
Prime. Advanced

Programmer's Guide,
Volume 0:

Introduction and

Error Codes

Revision 22.0

DOC10066-3LA

Advanced Programmer’s Guide,
Volume 0: Introduction

and Error Codes

Third Edition

Glenn S. Morrow

— This guide documents the software operation

of the Prime Computer and its supporting

systems andutilities as implemented at

Master Disk Revision 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information

The information in this documentis subject to change without notice and should not be

construed as a commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no

responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied

only in accordance with the terms of such license.

Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

PRIME, PRIME, PRIMOS,and the PRIME logoare registered trademarks of Prime Computer,

Inc. DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION,Prime
INFORMATION CONNECTION,Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS,
MXCL, PRIME EXL, PRIME MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME
TIMER, PRIMAN, PRIMELINK, PRIMENET, PRIMEWAY, PRIMEWORD,PRIMIX,
PRISAM, PRODUCER,Prime INFORMATION/pc, PST 100, PT25, PT45, PT65, PT200,
PT250, PW153, PW200, PW250, RINGNET, SIMPLE,50 Series, 400, 750, 850, 2250, 2350,
2450, 2455, 2550, 2655, 2755, 4050, 4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955,
and 9955II are trademarks of Prime Computer, Inc.

Printing History

Preliminary Edition (D0C9229-1LA) January 1985 for Revision 19.4.0

First Edition (D0C10066-1LA) November 1985 for Revision 19.4.2

Second Edition (D0C10066-2LA) September 1987 for Revision 21.0

Third Edition (D0C10066-3LA) October 1988 for Revision 22.0

Credits

Editorial: Barbara Fowlkes

Project Support: Joan Karp, Nick Fichter

Graphics Support: Mingling Chang, Robert Alba

DocumentPreparation: Mary Mixon

Composition: Julie Cyphers, Sharon Temple

Production: Judy Gordon

Design: Carol Smith

Third Edition

How To Order Techical Documents

Follow the instructions below to obtain a catalog, a price list, and information on placing orders.

United States Only: Call Prime Telemarketing, toll free, at 1-800-343-2533, Monday through

Friday, 8:30 a.m. to 5:00 p.m. (EST). ,

International: Contact your local Prime subsidiary or distributor.

Customer Support Center

Prime provides the following toll-free numbers for customers in the United States needing

service:

1-800-322-2838 (Massachusetts)

1-800-541-8888 (Alaska and Hawaii)

1-800-343-2320 (within other states)

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back ofthis

book. Address any additional comments on this or other Prime documents to:

Technical Publications Department

Prime Computer, Inc.

500 Old Connecticut Path

Framingham, MA 01701

Third Edition iii

Contents

About This Book

Calling Sequences and Coding Guidelines

Calling Sequence Conventions

General Coding Guidelines

Appendices

PRIMOS Error Codes

Error Code Presentation

PRIMOSStandard Error Codes

Alphabetical List of Error Messages

New Features of Recent PRIMOS Revisions

New Features at Revision 22.0

New Featuresat Revision 21.0

New Features at Revision 20.2

New Features at Revision 20.0

Master Index

Vii

1-1

1-1

1-5

A-1

A-1

A-2

B-1

C-1

C-1

C-3

C-7

C-8

Index-1

About This Book

The Advanced Programmer's Guide is a four-volume series intended for programmers who are

experienced with both 50 Series™ computer systems and at least one high-level language

(preferably PL/I or FORTRAN). This series consists of four volumes:

— e Advanced Programmer's Guide, Volume 0: Introduction and Error Codes

(DOC10066-3LA)(this volume)

e Advanced Programmer's Guide, Volume I: BIND and EPFs (DOC10055-1LA)

e Advanced Programmer's Guide, Volume II: File System (DOC10056-2LA)

e Advanced Programmer's Guide, Volume III: Command Environment

(DOC10057-1LA)

Users of this series should be familiar with the following Prime publications:

e PRIMOS User's Guide (DOC4130-5LA)

e Programmer's Guide to BIND and EPFs (DOC8691-1LA) and its update

(UPD8691-11A)

Subroutines Reference I: Using Subroutines (DOC10080-2LA)

Subroutines Reference Il: File System (DOC10081-1LA) and its update

(UPD10081-12A)

Subroutines Reference III: Operating System (DOC10082-1LA) and its update
7 (UPD10082-12A)

Subroutines Reference IV: Libraries and I/O (DOC10083-1LA) and its update

(UPD10083-12A)

e Subroutines Reference V: Event Synchronization (DOC10213-1LA)

Users of this series should also be familiar with Prime system architecture, as described in the

50 Series Technical Summary (DOC6904-2LA) and in the System Architecture Reference Guide

(DOC9473-2LA).

vii

Advanced Programmer's Guide

viii

Specifics of This Volume

This volume contains reference information applicable to the subjects described in the other

volumes:

e An explanation of the presentation of subroutine calls and general coding guidelines

(Chapter 1)

Standard error codes used by PRIMOS, along with their messages and meanings

(Appendices A and B)

New features of recent PRIMOS revisions that may be of interest to advanced

programmers (Appendix C)

A master index encompassing the entire series

Specifics of the Series

The Advanced Programmer's Guide series is designed for system-level programmers. It

describes the lowest-level interfaces supported by PRIMOS and its utilities. Higher-level

interfaces not described in this series include

Language-directed I/O

The applications library (APPLIB)

e The sort packages (VSRTLI, SyncSort/PRIME, and MSORTS)

Data management packages (such as MPLUSLB and PRISAMLIB)

Other subroutine packages

All of the above higher-level interfaces are described in other books, such as languagereference

guides and the five volumes of the Subroutines Reference series.

This series documents low-level interfaces for use by programmers and engineers who are

designing new products, such as language compilers, data management software, electronic mail

subsystems, utility packages, and so on. Such products are themselves higher-level interfaces,

typically used by other products rather than by end users, and therefore, must use someorall of

the low-level interfaces described in this series for best results.

Because of the technical content of the subjects presented in this series, it is expected that these

guides will be regularly used only by project leaders, design engineers, and technical

supervisors, rather than by all programmers on a project. Most of the information in this series

deals with interfaces to PRIMOSthat are typically used only in small portions of a structured

program, and with overall project design issues that should be considered before coding begins.

Once the project is designed and the PRIMOSinterfaces are designed and coded, most of the

modules of a typical project can then be written by programmers whose knowledge of these

issues is minimal.

Prime Documentation Conventions

About This Book

The following conventions are used throughout this document. Examples illustrate the uses of

these conventions in typical applications.

Convention

UPPERCASE

UPPERCASE

WORDS

(not boldface)

lowercase

Parentheses

()

Explanation

In calling sequence diagrams, words in

uppercase boldface represent the sub-

routine nameor keywordto be entered

as shown.

Represent the data type of subroutine

arguments.

In calling sequence diagrams, wordsin

lowercase represent the subroutine

arguments for which the user must

substitute a suitable variable.

In calling sequence diagrams, paren-

theses must be entered exactly as

shown.

Example

SLIST

HALF INT

(key, unit)

(key, unit, addr)

Calling Sequences and Coding Guidelines

Calling Sequence Conventions

The Advanced Programmer's Guide series contains diagrams of the calling sequences of system

subroutines. These diagrams are intended to complementthe discussion of the subroutines in the

Subroutines Reference series. Similar calling sequence diagrams are also found in an appendix

to Subroutines Reference V: Event Synchronization.

Figure 1-1 is a sample diagram of a calling sequence. Each calling sequence diagram occupies

one full page. The subroutine (or procedure) nameis listed in the middle of the page, followed

on the same line by dummy parameter names listed in parentheses and separated by commas.

This is the basic calling sequence for the procedure.

Abovethis basic calling sequence are the input arguments; below the calling sequence are the

output arguments. An arrow connects each argument to a dummy parameter name. The direction
of these arrowsindicates the flow of information. These arrows also visually connect parameter

names to information about the parameters. This information includes the argument’s data type

and a brief description of the argument.

Some diagrams may contain other elements, such as

e A required value or a list of permitted values for keys or other parameters.

e An illustration of the format of an input or output argument.

e A dot and arrow indicating that a pointer to a data area must be supplied. Execution

of the subroutine writes information into this data area.

Data types are specified in a data type description language. This language is further described

in this chapter. You must convert the data type used here to the appropriate data type for your

programming language. In addition to the data type description language, this series often

includes PL/I or FORTRAN versions ofstructures.

Procedures that are functions return a function value. This retum value and its data type are

illustrated below the name of the procedure itself.

In addition to showing the arguments and their data types, each calling sequence diagram

e Showsthe calling sequence for a single type of operation performed by the procedure

e Iilustrates the relationships between interdependent parameters in the calling sequence

Third Edition 1-1

Advanced Programmer's Guide, Volume 0

Read a File

——_— Pointer to
Data Buffer

File Unit ___ ____ Numberof Halfwords
Number to Read (Unsigned)

0 (Zero), to Read

KSREAD at Current Position

HALF HALF pnp HALF FULL
INT INT INT INT

YY YY
PRWF$$ (key, unit, addr (buffer), size, rel-posn, halfwords-read, code)

nde Lal_-wHALF HALF
INT or"

ARRAY@"77 iNT a Standard
Error

Buffer to Which Code

Data Are Transferred

Numberof

Halfwords
Actually Read

 Side Effects: Contents of buffer elements halfwords-read +1 through size are
undefined after the operation if fewer halfwords than requested were read.

Figure 1-1
Sample Subroutine Calling Sequence

1-2 Third Edition

Calling Sequences and Coding Guidelines

Therefore, a multipurpose subroutine such as PRWF$$ is described using several different
calling sequence diagrams: one for reading a file, another for writing a file, and a third for

positioning within a file.

Some calling sequence diagrams contain dotted arrows between related arguments. These

relationships often involve a parameter (such as a character string) whose length is specified by

another parameter in the calling sequence.

Data Types

Table 1-1 lists the generic data types and their PL/I and FORTRAN equivalents that are used

throughout the Advanced Programmer's Guide series. (The diagrams in Subroutines Reference V

use PL/I data types.)

Table 1-1
Data Types and Their PL/I and FORTRAN Equivalents

Data Type PLII FORTRAN

HALF INT FIXED BIN(15) INTEGER*2

FULL INT FIXED BIN(31) INTEGER*4

n STRING CHARACTER(n) INTEGER*2 ((n+1)/2)

<=n STRING CHARACTER(n) VARYING INTEGER*2 ((n+3)/2)

n BIT BIT() INTEGER*2 ((n+15)/16) w/masking

PTR POINTER and ADDR() INTEGER*2 (3) and LOC()

STRUC 1 1

ARRAY(n) 2 2

1Structures are usually illustrated in the same calling sequence diagram or in anotherrelated

diagram, or their declarations are provided on a page near the diagram. Structuresare also

known as record data types in other languages.

2Arrays are either a constant length whichis indicated in parentheses, or a varying length

controlled by a parameter or a subfield in a parameter. Varying length arrays have dotted

arrows from the word ARRAYto the parameter(orits subfield) that controls the length of

the array.

The last three data types in Table 1-1 are discussed more fully in the subsection entitled

Pointers, Arrays, and Structures, later in this chapter.

In cases where the length of an item is specified in the data type, such as <=128 STRING,and a

dotted arrow is also drawn to a parameterthat defines the operative length, then the length in the

data type is the maximum length for that item.

If you are unsure as to the meaning of a keyword, arrow,or otherillustrative mark, consult the

Subroutines Reference series for more information on the subroutine or data structure.

Third Edition

Advanced Programmer's Guide, Volume 0

Keys

Somesubroutines take an input key argument. A keyis a literal value that you use to specify the

operation to be performed by the routine. In mostcalling sequence diagrams that involve a key

argument, a list of valid (or appropriate) key values is provided. Each keyword correspondsto a

specific operation. For example, the k$read key specifies a read operation.

When the construction of a key is complex, two or more lists of keywords are often shown,

enclosed in braces { }, with + signs to indicate addition. As with command formats, choose one

keyword from eachlist in braces. Specify the + signs in your program to indicate the addition of

these multiple keywords. For example, your program might specify a key value of

k$rdwr+k$ndam+k$getu.

To define keywords that have names beginning with K$, use a %INCLUDE or $INSERT

statement to insert the appropriate SYSCOM>KEYS.INS.language file into your program. See

the Subroutines Reference series for more information on this topic.

Standard Error Code

Manysubroutines include a standard error code as a parameter. This is a HALF INT value

returned by the subroutine to indicate the degree of success encountered by the subroutine. Each

error code can be represented by an integer value or a mnemonic. All standard error code

mnemonics begin with E$. Always use these mnemonic values in your programs.

For example, after each subroutine call your program should always check the standard error

code to ensure that its value is E$OK (integer value 0). A value of ESOK means a successful

call. Other values indicate specific errors or conditions worth noting.

Appendix A contains a list of PRIMOSstandard error codes along with a description of the

meaning of each code. This list is ordered numerically by error code number. Appendix B

contains an alphabetical list of the error message displayed for each error code. ‘The alphabetical

list is cross-referenced with the numericlist.

To define standard error code mnemonics for your program, use a %INCLUDEor $INSERT

statement to insert the appropriate SYSCOM>ERRD.INS.language file into your program. See

the Subroutines Reference series for more information on this topic.

Side Effects

Where appropriate, the side effects of a subroutine are listed at the bottom of the calling

sequence diagram. Side effects are those actions taken by the procedure that are not obviously a

designed function of the procedure. For example, a side effect of a call to the TSRC$$

subroutine may change the cache attach point without notifying its caller.

Third Edition

Calling Sequences and Coding Guidelines

General Coding Guidelines

When writing programsthat use standard PRIMOSsubroutines, observe the following guidelines

to ensure that your programs continue to function normally on subsequent revisions of
PRIMOS:

e Your program must ignore any reserved or undefined information returned to it by a

subroutine. For example, if a 16-bit halfword contains one defined bit and fifteen

reserved bits, your program must mask off the fifteen reserved bits before analyzing

the halfword to determine the value of the one definedbit.

e Your program must zero-fill any reserved or undefined arguments that it passes to a
subroutine, except where otherwise specified.

e The maximum numberof defined character values in a returned character string is the

operative length of the string; characters beyond that point have undefined values and

must be ignored. For example, a character string with a data type of 32 STRING that

has been returned to the caller along with an operative length of 13 (as indicated by

the dotted arrow in Figure 1-1) has undefined values for characters 14-32 in the
returned string.

e Arrays, structures, and similar items with operative lengths are considered undefined
beyond those operative lengths.

Pointers, Arrays, and Structures

A number of PRIMOSsubroutines deal with arrays and structures. The PRWF$$ subroutine, for
example, uses an array as a buffer. Some of the ACL subroutines use structures to manipulate
access control lists. A subroutine that deals with an array or a structure requires a pointer to the
array or structure as part of its calling sequence.

Pointers, arrays, and structures are represented as a PL/I language construct in the following
format:

addr(target-object)

Variable Meaning

addr Theliteral string addr with the data type PTR (pointer)

target-object The nameofthe array or structure, enclosed in parentheses, as defined
in the program by a data declaration statement

Figure 1-1 shows a calling sequence containing a pointer to a buffer having the data type HALF
INT ARRAY.

In somecases, the array or structure serves as both an input and an output argument, althoughit
is not necessarily used to the same extent in both. For example,a structure specified as an input
argument might contain only a required version numberthat you set to a specific value, whereas

‘Third Edition

PRIMOS Error Codes

Error Code Presentation

This appendix contains an annotated list of the standard PRIMOSerror codes. The error codes

are listed in numerical order. Appendix B contains a cross-reference listing of these error codes,

listed alphabetically by the text of the error message.

Each error code consists of a number, a mnemonic, and an error message. User programs should

always check the mnemonic value of an error code, not the numeric value or error message. You

can use the ER$PRINT subroutine to display an error message on your terminal or use the

ER$TEXT subroutine to return an error message to a variable in your program. These

subroutines are further described in Subroutines Reference III: Operating System.

The description of each error codeis in the following format:

ESXXxXx (nnn) text of error message

description of error

Variable Meaning

ESXXXX The mnemonic for the error code

nnn The numeric value of the mnemonic

text of error The error message displayed by ER$PRINT or ER$TEXT for that

message error code

description of error The description of the error code

Mnemonics for error codes are defined by files in SYSCOM for several languages:

Language Filename in SYSCOM

Cc ERRD.INS.CC

FORTRAN 77 ERRD.INS.FTN

FORTRAN IV ERRD.INS.FTN

Pascal ERRD.INS.PASCAL

PL/I ERRD.INS.PL1

Third Edition

Advanced Programmer's Guide, Volume 0

PMA ERRD.INS.PMA

BASIC/VM not available

COBOL not available

Use the appropriate %INCLUDE (Pascal and PL/I), #include (C), or $INSERT (F77, FTN, and

PMA)in your program to provide definitions ofall the standard error codes for your program.

Subroutines Reference I: Using Subroutines contains more information onthesefiles.

Notes

Severity code numbers, sometimes returned by CPL programs, have

no correspondence in meaning with standard PRIMOSerror codes

with the same numeric values. Severity codes are chosen arbitrarily

by the CPL programmer.

Whenrunning user programsthat involve a subsystem such as DPTX,

you may encounter messages that are not listed in this appendix.

These messages are related to their respective subsystems, not to

PRIMOS. Refer to the appropriate subsystem documentation for

further information on these error codes.

PRIMOS Standard Error Codes

ESOK(0) Operation completed successfully.

The operation completed successfully. No error was detected.

ESEOF (1) End of file.

The end-of-file point was reached during an operation on a file system object.

End-of-file errors may occur, for example, when

e Reading directory entries via DIRSSE, DIRRD, DIRLS, or RDEN$$

e Positioning a file system object via PRWF$$ or SGDR$$

e Reading data from a file via PRWF$$ or RDLINS

e Attempting to open for reading a nonexistent member of a segment directory while

positioned at the end of that segment directory

The interpretation of this error depends upon the operation performed. For example, when

returned by PRWF$$ while trying to read data from a file, it indicates that end-of-file was
reached but that some data may have been successfully read. However, when returned by

DIRRD, EEOFindicates that the end of the directory was reached and no entry was

returned to the calling program.

A2 Third Edition

PRIMOSError Codes

ESBOF (2) Beginning of file.

An attempt was made to position a file system object to a point before the beginning of the

file. This error results if PRWF$$ is called with a relative-position key and a negative relative

position that would, when applied to the current position, produce an absolute position whose

value is less than zero.

ESUNOP (3) Unit not open.

The file-unit is closed or is not open for the type of operation being requested. For example,

an attempt to read from a file that is open only for writing causes this error, as does an

attempt to write to a file that is open only for reading.

This error code is also returned if an attempt is made to truncate a file that is not open for

writing.

—_ ESUIUS (4) Unit in use.

The unit number supplied to a subroutine that is attempting to open a file system object is

already in use. This error occurs only whenstatic file-unit allocation is used (that is, when the

k$getu subkey is not used).

ESFIUS (5) File in use.

The file system object being accessed is already open on anotherfile-unit or by anotheruser.

This error occurs if an attempt is made to

e Open an object that is already open by another user or by the same user on another

file-unit, and the read/write lock of the object disallows the attempt

e Rename an object that is open by another user or by the same user on anotherfile-

unit

e Renamea file directory that is in use as an attach point by any user

e Set a quota on a nonquota directory that is in use or contains otherfiles or directories
that are in use

e Change the open mode of a file-unit, by calling CH$MOD or SRCH$$ (with the

k$cacc key), when the object is open by another user or by the same user on another

file-unit and the new open mode conflicts with the other open mode

e Truncate a file or segment directory that is open by another user or by the sameuser

on anotherfile-unit

e Access a file that is open for VMFA read

ESBPAR (6) Bad parameter.

An invalid value or combination of values was supplied to a subroutine. Many system

subroutines are capable of returning this error code. If this error occurs, check the parameter

values used in your subroutine call against the description in the Subroutines Reference series.

Third Edition A-3

Advanced Programmer's Guide, Volume 0

ESNATT (7) No directory attached.

Usually occurs when the directory to which the user is attached is removed from the system,

as when a disk is shut down, or in the case of a network failure when attached to a directory

on a remote disk. Use one of the AT$ subroutines, or the ATTACH or ORIGIN command,to

reestablish an attach point.

ESFDFL (8) Directory entry list is full.

An attempt was made to add an entry to a directory that does not have room for the entry.

Such entries include entries for newly created file system objects, new entries for name

changes of existing objects, ACL information placed on a file system object, and so on.

FIX_DISK may compress such a directory sufficiently to allow new entries to be added (if

the -UFD_COMPRESSIONand —FIX options are used), but, because a directory must reside

in a single segment, there is a limit of approximately 4000 entries per directory even in a

fully compressed directory. (This limit varies according to the lengths of objecmames, ACL

information present, and the current state of directory fragmentation.)

ESDKFL (9) Disk is full.

The operation requires an additional record to be allocated on a disk partition, but all records

on that partition are already allocated. Use the AVAIL command to display the number of

total and available records on a disk partition.

Someoperations are nonrecoverable after returning this error code. For example, the WTLINS

subroutine does notrestore the file location pointer to the original location when it encounters

this error; the file location is undefined. On the other hand, the PRWF$$ subroutine does
reset the file location pointer to the value it held before the disk full error was encountered.

ESNRIT (10) Insufficient access rights.

The operation could not be performed because the user running the program has insufficient

access to perform the operation. In most cases, access is determined by either the ACL placed

on a file system object or the password protection. In some cases, only the System

. Administrator or the supervisor terminal user (User 1) may perform the operation. In a few

cases, such as calling the LOGO$$ subroutine, access is determined by matching user names.

Other cases exist, as indicated in the description of the subroutine that returned this error

code.

ESFDEL (11) File open on delete.

An attempt to delete a file, segment directory, or file directory failed because the object was

either in use by anotheruser, in use by the same user on anotherfile-unit, or an EPF open for

VMEFAread.

ESNTUD (12) Not a directory.

The attempted operation requires the target file system object to be a file directory, butit is

not a file directory.

A4 — Third Edition

PRIMOSError Codes

ESNTSD (13) Not a segment directory.

The attempted operation requires the target file system object to be a segmentdirectory, butit

is not a segment directory. .

ESDIRE (14) Operation illegal on directory.

The object being referenced is a file directory or a segment directory. The requested

operation, or the subroutine called to perform it, cannot act on a directory.

ESFNTF (15) Not found.

The target of the operation does not exist. Typically, the target is a file system object, but it

can be any entity whose existence or nonexistence can be determined.

ESFNTS (16) Not found in segment directory.

The desired entry number was not found in the segment directory opened on the specified

file-unit. Either no entry was found at the current position, or the specified entry could not be

found by searching the segment directory.

ESBNAM (17) Illegal name.

The name supplied as a parameter for the operation does not meet the syntactic requirements

for the corresponding object. ESBNAM is also returned by the LOGO$$ subroutine.

ESEXST (18) Already exists.

The object to be created already exists.

ESDNTE (19) Directory is not empty.

An operation, such as the deletion of a directory, cannot be performed because the directory
is not empty.

ESSHUT (20)

Not currently returned by PRIMOS.

ESDISK (21) Disk I/O error.

The FORCEWsubroutine returns this error code if a disk error occurred during the forced

writing of locate buffers. Other file system and low-level disk subroutines may return this

error code if a disk error occurs.

ESBDAM (22) Bad DAM file.

EPF$MAP or EPF$RUN return this error code if the EPF DAM file structure has been

corrupted.

Third Edition

Advanced Programmer's Guide, Volume 0

ESPTRM (23) Pointer mismatch found.

Many PRIMOSsubroutines (for example, RDLIN$ and WTLINS$)return this error code if a

pointer mismatch is detected. This is usually caused by a corrupted disk. Run FIX_DISK to

repair the disk.

ESBPAS (24) Bad password.

The password specified does not match the actual password.

ESBCOD (25)

Not currently retumed by PRIMOS.

ESBTRN (26) Bad truncate of segment directory.

SGDR$$ returns this error code if an attempt was made to truncate a segment directory that

has members beyondthe desired truncation point. Such members must be removed before the

truncation operation can succeed.

ESOLDP (27) Old partition.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESBKEY (28) Bad key.

Many PRIMOSsubroutines usethis error code to indicate that a key argument supplied by the

caller is not a valid value. Check the description of the subroutine being called for valid

values for the key argument.

ESBUNT (29) Bad unit number.

Either an invalid file-unit number was supplied to a system subroutine or an invalid device

unit number was supplied.

Invalid File-unit Number: Thefile-unit number supplied is invalid (out of range). Note

that file-units 1-128 are valid file-unit numbers (unless the System Administrator has reduced

the number of valid file-units by using the FILUNT directive in the system configuration

file). Larger file-units may becomevalid as a user uses more dynamically allocated units.

Invalid Device Unit Number: The device unit number is invalid. The range of valid unit

numbers depends upon the type of device involved. (See the ASSIGN command in the

PRIMOS Commands Reference Guide.)

ESBSUN (30) Bad segment directory unit.

The file-unit you specified was not a segment directory unit. This error code is not returned

by currently used subroutines; it may be returned by old programs that use obsolete

subroutine calls.

A-6 Third Edition

PRIMOS Error Codes

ESSUNO (31) Segment directory unit not open.

An operation was attempted on a segment directory entry when the specified segment

directory file-unit was not open, or was not open for the type of operation requested. The

SRCH$$, SGDR$$, SGDOP, SGDEX, and SGD$DL subroutines may return this error
code.

ESNMLG (32) Name is too long.

A file system objectname is too long. For example, this error code is returned if a call to

APSFX$ to append a suffix to the specified filename would result in a filename or a

pathname longer than PRIMOSallows.

ESSDER (33) Segment directory error.

SGDR$$ or SGD$OP return this error code when the segment directory member being
opened is not a SAM or DAM file or a SAM or DAM segmentdirectory. Contact your

System Administrator or system operations staff to determine whether the situation can be

corrected by file system maintenance.

ESBUFD (34) Directory is damaged.

Integrity checking performed by many file system subroutines has detected an integrity error

in the structure of a file directory. Contact your System Administrator or system operations

staff to determine whetherthe situation can be corrected by file system maintenance.

ESBFTS (35) Buffer is too small.

Either a caller-supplied buffer is too small to hold the data to be returned, or a buffer internal

to the subroutine is too small to hold the data. In some cases, the error indicates that the

requested operation could not be performed. In other cases, the operation may have been

performed, but the data to be returned was truncated to fit into the caller-supplied buffer.
Check the description of the subroutine you are calling to determine the appropriate error

recovery.

ESFITB (36) File is too big.

SGDR$$ returns this error code if the segment directory on whichit is operating is discovered
to be longer than 131,072 halfwords (65,536 entries).

ESNULL (37) (no message)

This error code does not have any specific meaning attached to it. If specified in a call to

ER$PRINT or ER$TEXT, this error code returns a null string. Many programs use ESNULL

in calls to the obsolete subroutine ERRPR$,or to the ER$PRINT and ER$TEXT subroutines
when the only error message desired is a user-specified error message.

Third Edition A-7

Advanced Programmer's Guide, Volume 0

ESIREM (38) Illegal remote reference.

An operation was attempted that requires a reference to a remote node on the network. No

PRIMOSsupport exists for such a reference. For example, this error code is returned when an

attempt is made to spawn a phantom either while attached to a remote directory or while

using a remote commandfile or CPL program.

ESDVIU (39) Device in use.

An attempt was made to assign a peripheral device, such as a magnetic tape drive, that was

already assigned to anotheruser.

ESRLDN (40) Remote line is down.

The system being referenced cannot be reached from the local system. No disks or other

resources on that remote system can be accessed.

ESFUILU (41) File units all in use.

The operation could not proceed because the system lacks either available file-units or

available named semaphores.

No Available File-units: No more file-units are available for the calling process. This

usually indicates that the program is not closing units it has finished using, since the number

of available file-units is usually very large.

This error may also indicate that a remote system being used by the calling process has run

out of file-units on which to handle this process’s remote requests.

No Available Named Semaphores: No more semaphores are available on the system for

access via the named-semaphore subroutines. Use the STATUS SEMAPHORES command to

display information on both numbered and named semaphores. Typically, the SEM$OP

subroutine retums this error code if it refers to the lack of availability of named semaphores.

ESDNS (42) Device not started.

PRIMOSreturns this error codeif a low-level operation is requested on a device that is notstarted.

ESTMUL (43) Too many subdirectory levels.

The Q$READand Q$SETsubroutines and programs that perform treewalks of subdirectories
retum this error code if the number of nested subdirectories exceeds the implementation-

defined maximum.

ESFBST (44)

Not currently returned by PRIMOS.

ESBSGN (45) Bad segment number.

An invalid (out-of-range) segment number was specified. For example, an attempt was made

to set access on a segment (not a segment directory) with an invalid number via SEGACS.

This error code is also returned by the MM$MLPA and MM$MLPUsubroutines.

Third Edition

PRIMOSError Codes

ESFIFC (46) FAM ~— invalid function code.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESTMRU (47)

Not currently retumed by PRIMOS.

ESNASS (48) Device not assigned.

An attempt was made to perform an operation on a peripheral device (such as a magnetic tape

unit) that is not assigned to the user.

ESBFSV (49)

Not currently returned by PRIMOS.

ESSEMO (50) Semaphore overflow.

SEM$NF returns this error code if the number of outstanding notifies on the semaphore is

already 32,766.

ESNTIM (51) No timer.

SEM$TN returns this error code if no timers are available to place on semaphores. Because of

the potential lack of timers for numbered semaphores, you may wish to have your program

use named semaphores and use the SEM$TW subroutine to wait for a specified amount of

time.

ESFABT (52)

Not currently retumed by PRIMOS.

ESFONC (53)

Not currently retumed by PRIMOS.

ESNPHA (54) No phantoms available.

An attempt to spawn a phantom (by calling PHNTM$ or PHANTS) failed because all
phantomsare already in use.

ESROOM (55) No room,

More entries have been returned to a fixed-length table than the table has room for. Some

subroutines return this error code after writing as many entries as possible into the table. This

error code is also returned by storage allocation subroutines that do not signal conditions

whenthey cannot find sufficient memory.

ESWTPR (56) Disk is write-protected.

On a write-protected disk, you cannot open an object for writing, create an object, or change

the attributes of an object.

Third Edition

Advanced Programmer's Guide, Volume 0

ESITRE (57) Illegal treename.

The pathname that was supplied to AT$, FIL$DL, SRSFX$, TSRC$$, or that is on a
command line does not conform to the syntax rules for a pathname. See the PRIMOS User's
Guide for a description of the syntax of a pathname.

ESFAMU (58)

Not currently returned by PRIMOS.

ESTMUS (59) Too many users.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESNCOM (60) Null command line.

The PRIMOS commandenvironmentlistener uses this error code internally to distinguish a

null command line from a successfully invoked command.It is not currently returned to the
user.

ESNFLT (61) No fault frame.

CNSIG$ returns this error code to indicate that it could not find a condition frame in which to

set the continue_sw bit to ’1’b before it found the end of the stack. This error probably results
from calling CNSIG$outside of an on-unit.

ESSTKF (62) Bad stack format.

PRIMOSsubroutines, such as CNSIG$, use this error code to indicate that the stack seemsto
be circular. This may be due to a circular stack or a circular list of on-units. The stack is
considered circular if approximately 20,000 stack frames have been examined withoutfinding
the desired frame or the end of the stack. The list of on-units for a particular stack frame is
considered circular if approximately 1,000 on-units have been examined without finding the
desired on-unit or the end ofthelist.

ESSTKS (63) Bad stack format signalling.

The condition signaling mechanism generates this error code upon detection of a bad stack
format when it calls the command environmentreinitialization subroutine. The error code
itself is not returned by any PRIMOSsubroutine.

ESNOON (64) No on-unit found.

A spawned phantom encountered an error during startup that cannot be handled during
Startup. Or, a crawlout condition occurred while the process was in Ring 3, indicating a
possible internal error or an error in a user program.

A-10 Third Edition

PRIMOSError Codes

ESCRWL (65) Fatal error in crawlout.

An attempt was made to crawl out from one ring to anotherring of equal or greater privilege,

an invalid crawlout was attempted, or a new condition was signaled during a crawlout. In all

cases, this error code is used only in the call to the subroutine that reinitializes the user’s

command environment, and is not returned by any PRIMOSsubroutine to a calling program.

ESCROV (66) Stack overflow in crawlout.

Insufficient room exists on the Ring 3 stack to handle a crawlout from Ring 0 or Ring 1, or

insufficient room exists due to a warm start following a system halt caused by a Ring 0 stack

overflow by the user’s process. This error code is used only in the call to the subroutine that

reinitializes the user’s command environment, and is not returned by any PRIMOSsubroutine

to a calling program.

ESCRUN (67) Crawlout unwind failed.

The stack could not be unwound during a crawlout. This error code is used only in the call to

the subroutine that reinitializes the user’s command environment, and is not returned by any

PRIMOSsubroutine to a calling program.

ESCMND (68) Bad command format.

The standard command processor (STD$CP or CP$) returns this error code if the command

line is truncated because it is too long, if the command name does not conform to filename

syntax rules, or if the command nameis more than 32 characters long.

ESRCHR (69) Reserved character.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESNEXP (70) Corruption detected during use of EXIT.

PRIMOS has detected a stack frame that indicates the bottom of a static-mode program’s

stack when there is no known static-mode program suspended in the user’s process. Such a

situation is rarely encountered except in an errant program; it may be detected when a

program calls the EXIT subroutine, in which case it causes the user’s command environment

to be reinitialized.

ESBARG (71) Bad argument in command.

An argument, such as a key or a pathname,is invalid, either because it is unrecognized or because

it conflicts with other arguments. An unrecognized argument can occurif a required data area is

not allocated. ESBARGisalso used to indicate an invalid argument to a PRIMOS command.

ESCSOV (72) Concealed stack overflow.

PRIMOS has detected that the user’s process has overflowed its Ring 0 concealed stack,

which is an internal error. This error code is used only in the call to the subroutine that

reinitializes the user’s command environment, and is not returned by any PRIMOSsubroutine

to a calling program.

Third Edition A-11

Advanced Programmer’s Guide, Volume 0

A-12

ESNOSG (73) Segment does not exist.

A reference was made to a nonexistent segment when calling a PRIMOS subroutine to

manipulate a segment’s access rights or when attempting to change the availability of the last

page of a segment.

ESTRCL (74) Command line truncated.

Subroutines that read a command line or expand text using the abbreviation preprocessor

return this error code to indicate that the command line or the expanded text was longer than

could be held in the buffer, and was, therefore, truncated.

ESNDMC (75) No SMLC DMC channels.

No further DMC channels are available for synchronous communicationslines.

ESDNAV (76) Device not available.

The requested peripheral device, such as a magnetic tape unit, is not available.

ESDATT (77) Device already attached.

The requested peripheral device is already attached to the user’s process.

ESBDAT (78) Bad output data.

An incorrect data count or invalid data format exists. The SR$FR_LS subroutine returns this
error code if it encounters an invalid pointer in a linked list. The MM$MLPA and

MMS$MLPUsubroutines return this error code if you specify a page that cannot be operated

on. E$BDATis also returned by the LN$SET subroutine.

ESBLEN (79) Bad length.

The specified buffer length is invalid. The AS$LST and AS$SET subroutines return ESBLEN

if the buffer length is not large enough.

ESBDEV (80) Bad device number.

An invalid numberfor a peripheral device, such as a communications device, was specified.

ESQLEX (81) Queue length exceeded.

An internal queue cannot hold another item.

ESNBUF (82) No buffer space.

An attempt to acquire internal buffer space failed.

ESINWT (83) Input waiting.

Pending input must be read before output can be sent to the peripheral device.

Third Edition

PRIMOSError Codes

ESNINP (84) No input available.

No input from the peripheral device is pending.

ESDFD (85) Device forcibly detached.

The peripheral device was forcibly detached from the user’s process; therefore, the desired

operation cannot be performed.

ESDNC (86) DPTX not configured.

An attempt was made to operate a peripheral device that requires DPTX to be configured on

the system.

ESSICM (87) Illegal 3270 command.

An attempt to use an invalid 3270-class command code was made.

ESSBCF (88) Bad device number copied.

An invalid device number was copied during an output operation to a 3270-class device.

ESVKBL (89)

Not currently returned by PRIMOS.

ESVIA (90) Invalid AID byte.

An invalid or nonexistent AID byte was supplied in the buffer for a 3270-class device.

ESVICA (91) Invalid cursor address.

A cursor address in a cursor-addressing commandis invalid or missing.

ESVIF (92) Invalid field address.

A field address in a field-addressing commandis invalid or missing.

ESVFR (93) Field required.

An invalid field address was supplied for a formatted screen.

ESVFP (94) Field prohibited.

A Set Buffer Address (SBA) command was performed in an unformatted buffer for a 3270-

class device.

ESVPFC (95) | Protected field check.
An attempt was made to write into a protected field on the screen.

Third Edition A13

Advanced Programmer’s Guide, Volume 0

ESVNFC (96)

Not currently returned by PRIMOS.

ESVPEF (97) Past end of field.

An attempt was made to write past the end of a field on the screen.

ESVIRC (98)

Not currently returned by PRIMOS.

ESIVCM (99) Magtape command invalid.

PRIMOSreturns this error code if an invalid magnetic tape operation is requested.

ESDNCT (100) Device not connected.

An operation was attempted on a peripheral device that was not connected to the system orto

the user’s process.

ESBNWD (101) Bad number of words.

An invalid numberof halfwords was specified as the size of the buffer.

ESSGIU (102) Segment in use.

An attempt was made to copy a segment to another segment that already exists. (This refers

to memory segments, not to segment directories or their members.)

ESNESG (103) Not enough segments.

Insufficient system segments are available for a program to be invoked or for additional

storage to be acquired.

ESSDUP (104)

Not currently retumed by PRIMOS.

ESIVWN (105) Invalid VMFA window number.

An EPF was corrupted, because it contains invalid VMFA window numbers. Rebuild the EPF

by using BIND.

ESWAIN (106) Window already in address space.

PRIMOSusesthis error code internally when mapping an EPF to memory to indicate that the

EPF was already mapped to memory for this process. ESWAIN is not currently returned to
the user.

A-14 Third Edition

PRIMOSError Codes

ESNMVS (107) No more VMFA segments.

Insufficient VMFA segments are available in the system to map in an EPF Ask your System

Administrator to increase, if possible, the number of segments available to your process.

Meanwhile, removing inactive EPFs from memory may temporarily alleviate the problem.

ESNMTS (108) No more temporary segments.

Insufficient temporary segments are available in the system to map in the impure procedure

code of an EPF(or the pure procedure code of a remote EPF or an EPF being debugged with

DBG). Ask your System Administrator to adjust (via NSEG) the number of temporary

segments on your system. Meanwhile, removing inactive EPFs from memory may temporarily

alleviate the problem.

ESNDAM (109) Not a DAM file.

An attempt was made to open file for VMFA-read (via the k$vmr key) when the file is not

a DAM file.

ESNOVA (110) Not open for VMFA.

The file-unit number supplied to EPF$RUN or EPF$MAP does not identify a unit open for

VMFA-read (via the k$vmr key). See VolumeIII ofthis series for information on howto call

EPF$RUN or EPF$MAP.

ESNECS (111)

Not currently retumed by PRIMOS.

ESNRCV (112) Receive enabled required.

SMSG$ is not allowing you to send a message because you are rejecting messages of the

same type (immediate or deferred)that you are sending to anotheruser.

ESUNRV (113) User not receiving now.

The user to whom you are sending a message via SMSG$ is rejecting immediate (and

possibly also deferred) messages.

ESUBSY (114) User busy, please wait.

SMSG$ was unable to send a message to a user, either because the receiver already had a

deferred message waiting to be displayed, or because the receiver’s terminal output buffer was

full and, therefore, an immediate message could not be sent.

ESUDEF (115) User unable to receive messages.

The user numberspecified in a call to SMSG$ identifies a user who is not logged in to the

system, but whois logged in either remotely to another system on the network or through the

system from one node to another.

Third Edition A-15

Advanced Programmer's Guide, Volume 0

A-16

ESUADR (116) Unknown addressee.

The user number specified in a call to SMSG$ does not correspond to a logged-in user or the

user name specified could not be found in the list of logged-in users on the system.

ESPRTL (117) Message operation partially blocked.

Notall of the users who were the target of a message sent by SMSG$received the message

(perhaps because they are deferring or rejecting messages).

ESNSUC (118) Operation unsuccessful.

When returned by the inter-user message facility (the SMSG$ subroutine), this error code

indicates that the message reached none of the potential recipients. When returned by the

storage allocation subroutines (STR$FS, for example), this error code indicates a corrupted

memory allocation structure. Also retuned by IOCS$_GET_LOGICAL_UNIT. This error
code is used as a generic positive severity code with a message slightly more meaningful than

that displayed for ESEOF and E$NULL.

ESNROB (119)

Not currently returned by PRIMOS.

ESNETE (120) Network error detected.

A problem occurred with a remote file access. Retry the operation. If this is not successful,

Close all file-units on the remote system and attach to a directory on a different system before
retrying the remote access.

ESSHDN (121) Disk has been shut down.

The disk on which the file system object resides was shut down. The disk is not available for

use until the system operator has reenabled use of the disk.

ESUNOD (122) Unknown node name.

A subroutine that takes a node name has found that the named node does notexist.

ESNDAT (123) No data found.

No data was found. For example, a call to LON$R to read phantom logout information

retums this error code if there is no additional record of any phantom logout. A call to
LN$SETreturns this error code if the EPF contains no library information.

ESENQD (124) Enqueued only.

A cross-process signaling message has been enqueued, but the user has not yet received the

corresponding signal. This may be due to a low oridle user priority level or the message may
have been deferred.

Third Edition

PRIMOS Error Codes

ESPHNA (125) Protocol handler not available.

The desired communications protocol handler is not available.

ESIWST (126) ESINWT enabled by configuration.

An attempt to set attributes for a device failed because input was waiting, and the

configuration file specified inhibition of this operation when input is waiting.

ESBKFP (127) Bad key for this protocol.

An invalid key was supplied either in a call involving a communications device or when

validating a system parameter.

ESBPRH (128) Bad protocol handler specified.

An internal error in DPTCFG occurred.

ESABTI (129) I/O abort in progress.

An I/O abort was occurring during an attempt to output data or set attributes for a

communications device.

ESILFF (130) Illegal DPTX file format.

An invalid file format for the configuration file read during DPTX initialization exists.

ESTMED (131) Too many emulate devices.

DPTX did not initialize because there are too many devices to emulate.

ESDANC (132) DPTX already configured.

An attempt was made to configure DPTX after it was already configured.

ESNENB (133) Remote node not enabled.

A remote cperation cannot be performed because the remote node is not allowing remotefile

access.

ESNSLA (134) No NPX slaves available.

The remote system on which the file system object resides has become overloaded with

remote file access requests. The operation may be attempted later, with possible success.

ESPNTF (135) Procedure not found.

The LINKAGE_FAULT$ condition was raised in the slave process on the remote system

while attempting to access a remote file system object.

Third Edition A-17

Advanced Programmer's Guide, Volume 0

ESSVAL (136) Slave validation error.

The user’s remote ID for the system on which thefile system object resides is incorrect. The

user must use the ADD_REMOTE_ID command, described in the PRIMOS Commands
Reference Guide, to establish the correct remote ID for the system. Until then, all attempts to

access data on that remote system will fail with this error code.

ESIEDI (137) I/O error or device interrupt.

An error or interrupt occurred on a peripheral device on which low-level operations are being
performed by the user program.

ESWMST (138) Warm start occurred.

A peripheral device should be reinitialized because a warm start was performed on that

system.

ESDNSK (139) PIO instruction did not skip.

A Programmed I/O instruction to a peripheral device did not skip during a low-level operation

being performed by a user program.

ESRSNU (140) Remote system not up.

The remote system on which the file system object resides is in the process of starting up, but

is not yet honoring Remote File Access (RFA) requests because the operator has not yetset

the date and timeat the supervisor terminal for that system.

ESS18E (141)

Not currently returned by PRIMOS.

ESNFQB (142) No free quota blocks.

Internal storage used to keep track of quota information for directories was exhausted.

ESMXQB (143) Maximum quota exceeded.

The operation requires an additional record to be allocated in a directory, but the maximum

quota on that directory or on one ofits parent directories was already reached.

Some (but notall) operations are nonrecoverable after returning this error code. For example,

the WTLIN$ subroutine does not restore the file location pointer to the original location when

it encounters this error; the file location is undefined. Other operations, such as the PRWF$$

subroutine, reset the file location pointer to the value it held before the quota-exceeded error
was encountered.

ESNOQD (144) Not a quota disk.

An attempt was made to perform a quota operation on a nonquota (pre-Rev. 19 format) disk.

The DIRCR, QREAD,and Q$SET subroutines mayall return this error code.

A-18 Third Edition

PRIMOSError Codes

ESQEXC (145) Quota set below current usage.

A call to Q$SET set the maximum quota to a value that is below the number of records

currently used in the directory. Although this is not an error, it does mean that no new records

can be used in the directory until enough records are deleted so that the number of records

used falls below the maximum quota.

ESIMFD (146) Operation illegal on MFD.

An operation was attempted that is invalid on the MFD fora disk partition.

ESNACL (147) Not an ACL directory.

An attempt to set or list ACL information was made for a file system object that resides in a

password directory.

ESPNAC (148) Parent not an ACL directory.

An attempt to set or list ACL information was made for a file system object whose parent

directory is a password directory rather than an ACL directory.

ESNTFD (149) Not a file or directory.

The target object of a call to ACCAT, ACDFT, or KLMS$IF is not a file, a segment
directory, or a file directory. You cannot protect an access category with another access

category, nor can you set an access category to default protection.

ESIACL (150) Operation illegal on access category.

An attempt was made to open, close, delete, or set improper attributes on an access category.

Use AC$LST to read an access category. Use CAT$DLto delete an access category. The only

proper attributes to set on an access category are date/time attributes such as date/time last

modified.

ESNCAT (151) Not an access category.

The file system object is not an access category. The ACCAT, CATDL, and DIR$CR

subroutines are all capable of returning this error code.

ESLRNA (152) Like reference not accessible.

AC$LIK cannot access the like reference object due to insufficient access.

ESCPMF (153) Category protects MFD.

An attempt was made to call CAT$DLto delete an access category that protects the MFD of

a partition.

ESACBG (154) ACL too big.
An attempt was made to specify more access control information than can fit in a directory

entry. See VolumeII of this series for a description of the limits on access controllists.

Third Edition A-19

Advanced Programmer's Guide, Volume 0

A-20

ESACNF (155) Access category not found.

The access category referenced in a call to AC$CAT or DIR$CR could not be found. A

common cause for this error is the lack of the .ACAT suffix in the call. None of the

PRIMOSaccess control subroutines add this suffix to a filename. Therefore, your program

should call APSFX$ to ensure addition of the suffix.

ESLRNF (156) Like reference not found.

The AC$LIK subroutine could not find the like reference. See VolumeII of this series for

details on setting access on one object to be like that of another object. A commoncause for

this error is the false assumption that supplying a simple pathname causes the like reference

to be searched for in the target object’s directory. In fact, it is searched for in the user’s home
directory.

ESBACL (157) Bad access control list format.

An invalid access control list was supplied to the AC$SET or AC$CHG subroutine. See
Volume II of this series for detailed information on the syntax for access controllists.

ESBVER (158) Bad version number.

A version numbersupplied by the calling program in structure orin the calling sequence is

unrecognized or no longer supported. If this error occurs in an EPFfile, it may be correctable

by resubmitting the file to BIND.

ESNINF (159) No information is accessible.

An error occurred while you were attempting to access a file system object in a directory to

which you have noList access. To prevent the determination of objectnames in the directory

by inference or by the process of elimination, PRIMOS doesnotreport the original error to

the calling program or to the user. ESNINF is also returned by the LN$SET and DS$AVL
subroutines.

ESCATF (160) Access category found in directory.

The AC$RVT subroutine cannot revert a directory (that is, change it from an ACL directory

to a password directory), because the directory still contains access categories.

ESADRF (161) ACL subdirectory found in directory.

AC$RVT returns this error code to indicate that the directory to be reverted (changed from an

ACL directory to a password directory)still contains ACL subdirectories that must themselves

be reverted before their parent directory can be reverted.

ESNVAL (162) Validation error.

CHG$PW returnsthis error code if the user’s entry could not be found in the EDIT_PROFILE

database (perhaps indicating that the user’s entry was deleted since the user loggedin).

Third Edition

PRIMOS Error Codes

ESLOGO (163) (no message)

PRIMOSusesthis error code for internal communication when calling the subroutine that

reinitializes a user’s command environmentto indicate that the user is logging out. Neither the

error code nor the accompanying null message is ever returned to a user program or displayed

on a user’s terminal.

ESNUTP (164) No unit table available for phantom.

All unit tables are taken.

ESUTAR (165) Unit table already returned.

An internal PRIMOSerror occurred when logging out a user.

ESUNIU (166) Unit table not in use.

A unit table that was not being used is being returned to the system.

ESNFUT (167) No unit table available.

No unit tables are available.

ESUAHU (168) User already has unit table.

An internal PRIMOSerror occurred when logging in a user.

ESPANF (169) Priority ACL not found.

PA$LST returns this error code to indicate that no priority ACL was placed on the disk

partition specified.

ESMISA (170) Command line argument missing.

A required argument was not specified on the command line. User-written programs may use

this error code for similar purposes.

ESSCCM (171) System console command only.

The desired operation can be performed only by a program running at the supervisor terminal

(User 1).

ESBRPA (172)

Not currently returned by PRIMOS.

ESDTNS (173) Date and time not set.

DIR$CR and Q$SET subroutines return this error code to indicate that proper disk-quota

operations cannot be performed unless the system date and timeare set.

Third Edition A21

Advanced Programmer's Guide, Volume 0

A-22

ESSPND (174) Remote procedure call still pending.

A call to a remote system has not completed within a reasonable amount of time. This error

code indicates a non-recoverable network error.

ESBCFG (175) Network configuration mismatch.

The remote system on whichthe file system object resides does not agree with the network

configuration of the local system or the remote system requires a remote ID. Use the ARID

command to establish a remote ID. If the problem persists, contact your Network

Administrator for assistance.

ESBMOD (176) . Bad access mode.

The AC$ subroutines return this error code if the access mode is not ALL, NONE,or oneor

more of the letters A, D, L, O, P, R, U, W, or X. See Volume II of this series and the

PRIMOSUser's Guide for detailed information on the syntax rules for access controllists.

ESBID (177) Bad user identifier.

AC$SET, VALID$, or CHG$SAreturn this error code to indicate an invalid identifier or user
name. AC$SET may also return this error code if two specifications of SREST occurin the
access control list. See Volume II of this series and the PRIMOS User’s Guide for detailed

information on the syntax of an access controllist.

ESST19 (178) Operation illegal on pre-19 disk.

An attempt was made to use file system features that are not available for files on the

specified disk. This is usually because the disk was formatted using an earlier revision of

PRIMOSthat did not support these features.

ESCTPR (179) Object is category-protected.

AC$CHGreturns this error code when an attempt is made to change the access of an object

that is protected by an access category. See VolumeII of this series for information on how

your program can handle this situation. See the PRIMOS User's Guide for detailed

information on the rules governing access controllists.

ESDFPR (180) Object is default-protected.

AC$CHGreturns this error code when an attempt is made to change the access of an object

that is default-protected.

If you wish your program to force the change anyway, have it call AC$LIK with the target

object as both the target and reference objects; that is, set a specific ACL to match the

existing ACL. Then, call AC$CHG to change the specific ACL on the target object.

ESDLPR (181) File is delete-protected.

FIL$DL or SRCH$$return this error code when an attempt is madeto delete a file that was
delete-protected by SATR$$ (via the SET_DELETE command).

Third Edition

PRIMOSError Codes

ESBLUE (182)

Not currently returned by PRIMOS.

ESNDFD (183)

Not currently retumed by PRIMOS.

ESWFT (184) Wrong filetype.

Thefile specified is of the wrong type. For example, this error code is returned by CF$EXT,

CF$REM, or CF$SME if you specify a file that is not a CAM file.

ESFDMM (185) , Format/data mismatch.

This error code is returned by the LIST$CMDsubroutine if you specify an invalid wildcard

string.

ESFER (186) Bad format.

This error code is returned by the ISNL, ISNRC, and ISN$UC subroutines if the file
accessed is not formatted as a High Level Name File (HLNF).

ESBDV (187)

Not currently returned by PRIMOS.

ESBFOV (188)

Not currently returned by PRIMOS.

ESNFAS (189) Top-level directory not found or inaccessible.

The first directory name supplied in the pathname could not be located on any of the disks

that are active and visible to the calling system. This error can also occur if the named

directory does actually exist on one or more disks, but the user does not have List access to

any of them.

ESAPND (190) Asynchronous procedure still pending.

An attemptto initiate a new asynchronous remote procedure failed because there is a previous

asynchronous procedure call to that remote node. Terminate the previous asynchronous

procedure call and retry the operation.

ESBVCC (191) Bad virtual circuit clearing.

An error was made in clearing a virtual circuit when the user was terminating file access to a

remote node. It does not indicate an error in the user program; it most likely indicates that a

network problem occurred prior to the termination of the connection.

Third Edition A-23

Advanced Programmer's Guide, Volume 0

ESRESF (192) Restricted access file.

An attempt was made to access a file that is restricted to access by only a particular

subsystem (such as ROAM).

ESMNPX (193) Illegal multiple hops in NPX.

A disk partition residing on a remote node is listed on that remote node as residing on yet

another remote node, requiring a second remote access, which is not allowed. Ask your

System Administrator to modify the system startup file appropriately.

ESSYNT (194)

Not currently returned by PRIMOS.

ESUSTR (195) Unterminated string.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESWNS (196)

Not currently returned by PRIMOS.

ESTIREQ (197)

Not currently returned by PRIMOS.

ESVNG (198)

Not currently returned by PRIMOS.

ESSOR (199)

Not currently returned by PRIMOS.

ESTMVV (200)

Not currently returned by PRIMOS.

ESESV (201)

Not currently returned by PRIMOS.

ESVABS (202)

Not currently returned by PRIMOS.

A-24 Third Edition

PRIMOS Error Codes

ESBCLC (203) Bad compiler library call.

The compiler generated an invalid call to one of its runtime library routines. For example, the

first argument to most of the I/O routines is a key that indicates which optional arguments

have or have not been specified. If the compiler sets the key to indicate that a particular

argument will be passed, but the compiler does not pass that argument, the error ESBCLCis

raised. Contact your System Administrator for assistance.

ESNSB (204) BRMS~-labeled tape was detected.

A non-BRMSproducthastried to read a BRMS-labeled tape.

ESWSLV (205) Slave ID mismatch.

One of the nodes involved in your network connection has had the network restarted since

you last used this remote file access connection. Attach to a directory on a different system,

then reestablish attach points and retry the RFA operation.

ESVCGC (206) Virtual circuit was cleared.

The virtual circuit used for RFA access to a particular node was cleared by PRIMENET.

Close all units open to that node and issue the ORIGIN commandto reset the condition, then

reestablish attach points and open files on the remote node as desired.

ESMSLV (207) Maximum slaves per user exceeded.

The maximum numberof remote file accesses to remote systems per user has been reached

and no new RFAsto other remote systemsare allowed.

ESIDNF (208) Slave ID number not found.

Internal RFA error.

ESNACC (209) Not accessible.

PRIMOSusesthis error code internally. it is not currently returned to the user.

ESUDMA (210) Not enough DMA channels.

There are too few DMA channels during a low-level operation on a peripheral device.

ESUDMC (211) Not enough DMC channels.

There are too few DMCchannels during a low-level operation on a peripheral device.

ESBLEF (212)

Not currently returned by PRIMOS.

ESBLET (213) Bad tape record length and EOT.

PRIMOSusesthis error code internally. It is not currently returned to the user.

Third Edition A-25

Advanced Programmer's Guide, Volume 0

A-26

ESALSZ (214) Allocation request too small.

A call to STR$AL to allocate memory specified too few halfwords to allocate. You must

allocate a minimum of four halfwords.

ESFRER (215) Free request with invalid pointer.

A call to STR$FR or STR$FS was made with an invalid pointer. An invalid pointer is a
pointer to an area of memory already freed, or to a location other than the beginning of an

allocated or freed area.

ESHPER (216) User storage heap is corrupted.

The heap storage for program-class storage was corrupted. Issue the ICE commandto reset

the condition. .

Alternatively, if you believe the program you were running caused the problem,issue the

DUMP_STACK command to trace the program’s history; then issue the ICE command to

reinitialize your command environment. (Errant user programs can corrupt program-class and

process-class storage.)

ESEPFT (217) EPF type invalid.

The EPF type is not valid for this revision of PRIMOS. The EPF$MAP subroutine is

typically the subroutine that returns this error code, although other EPF-related subroutines

also may return this error code. Resubmit the file to BIND. See VolumeIII of this series for

more information.

ESEPFS (218)

Not currently returned by PRIMOS.

ESILTD (219) EPF LTD linkage descriptor invalid.

An invalid LTD linkage descriptor type was found in an EPF file. The EPF file is corrupted

or an internal error occurred in BIND. Resubmit the file to BIND.

ESILTE (220) EPF LTE linkage descriptor invalid.

An invalid LTE linkage descriptor type was found in an EPFfile. The EPF file is corrupted

or an internal error occurred in BIND. Resubmit the file to BIND.

ESECEB (221) Command environment breadth exceeded.

An attempt was made to invoke CP$, EPF$RUN, or EPF$INVK when the maximum
command environment breadth (as displayed by LIST_LIMITS) was already reached by the

running program. Use the RD$CE_DP subroutine to determine the current command

environment breadth and use the CE$BRD subroutine to determine the maximum command

environment breadth within your program.

Third Edition

PRIMOSError Codes

ESEPFL (222) EPF file exceeds file size limit.

The EPF is too large for the EPF$MAP or EPF$RUN subroutine to handle. Consider

breaking up the program orlibrary into separate program and library EPFs,if possible.

ESNTA (223) EPF file not active for this user.

REMEPFS$and internal PRIMOSsubroutines use this error code to indicate that an attempt

was made to remove from memory an EPF that was not mapped to memory for this user.

ESSWPS (224)

Not currently returned by PRIMOS.

ESSWPR (225) EPF file suspended within this process.

The EPF being removed (by EPFDEL, EPFRUN, or REMEPF$) is suspended (active)

within the user’s process. Removal of the EPF from memory is not allowed in this case.

ESADCM (226) System Administrator command only.

A user other than the System Administrator attempted to set system defaults for command

environmentlimits.

ESUAFU (227) Unable to allocate file-unit.

PRIMOSwas unable to allocate a file-unit entry for a user because insufficient system-class

storage was available.

ESFIDC (228) File inconsistent data count.

Either a corrupted disk or a problem with the file system exists. This error is returned during

the truncation of a SAM file if the data count for the last record of the file implies that the

current position of the unit in the file is beyond the end-of-file mark. Contact your System

Administrator or system operations staff to determine whetherthe situation can be corrected.

ESINDL (229) Insufficient DAM file index levels.

A DAM file has an insufficient number of index record levels for its size. This error may be

returned during the truncation of a DAM file by PRWF$$ or during the deletion of a DAM

file. Contact your System Administrator or system operations staff to determine whether the

Situation can be corrected.

ESPEOF (230) Past endof file.

Either a corrupted disk or a problem with the file system exists. This error is returned during

the truncation of a DAM file if the data count for the last record of the file implies that the

Current position of the unit in the file is beyond the end-of-file mark. Contact your System

Administrator or system operations staff to determine whetherthe situation can be corrected.

Third Edition A-27

Advanced Programmer's Guide, Volume 0

A-28 ©

ESEXMF (231) Extent map full.

The extent map of a Contiguous Access Method (CAM) file is full. The file cannot be

extended because no additional extents can be added to the extent map.

ESBKIO (232) Unit open for block mode I/O.

The file-unit is open for block mode I/O. Operations requiring locate mode cannot be

performed.

ESAWER (233) Asynchronous write error.

An error occurred during an asynchronous writing action.

ESRAMC (234) ROAM access mode conflict.

A ROAM error, not a file system error, exists.

ESRIER (235) ROAM internal error.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESNSLV (236) Process not a slave.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESRSIN (237)

Not currently returned by PRIMOS.

ESATNS (238) Attribute not supported in directory.

The target object does not have the date/time created (DTC) and date/time last accessed

(DTA)attribute fields. These attribute fields are not present because the object is not an entry

in a hashed directory. Attempts to set these attribute fields return this error code.

ESRSHD (239) Remote disk has been shut down.

A file system operation cannot be performed because it would take place on a remote disk

that was shut down from the supervisor terminal on the local system. No further accesses to

the disk are permitted from the local system. Accesses to the disk from other nodes on the

network, including the system on which the disk resides, maystill be permitted.

ESNOPD (240) | No paging device defined.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESNRFC (241)

Not currently retumed by PRIMOS.

Third Edition

PRIMOS Error Codes

ESCPOV (242) Overflow of CPU seconds.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESIOOV (243) Overflow of I/O seconds.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESBHOV (244) Overflow of CPU and I/O seconds.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESAELE (245) Library is non-executable.

Youtried to invoke a library EPF as a program EPE If you want an EPFto function as both

a program and a library EPF, you must use the MAIN subcommand of BIND to tell BIND

what to use as a starting address.

ESLIST (246) Search list not found or invalid.

A search rule subroutine specified the name of a search list that is not currently set for the

user’s process. This error code is also returned if you attempt to create a search list with an

illegal search list name. Use the LIST.SEARCH_RULES command to determine which

search lists are set for your process. Search list names are not case sensitive.

ESRULE (247) Search rule not found or invalid.

A search rule subroutine specified a search rule that PRIMOScannotfind in the specified
searchlist. Sometimes this error code is issued because the search rule in the list and the one
specified in your subroutine differ in case. Use the LIST_SEARCH_RULES commandtolist
the rules in yoursearchlists.

ESNTOP (248) Search rule not an optional rule.

You attempted to enable or disable a search rule that is not an optional search rule. You can
use the SR$READsubroutine to determine if a search rule is optional.

ESNEST (249) Search lists nested too deeply.

You attempted to set a search list using a search rules file (template file) that contains -insert
keywords that result in either of the following conditions. Either these -insert keywords
would result in the nested insertion of template files in excess of 100 levels, or the -insert
keywords would result in a circular reference, such as two files that attempt to include each
other.

ESADMN (250) Administrator rules not modifiable.

You attempted to delete or modify an administrator rule in a searchlist, or you attempted to
insert a search rule before an administratorrule.

Third Edition A-29

Advanced Programmer's Guide, Volume 0

A-30 _

ESEOL (251) End of search list.

You attempted to read past the end of a search list.

ESADRL (252) Administrator rules contain error.

You attempted to create an illegal administrator rule.

ESIFCB (253) Insufficient free contiguous blocks.

Not enough contiguous disk blocks are available to extend the CAM file. (When CAM files

are extended, they are extended more than one record at a time.)

ESIMEM (254) Insufficient memory for extent map.

The user does not have enough dynamic memory to read in the CAM file’s extent map. The

extent map, which contains the physical location of the extents on the disk, is read into

memory whenit is opened.

ESNRES (255) No resources available for request.

A system process was notavailable for use or not enough memory was available to carry out

the request.

ESILUS (256) Illegal use of PRIMIX gate.

Theuser called a gate reserved for PRIMIX. This error may be returned whenthe user is not

currently in PRIMIX or whenthat user’s PRIMIX state data was corrupted.

ESNCHD (257) No child found for this process.

A process attempted to wait for the termination of a child when the process has no children.

The PX$WAITP subroutine returns this error code.

ESINT (258) PRIMIX wait terminated by interrupt.

A process was taken off a PRIMIX wait by an interrupt. This error code is returned by

PX$WAITP and PX$PAUSP.

ESXSHD (259) PRIMIX can not be initialized when running.

The user attempted to start PRIMIX when PRIMIX is already active. This error code is

retumed by PX$INIT,called through the START_PRIMIX command.

ESNOPX (260) PRIMIX can not be shut down when not running.

The user attempted to stop PRIMIX when PRIMIXis not currently active. This error codeis

retumed by PX$SHDN,called through the STOP_PRIMIX command.

Third Edition

PRIMOS Error Codes

ESNOUS (261) PRIMIX process table has no users.

The PRIMIX process table is empty when at least one entry for the caller should have been

found. This error code indicates a serious problem with the PRIMIX process data structure.

ESINCO (262) PRIMIX process table returned is incomplete.

PX$DUMP (the subroutine that returns the PRIMIX process table to the caller) ran out of
dynamic memory so that only a partial listing of the table was returned.

ESIREQ (263)

Returned only for PRIMIX users at Rev.

ESINAI (264)

ESILLN (265)

Returned only for PRIMIX users at Rev.

ESBUID (266)

Returned only for PRIMIX users at Rev.

ESINRE (267)

Returned only for PRIMIX users at Rev.

ESNPSG (268)

Returned only for PRIMIX users at Rev.

ESUINF (269)

Returned only for PRIMIX users at Rev.

ESIVPT (270)

‘Returned only for PRIMIX users at Rev.

ESSNAL (271)

Returned only for PRIMIX users at Rev.

ESNATF (272)

Returned only for PRIMIX users at Rev.

ESND3S (273)

Returned only for PRIMIX users at Rev.

Third Edition

Illegal EPF registration.

21.0 and subsequent revisions.

Invalid number of initialization arguments.

Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

Illegal link at EPF registration.

21.0 and subsequent revisions.

Bad user ID.

21.0 and subsequent revisions.

Invalid request.

21.0 and subsequent revisions.

Not enough per~-user DTAR1 segments.

21.0 and subsequentrevisions.

User ID not found.

21.0 and subsequent revisions.

Invalid block pointer.

21.0 and subsequent revisions.

Segment not allocated.

21.0 and subsequentrevisions.

Not able to free storage.

21.0 and subsequent revisions.

No DTAR3 segments available.

21.0 and subsequentrevisions.

A-31

Advanced Programmer's Guide, Volume 0

ESBSMT (274) Null smt_ptr or bad field within SMT.

Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESIALN (275) Illegal alias name.

Returned only for PRIMIX users at Rev. 21.0 and subsequentrevisions.

ESBPTR (276) Bad pointer within SMT.

Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESIDBT (277) . Tllegal database.

Returned only for PRIMIX users at Rev. 21.0 and subsequentrevisions.

ESBDTR (278) Bad DTAR. ~

Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESLUNR (279) Library unregistered.

Returned only for PRIMIX users at Rev. 21.0 and subsequent revisions.

ESENRG (280) EPF has not been registered.

Returned only for PRIMIX users at Rev. 21.0 and subsequentrevisions.

ESNDRB (281) No directory block for unit.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESCQPT (282) Circular quota parent thread.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESAREA (283) Corrupted area encountered. —

A space allocation routine found an error in internal consistency.

ESNOWN (284) Not owner of resource.

You attempted to return space that you do not own.

ESBLOK (285) Bad block encountered.

A space allocation routine found an error in internal consistency.

A-32 Third Edition

PRIMOSError Codes

ESISMR (286) Invalid static mode resume.

The command processor uses ESISMR to indicate that the module INVKSM was told to

restore a file that is not a valid static-mode program image. The CP§ subroutine returns

ES$ISMR if a program called CP$ exists to resume or restore an invalid image. ES$ISMR is

displayed as an error message when the user has attempted to restore or resume an invalid

image from commandlevel.

ESBLIN (287) Bad line number.

A line numberoutof the legal range is passed to the gate.

ESBBUF (288) Bad buffer number.

A buffer numberout of the legal range is passed to the gate.

ESBPRO (289) Bad protocol.

A protocol index out of the legal range is passed to the gate.

ESLNUS (290) Line in use.

A line type is being changed on line that is already assigned to a user.

ESBFUS (291) Buffer in use.

The specified buffer number is already being used by anotheruser.

ESIRBF (292) Invalid use of remote buffer.

A buffer number in the remote buffer range is specified for a local asynchronousline.

ESIABF (293) Invalid use of assign line buffer.

A buffer numberin the assignable line buffer range is specified for a terminal userline.

ESIASD (294) Invalid ASD use.

An attempt was made to enable ASD on an assignable line or an NTSline.

ESIASP (295) Invalid sample speed for ASD.

The passed line speed used as the ASD sample speed is invalid.

ESILOD (296) Invalid use of DISLOG.

You tried to enable DISLOG onan assignable, remote, or NTSline.

ESNSNI (297) NSS database not initialized.

An attempt was made to access the Node Status database that was created.

Third Edition A-33

Advanced Programmer's Guide, Volume 0

A-34 ©

ESNSNC (298) Node/LAN naming conflict.

An attempt to add a node to the Node Status database failed because of a naming conflict.

The node name conficts with an existing LAN name, host name, or LTS namein the

database.

ESNSAC (299) Node/MAC address conflict.

An attempt to add a node to the Node Status database failed because of a MAC address

conflict. The node has a MAC address that conflicts with an existing MAC address in the

database.

ESNTHN (300) NTS host not configured.

NTS was started for a host that was not configured for that NTS in the NTS configuration

file.

ESNTNS (301) NTS not started.

NTS was notstarted and an operation requiring NTS was attempted.

ESNTST (302) NTS already started.

NTS was started and an operation requiring that NTS not be started was attempted.

ESNTCF (303) Not an NTS configuration file.

NTS was started with other than an NTS configuration file (for example, a PRIMENETor an
SNA configuration file). This error code is also retumed when the NTS config subfile 0

cannot be opened, the NTS config file version numberis not current, or the NTS config file

checksum is not accurate.

ESNTLC (304) LHC not configured.

An LHCiseither not present or was not configured with an LHC directive, but that LHC was

specified in the NTS configuration file or the PRIMENET configurationfile.

ESNTIN (305) NTS database not initialized.

An operation that requires access to the NTS database was attempted, but the NTS database is

notinitialized.

ESNTDL (306) LHC not downline loaded.

An attempt was made to startPRIMENET/LAN300 or NTS on an LHC thatis either broken

or was not downline loaded.

ESPLAA (307) NTS line already associated.

An attempt was made to associate an NTSline that was already associated.

Third Edition

PRIMOSError Codes

ESLLAA (308) LTS line already associated.

An attempt was made to associate an LTSline that was already associated.

| ESNASO (309) Line not associated.

An attempt was made to unassociate an NTS line in PRIMOS or an LTSline that is not

currently associated.

ESNCFG (310) Line not configured.

An attempt was made to start NTS, but no NTSlines are configured.

ESNXCB (311) -XCB unavailable for request.

An operation requires a buffer to be sent to an LHC, but no control blocks are available.

ESDOQF (312) Device output queue full.

An operation requires a buffer to be sent to an LHC, but the output queueis full.

ESLNOC (313) Line not connected.

A request for a connection between an LTS line and PRIMOS has been rejected. This can

occur when another connection is pending, when a disconnection is pending, or whentheline

is not connectable.

ESROF (314) Request queue full.

The internal request queue to the NTS_SERVERisfull.

ESCREJ (315) Connection request rejected.

An LTSline rejected a connect request from PRIMOS. This occurs when theline is already

connected.

ESCTMO (316) Connection request timed out.

An LTSline did not respond to a connect request (assignment) from PRIMOS. This occurs

when the LTSis not present or is not currently operational.

ESLHDN (317) LHC down.

An operation that requires an LHC to not be in the "down" state was requested when the LHC

is down.

ESLTDN (318) LTS down.

An operation that requires an LTS to not be in the "down" state was requested when the LTS

is down.

Third Edition A-35

Advanced Programmer's Guide, Volume 0

A-36—

ESNTSH (319) NTS is shut down.

An operation was attempted during an NTS shutdown.

ESQFUL (320) Queue is full.

The controller queueis full.

ESQEMP (321) Queue is empty.

The controller queue is empty.

ESNOQ (322) Queue not found.

An operation was requested on a queue that does not exist. This queue does not exist because

it was not created by IG$FIND.

ESVAL (323) Validation error.

This error code is returned when a process request is rejected. A request is rejected if your

process does not have the proper access rights, if your process does not own the connection,

or if the logical connection ID has been corrupted.

ESCOMM (324) Command illegal.

This error code is returned if you specify a command for a routine that cannot accept

commands. A commandis a fifteen-bit standalone quantity. Some data transfer routines, such

as IG$ENQ and IG$DEQ, accept either buffers or commands. Other routines, such as

IG$ABUF and IG$RBUF, have arguments formatted to accept commands, but cannot take

commands. Specifying a command for these routines returns E};COMM.

ESAWIR (325) Page is already wired.

You tried to wire a page that is already wired.

ESIWIR (326) Page is not wired.

You tried to unwire a page that is not wired.

ESNPDA (327) No password directories allowed.

Password directories are disabled on the system and you tried to either create a password

directory or revert an ACL directory to a password directory.

ESNINT (328) Spooler subsystem not initialized.

You tried to spool a file before the Spooler subsystem was initialized. The system operator

must initialize the Spooler, using the PROP —COLDSTART command, before users can

access the Spooler.

Third Edition

PRIMOS Error Codes

ESRELU (329) Registered EPF is in use.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESNBA (330) No buffers available.

No buffers are available to make a line a terminal line.

ESLNOW (331) Line not owned by you.

You tried to change line characteristics for a line other than your terminal line or a line

assigned to you.

ESLNP (332) Line not present on system.

AS$LIN returns this error code if you specify a line numberthat does not correspond to an

asynchronousline on the system.

ESLNA (333) Lock not allocated.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESLDES (334) Lock has been destroyed.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESLNY (335) Lock is not yours.

PRIMOSusesthis error code internally. It is not currently returned to the user.

ESRMLN (336) Illegal operation on remote line.

AS$LIN returns this error code if you try to get a line number for a remote line. AS$LIN

returns line numbers of local NTS lines only.

ESITLB (337) Invalid use of terminal line buffer.

AS$SET returns this error code if you try to set the user number for an assignable

asynchronousline.

ESIPS (338) Invalid parameter setting.

AS$SET returns this error code if you specify an invalid value for one of the asynchronous

line characteristics.

ESDPAR (339) Duplicate parameter.

AS$SET returns this error code if you specify duplicate values for an asynchronous line

characteristic in the list of line characteristics.

Third Edition A-37

Advanced Programmer's Guide, Volume 0

A-38

ESPNS (340) Parameter not settable.

AS$SETreturns this error code if you specify a nonexistent asynchronousline characteristic,

or a characteristic that you are not permitted to modify.

ESBCHK (341)

Not currently returned by PRIMOS.

ESEXPD (342)

Not currently retuned by PRIMOS.

ESDNTS (343) Density not selected.

Your attempt to specify a tape density when assigning a magnetic tape drive was rejected.

This can occurif the specified tape is not fully rewound.

ESSNTS (344) Speed not selected.

Your attempt to specify a tape speed when assigning a magnetic tape drive was rejected. This

can occurif the specified tape is not fully rewound.

ESBMPC (345) Magtape controller hung.

A magnetic tape drive did not respond to an I/O request within a reasonable amount oftime.

This can occur if the power switch on the interface box between a 6250 tape drive andits

tape controller is off, or if there is a problem with the tape drive hardware.

ESGPON (346) Password generation on.

CHG$PW returns this error code if you attempt to manually set a user password when

automatic generation of all login validation passwords is enabled. Either disable automatic

password generation or use the GEN$PW subroutine to create a computer-generated

password. The System Administrator can use the EDIT_PROFILE command to disable

automatic password generation.

ESNGPW (347) Password generation off.

GEN$PW returns this error code if you attempt to create a computer-generated password

when automatic password generation is not enabled. Either enable automatic password

generation, or use the CHG$PW subroutine to manually change the password. The System

Administrator can use the EDIT_PROFILE command to enable automatic password

generation.

ESISTA (348) Invalid state.

PRIMOSusesthis error code internally. It is not currently returned to the user.

Third Edition

PRIMOSError Codes

ES$ZERO (349) Uninitialized block on robust partition.

An unintialized block was detected in a file on a robust partition. This usually happens

following a system halt that was recovered from by running FIX_DISK with the —FAST

option. The operation that returned this error code also reinitialized (zeroed out) the bad

block. Perform recovery procedures (if necessary) and rerun the program. To prevent multiple

E$ZEROerrors, you can run FIX_DISK with the -FULL option. This reinitializes all bad
blocks on the robust partition.

Third Edition A-39

Alphabetical List of Error Messages

In the course of debugging and running application programs, you will undoubtedly encounter

errors. These are reported on yourterminal in the form of one or more lines oftext, the first of

which is a standard PRIMOSerror message. The error message may be followed by additional

program-specific information.

The purpose of this appendix is to make it easier, when all you have is the text of the error

message, to find the corresponding error message description in Appendix A. The message
descriptions in Appendix A are ordered numerically.

In the list that follows, messages are listed alphabetically by the text of the displayed error

message. Following each error message is the numeric value for each error code in the form

nnn, and the mnemonic for each error code in the form E$xxx.

Error Message Numeric Mnemonic

Value

(Null message) 37 E$NULL
(Null message for logout) 163 E$LOGO
Access category found in directory. 160 E$CATF
Access category not found. 155 E$ACNF
ACL subdirectory found in directory. 161 E$ADRF
ACL toobig. 154 E$SACBG
Administrator rules contain error. 252 E$ADRL

Administrator rules not modifiable. 250 E$ADMN
Allocation request too small. 214 E$SALSZ
Already exists. 18 E$EXST
Asynchronousprocedure still pending. 190 E$APND
Asynchronouswrite error. 233 ES$AWER

Attribute not supported in directory. 238 ES$ATNS
Bad access control list format. 157 E$BACL
Bad access mode. 176 E$BMOD
Bad argument in command. 71 E$BARG
Bad block encountered. 285 E$BLOK
Bad buffer number. 288 E$BBUF
Bad command format. 68 E$CMND
Bad compilerlibrary call. 203 E$BCLC
Bad DAM file. 22 E$BDAM

Third Edition B-1

Advanced Programmer's Guide, Volume 0

B-2

Error Message Numeric Mnemonic

Value

Bad device number. 80 E$BDEV

Bad device numbercopied. 88 E$SBCF

Bad DTAR. 278 E$BDTR

Bad format. 186 E$FER

Bad key. 28 E$BKEY

Bad keyfor this protocol. 127 E$BKFP

Bad length. 79 E$BLEN
Bad line number. 287 E$BLIN

Bad number of words. 101 E$BNWD

Bad output data. 78 E$BDAT

Bad parameter. 6 E$BPAR

Bad password. 24 E$BPAS

Bad pointer within SMT. 276 E$BPTR

Badprotocol. 289 E$BPRO

Bad protocol handler specified. 128 E$BPRH
Bad segmentdirectory unit. 30 E$BSUN

Bad segment number. 45 E$BSGN

Bad stack format. 62 E$STKF

Bad stack format signalling. 63 E$STKS

Bad tape record length and EOT. 213 E$BLET

Bad truncate of segmentdirectory. 26 E$BTRN

Bad unit number. 29 E$BUNT

Bad user ID. 266 E$BUID

Bad useridentifier. 177 E$BID

Bad version number. 158 E$BVER

Bad virtual circuit clearing. 191 E$BVCC

Beginning offile. 2 E$BOF

BRMS-labeled tape was detected. 204 E$NSB

Buffer in use. 291 E$BFUS
Buffer is too small. 35 E$BFTS

Category protects MFD. 153 E$CPMF

Circular quota parent thread. 282 E$CQPT

Command environment breadth exceeded. 221 E$ECEB

Commandillegal. 324 E$COMM

Commandline argument missing. 170 E$MISA

Commandline truncated. 74 E$TRCL

Concealed stack overflow. 72 E$CSOV

Connection request rejected. 315 E$CREJ

Connection request timed out. 316 E$CTMO

Corrupted area encountered. 283 E$AREA

Corruption detected during use of EXIT. 70 E$NEXP

Crawlout unwind failed. 67 E$CRUN

Date and timenotset. 173 E$DTNS

Density not selected. 343 E$DNTS

Third Edition

Error Message Numeric Mnemonic

Value

Device already attached. 77 E$DATT

Device forcibly detached. 85 E$DFD
Device in use. 39 E$DVIU
Device not assigned. 48 E$NASS
Device not available. 76 E$DNAV
Device not connected. 100 E$DNCT
Device notstarted. 42 E$DNS
Device output queuefull. 312 E$DOQF
Directory is damaged. 34 E$BUFD
Directory entry list is full. 8 E$FDFL
Directory is not empty. 19 E$DNTE
Disk has been shut down. 121 E$SHDN
Disk I/Oerror. 21 E$DISK
Diskis full. 9 E$DKFL
Disk is write-protected. 56 E$SWTPR
DPTX already configured. 132 E$DANC
DPTX not configured. 86 E$DNC
Duplicate parameter. 339 E$DPAR
E$INWT enabled by configuration. 126 E$IWST
Endoffile. 1 E$EOF
End of searchlist. 251 E$EOL
Enqueuedonly. 124 E$ENQD
EPFfile exceedsfile size limit. 222 E$EPFL
EPFfile not active for this user. 223 E$NTA
EPFfile suspended within this process. 225 E$SWPR
EPFhas not been registered. 280 E$SENRG
EPF LTDlinkage descriptor invalid. 219 E$ILTD
EPF LTE linkage descriptor invalid. 220 E$ILTE
EPFtype invalid. 217 E$EPFT
Extent map full. 231 E$SEXMF
FAM — invalid function code. 46 E$FIFC
FAM — operation not complete. 53 E$FONC
Fatal error in crawlout. 65 E$CRWL
Field prohibited. 94 E$VFP
Field required. 93 E$VFR
File in use. 5 E$FIUS
File inconsistent data count. 228 E$FIDC
File is delete-protected. 181 E$DLPR
File is too big. 36 E$FITB
File open on delete. 11 E$FDEL
File units all in use. 41 E$FUIU
Format/data mismatch. 185 E$FDMM
Free request with invalid pointer. 215 E$FRER
Ilegal 3270 command. 87 E$SICM

Third Edition

Alphabetical List of Error Messages

B-3

Advanced Programmer's Guide, Volume 0 .

Error Message Numeric Mnemonic

Value

Illegal alias name. 275 E$IALN
legal database. 277 E$IDBT
Illegal DPTX file format. 130 E$ILFF
Illegal EPF registration. 263 E$IREG
legal link at EPF registration. 265 E$ILLN
Illegal multiple hops in NPX. 193 ESMNPX
Illegal name. 17 E$BNAM
Illegal operation on remoteline. 336 E$RMLN
legal remote reference. 38 E$IREM
Illegal treename. 57 E$ITRE
Illegal use of PRIMIX gate. 256 ES$ILUS
Input waiting. 83 E$SINWT
Insufficient access rights. 10 E$NRIT
Insufficient DAM file index levels. 229 E$INDL
Insufficient free contiguous blocks. 253 ES$IFCB
Insufficient memory for extent map. 254 E$SIMEM
Invalid AID byte. 90 E$VIA
Invalid ASD use. 294 E$IASD

Invalid block pointer. 270 E$IVPT
Invalid cursor address. 91 E$VICA
Invalid field address. 92 E$VIF

Invalid numberofinitialization arguments. 264 ESINAI
Invalid parametersetting. 338 ES$IPS
Invalid request. 267 E$INRE
‘Invalid sample speed for ASD. 295 E$IASP
Invalidstate. 348 ES$ISTA
Invalid static mode resume. 286 E$ISMR
Invalid use of assign line buffer. 293 E$IABF
Invalid use of DISLOG. 296 E$ILOD

Invalid use of remote buffer. 292 E$IRBF
Invalid use of terminal line buffer. 337 E$ITLB
Invalid VMFA window number. 105 ESIVWN
Y/O abort in progress. 129 E$ABTI
V/O error or device interrupt. 137 E$IEDI
LHC down. 317 E$LHDN

LHC notconfigured. 304 E$NTLC
LHCnotdownline loaded. 306 E$NTDL
Library is non-executable. 245 E$AELE
Library unregistered. 279 E$LUNR
Like reference not accessible. 152 E$LRNA
Like reference not found. 156 E$LRNF
Line in use. 290 E$LNUS
Line not associated. 309 E$NASO
Line not configured. 310 E$NCFG

Third Edition

Error Message Numeric Mnemonic

Value

Line not connected. 313 E$LNOC
Line not owned by you. 331 E$SLNOW
Line not present on system. 332 E$LNP
Lock has been destroyed. 334 E$LDES
Lock is not yours. 335 ESLNY
Lock not allocated. 333 E$LNA

LTS down. 318 E$LTDN
LTS line already associated. 308 E$LLAA
Magtape command invalid. 99 E$IVCM
Magtape controller hung. 345 E$BMPC
Maximum quota exceeded. 143 E$MXQB
Maximum slaves per user exceeded. 207 E$MSLV
Message operation partially blocked. 117 E$PRTL

Nameis too long. 32 ESNMLG
Network configuration mismatch. 175 E$BCFG
Network error detected. 120 E$NETE
No buffer space. 82 E$SNBUF
No buffers available. 330 ESNBA
No child found for this process. 257 E$NCHD
No data found. 123 E$NDAT
Nodirectory attached. 7 ESNATT
Nodirectory block for unit. 281 E$NDRB
No DTAR3 segments available. 273 E$ND3S
No fault frame. 61 ESNFLT
No free quota blocks. 142 E$NFQB
No unit table available. 167 E$NFUT
No information is accessible. 159 E$NINF
No input available. 84 E$NINP

No more temporary segments. 108 ESNMTS
No more VMFA segments. 107 ESNMVS
No NPXslaves available. 134 E$NSLA
No on-unit found. 64 E$NOON
No paging device defined. 240 E$NOPD

No password directories allowed. 327 E$NPDA
No phantomsavailable. 54 E$SNPHA
No resources available for request. 255 E$NRES

No room. 55 E$ROOM
No SMLC DMCchannels. 75 E$SNDMC
Notimer. 51 ESNTIM
Nounit table available for phantom. 164 ESNUTP
Node/LAN naming conflict. 298 ESNSNC
Node/MACaddress conflict. 299 E$NSAC
Not a DAM file. 109 E$NDAM
Not a directory. 12 E$NTUD

Third Edition

Alphabetical List of Error Messages

B-5

Advanced Programmer's Guide, Volume 0

Error Message Numeric Mnemonic

Value

Nota file or directory. 149 ESNTFD
Not a quota disk. 144 E$NOQD
Not a segmentdirectory. 13 E$NTSD
Notable to free storage. 272 E$NATF
Notaccessible. 209 E$NACC
Not an access category. 151 ESNCAT
Not an ACL directory. 147 E$NACL
Not an NTS configurationfile. 303 ES$NTCF
Not enough DMAchannels. 210 E$SUDMA
Not enough DMCchannels. 211 E$UDMC
Not enough per-user DTAR1 segments. 268 ES$NPSG
Not enough segments. 103 ES$NESG
Not found. 15 E$FNTF
Not found in segmentdirectory. 16 E$FNTS
Not open for VMFA. 110 E$NOVA
Not owner of resource. 284 E$NOWN
NSSdatabase notinitialized. 297 E$NSNI
NTSalreadystarted. 302 E$SNTST
NTS database notinitialized. 305 E$NTIN

NTShost not configured. 300 E$NTHN
NTSline already associated. 307 E$PLAA
NTSnotstarted. 301 E$NTNS
NTSis shut down. 319 E$NTSH
Null smt_ptr or bad field within SMT. 274 E$BSMT
Null commandline. 60 E$NCOM
Object is category-protected. 179 E$CTPR
Object is default-protected. 180 E$DFPR
Old partition. 27 E$OLDP
Operation completed successfully. 0 E$OK
Operation illegal on access category. 150 E$IACL

Operation illegal on directory. 14 E$DIRE
Operation illegal on MFD. 146 E$IMFD
Operation illegal on pre-19 disk. 178 E$ST19
Operation unsuccessful. 118 E$SNSUC
Overflow of CPU and I/O seconds. 244 E$BHOV
Overflow of CPU seconds. 242 E$CPOV
Overflow of I/O seconds. 243 E$IOOV
Pageis already wired. 325 E$AWIR
Page is not wired. 326 E$IWIR
Parameternot settable. 340 E$PNS
Parent not an ACL directory. 148 E$PNAC
Password generation off. 347 E$NGPW
Password generation on. 346 E$GPON
Past end of field. 97 E$VPEF

Third Edition

Error Message Numeric Mnemonic

Value

Past end offile. 230 E$PEOF

PIO instruction did not skip. 139 E$DNSK

PRIMIX can notbe initialized when running. 259 E$XSHD

PRIMIX can not be shut down whennot running. 260 E$NOPX

PRIMIX process table has no users. 261 E$NOUS

PRIMIX process table retumed is incomplete. 262 E$INCO

PRIMIX wait terminated by interrupt. 258 ESINT

Priority ACL not found. 169 E$PANF

Procedure not found. 135 E$PNTF

Process nota slave. 236 ESNSLV

Protected field check. 95 E$VPFC

Protocol handler not available. 125 E$PHNA

Pointer mismatch found (FAM only). 23 E$PTRM

Queueis empty. 321 E$QEMP

Queueis full. 320 E$QFUL

Queue length exceeded. 81 E$QLEX

Queue not found. 322 E$NOQ

Quota set below current usage. 145 E$QEXC

Receive enabled required. 112 E$NRCV

Registered EPF is in use. 329 E$REIU

Remote disk has been shut down. 239 E$RSHD

Remoteline is down. 40 E$RLDN

Remote node not enabled. 133 E$NENB

Remote procedure call still pending. 174 E$SPND

Remote system has initialized. 237 E$RSIN

Remote system not up. 140 E$RSNU

Request queue full. 314 E$RQF

Reserved character. 69 E$RCHR

Restricted access file. 192 E$RESF

ROAM access mode conflict. 234 E$RAMC

ROAM internal error. 235 E$RIER

Search list not found or invalid. 246 E$LIST

Search lists nested too deeply. 249 E$SNEST

Search rule not an optional rule. 248 E$NTOP

Search rule not found orinvalid. 247 E$RULE

Segmentdirectory error. 33 E$SDER

Segment directory unit not open. 31 E$SUNO
Segment does notexist. 73 E$NOSG

Segmentin use. 102 E$SGIU

Segmentnotallocated. 271 E$SNAL

Semaphore overflow. 50 E$SEMO

Slave ID mismatch. 205 E$WSLV

Slave ID numbernot found. 208 E$IDNF

Slave validation error. 136 E$SVAL

Third Edition

Alphabetical List of Error Messages

B-7

Advanced Programmer's Guide, Volume 0

B-8

Error Message Numeric Mnemonic

Value

Speed not selected. 344 E$SNTS
Spooler subsystem notinitialized. 328 E$SNINT
Stack overflow in crawlout. 66 E$CROV
System administrator command only. 226 E$ADCM
System console commandonly. 171 E$SCCM
Too many emulate devices. 131 E$TMED
Too many subdirectory levels. 43 E$STMUL
Too many users. 59 E$TMUS
Top-level directory not found or inaccessible. 189 E$NFAS
Unable to allocate file-unit. 227 ESUAFU
Uninitialized block on robust partition. 349 E$ZERO
Unit in use. 4 ES$UIUS

Unit not open. 3 E$SUNOP
Unit open for block mode I/O. 232 E$BKIO

Unit table already returned. 165 ESUTAR
Unit table notin use. 166 ESUNIU
Unknown addressee. 116 E$UADR

Unknown node name. 122 E$UNOD
Unterminated string. 195 E$USTR
Useralready has unit table. 168 ES$UAHU
User busy, please wait. 114 ESUBSY
User ID not found. 269 E$UINF
User not receiving now. 113 E$SUNRV
User storage heap is corrupted. 216 E$HPER
User unable to receive messages. 115 E$UDEF
Validation error. 323 E$VAL
Validation error. 162 E$NVAL
Virtual circuit was cleared. 206 E$VCGC
Warm start occurred. 138 ESWMST
Window already in address space. 106 ESWAIN
Wrongfile type. 184 ESWFT
XCB unavailable for request. 311 E$NXCB
Unused code. 20 ESSHUT
Unused code. 25 E$BCOD
Unused code. 44 ESFBST
Unused code. 47 E$STMRU
Unused code. 49 E$BFSV
Unused code. 52 ES$FABT
Unused code. 58 E$FAMU
Unused code. 89 E$VKBL
Unused code. 96 E$VNFC
Unused code. 98 E$VIRC
Unused code. 104 E$SDUP
Unused code. 111 E$NECS

Third Edition

Alphabetical List of Error Messages

Error Message Numeric Mnemonic

Value

Unused code. 119 E$NROB

Unused code. 141 E$S18E

Unused code. 172 E$BRPA

Unused code. 182 E$BLUE

Unused code. 183 E$NDFD

Unused code. 187 E$BDV

Unused code. 188 E$BFOV

Unused code. 194 E$SYNT

Unused code. 196 E$WNS

Unused code. 197 E$IREQ

Unused code. 198 E$VNG

Unused code. 199 E$SOR

Unused code. 200 E$STMVV

Unused code. 201 E$SESV

Unused code. 202 E$VABS

Unused code. 212 E$BLEF

Unused code. 218 E$EPFS

Unused code. 224 E$SWPS

Unused code. 241 E$SNRFC

Unused code. 341 E$BCHK

Unused code. 342 E$EXPD

Third Edition B-9

New Features of Recent PRIMOS Revisions

This appendix lists new features significant to the system-level programmerin recent revisions

of PRIMOS. Summaries of new functionality appear in the Software Release Documentfor the

appropriate PRIMOS revision. For details on enhanced compiler functionality, consult the

' individual language guides. For further information on new or modified subroutines, consult the

Subroutines Reference series.

This appendix lists enhancements made in several recent PRIMOSrevisions. The most recent

revision is listed first.

New Features at Revision 22.0

Subroutines

The following subroutines have been added at Revision 22.0:

e The SYN$ subroutines permit you to create and destroy event synchronizers, post

notices on event synchronizers, wait for the posting of a notice on an event

synchronizer, and retrieve a notice from an event synchronizer. Other SYN$
subroutines enable you to group several event synchronizers into an event group and

wait for a notice or retrieve a notice from that event group. Additional SYN$

subroutines enable you to check the status of event synchronizers and event groups.

These subroutines are described in Subroutines Reference V: Event Synchronization.

e The TMR$ timer subroutines permit you to create timers that post a notice on a

specified event synchronizer after a specified interval. There are subroutines to

establish timers for a specified elapsed period of time, a specified time of day, or a

specified recurrent interval of time. These subroutines are described in Subroutines

Reference V: Event Synchronization.

e The TMR$GTIM and TMR$GINF subroutines return current system time or
permanent time information. These subroutines are described in Subroutines

Reference III; Operating System.

e The TMR$UNIVCONVERT and TMR$LOCALCONVERT subroutines convert

Universal Time to local time and local time to Universal Time. These subroutines are

described in Subroutines Reference III: Operating System.

Third Edition C-1

Advanced Programmer's Guide, Volume 0

C-2

The SRS$ subroutines permit you to determine the server name associated with a

process, the processes that share the same server name, and the list of all server

names on your system. These subroutines are described in Subroutines Reference V:

Event Synchronization.

The ISN§$ subroutines permit you to catalog the server name of a process in a High

Level Name File (HLNF), thus making that server nameavailable to other users, and

to look up the server name of a process by specifying the pathname of an HLNE

These subroutines are described in Subroutines Reference V: Event Synchronization.

The IS$ subroutines permit you to use the InterServer Communications (ISC)facility

to exchange messages between processes. The processes can be on the same system or

on different systems connected using PRIMENET. Subroutines are provided for

requesting a message exchange session’ between two processes, specifying event

synchronizers and other features used during the session, sendingand receiving

messages, and terminating the session. There are also subroutines for retrieving

information about a session. These subroutines are described in Subroutines Reference

V: Event Synchronization.

The ASSET, ASLST, and AS$LIN subroutines permit you to set the characteristics
of an asynchronousline, retrieve the characteristics of an asynchronousline, and

retrieve the line number of an asynchronous line. These subroutines are described in

Subroutines Reference IV: Libraries and I/O.

The ER$PRINT and ER$TEXT subroutines permit you to display an error message

on your terminal or return an error message to a variable. These subroutines replace

ERRPR$ and ERTXT$, which are now considered obsolete. They are described in

Subroutines Reference III: Operating System.

CFS$EXT extends or truncates a CAM file. This subroutine is described in Subroutines

Reference II: File System.

CF$REM gets a CAM file’s extent map. This subroutine is described in Subroutines
Reference II: File System.

CF$SME sets a CAM file’s extent length value. This subroutine is described in
Subroutines Reference II: File System.

LN$SET modifies a user’s search rules to permit dynamic linking to an EPFlibrary.

This subroutine is described in Subroutines Reference II: File System.

GEN$PW generates a login validation password. This subroutine is described in

Subroutines Reference III: Operating System.

GTROB$ determines whethera specified file is on a robust partition. This subroutine

is described in Subroutines Reference II: File System.

ECL$CC and ECL$CL supervise editing of input from a terminal or a commandfile.
ECL$CC is callable from C. ECL$CL is an interface to ECL$CC for non-C
programs. These subroutines are described in Subroutines Reference III: Operating

System.

NTS$LTSreturns the characteristics of a PRIMOS network terminal service line. This

subroutine is described in Subroutines Reference IV: Libraries and I/O.

Third Edition

New Features of Recent PRIMOS Revisions

e ICE$ has been enhanced to support synchronizers, timers, ISC sessions, and other

features of PRIMOS. This subroutine is described in Subroutines Reference III:

Operating System.

PRIMOS Commands

Revision 22.0 has the following new PRIMOS commands:

e The LIST_SESSIONS and LIST_SERVER_NAMES commands and the -SERVER

option for the INITIALIZE_COMMAND_ENVIRONMENT (ICE) command support

servers and ISC sessions.

e The LIST.CONTIGUOUS_BLOCKS and LIST_.EXTENT_MAP (LEM) commands
~ support CAM files.

e The UX_TAPE commandsavesfiles to tape in a format that the UNIX CPIO and

TAR utilities can read. It restores files from a tape created by either CPIO or TAR.

The EDIT_CMD_LINE (ECL)facility has been enhanced to include the user’s ability to define

terminal key functions for editing a command line. ECL is described in PRIMOS Commands

Reference Guide and PRIMOS User’s Guide.

Subsystem Enhancements

The following subsystems have been enhanced with additional features and options. These are

further described in the Software Release Document and the documentation for the individual

subsystems.

e The Spooler subsystem has been enhanced with additional embedded control code

options and several new command features. The SPOOL command has four new

options: -XLATE for character set mapping, -FROM and —TO for printing a part of

— a document, and -SPOOL_W forprinting a file while it is open for writing. The new

AUXILIARY command passes environment parameters to print handlers. The PROP

command —BACKoption has been extended.

e MAGNET has been extended to handle the Prime Extended Character Set (Prime

ECS) and to support large tape buffers.

e Tape utilities (such as MAGSAV and MAGRST) at Rev. 22.0 permit a larger

maximum record size. This enhancement is due to a change in the T$MT subroutine.

New Features at Revision 21.0

Subroutines

The following subroutines are either added or enhanced at Revision 21.0:

Third Edition C-3

Advanced Programmer's Guide, Volume 0

e DS$AVL returns data about a disk partition in a structure. Data returned includes the

version number of the structure to be returned, the name of the partition, its

maximum capacity, the number of free records, and the date and timethepartition

was last backed up.

e DS$ENV returns data about the user’s process. Data returned includes the filename of

the currently active abbreviation file; the unit number of the current command input

file; the user’s current command level, erase character, and kill characters; the default

and current user timeslice; the CPU and login time remaining; the QUIT inhibit

count; the number and name of the ACL groups to which the user belongs; and the

number, name, node, user ID, and project ID for the user’s remote IDs.

e DS$UNI returns data aboutfile-units. Data returned includes information about attach

points, the user number, accessbits if the file is open on a local system, open mode,

the command output file-unit, and the system nameif the file is open on a remote

system.

e GSNAMS$is used by any program to determine the nameof the system the program

is running on.

e G$METR returns system metering information, such as that provided by the USAGE

command. This information can be for general system meters, file system meters,

interrupt process meters, system meters for an individual user, meters for memory

usage, meters for disk usage, and meters for ROAM usage. Returned information

includes the CPU,I/O, and real time used, the number of I/O operations since system

boot, the numberof users configured, information about locate buffers, and read and

write operations performed.

e KLMS$IF enables a program to obtain serialization data from a specified file. KLM$IF

uses a simple filename, supplied by a program, and system search rules to obtain

serialization data from an installed product of that name. Data obtained about the

product can include its version number, its name, its revision number, its serial

number, the name of the licensed user, the software expiration date, PRIMOS

support, the name of the organization distributing the software, the name of the

individual responsible for software revision, the software distribution date, the order

number of the distributed software, and the customer service number for the product

license.

e LOV$SWindicates if the login-over-login function is currently permitted.

e LUDEVSreturns a list of devices that a user can access. The devices listed are those

that are specified by the user with the ASSIGN command. Information returned

includes the version number, the maximum number of devices that may be accessed,

and a list of devices that the user may access.

e MMS$MLPA makesthe last page of a segmentavailable.

e MMS$MLPU makesthe last page of a segment unavailable. Subsequent attempts to

access the page result in the OUT_OF_BOUNDSS$condition.

e SGD$EX determines if there is a valid entry at the current position within the

segment directory on a specified unit.

C-4 Third Edition

New Features of Recent PRIMOS Revisions

SNCHK$checks the validity of the system name passed to it. SNCHK$ enables

subsystems that deal with system names at a commandinterface to check the names

for validity without knowing the syntax rules for system names.

SP$REQ inserts a file into the spool queue.

SR$ABSDS (or SR$ABS for FTN) disables optional search rules enabled by
SR$ENABL. SR$ABSDSabsolutely disables an enabled rule, regardless of how

many timesthe rule has been enabled.

SR$ADDB (or SR$ADBfor FTN) adds a rule to the start of a search list or before a

specified rule within thelist.

SR$ADDE (or SR$ADE for FIN) adds a rule to the end ofa search list or after a

specified rule within the list.

SR$CREAT (or SR$CRE for FTN) creates a blank search list. The created search list

does not contain any user-specified or system default search rules. This search list

does, however, contain administrator rules if the System Administrator has established

administrator rules for the searchlist.

SR$DEL deletes a specified search list. Both the user’s search list and its contents

(including administrator rules) are deleted. The search rules file that was used to set

the search list is unaffected.

SR$DSABL (or SR$DSA for FTN) disables an optional search rule enabled by

SRSENABL. This subroutine reverses a single SRSENABL operation. Compare this
with SRS$ABSDS.

SR$ENABL (or SR$ENA for FTN) enables an optional search rule. You can disable
enabled rules using SR$DSABL or SR$ABSDS.

SR$EXSTR (or SR$EXS for FTN) determines if a search rule exists in a specified

search list. The search rule can be a pathname, an optional search rule, or a search

rule keyword. SR$EXSTR determines the existence of both disabled and enabled

optional search rules.

SR$FR_LS (or SR$FRL for FTN) frees list structure space allocated by SR$LIST or

SR$READ. Invoke SR$FR_LS after every successful invocation of SR$LIST or

SR$READ. SR$FR_LSdeletes a structure by following the structure’s internal pointers.

SRSINIT (or SR$INI for FTN) initializes all search lists to system defaults. System
default rules include all rules found in the directory SEARCH_RULES*, including

system rules and administrator rules. If no system defaults exist for a search list,

SRSINIT deletes the searchlist.

SR$LIST (or SR$LIS for FTN) returns the namesof the user’s search lists. SRSLIST

copies information about all of the user’s search lists into a user-specified structure.

SR$LIST creates a separate structure entry for each of the user’s searchlists.

SR$NEXTR (or SR$NEX for FTN) reads the rules from a search list, sequentially

and one at a time. Each invocation of SRSNEXTR reads one rule. To read all of the

rules in a search list, use SRSREAD. SR$SNEXTR reads locator pointer values.

SRS$NEXTR doesnot read disabled optional search rules.

Third Edition

Advanced Programmer's Guide, Volume 0

C-6

SR$READ (or SR$REA for FTN) reads all of the rules in a search list into a

structure established by the user. SRSREAD readsall rules, including disabled rules.

SR$READcreates aseparate structure entry for each search rule.

SR$REM removes a search rule from a specified search list. SRSREM can delete

user-specified and system default search rules and keywords. SRS$REM cannotdelete

administrator search rules.

SR$SETL (or SR$SET for FTN) sets or modifies the locator pointer for a search rule.

SR$SETL can set locator pointers of search rules in user-defined search lists and

search rules in the ENTRY$ search list.

SR$SSRsets a search list via a user-defined search rules file. SR$SSR can create a
new search list, overwrite an existing search list, or append rules to an existing search

list.

K$BKUP was added to SRSFX$to allow file to be read by the backupfacility.

Other New Features

Revision 21.0 has the following new features and changes:

Extension to the use of search lists and ability for the user to define search lists. See

the Advanced Programmer's Guide, Volume II: File System for a complete discussion.

Prime ECS support (expanded characterset).

CBL support of INCLUDES search rules, enhanced magnetic tape support, relative

file enhancements for MIDASPLUS™ and PRISAM,™ and new compiler options.

CC support of INCLUDES$search rules, the UNIX/ANSIrestriction on files opened

with FOPEN,and a new meaningof the retumed value of OPEN().

F77 support of INCLUDE$ search mules, SHORTCALL functionality in I mode,
longerstring constants, and optimization enhancements.

FTN generation of V-mode code as the compiler default.

PMA support of the MIP pseudo-op, mode determination of variables and

expressions, assembler listing, general register relative format, and IX-mode

instructions.

Pascal support of INCLUDE$ search rules and some changes concerning the ANSI/

IEEE standard.

VRPG support of INCLUDESsearch rule.

BIND support of COMPRESSand INITIALIZE_DATA.

EMACSinterface with Prime Common LISP.

Third Edition

New Features of Recent PRIMOS Revisions

New Features at Revision 20.2

New Features

Revision 20.2 has the following new features and changes:

CBL_LIBRARY supports sequential file access and variable length tables and

records.

CC_LIBRARYresolves potential library routine and runfile conflicts.

System Library supports F77 octal and decimal formatting and an improved random

number generator.

VRSTLI becomes an Executable Program Format (EPF).

MATRIX_LIBRARY (MATHLB) becomes an Executable Program Format (EPF).

VRPG supports new options.

PL/I supports new options.

F77 supports new options, statements, constants, static mapping to tape unit, and

enhanced cross-reference functionality.

CC supports 32IX mode, new options, new switches, a FORTRAN interface, and has

changes in the ctype.h headerfile.

Pascal supports new options, conforms to the ANSI/IEEE standards, and provides

new options for ANSI/IEEE standards conformance.

The Source Level Debugger supports variable length records, octal and hexadecimal

constants, and has enhancements to MACRO.

BIND supports two new subcommands.

EMACSprovides UNIX pathname support, two new PEEL functions, and a new

PEELatom.

K$DTA and K$DTC keys added to SATR$$ to allow setting of date/time accessed
and date/time created.

The subroutine SRSFX$, which supports pathnames, can now be used to search for a

file. T$SRC, which waspreviously used, is obsolete at this revision.

System Library

The System Library supports the following changes at Rev. 20.2:

F/7 octal and hexadecimal formatting

Random number generation

Third Edition C-7

Advanced Programmer's Guide, Volume 0

New Features at Revision 20.0

Subroutines

The following subroutines are either added or enhanced at Revision 20.0:

DIR$CR creates a new directory. This subroutine accepts pathnames and replaces

CREA$$ and CREPW$, which are obsolete at this revision.

DIR$RD reads the contents of a directory sequentially, entry by entry.

DIR$SEsearches the directory with caller-specified selection criteria.

DKGEO$ counts the sectors of a disk that has been formatted in a nonstandard

manner.

IOCS$_FREE_LOGICAL_UNIT frees a logical file-unit number and makes it
available in the Logical Unit Table (LUTBL).

IOCS$GET_LOGICAL_UNIT provides an available logical file-unit number to the

calling program.

SIZE$ returns the size of a file system entry without updating Date Time Accessed

(DTA).

UNIT$ reads the current minimum and maximum unit numberfor this user.

Other New Features

Revision 20.0 has the following new features and changes:

Directories are now organized as hashed ACL directories.

e The new file attributes, date and time created (DTC) and date and time last accessed

(DTA) may appear in Rev. 20.0 or later directories (hashed directories).

e The structure retumed after calls to DIR$RD or ENT$RD includes the new file

C-8

attributes DTC and DTA.

Third Edition

Master Index

Abbreviation

IT

III

Key to Master Index:

Document Title

Advanced Programmer's Guide, Volume 0:
Introduction and Error Codes

Advanced Programmer's Guide, Volume I:
Bind and EPFs

Advanced Programmer's Guide, Volume
II: File System

Advanced Programmer's Guide, Volume
III: The Command Environment

Document Number

DOC10066-3LA

DOC10055-1LA

DOC10056-—-2LA

DOC10057-—1LA

Master Index

Symbols
; (command separator character),

III: 2-3

~ (tilde), III: 2-2, 4-11

A

ABBREV command, III: 2-3

Abbreviation processor, IIT:
1-19

Abbreviations,

disabled at mini-command level,

III: 5-14

Absolute pathname, II: 1-12,
7-2, 7-5

AC$CAT subroutine, II: 2-19,
7-2, 7-5

ACS$CHG subroutine, II: 2-22,
7-2, 7-6, 7-7, 7-9

AC$DFT subroutine, II: 2-17,
7-2, 7-3

Index-—1

AC$LIK subroutine, II: 2-20, 7-8

AC$LST subroutine, II: 7-2, 7-9,

7-10

AC$RVI subroutine, II: 4-7

AC$SET subroutine, IT: 2-18,
2-21, 7-2, 7-4, 7-6

Access calculation, II: 1-26
concepts, II: 1-19
how and when done, II: 1-19,

1-22
when attaching to a directory,

II: 1-21

when opening files, IT: 1-21

Access category, II: 1-10, 1-18,
2-21

creating, II: 7-2

Access Control Lists (ACLs), II:
1-5, 1-18, 2-13, 7-11

(See also Access rights)
Access pairs limit, II: 7-11
Changing rights, ITI: 2-22
default, II: 2-7
deleting entries, IT: 2-25
device, II: 7-1
entries structure, II: 2-16

Third Edition

Advanced Programmer's Guide, Volume 0

Access Control Lists (ACLs) ACL-related subroutines,

(continued) structure, II: 2-16
functions, II: 2-16
limitations, ITI: 7-1l -added_disks, II: 3-6, 3-16

manipulating, II: 7-1
parsing, II: 7-9 ADDISK, command, II: 4-5

setting, II: 7-2
Addresses,

Access methods, actual, I: 1-10, 92

direct (DAM), II: 1-15 ECB in the BIND map, I: 96
sequential (SAM), II: 1-15 form of, I: 92

imaginary, I: 1-10, 1-14, 92

Access rights, (See also Access link frame in the BIND map, I:
Control Lists CACLs)) OF

A access, II: 2-6 LIST_EPF command, I: 9-3

ALL access, II: 1-18, 2-6 mapping of, I: 91

changing, II: 2-22 offsets in, I: 92

creating a category, IT: 2-21 procedure code in the BIND map,

D access, II: 2-6 I: 9-6

deleting, II: 2-26 segment numbers in, I: 92

L access, II: 2-6 stack frame in DUMP_STACK

needed to attach to directory, comand, I: 99

II: 2-13
needed to change ACLs, IIT: Administrator search rules, II:

2-17 3-4

needed to create object, II: in search rules file, II: 3-10

2-24 process initialization, IT:

needed to delete object, IT: 3-11

2-12, 2-37
needed to open object, IT: ALC$RA subroutine, III: 3-9,

2-27 3-10, 3-135

needed to read object, II:
2-30 Allocating,

needed to write to object, IT: linkage areas, via EPFS$ALIC,

2-d4 III: 4-34

NONE access, II: 2-6
O access, II: 2-6 ALS$RA subroutine, III: 3-9,

P acoess, II: 26 5-10, 35-12

R access, II: 2-6
setting a category, ITI: 2-19 ANY$ condition, III: 1-22, 5-15
setting specific, IT: 2-18
setting the same as another Applications,

object, II: 2-20 comand environment support
setting to default, ITI: 2-17 for, III: 1-7

U access, II: 2-6 defined, III: 1-7

W access, II: 2-6
X access, II: 2-6 Arguments to program EPFs, I:

1-16

~ACCESS_CATEGORY bit, III: 35-21,
4-33 AT$ subroutine, II: 2-15, 4-5,

4-7, 4-8, 4-10
Accessing text files, II: 5-2

AT$ABS subroutine, II: 2-15,
4-5, 4-7, 4-9, 4-1l

Third Edition Index-2

AT$ANY subroutine, II: 2-15,

4-5, +-7, 4-8, 4-13

AT$HOM subroutine, II: 2-8,

2-14, 44, 46, +8

AT$OR subroutine, II: 2-13, 4-1,
4-2, +6

AT$REL subroutine, II: 2-15,

46, 4-7, 4-16, 4-17

ATCH$$ subroutine, II: 4-6

Attach,
to directory, II: 1-16, 2-13
to lower-level directory, II:
4-16

to specific directory, II: 4-8
to top-level directory, II:

4-9, 4-13

ATTACH$, II: 3-2, 3-6
-added_disks keyword, II: 3-16
default if not set, II: 3-7,

o-21
default value of, II: 3-6
-system keyword, II: 3-15
use by other search lists, II:

3-21

ATTACH command, II: 1-13, 1-16,

2-8, 2-14, 2-15, 4-3, 4-5,
4-9

Attach point,
cache, III: 6-2
current, II: 1-17, 2-5, 2-8,

2-15, 4-1, 4-5, 46, 49,
4-13

home, II: 1-20, 2-5, 2-8,
2-13, 4-1, 4-3, 4-13

initial, II: 2-5, 2-13, 4-1
manipulating, II: 4-7
questions, II: 4-24
search rules, II: 3-2

Attribute (See File attributes)

AVAIL, command, II: 9-1

Master Index

B

Bad sector, II: 1-7

Bad spot file (BADSPT), II: 1-7

.BIN file, I: 3-6, 3-7

BINARY$, II: 3-2, 3-8

Binary editors, I: 10-1

Binary files,
- searching directories for, IT:

35-8

BIND, I: 1-2, 1-8
benefits of using, I: 1-9
BINARY$ search list, II: 3-8
DYNT subcommand, I: 5-5

ENTRY$ search list, II: 3-9
ENTRYNAME subcommand, I: 3-15
entrypoint subcommand, I: 6-8
initialization of static data,

I: 1-19

LIBRARY subcommand, I: 3-11

linking object files, I: 3-7
MAIN subcommand, I: 3-15, 5-5
MAP subcommand, I: 95
NO_GENERATION subcommand, III:

2-2
NO_ITERATION subcommand, III:

2-2
NO_TREEWALK subcommand, IIT:

2-2
NO_WILDCARD subcommand, III:

2-2
RESOLVE_DEFERRED_COMMON

subcommand, I: 3-15
SYMBOL subcommand, I: 3-11,

8-2, 8-4
treatment of common area, I:

3-11, 3-15
treatment of IPs, I: 3-10,

3-1ll
use of segment numbers, I:

3-10

BIND map, I: 95 to 9-7
determining ECB addresses, I:

9-6
determining link frame

addresses, I: 9-7

Third Edition

Advanced Programmer's Guide, Volume 0

BIND map (continued)
determining procedure code

addresses, I: 96

Bootstrap file (BOOT), II: 1-7

—BOTTOM_UP bit, III: 3-21

Building shared programs with
SEG, I: 1-8

c

Cache attach point,
as a static resource, III: 6-2

CALAC$ subroutine, II: 7-9

Calling sequences,
command, detailed, III: 5-15,

3-17
complete, III: 35-26, 5-29
data types in diagrams, 0: 1-4
diagrams explained, O: 1-1
error codes, III: 3-5
for command functions, IIT:

3-6
for commands, III: 5-5, 54
for program EPFs, III: 5-1
for programs, III: 5-3
sample diagram, QO: 1-2

Cartridge Module Devices (CMDs),
It: 1-5

CH$MOD subroutine, II: 5-47

CLO$FN subroutine, II: 2-36,
5-21, 5-23, 5-48

CLO$FU subroutine, II: 2-36,
5-21, 5-22, 548, 6-2, 64

CLOS$A subroutine, II: 2-37

CLOSE command, II: 2-36

Third Edition

Closing a file, IT: 5-2l
after EPF$RUN returns, III:
4-25

on abnormal program
termination, II: 1-30

on normal program termination,
II: 1-30

system object, II: 2-36

CNAM$$ subroutine, II: 4-7, 6-43

Code argument,
for CP$, III: 4-12
for EPF$MAP subroutine, IIT:
4-29

for EPF$RUN, III: 4-22

Coding Guidelines,
general, O: 1-5
pointer usage, 0: 1-6
pointers, arrays, and

structures, O: 1-5

COMI$$ subroutine, II: 4-7

COMINPUT files,
command environment support

for, IIIf: 1-3

Command ,

defined, III: 1-8

invocation, III: 1-10
name, determination of, III:

2-4

Command calling sequence, III:
3-3

arguments for, III: 3-35
error codes for, III: 3-5

Command environment, III: 1-1

(See also command processing
information)

abbreviation processor, IIT:
1-19

command features decoder, III:
1-21

command interface, III: 1-10
command line reader, III: 1-19
command preprocessor, IIT:

1-21
command processor, III: 1-20
command prompter, III: 1-19
default on-unit, III: 1-22

Index-—+4

Command environment (continued)
features for applications,

TIT: 1-7

features for COMINPUT files,

III: 1-3 .
features for CPL programs,

TIT: 1-4

features for interactive users,
III: 1-2

features for user-written

functions, III: 1-7

features for user-written
programs, III: 1-6

key modules, III: 1-16
listener, III: 1-17
program invokers, III: 1-22

Command features decoder, III:

1-21

Command file,
searching directories for, II:

o-7

Command function calling
sequence, III: 3-6, 3-8

Command function invocation,
via CP$, III: 4-13

via EPF$INVK, III: 4-27

via EPF$RUN, III: 4-18

Command functions, II: 2-1, 2-2;
III: 4-4

actions of, III: 3-6
arguments for calling sequence,

III: 3-7

behavior when invoked as
commands, III: 4-4

needing command name, III:
3-27

needing local CPL variables,
III: 3-27

sample programs, III: 35-11
special cases of, III: 35-26
usable as commands, III: 35-27

Command information structure,

two versions of, III: 4-23

use of with EPF$RUN, III: 4-24

Master Index

Command interface, III: 1-10
for one program invoking

another, III: 1-11
levels of complexity, III:

1-10

Command invocation, (See also
command processing
information)

calling sequence, III: 3-2 to
3-4

command line, III: 1-12

defined, III: 1-11
error codes for, III: 3-5

limits on, III: 1-13

severity code, III: 1-12

Command level, III: 1-17, 5-2
breadth, I: 5-3

defined, III: 1-17
listener, III: 1-17

listener, the, III: 5-2

mini-—command level, III: 1-18,

5-14
multiple, III: 5-3
releasing, III: 5-5, 5-6
search rules, II: 3-2

Command line,
accepted by EPF, III: 1-12
as argument in calling

sequence, III: 3-3
as argument to CP$, III: 4-11
use of tilde (~) in front of,

III: 4-11

Command line reader, III: 1-19
recursive invocation of, III:

6-1

Command names, determined by
command processor, III: 2-4

Command preprocessor, III: 1-21

Command Procedure Language (CPL),
II: 2-2

Command processing information,
III: 1-13, 3-15, 3-16, 3-18

-ACAT bit, III: 3-21, 4-33
-BOTTOM_UP bit, III: 3-21
command name, III: 3-19

Third Edition

Advanced Programmer's Guide, Volume 0

Command processing information Command processor (continued)
(continued) recursive invocation of, III:

CPL local variables pointer, 6-1
III: 3-20 removes null tokens, JII: 24

—DIRECTORY bit, III: 3-21, RESUME command, III: 2-5
4-35 sequence of actions, III: 2-1

-~FILE bit, III: 3-21, 4-35 simple iteration, handling of,

iteration bit, III: 3-22 III: 2-5
-REF bit, III: 3-21, 4-33 stack, viewed with DUMP_STACK,
sample program, IIT: 35-22, III: 5-2
4-51 treewalking, handling of, III:

—SEGMENT_DIRECTORY bit, IIT: 2-6
3-21, 4-33 -VERIFY, handling of, III: 2-7

treewalk bit, III: 5-22, 4-351 wildcards, handling of, IIT:

-VERIFY bit, III: 3-21, 4-535 2-6
version, III: 3-19
-WALKFROM bit, III: 5-22 Command prompter, III: 1-19
-WALKTO bit, III: 3-22
wildcard bit, III: 5-22, 4-51 Command separator character,

III: 2-3
Command processor, III: 1-20,

2-1 COMMAND$, search list, ITI: 3-2,
ABBREV command, handling of, o-7

III: 2-3
actions when invoked by CP$, Command-—information argument,

III: 4-7 for EPF$RUN subroutine, IIT:

calls STD$CP, III: 1-20 4-23
command separator character

(;), handling of, III: 2-3 Command-line argument,
determines command name, III: for EPF$RUN subroutine, IIT:

2-4 4-22
determines command type, III:

2-5 Commands, II: 2-1
evaluates function references, DUMP_STACK, III: 5-10

III: 24 external, III: 1-10

evaluates variable references, format of, III: 4-3
III: 2-4 ICE, III: 1-16, 5-11

expression evaluator, IIT: INITIALIZECOMMANDENVIRONMENT ,

1-20 III: 1-6, 5-11
inhibition of features, IIT: interface with command

2-2, 2-5 processor, III: 1-11
interface with commands, IIT: internal, III: 1-9, 4-3

1-10, 1-11 RDY, III: 54
invocation modules, III: 2-7 recursive invocation of, III:

invokes commands, III: 2-7 6-1
iteration, handling of, III: REENTER, III: 5-12

2-5 RELEASELEVEL, III: 5-5
listener, III: 1-17 REN, III: 5-12
listener, the, III: 5-2 resident in CMDNCO, III: 4-2
name generation, handling of, resident within PRIMOS, IIT:

III: 2-7 4-2
-NO_VERIFY, handling of, III: RLS, III: 5-5

2-7

Third Edition Index-6

Commands (continued)
START, III: 5-14

usable as command functions,

TII: 3-27

Common area, I: 3-10, 8-1

defining a shared, I: 8-2
initialization of, I: 3-1l

treatment of by BIND, I: 3-11,

3-15

Common blocks and dynamic link,
I: 2-4

Common storage,
releasing, III: 5-6

Como$$ subroutine, II: 4-7

Compilers,
search rule support, II: 5-8
searching for include files,

II: 3-8

Complete calling sequence, IIT:
3-26, 3-29

Compressed files, II: 5-4

Conditions,
ANY$, III: 1-22
LINKAGEERROR$, III: 1-14
NO_AVAILSEGS$, III: 1-16
PAGINGDEVICE_FULL$, III: 1-16
QUIT$, III: 5-15
REENTER$, III: 5-12
STORAGE, III: 1-15
SYSTEMSTORAGES, III: 1-15

CONTROL-P (Quit), III: 5-15
(See also QUIT$ condition)

CP$ subroutine, I: 3-16; IIT:
1-20, 3-1, 4-9

actions of, III: 4-7
calling sequence, III: 4-10
command-line argument of, IIT:

4-11, 4-14
cpl-local-vars-ptr, III: 4-13,
4-15

error codes returned by, IIT:
4-17

error—code argument of, IIT:
4-12, 4-14

Index—7

Master Index

CP$ subroutine (continued)
flags argument of, III: 4-12
ftn-fen-ptr argument of, III:
4-14

function-call bit, III: 4-12,

4-14
inhibit-—evaluation bit, III:

4-12, 4-15
rtn-fon-ptr argument, III:
4-13

severity-—code argument of,
III: 4-12, 4-14

used for command invocation,
TII: 4-9

used for function invocation,

TII: 4-13
used for program invocation,

TII: 4-9

used for recursive invocation,
TII: 4-54

when to use it, III: 4-6

CPL, II: 2-2
abilities of programs, III:
4-4

command environment support for
programs, III: 14

functions and program EPFs, I:
1-16

program invoker, III: 2-7
variables pointed to by

cpl-local-vars-ptr, IIT:
4-15

variables used by command
functions, III: 3-27

cpl-local-vars-ptr,
argument to CP$, III: 4-13

CREA$$ subroutine, II: 3-24, 4-7

CREATE command, II: 2-24

Creating a file, II: 2-26

Creating file directories, II:
2-24

Creating file system objects,
II: 2-24

CREPW$ subroutine, II: 2-25, 4-7

Third Edition

Advanced Programmer's Guide, Volume 0

Current attach point, II: 1-17,
2-13, 4-1, 46, 4-9, 4-13

searching, II: 3-17

Current directory, ITI: 1-17
opening, II: 4-21, 4-22

Current object position,
1-235

IT:

Cylinders, IT: 1-5

D

DAM (Direct Access Method), II:
1-15

DAM segment directory, ITI: 1-25

Data, II: 1-2
field, II: 1-2
file, II: 1-2

objects, II: 1-2
record, II: 1-2

storage, ITI: 1-2

Data file,
extending, II: 6-42
positioning in, ITI: 6-42
reading, II: 6-42
retrieval, II: 6-436
storage, II: 6-435
writing, II: 6-42

DATA segment,
access to,

I: 3-7, 3-10, 3-19

I: 3-16

Data types,
used in subroutine calls,

1-3

O:

Database ,
management,

Date and Time Created (DIC)
attribute, II: 1-33

II: 6-1

Date and Time Last Accessed (DTA)
attribute, II: 1-32

Date and Time Last Backed Up
(DIB) attribute, II: 1-35

Third Edition

Date and Time Last Modified (DIM)
attribute, II: 1-33

Deallocation,

dynamic memory, I: 3-32
library EPFs, I: 3-d2

Debugging an EPF,
BIND command, I: 1-18

DBG command, I: 3-35

DUMP_STACK command, I: 1-18

LIST_EPF command, I: 1-18

other useful commands, I: 1-19

. setting breakpoints, I: 1-18
VPSD command, I: 1-18, 9-6

Debugging information in EPFs,
I: 3-3, 3-7

Decoder, command features,

1-21

IIT:

Default on-unit, III: 1-22

actions on catching QUITS,
TII: 5-15

recursive invocation of,

6-1
IIT:

Default search rules (See Systen
search rules)

DELETE command, II: 2-38

Deleting a file,
within a segment directory,

II: 6-23

Deleting file system objects,
IL: 2-37

Detailed command calling
sequence, III: 3-15, 3-17

Device ACLs, II: 7-1

DF_UNIT_ (See Default on-unit)

DIR$CR subroutine, II: 2-24,

6-30, 6-32, 6-34

DIR$LS subroutine, II: 2-381

Index-8

DIR$RD subroutine, II: 1-29,

2-31, 6-30, 6-39 to 6-41,
8-1, 8-3

DIR$SE subroutine, II: 2-31

Direct Access Method (DAM), II:
1-15

Directory, II: 1-3
attaching to, II: 1-16
creating file, II: 2-25
current, II: 1-17, 4-7
current file unit, II: 1-29
duplicate names, II: 35-21
file, II: 1-8, 1-25
home, II: 1-13, 1-20, 4-7, 49
home file unit, II: 1-29
opening file, II: 2-27
origin, II: 1-8, 4-1
origin file unit, II: 1-29
password, II: 1-18
quota, IT: 1-359
quota, information, II: 94
reading, II: 2-31
searching, II: 3-7, 3-8
searching partitions for, IT:

3-6
segment, II: 1-9
top-level, II: 1-8
working, II: 1-13
writing, II: 2-34

~DIRECTORY bit, III: 3-21, 4-33

Disk, II: 1-5
(See also Disk partition)
formatting, II: 1-7
full, II: 7-11
logical, II: 1-7
organization, II: 1-5, 1-7

physical, IT: 1-5, 1-7
storage, II: 1-2

Disk partitions, II: 1-5
as argument, II: 2-16
search all, II: 3-16
search named only, II: 3-16
searching, II: 3-6, 3-21

Disk record availability table
(DSKRAT), II: 1-7

Disk-shut-down flag, II: 1-26

Index-9

Master Index

Displaying common area addresses,
I: 3-15

DUMP_STACK command, I: 9-9;

III: 5-10

-ON_UNITS option, III: 5-2,
5-11

to display call history of a
program, III: 5-10

to track program errors, IIT:
1-18

to view command processor
stack, III: 5-2

to view your stack, III: 5-10
‘use at mini-command level,

III: 5-14

Dumped bit, II: 1-38

Dumped/not-—dumped attribute, IT:
1-38

Dynamic link, I: 5-5
common blocks and, I: 24
Gefinition of, I: 2-2
sample session, I: 24
snapping, I: 2-3, 3-21
to entry points in PRIMOS, I:

O-22
to entrypoints in Application

Library, I: 3-24
to entrypoints in PRIMOS, I:

3-26
to static-mode libraries, I:

3-28

Dynamic linking mechanism, I:
1-3, 2-1, 3-6, 3-19

advantages, I: 2-1

Dynamic links,
resolving, using ENTRY$, II:

3-9

Dynamic memory, I: 1-9
deallocation of, I: 3-32
in EPFs, I: 3-3

Dynamic resources, III: 6-2

Dynamically allocated storage,
releasing, III: 5-6

Third Edition

Advanced Programmer's Guide, Volume 0

DYNT, (See also Dynamic links)
as a subcommand of BIND, I:

5-5

E

ECB (entry control block), I:
1-3

information contained in, I:

14

EDAC command, II: 2-22

EDB binary editor, I: 10-2 to
10-6

error messages, I: 10-5
obsolete commands, I: 10-5
subcomands, I: 10-3

EDITACCESS command, II: 2-22

End of file,
positioning to, ITI: 5-15

ENT$RD subroutine, II: 2-31,

6-30, 8-1 to 8-3

ENTRY$, II: 3-2, 3-9
(home_dir] keyword, II: 3-17
~primos_direct_entries keyword,

II: 3-17
SR, I: 1-3
-static_mode_libraries keyword,

II: 3-16

Entry control block (See ECB)

ENTRYNAME,

as a subcommand of BIND, I:

3-15

Entrypoint, I: 2-2
as a subcommand of BIND, I:
6-8

determining, for library EPFs,
I: 6-5

invocation, I: 3-19
main, of a program EPF, I:

5-4, 5-5
modifying the search list of,

I: 6-12, 6-135
reserved names, I: 6-5

Third Edition

Entrypoint (continued)
searching EPF libraries for,

II: 3-9
searching PRIMOS system calls

for, II: 3-17
searching static-mode libraries

for, II: 3-16
subroutine, declaring, I: 6-8

Entrypoint search list, I: 6-12,
6-13, 6-32

(See also Search list)
advanced use of, I: 6-37

default, I: 6-32
examining, I: 6-38

EPF, (See also Library EPF;
Process-class library EPF;
Program EPF; Program-class
library EPF)

benefits of, I: 1-9
cache, I: 1-18, 3-4
coding guidelines for, I: 7-1
copies of link frame, I: 5-4
debugging information, I: 5-3
debugging of, I: 1-18, 3-35
definition of, I: 1-2
dynamic memory, I: 35-3
id, III: 4-24
information contained in, I:

1-18
invocation by CP$ subroutine,

I: 3-16; III: 49
invocation by EPFS$INVK

subroutine, III: 4-27
invocation by EPF$RUN

subroutine, I: 3-16; III:
4-20

invocation, forms of, I: 3-16
invoker, III: 2-7
library, I: 1-3
life of an, I: 3-5 to 3-%
linkage text, I: 3-2
mapped, I: 3-16
mechanism, I: 3-1
most flexible format for

programming instructions,
III: 44

multiple invocations of, TI:
3-34

new versions, I: 1-2, 3-30,
3-34

old versions, I: 1-2, 5-4
organization of, I: 3-2

Index-10

EPF (continued)
procedure code, I: 35-2
program, I: 1-3; II: 1-24
program, calling sequence,

III: 3-1
reason for, I: 1-4
recursive invocation of, III:
4-54

removing from memory, I: 1-16,
3-6, 3-30

restrictions on writing in PMA,
I: 7-10 to 7-16

.RPn suffix, I: 1-2

.RUN suffix, I: 1-2
running a remote, I: 3-36
simultaneous use of, I: 5-55
stack space, I: 5-3
(See also Stack frame)
static information and, I: 4-7
suspending and restarting, I:

1-17
termination of, I: 3-6, 3-30,

3-31
types of, I: 1-3
unmapping, I: 5-34
writing in high-level

languages, I: 7-1
writing in PMA, I: 7-2

EPF calling sequence,
arguments for, III: 5-1
comand sequence, JII: 5-2
program sequence, III: 5-2

EPF generation and use,
phase 1 (compilation or

assembly), I: 3-7
phase 10 (removal), I: 3-33
phase 10 (removal from memory),

III: 4-37
phase 2 (linking), I: 3-7
phase 3 (invocation), I: 3-15
phase 4 (mapping), I: 3-16
phase 5 (linkage allocation),

I: 3-16; III: 4-H
phase 6 (linkage

initialization), I: 3-19;
III: 4-34

phase 7 (entrypoint
invocation), I: 3-19; III:
4-37

phase 8 (dynamic links
snapped), I: 3-21

phase 9 (termination), I: 3-30

Index-—11

Master Index

EPF generation and use
(continued)

phases in, I: 3-6
sample program, III: 4-47
stages in, I: 3-5

EPF libraries,
searching, II: 3-9

EPF$ALLC subroutine, I: 3-6,
3-16; III: 4-4

calling sequence, III: 4-55
error codes, III: 4-42

EPF$CPF subroutine, III: 4-31
calling sequence, III: 4-352
epf-info structure, III: 4-3dl
error codes, III: 442
sample program using, III:
4-51

wildeard bit, III: 4-31

EPF$DEL subroutine, I: 5-6,
3-33; III: 4-37

calling sequence, III: 4-39
error codes, IIT: 4-44

EPF$INIT subroutine, I: 3-6,

3-19; III: 4-4

calling sequence, III: 4-36
error codes, III: 443

EPF$INVK subroutine, I: 3-6,
3-19; III: 3-1, 3-2

calling, III: 4-37
calling ce, III: 4-38
compared with EPF$RUN, III:
4-8

error codes, III: 444
invoking EPF$ALILCbefore using,

III: 4-34
invoking EPF$CPF before using,

III: 4-31
invoking EPF$DEL after using,

III: 4-37
invoking EPF$INIT before using,

III: 4-34
invoking EPF$MAP for, III:
4-29

key argument, III: 4-4
opening file for, III: 4-28
steps in using, ITI: 4-27

Third Edition

Advanced Programmer's Guide, Volume 0

EPF$INVK subroutine (continued) Error code (continued)
used for recursive invocation, returned by EPF$ subroutines,

IIIT: 4-54 III: 440

when to use it, III: 4-8 returned by EPF$ALIC, III:
4-42

EPF$MAP subroutine, I: 3-6, returned by EPF$CPF, III: 4-42
3-16; III: 4-29 returned by EPF$DEL, III: 444

access argument, III: 4-29 returned by EPF$INIT, III:
calling sequence, III: 4-30 4-43
code argument, III: 4-29 returned by EPF$INVK, III:
error codes, III: 4-40 4-44
key argument, III: 4-29 returned by EPF$MAP, III: 4-40
unit argument, III: 4-29 returned by EPF$RUN, III: 4-26

. Side effects in subroutine
EPF$RUN subroutine, I: 3-5, calls, O: 1-4

56-16; III: 3-1, 4-18 standard, use in subroutine
actions of, III: 4-8 calls, O: 14
calling sequence of, III: 4-21

returned code value, Error codes,
III: 4-25 alphabetical listing, O: B-l

checking returned command E$ACBG, II: 7-12
Status, III: 4-25 ESACNF, II: 6-33

command—information structure, E$ATNS, II: 8-11
III: 4-235 E$BARG, III: 3-5, 4-18, 4-43

command-line argument, III: E$BFIS, II: 4-21, 6-41
4-22 ES$BKEY, III: 4-26, 4-41, 443

EPF id, III: 4-24 E$BNAM, II: 4-13, 4-15, 4-18,

error codes returned by, III: 6-9; III: 3-5, 4-18
4-26 E$BOF, II: 5-19, 5-38

error-—code argument, III: 4-22 E$BPAR, II: 4-12, 4-15, 4-18,
file-unit argument, III: 4-22 5-28, 6-33, 7-11, 8-11; IIT:
function-call bit, III: 4-24 5-5, 4-41 to 4-44
invoking, III: 4-20 E$BUNT, II: 5-49; III: 4-26,
key argument, III: 4-20 4-41
opening EPF file before E$BVER, II: 6-33; III: 4-18,

calling, III: 4-19 4-27, 4-41 to 444

rtn-fen-ptr, III: 4-24 E$SCMND, III: 3-5, 4-18

severity—code argument, III: E$DIRE, II: 1-25, 8-11; III:
4-22 4-17

steps in using, III: 4-18 E$DKFL, II: 5-13, 5-28, 5-39,
used for recursive invocation, 6-15, 6-20, 6-33

III: 4-54 E$DINS, II: 6-34

using and freeing returned ES$ECEB, III: 1-14, 4-44

value structure, III: 4-25 E$EOF, II: 1-23, 5-19, 5-28,

when to use it, III: 4-8 5-36, 5-38, 6-11, 6-14, 6-28,
6-39; III: 4-17, 4-26

EPF-info structure, III: 4-31 E$EPFL, III: 441
ESEPFT, III: 441 to 445

Error code, E$EXST, II: 6-33
argument of EPF$RUN subroutine, E$FDEL, II: 6-23

III: 4-22 E$FIUS, II: 1-35, 5-12, 5-19,

ing code returned by 6-8, 6-20, 10-4; III: 4-17
EPF$RUN, III: 4-25 ESFNIF, II: 4-6, 4-13, 5-13,

. data base, II: 6-1 5-47, 6-8, 6-33; III: 4-18

Third Edition Index-12

Error codes (continued)
E$FNTS, II: 6-20, 6-23
E$FUIU, II: 5-49
E$IACL, II: 5-14, 8-11
E$ILTD, III: 442, 4-43
E$ILTE, III: 4-43
E$ITRE, II: 4-8, 5-14; III:

3-5, 4-18
E$IVCM, III: 3-6
E$MISA, III: 3-6
E$MXQB, II: 5-14, 5-28, 5-39,

6-9, 6-17, 6-21, 6-55
E$NATT, II: 4-3, 4-5, 4-12,

4-18, 4-21, 4-22
E$SNDAM, III: 4-18, 440, 4-41
E$NFAS, II: 4-15, 6-9, 6-H
E$NINF, II: 5-14, 6-21; IIT:
4-18

ESNMLG, III: 5-5
E$NMTS, III: 4-26, 441
E$SNMVS, III: 4-27, 4-41

E$NOQD, II: 6-33
E$NOVA, III: 4-41

E$NRIT, II: 4-22, 5-135, 6-8,

6-20, 6-33, 6-35, 8-11; IIT:

4-17, 440

E$NTSD, II: 1-25

E$NTUD, II: 1-25

E$PNAC, II: 6-335

E$ROOM, III: 4-26
E$SHDN, II: 1-26, 4-3, 4-5

E$SUNO, II: 6-23

E$SWPR, III: 4-45

E$UIUS, II: 5-49
ESUNOP, II: 5-19, 5-28, 5-39,

6-5, 6-12, 6-15, 6-28, 6-39
III: 4-26, 440

ESWIPR, II: 6-9
numerical listing, 0: A-2

Escape sequences,
as a static resource, TII: 64

ESR (See EXPAND_SEARCHRULES)

Evaluation of function and

variable references, III:

2-4

Executable code file, II: 3-17

Executable program format (See
EPF)

Index-13

Master Index

EXPANDSEARCHRULES (ESR) CPL

function, II: 3-19

EXPANDSEARCHRULES command, IT:
3-2, 3-5, 3-19

ATTACHS used as default, IT:
3-6

COMMANDS$ used as default, IT:
3-7

partition names, II: 3-6
pathnames, II: 3-7
referencingdir option, II:

35-18

Expanded listings, I: 9-15

Expression evaluator, III: 1-20

External commands, III: 1-10

External linkage information, I:
3-7

F

Faulted IP, I: 1-3, 2-2, 3-11,
3-19, 3-21, 6-17

how to avoid sharing, I: 4-10
sharing of, I: 4-9

Field, II: 1-2

FIL$DL subroutine, II: 2-38,
4-7, 5-48

File, II: 4-8
appending to, ITI: 1-25
closing, II: 1-30, 5-21
(See also Closing a file)
closing after EPF$RUN returns,

III: 4-25
creating, II: 1-27, 2-26
DAM, II: 1-25
data, II: 642, 6-45
definition, II: 1-10
maximum length, II: 5-5
open, using search rule

subroutine, II: 3-19
opening, II: 2-29, 56
(See also Opening file)
opening for VMFA access, III:
4-19

Third Edition

Advanced Programmer's Guide, Volume 0

File (continued)
organization, II: 6-2
pointer, II: 1-29

positioning, II: 1-29
reading, II: 2-33
SAM, II: 1-25

text, II: 1-10

truncating, II: 1-29, 5-17
type, II: 1-37
unit number, II: 1-28

user, II: 1-10

writing, II: 2-35

File access control, II: 1-16

File access methods, II: 1-15

Direct (DAM), II: 1-15
Sequential (SAM), II: 1-15

File attributes, II: 1-31, 8-1

date and time created (DIC),
II: 1-33

date and time last accessed
(DTA), II: 1-32

date and time last backed up
(DIB), II: 1-35

date and time last modified
(DIM), II: 1-33

dumped/not-dumped, II: 1-38
file type, II: 1-37
read/write lock, II: 1-35

setting, II: 8-6
special/not-special, II: 1-38

-FILE bit, III: 5-21, 4-33

File directory, II: 1-8
attributes, II: 6-31
creating, II: 2-25, 6-31
manipulating, II: 6-30
opening, II: 6-4

scanning, II: 6-36

File names,

as a static resource, III: 6-3

creating dynamic file names,
TII: 6-3

search order of, III: 1-10

File system, II: 1-1
communicating with, II: 2-1
interfaces, ITI: 2-1
objects, II: 1-5
search, II: 1-14

Third Edition

File type attribute, II: 1-37

File unit, II: 1-23, 2-8
abnormal terminate, II: 1-30
accessing, II: 1-23
calculated access to object,

II: 1-26
closing, II: 1-23
current object position, IT:

1-23
disk-shut-down flag, II: 1-26
dynamic number allocation, II:

1-27
multiple opens, II: 2-9

' normal terminate, II: 1-30
object type, II: 1-25
object-modified flag, II: 1-25
open mode, II: 1-24
opening, II: 1-23
positioning, II: 1-23
read/write lock, II: 1-26
static number allocation, II:

1-28

File unit argument,
of EPF$RUN subroutine, III:
4-22

File unit number,

as argument to EPF$MAP, IIT:
4-29

File units,

as a static resource, III: 6-1

Filenane,

expand to full pathname, II:
3-5

getting pathname for, II: 3-2

Fixed-length record file,
blocking factor, II: 5-44,

5-45
calculating record position,

II: 5-46
end of file, II: 5-45
format, II: 5-44
incomplete read/write, II:

5-37
positioning, II: 5-31, 5-37,

5-42
reading, II: 5-31
record length, II: 5-44

Index-14

Fixed-length record file
(continued)

writing, II: 5-31
writing records to open file

unit, II: 5-39

Fixed-length records, II: 5-4
advantages, II: 5-4

Fixed-media disks (FMDs), II:
1-5

Formatting a disk, II: 1-7

FRE$RA subroutine, III: 4-45
calling , III: 446

when to use it, III: 4-8

Freeing memory,
via FRE$RA subroutine, IIT:

4-45

via ICE comand, III: 1-16

Freeing segments of R-mode
programs, I: 1-7

Full pathname,
determining, II: 4-18

Function invocation, (See also
Command function invocation)

command line, III: 1-12

defined, III: 1-1]

returned character string,
III: 1-12

severity code, III: 1-12
via EPF$INVK, III: 4-27

via EPF$RUN, III: 4-18

Function references, evaluation

of, III: 2-4

Function-call,
argument, III: 35-9
bit, III: 4-12, 4-14, 4-24

Functions, (See also Command
functions)

command environment support
for, III: 1-7

defined, III: 1-9, 1-12
interaction with command

processor, III: 1-11
invocation of, III: 1-11

Index-15

Master Index

G

GPAS$$ subroutine, II: 4-7

GPATH$ subroutine, II: 4-7,
4-18, 4-20, 4-24, 6-435

H

Home attach point, II: 1-16,
2-13, 4-3, 4-15

Home directory, II: 1-16, 4-9
searching, II: 5-17

i

I-mode programs, I: 1-5

ICE command, III: 5-11

use of, III: 1-16

Imaginary addresses and EPF
sharing, I: 1-14

Impure code, I: 1-15
separation of pure code fron,

I: 1-12, 7-2

IMPURE segment, I: 3-7, 35-10,

3-19

access to, I: 3-16

INCLUDE$, II: 3-2, 3-8

if doesn't exist, II: 3-8

[referencingdir] keyword, II:
o-18

Include file,
searching directories for, IT:

3-8

Indirect pointer (See IP)

Inhibit-evaluation bit, IIT:
4-12, 4-15

Inhibition of command processor
features, III: 2-5

Third Edition

Advanced Programmer’s Guide, Volume 0

Initial attach point, II: 2-13
searching, II: 3-17

Initialization,
of linkage areas, via EPFSINIT,

TII: 4-34

of variables, I: 1-19

shared data, I: 8-3, 84

Initialize process,
search list created, II: 3-2

search list deleted, II: 3-6

search list set, II: 3-11
search rule set, II: 34

INITIALIZECOMMANDENVIRONMENT

comand, III: 5-11

use of, III: 1-16

Interactive users,
command environment support

for, III: 1-2

Internal commands, III: 1-9

Internal-—command invoker, III:

2-7

Interprocess communication,
caveats, II: 10-4
competing servers, II: 10-7
concurrent access to data base,

II: 10-10
general concepts, II: 10-1
models, II: 10-5
read/write locks, II: 10-2
transaction file, II: 10-5
two-process transaction models,

II: 10-9

Invocation, (See also Command
invocation; Function

invocation; Program
invocation)

limits on, III: 1-13

of comands, III: 1-11

of commands, by command
processor, III: 2-7

of functions, III: 1-11
of programs, III: 1-10
of programs, from within
programs, III: 4-1

recursive, III: 4-54

Third Edition

Invoking an EPF, I: 1-3, 3-15,

5-1, 5-2
sample program, III: 4-47
subroutines for, I: 3-5

IP (indirect pointer), I: 1-3,
o-7

faulted, I: 1-3, 2-2, 3-11,
3-21, 6-17

how to avoid sharing faulted,

I: 4-10

resolution of at runtine, I:
3-10

sharing of faulted, I: 4-9
treatment of by BIND, I: 3-10,

3-11

IPC (See Interprocess
communication)

Iteration,
handling of by command

processor, III: 2-5
Simple, III: 2-5

Iteration bit, III: 3-22

Iteration processor,
recursive invocation of, III:

6-1

K

K$GETU key, III: 4-19

K$INVK key, III: 4-20

K$INVK_DEL key, III: 4-20

K$RESTORE_ONLY key, III: 4-20

K$VMR key, III: 4-19

Key,
K$, iI: 5-11
KS$CLOS, II: 2-37
K$CURA, II: 4-19
K$DELE, II: 2-39
K$DFLT, II: 8-9

K$DMPB, II: 8-7, 8-9

K$DIA, II: 8-7
K$DIC, II: 8-7

Index-16

Key (continued)
K$DTIM, II: 8-7

K$EXCL, II: 8-9
K$EXST, II: 547

K$FREE, II: 2-32, 6-26

K$FULL, II: 2-32, 6-26

K$GETU, II: 5-12, 5-48, 5-49,

6-5

K$HOMA, II: 4-19

K$INIA, II: 4-19
K$INIT, II: 1-29, 6-39

K$MSIZ, II: 2-34

K$NCAM, II: 5-12, 6-22

K$NDAM II: 5-11, 6-28

K$NONE, II: 8-9
K$NSAM, II: 5-11, 6-22

K$NSGD, II: 5-12, 6-5, 6-22

K$NSGS, II: 5-12, 6-5, 6-22

K$POSN, II: 5-36

K$PREA, II: 5-36

K$PROT, II: 8-7, 8-9

K$RDWR, II: 5-11, 5-48, 6-4,

6-18
K$READ, II: 5-11, 5-36, 5-48,

6-4, 6-18, 6-39
K$RPOS, II: 5-36
K$RWLK, II: 8-7, 8-9

K$SDL, II: 8-7
K$SETC, II: 2-16, 4-1, 4-12,

4-15, 4-16

K$SETH, II: 2-16, 4-1, 4-128,

4-15, 4-16

K$TRNC, II: 5-36
K$UPDT, II: 8-9
K$VMR, II: 5-11, 6-18

K$WRIT, II: 5-11, 5-36, 5-48,
6-18

Key argument,
for EPF$INVK subroutine, III:

4-34
for EPF$MAP subroutine, IIT:
4-29

for EPF$RUN subroutine, III:
4-20

use in subroutine calls, 0:

1-4

L

LB (See Linkage base)

Index-—17

Master Index

LB$SET subroutine, III: 3-27

LIBEDB binary editor, I: 10-1

LIBRARY,

as a subcommand of BIND, I:

3-11

external references resolved

by, I: 3-11

Library EPF, I: 1-3, 1-9
assembling the PMA entrypoint

file for, I: 6-10
. building a PMA entrypoint file

for, I: 6-8, 6-9
choosing the right type of, I:

6-4, 6-14, 6-15
coding a subroutine for, I:
6-4

compiling a subroutine for, I:
6-4

deallocation of, I: 3-32
definition of, I: 6-2
determining class requirements

of, I: 6-29
determining entrypoints of, I:

6-4
installing a library file, I:
6-11

installing the library EPF, I:
6-11

invoking, I: 1-3
linking subroutines of, I: 6-7
mechanism, I: 6-39
modifying the entrypoint search

list, I: 6-12
process-class, I: 3-32, 5-35
program's view of, I: 64
program-class, I: 3-32, 5-33
programmer's view of, I: 6-2
restriction on class mixing of,

I: 6-16
restriction on use of language

I/O, I: 6-17
steps in building, I: 6-2, 64
to 6-15

storage allocation issues, I:
6-41

storing data in linkage area
of, I: 6-17

using DBG on, I: 6-30, 6-31
using EDB to generate a library

file, I: 6-10

Third Edition

Advanced Programmer's Guide, Volume 0

Limits on calling program EPFs,
I: 5-3

Link frame, I: 3-4, 3-5, 3-10

Linkage,
area, I: 3-32
area, Storing data in, I:

6-17, 6-18
base, I: 34
fault, I: 2-4
initialization,
releasing areas,
text, I: 5-7
text, in EPFs, I: 3-2
text, in subroutines, I: 3-4

I: 3-19, 6-18
TII: 5-6

LINKAGEERROR$ condition, IIT:
1-14, 1-15

loaders, history of, I: 1-4
purpose of, I: 3-7
utilities, I: 1-2

LIST_ACCESS command, II: 1-20

LIST_EPF command, I: 93

LIST_LIMITS,
use of, III: 1-14

LIST_SEARCH_RULES command, IT:
3-12

disabled search rules, ITI:

3-15

LISTSEGMENT,

use of, I: 9-5; III: 1-14

Listener, III: 1-17, 5-2

and mini-—command level, III:
5-14

multiple invocations, III: 5-3
recursive invocation of, III:

6-1

LOAD, I: 1-2, 14

Local objects, II: 1-5

Login (See Initialize process)

Long prompt, III: 5-5

Third Edition

Lower-level Directory, II: 1-9

LSR (See LIST_SEARCH_RULES)

LV$GET subroutine, III: 3-27

M

MAIN,

as a subcommand of BIND, MI:

3-15, 5-5

MAKE command, II: 1-7

MAP,

as a subcommand of BIND, TI:

9-5

Mapping an EPF, I: 3-16

Maps and addresses, I: 9-1

Master file directory (MFD), II:
1-8

Memory,
allocation of, I: 1-10, 1-11
dynamic, I: 1-9
releasing via FRE$RA

subroutine, III: 4-45
static, I: 1-9
System-wide limits on, III:

1-15

MFD (master file directory), II:
1-8

Mini-command level, III: 1-18,

5-14

Multiple invocations of an EPF,
I: 3-34

N

Name generation,
handled by command processor,

III: 2-7

Index-18

Names of commands, determined by
command processor, III: 24

New Features,

Revision 20.0, 0: C-8

Revision 20.2, 0: C-7
Revision 21.0, 0: C-3
Revision 22.0, 0: C-l

NO_AVATILSEGS$ condition, III:

1-16

-NO_VERIFY option,
handled by command processor,

III: 2-7

Null tokens, removal of from

command line, III: 2-4

NW$ filename prefix, III: 44

NX$ filename prefix, III: 44

QO

Object,
closing, II: 2-36
creating, II: 1-15, 2-10
creating file system, II: 2-24
current position, II: 1-265
deleting, II: 2-12, 2-37
file system, II: 1-2, 1-5
local, II: 1-5
name, II: 1-11, 2-7, 48
naming, II: 1-15
opening, II: 2-11
opening file system, II: 2-27
reading, II: 2-11, 2-30 .
remote, II: 1-5
simple name, II: 4-8
specifying names, II: 2-7
type, II: 1-25
writing, II: 2-12, 2-34

Object file, I: 3-7

Object naming conventions, IT:
1-15

absolute pathname, ITI: 1-12
components, II: 1-11
full pathname, II: 1-14

Index-19

Master Index

Object naming conventions
(continued)

relative pathname, II: 1-12
Simple pathname, II: 1-135

OPEN command, II: 2-27

Open mode, II: 1-24

EPF file for VMFA access, IIT:

4-19

file for VMFA read, possible
error codes, III: 4-40

Opening a file, ITI: 1-26, 2-29
file pointer, IT: 1-29
file unit number, ITI: 1-28
file unit number allocation,

II: 1-27
using search rules, II: 3-5
within a segment directory,

II: 6-17

Opening a file directory, II:
2-27

Opening a file system abject,
II: 2-27

ORIGIN command, II: 2-13

Origin directory, II: 1-8
searching, II: 3-17

P

PAGING_DEVICE_FULL$ condition,

III: 1-16

Partition (See Disk partitions)

Password directory, II: 1-18

Pathname, II: 1-11
absolute, II: 1-12
full, II: 1-14, 4-18
partial, II: 3-2
relative, II: 1-12
simple, II: 1-13

PB (See Procedure, base)

Third Edition

Advanced Programmer’s Guide, Volume 0

PCL instruction, I: 34, 3-7,

3-19

Performance,
disk access, II: 3-3

Permissions (See Access Control
Lists (ACLS))

PHANT$ subroutine, II: 4-7

Phantoms,

search lists of, II: 3-2

PHNIM$ subroutine, II: 4-7

PMA,

restrictions for EPF execution,

I: 7-10

writing EPFs in, I: 7-2 to

7-10

Pointer, returned value, III:

3-9

Positioning a file, JI: 1-29

PRIMOS,
error codes ordered

alphabetically, OQ: B-l
error codes ordered

numerically, O: A-2
mnemonics for error codes, OQ:

A-1

Revision 20.0 new features,

C-8
Revision 20.2 new features,

C-7
Revision 21.0 new features,

C-3

Revision 22.0 new features,

C-1

PRIMOS commands,
searching for, II: 5-7

PRIMOS file system,
elements of, II: 1-4

tree structure, II: 1-5

PROC segment, I: 3-7, 3-10
access to, I: 5-15

Third Edition

o
O

oO
Oo

O

Procedure, II: 1-3

base, I: 34
code in EPFs, I: 3-2
code in subroutines, I: 3-4
frame, I: 5-4
main, of a program EPF, I: 54
management, I: 34
text, I: 3-7

Procedure code storage,
releasing, III: 5-6

Process-class library EPF, I:
5-82, 3-33, 6-41

Choice of, I: 6-14
link sequence for, I: 6-7
restrictions on use of, I:

6-14
using for shared data, I: 8-5

Program,
I-mode, I: 1-5

R-mode, I: 1-4, 1-5
S-mode, I: 1-5

static-mode, I: 14
V-mode, I: 1-5

Program EPF, I: 1-3, 1-9
arguments to, I: 1-16, 5-4
calling sequence, III: 3-1
command line preprocessing, I:

1-17
CPL functions, I: 1-16
data returned from, I: 5-3
data supplied to, I: 5-3
definition of, I: 5-1
invoking, I: 1-3, 5-1, 5-2
invoking program’s view of, I:

5-2
limits on calling, I: 5-3
main entrypoint of, I: 5+,

7-2
main procedure of, I: 5-4
programmer's view of, I: 5-1
stacking of, I: 1-17
user's view of, I: 5-2
writing the main program, I:

5-4

Program invocation,
calling sequence, III: 3-2,

o-3
which interface to

use, III: 46

Program invocation (continued)
defined, III: 1-10
from within programs, III: 4-1
limits on, JII: 1-135

Program-class library EPF, I:
3-52, 3-35, 6-40

Choice of, I: 6-14
link sequence for, I: 6-7

Programs ,
command environment support

for, III: 1-6
format of, III: 4-3
interface with command

processor, III: 1-10
invoking programs from, IIT:
4-1

resident on disk, III: 4-2

Prompter, command, III: 1-19

Prompts, set by RDY command,
III: 5-5

PRIN instruction, I: 3-4

PRWF$$ subroutine, II: 2-35,
5-2, 5-16 to 5-18, 5-20,

5-29, 5-31 to 5-42

Pure code,
separation of impure code fron,

I: 1-18, 7-2

sharing of, I: 1-13

Q

Q$SREAD subroutine, II: 9-1, 93

Q$SET subroutine, II: 9-5

QUIT$ condition, III: 5-15
as handled by default on-unit,

III: 5-15
how your program can handle it,

III: 5-15, 5-16
resignaling the condition,

III: 5-16
sample program, III: 5-16

Index-21

Master Index

Quota, II: 1-39
directory, II: 91
MFD, II: 9-2

Quota exceeded, II: 7-11

R

R mode, I: 1-4

R-mode programs, I: 1-4, 1-5
- freeing segments of, I: 1-7

-RBF bit, III: 3-21, 4-35

RDLIN$ subroutine, II: 5-2, 5-24

to 5-26, 5-31

RDY command, III: 5-4

in LOGIN.CPL files, III: 5-5

to specify system prompts,
III: 54

Read/write lock attribute, II:

1-35

Read/write locks, II: 1-26
documenting, II: 10-2
EXCL, II: 10-2
file, II: 10-2
per file, II: 10-3
safety check, II: 10-2
system, II: 10-2
UPDT, II: 10-2

Reader, command line, III: 1-19

Reading file system objects, It:
2-30

Record, II: 1-2
date, II: 1-2
fixed-length, II: 54
logical, II: 1-7
physical, II: 1-7
text, II: 1-2
variable length, IT: 5-3

Recursive command environment,
III: 6-1

creating dynamic screen
handlers for, III: 6-3

Third Edition

Advanced Programmer's Guide, Volume 0

Recursive command environment

(continued)
file units not recursive, IIT:

6-1
generating dynamic file names

for, III: 6-3
handling terminal escape

sequences in, III: 64
limits on use of cache attach

point, III: 6-2

Recursive invocation of EPFs,
III: 4-54

behavior of static storage
during, III: 4-54

redirecting terminal I/O
during, III: 4-55

REENTER command, III: 5-12

used with RELEASELEVEL

comand, III: 5-13

REENTER$ condition, III: 5-12

Referencing directory, II: 5-18

Relative pathname, II: 1-12

RELEASELEVEL command, III: 5-5,
5-7

releasing to a particular
level, III: 5-7

resources released by, IIT:
5-6

used to restart a suspended
program, III: 5-7

used with REENTER command,
III: 5-13

Releasing,
memory holding returned value,

III: 445
resources, III: 5-6

Remote disks,
ATTACH$ search list for, II:

3-6

Remote File Access (RFA), II:
1-5

Remote objects, II: 1-5

Third Edition

Removal of EPFs, I: 1-16, 5-30
‘from memory via EPF$DEL

subroutine, III: 4-37
process-class library, I: 5-35
program EPF, I: 5-535
program-class library, I: 5-35

REN command (See REENTER
command)

Replacing static-mode libraries,
I: 3-30

Reserved entrypoint names, I:
6-5

list of, I: 6-6

RESOLVE_DEFERRED COMMON,
as a subcommand of BIND, I:

3-15
to display common area address,

I: 3-15

Resources,
Gynamic, III: 6-2
per-user limits, ITT: 1-156
releasing, III: 5-6
static, III: 6-2
system-wide limits, III: 1-16

REST$$ subroutine, II: 4-7

Restarting suspended programs,
III: 5-7

with REENTER command, IIT:
5-13

RESU$$ subroutine, II: 4-7

RESUME command, II: 2-2
special treatment by command
processor, III: 2-5

Return codes, II: 2-9

Returned character strings, IIT:
1-12

Returned command status,

checking after EPF$RUN, IIT:

4-25 :

Returned function value pointer
(See Rtn-fon-ptr)

Returned function value
structure, III: 4-15

accessed from FORTRAN, III:
4-15, 4-16

accessed from PL1G, III: 4-15
deallocating memory via FRESRA,

III: 445

using and freeing it after
Calling EPF$RUN, III: 4-25

Returned value,
defined, III: 3-6
freeing memory used by, III:
4-45

Returned value pointer (See
Rtn-fon-ptr)

Revision 20.0,

new features, 0: C-8

Revision 20.2,

new features, 0: C-7

Revision 21.0,

new features, 0: C-3

Revision 22.0,

new features, 0O: C-l

RLS command (See RELEASE_LEVEL
command)

-RPn suffix, I: 1-2

Rtn-fen-ptr, III: 3-9, 4-13,
4-14

declaration of structure, III:

4-15
for EPF$RUN subroutine, III:
4-24

-RUN suffix, I: 1-2

Running a remote EPF, I: 3-36

RWLOCK,
configuration directive, IT:

10-2

Index-23

Master Index

5

S mode, I: 1-5

SAC command, II: 2-17

SAM, II: 1-15
segment directory, II: 1-25

Sample programs,
command functions, III: 3-11,

3-14
handling command processing

-. information, III: 4-51
handling QUIT$ condition, III:

5-16
showing EPF invocation and
execution, III: 4-47

using command processing
information, III: 3-22

SATR$$ subroutine, II: 2-9, 4-7,
8-6, 8-8, 8-10, 10-3

SAVE$$ subroutine, II: 4-7

SB (See Stack base)

Screen handlers, building, III:
6-3

Search list, II: 3-1
(See also Entrypoint searchsist

appending to, II: 5-1ll
creating, II: 3-20
defaults, II: 3-2, 34
deleted automatically, II: 3-6
deleting, II: 3-20
duplicate rules, ITI: 5-11
initializing, II: 3-20
listing all, II: 3-20
naming, II: 3-11

reading, II: 3-20
setting, II: 3-2, 3-9 to 3-1l,

3-20

user-defined, II: 3-3, 3-5

Search order for filenames, III:

1-10

Third Edition

Advanced Programmer's Guide, Volume 0

Search rule, I: 1-3, 6-12, 6-33
to 6-36; ITI: 3-1

adding rule to list, II: 3-20
checking existence of, II:

3-20
creating, II: 3-10
deleting rule from list, II:

3-20
Gisabled/enabled, II: 3-15
duplicate rule, ITI: 3-1l
enabling/disabling rule, II:

3-20
format, II: 3-21
locator pointer, II: 3-5
nonexistent object, II: 3-11,

5-21
optional, IT: 35-15

ing, II: 3-20

setting locator pointer, IT:
3-20

supplying at runtime, II: 3-18
user-specified, II: 5-3, 3-5

Search rule keywords, II: 3-12
-added_disks, II: 3-6, 3-16
[home_dir], II: 3-17
-insert, II: 3-12
—optional, II: 35-15
[origindir], II: 3-17
-primos_direct_entries, IT:

3-17
[referencingdir], II: 3-18
-static_mode_libraries, II:

3-16
-system, II: 3-13, 3-15

Search rule subroutines, II:
3-2, 3-11, 3-12, 3-19, 3-20

OPSR$, II: 3-18
OPSRS$, II: 3-18
SR$ENABL, II: 3-15

SR$INIT, II: 3-11
SR$READ, II: 3-12
SR$SSR, II: 3-11, 3-14

Search rules facility, II: 3-1
error in search list, II: 3-1l
invoking, II: 3-2
performance, II: 5-3
process-based, II: 5-2
search scope, II: 3-3
search sequence, II: 3-2, 3-3,

3-21
using, II: 3-2, 3-3

Third Edition

Search rules file, II: 3-1

coments, II: 3-10

creating, II: 3-9
effect of changes to, II: 5-1l
multiple files, IT: 3-12
naming, II: 3-9
nesting, II: 3-12
used to set search list, IT:

3-11

SEARCH_RULES*, II: 3-4, 3-11

sectors, II: 1-5

SEG, I: 1-2, 14
building shared programs, I:

1-8
for invoking V- or I-mode

programs, I: 1-7
for shared procedure segments,

I: 1-8
generating static-mode images,

I: 1-8

Segment access,
aS argument to EPF$MAP

subroutine, III: 4-29
to DATA segments, I: 3-16
to IMPURE segments, I: 35-16
to PROC segments, I: 3-15

Segment directory, II: 1-9, 6-2
closing, II: 64
deleting a file, IT: 6-25
ending position, II: 6-28
extending, II: 6-14
extending full length, IT:
6-15

find free entry, II: 6-25
find full entry, II: 6-25
opening, II: 6-3
opening a file, II: 6-17
positioning in, II: 6-10
reading, II: 2-32
scanning, II: 6-25
size, II: 6-15
starting position, II: 6-26
writing, II: 2-34

Segment number,
for IMPURE and DATA segment,

I: 93

for PURE segment, I: 9-3
in addresses, I: 92

Segment number (continued)
Sign of, I: 92, 936
use of by BIND, I: 3-10

—SEGMENT_DIRECTORY bit, III:
O-21, 4-35

Segments,
shared system-wide, I: 1-8,
8-3

static, I: 8-3

Separation of pure and
code, I: 1-13, 1-15

Sequential Access Method (SAM),
II: 1-15

Set search list, II: 3-2, 3-9 to

nonexistent abject, II: 3-1l
relocating system rules, IT:

suppressing system rules, II:

usingmultiple files, II: 3-12

SET_ACCESS command, II: 2-17

SET_SEARCH_RULES command, IT:
o-11

error, II: 3-13
—no_system option, II: 3-14
reset option, II: 3-11

Severity code,
aS argument to CP$, III: 4-12
as argument to EPF$RUN, III:
4-22

for command calling sequence,
III: 3-6

returned by EPF, III: 1-12

SGD$DL subroutine, II: 2-&%,

2-38, 5-48, 6-2, 6-3, 6-24,
6-25

SGDSEX subroutine, II: 5-47,
5-48, 6-2, 6-3

SGD$OP subroutine, II: 5-2, 5-7,
5-9, 548, 6-2, 6-3, 6-17,

Index-25

Master Index

SGOR$$ subroutine, II: 2-31,
2-4, 6-2, 6-3, 6-12 to 6-14,

6-16, 6-17, 6-25 to 6-29,
6-43

Shared applications,
Shared programs)

effect of EPFs on existing, I:
4-8

(See also

Shared data, I: 8-1 to 8-7
determining the address of, I:

8-2
how to update atomically, TI:

— 8-7, 8-8
initializing, I: 8-3, 84
PMA subroutines for updating,

I: 8-9 to 8-11
process-wide, I: 8-1
system-wide, I: 8-1
using a process-class Library
EPF for, I: 8-5

Shared programs,
deleting old versions, I: 1-16
installing new versions, I:

1-8, 1-16
using SEG to build, I: 1-8

Shared system-wide segments, I:
1-8

Sharing faulted IPs, I: 4-9

how to avoid, I: 4-10

Sharing of pure code, I: 1-13

SHUTDON command, II: 1-26, 4-5

Simple pathname, II: 1-13

Simple program,
defined, III: 1-8

Simultaneous use of an EPF, I:

3-35

SLIST command, II: 4-9

Snapping dynamic links, I: 2-3,
o-21

Source code file,

directories for, II: 3-18

Third Edition

Advanced Programmer's Guide, Volume 0

SPAS$$ subroutine, II: 4-7

Special/not-special attribute,
II: 1-38

SRCH$$ subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-38, 4-7,
4-8, 4-21, 4-23, 5-2, 5-7,

5-10, 5-15, 5-47, 5-48, 6-3,

6-4, 6-7, 6-30, 6-34, 6-36,
6-38

used to open file for VMFA
read, III: 4-19

SRSFX$ subroutine, II: 1-17,
2-26, 2-27, 2-36, 2-58, 46,
4-24, 5-2, 5-7, 5-8, 5-47,
5-48, 6-3, 6-4, 6-6, 6-350,
6-34, 6-37, 6-45

used to open file for VMFA
read, III: 4-19

SSR (See SET_SEARCH_RULES)

Stack base, I: 3-4

Stack frame, I: 5-4
addresses of in DUMP_STACK

command, I: 9-9
locating procedure, I: 9-10

Stack frames,

releasing, III: 5-6

Stack header, I: 3-4

Stack space,
in EPFs, I: 3-3

in subroutines, I: 3-4

Stack, command processor, IIT:
5-1

Stacking program EPFs,

Standard command processor, IIT:
1-20

(See also Command processor)

I: 1-17

START command, III: 5-14

Static data, I: 3-7

Third Edition

Static information and EPFs,

command line information, I:

4-7

error information, I: 4-7

Static memory, I: 1-9

Static resources, III: 6-2
cache attach point, IIT: 6-2
escape sequences sent to

terminal, III: 64
file names, III: 6-3
user's display screen, IIT:

6-3

Static storage,
and recusive invocation, IIT:

4-54

Static-mode, (See also
Static-mode applications)

limits on flexibility of
programs, III: 4-4

program, I: 1-5
runfile, searching for, IT:

3-7

Static-mode applications, (See
also Static-mode program)—

conversion strategy, I: 4-1
relation of EPFs to, I: 4-1
restriction on EPF use of, I:
4-2

suspending and continuing, I:
4-2

Static-mode library, I: 35-28;
II: 3-16

dynamic link to, I: 35-28
replacing, I: 3-30
restriction on EPF use of, TI:
4-4

Static-mode program,
characteristics of, I: 1-6,

1-7

invoker, III: 2-7

STDCP$ subroutine, III: 1-20

Storage,
static,

II: 1-2

TII: 4-54

STORAGE condition, III: 1-15

Index-26

Master Index

Sub-UFD (See Lower-level Subroutine (continued)
Directory) ENT$RD, II: 2-31, 6-30, 8-1 to

8-3
Subdirectory (See Lower-level FIL$DL, II: 2-38, 4-7, 5-48

Directory) GPAS$$, II: 4-7
GPATH$, II: 4-7, 4-18, 4-20,

Subroutine, (See also library 4-24, 6-43
EPF) invoking EPFs, I: 3-5

ACSCAT, ITI: 2-19, 7-2, 7-5 linkage text, I: 34
ACSCHG, II: 7-2, 7-6, 7-7, 7-9 nonreentrant process-class, I:
ACSDFT, II: 2-17, 7-2, 7-3 6-20
ACSLIK, II: 2-20, 7-8 optimizing conversion approach
ACSLST, II: 7-2, 7-9, 7-10 to, I: 6-25 to 6-28
ACS$RVT, II: 4-7 _ organization of, I: 34
ACSSET, II: 2-18, 2-21, 7-2, PHANT$, II: 4-7

7-4, 7-6 PHNIM$, II: 4-7
AT$, II: 2-15, 4-5, 4-7, 4-8, procedure code, I: 34
4-10 process-class, I: 6-15

AT$ABS, II: 2-15, 4-5, 4-7 to program-class, I: 6-15
4-9, 4-11 PRWF$$, II: 2-35, 5-2, 5-16 to

AT$ANY, II: 2-15, 4-5, 4-7, 5-18, 5-20, 5-29, 5-31 to
4-8, 4-135, 4-14 5-42

AT$HOM, II: 2-8, 2-14, 44, Q$READ, II: 9-1, 93
4-6, 4-8 Q$SET, II: 95

AT$OR, II: 2-13, 4-1, 4-2, 46 RDLIN$, II: 5-2, 5-24 to 5-26,
AT$REL, II: 2-15, 46, 4-7, 5-51

4-16, 4-17 REST$$, II: 4-7
ATCH$$, II: 4-6 RESU$$, II: 4-7
CALAC$, II: 7-9 SATR$$, II: 2-9, 4-7, 8-6,
calls, ITI: 2-2 8-8, 8-10, 10-3
CH$MOD, II: 5-47 SAVES$, II: 4-7
CLOSFN, II: 2-36, 5-21, 5-23, SGD$DL, II: 2-34, 2-38, 5-48,

5-48 6-2, 6-3, 6-24, 6-25
CLO$FU, II: 2-36, 5-21, 5-22, SGD$EX, II: 5-47, 5-48, 6-2,

5-48, 6-2, 6-4 6-3
CLOS$A, II: 2-37 SGD$OP, II: 5-2, 5-7, 5-9,
CNAM$$, II: 4-7, 6-43 5-48, 6-2, 6-3, 6-17, 6-19,
ComI$$, II: 4-7 6-22
Comos$, II: 4-7 SGOR$$, II: 2-31, 2-34, 6-2,
converting nonreentrant to 6-3, 6-12 to 6-14, 6-16,

reentrant, I: 6-21 to 6-25 6-17, 6-25 to 6-29, 6-46
CREA$$, II: 2-24, 4-7 SPAS$$, II: 4-7
CREPW$, II: 2-25, 4-7 SRCH$$, II: 1-17, 2-26, 2-87,
determining class requirements 2-3, 2-38, 4-7, 4-8, 4-21,

of, I: 6-15, 6-16 4-25, 5-2, 5-7, 5-10, 5-15,
determining the use of static 5-47, 5-48, 6-35, 64, 6-7,
data by, I: 6-17, 6-18 6-30, 6-34, 6-36, 6-38

DIR$CR, II: 2-24, 6-30, 6-32, SRSFX$, II: 1-17, 2-26, 2-27,
6-34 2-36, 2-38, 4-6, 4-24, 5-2,

DIR$LS, II: 2-31 5-7, 5-8, 5-47, 5-48, 6-3,
DIR$RD, II: 1-29, 2-31, 6-30, 6-4, 6-6, 6-30, 6-34, 6-37,

6-39 to 6-41, 8-1, 8-3 6-43
DIR$SE, II: 2-31 stack space, I: 34
Gynamic linking of, I: 2-1

Index-27 Third Edition

Advanced Programmer's Guide, Volume 0

Subroutine (continued)
storing data in linkage area

of, I: 6-18

TSRCO$$, II: 2-26 —
WILINS, II: 2-35, 5-2, 5-24,

5-27, 5-29

Subroutine libraries, I: 2-l

types of, I: 2-2

Subroutine not found condition,

I: 24

Suffixes, II: 3-7

search order of, III: 1-10,

4-3

Surfaces, II: 1-5

Suspended programs,

restarting, III: 5-7

SYMBOL,

as a subcommand of BIND, I:

3-11, 8-2, 8-4

to locate common areas, I:

3-11

System Administrator,
default search rules, II: 3-4

System file, II: 1-10

System primitives, II: 2-3

System prompts, IIT: 5-5

System search rules, II: 54
in search rules file, II: 3-10

location in list, II: 3-135

process initialization, ITI:
3-11

reset to, II: 3-11

SYSTEM_STORAGE$ condition, IIT:
1-15

J
H

Terminal I/O,

Third Edition

Terminal I/O (continued)
redirection during recursive

invocation of EPFs, ITI:

4-55

Terminating an EPF, I: 3-6,

Text,
retrieval, II: 5-1
storage, II: 5-1
strings, II: 5-1

. Text file, II: 5-1

(See also Fixed-length record
file; Variable-length record
file)

accessing, ITI: 5-2
compression, II: 5-24
current position, ITI: 5-25
input line, II: 5-25
maximum line length, IT: 5-25
open file unit, II: 5-29
opening, II: 5-6
Output line, ITI: 5-25
positioning to end, IT: 5-15
read variable-length, II: 5-24

, iI: 5-6
write variable-length, IT:

5-24
writing, II: 5-6
writing lines to, II: 5-29

Tilde, use of, III: 2-2

Top-level directory, IT: 1-8

Tracks, II: 1-5

Tree structure,

creating, II: 1-5

Treewalk bit, III: 3-22, 4-31

handled by command processor,
III: 2-6

in command processing
information, III: 5-22

in epf-info structure, IIT:
4-31

options for, III: 2-6

Treewalking (continued)
specified in command
information structure, III:

4-25
specified in epf-info

structure, III: 4-61

Truncating a file, ITI: 1-29,
5-17

TSRC$$ subroutine, II: 2-26
used to open file for VMFA

read, III: 4-19

Types of EPFs, I: 1-3

U

Unmapping an EPF, I: 3-4

User file, IT: 1-10

User programs,
recursive invocation of, III:

6-1

User-defined search list, II:

3-2

User-—written functions,
command environment support

for, III: 1-7

User-written programs,
command environment support

for, III: 1-6

Users,

search lists of, II: 3-2

Vv

V-mode programs, I: 1-5

Variable references, evaluation

of, III: 24

Index-29

Master Index

Variable-length record file,
compression character, II:

5-44
format, II: 5-42
pad character, II: 5-43
Space compression, II: 5-43

Variable-length records, II: 5-3
advantages, II: 5-3
termination character, II: 5-3

-VERIFY bit, III: 3-21

-VERIFY option,
handled by command processor,

III: 2-7

Virtual memory file access read
(VMFA-read), II: 1-24

VPSD command, I: 1-18, 98

W

-WALK_FROM bit, III: 3-22

-WAIKTO bit, III: 3-22

Wildcard bit, III: 3-22, 4-31

Wildcards,
handled by command processor,

III: 2-6
in command processing

information, III: 3-21
in epf-info structure, IIT:
4-31

options for, III: 2-6

Writing file system objects, II:
2-54

Writing files, II: 2-35

Writing segment directories, II:
2-34

WILINS subroutine, II: 2-35,
5-2, 5-24, 5-27, 5-29

Third Edition

Surveys

Reader Response Form

Advanced Programmer’s Guide, Volume 0: Introduction and Error Codes

DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our

user publications.

1. How do yourate this document for overall usefulness?

[_]excellent [_]verygood [_]good [_]fair [_] poor

2. What features of this manual did you find most useful? —

3. Whatfaults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

[__] Much better [_] Slightly better [_] About the same
[__] Much worse [__] Slightly worse [_] Can't judge

5. Which other companies’ manuals have you read?

Name:

Position:

Company:

Address:

Postal Code:

|

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications

Bidg 10

Prime Park, Natick, Ma. 01760

I
l

Reader Response Form

Advanced Programmer's Guide, Volume 0: Introduction and Error Codes

DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our

user publications.

1. How do yourate this documentfor overall usefulness?

[_]excellent [_]very good [_]good ([_]fair [_] poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

[__] Much better [| Slightly better [__] About the same

[__] Much worse [_] Slightly worse [__] Can't judge

5. Which other companies’ manuals have you read?

Name:

Position:

Company:

Address:

Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications

Bidg 10

Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

{

Reader Response Form

Advanced Programmer’s Gulde, Volume0: introduction and Error Codes
DOC10066-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our

user publications.

1. How do yourate this documentfor overall usefulness?

[_] excellent [_]very good [L]go0od ([_]fair [_]poor

2. What features of this manual did you find most useful? -

3. Whatfaults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

[_] Much better [__] Slightly better [__] About the same

[__] Much worse [_] Slightly worse [__] Can't judge

5. Which other companies’ manuals have you read?

Name:

Position:

Company:

Address:

Postal Code:

First Class Permit #531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications

Bidg 10

Prime Park, Natick, Ma. 01760

\

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES
M
i

-

MOAA

DOC 1HKG-3LA

	front cover
	i
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Index-i
	Index-ii
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	Index-27
	Index-28
	Index-29
	Index-30
	Surveys-i
	Surveys-ii
	Surveys-1
	Surveys-2
	Surveys-3
	Surveys-4
	Surveys-5
	Surveys-6
	Surveys-7
	Surveys-8
	Surveys-9
	Surveys-1
	back cover

