameset-
tings. If the new value of the index-namesettings for
identifier-1 corresponds to a table element outside the
permissible range of occurrence values, the search térmi-
nates as indicated in the rule above.If one of the conditions
is satisfied upon its evaluation, the search terminates
immediately and the imperative statementassociated with
that condition is executed; the index-name remainssetat
the occurrence which caused the condition to besatisfied.

' 2. In Format one, if the VARYING phrase is not used, the index-name
which is used for the search operationis the first (or only) index-name

FDR 3056 10-10 1 January 1980

TABLE HANDLING 10 mail

‘appearing in the INDEXEDBY phrase of identifier-1. Any other index-

namesfor identifier-1 remain unchanged.

3. In Format one, if the VARYING index-nameis specified, and if index-

name-1 appears in the INDEXED BYphrase of identifier-1, that index-

nameis used for this search. If this is not the case, or if the VARYING

identifier-2 phrase is specified, the first (or only) index-namegiven in

the INDEXED BY phrase of identifier-1 is used for the search. In

addition, the following operations will occur:

If the VARYING index-name-1 phraseis used, andif index-

name-1 appears in the INDEXED BY phrase or another

table entry, the occurrence numberrepresented by index-

name-1 is incremented by the same amountas, andat the

same time as, the occurrence numberrepresented by the

index-name associated with identifier-1 is incremented.

° If the VARYINGidentifier-2 phrase is specified, and iden-

tifier-2 is an index data item,then the data item referenced

by identifier-2 is incremented by the same amount as, and

at the sametimeas, the index associated with identifier-1 is

incremented. If identifier-2 is not an index data item, the

data item referencedby identifier-2 is incremented by the

value one at the sametimeas the index referenced by the

index-name associated with identifier-1 is incremented.

4. In Format two SEARCHstatement, results of the SEARCH ALLoperation

are predictable only when:

e The data in the table is ordered in the same manner as

described in the ASCENDING/DESCENDING KEYclause

associated with the description of identifier-1.

¢ The contents of the key(s) referenced in the WHENclause

are sufficient to identify an unique’ table element.

5. When Format two SEARCH ALLis used, a onserial type of search

operation may take place; the initial setting of the index-name for

identifier-1 is ignored andits setting is varied during the search opera-

tion, with the restriction that at no timeisit set to a value that exceeds the

value which correspondsto the last elementof the table, or that is less

than the value that correspondsto the first element of thetable. The

length of the table is discussed in the OCCURS clause at the beginningof

this section.

If any of the conditions specified in the WHENclause cannot be satisfied

for anysetting of the index within the permitted range, control is passed

to imperative-statement-1 of the AT END phrase, whenspecified, or to

the next executable sentence whenthis phraseis not specified; in either

case thefinal setting of the index is not predictable.If all the conditions

can be satisfied, the index indicates an occurrence that allows the

conditions to be satisfied, and control passes to imperative-statement-2.

6. If imperative-statement-1, imperative-statement-2, or imperative-

statement-3, does not terminate with a GO TO statement, control passes

to the next executable sentence.

7. In Format two, the index-namethatis used for the search operationis the

first (or only) index-name that appears in the INDEXED BY clause of

identifier-1. Any other index-namesfor identifier-1 remain unchanged.

8. If identifier-1 is a data item subordinate to another data item containing

an OCCURSclause (providing for a two or three dimensional table}, an

1 January 1980 10-11 FDR 3056

10 TABLE HANDLING

index-name mustbe associated with each dimension ofthe table. This is
accomplished through the INDEXED BYphrase of the OCCURSclause.
Only the setting of the index-nameassociated with identifier-1 (and
identifier-2 or index-name-1, if present) is modified by the execution of
the SEARCH statement. To search an entire two or three dimensional
table, it is necessary to execute a SEARCHstatementseveral times. Prior

to each execution of a SEARCH statement, SET statements must be
executed to adjust index-names to appropriate settings.

9. A flowchart of the Format one SEARCHoperation contaning two WHEN
phrases is presented in Figure 10-1.

START

INDEX SETTING:

—pe{ HIGHEST PERMISSIBLE
OCCURRENCE NUMBER

INCREMENT INDEX-
NAME FOR

DATA-NAME-1
(INDEX-NAME-1

 IF APPLICABLE)

> AT END*

INCREMENT INDEX-NAME-1

(FOR A DIFFERENT TABLE)
OR DATA-NAME-2

IMPERATIVE-
STATEMENT-1

IMPERATIVE-
STATEMENT-2

IMPERATIVE-

STATEMENT-3

Figure 10-1. Format One SEARCH Operation Flowchart

pl **

FDR 3056 10-12 1 January 1980

DEFINITION

The Sort facility of Sort Module is capable of ordering one or more record files, according

to a set of user-specified keys contained within each record.

To accomplish the Sort, the user must specify the File-Control SELECT clause in the

Environment Division, the sort file description (SD} entry in the Data Division, and the

SORT statementin the Procedure Division. The basic elementsof the Sort, however, are the

SD entry with its associated record description entries and the SORT statement.

Note

Prime COBOL doesnot currently support the Mergefacility

of the ANSI standard Sort/Merge Module.

DATA DIVISION

File section

An SDfile description gives information about the sizes and the namesofthe data records

associated with the file to be sorted. There are no label procedures which the user can

control, and the rules for blocking and internal storage are peculiar to the SORT statement.

SORTfile description

The sort file description furnishes information concerning the physical structure, identi-

fication, and record namesofthefile to be sorted.

Format

SDfile-name

[RECORD CONTAINS[integer-1 TO] integer-2 CHARACTERS]

RECORD |S
[DATA data-name-1 [, data-name-2]...].

RECORDS ARE
— Syntax rules

1. The level indicator SD identifies the beginningof the sort file description

and must precede the file-name of each sort-file. Note, an FD level

indicator must precede the file-name of each file providing input or

output to the sort operation.

2. The clauses which follow the file-name are optional, and their order of

appearance is immaterial.

3. One or more record description entries must follow the SD entry;

however, no READ, WRITE, OPEN or CLOSE statements may be ex-

ecuted forthisfile.

1 January 1980 11-1 FDR 3056

11 soRT MODULE

4. The file must be specified in a SELECTclause.

PROCEDURE DIVISION

RELEASE

The RELEASEstatement transfers recordsto the initial phase of a SORT operation.

Format

RELEASErecord-name [FROM identifier]

> Syntax rules

1. A RELEASEstatement maybespecified only within an input procedure
associated with a SORT statementfor a file whose SD entry contains
record-name.

2. Record-name must be the nameof a logical record in the associated SD
entry. Record-name maybe qualified.

3. Record-nameandidentifier must not refer to the same storage area.

General rules

1. The execution of a RELEASE statement causes the record-name to be

released to the initial phase of a SORT operation.

2. If the FROM phraseis specified, the contents of the identifier are moved
to the record-name,then the contents of the record-namearereleased to
the sort file. Moving takes place according to the rules for the MOVE
statement without the CORRESPONDINGphrase.Theinformation in the
record-nameis no longeravailable, but the information in the identifier
is still available.

3. After the execution of the RELEASE statement, the information in
record-name is no longer available, unless the associated sort file is
named in a SAME RECORD AREAclause,in which case record-nameis
still available as a record of other files specified in the clause. When
control passes from the input procedure,the file consists of all those
records placedin it by the execution of RELEASEstatements.

RETURN

The RETURNstatement obtains sorted records from the final phase of a SORT operation.

Format

RETURNfile-name RECORD[INTO identifier]

AT ENDimperative-statement

> Syntax rules

1. File-name must be described by an SD entry in the Data Division.

2. ARETURNstatement maybe specified only within an output procedure
associated with a SORTstatementfor file-name.

3. The INTO phrase must not be used if the input file contains logical
records of various sizes.

FDR 3056 11-2 1 January 1980

SORT MODULE 11

4. The record areasassociated with identifier and file-name mustnot be the

same storage area.

> General rules

1. If more than one record description is associated with file-name, these
records automatically share the same storage area; that is, the area is
implicitly redefined. After the execution of the RETURNstatement, any
data items which lie beyond the range of the current record are
undefined.

2. When the RETURNstatement is executed, the next record from file-
name is made available for processing in the record areas associated
with the sort-file.

3. If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules for
the MOVEstatement without the CORRESPONDINGphrase. The im-
plied MOVE does not occur if there is an AT END condition. Any
subscripting or indexing associated with identifier is evaluated after the
record has been returned and immediately before it is moved to the
identifier.

4, When the INTO phraseis used, the data is available in both the input
record area and the data area associated with identifier.

5. After all the records have been returnedfrom the file-name, the AT END

condition occurs. The contents of the record areas associated with thefile

are undefined when that condition occurs. After the execution of the

imperative-statement in the AT END phrase, no RETURNstatement may

be executed as part of the current output procedure.

SORT

The SORTstatement creates a sort-file by executing input proceduresor by transferring
records from anotherfile, sorts the recordsin the sort-file on a set of specified keys, and,in
the final phase of the sort operation, makes available each record from thesort-file, in
sorted order, to some output proceduresorto an outputfile.

Format

ASCENDING

SORTfile-name-1 ON KEY data-name-1 [, data-name-2] ...

DESCENDING

THROUGH

INPUT PROCEDUREIS section-name-1 _[section-name-2]

THRU

USING file-name-2

THROUGH

OUTPUT PROCEDUREIS section-name-3 [.» gection-name-4 J

THRU

GIVING flle-name-3
1 January 1980 11-3 FDR 3056

a

11 SORT MODULE

> Syntax rules

1. SORT statements may appear anywhere except in the Declaratives
portion of the Procedure Division or in an input or output procedure
associated with a SORT statement.

2. File-name-1 must be described in an SD entry in the Data Division.

If the USING phraseis specified and the file-name-1 contains variable-
length records, the size of the records containedin the file-name-2 must
not be less than the smallest record nor larger than the largest record
described for file-name-1. If file-name-1 contains fixed-length records,
the size of the records contained in file-name-2 must not be larger than
the largest record described for file-name-1.

. Data-name-1, data-name-2, etc., are KEY data-names andare subject to
the following rules:

e The data items identified by KEY data-names must be
described in records associated with file-name-1.

¢ KEY data-names may be qualified.

¢ The data items identified by KEY data-names may not be
variable-length data items, nor may they name group items
which contain variable-occurrence data items.

¢ If file-ename-1 has more than onerecord description, then
the data items identified by KEY data-names need be
described in only one of the record descriptions. In other
words, the same character positions referenced by a KEY
data-namein one record description entry are taken as the
KEYin all records of the file-name-1.

e The data items identified by KEY data-names maynot
contain an OCCURSclause or be subordinate to an item

which contains an OCCURSclause.

Section-name-1 specifies the first or the only section in an input pro-
cedure. Section-name-2, if specified, indentifies the last section of an
input procedure.

Section-name-3 and section-name-4 apply to an output procedure.

The words THRU and THROUGHare equivalent.

In the Data Division, file-name-2 andfile-name-3 must be described in an
FD entry, not in an SD entry.

If the GIVING phraseis specified and the file-name-3 contains variable-
length records, the size of the records contained in the file-name-1 must
not be less than the smallest record nor larger than the largest record
described for file-name-3. If file-name-3 contains fixed-length records,
the size of the records containedin file-name-1 mustnot be larger than
the largest record described for file-name-3.

> General rules

1.

FDR 3056

If file-name-1 contains only fixed-length records, any record in file-
name-2 releasedto file-name-1is left justified, and any unused character
positions at the right end of the record will be filled with blanks.

. The data-namesfollowing the word KEYarelisted in order of decreasing
significance no matter how they are divided into KEY phrases. For
example, data-name-1 is the major key, data-name-2 is the next most
significant key,etc.

11-4 1 January 1980

SORT MODULE 11

e When the ASCENDING phrase is specified, the sorted

sequence will be from the lowest key valueto the highest

key value.

¢ When the DESCENDINGphraseis specified, the sorted

sequence will be from the highest key value to the lowest

key value.

¢ The key values are compared according to the rules for

comparison of operandsin

a

relation condition. (See Condi-

tional Expressions in Section 4 and IF Statementin Section

8.)
3. If the contents of all KEY data items associated with two or moredata

records are equal, then the orderof return for the recordsis undefined.

4. The input procedure mustconsist of one or moresections that are written

consecutively and do not form

a

partof any output procedure.In orderto

transfer recordsto file-name-1, the input procedure mustincludeatleast

one RELEASE statement. Control must not be passed to the input

procedure except when a related SORT statementis being executed.

The input procedure can include any procedures needed to select,

create, or modify records. Therearethreerestrictions on the procedural

statements within the input procedure:

e The input procedure must not contain any SORT

statements.

¢ The input procedure mustnot contain any explicit transfers

of control to points outside the input procedure; GO TO and

PERFORMstatements in the input procedure are not per-

mitted to refer to procedure-namesoutside the input pro-

cedure. COBOLstatements are allowed that will cause an

implied transfer of control to Declaratives.

e The remainder of the Procedure Division must not contain

any transfers of control to points inside the input pro-

cedure; GO TO and PERFORMstatements in the re-

mainder of the Procedure Division must not refer to pro-

cedure-names within the input procedure.

5. If an input procedure is specified, control is passed to the input

procedure before the file-name-1 is sequenced by the SORT statement.

Before control passes the last statementin the input procedure, thefile-

name-3 mustnot be open. The compilerinserts a‘return mechanism at the

end ofthe last section in the input procedure and whencontrol passesthe

last statement in the input procedure, the records that have been

released to the file-name-1 are sorted..

6. During the execution of the input procedure,the output procedure or any

USE AFTER EXCEPTIONprocedures, no statement manipulating the

files referenced by, or accessing the record areas associated with file-

name-2 or file-name-3 may be executed.

7. If the USING phrase is specified, all the records in file-name-2 are

automatically transferred to file-name-1. At the time of execution of the

SORT statement, file-name-2 must not be open. For file-name-2, the

execution of the SORT statement causes the following actions to be

taken:

e The processing of the file is initiated. The initiation is

' performedasif an OPENstatementwith the INPUT phrase

had been executed.

1 January 1980 11-5 FDR 3056

11 SORT MODULE

e The logical records are obtained and released to the sort
operation. Each recordis obtained as if a READ statement
with the NEXT and the AT END phrase had been executed.

¢ The processing of the file is terminated. The terminationis
performed as if a CLOSE statement without optional
phrases had been executed. :

8. The output procedure must consist of one or more sections that are
written consecutively and do not form a part of any input procedure.In
order to makesorted records available for processing, the output pro-
cedure mustincludeat least one RETURNstatement. Control must not be
passed to the output procedure except when a related SORTstatementis
being executed. The output procedure mayconsist of any procedures
neededto select, modify or copy the recordsthat are being returned,one
at a time in sorted order, from the sort file. There are three restrictions
on the procedural statements within the output procedure:

e The output procedure must not contain any SORT
statements.

¢ The output procedure must not contain any explicit
transfers of control to points outside the output procedure:
GO TO and PERFORMstatements in the output procedure
are not permitted to refer to procedure-namesoutside the
output procedure. COBOLstatements are allowedthatwill
cause an implied transfer of control to Declaratives.

e The remainderof the Procedure Division must not contain
any transfers of control to points inside the output pro-
cedure; GO TO and PERFORMstatements in the re-
mainder of the Procedure Division must not refer to pro-
cedure-names within the output procedure.

9. If an output procedureis specified, control passesto it after file-name-1
has been sequenced by the SORTstatement. The file-name-2 must not be
open. The compiler inserts a return mechanism at the end of the last
section in the output procedure and when control passes the last
statementin the output procedure, the return mechanism terminatesthe
sort, and then passes control to the next executable statementafter the
SORT statement. Before entering the output procedure, the sort pro-
cedure reaches a point at which it can select the next record in sorted
order, when requested. The RETURNstatements in the output procedure
are the requests for the next record.

10. If the GIVING phrase is specified, all the sorted records are auto-
matically written on file-name-3 as the implied output procedurefor the
SORT statement. At the time of the execution of the SORT statement,
file-name-3 mustnot be open.Forfile-name-3, the execution of the SORT
statement causes the following actions to be taken:

e The processing of the file is initiated. The initiation is
performed as if an OPEN statement with the OUTPUT
phrase had been executed.

e The sorted logical records are returned and written onto
the file. The records are written as if a WRITE statement
without any optional phrases had been executed.

« The processing of the file is terminated. The terminationis
performed as if a CLOSE statement without optional
phrases had been executed.

FDR 3056 11-6 1 January 1980

SORT MODULE 11

11. If file-name-3 contains only fixed-length records, any record in file-

name-1 containing less character positions is padded with blanks at the

right end of the record whenthe record is returned from file-name-3.

A listing file for sample program SAMPLE.SORTis presented below.

Rev 17.@ COBOL

(8881)
(9002)
(8883)
(9804)

(0819)
(8028)
(9821)
(8822)
(0823)
(0824)
(8825)
(0826)
(0027)
(8828)
(829)
(8038)
(9831)
(8832)
(8833)
(8034)
(8035)
(9036)
(0037)
(0038)
(9839)
(8848)
(0041)
(8842)
(8843)
(8844)
(8845)
(0846)
(9047)
(8048)
(8049)
(9058)
(8851)

1 January 1980

Source File: SAMPLE.SORT 08/13/79 14:25

ID DIVISION.

PROGRAM-ID. SORTIT.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. PRIME.

OBJECT-COMPUTER. PRIME.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT NET-FILE-IN ASSIGN TO PFMS.

SELECT NET-FILE-OUT ASSIGN TO PFMS.

SELECT NET-FILE-WORK ASSIGN TO PEMS.

DATA DIVISION.

FILE SECTION.

SD NET-FILE-WORK.

Ql SALES-RECCRDS.

5 EMPL-NO PIC 9(6).

@5 DEPT PIC 99.

@5 NET-SALES PIC 9(7)V99.

@5 NAME-ADR PIC X(6l).

85 MONTH PIC XX.

FD NET-FILE-IN
LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID 'FILEIN'.

@1 NET-CARD-IN.

@5 EMPL-NO-IN PIC 9(6).

@5 DEPT-IN PIC 99.

88 OFF-SITE-LOCATION VALLE 7, 9.

85 NET-SALES-IN PIC 9(7)V99.

05 NAME-ADDR-IN PIC X(61).

5 MONTH-IN PIC 99.

FD NET-FILE-OUT

LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID 'FILEOUI'.

Q1 NET-CARD-OUT.

85 EMPL-NO-OUT PIC 9(6).

85 DEPT-OUT PIC 99.

@5 NET-SALES-OUr PIC 9(7)V99.

05 NAME-ADDR-OUT PIC X(61).

@5 MONTH-OUT PIC 99.

WORKING-STORAGE SECTION.

77 SUM-DEPT PIC S9(14)V99 VALUE ZEROS.

Q1 MONTH-ACCEPT PIC 99 VALUE ZERO.

88 VALID-MONTH VALUE @1 THRU 12.

@1 TABLE-VALUE.

@2 FILLER PIC X(5) VALUE 'O1JAN'.

@2 FILLER PIC X(5) VALUE '92FEB'.

02 FILLER PIC X(5) VALUE '@3MAR'.

02 FILLER PIC X(5) VALUE "O4APR'.

62 FILLER PIC X(5) VALUE 'OSMAY'.

02 FILLER PIC X(5) VALUE "96JUN'.

02 FILLER PIC X(5) VALUE '97JUL'.

11-7 FDR 3056

11 SORT MODULE

(8852)

(9853)
(9854)
(9855)
(8856)
(8057)
(8858)
(8059)
(0868)
(9061)
(8062)
(8863)
(8064)
(8865)
(@066)
(8067)
(8868)
(8869)
(8878)
(0871)
(8872)
(8873)
(8074)
(8075)
(0076)
(0077)
(8978)
(8879)
(8088)
(8081)
(8882)
(8883)
(8084)
(0885)
(8886)
(8887)
(0888)
(8089)
(8090)
(8891)
(8892)
(8893)
(0094)
(8895)
(8696)
(8897)
(8898)
(8899)
(8188)
(8181)
(8162)
(81983)
(8184)
(8185)

FDR 3056

G2 FILLER

@2 FILLER
@2 FILLER
@2 FILLER

@2 FILLER

PIC X(5) VALUE '@8AUGC'.

PIC X(5) VALUE 'Q9SEP'.

PIC X(5) VALUE '18OCT'.
PIC X(5) VALUE 'l1NOV'.

PIC X(5) VALUE '12DEC'.

@1 MONTH-TABLE REDEFINES TABLE-VALUE.
@2 MON-TAB OCCURS 12 TIMES INDEXED BY INDX

ASCENDING KEY MONTH-NO.

83 MONTH-NO PIC 99.
@3 MONTH-VALUE PIC XXX.

G1 TABLE-AREA.

@3 SITE OCCURS 2 TIMES INDEXED BY INDX1.

85 MONTHS OCCURS 12 TIMES INDEXED BY INDX2.

@7 DEPT-TOTAL OCCURS 7 TIMES INDEXED BY INDX3

*

$1 DISPLAY-TOTALS.

G82 FILLER
@2 PRINT-MONTH

82 FILLER
@2 PRINT-SUM

PROCEDURE DIVISION.

START—PARA.
PERFORM INT-PARA

PIC S9(14)V99 COMP-3.

PIC XX VALUE SPACE.

PIC XXX VALUE SPACE.

PIC X(16) VALUE ' TOTAL SALES = '.

PIC ZZ,2ZZ,22ZZ,ZZZ,2ZZZ.99-.

VARYING INDX1 FROM 1 BY 1

UNTIL INDX1 > 2

AFTER INDX2 FRO& 1 BY 1

UNTIL INDX2 > 12

AFTER INDX3 FRO 1 BY 1

UNTIL INDX3 > 7.

GO TO SORT-PARA.
*

INT-PARA.

MOVE ZEROS TO DEPT-TOTAL(INDX1, INDX2, INDX3).
*

SORT-PARA.
SORT NET-FI LE-WORK

ASCENDING KEY DEPT

DESCENDING KEY NET-SALES

INPUT PROCEDURE SCREEN-DEPT

GIVING NET-FILE-OUT.

GO TO GET-TOTALS.
*

SCREEN-DEPT SECTION.

S-DEPT1.

OPEN INPUT NET-FILE-IN.

S-DEPT2.
READ NET-FILE-IN

AT END GO TO S-DEPT-FINAL.

SET INDX1 TO 2.
IF NOT OFF-SITE-LOCATION

MOVE NET-CARD-IN TO SALES-RECORDS

RELEASE SALES-RECORDS
SET INDX1 TO 1.

11-8 1 January 1980

SORT MODULE 11

(8186)
(8187)
(9188)
(8189)
(8110)
(9111)
(8112)
(8113)
(8114)
(6115)
(8116)
(8117)
(8118)
(8119)
(8120)
(8121)
(8122)
(8123)
(8124)
(9125)
(8126)
(8127)
(8128)
(8129)
(8138)
(8131)
(8132)
(8133)
(8134)
(8135)
(8136)
(8137)
(8138)
(8139)
(8148)
(9141)
(9142)
(8143)
(8144)
(8145)
(9146)
(8147)
(8148)
(8149)

SET INDX2 TO MONTH-IN.
SET INDX3 TO DEPT-IN.
ADD NET-SALES-IN TO DEPT-TOTAL (INDX1, INDX2, INDX3).
GO TO S-DEPT2.

S-DEPT-FINAL.
CLOSE NET-FILE-IN.

S-DEPT-END.
EXIT.

*

GET-TOTALS SECTION.
GET-TOTAL.

DISPLAY 'ENTER MONTH XX (81-12) OR ENTER 99 TO QUIT’.
ACCEPT MONTH-ACCEPT.
IF MONTH-ACCEPT = 99

GO TO DONE-PARA.
IF NOT VALID-MONTH

GO TO GET-TOTAL.
PERFORM FIND-MONTH.
SET INDX1 TO l.
SET INDX2 TO MONTH-ACCEPT.
DISPLAY 'IN STATE’.

GET-NEXT.
SET INDX3 TO l.
PERFORM ADD-TOTALS 7 TIMES.
MOVE SUM-DEPT TO PRINT-SLM.
DISPLAY DISPLAY-TOTALS.
MOVE ZEROS TO SUM-DEPT.
SET INDX1 UP BY 1.
IF INDX1 > 2

GO TO GET-TOTAL.
DISPLAY 'OUT OF STATE'.
GO TO GET-NEXT.

*

ADD-TOTALS.
ADD DEPT-TOTAL(INDX1, INDX2, INDX3) TO SUM-DEPT.
SET INDX3 UP BY l.

*

FIND-MONTH.
SEARCH ALL MCN-TAB

WHEN MONTH-NO(INDX) = MONTH-ACCEPT
MOVE MONTH-VALUE (INDX) TO PRINT-MONTH.

*

DONE-PARA.
STOP RUN.

No Errors, No Warnings, Prime V-Mode COBOL, Rev 17.00.12 <SORTIT>

1 January 1980 11-9 FDR 3056

Indexed sequentialfiles

DEFINITION

The indexed sequential system incorporates the concept of accessing data selectively in a

sequentially structuredfile. (Only the index which pointsto the data is sequential.) The data

base is created in ascending sequential order on a direct access device, and concurrently a

hierarchyof indices is constructed. The indices can be usedtodirectly locate a given record

within thefile.

The sequenceofthe indices relating to a record dependsona field within the data records

whichis specified by the programmer, in a RECORD KEYclause. The record key(s) are the

elements which identify each record in afile.

FILE CONTROL

Format

SELECTfile-name ASSIGN TO PFMS

- ORGANIZATION IS INDEXED

SEQUENTIAL

[; ACCESS MODE IS RANDOM]

DYNAMIC

; RECORD KEYIS data-name-1

[; ALTERNATE RECORDKEYIS data-name-2 [WITH DUPLICATES]]...

[; FILE STATUS IS data-name-3].

> General rules

SELECTfile-name

1. The SELECT clause specifies the name of the indexed sequentialfile.

Refer to ENVIRONMENTDIVISIONfor rules.

ORGANIZATION IS INDEXED

2. This clause specifies that the file named in the SELECT statement
contains data organization by indices, andthatit is to be processed by the
Multiple Index Data Access System, MIDAS. (See Appendix B.}

SEQUENTIAL

[ACCESS MODE IS RANDOM]
DYNAMIC

1 January 1980 12-1 FDR 3056

12 INDEXED SEQUENTIALFILES

FDR 3056

3. The ACCESS MODEclause specifies how an indexedfile is written or
retrieved.

SEQUENTIAL:If access modeis notspecified, the default
is SEQUENTIAL. This access modespecifies that records
will be written or retrieved sequentially. When a WRITE
statementis used, the record must be submitted in ascend-

ing sequence by RECORD KEY value. A READstatement
retrieves the record sequentially.

RANDOM: When the RANDOMisspecified, the records
are to be written or retrieved randomly, based on the value
placed in the RECORD KEYfield prior to a READ or
WRITE. The complete RECORD KEYvalue must be placed
in data-name-1, prior to READ, otherwise the record will
not be found. Random modeprecludes a sequential READ
or WRITE.

DYNAMIC: When DYNAMICaccess methodis specified, a
program can read or write randomly or sequentially.

RECORDKEYIS data-name-1

4, The RECORD KEYclause specifies the data item within each
which is used for the primary index.

Data-name-1 must be defined in the Record Description
associated with the FD entryforthefile.

Data-name-1 must be thefirst entry in the Record Descrip-
tion. Multiple Record Descriptions must have the same
corresponding data description for the record key.

Data-name-1 must not be specified with an OCCURS
clause, or be contained within a group affected by an
OCCURSclause.

Data-name-1 mustnot be specified with a P characterinits
PICTUREclause,or be described with a separatorsign (/).

Data-name-1 must have the samedescription andrelative
location as whenthefile wascreated.

Data-name-1 cannot exceed 32 characters.

The value contained within data-name-1 must be unique,
duplicates are invalid.

record

[ALTERNATE RECORDKEYIS data-name-2 [WITH DUPLICATES]]...

5. The ALTERNATE RECORDKEYclause specifies a data item, whichis

used for a secondary index, within each record. There maybeupto five
alternate record keys. Alternate record key cannot be embedded within
the primary record key. See rules under RECORDKEY.

Specification of WITH DUPLICATESallows keys containing the same
value to be placed in the file. If WITH DUPLICATESis specified,
duplicates must be allowed for the corresponding secondary index when
the MIDAStemplate is created; the admissability of duplicates cannot be
changedat the program level.

[FILE STATUS IS data-name-3]

12-2 1 January 1980

INDEXED SEQUENTIAL FILES 12

6. The FILE STATUSis a two-character (one-word) unsigned field de-

scribed in the Working-Storage Section. The operating system moves a

value into data-name-3 following the execution of every statement which

explicitly or implicitly references the file. This value indicates the

execution status of the statementto the program. Following a successful

READ or WRITE,etc., data-name-3 contains 00. The complete status

codes are described in Table C-4, Appendix C.

PROCEDUREDIVISION

The COBOL statements listed in this section apply to their application in indexedfile

processing.

A complete description of all COBOLverbs,their functions, formats, and rules, is provided

in Section 8, PROCEDURE DIVISION.

The INVALID KEYclause maybe written for indexedfiles in the START, READ, WRITE,

REWRITE or DELETEstatements. Its formatis:

... [INVALID KEY imperative-statement)

The INVALID KEYclause is executed if there is an error status code condition, in which

case control is transferred to imperative-statement. If this clause is not present, controlis

passed to the DECLARATIVESsection for the correspondingfile. If neither is specified, the

program will abort during execution. The result for the INVALID condition is returned via

the ERROR STATUScode. See Table C-4.

CLOSE

Format

CLOSEfile-name-1 [, file-name-2] . . .

> General rule

This is the only option possible for an indexedfile.

DELETE

Format

DELETEfile-name RECORD[; INVALID KEY imperative-statement]

> General rules

1. The DELETEstatementlogically removesa data record from the indexed

file together with all the indices.

2. In SEQUENTIAL access, the record to be deleted must have been

successfully read before a delete can be executed. The primary RECORD

KEY cannot be changed between the READ and DELETEstatement,

otherwise the INVALID KEYclause will be activated.

3. RANDOM and DYNAMICaccess modesonly needto place the value of

the record to be deleted in the RECORDKEYfield.If that record does not

exist in the file, the INVALID KEY statementis executed and the ERROR

STATUSfield will contain a value of 23.

1 January 1980 12-3 FDR 3056

12 INDEXED SEQUENTIAL FILES

OPEN

Format

I-O
OPEN INPUT file-name-1 [, file-name-2] ...

OUTPUT

> Generalrules

1. A file opened as INPUT can only be accessed in a READ statement.

2. A file opened as OUTPUTcanonly be accessed in a WRITEstatement.

3. A file opened as I/0 can be either read or written with lock record.

Note

Table C-5 in Appendix C specifies the types of OPEN
statements which are permissible with the different ACCESS
modes.

READ

Format one (SEQUENTIAL or DYNAMIC)

READfile-name [NEXT] RECORD [INTO data-name-1]

AT END imperative-statement]

Format two (SEQUENTIAL, RANDOM or DYNAMIC)

READfile-name RECORD INTO data-name-1]

KEY IS data-name-2]

INVALID KEY imperative-statement]

General rules

1. Format one, Option one (SEQUENTIAL ACCESSonly}:

READfile-name RECORD INTO data-name-1]

[AT END imperative-statement]

A file is read sequentially based on the primary index (RECORD KEY).
If one of the secondary index sequencesis to be used, the index must be
established via a Format two, Option two READ statement. Thereafter.
the file can be read with a Format one, Option one format. If the INTO
clause is used, the data record is automatically moved into data-name-1.
WhenAT ENDis specified, control is passed when the completefile has
been read.

FDR 3056 12-4 1 January 1980

INDEXED SEQUENTIAL FILES 12

2. Format one, Option two (DYNAMIC and SEQUENTIAL ACCESS):

READfile-name [NEXT] RECORD[INTO data-name-1}

[AT END imperative-statement]

¢ For DYNAMICaccess: This option allows the programmer
to change from a random modeto sequential reading with
the NEXT record clause. The INTO clause automatically
moves the data-record into data-name-1. The AT END
clause transfers control at the end of the file.

e If the NEXT RECORDoption is not specified, the value of
the record to be retrieved must be placed in the RECORD
KEY data-name.

* For SEQUENTIAL access: The NEXT RECORD is not
required with sequential access; it is automatically ac-
cessed,

3. Format two, Option one:

READfile-name RECORD[INTO data-name-1]

[INVALID KEY imperative-statement]

¢ For SEQUENTIALaccess: The format will read the file
sequentially based on the specified index, or be defaulted
to the primary index. The INTO moves data into data-
name-1. INVALID KEY transfers control if any of the status
codes listed in Table C-4 are encountered.

° For DYNAMIC and RANDOM access: The format will
retrieve data based on the value contained in data-name

(primary or secondaryindex). If the record is not foundor,
any othererror status is encountered, control is passed to

the INVALID KEY(refer to Table C-4). The INTO clause
moves data to data-name-1.

4. Format two, Option two:

READfile-name RECORD[INTO data-name-1]

{KEY IS data-name-2]

[INVALID KEY imperative-statement]

This format is used to perform keyed access, allowing the file to be

retrieved based on the RECORD KEY or ALTERNATE RECORD KEYS

(secondary indexes) via the KEY IS clause. Oncethis format is executed,

the Format one READstatement should be used. The index is used for

each READ until another secondary index is specified via the KEY IS

clause of a READstatement.

1 January 1980 12-5 FDR 3056

12 INDEXED SEQUENTIALFILES

REWRITE

Format

REWRITE record-name [FROM data-name]

 {INVALID KEY imperative-statement]

> General rules

1. The REWRITEstatementphysically replaces an existing record.

2. The REWRITEstatementcan changeanyorall data-fields in the record

except the prime record key.

3. The file must be openedfor I-O for all access methods.

4. A record must have been READsuccessully prior to the REWRITE. This

is required to lock the record and ensurethat it cannot be updated by

another program running concurrently.

5. In the FROM data-nameoption, the primary RECORD KEY must equal

the key from the previous READ or the INVALID KEY conditions will

occur. The FROM option allowsthe record to be created in anotherarea.

It is equivalent to MOVE data-name TO record-nameprior to the

execution of the REWRITEstatement.

6. Control is passed to the INVALID KEYstatementif the primary keyis

changed. If this statement is not present, control is then passed to the

USE DECLARATIVES. One or the other of these statements must be

present, or the program will terminate if the invalid statement is

activated. Refer to Table C-4 for status codes.

START

Format

GREATER THAN"

STARTfile-name [KEY IS[

<

NOT LESS THAN] data-name]

EQUAL TO
[INVALID KEY imperative-statement]

FDR 3056

General rules

1. The STARTstatement enables an indexed organizedfile to be positioned

for reading at a specified key value. This is permitted for files open in

either sequential or dynamic access modes. The START verb is not

allowed with the random access.

2. Option one:

STARTfile-name.

This option positionsthefile to the value contained in the RECORD KEY

data-name. If that record is not presentin the file, control is passed to the

DECLARATIVESsection if present; otherwise, the program terminates.

12-6 1 January 1980

INDEXED SEQUENTIALFILES 12 =

3. Option two:

STARTfile-name KEY IS data-name.

This option will position thefile to the value contained in data-name

(data-nameis the name of either RECORD KEYor one of the ALTER-

NATE RECORD KEYs}. If the record is not containedin the file. control

is passed to the DECLARATIVESsection if present, otherwise. the

program terminates.

4. Option three:

GREATER THAN

STARTfile-name [KEY IS[

<

NOT LESS THAN] data-name]
EQUAL TO

[INVALID KEY imperative-statement]

If the option GREATERor NOTLESSis specified, the file is positioned

for the next access to be greater than or less than the value specified in

the data-name.

The VALID clause or DECLARATIVES is taken if there is no data

satisfying data-name, and the STATUScodereturnedis 23.

5. STARTdoesnotretrieve a record, but only positions to a desired record.

Consider the following short indexed file. Each record contains just two

fields: A NAMEfield which serves as primary key, and a COMPANY

field:

| NAME | COMPANY |

Source coding relating to the file might be:

ENVIRONMENT DIVISION.

SELECT FILE-1 ASSIGN TO PFMS

ORGANIZATION IS INDEXED

ACCESS IS DYNAMIC

RECORD KEY IS NAME.

DATA DIVISION.

FILE SECTION.

FD FILE-] LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE-l’.

Ql] FILE-]1-RECORD.

85 NAME PIC X(10).

@5 COMPANY PIC X(25).

1 January 1980 12-7 FDR 3056

12 INDEXED SEQUENTIALFILES

A pictoral view ofthis file is presented below.

data-name NAME COMPANY

PICTURE PIC X(10) PIC X(25)

Values: BLYE REPORTCO

CLAPP MERGANTHALER

GRIER AUTOMATION

HARPER DESIGNERS

KEANE REPORTCO

5. If a sequential traverse of this file is performed, records are returned in
sequence based on primary key:

BLYE REPORTCO
CLAPP MERGANTHALER
GRIER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

To obtain specific records with a START statement, the key field
(NAME)hasto beinitialized.

If the intent is to obtain records of people whose namebegins with the
characters F, G, H, and I, program actions should include the following
type of logic:

MOVE 'F' to NAME.

Place value in keyfield.

START FILE-1 KEY IS NOT LESS THAN NAME.

Find the first record whose keyis not less than ‘F’. This
positions the file to the records.

READ FILE-1 NEXT RECORD.

This action will retreive the desired record. In this

exampleit will be the record ‘GRIER AUTOMATION’.

READ FILE-1 NEXT RECORD.

FDR 3056 12-8 1 January 1980

INDEXED SEQUENTIALFILES 12

This action will retreive the next sequential record
‘HARPER DESIGNERS’.

READ FILE-1 NEXT RECORD.

This action will retreive the next sequential record,

‘KEANE REPORTCO’. Examination will indicate that

all desired records have been obtained.

WRITE

Format

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement]

> General rules

1. The WRITE function releases a logical record for an outputorI-Ofile.

2. Prior to the WRITE statement, a valid, unique value must be in the

primary RECORD KEY data-name. If the FROM option is used, the

unique value in RECORD KEYdata-name mustbeintherelative location

of data-name-1.If the primary keyis not unique,the invalid statementor

the DECLARATIVEsection will be executed. Refer to Table 18-1 for

error conditions.

1 January 1980 12-9 FDR 3056

Relative file processing

DEFINITION

Relative file organization is permitted only with disk storage devices. Records are stored

and retrieved based on a relative record number. For example, the 10th record is the one

addressed by relative record number10 andis the 10th record area whether ornot records

1 through 9 have been written.

~ FILE CONTROL

Format

SELECTfile-name ASSIGN TO PFMS

; ORGANIZATIONIS RELATIVE

SEQUENTIAL [,; RELATIVE KEY IS data-name-1]

[; ACCESS MODEIS. J

RANDOM
‘aanAMIC \ , RELATIVE KEY IS data-name-1

 [; FILE STATUSIS data-name-2].

> General rules

SELECTfile-name

1. This clause specifies the nameof the relative file. Refer to ENVIRO-

MENTDIVISIONforrules.

ORGANIZATION IS RELATIVE

2. This clause pecifies that the file named in the SELECT statement

contains data organized by record number andprocessed bythe File

Processing facility of the operating system.

SEQUENTIAL

[; ACCESS MODEIS

,

RANDOM]

DYNAMIC

3. This clause specifies how relative file is written or retrieved.

¢ SEQUENTIAL:If access modeis not specified, the access
mode will default to SEQUENTIAL. This access mode
specifies that records will be written or retrieved sequen-
tially. A READ statementretrieves the records sequential-

ly.

1 January 1980 13-1 FDR 3056

13 RELATIVE FILE PROCESSING

¢ RANDOM:Specifies that the records are to be written or
retrieved randomly based on the value placed in the
RELATIVE KEY field prior to a READ or WRITE. When
RANDOMaccess is used, the complete RELATIVE KEY
value must be placed in RELATIVE KEY,or the record will
not be found. Random modeprecludes a sequential READ
or WRITE.

¢ DYNAMIC: When this access method is specified, the
program can read or write randomly or sequentially.

RELATIVE KEY IS data-name-1

4. The RELATIVE KEYclause, whose valueis the relative record number
of the record to be accessed, specifies the data item within Working-
Storage Section.

¢ Data-name-1 must not be defined in the Record Descrip-
tion.

¢ Data-name-1 must not be specified with an OCCURS
clause, or be contained within a group affected by an
OCCURSclause.

¢ Data-name-1 must not be specified with a P characterin its
PICTUREclause,or be described with a separatorsign (/).

¢ Data-name-1 must be a valid numeric integer, and cannot
contain a value greater than 999,999.

* The value contained within data-name-1 must be unique;
duplicates are invalid.

The RELATIVE KEYis optional if access is sequential. However,in the
creation of the MIDAS template, a RELATIVE KEYsize equal to the
maximum (48 bits), must be given.

(FILE STATUSIS data-name-2]

5. The FILE STATUSis a two-character (one word), unsigned field de-
scribed in the Working-Storage Section. The operating system moves a
value into data-name-2 following the execution of every statement which
explicitly or implicitly references the file. This value indicates the
execution status of the statement o the program. Following a successful
READ or WRITE, etc., data-name-2 contains 00. For complete status,
codes, see Table C-4 in Appendix C.

PROCEDUREDIVISION

The COBOLstatementslisted in this section apply to relative file processing.

A complete description of all COBOL verbs,their functions, formats, and rules, is provided
in Section 8, PROCEDUREDIVISION.

The INVALID KEYclause may be written for relative files in the START, READ, WRITE,
REWRITEor DELETEstatements. Its formatis:

... [INVALID KEY imperative-statement]

The INVALID KEYclause is executed if there is an error status code condition, in which
case control is transferred to imperative-statement. If this clause is not present, controlis
passed to the DECLARATIVESsection for the correspondingfile. If neither is specified, the
program will abort during execution. The result for the INVALID condition is returned via
‘the ERROR STATUScode (see Table C-4).

FDR 3056 13-2 1 January 1980

RELATIVE FILE PROCESSING 13

CLOSE

Format

CLOSEfile-name-1 [, file-name-2] ...

p General rule

This is the only option possible for a relativefile.

DELETE

Format

DELETEfile-name RECORD[; INVALID KEY imperative-statement]

> General rules

1. The DELETEstatementlogically removes a data record from therelative

file.

2. In SEQUENTIAL access, the record to be deleted must have been

successfully read before a DELETE can be executed. The RELATIVE

KEY cannot be changed between the READ and DELETE statement,

otherwise the INVALID KEY clause will be activated.

3 RANDOM and DYNAMIC access modesonly needto place the value of

the record to be deleted in the RELATIVEKEYfield.If that record does

not exist in the file, the INVALID KEY statementis executed and the

ERROR STATUSfield will contain a value of 23.

OPEN

Format

1-0
OPEN INPUT filename-1[, file-name-2]...

OUTPUT

p> Generalrules
1. A file opened as INPUTcan only be accessed in a READstatement.

2. A file opened as OUTPUTcan only be accessed in a WRITEstatement.

3. A file opened as I-O can be either read or written.

Note

‘table C-5 in Appendix C specifies the types of OPEN

statements which are permissible with the different ACCESS

modes.

READ

Format one (SEQUENTIALor DYNAMIC)

READfile-name [NEXT] RECORD[INTO data-name-1]

[AT END imperative-statement]

1 January 1980 13-3 FDR 3056

13 RELATIVE FILE PROCESSING

Format two (SEQUENTIAL, RANDOM or DYNAMIC)

READfile-name RECORD[INTO data-name-1]

[INVALID KEY imperative-statement]

> General rules
1. Format 1, Option 1 (SEQUENTIALonly):

READfile-name RECORD[INTO data-name-1]

[AT END imperative-statement]

For a sequential read, the file is read sequentially. If the INTO clauseis
used, the data record is automatically moved into data-name-1. When AT
ENDis specified, control is passed to the imperative-statement whenthe
complete file has been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL):

READfile-name [NEXT] RECORD[INTO data-name-1]

[AT END imperative-statement]

¢ For DYNAMICaccess: This option allows the programmer
to change from a random modeto sequential reading with
the NEXT option. The INTO clause automatically moves
the data-record into data-name-1. The AT END clause
transfers control at the end ofthefile.

¢ If the NEXT option is not specified, the value of the record
to be retrieved must be placed in the RELATIVE KEYdata-
name.

¢ For SEQUENTIAL access: The NEXT option is not re-
quired.

3. Format 2, Option 1:

READfile-name RECORD[INTO data-name-1]

[INVALID KEY imperative-statement]

¢ For SEQUENTIALaccess: The format reads thefile se-
quentially. The RELATIVE KEYis updated with the record
numberafter each successful READ. The INTO movesdata
into data-name-1. The INVALID KEYtransfers control if
anyof the status codes listed in Table C-4 are encountered.

¢ For DYNAMIC and RANDOMaccess: This format re-
trieves data based onthe value contained in the RELATIVE
KEY.If the record is not found, or any othererrorstatusis
encountered, control is passed to the INVALID KEYclause.
Refer to Table C-4. The INTO clause movesdata to data-
name-1.

FDR 3056 13-4 1 January 1980

RELATIVE FILE PROCESSING 13 =

REWRITE

Format

REWRITE record-name [FROMdata-name]

(INVALID KEY imperative-statement]

| General rules

. The REWRITEstatement physically replaces an existing record.

. The REWRITEstatement can changeanyorall data-fields in the record.

. The file must be opened for I/O forall access methods.

A record must have been READ successfully prior to the REWRITE
statement. This ensures that the record cannot be updated by another
program running concurrently.

5. The FROM data-nameoption allows the record to be created in another
area. It is equivalent toa MOVEdata-name TO record-namepriorto the
execution of the REWRITEstatement.

6. Control is passed to the INVALID KEYstatementif the RELATIVE KEY
is changed since the successful read. If this statement is not present,
control is then passed to the USE DECLARATIVES.Oneorthe other of
these statements must be present. Refer to Table C-4 for status codes.

B
o
n

START

Format

2 GREATER THAN |
STARTfile-name [KEY IS [< NOT LESS THAN] data-name]}

| EQUAL TO

[INVALID KEY imperative-statement]

General rules

1. The START statement enablesa relativefile to be positioned for reading
at a specified key value. This is permitted for files open in either
sequential or dynamic access modes. The START verb is not allowed
with RANDOMaccess (see INVALID KEY).

2. Option 1:

STARTfile-name

This option positions the file to the value contained in the data-nameas
defined in RELATIVE KEY. If that record is not present in thefile,
control is passed to the DECLARATIVESsection if present; otherwise,
the program terminates.

3. Option 2:

STARTfile-name KEY IS data-name

This option is synonymous to option 1 since there is only one key,
RELATIVEKEY,in a relativefile.

1 January 1980 13-5 FDR 3056

13 RELATIVE FILE PROCESSING

4. Option 3:

GREATER THAN
STARTfile-name [KEY IS[NOT LESS THAN] data-name]

EQUAL TO

[INVALID KEY imperative-statement]

The option GREATERor NOTLESSis specified, thefile is positioned for
the next access to be greater than or less than the value specified in the

data-name.

The INVALID clause or DECLARATIVESis taken if there is no data

satisfying data-name, and the STATUScodereturnedis a 23.

5. START does notretrieve a record, butonly positions to a desired record.

WRITE

Format

WRITE record-name [FROM data-name-1]

[INVALID KEY imperative-statement]

> General rules

1. The WRITEstatementreleases a logical recordto file.

2. In the FROM option, data-name-1 and record-name cannotreference the

same memory location.

3. The file must be open for OUTPUT,or I-O.

4. The INVALID KEYclause must be specified if the DECLARATIVE

section is not applicable. The program will terminate if an error code

condition arises. Refer to Table C-4 for error codes.

5, For SEQUENTIALaccess: If the file is opened as OUTPUT,the records

are placed in the file in sequential order. The first record would have a

position of 1, and the record numberreturned into the RELATIVE KEY

data-name would be1, etc.

sg. For DYNAMIC and RANDOMaccess: The value of the record number

must be placed in the RELATIVE KEY data-name.

FDR 3056 13-6 1 January 1980

APPENDICES

ile organization

ACCESS METHODS

Sequential Access Method (SAM)

SAMfiles require thatall entries in a file preceding a desired entry be accessedin orderto
reach that entry. In other words, the file must be read sequentially. This is most useful for
files in which information is normally enteredinto the file sequentially and retrieved from
it in the same manner.

Direct Access Method (DAM)

DAMfiles (RELATIVE) permit accessto a specific entry in file by specification of physical
disk record number. This permits the userto locate an entry within a knownposition in the
file more quickly than does the SAMfile structure. Thesize is restricted to 999,999 entries.

Indexed Sequential Access Method (INDEXED)

INDEXED methodlocatesfile entries through a key field search. The user may retrieve a
data entry with only a few disk accesses, regardless of the position of the entry in the file.
The primary index is based on the description of the record key. The key value is embedded
in the first data field in the record. The secondary indexes are referenced by alternate
record keys; up to five additional indexes may be specified. The user must show in advance
which index is to be used to locate a data entry.

1 January 1980 A-1 FDR 3056

Creating ISAM andrelative
files - the MIDAS template

To initiate an Indexed Sequential or Relative file, a user must run a conversational program

called CREATKto create a corresponding MIDAStemplateforthefile. (For more informa-

tion, refer to the MIDAS Reference Guide.)

Two sets of typical CREATK dialog, generated for INDEXED and DAMfiles, are shown

below.

All user responses are underlined.

DIALOG FOR INDEXED FILE

Prompt Response Remarks

OK. CREATK

[CREATKrev 17.2]

MINIMUM OPTIONS? YES If minimum options is se-
lected, all index level keys
will have the same length as
the full key for the last index
level. The primary key will
be stored with the data and
not in the index entries of the
secondary indices. All index
blocks will default to alength
of 440 words.

FILE NAME? [volume name>ufd passwd[disk>] filename

Volume name>UFD: speci-
fies the nameofthe disk and
the UserFile Directory (UFD)
on which thefile is to be
created. Filenameis the user
assigned filename.

NEW FILE? YES

DIRECT ACCESS? NO For a new indexedfile.

DATA SUBFILE QUESTIONS Prime Index or Record Key.

KEY TYPE: A A specifies an ASCII key.

B B specifies a binary key.

KEYSIZE=: B B numberdefines the number

number of bytes for an ASCII key or
WwW bits for a binary key.

W number defines the num-
ber of wordsfor A or B key.
For example, if there are 2
characters in the key, number
should be 16 bits, 2 bytes, or 1

1 January 1980 B-1 FDR3056

B CREATING INDEXED AND DAM FILES

DATASIZE =:

SECONDARY INDEX

INDEX NO.?

DUPLICATE KEYS PERMITTED?

KEY TYPE:

KEY SIZE =:

USER DATASIZE=:

FDR3056

number

an }

{x35 |

(3
1
0
(CR)

B-2

word, depending on the key
type. The maximum keysize
for an indexedfile is 256 bits,
32 characters (bytes), or 16
words.

Number is the number of
words for a data record,
where number equals the
record length divided by 2
plus the remainderfactorof 1
if it applies.

This section is repeated for
each alternate record key.

The numeric variable is the

number of the alternate

record key. Carriage return

(CR) will exit from CREATK,
specifying no alternate
indexes.

YES allowsthe data in this

key field to be duplicated. NO
indicates that if the data in

the key field is duplicated the
file will not be updated and
the INVALID KEYclause or

the use DECLARATIVES

section will be activated.

Enterthesize of the alternate

key.

No data may be entered for
secondary keys. The re-
sponse must be 0, (CR), or 0
(CR). Either option will
return the user to the prompt
INDEX NO.? above, from
which he may exit from
CREATK, or continue with
alternate key specifications.

1 January 1980

CREATING INDEXED AND DAM FILES B ol

DIALOG FOR DAM FILE

Prompt Response Remarks

OK, CREATK

{CREATKrev 17.2]

MINIMUM OPTIONS? YES If minimum options are
selected, all index level keys
will have the same length as
the full key for the last index
level. The primary key will
be stored with the data and
not in the index entries of the
secondaryindices.

FILE NAME?[volume name>ufd passwdIdisk>] filename
, Sameasthefirst dialog.

NEW FILE? YES

DIRECT ACCESS? YES For a new relativefile.

DATA SUBFILE QUESTIONS

KEY TYPE: { at
B

KEY SIZE =: B Enter the size of key; see the
number first dialog. The maximum

Ww key size for a relative file is
48 bits, six characters
(bytes), or three words. In
sequential mode, key must
always be specified at maxi-
mum size.

DATASIZE =: number Sameasthefirst dialog.

NUMBEROF ENTRIES TO ALLOCATE? number Number is the number of
entries to allocate in the new

MIDAS. Entries are num-

bered 1-n inclusive; any
reference outside this range
results in an error.

INDEX NO.? (CR) This concludes template
creation and returns to

commandlevel.

Note

If an invalid response is entered by the user, the question (prompt) will be

repeated.

1 January 1980 B-3 FDR3056

Reference tables

WHATIS IN THIS APPENDIX

The following tables are includedin this appendix.

e COBOL Verb Index

e COBOL Reserved Words

e ASCII Character Set

e File Status Key Definitions

e Permissible Input/Output Statements

e Permissible Moves

e Numeric Conversion Tables

Table C-1. COBOL Verb Index

ADD
COMPUTE
DIVIDE
MULTIPLY
SUBTRACT

COPY
ENTER
USE

ADD
COMPUTE
DELETE
DIVIDE

IF (a)
MULTIPLY
READ
REWRITE
START
STRING
SUBTRACT
UNSTRING

USE
WRITE

INSPECT
MOVE

STRING
UNSTRING

STOP

ACCEPT
CLOSE
DELETE
DISPLAY
EXHIBIT

VERB CATEGORY

(Depending on Format)

Arithmetic

Compiler Directing

Conditional

Data Movement

Ending

SPECIAL
APPLICATIONS

Inter-program Communication

File Handling

File Handling
File Handling
File Handling

File Handling
File Handling

Terminal Input
File Handling
File Handling
Terminal Output
Terminal Output

1 January 1980
FDR 3056

C REFERENCE TABLES

(a)-IF is a verb in COBOL, although not a verb in the
grammatical sense in English.

OPEN Input-Output File Handling ©
READ File Handling
REWRITE File Handling
START File Handling
STOP
USE File Handling |
WRITE — File Handling

CALL Inter-program Inter-program Communication

Communicating .

RELEASE
RETURN Ordering
SORT

ALTER .

CALL Inter-program Communication
EXIT

_ EXIT PROGRAM Procedure Branching Inter-program Communication
GO TO .
PERFORM

SEARCH Table Handling
SET ay

READYTRACE TRACE MODE Debugging
_RESET TRACE Directing — _. Debugging

Note

Table C-2. COBOL Reserved Words __ .

_ ACCEPT HIGH-VALUE | REFERENCES
ACCESS HIGH-VALUES RELATIVE
ADD LO RELEASE
ADVANCING 1-O-CONTROL REMARKS*
AFTER | ID* ~ REMOVAL
ALL - IDENTIFICATION RENAMES
ALPHABETIC IF . REPLACING
ALTER IN RERUN
ALTERNATE INDEX RESERVE
AND © INDEXED RESET
ARE INITIAL RETURN
AREA INPUT RESTART-FILE *
AREAS INPUT-OUTPUT | REVERSED ae
ASCII * INSPECT REWIND a
ASSEMBLER * INSTALLATION REWRITE
ASSIGN INTO _ ‘RIGHT
AT _ INVALID: ROUNDED
AUTHOR Is RUN
BEFORE JUST SAME.
BLANK JUSTIFIED SEARCH
BLOCK KEY SECTION
BY LABEL SECURITY
CALL LEADING SELECT
CHARACTER LEFT SENTENCE
CHARACTERS LENGTH SEPARATE
CLOSE LESS — SEQUENTIAL

FDR 3056 C-2 1 January 1980

REFERENCE TABLES C

COBOL
CODE
CODE-SET
COMMA
COMP

COMP-3 *
COMPUTATIONAL

COMPUTATIONAL-3 *
COMPUTE
CONFIGURATION
CONSOLE *

CONTAINS
COPY
CORR
CORRESPONDING
COUNT

CURRENCY
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DISPLAY

DIVIDE
DIVISION

DOWN
DUPLICATES
DYNAMIC
ELSE
END

ENTER.
ENVIRONMENT
EQUAL
ERROR
EVERY
EXCEPTION
EXHIBIT *
EXIT

EXTEND
FD
FILE
FILE-CONTROL
FILE-ID *
FILLER
FIRST
FOR

FROM

» GIVING
GO
GREATER

LINE
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
MODE
MOVE
MT9 *
MULTIPLY
NAMED*
NATIVE
NEGATIVE
NEXT
NOT
NUMBER
NUMERIC
OBJECT-COMPUTER
OCCURS
OF
OFF |
OFFLINE-PRINT*
OMITTED

ORDS *
ORGANIZATION
OUTPUT
OVERFLOW
OWNER*
PAGE
PERFORM
PFMS*
PIC
PICTURE
POINTER
POSITION
POSITIVE
PRINTER*
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PUNCH *
QUOTE
QUOTES
RANDOM
READ
READER*
READY*
RECORD
RECORDS
REDEFINES
REEL

SET
SIGN
SIZE
SORT
SOURCE-COMPUTER-
SPACE
SPACES
SPECIAL-NAMES
STANDARD
START
STATUS
‘STOP
STRING
SUBSCHEMA*
SUBTRACT
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
THAN
THROUGH
THRU
TIME
TIMES
TO
TRACE *
TRAILING
UNCOMPRESSED*
UNIT
UNSTRING
UNTIL
UP
UPON
USAGE
USE
USING
VALUE
VALUES
VARYING
WHEN
WITH
WORKING-STORAGE
WRITE
ZERO
ZEROES
ZEROS
+

*

/
>
<

1 January 1980 FDR 3056

C REFERENCE TABLES

The Prime COBOLcollating sequence conforms to the American Standard Code for
Information Interchange (ASCII) collating sequence. Theoctal value associated with each
character in the Prime computeris the basis for the sequence, wherethe characters are
arranged in ascending valuefrom top to bottom

Table C-3. ASCII Character Set

PRIME REPRESENTATION

ASCII
Character Hexadecimal Octal Punched Cards

NUL(low value) 80 200
(space) AO 240 No punch

! (Exclamation) Al 241 12-8-2
‘ (Quote) A2 242 7-8
(Number) A3 243 8-3

$ A4 244 11-3-8
’ (Apostrophe) A7 247 5-8
(A8 250 12-5-8
} Ag 251 11-5-8

* AA 252 11-4-8

+ AB 293 12-6-8

, {Comma) AC 254 0-3-8
— (Minus) AD 255 11
. (Period) AE 256 12-3-8
/ (Virgule, slash, stroke) AF 257 0-1
0 (Zero) Bo 260 0
1 B1 261 1

2 B2 262 2

3 B3 263 3

4 B4 264 4

5 B5 265 3

6 B6 266 6

7 B7 267 7

8 B8 270 8

9 B9 271 9

: (Colon) BA 272 8-2
; (Semicolon) BB 273 11-6-8

< BC 274. 12-4-8
= BD 275 6-8

> BE 276 0-6-8

? BF 277 0-7-8

@ (at) Co 300 8-4

A C1 301 12-1

B C2 302 12-2

C C3 303 12-3

D C4 304 12-4

E C5 305 12-5

F C6 306 12-6

G C7 307 12-7

H C8 310 12-8

I C9 311 12-9

J CA 312 11-1
K CB 313 11-2

FDR 3056 C-4 1 January 1980

REFERENCE TABLES C =

1 January 1980

L CC 314 11-3

M CD 315 11-4

N CE 316 11-5

O CF 317 11-6

Pp Do 320 11-7

Q D1 321 11-8

R D2 322 11-9

S D3 323 0-2

T D4 324 0-3

U D5 325 0-4

V D6 326 0-5

WwW D7 327 0-6

x D8 330 0-7

Y D9 331 0-8

Z DA 332 0-9

a Ei 341

b E2 342

Cc E3 343

d E4 344

e E5 345

{ E6 346

g E7 347

h E8 350

i E9 351

j EA 352

k EB 353

] EC 354

m ED 355

n EE 356

Oo EF 357

p Fo 360

q F1 361

r F2 362

s F3 363

{ F4 364

u F5 365

Vv F6 366

Ww F7 367

x F8 370

y F9 371

Zz FA 372

0 (+zero) FB 373 12-0

0 (—zero} FD 375 11-0

DEL (High Value) FF 377

Note

Characters with no Punched Cards codeare not supportedfor

punchedcard entry.

FDR 3056

C REFERENCE TABLES

Table C-4, File Status Key Definitions

FILE
ORGANIZATION STATUS KEY 1 STATUS KEY 2

SEQUENTIAL 0-Successful completion 0-No further information
1-Endoffile (a) - 0-No further information
3-PermanentI/O error(b) 0-No further information

4-Boundary violation (c)

RELATIVE 0-Successful completion 0-No further information
1-Endoffile (a) ; 0-No further information
2-Invalid key 1-Sequenceerror(f)

3-No record found (e)
4-Boundaryviolation (c)

3-Permanent I/O error (b) © 0-No further information
9-Implementor defined - 0-Locked record (g) ©

: 1-Unlocked record (h)
2-Record already exists on Data
Base
6-Space relative key contains
larger value than used when
CREATKwas used.
9-System error, call analyst

INDEXED __ 0-Successful completion 0-No further information
: 1-Endof file (a) 0-No further information

2-Invalid key 1-Sequenceerror (f} —
2-Duplicate key (d)
3-No record found (e)

: : 4-Boundaryviolation (c}
3-PermanentI/O error (b} 0-No further information
9-Implementor defined = =—*0-Locked record (g)

: _ 4-Unlocked record (h)
2-Value in key already in the ~

data base and duplicates not
specified when CREATK was |
run. (d)
3-Indices specified in the pro-
gram do not match the indices
specified when CREATK was
run. . |
4-MIDAS multi-user concurren- —
cy bug. Index file has been al-
tered by another user. Pointers
are bad. Le a
5-Index does not match size used ©
on creation. 2
6-The disk is full. |
9-System error, call analyst.

Note

(a)-End offile A READstatement was unsuccessful
because there wasno logical next re-
cord in thefile.

FDR 3056 C-6 1 January 1980

REFERENCE TABLES C

(b)-Permanent I/O error

(c)-Boundary Violation

(d)-Duplicate key

(e}-No Record Found

(f)-Sequence error

_ (g)-Locked record

(h)}-Unlocked record

An I/O statement was unsuccessful

because of an I/Oerror, such as a data
check, parity error, or transmission
error. For sequential file only, a
boundary violation.
Attempt was made to read or write
beyondthe externally defined bound-
aries of a file. Disk space full.
Attempt was madeto write (or, for an
indexed file, rewrite) a record which
would create a duplicate key in the
file. For an indexed file, whenthefile
status is 92, a duplicate condition ex-
ists if the key valueof the current key
of reference is equal to the value of
that same key in the next record
within the current key of reference.
Attempt was madeto accessa record,
identified by key, but the record does
not exist in thefile.
For relative file: trying to write
beyond the predefined boundaries of
the file. For an indexed file: trying to
write a record containing a key which
already exists in thefile.
The record is locked and being up-
dated by another program.
The record is not locked by a READ
prior toa REWRITE

Table C-5. Permissible Input/Output Statements-OPE.

File —sC*File Access”
Organization _ Mode

Sequential SEQUENTIAL

SEQUENTIAL

Indexed
Relative RANDOM

DYNAMIC
REWRITE

DELETE

REWRITE

DELETE

READ xX x
WRITE X
REWRITE Xx

READ
WRITE
REWRITE
START
DELETE —

READ xX
WRITE Xx

START

READ — x
WRITE X

START xX

m
m
r
O
M
O
M

N Statements vs. Access Modes

OPEN Option in Effect

Procedure INPUT OUTPUT I-O EXTEND
Statement .

x

1 January 1980 C-7 FDR 3056

The

a

C REFERENCE TABLES

Table C-6. Permissible Moves

a 4
ha

a — ©
= A me

fx

< 9 gf 8 g
< Ee
A oO fa 5O 28 pA

Z & 5 sy g 8
> < & < 6S @ <
hd < om ss Ss a
Boa &@ i 55 535 4
~~ < m < ZZ Zz <

SENDING
DATA
ITEM

ALPHABETIC X X
BINARY X X X X(aj
ALPHANUMERIC EDITED X X(3) X
NUMERIC INTEGER X X X X X(2)
NUMERIC: NON-INTEGER X X
NUMERIC EDITED X(3)} X(3)

ALPHANUMERIC x X X X(4) xX

Note

1. If receiving operand length L is less than or equalto 18, target Picture

9(L) is assumed. Otherwise, the MOVEis disallowed.

2. The source is converted to DISPLAY form with separate trailing sign

(blank for positive), then moved as a characterstring source, subject to

truncation or blank padding dependingon receivingits length.

3. The source is considered as a characterstring.

4. If source length L is less than or equal to 18, source Picture 9(L) is

assumed. Otherwise, the MOVEis disallowed.

FDR 3056 C-8 1 January 1980

REFERENCE TABLES G

Table C-7. Hexadecimal and Decimal Conversion

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0

1 4096 1 256 1 16 1 1

2 8192 2 512 2 32 2 2

3 12288 3 768 3 48 3 3

4 16384 4 1024 4 64 4 4

5 20480 5 1280 5 80 5 5

6 24576 6 1536 6 96 6 6

7 28672 7 1792 7 112 7 7

8 32768 8 2048 8 128 8 8

© 9 36864 9 2304 9 144 9 9

LA A 40960 A 2560 A 160 A 10

o B 45056 B 2816 B 176 B 11

C 49152 C 3072 C 192 Cc 12

D 53248 D 3328 D 208 D 13

E 57344 E 3584 E 224 E 14

F 61440 F 3840 F 240 F 15

16° 16? 16? 16°

Table C-8. Octal and Decimal Conversion

OCcT DEC OCT DEC OCT DEC OCT DEC OCT DEC

0 0 0 0 0 0 0 0 0 0

1 4096 1 512 1 64 1 8 1 1

2 8192 2 1024 2 128 2 16 2 2

3 12288 3 1536 3 192 3 24 3 3

2 4 16384 4 2048 4 256 4 32 4 4

5 20480 5 2560 5 320 5 40 5 5

os 6 24576 6 3072 6 384 6 48 6 6

7 28672 7 3584 7 448 7 56 7 7

84 83 8? 8} 8°

1 January 1980 C-9 FDR 3056

C REFERENCE TABLES

Table C-9.Hexadecimal Addition Table.

Yh 2 BOR OR ee eae A OB Boe Book
biog ga gg ee eA OB oD BOF 10
P= 2 8 4 &§ 6 7 8 G9 A B C D E F 10 11
38 4 5 6 7 8 9 A B CGC D E F 10 11 #12
4 5 6 7 8 § A B C D EF 10 11 #12 «13
5 6 7 8 9 A B GCG D E F 10 11 #12 #13 «14
6 7 8 § A B C D E F 10 11 12 #13 14 15
7% 8 9 A B C D E F 10 141 12 13 14 #15 16
g8.9 A B C D €E F 10 11 #12 «13 #14 15 #+16 «17
9 A B CGC D E F 10 11 #12 #18 «+14 «+15 «16 «17 «18
A B C OD E F 10 11 #12 #13 «#14 #+15 #16 #417 «18 «19
B C OD E F 10 11 #12 #13 #14 «15 #16 «#17 «218 «19 «1A

Cc D E F 10 11 #12 #18 #+%14 «+115 +416 #417 «18 #«19 «1A ~.1B
Dp E F 10 #11 #12 #13 #=14 «15 #16 #17 «18 «19: 1A =#1B #1C
E $F 10 11 #12 #13 #14 «115 #16 «#17 #18 «19 1A 1B 1C 1D
F 10 11 12 #13 #14 #%415 #+%416 #417 #18 #+«19 #+1A 1B #1C 1D 1£E

| | : |

Note

All numbers in hexadecimal.

FDR 3056 C-10 1 January 1980

COBOL symbols

COBOL SYMBOLS

PUNCTUATION SYMBOLS — Used to punctuate program entries.
ceuamuvamemn

. period

, comma

: semicolon

‘" quotation mark

‘ apostrophe

1. Used to terminate entries. Usually required.

2. Used to signify the decimalin numericliterals.

1. Used to separate operandsorclausesin a series. Usually optional.

2. “European” notation for the decimal in numericliterals.

Used to separate operandsorclausesin a series. Usually optional.

Used to enclose non-numeric literals.

* asterisk

/ virgule

- hyphen

CODING SYMBOLS — Campiler symbols.
De= = ————

Denotes an explanatory commentline when inserted in column 7 of a source

programline.

Denotesa skip to the top of a new page during a compilerlisting. This

is coded in column7 of a source programline.

Denotes a continuation-line for non-numeric literals when coded in column 7

of a source program line.

SIGN SYMBOLS/UNARY OPERATORS — Found in numeric literals and arithmetic formulas.

+ positive

— negative
1. Used as a sign characterin the high-order(left-most) position of a

numericliteral.

2. Asa unary operator, the effect of multiplication by numeric literal +1.

1. Used as a sign characterin the high-order(left-most) position ofa

numeric literal.

2. As aunary operator, the effect of multiplication by numericliteral — 1,

1 January 1980
FDR3056

D COBOL SYMBOLS

COBOL SYMBOLS

 + plus

— minus

* asterisk

/ virgule

= equal

(.). parenthesis

ARITHMETIC SYMBOLS — Foundin arithmetic formulas.

Addition.

Subtraction

Multiplication

Division

‘Make equal to’’

Used toenclose expressions to Sontrol the sequence in which they are performed.

 = equal

> greater than

< less than

() parenthesis

. decimal point

 (insertion character)

CONDITION SYMBOLS — Usedin conditional test expressions.

Denotes ‘’is equal to”.

Denotes “‘is greater than’.

Denotes “‘isless than’’

Used to enclose expressions to control the sequencein which conditions

are evaluated. :

EDITED ITEM OREDIT SYMBOLS —Usedin edited item picture clauses

Usedto insert anactual decimalin the indicated position of an edited item.

Usedto insert acomma in the indicated position(s) of an edited item.

 , comma :

(insertion character) (Maybe used in conjunction with floating characters.)

$ dollar sign Usedtofloat an actualdollarsign (from left to right) in an edited item,
{floating character) - so that exactlyone$is developed immediately tothe left of themost significant

nonzero digit in anyposition where the symbol has been used.

FDR3056 D-2 1 January 1980

COBOL SYMBOLS JD

COBOL SYMBOLS

= equal
(insertion character)

/ virguie
(insertion character)

* asterisk

+ plus
~ minus or dash (fixed

sign control, or floating

character).

B letter B

(insertion character)

0 ZERO

(insertion character)

Z ZED

(replacement

character)

CR. credit
(fixed sign control

character)

DB debit

(fixed sign control

character)

P letter P

(decimal scaling
character)

REPORT ITEMOREDIT SYMBOLS(continued .. .)

(replacement character)

Usedto insert an actual equal symbolin the indicated position of an edited Item.

Used to insert an actual slash in the indicated position(s) of an edited item.

Used to replace leading zeros with an actual asterisk. Each * represents

a digit position in an editeditem.

1. Used as a fixed sign control characterin the low-order (right-most)

position of an edited item picture. The symbol doesnot replace a digit

position.
2. Used to float an actual plus or minus character (from left to right)

in an edited item, so that exactlyone + or — is developed immediately

to theleft of the mostsignificant nonzero digit in any position where

the symbol has been used.

Used to insert blanks in the indicated position(s) of an edited item.

|| Used to insert zero(s) in the indicated position(s) of an edited item.

Used to replace leading zero(s) with blank(s) in the indicated position(s)

of an edited item.

Used as a fixed sign control characterin the low-order (right-most)

position of an edited item picture. It occupies 2 characterpositions in

the picture.

Used as a fixed sign control character in the low-order (right-most) position

of an edited item picture. It occupies 2 character positionsin the picture.

Used to position the assumed decimal point away from the number, e.g., an item

whose actual value is 25 will be treated as 25000 if its picture is S9PPPV.

1 January 1980
FDR3056

Error messages

TYPES OF ERROR MESSAGES

This appendix contains the following categoriesof errors:

© COMPILE-TIME ERROR MESSAGES

* COMPILE-TIME WARNING MESSAGES

* RUN-TIME ERROR MESSAGES

Error messages appear alphabetically within each category.

COMPILE-TIME ERROR MESSAGES

> ‘J, REQUIRED AFTER SUBSCRIPTS.

The close parenthesis following a subscript has been omitted. Correct the coding and

recompile.

> AREA-A VIOLATION; RESUMES AT NEXT PARAGRAPH/

SECTION/DIVISION/VERB.

Data was ignored.

> BLANK WHENZEROIS DISALLOWED.

The BLANK WHEN ZEROclause is not permitted here. Use zero suppression or other

editing functions as indicated. Recompile.

> CONDITIONAL I/O STATEMENT DISALLOWED WITHIN“IF”.

Implied conditional such as READ, IF A=B READ FILE AT ENDisinvalid.

> DATA DIVISION ASSUMED.

DATA DIVISION omitted in application program; insert DATA DIVISION and recompile.

> DELETE/START NOT VALID FORTHISFILE.

See Table C-5, OPEN Statements and Access Modes. Correct coding, recompile, i., the

DELETE/STARTstatement must not be used for a sequentialfile.

> DISPLAY LIMITED TO 72 ON CONSOLE, 132 ON PRINTER.

Cannot display morethan 72 characters on most terminals or print more than 132 characters

per line for printfiles.

> ERRONEOUS ASSIGNMENT.
ASSIGN TO device clause does not match FD; correct and recompile.

ERRONEOUS FILE-NAME.

"SELECT file-name does not match FDfile-name.

1 January 1980 E-1 FDR 3056

E ERROR MESSAGES

> ERRONEOUS QUALIFICATION; LAST DECLARATION USED.

Data-namenot unique, needs qualification to the grouplevel.

> ERRONEOUS SELECT-SENTENCE; RESUMES AT NEXT SELECTOR
AREA-A.

The flagged SELECT was ignored because the proper SELECT file-name, Key word
ASSIGN,or device-name was missing. Correct errors, recompile.

ERRONEOUS SUBSCRIPTING; STATEMENT DELETED.

Refer to rules governing subscripting, Section 7 and subscripting OCCURSclause. Correct
errors, recompile.

> ERROR IN USING SORT, RELEASE, RETURN.

e SD has not been defined forthe sort-file.

¢ Sort-file has no corresponding SELECTclause.

¢ Sort keys are not in SD description.

RELEASEhas not been usedin the input procedure.

RETURNhas not been usedin the output procedure.

> EXCESSIVE OCCURS NESTING IS IGNORED.

Only up to three levels of OCCURSclause are allowed.

> FD-VALUE IGNORED SINCE LABELS OMITTED.

VALUE OF FILE-ID or OWNERIDspecified with labels omitted assumed. Correct and
recompile.

> FILE SECTION ASSUMED.
Missing FILE SECTION in DATA DIVISION.Insert and recompile.

& GROUP SIZE > 32,766; SET TO 1.

Group and/orrecord size exeeds maximum. Reduceto less than 32,766 bytes. Correct and
recompile.

> ILLEGAL MOVE OR COMPARISONIS DELETED.

Check rules governing IF and MOVEstatements. Correct errors, recompile.

> IMPROPER FILENAME IGNORED.

FD entry has no corresponding SELECTstatement. Correct and recompile.

> IMPROPER OCCURS COUNT IGNORED.

OCCURSspecification is greater than 32,787. Check rules for OCCURSclause; correct and
recompile.

| IMPROPER REDEFINITION IGNORED.

Check rules for REDEFINESclause. Correct errors; recompile.

> INCOMPLETE/TOO LONG STATEMENT DELETED.

Check syntax; correct and recompile.

FDR 3056 E-2 1 January 1980

ERROR MESSAGES E

> INVALID BLOCKING IS IGNORED.

BLOCK CONTAINSclause exceeds maximum supported; correct and recompile.

> INVALID RECORDSIZE(S) IGNORED.

RECORD CONTAINSclause in error; correct and recompile.

> ITEM ASSUMED TOBEBINARY.

Elementary item with no PICTUREclause assumed binary. Check coding.

KEY DECLARATION OFTHIS FILE IS INCORRECT.

KEY IS clause in SELECT does not match FD description for indexed files, or Working-

Storage description for relativefiles.

> KEY MUST BE DECIMAL OR CHARACTERITEM,MAX.255 BYTES.

STATEMENT DELETED.

Key specification in error. Maximum is 255 bytes for indexed files, 6 bytes forrelativefiles.

Correct and compile.

LABEL RECORDS OMITTED ASSUMEDFOR UNIT-RECORDFILE.

Check LABEL clause, change to LABEL RECORD OMITTED.

> LABELS ASSUMEDFORDISKFILE.

Check LABEL clause, change to LABEL RECORD STANDARD.

> LEVEL 01 ASSUMED.

Check previous statements; correct and recompile.

MISORDERED/REDUNDANTSECTION PROCESSEDASIS.

Correct coding sequence; recompile.

> NAME OMITTED; ENTRY BYPASSED.

Unrecognizable data-name,not defined in Data Division, is a syntax error. Correct and

recompile.

> NON-UNIQUE SUBSCRIPT; LAST DECLARATION USED.

Non-unique data-name. Qualification is required; recompile.

> OCCURS DISALLOWEDAT LEVEL01.

Correct and recompile.

B PARAGRAPH DECLARATION REQUIRED HERE.

A paragraph-nameis requiredasthe first item in the Procedure Division; recompile.

> PERIOD ASSUMED AFTER PROCEDURE-NAMEDEFINITION.

Period missing after a paragraph-nameor a section-name. Correct and recompile.

> PICTURE IGNORED FOR INDEX ITEM.

PICTURE disallowed on USAGEIS INDEX. Correct and recompile.

1 January 1980 E-3 FDR 3056

FE, ERROR MESSAGES

> RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS; LATER
SIZES PREVAIL.

Either delete RECORD CONTAINSclause and use default, or use the properrecordsize.
Recompile.

> REDUNDANT CLAUSE IGNORED.

Remove and recompile.

> REDUNDANTFD.

Non-uniquefile-name in the same program.

> “SECTION” ASSUMED HERE.

Insert SECTION and recompile.

> SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT

WRITE BEFORE/AFTER ADVANCINGcountis greater than 62. Correct and recompile.

> SOURCE BYPASSED UNTIL NEXT FD/SECTION.

This relates to previous error. Correct previous error(s), recompile.

> STATEMENT DELETED DUE TO ERRONEOUSSYNTAX.

Illegal, non-standard syntax; correct and recompile.

> STATEMENT DELETED DUE TO OMISSION OF RELATIONAL SYMBOL.

Correct and recompile.

> STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.

Incompatible data types must be reconciled; recompile.

> STATEMENT DELETED; OPERANDIS NOT A FILE-NAME.

Illegal attempt to READ, WRITE, OPEN or CLOSEan undefinedfile. Correct syntax and
recompile.

> UNIT-RECORD FILE BLOCKING IS IGNORED.

Device and BLOCK CONTAINSclause are incompatible.

| UNRECOGNIZABLE ELEMENTIS IGNORED.

Correct and recompile.

> UNRESOLVED PROCEDURE-NAME; STATEMENT DELETED.

Illegal attempt to GO TO an undefined procedure-name.Correct and recompile.

> USING-LIST LEVELS MUSTBE 01/77.

Using-lists in subprograms must begin on 01 or 77 level to be forced on word boundaries.
Correct and recompile.

| VALUE CLAUSE IGNORED.

Delete and recompile.

FDR 3056 . E-4 1 January 1980

ERROR MESSAGES E

> VALUE DELETED DUE TO TYPE CONFLICT.

PICTURE and VALUEdisagreein size. Correct and recompile.

> VALUE DISALLOWED DUE TO OCCURS/REDEFINES.

Remove VALUEclause and recompile.

VALUE DISALLOWEDIN FILE/LINKAGE SECTION.

Remove VALUEclause and recompile.

> VARYING ITEM MAY NOT BE SUBSCRIPTED.

Correct and recompile.

COMPILE-TIME WARNING MESSAGES

> “COMP” IGNORED DECIMALITEM.

COMPhasbeenspecified, although the item appearsto be decimal; the compileris ignoring

the COMPdesignation. Results may be incorrect. Determinethe correct specification and

recompile.

> DATA RECORDS CLAUSE WAS INACCURATE.

The DATA RECORDSclause does not agree with record description entries for thefile.

Correct and recompile.

> FILE NEVER CLOSED.
Include a CLOSEstatementforthefile, recompile.

> FILE NEVER OPENED.
Include an OPENstatementforthefile, recompile.

> INCONSISTENT READ USAGE.
OPENstatement and USAGEdonotagree.Illegal attempt to write to an inputfile.

> INCONSISTENT WRITE USAGE.
OPENstatement and USAGEdonotagree.Illegal attempt to read an outputfile.

~ ITEM IS UNSIGNED.

The item in this statementis unsigned, but appears to require sign designation. Results may

be indeterminate.

LITERAL TRUNCATEDTO ITEM SIZE.

* VALUE OF FILE-ID has been specified by a literal greater than 8

characters.

° OWNERIS hasbeenspecified by a literal greater than 6 characters.

° The size of the literal in a VALUEclauseis greater than the size defined

in the PICTUREclause.

> MOVEIS DONE WITHOUT CONVERSION.

Data respresentation does not agree. Conversion will not occur; results are indeterminate.

1 January 1980 E-5 FDR 3056

E. ERROR MESSAGES

> PERIOD ASSUMED ABOVE.

Statement syntax suggests a period; one has been generated by the compiler.

> NO CORRESPONDENCE FOUND.

Check rules for MOVE CORRESPONDING.Correct and recompile.

RUN-TIME ERROR MESSAGES

The general format for run-time I/O errors generated by a COBOLprogramis:

KI/DA FILE SYSTEM ERROR n, FILE-STATUS CODE f

FILE-ID: file-id OWNER-ID: owner-id DEVICE: device-name

FATAL RUN-TIME I-O ERROR (CSER)

ER!

Thefirst line of the message is omitted unless the error was caused by an indexedorrelative
I/O operation which involved a call to the MIDASfile system.If printed, n represents the
error code returned from MIDAS.For a complete dissussion of MIDASerror messages,refer
to The MIDAS Reference Guide. Further, f is the COBOLfile-status code, as definedin this
manual.

The diagnostic message is one-line which briefly describes the probable causeof the error.
Most of the time the message will point directly to the problem. A list of diagnostics and
further explanations are provided below.

The next line identifies the file on which the error occurred. Information printed includes
file-id and owner-id, if specified, and device-name (specified in SELECT clause).

A list of the COBOL run-time I/O error messagesfollow.

> ATTEMPTED DELETE FROM UNOPENEDFILE

The user attempted to delete a record from an unopenedfile.

> ATTEMPTED READ FROM ILLEGAL DEVICE

The user attempted to read a record from theprinter.

> ATTEMPTED READ FROM UNOPENEDFILE

The user attempted to read a record from an unopenedora write-onlyfile.

> ATTEMPTED REWRITE TO NON-DISK FILE

The user attempted to rewrite a record to a non-diskfile (a file not assigned to Prime File

ManagementSystem).

> ATTEMPTED REWRITE TO UNOPENEDFILE

The user has attemptedto rewrite a record to an input-only or an unopenedfile.

ATTEMPTED START ON UNOPENEDFILE

The user program executed a START statement on an unopenedfile.

> ATTEMPTED WRITE TO UNOPENEDFILE

The user attempted to write a record to an unopenedor a read-onlyfile.

FDR 3056 E-6 1 January 1980

ERROR MESSAGES FE

> END OF FILE ENCOUNTERED

An EOF mark wasencountered on a sequential READ statement.

> ERROR ADDING SECONDARYINDEX, UNABLE TO DELETE PRIMARY

Anerror occurred adding a secondaryindex to an index file on a WRITEstatement. When
the error was noticed by the COBOLrun-time package, an attempt was madeto removethe
primary index entry which failed. This error is always fatal and may indicate a problem
with the MIDASfile structure or the COBOL run-time package.

> ERROR PROCESSING DELETE STATEMENT

An error occurred attempting to delete a record from an indexedora relativefile.

> ERROR PROCESSING START STATEMENT

An unexpectederror occured while executing a START statementon an indexedorrelative
file.

> ERROR UNLOCKING RECORD

A MIDASerror occurred (from UPDAT$) in an attemptto unlock a record.

~& FILE READ ERROR
General message indicating a sequentialfile read error.

~ FILE REWRITE ERROR
General message indicating a sequential file re-write error.

~» FILE WRITE ERROR
General message indicating a sequential file write error.

> NO READ PRIOR TO DELETE
A READstatement must be executed prior to a DELETE on an indexedorrelative file in
sequential access mode.

> NO READ PRIOR TO REWRITE

A READstatement must be executed prior to a REWRITE whenan indexedorrelative file
is used in sequential access mode.

~ NO UNITS AVAILABLE
All available file units are in use. Note that units 13-16 are reserved for use by MIDAS and

FORMS.

> REDUNDANT OPEN ATTEMPTED

The program tried to open a file which was already open.

> SEQUENTIAL WRITE TO RANDOMFILE OPENEDIN I/O MODE

Attempt to use the sequential WRITEstatement on a file opened in I/O modefor random
accessis not permitted.

1 January 1980 E-7 FDR 3056

Expanded listing

EXPANDEDLISTING

In 64V mode (Prime 350 and up), COBOL can optionally generate an expandedlisting

following the errors and warningssection in the listing file. The expandedlisting is fairly

‘PMA-like’, easily readable, and is obtained by employing the mnemonic parameter

-EXPLIST.

Example:

COBOL program-name -EXPLIST

For the expandedlisting, instead of using source code identifiers, Prime COBOL uses

machine-generated labels in the listing. The general formatof these labelsis:

< TYPE > $XXXX[+N characteroffset]

where

Xxxx is the hexadecimalidentifier.

TYPE is the label type.

Labeltypesfall into the following category:

Paragraph or section
Alter or perform indirect word
Perform countvariable
Decimal constant
Picture string (const)

Characterstring (const)
Generate label for branch instruction
Passed parameter
Generate label - any usage allowed
File control block
File buffer

A description of these labels is shown below:

N
K
O
T
O
N
M
M
O
O
W
>

A$XXXX - Paragraphorsection label

Will appear in expanded codeassociated with the previous sourceline.

Note

When TRACE MODEis used, codewill exist to accomplish

paragraph andsection namedisplays.

B$XXXX - Alter or perform indirect

Will be used to key a return for a PERFORM statement. If when

examined, the variable contains some non-zero value, a branch to that

non-zero location is performed.

C$XXXX - Perform count variable

Used to contain value for perform loop.

1 January 1980 F-1 FDR 3056

F EXPANDED LISTING

Note

Stored as single precision integer for maximum value of
32767.

D$XXXX - Decimal constant

1. Item is placed in literal pool for explicit numeric constant references.

2. Item is placed in literal pool for implicit numeric constant references.

* Condition names with value associated with numeric cons-

tant.

Note

All numeric constants in literal pool are examinedprior to
the addition of a new numeric constant. This prevents dupli-
cates.

E$XXXX - Edit picture string

This item is generated for use with edit capability on data strings.
Insertion characters, zero suppression, etc., are represented by this
string.

F$XXXX - Character string constant

1. All explicit character string constants are placedin literal pool.

2. All implicit character string constants:

* Condition names may generate a reference to a character

constant.

¢ An EXHIBIT Statement.

* Entering a new paragraph with TRACE MODEset.

G$XXXX - Generated label for branch

Produced by IF Statements to bypass code based on conditionsresults.

H$XXXX - Passed parameter

Produced for each item in Linkage Section.

S$XXXX - Generated label - no specific reason

Produced. for branching code associated with a READY TRACE.

Y$XXXX - File control block

Each definedfile will generate an FCB.

Z$XXXX - File buffer

1. Each FCB will reference a file buffer area.

2. Size of file buffer may contain room for alternate buffers.

Other labels used are:

SB% Stack base relative - used for temporarystorage.
XB% Temporarybaserelative - used for Linkage Section address.
WRKST$ Working-Storage
WSEXT$ Working-Storage extension,etc. under index,tallying and work

area as needed by the compiler.

Example:

@903233: 081319 EAFA 1,2$6627+72C
@883232:8001008.008725L

FDR 3056 F-2 1 January 1980

EXPANDED LISTING F

The example abovesays:At relative location ’3233 in the procedurearea, EAFA 1, file buffer
(ID=$0027 with a +72 character offset). Note that the wordoffset is '725 in the link frame.

An expandedlisting example is presented below.It represents a portionof an actuallisting
for SAMPLEpresentedin Section 4.

For additional information pertaining to expanded code and the Program Statistics which
followsit, see The Assembly Language Programmer's Guide and Section 2 of this manual
respectively.

Example:

OK, COBOL SAMPLE -L TTY -EXPLIST

EXPANDED

GBGGO0:
GIGOG1:
GBG003:

GBGC04:
J0B006:

000007:

GOOG11:

G0G12:
G000814:

1 January 1980

ID DIVISION.

PROGRAM-ID. SAMPLE.

BEGIN SECTION.
CREATE-FILE.

OPEN INPUT CARD-FILE.

OPEN OUTPUT PRINT-FILE, DIRECTORY-FILE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT.

READ CARD-FILE AT END GO TO LIST-DIRECTORY.

DISPLAY 'END TEST SEQUENTIAL READ AFTER A START’.

STOP RUN.

LIST.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ~NEXT~DIRECTORY—-RECORD.

READ DIRECTORY-FILE NEXT RECORD AT END GO TO LIST-DONE.
MOVE DIRECTORY-RECORD TO PRINT-LINE.

WRITE PRINT-LINE.

GO 'TO READ-NEXT-DIRECTORY-RECORD.
LIST-DONE.

EXIT.

LISTING FOR -- SAMPLE
001300 EAFA @,WRKSTS$+2C

901000.001413L
901320 STFA @,Y$002B+20C

001000.000433L
991300 EAFA @,WRKSTS

061008.001412L
001320 STFA 9,YS@92B+90C

001000.000476L
961432.000376L PCL =CSIN ,*

AS00001 EQU) *
ASO082 EQU. *

F-3 FDR 3056

F EXPANDED LISTING

* SOURCE LINE 58

000016: 961432.000374L AS@0B6 PCL

* SOURCE LINE 59
000026:
000030:
000032:
000034:
000036:
000037:
000040:
080042:
000044:

* SOURCE

O08020: 901100.
QVV0G22: BOO100.
0090024: 000300.

961432.
081100.
000100.
000300.

G2.
04.

061432.
081100.
000300.

LINE 60

0J0650L
OQVOOOOF
OOBGOOF

000374L
001076L
OQOQOOF
900025F
OVOOVOOF
000467L
000372L
008421L
000033F

AP
AP

AP

PCL

AP

AP
AP
LDA
STA
PCL

AP
AP:

000046:
000047:
Q00O51:
000052:
000054:
020056:
QO0060:
B2G0O1:
000063:
020005:
000007:
Q00071:

001300
091000.001414L

0013180
981000.001204L
901313. 008204A
081303.000106A

001114

EAFA

EAFA

LFLI
LFLI

961432.
081100.
000100.
000100.
900300.

000370L
001076L
QVO00OF
QOOO00F
OOBOOOF

* SOURCE LINE 62
000073:
008975:
Qd0077:
G0G101:
000103:
G00104:

* SOURCE LINE 77
000233:

* SOURCE LINE 79
000235:
900236:
000240:
000241:
000243:
009245:
809247:
909250:
080252:
000254:
080256:
000260:

FDR 3056

961432.8600366L
0911088.000650L
000100. 000000F
000300. 900000F

01. G000000F
01. 000000F

061432.000354L

901300
961000.001414L

001310
981900.001204L
061313.0808204A
901303.000106A

001114
§61432.000370L
001100.901076L
980100.000000F
900100.000140F
080300.000072F

S$0000

AS@GOD

SS0001
S$8062

ASO628

S$8809

JMP

JMP

PCL

EAFA

LFLI
LFLI

ZMV

EQU

=CSoS ,*
¥$0913,S
="1,S
F$80E2,SL

=CSOS__,*
YS0001,S
='2,S
FS80E2,SL
='9g

Y$082B+76C
=CSOR ,*
Y$@92B,5
='2,SL

Q ,WRKSTS+4C

1,Z2$06081

1,132
0,79

=CSwS_ ,*
Y$S0601,5S
S$90808,S
='162,5S
='49000,SL
*

=CSRS_ ,*
Y$0913,5
S$8002,S
S$0001,SL
GS$0614
AS68213

=EXIT ,*

0 ,WRKSTS$+4C

1,Z2S6961

1,132
0,79

=CSwS_ ,*

Y$0001,S

S$0809,S

='102,S
='40000,SL
*

1 January 1980

EXPANDED LISTING F

* SOURCE LINE 81
980262: 961432. 000352L
000264: 001100.000421L
080266: 900100.000210F
0806270: 9001080.000000F
080272: 800300.000000F

000274: 01. 000000F
080275: G1. 000000F

* SOURCE LINE 82
000276: 001308
900277: @01000.000527L

000301: 001310

000302: 081000.001204L
900304: 901313.000204A

80306: 081303.000120A

900310: 001114

* SOURCE LINE 83
900311: 861432.000379L

980313: 081180.001076L
080315: 900100.000000F

080317: 0001080.000257F

080321: 909300.000142F

* SOURCE LINE 84
906323: 1.000262

* SOURCE LINE 86
000324: 1486040
080325: 13.000400L
000326: 190040
000327: 41.800001A
000330: 861432.000354L
990332: 029046

000343: 385.316
080344: 304.240

Q00352> 820000 .000000E
080354> 000080. 00B000E
900356> 800809. OB0000E

OB8400> BIB0OO
080401>
G014108>
001412>
002421> 142255
900422> 143311

1 January 1980

AS@02B

SSOOBA
S$900B

GS0616

SSOBOC

AS8839

F$8138

BS8039

SAMPLE
WSEXTS

WRKSTS
Y$S802B

PCL

EAFA

EAFA

LFLI
LFLI-
ZMV

JMP

CRA

IMA

SZE

IMP#
PCL

IP
IP

IP

ECB

EQU
EQU
OCT
OCT

=CSRR ,*
Y$0Q92B,S
='1,S
S$000B,S
SSO900A,SL
G$0016
AS@039

0,2ZS602B

1,Z250001

1,132
0,80

=CSWS_ ,*
Y$8061,5
SSOBOC,S
='102,S
='26001,SL

ASO02B

BS8839

1,*

=EXIT ,*

CSRR
EXIT

CSCR

@,'352,'12,8,50
*

*

142255
143311

FDR 3056

F EXPANDEDLISTING

900473> 900080 OCT
900474> GOBB0O OCT

008581> 0940085 OCT
998527> Z$002B DATA
000650> 144716 Y$0013 OCT
090651> 142301 OCT
900652> 152301 OCT

008654> QDB0B0 OCT

000756> Z$0013 DATA

091076> 008007 Y$0001 OCT
001077> 088007 OCT

001160> 300880 OCT
091161> QB0000 OcT
001204> Z90081 DATA

PROGRAM

Executable Code Size: 218 Words.

STATISTICS

Constant Pool Size: 49 Words.

Total Pure Procedure Size: 267 Words.

Working-Storage Size: 74 Bytes.
Total Linkframe Size: 581 Words.

Stack Size: 51 Words.

Trace Mode: Off.

No Arguments Expected.

86 Source Lines.

4005
81(' ')

144716

142361

152301

80(' ')

132(' ')

No Errors, No Warnings, Prime V-Mode COBOL, Rev 17.2 <SAMPLE>

FDR 3056 F-6 1 January 1980

LABEL command

OVERVIEW OF LABEL

PRIMOShasanutility called LABEL whichinitializes magnetic tapes. LABEL writes either

IBM (9-track EBCDIC or 7-track BCD) or ANSI (9-track ASCII) level 1 volume labels

followed by dummy HDRiand EOF1labels. LABEL can also be used to read existing VOL1

and HDR!labels.

ANSI labels are written in accordance with the American National Standards Institute

standard ANSI X3.27-1978. IBM labels are written in accordance with IBM's specifications

(IBM manual GC28-6680-5).

Any non-standard labels such as 7-track ASCII or user-defined labels cannot be read or

written.

USING LABEL

To read existing labels type the command:

LABEL MTn[-TYPEtype]

To write labels type the command:

LABEL MTn[-TYPEtype] -VOLID vol [-OWNER own] [-ACCESSacc] [-INIT]

The arguments have the following meanings:

MTn is the tape drive wherethe tape to be labeledis located. n is a number

between 0 and 7. This keyword is required and mustbe the first on the

commandline.

type is the type of label desired:

-TYPE A 9-track ASCII (ANSI) (Default)
-TYPE B 7-track BCD (IBM)
-TYPE E 9-track EBCDIC (IBM)

vol is a 1-6 character string which uniquely identifies this tape reel. If less

than 6 charactersare specified, they are blank-padded on the right. The

keywords ‘“-VOLUME”or “VOL” may be substituted for the keyword “'-

VOLID".

own is 1-14 characters long for ANSIlabels, 1-10 characters long for IBM

labels. If less than 14 (or 10) characters is specified, they are blank-

paddedontheright.If this keywordis omitted, the default is the user's

login name. The keyword “-OWN”may be substituted for the keyword

“OWNER”.

acc is a single character defining accessto this tape. ACCESSis not used by

Prime software butis included for completeness.If it is omitted,itis left

blank on ANSI labels. ACCESSis ignored for IBM labels.

INIT is necessary if the tape is brand new.

1 January 1980 G-1 FDR 3056

G LABEL COMMAND

On read operations, LABEL prints out the volumne and ownerids, creation date, access
(ANSItapes only), and other information.

If LABEL successfully writes a label, the message ‘“‘TAPE LABEL WAS WRITTEN SUC-
CESSFULLY”is displayed.

ERRORS USING LABEL

Improper use of the LABEL commandcausesan error messageto be printed. These errors
are the result of bad syntax in the LABEL commanditself or a system magnetic tape I/O
error.

Syntax errors

> ***DUPLICATE KEYWORD DETECTED

The same keyword was typed more than once. -

> ***INVALID TAPE UNIT SPECIFIED

Something other than MTO-MT7 wastyped.

> ***VOLUMEID SPECIFIED IS TOO LONG

The volume id cannot be longer than 6 characters.

~ ***OWNERID SPECIFIED IS TOO LONG
The ownerid cannot be longer than 14 characters.

> ***INVALID LABEL TYPE SPECIFIED

Label type must be one of the characters ‘A’, ‘‘E’’, or ‘‘B”.

> ***NO MAGNETIC TAPE UNIT SPECIFIED

A magnetic tape unit is required.

> ***VOLUMEID WAS NOT SPECIFIED

When writing labels, a volumeid is required.

> ***QWNER ID SPECIFIED IS TOO LONG FOR TYPES B OR E

The ownerid for IBM labels cannot be longer than 10 characters.

> ***UNABLE TO WRITE TAPE LABEL ON THIS TAPE

A magnetic tape write error occurred and the label was not written.

> ***UNABLE TO READ TAPE LABEL ON THIS TAPE

A magtape readerror occurred andthe label was not read.

| ***VOL1 LABEL ALREADY EXISTS

ANSIstandards prohibit the re-writing of VOL1 labels.

> ***LABEL READ WAS NOT TYPE x

The label read was notof the type specified.

> ***LABEL OPERATION ABORTED
Any oneof the prededing fourerrors aborts.

FDR 3056 G-2 1 January 1980

LABEL COMMAND G

> ***ACCESS IGNORED FOR IBM LABELS (WARNING ONLY)

This is a warning only - processing continues.

» ***UNRECOGNIZED KEYWORD.string (CMDL$A)

An invalid keyword(string) appeared on the commandline.

System errors

MTn NOT ASSIGNED Tape drive must be ASSIGNed before using

LABEL

SUBR EOF END-OF-FILE on the magnetic tape

SUBR EOT END-OF-TAPE

SUBR MTNO Tape drive is not operational

SUBR PERR Parity error on the tape drive

SUBR HERR Tape drive hardwareerror

SUBR BADC LABEL improperly called mag tape subroutines

In the above errors, SUBR is the name of the magnetic tape subroutine that reported the

error. See the PRIMOSSubroutines Reference Guide for more information regarding these

errors.

HELP FACILITY

The command LABEL -HELP causes LABELto print out an abbreviated description of the

commandon the terminal.

For a complete description of tape labels and their use, refer to the IBM publication

CC28-6680, OS TAPE LABELS and the ANSIpublication X3.27-19689, “American National

Standard Magnetic Tape Labels for Information Interchange’’.

1 January 1980 G-3 FDR 3056

a

COBOL system files

SYSTEM FILES

To utilize COBOL,the following files must be available on the system in the UFD’s specified:

UFD

CMDNCO

SYSOVL

LIB

SYSTEM

VCOBLB Library

The VCOBLBlibrary contains the following common COBOLsubroutines.

C$ADAT

C$ADAY

C$ATIM

C$CA
C$INSP
C$UNS1/C$UNS2
C$STR1/C$STR2/

C$STR3

CIN/CIN1/
C$IN2
C$OS

C$CS

C$RS

C$UN
C$XS

C$WS

COI/COR
CCI/CCR

CRI/CRR
CWI/CWR

1 January 1980

FILE-NAME

COBOL (shared COBOL compiler)
NCOBOL (non-shared COBOL compiler)
C$$COD (code generator)
NVCOBLB _{(non-shared library)
VCOBLB (shared library)
PFTNLB (pure FORTRANlibrary)
IFTNLB (impure FORTRANlibrary)
C02016 (shared compiler segment)

Returns current data in format YMMDD

Returns Julian date in format YYDDD

Returns current time in format HHMMSSFF

H = Hour

M = Minutes

S = Seconds

F = Hundredths of seconds

Close openedfiles
INSPECT statement

UNSTRINGstatement

STRING statement

File assignmentinitialization

Open sequentialfile
Close sequentialfile
Read sequentialfile
Unlock an indexedorrelative file entry
Rewrite sequentialfile
Write sequentialfile
Open indexed/relativefile
Close indexed/relativefile
Read indexed/relative file
Write indexed/relativefile

FDR3056

H COBOL SYSTEM FILES

CXI/CXR
CSI/CSR
CDI/CDR
C$AU
C$NCLT
C$KE
C$ER
CER

C$PRTN

Rewrite indexed/relativefile

Start indexed/relative file

Delete indexed/relative file

Find next available file unit

‘Numeric class test

Error processing

Error processing

Error processing

Note
Calling COBOL subprograms, non-shared library only

A
Abbreviated combined relation

conditions: complex, example

4-24

Abbreviated combined relation
conditions: complex 4-23

Abbreviated combined relation
conditions: complex, expanded

equivalent 4-24

ACCEPTstatement 8-4

Access methods,file A-1

ACCESS MODEclause 6-1, 6-4,

6-5, 6-6

ACCESS MODEclause:
indexed sequential files 12-1

relative files 13-1

Access modes vs. OPENstate-

ments C-7

ADD statement 8-6

Addition table, hexadecimal

C-10

Addressing modesee also

compiler option. -64V

Addressing mode, compiler 2-5

AFTER ADVANCINGoption

8-49

AFTERclause, PERFORM 8-25

Algebraic signs 4-16

Alignment rules, standard 4-15

ALL, figurative constant 4-9

Alphabetic item, category 4-14

Alphabetic PICTUREclause,

rules 7-16

ALPHABETIC test 4-21

Alphanumeric edited item,
category 4-15

Alphanumeric edited PICTURE

clause, rules 7-16

Alphanumericitem, category

4-15

Alphanumeric PICTUREclause,

rules 7-16

ALTERstatement 8-7

ALTERNATE RECORD KEY

clause 6-5

ALTERNATE RECORD KEY
clause, indexed sequential

files 12-1

American National Standard,

COBOL 1-2

ANSI Standard 1-2

ANSI standards, coding rules

4-6

Area A 4-6

AreaB 4-6

Arithmetic expressions:
definition 4-18

“pules 4-18
symbol combinations, table

4-18

1 January 1980

Arithmetic operations 4-10

Arithmetic operators:
binary 4-18
description 4-18
parenthesis 4-18
unary 4-18

Arithmetic statements 8-2

Arithmetic statements:

features 4-19
rules 8-3

Arithmetic symbols, COBOL

D-1

ASCII character set C-4

ASCII IS NATIVE clause 6-1,

6-3 .
ASSIGN TO clause 6-1, 6-4, 6-5

ASSIGN TOclause, indexed

sequential files 12-1

ASSIGNTOclause,relative
files 13-1

AT ENDclause:
READ 8-32, 12-4, 12-5, 13-3,

13-4

RETURN 8-35, 11-2
SEARCH 8-36, 10-9

Audience 1-1

AUTHORparagraph 5-1

B
Bath job processing environment,

description 1-5

BEFORE ADVANCINGoption

8-49

BINARY (compiler option) 2-5

Binary arithmetic operators 4-18

Binary file, compiler 2-5

Binary item 4-15

BLANK WHENZEROclause

7-8, 7-25

BLANK WHENZERO,examples,

figure 7-26

BLOCK CONTAINSclause 7-3,

7-4

BY option, DIVIDE 8-13

BY option, MULTIPLY 8-23

C
C$IN error messages 3-4

CS$IN, execution utility program

3-2

CALL statement 8-8, 9-2

Carriage control integer values,

chart 8-50

Categories of data, description

4-14

Categories of data, editing,

table 7-18

Character set, ASCII C-4

Character set, COBOL 4-7

X-1

Character set, Prime 4-7

Character strings 4-7

Character-strings, PICTURE 4-7

CHARACTERSoption, BLOCK
CONTAINSclause 7-3, 7-5

CHARACTERSoption, RECORD
CONTAINSclause 7-3, 7-5

Characters, COBOL,figure 4-8

Class condition, IF 8-17

Class condition, simple 4-21

Classes of data, description 4-14

Clause, format notation 4-5

CLOSE (PRIMOS command) 2-9

CLOSE ALL 2-9

CLOSEstatement 8-8, 12-3, 13-3

Closing files 2-9

COBOL (PRIMOS command) 2-1

COBOL:
compiler 2-1
Prime’s overview 1-1
reserved words C-2
under PRIMOS 1-4
verb index C-1

CODE-SETIS ASCII clause

7-3, 7-7
Coding rules 4-6

Coding sheet, COBOL, figure 4-6

Coding symbols, COBOL D-1

Collating sequence, ASCII 4-7

Combined and negated combined
conditions, complex 4-22

Combined condition, IF 8-18

Comparisons, non-numeric,

simple 4-21

Comparisons, numeric, simple 4-

21

Compatibility, PRIMOS, COBOL

1-5

Compilation messages 2-1

Compilation, end of, messages

2-2

Compile-time error messages

E-1

Compile-time warning messages

E-5

Compiler option:
-64V 2-5

-BINARY 2-5
-EXPLIST 2-6
-INPUT 2-4
-LISTING 2-5
-NOEXPLIST 2-6
-NOXREF 2-6
-SOURCE 2-5
-XREF 2-6

Compiler:
addressing mode 2-5
binary file 2-5
description 1-6
error messages 2-2

file manipulation 2-8

FDR 3056

X INDEX

file names 2-8
file specifications, table 2-6
file types 2-7

functions 2-4
generated files 2-7
V/O specifications 2-4
invoking 2-1
listing file 2-5
listing file (unit 2} 2-7
listing, default 2-5
listing, expanded 2-5
listing, regular 2-5
object file (unit 3) 2-7
parameter mnemonics 2-4

source file (unit 1) 2-7

symbols, COBOL D-1
syntax 2-1

warning messages 2-3

Compiling 2-1

Complex conditions 4-22

Computational, data usage 4-15

Computations-3, data usage
4-15

COMPUTEstatement 8-9

Concepts, fundamental, COBOL

4-1

Condition evaluation examples

4-25

Condition evaluation rules 4-24

Condition symbols, COBOL D-1

Condition-name condition, IF

8-17

Condition-name condtion, simple
4-21

Condition-names, description

4-11

Conditional expressions
Conditional expressions

definition 4-20

Conditional statements 8-2

4-20

Conditions, complex 4-22

Conditions, logical operations,
parentheses, combinations,

table 4-23

Conditions, simple 4-20

Configuration Section, descrip-
tion 6-1, 6-2

Connectives, definition 4-9

CONSOLEIS clause 6-1, 6-2

Conversion, hexadecimal and

decimal C-9

Conversion, numeric C-9

Conversion,octal and decimal

C-9

COPY statement 8-9

COPYstatement, example

CORRoption:

ADD 8-6

MOVE 8-22

SUBTRACT 8-43

8-10

FDR 3056

CORRESPONDINGoption:
ADD 8-6
MOVE 8-22
SUBTRACT 8-43

COUNTIN option 8-44, 8-46

Creating DAMfiles B-1

Creating INDEXEDfiles B-1

Creating MIDAStemplate B-1

Creating relating files B-1

CREATKdialog:
DAM files B-3

INDEXEDfiles B-1

relative files B-3

Cross-reference listing 2-6

CURRENCYSIGNISclause
6-1, 6-3

D
DAMfiles, creating B-1

DAMfiles, CREATK dialog B-3

DAMseealso Direct Access
Method

Data Division 7-1

Data Division:

example 7-31
sort module 11-1
table handling 10-1

Data levels 4-14

DATA RECORDSclause 7-3, 7-6

Data-namesubscripting 10-6

Data-name/FILLER 7-12

Data-names, description 4-11

Data:

categories, description 4-14
categories, editing, table 7-18

categories, PICTUREclause
7-16

classes, description 4-14
representation 4-15

usage 4-15

Database Management System

see also DBMS

DATE-COMPILEDparagraph

5-1

DATE-WRITTENparagraph 5-1

DBMSseealso Database

Management System

DBMS,description 1-6

Debugging, COBOLverb:
ACCEPT 8-4
DISPLAY 8-12

EXHIBIT 8-14
READY TRACE 8-34
RESET TRACE 8-34

Decimal and hexadecimal conver-

sion C-9

Decimal and Octal conversion

C-9

Decimal-point clause, PICTURE,
rules 7-16

DECIMAL-POINT IS COMMA
clause 6-1, 6-3

DECLARATIVESsection 8-1,

8-2, 8-48

Default compiler listing 2-5

DELETE statement 8-11, 12-3,

13-3

DELIMITED BY ALL 8-44, 8-45

DELIMITEDBYclause 8-40,

8-41

DELIMITERIN option 8-44,
8-45

DEPENDING ONoption 8-16

Device specifications 6-5

Dialog, CREATK:

Dialog, CREATK: DAMfiles B-3

Dialog, CREATK: INDEXED
files B-1

Dialog, CREATK:relative

files B-3

Digit, format notation 4-5

Direct Access Method (DAM)

A-1

Direct indexing 4-17, 10-4

Disk formats, execution 3-3

DISPLAY statement 8-12

Display, data usage 4-15

DIVIDE statement 8-12

Division:

Data 7-1

Environment 6-1

Identification 5-1

Procedure 8-1

Divisions, COBOL program,

summary 4-1

Document, related 1-2

Document, this 1-1

DOWNBYoption 8-37, 10-7

E
Edit symbols, COBOL D-2

Editing:
character insertion 7-18
character

suppression/replacement 7-18,

7-21

PICTURE clause 7-18
sign control symbols, results,

table 7-19
signs 4-16

type, categories of data,
table 7-18

Editor, description 1-6

4-14

Ellipsis, format notation 4-5

ELSE option 8-16

Elementary item,level

1 January 1980

INDEX X —_

END DECLARATIVESsection
8-1

End of compilation messages 2-2

ENTERstatement 8-14, 9-3

Environment Division 6-1

Environment Division, example

6-7

Environment:

batch job processing,
description 1-5

interactive, description 1-5
phantom user,description 1-5

Environments, program,list 1-5

Error handling, SEG 3-1

Error messages E-1

Error messages

C$IN_ 3-4
compile-time E-1
compiler 2-2
internal 2-3
run-time 3-4, E-6

types E-1

ERRORoption 8-48

Errors using LABEL G-2

Errors, syntax, LABEL G-2

Errors, system, LABEL G-3

Evaluation, condition, examples

4-25

Evaluation, condition, rules 4-24

EXCEPTIONoption 8-48

EXECUTE{Load subprocessor

command} 3-2

Executing loaded programs 3-2

Execution disk formats 3-3

Execution tape format 3-3

Execution utility program,
C$IN 3-2

EXHIBIT statement 8-14

EXIT PROGRAMstatement
8-15, 9-3

EXIT statement 8-15

Expanded compilerlisting 2-5

Expandedlisting F-1

Expandedlisting file, example

F-3

Expandedlisting label format

F-1

Expandedlisting labels, descrip-
tion F-1

EXPLIST (compiler option) 2-6

Expressions, arithmetic 4-18

Expressions, conditional 4-20

EXTENDoption, OPEN 8-24

Extensions, Prime, Level 2

standard 1-4

External decimal item 4-15

F
FD) (file description) 7-3

Figurative constants 4-9

1 January 1980

File assignments 3-2

File Control, indexed sequential

files 12-1

File Control, relative files 13-1

File Description (FD) 7-2

File manipulation, compiler 2-8

File names, compiler 2-8

File organization A-1

File Section, description 7-1, 7-2

File Section, sort module 11-1

File specifications, compiler,

table 2-6

FILE STATUSclause 6-1, 6-4,
6-5, 6-6

FILE STATUSclause, indexed
sequential files 12-1, 12-3

FILE STATUSclause,relative
files 13-1, 13-2

File status key definitions C-6

File types, compiler 2-7

File units, PRIMOS 2-7

File, relative, processing 13-1

FILE-CONTROLparagraph 6-1,

6-3

File-names, description 4-11

Files:
compiler generated 2-7
DAM,creating B-1

indexed sequential 12-1
INDEXED,creating B-1

relative, creating B-1
system H-1

FILLER option 4-11, 7-8, 7-12
FILLER/data-name 7-12

Fixed insertion 7-19

Floating insertion 7-19

Format notation:

< 4-5

= 4-5

> 4-5

clause 4-5
COBOL 4-4
digit 4-5
ellipsis 4-5
hyphen 4-5
key words 4-4
letter 4-5
lower-case words 4-5
multiple formats 4-5
programmer-defined variables

4-5

punctuation 4-5

reserved words 4-4
statement 4-5

underlined reserved words 4-4

[] 4-5

{] 4-5

Forms Management System see

also FORMS

FORMS,description 1-7

FORTRANlibrary 3-1

X-3

FROM option:

ACCEPT 8-5
RELEASE 8-34, 11-2

REWRITE 8-35, 12-6, 13-5

SUBTRACT 8-42, 8-43
WRITE 12-9, 13-6

Functional processing
modules 1-2

Functions, compiler 2-4

Fundamental concepts of COBOL

4-1

G
GIVING option 8-3

GIVINGoption:
ADD 8-6
DIVIDE 8-13
MULTIPLY 8-23
SORT 8-38, 11-3, 11-4, 11-6

SUBTRACT 8-43

GO TO statement 8-15

Groupitem, level 4-14

H
HELPfacility G-3

Hexadecimal addition table (C-10

Hexadecimal and Decimal conver-

sion C-9

HIGH-VALUE(S), figurative

constant 4-9

Hyphen, format notation 4-5

I
I-O option, OPEN 8-24

I1-O-CONTROLparagraph 6-2,
6-6

I/O specifications, compiler 2-4

ID Division see also Identifica-
tion Division

Identification Division 5-1

Identification Division, example
5-2

IF statement 8-16

IF statement:

class condition 8-17
combined condition 8-18
condition-name condition 8-17

nested 8-18
sign condition 8-18

simple condition 4-21

Imperative statements 8-2

Implementation, PRIMOS,
COBOL 1-4

Index item 4-15

Index, data usage 4-15

INDEXED BY option 4-17, 10-1,
10-4, 7-8, 7-15

INDEXEDfiles, creating B-1

FDR 3056

X INDEX

.
INDEXEDfiles, CREATK dialog

B-1

Indexed I/O module 1-3

INDEXEDsee also Indexed
Sequential Access Method

Indexed Sequential Access
Method (INDEXED) ‘A-1

Indexed sequentialfiles,

definition 12-1

Indexed sequentialfiles,
Procedure Division 12-3

Indexing 4-17

Indexing:
direct 4-17, 10-4

format 4-17, 10-5
relative 4-17, 10-4
restrictions 4-18

subscripting, description 10-3

INPUT (compiler option) 2-4

INPUT option, OPEN 8-24

INPUT PROCEDUREISclause,
SORT 8-38, 11-3, 11-5

Input-Output Section, description

6-1, 6-3

Input/output statements, permis-

sible C-7

Insertion editing, types 7-19

Insertion:

fixed 7-19
floating 7-19
simple 7-19
special 7-19

INSPECT statement 8-19

INSPECTstatement,

examples 8-21

INSTALLATION paragraph 5-1

Inter-program communication

module 1-4

Inter-program communication:

definition 9-1
Procedure Division 9-2
sample programs 9-4

Interactive environment, descrip-

tion 1-5

Interfaces, language, descrip-

tion 1-7

Internal decimal item 4-15

Internal error messages 2-3

Internal error messages, example

2-2

INTO Option:
DIVIDE 8-13

READ 8-32, 12-4, 12-5, 13-3,

13-4

RETURN 8-35, 11-2

STRING 8-40

UNSTRING 8-44

INVALID KEY clause 12-3, 13-2

INVALID KEYclause:

DELETE 8-11, 12-3, 13-3

READ 8-33, 12-4, 12-5, 13-4

FDR 3056

REWRITE 8-35, 12-6, 13-5

START 8-39, 12-6, 12-7, 13-5,

13-6

WRITE 8-49, 12-9, 13-6

UST clause 7-8, 7-25

JUSTIFIED clause 4-16, 7-8,

7-25

JUSTIFIED clause, examples

4-16

K
KEYIS phrase:
OCCURSclause 7-8, 7-15,

10-1

READ 8-33, 12-4, 12-5

START 8-39, 12-6, 12-7,

13-5, 13-6

KEY option, SORT 8-38, 11-3,

11-5

Key words, format notation 4-4

Key,status, file, definitions C-6

Key words, definition 4-9

L
LABEL (PRIMOS command) G-1

LABEL arguments, description

G-1

Label format, listing, expanded

F-1

Label options, table 7-4

LABEL RECORDSclause 7-3,

7-4

LABEL usage G-1

LABEL:
errors using G-2

overview G-1

syntax errors G-2
system errors G-3

Labels, expandedlisting, descrip-
tion F-1

Languageinterfaces, description

1-7

LEADING option, SIGN clause
7-8, 7-23

Letter, format notation 4-5

Level numbers, description 4-10

Level-number 7-8, 7-10

Level-number 01, rules 7-10

Level-number66, rules 7-8, 7-11,

7-14

Level-number 77, rules 7-10

Level-number88, rules 7-9, 7-10

Levels, data 4-14

Libraries, description 1-6

LIBRARY(Load subprocessor
command) 3-1

Library module 1-4

Library:
FORTRAN 3-1
non-shared, C6PRTN H-2
NVCOBLB 3-1

VCOBLB 3-1
VCOBLB, subroutines H-1

Linkage Section, description 7-1,

7-30, 9-1

LISTING (compiler option) 2-5

LISTING (PRIMOS command)
2-8

Listing file:
compiler 2-5
compiler (unit 2) 2-7
spooling 2-5

Listing:

compiler, default 2-5
compiler, expanded 2-5
compiler, regular 2-5
cross-reference 2-6
expanded F-1
expanded, label format F-1
expanded, labels, description

F-1

Literal subscripting 10-6

Literals:
non-numeric, description 4-12

numeric, description 4-12

LOAD(Load subprocessor
command) 3-1

LOAD (SEG command) 3-1

LOAD COMPLETE 3-1

Load subprocessor command:
EXECUTE 3-2
LIBRARY 3-1
LOAD 3-1
QUIT 3-1
SAVE 3-1

Load subprocessor prompt $ 3-1

Loaded programs, executing 3-2

Loading programs 3-1

Loading, example 3-1

Loading, normal 3-1

Logical operations, conditions,
parentheses, combinations,table
4-23

Logical operators, complex 4-22

LOW-VALUE(S), figurative

constant 4-9

Lower-case words, format
notation 4-5

M
Magtape, non-standard, using

3-3

Magtape, standard, using 3-3

Messages:

compilation 2-1
end of compilation 2-2
error E-1

1 January 1980

INDEX X

error, C$IN 3-4
error, compile-time E-1
error, compiler 2-2

error, run-time 3-4, E-6

error, types E-1

warning, compile-time E-5
warning, compiler 2-3

MIDAStemplate, creating B-1

MIDAS,description 1-7

Mnemonic-names,description

4-12

Mnemonics, compiler parameter

2-4

Mode, addressing, compiler 2-5

Module:
indexed I/O 1-3
inter-program communication

1-4

library 1-4
nucleus 1-3
relative I/O 1-3
sequential I/O 1-3

sort 1-4

table handling 1-4

Modules, functional processing

1-2

MOVEALLliteral 8-22

MOVEstatement 8-22

Moves, permissible C-8

10-6

Multiple conditions, complex

4-23

Multiple formats, format notation

4-5

Multiple Index Direct Access
System see also MIDAS

MULTIPLYstatement 8-23

N
Names, qualification 4-13

Multi-dimensional tables

Negated combined and combined
conditions, complex 4-22

Negated combined relation
conditions, complex, example

4-24

Negated combinedrelation
conditions, complex, expanded

equivalent 4-24

Negated relation conditions,

complex 4-24

Negated simple conditions,
complex 4-22

Nested IF tree structure, figure

8-19

Nested, IF 8-18

NEXToption 8-32, 12-4, 12-5
NEXToption, READ 13-3, 13-4
NEXT SENTENCEoption, IF

8-16

1 January 1980

NEXT SENTENCEoption,
SEARCH _8-36, 10-9

NO EXPLIST (compiler option)

2-6

Non-numeric comparisons,

simple 4-21

Non-shared library, C6PRTN

H-2

Non-standard mag tape, using

3-3

Normal loading 3-1

NOXREF(compiler option) 2-6

Nucleus module 1-3

Numeric comparisons, simple

4-21

Numeric conversions C-9

Numeric edited item, category

4-15

Numericedited item, COBOL

D-2

Numeric edited PICTUREclause,

rules 7-16

Numeric item, category 4-14

Numeric literals, description

4-12

Numeric PICTUREclause, rules

7-16

NUMERICtest 4-21

NVCOBLBlibrary 3-1

O
Object file, compiler (unit 3) 2-7

OBJECT-COMPUTERparagraph

6-1, 6-2

OCCURSclause 7-8, 7-14, 10-1

Octal and decimal conversion

C-9

OMITTEDoption, LABEL

RECORDSclause 7-3, 7-4

ON OVERFLOWoption, STRING

8-40, 8-42

ON OVERFLOWoption,

UNSTRING _8-44, 8-47

ON SIZE ERRORoption 8-4

ON SIZE ERRORoption:

ADD 8-6

COMPUTE 8-9

DIVIDE 8-13

MULTIPLY 8-23
SUBTRACT 8-42, 8-43

OPENstatement 8-23, 12-4, 13-3

OPENstatements vs. access

modes C-7

Operands, overlapping 4-20

Operation, PRIMOS, COBOL 1-4

Operational signs 4-16

Operators:
arithmetic 4-10
arithmetic, description 4-18

logical 4-22
relation 4-10
relational 4-20

Optional words, definition 4-9

Organization 1-1

ORGANIZATIONclause, 6-1,
6-4, 6-6

ORGANIZATIONclause, indexed

sequentialfiles 12-1

ORGANIZATIONclause, relative

files 13-1

OUTPUToption, OPEN,

OUTPUT PROCEDUREIS
clause, SORT 8-38, 11-3, 11-6

Output/input statements, permis-

sible C-7

Overlapping operands 4-20

Overview of Prime’s COBOL 1-1

8-24

OWNERIS clause 7-3, 7-6

Packed decimal 4-15

Paragraph-names, description

4-12

Parenthesis, arithmetic operators

4-18

Parenthesis, conditions, logical

operations, combinations,

table 4-23

PERFORM sequences, permis-

sible, figure 8-30

PERFORMstatement

PERFORMstatement:

Logic of, one identifier varied,

4-18, 8-24

figure 8-30
Logic of, two identifiers varied,

figure 8-31
Logic of, three identifiers

varied, figure 8-32

Permissible input/output
statements C-7

Permissible moves C-8

PFMSoption 6-5, 12-1, 13-1

Phantom user environment,

description 1-5

PIC clause 7-8, 7-15

PICTUREcharacter-strings 4-7

PICTUREclause 4-16, 4-21, 7-8,
7-15

PICTUREclause:
alphabetic, rules 7-16
alphanumericedited, rules

7-16

alphanumeric, rules 7-16
data, categories 7-16

editing 7-18

numeric edited, rules 7-16

numeric, rules 7-16

size, rules 7-16

symbols 7-17

FDR 3056

X INDEX

PICTUREclauses, examples,
figure 7-22

PICTUREpicture-strings 4-7

POINTER option:

STRING 8-40, 8-42

UNSTRING 8-44, 8-45, 8-46

Prime extensionsto level 2
standard 1-4

Prime File Management System
see also PFMS

PRIMOS command:
CLOSE 2-9
COBOL 2-1
LABEL G-1
LISTING 2-8
SEG 3-1, 3-2

PRIMOS:
COBOL under 1-4
COBOL, compatibility 1-5
COBOL, implementation 1-4
COBOL, operation 1-4

file units 2-7

Procedure Division 8-1

Procedure Division:
example 8-51
indexed sequential files 12-3
inter-program communication

9-2

relative files 13-2
sort module 11-2
table handling 10-7

PROCEDUREONclause 8-48

Procedure statements 8-4

Procedure-names,description
4-12

PROCEEDTOoption 8-7

Program environments,list 1-5

Program statistics 2-3

Program statistics, example F-6

PROGRAM-ID paragraph 5-1

4-10

Programs, loaded, executing 3-2

Programmer-defined words

Programs, loading 3-1

PRWFILread 7-4

Punctuation rules 4-5

Punctuation symbols, COBOL
D-1

Punctuation, format notation 4-5

Purpose 1-1

(

SSovum of names 4-13

Qualification restrictions 4-18

Qualification, rules 4-13

QUIT (Load subprocessor
command) 3-1

QUOTKE(S), figurative constant
4-9

FDR 3056

R
RDASCread 7-4

READstatement 8-32, 12-4, 13-3

READY TRACEstatement 8-34

RECORD CONTAINSclause
7-3, 7-5

Record Description 7-7

RECORD KEYclause 6-5

RECORDKEYclause, indexed

sequential files 12-1

RECORDSoption, BLOCK
CONTAINSclause 7-3, 7-5

REDEFINESclause 7-8, 7-12

Reference tables, COBOL C-1

Regular compiler listing, 2-5

Related document 1-2

Relation condition, format 8-17

Relation condition, simple 4-20

Relation operators 4-10
Relational operators, simple
4-20

Relative file processing, definition
13-1

Relativefiles:
creating B-1

CREATKdialog B-3
Procedure Division 13-2

Relative I/O module 1-3

Relative indexing 4-17, 10-4

RELATIVE KEYclause 6-4

RELATIVE KEYclause,relative

files 13-1, 13-2

RELEASEstatement 8-34, 11-2

REMARKSparagraph 5-1

RENAMESclause 7-8, 7-13

REPLACINGclause 8-19, 8-20

RESERVEclause 6-1, 6-4, 6-5

Reserved words:
COBOL C-2
definition 4-9
format notation 4-4

types 4-9

underlined, format notation

4-4

RESET TRACEstatement

Resources, system,list 1-6

Restrictions:

on indexing 4-18
on qualification 4-18
on subscripting 4-18

8-34

RETURNstatement

REWRITEstatement

13-5

ROUNDEDoption 8-3

ROUNDEDoption:

ADD 8-6

COMPUTE 8-9

DIVIDE 8-13

MULTIPLY 8-23

8-35, 11-2

8-35, 12-6,

X-6

SUBTRACT 8-42, 8-43

Rounding results, chart 8-4

Run-time error messages 3-4,

E-6

S
SAMsee also Sequential Access
Method

SAMEAREAclause 6-2, 6-6

SAVE (Load subprocessor
command) 3-1

SEARCHALLstatement
10-9, 10-11

SEARCHoperation flowchart,
figure 10-12

SEARCHstatement

10-9

Section-names, description 4-12

SECURITY paragraph 5-1

SEG (PRIMOS command) 3-1,
3-2

SEG command LOAD 3-1

SEC error handling 3-1

SEG prompt # 3-1

SEG utility, description 1-6

SELECT clause 6-1, 6-4, 6-5

SELECTclause, indexed sequen-
tial files 12-1

SELECTclause, relative files
13-1

SEPARATE CHARACTERoption,

SIGN clause 7-8, 7-23

Sequential Access Method (SAM)
A-1

Sequential I/O module 1-3

SET statement 4-18, 8-37, 10-7

SET statement, operand combina-
tions, validity, table 10-9

SIGN clause 4-16, 7-8, 7-23

Sign condition, IF 8-18

Sign condition, simple 4-22

8-36,

4-18, 8-36,

Sign control symbols, results,
editing, table 7-19

Sign representation, table

Sign symbols, COBOL D-1

Signs, algebraic 4-16

Signs, editing 4-16

Signs, operational 4-16

Simple conditions 4-20

Simple insertion 7-19

Simple non-numeric comparisons

4-21

Simple numeric comparisons

4-21

Simple relational operators

SIZE ERRORoption 8-4

Size, PICTUREclause, rules

7-16

7-24

4-20

1 January 1980

INDEX X

Sort file description, sort module UNSTRING 8-44 SYNC clause 7-8, 7-25

11-1 USE 8-48 SYNCHRONIZEDclause 7-8,

Sort module 1-4 WRITE 8-49, 12-9, 13-6 7-24

Sort module: Statement, format notation 4-5 Syntax errors, LABEL G-2

Data Division 11-1 Statements: Syntax, compiler 2-1

definition 11-1 arithmetic 8-2 System errors, LABEL G-3

File Section 11-1 arithmetic, rules 8-3 System files H-1

Procedure Division 11-2 conditional 8-2

sample program 11-7 imperative 8-2 System resources 1-6

sort file description 11-1 procedure 8-4

SORT statement 8-38, 11-3 Statistics, program 2-3 T

SOURCE(compiler option) 2-5 Statistics, program, example F-6 Table handling module 1-4

Source file, compiler (unit 1) 2-7 Status key, file, definitions C-6 Table handling:

SOURCE-COMPUTERparagraph STOP‘literal’ statement 8-40 Data Division 10-1

6-1, 6-2 STOP RUNstatement 8-40 definition 10-1

SPACE(S), figurative constant STOPstatement 8-40' Procedure Division 10-7

4-9 STRING statement 8-40 Table initialization 10-3

Special insertion 7-19 Structure, COBOL program 4-2 Table initialization, examples

Special-character words 4-9 Structure, COBOL program, 10-3

SPECIAL-NAMESparagraph sample program 4-3 Tables, multi-dimensional 10-6

6-1, 6-2 Subroutines, VCOBLB library Tables, reference, COBOL C-1

Spoolinglisting file 2-5 H-1 TALLYINGclause 8-19, 8-20

Standard mag tape, using 3-3 Subscripting 4-16, 10-5 TALLYING IN option 8-44, 8-46

STANDARDoption, LABEL Subscripting: Tape format, execution 3-3

RECORDSclause 7-3, 7-4 data-name 10-6 Template, MIDAS,creating B-1

STARTstatement 8-39, 12-6, format 4-17 TO option:

13-5 indexing, description 10-3 ADD 8-6

STARTstatement, example 12-7 literal 10-6 MOVE 8-22

Statement, COBOLverb: restrictions 4-18 SET 8-37, 10-7

ACCEPT 8-4 value 10-6 TRAILING option, SIGN clause
ADD 8-6 SUBTRACTstatement 8-42 7-8, 7-23

ALTER 8-7 Symbol combinationsin arith-

CALL 8-8, 9-2 metic expressions, table U

CLOSE 8-8, 12-3, 13-3 4-18

COMPUTE 8-9 Symbol, PICTUREclause Unary arithmetic operators 4-18

COPY 8-9 , 7-18 Unary operators, COBOL D-1

DELETE 8-11, 12-3, 13-3 * 7-18 UNCOMPRESSEDoption 7-3
Feepao + 8 Underlined reserved words,

ENTER 8-14, 9-3 74a ormat notation 4-4

EXHIBIT 8-14 7-18 UNSTRING statement 8-44

EXIT 8-15 9 7-18 UNSTRINGstatement, sample

EXIT PROGRAM 8-15, 9-3 A 7-17 program 8-47

GO TO 8-15 B 7-17 UP BY option 8-37, 10-7

IF 4-21 8-16 CR 7-18 Usage 1-1

INSPECT 8-19 DB 7-18 USAGEclause 7-8, 7-22

MOVE 8-22 P 7-17 USAGEIS clause 4-15

MULTIPLY 8-23 S 7-17 USAGE IS INDEX clause 4-18
OeORGeon aay USE AFTER STANDARD 8-48
READ 8-32, 12-4, 13-3 7 7-17 USE AFTER STANDARD ERROR

READY TRACE 8-34 Symbols: PROCEDURE ON declarative

RELEASE 8-34, 11-2 ari ic, -

RESET TRACE 8-34 COBOLDal m USE AFTER STANDARD
RETURN 8-35, 11-2 coding, COBOL D-1 EXCEPTION PROCEDURE ON
REWRITE 8-35, 12-6, 13-5 compiler, COBOL D-1 declarative 8-48

SEARCH 8-36, 10-9 condition, COBOL D-1 USEstatement 8-1, 8-48
SET 8-37, 10-7 edit, COBOL D-2 USING clause 8-1, 8-8, 9-2, 9-3

SORT 8-38, 11-3 PICTUREclause 7-17 Using non-standard mag tape

START 8-39, 12-6, 13-5 punctuation, COBOL D-1 3-3

, STOP 8-40 sign control, results, editing, USING option, SORT 8-38, 11-3,
STRING 8-40 table 7-19 11-4, 11-5

SUBTRACT 8-42 sign, COBOL D-1 Using standard mag tape 3-3

1 January 1980 X-7 FDR 3056

X INDEX

V
VALUEclause 7-8, 7-27

VALUEOFFILE-ID clause 7-3,

7-6

VARYINGclause, PERFORM
8-25

VARYINGoption, SEARCH

8-36, 10-9

VCOBLBlibrary 3-1

VCOBLBlibrary, subroutines
H-1

Verb index, COBOL C-1

Verb see also statement,

COBOLverb

W
Warning messages, compile

-time E-5

Warning messages, compiler 2-3

WHENclause, SEARCH 8-36,

10-9

WITH DUPLICATESoption 6-5

WITH DUPLICATESoption,

indexed sequential files 12-1

WITH LOCKoption 8-9

Word formation, COBOL 4-7

Words:
connectives 4-9

figurative constants 4-9
key 4-9
optional 4-9
programmer-defined 4-10
reserved 4-9
special-character 4-9

Working-Storage Section,
description 7-1, 7-28

WRITEstatement 8-49, 12-9,

13-6

X
XREF (compiler option) 2-6

ZL,
Zero suppression:
replacement with spaces 7-21
replacement with asterisks

7-21

ZERO(S), figurative constant

4-9

ZEROES,figurative constant 4-9

SYMBOLS

(SEG prompt) 3-1

$ (Load subprocessor prompt)
3-1

-64V (compiler option) 2-5

-BINARY(compiler option) 2-5

-EXPLIST (compiler option) 2-6

-INPUT (compiler option) 2-4

-LISTING (compiler option) 2-5

~NOEXPLIST (compiler option)
2-6

-NOXREF(compiler option) 2-6

-SOURCE(compiler option) 2-5

-XREF (compiler option) 2-6

..., format notation 4-5

<, format notation 4-5

=, format notation 4-5

>, format notation 4-5

[]. format notation 4-5

[], format notation 4-5

	Front cover
	Title page
	Copyright
	Title page
	
	Contents-1
	Contents-2
	Contents-3
	Contents-4
	
	
	Acknowledgement
	Section I
	Overview
	1-0
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	Section II
	Language-Specific System Information
	2-0
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	3-0
	3-1
	3-2
	3-3
	3-4
	3-5
	Section III
	COBOL Language Reference
	4-0
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	5-0
	5-1
	5-2
	5-3
	6-0
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	7-0
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	8-0
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	9-0
	9-1
	9-2
	9-3
	9-4
	9-5
	10-0
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	11-0
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	12-0
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	13-0
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	Section IV
	Appendices
	A-0
	A-1
	B-0
	B-1
	B-2
	B-3
	C-0
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	D-0
	D-1
	D-2
	D-3
	E-0
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-7
	F-0
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	G-0
	G-1
	G-2
	G-3
	H-0
	H-1
	H-2
	H-3
	H-4
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8

