
PRINTING HISTORY — Subroutines Reference Guide

Edition Date Number Software Release

*First Edition March 1979 PDR3621 16.3
Second Edition January 1980 PDR3621 17.2.
Update 1 December 1980 PIU2600-078 18.1
Third Edition July 1982 DOC3621-190 19.0
Update 1 April 1985 UPD3621-31A 19.4

*This edition is out of print.

A vertical bar in the margin of the Table of Contents indicates an
addition since the last printing.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for custamers in the
United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)
1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Obtain an order form, a catalog, anda price list from one of the
following:

Inside U.S. Outside U.S.

Software Distribution Contact your local Prime
Prime Computer, Inc. subsidiary or distributor.
74 New York Ave.
Framingham, MA 01701
(617) 879-2960 X2053

iii

About This Book
Suggested References
Prime Documentation Conventions
Additional Documentation Conventions

PART I — OVERVIEW

1 INTRODUCTION

Document Organization
Major Changes in the Rev. 19

Subroutine Documentation

What Is Not in This Book

2 OVERVIEW OF SUBROUTINES

Overview of Subroutine Use
Location of Libraries
Overview of the Libraries

PART II - THE LANGUAGE INTERFACE

W
w THE BASIC/VM INTERFACE

Introduction
Data Types
Other Things to Know
Sample Programs

4 THE QOBOL INTERFACE

Introduction
Data Types
Other Things to Know
Sample Programs

5 ‘THE FORTRAN INTERFACE

Introduction
Data Types

Using SYSCOM Tables
Sample FIN (FORTRAN IV) Programs
Sample F77 (FORTRAN 77) Program
Sample File System Programs

Contents

i

1-1

i-2
1-3

2-1
2-5
2-5

4-1
4-]
4-5
4-6

5-1
5-1
5-7
5-7
5-11
5-12

6

7

8

10

ll

12

THE PASCAL INTERFACE

Introduction
Data Types
Using SYSCOM Tables
Sample Programs

THE PL/I SUBSET G INTERFACE

Introduction
The OPTIONS (SHORICALL) Declaration
Data Types
Using SYSCOM Tables
Sample Programs

THE PMA INTERFACE

Introduction
Data Types
Using SYSCOM Tables
Direct-entrance Calls to PRIMS —

The PCL Instruction
Sample Programs in V-mode
Sample Programs in R-mode

PART III - PRIMOS SUBROUTINES

FILE MANAGEMENT SUBROUTINES

Definitions
Subroutine Descriptions

SYSTEM SUBROUTINES

PART IV — MATH, SORT, AND APPLICATIONS
LIBRARY SUBROUTINES

FORTRAN MATRIX LIBRARY (MATHLB)

Scope of MATHIB
Subroutine Conventions
Subroutine Descriptions

APPLICATIONS LIBRARY

General Description
APPLIB Routines
Naming Conventions
Library Implementation and Policies
String Manipulation Routines
User Query Routines

vi

7-1
7-2

7-6
7-7

8-1
8-4
8-6

8-6
8-7
8-11

11-1
ji-1
11-3

13

14

16

17

18

19

File System Routines
Description of Subroutines
Format Summary
SYSCOMDASKEYS

SORT LIBRARIES

Sort Subroutines Overview
VSRILI (V—-mode) —— Subroutine

Descriptions
Cooperating Merge Subroutines
Cooperating Sort Subroutines
Sample User Input Procedure
SRILIB (R-mode) — Subroutine
Descriptions

MSORTS and VMSORT —- Subroutine

Descriptions

INTRODUCTION TO IOCS

How to Use Part V

Arguments to IOCS Subroutines

DEVICE ASSIGNMENT

Temporary Device Assignment
Permanent Device Assignment

DEVICE-INDEPENDENT DRIVERS

Data Formats

Arguments for Device-independent
Drivers

Descriptions of Subroutines

DISK SUBROUTINES

Arguments
Driver Subroutines
Obsolete Disk Subroutines

12-6
12-8
12-69
12-71

13-1

13-7
13-13
13-17
13-23

13-26

13-28

PART V — INPUT/OUTPUT LIBRARY SUBROUTINES

14-1
14-2

15-1
15-2

16-2

16-2
16-3

17-2
17-2
17-4

USER TERMINAL AND PAPER-TAPE SUBROUTINES

Overview
List of Subroutines

OTHER PERIPHERAL DEVICES

Line Printer Subroutines
Printer/Plotters

vii

18-1
18-1

19-1
19-11

Card Processing Subroutines 19-15
Magnetic Tapes 19-23

PART VI -— COMMUNICATIONS CONTROLLERS AND
REALTIME SUBROUTINES

20 SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Synchronous Controllers 20-1
Asynchronous Controllers 20-18

21 SEMAPHORES AND TIMERS

Realtime and Interuser Communication
Facilities 21-1

Semaphores 21-1
PRIME Semaphores 21-7
Coding Considerations 21-9
Pitfalls and How to Avoid Them 21-10
Locks 21-13
Description of the Subroutines 21-16

PART VII -— CONDITION HANDLING

22 OONDITION MECHANISM SUBROUTINES

Introduction 22-1
Creating and Using On-units 22-3
Examples of Programs 22-6
Additional Example Programs 22-9
Crawlout Mechanism 22-16
Condition Mechanism Subroutines 22-16
System-defined Conditions 22-25
Data Structure Formats 22-43

PART VIII — LIBRARY BUILDING AND MANAGEMENT

23 LIBRARY MANAGEMENT

LIBEDB 23-1

EDB 23-2
Examples 23-5

APPFENDIXES

A NEWFILE MANAGEMENT SUBROUTINES
FOR REV. 19

New Features in Rev. 19 A-1
Description of the Subroutines A-3

viii

K
H

MESSAGE FACILITY SUBROUTINES

Introduction

KEYS (SYSCOM>KEYS. INS)

Introduction

ERROR HANDLING

Introduction
Error Codes
File System Error—handling
Conventions

The Error-handling Routine ERRPRS

ERROR HANDLING FOR I-O SUBROUTINES

Introduction
Subroutines for Error Handling
Description of ERRVEC

FORTRAN INTERNAL SUBROUTINES

Internal Subroutines
Intrinsic Functions
Floating-point Exceptions

ARITHMETIC ROUTINES CALLABLE FROM PMA

Introduction
Format and Arguments
Single-argument Subroutines
Two-argument Subroutines

SVC INFORMATION

SVCs Called by PRIMDS Subroutines
SVC Interface for I/O Calls
SVC Interface Considerations
Operating System Response to SVCs

FILE MANAGEMENT SYSTEM CONCEPIS

Purpose of the File System
Using the File Systen
File Types
File Directories
Disk Structures
File Access
Command Files
File Maintenance (FIX_DISK)
Internal File Formats

(Before Rev. 19)

ix

D-1
D-1

D-7

E-1
E-1

F~1
F-4
F-4

G-l
G-1
G-5
G-7

H-l
H-1
H-1
H-4

I-1
I-2
I-5
I-10
I-12
I-12
1-15
I-16

I-17

Record Header Formats I-17
UFD Header and Entry Formats I-19
Segment Directory Format I-21
DAM File Organization I-22

J OBSOLETE INDICATION AND
CONTROL SUBROUTINES

Overview J-1
Subroutine Descriptions J-1

K ‘TABLE OF SUBROUTINES BY FUNCTION K-l]

L EPF SUBROUTINES

Introduction L-l1
List of Subroutines L-l
Subroutine Descriptions L-4

M OTHER NEW SUBROUTINES
AT REVISION 19.4

List of Subroutines M1
Subroutine Descriptions M-2

N ‘HE C INTERFACE

Introduction Nl
Data Types M1
The —NOOCONVERT Option N-6
The FORTRAN Storage Class N-6
More About C N-6
Using SYSCOM Tables N-6
Sample Programs N-7

O MRRECTIONS O-1

P SUBROUTINES FROM MRUS Introduction P-l
Subroutine Descriptions

for Rev. 19.1 P-3
Subroutine Descriptions

for Rev. 19.2 P-10
Subroutine Descriptions

for Rev. 19.3 P-20

INDEXES

GENERAL INDEX INDEX~1

| INDEX OF SUBROUTINES BY NAME SX-1

About

This Book

This book describes the subroutines that can be called from Prime's

high-level languages or the Prime Macro Assembler (PMA). It also

discusses how to call these subroutines from languages supported by

Prime.

Procedures relating to building and modifying libraries and changing

Input/Output Control System device assignments are included for user

convenience. Use of Prime's condition mechanism is discussed in

detail. An overview of pre-Rev. 19 PRIMOS file system concepts and

usage is in Appendix I.

SUGGESTED REFERENCES

The Prime User's Guide (PDR4130) contains information on system use,

directory structure, the condition mechanism, CPL files, ACLS, global

variables, and how to load and execute files with external subroutines.

Language programmers will also need the reference guide for their

particular language. Programmers who wish more advanced information on

library management or I/O manipulation should consult the Systen

Administrator's Guide (PDR3109).

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement

formats, and in examples throughout this document. Terminal input may

be entered in either uppercase or lowercase.

Convention

UPPERCASE

lowercase

underlining
in

examples

Brackets

[]

Braces

{ }

Ellipsis

Parentheses

()

Hyphen

Explanation

In command formats, words in
uppercase indicate the actual
names of commands, statements,
and keywords. They can be
entered in either uppercase
or lowercase.

In command formats, words
in lowercase indicate items
for which the user must
Substitute a suitable value.

In examples, user input is
underlined but system prompts
and output are not.

Brackets enclose a list of
one or more optional items.
Choose none, one, or more of
these items (0-n).

Braces enclose a vertical

list of items. Choose one
and only one of these items.

An ellipsis indicates that
the preceding item may be
repeated,

In command or statement
formats, parentheses must be
entered exactly as shown.

Wherever a hyphen appears in
a command line option, it is
a required part of that
option,

xii

Example

SLIST

LOGIN user-id

OK, SEG —LOAD

CALL xxx (key [,altrtn])

CLINEQ
CALL jLINEQ

DLINEQ

iten-x [r iten-y] eee

CALL TIMDAT (array, n)

SPOOL -LIST

ADDITIONAL DOCUMENTATION CONVENTIONS

Notation Conventions

Convention Explanation Example

Angle Brackets Angle brackets must be used as <FOREST>BEECH>LEAF4
<> shown to separate the elements

of a pathname.

Colon A colon before a number :100
: indicates that octal notation

follows.

Apostrophe An apostrophe before a number "100
' indicates that octal notation

follows.

Filename Conventions

Convention Explanation

filename. languagename or Source file (for example, MYPROG. FIN)
filename

filename.BIN or Binary (object) file
B_filename

filename.LIST or Listing file
L_filename

filename.SEG or Saved executable runfile (V-mode)
#£ilename

filename.SAVE or Saved executable object image (R-mode)
*filename

Filenames may be comprised of 1 to 32 characters inclusive, the first
Character of which must be nonnumeric. Names should not begin with a
hyphen (-) or wumderscore (_). Filenames may be composed only of the

following characters: A-Z, 0-9,_ #S$&-*%*. and /.

See the manual for each language for an explanation of how the various
names for source, object, listing, and runtime files relate to each
other. A general explanation is also in the Prime User's Guide.

xiii

Note

On some devices, the underscore (_) may print as back arrow
(«).

Xiv

PART I

Overview

Introduction

DOCUMENT ORGANIZATION

This guide is divided into eight parts which are detailed in the Table
of Contents. They cover the following topics:

I Overview

II Language interfaces to standard subroutines

III PRIMOS subroutines

IV Math, applications, and sort library subroutines

V Input/output library subroutines

VI Subroutines that support communications controllers and

semaphores

VII Subroutines that support the condition-handling mechanism

VIII Library management for object libraries

In addition, the Appendixes contain tables, new Rev. 19 subroutines,
and some information of use only for revisions of PRIMDS before 19.

There is a general index, and also an index of subroutine names only.

1-1 Third Edition

DOC3621~-190

MAJOR CHANGES IN THE REV. 19 SUBROUTINE DOCUMENTATION

Chapters 1 and 2 have been rewritten. Chapters 3 through 8, the
language interfaces, have been added. These additions have caused old

Chapters 3 through 17 to be renumbered and, in some cases, reorganized.
Old Chapter 3 is incorporated into Appendix I. Chapters 21 (SEMAPHORES
AND TIMERS) and 23 (CONDITION-MECHANISM SUBROUTINES) have been

rewritten. Appendixes A, B, and K have been added. The index of
subroutines by name has been expanded to include a one-line description
of each subroutine. In chapters not mentioned above as new or
rewritten, change bars in the margin mark significant changes in
content.

The chapters and appendixes have been renumbered as follows:

Old New

1 1
2 2
3 Appendix I
4 9
5 10
6 5
7 FORTRAN guides
8 FORTRAN guides
9 Appendix G

10 ll
li 12
12 13
13 14, 15
14 17, Appendix E
15 16
16 14, 17, 18, 19
17 17
18 18
19 19
20 20
21 21
22 23
23 22
A F

B J
C H
D C
E I
F Deleted
G D

Third Edition 1-2

INTRODUCTION

The following subroutine descriptions have been added in this edition
of the Subroutines Reference Guide:

The new ACLS, file maintenance, and date-retrieval subroutines
in Appendix A.

The message-support subroutines in Appendix B.

APSFXS$ - Append a suffix to a pathname.

ASNLNS ~- Assign AMLC line.

CLSPIX - Parse command line.

FNCHKS - Check a filename for valid format.

GCHAR ~- Get a character from an array.

GVSGET - Retrieve the value of a global variable.

GVSSET - Set the value of a global variable.

ISAA12 - Read ASCII from terminal or input stream.

IDCHKS$ - Check an id for valid format.

LONSCN - Enable or disable logout notification.

LONSR - Retrieve logout notification information.

MKONSP - Create an on-unit from F77 or PLIG.

MRG2SS - Return next merged record.

MRG3$S - Close merged input files.

PHNIMS - Start a phantom.

PWCHKS - Check a password for valid format,

QSREAD - Read quota information.

QSSET - Set quota maximum.

SCHAR ~- Store a character in an array.

SEMSCL - Close named semaphore.

SEMSOU - Open named semaphore by file unit.

1-3 Third Edition

DOC3621-190

@ SEMSIW - Timed wait for named semaphore.

@ SRSFXS - Search for a file with any of a list of suffixes.

@ TNCHKS - Check a pathname for valid format.

WHAT IS NOT IN THIS BOOK

Only subroutines that are useful for programmers are discussed in this
guide. Libraries such as COBQL (VCOBLB), RPG (RPGLIB), or PLIG
(PLIGIB) contain subroutines that are used exclusively by the
appropriate compiler. The use of these libraries is not discussed
here, nor is the use of FORTRAN library subroutines such as IFIX or INT
that are generated and used only by the FORTRAN compiler. Thus, old
Chapters 7 and 8 have been omitted, and the material is in the relevant

FORTRAN guide. In addition, the obsolete subroutines ATTACH, CMREAD,
CNAMES, COMINP, PRWFIL, RESTOR, RESUME, SAVE, and SEARCH have been
deleted,

Third Edition 1-4

Overview of

Subroutines

OVERVIEW OF SUBROUTINE USE

This is a reference guide and is intended for users who already know
how to call subroutines from a high-level language or from PMA. The
following overview merely summarizes conventions’ for calling
subroutines. For more information, see the chapter on your particular

language.

A subroutine is a module of code that may be called from another
module. It is useful for performing operations that cannot be
performed by the calling language, or for performing standard
Operations faster. Users may write their own subroutines to supply
customized or repetitive operations, However, this guide discusses
only standard subroutines provided with the PRIMOS operating system or
in standard libraries.

Functions and Subroutines

In this guide, a function is a call that returns a value. It must be
called by being assigned to a variable, for example:

VALUE] = DELESA(argl, arg2)

2-1 Third Edition

DOC3621-190

A subroutine returns values only through its arguments. It is called
this way:

CALL GVSGET(argl, arg2, arg3, arg4)

However, the word subroutine is also used as the collective tem for
both of these modules.

Direct Entry Calls

All recent standard subroutines are direct entry calls. Adirect entry
involves execution of a routine within PRIMOS, the Prime operating
system. The library call in this case contains only an interlude or
call to the PRIMOS routine. This feature is of direct use only to the
PMA programmer, who may use the PCL (procedure call) instruction rather
than CALL to call the subroutines. For programmers in all languages,
the feature means that repeated calls to the subroutine are faster, but
the call is only available in V-mode and I-mode. A list of direct
calls is supplied in Chapter 8.

Subroutine Arguments

Subroutines usually expect one or more arguments from the calling
program. These arguments must be of the data type expected, and be
passed in the order expected. Table 3-1 in Chapter 3 shows how a data
type named in one language should be described in your calling language
in order to be acceptable to the subroutine. All standard Prime
Subroutines are written in FORTRAN, PMA, or a system version of PL/I
Subset G (PLIG). Chapters 3 through 8 discuss how to translate the
data types expected by these languages into other Prime languages.

It is necessary, however, that arguments be passed in the same order as
expected by execution. If too few arguments are passed, execution
Causes an error message such as POINTER FAULT or ILLEGAL SEGNO. If too
many arguments are passed, the subroutine ignores the extra arguments,
but will probably perform incorrectly.

How to Set Bits in Arguments

Sometimes a subroutine expects an argument that consists of a number of
bits that must be set on or off.

A data item is stored in a computer as a collection of bits, which can
each have one of two values, off or on. On Prime computers, off is
arbitrarily equated to 0 or false, and on is equated tol or true.
(This is not the same as the FORTRAN values .FALSE. and .TRUE., which
are the logical data type.) When bits are stored as part of a group,
the position of the bit gives it another value in addition tol or 0.

Third Edition 2-2

OVERVIEW OF SUBROUTINES

Its position equates it to a power of 2. Consider an argument that
contained only two bits, represented in Figure 2-l.

bit 1 bit 2

Values of Bit Positions -- Two Bits
Figure 2-1

The low-order bit would be in the position of 2 to the 0 power, and its
value, 1f ON, would be 1. The high-order bit would be in the position
of 2 to the first power, and its value, if ON, would be 2. (If OFF,
the value of a bit is always 0.) By convention, the low-order bit is
called the rightmost bit and the high-order bit is called the leftmost
bit.

In an argument containing 16 bits, choose the bits that you want to set
ON, compute their value by position, and add these values. ‘The
resulting decimal value is what you should assign to the subroutine
argument for the options you want. For example, if you want to set the
Sixteenth and the seventh bit, compute 2 to the 0 power plus 2 to the
ninth power, which amounts to 1 plus 512, or 513. Figure 2-2
illustrates values of bit positions in a 16-bit argument.

Values of Bits in a 16-bit Argument
Figure 2-2

2-3 Third Edition

DOC3621=190

Key Names and Code Names

Many subroutine descriptions in this guide use data names for numeric
values, These names are in the form x$yyyy, where x is either K, A, or
E, and yyyy is a combination of letters, Examples are:

KSCURR
ASDEC
ESFNTF

The values of these keys are included in various files in the UFD
called SYSCOM. It is recommended that programs use these data names
rather than the numeric values for clarity. How to insert the key
values in a program is discussed for each language in Chapters 3

through 8.

Loading Subroutines

A subroutine may be written in a different language from that of the
calling program; in any case, the call only causes the object or
binary code to be called. This code is in machine language, as is the
object code that calls it at runtime. In PRIMOS, all subroutines must
be loaded in the runtime module (memory image) in order to be found
when they are called. Loading is done with the SEG utility for V-mode,
and with the LOAD utility for R-mode. All object files loaded into one
runtime file must be in the same mode, which means that not all
subroutines can be used with all languages. Loading of all system
subroutines in the FINLIB, PFINLIB, and PRIMOS libraries is done with
the LI command of SEG or LOAD, with no operands. Loading of
subroutines in the other libraries must be done by the programmer with
the command LI plus the library name after SEG or LOAD is invoked,
Examples of the loading process are given in Chapters 3 through 8.

If you try to execute a program that calis subroutines and get a
runtime error message, reload and, after the LI command, use the MAP 3
command to see whether any missing subroutine names are displayed. If
necessary, refer to the section on LOCATION OF LIBRARIES below to find
where the missing subroutine is stored. (MAP 3, along with other load
options, is explained in detail in the LOAD and SEG Reference Guide).

The loading process is different for BASIC/VM, which takes care of
editing, compiling, loading, and execution within the special
environment it creates.

The examples at the end of Chapters 3 through 8 show how to load

programs that include subroutines,

Third Edition 2-4

OVERVIEW OF SUBROUTINES

LOCATION OF LIBRARIES

The object code for the standard library subroutines is contained in
the UFD named LIB, and is loaded with the command LI for LOAD or SEG.
Other libraries such as VSRILI and VAPPLB must be loaded separately
with the LI command followed by the library name. To get a list of all
the libraries in the UFD LIB, use the commands:

ATTACH LIB

LISTF (or LD for an alphabetical listing)

The libraries described in this guide are:

Library R-mode File V-mode File

PRIMOS including LIB>FINLIB.BIN LIB>PFINLB. BIN
file systen,
condition mechanism,
controllers,
Semaphore handlers,
and IOCcS

Application LIB>APPLIB.BIN LIB>VAPPLB.BIN
In-memory sorts LIB>MSORIS>BIN LIB>VMSORT.BIN
Matrix LIB>MATHIB.BIN not available
Sort LIB>SRILIB.BIN LIB>VSRILI.BIN
Spool LIB>SPOOLS .BIN LIB>VSPOOS .BIN

Note

The R-mode libraries are not being updated. Newer subroutines
(such as GPATHS or LOGOSS) are in the V-mode libraries only.

FINLIB.BIN has been duplicated as SVCLIB.BIN.

There are other libraries in LIB that are not described in this guide.
The subroutines in some of these libraries, such as PRIMENET, FORTRAN,
the Block Device Interface, (BDVLIB), and MIDAS (KIDALB and VKDALB) are
discussed in other guides. The calls to subroutines in other
libraries, such as RPG, are generated automatically by compilers. The
details need never concern the programmer.

OVERVIEW OF THE LIBRARIES

FORTRAN Library

The FORTRAN library contains many subroutines that are discussed in the
following sections, such as the IOCS library. However, this library is
also very important because it is the basis for most other libraries,
including language libraries. This is why, except with PMA, loading of
any program usually includes the command LI with no operand, whether
the program contains subroutine calls or not. The command LI loads the
FORTRAN library and checks that all subroutines called are present.

2-5 Third Edition

DOC3621-190

The FORTRAN library file also contains FORTRAN function subroutines and
math subroutines. They are described in the FORTRAN Reference Guide
and the FORTRAN 77 Reference Guide.

The FORTRAN library also contains arithmetic subroutines that the
FORTRAN compiler uses. Some of these subroutines can also be called
from PMA. These routines perform arithmetic operations on single
precision integers, single- and double-precision floating point, and
complex numbers, They are listed in Appendix F.

File-handlingSubroutines

All file handling is done by a collection of special subroutines, some
internal to PRIMOS, and others available as application library
routines, PRIMOS file-handling subroutines are described in Chapter 9.

All the PRIMOS file-handling subroutines called by the user are loaded
with the FORTRAN library.

File Handling in User Programs: The file-handling subroutines simplify
communication between the PRIMOS file structure and user programs.
They can be used, for example, to verify the existence of a file before
the program accesses it, to delete a file, or to check for a valid
filename entered by a user.

Many of these subroutines allow a program to access files directly
through file unit numbers, which is faster than access by filenames.
File units are explained in Chapter 9. For example, at the program
level the filename TEXT and the file unit number 4 can be associated by
the PRIMOS subroutine SRCHSS:

CALL SRCHS$ (KSWRIT, 'TEXT', 1, 4, type, code)

Afterwards, other Subroutines can access the file by unit number rather
than by name, which is faster.

See Chapter 9 for a more thorough discussion of SRCHSS.

As another example, with the aid of the PRIMOS subroutine PRWFSS, the
FORTRAN user can bypass formatted I/O and write directly from memory
arrays to the file system, as in:

CALL PRWFSS (KSREAD, 1, LOC(TEXT), 36, POS, WORDS, CODE)

This subroutine call reads 36 words from the file associated with file
unit 1 to the array TEXT. WORDS and CODE are returned values (number
of words transferred and error code). FOS is the position in the file.

The use of file system subroutines has its advantages and
disadvantages. For a PLIG program that does a great deal of I/O, the
programmer can save on runtime by calling these subroutines instead of

Third Edition 2-6

OVERVIEW OF SUBROUTINES

using PLIG I/O statements. However, the program with its subroutine
calls is not transportable to a non-Prime machine, and new programmers
will not be able to understand or maintain the nonstandard program
easily.

General PRIMOS Subroutines

General PRIMOS subroutines include those listed in Chapter 10.
(Chapters 9 and 19 through 22 also discuss PRIMOS subroutines with
specialized functions.) PRIMOS subroutines are loaded when the FORTRAN
library is loaded with LI. They include subroutines for:

@ Management of system information

@ Global variable management

mae II 2

handling@ MS F € &

@ ACL system management (See Appendix A.)

Matrix Library

eteme

MATHIB (FORTRAN matrix subroutines) contains subroutines to perform
matrix operations, solve systems of simultaneous linear equations, and
generate permutations and combinations of elements. They are available
only in R-mode. (See Chapter 11 for the scope and use of this
library.)

Applications Library

The Applications library provides users with an easy-to-use library of
service routines (Chapter 12). They range from the very simple, which
do little more than call a lower-level routine, to relatively
high-level functions such as:

e@e String-handling routines

e@e User query routines

@ System information routines

@ Mathematical routines

e Conversion routines

e File system routines

e Parsing routines

2-7 Third Edition

DOC3621-190

Subroutines in this library often duplicate the work of subroutines in
the File System library, or even call those routines. For example, to
delete a file, you may use SRCHSS or TSRCSS in the File System library,
or you may call DELESA in the Applications library. If you compare
those routines, you will see that DELESA requires fewer arguments, and
is simpler to call. Of course, it may be slightly slower because it

makes calls to three subroutines,

Sort Libraries

There are four libraries containing sort subroutines, all presented in

Chapter 13:

e VSRILI subroutines are used to perform most file sorting and
merging operations,

e SRTLIB is the R-mode version of VSRILI.

@ VMSORT contains several specialized in-memory sort subroutines
and a binary search subroutine.

@ MSORTS is the R-mode version of VMSORT.

I/O Subroutines

The I/O subroutines are those relating to data transfers and device
operations. The subroutines are managed by the Input/Output Control

System (IOCS). The IOCS subroutines perform input/output between the
Prime computer and the disks, terminals, and peripheral devices within
the system configuration. Many of these calls have been outmoded by
newer PRIMOS subroutines. The I/O subroutines include:

@ Device-independent drivers that route an I/O request to the
independent driver, thus allowing the user to maintain device
independence. (See Chapter 16.)

e Disk subroutines that perform disk input/output operations,
(See Chapter 17.)

@ Subroutines that transfer data between a user terminal or paper-
tape device and memory. These are helpful, among other things,
for using nonprinting characters. (See Chapter 18.)

@ Peripheral device routines that control line printers, a
printer/plotter, serial and parallel card readers, 7-track, and

9-track tapes. (See Chapter 19.)

Third Edition 2-8

OVERVIEW OF SUBROUTINES

Synchronous and Asynchronous Controllers

These subroutines perform the movement of raw data for assigned AMLC or
SMLC lines. (See Chapter 20.)

Semaphore-handling Subroutines

PRIMOS supports user applications that have realtime requirements or
the need to synchronize execution with other user programs. This
Support is a set of subroutines that provide access to Prime's

semaphore primitives and to internal timing facilities. (See Chapter
21.)

Condition-mechanism Subroutines

The conditi on mechanism is activated when a wvrogcram encounters such
as SONARSL 1Wh1 wud Vv uw revys INASLO NLS

unexpected occurrences as end of file, illegal address, an attempt to
divide by 0, or use of the BREAK key from a terminal.

The condition mechanism's goal is either to repair the problem and
restart the program, or to terminate the program in an orderly manner.
To achieve this goal, the condition mechanism activates diagnostic or
remedial code blocks called on-units.

Users writing in FORTRAN IV, FORTRAN 77, PLIG, or PMA can define their
own on-units. However, all these users are automatically protected by
PRIMOS system on-units. When an error condition occurs, the condition
mechanism looks for on-units within the executing procedure. If it
finds none, or if the procedure's on-units call for further help, the

condition mechanism searches first through any calling procedures'
on-units and then through the system's on-units, activating the first
appropriate on-unit it finds.

The system or default on-units, and how to write individualized
on-units, are described in Chapter 22 of this guide.

2-9 Third Edition

PARTII

The Language Interface ©

The BASIC/VM
Interface

INTRODUCTION

BASIC/VM has only two types of operand, strings and double-precision
(64-bit) floating point. However, when a subroutine is declared in
BASIC, several argument types may be declared for the subroutine. The
BASIC/VM compiler then handles all conversions of BASIC operands to and
from the subroutine argument types.

External functions may not be called from BASIC/VM. However, most
functions in this manual may also be called as subroutines.

Table 3-1 summarizes the argument types of FORTRAN and PLIG subroutines
that can be called from BASIC/VM, and how to declare these arguments.

To declare a subroutine argument type, use the statement:

SUB FORTRAN sub-name [(type, type...)]

The possible types are INT, INT*4, REAL, and REAL*8. The following is
a detailed discussion of FORTRAN and PLIG argument types, as well as
some generic types, and how they relate to the BASIC/VM data types.

To call a subroutine, use the statement:

CALL sub-name [(argl, arg2 ...)]

Literals may be used as arguments in BASIC/VM subroutine calls.

3-1 Third Edition

DOC3621-190

Table 3-1
Data Types

GENERIC BASIC / FORTRAN FORTRAN
UNIT/PMA VM COBOL IV 77 PASCAL PLIG

(1)
1 bit —*— _*— —*— —*— ke Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTHGER*2 Integer Fixed Bin

Half-word INTHGER*2 LOGICAL*2 Boolean Fixed

LOGICAL Bin(15)

INTEGER (4)

32-bit INT*4 —*- INTHGER*4 INTEGER*4 Subrange Fixed
Word LOGICAL Bin (31)

LOGICAL*4

64-bit
Double —~*— —_*k*— —_*k*— a -_* —_*.

Word

Float

32-bit REAL REAL REAL Real Binary
Float single ~* REAL*4 REAL*4 Float
precision Bin (23)

64-bit
Float double REAL*8 —* REAL*8 REAL*8 —t— Float

precision Bin (47)

DISPLAY(5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER ARRAY Char (n)

(Max. 32767) PIC 9(n) *n {[1l..n] OF
PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —*k— Char (n)
string Varying

(7) 8)
48-bits —*— —*- —*- —*- <type> Pointer
3 Half-words

* Not available.

Third Edition

(1)

(2)

(3)

(5)

(6)

(7)

(8)

THE BASIC/VM INTERFACE

Notes to Table 3-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'Bis true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or
PLIG.

Boolean data in Pascal is represented in 16 bits where the
Sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG,

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard
Pascal type.

3-3 Third Edition

DOC3621-190

DATA TYPES

INTHGER*2 or FIXED BIN(15)

The INTHGER*2 expected by FORTRAN subroutines is PLIG's FIXED BIN(15),
also called just FIXED BIN. It must be declared as INT in BASIC/WM's
subroutine declarations. In the BASIC program, the variable or
constant to be passed is the normal numeric operand, which is
double-precision floating point, and is not explicitly declared.

Sample Program 2 illustrates passing an INTEGER*2 argument.

INTEGER*4 or FIXED BIN(31)

The INTEGER*4 expected by FORTRAN subroutines must be declared as INT*4
in BASIC/VM's subroutine declarations. In the BASIC program, the
variable or constant to be passed is the normal numeric operand, which
is double-precision floating point, and is not explicitly declared.

Sample Program 3 below illustrates use of an INTEGER*4 argument with
the subroutine RNUMSA.

REAL*4

The REAL or REAL*4 argument expected by FORTRAN subroutines must be
declared as REAL in BASIC/VM's subroutine declarations, In the BASIC
program, the variable or constant to be passed should be used as the
normal numeric operand, which is double-precision floating point, and
is not explicitly declared,

REAL*8

The REAL*8 argument expected by FORTRAN subroutines must be declared as
REAL*8 in BASIC/VM's subroutine declaration. In the BASIC program, the
variable or constant to be passed should be the normal numeric operand,
which is double-precision floating point, and is not explicitly
declared.

Third Edition 3-4

THE BASIC/VM INTERFACE

Integer Arrays

Integer arrays in FORTRAN may contain either numbers or characters. An
integer array should be declared in the BASIC/VM subroutine declaration

as INT or INT*4, depending on what the subroutine expects. In the
BASIC program, it should be declared either as the array x(y), where x
is the variable name and y is the dimension, or as the string X$ with
the proper number of characters, again depending on which data type is
expected.

Sample Program 1 below illustrates receiving an integer array
containing two data types from the subroutine TIMDAT.

Caution

Multidimensional arrays cannot be passed to FORTRAN from other
languages, because FORTRAN is the only language to use a

column-row format.
ASCII Character (String)

A CHARACTER argument expected by a FORTRAN 77 subroutine should be

declared in the BASIC/VM subroutine declaration as INT. In the BASIC

program, it should be used as a character string (X$), which is not

explicitly declared but must have the number of characters expected by

the subroutine.

Sample Program 1 below illustrates receiving a character string from

the subroutine TIMDAT.

CHARACTER(n) NONVARYING

This PLIG type, usually declared simply as CHARACTER(n), may be passed
as a character string of n characters. The argument should be declared
in the BASIC/VM subroutine declaration as INT. In the BASIC program,
it should be used as a character string (X$) with the expected number
of characters.

String Arrays

String arrays in BASIC cannot be passed as arguments to FORTRAN

subroutines,

3-5 Third Edition

DOC3621-190

LOGICAL

TOGICAL or LOGICAL*2 arguments expected by a FORTRAN subroutine should
be declared as INI in the BASIC/VM subroutine declaration. In the
program, variables or constants to be passed to the subroutine should
be used aS normal numeric operands (not explicitly declared). They
will have a value of 0 (false) or 1 (true).

Sample Program 4 below illustrates accepting a logical argument from
the subroutine TEXTOS.

CHARACTER (*) VARYING, POINTER

These arguments expected by FORTRAN or PLIG subroutines cannot be
passed from a BASIC/VM program.

BIT (1

This argument expected by a PLIG subroutine cannot be passed from a
BASIC/VM program unless it is declared as BIT(1) ALIGNED. In the
latter case, the argument may be treated as an INTEGER*2 whose value is

OTHER THINGS TO KNOW

System Subroutines Not Recognized by BASIC/VM

If a FORTRAN subroutine is in VAPPLB, it may not be recognized by the
BASIC/VM compiler. This is because only some of the subroutines from
this library have been included in the BASIC/VM compiler so that they
may be called by various BASIC/VM commands. Others were amitted
because of size considerations. If you make a subroutine call to a
routine in VAPPLB (Chapter 12), and it compiles correctly but gives the
runtime error message, Entry name xxx not found, then the subroutine is
missing from the BASIC/VM compiler and must be installed. Your Systen
Administrator may install more subroutines from VAPPLB (or user-written
Subroutines) in the BASIC/VM compiler, as explained in the System
Administrator's Guide or the BASIC/VM Programmer's Guide.

Sample Program 3 below uses a VAPPLB subroutine, RNUMSA, that is not in
the standard BASIC/VM compiler.

Third Edition 3-6

THE BASIC/VM INTERFACE

SYSCOM Tables

This guide uses names instead of values of Certain subroutine
arguments. There are three classes of value-names, as described below.

Subroutines in VAPPLB sometimes make reference to codes with names in
the format ASxxxx. BASIC cannot accomodate these names, and so the
BASIC program must check for the numeric equivalents of these codes,The numeric equivalents are in the table at the end of Chapter 12.
They are also listed in the file SYSCOM>ASKEYS.INS.FIN, which can be
read or spooled from the terminal.

Some subroutines require keys, which are listed with names in the
format K$xxxx. The numeric equivalents of these keys must be read from
one of the SYSOOM>KEYS.INS.language files. They are also listed in
Appendix C.

Finally, a subroutine may return an error code in the form ESxxxx. The
meaning of the numeric error code returned is listed in Appendix D, or
may read from one of the SYSCOMDERRD. INS. language files,

Sample Program 2 below illustrates use of a numerical equivalent for
the key in SYSCOM>KEYS.INS.FIN. Sample Program 3 illustrates the use
of ASKEYS.

SAMPLE PROGRAMS

Program 1 —- Accepting an Integer Array or Character String

10 !THE FOLLOWING PROGRAM ILLUSTRATES A CALL USING A CHARACTER
20 ‘STRING. IT CALLS THE PRIMOS SUBROUTINE TIMDAT, WHICH RETURNS
30 !AN ARRAY OF MIXED ASCII AND INTEGER FORMAT ELEMENTS .
35 !TO CAPTURE BOTH TYPES IN BASIC, THE SUBROUTINE IS CALLED
40 ‘TWICE: ONCE WITH ARRAY A AS THE RETURN ARGUMENT, AND THEN
50 ‘WITH STRING A$ AS THE RETURN ARGUMENT. NOTE ALSO:
60 ! 1) VALUES RETURNED START AT A(0).
70! 2) STORAGE SPACE MUST BE ALLOCATED FOR AS BEFORE
80! THE CALL.
90!
110 SUB FORTRAN TIMDAT (INT, INT)
120 DIM A(15) REM INTEGER DEFINITION
130 CALL TIMDAT(A(), 28)
140 !
150 AS = SPA(30) REM CHARACTER DEFINITION
3 CALL TIMDAT(AS,28)
170 !
180 !BEFORE PRINTING THE RETRIEVED INFORMATION, NOTE THAT THE
190 !FIRST THREE AND LAST RETURNED ARRAY ELEMENTS ARE IN ASCII
200 ‘!FORMAT, SO THEY ARE PRINTED AS RETRIEVED THROUGH AS.
210 ‘OTHER RETURNED ELEMENTS ARE INTEGERS, SO THEY ARE PRINTED AS
220 !RETRIEVED THROUGH ARRAY A.
230 !

3-7 . Third Edition

DOC3621~-190

240
250
260
270
275
280
290
300

PRINT ‘MONTH: ':LEFT(AS,2)

PRINT 'DAY: ':MID(AS,3,2)

PRINT 'YEAR: ':MID(AS,5,2)

PRINT "TIME IN MINUTES SINCE MIDNIGHT: ':A(3)

PRINT 'TIME IN SECONDS: ':A(4)
PRINT 'TIME IN TICKS: ' :A(5)

PRINT 'LOGIN NAME: 's:RIGHT(AS, 25)

To run this program, use the dialog below.

OK, BASICV
BASICV REV19.0
>OLD TIMDIB

>RON

timdtb. basic THU, DEC 17 1981 10:57:32

TIME IN SECONDS: 0

MONTH: 12
DAY :

YEAR:

17
81

TIME IN MINUTES SINCE MIDNIGHT: 657

TIME IN TICKS: 134
LOGIN NAME: ANNE

>

Program 2 — Using INT*2 and SYSCOM>KEYS

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

'THIS SUBROUTINE CALL ILLUSTRATES USE OF THE SYSCOM>KEYS.F

IKEYS IN A LANGUAGE THAT CANNOT INVOKE THE SYSCOM TABLE.

!
PRINT 'BEGINNING OF BASIC PROGRAM'

FS = 'CIRLFL'
!

W
Z = KSEXST+KSIUFDtno argument

EREFORE N = 6 + 0

A
M
O
a

O
r
O
O

FORTRAN SRCHSS(INT, INT, INT, INT, INT, INT)

CALL SRCHSS(N,FS,L,F,T,C)

PRINT 'CODE IS: ',C
END

:

Third Edition 3-8

THE BASIC/VM INTERFACE

To run this program, use the following dialog. If the file CTRLFL

exists, the code displayed will be 0, as explained in Appendix D.

OK, BASICV
BASICV REV19.0
>OLD SRCH

RON
srch. basic THU, DEC 17 1981 11:01:23

BEGINNING OF BASIC PROGRAM

CODE IS: 0

>

Program 3 —- Using an INTEGER*4 Argument

Before this program will work, the subroutine RNUMSA must

in BASIC/VM, as explained in the System Admi O

accepts a 32-bit integer as input and checks that ithas the correct

format.

oD

10 !THIS SUBROUTINE CALL ILLUSTRATES USE OF THE INT*4

20 !PARAMETER AND ALSO OF SYSCOM>ASKEYS

30 =!
40 PRINT ‘BEGINNING OF BASIC PROGRAM’

50 FS = 'ENTER A NUMBER'

100 = 14
lll!
112 ! NUMERIC KEY IS ASDEC, EQUAL TO 1
113 N=l1
140 SUB FORTRAN RNUMSA(INT, INT, INT*4, INT)
150 CALL RNUMSA(FS$,L,N,V)
160 PRINT 'CODE IS: ',V
170 END

Program 4 — Accepting a Logical Argument

Before this program will work, the subroutine TEXTO$ must be installed

in BASIC/VM, as explained in the System Administrator's Guide.

10 REM A PROGRAM TO CALL SUBROUTINE TEXTOS$ TO

20 REM VERIFY THAT A FILENAME ENTERED BY A USER

30 REM HAS A VALID FORMAT

40 REM

50 NS ='! '

60 SUB FORTRAN TEXTOS(INT, INT, INT, INT)

70 PRINT
80 INPUT "ENTER NAME OF FILE TO BE CREATED: ", NS

90 PRINT
100 Ll = LEN(NS)

3-9 Third Edition

DOC3621~190

110 CALL TEXTOS(NS, Ll, L2, T)
120 IF T = 1 GOTO 210
130 REM
140 REM LOGICAL T IS FALSE
150 REM
160 PRINT "INVALID NAME - TRY AGAIN"
170 GOTO 80
180 REM
190 REM LOGICAL T IS TRUE
200 REM
210 PRINT "LENGTH IS", L2
220 PRINT "TRUTH VALUE IS", T
230 PRINT "END OF RUN"
240 END

Third Edition 3-10

The COBOL

Interface

INTRODUCTION

To call a subroutine from COBOL, use the format:

The sub-name must be the literal subroutine name enclosed in quotes.
The data~names must be described in the DATA division with level—number
01 or 77. Arguments may not be passed to or returned from a subroutine
as literals in COBOL. The sample programs below illustrate subroutine

calls.

External functions may not be called from COBOL. However, most
functions in this book may also be called as subroutines.

DATA TYPES

Table 4-1 summarizes the argument types of FORTRAN and PLIG subroutines
that can be called from COBOL. The following is a discussion of
FORTRAN and PLIG argument types, as well as some generic types, and how

they relate to COBOL data types and structures.

A-] Third Edition

DOC3621-190

Table 4-1
Data Types

GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL IV T7 PASCAL PLIG

(1)
1 bit —*- kk —*k— —*— ke Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTHGER*2 Integer Fixed Bin
Half-word INTHGER*2 LOGICAL*2 Boolean Fixed

LOGICAL Bin(15)

INTHGER (4)
32-bit INT*4 —*— INTEGER*4 INTEGER*4 Subrange Fixed
Word LOGICAL Bin (31)

LOGICAL*4

64-bit
Double —_*ko —_*— —_-*k _*— —_* ko

Word

Float
32-bit REAL REAL REAL Real Binary
Float single —*— REAL*4 REAL*4 Float
precision Bin (23)

64~bit
Float double

|

REAL*8 —*— REAL*8 REAL*8 —*- Float
precision Bin(47)

DISPLAY (5) (5) (5) (5)Byte string

|

INT

|

PIC A(n) INTEGER |CHARACTER

|

ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [l..n] OF

PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —* Char (n)
string Varying

(7) en)
48-bits —*k— —*— —*— ~—*- <type> Pointer
3 Half-words

* Not available,

Third Edition 4-2

(1)

(2)

-
_
i
h

a
w
e

(5)

-
_
—

O
N

a
t

(7)

(8)

THE COBOL INTERFACE

Notes to Table 4-1

If used for representing true (1) and false (0), negative

numbers are true, positive numbers and 0 are false. This is

not compatible with FORTRAN. In PLIG, '1'B is true; if this

value is stored in a 16-bit integer, the sion bit is set,

giving 100000 octal, or -32768 decimal. False in PLIG may

always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0, .
respectively. This is not directly compatible with Pascal or

PLIG.

Boolean data in Pascal is represented in 16 bits where the

sign bit determines true and false. (A negative sign means

true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG.

To define a 32-bit integer in Pascal, use an integer array

whose positive limit is greater than 32768 and whose negative

limit is less than —-32768.

Where "n" is a constant expression with the program module.

This is not a dynamic length.

A character-varying string can be simulated in each language

indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;

a program that passes pointers or receives them may have to be

recompiled, and a program that assumes a particular form or

size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard

Pascal type.

4- 3 Third Edition

DOC3621-190

INTEGER*2 or FIXED BIN(15)

The INTHGER*2 expected by FORTRAN subroutines is PLIG's FIXED BIN, also
Called FIXED BIN(15). It must be declared in COBOL programs as OOMP,
Signed or unsigned.

Sample Program 1 illustrates a call to the FORTRAN subroutine TNOUA,
which has an INTEGER*2 argument. Sample Program 4 has a call to the
PL/I subroutine GVSGET, which expects a FIXED BIN(15) argument.

INTEGER*4, FIXED BIN(31), REAL*4, REAL*8, POINTER

Subroutines that expect arguments of these data types may not be called
by COBOL.

BIT (1)

PLIG subroutines that expect arguments of this type may not be called
by COBOL, unless the argument is declared in PLIG as BIT(1) ALIGNED.
In this case the argument may be passed as COMP, with a value of -1 for
false.

Integer Arrays

An integer array in FORTRAN may contain either character or numeric
data. The corresponding COBOL operand should be set up as a table of
the correct data type to receive the information expected. Sample
Program 5 illustrates retrieval of a FORTRAN integer array from the
Subroutine TIMDAT, Since the array contains both character and numeric
data, two COBOL arrays are used,

Multidimensional arrays may not be passed to a FORTRAN subroutine.

ASCII Character String

An ASCII string expected by a FORTRAN subroutine may be declared as
PIC 9, PIC X, or PIC A. Sample Program 2 illustrates passing an ASCII
string to the subroutine SRCHSS.

Third Edition 4-4

THE COBOL INTERFACE

LOGICAL

LOGICAL or LOGICAL*2 arguments expected by a FORTRAN subroutine should
be declared as COMP in COBOL. The arguments must have a value of 0

(false) or 1 (true).

Sample Program 3 illustrates accepting a logical value from the

subroutine TEXTOS.

CHARACTER(*) VARYING

This PLIG data type is implemented as a record structure, with the

actual number of characters followed by those characters. The two

elements may be represented as follows:

lo 5 IA B C€C D €E |]

| | | | | |
COUNT CHARACTER STRING

To declare a comparable structure in COBOL, therefore, requires a

two-element record. The record consists of a COMP item containing the
actual number of characters, plus a PIC X(n), where n is also the

number of characters. The PIC X contains the name to be passed.

Sample Program 4 calls a PLIG subroutine, GVSGET, with two CHAR(*) VAR

arguments.

CHARACTER(n) NONVARYING

This PLIG data type, usually declared simply as CHARACTER(n), may be
passed as a PIC A or PIC X item of n characters.

OTHER THINGS TO KNOW

Subroutine descriptions in this guide sometimes make reference to codes

with names in the format xSyyyy. COBOL cannot accomodate these names,

and so the COBOL program must check for the numeric equivalents of

these codes. There are three categories of these names.

@ Same have the format ASyyyy. The numeric equivalents are in the
table at the end of Chapter 12 on VAPPLB. The equivalents are
also listed in the file SYSCOM>ASKEYS.INS.FIN, which can be read

Or spooled from the terminal.

4-5 Third Edition

DOC3621-190

@ Same subroutines require keys, which are listed with names in
the format K$yyyy. The numeric equivalents of these keys may be
read from one of the SYSCOM>KEYS.INS.x files. They are also
listed in Appendix C.

e Finally, a subroutine may return an error code in the form
ESyyyy.- The meaning of the numeric error code returned is
listed in Appendix D, or may be read from one of the
SYSCOM>ERRD. INS. x files.

The listings of keys in this guide use decimal numbers, while the files
KEYS. INS.X and ASKEYS.INS.X sometimes use octal notation (marked by a
colon).

Sample Program 2 shows how COBOL may handle the KSEXST code used by
SRCHSS,

SAMPLE PROGRAMS

Program 1 ——- Using an INTEGER*2 Argument

ID DIVISION.
PROGRAM-ID. CALC.
ENVIRONMENT DIVISION.

*

CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DISPLAY~TOTAL PIC X(8).
01 INTERMED—TOTAL PIC X(8) JUSTIFIED RIGHT.
01 TOTAL-WORK PIC §9(6)V99.
01 TOTAL-DISPLAY PIC ——-9.99,
01 DISPLAY~LINE.

05 TRANS-CODE PIC X VALUE 'A',
05 TRANS-AMT PIC X(8).

01 TRANS-INTERMED PIC X(8) JUSTIFIED RIGHT.
01 TRANS-WORK PIC 9(6)99V99.
01 ERRBUFF PIC XX VALUE '*207'.
01 COUNTER COMP VALUE 1.

*

PROCEDURE DIVISION.
000-INITIALIZE.

DISPLAY ' ',
DISPLAY 'THIS IS A PROGRAM TO ADD AND SUBTRACT FROM AN INITI

- 'AL TOTAL.'.
DISPLAY ' ',
DISPLAY 'WHAT IS INITIAL VALUE OF TOTAL?',
DISPLAY ' ** NOTE FORMAT MUST NOT USE DECIMAL POINT.'
DISPLAY ' ** EX: TO REGISTER $45.25, ENTER 4525.'.

Third Edition 4-6

THE COBOL INTERFACE

ACCEPT DISPLAY-TIOTAL.
UNSTRING DISPLAY-IOTAL DELIMITED BY SPACE INTO

INTERMED~—TOTAL.
MOVE INTERMED-IOTAL TO TOTAL-WORK.
DIVIDE 100 INTO TOTAL-WORK.
DISPLAY 'ENTER AMOUNT< PRECEDED BY : A FOR ADDITION’.
DISPLAY ' S FOR SUBTRACTION’.
DISPLAY ' Q FOR QUIT’.
ACCEPT DISPLAY-LINE.
PERFORM 013-CONVERT.
PERFORM 010-PROCESS UNTIL TRANS-CODE = 'Q'.
PERFORM 030-PRINT-BALANCE.
STOP RUN.

010-PROCESS.
IF TRANS-CODE = 'S' PERFORM 011-SUBTRACT,

ELSE IF TRANS-CODE = 'A' PERFORM 012-ADD,
ELSE PERFORM 050-PROCESS-ERROR.

ACCEPT DISPLAY-LINE.
PERFORM 013-CONVERT.
EXIT,

011-SUBTRACT.
SUBTRACT TRANS-WORK FROM TOTAL-WORK.
MOVE TOTAL-WORK TO TOTAL-DISPLAY.
DISPLAY ‘BALANCE SO FAR:', TOTAL-DISPLAY.
DISPLAY 'ENTERCODE AND AMOUNT (Q TO QUIT).'.

EXIT.
012~ADD.

ADD TRANS-WORK TO TOTAL-WORK.
MOVE TOTAL-WORK TO TOTAL-DISPLAY.
DISPLAY 'BALANCE SO FAR:', TOTAL-DISPLAY.
DISPLAY 'ENTER CODE AND AMOUNT (Q TO QUIT).'.

EXIT.
013-CONVERT.

UNSTRING TRANS-AMT DELIMITED BY SPACE INTO TRANS-INTERMED.

MOVE TRANS-INTERMED TO TRANS-WORK.
DIVIDE 100 INTO TRANS-WORK.

030—PRINT-BALANCE.
DISPLAY 'BALANCE IS:'
DISPLAY TOTAL-DISPLAY.
EXIT.

050-PROCESS-ERROR.
DISPLAY ‘FIRST CHARACTER MUST BE A, S, ORQ.'.
DISPLAY 'ERROR!'.
CALL 'TNOUA' USING ERRBUFF, COUNTER.
DISPLAY 'MAKE ENTRY AGAIN - Q TO QUIT.'.

4-7 Third Edition

DOC3621-190

To compile, load, and run this program, stored as CALC.COBOL, use the
following dialog:

COBOL CALC

Phase I

Phase II

Phase III
Phase IV

Phase V

Phase VI

No Errors, No Warnings, Prlme V-Mode COBOL, Rev. 19.0 <CALO@

OK, SEG -LOAD
[SEG Rev. 19.0]
S$ LOAD CALC
S LI VCOBLB

sir
‘ LOAD COMPLETE
Q

OK, SEG CALC

THIS IS A PROGRAM TO ADD AND SUBTRACT FROM AN INITIAL TOTAL.

WHAT IS INITIAL VALUE OF TOTAL?
** NOTE FORMAT MUST NOT USE DECIMAL POINT.
** EX: TO REGISTER $45.25, ENTER 4525.

4525
ENTER AMOUNT PRECEDED BY : A FOR ADDITION

S FOR SUBTRACTION
Q FOR QUIT

A475
BALANCE SO FAR: 50 .00
ENTER CODE AND AMOUNT (Q TO QUIT).
M2
FIRST CHARACTER MUST BE A, S, OR Q.
ERROR!
KEREREREKREREEEREEREREREREREEKRERERERERERERERREEEEREE

HERE THE BEEP SQUNDS
KEKEKEREREEEEREEEREREEREEREEERE

MAKE, ENTRY AGAIN - Q TO QUIT.
A5000

BALANCE SO FAR: 100.00

ENTER CODE AND AMOUNT (Q TO QUIT).

Q
BALANCE IS:

100.00

OK,

Third Edition 4-8

THE COBOL INTERFACE

Program 2 -— Using SYSCOM Keys

Since COBOL cannot use the SYSCOM>KEYS files, the following program

uses the equivalent value for KSEXST.

IDENTIFICATION DIVISION.
PROGRAM-ID. SRCH-SUB.
KEEKKEKKEKEREKEKEREREREEERRRRERRRERERRRRRREREERRERERERERE

REMARKS. ‘THIS PROGRAM CALLS THE SUBROUTINE SRCHS$$ TO
CHECK ON THE EXISTENCE OF A FILE.

KEKEKEKEKEKEEREREEKERERRRERRRERRERERRRRERRRRERRERERERRERERE

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
*

DATA DIVISION.
WORKING-STORAGE SECTION.
O01 K~EXST COMP VALUE 6.
01 NAME PIC X(6) VALUE 'CTRLFL'.
01 NAMELENGTH COMP VALUE 6.

Ol FUNIT COMP VALUE 0.
01 TYPE COMP VALUE 0.

01 CODE COMP.
*

PROCEDURE DIVISION.
010—PERFORM—-UPDATES
he bod Lb Whdk itde ©

020-HOUSEKEEPING.
CALL 'SRCHSS' USING K-EXST, NAME, NAMELENGTH, FUNIT, TYPE,

CODE.
DISPLAY ‘CODE IS: ', CODE.

To compile and load this program, stored as SRCH.COBOL, use the

following dialog:

OK, COBOL SRCH

Phase I
Phase II
Phase III

Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prlme V-Mode COBOL, Rev. 19.0 <SRCH-S>

OK, SEG —LOAD

[SEG rev 19.0]
$ LO SRCH
$ LI VCOBLB

sir
LOAD COMPLETE

4-9 Third Edition

DOC3621-190

If the file CIRLFL exists, the runtime dialog will be the following (a
code of 0 indicates no error):

S$ EXEC
CODE IS: 00000+

If the file CIRLFL does not exist, the error code will be 15 and the
dialog may be the following:

OK, SEG SRCH
CODE IS: 00015+
OK,

Program 3 -—- Using a Logical Value

OK, SLIST LOGICAL.COBOL

JDENTIFICATION DIVISION.
PROGRAM-ID. ‘TEXT-OK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE~COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.

*

DATA DIVISION.

WORKING-STORAGE SECTION.
Ol FILENAME PIC X(32).
Ol NAMELENGTH COMP VALUE 32.
Ql TRUELENCTH COMP.
Ol TEXTOK COMP.
01 VALID PIC XXX VALUE 'NO '.

*

PROCEDURE DIVISION.
Q10-VERIFICATION.

DISPLAY 'ENTER NAME OF FILE TO BE CREATED'.
ACCEPT FILENAME.
PERFORM Q15-NAME-ENTRY UNTIL VALID = 'YES'.
STOP RUN.

*

015-NAME-ENTRY.

CALL 'TEXTOS' USING FILENAME, NAMELENGTH, TRUELENGTH, TEXTOK.
DISPLAY 'FILE NAME IS ', TRUELENGTH, ' CHARACTERS LONG’.
EXHIBIT TEXTOK,
IF TEXTOK NOT EQUAL 1 DISPLAY ‘INVALID FILE NAME-TRY AGAIN',

ACCEPT FILENAME,
ELSE MOVE 'YES' TO VALID.

Third Edition 4-10

THE COBOL INTERFACE

This program, stored as LOGICAL.COBOL, may be compiled, loaded, and run
with the following dialog:

OK, COBOL LOGICAL
Phase I

Phase II
Phase III
Phase IV

Phase V

Phase VI

No Errors, No Warnings, Prime V-Mode COBOL, Rev. 19.0 <TEXT-O>

OK, SEG -LOAD
[SEG rev 19.0]
S LO LOGICAL
$ LIVCOBLB
SLI
LOAD COMPLETE
S$ EXEC
ENTER NAME OF FILE TO BE CREATED
123
FILE NAME IS 00000+ CHARACTERS LONG
TEXTOK= 0O000+
INVALID FILE NAME - TRY AGAIN
AAAGH
FILE NAME IS 00005+ CHARACTERS LONG
TEXTOK= 00001+
OK,

Program 4 — Using A CHAR(*)VAR Argument

IDENTIFICATION DIVISION.
PROGRAM-ID. CHARVAR.
KREKKKKEREEEEKEREKEREREREREEEEREEREEEEEREREREREREE

REMARKS. THIS PROGRAM CALLS THE SUBROUTINE GVSGET TO
CHECK THE VALUE OF A GLOBAL VARIABLE BEFORE
FURTHER PROCESSING. GVSGET HAS CHAR(*)VAR ARGUMENTS.

KEEKEKEREKEKEREREREREREREREERERERREERIKEEREREERERERERERERER

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.

*

DATADIVISION.
WORKING-STORAGE SECTION.
KEKKKKEKKKEREREKEREREREEEREEERREREEEEEREREERERERER

*FOLLOWING ARE THE TWO CHARACTER-VARYING STRUCTURES
KARKKKEKEKKKKKKKEREREREEEREEREREREREREREREREEERERERE

4-11 Third Edition

DOC3621-190

01 CHAR-VAR.
05 NCHARS COMP VALUE 4.
05 STRING. PIC X(4) VALUE '.MAX',

01 VAR-VALUE.
05 NCHARS2 COMP VALUE 6.
05 STRING2 PIC X(6) VALUE SPACES.

RREEKEKKEREREKRKERERERERERERERERRREEEREREREREREREEREREE

Ql VAR-SIZE COMP VALUE 6.
01 CODE COMP,

*

PROCEDURE DIVISION.
020-HOUSEKEEPING.

CALL 'GVSGET' USING CHAR-VAR, VAR-VALUE, VAR-SIZE, CODE.
EXHIBIT STRING2.
EXHIBIT CODE.
STOP RUN.

Before this program is run, global variables must have been defined
with dialog such as this:

OK, DEFINE_GVAR ANNE>GVARFILE

OK, LIST_VAR
«MIN 1
-MAX 100
OK,

Running the program, stored as CHARVAR.COBOL, would give this result:

OK, SEG CHARVAR

STRING2 = 100
CODE= 00000+
OK,

Program 5 —- Using an Integer Array

IDENTIFICATION DIVISION.
PROGRAM-ID. TIMEDATE,
KEKKKAKKERERKERERERERREARREREERERREREEREEREEEEEREREEEREERREEREEREK

REMARKS. THIS PROGRAM CALLS THE SUBROUTINE TIMDAT, WHICH RETURNS
AN INTEGER ARRAY. IN COBOL, THIS ARRAY MAY BE RETRIEVED
EITHER AS A CHARACTER ARRAY (PIC X) OR AS A NUMERIC ARRAY
(COMP). AS THE ELEMENTS OF THE ARRAY ARE MIXED CHARACTER
AND NUMERIC, BOTH FORMS OF ARRAY ARE USED BY COBQL.

HHREKKEKEREREREREREREREREREREEREERREEREREEEEREEERREEEREREREEEEER

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.

Third Edition 4-12

THE COBOL INTERFACE

OBJECI-COMPUTER. PRIME.
*

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ARRAY.

05 TABLE PIC X(30).
KIKKEREREREERERREERERRRRREERRREREREERRERERRRERERERERERERE

* THIS TABLE IS NOW REDEFINED TWICE, ONCE AS A CHARACTER ARRAY,
* AND ONCE AS A NUMERIC ARRAY:

05 CHAR-ARRAY REDEFINES TABLE OCCURS 15, PIC X(2).
05 NUM-ARRAY REDEFINES TABLE OCCURS 15, COMP.

KAKKEKKKKKEEREKERRREEEERERRERERRRERERERERERERERERERRERERERREREERER

01 NUMBER COMP VALUE 15.
*

PROCEDURE DIVISION.
010-PERFORM-UPDATES.
020-HOUSEKEEPING.

CALL 'TIMDAT' USING ARRAY, NUMBER.
DISPLAY 'MONTH IS: ', CHAR-ARRAY(1).
DISPLAY 'MINUTES SINCE MIDNIGHT: ', NUM-ARRAY(4).
STOP RUN.

This program, stored as TIMDTC.COBC.,, may be compiled, loaded, and run

with the following dialog:

OK, COBOL TIMDTC
Phase I
Phase ITI
Phase III
Phase IV
Phase V
Phase VI

No Errors, No Warnings, Prime V-Mode COBOL, Rev. 19.0 <TIMEDA>

OK, SEG ~—LOAD

[SBG rev 19.0]
$ LO TIMDIC
S$ LI VCOBLB

str
LOAD COMPLETE

S$ EXEC

MONTH IS: Ol
MINUTES SINCE MIDNIGHT: 00564+

OK,

4-13 Third Edition

The FORTRAN
Interface

INTRODUCTION

To call a subroutine from FIN or F77, use this format:

CALL sub-name[(identifier [, identifier]...)]

where the sub-name is the subroutine name (not in quotes) and the

identifiers may be either literals or data-names.

To call a function, use formats such as:

data-name = function-name[(identifier [,identifier]...)]

IF logical-function[(identifier [, identifier])]... GO TO 100

The sample programs below illustrate subroutine and function calls from
both FIN and F77.

DATA TYPES

Table 5-1 summarizes the argument types of FORTRAN and PLIG subroutines
and functions that can be called from FORTRAN IV (FIN) and FORTRAN 77

(F77).

5-1 Third Edition

DOC3621-190

Table 5-1
Data Types

GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL IV 77 PASCAL PLIG

(1)
1 bit —*- —*— —*— —*- —hm Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTEGER*2 Integer Fixed Bin
Half-word INTHGER*2 LOGICAL*2 Boolean Fixed

LOGICAL Bin(15)

INTEGER (4)
32-bit INT*4 —*— INTEGER*4 INTEGER*4 Subrange | Fixed
Word LOGICAL Bin(31)

LOGICAL*4

64-bit
Double —_*k— —-*— a —_*k— —_*.. —_*w

Word

Float
32-bit REAL REAL REAL Real Binary
Float single —*— REAL*4 REAL*4 Float
precision Bin (23)

64-bit
Float double} REAL*8 -*— REAL*8 REAL*8 —*— Float
precision Bin (47)

DISPLAY (5) (5) (5) _ (5)
Byte string INT PIC A(n) INTHGER CHARACTER ARRAY Char (n)
(Max. 32767) PIC 9(n) *n {l..n] OF

PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —* Char (n)
string Varying

(7) ~ 8)
48-bits —t- —*— —* —*— <type> Pointer
3 Half-words

* Not available.

Third Edition 5-2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

THE FORTRAN INTERFACE

Notes to Table 5-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or

PL1G.

Boolean data in Pascal is represented in 16 bits where the
Sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG.

To define a 32-bit integer in Pascai, uSe an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard
Pascal type.

5-3 Third Edition

DOC3621-190

Most older subroutines are written in FORTRAN IV (FIN), so the data
types used by FIN are used as the norm in this chapter. The following
discussion concentrates on how to make any conversions necessary for
F77, and how to handle in FORTRAN the data types that are expected by
PLIG subroutines.

The Data Type INTEGER

Beware of using integer arguments that are not explicitly declared as
INTEGER*2 or INTEGER*4. By default, FORTRAN IV stores such arguments
as INTEGER*2, while FORTRAN 77 stores them as INTEGER*4. This is true
of constants as well as variables. Thus it is safer to pass all
numeric arguments as explicitly declared variables.

You may also avoid the contradiction by using the ~INTS (short integer)
option when compiling an F77 program. In this case, you must remember
to add the option every time you recompile.

Note

In this guide, if an argument is described as integer, it
Should be treated as INTEGER*2.

INTEGER, INTEGER*2, FIXED BIN(15)

The first two names are the same data type in FIN. The equivalent fo
F77 is INTEGER*2, or INTEGER if the program is compiled with the -INTS
(short integer) option. FIXED BIN and FIXED BIN(15) are equivalent in
PLIG. The data is stored as a 16-bit half-—word.

INTEGER*4, FIXED BIN(31)

These are the same data type. The equivalent for F77 is INTEGER*4, or
INTEGER if the progran is compiled without the -INTS option. The data
type is stored as a 32-bit word. (If FORTRAN IV is compiled with the
-INTL option, INTEGER may be used as INTEGER*4.)

LOGICAL

The equivalent for F77 is LOGICAL*2. The data type is stored as a
16-bit half-word. Sample Program 3 illustrates a call with LOGICAL
arguments,

Third Edition 5-4

THE FORTRAN INTERFACE

BIT(1)

PLIG programs using this data type may not be called from FORTRAN
unless the argument is declared in PLIG as BIT(1) ALIGNED. Then it may
be used in FORTRAN as an INTEGER*2 and will have a value of -l if
false,

REAL, REAL*4, REAL*8

REAL*4 is a single-precision (32-bit) floating-point number. REAL*8 is
a double-precision (64-bit) floating-point number. REAL is equivalent
to REAL*4 in both FORTRANS.

ASCII Character Data

A FIN subroutine that expects an ASCII string will accept INTEGER*2 or,
from F77, CHARACTER#n,

CHARACTER(*) VARYING

This PllG data type is implemented as a record structure, with the
actual number of characters followed by those characters. The two
elements may be represented in the following way:

lO 5 JA B C D E|
|__I__ |__|

COUNT CHARACTER STRING

To declare a comparable structure in FORTRAN, therefore, requires a
two-element record. The record consists of an INTEGER*2 iten
containing the actual number of characters, plus a field for the
character string. This field may be CHARACTER*n in F77, or INTEGER*2
in FIN, and should contain the characters to be passed.

A good way to set up such a record is by using the EQUIVALENCE
statement to assign different parts of a data name to different itens.
Consider the following FIN example:

INTEGER*2 STRING(10), LENGTH
INTEGER*2 VARSTRING (11)

EQUIVALENCE (LENGTH, VARSTRING(1))
EQUIVALENCE (STRING(1), VARSTRING (2))

This code sets up a record that may be represented this way.

5-5 Third Edition

DOC3621-196

| |
| LENGTH | STRING
| | |
<—_---——-VARSTRING ‘

0
S

The data names may then be given values and the PLIG subroutine may be

called with this code:

STRING(1) = 'My'
STRING(2) = 'FI'
STRING(3) = 'LE'
LENGTH = 6
CALL PL1G-SUB (VARSTRING)
CALL EXIT

The value 6 is assigned to LENGTH because six characters are actually

assigned to STRING.

In F77. the code can be a little simpler because all of STRING can be

assigned at once:

INTHGER*2 LENGTH, VARSTRING(11)

CHARACTER*20 STRING

EQUIVALENCE (LENGTH, VARSTRING (1))

EQUIVALENCE (VARSTRING (2), STRING)

STRING (1:6) = 'MYFILE'
LENGTH = 6

CALL PL1G-PROG (VARSTRING)

CALL EXIT

Sample Programs 4 and 5 below call a PLIG routine, GVSGET, with two

CHAR (*)VAR arguments.

CHARACTER(n) NONVARYING

This PLIG data type, usually declared simply as CHARACTER(n), may be

represented in FORTRAN 77 simply as CHARACTER*n. In FORTRAN IV it

should be represented as an integer array and the data name should be

followed by the number of words (one-half the value of the (n) in

CHARACTER(n), rounded). An example is INTEGER*2 STR(N/2 + 5).

Array

When a FORTRAN subroutine expects an array, an ASCII character array

(data type INTEGER*2 or CHARACTER*n) may be used. Sample Program 2

shows how to use an integer array returned to FIN.

Third Edition 5-6

THE FORTRAN INTERFACE

Note

CHARACTER*n does not necessarily allocate data on word
boundaries. Thus not all routines called from VAPPLB will work
with this data type.

POINTER

PLIG subroutines that expect this data type should not generally be
called from FORTRAN. For experienced programmers, the expression
LOC(name) may be passed to a subroutine that expects a pointer. See

note 6 to Table 5-1.

USING SYSCOM TABLES

In this guide, numeric values are often represented by a name in the
form y$xxxx, where y and x are characters of the alphabet. The code
name orkey name may be used instead of a numeric value. There are
three files in the SYSCOM UFD that are of use in handling these names.
SYSCOM>ASKEYS.INS.FIN, SYSCOM>KEYS.INS.FIN, and SYSCOM>ERRD.INS. FIN
contain keys that should be used instead of numeric values for codes.

To use these key names in a FORTRAN program, use SINSERT SYSCOM>xxx at
the beginning of each program module with the declarations of other
data names. The file ASKEYS.INS.FIN also contains declarations for all

of the subroutines in VAPPLB or APPLIB.

Sample Program 1 illustrates use of the keys from SYSOOM files.

SAMPLE FIN (FORTRAN IV) PROGRAMS

Program 1 -- Using SYSCOM Keys

OK, SLIST SRCH.FIN

ecccececeececceccececceceececcececcceeccececcecceccecceccccc
C THIS PROGRAM CALLS THE SUBROUTINE SRCHSS TO CHECK Cc
C ON THE EXISTENCE OF A FILE. THE PROGRAM ALSO USES Cc
C THE SYSCOM FILES FOR KEY CODES. Cc
cccecececeececececececcecececeececececeececececececccccecccc

INTEGER*2 CODE, TYPE,FUNIT, POS
SINSERT SYSCOM>KEYS. INS. FIN

WRITE (1,100)
FUNIT = 4
POS = 0
CALL SRCHSS (KSEXST+KSIUFD, 'CTRL', FUNIT, POS, TYPE, CODE)
IF (CODE .NE. 0) WRITE(1, 200)CODE
WRITE (1,300)

5-7 Third Edition

DOC3621-190

CALL EXIT
100 FORMAT('THIS IS FORTRAN')
200 FORMAT('CODE IS ', I2)
300 FORMAT('END OF RUN')

END

This program, stored as SRCH.FIN, may be compiled, loaded, and run in
R-mode with the following dialog. If the file CTRL does not exist, the
return code will be 15 (ESFNTF).

OK, FIN SRCH
0000 ERRORS [<.MAIN. >FIN-REV18.4]

OK, LOAD
[LOAD rev 19.0.1]

S LO SRCH

$ir
LOAD COMPLETE

$ SA
S$ EXEC

THIS IS FORTRAN
CODE IS 15
END OF RUN
OK,
OK,

Program 2 —- Integer Arrays

The subroutine TIMDAT returns an array containing both ASCII characters
and integers. The following program handles these two types, both in
STRING, differently by means of the EQUIVALENCE statement. It prints
STRING(13) through STRING(15) as NAME, in A format, and prints
STRING(1) through STRING(6) as TIME, in I format,

INTEGER*2 STRING (28)
INTEGER*2 NUM, DATE(3)
INTEGER*2 TIME, TIME], TIME2, NAME (16)
EQUIVALENCE (STRING(1), DATE)
EQUIVALENCE (STRING(4), TIME)
EQUIVALENCE (STRING(5), TIME1)
EQUIVALENCE (STRING(6), TIME2)
EQUIVALENCE (STRING(13), NAME)
NUM = 28
CALL TIMDAT(STRING, NUM)

WRITE (1, 300) DATE
WRITE (1,400)
WRITE(1,200) TIME, TIME], TIME2
WRITE(1,150) NAME

200 FORMAT (16, I6, I6)
150 FORMAT (‘USER IS ‘,3A2)
300 FORMAT ('DATE IS ',3A2)

Third Edition 5-8

THE FORTRAN INTERFACE

400 FORMAT ('TIME SINCE MIDNIGHT IN MINUTES+SECONDS+TICKS: ')
CALL EXIT
END

This program, stored as TIMDTF.FIN, may be compiled, loaded, and run in
V-mode as follows:

OK, FIN TIMDTF -64V

0000 ERRORS [<.MAIN. >FIN-REV18.4]
OK, SEG —LOAD

[SEG rev 19.0.1]
$ LO TIMDIF

Program 3 — Using a Logical Function

This program calls DELESA to delete a file and return a truth value
according to its success,

OK, SLIST LOGICAL. FIN

INTEGER*2 LENGTH
LOGICAL*2 DELESA
LENGTH = 6
IF (DELESA('CTRLFL', LENGTH)) GOTO 50
WRITE (1,200)
CALL EXIT

50 WRITE (1,100)
CALL EXIT

100 FORMAT ('DELETE WAS SUCCESSFUL")
200 FORMAT (‘NO GO')

END

This program may be compiled, loaded, and run with the following

dialog:

OK, FIN LOGICAL -64V
0000 ERRORS [<.MAIN. >FIN-REV18.4]
OK, SEG —LOAD
[SEG rev 19.0.1]
S$ LO LOGICAL

5-9 Third Edition

DOC3621-190

S$ LI VAPPIB

Stl
LOAD COMPLETE
S$ EXEC

DELETE WAS SUCCESSFUL

If this program is rum when CIRLFL does not exist, the following will
happen:

OK, SEG LOGICAL
Not found. CIRLFL (DELESA)
NO GO
OK,

Program 4 —- Using CHAR(*)VARYING Arguments

This program calls GVSGET to return the value of a PRIMOS (CPL) global
variable.

OK, SLIST GVAR. FIN

INTEGER*2 CODE

cecececececececcececececececcececceecececececece

C The next 7 lines define two CHAR*VARS. C
INTHGER*2 STR1(10), STR2(10), LENI, LEN2
INTEGER*2 VARNAM(11)

INTEGER*2 VARVAL (11)

EQUIVALENCE (LEN1, VARNAM(1))

EQUIVALENCE (LEN2, VARVAL(1))

EQUIVALENCE (VARNAM(2), STR1(1))
EQUIVALENCE (VARVAL (2), STR2(1))

COCCCCCCCCECCCCCCCCCCCCCCCECCCCCCECECECCCCECCC

STR1(1) = '.M!
STR1L(2) = ‘AX!
LEN1 = 4
CALL GVSGET (VARNAM,VARVAL, 20, CODE)
WRITE (1,100) CODE
WRITE (1,200) STR2

100 FORMAT('CODE IS‘,I3)
200 FORMAT('.MAX IS ', 10A2)

CALL EXIT
END

This program may be compiled, loaded, and run with the following
dialog, providing that the global variable file has previously been
established as explained in the CPL User's Guide.

DEFINE_GVAR GVARFILE -CREATE

OK, SET_VAR .MAX = 100

OK,

Third Edition 5-10

THE FORTRAN INTERFACE

Note

This program may only be compiled in V-mode, because it calls a
V-mode subroutine.

OK, FIN GVAR -64V
0000 ERRORS [<.MAIN, >FIN-REV18.4]

OK, SEG -LOAD
[SEG rev 19.0.1]

~$ LO GVAR

$Lr
LOAD COMPLETE
S EXEC

@s Maca

SAMPLE F77 (FORTRAN 77) PROGRAM

The sample programs above may be used unchanged with F77 if the -INTS
compile option is used. These prograns demonstrate the use of
integers, characters, and codes from SYSOOM files included with

SINSERT. The following program may be used only with F77.

Program 5 —- Using CHAR(*)VARYING with F77

OK, SLIST GVAR.F77

INTEGER*2 CODE, LEN], LEN2, VARLEN
CHARACTER*20 STR1, STR2
INTEGER*2 VARNAM (11)
INTEGER*2 VARVAL (11)
EQUIVALENCE (LEN1, VARNAM(1))
EQUIVALENCE (LEN2, VARVAL(1))

EQUIVALENCE (VARNAM(2), STR1)
EQUIVALENCE (VARVAL (2), STR2)
LEN] = 4
VARLEN = 20

STRL = '.MAX'
CALL GVSGET (VARNAM,VARVAL, VARLEN, CODE)
WRITE (1,100) CODE
WRITE (1,200) STR2

100 =FORMAT('CODE IS',I4)
200 FORMAT('.MAX IS ', A20)

CALL EXIT
END

5-11 Third Edition

DOC3621-190

This program, stored as GVAR.F77, may be compiled, loaded, and run with

the following dialog:

OK, F77 GVAR

[FORTRAN 77 19.0]
0000 ERRORS [<.MAIN.> F77-REV19.0]

OK, DEFINE_GVAR ANNE>GVARFILE

OK, SEG —LOAD

[SEG rev 19.0.1]
S$ LO GVAR

$I
LOAD COMPLETE

$ EXEC

CODE IS 0

MAX IS 100
OK,

SAMPLE FILE SYSTEM PROGRAMS

This section contains sample programs illustrating the use of the file
system subroutines in Chapter 9. The programs are:

e Writing a SAM file

@ Writing a DAM file

e@ Reading a SAM or DAM file

@ Creating a segment directory

@ Reading a logical record from a file

e Reading a file in a segment directory

The programs also illustrate the use of PRWFS$, SGDR$$, and SRCH$$ to
read and write to a file.

Third Edition 5-12

THE FORTRAN INTERFACE

Program 6 — Writing a SAM File

OK, SLIST SAMWRITE. FIN

C SAMWRT BIN PROGRAM TO WRITE A SAM DATA FILE

C THE FILE IS 1000 WORDS LONG WRITTEN FROM ARRAY BUFF

C RESTRICTIONS: SAMFIL SHOULD NOT EXIST BEFORE PROGRAM IS RUN

Cc
INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED
INTEGER*2 SAMFIL /* FILE TYPE FOR SAM FILE
INTEGER*2 BUFLNG /* BUFFER LENGTH
PARAMETER (SAMFIL=0, BUFLNG=1000)
INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* CONTAINS FILE TYPE RETURNED BY SRCHS$

INTHGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS$
INTEGER*2 I
INTEGER*2 CODE /* HOLDS ERROR RETURN CODE

SINSERT SYSCOM>KEYS. INS. FIN
C INITIALIZE BUFFER CONTENTS

DO 10 I= 1, BUFLNG
BUFF(I) = I

10 CONTINUE
Cc
C OPEN A NEW SAM DATA FILE CALLED 'SAMFIL' IN CURRENTLY ATTACHED

C UFD FOR WRITING ON FILE UNIT FUNIT1
c

CALL SRCHSS (KSWRIT+KSGEIU+KSNSAM, *SAMFIL‘ ,6 ,FUNIT1 ,;TYPE,

X CODE)
IF (CODE.NE.0) GO TO 9010
IF (TYPE. NE. SAMFIL) GO TO 9000 /* ERROR

C
C WRITE 1000 WORDS FROM BUFF INTO THE NEW DATA FILE

C
CALL PRWFSS (KSWRIT, FUNIT1 ,LOC (BUFF) ,BUFLNG, INTL(0) ,NMREAD,

X CODE)
IF (CODE.NE.0) GO TO 9010

Cc
C CLOSE FILE. THIS RELEASES UNIT FUNIT] FOR REUSE AND ASSURES

C ALL FILE BUFFERS HAVE BEEN WRITTEN TO DISK.

C NOTE PRIMOS WILL NOT AUTOMATICALLY CLOSE FILES ON 'CALL EXIT’.

C
9000 CALL SRCHS$(KSCLOS, 0, 0, FUNIT1, 0, CODE)

IF (CODE.NE.0) GO TO 9010
9010 WRITE(1,9012)
9012 FORMAT('ERROR!")
C
C RETURN TO PRIMOS
Cc

CALL EXIT
END

5-13 Third Edition

DOC3621-190

This program, stored as SAMVWRITE.FIN, may be compiled, loaded, and run
with the following dialog. It will create the data file SAMFIL.

OK, FIN SAMWRITE
0000 ERRORS [<.MAIN. >FIN-REV18.4]
OK, LOAD
[LOAD rev 19.0.1]
S LO SAMVWRITE

$ir
LOAD COMPLETE

$ SA
S$ EXEC
OK,

Program 7 —- Writing a DAM File

OK, SLIST DAMVWRITE. FIN
C DAMWRT BIN PROGRAM TO WRITE A DAM DATA FILE
Cc
C NOTE THAT THE ONLY DIFFERENCE FROM PROGRAM SAMFIL IS THE
C 'NEW FILE' KEY SUPPLIED TO SRCHSS IN CREATING THE FILE
Cc
C RESTRICTION: DAMFIL SHOULD NOT EXIST BEFORE RUNNING PROGRAM
Cc

INTEGER*2 FUNIT1 /* FILE UNIT TO BE USED

INTEGER*2 DAMFIL /* FILE TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* DATA BUFFER LENGTH IN WORDS

c
PARAMETER (DAMFIL=1, BUFLNG=1000)

Cc
INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED FROM FILE SYSTEM
INTEGER*2 I

Cc
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSCOM>ERRD. INS. FIN
C
C INITIALIZE BUFFER
C

DO 10 I = 1, BUFLNG
BUFF(I) = I

10 CONTINUE
C

C ASSURE THAT THE FILE 'DAMFIL' DOES NOT ALREADY EXIST
C

CALL SRCHS$$ (KSEXST+KSIUFD, 'DAMFIL' ,6 ,FUNIT1 ,TYPE, CODE)
IF (CODE .NE, ESFNTF) GO TO 9000 /* FILE ALREADY EXISTS

C
C OPEN A NEW DAM FILE CALLED 'DAMFIL' IN THE CURRENT
C UFD FOR WRITING ON FILE UNIT FUNITL

Third Edition 5-14

THE FORTRAN INTERFACE

C
CALL SRCHSS (KSWRIT+KSGETU+KSNDAM, 'DAMFIL' ,6,FUNIT1,TYPE,

X CODE)
IF (CODE.NE.0) GO TO 9010
IF (TYPE .NE. DAMFIL) STOP /* WILL NEVER STOP

C
C WRITE THE BUFFER INTO THE FILE

C
CALL PRWESS$ (KSWRIT, FUNIT1 , LOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,

X CODE)
IF (CODE.NE.0) GO TO 9010

Cc
C KSCLOS THE FILE AND EXIT

C
9000 CALL SRCH$$(KSCLOS, 0, 0, FUNIT1, TYPE, CODE)

IF (CODE.NE.0) GO TO 9010
CALL EXIT

2AT TMNTT ¢C fyve@amrt cry
Ju NIA (KSNRIN,CODE,0,9,

sel VT

Ann9010 0,9}

This program, stored as DAMNRITE.FIN, may be compiled, loaded, and run

with the following dialog. A data file called DAMFIL will be created,

OK, FIN DAMVWRITE
0000 ERRORS [<.MAIN. >FIN-REV18.4]

OK, LOAD
[LOAD rev 19.0.1]
S LO DAMWRITE

$ir
LOAD COMPLETE

$ SA
$ EX
OK,

Program 8 — Reading a SAM or DAM File

OK, SLIST SAMREAD, FIN

C REDFIL BIN READ SAM/DAM FILE, PRINT LARGEST INTEGER

C
C THIS PROGRAM SHOWS HOW TO USE THE 'OODE' ERROR RETURN

C MECHANISM AND SUBROUTINE ERRPRS TO PRINT ERROR MESSAGES.

C
C NOTE THAT PROGRAM DOESN'T CHECK IF THE DATA FILE IS SAM OR DAM.

C TO USER'S PROGRAM, SAM OR DAM FILES ARE FUNCTIONALLY EQUIVALENT

C EXCEPT FOR ACCESS TIME TO RAMDOM POINTS IN THE FILE

C
C RESTRICTIONS: NONE

C
INTEGER*2 FUNIT /* FILE UNIT TO BE USED

5-15 Third Edition

DOC3621~-190

INTEGER*2 DAMFIL /* TYPE OF DAM DATA FILE
INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER IN WORDS

PARAMETER (FUNIT=2, DAMFIL=2, BUFLNG=100)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 LARGST /* LARGEST UNSIGNED INTEGER IN FILE
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTHGER*2 I,N

C
INTEGER*4 POSIIN /* 32BIT INTEGER POSITION FOR PRWFSS

Cc
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSCOM>ERRD. INS. FIN
C
C INITIALIZE AND GET FILE NAME FROM TERMINAL
Cc

LARGST = -32767 /* LARGEST UNSIGNED INTEGER
10 WRITE(1,1000) /* FORTRAN UNIT 1 IS TERMINAL
1000 FORMAT ("TYPE FILE NAME')
Cc

READ(1,1010) (FNAME(I), I=1,16)
1010 FORMAT (16A2)
C
C OPEN FNAME IN CURRENTLY ATTACHED UFD FOR READING ON FILE UNIT 1
C (NOT THE SAME AS FORTRAN UNIT 1). CHECK FOR ERRORS.
C NOTE THAT THE NAME NEED NOT ACTUALLY BE 32 CHARACTERS LONG AS
C TRAILING BLANKS ARE IGNORED.
C

CALL SRCH$$ (KSREAD+KSIUFD, FNAME, 32, FUNIT, TYPE, CODE)
IF (CODE .—Q. 0) GO TO 100 /* NO ERRORS

PRINT THE SYSTEM ERROR MSG AND IMMEDIATELY RTRN TO THIS PROGRAM
IF THE ERROR IS ‘FILE NOT FOUND', GET ANOTHER NAME.
GIVE UP ON ALL OTHER ERRORS

Q
A
A
Q
A
|
R
A
-
A
N

CALL ERRPRS$(KSIRIN, CODE, FNAME, 32, 'REDFIL', 6)
IF (CODE.EQ.ESFNIF) GO TO 10 /*NOT FOUND-GET ANOTHER NAME
GO TO 9010 /* ANOTHER TYPE OF ERROR - GIVE UP

C
C THE FILE HAS BEEN OPENED.
C MAKE SURE THE FILE IS NOT A DIRECTORY
Cc
100 IF (TYPE .GT. DAMFIL) GO TO 9000 /* IS A DIRECTORY
C
C READ AN 'OPTIMAL' NUMBER OF WORDS UP TO BUFLNG WORDS FRCM FILE.
C SET LARGST TO THE LARGEST UNSIGNED INTEGER IN THE FILE.
C CHECK FOR END-OF-FILE.
C
30 CALL PRWFSS(KSREAD+KSCONV, FUNIT, LOC(BUFF) ,BUFLNG,

X INTL (0) ,NMREAD, CODE)

Third Edition 5-16

THE FORTRAN INTERFACE

IF (CODE .EQ. ESEOF) GO TO 31 /* END-OF-FILE

IF (CODE .NE. 0) GO TO 9010 /* SOME OTHER ERROR

WRITE (1,3) BUFF (I)

FORMAT (16)

DO 40 I= 1, NMREAD /* FOR EACH WORD ACTUALLY READ

IF ((LARGST.LE.0) .AND. (BUFF(I).GE.0)) LARGST = BUFF (TI)

IF (LARGST .LT. BUFF(I)) LARGST = BUFF(I)

CONTINUE

IF (CODE .NE. ESEOF) GO TO 30 /* MORE DATA IN FILE

IND OUT IF THE DATA FILE IS EMPTY

F THE POSITION IS 0, THE FILE IS EMPTY

C
CF
C GET CURRENT FILE POINTER POSITION WHICH IS NOW AT END-OF-FILE.

CI
C

1030

Cc

CALL PRWFSS(KSRPOS, FUNIT, 0, 0, POST'IN, NMREAD, CODE)

IF (CODE .NE. 0) GO TO 9010 /* ERROR

IF (POSIIN .GT. 0) GO TO 50 /* NOT A NULL FILE

WRITE (1,1030)
FORMAT ('FILE EMPTY')
GO To 9000 /* FPYTT
1 JVuVYV dedh Rnke oe

C FILE NOT EMPTY. PRINT LARGEST INTEGER

Cc
50
1020

Cc

WRITE(1,1020) LARGST

FORMAT ("LARGEST INTEGER IN FILE IS ',I6)

GO TO 9000 /* EXIT

C KSCLOS FILES EXIT
C PRINT ERROR MESSAGE IF NECESSARY

C
9010
C

CALL ERRPRS(KSIRIN, CODE, 0, 0, 'REDFIL', 6)

9000 CALL SRCHS$S(KSCLOS, 0, 0, FUNIT, TYPE, CODE)

IF (CODE.NE.0) GO TO 9010
CALL EXIT
END

This program may be compiled, loaded, and run to read the file SAMFIL

created by the first program in this section with the following dialog:

OK, FIN SAMREAD

0000 ERRORS [<.MAIN. >FIN-REV18.4]

OK, LOAD
[LOAD rev 19.0.1]

$ LO SAMREAD

S LI
LOAD COMPLETE

$ SA
$ EXEC
TYPE FILE NAME

SAMFIL

5-17 Third Edition

DOC3621-190

16
200
300
400
500
600
700
800
900

1000
LARGEST INTEGER IN FILE IS 1000
OK,

Program 9 — Creating a Segment Directory

OK, SLIST SEGWRITE. FIN
C CRTSEG BIN CREATE A SEGMENT DIRECTORY
C AND WRITE DATA FILE IN IT
Cc
C RESTRICTIONS: SEGDIR SHOULD NOT EXIST BEFORE PROGRAM IS RUN
C

INTEGER*2 BUFLNG /* DATA BUFFER LENGTH
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 SGUNIT /* FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 FUNIT /* FILE UNIT FOR DATA FILE

PARAMETER (BUFLNG=10, SAMSEG=2, SGUNIT=1, FUNIT=2)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ OR WRITTEN BY PRWFSS
INTEGER*2 I
INTEGER*2 CODE /* RETURN CODE STORED HERE
INTEGER*2 CODEA /* SCRATCH CODE

Cc
SINSERT SYSCOM>KEYS.INS. FIN
SINSERT SYSCOM>ERRD, INS. FIN
Cc
C INITIALIZE DATA BUFFER CONTENTS
C

DO 10 I= 1, BUFLNG
BUFF (I) = I

10 CONTINUE
C
C OPEN A NEW SAM SEGMENT DIRECTORY CALLED 'SAMDIR' IN CURRENTLY
C ATTACHED UFD FOR READING AND WRITING ON FILE UNIT SCUNIT.
C NOTE: SEGDIRS OPEN FOR WRITE ONLY WILL NOT BE HANDLED CORRECTLY
Cc

CALL SRCHS$$(KSRDWR+KSNSGS+KSIUEFD, 'SAMDIR' ,6,SGUNIT, TYPE,
X CODE)
IF (CODE.NE.0) GO TO 9500
IF (TYPE.NE.SAMSEG) GO TO 9500 /* ERROR~MUST HAVE EXISTED

Third Edition 5-18

THE FORTRAN INTERFACE

ENTER A NEW SAM DATA FILE (I.E. OPEN SAM DATA FILE FOR WRITING)
IN THE SEGMENT DIRECTORY JUST CREATED. THE NEW DATA FILE

WILL BE ENTRY 0 IN THE SEGMENT DIRECTORY.

A
A
A
A
N
A
N
A

CALL SRCHS$S (KSWRIT+KSNSAMKSISEG, SGUNIT, 0, FUNIT,TYPE , CODE)
IF (CODE.NE.0) GO TO 9500

C
C WRITE THE DATA BUFFER INTO THE SAM FILE JUST CREATED.

C KSCLOS THE DATA FILE.
C

CALL PRWESS (KSWRIT, FUNIT, LOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 9500
CALL SRCHSS$(KSCLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.NE.0) GO TO 9500

Cc
C REPLACE BUFF WITH NEW DATA
C
wd

DO 20 I= 1, BUFLNG

BUFF(I) = I * 10

0 CONTINUE

OPEN A DIFFERENT NEW SAM DATA FILE ON FUNIT FOR WRITING

(I.E. ENTER ANOTHER FILE IN SEGMENT DIRECTORY). THIS IS DONE
IN TWO STEPS. FIRST THE FILE POINTER OF THE SEGMENT DIR UNIT IS
POSITIONED TO THE ENTRY NUMBER DESIRED. THE SRCH$$ IS

CALLED AS ABOVE.

A
N
A
A
R
A
A
A
N

CALL SGDRSS(KSSPOS, SGUNIT, 1, I, CODE)
IF (CODE.NE.0) GO TO 9500
IF (I .NE. -1) GO TO 9500 /* ERROR EXIT

C
C NOTE THAT THE SEGMENT DIRECTORY OPEN ON SGUNIT HAS ONLY 1 ENTRY
C (ENTRY 0) AT THIS TIME. THUS, POSITIONING TO ENTRY 1
C WILL POSITION TO END-OF-FILE (NOT BEYOND) AND THE FOLLOWING
C CALL TO SRCHSS WILL CAUSE THE SEGMENT DIRECTORY TO BE EXTENDED

C IN LENGTH BY ONE ENTRY.
Cc

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, SGUNIT, 0, FUNIT, TYPE, CODE)
IF (CODE.NE.C) GO TO 9500

Cc
C WRITE DATA INTO THE SAM FILE ‘THE KSCLOS THE FILE
C

CALL PRWFSS (KSWRIT, FUNIT, LOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,
x CODE)
IF (CODE.NE.0) GO TO 9500
CALL SRCHSS(KSCLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.NE.C) GO TO 9500

Cc
C REPLACE THE BUFFER WITH NEW DATA
C

DO 30 I= 1, BUFLNG
BUFF(I) = I * 100

5-19 Third Edition

DOC3621-190

0 CONTINUE

MAKE THE SEGMENT DIRECTORY ITSELF LARGE ENOUGH TO CONTAIN
10 ENTRIES. PLACE A SAM FILE IN THE 10TH ENTRY.

A
A
A
A
W

CALL SGDRSS$(KSMSIZ, SGUNIT, 10, 0, CODE)
IF (CODE.NE.0) GO TO 9500

THE FILE POINTER ASSOCIATED WITH SGUNIT IS NOW AT END-OF-FILE.
A CALL TO SRCHSS$ WITHOUT FURTHER POSITIONING THE SEGMENT
DIRECTORY'S FILE POINTER WOULD EXTEND THE SEGMENT DIRECTORY
AND ENTER THE NEW FILE AS TH 117TH ENTRY. THEREFORE, SGDRSS
MUST BE CALLED TO POSITION TO THE 10TH ENTRY.

A
A
R
Q
A
A
A
A

CALL SGDRSS(KSSPOS, SGUNIT, 9, I, CODE)
IF (CODE.NE.0) GO TO 9500
IF (I .NE. 0) STOP /* FILE CANNOT BE PRESENT

CALL SRCHSS (KSWRIT+KSNSAM+KSISEG, SGUNIT, 0, FUNIT, TYPE,CODE)
IF (CODE.NE.0) GO TO 9500
CALL PRWFSS (KSWRIT, FUNIT, LOC (BUFF) ,BUFLNG, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 9500
CALL SRCH$$(KSCLOS, 0, 0, FUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9500

Cc
C KSCLOS SEGMENT DIRECTORY EXIT
c

CALL SRCHSS(KSCLOS, 0, 0, SGUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 9500
CALL EXIT

Q
a
Q

ERROR EXIT. KSCLOS ALL UNITS. PRINT ERROR MESSAGE AND DO NOT
ALLOW RESTART. ESNULL IS THE NULL SYSTEM ERROR, I.E.,
NO SYSTEM ERROR MESSAGE IS PRINTED.

O
W
w
2
Q
Q
A
A

500 CALL SRCHSS(KSCLOS, 0, 0, FUNIT, TYPE, CODEA)
CALL SRCHSS$(KSCLOS, 0, 0, SGUNIT, TYPE, CODEA)
CALL ERRPRS (KSNRIN, CODE, 'UNEXPECTED ERROR',16,'CRTSEG' ,6)

QD

END

This program, stored as SEGWRITE.FIN, may be compiled, loaded, and run
with the following dialog. It will create an empty segmented file
called SAMDIR.

OK, FIN SEGWRITE
0000 ERRORS [<.MAIN. >FIN-REV18.4]
OK, LOAD
[LOAD rev 19.0.1]
S LO SEGWRITE

$ir

Third Edition 5-20

THE FORTRAN INTERFACE

LOAD COMPLETE

$ SA
$ EXEC
OK,

Program 10 — Reading a Logical Record from a File

OK, SLIST LOGICREAD, FIN

C RDLREC BIN’ READ A LOGICAL RECORD FROM A FILE
Cc
C PROGRAM READS LOGICAL RECORD 'N' FROM A FILE CONSISTING

C OF FIXED LENGTH RECORDS
Cc
C IN THIS PROGRAM, THE FILE ACCESSED IS CONSIDERED TO CONTAIN AN
C UNLIMITED NUMBER OF LOGICAL RECORDS. EACH RECORD CONTAINS 'M'
C WORDS. THE PROGRAM READS AND PRINTS TO THE TERMINAL THE
C CONTENTS OF RECORD NUMBER N AS M INTEGERS. THE FIRST RECORD
C OF A FILE IS RECORD NUMBER 0.
C NOTE THAT A LOGICAL RECORD IS MERELY A GROUPING OF WORDS IN A
C FILE. THE LOGICAL RECORD SIZE HAS NO RELATION TO THE PHYSICAL
C RECORD SIZE OF THE DISK.
C
C RESTRICTIONS:

1. RECORD SIZE MUST BE BETWEEN 1 AND BUFFER LENGTH
2. RECORD NUMBER MUST BE BETWEEN 0 AN
3. THE RECORD MUST BE IN THE FILE
4, THE FILE MUST PREVIOUSLY EXIST
5. THE FILE MUST BE A DATA FILE (SAMFIL OR DAMFIL)

Q
A
A
A
N
A
A
A

Oo W K
O

t

a ~
l

INTEGER*2 FUNIT1 /* PRIMOS FILE UNIT USED FOR DATA FILE

INTEGER*2 BUFLNG /* LENGTH OF DATA BUFFER

QD

PARAMETER (FUNIT1=2, BUFLNG=1000)

INTEGER*2 BUFF(BUFLNG) /* DATA BUFFER
INTEGER*2 FNAME(16) /* FILE NAME BUFFER
INTEGER*2 RECSIZ /* NUMBER WORDS IN A LOGICAL RECORD
INTEGER*2 RECNUM /* LOGICAL RECORD NUMBER
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NUMBER WORDS READ, RETURNED BY PRWFSS
INTEGER*2 CODE /* ERROR STATUS RETURNED BY FILE SYSTEM
INTEGER*2 I

C
INTEGER*4 FOSIIN /* 32BIT WORD NR USED AS POS TO PRWFSS

C
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSCOM>ERRD.INS.FIN
C
C ASK FOR FILENAME
C
10 WRITE(1,1000) /* FORTRAN UNIT 1 IS TIyY

5-21 Third Edition

DOC3621-190

1000 FORMAT ('TYPE FILE NAME")
C
C READ FILE NAME
Cc

READ(1,1010) (FNAME (I) ,I=1,16)
1016 FORMAT (16A2)
C

C OPEN FNAME IN CURRENT UFD FOR READING ON FILE UNIT FUNIT2
Cc

CALL SRCH$$(KSREAD+KSIUFD, FNAME, 32, FUNITL, TYPE, CODE)
IF (CODE.NE.0) GO TO 2000

Cc
C ASK FOR LOGICAL RECORD SIZE
Cc
20 WRITE (1,1020)
1020 FORMAT ('TYPE RECORD SIZE')

READ(1,1030) RECSIZ
1030 FORMAT (I6)

IF (RECSIZ .GE. 1 .AND. RECSIZ .LE. BUFLNG) GO TO 30
WRITE (1,1040)

1040 FORMAT ('BAD RECORD SIZE')
GO TO 20

Cc
C ASK FOR RECORD NUMBER. FIRST RECORD IS NUMBERED 0
Cc
30 WRITE (1,1050)
1050 FORMAT ('TYPE RECORD NUMBER')

READ (1,1030) RECNUM
IF (RECNUM .GE. 0) GO TO 35
WRITE (1,1051)

1051 FORMAT ('BAD RECORD NUMBER’)
GO TO 30

Cc
C CALCULATE THE 32-BIT WORD NUMBER OF THE FIRST WORD IN THE
C DESIRED RECORD. NOTE THAT IF RECSIZ AND RECNUM ARE BOTH
C POSITIVE 16BIT NUMBERS, THE 32BIT WORD NUMBER MUST ALSO BE
C POSITIVE.
Cc
C POSITIONING MAY BE DONE TO AN ABSOLUTE WORD NUMBER OR RELATIVE
C TO THE CURRENT POSITION. SINCE A JUST OPENED FILE IS ALWAYS
C POSITIONED TO TOP-OF-FILE AND THE CALCULATED WORD NUMBER WILL
C NEVER BE NEGATIVE, THE ARGUMENT FOR POSITION TO PRWESS WILL
C BE THE SAME FOR BOTH CALLS IN THIS PROGRAM,
Cc
35 POSITIN=INTL (RECSIZ) *INTL(RECNUM) /* POSTIN IS INTEGER*4

IF (POSIIN .GT. 32767) GO 10 100 /* ABSOLUTE POSITIONING

RECORD LESS THAN 32767 WORDS FROM THE BEGINNING, USE RELATIVE
POSITIONING.
NOTE THAT ABSOLUTE POSITIONING COULD HAVE BEEN USED FOR A
RECORD ANYWHERE IN THE FILE, NOT JUST FOR THOSE RECORDS

C BEYOND WORD 32767. RELATIVE IS SHOWN HERE ONLY FOR EXAMPLE.
C
C NOTE ALSO THAT RELATIVE POSITIONING COULD BE USED TO POSITION

Q
A
A
A
A
N

Third Edition 5-22

THE FORTRAN INTERFACE

TO ANY WORD IN THE FILE, GIVEN THE RESTICTIONS ON RECSIZ AND

WHEN REL POSITIONING IS USED, THE POS ARGUMENT (POSIIN HERE)

IS CONSIDERED TO BE A SIGNED 32-BIT INTEGER.

A
N
R
Q
A
A
A
N
A

CALL PRWESS (KSREAD+KSPRER, FUNIT1 , LOC (BUFF) , RECSIZ, POSIIN,
x NMREAD, CODE)
GO TO 200 /* SKIP OVER ABSOLUTE POSITION EXAMPLE

C
C RECORD IS MORE THAN 32767 WORDS FROM THE BEGINNING OF FILE, USE

C ABSOLUTE POSITIONING.
Cc
C WHEN ABSOLUTE POSITIONING IS USED, POSITION ARGUMENT (POSI'IN)

C IS CONSIDERED TO BE AN SIGNED 32-BIT INTEGER.
C NOTE THAT THE ESBOF ERROR (BEGINNING OF FILE) CAN OCCUR.

C
100 CALL PRWFSS(KSREAD+KSPREA, FUNIT1 , LOC (BUFF) , RECSIZ,POSI'IN,

x NMREAD, CODE)
C

200 IF (CODE .NE. 0) GO TO 300 /* ERROR DETECTED
C .

C HAVE READ RECORD, NOW DISPLAY IT.
Cc

WRITE(1,1060) RECNUM, RECSIZ
1060 FORMAT('RECORD ',16,' CONTAINS ',16," ENTRIES AS FOLLONS')

WRITE(1,1070) (BUFF(I), I=1,RECSIZ)

1070 FORMAT (1017)
C
C RETURN TO PRIMOS AFTER CLOSING THE FILE

C
250 CALL SRCHSS(KSCLOS, 0, 0, FUNIT1, TYPE, CODE)

IF (CODE.NE.0) GO TO 1000

CALL EXIT
GO TO 10 /* START COMMAND RESTARTS PROGRAM

Cc
C ERROR WHILE ATTEMPTING TO READ THE RECORD

C
300 CALL ERRPRS(KSIRIN, CODE, 0, 0, 'RDLREC', 6)

IF (CODE .NE. ESEOF) GO TO 250 /* EXIT IF NOT END-OF-FILE

Cc
C END-OF-FILE REACHED.
C REWIND FILE AND TRY AGAIN
Cc

CALL PRWFSS(KSPOSN+KSPREA, FUNIT1,0,0, INTL (0) ,NMREAD,
X CODE)
IF (CODE.NE.0) GO TO 1000
GO TO 20

Cc
2000 CALL ERRPRS(KSNRIN,CODE,0,0,0,0)

END

5-23 Third Edition

DOC3621-190

This program, compiled, loaded, and stored as LOGICREAD. SAVE, may be
run with the following dialog:

OK, R LOGICREAD
TYPE FILE NAME
SAMFIL
TYPERECORD SIZE
1
TYPE RECORD NUMBER
0
RECORD 0 CONTAINS 1 ENTRIES AS FOLLOWS

1
OK, R LOGICREAD
TYPE FILE NAME
SAMFIL
TYPE RECORD SIZE
1
TYPE RECORD NUMBER
8
RECORD 8 CONTAINS 1 ENTRIES AS FOLLOWS

9
OK,

Program ll — Reading a File in a Segment Directory

OK, SLIST SEGREAD, FIN

C REDSEG BIN’ READ FILE IN A SEGMENT DIRECTORY
Cc
C THIS PROGRAM READS FILE NUMBER N IN SEGMENT DIRECTORY AND
C TYPES WORD NUMBER M IN THAT FILE, THE FIRST FILE IN THE
C DIRECTORY IS FILE NUMBER 0. THE FIRST WORD IN THE FILE IS
C WORD NUMBER 0.
C
C RESTRICTIONS:

A
N
A
A
A
D 1. THE SEGMENT DIRECTORY FILE MUST EXIST

2. THE FILE NUMBER MUST BE BETWEEN 0 AND 32767
3. THE FILE MUST BE IN THE SEGMENT DIRECTORY
4, THE WORD NUMBER MUST BE BEIWEEN 0 AND 32767
5. THE WORD MUST BE IN THE FILE,

INTEGER*2 FUNIT /* PRIMOS FILE UNIT FOR DATA FILE
INTEGER*2 SGUNIT /* PRIMOS FILE UNIT FOR SEGMENT DIRECTORY
INTEGER*2 SAMSEG /* FILE TYPE OF SAM SEGMENT DIRECTORY
INTEGER*2 DAMSEG /* FILE TYPE OF DAM SEGMENT DIRECTORY

PARAMETER (FUNIT=2, SGUNIT=1, SAMSEG=2, DAMSEG=3)

INTEGER*2 BUFF /* DATA BUFFER
INTEGER*2 SEGDIR(16) /* NAME OF SEGMENT DIRECTORY BUFFER
INTEGER*2 FILNUM /* FILE NR (ENTRY NR) OF FILE IN SEGDIR

Third Edition 5-24

THE FORTRAN INTERFACE

INTEGER*2 WRDNUM //* WORD NUMBER IN DATA FILE TO BE READ

INTEGER*2 CODE /* ERROR CODE RETURNED BY FILE SYSTEM
INTEGER*2 TYPE /* FILE TYPE RETURNED BY SRCHSS
INTEGER*2 NMREAD /* NR WORDS READ/WRITTEN/RIRNED BY PRWFS$S
INTEGER*2 I

Cc
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSCOM>ERRD. INS. FIN
Cc
C
C ASSURE FILE UNITS TO BE USED ARE KSCLOSD
C ASK FOR AND READ SEGMENT DIRECTORY NAME FROM TERMINAL
Cc
10 CALL SRCHSS(KSCLOS, 0, 0, SGUNIT, 0, CODE)

IF (CODE.NE.0) GO TO 100
CALL SRCHSS(KSCLOS, 0, 0, FUNIT, 0, CODE)
IF (CODE.NE.0) GO TO 100
WRITE (1,1000)

1000 FORMAT ('?TyYDE SEGMENT DIRECTORY NAME')
LVIIDA § bots WLAN LNEe LE

READ (1,1010) (SHGDIR(I), I=1,16)mSwy

1010 FORMAT (16A2)
Cc
C OPEN THE SEGMENT DIRECTORY FOR READING ON SGUNIT
C

CALL SRCHSS(KSREAD+KSIUFD, SEGDIR, 6, SGUNIT, TYPE, CODE)
IF (CODE.NE.0) GO TO 100

Cc
C TYPE CONTAINS THE FILE TYPE OF THE FILE JUST OPENED.
C MAKE SURE THE FILE IS EITHER A SAM OR DAM SEGMENT DIRECTORY.
C ALLOWABLE TYPE VALUES ARE 2 AND 3.
Cc

IF (TYPE .EQ. SAMSEG) GO TO 20
IF (TYPE .—Q. DAMSEG) GO TO 20

C
C NOT A SEGMENT DIRECTORY — TRY AGAIN
C

WRITE (1,1020)

1020 FORMAT('FILE IS NOT A SEGMENT DIRECTORY’)
GO TO 10

C
C ASK FOR FILE (ENTRY) NUMBER IN SEGMENT DIRECTORY
Cc
20 WRITE (1,1030)
1030 FORMAT ("TYPE FILE NUMBER")

READ (1,1040) FILNUM

1040 FORMAT (16)
IF (FILNUM .LT. 0) GO TO 20

Cc
C ASK FOR WORD NUMBER IN DATA FILE TO READ

C
30 WRITE (1,1035)
1035 FORMAT ('TYPE WORD NUMBER')

READ (1,1040) WRDNUM
IF (WRDNUM .LT. 0) GO TO 30

5-25 Third Edition

DOC3621-190

Cc
C TRY TO POSITION TO WORD NUMBER IN THE SEGMENT DIRECTORY.
C IF END-OF-FILE REACHED, FILE IS NOT IN SEGMENT DIRECTORY.
C SGDR$$ RETURNS THE VALUE 1 IN THE 41TH ARGUMENT (TYPE) IF A
C FILE IS ENTERED IN THE ENTRY POSITION. THIS PROGRAM DOES NOT
C CHECK THE VALUE, SINCE SRCHSS WILL RETURN THE PROPER ERROR CODE
C (ESFNTS ~- FILE NOT FOUND IN SEGMENT DIRECTORY) ANYHOW.
Cc

CALL SGDRS$$(KSSPOS, SGUNIT, FILNUM, TYPE, CODE)
IF (CODE .EQ. ESEOF) CODE = ESFNTS /* FILE NOT FOUND
IF (CODE .NE. 0) GO TO 100

C
C OPEN FILE IN SEGMENT DIRECTORY FOR READING
C

CALL SRCH$$ (KSREAD+KSISEG, SGUNIT, 0, FUNIT, TYPE, CODE)
IF (CODE .NE. 0) GO TO 100

C
C PRINT THE WORD, KSCLOS THE FILES, AND RETURN TO PRIMDS
Cc

WRITE(1,1050) WRDNUM, FILNUM, (SEGDIR(I), I= 1,16) ,BUFF
1050 FORMAT ('WORD',I6,' OF FILE (',16,') IN ',16A2,

X 'OONTAINS', I6)
50 CALL SRCHSS$(KSCLOS, 0, 0, FUNIT, 0, CODE)

CALL SRCH$S(KSCLOS, 0, 0, SGUNIT, 0, CODE)
CALL EXIT
GO TO 10 /* START COMMAND RESTARTS PROGRAM

Cc
C COMMON ERROR HANDLER
Cc
100 IF (CODE.EQ.ESFNTS) GO 10 110 /* FILE NOT FOUND IN SECDIR

IF (CODE .—Q. ESEOF) GO 10120 /* END-OF-FILE
CALL ERRPRS (KSIRIN,CODE,0,0,'REDSEG',6) /* PRINT ERROR MSG
GOTO 50 /* KSCLOS FILES EXIT

Cc
C FILE NOT FOUND IN SEGMENT DIRECTORY
C LET THE USER TRY AGAIN
Cc
110 WRITE(1,1060) FILNUM, (SEGDIR(I), I=1, 16)
1060 FORMAT ('FILE (',I6,') NOT FOUND IN ',16A2)

GOTO 10 /* RE-TRY
Cc
C END-OF-FILE
C CODE WILL CONTAIN ESEOF ONLY WHILE TRYING TO READ
C THE DATA FILE, ALLOW RE-TRY.
Cc
120 WRITE(1,1070) WRDNUM, FILNUM, (SEGDIR(I) , I=1,16)
1070 FORMAT ('WORD',1I6,' NOT IN FILE (',I6,') IN ',16A2)

GOTO 10 /* RE-TRY
Cc

END

Third Edition 5-26

THE FORTRAN INTERFACE

This program, stored as SEGREAD.FIN, may be compiled, loaded, and run

with the following dialog:

OK, FIN SEGREAD
0000 ERRORS [<.MAIN. >FIN-REV18.4]
OK, LOAD
[LOAD rev 19.0.1]

S$ LO SEGREAD

$sLr
LOAD COMPLETE

$ SA
$ EXEC
TYPE SEGMENT DIRECTORY NAME
SEGDIR
TYPE FILE NUMBER
0
TYPE WORD NUMBER
l
WORD 1 OF FILE (GC) IN segdir CONTAINS 0

OK,

5-27 Third Edition

The Pascal

Interface

INTRODUCTION

To call a standard subroutine from Pascal, first declare it as an

external procedure in the format:

PROCEDURE sub-name[([VAR] arg:type[; [VAR] arg:type]...)] EXTERN;

Call it with its name and the argument-names used in the program:

sub-name[(data-name [,data-name]...)];

Note

In the rest of this guide, subroutine call formats are always
given as CALL sub-name [(identifier)...]. From Pascal,
however, the word CALL must be omitted.

To declare a function, include the type of value returned by the

function:

FUNCTION function-name[([VAR] arg: type; [arg:type]...)]: type;

EXTERN}

6-1 Third Edition

DOC3621-190

Call it with a format such as one of the following:

IF function-name(data-name ...) = X THEN ...;

X = function—name (data-name...);

Note

Remember that any arguments that are supplied or changed by the
subroutine must be declared as VAR.

DATA TYPES

Table 6-1 summarizes the argument types of FORTRAN and PLIG subroutines
and functions that can be called from Pascal. The following is a
discussion of these argument types, as well as some generic types, and
how they relate to Pascal data types and structures.

INTEGER*2 or FIXED BIN(15)

The INTEGER*2 expected by FORTRAN subroutines is PLIG's FIXED BIN, also
called FIXED BIN(15). It must be declared in Pascal programs as
INTEGER,

Sample Program 1 illustrates a call to the FORTRAN subroutine SRCHSS,
which expects an INTEGER*2 argument. Sample Program 4 calls the PLIG
subroutine GVSGET, which needs a FIXED BIN argument.

INTEGER*4 or FIXED BIN(31)

The INTEGER*4 expected by FORTRAN subroutines is PLIG's FIXED BIN(31).
Since the INTEGER type in Pascal has a length of only 16 bits, these
longer integers must be declared as a subrange. For example, such an
Operand might be declared as:

TYPE INT4 = [-65565 .. +65565];

To define a 32-bit integer, the numbers within brackets must have an
absolute value greater than 32768. The absolute value may range as
high as 2147483647.

Sample Program 2 calls the FORTRAN subroutine RNUMSA, which expects an
INTEGER*4 argument.

Third Edition 6-2

THE PASCAL INTERFACE

Table 6-1
Data Types

GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL IV 77 PASCAL PL1LG

(1)
1 bit —*— —*— -*- —*- =k— Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTEGER*2 Integer Fixed Bin
Half-word INTEGER*2 LOGICAL*2 Boolean Fixed

LOGICAL Bin(15)

INTEGER (4)
32-bit INT*4 ~*- INTEGER*4 INTEGER*4 Subrange Fixed

Word LOGICAL . Bin (31)
LOGICAL*4

64-bit
Double uk —_-*— —_*k*— —_ ke. -*k—

Word

Float

32-bit REAL REAL REAL Real Binary

Float single —*— REAL*4 REAL*4 Float
precision Bin (23)

64-bit
Float double REAL*8 —*- REAL*8 REAL*8 —k— Float

precision Bin (47)

DISPLAY (5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER CHARACTER ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [l..n] OF

PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —*- Char (n)
string Varying

(7) ~ (8)
48-bits —*- -*- —*- —*- <type> Pointer
3 Half-words

* Not available,

Third Edition

DOC3621-190

(1)

(2)

(3)

(4)

(5)

(7)

(8)

Notes to Table 6-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'Bis true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively, This is not directly compatible with Pascal or
PLIG,

Boolean data in Pascal is represented in 16 bits where the
Sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG.

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
Size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a

_

standard
Pascal type.

Third Edition 6-4

THE PASCAL INTERFACE

Integer Arrays

An integer array expected by a FORTRAN subroutine should be declared as
an array of numbers or of characters in Pascal, depending on the type
of information expected. Sample Program 6 calls the subroutine TIMDTP,
which returns an integer array with information of both data types.

Multidimensional arrays should not be passed between FORTRAN and
Pascal, because columns and rows will be reversed.

ASCII Character (String or Array)

An ASCII string expected by a FORTRAN subroutine should be declared as
a literal or an array of characters in Pascal. Sample Program 3

illustrates passing an ASCII string to the subroutine DELESA,

LOGICAL

LOGICAL arguments expected by a FORTRAN subroutine should be declared
in Pascal as INTHGER. The arguments must have a value of 0 (false) or

1 (true).

Sample Program 3 illustrates a call to the function DELESA, which
returns a logical value. The example for YSNOSA in Chapter 12 also

illustrates a call to a logical function from Pascal.

REAL, REAL*4, or FLOAT BIN(23)

This data type should be declared as REAL in Pascal. Constants passed
as real arguments to FORTRAN functions should be in scientific format

(x. xEyy).

Sample Program 5 passes a REAL argument to the subroutine RNDSA.

REAL*8

FORTRAN subroutines that expect arguments of this type may not be

Called from Pascal.

6-5 Third Edition

DOC3621-190

CHARACTER(n) NONVARYING

This argument type, usually declared simply as CHARACTER(n), may be
declared in Pascal as ARRAY [1..n] OF CHAR. A call from Pascal using a
CHAR (80)NONVAR argument is given in the example for CLSGET in Chapter
10. |

CHARACTER(*)VARYING

This PLIG data type is implemented as a record structure, with the
actual number of characters followed by those characters. Thus the
structure of a CHAR(*)VAR argument may be represented by the following
box:

lO 5 JA B C OD El
|__|__I__ |__|
COUNT CHARACTER STRING

To declare a comparable structure in Pascal, therefore, requires a
record, containing a 16-bit character count plus a character array.

Because of the argument format expected by P11G, CHAR(*)VAR arguments
may never be passed as literals.

As an example, if the character string to be passed to PLIG is 28
characters long, then the Pascal operand might be constructed this way:

RECORD
BCOUNT: INTEGER:
VARNAME: ARRAY[1..28] OF CHAR;

END;

Sample Progran 4 calls the P11G subroutine GVSGET, which expects two
CHAR (*)VAR arguments,

POINTER

A POINTER type expected by a PLIG subroutine may be declared as a
pointer in Pascal also. Sample Program 7 calls a subroutine that
expects a pointer.

BIT (1)

PLIG subroutines that use this argument type may not be called from
Pascal programs, unless the argument is BIT(1)ALIGNED. ‘Then the
argument may be passed as a Boolean operand. PLIG's '0'B may then be
read as 0 in Pascal, and PLIG's '1'B as -l.

Third Edition 6-6

THE PASCAL INTERFACE

USING SYSCOM TABLES

Subroutine descriptions in this quide sometimes refer to codes with
names in the format xSyyyy, where x and y are letters, There are three

groups of these codes.

Error codes have names in the format ESyyyy. These equivalents should
be inserted in the Pascal program with the statement:

ZINCLUDE 'SYSCOM>ERRD. INS. PASCAL ';

This statement should be inserted into the CONST declaration. The
equivalents for these error codes are in Appendix D and in the file

SYSCOM>ERRD. INS. PASCAL.

Tron oeLeeeeee COU ie weed TXMeee _ me we meee1 meek ml _

ey codes have names in the format K$yyyy. These equivalents should be
inserted in the program with the statement:

SINCLUDE 'SYSCOM>KEYS. INS. PASCAL';

This statement should also be inserted into the CONST declaration. The
equivalents for these key codes are in Appendix C and in the file

SYSCOM>KEYS. INS. PASCAL.

Some subroutines in VAPPLB use argument codes in the form ASyyyy.
These equivalents should be inserted in the Pascal program with the
statement:

SINCLUDE 'SYSCOM>ASKEYS. INS. PASCAL';

following the CONST declaration. The numeric equivalents of these
codes are listed in the table at the end of Chapter 12 and in the file
SYSCOM>ASKEYS. INS. PASCAL.

Sample Program 1 illustrates the use of key codes.

SAMPLE PROGRAMS

Program 1 -—— Using INTEGER*2 and SYSCOM Keys

PROGRAM SRCH_CAL;
{
{THIS PROGRAM CALLS THE SUBROUTINE SRCHSS TO CHECK
{ON THE EXISTENCE OF A FILE.
{
CONST

%INCLUDE 'SYSCOM>KEYS. INS. PASCAL ';
%INCLUDE 'SYSCOM>ERRD. INS. PASCAL';

TYPE STRING = ARRAY[1..6] OF CHAR;

Ne
na
d
M
e
n
t
R
y
d

a
y
e
s

6-7 Third Edition

DOC3621-190

VAR CODE: INTEGER;
PROCEDURE SRCHS$(A: INTEGER; B:STRING; C:INTRGER; D: INTEGER;

E: INTEGER; VAR F: INTEGER) ; EXTERN;
BEGIN

SRCHSS (KSEXST+KSIUFD, 'CTRLFL', 6, 0, 0, CODE);
WRITELN ('SEARCH CODE IS: ', CODE);
END.

This program may be compiled, loaded, and run with the following
dialog. If the file CIRLFL is not found, the resulting return code
will be 15, as shown below.

OK, PASCAL SRCH
0000 ERRORS (PASCAL-REV19.0)

OK, SEG -LOAD
[SEG rev 19.0]

$ LO SRCH
S$ LI PASLIB
S LI VAPPLB

sir
LOAD COMPLETE

9 EXEC

SEARCH CODE IS: 15
OK,

Program 2 —- Using an INTEGER*4 Argument

OK, SLIST INT4. PASCAL

oes INT4 3

{THIS PROGRAM CALLS THE SUBROUTINE RNUMSA TO VERIFY AN INTEGER*4. }

{ }
CONST

%INCLUDE 'SYSCOM>ASKEYS. INS. PASCAL';

TYPE STRING= ARRAY[1..14] OF CHAR;

TYPE INT4 = -100000 .. +100000;
VAR MSG: STRING;

CODEVALUE: INT4;

PROCEDURE RNUMSA(M:STRING;L: INTEGER;N: INTEGER; VAR V:INT4) ;EXTERN:

BEGIN

MSG := 'ENTER A NUMBER';

RNUMSA (MSG, 14, ASDEC, CODEVALUE) ;

WRITELN('NUMBER IS: ', CODEVALUE) ;

END.

Third Edition 6-8

THE PASCAL INTERFACE

This program, compiled and stored as INT4.PASCAL, may be loaded and run
with the following dialog:

OK, SEG —LOAD
[SEG rev 19.0]
S LO INT4
S$ LI PASLIB
$ LI VAPPLB

COMPLETE

ig
Bi
r

ENTER A NUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 11223344556677889900
Too many digits (RNUMSA)

ENTER A NUMBER: 123456789
NUMBER IS: 123456789
mire
VWiNg

Program 3 -- Calling a Logical Function

PROGRAM SUBCALL?

i
{THIS PROGRAM CALLS THE LOGICAL FUNCTION DELESA TO DELETE A FILE.

{
TYPE STRING= ARRAY[1..6] OF CHAR;

VAR FILENAME: STRING;

THE_COUNT : INTEGER3

{
{THE NEXT FUNCTION WILL RETURN A

{VALUE OF EITHER 1 (DELETE SUCCESSFUL)

for 0 (UNSUCCESSFUL)

FUNCTION DELESA(AsSTRING; K: INTEGER) : INTEGER;EXTERN;

BEGIN
FILENAME := 'CTRLFL';

THECOUNT := 6;
IF DELESA (FILENAME, THE_COUNT) = 1 THEN

WRITELN('FILE DELETED’)

ELSE WRITELN('NO GO') 3;
WRITELN (‘END OF RUN')

END.

R
y
d
R
y
e
S
e
e

R
y
e

Ln
yn

d
b
e
y

Ce
ye

d
L
e
d

6-9 : Third Edition

DOC3621-190

This program, stored as LOGICAL.PASCAL, may be compiled, loaded, and
run with the following dialog. If the file CTRLFL exists, the first
message will be displayed; otherwise the second message will appear.

OK, PASCAL LOGICAL

0000 ERRORS (PASCAL~-REV19.0)
OK, SEG -LOAD
[SEG rev 19.0]
$ LO LOGICAL
S$ LI PASLIB
S LI VAPPLB

sil
LOAD COMPLETE
S$ EXEC
FILE DELETED
END OF RUN
OK, SEG LOGICAL
Not found. CTRLFL (DELESA)
NO GO
END OF RUN
OK,

Program 4 —- Using CHAR(*)VAR Arguments

The following program returns the value of a global variable set with
DEFINE_GVAR. For more information, see the CPL User's Guide or the
Chapter on CPL files in the Prime User's Guide.

OK, SLIST CHARVAR. PASCAL

PROGRAM CHRVR;
TYPE CHARVAR = RECORD

NCHARS: INTEGER;
STRING]: ARRAY[1..4] OF CHAR

END;
VAR VARSIZE, CODE, K: INTEGER;

VARVALUE, VARNAME: CHARVAR;
PROCEDURE GVSGET(A:CHARVAR; VAR B:CHARVAR; C:INTEGER; D: INTEGER);

EXTERN?
BEGIN;

VARNAME.NCHARS := 43
VARNAME.STRING] := '
VARSIZE := 4;
GVSGET (VARNAME, VARVALUE, VARSIZE, CODE);
K := 1;
WRITE('SIZE OF MAX IS_ ')s3

~MAX';

Third Edition 6-10

THE PASCAL INTERFACE

FOR K := 1 TO VARVAL.NCHARS DO
WRITE (VARVALUE. STRING] [K]) 3

WRITELN};
WRITELN('ERROR CODE IS ',CODE);
END.

To compile and load this program, stored as CHARVAR.PASCAL, use the

following dialog:

OK, PASCAL CHARVAR

0000 ERRORS (PASCAL-REV19.0)

OK, SEG ~LOAD

[SEG rev 19.0]
$ LO CHARVAR

Before this program is run, a global variable file containing the
variable .MAX must be defined:

OK, DEFINE_GVAR ANNE>GVARFILE

OK, SEG CHARVAR

SIZE OF MAX IS_ 100

ERROR CODE IS 0
OK, :

Program 5 —- Using a REAL*4 Argument

OK, SLIST RANDOM. PASCAL

co RANDOM ;

{ THIS PROGRAM GENERATES TEN RANDOM NUMBERS, STARTING

{ FROM A SEED INCLUDED IN THE PROGRAM

{
VAR SEED1, THISONE: REAL;

K: INTEGER;

FUNCTION RANDSA(VAR SEED: REAL): REAL? EXTERN};

BEGIN

SEED] := 1.2E-1;
K := 0;
FOR K := 1 to 10 DO

BEGIN

e
p
y
t
y
e
e
e

6-11 Third Edition

DOC3621-190

THISONE := RANDSA(SEED1);
WRITELN(K, ':', THISONE);

END

END,

This program, compiled and stored as RANDOM.BIN, may be loaded and run
with the following dialog:

OK, SEG -~LOAD

[SEG rev 19.0]
S$ LO RANDOM
S LI PASLIB
S$ LI VAPPLB

stl
LOAD COMPLETE
S EXEC

0: 7.216268E-01
1: 3.840753E-01
2: 1.552343E-01
33 2.418942E-02
4: 5 .516532E-01
5: 6.372356E-01
6: 1.96348LE-02
7: 2.397342E-03
8: 2.921368E-01
9: 9.439590E-01

OK,

Third Edition 6-12

THE PASCAL INTERFACE

Program 6 -——- Using an Integer Array

This program calls the subroutine TIMDAT to retrieve system and user
information. Since the array CHARARRAY will return both character and

numeric data, it is defined twice by means of the CASE statement.

OK, SLIST TIMDTP. PASCAL

PROGRAM TIMDIP;

TYPE CHARARRAY = ARRAY[1..30] OF CHAR;
CASEVALUE = (Al,A2);
(*

(*

*)
RECORD CASE I : CASEVALUE OF
(J1 : CHARARRAY) ;
(J2 RECORD MMDDYY: ARRAY[1..6] OF CHAR;

TIMEMIN : INTEGER;
TIME_SEC : INTEGER;

TIMETCK : INTEGER;

CPU_SEC : INTHGER;
CPU_TCK: INTEGER;

DISK_SEC : INTEGER;

DISK_TCK : INTEGER;

TCK_SEC : INTEGER;

USER_NUM : INTEGER;
USERNAME : ARRAY [1..32] OF CHAR;

TABLE
Al
A2

END;)
END;

*)
VAR TABLE] : TABLE;

I : CASEVALUE;

PROCEDURE TIMDAT(VAR A:CHARARRAY; B: INTEGER) ; EXTERN;

(* *)
BEGIN .

I := Al; (*CHARACTER ARRAY*)
TIMDTP (TABLE] .J1,28);
I s= A2; (*RECORD, CHAR and INTEGER*)
WITH TABLE1.J2 DO

BEGIN
WRITELN ('DATE IS ", MMDDYY);
WRITELN (‘SECONDS ELAPSED ',TIME_SEC);
WRITELN ("TICKS ELAPSED ' TIME_TCK) ;
WRITELN('CPU SECONDS USED ', CPU_SEC);
WRITELN('CPU TICKS ", CPU_TCK)
WRITELN('DISK SECONDS USED ', DISK_SEC);
WRITELN ("USER NAME ", USERNAME);
END

END.

6-13 Third Edition

DOC3621-190

To compile, load, and run this program, stored as TIMDIP.PASCAL, use

the following dialog:

OK, PASCAL TIMDTP
0000 ERRORS (PASCAL-REV19.0)

OK, SEG -LOAD
[SEG rev 19.0]
$ LO TIMDTP
$ LI PASLIB

$ LI
LOAD COMPLETE
S EXEC

DATE IS 012082
SECONDS ELAPSED 15
TICKS ELAPSED 102
CPU SECONDS USED 44
CPU TICKS 223
DISK SECONDS USED 57
USER NAME ANNE
OK,

Program 7 —- Using a Pointer Argument

OK, SLIST PIR.PASCAL

en ACLCTL;

{ THIS PROGRAM CREATES AN ACL FOR THE FILE
{ RISKFILE, OR, IF AN ACL ALREADY EXISTS,

RETURNS AN ERROR MESSAGE.

TYPE STRING = ARRAY[1..7] OF CHAR;
TYPE CHARVAR = RECORD

NUMBER: INTEGER;

FILENAME: STRING;
END;

TYPE ACL = RECORD
VERSION: INTEGER;

ENTRY_COUNT : INTHGER;

ENTRIES: ARRAY[1 .. 2] OF CHARVAR;

TYPE PTR = “ACL;

H
e
d
e
n
n
a
N
e
n
e

Le
ry
n

Ke
ny
a?

Third Edition 6-14

VAR KEY: INTEGER;
NAME: CHARVAR?;

CODE : INTEGER;
THISPIR : ACL_PIR;
RISKFILE: ACL;

THE PASCAL INTERFACE

PROCEDURE ACSSET(A: INTEGER;B:CHARVAR;C*ACL_PIR; D: INTEGER);
EXTERN}

{

NAME. FILENAME := 'ACLTEST';

RISKFILE.VERSIN := 2;

RISKFILE. ENTRY_COUNT:= 1;

RISKFILE. ENTRIES [1].NUMBER :=

RISKFILE. ENTRIES [1] .FILENAME :

NEW (THISPTR)3

THISPTIR~ := RISKFILE;

}

"RSKFILE';

ACCCE”M (VEv NAMD mrTcprD COTE «AVPYtep Ip tiaMA) 7

Fe eteoe

This program, stored as PIR.PASCAL,
executed with the following dialog:

OK, PASCAL PIR

0000 ERRORS (PASCAL-REV19.0)
OK, SEG —LOAD

[SEG rev 19.0.1]
$ LO PIR
S$ LI PASLIB

sir
LOAD COMPLETE

9 EXEC

CODE IS: 0
OK,

6-15

may be compiled, loaded, and

Third Edition

The PL/I Subset G

Interface

INTRODUCTION

To call an external subroutine from PL/I subset G (PLIG), first declare
the subroutine as an external procedure in the format:

DECLARE sub-name EXTERNAL ENTRY[(type [,type]...)]?

where sub-name is the subroutine name without quotes, and type is the
type of the argument expected.

To call the subroutine, use the format:

CALL sub-name[(identifier [,identifier]...)];

where identifier may be a constant or a data name.

To declare a function, use this format:

DECLARE function—name EXTERNAL ENTRY[(type ...)] RETURNS (type);

Call it as an expression in a format like one of these:

IF logical-function[(identifier...)] = 0 THEN ...;

IF function-name[(identifier...)] = X THEN ...3

7-1 Third Edition

DOC3621-190

THE OPTIONS (SHORTCALL) DECLARATION

The OPTIONS(SHORICALL) declaration is useful for calling PMA procedures
with the PMA instruction JSXB instead of the more common PCL,
instruction. A procedure call of this type is faster than one using
PCL. However, the called procedure must be written to expect this kind
of call. In Rev. 18 and Rev. 19, the only system subroutine that can
(and must) be declared in this way is MKONUS.

The format of this declaration is:

DECLARE procedure-name ENTRY OPTIONS(SHORICALL [stack-size]);

stack-size specifies the extra space needed for the calling
procedure's stack, The default size is 8,

The call does not generate a new stack for storage, as does PCL. ‘The
calling procedure's stack space is used, Thus it may be necessary to
Specify stack size in the declaration in order to enlarge the calling
stack, For example, MKONUS requires an 28-word stack, so the user's
stack must be large enough to accomodate this requirement. If stack
Size is not large enough, the return from the subroutine will cause
unpredictable error messages.

Arguments may be used with the SHORICALL option. The computer will set
up the L register to point to a vector containing the addresses of the
arguments, or, in the case of one argument, to the address of the
argument itself. No type checking is done. For Rev. 19, there are no
standard subroutine calls that require both SHORTCALL and argument
passing.

DATA TYPES

Table 7-1 summarizes the argument types of FORTRAN subroutines and
functions that can be called from PLIG. The following is a discussion
of these argument types, as well as some generic types, and how they
relate to PLIG data types and structures. The PLIG CHAR(*) VARYING
argument type is discussed briefly.

INTEGER*2

The INTEGER*2 expected by FORTRAN subroutines is PLIG's FIXED BIN, also
Called FIXED BIN(15). Sample Program 1 includes a call to the
Subroutine SRCH$$, which expects an INTHGER*2 argument.

Third Edition 7-2

THE PL/I SUBSET G INTERFACE

Table 7-1
Data Types

GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL IV 77 PASCAL PLIG

(1)
1 bit —*k —*— —*k- —*- ake Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTEGER*2 Integer Fixed Bin
Half-word INTHGER*2 LOGICAL*2 Boolean Fixed

LOGICAL Bin(15)

INTEGER (4)
32-bit INT*4 —*- INTEGER*4 INTEGER*4 Subrange Fixed
Word LOGICAL Bin(31)

LOGICAL*4

64-bit
Double ~~ =—*t —*— xk. tt a

Word

Float
32=bit REAL REAL REAL Real Binary

Float single —*- REAL*4 REAL*4 Float
precision Bin (23)

64-bit |
Float double REAL*8 —*— REAL*8 REAL*8 ko Float
precision Bin (47)

DISPLAY(5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER |CHARACTER ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [1..n] OF

PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —t Char (n)
string Varying

(7) ~ 48)
48-bits te —k— —* —*— <type> Pointer
3 Half-words

* Not available,

Third Edition

DOC3621-190

(1)

(2)

(4)

(5)

(6)

(7)

(8)

Notes to Table 7-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'B is true; if this
value is stored in a 16-bit integer, the sion bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,

respectively. This is not directly compatible with Pascal or

PLIG,

Boolean data in Pascal is represented in 16 bits where the

sign bit determines true and false. (A negative sign means

true, a positive sign means false.) This data type is

directly compatible with a BIT(1) ALIGNED variable in PLIG.

To define a 32-bit integer in Pascal, use an integer array

whose positive limit is greater than 32768 and whose negative

limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each language

indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;

a program that passes pointers or receives them may have to be

recompiled, and a program that assumes a particular form or

size of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard

Pascal type.

Third Edition 7-4

THE PL/I SUBSET G INTERFACE

INTEGER*4

The INTEGER*4 expected by FORTRAN subroutines is PLIG's FIXED BIN(31).
Sample Program 2 calls the FORTRAN subroutine RNUMSA, which expects an

INTEGER*4 argument,

REAL or REAL*4

This FORTRAN data type should be declared as FLOAT BIN, also called

FLOAT BIN(23) in PLIG. Constants passed to a FORTRAN function that

expects REAL arguments should be in scientific format (x.xEtyy).

Sample Program 3 calls RANDSA, which expects a real number.

DOAT KO
Doras *O

The REAL*8 argument expected by a FORTRAN subroutine should be declared

in PLIG as FLOAT BIN(47). It should be in scientific format (x.xEtyy).

Integer Arrays

An integer array expected by a FORIRAN subroutine should be declared,
according to the kind of information passed, either as a FIXED
BINARY(15) array or as a character array in PLIG:

DECLARE X(1:n) FIXED BIN(15);

DECLARE X(1:n) CHAR;

DECLARE X CHAR(n);

Multidimensional arrays cannot be passed between FORTRAN and PLIG.

ASCII Character (String or Array)

An ASCII string expected by a FORTRAN subroutine should be declared in

PLIG as a literal or as CHAR(n)NONVARYIN.

LOGICAL

LOGICAL arguments expected by a FORTRAN subroutine should be declared
in PLIG as FIXED BIN(15). The arguments must have a value of 0 (false)
or 1 (true). Note that FORTRAN logical fumctions cannot be called as

functions in PLIG for this reason, and must be called as subroutines.

7-5 Third Edition

DOC3621-190

Sample Program 4 calls the function DELESA, which returns a logical
value.

CHARACTER (*) VARYING

This argument is expected only by PLIG subroutines. It should be
declared as CHAR(n)VARYING, and passed only as a data name, not as a
literal. No other special steps are needed to pass CHAR(*)VARYING from
a PLIG program.

Sample Program 5 calls the P11G subroutine GVSGET, which expects a
CHAR (*) VARYING argument.

CHARACTER(n)NONVARYING, POINTER, BIT(1)

These arguments are expected only by PLIG standard subroutines. ‘They
Should be declared the same way in the calling routine.

USING SYSCOM TABLES

Subroutine descriptions in this quide sometimes refer to codes with
names in the format x$yyyy, where x and y are letters. The code names
may be used in the program instead of numeric values. There are three
groups of these codes.

Error codes have names in the format ESyyyy. These equivalents should
be inserted in the PLIG program before the subroutine declaration with
the statement:

SINCLUDE 'SYSCOM>ERRD. INS.PL1';

The equivalents for these key codes are in Appendix D and in the file
SYSCOM>ERRD. INS. PL.

Key codes have names in the format K$yyyy. These equivalents should be
inserted in the program with the statement:

SINCLUDE 'SYSCOM>KEYS.INS.PLI';

The equivalents for these key codes are in Appendix C and in the file
SYSCOM>KEYS. INS. PLl.

Some subroutines in VAPPLB use argument codes in the form ASyyyy.
These codes should also be inserted with the statement S%INCLUDE
"SYSCOM>ASKEYS.INS.PL1'. They are listed in the table at the end of
Chapter 12 on VAPPLB, or in the file SYSCOM>ASKEYS. INS.PLl.

Third Edition 7-6

THE PL/I SUBSET G INTERFACE

Sample Program 1 illustrates the use of key codes.

SAMPLE PROGRAMS

Program 1 — Using INTEGER*2 and SYSCOM Keys

SUBS: PROCEDURE OPTIONS (MAIN) ;

/* */
/* A PROGRAM TO CALL THE SUBROUTINE SRCHS$ TO VERIFY THE */

/* EXISTENCE OF FILE CIRLFL
/*

*

SINCLUDE 'SYSCOM>KEYS. INS.PL1';
INCLUDE 'SYSCOM>ERRD. INS.PL1';
DCL CODE FIXED BIN;
DCL SRCHS$ EXTERNAL ENTRY (FIXED BIN, CHAR(6), FIXED BIN,

FIXED BIN, FIXED BIN, FIXED BIN);

/3 */
CALL SRCHS$S(KSEXST+KSIUFD, 'CIRLFL', 6, 0, 0, CODE);
PUT SKIP LIST ('CODE IS: ', CODE);
END SUBS;

*/

This program, stored as SRCH.PLIG, may be compiled, loaded, and run

with the following dialog. If the file CTRLFL does not exist, the code

15 will be returned.

OK, PLIG SRCH
0000 ERRORS (PLIG-REV19.0)

OK, SEG -LOAD
[SEG Rev 19.0]
S$ LO SRCH
$ LI PLIGLB
$ LI VAPPLB

$tr
LOAD COMPLETE
S$ EXEC

CODE IS: 15

OK,

Program 2 — Using INTEGER*4

RNUM: PROCEDURE OPTIONS (MAIN);
/* */
/*A PROCEDURE TO CALL SUBROUTINE RNUMSA TO */
/*VERIFY A LONG INTEGER */
/* */

7-7 Third Edition

DOC3621-190

SINCLUDE 'SYSCOM>ASKEYS.PL1';
DCL CODE FIXED BIN(31);
DCL RNUMSA EXTERNAL ENTRY (CHAR(14), FIXED BIN, FIXED BIN,

FIXED BIN(31));
CALL RNUMSA ('ENTER A NUMBER', 14, ASDEC, CODE);
PUT SKIP LIST ("NUMBER IS', CODE);.
END RNUM;

This program, stored as INT4.PLIG, may be compiled, loaded, and run
with the following dialog:

OK, PLIG INT4
0000 ERRORS (PLIG-REV19.0)

OK, SEG -LOAD
[SEG rev 19.0]
S LO INT4
S LI PLIGIB
S LI VAPPLB

str
LOAD COMPLETE
S EXEC

ENTER A NUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 1234567891 23456789
Too many digits (RNUMSA)

ENTER A NUMBER: 12345

NUMBER IS 12345

Program 3 — Using REAL*4

OK, SLIST RANDOM, PL1G
RANDOM : PROCEDURE OPTIONS (MAIN);

/*

/* A PROGRAM TO CALL RANDSA TO GENERATE RANDOM NUMBERS /
/* *
DCL K FIXED BIN;
DCL SEED STATIC FIXED BIN(31) INITIAL (1);
DCL REAL4 FLOAT;
DCL RANDSA EXTERNAL ENTRY (FIXED BIN(31)) RETURNS (FLOAT) ;
/*

*/
DO K = 1 TO 10;
REAL4 = RANDSA(SEED) ;
PUT SKIP LIST (REALA4) ;
END;

END RANDOM:

Third Edition 7-8

THE PL/I SUBSET G INTERFACE

This program may be compiled, loaded, and run with the following
dialog:

OK, PLIG RANDOM
0000 ERRORS (PLIG-REV19.0)
OK, SEG —LOAD
[SEG rev 19.0]
S LO RANDOM
$ LI PLIGIB
S$ LI VAPHB

Sir
LOAD COMPLETE

$ EXEC

7 .826369E-06
1.315377E-01
7.596052E-01
4.586501E-01
5 .327672E-01
2.189591E-01
4.704461E-02
6.788645E-01
6 .792963E-01
9 .346929E-01

OK,

Program 4 — Calling a Logical Function

LOGI: PROCEDURE OPTIONS (MAIN);
/* */
/*A PROCEDURE TO CALL FUNCFION DELESA TO */

/*DELETE A FILE AND VERIFY THAT IT DID */

/* */
DCL DELESA EXTERNAL ENTRY (CHAR(6),FIXED BIN) RETURNS(FIXED BIN);
IF DELESA ('CERLFL', 6) = 1 THEN

PUT SKIP LIST ('FILE DELETED') ;

ELSE PUT SKIP LIST ('NO GO');
END LOGI;

This program, stored as LOGICAL.PLIG, may be compiled, loaded, and run
with the following dialog if CIRLFL does not exist.

OK, PLIG LOGICAL
0000 ERRORS (PLIG-REV19.0)

OK, SEG —-LOAD
[SEG REV19.0]
S LO LOGICAL
$ LI PLIGIB

7-9 Third Edition

DOC3621-190

S LI VAPPLB

$ir
LOAD COMPLETE
S EXEC

Not found. CIRLFL (DELESA)

NO GO
OK,

Program 5 —- Using CHAR(*) VARYING Arguments

OK, LIST GVAR.PLIG

GVAR: PROCEDURE OPTIONS (MAIN) ;
/*

/* A PROGRAM TO ASCERTAIN THE VALUE OF A GLOBAL VARIABLE

/* */
DCL VAR_NAME STATIC CHAR(4)VAR INIT('.MAX'):

DCL VAR_VALUE CHAR (4)VAR;

DCL VALUE_SIZE STATIC FIXED BIN INITIAL(4);

DCL CODE FIXED BIN;

DCL GVSGET EXTERNAL ENTRY (CHAR (*) VAR, CHAR(*) VAR,

FIXED BIN, FIXED BIN);

/* */
CALL GVSGET (VAR_NAME, VAR_VALUE, VALUE_SIZE, CODE);

PUT SKIP LIST (‘MAX IS', VAR_VALUE);

PUT SKIP LIST (‘CODE IS: ', CODE);
END GVAR?;

This program, compiled and stored as GVAR.PL1, may be loaded and run
with the following dialog, providing that a global variable file has
been defined as explained in The CPL User's Guide.

OK, SEG —LOAD
[SEG REV19.0]
S LO GVAR
$ LI PLIGLB
$ LI
LOAD COMPLETE
S EXEC

MAX IS 100
CODE IS: 0
OK,

Third Edition 7-10

The PMA

Interface

INTRODUCTION

Table 8-1 summarizes the argument types of FORTRAN and PLIG subroutines
that can be called from PMA, PRIMOS subroutines are particularly
useful to the PMA programmer for doing device I/O, for displaying data
on the terminal, and for doing file manipulation.

To call a subroutine, simply write:

CALL sub-name

Then, on succeeding lines, list the arguments to be passed, preceded by
AP for V-mode or DAC for R-mode and followed in V-mode by S or SL as
discussed below.

External functions should not be called from PMA. However, most

functions in this guide may also be called as subroutines.

Calling Subroutines from V-mode and I-mode PMA

When PMA calls an external subroutine in V-mode or I-mode, arguments
are passed by reference using the AP instruction. Each AP instruction
uses S as its second operand, except the last, which uses SL. Examples
of V-mode calls are given in the first set of sample programs below.
The same programs may be used in I-mode with SEGR instead of SEG at the

beginning.

8-1 Third Edition

DOC3621-190

Table 8-1
Data Types

GENERIC BASIC/ FORTRAN FORTRAN
UNIT/PMA VM COBOL IV 77 PASCAL PLIG

(1)
1 bit —*- —ke —*— —*— —*t— Bit

Bit (1)

(2) (2) (3)
16-bit INT COMP INTEGER INTEGER*2 Integer Fixed Bin

Half-word INTEGER*2 LOGICAL*2 Boolean Fixed
LOGICAL Bin(15)

r INTEGER (4)
32-bit INT*4 —*- INTEGER*4 INTEGER*4 Subrange Fixed
Word LOGICAL Bin (31)

LOGICAL*4

64-bit
Double —*k— -*- -*- ~*- -*- =

Word

Float

32-bit REAL REAL REAL Real Binary
Float single —*- REAL*4 REAL*4 Float
precision Bin (23)

64-bit
Float double REAL*8 —*— REAL*8 REAL*8 ~*— Float

precision Bin (47)

DISPLAY (5) (5) (5) (5)
Byte string INT PIC A(n) INTEGER |CHARACTER ARRAY Char (n)
(Max. 32767) PIC 9(n) *n [i..nj] OF

PIC X(n) CHAR

Varying (6) (6) (6) (6) (6)
character —*— Char (n)
string Varying

(7) ~ (8)
48-bits —*— —*— —*- —*- <type> Pointer
3 Half-words

* Not available.

Third Edition 8-2

(1)

(2)

(3)

(4)

(5)

o
m

O
V

~
—
—

(7)

(8)

THE PMA INTERFACE

Notes to Table 8-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'B is true; if this
value is stored in a 16-bit integer, the sign bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1 and 0,
respectively. This is not directly compatible with Pascal or
PLIG,

Boolean data in Pascal is represented in 16 bits where the
Sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is
directly compatible with a BIT(1) ALIGNED variable in PLIG.,

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative
limit is less than -32768.

Where "n" is a constant expression with the procram module.
This is not a dynamic length.

A character-varying string can be simulated in each language
indicated, as discussed in the chapter on that language.

This implementation of a pointer in PLIG is subject to change;
a program that passes pointers or receives them may have to be
recompiled, and a program that assumes a particular form or
Size of pointer data may have to be rewritten.

Where <type> is either a user~def ined type or a standard
Pascal type.

8-3 Third Edition

DOC3621-190

Calling Subroutines from R-mode PMA

When PMA calls an external subroutine in R-mode, arguments are passed
by reference using the DAC instruction. If there is more than one
argument, the last DAC instruction is followed by DATA0. (This is a
convention of the operating system, and not an architectural feature.)
If there is only one argument, DATA 0 must not be used. Examples of
R-mode calls are given in the second set of sample programs below.

DATA TYPES

Refer to the Assembly Language Programmer's Guide for more details on
the following data types.

INTEGER*2 or FIXED BIN(15)

FORTRAN'S INTEGER*2 is PLIG's FIXED BIN(15), also called just FIXED
BIN. This 16-bit argument is the one-word (single-precision) data type
that is defined by default with the BSS, DYNM, BSZ, CCT, or DATA
statement in PMA,

Sample Programs 2 and 7 use INTEGER*2 arguments.

INTEGER*4 or FIXED BIN(31)

This 32-bit argument expected by FORTRAN or PLIG is the double—word,
Couble-precision data type that is defined with BSS 2, DYNM x (2), or
DATA xxxxL. Sample Programs 3 and 8 use this data type.

REAL*4 or REAL

This 32-bit argument expected by FORTRAN is the single-precision
floating-point data type that is defined by any DATA item with a
decimal point or scientific notation (nnEnn), BSS 2, or DYNM X (2).

REAL*8

This 64-bit argument expected by FORTRAN is the double—precision
floating-point data type that is defined by any DATA item with a
decimal point or scientific notation and with D appended to it, by
BSS 4, or by DYNM x (4).

Third Edition 8-4

THE PMA INTERFACE

Integer Array

This may be passed as any data type.

LOGICAL

This FORTRAN data type is a 16-bit integer, with a value of 1 for true

or 0 for false. Sample Program 4 uses a LOGICAL data type.

ASCII Characters (String)

ASCII characters can be passed as a constant string enclosed in

apostrophes after the DATA statement plus the letter C, for example,

DATA C'STEP 1', It may also be enclosed in any delimiter after the BCI

statement. The maximum number: of characters after C is 32. The

maximum after BCI is the number that will fit on the same statement

line.

CHARACTER(*)VARYING

This PLIG data type is implemented as a record structure, with the

actual number of characters followed by those characters. The elements

may be pictured as follows:

io 5 {A B CC D EE |

|_|
COUNT CHARACTER STRING

Sample Program 5 uses a CHAR(*)VAR data type.

CHARACTER(n) NONVARYING

This PLIG data type, usually declared simply as CHARACTER(n), consists

of n characters. It may be coded in PMA as DATA C'xxx...', Or may be

passed as a literal. Either item should be ncharacters long.

BIT (1)

PLIG programs that expect arguments of this type should not be called

from PMA unless the argument is declard in PLIG as BIT(1) ALIGNED. In

this case it may be treated as a 16-bit integer, with a value of -1 for

false.

8-5 Third Edition

DOC3621-190

USING SYSCOM TABLES

Many subroutine descriptions in this guide use, instead of numeric
codes, key names in the form x$yyyy where x and y are letters. ‘There
are three files in the SYSCOM UFD that are of use in handling these
names.

SYSCOM>KEYS.INS.PMA and SYSCOM>ERRD. INS.PMA contain the equivalents of
keys and error codes. ‘They should be used instead of numeric values
for codes. These keys are explained in Chapter 2. To use these key
names in a PMA program, use SINCLUDE SYSCOM>xxxx or SINSERT SYSCOM>xxxx
anywhere in a program.

There is no ASKEYS file for PMA, so the numeric values of the codes
must be used instead. These codes are in Chapter 12 of this guide, or
may be read from the SYSCOM>ASKEYS.INS.FIN file.

Sample Programs 1, 6, and 8 illustrate use of these SYSCOM tables.

DIRECT-ENTRANCE CALLS TO PRIMOS — THE PCL INSTRUCTION

V-mode supports direct-entrance calls to certain procedures. Routines
such as SRCH$$, TINOU, or PRWFS$ can be invoked directly by this
mechanism. In V-mode, the CALL instruction is really a pseudo-op that
contains an EXT (external) declaration and a PCL (procedure call)
instruction, The PCL first searches to see whether the called routine
is a name in PRIMOS' gate segment. If so, the subroutine code does not
have to be loaded into the user's memory space. If the procedure name
is not in the gate segment, PCL looks in the libraries loaded by SEG.
Direct-entrance calls are available only from V-mode and I-mode
programs and will be correctiy set up by loading the V-mode FIN library
with LI after SEG is invoked.

Direct-entrance calls are through ECBs (entry control blocks) that are
contained in the gate segment of the supervisor. Invalid calls or
other references to the gate segment will cause the error messages
UNDEFINED GATE or ILLEGAL PAGE REF.

Sample Program 4 illustrates a call using the PCL instruction. ‘There
is no advantage to using this method rather than using CALL. The
distinction between these calls and normal subroutine calls is
presented only for background.

Under R-mode memory images on PRIMOS II or PRIMOS III, all operating
system subroutines use the SVC interface described in Appendix H. In
R-mode, only experienced programmers should use direct-entry calls in
programs, as discussed in the Assembly Language Programmer's Guide.

Third Edition 8-6

THE PMA INTERFACE

SAMPLE PROGRAMS IN V-MODE

Program 1 — Using SYSCOM Keys

This program calls SRCHSS$ to verify the existence of the file CTIRLFL,

using the key KSEXST. The program then calls TOVFDS to print the error

code returned by SRCHSS.

SEG THIS IS V-MODE
MAIN CALL TNOUA DISPLAY CHARACTERS:

AP =C'CODE '',S FIRST ARGUMENT
AP =5,SL | SECOND ARGUMENT

SINSERT SYSCOM>KEYS. INS. PMA
CALL SRCHSS CALL SEARCH:
AP =KSEXST+KSIUFD, S KEY ARGUMENT
AP =C'CTRLFL',S FILENAME ARG
AP =6,S LENGTH ARG
AP =0,S FUNIT ARG
AP =0,S TYPE ARG
AP CODE, SL LAST ARG
CALL TOVFDS PRINT INTEGER:
AP CODE,SL ONLY ARG
CALL TONL NEWLINE
CALL EXIT END GRACEFULLY
LINK DEFINE DATA:

CODE BSS 1 16-BIT INTEGER
ECBS ECB MAIN

END ECBS

To assemble, load, and run this program, stored as SRCHV.PMA, use the

following dialog:

OK, PMA SRCHV
0000 ERRORS (PMA-REV19.0)

OK, SEG -LOAD
{SEG rev 19.0]
S LO SRCHV
$ LI VAPPLB

$LI
LOAD COMPLETE

9 EXEC

CODE 0
OK,

8-7 Third Edition

DOC3621-190

Program 2 —- Using INTEGER*2 Arguments

This program calls E$11 (Appendix G) to do exponentiation, then calls
TOVFDS to print the 16-bit result. The program uses the DYNM data
definition to put 16-bit integers on a stack.

SEG THIS IS V-MODE
DYNM ITEM, Y 16-BIT INTEGERS

MAIN LDA =5 PUT 5 IN REGISTER A
STA ITEM
LDA =2
STA Y
LDA ITEM LOAD NUMBER TO BE SQUARED

STRT CALL ES11 CALL SUBROUTINE FOR EXPONENTIATION
AP Y,SL Y IS POWER TO BE USED

STA ITEM STORE RESULT IN ITEM
CALL TNOUA CALL SUBROUTINE TO PRINT MESSAGE
AP =C'RESULT ',S FIRST ARG (MESSAGE)
AP =7,SL SECOND ARG (NO. OF CHARS)
CALL TOVFDS CALL SUBROUTINE TO PRINT INTEGER
AP ITEM, SL QNLY ARGUMENT
CALL TONL CALL SUBROUTINE FOR NEW LINE
CALL EXIT | END GRACEFULLY
LINK

ENTCB ECB MAIN
END ENTCB

To assemble, load, and run this program, stored as TNOUVA.PMA, use the
following dialog:

OK, PMA INOUV
0000 ERRORS (PMA-REV19.0)

OK, SEG —LOAD

[SEG rev 19.0]
$ LO TNOUV

str
LOAD COMPLETE

S$ EXEC

RESULT 25
OK,

Program 3 — Using INTEGER*4

This program calls RNUMSA to accept a 32-bit integer.

SEG THIS IS V-MODE

STRT CALL RNUMSA CALL SUBROUTINE TO ACCEPT NUMBER
AP =C'ENTER A NUMBER',S

Third Edition 8-8

THE PMA INTERFACE

ITEM BSS 2 32-BIT INTEGER
ASBIN DATA 9 ACCEPT BINARY ONLY

To assemble, load, and run this program, stored as INT4V. PMA, use the
following dialog. Since the key ASBIN specifies that a binary number
must be entered (See Chapter 12.), an entry of anything but 1's or 0's

generates an error message from RNUMSA.

OK, PMA INT4V
0000 ERRORS (PMA-REV19.0)

OK, SEG —-LOAD
[SEG rev 19.0]
$ LO INT4V
$ LI VAPPLB

SLI
LOAD COMPLETE
S EXEC

ENTER ANUMBER: Q
Illegal number (RNUMSA)

ENTER A NUMBER: 23
Illegal number (RNUMSA)

ENTER A NUMBER: 0110
OK,

Program 4 — Using Logicals

This program calls TEXTOS to check whether a filename is valid. It
also illustrates use of the PCL instruction.

OK, SLIST LOGICAL. PMA

SEG
TEXTOS
TEXTOS$
=C'CIRLFL',S
=6,S

LEN,S
OK, SL
TOVFDS CALL SUBROUTINE TO PRINT OK
OK, SL

CALL ‘TONL CALL SUBROUTINE FOR NEW LINE

RR
R
BR

RA
E

8-9 Third Edition

DOC3621-190

CALL EXIT
LINK

LEN DATA 6 16-BIT INTEGER
OK BSS 1 16—-BIT INTEGER (LOGICAL)
ECBS ECB MAIN

END ECBS

To assemble, load, and run this program, stored as LOGICAL.PMA, use the
following dialog. If the file CIRLFL exists and is successfully
deleted, the return code will be 0. Otherwise the code will bel.

OK, PMA LOGICAL
0000 ERRORS (PMA-REV19.0)

OK, SEG —LOAD
[SEG rev 19.0]
S$ LO LOGICAL
S$ LI VAPPLB

sir
LOAD COMPLETE

> EXEC

1
OK,

Program 5 — Using CHAR(*) VARYING

This program calls GVSGET, which reads a previously defined global
file. Before this program will execute correctly, the global variable

file must have been defined with DEFINE_GVAR.

GVSGET can only be called from a program running in V-mode.

OK, SLIST CHARVAR. PMA

SEG
MAIN CALL GVSGET

AP NAME,S CHAR*VAR ARG
AP VAL,S CHAR*VAR RETURN ARG
AP SIZE,S ONE-WORD ARG
AP CODE,;SL ONE-WORD RETURN ARG
CALL ‘INOU PRINT CHARACTERS:
AP =C'CODE Is ',S
AP =8,SL

CALL ‘TOVFDS PRINT NUMBER
AP CODE,SL
CALL ‘ONL NEWLINE
CALL ‘TNOU
AP =C'MAX IS ',S
AP =7,SL

Third Edition 8-10

THE PMA INTERFACE

CALL ‘INOU
AP VAL+t1,S ONLY PRINT SECOND PART OF VAL
AP VAL, SL
CALL TONL
CALL EXIT
LINK

NAME DATA 4 ONE-WORD INTEGER +
BCI '.MAX' FOUR-CHAR NAME

VAL DATA 4 ONE-WORD INTEGER(SUPPLIED) +
BSS 2 FOUR-CHARACTERS RETURNED

SIZE DATA 4 16~BIT INTEGER
CODE BSS 1 16-BIT INTEGER
ECBS ECB MAIN

END ECBS

To assemble, load, and run this program, stored as CHARVAR. PMA, use the
FAL lAwainn Aialan Dafayvn FAA nwrnnvram AA Aa namnnaakis a nwlaAhal
POL.Owing MLaALVYe LIGLVL & wie PLYyL aii can Wo run successfully, a YLUVaAL

variable file containing .MAX must have been defined with the commandweerete eea swe we ae ee

DEFINE_GVARFILE filename, as explained in the CPL User's Guide.

OK, PMA CHARVAR
0000 ERRORS (PMA-REV19.0)

OK, SEG -LOAD
[SHG rev 19.0]
$ LO CHARVAR
sir
LOAD COMPLETE

$ EXEC

CODE IS
0
MAX IS
100

OK,

SAMPLE PROGRAMS IN R-MODE

Program 6 —- Using SYSCOM KEYS

This program does the same thing as Sample Program 1] above.

REL THIS IS R-MODE
MAIN

CALL SRCHSS CALL SUBROUTINE SRCH
DAC =KSEXST+KSIUFD KEY ARG
DAC =C'CTRLFL' FILENAME ARG
DAC =6 LENGTH ARG
DAC =0 FUNIT ARG

8-11 Third Edition

DOC3621-190

DAC =0
DAC CODE
DATA 0
CALL TOVFDS
DAC CODE
CALL TONL
CALL EXIT

CODE BSS 1

TYPE ARG
CODE ARG

END OF ARGS
DISPLAY CODE

ONLY ARGUMENT
NEW LINE
END GRACEFULLY
DEFINE 16-BIT INTEGER

SINCLUDE SYSCOM>KEYS. INS. PMA
END

To assemble, load, and run this program, stored as SRCH.PMA, use the
following dialog. If CTRLFL does not exist, an error code of 15 is

returned. (See Appendix D.)

OK, PMA SRCH
0000 ERRORS (PMA-REV19.0)

OK, LOAD
[LOAD rev 19.0]
$ LO SRCH
$ LI APPLIB
S$ LI
LOAD COMPLETE

$ EXEC

15
OK,

Program 7 — Using INTEGER*2

This program does the same thing as Sample Program 2 above.

REL
MAIN LDA ITEM
STRT CALL ES11

DAC Y

STA ITEM
CALL TNOUA
DAC =C'RESULT '
DAC =7
DATA 0
CALL TOVFDS
DAC ITEM
CALL TONL
CALL EXIT

ITEM DATA 5
¥ DATA 2

END

Third Edition

THIS IS R-MODE
LOAD NUMBER TO BE SQUARED
CALL SUBROUTINE FOR EXPONENTIATION

¥ IS POWER TO BE USED

STORE RESULT IN ITEM
CALL SUBROUTINE TO PRINT MESSAGE

FIRST ARG (MESSAGE)
SECOND ARG (NO. OF CHARS)

NO MORE ARGUMENTS
CALL SUBROUTINE TO PRINT INTEGER

ONLY ARGUMENT
CALL SUBROUTINE FOR NEW LINE

16-BIT INTEGERS

8-12

THE PMA INTERFACE

To assemble, load, and run this program, stored as TNOUR.PMA, use the
following dialog:

OK, PMA TNOUR
0000 ERRORS (PMA-REV19.0)

OK, LOAD

[LOAD rev 19.0]
S$ LO TNOUR
sir
LOAD COMPLETE

$ EXEC

— aaine THMEYIDD*A anA ACYIVOa
Wao.s LINDIASLUN ES GALIMA Laelialw

This program uses the values in ASKEYS to call RNUMSA, which accepts a
32-bit integer and checks that the integer is in the right format. In
this case, the key value is set to 9 for binary input,
entered by the user may consist only of 1's and 0's,

OK, SLIST INT4R. PMA

REL R-MODE
STRT CALL RNUMSA

DAC =C'ENTER A NUMBER‘

so the number

CALL SUBROUTINE TO ACCEPT NUMBER

DAC =14
DAC ASBIN
DAC ITEM
DATA 0
CALL TONL
CALL EXIT

ITEM BSS 2
ASBIN DATA 9

END

To load this R-mode program, compiled and stored as INT4R.BIN, use the
following steps:

OK, LOAD
[LOAD rev 19.0]
$ LO INT4R
S$ LI APPLIB

$tr
LOAD COMPLETE

$ SA
S EXEC

MESSAGE LENGTH
SYSCOM>ASKEY FOR BINARY

END OF ARGUMENTS
CALL SUBROUTINE FOR NEWLINE

32-BIT INTEGER

16-BIT INTEGER

8-13 Third Edition

DOC3621-190

When this program is run, RNUMSA produces messages similar to the
following:

ENTER A NUMBER: Q

Illegal number (RNUMSA)
ENTER A NUMBER: 1122334455

Illegal number (RNUMSA)
ENTER A NUMBER: 11100000000000001

Third Edition 8-14

PARTIII

PRIMOSSubroutines

File Management

Subroutines

DEFINITIONS

This section describes some concepts and argument names that are used
in Chapter 9. More discussion on file management is provided with
SRCH$$ below. Refer to Appendix I for a discussion of file
Organization prior to Rev. 19.

The subroutines discussed in this chapter are listed on the following
page.

Keys

Many subroutines require a key argument, which is numeric. However,
all keys to be input by the programmer are specified in this guide in
Symbolic, rather than numeric, form. ‘These symbolic names are defined
in files in the UFD named SYSCOM on the master disk. The key
definition files are named KEYS.INS.lanquage. The exact name of the
relevant file, if one exists, and how to insert it in a program, is
explained for each language in Chapters 3 through 8. The keys are also
listed in Appendix C. ‘The programmer is urged to use these symbolic
names where possible,

Adding Keys: In call formats, keys may be added, as in this example:

CALL SRCH$$ (action + ref + newfil, filnam...)

9-1 Third Edition

19

DOC3621-190

Table 9-1
File Management Functions

Open Files
SRCHSS
TSRCSS

Close Files

SRCHSS

Delete Files

SRCHSS

Search for File

SRCHSS
SRSFXS$

Manage File Attributes

SATRS$

Find Open Filename
GPATHS

Compare Filenames
NAMEQS

Change Filename

 CNAMS$

Manage Suffixes

APSFXS
SRSFXS

Read/Write
FORCEW
PRWFSS
RDLINS
WILINS

Manage Passwords

GPASS$
SPASSS$

Manage Segment Directories

SGDRSS$

Manage Command Files

CoMISss
ComMoss

Manage R-mode Runfiles

RESTSS
RESUSS$
SAVESS$

Manage UFDs

QSREAD
QSSET
ATCHSS
CREASS
RDENSS
UPDATE (PRIMOS II)

Third Edition

FILE MANAGEMENT SUBROUTINES

Since the key names represent numeric values, they may be used as
arithmetic expressions, as in this Pascal call:

SRCHSS (KSREAD + KSCACC)

Keys may be oamitted from these expressions unless they are required,
The keys may be used in the expression in any order. They are always
INTEGER*2.

Error Code or Return Code

The integer return code is a symbolic name for the code returned by a
Subroutine. It is usually referred to as the error code, but if no
errors are encountered the code is returned as 0. The symbolic names
are defined in files in the SYSCOM UFD, named ERRD.INS.language. ‘The
exact name of the relevant file, if one exists, and how to insert it in
a program, is explained for each language in Chapters 3 through 8,
Definitions are also given in Appendix D. Frror codes are always
INTEGER*2,.

File System Object

A file system object may be a file, UFD or sub-UFD, a segment
directory, or an access category.

Filenames, Pathnames, MFDs, and UFDs

Filenames may be 1 through 32 characters in length, the first character
of which must be nonnumeric, Filenames may be composed only of the
following characters: A through Z, OQ through9,_#S$&*-. /,
Names should not begin with a dash (-) or underscore (_). Filenames
may not contain embedded blanks.

A UFD (User File Directory) is a directory or subdirectory of files.

A pathname is the name of a file, preceded by as many of its superior
UFD-names as is necessary to identify the location of the file. It may
be up to 128 characters long. In a pathname, names of all groups
except the lowest are followed by a symbol >. If the pathname begins
with the MFD (Master File Directory or partition name), this name
starts with the symbol <. A complete pathname might be:

<TPUBS>ANNE>SQURCE>GVAR. COBOL

The general form is a starting directory specifier, zero, one, or more
subdirectory specifiers, and then the filename.

9-3 Third Edition

DOC3621-190

The starting directory specifier has the following formats. Square

brackets ([]) indicate an optional iten.

1. UFDname [password]>

2. *>

3. <volumename>UFDname [password] >

4. <logical-disk-number>UFDname [password] >

In form 1, all MFDs are searched for the named directory in logical

disk order.

In form 2, the home directory is the starting directory.

In form 3, the volume with the specified name is searched for the

specified UFD name. Tf the volume name is a single asterisk (*), the

MFD in the home volume is searched.

In form 4, the volume with the specified octal logical disk number is

searched for the specified UFD name.

A subdirectory specifier has the following format:

ufdname>subname [password]

Spaces are not significant except that they may not occur within a name

and must separate a UFD from its password. If a name is longer than

128 characters, it may cause an error message when passed to a

subroutine. Trailing blanks are not allowed in names that are passed

as CHAR(*)VARYING strings.

Pathnames specified as parameters to external commands should not

contain spaces, as the space or comma is used to separate one parameter

from another. If a space must be specified due to a password, enclose

the entire pathname in single quotes.

Examples: The following expressions illustrate pathnames, including

the required passwords.

ABC File named ABC in home directory.

XYZ>ABC File named ABC in UFD named XYZ.

<INV>XYZ>ABC File named ABC in UFD named XYZ on partition named INV.

<*>XYZ>ABC File named ABC in UFD named XYZ on home partition or
MFD.

<5>XYZ>ABC File named ABC in UFD named XYZ on logical disk 5.

Third Edition 9-4

FILE MANAGEMENT SUBROUTINES

*>XYZ>ABC File named ABC in sub-UFD named XYZ in home directory.

*>XYZ>LJK>ABC File named ABC in sub-UFD IJK in sub-UFD named XYZ in
home directory.

XYZ DEF>ABC File named ABC in UFD named XYZ with password DEF.

XYZ>ABC File named ABC in UFD named XYZ.

<INV>XYZ>ABC File named ABC in UFD named XYZ on volume named INV.

<*>XYZ>ABC File named ABC in UFD named XYZ on home volume,

<5>XYZ>ABC File named ABC in UFD named XYZ on logical disk 5.

*>XYZ>ABC File named ABC in sub-UFD named XYZ in home directory.

*>XYZ>IJK>ABC File named ABC in sub-UFD IJK in sub-UFD named XYZ in
home directorv.$i ShSeTe

XYZ DEF>ABC File named ABC in UFD named XYZ with password DEF.

File Units (Funits)

A file unit is a logical unit that PRIMOS associates with an open file.
A user may have 126 file units open at once. When files are opened by
high-level languages other than FORTRAN, the programmer is not aware
which file unit number is associated with the file at runtim.
Subroutines, however, may be called to open a file with a specified
file unit number. (The exact number chosen does not matter as long as
it is between 1 and 126.) The file may be accessed through its file
unit number, This kind of access may be faster than access by
filename, and is more flexible than the file access allowed by the
Pascal, PLIG, and PMA languages. A file unit also has a position and
an access method, so that when a user reads from a file or writes to
the file using the file unit, it is not necessary for the user program
to keep track of the file's position and access. Examples of file unit
Strategy are given with SRCHSS in this chapter.

Buffer

A buffer is an area of memory addressed by a data name. It is usually
defined as an integer array in FORTRAN, and may contain both numbers
and characters. It is of variable length, and so is followed by an
argument Specifying the number of words or characters in buffer.

If Separate words or characters of the buffer can be addressed by
number, the buffer can be called an array or vector.

9-5 Third Edition

DOC3621~-190

Array Or Vector

An array is an integer array, with the same characteristics as buffer
above. Arrays are sometimes called vectors in this guide.

Home Directory and Current Directory

There is a distinction between home directory and current directory

which is made by subroutines, but is not made at PRIMOS command level.

For a file management subroutine, the current directory is the one to

which the process is currently attached. The home directory, however,

is either the one first attached to, or the one defined by a subroutine

such as ATSHOM. So that the author of a program may be sure that a

process is attached to a certain directory after a series of subroutine

calls, including possible failures, routines that handle pathnames

always Close the specified file unit, then attach to the user's home

UFD before attempting any action. If the user's home UFD differs from

the current UFD before the call, the process will be attached to the

home UFD following the call. In addition, the home directory is the

UFD or sub-UFD used as the starting point when the asterisk (*) is used

in a pathname by a subroutine call.

Old Partitions

When this chapter refers to old partitions, it means those established

under the pre-Rev. 14 file system. Systems that are running under

Rev. 18.4 or higher do not support old partitions, so the user can

ignore these references.

SUBROUTINE DESCRIPTIONS

The file-manipulation subroutines are described below in alphabetical
order. See Table 9-1 for a summary of functions provided.

Caution

Do not omit any arguments in calls to the subroutines described

in this section. Do not specify as 0 (or any constant) any

arguments returned by the subroutines, such as the error code

(integer return code). Always check the error code to see if
the subroutine call was successful. It is essential to refer
to Appendix D which covers the error—handling scheme for these

subroutines.
Third Edition 9-6

FILE MANAGEMENT SUBROUTINES

p> APSFXS

Purpose

The PLIG subroutine APSFXS appends a specified suffix to a pathname.
It is designed for use with the file-naming convention starting with
Rev. 18 that appends standard suffixes to a name by means of a period,
such aS MYPROG.COBOL. The pathname is checked for the prior existence
of the suffix to avoid overwriting an existing file.

Usage

DCL APSFX$ ENTRY (CHAR(128)VAR, CHAR(128)VAR, CHAR(32)VAR,
FIXED BIN);

CALL APSFX$ (in-pathname, out-pathname, suffix, status)

in-pathname Pathname input to check for suffix (128 character
maximum) .

out-pathname Pathname returned to caller with desired suffix
appended (128 character maximum).

suffix This is the suffix to be added to the pathname. It
Should include the period, and be in capital
letters, for example, ".F77" (input; 32 character
maximum).

status code The code returned has the following possible
meanings :

-l Suffix already present, pathname
renained untouched.

Q Suffix appended OK.

ESNMLG Pathnametsuffix is more than 128
Characters or filenamet+suffix is longer

than 32 characters (FIXED BIN (15)).

Discussion

APSFXS$ does not permanently change the name of the file, only the name
returned in out-pathname. It is most often used after SRSFXS is
Called. After SRSFXS finds a file and determines its suffix, APSFXS
may add a suffix to the name found.

9-7 Third Edition

18.1

18.1

DOC3621-190

APSFXS is often helpful because SRSFXS$ returns two parts toa name --
the basename and a suffix. APSFXS ensures that the name in outpathname

has the proper suffix if one is required.

p ATCHSS

Note

ATCHSS is obsolete and has been replaced by ATS, ATSABS,
ATSANY, ATSHOM, ATSOR, and ATSREL.

Purpose

ATCHSS attaches to a UFD and, optionally, makes it the home UFD. In
attaching to a directory, the subroutine ATCHSS specifies where to look
for the directory. ATCHSS specifies that a User File Directory (UFD)
is in the Master File Directory (MFD) on a particular logical disk, in

a subdirectory in the current UFD, or in the home UFD.

Usage

CALL ATCHSS (ufdnam, namlen, ldisk, passwd, key, code)

ufdnam

namlen

ldisk

Third Edition

The name of the UFD to be attached (integer array).
If key is KSIMFD and ufdnam is the key KSHOME, the
home UFD is attached. If the reference subkey is
KSICUR, ufdnam is the name of an array that
specifies the name of the UFD to attach to.

The length in characters (1-32) of ufdnam
(INTHGER*2). namlen may be greater than the length
of ufdnam provided that ufdnmam is padded with the
appropriate number of blanks. If ufdnam = KSHOME,

namlen is disregarded.

The number of the logical disk to be searched for
ufdnam when key = KSIMFD (INTEGER*2). The parameter

Idisk must be a logical disk that is started up.
Other values for ldisk are:

KSALLD Search all started-up logical devices
in logical device order, and attach to
the UFD in which ufdnam appears in the
MFD of the lowest numbered logical
device.

FILE MANAGEMENT SUBROUTINES

KSCURR Search the MFD of the disk currently
attached.

passwd A three-word integer array containing one of the
passwords of ufdnam. passwd can be specified as 0
if attaching to the home UFD. If the reference
subkey is KSIMFD or KSICUR, passwd must be the name
of a three-word array that specifies one of the
passwords of ufdnam. If passwd is blank, it must be
specified as three words, each containing two blank
characters.

key Composed of two subkeys whose values are added
together, a REFERENCE subkey and a SETHOME subkey

(INTEGER*2). The REFERENCE subkey values are as
follows:

MEN -- Pram 3h MITA Aw 1 AS mLKSIMFD Attach to ufdham in MFD on ldisk.

KSICUR Attach to ufdnam in current UFD (ufdnam
is a subdirectory).

The SETHOME subkey, KSSETH, may be added to the
REFERENCE subkey as KSIMFD+KSSETH, which will set
the current UFD to the home UFD after attaching. If
the REFERENCE subkey is KSICUR, or if ufdnam is 0,
ldisk is ignored, and it is usually specified as 0.

code An INTEGER*2 variable set to the return code,

Discussion

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
AS an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATCHSS subroutine does not
Change the hane UFD unless the user specifies a change in the
Subroutine call. The user gets owner status or nonowner status
according to the password used. The owner of a file directory can
declare, on a per-file basis, what access a nonowner has over the
owner's files, The nonowner password may be given only under PRIMOS
and PRIMOS III. (Refer to the description of the commands SPASS$S and
SATRSS$ in this chapter for more information.)

9-9 Third Edition

DOC3621-190

A BAD PASSWD error condition does not return to the user's program.

PRIMOS command level is entered, Other errors leave the attach point

unchanged.

Examples

1. Attach to home UFD:

CALL ATCHSS (KSHOME, 0, 0, 0, 0, CODE)

2. Attach to UFD named 'G.S.PATTON', password 'CHARGE' in current

UFD:

CALL ATCHSS('G.S.PATTON', 10, KSCURR, 'CHARGE', KSICUR, CODE)

p cNAMSS

Purpose

CNAMSS changes the name of a file in the current UFD.

Usage

CALL CNAMSS(oldnam, oldlen, newnam, newlen, code)

oldnam The name of the file to be changed (integer array).

oldien The length in characters of oldnam (INTEGER*2).

newnam The new name of the file (integer array).

newlen The length in characters of newnam (INTHGER*2).

code An INTEGER*2 variable set to the return code.

Discussion

The user must be the owner of the UFD of the file to change the name.

CNAMSS does not change the last modified date/time of the file or any
of the other attributes of the file. However, the last modified

date/time of the UFD in which the file resides is changed. CNAMS$ may

cause the position of the file in the UFD to change with respect to the

other files if the new name is longer than the old name. It is illegal
to change the name of the MFD, BOOT, or BADSPT. An ESNRIT error
message is generated if this is attempted.

Third Edition 9-10

pe comiss

Purpose

FILE MANAGEMENT SUBROUTINES

COMISS switches the command input stream from the user's terminal to a
command file, or from a command file to the terminal.

Usage

CALL COMIS$$(filnam, namlen, funit, code)

filnam

namlen

funit

code

The name of the command file to receive the command
input stream (integer array). If filnam is TIry, the

command stream is switched back totheterminal and
funit is closed. If filnam is PAUSE, the command

pSStream is switched totheterminal but the file unitfs

Specified by funit is not closed. If filmamis |
CONTINUE, the command stream is switched tothefile
already open on funit. The values -TTY, -PAUSE, and
-—CONTINUE cannot be used as option names.

e
i

The length in characters (1-32) of filnam (16-bit
integer).

The file unit (1-126 or 1-15 under PRIMOS II) on
which to open the command file specified by filnam.
Normally, file unit 6 is used (16-bit integer).

An integer variable set to the return code (16-bit
integer).

9-11 Third Edition

19

DOC3621-190

Pe comss

Purpose

COMOSS switches terminal output to file or terminal.

Usage

CALL COMOSS(key, filnam, namlen, xx, code)

key A 16-bit word of flags specifying the action to be
taken:

:000001 Turn TTY output off.

:000002 Turn TTY output on.

2000004 Reserved.

2000010 Turn file output off.

2000020 Turn file output on.

:000040 Append to filnam if filnam is being
opened; close filnam if turning file

output off.

:000100 Truncate filnmam if filnam is being
opened.

filnam An integer array containing the name of the file to
be opened or 0.

namlen The length in characters (1-32) of filnam or 0
(16-bit integer).

xx Reserved. Should be specified as 0 (16-bit
integer).

code Return code from the file system (16-bit integer).

Discusssion

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
Suppressed until TTY output is reenabled or until a wnit-127 (command
output file) error message is generated. If a filename is specified,
any current command output file is first closed. The new file is
opened for writing on the command output unit '177, and all subsequent

Third Edition 9-12

FILE MANAGEMENT SUBROUTINES

terminal output is sent to the file. TITY output continues unless
explicitly suppressed. Unless the APPEND option bit is set, the
current contents of the file are overwritten. The parameter can be
omitted by specifying a pair of blanks or a length of 0.

Error messages (from ERRRIN, ERRPRS) force TTY output on, but leave the
command output file open so the error message will appear both on the
terminal and in the file. Disk error messages force TTY output on and
file output off for the supervisor user (the file is left open).
Unrecovered disk errors will do likewise for the user to whom the disk
is assigned.

The command output unit depends on the FILUNT directive in the CONFIG
file at cold start.

> cREASS

Purpose

CREASS creates a new sub-UFD in the current UFD and initializes the new
entry. The new sub-UFD is of the same type (ACL or non-ACL) as the
current UFD.

Usage

DCL CREASS ENTRY (CHAR NONVARYING(32), FIXED BIN, CHAR NONVARYING (6) ,
CHAR NONVARYING (6), FIXED BIN)

CALL CREASS (filnam, namlen, owner-pw, nonowner-pw, code)

filnam The name to be given the new UFD (input).

namlen The length in characters (1-32) of filnam (16-bit
integer).

owner-pw A six-character array containing the owner password
for the new UFD. If opwner-pw(1) = 0, the owner
password is set to blanks. owner-pw is ignored if
an ACL directory is being created.

nonowner—pw A six-character array containing the nonowner

password for the new UFD. If nonowner-pw(1) is 0,
the nonowner password is set to zeros. Any password
given to ATCHSS matches a nonowner password of
zeros, nonowner- is ignored if an ACL directory
is being created.

code A 16-bit integer variable to be set to the return

code from CREASS. Possible values follow.

9-13 Third Edition

18.1

19

19

19

19

DOC3621-190

ESBNAM ‘The supplied name is illegal.

ESBPAR ‘The name length is illegal.

ESEXST An object with the given name already
exists,

ESNRIT Add rights were not available on the
current directory.

ESWIPR The disk is write-protected,

ESNINF An error occurred, and list rights were
not available on the current directory.

ESNATT The current attach point is invalid,

Discussion

CREASS creates a new subdirectory in the current directory. The new
subdirectory is of the same type as its parent. Thus, if CREASS is
used in an ACL directory, it will create an ACL directory. If used in
a password directory it will create a password directory.

Password directories may be explicitly created with the CREPWS routine.
There is no special routine to create ACL directories, since CREASS
will always create an ACL directory within an ACL directory, and an ACL
directory may not have a password directory as its parent,

Passwords can be set such that the password cannot be entered from the
keyboard and the directory is accessible only from a program. In any
case, passwords can be at most six characters long. Passwords shorter
than six characters must be padded with blanks for the remaining
characters. Passwords are not restricted by filename conventions and
may contain any characters or bit patterns. It is strongly recommended
that passwords do not contain blanks, commas, or the characters =! '
@{}[]() 3: * <> or lowercase characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

Since the subroutine SRCHSS does not allow creation of a new UFD,
CREASS must be used for this purpose. Under program control, CREASS
allows the action of the PRIMOS CREATE command.

CREASS requires add access on the current UFD.

Third Edition 9-14

FILE MANAGEMENT SUBROUTINES

Example

To create a new UFD with default passwords of blanks for owner and 0

for nonowner:

CALL CREASS ('NEWUFD', 6, 0, 0, CODE)

p FORCEW

Purpose

The FORCEW subroutine immediately writes to the disk all modified

records of the file that is currently open on funit. Normally this

action is not needed, since the system automatically updates all

changed file system information to the disk at least once per minute,

Under PRIMOS II, the FORCEW routine has no effect.

Usage

CALL FORCEW (key, funit [,code])

key Must be 0 (INTEGER*2).

funit The file unit (1-126) on which a file has been

Opened (integer array).

code Standard return code that is ESDISK when a disk

error occurred on the file referenced by funit

(INTHGER*2). If code is not supplied aS an
argument, then disk errors will not be reported.

Discussion

FORCEW may be used to obtain the status of disk write operations to a

file. When a disk write error occurs, all units open on the file are

specially marked. When FORCEW is called with the error code parameter

included, if an error condition exists, ESDISK is returned and the

error mark is reset. If code is not supplied, no action is taken and

the error mark is not reset, So it may be sensed at a later time.

Note

The error mark is set in all units associated with the file

regardless of which one of them caused the actual error.

9-15 Third Edition

19

-
DOC3621~190

P cpasss

Purpose

GPASSS$ returns the passwords of a SUBUFD in the current UFD.

Usage

CALL GPASS$ (ufdnam, namlen, opass, npass, code)

ufdnam

namlen

opass

npass

Discussion

The name of the UFD with passwords to be returned,
ufdnam is searched for in the current UFD (integer
array).

The length in characters (1-32) of ufdnam (16-bit
integer).

A three-word array that is set to the owner password
of ufdnam.

A three-word array that is set to the nonowner
password of ufdnam.

A 16-bit integer variable set to the return code.

GPASS$ requires protect rights to the current UFD.

Example

To read both passwords of SUBUFD:

CALL GPASSS ('SUBUFD', 6, PASS(1), PASS(4), CODE)

Third Edition 9-16

p> GPATHS

Purpose

FILE MANAGEMENT SUBROUTINES

GPATHS obtains a fully qualified pathname for an open file unit, or for
current, home, or initial attach points. GPATHS operates in V-mode
only.

Usage

CALL GPATHS (key, funit, buffer, bufflen, pathlen, code)

key

funit

buffer

bufflen

pathlen

code

A 16-bit integer variable specifying the pathname to
be returned (INTEGER*2). Possible values are:

KSUNIT Pathname of file open on file wnit
specified by funit will be returned

(KSUNIT = 1).

KSCURA Pathname of current attach point will
be returned (KSCURA = 2).

KSHOMA Pathname of home attach point will be
returned (KSUOMA = 2\

sue paveyin wie

KSINIA Initial attach point (origin).

Specifies file unit number if key is KSUNIT,
otherwise ignored (16-bit integer).

The buffer (data name) where the pathname is to be
returned,

Specifies maximum buffer length in characters
(16-bit integer). If the pathname exceeds bufflen
Characters, data in buffer is meaningless and a code
of ESBFTS is returned,

Specifies the length in characters of the pathname
returned in buffer. Characters beyond pathlen in
buffer contai no useful information (16-bit
integer) .

Return code (16-bit integer). Possible values are:

0 No errors.

ESBKEY A bad key was specified.

ESBUNT Abad unit number was specified in
funit.

9-17 Third Edition

DOC3621-190

ESUNOP Unit specified in funit is closed and
name cannot be returned.

ESNATT Not attached to any UFD (keys KSCURA,
KSHOMA) .

ESBFTS The buffer specified with character
length bufflen is too small to contain
full pathname. The buffer contains no
valid data,

Examples

The following are examples of information returned as the result of
using GPATHS. The lowercase names define what information the examples
(in uppercase) actually represent.

<disk_name>MFD

<SPOOLD>MFD

<disk_name>ufd name
<SPOOLD>SPOOLQ

<disk_name>ufd_namel>ufd_name2>file_name
<SALESDWEST.COAST>YTD. 1979>MARCH

<disk_name>ufd_name>segment directory name
<OPSYST>PR4 .64>VPRMOS

<disk_name>ufd_name>segnent_directory_name>entry_number>entry_number
<DBDISK>DICTIONARY>WORDS>22>68

B NAYEQS

Purpose

NAMEQS is a logical function that compares two filenames _§ffor
equivalence. .

Usage

log = NAMEQS (filnaml1,namlenl,filnam2,namlen2)

filnaml The first filename for comparison (integer array).

namlenl The length in characters of filnaml (16-bit
integer).

Third Edition 9-18

FILE MANAGEMENT SUBROUTINES

filnam2 The second filename for comparison (integer array).

namlen2 The length in characters of filnam2 (16-bit
integer).

Discussion

NAMEOS performs a character-by-character comparison of filnaml and
filnam2 for the length of nmamlenl or namlen2, whichever isshorter.
Thenames supplied must be validfilenames.

NAMEQS will work correctly on numeric fields only if namlenl = namlen2.

p> PRWPSS

Purpose

PRWFSS reads, writes, positions, and truncates SAM or DAM files,

Usage

CALL PRWFS$ (rwkey+poskey+modekey, funit, LOC(buf), nw, pos, rw, code)

rwkey This INTEGER*2 key, which cannot be omitted,
indicates the action to be taken. Possible values
are:

KSREAD Read nw words from funit into buf.

KOWRIT Write nw words from bufto funit.

KSPOSN Set the current position to the 32-bit
integer in pos,

KSTRNC Truncate the file open on funit at the
current position.

KSRPOS Return the current position as a 32-bit
integer word number in pos.

poskey An INTEGER*2 key indicating the positioning to be
performed (if omitted, same as KSPRER). Possible
values are the following.

9-19 Third Edition

DOC3621-190

modekey

funit

LOC (buf)

pos

rnw

Third Edition

KSPRER Move the file pointer of funit the
number of words specifiedby pos
relative to the current position before
performing rwkey.

KSPOSR Move the file pointer of funit the
number of words specifiedby pos
relative to the current position after
performing rwkey.

KSPREA Move the file pointer of funit to the
absolute position specified by pos
before performing rwkey.

KSPOSA Move the file pointer of funit to the
absolute position specified by pos
after performing rwkey.

An INTEGER*2 key that may be used to transfer all or
a convenient number of words (if omitted, read/write
nw). Possible values are:

KSCONV Read/write a convenient number of words
(up to the number specified by the
parameter nw).

KSFROW Perform awrite to disk from buffer
before executing next instruction in
the program.

A file unit number (1 to 15 for PRIMOS II, 1-126 for
PRIMOS) on which a file has been opened by a call to
SRCHSS or by a PRIMOS command. PRWFSS actions are
performed on this file unit.

The data buffer to be used for reading or writing.
If buffer is not needed, it can be specified as
INTL (0).

The number of words to be read or written (mode=0)
or the maximum number of words to be transferred
(mode=KSCONV). mw may be between 0 and 65535
(INTEGER*2).

A 32-bit integer (INTEGER*4) specifying the relative
or absolute positioning value depending on the value

of poskey.

A 16-bit unsigned integer set to the number of words
actually transferred when rwkey = KSREAD or KSWRIT.
Other keys leave rnw unmodified. For the keys
KSREAD and KSWRIT, xrnw =must-_ be specified
(INTEGER*2).

9-20

FILE MANAGEMENT SUBROUTINES

code An INTEGER*2 variable to be set to the return code,

Discussion

pos is always a 32-bit integer, not a <record-number, word-number>
pair. All calls to PRWFS$ must specify pos even if no positioning is
requested, An INTEGER*4 0 can be generated by specifying 000000 or
INTL(0) in FIN, OL in PMA or Pascal.

poskey is observed for all values of rwkey except KSRPOS, for which it
1s ignored (the file position is never changed).

If rwkey = KSPOSN, nw and rnw are ignored, and no data are transferred,

A call to read or write nw words causes nw words to be transferred to
or from the file, starting at the file pointer in the file. Following
a call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using poskey of KSPREA or KSPOSA,
the user may explicitly move the file pointer to pos before or after
the data transfer operation. Using a poskey of KSPRER or KSPOSR, the
user may move the file pointer backward pos words from the current
position if pos is negative, or forward pos words if pos is positive.
Positioning takes place before or after the data transfer, depending on
the key. If mw is 0 in any of the calls to PRWFSS, no data transfer
takes place, and PRWFSS$ performs a pointer position operation.

The modekey subkey of PRWFSS is most frequently used to transfer a
Specific number of words on a call to PRWFSS. In these cases, the
modekey is 0 and is normally omitted in PRWFSS calls. In some cases,
Such as in a program to copy a file from one file directory to another,
a buffer of a certain size is set aside in memory to hold information,
and the file is transferred, one buffer-full at a time. In the latter
case, the user doesn't care how many words are transferred at each call
to PRWFSS, so long as the number of words is less than the size of the
buffer set aside in memory.

Since the user would generally prefer to run a program as fast as
possible, the KSOCONV subkey is used to transfer nw words or less in the
Call to PRWFSS. The number of words transferred is a number convenient
to the system, and therefore speeds up program runtime. The number of
words actually transferred is set in rnw. For examples of PRWFSS use
in a program, refer to the file-manipulation examples in Chapter 5.

The subkey KSFRCW guarantees that PRWFSS will not return until the disk
record(s) involved are written to disk. The write to disk will be
performed before executing the next instruction in the program. Since
the KSFROW defeats the disk buffering mechanism, it should be used with
Care as it increases the actual amount of disk I/O. It should only be
used when it is necessary to know that data is physically on a disk (as
when implementing error recovery schemes).

9-21 Third Edition

DOC3621-190

The programmer is responsible for ensuring that only one process (user)

is involved in the PRWFSS call concurrently. The file may be open for

use by several processes. The forced write applies only to the data

written by the process performing the operation. See an example of the

use of the key KSFROW later in this chapter.

On a PRWFSS BEGINNING OF FILE error or END OF FILE error, the parameter

rnw is set to the number of words actually transferred.

On a DISK FULL error, the file pointer is set to the value it had at

the beginning of the call to PRWFSS. The user may, therefore, delete

another file and restart the program (by typing START after using the

DELETE command). This feature does not work with PRIMOS II.

During the positioning operation of PRWFSS$, PRIMOS maintains a file

pointer for every open file. Whena file is opened by a call to

SRCHS$, the file pointer is set in such a manner that the next word

that is read is the first word of the file. The file pointer value is

0, for the beginning of file. If the user calls PRWFS$ to read 490

words, and does no positioning at the end of the read operation, the

file pointer is set to 490.

Note

In V-mode, PRWFSS only transfers words into the same segment as

buffer, An attempt to read across a segment boundary will

cause a wraparound instead and read into the beginning of the

segment. This is also true of writing from the address space.

Examples

1. Read the next 79 words from the file open on unit 1:

CALL PRWFSS (KSREAD, 1, LOC(BUFFER), 79, 000000, NMREAD, CODE)

2. Add 1024 words to the end of the file open on UNIT (10000000 is

just a very large number to get to the end of the file):

CALL PRWESS (KSPOSN+KSPREA, UNIT, LOC(0), 0, 10000000, NMW,
CODE)

CALL PRWFSS(KSWRIT, UNIT, LOC(BFR), 1024, 000000, NMW, CODE)

3. See what position is on file unit 15 (INT4 is INTEGER*4):

CALL PRWFSS (KSREOS, 15, LOC(0), 0, INT4, 0, CODE)

4. Truncate file ten words beyond the position returned by the

above call:

CALL PRWFSS (KSTRNC+KSPREA, 15, LOC(0), 0, INT4+10, 0, CODE)

Third Edition 9-22

5.

6.

FILE MANAGEMENT SUBROUTINES

Position the file open on unit number UNIT to the tenth word
used in the file and the first ten words of ARRAY will be
written to it.

INTEGER*2 ARRAY (40), CODE, UNIT, RET

SINSERT SYSCOM>KEYS.F
CALL PRWFSS (KSWRIT+KSFROW+KSPREA, UNIT, LOC(ARRAY) ,
x 10, INTL (10) , RET, CODE)
IF (CODE .NE. 0) GOTO error_processor

The above FORTRAN call will cause the file that is open on unit
number UNIT to be positioned to the tenth word in the file, and
the first ten words of ARRAY will be written to it. The next
instruction in the user's program will not be executed until
the data has actually been written to disk. Jf an error is

encountered while writing to disk, the error code ESDISK (disk
I/O error) is returned.
the disk record is detected,
use) is returned, In this case,
will not be performed

Ls

ney
acy

The next program reads and writes SAM

PRWFSS.

T£ more than one concurrent user of

the error code ESFIUS (file in
At 1-2a tm —td Tm mk 1. 2.

We write ib foe LOS, Duc
s a5

immeciately.

and DAM files using

[REREEREREREREREEREREREEREEREEEREEEREEEREEREEREEREEEREEEREEREREREEREERE/

/* Copy SAM and DAM files

cpSsfl:
proc(sunit, tunit, err_info, code);

include 'syscom>keys.pll';
include 'syscom>errd.pll';

replace maxsiz by 1024; /*

*/

maximum record size in words */

del sunit fixed binary(15), /* unit source file is open on */
tunit fixed binary(15), /* unit target file is open on #*/
err_info fixed binary(15), /* if code “= 0, indicates which

/* file caused error;1 = source,*/
/* 2 = target */

code fixed binary(15); /* standard error code */
dcl recbuf(maxsiz) fixed binary(15); /* I/O buffer */
dcl words_read fixed binary(15); /* actual words read by prwfS$S */
dcl words_written fixed binary(15); /* actual words written by prwfSS*/
dcl eof bit (1);
dcl recbuf_ptr pointer options(short);
dcl addr builtin;
del errpr$ entry(bin, bin, char(*), bin, char(*), bin);

dcl user_proc entry;

dcl prwf$s entry (fixed binary(15),
/* keys (rwkey+poskey+mode)
/* unit to perform action onfixed binary(15),

*/
*/

pointer options(short),

9-23 Third Edition

DOC3621-190

/* address of data buffer */
fixed binary(15), /* words to read or write */
fixed binary(31), /* position value */
fixed binary(15), /* actual words read or written*/
fixed binary(15)); /* standard error code */

[JRERREREREREREEREREREREREREREEEREREREREREERREREEREEREREEREEEEREREERERS/

err_info = 0;
code = 0;
recbuf_ptr = addr (recbuf) ;
eof = 'O'b;

do while (“eof);
call prwf$$(kSread, sunit, recbuf_ptr, maxsiz, 0, words_read,

code) ;
if code “= 0

then if code “= eSeof
then do;

err_info = 1];
return;

end;
else eof = '1'b;

a:
call prwfS$s (k$Swrit, tunit, recbuf_ptr,words_read,(0,words_written, code) ;
if code “= 0

then if code = eSdkfl
then do;

call errprS(kSirtn, code, '', 0, 'cpSSf1', 6);
call user_proc; /* Wait for response */
go to a;
end;

else do;
err_info = 23
return;

end;
end;
return;

end cpssf1;
[BRRREREREREEREREEERERREEEEEEERIREREREREREREEREREREREEREEEEKERERERERERE|

More examples of the use of PRWFSS are given with the file-systen
examples in Chapter 5.

Third Edition 9-24

FILE MANAGEMENT SUBROUTINES

PB OSREAD

Purpose

This routine returns information about quota counters and the
time-record product of disk record usage for the current quota UFD.
These concepts are explained in the System Administrator's Guide.

Usage

DCL QSREAD ENTRY (CHAR(128)VAR, FIXED BIN (31), FIXED BIN, FIXED BIN
FIXED BIN)

CALL QSREAD (pathname, quota-info, max-entries, type, code)

pathnam Name of the di
be read (i ss
either on the“directory itself or on its“parent. If
pathname is null, information for the current

directory is returned,

5 " e
r

e t a a ” a
quota-info An array returning the quota information:

quota~info(1) Data size of disk record (440 or

1024 words).

quota-info(2) Directory records used.

quota-info(3) Max number of records of quota (0
if nonquota).

quota-info(4) Total records used.

quota-info(5) Time-record product (computed in
record-minutes) (0 if nonquota).

quota-info(6) Date/time last updated (0 if
nonquota).

Date format is word one :

YYYYYYYMMMMDDDDD.

Time is word two (seconds since
midnight divided by four).

quota-info(7) Reserved for future use.

quota-info(8) Reserved for future use.

max-entries Number of entries in quota-info (input).

9-25 ' Third Edition

19

19

DOC3621-190

type Type of directory (input):

0 Quota Directory

1 Non-quota Directory

code Standard return code:

ESNINF Insufficient access to read quota.

Discussion

When this call is invoked on a nonquota directory, the arguments
detailed below will have the following information returned, The type
will be 1 and quota-related information (max, time-record product, and
date/time) will be 0. Directory records used will indicate the sum of
the records used by the files in that directory plus the records used
by the directory file itself. Total records used will indicate the sum
of the records used for all files inferior to this directory mode.

Quota directories will return a type equal to 0, and all of the quota
information. Directory records used and total records used will be the
same as in the nonquota directory case.

The routine will enter as many values into the array buf as is
Specified by buflen, up to a maximum of eight. Entrieswhich are
reserved for future use will have an undefined value.

Use of the Accounting Meter Returned by QSREAD

The system keeps an accounting usage meter in each quota directory.
This meter is a summation of the time intervals that each disk record
has been in use,

The accounting meter is a counter that acts as an unsigned number,
Which is to say that it counts to all ones and then goes to 0. The
system also indicates when the last update occurred.

The calculation used is given below. The USAGE is computed in
record-minutes,.

TIME = (Current date/time) - (Date/time quota last modified)
USAGE = USAGE + (Records used) * TIME

An accounting program would use a similar algorithm to calculate the
Current record-time product.

Third Edition 9-26

p OSSET

Purpose

FILE MANAGEMENT SUBROUTINES

This routine sets a maximum quota on a SUBUFD in the current directory.

If the named directory is not already a quota directory, it will become

one.

Usage

DCL QSSET ENTRY (FIXED BIN, CHAR(128)VAR, FIXED BIN (31), FIXED BIN)

CALL QSSET (key, pathnam, max-quota, code)

code

Must be KSSMAX (set maximum quota) (input).

n w s s

An array containing the name of the sub-UFD to

receive the quota (input). Protect access must be

available on the directory's parent.

Maximum quota for the directory and its subtree
(input). If this is 0, any existing quota is

removed..

Standard return code:

ESNRIT Insufficient access to set quota.

ESIMFD Quota not permitted on MFD.

FSQEXC Used records greater than new maximum

(WARNING).

ESFIUS Directory in use during attenpt’ to
convert from nonquota to quota.

9-27 Third Edition

f=

!
w
o

DOC3621-190

Pp RDENSS

Purpose

RDENSS$ positions in or reads from a UFD.

19

Note

For Pascal and PLIG programmers, RDENSS is obsolete and has
been replaced with DIRSRD and ENTSRD.

Usage

CALL RDENS$ (key, funit, buffer, buflen, rmw, filnam, namlen, code)

key A 16-bit integer variable specifying the action to
be taken,

KSREAD

KSNAME

KSGPOS

KSUFPOS

| KSPOSN

Possible values are:

Advance to the start of the first or
next UFD entry and read as much of the
entry as will fit into buffer. Set rnw
to the number of words read,

Position to the start of the entry
Specified by filnam and namlen. Read
as much of the entry as will fit into
buffer. Set rnw to the number of words
read. If the entry is not in the
directory, the code ESFNIF is returned.
If namlen is 0, the next entry is
returned,

Return the current position in the UFD
as a 32-bit integer in filnam.

Set the current position in the UFD
from the 32-bit integer in filnam.
This key should be used only with a
position of 0.

Return access category entries.

funit A unit on which a UFD is currently opened for
reading (INTEGER*2). (A UFD may be opened with a
call to SRCHSS.)

UFD are read, If the key is 3, the first word of

| buffer A one-dimensional array into which entries of the

buffer will have bit 1 set on if the object is not
| default—protected, |

Third Edition 9-28

FILE MANAGEMENT SUBROUTINES

buflen The length, in words, of buffer (INTEGER*2).

rw An INTEGER*2 variable that will be set to the number
of words read.

filnam An INTEGER*4 variable used for keys of KSGPOS and
KSUPOS, or a name (character string) for use with
KSNAME.

namlen An INTEGER*2 variable specifying the length in
Characters (0-32) of filnam. This variable is only
used with KSNAME,

code An INTHGER*2 variable to be set to the return code:

ESFNIF The entry is not in the directory.

ESEOF No more entries.

ESBFTS Buffer is too small for the entry.

Discussion

RDENSS is used to read entries from a UFD. rnw words are returned in
buffer, and the file unit position is advanced to the start of the next
entry.

Caution

Directory positioning is obsolete and should not be necessary.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given in Figure 9-1
and discussed below for Revs before 19. (For Rev. 19 format, see
DIRSRD.) All numbers are decimal unless preceded by a colon (:).

9-29 Third Edition

19

DOC3621-190

17 | PROTEC
18 |RESERVED
19 | FILTYP
20 | DATMOD
21 | TIMMOD
22 |RESERVED |
23 |RESERVED |

FILENAME

Third Edition

Entry Control Word (type/length)

Filename (blank-padded)

Protection (owner/nonowner)
Reserved for future use
File type <—- (end of entry for type=1)
Date last modified
Time last modified
Reserved for future use
Reserved for future use

File Entry Format
Figure 9-l

Entry Control Word. An ECW is the first word in any
entry and consists of two 8-bit subfields. The
high-order eight bits indicate the type of the
entry, the low-order eight bits give the length of
the entry in words including the ECW itself.
Possible values of the ECW are as follows:

:000001

2000424

:001030

Type=0, length=1. This entry indicates
either a UFD header or a vacant entry.
No information other than the ECW is
returned.

Type=1, length=20. Type=1 indicates an
old partition UFD entry. Words 0-19 in
the diagram above are returned.

Type=2, length=24. Type=2 indicates a
new partition UFD entry. All the above
information is returned, Reserved
fields should be ignored.

User programs should ignore any
entry-types that are not recognized.
This allows future expansion of the
file system without unduly affecting
old programs.

Up to 32 characters of filename, blank-—padded,

9-30

PROTEC

FILTYP

FILE MANAGEMENT SUBROJTINES

Owner and nonowner protection attributes. The owner
rights are in the high-order eight bits, the
nonowner in the low-order eight bits. The meanings
of the bit positions are as follows (a set bit
grants the indicated access right):

1-5,9-13 Reserved for future use

6,14 Delete/truncate rights

7,15 Write—access rights

8,16 Read-access rights

On a new partition, the low-order eight bits
indicate the type of the file as follows:

SAM file
DAM file
SAM segment directory
DAM segment directory
UFDB

m
W
N

E
H
©

On an old partition, the file type is invalid. ‘The
file must be opened with SRCHSS to determine its
type.

Of the high-order eight bits, six are currently
defined as follows:

bit 1 Set only for the BOOT and DSKRAT files,
if they are on a storage module disk.

bit 2 The dumped bit. This bit can be set by
a call to SATRSS and is reset whenever
the file is modified. This bit is used
by the utility program that dumps only
modified files to magnetic tape. Users
are normally not interested in this
bit.

bit 3 This bit is set by PRIMOS II when it
modifies the file and reset by PRIMOS
(and PRIMOS III) when it modifies the
file. If this bit is set, the
time-date field for the file will not
be current because PRIMOS II doesn't
update the date/time stamp when it
modifies a file.

9-31 Third Edition

DOC3621-190

bit 4 This bit is set to indicate that this
isa special file. The only special
files are BOOT, MFD, BADSPI, and the
DSKRAT file which has_ the name
packname. This bit, and this bit only
is valid on both new and old-style

partitions,

bits 5-6 Setting of the read/write lock. (See
below.)

DATMOD The date on which the file was last modified. The

date, which is valid only on new partitions, is held

in the binary form YYYYYYYMMMMDDDDD, where YYYYYYY
is the year modulo 100, MMMM is the month, and DDDDD

is the day.

TIMMOD The time at which the file was last modified. The
time, which is valid only in new partitions, is held

in binary seconds-since-midnight divided by four.

The Read/Write Lock

The PRIMOS file systen supports individual values of the read/write

lock (RWLOCK) on a per-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access

to the file, and was formerly alterable only on a system-wide basis.

The meaning of the lock values is:

Value Bits 5,6 Meaning

0 0,0 Use system-wide RVLOCK to regulate
concurrent access,

1 0,1 Allow arbitrary readers or one writer.

2 1,0 Allow arbitrary readers and one writer.

3 1,1 Allow arbitrary readers and arbitrary
writers,

New files are initially created with a per-file read/write lock of 0.

UFDs do not have user-alterable read/write locks, though segment
directories do. Files in directory have the per-file read/write lock

of the segment directory.

The per-file read/write lock value is read by RDENSS. It is set by a

SATRSS call with a key of KSRWLK. The desired value is supplied in

Third Edition 9-32

FILE MANAGEMENT SUBROUTINES

bits 15 and 16 of ARRAY(1), the remaining bits of which must be 0. On
old partitions, the SATRSS call fails with an error code of ESOLDP.
Owner rights to the containing UFD are required, otherwise the call
fails with an error code of ESNRIT. An attempt to set the lock value
of a UFD fails with an error code of ESDIRE. If the SATRSS call
requests a lock value which is more restrictive than the current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are
governed by the new lock value. It is unspecified what happens when
bits 1-13 of ARRAY(1) are not 0.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write
locks of 0, so the system-wide RWLOCK setting continues to control
access to such files. .

The COPY command with the -RVLOCK option copies the per-file read/write
lock setting along with the file.

Examples

1. Read next entry from new or old UFD:

100 CALL RDENSS (KSREAD, funit, ENTRY, 24, RNW, 0, 0, CODE)
IF (CODE .NE. 0) GOTO <error handler>
TYPE=RS (ENTRY(1),8) /* GET TYPE OF ENTRY JUST READ

IF (TYPE.NE.1.AND.TYPE.NE.2) GOTO 100 /* UNKNOWN

2. Position to beginning of UFD:

CALL RDENSS (KSUPOS, funit, 0, 0, 0, 000000, 0, code)

3. This program reads directory entries sequentially using RDENSS.

[BRERERREREEREERREREEREREREREREREREREREEEREEREKEREEREEERERERERERE|

rdSdir:
proc(dunit, rden_ptr, code);

dcl dunit bin, /* unit directory is open on */
rden_ptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

include 'syscom>keys. pll';
include '*>insert>parameters. ins, spl1';

dcl rdenss entry (bin, bin, (24)bin,bin,bin, char (*),
bin, bin),

rden_buffer (24) bin based(rden_ptr),

9-33 Third Edition

19

DOC3621-190

rden_name_ext char (32) defined rden_buffer (2),
rden_name_local char (32) 3

del i bin;
dcl trim builtin;

[EREREREEREEREEEEEREREREREEREREREREREREREREREEREREEEREREREREERERES/

call rdenSS$(kSread, dunit, rden_buffer, 24, i, '', 0, code);

rden_buffer(23)
rden_buffer(19)
rden_name_local

rden_buffer (19); /* Copy non_default_acl bit*/
rden_buffer (18); /* Copy protection keys */
rden_name_ext; /* Copy name for trim (Since

the strings overlap). */
rden_ptr -> rden_buffer_. filename = trim(rden_name_local,'01'b);

return;
end rdSdir; /*® rdSdir */

[BREREERERERERERREREEEREEEREREEEREREREREEREREREEREEEEEEREERE/

4. The next example reads directory entries by name using RDENSS.

[BERREEREREEERERERERREREREREREREREREREREREREEEEREREREREREREERERE/

rdSent:
proc(treename, rden_ptr, code);

dcl treename char (128) var, /* file info is wanted for */
rden_ptr pointer, /* pointer to rden_buffer */
code bin; /* standard error code */

%include 'syscom>keys. pl1';
include '*>insert>parameters. ins, spl';

dcl rdenss entry(bin, bin, (24) bin, bin, bin, char(*),
bin, bin),

rden_buffer(24) bin based(rden_ptr),
rden_name_ext char (32) defined rden_buffer(2),
rden_name_local Char (32) 3

dcl srchss entry(bin, bin, bin, bin, bin, bin);
dcl tatchs entry(char(*) var, bin);
dcl paths entry (char(*) var) returns(char(128) var);
dcl entrys entry (char(*) var) returns(char(32) var);
dcl homes entry () 3
dcl closes entry (bin);

del (i,
icode,
unit) bin:

del tree bit(1) aligned,
filename char (32) var;

dcl (length,
trim,
addr,
index) builtin;

[BERRERRREREREREERIEEEIEERERIREREEREREEEREEREREREREREREREREREEERE/

Third Edition 9-34

PILE MANAGEMENT SUBROUTINES

tree = (index(treename, '>') “= 0);
if tree

then do;
call tatch$(path$(treename), code);
if code *= 0

then go to clean_up;
end;

call srch$$(k$read + k$getu, k$curr, 0, unit, i, code);
if code “= 0

then go to clean_up;

filename = entry$(treename);
Call rden$$(k$name, unit, rden_buffer, 24, i, (filename),

length (filename), code);

Call closeS$ (unit);

rden_buffer(23)
rden_buffer (19)
rden_name_local

rden_buffer (19); /* Copy non_default_acl bit */
rden_buffer (18); /* Copy protection keys */
rden_name_ext; /* Copy name for trim (Since

the strings overlap). */
rden_ptr -—> rden_buffer_.filename = trim(rden_name_local, 'Ol'b);

clean_up:
if tree

then call homes:
return:

end rdSent;

P RDLINS

Purpose

RDLINS reads a line of characters from a compressed or uncompressed
ASCII disk file,

Usage

CALL RDLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be read is
Open (INTEGER*2).

buffer An array of count words in which the line of
information from the disk file is to be read,

count The size of buffer in words (INTEGER*2).

9-35 Third Edition

DOC3621-190

code A return variable set to 0 for no errors, or to an

error code for an error (INTEGER*2). See PRWFSS for

a list of possible error codes.

Discussion

A line of characters from funit is read into buffer, two characters per

word, Lines on the disk are separated by the NEWLINE character.

Compressed files are treated this way: the character DC] (221 octal)

followed by a count when read from the disk is replaced by that many

blanks.

If the line on the disk is less than 2*count characters, the remaining

space in buffer is filled with blanks. If the line on the disk is

greater than 2*count characters, only 2*count characters fill buffer

and the remaining Characters on the disk file line are ignored. In all

cases, the NEWLINE never appears as part of the line in buffer.

RDLINS is the same routine as ISADO7 except that the altrtn argument

has been replaced by the code argument.

p> RESTSS

Purpose

RESTSS reads R-mode executable code from a file in the current UFD into

memory. The SAVE'd parameters for a file previously written to the

disk by the SAVE or SAVES$ subroutine or the SAVE command are loaded

into the nine-word array vector. The code itself is then loaded into

memory using the starting and ending addresses provided by vector(1)

and vector (2).

Usage

CALL RESTS$(vector, filnam, namlen, code)

vector A nine-word array set by RESTSS. vector(1) is set

to the first location in memory to be restored,

vector(2) is set to the last location to be

restored, The rest of the array is set as follows:

vector (3) Saved P register

vector (4) Saved A register

vector (5) Saved B register

Third Edition 9-36

FILE MANAGEMENT SUBROUTINES

vector(6) Saved X register

vector(7) Saved keys

vector(8) Not used

vector (9) Not used

filnam The name of the file containing the executable image
(integer array).

namlen The length in’ characters (1-32) of filnam
(INTEGER*2) . —

code An INTEGER*2 variable set to the return code,

Note

Use the PRIMOS command SEG to restore V-mode runfiles from a
file,

p RESUSS

Purpose

RESUSS restores R-mode executable code from a file in the current UFD,
initializes registers from the saved parameters, and starts executing
the program.

Usage

CALL RESUS$$(filnam, namlen)

filnam The name.of the file containing the code.
/

namlen The length (1~32) in characters of filnam.

Discussion

RESUS$ does not have a code argument. If an error occurs, an error
message is displayed and control returns to command level.

9-37 Third Edition

DOC3621-190

BP saATRSS

Purpose

@ Password protection

@ Date/time modified

19 e@ Dumped bit

@ Read/write lock

@ Delete-protect switch

Usage

SATRSS allows the setting or modification of an object's attributes in

its UFD entry. The attributes that may be set include:

CALL SATRSS (key, object, namlen, attributes, code)

key A 16-bit integer variable specifying the action to
take. Possible values are:

KSPROT

KSDTIM

KSDMPB

KSRWLK

Third Edition

Set password protection attributes from
attributes (1). attributes (2) is

ignored for old partitions and must be
0 for new partitions. (It is reserved
for expansion.) The meaning of the
protection bits in attributes({1 is
given under the description of RDENSS.

Set date/time modified from attri-
butes(1) and (2). The format of the
date/time is given under the
description for RDENSS.

Set the dumped bit. This bit is set by
the utility program that dumps modified
files and is reset by the operating
system whenever the file is modified.
Users should not use this key.

Set the read/write lock on a per-file
basis, Bits 15 and 16 of attributes(1)
are set by the user for specific lock
values. Refer to RDENSS for further
information on the read/write lock.

9-38

FILE MANAGEMENT SUBROUTINES

KSSDL Set the delete switch (for use with
ACLS). I£ attributes(1) is not 0, the
delete switch is set. If attributes(l)
is 0, the switch is cleared,

Note

The date/time modified and the dumped bit are changed by
PRIMOS. When PRIMOS changes these fields for a file, the
Corresponding fields of the file's parent UFD are not
Changed, However, when the name or protection attributes
of the file are changed, the date/time-modified and the
dumped bit of the parent UFD are updated, and the dumped
bit for the file is reset.

Since a call to SATRSS$ modifies the UFD,_ the
date/time-modified of the UFD itself is updated,

object The name of the object (file or other iten) whose
attributes are to be modified. The current UFD is
Searched for object (CHAR NONVARYING(32)).

namlen The length in characters of filnam (16-bit integer).

attribute Field containing the attributes: variable,
depending on key:

@ For KSPROT, a 16-bit structure defining the
Password protection rights for the object.
This structure is defined below,

e@ For KSDIIM, a 32-bit structure containing the
date/time to set in FD standard format, which
is described below.

@ For KSDMPB, this field is ignored.

e@ For KSRWLK, one of the following sub-keys as
a FIXED BIN(15):

KSDFLT Use systen default value.

KSEXCL Unlimited readers CR one writer.

KSUPDT Unlimited readers AND one writer.

KSNONE Unlimited readers and writers.

@ For KSSDL, a l6-bit quantity. If nonzero,
the delete-protect switch is set on. If
zero, it is set off,

9-39 Third Edition

FILE MANAGEMENT SUBROUTINES

/* do copies */

if type < 2
then call cpS$fl(sfunit, tfunit, err_info, code)
else call cp$$sd(sfunit, tfunit, err_info, code)

e
a

e
e

/* close the entries just copied */

call srch$$(kSclos + kSiseg, sunit, 0, sfunit, trash,

tcode) ;

call srch$$(k$clos + kSiseg, tunit, 0, tfunit, trash,

tcode);

if code “= 0
then return;

end;

end;

err_rtn_l:
err_info = 1;
return:

err_rtn_2:
err_info = 2;
return;

end cpS$$sd;

BP spasss

Purpose

SPASSS sets the passwords of the current UFD.

Usage

CALL SPASSS(owner-pw, nonowner—pw, code)

owner—pw A six-character array that contains the password to

set as the owner password.

nonowner—pw A six-character array that contains the password to

set as the nonowner password,

code A 16-bit integer variable set to the return code.

9-47 Third Edition

19

DOC3621-190

code A 16-bit integer variable set to the return code:

ESBKEY An illegal key value was passed.

ESBNAM Object name is illegal.

ESBPAR namlen is less than 0 or greater than
32.

ESNATT The current attach point is invalid,

ESNRIT Protect access (delete access for
KSSDL) was missing from the current
directory.

ESWTPR ‘The disk is write~protected,

ESNINF An error occurred during search of the
directory, and list access was not
available.

ESFNIF The object does not exist.

ESIACL The object was an access category, and
a key other than KSDIIM was used,

ESDIRE ‘The object was a directory, and the

Discussion

KSRWLK key was used.

The password protection structure is as follows:

dcl 1 pwprotection,
2 owner_rights,

3 ignored bit(5),
3 delete bit(1),
3 write bit(l1),
3 read bit(l1),

2 non_owner_rights,
3 ignored bit(5),
3 delete bit(1),
3 write bit(1),
3 read bit(1);

Third Edition 9-40

FILE MANAGEMENT SUBROUTINES

The standard FS—-format date structure is:

del 1 fsdate,
2 year bit(7),
2 month bit(4),
2 day bit(5),
2 quadseconds fixed bin(15);

The meaning of these elements is:

year

month

day

quadseconds

Year modulo 100, with the exception that years
100-128 mean 2000-2028.

Month, from 1 for January to 12 for December.

Day of the month, from 1 to 3l.

Number of quadseconds (groups of four seconds)
elapsed since midnight of the date described by the
three preceding fields,

Note

SATRSS does not check the validity of the supplied date and
time. Users must assure that the date/time passed is legal.

Owner rights are required on the UFD containing the entry to be
modified, except with KSSDL, which requires delete access,

An attempt to set the date/time-modified, the dumped bit, or the
read/write lock on an old partition will result in an ESOLDP error
(error message 'OLD PARTITION').

Examples

1. Set default protection attributes on MYFILE:

ARRAY (1) =:3400 /* OWNER=7, NON-OWNER=0
ARRAY (2)=0 /* SECOND WORD MUST BE 0
CALL SATRSS (KSPROT, 'MYFILE', 6, ARRAY(1), CODE)

2. Set both owner and nonowner attributes to read-only (note
carefully the bit positioning in two-word octal constant):

CALL SATRSS$ (KSPROT, 'NO-YOU-DON''T', 12, :100200000, CODE)

9~41 Third Edition

19

DOC3621-190

3. Set date/time modified from UFD entry read into ENTRY by
RDENSS:

CALL SATRSS$ (KSDTIM, FILNAM, 6, ENTRY(21), CODE)

p SAVESS

Purpose

SAVESS is used to save an R-mode executable image as a file in the
current UFD.

Usage

CALL SAVES$ (vector, filnam, namlen, code)

vector A nine-word array the user sets up before calling
SAVES$. vector(1) is set to an integer which is the
first location in memory to be saved and vector (2)
is set to the last location to be saved. The rest
of the array is set at the user's option and has the
following meaning:

vector(3) Saved P register

vector(4) Saved A register

vector (5) Saved B register

vector(6) Saved X register

vector(7) Saved keys

vector(8) Not used

vector(9) Not used

filnam The name of the file to contain the code (integer
array).

namlen The length in characters (1-32) of filnam (16-bit
integer).

code A standard return code (16-bit integer).

Third Edition 9-42

> scnRrss

Purpose

FILE MANAGEMENT SUBROUTINES

SGDR$$ positions in a segment directory, reads entries, and allows

modification of a directory's size.

Usage

CALL SGDRSS (key, funit, entrya, entryb, code)

key A 16-bit integer specifying the action to ke
performed.

KSSFEOS

KSFULL

KSFREE

KSGOND

KSGPOS

Possible values are:

Move the file pointer of funit to the
WA es eS +hposition given by the valueTueof entrya.

Return 1 in entryb if entrya contains a
file, return 0 if entrya exists but
does not contain a file, return -1 if
entrya does not exist (is beyond EOF).
f HOF is reached on KSSPOS, the file

pointer is left at EOF. The directory
must be open for reading or both
reading and writing.

Move the file pointer of funit to the
position given by the valueof entrya.
Jf the position contains a file, set
entryb to the value of entrya. If the
position is empty, search for the first
nonempty entry following the position
specified. If a nonempty entry exists,
set entryb to the position of that
entry. If the EOF is reached and an
entry with a file has not been found,
then return ~1 in entryb. If EOF is
reached on KSFULL, the file pointer is
left at EOF.

Act in the same manner as KSFULL, but
find an entry that does not contain a
file.

Move the file pointer of funit to the
end-of-file position andreturn in
entryb the file entry number of the end
of the file.

Return in entryb the file entry number
pointed to by the file pointer of

funit.

9-43 Third Edition

DOC3621-190

KSMSIZ Make the segment directory open on
funit entrya entries long. ‘The file
pointer is moved to the end of file.
The directory must be open for both
reading and writing.

KSMVNI The entry pointed to by entrya is moved
to the entry pointed to by entryb. The
entrya entry is replaced with a mull
pointer, Errors are generated by
KSMVNT if there is no file at entrya,
if there is already a file at entryb,
or if either entrya or entryb are at or
beyond EOF. The file pointer is left
at an undefined position, The
directory must be open for both reading
and writing.

funit The file unit on which the segment directory is open
(16-bit integer).

entrya An unsigned 16-bit entry number in the directory, to
be interpreted according to key.

entryb An unsigned 16-bit integer set or used according to
key.

code A 16-bit integer variable set to the return code,
according to the key used,

Discussion

When SGDRS$$ is called, the segment directory must not be opened for
write-only access,

A KSMSIZ call with entrya equal to 0 causes the directory to have no
entries, If the value of entrya is such that it truncates the
directory, all entries including and beyond the one pointed to by
entrya must be null. See SRCHSS for more segment directory
information,

Note
When a directory is read sequentially (KSSPOS, entrya =
entryatl, KSSPOS, .e.), entryb = -]1 indicates the end of the
directory, not the return code ESEOF, ESEOF is returned when
entrya indicates a position beyond EOF, that is, the entry
following the first KSPOS to return -1 in entryb.

Third Edition 9-44

FILE MANAGEMENT SUBROUTINES

Examples

1.

2.

Read sequentially through the segment directory open on 6:

CURPOS=-1

100 CURPOS=CURFOS+1
CALL SGDRS$ (KSSEOS, 6, CURFOS, RETVAL, CODE)

IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

Make directory open on 2 as big as directory open on 1:

CALL SGDRSS (KSGOND, 1, 0, SIZE, CODE)

IF (CODE.NE.0) GOTO <error handler>

CALL SGDRSS (KSMSIZ, 2, SIZE, 0, CODE)

This program reads and writes segment directories using SGDRSS.

[RIIRRRTIIRSAIIIIIIRETTTTITIESTIIISRITASIIASAIIIS

rit, tunit, err_info, code) recursive;

include 'syscom>keys.pll';
include 'syscom>errd,pl1';

dcl sunit fixed bin(15),
tunit fixed bin(15),
err_info fixed bin({i5),

code fixed bin(15);

dcl (entrya,
entryb,
entry_no) fixed bin(15);

dcl (sfunit,
tfunit) fixed bin(15);

dcl (newfil,
trash,
tcode,
rtnval,
type) fixed bin(15);

dcl errprs entry(bin, bin, char(*), bin, char(*), bin);

dcl srchss$ entry(bin, bin, bin, bin, bin, bin);

dcl cp$sfl entry(bin, bin, bin, bin);

/* cpS$S£1 is defined in example 6 for PRWF */
dcl sgdr$$ entry /*read segdir entries*/ (fixed binary(15),

/* key */
fixed binary(15), /* unit on which segdir is

/*open*/
fixed binary(15), /* entrya */
fixed binary(15), /* entryb */
fixed binary(15)); /* standard error code */

set_target_size: /* make target segdir same number
/* of entries as source */

9-45 Third Edition

DOC3621~-190

err_info = 0;
Call sgdrS$(k$gond, sunit, entrya, entry_no, code);
if code “= 0

then go to err_rtn_1;
call sgdr$$(kSmsiz, tunit, entry_no, entryb, code);
if code “= 0

then go to err_rtn_2;

main_loop:

do entry_no = 0 repeat (entry_no + 1);

/* position segdirs */
call sgdr$$(k$spos, sunit, entry_no, rtnval, code);
if code “= 0

then go to err_rtn_l;
if rtnval < 0

then return; /* end of file */
Call sgdr$$(k$spos, tunit, entry_no, entryb, code);
if code “= 0

then go to err_rtn_2;
if entryb < 0

then do;
Call errpr$(kSirtn, eSnull, 'Unrecoverable

error', 19, 'cpSSsd', 5);
stop;

end;

if rtnval = 1
then do;

/*found a nonnull entry in source, */
/* open it and same entry in target*/

call srch$$(k$read + k$iseg + kSgetu, sunit, 0,
sfunit, type, code);

if code “= 0
then go to err_rtn_l;

newfil = kSnsam;
if type = 1

then newfil = kSndam;
if type = 2

then newfil = kSnsgs;
if type = 3

then newfil = k$nsgd;
call srch$$ (k$rdwr+kSisegtk$getutnewfil, tunit, 0,

tfunit, trash, code);
if code “= 0

then do;

call srch$$(k$clos + kSiseg, sunit, 0,
sfunit, trash, tcode);

go to err_rtn_2;
ends

Third Edition 9-46

19

DOC3621-190

Discussion

SPASS$ requires owner rights to the current UFD. Passwords intended to
be typed from the terminal should not start with a mumber nor should
they contain blanks or the characters=! ,@{}[]()*<or>,
Passwords should not contain lowercase characters but May contain any
other characters including control characters.

Passwords which are not intended to be typed from the terminal but
accessed through programs only can have any bit pattern.

B SRCHSS

Purpose

SRCHS$ is used to open a file, close a file, delete a file, or check on
the existence of a file,

Note

At Rev. 19, the delete functions of SRCHS$ are handled by
FILSDL and SGDSDL.

Usage

CALL SRCHS$ (actiontreft+newfil, filnam, namlen, funit, type, code)

action A l6-bit subkey indicating the action to be
performed. Possible values are:

KSREAD Open filnam for reading on funit.

KSWRIT Open filnam for writing on funit,

KSRDWR Open filnam for reading and writing on
funit.

KSCLOS Close file.

KSDELE Delete file filnam.

KSEXST Check on existence of filnam.

ref A 16-bit key modifying the action key as follows:

KSIUFD Search for file filnam in the current
| UFD. (This is the default.)

Third Edition 9-48

filnam

namlen

funit

FILE MANAGEMENT SUBROUTINES

KSISEG Perform the action specified by action
on the file that is a segment directory
entry in the directory open on file
unit filnam.

KSCACC Change the access mode of the file
already open on funit to action
(KSREAD, KSWRIT, KSRDWRonly).

KSGETU Open filnmam on an unused file-unit
selected PRIMOS. (This is the
PRIMOS file unit, not the FORTRAN
unit.) The unit number is returned in
funit. When this key is used, SRCHSS
supplies a unit number not currently in
use. See example 6 below for use of

this key.

a
”

(D
5

(
2 h ile to createwTde Ee eea

if filnam does not exist. Poenibie values are:

KSNSAM New threaded (SAM) file. (This is the
default.)

KSNDAM New directed (DAM) file.

ISGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

Note

It is not possible to generate
anew UFD with SRCHSS; use
CREASS instead.

Name of the file to be opened (integer array, two
characters per word). KSCURR can be used to open
the current UFD (action keys KSREAD, KQWRIT, Or
KSRDWR only). If ref is KSISEG, filnam is a file
unit from 1 to 126 (1to 15 wumder PRIMOS II) on
which a segment directory is already open.

The length in characters (1-32) of filnam (16-bit

integer).

The number (1-15 under PRIMOS II, 1-126 under
PRIMOS) of the file unit to be opened or closed, or
returned argument with KSGETU key (16-bit integer).

9-49 Third Edition

DOC3621-190

type A 16-bit integer variable that is set to the type of
the file opened. type is set only on calls that
opena file — it is unmodified for other calls.
Possible values of type are:

0 SAM file
1 DAM file
2 SAM segment directory
3 DAM segment directory
4 UFD

code An integer variable set to the return code.

Discussion

SRCHS$ is a complex subroutine that has multiple uses. ‘The most common
use is to open and close files.

Opening and Closing Files

Opening a file consists of connecting a file to the file unit. After a
file is opened, the file may be accessed to transfer information to or
from the file, or to position the current position pointer of a file
unit (file pointer). These actions are accomplished by other
subroutines, which reference the file through the attached file unit,
such as PRWFS$, SGDR$$, RDENSS, RDLINS, WILINS, ISADO7, OSADO7, RDASC,
and WRASC, Information is also transferred through the I/O statements
in all languages.

On opening a file, SRCHSS specifies:

1. Allowable operations that may be performed by PRWFSS and other
routines, (These operations are read-only, write-only, or both
read and write.)

2. Where to look for the file, or where to add the file if the
file does not currently exist. SRCHS$S either specifies a
filename in the currently attached user file directory or a
file unit number on which a segment directory is open. In the
segment directory reference, the file to be opened has its
beginning disk address given by the entry at the current
position pointer of the file unit.

Each file in a UFD has associated with it two sets of access rights,
one for the owner and one for the nonowner of the UFD. These access
rights are initially owner has all, nonowner has none. ‘They can be
Changed using the PROTECT command or the SATRSS subroutine. These
access rights (read, write, delete, etc.) are checked on any attempt
to open a file. A NO RIGHT error code (ESNRIT) is set if the user does
not have the required rights.

Third Edition 9-50

FILE MANAGEMENT SUBROUTINES

If the file cannot be found on open for reading, SRCHSS generates the
file-not-found error code (ESFNIF). If the file wnit is already in
use, SRCHSS generates the unit-in-use error code (ESUIUS).

The Read/Write Lock

Under default conditions, the systen allows any number of readers or a
single writer and no readers for the same file. The system prevents

one user from opening a file for writing when another user has the file

open for reading or writing. The system prevents one user from opening

the file for reading or writing while another user has the file open

for writing. ‘These locks also hold for a single user attempting to
open a file on multiple file units. If the lock is violated, the FILE
IN USE error code is generated (ESFIUS).

This lock may be changed on a per-file basis. (Refer to RDENSS.)

On closing a file, it is possible to close by name or by file unit.
SRCHS$ attempts to close by filnam unless filnam is specified as 0, in
which case it closes the fileunitspecified. TI£ filnam is not found,
an error is generated (code = ESFNIF), but ifthe file unit is
specified, SRCH$$ ensures that the file unit specified by funit is
Closed and never generates an error code (unless funit is out of
range). If the file has been modified while it was open,the date/time

stamp of the file is updated when the file is closed,

Changing the Access Mode of an Open File

A user may change the access mode of a file that is open on funit to
open-for-reading, open-for-writing, or open for both reading and
writing, using the KSCACC key. Note that access rights and the
read/write lock rules from the file are checked and the attempt to

change access may fail.

Adding and Deleting Files in UFDs

A call to SRCHSS to open a file for writing or both reading and writing

causes SRCHSS to look in the current UFD for the file. If the file is

not found in the UFD, a new file is created of zero length and an entry

for the file is put in the UFD. The date/time of the file is set to

the current date/time, the access rights are set to

owner-has-all-rights, nonowner-has-none, the read/write lock is set to

the system standard read/write lock and the file type to that file type

specified in the SRCH$$ call. If the file type is not specified, it is

a SAM file. Note that nonowners cannot generate new files. (The error

code returned is ESNRIT.)

9-51 Third Edition

DOC3621-190

A call to delete a file must specify a legal fumit, although the file
system does not use that file unit during the delete. Deleting a file
returns the records of the file to the DSKRAT pool of free records and
erases the entry from the UFD leaving a vacant hole, Vacant holes in
UFDs will be reused for new files if of the right size, so new files do
not always appear at the end of your UFD. These vacant holes take very
little room on the disk in most cases. These holes are compressed out
of UFDS when the FIX_DISK maintenance program is run by the system
Operator. See the System Administrator's Guide.

Checking the Existence of a File

If the user wishes to find out whether or not a certain file exists in
the current ufd or segment directory, the KSEXST key can be used. The
file is not affected in any way and access rights and the read/write
lock are not checked,

Operations on Files That Are UFDs

Files in the current UFD that are sub-UFDs can be opened only for
reading. The contents of entries of sub-UFDs can be read through calls
to RDENS$ and GPASSS once the sub-UFD is open. The current UFD can be
Opened for reading by specifying the key KSCURR in the filnam field of
the SRCH$$ call. Calls to the SATRS$$ or SPASSS subroutines require
that the current UFD not be open or the FILE IN USE error is generated.
New UFDs can only be created using the CREASS subroutine, not SRCHSS.
UFDs may be deleted with SRCHSS$ only if the UFD contains no files. The
DELETE command can delete a nested structure of UFDs, provided they are
not protected,

Qperations Involving Segment Directories

Segment directories are directories in which the files are referenced
by thelr position in the directory rather than by a name. Furthermore,
the directory entry associated with a file contains the attributes,
such as date/time, protection, or the read/write lock, of the highest
level segment directory in the UFD. Segment directories are not
attached but are operated on using SRCHSS and SGDRSS.

To create a segment directory, use SRCH$$ to open a rew file for
reading and writing with the file type specified as SAM segment
directory or DAM segment directory.

With the file open, use SGDR$$ to make the segment directory contain a
certain number of null file entries (KSMSIZ key).

To create a file in a segment directory, first open the directory for
reading and writing on a funit (e.g. SUNIT), if it is not already
Open. Next, use SGDR$$ to position to the null file entry desired,

Third Edition 9-52

FILE MANAGEMENT SUBROUTINES

Next, use SRCHS$ to open a new file for writing, or reading and

writing, in the segment directory by using the KSISEG reference key and

placing the SUNIT number of the segment directory in the filnam

argument, The file unit of the new file goes in the usual field

(funit). SRCHS$ will create the new file and place a pointer to the

new file in the segment directory entry of SUNIT.

Use SRCHS$$ to close by unit or name (with KSISEG) a file in a segment

directory.

To open a file that already exists in a segment directory, use SRCHSS

and SGDRS$$ to open the segment directory and position to the desired

entry as explained above. If the directory entry already contains a

pointer to the file, that file will be opened, If not, and the attempt

is to open for reading, the FILE NOT FOUND error is generated. Any

type of file except a UFD may be created in a segment directory.

To delete a file in a segment directory, open the segment directory,

position to the file desired, and then use SRCH$$ with the KSISEG and

KSDELE keys. SRCHSS returns the record of the file to the DSKRAT and

replaces the pointer to the file with a null pointer in the segment

directory entry.

bahde eilehe

Finally, to delete a segment directory, the user must first delete all

files in the directory, set the size of the directory to 0 using

SGDRSS, close the directory, and then delete it with SRCHSS. The

DELETE subcommand of the SEG command may be used to delete a segment

directory.

Files in a segment directory have the protection attributes of the

directory. The date/time field of the directory reflects the latest

change made to the directory or any file in the directory.

Filenames and Pathnames

For a discussion of filenames and pathnames, see the introduction to

this chapter.

Examples

1. Open new SAM file named RESULTS for output on file unit 2:

CALL SRCHSS(KSWRIT, 'RESULTS', 7, 2, TYPE, CODE)

2. Create new DAM file in the segment directory open on SGUNIT and

open for reading and writing on DMUNIT:

CALL SRCHSS(KSRDWR+KSISEG+KSNDAM, SGUNIT, 1, DMUNIT, ‘TYPE,

CODE)

9-53 Third Edition

DOC3621-190

4.

Close and delete the file created in the above call:

CALL SRCHS$(KSCLOS, 0, 0, DMUNIT, 0, CODE)
CALL SRCH$$ (KSDELE+KSISEG, SGUNIT, 0, 0, 0, CODE)

See if filename 'MY.BLACK.HEN' is in current UFD:

CALL SRCH$$ (KSEXST+KSIUFD, 'MY.BLACK.HEN', 12, 0, TYPE, CODE)
IF (CODE.EQ.ESFNIF) CALL TNOU('NOT FOUND', 9)

Create a new Segment directory and a new SAM file as its first
entry:

CALL SRCHS$(KSRDWR+KSNSGS, 'SEGDIR', 6, UNIT, TYPE, CODE)
CALL SRCHS$(KSWRIT+KSNSAMHKSISEG, UNIT, 0, 7, TYPE, CODE)

Open the file named 'FILE' in the user's currently attached
UFD:

CALL SRCH$$(KSREAD+KSGETU, 'FILE', 4, UNIT, TYPE, CODE)
IF (CODE .NE. 0) GOO error_processor

The above FORTRAN call will attempt to open the file named
"FILE' in the user's currently attached UFD. If successful,
the file unit number on which 'FILE' has been opened is
returned in UNIT. The type of the file opened is returned in
TYPE, and CODE is set to 0 if there are no errors. If there
are any errors, CODE will be nonzero, and the values of TYPE
and UNIT are undefined.

If no file wnits are available, the error code ESFUIU (all
units in use) is returned. This code is returned if either the
uSer process has exceeded the maximum number of file units
allowed, or the total number of file units in use for all
processes exceed the maximum number of file units available,

Open file by name.

[RREREREREREREEREEEEEEEEEEEEREEEEREIAKERERIKERERIAEA]

Opens:
proc(key, treename, unit, type, code);

include 'syscom>keys. pll';

replace sam_file by 0,
dam_file by 1,
Sam_segdir by 2,
dam_segdir by 3,
directory by 4;

dcl key bin,
treename Char (128) var,
unit bin,

Third Edition 9-54

FILE MANAGEMENT SUBROUTINES

type bin,
code bin;

Gcl srchs entry(bin, char(*), bin, bin, bin, bin),

newfil bin;

dcl tatchs entry(char(*) var, bin);

dcl paths entry (char (*) var) returns (char (128) var);

dcl entry$s entry (char (*) var) returns (char(32) var)?

dcl homes entry ();
dcl tree bit(1) aligned,

filename char (32) var;

dcl (length,
index) builtin;

[RERERERERERERRREREEKIERRIEREBEREEEREEREERIETERETETARERBE
RE

code

tree

if tree
Fran ene
Reb Noh ho UY

call tatch$(path$(treename), code);
if code “= 0

then go to clean_up;

end;

0;
(index(treename, '>') “= 0);

filename = entry$(treename);

newflil =kSnsam;
if key =kSwrit | key = kSrdwr

then if type = dam_file
then newfil = kSndam;

else if type = sam_segdir
then newfil = kSnsgs;

else if type = dam_seqdir
then newfil = kS$nsgd;

|

call srch$$ (key+newfil+k$getu, (filename) , length (filename),

unit, type, code) ;

clean_up:
if tree

then call home$S;
return;

end open$;

9-55 Third Edition

18.1

DOC3621-190

& SRSFXS

Purpose

The subroutine SRSFXS searches for a file according to the filenaming
Standards of Rev.
possible suffixes,

Usage

18 and higher. The caller supplies a list of

DCL SRSFX$ ENTRY (FIXED BIN, CHAR(*)VAR, FIXED BIN, FIXED BIN,
FIXED BIN, CHAR(32)VAR, CHAR(32)VAR,
FIXED BIN, FIXED BIN)
[RETURNS(FIXED BIN(31));]

CALL SRSFX$ (key, pathname, unit, type, n-suffixes, suffix-list,
basename, suffix-used, status);

Chrpos = SRSFX$ (key, pathname, unit, type, msuffixes,
suffix-list, basename, suffix-used, status);

key

pathname

unit

type

n-suffixes

suffix-list

basename

suffix-used

Third Edition

Key(s) to use for the search — same as for SRCHSS
(input).

Pathname to use for search (remains unchanged)
(input).

File unit opened (returned with KSGETU) or file unit
to use for SRCHSS$ action without KSGETU (input).

File type opened (output).

Number of suffixes in suffix-list (input). A value
of 0 indicates not to use the file-naming standards
with suffixes for the search.

List of desired suffixes to use (input). Each
Suffix should include the period and be in capital
letters, for example, suffix-list(i) = ".F77".

This is the base filename, that is, without a suffix
according to the suffix-list. This is useful to
callers who want to append a different suffix to the
base filename. For example, FIN PROG. TEST.FIN would
produce output files with "PROG.TEST" as the
basename used, such as "PROG, TEST. BIN" (output).

This is the index, in the suffix-list given, of the
suffix used for the search. As mentioned, a value
of 0 denotes that the null suffix was used (output).

9-56

FILE MANAGEMENT SUBROUTINES

status Status returned from the search operation (same as
for APFSXS).

chrpos When SRSFXS is used as a function call, this is
returned. The first word points one character past
the pathname component that caused the error. ‘The
second word is the pathname length.

Discussion

SRSFX$ is intended for use with the filenaming convention, starting
with Rev. 18, that appends a standard suffix by means of a period, as
in MYPROG.PASCAL. The suffix list defines both the suffixes to scan
for and the search order. If the suffix already exists at the end of

the filename, then a tree search is performed with the pathname as is.

If none of the desired suffixes are found, a tree search is performed
in the following manner: the subroutine attaches to the appropriate

directory, each suffix in the list is appended to the filename, and a

search is done. In this way the suffix list defines the search order.

The routine returns when a "filename.suffix" is found or the suffix

list is exhausted.

If a file is found, the index (in the suffix list) of the last suffix

in the filename is returned; if no file is found, or if nome of the

suffixes in the list is on the found filename, an index of 0 is

returned.

SRSFX$ can be combined with APSFXS to force a name to have a suffix

according to the current filenaming conventions, even if the file did

not originally have one. For example, the ACL command SET_ACCESS looks

for an access category with the suffix .ACAT. If SRSFX$ finds a file

with no such suffix, APSFXS may then be used to return the filename

plus the suffix required for the next step.

Restrictions:

e The null string is not allowed as an element of the suffix list.

The null suffix is assumed if no desired suffix is found. In

this case the suffix index is set to 0 and a processor may then

choose to use the old prefix conventions B_, L, etc., for its

output files,

e If the suffix-list contains ".F77", a pathname such as
"nathname>.F77" will be treated as a valid suffix found, i.e.,
".F77", The filename returned will be '', the null string.

9-57 " Third Edition

18.1

DOC3621-190

@ If the filename + suffix exceeds 32 characters oor the
pathname + suffix exceeds 128 characters, a search with suffix
will not be done and the next suffix is attempted. For example,
a filename of 32 characters will simply be searched for as is.

18.1

@ The suffixes in the suffix list provided by the caller must
contain the period and be all capital letters, for example,
"F777".

> TSRCS$

Note

18.1
TSRCSS is obsolete andhas been replaced with SRSFXS.

Purpose

TSRCS$ is a subroutine to opena file anywhere in the PRIMS file
structure,

Usage

CALL TSRCS$ (actiontnewfil, pathname, funit, chrpos, type, code)

action A 16-bit key indicating the action to be performed.
Possible values are:

KSREAD Open pathname for reading on funit.

KSWRIT Open pathname for writing on funit.

KSRDWR Open pathname for reading and writing
on funit.

KSDELE Delete file pathname.

KSEXST Check on existence of pathname.

KSCLOS Close pathname (not funit).

KSGETU Open pathname on an unused file wnit
selected by PRIMOS. The unit number is
returned in funit.

“tea Babin 9-58

newfil

pathname

funit

chrpos

code

FILE MANAGEMENT SUBROUTINES

A 16-bit key indicating the type of file to create
if pathname does not exist. Possible values are:

KSNSAM New threaded (SAM) file, (This is
default.)

KSNDAM New directed (DAM) file.

KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

An array specifying a file in any directory or
subdirectory, packed two characters per word.

The number (1-126) of the file unit to be opened or
deleted (16-bit integer). funit is closed before
any action is attempted.

A two-element integer array for character position
Set up as follows:

chrpos(1) On entry, set to contain the position
in the array pathname occupied by the
first character of the filename. (The
count starts at 0.) On exit, it will
be pointing one past the last
Character that was part of the
pathname. A comma, new line, or
carriage return will terminate the
name, aS will end of array. In case
of error, chrpos(1) points one past
the pathname component that caused the
error. chrpos(1) is always modified
by this subroutine, so it must be set
up before each call.

chrpos(2) The number of characters in the
pathname array (16-bit integer).

An integer variable set to the type of the file
opened, ¢ is set only on calls that open a file;
it is ummodified for other calls. Possible values
for type are:

SAM file
DAM file
SAM segment directory
DAM segment directory
UFDH

m
W
h
e
©

A 16-bit integer variable set to the return code,
If no errors, code is 0.

9-59 Third Edition

DOC3621-190

Caution

Do not use TSRC$$ to perform a change of access (KSCACC).

p UPDATE

Purpose

Under PRIMOS II, this subroutine updates the current UFD.

Usage

CALL UPDATE (key, 0)

key Value must be 1 to update current UFD, send DSKRAT
buffers to disk, if necessary, and undefine DSKRAT

in memory (INTEGER*2).

Discussion

This call is effective only under PRIMOS II. Under PRIMOS III or

PRIMOS it has no effect.

> WILINs

Purpose

WILINS writes a line of characters in ASCII format toa file in

compressed ASCII format.

Usage

CALL WILINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be written

is open for writing (16-bit integer).

buffer An integer array of count words from which the line

of characters is to be written. It should contain

two characters per word.

Third Edition 9-60

FILE MANAGEMENT SUBROUTINES

count The size of buffer in words (16-bit integer).

code A 16-bit return code.

Discussion

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced by the character DC] (221 octal)
followed by a character count. Trailing blanks are removed and the end
of record is indicated by adding a NEWLINE character, or a NEWLINE
character followed by null. WTLINS is the same routine as OSADO7,
except that the altrtn argument has been replaced by the code argument.

9-61 | Third Edition

System Subroutines

This chapter describes subroutines that perform PRIMOS systen |
functions. For explanations of the argument names used (such as
funit), see Chapter 2.

Table 10-1 summarizes the functions available.

®& BREAKS

Purpose

BREAK$ inhibits or enables CONTROL-P for interrupting a program.

Usage

CALL BREAKS (logic-value)

logic~value A 16-bit integer whose value can be 1 for .TRUE. or
0 for .FALSE. (LOGICAL).

10-1 Third Edition

19

DOC3621-190

Table 10-1
Operating System Subroutines

Phantom Management

PHANTS Start a phantom (obsolete).
PHNIMS Start a phantam (same login name only).
LONSCN Enable or disable logout notification.
LONSR Retrieve logout notification information.

Read or Write
C1LINS Get one character from command file or

terminal.
CLSGET Read a line of text from command file or

terminal.
CNINS Move characters.
COMANL Read a line of text.
GCHAR Get a character from an array.
SCHAR Store a character in an array.

Error Checking
CLSPIX Parse a command line.
ERRPRS Interpret a return code.
RDIKSS Parse a command line.

Manage User Environment

BREAKS Inhibit or enable CONTROL-P.
DUPLX$ Return terminal configuration word,
ERLKSS Read or set erase and kill characters.
EXIT Return to PRIMOS.
GINFO Check operating system being used.
GVSGET Retrieve the value of a global variable.
GVSSET Set the value of a global variable.
LOGOSS Log out a user or process,
RECYCL Pass control to next user.
TIMDAT Return system and user information.

Manage File Access
FNCHKS Check a filename for valid format.
IDCHKS Check an id for valid format.
PWCHKS Check a password for valid format.
TEXTOS Check a filename for valid format (obsolete).
TNCHKS Check a pathname for valid format.

Third Edition 10-2

SYSTEM SUBROUTINES

Discussion

The LOGIN command initializes the uSer terminal so that the CONTRCL-P
or BREAK key causes an interrupt (QUIT). Under PRIMOS III and PRIMS,
the BREAKS routine, if called with the argument .FALSE., enables the
CONTROL-P or BREAK key to interrupt a running program.

On the other hand, the BREAKS routine called with the argument .TRUE.
inhibits the CONTROL-P or BREAK characters from interrupting a running
program.

This routine maintains a master list of the QUIT status for each user.
Each call to BREAKS to inhibit or enable QUIT increments or decrements
a counter, respectively. QUITs are enabled only when the counter is 0;
the counter goes positive with inhibits and cannot be decremented below
0.

Under PRIMOS II, BREAKS has no effect.

» cliNs

Purpose

This routine gets the next character from the termiml or a command
file, depending upon the source of the command stream.

Usage

CALL CLINS (char)

Discussion

The next character is read or loaded into char (right-justified and

zero-filled). If the character is .CR., char is set to NEWLINE.

Line feeds are discarded by the operating system, and are not detected
by the C1IN subroutine.

10-3 Third Edition

DOC3621-190

 cLscEtT

Purpose

CLSGET reads a single line of input text from the currently defined
command input stream (terminal or command file). The line is returned
aS a varying character string without the NEWLINE character at the end.
An empty command line or one consisting of all blanks will compare
equal to the null string.

Usage

CALL CLSGET (comline, comlinesize, status)

comline Varying character string into which the text will be
read from the command input stream (CHARACTER(*)
VAR) .

comlinesize Maximum length, in characters, of comline. Because
comline iS a varying string, it is not blank-padded
to this size (FIXED BIN(15)).

status Return code (FIXED BIN(15).

Example

OK, SLIST CLGET].PASCAL

{<readtty.pascal> Reads text from the user terminal using the external
{ PRIMOS routine CLSGET
{

}

{Thisprogram provides an example on how define a suitable Pascal }
{structure for implementing the character varying datatype found in }
{PL1G. Since standard Pascal prohibits reading string data from files }
{without subscripts, this example will provide an alternate }
{solution for reading strings from the user terminal, without }

{explicit subscripting. }
{ }
{ The simple object of the program is to read 3 strings from the }
{ terminal and display them in complete reverse order. }
{ }
program readITY;

type

char80varying =
record

1 : integer;
S : array[l .. 80] of char;

end;

Third Edition 10-4

SYSTEM SUBROUTINES

var
cmdline : char80varying;
table : array[{1 .. 3] of char80varying;
i,j : integer;
status : integer;

procedure cl$get (var cmdline: char80varying; {Command line input buffer}
lenBytes: integer; {Length of cmdline in bytes}

var status : integer); {Return error code status }
extern; {External PRIMOS procedure}

begin
{ Loop to input the text entered from the user terminal using the }

{ PRIMOS routine defined above (cl$get).
{
for i :=1 to 3 do
begin
write(i:1,'> ");
cl$get (cmdline, 80, status);
if status <> 0
then
writeln('Bad status code returned, status =',status);

table[i] := cmdline; { save the command line }
end;

{Display the lines just typed in reverse order. }
writeln; |

for i := 3 downto 1 do
begin
write(iz1,'< ');
for j := table[i].1 downto 1 do
write (table[i].s[j]);

writeln; end;
end,

This program, stored as CLGET1.PASCAL, may be compiled, loaded, and run
with the following dialog:

OK, PASCAL CLGET1
0000 ERRORS (PASCAL-REV 19.0)
OK, SEG -LOAD
[SEG rev 19.0]
S$ LO CLGET1
S$ LI PASLIB

$ LI
LOAD COMPLETE
$ EXEC
1> ABCDE
2> SECOND
3> MADAMIMADAM

10-5 Third Edition

19

DOC3621-190

3< MADAMIMADAM
2< DNOCES
1< EDCBA
OK,

p> cCLSPIX

Purpose

This subroutine parses command arguments according to a character
string "picture" of the command line. It allows a program to process
arguments on a command line, using the rules explained for arguments in
Chapter 13 of the CPL User's Guide.

The caller supplies the command argument picture, the command arguments
to parse, an output structure whose shape corresponds left-to-right
with the picture, and other parameters, CLSPIX parses the picture and,
if the picture is valid, parses the command arguments into the supplied
structure. At that point, the individual arguments have been validated
to be of the correct data type, converted if necessary, and are
accessible to the program in a straightforward manner.

Usage

DCL CLSPIX ENTRY (BIT(16) ALIGNED, CHAR(*)VAR, PIR, FIXED BIN,
CHAR(*)VAR, PIR, FIXED BIN, FIXED BIN, FIXED BIN, PTR);

CALL CLSPIX (keys, caller-name, picture-ptr, pixel-size,
com-args, struc-ptr, pix-index, bad-index,
code, local-vars~ptr)

keys A 16-bit word that is input to control certain
details of processing. The bits of keys have the
following structure:

| 1] 2]... | 13] 14{ 15] 16]

Third Edition 10-6

caller_name

picture—ptr

pixel-size

SYSTEM SUBROUTINES

The structure may be used in any language as a
16-bit integer with a value equivalent to setting on
the bits desired, The PLIG data description for
this structure is:

1 keys,
2 debug bit (1)
2 mboz bit(11), /* must be '0'b — 11 bits*/
2 keep_quotes bit(1),
2 cpl_flag bit(l),
2 pll_flag bit(l),
2 no_print bit(1);

If no_print is 'l'b, no error messages will be
printed by CLSPIX; only error code information will
be returned. If no_print is '0'b, caller-name is
used to format the error message. (See below.)

If pliflag is 'l'b, the Pl/I data type "bit(l)
aligned" will be used for control_argument presence
flags in the output structure, (See below.) if
pll_flag is 'O'b, the FORTRAN data type LOGICAL
(PLIG data type "bit(16) aligned") is used instead,

If cpl_flag is 'l'b, CLSPIX operates in CPL mode;
otherwise, it operates in normal mode. These modes
are explained below. Most callers will want to use
normal mode.

If keep_quotes is '1'b, CLSPIX will not strip quotes
from parsed string arguments; otherwise, it will
remove one layer of quotes. This flag is ignored in
CPL mode, and quotes are never stripped.

If debug is '1'b, CLSPIX will print on the terminal
a dump of the parsed argument picture. This is not
useful for most applications programmers.

The name of the calling routine (input). This name
will be used to format error messages, if no_print
is 'O'b, .

A pointer to a varying character string containing
the command argument picture (input). If
dimensioned, the array must be connected
(contiguous). The syntax and semantics of the
picture are defined below.

The maximum length in characters of the element(s)
of the object pointed to by picture-ptr (input).
This provision allows an arbitrarily large array of
strings to be passed and circumvents compiler
restrictions on character-string length.

10-7 Third Edition

19

19

DOC3621-190

com—args

struc~ptr

pix-index

bad-index

code

Third Edition

A string containing the command arguments to be
parsed (input). It is not necessary to translate
this string to uppercase only, or do any other
preprocessing on it. All syntactic conventions of
the PRIMOS Canmand Language, including the "/*"
comment delimiter, are supported.

A pointer to an output structure whose members will
be filled in with the results of a valid picture
parse of the supplied command arguments. (This
argument is used only in normal mode; in CPL mode,
local-vars-ptr determines the destination of the
output of the parse.) The format of this structure
is determined by the components of the picture, and
is described below (input, addresses output).

This is valid only when code is nonzero (returned).
When valid, pix-index is 0 if the error applies to
the command arguments string, and is i if the error
applies to element (pixel) i of the picture itself.
Errors in the picture are fatal in the sense that no
attempt is made to parse the command arguments if
the picture cannot be parsed.

The character index (counting from 1) of the first
character of the token (word or expression) causing
the error (returned). The value of pix-index must
be consulted to determine whether bad-index is
relative to the command arguments or toa pixel of
the picture. bad-index is valid only if code is
nonzero. |

A nonstandard return code, which can take on the
following values:

0 No error,

1 Null argument group (two successive
semicolons) in picture,

2 Missing or illegal delimiter in
picture,

3 Illegal option argument name in
picture.

4 Illegal repeat count in picture.

5 Unknown data type name in picture.

6 Implementation error in picture parse.

10-8

SYSTEM SUBROUTINES

7 A token was longer than 1024 characters
in picture,

8 Option arguments precede object
arguments in picture,

11 Too many object arguments in command
line,

12 Option argument appears in command line
that is not specified in the picture,

13 Object or parameter on command line
does not have the correct format for
its data type.

14 Default value not in proper format in
picture.

15 Default value may not be given for this
data type.

16 Too many instances of an option in
command line.

17 A default value expression contains an
undefined variable reference or a
format error. (CPL mode only.)

18 The data type UNCL has been given more
than once or has been given for an
option argument parameter.

local-vars-ptr A pointer used only in CPL mode (input and return).
In this case, it is a pointer to the Local Variable
Control Block that identifies the local variable
area to be used to hold the parsed arguments.
local-vars-ptr should be null if not in CPL mode.
See the description of CPL mode below.

The Picture in Normal Mode

This mode is used by most callers of CLSPIX. It is intended to be used
by a command to process its command-level arguments into a form that it
can use for decision making or further processing. It is a CHAR(*)VAR
string, and must be scalar (singly-dimensioned).

Basic Format: The syntax of the normal mode picture is very similar to
that of the CPL sARGS directive, the major difference being that no
variable names are allowed (because the results are not being stored in
local command variables).

10-9 Third Edition

2 .
w

19

DOC3621-190

The picture looks like:

argument group [; argument group]; ...?; end

Each argument group defines either an object argument, or an option
argument and its associated objects if any. The end token is required
to delimit the end of the picture string, and must be last in the
string.

First, a word about lexical format. Upper- and lowercase’ are
equivalent anywhere except inside quotes. Extra blanks may appear
anywhere that a single blank is allowed or required, Blanks are not
required to precede or follow other delimiters, such as ";", but they
may be present if desired. Single character string tokens that contain

blanks or delimiters must be enclosed in quotes, but the quotes are not
part of the token itself. The delimiter characters are:

blank , ; =() * %

Other punctuation or special characters should also be quoted,

If the picture is supplied in the form of an array of varying strings,
an implicit lexical blank separates elements of the array. That is,
when the end of any element is reached, a blank is recognized,
regardless of the length of that particular element.

Object Argument Groups: As in the CPL &ARGS directive, all <argument
acroups> that define object arguments must appear before the first
<argument group> that defines an option argument.

The simplest <argument group> simply declares the data type of the
object argument. CLSPIX supports the following data types:

char Arbitrary character string up to 80 bytes long,
mapped to uppercase.

charl Arbitrary character string up to 80 bytes long, not
mapped.

tree PRIMOS pathname up to 128 bytes long, mapped to
uppercase. Wildcard characters are allowed,

entry Filename, up to 32 bytes long, mapped to uppercase.
Wildcard characters are allowed.

id PRIMOS user or project identifier, up to 32 bytes
long, mapped to uppercase. Must begin with a
letter, and contain only letters, digits, or the
special characters "S", ".", or "_".

Third Edition 10-10

password

date

UNCL

file

SYSTEM SUBROUTINES

PRIMOS user login password, up to 16 bytes ong,
Mapped to uppercase, May contain any characters
except PRIMOS reserved characters.

Decimal integer with optional sign, in the range
(2**31 - 1) to (-2**3]1 + 1).

Octal integer with optional sign, in the range
(2**31 - 1) to (-2**31 +1).

Hexadecimal integer, unsigned, in the range 0 to
(2**32 - 1).

A calendar date and time in one of the standard
formats:

TSO (YY-MM-DD. HH:MM:SS. dow)

USA (MM/DD/YY. HH:MM :SS. dow)

Visual (DD Mmm YY HH:MM:SS day-of-week)

The day of week field is always ignored (but checked
for legality); time fields default to 0; omitted
YY defaults to current year; if entire date and "."
are omitted, defaults to current’ date. The
converted representation is the PRIMOS file systen
format,

PRIMOS virtual address in the form S/W, where S is
the octal segment number and W is the octal word
number,

Rest of command line, up to 160 bytes long. (See
below for explanation.) Upper- and lowercase are
distinguished. See the discussion of data type REST
below.

String of "unclaimed" tokens; that is, all tokens
on the command line not accounted for elsewhere in
the picture. Up to 160 bytes long. Upper and lower
case are distinqiished. See the discussion of data
type UNCL below.

Primos filename.

A simple picture might then be:

char; end

which defines a command line consisting of a single character string
argument that will be mapped to uppercase. A more complex picture
might be the following.

10-11 Third Edition

a
)
W
w

19

DOC3621~190

tree; dec; charl; end

This specifies three arguments: a treename, followed by a decimal
integer, followed by a character string (unmapped).

Assignment to the Output Structure: When the command line is parsed

against the picture, the structure pointed to by struc-ptr is filled
in. The shape of the structure is determined by the picture: each
object argument, option argument, or option argument parameter
generates a member of the structure. The data type of each member is
determined by the corresponding data type in the picture. The
correspondence is:

Data Type PLIG Type FORTRAN Type

char char(80) var INTEGER(41)
charl char (80) var INTEGER(41)
tree char (128) var INTEGER(65)
entry char (32) var INTEGER (17)
id char (32) var INTEGER (17)
password char (16) var INTEGER (9)
dec fixed bin(31) INTEGER*4
oct fixed bin(31) INTEGER*4
hex fixed bin(31) INTEGER*4
date fixed bin(31) INTEGER*4
ptr ptr options (short) INTEGER*4
rest char (160) var INTEGER (81)
UNCL char (160) var INTEGER (81)
file char (128) var INTEGER (65)

Examples are:

Picture Structure

char; end dcl 1 struc,
2 char_arg char(80) var;

tree; dec; charl; end dcl 1 struc,

2 tree_arg char(128) var,
2 dec_arg fixed(31),

2 charl_arg char(80) var;

Third Edition 10-12

SYSTEM SUBROUTINES

Use of Data Types REST and UNCL: These two data types cause special

processing to occur.

The UNCL data type can only be used with an object argument, not an

option argument. Any token on the command line that does not match (is
not "claimed" by) any part of the picture is added to the UNCL argument

if one has been defined. A single blank separates each token added.
If no UNCL argument is defined, unclaimed tokens are erroneous and the

user's command line is in error. An example is shown under the option

argument section, since with only object arguments in the picture and
on the command line, the REST and UNCL arguments perform the same

function, This is because scanning proceeds left to right, and all
arguments on the command line that also appear in the picture must

necessarily be claimed.

The REST data type can be used with either kind of argument; option
arguments are explained below. When used with an object argument, if

the REST argument is reached in the picture and more text remains on
Lh A 1: lh i ° e

the command line, the entire remaining text
.

argument. For example, in:do NASee

. s

xt is assigned to the REST

dec; tree; rest (picture)

dcl 1 struc, (structure)
2 dec_arg fixed(31),
2 tree_arg char(128) var,
nr

Z rest_arg Char(160) var;

786 a>b>c>d foo 99 zot>nil (command line)

786 is assigned to struc.dec_arg, a>b>c>d to struc.tree_arg, and foo 99

zot>nil to struc. rest_arg.

Default Values: What happens if an argument specified in the picture

is not Supplied by the user? In the absence of contrary instructions,

the corresponding structure element is assigned a "default default"

value, which is the null string for string types, 0 for arithmetic

types, and null () for the pointer type.

The picture may specify some other default value. The syntax is:

data type = default-value;

For example:

tree = @,list; dec = 99; date = 81-1-1; end

dcl 1 struc,
2 tree_arg char(128) var,
2 dec_arg fixed(31l),
2 date_arg fixed(31);

(null command line)

10-13 Third Edition

19

19

DOC3621-190

would assign @.LIST (note uppercase conversion) to struc,treearg, 99
to struc.dec_arg; and 81-01-01.00:00:00 (in file system format) to
struc. date_arg.

Repeat Counts: To save typing, a repeat count feature is included in
the syntax, To use it, simply prefix the <argument group> to be
duplicated with the repeat count followed by "*". For example:

5 * dec = -1; 2 * char = foo; end

del 1 struc,
2 dec_args(5) fixed(31),
2 Char_args(2) char(80) var;

The repeat count must be positive and less than 1000.

Note the use of arrays in the structure above, This is not required;
one could employ five scalar fixed(31) members with different names in
place of dec_args, for example.

Option Arguments: CLSPIX allows convenient handling of PRIMOS command
line option arguments. An <argument group> that specifies an option
argument is distinguished from an object argument group by beginning
with a "-", The general form is:

-namel , —name2, eoes ~namen {<obj1> <obj2> cool?

The -names are the names of the option argument as the user will use
them on the command line. Multiple names are allowed to enable the
definition of synonyms and abbreviations.

The simplest option argument has no parameters. An example is:

-listing, -1

del 1 struc,
2 listing_arg bit(1) aliqned;

Note

The data type used for all option arguments is controlled by a
flag in the keys argument to CLSPIX, (See above.) Here,
assume that keys.pll_flag is 'l'b.

The struc,listing_arg will be set to 'l'b if -LISTING or -L appears on
the command line; otherwise it is set to '0'b. There is no default
value for a simple option argument: it either is or is not on the
command line. Hence the "=" syntax is not relevant here.

Third Edition 10-14

SYSTEM SUBROUTINES

If an option argument is to have parameters, they are the objs in the
general form, and are specified using the syntax for object <argument
group>s. Suppose that option -LISTING is to accept a_ treename
parameter. The following could be used:

-listing, -l tree = listing.list; end

dcl 1 struc,
2 listing bit(1) aligned,
2 listing_tree char(128) var;

If a treename follows -LISTING on the command line, it is assigned to
struc.listingtree; otherwise struc, listing_tree is assigned
LISTING.LIST. Note that the default values are assigned to parameters
of an option even if that option is not given on the command line.

As another example, an option —RANGE is to take two integer parameters:

anaaKAN flan = Ne nas = 999009:
a we uo SAA AAS FE Wr auange dec

dcl 1 struc,
2 range_bit(1) aligned,
2 range_lower fixed(31),
2 range_upper fixed(31);

~range 7 (command line)

struc.range is 'l'b, struc.range_lower is 7, and struc.range_upper is

99999 (the default).

Using the REST Data Type with Option Arguments: The REST data type can
be used as the data type of the rightmost parameter of an option
argument. For example:

char; -string rest; -page dec =1; end

dcl 1 struc,
2 char_arg char(80) var,
2 stringflag bit(1) aligned,
2 string_rest char(160) var,

2 page_flag bit(1) aligned,
2 page_number fixed(31);

When the option -STRING is seen on the command line, the entire
remainder of the command is assigned to the REST argument, in this case
struc.string_rest. For example:

foo -page 17 -string abc def —page 0

assigns 'FOO' to struc.char_arg, 'l'b to struc.string_flag, ‘abc def
-page 0' to struc.string_rest, 'l'b to struc.pageflag, and 17 to

struc.page_number.

10-15 Third Edition

19

19

DOC3621-190

Note that CLSPIX (at least) is not confused by the second occurrence of
-page: it is part of struc.string_rest because it follows the ~—string
option,

Using the UNCL Data Type with Option Arguments: The data type UNCL may
only be assigned to an object argument, not to the parameter of an
option argument. However, it is possible for option arguments to be
unclaimed and hence added to the UNCL argument.

Consider the problem: write a command interface that accepts a
treename object argument and the option argument -time with an integer
parameter, but which accepts and passes on all other arguments to some

other interface.

A picture to do this is:

tree; UNCL; -time dec; end

dcl 1 struc,
2 tree_arg char(128) var,

2 UNCL_arg char(160) var,
2 time_flag bit(1) aliogned,
2 time_number fixed(31);

Then the command:

a>b>c zot -lines 78 -time 88 def -zilchabc

sets struc.tree_arg to 'A>B>C', struc.UNCL_arg to 'zot -lines 78 def
-zilch abc', struc,timeflag to ‘l'b, and struc.time_number to 88,
Note particularly that def is not a parameter of —time but an object
argument, Since the TREEargument was already accountedfor, def was
unclaimed, the command:

-limits abc def -time 90 a>b>c

sets struc.tree_arg to 'A>B>C', struc.UNCL_arg to '-limits abe def',
struc.time_flag to 'l'b, and struc.time_number to 90.

 Note

Why did struc, tree_arg not get assigned the value 'ABC' or
"def'? Because of the rule given for UNCL above:

All parameters that follow an unclaimed option argumentwill be
considered unclaimed. This is because the picture contains no
information about an unclaimed option argument, and hence
CLSPIX cannot know how many parameters may follow it.

Third Edition 10-16

SYSTEM SUBROUTINES

Thus all object arguments following an unclaimed option argument are
taken as parameters of that option, until a claimed option argument is

found.

Multiple Instances of an Option Argument: Apicture may contain more
than one instance of the same option argument. It is recommended that

each instance contains exactly the same synonym or abbreviation names

for the option, though CLSPIX does not check for this.

When multiple instances are used, the semantics are that multiple

instances of the option on the command line are permitted, and will

appear in successive slots of the output structure. The usual use of

this capability is best illustrated by an example.

Suppose that a command accepts an option —select with one parameter,

say a string to search for in a file. It seems reasonable to allow the
command to search for multiple strings at once; hence the desire for
mitkeanla inaekannan nf fh wie crmultiple instances of the option. Apicture might be:

-select charl; -select charl; -select charl; end

which allows for three instances of -select. The structure is:

dcl 1 struc,
select_1 bit(1) aligned,
select_l-char char({80) var,
select_2 bit(1) aligned,
select_2-char char(80) var,
select_3 bit(1) aligned,
select_3-char char(80) var;N

O
N
N
N

N
D
d
N

The first -select encountered goes into struc.select_l, the second into

struc. select_2, and the third into struc.select_3. Note that the three

instances need not follow each other directly in the picture; and, if

they do not, they will not follow each other in the structure, Thus

the existence of multiple instances of an option does not alter the

usual left-to-right assignment of argument groups to structure member

slots.

Any option argument that appears only once in the picture may appear at

most once on the command line.

Using Repeat Counts with Option Arguments: Repeat counts can be used

with option arguments in a fashion analogous to their use with object

arguments. They are simply a typing saver. Consider the "~select"
example above. An equivalent picture is:

3 * -select charl; end

10-17 Third Edition

19

19

DOC3621-190

That is, a repeat count used in this way declares multiple instances of
an option argument, together with its parameters. It is also possible
to use repeat counts on the parameters. Consider the following
picture:

3 * -limits 2 * dec = 0; end

It is the same as:

~limits dec = 0 dec = 0; -limits dec = 0 dec = 0;
-limits dec = 0 dec = 0; end

The Picture in CPL Mode

Syntax Differences: The syntax of the picture accepted in CPL mode is
exactly the same as that accepted by the CPL SARGS directive. (In
fact, CPL uses CLSPIX in CPL mode to process the &ARGS directive.) See
the CPL User's Guide for full details.

The salient differences between normal and CPL mode syntaxes are:

@ Repeat counts are not allowed in CPL mode.

@ Each object argument and option argument must be preceded with
the syntax:

<variable-name>:

where <variable-name> is a legal CPL local variable name. The
value of each argument will be assigned to the local variable
whose name is prefixed to that argument.

@ The maximum size of any argument value in CPL mode is 1024
Characters, unlike normal mode where the limit depends on the
data type (80 characters for CHAR and CHARL, 160 for REST, and
so on).

Local Variable Storage Management: In CPL mode, it is quite possible
 for CLSPIX to run out of roan in the supplied Local Variables Area
while attempting to set the values of all the local variables involved,
If this happens, CLSPIX will return the error code ESROOM.

It is the caller's responsibility at this point to allocate more space
for the Local Variables Area, and to call CLSPIX to redo the parse from

the start. This process may have to be repeated in a loop until enough
Storage has been added to accommodate the values of all the local
variables involved,

Third Edition 10-18

SYSTEM SUBROUTINES

Usage Differences: In CPL mode, the "end" keyword is not required to
appear at the end of the picture. For this reason, a picture array is
not allowed: the picture must be supplied as a one-dimensional
(scalar) varying string up to 1024 characters long.

Calls Made by CLSPIX

TNCHKS, FNCHKS, IDCHKS, PWCHKS.

 cNINS

Purpose

This subroutine is the raw-data mover used to move a specified number
of characters from the terminal or command file to the user program's
address space.

Usage

CALL CNINS (buffer, char-count, actual-count)

buffer A buffer in which the string of characters read from
the input stream is to be placed, two characters per
word (integer array).

char-count The number of characters to be transferred from the
input stream to buffer (INTEGER*2).

actual-count A returned argument (INTEGER*2). It specifies the
number of characters read by the call to CNINS. If
reading continues until a NEWLINE character is
encountered, the count includes’ the NEWLINE
character.

Discussion

CNINS reads from the input stream until either a NEWLINE character is
encountered or the number of characters specified by char-count is
read. Characters are left-justified, and if an odd number of
Characters is read, the remaining character space is not zero- or
blank-filled. The line-delete and character-delete characters are not
interpreted,

10-19 Third Edition

19

18.1

DOC3621-190

Input to CNINS is obtained from the terminal unless the user has
previously given the COMINPUT or PHANTOM commands, and these commands
are still in control. The OOMINPUT or PHANTOM commands switch the
input stream so that it comes from a file rather than the terminal.
(Refer to the Prime User's Guide for further information.)

Pe cCOMANL

Note

For PLIG and Pascal programmers, this subroutine is obsolete
and has been replaced by CLSGET.

Purpose

COMANL causes a line of text to be read from the terminal or from a
command file, depending upon the source of the command stream.

Usage

CALL COMANL

The line is read into a supervisor text buffer. This buffer may be
accessed by a call to RDIKSS. The supervisor text buffer holds 80
Characters. The supervisor text buffer is also used by CNINS and
TSAMLC, The contents of this buffer must be picked up by RDIKSS after
a cali to COMANL and before calls to CNINS or TSAMLC,

Third Edition 10-20

SYSTEM SUBROUTINES

> DUPLXS

Purpose

The DUPLX$ subroutine is called to control the manner in which the

operating system treats the user terminal.

Usage

CALL DUPLXS (tcw)

int*2 = DUPLX$(tcw)

tcw Terminal configuration word: a 16-bit integer whose
bits have the following meanings (input and

output) :

Bit Mask Meaning if Bit is SET

1 100000 Half duplex.

2 040000 Do not echo LINEFEED- after
CARRIAGE RETURN.

3 020000 Turn on XOFF/XON character
recognition,

4 010000 Output currently suppressed
(XOFF received).

5 Detect DATA SET BUSY before

output to AMLC line. (See AMLC

Functions below.)

6 Handle reverse channel
functionality. (See AMLC

Functions below.)

Data Set Sense Bits

(INA '0054) Bit 6=1 Bit 6=0

1 (off) XOFF XON

0 (on) XON XOFF

7 Check for certain error con-
ditions:

e Overflow of the input
buffer

10-21 Third Edition

DOC3621-190

@® Parity error

If one of these conditions is
present, the character found is
replaced with '225.

8 Indicates a parity error (output).
Overflow of the input buffer is
flagged when there is only roan
for one more character,

9-16 000377. Internal buffer number
(read-only).

Discussion

DUPLXS$ has no effect under PRIMOS II.

DUPLX$ returns the terminal configuration word and internal buffer
number as the value of the function. DUPLX$ must be declared as a
16-bit INTEGER function if the returned value is to be used by the
Calling program.

If the terminal configuration word passed to DUPLXS is equal to -l, no
updating of the configuration word takes place. In this case, the
Current value is returned,

The tcw input from a user terminal is not affected by the LOGIN orLOGOUT commands. The tcw of the user terminal may also be set at the
Supervisor terminal by using the AMLC command. Users may also use the
PRIMOS command TERM to change their terminal characteristics,

AMLC Functions

Certain devices require a reverse channel protocol to signal BUSY or
READY. For these cases, the carrier detect line is used for the
Signal, Bit 5 of the terminal configuration word will instruct the
AMLDIM to interrogate the carrier signal for that line before
outputting, If a BUSY is detected, then the AMLDIM will simulate an
XOFF received for that ine. When the carrier signal goes to the READY
state, the AMLDIM will flag it as an XON, and output will resume. For
example, if the device signals BUSY as DATA SET off (1), then the
terminal configuration word bit setting would be:

Bit 5 = 1 (detect DATA SET sense)

Bit 6 = 1 (if DATA SET sense is off, then simulate XOFF, else set
XON.)

Third Edition 10-22

SYSTEM SUBROUTINES

P ERKLSS

Purpose

The ERKLSS subroutine reads or sets erase and kill characters.

Usage

CALL ERKLS$$ (key, erase, kill, code)

key An INTHGER*2 specifying the action to be taken.
Possible values are:

KSWRIT Set erase and kill characters.

KSREAD Read erase and kill characters.

erase With key KSWRIT, the character contained in the
- right byte of erase replaces the user's erase

character. If erase is 0, no action takes place.
On key KSREAD, the user's current character is
placed in erase, right-justified with leading zeros.

kill With key = KSWRIT, the character contained in the
right byte of kill replaces the user's’ kill
character. On KSREAD, the current user's’ kill
character is placed in kill, right-justified with
leading zeros.

code An INTEGER*2 variable set to the return code.
Possible values are:

0 No errors.

ESBPAR Attempt to set characters is improper.

Discussion

Erase and kill characters are interpreted by commands to the operating
system and through the subroutines COMANL, RDIKSS, RDASC, ISAA12, and
ISAAO1. All language processors and I/O statements call RDASC to get
terminal input and, therefore, are affected.

Note: RDASC, ISAA12, and ISAAO] are library subroutines that read the
user's erase and kill characters only once when they are first invoked.
Therefore, changing the erase and kill characters after a call to those

10-23 Third Edition

DOC3621-190

subroutines does not affect erase and kill processing in these
subroutines until the next program is invoked, Thus, the main purpose
for users calling the ERKLS$ subroutine is to read or set these
characters when the user programs do their own erase and kill
processing.

Under PRIMOS II, the erase and kill characters may be read but any
attempt to set them is ignored.

The erase and kill characters may be set at command level by the PRIMOS
TERM command. The characters are reset to default values upon an
explicit logout or login.

> ERRPRS

Purpose

ERRPR$ interprets a return code and, if it is nonzero, prints a
standard message associated with the code, followed by optional user
text, See Appendix D for more details on error handling.

Usage

CALL ERRPRS (key, code, text, txtlen, filnam, namlen)

key An INTEGER*2 specifying the action to take after
printing the message. Possible values are:

KSNRIN Exit to the system, never return to the
calling program.

KSSRIN Exit to the system, return to the
calling program following an _'s'!
command,

KSIRIN Return immediately to the calling
program.

code An INTEGER*2 variable containing the return code
from the routine that generated the error. If code
is 0, ERRPRS always returns immediately to the
calling program and prints nothing.

text A message to be printed following the standard error
message. Text is omitted by specifying both text
and txtlen as 0 (integer array).

Third Edition 10-24

SYSTEM SUBROUTINES

txtlen The length in characters of text (INTEGER*2).

filnam The name of the program or subsystem detecting or
reporting the error. filnam is omitted by
specifying both filnam andnamnamlen as 0 (integer

array).

namlen The length in characters of filnam (INTEGER*2).

Discussion

More explanation of the use of ERRPRS is given in Appendix D.

> EXIT

Purpose

The EXIT subroutine provides a way to return fron a user program to

PRIMOS; it prints OK, (or OKs) at the terminal and PRIMOS awaits a

user command. Then the user may open or close files or switch

directories, and restart a program at the next statement by typing S

(START) .

Usage

CALL EXIT

p> FNCHKS

Purpose

This function checks the name passed for validity as a filename. This

means that the mame may not contain PRIMOS reserved characters,

lowercase letters, or control characters, may not start with a digit,

and must be between 1 and 32 characters long. The keys passed to

FNCHKS may modify these restrictions,

10-25 Third Edition

19

18.1

DOC3621-190

Usage

DCL FNCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1));

name-ok = FNCHKS (key, filename) ;

key Defines restrictions on filename. Keys may be added
together:

KSUPRC Mask name to uppercase before checking.

KSWLDC Allow wildcards in name.

KSNULL Allow null names.

KSNUM Allow numeric names (segment directory
entry names).

filename Name to be checked (input only unless RSUERC is
used; in that case, input/output).

name—ok Set to PLIG true if the name is valid given the
restrictions of the keys.

Pp GCHAR

Purpose

GCHAR gets a character from an array. This subroutine is helpful, for
example, in retrieving character information for a FORTRAN program.

Usage

Char = GCHAR (LOC(array), index)

array Array of characters.

index Index of the location of character in array (INT*2).

Discussion

The pointer (index) must be initialized by the user to 0 and is
incremented by 1 after the operation is complete,

Third Edition 10-26

SYSTEM SUBROUTINES

» GINFO

Purpose

GINFO indicates whether or not the uSer program is running under PRIMOS
II, If so, GINFO shows where PRIMOS II is loaded in the user address

Space.

Usage

CALL GINFO (xervec, n)

GINFO returns n words from the supervisor into a buffer specified by
xervec.

Information for PRIMOS II:

xervec Word Content

1 Low boundary of PRIMOS II buffers (77777 octal if
64K PRIMOS II)

2 High boundary of PRIMOS II (77777 octal if 64K
IMOS IT)

3 Reserved

4 Reserved

5 Low boundary of PRIMOS II and buffer (64K for PRIMOS
II only)

6 High boundary of 64K PRIPMOS II

Information for PRIMOS:

xervec Word Content

1 0

2 0

3-6 Reserved

10-27 Third Edition

18.1

DOC3621-190

> GVSGET

Purpose

GVSGET retrieves the value of a global variable.

Usage

DCL GVSGET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN, FIXED BIN)

CALL GVSGET (var-name, var-value, value-size, code)

var—name

var~-value

value-size

code

Discussion

The name of the global variable whose value is to be
retrieved. The name must follow the rules for CPL

global variable names and must be in uppercase. It
must be in the global variable file last invoked
with DEFINE_GVAR.

The returned value of variable var—name.

The length of the user's buffer var-value in
characters,

A return code:

ESBFTS The user buffer var-value is too small
to hold the current value of the
variable,

ESUNOP The global variable storage is
| uninitialized or in bad format,

ESFNIF The variable is not found,

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called. For more information
on global variables, see the CPL User's Guide.

Third Edition 10-28

SYSTEM SUBROUTINES

B cvsser

Purpose

GVSSET sets the value of a global variable.

Usage
DCL GVSSET ENTRY (CHAR(*)VAR, CHAR(*)VAR, FIXED BIN)

CALL GVSSET (var-name, var-value, code)

var—name The name of the global variable to be set. This
name must follow the rules for CPL global variable
names. All letters must be uppercase.

var-—value The new value of the variable var-name.

code A return error code:

ESBFTS The specified value is too big.

FSUNOP The global variable area is bad or
uninitialized,

ESROOM An attempt by the variable management
routines to acquire more storage fails.

Discussion

The PRIMOS command DEFINE_GVAR must be used to define the global
variable file before this subroutine is called. For more information
on global variables, see the CPL User's Guide.

Pe mcs

Purpose

This function checks that the name passed is a legal user or project
id, This means that the name must be between 1 and 32 characters long,
start with an uppercase letter, and contain only uppercase letters,

numbers, and the special characters . S$ and_.

10-29 / Third Edition

18.1

19

19

DOC3621-190

Usage
DCL IDCHKS ENTRY(FIXED BIN, CHAR(*)VAR) RETURNS (BIT (1));

id-ok = IDCHKS(key, id);

key Restrictions on the name. Keys may be added
together:

KSUPRC Mask id to uppercase before checking.

KSWLDC Allow wildcard characters in the id.
(See the Prime User's Guide.)

KSNULL Allow null id's.

id The id to check (Input unless key is KSUPRC; in
that case, input/output.)

id-ok Set to PLIG true if the name is valid given the
restrictions of the keys.

p> Locoss

Purpose

LOGOSS logs out a user. The routine can be used by the supervisor
terminal (user 1) to log out any user, or a user program may log out
any process it may have started,

Usage

CALL LOGOSS (key, user, usrnam, unlen, reserv, code)

key Operation to be performed (INTEGER*2). Possible
values are the following.

-1 Log out all users (Supervisor only).

0 Log out self (same as LOGOUT command).

1 Log out specific user by number (same
as LOGOUT -NN).

2 Log out specific user by name
(Supervisor or its phantoms only).

Third Edition 10-30

SYSTEM SUBROUTINES

user User number to be logged out. This value is
examined only if key > 0 (INTEGER*2).

usrnam Name of user to be logged out; must correspond to
number supplied in user. This value is examined
only if key is 2 (integer array).

unlen Length of usrnam in characters. This value is
examined only if key is 2 (INTEGER*2).

reserv Reserved for future use (INTEGER*4).

code Return code (INTEGER*2). Possible values are:

0 No error.

ESBKEY Bad key.

ESBPAR Invalid number is specified in user.

ESBNAM Username does not correspond to user.

ESNRIT Attempt to log out user with name
different from caller.

— LONSCN

Purpose

This PLIG subroutine is used to turn off or turn on logout
notification. When notification is turned off, phantom logout
information is queued (first-in first-out). When notification is
turned on, queuing is not performed, and the default on-condition,
PH_LOGOS, is raised if there is any logout notification data to be
received,

See the discussion of LONSR for more information.

Usage

CALL LONSCN (key) ;

key Software interrupt status key (FIXED BIN(15));

0 Notify off.

1 Notify on.

10-31 Third Edition

18.1

18.1

DOC3621-190

~ LONSR

This PLIG subroutine fetches or transfers logout information from
storage to a designated target area. It will do this unless it finds
no information to transfer. The target area is designated by the
argument msgptr,. The size of the area pointed to by msgptris
designated by the argument msglen. The area should be at least six
words in length. If it is shorter than this, LONSR will only fetch as
much information as msglen can hold.

LONSR also passes back to its caller an indication whether there have
been more phantom logouts with their information stored in a queue.
This indication is contained within the argument more.

An error code is returned to the user via the argument code.

Usage

CALL LONSR (msgptr, msglen, more, code);

msgptr Area of memory in which to store message (POINTER
type). Its format is shown below.

msglen Length of area in which to store message (FIXED
- BIN(15)).

more BIT (1) :

0 Indicates no more messages left on
queue.

1 Indicates more messages left on queue.

code Return code (FIXED BIN(15)):

ESNDAT No data found in queue.

ESBFTS Same information lost during transfer
(msglen less than actual message
length).

Third Edition 10-32

SYSTEM SUBROUTINES

MSGPTR Area Format

Word Number Information

1 Phantom's user number (fixed bin(15))

2 Time of day of logout (fixed bin(15))

3 Connect time in minutes (fixed bin(15))

4 CPU time in seconds (fixed bin(15))

5 I/O time in seconds (fixed bin(15))

6 Logout condition code (fixed bin(15)):

0 Normal logout

1 Abnormal logout

Discussion

A phantom is a process that can operate separately from its creator |
process, and can continue working after the user has loaged out.

Phantoms are discussed in detail in the Prime User's Guide,

Logout Notification for Phantoms

Logout notification provides the creator of a phantam process with
information about the phantom's activities. This information is
compiled at phantom logout time and sent to the creator. This is known
as notification,

Normally, the information will be displayed upon the creator's
terminal. The information contains the phantam's user number, the time
of day of logout, the elapsed time, CPU time, I/O time spent by the
Phantom, and an error code indicating normal or anormal logout.
Normal logout occurs when a phantan completes with a LOGOUT command.

All other logout will generate abnormal logout.

Logout information will be compiled at this time and sent to the
creator. If a user is logged into more than one terminal, the
information will only be sent to the terminal from which the phanton
was created, If the creator of the phantom has logged out while the
phantom was running, the information will not be sent. This means that
once a user has logged out, the phantom will not notify the user of
logout even if the user logs back in.

10-33 Third Edition

18.1

18.1

DOC3621-190

Sometimes it may become necessary for a user to record the phantan
logout information via a program. The logout notification systen
provides two subroutines that allow for this event. The first
subroutine, LONSCN, allows a user to turn logout notification off or
on. The second subroutine, LONSR, allows a user to fetch phantom
logout information instead of having the information written to a
terminal.

When LONSCN is requested to turn off logout notification, phanton
logout information is automatically queued for future access. This
allows users to turn off notification without having to worry about
either the condition of their terminal screen or the loss of the status
of their phantoms,

When LONSCN is requested to turn on logout notification, any enqueued
logout information is written on the user's terminal.

As mentioned above, a user may fetch phantom logout information by
invoking LONSR. Normally, logout notification is enabled and invoking
LONSR will gain the user nothing. Therefore, when using LONSR, logout
notification should be turned off by invoking LONSCN.

When logout notification occurs, a system default condition handler or
on-unit named PHLOGOS is invoked to write the information upon the
creator's terminal. This on-unit is also invoked when LONSCN is
requested to turn on logout notification. Therefore, users who do not
ever wish to see logout information written upon their terminal should
create their own on-unit and name it PH_LOGOS. This user-defined
PH_LOGOS should usually call LONSR to fetch phantom logout information,
Since the default PH_LOGOS does this. Onm-units are discussed in
Chapter 22,

P Puants

Note

This subroutine may be used only for non-CPL phantoms. It has
been replaced with PHNIMS.

Purpose

PHANTS starts a phantom user.

Third Edition 10-34

Usage

SYSTEM SUBROUTINES

CALL PHANTS (filnam, namlen, funit, user, code)

filnam

namlen

funit

user

code

p> PHNIMS

Purpose

Name of command input file to be run by the phantom
(integer array).

Length of characters of filnam (16-bit integer).

File unit on which to open filnmam. If funit is 0,
unit 6 will be used (16-bit integer).

A variable returned as the user number of the
phantom (16-bit integer).

The return code (16-bit integer). If it is 0, the
phantom was initiated successfully. If code is
ESNPHA, no phantoms were available. Other values of
code are file system error indications,

This subroutine allows a process to start up a phantom using either a
command input file or a CPL file. See LONSR for a discussion of
phantoms,

Usage

DCL PHNIMS ENTRY (BIT(16) ALIGNED, CHAR(32), FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN, CHAR(128), FIXED BIN)

CALL PHNIMS (cplflg, filename, name-LEN, funit, phant-user,

cplflg

filename

name—len

funit

user

CODE, ARGS, ARGSL)

Source of process: if true ('l'b), then a CPL
program is being started as a phantan; if false
('O'b), then a cominput file is being started as a
phantom. (BIT(16) aligned = LOGICAL.)

The name of the file to be started as a phantaon.

The number of characters in filename.

The file unit on which to open the phantom file.

The user number of the phantom (returned).

10-35 Third Edition

19

19

DOC3621-190

code A return code; 0 means no error.

args The arguments for a CPL phantom; a dummy argument
must be given for non-CPL phantoms.

argsl The number of characters in args; a dummy argument
must be given for non-CPL phantons,

Discussion

A phantom is a process that can operate separately from its creator
process, and can continue working after the creator has logged out.
Phantoms are discussed in detail in the Prime User's Guide. See LONSR

for a discussion of phantoms also.

p> PWCHKS

Purpose

This function makes sure that the password supplied is a legal login
password.

Usage

DCL PWCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1));

Pw-Ok = PWCHKS{key, password);

key An INTEGER*2 user option to restrict values of
password, Keys may be added together:

KSUPRC Change password to uppercase’ before
checking.

KSNULL Allow null passwords.

password Must be] to 16 characters long, and may not contain
lowercase letters or PRIMOS reserved characters.

pw-ok Set to PLIG true if the password is legal.

Third Edition 10-36

SYSTEM SUBROUTINES

P RDIKSS

Note
For PLIG and Pascal programmers, RDIKS$ is obsolete and has
been replaced with CLSPIX above.

Purpose

The subroutine RDIKSS parses the command line most recently read by a
call to COMANL. If no previous calls to COMANL have taken place,
RDIKSS parses the last command line typedat PRIMOS command level by
the user. Parsing proceeds token by token. A command line consists of
tokens (defined below) separated by delimiters. The current delimiters
are space, comma » /*, and NEWLINE. The characters
()*[11{4:7"2:7I\.DEL. are reserved in command lines for future use,
However, one of these characters may be included in a token by
enclosing the token in single quotes; for example, 'naughty(so to
speak)'. The characters /*, if unquoted, begin a comment field that
extends to the end of the line and are ignored by RDIKSS.

Each call to RDIKSS reads a single token from the command line. RDIKSS
returns the literal text of the token, together with some additional
information about it. If the token is numeric, RDIKSS will provide
results of decimal and octal conversion attempts. RDIKS$ will also
inform the caller if a numeric token can be interpreted as a register
setting (octal parameter) under the old PRIMOS command line structure,

Do not make calls to TSAMLC or CNINS or to subroutines that call these,
such as FORTRAN formatted READ statements to the terminal, before

parsing the command line. These subroutines cause the replacement of
the information in the buffer holding the command line.

Usage

CALL RDIKSS(key, info, buffer, buflen, code)

key The action to be taken by RDIKSS (INTEGER*2).
Possible values are:

1 Read next token, convert to uppercase.

2 Read next token, leave in lowercase.

3 Reset to start of command line.

4 Read renainder of command line as raw
text,

10-37 Third Edition

19

DOC3621-190

5 Initialize the command line.

info An eight-word integer array set to contain the
following information. (Only info(2) is set for a
key value 4.)

info(1) The type of the token. Possible values
are:

1 Normal token. (Results of
numeric conversions are
returned,)

2 Register setting para-
meter,

5 Null token.

6 End of line.

info(2) The length in characters of the token.
A null token has a 0 length.

info(3) Further information about the token.
The following bits of info(3) have the
indicated meaning when set:

bit 1 (:100000) - Decimal
conversion successful (no
overflow), value returned
in info(4).

bit 2 (:040000) - Octal
conversion successful,

value returned in info(5).
This bit is always. set
when token type is 2.

bit 3 (:020000) - Token begins
with unquoted minus sign,
thus token may be a
keyword argument.

bit 4 (:010000) - An explicit
position for a register
setting was given;
position value is returned

in info(4).

bits 5-16 Reserved.

Third Edition 10-38

SYSTEM SUBROUTINES

info(4) Contents depends on flags set in
info(3). If bit 4 is set, info(4) is
the position number for the register
Setting. (Note that if token type is 2
and bit 4 is not set, the position is
implicit and must have been remembered
by the caller.) If bit 1 is set,
info(4) is the converted decimal value.
Otherwise info(4) is undefined,

info(5) Contents depend on flags in info(3).
If bit 2 is set, info(5) is the
converted octal value. Otherwise
info(5) is undefined,

info(6)-(8) Reserved.

buffer An integer array into which the literal text of the
token is written by RDIKSS, two characters per worditt 2M Teee oeae SARdee Net Netee New din Bea Nae ¥¥ Wd, VK

and blank-padded to length buflen (words).

buflen Is the specified length, in words, of buffer
(INTGER*2). buflen must be >= 0.

code A standard return code (INTEGER*2). Possible values
are:

0 No errors.

ESBKEY Value of key is illegal.

ESBPAR Bad parameter; buflen is less than 0.

ESBFTS Buffer is too small to contain the full
text of the token. The token is
truncated,

Delimiters

Delimiter characters have four functions: token separation, content
indication, literal text delineation, and line termination. The set of
delimiter characters is:

SP, ' NL /*

The meanings of these characters are discussed in the next paragraphs.

10-39 Third Edition

DOC3621-190

Blank Interpretation (SP): A single blank terminates a token. A

multiblank field is precisely equivalent to a single blank. Blanks

surrounding another delimiter are ignored. Leading and trailing blanks

on the command line are ignored.

Comma Interpretation: A single comma terminates a token and is

equivalent to a blank. ‘Two or more commas in succession, however, will

generate null tokens. If a comma is the first or last character on the

command line, a null token will be generated. A command line

consisting of only n commas (with no text) will generate n+l null

tokens.

Literal Text Character ('): Literal text strings start and end with

Single apostrophes. Any characters, including delimiters but excluding

a NEWLINE, can appear inside a literal string; the entire string is

treated as a Single token. Rules for literal apostrophes are the same

as COBOL's or FORTRAN's: each literal apostrophe in the string must be

doubled:

'HERE''S A LITERAL ''.!

A token can be partially literal, for example, ABC'DEF'. Numbers in

literal text are interpreted as textual characters. (See token

definitions below.) A literal string is ended either with a single

apostrophe or by a NEWLINE.

Newline Delimiter (NL): A NEWLINE character terminates the preceding

token. If the NEWLINE is in a literal text field, the literal is

terminated, If a NEWLINE is encountered before any token text or

delimiter, an end-of-line token is generated.

Comment Delimiter (/*): When the character pair /* is encountered, all

Subsequent text on the command line is ignored. A /* in the beginning

of a command line will cause an immediate end-of-line token to be

generated.

Third Edition 10-40

SYSTEM SUBROUTINES

Tokens

A token is any string of characters not containing a delimiter. A
token can be from 0 to 80 characters in length. The following are
examples of valid tokens:

FIN

LONG-FILENAME
1/707
6
98
String. even. longer. than. thirty-two. characters
[path]name
»NULL. (null string)

Literal text including delimiters can be entered in apostrophes using
FORTRAN rules:

"STRING WITH EMBEDDED BLANKS!
"HERE''S A LITERAL APOSTROPHE'

Token Types

Associated with each token is a type. Possible token types are
discussed in the following paragraphs.

Normal Token: A normal token is any string of characters except a
register-setting token, The string may or may not include literal
text, Examples of normal tokens are:

FIN
AON001

This. is.a. token.
PARTIALLY' LITERAL!

"8'xxx (Note: '8' is treated as a nonnumeric.)
TrTeregs (= pry

Register-setting Token: Register-setting tokens (explained in the LOAD
and SEG Guide) are now considered obsolete, They are handled by RDIKSS
solely to permit existing software and command files to continue to
function. New software should not use such parameters; symbolic
keywords should be used instead, for example, FIN XX -64Vinstead of
FIN XX 2/400.

10-41 Third Edition

DOC3621-190

The rules for recognition of a register-setting parameter as such are

as follows. A token of the form octal/octal is always recognized as a

register setting (unless enclosed in quotes). Initially, unembellished

octal integers are also recognized as implicit-position register
settings. If a token beginning with an unquoted minus sign, and which
does not successfully convert as a decimal integer, is found,

recognition of implicit-position register settings is disabled.

Recognition is reenabled only by a subsequent occurrence of an

explicit-position register setting: octal/octal.

Null Token: A null token is generated when two delimiters are

encountered in a row (except for multiple context characters). Command

lines generating null tokens are the following:

, (Start of line is a delimiter in this case.)

X,Y

End-of-line Token: This token is generated when the end of the

command line is reached,

Strategy

RDIKSS maintains an internal pointer that points to the next character

in the command line to be scanned. This pointer is set to the start of

the command line by COMANL. It can also be reset to the start of the
line with a RESET (key=3) call to RDIKSS.

Following a PRIMOS command, the internal pointer is positioned after

the main command. If RESUME was the command, it is positioned after

the RESUME filename.

Regardless of the token type, RDIK$$ always returns the literal text of

the token. Delimiter characters (unless inside apostrophes) are never

returned,

If a token is truncated (too long to fit in buffer), the next call to

RDIKSS will return the next token, not the truncated text.

For register-setting tokens (octal parameters), the octal position

number is returned by RDIKSS only if explicitly given in the token

(e.g. 6/123). Hence, the current register-setting position must be

remembered by the caller.

A buflen of 0 can be used to skip over a token. The error code ESBFIS
willbereturned.

Third Edition 10-42

SYSTEM SUBROUTINES

For a key of 4 (read raw text), all text between the current RDIKS$

pointer and the end of the command line (NEWLINE) is returned, No

checking is done for any delimiters or special characters other than
NEWLINE. No forcing to uppercase is performed.

p> RECYCL

Purpose

The RECYCL subroutine is called under PRIMOS to tell the system to

cycle to the next user. It is an "I have nothing to do for now" call.
Under PRIMOS II, RECYCL does nothing.

Usage

CALL RECYCL

Caution

Do not use this subroutine to simulate a time delay.

> sSCHAR

Purpose

This subroutine stores a character into an array lIocation. It is
useful, for example, in storing character data from a FORTRAN program.

Usage

CALL SCHAR (LOC(array), index, char)

array Array of characters

index Index of the location of character in array (INT*2)

char Character to be stored (one word)

10-43 Third Edition

18.1

18.1

19

DOC3621-190

Discussion

The pointer (index) is initialized to 0 and is incremented by 1 after
the operation is complete.

The right half of the character word is used for storage, so for
storing one character, the form of char should be ' A', for example.

> TEXTOS

Note

For PLIG and Pascal programmers, this subroutine is obsolete
and has been replaced with FNCHKS.

Purpose

TEXTOS checks a filename for valid format.

Usage

CALL TEXTOS (filnam, namlen, trulen, textok)

filnam An integer array containing the filename to be
checked,

namlen The length of filnam in characters (INTEGER*2).

trulen An (INTEGER*2) set to the true number of characters
in fiinam. truien is valid only if textok is
e TRUE...

trulen is the number of characters in filnam
preceding the first blank. If there are no blanks,
trulen is equal to namlen. See SRCHSS for filename
construction rules,

textok A LOGICAL variable set to .TRUE. if filnmam is a
valid filename, otherwise set to .FALSE..

Caution

Names longer than 32 characters are truncated with no warning
message.

Third Edition 10-44

SYSTEM SUBROUTINES

Example

To read a name from the terminal, check for validity, and set trulen to
the actual name length:

CALL ISAA12 (0, BUFFER, 80, $999)
CALL TEXTOS (BUFFER, 32, TRULEN, OK) /* SET TRULEN

IF (.NOT. OK) GOTO <bad-name>

> TIMAT

Purpose

TIMDAT returns the date, time, CPU time, and disk I/O time used since
login, the user's unique number on the system, and the user id in an
array.

Usage

CALL TIMDAT (array, num)

19

array An integer array: i

1 Two ASCII characters representing
month.

2 Two ASCII characters representing day.

3 Two ASCII characters representing year.

4 Integer time in minutes since midnight.

5 Integer time in seconds.

6 Integer time in ticks.

7 Integer CPU time used in seconds.

8 Integer CPU time used in ticks.
(Standard is 330 ticks/second.)

9 Integer disk I/O time used in seconds.

10 Integer disk I/O time used in ticks.

11 Integer number of ticks per second.

10-45 Third Edition

19

19

DOC3621~190

12 User number,

13-28 Login name, left-justified.

num Must be 28 (INTEGER*2).

Discussion

This routine does not return any useful information under PRIMOS II.

Disk I/O time is from start of seek to end of transfer, including both
explicit file I/O and paging operations. CPU time used in controlling
the transfer is counted under CPU time, array(7), and array(8).

Examples

Use of TIMDAT is illustrated in sample programs in
Chapters 3 through 8.

NCHS

Purpose

This function checks the name passed for validity as a pathname.

Usage

DCL TNCHKS ENTRY (FIXED BIN, CHAR(*)VAR) RETURNS (BIT(1)):

name-ok = INCHKS (key, pathname);

key Determines the restrictions to be placed on the
name. Keys may be added together:

KSUPRC Change name to uppercase before
Checking.

KSWLDC Allow wildcard characters in name.
(See the Prime User's Guide.)

| KSNULL Allow a null pathname.

pathname Must follow the rules for pathnames in Chapter 9 of

this guide or in the Prime User's Guide, modified by
the key above,

Third Edition 10-46

SYSTEM SUBROUTINES

name—ok Set to PLIG true if the name is valid given the
restrictions of the keys.

Discussion

Tegal pathnames are discussed in Chapter 9. Filenames within the
pathname are checked by FNCHKS, described earlier.

10-47 Third Edition

19

PART IV

MATH, SORT, and Applications
Library Subroutines

Il
FORTRAN

Matrix Library

(MATHLB)

SOOPE OF MATHIB

MATHIB provides a set of subroutines that perform matrix operations,
solve systems of simultaneous linear equations, and generate
permutations and combinations of elements. See Table 11-1 for a

summary.

These subroutines are available in R-mode only, so they may only be
Called from FORTRAN IV and PMA,

SUBROUTINE CONVENTIONS

The following conventions are used in the subroutine descriptions in

this chapter.

Names

All calls are shown with their single-precision name, followed by, as
applicable, the double-precision, integer, and complex counterparts.
For example, if the single-precision name is XXXX, the
double-precision, integer, and complex names respectively are: DXXXX,
IXXXX, and CXXXX,

11-1 Third Edition

DOC3621~-190

Table 11-1
Summary of Available Matrix Operations

Single Double
Operation Integer Precision Complex Precision

Setting matrix to identity matrix IMIDN MIDN CMIDN DMIDN

Setting matrix to constant matrix IMCON MOON CMCON DMCON

Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL

Matrix addition IMADD MADD CMADD DMADD

Matrix subtraction IMSUB MSUB CMSUB DMSUB

Matrix multiplication IMMLT MMLT CMMLT DMMLT

Calculating transpose matrix * IMTRN MTRN CMTRN DMTRN

Calculating adjoint matrix * IMADJ MADJ CMADIJ DMADJ

Calculating inverted matrix * MINV CMINV DMINV

Calculating signed cofactor * IMCOF MOOF CMOOF DMCOF

Calculating determinant * IMDET MDET CMDET DMDET

Solving a system of linear LINEQ CLINEQ DLINEQ
equations

Generating permutations PERM

Generating combinations COMB

* For square matrices only

Third Edition 11-2

FORTRAN MATRIX LIBRARY

Arguments

All arguments must be specified. Variables and arrays are assumed to

be of the same mode as the subroutine (REAL, DOUBLE PRECISION,

INTEGER*2, or COMPLEX). Matrix sizes and error flags must be declared

as INTEGER*2.

Arrays

Arrays are expected by MATHIB subroutines to be doubly subscripted

arrays. ‘The dimensions passed as arguments must agree with the array

sizes declared in the calling program, or the elements cannot be

properly accessed. Except where otherwise noted, when more than a

single array is passed as an argument, the arrays may be the same array

as in the calling program. For example, in matrix addition, it is

permissible to specify: A=AtA.

Work Arrays

Work arrays must always be distinct arrays in the calling program.

SUBROUTINE DESCRIPTIONS

PP com

Purpose

COMB computes the next combination of nr out of n elements with a

single interchange each time it is called, The first call to COMB

returns the combination 1, 2, 3,...,mr. ‘This subroutine is self-

initializing and proceeds through all n!/(nr!*(n-nr) !) combinations.

At the last combination, it returns a value of last = 1 and resets

itself. The COMB subroutine may be reinitialized by the user by

passing a restrt value of 1 along with new values for nand nr. (The

restrt parameter is optional; if reinitialization is not desired,

either omit this parameter from the calling sequence or set it to a

value of 0).

Usage

CALL COMB (icomb, n, nr, iwl, iw2, iw3, last, restrt)

11-3 Third Edition

DOC3621-190

Mode Subscript(s) Dimension(s) Comments

icomb Integer 1 nr Return

n Integer Pass

nr Integer Pass

iwl Integer 1 n Work

iw2 Integer 1 n Work

iw3 Integer 1 n Work

last Integer Return

restrt Integer Pass
(optional)

Note

The calling program should not attempt to modify icomb,
iwl, iw2, or iw3. For further details, see Gideon
Ehrlich, "Loopless Algorithms for Generating
Permutations, Combinations, and Other Combinatorial
Configurations," Journal of the ACM, vol. 20, no. 3,
July 1973, po. 500-513.

> LINQ

Purpose

LINEQ solves the set of n linear equations in n unknowns represented by
{cmat) (xvect) = (yvect) where cmt is the nxn square matrix of
coefficients, yvect is the nxl column vector of unknowns in which the
Solution is stored.

Note

For complex and double-precision numbers, use CLINEQ and
DLINEQ, respectively.

Usage

CLINEQ
CALL ;LINEQ

}

(xvect, yvect, cmat, work, n, npl, ierr)
DLINEQ

Third Edition 11-4

FORTRAN MATRIX LIBRARY

Mode Subscript(s) Dimension(s) Comments

xvect * 1 n Returned

yvect * 1 n Passed

cmat * 2 n,n Passed

work * 2 npl,npl Work

n Integer Passed

npl Integer Passed (=n+1)

ierr Integer Returned

* All of the same mode which determine the subroutine used

Discussion

The user is required to provide as a work area a nplxnp] matrix (npl =

ml). The integer error flag ierr returns one of three possible

values:

ierr Meaning

0 Solution found satisfactorily
1 Coefficient matrix singular
2 mpl < > ntl

If ierr < > 0, no modifications are made to xvect.

p> MADD

Purpose

MADD adds the nxm matrix mat2 to the nxm matrix matl and returns the

sum in anxm matrix mats. In component form: mats (i,j) = matl (i,})
+ mat2 (i,j) as i goes from] ton and j goes from 1 to m.

Note
For integer, complex, and double-precision numbers, use IMADD,
CMADD, and DMADD, respectively.

11-5 Third Edition

DOC3621~-190

Usage

DMADD

CMADD

CALL

)

IMADD

(

(mats, matl, mat2, n, m)
MADD

Mode Subscript(s) Dimension(s) Camments

mats * 2 n,m Returned

mat] * 2 n,m Passed

mat2 * 2 n,m Passed

n Integer Passed

™m Integer Passed

* All of the same mode which determines the subroutine used

p> MAD

Purpose

This subroutine calculates the adjoint of the nxn matrix mati and
stores it in the nxn matrix mato, Each element of the output matrix is
the signed cofactor of the corresponding element of the input matrix.

Note

For integer, complex, or double-precision numbers, use IMADJ,
CMADJ, or DMADJ, respectively.

Usage

aa \
(wi

IMADJ

CALL)CMADT((mato, mati, n, iwl, iw2, iw3, iw4, ierr)
DMADJ

Third Edition 11-6

FORTRAN MATRIX LIBRARY

Mode Subscript(s) Dimension(s) Comments

mato * 2 nn Returned

mati * 2 n,n Passed

n Integer Passed

iwl * 1 n Work

iw2 * 1 n Work

iw3 * 1 n Work

iw4 * 1 n Work

ierr Integer Returned

* All of the same mode which determines the subroutine used

Discussion

The error flag, ierr, may have one of two values:

ierr Meaning

0 Adjoint successfully constructed
1 n<2 - no adjoint may be constructed

Note

mato and mati must be distinct.

> Moor

Purpose

Calculates the signed cofactor of the element mat (i,j) of the nx
matrix mat and stores this value in OOF. If i =0 and j = 0 the
determinant of mat is calculated,

Note

For integers, complex, or double-precision numbers, use IMOOF,
CMCOF, or DMOOF, respectively.

11-7 Third Edition

DOC3621-190

Usage

IMCOF
CMCOF

CALL)MCOF
DMCOF

cof

mat

iwl

iw2

iw3

iw4

i

j

ierr

(cof, mat, n, iwl, iw2, iw3, iw4, i, j, ierr)

Mode

*

*

Integer

*

*

*

*

Integer

Integer

Integer

Subscript(s) Dimension(s) Canments

Returned

2 n,n Passed

Passed

1 n Work

1 n Work

1 n Wor k

1 n Work

Passed

Passed

Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr has two possibie values:

ierr

0
1

Third Edition

Meaning

Cofactor calculated successfully
No cofactor calculated for any of the
following reasons:

1.
2
3.

4

n<2 - no cofactor possible
i= j =n=0- no determinant
i=Oandj<>O0Ooi<>Oandj=0-
Subscript error
adn and/or j>n - subscript error

11-8

FORTRAN MATRIX LIBRARY

> MON

Purpose

This subroutine sets every element of the nxm matrix mat equal toa

constant CON.

Note

For integer, complex, or double-precision numbers, use IMOON,

CMCON, or DMCON, respectively.

Usage

{ zcos)MCON

cat| cucon((mat, n, m, con)
(pucon’)

Mode Subscript(s) Dimension(s) Comments

mat * 2 n,m Returned

n Integer Passed

m Integer Passed

con * Passed

* All of the same mode which determines the subroutine used

p> MDET

Purpose -

Calculates the determinant of the nxn matrix mat and stores it in det.

Note

For integer, complex, or double-precision numbers, use IMDET,

CMDET, or DMDET, respectively.

11-9 Third Edition

DOC3621-190

Usage
IMDET
MDET

CALL CMDET (det, mat, n, iwl, iw2, iw3, iw4, ierr)
_ DMDET

Mode Subscript(s) Dimension(s) Comments

det * Returned

mat * 2 nn Passed

n Integer Passed

iwl * 1 n Work

iw2 * 1 n Work

iw3 * 1 n Work

iw4 * 1 n work

ierr Integer Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr may have one of two values:

ierr Meaning

0 Determinant formed successfully
1 n= 0 — no determinant possible

~ MIN

Purpose

This subroutine sets the nxn matrix mat equal to the nxn identity
matrix. That is:

MAT (I,J) = 0, I< >J
=], Il=J

Third Edition 11-10

FORTRAN MATRIX LIBRARY

Note

For integer, complex, or double-precision numbers, use IMIDN,

CMIDN, or DMIDN, respectively.

Usage

(IMIDN

MIDN

CALL CMIDN (mat, n)
DMIDN

Mode Subscript (s) Dimension(s) Comments

mat * 2 n,n Returned

n Integer Passed

* The mode of this argument determines which subroutine
is used and the representation of 1 in matrix.

Mode Subroutine Representation of 1

Integer IMIDN 1

Single~-precision MIDN 1. (SP)

Complex | CMIDN (1.,0) (each SP)

Double-precision DMIDN l. (DP)

P MIN

Purpose

Calculates the inverse of the nxn matrix mati and stores it in mato, if
successful. The inverse of matiis mato ifand only if:

mati*mato = mato*mati = I

where * denotes matrix multiplication and I is the nxn identity matrix.
The user must supply a npl x npn scratch matrix work area, where npl =

n+l and npn = nin,

11-11 Third Edition

DOC3621-190

Note
For complex or double-precision numbers use the subroutines
CMINV or DMINV, respectively. There is no integer form of this
subroutine as there is no guarantee that the inverse of an
integer matrix will be an integer matrix.

Usage
a

DMINV

Mode

mato *

mati *

n Integer

work *

npl Integer

npn Integer

ierr Integer

mnw |(ato, mati, n, work, npl, npn, ierr)

Subscript(s) Dimension(s)

2 n,n

2 n,n

2 npl,npn

Comments

Returned

Passed

Passed

Work

Passed

Passed

Returned

* All of the same mode which determines the subroutine used

Discussion

The integer error flag ierr will return one of the following values:

ierr

B
S
F
o

Meaning

Matrix inverted - inverted matrix stored in mato.
Matrix is singular - no inversion possible,"mato is
filled with zeroes,
mpl < > n+l and/or npn < > ntn - return from
subroutines with nocalculations performed,

Third Edition 11-12

FORTRAN MATRIX LIBRARY

Pp mT

Purpose

This subroutine multiplies the nlxn2 matrix matl (on the left) by the
n2xn3 matrix matr (on the right) and stores theresulting nlxn3 product
matrix in matp.

Note

For integers, complex, or double-precision numbers, use IMMLT,
CMMLT, or DMMLT, respectively.

Usage

(TMM.
\ MMT

\

—
CALL)oatny mae matl, matr, nl, n2, n3)

Note

matp must be distinct from matl and matr, although matl and
Matr may be the same. For example:

CALL MMLT (A, B, C, Nl, N2, N3) LEGAL
CALL MMLT (A, B, B, N, N, N) LEGAL

CALL MMLT (A, A, A, N, N, N) ILLEGAL

CALL MMLT (A, A, B, N, Ny, N) ILLEGAL

CALL MMLT (A, B, A, N, N, N) ILLEGAL

Mode Subscript(s) Dimension(s) Comments

matp * 2 nl,n3 Returned

matl * 2 nl,n2 Passed

matr * 2 n2,n3 Passed

nl Integer Passed

n2 Integer Passed

n3 Integer Passed

* All of the same mode which determines the subroutine used

11-13 Third Edition

DOC3621-190

p MSCL

Purpose

This subroutine multiplies the nxm matrix mati by the scalar constant
SQON and stores the resulting nxm matrix in mato. By components,
scalar multiplication is understood to be: mato (i,j) = scon*mati
(i,j) for i from 1 ton, j from 1 ton.

Note

For integers, complex, or double-precision numbers, use IMSCL,
CMSCL, or DMSCL, respectively.

Usage

TMSCL
MSCL

CALL CMSCL((mato, mati, n, m, scon)
DMSCL

Mode Subscript(s) Dimension(s) Comments

mato * 2 n,m Returned

mati * 2 n,m Passed

n Integer Passed

m Integer Passed

scon * Passed

* All o£ same mode which determines the subroutine used

Third Edition 11-14

FORTRAN MATRIX LIBRARY

p> MSUB

Purpose

Subtracts the nxm matrix mat2 from the nxm matrix matl and stores the

difference in the|nxm matrix matd.

Note

For integers, complex, or double-precision numbers, use IMSUB,
CMSUB, or DMSUB, respectively.

Usage

(ion |MSUB

CALL | CMSUB((matd, matl, mat2, n, m)
(pysus)

Mode Subscript(s) Dimension(s) Canments

matd * 2 n,m Returned

matl * 2 n,m Passed

mat2 * 2 n,m Passed

n Integer Passed

m Integer Passed

* All of the same mode which determines the subroutine used

> MRN

Purpose

Calculates the transpose of the nxn matrix mati and stores it in the
nxn matrix mato. The relationship between mati and mato is as follows:
mato (i,j) =mati (j,i) for i, j =1to n. mato and mati must be

distinct.

Note

For integers, complex, or double-precision numbers, use IMTRN,
CMTRN, or DMTRN, respectively.

11-15 Third Edition

DOC3621-190

Usage

IMTRN
MTRN

CALL CMIRN((mato, mati, n)
DMTRN

Mode Subscript(s) Dimension(s) Canments

mato * 2 n,n Returned

mati * 2 n,n Passed

n Integer Passed

* All of the same mode which determines the subroutine used

PERM

Purpose

PERM computes the next permutation of n elements with a single inter-
change of adjacent elements each time it is called. The first call to
PERM returns the permutation 1, 2, 3,..., nm. This subroutine is
Self-initializing and proceeds through all n! permutations. At the
last permutation it returns a value of last =] and resets itself. The
PERM subroutine may be reinitialized by the user by passing a new value
of n or by passing the restrt parameter with a value of 1. (The restrt
parameter is optional. If reinitialization is not desired either amit
this parameter from the calling sequence or set it to a value of 0.)
The calling program should not attempt to modify iperm, iwl, iw2, or
iw3.

Usage

CALL PERM (iperm, n, iwl, iw2, iw3, last, restrt)

Mode Subscript(s) Dimension(s) Canments

iperm Integer 1 n Returned

n Integer Passed

iwl Integer l n Wor kK

Third Edition 11-16

FORTRAN MATRIX LIBRARY

iw2 Integer 1 n Work

iw3 Integer 1 n Work

last Integer Returned

restrt Integer Passed
(optional)

Discussion

For further details, see Gideon Ehrlich, "Loopless Algorithms for

Generating Permutations, Combinations, and Other Cambinatorial

Configurations," Journal of the ACM, vol. 20, no. 3, July 1973, pp.

500-513.

11-17 Third Edition

Applications Library

GENERAL DESCRIPTION

This is a user-oriented library that provides a set of service
routines, designed for ease of use. In many cases, the APPLIB or
VAPPLB routines call a lower-level routine, filling in arguments that
the caller isn't concerned about. The routines may also reformat the
data that the lower-level routine returns. The use of APPLIB or VAPPLB
routines avoids a duplication of effort and provides a consistent

interface for the terminal user.

All of these routines are written as FORTRAN functions that return one
of the following: a status indication (logical .TRUE. or .FALSE.), an
appropriate value, an alternate value or format of a returned argument,
or a code which must then be decoded. All error detection, reporting,
and, if possible, recovery are performed by the routine, which returns
only an indication of success or failure. This simplified
error-reporting scheme assures the user that the error is reported and
all possible recovery procedures have been tried.

These routines may be used either as subroutines or as functions that
return a value. If they are used as functions, when a logical value is

returned it will be .TRUE. oor .FALSE., according to FORTRAN
conventions, Programmers in other languages should consult Chapters 3
through 8 to see how to handle these values.

12-1 Third Edition

DOC3621-190

APPLIB ROUTINES

The categories of functions provided by the Applications library are:

String Manipulation Routines
User Query Routines
System Information Routines
Mathematical Routines
Conversion Routines
File System Routines
Parsing Routines

The following is a detailed list of Applications subroutines
function. String manipulation routines, user guery routines, and file
system routines are discussed in subsequent pages of this chapter.

String Manipulation Routines

Compare two strings for equality.
Compare two substrings for equality.
Fill a string with a character.
Fill a substring with a given character.
Get a character from a packed string.
Left-justify, right-justify, or center a

string within a field.
Locate one string within another.
Locate one substring within another.
Move a character between packed strings.
Move one string to another.
Move one substring to another.
Determine the operational length of a string.
Rotate string left or right.
Rotate substring left or right.
Shift string left or right.
Shift substring left or right.
Test for pathname.
Determine string type.

User Query Routines

Prompt and read a name.
Prompt and read a number (binary, decimal,

octal, or hexadecimal). INTEGER*4
Ask question and obtain a YES or NO answer.

Third Edition 12-2

CSTRSA
CSUBSA
FILLSA
FSUBSA
GCHRSA
JSTRSA

LSTRSA
LSUBSA
MCHRSA
MSTRSA
MSUBSA
NLENSA
RSTRSA
RSUBSA
SSTRSA
SSUBSA
TREESA
TYPESA

RNAMSA
RNUMSA

YSNOSA

APPLICATIONS LIBRARY

System Information Routines

CPU time since login.
Today's date, American style.
Today's date as day of year ("Julian" date).
Disk time since login.
Today's date, European (military) style.
Time of day.

Mathematical Routines

Generate random number and update "seed," based
upon a 32-bit word size and using the Linear

Congruential Method.
Initialize random number generator "seed,"

Conversion Routines

Convert a string from lowercase to upper-
case or uppercase to lowercase.

Convert ASCII number to binary.
Convert binary number to ASCII.
Make a number printable if possible.
Convert the DATMOD field (as returned by RDENSS)

in format DAY, MON DD YYYY
Convert the DATMOD field (as returned by RDENSS)

in format DAY, DD MON YYYY.

Convert the TIMMOD field (as returned by RDENSS).

File System Routines

Close a file.
Delete a file.
Check for file existence.
Position to end-of-file.
Open supplied name.
Read name and open.
Open supplied name with verification and delay.
Read name and open with verification and delay.
Position file.
Return position of file.
Rewind file.
Open a scratch file with unique name.
Truncate file,
Scan the file system structure.
Check for file open.

12-3

CTIMSA
DATESA

DOFYSA
DTIMSA
EDATSA
TIMESA

RANDSA

RNDISA

CASESA

CNVASA
CNVBSA
ENCDSA
FDATSA

FEDTSA

FTIMSA

CLOSSA
DELESA
EXSTSA
GENDSA
OPENSA
OPNPSA
OPNVSA
OPVPSA
POSNSA
RPOSSA

TEMPSA
TRNCSA
TSCNSA
UNITSA

Third Edition

DOC3621-190

Parsing Routine

Parse PRIMOS command line. CMDLSA

NAMING CONVENTIONS

All APPLIB and VAPPIB routines follow a consistent naming convention

designed to avoid the possibility of a conflict with user-written

routines and system routines. They all have a four-letter mnemonic

name and the suffix SA. For example, the routine to open a temporary

file is named TEMPSA,

Subroutines that are used internally by APPLIB routines have a suffix

of SSA. These should not be called by programmers under ordinary

circumstances,

Keys

Many routines have options which are specified by named parameter keys

which all begin with the prefix AS. All parameter keys are defined in
a SINSERT file named SYSCOM>ASKEYS.INS.langquage. The key names

following the AS prefix are three- or four-letter mnemonics specifying
the allowable options for the various routines. They are INTEGER*2
data types. In addition, the FORTRAN version of this file supplies all
the appropriate FUNCTION type declarations for the application
routines. A complete listing of SYSCOM>ASKEYS is included at the end
of this chapter. Please read the chapter on your language interface to
see how to use this file.

LIBRARY IMPLEMENTATION AND POLICIES

VAPPLB and its R-mode version, APPLIB, exist as independent libraries

in the UFD LIB.

The routines have been coded to make them easily callable from most

other languages, including PLIG and 1977 ANSI FORTRAN, both of which

can automatically generate string length arguments following string

arguments. As a result, in the argument pair name, namlen, the name is

often updated by an application routine, but the namlen- argument is

never modified. If the namlen argument is not 0 orpositive, an error

message is displayed on theuser terminal. Where applicable, the

function value returned is .FALSE.. The function NLENSA can be used to
determine the operational length of a returned name.

All application routines that either accept keys as arguments, or call
other routines which do, use the SYSCOM>ASKEYS file to define those
keys, Also, these routines do not take advantage of any particular

numerical values these keys may have, in case it should become

Third Edition 12-4

APPLICATIONS LIBRARY

necessary either to change these values or to add new keys with
numerical values which do not fit the previous pattern. For example,
there are no computed GOIOs on keys and no range checks for validity of
a key. In this way, if a new SYSCOM>ASKEYS file is created, both the
user programs and the routines they call will always agree on the
meaning of a given key. The same is true of the declared types of the
application functions.

Library Building

All routines are compiled into a single binary file which is then
converted into the appropriate library file with the EDB utility. At
present, the only difference between the R-mode and V-mode build
procedures is the FIN compile option used. For APPLIB, all routines
are compiled for 64R-mode loading (LOAD). For VAPPLB, all routines are
compiled for 64V-mode loading (SEG). In addition, all routines
included in VAPPLB are pure procedure and may be loaded into the shared
portion of a shared procedure.

STRING MANTPULATION ROUTINES

The string manipulation routines operate on packed strings, unless
stated otherwise. Most of the routines in this section require that
the maximum length of a string (in characters) be passed as an
argument, The maximum length is the actual storage allocated for that
String in bytes or characters (including any trailing blanks). The
operational length of a string does not include trailing blanks, so it
may be shorter than the maximum length. (See Figure 12~1.) -Since the
length of a string is specified as an INTEGER*2 variable, the maximum
possible length is 32767 characters.

IMITYINIAIMIE] | [| J |

<—operational length-—>

<——aximum length--—-------—-—>

Maximum Length and Operational Length
Figure 12-1

The majority of routines that operate on entire strings first truncate
them to their operational length. The routines that operate on

substrings treat any trailing blanks as part of the substring.

12-5 Third Edition

DOC3621-190

All string-length specifications and substring-delimiting character

positions are checked for validity and must conform to the following

rules:

e Maximum string-length specifications must be greater than or
equal to 0. Avalue of 0 indicates a null or empty string.

e Substring-delimiting character positions must be greater than or

equal to 0. The length of the substring must be less than or

equal to the physical string length. The beginning character

position must be less than or equal to the ending character

position. A value of 0 for either the starting or ending

character position indicates a null substring.

If these rules are violated, an error message will be displayed and the

logical functions will be .FALSE..

USER QUERY ROUTINES

These routines provide a convenient means to input data from the user's

terminal. Each routine can prompt the terminal user with a customized

message, and then process the user's response.

FILE SYSTEM ROUTINES

The file systen routines in the Applications library give the user a

simple and consistent way to specify the most common file system
operations. Accordingly, the Applications library does not provide the
user with the full capabilities of the file systemroutines since for

detailed operations it is best to use the file systen routines

themselves (Chapter 9). This library supports both Sequential Access

Method (SAM) and Direct Access Method (DAM) files. ‘There is no support

for segment directory files as the MIDAS subsystem provides the higher

level functions with these files.

All routines except Open, Delete, and Check for File Existence use only

the file unit and not the filename. File wumnits are explained in

Chapter 9. Also, each routine carries the name of its function, as

above, with arguments consisting of only the relevant information,

usually only the file unit number. Note that all filenames, except

scratch files, may be pathnames.

The only complicated routines are the five OPEN routines, because of

the many ways programs can obtain the name of the file they wish to

open and the various options for verification or error recovery. Five
different routines exist to perform the varying levels of complexity.
In this way, the simple operations are represented by simple calling

sequences. Only complex operations need complex argument lists.

Third Edition 12-6

APPLICATIONS LIBRARY

All OPEN routines allow selection of the file type (SAM or DAM) and all
but TEMPSA allow specification of the open mode (READ, WRITE, or
READ/WRITE). TEMPSA (scratch) files are always opened for READ/WRITE,
Table 12-1 shows the routines available for opening.

Table 12-1
Ways to Open a File

Open name. OPENSA

Open funit. OPNPSA

Open name, verify, and delay. OPNVSA

Open funit, verify, and delay. OPVPSA

Open scratch file. TEMPSA
All OPEN routines can choose the file unit number upon which a file
will be opened, The ASGETU key is used for this purpose and the PRIMOS
file unit selected by the routine will be returned to the user (in the
argument funit). If ASGETU is not used, the user must provide the
routine with a usable file unit number.

Several of these subroutines have arguments called verkey, which allows
verification of the validity of the file operation requested.
Verification provides the following options:

1. Verify that the file is new; otherwise, verify that it is all
right to modify a file which already exists.

2. Verify that the file may be modified and determine whether an
existing file is to be overwritten or appended.

3. Verify that the file exists; that is, do not allow creation of
a new file. Note that if the open mode is READ, this is the

only possible verification option,

In case of failure of an operation, the argument wtime allows the
subroutine to delay the time specified, then try again the number of
times allowed by retries. Delay provides the following options:

1. If and only if the file is "IN USE", wait a supplied number of
seconds (elapsed time) and try again.

2. Repeat step 1 a specified number of times.

12-7 Third Edition

DOC3621~190

DESCRIPTION OF SUBROUTINES

p cASESA

Purpose

CASESA is a logical function that converts a string from uppercase to
lower, or from lowercase to upper. The function will be .FALSE. if
length is less than 0, otherwise .TRUE..

Usage

log = CASESA(key, string, length)

CALL CASESA(key, string, length)

key An INTEGER*2 option for the following conversions:

ASFUPP Convert all alphabetic characters in
string from lowercase to uppercase.

ASFLON Convert all alphabetic characters in
string from uppercase to lowercase.

string Array containing character string to be converted,
packed two characters per word, any data type.

length Length of string in characters (INTEGER*2) .

APPLIB calls: GCHRSA, MCHRSA

& CLOSSA

Purpose

CLOSSA is a logical function that closes the file open on fit. I£
the operation is successful, the function is .TRUE.; otherwise, the
function is .FALSE.. (This is FORTRAN logical .TRUE. and .FALSE..)

Usage —

log = CLOSSA(funit)

CALL CLOSSA(funit)

Third Edition 12-8

APPLICATIONS LIBRARY

funit File unit (INTEGER*2).

APPLIB calls: None

Pp CMDLSA

Note

For Pascal and Pl1G programmers, CMDLSA is obsolete and has
been replaced with CLSPIX.

Purpose

CMDLSA is a logical function for parsing a PRIMOS command line. CMDLSA
is designed to facilitate the design and implementation of user
interfaces in a program. It provides a means to break a character
string into tokens (words or expressions) and return information
regarding each token.

Usage

log = CMDLSA (key, kwlist, kwindx, optbuf,buflen, option, value, kwinfo)

CALL CMDLSA(key,kwlist, kwindx, optbuf,buflen, option, value, kwinfo)

key An INTEGER*2 value specifying the following
subroutine actions:

ASREAD Return the next keyword entry in the
command line.

ASNEXT Call COMANL to get the next command
line, turn on default processing, and
return the first keyword entry in the
new command line.

ASRSET Reset the command line pointer to the
beginning of the command line and turn
on default processing. Use of this key
does not return a keyword entry.

12-9 Third Edition

DOC3621-190

kwlist

kwindx

optbuf

buflen

Third Edition

ASRAWI Return the remainder of the command
line as raw text and turn on the
end-of-line indicator. Text starts at
the token following the option (if
present) of the last keyword’ entry
read.

ASNKWL Turn on default processing and return
the next keyword entry in the command
line. This key allows the calling
program to switch keyword lists in the
middle of a command line.

ASRCMD Permits the use of a keyword without a
preceding minus sign as the first token
ona line (may only be used for lines
subsequent to the initial command
line).

A one-dimensional integer array containing control
information, a table of keyword entry descriptions,
and a list of default keywords. See Kwlist Format
later in this chapter for a complete description.

A keyword index returned as an INTEGER*2 variable
identifying the keyword in an entry. Possible
values are:

‘<0 Unrecognized keyword or CMDLSA_ was
called with a key of ASRSET or ASRAWI.

0 End of line.

> 0 Valid keyword.

Packed array that normally contains the text of a
keyword option. However, if an unrecognized keyword
is encountered, optbuf contains the text of that

keyword. The data type does not matter.

Specified length of optbuf in characters
(INTEGER*2). This must be 0 or greater,

12-10

APPLICATIONS LIBRARY

option Returned INTEGER*2 variable that describes the
option following a keyword. Possible values are:

ASNONE No option, or option was null, optbuf
will be blank.

ASNAME Option was a name.

ASNUMB option was a number, result of numeric
conversion returned in value.

ASNOVF option was a number and conversion

resulted in overflow (decimal numbers
only).

value Returned INTEGER*4 variable equal to the binary
value of an option if it was a number. Otherwise,
it is 0.

kwinfo A ten-word integer array that returns miscellaneous
information and must be dimensioned in the calling
program. kwinfo(1) is equal to the number of
Characters in optbuf and kwinfo(2) through
kwinfo(10) are reserved for future use,

a j
aAPPLIB calis CNVASA, CNVBSA, CSUBSA, FILLSA, JSTRSA, MSUBSA, MSTRSA,

NLENSA, SSUBSA.

Discussion

CMDLSA was designed to simplify the processing of a PRIMOS command line
while, at the same time, providing the user with a great deal of
flexibility in defining the command environment.

This routine will parse a command line, one keyword entry at a tire,
and return information about each entry it encounters. Akeyword entry
is defined as a -keyword followed by an option. A default keyword
entry is defined as an option that is not preceded by a ~—keyword but,
by virtue of its position in the command line, implies a specified
-keyword (e.g., FIN SNARF, where SNARF implies the default keyword
-INPUT). Defaults may only occur at the beginning of a command line.

CMDLSA returns the following information for each keyword entry in the

command line:

@ Integer that identifies the -keyword (kwindx)

@ Text of the keyword option, if present (optbuf)

@ Option type (option)

12-11 Third Edition

DOC3621-190

e@ Results of numeric conversion, if option was a number (value)

@ Number of characters in the text of an option (kwinfo(1))

Note that CMDLSA does not perform any action other than returning
information about the command line.

The following is a list of considerations that should be taken into
account when defining a command environment:

1.

2.

10.

A keyword may have, at most, one option following it.

A keyword must begin with a dash (-).

A keyword may not be a decimal number (e.g., —-99).

Register-setting parameters (described with the R-mode EXECUTE
command in the LOAD and SEG Reference Guide) are not
recognized,

Default keywords are only allowed at the beginning of a command
line. The first -keyword encountered turns off default
processing and all remaining options on the command line must
be preceded by a ~-keyword. (This restriction can be
circumvented by using a key of ASNKWL; however the user must
be aware of the fact that when default processing is in effect
each option is treated as if it were preceded by a -keyword.)

A. key of ASRAWI (or an option type of ASRAWI) will turn on the
end-of-line indicator and any further attempts to read from the
Current command line will return an end-of-line condition. To
turn off the end-of-line indicator, CMDLSA must be called with
a key of ASRSET or ASNEXT.

A buffer length that is too small to contain the text of an
option will cause that option to be truncated and an error
message to be displayed.

Default keyword entries that have a numeric option should be
avoided as PRIMOS may intercept them as register settings.

A negative hexadecimal option that consists only of alphabetic
characters (such as -FF) will always be interpreted asa
~keyword.

Keyword entries in the keyword table with the same keyword
index are considered synonyms. Akeyword may have any number
of synonyms, each with different option specifications.
However, if a keyword with synonyms is also a default and
default processing is in effect, the option specifications for
the synonyms will be: ignored. (In other words, a default
keyword option always implies the first keyword in a synonym
Chain.)

Third Edition 12-12

APPLICATIONS LIBRARY

11. Null entries in the command line are only permitted for
keywords that have an option status of ASOPIL. All other null
entries will be treated as either a missing option or an
unrecognized keyword,

12. Calls to CMDLSA and RDIKSS on the same command line should be
avoided, as CMDLSA useS RDIKSS to perform a look ahead when a
-keyword is encountered,

13. All text is forced to uppercase unless enclosed in quotes or
read as raw text (ASRAWI).

Kwlist Format

The kwlist array consists of three sections. The first section
contains control information, the second contains the keyword entry
tahlia anA than fA vrA aAnntaina Fan Aafanle 14 «@t
LULL- Gls LIS ELIBDLUE CAJDILOLIIn LLIG UULAaAULL Live

Control Information

Word 1 Number (n) of keyword entries in table, must be
greater than 0.

Word 2 Maximum length of keyword text in characters, must
be greater than or equal to 2 and not more than 80.
All keywords must have the same length and therefore
it may be necessary to pad them with blanks.

Keyword Entry Table

Words 1 ton Text of keyword, The actual number of
characters must be equal to the maximum
keyword length.

Word n+l Keyword index, must be greater than 0.

Word n+2 Minimum number of characters in the keyword to
match, including leading minus sign. The number
must be no less than 2 and no greater than the
maximum keyword length. A 0O or negative value
causes the keyword to be ignored when the table is
searched. This allows keyword text to exist as
documentation.

12-13 Third Edition

DOC3621~-190

Word n+3 Option status; possible values are:

ASNONE No option may follow keyword,

ASOPIL option may or may not follow keyword,

ASREQD option must follow keyword.

Word nt+4 Option type; possible values are:

ASNONE If status is ASNONE.

ASBIN option must be a binary number.

ASDEC option must be a decimal number.

ASOCT option must be an octal number,

ASHEX option must be a hexadecimal number,

ASNAME, option must be a name,

ASNBIN option may be a name or a_ binary
number,

ASNDEC option may be a name or a decimal
number,

ASNOCT option may be a name or an. octal
number.

ASNHEX option may be a name or a_ hexadecimal
number, If the option consists of all
alphabetic characters, which also
Constitute a valid hexadecimal number,
it will be interpreted as such — for
example, FACE.

ASRAWI option is the remainder of the command

Third Edition

line after the current -keyword is read
as raw text. Use of this option will
turn on the end-of-line indicator in
the same manner as a key of ASRAWI.

12-14

APPLICATIONS LIBRARY

Default List

Word 1 Number (n) of default keywords, must be greater than
or equal to 0.

Words 2 to ntl List of keyword indices, previously defined in the
keyword entry table, which will be used when default
processing is in effect. A default keyword entry
may not have an option status of ASNONE.

Error Messages

The function value will be false if any of the following errors occur:

BAD KEY

BUFFER LENGTH LESS THAN ZERO
NAME WW TOA {nama tavt\
iwi LV LAAVI (isu, FEAL

UNRECOGNIZED KEYWORD. (keyword text)
BAD KEYWORD OPTION. (option text)

MISSING KEYWORD OPTION.
NO. OF KEYWORD ENTRIES MUST BE .GT. ZERO.

MAX KEYWORD LENGTH MUST BE .GE. 2 AND .LE. 80.

1ST CHARACTER OF KEYWORD MUST BE '-'. (keyword text)

KEYWORD MAY NOT BE A NUMBER. (keyword text)

REYWORD INDEA MUST BE GT. ZERO. {keyword text)

MIN CHARACTERS TO MATCH MUST BE .LE. MAX KEYWORD LENGTH.
(keyword text)

INVALID OPTION STATUS. (keyword text)
INVALID OPTION TYPE. (keyword text)
NO. OF DEFAULTS MUST BE .GE. ZERO.

DEFAULT NOT DEFINED IN KEYWORD LIST. (default index)

INVALID DEFAULT OPTION STATUS. (keyword text)

MIN CHARACTERS TO MATCH MUST BE .GE. 2. (keyword text)
UNDETERMINED ERROR> (text of last keyword or option read)

CMDLSA Sample Program

Cc TEST PROGRAM FOR CMDLSA
Cc

IMPLICIT INTEGER*2 (A-Z)
INTEGER*4 VALUE
DIMENSION BUFFER(10) , KWLIST (128) , INFO(10)

SINSERT SYSCOM>ASKEYS
Cc

DATA KWLIST fly14,
* (‘any text',1,0,ASREQD, ASDEC,

'—-NDECIMAL' ,2,2,ASOPTL,ASNDEC,
'"~OCTAL' ,4,2,ASREQD,ASOCT,
"—NOCTAL' ,4,3,ASOPIL,ASNOCT,

'-~HEXADECIMAL' ,5,2,ASREQD,ASHEX,+
+

%
%

12-15 Third Edition

DOC3621-190

* "—~NHEXADECIMAL' ,63 ,ASOPTL,ASNHEX,

* '-NAME' ,7,5,ASREQD, ASNAME,

* '~MAYBE' ,8,6,ASOPTL,ASNAME,
* "-NONE' ,9,5,ASNONE,ASNONE,

* '~QUIT' ,10,2,ASNONE,ASNONE,

* '-TITLE' 199,2,ASOPTL,ASRAWI,

* 4,1,2,8,7/

C
C

BUFLEN = 20
KEY = ASREAD

10 IF (CMDLSA(KEY, KWLIST, KWINDX,BUFFER,BUFLEN,TYPE,VALUE, INFO))
*GO TO 15
PRINT 99

99 FORMAT(/'TRY AGAIN,TURKEY !')
CALL EXIT

15 IF (KWINDX.EQ.10) CALL EXIT
IF (KWINDX.NE.ASNONE) GO TO 20
KEY = ASNEXT
GO TO 10

2 KEY = ASREAD
PRINT 100 BUFFER,KWINDX, TYPE,VALUE, INFO(1)

100 FORMAT(/10A2/'"KWINDX TYPE VALUE CHARS'/2X,4(I3,6X))
GO TO 10
END

 cCNVASA

Purpose

CNVASA is a logical function that converts an ASCII digit string into
its binary value for decimal, octal, and hexadecimal numbers. The
numbers may be explicitly signed. Leading and trailing blanks are
ignored, as well as blanks between the sign and the number. However,
blanks within the number are not allowed. If the number converts
successfully, the function is .TRUE. and value is the converted binary
value. If conversion, is not successful, the function is .FALSE. and
value is 0. Note that for decimal conversions overflow will be
considered as umsuccessful, whereas for octal and hexadecimal
conversions overflow is ignored.

(.TRUE. and .FALSE. are the FORTRAN logical values.)

Usage

log = CNVASA(numkey, name, namlen, value)

CALL CNVASA(numkey, name, namlen, value)

Third Edition 12-16

APPLICATIONS LIBRARY

numkey An INTEGER*2 option specifying the data type of the

number to be converted:

ASDEC Decimal

ASBIN Binary

ASOCT Octal

ASHEX Hexadeciral

name Array containing ASCII digit string, packed two
Characters per word. Data type does not matter.
Maximum lengths are: binary, 31; octal, 11;
Gecimal, 10; hexadecimal, 8. Maximum does not

include leading signs or blanks.

namlen Length of name in characters (INTEGER*2).

value Returned converted binary value (INTEGER*4).

APPLIB calls: GCHRSA, NLENSA

> CNVBSA

Purpose

CNVBSA is an INTEGER*2 or INTEGER*4 function used to convert a binary

number to an ASCII digit string.

Usage

T*2 = CNVBSA(numkey, value, name, namlen)

CALL CNVBSA(numkey, value, name, namelen)

numkey Number base to convert to (INTEGER*2); possible

values are:

ASBIN Binary number with leading blanks

ASBINZ Binary number with leading 0s

ASDEC Signed decimal number with leading
blanks

ASDECU Unsigned decimal mumber with leading
blanks

12-17 Third Edition

a
n
c
e

DOC3621-190

ASDECZ Signed decimal number with leading 0s

ASOCT Octal number, leading blanks

ASOCTZ Octal number, leading 0s

ASHEX Hexadecimal, leading blanks

ASHEXZ Hexadecimal, leading 0s

name Array containing returned ASCII digit string packed
two characters per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2). Maximum
length for binary is 31, octal is 11, decimal is 10,
and hexadecimal is 8. Maximum does not include
leading signs or 0s.

value Binary number to be converted (INTEGER*4),

Discussion

CNVBSA will convert a binary number into an ASCII digit string for
decimal, octal, and hexadecimal numbers, The returned digit string
will be right-justified in name and preceded by leading blanks or 0s
depending upon numkey specification,

If value is negative and the number is to be treated as signed decimal,
the digit will begin with an initial minus sign. If value is negative,
binary, octal, and hexadecimal mumbers will be in two' s-complement
form. if the number converts successfully, the function value is the
number of digits and if not, it is 0.

APPLIB calls: FILLSA, MCHRSA

Third Edition 12-18

APPLICATIONS LIBRARY

BP csSTRSA

Purpose

CSTRSA is a logical function used to compare two strings for equality.

The function will be .TRUE. if each character in string a matches the
corresponding character in string b, or if both strings are null

(length equal to 0). Otherwise, the function will be .FALSE.. Only

the operational lengths are used in the comparison. (Trailing blanks

are ignored.) If the two strings are not of equal length, the result

will be .FALSE.. (.TRUE. and .FALSE. are the FORTRAN logical

values.)

Usage

log = CSTRSA(a, alen, b, blen)

a String to be compared, packed two characters per

word. Data type does not matter.

alen Length of a, in characters (INTEGER*2). Length must

be 0 or greater.

o 3 Q ey S FS 0 ct o Fy uiString to be compared against, packed tw
per word, Data type does not matter.

blen Length of b, in characters (INTEGER*2). Length must

be 0 or greater.

APPLIB calls: CSUBSA, NLENSA

12-19 Third Edition

DOC3621-190

P cSUBSA

Purpose

CSUBSA is a logical function used to compare substrings for equality.

Usage

log = CSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

a Array containing substring to be compared, packed
two characters per word. Data type does not matter.

alen Length of a, in characters (INTEGER*2). Length must
be 0 or greater.

afc First character position of substring in a
(INTEGER*2).

alc Last character position of substring in a
(INTHGER*2).

b Array containing substring to be compared against,
packed two characters per word. Data type does not
matter.

blen Length of b, in characters (INTEGER*2), must be 0 or
greater,

bfc First character position of substring in b
(INTHGER*2) .

ble Last character position of substring in b
(INTEGER*2) .

Discussion

If each character in the a substring matches the corresponding
Character in the b substring,or both substrings are null (length equal
to 0), the function will be .TRUE.. If two corresponding characters do
not match, or if the lengths of the substrings are not equal, the
function will be .FALSE.. (.TRUE. and .FALSE. are the FORTRAN
logical values.)

Figure 12-2 is a representation of the arguments to CSUBSA.

Third Edition 12-20

APPLICATIONS LIBRARY

a {R/OI[MIAT [| -f| J J J 1

afc alc
(allen >

b [AITRIOIMIAITITIcl | |

bftc ble
< blen >

Arguments to CSUBSA
Figure 12-2

APPLIB calls: None

p> crimsa

Purpose

CTIMSA is a double-precision function that returns CPU time elapsed

since login, in seconds as the function value, and as centiseconds in

the cputim argument.

Usage

R*8 = CTIMSA(cputim)

CALL CTIMSA(cputim)

cputim CPU time in centiseconds (INTEGER*4) — character

string format,

Discussion

The function value will be CPU time elapsed since login, in seconds.

This value may be received as either REAL*4 or REAL*8,

APPLIB CALLS: None

12-21 Third Edition

DOC3621-190

p> DATESA

Purpose

DATESA is a double-precision function that returns the date in the
argument date in the form "DAY, MON DD YYYY" (for example, TUE, FEB 23
1982).

The value of the function is the date in the form "MM/DD/YY" (for
example, 02/23/82). ‘This value must be received as REAL*8.

Note that this routine is good for the period January 1, 1977 through
December 31, 2076.

Usage

R*3 = DATESA (date)

CALL DATESA (date)

date Date in the form DAY, MON DD YEAR. ‘The data type
does not matter as long as it is at least 16
characters long.

APPLIB CALLS: None

 DELESA

Purpose

DELESA is a logical function that deletes the file named in name. If
the operation is successful, the function is .TRUE., otherwise the
function is .FALSE.. (.TRUE. and .FALSE, are the FORTRAN logical
values.)

Usage
log = DELESA(name, namlen)

CALL DELESA(name, namlen)

name Filename (may be a pathname) packed two characters
per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2).

APPLIB calls: TREESA, UNITSA, NLENSA

Third Edition 12-22

APPLICATIONS LIBRARY

> DOFYSA

Purpose

DOFYSA is a double-precision function that returns the day of the year

in the form "DDD" in the dofy argument. The value of the function is

the date in the form YR.DDD suitable for printing in FORMAT F6.3. This

value can be received as either REAL*4 or REAL*8, This routine is good

for the period January 1, 1977 through December 31, 2076.

Usage

R*8 = DOFYSA(dofy)

CALL DOFYSA(dofy)

dofy Day of year in the form "DDD" ("Julian" date). Thead hos Rank be

data type does not matter as long as it is at least

four characters long.

APPLIB calls: None

p> DTrIMsA

Purpose

DIIMSA is a double-precision function that returns disk time since

login as centiseconds is the dsktim argument. The function value will

be disk time since login in seconds. This value may be received as

either REAL*4 or REAL*8,

Usage

R*8 = DIIMSA(dsktim)

CALL DTIMSA(dsktim)

dsktim Disk time in centiseconds (INTEGER*4).

APPLIB calls: None

12-23 Third Edition

DOC3621-190

p =EDATSA

Purpose

EDATSA is a double-precision function, It returns the date in the
European (military) form 'DAY, DD MON YEAR' in the argument edate (for
example, TUE, 23 FEB 1982).

The value of the function is the date in the form DD.MM.YY (for
example, 23.03.82). This value must be received in a REAL*8 variable,
The routine is good for the period January 1, 1977 through December 31,
2076.

Usage

R*8 = EDATSA(edate)

CALL EDATSA(edate)

edate Date in the form "DAY, DD MON YEAR",

Discussion

The type of the edate array does not matter as long as it is at least
16 characters long.

APPLIB calls: DATESA

BP E=ENCDSA

Purpose

FNCDSA is a logical function that converts a numeric value to a FORTRAN
format.

Usage

log = ENCDSA(array, width, dec, value)

CALL ENCDSA(array, width, dec, value)

array Array to receive value, packed two characters per
word, Data type does not matter,

Third Edition 12-24

APPLICATIONS LIBRARY

width Field width as in format Fw.d (should be even)
(INTEGER*2) .

dec Places to right of decimal point as shown in format
Fw.d (INTEGER*2).

value Double-precision value to be encoded (REAL*8).

Discussion

FNCDSA attempts to encode value in the supplied Fw.d format if it will
fit. If not, the dec argumentis decremented (moving the decimal point
to the right) until it will fit. If dec reaches 0, or is originally
supplied as 0, value will be encoded in IwIwformat if the number will
fit into a 32-bit integer. If not, and if the field is wide enough
(width > 7), the value will be encoded in E format. If the field is

notwide enough, will be filled with asterisks.

Here is an explanation of the formats:

F A number that includes a decimal fraction. The d is
the number of digits after the decimal point, and w
is the total mumber of positions (including the
decimal point) in the field. The maximm is 32767.

I An integer, with w digits. Maximum is 32767.

E A floating point mumber in scientific format
(xxEtyy), where xx represents the characteristic and

yy is the mantissa or exponent.

Examples are:

Fw.ds 123.4

I: 12345

E: 1.23456E+99

Note that the largest value of width is 16. If it is larger than 16,
only the first 16 characters of array will be used.

The function value will be .TRUE. if the encoding was successful, and

FALSE. if the field was filled with asterisks. (.TRUE. and .FALSE.
are the FORTRAN logical values.) Note that array is the only argument
that is actually modified in the calling program.

12-25 Third Edition

DOC3621-190

APPLIB calls: None

Pp EXSTSA

Purpose

EXSTSA is a logical function that returns .TRUE. if the file exists
and .FALSE. if the file does not exist or if an error was encountered,
(.TRUE. and .FALSE. are the FORTRAN logical values.)

Usage

log = EXSTSA(name, namlen)

name Filename (may be a pathname) packed two characters
per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2).

APPLIB calls: TREESA, UNITSA, NLENSA

p FDATSA

Purpose

FDATSA is a REAL*8 function that converts the datmod field, returned as
word 20 of buffer by RDENSS, to the format DAY, MON DD yyyy (for
example, TUE, FEB 23 1982).

The function value is the datmod field converted to MM/DD/YY (for
example, 02/23/82). It must be received in a REAL*8 variable. The
routine is good for the period January 1, 1972 to December 31, 2071.

RDENS$ must be called before this subroutine.

Usage

CALL FDATSA(datmod, date)

R*§ = FDATSA(datmod, date)

datmod Date returned by RDENSS. This is the date the file
was last modified and is in the format

Third Edition 12-26

APPLICATIONS LIBRARY

YYYYYYYMMMMDDDDD. YYYYYYY is the year modulo 100,
MMMM is the month, and DDDDD is the day (INTEGER*2).

date Array containing the date as a character string,
packed two characters per word, Date is in the
format 'DAY, MON DD YEAR'. Data type does not
matter as long as the array is at least 16
characters long.

APPLIB calls: CNVBSA

p> FEDISA

Purpose

FEDISA converts the datmod field, returned as word 20 of buffer by

RDENSS, to the format "DAY, MON DD YEAR' in date (for example, TUE, 23
FEB 1982). The function value is datmod converted to MM.DD.YY (for
example, 23.02.82). It must be received in a REAL*8 variable. The
routine includes the period January 1, 1972 through December 31, 2071.

RDENSS must be called before this subrouv‘n-.

Usage

CALL FEDISA(datmod, date)

R*8 = FEDTSA(datmod, date)

datmod Date returned by RDENSS. This is date the file was
last modified and is in the format YYYYYYYMMMMDDDDD.
YYYYYYY is the year modulo 100, MMMM is the month,
and DDDDD is the day (INTEGER*2).

date Array containing the date as a character string,
packed two characters per word, Date is in the
format 'DAY, MON DD YEAR'. Data type does not
matter as long as the array is at least 16
characters long.

APPLIB calls: FDATSA

12-27 Third Edition

DOC3621~-190

> FILLSA

Purpose —

FILLSA is an INTEGER function that fills the name buffer with the fill
Character supplied. The function is INTEGER*2 or INTEGER*4, but its
value is always 0.

Usage

int = FILLSA(name, namlen, char)

CALL FILLSA(name, namlen, char)

name Name of buffer to fill, packed two characters per
word. Data type does not matter.

namlen Length of name in characters (INTEGER*2).

char Fill character in FORTRAN Al format. Data type does
not matter,

APPLIB calls: None

p> FSUBSA

Purpose

FSUBSA is a logical function used to fill a character substring with a
Specified character. The substring delimited by fchar and lchar is
filled with the character specified in filchar. The string parameters
are checked for validity. If an error is found, the function is
-FALSE. and a message is printed, If all parameters are valid, the
function will be .TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical
values.)

Usage

log = FSUBSA(string, length, fchar, lchar, filchar)

CALL FSUBSA(string, length, fchar, lchar, filchar)

Third Edition 12-28

APPLICATIONS LIBRARY

string String containing substring to be filled, packed two

characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fchar First character position of substring (INTEGER*2).

lchar Last character position of substring (INTEGER*2).

filchar Fill character in FORTRAN Al format. Data type does

not matter.

APPLIB calls: None

p> FTIMSA

Purpose

FTIMSA is a REAL*4 or REAL*8 function that converts the timmod field,

returned as word 21 of buffer by RDENSS, to the format 'HH:MM:SS'. ‘The

function value is the timmod field converted to decimal hours and may

be received as either REAL*4 or REAL*8.

Usage

CALL FTIMSA(timmod, time)

R*8 = FTIMSA(timmod, time)

R*4 = FTIMSA(timmod, time)

timmod Time at which a file was last modified, in the

format 'seconds since midnight' divided by four
(INTEGER*2) .

time Array containing the time a file was last modified,

as a character string in the format 'HH:MM:ss'.
Data type does not matter as long as array is at

least eight characters long.

APPLIB calls: CNVBSA

12-29 Third Edition

DOC3621-190

BP ccHRsA

Purpose

GCHRSA is an INTEGER*2 or INTEGER*4 function which extracts a single
character from a packed string. It is intended for use only by FORTRAN
programmers. The function value will be the accessed character in
FORTRAN Al format (with blank padding on the right). The character
returned will be left-justified and padded with blanks.

Usage

int = GCHRSA(farray, fchar)

CALL GCHRSA(farray, fchar)

farray Source packed array. Data type does not matter.

fchar Character position in farray to be returned
(INTHGER*2) .

Discussion

This routine replaces the FORTRAN statement:

CHAR = FARRAY (FCHAR)

where FARRAY is declared LOGICAL*1 (IBM FORTRAN) or of a one-character
data type.

APPLIB calls: None

> GEDSA

Purpose

GENDSA is a logical function that positions the file open on funit to
end-of-file. If the operation is successful, the function is .TRUE.,
otherwise, the function is .FALSE.. (.TRUE. and .FALSE. are the
FORTRAN logical values.)

Third Edition 12-30

APPLICATIONS LIBRARY

Usage

log = GENDSA (funit)

CALL GENDSA(funit)

funit PRIMOS file unit (INTEGER*2).

APPLIB calls: None

> JSTRSA

Purpose

JSTRSA is a logical function used to left-justify, right-justify, or
center a string within itself.

Usage

log = JSTRSA(key, string, length)

CALL JSTRSA(key, string, length)

key Determines direction of justification (INTEGER*2).
Possible values are:

ASRGHT Right-justify

ASLEFT Left-justify

ASCNTR Center

string String to be justified, packed two characters per
word. Data type does not matter.

length Length of string in characters (INTEGER*2). It must
be greater than 0.

Discussion

The function will be .TRUE. if justification is successful, .FALSE.
if the string length is less than 0 or if a bad key is used. (.TRUE.
and .FALSE. are the FORTRAN logical values.)

APPLIB calls: NLENSA, FILLSA, MSUBSA, GCHRSA

12-31 Third Edition

DOC3621-190

p> LSIRSA

Purpose

LSTRSA is a logical function used to locate one string within another.

Usage

log = LSTRSA(a, alen, b, blen, fcp, lcp)

CALL LSTRSA(a, alen, b, blen, fcp, lcp)

a String to be located, packed two characters per
word. Data type does not matter.

alen Number of characters in a (INTEGER*2).

b String to be searched, packed two characters per
word. Data type does not matter.

blen Length of b, in characters (INTEGER*2).

fcp First character position in b of substring that
matches string a (INTEGER*2).

lcp Last character position in b of substring that
matches string a (INTEGER*2).

Discussion

LSTRSA will search string b for the first occurrence of stringa. If
string a is found, the function will be .TRUE. and £cp and icp will be
equal to the character positions of the substring in b that matches
string a. If string a is not found or if either stringis null (length
equal to 0), the function will be .FALSE. and fcp and lcp will be
equal to 0. Each string is logically truncated to its operational
length before the search is performed (trailing blanks are ignored).

APPLIB calls: LSUBSA, NLENSA

Third Edition 12-32

p> LSUBSA

Purpose

APPLICATIONS LIBRARY

LSUBSA is a logical function used to locate one substring within
another,

Usage

log = LSUBSA(a, alen, afc, alc, b, blen, bfc, ble, fcp, 1cp)

CALL LSUBSA(a, alen, afc, alc, b, blen, bfc, blc, fcp, lcp)

blen

bEc

ble

fcp

icp

Discussion

Array containing substring to be located, packed two
characters per word, Data type does not matter.

Length of a, in characters (INTEGER*2).

First character position of substring in a
(INTEGER*2) .

Last character position of substring in a
(INTEGER*2).

Array containing substring to be searched, packed
two characters per word. Data type does not matter.

Length of b, in characters (INTEGER*2).

First character position of substring in b
(INTHGER*2) .

Last character position of substring in b
(INTEGER*2).

First character position in b of substring that
matches substring in a (INTEGER*2).

Last character position in b of substring that
matches substring in a (INTEGER*2).

ISUBSA searches the substring contained in b for the first occurrence
of the substring contained ina. If a match is found, fcp and lcp will
be equal to the character positions in b of the matching substring and
the function is .TRUE..

12-33 Third Edition

DOC3621-190

If a matching substring cannot be found or if either substring is null

(length equal to 0), the function will be .FALSE. and fcp and lcp will
be equal to 0. (.TRUE. and .FALSE. are the FORTRAN logical values.)

A representation of the arguments to LSUBSA will be found with the

description of CSUBSA.

APPLIB calls: None

p> MCHRSA

Purpose

MCHRSA is an INTEGER function that moves a character from one packed

string to another.

Usage

CALL MCHRSA(tarray, tchar, farray, fchar)

I*2= MCHRSA(tarray, tchar, farray, fchar)

I*4= MCHRSA(tarray, tchar, farray, fchar)

tarray Returned array of characters, packed two per word,

first character on the left. Data type does not

matter,

tchar Character position in tarray of received character

(INTHGER*2) .

farray Source string. Data type does not matter.

fchar Character position in farray of character to be
moved (INTEGER*2).

Discussion

This routine replaces the FORTRAN statement:

TARRAY(TCHAR) = FARRAY (FCHAR)

when TARRAY and FARRAY are declared LOGICAL*1 (IBM FORTRAN) or of a
one-character data type. Only one character in TARRAY is replaced.

The function value will be the character that was moved in FORTRAN Al

Third Edition 12-34

APPLICATIONS LIBRARY

format, that is, the character in the left-most byte, right padded with

blanks.

APPLIB calls: None

p> MSTRSA

Purpose

MSTRSA iS an INTEGER*2 or INTEGER*4 function used to move the source

string to the destination string.

Usage

int = MSTRSA(a, alen, b, blen)

CALL MSTRSA(a, alen, b, blen)

a Source string, packed two characters per word, Data
type does not matter.

alen Length of a, in characters (INTEGER*2).

b Destination string, packed two characters per word.
Data type does not matter.

blen Length of b, in characters (INTEGER*2).

Discussion

Tf the source string is longer than the destination string, it will be
truncated, If it is shorter, it will be padded with blanks. The
source and destination strings may overlap. The function value will be
equal to the number of characters moved (excluding blank padding). If
either string is null (length equal to 0), no characters are moved and

the function value will be equal to 0.

APPLIB calls: MSUBSA

12-35 Third Edition

DOC3621-190

p> MSUBSA

Purpose

MSUBSA is an integer function used to move the source substring
contained in a to the destination substring contained in b.

Usage

int = MSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

CALL MSUBSA(a, alen, afc, alc, b, blen, bfc, blc)

blen

bic

ble

Discussion

Array containing source substring, packed two
characters per word. Data type does not matter.

Length of a, in characters (INTEGER*2).

First character position of substring in a, packed
two characters per word. Data type does not matter.

Last character position of substring in a
(INTEGER*2) .

Array containing destination substring, packed two
Characters per word. Data type does not matter.

Length of b, in characters (INTEGER*2).

First character position of substring in b
(INTEGER*2).

Last character position of substring in b
(INTEGER*2) .

If the source substring is longer than the destination substring, it
will be truncated. If it is shorter, it will be padded with blanks.
The source and destination substrings may overlap.

If either substring is null (length equal to 0), no characters are
moved and the function will be equal to 0. Otherwise it is equal to
the number of characters moved (excluding blanks used for padding).

APPLIB calls:

Third Edition

MCHRSA

12-36

APPLICATIONS LIBRARY

> NLEVSA

Purpose

NLENSA iS an INTEGER*2 function that returns, as its function value,
the actual length (not including trailing blanks) of the name in name,

Usage

I*2= NLENSA(name, namlen)

CALL NLENSA(name, namlen)

name Name buffer to be tested, packed two characters per
word. Data type does not matter.

namlen Length of name in characters (INTHGER#2) .

APPLIB calls: None

> OPENSA

Purpose

OPENSA is a logical function that opens a file of the given name on
funit. If the operation is successful, the function value is .TRUE.,
and if the operation is unsuccessful, the function value is .FALSE..

(.TRUE. and .FALSE. are the FORTRAN logical values.)

Usage

log = OPENSA(opnkey+typkeyt+untkey, name, namlen, unit)

CALL OPENSA(opnkey+typkey+untkey, name, namlen, unit)

opnkey INTEGER*2:

ASREAD Open for reading.

ASWRIT Open for writing.

ASRDWR Open for reading and writing.

12-37 Third Edition

DOC3621-190

typkey INTEGER*2:

ASSAMF SAM file

ASDAMF DAM file

untkey INTEGER*2:

ASGEIU Choose a PRIMOS file unit number to be
returned in funit. Omission of this
key requires that the routine be

provided with a unit number
(INTEGER*2) .

name File name (may be a pathname) packed two characters
per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2).

funit PRIMOS file unit. This value is’ returned if
untkey = ASGETU; if not, the caller must provide a
legal file number in this argument (INTEGER*2).

APPLIB calls: TREESA, UNITSA, NLENSA

> OPNPSA

Purpose

OPNPSA is a logical function that gets a name from the user and opens
it on funit. If the operation is successful, the function value is
TRUE. and if the operation is unsuccessful or no name is supplied,
the function value is .FALSE.. (.TRUE. and .FALSE. are the FORTRAN
logical values.)

Usage

log = OPNPSA(msg, msglen, opnkey+typkey+untkey, name, namlen, funit)

CALL OPNPSA(msg, msglen, opnkey+ttypkeytuntkey, name, namlen, funit)

msg Array containing prompt for name message, packed two
Characters per word, Data type does not matter.

msglen Length of msg in characters (INTEGER*2).

Third Edition 12-38

APPLICATIONS LIBRARY

opnkey INTEGER*2:

ASREAD Open for reading.

ASWRIT Open for writing.

ASRDWR Open for reading and writing.

typkey INTEGER*2:

ASSAMF SAMfile

ASDAMF DAM file

untkey INTEGER*2:

ASGETU Choose a PRIMOS file unit number to be
returned in funit. Omission of this
key requires that the routine he
provided with a unit number.

name Filename (may be a pathname) packed two characters
per word, Data type does not matter.

namlen Length of name in characters (INTEGER*2).

fumit PRIMOS file unit returned i key is ASGETU, Ifad if met

not, user must provide a legal file number in this
argument (INTEGER*2) .

APPLIB calls: RNAMSA, NLENSA, TREESA, UNITSA

BP OPNVSA

Purpose

OPNVSA is a logical function that opens a file of the given name on
funit. Note that the functions of verification and delay as described
here and in the section FILE SYSTEM ROUTINES above are independent of
each other.

Usage

log = OPNVSA(opnkey+typkeyt+tuntkey, name, namlen, funit, verkey, wtime,
retries)

CALL OPNVSA(opnkey+typkeyt+untkey, name, namlen, funit, verkey,
wtime, retries)

12-39 Third Edition

DOC3621-190

opnkey

typkey

untkey

name

namlen

funit

verkey

wtime

retries

Third Edition

INTEGER*2:

ASREAD

ASWRIT

INTEGER*2;

ASSAMF

ASDAMF

INTEGER*2 :

ASGETU

Open for reading.

Open for writing.

Open for reading and writing.

SAM file

DAM file

Choose a PRIMOS file unit number to be
returned in funit. Omission of this
key requires that the routine’ be
provided with a unit number.

Filename (may be a pathname) packed two characters
per word. Data type does not matter.

Length of name in characters (INTEGER*2), If namlen
is 0 or less, the function value is .FALSE..

PRIMOS file unit returned if wumtkey =ASGETU. If
not, user must provide a legal file number in this
argument (INTEGER*2).

INTEGER*2:

ASNVER

ASVNEW

ASOVAP

ASVOLD

No verification.

Verify new or ask if OK to modify old
file,

Same as ASVNEW except user is prompted
to "OVERWRITE" or "APPEND" if file
already exists.

Verify old; return .FALSE. if not old
file.

Number of seconds to wait if FILE IN’ USE
(INTEGER*2).

Number of times to retry if FILE IN USE (INTEGER*2).

12-40

APPLICATIONS LIBRARY

Discussion

Tf wtime and retries are specified as nonzero and the file to be opened
is IN USE, the open will be retried the specified number of times, with
wtime seconds (elapsed time) between each attempt. If the number of
retries expires, or if either wtime or retries is initially 0 and the
file is IN USE, the function returns .FALSE..

APPLIB calls: RNAMSA, TIMESA, NLENSA, EXSTSA, UNITSA, TREESA, GENDSA

Verification

If verification is not requested (verkey = ASNVER), OPNVSA is identical
in function to OPENSA. If verification is requested (verkey other than
ASNVER), the following actions will be taken according to the valve of

Laces
N

ASVNEW If the file already exists and opnkey is either
ASWRIT or ASRDWR, the uSer will be asked if it is OK
to modify the old file. If the answer is "NO", the
function returns .FALSE.. If the answer is "YES",
the file is opened.

ASOVAP This is the same as ASVNEW except that if an old
file is to be modified, the user is also asked if

the file should be overwritten or appended, If the
answer is "APPEND", the file will be positioned to
end of file.

ASVOLD This is the default case if opnkey = ASREAD. If any
other key is specified, and if the named file does
not already exist, a new file will not be created
and the function returns .FALSE..

Errors

If any errors not covered above occur while opening the file or
positioning it (ASOVAP), the function returns .FALSE.. If the open is
ultimately successful, the function returns .TRUE.. (.TRUE. and

.FALSE. are the FORTRAN logical values.)

12-41 Third Edition

DOC3621-190

> OPVPSA

Purpose

OPVPSA is a logical function that gets a filename from the user and
opens it on funit. Note that the functions of verification and delay
as describedbelow, and in the section FILE SYSTEM ROUTINES above, are
independent of each other.

Usage

log = OPVPSA(msg, msglen, opnkey+typkey+untkey, name, namlen, funit,
verkey, wtime, retries)

CALL OPVPSA(msg, msglen, opnkey+typkeyt+tuntkey, name, namlen, funit,
verkey, wtime, retries)

msg Array containing prompt message, packed two
Characters per word. Data type does not matter.

msglen Length of msg in characters (INTEGER*2).

opnkey INTEGER*2:

ASREAD Open for reading.

ASWRIT Open for writing.

ASRDWR Open for reading and writing.

typkey INTEGER*2:

ASSAMF SAM file

ASDAMF DAM file

untkey INTEGER*2:

ASGETU Choose a file unit mumber to be
returned in funit. Omission of this
key requires that the routine be
provided with a unit number.

name Array containing filename (may be pathname), packed
two characters per word. Data type does not matter.

namlen Length of name in characters (INTEGER*2). If namlen
is 0 or less, the function value is .FALSE..

Third Edition 12-42

APPLICATIONS LIBRARY

funit File unit returned if untkey = ASGEIU. If not, user
must provide a legal file wnit in this argument
(INTEGER*2) .

verkey INTEGER*2 :

ASNVER No verification.

ASVNEW Verify new file or ask if OK to modify
old file.

ASOVAP Same as ASVNEW except user is prompted
to "OVERVWRITE" or "APPEND" if file
already exists.

ASVOLD Verify old, Function value is .FALSE.
if not old.

wtime Number of seconds to wait if FILE IN USE
(INTEGER*2) .

retries Number of times to retry if FILE IN USE (INTEGER*2).

Discussion

If wtime and retries are specified as nonzero and the file to be opened

is IN USE, the open will be retried the specified number of times, with

wtime seconds (elapsed time) between attempts. If the number or

retries expires, or if either wtime or retries is initially 0 and the

file is in use, the function returns .FALSE..

APPLIB calls: RNAMSA, TIMESA, NLENSA, EXSTSA, UNITSA, TREESA, GENDSA

Verification

If verification is requested, the following are the possible actions,

according to the value of verkey:

ASVNEW If the file already exists and opnkey is ASWRIT or

ASRDR, the user will be asked if it is OK to modify

the old file. If the answer is "NO", the function
returns .FALSE.. If "YES", the file is opened.

ASOVAP If an old file is to be modified (as answered "YES"
for ASVNEW), the user is also asked if the file
should be overwritten or appended. If the answer is
"APPEND", the file will be positioned to end of

file,

12-43 Third Edition

DOC3621-190

ASVOLD Default case if opnkey = ASREAD, If any other key
is specified, and if the named file does not already
exist, a new file will not be created and the prompt
message will be repeated.

Errors

If any errors not covered above occur while opening the file or
positioning it (ASOVAP), or a name is not supplied when requested, the
function returns .FALSE.. If the openis ultimately successful, the
function returns .TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical
values,)

> POsnsa

Purpose

POSNSA is a logical function that positions the file open on unit to
the specified position. If the operation is successful, the ‘function
is .TRUE. and if unsuccessful, the function is .FALSE.. (.TRUE. and
-FALSE. are the FORTRAN logical values.)

Usage

log = POSNSA(poskey, funit, pos)

CALL POSNSA(poskey, funit, pos)

poskey INTEGER*2:

ASABS Absolute position

ASREL Relative position

funit PRIMOS file unit (INTEGER*2)

pos Postion (relative or absolute) (INTEGER*4)

APPLIB calls: None

Third Edition 12-44

APPLICATIONS LIBRARY

> RANDSA

Purpose

RANDSA is a random-number generator.

Usage

R*4 = RANDSA (seed)

R*8 = RANDSA(seed)

CALL RANDSA(seed)

seed Input iS previous seed, output is new seed
INTEGER*A\
(INTEGER “sje

Discussion

RANDSA is a double-precision function that updates a seed to a new seed
based upon the following linear congruential method:

U(I)=FLOAT (K(I))/M

K(T) B*K(I-1) modulo M

B 16807 .0

M 2**31-1 = 2147483647 .0

B and M are from Lewis, Goodman, and Miller, "A Pseudo-random Number
Generator for the Systemn/360," IBM Systems Journal, vol. 8, no. 2,
1969, po. 136-145.

K(I-1) is the input value of seed and K(I) is the returned value.

The value of the function is U(I) which represents a probability and is
between 0.0 and 1.0. This value may be received as either REAL*4 or
REAL*8,

For examples, see Chapters 4 through 8.

APPLIB calls: None

12-45 Third Edition

DOC3621-190

p> RNAMSA

Purpose

RNAMSA is a logical function that prints the supplied message prompt
and appends a colon (:) to it. It then reads a user response from the
command stream. If the response is not a legal name, or if the name
provided is too long for the supplied buffer, an error message will be
typed and the message prompt will be repeated. If no name is provided,
the value of the function will be .FALSE.. If a legal name is
provided, the function value will be .TRUE.. (.TRUE. and .FALSE. are
the FORTRAN logical values.) The caller should be aware that COMANL
and RDIKSS (Chapter 9) are called to read the user response, and
therefore the previous command line entered is unavailable.

Usage

log = RNAMSA(msg, msglen, namkey, name, namlen)

msg Message text, packed two characters per word. Data
type does not matter.

msglen Message length in characters (INTEGER*2).

namkey An INTEGER*2 option key. Keys cannot be combined,

ASFUPP Force uppercase.

ASUPLW Do not force uppercase.

ASRAWI Read line as raw uninterpreted text.

name Returned name, packed two characters per word. Data
type does not matter,

namlen Length of name buffer in characters (maximum 80)
(INTEGER*2).

APPLIB calls: None

p> RNDISA

Purpose

RNDISA is a double-precision function that returns the time of day in
centiseconds. The function value will be the time of day in seconds.
This value may be received as either REAL*4 or REAL*8.

Third Edition 12-46

APPLICATIONS LIBRARY

Because this function is used to initialize a random number generator,
if the value is exactly 0, 1234567 and 12345.67 will be returned

instead,

Usage

R*4 = RNDISA(seed)

R*8 = RNDISA(seed)

CALL RNDISA(seed)

seed Time of day in centiseconds (INTEGER*4)

> RNUMSA

Purpose

RNUM A saan 4 aman Lrimrka awn rman kA an +: wan ~
WU 15 4 1.0giCcai runccion usea cto accepc numeric aaca

terminal.

Usage

log = RNUMSA(msg, msglen, numkey, value)

msg Message text, packed two characters per word. Data
type does not matter.

msglen Message length in characters (INTEGER*2).

numkey An INTEGER*2 key specifying the data type to be
verified:

ASDEC Decimal

ASBIN Binary

ASOCT Octal

ASHEX Hexadecimal

value Returned value (INTEGER*4).

12-47 Third Edition

DOC3621-190

Discussion

The routine prints the user-supplied message and appends the colon (:)
to it. It then reads a_ user response and if the response is not a
legal number or if the number provided has too many digits for an
INTEGER*4 value, the error will be reported and the message will be
repeated. If no number is provided, the value of the function will be
-FALSE, and value will be 0. If a legal number is provided, the
function will be .TRUE. and the value will be returned in value.
(.TRUE. and .FALSE. are the FORTRAN logical values.)

Numbers may be immediately preceded by "+" or "—", Binary numbers may
have a maximum of 31 digits, octal a maximum of 11 digits, decimal a
maximum of 10 digits, and hexadecimal a maximum of 8 digits. Negative
binary, octal, or hexadecimal should not be entered in two's
complement, but the same as a negative decimal number.

The caller should be aware that COMANL and RDIKSS (Chapter 10) are
called to read the user response, and therefore the previous command
line is unavailable.

Examples of calls to RNUMSA are given in Chapters 3 through 8. The
operation of this subroutine is shown in Figure 12-3.

APPLIB calls: None

p> RPOSSA

Purpose

RPOSSA is a logical function that returns the current absolute position
of the file open on unit. If the operation is successful, the function
is .TRUE.; otherwise the function is .FALSE.. (.TRUE. and .FALSE.
are the FORTRAN logical values.)

Usage

log = RPOSSA(unit, pos)

CALL RPOSSA(unit, pos)

unit PRIMOS file unit (INTEGER*2).

pos Returned absolute position (INTEGER*4).

APPLIB calls: None

Third Edition 12-48

ACCEPT MESSAGE

APPEND“:” TO MESSAGE
DISPLAY MESSAGE

ERROR
MESSAGE

 >y

A

ACCEPTINPUT

IS
INPUT OF
CORRECT
TYPE

INPUT OF
CORRECT
LENGTH

RETURN

How RNUMSAWorks
Figure 12-3

12-49

APPLICATIONS LIBRARY

Third Edition

DOC3621-190

BP RSTRSA

Purpose

RSTRSA is a logical function used to rotate a character string left or
right. The string is truncated to its operational length before the
rotate is performed; therefore, trailing blanks are not included in
count. If length is less than 0, the function will be - FALSE. ,
otherwise the function will be .TRUE.. (.TRUE. and .FALSE, are the
FORTRAN logical values.)

Usage

log = RSTRSA(string, length, count)

CALL RSTRSA(string, length, count)

string String to be rotated, packed two characters per
word, Data type does not matter.

length Length of string in characters (INTEGER*2).

count Number of positions to rotate string. Negative
count causes left rotate, positive count right
rotate (INTHGER*2),

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
Characters of the string. A character is moved directly from its
Original position to its final destination position. Figure 12-4 shows
the results of two calls to RSTRSA,

Third Edition 12-50

APPLICATIONS LIBRARY

Pll2!t 1415161]

<———string—---—---——>

l415/6/t]1/2] |

after RSTRSA(string, 6, -3)

Prlti2/415/1/6 qT |

after RSTRSA(string, 6, 2)

Use of RSTRSA
Figure 12-4

Example

The following example performs the operations diagrammed above.

OK, SLIST ROTATE.COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. ROTATE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STRING] PIC X(32) VALUE '12 456
O01 LENGTH COMP.
01 CNT COMP.
PROCEDURE DIVISION.

MOVE 6 TO LENGTH.
MOVE -3 TO CNT.
CALL 'RSTRSA' USING STRING], LENGTH, CNT.
EXHIBIT STRING].
MOVE 2 TO CNT.
CALL "RSTRSA' USING STRING], LENGTH, CNT.
EXHIBIT STRINGI.
STOP RUN.

OK, COBOL ROTATE
Phase I
Phase II
Phase III
Phase IV
Phase V

Phase VI

12-51 Third Edition

DOC3621-190

No Errors, No Warnings, Prime V-Mode COBQL, Rev 18.4 <ROTATE>

OK, SEG —LOAD
[SEG rev 18.4]
S$ LO ROTATE
$ LI VCOBLB
$ LI VAPPLB

sir
LOAD COMPLETE
$ EXEC
STRINGL
STRING]
OK,

45612
12456

> RSUBSA

Purpose

RSUBSA is a logical function used to rotate a character substring left
or right. Only the characters of the substring contained in string are
affected. The parameters are checked for validity. If there is an
error, a message is printed and the function will be .FALSE.. I£ no
error occurs, the function will be .TRUE.. (.TRUE. and .FALSE. are
the FORTRAN logical values.)

Usage

log = RSUBSA(string, length, fchar, lchar, count)

CALL RSUBSA(string, length, fchar, lchar, count)

string String containing substring to be rotated, packed
two characters per word. Data type does not matter.

length Length of string in characters (INTEGER*2).

fchar First delimiting character position of substring
(INTEGER*2).

lchar Last delimiting character position of substring
(INTEGER*2).

count Number of positions to rotate substring. Negative
count causes left rotate, positive count causes
right rotate (INTEGER*2).

Third Edition 12-52

APPLICATIONS LIBRARY

Discussion

This routine uses an algorithm that minimizes temporary storage and
execution time. One word of temporary storage is used and the number
of iterations necessary to rotate a string is equal to the length in
Characters of the string. A character is moved directly from its
original position to its final destination position.

APPLIB calls: MCHRSA

p> RWNDSA

Purpose

RWNDSA is a logical function that rewinds the file open on unit. If
faa rnaratian i340 annanaa£iit tha Limabinn i.|8 MmorIG . Akhara an kha
WS VPCLAeLVil LW NUCLLil pf LWLIc LUE 2 eae diWlie 7 VICLWLoce UL

function is .FALSE.. (.TRUE. and .FALSE, are the FORTRAN logical
values.)

Usage

log = RWNDSA (unit)

CALL RWNDSA (unit)

unit PRIMOS file unit (INTEGER*2)

APPLIB calls: None

BP sSTRSA

Purpose

SSTRSA is a logical function used to shift a character string left or
right. The string is shifted the specified number of characters and
the vacated positions are padded with the specified fill character.
Trailing blanks are not included in the shift. If length is less than
0, an error message is printed, the function is .FALSE., and no
Characters are shifted. If no error occurs, the function is .TRUE..
(.TRUE. and .FALSE. are the FORTRAN logical values.)

12-53 Third Edition

DOC3621-190

Usage

log = SSTRSA(string, length, count, filchr)

CALL SSTRSA(string, length, count, filchr)

string Character string to be shifted, packed two
Characters per word. Data type does not matter.

length Length of string in characters. Must be greater
than or equal to 0 (INTEGER*2).

count Number of positions to shift string. Negative count
causes left shift, positive count causes right shift
(INTEGER*2) .

filchr Fill character which will pad the vacated positions.
filchr is specified in FORTRAN Al format (two
characters per word and blank-padded on the right).
Data type does not matter.

APPLIB calls: FSUBSA, MCHRSA, NLENSA

p> SSUBSA

Purpose

SSUBSA is a logical function used to shift a character substring left
Or right. The substring is shifted the specified number of characters

and the vacated positions are padded with the specified fill character.
Any trailing blanks are included in the shift. The parameters are
checked for validity. An error will cause a message to be printed and
the function will be .FALSE.. If no error occurs, the functionwill be
-TRUE.. (.TRUE. and .FALSE. are the FORTRAN logical values.) If the
substring is null, or length is equal to 0, there will be no shift.

Usage

log = SSUBSA(string, length, fchar, lchar, count, filchar)

CALL SSUBSA(string, length, fchar, lchar, count, filchar)

string String containing substring to be shifted, packed
two characters per word, Data type does not matter.

length Length of string in characters (INTEGER*2).

Third Edition 12-54

APPLICATIONS LIBRARY

fchar First delimiting character position of substring
(INTEGER*2) .

lchar Last delimiting character position of substring
(INTEGER*2) .

count Number of positions to shift substring. Negative
count causes left shift, positive count causes right
shift (INTEGER*2).

filchar Fill character with which to pad the vacated
positions. filchar is specified in Al format (two
Characters per word and right-padded with blanks).
Data type does not matter.

APPLIB calls: FSUBSA, MCHRSA

p> TEMPSA

Purpose

This routine opens a unique temporary file in the current UFD for
reading and writing. This file will be named TSxxxx where xxxx is a
four-digit decimal number between 0000 and 9999 inclusive. The actual
name opened will be returned in the name buffer. If the operation is
successful, the function value is .TRUE. and if the operation is
unsuccessful, the function value is .FALSE. (These are the FORTRAN
logical values.)

Usage

log = TEMPSA(typkey+untkey, name, namlen, funit)

CALL TEMPSA(typkeyt+tuntkey, name, namelen, funit)

typkey | INTEGER*2:

ASSAMF SAM file

ASDAMF DAM file

untkey INTEGER*2

ASGETU Choose a file wit mumber to be
returned in funit. Omission of this

key requires that the routine’ be
provided with a unit number

(INTEGER*2) .

12-55 Third Edition

,

DOC3621-190

name Returned name (six characters, packed two characters
per word). Data type does not matter.

namlen Length of name buffer in characters (must be at
. least six) (INTEGER*2).

funit File unit (INTEGER*2).

APPLIB calls: FILLSA

> TIMESA

Purpose

TIMESA is a double-precision function that returns the time of day in
the form HR:MN:SC. The value of the function is the time of day in
decimal hours. This value may be received as either REAL*4 or REAL*8,

Usage

R*8 = TIMESA(time)

CALL TIMESA(time)

time Time of day in the form HH:MM:SS, packed two
characters per word. Data type does not matter as
long as it is at least eight characters long.

APPLIB calls: None

> TREESA

Purpose

TREESA is a logical function that scans a file name and determines if
it is a pathname. If it is a pathname, the function is .TRUE. andif
not, it is .FALSE.. In addition, the location of the final name (or
entire name if not part of a pathname) may be determined from the
values returned in fst and flen. Note that if the name is empty, fst
and flen are both 0.

Third Edition 12-56

APPLICATIONS LIBRARY

Usage

log = TREESA(name, namlen, fst, flen)

name Array containing filename, packed two characters per
word (input). Data type does not matter.

namlen Length of name in characters (INTEGER*2 — input).

fst Character position in name of first character in
final name (INTEGER*2 — returned).

flen Length of final file name in characters
(INTHGER*2 -—— returned).

APPLIB calls: GCHRSA, NLENSA

Example

OK, SLIST TREE,COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. TREE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 NAME PIC X(32) VALUE SPACES.
Q1 NAMLEN COMP.
01 FSTART COMP.
Ql FLEN COMP.
Q1 ASCIILEN PIC S99.
PROCEDURE, DIVISION.
001-BEGIN.

DISPLAY ‘ENTER FILENAME’,
ACCEPT NAME.
DISPLAY 'ENTER LENGTH OF NAME'.,

ACCEPT ASCIILEN.
MOVE ASCIILEN TO NAMLEN,
CALL 'TREESA' USING NAME, NAMLEN, FSTART, FLEN.

EXHIBIT NAME.
EXHIBIT NAMLEN.
EXHIBIT FSTART.
EXHIBIT FLEN.
STOP RUN.

OK, SEG TREE

ENTER FILENAME
ANNE>SUBS>TREE

12-57 Third Edition

DOC3621-190

ENTER LENGTH OF NAME
14

NAME= ANNE>SUBS>TREE
NAMLEN= 00014+
FSTART= 00011+
FLEN= 00004+
OK,

IAININJE|>|DJAJT|A|]>|S[A|M|ID|A|TIA|>|HIO|UJRIS |WIO|R|KJE|D|

 < nameln >

<——-—----flen-——---——->

fst

Arguments to TREESA
Figure 12-5

p TRNCSA

Purpose

TRNCSA is a logical function that truncates the file open on funit. If
the operation is successful, the function is .TRUE.; otherwise the
function is .FALSE. (These are the FORTRAN logical values.)

Usage

log = TRNCSA(funit)

CALL TRNCSA(funit)

funit PRIMOS file unit (INTEGER®2)

APPLIB calls: None

> TSCNSA

Purpose

TSCNSA is a logical function that scans the file system tree structure
(starting with the home UFD). It uses the file subroutines RDENSS and

SGDR$$ to read UFD and segment directory entries into the entry array.

Third Edition 12-58

APPLICATIONS LIBRARY

Usage

log= TSCNSA(key, funits, entry, maxsiz, entsiz, maxlev, lev, code)

CALL TSCNSA(key, funits, entry, maxsiz, entsiz, maxlev, lev, code)

key INTEGER*2:

ASTREE Scan full tree,

ASNUFD Do not scan sub-UFDs.

ASNSEG Do not scan segment directories.

ASCUFD Scan current UFD only.

ASDLAY Pause when popping up to directory.

funits Array of unit numbers maxlev long (INTEGER*2).

entry Array maxsiz * maxlev long (INTEGER*2).

Caution

This two-dimensional array may be passed
from a FORTRAN program only.

maxsiz Size of each entry in entry array (INTEGER*2).

entsiz Set to size of current entry (INTEGER*2).

maxlev Maximum number of levels to scan (INTEGER*2).

lev Current level (INTEGER*2).

code Return code (INTEGER*2).

APPLIB calls: None

12-59 Third Edition

DOC3621-190

Discussion

Each call to TSCNSA returns the next file on the current level or the
first file on the next lower level of the structure. The variable lev
is used to keep track of the current level. For example, after the
first call to TSCNSA (with jlev=0), lev will be returned as 1, and
entry(1,1) will contain the UFDentry describing the first file in the
home UFD. If this file is a sub-UFD, following the next call to TSCNSA
lev will be 2, and entry(1,2) will contain the entry for the first file

in the sub-UFD. Thus, for the UFD represented in Figure 12-6, TSCNSA
in a loop would return the names in the order shown in Figure 12-7.

The values of key (INTEGER*2) have the following meanings:

ASTREE All entries in the directory structure are returned
up to maxlev levels deep. (Levels below level
maxlev are. ignored.)

ASNUFD When a sub-UFD is encountered (in the home UFD), its
entry is returned, but no files under that sub-UFD
are returned, In the absence of segment
directories, this effectively limits the scan to the
home UFD.

ASNSEG Files inside segment directories are not returned.

ASCUFD This is a logical combination of ASNUFD and ASNSEG
— only files in the home UFD are returned,

ASDLAY This key is identical to ASTREE except that
directory entries are returned twice, once on the
way down (as for ASTREE), and again on the way up.
(This is necessary, for example, to implement a
tree-delete function since a directory cannot be
deleted until it has been emptied.)

Third Edition 12-60

SUBROUTINES

APPLICATIONS LIBRARY

SOURCE

GATE

REFRIED

BLUE GREEN

OBSOLETE

A UFD to be Searched by TSCNSA
Figure 12-6

SOURCE
SOURCE > BLUE
SOURCE > GREEN
GATE
GATE > OBSOLETE
NONFOISONOUS
REFRIED
OK,

NONPOISONOUS

Result of TSCNSA Sample Program on Figure 12-6
Figure 12-7

12-61 Third Edition

DOC3621-190

The following items should be considered when using TSCNSA:

1. For the first call of TSCNSA, lev should be equal to 0.
Thereafter it should not be modified until HOF is reached on
the top level UFD at which point lev will be reset to 0.

The entries in the entry array are in RDENSS format. For
entries inside a segment directory, all information from the
directory entry is first copied down a level. Entry(2,lev) is
set to 0 and entry(3,lev) is then set to a 16-bit entry number.
For nested segment directories, the type field of the entry is
set appropriately by opening the file with SRCHSS. (The file
is then immediately closed again.)

The parameter entsiz is set to the number of words returned by

RDENSS$, Inside segment directories, it should be ignored.

The type fields in the entry array — entry(20,1) — should not
be modified. (TSCNSA uses them to walk up and down the tree.)

When TSCNSA requires a file unit, it uses units(lev). By using
the RDENSS and SGDRSS read-position and set-position functions
carefully, it is possible to reuse file units dynamically.

TSCNSA returns .TRUE. until a nonzero file systen code is
returned or until ESEOF is returned with lev=0 (top level).
ESEOF on lower levels of the structure is suppressed, and code
is returned as 0.

TSCNSA requires owner rights in the home UFD.

Third Edition 12-62

Example

APPLICATIONS LIBRARY

The following FORTRAN program illustrates how TSCNSA can be used to

perform a directory LISTF. Figures 12-6 and 12-7 show the results of
the program run in a sample directory. Figure 12-8 diagrams how the
program works.

SINSERT SYSCOM>ERRD. INS.FIN
SINSERT SYSCOM>KEYS. INS. FIN
SINSERT SYSCOM>ASKEYS. INS. FIN
Cc

10
100

105

150

170
200

INTEGER MAXLEV,MAXSIZ

PARAMETER (MAXLEV=16) /* MAXIMUM LEVELS TO SCAN
PARAMETER (MAXSIZ=24) /* MAXIMUM SIZE OF EACH SLICE IN ENTRY
INTEGER I,L, ENTRY(MAXSIZ,MAXLEV) , UNITS (MAXLEV) ,CODE,NLEVSA

LOGICAL TSCNSA
DATA UNITS/1,273 1475,6,7,879710,11,12,13,14,15,16/

L=0 /* INITIALIZE LEVEL COUNTER

IF (TSCNSA (ASTREE, UNITS , ENTRY,MAXSIZ , I,MAXLEV, L, CODE))GOTO 105
IF (CODE.NE.ESEOF) CALL ERRPRS$(ESNRIN, CODE, 0, 0, 0, 0)
CALL EXIT /* ALL DONE IF ESEOF
GOTO 10 /* RESTART IF 'S' TYPED

DO 200 I=1,L /* CONSTRUCT PATHNAME
IF (ENTRY(2,I).Q.0) GOTO 150/* BRANCH IF SEGDIR
CALL TNOUA(ENTRY (2,1), NLENSA(ENTRY(2,I), 32))feree ee em Lee

GOTO 170

CALL TNOUA('(', 1) /* FORMAT SEGDIR ENTRY NUMBER

CALL TODEC (ENTRY (3,I))
CALL TNOUA(')', 1)

IF (I.NE.L) CALL TNOUA(' > ', 3)/* PATHNAME SEPARATOR

CONTINUE
CALL TONL

GOTO 100
END

12-63 Third Edition

DOC3621-190

ERROR

L=0
key = ASTREE

NO

YES RETURN

FOR | = 1 to lev-no DO

___ YES

v

DISPLAY NUMBER DISPLAY FILE OR SUBUFD
NAME

{

BOTTOM LEVEL
?

 YES
ADD > TO
DISPLAY

v
REPEAT

Using TSCNSA to List Files on Directories
(See sample program.)

Figure 12-8

Third Edition 12-64

APPLICATIONS LIBRARY

p TYPESA

Purpose

TYPESA is a logical function that tests a character string to
determine if it can be interpreted as the type specified by key.

Usage

log = TYPESA(key, string, length)

key String type to be tested for (INTEGER*2).
Possible keys are:

ASNAME Can string be interpreted as a
name?

ASBIN Can string be interpreted as a
binary number?

ASDEC Can string be interpreted as a
decimal number?

ASOCcT Can string be interpreted as an
octal number?

ASHEX Can string be interpreted as a
hexadecimal number?

string String to be tested, packed two characters per
word. Data type does not matter.

length Length of string, in characters (INTEGER*2).

Discussion

A string is interpreted as a name if it contains at least one
alphabetic or special character other than a leading plus or minus; a
binary number if it contains only the digits 0 through 1; a decimal
number if it contains only the digits 0 through 9. It is an octal
number if it contains only the digits 0 through 7, and is hexadecimal
if it contains only the digits 0 through 9 and the characters A through
F (uppercase only). A number may have a leading sign and any number of
blanks between the sign and the first digit. However, embedded blanks
within the number itself are not allowed. A number must also have at
least one digit.

12-65 Third Edition

DOC3621-190

Leading and trailing blanks are ignored. The function is .TRUE. if
string satisfies the conditions required by the key used; otherwise it
is .FALSE.. A null string (length equal to 0) will return a function
value of .TRUE. only if key is ASNAME.

APPLIB calls: GCHRSA, NLENSA

> UNITSA

Purpose

UNITSA is a logical function that returns .TRUE. if a file unit is
Open and .FALSE. if it is not open. (.TRUE. and .FALSE. are the
FORTRAN logical values.)

Usage

log = UNITSA(funit)

funit PRIMOS file unit (INTEGER*2)

APPLIB calls: None

> YSNOSA

Purpose

YSNOSA is a logical function that prints the supplied message and
appends the character "?" to it. It then reads a user response. If
the answer is "YES" or "OK", the function value is .TRUE.. If the
answer is "NO", the function value is .FALSE.. If an illegal answer is
provided or if no default is accepted, the message will be repeated.
User responses may be abbreviated to the first one or two characters.

Usage

log = YSNOSA(msg, msglen, defkey)

msg Message text, packed two characters per word. Data
type does not matter.

msglen Message length in characters (INTEGER*2).

Third Edition 12-66

APPLICATIONS LIBRARY

msglen Message length in characters (INTEGER*2).

defkey An INTHGER*2 key specifying the default:

ASNDEF No default accepted.

ASDNO Default is "NO".

ASDYES Default is "YES".

APPLIB calls: None

Example

OK, SLIST YESNO1.PASCAL

program main:
}

{ FORTRAN logicals are incompatible with Pascal boolean data types.}
{ Therefore, interfacing to the applications library from Pascal }

can be a problem. The following program shows the easiest way to }

determine True and False when calling FORTRAN subroutines with

logicals.

P
I
R
P
R
I
A

C
A
A

{ Note: This program assumes that the type of logical returned is
{ a LOGICAL*2, and only occupies two bytes of memory.

R
y
d
R
e
e
d
C
a
n
e
i
g
n

Ri
ng
ed

Le
ap
!

const

%INCLUDE 'SYSCOM>ASKEYS. INS. PASCAL';

type |
string8 = array [1 .. 8] of char;

stringl6 = array[l ..16] of char;

var
msg : stringl6;
date: stringl6;
time: string8;

function ysnoSa(var s char; {Pass by ref, first loc of the msg}
1 : integer; {Pass by value, length of msg }
k : integer) {Pass by value, default keys }

sinteger; extern; {Returns FORTRAN logical as integer}

begin
writeln;

msg := 'Yes | No ts
if ord(True) = ysnoSa(msg[1],8, aSndef)

then

12-67 Third Edition

DOC3621-190

writeln('Ok!')
else

writeln('Absolutely NO!');
end,

This program, stored as YESNO1.PASCAL, may be compiled, loaded, and
executed with the following dialogue.

OK, PASCAL YESNO1
0000 ERRORS (PASCAL-REV 19.0)
OK, SEG -LOAD
[SEG rev 19.0]
S LO YESNOL
$ LI PASLIB
S$ LI VAPPLB

sir
LOAD COMPLETE

$ EX
Yes | No? YES
Ok!
OK, SEG YESNO1

Yes | No? NO
AbsolutelyNO!

Third Edition 12-68

FORMAT SUMMARY

APPLICATIONS LIBRARY

Below is a brief summary of the calling sequences for all the VAPPIB
and APPLIB routines.

_ Group

File System

The type codes are defined as:

Type Code Description

ot LOGICAL

I INTEGER*2 or INTEGER*4

1*2 INTEGER*2

R REAL

DP DOUBLE PRECISION

Name Type Arguments

TEMPSA L (TYPKEY, NAME, NAMLEN , FUNIT)
OPENSA: L (OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN , FUNIT)
OPNPSA L (MSG, MSGLEN , OPNKEY+TYPKEY+UNTREY, NAME,

NAMLEN, FUNIT}
OPNVSA L (OPNKEY+TYPKEY+UNTKEY, NAME, NAMLEN , FUNIT,

VERKEY,WEIME, RETRYS)
OPVPSA L (MSG, MSGLEN , OPNKEY+-TYPKEY+UNTKEY, NAME,

NAMLEN, FUNIT,VERKEY,WEIME,RETRYS)
CLOSSA L (FUNIT)
RWNDSA L (FUNIT)
GENDSA L (FUNIT)
TRNCSA L (FUNIT)
DELESA L (NAME , NAMLEN)
EXSTSA L (NAME , NAMLEN)
FUNITSA L (FUNIT)
REOSSA L (FUNIT, FOS)
POSNSA L (POSKEY, FUNIT, POS)
TSCNSA L (KEY, FUNITS , ENTRY, MAXSIZ,

ENTSIZ ,MAXLEV, LEV, CODE)

12-69 Third Edition

DOC3621-190

Group

String

User Query

Information

Mathematical

Conversion

Parsing

Name

FILLSA I
NLENSA I*2
MCHRSA I
GCHRSA I
TREESA I
TYPESA L
MSTRSA I*2
MSUBSA I*2
CSTRSA L
CSUBSA L
LSTRSA L
LSUBSA L
JSIRSA L
FSUBSA L
RSTRSA L
RSUBSA L
SSTRSA L
SSUBSA L
YSNOSA L
RNAMSA L
RNUMSA L
TIMESA DP
CTIMSA DP
DIIMSA DP
DATESA DP
EDATSA DP
DOFYSA DP
RNDISA DP
RANDSA DP
ENCDSA L
CNVASA L
CNVBSA I
CMDLSA L

Third Edition

Type Arguments

(NAME , NAMLEN , CHAR)
(NAME , NAMLEN)
(TARRAY, TCHAR, FARRAY, FCHAR)
(FARRAY, FCHAR)
(NAME , NAMLEN, FSTART, FLEN)
(KEY, STRING, LENGTH)
(A, ALEN ,B, BLEN)
(A,ALEN ,AFC,ALC, B, BLEN ,BFC,BLC)
(A,ALEN,B, BLEN)
(A, ALEN,AFC,ALC, B, BLEN ,BFC, BLC)
(A, ALEN,B,BLEN , FCP, LCP)
(A, ALEN,AFC,ALC, B, BLEN ,BFC, BLC, FCP, LCP)
(KEY, STRING, LENGTH)
(STRING, LENGTH , FCHAR, LCHAR, FILCHAR)
(STRING, LENGTH , COUNT)
(STRING, LENGTH , FCHAR, LCHAR, COUNT)
(STRING, LENGTH , COUNT, FILCHAR) .
(STRING, LENGTH , FCHAR, LCHAR, COUNT, FILCHAR)
(MSG, MSGLEN ,DEFKEY)
(MSG, MSGLEN , NAMKEY, NAME , NAMLEN)
(MSG, MSGLEN , NUMKEY,VALUE)

(TIME)
(CPUTIM)
(DSKTIM)
(DATE)

(EDATE)
(DOFY)
(SEED)
(SEED)
(ARRAY,WIDTH , DEC,VALUE)
(NUMKEY, NAME, NAMLEN ,VALUE)
(NUMKEY,VALUE,NAME , NAMLEN)
(KEY, KWLIST, KWINDX, OPIBUF,BUFLEN

OPTION ,VALUE, KWINFO)

12-70

APPLICATIONS LIBRARY

SYSCOM>ASKEYS

This is a listing of the file SYSCOM>ASKEYS, as needed for FORTRAN
programs. Pascal and PL1G programmers should use the

ASKEYS.INS. language file that is applicable.

This listing uses decimal values for keys. The listings from the
SYSCOM UFD use octal values.

C ASKEYS.INS.FIN, APPLIB>SOURCE, TRANSLATOR DEPT, 05/29/81
[ERRERERERERERERERERERERERERREERERREREEEAEIEKEREREREEERERERER&/

/* */
/* KEY DEFINITIONS (TABSET 6 11 28 69) */
% */

[/#REREEREKKE OPENSA, OPNPSA, OPNVSA, TEMPSA *##kkkRRRERX */
[JBEBRERERERERERERERERES OPNKEY KKKKEKKEKKEKKEREKKEEKERERE */

ASREAD = 1, /* READ */
RG@rIMTm — 4 f/x toTmn * /
AQWRLL = Ly 7/7 WRiLG /

ASRDWR = 3, /* READ/WRITE */
/*® KEEKE TYPKEY kREKKE */

ASSAMF = 0, * OPEN NEW SAM FILE */
ASDAMF = 1024 , /* OPEN NEW DAM FILE */

/* KEEKKK UNTKEY *RRRKK */

ASGETU = 16348, /* OPEN AND RETURN UNIT */
/* KEKE VERKEY KKEKEKKKE */

ASNVER = 1, /* NO VERIFICATION . */
ASVNEW = 2, /* VERIFY NEW FILE (OK TO MODIFY) */
ASOVAP = 3, /* ASVNEW + OVERWRITE/APPEND OPTION */
ASVOLD = 4, /* VERIFY OLD FILE (DO NOT CREATE NEW) */

/* */
[RERREERERERERERERERER RPOSSA SeIKEREKEREKRERERRRERRRRERRREREEE */

/* KEKE POSKEY KKEKKE */

ASABS =1, /* BBSOLUTE POSITION */
ASREL = 2, /* RELATIVE POSITION 4

* *

[RERERRERERRERERERERES YSNOSA KEKEREREKKERRREEREREKEE */

/* KEKKKK DEFKEY ***** */

ASNDEF = -1, /* NO DEFAULT */
ASDNO = 0, /* DEFAULT = 'NO! */
ASDYES = 1, /* DEFAULT = 'YES' */

/* */
[REBREREERERERERERERER RNUMSA KRKEKKEKRRERREEERERERERRERERERERE */

[RERRERERERERREEERERER CNVASA KEKEREKERERREREREEREEREREREREREE */

/* KRKEKK NUMKEY KKKKER */

ASDEC =1, /* DECIMAL */
ASOCT =2, /* OCTAL */
ASHEX = 3, /* HEXADECIMAL */
ASBIN = 9, /* BINARY */

/* */
/* */
[RREREEREREREREEERERES CNVBSA KERKEEKEERERERREREREE */

/* AKEKKE NUMKEY *RREKS */

/* ASDEC =1, /* DECIMAL, LEFT PADDED WITH BLANKS */

12-71 Third Edition

DOC3621~-190

[BREREREREEERERERERERE CMDLSA RKKRKERERERKEKKERERERERERERERERER

[RREERERERERERERERERES RNAMSA KREEREREREREREREREREEREREERERERE

[JERERRERERERERERREEEER TSCNSA KERKKEEREREREEKEEEEEEEERRERERERE

ASOCT/* = 2,
/* ASHEX = 3,

/* ASBIN = 9,
ASDECZ = 4,
ASOCTZ = 5,

ASHEXZ = 6,

ASDECU = T+
/*

ASBINZ = 8,
/*

/*

/*

/* ASREAD = 1,
ASNEXT = 2,

ASRSET = 3,
/* ASRAWI = 4,

ASNEWL = 5,

ASRCMD = 6,
/*

/* ASDEC = l,

/* ASOCT = 2r

/* ASHEX = 3,

/* ASRAWI = 4,
ASNDEC = 5,
ASNOCT = 6,
ASNHEX = TY

ASNAME = 8,
/* ASBIN = 9,

ASNBIN =10,
/*

ASNONE = 0,
/* ASNAME = 8,

ASNUMB = 9,
ASNOVF = 10

/*

/* ASNONE = 0,

ASOPIL = 1,

ASREQD = 2p
‘*

/*

ASFUPP = 1,

ASUPLW = 2,
ASRAWI = 4,

/*

/*

/*

ASTREE = 1,

ASNUFD = 2,
ASNSEG = 3,

ASCUFD = 4,

ASDLAY = 5,

Third Edition

/* OCTAL, LEFT PADDED WITH BLANKS
/* HEXADECIMAL, LEFT PADDED WITH BLANKS
/* BINARY, LEFT PADDED WITH BLANKS
/* DECIMAL, LEFT PADDED WITH ZEROS
/* OCTAL, LEFT PADDED WITH ZEROS
/* HEXADECIMAL, LEFT PADDED WITH ZEROS
/* UNSIGNED DECIMAL, LEFT PADDED WITH

BLANKS
/* BINARY, LEFT PADDED WITH ZEROS

KEEKKK KEY KEKEKKK

/* READ NEXT ENTRY IN COMMAND LINE
/* READ FIRST ENTRY IN NEXT LINE
/* RESET TO BEGINNING OF COMMAND LINE
/* READ REMAINDER OF LINE AS RAW TEXT
/* ACCEPT NEW KEYWORD LIST
/* FIRST TOKEN IS COMMAND (NO '-')

KEEKKK OPTYPE FkRKKK

/* DECIMAL OPTION
/* OCTAL OPTION
/* HEXADECIMAL OPTION
/* OPTION IS RAW TEXT
/* NAME OR DECIMAL OPLION
/* NAME OR OCTAL OPTION
/* NAME OR HEXADECIMAL
/* NAME
/* BINARY OPTION
/* NAME OR BINARY OPTION

KEEKKK OPTION FEREEE

/* NO OPTION PRESENT OR NULL OPTION
/* OPTION IS A NAME

/* OPTION IS A NUMBER (DIGIT STRING)
r /* NUMERIC OVERFLOW
KEKKKK STATUS *eKEEK

/* NO OPTION TO FOLLOW KEYWORD
/* OPTION MAY OR MAY NOT FOLLOW KEYWORD
/* OPTION MUST FOLLOW KEYWORD

HEKEKE NAMKEY *#444S

/* FORCE UPPER CASE
/* READ UPPER AND LOWER CASE
/* READ REST OF LINE

ERKEKKK KEV KREKKK

/* ALL ENTRIES IN A TREE
/* DO NOT SCAN SUBUFDS
/* DO NOT SCAN SEGDIRS
/* DO NOT SCAN SUBUFDS OR SEGDIRS
/* STAY AT DIRECTORY WHEN GOING UP TREE

12-72

APPLICATIONS LIBRARY

ASBACK = 6, /* BACK UP ONE LEVEL (FOR ERROR HANDLING) f
/* *

[RRRRRERERRREREREREERE JSTRSA KKEREKEKKEREREREERERERERERERERERE */

/* REERKK KEV REEKKSE */

ASRGHT = 1, /* RIGHT JUSTIFY */
ASLEFT = 2, /* LEFT JUSTIFY */
ASCNIR = 3, /* CENTER */

/* */
[RERRERERERERERERERERE CASESA KEKEKEREREREEREREEREREERRERERE */

/* KKEKKKE KEY REKKKK */

/* ASFUPP = 1, /* FORCE UPPER CASE */
ASFLOW = 5 /* FORCE LOWER CASE */

/* */
[RERERREREREREREREERER TYPESA KEKEEEKRERERERERREREERERERERERERE */

/* KKKEKKK KEY KEKKKK */

/* ASBIN = 9, /* BINARY NUMBER */
/* ASDEC =1, /* DECIMAL NUMBER */
/* ASOCT = 2, /* OCTAL NUMBER */
/* ASHEX = 3, /* HEXADECIMAL NUMBER */
/* BSNAME = 8 /* NAME */
* */

[BERREREREREREREREEEREREREREREREREREREEREREREREREREREREREEEERE */

LIST

12-73 Third Edition

Sort Libraries

SORT SUBROUTINES OVERVIEW

PRIMOS contains many routines for performing disk or internal sorts,
The subroutines are contained in the four libraries described below. A
detailed description of each subroutine follows later in this chapter.

VSRILI is the V-mode sort library. It contains the disk sort routines
ASCSRI (also called ASCSS$), which can sort on five key types and can
merge sorted files, and SUBSRI, which will sort one file on an ASCII
key. These routines handle larger records and more key types and
record types than the R-mode version. VSRILI also has a set of
cooperating subroutines which provide for the user's own input and

- output procedures. Their strategy is described in the sections on
COOPERATING MERGE SUBROUTINES and COOPERATING SORI SUBROUTINES below.

SRILIB is the R-mode sort library. It contains two subroutines that
perform a disk sort operation. SUBSRI will sort one file on multiple
ASCII keys; ASCSS$ can sort on five key types and can also merge
sorted files.

The VMSORT library contains several in-memory sort subroutines
(heapsort, bubble, partition exchange, radix exchange, straight

insertion, binary search, and diminishing increnent). It also has a

binary-search and table-building subroutine.

MSORTS is the R-mode version of VMSORT.

Table 13-1 shows the subroutines by function. Table 13-2 shows which
subroutines are in each sort library.

13-1 Third Edition

18.1

DOC3621-190

Table 13-1
Sort Routines by Function

Sort one file on ASCII key(s).
Sort or merge sorted files (multiple key types).
Merge sorted files.
Return next merged record to sort.
Close merged input files.

Sort one or several input files.
Prepare sort table and buffers.
Get input records.
Sort tables prepared by SETUSS.
Get sorted records.

Close all sort units.
Heap sort.
Partition exchange.
Dimishing increment.
Radix exchange.

Insertion sort.
Bubble sort.
Binary search or build binary table.

SUBSRT
ASCSRI, ASCSS$
MRG1SS
MRG2SS
MRG3S$S

SRIFSS
SETUSS
RLSESS
CMBNSS
RTRNSS

CLNUSS

QUICK

RADXEX

INSERT
BUBBLE
BNSRCH

Third Edition 13-2

SORT LIBRARIES

Table 13-2
Sort Subroutines by Library

SRTLIB VSRILI MSORTS VMSORT

SUBSRT SUBSRT HEAP HEAP

ASCSSS$ ASCSS$ QUICK QUICK
ASCSRT SHELL SHELL

SRIFSS RADXEX RADXEX

SETUSS INSERT INSERT

RLSESS BUBBLE BUBBLE

CMBNSS BNSRCH BNSRCH

RTRNSS
CLNUSS

MRG1SS
MRG2SS
MRG3$S

Record Types

The following record types are handled by the VSRILI library routines.

Compressed Source: Record with compressed blanks, delimited by a

NEWLINE character (:212). Compressed source lines cannot contain data

which may be interpreted as a blank compression indicator (:221) or

NEWLINE character.

Uncompressed Source: Record with no blank compression, delimited by a

NEWLINE character (:212). Uncompressed source lines cannot contain

data which may be interpreted as a NEWLINE character.

Variable Length: Record stored with length (in words) in the first

word. This length does not include the first word which contains the

count. Files containing records of this type are also called binary

files (not the same as object files produced by a compiler).

Fixed Length: Record containing data but no length information. The

length must be defined as the maximm line size. (If a NEWLINE

character is appended to each record to make the file acceptable input

to EDITOR (ED), the character must be included in the length.)

13-3 Third Edition

18.1

18.1

DOC3621-190

Default Record Type: The default depends upon the key types specified,
(See Key Definitions, below.) The input type defaults to variable
length 1f the key specifies a single-precision (16-bit) integer,
double-precision (32-bit) integer, or single- or double-precision real
number, Otherwise, the default is compressed source. If the output
type is not specified, it is assumed to be the same as the input type.

SRILIB routines use only compressed-source and variable records.

Note
If multiple input files are used, they must all contain records
o£ the same type.

Record Length

The maximum record length allowed is 508 characters in R-mode and 32760
Characters in V-mode. "WARNING-LINE TRUNCATED" is printed whenever the
data (not including record delimiters) exceeds the maximum record
length and the excess data is ignored. Output record length defaults
to the input record length.

Collating Sequence

ASCII keys may be sorted using the EBCDIC rather than the ASCII
collating sequence. This option is specified in the spcls(2) parameter
o£ SRTFSS and SETUSS.

Key Definitions

A sort key is a portion of the record, called the record field, on
which the records are to be sorted. Each key must start and end ona
byte boundary. An improperly defined key (e.g., with record length
less than ending byte number of key) will produce indetermimte
resuits, Withcompressed source records, the key is padded with
Spaces. In R-mode, 20 keys with a maximum length of 312 characters may
be specified. In V-mode, up to 64 key fields may be specified and the
total length may not exceed maximum record length. For fixed-length
records, key fields are verified to be within record length. The
following are the key types which are specified as a parameter in the
sort subroutines.

ASCII Keys: Character strings, stored one character per byte. ASCII
keys are limited only by the length of the record,

Third Edition 13-4

SORT LIBRARIES

Signed Numeric ASCII Keys: Require one byte per digit and include the
following types:

Numeric ASCII, leading separate sign

Numeric ASCII, trailing separate siqn

Numeric ASCII, leading embedded sign

Numeric ASCII, trailing embedded sign

A space will be treated as a positive sign. Signed numeric ASCII keys
may be as long as 63 digits plus Sign.

When the sign is separate, a positive number has a plus sign(+) and a
negative number has a minus sign(-). If the sign is embedded, a single
Character is used to represent the digit and sign. Embedded sim
characters are:

Digit Positive Negative

0 Or-rtr{ | ?-

1 1A J

2 . 2B K

3 3C L

4 4D M

5 5 E N

6 6 F O

7 7G P

8 8 H Q

9 91 R

Unsigned Numeric ASCII Keys: Stored one digit per byte and are limited

only by the length of the record.

13-5 Third Edition

18.1

18.1

DOC3621-190

Integer and Real Keys: Include the following types:

Key Byte Length Range

Single-precision integer 2 -32767 to +32767

Double-precision integer 4 —2**31 to +2**31-1

Single-precision real 4 +(10**-38 to 10**38)

Double-precision real 8 +(10**-9902 to 10**9825)

Unsigned integer 2 0 to 65535

Packed Decimal Keys: Stored two digits per byte. The last byte
contains the final digit plus sign. Anegative field has a hex D in
the sign nibble. All other four-bit combinations in the sion nibble
represent a positive sign. Apacked field must have an odd number of
digits and may have up to 63 digits plus sign.

Arguments

Numeric parameters are INTHGER*2 unless otherwise noted. Names are
received as integer arrays, so the data type does not matter in the
calling program.

tag Sort

When a sort cannot be done completely in the memory allocated, it
Creates temporary work files in which it stores sorted pieces of the
data. These sorted pieces are then merged to create the output file.

Atag sort will store the input records separate from the key data.
After all the keys have been sorted and merged, the corresponding
records are then located and output. The more records there are, the
longer this may take, and so this last phase may be time-consuming for
a very large file.

Anontag sort will store each input record with its sort key. This
eliminates the search for each record after merging, but requires more
disk space. However, a nontag sort will not always be faster, since
more I/O must be done to merge records and keys than to merge keys
only.

Third Edition 13-6

SORT LIBRARIES

Some selection criteria, in probable order of importance, are:

e If disk space is a problem, use a tag sort.

e If the input file is small, it doesn't matter,

e Ifthe input file is big, use a nontag sort.

@ If the input file is partially ordered, use a nontag sort.

@ If the input file is not ordered, use a tag sort.

VSRILI (V-MODE) -—- SUBROUTINE DESCRIPTIONS

VSRTLI routines follow a consistent naming convention to avoid possible

conflict between user-written routines and system routines. All entry

points end with the suffix $S — except SUBSRT and ASCSRI which remain

the same for compatibility with earlier versions of the library.

Subroutines used internally by VSRILI routines which have a suffix of

$$S should not be called from user routines, All parameters for all

the routines are INTEGER*2 unless otherwise stated. Up to 64 keys may

be specified. The maximum record length is 32760 bytes.

> sUBSRI

Purpose

SUBSRT is used to sort a single input file containing compressed source

records on ASCII keys in ascending order, Maximmm record length is

32760 bytes (characters); maximum key length is 312 characters.

Usage

CALL SUBSRT (path-1,len-1,path-2, 1len-2 ,numkey,nstart,nend, npass, nitem)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.

path-2 Output pathname.

len-2 Length of output pathname in characters, up to 80.

numkey Number of keys (pairs of starting amd ending

columns) — starting and ending bytes if binary.

Maximum is 64, default is l.

13-7 Third Edition

18.1

18.1

118.1

18.1

18.1

DOC3621-190

nstart Vector containing starting columns/bytes of keys
(must be greater than or equal to l).

nend Vector containing ending columns/bytes of keys.
Each ending column must be no greater than linsiz.

npass Number of passes (returned).

nitem Number of items returned in output file (INTHGER*4).

> ASCSRT (ASCSSS)

Purpose

ASCSRT (which can also be called as ASCS$$) is the V-mode subroutine
that handles larger records and more types of sort key fields than the
R-mode version, Maximum record length is 32760 bytes.

ASCSRT sorts or merges compressed-source or variable-length records
from and to disk files. Any of the supported key types (specified in
ntype) may be used, and there may be ascending and descending keys
within the same sort or merge. When sorting equal keys, the input
order is maintained.

Usage

CALL oad (path-1,1len-1,path-2,1len-2,numkeynstart,nend,npass,
ASCSRT nitem,nrev,ispce,mgcnt,mgbuff, len, LOC (buffer) ,msize,

ntype, linsiz ,nunits, units)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.

path-2 Output pathname.

len-2 Length of output pathname in characters, up to 80.

numkey Number of pairs of keys (starting and ending
columns). With binary keys, specifies number of
pairs of starting and ending bytes. Maximum is 64,
default isl.

nstart Vector containing starting columns/bytes of keys.
Each starting column must not be less than 1.

nend Vector containing ending columns/bytes of keys.
Fach ending columnmust be no larger than linsiz.

Third Edition 13-8

npass

niten

ispce

mgent

mgbuff

len

Loc (buffer)

msize

ntype

SORT LIBRARIES

Number of passes (returned).

Number of itens in output file (returned) —

INTHGER*4,

Vector containing sort order for each key:

0 Ascending

1 Descending

Default is 0 (ascending in Rev 19).

Option to specify treatment of blanks:

0 Include blank lines in sort (default).

1 Delete blank lines.

Number of merge files (up to 10).

Array dimensioned (40*mgcnt) containing merge

filenames.

Vector containing length of merge filenames in

characters, up to 80.

Obsolete -—- Specify as 0. 18.1

Size (<65536) of common block for sort in words

(INTEGER*2). It should be record size times maximum

number of records expected. If nonzero, msize must

be at least 1024 (one page) and no more than 64

pages. If larger, the message "WARNING-PRESORT

BUFFER SHOULD NOT BE LARGER ‘THAN ONE SEGMENT" is

issued, and the default is used, Default is one

segment (65536 words).

Vector containing type of each key:

1 ASCII

16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

13-9 Third Edition

18.1

DOC3621-190

linsiz

nunits

units

8 Packed decimal

9 Numeric ASCII, leading embedded sign

10 Numeric ASCII, trailing embedded sign

ll Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to
uppercase

13 Unsigned integer

Default is all ASCII keys.

Maximum size of record in characters (bytes).
Default is 32760.

Obsolete,

Obsolete,

Notes

1. Last four items are optional and may be omitted,

2. Files specified as merge files will be merged with the
input file.

B sRIFSs

Purpose

Pathnames may be used for merge files,

SRIF$S will sort input files (maximum 20) into a single output file.
It is called by the previous two sorts.

Usage

CALL SRIFS$S (inbuff, inlen, inunts, incnt, path2,1len2,outunt,
numkey,nstart,nend, nrev,ntype,
ercode, inrec, outrec, spcls, msize)

inbuff

inlen

Third Edition

Array dimensioned (40, incnt) containing input
filenames,

Vector containing lengths of input pathnames in
characters, up to 80.

13-10

inunts

incnt

path2

len2

outunt

numkey

nrev

ntype

SORT LIBRARIES

Vector containing input file units (if open wnits
are used).

Number of input files (up to 20).

Output file pathname.

Length of output pathname in characters, up to 80.

Output file unit (if an open unit is used).

Number of keys (pairs of starting and ending
columns -- starting and ending bytes if binary), up
to 64, Default is l. 18.1

Vector containing starting columns/bytes of keys.
Each starting column number must be at least 1.

Vactonr cnntainina andina
WNetkeWI td6 2 Wook& Sok + 235 werd SNAale dS 433

cn

Each ending column must be no greater than the
maximum input line size.

limne/hyvtec of kave
heSELLE wy Ree NeeBae wtde taney ba? @

Vector containing sort order for each key:

0 Ascending (default)

1 Descending

Vector containing type of each key:

1 ASCII

2 16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

6 Numeric ASCII, leading separate sign

7 Numeric ASCII, trailing separate sign

8 Packed decimal

9 Numeric ASCII, leading embedded sign

10 Numeric ASCII, trailing embedded sign

il Numeric ASCII, unsigned

12 ASCII, lowercase sorts equal to
uppercase,

13-11 Third Edition

18.1

DOC3621-190

ercode

inrec

outrec

Spcls

Third Edition

13 Unsigned integer

Default is all ASCII keys.

Return code.

Five-word array containing input record information:

inrec(1) Input record type:

1 Compressed source
(blanks compressed)

2 Variable length

3 Fixed length (inrec(2)
must be specified)

4 Uncompressed source (no
blank compression)

Default depends on the
key types specified in
argument ntype.

inrec(2) Maximum input record’ size in
characters (bytes). Default is
32760. Required for sorting
fixed-length records.

inrec(3-5) Must be 0, and are reserved for
future use,

Five-word array containing output record
information:

outrec(1) Output record type. (See inrec.)

outrec(2) Maximum output record size in
Characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use.

Five-word array containing special options:

spcls(1) Space option:

0 Include blank lines in
sort (default).

1 Delete blank lines.

13-12

SORT LIBRARIES

spcls (2) Collating sequence:

0 Default (ASCII at Rev.
19)

1 ASCII

2 EBCDIC

spcls(3) Tag/nontag option:

0 Default (tag sort at
Rev. 19)

1 Tag sort

2 Nontag sort

spels(4—5) Must be 0, and are reserved for
future use.

msize Size of presort buffer in pages (units of 1024
words), not greater than 64. Note that the units
used here are pages which differ from the words used

by ASCSRI. Default is one segment (64 pages).

COOPERATING MERGE SUBROUTINES

To merge two or more sorted files with no special processing, use

MRG1SS.

If postprocessing of the merged records is desired, the three merge
subroutines in this chapter may also be used together in the following

way. MRGLSS accepts specifications about the operation to be performed

and the files and records to be used. The program should then call

MRG2$S to get the merged records one at a time. Finally, the program

calls MRG3$S to close units and delete temporary files opened by the

other subroutines.

Many of the remarks about cooperating sort subroutines also apply to

these merge routines. However, merging allows only output procedures.

If MRGISS is called with an output file (no output procedure), it calls

MRG2S$S and MRG3$S itself. If output is to a file, MRG2$S and MRG39S

should not be called.

13-13 Third Edition

18.1

18.1

DOC3621-190

P mrRclss

Purpose

MRG1$S merges two to eleven previously sorted files into a single
output file.

Usage

CALL MRG1S$S (inbuff, inlen, inunts, incnt, tree2,1len2 ,outunt, numkey,

inbuff

inlen

inunts

inent

tree2

len2

outunt

numkey

nstart

nend

ntype

Third Edition

nstart,nend, nrev,ntype, ercode, inrec, outrec, spcls, oproc)

Array dimensioned (40, incnt) containing input
filenames.

Vector containing lengths of input pathnames in
characters, up to 80.

Vector containing input file units (if open units
are used).

Number of input files (up to 20).

Output file pathname.

Length of output pathname in characters, up to 80.

Output file unit (if an open unit is used).

Number of pairs of keys (starting and_ ending
columns — starting and ending bytes if binary), up
to 64. Default isl.

Vector containing starting columns/bytes of keys.
Fach starting column number must be at least 1.

Vector containing ending columns/bytes of keys.
Each ending column must be no greater than inrec(2).

Vector containing sort order for each key:

0 Ascending (default)

1 Descending

Vector containing type of each key:

1 ASCII

2 16-bit integer

13-14

w
o

o
O

N
S

NH
N

SORT LIBRARIES

Single-precision real

Double-precision real

32-bit integer

Numeric ASCII, leading separate sign

Numeric ASCII, trailing separate sign

Packed decimal

Numeric ASCII, leading embedded sign

Numeric ASCII, trailing embedded sign

Numeric ASCII, unsigned

ASCII, lowercase sorts equal to
uppercase.

Unsigned integer

Default is all ASCII keys.

ercode

inrec

Return code.

Five-word array containing input record information:

inrec(1) Input record type:

1 Compressed source
(blanks compressed)

2 Variable length

3 Fixed length (inrec(2)
must be specified)

4 Uncompressed source (no
blank compression)

Default depends on the key type
specified in ntype.

inrec(2) Maximum input record’ size in
characters (bytes). Required for

sorting fixed-length records.
Default is 32760.

inrec(3-5) Must be 0, and are reserved for
future use,

13-15 Third Edition

18.1

18.1

18.1

DOC3621-190

outrec Five-word array containing output record
information:

outrec(1) Output record type. (See inrec.)

outrec(2) Maximum output record size in
characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use.

spcls Five-word array containing:

spcls(1) Space option:

0 Incluce blank lines in
sort (default).

1 _ Delete blank lines.

spcls(2) Collating sequence:

0 Default (ASCII at
Rev. 19)

1 ASCII

2 EBCDIC

spcls(3-5) Must be 0, and are reserved for
future use,

oproc Output data destination (for use by MRG2SS):

0 Output file

1 Output procedure

> MmRG2SS

Purpose

This subroutine is used only after MRGI1SS has been called to set up the

merge area, record and file specifications, and collating keys. MRG2SS
returns the next merged record, MRG2SS should not be called for output
files.

Third Edition 13-16

SORT LIBRARIES

Usage

CALL MRG2$S (rtbuff, length)

rtbuff Buffer containing next merged record (returned).
Should be large enough to hold longest record
merged,

length Length of record (in characters) returned. Once all
records have been returned, calls to MRG2SS return a

length of 0.

— mRG3Ss

Purpose

This subroutine is called after MRGISS and MRG2SS. MRG3SS closes all
units opened by the other merge routines. MRG3$S should not be called
for output files.

Usage

CALL MRG3$S

COOPERATING SORT SUBROUTINES

The following five routines allow the user's own input and output
procedures. These routines must all be called and in the order given,
to assure that the sort is done correctly. These subroutines are

available in V-mode only. All parameters are INTEGER*2.

A program can call the routines to work together in this way. SETUSS
sets up a table in which the sort is to be done, setting record size,
record type, and other attributes. It also determines whether the
records are to be read directly from the input files into the sort
area, or whether they are to be accepted from an input procedure, It
determines whether, after sorting, the records are to be sent directly
to the output file or are to be postprocessed by an output procedure.

After calling SETUSS and giving it the necessary information, the

program should call RLSESS. If SETUSS has been told that there is to

be a preprocessing input procedure, RLSESS will take the record from
its buffer. The input procedure is written by the user; it should
call RLSESS once for each record to be sorted. Otherwise, the
arguments to RLSESS will not be used, and RLSESS will simply read the
records from the input file(s) into the sort area.

13-17 Third Edition

18.1

18.1

DOC3621-190

Next, the program should call the sort procedure, CMBNSS, to do the
actual sorting. Since SETUSS should already have stored all
information about record size, type, and collating sequence. CMBNSS
accepts no parameters,

After CMBNSS, the program must call RIRNSS to take care of the sorted
records. RIRNSS will either return records in the buffer specified in
its parameter for postprocessing by an output procedure, or write them
to the output file, according to the information already supplied to
SETUSS.

Finally, the program calls CLNUSS to close files opened by RLSESS and
RTRNSS and to delete temporary sort files.

This combination of subroutines allows great flexibility in a sort
Operation, as the program that calls them can doa great deal of
processing of the records before and after sorting. There is a
tradeoff however; if you use input or output procedures, there is a
procedure call for every single record, and the pre- or postprocessing
itself adds time, so these routines will slow the sort.

An example of combined use of these subroutines is given below.

— sETUSS

Purpose

SETUSS checks the parameters supplied by the user and sets up all
tables for the particular sort being defined,

Usage

CALL SETUSS (inbuff,inlen, inunts, incnt, path2,1len2,outunt,
numkey,nstart,nend, nrev,ntype, ercode, inrec,
outrec, spcls, msize, iproc, oproc)

inbuff Array Gimensioned (40, incnt) containing input
filenames,

inlen Vector containing lengths of input pathnames in
characters, up to 80.

inunts Vector containing input file units (if open units
are used).

inent Number of input files (up to 20).

path2 Output file pathname.

Third Edition 13-18

len2

outunt

numkey

nstart

nend

ntype

ercode

SORT LIBRARIES

Length of output pathname in characters, up to 80.

Output file unit (if an open unit is used).

Number of pairs of keys (starting and ending columns
or starting and ending bytes if binary), up to 64. 18.1
Default is 1.

Vector containing starting columns/bytes of keys
(must be 1] or greater).

Vector containing ending columns/bytes of keys (must
be no greater than inrec(2)).

Vector containing sort order for each key:

0

1

Ascending (default)

Descending

Vector containing type of each key:

1

2

oO
o

O
o

N
N

W
N

10

li

12

13

ASCII

Single-precision integer

Single-precision real

Double-precision real

Double-precision integer

Numeric ASCII, leading separate sign

Numeric ASCII, trailing separate sign

Packed decimal

Numeric ASCII, leading embedded sign

Numeric ASCII, trailing embedded sign

Numeric ASCII, unsigned

ASCII, lowercase sorts equal to
uppercase.

Unsigned integer 18.1

Default is all ASCII keys.

Return code.

13-19 Third Edition

18.1

DOC3621-190

inrec

outrec

spcls

Third Edition

Five-word array containing input record information:

inrec(1) Input record type:

1 Compressed source
(blanks compressed)

2 Variable length

3 Fixed length (inrec(2)
must be specified)

4 Uncompressed source (no
blank compression)

Default depends on the key types
Specified in ntype.

inrec(2) Maximum input line size in
characters (bytes). Default is
32760. Required for sorting
fixed-length records.

inrec(3-5) Must be 0, and are reserved for
future use,

Five-word array containing output record
information:

outrec(1) Output record type. (See inrec.)

Outrec(2) Maximum output line size in
characters (bytes).

outrec(3-5) Must be 0, and are reserved for
future use,

Five-word array containing:

spcels(1) Space option:

0 Include blank lines in
sort (default).

1 Delete blank lines.

spcls (2) Collating sequence:

0 Default (ASCII at Rev.
19)

1 ASCII

2 EBCDIC

13-20

msize

oproc

> RLSESS

Purpose

SORT LIBRARIES

spcls(3) Tag/nontag option:

0 Default (tag sort at
Rev. 19)

1 Tag sort 18.1

2 Nontag sort

 spcls(4-5) Must be 0, and are reserved for
future use,

Size of common presort buffer in pages (units of
1024 words), no greater than 64. The size should be
at least the product of the size of one record and

the maximum number of records expected.

Default is one segment (64 pages).

Input data source (used by RLSESS):

0 Input file

1 Input procedure

Output data destination (used by RTIRNSS):

0 Output file

1 Output procedure

RLSESS transfers records from the buffer specified in the program or
from an input file to the initial phase of the sort, according to the
value of iproc in the SETUSS call.

Usage

CALL RLSESS(rlbuff, length)

rlbuff

length

Buffer containing next record for sort.

Length of record in characters or bytes. This is
not necessarily the full length of rlbuff.

13-21 Third Edition

DOC3621-190

Discussion

If an input procedure is used, RLSESS should be called once for each
record released.

If an input file is used instead of an input procedure, RLSESS should
be called only once. If input is from a file, multiple calls to RLSESS
would result in multiple occurrences of each record when sorted,

Source records passed from an input procedure (when inrec(1) = 1 in the
SETUSS call) must end with a NEWLINE character (:212). Otherwise, the
message "WARNING-LINE TRUNCATED" is issued and the last character is
overwritten by a NEWLINE character. It is often easier to sort a text
file as fixed-length records by reading them into the program with
RDLINS rather than sorting them as source records.

Pp cCMBNSS

Purpose

CMBNSS performs the internal sort. It uses the records provided by
RLSESS and the tables, collating sequence, and other information
provided by SETUSS. If the sort cannot be done within allocated
memory, CMBNSS merges the strings previously sorted.

Usage

CALL CMBNSS

BP RTRNSS

Purpose

RTRNSS returns the records sorted by CMBNSS — to an output procedure
Or an output file, depending on the value of the oproc argument to
SETUSS.

Usage

CALL RTRNSS (rtbuff, length)

rtbuff Buffer containing next sorted record (returned). It
should be large enough to hold the longest record
sorted,

Third Edition 13-22

SORT LIBRARIES

length Length of record in characters or bytes (returned).
When all records have been returned, calls to RLSESS
to return a record length of 0.

Discussion

If an output procedure is used, each call to RIRNSS obtains the next
sorted record, The record is placed in rtbuff and must then be written
to an output file, if it is to be saved.

If an output file is specified, RIRNSS is called only once.

If output is to a file, RIRNSS arguments are not used,

Bm cLNUSs

Purpose

CLNU$S closes all units opened by the sort routines and deletes any
temporary files.

Usage

CALL CLNUSS

SAMPLE USER INPUT PROCEDURE

The following sample program demonstrates the use of an input procedure
with the sort subroutines. This input procedure selects from INPUTFILE
only those records beginning with AA for sorting.

OK, SLIST SAMPLE. FIN
C-——-——-—SAMPLE PROGRAM WHICH CALLS SORT
C———-TO DEMONSTRATE THE USE OF AN INPUT PROCEDURE BEFORE SORTING
Cc
Cc
SINSERT SYSCOM>KEYS.INS.FIN
SINSERT SYSCOM>ERRD.INS.FIN
Cc

Cc

INTEGER
& BUFFER(10) , /* Buffer for reading file
& ERCODE, /* Error code
& INREC(5), /* Input record information
& OUTREC(5), /* Output record information
& SPCLS(5), /* Flags for special options

13-23 Third Edition

DOC3621-190

& TYPE /* File type returned when file opened

C

Cc

DATA

C Input records are fixed length (20 characters)
& INREC / 3, 20, 0, 0, 0 /,

Cc Output records are uncompressed source (so the file can be

C Edited)
& OUTREC / 4, 20, 0, 0, 0 /,

C No special options
& SPCLS / 0, 0, 0, 0, 0/

Cc

Cc

C——-Open the input file
CALL SRCHSS (KSREAD, 'INPUTFILE' ,9,1,TYPE, EROODE)

IF (ERCODE .NE. 0) CALL ERRPRS(KSNRIN, EROODE,0,0,0,0)

Cc

C—-——-Initialize sort tables

Cc

CALL SETUSS .

& (0, /* no input filenames
& 0, /* no lengths of filenames

& 0, /* no input file units
& 0, /*® no input filenames
& 'QUIPUTFILE', /* this is the output filename

& 10, /* ‘OQUTPUTFILE' is 10 characters long
& 0, /* no output file unit is specified

& 1, /* sort file on one key
& l, /* starting at column one
& 20, /* ending at column twenty
& 0, /* sort in ascending order
& 1, /* the key is all ASCII characters
& ERCODE, /* an error code wiil returned
& INREC, /* input record information
& OUTREC, /* output record information
& SPCLS, /* no special options requested
& 0, /* use default value for presort buffer

& 1, /* input data is from procedure
& 0) /* output is to file.
IF (ERCODE .NE. 0) CALL ERRPRS(KSNRIN, EROODE,0,0,0,0)

Cc

C———Read records from input file

Cc
100 READ (5,200,END=300) BUFFER
200 FORMAT (10A2)
Cc
C——~-Select records to be sorted,
C——- and pass them to sort with the record length
—- (which is 20 characters)

IF (BUFFER(1) .—Q. 'AA') CALL RLSESS (BUFFER, 20)

GO TO 100 /* Go read next record

Cc
C———-Hit end of the input file, so finish up the sort
300 CALL CMBNSS /* do the sort

Third Edition 13-24

C

SORT LIBRARIES

CALL RIRNSS (0,0) /* send records to the output file
CALL CLNUSS /* clean up after sorting

C——-Close input file
CALL SRCHSS$ (KSCLOS,0,0,1,0,ERCODE)
IF (EROODE .NE. 0) CALL ERRPRS (KSNRIN, EROODE,0,0,0,0)
CALL EXIT
END

This program may be compiled, loaded, and run with the following
dialog:

OK, FIN SAMPLE -—64V —DCLVAR

0000 ERRORS [<.MAIN. >FIN-REV18. 4
OK, SEG -LOAD

[SEG rev 18.4
S$ LO SAMPLE

$ LI VSRTLI
SLI
LOAD COMPLETE
S$ EXEC

following listings show INPUTFILE and the sorted OUTPUTFILE.

OK, SLIST INPUTFIL
AA EMPLOYEE]
BB EMPLOYEES
BB EMPLOYEE3
CC EMPLOYEE4
AA EMPLOYEE2
AA EMPLOYEE6
CC EMPLOYEE7
AA EMPLOYEEO

OK, SLIST OUTPUTFILE
AA EMPLOYEEO
AA EMPLOYEE]
AA EMPLOYEE2
AA EMPLOYEE6
OK,

13-25 Third Edition

DOC3621-190

SRTLIB (R-MODE) — SUBROUTINE DESCRIPTIONS

> SUBSRT

Purpose

SUBSRT is used to sort a single input file, containing compressed
source records, on ASCII keys in ascending order. Maximum record
length is 508 characters. Maximum keylength is 312 characters,

Usage

CALL SUBSRTI (path-1,len-1,path-2,1len-2 ,numkey,nstart,nend, npass, niten)

path-1 Input pathname.

len-1 Length of input pathname in characters, up to 80.

path-2 Output pathname.

len-2 Length of output pathname in characters, up to 80.

numkey Number of keys (pairs of starting and ending
columns —- starting and ending bytes if binary).
Maximum is 1, default is 1.

nstart Vector containing starting columns or bytes of keys.

nend Vector containing ending columns or bytes of keys.

npass Number of passes (returned).

niten Number of itens returned in output file (INTEGER*4).

PB ascsss

Purpose

ASCSSS is the R-mode subroutine that sorts or merges compressed or
variable-length records depending on the type of data specified in
ntype. When Sorting on binary files, starting and ending columns mean
starting and ending bytes. When sorting equal keys, the input order is
maintained, Maximum record length is 508 characters and maximum key
length is 312 characters,

Third Edition 13-26

SORT LIBRARIES

Usage
CALL ASCSS$ (path-1,len-1,path-2,len-2,numkey,nstart,nend,npass,

niten,nrev,ispce,mgcnt,mgbuff, len, LOC (buffer) ,msize,
ntype, linsiz,nunits, units)

path-1 Input pathname.

len-1 Length of input pathname in characters.

path-2 Output pathname.

len-2 Length of output pathname in characters.

numkey Number of keys (pairs of starting and_= ending
columns -—- starting and ending bytes if binary).
Maximum is 20, default is l.

nstart Vector containing starting columns or bytes of keys.

nend Vector containing ending columns or bytes of keys.

npass Number of passes (returned).

nitem Number of items returned in output file (INTEGER*4).

nrev Vector containing order for each keys

0 Ascending

1 Descending

ispce Whether to take blanks into account:

0 Sort blank lines.

1 Delete blank lines.

mgent Number of merge files (up to 10).

mgbuff Array dimensioned (40*mgcnt) containing merge
filenames.

len Vector containing lengths of merge filenames in
Characters.

LOC (buffer) Location of presort buffer,

msize Size of presort buffer in words.

ntype Vector containing type of each key:

1 ASCII (default)

13-27 Third Edition

DOC3621-190

2 16-bit integer

3 Single-precision real

4 Double-precision real

5 32-bit integer

linsiz Maximum size of record in characters -—- optional.
(Default is 508 characters.)

nunits Number of file units available. (Optional — four
will be used.)

units Vector containing available file wnits (optional).

Discussion

The last four items are optional and may be omitted. Default value of
ntype is ASCII.

Pathnames may not exceed 80 characters in length.

Files specified as merge files will be sorted and merged with the input
File. Pathnames may be used for merge files, but only 10 merge files,
each no more than 80 characters in length, may be used.

The presort buffer size should be as large as possible on P100 and P200
systems. On virtual memory systems, the best size must be determined
by experimentation.

MSORTS AND VMSORT - SUBROUTINE DESCRIPTIONS

These libraries contain several in-memory sort subroutines and a
binary-search and table-building routine. MSORTS is the R-mode
version, and VMSORT is the V-mede version. Each library contains the
same subroutines.

The reference for most of the algorithms and timing studies is Donald
Knuth, "Sorting and Searching," The Art of Computer Programming, vol.
3, Reading, MA: Addison-Wesley, 1973. It should be pointed out that
the timing figures quoted are based upon Knuth's algorithms on his
fictional machine (MIX). Since these routines are more general, the
timing formulas quoted here should be used only as an indication of the
relative merits of each algorithm and not as exact computational tools.

Third Edition 13-28

SORT LIBRARIES

The routines included in MSORTS and VMSORT are:

HEAP Heap sort - based upon binary trees

QUICK Quicksort - partition-exchange

SHELL Shell sort - diminishing increment

RADXEX Radix exchange sort

INSERT Straight insertion sort

BUBBLE Bubble sort - interchange

BNSRCH Binary search

The binary search routine (BNSRCH) can be used either for table lockup
in an ordered table or for building a sorted table.

All routines accept multiword entries and multiword keys located
anywhere within the entry. The restrictions are that all entries are
equal length and keywords are contiguous (no secondary keys). An
attempt has been made to keep the calling sequences as similar as

possible. However, each sort has slightly different requirements.
Except for RADXEX, all routines have the same first five parameters
(arguments) .Sewe & ee!

Parameters Common to More Than One Subroutine

ptable Pointer to the first word of the table. (This is not a
PL/I pointer.) For example, if the table is in an array
TABLE (a,b), the parameter ptable = LOC (table). For
routines in MSORTS, ptable is a full 16-bit pointer and
can be in the upper 32K of memory. For VMSORT, ptable is
a two-word pointer.

nentry Number of table entries (not words) in the table. (That
is, items to be sorted or searched.) This is a full
16-bit count, since there can be more than 32K entries in
the table.

nwds Number of words per entry. mnwds must be more than 0 .
Obviously if mwds is greater than 32K, there can be only
a Single entry.

fword First word within the entry of the key field.

nkwds Number of words in key field. nkwds must be greater than
0 and less than or equal to nwds. fword + nkwds - 1 must
be no more than nwds. (In other words, the key field
must be contained within an entry.)

13-29 Third Edition

DOC3621-190

npass Number of passes made (0 if error).

altbp Alternate return for bad parameters (used only with
FORTRAN ——- use 0 for other languages).

RADXEX replaces the nkwds parameter with the following:

fbit First bit within fword of key. fbit must be greater than
0 and fword + (nbittfbit - 2)/16must be no more than
mwds. (In other words, the key field must be contained
within an entry.)

nbit Number of bits in key. The key field must be contained
within an entry.

Also, the routines HEAP, QUICK, RADXEX, and BUBBLE require temporary
arrays of sizes:

HEAP, QUICK tarray (nwds)

RADXEX tarray (2nbit)

BUBBLE tarray (nkwds)

All routines except RADXEX sort the table in increasing order where the
key is treated as a single, signed, multiword integer. Therefore, the
numbers 5, -1, 10, -3 would be sorted to -3, -1, 5, 10. RADXEX, since
the key need not begin on a word boundary, treats the key as a single,
unsigned multiword (or partial word) integer. Thus, the same four
numbers would be sorted by RADXEX to 5, 10, -3, -l.

> BNSRCH

Purpose

BNSRCH sets up a binary table and performs a binary search.

Usage

CALL BNSRCH (ptable, nentry, nwds, fword, nkwds, skey, fentry,
index, opflag, altnf, altbp)

Most of these parameters are explained on the preceding page. The
additional parameters are explained below.

Third Edition 13-30

SORT LIBRARIES

skey Search key array (nkwds).

fentry Found entry array (nwds).

index Entry number of found entry.

opflag Operation key:

0 Locate,

1 Locate and delete,

2 Locate or insert.

3 Locate and update,

altnt Alternate return.

Discussion

Simple binary searching (opflag=0) tests each entry's key field for a
match with skey. If the entry is found, it is returned in fentry and
the entry number is put into index. If the entry is not found, the
alternate return (altnf) is taken. If altnf is not specified, the
normal return is taken, and the entry is deleted from the table as well
as returned in fentry. In this case, index specifies where the entry
was.

Opflag=2 is the same as opflag=0 if the entry is found. If, however,
the entry is not found, the contents of fentry will be inserted into
the table and index will indicate the position of the new element.
Also, altnf will be taken.

Opflag=3 is the same as opflag=0 if the entry is not found. If the
entry is found, the contents of fentry and the found entry are
interchanged, thus updating the table and returning the old entry.

13-31 Third Edition

DOC3621-190

> BUBBLE

Purpose

Bubble sorting is a simple interchange sort.

Usage

CALL BUBBLE (ptable, nentry, nwds, fword, nkwds, tarray, npass,
altbp, incr)

Please read Parameters Common to More Than One Subroutine above.

incr Used to sort nonadjacent entries. (See INSERT below.)
Default is 1 (sort adjacent).

tarray Must have nkwds words,

Discussion

Running Time: If N is the number of entries, the average running time
is proportional toN**2, Bubble sorting is good only for very small N,
but is not as good as insertion sorting.

BP HEAP

Purpose

Heap sort is based on a nonthreaded binary tree structure. The
algorithm consists of two parts: convert the table into a "heap", and
then sort the heap by an efficient top-down search of the tree, The
formal Gefinition of a heap is:

The keys K(1), K(2), K(3),.+«., K(N) constitute a "heap" if
K(J/2)>K(J) for 1<J3/2<d<N.

Usage

CALL HEAP (ptable, nentry, nwds, fword, nkwds, tarray, npass, altho)

Please read Parameters Canmon to More Than One Subroutine above.

tarray Must have nwds words.

Third Edition . 13-32

SORT LIBRARIES

Discussion

Running Time: If N is the number of entries, the average running time
is proportional to 23*N*lnN and the maximum is 26*N*lnN, Heap sort
tends to be inefficient if N<2000, but for N>2000 it “outperforms all
other sorts except QUICK.

p INSERT

Purpose

Straight insertion sorting is based upon "percolating" each element
into its final position.

Usage
ee

CALL INSERT (ptable, nentry, nwds, fword, nkwds, npass, altbp,
incr)

Please read Parameters Cammon to More Than One Subroutine above.

incr Used to sort nonadjacent entries.

Discussion

The incr parameter is used to sort nonadjacent entries. If, for
example, incr = 3, every third entry will be included in the sort. The
default is 1. For example, with incr equal to 3:

input: 100987654321 O

output: 1984657324100

Running Time: Let N_ be the number of entries. Although the average
running time is proportional to N**2, insertion sorting is very good
for small tables (N<13) and tends to be very efficient for nearly
ordered tables, evenfor large N.

13-33 Third Edition

DOC3621-190

P QUICK

Purpose

Quick is a partition exchange sort. QUICK is a variation of the basic

quicksort called a median-of-three quicksort.

Usage

CALL QUICK (ptable, nentry, nwds, fword, nkwds, tarray, npass,

altbp)

Please read Parameters Common to More Than One Subroutine above.

tarray Must have nwds words.

Discussion

Running Time: If N is the number of entries, the average running time

is proportional to 12*N*lnN, but the maximum time is on the order of

N**2. QUICK, on the average, is the fastest sort in MSORTS, but in the

worst case, is about the slowest. In fact, the worst case isa

completely ordered table, QUICK should not be used on tables that are

already well-ordered. .

> RADXEX

Purpose

RADXEX is a radix-exchange sort that treats the key as a series of

binary bits. It is based both on the method of radix sorting (like a

card sorter) and partitioning. As noted before, RADXEX does not sort

signed numbers and will sort the numbers 5, -1, 10, -3 to 5, 10, 3,

-1. RADXEX has the advantage that the key need not start on a word

boundary nor be an integral number of words long.

Usage

CALL RADXEX (ptable, nentry, nwds, fword, fbit, nbit, tarray,

npass, altbp)

Please read Parameters Canmon to More Than One Subroutine above.

tarray Must have 2*nbit words; is used as partition stack.

Third Edition 13-34

SORT LIBRARIES

Discussion

Running Time: If N is the mumber of entries, the average running time
iS proportional to 14*N*lnN. Radix exchange is very fast for large N
(on the order of QUICK),but it is inefficient if equal keys are
present,

> SHELL

Purpose

SHELL sort (named after Donald Shell) is a diminishing increment sort.
SHELL utilizes the straight insertion sort (INSERT) on each of its
masses to order the nonadiacent elements that are one INC apart. INCCee sowemay

is then decreased on each pass. Increments are chosen by the_formula:

INC= (3**k-1) /2

where the initial increment is chosen so that INC(k + 2)>N and
subsequent increments by decrementing k.

Usage

CALL SHELL (ptable, nentry, nwds, fword, nkwds, npass, altbp)

Please read Parameters Cammon to More Than One Subroutine above.

Discusion

Running Time: If N is the number of entries, the average running time
is proportional to N**1.25 and the maximum time is N**1.5. A complete
timing analysis on the SHELL sort is not possible, but for N<2000, it
is very good, For N>2000, the HEAP sort is better.

13-35 Third Edition

PART V

Input/Output Library Subroutines

Introduction to IOCS

HOW TO USE PART V

IOCS (the Input/Output Control System) is a group of subroutines that
perform input/output between the Prime computer and the disks,
terminals, and other peripheral devices in the systen. These
subroutines have mostly been outdated by the ones in Chapters 9 and 10.
Generally, these functions may be grouped into three levels:

Level 1 Device-independent drivers are routines that read
and write ASCII or binary and perform control
functions such as opening a file.

Level 2 Device-specific drivers issue the correct format for
a particular device, but allow the output to be read

later by device-independent drivers.

Level 3 The lowest level of IOCS functions are routines that
perform raw data transfers.

The chapters in Part V are organized in the following manner:

Chapter 14 Device, unit, and argument definitions and tables
for use with following chapters

Chapter 15 How to change device assignments

14-1 Third Edition

DOC3621-190

Chapter 16 Device-independent driver subroutines (which call
the device-dependent routines in the following
chapters, depending on the device specified)

Chapter 17 Disk (non-file system) subroutines

Chapter 18 Subroutines for the user terminal and paper tape
(Many subroutines may be used for both peripherals.)

Chapter 19 Subroutines for other peripheral devices (printers,
plotters, card processors, and magnetic tape)

The level-1 device drivers are presented in Chapter 16. Routines of
levels 2 and 3 are grouped in the following chapters by device type
rather than by level of the subroutine.

Table 14-1 shows all I0CS routines discussed in Chapters 16-19, It
Shows the relationship of level-1 (device-independent) drivers to the
others. Each column of this table represents an 1/0 function, and each
horizontal row a certain physical device. All drivers in a single
column are designed to be compatible in internal data format.

Tables 14-2 and 14-3 show the physical and logical device assignments,
for use in changing device assignments as discussed in Chapter 15.

Figure 14-1 shows all the device-dependent drivers supported by Prime.

ARGUMENTS TO IOCS SUBROUTINES

The following argument names are used throughout Part V.

altrtn An INTEGER*2 variable assigned the value of a
numeric label in the user's FORTRAN program, to be
usec as an alternate return from the subroutine in
case of error. The label mumber should be
preceded by a $. FORTRAN calls may omit the
argument or give it the value of 0 if no alternate
return is wanted, Other calling languages should
omit the argument (not use 0).

buffer The name of a data area to or from which data is
moved (integer array).

count The number of words to be transferred, or the
length of a buffer or filename (INTEGER*2).

buffer-size The record size associated with the logical unit.
Must be as large as the maximum record size.

logical-device Same as logical-unit below.

Third Edition 14-2

logical-unit

name

physical-device

physical-—unit

file unit

sub-unit

INTRODUCTION TO IOCS

The FORTRAN logical unit (Table 14-3).

A filename.

The position in the device-type table (Table
14-2). <Aphysical device is a device type such as
magnetic tape or a user terminal.

The sub-unit number of a physical device having
more than one unit (Table 14-3). A physical unit
designation distinguishes among the units of a
physical device that has multiple units, such as a
magnetic tape controller. For disk (the file
system), the physical unit corresponds to the file
unit (below). If the device has only one unit,
its sub-unit number is 1. If it is a
multiple-unit device such as disk or tape,
sub-units 1 through 8 may be specified. (On disk,
a sub-imit is actually processed as file 1-8.)

The PRIMOS file-unit (funit) number from 0 through
127. (Users may assign 2 through 126.) File
units are discussed in Chapter 9.

The unit for multiunit devices (for disk, file
unit number). This is the same as the physical
unit (Table 14-3)

(ane wi @

14-3 Third Edition

18.1

DOC3621-190

Table 14-1

Device-dependent Driver Selected by
Each Independent Driver According to Device

Independent Drivers

RADSC WRASC RDBIN WRBIN CONTRL

Device Dependent Drivers

User terminal ISAA01(6) OSAAO1(1) ISBA01(2) OSBAO1(2) CSAOQ1(2)

Input command
stream ISAA12 (1)

Paper-tape reader ISAP02(5) ISBP02 (2) CS$P02(5)

Paper-tape punch OSAP02 (5) OSBP02 (2)

MPC card reader ISAC03(3) OSAC03(3)

Serial line prtr. OSAL04 (3)

9-track mag.tape ISAMO05(4) OSAMO5(4) ISBM05(7) OSBMO5(7) CSM05(4)

MCP line printer OSAL06 (4)

PRIMOS file sys-
tem compressed ISAD07(1) OSADO7(1) ISBD07(1) OSBDO7(1) SEARCH(1)

PRIMOS file sys-
tem uncompr. ISAD07(1) OSADO08(1) ISBDO7(1) OSBDO7(1) SEARCH(1)

Serial card rdr. ISAC09(3)

7-track mag.tape ISAMLO(4) OSAMLO(4) ISBMLO(7) OSBMLO(7) CSM10(4)

7-track mag. tape
BCD ISAML1(7) O$AM11(7) CSM11(7)

9-track mag. tape
EBCDIC I$AM13(7) OSAM13(7) C$M13 (7)

Versatec
printer/plotter OSAL14 (3)

MPC card
processor I$AC15(3) OSAC15(3)

* Numbers in parentheses refer to the following notes.

Third Edition 14-4

INTRODUCTION TO IOCS

Notes to Table 14-1

Available in R-mode and V-mode. Listed in CONIOC (Chapter 15) and
may be called directly or via the device-independent drivers.

Available in R-mode only. Listed in CONIOC (Chapter 15) and may
be called directly or via the device-independent drivers.

Available in R-mode only. Listed in FULCON but not CONIOC
(Chapter 15). May not be called via the device—independent
drivers, unless FULCON is assembled and loaded before the library
is loaded,

Available in R-mode and V-mode. Listed in FULCON (Chapter 15).
In V-mode programs, these routines may be called directly or via
the device-independent drivers if the default FORTRAN library
(PFINLB) is loaded. If the R-mode or the nonshared V-mode library
(NPFINLB) is loaded, the routine may not be called via the
device-independent drivers unless FULCON is assembled and loaded
before the library is loaded. See Chapter 15 for a more complete
discussion of IOCS table usage. Routine may be called by name
without specific procedures.

Available in R-mode and V-mode. For R-mode, routine is listed in
CONIOC (Chapter 15) and may be called directly or via the
device-independent drivers. For V-mode, routine is listed in
FULCON (Chapter 15) and may be used in same manner as R-mode as
long as the default FORTRAN library (PFINLB) is loaded. In
R-mode, or V-mode when the nonshared FORTRAN library (NPFINLB) is
loaded, the routine may not be called via the device—independent
Grivers unless FULCON is assembled and loaded before the library
is loaded. See Chapter 15 for a more complete discussion of IOCS
table usage.

Available in R-mode and V-mode, but is not in CONIOC (Chapter 15)
or FULCON. To call the routines via the device-independent
drivers, the appropriate table must be modified, assembled, and
loaded before the library is loaded. (See Chapter 15.) The
routine may be called specifically without any special procedures.

Available in R-mode and V-mode. V-mode is listed in FULOON but

not in OONIOC (Chapter 15). R-mode is not in CONIOC or FULOON.

In V-mode, if the nonshared FORTRAN library (NPFINLB) is loaded,

the routine may not be called via the device-independent drivers
unless FULCON is assembled and loaded before the library is
loaded. In R-mode, the appropriate table must be modified,
assembled, and loaded before the library is loaded. In both
modes, the routine may be called specifically without any special
procedures,

14-5 Third Edition

DOC3621-190

LINE PRINTERS

PARALLEL VERSATECPRIMOS SERIAL

OSXDXX

O$AD07

(ASCII COMPRESSED)

OSADO08

ASCII FIXED LENGTH RECORDS)

MAGNETIC TAPES

O$BD07
(BINARY)

ISAMO5

. COMMAND FILE .

° é

: ‘
SERIAL§

A \

‘SN ‘SS TRACK
were ee SAMS EBCDIC

USER
MEMORY

7-TRACK

iSAMIO ASCII

SERIAL

7-TRACK
BCD

PAPER TAPE

C$P02

“—-
a

READER XSAMXX
TRANSFER ASCII DATAPUNCH

—— C$P02 XSBMXX

TRANSFER BINARY DATA

CS$A01

USER
TERMINAL READER/PUNCH

Transfer of Data to and from High-speed User Memory
Figure 14-1]

Third Edition 14-6

INTRODUCTION TO IOCS

Table 14-2
Physical Device Numbers

Physical Device Device

l User terminal
2 Paper-tape reader or punch
3 MPC card reader
4 Serial line printer
5 9-track magnetic tape ASCII/BINARY
6 MPC line printer
7 PRIMOS file system (compressed ASCIT)
8 PRIMOS file system (uncompressed ASCII)
9 Serial card reader

10 7-track magnetic tape ASCII/BINARY
ll 7-track magnetic tape BCD
12 (User terminal/command file) command input
13 9-track magnetic tape EBCDIC
14 Versatec Printer/Plotter

14-7 Third Edition

DOC3621-190

Table 14-3
Logical Devices, Physical Devices, and File Units

FORTRAN Default
Logical Unit Number Physical Device or Unit

1 User terminal
2 Paper-tape reader or punch
3 MPC card reader
4 Serial line printer (system option

controller or SOC)
5 PRIMOS file unit 1
6 PRIMOS file unit 2
7 PRIMOS file unit 3
8 PRIMOS file unit 4
9 PRIMOS file unit 5

10 PRIMOS file unit 6
ll PRIMOS file unit 7
12 PRIMOS file unit 8
13 PRIMOS file unit 9
14 PRIMOS file unit 10
15 PRIMOS file unit 11
16 PRIMOS file unit 12
17 | PRIMOS file unit 13
18 PRIMOS file unit 14
19 PRIMOS file unit 15
20 PRIMOS file unit 16
21 9-track magnetic tape unit 0
22 9-track magnetic tape unit 1]
23 9-track magnetic tape unit 2
24 9-track magnetic tape unit 3
25 7-track magnetic tape unit 0
26 7-track magnetic tape unit 1
27 7-track magnetic tape unit 2
28 7-track magnetic tape unit 3
29 PRIMOS file unit 17
30 PRIMOS file unit 18
31 PRIMOS file unit 19

18.1 . °

139 PRIMOS file unit 127
140 MPC printer 0 (AMLC)
141 MPC printer 1 (AMLC)

Third Edition 14-8

Is
Device Assignment

TEMPORARY DEVICE ASSIGNMENT

The user may assign any device by calling the ATTDEV subroutine.
ATTDEV controls mapping of logical units into physical devices and
controls the record size associated with the logical unit. Nonsharable
devices may also be assigned on command level with the PRIMOS command
ASSIGN. If a permanent device assignment is desired, the reader should

go on to the next section of this chapter.

p ATIDEV

Purpose

ATTDEV attaches specified devices by associating logical-device with
physical-device and associating the logical-device with a specific unit
or file of the device.

Usage

CALL ATTDEV (logical-device, physical-device, physical-unit,
buffer-—size)

15-1 Third Edition

DOC3621-190

Note

For more discussion of arguments, see Chapter 14.

logical~device The device-independent logical I/O unit (Table
14-3). This number cannot be changed.

physical-device The position in the device-type tables (Table
14-2).

physical-unit The unit for multiunit devices (Table 14-3).

buffer-size The record size associated with the logical unit.
Must be as large as maximum record size.

' For the given logical-device, set the physical-device, wnit, and
buffer-size so that the logical unit has a current mapping.

Example

To reassign a card reader (logical unit 3) to physical device 2 (which
has no sub-units) with the ability to read 80-column cards, enter:

CALL ATTDEV(3, 2, 0, 80)

Errors

If device is incorrect, ATTDEV returns the message:

ATTDEV BAD UNIT (unit—number)

PERMANENT DEVICE ASSIGNMENT

Users whose programs need to use devices other than the user terminal,
the disks, or paper-tape reader or punch, or who wish to change the
assignment of logical to physical devices must consult their Systen
Administrator. The following discussion is an overview of the Systen
Administrator's work.

To facilitate changes to device assignments, the tables used by I0OCS
(such as LUTBL and PUTBL) are in the following files on the master
disk.

Third Edition 15-2

DEVICE ASSIGNMENT

V~-mode VFINLIB>SOURCES>CONIOC. INS.PMA

R-mode RFINLIB>IOCS>CONIOC.PMA

Ask your System Administrator how to locate the master disk on a

multidisk system.

Note that the R-mode CONIOC.PMA in the RFINLIB supports only the user
terminal, the paper-tape reader, paper-tape punch, and the PRIMOS file
system. An attempt to perform I/O to a physical device not supported
by CONIOC will fail. The default CONIOC for V-mode supports the user
terminal and PRIMOS file system only.

IOCS Tables

If a computer installation requires that user programs use devices not

supported by CONIOC, the System Administrator must modify the OCONIOC
tables RATBL, RBTBL, WATBL, and WBSTBL, and then rebuild the FORTRAN

library. There is a version of CONIOC that contains all the available

tocs drivers set up in the appropriate tables. This file is

SOURCES>FULCON. INS.PMA in VFTNLIB, or ICCS>FULOON.PMA in RFINLIB. The

System Administrator can use FULCON as an example of how to set up

CONIOC. The table entries that are not required can be set to 0.

The System Administrator may also change the default

logical-to-physical-device association as given in Tables 14-2 and 14-3

by changing the JIOCS tables RATBL, TBIBL, WATBL, and CNIBL in CONIOC.

For example, the fifth entry of LUTBL (indicating logical device 5)

contains 7. Entry 7, the RATBL, contains ISAD07, which is a driver for

the PRIMOS file system. Other numbers indicate physical devices, as

shown in Table 14-2. PUTBL is the sub-unit table. The sub-unit table

contains the individual wit or file numbers as required for multifile

devices. For example, LUTBL contains the same number of logical

devices 21, 22, 23, and 24, indicating 9-track magnetic tape. PUTBL

contains 0, 1, 2, and 3 for logical devices 21, 22, 23, and 24

indicating unit 0, 1, 2, and 3 of 9-track magnetic tapes.

Modifying CONIOC to Change Device Assignment

Changing a device assignment is a System Administrator's responsibility

and not a user function. The Systen Administrator may add or delete a

device to any of the following tables.

15-3 Third Edition

19

19

DOC3621-190

RATBL

RBTBL

WATBL

WBTBL

CNTBL

Read ASCII table.

Read binary table.

Write ASCII table.

Write binary table.

Perform control function (endfile, rewind, etc.).

Input-only Devices

Input~only devices such as the card reader do not need WATBL and WBTBL
entries, Furthermore, an ASCII-only device (such as a line printer)
does not need RBTBL and WBIBL entries.

Order of Entries

The order of entries in the above-mentioned tables corresponds to
Physical-device numbers defined in Table 14-2,

R-mode Procedures

W
w

Attach to RFINLIB>IOCS of Master disk A,

Edit the appropriate tables within CONIOC. PMA,

Replace the 0 with the corresponding subroutine name for
the desired device.

Rebuild the RFINLIB library. (See below.)

V-mode Procedures

Third Edition

Attach to VFINLIB>SOURCES of Master Disk A,

Edit the appropriate tables within the CONIOC. INS. PMA,

Replace the word NULLDEVICE with the appropriate device
subroutine name.

Rebuild the VFINLIB Library. (See below.)

15-4

DEVICE ASSIGNMENT

How to Rebuild the FORTRAN Library after Modifying CONIOC

R-mode Procedures: The R-mode FORTRAN library must be rebuilt after
CONIOC hasbeen modified:

1 Attach to RFINLIB on Master Disk A.

2 Run RFINLIB. BUILD. CPL.

3 Run INSTALL_FINLIB.CPL.

4 Share the new library (a System Administrator
procedure).

V-mode Procedures: The V-mode FORTRAN library must be rebuilt after
CONTIOC has been modified:

1 Attach to UFD = VFINLIB on Master Disk A,

2 Run VFINLIB. BUILD.CPL.

3 Share the new library (a System Administrator
procedure).

15-5 Third Edition

19

16
Device-independent

Drivers

This chapter presents the subroutines listed in the top (horizontal)
row Of Table 14-1. They have the following functions:

Routine Function

WRASC Write ASCII

RDASC Read ASCII

WRBIN Write binary

RDBIN Read binary

CONTRL Other control functions

To maintain device independence, all data transfers can be accomplished
through these five device-independent drivers in IOCS. These device-
independent or first-level drivers route the I/O request to one of the
device-dependent drivers, as shown in Table 14-1 and Figure 14-1. The
device-dependent drivers are presented in the following chapters (17
through 19). Each column of Table 14-1 represents an I/O function, and
each row a specific physical device. All drivers in a single column
are designed to be compatible in terms of internal data format.

16-1 Third Edition

DOC3621-190

DATA FORMATS

All first- and second-level device drivers are uniform in the internal
representation of data. All ASCII data, for example, has the same
internal format regardless of the physical device.

ASCII Data

Data associated with logical I/O functions RDASC (Read ASCII) and WRASC
(Write ASCII) are represented internally as an ASCII string in card
image format. This string is of length N words with each word
containing ASCII-coded characters. (N is defined in the calling
sequence to the driver.)

Notes

1. The NEWLINE (octal 212) must not be used as data because it
is the end-of-record indicator.

2. ASCII drivers should only be used to transfer printable
ASCII characters,

Binary Data

Binary data is transferred using RDBIN and WRBIN. The external format
varies considerably from device to device, but the internal format
remains the same. Binary data can consist of anything and is not
interpreted by the driver in any way.

The parameter buffer (buffer address) in a call to RDBIN (Read Binary)
or WRBIN (Write Binary) defines the first word of the binary data. The
word count on output must be defined by the user.

ARGUMENTS FOR DEVICE-INDEPENDENT DRIVERS

The device-independent drivers all have the same arguments. The
arguments are defined in Chapter 14,

Third Edition 16-2

DEVICE-INDEPENDENT DRIVERS

DESCRIPTION OF SUBROUTINES

PBWRASC

Purpose

WRASC writes ASCII characters to any output device.

Usage

CALL WRASC (logical-device,buffer,count,altrtn)

Discussion

2 DThe contents of buffer are moved from memory to the output
*

71COeed SALI ML he eiiSNS MEPMe SV a °

format of the data on the output medium is device-specific. Memory is
assumed to consist of ASCII, two characters per word.

> RDASC

Purpose

RDASC reads ASCII characters from any input device.

Usage

CALL RDASC (logical-device, buffer, count, altrtn)

Discussion

One record is brought into memory. Buffer is always filled with count
ASCII characters, two per word. If the record is longer than count
words, buffer contains the first count words in the record and the next
successive read will give the first count words of the next record, not
the remaining words of the long record. If the record is less than
count words, the remainder of the buffer will be blank~filled.

16-3 Third Edition

DOC3621-190

P WRN

Purpose

WRBIN writes binary data to any output device.

Usage

CALL WRBIN (logical-device, buffer,count,altrtn)

Discussion

The number of words specified by count are written from buffer to the
specific output device. The format of the data is device-dependent.

p> ROBIN

Purpose

RDBIN reads binary input from any input device.

Usage

CALL RDBIN (logical-device,buffer,count,aitrtn)

Discussion

A record is read into memory. Count is the maximum number of words
that will be read into buffer. If the record is less than count long,
then count will be set to the number of words actually read. If the
record is longer than count, only the first count words will be read,

Third Edition 16-4

DEVICE-INDEPENDENT DRIVERS

P CONTRL

Note

This subroutine is obsolete, and has been replaced with SRCHSS
(Chapter 9).

Purpose

Certain nondata transfer functions, such as opening a PRIMOS file for
reading, are provided by use of the CONTRL subroutine.

Usage

CALL CONTRL (key, name, logical-device, altrtn)

key A numeric option code that may have the following
values:

1 Open for reading.

2 Open for writing.

3 Open for read/write.

4 Close.

5 Delete file.

6 Move forward one file mark (MT only).

7 Rewind to beginning of file.

8 Select device and read status (MT
, only). Status is returned in the

A-register, and must be read by a
user-written PMA subroutine.

-] Write file mark (MT only).

-2 Backspace one record (MT only).

-3 Backspace one file mark (MT only).

~4 Rewind to beginning of tape (MI only).

16-5 Third Edition

DOC3621-190

Note

For calls to disk files, key
may have many other values.
See SRCHSS. Keys other than
1-4 are not device-independent.

name Filename (0 if none).

logical-—device See Chapter 14,

altrtn See Chapter 14,

Discussion

Functions not applicable to a particular device are ignored;
therefore, functions can be requested in a device-independent way. See
Table 16-1 for operation effects.

Third Edition 16-6

DEVICE-INDEPENDENT DRIVERS

Table 16-1
List of Keys and Operating Effects for CONTRL

Paper-tape
Key Terminal Reader/Punch Magtape Disk

(CS$A01) (CSP02) (CSMxx) (SEARCH) °

1 a a a a

2 q q b b

3 q q Cc Cc

4 Lr r d Pp

5 — —_ h e

6 g q 1 Zz

7 s s n £

8 _ —_ k g

-l — — 1 Zz

-2 — _ m Zz

-3 — — n Zz

—4 — — oO Zz

a Open for read.
b Open for write.
c Open to read and write.
d Rewind and close file.
e Delete file.
f Position to beginning of file.
g Truncate file,
h Move forward one record.
i Move forward one file mark.
k Select device and read status.
1 Write file mark.
m Backspace one record,
n Backspace one file mark.
oO Rewind to BOT (beginning of tape).
p Close file.
q Turn on punch and punch leader.
r If device was open for output, punch trailer

and turn off paper-tape punch and reader.
iS Halts allowing operator to rewind tape.

Type 'START' to continue.
Zz Abort (BAD KEY error).

Keys other than 1 through 4 are not device—independent.

16-7 Third Edition

17
Disk Subroutines

This chapter defines the subroutines for non-file-systen disk I/O
operations, The first set is a subset of the device-dependent drivers
listed in Table 14-1. ‘They comprise the drivers listed in the rows for
the PRIMOS file system, except for SRCHSS$, which is presented in
Chapter 9, Most users will find that other subroutines, in Chapters 9
and 12, will perform I/O functions faster and with more options than
these drivers.

The second section of the chapter lists some obsolete disk subroutines:
DSINIT, WRECL, and RRECL.

These are the subroutines presented in this chapter:

Routine Meaning

OSAD07 Write ASCII to disk.

ISAD07 Read ASCII from disk.

OSBD07 Write binary to disk.

ISBD07 Read binary from disk.

OSAD08 Write ASCII to disk (fixed-length records).

DSINIT Initialize disk (obsolete).

17-1 Third Edition

DOC3621-190

RRECL Read one disk record (obsolete).

WRECL Write one disk record (obsolete).

ARGUMENTS

The arguments for these subroutines are defined in Chapter 14.

DRIVER SUBROUTINES

p 0SAD07

Note

This subroutine is obsolete, and has been replaced with WILINS
(Chapter 9).

Purpose

OSADO7 writes ASCII from buffer onto a disk file open on file-unit.

Usage

CALL OSADO7 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

Discussion

Information is written on the disk in compressed ASCII format.
Multiple blank characters are replaced with the character DCl (221
octal) followed by aword count. Trailing blanks are removed and the
end of record indicated by the NEWLINE character, or NEWLINE followed

by null.

Third Edition 17-2

DISK SUBROUTINES

p ISAD07

Purpose

ISAD07 reads information from the disk file open on file-unit, in
compressed ASCII format.

Usage

CALL ISAD07 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

> ospp07

Purpose

OSBD07 writes binary information to the file open on file-unit.

Usage

CALL OSBD07 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

> ISBD07

Purpose

ISBD07 reads binary information from the file open on file-unit.

Usage

CALL ISBD0O7 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14,

17-3 Third Edition

DOC3621-190

B osAp0s

Purpose

OSAD08 writes ASCII from buffer onto the disk file open on file-unit.

Usage

CALL OSAD08 (file-unit, buffer, count, altrtn)

For an explanation of arguments, see Chapter 14.

Discussion

Information is written on the disk in fixed-length records. Each
record consists of count words followed by a word containing NL and
NULL (105000 octal). This driver is not in the standard CONICC
supplied by Prime.

OBSOLETE DISK SUBROUTINES

These subroutines are not in FINLIB, They were intended for use by the
System Administrator.

® DSINIT

Purpose

The DSINIT routine is called to initialize disk devices.

Usage

CALL DSINIT (pdisk)

pdisk The physical disk number to be initialized, (See
RRECL below.)

Discussion

DSINIT initializes the disk controller and performs a seek to cylinder
0 on pdisk. DSINIT must be called prior to any RRECL or WRECL calls.

Third Edition 17-4

DISK SUBROUTINES

pdisk must be assigned by the PRIMOS ASSIGN command before calling this
routine. DSINIT was intended by use only by outdated system utilities.

 RRECL

Purpose

Subroutine RRECL reads one disk record from a disk into a buffer in
memory. Before RRECL is called, the disk must be assigned by the
PRIMOS ASSIGN command and DSINIT must be called to initialize the disk.

The RRECL routine was intended for use only by now outdated systen
utilities such as FIXRAT, MAKE, and the old disk COPY.

Tlesa ca

CALL RRECL (LOC(buffer), length, option-word, ra, pdisk, altrtn)

buffer An array into which length words from record ra will
be transferred,

length The number of words to be transferred,

option-word A 16-bit word with the following options:

Bit 1 set Perform current record address
check,

Bit 2 set Ignore checksum error.

Bit 3 set Read an entire track (beginning at
ra) into a buffer 3520 words long,

beginning at the buffer pointed to
by ra. (This feature may be used
only if RRECL is running’ under
PRIMOS II, is reading a disk
connected to the 4001/4002
controller, and is a 32-sector

pack,)

Bit 4 set Format the track. This bit is only
Significant for storage . module
disks,

Bits 5-8 Reserved.

Bits 9-16 Must be set on (1).

17-5 Third Edition

DOC3621-190

ra A 32-bit integer (INTHGER*4)
record address.
of the disk.

Size

Floppy disk

pdisk

1.5M disk pack

3.0M disk pack

30M disk pack

128K fixed-head disk

256K fixed-head disk

512K fixed-head disk

1024K fixed-head disk

specifying a_ disk
Legal addresses depend on the size

ra Range

0-303

0-32.47

0-6495

0-64959

0-255

0-511

0-1023

0-2047

The physical disk number of the disk to be read,
pdisk numbers are the same numbers available for use
in the ASSIGN and STARTUP commands of PRIMDS.

altrtn An integer variable in the user's program to be used
as an alternate return in case of uncorrectable disk

If this argument is 0 or omitted, an errorerrors,
message is printed.

Discussion

(See Chapter 14.)

If an error is encountered and control goes to altrtn, ERRVEC (Appendix
E) is set as follows:

Code

ERRVEC (1) = WB

ERRVEC (2) = 0

Message

On supervisor terminal: 10 times

DISK RD ERROR pdisk ra_ status

Meaning

Disk hardware

WRITE PROTECT
error

On user terminal: UNRECOVERED ERROR

Third Edition 17-6

DISK SUBROUTINES

ERRVEC(1) = WB On user terminal: 10 times | ee ot

ERRVEC(2) = CR DISK RD ERROR pdisk ra_ status
followed by
UNRECOVERED ERROR

address error

See the System Administrator's Guide for a description of status error
codes.

Notes

Length must be between 0 and 448 unless pdisk is a storage
module, in which case length must be between 0 and 1040. If
this number is not 448 and pdisk is 20-27 (diskette), a
Checksum error is always generated; bypassing can be
accomplished by setting the option-word's bit 2 to 1. No
check is made for legality of ra.

On a DISK NOT READY, RRECL does not wait for the disk to
become ready under PRIMOS III or PRIMOS. Under PRIMS MII,
RRECL prints a single error message and waits for the disk to
become ready.

On any other read error, an error message is printed at the
system terminal, followed by a seek to cylinder 0 and a
reread of the record. If 10 errors occur, the message
UNRECOVERED ERROR is typed to the user or altrtn is taken.

> WRECL

Purpose

Subroutine WRECL writes the disk record toa disk from a biffer in
memory. The arguments and rules of the WRECL call are identical to
those of RRECL except for bits 1 and 2 of option-word, which have no
meaning on write. For a call to write a record on the diskette, the
buffer length must be 448 words.

DSINIT must be called before a call to WRECL.

17-7 Third Edition

DOC3621-190

Usage

CALL WRECL (LOC(buffer), length, option-word, ra, altrtn)

The meaning of the parameters is the same as described above in RRECL,
except that the function of the command is to write rather than read
the specified records. The user of WRECL is responsible for being
careful to write only on areas of the disk that do not contain
significant user or operating system information. An attempt to write
on a write-protected disk generates the message:

DISK WT ERROR pdisk option-word status
WRITE PROTECT

on the supervisor terminal and the message:

UNRECOVERED ERROR

at the user terminal. ERRVEC(1) will contain error code WB, unless ©
altrtn is taken. Other write errors are retried ten times in a manner

Similar to read errors. (Refer to RRECL.)

Third Edition 17-8

User Terminal and

Paper-Tape

Subroutines

OVERVTEW

This chapter defines subroutines used to transfer data to and from a
user terminal or card reader/punch (ASR). Same are a subset of the
device-dependent IOCS drivers shown in Table 14-1, in the rows for the
user terminal and for paper tape. Other subroutines in this chapter
are of general use for these devices. They are listed elsewhere, and
referenced here for completeness of the user-terminal and paper-tape
chapter.

The subroutines in this chapter are listed in Table 18-1,

LIST OF SUBROUTINES

> BREAK

Purpose

BREAK inhibits or enables CONTROL-P.

Usage

For the calling sequence and discussion, see Chapter 10.

18-1 Third Edition

DOC3621-190

Table 18-1
Subroutines for User Terminal and Paper Tape

Device Routine Function

User terminal BREAK Inhibits or enables CONTROL-P.

ClIN Gets next character from terminal or
command file.

CNINS$ Moves characters from terminal or
command file to memory.

COMANL Reads a line of text from the terminal
or from a command file.

ERKL$$ Reads or sets erase and kill characters,

TNOU Outputs count characters to the user
terminal followed by the LINEFEED and
Carriage return.

TNOUA Outputs count characters to the user
terminal.

TOVFD$ Outputs the 16-bit integer num to the
terminal.

T1IB Reads one character from the user
terminal into Register A.

T1OB Writes one character from Register A
to the user terminal.

T1IN Reads one character from the user
terminal.

T1OU Outputs char to the user terminal.
The data type must be a 16-bit integer
in F77.

TIDEC Inputs decimal number.

TIOCT Inputs an octal number.

TIHEX Inputs a hexadecimal number.

TODEC Outputs a six-character signed
decimal number,

TOOCT Outputs a six-character unsigned
octal number.

Third Edition 18-2

USER TERMINAL AND PAPER-TAPE

Table 18-1 (continued)
Subroutines for User Terminal and Paper Tape

Device Routine Function

TOHEX Outputs a four-character unsigned
hexadecimal number.

TONL Outputs carriage return and LINE-

FEED.

CSA01 Controls functions for user terminal.

User terminal or OSAAQ1 Outputs ASCII to the user terminal or

ASR punch ASR punch.

Keyboard or ISAA0N1 Inouts ASCII from terminal or ASR

ASR reader reader.

ISAA12 Performs the same function as ISAA01
but also allows the input to be froma
cominput file.

Paper tape ISAP02 Inputs ASCII from the high-speed

paper-tane reader.

P1IB Inputs one character from the high-speed
paper-tape reader to Register A.

OSBP02 Outputs binary data to the high-speed
paper-tape punch.

P10B Outputs one character to the high-speed

paper-tape punch from Register A.

P10U Outputs one character to the high-speed

high-speed paper-tape punch.

P1IN Inputs one character from paper tape,
sets high-order bit, ignores line feeds,
sends a line feed when carriage return
is read,

CSP02 Controls functions for paper tape.

18-3 Third Edition

DOC3621-190

P csAdl

Purpose

CSA01 provides control functions for the user terminal.

Usage

CALL CSA01 (key, name, physical-unit [, altrtn])

Arguments are explained in Chapter 14; key is in Table 16-1.

B csPo2

Purpose

CSP02 provides control functions for paper tape.

Usage

CALL CSP02 (key, name, physical-unit [,altrtn])

Arguments are explained in Chapter 14; key is in Table 16-1.

e cin

Purpose

CLIN gets the next character from the terminal or command file.

Usage

For the calling sequence and discussion, see Chapter 10.

> cCNINS

Purpose

CNINS moves characters from the terminal or a command file to memory.

Third Edition 18-4

USER TERMINAL AND PAPER-TAPE

Usage

For the calling sequence and a discussion, see Chapter 10.

P coMAL

Purpose

COMANL reads a line of text from the terminal or from a command file.

Usage

For the calling sequence and a discussion, see Chapter 10.

> ERKLSS

Purpose

ERKLS$ reads or sets the erase and KILL characters.

Usage

For the calling sequence and a discussion, see Chapter 10.

> ISAAO]

Purpose

ISAAO] reads ASCII from the terminal or ASR reader.

Usage

CALL ISAAO] (sub-unit, buffer, count [,altrtn])

For a discussion of arguments, see Chapter 14.

18-5 Third Edition

18.1

DOC3621-190

Discussion

The kill and erase characters (question mark and quote mark by default)
may modify the input line, as with the PRIMOS III command line. The
Characters NUL, DEL, DLE, DC2, DC3, and DC4 are ignored, The character
EXT (octal 203) indicated the end of file and is used for reading tapes
through the user terminal.

Note that ISAA01 is not the entry for the user terminal in the
Prime-supplied CONIOC (Chapter 15). Put ISAAOl] in the table as
explained in Chapter 15 to read paper tapes with user programs, The
editor should be used to read in the tape, and then the user INay read
the file from disk.

B ISAAl2

Purpose

ISAA12 performs the same function as ISAAQ1 but also allows the input
from a cominput file.

Usage

CALL ISAA12 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

B ISAP02

Purpose

ISAP02 reads ASCII from the high-speed paper—tape reader.

Usage

CALL ISAP02 (sub-unit, buffer, count[, altrtn])

Discussion

The KILL and ERASE characters (question mark and double quote by
default) modify the input. NUL, DEL, DLE, DC2, DC3, and DC4 are
ignored, The character ETX (octal 203) indicates end of file.

Third Edition 18-6

USER TERMINAL AND PAPER~TAPE

PR osaAAdl

Purpose

OSAA01 outputs ASCII to the user terminal or ASR punch.

Usage

CALL OSAA01 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

Discussion

ha Arivar TTACTT
Nae ~~ Nedebv LUNAS ©

p> OSBP02

Purpose

OSBPO2 writes binary data to the high-speed paper-tape punch.

Usage

CALL OSBP02 (sub-unit, buffer, count[, altrtn])

For a discussion of arguments, see Chapter 14.

Discussion

The format of the paper-tape output can be found in a listing of this
driver. Ask your System Administrator how to obtain a copy of the
listing.

P PB

Purpose

P1IB reads one character from the high-speed paper-tape reader to
Register A,

18-7 Third Edition

DOC3621~190

Usage

CALL P1IB

This subroutine has no arguments; the calling program must have access
to Register A,

P PIN

Purpose

P1IN reads one character from paper tape.

Usage

CALL PLIN (char)

Discussion

The subroutine sets the high-order bit, ignores line feeds, and sends a
line feed when a carriage return is read.

P rie

Purpose

P1OB writes one character to the high-speed paper-tape punch from
Register A,

Usage

CALL P10B

This subroutine has no arguments; the calling program must have access
to Register A,

Pld

Purpose

PlQU writes one character to the high-speed paper-tape punch.

Third Edition 18-8

USER TERMINAL AND PAPER~TAPE

Usage

CALL P1OU (char)

zero the high-order bit before punching. Mo special action is taken on
carriage returns or line feeds.

Yr TB

Purpose

T1IB reads one character from the user terminal into Register A,

Usage

ATT mMmitrD
VAAL: 11L1D

This subroutine has no arguments; the calling program must have access

to Register A.

— TIC

Purpose

T10B writes one character from Register A to the user terminal.

Usage

CALL T1OB

This subroutine has no arguments; the calling program must have access

to Register A,

> TILIN

Purpose

TLIN reads one character from the user terminal.

Usage

CALL TLIN (char)

18-9 Third Edition

DOC3621-190

Discussion

If a carriage return is read, a NEWLINE is output and char is set to
NEWLINE. If a NEWLINE is read, a carriage return is outputand char is
set to NEWLINE.

If .XOF. is read, a carriage return and NEWLINE are expected to
follow. T1IN ignores the .XOF., reads the carriage return and line
feed, then sets char to NEWLINE. The .XOF. characters are expected on
Paper tape.

TIA

Purpose

T1LOU writes a character to the user terminal.

Usage

CALL TLOU (char)

The data type of char must be a 16-bit integer in FORTRAN IV or FORTRAN
77. If char is NEWLINE, the characters Carriage return and NEWLINE are
output tothe user terminal.

~ TIDEC

Purpose

TIDEC reads terminal input as a decimal number.

Usage

CALL TIDEC (variable)

Third Edition 18-10

USER TERMINAL AND PAPER—TAPE

Discussion

The number may be preceded by a minus to indicate that it is negative,but must not be preceded by a plus sign. Numbers may be terminated bya Carriage return or a space. A question mark or other error messageis displayed if a numeric input is improper, and more input will thenbe accepted. A space or carriage return will then be accepted asa 0.

THE

Purpose

TIHEX reads terminal input as a hexadecimal number.

Tiea nn
weee 2.

CALL TIHEX (variable)

Discussion

The number maybe preceded by a minus to indicate that it is negative,but must not be preceded by a plus sign. Numbers may be terminated bya Carriage return or a space. A question mark or other error messageis displayed if a numeric input is improper, and more input will thenbe accepted. A space or Carriage return will then be accepted as a 0.

Toc

Purpose

TIOCT reads terminal input as an octal number,

Usage

CALL TIOCT (variable)

Discussion

The number may be preceded by a minus to indicate that it is negative,but must not be preceded by a plus sign, Numbers may be terminated by@ carriage return or a space. A question mark or other error message

18-11 Third Edition

DOC3621-190

is displayed if a numeric input is improper, and more input will then

be accepted. Aspace or carriage return will then be accepted as a 0.

Y TNO

Purpose

TNOU writes count characters to the user terminal followed by a

LINEFEED and carriage return.

Usage

CALL TNOU (buffer, count)

Buffer is expected to contain two characters per word.

This subroutine is especially useful for the transfer of nonprinting

characters.

P TNA

Purpose

TNOUA writes count characters to the user terminal.

Usage

CALL TINOQUA (buffer, count)

Discussion

This subroutine is especially useful for transfer of nonprinting

characters.

Example

For an example, see the first sample program of the COBGL chapter.

Third Rditjon 18-12

USER TERMINAL AND PAPER-TAPE

B TODEC

Purpose

TODEC outputs a six-character signed decimal number.

Usage

CALL TODEC (variable)

Usage

CALL TOHEX (variable)

& Toor

Purpose

TOOCT outputs a six-character unsigned octal number,

Usage

CALL TOOCT (variable)

TOL

Purpose

TONL outputs a carriage return and line feed.

Usage

CALL TONL

18-13 Third Edition

DOC3621-190

> TOrDs

Purpose

TOVFDS writes a 16-bit integer to the terminal.

Usage

CALL TOVFDS (number)

Discussion

This subroutine writes number, which should be a 16-bit integer, to the
terminal without any spaces (for example, 123 or -17).

Third Edition 18-14

Other Peripheral
Devi

This chapter, describes subroutines that control line printers,
printers/plotters, card readers, and magnetic tapes. These subroutines
are used for both formatted and raw data. Not all are in JIOCS. They

are listed in Table 19-l.

LINE PRINTER SUBROUTINES

IOCS contains. subroutines to control three types of line printers.
They are: OSALO4 to print on a Centronics Line Printer connected to

the system option controller (SOC); OSALO6 to print on a parallel-
interface line printer connected to the MPC Line Printer Controller;
and OSAL1I4 to print on a Versatec Printer/Plotter connected to a
Versatec-SOC Controller. This section also includes SPOOLS for queuing
files to be printed, and TSLMPC to move data to the MPC line printer.

19-1 Third Edition

DOC3621-190

Table 19-1
Peripheral-handling Subroutines

Line Printers
OSALO4 Centronics LP..
OSALO6 Parallel interface to line printer (MPC).
OSAL14 Versatec printer.
TSLMPC Move data to MPC line printer.
SPOOLS Insert a file in spooler queue.

Printer/Plotter
TSVG Versatec.
OSAL14 Versatec,

Card Reader/Punch
ISACO3 Input from parallel card reader.
ISACO9 Input from serial card reader.
ISAC15 Read and print card from parallel interface reader.
TSCMPC Input from MPC card reader.
OSACO3. Parallel interface to card punch.
OSACI5 Parallel interface to card punch and print on card,
TSPMPC Raw data mover.

Magnetic Ta
CHO Control functions for 9-track ASCII/binary.
CSM10 Control functions for 7-track ASCII/binary.
CSM11 Control functions for 7-track EBCDIC,
CSM13 Control functions for 9-track EBCDIC.
OSAM05 Write ASCII to 9-track.
OSAMLO Write ASCII to 7-track.
ISAMO5 Read ASCII from 9-track.
ISAM10 Read ASCII from 7-track.
OSBM05 Write binary to 9-track.
OSBMLO Write binary to 7-track.
ISBM05 Read binary from 9-track.
ISBM10 Read binary from 7-track.
OSAM11 Write BCD to 7-track,.
OSAM13 Write EBCDIC to 9—track,
ISAM11 Read BCD from 7-track.
ISAM13 Read EBCDIC from 9-track,.
TSMI Raw data mover.

Third Edition 19-2

OTHER PERIPHERAL DEVICES

 OSALxx

Purpose

These subroutines provide an interface to the line printers. OSAL14 is
discussed separately below.

Usage

CALL OSALxx (physical-unit,buffer,count[,altrtn])

physical-unit Line printer unit number:

0 PRO, first controller

1 PRI, first controller

2 PR2, second controller

3 PR3, second controller

buffer The name of the buffer where the text to be printed
resides, Print text is placed in the buffer, two
Characters per word,

count The number of 16-bit words of datato be printed,

altrtn Never taken and is an optional calling sequence
parameter.

Discussion

For more information on arguments, see Chapter 14,

Printer Control

The action taken by OSALxx depends on the data in the buffer, and the
current vertical control mode. Certain characters within the data
control the manner in which the data is printed, ‘These characters
(codes) are described in the following paragraphs.

19-3 Third Edition

DOC3621-190

Vertical Control Modes

OSALxx has three vertical control modes:

e forms control

e@ Header line and pagination control

e No-control

OSALxx checks the first character in the data buffer for a .SOM. oF

start-of-message character (ASCII :001). This character signifies a

change in the control mode. If the first character in the buffer is

not .SOM., the line is printed according to the current control mode.

The default mode is forms control.

Forms Control Mode

The first character in the buffer is not printed; instead, it is used

for forms control. The character interpretations are as follows:

Character Interpretation

0 Skip a line.

1 Eject to top of next page.

+ Overprint last line (AL06 only).

Any character
other than No action,

0, 1, +

Header Line and Pagination Control Mode

In header line and pagination mode, OSALxx causes a header line to be

printed, followed by three blank lines, followed by 38 text lines. The

header line consists of up to 43 characters followed by a page count

that is generated by OSALxx when printing in this mode.

For OSALO6 and OSAL14, enter pagination mode with a first word of

3000001 in buffer. In pagination mode with OSAL04, a form feed (octal

14 or 214) may be anywhere in the buffer line. All characters

preceding the form feed are printed, and all characters after it are

ignored, With OSALO4, the form feed must be in column 1 or 3.

Third Edition 19-4

OTHER PERIPHERAL DEVICES

No-control Mode

In No-control mode, no actions are taken by OSALxx. A line containing
an ASCII formfeed character (FF, :214) causes the line preceding it to
print, followed by a page eject. Carriage return (CR, :215) will cause
the line preceding it to print with no spacing. LINEFEED (LF, :212)
will cause the line preceding it to print followed by a line spacing
operation. Any characters following a CR, LF, or FF are ignored,

Change of Mode Commands

Any data buffer beginning with a .SOM. character causes OSALxx to take
some action to change control mode. The control mode change is
determined by the character following the .SOM.. The character
interpretations are:

Character Interpretation

000 Enter no-control mode.

001 Enter control mode.

036 New header line - DO NOT reset page count.

037 Enter new page size specified by the 16-bit
number contained in the next computer word,

All other Enter header control mode characters.

Early Buffer Termination

ALINE FEED (LF, :212) character terminates the print line in the

buffer, regardless of the count parameter.

Errors

None

Load Information

OSALO4 calls no other subroutines. OSALO6 calls TSLMPC.

19-5 Third Edition

DOC3621-190

P osaLi4

Purpose

OSAL14 provides the IOCS interface to the Versatec printer.

Usage

CALL OSAL14 (buffer,count,altrtn)

buffer Buffer to/from which data are moved.

count Number of words to be transferred,

altrtn Never taken and iS an optional calling sequence.
(See Chapter 14.)

Discussion

The action taken by OSAL14 depends upon the data in the buffer and the
current vertical control mode (first character of buffer).

OSAL14 has three vertical control modes:

1. Forms control

2. Header line and paginate control

3. No-control

The default mode is forms control. OSAL14 checks the first character
in the data buffer for a .SQM. (ASCII :001). This character signifies

a change in the control mode. If the first character is not a .SM.,
the line is printed according to the current control mode. Mode
descriptions follow.

Forms Control: In this mode, the first character in a buffer is never
printed but is used for forms control. The character interpretations
are:

0 Skip one line.

1 Eject to top of next page.

+ Print over last line (if printer model allows).

Other No action.

Third Edition 19-6

OTHER PERIPHERAL DEVICES

Header Line and Pagination: In this mode OSAL]14 permits a header line
followed by three blank lines, followed by 56 text lines. The header
line is 42 characters followed by a page count which is kept
automatically by OSAL14 when in this mode.

No-control: In this mode no automatic actions are taken except that
any line containing a form-feed character will cause a page eject with
no further action.

Any data buffer beginning with a .SOM. will cause an internal change
by OSAL14. The change is determined by the character following the
SOM. :

000 Enter no-control mode.

001 Enter control mode.

036 New header line but do not reset page count.

037 Enter new page size specified by the 16-bit number
contained in the next computer word,

1 others Enter header control mode.

When entering header control mode, the characters following the .SOM.
are stored internally in OSAL14 for use as the header line.

All change of mode commands cause a page eject before any further
action.

Load information: This subroutine calls TSVG.

p> TSLMPC

Purpose

The TSLMPC routine is the raw data mover that moves information from
the user to one line on the MPC line printer.

The user normally prints lines under program control using either
FORTRAN WRITE statements or a call to OSALO6, which in turn calls

TSLMPC. However, it is possible to call TSLMPC directly.

19-7 Third Edition

DOC3621-190

Usage

CALL TSLMPC (logical-unit, LOC(buffer), count, instr, status)

logical-unit Line printer unit.

buffer A pointer to a buffer to hold information to be
printed on the line printer. Information is
expected to be packed two characters per word,

count Number of words to print on the current line.

instr The instruction required to be sent to the line
printer, Valid instructions are:

Instruction (Octal) Meaning

100000 Read status,

40000 Print a line.

20012 Skip a line.

20014 Skip to top of page.

20100-20113 Skip to tape channel 0-11.

20120-20137 Skip from 1 to 15 lines.

status A three-word vector that contains device code,
status of printer, and a space. Possible printer
status is:

Octal Value Condition

200 Online

100 Not busy

Discussion

Under PRIMOS, line printer output is buffered. If TSLMPC is called and
the buffer is full, the user is placed in output-wait state, Later,
when the buffer is no longer full, the user is rescheduled, and the

TSLMPC call is retried. The uSer may issue a status-request call to
check if the buffer is full. If the buffer is full, then the not-busy
status is reset. Using this feature, a uSer program may check that the
buffer is not full, then output one line, or do another computation if
thebuffer is full. Under PRIMOS II, output is not buffered, and
control does not return to the user until printing is complete.

Third Edition 19-8

OTHER PERIPHERAL DEVICES

B SPOOLS

Purpose

A user program can insert a file into the spool directory by calling
the SPOOLS subroutine.

Usage

CALL SPOOLS (key, name, namlen, info, buffer, buflen, code)

key User option:

1 Copy named file into queue.

2 Open file on unit info(2) for writing.

name File to be copied (if key=1), or name to appear on
header page (if key=2).

namlen Length of name, in characters (1-32).

info Information array, 12 to 29 words, as follows:

1 Reserved after Rev. 17.

2 Tenp file unit 2 (may range from 1-126
for Rev. 17 and above).

3 Print option word. (See below.)

4-6 Form type (6 ASCII characters).
(Equivalent to -FORM on PRIMOS command
line.)

7 Plot raster scan size (plot only).
This represents number of words/raster
scan,

8-10 Spool filename (returned).

ll Deferred print time (valid only if
defer bit specified in option word) -.
an integer specifying minutes after
midnight. (Equivalent to -DEFER in
PRIMOS command line.)

12 File size, returned if key is l.

13-20 (Optional) Logical destination name —
must be blank-padded (equivalent to -AT

19-9 atta BO

DOC3621-190

buffer

buflen

code

on command line). If these words are
used, bit 10 of word 3 must be set to

1.

21-28 (Optional) Substitute filename to be
. used -—- must be blank-padded

(equivalent to -AS on command line).
If these words are used, bit 11 of word
3 must be set tol.

29 (Optional) Number of copies (equivalent
to -COPIES on command line). If this

word is used, bit 12 of word 3 must be
set tol.

Scratch buffer - this is used to set up control info
and to copy the file to the spool queue if key isl.
It must be at least 40 words long. Copy time is
inversely proportional to buffer size. Nominal size
is between 300 and 2000 words.

Length of buffer.

Return code (nonzero for file system error).

Word 3 of the information array (print option word) is defined as
follows:

Bit
1

m
n

&
W

N
D

O
Y

Third Editon

Meaning If Set to l

Format control. (Column 1 contains carriage control
information.)

Expand compressed listing.

Generate line numbers at left margin.

Suppress header page.

Don't eject page when done.

No format control.

Plot file -- info(7) must be specified.

Defer printing to specified time -- info(11) must be
valid.

Print on local printer only — Not used after Rev.
17.

If 1, use the logical destination name specified in
info(13-20).

19-10

OTHER PERIPHERAL DEVICES

11 If 1, use the substitute filename specified in
info(21-28) .

12 If 1, spool the number of copies specified in
info(29).

13-16 Reserved.

PRINTER/PLOTTERS

The printer/plotter subroutines are used to drive and control the
Versatec printer/plotter.

p> TSVG

Purpose

TSVG moves raw data from a buffer and prints the data on the Versatec
printer via a controller designed for use with the Versatec

printer/plotter.

Usage

CALL TSVG (physical-unit, LOC (buffer) ,nwds, instruction, status)

physical-unit Currently always 0, since the controller supports
only one device.

LOC (buffer) Address of user's buffer.

nwds The number of words in the buffer. The maximum is
512.

instruction A number from 0 to 10 that specifies an action that
the device is to take. These instructions are
described in detail in the following paragraphs.

status A two-word status array. Device status is returned
to status(2). status is returned only on a status
request instruction.

19-11 Third Edition

DOC3621-190

The interpretation of the bits that are set in
status(2) is as follows:

Bit Meaning

] Always 0.

2 If=1, then paper is low.

3 If=0, then printer/plotter is ready.
If=1, printer/plotter is not ready.

4 If=0, printer/plotter is online
otherwise, printer/plotter is offline.

5-16 Always 0.

Printer/Plotter Instructions

Instructions to the printer/plotter are specified in the instruction
Field of the calling sequence. They are a number from 1 to 10
interpreted as follows:

Third Edition

Return printer/plotter status in status(2). ‘The
contents of the status vector, status, are described
in the calling sequence description. MTSVG waits
until the output buffer is empty or until there is a
timeout before returning status.

End-of-transmission, This instruction initiates a
print cycle and a paper advance. If the paper on
the printer/plotter is installed in roll form, this
roll is advanced eight inches; if the paper is
fanfolded, it is spaced to the top of the next form.

Reset. The reset instruction clears the buffer and
initializes all logic in the printer/plotter.

Form feed. The form feed initiates a print cycle
and a paper advance.

If the paper on the printer/plotter is installed in
roll form, the paper is advanced 2-1/2 inches; If
the paper is fanfolded, it is advanced to the top of
the next form.

Clear buffer.

Reserved,

19-12

OTHER PERIPHERAL DEVICES

6 Print the contents of buffer. (Print mode only —
see below.)

7 Make a plot, using the contents of buffer. (Plot

mode only -—- see below.)

8 Simultaneous print/plot PRINT. (SPP mode only —
see below.)

9 Simultaneous print/plot PLOT. (SPP mode only -—- see
below.)

10 Return status of output queue in status(2.) If
there is no roan for the number of words specified
by the parameter nwds, set status(2) to 0. If there
is room for the number of words specified by nwds,
set status(2) to a nonzero value.

Print Mode: The Versatec printer/plotter may be operated as if it were
a line printer. The printer/plotter accepts 6- or 8-bit ASCII code.

Control commands are transmitted by using the instructions described

for the calling sequence or by transmitting the following ASCII control

codes :

RAST rT

ASCII Code
(Octal) Meaning

004 End of transmission.

014 Form feed,

012 LINEFEED. The transmission of a LINEFEED code
causes a print cycle and a paper advance of one
line, except when the 012 code follows either
the printing of a full buffer or a carriage

return (015).

015 Carriage return. A carriage return causes a
print cycle and a paper advance of one line,
provided the buffer has at least one character
entered and provided the buffer is not full.

When the 8-bit (128-character) ASCII character set is used, there are

no ASCII control codes.

Plot Mode: The printer/plotter performs plot operations that are

standard to all printer/plotter devices connected via the controller to
the Prime computer. Plot data consists of 8-bit, binary, unweighted
bytes. Each dot that is plotted at the printer/plotter corresponds to
a single bit in the buffer. If bit is 1, a black dot is plotted at the

19-13 Third Edition

DOC3621-190

point corresponding to the bit position in the buffer. Bit 1 of a
memory word (2 bytes) is the most significant (leftmost) bit, and bit
16 of memory word is the least siqnificant (rightmost) bit.

Simultaneous Print/Plot (SPP) Mode: SPP mode operation permits direct
overlay of character data which is generated by an internal matrix
character generator, with plotting data, which is generated on a
bit-to-dot correspondence. The SPP mode is an optional feature on same
printer/plotters, The SPP process makes use of both a print buffer and
a plot buffer, both specified in calls to TSVG, For example,using the
VersatecPrinter/Plotter Model 1100A in SPP mode, the SPP operation
consists of first, placing up to 132 ASCII characters in the PRINT
buffer (Instruction = 8); and then placing 128 bytes of plot data in
thebuffer (Instruction = 9) ten times. When the plot data is
transmitted to the printer/plotter, the plot buffer is scanned, and a
single row of dots, corresponding to the binary content of the plot
buffer, is printed. During the scanning process, the print buffer is
alsoscanned. The corresponding dots of each print character areOR'd
with the plot buffer output; thus an overlay is formed consisting of
the printed and plotted data. Since the vertical height of an ASCII
character for the Model 1100A Printer/Plotter is ten raster scans, the
user must make ten calls to plot data before the print buffer is
completely printed and ready for new data. Table 19-2 shows thenumber
of raster scans per print line for the various models of Versatec
printer/plotter optionally available with Prime computer
configurations.

Caution

For SPP mode, do not attempt to transfer more than the maximum
number of characters to the print buffer,

SPP mode requires a series of calls to the TSVG driver, For
instance, in the example given, each print instruction was
followed by ten plot instructions. Do not interrupt such a
Sequence with other instructions, because printer/plotter
output will be incorrect.

Third Edition 19-14

OTHER PERIPHERAL DEVICES

Table 19-2
Maximum Buffer Length for Versatec Printer/Plotters

PRINT
PLOT No. Scans/Print Lines

Model Bits Bytes Chars. 64 Chars. 96 or 128 Chars.

220a 560 70 80(70 in spp) 8 10
1100a 1024 128 132 10 12
1600a 1600 200 100 20 20
2000a 1856 232 232 10 12
2160a 2880 360 180 20 20

CARD PROCESSING SUBROUTINES

Card-reader subroutines drive and control serial and parallel interface
card readers.

Card Reading Operation

The user must insert the card deck in the card reader and give the
command : :

ASSIGN CRn

n =0 or 1 for the device sub-unit number

The user then fills the input buffer from the card reader by calling
subroutines TSCMPC, TSPMPC (operating system library), or ISACO03,
ISAC1]5 (FORTRAN library).

The user may issue a status request call to check if the input buffer
is empty. If the buffer is empty, the online status bit (bit 9 in the
Status word) is reset.

Note

Under PRIMOS II, the card reader is never offline.

19-15 Third Edition

DOC3621-190

BP ISACO3

Purpose

Reads ASCII input from the parallel interface card reader.

Usage

CALL ISACO3 (physical-unit, buffer, word-count, altrtn)

physical-unit Device to or from which data is to be moved:

0 CRO, first controller

1 CR1, second controller

buffer Buffer which receives data from card reader.

word count Number of words to be transferred,

altrtn Alternate return in case of end of file or other
error. (See Chapter 14.)

Discussion

Card Format: Cards are expected to be in 029 format. '026' cards may
be read by preceding the deck by a card containing '$6' in columns 1
and 2, The conversion done for '026' cards is shown below.

Card Code Converted to
(026 Symbol) (Character)

=

3 (

< }

@ '

& +

The driver can be switched back to '029' format by '$9' in columns 1
and 2.

Load Information: This subroutine calls TSCMPC,

Third Edition 19-16

OTHER PERIPHERAL DEVICES

B ISACO9

Purpose

The subroutine ISACO9 reads ASCII input from a serial interface card

reader.

Usage

CALL ISACO9 (unit, buffer-name, word-count, altrtn)

Discussion

ISACO9 translates card codes to characters in memory as follows:

Card Code Converted to
(026 Symbol) (Character)

=

3 (

<)

+ &

& +

@ '

Card codes read are either 026 or 029. The last cardin the deck is

Qe-

Errors: The ERRVEC(3) may have the following octal values. (See
Appendix E for a discussion of ERRVEC.) Combinations are possible.

200 Online

40 Illegal ASCII

20 DMX overrun

4 Hopper empty

2 Motion check

1 Read check

19-17 Third Edition

DOC3621-190

Load Information: ISACO9 calls FSAT to fetch the arguments.

B Isaci5

Purpose

Reads and interprets (prints) a card from a parallel interface card
reader,

Usage

CALL ISAC15(physical-unit, buffer, word-count, altrtn)

physical-unit Card-reader sub-unit:

0 CRO, first controller

1 CRL, second controller

buffer Data name into which card is to be read.

word-count Number of words to be read.

altrtn Alternate return in case of error. (See Chapter
14.)

Load Information

This subroutine calls TSPMPC.

p> TSCMPC

Purpose

The TSCMPC routine is the raw data mover that moves a card of
information from the MPC card reader to the user's space.

TSCMPC is called by the IOCS card-reader driver ISACO3. ‘The user
normally reads cards under program control using either FORTRAN READ
statements or a call to ISAC03. However, it is possible to call TSCMPC
directly.

Third Edition 19-18

Usage

OTHER PERIPHERAL DEVICES

CALL TSCMPC (physical-unit, LOC(buffer), word-count, instr, status)

physical-unit Card-reader number.

LOC (buffer) A pointer to a buffer to hold a card of information
read from the card reader.

word-count The number of words to be read from the current
card.

instr The instruction required to be sent to the card
reader. Valid instructions are:

Instruction

100000 (octal)

40000 (octal)

60000 (octal)

100001 (octal)

status A three-word vector:

Meaning

Return status.

Read card in ASCII format.

Read card in binary format.

Return status of hardware.

status(1) Not used.

status(2) Card-reader status: If status is
explicitly requested by instr
(:100000), this word returns a value
indicating the state of buffer (not of
the hardware). Otherwise the status
bits returned are defined as follows:

Octal Value Condition

200 Online

40 Illegal ASCII

20 DMX overrun

4 Hopper empty

2 Motion check

1 Read check

status(3) Number of words moved.

19-19 Third Edition

DOC3621-190

Example

40 DO 70 I=1, 23
50 CALL TSCMPC (0, LOC(CARDS), 40, :40000, STATUS)
60 CALL OS.... /*SAVE CONTENTS OF CARDS
70 CONTINUE

The above example reads an 80-character card of ASCII data and places
the contents in CARDS.

B oSAco3

Purpose

O$ACO3 punches output to the parallel interface card punch.

Usage

CALL OSAC03(physical-unit, buffer,word-count,altrtn)

physical-unit Card punch sub-unit number:

0 CRO, first controller

1 CRL, second controller

buffer Data name containing line to be punched,

word—count Number of words to be punched,

altrtn Alternate return in case of error — never taken in
Rev. 19. (See Chapter 14.)

Load Information

This subroutine calls TSPMPC,

RB osacls

Purpose

Punches output to the parallel interface card punch and prints on card,

Third Edition 19-20

OTHER PERIPHERAL DEVICES

Usage

CALL OSAC15(physical-unit, buffer, word-count, altrtn)

physical-unit Card punch sub-unit number:

0 CRO, first controller

1 CR1, second controller

buffer Data name containing line to be punched.

word-count Number of words to be punched.

altrtn Alternate return in case of error. (See Chapter

14.)

Load Information

This subroutine calls TSPMPC.

pe TSPMPC

Purpose

TSPMPC is the raw data mover for the card punch. It is called by

OSACO3, OSAC15, and ISAC15, the cardpunch drivers. These routines may

also be called by the user.

Usage

CALL TSPMPC (physical-unit, LOC(buffer), word count, inst, status)

physical-unit Card punch sub-unit.

LOC (buffer) A pointer to a buffer that holds data to be punched.

In ASCII mode, data are packed two characters per

word.

19-21 Third Edition

DOC3621-190

In binary mode, card punches are mapped intoa
16-bit word as follows:

Bit Punch Row

1-4 Not used

5 12

6 11

7-16 0-9

word count Number of words to punch on a card from buffer.

inst Instruction required to be sent to card punch
(INTEGER*2). Instructions are:

Bit Set Instruction Meaning

1 :100000 Read status,

3 :20000 Process in binary mode.

4 :10000 Feed a card,

5 :4000 Read a card,

6 :2000 Punch a card,

7 :1000 Print a card,

8 7400 Stack a card,

To punch a card, inst would be an octal 12400
meaning:

1. Feed a card,

2. Punch a card,

3. Stack a card,

status Three word statusvector:

status(1) Not used.

Third Edition 19-22

OTHER PERIPHERAL DEVICES

status(2) Device status returned for a_ read
request (instr = :4000):

Value Condition

2200 Online

24 Tllegal code

:10 Hardware error

24 Operator
intervention
required

status(3) Number of words read.

MAGNETIC 'TAPES

The magnetic tape subroutines drive and control 7-and 9-track magnetic
tape devices. Their functions are shown in Table 19-3.

Note
Most of the following subroutines are obsolete and have heen

replaced with TSMT.

Table 19-3 ;
Functions of Magnetic Tape Subroutines

9-Track

CSMO5 Control for 9-track ASCII and binary.
CSM13 Control for 9-track EBCDIC.
OSAMO5 Write ASCII.

ISAMO5 Read ASCII.
OSBMO5 Write binary.
ISBM05 Read binary.
OSAML3 Write EBCDIC.
ISAM13 Read EBCDIC.

7-Track
CSMLO Control for 7-track ASCII and binary.
csM11 Control for 7-track BCD.
OSAMLO Write ASCII.
ISAM1LO Read ASCII.
OSBMLO Write binary.
ISBMLO Read binary.
OSAML1 Write BCD.
ISAML1 Read BCD.

19-23 Third Edition

DOC3621-190

Restrictions

PRIMOS supports record sizes up to 6K words for 9- and 7-track tapes.
Under PRIMOS II, larger records may be used only if the program
declares its own labeled common area called MIBUF7. The common area
must have an array as its first entry, which is used as an expansion
buffer when reading or writing 7-track magnetic tapes. The array must
be 1.5 times as large as the biggest record the user intends to use.
Alternately, the subroutine MIBUF7 in UFD IOCS can be modified
appropriately and the FORTRAN library rebuilt. (See Chapter 15.)

Since the subroutines are similar, they are described in groups.

PB CsMO5, CSM10, CSM11, CSM13

Purpose

These subroutines provide control functions for tape as shown in Table
19-3.

Usage
CSMO5
CSMLO

CALL |CSM11{ (key, name, physical-unit, altrtn)
CSM13

key User option:

-4 Rewind to BOT (Beginning of Tape).

-3 Backspace one file mark.

—2 Backspace one record.

-l Write file mark.

1 Open to read,

2 Open to write,

3 Open to read/write.

4 Close. (Write file mark and rewind).

5 Move forward one record.

6 Move forward one file mark.

Third Edition 19-24

OTHER PERIPHERAL DEVICES

7 Rewind to BOF (Beginning of file).

8 Select device and read status.

name Not used (may be anything).

pPhysical-unit 0-7 (0-3 for PRIMOS II), depending on which device
is ASSIGNed).

altrtn The alternate return. (See Chapter 14.)

Discussion

These routines call TSMT and ERRSET.

Error Messages

Message Meaning ERRVEC (1) ERRVEC (2)

CSMxx EOF End of file IE 1

CSMxx EOT End of tape ID 2

CSMxx MINO Magtape not operational ID 3

CSMxx PERR Parity error ID 4

CSMxx HERR Hardware error ID 5

CSMxx BADC Bad call 1D 6

p> OSAMxx, ISAMxx, OSBMxx, ISBMxx

Purpose

These subroutines provide read and write functions for magnetic tape as
shown in Table 19-3.

19-25 Third Edition

DOC3621-190

Usage

These subroutines all have the same calling sequence:

CALL subroutine (physical-unit, buffer, n, altrtn)

physical-unit Sub-unit number = 0, 1, 2, or 3.

buffer Data name from or to which information is
tranferred,

n Number or words to be read or written. If n = 0,
then the subroutine is to write a file mark.

altrtn FORTRAN alternate return. (See Chapter 14.)

Error Messages

(See Appendix E for ERRVEC.)

Message Meanin ERRVEC (1) ERRVEC (2)

Subroutine EOF End of file IE 1

Subroutine EOT End of tape ID 2

Subroutine MINO Magtape not operational ID 3

Subroutine PERR Parity error ID 4

Subroutine HERR Hardware error ID 5

Subroutine BADC Bad call ID 6

Note

Parity error, PERR, occurs only after 25 parity or raw errors.

Discussion

These subroutines all call TSMT and ERRSET,

Third Edition 19-26

OTHER PERIPHERAL DEVICES

p> Tr
Purpose

The TSMT routine is the raw data mover that moves information from
Magnetic tape to user address space, or from the user Space to tape.

TSMT also performs other tape operations, such as backspacing, forward

spacing, and density setting. If TSMr is called without the code

argument, and an error condition is encountered, TSMT exits to the user

command level, rather than to the calling program. If TSMT is called

with the code argument, the appropriate error code will be returned to

the calling program.

Usage

CALL TSMT (unit, buff, nw, instr, statv [, code])

unit Magnetic tape drive -- logical drive mumber 0

through 7 (INTEGER*2).

buff Location of the buffer from which to read or write a

record of information (INTEGER*4). It must be an
octal number. If neither a read or write operation,

iL 10D Ue

nw Number of words to transfer. This number must be
between 0 and 6K words (INTEGER*2). 6K words can be

transferred under PRIMOS only if the buffer starts

on a page boundary. Otherwise, the maximum size is
reduced by the offset of the buffer from the page

boundary.

instr The instruction request to the magnetic tape drivers
(INTEGER*2). Valid instructions are:

Octal Hexadecimal Meaning

000040 0020 Rewind to BOL, 7- or 9-track.

022100 2440 Backspace one file mark, 9-track.

020100 — 2040 Backspace one file mark, 7-track.

062100 6440 Backspace one record, 9-track.

060100 6040 Backspace one record, 7-track.

022220 2490 Write file mark, 9-track.

020220 2090 Write file mark, 7-track.

19-27 Third Edition

DOC3621-190

062200

060200

022200

020200

100000

042220

042620

042200

042600

052200

052600

040220

040620

044220

044620

040200

040600

044200

044600

Third Edition

6480

6080

2480

2080

8000

4490

4590

4480

4580

5480

5580

4090

4190

4890

4990

4080

4180

4880

4980

Forward one record, 9-track.

Forward one record, 7-track.

Forward one file mark, 9-track.

Forward one file mark, 7-track.

Select transport, 7- or 9-track, and get
status,

Write record, one character per word,

Write record, two characters per word,
9-track,.

Read record, one character per word,

Read record, two characters per word,
9-track,.

Read and correct record, one character
per word, 9-track,.

Read and correct record, two characters
per word, 9-track,.

Write binary record, one character per
word, 7-track,

Write binary record, two characters per
word, 7-track,.

Write BCD record, one character per word,
7-track,

Write BCD record, two characters per
word, 7-track.

Read binary record, one character per
word, 7-track.

Read binary record, two characters per
word, 7-track.

Read BCD record, one character per word,
7-track,

Read BCD record, two characters per
word, 7-track,

19-28

OTHER PERIPHERAL DEVICES

140000 Cco00 Return controller id. (See the section 18.1

on controller id below.) °

Note

The following instructions are only valid with version 2 or 3
(in some cases both versions) magnetic tape controllers. In

error situations, if no code argument is given, use of these

instructions with olderversions of the controller will cause

an error message to be printed and the program will be aborted.

A description of use of these commands is found later in this

chapter,

Octal Hexadecimal Meaning

100020 8010 Erase a three-inch gap on the tape
(version 2 and 3 controller).

* 100040 8020 Unload. Rewind tape and place drive offline
(version 2 and 3 controller).

100060 8030 Set density to 800 bpi (version 2 controller

only).

1661006 8040 Set density to 1600 bpi (version
2 and 3 controller).

100120 8050 Set density to 6250 bpi (version 3
controller).

100140 8060 Enable front panel density select switch
(version 3 controller).
Set density to 3200 bpi (for future use).

100160 8070 Set speed to 25 IPS (for future use). — 19

100200 8080 Set speed to 100IPS (for future use).

043500 4740 Read record backwards (version 3 controller)

19-29 Third Edition

18.1

DOC3621-190

statv 6-word status vector. If this is the last argument,
then only the first three words are set. If the
code argument follows, then additional words may be
Set, depending on the controller being used. The
words are:

statv(l1) Status flag:

Bits Meaning

1 Operation in progress

0 Operation finished

statv(2) Hardware status word from controller.
Possible values are:

Bits Meaning

01 Vertical parity (read)
error

02 Runaway

03 CRC error

04 LRC error

05 False gap or insufficient
DMA range

06 Uncorrectable error

07 Read and correct
Operation failed

08 File mark detected

09 Transport ready

10 Transport online

ll End of tape detected

12 Selected transport re-
winding

13 Selected transport is at
load point (beginning of

tape)

14 Tape write—protected
(file- protected)

Third Edition 19~30

code

OTHER PERIPHERAL DEVICES

15 DMX overrun or no

formatter

16 Rewind complete (This bit
has no function with
version 2 controller.)

statv(3) Number of words transferred (read and
write operations only).

statv(4) Hardware status for version 1, 2, and
3 controllers, Bits 0 and 1 specify
density of tape:

00 800 bpi

10 1600 bpi

11 6250 boi

statv (5-6) Reserved.

Specifies that the appropriate error code is to be
returned to the calling program. If this argument
is omitted, then any illegal instructions will
result in an error message being printed, followed
by a return to command level (PRIMOS). If this
argument is used, then statv must be a six-word

array.

The possible error codes returned are:

ESNASS Device specified in physical-unit, not
assigned.

ESIVCM Invalid command (e.g. attempt to set
density on version 0 controller).

ESDNCT Device specified in physical-unit not
connected, or no controller.

ESBNWD Invalid number of words (nw <=0 or
>6144).

19-31 Third Edition

18.1

DOC3621-190

Discussion

Magnetic tape I/O is not buffered under PRIMOS. A call to TSMT returns
immediately before the operation is complete. When the magnetic tape
operation is completed, the status flag in the user space is set to 0.
Therefore, a user program may do another computation while waiting. If
a user initiates another call to TSmMf before the first call has
completed its magnetic tape operation, the second call does not return
to the user until the first magnetic tape operation has been completed,

Density Selection

Jt is assumed that tapes are written with one density. This assumption
is enforced by only permitting changes in density at the load point.
For this reason, it is not necessary, or possible, to set the density
when reading a tape. When the first record is read, the density of the
tape is determined, The rest of the tape will be read (or written)
using that density. The drive should be set to the right density
first.

For example, if the user set the density to 6250 bpi with the ASSIGN
command and read the first record of a 1600 bpi tape, then the rest of
the tape would be read using 1600 bpi. If after reading that record, a
record was written onto the tape (without rewinding to the load point),
then that record would also be written at 1600 bpi. If the tape was
rewound and then a record was written, the density would be switched to
6250 bpi. Although the density setting of 6250 bpi is renembered, it
will not go into effect until a record is written at the load point.

If the user assigns a tape without specifying a density, the unit will
be left at the density from the previous use. The default density (at
system initialization time) is 1600 bpi.

Read Record Backwards

This request causes the tape to read a record while moving the tape
backwards. It is sometimes possible to read a record backwards when a
bad tape prevents reading the record in the forward direction, After
the record is read, it will be necessary to reorganize the data. The
words of the record will be in reverse order. Each word will have the
bytes reversed. The bits within each byte will be in correct order,

Instruction to Get Controller Id

The controller id may be used by software that intends to support all
tape drives, but takes advantage of special features that are available
only with a particular controller. For example, the ERASE command is
only available with version 2 and 3 controllers.

Third Edition 19-32

OTHER PERIPHERAL DEVICES

Figure 19-1 shows how buf(1) must be set up for this instruction
(:140000) .

[0 819 16 |

| not used | Contr. ID* |

* ID from Table 19-4

BUFF (2) When instr is :140000
Figure 19-1

Version Device ID Controller # Drive Type

0 "014 2081 Pertec
1 "114 2081 Kennedy, separate formatter
2 "214 2269/2270 Kennedy, two-board integrated

| controller
3 "314 2023 Telex (1600/6250 bpi)

Use of the TSMI Wait Semaphore

While waiting for an operation to complete (that is, for status-word 1
to go to 0), a process can do one of several things. It can loop while
checking the status-done word, do another operation (such as get
status), or use a wait semaphore.

Looping on the status done word uses up CPU time while the process
waits for the tape operation to complete, This is not a good practice
for two reasons. First, it ties up the CPU needlessly and slows down
system performance in general. Second, it causes the process to waste
some of its time slice without doing useful work. This will result in
the process being scheduled extra time and the real time of program
execution will be longer than necessary.

This problem can be solved by using a semaphore. If the process waits
on a semaphore, the wait time is not counted against its time slice.
Therefore, aS soon as the tape operation completes, the process will be
scheduled to run again to finish up its time slice.

19-33 Third Edition

18.1

DOC3621-190

The program TSMT contains a wait semaphore that can be used for this
purpose. This semaphore is used to queue tape requests. If the
process makes a tape request when the controller is busy with another
operation, the process is put on the wait semaphore. See Chapter 21
for a discussion of semaphores.

When the program wants to wait for a tape operation to complete, it can
call TSM? with a request for status. Since the tape controller is
already busy with the previous operation, the process will be put on
the TSMT wait semaphore,

Since the status request is fast and doesn't affect the tape, it is a
convenient tape operation to use to provide the semaphore wait. A
scratch status vector should be used so that the status from the
Original call is not destroyed. Example of wait code:

INTEGER CODE, CODE2 /* RETURN CODES
INTEGER STATV(6) /* STATUS VECTOR SET BY TSMI
INTEGER UNIT /* MAG TAPE DRIVE NUMBER (0-7)
INTEGER BUF (1024) /* OUTPUT BUFFER
INTEGER XSTATV (6) /* SCRATCH VECTOR FOR WAIT

CALL TSMT (UNIT, LOC(BUF), ,:042620,STATV, CODE)
/*WRITE 1024

ee /* OVERLAP EXECUTION WITH IO

Cc WAIT FOR TAPE WRITE TO COMPLETE.

100 IF (STATV(1).EQ.0) GOTO 120 /* SEE IF IO IS ALREADY DONE
CALL TSMT (UNIT, LOC(0) ,0,:100000,XSTATV, CODE2) /* WAIT
GOTO 100

120 ...

Error Recovery on Writing

There are many possible error recovery schemes. The two that are
described here are based on different record formats. The first
algorithm can be used when records contain only data. The other scheme
requires that the records contain extra information for error recovery.

The following schemes are provided as alternatives to using the IOCS
routines that FORTRAN uses. The error recovery provided in the I0CS
routines correspond to that described for Simple Write Error Recovery.

Third Edition 19-34

OTHER PERIPHERAL DEVICES

Simple Write Error Recovery: The aim of the simple error recovery
program is to get by a possible bad spot on the tape by erasing part of
the tape where the error occurred and rewriting the record after that

gap.

The program does not try to rewrite the record on the same spot on the
tape even though repeated tries on the same spot may improve the tape
enough to permit the write to succeed, The tape is considered marginal
at that spot and may not be readable at a later date,

Only the version 3 controller (MPC-3), which supports the 6250 bpi tape
drives, haS an ERASE command. On other controllers, the tape can be
erased by writing a file mark and then backspacing over the file mark.
This will cause three inches of tape to be erased.

Program steps for write error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape
is file-protected.

2. Erase a three-inch gap on the tape:

e@ Write a file mark.

@ Backspace a record and check that the file-mark-detected
bit is set in the status word,

3. Attempt to rewrite the record.

4, If the record was not written successfully, repeat steps 2 and
3 up to twenty times (a maximum of five feet of erased tape).

Write Error Recovery with Sequence Numbers: There is a drawback to the
first scheme. Since the tape is bad at the spot where the error
recovery is being done, it is possible for errors to occur while
backspacing. For example, if the bad record has a gap in the middle of
it, the program might detect two short records when backspacing. If
the program has some way of identifying records, the program can be
sure that it has not lost position during error recovery.

One way to do this is to include a sequence number with every record.
Then when error recovery is attempted, the program backspaces two
records and then reads a record. This record should contain the
sequence number of the last good record before the error record,

Program steps for error recovery:

1. Check if error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready, or the tape

is file-protected.

2. Position the tape after the last good record,

19-35 Third Edition

DOC3621-190

@ Backspace two records. This will place the tape before
the last good record,

@ Reada record and verify that its sequence mumber
matches the one expected for the last good record,

@ If the 'good' record can't be read, then it is possible
that the tape is not positioned correctly. Backspace
Several records and read those records to find the
sequence number of the last good record written.

3. Erase a three-inch gap on the tape.

@ Write a file mark.

@ Backspace a record and check that the file-mark-detected
bit is set in the status word,

4. Attempt to write the record again.

2. If the record was not written successfully, repeat steps 1-4 up
to twenty times, lengthening the gap each time.

Error Recovery on Reading

Error recovery when reading a tape involves repeatedly rereading the
record, The problen of losing position can occur when doing error
recovery. Therefore, the procedure can be improved by verifying the
sequence number each time a record is read,

Program steps for read error recovery:

1. Check that error recovery is possible. Don't attempt error
recovery if the tape drive is offline or not ready.

2. Backspace and reread the record eight times.

3. I£ unsuccessful, backspace eight records (or to the load point
if less than eight records away), space forward seven records
and then read the problem record, This sequence draws the tape
over the tape cleaner and could dislodge a possible dirt
particle.

4. Repeat steps 1-3 eight times,

Third Edition 19-36

PART VI

Communications Controllers and

Realtime Subroutines

Synchronous and

Asynchronous

Controllers

This chapter presents the following subroutines:

Routine Function

TSSLCO Communicate with SMLC driver.

ASNLNS Assign AMLC line.

TSAMLC Communicate with AMLC driver.

SYNCHRONOUS CONTROLLERS

This section defines the raw data mover for the assigned SMLC line.
See the System Administrator's Guide for a discussion of SMLC lines.

> TSSLCO

Purpose

The SMLC driver is loaded in PRIMOS. A user program communicates with
the driver via FORTRAN-format calls to TSSLCO. The driver communicates
with the user address space via buffers in the user address space
Specified by the user program. The data structure used by the driver
is a control block created by the user in the user address space. It

20-1 Third Edition

19

DOC3621~190

contains pointers to the user status buffer and to buffers containing a
message to be transmitted or set to receive a message. A separate
control block is required for each line.

Usage

CALL TSSLCO (key, line, LOC (block) ,nwds)

key

Third Edition

Stop line. Only key + line required,

Define control block. The block is structured as in
Table 20-1. It defines an area to store status
information and, optionally, a message chain for

reception or transmission.

Array block contains five words which are to he
output to the controller. See Tables 20-2 through
20-11 for details.

Array block contains a word which is to be used as
the next data set control word. See Table 20-12 for

details.

Array block contains two wordswhich are to be used
as the next receive/transmit enable words. See
Table 20-13 for details.

The calling user process will go to sleep. It will
waken at the next SMLC interrupt or after
approximately one second. It will run with a full
time slice interval. The value line is ignored, as

are LOC(block) and nwds. If, however, the user
process does not own any SMLC lines, the call will
return immediately.

Return model number. Model number will be returned
in block. When using this key, nwds must equal l.
The possible model numbers and their associated
protocols are the following.

20-2

CONTROLLERS

Model Number (Octal) Protocols

0 HSSMLC

5646 BISYNC and HDLC

5647 BISYNC and PACKET

5650 BISYNC and 1004/UT200/7020

5651 HDLC and 1004/UT200/7020

5652 PACKET and 1004/UT200/7020

5653 HDLC and PACKET

5654 BISYNC and GRIS

line Octal line number 0-7.

LOC (block) Address of user's block, User's block must reside

entirely within one page.

nwds Number of words in block.

Discussion

Before calling TSSLCO to configure a line (key= 3), a call with (key =
7) should be made to see if the Multiline Data Link Controller (MDLC)
contains the proper protocol and to determine what the line
configuration should be. If an error occurs during initialization, the

following error messages are printed:

No SMLCxx -(controller address)
No CONTROLLER CONFIGURED for SMLCyy (logical number)
UNDEFINED CONTROLLER ID for SMLCxx (controller address)

It is the responsibility of the caller to see that the line
configuration is correct for the model of MDLC being used,

Timing

The user space program runs asynchronously with message transfers. A

call to TSSLCO returns immediately after executing whatever control
function was required. The progress of the communication must be
monitored by the user program by examination of the user space status
buffer contents.

20-3 Third Edition

f
d

a
)

DOC3621-190

Assigning Communication Lines

The communications lines must be assigned to a user space before they
can be used, The proper command is:

SMLCOO
SMLCOL
SMLCO2
SMLCO3
SMLC04
SMLCO5
SMLC06
SMLCO7

ASSIGN

given at the user terminal. One or more lines may be assigned to a
given user.

Third Edition 20-4

CONTROLLERS

Table 20-1
Key = 2 SMLC Control Block

Word 0 Last receiver/transmitter enable word sent to the
HSSMLC by the driver. (This word is written into
but not read by the driver.)

Bit 15=1 #£=®%&Transmitter on
Bit 16 =1 #£Receiver on

Word 1 Bit 1 Valid line-enable order in bits 2-16
Bits 2-16 Line-enable order. See Table 20-4,

Word 0.

Word 2 Bits 1-4 Data set status mask (DSSM)
Bits 5-8 Required data set status (RDSS)

Bit 9 Set: No data set order - ignore Word 2
Bits 13-16 Data set control order (DSO)

Note

Issue DSCO, wait for (DS status .AND. DSSM) = RDSS, then
issue line-enable order.

Word 3 Spare

Word 4 Pointer to top of status buffer

Word 5 Pointer to bottom + 1 of status buffer

Word 6 Pointer to next word in status buffer to receive
the status information. (This word is written
into but not read by the driver.)

Note

The status buffer must be completely contained in the
same page as the control block.

20-5 Third Edition

DOC3621-190

Table 20-1 (continued)
Key = 2 SMLC Control Block

Word 7 Bits 1-2 'O1' there exists a continuation
control block

Bits 3-6 Word count of next block - 8
Bit 7 0
Bits 8-16 Offset in current 512 word page

of next block

Note

The continuation block must reside in the same page as
the control block from which it was continued.

Word 8 Bit 16:
1 Transmit
0 Receive

Note

If Word 8 is given (nwds > 8) then at least one DMC
address pair must be given.

Words 9-10 DMC start and end address pointers. Up to four
11-12 pairs may be specified to allow for channel
13-14 chaining,
15-16

Note

Transmit/receive buffers may reside in any page, but
their starting and ending address pointers must reside
in the same page.

Third Edition 20-6

CONTROLLERS

Table 20-2
Key=3 Line Configuration Control Block (Bits 10-16)

Word 0 Bits 10 through 16 are constant for all controllers
and protocols. Bits 1 through 9 for each controller
follow.

Bit 10 Enable formatter option (BISYNC, UT200,
ICL7020, 1004, PACKET, SWITCH depending
on HSSMLC options)

Bit 11 Enable reporting of data set changes by
interrupt and status word,

Bits 12-14 12 13 14

| | L-Automatic parity-enable
————-Parity-select 0 = odd, *

Parity-enable

Bits 15-16 15 16

Number of bits per character

If automatic parity is enabled with 8-bit data
enabled, no parity will be generated or checked (i.e.,
no 9-bit data formats).

*Automatic parity-enable appends a parity bit to the data
while parity-enable steals the most significant bit of each data

byte,

20-7 Third Edition

DOC3621-190

Table 20-3
Key=3 Line Configuration Control Block (HSSMLC, bits 1-9).

HSSMLC

Word 0 123 45 67 8 9

~ | |Select formatter mode:
0 EBCDIC
1 ASCII

Select BCC:
1 LRC (for use with ASCII mode only)
0 CRC-16

Unused control bits

Third Edition 20-8

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Table 20-4
Key = 3 Line Configuration Control Block (5646, Bits 1-9)

5646
BISYNC

Word 0 12 3 4 5 6 7 8 9
0 0 0 0 0 0

0 EBCDIC
1 ASCII

1 Enable LRC
- 0 CRC16

enable "X.25" operation

HDLC

Word 0 12 3 4 5 6 7 8

Tx: End message on
left byte.

Lx: 0 = FLAG line during
idle periods.

-1 = MARK line during
idle periods. Enable GO-AHEADs
(loop mode). Tx: Start on right byte.

Rx: Start on right byte
and generate encoded
status if message
ends with the left

byte, HDLC enable. Enable all-parties
address mode. Enable secondary station
mode.

Secondary station mode, HDLC mode, loop mode, and all-parties address

mode are enabled on a line-pair basis only.

20-9 Third Edition

DOC3621-190

Table 20-5
Key = 3 Line Configuration Control Block (5647, Bits 1-9)

5647
BISYNC

Word 0 123 45 67 8 9
000000 0

0 EBCDIC
1 ASCII

1 Enable LRC
0 ERC16

Enable "X.25" operation

PACKET

Word 0 123 45 67 8 9
0 000 0 0 0

Enable CRC24

Enable upper bank

Third Edition 20-10

CONTROLLERS

Table 20-6
Key = 3 Line Configuration Control Block (5650, Bits 1-9)

5650

BISYNC

Word 0 123 45 67 8 9
0000 0 0 |

0 EBCDIC
1 ASCII

1 Enable LRC
0 CRC16

Enable "X.25" operation

ICL7020/UT200/1004

Word 0 123 45 67 8 9
100 0 011

— ICL7020*

Enable 1004*

Recommended Configurations

1004 '140722
UT200 '40723 (Add '40 to enable DSS
ICL7020 '42723 interrupts.)

* Default protocol is UT200
20-11 Third Edition

DOC3621-190

Table 20-7
Key = 3 Line Configuration Control Block (5651, Bits 1-9)

5651
ICL7020/UT200/1004

Word 0 123 45 67 8 9
000 0 041i

Enable ICL7020*

Enable 1004*

Recommended Configurations

UNIVAC "100722
UT200 '723 (Add '40 to enable DSS interrupts.)
ICL7020 '2723

HDLC

Word 0 1 2 3 4 5 6 7 8 9
1 0

Tx: End message on
left byte.

Tx: 0 = FLAG line during
idle periods.
MARK line during
idle periods.

-l

 —————Fnable GO-AHEADS

(loop mode). Tx: Start on right byte,
Rx: Start on right byte

and generate encoded
status if message
ends with the left
byte,

HDLC enable. Enable all-parties
address mode. Enable secondary station
mode.

Secondary station mode, HDLC mode, loop mode, and
all-parties address mode are enabled on a line-pair basis only.

*Default protocol is UT200
Third Edition 20-12

CONTROLLERS

Table 20-8
Key = 3 Line Configuration Control Block (5652, Bits 1-9)

5652
ICL7020/UT200/1004

Word 0 12 3 4 5 6 7 8 9
0 0 0 QO 0 21 1

Enable ICL7020

Enable 1004 (UT200=Default)

Recommended Configurations

1004 "100722
UT200 "723 (Add '40 to enable
ICL7020 '2723 DSS interrupts.)

PACKET

Word 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0

Enable CRC24

Lane upper bank

20-13 Third Edition

DOC3621-190

Table 20-9
Key = 3 Line Configuration Control Block (5653, Bits 1-9)

5653
HDLC

Word 0 l1 2 3 4 5 6 7 8 9
0 O

Tx: End message on
left byte.

Tx: 0 = FLAG line during
idle periods.

~l = MARK line during
idle periods. “—————Fnable GO~-AHEADs

(loop mode). Tx: Start on right byte.
Rx: Start on right byte

and generate encoded
status if message
ends with the left
byte,

HDLC enable,

 Enable all-parties

address mode,
 Enable secondary

station mode,

Secondary station mode, HDLC mode, loop mode, and
all~parties address mode are enabled ona line-pair basis only.

PACKET

Word 0 1

 | Enable CRC24
Third Edition 20-14

CONTROLLERS

Table 20-10
Key = 3 Line Configuration Control Block (5654, Bits 1-9)

5654
BISYNC

Word 0 1 2 3 4 5 6 7 8 9
0 0 0 0 90 0

0 EBCDIC
1 ASCII

1 Enable LRC
0 Enable CRC16

——Fnable "X,25" operation

GRTS

Word 0 12 3 4 5 6 7 8 9
0 1 0 0 0 0 |

0 EBCDIC
1 ASCII

| GRTS uses ASCII

1 Enable LRC
0 Enable CRCI6

"——— GRTS uses LRC
Enable "X,.25" operation
not used in GRIS

20-15 Third Edition

DOC3621-190

Table 20-11
Key = 3 Line Configuration Control Block (Words 1-4)

Word 1 Word configuration - Transmitter bit settings
as for Word 0.

Word 2 Special character (OTA '00 : function '10)

Bits 7-8 00 Character 1

01 Character 2
10 Character 3
ll Character 4

Bits 9-16 Character

Word 3 Special character bit settings as for Word 2

Word 4 Clock selection: .
0 Reset internal clock to default 9.6 Kbps.
1 Switch internal clock to 62.5 Kbps.

Third Edition 20-16

CONTROLLERS

Table 20-12
Key=4 Data Set Control Bits (OTA '00:Function '00)

Bit 13 Not used
Bit 14 Speed Select

Bit 15 Request to send (RIS)
Bit 16 Data Terminal Ready (DIR)

Table 20-13
Key=5 Receive/Transmit Enable (OTA '00:Function '15)

Word 0 Bit 11 Select internal as receive clock
Bit 12 Select internal as transmit clock

Bit 13-14:
00 Normal (transmit out, receive in)

C1 Loop full duplex (transmit out,
receive in)

10 Echo full duplex (receive in,
transmit out)

ll Loop half duplex (pair combinations
must be: 1-2, 2-1, 3-4, 4-3)

Bit 15:
1 Enable transmitter
0 Disable transmitter

Bit 16:

1 Enable receiver
0 Disable receiver

Word 1 Bit 16:
1 Enable transmitter

0 Enable receiver

Note

Transmitter and receiver must be enabled/disabled
separately.

20-17 Third Edition

19

DOC3621-190

ASYNCHRONOUS CONTROLLERS

The following describes the raw data movers for assigned AMLC lines.
Refer to the System Administrator's Guide for the AMLC command and how
to assign AMLC lines.

PB ASNLNS (Assign AMLC line)

Purpose

ASNLNS allows user programs to request the assignment of a line
directly.

Usage:

DCL ASNLNS (FIXED BIN, FIXED BIN, CHAR(*), FIXED BIN, FIXED BIN,
FIXED BIN) ;

CALL ASNLNS (key, line, protocol, config, lword, status)

status Error status returned to caller.

key Assignment option:

0 Unassign AMLC line.

1 Assign AMLC line.

2 Unassign all AMLC lines owned by
caller.

line Desired line number,

protocol Desired protocol (input and output). Blanks
indicate no change desired. The default is TRAN
(transparent).

config Desired config setting. 0 indicates no change
desired.

lword Desired line characteristics. The buffer number
used for the line cannot be changed by a user
program using this interface.

Third Edition 20-18

CONTROLLERS

Description

This routine is a new direct entrance call available to users, It
performs the assignment and unassignment of AMLC lines for a caller. A
user may Own more than one assigned line. The caller may also set line
characteristics, protocol, etc, This routine will only allow a caller
to assign a line that has a corresponding LBT entry of 0, which means
that the line is assignable. The buffer used for the assigned line is

dynamically chosen within ASNLNS.

Refer to the Systen Administrator's Guide for protocol, config, and

lword values.

 TSAMLC

Purpose

TSAMLC is a direct entrance call. It performs raw data movement,

provides status information about assigned AMLC lines, and transfers

characters between the caller's buffer and a desired assigned line's

buffer. The caller must own the desired line, that is, the

corresponding LBT entry must contain the caller's user number.

Usage

DCL TSAMLC (FIXED BIN, PIR, FIXED BIN, FIXED BIN, FIXED BIN,
FIXED BIN, FIXED BIN);

CALL TSAMLC (line, user-buf-addr, char-count, key, stat-vec,
char-pos-arg, errcode)

line Desired AMLC line number.

user-buf-addr Address (pointer) to the caller's buffer.

char-—count Desired number of characters to move, No maximum

limit is enforced.

key Desired function:

1 Input char-count characters.

2 Input char-count characters or until
«NL. is encountered. stat-vec(1) will
be the actual number of characters

read,

20-19 Third Edition

19

19

19

DOC3621-190

Third Edition

10

il

Output char-count characters. Maximum
is char-count. This key assures the
Caller that char-count characters will
be output. For example, an error is
not returned if the line's input or
output buffer is smaller than
Char-count, TSAMLC will output blocks
of data from the caller's buffer into
the available room in the line's output
buffer until char-count is exhausted,
A one-second wait is issued between
output chunks to allow time for the
line's output buffer to clear. In most
cases, the entire char-count should be
output at once.

stat-vec(1) = number of characters in
input buffer. Sstat-vec(2) = state of
carrier. 0 = carrier, not 0 = no
carrier.

Return status of output buffer.
stat-vec(1) = 1 if room for char-count
in output buffer. stat-vec(1) = 0 if
not enough roon for char-count,
stat-vec(2) = state of carrier.

Input all available characters in the
input buffer. Maximum = char-count.

This key will place all the available
Characters in the line's input buffer
into the caller's buffer, stat—vec (1)
= number of characters actually input.

Return additional output buffer status,
(Refer to key 5.) stat-—vec(1) = amount
of character space remaining in the
output buffer,

Flush input buffer.

Flush output buffer.

Flush both output and input buffers.

Output characters to available roan in
output. This key will output as many
Characters as possible into the line's
output buffer. A wait will not be done
to exhaust char-count, Stat-vec(1) =
Char-count minus the number of
characters actually output.

20-20

stat-vec

char-pos~arg

CONTROLLERS

stat-—vec(1) = number of chars thatwere
not successfully output. If
Stat-vec(1) = 0, this means. all

Characters were output.

Two-word status vector used by certain keys.

The caller may wish to indicate a starting position
Within the buffer addressed by user-buf-addr.
Char-pos-arg applies for both input and output keys.
This is an optional argument. If amitted, the
default is to start with the first character. Note:
if char-pos-arg is used, the first character
position should be indicated by 1 (there is no
character at position 0). Also, char-pos-arg is not

updated within TSAMLC,

Optional argument to return error status Tf
errcode is present, error messages will not be
printed at the caller's terminal.

20-21 Third Edition

19

21
Semaphores and

Timers

REALTIME AND INTERUSER COMMUNICATION FACILITIES

PRIMOS supports user applications that have realtime requirements or
that need to synchronize execution with other user programs, Part of
this support is the ability to modify the priority and timeslice
duration of any user via the CHAP command. Program support for
realtime applications and interuser synchronization is in the form of a
set of subroutines that provide access to Prime's semaphore primitives
(wait and notify) and to internal timing facilities.

Table 21-1 lists the subroutines available for handling these
facilities,

SEMAPHORES

On timesharing systems where more than one process can be active at the
same time, there is often a need to coordinate the execution of
multiple processes with one another. Such coordination is required
when two or more processes cooperate to solve a common problem, or when
multiple processes must use a common, limited resource,

21-1 Third Edition

DOC3621~-190

Table 21-1
Semaphore Subroutines by Function

Open (Request) Semaphore
SEMSOP (by filename) (2)
SEMSOU (by file unit) (2)

Notify Semaphore
SEMSNF

Wait
SEMNT

Test Counter

SEMSTS

Drain (Reset Counter or Notify)
SEMSDR

Set Timer
SEMSIN (1)

Timed Wait
SEMSIW (2)

Close Semaphore
SEMSCL (2)

Suspend Process

SLEEPS

Notes to Table 21-1

1. For numbered semaphores only
2. For named semaphores only

Third Edition 21-2

SEMAPHORES AND TIMERS

When multiple processes are working together as part of a larger system
or to solve a common problem, it sometimes happens that one or more of
the processes encounter a situation in which they cannot do any further
work until some event, external to the process, happens. An example of
this is a spooler which picks up print requests from a queue. When
there are requests in the queue, the spooler services them; however,
when the queue becomes empty, it can no longer do useful work and must
wait for another process to give it something to do.

There are many resources on a timesharing system that must be shared by
all of the running processes. Included in the list are such things as
devices that can have only one user at a time (such as a fpaper-tape
punch), a section of code that performs a single operation, or files
that are updated and read simultaneously by several programs.

The semaphore facility provides a means to coordinate multiple
processes, providing that the processes involved all use the facility
in the same way.

The semaphore facility consists of some blocks of memory, which are
Called semaphores, and a set of software routines or hardware
instructions that perform various operations on these blocks. There is
no real connection between a semaphore and the event or resource with
which it is associated. The use to which a semaphore is put is
determined solely by the application programs that use it. All of the
cooperating programs must agree on the meaning (or use) of a semaphore
amnmAsamn ¢ +L. ae asana use it the same way.

21-3 Third Edition

DOC3621-190

How a Semaphore Works

A semaphore consists of two parts: a counter and a queue.

Counter

Queue

Resource Semaphore at Start
Figure 21-1

When a process wishes to wait for an event to happen or a resource to
become available, it issues a wait call for the semaphore associated
with that event or resource. The wait call will increment the counter
for that semaphore and test its value. If the counter is less than or
equal to 0, the process is allowed to proceed immediately and is not
placed on the semaphore's queue.

Third Edition 21-4

SEMAPHORES AND TIMERS

Counter 0

Resource Semaphor€ After Call by One Process
Damnnrr Deanacnana Waitawncsr\ting)PT ae eeee a ™ ing(Process 1 is Using the Resource, No Processes W

Figure 21-2

If, however, the counter is greater than or equal to 1 after being
incremented, then the process is placed on the wait queue for the
semaphore. The process will not run again until it leaves this queue.
Processes are placed on the queue in priority order with higher
priority processes being placed closer to the head of the queue.
Within a given priority, the processes are treated as a real queue —
first in, first out.

Counter

Queue

Resource Semaphore After Call by Second Process
(First Process is Using the Resource)

Figure 21-3

21-5 Third Edition

DOC3621-190

When a process wishes to report that an awaited event has occurred, or
that a resource has become available for use by other processes, it
will call a notify routine for the semaphore associated with that event
or resource. The notify routine will first test the value of the
counter for that semaphore. If the counter is greater than 0
(indicating that one or more processes are in the semaphore's queue),
then the routine will remove one process from the top of the queue,
thereby allowing that process to run again. Whether a process was
dequeued or not, the routine will then decrement the counter by one.

Counter

Queue

Resource Semaphore After Notify by One Process
(Process 2 is Now Using the Resource)

Figure 21-4

Normally, a semaphore's counter is preset to some value before the
semaphore is used by any process. The value to which it is set depends
on the nature of the software that will use the semaphore and on the
purpose of the semaphore. Typical initial values are -l and 0. A
‘walueof -1lallows the first process that waits on the semaphore to
proceed immediately without being queued, as shown in Figures 21-1
through 21-4. This effect is desirable if the semaphore is used to
coordinate the use of a shared resource, The resource is considered
available until a process indicates its intent to use it. Avalue’of 0
is appropriate for wait situations in which a process must wait until
some condition exists or until an event occurs. The process that must
wait for an event to happen does a wait operation on the semaphore, and
is immediately put on the queue since the counter becomes greater than
0. When another process determines that the awaited event has
occurred, it will notify the same semaphore, thus allowing the queued
process to run.

Third Edition 21-6

SEMAPHORES AND TIMERS

When a process opens a named semaphore, and that process is the first
to open that semaphore, then the SEMSOP routine will preset the
semaphore's counter to a value of 0. If an initial value of -1 is
required, then the process should notify the semaphore once after
opening it. For named semaphores, SEMSOU also allows opening
semaphores with initial values that are negative or 0. The minimum
value is -32767. If the semaphore must be reset to its initial value
of 0 at a later time, then a call can be made to the drain routine (see
SEMSDR below).

Cooperation of Processes

Tt should be remembered that a semaphore is a structure that
cooperating processes can use to control their access to resources, or

to coordinate their execution. The operating system does not verify
that the semaphore is being used correctly since the association
between the semaphore and the event or resource is merely a convention
adopted by the processes involved.

In order for the semaphore facility to work correctly, all processes
that want to wait for an event or a resource must first wait on its
associated semaphore before using the resource or assuming that the
awaited event has occurred. There is nothing to stop the careless
programmer from using a shared resource without first waiting on the
appropriate semaphore, Such coding practices will most likely cause
the entire subsystem of processes to malfunction,

PRIME SEMAPHORES

On Prime computers, a semaphore consists of two (16-bit) consecutive,
nonpageable words of memory. The wait and notify operations are
implenented in firmware and are usable by supervisor software only. So
that users can use the semaphore facility, four calls have been created
that perform the wait and notify operation on a set of semaphores that
are reserved by the operating system for user programs:

@ SEMSWT

@ SEMSIW

@ SEMSIN

@ SEMSNF

In Rev. 19 there are 1024 named semaphores available to user _‘processes, and 65 nurm red | naphorés. veo entoneteriaentev ene
ORE AOL IS,

SERULERATESBY Hyht iRE AT

21-7 Third Edition

DOC3621-190

Numbered Semaphores and Timers

Internal to PRIMOS is an array of 65 numbered semaphores reserved for
the use of user processes. All reference to these semaphores is by the
index of the semaphore, an integer from 1 to 65. Other than ensuring a
valid semaphore number, PRIMOS makes no stipulations for semaphore use
such as which users can access which semaphores, etc. Allocation and
cooperative use of the semaphores is strictly under user control.

Of the 65 user semaphores, up to 15 can be used at any time as timed
semaphores, that is, semaphores that are periodically notified by the
system clock process. (See the SEMSIN routine.) Again, allocation of
timed semaphores is on a first-come first-served basis, and nothing is
done to prevent incorrect use of a timed semaphore.

Numbered semaphores are assigned by the operating system as wait or
notify calls are made involving those numbers. No open or close

request is necessary. It is the programmer's responsibility to use the
number that has been agreed upon for a particular resource,

Named Semaphores

The operating system maintains a pool of semaphores which it can assign
to user processes. When a process wishes to use one or more named
semaphores, it must first ask the operating system to assign them to
the process. The process requests access to named semaphores via an
Open routine. The user can request that multiple semaphores be
assigned to it in a single call to this routine. The operating systen
will return a set of numbers to the process if it decides that the
requested semaphores can be assigned to that process. The process will
use these numbers in all subsequent calls to semaphore routines to
indicate on which semaphore to perform the semaphore operation.

The operating system can tell when different processes wish to use the
same set of semaphores by examining the parameters that they include in
the call to the open routine.

(See SEMSOP and SEMSOU below for more details on how to use the open

call.)

After a process has opened a set of semaphores, it can do any number of
operations on those semaphores. The possible semaphore operations are
described in the section entitled DESCRIPTION OF THE SUBROUTINES.

When a process has finished using the named semaphores that were
assigned to it, it requests that the operating system close those
Semaphores, thus making them inaccessible to the process. When all
processes that were using a semaphore close it, then the space in the
Operating system taken up by that semaphore is returned to the
Operating system's free pool and may be assigned to other processes at
a later time.

Third Edition 21-8

SEMAPHORES AND TIMERS

When a process logs out, all named semaphores that were opened by the
process but not closed are closed automatically. If this process was
the last user of a semaphore, the space used by the semaphore is

returned to the free pool.

CODING CONSIDERATIONS

Named vs. Numbered Semaphores

There are two methods by which a process can specify which semaphores
it intends to use. Also, there are two sets of semaphores maintained
by the operating system. One set is available to any process that
wishes to use it, and its semaphores are identified by number, When a
process wishes to use one of these semaphores, it specifies the number
of the desired semaphore in the parameter list of the semaphore
routines. This set of semaphores is called numbered semaphores.
Numbered semaphores are easy to use, but they have a major drawback:
there is nothing to prevent other processes from using the same
semaphore for different purposes. Therefore, all users of the system
must agree on the usage that each numbered semaphore will have;
otherwise, confusion will result.

To eliminate the problems caused by the sharing of numbered semaphores,
a second set of user semaphores was created, These are called named
semaphores because they are associated with a file. Semaphores in this
set cannot be used by a process until they are opened. Opening a
semaphore means that the process must call the routine SEMSOP or
SEMSOU, which will assign semaphores from the pool for the process to
use. Each routine returns a set of numbers which can be used instead
of numbered semaphore numbers in all other semaphore routine calls.
Only valid semaphore numbers that have been assigned to a process by
SEMSOP or SEMSOU can be used in subroutine calls that manipulate named
semaphores. An attempt to use any other numbers will result in an

error return from the routine.

To open a set of named semaphores, a routine must associate them with a
file system object. SEMSOP will open a set of mamed semaphores and
associate them with the name of a file in the current UFD of the
process performing the open operation. SEMSOU will open a set of named
semaphores and associate them with a file open on a particular file
unit. In both cases, the process must have read access to the file.

Timers and Timeouts

When a process waits on a semaphore, it anticipates that it will be
notified within a reasonable amount of time. If, for some reason, the
process that is going to notify the semaphore fails to do so, all
processes waiting on that semaphore will continue to wait, possibly for

a very long time.

21-9 Third Edition

DOC3621-190

To guard against processes waiting forever, a timer mechanism is used.

Named Semaphore Timers: To prevent a process from waiting forever on a
named semaphore, a Special wait routine exists (called SEMSIW) which
takes a semaphore number and a time value as parameters. The process
will wait on the specified semaphore until the semaphore is notified or
until the specified amount of realtime has passed. The routine returns
a value to the process that indicates why the process was allowed to
continue. A value of 0 means that the semaphore was removed from the
wait queue because of a notify by another process. A value of 1 means
that the process was allowed to continue because the specifed time had
elapsed without a notify on that semaphore. It is also possible for a
value of 2 to be returned; this return value indicates that the
process was stopped by someone pressing the BREAK key or CONTROL-P at
the terminal controlling the process, and then typing START. This
sequence causes the operating system to abort the process, thus
removing it from the semaphore on which it was waiting, followed by a
restart of the process at the wait call.

Numbered Semaphore Timers: The timer facility for numbered semaphores
allows a semaphore to be automatically notified after a certain amount
of time has passed. A user process tells the operating system, via a
Subroutine call, that a timer is to be associated with a numbered
semaphore. The process also specifies the amount of time that should
pass before the operating system notifies the semaphore. When this

amount of time has passed, the operating system notifies the semaphore.

Much care is needed when coding programs that use semaphores with this
kind of timer, If another method is not used besides the semaphore to
indicate that the awaited event has actually occurred, then a notify
caused by a timer cannot distinguished from a notify caused by a
process. The processes using the semaphore should, therefore, be coded
so that they can verify that a notify by another process has occurred
before uSing the resource protected by the semaphore. The action that
is taken when a timer notifies the semaphore should be agreed upon by

all of the processes using the timed semaphore.

PITFALLS AND HOW TO AVOTD THEM

External Notifies

When a semaphore is notified for some reason other than an explicit
call to the notify routine, that notify is called external; that is,

it originated from a source external to the processes that are using
the semaphore. Same of the reasons that an external notify may occur
are listed here.

Expiration of a Timer: When a timer is set for a numbered semaphore,

andthat timer expires, the operating system will notify the semaphore.

Third Edition 21-10

SEMAPHORES AND TIMERS

This semaphore will look like an external notify to the processes that
use the semaphore; the fact that the notify is external can be
detected if the processes are coded properly. (See Coding Suggestion

below.)

The notify caused by a timeout can be useful in cases when the process
that is supposed to notify the semaphore is prone to being aborted,
The notify initiated by the operating system will prevent processes
from waiting forever,

Use of timers with named semaphores causes a code to be returned to the
process that indicates when a timeout has occurred.

Malfunctioning Process: Processes that are supposed to be using a
semaphore, like all other programs, sometimes do not behave properly.

Malfunctioning programs can do extra notify calls, and cause what

appear to be external notifies. Also, processes that are not supposed
to be using a numbered semaphore may decide to use it anyway. Unless
the semaphore can be protected from such interference, then what
appears to be an external notify will result.

Process Quit: The semaphores that a user process can access on a Prime
System are called quittable semaphores. This means that a process that
is waiting on a Semaphore can be stopped by pressing the BREAK key or
CONTROL-P at the terminal controlling the process. When a process is
stopped by this means, and then continued (by using the PRIMOS START

command), the process will reexecute the wait operation.

Coding Suggestion: Since semaphores can be notifed by breaks and
timeouts as well as by explicit calls to SEMSNF, and since this could
cause malfunctions in a subsystem, it is always best to code in such a
way that this situation can be detected, This means that a process
should not rely solely on the semaphore to indicate that a resource is
really available or that an event has actually occurred. A good
practice is to have one additional method, besides the semaphore, to
indicate what the current state of the resource or event is.

One such method is to have a word in shared memory (accessible by all
cooperating processes) which is set to indicate that the event has
really occurred or that a resource is free. Before a process notifies
a semaphore, it sets this word to an agreed value. When the process is
allowed to proceed from a semaphore wait, it should check the value
contained in that word. If the word contains the value, it will know
that the semaphore was notified by a cooperating process, and not by
the operating systen. In this case, the process will clear the word,
do its processing, and reset the word to the agreed upon value just
before notifying the semaphore. If a process proceeds from a wait call
and the word is not set to the agreed upon value, it can assume that
the operating system notified the semaphore and can reissue the wait

call.

21-11 Third Edition

DOC3621-190

Infinite Waits

It is possible to create a situation in which one or more processes are
waiting on a semaphore, and there are no processes running that will
ever notify that semaphore, The following are methods of creating this
situation.

Multiple Waits: If a process issues a wait call, and is not queued,
and then continues to reissue the wait call without intervening
notifies, that process will eventually cause the semaphore count to
become greater than 0 and the process will wait. This of course
assumes that there is not another process somewhere doing multiple
notifies,

In the case of a resource-protection semaphore, if all other processes
obey the rules, they will wait on this semaphore before they notify it.
They will therefore queue up behind the multiple-waiter process.
Eventually, all the processes of the subsystem will become queued on
the semaphore queue, and no process will remain to notify the
semaphore,

Aborted Notifiers: Another way of causing infinite waits is to abort a
process that would, under normal circumstances, notify a semaphore. If
this is the only process that will do notifies on the semaphore, then
all other processes that wait on it will wait forever.

Coding Suggestion: Infinite waits can be avoided by associating a
timer with the semaphore. This will guarantee that one or more
processes will eventually be removed from the wait queue. Extra coding
must be done in the processes, however, so that a timeout can be
identified as such, and so that appropriate action can be taken. This
code should determine whether the process that should have notified the
Semaphore is still running or not. If it is running, the notify is
considered external and the process reissues the wait call. If the
potential notifiers have all been aborted, appropriate recovery action
should be initiated.

Deadly Embrace

When multiple semaphores are being used, a situation called deadly
embrace can occur. Ths happens when two processes each gain rights to
use a resource by waiting on the appropriate semaphore for that
resource, and then each attempts to acquire the resource that is being
used by the other process, Clearly, neither process will ever notify
the semaphore for the resource it holds (it is waiting to get access to
a second resource), and no other process will ever notify the
Semaphores (since each resource is held already by one of the two
processes). Therefore, both processes will wait forever.

Third Edition 21-12

SEMAPHORES AND TIMERS

This situation can neither be detected nor prevented by the semaphore
facility. It can be prevented, however, by the processes using the
semaphores, if the following procedure is used.

Each semaphore that a systen of processes will use is assigned a
different number; this number will be called the semaphore's level
number. Processes can only issue a wait call for a semaphore whose
level number is greater than the level number of any semaphore it has
waited on but has not yet notified, For example, if the level mumbers
for three semaphores are 1,2, and 3, and a process has waited on the
second semaphore (level 2), but has not yet notified it, then the
process can legally issue a wait for the third semaphore (level 3) but
not for the first, since level 1 is numerically less than level 2.

This technique, if strictly followed, makes deadly embrace situations
impossible. It is sometimes practical for processes to call a routine
which checks for level number violations before issuing a wait call.
If all processes use this routine instead of the wait routine then
deadly embrace is prevented.

LOCKS

Locks, like semaphores, are a method which programs or processes can
use to coordinate their usage of some resource. Before a process
attempts to use a resource that is protected by a lock, it calls a
routine that grants or denies permission to use the resource or causes
the process to wait until the resource becomes free. When the process
has been given permission to use the resource, it is said to hold the
lock on that resource. When the process is through using the resource,
it calls another routine to indicate that it is done. This operation
is called giving up the lock, or releasing the lock on that resource.

Various types of locks exist, some of which will be discussed in this
section.

Some types of locks behavevery much like semaphores and, in fact, many
types of locks: canbe coded with the use of semaphores. Semaphores,
unlike locks, allow a small, well-defined set of operations to be
performed while the uses and types of locks that can be coded vary
greatly. |

Mutual Exclusion

Mutual-exclusion locks are used when only one or a few processes are
allowed to use a resource at any given time. When a process requests
ownership of a lock for the resource, it is given the lock if no other
process currently holds it. If the lock is held by another process,
all others must wait until the one holding the lock gives it up.

21-13 Third Edition

DOC3621-190

This type of lock can be implemented directly with the use of
semaphores. Requesting the lock is equivalent to a wait operation on a
semaphore; giving up the lock is equivalent to a notify of that
semaphore.

Since external notifies may occur, it is a good practice to expect then
and to code in such a way that they can be detected and ignored.

Nl Locks

Nl locks are used to protect objects that can be both read and modified
simultaneously, such as files and data bases. This type of lock allows
any number of users to read the object, or one process to modify the
object. When a process requests permission to read the object, such
permission is granted immediately, as long as there is not currently a
process modifying it. Requests to gain access to the object for
modification are granted only if there are no other readers or writers
using the object. If another process is using the protected object,
the writer is placed on a queue and must wait until all current users
of the resource indicate that they are done. If a writer is waiting to
use the resource, then no other requests for use of the object are
granted until that process has used the object. This prevents readers
from gaining access to the object and causing the writer's request to
be delayed indefinitely.

When a writer is given access to the object, all other requests for
access are queued. When the writer finishes, the other requests are
processed.

Use of an Nl lock on a file eliminates data loss that can sometimes
occur when multiple processes are allowed to update the same file

Simultaneously.

Producers and Consumers

In many computer systems, certain processes create work which must be
processed, such as device drivers that read data from a device which
must be routed to the correct place, or print programs that place data
files into spool queues to be printed, These work-producing processes
are called producers.

Other processes in a system process the work created by the producers,
These processes are called consumers. Examples of consumers include a

user process that manipulates data coming into the systen from a
peripheral device, or a spooler that prints files in response toa

user's print requests.

The coordination required between producer processes and their
corresponding consumer processes can be achieved with the use of
producer-consumer locks.

Third Edition 21-14

SEMAPHORES AND TIMERS

Producers call a routine that indicates that there is work to process,
The routine keeps track of the number of producers that have called it;

each call indicates that another unit of work is available. Consumers,

on the other hand, call a routine that checks to see if there is

any-work-to-do. If there is no work, the routine causes the consumer

process to wait until there is work, that is, a producer calls the

"T-have-work-to-do" routine. If there is work to do, the consumer

process is allowed to continue, and the counter of units of work left

to do is decremented,

This lock can be coded directly with semaphores. Asemaphore, with its

counter initialized to 0, serves as the locking mechanism. Producers

notify the semaphore, causing it to become negative; consumers wait on

the semaphore, causing it to rise toward 0. If there is no work to do

(semaphore counter equal to 0) then a consumer will be queued, when it

waits on the semaphore, until work becomes available.

Note that there can be any number of producers or consumers. If

multiple consumers wait for work, and there is none to do, then the

semaphore counter will contain a value equal to the number of queued

consumer processes. Anotify by a producer will allow one of the

consumers to proceed,

Since semaphores are subject to external notifies, it is advisable that

a counter, other than the counter that is a part of the semaphore, be

maintained to indicate how much work is available for consumer

processes. Producers will increment this counter; consumers will take

work from the work queue and decrement this counter. If a consumer is

notified out of the semaphore queue and the counter does not match the

semaphore counter, then it can assume that an external notify has

occurred,

Record Locks

When many processes must update a file, and speed is important, it is

not practical to use a lock which protects the entire file, since any

update request would lock all other processes out of the file.

Considerable overlap in processing can usually be achieved if just the

portion of the file that is being updated by a process is locked.
Usual units to lock are the record or the page being updated.

If the file is large, then it becomes impractical or impossible to have

an individual lock for each record or page to be protected. One way of

overcoming this difficulty is to assign locks fron a pool ona

temporary basis. When a process wishes to update a_ record, for

example, it requests a lock by passing the record number in question to

the lock routine. If there is currently no one holding a lock on that

record (the lock routine scans its list of locks being held by other

processes), then a lock is assigned from a free pool and the record

number supplied is remembered. If a lock is requested for a record

that is currently locked by another process, then the second and

21-15 Third Edition

DOC3621-190

subsequent requesters of the lock are forced to wait. When the last
holder of a lock gives up the lock, and there are no other processes
waiting to use the record protected by that lock, then the lock itself
is returned to the pool of free locks. It can then be used for other
record locks.

In general, the pool of locks needs to be as large as the expected
maximum number of records that can be locked at any given time. It is

the lock routine's responsibility to manage the lock pool and to deal
with the problems that arise when there are no more free locks in the
pool. One method of dealing with this situation is to use a
"no-free-locks" semaphore, If there are no free locks in the pool, the
process requesting the lock is forced to wait on this semaphore. The
lock routine notifies this semaphore when a lock becomes available.

Notice that record locks are really mutual-exclusion locks; however,
the object that is being protected by any given lock changes with time.
The lock routine must include a small data base that is used to
remember what is being protected by each lock.

DESCRIPTION OF THE SUBROUTINES

The following semaphore operations are available to user processes.
Table 21-1 shows the subroutines by function.

> SEMSOP

p> SEMSOU

Purpose

These routines open a semaphore.

Usage

CALL SEMSOP (fname, namlen, snbr, ids, code)

Or

CALL SEMSOU (funit, snbr, ids, init-val, code)

funit The number (1-127) of a file unit that has been
opened (FIXED BIN).

Third Edition 21-16

SEMAPHORES AND TIMERS

fname A filename, discussed below (char (32)).

namlen The number of characters in fname (FIXED BIN).

snbr A number that specifies how many semaphores are to
be opened by this call (FIXED BIN).

ids (x) An array of semaphore numbers; one number is
returned for each semaphore that was successfully

Opened (FIXED BIN).

init-val The initial value (-32767 to -1) to be assigned to
the semaphore.

code A success/failure code (FIXED BIN):

0 Success,

TDCNDPAD Aw swacralaad eratiaan AM euImNts AA FA. anhe
dayDoIirn £M1L LILVALLUY La Wad ou PLLOU LVL DOliVLe

ESIRIM A file that is on a remote disk was
specified in the fname parameter —-
remote files cannot be used. as
parameters to this call.

ESFUIU Either the user has all available file
units opened, or that there are no
available named semaphores.

ESUNOP Unopened file unit.

ESBUNT Bad file unit. (Units 1 through 127
are allowed; 127 is the COMOUTPUT file

unit.)

It is also possible that code will be set to any
error code that can be returned by the SRCHSS
routine.

Discussion

To open a set of named semaphores, a call must associate them with a
file system object. SEMSOP will open a set of named semaphores
associated with the name of a file in the current UFD of the process

performing the open operation. If the process has at least read access
rights to the file, it will be assigned the semaphores. Each semaphore
will be initialized to 0. SEMSOU will open a set of named semaphores,
associating with them a file open on a particular file unit. As
before, if the process has at least read access rights to the file, it
will be assigned the semaphores. Unlike SEMSOP, SEMSOU allows each
semaphore within the set to be initialized to a nonpositive value, not

21-17 Third Edition

DOC3621-190

less than -32767 decimal. All calls to either SEMSOP or SEMSOU which
use the same file will result in the same semaphore numbers being
returned,

On Rev. 19 or higher of PRIMOS, it is possible for a number of
processes to have access to a set of semaphores while other processes
are denied access to the same semaphores. These semaphores are called
protected or named semaphores and are discussed above.

To access a named semaphore, a call must be made to SEMSOP, which
grants or denies access to the semaphore. The process supplies a
filename to the call. If the specified file can be accessed for read
access, subject to file system and ACL protections, then the user is
given access to the requested semaphores. Multiple semaphores can be
Opened in a single call by supplying the number of semaphores needed in
the snbr parameter.

If access is granted to the semaphores, then the call will return an
array of semaphore numbers in the ids parameter. One number will be
returned for each semaphore requested in snbr, assuming enough
semaphores exist in the systen pool. A semaphore number of 0 will be
returned.if a semaphore could not be assigned. In addition, code will
be nonzero if one or more semaphore numbers could not be assigned. The
values returned in ids should be examined to determine which semaphores
were opened (nonzero value returned), and which were not (0 value
returned).

The semaphore numbers returned should be used in all other semaphore
calls as the semaphore number parameter. SEMSOP takes a filename and
returns Semaphore numbers; SEMSOU takes a file unit; the rest of the
calls accept only a semaphore number,

If different processes call SEMSOP or SEMSOU and specify the same
filename or file wumit, the same semaphore numbers will be returned to
each process. This allows multiple processes of a subsysten to
reference common semaphores.

If a call to the open routine specifies the same filename or unit
number as a previous call to open, and a larger number of semaphores is
requested, then new semaphores are acquired from the systen pool to
make up the difference between the number currently open (with that
filename or unit number) and the number requested in the call. Other
processes cannot use these newly assigned semaphores unless they
explicitly open them via a call to the open routine.

When the first process opens a named semaphore, the operating system
will set the value of the semaphore counter to 0 or to the number
specified by SEMSOU. Subsequent opens of the semaphore do not alter
the value of the counter, If a process opens the same semaphores more
than once, then the same semaphore numbers will be returned for each
call. No matter how many times a process opens a semaphore, it need
only close that semaphore once. This removes the burden of counting to
be sure that equal numbers of open and close calls are done.

Third Edition 21-18

SEMAPHORES AND TIMERS

Named semaphores can only be opened for files that reside on a loal
computer system. Attempts to open named semaphores with filenames that
are on remote disks will result in failure; no semaphore numbers will

be assigned and code will be set to ESIREM.

If a file that was used in a call to SEMSOP or SEMSOU is deleted or
renamed while the semaphores assigned by such a call are still open, or
if the disk on which that file resides is shut down, then the open
semaphores will continue to be accessible to the processes that already
have them open. New processes will not be given access to those
semaphores, even if the disk is added again, or if a file is created
with the same name as the one that was renamed or deleted. Processes
that have the semaphores open can continue to use them until they are
closed via a call to SEMSCL.

If a process logs out before all named semaphores have been closed,
then those that are still open will be automatically closed by the
operating system.

p> sEMSNF

P ser

Purpose

SEMSNF releases the next process waiting on a semaphore. SEMSWT places
a process in the queue for a semaphore.

Usage

CALL SEMSNF (snbr, code)

CALL SEMSWI (snbr, code)

snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assigned to a named semaphore
by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure code returned by the routine
(FIXED BIN):

0 Success,

ESBPAR Indicates that an invalid value was
supplied for snbr.

21-19 Third Edition

DOC3621-190

ESBDAT Indicates bad data supplied; the
systen Administrator should be
notified,

Discussion

As explained in an earlier section, the notify and wait operations are
the basic functions that can be performed ona semaphore. Notify
decrements the semaphore's counter and will release the first process
from the wait queue, if there are any processes waiting.

Wait increments the semaphore's counter and places the process on the
Semaphore's queue if the counter becomes greater than 0. Processes are
queued first-in-first-out within process priority; higher priority
processes are queued before those with lower priority.

> sEsts

Purpose

SEMSTS tests the counter for the number of processes waiting in the
queue for a semaphore,

Usage

Sval = SEMSTS (snbr, code)

sval The current value of the specified semaphore's
counter word (FIXED BIN).

snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assiocned to a named Semaphore
by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure code returned by the routine
(FIXED BIN) :

0 Success.

ESBPAR An invalid value was supplied for snbr.

Third Edition 21-20

SEMAPHORES AND TIMERS

Discussion

This operation returns the current value of the counter, for semaphore
numbered snbr in the variable sval. |

p> SEMSDR

Purpose

SEMSDR resets the specified semaphore counter to 0 (drains it).

Usage

CALL SEMSDR (snbr, code)

snbr A semaphore number; it can be either a number in
the allowable range for numbered semaphores (0-64),
or it can be a number assigned to a named semaphore
by the SEMSOP or SEMSOU routine (FIXED BIN).

code A success/failure code returned by the routine
(FIXED BIN) :

0 Success.

ESBPAR An invalid value was supplied for snbr.

Discussion

If, at the time of the SEMSDR call, the semaphore's counter is less
than or equal to 0, the counter is set to 0. If, however, the counter
is greater than 0, then notifies are done on the semaphore until the
counter reaches 0. This causes all processes that were waiting on the
semaphore to be removed from the wait queue of the semaphore.

It is possible for processes to be placed on the wait queue while this
call is executing; these added processes may not be removed when the
SEMSTS call returns to its caller.

21-21 Third Edition

DOC3621-190

p> sEMSIN

Purpose

This operation causes the operating systen to notify the specified
Semaphore on a periodic basis, This timer is set only for numbered
semaphores,

Usage

CALL SEMSIN (snbr, intl, int2, code)

snbr A semaphore number; it must be a number in the
allowable range for numbered semaphores (0-64)
(FIXED BIN).

intl The amount of clock time in milliseconds that will
pass before the system notifies the Semaphore the
first time (FIXED BIN).

int2 The amount of clock time that will pass before the
Semaphore is notified the second and subsequent
times (FIXED BIN). If int2 is 0, then the semaphore
will only be notified once - after intl
milliseconds. Specifying both intl and int2 as 0
will remove a previous timer request from the
semaphore. This is necessary when a previous SEMSIN
call was made with intl and int2 both nonzero.

Ifa call is made to SEMSIN which specifies a
Semaphore that already has an active timer request,
then the values of intl and int2 specified in the
latter call will overwrite the values stored in the
active timer, Note: it is possible to delay a
notify caused by a timeout indefinitely by making
repeated calls to SEMSTIN.

code A success/failure code returned by the routine. The
values of the code are the same as those returned by
SEMSWT and SEMSNF (FIXED BIN).

Discussion

The operating system maintains a limited number of timers for numbered
Semaphores. Currently, there are a total of 15 such timers per systen.

Third Edition 21-22

SEMAPHORES AND TIMERS

 sEMSIW

Purpose

This routine allows a process to wait on the specified semaphore until
it is taken off the wait queue by a notify, or until a specified amount
of realtime has elapsed, whichever comes first. It is used only for
named semaphores.

Usage

CALL SEMSTW (snbr, intl, code)

snbr A semaphore number; it must be a number assigned to
a named semaphore by the SEMSOP or SEMSOU routine
(BT TN)
Ve Beaty LLIN] ©

intl A time interval expressed in tenths of a second of
clock time (FIXED BIN).

code A value that indicates why the process was allowed
to continue (FIXED BIN):

0 The process was notified by a call to
SEMSNF.

1, The specified amount of time has
elapsed and the process has not yet
been notified out of the wait queue.

> sSEMSCL

Purpose

SEMSCL releases (closes) a semaphore,

Usage

CALL SEMSCL (snbr, code)

snbr A semaphore number; it must be a number assigned to
a named semaphore by the SEMSOP or SEMSOU routine
(FIXED BIN).

code A success/failure code returned (FIXED BIN). Values
are the same as for SEMSOP and SEMSOU.

21-23 Third Edition

DOC3621~-190

Discussion

When a process no longer needs a named semaphore, it can tell the
Operating systen that it is done with it by calling SEMSCL, to close
the semaphore, After this call, the specified semaphore number cannot
be used again by the process, unless that same number is reassigned by
another call to SEMSOP or SEMSOU.

When a process logs out, all semaphores that were opened by that
process but not explicitly closed are automatically closed by the
Operating systen.

p> SLEEPS

Purpose

SLEEPS suspends a process for a specified interval.

Usage

CALL SLEEPS (interval)

interval A variable containing the interval in milliseconds
for which execution is to be suspended (INTHGER*4).

Discussion

Execution of the user process is suspended for the specified interval.
An interval less than 0 will have no effect. A QUIT and START from the
user terminal will cause immediate reexecution of the SLEEPS call.

Note

Although the sleep interval is specified in milliseconds,
SLEEPS truncates it to an accuracy of tenths of seconds.

Third Edition 21-24

PART VII |

Condition Handling

22
Condition

Mechanism

Subroutines

INTRODUCTION

This chapter describes the subroutines used in the implementation of

the condition mechanism. A condition is an unscheduled software

procedure call (or block activation) resulting from an "unusual event."
Such an unusual event might be a hardware-defined fault, an error

situation which cannot be adequately defined to the subroutine, or an

external event such as a QUIT from the user's terminal. The condition

mechanism has been created to:

e Provide a consistent and useful means for systen software to

handle error conditions.

@ Provide the capability for programs to handle error conditions
without forcing a return to command level.

® Provide support for the condition mechanism of ANSI PL/I.

When such an wunusual event occurs, its corresponding on-unit (a

procedure or a block of code) is executed. The subroutines described

in this chapter allow the programmer to create and use on-units. These

features are available to programmers using FIN, F77, PLIG, and PMA.

The descriptions below use mostly PL/I terminology, with special advice

for FORTRAN users.

This chapter contains a list of system-defined conditions, Because

PRIMOS error handling uses conditions, the list of condition names is

helpful in interpreting error messages printed by PRIMOS.

22-1 Third Edition

DOC3621-190

Table 22-1
Subroutines Appropriate to Various Languages

Programming Language (1)

Action FIN F77 PL1G PMA

Create an MKONSF MKONSP MKONSP (2) MKONUS(3)
on-unit

Signal a SGNLSF SGNLSF SIGNLS SIGNLS
condition

Cancel (revert) RVONSF RVONSF RVONUS(4) RVONUS
an on-unit

Nonlocal GOTO PL1 SNL PLISNL (5) PL1 SNL

Make PL/I-com- MKLBSF MKLBSF (5) MKLBSF
patible label

Numbers in parenthesis refer to the following notes,

Third Edition

The CPL language, not shown in this table, also supports
the condition mechanism, but without the use of these
subroutine calls. See EXAMPLES OF PROGRAMS below.

MKONSP required for programmer-named condition. Several
Predefined conditions are supported by the language's ON
statement. It is also possible to use MKONUS instead of
MKONSP. See MKONUS under CONDITION MECHANISM SUBROUTINES ,
later in this chapter.

The uSer must provide extended stack area, and, while the
condition handler is active, must not modify the
character—varying variable which holds the condition name.

Or use the language-supplied REVERT statement.

Supported directly by the programming language.

22-2

CONDITION MECHANISM

CREATING AND USING ON-UNITS

Condition handlers are called on-units. They may be procedures or PL/I
begin blocks, A begin block results from a PL/I on statement while a
procedure results from the use of the following subroutines:

MKONUS

MKONSF

MKONSP

The use of these subroutines is the only way to create an on-unit in a
non-PL/I environment. See Table 22-1 to determine which subroutine to

use.

All users are automatically protected by PRIMOS system on-units. When
a condition is raised, the condition mechanism searches within the
existing procedure for on-units for the specific condition. If none is
found, but if an on-unit for the special condition ANYS does exist, the
ANYS on-unit is selected as the default on-unit.

An on-unit may be invalidated by the PL/I revert statement or by using
the subroutines:

~RVQNUS

RVONSF

Again, use Table 22-1 to select the proper subroutine.

The condition mechanism is activated whenever a condition is raised. A
condition is raised implicitly by same exception being detected during
regular program execution. Acondition may be raised explicitly by the
PL/I signal statement or by a call to the subroutines:

SIGNLS

SGNLSF

Every on-unit has the name of the condition it is handling. A
condition name is a character string (up to 32 characters) and may
represent a sysStem-defined condition if the name is one reserved for
system use, or it may be a user-defined condition. The systen-defined
conditions are described later in this chapter.

It is extremely important that any on-unit procedure take at least one

argument,

22-3 Third Edition

DOC3621-190

On-unit Actions

An on-unit has several options on action it may take, An on-unit may:

e@ Perform application-specific tasks (such as closing or updating
files).

@ Repair cause of condition and resume execution.

@ Decide that normal flow can be interrupted and program reentered
at a "known point" by performing a nonlocal GOTO to some
previously defined label.

@ Signal another condition,

e Transfer process to command level.

@ Continue search for more on-units.

@ Run diagnostic routines.

FORTRAN Considerations

The use of on-units and of nonlocal GOTOs from FORTRAN is’ somewhat
restricted, Since there are no internal procedures or blocks.
Therefore:

@ FORTRAN on-units must be subroutines which, by definition, are
not internal to the subroutine or main program creating the
on-unit.

@ Nonlocal GOTOs will work only to a previous stack level since
the target statement label belongs to the caller of the
subroutine performing the nonlocal GOTO.

A full function nonlocal GOIO requires that the target label identify
both a statement and a_ stack frame of the program that contains the
statement. The subroutine MKLBSF will create a PL/I compatible label
and the subroutine PLISNL will perform a nonlocal GOTO to a specified
target label. Labels produced by MKLBSF are acceptable to PLISNL.

This chapter documents subroutines in PL/I notation. FORTRAN users may
convert between PL/I and FORTRAN data types by using Table 22-2.

Third Edition 22-4

CONDITION MECHANISM

Table 22-2
Conversion of PL/I to FORERAN Data Types

PL/I FORTRAN

char(n) var INTRGER (((n+1) /2) +1)

char(n) -INTEGER((n+1) /2)

fixed bin(15) INTEGER*2

fixed bin(31) INTEGER*4

label | REAL*8

entry variable REAL*8

ptr options (short) INTEGER*4

bit (n) INTEGER*2 (1<=n<=16)

The PL/I interfaces use the PL/I data type "character(*) varying".
This data type is not available in FORTRAN, but 1977 ANSI FORTRAN (F77)
includes a data type "character*n" which is the equivalent of PL/I
"character(n) nonvarying". Interfaces are provided which use the
nonvarying character strings. Tt is possible to simulate varying
character strings in FORTRAN with an INTEGER*2 array in which the first
element contains the character count, and the remaining elements

contain the characters in packed format. For example:

PL/I
del name char(5) varying static initial ('QUITS');

FORTRAN
INTEGER*2 NAME (4)
DATA NAME/5, 'QUITS'/

On—units must be carefully designed not to require reentrancy, which is

not supported by FORTRAN. See how I/O must be handled in EXAMPLES OF

PROGRAMS, below.

Default On-unit

The default on-unit, ANYS$, may be created to intercept any condition
that might be activated during a procedure. (The ANYS on~unit is

created by a call to MKONUS or MKONSF.)

22-5 Third Edition

DOC3621-190

When a condition is raised, the condition mechanism first searches for
an on-unit for the specific condition. If a specific on-unit exists,
it is selected, Otherwise, if an ANYS on-unit exists, the ANYS on-unit
is selected,

User programs should avoid the use of the ANYS on-unit. A user's ANYS
on-unit should not attempt to handle most systen-defined conditions,
and should pass them on by simply returning. Whenever an ANYS on-unit
is invoked, the continue switch is set and the user ANYS on-unit must
return with the continue switch still set. Failure to do so can cause
problems with PRIMOS.

The continue switch indicates to the condition mechanism whether the
on-unit that was just invoked (or any of its dynamic descendants)
wishes the backward scan of the stack for on-units for this condition
to continue upon the on-unit's return. ‘The subroutine CNSIGS is used
to request that the switch be turned on. This switch is cleared before
each on-unit (except ANYS) is invoked. See the discussion of the
continue switch at cflags.continue_sw under DATA STRUCTURE FORMATS
later in this chapter.

EXAMPLES OF PROGRAMS

Below are sample programs in FORTRAN 66 (FIN), FORTRAN 77 (F77), PL/I
Subset G (PLIG), and CPL which use an on-unit to trap the QUITS
condition, The programs are similar, but not identical, in operation.

Note

In both FORTRAN examples (FIN and F77), the on-unit must avoid
using standard FORTRAN I/0, and instead uses TNOQU. The
condition has arisen in the middle of FORTRAN input, and since
FORTRAN I/O is not reentrant, use of FORTRAN I/O by the on-unit
would destroy the environment to which it eventually returns,
PLIG supports reentrancy, and does not require this precaution.

FORTRAN Example

C Program to demonstrate on-unit in FIN
C

EXTERNAL CATCH

INTEGER*2 BREAK(3), BREAKL, I
DATA BREAK/'QUITS'/
BREAKL = 5
CALL MKONSF (BREAK, BREAKL, CATCH)
WRITE (1,300)

300 FORMAT ("Please enter an integer, then RETURN. ’)
100 CONTINUE

Third Edition 22-6

200

330

CONDITION MECHANISM

READ(1,200) I
FORMAT(I8)

WRITE (1,330)
FORMAT ('Again, 0 to exit, BREAK to test on-unit.')
IF (I .NE. 0) GOTO 100
STOP

END

SUBROUTINE CATCH (PNTR)

INTEGER*4 PNTR

CALL TNOU('We caught a quit!',17)
PAUSE 1

CALL TNOU('You''re back into the input loop again. ',38)
RETURN

END

FORTRAN 77 ExampleNate eeeate Se cae eetee

C Program to demonstrate on-unit in F77
Cc

100

external catchit
integer*2 break_length
character*5 break/'QUITS'/
break_length = 5
call mkonsp (break, breaklength, catchit)

print*, 'Please enter an integer, then RETURN.'
continue
read(1,*) i

print*, 'Again, (0 to exit, BREAK to test on-unit.'
if (i.ne.0) goto 100
end
subroutine catchit (pntr)
integer*4 pntr
call tnou('We caught a quit!',ints(17))
pause]

call tnou('You''re back into the input loop again.',ints (38))
return
end

PL/I Subset G Examples

/* Program to demonstrate on-unit in PLIG */

ex_pllg: procedure options (main);
dcl mkon$p entry(char(*), fixed bin, entry);

dcl (break_length, i) fixed bin(15);
dcl (break) character(5) static initial ('QUITS');
break_length = 5;
call mkon$p(break, break_length, catchit);
put skip list ('Please enter an integer, then RETURN.');

22-7 Third Edition

DOC3621-190

get list (i);
do while (i “= 0);

put skip list ('Again, 0 to exit, BREAK to test on-unit.');
get list (i);

end;
stop;

catchit: proc (pntr);
dcl pntr pointer;
put skip list ('We caught a quit!');
put skip list('You''re back into the input loop again.');
return;

end;
end;

/* Modified program to demonstrate on-unit in PLIG */
/* Shows use of MKONUS (instead of MKONSP) */

ex_pllg: procedure options (main);
declare mkonu$ entry(character(32) varying, entry)

options (shortcal1(20));
declare (break) character (32) static initial ('QUITS') varying;

declare i fixed binary(15);
call mkonuS$ (break, catchit);
put skip list ('Please enter an integer, then RETURN.');

get list (i);
do while (i “= 0);

put skip list ('Again, 0 to exit, BREAK to test on-unit.');
get list (i):

end;
Stop;

catchit: procedure (mtr);
declare pntr pointer;
put skip list ('We caught a quit!');
put skip list('You''re back into the input loop again.');
return;

end;
end;

CPL Example

/* Program to demonstrate on-unit in CPL.
Note that CPL cannot call a make-orn-unit
subroutine. Instead, we show the use of
je ON statement provided by CPL.
*

&0n QUITS &routine catchit
type 'Please enter an integer, then RETURN.'
&set_var 1 := [response '']

Third Edition 22-8

CONDITION MECHANISM

&do swhile %i% “= 0
type 'Again, 0 to exit, BREAK to test on-unit.'
&set_var i := [response '']

&end

&stop

&routine catchit
type 'We caught a quit!'
type 'You''re back into the input loop again.'
&return

ADDITIONAL EXAMPLE PROGRAMS

Several programs presented below show strategies for using the
condition mechanism. The examples include:

e@ CPI programs to do on-unit handling for a program which does not
itself use on-units.

@ A FORTRAN 77 (F77) program to show reentering a program with the
PRIMOS REN command. ‘The program also shows the use of nonlocal

GOTO.

e A FORTRAN 66 (FIN) program handling QUITS and showing nonlocal
GOTO.

@ A PL/I Subset G (PLIG) program handling end of file.

e A FORTRAN 66 program which demonstrates the CLEANUPS condition,
which is raised during processing of a nonlocal GOTO.

Two Protecting Programs in CPL

Below are two programs each of which protects a FORTRAN program called
SORT against being interrupted by the BREAK (or CONTROL-P) key. They
demonstrate both a simple and a more sophisticated means by which
programs can avoid having to use the condition mechanism subroutines.
When the lanquage in which a program was written does not support
on-units, or when condition handling is to be added as an afterthought,

CPL can sometimes be used to handle conditions.

/* PROTECT. CPL
/* Trap the BREAK key with an on-unit in CPL.
/*

&ON QUITS &sROUTINE BREAKHANDLER

&DATA SEG SORT

&TTY

&END

&RETURN

22-9 Third Edition

DOC3621-190

&ROUTINE BREAKHANDLER
TYPE
TYPE
TYPE You have typed the break key.
&SET_VAR EXITFLAG := ~

[QUERY 'Do you wish to exit from the program']
SIF “~ ~
&THEN ~
TYPE Continuing program.

&ELSE ~

&DO

TYPE Exiting program.
&STOP

&END

&RETURN

The program PROTECT2.CPL can better handle the user's typing several
BREAKS in a row.

/* PROTECT2.CPL
/* Trap the BREAK key with an on-unit in CPL.
/* Do not allow multiple breaks.
/*

&ON QUITS sSROUTINE BREAK_HANDLER

&DATA SEG SORT

&TTY

&END

&RETURN

&ROUTINE BREAK_HANDLER

SON QUITS S&ROUTINE DUMMY_HANDLER

TYP
TYPE

TYPE You have typed the break key.
&LABEL ALTERNATEENTRY

&SET_VAR EXITFLAG := ~

[QUERY ‘Do you wish to exit from the program’]
SIF ~ ~
&THEN ~
TYPE Continuing program.

&ELSE ~
&DO

TYPE Exiting program.
&STOP

&END

&RETURN

&ROUTINE DUMMY_HANDLER
TYPE
TYPE Please answer the question!
&GOTO ALTERNATEENTRY
&RETURN

Third Edition 22-10

Here is the FORTRAN source for the SORT program invoked by PROTECT and

CONDITION MECHANISM

PROTECT2.

SORT. FIN

This is a small interactive FORTRAN program which is to be
protected from BREAKs (the QUITS condition) by an enveloping
program written in CPL.

A
N
A
A
A
N
a
A
N
A

REAL INVAL, OUTVAL

Q

1000 WRITE (1, 1005)
1005 FORMAT (/, "WHAT IS THE NUMBER:"')

READ (1, 1010) INVAL
1010 FORMAT (F5.0)

IF (INVAL .FQ. 0.) GOTO 9999
OUTVAL = SORT (INVAL)
WRITE (1, 1020) INVAL, OUTVAL

1020 FORMAT ("THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)
GOTO 1000

9999 WRITE (1, 9000)
9000 FORMAT (/ , ‘END OF PROGRAM')

CALL EXIT
END

REENTERS Condition from F77

REENTER, F77

This program creates an on-unit for the REENTERS condition,

then reenters it through the PRIMOS REN command, the on-unit
will be invoked to start the program from the proper place.

A
N
Q
A
A
A
A
N

EXTERNAL RENHDLR
EXTERNAL MKONSP
EXTERNAL MKLBSF

CHARACTER*8 CONDITION_NAME/'REENTERS'/

CHARACTER*80 CHARSTRING

REAL*8 REENTRY_POINT

INTEGER*2 INDEX, CONDITION_LENGTH/8/

Cc

COMMON /REENTRY/ REENTRY_POINT

Cc

C The "$1000" on the next line refers to statement 1000

CALL MKLBSF ($1000, REENTRY_POINT)

CALL MKONSP (CONDITION_NAME, CONDITION_LENGTH, RENHDLR)

22-11 Third Edition

If the user breaks out of the program during its operation, and

DOC3621~-190

1010

WRITE (1, 1010)
FORMAT ('Enter a character string:')
READ (1, 1020) CHAR_STRING

FORMAT (A80)

DO 9999 INDEX = 1, 500
WRITE (1, 1030) CHAR_STRING
FORMAT (A80)
CONTINUE
END

SUBROUTINE RENHDLR (CP)

INTEGER*4 CP

EXTERNAL PL1SNL
COMMON /REENTRY/ REENTRY_POINT
WRITE (1, 1010)
FORMAT ('** Reentering subsysten **')
CALL PLISNL (REENTRY_POINT)
RETURN
END

Handling QUITS from FIN

QD
A
N
Q
A
A
A
R
A
N

C

PROSORT. FIN

This program creates an on unit for the BREAK key. The on-unit
prevents BREAK from exiting the program, and instructs the user
how to exit.

In FIN the on-unit must be declared as an external routine,

EXTERNAL BKHNDL

REAL INVAL, OUTVAL
REAL*8 BRKRIN

COMVON /BRKLBL/ BRKRIN

CALL MKONSF ('QUITS', 5, BKHNDL)
C The "$1000" in the next line refers to statement 1000

1000
1005

1010

1020

CALL MKLBSF ($1000, BRKRIN)
WRITE (1, 1005)
FORMAT (/, "WHAT IS THE NUMBER:')
READ (1, 1010) INVAL
FORMAT (F5.0)
IF (INVAL .EQ. 0.) GOTO 9999
QUTVAL = SORT (INVAL)
WRITE (1, 1020) INVAL, QOUTVAL
FORMAT ("THE SQUARE ROOT OF ', F5.0, ' IS ', F5.2)

Third Edition 22-12

CONDITION MECHANISM

GOTO 1000
C
9999 WRITE (1, 9000)
9000 FORMAT (/ , 'END OF PROGRAM’)

Q
A
A
A
N
A
R
A
A
N
A
A
R
A
A
R
A
A
N

CALL EXIT
END

This subroutine handles the QUITS condition when it is raised.

Ordinarily, it would be incorrect to use FORTRAN I/O from inside
this on-unit, because FORTRAN is not reentrant, and we would
be disturbing the keyboard I/O which was in progress when QUITS
was raised. In this case, however, we use a nonlocal GOTO to
return to statement 1000 of the main program, and never return

to the I/O which was in progress.

SUBROUTINE BKHNDL (CP)

INTEGER*4 CP

REAL*8 BRKRIN
COMMON /BRKLBL/ BRKRIN
WRITE (1, 1000)

1000 FORMAT ('YOU MUST TYPE ZERO TO EXIT THIS PROGRAM!")

CALL PLISNL (BRKRIN)

Handling End of File from PL1IG

/*

/*®

EOF.PLIG */

This program creates on-units for both the ENDFILE and QUITS
conditions. The on-unit for the end-of-file condition is
set up by PL/I's "ON" statement, while the on-unit for quits
is set up by calling MKONSP. The on-unit for quits closes
all files and exits the program.

*/
EXAMPLE: PROCEDURE OPTIONS (MAIN) ;

DCL EMPLOYEE_NO FIXED DECIMAL (5);
DCL (GROSS_PAY, HOURLY_RATE) FIXED DECIMAL(5,2);
DCL HOURS_WORKED FIXED DECIMAL (2);
DCL FIXED DECIMAL(5,2);
DCL NUMBER_OF_EMPLOYEES FIXED BIN(15);
DCL (REPORT, DATAFILE) FILE;
DCL CONDITION_NAME CHAR (5) STATIC INITIAL (‘QUITS');
DCL MKONSP ENTRY (CHAR (5), FIXED BIN, ENTRY);

BREAKHANDLER: PROC (CP);
DCL CP PIR;
PUT SKIP LIST ('** Aborting program **');

22-13 Third Edition

DOC3621-190

CLOSE FILE (DATAFILE);
CLOSE FILE (REPORT);
GOTO ABORT_PROGRAM:

END;

ON ENDFILE (DATAFILE)

BEGIN;

PUT SKIP LIST ('** End of File Encountered **');
GOTO END_FILE;

END;

CALL MKONSP (CONDITION_NAME, 5, BREAKHANDLER);
OPEN FILE (DATAFILE) TITLE ('DATAFILE') STREAM INPUT;
OPEN FILE (REPORT) TITLE ('REPORT') STREAM OUTPUT;
NUMBER_OF_EMPLOYEES = 0;

DO WHILE ('1'B);
GET FILE (DATAFILE)

LIST (EMPLOYEE_NO, HOURLY_RATE, HOURS_WORKED);

NUMBER_OFEMPLOYEES = NUMBER_OF_EMPLOYEES + 1};

GROSS_PAY = HOURS_WORKED * HOURLY_RATE?

PUT FILE (REPORT)

LIST (EMPLOYEE_NO, HOURLY_RATE,

HOURS_WORKED, GROSS_PAY);

PUT FILE (REPORT) SKIP;

END;

END_FILE:

PUT FILE(REPORT) LIST (NUMBER_OF_EMPLOYEES) SKIP(3);

ABORT_PROGRAM:
END EXAMPLE;

A CLEANUPS On-unit from FIN

The following programs demonstrate the QUITS and CLEANUPS on-units.
When the BREAK key is typed, a nonlocal GOTO is executed, which causes
CLEANUPS to be raised in the routine SUBA.

Cc
C
C
C
Cc

C

CLEANUP, FIN

This program creates on-units for the QUITS and CLEANUPS
conditions,

EXTERNAL BKHNDL

REAL*8 BRKRIN
COMMON /BRKLBL/ BRKRIN

CALL MKONSF ('QUITS', 5, BKHNDL)
CALL MKLBSF ($1000, BRKRIN)

1000 WRITE (1,1010)

Third Edition 22-14

1010

1000

1000

1010

1020

A
A
N
R
A
A
A
A
N

1000

1010

A
A
A
D
A

1000

CONDITION MECHANISM

FORMAT (/, 'In the routine: MAIN')
CALL SUBA

CALL EXIT

END

SUBROUTINE SUBA

EXTERNAL ACLUP

WRITE (1, 1000)
FORMAT ('In the routine: SUBA')
CALL MKONSF ('CLEANUPS', 8, ACLUP)

CALL SUBB

RETURN

END

SUBROUTINE SUBB
INTEGER DUMMY
WRITE (1,1000)
FORMAT ('In the routine: SUBB')
WRITE (1, 1010)
FORMAT ('Type RETURN to exit, BREAK to test on-units')
READ (1, 1020) DUMMY
FORMAT (A2)
RETURN

END

HDLRS, FIN

On-units for the module CLEANUP, FIN

The routine ACLUP is invoked when a non-local goto is

aborting SUBA.

SUBROUTINE ACLUP (CP)
INTEGER*4 CP, I
WRITE (1, 1000)
FORMAT ('In the cleanup routine: ACLUP')
DO 1010 I = 1, 50000
CONTINUE
RETURN
END

The routine BKHNDL iS invoked when the QUITS condition is

raised by the user hitting the BREAK key.

SUBROUTINE BKHNDL (CP)

INTEGER*4 CP

REAL*8 BKRIN

COMMON /BRKLBL/ BRKRIN

WRITE (1, 1000)
FORMAT ('In the routine: BKHNDL')
CALL PLISNL (BRKRIN)

RETURN

END

22-15 Third Edition

DOC3621-190

CRAWLOUT MECHANISM

An event known as a crawlout occurs whenever the condition mechanism
reaches the end of an inner ring stack (a ring other than 3) without
finding a selectable on-unit for the condition that has been raised.
(Protection rings are described in the System Architecture Reference
Guide.) A crawlout can occur even when the inner ring has an on-unit
for the condition, if that on-unit signals another condition, or if the
on-unit calls CNSIGS and returns, cauSing a resumption of the stack
scan. The scan for on-units resumes on the stack of the ring which
invoked the inner ring. The outer ring receives a copy of the machine
state at the time the condition was raised.

CONDITION MECHANISM SUBROUTINES

The user-level subroutines for the condition mechanism are described
below in alphabetical order.

— cNSIGS

Purpose

CNSIG$ instructs the condition mechanism to continue scanning for more
on-units for the specific condition that was raised after the calling
on-unit returns. CNSIGS is called when an on-unit has been unable to
completely handie the condition. The continue-to-signai switch,
cfh.cflags.continue_sw, is set in the most recent condition frame.

Usage

DCL CNSIGS$ ENTRY (FIXED BIN);

CALL CNSIGS (status);

status Standard system error code: will be nonzero only if
there was no condition frame found in the stack.

Discussion

The continue—-to-signal switch is automatically set whenever an ANYS
on-unit is invoked. Therefore, an ANYS on-unit need not issue a call
to CNSIGS to continue to signal.

Third Edition 22-16

> MKLBSF

Purpose

CONDITION MECHANISM

MKLBSF converts a FORTRAN statement label or an integer variable with a
statement label value into a PL/I-compatible label value. This label
value can then be used with a call to the subroutine PLISNL to perform
a full function nonlocal GOTO in a FORTRAN program.

Usage

INTHGER*2 stmt
REAL*8 label
CALL MKLBSF (stmt, label)

stmt

label

> MKONSF

Purpose

Variable to which a FORTRAN statement number has

been assigned by an ASSIGN statement, or is a
statement number constant in the format Sxxxxx.

Contains PL/I-compatible label value for stmt
returned by call to MKLBSF.

MKONSF creates an on-unit for a specific condition and is intended for
the FORTRAN user.

Usage

The FORIRAN usage is:

EXTERNAL unit
INTEGER*2 cname(——), cnamel
CALL MKONSF (cname, cnamel, unit)

Cname

cnamel

Array containing name of condition for which on-unit
is to be created,

Length (in characters) of cname.

22-17 Third Edition

DOC3621-190

unit Your external subroutine which is to be the on-unit
handler. Your subroutine must take an argument,
Since the PRIMOS condition mechanism calls your
subroutine as follows:

INTEGER*4 CP
CALL UNIT (CP)

where CP is a pointer to the condition frame header
(CFH) that describes the condition.

Discussion

FORTRAN cannot directly access the CFH through CP. A subroutine
written in PLIG or PMA would be required to pass the desired CFH
information.

Cname and cnamel may be overwritten by the caller once MKONSF has
returned, sincethey are copied into a stack frame extension,

Caution

MKONSF cannot be called from FORTRAN 77. FORTRAN 77 requires
MKONSP.

> MKONSP

Purpose

MKONSP creates an on-unit for a given condition. It may be used in
FORTRAN 77 and PLIG programs. .

Usage

The PLIG usage is:

DCL MKONSP ENTRY (CHAR(*), FIXED BIN, ENTRY);

CALL MKONSP (condname, namelen, handler);

Third Edition 22-18

CONDITION MECHANISM

condname The name of the condition for which an on-unit is
desired. The name should not contain any blanks
(input).

namelen The length of condname, in characters (input).

handler The internal or external entry (subroutine) value
which is to be invoked as the on-unit. If the value
is an internal procedure, it must be immediately
contained in the block calling MKONSP (input). The
subroutine must take at least one argument.

An on-unit for the specified named condition is created for the calling
block, If the block already has an on-unit for that condition, the
on-unit is redefined,

The F77 usage is:

EXTERNAL handler

INTHGER*2 namelen

CHARACTER*namelen name/'condname'/

CALL MKONSP(name, namelen, handler)

condname The name cf the condition for which an on-unit is
desired. The name should not contain any blanks
(input).

namelen The length of condname, in characters (input).

name A variable to hold condname. Its value should not

be altered while the condition is active.

handler The name of the external subroutine which is to
become the on-unit. This subroutine must take at

least one argument.

Discussion

Caution

MKONSP cannot be called from FORTRAN (FIN). FORTRAN requires
MKONSF.

22-19 Third Edition

DOC3621-190

Pe mous

Purpose

MKONUS creates an on—unit for a specific condition or creates a default
on-unit for the ANY$ condition, MKONUS can be called only from PMA and
PLIG. PLIG programmers may uSe either MKONSP or MKONUS. From PLIG the
declaration OPTIONS (SHORTCALL) is required for MKONUS. See below.

Usage

DCL MKONUS ENTRY OPIIONS(SHORTCALL stack_increase) (CHAR(*)VAR, ENTRY);

CALL MKONUS (condition_name, handler);

Stack_increase Additional space needed for the calling
procedure's temporary storage. OPTIONS(SHORICALL)
provides 8 words of stack by default. MKONUS
requires 28 words of stack, and thus requires
stack_increase of 20. If the stack size is not
large enough, the return from MKONUS will cause
unpredictable results.

condition_name Name (no trailing blanks) of condition for which
on-unit will be created. Any previous on-unit for
this condition within the activation will be

overwritten.

handler Entry value representing on-unit procedure to be
invoked when condition name is raised and this
activation is reached in the stack scan. Since
MKONUS does not save the display pointer
associated with on-unit entry, the entry value
must be external or declared in the block calling
MKONUS. (An entry constant declared in the block
containing the call to MKONUS will satisfy these
restrictions.) The handler must take at least one
argument.

Discussion

The stack frame of the caller is lengthened, if necessary, to add the

descriptor block for the new on-unit.

The caller must guarantee that the storage occupied by condition name
will not be freed until the caller returns, or the activation is
aborted by a nonlocal GOTO.

Third Edition 22-20

CONDITION MECHANISM

OPTIONS (SHORTCALL) causes the PMA instruction JSXB to be used instead
of the PCL instruction. PCL generates a new stack. JSXB does not, and
is faster, but requires that there be sufficient Space on the caller's
stack. MKONUS is the only Rev 18 or 19 system subroutine that can (and
must) be declared this way.

P PLS

Purpose

PLISNL performs a full function nonlocal GOTO to the statement
identified in the call. Label values created by MKLBSF are suitable
arguments for PLISNL.

Usage

REAL*8 label
CALL PLISNL (label)

label PL/I — compatible label value.

P RV

Purpose

RVONSF disables an on-unit for a specific condition. Its effect is
identical to RVONU$ but is designed for the FORTRAN user. RVONSF is
used from FORTRAN and FORTRAN 77.

Usage

CALL RVONSF (cname, cnamel)

INTEGER*2 cname(—), cnamel

cname Name of condition for which the on-unit is to be
disabled,

cnamel Length (in characters) of came.

22-21 Third F*ition

DOC3621-190

Discussion

There is no effect if an on-unit does not exist for the named

condition, or if the on-unit has already been disabled,

Pe RVAUS

Purpose

RVONUS disables (reverts) an on-unit for a specific condition. Once

disabled, the on-unit will be ignored during stack-frame scanning. The

on-unit may be reinstated only by another call to MKONUS or MKONSF. A

call to RVONUS affects only on-units within its own activation. RVONUS

is used from PLIG and PMA programs.

Usage

DCL RVONUS ENTRY (CHAR(*) VAR)?

CALL RVQNUS (condition_name);

condition_name Name of condition for which the on-unit is to be

disabled.

Discussion

There is no effect if an on-unit does not exist for the named

condition, or if the on-unit has already been disabled. A call to

RVONUS will not affect on-units in any other activation.

P scMLSF

Purpose

SGNLSF signals a specific condition and supplies optional auxiliary

information. SGNLSF is the FORTRAN equivalent of SIGNLS. It is used

from FORTRAN and FORTRAN 77 programs.

Third Edition 22-22

Usage

CONDITION MECHANISM

INTHGER*2 cname(—), cnamel, mslen, infoln, flags
INTEGER*4 msptr, infopt
CALL SGNLSF (cname, cnamel, msptr, mslen, infopt, infoln, flags)

Cname

cnamel

msptr

— sIGNs

Purpose

Name of condition to be signalled.

Length of cname in characters.

Pointer to location of stack-frame header describing
machine state at time the specific condition was

detected, User does not usually know this
information and should pass the null pointer value

o£ :1777600000 (octal).

Length (in words) of stack-frame header.

Pointer to location of user-supplied auxiliary
information array. If no information supplied user

should pass null pointer (:1777600000).

Length, in words, of array pointed to by infopt.

Action array specifying control action.

Bit Meanin

1 If =1, on—-unit may return.

2 If =1, on-unit may return without
taking action.

3 If =1, call is result of crawlout.
This bit should never be set by the
user,

4 If =1, Signal PLIO condition. User
program should not set.

5-16 Must be 0.

SIGNLS is called to signal a specific condition. The stack is scanned
backwards to find an on-unit for this condition or a default (ANYS)

on-unit. SIGNLS is used from PLIG and PMA programs.

22-23 Third Edition

DOC3621-190

Usage

DCL SIGNL$ ENTRY (CHAR(*) VAR, PIR, FIXED BIN, PIR, FIXED BIN,
BIT(16) ALIGNED) ;

CALL SIGNL$ (condition_name, ms_ptr, ms_len, info_ptr,
info_len, action);

condition_name Name of condition to be signalled,

ms_ptr

ms_len

info_ptr

info_len

action

Third Edition

Pointer to stack-frame header structure defining the
machine state at the time the specific condition was
detected. If ms_ptr is null, a pointer to the
condition frame header produced by this call to
SIGNLS will be used.

Length (in words) of the structure named in ms ptr.
Not examined if ms ptr is null.

Pointer to structure containing auxiliary
information about the condition. If no auxiliary
info is available, info ptr should be null.

Length (in words) of structure in info ptr. Not
examined if info ptr is null.

A 16-bit word that defines action to be taken:

DCL 1 action,
2 return_ok bit(l),
2 inaction_ok bit(l),
2 crawlout bit(1),
2 specifier bit(1),
2 mbz bit(12);

return_ok If = ‘l'b, on-unit is to be allowed
to return.

inaction_ok If = 'l'b, om-unit may return
without taking corrective action and
still expect "defined" results,
(return_ok must also be '1'b.)

crawlout If = 'l'b, call to SIGNLS is result
of crawlout. Should never be set by
user,

Specifier If = 'l'b, signals PL/I I/O(PLIO)
condition. User program should not
use,

mbz Must be zero,

22-24

CONDITION MECHANISM

SYSTEM-DEFINED CONDITIONS

The following are the standard system-defined conditions. The meaning
of each condition is given, followed by a description of the
information available in the condition frame header structure produced
by that condition.

The standard PL/I information structure is:

dcl 1 info based,
2 file_ptr, ptr options (short), /*PL/I file control block*/
2 info_struct_len fixed bin, /*Length in words of*/

/*structure*/
2 oncode_value fixed bin, /*unique error code */
2 ret_addr ptr options (short); /*Points to statement causing*/

/*error .*/

The data structures used by the condition mechanism, including the
ns ala ts aA f{otmtr1\ +h aL TLCondition Frame Header (CFH), the Stack Frame Header (SFH), the Fault
Frame Header (FFH) and the on-unit descriptor block, are discussedVe Hees 7

later in this chapter under DATA STRUCTURE FORMATS.

In the See below, software means that the machine state frame
pointed to cfh.ms_ptr is a condition frame header, and hardware

means that tis frame is a fault frame header. The notations "ffh."
and "cfh." below refer to the fault frame header or condition frame
header that is pointed to by ffh.ms ptr or cfih.ms ptr. The information
structures referred to below are pointed to by cfh.info_ptr.

Unless otherwise noted below, the system default on-unit for each
condition prints an appropriate diagnostic message on the user's
terminal, terminates program execution, and returns to PRIMOS command

level.

> ACCESS_VIOLATIONS

(hardware, returnable)

The process has attempted to perform a CPU instruction which has
violated the access control rules of the processor. No information is
readily available to differentiate between write violation, read

violation, execute violation, and gate violation.

ffh.fault-type Value '44'b3.

ffh.fault_addr Contains the virtual address whose access. is
improper,

22-25 Third Edition

DOC3621-190

ffh. ret_pb Points to the instruction causing the violation.

No information structure is available.

anys

(pseudo—condition)

An activation's on-unit for ANYS is invoked if thatactivation does not
have a specific on-unit for the condition that was raised. The
condition frame header for the condition ANYS will describe the
Original condition directly; there is no separate condition frame
header for the condition ANYS unless ANYS has been explicitly raised by
a call to SIGNLS (not a recommended practice).

B AREA

(software, not returnable)

This condition is raised when a storage area has been damaged, or when
the target area for an attempted copy from one area to another was too
small. (Generally raised by full PL/I only. Not available through
PLIG.,)

P arias

(hardware, returnable)

The process has encountered an arithmetic exception fault.

ffh.fault_type Value '50'b3.

ffh.fault_code Hardware-defined exception code which partially
identifies the cause of the fault.

ffh. ret_pb Points to the next instruction to be executed upon
return. There is no way in general to obtain a
pointer to the faulting instruction.

No information structure is available,

Third Edition 22-26

CONDITION MECHANISM

The static-mode default on-unit for this condition will simulate Prime
300 fault handling for arithmetic exception if the appropriate word of

segment '4000 is nonzero. (See the System Architecture Reference Guide

for the exact location.) If a static-mode program is not in execution

when the fault occurs, or if the Prime 300 vector word is 0, the

standard default handler for this condition will resignal the

appropriate arithmetic condition (size, fixedoverflow, etc.) with the

appropriate information structure.

> BAD_NONLOCAL_GOTO$S

(software, not returnable)

The nonlocal GOTO processor has been asked to transfer control toa

label whose display (stack) pointer is invalid, or whose target

activation has already been cleaned up. There is also a possibility

that the user's stack may have been overwritten.ee neree oe

Information Structure:

DCL 1 info based,
2 target_label label,
2 ptr_to_nlgcall ptr,
2 caller_sb ptr;

info, target_label Label to which the nonlocal GOTO was
attempted,

info.ptr_to_nlg_call Pointer to the call to PLISNL that requested
this nonlocal GOTO.

info.caller_sb Pointer to the activation (stack frame)
requesting this nonlocal GOTO.

> BAD_PASSWORDS

(software, not returnable)

This condition is raised by the ATCHSS primitive when attempting to

attach with an incorrect password to a directory requiring a password.

This condition is signalled nonreturnable in order to increase the work

function of machine-aided password penetration.

No information structure is available.

22-27 Third Edition

DOC3621~190

PB CLEANUPS

(software, returnable)

The nonlocal GOTO processor (UNWIND_) is in the process of invoking
on-units for the condition CLEANUPS in each activation on the stack,
prior to actually unwinding the stack. The on-unit for this condition
should return, unless it encounters a fatal error. Calls to CNSIGS$
from a CLEANUPS on-unit have no effect.

No information structure is available.

P coMI_rors

(software, returnable)

End of file occurred on the command input file.

The default on-unit prints a diagnostic message and returns to the
point of interrupt.

> CONVERSION

(software, returnable)

This condition is raised when the source data for a data-type
conversion contains one or more characters that are invalid for the
target type. For example, nonnumeric characters appear in a character
string which is to be converted to integer.

Information Structure: Standard PL/I information structure.

 ENDFILE (file)

(software, returnable)

This condition is raised when an end of file is encountered while
reading a PL/I file with PL/I I/O statements. The value of the
ONFILE() built-in function identifies the file involved,

The standard PL/I condition information structure is provided, The
value of info,oncode_value is undefined, and info.file_ptr identifies

_ the file on which endof file occurred,

The default on-unit for this condition prints a diagnostic and then
resignals the ERROR condition with an info. oncode_value of 1044,

Third Edition 22-28

CONDITION MECHANISM

PB ENDPAGE (file)

(software, returnable)

This condition is raised when end of page is encountered while writing
a PL/I file using PL/I I/O statements. ‘The value of the ONFILE()
built-in function identifies the file on which the end of page was

encountered,

The standard PL/I condition information structure is provided. The
value of info.oncode_value is undefined; info.file_ptr identifies the

file in question.

The default on-unit for this condition performs a PUT SKIP on the file,

and then returns.

mB FRROR
yr ante WheWO

(software, varies)

This condition is a catch-all error condition defined in PL/I. The

default on-unit for most PL/I-defined conditions (such as KEY) results

in the ERROR condition being resignalled. Hence, the programmer has

the choice of handling a more- or less-specific case of the condition.

p> ERRRINS

(software, not returnable)

A nonring-0 call to the ring-0 entry ERRRIN was made, as the result of

an ERRRTN SVC or a call to ERRPRS with certain values of the key.

No information structure is available.

The default on-unit for this condition simulates a call to EXIT;

hence, this condition should be signalled only while executing ina

static-mode program.

22-29 Third Edition

DOC3621-190

EXITS

(software, returnable)

The process has made a call to the EXIT primitive, via a direct call or
an EXIT SVC. This condition should not be handled by user procrams,
Since it is used by certain PRIMOS software to monitor the execution of
static-mode programs.

No information structure is available.

The default on-unit for this condition simply returns.

— FINISH

(software, returnable)

This condition is signalled before process termination. It closes any
open files and returns to the point at which the condition was
Signalled. It is not signalled if the process is prematurely exhausted
or destroyed. (Generally raised by full PL/I only. Not available
through PLI1G.)

The default on-unit simply returns.

> FIXEDOVERFLOW

(hardware, not returnable)

This condition is detected by hardware and is raised when a fixed-point
decimal or binary result is too large to fit into the hardware register
or decimal field.

The standard PL/I condition information structure is provided.

> ILLECAL_INSTS

(hardware, returnable)

The process has attempted to execute an illegal instruction.

ffh.fault_type Value '40'b3.

ffh. ret_pb Points at the faulting instruction.

No information structure is available.

Third Edition 22-30

CONDITION MECHANISM

> ILLEGALONUNIT_RETURNS

(software, not returnable)

An on-unit for some condition has attempted to return, when that has

been disallowed by the procedure that raised the condition.

Information Structure: The standard-format condition frame header that

describes the condition whose on-unit has illegally attempted to

return.

> ILLEGAL_SEGNOS

(hardware, returnable)

The process has referenced a virtual address whose segment number istie Yew —— 28 SRA, ¥eit

out of bounds.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

No information structure is available.

PB KEY (file)

(software, returnable)

The KEY condition is raised when reading or writing a keyed PL/I file

with PL/I I/O statements, and the supplied key does not exist (READ) or

already exists (WRITE). The value of the ONFILE() built-in function

identifies the file in question; the value of the ONKEY() built-in

function contains the key in error.

Information Structure: The standard PL/I condition information

structure. The value of info.oncode_value is undefined; the value of

info.file_ptr identifies the file in question.

The default on-unit prints a diagnostic and resignals the ERROR

condition, with an info.oncode_value of 1045.

22-31 Third Edition

DOC3621-190

> LINKAGE_FAULTS

(hardware, returnable)

The process has referenced through an indirect pointer (IP) whichis a
valid unsnapped dynamic link, but the desired entry point could not be
found in any of the dynamic link tables,

ffh.fault_type Value '64'b3,

ffh.fault_addr Points to the faulting indirect pointer,

ffh.ret_pb Points to the faulting instruction.

Information Structure:

DCL 1 info based,
2 entry_name char(32) var;

info, entry_name Name of the entry point that could not be found.

> LISTENERORDERS

(software, varies)

This condition is used internally by the command loop to manage its
recursion. Users should never make on-units for this condition, and
user default on-units (ANYS) should always pass this condition on by
returning.

& Locos

(software, returnable)

This condition is raised when a user or the operator is trying to force
log out a process,

Information Structure:

DCL 1 logout_info
2 reason fixed /* reason for logout;

codes available in PRIMOS source */

The default on-unit logs out the process. When LOGOUTSB is signalled,
the intercepting process has between one and two minutes to do its
cleanup before being force-logged out.

Third Edition 22~32

CONDITION MECHANISM

> NAME

(software, returnable)

This condition occurs only during data-directed input. It occurs when

stream assignment in a GET statement is read whose variable does not

match the variable name in the data list. After execution of the

on-unit, the process returns to the data-directed input as if the "bad"

input were processed. (Generally raised by full PL/I mly. Not

available through PLIG.)

> NO_AVAILSEGSS

(hardware, returnable)

The process has referenced a virtual address that refers to a segment

that has not yet been created, At the moment, the system has no free

page tables to assign to the segment. If the on-unit for this

condition returns, the reference will be retried, with some possibility

of success if this or some other process has in the meantime deleted a

segment.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

ffh.fault_addr Virtual address that is causing the attempted
segment creation.

No information structure is available.

> NONLOCAL_GOIDS

(software, returnable)

This condition is signalled by the PL/I nonlocal GOTO processor PLISNL

just prior to setting up the stack unwind (and hence prior to the

invocation of any CLEANUPS on-units). This condition exists to enable

certain overseer software (such as the debugger) to be informed that

the nonlocal GOTO is occurring. The default handler for this condition

simply returns. When a procedure handling this condition wishes to let

the nonlocal GOTO occur, it should simply return (without

continue-to-signal set).

22-33 Third Edition

DOC3621-190

Information Structure: Same as for the BAD_NONLOCAL_GOTOS condition,

> NPX_SLAVE_SIGNALEDS

(software, not returnable)

A condition has been raised in your NPX slave running on same remote
system. The following message is printed:

Condition signalled in NPX slave on nodename
ERROR: Condition "condition name" raised at segment no./word no.

Information Structure:

DCL 1 npx_Slave_info
2 node fixed, /* npx node number onwhich

Slave is running */
2 orig_condition char (32) var, /* condition

raised in slave */
2 orig_infodata (129) fixed; /* info

structure from slave */

When the slave detects a signalled condition, it transmits to the
master, which signals the condition NPX_SLAVE_SIGNALEDS., Its result is
the printout of the message shown above. The slave transmits to the
master almost all types of conditions signalled except the following:

EXITS

FINISH

LINKAGEFAULTS

NONLOCAL,_GOTOS

REENTERS

STRINGSIZE

These conditions are handled differently by slave's on-unit. They are
returned without transmitting to the master, that is, the master side
will not get the condition NPX_SLAVE_SIGNALEDS.

> NULL_POINTERS

(hardware, returnable)

The process has referenced through an indirect pointer or base register
whose segment number is '7777'b3. This is considered to be a reference

Third Edition 22-34

CONDITION MECHANISM

through a null pointer, although user software should always employ the

single value '7777/0 for the null pointer.

ffh.fault_type Value '60'b3.

ffh.ret_pb Points to the faulting instruction.

ffh.fault_addr Null pointer through which a reference was made.

No information structure is available.

The default on-unit for this condition resignals the ERROR condition

with the appropriate information structure.

(hardware, returnable)

The process has referenced a page of some segment that has been defined
as not referencible in any ring (i.e. no main memory OL backing
storage is allocated for that page, and allocation is not permitted).

ffh.fault_type Value '10'b3.

f£fh.ret_pb Points at the faulting instruction.

ffh.fault_addr The offending virtual address,

No information structure is available.

OVERFLOW

(hardware, not returnable)

This condition is raised when the result of a floating-point binary

calculation is too large for representation, It may occur within a

register or as a store exception. The default on-unit prints a message

and signals the ERROR condition, User on-units may not return to the

point of interrupt. However, if the default on-unit is invoked, and if

the user types START, the register or memory location affected will be

set to the largest possible single-precision floating-point number, and

calculation will continue.

22-35 Third Edition

DOC3621-190

p> PAGE_FAULT_ERRS

(hardware, returnable)

The process has encountered a page fault referencing a valid virtual
address, but due to a disk error, the page control mechanism has not
been able to load the page into main memory. If the on-unit for this
condition returns, the reference will be retried, and there is some
likelihood that the disk read will succeed and the reference thus’ be
completed,

ffh.fault_type Value '10'b3.

ffh.ret_pb Points at the faulting instruction,

ffh.fault_addr Virtual address, the page for which cannot be
retrieved,

No information structure is available.

p> PAUSES

(software, returnable)

The process has executed a PAUSE statement in a FORTRAN program. This
condition should not be handled by user programs since it is used by
Prime software to ensure the proper operation of the FORTRAN PAUSE
statement,

No information structure is available.

The default on-unit for this condition prints no diagnostic, but calls
a new command level.

RP PHLOGOS

(software, returnable)

This condition is raised when a phantan which you spawned is logging
out.

No information structure is directly available. Use the subroutine
LONSR, described elsewhere in this book,

Third Edition 22-36

CONDITION MECHANISM

> POINTER_FAULTS

(hardware, returnable)

The process has referenced through an indirect pointer (IP) whose fault
bit is on, but that pointer did not appear to be a valid unsnapped

dynamic link.

Note

This error condition is frequently caused by making a
subroutine call with too few arguments. The condition is
raised when the called subroutine attempts to access one of its
arguments through a faulted pointer.

ffh.fault_type Value '64'b3.

ffh.fault addr Points to the faulting indirect pointer.

ffh. ret_pb Points to the faulting instruction,

No information structure is available.

P ouITs

(hardware, software, returnable)

The user has actuated QUIT (BREAK key or CONTROL-P) on the terminal.

If this is a hardware signal, then ffh.fault_type has the value '04'b3.
cfh.ret_pb or ffh.ret_pb points to the next instruction to be executed
in the faulting procedure,

No information structure is available.

The default on-unit flushes the input and output buffers of the user's

terminal, prints the message "QUIT." on the terminal, and calls a new

command level.

> RECORD

(software, returnable)

This condition is raised when record size is different from the

variable defined in the PL/I source. (Generally raised by full PL/I

only. Not available through PLIG.)

22-37 Third Edition

DOC3621-190

> REENTERS

This condition is raised by the PRIMOS REENTER (REN) command and
reenters a subsystem that has been temporarily suspended due to another
condition (such as a QUITS signal).

If the interrupted operation can be aborted, the subsystem's on-unit
should perform a nonlocal GOIO back into the subsysten at the
appropriate point.

If the QUITS occurred during an operation that must be completed, the
on-unit should set the info.start_sw to '1'b, record the QUITS request
within the subsystem and return. The REN command will then execute a
START command which will restart the subsystem at the point of
interrupt. When the operation is complete, the subsysten should then
honor the recorded QUITS request.

The default on-unit returns without setting the info.start_sw. The REN
command will then print a diagnostic and return since it assumes the
stack held no subsystem able to accept reentry.

Information Structure:

DCL 1 info based
2 start_sw bit(1) aligned;

p> RESTRICTED_INSTS

(hardware, returnable)

The process has attempted to execute an instruction whose use is
restricted to ring-0 procedures, Certain of these instructions (in the
I/O class) can be simulated by ring 0. An instruction which causes
this condition to be raised could not be simulated by this mechanism.

ffh.fault_type Value '00'b3.

f£h. ret—pb Points to the faulting instruction.

> RO_ERRS

(software, returnable)

A ring-0 call to ERRPRS or ERRRIN has been made, as the result of some
fatal error condition having been detected.

No information structure is available.

Third Edition 22-38

CONDITION MECHANISM

The default on-unit for this condition prints no diagnostic, but calls
a new command level.

SIZE

(software, not returnable)

This condition is raised when a program tries to do an arithmetic
conversion and the value is too large to fit into the target data type.
It can occur when converting either a floating-point number or a
decimal integer to a binary integer.

The standard PL/I condition information structure is provided.

Bm SsTACK OVFSeseed

(hardware, returnable)

The process has overflowed one of its stack segments, but the condition
mechanism was able to locate a stack on which to raise this condition.

ffh.fault_type Value '54'b3.

ffh.fault_addr The last stack segment in the chain of stack
segments of the stack that overflowed. It is this
segment that contains the zero extension pointer
that caused the stack overflow fault.

ffh. ret_pb Points to the faulting instruction.

No information structure is available.

The static~mode default on-unit will attempt to simulate the Prime 300
fault handling for stack overflow fault if the appropriate word of
segment '4000 is nonzero. (See the System Architecture Reference
Guide.) If this word is zero or if no static-mode program is in
execution, the standard default handling occurs.

p> stops

(software, not returnable)

The process has executed a STOP statement in a higher-level-lanquage
program. This condition should not be handled by user programs, as it
is used by Prime software to ensure the proper operation of the STOP
statement in the various languages.

22-39 Third Edition

DOC3621-190

No information structure is available,

The default on-unit for this condition performs a nonlocal GOTO back to
the command processor which invoked the procedure which (or one of the
dynamic descendants of which) executed the STOP statement.

B STORAGE

(software, returnable)

This condition occurs when your program attempts to allocate storage
and none is available. (It is generally raised by full PL/I only and
is not available through PLIG.)

> STRINGRANGE

(software, returnable)

One argument of the SUBSTR function is out of range of the string.

PB sTRINGSIZE

(software, returnable)

The target of a string assignment is too small to contain the value,
The default on-unit simply returns.

Information Structure:

The standard PL/I condition information structure is provided,

PB SUBSCRIPTRANGE

A subscript is out of range.

Information Structure: Standard PL/I information structure,

Third Edition 22-40

CONDITION MECHANISM

> svc_INSTS

(hardware, returnable)

The process has executed an SVC instruction, but the system has not
been able to perform the operation. If the user is in "SVC virtual"
mode, all SVC instructions result in this condition being raised,

ffh.fault_type Value '14'b3.

ffh.ret_pbo Points to the location following the SVC
instruction,

Information Structure:

DCL 1 info based,
9 ranznann fivad h
aa ds erSHIIIE EL abeaeWHA

info. reason values 1 Bad SVC operation code or bad argument(s).

2 Alternate return needed but was 0.

3 Virtual SVC handling is in effect in this
process,

For the case of virtual SvC's only (info.reason code of 3), the
static-mode default on-unit will simulate the Prime 300 fault handling
for the SVC fault, if the appropriate word of segment '4000 is nonzero.
If this word is 0 or if there is no static-mode program in execution,
the standard default handler prints a diagnostic and calls a new
command level. (See the System Architecture Reference Guide for the
exact location.)

p TRANSMIT

(software, returnable)

This condition occurs when data cannot be transmitted reliably between
a data set and PL/I storage. (It is generally raised by full PL/I only
and is not available through PLIG.)

22-41 Third Edition

DOC3621-190

~ vIIS

(hardware, returnable)

The process has executed an unrecognized instruction that nevertheless
caused an unimplemented instruction fault, or else the systen UII
handler detected an error in processing the valid UII.

The fault frame header that accompanies this condition is nonstandard
in that ffh.regs is not valid: the registers at time of fault are
unavailable.

f£fh. ret_pb Points to the next instruction to be executed in the
faulting procedure.

PB UNDEFINEDFILE (file)

(software, not returnable)

This condition is raised when an OPEN statement cannot associate an
input file with an existing PRIMOS file or device. The default on-unit
prints a message and signals the ERROR condition.

> UNDEFINED_GATES

(software, not returnable)

This condition is signalled when the process has called an inner ring
gate segment at an address within the initialized portion of the gate
Segment, but there was no legal gate at that address. This error can
arise because gate segments are padded, from the last valid gate entry
to the next page boundary, with "illegal" gate entries.

No information structure is available.

> UNDERFLOW

(hardware, returnable)

This condition is signalled when the result of the floating-point
binary or decimal calculation is too small for representation, The
default on-unit sets the floating-point accumulator to 0.0e0. If the
underflow occurred as a store exception, the affected portion of memory
is also set to 0.0e0. The default on-unit returns and the calculation
proceeds, using the 0.0e0 value.

The standard PL/I condition information structure is provided,

Third Edition 22-42

CONDITION MECHANISM

> ZERODIVIDE

(hardware, not returnable)

This condition is signalled when a division by 0 (floating-point or
fixed-point) occurs. The default on-unit prints a message and Signals
the ERROR condition. For compatibility with earlier versions of
PRIMOS, if the condition is the result of a floating-point operation,
the user may type START following the printing of the message. The
default on-unit will then set the register involved to the largest
possible single-precision floating-point value and proceed with the
calculation.

The standard PL/I condition information structure is provided,

DATA STRUCTURE FORMATS

The data structures associated with the condition mechanism. are
described below. Any user program that uses these structures should
examine the version number in the structure (if one is provided); if
the format of a structure changes, the version number will be
incremented. The uSer program can then take appropriate action if it
is presented with structures of different formats,

The Condition Frame Header (CFH)

The following declaration shows the format of the standard condition
frame header:

acl 1 cfh based, /* standard condition frame header */
2 flags,

3 backup_inh bit(1),
3 cond_fr bit(l),
3 cleanup_done bit(1),
3 efh_present bit(1),
3 user_proc bit(1),
3 mbz bit(9),
3 fault_fr bit(2),

2 root,

3 mbz bit(A),
3 seg_no bit(12),
ret_pb ptr options (short),
ret_sb ptr options (short),
ret_lb ptr options (short),
ret_keys bit(16) aligned,
after_pcl fixed bin,
hdr_reserved(8) fixed bin,N

O
N
N
N

D
N
b
o

22-43 Third Edition

DOC3621-190

2 owner_ptr ptr options (short),
2 cflags,

3 crawlout bit(1),
3 continue_sw bit(l),
3 return_ok bit(1),
3 inaction_ok bit(l),
3 specifier bit(l),
3 mbz bit(1l),

N
O

D
O
D
O
N
N

N
D

D
O

flags. backup_inh

flags.cond_fr

flags. cleanup_done

flags. efh_present

flags. user_proc

flags. mbz

flags. fault_fr

root. mbz

root. seg_no

Third Edition

version fixed bin,
cond_name_ptr ptr options (short),
ms_ptr ptr options (short),
info_ptr ptr options (short),
ms_len fixed bin,
info_len fixed bin,
saved_cleanup_pb ptr options (short);

Will always be '0'b ina condition frame. It is

used in regular call frames to control program
counter backup on crawlout from an inner ring.

Identifies this frame as a condition frame, and

will thus be '1'b.

Is 'l'b when this activation has been "cleaned up"

by the procedure unwind_, which helps to effect

nonlocal GOTOs. When this flag is set, the value

of cfh.ret_pb no longer describes the return point
of the activation; that information is available

in cfh.saved_cleanup_pb.

Will always be '0'b in a condition frame. it is

used in a regular call frame to indicate that an

extended stack-frame header containing on-unit data

is present,

Identifies stack frames belonging to "nonsupport"

procedures, and hence will be '0'b in a condition

frame.

Is reserved and will be 'O'b.

Will always be '00'b in a condition frame.

Is reserved and must be '0'b.

Is the hardware-defined stack root segnent number,
and indicates which segment contains the stack root

for the stack containing this fault frame.

22-44

ret_pb

hdr_reserved

% 4
FS

ON
NTS

cflags. crawlout

cflags. continue_sw

cflacgs. return_ok

CONDITION MECHANISM

Points to the next instruction to be executed
following the call to SIGNLS$S that caused this
condition to be raised, wnless flags.cleanup_done
is 'l'b, in which case cfh.ret_pb will point toa
special code sequence used during stack unwinds,
and cfh.saved_cleanup_pb will contain the former

value of cfh.ret_pb.

Is the hardware-defined stack base of the caller of
SIGNLS. Thus, this value also points to the
previous stack frame on the stack.

Is the hardware-defined linkage base of the caller
of SIGNLS.

Is the hardware-defined keys register of the caller
of SIGNLS.

Ts the hardware-defined offset of the first

argument pointer following the call to SIGNLS that
raised this condition. |

Is reserved for future expansion. of the
hardware-defined PCL/CALF stack-frame header, of
which the totality of cfh is a further extension.

het da No & VNU UY

that owns this stack-frame (usually SIGNLS).
Is reserved to point to the ECB of the procedure

If 'l'b, this condition occurred in an inner ring
(a ring number lower than the ring in which the
on-unit is executing), but could not be adequately
handled there; otherwise it is '0'b.

Is used to indicate to the condition mechanism
whether the on-unit that was just invoked (or any
of its dynamic descendants) wishes the backward
scan of the stack for on-units for this condition
to continue upon the on-unit's return. The
subroutine CNSIGS is used to request that
cflags.continue_sw be turned on; user programs
should not attempt to set it directly. This switch
is Cleared before each on-unit is invoked (except
ANYS on-units).

Tf 'l'b, the procedure that raised the condition is
willing for control to be returned to it by means

of the on-unit simply returning. If '‘'O'b, an
attempt by an on-unit for this condition to return
will cause the special condition
TLLEGALONUNIT_RETURNS to be signalled, Note,
however, that the on-unit may return regardless of
the state of cfh.cflags. return_ok if
cfh.cflags.continue_sw has previously been set by a

22-45 Third Edition

DOC3621-190

cflags. inaction_ok

cflags. specifier

c£lags.mbz

version

cond_name_ptr

ms_ptr

info_ptr

ms_len

Third Edition

call to CNSIGS. This is because, in this case, the
on-unit return does not cause a return to the
procedure that raised the condition, but instead
causes a resumption of the stack scan.

If 'l'b, the procedure that raised the condition
has determined that it makes sense for an on-unit
for this condition to return without taking any
corrective action. Tf 'O'b, the on-unit must take
some corrective action before returning, or else
continued computation may be undef ined.
cf£lags.inaction_ok will never be 'l'b unless
cflags.return_ok is 'l'b as well. No user program
should change the state of this or any other member
of cfh.cflags.

If 'l'b, indicates that this condition is a PL/I
I/O (PLIO) condition that requires a specifier
pointer, as well as a condition name to completely
identify it. This specifier is usually a pointer
to a PLIO file control block. The specifier must

be the first member of the info structure.

Is reserved for future expansion and must be '0O'b.

Identifies the version number (and hence the
format) of this structure, and will currently
always be l.

Is a pointer to the name (char(32) varying) of the
condition because of which the on-unit is being
invoked.

Is a pointer to a structure which defines the state
of the CPU at the time the condition occurred. In
the case of hardware faults, ms_ptr will point toa
Standard Fault Frame Header (ffh). In the case of
software-initiated conditions, ms_ptr will point to
a cfh. The two cases can be distinguished by the
value of ms_ptr -> cfh.flags.fault_fr. If '00'b,
the software case obtains; otherwise, the hardware
case obtains.

Is a pointer to an arbitrary structure containing
auxiliary information about the condition. If
null, no information is available. This pointer is
copied directly from the corresponding argument to

SIGNLS. If cflags.specifier is '1'b, the format of
this structure is partially constrained as
described above.

Is the length in words of the structure pointed to
by ms_ptr,

22-46

CONDITION MECHANISM

info_len Is the length in words of the structure pointed to
by info_ptr.

saved_cleanup_pb Is valid only if flags.cleanupdone is 'l'b, and if
valid is the former value of cfh.ret_pb (which has
been overwritten by the nonlocal GOTO processor).

Note

Programmers writing procedures to interpret the data contained
ina cfh structure should be aware that, in the case of a
crawlout, cfh.ms_ptr describes the machine state at the time
the condition was generated, The stack history pertaining to
that machine state has been lost as a result of the crawlout.

The machine state extant at the time the inner ring was entered
is available, and is pointed to by cfh.ret_sb. This machine
state will be a cfh or an ffh according to whether the inner
ring was entered via a procedure call (cfh) or a fault (ffh),.
The value of cfh.ret_sb -> cfh.flags.fault_fr can be used to
distinguish these cases.

In the case where a crawlout has not occurred, cfh.ms_ptr
points to the proper machine state, and no assumptions can be
made concerning cfh.ret_sb.

The Extended Stack Frame Header (EFH)

Any procedure (or begin block) which is to create one or more on-units
must reserve space in its stack-frame header for an extension that
contains descriptive information about those on-units. This space is
allocated automatically by the FIN, F77, and PLIG compilers. PMA
programs require explicit space allocation.

The format of the stack-frame header (with extension) is:

del 1 sfh based, /* stack-frame header */
2 flags,

backup_inh bit(1),
cond_fr bit(1),
Cleanup_done bit(1),
efh_present bit(1),
user_proc bit(l1),
mbz bit(9),

fault_fr bit(2),
2 root,

3 mbz bit(4),
3 seg_no bit(12),

2 ret_pb ptr options (short),
2 ret_sb ptr options (short),
2 ret_lb ptr options (short),

W
W
W
W
W
W
W

22-47 Third Edition

DOC3621-190

N
N
N

N
D
N
N
N

b
d

flags. backup_inh

flags.cond_fr

flags. cleanup_done

flags. efh_present

flags. user_proc

flags. mbz

flags. fault_fr

root. mbz

Third Edition

ret_keys bit(16) aligned,
after_pcl fixed bin,
hdr_reserved(8) fixed bin,
owner_ptr ptr options (short),

tempsc (8) fixed bin,
onunit_ptr ptr options (short),
cleanup_onunit_ptr ptr options (short),
next_efh ptr options (short);

Is examined only if this stack frame is the
"crawlout frame" on an inner-ring stack, anda
crawlout is taking place. If ‘l'b, it indicates
that sfh.ret_pb is to be copied to the outer ring
as-is, so that the operation being aborted by the
crawlout will not be retried. If '0'b, sfh.ret_pbo
will be set to point at the PCL instruction so that

the inner-ring call may be retried.

Will be '0'b unless the frame is a condition frame
(and is hence described by the structure "cfh").

If '1l'b, the nonlocal GOTO processor has "cleaned
up" this frame by invoking its CLEANUPS on-unit, if

any, and resetting its sfh.ret_pb to point toa
special code sequence to accomplish the unwinding
of this stack frame. When 'l'b, the former value

of sfh.ret_po may be found in sfh.tempsc(7:8)

provided sfh.flags.efh_present is set.

If 'l'b, the extension portion of this frame header
has been validly initialized. In the present
implementation, this implies that at least one caii
to MKONUS has been made, since MKONUS is
responsible for performing the initialization. If
'O'b, members of this structure below marked (EFH)
are not valid and may be used by the procedure for
automatic storage.

If 'l'b, this stack frame belongs to a "nonsupport"

procedure; otherwise '0'b. If flags.user_proc is
'i'b, sfh.owner_ptr is guaranteed to be valid, and
to point to an ECB which is followed by the name of
the entrypoint.

Is reserved and will be '0'b.

Tf '00'b, this frame was created by a regular
procedure call; if ‘'1l0'b, this frame is a fault
frame (ffh) with valid saved registers; if 'Ol'b,
this frame is a fault frame (ffh) in which the

registers have not yet been saved.

Is reserved and must be '0'b.

22-48

root, seg_no

ret_pb

ret_sb

ret_lb

ret_keys

after_pcl

hdr_reserved

(EFH)

owner_ptr

(EFH)

tempsc

(EFH)

on-unit_ptr

(EFH)

cleanup_onunit_ptr

(EFH)

CONDITION MECHANISM

Is the hardware-defined segment number of the stack
root of the stack of which this frame is a member.

Points to the next instruction to be executed upon
return from this procedure.

Contains the stack base belonging to the caller of
this procedure, and hence also points to the -
immediate predecessor of this stack-frame.

Contains the linkage base belonging to the caller
of this procedure,

Contains the hardware-defined keys register
belonging to the caller of this procedure.

Is a value such that the PCL instruction points to
two words beyond the procedure call (PCL)
inctruction that inynkod thie nracadira
ated Set Weede WOew Werks 0/4 eed ab2 WIDeWH Rend, DkBd re WireLAULAL, We

Is reserved for future expansion of the
hardware-defined PCL stack-frame header.

Points to the Entry Control Block (ECB) of the
procedure which owns this stack frame. This member
must be initialized by the called procedure itself,
as the PCL instruction does not do it.

Is a fixed-position block of eight words to be
used as temporary storage by procedures called by
this procedure that have a "Shortcall" invocation
sequence and hence have no stack frame of their
own,

Points to the start of a chain of on-unit
descriptor blocks for this activation. If
onunit_ptr is null, this activation has no on-unit
blocks, except possibly for the condition CLEANUPS
as described below.

If nonnull, this activation has an on-unit for
the special condition CLEANUPS, and
cleanup_onunit_ptr points to the ECB for that
on-unit procedure (it does not point to an on-unit
descriptor block).

22-49 Third Edition

DOC3621-190

next_efh Points to the first on achain of additional
(EFH) stack-frame "header" blocks, so that these do not

have to be allocated at the beginning of the stack
frame. Presently, next_efh will always be null.

The Standard Fault Frame Header

Whenever a hardware fault occurs, the Fault Interceptor Module (FIM) is
expected to push a stack frame with the standard format shown below.

The standard fault frame header structure is:

dcl 1 ffh based, /* standard fault frame header */
2 flags,

3 backup_inh bit(1),
3 cond_fr bit(1),
3 cleanup_done bit(1),
3 efh_present bit(1),
3 user_proc bit(l1),
3 mbz bit(9),
3 fault_fr bit(2),

2 root,
3 mbz bit(4),
3 seg_no bit(12),
ret_pb ptr options (short),
ret_sb ptr options (short),
ret_lb ptr options (short),
ret_keys bit(16) aligned,
fault_type fixed bin,
fault_code fixed bin,
fault_addr ptr options (short),
hdr_reserved(7) fixed bin,

regs,
3 save_mask bit(16) aligned,
3 fac_1(2) fixed bin(31),
3 fac_0(2) fixed bin(31),
3 genr(0:7) fixed bin(31),
3 xb_reg ptr options (short),

2 saved_cleanuppb ptr options (short),
2 pad fixed bin;

N
N
D
N
D
N

N
H
D
N
D
d

flags. backup_inh Will be ignored by the condition mechanism for
fault frames.

flags.cond_fr Will be '0'b in a fault frame.

Third Edition 22-50

flags.cleanup_done

flags.efh_present

flags.user_proc

flags.mbz, root.mbz

flags. fault_fr

root.seg_no

rat nh
oe hML_fpy

ret_sb

ret_lb

ret_keys

fault_type

fault_code

fault_addr

CONDITION MECHANISM

Is set to '1'b by the stack unwinder when it has
“cleaned up" this fault frame. The old value of
ffh.ret_pb has been placed in f£fh.saved_cleanup_pb,
provided flags.fault_fr is '10'b.

Will be '0'b ina fault frame, implying that FIM's
IMay not make on-units.

Will always be '0'b in a fault frame.

Reserved and will be '0'b.

Will be '10'b, if this frame is indeed a standard
format ffh and the registers have been validly
saved in ffh.regs; else will be 'OL'b.

Is the hardware-define stack root segment number,

Points tO the next instruction to be executed
following a return from the fault, This will
frequently also be the instruction that caused the
fault (the case for those faults defined by the CPU
reference manual as "backing up" the program
counter). If flags.cleanup_done is 'l'b, ret_pb
will point to a special "unwind" code sequence, and
its former value will have been saved, if possible,
in ffh.saved_cleanup_pb.

Contains the value of the SB register at the time
of the fault, and hence will usually point to the
predecessor of this stack frame.

Contains the value of the LB register at the time
of the fault,

Contains the value of the KEYS register at the time
of the fault. This can be used to determine in
what addressing mode the fault was taken.

Is set by each FIM to the offset in the fault table
corresponding to the fault that occurred (e.qa., a
process fault results ina fault_type of '04'b3).
This datum cannot be guaranteed valid, as it is not
set indivisibly with the hardware—defined header
information, Since FIM's usually set fault_type
just after saving the registers, it is very
unlikely for fault_type to be invalid.

Is the hardware-defined fault code produced by the
fault that was taken,

Is the hardware-defined fault address produced by
the fault that was taken,

22-51 Third Edition

DOC3621-190

hdr_reserved Is reserved for future expansion of the

hardware-defined stack header.

regs Is valid, if flags.fault_fr is '10'b, and if valid

contains the saved machine registers at the time of
the fault in the format produced by the RSAV
instruction,

saved_cleanup_pb Is valid only if flags.fault_fr is 'l0'b and
flags.cleanup_done is 'l'b, and if valid contains
the value that was in ret_pb before the latter was

overwritten by the stack unwinder.

pad Exists only to make the size of this structure an
even number of words.

The On-unit Descriptor Block

Fach on-unit created by an activation is described to the condition

mechanism by a descriptor block (except for the special condition

CLEANUPS, which has no descriptor). These descriptor blocks are

threaded together in a simple linked list, the head of which is pointed
to by sfh.onunit_ptr. The format of an on-unit descriptor is:

del 1 onub based, /* standard onunit block */
2 ecb_ptr ptr options (short),
2 next_ptr ptr options (short),
2 flags,

3 not_reverted bit(1),
3 is_proc bit(1),
3 specify bit(1),
3 snap bit(1),
3 mboz bit(12),

2 pad fixed bin,
2 cond_name_ptr ptr options (short),
2 specifier ptr options (short);

ecb_ptr Points to the Entry Control Block (ECB) which
represents the procedure or begin biock to be
invoked when this oon-unit is selected for

invocation,

next_ptr Points to the next on-unit descriptor on the chain
for this activation, or else is null if at the end

of the list.

flags.not_reverted Is 'l'b, if this on-unit is still valid and has not
been reverted, and is '0'b, if the on-unit has been
reverted and is to be iqnored by the
condition-raising mechanism.

Third Edition 22-52

flags.is_proc

flags. specify

flags. snap

flags. mbz

pad

cond_name_ptr

specifier

CONDITION MECHANISM

Tf '1l'b, this on-unit was made via a call to the
primitive MKONUS; if 'O'b, it was made via the

PL/I on statement.

If 'l'b, the condition name does not fully identify
which condition this on-unit block is to handle:
onub. specifier is a further qualifier in this case.

If 'l'b, the snap option was specified in the PL/I
on statement that created this on-unit; 'O'b

otherwise.

Is reserved and must be '0'b.

Is reserved and must be 0.

Is a pointer to a varying character’ string
containing the condition name for which this

shiaa nAl Aa hie ha an
Lk

rwOMn-UNnict is ith — maw ny
an amy Wenan

onub; flags. specify is

han
1Gi

s

a er ae

incomplete specicification, if
"1'b.

Is valid only if onub.flags.specify is 'l'b, and if
valid qualifies the condition name that is pointed
to by onub.cond_name_ptr. The primary use of
onub, specifier is for PL/I I/O conditions, in which
the specification of the condition requires both a
name and a file descriptor pointer.

22-53 Third Edition

PART VIII

Library Building and Management

23
Library

Management

This chapter describes the Binary Editor (EDB) and LIBEDB. EDB is used
to create and modify libraries. LIBEDB is used once a library is
created to decrease loading time. Both of these programs operate on
object text blocks generated by Prime language translators such as FIN,
COBOL, or PMA, These object-text blocks form the input to LOAD and
SEG. The term loader is used to identify both programs.

LIBEDB

This program is used for editing bypass information into library files.
The loader uses the bypass information to skip an umnecessary routine
efficiently instead of reading and discarding all the unwanted object
text. Depending on the size and number of unnecessary routines in a
library, the loader may process library files up to 50 percent faster
if they have first been processed by LIBEDB.

LIBEDB is maintained as the runfile LIBEDB.SAVE in the UFD LIB. It
should be used on a library file after its creation and after each time
that the library is edited with the Binary Editor. The loader is
capable, however, of handling a library which is not, or is only
Partially, processed by LIBEDB.

23-1 Third Edition

DOC3621-190

Since it is expected that LIBEDB will be used fairly infrequently, the
user/computer interaction is self-explanatory. LIBEDB asks for an
input and output filename and for file type. In theory, a library with
large routines will load faster if it is created as a DAM file. In
practice, none of the regularly used libraries contain routines large
enough to warrant creating the library as a DAM file instead of as a
SAM file.

EDB

Startup

EDB is started up by the following command:

EDB input-file [output-file]

Both the input and output file may be pathnames. The input file should
be an existing library or the binary output of a Prime language
translator. The output file is optional; if specified, a file of that
name will be created if none exists. -ASR or —PIR instead of a file on
the command line specifies a user terminal or paper-tape reader/punch,
respectively. If these are not included, a PRIMOS file is assumed,

EDB displays ENTER and then waits for user commands.

Operation

EDB maintains a pointer to the input file. When EDB is initialized, or
after a TOP or NEWINF command, the pointer is at the top of the input
file. The pointer can be moved by the FIND command to the start of a
module, A module is identified by its subprogram or entry-point name.
After a QCOPY command (which copies blocks from the input to output
file), the pointer is positioned to the module following the module
copied.

Command Summary

EDB responds to the following commands, listed in alphabetical order.
Commands may be abbreviated to the underlined letters. Items enclosed
in brackets are optional.

BRIEF

Inhibits printout of subroutine names and entrv points as thev are
encountered in the input file by EDB. (See TERSE and VERIFY.)

Third Edition 23-2

LIBRARY MANAGEMENT

name, <SFL>, or <RFL>

copy Au
Copies to the output file all main programs and subroutines from the
pointer to (but not including) the subroutine called name or containing
name aS an entry point. If mame is not encountered or COPY ALL is
specified, EDB copies to the end of the input file and types .BOTTOM.
on the terminal. The pointer moves past the last copied iten.

name, <SFL>, or <RFL>

FIND ALL
Moves the pointer to the module of the input file containinga
Subroutine called name or containing name as an entry point. If name
is not found, the pointer is moved to the end of the input file and
~BOTTOM. is typed on the terminal. In the VERIFY mode, the FIND ALL
command can be used to print all subroutines and entry names in the
input file. |

INSERT pathname

Copies all modules of pathname to the output file. The pointer to the
original input file is unchanged.

NEWINF pathname

Closes the cu. ent inout f and opens pathname as the new input fi
—e oe / —_ee ewe -_ _— ~—s aan oo4owetS Saeed wh be Nee awe T aah & ahee de cheer il

The pointer is positioned to the beginning of pathname.

OPEN

Closes the current output file and opens pathname as the new output
file.

QuIT

Closes all files and exits to PRIMOS.

REPLACE (name) (pathname)

Replaces the object module containing (name) as an entry point by all
modules of pathname.

RFL

Writes a reset-force-load flag block to the output file. All libraries
begin with an RFL. This block places a loader in library mode; only

those modules that are referenced are loaded, RFL mode is in effect
until the loader encounters an SFL block.

23-3 Third Edition

DOC3621-190

SFL
Writes a set-force-load flag block to the output file. This block
places a loader in force-load mode; all subsequent modules are loaded,
whether or not they are called. SFL mode is in effect until the loader
encounters an RFL block. Alibrary file should be terminated by an SFL
block,

TERSE

Places the editor into TERSE mode. Only the first entry-point name of
each module encountered byEDB is printed on the terminal. (See BRIEF
and VERIFY.)

TOP

Moves the pointer to the top of the input file.

VERIFY

Places EDB into VERIFY mode. All subroutine names and entry points, as
they are encountered by EDB, are printed on the terminal. DB is
initialized in the VERIFY mode. (See BRIEF and TERSE.)

Obsolete Commands

The following commands are outmoded but are included for the sake of
compatibility:

ET

Writes an end-of-tape mark on the output file ('223, '223 on paper
tape; 0 word on disk). Writing an ET to disk causes the loader to
ignore the remainder of the file.

GENET [G]

Copies the subroutine to which the pointer is currently positioned and
follows it with an end-of-tape mark. The pointer moves to the next
subroutine. The optional letter G specifies a global copy; all
subroutines from the current position of the pointer are copied, each
followed by an end-of-tape mark. When the bottom of the input file is
encountered, .BOTTOM. is printed on the terminal.

OMITET [G]

Copies the subroutine to which the binary location pointer is currently
positioned, The pointer moves to the next subroutine. The optional
letter G specifies a global copy; all subroutines from the current
position of the pointer are copied. When the bottom of the input file
is encountered, .BOTIOM. is printed on the terminal.

Third Edition 23-4

LIBRARY MANAGEMENT

EDB Error Messages

EDB prints ENTER to show that it is ready to accept commands. Most
errors in command string input cause EDB to print a question mark (?).
Other messages include:

BAD OBJECT FILE Usually a source file

BAD PARAMETERS Fatal

ERROR WHILE WRITING Fatal

EXAMPLES

Creating a Library

The following example creates a library from the files FILEI.BIN,
FILE2.BIN, FILE3.BIN, and FILE4.BIN. Each file contains a single
module, although FILE1.BIN and FILE2.BIN contain multiple entry points.
The example shows the EDB commands to list the entry points of each
file, plus the commands necessary to combine them into a library file,
LIBEXP,

OK, EDB FILE1.BIN
[EDB REV 18.2]
ENTER, F ALL
ENTIAENTIB ENT1C
. BOTTOM.
ENTER, NEWINF FILE2.BIN
ENTER, F ALL
ENT2D ENT2E
. BOTTOM.
ENTER, NEWINF FILE3.BIN
ENTER, F ALL
FNT3G
. BOTTOM.
ENTER, NEWINF FILE4.BIN
ENTER, F ALL
ENT4H
. BOTTOM.
ENTER, OPEN LIBEXP
ENTER, NEWINF FILE1.BIN
ENTER, RFL
ENTER, C ALL
ENTIA ENTIB ENTIC
. BOTTOM.
ENTER, I FILE2.BIN
ENTER, I FILE3.BIN
ENTER, I FILE4.BIN
ENTER, SFL
ENTER, QUIT

23-5 Third Edition

DOC3621-190

After a library is created, LIBEDB can be run on it to speed its
loading time.

Listing EntryPoints

Notice the difference between the terminal output in VERIFY and TERSE
modes. ENTIA, ENTIB, and ENTIC are all entry points of the first

module. In TERSE mode, only ENTIA is listed. For example:

OK, EDB LIBEXP
[EDB REV 18.2]
ENTER, F ALL
<RFL> ENTIA ENTIB ENTIC ENT2D ENT2E ENT3G ENT4H <SEL>
.BOTTOM.
ENTER, TOP
ENTER, TERSE
ENTER, F ALL
<RFL> ENTIA ENT2D ENT3G ENT4H <SFL>
-BOTTOM.
ENTER, QUIT

Replacing an Object Module in the Library

The library file, LIBEXP, created above is edited to replace the module
containing entry point ENT3G with the module in NFILE3.BIN containing

entry points ENT3F and ENT3G. The output file is LIBNEW.

OK, EDB NFILE3.BIN
[EDB REV 18.2]
ENTER, F ALL
<RFL> ENT3F ENT3G <SFL>
.BOTTOM.
ENTER, Q

OK, EDB LIBEXP LIBNEW
[EDB REV 18.2]
ENTER, R ENT3G NFILE3 .BIN
<RFL> ENTIA ENTLB ENTIC ENT2D ENT2E ENT3G <SFL>
ENTER, C ALL
ENT4H
- BOTTOM.
ENTER, Q

OK, EDB LIBNEW
[EDB REV 18.2]
ENTER, F ALL
<RFL> ENTIA ENT1B ENTIC ENT2D ENT2E ENT3F ENT3G ENT4H <SFL>
BOTTOM.
ENTER, Q

Third Edition 23-6

APPENDIXES

New File Management

Subroutines for Rev. 19

NEW FEATURES IN REV. 19

ACLs (Access Control List System)

Several subroutines have been added at Rev. 19 to support Access
Control Lists (ACLs):

Subroutine

ACSCAT

ACSCHG

ACSDFT

ACSLIK

ACSLST

ACSRVT

ACSSET

CALACS

CATSDL

CHGSPW

Function

Protect file system object with access category.

Change contents of an ACL.

Revert file system object to default protection.

Copy ACL from one file system object to another.

List contents of an ACL.

Convert an ACL directory to a password directory.

Create an ACL.

Calculate access on a file system object.

Delete an access category.

Change login validation password.

A-1 Third Edition

DOC3621~190

CREPWS

DIRSLS

DIRSRD

ENTSRD

FILSDL

GETIDS

ISACLS

PASDEL

PASLST

PASSET

SGDSDL

Create a new password directory.

Search directories.

Read directory entries sequentially.

Read named directory entry.

Delete a file.

Return user's full ACL identity.

Determine type of a directory.

Delete priority ACL.

List priority ACL.

Create priority ACL.

Delete a segment directory entry.

Before using these subroutines, please read the section on access
control in the Prime User's Guide for Rev. 19 or higher. Note also
that the older subroutines RDENSS and SATRSS have been modified for use

with ACLs.

New Subroutines for Attaching

The following subroutines should be substituted for ATCHSS:

Third Edition

Subroutine Function

ATS Attach by pathname.

ATSABS Attach to top-level directory on specified
partition.

ATSANY Attach to top-level directory on any partition.

ATSHOM Set current directory as home directory.

ATSOR Set home and/or current directory to orisin.

ATSREL Attach relative to current directory.

REV. 19 FILE MANAGEMENT

Date Retrieval

The following new subroutines retrieve or convert date and time:

Subroutine Function

CVSDOS Convert binary date to quadseconds.

CVSDFT Convert formatted date to bimary.

CVSEDA Convert binary date to ISO format.

CVSFDV Convert binary date to visual format.

DATES Return current date and time in binary format.

User Information

The following subroutines retrieve user information:

Subroutine Function

USERS Return process number and user count,

UTYPES Return type of current process.

DESCRIPTION OF THE SUBROUTINES

p AcSCAT

Purpose

Files may be added to an access category with the ACSCAT call.

Usage

DCL ACSCAT ENTRY (CHAR(128)VAR, CHAR(32)VAR, FIXED BIN);

CALL ACSCAT (object-path, category—-name, code)

object—path Pathname of the file system object to be protected
(input).

category-name Name of the category to which the object should be
added (input).

code Standard return code.

A-3 Third Edition

DOC3621-190

Discussion

The object must exist and must be a file, UFD, or segment directory.
The category must exist in the same directory as the object and must be
an access category. If the object is a password directory and its
parent is an ACL directory, the object will be converted to an ACL
directory.

Protect access is required on the parent directory, or on the object
itself if it is a directory or access category. Use access is required
at each intermediate name in the path. List access is also required on

the parent. If the object is a password directory and protect access
is not available on its parent, owner access is required on the object.

Before uSing this subroutine, please read the chapter on access control
in the Prime User's Guide.

ACSCAT requires protect and list access to the parent of the file
system object.

pm ACSCHG

Purpose

Existing ACLs may be modified with the ACSCHG call.

Usage

DCL ACSCHG ENTRY (CHAR(128)VAR, PIR, FIXED BIN);

CALL ACSCHG (name, acl-ptr, code)

name Pathname of the object whose ACL is to be modified
(input).

acl-ptr Pointer to the ACL structure (input). This
structure is described with ACSLST.

code Standard return code.

Discussion

ACSCHG is similar to ACSSET, but rather than replacing the entire
contents of the old ACL, ACSCHG updates the existing ACL with the new
data. The object to be changed must be an existing access category or
a specifically protected file. (If it is not, an error is returned.)
As in the ACL commands, if the access half of the access pair is mull,

Third Edition A-4

REV. 19 FILE MANAGEMENT

the id is removed from the ACL. Otherwise, if the id already exists in
the ACL its access list is simply changed, and if it does not exist it
is added.

Before uSing this subroutine, please read the chapter on access control
in the Prime User's Guide.

p ACSDFT

Purpose

A file may be given default protection with the ACSDFT call.

Usage

DCL ACSDFT ENTRY (CHAR (128)VAR, FIXED BIN):

CALL ACSDFT (name, code)

name Name of the file system object whose protection is
to change (input).

code Standard return code,

Discussion

The object must exist and be a file, UFD, or segment directory. If it
is a password directory and its parent is an ACL directory, it will be
converted to an ACL directory. Attempts to use ACSDFT on MFDs will be
rejected with error code ESIMFD (operation illegal on MFD).

ACSDFT requires protect and list access for the parent of the object,
or on the object itself if it is a directory. Use rights are required
at each intermediate node in the tree. List rights are also required

on the parent. If the object is a password directory, owner access is
required if protect access is not available on the parent.

A-5 Third Edition

DOC3621-190

B AcsLIK

Purpose

ACLs may be copied from one file to another with the ACSLIK routine.
Thus one file may be given the same protection as another.

Usage

DCL ACSLIK ENTRY (CHAR(128)VAR, CHAR(128)VAR, FIXED BIN);

CALL ACSLIK (target-path, reference-path, code);

target—path Pathname of file system object to be protected
(input).

reference-path Pathname of file system object from which to take
ACL (input).

code Standard return code.

Discussion

Both target and reference must be existing file system objects. A new
Specific ACL will be created with the ACL of the reference, regardless
of how the target and reference are currently protected. If the target
is a password directory and its parent is an ACL directory, the target
will be converted to an ACL directory.

ACSLIK requires protect and list access to the target's parent, or
protect access to the target. It also requires list access to the
parent of the reference.

p> ACSLST

Purpose

ACLs are read using ACSLST.

Usage

DCL ACSLST ENTRY (CHAR(128)VAR, PTR, FIXED BIN, CHAR(128)VAR, FIXED
BIN, FIXED BIN);

CALL ACSLST (name, acl-ptr, max-entries, acl—-name, acl-type, code);

Third Edition A-6

REV. 19 FILE MANAGEMENT

name Pathname of the file systen object for which
information is desired (input).

acl-ptr Pointer to return structure discussed below (input,
points to output).

max-entries Most entries that user's buffer can handle (input).

acl—name Name of the ACL protecting the object (output). The
name is determined by the algorithm listed under the
Discussion,

acl—-type Type of the ACL protecting the object (output).
Possible values are:

0 Specific ACL (spec_aclt)

1 Access category (cat_aclt)

2 Default access provided by specific ACL
(dft_spec_aclt)

code Standard return code.

ACSLST requires list access to the parent of the file system object.

If the name is null, the contents of the default ACL for the current
directory are returned, If max-entries is 0, only acl-name and
acl-type are returned. The acl-name returned (which is a full

pathname) is determined by the following algorithm:

acl_name (object) = If (object category_protected)
then category name
else if (object specific_protected)

then object name
else acl_name (parent (object))

acl-ptr points to a structure which looks like the following:

del 1 acl,
2 version fixed bin, /* Input, must be 2 */
2 entry_count fixed bin, /* Number of pairs */
2 entries (entry_count)char (80) var; /*<access_pair>s*/

A-7 Third Edition

DOC3621-190

BP acsavr

Purpose

ACSRVT converts an ACL directory to a password directory.

Usage

DCL ACSRVT ENTRY (FIXED BIN);

CALL ACSRVT (code);

code Standard error code (output). Possible values are:

ESNRIT Protect access is not available,

ESNINF List access is not available,

ESCATF The directory contains one or more
access categories.

ESADRF The directory contains one or more ACL
subdirectories.

ESWTPR ‘The disk is write-protected,

Discussion

ACSRVT reverts the current directory to a password directory. ‘The
directory must not contain any access categories or ACL subdirectories;
if it does the call will be rejected,

ACSRVT is provided for compatibility reasons only, and should be used
Sparingly, if at all.

Protect access is required on the current directory.

Third Edition A-8

p ACSSET

Purpose

REV. 19 FILE MANAGEMENT

The ACSSET call provides user programs with a method of creating and

replacing the ACL belonging to a category or file.

Usage

DCL AC$SET ENTRY (FIXED BIN, CHAR(128)VAR, PIR, FIXED BIN) ;

CALL ACSSET (key, name, acl-ptr, code);

key Indicates caller's intentions (input). Possible

values are:

0 Create a new ACL if one does not exist;

replace one if it does.

KSCREA Create a new ACL. If one already
exists, return an error.

KSREP Replace the contents of an existin
ACL ® Tf one does not exist, return an

error.

name Pathname of the file system object to be protected
(input).

acl-ptr Pointer to the ACL structure (input). The acl-ptr
points to a structure like that for ACSLST, above.

code Standard return code.

Discussion

ACSSET requires protect and list access to the parent of the object, or

protect access to the object itself.

The action taken by ACSSET is determined by
named in the call and by the key, as follows:

e The named object is an access category:

the type of the object

if the key is KSCREA,

an error is returned. Otherwise, the category's existing ACL is

replaced with the new one pointed at by acl-ptr.

@ The named object is a file: if the file is protected by a

specific ACL and the key is KSCREA, an error is returned.

Otherwise, a new specific ACL is created and the object is

A-9 Third Edition

DOC3621-190

pointed to it. Any old specific ACL is deleted. If the object
is a password directory and its parent is an ACL directory, it
will be converted to an ACL directory.

@ The named object does not exist: if the key is not KSREP, a new
access category is created with the given name and ACL.
Otherwise, an error is returned,

— ars

Purpose

ATS does an attach by pathname.

Usage

DCL ATS ENTRY (FIXED BIN, CHAR(128) VAR, FIXED BIN);

CALL ATS (set-home-key, pathname, code);

set-home-key A key indicating whether or not the home attach
point should be set after the attach is completed
(input). Possible values are:

KSSETH Set home.

KSSETC Do not set home.

pathname Pathname of the directory which is to be attached to
(input). If it is null, ATS has the same effect as
ATSHOM, below.

code Standard error code (output). Possible values are:

ESBKEY An illegal key value was passed,

ESITRE The treename was illegal.

ESFNIF Some part of the pathname does not
exist.

ESNRIT Use rights were unavailable at some
level.

FSNINF Some node in the tree could not be

Third Edition

accessed, and that node's parent was
missing list access,

A-10

REV. 19 FILE MANAGEMENT

ESNATT A relative attach was attempted, but
the current attach point was invalid,

Discussion

ATS provides the ability to do a pathname attach in one call. The
pathname standard is followed:

e A leading "*" means attach relative to the home attach point.

e A partition name of "<*>" means current partition.

e A partition name of "<>" means any partition,

@ A bare partition name indicates the MFD.

However, there are two exceptions:

e@ Backwards attaching (up the tree) is not supported,

e Pathnames beginning with an entryname are considered absolute,

Use access is required at each node in the tree, including the MFD.

If the directory is a password directory with both an owner anda
nonowner password, and the supplied password matches neither, the
BAD_PASSWORDS condition is signalled, rather than an error code being
returned, First there is a five-second delay to discourge

machine—aided cracking of passwords.

p> ATSABS

Purpose

ATSABS attaches to a top-level directory. It is used in place of
ATCHSS with the KSIMFD key and a positive logical device or disk
number, ATSABS uses partition names rather than LDEV numbers.

Usage

DCL ATSABS ENTRY (FIXED BIN, CHAR(32)VAR, CHAR(39)VAR, FIXED BIN);

CALL ATSABS (set-home-key, part-name, dir-name, code)

set-home-key Indicates caller's intention (input). Possible
values are the following.

A-11 Third Edition

DOC3621-190

KSSETH Set home as well as current (input).

KSSETC Set current directory only.

part-name Name of the disk partition on which the directory is
to be found (input). The rules for names are given
below.

dir-name Name of the directory, including the password, which
should be separated from the directory name by a
space (input).

code Standard return code.

Discussion

If the partition name is null, logical device 0 (the command device) is
assumed. If the directory name is null, the MFD is assumed. If the
name is "*", the current partition is searched.

p> ATSANY

Purpose

ATSANY is used in place of ATCHS$S with the KSIMFD key and a logical
device number of '100000. It attaches to a top-level directory on any
partition.

Usage

DCL ATSANY ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL ATSANY (set_home_key, dir_name, code)

Sset_home_key If KSSETH, set home as well as current (input).

dir_name Name of the directory, including the password, which
should be separated from the directory name by a
space (input).

code Standard return code.

Discussion

All local partitions are searched first.

Third Edition A-12

REV. 19 FILE MANAGEMENT

p> ATSHOM

Purpose

ATSHOM sets the current directory to be the same as home.

Usage

DCL ATSHOM ENTRY (FIXED BIN);

CALL ATSHOM (code);

code Standard return code.

Discussion

ATSHOM replaces an ATCHSS call with a key of KSIMFD and a null name.

p ATSOR

Purpose

ATSOR sets the current UFD, and optionally the home UFD.

Usage

DCL ATSOR ENTRY (FIXED BIN, FIXED BIN);

CALL ATSOR (set-home-key, code);

set-home-key If KSSETH, set home as well as current directory to
initial attach point (input).

code Standard return code,

A-13 Third Edition

DOC3621-190

p ATSREL

Purpose

ATSREL attaches relative to the current directory.

Usage

DCL ATSREL ENTRY (FIXED BIN, CHAR(39)VAR, FIXED BIN);

CALL ATSREL (set-home-key, dir-name, code);

set-home-key If KSSETH, set home as well as current (input).

dir-name Name of the directory, including the password, which
Should be separated from the directory name by a

Space (input).

code Standard return code.

Discussion

ATSREL replaces ATCH$$ calls that used the KSICUR key.

p CALACS

Purpose

The CALACS function allows programs to determine the accesses available
to the user on any given file system object.

Usage

DCL CALACS ENTRY (CHAR(128)VAR, PIR, CHAR(80) VAR,
CHAR (80) VAR, FIXED BIN) RETURNS(BIT(1));

have-access = CALACS (name, id-ptr, acc-~needed, acc-gotten, code)

name Pathname of the file system object to check (input).

id-ptr Pointer to the user-id structure (input).

acc—needed A list of accesses required (input).

acc-gotten The list of accesses available (output).

Third Edition A-14

REV. 19 FILE MANAGEMENT

code Standard return code.

have-access True if acc-needed is a subset of acc-gotten
(returned).

Discussion

The user-id structure pointed to by id-ptr is the same as that for
GETIDS below. If id-ptr is null (the usual case), the current user's

id and groups are used,

The acc-needed and acc-gotten strings are in ASCII format. They are
strings consisting of mnemonic access mode names or the special modes

ALL and NONE.

If the name is null, the rights for the current directory are returned.

If the object is password-protected, password rights are returned, If
the CALACS call is made on the current directory, the string "Owner" is
returned if the user has owner rights, and "Non-owner" is returned if
the user is attached with nonowner rights. For files, a string of the
form "owner_rights> <non_owner_rights>" is returned, where the rights
strings wil be either a combination of the characters R (read), W
(write), and D (delete) or the special string NIL (no rights). For
password-protected objects the acc-needed string is ignored and
have-access is always set to true. .

CALACS requires list access to the parent of the object.

Access categories may be deleted with the CATSDL call.

Usage

DCL CATSDL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL CATSDL (name, code);

name Name of the category to be deleted (input).

code Standard return code.

A-15 Third Edition

DOC3621-190

Discussion

The name must exist and must specify an access category. Specific ACLs
may not be explicitly deleted. They are deleted by the system when the
file they protect either is deleted, is put into an access category, or
reverts to default protection,

An access category that protects the MFD may not be deleted,

CHGS

Purpose

CHGSPW changes the login validation password.

Usage

DCL CHGSPW ENTRY (CHAR(16) VAR, CHAR(16) VAR, FIXED BIN);

CALL CHGSPW (old-pw, new-pw, code);

old-pw The user's current login validation password
(input).

new—pw The new password desired (input). Passwords may
contain any characters except PRIMOS reserved char-

acters, Lowercase alphabetic characters are mapped
to uppercase by CHGSPW. At the System Admini-
strator's option, null passwords may be disallowed.

code Standard error code (output). Possible values. are:

ESBPAR One of the passwords is illegal.

ESBPAS The old password passed does net match
the actual password.

ESWIPR The disk is write-protected,

Discussion

CHGSPW allows a user to change the login validation password, This is
the password that a user gives during the LOGIN command, and has
nothing to do with directory passwords.

Third Edition A-16

P CREWS

Purpose

REV, 19 FILE MANAGEMENT

CREPWS creates a new password directory.

Usage

DCL CREPWS ENTRY (CHAR(32), FIXED BIN, CHAR(6), CHAR(6), FIXED BIN);

CALL CREPWS (name, name-length, owner-pw, non-owner-pw, code);

name

name—length

owner-pw

nonowner—pw

code

Discussion

Name of the directory to be created (input).

Length of the name in characters (input).

Password which must be used to attach with owner
rights (input).

Password that must be used to attach with nonowner
rights (input).

Standard error code (output). Possible values are:

ESBNAM

ESBPAR

ESEXST

ESNRIT

ESWIPR

ESNINF

ESNATT

The supplied name is illegal.

The name length is illegal.

An object with the given name already
exists,

Add rights were not available on the
current directory.

The disk is write-protected,

An error occurred, and list rights were
not available on the current directory.

The current attach point is invalid.

CREPWS is used to create new directories, It always creates a password
directory. Add access is required on the current directory.

A-17 Third Edition

DOC3621-190

BP cvspos

Purpose

CVSDOQS converts the binary date to quadseconds.

Usage

DCL CVSDQS ENTRY (FIXED BIN(31), FIXED BIN(31));

CALL CVSDQS (fs-date, quadseconds);

fs-date

quadseconds

Discussion

The date to be converted (input). The format of a
32-bit encoded FS—-format date is described below.

Date as expressed in quadseconds since midnight of
January 1, 1901 (output). Quadseconds are groups of
four seconds.

CVSDOS is part of the PRIMOS standard date package. It takes a
standard FS-format bit-encoded date and converts it to absolute
quadseconds since midnight of January 1, 1901 (01-01-01.00:00:00).

FS-format dates are bit-encoded as defined by the following structure:

dcl i fs_date,
2 year bit(7),
2 month bit(4),
2 day bit(5),
2 quadseconds fixed bin(15);

year

month

day

quadseconds

Year modulo 100, with the exception that years
100-128 mean 2000-2028.

Month, from 1 for January to 12 for December.

Day o£ the month, from 1 to 3l.

Number of quadseconds (groups of four seconds)
elapsed since midnight of the date described by the
above three fields.

If the date passed is invalid, -1 is returned in the quadseconds field.

Third Edition A-18

REV. 19 FILE MANAGEMENT

p cvsprs

Purpose

CVSDIB converts the formatted date to binary.

Usage

DCL CVSDIB ENTRY (CHAR (128) VAR, FIXED BIN(31), FIXED BIN);

CALL CVSDIB (ascii-date, fs-date, code);

ascii-date The ASCII-formatted date to be converted (input).
Legal formats are described below.

fs—-date The bit-encoded FS-format date returned. FS-format

dates are described below.

code Standard error code (output). Possible values are:

ESBPAR ‘The passed date string is illegal.

Discussion

CVSDIB is part of the PRIMOS standard date package. It converts an
ASCII-formatted date to FS (bit-encoded) format,

Standard ASCII-format dates may have one of the following three
formats:

YY-MM-DD. HH:MM:SS{ DOW} (ISO format)

MM/DD/YY. HH:MM:SS{.DOW} (USA format)

DD MMM YY HH:MM:SS{ Day-of-week} (Visual format)

Omitted date fields are replaced by today's date information; omitted
time fields are replaced by zeros. If the string is null, 0 is
returned, The day-of-week field is checked for consistency only.

FS-format dates are bit-encoded as defined with CVSDOS.

A-19 Third Edition

DOC3621~-190

PB cvsFDA

Purpose

CVSFDA converts the binary date to ISO format.

Usage

DCL CVSFDA ENTRY (FIXED BIN(31), FIXED BIN, CHAR(21));

CALL CVSFDA (fs-date, day-of-week, formatted-date);

fs-date Standard FS-format date as described below (input).

day-of-week Ordinal day-of-week number (output). Sunday = 0,
Monday = 1, etc.

formatted-date ASCII-formatted date in ISO format, as described
below (output).

Discussion

CVSFDA is part of the PRIMOS standard date package. It converts an
FS-format date string to ISO format. The date returned is of the
format "YY-MM-DD.HH:MM:SS.DOW".

ISO-format dates are designed primarily for machine readability. Dates
which are to be read primarily by people should be converted with
CVSFDV, below.

If the passed date is illegal, formatted-date will be set to
"** invalid date **" and day-of-week will be -I.

FS-format dates are bit-encoded as defined with CVSDOS.

Third Edition A-20

REV. 19 FILE MANAGEMENT

BP cvsFov

Purpose

CVSFDV converts the binary date to visual format.

Usage

DCL CVSFDV ENTRY (FIXED BIN(31), FIXED BIN, CHAR(28)VAR);

CALL CVSFDV (fs-date, day-of-week, formatted—date);

date Standard FS-format date as described below (input).

day—of-week Ordinal day-of-week number (output). Sunday = 0,
Mondav = 1. etc.

af —sF —eS

formatted-date ASCII-formatted date in visual format, as described
below (output).

Discussion

CVSFDV is part of the PRIMOS standard date package. It converts an
FS-format date string to "visual" format. Visual-format dates are
described below.

Visual-format dates are designed primarily to be read by users.
Because they contain blanks and are not ordered in a_ strictly
decreasing way, they are not particularly suited for machine
readability. Dates which are to be mainly machine-read should be
converted with CVSFDA, above.

The date returned is of the format "DD MMM YY HH:MM:SS day-of-week".

If the passed date is illegal, formatted-date will be set to
"** invalid date **" and day-of-week will be -l.

A-21 Third Edition

DOC3621-190

p DATES

Purpose

DATES returns the current date and time in binary format.

Usage

DCL DATES ENTRY RETURNS (FIXED BIN(31));

fs-date = DATES();

fs-date Standard FS-format date as described below (output).

- Discussion

DATES is part of the PRIMOS standard date package. It returns the
current date and time in the standard bit-encoded FS format described
below.

FS~-format dates are bit-encoded as defined with CVSDOS.

 DIRSLS

Purpose

DIRSLS is a general-purpose directory searcher.

Usage

DCL DIRSLS ENTRY (FIXED BIN, FIXED BIN, BIT(1), BIT(4), PIR,
FIXED BIN, PIR, FIXED BIN, FIXED BIN,
FIXED BIN, (4) FIXED BIN, FIXED BIN(31),
FIXED BIN(31), FIXED BIN);

CALL DIRSLS (dir-unit, dir-type, initialize, desired—types,
wild-ptr, wild-count, return-ptr, max-entries,
entry-size, ent-returned, type-counts,
before-date, after-date, code);

dir-unit Unit on which the directory to be searched is open
(input).

Third Edition A-22

dir-type

initialize

desired-types

wild-ptr

wild-count

return-ptr

max-entries

entry-size

REV. 19 FILE MANAGEMENT

Type of object open on dir-unit. Legal values are:

2 SAM segment directory.

3 DAM segment directory.

4 Directory.

If set, the directory is to be reset to the
beginning; otherwise, it is searched from the
current position. This is useful so that large
directories may be dealt with in more than one call,
thus making a huge buffer area in the caller's
routine unnecessary.

A bit-encoded field defining what types of directory
entries the caller wishes to have returned (input).
In the following table, if the bit is set the
emaniFfiad fume «utll ha ratiurnade
beRONerodde “yt ¥¥LL aN dn Wow hee Yo @

'1000'b Directories.

'0100'b Segment directories.

©010' C
o Files.

"0001!© c
r

r
e

Q Q ra
)

uw
)

w
n

9 c D 8 ry - M
m u) e

If all bits are set, type is not used as a selection
criterion.

Pointer to list of wildcard names for which to
Search (input). The list should be an array of
Char (32) varying strings. Wildcards are explained
in the Prime User's Guide.

Number of names in list pointed to by wild-ptr
(input). If wild-count is 0, entryname is not used

as a selection criterion.

Pointer to caller's return structure. The data
structure returned by DIRSLS is described below.
(Input, points to output.)

Maximum number of entries that caller's structure
can handle (input).

Number of words reserved for each directory entry in
caller's structure. max-entries * entry-size
defines the size of the caller's structure in words
(input). In Rev. 19, the normal size of a directory
entry as returned by DIRSLS is 24 words.

A-23 Third Edition

DOC3621~-190

entr-returned Number of entries returned by DIRSLS (output). This
number will always be less than or equal to
max-entries.

type-counts Number of entries of each type returned by DIRSLS.
Counts are returned in the order files, segment
directories, directories, access categories.

before-date Entries with date/time modified earlier than this
date are selected by DIRSLS (input). The date
Should be in standard FS format, described with
CVSDQS.

If the value of before-date is 0, it is not used as
a selection criterion.

after-date Entries with date/time modified later than this date
are selected by DIRSLS (input). The date should be
in standard FS format, described with CVSDOS.

If the value of after-date is 0, it is not used as a
selection criterion,

code Standard error code (output). Possible values are:

ESBUNI dir-unit specified an illegal wnit
number.

ESUNOP dir-unit is not open,

ESEOF There are no more entries in the
directory.

Discussion

DIRSLS is a general-purpose directory scanner. It selects directory
entries by name (handling wildcards), type, and date/time modified
(DIM). It may be used to search segment directories.

The directory must have been previously opened on some unit with one of
the standard PRIMOS file-opening routines, List access is required to
open directories.

The directory is searched sequentially from its beginning (if the
initialize bit was set) or from the current position (if it was not).
As each entry is read, it is checked against all of the selection
Criteria. If the entry meets all the criteria, it is copied into the
caller's buffer. The search ends when there are no more entries in the
directory or the caller's buffer becomes full, whichever occurs first.

Third Edition A-24

REV. 19 FILE MANAGEMENT

All entries in the directory are returned if wild-count, before-date
and after-date are 0, and desired-types is '1111'b.

The structure of a returned directory entry is:

dcl 1 dir_entry,
2 ecw,

3 type bit(8),
3 length bit(8),

2 entryname char(32) var,
2 protection,

3 owner_rights,
4 spare bit(5),

4 delete bit(l),
4 write bit(l1),
4 read bit(l1),
delete_protect bit(1),
non_owner_rights,
A emara hit/A\

4 delete bit(1),
4 write bit(l),
4 read bit(l),

2 file_info,
long_rat_hdr bit(1),
Gumped bit(1),
dos_mod bit(1),
special bit{l),
rwlock bit(2),
Spare bit(2),

type bit(8),
2 dtm like fs_date,
2 non_default_acl bit(1) alicned,
2 spare bit(16) aligned;

W
W

W
W
W
W
W

W
D
W
w

ecw. type Entry Control Word for the entry:

2 Normal directory entry (file,
directory, or segment directory).

3 An access category.

length ats field will always have a value of 24 in rev.

name Name of the entry.

owner_rights The rights granted to users when attached to the
containing directory with owner rights.

delete_protect The setting of the ACL delete-protect switch. If
this bit is on, the file may not be deleted. The
bit may be reset by a call to the SATRSS
subroutine,

A=-25 | Third Edition

DOC3621~-190

non_owner_rights The rights granted to users when attached to the

long_rat. hdr

Gumped

dos_mod

special

rwlock

file_info, type

dtm

non_default_acl

Third Edition

containing directory with nonowner rights.

If set, indicates that the file is a Disk Record
Availability Table (DSKRAT) containing more than

one record,

If set, the file has been backed up by MAGSAV.

If set, the file was modified while PRIMOS II
(DOS) was running.

If set, the file is special (e.g. DSKRAT, BOOT,
MFD) and may not be deleted,

Indicates the setting of the file's read/write
concurrency lock. Values are:

0 Use system default setting.

1 Unlimited readers or one writer
(excl).

2 Unlimited readers and one writer

(updt).

3 Unlimited readers and writers (none).

Indicates the type of object described by this
entry. Possible values are:

0 SAM file.

1 DAM file.

2 SAM segment directory.

3 DAM segment directory.

4 Directory.

6 Access category.

The date/time the file was last modified, in
standard FS format. FS-format dates are described

with CVSDQS.

This bit is set if the object is not protected by
the default ACL; that is, it is protected by a
specific ACL or by an access category.

A-26

> DIRSRD

Purpose

REV. 19 FILE MANAGEMENT

DIRSRD reads the contents of a directory sequentially, entry by entry.

Usage

DCL DIRSRD ENTRY (FIXED BIN, FIXED BIN, PIR, FIXED BIN,
FIXED BIN);

CALL DIRSRD (key, unit, return-ptr, max-return-len, code);

key

unit

return-ptr

Indicates what to do (input):

KSREAD Read from current position.

Unit number on which directory is open; list access
must be available on the directory (input).

Pointer to user's buffer (input, points to output).

max-return-len Size of user's buffer (input).

code

Discussion

Standard return code.

The return-ptr points to a structure with the following format. See
RDEN Or a non-PLIG description of the structure,

dcl 1 dir_entry based,
2 ecw,

N
O
N
N
N

3 type bit(8),
3 len bit(8),
name char (32),
pw_protection bit(16) aligned,
non_dft_prot bit(1) aligned,
file_info,

N
W
W
W
W
W
W

W
W long_rat_hdr bit(1),

dumped bit(1),
dos_mod bit(1),
special bit(l),
rwlock bit(2),
Spare bit(2),

type bit(8),

A-27 Third Edition

DOC3621-190

3 date,
4 year bit(7),
4 month bit(4),
4 day bit(5),

3 time fixed bin,
2 spare(2) fixed bin;

All entries are as defined in the description of the subroutine RDENSS
except for non_dft_prot, which is set to true if the entry is not
default-protected (that is, is protected specifically or by a
category).

DIRSRD only returns entries for named objects. Thus, unlike RDENSS, it
will not return the ecw (Entry Control Word) for the directory header,
The types are 2 for a file or directory, and 3 for an access category.

Note

Calls to DIRSRD and ENTSRD should not be made on the same
directory file unit unless DIRSRD is called with the.KSINIT key
following each ENTSRD call.

> |=ENTSRD

Purpose

FNTSRD returns the contents of a directory entry specified by name.

Usage

DCL ENTSRD ENTRY (FIXED BIN, CHAR(32)VAR, PIR, FIXED BIN,
FIXED BIN) ;

CALL ENTSRD (unit, name, return-ptr, max-return-len, code);

unit Unit number on which the directory is open (list
access is required; input).

name Name of the entry to read (input).

return-ptr Pointer to return structure (input, points to
output).

‘MNax-return-len Size of user's buffer (input).

code Standard return code,

Third Edition A-28

REV, 19 FILE MANAGEMENT

Discussion

ENTSRD is identical to DIRSRD in what it returns, but rather than going
sequentially through the directory, ENTSRD returns data for a
particular named entry.

The structure returned by ENTSRD is identical to that returned by
DIRSRD. As noted above, however, ENTSRD and DIRSRD should not be used
together on the same file unit.

 FILSDL

Purpose

FILSDL deletes a file.

Usage

DCL FILSDL ENTRY (CHAR(128)VAR, FIXED BIN);

CALL FILSDL (object-name, code);

- object—name Pathname of the object to be deleted (input).

code Standard error code(output). Possible values are:

ESITRE object-name is not a legal treename.

ESNRIT Delete access was not available on the
parent, or use access was missing from
some intermediate node,

ESWIPR ‘The disk is write-protected,

ESNINF An error occurred when searching for
the file, and the directory level at
which the error occurred did not allow
list access,

ESDLPR The file's delete-protect switch is
set,

Discussion

FILSDL is used to delete files and empty directories. Delete access is
required on the parent directory.

A-29 Third Edition

DOC3621-190

If error code ESDLPR is returned, SATRSS must be called to reset the
delete-protect switch before the file may be deleted, This error code
will only be returned if the caller has delete access on the parent
directory and may thus reset the delete-protect switch.

} GETIDS

Purpose

The GETIDS call returns the user's id and groups,

Usage

DCL GETIDS ENTRY (PIR, FIXED BIN, FIXED BIN);

CALL GETIDS (id-ptr, max-groups, code);

id-ptr

max—groups

code

Discussion

Pointer to the full_id structure below (input,
points to output).

Maximum number of groups that the caller's full_id
structure can handle (input).

Standard return code,

The structure pointed to by id-ptr looks like:

del 1 full_id
2 version fixed bin,

2 user_id char(32) var,
2 group_count fixed bin,
2 groups(group_count) char(32) var;

version

user_id

group_count

groups

Third Edition

Version number of the structure. This must be
supplied by the caller and must be 2 in Rev. 19.

The id of the current user.

Number of groups returned to the caller. This will
always be the minimum of max-groups as supplied by
the user and the number of groups the user has. In
Rev. 19, users may have up to 32 groups. If

max-groups is 0, this field is not returned.

The list of groups currently valid for the user.

A-30

REV. 19 FILE MANAGEMENT

p ISACLS

Purpose

This is a function call. For purposes of compatibility ACL directories
and password directories have the same type (as returned to users;
internally they are different). Therefore, some method of
distinguishing between the two is needed, ISACLS$ returns PLIG true if
the directory specified is an ACL directory.

Usage

DCL ISACLS$ ENTRY (FIXED BIN, FIXED BIN) RETURNS (BIT(1));

is-acl-dir = ISACLS (unit, code);

unit File unit to check (input). unit is either a file
unit number, or one of the following:

-l Current directory

-2 Home directory

-3 Initial directory

code Standard return.code (output).

is-acl-dir True if directory on unit is an ACL directory
(returned).

Discussion

Before using this subroutine, please read the section on access control
in the Prime User's Guide.

> PASDEL

Purpose

Priority ACLs are removed with the PASDEL CALL, callable only by user 1
and the System Administrator.

A-31 Third Edition

DOC3621-190

Usage

DCL PASDEL ENTRY (CHAR(32)VAR, FIXED BIN);

CALL PASDEL (partition—-name, code);

partition-name Name of the partition from which to remove a
priority ACL (input).

code Standard return code (output).

Discussion

Before uSing this subroutine, please read the section on access control
in the Prime User's Guide.

» PASLST

Purpose

Priority ACLs may be read by any user with the PASLST call.

Usage

DCL PASLST ENTRY (CHAR(128)VAR, PIR, FIXED BIN, FIXED BIN);

CALL PASLST (name, acl-—ptr, max-entries, code)

name Name of any object on the partition whose priority
ACL is to be read (input).

acl—ptr Points to return structure described with ACSLST
(input, points to output).

max—-entries Most entries caller can handle (input).

code Standard return code (output).

Discussion

Normally, some access to the partition is required in order to
determine the logical device number and through it get the priority
ACL. Since it is possible to disallow all access to a partition with
priority ACLs, however, PASLST may be called with only a partition name

Third Edition A-32

REV. 19 FILE MANAGEMENT

(in angle brackets). In that case, it will merely look the partition

up in the disk table and no access is required,

p> PASSET

Purpose

Priority ACLs may be added to a partition with the PASSET call, which

may be used only by user 1 and the System Administrator.

Usage

DCL PASSET ENTRY (CHAR(32)VAR, PIR, FIXED BIN);

partition-name Name of the partition to be protected (input).

acl—ptr Pointer to ACL structure (input).

code Standard return code (output).

Discussion

The acl-ptr points to an ACL structure as for ACSLST. Any existing

priority ACL on the specified partition will be replaced by the new

one, If no RESTS entryb is in the AC] passed to PASSET, no REST:NONE

will be supplied.

Before using this call, please read the section on access control in

the Prime User's Guide.

B sSGDSDL

purpose

SGDSDL deletes a segnent directory entry.

Usage

DCL SGDSDL ENTRY (FIXED BIN, FIXED BIN);

CALL SGDSDL (segdir-unit, code);

A-33 Third Edition

DOC3621-190

segdir-unit Unit on which the segment directory is open (input).

code Standard error code (output). Possible values are:

ESBUNT segdir-unit contained an illegal value.

ESSUNO ‘The unit was not open, or was not open
for writing.

ESNISD The object open on segdir-unit was not
a segment directory.

ESFNTS The entry at the current position did
not exist, or the segment directory was
positioned past the end.

Discussion

SGDSDL is used to delete an entry from a segment directory. The
Segnent directory must have been previously opened for writing (by a
module such as SRCH$$), and must be positioned at the entry to be
deleted (by SGDRSS).

p> USERS

Purpose

USER$ returns process number and user count.

Usage

DCL USERS ENTRY (FIXED BIN, FIXED BIN):

CALL USERS (current-user-number, user-count);

Current-user—number User number of the process issuing the call
(output).

user-—count Total number of users logged into the systen
(output).

Discussion

USERS returns the user number of the current process, and the total
number of users logged into the system.

Third Edition A-34

REV. 19 FILE MANAGEMENT

> UTYPES

Purpose

UTYPES returns the type of the current process,

Usage

DCL UTYPES ENTRY (FIXED BIN);

CALL UTYPES (user-type)

user-type Type of the process making the call (output). User
types are defined below.

Discussion

UTYPES returns the user type of the current process, The user type

identifies the process by certain classes defined below. It is the

preferred method of determining whether or not a given process isa

phantom.

The possible user types are:

USNORM Local terminal user.

USTREM User gone to a remote systen.

USFREM User from a remote systen.

USTHRU User logged through (both to and from remote).

USSUSR Supervisor (user 1).

USTFAM FAM I running at a user termiral.

USPH Cominput-style phantom.

USCPH CPL-style phantom.

USNPX NPX slave.

USPFAM FAM I running as a phantaon.

USNET Network server process (NETMAN).

A-35 Third Edition

DOC3621-190

There are also four special types that mark the ranges of terminal
nonterminal (phantom) users. These markers are:

USLIUT Lowest terminal user type.

USHTUT Highest terminal user type.

USLPUT Lowest phantom user type.

USHPUT Highest phantom user type.

By using these marker types, callers can avoid having to change
range they check when new types are added to the list.

Third Edition A-36

and

MessageFacility

Subroutines

£
m
,

‘e
e,

5
_

c
s

‘

afl a oF oh /. . 7 . 3 ,

Og haeES FU
go we?

f

‘

{e
re
nt
r
a
e
a
e

a
=

INTRODUCTION

The Primos MESSAGE command has been extended to include calls for
sending and receiving interuser messages. The subroutines may also set
and query a user's willingness to receive messages. Messages may be
sent in either immediate or deferred mode (to be delivered at command
level only), and may be addressed with either a user name or a user
number, Reception may also be controlled, allowing users to select one
of three modes of reception: receive at any time, receive at command
level only, or never receive.

The subroutines that support the message facility are:

Subroutine Function

SMSGS Send an interuser message.

RMSGDS Receive a deferred message.

MGSETS Set the receiving state for messages.

MSGSST Return the receiving state of a user.

B-l Third Edition

DOC3621-190

p> smscs

Purpose

SMSGS sends an interuser message.

Usage

CALL SMSGS (key,name, namlen, number, reserv, rsvlen, text, txlen, ervec)

All parameters are INTHGER*2.

key

name

namlen

number

resrv

rsvlen

text

txlen

ervec

Third Edition

User option:

0 Deferred message.

] Inmediate message.

User name of addressee. It is blank if message is
addressed by user number or if message is to the
Operator.

Length of name in characters.

User number of addressee. It is 0 if message is
addressed by user name or if message is to the
Operator.

Reserved, must be 0,

Reserved, must be 0.

Text of message to be sent, may contain a
terminating NL (octal 212).

Length of text in characters, between 1 and 79.

Returned error code:

ervec (1) Return code:

ESNRCV Requires that receive
be enabled,

ESUADR Unknown addressee,

ESUDEF User unable to receive
messages.

ESPRTL Operation was par-
tially blocked.

MESSAGE FACILITY SUBROUTINES

ESNSUC Operation
unsuccessful.

0 Operation successful.

ervec (2) Number of users configured on the
system or length of the portion of
ervec(4)-(n). .

ervec(3) Status of link:

XSSCLR Connect cleared.

XSSBPM Unknown node address.

XSSDWN Node not responding.

ervec (4-131) User status:

ESUBSY User busy, please
wait.

ESUNRV User not receiving
now. The position in

the vector minus three
is the number of the

;
user causing th
returned code.

Note that this portion of ervec is
optional depending on the value of

ervec(2) supplied.

Discussion

Messages may be addressed with either a user name or a user number. If
both are supplied, the user number will be used. If a only a uSer name
is supplied, all users with the specified user name will receive the
message. If user number is supplied, the process with that user number

will receive the message.

Additionally, messages may not be sent to phantoms by their user names.
Deferred messages sent to the user number of a phantom will go into the

COMOUTPUT file of that phanton.

B-3 Third Edition

DOC3621-190

p> RMSGDS

Purpose

RMSGDS receives a deferred message.

Usage

CALL RMSGDS (sender, sndlen, sndnum, reserv, rsvlen, time, text, txtlen)

All parameters are INTEGER*2.

sender User name of sender.

sndlen Length of sender buffer in characters.

sndnum User number of sender.

reserv Reserved, must be 0.

rsvlen Reserved, must be 0.

time Time message was sent (minutes past midnight).

text Text of message.

txtlen Length of text buffer in characters.

P McsETs

Purpose

MGSETS sets the receiving state for messages.

Usage

CALL MGSETS (key, code)

Both parameters are INTEGER*2.

key User option:

KSACPI Accept all messages.

KSDEFR Accept deferred messages only.

Third Edition B-4

code

p Mscsst

Purpose

MESSAGE FACILITY SUBROUTINES

KSRJICT Reject all messages.

Return code:

ESBKEY Bad key.

0 No error,

MSGSST returns the receiving state of a user.

i B

CALL MSGSST (key,number, reserv, rsvlen, name,namlen, state)

All parameters are INTEGER*2.

key

number

reserv

rsvlen

name

namlen

state

KSREAD = return user's name and state,

User number of process for which state is desired.

Reserved, must be 0.

Reserved, must be 0.

User name of process,

Length of name buffer supplied (characters).

Returned status:

KSACPI Accepting all messages.

KSDEFR Accepting deferred messages only.

KSRJCI Rejecting all messages.

KSNONE User does not exist.

KSBKEY Invalid state because key is bad.

KSBREM Invalid state because reserved field is
bad.

B-5 Third Edition

Keys

(SYSCOM>KEYS.INS)

INTRODUCTION

This Appendix summarizes the keys associated with PRIMOS subroutine
calls. Use of these keys is explained in Chapter 2, and in the chapter
for each calling language.

All key values here are given in decimal notation, while the SYSCOM
file listing uses some octal notation.

C KEYS.INS.FIN, PRIMOS>INSERT, PRIMOS GROUP, 01/04/82
[REREREREREREREREIEERERERERERREREEREEEREREEREKEEEEEEEERIEEER

/* */
/* KEY DEFINITIONS */
/* */
[RRRREREERERERERERERER PRWFSS KEKKEKKKKEEKERERERERERSE */

/* KRRKEKE RWKEY KEKKERE */

KSREAD = 1, /* READ */
KSWRIT = 2, /* WRITE */
KSPOSN = 3, /* POSITION ONLY */
KSTRNC = 4, /* TRINCATE */
KSRPOS = 5, /* READ CURRENT POSITION */

/* REEKKK POSKEY *¥RRKE */

KSPRER = 0, /* PRE-FOSITION RELATIVE */
KSPREA = 8, /* PRE-FOSITION ABSOLUTE */
KSPOSR = 16, /* POST-POSITION RELATIVE */
KSPOSA = 24, /* POST-FOSITION ABSOLUTE */

/* REKEKEX MODE EEREKE */

KSCONV = 256, /* CONVENIENT NUMBER OF WORDS */
KSFRCW = 16384, /* FORCED WRITE TO DISK */

C-1 Third Edition

DOC3621-190

* *&

|ahibhnkhinneenbennte SRCHSS KERKEKEEEREREREEEKEER iY

/* KKEKKK ACTION *eREKK */

/* KSREAD = 1, /* OPEN FOR READ */
/* KSWRIT = 2, /* OPEN FOR WRITE */

KSRIWR = 3, /* OPEN FOR READING AND WRITING */
KSCLOS = 4, /* CLOSE FILE UNIT */
KSDELE = 5, /* DELETE FILE */
KSEXST = 6, /* CHECK FILE'S EXISTENCE */
KSVMR = 16, /* OPEN FOR VMFA READING */
KSVMRW = 48, /* OPEN FOR VMFA READING/WRITING */
KSGETU = 16384, /* SYSTEM RETURNS UNIT NUMBER */

/* RKKKKK REF KEEKEE */

KSIUFD = 0, /* FILE ENTRY IS IN UFD */
KSISEG = 64, /* FILE ENTRY IS IN SEGMENT DIRECTORY */
KSCACC = 512, /* CHANGE ACCESS */

/* REEKEK NEWEIL ****** */

KSNSAM = 0, /* NEW SAM FILE */
KSNDAM = 1024, /* NEW DAM FILE */
KSNSGS = 2048, /* NEW SAM SEGMENT DIRECTORY */
KSNSGD = 3072, /* NEW DAM SEGMENT DIRECTORY */
KSCURR= -l, /* CURRENTLY ATTACHED UFD */

/* */
/* */
[BERERERERERERERERERER VINITS KEKEKEKEREKRKEERRERERESR */

/* */
KSANY = 0,
KSCNSC = 8, /* CONSECUTIVE SEGMENTS REQUIRED */
KSGATE = 1, /* GATE ACCESS ON SEGMENT */
KSR = 2, /* READ ACCESS ON SEGMENT (“= KSREAD!)*/
KSRW = 3, /* READ/WRITE ACCESS ON SEGMENT */
KSRX = 6, /* READ/EXECUTE ACCESS */
KSRWX = 7, /* READ/WRITE/EXECUTE */

* *

LEEenRRRREKEEEE GETSNS KRERERKKEKERKEKREEKES vy

* */
KSDOWN = 0, /* ALLOCATE DECREASING SEGMENT #'S */
KSUP = Il, /* ALLOCATE INCREASING SEGMENT #'S */
KSUPC = 2, /* AULOCATE INCREASING CONSEC. SEGS */
KSDWNC = 4, /* ALLOCATE DECREASING CONSEC. SEGS */

* *

ibkichkeekikbenbeekee ATCHSS KEEKKEKEREEREKEREREEER iY

J* KEKEK:E KEY KEKE */

KSIMFD = 0, /* UFD IS IN MFD */
KSICUR = 2, /* UFD IS IN CURRENT UFD */

/* KEEKKK KEVMOD **REKK */

KSSEIC = 0, /* SET CURRENT UFD (DO NOT SET HOME) */
KSSETH = 1, /* SET HOME UFD (AS WELL AS CURRENT) */

/* KEEKKK NAME kkKKKE */

KSHOME = 0, /* RETURN TO HOME UFD (KEY=KSIMFD) */
/* KRKEKKK LDISK KRKEKK */

' KSALLD = 0, /* SEARCH ALL DISKS */
a KSCURR= -l /* SEARCH MFD OF CURRENT DISK
* *

Third Edition C-2

KEYS (SYSCOM>KEYS. INS)

/* HREEKREKKKEKKEEEREREEEERE ACSSET KEEKKREEKEREREREKEEREEERE */

7k */
/* KSANY = 0, /* Do it regardless */

KSCREA = 1, /* Create new ACL (error if already exists) */
KSREP = 2, /* Replace existing ACL */

/* (error if does not exist) */

/* */
[BREREERRERERERERERERE SGDRSS KEKEKEEKEKREREEREREREER */

/* KEKE KEY KEKKKK */

KSSPOS = 1, /* POSITION TO ENTRY NUMBER IN SEGDIR */

KSGOND = 2, /* POSITION TO END OF SEGDIR */

KSGPOS = 3, /* RETURN CURRENT ENTRY NUMBER */

KSMSIZ = 4, /* MAKE SEGDIR GIVEN NR OF ENTRIES */

KSMVNT = 5, /* MOVE FILE ENTRY TO DIFFERENT POSITION */

KSFULL = 6, /* POSITION TO NEXT NON-EMPIY ENTRY */

KSFREE = 7, /* POSITION TO NEXT FREE ENTRY */
* */

[RERRERREREREREERERERS RDENSS KKERREEERERREREKEREEEE */

/* KEKKKK KEV KEKKKK */

/* KSREAD = 1, /* READ NEXT ENTRY */

KSRSUB = 2, /* READ NEXT SUB-ENTRY */

/* KSGPOS = 3, /* RETURN CURRENT POSITION IN UFD */

KSUPOS = 4, /*® POSITION IN UFD */

KSNAME = 5, /* READ ENTRY SPECIFIED BY NAME */
/+ */
[BRRRERERREREREEEREREREREEK DIRSRD KEKEKKKEKRKREKEKKERREREEEREE */

Ik */
/

/* KSREAD = 1, /*® Read next entry */
KSINIT = 2, /* Initialize directory (read header) */

/* */
[BRERRRRERERERERERERKK SATRSS KERRKKEKERERERESE */

/* KKEKKK KEY KREKKK */

KSPROT = l, /* SET PROTECTION */

KSDITIM = 2, /* SET DATE/TIME MODIFIED */

KSDMPB = 3, /* SET DUMPED BIT */

KSRWLK = 4, /* SET PER FILE READ/WRITE LOCK */

KSSOWN = 5, - /* SET OWNER FIELD ON FILE */

KSSDL = 6, /* SET ACL/DELETE SWITCH ON FILE */
/* : KREKEKE RWLOCK KEKKKSK */

KSDFLT = 0, /* Use system default value */
KSEXCL = 1, /* N readers OR one writer */
KSUPDT = 2, /* N readers AND one writer */

KSNONE = 3, /* N readers AND Nwriters */
/* */
[ERERERERERERERERERERS ERRPRS KKEKEKKRKEKKEREREKREEKEE */

/* KEKKKK KEV KEKKKK */

KSNRIN = 0, /* NEVER RETURN TO USER */
KSSRIN = 1, /* RETURN AFTER START COMMAND */
KSIRIN = 2, /* IMMEDIATE RETURN TO USER */

* *

Iakkthebkkhkhibbhbbihh GPATHS KEEKRKEEKKEKERREEREREREREREREREREE/

/* KEKKKK KEY KREKKK */

KSUNIT = Il, /* PATHNAME OF UNIT RETURNED *

KSCURA = 2, /* PATHNAME OF CURRENT ATTACH POINT */

C-3 Third Edition

DOC3621-190

KSHOMA = 3, /* PATHNAME OF HOME ATTACH POINT */

KSINIA = 4, /* Pathname of initial attach point */
/* *

[BREREEREREREEEERERERE MSGSST HRREKEEEEEREREREREREREREEEEEEEES/

/* */
KSACPT = 0, /* ACCEPT MSGS (ALSO MGSET) */
KSDEFR = 1, /* DEFER MSGS (ALSO MGSET) */

) KSRICT = 2, /* REJECT MSGS (ALSO MGSET) */
% *

[BRREREREREEREREREREEEE FNSIDS LARARRRRERERRRREE

/* */
KSLIST = l, /* Return entire list */
KSADD = 2, /* Add to existing list */
KSSRCH = 3, /* Search for specific node */

19 /*
*/

[REEKEREREREREKE PNCHKS, INCHKS, IDCHKS, PWCHKS *###*eexRKEKK/
/* */

KSUPRC = 1, /* Mask string to uppercase */
KSWLDC = 2, /* Allow wildcards (not PWCHKS) */
KSNULL = 4, /* Allow null names */
KSNUM = 8, /* Allow numeric names (FNCHKS only) */
KSGRP = 8, /* Check group name (IDCHKS only) */

* *

[ERERRERERREREREREREEERERERS OSSET HHRKKRREKREREREEEEEEREREEEE/

/* */
KSSMAX = 1 /* Set max quota *

[BREREREREREEEREREREREEEREREEREREEEREREEERERERREREEERERERERERE/

LIST

Third Edition C-4

oo .

Qe pS
Ss

vy a PN
\ a f \

7,
VA

INTRODUCTION

This appendix defines PRIMOS error messageS and codes, and
error-handling conventions for Rev. 17 and later.

ERROR CODES

In most languages, error codes may be treated as data names rather than
as numbers. See the chapter on your language for a discussion. The
following table defines the error code names available for FORTRAN 77,
FORTRAN IV, PMA, Pascal, and PLIG.

D-1 Third Edition

DOC3621-190

/* ERRD.INS.PLP, PRIMOS>INSERT, PRIMOS GROUP, 12/14/81
MNEMONIC CODES FOR FILE SYSTEM (PLL)
Copyright (c) 1981, Prime Computer, Inc., Natick, MA 01760 */

KRRKKKEREKEREEEREREEREEREEREREEREEEEEREERERREEREREREREERREREERERERERERE/

[RRERERREREREREEREEREREREREREEREREREREERERERREREREREREEEERERE/

/* */
/* */
/* ERROR CODE DEFINITIONS */
i: */
f/f * */
ESEOF BY 00001, /* END OF FILE PE */
ESBOF BY 00002, /* BEGINNING OF FILE PG */
ESUNOP BY 00003, /* UNIT NOT OPEN PD, SD */
ESUIUS BY 00004, /* UNIT IN USE SI */
ESFIUS BY 00005, /* FILE IN USE SI */
ESBPAR BY 00006, /* BAD PARAMETER SA */
ESNATT BY 00007, /* NO UFD ATTACHED SL, AL */
ESFDFL BY 00008, /* UFD FULL SK */
ESDKFL BY 00009, /* DISK FULL DJ */
ESNRIT BY 00010, /* NO RIGHT SX */
ESFDEL BY 00011, /* FILE OPEN ON DELETE SD */
ESNTUD BY 00012, /* NOT A UFD AR */
ESNTSD BY 00013, /* NOT A SEGDIR — */
ESDIRE BY 00014, /* IS A DIRECTORY ~ */
ESFNIF BY 00015, /* (FILE) NOT FOUND SH,AH */
ESFNTS BY 00016, /* (FILE) NOT FOUND IN SEGDIR- SO */
ESBNAM BY 00017, /* ILLEGAL NAME CA */
ESEXST BY 00018, /* ALREADY EXISTS CZ */
ESDNTE BY 00019, /* DIRECTORY NOT EMPTY — */
ESSHUT BY 00020, /* BAD SHUTDN (FAM ONLY) S */
ESDISK BY 00021, /* DISK I/O ERROR WB */
ESBDAM BY 00022, /* BAD DAM FILE (FAM ONLY) Ss */
ESPTRM BY 00023, /* PTR MISMATCH (FAM ONLY) PC,DC,AC */
ESBPAS BY 00024, /* BAD PASSWORD (FAM ONLY) AN */
ESBCOD BY 00025, /* BAD CODE IN ERRVEC _ */
ESBTRN BY 00026, /* BAD TRUNCATE OF SEGDIR — */
ESOLDP BY 00027, /* OLD PARTITION — */
ESBKEY BY 00028, /* BAD KEY — */
ESBUNT BY 00029, /* BAD UNIT NUMBER — */
ESBSUN BY 00030, /* BAD SEGDIR UNIT SA */
ESSUNO BY 00031, /* SEGDIR UNIT NOT OPEN — */
ESNMLG BY 00032, /* NAME TOO LONG — */
ESSDER BY 00033, /* SEGDIR ERROR SO */
ESBUFD BY 00034, /* BAD UFD — */
ESBFTS BY 00035, /* BUFFER TOO SMALL — */
ESFITB BY 00036, /* FILE TOO BIG — */
ESNULL BY 00037, /* (NULL MESSAGE) — */
ESIREM BY 00038, /* ILL REMOTE REF — */
ESDVIU BY 00039, /* DEVICE IN USE — */
ESRLDN BY 00040, /* REMOTE LINE DOWN — */
ESFUIU BY 00041, /* ALL REMOTE UNITS IN USE — */

Third Edition D-2

ESDNS BY
ESTMUL BY
ESFBST BY
ESBSGN BY
ESFIFC BY
ESTIMRU BY
ESNASS BY
ESBFSV BY
ESSEMO BY
ESNTIM BY
ESFABT BY
ESFONC BY
ESNPHA BY
ESROOM BY
ESWIPR BY
ESITRE BY
ESFAMU BY
ESTMUS BY
ESNCOM RY
Sek ALENASE A Se oe

ESNFLT BY
ESSTKF BY
ESSTKS BY
ESNOON BY
ESCRWL BY
ESCROV BY
ESCRUN BY
ESCMND BY
ESRCHR BY
ESNEXP BY
ESBARG BY
ESCSOV BY
ESNOSG BY
ESTRCL BY
ESNDMC BY
ESDNAV BY
ESDATT BY
ESBDAT BY
ESBLEN BY
ESBDEV BY
ESQLEX BY
ESNBUF BY
ESINWT BY
ESNINP BY
ESDFD BY
ESDNC BY
ESSICM BY
ESSBCF BY
ESVKBL BY
ESVIA BY
ESVICA BY
ESVIF BY
ESVFR BY
ESVFP BY
ESVPFC BY

00042, /*
00043, /*
00044, /*
00045, /*
00046, /*
00047, /*
00048, /*
00049, /*
00050, /*
00051, /*
00052, /*
00053, /*
00054, /*
00055, /*
00056, /*
00057, /*
00058, /*
00059, /*
vwvvuv ey

DEVICE NOT STARTED
TOO MANY UFD LEVELS
FAM —- BAD STARTUP
BAD SEGMENT NUMBER
INVALID FAM FUNCTION CODE
MAX REMOTE USERS EXCEEDED
DEVICE NOT ASSIGNED
BAD FAM SVC
SEM OVERFLOW
NO TIMER
FAM ABORT
FAM OP NOT COMPLETE
NO PHANTOMS AVAILABLE
NO ROOM
DISK WRITE-PROTECTED
ILLEGAL TREENAME
FAM IN USE
MAX USERS EXCEEDED
NULI,COMLINE
NO_FAULT_FR
BAD STACK FORMAT

BAD STACK ON SIGNAL
NO ON UNIT FOR CONDITION
BAD CRAWLOUT
STACK OVFLO DURING CRAWLOUT
CRAWLOUT UNWIND FAIL
DAT COMMARAITN YY
~ COMMAND

RESERVED CHARACTER
CANNOT EXIT TO COMMAND PROC
BAD COMMAND ARG
CONC STACK OVERFLOW
SEGMENT DOES NOT EXIST
TRUNCATED COMMAND LINE
NO SMLC DMC CHANNELS
DEVICE NOT AVAILABLE
DEVICE NOT ATTACHED
BAD DATA
BAD LENGTH
BAD DEVICE NUMBER
QUEUE LENGTH EXCEEDED
NO BUFFER SPACE
INPUT WAITING
NO INPUT AVAILABLE
DEVICE FORCIBLY DETACHED
DPTX NOT CONFIGURED
ILLEGAL 3270 COMMAND
BAD 'FROM' DEVICE
KBD LOCKED
INVALID AID BYTE
INVALID CURSOR ADDRESS
INVALID FIELD
FIELD REQUIRED
FIELD PROHIBITED
PROTECTED FIELD CHECK

D-3

ERROR HANDLING

oO

P
E
E
P

P
E
P
E
E
E
E
E
E
E
E
T
E
E
T
S
U
P
E

E
E
E

ET
EP

T
P
E
E
E
b
e
e
e
e

~

Third Edition

19

DOC3621-190

ESVNEC BY
ESVPEF BY
ESVIRC BY
ESIVCM BY
ESDNCT BY
ESBNWD BY
ESSGIU BY
ESNESG BY
ESSDUP BY
ESIVWN BY
ESWAIN BY
ESNMVS BY
ESNMIS BY
ESNDAM BY
ESNOVA BY
ESNECS BY
ESNRCV BY
ESUNRV BY
ESUBSY BY
ESUDEF BY
ESUADR BY
ESPRTL BY
ESNSUC BY
ESNROB BY
ESNETE BY
ESSHDN BY
ESUNOD BY
ESNDAT BY
ESENQD BY
ESPHNA BY
ESIWST BY
ESBKFP BY
ESBPRH BY
ESABTI BY
ESILFF BY
ESTMED BY
ESDANC BY
ESNENB BY
ESNSLA BY
ESPNIF BY
ESSVAL BY
ESIEDI BY
ESWMST BY
ESDNSK BY
ESRSNU BY
ESS18E BY

New error

ESNFQB BY
ESMXOB BY
ESNOQD BY
ESQEXC BY
ESIMFD BY

Third Edition

00096, /*
00097, /*
00098, /*
00099, /*
00100, /*
00101, /*
00102, /*
00103, /*
00104, /*
00105, /*
00106, /*
00107, /*
00108, /*
00109, /*
00110, /*
00111, /*
00112, /*
00113, /*
00114, /*
00115, /*
00116, /*
00117, /*
00118, /*
00119, /*
00120, /*
00121, /*
00122, /*
00123, /*
00124, /*
00125, /*
00126, /*
00127, /*
00128, /*
00129, /*
00130, /*
00131, /*
00132, /*
00133, /*
00134, /*
00135, /*
00136, /*
00137, /*
00138, /*
00139, /* A pio instruction did not skip (GPPI)
00140, /*
00141,

NUMERIC FIELD CHECK
PAST END OF FIELD
INVALID READ MOD CHAR
INVALID COMMAND

DEVICE NOT CONNECTED
BAD NO. OF WORDS
SEGMENT IN USE
NOT ENOUGH SEGMENTS (VINITS)
DUPLICATE SEGMENTS (VINITS)
INVALID WINDOW NUMBER
WINDOW ALREADY INITIATED
NO MORE VMFA SEGMENTS
NO MORE TEMP SEGMENTS
NOT A DAM FILE
NOT OPEN FOR VMFA

NOT ENOUGH CONTIGUOUS SEGMENTS
REQUIRES RECEIVE ENABLED
USER NOT RECEIVING NOW
USER BUSY, PLEASE WAIT

USER UNABLE TO RECEIVE MESSAGES
UNKNOWN ADDRESSEE
OPERATION PARTIALLY BLOCKED
OPERATION UNSUCCESSFUL
NO ROOM IN OUTPUT BUFFER

a
l
l
l
|

NETWORK ERROR ENCOUNTERED
DISK HAS BEEN SHUT DOWN
UNKNOWN NODE NAME (PRIMENET)
NO DATA FOUND —_
ENQUED ONLY _
PROTOCOL HANDLER NOT AVAIL DPITX
ESINVT ENABLED BY CONFIG DPTX
BAD KEY FOR THIS PROTOCOL DPTX
BAD PROTOCOL HANDLER (TAT) DPTX
I/O ABORT IN PROGRESS DPTX
ILLEGAL DPTX FILE FORMAT DPTX
TOO MANY EMULATE DEVICES DPTX
DPTX ALREADY CONFIGURED DPTX

REMOTE MODE NOT ENABLED NPX

NO NPX SLAVE AVAILABLE _-

PROCEDURE NOT FOUND RSCALL

SLAVE VALIDATION ERROR RSCALL

I/O error or device interrupt (GPPT)
Warm start happened (GPPT)

REMOTE SYSTEM NOT UP RSCALL

codes for REV 19 begin here:

00142, /*
00143, /*
00144, /*
00145, /*
00146, /*

NO FREE QUOTA BLOCKS —
MAXIMUM QUOTA EXCEEDED —
NOT A QUOTA DISK (RUN VFIXRAT)
SETTING QUOTA BELOW EXISTING USAGE
Operation illegal on MFD

D-4

ESNACL BY
ESPNAC BY
ESNTFD BY
ESIACL BY
ESNCAT BY
ESLRNA BY
ESCPMF BY
ESACBG BY
ESACNF BY
ESLRNF BY
ESBACL BY
ESBVER BY
ESNINF BY
ESCATF BY
ESADRF BY
ESNVAL BY
ESLOGO BY
ESNUTP BY
ESUITAR RY
ayya

ESUNIU BY
ESNFUT BY
ESUAHU BY
ESPANF BY
ESMISA BY
ESSCCM BY
ESBRPA BY
ESDINS BY
ESSPND BY
ESBCFG BY
ESBMOD BY
ESBID BY
ESST19 BY
ESCTPR BY
ESDFPR BY
ESDLPR BY
ESBLUE BY
ESNDFD BY
ESWET BY
ESFDMM BY
ESFER BY
ESBDV BY
ESBFOV BY
ESLAST BY
*

00147, /*
00148, /*
00149, /*
00150, /*
00151, /*
00152, /*
00153, /*
00154, /*
00155, /*
00156, /*
00157, /*
00158, /*
00159, /*
00160, /*
00161, /*
00162, /*
00163, /*
00164, /*
00165, /*
VV7

00166, /*
00167, /*
00168, /*
00169, /*
00170, /*
00171, /*
00172, /*
N17 /*
VULIOg /

00174, /*
00175, /*
00176, /*
00177, /*
00178, /*
00179, /*
00180, /*
00181, /*
00182, /*
00183, /*
00184, /* Wrong file type
00185, /*
00186, /*
00187, /*
00188, /*
00188; /*

ERROR HANDLING

Not an ACL directory
Parent not an ACL directory
Not a file or directory
Entry is an ACL
Not an access category
Like reference not available
Category protects MFD
ACL too big
Access category not found
Like reference not found
BAD ACL

BAD VERSION

NO INFORMATION

Access category found (AcSrvt)
ACL directory found (AcSrvt)
Validation error (nlogin)
Logout (code for fatal$)
No unit table available. (PHANTS)
Unit table already returned, (UTDALC)
Unit table not in use. (RIUTBL)
No free unit table. (GIUTBL)
User already has unit table. (UTALOC)
Priority ACL not found,
Missing argument to command,
Systen console command only.
Bad remote password
Date and time not set yet.
REMOTE PROCEDURE CALL STILL PENDING

NETWORK CONFIGURATION MISMATCH

Illegal access mode (ACSSET)
Iliegal identifier (ACSSET)
Operation illegal on pre-19 disk
Object is category-protected (AcSchg)
Object is default-protected (AcSchg)
File is delete—protected (FilS$d_1)
Bad LUBTL entry (FSIO)
No driver for device (FSIO)

(FSIO)
(FSIO)
(FSIO)

RSCALL

Format/data mismatch
Bad format
Bad dope vector (FSIO)
FSIOBF overflow (FSIO)
THIS ***MUST*** BE LAST —

/
/* The value of ESLAST must equal the last error code.
*

[REREREKERERERERERREREREEREEREREREREREEEEEEREREREEEERRERERERE/

D-5 Third Edition

19

19

DOC3621~190

FILE SYSTEM ERROR-HANDLING CONVENTIONS

All the file management system routines described in Chapter 9, and
most other new subroutines, employ error-handling procedures that are
standard to PRIMOS subsystems. These procedures replace the older
systems using ERRVEC (Appendix E) and the altrtn argument (Chapter 14).

The Return Code Parameter

All error codes, formerly placed in ERRVEC, are now returned to the
user in a 16-bit user-supplied integer variable called code in this
guide, For example, in the call:

CALL PRWFS$ (KEY, UNIT, LOC (BFR) ,NW, POS, RNW, CODE)

CODE is an integer that PRWFSS sets to the appropriate return code.
CODE should always be checked for 0 or nonzero to ensure that errors do
not go unnoticed. An example is:

CALL CREASS (NAME, NAMLEN, OPASS, NPASS, CODE)
IF (CODE.NE.0) GOTO 99

Standard System Error Code Definitions

Standard system error codes are variables with standardized names. In
all cases, (© means no error. Any other value identifies a particular
error or exceptional (not necessarily error) condition. All reference
to specific code values (other than 0) should be by the standardized
names in languages where they are available. For convenience, all
names are defined in files in the UFD SYSCOM on Volume 1 of the master

disk, They are: :

FORTRAN 77 ERRD. INS. FIN
FORTRAN IV ERRD, INS. FIN
PASCAL ERRD. INS. PASCAL

PLIG ERRD. INS. PL1

PMA ERRD. INS. PMA

BASIC/WM Not available
COBOL Not available

These should be included in the program with SINSERT for FORTRAN and
PMA, or %INCLUDE for Pascal and PLIG,

Third Edition D-6

ERROR HANDLING

THE ERROR-HANDLING ROUTINE ERRPRS

The following routine, ERRPRS$, takes advantage of this error-handling
facility, as well as allowing error-handling in user-defined
subroutines.

Purpose

ERRPR$ interprets a return code and, if it is nonzero, prints a
standard message followed by optional user text. It is also presented
in Chapter 10.

Usage

CALL ERRPRS (key,code,text,txtlen, name, namlen)

key An INTEGER*2 specifying the action to take
subsequent to printing the message. Possible values
are:

KSNRIN Exit to the system, never return to the
calling program.

KSSRIN Exit to the system, return to the
calling program following an _'s!
command,

KSIRIN Return immediately to the calling
program.

code An INTEGER*2 variable containing the return code
from the routine that generated the error.

text A message to be printed following the standard error
message (any data type). text is omitted by
Specifying both text and txtlen as 0.

txtlen The length in characters of text (INTEGER*2).

name The name of the program or subsystem detecting or
reporting the error (any data type). name is
omitted by specifying both name and namlen as 0.

namlen The length in characters of name (INTEGER*2).

D-7 Third Edition

DOC3621-190

Discussion

T£ code is 0, no printing occurs, and ERRPRS immediately returns to the
calling program. The format of the message for nonzero values of code

is:

standard text. user's text if any (name if any)

The system standard text associated with code is not preceded by any
NEWLINE characters or blanks and ends with a pericd. If txtlen is
greater than 0, this is followed by a blank and no more than 64
characters of text. If namlen is greater than 0, this is followed by a
blank and no more than 64 characters of name enclosed in parentheses.

The line is terminated with a NEWLINE.

Tf ERRPRS is called with the special error code ESNULL, no system
message is printed, Other parameters behave normally.

If ERRPRS is called with an unrecognized value of code, the standard

system message is 'ERROR=ddddd', where ddddd is the decimal value of
code. This can be used to display user-defined errors returned by
user-defined subroutines. User-defined errors should use codes above

10000.

Examples

Following a call to PRWFSS, if CODE=ESUNOP, the call:

CALL ERRPRS (KSSRIN,CODE, 'DO A STATUS',11,'PRWFSS$',6)

would result in the message:

UNIT NOT OPEN. DO A STATUS (PRWFSS)

To print a user-defined error message:

CALL ERRPRS (KSIRIN,10328, "MY MESSAGE' ,10,0,0)

will print:

ERROR=10328. MY MESSAGE

Third Edition D-8

Error Handling for

I/O Subroutines

INTRODUCTION

The following discusses obsolete error—handling procedures for the 1/0
subroutines. These procedures have been replaced by return codes and
the subroutine ERRPRS. (See Appendix D.)

Generally, error-message and status information from PRIMOS. I/O
subroutines and some older PRIMOS routines are placed ina system-wide
error vector, ERRVEC, described further on in this appendix. If an
error occurs, the user program returns to PRIMOS command level and the
error and/or status information is placed in ERRVEC. Upon completion
of a call to an I/O subroutine, status information is also placed in
ERRVEC, which the user may access through a call to GINFO or PRERR.
The contents of this vector are listed later in this appendix.

If the FORTRAN user so desires, it is possible to take an alternate

return if an error occurs. This is specified by use of the altrtn
Parameter in the call to the I/O subroutine invoked by the user

program. If the user specifies alternate return then the location of

the return and the action taken are entirely up to the user,

SUBROUTINES FOR ERROR HANDLING

Three subroutines are useful for setting or retrieving information in
ERRVEC: ERRSET, GETERR, PRERR.

E-1 Third Edition

DOC3621-190

 ERRSET

Purpose

ERRSET setS ERRVEC, a system vector, then takes an alternate return or
prints the message stored in ERRVEC and returns control to the systen.

Usage

CALL ERRSET (altval, altrtn)

CALL ERRSET (altval, altrtn, messag, num)

CALL ERRSET (altval, altrtn, name, messag, num)

In Form 1, altval must have value 100000 octal and altrtn specifies

where control is to pass. If altrtn is 0, the message stored in ERRVEC
is printed and control returns to the systen.

Forms 2 and 3 are similar; therefore, the arguments are described
collectively as follows:

altval A two-word array that contains an error code that
replaces ERRVEC(1) and ERRVEC(2). altval(1l) must
not be equal to 100000 octal.

altrtn A FORTRAN label preceded by a dollar sign. MIE€£
altrtn is nonzero, control goes to altrtn. If
altrtn is 0, the message stored in ERRVEC is printed
and control returns to PRIMOS.

name The name of a three-word array containing a six-
letter word. This name replaces ERRVEC (3) ,
ERRVEC (4), and ERRVEC(5). If name is not an
argument in the call, ERRVEC(3) is set to 0.

messag An array of characters stored two per word. A
pointer to this messag is placed in ERRVEC(7).

num The number of characters in messag. The value of
num replaces ERRVEC(8).

Discussion

If a message is to be printed, first, six characters starting at
ERRVEC(3) are printed at the terminal. Then the operating system
checks to determine the number of characters to be printed. This
information is contained in ERRVEC(8). The message to be printed is
pointed to by ERRVEC(7). The operating system only prints the number

Third Edition E-2

ERROR HANDLING

o£ characters from the message (pointed to by ERRVEC(7)) that are
indicated in ERRVEC(8). If ERRVEC(3) is 0, only the message pointed to
by ERRVEC(7) is printed. The message stored in ERRVEC may also be
printed by the PRERR command or the PRERR subroutine. The contents of
ERRVEC may be obtained by calling subroutine GETERR.

> GETERR

Purpose

A user obtains ERRVEC contents through a call to GETERR.

Usage

CATT CDTENMD fwarwsran ~n\
VAAL UGbLONN (ATLVOE, 11)

Discussion

GETERR moves n words from ERRVEC into xervec.

On an Alternate Return: On a Normal Return:

ERRVEC(1) Error code PRWFIL:
ERRVEC (3) Record number
ERRVEC (4) Word number

ERRVEC(2) Alternate value

SEARCH :
ERRVEC (2) File type

> PRERR

Purpose

PRERR prints an error message on the user's terminal.

E-3 Third Edition

DOC3621-190

Usage

CALL PRERR

Example

A user wants to retain control on a request to open a unit for reading
if the name was not found by SEARCH. To accomplish this, the program
Calls SEARCH and gets an alternate return.
determines if an error occurred other than NAME NOT FOUND. To print
the error message while maintaining program control,
PRERR,

DESCRIPTION OF ERRVEC

ERRVEC consists of eight words;

Word

ERRVEC (1)

(2)

(3)
(4)
(5)
(6)

(7)

(8)

Third Edition

Content

Code

Value

Pa
OS

PS
OM

Pa
OS

DG
DS

Pointer to

message

Message
length

their contents are as follows:

Renarks

Indicates origin of error and
nature of error.

On alternate return, this is the
value of the A-register. On normal
return, this may have special
meaning (refer to PRWFIL and
SEARCH error codes below).

ERRVEC (3), ERRVEC(4), and ERRVEC(5)
contain a six-character filename
if the routine that caused the
error. (ERRVEC(6) is available for
expansion of names.)

For PRIMOS supervisor use.

For PRIMOS supervisor use.

It then calls to GETERR and

the user calls

ERROR HANDLING

PRWFIL Error Codes

Code Meaning

PD UNIT NOT OPEN

PE PRWFIL EOF Number of words left
(End of File) (Information is in ERRVEC(2)).

PG PRWFIL EOF Number of words left
(Beginning of (Information 1S in ERRVEC(2)).
File)

PRWFIL Normal Return

ERRVEC (3) Record number

ERRVEC (4) Word number

PRWFIL Read-Convenient

ERRVEC (2) Number of words read.

SEARCH Error Codes

ERRVEC (1) Code, with one of the following values:

Code Meaning

SA SEARCH, BAD PARAMETER

SD UNIT NOT OPEN (truncate)

SD UNIT OPEN ON DELETE

SH <Filename> NOT FOUND

SI UNIT IN USE

SK UFD FULL

SL NO UFD ATTACHED

SO SEG-DIR-ER

DJ DISK FULL

E+5 Third Edition

DOC3621-190

SEARCH Normal Return

ERRVEC (2) Type, with one of the following values:

Type Meaning

0 File is SAM,

1 File is DAM,

2 Segment directory is SAM.

3 Segment directory is DAM,

4 UFD is SAM.

Third Edition E-6

FORTRAN

Internal

Subroutines

INTERNAL SUBROUTINES

The following subroutines are used internally by the FORTRAN compiler.
They may be of some value to the PMA user and are briefly described.
For calling sequence and further information, refer to the compiler or

library source listings.

Table F-1
Subroutines Internal to FORTRAN

Subroutine Function

FSAL Input/output 16-bit integer.

FSA2 Input/output single-precision floating-point.

FSA3 Input/output logical.

FSA5 Input/output complex.

FSA6 Input/output double-precision floating-point.

FSA7 Input/output long integer.

FSAT FORTRAN R-mode argument transfer subroutine.
F-1 Third Edition

DOC3621-190

Table F-] (continued)
Subroutines Internal to FORTRAN

Subroutine Function

FSATI FORTRAN argument transfer subroutine for
PROTECTED subroutine.

FSBKSP Backspace statement processor.

FSBN Rewind logical device specified.

FSCB End of READ/WRITE statement.

FSCG FORTRAN computed GOTO processor.

FSCLOS Close statement processor.

FSDE Decode statement processor.

FSDEX Decode statement processor with ERR=.

FSDN Close (END-FILE) logical device specified.

FSEN Encode statement processor.

FSEND Endfile statement processor.

FSEN Provide backspace function to FORTRAN runtime
programs.

FSIBR Initialize unformatted read,

FSIBW Initialize unformatted write.

FSIFR Initialize formatted read,

FSIFW Initialize formatted write.

FSILDR Initialize list-directed read,

FSILDW Initialize list-directed write.

FSINOF Inquire by file-statement processor.

FSINQU Inguire by unit-statement processor.

FSINR Initialize namelist read.

FSIO77 Read and write variable-length records in
default case of FSIO.

Third Edition

FORTRAN INTERNAL SUBROUTINES

Table F-1 (continued)
Subroutines Internal to FORTRAN

Subroutine Function

FSIOBF FSIO buffer definition (up to 128 words, for R-mode

and nonshared V-mode; up to 16K-l1 words in shared

V-mode library).

FSIOFIN Read and write records in manner compatible with

FSIO.

FSOPEN Open statement processor.

FSPAUS Pause statement processor.

FSRA Read ASCII, no alternate returns.

FSRAX Read ASCII, with BRR= and END= alternate returns.

FSRB Read BINARY, no alternate returns.

FSRBX Read BINARY with FRR= and END alternate returns.

FSREW Rewind statement processor.

FSRN Read with no alternate returns.

FSRNX Read with FRR= and END= alternate returns.

FSRTE FORTRAN RETURN statement processor.

FSRX COMMON read handler. .

FSSTOP Stop statement processor.

FSTR Perform the function of the FORTRAN TRACE routine.

FWA Write ASCII, no alternate returns.

FSWAX Write ASCII with ERR= and END= alternate returns.

FSWB Write BINARY, no alternate returns.

FSWBX Write BINARY, with ERR= and END= alternate returns.

FSWN Write with no alternate returns.

FSWNX Write with ERR= alternate return.

FSWX COMMON write handler.

F-3 Third Edition

DOC3621-190

INTRINSIC FUNCTIONS

The following subroutines are the FORTRAN library intrinsic function
handlers:

Subroutine Function

FSLS Left shift

FSLT Left truncate

FSOR Inclusive OR

FSRS Right shift

FSRT Right truncate

FSSH General shift

FLOATING-POINT EXCEPTIONS

The FLEX (or FSFLEX) subroutine is invoked by the compiler or system.
This subroutine is the floating-point exception-interrupt processor.
It determines the exception type, and returns a message as follows:

DE Exponent underflow, store exception

DZ Divide by 0

RI Real-integer exception

SE Exponent overflow

For further information on floating-point exception (FLEX), refer to
the System Architecture Reference Guide.

Third Edition F-4

Arithmetic Routines

Callable from PMA

INTRODUCTION

Calls to the routines that perform arithmetic are generated by the
FORTRAN compiler when arithmetic operations are specified in the
FORTRAN program. They should not be called explicitly by a FORTRAN
program, but may be called in a PMAprogram.

All of these subroutines are callable in 32R- or 64R-mode and are
contained in FINLIB. The subset of these subroutines which are

necessary in the 64V-mode are in PFINLB.

FORMAT AND ARGUMENTS

Subroutine names are of the form pSxy or FSpxy. pis a prefix; x is
the first argument (argument-l); y is the second argument
(argument—2).

The prefix specifies the action of the subroutine. (See Table G-l.)
argument-l is a number specifying the register in which the first
argument is stored. (See Table G2.) argument-2 is a number
specifying the type of the second arcgument pointed to by a DAC (R-mode)
or AP (V-mode) following the subroutine call. (See Table G-2.)

G1 Third Edition

DOC3621-190

Table G-]l
Subroutine Prefix Explanations

Prefix Meaning Number of Arguments

Addition
Conversion
Division
Exponentiation
Store complex number
Load complex number
Multiplication
Negation
Subtraction

zero double-precision exponent

aA
YP

N
N
S
A
S
O
r
a
m
o

M
N
M
O
R
M
N
O
R
F
E
R
D
N
E

b
d

FORTRAN Support Subroutines (FS)

DI Positive difference 2
MA Maximum 2

MI Minimum 2
MO Remainder (modulus) 2

SI Magnitude of first times sign of second 2

Third Edition G-2

ARITHMETIC ROUTINES

Table G-2
Data Type Codes

Type
Code Register Type

1
2

5
6

C
o
~
]

FAC
AC1-AC4
DFAC
A+B

Some long integer subroutines may need to be entered or
exited in DBL mode (R-mode only); this is noted with
the description of these subroutines,

A
FAC

AC1-AC4
DFAC

AtB

A register
Floating~point accumulator
Complex accumulator addresses AC1 to AC4
Double-precision floating-point accumulator
Concatenated A and B registers

16-bit integer (INTEGER*2)
Single-precision floating-point number
(REAL or REAL*4)
Complex number (COMPLEX)
Double-precision floating-point number
(DOUBLE PRECISION or REAL*8)

Long integer (INTEGER*4)
Exponent part of a double-precision number

Keys

Note

G-3 Third Edition

DOC3621-190

Note

In subroutines with only one argument, argument-2 has a
Slightly different meaning. This is discussed under the
Specific subroutines.

Examples of format are:

AS22 Adds two single-precision floating-point numbers
(two arguments).

CS12 Floats a 16-bit integer to a single-precision
floating-point number (one argument).

A complete list of subroutines of this type follows. In the rest of
this appendix, the discussion is divided into subroutines with one
argument and subroutines with two arguments.

AS$21 C$26 D$51 E$27 FSDI11 FSSI11 MS$77
AS51 C$27 D$52 ES51 FSDI71 FSSI71
AS52 C$51 D$55 ES52 FSDI77 FSSI77 NS55
AS55 C$52 DS$57 ES$55 NS77
AS61 C$57 DS61 ES57 FSMAL1 H$55
AS62 CS61 D$62 ES61 FSMA22 S$21
AS77 C$62 D$67 ES62 FSMA77 LS$55 s$51

C$67 DS71 ES66 S$52
CS$12 C$75 DS77 ES67 FSMI11 M$21 S$55
C$15 CS$76 ES71 FSMI22 M$51 S$61
CS16 CS77 ES11 ES77 FSMI77 M$52 S$62
C$21 ES21 M$55 S$77
C$21G DS21 ES22 FSCL FSMO71 MS61
C$25 DS$27 ES26 FSMO77 MS62 Z$80

Third Edition G-4

ARITHMETIC ROUTINES

SINGLE-ARGUMENT SUBROUTINES

Each of these subroutines takes a single argument stored in the
appropriate register, operates on it, and stores the result in the same

or another register.

Conversion

 cSxy

Converts the type of the argument in the register identified by x to
the type of the argument identified by y and stores it in the proper
register for y-type variables. For example, C$75 converts a long
integer in the A+B register into the real part of a complex number in
the complex accumulator (imaginary part is 0). See Table G3 for a
complete list.

Complex Number Manipulation

p HSs55

Stores the contents of the complex accumulator (AC] to AC4) at the
address specified by the DAC or AP following the cali.

BP 1555

Loads the complex accumulator (AC] to AC4) from the four words pointed

to by the DAC or AP following the call.

Negation

> Nsxx

Negates the value of the argument in the register specified by x, and
stores it in that same register. (See Table G3.)

Zeroing

> 7580

Clears the exponent part of the double-precision floating-point
accumulator (DFAC). This is for R-mode only.

G-5 Third Edition

DOC3621-190

Table G-3

Single-argument Subroutines
(Negation and Conversion)

x y N$ (Negation) CS (Conversion)

1 1 n/a
1 2 n/a R
1 5 n/a R,V
1 6 n/a R
2 1 n/a R (2)
2 2 n/a
2 5 n/a R,V
2 6 n/a R
2 7 n/a R
5 1 n/a R,V
5 2 n/a R,V
5 5 RV n/a
5 7 n/a R,V
6 1 n/a R
6 2 n/a R
6 6 n/a
6 7 n/a R,V
7 2 n/a
7 5 n/a R
7 6 n/a R,V
7 7 R (1) R

Keys

n/a Not applicable
R Used in R-mode only
R,V Used in R- or V-modes
X Argument type (See Table G-2.)
y Result type (See Table G-2.)

Notes to Table G-3

1. Exit mode is DBL (R-mde).

2. There is also a_ subroutine CS21G (R-mode only), which
performs the same functions as C$21 without the use of any
floating-point instructions.

Third Edition G-6

ARITHMETIC ROUTINES

TWO-ARGUMENT SUBROUTINES

These subroutines perform arithmetic operations (addition, subtraction,
etc.) on two arguments. If the arguments do not have the same data
type, the data type of the result is that of the higher. The data
types, in descending order are:

COMPLEX or DOUBLE PRECISION
REAL
LONG INTEGER (INTEGER*4)
16-BIT INTEGER (INTEGER*2)

There are no operations which combine COMPLEX and DOUBLE PRECISION
numbers (no "56" or "65" subroutines). The result of a two-argument
subroutine is stored in the appropriate register for its data type.
(See Table G-2.) For example:

R-mode

CALL A$21
DAC I

Floats the 16-bit integer I and adds it to the contents of the Floating
Point Accumulator (FAC).

V-mode

CALL FSMI11
AP I2,SL

Loads I2 into the A register if I2 is less than the current contents of
the A register.

Addition

P aAsxy

Adds argument of type y, pointed to by the DAC or AP following the
call, to an argument of type x in the appropriate register. See Table

G-4 for a complete list.

Division

P Dsxy

Divides the argument of type x in the appropriate register by the
argument of type y, pointed to bythe DAC or AP following the call.
See Table G-4 for a complete list.

G-7 Third Edition

DOC3621-190

Exponentiation

P ESsxy

Raises the argument of type x in the appropriate register to the power
specified by the argument of type y pointed to by the DAC or AP
following the call. A complete list is given in Table G4,

Note

In all modes, zero to the zero power is one.

Multiplication

P MSxy

Multiplies the argument of type x in the appropriate register by the
argument of type y pointed to by the DAC or AP following the call. See
Table G-4 for a complete list.

Subtraction

P ssxy

Subtracts the argument of type y, pointed to by a DAC or AP following
the call, from an argument of type x in the appropriate register. See
Table G-4 for a complete list.

Positive Difference

— FSDIxy

Subtracts the argument of type y, pointed to by the DAC or AP following
the call, from the argument of type x in the appropriate register. If
the result is less than 0, the register is cleared. See Table G-5 for
a complete list.

Maximum

P FsMaxx

Places the maximum of the register, specified by type x, and the value
of the argument of type x, pointed to by the DAC or AP, into the
Specified register. See Table G-5 for a complete list.

Third Edition G-8

ARITHMETIC ROUTINES

Table G-4

Two-argument
Arithmetic Subroutines (First Group)

~

AS

~
J

~~
)
A

O
N
O
V

O
V

OF
T
O
T

OF
T

OF
T
D
D
D
O
D
D
N
E

Ss MS D$ ES
y Addition Subtraction Multiplication Division Exponentiation

R,V
R R R,V R,V

R,V

R,V

R,V R,V

R,V R,V R,V R,V

RV R,V R,V R,V

R,V R,V R,V R,V

R,V RV
R R R,V R,V

R R R,V R,V

R,V
R,V R,V

R,V R,V

R(1) R(1) R(1) R,V(1)s
D
e
~
s
I
O

N
D
R
s
)
O
D

R
A
T
O
D
E
E

R

R,V

R,V

R(1)

R
R,V
x

Y

Keys

Used in R-mode only
Used in R- or V-modes
First argument, stored in appropriate register

Second argument, pointed to by DAC (R-mode)
or AP (V-mode)

Note

1. Exit mode is DBL (R-mode).

G-9 Third Edition

DOC3621-190

Minimum

PP FSMIx

Places the minimum of the register specified by type x and the value of
the argument of type x, pointed to by the DAC or AP, into the specified
register, See Table G-5 for a complete list.

Remainder

P FsMoxy

Divides an argument of type x in the appropriate register by an
argument of type y, pointed to by the DAC or AP. The remainder is

placed in the appropriate register. See Table G-5 for a complete list.

Sign and Magnitude

P FSSIxy

Multiplies the argument of type x in the appropriate register by the
Sign of the argument of type y pointed to by the DAC or AP and stores
the result in the register for type x. See Table G-5 for a complete
list.

Comparison (R-mode Only)

P FSCL

Compares the long integer Ll in the concatenated A and B registers with
the long integer L2, pointed to by a DAC following the call. Control
passes as follows:

L1>L2 Next location
L1=L2 Skip one location
L1<L2 Skip two locations

The A and B registers are not modified. For example:

CALL FSCL

DAC L2

«return here if LI>L2
-»-return here if Ll=L2
-.- return here if L1<L2

Third Edition G-10

ARTTHMETIC ROUTINES

Table G-5

Two-argument
Arithmetic Subroutines (Second Group)

FSSI FSDI
FSMO Sign and Positive FSMA FSMI

x y Remainder Magnitude Difference Maximum Minimum

1 il R,V R,V R,V R,V
2 2 R,V R,V
7 1 R,V R,V R,V

7 7 R,V R,V R,V R,V R,V

Keys

R Used in R-mode only
R;V Used in R- or V-modes
X First argument, stored in appropriate register

y Second argument, pointed to by DAC (R-mode)
or AP (V—mode)

G-11 Third Edition

SVC Information

SVCS CALLED BY PRIMOS SUBROUTINES

This Appendix defines SVCs called by PRIMOS subroutines. They are all
described in this guide unless otherwise noted. SVC numbers used by
PRIMOS are listed in Table H-l.

SVC INTERFACE FOR I/O CALLS

The I/O subroutines described in Chapter 16 interface with the
operating system by means of supervisor call instructions (SVCs). This
appendix describes these interfaces.

SVC INTERFACE CONSIDERATIONS

Disk

The disk interfaces with virtual memory through a supervisor call (SVC)
instruction to perform a READ or WRITE operation on a single physical

record of a physical disk. The disk must be assigned to the terminal
by the ASSIGN command, Refer to RRECL and WRECL in Chapter 17. For
information about the SVC instruction, refer to the Assembly Language

Programmer's Guide.

H-1 Third Edition

DOC3621-190

Table H-1
SVC Numbers Used by PRIMOS

Number Associated Call

*1500
11400
0100

*0507
*0601

0602
*1515
10113
1415

*0604
*0600
*1516
11416
0603

*1523
10401
*1501
11401
0506

10410
*0705

*1524
*1402
10106
0114

*0105
10400
*0115
10402
0110

0112
*1504
11404

ACSCAT
ACSCHG
ACSDFT

ACSLST
ACSSETowe “Ti cos

APSFX
ASNLNS
ATCHSS
ATTACS
ATTACH
BREAKS
ClIN

CATSDL

CNAMSS

CNAMES
CNINS

COMISS
COMINS
COMINP
Comoss
CONECT
CREASS
CREATS
DSINIT
DIRSRD
DISCON
DUPLXS
ENTSRD

ERKLSS
ERRPRS
ERRIN
ERRSET
EXIT:
FAMSVC
FORCEW
GETCON
GETERR
GETIDS
GINFO
GPASSS$
GPASSS
GPATHS
ISACLS$
NAMEQS

(object-path, category-name, code)
(name, acl-ptr, code)
(name, code)

(name, acl-ptr, max-entries, acl-name, acl-type, code)
(key,name, acl-ptr, code)
(in-pathname, out-pathname, suffix, status)
(key, line, protocol, config, lword, status)

(ufdnam, namlen, ldisk, passwd, (key code))
(ufdnam, namlen, 1ldisk, passwd, (key, loc (code)))
(ufdnam, ldisk, paswd, (key, altrtn))
(offon)

(char)
(name, id-ptr, acess-needed, access-gotten, code)
(name, code)
(char)

(oldnam, oldlen, newnam, newlen, code)
(oldnam, newnam, altrtn)
(oldnam, oldlen, newnam, newlen, loc (code))
(buff, charcnt, statv (3))

(filnam, namlen, unit, code)
(filnam,namlen, unit, loc (code))
(filnam, unit, (altrtn))
(key, filnam, namlen, xxxxxx, code)
(tgtnam, tgtusr , lun, data, statv, lintyp)
(ufdnam, namlen, opass, npass, code)
(ufdnam, namlen, opass, npass, loc (code))

(pdev)
(key, unit, return-ptr, max-return-len, code)
(lun, data, statv)

(key)
(unit, name, return-ptr, max-return-len, code)
(key, erasec, killc, code)

(key,code) , text, txtlen, name, namlen)
(altrtn, name,msg, msglen)
(altval,altrtn, name,msglen)

(al,a2,a3,a4,a5,a6,altrtn)
(key, unit)
(target, user, data, statv)

(buff, nw)

(if-ptr, max-groups, code)
(buff, nw)
(ufdnam, namlen, opass, npass, code)
(ufdnam, namlen, opass, npass, code)
(key, funit, buffer, bufflen, pathlen, code)
(unit, code)
(filnaml, namlenl, filnam2, namlen2)

Third Edition H-2

SVC INFORMATION

Table H-1 (continued)
SVC Numbers Used by PRIMOS

Number Associated Call

10412
10406
!0407

1*1513
1413
*1511

NETWAT
NISTAT
PASDEL
PASLST
PASSET

PRWESS
PRWFIL
PRWFLS
QSREAD
QSSET
RDENSS
RDENTS
RDLIN
RDLINS

RDIKSS
RDIKNS
RECEIV
RECYCL
RESTSS
RESTOS

RESUSS$
RESUMS
RESUME
RICON

SATRSS
SATTRS
SAVE
SAVES
SAVESS
SEARCS
SEARCH
SEGDRS
SGDRSS$
SEMSDR
SEMSNF
SEMSIN

SEMSTS
SEMSWT
SLEEPS
SPASSS
SPASSS
SRCHS$

(statv)

(key,pl,p2,array)
(partition-name, code)
(name, acl—ptr, max-entries, code)
(partition—-name, acl-ptr, code)

(key,Funit, loc (bf) ,bflen, pos32,rnw, code)
(key,unit, loc (buff) ,n, pos, altrtn)

(key, unit, loc (buff) ,nw, pos, rnw, loc (code))
(buf, buflen, type, code)

(key, ufdnam, namlen, amount, code)
(key, funit, bf, bfln, rnw,nam32 ,namln, code)
(key, unit, buff, buflen, Rnw,name32 ,namlen, loc (code))
(unit, line,nw,altrtn)

(unit, line, nw, code)
(key, info(8) ,buff£,buflen, code)
(key, info(8) ,buff£, buflen, loc (code))
(lun, loc (buff) ,nw, statv)

(rvec, name, namien, code)

(rvec, name, namlen, loc (code))
(rvec, name, altrtn)
(name, namlen)
(name, namlen)

(name)
(target, user, statv,numtyp)

(loc (buff) ,buflen,n, ra, pdev, (altrtn))

(loc (buff) ,buflen,n, ra32,pdev, (altrtn))
(key,name, namlen, array, code)
(key,name, namlen, ar ray, loc (code))
(rvec, name)
(rvec, name, namlen, loc (code))
(rvec, name, namlen, code)

(key,name,namlen, unit, type, loc (code))
(key,name, unit, (altrtn))
(key, unit, entrya, entryb, loc (code))
(key, funit, entrya, entryb, code)
(semnum, code)
(semnum, code)
(semnum, int32 , int32 ,code)

(senmun,code) (int fc)
(semnum, Code)

(int32)
(opass, npass, loc (code))
(key,name,namlen, unit, type, code)
(key,name,namlen, unit, type, code)

H-3 Third Edition

DOC3621-190

Table H-1 (continued)
SVC Numbers Used by PRIMOS

Number Associated Call

*0513
*0512
*0511
*0515
*0510
*0514
1001

*0502
*0702
*0703
10405

10411
10501
0517
10203
*1526

SRSFXS

TSAMLC
TSCMPC
TSLMPC
TSPMPC

TSMT
TSVG
TSSLCO
TIMDAT
INOU
TNOUA
TRNMIT
TSRCSS
UPDATE
UNLINK
WREC
WRECL
WILIN
WILINS

(key, pathname, unit, type, n-suffixed, suffix-list,
basename, suffix-used, status)

(line, loc (buff) ,nw, inst. statv)
(unit, loc (buff) ,nw, inst, statv)
(unit, loc (buff) ,nw, inst, statv)
(unit, loc (buff) ,nw, inst, statv)
(unit, Loc (buff) ,nw, inst, statv)
(unit, loc (buff) ,nw, inst, statv)
(key, line, loc (buff) , nw)

(buff, buflen)
(msg, charcnt)
(msg, charcnt)
(lun, Loc (buff) ,cnt, statv)
(ationt+newfil, pathname, funit, chrpos, type, code)

(loc (buff) ,buflen,n, ra, pev, (altrtn))
(loc (buff) ,buflen,n, ra32,pdev, (altrtn))
(unit, line, nw, (altrtn))
(unit, line, nw, Code)

Keys

Also direct entrance call
Not described in this guide

Magnetic Tape

MPC Line Printer

Output to the parallel interface line printer is accomplished through

SVC calls. Refer to TSLMPC in Chapter 19.

MPC Card Reader

Input from the parallel interface card reader is controlled through SVC

calls. Refer to TSCMPC in Chapter 19.

OPERATING SYSTEM RESPONSE TO SVCS

includes a

instruction
The
"return-to-sender" capability.

operating system response to supervisor calls
The format is an SVC

Third Edition H-4

SVC INFORMATION

Followed by a word encoded as follows:

Bits Meaning

1 Use interlude routine

2 Return to sender

3-4 Zero

5-10 SVC class

11-16 SVC subclass

When bit 1 is set, the operating system assumes the location preceding
the SVC is a subroutine entry point and looks for the arguments back
through that entry point.

When bit 2 is set, the operating system either performs the requested
function or, if the class and subclass are not recognized, returns to
the caller at the location following the SVC code word,

The four legal syntaxes are:

1.

SVC
OCT OOxxyy
DAC
DAC

oct 0

2.
Ent DAC **

SVC
OCT l10xxyy

3.

SVC
OCT O4xxyy

(return-to-sender location)
DAC
DAC

H-5 Third Edition

DOC3621-190

OCT 0

4,

Ent DAC **

SVC
OCT l4xxyy
(return-to-sender location)

In all cases above:

* ~ It 6-bit class

yy = 6-bit subclass

The following classes are currently assigned:

0 RTOS

1 File system miscellaneous

2 Sequential file I/O

3 Direct file I/O

4-

5 DOSVM only; never reflected

6 Command input/output

7 Typers

10 Mag tape

ll Line printer

12 Card reader/punch

13 SMLC

77 Reserved for customer use

Third Edition H-6

File Management

System Concepts

PURPOSE OF FILE SYSTEM

The purpose of the file system is to simplify the manipulation of large
quantities of data using the computer. The major goals of the file
system are:

1. Automatic allocation of disk storage space for files

2. Referencing files by name

3. Clustering related information together

To accomplish the first goal, PRIMOS keeps a special file on each disk
to record the available space on that disk. PRIMOS uses this
information to allocate disk space automatically, and the average user
need not be concerned with the allocation process, other than to know
that it works.

The second goal, referencing files by name, means selecting the desired
file by giving the File Management Systen a string of alphanumeric
characters. The file system reserves one special file as a directory;
it contains the names of other files and their locations on the disk.
The system can find this Master File Directory (MFD) readily because
both its name and its location are always the same.

The third goal is achieved in two ways. The first is to have many file
directories; this allows like files to have their names and locations
Saved in one file directory. The second way is to allow nested file
directories so that a file directory may contain names not only of

I-1 Third Edition

DOC3621-190

files, but also of other file directories. Thus, each user may divide
files into appropriate groups and subgroups as convenient,

File directories also provide some degree of access protection to the
files contained within them, because a password may be associated with
each file directory. To examine the files in a directory, the user

must first supply the password for that directory.

Note
For Access Control List (ACLS) protection, with Rev. 19 and
higher, see the Prime User's Guide.

USING THE FILE SYSTEM

To access files, the user must be attached to some file directory. A
file directory is a file that contains the names of other files on the
disk and the location on the disk of these files. A file directory may
contain the names of other file directories. To access files stored in
a directory, the user must give the password for that directory. A
user is properly attached when the file system has been supplied with
the proper file directory name and password, and it has found and saved
the name and location of the file directory. It can therefore find and
operate on all files contained in that file directory.

File Operations

The major operations on files are as follows: initialization for
access (open); access; shutdown and resource deallocations (close);

and deletion.

File Units

A disk file which is opened for reading and/or writing has a set of
associated pointers and status indicators. They comprise a file wnit,
and serve aS an access port for the exchange of data between the disk

file and the active program. One file at a time can be assigned to
each unit. The files may be open on several different logical disk
units at once. There are 128 file units available per user (16 under
PRIMOS III, 15 under PRIMOS II). Units 1 thru 126 may be used for any

Purpose. Unit 0 is reserved for the system and unit 127 is reserved
for the COMOUTPUT File.

Third Edition I-2

FILE MANAGEMENT

Opening a File

A file may be opened for reading only, for writing only, or for both
reading and writing. If a file is opened for reading only, it may be
read, but it cannot be changed.

The operation of opening a file does the following:

l. Searches the file directory to see if the filename requested is
there,

2. Sets up tables and initializes buffers in the operating systen.

3. Defines a pseudonym for the file. This pseudonym is called the
file unit number, and is the only name used for transfer of
data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed. If the filename is not found in the directory, the
filename is added to the file directory, anda new file is created,
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed,
To understand how the file pointer works, imagine that the words in a
File are serially numbered from 0. The file pointer is then the number
of the next word to be accessed in a file.

Use of the OPEN and CLOSE Canmands

Various ways are provided to associate a specific filename with a
PRIMOS file unit number. One method is the OPEN command. Example:

OPEN filename funit key

Where filename is the name of a file listed in the UFD to which the
user is currently attached; funit is a PRIMOS file unit number
(1-126), and key is 1 for reading, 2 for writing, 3 for reading and
writing, etc.

From the terminal, the user can open files with the OPEN command, and
can close then with the CLOSE command. The OPEN command allows a_ user
to assign a file to a unit and specify the activity — reading,
writing, or both. For complete descriptions of commands, refer to the
PRIMOS Commands Reference Guide. File units 1 to 126 (1-15 under
PRIMOS II) may be specified by the user.

I-3 Third Edition

DOC3621-190

Unit 16 is reserved for system use under PRIMOS II.

When the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or the program itself, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILE], which loads and
starts the text editor and takes care of the details of assigning the
file FILE] to an available unit for reading or writing.

Because open-for-write files are subject to alteration (deliberate or
accidental), the user must keep files closed except when they are being
accessed, Open files absorb system resources and may also make these
opened files unavailable to other users. The CLOSE ALL command returns
all open file units to a closed and initialized state (except the
command output file). When control returns to PRIMOS via _an_ error

condition, files are not closed,

On an open file, information may be read into high-speed memory from
the file starting at the file pointer, or information may be written to
the file starting at the file pointer.

Access and File Pointer

When a file is accessed, the file pointer is incremented once for each
binary word accessed,

Positioning a File

The file pointer may also be moved backward and forward within a file
without moving any data. This is called positioning a file. The value
of a file pointer is called the position of the file. Positioning a
file to its beginning is often called rewinding a file.

Truncation of a File

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is located at or beyond the file
pointer is eliminated from the file. If the file pointer is positioned
at the beginning of the file, all of the information in the file is

removed but the filename remains in the file directory.

Third Edition I-4

FILE MANAGEMENT

Closing a File

A file that has been opened may be closed. The file twmnit number
(pseudonym) and the corresponding table areas in the operating system

are "cleaned up" and released for reuse.

Deleting a File

A deleted file has its filename removed from the file directory, and
all of the disk memory that the file occupied is released for use by
other files.

Write—protected Disks

FILE TYPES

A disk storage medium is composed of many separateblocks of data
recording space (disk records or sectors). How these blocks are put
together to make a file can greatly affect the efficiency of
positioning. Because of this, the file system has two different ways
of linking physical disk records together to forma file. The SAM
(Sequential Access Method) results in more compact storage on the disk
and requires less high-speed memory for efficient operation, but is
much slower for repeated random positioning over a file. The DAM
(Direct Access Method) results in quicker positioning over a file, but
requires more disk space and more high-speed memory. SAM and DAM files
are functionally equivalent in all other respects. The structural
differences between these two file types are transparent to the user.

SAM Files

A SAM file is the basic way of structuring disk records into an ordered
set (a threaded list of physical disk records). See Figure I-l.

I-5 Third Edition

DOC3621-190

SAM File Structure
Figure I-l

A SAM file is a collection of disk records chained together by forward
and backward pointers to and from each record, Each record in a SAM
file (or any file) contains a pointer to the Beginning Record Address
(BRA) of the file. The first record has a pointer to the directory in
which this file is an entry (root or parent pointer). The file system
maintains the record headers and is responsible for the structure of
the records on the disk.

DAM Files

DAM (Direct Access Method) file organization uses the SAM file method
of making an ordered set; a special technique is used to rapidly
access the i'th data record.

1. Logical file record 0 of a DAM file is reserved for use by the
system. No user data is ever written in this record which is
always the top level index.

2. The top level index is always one record long (exactly). If
the file is short, the record address pointers point to records
containing user data. Otherwise, the pointers point to records
containing a lower level index. See Figure I-2.

Third Edition I-6

FILE MANAGEMENT

RECORD

HEADER

413

 425

 451
 1230

| 439 Y 2 y 1 , O

DAM File Structure
Figure I-2

ADAM file index can exceed 512 entries ona storage module (220
entries for other devices). A multilevel index is maintained so that

any record in the file can be directly accessed, (See Chapter 5 for a

DAM file creation example.)

Figure I-3 shows a typical relationship of DAM files within the PRIMOS
file hierarchy.

Record Formats

All files on PRIMOS disks are stored in fixed-length 1040-word records
(for storage module disks), chained together by forward and backward
pointers. The number of records in a file is limited only by physical

storage space.

The first 16 words of the record make up the record header. Specific

content of record headers is discussed later in this appendix. All

I-7 Third Edition

DOC3621-190

 B SEG (1)
B SEG (2)

B SEG (3) B SEG (4)

IN ANOTHER

SEGMENT

DIRECTORY

Hypothetical PRIMOS File Hierarchy with SAM and DAM
File Structures

Figure I-3

Third Edition I-8

FILE MANAGEMENT

remaining words within the record, following the record header, may be
used to store ASCII character pairs or 16-bit words. For further
information about disks and storage modules, refer to the Systen
Administrator's Guide.

File Formats

A file is a series of records of the type described above, with the
distinction that the first record in such a chain is reached from a
pointer within a User File Directory or an entry in a segment
directory.

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in
PRIMOS systems:

File Description

ASCII ASCII character text, packed two
uncompressed Characters per word, as entered from a

terminal oor from the card reader,
paper-tape reader, etc. Each record is
followed by a word ntaining a NEWLINE
Character, This is the format of source
files, text and data records for
sequential access.

ASCII Same as above, but successive Spaces are
compressed replaced by a relative horizontal tab

character followed by a space count, and
lines are terminated by a LINEFEED
character,

Object Translation of a source file as generated
by the macro assembler and FORTRAN
compiler for processing by the linking
loader.

Memory Header block followed by a direct
image transcription of high-speed memory. These

files are created by LOAD and applications
programs to be used as runfiles.

Directories See below for format details,
(UFD and
segment)

I-9 Third Edition

DOC3621-190

FILE DIRECTORIES

Directories are specialized files containing entries that point to
files or other directories. Directories are the nodes in the file
system tree structure hierarchy; files are the branches. Figure
I-3 illustrates this concept. Directories are either User File
Directories (UFD's) or segment directories. Each disk pack (or
device, in the case of nonremovable media) has one special UFD
called a Master File Directory (MFD) that contains an entry for
each User File Directory (UFD) in the MFD. In turn, each UFD
contains an entry for every file or directory file in that
directory. UFDsS and MFDs are accessed in the same way as other
files.

Segment directories differ from UFDs in one fundamental respect:
they contain file locations but not filenames. As far as the file
system is concerned, the files in a segment directory have no
symbolic names. However the user may refer to files within a
segment directory by their entry number, which is a decimal number
enclosed in parentheses, such as:

(1)

(2)
(185)

All of the above are "names" of files in segment directories.

Master File Directory (MFD)

Fach disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same
format as any UFD. The first record of the MFD begins at physical
record 1 of the disk. Figure I-3 shows a chain of pointers
extending from the MFD to UFD and segment directories, and to a DAM
or SAM file.

User File Directory (UFD)

A User File Directory (UFD) is a file that links PRIMOS filenames

to the phySical record of a file.

A UFD is associated with each user, project, etc. The UFD header
includes the two passwords for the UFD. After the header, the UFD
contains an entry for every file or directory named by the user.
Each entry includes a filename and two words (INTEGER*4) that
contain the address of the first physical record of the file
(called the beginning record address or BRA). (See below for UFD
header and entry details.)

Third Edition I-10

FILE MANAGEMENT

UFDs can span multiple records; there is no limit to the number of
files in a UFD.

UFD entries include an identification for some special files having
unique use in the file system and not normally accessed by the

user. These files are BOOT, DSKRAT, BADSPI, and MFD.

Segment Directory Use

The segment directory file is opened for reading/writing on a unit
of the user's choice, or a unit chosen by PRIMOS if the user
specifies no unit mumber. The file directory segment is then
positioned to the segment directory entry number containing the
desired file.

A desired file may be opened, closed, deleted, or truncated by
giving the file unit number of the segment directory file rather
than the filename. Segment directories are organized as SAM files
or DAM files, consistent with the file structure the user wishes to

build,

Segment Directory Formatting

A segment directory is formatted in a manner similar to a UFD
except that entries are identified by a single entry number (from 0
to 65535) which is the pointer to the beginning record of a file.
Segment directories are therefore limited to 65536 ('200000)
entries.

A UFD entry in a segment directory is illegal. The only file types
allowed in a segment directory are SAM, DAM, and other segment

directories. See Chapter 5 for an example of creating segment
directories. |

Segment directories are limited to 64K words (32K entries).

Date/Time Stamping

There is a field ina file's UFD entry that records the date and
time when the file was last modified. This field is updated when a
file is closed, and either of the following conditions exist:

e@ An old file has been opened for writing, or reading and
writing, and a write operation has been performed.

e A new file has been created,

I-11 Third Edition

DOC3621~-190

Notes

The parent UFD is updated whenever entries are changed,
added, or deleted in that UFD.

The use of "last modified" rather than "last used" allows
the use of WRITE-PROTECTED disks.

DISK STRUCTURES

Disk Record Availability Table (DSKRAT)

PRIMOS maintains a file, whose name is the partition name (packname),
containing the used/unused status of every physical record on the disk.
The partition name is given when the disk is created by the MAKE
command. For example, the name of the documentation disk is DOCUM,
and the name of the DSKRAT file for this disk is DOCUMN. Each record
is represented by a single binary bit; a '1l' means the record is
available, anda '0' means it is in use. Ona typical PRIMOS disk, the
DSKRAT file is allocated several contiguous records. The DSKRAT file
is maintained as a file on the disk, starting at physical record 2.
The format of DSKRAT is shown below.

Disk Organization

PRIMOS supports all Prime disk options. Prime software provides
facilities for keyed indexed direct access files. Multiple disks are
organized so that every fixed disk and every removable disk or
partition is a self-consistent volume with its own bootstrap, DSKRAT,
and MFD. Logical record 0 is cylinder 0, head 0, and sector 0 on all
options,

FILE ACCESS

Attaching to a UFD

To access files or use PRIMOS utility functions, the user must be
attached to a UFD. ‘Typically, during program development, each user
attaches to a UFD reserved for program files with the ATTACH command.
For further information, refer to the PRIMOS Canmands Reference Guide,
Within executable programs, the user can attach to other UFDs; for
example, to access data. At the program level, this is accomplished by
the subroutines whose names begin with ATS (Appendix A).

Third Edition I-12

FILE MANAGEMENT

File Access Control

Note

For Rev. 19 and higher, see the chapter on Access Control Lists
(ACLs) in the Prime User's Guide.

PRIMOS (including PRIMOS III) gives a user who attaches with owner

password (owner) the ability to open file directories to other users

with restricted rights to the owner's files. Specifically, the owner

of a file directory can declare, on a per-file basis, the access rights

a nonowner has over each of the owner's files. These rights are

separated into three categories:

e Read access (includes execute access)

@ Write access (includes overwrite and append)

@ Delete/truncate rights

The owner of a UFD can establish protection keys for any file in the

UFD: the owner access rights and the nonowner access rights. The

owner password is required to obtain owner privileges. The nonowner

password (if any) is required to obtain nonowner privileges. The

command :

PASSWD owner-password nonowner-password

replaces the existing passwords in the UFD with a new owner~ ssword

and a nonowner-password. This command must be given by the owner while

attached to the UFD. A nonowner is returned a "NO RIGHT" error. The

command :

PROTECT filename [okey, nkey] [control-args]

replaces the existing protection keys on filename in the current UFD

with the owner (okey) and nonowner (nkey) protection keys. Valid

formats for these keys are:

Key Value

No access allowed.

Read access only.

Read and write access,

NIL

R

W Write access only.

RW

D Delete only.

RD Delete and read.

I-13 Third Edition

19

19

19

19

DOC3621-190

WD Delete and write.

RWD All access allowed (read/write/delete).

The control-args may be -REPORT or -RPT. Both specify that PRIMDS
will report the results of each successful Operation.

The owner can restrict access to a file by the protection mechanism,
which can be useful in preventing accidental deletion or overwriting.
A nonowner cannot give the PROTECT command and achieve desired results,
The command will return the message "NO RIGHT" and return to PRIMOS
command level.

A user obtains owner status to a UFD by attaching to the UFD, giving
its name and owner password in the ATTACH command. A user obtains
nonowner status to a UFD by giving its name and nonowner password in
the ATTACH command.

A user can find out his owner status through the LISTF command. LISTF
types the name of the current UFD, its logical device and 0, if the
user is an owner, or Nif the user is a nonowner. LISTF then types the
names of all files in the current UFD. An owner can determine the
protection keys on all files in the current UFD through use of the file
utility, FUTIL.

Other Features of File Access

The owner/nonowner status is updated on every ATTACH command and
Separately maintained for the current UFD and home UFD.

A user's privileges to files under a segment directory are the same as
privileges with the segment directory.

The default protection keys of a newly created file are:

Key Value
RWD Owner has all rights.

NIL Nonowner has none.

The passwords of a newly created UFD are:

Owner password is blank.

Nonowner password is 0. (Any password will match.)

A nonowner cannot create a new file in a UFD, or successfully give the
CNAME, PASSWD, or PROTECT commands. A nonowner cannot open a current
UFD for reading or writing. (See the attach commands, Appendix A, for

Third Edition I-14

FILE MANAGEMENT

further details.)

In the context of file access control, the MFD has ali the features of
a UFD. Therefore, an MFD can be assigned owner/nonowner passwords, and

the UFDs subordinate to the MFD may have their access controlled by
protection keys, via the PROTECT command. If file access is violated,

the error message is: "NO RIGHT".

PRIMOS II File Access Control

The PRIMOS II operating system does not observe file access control
over individual files, but it is compatible to a degree with PRIMOS III
and PRIMOS. Under PRIMOS II, a user cannot obtain access to a UFD by
ATTACHing with the nonowner password, If the owner password has been
given, the ATTACH is successful, but subsequent access to files in the
directory is not checked, Files created under PRIMOS II are generated
with the same protection keys as under PRIMOS III and PRIMOS, and the
passwords of a newly created UFD are the same.

File Data Access Methods

Under PRIMOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM) which are discussed earlier in

this appendix. With both methods, the file appears as a linear array
of words indexed by a current position pointer. The user may read or
write a number of words beginning at the pointer, which is advanced as
the data are transferred. A file service call (PRWFSS) provides the
ability to position the pointer anywhere within an open file. File
data can be transferred anywhere in the addressing range. When a file
is closed and reopened, the pointer is automatically returned to the
beginning of the file. The pointer can be controlled by both the

FORTRAN REWIND statement and PRWFSS positioning.

With the DAM method of access, the file also appears to be a linear
array of words, but this method has faster access times in positioning

commands. PRIMOS keeps an index described earlier in this appendix to

allow fast random positioning. User calls to manipulate SAM and DAM

files are identical.

COMMAND FILES

Note

For Rev. 19 and higher, the Canmmand Procedure Language (CPL) is
a more flexible alternative to command files. See the Prime

User's Guide and the CPL User's Guide.

I-15 Third Edition

19

19

DOC3621-190

PRIMOS commands fall into two major categories: the internal commands
(implenented by subroutines that are memory-resident as part of PRIMOS)
and external commands (executed by programs saved as disk files in the
command UFD, CMDNCO).

Command Activity

On receiving a command at the system terminal, PRIMOS checks whether it
is an internal command, and if so, executes it immediately. Otherwise,
PRIMOS looks in the command directory of logical disk unit 0 for a file
of that name. If the file is found, PRIMOS RESUMEs the file (loads it
into memory and starts execution). All files in the command directory
are assumed to be SAVEd memory image files, ready for execution, Most
are set up to return automatically to PRIMOS when their function is
complete or errors occur. ‘The command line that caused the execution
of the saved program is retained and may be referenced by the program
to obtain parameters, options, and filenames via the RDIKSS or CLSPIX
subroutine. To add new external commands, the user simply files a
memory image program (SAVEd file) under the command directory UFD
(CMDNCO). Memory image files may also be kept in other directories and
executed by the RESUME command.

Using Command Files

As an alternative to entering commands one at a time at the termiml,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read from
the file. One can assign any unit for the COMINPUT file and command
files may call other command files. For detailed information on the
COMINPUT command, refer to the PRIMOS Cammands Reference Guide.

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system. Command
files are also useful in system building when many files must be
assembled, concatenated, loaded, etc. (for example, generating library

files).

FILE MAINTENANCE (FIX_DISK)

To give the user an efficient and thorough way to check the integrity
of data on a PRIMOS disk, PRIMOS provides a file maintenance program,
FIX_DISK. For details and examples, refer to the FIX_DISK description
in the System Administrator's Guide.

Third Edition I-16

FILE MANAGEMENT

INTERNAL FILE FORMATS (BEFORE REV. 19)

The internal formats of all disk records in the file management system
are described below with Figures I-4 through I-10. User programs will
normally have no need to refer to the internal file system formats,
Where possible, field names are the same as those used by the internal
file system routines. Numbers preceded by a colon (:) are octal,

otherwise they are decimal.

DSKRAT Format

0 8 Number Words in Header = 8

1 RECSIZ Record Size

2

| |
| |
| NMRECS | Number of Records in Partition (Two Words)

—
1

ATITEANG XT. aN f tT ri .
{ INDLEZALAD Number of Heads in Part

IRESERVED! Reserved
|RESERVED| Reserved
|[RESERVED| Reserved
| DATA | Start of DSKRAT Data (One Bit/Record)O

~
I
A

U
1

f
t

DSRRAT Format

Figure I-4

RECORD HEADER FORMATS

The format of a record header is a function of the physical record
size.

Record Header Format — 448-Word Records

0 | REKCRA | Record Address (of this Record)
1 | REKBRA | RA of Directory Entry or First Record
2 | REKFPT | RA of Next Sequential Record
3 | REKBPT | RA of Previous Record
4 | REKCNT | Number of Data Words in File
5 |_REKTYP | Type of This File
6 | REKLVL | Index Level for New Partition DAM Files
7 |RESERVED| Reserved

Record Header Format 1
Figure I-5

I-17 Third Edition

DOC3621-190

Record Header Format — 1040-Word Records

Q |REKCRA |
| |

2 | REKBRA |

| |
4 | REKCNT |

5 | REKTYP |

6 |RERFPI |
|

8 | REKBET |

| |
10 | REKLVL |

11 | |
| |
|RESERVED|

| |
15 | |

1. Storage modules have 1040-word records.

Record Address of This Record (Two Words)

Beginning Record Address (Two Words)

Number Data Words in This Record
Type of This File
RA of Next Sequential Record (Two Words)

RA of Previous Record (Two Words)

Index Level for New Partition DAM Files

Reserved (Five Words)

Record Header Format 2
Figure I-6

Notes

have 448-word records.

2. The BRA of the first record in a file points to the
beginning record address of the directory in which the file
entry appears. In all other records, the BRA points to the
first record of the file,

3. REKFPT contains the address of the next sequential
in the file or 0 if it is the last record in the file,

4, REKBPI contains the address of the previous record in
sequence or 0 if it is the first record in the file.

5. REKTYP is valid only in the first record of a file.
values are:

0 SAM file

1 DAM file

2 SAM segment directory

3 DAM segment directory

A User file directory (UFD)

Third Edition I-18

All other disks

record

Legal

FILE MANAGEMENT

6. I£ the file is the record 0 bootstrap (BOOT) or the disk
record availability table (DSKRAT or volume name) and the
disk has a 1040-record size (storage module), bit 1
(:100000) of REKTYP will be set.

7. DAM files on new partitions are organized somewhat
differently from the above.

UFD HEADER AND ENTRY FORMATS

UFD Header Format

0 | EQW__| EQ (See note 1 after Figure I-8.)
] | OPASSWY | Owner Password (Three Words)

—_
4 | NPASSW | Nonowner Password (Three Words)

| |
| |

7 | |
| |
[RESERVED| Reserved (Sixteen Words)

| |
23 |

UFD Header Format

Figure I-7

I-19 Third Edition

DOC3621-190

UFD Entry Format

0 | ECW | Entry Control Word (Type/Length) (note 1)
1 | BRA | Beginning Record Address (Two Words)

|
3 RESERVED| Reserved (Three Words)

|ss
6 |PROTEC | Protection (Owner/Nonowner) (note 2)
7 |RESERVED| Reserved For Future Use
8 |DATMODDATMOD | Date Last Modified (YYYYYYYMMMMDDDDD)

9 |TIMMOD | Time Last Modified (Seconds-Since-Midnight/4)
10 |PILI | Filetype (note 3)
11 | | Subentry Control Word For Filename (note 4)
12 = |

| I |
| L |
| E |
| ove | Filename (1-16 Words, Blank-—Padded)
N

| A |
| Ms

N | E |

UFD Entry Format
Figure I-8

Notes

The Entry Control Word (ECW) consists of two 8-bit
subfields, The top eight bits indicate the type of the
following entry as follows:

Bit Meaning When Bit Is On

0 Old UFD header

1 New UFD header

2 Vacant entry

3 New UFD file entry

The low-order eight bits give the size of the entry
including the ECW itself,

The bits in PROTEC are stored in true form (0
for both owner and nonowner fields.

no right)

Third Edition I-20

FILE MANAGEMENT

3. The file type field is as before (see Record Header Format)
with the following additional bits:

Bit Meaning When Bit Is On

] File has 16-word header (DSKRAT and BOOT
only).

2 Change bit. Set by call to SATRSS, then
reset,

4 Special file (BOOT, DSKRAT, MFD, BADSPT).

4. The Subentry Control Word (SQW) consists of two 8-bit
subfields. The top eight bits are 0, indicating subentry
type 0. The low-order eight bits give the size of the
subentry including the SOW itself.

5. UFD entries are reused by the file management systen.
Therefore, a new entry will not necessarily appear at the
end of the UFD.

SEGMENT DIRECTORY FORMAT

0 | BRAO | BRA of First File in Directory (Two Words)
| |

2 | BRAl | BRA of Second File in Directory (Two Words)

| |
| 0000 | Null Entry (Two Words)
| 0000 |
| ceee |
| |

2n | BRAn | BRA of Last File in Directory (Two Words)
| |

Segment Directory Format
Figure I-9

I-21 Third Edition

DOC3621-190

DAM FILE ORGANIZATION

In old-style DAM files, the first physical record of the file was
reserved to be an index to the first 440 or 1024 (depending on physical
record size) records in the file. When this index was filled, however,
access to subsequently added records became sequential. For example,
in the file shown below, records 0-439 can be accessed directly.
Records 440 and above must be searched for sequentially starting with
record 439,

Index Data Records

| BRAQ |—-> Record 0
| BRAL |—--> Record 1

| |
| eee |

| |
| B439 |—-> Record 439-—--> Record 440—-> Record 441—-> ...

Old DAM Format
Figure I-10

The major difference between new and old DAM files is that the index is
not limited to a Single record, but can grow into a multilevel tree,
(Also, Since pointers are now two words each, each index record holds
half the number of pointers in old index records.) An index can grow
to any size, and any data record can be directly accessed. The

following paragraphs explain how this multilevel index is built.

The handling of a DAM file on a new partition is identical to that on
an old partition up to the point at which the index record is full and
another record is to be added to the file. At this point, the
following actions take place:

1. Three new records are obtained from the file systen. Ore of
these records is to be the new data record, the other two are
used to construct the second index level.

2. The index entries from the full index record are copied into
one of the other new records. This record is to become the

first index record of the new index level.

Third Edition I-22

FILE MANAGEMENT

3. The old index record is reinitialized to contain two pointers
to the two index records on the new level.

4. The other new index record is initialized with a single entry
pointing to the new data record,

5. Forward, backward, and root pointers are set up as shown in the
Figure I-ll below.

At this point, the creation of the new index level is complete. The
BRA in the directory entry for the DAM file still points to the
original index record, which is now the top of a two-level index.

g
|

[|
|
|
1

Index level 2: I|J |[-0
IK |

0-|___|
|

I
Lo Le

Index level 1: J|L |—KIN_ |[-0
IM | [|

0-|...|/——-|___|7

| I I
Lo Le |__

Data level: L| |—M| |—-...——N| |-0

f | tI | |
Q-|_ |—-|___|—-...—- |__|

Keys

DIR = UFD or Segnent directory
0 = Null pointer
I = Root pointer

New DAM Format

Figure I-11

The DIR entry points to the original index record (record 'I'), which
now contains just pointers to records 'J' and 'K' -—— the two records on
the index level just created. Record 'J' contains the data record

I-23 Third Edition

DOC3621-190

pointers originally in 'I' — 'L', 'M', etc, Record 'K' contains a
single pointer to the newly created data record 'N',

Once an index level is created, it is never deleted until the file
itself is deleted — there will always be at least one record on each
level. If the file is empty, there will be exactly one record on each
index level. This is to avoid undue thrashing when records are being
added and deleted near the threshold of an index's capacity. (The
overhead of the "unnecessary" levels is only one record per level.)

Third Edition I-24

Obsolete Indication

and Control

Subroutines

OVERVIEW

These subroutines return a message or an error indicator value in AC5
or set a value depending on some machine condition.

They include:

OVERFL

SLITE

SLITET

SSWTCH

DISPLY

These subroutines are not currently available in V-mode under PRIMDS.

SUBROUTINE DESCRIPTIONS

> DISPLY

Purpose

DISPLY updates the sense light settings according to argument Al.

J-1 Third Edition

DOC3621-190

The bit values of Al (l=on, 0=off) correspond to switch/light settings
which are displayed on the computer control panel.

Usage

CALL DISPLY (Al)

> OVERFL

Purpose

Argument Al in location AC5 is given a value 1 if entry into FSER
was made; otherwise it is set to 2. FSER is left in the no error
condition. OVERFL is called to check if an overflow condition has

occurred,

Usage

CALL OVERFL (Al)

> sLITE

Purpose

Sets the sense light specified in argument Al on or sets ail sense
lights off. If Al=0, all sense lights are reset off.

Usage

CALL SLITE (Al)
CALL SLITE (0)

 sLITET

Purpose

SLITET tests the setting of a sense light specified by the argument Al.
The result of this test (1 for on, 2 for off) is in the location
Specified by the argument R.

Third Edition J-2

OBSOLETE SUBROJTINES

Usage

CALL SLITET (Al,R)

p sSVICH

Purpose

SSWICH tests the setting of a sense switch specified by the argument
Al. The result of this test (l=set, 2=reset) is stored in the location
Specified in argument R.

Usage

CALL SSWICH (Al1,R)

J-3 Third Edition

‘Table of Subroutines

by Function

File Management Functions

Open Files

Open, Close, delete, or verify existence of a file SRCH$S
on a Specified file unit.

Open a file anywhere in file systen. TSRCS$S,SRSFX$
Read filename and open, OPNPSA
Read filename and open or verify and delay. OPVPSA
Open filename with verification and delay. OPNVSA
Open supplied name. OPENSA
Open a scratch file. TEMPSA

Close Files
Open, close, delete, or verify existence of a file. SRCHSS
Close a file. CLOSSA
Close a file anywhere in file systen. TSRCSS,SRSFXS

Delete Files
Open, Close, delete, or verify existence of a file. SRCHSS, FILSDL
Delete a file. | DELESA
Delete a file anywhere in file systen. TSRCS$, SRSFXS

Search for File
Open, Close, delete, or verify existence of a file. SRCHSS
Search for a file with any of a list of suffixes. SRSFXS
Check for file existence, EXSTSA:
Check for file anywhere in file systen. TSRCSS,SRSFXS

K-1 Third Edition

DOC3621-190

Manage File Attributes
Set or modify a file's attributes.

Find Open Filename
Find pathname for file unit or current home or
attach point. ,
Check for file open.

Compare Filenames
Compare two filenames for equivalence,

Change Filename
Change the name of a file.

Manage ACLS
Add a file to an access category.
Modify existing ACL .
Set default protection.
Read an ACL.
Create or replace an ACL.
Protect one file like another one,
Calculate access available.
Delete an access category.
Read directory entries.
Read directory entry with given name.
Determine a user's full id.
Get directory type.

Delete a priority ACL.
Read a priority ACI.
Add a priority ACL.
Convert an ACL directory to a password directory.
Change login password,
Create a password directory.
Search directories.

Read or Write
Write to disk immediately.
Act on SAM or DAM files.
Read ASCII characters from text files.
Write ASCII characters from text files.

Manage Passwords
Return passwords of a sub-UFD in current UFD.
Set passwords of current UFD.

Find User Information
Determine a user's full id.

Manage Command Files
Switch between the user terminal and command file
for input stream.
Switch terminal output to file or terminal.

Third Edition K-2

SATRS$

GPATHS

UNITSA

NAMEQS

CNAMS$

ACSCAT
ACSCHG
ACSDFT
ACSLST
ACSSET
ACSLIK
CALACS
CATSDL
DIRSRD
ENTSRD
GETIDS
ISACLS$
PASDEL
PASLST
PASSET
ACSRVT
CHGSPW
CREPWS
DIRSLS

FORCEW
PRWFSS
RDLINS
WILINS

GPASSS
SPASSS$

GETIDS

COMIS$$

COMOSS$

SUBROUTINES BY FUNCTION

Manage R-mode Files

Restore a R-mode runfile., RESTSS
Restore and execute an R-mode runfile. RESUSS
Save an R-mode runfile. SAVES$

Manage UFDs
Attach by pathname. ATS
Attach to a top-level directory on a given ATSABS
partition. |
Attach to a top-level directory on any partition. ATSANY
Attach to a UFD, _ ATCHSS
Return to home directory. ATSHOM
Attach to origin directory. ATSOR
Attach relative to current directory. ATSREL
Create a sub-UFD. CREASS
Create a password directory. CREPWS
Read directory entries, DIRSRD
Search directories. DIRSLS
Read directory entry with a given name. ENTSRD
Get directory type. ISACLS
Position in or read from a UFD. RDENSS
Read quota information. QSREAD
Set quota max. QSSET
Update current UFD (Primos II only). UPDATE

Manage Segment Directories
Position, read, or modify in a segment directory. SGDRSS
Delete a segment directory. SGDSDL
Search directories. DIRSLS

Position Files
Position to end of file. GENDSA
Position file. POSNSA
Return position of file. RPOSSA
Rewind file. RWNDSA
Position files, PRWFSS

Truncate Files
Truncate a file, TRNCSA, PRWFS$

Scan File System
Search the file system structure. TSRCS$S,TSCNSA,

SRSFXS$

Manage Suffixes
Append a suffix to a pathname. APSFXS
Search for a file with a list of suffixes, SRSFX$

Check File System Objects for Validity
Check a filename for valid format. FNCHKS
Check an id for valid format, IDCHK$
Check a login password for valid format. PWCHKS
Check a filename for valid format. TEXTOS
Check a pathname for valid format. TINCHKS ,TREESA

K-33 Third Fdition

DOC3621-190

Prompt for and check pathname for valid format.

Other PRIMOS Functions

Phantom Management
Start a phantom (obsolete).
Start a phantom (same login name only).

Enable or disable logout notification.
Retrieve logout notification information.

Read or Write
Get one character from command file or terminal.

Read a line of text from command file or terminal.

Move characters.
Read a line of text.
Get a character from an array.

Store a character in an array.

Error Checking
Tnterpret a return code.

Manage User Environment
Tnhibit or enable CONTROL-P.

Return terminal configuration word.

Read or set erase and kill characters.

Return to PRIMOS.
Check operating system being used.

Retrieve the value of a global variable.

Set the value of a global variable.

Log out a user or process.
Pass control to next user.
Return system and user information.

Return process number and user count.

Return type of current process.
See also Date-time Routines.

String Manipulation Routines
Compare two strings for equality.

Compare two substrings for equality.
Fill a string with a character.

Fill a substring with a given character.
Get a character from a packed string.
Left-justify, right-justify, or center a string.

Locate one string within another.
Locate one substring within another.

Move a character from one packed string to another.

Move one string to another.
Move one substring to another.
Determine the operational length of a string.

Rotate string left or right.

™hird Edition K-4

RNAMSA

PHANTS
PHNIMS
LONSCN
LONSR

CLINS
CLSGET
CNIN

ERRPRS

BREAKS —
DUPLXS
ERKLSS
EXIT
GINFO
GVSGET
GVSSET
LOGOS$
RECYCL
TIMDAT
USERS
UTYPES

CSTRSA
CSUBSA
FILLSA
FSUBSA
GCHRSA
JSTRSA
LSTRSA
LSUBSA
MCHRSA
MSTRSA
MSUBSA
NLENSA
RSTRSA

SUBROUTINES BY FUNCTION

Convert between upper- and lowercase.
Check data type.
Rotate substring left or right.
Shift string left or right.
Shift substring left or right.
Test for pathname.
Determine string type.

User Query Routines
Prompt and read a pathname and check for validity.
Prompt and read a number (binary, decimal,
octal, or hexadecimal) into an INTEGER*4 variable.
Ask question and obtain a yes or no answer.

Mathematical Routines
Generate random number and update seed,
based upon a 32-bit word size and using
the linear congruential method.
Initialize random number generator seed.

Conversion Routines
Convert a string from lower- to uppercase
or upper- to lowercase.
Convert ASCII number to binary.
Convent binary number to ASCII.
Make a number printable, if possible
(convert to FORTRAN format).

Parsing Routine
Parse PRIMOS command line.

Date-time Routines
Convert binary date to quadseconds.
Convert formatted date to binary.
Convert binary date ISO format.
Convert binary date to visual format.
Return current date/time in binary format.
Return time, date, and other information.
Convert the DATMOD field (as returned by RDENSS)
to the form DAYMON DD YYYY.
Convert the DATMOD field (as

to the form DAY DD MON YYYY.
Convert the TIMMOD field (as
CPU time since login.
Today's date, American style.

Today's date as day of year ("Julian" date).
Disk time since login.
Today's date, European (military) style.
Time of day.

returned by RDENSS)

returned by RDENSS).

K-5

CASESA
TYPESA
RSUBSA
SSTRSA
SSUBSA
TREESA
TYPESA

RNAMSA
RNUMSA

YSNOSA

ENCDSA

CMDLSA, CLSPIX,
RDIKSS

CVSDQS
CVSDIF
CVSFDA
CVSFDV
DATES
TIMDAT
FDATSA

FEDTSA

FTIMSA
CTIMSA
DATESA —

DOFYSA
DTIMSA

EDATSA
TIMESA

Third Edition

DOC3621-190

Matrix Operations

Single Double
Operation Integer Precision Complex Precision

Setting matrix to identity matrix IMIDN MIDN CMIDN DIMIDN
Setting matrix to constant matrix IMOCON MOON CMCON DMOON
Multiplying matrix by a scalar IMSCL MSCL CMSCL DMSCL
Matrix addition IMADD MADD CMADD DMADD
Matrix subtraction IMSUB MSUB CMSUB DIMSUB
Matrix multiplication IMMLT MMLT CMMLT IMMLT
Calculating transpose matrix * IMTRN MTRN CMTRN IMTRN
Calculating adjoint matrix * IMADJ MADJ CMADJ DMADJ
Calculating inverted matrix * MINV CMINV DMINV
Calculating signed cofactor * IMCOF MOOF CMCOF DMOOF |
Calculating determinant * IMDET MDET CMDET DMDET
Solving a system of linear LINEQ CLINEQ DLINEQ
equations
Generating permutations PERM
Generating combinations COMB

* For square matrices only

Sort, Merge, and Search Routines

Sort one ASCII file on one ASCII key. SUBSRT
Sort/merge sorted files (multiple key type). ASCSRT,ASCSS$
Merge sorted files. MRG1SS
Return next merged record to sort. MRG2$S
Close merged input files. MRG3SS
Sort several input files. SRTFSS
Prepare sort table + buffers. . SETUSS
Get input records. RLSESS
Sort tables prepared by SETUSS. CMBNSS
Get sorted records. RTRNSS
Close all sort units. CLNUSS
Heap sort. HEAP
Partition exchange. ~ QUICK
Diminishing increment. SHELL
Radix exchange. RADXEX
Insertion sort. INSERT
Bubble sort. BUBBLE
Binary search/build binary table. BNSRCH

Temporary Device Assignment

Assign device. ATTDEV

Third Edition K-6

SUBROUTINES BY FUNCTION

Device~independent Drivers

Read ASCII.
Write ASCII.

Read binary.
’ Write binary.
Other control functions (obsolete).

Device-dependent Drivers (Peripheral Handlers)

User Terminal or Input Command Stream
Output a blank line to terminal.
Output characters with LF and CR.
Output characters to terminal.
Output 16-bit integer.
Read character from terminal into Register A.
Read character from terminal into variable.
Write character from Register A to terminal.
Ind h ss fveam wariahkla En tarminel
Write cnaracter from variacle to terminal.

Input decimal number.
Input hexadecimal number.

Input octal number,
Input number in specified format.
Output 6-character signed decimal number.
Output 4-character unsigned hexadecimal number,
Output 6-character unsigned octal number,
Read ASCII from terminal.
Read ASCII from terminal or input stream.
Write ASCII to terminal or command stream.
Read binary from terminal.
Write binary to terminal.
Other control functions,

Paper Tape

Input character from paper tape to Register A.
Input character from paper tape to variable.
Output character from the Register A to paper tape
Output character from variable to paper tape.

_ Read paper tape (ASCII).
Read paper tape (binary).
Punch paper tape (ASCII).
Punch paper tape (binary).
Other control functions,

Disk
Read ASCII compressed.
Read ASCII uncompressed,
Write ASCII compressed.
Write ASCII uncompressed,
Read binary compressed.
Read binary uncompressed,
Write binary compressed,
Write binary uncompressed,
Other control functions.

K-7

RDASC
WRASC
RDBIN
WRBIN
CONTRL

TONL
INOU
TNOUA
TOVFDS
TLIB
TLIN
T1OB
mi crt
JLAS

TIDEC
TIHEX
TIOCT
RNUMSA
TODEC
TOHEX
TOOCT
ISAA01
TSAAL2
OSAA01
ISBAO1
OSBAO1
CSA01

P1LIB
PLIN
P1OB
P1OU
ISAP02
ISBP02
OSAP02
OSBP02
CSP02

ISADO7
TSAD07
OSAD07
OSADO8
ISBD07
ISBD07
OSBD07
OSBD07
SRCHSS

Third Edition

DOC3621-190

Line Printers
Centronics LP.
Parallel interface to line printer (MPC).

Vesatec printers.
Move data to LPC line printer.
Insert a file in spooler queue.

Printer/Plotter
Versatec.

Card Reader/Punch
Input from parallel card reader.
Input from serial card reader.
Read and print card from parallel interface reader.
Input from MPC card reader.
Parallel interface to card punch.
Parallel interface to card punch and print on card.
Raw data mover,

Magnetic Tape
Control 9-track ASCII/binary.
Control 7-track ASCII/binary.
Control 7-track BCD.
Control 9-track EBCDIC.
Write ASCII to 9-—track.
Write ASCII to 7-track.
Read ASCII to 9-track.
Read ASCII from 7-track.
Write binary to 9-track.
Write binary to 7-track.
Read binary from 9-track.
Read binary from 7-track.
Write BCD to 7-track.
Write EBCDIC to 9-track.
Read BCD from 7—-track.
Read EBCDIC from 9-track.
Raw data mover.

Communications Handlers

Communicate with SMLC driver.
Assign AMLC line.
Communicate with AMLC driver.

Semaphore-handling Subroutines

Open (request) semaphore:
by filename.
by file unit.

Notify semaphore.
Wait.

Test counter.
Drain (reset counter or notify).

Third Edition K-8

OSALO4
OSALO6
OSAL14
TSLMPC
SPOOLS

TSVG, OSAL14

ISACO03
TSACO9
ISAC15
TSCMPC
OSAC03
OSAC15
TSPMPC

CSMO5
CSM10
CSM11

CSM13
OSAMO5
OSAM1LO
TSAMO5
ISAM10
OSBM05
OSBMLO
ISBMO5
TSBMLO
OSAMLI
OSAM13
ISAML1
TSAML3
TSMT

TSSLCO
ASNLNS
TSAMLC

SEMSOP**
SEMSOU**
SEMSNF
SEMSWT
SEMSTS
SEMSDR

Set timer.
Timed wait.
Close semaphore.
Suspend process,

*For numbered semaphores only
**For named semaphores only

Condition-mechanism Subroutines

Call more on-units,

Action

FIN

Create an on-unit. MKONSF
Signal a condition, SGNLSF
Cancel (revert) an RVONSF
on-unit,

Nonlocal GOTO. PLISNL
Make PL/I-compatible MKLBSF
label.

Note

SUBROUTINES BY FUNCTION

SEMSIN*
SEMSTW**
SEMSCL**
SLEEP$

CNSIGS

Programming Language

F77
MKONSP
SGNLSF
RVONSF

PLSNL
MKLBSF

PLIG

Tat TORTTe
IRVUNU »

(1)
(1)

1. Supported directly by the programming lanquage.

Message Subroutines

Send a message to another user,
Receive a deferred mesage.
Set receiving state for messages.
Return receiving state of a user,

RMSGDS
MGSETS
MSGSST

Third Edition

EPF Subroutines

INTRODUCTION

With the release of Revision 19.4, the two utilities for linking and
loading programs (LOAD and SEG) are now augmented by a new linker:
BIND. Instead of creating programs that must execute in the same
portion of memory each time they are run, BIND creates Executable
Program Formats (EPFs). EPFs make it easier for you to build and
maintain software, EPFs can maximize a virtual memory system, because
PRIMOS takes care of address space allocation at program load time
instead of build time (as with SEG and LOAD).

For a description of the use and the advantages of this new utility,
refer to the Programmer's Guide to BIND and EPFs. For a thorough

discussion of how to fine-tune your system using EPFs, and why you will
want to do so, refer to the Advanced Programmer's Guice.

This appendix contains those subroutines that support an EPF-based
environment. They let you use the new features associated with EPFs,
or let you transform older programs into EPFs without making any
internal programming changes.

Subroutine Function

ALCSRA Allocate (process-class) space for return
function data.

ALSSRA Allocate (process-class) space for return
function data and set its value.

L-l Third Edition, Update 1

UPD3621-31A

CESBRD

CESDPT

CKDYNS

CP$

DY$SGS

EPFSALLC

EPFSAL

EPFSCPF

EPFSCP

EPFSDEL

EPFSDL

EPFSINIT

EPFSNT

EPFSINVK

EPFSVK

EPFSMAP

EPFSMP

EPFSRUN

Return the command environment breadth allocated

to the user.

Return the command environment depth allocated to
the user.

Determine Primos' runtime accessibility to an
entrypoint via a dynamic link (Dynt).

Invoke a command or program from within a running
program.

Retrieve the maximum number of private dynamic
segments,

Allocate storage for an EPF's linkage and static
data areas.

As for EPFSALLC above, but used for FIN calls.

Return the state of the command processor flags
in an EPF.

As for EPFSCPF above, but used for FIN calls.

Deactivate one activation of an EPF for the

calling process.

As for EPFSDEL above, but used for FIN calls.

Perform linkage initialization for an EPF.

As for EPFSINIT above, but used for FIN calis.

Begin the actual execution of a program EPF.

As for EPFSINVK above, but used for FIN calls.

Map the procedure images of an EPF file into
virtual memory.

As for EPFSMAP above, but used for Fortran calls.

Perform the appropriate calls to execute an EPF
file.

Third Edition, Update 1 I-2

EPFSRN

EXSCLR

EXSRD

EXSSET

FRESRA

ICES

RDSCE_DP

RDSCED

RPLS

STRSAL

STRSAP

STRSAS

STRSAU

STRSFP

STRSFR

STRSFS

STRSEU

STSSGS

EPF SUBROUTINES

As for EPFSRUN above, but used for FIN calls.

Disable the signalling of the EXITS condition.

Return the state of the counter controlling the

EXITS condition.

Enable the signalling of the Exit$ condition.

Release space designated for EPFs_ returning
information via command functions.

Initialize the command environment,

Return the current value of the command
environment breadth.

AS for RDSCE_DP above, but used for FIN calis.

Replace an EPF file with another one.

Allocate space in user-class storage and return

an error code to caller.

Allocate space in process-class storage.

Allocate space in subsystem-class storage.

Allocate space in user-class storage.

Free space from process-class storage.

Free space from user-class storage and return an

error code to the caller.

Free space from subsystem-class storage and

return an error code to the caller.

Free space from user-class storage.

Retrieve the maximum number of private static
segments.

Note

The following subroutine descriptions use a PL/I-like
format to supply a base for consistency in the
presentation of data structures.

I-3 Third Edition, Update 1

UPD3621-31A

> ALCSRA

Purpose

This routine allocates space for EPF function return information.
Refer to the Advanced Programmer's Guide for a complete discussion of
ALCSRA and ALSSRA.

When a function returns information, it passes the data to the caller
via an assignment statement. For an EPF to do this, it must create an
indirect pointer anda storage area, so that when the data is returned
at execution time it can be stored and accessed by the caller of the
function. In order to pass such information to the operating system,
an interface (given in the discussion below) defines rtn_fm_ptr and
rtn_fcm_struc.

ALCSRA provides you the space for rtn_fc_struc; it also returns the
value for rtn_fcn_ptr which you can then pass back to the caller of the
EPF function,

Note

Because this interface requires the caller to ferform
pointer-based operations, the caller should be a PMA or PL/I
Subset G program. Other programs should use the ALSSRA
subroutine.

Usage

dcl alcSra entry (fixed bin(31), ptr);

call alc$ra(space_needed, rtn_fm_ptr);

Space_needed (INPUT) The total amount of space needed for

rtn_fcon_struc (in 16-bit halfwords).
It is the sum of the space needed
for the return value and_ the
rtn_fcn_struc version number,

rtn_fm_ptr (OUTPUT) The pointer to the information to be
returned by the function.

Third Edition, Update 1 Ir-4

EPF SUBROUTINES

Discussion

Refer to chapters 18 and 19 of the Advanced Programmer's Guide for a
detailed discussion of the following interface.

When using dynamic storage allocation, an EPF program acting as a

function (that is, passing back some result to the operating system)

must first have the following interface defined:

dcl your_epf entry(char(1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin (15),
2 per,
2, 3 fixed bin(31),

fixed bin(31),
fixed bin(31),
fixed bin(31),
bit(1),
wtesaer

DLUE(L) ,
bhit/l)
MELEALI YF

bit(1),
bit(1),
bit(11),
bit(l),
bit(l),
bit (14),
fixed bin(15),
fixed bin(15),
bit(1),
bit(1),
bit(1),
bit(13),

1, 2 bit(1),
2 bit(15),

ptr);

call your_epf(command_args, command_status, command_state,
command_fcn_flags, rtn_fcm_ptr);

W
W
W
W
W
W
W
W
W
W
W
W
W
W
O

O
)
W
W

L-5 Third Edition, Update 1

UPD3621-31A

These arguments are defined as follows:

command_args The entire command line as entered by user

command_status The command status returned by the program to
the operating system:

0 No error.
0 Fatal error.

0 Soft error or warning.A
™
~

il
command_state Information relative to this invocation. Tt

contains, in the order specified:

command name — command entered by user.

version —- current version of the structure
of the command state (1 at Rev. 19.4).

vcb_ptr — pointer to CPL local variables.

preprocessing_info — information relating to
what has been preprocessed:

mod_after_date —- if nonzero, then the
command processor has found something
modified after the given date.

mod_before_date —- if nonzero, then the
command processor has found something
modified before the given date,

bk_after_date — if nonzero, then the
command processor has found something
backed up after the given date,

bk_before_date -—- if nonzero, then the
command processor has found samething
backed up before the given date.

type_dir — a directory has been found
that matches a wildcard.

type_segdir — a segment directory has
been found that matches a wildcard.

typefile — a file has been found that
matches a wildcard.

Third Edition, Update 1 L-6

EPF SUBROUTINES

type_acat —- an access category has been

found that matches a wildcard.

type_rbf — a ROAM based file has been
found that matches a wildcard.

resl — 1] bits that are undefined.

verify_sw — the -VERIFY option has been

given.

botup_sw —- perform full treewalk before

executing program.

res2 —- 14 bits that are undefined.

walk_from —- the tree level at which the

present treewalk started.

walk_to —- the present treewalk level.

initeration — command processor is
currently in an iteration sequence.

in_wildcard — command processor is
currently in a wildcard sequence.

intreewalk — command processor is

currently in a treewalk sequence.

res3 — 13 bits that are undefined.

command_fcn_flags — information relative to

this command function invocation. Its

contents in the order specified are:

command_fcn_call — indicates that this

program has been called as a command

function.

reserved — 15 bits that are undefined.

L-7 Third Edition, Update 1

UPD3621-31A

rtn_fcn_ptr — pointer to a structure that
describes the values. returned to the caller
of the EPF function. This structure is
itself defined as:

dcl 1 rtn_fcm_struc,
2 version fixed bin(15),
2 value_str char(*) var:

Where:

version — is the structure's version

(see ensuing discussion).

value_str — is a string of 1 to 32767
(or any language-imposed limit)
characters holding the value to be
returned,

First obtain the value of rtn_fm_ptr by calling ALCSRA (or ALSSRA).
After the call to ALCSRA, your program must set the version number of
rtn_fm_struc to 0 and copy the value of that structure into value_str.
Then the interface sets rtn_fm_ptr in its main entrypoint's calling
sequence and returns to the calling program.

Third Edition, Update 1 L-8

EPF SUBROUTINES

p> ALSSRA

Purpose

This routine is used both to allocate space from process-class storage
for EPF function return information and to actually set the value of
the information. It also assigns the value 0 to version within the
rtn_function_structure (see rtn_function_addr below).

Usage

dcl alsSra entry (char(*), fixed bin(31), ptr);

call alsSra (function_result_str, char_size_of_str,
rtn_function_addr);

function_result_str (INPUT) The character string that is the
result of the program invoked as a
function. The string may contain up
to 8192 characters.

char_size_of_str (INPUT) The number of characters in
function_result_str.

rtn_function_addr (OUTPUT) The address allocated to the
rtn_fm_struc. The return_function_

structure itself has this format:

1 rtn_fm_struc,
2 version fixed bin(15),
2 value_str char(*) var;

The address is returned as a pointer to the EPF function that called
ALSSRA; the calling function then stores it in rtn_function_ptr for
further use.

> cCESBRD

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine
returns the maximum number of simultaneous program EPF invocations per
command level, that is, the command environment breadth allocated to

the user.

L-9 Third Edition, Update 1

UPD3621-31A

Usage

del ceSbrd entry () returns (fixed bin(15));

maximum_command_env_depth = ceSbrd();

cer

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine
returns the maximum number of command environment levels, that is, the
command environment depth allocated to the user.

Usage

dcl ceSdpt entry () returns (fixed bin(15));

maximum_command_env_depth = ceSdpt();

BP cKoyns

Purpose

This routine accepts a dynamic entrypoint (DYNT) name and determines
whether that routine is accessible through the Primos dynamic linking
mechanism,

Usage

Gcl routine_name entry (char(32) var, fixed bin (15));

call ckdyn$ (routine_name, code);

routine_name (INPUT) The name of the dynamic entrypoint.

code (OUTPUT) Tf CKDYNS finds the dynamic
entrypoint, code is reset (0).
Otherwise code is returned as ESFNIF
(not found).

Third Edition, Update 1 L-10

EPF SUBROUTINES

RB cps

Purpose

This routine is the interface into the Primos command processor for

invoking a command from a running program.

This routine should be called whenever a user wants to invoke a command

or program from within a running program, and wishes to make use of the

extended command processing features available from the standard

command processor. Arguments that must be passed are command_line,

status, and command_status; other arguments are optional.

For a thorough discussion of the use of CP$ within an EPF-based
environment, refer to Chapter 19 of the Advanced Programmer's Guide.

Usage

dcl cp$ entry (char(1024) var, fixed bin(15), fixed bin(i5),

1, 2 bit(1), 2 bit(l), 2 bit(14),

ptr, ptr);

call cp$ (command_line, status, command_status, command_flags,

local_variable_ptr, rtn_function_ptr);

command_line (INPUT) The actual command or program being

invoked.

status (OUTPUT) Return command invocation error

status.

command_status (OUTPUT) Return command execution error

status, defined in Appendix D.

flags (INPUT) This field contains information

relative to the command function
invocation. It has this format:

1 flags,
2 command_function_call bit(1),
2 no_eval_vbl_fcms bit(l),
2 reserved bit(14);

L-1l Third Edition, Update 1

UPD3621-31A

The first bit, if set, indicates
that the program was called asa
command function; the second, if
set, indicates that command function
and global variable references are
to be passed without modification;
the remaining fourteen bits are
undefined.

local_variable_ptr The pointer to local variables allo-
(INPUT) cated during execution, if this CP$

call is made by a program executed
from within a CPL file. (Compare
this option within CPS to the
general purpose for LVSGET.)

rtn_function_ptr Pointer to a return_function_struc-
(OUTPUT) ture for command function process-

ing. The return_function_structure
itself has the following format.

1 rtn_function_structure,
2 version fixed bin(15),
2 char_string char(*) var;

Refer to the description of this and other parts of the interface
structure in the discussion following ALCSRA.

Discussion

CPS provides an easy-to-use interface to call external programs. All a
programmer has to do is call CPS with an argument that represents a
command line. This pseudo command line will be a character string
representation of the external program to be called. CPS will yerform
all wildcarding, treewalking, and iteration in reference to the
character string; however, it does not perform abbreviation expansion.

For example, a user may have a purchasing program that allows several
different commands, each of which calls an external program that can be
called by cpS. In this case, the purchasing program prompts the user
to insert a command-line; the user inputs "ORDER wrench" (or the
longer form given below). ORDER is the name of the external program
that does the ordering. Part of the purchasing program would therefore
resemble the following:

Third Edition, Update l I-12

EPF SUBROUTINES

/* At this point the User is prompted to input a command. */
/* The User now wants to "ORDER wrench", But, unless ORDER */
/* is in CMDNCO, the Resume command must be added to execute */
/* ORDER, which is probably one of several programs withina */
/* subdirectory of programs: "Resume PROGS>ORDER wrench." */

/* The subroutine cl$get is called to gather the terminal input. */

call cl$get(command_line, command_line_length, status);

/* Now CPS uses that command_line to fetch */

/* the program that will honor this request. */

call cp$('RESUME PROGRS>ORDER wrench', status, command_status);

B vysscs

Purpose

This routine is one of several that retrieve EPF-related information

from the in-memory copy of the current user's profile. This routine
retrieves the maximum number of private, dynamic segments allocated to

the user.

Usage

dcl dy$sgs entry () returns (fixed bin(15));

maximum_private_dynamic_segs = dy$sgs();

p> EPFSALLC
(or EPFSAL for FIN calls)

Purpose

This routine performs the "linkage allocation" phase for an EPF. The
storage for the linkage and static data areas of an EPF is allocated
here, All the template information for the storage needs is contained

within the EPF file itself.

Memory storage is allocated from temporary segnents in the dynamic

segment range. All storage is managed within PRIMDS. The type of

storage is determined by the type of EPF. Program EPFs and

program-class library EPFs are allocated storage in user-class storage.

Process class library EPFs are allocated storage in process-class

storage.

I-13 Third Edition, Update 1

UPD3621-31A

Usage

del epfSallc entry (fixed bin (31), fixed bin);

call epfSallc(ep£_id, status);

epf_id (INPUT) The identifier of the mapped-in EPF
| (created by EPFSMAP)

status (OUTPUT) A standard success/failure code
returned by the routine.

The following errors may be returned to the caller of EPFSALLC:

ESBPAR An invalid epf_id has been passed as a parameter,
probably indicating that the EPF was not successfully
mapped into memory by EPFSMAP,

ESILTD An invalid EPF LTD linkage descriptor type has been
found within the EPF file. Resubmit the file to
BIND.

ESEPFT An invalid EPF type field was detected when trying to
allocate storage. Resubmit the file to BIND.

p> =EPrScPr
(or EPFSCP for FIN calls)

Purpose

This routine returns the state of the command processing flags in an
EPF. The command processing features of the EPF are set by the
generator of the EPF by using BIND, the linker used for EPFs.,

Usage

dcl epfScpf entry (fixed bin (31), /* epf_id
1, 2, 3 bit(l), /* epf_info

3 bit(1),
3 bit(l),
3 bit(1),
3, 4 bit(1),

4 bit(1),
4 bit(1),
4 bit(1),
4 bit(1),

3 reserved bit(7),

Third Edition, Update 1 I-14

EPF SUBROUTINES

2 fixed bin(15),
fixed bin(15)); /* status

call epf$Scpf (epf_id, epf_info, status);

epf_id (INPUT) The identifier of the mapped-in EPF.

epf_info (INPUT/OUTPUT) The structure that is to contain the
return information about the command
processing features of the EPF
desired by the caller. Refer to the
Advanced Programmer's Guide Ch. 19
for explanations of each bit. ‘he
format of the structure follows:

1 epf_info based,
2 command_flags,

3 wildcards bit(i),
3 treewalks bit(1),
3 iteration bit(1),
3 verify bit(1),
3 file_types,

file bit(1),
directory bit(1),
segdir bit(l),
acat bit(1),
rbf bit(1),
reserved bit(7),

2 name_generation_position fixed bin(15);

t
f
&
&

b
&
&

status (OUTPUT) Error status. The following error

may be returned to the caller of

EPFSCPF:

ESBPAR An undefined epf_id has been passed as a
parameter, probably indicating that the EPF was
not successfully mapped into memory by EPFSMAP.

p> EPFSDEL
(or EPFSDL for FIN calls)

Purpose

This routine effectively deactivates one activation of an EPF for the

calling process. The segment(s) used for linkage and static data for

the most recent invocation of the EPF are returned to the free pool of

dynamic segments. If this EPF has not been previously executed by a

I-15 Third Edition, Update 1

UPD3621-31A

call to EPFSINVK, the EPF procedure segment(s) are released, and the
storage used by the in-memory EPF data base is released.

The invocation of the EPF utilizes valuable system resources. Each
invocation of an EPF program should be followed by a call to EPFSDEL to
free the storage allocated for program linkage and static storage,
unless the EPF is to be invoked shortly.

If the EPF invocation is not terminated by a call to EPFSDEL, system
segments are not efficiently returned to the free pool, anda user may
quickly run out of segments in the dynamic segment range.

Usage

dcl epf$del entry (fixed bin (31), fixed bin(15));

call epf$del (epf_id, status);

epf_id (INPUT) The identifier of the EPF created by
EPFSMAP, The most recent invocation
of the EPF will be deactivated.

status (OUTPUT) Return EPF invocation error code,
An error may occur while attempting
to return EPF procedure segnents to
the system. Should this happen, the
user's command environment is
reinitialized after the following
message is displayed:

Unable to free
EPF procedure segments.

Any errors detected when
de-allocating storage cause an
appropriate error message to be
displayed at the user's terminal and
the user's command environment to be
reinitialized.

The following error codes may be
returned to the caller of EPFSDEL:

ESBPAR An undefined epf_id has been passed as a
parameter, probably indicating that the EPF was
not successfully mapped into memory by EPFSMAP,

Third Edition, Update 1 I-16

EPF SUBROUTINES

ESEPFT An invalid EPF type field was detected. Resubmit
the file to BIND.

ESBVER An invalid EPF version was detected. Resubmit
the file to BIND.

> EPFSINIT
(or EPFSNT for FIN calls)

Purpose

This routine performs the "linkage initialization" phase for an EPF.
The EPF must already be mapped to memory (by EPFSMAP), with its static
data areas already allocated (by EPFSALLC).

Tima rien
VeEaAyT

del epfSinit entry (fixed bin(15),fixed bin(31), fixed bin(15));

call epfSinit (key, epf_id, status);

key (INPUT)

epf_id (INPUT)

status (OUTPUT)

Is an action specifier key.
Possible values are: KSINITALL (or
KSINAL for FIN callers), which
Specifies a complete initialization
of data areas; KSREINIT (or KSREIN
for FIN callers), which specifies
only a re-initialization of the data
areas, that is, reinitialize only
the static data and faulted IPs but
Iaintain other data such as IPs and

ECBs.

The identifier of the mapped-in EPF
(created by EPFSMAP).

Is a standard success/failure code
returned by the routine. The
following errors may be returned to
the caller of EPFSINIT:

ESBARG Linkage and static data areas for the EPF were
not allocated, Call EPFSALLC before calling
EPFSINIT.

ESBKEY An invalid key was used in the call. Resubmit
the file to BIND.

I-17 Third Edition, Update 1

UPD3621-31A

ESBLTE An invalid EPF LTE linkage descriptor type has
been found within the EPF file. Resubmit the
file to BIND.

ESBLTD An invalid EPF LTD linkage descriptor type has
been found within the EPF file. Resubmit the
file to BIND.

ESBPAR An undefined epf_id has been passed as a
parameter, probably indicating that the EPF was
not successfully mapped into memory by EPFSMAP,.

ESBVER An invalid EPF version was detected. Resubmit
the file to BIND.

ESEPFL An invalid EPF type field was detected when
trying to allocate storage. Resubmit the file to
BIND.

p> EPFSINVK
(or EPFSVK for FIN calls)

Purpose

This routine initiates the actual execution of a program EPF. At this
point, the EPF should have been mapped into virtual memory and the
static data areas should be both allocated and initialized. The order

of calls should be EPFSMAP, EPFSALLC, EPFSINIT, and EPFSINVK.

The address of the starting entry control block for the EPF is found
from the Control Information Block (CIB) within the EPF, and the EPF is
invoked by issuing a PCL instruction to the EG.

Program EPFs written as programs (that is, they expect no command
arguments and return no severity code) are normally invoked with the
first calling format below. Those program EPFs written as functions,
and those expecting arguments, must be invoked using the second format
below. The additional arguments are provided for passing invocation
information to the program being invoked, and for returning data to the
invoking program.

Usage

del epfSinvk entry (fixed bin (31), fixed bin(15));

call epfSinvk(epf_id, status);

or

Third Edition, Update l I-18

EPF SUBROUTINES

dcl epfSinvk entry (fixed bin (31), fixed bin(15),
char (1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin(15),

2 ptr,
2, fixed bin(31),

fixed bin(31),
fixed bin(3l1),
fixed bin(31),

bit(1),
bit(1),
bit(1),
bit(1),
bit(1),

bit(1l),

bit(1),
bit(1),

bit (14),
fixed bin(15),
fixea bin(i5),
hWiat/T\
VLE LJ 7

bit(1),
bit(1),
bit (13),

1, 2 bit(1),
2 bit(15),

ptr);

call epfSinvk(epf_id, status, com_args, com_status, com_state,

flags, rtn_function_ptr);

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

O
O

epf_id (INPUT) The identifier of the EPF (created

by EPESMAP).

status (OUTPUT) Return EPF invocation error code.

Possible error codes are:

ESBPAR Undefined identifier of the EPF has been passed

aS a parameter, probably indicating that the EPF

was not successfully mapped into memory by

EPFSMAP,

ESEPFT An invalid EPF type field was detected. Resubmit
the EPF to BIND.

ESBVER An invalid EPF version was detected. Resubmit

the EPF to BIND.

I-19 Third Edition, Update 1

UPD3621-31A

com_args (INPUT)

com_status (OUTPUT)

com_state (INPUT)

com_name

version

vcb_ptr

Third Edition, Update 1

The command arguments.

The command execution error status.
The standard error codes generated
during program execution may be
returned. Refer to Appendix D for a
complete list.

Contains information relative to the
EPF invocation, Subdivisions of
that information are as follows:

1 com_state,
2 com_name,
2 version,
2 vceb_ptr,
2 cp_iter_info,

3 mod_after_date,
3 mod_before_date,
3 bk_after_date,
3 bk_before_date,

3 type_dir,

3 type_seqd,
3 type_file,
3 type_acat,

3 type_rbf,
verify_sw,
botup_sw,
walkfrom,
walk_to,
in_iteration,
in_wildcard,
in_treewalk,W
W
O
W
W
W

Ww
W

with fields that contain the
following assignments:

Name of the EPF command.

Version of the com_state structure,
set to either 0 or 1; O signals
that only these first two fields
have defined values, while 1 signals
that all four of these are defined

and provided by the caller.

Ptr to local CPL variables allocated
during the execution of a CPL
program. This field is null () if
there is no invoking CPL program.

I-20

EPF SUBROUTINES

cp_iter_info Information relative to the extended
command processing features for the
command. This information is passed
to the program EPF from the program
that is invoking it.

flags (INPUT) This field contains information
relative to the command function
invocation. It has this format:

1 flags,
2 command_function_call bit(1),
2 reserved bit(15);

The first bit, if set, indicates
that the program was called asa
command function; the remaining
fifteen bits are undefined.

Pointer to a rtn_fm_struc that is
used by an EPF acting as a function.
The rtn_fco_struc itself has this
format:

e
ltn_function_ptr TPUT5 C

1 rtn_fcn_struc,
2 version fixed bin (15),
2 value_str char (*) var;

The version must be set to zero by
the EPF function.

The memory space for this data will
have been allocated by the EPF. The
caller of the function utilizes this
data and later de-allocates’ the
memory space by calling FRESRA.

p> EPFSMAP
(or EPFSMP for FIN calls)

Purpose

This routine is called to map the procedure images of an EPF file into
virtual memory. This is the "EPF-mapping” phase of the Executable
Program Format (EPF) mechanism. ‘The EPF file should already be open
for VMFA-read (KSVMR) on a file unit; that is, you must first call
either SRCHSS, SRSFXS$, or TSRCS$ with the KSVMR key specified.

I-21 Third Edition, Update 1

UPD3621-31A

If the EPF file in question is to be used as a program (rather than a
library), then this routine is the first of four subroutines that must
be called in this order: EPFSMAP, EPFSALLC, EPFSINIT, EPFSINVK. Refer
to chapters 1 and 2 of the Advanced Programmer's Guide for more
information on program and library EPFs.

Usage

dcl epfSmap entry (fixed bin(15), fixed bin(15), fixed bin(15),
fixed bin(15)) returns (fixed bin (31));

epf_id = epfSmap (key, unit, access_rights, status);

key (INPUT)

Use one of the following:

KSANY Use any available segment(s).

KSOCOPY Copy the segment-image(s) of the file into
temporary segment(s). DBG uses this option to
obtain writable segment(s) for debugging.

KSDBG Map DBG information, Used only by DsBG, this
causes the segment-image(s) of the EPF file that
contain the DBG information to be mapped into
memory.

unit (INPUT) The file unit on which the EPF is
currently open for VMFA-read, KSVMR.

access_rights (INPUT) The access rights to place on the
VMFA segments. Possible values are:

KSR Read only access on segment
KSRX Read/execute access

Currently, KSR and KSRX have the
same effect; use KSRX to be assured
of no future compatibility problems, ~

status (OUTPUT) A standard success/failure code
returned by the routine. The EPF
must be successfully mapped to
Memory in order to be executed. The
user code that calls EPFSMAP or
EPFSRUN should be capable of dealing

Third Edition, Update 1 L-22

EPF SUBROUTINES

with any error condition that might
result when the EPF is invoked.
Refer to "Error Processing" for a
treatment of possible failure codes.

ep£_id (OUTPUT) The identifier of the mapped-in EPF.
This identifier should be usedas a
handle to the EPF in memory when
calling the remainder of the EPFS
routines. If an error status is
returned to the caller, epf_id is
undefined.

Error Processing

If an error occurs while attempting to allocate dynamic memory space
for the EPF or if the user's command environment becomes corrupted, an
informative error message will be displayed at the users's terminal and
the user's command environment will be reinitialized,

If an error occurs during some manipulation of the in-memory list of
EPFs (circular list for instance), an error message is displayed and
the user's command environment is reinitialized.

The following error codes may be returned to the caller of EPFSMAP:

ESNMVS Insufficient VMFA segments available for EPF mapping.

The user must either wait until more VMFA segments
are returned to the free pool, (by this user or by
others), or request that the system be re-configured
to allow the user more such segments.

ESNMI'S Insufficent user segments for copying EPF to memory
from a remote node or using the KSCOPY key.

In response to either of these messages, the user may release temporary
segments in these ways:

1. reentering a suspended subsystem via the REENTER command;

2. deactivating previous EPF invocations via the REMEPF command;

3. releasing command levels via the RELEASE_LEVEL command;

4, yreinitializing the command environment via the ICE command (as
a last resort).

I-23 Third Edition, Update 1

UPD3621-31A

ESROOM Insufficient dynamic storage is available.

The recommended user action is the same as for ESNMIS
above,

ESNRIT User has insufficient access rights to the EPF file.

ESBKEY Invalid key value was specified for EPFSMAP.

ESBUNT The specified unit number is invalid.

ESUNOP File no longer open on specified file unit.

ESNDAM EPF file is not a DAM file, as it must be.

ESNOVA EPF file is not open for VMFA-read, as it must be,

ESFIUS EPF file is currently open for use,

The EPF file may not be mapped probably because it is
currently open on a file unit for writing by this or
another user.

ESBDAM EPF DAM file structure has been corrupted.

ESIVWN EPF file contents have been corrupted.

ESEPFT Invalid EPF type was detected.

Resubmit the file to BIND.

ESBVER Invalid EPF version was detected.

Resubmit the file to BIND.

ESEPFL EPF too large to be mapped to memory.

EPFSMAP will return this error if the EPF consists of
more than 130 procedure segments.

p> EPFSRUN
(or EPFSRN for FIN calls)

Purpose

This routine performs all the appropriate calls to execute an EPF file.
It maps and allocates the linkage and static data areas, initializes
them, invokes the EPF, and optionally returns the EPF memory resources
to the system free pool. The EPF file must first be opened for a
VMFA-read; that is, you first must call either SRCHSS, SRSFXS, or
TSRSS$ with the KSVMR key specified.

Third Edition, Update 1 I-24

Program EPFs written as programs (that is,

EPF SUBROUTINES

they expect no command
arguments and return no severity code) are normally invoked with the

Those Program EPFs written as functions,
and those expecting arguments, must be invoked using the second format
below. The additional arguments are provided for passing invocation
information to the program being invoked, and for returning data to the

first calling format below.

invoking program.

Usage

dcl epfSrun entry (fixed bin (15), fixed bin (15), fixed bin (15))
returns (fixed bin (31));

epf_id = epfSrun (key, unit, status)

dcl epf$run entry (fixed bin(15), fixed bin(15),

or

fixed bin(15), char(1024) var, fixed bin(15),
1, 2 char(32) var,

2 fixed bin(15),
2 ptr,
2, 3

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

Ww
W

fixed bin(31),
fixed bin(31),
fixed bin(3l),
fixed bin(31),
bit(1),
bit(1),
bit(1),
bit(1),
bit(l),
bit(1l),
bit(1),
bit (15),
fixed bin(15),
fixed bin(15),
bit(1),
bit(1),
bit (1),
bit (13),

1, 2 bit(1),
2 bit(15),

ptr);

epf_id = epfSrun (key, unit, status, com_args, com_status,
com_state, flags, rtn_function_ptr);

L-25 Third Edition, Update 1

UPD3621-31A

key (INPUT) Is an action specifier key.
Possible values are:

KSINVK Map, create, allocate and initialize static
data areas, and store EPF in cache memory
upon completion.

KSINVK_DEL (KSIVD for FIN callers) map, allocate and
initialize static data areas, invoke and do
not cache EPF after completion.

KSREST Map, allocate and initialize static data
areas, but do not invoke the EPF.

unit (INPUT) Is the file unit on which the EPF is
open for VMFA read, (KSVMR).

status (OUTPUT) Is a standard success/failure code
for the invocation of the EPF.
Possible values include all error
codes returned by EPFSMAP, EPFSALLC,
EPFSINIT, or EPFSDEL.

com_args (INPUT) The command arguments.

com_status (OUTPUT) The command execution error status.
com_state (INPUT) Contains information relative to the

EPF invocation. Subdivisions of
that information are as follows:

1 com_state,
2 com_name, /* char(32) var
2 version, /* fixed bin(15)

2 vcb_ptr, /* per
2 cp_iter_info,

3 mod_after_date, /* fixed bin(15)
3 mod_before_date, /* fixed bin(15)
3 bk_after_date, /* fixed bin(15)

3 bk_before_date, /* fixed bin(15)
3 type_dir, /* bit(1)

3 type_segd, /* bit (1)
3 type_file, /*® bit(1)
3 type_acat, /* bit(1)
3 type_rbf, /* bit(1)
3 resl, /* bit(11)
3 verify_sw, /*® bit(1)
3 botup_sw, /* bit(1)
3 res2, /* bit(14)
3 walk_from, /* £ixed bin(15)
3 walk_to, /* fixed bin(15)
3 in_iteration, /* bit(1)

Third Edition, Update 1 L-26

EPF SUBROUTINES

3 in_wildcard, /* bit(1)
3 in_treewalk, /* bit(1)
3 res3; /* bit (13)

with fields that contain the following assignments:

com_name Name of the EPF command.

version Version of the com_state structure, set to
either 0 or 1; 0O signals that only these
first two fields have defined values, while 1
Signals that all four of these are defined and
provided by the caller.

vcb_ptr Ptr to local CPL variables allocated during
the execution of a CPL program. The field is
null () if there is no invoking CPL program
involved.

cp_iter_info Information on the extended command processing
features for the command; it is passed to the
EPF program from the routine that invoked it.

flags (INPUT) This field contains information relative to
the command function invocation. It has this
format:

1 flags,
2 command_function_call bit(1),
2 reserved bit (15);

The first bit, if set, indicates that the
program was called as a command function; the
remaining fifteen bits are undefined.

rtn_function_ptr Pointer to a return structure for sucha
(OUTPUT) function, ‘The memory space for this data will

have been allocated by the EPF function. The
invoker of the function utilizes this data and
later de-allocates the memory space by calling
FRESRA,

epf_id (OUTPUT) The identifier for the EPF created by a call

to EPFSMAP, If the EPF is deleted after its
invocation completes, the epf_id may ke
undefined.

L-27 Third Edition, Update 1

UPD3621-31A

p> EXSCLR

Purpose

This routine disables the siqalling of the EXITS condition either
after a program's completion or after its termination as the result of
a non-local-goto having been executed.

However, to actually disable the EXITS condition, one call to EXSCLR
must be made for every call to EXSSET, because PRIMDS looks to a single
counter that is either incremented or decremented by calls to these two
routines,

Usage

dcl exSclr entry ();

call exSclr;

p> EXSRD

Purpose

This routine returns the state of the counter used to oontrol the
conditional signalling of the EXITS condition whenever a program EPF
terminates. The routine EXSSET enables the EXITS condition; the
routine EXSCLR disables it.

Usage

del exSrd entry (fixed bin(15));

call exSrd (transmit_exit_setting);

transmit_exit_setting The value returned from the counter,
(OUTPUT) either greater than zero or

otherwise. A value greater than
zero enables the signalling of the
EXITS condition whenever a program
terminates. If the value is zero or
negative, the signal is disabled.

Third Edition, Update 1 I-28

EPF SUBROUTINES

p EXSSET

Purpose

This routine enables the siqnalling of the EXITS condition either after
a program's completion or after its termination as the result of a
norr-local goto having been executed.

Usage

dcl exSset entry ();

call exSset;

> FRESRA

Purpose

This routine de-allocates the space desiqated for EPF functions'
return information. After processing the information returned from
functions, the invoker should then call this routine to free up space
and maintain an efficient command environment.

Usage

del freSra entry (ptr);

call freSra (rtn_function_ptr);

rtn_function_ptr (INPUT) Pointer to the space set aside for
EPF functions, earlier allocated by
ALCSRA or ALSSRA.

> Ices

Purpose

This routine initializes the command enviromment.

It does so by closing all open files, closing the comoutput file, and
resetting the command environment. The subroutine never returns, and
the invoking program is terminated. A user working in a_ subdirectory
during an ICES is therefore returned to the origin UFD.

I-29 Third Edition, Update 1

UPD3621-31A

Usage

dcl ice$ entry;

call ices;

Caution

Avoid using this subroutine! It may affect the integrity of
subsystems, including Prime data management products. CLEANUPS
on-units on the stack are not invoked. Consequently, it should
be used only when the stack has clearly been damaged.

> RDSCE_DP
(or RDSCED for FIN calls)

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine
returns to the caller the current value of the command environment

breadth.

Usage

del rd$ce_dp entry (fixed bin);

call rdSce_do{command_environment_breadth) ;

command_environment_breadth (OUTPUT) The current breadth of
the command environment
at this command level.

> RPLS

Purpose

This subroutine allows the replacement of one EPF file with another
one. By definition, therefore, the file to be replaced must be a DAM

file with the suffix .RUN. If the file to be replaced is currently in
use (Such as an EPF library being accessed by users), it remains in use
but has its suffix changed from .RJN to .RPn, where n is a decimal
integer from 0 to 9. RPLS still replaces the old EPF file with this
new .RUN file, but the .RPn file continues to exist. Users who now try
to access the EPF file are linked to the new .RIN file, but the .RPn
continues to exist. Users may later delete or save the old version.

Third Edition, Update 1 I-30

EPF SUBROUTINES

Usage

del rpl$ entry (char(128) var, char(128) var, char(128) var,
bit(1) aligned, fixed bin(15));

call rpl$(source_path, target_path, rpl_path, no_query, code);

source_path (INPUT) The file containing the code to he
used in the new .HUN file.

target_path (INPUT) The name of the new .HJN file

rpl_path (OUTPUT) The name of the old .RJN file, which
is now a .RPn file if it is
Currently in use; otherwise, a null
string.

no_query (INPUT) If this bit is set, no query for
changing the file name will prompt
the user, and no messages are
displayed. If it is unspecified by
the user, the routine defaults to

query displays.

code (OUTPUT) The error code. A zero is returned
if the subroutine is successful. A
~l is returned as a warming if at
least one replace file exists and is
not in use, but the user decides not
to delete it; other standard
subroutine errors (see Appendix D),
in the form of ESxxx, also may be
returned.

P sTRSAL

Purpose

This routine allocates space from Dynamic Memory for user-class
storage. Instead of raising a success/failure condition (as STRSAU),
it returns an informative error code if a problem occurs.

I-31 Third Edition, Update 1

UPD3621-31A

Usage

del strS$al entry(fixed bin(15), fixed bin(31), fixed bin(15),
fixed bin (15)) returns(ptr) options(short);

block_ptr = strSal (reserved, block_size, reserved, status);

reserved (INPUT) This field must have input values of
zero.

block_size (INPUT) The size of the block to allocate,

reserved (INPUT) This field must contain the valve of

status (OUTPUT) Returned error status. Possible
error codes may be:

ESALSZ Invalid block-size
ESROOM Insufficient space
ESHPER Corrupt heap

block_ptr The pointer to the allocated space.

p> STRSAP

Purpose

This routine allocates space from process-class storage. If any errors
are detected, an appropriate error message is displayed and the user's

command environment is reinitialized.

Usage

del strSap entry(fixed bin(31)) returns(ptr) options(short);

block_ptr = strSap(block_size);

block_size (INPUT) The size of the block to allocate.

block_ptr Points to the allocated space.

Third Edition, Update 1 I-32

EPF SUBROUTINES

> sTRSAS

Purpose

This routine allocates space from dynamic memory for subsysten-class
Storage. If any errors are detected, an appropriate error code is
returned.

Note

Use STRSAS to allocate dynamic memory space for Prime-supplied
subsystems only.

Usage

del strSas entry(fixed bin(31), fixed bin(15))
a oe FA

returns(ptr) options(snort);

block_ptr = strSas(block_size, code);

block_size (INPUT) The size of the block to allocate,

code (OUTPUT) Returned error status. Possible error
codes may be:

ESBPAR Invalid block-size
ESROOM Insufficient space
ESNSUC Corrupt heap

block_ptr The pointer to the allocated space,

P srs

Purpose

This routine allocates space from dynamic memory for user-class
storage. When a had block_size is given, it raises the ERROR
condition. When not enough space can be found in the heap, it raises
the STORAGE condition. When the heap is found to be corrupted, it

raises the HEAPERRORS condition.

I-33 Third Edition, Update 1

UPD3621-31A

Usage

del strSau entry(fixed bin(31)) returns(ptr) options(short);

block_ptr = strSau(block_size) ;

block_size (INPUT) Size of the block to allocate.

block_ptr Pointer to the allocated space.

> sTRSFP

Purpose

This routine returns space to process-class storage. If any errors are
detected, an appropriate error message is displayed and the user's
command environment is reinitialized.

Usage

del strS$fp entry(ptr) options(short);

call strS$fp (block_ptr);

block_ptr (INPUT) Pointer to the allocated space,

> sTRSFR

Purpose

This routine returns space to user-class storage. If any errors are
detected, an error code is returned (instead of an error condition as
with STRSFU).

Third Edition, Update 1 I-34

EPF SUBROUTINES

Usage

del strSfr entry(fixed bin(15), ptr, fixed bin(15));

call strSfr (reserved, block_ptr, status);

reserved (INPUT) Reserved.

block_ptr (INPUT) The pointer to the storage space to
be freed.

status (OUTPUT) The returned error status. Possible
error codes may be:

ESFRER Invalid free request
ESHPER Corrupted heap

> STRSES

Purpose

This routine returns space to subsystem-class storage. If any errors
are detected, an appropriate error code is returned.

Usage

dcl strSfs entry(ptr, fixed bin(15));

call strSfs(block_ptr, code);

block_ptr (INPUT) The pointer to the allocated space.

code (OUTPUT) Returned error status. Possible
error codes may be:

ESFRER Invalid free request
ESNSUC Corrupted heap

L-35 Third Edition, Update 1

UPD3621-31A

B STRSFU

Purpose

This routine returns space to user-class storage. When a bad block_ptr
is passed, it raises the ERROR condition, When the heap is found to be
corrupted, it raises the HEAPERRORS condition.

Usage

del strSfu entry(ptr);

call strS$fu(block_ptr);

block_ptr (INPUT) Pointer to block of data to free

Pp sTSsscs

Purpose

This routine is one of several that retrieve EPF-related information
from the in-memory copy of the current user's profile. This routine
retrieves the maximum number of private, static segments allocated to
the user.

Usage

del st$sgs entry () returns (fixed bin(15));

maximum_private_static_segs = stS$sgs();

Third Edition, Update 1 I-36

Other New

Subroutines

at Revision 19.4

The following subroutine descriptions are also released for Revision
19.4.

Subroutine Function

COMLVS Call a new command level.

CMLVSE Call a new command level upon an error condition.

EQUALS Generate a new name for an established object

name.

LISTSCMD Display those mini-level commands qualified by a
wildcard character string match.

LONSCN Enable or disable logout notification for
phantans. ,

LVSGET Retrieve the value of a local variable defined
within a CPL program.

LVSSET Set the value of a local variable within a CPL
program.

RSEGACS Identify a user's access rights to a particular
segment,

M1 Third Edition, Update 1

UPD3621-31A

TTYSRS Clear the current user's input and output
buffers.

Note

The following subroutine descriptions use a PL/I-like format to
supply a base for consistency in the presentation of data
structures.

P comvs

Purpose

This routine causes a new command level to be called. A PRIMS routine
called the command listener is indirectly invoked, displays the OK
prompt message, and waits for input. Only after the user issues the
START command from that command level will the COMLVS subroutine return
to the caller. Use this routine under normal conditions (not error
conditions, which require cmlv$Se).

Usage

dcl comlvsS entry ();

call comlv$;

 COLVSE

Purpose

This routine causes a new command level to be called upon an error
condition. A PRIMOS routine call the command listener, indirectly
invoked, does the following: it pauses command input; it displays the
ER prompt message; it waits for input; it forces terminal output on;
it enables quits. Only after the user issues a START command from that
command level will the CMLVSE subroutine return to the caller.

Usage

dcl cmlvSe entry();

call cmlvSe;

Third Edition, Update 1 M-2

OTHER NEW SUBROUTINES AT REVISION 19.4

PB EQUALS

Purpose

This routine expects an object name and a generation pattern. The
latter contains "commands" that specify how to transform the object
name into a new name called the generated name. This routine performs
that transformation. Name generation is discussed in the PRIMS

Commands Reference Guide.

Usage

dcl equal$ entry (char(32) var, char(32) var, char(32) var,
fixed bin(15));

cail equai$ (obj_name, pattern, generated, code);

obj_name (input) The object name being submitted for
transformation into the new name.

pattern (input) A character string that contains the
generation pattern of commands to carry
out the transformation.

generated (output) The new object name. generated according
to pattern.

code (output) The standard error code — see Appendix
D (zero indicates success).

p> LISTSCMD

Purpose

This routine displays to a user's terminal those mini-level commands
qualified by a wildcard character string match. The command mini-level
is explained in the Programmer's Guide to BIND and EPFs.,

Usage

dcl listSemd entry (char(32) var, fixed bin(15));

call listScemd (wildcard_match, status);

M—-3 Third Edition, Update 1

UPD3621-31A

wildcard_match The wildcard character string submitted
(INPUT/OUTPUT) for a search and match. Any matches

found are returned herein.

status (OUTPUT) Any error code to be returned to the
caller of the routine. If the wildcard
string submitted is invalid, an error
code such as ESFDMM (format/data
mismatch) is returned. If a valid
string does not elicit a single match,
ESFNIF (file not found) is returned.

p LONSCN

Purpose

This routine performs logout notification for phantams, if passeda
proper value within the key. If it receives an improper value, it
Simply ignores the call.

Usage

dcl lon$cn entry (fixed bin (15));

call lonScn (key);

key (INPUT) Any values other than the following are
ignored:

0 Turn notification off.
1 Turn notification on.

> LVSGET

Purpose

An EPF command invoked from a CPL program uses this routine to retrieve
the value of a variable defined within that CPL program.

Third Edition, Update 1 M4

OTHER NEW SUBROUTINES AT REVISION 19.4

Usage

dcl lvSget entry (ptr, char(32) var, char(*) var,
fixed bin(15), fixed bin(15))>;

call lvSget (vcb_ptr, var_name, var_value, var_size, code);

veb_ptr (INPUT) The pointer to the block of local
variables for the CPL program.

var_name (INPUT) The name of the local variable in the
CPL program.

var_value (OUTPUT) The value of the CPL local variable.

var_size (Output) The maximum length in characters of the
user buffer, var_value.

~~ frre

code JIPUT) The standard return error code from

> LVSSET

Purpose

An EPF command invoked from a CPL program uses this routine to set the
value of a local variable within the CPL program.

Usage

del lv$Sset entry (ptr, char(32) var,
char(*) var, fixed bin(15));

call lvSset (vcb_ptr, var_name, var_value, code);

veb_ptr (INPUT) The pointer to the block of local
variables for the CPL program.

var_name (INPUT) The name of the local variable in the
CPL program.

var_value (Input) The value of the CPL local variable.

code (OUTPUT) The standard return error code from
Appendix D.

M-5 Third Edition, Update 1

UPD3621-31A

> RSEGACS

Purpose

This routine is used to verify that a particular segment exists. It
also indicates the requester's access rights to the segment. If the
segment does not exist, the "if rsegac$" call elicits a return FALSE
('O'). I£ the segment exists, a TRUE ('1') is returned and the access
value for that segment is also returned in the access argument.

FORTRAN programs cannot directly call this subroutine, because it has a
seven-character name. A given program may indirectly call it, for
example, with "call synym(segno, access)", and at BIND time rename
synym as rsegacs,

Usage

dcl rsegac$ entry (fixed bin(15), fixed bin(31))
returns (bit(1));

if rsegac$S (segno, access)
then. ..ceee3

segno (INPUT) The segment number in question.

access (OUTPUT) 1. The first halfword is reserved.

2. If the segment exists, the value
returned indicates the user's

access rights to the seoment.
Possible values and their
interpretations are: :

No access
Gate
Read Access
Read, Write Access

75 Reserved
Read, Execute Access
Read, Write, Execute
Access

“
T
O
P
W
D

e
H
©

Third Edition, Update 1 iM-6

OTHER NEW SUBROUTINES AT REVISION 19.4

p> TTYSRS

Purpose

This routine is called by the QUITS handler to clear the current user's
input and output buffers. A key is passed that contains two bits
specifying whether the input and output buffers are to be cleared.
This routine takes no action for non-interactive users (such as

pPhantans and batch jobs).

Usage

dcl ttySrs entry (fixed bin(15), fixed bin(15));

call ttySrs (key, code);

key (INPUT) The keys indicating whether or not to
clear the I/O buffers. Possible key
values are:

KSOUTB Clear output buffer
KSINB Clear input buffer

code (OUTPUT) The standard error return code from
Appendix D.

M-7 Third Edition, Update 1

The C Interface

INTRODUCTION

A subroutine can be called from C by calling the subroutine's name and
the arguments to be used in the program. For example:

sub-name [(argument 1...argqument n)];

DATA TYPES

Table N-1 summarizes the data types of FORTRAN and PLIG subroutines and

functions that can be called from C. The section that follows
describes the C data types and their FORTRAN and PLIG equivalents.

il Third Edition, Update 1

UPD3621-31A

Table Nl

Data Types

GENERIC BASIC/ FORTRAN FORTRAN

UNIT/PMA VM COBOL IV 77 PASCAL
PL1G Cc

1 bit -*- —*- —*- whe ~*e (1) struct {
Bit unsigned;
Bit (1) }name ;

(2) (2) (3)
16-bit INT COMP INTEGER INTEGER*2

|

Integer

Halfword INTEGER*2

|

LOGICAL*2

|

Boolean Fixed Bin

|

Short Int

LOGICAL Fixed
Bin(15)

INTEGER (4)

32-bit INT*4 —*— INTEGER*4

|

INTEGER*4

|

Subrange

Word LOGICAL Fixed (Long) Int
LOGICAL*4 Bin (31)

64-bit
Double -*. —-k- —_k— a ~*

word
—*k -*

32-bit REAL REAL REAL Real Ploat

Float single —*- REAL*4 REAL*4 Binary Short

precision Float Float
Bin (23)

64-bit
Float double REAL*8 —*— REAL*8 REAL*8 —*—

precision Float Long
Bin(47) Float

DISPLAY (5) (5) (5)

Byte string INT PIC A(n) INTEGER CHARACTER

|

ARRAY (5)

(Max. 32767) PIC 9(n) *n, [l..n] OF Char (n) Char

PIC X(n) CHAR Name []

Varying (6) (6) (6) (6) (6)
character —*- (6)

string Char (n)
Varying

(7) (8)

48-bits -*— -*~ -*— -*- “<type> Pointer Pointer

3 Halfwords

* Not available.

Third Edition, Update 1 N-2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

THE C INTERFACE

Notes to Table N-1

If used for representing true (1) and false (0), negative
numbers are true, positive numbers and 0 are false. This is
not compatible with FORTRAN. In PLIG, 'l'Bis true; if this
value is stored in a 16-bit integer, the sig bit is set,
giving 100000 octal, or -32768 decimal. False in PLIG may
always be represented as decimal 0.

LOGICAL data in FORTRAN represents true and false as 1] and
0, respectively. This is not directly compatible with Pascal
or PLIG. .

Boolean data in Pascal is represented in 16 bits where the
Sign bit determines true and false. (A negative sign means
true, a positive sign means false.) This data type is directly
compatible with a BIT(1) ALIGNED variable in PLIG,

To define a 32-bit integer in Pascal, use an integer array
whose positive limit is greater than 32768 and whose negative

limit is less than -32768.

Where "n" is a constant expression with the program module.
This is not a dynamic length.

A character-varying string can be simulated in each lanquage

indicated, as discussed in the chapter on that lanquace.

This implementation of a pointer in PLIJG is subject to change;
a program that passes pointers or receives them my have to ke
recompiled, and a program that assumes a particular form or size
of pointer data may have to be rewritten.

Where <type> is either a user-defined type or a standard Pascal

type.

N3 Third Edition, Update 1

UPD3621-31A

INTEGER*2 or FIXED BIN

The INTEGER*2 data type expected by FORTRAN subroutines is the FIXED
BIN or FIXED BIN (15) data type in PL1. These two data types must be
declared as SHORT INT in C programs.

Sample program 1 illustrates a call to the FORTRAN subroutine SRCHSS
that expects an INTEGER*2 data type.

INTEGER*4 or FIXED BIN(31)

The INTEGER*4 data type expected by FORIRAN subroutines is the FIXED
BIN(31) data type in PLIG. The C equivalent for these two data types
is LONG INT or simply INT. Sample program 2 calls the subroutine
RNUMSA that expects an INTEGER*4 data type.

REAL*4 or FLOAT BIN(23)

REAL*4 or FLOAT BIN(23) data types expected by FORTRAN and PLIG
subroutines respectively should be declared as FLOAT in C programs.
Sample program 3 calls the FORTRAN subroutine RANDSA that expects a
REAL*4 data type.

REAL*8 or FLOAT BIN(47)

The REAL*8 data type expected by FORTRAN subroutines is the FLOAT
BIN(47) data type in PLlG. These two data types must be declared as
DOUBLE in C,

LOGICAL*1

This FORTRAN data type must be declared as CHAR in C programs, with
only the low order bit of the character being used. Sample program 4
calls the FORTRAN subroutine DELESA that expects a LOGICAL*1 data type.

Pointers

A POINTER data type expected by a PLIG subroutine can also be declared
as a POINTER data type in C programs. Note that the use of any other C
data type to receive a pointer argument may cause wnpredictable
results, Sample program 5 calls a PLIG subroutine that expects a
POINTER data type.

Third Edition, Update 1 N-4

THE C INTERFACE

Enumeration Data Type

This C data type is analogous to the scalar data type in PASCAL.
Enumeration data types are defined by declaring a type specifier
followed by an ordered list of identifiers, which are declared as
constants. The enumeration type specifier and the identifiers used
must all be unique. All enumeration identifiers are assumed to be of
the data type INT. There is no equivalent data type in FORTRAN and
PLIG.

Void Data Type

This C data type implies a nonexistent value, which cannot be used in
any way. Expressions derived from this data type can only be used as
an expression statement or as the left operand of a comma expression.
An expression can be converted to a data type of void by use of the
cast operator. There is no equivalent data type in FORTRAN and PLIG.

Integer Arrays and Character Arrays

Arrays expected by FORTRAN and PLIG subroutines should be declared as
an array of integers or as an array of characters in C, depending on
the type of array being passed. However, a FORTRAN integer array can
contain both integer and character data, which must be declared
differently in C. In this case, the C argument must be declared as a

structure containing both data types.

Sample program 6 calls the PRIMS subroutine TIMDAT to retrieve user
and system information. Note that the integer array returned by TIMDAT

contains both integer and character data.

ASCII Character Strings

An ASCII character string expected by a FORTRAN or PiL1G subroutine
should be declared as a string literal or character array in C, as in
Sample Program 2.

CHARACTER*VARYING

This PLIG data type is implemented as a record structure, providing a
count of the mumber of characters in the structure followed by the

N-5 Third Edition, Update 1

UPD3621-31A

actual characters themselves. The structure of a CHAR(*)VAR argument
may be represented as follows:

O65; ABCOD E

COUNT CHARACTER STRING

Sample program 7 uses a CHAR(*)VAR data type.

THE -NOOCONVERT OPTION

If a C subroutine is being called from another Prime-supported lanquage
(for example, FORTRAN or HL1G), the conversion of char, short, and
float data types does not occur. The C compiler, however, is not aware
of this. Therefore, the -NOCONVERT compiler option must be used to
inform the C compiler that data types of char, short, and float should
not be converted. See the C User's Guide for more information on data
type conversion and the -NOGONVERT compiler option.

THE FORTRAN STORAGE CLASS

If a C function is calling a subroutine from another Prime- supported
language that expects data types of char, short, or float, then the
implicit C default action of converting these data types must be
prevented. The FORTRAN storage class can be used to prevent char and
Short data types from being converted to long, and the float data type
from being converted to double.

When used with the ampersand operator (&), the FORTRAN keyword disables
default data type conversion. As a result of this, the data type is
passed by reference rather than by value. The examples in this chapter
all use the fortran storage class for PRIMDS subroutines.

MORE ABOUT C

Additional information on accessing common blocks, creating common
blocks from C, transferring arguments in C, and passing arrays by
reference can be found in the C User's Guice.

USING SYSOOM TABLES

Subroutine descriptions in this guide ocassiomlly refer to codes
having names in the format xSyyyy, where x and y are letters. These

Third Edition, Update l N-6

THE C INTERFACE

codes can be substituted for numeric values and should be inserted at
the beginning of a C module. There are three groups of these codes
for C.

Error codes have names in the format ESyyyy. These equivalents should
be inserted in the C program with the statement:

#include <errd.ins.cc>

Key codes have names in the format K$yyyy. These key codes should be
inserted in the C program with the statement:

#include <keys. ins.cc>

Subroutines in the VAPPLB use argument codes in the form ASyyyy. The
numeric equivalents of these codes are in the file SYSCOM>ASKEYS.
Sample programs 1, 2, and 3 illustrate the use of SYSCOM tables. At
Revision 19.4, you must declare the numeric equivalent in the C
program, as is done for ASDEC in sample program 2. The BIND subcommand
LI VAPPLB must also be issued at load tim.

SAMPLE PROGRAMS

The remainder of the chapter will provide a number of sample programs
illustrating the use of error codes, key codes, and the various data
types described above.

Program 1 -——- Using an Integer*2 Argument

This program calls the FORTRAN subroutine SRCHSS that expects a data
type of INTEGER*2. This sample program also illustrates use of SYSQOM
tables.

OK, SLIST SRCH.CC

/*Calls the subroutine SRCHSS to check for the existence of a
file*/

#include <keys. ins.cc>
#include <errd.ins.cc>

N-7 Third Edition, Update 1

UPD3621-31A

main ()

Short key, name_len, funit, type, code;
fortran srch$$();

key = kSexst + kSiufd;
name_len = 6;
funit = 0;

type = 0;

srchss (&key, "ctrlf£1", Ssname_len, sfunit, &type, &code);
printf ("returned error code is %d\n", code);

This program can be compiled, loaded, and executed in V-mode with the
following dialog. If the file "ctr1f1" is not found,

OK, CC SRCH
[CC revision 19.4]
00 Errors and 00 Warnings detected in 17 source lines and 288
include lines.

OK, BIND SRCH
[BINDrev19.4]
S LO SRCH.BIN
SLTICLB

sir
BIND COMPLETE

SEILE

OK, R SRCH.RUN

returned error code is 15

Program 2 -—- Using an INTEGER*4 Argument

/*Calls the FORTRAN subroutine RNUMSA to verify a data type of
INTEGER*4*/

OK, SLIST RNOM, CC

main ()

static char msg[21] = "please enter a number:";
short msglen, aSdec;
int value;

fortran rnum$a();

Third Edition, Update l N-8

THE C INTERFACE

msglen = 21;
aSdec = 1:
rnum$a (msg, é&msglen, saSdec, &value);
printf ("the number is $d\n", value);

This program can be compiled, loaded, and executed in V-mode with the
following dialog:

OK, CC RNUM

[CC revision 19.4]
00 Errors and 00 Warnings detected in 13 source lines.

OK, BIND RNUM
[BIND rev 19.4]

$ LO RNUM.BIN
¢TrT © TT]
PP Lik Vip

$ LI VAPHB /*Requires use of V-mode application library*/
BIND COMPLETE
$ FILE

OK, R RNUM, RUN
please enter a number: 3685
the number is 3685 ~

Program 3 — Using a REAL*4 Argument

/*Calls the FORIRAN subroutine RANDSA to generate random numbers*/

OK, SLIST RAND.CC

Train ()

{
int seed;
float number;
short k;
fortran float rand$a();

seed = 1;
for (k=l; k<=10; k++)

{
number = rand$a (&seed);
printf ("%e\n", number);

N-9 Third Edition, Update 1

UPD3621~31A

This program can be compiled, loaded, and executed in V-mode with with
the following dialog:

OK, CC RAND
[CC revision 19.4]
00 Errors and 00 Warnings detected in 14 source lines.

OK, BIND RAND

[BINDrev19.4]
$ LO RAND.BIN
$ LI C_LIB

$ LI VAPPLB /*Requires use of V-mode application library*/
BIND COMPLETE

$ FILE

OK, R RAND. RUN
7.826369e-6
1.315378e-1
7 .956052e-1
4.586501le-1
5 6327672e-1
2.189592e-1
4.704461le-2
6 .788646e-1
6 .792964e-1
9 .346928e-1

Program 4 —- Using a LOGICAL*1 Argument

/*Calls the FORTRAN subroutine DELESA to delete a file*/

OK, SLIST DELE.CC

main ()

static char filename[7] = "ctrlf1":

short count = 63

fortran short deleSa();
char log;

log = deleSa (filename, &count);
if (log = 1)

printf ("file deleted successfully\n");

else

printf ("no go\n");

Third Edition, Update i N-16

THE C INTERFACE

This program can be compiled, loaded, and executed in V-mode with the
following dialog:

OK, CC DELE
[CC revision 19.4]
00 Errors and 00 Warnings detected in 13 source lines.

OK, BIND DELE
[BIND rev 19.4]
$ LO DELE.BIN
$ LI C_LIB
$ LI VAPHLB /*Requires use of V—-mode application library*/
BIND COMPLETE

$ FILE

OK, R DELE.RUN
file deleted successfully

Program 5 — Using a POINTER Argument

/*Calls the PL1G subroutine ACSSET to create ACLs for a file,
An error message is returned if the file contains ACLs. */

OK, SLIST ACSET,CC

main ()

short key, code;
struct name

{
short number:
char filename [128];

he
static struct name namel = {22, "mine>c>techpub>acltest"};
struct acl{

short version;
short num;

struct name entries;

?

Static struct acl ctrlfl = {2, 1, 8, "mine:all"};
short *acl_ptr;
fortran acSset():

key = 0;
acl_ptr = &ctrlfl;

acSset (&key, &namel, acl_ptr, &code);
print ("error code is: d\n", code);

N-11 Third Edition, Update 1

UPD3621-31A

This program can be compiled, loaded, and executed in V-mode with the
following dialog:

OK, CC ACSET
[CC revision 19.4]
00 Errors and 00 Warnings detected in 24 source lines.

OK, BIND ACSET
[BIND rev 19.4]
S$ LO ACSET
$ LI CLIB

sir
BIND COMPLETE
S$ FILE

OK, R ACSET. RIN

error code is: 189

Program 6 —- Using an INTEGER ARRAY Argument

/*Calls the PRIMOS subroutine TIMAT to retrieve systen and user
information*/

OK, SLIST TIMDAT.CC

main ()

erates struct array

char mmddyy [6] ;
short time_min;
short time_sec;
short time_tck;

short cpu_sec;
short cpu_tck;
short disk_sec;
short disk_tck;
short tck_sec;
short user_num;

char username [32];

he

static struct array intarray;
short num = 28;
fortran timdat();

Third Edition, Update 1 N-12

THE C INTERFACE

timdat (&intarray, &num);
printf ("date is s\n", intarray.mmddyy) ;
printf ("seconds elapsed zd\n", intarray.time_sec);
printf ("ticks elapsed d\n", intarray.time_tck);
printf ("cpu seconds used d\n", intarray.cpu_sec);
printf ("cpu ticks $d\n", intarray.cpu_tck) ;
printf ("disk seconds used d\n", intarray.disk_sec);
printf ("user name $32s\n", intarray.username);

}

This program can be compiled, loaded, and executed in V-mode with the
following dialog:

OK, CC TIMDAT
[CC revision 19.4]

00 Errors and 00 Warnings detected in 31 source lines.

OK, BIND TIMDAT
[BIND rev 19.4]
$ LI CCMAIN
$ LO TIMDAT.BIN
$ LI C_LIB

sir
BIND COMPLETE

$ FILE

OK, R TIMDAT.RIN

date is 022585
seconds elapsed 54
ticks elapsed 78
cpu seconds used 19
cpu ticks 190
disk seconds used 8
user name RCGJ

Program 7 — Using a CHAR*VAR Argument

/*Calls the PLlG subroutine GVSGET to obtain the value of the global
variable .MAX*/

N13 Third Edition, Update 1

UPD3621-31A

OK, SLIST CHARVAR.CC

main ()

short varsize, code;
struct charvar

short nchars;

char stringl[5];

?

static struct charvar varname = {4, ".max"};
static struct charvar varvalue;

fortran gv$get();

varsize = 5;
gv$get (&varname, é&varvalue, &varsize, &code);
printf ("value of global variable .mx is %s\n", varvalue.stringl);
printf ("error code is d\n", code);

}

This program can be compiled, loaded, and executed in V-mode with the
following dialog, providing that a global variable file has been
previously established as explained in the CPL User's Guice.

OK, CC CHARVAR

[CC revision 19.4]
00 Errors and 00 Warnings detected in 17 source lines.

OK, BIND CHARVAR
[BIND rev 19.4}

$ LOCHARVAR. BIN
$ LI C_LIB

sir
BIND COMPLETE

$ FILE

OK, R CHARVAR. FUN
value of global variable .max is 100
error code is 0

Third Edition, Update 1 N14

Corrections

Please make the following additions and revisions to the Subroutines

Reference Guide,

On page 9-17 for the subroutine GPATHS:

for key Delete the numerical references:
(KSUNIT=1) , (KSCURA=2), (KSHOMA=3).

On page 9-29 for the subroutine RDENSS:

for buflen Add after (INTEGER*2) "set toa value of 24".

On page 9-48 for the subroutine SRCHSS:

under action Add the following key option:
KSVMR Open filname for VMFA read.

O-1 Third Edition, Update 1

UPD3621-31A

On page 9-57 for the subroutine SRSFXS:

for status Replace the description with:
The standard status returned, either a 0 to
Signal a success or an error code from those
listed in Appendix D.

On page 9-58 for the subroutine TSRCSS:

under action Add the following key option:
KSVMR Open pathname for VMFA read.

On page 10-2 within Table 10-1 Operating System Subroutines:

under Read or Write change CLINS to CLIN.

On page 10-3 for the subroutine CLINS:

Change the title and its call from CLINS to CLIN. (This correction was
already given the 19.3 MRU but is repeated here for the reader's
convenience.)

On page 10-4 for the subroutine CLSGET:

under Purpose Delete from the last sentence:
-.Or one consisting of all blanks....

On page 10-11 within the discussion of the subroutine CLSPIX delete the
last specified data type:

file Primos filename.

Also, on page 10-12 delete the last entry from the data type
correspondence table:

file char(128) var INTHGER(65).

On page 10-43 for the subroutine RECYCL:

under Purpose Add the following sentences at the end:
This subroutine is obsolete. To create a
controlled delay, use SLEEPS,

Third Edition, Update 1 0-2

CORRECTIONS

On page 12-21 for the subroutine CTIMSA

under cputim Delete "character string format."

under Discussion Delete "...either REAL*4 or" (REAL*8 is

correct).

On page 19-9 for the subroutine SPOOLS:

under key Insert these additional user options:

3 Modify the attributes of a file already
spooled.

4 Close file on unit info(2) in queue and

notify semaphore.

for info Replace its entire description, as well as all
the ensuing descriptions for SPOOLS with the
following information. The lines involving
changes or additions are marked with revision

bars,

info Information array of 40 16-bit halfword
elements, as follows:

1 Reserved after Rev. 17.

2 Open print file on this. wit
(key=2). If unit number is zero,
then SPOOLS will return the wit
number here,

3 Print option element. (See bit
descriptions for element 3 below).

4-6 Formtype (6 ASCII characters).
(Equivalent to -FORM on PRIMDS
command line.)

7 Plot raster scan size (plot only).
This represents the number of
-halfword/raster scan.

8-10 Spool filename (returned).

11 Deferred print time (valid only if
defer bit (#8) is set in element 3)
— an integer specifying minutes
after midnight (equivalent to —DEFER
in PRIMOS command line).

0-3 Third Edition, Update 1

UPD3621-31A

12 File size, returned if key isl.

13-20 (Optional) Logical destination name
——- must be blank padded (equivalent
to -AT on PRIMOS command line). If
these elements are used, bit 10 of
element 3 (print option element)
Must be set tol.

21-28 (Optional) Substitute filename to be
used — must be blank padded
(equivalent to -AS on command line.)
If these elements are used, bit 11
of info(3) must be set tol.

29 (Optional) Number of copies
(equivalent to -QOPIES on command
line). If this element is used, bit
12 of info(3) must be set.

The remaining 11 elements are for the extended array. If the extended
array is used, bit 16 of info(3) must be set,

buffer

buflen

code

Third Edition, Update 1

30 Extended print option element. (See
bit descriptions for the extended
print option element (info(30))
below.)

31 Disk number of the SPOOLQ satisfying
the -DISK option. If this element
is used, bit 1 of info(30) must be
set,

32-40 Reserved.

Scratch buffer -— this is used to set up
control info and to copy the file to the spool
queue (key=l1). It must be at least 40 16-bit
halfwords long. Copy tim is inversely
proportional to buffer size. Nominal size is
between 300 and 2000 halfwords.

Length of buffer in halfwords,.

Return code (nonzero if error occurred).

0-4

CORRECTIONS

The print option element (info(3)) specifies various print(/plot)
information and is defined as follows:

Bit
1

O
r

h
m

W
W

b
d

~~
]

10

ll

12

13-14

15

16

Designates, if Set

Fortran format control. (Colum 1 contains
carriage control information.)

Expand compressed listing.

Generate line numbers at left margin.

Suppress header page.

Don't eject page when done.

No format control.

Plot file — info(7) must be specified.

Defer printing to specified time — info(1])
must be valid.

Print on local printer only (not used after
Rev. 17).

If set, use the logical destination name
specified in info(13-20).

If set, use the substitute filename specified
in info(21-28).

If set, spool the number of copies specified in
info(29).

Reserved,

Inform user when file has completed printing.

Extended array used — MUST be set if
info (30-40) used.

0-5 Third Edition, Update 1

UPD3621~31A

The extended print option element (info(30)) specifies additional
information and is defined as follows:

Bit

1

5-6

9-16

Designates, if Set

Attach to the SPOOLQ on disk number’ in
info(31).

This file is a PRIORITY file. It can only be
used in conjunction with the —MODIFY key.

Used in conjunction with -MODIFY to remove the
PRIORITY attribute from this file.

Allow SPOOLS to place a message in name when
code is not 0 (the uswal input to ERRPRS using
the spool command).

Reserved.

Truncate all lines to the value defined by PROP
WIDTH command.

Used in conjunction with -MODIFY to remove the
DEFER attribute from a file.

Reserved.

On page 22-22 for the subroutine RVONUS:

within DCL line Change "CHAR(*)" to "CHAR(32)".

On page 22-47f£ change the format of the stack-frame header as
indicated by the revision bars:

dcl 1 sfh based,
2 flags,

backup_inh bit(1),
cond_fr bit(1),
cleanup_done bit(1),
efh_present bit(l1),
user_proc bit(l),
stk_cbits bit(1),
lib_proc bit(l1),
ech_cbhits bit(1),
mbz

W
W
W
W
W
W
W
W
W

O
O

Third Edition, Update 1

/* stack-frame header */

bit (6),
fault_fr bit(2),

0-6

CORRECTIONS

2 root,
3 mbz bit(4),
3 seg_no bit(12),
ret_pb ptr options (short),
ret_sb ptr options (short),
ret_lb ptr options (short),
ret_keys bit(16) aligned,
after_pcl fixed bin,
hdr_reserve(8) fixed bin,
owner_ptr ptr options (short),
tempsc(8) fixed bin,
onunit_ptr ptr options (short),
cleanup_onunit_ptr ptr options (short),
next_efh ptr options (short),
reserved(6), fixed bin,
cond_bits bit(16) aligned;N

N
N
D
N
N
N
N
N
N
N

D
N
N
N

dcl 1 ecb based, /* Entry Control Block */
Z po ptr options (short),

frame_size fixed bin(15),

stack_seg fixed bin(12),
arg_offset fixed bin(15),
num_args fixed bin(15),
lb ptr options (short),
cond_bits bit(16) aligned,
reserved(6) fixed bin(15);N

N
N
N
N
N
N
K
N

Add the descriptions of new fields in the stack-frame header to those
on page 22-48ff.

After flags.user_proc on page 22-48 insert the following descriptions:

flags. stk_cbits If 'l'b, then cond_bits exists within the
stack frame header and should be used to
determine whether to signal an exception
condition. If 'O'b, then flags.ecb_cbits
is checked.

flags.lib_proc If '1', then the procedure is a library
routine,

flags.ecb_cbits If '1', then ecb.condbits exists and
should be used to determine whether to
signal an exception condition. If both
flags.stk_cbits and flags.ecb_cbits are
'O', then flags.- lib_proc is examined.

Note

If all three of the previous flag bits are reset ('0'),
then PL/I default condition handling is used.

0-7 Third Edition, Update 1

UPD3621-31A

After next_efh on page 22-50 insert the following field descriptions:

reserved Reserved.

cond_bits PL/I condition enable bits.

On page A-11 for the subroutine ATS:

under Discussion Delete the third and fourth bulleted items:

@e Apartition name of "<>" means any
partition.

e A bare partition name indicates the MFD.

On page A-26 for the subroutine DIRSLS in the field descriptions for
the returned directory entry structure:

dtm Change "dtm" to "dtb" and replace the first
sentence of the description with:
The date/time that the BACKUP utility was last
run to save the object.

On page A-30 for the subroutine GETIDS:

version In the second sentence change the version
number for Rev. 19 from "2" to "1 or 2".

On page D-2ff replace the error code listing with the following updated
version:

Third Edition, Update 1 0-8

CORRECTIONS

/* ERRD. INS. Pul, PRIMOS>INSERT, PRIMOS GROUP, 01/29/85
MNEMONIC QODES FOR FILE SYSTEM (PL1)

Copyright (c) 1982, Prime Computer, Inc,, Natick, MA 01760 */
[BRREEREEREREREREREEEEBEREREREEREEREREEREREEEREEEREREEEREEERERERERERER/

[BERERERERERERERERREREREREEREREEREREREREREREEEEEEEREEERERE/

/* */
/* */
/* CODE DEFINITIONS */
/* */
/* */
ESEOF BY 00001, /* END OF FILE PE */
ESBOF BY 00002, /* BEGINNING OF FILE EG */
ESUNOP BY 00003, /* UNIT NOT OPEN PD, SD */
ESUIUS BY 00004, /* UNIT IN USE SI */
ESFIUS BY 00005, /* FILE IN USE SI */
ESBPAR BY 00006, /* BAD PARAMETER SA */
ESNATT BY 00007, /* NO UFD ATTACHED SL,AL %/
ESFDFL BY 00008, /* UFD FULL SK */
ESDKFL BY 00009, /* DISK FULL DI */
eSdisk_full

by 9, /* alias to ESDKFL */
ESNRIT BY 00010, /* NO RIGHT SX */
ESFDEL BY 00011, /* FILE OPEN ON DELETE SD */
ESNTUD BY 00012, /* NOT A UFD AR */
ESNTSD BY 00013, /* NOT A SEGDIR — */
ESDIRE BY 00014, /* IS A DIRECTORY — */
ESFNTF BY 00015, /* (FILE) NOT FOUND SH,AH */
ESFNTS BY 00016, /* (FILE) NOT FOUND IN SEGDIR SO */
ESBNAM BY 00017, /* ILLEGAL NAME CA */
ESEXST BY 00018, /* ALREADY EXISTS CZ */
ESDNTE BY 00019, /* DIRECTORY NOT EMPTY — */
ESSHUT BY 00020, /* BAD SHUTDN (FAM ONLY) BS */
ESDISK BY 00021, /* DISK I/O ERROR WB */
ESBDAM BY 00022, /* BAD DAM FILE (FAM ONLY) ss */
ESPTRM BY 00023, /* PIR MISMATCH (FAM ONLY) PC,DC,AC */
eSrec_hdr_ptr_mismatch

by 23, /* alias to ESPTRM */
ESBPAS BY 00024, /* BAD PASSWORD (FAM ONLY) AN */
ESBOOD BY 00025, /* BAD CODE IN ERRVEC — */
ESBTRN BY 00026, /* BAD TRUNCATE OF SEGDIR — */
ESOLDP BY 00027, /* OLD PARTITION — */
ESBKEY BY 00028, /* BAD KEY — */
ESBUNT BY 00029, /* BAD UNIT NUMBER — */
ESBSUN BY 00030, /* BAD SEGDIR UNIT SA */
ESSUND BY 00031, /* SEGDIR UNIT NOT OPEN — */
ESNMLG BY 00032, /* NAME TOO LONG _ */
ESSDER BY 00033, /* SEGDIR ERROR SO */
ESBUFD BY 00034, /* BAD UFD — */
ESBFTS BY 00035, /* BUFFER TOO SMALL — */
ESFITB BY 00036, /* FILE TOO BIG — */

0-9 Third Edition, Update 1

UPD3621-31A

ESNULL BY
ESIREM BY
ESDVIU BY
ESRLDN BY
ESFUIU BY
ESDNS BY
ESIMUL BY
ESFBST BY
ESBSGN BY
ESFIFC BY
ESTMRU BY
ESNASS BY
ESBFSV BY
ESSEMO BY
ESNTIM BY
ESFABT BY
ESFONC BY
ESNPHA BY
ESROOM BY
ESWTPR BY
ESITRE BY
ESFAM) BY
ESIMUS BY
ESNOOM BY
ESNFLT BY
ESSTKF BY
ESSTKS BY
ESNOON BY
ESCRWL BY
ESCROV BY
ESCRUN BY
ESCMND BY
ESRCHR BY
ESNEXP BY
ESBARG BY
ESCSOV BY
ESNOSG BY
ESTRCL BY
ESNDIMC BY
ESDNAV BY
ESDATT BY
ESBDAT BY
ESBLEN BY
ESBDEV BY
ESQLEX BY
ESNBUF BY
ESINWWT BY
ESNINP BY
ESDFD BY
ESDNC BY

00037, /*
00038, /*
00039, /*
00040, /*
00041, /* ALL REMOTE UNITS IN USE
00042, /*
00043, /*
00044, /*
00045, /*
00046, /*
00047, /*
00048, /*
00049, /*
00050, /*
00051, /*
00052, /*
00053, /*
00054, /*
00055, /*
00056, /*
00057, /*
00058, /*
00059, /*
00060, /*
00061, /*
00062, /*
00063, /*
00064, /*
00065, /*
00066, /*
00067, /*
00068, /*
00069, /*
00070, /*
00071, /*
00072, /*
00073, /*
00074, /*
00075, /*
00076, /*
00077, /*
00078, /*
00079, /*
00080, /*
00081, /*
00082, /*
00083, /*
00084, /*
00085, /*
00086, /*

Third Edition, Update 1

(NULL MESSAGE)
ILL REMOTE REF
DEVICE IN USE
REMOTE LINE DOWN

DEVICE NOT STARTED
TOO MANY UFD LEVELS
FAM — BAD STARTUP
BAD SEGMENT NUMBER
INVALID FAM FUNCTION CODE
MAX REMOTE USERS EXCEEDED
DEVICE NOT ASSIGNED
BAD FAM SVC
SEM OVERFLOW
NO TIMER
FAM ABORT
FAM OP NOT COMPLETE
NO PHANTOMS AVAILABLE
NO ROM
DISK WRITE-PROTECTED

ILLEGAL TREENAME
FAM IN USE
MAX USERS EXCEEDED
NULL,COMLINE
NO_FAULT_FR
BAD STACK FORMAT
BAD STACK ON SIGNAL
NO ON UNIT FOR CONDITION
BAD CRAWLOUT
STACK OVFLO DURING CRAWLOUT
CRAWLOUT UNWIND FAIL
BAD COMMAND FORMAT’
RESERVED CHARACTER
CANNOT EXIT TO COMMAND PROC
BAD COMMAND ARG
CONC STACK OVERFLOW
SEGMENT DOES NOT EXIST
TRUNCATED COMMAND LINE
NO SMLC DMC CHANNELS
DEVICE NOT AVAILABLE D
DEVICE NOT ATTACHED
BAD DATA
BAD LENGTH
BAD DEVICE NUMBER
QUEUE LENGTH EXCEEDED
NO BUFFER SPACE
INPUT WAITING
NO INPUT AVAILABLE
DEVICE FORCIBLY DETACHED
DPTX NOT CONFIGURED

P
E
P
E

P
E
E
P
E
P
P
P
b

b
e
s
e
t
P
A

x

I
s

0-10

ESSICM BY
ESSBCF BY
ESVKBL BY
ESVIA BY
ESVICA BY
ESVIF BY
ESVFR BY
ESVFP BY
ESVPFC BY
ESVNEC BY
ESVPEF BY
ESVIRC BY
ESIVCM BY
ESDNCT BY
ESBNWD BY
ESSGIU BY
ESNESG BY
ESSDUP BY
ESIVWN BY
ESWAIN BY
ESNMVS BY
ESNMIS BY
ESNDAM BY
ESNOVA BY
ESNECS BY
ESNRCV BY
ESUNRV BY
ESUBSY BY
ESUDEF BY
ESUADR BY
ESPRIL BY
ESNSUC BY
ESNROB BY
ESNETE BY
ESSHDN BY
ESUNOD BY
ESNDAT BY
ESENOD BY
ESPHNA BY
ESIWST BY
ESBKFP BY
ESBPRH BY
ESABTI BY
ESILFF BY
ESTMED BY
ESDANC BY
ESNENB BY
ESNSLA BY
ESPNTF BY
ESSVAL BY
ESIEDI BY
ESWMST BY

CORRECTIONS

00087, /* ILLEGAL 3270 COMMAND _ */
00088, /* BAD 'FROM' DEVICE — */
00089, /* KBD LOCKED — */
00090, /* INVALID AID BYTE — */
00091, /* INVALID CURSOR ADDRESS — */
00092, /* INVALID FIELD _ */

00093, /* FIELD REQUIRED _ */
00094, /* FIELD PROHIBITED —_ */

00095, /* PROTECTED FIELD CHECK _ */

00096, /* NUMERIC FIELD CHECK _ */

00097, /* PAST END OF FIELD _ */

00098, /* INVALID READ MOD CHAR — */
00099, /* INVALID COMMAND — */
00100, /* DEVICE NOT CONNECTED — */
00101, /* BAD NO. OF WORDS — */
00102, /* SEGMENT IN USE —_ */
00103, /* NOT ENOUGH SEGMENTS (VINITS) — */

00104, /* DUPLICATE SEGMENTS (VINITS) _ */

00105, /* INVALID WINDOW NUMBER —_ */

00106, /* WINDOW ALREADY INITIATED —_ */

00107, /* NO MORE VMFA SEGMENTS —_ */

00108, /* NO MORE TEMP SEGMENTS —_ */

00109, /* NOT A DAM FILE _ */

00110, /* NOT OPEN FOR VMFA _ */
00111, /* NOT ENOUGH CONTIGUOUS SEGMENTS */

00112, /* REQUIRES RECEIVE ENABLED — */

00113, /* USER NOT RECEIVING NW _ */

00114, /* USER BUSY, PLEASE WAIT —_ */

00115, /* USER UNABLE TO RECEIVE MESSAGES */

00116, /* UNKNOWN ADDRESSEE _ */

00117, /* OPERATION PARTIALLY BLOCKED — */

00118, /* OPERATION UNSUCCESSFUL —_ */

00119, /* NO ROM IN OUTPUT BUFFER — */
00120, /* NETWORK ERROR ENCOUNTERED —_ */

00121, /* DISK HAS BEEN SHUT DOWN FS */

00122, /* UNKNOWN NODE NAME (PRIMENET) */

00123, /* NO DATA FOUND _ */

00124, /* ENQUED ONLY _ */
00125, /* PROTOCOL HANDLER NOT AVAIL DPIXx */

00126, /* ESINWT ENABLED BY CONFIG DPTX */

00127, /* BAD KEY FOR THIS PROTOCOL DPT'X */

00128, /* BAD PROTOCOL HANDLER (TAT) DPTX */

00129, /* I/O ABORT IN PROGRESS DPTX */

00130, /* ILLEGAL DPTX FILE FORMAT DPTX */

00131, /* TOO MANY EMULATE DEVICES DPTX */

00132, /* DPTX ALREADY CONFIGURED DPTX */

00133, /* REMOTE MODE NOT ENABLED NPX */

00134, /* NO NPX SLAVE AVAILABLE —_— */

00135, /* PROCEDURE NOT FOUND RSCALL */
00136, /* SLAVE VALIDATION ERROR RSCALL */

00137, /* I/O error or device interrupt (GPPI) */
00138, /* Warm start happened (GPPI) */

O-11 Third Edition, Update 1

UPD3621-31A

ESDNSK BY 00139, /* A pio instruction did not skip (GPPI)
ESRSNU BY 00140, /* REMOTE SYSTEM NOT UP
ESS18E BY 00141,

RSCALL

New error codes for REV 19 begin here:

ESNFOB BY 00142, /* NO FREE QUOTA BLOCKS _
ESMXOB BY 00143, /* MAXIMJM QUOTA EXCEEDED _

eSmax_quota_exceeded

by
ESNOQD BY
ESQEXC BY
ESIMFD BY
ESNACL BY
ESPNAC BY
ESNTFD BY
ESIACL BY
ESNCAT BY
ESLRNA BY
ESCPMF BY
ESACBG BY
ESACNF BY
ESLRNF BY
ESBACL BY
ESBVER BY
ESNINF BY
ESCATF BY
ESADRF BY
ESNVAL BY
ESLOGO BY
ESNUTP BY
ESUTAR BY
ESUNIU BY
ESNFUT BY
ESUAHU BY
ESPANF BY
ESMISA BY
ESSCCM BY
ESBRPA BY
ESDINS BY
ESSPND BY
ESBCFG BY
ESBMOD BY
ESBID BY
ESST19 BY
ESCTPR BY
ESDFPR BY
ESDLPR BY
ESBLUE BY
ESNDFD BY
ESWFT BY

143, /*
00144, /*
00145, /*
00146, /*
00147, /*
00148, /*
00149, /*
00150, /*
00151, /*
00152, /*
00153, /*
00154, /*
00155, /*
00156, /*
00157, /*
00158, /*
00159, /*
00160, /*
00161, /*
00162, /*
00163, /*
00164, /*
00165, /*
00166, /*
00167, /*
00168, /*
00169, /*
00170, /*
00171, /*
00172, /*
00173, /*
00174, /*
00175, /*
00176, /*
00177, /*
00178, /*
00179, /*
00180, /*
00181, /*
00182, /*
00183, /*
00184, /*

Third Edition, Update 1

alias to ESMXQB
NOT A QUOTA DISK (RUN VFIXRAT)

SETTING QUOTA BELOW EXISTING USAGE

Operation illegal on MFD
Not an ACL directory
Parent not an ACL directory
Not a file or directory
Entry is an ACL
Not an access category
Like reference not available
Category protects MFD
ACL too big
Access category not found
Like reference not found
BAD ACL

BAD VERSION

NO INFORMATION
Access category found (Ac$rvt)
ACL directory found (AcSrvt)
Validation error (nlogin)
Logout (code for fatal$)
No unit table available. (PHANTS)
Unit table already returned. (UTDALC)
Unit table not in use. (RIVTBL)
No free unit table. (GIUTBL)
User already has unit table. (UTALOC)
Priority ACL not found.
Missing argument to command.
System console command only.
Bad remote password RSCALL
Date and time not set yet.
REMOTE PROCEDURE CALL STILL PENDING
NETWORK CONFIGURATION MISMATCH
Illegal access mode (ACSSET)
Illegal identifier (ACSSET)
Operation illegal on pre-19 disk
Object is category-protected (AcSchg)
Object is default-protected (AcS$chg)
File is delete-protected (Fil$d1)
Bad LUBTL entry (FSIO)
No driver for device (FSIO)
Wrong file type (FSIO)

O-12

ESFDMM BY
ESFER BY
ESBDV BY
ESBFOV BY
ESNFAS BY
ESAPND BY
ESBVCC BY
ESRESF BY
ESMNPX BY
ESSYNT BY
ESUSTR BY
ESWNS BY
ESIREQ BY
ESVNG BY
ESSOR BY
ESTMVV BY
ESESV BY
ESVABS BY
ESBCLC BY
ESNSB BY
ESWSLV BY
ESVGGC BY
ESMSLV BY
ESIDNF BY
ESNACC BY
ESUDMA BY
ESUDMC BY
ESBLEF BY
ESBLET BY
ESALSZ BY
ESFRER BY
ESHPER BY
ESEPFT BY
ESEPFS BY
ESILTD BY
ESILTE BY
ESECEB BY
ESEPFL BY
ESNTA BY
ESSWPS BY

ESSWPR BY
ESADCM BY

00185, /* Format/data mismatch (FSIO) */
00186, /* Bad format (FSIO) */
00187, /* Bad dope vector (FSIO) */
00188, /* FSIOBF overflow (FSIO) */
00189, /* Top-level dir not found or inaccessible*/
00190, /* Asynchronous procedure still pending */
00191, /* Bad virtual circuit clearing */
00192, /* Improper access to a restricted file */
00193, /* Illegal multiple hops in NPX, */
00194, /* SYNTanx error */
00195, /* Unterminated STRing */
00196, /* Wrong Number of Subscripts */
00197, /* Integer REQuired */
00198, /* Variable Not in namelist Group */
00199, /* Subscript Out of Range */
00200, /* Too Many Values for Variable */
00201, /* Expected String Value */
00202, /* Variable Array Bounds or Size */
00203, /* Bad Compiler Library Call */
00204, /* NSB tape was detected */

00205, /* Slave's ID mismatch */
00206, /* The virtual circuit got cleared, */
00207, /* Exceeds max number of slaves per user */

00208, /* Slave's ID not found */
00209, /* Not accessible */
00210, /* Not Enough DMA channels */
00211, /* Not Enough DMC channels */
00212, /* Bad tape record length and EOF */
00213, /* Bad tape record length and EOT */
00214, /* Allocate request too small */
00215, /* Free request with invalid pointer */
00216, /* User storage heap is corrupted */
00217, /* Invalid EPF type */
00218, /* Invalid EPF search type */
00219, /* Invalid EPF LTD linkage descriptor */
00220, /* Invlaid EPF LTE linkage discriptor */
00221, /* Exceeding command environment breadth */
00222, /* EPF file exceeds file size limit */
00223, /* EPF file not active for this user */
00224, /* EPF file suspended within program session *

00225, /* EPF file suspended within this process */
00226, /* System administrator command ONLY */

CORRECTIONS

0-13 Third Edition, Update 1

UPD3621-31A

ESUAFU BY 00227, /* Unable to allocate file unit */
eSunable_to_allocate_file_uit

by 00227, /* alias to ESUAFU */
ESFIDC BY 00228, /* File inconsistent data count */
eSfile_inconsistent_data_count

by 00228, /* alias to eSfidc */
eSindl by 00229, /* alias to eSinsufficient_dam_level */
eSinsufficient_dam_levels

by 00229, /* Not enough dam index levels as needed */
eSpeof by 00230, /* alias to eSpast_KOF */
eSpast_EOF

by 00230, /* Past End Of File */
ESN231 by 00231, /* Error code 231. */
ESN232 by 00232, /* Error code 232. */
ESN233 by 00233, /* Error code 233. */
ESN234 by 00234, /* Error code 234. */
ESN235 by 00235, /* Error code 235. */
ESN236 by 00236, /* Error code 236. */
ESN237 by 00237, /* Error code 237. */
ESN238 by 00238, /* Error code 238. */
ESRSHD by 00239, /* Remote disk has been shut down. */
BSLAST BY 00239; /* THIS ***MUST*** BE, LAST —

‘Ie *

/* The value of ESLAST must equal the last error code. 7
* *

[RREREREREEREEREREREREERERERREEEEREREEREEEEEREREREEREERERERER/

Third Edition, Update 1 O-14

Subroutines from

MRUs

INTRODUCTION

The following subroutines have already been documented in three earlier
Minor Release Updates (MRUs) —- for PRIMOS Revisions 19.1, 19.2, 19.3.
The MRUs also supply several important oorrections to be made to
certain subroutines already documented in the Subroutines Reference
Guide.

This appendix does not repeat those corrigenda found in the MRUs;
instead of being repeated here, they will be inserted within the
subroutine documentation undergoing revision for a new edition of the
Subroutines Reference Guide as part of PRIMS Rev. 20 documentation.
However, these subroutines are repeated here to enable the user to find
all the released subroutines within the present Subroutines Reference
Guide or its update.

If the user cannot wait for all addenda and corrigenda to be collated
within the Rev. 20 edition of the Subroutines Reference Guide, PRIM
urges the user to refer to the corrections in the following MRUs:

MRU4304-009: Revision 19.1 Software Release Document

MRU4304-010: Revision 19.2 Software Release Document

MRU4304-011: Revision 19.3 Software Release Document

P-1 Third Edition, Update 1

UPD3621-31A

The following subroutines were released for Rev. 19.1, announced in the
order given:

Subroutine

PARSRV

PRISRV

SETRCS

MGSETS

MSGSST

RMSGDS

SMSGS

Function

Return the revision number of a disk partition.

Return the revision number of the currently
running PRIMDS operating system.

Return the error code to the invoking command
processor.

Set the message receive state of the calling
process,

Determine the receive state of the processes for
a user.

Return waiting deferred messages to the caller.

Send a message.

The following subroutines were released for Rev. 19.2, announced in
order given:

Subroutine

SSSERR

ERTXTS

DIRSSE

TTYSIN

Function

Perform subsystem error handling.

Accept an error code and return its corresponding
error message.

Performa directory search, responding’ to
caller-specified criteria.

Check for characters in a user's TTY buffer.

the

The following subroutines were released for Rev. 19.3, announced in the
order given:

Subroutine

LIMITS

PRJID$

Function

Set timer(s) within PRIMDS.

Return a user's login project name.

Third Edition, Update 1 P-2

SUBROUTINES FROM MRUs

SUBROUTINE DESCRIPTIONS FOR REV. 19.1

The following subroutines were released for Rev. 19.1.

Please insert the following before the entry for PHANTS on page 10-34:

> PARSRV

Purpose

This function returns the revision number of a disk partition, given .
the name of the partition.

f

dc a
a parSrv entry(char(32) var, fixed bin(15))

returns (fixed bin(15));
=
Opar_rev = SparSrv(part_name, code)

part_name 32-character varying string containing the partition
name,

code error return code.

ESFNTF Partition name not found in disk tables.
ESBNAM Illegal disk partition name,

par_rev partition revision number.

0 Pre-ACLs and quotas.
1 Converted to allow ACLs and quotas.

-~l Error — see error return code (above).

Please insert the following entry before the entry for PWCHKS on page
10-36:

> PRISRV

Purpose

This subroutine returns the revision number of the currently running
PRIMDS operating system.

P-3 Third Edition, Update 1

UPD3621-31A

Usage

del priSrv entry(char(32) var);

call priSrv(primos_rev);

primos_rev 32-character varying string containing the
PRIMDS revision number.

The following text should be inserted before the description of ‘TEXTOS
on page 10-44:

 setRCS

Purpose

This subroutine permits static mode programs to return an error code
value to the command processor that invoked them.

Usage

dcl setrcS$ entry(fixed bin(15));

call setrc$(errcode);

errcode Error code value to be returned to the command

processor (input). Zero indicates no error.

Message Subroutines

Please replace the descriptions of the message subroutines in
Appendix B with the following information.

> MGSETS

Purpose

MGSETS is used to set the message receive state of the calling process,
The receive state determines the willingnessof the process to accept

messages sent to it. There are three possible states that a process
may have: accept all messages, accept only deferred messages, and
reject all messages. Messages that are deferred are not necessarily
delivered immediately when sent, but rather are buffered by the system
and delivered later. Deferring messages allows the receiver to accept
messages at times that are convenient for himor her, rather than at
times convenient to the sender. Users may explicitly request waiting

Third Edition, Update i P-4

SUBROUTINES FROM MRUs

deferred messages via the RMSGDS call, or they may allow the system to
deliver deferred messages automatically after PRIMOS commands complete
their execution.

Usage

dcl mgsetS$ entry(fixed bin(15), fixed bin(15));

call mgset$(key, code);

key Provided by the user. A standard system key
that specifies the receive state to be set.

KSACPT Accept all messages.
KSDEFR Accept only deferred messages.
KSRJCT Reject all messages.

code A standard system error code returned by the
subroutine.

ESBKEY Bad key.
0 No error.

> MSGSST

Purpose

MSGSST allows the caller to determine the receive state of processes.
If the caller supplies a specific user number, the receive state and
user name of that process are returned. If the caller supplies a user
name, the user number and receive state of the most permissive user
with the specified name are returned.

Usage

dcl msg$st entry(fixed bin(15), fixed bin(15), char(*),
fixed bin(15), char(*), fixed bin(15), fixed bin(15));

call msg$st (key, user_num, system_name, system_name_len,
user_name, user_name_len, receive_state);

P-5 Third Edition, Update 1

UPD3621-31A

key

user_num

system_name

system_name_len

user_name

user_name_len

receive_state

Third Edition, Update 1

Provided by the user. Can be either of the
following:

KSREAD Return the user's name and state
for user user_num on_ system
system_name.

2 Return the user's number’ and
state for user user_name on

system system_name.

The user number of the process. If key =
KSREAD, user_num is provided by the user. If
key = 2, user_num is- returned by the
subroutine.

The name of the system on which the dsired
process is found. Provided by the user.

The length of system_name in characters. If
system_name_len = 0, the local system is
assumed. Provided by the user.

The user name of the process, If key = KSREAD,

this parameter is returned by the subroutine,
If key = 2, this parameter is provided by the
user.

The length of user_name in characters.
Provided by the user.

The receive state of the process. This
parameter can be any of the following:

KSACPT Accepting all messages.
KSDEFR Accepting deferred messages only.
KSRJCT Rejecting all messages,
KSNONE User does not exist.
KSBRKEY Invalid state, bad key in call.
KSBREM Invalid state, bad system_name.,

P-6

SUBROUTINES FROM MRUs

> RMSGDS

Purpose

RMSGDS returns waiting deferred messages to the caller. This routine
does not return immediate messages. Users wishing to obtain all
messages via this routine must inhibit immediate messages by setting
their receive state to receive only deferred messages (see MGSETS with
a key of KSDEFR).

Usage

del rmsgd$ entry(char(*), fixed bin(15), fixed bin(15), char(*),
fixed bin(15), fixed bin(15), char(*), fixed bin(15));

call rmsgd$(from_name, from_name_len, from_num, system_name,
system_name_len, time_sent, text, text_len);

from_name The user name of the sender. Returned by the
subroutine.

from_name_len The length of fromname in characters.
Provided by the user.

from_num The sender's user number. Returned by the
subroutine.

system_name The name of the system from which the message
was sent, Returned by the subroutine.

system_name_len The length of systen_name in characters.
Provided by the user.

time_sent The time, in minutes past mimight, at which
the message was sent. If no message is
returned, time_sent is set to-l. Returned by

the subroutine.

text The text of the message. Returned by the
subroutine.

text_len The length of text. Provided by the user.

P-7 Third Edition, Update 1

UPD3621-31A

B smscs

Purpose

SMSGS sends a message. Messages may either be sent inmediately or
deferred, Immediate messages are delivered to the recipient at the
time the message is sent. Deferred messages are held in a systen
buffer until the receiver requests them. (Deferred messages are also
delivered to a user autamatically after each PRIMOS command completes
execution.) Messages may be sent to other processes by addressing them
to either their user numbers or their user names. If user name is
used, all interactive users with that name will receive the message.

Usage

dcl smsg$ entry(fixed bin(15), char(*), fixed bin(15),
fixed bin(15), char(*), fixed bin(15), char(*),
fixed bin(15), (131) fixed bin(15));

call smsg$(key, to_name, to_name_len,
to_user_num, to_system_name, to_system_len, text,
text_len, error_vector);

All parameters except error_vector are provided by the user.

key Specifies the type of message, immediate or
deferred.

6 Deferred message. Messages are
buffered and delivered at the
receiver's convenience,

1 Immediate message. Messages are
delivered immediately when sent.

to_name The user name of the user to whom the message
is to be sent. If to_name is nonblank, the
message is sent to all interactive users logged
in under that name.If to_name is blank, the
message is sent by to_num, and to_mme is
ignored.

to_name_len The length of to_name in characters.

to_user_num The user number of the user to whom the message
is sent. If to_num is positive, to_name is
ignored. If to_num is zero and to_name is
blank, the message is sent to the operator.

Third Edition, Update 1 P-8

to_system_name

to_system_len

text

text_len

error_vector

error_vector (1)

error_vector (2)

error_vector (3)

SUBROUTINES FROM MRUs

The name of the node to which the message is to
be sent,

The length of to_system_name in characters, If
to_system_len is zero, the local system is
assumed,

The text of the message. Messages may be up to
80 characters in length, and either
blank-padded or terminated with a linefeed.
Only printable characters and the bell
Character are printed by the operating systen.

The length of text in characters.

An array that reports the success or failure of
the call. Its size can range from 4 through
131. Its elements have the following meanings:

An overall status code returned by the
subroutine.

ESNRCV Operation aborted because
sender does not have
receive enabled.

ESUADR Unknown addressee.
ESUDEF Receiver not receiving.
ESPRTL Operation partially

blocked.
ESNSUC Operation failed.
0 Operation succeeded.

Three less than the total number of
elements in error_vector, Normally set
to the number of configured users (128).
Provided by the user,

An overall network error code returned

by the subroutine.

XSSCLR Connect cleared.
XSSBPM Unknown node address,
XSSDWN Node not responding.

error_vector (4-131) An optional status vector whose length
is the value of error_vector (2). If
supplied, each element is a status code
returned by the subroutine, indicating
success or failure to send a message to
user number m3, where nis the index

P-9 Third Edition, Update 1

UPD3621-31A

into error_vector. For example,
error_vector (10) is the status for user

number 7.

ESUBSY User busy, please wait.
ESUNRV User not receiving now.

SUBROUTINE DESCRIPTIONS FOR REV. 19.2

Add the following new subroutines to Chapter 10:

> TIysin

Purpose

This function checks whether there are any characters in the user's TIY
input buffer. The state of the buffer is undisturbed by the call; no
character is actually read or removed from the buffer.

Usage

del tty$in entry() returns (bit(1)aligned);

more-to-read = ttySin;

more-to-read Will be true ('1'b) if there is at least ore
character of input available at the terminal of the
calling process, and '0'b otherwise.

Discussion

TTYSIN is used to check whether there is at least one character of
input currently available on the calling process' terminal. Use TIYSIN
when you do not want to wait for input via a call to CLSGET, CLINS, or
TLIN. TTYSIN allows the program to poll for input and perform other
processing while waiting for input to arrive.

Tf TTYSIN is called in a noninteractive process, '0'b is always
returned, whether or not a command input file is active.

It is possible for TIYSIN to return 'l'b, and for a subsequent call to
CLINS to wait for input. This can happen if the user types Control-P
after TTYSIN is called, which causes a quit to PRIMDS and the flushing
of the input buffer. When the user types START, the next call to CLINS
will then wait for a character.

Third Edition, Update 1 P-10

SUBROUTINES FROM MRUs

TTYSIN is necessary at Rev. 19 to cut down on CPU usage. Before
Rev. 19, checks of the input buffer could be done only with an R-mode
routine that, at Rev. 19, has a high overhead of CPU usage. Use of
TTYSIN can cut CPU usage by half.

Because FIN cannot call subroutines with no argument, this routine may
not be called directly from FIN. To get the benefits of the routine,
use an F77 or PMA interluce.

Command Error Reporting

This discussion applies to the two subroutines that follow, SETRCS and
SSSERR.

When a command or subsystem detects an error situation, two parties
must in general be notified: the user, who is ustally interactive, and
the invoker, which is simply the procedure that invoked the command or
subsystem. Typically, the user is notified by means of a diaqostic

message, whereas the invoker must be notified by a method more suitable
or programmed decisions-—-a status code.

The requirement that subsystems be able to keep control on errors if
interactive but give up control if noninteractive is met by requiring
subsystems to call the routine SSSERR. Use of SSSERRis necessary to
support the Command Procedure Language product. Without it, CPL is not
able to support its documented error handling features fully because it
does not receive proper indication of compilation, loading, and file
handling failures.

Severity Codes

A severity code is a single FIXED BINARY(15,0) value in which two
distinct pieces of information may be encoded. First, the severity
level has the value 0, -1, or +1; this is the arithmetic sig of the
Severity code. Second, the absolute value of the severity code may (or
may not) be a standard error code, as defined below. The meaning, if
any, Of the absolute value of a severity code must be interpreted
relative to the specific command that returned it: the same absolute
value returned by two different commands may not mean the same thing.

The meanings of the severity level of the severity code, however, are
the same no matter which command returned the code. They are as
follows:

0 No errors--execution successful.

-1 Warning(s)—minor exceptions encountered, but the results ‘of
the command's execution are usable to the best of the command's

ability to determine.

P-ll Third Edition, Update 1

UPD3621-31A

1 Error(s)—serious errors encountered. Some of the results of
the command are not usable, or some of the actions requested
could not be performed.

When a command or command function has decided to return control to its
caller, it must also return a severity code value if it encountered an
error. Command callers initialize the severity code to 0 before
calling a command so that the command need take no action if no errors

are encountered,

If the procedure is part of a user-created program, it should use the
primitive SETRCS to return the severity code.

Standard Error Codes

A standard error code is always to be interpreted according to same
error table. Error tables are identified by 32-character names. At
present, only the PRIMOS error table exists, accessible via ERRPRS. It
is assigned the null name. See Appendix E, Error Handling for I/O
Subroutines.

A standard error code iS a compact representation of a diagnostic
message and is usually returned by a command or subroutine to its
caller. This code identifies the precise cause of an error encountered
by the callee. A standard error code is converted to a severity code
by changing its arithmetic siq to the proper severity level valte.

Subsystem Error Handling

Whenever a conversational subsystem encounters an error in the syntax
of a subcommand or during its execution and that subsystem wishes to
returns to its own command level, it must:

1. Print any applicable diagnostics;

2. Call the PRIMS subroutine SSSERR (subsystem error);

3. Return to its commandlevel;

4, Not return a positive severity code when it finally returns
control to PRIMDS, since then the user would see an ER! prompt
when he is not expecting ore.

Third Edition, Update 1 P-12

SUBROUTINES FROM MRUs

When a subsystem encounters an error and immediately returns to PRIMDS
without going back to its own command level, it does not make any

difference whether the subsystem is being used interactively or not.
Hence the subsystem should:

1. Print any applicable diaqostics;

2. Call SETRCS to set a positive (or negative) severity code as
appropriate;

3. Return to PRIMS. The user will see an ER! prompt, if
interactive, or a CPL procedure will receive the proper error
code, if not,

4, SSSERR should not be called in this case,

SSSERR works approximately as follows. When called, SSSERR checks

whether the user is interactive, that is, whether the process isa

non-phantan whose command input stream is connected to the terminal.
Tf so, SSSERR simply returns, Otherwise, SSSERR raises the condition

SUBSYS_ERRS. The default handling of this condition is for the command
processor to abort the subsystem via a nonlocal goto back into the
command processor, where a positive severity code is forced.

Users and subsystem implementors should keep the following points in
mind:

e The user's program may make an om-unit for SUBSYS_ERRS$, which
simply returns. This causes SSSERR to return to the subsysten
as if the user were interactive, thus defeating’ the
noninteractive abort mechanism. (This option would rarely be
useful.)

@ The subsysten may use the condition mechanism's CLEANUPS
condition to regain control in one last gasp before the nonlocal
goto is completed. (For details on the condition mechanism, see
Chapter 22.) This will allow the subsystem to perform any
required cleanup activities before it actually loses control.

Subsystems should call SSSERR after printing diagnostics and before
returning to their command level if they intend to retain control.

Subsystems should not call SSSERR if they will return to PRIMDS
immediately on the error.

Calling Sequences for Subroutines Affected

B sSETRCS

(SETRCS was released for Revision 19.1. Its calling sequence is
described earlier in this appendix.)

P-13 Third Edition, Update 1

UPD3621-31A

> SSSERR

Purpose

This subroutine is used for subsystem error handling as discussed
above. If the caller is being used interactively, SSSERR simply
returns. Otherwise, the condition SUBSYS_ERRS is raised, which ustally
results in the termination of the caller by means of a nonlocal goto
back to the command processor.

Usage

dcl ssSerr entry();

call ssSerr;

P ERTXTS

Purpose

This routine accepts a standard PRIMOS error code and returns the
character string representation of its error message as it would be
printed by the routine ERRPRS.

Usage

del ertxtS entry(fixed bin, char(1024)var);

call ertxt$(code, errmsg);

code Standard error code. (Input)
errmsg Text of error message. (Output)

Add the following to page A-28.

> DIRSSE

Purpose

This new routine replaces and extends the fwunctiomality of DIRSLS.
DIRSSE is a general purpose directory searcher that returns entries
meeting caller-specified selection criteria.

Third Edition, Update 1] P-14

Usage

dcl dirSse entry

SUBROUTINES FROM MRUs

(fixed bin(15), fixed bin(15), bit(1), ptr,
ptr, fixed bin(15), fixed bin(15),
fixed bin(15), (4) fixed bin(15), fixed bin(15),

fixed bin(15));

call dirSse (dir_umit, dir_type, initialize, sel_ptr,
return_ptr, max_entries, entry_size,
ent_returned, type_counts, max_type,

code) ;

dirunit

dir_type

initialize

sel_ptr

return_ptr

max_entries

entry_size

ent_returned

type_counts

max_type

Unit on which directory to be searched is open.

(Input)

Type of object open on dir_unit. (Input)

If set, directory is to be reset to the beginning.
If unset, it is to be searched from the current

position, (Input)

Pointer to structure containing selection criteria
(see below). (Input)

Pointer to caller's return structure for selected

entry data (see below). (Input)

Maximum number of entries to be returned (should be
greater than zero unless this routine is being used
only to initialize the directory). (Input)

Number of words to be returned per entry. (Input)

Number of entries returned. (Output)

Number of entries of each type returned in the order:
dirs, seg dirs, files, access categories. (This
argument should be an array of 4 halfwords.) The

_counts are incremented each time DIRSSE is
called, that is, the number of types returned in this
call of DIRSSE is added to the current type-counts
totals. When the “initialize” bit is set, these
counts are reset to the total number of types
returned in this call. (Input/output)

Number of types in type_counts (currently must be 4).

(Input)

P-15 Third Edition, Update l

UPD3621-31A

code Standard error code. (Output)
Possible values are:

eSbver

eSbpar

eSeof

eSstl19

Bad version number for selection
criteria structure (currently can only
be zero (0)).

Bad max_type (currently must be 4).

There are no more entries in the

directory to be selected.

Selection criteria involving date/time
last saved or RBF file type have been
specified, and the PRIMS rev that
accesses the directory does not support
these features,

The selection criteria should be supplied in the following structure.
The "sel_ptr™ parameter should point to this structure.

del 1 selection_criteria based,

b
h
N
D
N version_no fixed bin,

wildptr ptr,
wild_count fixed bin (15),
desired_types,
3 dirs bit(l),
3 seg_dirs bit(l),
3 files bit(1),
3 access_cats bit(l),
3 RBF bit(l),
3 spare bit(1l),

N
O
B
N
D

B
O

where:

modified_before_date_time fixed bin (31),
modified_after_date_time fixed bin (31),
saved_before_date_time fixed bin (31),
saved_after_date_time fixed bin(31),

version_no Must be zero for this version of the

selection criteria structure,

wild_ptr If wildcard entryname selection is to be
applied to the directory entries, this field
should point to a list of wildcard names for
which to search. The list should be an array
o£ char(32) varying strings, and the names
must be in uppercase. Wildcards are
explained in the Prime User's Guide.

Third Edition, Update 1

P-16

SUBROUTINES FROM MRUs

wild_count Is the number of names in the list pointed to
by wild_ptr. If wildcount is zero,
entryname is not used as a_ selection

criterion.

desired_types A bit-encoded field defining which types of
directory entries the caller wishes to have
returned. The first four bits of this field
specify the physical types of the entries
that are to be returned. The fifth bit can
be used in combination with the other four
bits to select entries that are also RBF
entries, and thus have a logical type of 'l'.

To select only RSF segment directories, the
seg_dirs and RBF bits should both be set, and
the other bits not set. If the first four
bits are set, all entries will be returned.
If all five bits are set, all entries that
are also RBF entries will be returned.

modifiedbefore_date Selects entries with date/time modified
earlier than this date. The date should be
in standard FS format (described with routine
CvSDQS). Should be zero if this field is not
to be used as a selection criterion.

modified_after_date Selects entries with date/time modified later
than this date. The date should be in
standard FS format (described with routine
CVSDQS). Should be zero if this field is not
to be used as a selection criterion,

saved_before_date Reserved for future use. Must be zero

currently.

saved_after_date Reserved for future use. Must be zero

currently.

DIRSSE will return the information for all the entries selected by this

call in the following structure:

dcl 1 dir_entries (*) based,
2 ecw,

3 type bit (8),
3 length bit (8),

2 entryname char(32) var,
2 protection,

3 owner rights,
4 spare bit (5),
4 delete bit (1),
4 write bit (1)

P-17 Third Edition, Update 1

UPD3621-31A

4 read bit (1),
3 delete_protect bit (1),
3 non_owner_rights,

4 spare bit (4),
4 delete bit (1),
4 write bit (1),
4 read bit (1),

2 file_info,
3 long_rat_hdr bit(1),
3 dumped bit(1),
3 dos_mod bit (1),
3 special bit (1),
3 rwlock bit (1),
3 spare bit (2),

3 type bit (8),

N
N
D
N

D
N

where:

date_time_mod fixed bin (31),
non_default_acl bit (1) aligned,
logical_type fixed binary,
trunc bit (1) alioqned,
date_time_last_saved fixed bin (31);

ecw Entry control word for the entry:

type:

length:

2 normal directory entry (file,

24

directory, or segment direc-
tory).

access category.

words for PRIMDS revs up to and
including 19.2; 27 words for
PRIMOS revs from 19.2 onwards.

entryname Name of the entry.

protection owner_rights

delete_protect

Third Edition, Update 1 P-18

These are the rights granted to a
user when attached to the
containing directory with owner
rights. |

If this bit is set, the file may
not be deleted. The bit may be
reset by a call to the SATRSS
routine.

. SUBROUTINES FROM MRUS

non_owner_rights These are the rights granted to a
user when attached to the
containing directory with non-owner
rights.

file_info long_rat_hdr If set, indicates that the file is
a Disk Record Availability (DSKRAT)
file spanning more than one disk
record.

dumped If set, this file has been saved by
MAGSAV and has not been modified
Since then.

dos_mod If set, this file was modified
while PRIMOS II (DOS) was running.
It indicates that the date/time
last modified field may be
incorrect.

special If set, this is a speciai file
(e.9g., DSKRAT, BOOT, MED) and may

not be deleted.

rwlock Indicates the setting of the file's
read/write concurrency lock.

Possible values are:

system default setting
unlimited readers or ore
writer (exclusive)
unlimited readers and one
writer (update)

3 unlimited readers and
writers (none)

type Indicates the type of object
described by this entry. Possible
values are:

p
o
H
o

SAM file
DAM file
SAM segment directory
DAM segment directory
UFD
Access categoryA

f
W
N
E
H
©

date_time_mod The date/time the file was last modified, in
standard FS format. FS format dates are
described with routine CVSDQOS.

P-19 Third Edition, Update 1

UPD3621-31A

non_default_acl This bit is set if the object is not
protected by the default ACL — that is, if
it is protected by a specific ACL or by
access category.

logical_type This is an additional file type to the
physical file type described in
file_info.type. Possible values are:

0 for normal files
1 for RBF files

trunc This bit is set if the file has been
truncated by the FIX_DISK utility;
otherwise, reset to zero.

date_time_last_saved Reserved for future use. This field will
currently be returned as zero (unset).

SUBROUTINE DESCRIPTIONS FOR REV. 19.3

Add the following new subroutines to Chapter 10.

> LIMqtTs

Purpose

LIMITS allows the setting of various timers within PRIMOS, each
generating a signal if expired, The timer values may also be read.

Usage

dcl limit$S entry(fixed bin(15), fixed bin(31), fixed bin(15),

fixed bin(15));

call limit$(key, limit, res, code) ;

key This key is split into two 8-bit functions.
The right half is as follows:

read limit
set limith

o o
u

Third Edition, Update 1 P-20

SUBROUTINES FROM MRUs

The left half is as follows:

cpu limit in seconds
login limit in minutes
CPU watchdog in seconds
real time watchdog in minutesO

V
O
T
N

e
H

limit This is the time to be set in minutes or
seconds.

res Reserved — must be zero,

code This is a returned standard error code. Refer
to Appendix D for a complete listing.

p PRIS

Purpose

This subroutine supports the User Registration and Profiles system. It
is intended for use by external login programs that wish to obtain the
user's project name. It returns the user's login project mame in
project_idmame. If the user is logged into the default project, the
returned name is DEFAULT.

Usage

del prjid$ entry(char(32) var);

call prjid$(project_id_name);

Trailing blanks on the project name are not returned. This subroutine

is not available in R mode.

Example

OK, SLIST PROJECTCALL. F77
INTEGER*2 PROJECT (17)
CALL PRIIDS$ (PROJECT)
CALL TNOU (PROJECT (2) , PROJECT (1))

CALL EXIT
END

P-21 Third Edition, Update 1

UPD3621-31A

OK, F77 PROJECTCALL
[F77 Rev. 19.2]
0000 ERRORS [<.MAIN.> F77-REV 19.2}
OK, SEG —LOAD
[SHG rev 19.3.3]
$ LO PROJECICALL

$ LI
LOAD COMPLETE

S$ EXEC
DEFAULT

Third Edition, Update 1 P-22

ASxy series
ACSCAT

ACSCHG
ACSDET
ACSLIK
ACSLST
ACSRVT

ACSSET
ALCSRA
ALSSRA

APSFXS
ASCSSS

ASCSRT

ASNLNS
ATS
ATSABS

ATSANY

ATSHOM
ATSOR
ATSREL
ATCHSS
ATTDEV

Index of Subroutines

FORTRAN compiler addition functions,
Add a file to an access category.
Modify an existing ACL.
Set default protection.
Protect one file like another.

' Read an ACL.

Convert an ACL directory toa
password directory.
Create or replace an ACL.
Get space for return function data.
Get space, set value, for return
function data.
Append a suffix to a pathname.
Sort or merge sorted files (multiple
file types and key types).
Sort or merge sorted files (multiple
file types and key types).
Assign AMLC line.
Attach by pathname.
Attach to a top-level directory ona
given partition.
Attach to a top-level directory on
any partition.
Return to home directory.
Return to origin directory.
Attach relative to current directory.
Attach to a UFD.
Change a device assignment temporarily.

by Name

G7
A-3
A-4
A-5
A-6
A-6
A-8

A-9
L-4
L-9

9-7
13-7 ,13-26

13-9

20-18
2-10
A-1l

A-12

A-12
A-13
9-14
9-8
15-1

Third Edition

UPD3621-31A

BNSRCH

BUBBLE

CSxy series
CSA01
C$M05
CSML0
CsMl1
CS$M13
CSP02
CLIN

CALAC$
CASESA
CATSDL
CESBRD

CESDPT

CHGSPW
CKDYNS

CLSGET

CLSPIX
CLINEQ
CLNUSS
CLOSSA
CMADD
CMADJ
CMBNSS
CMQOF
CMCON
CMDET
CMDLSA
CMIDN

CMINV
CMLVSE

CMMLT
CMSCL
CMSUB
CMTRN
CNAMSS
CNINS
CNSIGS
CNVASA
CNVBSA
COMANL
COMB
COMISS

Third Edition

Binary search,
Inhibit or enable CONTRCL-P.
Bubble sort.

FORTRAN compilerconversion functions.
Control functions for user terminal.
Control functions for 9-track tape.
Control functions for 7-track tape.
Control functions for 7-track tape (BCD).
Control functions for 9-track tape (EBCDIC).
Control functions for paper tape.
Get one character from command file or

terminal.
Calculate access available.
Convert between upper- and lowercase.
Delete an access category.
Return command environment breadth
allocated to user.
Return command environment depth
allocated to user.
Change. login password,
Determine runtime accessibility
to an entrypoint via a DYNT.
Read a line of text from command file or
terminal.
Parse command line.
Solve linear equations (complex).
Close all sort units after SRIFS.
Close a file.
Matrix addition (complex).
Calculate adjoint matrix (complex).
Sort tables prepared by SETUS.
Calculate signed cofactor (complex).
Set constant matrix (complex).
Calculate matrix determinant (complex).
Parse a command line.
Set matrix to identity matrix (complex).
Calculate signed cofactor (complex).
Call a new command level upon

an error condition.
Matrix multiplication (complex).
Multiply matrix by scalar (complex).
Matrix subtraction (complex).
Calculate transpose matrix (complex).
Change the name of a file.
Move characters.
Call more on-units.
Convert ASCII number to binary.
Convert binary number to ASCII.
Read a line of text,
Generate matrix combinations.
Switch between user terminal and

SX-2

13-30
10-1
13-32

APPG
18-4
19-23 ,19-24
19-23 ,19-25
19-23 ,19-25
19-23 ,19-25
18-4
10-3

A-14
12-8
A-15
L-9

L-10

A-16
L-10

10-4

10-6
11-4
13-17 ,13-23
12-8
11-6
11-6
13-17 ,13-22
11-8
11-9
11-10
12-9
11-11
11-12
M-2

11-13
11-14
11-15
11-15
9-10
10-19
22-16
12-16
12-17
10-20
11-3
9-11

COMLV$
COMDS$
CONTRI

CPs

CREASS
CREPWS
CSTRSA
CSUBSA
CTIMSA
CVSDOS
CVSDIB
CVSFDA
CVSFDV

DSxy series
DSINIT
DATES
DATESA
DELESA
DIRSLS
DIRSRD
DIRSSE

DISPLY

DLINEQ

DMADD
DMADJ
DMOOF

DMOON

DMDET
DMIDN

DMINV
DMMLT
DMSCL

DMSUB
DMTRN
DOFYSA
DTIMSA

DUPLX$
DYSSGS

command file for input stream.
Call a new command level.
Switch terminal output to file or terminal.
Perform device-independent control
functions (obsolete).
Invoke command or program from within
a running program.
Create a sub-UFD.
Create a password directory.
Compare two strings for equality.
Compare two substrings for equality.
Return CPU time since login.
Convert binary date to quadseconds.
Convert formatted date to binary.
Convert binary date to ISO format.
Convert binary date to vistal format.

FORTRAN compiler division functions.
Initialize disk (obsolete).
Return current date/time in binary format.
Return today's date, American style.

Delete a file,
Search directories.
Read directory entries.
Perform directory search, responding to
caller-specified criteria.
Obsolete sense test.
Solve a system of linear
equations (double precision).
Matrix additions (double precision).
Calculate adjoint matrix (double precision).
Calculate signed cofactor (double
precision).
Set matrix to constant matrix (double
precision).
Calculate determinant (double precision).
Set matrix to identity matrix (double
precision).

INDEX BY NAME

M-2
9-12
16-6

I-ll

9-13
A-17
12-18
12-19
12-21
A-18
A-19
A-20
A-21

G7
17-4
A-22
12-21
12-21
A-22
A-27
P-14

J-1
11-4

11-6
11-8
11-6

11-9

11-10
li-11

Calculate inverted matrix (double precision). 11-12

Matrix multiplication (double precision).
Multiply matrix by a scalar (double
precision).
Matrix subtraction (double precision).

11-13
11-14

Ji-15
Calculate transpose matrix (double precision) .11-15
Return today's date as day of year (Julian).
Return disk time since login.
Return terminal configuration word.
Retrieve maximum number of private
dynamic segments.

12-22
12-22
10-21
L-13

Third Edition

UPD3621-31A

ESxy series
EDATSA
ENCDSA
ENTSRD
EPFSAL
EPFSALLC

EPFSCP
EPFSCPF

EPFSDEL

EPFSDL
EPFSINIT
EPFSINVK
EPFSMAP

EPFSMP
EPFSNT
EPFSRN
EPFSRUN

EPFSVK
EQUALS
ERKLS$
ERRPRS
ERRSET
ERTXTS

EXSCLR
EXSRD

EXSSET
EXIT
EXSTSA

FSxxxxx
FSxxyy series

FDATSA

FEDTSA

FILSDL
FILLSA
FNCHKS
FORCEW
FRESRA

FSUBSA
FTIMSA

Third Edition

FORTRAN compiler exponentiation routines.
Today's date, European (military) style.
Make a number printable if possible.
Read directory entry with given name.
Synonym for EPFSALLC,
Allocate storage for EPF's linkage and
static date areas.
Synonym for EPFSCPF.
Return state of command processor flags
in an EPF,
Deactivate one activation of an EPF
for the calling process.
Synonym for EPFSDEL.
Perform EPF linkage initialization.
Begin execution of a program EPF.
Map procedure images of EPF file
into virtual memory.
Synonym for EPFSMAP.
Synonym for EPFSINIT.
Synonym for EPFSRUN.
Perform all appropriate calls to
execute an EPF file.
Synonym for EPFSINVK,
Generate new name for an object name.
Read or set erase and kill characters.
Interpret a return code.
Obsolete error handling.
Accept an error code and return its
corresponding error message.
Disable signalling of EXITS condition.
Return state of counter controlling
EXITS condition.
Enable signalling of EXITS condition,
Return to PRIMOS.
Check for file existence,

FORTRAN internal support subroutines.
FORTRAN compiler floating-point
functions,
Convert the DATMOD field returned by RDENSS
to DAY MON DD YYYY.

Convert the DATMDD field returned by RDENSS
to DAY DD MON YYYY,.
Delete a file,
Fill a string with a character.
Check a filename for valid format.
Write to disk immediately.
Release EPF space, returning information
via command functions.
Fill a substring with a given character.
Convert the TIMMOD field returned by REDNSS,.

SX-4

G-8
12-23
12-23
A-28
I-13
I-13

I-14
L-14

I-15

I-15
L-17
L-18
I-21

I-21
I-17
I-24
L-24

L-18
M-3
10-23
10-24 ,D-7
E-2
P-14

I-28
L-28

I-29
10-25
12-25

APPF
APPG

12-25

12-26

A-29
12-27
10-25
9-15
L-29

12-27
12-28

GCHAR
GCHRSA
GENDSA
GETERR
GETIDS
GINFO
GPASSS
GPATHS

GVSGET
GVSSET

HSxy series
HEAP

ISAA01
LSAALZ
TSACO3
ISACO9
TSAC15

ISAD07
TSAM05
ITSAM1O
TSAM11
ISAML3
TSAPO2
I SBD07
TSBM05
ISBMLO
ICES
IDCHKS
IMADD
IMADJ
IMCOF
IMCON
IMDET
IMIDN
IMMLT
IMSCL
IMSUB
IMTRN
INSERT
ISACLS

JSTRSA

Get a character from an array.
Get a character from a packed string.
Position to end of file.
Error handling (obsolete).
Determine a user's full id.
Check operating system being used.
Return passwords of a sub-UFD.
Find pathname for file unit or current
home or attach point.
Retrieve the value of a global variable.
Set the value of a global variable.

FORTRAN compiler complex number storage.
Heap sort.

Read ASCII from terminal.
2mrirT eTRead ASCII from terminal or input stream.

Input from parallel card reader.
Input from serial card reader.
Read and print card from
parallel card reader.
Read ASCII from disk.
Read ASCII from 9-track tape.
Read ASCII from 7-track tape.
Read BCD from 7-track tape.
Read EBCDIC from 9-track tape.
Read paper tape (ASCII).
Read binary from disk.
Read binary from 9-track.
Read binary from 7-track.
Initialize command environment.
Check an id for valid format.
Matrix addition (integer).
Calculate adjoint matrix (integer).
Calculate signed cofactor (integer).
Set matrix to constant matrix (integer).
Calculate matrix determinant (integer).
Set matrix to identity matrix (integer).
Matrix multiplication (integer).
Multiply matrix by scalar (integer).
Matrix subtraction (integer).
Calculate transpose matrix (integer).
Insertion sort.
Get directory type (ACl or nonACL).

Left-justify, right-justify, or center a

string.

INDEX BY NAME

10-26
12-28
12-25
E-3
A-30
10-27
9-16
9-17

10-28 ,10-24
10-29

G-5
13-32

17-3 |
~ 19-22 ,19-23
19-23 ,19-25
19-23 ,19-25
19-23 ,19-25
18-6
17-3
19-23 ,19-25
19-23 ,19-25
I-29
10-29
11-8
11-6
11-6
11-9
11-10
11-11
11-13
11-14
11-15
11-15
13-33
A-3]

12-30

Third Edition

UPD3621-31A

LS$xy series
LIMITS
LINEQ

LISTSCMD

LOGO$$
LONSCN
LONSR
LSTRSA
LSUBSA
LVSGET

LVSSET

MSxy series
MADD

MADJ

MCHRSA

MOOF
MOON

MDE'T

MGSETS
MIDN

MINV
MKLBSF

MKONSF
MKONSP
MKONUS
MMLT
MRG1SS
MRG2$
MRG3S$S
MSCL

MSTRSA

MSUBSA

NSxyseries
NAMEOS
NLENSA

Third Edition

FORTRAN compiler complex number loading.
Set timer(s) within PRIMDS.
Solve a system of linear equations (single
precision).
Display mini-level commands qualified
by a wildcard character string match.
Log out a user or process,
Enable or disable logout notification.
Retrieve logout information.
Locate one string within another.
Locate one substring within another.
Retrieve value of local variable
defined within CPL program,
Set value of local variable defined
within CPL program

FORTRAN compiler multiplication routines,
Matrix addition (single precision).
Calculate adjoint matrix (single
precision). -
Move a character from one packed string to
another.
Calculate signed cofactor (single precision).
Set matrix to constant matrix (single
precision).
Calculate matrix determinant (single
precision).
Set receiving state for messages.
Set matrix to identity matrix (single
precision).
Calculate inverted matrix (single precision).
Make PL/I-compatible label
(for condition mechanism) .
Create an om-unit from FIN.
Create an on-unit from F77 or PLIG,
Create an on-unit from PMA,
Matrix multiplication (single precision).
Merge sorted files.
Return next merged record.
Close merged input files,
Matrix addition (single precision).
Return receiving state of a user.
Move one string to another.
Matrix subtraction (single precision).
Move one substring to another.

G-5
P-20
11-4

M-3

10-30
M-4
10-32
12-31
12-31
M4

M-5

APPG
11-5
11-6

12-33

11-8
11-9

11-10

B-4
li-11

Li-ll
22-17

22-17
22-18
22-20
11-13
13-13 ,13-14
13-13 ,13-16
13-13 ,13-17
11-14
P-5
12-34
11-15
12-34

Calculate transpose matrix (single precision) .11-15

FORTRAN compiler negation functions,
Compare two filenames for equivalence.

G-4
9-18

Determine the operational length of a string. 12-36

SX-6

OSAA01
OSAC03
OSAC15
OSAD07
OSAD08
OSALXx
OSALO4
OSAL06
OSAL14
OSAM05
OSAM1LO
OSAM11
OSAML3
OSBD07
OSBMO05
OSBMLO
OSBP07
OPENSA
OPNPSA
OPNVSA
OPVPSA

P1LIB

PLIN
P1OB

P1OU

PASDEL
PASLST
PASSET
PARSRV

PHANTS
PHNIMS
PLISNL
POSNSA

PRISRV

PRJIIDS
PRWESS
PWCHKS

Write ASCII to terminal or command stream.
Parallel interface to card punch.
Parallel interface punch and print.
Write compressed ASCII to disk.
Write ASCII uncompressed todisk.
Interface to various printer controllers.
Centronics line printer.
Parallel interface to MPC line printer.
Versatec printer/plotter interface.
Write ASCII to 9-track tape.
Write ASCII to 7-track tape.
Write BCD to 7~-track tape.
Write EBCDIC to 9-track tape.
Write binary to disk.
Write binary to 9-track tape.
Write binary to 7-track tape.
Punch paper tape (binary).
Open supplied filename.
Read filename and open.
Open filename with verification and delay.
Read filename and open, or verify and delay.
Obsolete indicator test.

Input character from paper tape reader to
Register A,
Input character from paper tape to variable.
Output character from Register A to
paper-tape punch.
Output character from variable to
paper-tape punch.
Delete a priority ACL.
Read a priority ACL.
Add a priority ACL.
Return revision number of disk partition.
Generate matrix permutations.
Start a phantan (obsolete).
Start a phantan.
Nonlocal GOTO (condition mechanism) .
Position file.
Obsolete error handling.
Return revision number of currently
running PRIMDS operating system.
Return a user's login project name.
Act on SAM or DAM files.
Check a password for valid format.

INDEX BY NAME

18-7
19-20
19-20
17-2
17-4
19-1
19-3
19-3
19-14
19-24
19-23 ,19-25
19-23 ,19-25
19-23 ,19-25
17-1
19-23 ,19-25
19~23 ,19-25
18-2
12-36
12-37
12-38
12-46
J-2

18-8

18-8
18-8

18-8

A-31
A-32
A-33
P-3
11-16
10-34
10-35
22-21
12-43
E-3
P-3

P-21
9-19
10-36

Third Edition

UPD3621-31A

QSREAD
QSSET
QUICK

SSxy series
SATRSS
SAVESS
SCHAR
SEMSCL
SEMSDR
SEMSNF
SEMSOP
SEMSOU
SEMSIN
SEMSTS
SEMSIW
SEMSWT
SETRCS

Third Edition

Read quota information.
Set quota max,
Partition exchange sort.

Radix exchange sort,
Generate random number and update seed,
using 32-bit word size and the linear
congruential method.
Synonyn for RDSCE_DP,.
Return current value of the
command environment breadth.
Read ASCII from any device.
Read binary from any device.
Position in or read from a UFD.
Read a specified number of ASCII characters.
Parse a PRIMOS command line.
Pass control to next user.
Read an R-mode runfile,
Restore -and execute an R-mode runfile.
Get input records after SEIS.
Receive a deferred message.
Prompt, read a pathname, and check format.
Initialize random number generator seed,
Prompt and read a number (in any format).
Replace an EPF file with another.
Return position of file.
Read disk record (obsolete).
Identify user's access rights to segment.
Rotate string left or right.
Rotate substring left or right.
Get sorted records.
Cancel an on-unit from FIN or F77.
Cancel an on-unit from PLIG or PMA,
Reposition file,

FORTRAN compiler subtraction routines.
Set or modify a file's attributes,
Save an R-mode runfile,.
Store a character in an array.
Close named semaphore,
Drain semaphore.
Notify semaphore,
Open semaphore by name.

Open semaphore by file unit.
Set timer for numbered semaphore,
Test counter for semaphore.
Timed wait for named semaphore.
Wait on semaphore.
Return error code to invoking
command processor.

SX-8

10-25
10-27
13-34

13-34
12-43

I-30
L-30

16-3
16-4
9-28
9-35
10-37
10-43
9-36
9-37
13-17 ,13-21
P-6
12-44
12-45
12-46
I-30
12-47
17-5
M-6
12-47
12-50
13-17 ,13-23
22-21
22-22
12-51

APFG
9-38
9-42
10-43
21-23
21-21
21-19
21-16
21-16
21-22
21-20
21-23
21-19
P-4

SETUSS
SGDR$$

SGDSDL
SGNLSF
SHELL
SIGNLS
SLEEPS
SLITE
SLITET
SMSGS
SPASSS
SPOOLS
SRCHSS

SRSFX$

SRIFSS
SSSERR
SSTRSA
SSUBSA
SSWTCH
STSSGS

STRSAL

STRSAP
STRSAS
STRSAU
STRSFP
SIRSFR

STRSFS
STRSFU
SUBSRT

TSAMLC
TSCMPC
TSLMPC
TSMT
TSPMPC
TSSLCO
TSVG
TLIB
TLIN
T1OB
T1OU
TEMPSA
TEXTOS
TIDEC
TIHEX
TIMDAT

Prepare sort table and buffers for CMBNS.
Position, read, or modify a segment
directory.
Delete a segment directory.
Signal a condition from FIN or F77.
Diminishing increment sort.
Signal a condition from PLIG or PMA,
Suspend process.
Obsolete sense light test.
Obsolete sense light test.
Send a message to another user.
Set passwords of current UFD.
Insert a file in spooler queue.
Open close, delete, or verify existence

of a file.
Search for a file with any of a list of
suffixes.
Sort several input files.
Perform subsystem error handling.
Shift string left or right.
Shift substring left or right.
Obsolete sense switch test.
Retrieve maximum number of private
static segments,
Allocate user-class storage and
return error code to caller.
Allocate process-class storage.
Allocate subsystem-class storage.
Allocate user-class storage.
Free process-class storage.
Free user-class storage and
return error code to caller.
Free subsystem-class storage.
Free user-class storage.
Sort file on ASCII key.

Communicate with AMLC driver.
Input from MPC card reader,
Move data to LPC line printer.
Raw data mover for tape.
Raw data mover for card reader.
Communicate with SMLC driver.
Interface to Versatec printer,

INDEX BY NAME

13-17 ,13-18
9-43

A-33
22-22
13-34
22-23
21-24
J-2
J-2
P-7
9-62
19-9
9-48

9-56

13-10
P-13
12-52
12-53
J-3
L-26

I-31

I-32
I-32
L-33
I-34
L-34

I-35
I-35
13-7 ,13-26

20-19
19-18
19-7
19-27
19-21
20-1
19-11

Read character from terminal into Register A. 18-9
Read character from terminal into variable.
Write character from Register A to terminal.
Output character from variable to terminal.
Open a scratch file.
Check a filename for valid format.
Input decimal number.
Input hexadecimal number.
Return system and user information.

SX-9

18-9
18-3
18-10
12-54
10-44
18-10
18-11
10-45

Third Edition

UPD3621-31A

TIMESA
TIOCT
INCHKS

TINOUA
TODEC
TOHEX

TOVFDS
TREESA
TRNCSA
TSCNSA
TSRCSS
TTYSIN

TIYSRS
TYPE SA

UNITSA
UPDATE
USERS

WRASC
WRBIN

WILINS

YSNOSA

2$80

Third Edition

Return time of day.
Input octal number.
Check a pathname for valid format.
Output characters plus LINEFEED and CR.
Output characters to terminal.
Output 6-character signed decimal number.
Output 4-character unsigned hexadecimal
number,
Output carriage return and LINEFEED.
Output 6-character unsigned octal number.
Output 16-bit integer.
Test for pathname.
Truncate a file,
Scan the file system tree structure,
Open, close, delete, or find a file anywhere.
Check for characters in user's TTY buffer.
Clear current user's I/O buffers.
Determine string type.

Check for file open.
Update current UFD (Primos II).
Return process number and user count.
Return type of current process.

Write ASCII.

Write binary to any output device.
Write disk record (obsolete).
Write a specified number of ASCII characters.

Ask question and obtain a yes or no answer.

Clear double-precision exponent.

SX-10

12-55
18-11
10-46
18-12
18-12
18-13
18-13

18-13
18-13
18-14
12-55
12-57
12-57
9-58
P-9
M-7
12-63

12-64
9-60
A-34
A-35

16-3
16-4
17-7
9-60

12-64

G5

Update Package

UPD3621-31A

for

SUBROUTINES REFERENCE GUIDE, DOC3621-190

April 1985:

This Update Package, UPD3621-31A, is Update 1 for the Third Edition of
the SUBROUTINES REFERENCE GUIDE, D0C3621-190. ‘This document should be
inserted at the end of your book as Appendix L through Appendix P.
Pages that have been added are listed on the next mage.

Copyright © 1985 by Prime Computer, Incorporated
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

The information contained on these updated pages is subject to change
without notice and should not be construed as a commitment by Prime
Computer Corporation. Prime Computer Corporation assumes. no
responsibility for any errors that may appear in this package.

PRIME and PRIMDS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic
Design Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PW200, PST 100, 2250, 9950, and THE PROGRAMPMER'S COMPANION
are trademarks of Prime Computer, Inc.

Update Package, UPD3621-31A

Pages to change:

Insert Pages After Pages

Title through x Coversheet
I-1 through L-36 K-9
M-1 through M7 I-36
N-l through N-14 M-7
O-1 through 0-14 N-14
P-]1 through P-22 O-14

Replace Pages With Pages

SX-1 through SX-8 SX-l through SxX-~-10

INDEX

Access category A-3, A-15

Access control (with passwords)

I-13

Access Control List:
priority ACLs A-3l to A-33
return structure A-7
subroutines A-l

ACCESSVIOLATIONS error
condition 22-25

Accounting meter 9-26

ACLs (See Access Control List)

Alternate return 14-2

Altrtn 14-2

AMLC:

assignment of lines 20-18
driver 2-9, 20-1
functions with DUPLXS 10-22
other functions 20-19

ANYS condition 22-26

INDEX~1

APPLIB or APPLIB.BIN
(Applications library)
2-5, 12-1

Applications library:
defined 2-7, 12-1
naming conventions 12-4
subroutines by function 12-2

AREA error condition 22-26

Argument types (See Data types)

Arguments to subroutines 2-2,
14-2

ARITHS error condition 22-26

Arithmetic routines:
for FORIRAN compiler G-l

Arrays:
(See also Integer arrays)

in applications subroutines
9-5, 9-6

Arrays, multidimensional:
in BASIC/VM 3-5

in COBOL 4-4
in Pascal 6-5
in PLIG 7-5

Third Edition

DOC3621-190

Assignment:
of AMLC lines 20-18
Of devices 15-l

Asterisk, in pathnames 9-4,

Asynchronous controllers 2-9,
20-18

Attaching A-2

Attributes of files 9-38

BAD_NONLOCAL_GOTOS error
condition 22-27

BADPASSWORDS 22-27

BASIC (See BASIC/VM)

BASIC/VM 3-1

Binary Editor 23-l

Binary search 13-30

BIT (1) :

in BASIC/AM 3-6
in COBOL 4-4

in FORTRAN 5-5

in Pascal 6-6
in PLIG 7-6

in PMA 8-5

Bits, setting 2-2

BREAKs
inhibiting 10-3
with semaphores 21-10

Bubble sort 13-32

Buffer 9-5

Calling subroutines:
from BASICAM 3-1
from COBOL 4-1
from FORTRAN 5-1

from Pascal 6-l
from PLIG 7-1

from PMA 8-1, 8-4

Third Edition INDEX~2

Card reader/punch subroutines:
described 19-19
table 19-2

Carriage return output 18-13

Centronics line printer 19-1

Change of mode commands for
printers 19-5

CHAR(*) VARYING (See
CHARACTER(*) VARYING)

Character string:
in BASIC/AWM 3-5
in COB, 4-4
in FORTRAN 5-5
in Pascal 6-5
in PLIG 7-5
in PMA 8-5

CHARACTER(*) VARYING :

in BASIC/VM 3-6

in COBOL 4-5
in FORTRAN 5-5

in Pascal 6-6
in PLIG 7-6
in PMA 8-5
trailing blanks in 9-4

CHARACTER(n) :

(See
CHARACTER(n) NONVARYING)

CHARACTER(n) NONVARYING :

in BASICAM 3-5
in COBOL 4-5
in FORTRAN 5-6

in Pascal 6-6
in PLIG 7-6
in PMA 8-5

CLEANUPS condition 22-28

COBOL 4-1

Code (See Error code)

Code values:
in BASIC/AWMM 3-6
in COBOL 4-5
in FORTRAN 5-7
in Pascal 6-6

in PLIG 7-6
in PMA 8-6

Combinations, generating 11-3

Cominput file 18-6

COMI_LEOFS condition 22-28

Command files I-15

Command lines, parsing:
CLSPIX 10-6
CMDLSA 12-9
RIDK$ 10-37

Condition Frame Header 22-43

Condition mechanism:
Plead pedereba 99A?
UdtLa SLLULLUL GS 44 %

defined 22-1
overview 2-9

Condition-handling subroutines,

table 22-2

CONIOC 14-5, 15-3

Control modes 19-4

CONTROL-P :

inhibiting 10-1
with semaphores 21-10

Controller id for tape 19-32

Controllers:
(See also Drivers)
asynchronous 2-9
synchronous 2-9

Conventions (See Naming

convention)

CONVERSION error condition
22-28

CPL Mode with CLSPIX 10-18,

10-29, 18-28

CPU time retrieval 10-45

INDEX-3

INDEX

Crawlout mechanism 22-17

Creating an on-unit 22-3

Current directory:
defined 9-6
setting A-12, A-14

DAM files:

organization before Rev. 19
I-22

overview I-6

Data structure formats,
condition mechanism 22-43

Data types:
in BASICAM 3-1, 3-4

in COBOL 4-1

FORTRAN 5-1
Pascal 6-2
PLIG 7-2

in PMA 8-4
table 3-2

BE
ES

Date/time stamp I-11

Date:

ASCII format A-19
binary (See FS format)
conversion A-3
FS format A-18
ISO format A-20
retrieval 10-45, A-3, A-22
structure 9-41
USA format A-19
visual format A-19

Deadly embrace 21-12

Decimal input subroutine 18-10

Decimal output subroutine 18-13

Deferred messages B-2, B-4

Delay in Open routines 12-7

Deleting files A-29

Density selection for tapes
19-32

Third Edition

DOC3621-190

Device assignment:
permanent 15-2
temporary 15-1

Device-dependent drivers:
disk 17-1
paper tape 18-1
table 14-4
terminal 18-1

Device-independent drivers:
overview 16-1
table 14-4

Diminishing increment sort
13-35

Direct entry calls 2-2, 8-6

Directories:
(See also UFD and Segment

directory)
distinguishing type A-3l
searching A-22, A-28

Disk I/O time retrieval 10-45

Disk organization I-12

Disk record availability table:
Gefined I-12
format before Rev. 19 I-17

Disk subroutines 17-l

Draining a semaphore counter
21-21

Drivers:
AMLC 2-9, 20-1
Gevice-dependent 17-1, 18-1
device-dependent, table 14-4

Gevice-independent 16-1
device-independent, table

14-4
SMLC 2-9, 20-1

DSKRAT (See Disk record

availability table)

ECW (entry control word) 9-30

Third Edition INDEX-4

EDB (Binary Editor) 23-1

ENDFILE condition 22-28

ENDPAGE condition 22-28

Entry control word 9-30

Erase character 10-23

ERRD.INS file 9-3

Error codes:
as argument 9-3, 10-24, D-l
defined D-2
in BASIC/VM 3-7
in COB, 4-6
in FORTRAN 5-7
in Pascal 6-6
in PLIG 7-6
in PMA 8-6

table D-2

Error conditions 22-25

ERROR error condition 22-29

Error handling:
for current routines D-l
for obsolete routines E-l
in applications library 12-1
with ERRPRS 10-24

Error messages, PRIMOS 22-1

ERRRINS condition 22-29

EXITS condition 22-30

Extended Stack Frame Header

22-47

F77 5-4

Fault Frame Header 22-50

File access methods I-15

File formats:
before Rev. 19 I-9, I-17

File management routines:
(See File system routines)

File management systen I-l

File operations:
listed K-l
overview 9-50
routines 2-6, I-2

File system object:
defined 9-3

File system routines:
in applications library 12-6
other PRIMOS routines 9-2

File system I-l

File unit:

table 14-8

Filenames :
defined 9-3
validity checking 10-25,

10-44

FINISH condition 22-30

FIXED BIN(15):

in BASIC/VM 3-4
in COBOL 4-4
in FORTRAN 5-4

in Pascal 6-2
in PLIG 7-2

in PMA 8-4

FIXED BIN(31):

in BASIC/VM 3-4
in COBOL 4-4
in FORTRAN 5-4

in Pascal 6-2
in PLIG 7-5
in PMA 8-4

FIXEDOVERFLOW error condition

22-30

FIX_DISK I-16

FLOAT BIN 7-5

FLOAT BIN(23) :

in Pascal 6-5

INDEX-5

INDEX

Forms control mode 19-4

FORTRAN 77 (F77) 5-1

FORTRAN IV (FIN) 5-4

FORTRAN :

arithmetic routines Gl
calling routines from 5-1
formats 12-25
internal subroutines F-1l
library 2-5
library rebuilding 15-5

FS format (See Date)

FINLIB.BIN (FORTRAN library)
2-5

FULCON 14-5, 15-3

Function:
defined 2-1

Funit (See File unit)

Global variables:

retrieving 10-28
setting 10-29

Hardware status from tape
controller 19-30, 19-31

Header line control 19-4

Heap sort 13-32

Hexadecimal input routine 18-l1

Hexadecimal output routine
18-13

Home directory:
defined 9-6

A-14

I-mode PMA 8-l

T/O subroutines 2-8

Ids:
retrieval 10-45, A-30
validity checking 10-29

Third Edition

DOC3621-190

ILLEGAL_INSTS error condition
22-30

ILLEGAL,ONUNIT_RETURNS error
condition 22-3]

EGNOS error condition
22-31

Indication and control
Subroutines (obsolete) J-1l

Infinite waits 21-12

Input procedure for sorts
13-17, 13-22

Input/Output Control System
(See IOCS)

Insertion sorts 13-33, 13-35

Installing subroutines in
BASIC/VM 3-6

Instruction to magnetic tape
controllers 19-27

Integer arrays:
in BASIC/VM 3-4
in COBOL 4-4
in FORTRAN 5-6
in Pascal 6-5
in PLIG 7-5
in PMA 8-5

INTEGER*2 :
in BASICAM 3-4
in COBOL 4-4

in Pascal 6-2
in PLIG 7-2
in PMA 8-4

INTEGER*4:
in BASIC/AM 3-4
in COBOL 4-4
in Pascal 6-2
in PLIG 7-5

in PMA 8-4

INTEGER:

in FORTRAN 5-4

Third Edition

Interchange sort 13-32

Interrupts 10-1

Interuser messages B-2

Interuser synchronization 21-1

Iocs (Input/Output Control
System) :
overview 2-8, 14-1
subroutine arguments 14-2
tables 15-2

ISO format (See Date)

KEY error condition 22-31

Key values:
in BASIC/VM 3-7
in COBOL 4-6
in FORTRAN 5-7
in Pascal 6-6
in PLIG 7-6
in PMA 8-6

KEYS.INS file 9-1

Keys:

adding together 9-l

list 12-71

Kill character 10-23

LIBEDB 23-1

Libraries 2-5

Library management for object
files 23-1

Line printer:
overview 19-3
subroutines 19-1
table of routines 19-2

LINEFEED output 18-13

LINKAGEFAULTS error condition
22~32

LISTENERORDERS condition 22-32

LOAD utility 2-4

Loading subroutines 2-4

LOC «(5-7

Locks 21-13 to 21-15

LOGICAL data type:
in BASIC/AWM 3-5
in COBOL 4-5
in FORTRAN 5-4
in Pascal 6-5
in PLIG 7-5
in PMA 8-5

LOGICAL*2 data type:
(See LOGICAL)

Logical-unit 14-2

Logout notification
10-32

10-31,

Logout 10-30

LOGOUTS$ condition 22-32

LUTBL 15-2

Magnetic tape:
error recovery 19-34
operation 19-32
table of routines 19-2, 19-22
wait semaphore 19-33

MAP 3 command 2-4

Master file directory 9-3,
I-10

MATHIB.BIN (matrix library)
2-5, 11-1

Matrix library 2-7, li-l

INDEX-7

INDEX

Matrix operations, table 11-2

Merge subroutines 13-13

Message subroutines B-1

MFD (Master file directory):
defined 9-3

MPC line printer 19-1, 19-7

MSORTS or MSORTS.BIN (in-memory
sorts) 2-5 r 2-8, 13-1 r

13-28

NAME condition 22-33

Naming convention e
e

far annliratiana roik
LOD GppastawOiis 10

12-4
for files xiii
for sort routines 13-7

NONLOCAL_GOTOS condition 22-33

Nonprinting characters 2-8

Nontag sort 13-6

Notifying a semaphore 21-19

NO_AVAILSEGSS error condition
22-33

NPX_SLAVE_SIGNALEDS condition
22-34

NULL_POINTERS error condition
22-34

Octal input 18-13

Octal input subroutine 18-11

Old partitions 9-6

On-units:
creating 22-3
defined 22-1
descriptor block 22-52
overview 2-9
reverting 22-3

Third Edition

DOC3621-190

Operating system subroutines,
table 10-2

OPTIONS (SHORTICALL) 7-2

Options on command line 10-14

Output procedure for sort or
merge, 13-13, 13-16, 13-21,
13-22

Output to terminal:
Character 18-12
integer 18-14

OUT_OF_BOUNDSS error condition
22-35

OVERFLOW error condition 22-35

Owner/nonowner status I-13,
I-14

PAGEFAULT_ERRS error condition
22-36

Pagination control mode 19-4

Parsing:
CLSPIX 10-6

CMDLSA 12-9
RDTKS 10-37

Partition sort 13-34

Partitions, old 9-6

Pascal 6-1

Password directories:
converting A-5, A-8
creating A-17

distinguishing from ACLs A-3l

Passwords :
changing A-16
protection structure 9-40
protection with I-13
restrictions 9-48
validity checking 10-36

Pathnames:

defined 9-3
validity checking 10-47

Third Edition INDEX-8

PAUSES condition 22-36

PCL (procedure call) instruction
2-2, 8-6

Peripheral devices 19-1

Permutations, generating 11-16

PFINLIB.BIN (Shared FORTRAN
library) 2-5

Phantoms:

logout notification 10-31,
10-32

starting 10-34, 10-35

Physical devices:
and logical devices 14-8
defined 14-3
table 14-7

Physical-unit 14-3

PH_LOGOS condition 22-36

PL/I subset G 7-1

PLIG 7-1

Plotter subroutines, table 19-2

Plotters 19-11

PMA 8-1

POINTER:

in BASIC/VM 3-6
in COBOL 4-4
in FORTRAN 5-7

in Pascal 6-6
in PLIG 7-6

POINTER_FAULTS error condition
22-37

PRIMOS II I-15, 10-27

PRIMOS subroutines 2-7

Priority ACLS:
adding A-33
deleting A-31
reading A~32

Process number retrieval A-34

Process type retrieval A-35

PUTBL 15-2

Quadseconds A-18

Quicksort 13-34

QUITS condition 22-37

Quota directory 9-26

Quota 9-27

R-mode executable code
9-36 , 9-37, 9-42

R-mode PMA 8-4, 8-6

RO_ERRS$ error condition 22-28

Radix sort 13-34

RATBL 15-3

RBTBL 15-3

Read/write lock 9-32, 9-51

REAL*4:
in BASIC/VM 3-4

in COBOL 4-4
in FORTRAN 5-5

in Pascal 6-5

in PLIG 7-5
in PMA 8-4

REAL*8:
in BASIC/VM 3-4
in COBOL 4-4

in FORTRAN 5-5
in Pascal 6-5
in PUG 7-5
in PMA 8-4

REAL:

in BASIC/A\M 3-4

in COBOL 4-4
in FORTRAN 5-5

in Pascal 6-5
in PLIG 7-5
in PMA 8-4

INDEX-9

INDEX

Realtime applications 21-1

RECORD condition 22-37

Record formats I-7

Record header formats (before
Rev. 19) I-17

REENTERS condition 22-38

Repeat counts with CLSPIX 10-14

REST data type 10-L

RESTRICTEDINSTS error condition

22-38

Reverting an on-unit 22-3

SAM files I-5

Search, binary 13-30

SEG utility 2-4

Segment directory:
Gefined 9-52, I-11
deleting an entry from A-33
format before Rev. 19 I-21

Semaphores :
Gefined 21-4
named 2]-8, 21-10
numbered 21-8, 21-10
on Prime machines 21-7
overview 2-9
table of subroutines 21-2

Sense switch setting (obsolete)

J-1

Setting bits 2-2

Shell sort 13-35

SHORICALL option in PLIG 7-2

Signal a condition 22-3

Third Edition

DOC3621-190

SIZE error condition 22-39

SMLC controllers 2-9, 20-1

Sort libraries:

naming convention 13-7
overview 2-8, 13-1
R-mode 13-1
V-mode 13-1

Sorts

bubble 13-32
collating sequence 13-4

cooperating routines 13-17
diminishing increment 13-35
heap 13-32
in memory 13-1
insertion 13-33, 13-35
interchange 13-32
keys 13-4
nentag 13-6

overview 13-1
partition 13-34
quicksort 13-34
radix 13-34
record types 13-3
shell 13-35
table 13-2
tag 13-6

SPOOLS.BIN (spooler library)
2-5

Spooling files 19-9

SRTLIB or SRTLIB.BIN (disk sort
library) 2-5, 2-8, 13-1,
13-26

Stack Frame Header, extended
22-47

STACK_OVFS error condition
22-39

Standard Fault Frame Header
22-50

STOPS condition 22-39

STORAGE error condition 22-40

Third Edition INDEX-10

String arrays in BASIC/VM 3-5

STRINGRANGE error condition
22-40

Strings:

maximum length 12-5
operational length 12-5

STRINGSIZE error condition
22-40

Structures, condition mechanism

22-43

Sub-unit 14-3

Subdirectory 9-4

Subroutine:
(See also Calling
subroutines)

arguments (See Arguments)
definition 2-1
distinguished from function

2-1
libraries 2-5
loading 2-4

SUBSCRIPTRANGE error condition
22-40

Substrings 12-5

Suffixes:
appending 9-7
searching for 9-56

SVC_INSTS condition 22-41

Synchronous controllers 2-9,
20-1

SYSCOM tables:
in BASIC/VM 3-6
-in COBOL) 4-5

in FORTRAN 5-7

in Pascal 6-6
in PLIG 7-6
in PMA 8-6
SYSCOM>ASKEYS 12-4, 12-71
SYSCOM>ERRD 9-3, D-2

SYSCOM>KEYS 9-1, C-l

System-defined conditions 22-25

Tag sort 13-6

Terminal configuration word
10-21

Terminal, controlling 10-21

Text file, sorting 13-22

Time retrieval A-22, 10-45

Time-record product 9-25

Timeouts for semaphores 21-9

Timers 21-8, 2i-9

Tokens with RDTKS 10-41

Trailing blanks 12-5

TRANSMIT error condition 22-41

UFD:
defined 9-3
entry format before Rev. 19

header format before Rev. 19

operations on 9-52

UIIS error condition 22-42

UNCL data type 10-13

UNDEFINEDFILE error condition

22-42

UNDEFINED_GATES error condition
22-42

UNDERFLOW error condition 22-42

User count retrieval A-34

User file directory I-10

User group retrieval A-30

INDEX-11

INDEX

User id retrieval 10-45, A-30

User information retrieval A-3

User number retrieval 10-45

User query routines 12-6

User terminal, controlling

10-21

Validity checking:
of filenames 10-25, 10-44
of ids 10-29
of passwords 10-36
of pathnames 10-47

VAPPLB.BIN (Applications
library) 2-5

Vector 9-5, 9-6

Verification in Open routines
12-7

Versatec printer 19-6

Versatec printer/plotter 19-1,
19-11

Vertical control modes 19-4

VMSORI or VMSORT.BIN (in-memory
sorts) 2-5, 13-1, 13-28

VSPOOS.BIN (spooler library)
2-5

VSRILI or VSRILI.BIN (disk sort
library) 2-5, 2-8, 13-1, 13-7

WATBL 15-3

WBTBL 15-3

ZERODIVIDE error condition

22-43

Third Edition

	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-00
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	03-00
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-4
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	09-61
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	12-45
	12-46
	12-47
	12-48
	12-49
	12-50
	12-51
	12-52
	12-53
	12-54
	12-55
	12-56
	12-57
	12-58
	12-59
	12-60
	12-61
	12-62
	12-63
	12-64
	12-65
	12-66
	12-67
	12-68
	12-69
	12-70
	12-71
	12-72
	12-73
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	14-00
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	15-01
	15-02
	15-03
	15-04
	15-05
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	17-01
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	18-01
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	20-00
	20-01
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	21-01
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	21-09
	21-10
	21-11
	21-12
	21-13
	21-14
	21-15
	21-16
	21-17
	21-18
	21-19
	21-20
	21-21
	21-22
	21-23
	21-24
	22-00
	22-01
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-10
	22-11
	22-12
	22-13
	22-14
	22-15
	22-16
	22-17
	22-18
	22-19
	22-20
	22-21
	22-22
	22-23
	22-24
	22-25
	22-26
	22-27
	22-28
	22-29
	22-30
	22-31
	22-32
	22-33
	22-34
	22-35
	22-36
	22-37
	22-38
	22-39
	22-40
	22-41
	22-42
	22-43
	22-44
	22-45
	22-46
	22-47
	22-48
	22-49
	22-50
	22-51
	22-52
	22-53
	23-00
	23-01
	23-02
	23-03
	23-04
	23-05
	23-06
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	I-15
	I-16
	I-17
	I-18
	I-19
	I-20
	I-21
	I-22
	I-23
	I-24
	J-01
	J-02
	J-03
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08
	K-09
	L-01
	L-02
	L-03
	L-04
	L-05
	L-06
	L-07
	L-08
	L-09
	L-10
	L-11
	L-12
	L-13
	L-14
	L-15
	L-16
	L-17
	L-18
	L-19
	L-20
	L-21
	L-22
	L-23
	L-24
	L-25
	L-26
	L-27
	L-28
	L-29
	L-30
	L-31
	L-32
	L-33
	L-34
	L-35
	L-36
	M-01
	M-02
	M-03
	M-04
	M-05
	M-06
	M-07
	N-01
	N-02
	N-03
	N-04
	N-05
	N-06
	N-07
	N-08
	N-09
	N-10
	N-11
	N-12
	N-13
	N-14
	O-01
	O-02
	O-03
	O-04
	O-05
	O-06
	O-07
	O-08
	O-09
	O-10
	O-11
	O-12
	O-13
	O-14
	P-01
	P-02
	P-03
	P-04
	P-05
	P-06
	P-07
	P-08
	P-09
	P-10
	P-11
	P-12
	P-13
	P-14
	P-15
	P-16
	P-17
	P-18
	P-19
	P-20
	P-21
	P-22
	SX-01
	SX-02
	SX-03
	SX-04
	SX-05
	SX-06
	SX-07
	SX-08
	SX-09
	SX-10
	_01
	_02
	_Index-00
	_Index-01
	_Index-02
	_Index-03
	_Index-04
	_Index-05
	_Index-06
	_Index-07
	_Index-08
	_Index-09
	_Index-10
	_Index-11

