

Prime.

Advanced Programmer's
Guide

VolumeIi

Command Environment

Revision 19.4

DOC10057-1LA

Advanced Programmer's
Guide

VolumeIII:
Command Environment

First Edition

by

James Craig Burley
and

Alice Landy

This guide documents the software operation of the Prime Computer and

its supporting systems and utilities as implemented at Master Disk

Revision Level 19.4.3 (Rev. 19.4.3).

Prime Computer,Inc.
Prime Park

Natick, Massachusetts 01760

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer, Inc.
Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Copyright © 1985 by
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME, PRIME, and PRIMDOS are registered trademarks of Prime Computer,
Inc.

PRIMENET, RINGNET, Prime INFORMATION, PRIMACS, MIDASPLUS, Electronic
Design Management System, EDMS, PDMS, PRIMEWAY, Prime Producer 100,
INFO/BASIC, PST 100, W200, W150, 2250, 9950, THE PROGRAMMER'S
COMPANION, and PRISAM are trademarks of Prime Computer, Inc.

CREDITS

Project Support Len Bruns
Margaret Taft

Editorial Support Mary Callaghan

Graphic Support Marjorie Clark
Mike Moyle
Bob Stuart

Production Support Michelle Hoyt

Document Preparation Nancy Cormier
Mary Mixon

ii

PRINTING HISTORY — Advanced Programmer's Guide,

Volume III: Command Envirorment

Edition Date Number Software Release

Preliminary Edition January 1985 DOC9229-1LA 19.4.0

First Edition November 1985 DOC10057-1LA 19.4.3

In document numbers, L indicates loose~leaf.

CUSTOMER SUPPORT CENTER

Prime provides the following toll-free numbers for custamers in the

United States needing service: in the United States needing service:

1-800-322-2838 (within Massachusetts) 1-800-541-8888 (within Alaska)

1-800-343-2320 (within other states) 1-800-651-1313 (within Hawaii)

HOW TO ORDER TECHNICAL DOCUMENTS

Follow the instructions below to obtain a catalog, price list, and

information on placing orders.

United States Only International

Call Prime Telemarketing, Contact your local Prime

toll free, at 800-343-2533, subsidiary or distributor.

Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST)

iil

Contents

ABOUT THIS BOOK ix

Prime Documentation Conventions x

Calling Sequence Conventions x1

1 INTRODUCTION TO THE COMMAND ENVIRONMENT

Aspects of the Command Envirorment 1-2

Interactive Users 1-2

Command Input (COMINPUT) Files 1-3

Command Procedure Language

(CPL) Programs 1-4

User-written Programs 1-6

User-written Functions 1-7

Applications 1-7

Types of Programs 1-8

Internal Commands 1-9

External Commands 1-10

The Command Interface 1-10

Limits on Progran Invocation 1-13

Key Modules in the Command

Environment 1-16

The Listener 1-17

The Command Prompter 1-19

The Command Line Reader 1-19

The Abbreviation Processor 1-19

The Command Processor 1-20

The Expression Evaluator 1-20

The Command Features Decoder 1-21

The Command Preprocessor 1-21

The Progran Invokers 1-22

The Default On-unit 1-22

2 OOMMAND LINE PROCESSING

Step 1: Handling the Command

Separator Character 2-3

Step 2: Evaluation of Function

and CPL Variable References 2-4

Step 3: Removal of Null Tokens 2-4

Step 4: Determination of Command

Name 2-4

Step 5: Determination of Command

Type 2-5

Step 6: Determination of Command
Iteration Features 2-5

Step 7: Expansion of Simple
Iteration 2-5

Step 8: Expansion of Treewalking 2-6
Step 9: Expansion of Wildcard

Specifications 2-6
Step 10: Expansion of Name

Generation Patterns 2-7
Invocation 2-8

3 PROGRAM EPF CALLING SEQUENCE

Types of Calling Sequences 3-2
Progran Calling Sequence 3-3
Command Calling Sequence 3-3
Command Function Calling

Sequence 3-6
The ALSSRA Subroutine 3-9
The ALCSRA Subroutine 3-10

Detailed Cammand Calling
Sequence 3-15

Command Processing Information 3-19
Complete Calling Sequence 3-26

4 INVOKING PROGRAMS FROM WITHIN PROGRAMS

Commands, Programs, and Functions 4-2
Deciding Which Interface to Use 4-6
The CP$ Subroutine 4-9
Using CPS to Invoke a Command

or Progran 4-9
Using CPS to Invoke a Function 4-13
Error Codes Fran CP$ 4-17

The EPFSRJN Subroutine 4-18
Error Codes Fran EPFSRUN 4-26

The EPFSINVK Subroutine 4-27
Error Codes Fram EPFS Subroutines 4-40

The FRESRA Subroutine 4-45
Sample Prograns 4-47
If a Program Invokes Itself 4-54
Terminal Input and Output 4-55

vi

5 ‘THE COMMAND PROCESSOR STACK

What the Command Processor

Stack Is Used For 5-1

Command Levels 5-2

The Listener 5-2

The RDY Command 5-4

The RELEASE_LEVEL Command 5-5

The DUMP_STACK Canmand 5-11

The INITIALIZE_COMMAND_ENVIRONMENT

Command 5-12

The REENTER Command 5-13

Mini~Command Level 5-15

What Control-P Actually Does 5-16

If Your Progran Catches QUITS 5-16

6 ‘THE RECURSIVE COMMAND ENVIRONMENT

What Is a Recursive Resource? 6-1

What Is a Dynamic Resource? 6-2

What Is a Static Resource? 6-2

The Cache Attach Point as a

Static Resource 6-2

Other Static Resources 6-3

INDEX X-1

vil

a

About

This Book

The Advanced Progranmers's Guide is intended for programmers who are

experienced with Prime 50 Series™ systems, have read the Prime User's

Guide (DOC4130—-4LA) and Programmer's Guide to BIND and EPFS

(DOC8691-1LA), are familiar with the Subroutines Reference Guide

(D0C3621-190) and its first update package (UPD3621-31A), are

experienced in at least one high-level language supplied by Prime

(preferrably PLIG or FIN), and who have an understanding of the

architecture of Prime systems as described in the Prime 50 Series

Technical Summary (DOC6904-191) and in the System Architecture Guide.

This guide is divided into several volumes,

® Volume 0 of this guide describes new features of interest to

readers of this guide. It also describes standard error codes

used by PRIMOS™, along with their messages and meanings.

@ Volume I describes Executable Program Formats (EPFSs).

@ Volume II describes the PRIMOS File System.

e Volume III (this volume) describes the PRIMDS~— Command

Environment.

Designed for systems-level programmers, this guide describes the

lowest-level interfaces supported by PRIMMS and its utilities.

Higher-level interfaces not described in this guide include:

@ Language-directed I/0

@ ‘The applications library (APPLIB)

ix

@ The sort packages (VSRILI and MSORTS)

e@ Data management packages (such as MPLUSLB and PRISAMLIB)

@ Other subroutine packages

All the above interfaces are described in other Manuals, such as
language reference manuals and the Subroutines Reference Guide.

This guide documents the low-level interfaces for use by programmers
and engineers who are designing new products, such as language
compilers, data management software, electronic mail subsystens,
utility packages, and so on. Such products are themselves higher-level
interfaces, typically used by other products rather than by end users,
and therefore must use sane or all of the lowlevel interfaces
described in this guide for best results.

Because of the technical content of the subjects presented in this
Quide, it is expected that this quide will be regularly used only by
project leaders, design engineers, and technical Supervisors rather
than by all programmers on a project. Most of the information in this
guide deals with interfaces to PRIMDS that are typically used only in
small portions of a product, and with overall product design issues
that should be considered before coding begins. Once the product is
designed and the PRIMOS interfaces are designed and coded, a typical
product can then be written by programmers whose knowledge of these
issues is minimal. Of course, this statement is predicated on the
assumption that widely accepted programming practices, such as modular,
or structured, programming, functional and design specifications, and
thorough unit debugging and testing, are employed.

PRIME DOCUMENTATION CONVENTIONS

The following conventions are used in command formats, statement
formats, and in examples throughout this document. Examples illustrate
the uses of these commands and statements in typical applications.
Terminal input may be entered in either uppercase or lowercase letters.

Convention Explanation Example

UPPERCASE In command formats, words SLIST
in uppercase indicate the
actual names of commands,
Statements, and keywords.
These can be entered in
either uppercase or
lowercase letters.

lowercase

abbreviations

— underlining
in

examples

Brackets

[]

Braces

{ }

Ellipsis

Parentheses

()

Hyphen

In command formats, words

in lowercase letters indicate

items for which the user must

substitute a suitable value.

T£ a command or statement

has an abbreviation, it is

indicated by underlining.
In cases where the command

or directive itself

contains an underscore, the

abbreviation is shown below

the full name, and the name

and abbreviation are placed
within braces.

In examples, user input
is underlined but system
pranpts and output are not.

Brackets enclose one or

more optional items.
Choose none, one, Or

more of these items.

Braces enclose a list
of items. Choose one
and only one of these
items.

An ellipsis indicates that
the preceding item may be
repeated.

In command or statement

formats, parentheses must
be entered exactly
as shown.

Wherever a hyphen appears
as the first letter of an
option, it is a required
part of that option.

LOGIN user-id

LOGOUT

SET_QUOTA
SQ

OK, RESUME MY_PROG
This is the output
of MY_PROG. CPL

SPOOL | “Gee |
—CANCEL

CLOSE | filename
ALL

item-x [’ iten-y] eee

DIM array (row,col)

SPOOL -LIST

CALLING SEQUENCE CONVENTIONS

This guide provides many illustrations of calling sequences as a handy
reference for readers while they read the guide. These illustrations
are not intended to replace the Subroutines. Reference Guide for
complete reference information on subroutines. For example, this guide
may not show all of the various forms of invoking a subroutine if only
a few forms apply to the topic being discussed.

Calling sequences of subroutines, programs, and functions. are
illustrated in this guide in summary form. Each calling sequence
occupies one full page. The subroutine, or procedure, name is listed
in the middle of the page, followed by dummy parameter names, separated
by commas, listed in parentheses, This is the basic calling sequence
for the procedure.

Above the calling sequence are the input arguments; below the calling
Sequence are the output arguments. Arrows are drawn to or fram the
dummy parameter names to indicate the flow of information and also to
visually connect parameter names to the information on the parameters.
Each input or output parameter includes the following information:

@ A description of the argument

@ The datatype of the argument

For the description of the argument, a short description may be given;
in same cases, such as for keys, a value or a list of choices of values
is given; occasionally, an illustration of the format of the input or
Output argument is provided, ‘The choice is designed to prove the most
useful when the reader uses the subroutine in one or more programs
somewhat frequently.

For the datatype of the argument, a datatype description language is
defined specifically for this guide. Readers must convert the datatype
description language used here to the appropriate lanquage. This guide
often includes PL/I-G or FORTRAN versions of structures in addition to
the datatype description languace.

In addition to the arguments, or parameters, for the procedure,
procedures that are functions return a function value. In this case,
the value and its datatype is illustrated below the name of the
procedure itself. The meaning and datatype of the function value is
essentially the same as for parameters.

There are two main purposes to the format used in this guide to
illustrate calling sequences:

@ To illustrate the calling sequence for a single type of function
performed by a procedure

e@ To show the relationships between interdependent parameters in a
calling sequence

The first purpose is addressed by separating information on a

multipurpose subroutine such as PRWF$$ into several different calling

sequence descriptions, one for reading a file, another for writing a

file, another for positioning a file, and so on.

The second purpose is addressed by providing dotted lines between

related arguments in calling sequence illustrations. Most often, such

relationships involve a character string parameter whose length is

specified by another parameter in the calling sequence. Another

example is the size of an array parameter that is specified by another

parameter.

Data s

The following datatypes, and their PL/I-G and FORTRAN equivalents, are

used throughout this guide:

Datatype PL/I-G FORTRAN

HALF INT FIXED BIN(15) INTHGER*2

FULL INT FIXED BIN(31) INTHGER*4

n STRING CHARACTER(Nn) INTHGER*2 ((ntl) /2)

¢=n STRING CHARACTER(n) VARYING

=

INTEGER*2

(

(n+3) /2)
2 ((mr+3) /2)
n BIT BIT (n) INTHGER*2 ((nt15)/16) w/masking

PTR POINTER and ADDR() INTHGER*2 (3) and LOC()

STRUC (see Note 1) (see Note 1)

ARRAY (n) (see Note 2) (see Note 2)

Notes

1. Structures are usually illustrated in the same figure or in

another figure, or their declarations are provided in a

page near the figure. They are also known as "record" data

types in other languages.

2. Arrays are either a constant length (n is indicated in

parentheses) or a varying length set controlled by another

parameter or by a subfield in another parameter. Varying

length arrays have dotted lines from the word ARRAY to the

parameter (or its subfield) that controls the length of the

array.

If you are unsure as to the meaning of a keyword, arrow, or other

illustrative mark, consult the Subroutines Reference Guide for more

‘ precise and complete information on the subroutine or data structure.

xiii

Keys

Some Prime~supplied interfaces take a key argument as an input-only
argument. Your program sets key to specify the precise operation to be
performed by the interface. In most figures that involve a_ key
argument, only a list of valid (or appropriate) values for the argument
is provided in the form of the keyword names for the keys; these
keyword names, once learned, are easy to associate with the
corresponding function. For example, the kSread key specifies a read
operation.

When the construction of a key is complex, two or more lists of
keywords are often shown, enclosed in braces, with + signs to indicate
addition. As with command formats, the braces indicate that you should
pick one keyword from each list in braces; the + signs indicate that
you should add, in the progran, the resulting keywords. For example,
your program might specify a key value of k$rdwr+kSndamt+kSgetu.

To define key definition keywords for your progran, which have names
beginning with KS, use a %INCLUDE or SINSERT statement to insert the
appropriate SYSCOM>KEYS. INS.language file into your progran. See the
Subroutines Reference Guide for more information on this topic.

Standard Error Code

Most interfaces include a standard error code as a parameter. This is
a HALF INT value returned by the interface to indicate the degree of
Success encountered by the interface, When provided by an interface,
your program should always check this value to ensure that it is 0
(zero) after each call to the interface — a value of 0 meansa
successful call. Other values can mean either an error or just a
condition worth noting. Volume 0 contains a list of all standard error
codes along with descriptions of their various meanings within PRIMDS.

To define standard error code keywords for your program, which have
names beginning with ES, use a $INCLUDE or SINSERT statement to insert
the appropriate SYSCOM>ERRD. INS.language file into your program. See
the Subroutines Reference Guide for more information on this topic.

Side Effects

Where appropriate, the side effects of an interface are listed in the
lower left-hand corner of the corresponding figure.

Xiv

General Coding Guidelines

When writing programs that use any Prime-supplied subroutines, observe

the following guidelines to ensure that your programs continue

functioning normally on subsequent revisions of PRIMDS:

e Reserved or undefined information returned to your program by a

Prime-supplied interface subroutine must be ignored. For

example, if a 16-bit halfword contains one defined bit and

fifteen reserved bits, your program must mask off the fifteen

reserved bits before analyzing the halfword to determine the

value of the one defined bit.

e Reserved or undefined information passed by your program to a

Prime-supplied interface must contain all zeroes, except where

otherwise specified.

Introduction to the

Command

Environment

The PRIMOS command envirorment is a

_

collection of subroutines and

interfaces that provide a single, flexible, and efficient command

interface for:

Interactive users, who issue commands and then usually wait for

a response before issuing subsequent commands

Command input (COMINPUT) files, which contain simple command

scripts

Command Procedure Language (CPL) programs, which contain a mix

of commands and CPL directives; these interpreted programs can

issue commands and make decisions based on the results of those

commands

User-written programs, which may or may not wish to

_

take

advantage of certain features of the command environment such as

wildcarding, iteration, treewalking, and name generation

User-written functions, which can be used just like CPL command

functions in that they can return a string value to the caller

Applications, which may invoke other commands, programs, and

functions that are external to the application

1-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Because the command environment allows the mixing and matching of its
many features, you can build very powerful packages by combining
command envirorment features, For example, you may be able to build a
powerful application using small, easy-to-manage programs and
functions, instead of having to construct a single, large, monolithic
program.

This chapter introduces you to the features of the command environment
of particular interest to advanced programmers, It begins by examining
how the various aspects of the command envirorment serve the needs of
the six types of "users" listed above. It then discusses the three
types of program recognized by the command envirorment and the way in
which the command envirorment interfaces to each. It discusses
per-site limits that can be imposed on program invocation. Finally, it
explains the structure of the command enviroment by listing and
discussing the key modules of the command envirorment.

ASPECTS OF THE COMMAND ENVIRONMENT

This section describes the types of users served by the command
envirorment and the features of most interest to each. The command
environment features, themselves, are explained briefly in this
Section; they are discussed in more detail later in this chapter.

Interactive Users

Interactive users are those users who enter commands at their
terminals; usually, they then wait for a response before issuing
subsequent commands. Their needs are:

@ To know, aS soon as possible, whether the command they issued
has succeeded

@ To be able to issue powerful commands using the fewest possible
keystrokes

@ To perform certain operations on multiple targets (such as a
group of files), without having to enter the same command
repeatedly

For these users, the command envirorment provides:

@ An error-reporting facility with which programs can display
identical, and therefore familiar, error messages for identical
error conditions

e@ A command prompt that immediately lets the user know whether the
previous command succeeded (OK,) or failed (ER!)

First Edition 1-2

INTRODUCTION TO THE COMMAND ENVIRONMENT

e@ An abbreviation facility, whereby a user can specify that a

particular command or keyword is a substitute for a more lengthy

and perhaps more complicated command, keyword, or sequence of

commands and keywords ,

e A sophisticated command preprocessor that provides treewalking,

wildcarding, and iteration facilities; these allow a user to

easily specify sets of file system objects (either listed by the

user or related by name or by common parent directory) without

having to retype the command and its options for each specified

object

Interactive users who repeatedly issue a simple set of commands may use

command input files; such files are described in the next section.

Command Input (COMINPUT) Files

Command input files contain simple command scripts that, when invoked

by an interactive user via the COMINPUT command, substitute for the

user's interactive input of commands. Unlike an interactive user, a

command input file does not have the ability to "look" at the results

of a particular command and decide how to proceed next. The needs of a

command input file are:

@ To be able to record output of the command input session for

later perusal by the user

@ To be automatically stopped after a fatal error, so that

subsequent commands do not cause further problems

To support the needs of command input files, the command environment

provides:

e@ A command output facility (the COMOUTPUT command), allowing

command input and output to be written to a file as well as (or

instead of) to the user terminal

e An error-reporting facility that allows commands and programs to

indicate whether they completed successfully

e An error-detection facility that automatically suspends command

input upon detection of a fatal error

Although command input files are useful for simple command sequences

that change little or not at all between invocations, they do not

provide more sophisticated features, such as allowing a user to provide

one or more arguments to the command input file that modify its actions

or allowing the command file itself to choose a course of action

depending on the results of invoking a command or program. Prime's

Command Procedure Language (CPL), described next, provides these

" features.

1-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Command Procedure Language (CPL) Programs

A Command Procedure Language (CP) program contains a combination of
commands and CPL directives. Commands, such as OOPY, F77, BIND, and
RESUME, typically perform the actual work of a CPL program. CPL
directives, such as &ARGS, &IF, &SET_VAR, and &RETURN, control the
execution of commands within the program. CPL programs may use CPL
variables and functions throughout; both are similar to programming
language constructs in that they substitute actual values for
themselves at program runtime. CBRL variables substitute values
assigned at progran runtime, while ffunction’- references invoke
PRIMOS~resident functions or call other programs at program runtime to
determine what values to substitute.

CPL programs are sometimes substituted for existing compiled programs;
for example, a CPL program may provide a program-use log or a more
user-friendly interface,

The needs of a CPL program are:

@ To be invoked just as if it were a compiled program

@ To be able to record output of the CPL program session for later
perusal by the user or for later interpretation by the CPL
program

@ To be able to execute PRIMOS commands without repetition of the
PRIMOS OK, pranpt, thus avoiding filling the user's screen with
OK, pranpts

e@ To be able to intercept and analyze errors encountered by
commands and programs invoked by the CPL program, in order to
determine the next course of action

@ To be able to report errors encountered by the CPL progran to
the invoker of the progran, in a form useful to both the
interactive user and to another program, either of which may
invoke the CPL program

@ To be able to invoke other CPL programs

@ To be able to return a value as a result of the CPL program when
the program is to be used as a function

To support the needs of CPL programs, the command envirorment provides:

e A program invocation interface (the RESUME command) that invokes
both compiled programs and CPL programs, depending upon which it
finds, so that the user is not necessarily aware of the type of
program being invoked

First Edition 1-4

INTRODUCTION TO THE COMMAND ENVIRONMENT

e@ Av-conmand output facility (the QOMUTPUT command), allowing

command input and output to be written toa file as well as (or

instead of) being written to the user terminal

e A command line reader that does not display PRIMDS prompts when

it is reading commands from a CPL program

e An error detection and interception directive (the &SEVERITY

directive) that allows a CPL program to intercept fatal command

or program errors without necessarily resulting in the abnormal

termination of the CPL program, and that allows the CPL program

to analyze the error code (the %SEVERITYS% variable) returned by

a command or program

e An error condition interception directive (the SON directive)

that allows a CPL program to intercept program runtime errors

(such as ACCESS_VIOLATIONS) in addition to program interrupts

(such as QUITS, and LOGOUTS) and that allows the CPL program to

clear the condition or to continue the signaling of the

condition

e A directive (the SRETURN directive) that allows a CPL program to

return a severity code to the calling program, indicating

whether an error condition was encountered, and to specify an

error message, indicating the mature of the error, to be

displayed on the user's terminal.

e The ability to invoke other CPL programs via the RESUME command

exactly as if they were compiled programs

e A directive (the SRESULT directive) that allows a CPL program to

return a text string as the result of the CPL program, for use

when the CPL program is designed as a function

See the CPL User's Guide for complete information on how to write CPL

programs.

Because CPL provides many constructs found in structured programming

languages such as PL/I, it is useful for rapid development of utilities

and programs. In particuar, CPL can be an appropriate language for

the development of a prototype utility. CPL programs tend to be easy

to understand and maintain because they are interpreted rather than

compiled and because the debugging of such programs is typically

straightforward (and is assisted by other CPL directives, such as

&DEBUG and &WATCH).

However, most CPL programs run faster when comverted to ore of Prime's

compiled languages, such as PL/I-G. To ease the conversion of CPL

programs to other Prime-supplied languages, the command envirorment

provides compiled programs with the same abilities as CPL programs, as

described next.

1-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

User-written Programs

User-written programs are compiled .programs that are linked using
Prime's BIND, LOAD, or SEG linker and executed using the RESUME or SEG
command, These programs may or may not wish to take advantage of
certain features of the command envirorment such as wildcarding,
iteration, treewalking, and name generation. When it is called upon to
execute a program, the command envirorment detects which of its
features the program wishes to use. ‘The needs of a user-written
program that interfaces to the command envirorment are:

@ To be able to execute PRIMDS commands

@ To be able to intercept and analyze errors encountered by
commands and programs invoked by the program to determine the
next course of action

@ To be able to report errors encountered by the program to the
invoker of the progran, in a form useful to both the interactive
user and to another program, either of which may invoke the
program

@ To be able to invoke other programs

@ To be able to determine what command processing features, such
as wildearding and iteration, are being used to invoke the
program

The command envirorment provides facilities to programs built as EPFs
that address all of the above needs. For static-mode programs, which
are linked via SEG or LOAD, the command enviroment provides a_ limited
set of facilities. Facilities provided by the command envirorment for
use by compiled programs are:

@ An interface (the CP$ subroutine) to the command processor that
allows a running program to invoke a PRIMS command, a CPL
program, or another compiled program

@ A returned severity code from the CPS subroutine interface that
represents the level of success encountered by the invoked
command or program

@ A program interface that allows a program to indicate its level
of success by modifying a severity code variable, which was
passed to it when the progran was invoked by the command
processor

@ An interface (the ERRPRS$ and ERTXTS subroutines) that allows a
program to display an error message corresponding to a standard
PRIMOS error code, providing the user with consistent error
messages for similar errors

@ An interface (the EPFSRUN subroutine) that allows a program to
invoke another program EPF

First Edition 1-6

INTRODUCTION TO THE COMMAND ENVIRONMENT

@ A program interface that allows a program to determine, by

analyzing a structure passed to it by the command envirorment,

which command preprocessing features (such as wildcarding and

iteration) are involved in the invocation of the program

While compiled programs are generally built to perform sane task and

not to return the results of a calculation, a program may be designed

to return a result to the invoker of the program. These programs,

called functions, are described next.

User-written Functions

Like CPL command functions, user-written functions return a string

value to the caller. A user-written function must be a program EPF;

it cannot be a static-mode program. (Any program EPF that returns a

string value to its caller isa function.) To allow the writing of

such functions, the command envirorment:

e Provides an interface (the ALCSRA and ALSSRA subroutines) that

allows a program to allocate memory that is to contain the

returned text string

@ Passes to a program a pointer that the program sets to point to

the returned text string allocated by ALCSRA or ALSSRA

e Provides an interface (the FRESRA subroutine) that allows a

program that calls a function, whether a CPL program or a

program EPF, to deallocate the memory associated with a returned

text string after using the string

Some programs may not fit into either the category of a program that

performs a task or the category of a program that is a function. Such

programs may invoke other programs, provide specially tailored user

interfaces, manage data bases, and so on. ‘These applications are

described next.

Applications

This guide uses the term application to describe a program that may

invoke other commands, programs, and functions that are external to the

application. In addition, an application may provide a user with a

specially tailored interface, such as an interactive menu-driven file

management system. The needs of an application are similar to the

needs of a user-written program, with the additional requirement that

it be able to invoke a function and be able to make use of the returned

value of that function.

1-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The command envirorment allows a program to invoke a function by
returning to the calling program a pointer to a_ structure containing
the returned text string. In addition, the command envirorment
provides an interface (the FRESRA subroutine) that allows a program to
deallocate the structure containing the returned text string once it
has been used,

Applications may have additional requirements:

@ To be able to repeatedly invoke a particular EPF without
repeatedly mapping and unmapping the EPF

@ To be able to modify the procedure code of an EPF once it is in
memory, Such as when an application allows interactive debugging
of an EPF

@ To be able to retrieve information on an EPF, such as how many
procedures and segnents it needs, its version number, the
version of BIND used to link the EPF, and so on

The command envirorment satisfies these requirements by providing an
EPF interface that consists of several subroutines which, called
separately, allow an application to exercise more control over how and
when an EPF is passed through its phases before being executed. (See
Volume I of this series for a description of the phases in the life of
an EPF,) Included in this interface is a subroutine, EPFSCPF, that
allows a program to retrieve information on an EPF similar to that
displayed by the LIST_EPF command.

TYPES OF PROGRAMS

Several interfaces exist between the command envirorment and the
programs it handles. These interfaces differ in their complexity and
in the capabilities each provides; each is designed to handle a
particular type of program.

To the command envirorment, a program is either a simple program, a
command, or a function.

A simple program is a program that does not take command linearguments
(such as filenames, options, and so on). Moreover, a simple program
does not indicate whether it succeeded or failed; it is always
presumed to succeed, |

A command is a program that accepts command line arguments or that
indicates whether it succeeded or failed by returning a severity code,
calling SETRCS$, or calling ERRPR$. Most commands both accept command
lines and return severity codes.

First Edition 1-8

INTRODUCTION TO THE COMMAND ENVIRONMENT

A function is a command or program that returns a character string that

serves as the value of the function invocation. Most functions are

internal to PRIMOS and are used by CPL programs, and are therefore

called CPL command functions.

Some of these internal functions are usable as commands. For example,

the DATE command function can be invoked as a function or as a program:

OK, TYPE 'It is '[DATE -DOW]', '([DATE -CAL]' at '[DATE -AMPM]'.'

It is Tuesday, March 5, 1985 at 8:06 AM.

OK, DATE

05 Mar 85 08:06:20 Tuesday
OK,

Internal CPL command functions, like internal PRIMOS commands, are not

stored on the disk as programs, but are part of PRIMOS itself.

Another distinction made by PRIMOS is whether a command is internal or

external. An internal command resides in PRIMOS itself rather than on

disk; therefore, it is always available for use by users and by

programs. An external command resides on disk, either in the top-level

directory named CMDNCO (a historical name that stands for CoMmanDs,

Non-Chargeable, number 0) or elsewhere on disk, Because an external

command is a file on disk, you can:

@ Delete the file, which makes it wumavailable to users and

programs

@ Change the name of the file, which also changes the name of the

command

e Create a new file, which creates a new command

e Set access on the file, restricting its use to certain users,

which also restricts use of the command to those users

A program, command, or function can be either internal or external, but

not both. A few special internal commands are used to execute external

commands, and these internal commands are therefore treated specially

by the command envirorment.

Internal Commands

Internal commands, such as ATTACH and RESUME, are recognized by the

command processor as being internal. They cause certain subroutines

internal to PRIMOS to be invoked. CPL command functions, such as DATE

and ATTRIB, are also considered to be internal.

1-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: OCOMMAND ENVIRONMENT

External Commands

When you issue a command that is neither an internal PRIMOS command nor
an internal CPL command function, PRIMOS looks in the top-level
directory named CMDNCO for a program with the same name as the command.
Programs in CYMDNCO are called external commands. They are CPL, EPF, or
static-mode programs that have been placed in CQMDNCO by Prime or by
your System Administrator.

Because external commands and programs differ only in where they are
stored, issuing the ED command is effectively the same as typing:

RESUME CMDNCO>ED

PRIMOS determines what type of program you are invoking by appending
various file suffixes to the program name and checking to see if a file
with the resulting name exists. The file suffix is then used to
determine what type of program is being invoked. The file names are
searched in the following order:

File Name Program Type

command—name . RUN EPF

command-name. SAVE static—mode
command—name . CPL CH,
command-name static-mode

Note

If you supply the .RUN, .CPL, or .SAVE suffix when you invoke a
program, PRIMOS searches for only that particular program. For
example, typing RESUME MYPROG.CPL only causes MYPROG.CFL to be
invoked as a CPL program; PRIMOS does not’ search for
MYPROG.RUN or MYPROG.CPL.RUN in this case.

THE COMMAND INTERFACE

Because PRIMOS includes the command processor, the interface between
the command processor and commands (programs) is defined by PRIM.
This interface is described in detail in Chapter 3. In summary, the
interface has five levels of complexity:

1. Program invocation. The program being invoked takes no
arguments and returns no value; hence, it is a program, rather
than a function, and it ignores any command line passed to it.
No severity code is returned, so a severity code of 0
(successful completion) is assumed.

First Edition 1-10

INTRODUCTION TO THE COMMAND ENVIRONMENT

2. Command invocation. The program being invoked accepts a

command line as an argument, and returns only a severity code;

hence, it isa command program, rather than a function.

3. Function invocation. The program being invoked accepts:

e A command line

@ An indication of whether the program being invoked is

expected to return a value, used when the program can

run as a program or a function

Like commands, functions return severity codes.

When the program is invoked as a function, it also returns the

result of the function as a character string. It does this by

allocating a structure into which it places the returned value

and then returning a pointer to that structure.

4. Detailed command invocation. The program accepts the same

information accepted by a command plus a description of the

command state (including the command name, information on

whether wildcards, treewalking, and other command preprocessing

features have been selected, and so on). As with a command, a

detailed command returns a severity code.

5. Complete command invocation. The program accepts all of the

information accepted by both a function and a detailed command.

For most programs that invoke other programs, there are really only two

forms of invocation: command invocation and function invocation. In

general, programmers consider all five levels of complexity listed

above only when designing program interfaces. For this design task,

the availability of several levels of complexity combines the greatest

amount of power with the ability to use simple interfaces when the

power is not needed.

If one program is being written to invoke another, the invoking program

does not need to concern itself with the level of complexity in the

invoked program's interface. For example, suppose program A is to

invoke program B. Assume that B is a function, and A invokes it as a

command (that is, A does not ask for a returned text string). In this

case, Ais askingB to do less than B is capable of doing. B

recognizes this and does not return a function value. On the other

hand, suppose that B is a command and that A invokes it as a function.

In this case, A asks B to do more than B is capable of doing. B will

not recognize this, while A will interpret the lack of result as a

successful invocation without any returned function value.

There are cases where the level of complexity is high; these generally

involve sophisticated combinations of function invocation, CPL local

. variable pointers, and, sometimes, command line iteration.

j-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Command Line

An EPF accepts a command line as a character string in the calling
Sequence of its main entrypoint. How the EPF interprets the command
line is entirely up to the programmer of the EPF. However, using the
standard PRIMOS command line processing subroutines such as CLSPIX is
recommended so that the EPF can take advantage of command line features
Such as wildcarding, treewalking, and so on, without any special
programming,

The Severity Code

An EPF returns a severity code as a number in the calling sequence of
its main entrypoint. When a program calls another program, the calling
program interprets the severity code returned by the called program
however it chooses. No special action upon receiving a positive
severity code is required by PRIMOS, although the calling program
typically takes corrective action or logs the error.

The Returned Character String

An EPF returns a character string by allocating memory for it, writing
it into the allocated memory, and returning a pointer to the Memory in
the calling sequence of its main entrypoint. An EPF returns a value
only if the invoking program has requested it by setting to 'l'ba flag
in the calling sequence of the main entrypoint of the EPF.

The returned character string can be used by the caller. For example,
a program named USER_ID might return the username of the invoking user.
USER_ID might be used in a CPL program as follows:

TYPE Your username is [RESUME PROGRAMS>USER_ID]

Programs that return such text strings are called functions. They are
EPFs or CPL programs; a static-mode program cannot return a text
string,

First Edition 1-12

INTRODUCTION TO THE COMMAND ENVIRONMENT

The Command Processing Information

An EPF obtains information on the command processing performed to

invoke it by accepting a structure as an argument in the calling

sequence of its main entrypoint. This structure, which is built by the

command processor or by the invoking program, communicates the

following information:

@ ‘The command used to invoke the program EPF (the name of the

program)

@ A pointer to CPL variables local to the CPL program that invoked
the program EPF or one of its ancestors

e@ Information on the iteration features and options enabled during

the invocation of the program EPF, such as wildcarding, object

type selection, treewalking, and so on

Most program EPFs that use the information in this structure are

probably going to use only the command name or the pointer to CPL local

variables. Only programs that determine their behavior according to

the manner in which they are invoked make use of information on

iteration features.

LIMITS ON PROGRAM INVOCATION

Each system enforces the following resource limits on the invocation of

programs fran within programs or from command level:

@ The limit on the maximum number of programs at a given command

level (program breadth)

e The limit of the maximum number of dynamic segnents

e Resource limits on memory utilization

Each program EPF takes up at least one additional dynamic segment;

typically, each takes up two segnents.

Your System Administrator sets limits on the number of programs you can

invoke from within other programs at a given command level, and also on

the number of dynamic segnents you can use, The LIST.LIMITS command

displays these limits, in addition to limits on the number of command

levels and the number of static segments.

1-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

For example:

OK, LIST_LIMITS

Maximum number of command levels: 10
Maximum number of program invocations: 20
Maximum number of private static segnents: 40
Maximum number of private dynamic segments: 50

OK,

You may also encounter situations’ in which, even though you are not
exceeding limits placed on your process by the System Administrator,
system-wide resources (such as segnents) are exhausted, The remainder
of this section describes what happens when per-user limits are reached
and when system-wide resources are exhausted.

When Per-user Limits Are Reached

An attempt to exceed the limit on the maximum number of program
invocations causes CP$ or EPFSRUN to return an error code of ESECEB
(Exceeding command envirorment breadth) .

Even if the program is successfully invoked, the limit on dynamic
segnents may be reached before the program acquires sufficient memory
to complete successfully; or, system resources may be exhausted before
this point. If the limit on dynamic segnents, as set by your System
Administrator, is exceeded, one of several messages may be displayed.

Use the LIST_SBGMENTS command in conjunction with the LIST_LIMIIS
command to determine how many dynamic segnents you are using and how
any you can use.

For example, if you exceed the limit while PRIMOS is trying to resolve
a dynamic link to a library EPF that it is unable to map and initialize
due to insufficient memory, the following message is displayed:

Error: condition "LINKAGEERRORS" raised at 4000(3)/2101.
"Not enough segnents." while attempting
dynamic link to entrypoint "SUBR" .

If the problem occurs while executing the external login program, the
message appears as in the following example:

Condition "LINKAGE_ERRORS" raised at 4000(3) /3354 while in External
Login, Please report this message to your system administrator.

First Edition 1-14

INTRODUCTION TO THE COMMAND ENVIRONMENT

If the system is unable to allocate process-class storage due to a lack

of sufficient dynamic segnents, the following message is displayed:

No space available from process class storage heap.

The condition SYSTEM_STORAGES is then raised, which may cause another

message to be displayed by the default omunit (or the or-unit for

errors during external login).

A message you might see if insufficient space is available for memory

allocation is:

STORAGE raised at 41 (3) /112533

(insufficient space for ALLOCATE)

ERROR raised at 41 (3) /112533
(no orn-unit for STORAGE)

If the default on-unit can identify the program attempting the

allocation, the message appears as follows:

STORAGE raised in PATHS at 4355(3) /50541

(insufficient space for ALLOCATE)

ERROR raised in PATHS at 4355(3) /50541

(no on-unit for STORAGE)

ER!

If there is insufficient memory to map a progran EPF to memory for

execution (as a result of a command, for example), the following

message is displayed:

Not enough segnents. program-EPF-name (stdS$cp)

ER!

In same cases, the error occurs at a point in which PRIMOS cannot

recover without reinitializing your command envirorment, in which case

the following message informs you of this event:

User envirorment re-initialized. (FATALS)

1-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Exceeding limits as set by your System Administrator usually means
that, to successfully run your program, you must persuade your System
Administrator to increase your limits. If this is not possible, you
must reduce the number of dynamic segnents or program invocations used
by your program.

When System-wide Resources Are Exhausted

Even if you do not reach your limits on program invocation or dynamic
segnents, you may encounter a system-wide resource restriction. For
example, if the system runs out of segnents, the following message is
displayed: |

Error: condition "NO_AVAIL,SRGSS" raised at 4464(3) /104425,

Another possibility is that the system could run out of disk storage
for virtual memory. For example:

Error: condition "PAGING_DEVICE_FULLS" raised at 4464(3) /104425,

In both cases, you should issue the ICE command and try running your
program again. ICE resets your stack history and returns all of your
Segnents to the system-wide free segnent pool. When you run your
program again at this point, you are using only those segnents needed
by your program. If the condition recurs, then the system is unable to
run your program. This is normally a temporary condition.

If it seems that you cannot run your program without encountering such
resource restrictions, contact your System Administrator about adding
segments and/or paging space to the systen.

KEY MODULES IN THE COMMAND ENVIRONMENT

The command envirorment is made up of many subroutines and data
structures in PRIMOS. Same of these are explained in this section,
because an understanding of them may help you learn about making
sophisticated use of the command processor.

The key modules in the command envirorment are:

@ The listener, which inputs commands from the user and executes
them

@ The command prompter, which displays a prompt at the user's
terminal so that the user knows the system is awaiting input

First Edition 1-16

INTRODUCTION TO THE COMMAND ENVIRONMENT

@ ‘The command line reader, which reads commands from the user

e The abbreviation processor, which expands’ short character

sequences in a command line interactively input by the user and
replaces them with longer, more complex Sequences

@ ‘The command processor, which executes commands

@ The expression evaluator, which resolves, in a command line,

references to functions and to CPL variables

@ The command features decoder, which determines whether each

command feature is enabled or inhibited for a particular command

@ The command preprocessor, which performs all forms of iteration

(such as simple iteration, treewalking, wildcards) and name

generation

@ The program invokers, each of which invokes a particular type of
program (internal, EPF, static-mode, or CPL)

e The default onm-uit, which is invoked for signaled conditions

that are not caught by the running program, and which is often

responsible for a new invocation of the listener

The actions of each of these key modules are summarized below. Not all

of these modules are necessarily invoked for each command line — the

command processor is able to detect whether a particular module, or set

of modules, can be skipped because the command line does not require

the features provided by that module. For example, suppose a command

line contains no wildcard characters (@, +, or ~), no name generation

character (=), no hyphens (-) to indicate options, such as object type

selection options, and no parentheses to indicate simple iteration.

Then the command processor may choose to skip calling the command

preprocessor and may call the invoker modules directly instead.

The Listener

The listener is the crux of the command processor. It inputs commands

from the user by calling the command line reader, passes them from the

abbreviation processor, and executes them by calling the command

processor.

An invocation of the listener is called a command level. Initially,

after you log in, you are placed at command level 1, which is the first

invocation of the listener on the stack. As you enter commands at

level 1, the listener executes them.

1-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The listener also establishes an on-unit for the ANYS condition.
Therefore, if you type Control-P or if a program you execute encounters
an error such as an illegal instruction or an access violation, the
first invocation of the listener catches the condition signaled (QUITS,
ILLEGAL_INSTS$, or ACCESSVIOLATIONS) .

The default on-unit, named DF_UNIT_, responds to many of these
conditions by displaying a useful message and then invoking the
listener. This second invocation of the listener does not supersede
the first; instead, the first invocation remains suspended (due to the
interruption). The second invocation of the listener is command level
2 for the user.

For the most part, commands issued atcommand level 2 do not affect the
program that was running at command level 1. (Exceptions primarily
concern static mode programs, which do interfere with static mode
programs. at lower levels.) Therefore, when you have resolved the
error, you may return to command level 1 and continue execution of the
program at that level by issuing the START command. Alternatively, you
may return to command level 1 and abort execution of the program at
that level by issuing the RELEASELEVEL command.

The primary purpose for this creation of new command levels is to allow
you to trace the cause of an interruption or program error while the
stack history of the program at command level 1 is still maintained.
For example, you can use the DUMP_STACK command at command level 2 to
display stack frames for all procedures invoked between the signaling
of the condition that caused the invocation of the default on-unit and
the bottan of the stack. (The display begins with the most recently
created condition frame still on the stack.)

An added benefit of this layering of command levels is that you can
interrupt a command, execute a different command (or sequence of
commands), and then continue the interrupted command. However, such
cases may involve interactions that might prevent you from continuing
the interrupted command successfully.

Each invocation of the listener is aware of its invocation number,
which is also the command level number for the user. If this value
exceeds the maximum number of allotted command levels, the listener
displays an informative message and allows only mini-commands to be
entered. This state is called mini-command level. The limited set of
mini-commands are all internal commands, and they all either display
information on resources (current usage or limits) or reduce resources
used (by releasing command levels, removing programs from memory,
logging out, and so on). None of the mini-commands allow you to invoke
a program or to acquire an additional command level. In addition,
Control-P no longer causes the generation of an additional command
level; instead, it displays an error message and returns you to
mini-—command level.

First Edition 1-18

INTRODUCTION TO THE COMMAND ENVIRONMENT

The Command Prampter

The command prompter is called by the listener to display a prompt on

the user's terminal so that the user knows that the system is ready and

waiting for another command, The listener selects a ready, warning, OF

error prompt when it calls the prompter. (OK, is the default ready and

warning prompt, ER! is the default error prompt.) The chosen prompt

informs the user whether the most recently issued command completed

successfully.

The command prompter can also display long prompts, which provide more

information than the normal brief prompts. Information includes the

time of day, incremental CPU and I/O time used by the user, and the

command level number.

The RDY command determines what prompts will be available for display;

used with no arguments, it calls the prompter and requests display of a

long ready prompt.

The Command Line Reader

The command line reader is called by the listener to read a command

line from the command input source, which may be the user's terminal, a

command input file, or a SDATA block ina CPL program. ‘he command

line reader performs terminal erase and kill key processing for

interactive input.

The Abbreviation Processor

After the listener has read a command line from the command line

reader, the listener may pass the command line through the abbreviation

processor. It will do this if the input source is the user's terminal

and if the user and the System Administrator have both enabled

abbreviation processing.

Note

If the input source is a CPL progran with abbreviation

processing enabled, then the CPL processor will pass the

command line through the abbreviation processor.

The abbreviation processor is a time-saving device for entering

commands, It expands short character sequences in a command line and

replaces them with longer, more complex sequences, It then returns the

resulting command line to the listener for further processing. Using

_ the ABBREV command, users define the particular expansions they

require, and enable and disable abbreviation processing.

1-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Command Processor

The listener then takes the command line and calls the command
processor with it. The command processor is another critical part of
the command envirorment.

The name of the command processor is CP$, which is a subroutine that
may be invoked by user programs. In fact, CPS simply invokes STDSCP,
which is the standardcommand processor for PRIMOS. For the rest of
this chapter, the term “command processor" will refer to STDSCP.

The command processor controls all of the remaining processing of the
command line up to the point where the target program is actually
invoked. (When this processing is complete, the command processor
executes the resulting command(s). It then returns to the listener,
which then prompts the user for the next command.)

The first step performed by the command processor is the splitting up
of the command line into separate command lines if the command
separator (;) has been used in the command line. MThe command
processor then processes each of these split command lines, one ata
time,

For each split command line, the command processor passes the command
line through the expression evaluator. It then removes any null tokens
in the command line. (A null token is a token consisting only of two
Single quotes.)

Then the command processor parses the first token in the command line.
This is the command name. It uses the command name to determine the
type of program being invoked and to decide which command processing
features are to be inhibited and which are to be enabled for that
particular command. It uses this information next, when it passes the
command line to the command preprocessor along with the invoker module
appropriate to the type of program being invoked.

The command preprocessor handles the task of performing any iteration
(simple iteration, treewalking, wildcarding) and other preprocessing
(name generation, object type selection, and so on); it also calls the
appropriate invoker for the program each time it processes an iteration
of the command line,

The Expression Evaluator

The expression evaluator is called by the standard command processor to
resolve references to functions and CPL variables found in the command
line. These references are signaled by the presence of brackets, []
(function references), and percent signs, % (variable references).

The evaluator replaces all variable references in the command line with
the actual values of the variables, It then invokes the functions
referenced in the command line, replacing their references with the

First Edition 1-20

INTRODUCTION TO THE COMMAND ENVIRONMENT

values returned by the functions. It does this only once; if the

replacement value for a function contains the [,], or % characters, or

if the replacement value for a variable contains the % characters, the

expression evaluator does not evaluate them again; it leaves them as

they are. (A special function called RESCAN may be used to reevaluate

such references when desired.)

Once all of the references have been replaced with their values, the

command processor determines the name of the command being invoked, the

type of program being invoked (internal, EPF, CPL, or static-mode), and

the command preprocessing features that apply to this program. It uses

the command features decoder to determine the latter information.

The Command Features Decoder

Once the command processor knows the name of the command being invoked

and the type of program it is, it uses the command features decoder to

determine which command processing features are to be inhibited and

enabled for the command.

The command features decoder handles progran EPFs by reading out of the

EPF itself the information on command processing features. This

information is placed in the EPF by BIND when it generates an EPF. To

change this information from its default settings (and thus to request

non-default processing of features), programmers use BIND subcommands

such aS WILDCARD, NAMEGENPOS, NO_TREEWALK, and so on,

The decoder handles an internal command by reading the information out

of the internal commands table in PRIMDS.

All CPL programs have the same features inhibited and enabled, as

described earlier in this chapter. Thus, the decoder handles CPL

programs very easily.

The decoder handles a static-mode program almost as easily as a CPL

program. ‘The features for a static-mode program depend upon whether it

has an NXS$ or NWS prefix, or no such prefix, as described earlier in

this chapter.

The command processor passes the information thus brought forth by the

decoder to the command preprocessor.

The Command Preprocessor

The command processor now calls the command preprocessor with:

e@ The command line as it currently stands

e@ Information on command processing features

1-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

e The appropriate invoker module for the command (based on the
type of program being invoked)

The command preprocessor searches the command line for iteration
specifications and special options, as selected by the command
processing features. Any iteration, object type selection, user
verification, and name generation is then performed by the command
preprocessor by generating multiple copies of the command line.

As each copy of the command line is generated and, optionally, approved
by the user, the command preprocessor calls the invoker module with the
copy of the command line. The invoker module calls the target program.

The Program Invokers

There are four separate program invoker modules, one for each type of
program. Each module uses the same calling sequence which includes the
command line, the severity code for the progran, the command state

structure, the command flags, and the returned function value pointer.
(Chapter 3 describes this information in detail.)

The appropriate module then invokes the target program (or internal
PRIMOS subroutine) with the same information. For example, the EPF
invoker module calls the EPFSINVK subroutine, whereas the CPL invoker
calls the CPL interpreter. (Because CPL consists of PRIMOS command
lines, the CPL interpreter invokes the command processor recursively to
execute PRIMOS commands specified in the CPL program. If the CPL
program invokes another CPL program, the recursively invoked command
processor winds up invoking the CPL interpreter again, recursively, to
execute the second CPL program.)

When the target program completes, it returns to its invoker module.
The invoker module then returns to the command preprocessor, which
either proceeds to the next iteration of the command line or, when
finished, returns to the command processor. When the command
preprocessor returns to the command processor, execution of the
original command line is complete, so the command processor returns to
the listener. The listener then issues a prompt indicating the
severity level for the entire command line and awaits a new command.

The Default On-unit

The listener establishes the default onm-unit, named DF_UNIT_, as_ the
handler for the wildcard ANYS$ condition. Any conditions signaled for
the process that are not handled by the running program reach the
default onm-unit, which performs appropriate default actions for the
condition. For example, the default behavior upon receipt of the QUITS
condition is to clear terminal buffers, display the QUIT message on the
user's terminal, suspend command input, and invoke the listener again
to create a new command level.

First Edition 1-22

INTRODUCTION TO THE COMMAND ENVIRONMENT

The default on-unit is not reserved for unusual circumstances, In

fact, it is a crucial part of the command environment because it is

used by many of the modules in the command envirorment to communicate

between command levels.

For example, when a static-mode program invoked on level 1 is

overwritten by a static-mode program invoked on level 2, the

static-mode invoker signals a condition that is caught by the default

on-unit for the level 2 invocation of the listener. The condition

tells the default on-unit that a START or REENTER from that level to

the level below should not be allowed if a static-mode program is in

use there. The default on-unit records this information for use by

owning the current invocation of the listener (in this example, the

invocation for level 2). Then, if the listener is instructed by the

user (via a START or REENTER command) to attempt to continue executing

the program on level 1, the listener knows to reject the attempt

because the program on level 1 has probably been overwritten.

The default on-unit also performs default handling of arithmetic

overflow and other related error conditions, as appropriate. For

example, if the user types START after the default or-unit has

displayed information on an arithmetic overflow condition, the default

on-unit sets the result of the arithmetic operation to an appropriate

value before continuing execution of the program. Otherwise, the

program would simply abort again when restarted.

Because of the nature of the condition-signaling mechanism, any of the

actions of the default on-unit may be overridden by a user program if

it establishes its own on-units for conditions.

However, because some conditions are used by the command environment as

a form of internal communications, and because many of these special

conditions are handled by the default onm-unit, no user program should

catch an unrecognized condition without continuing the signal.

The default on-unit is not the only module in the command enviromment

that catches internal signals. The listener and the command processor

are examples of modules that catch signals used for internal

communication. The default orm-unit may, in fact, signal sane of these

conditions caught by other modules in the command envirorment as a

result of catching same other condition. For example, when the default

on-unit catches the condition LIBRARY_IO_ERRS, which indicates an error

in using language I/O, it displays appropriate error messages and then

signals the condition STOPS. The STOP$ signal is caught by the command

processor and recognized as a program termination.

1-23 First Edition

Command Line

Processing

This chapter explains how features of the command processor interact

with program EPFs.

The PRIMOS Command Processor, invoked by calling CP$, performs several

types of command processing before actually invoking the desired

command. These types of processing, in the order performed, are:

1.

2.

3.

6.

Te

8.

9.

10.

Handling the command separator character (;)

Evaluation of command function and CPL variable references

Removal of null tokens (tokens containing only '')

Determination of command name

Determination of command type (internal, EPF .RUN program,

static-mode .SAVE program, .CPL program, or static-mode

program without suffix)

Determination of command iteration features enabled by command

Expansion of simple iteration

Expansion of treewalking

Expansion of wildcard specifications

Expansion of name generation patterns

2-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

After the above steps are performed, the target command or program is
invoked with the final command line; (or, if at least one of the forms
of iteration was used with many samewhat different copies of the
command line). |

For an example of the step-by-step processing of a command line
containing several command line features (command separators,
abbreviation expansion, iteration, treewalking, and wildcarding), as
well as for further discussion of command line features fram the user's
point of view, see the PRIMOS Cammands Reference Guide.

There are many different ways to inhibit most of the 10 steps of
command line processing listed above. (Steps 4 and 5 must always be
performed to execute the command.) These are:

@e Use of the tilde (~) as the first character in the command line;
this suppresses expansion, and thus inhibits Steps 1, 3, and 6
through 10

@ Invocation of a function (by setting the FunctionCall bit in
the flags argument of CP$), which inhibits Steps 1, 3, and 6
through 10

@ Disabling function and variable evaluation (by setting the
Inhibit-Evaluation bit in the flags argument of CPS), which
inhibits Step 2

@ Invocation of the ABBREV (or AB) command, which inhibits any
remaining activity in Step 1, and which inhibits Steps 8 through
10

@ Invocation of a CPL program, which inhibits Steps 8 through 10

@ Invocation of a static-mode program with the NxX$ prefix, which
inhibits Steps 7 through 10

@ Invocation of a static-mode program with the NWS prefix, which
inhibits Steps 8 through 10

e Invocation of a program EPF built using the NO_ITERATION
subcommand of BIND, which inhibits Step 7

@ Invocation of a program EPF built using the NO_TREHWALK
subcommand of BIND, which inhibits Step 8

e@e Invocation of a program EPF built using the NO_WILDCARD
subcommand of BIND, which inhibits Step 9

@ Invocation of a progran EPF built using the NO_GENERATION
subcommand of BIND, which inhibits Step 10

In addition, a particular step is inhibited if it is keyed toa
character or to a sequence of characters (such as ; for command
separation or () for iteration) and the key is either not present on

First Edition 2-2

COMMAND LINE PROCESSING ©

the command line or is present only within single quotes. For example,

the following two command lines execute with Step 1 inhibited:

TYPE Compiling main program.

TYPE Compiling subroutine PLOTXY';' language is F77.

The rest of this chapter focuses on each of the above 10 steps in more

detail — in particular, the character sequence keys that ignite each

step are listed and explained.

STEP 1: HANDLING THE COMMAND SEPARATOR CHARACTER

The command separator character (;) is the key for Step 1. If present

and unquoted, Step 1 causes the original command line to be split up

into two or more command lines at each occurrence of the semicolon (7).

Each of these separate command lines is then passed through the

remaining steps, one by one, in the order in which it appeared in the

original command line.

Because each command line is treated separately, each may inhibit or

enable different combinations of Steps 7 through 10.

However, there exists a special case: the ABBREV command (and its

abbreviation, AB). After Step 5, if the command processor sees that it

is evaluating an internal command, it checks whether the command is the

ABBREV or AB command. If it is, the command processor treats any

remaining split command lines (following semicolons after the ABBREV

command) as part of the ABBREV command line, along with the semicolons.

Then it passes the assembled command line through Steps 2 through 7

before executing it.

In other words, the command line

TYPE HELLO;ABBREV -STATUS

displays the word HELLO followed by the output of the ABBREV -STATUS

command, whereas the command line

ABBREV -—STATUS;TYPE HELLO

produces the following error message:

Control argument "-STATUS;TYPE" not implemented. (abbrev)

ER!

2-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The purpose of this exception for ABBREV is to allow users to create
abbreviations that contain semicolons. Note, however, that function
and variable references may still be evaluated (unless Step 2 is
inhibited) . :

STEP 2: EVALUATION OF FUNCTION AND CPL VARIABLE REFERENCES

If the command line contains the characters [or $%, the command
processor performs the evaluation of function and PL variable
references,

Whereas variable references are simply replaced by actual string
values, function references are replaced by calling the command
processor recursively to invoke the desired function and then
substituting the returned value. (Only function calls of external
programs are counted against your maximum command environment breadth.)

STEP 3: REMOVAL OF NULL TOKENS

If the command line contains any single quotes ('), the command
processor removes null tokens (tokens containing only '') in this step.
For example, if the command line reads

COPY A B ft ft

then the command line after this step becomes:

COPY AB

This step is necessary because command preprocessing performed up to
this point, such as abbreviation processing (performed by the
listener), and function and variable evaluation, may result in null
tokens. Such null tokens might not be handled correctly by the target

program.

STEP 4: DETERMINATION OF COMMAND NAME

At this step, the first token of the command line becomes the command
name, The command may be an internal command or one of several types
of external command, as determined in the next step.

First Edition 2-4

COMMAND LINE PROCESSING

STEP 5: DETERMINATION OF COMMAND TYPE

In this step, the command processor searches for the command in its

list of internal PRIMOS commands. If the command is present in the

list, the command is an internal command. Otherwise, the command

processor searches the CMDNCO directory for the command as described in

Chapter 1. ‘The suffix on the file found tells the command processor

what type of command is to be invoked.

If the command is RESUME, the command processor treats the entryname

portion of the pathname following the RESUME token as the actual

command name.

STEP 6: DETERMINATION OF COMMAND ITERATION FEATURES

Depending upon the command type, the command processor determines which

of the remaining steps are to be inhibited. Internal commands and

program EPFs selectively enable or disable each of the remaining steps

according to information in the internal command table (for internal

commands) or in the .RUN file (for EPFs); all CPL programs inhibit

Steps 7 and 8 but enable Steps 9 and 10.

Static-mode prograns inhibit or enable the remaining steps based on the

command name. If the name begins with NXS, all of the remaining steps

are inhibited. If the name begins with NWS, only Steps 8 through 10

are inhibited, Otherwise, all steps are enabled.

The RESUME command is treated specially, as described in the previous

step. The command iteration features for the RESUME command are not

determined by the internal command table entry for RESUME but are

determined instead by the program that is the target of the RESUME

command. In addition, the name generation pattern is considered to be

the token following the name of the program being invoked, rather than

the name itself.

If the program being invoked is CMDNCO>SEG, the name generation pattern

is considered to be the token following the pathname that follows the

SHG command or the RESUME CMDNCO>SEG command, rather than the pathname

of the .SEG file itself.

STEP 7: EXPANSION OF SIMPLE ITERATION

If the command line contains parentheses, that is, (and), simple

iteration is performed, For each iteration, a new command line is

built that contains no parentheses; the command processor passes this

new command line through the remaining steps before executing.

2-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

STEP 8: EXPANSION OF TREEWALKING

If the command line contains a valid pathname with a directory portion
that contains wildcardcharacters, (@ + or *), the command processor
honors the following command line options:

-WALK_FROM (-WLKEM)
-WALK_TO (-WLKTO)
-BOTTOM_UP (-BOTUP)

If Step 8 is enabled but no treewalk specification appears on the
command line, these options are ignored and are not passed to the
target program.

As the command processor matches each directory to the treewalk
specification, it passes the resulting command lines through Step 9.

STEP 9: EXPANSION OF WILDCARD SPECIFICATIONS

If the command line contains a pathname with an entryname portion that
contains a wildcard character, (@ + or *), and if either the directory
portion of the pathname contains no wildcard character or Step 8 is
enabled, the command processor performs wildcard expansion honoring the
following command line options:

~BEFORE (-BF) -FILE
~MODIFIED_BEFORE (—MDB) —DIRECTORY (-DIR)
-AFTER (—AF) ~SEGMENT_DIRECTORY (-SEGDIR)
~MODIFIED_AFTER (~MDA) -ACCESS_CATHGORY (-ACAT)
-BACKEDUP_BEFORE (—BKB) -VERIFY (-VFY)
-BACKEDUP_AFTER (—BKA) -NO_VERIFY (-NVFY)
~-RBF

If this step is enabled but no wildcard specification is on the command
line, these options are ignored and are not passed to the target
program.

The default options depend upon the command name and command type. For
static-mode programs, the defaults are:

-FILE —DIR -SEGDIR —ACAT ~-NO_VERIFY

First Edition 2-6

COMMAND LINE PROCESSING

For internal commands and EPFs, the defaults depend upon the command

name. The default for an internal command resides in the internal

commands table in PRIMOS, while the defaults for an EPF are set during

the BIND session that created the EPF. CPL programs have no applicable

defaults because they always inhibit Step 9.

As the command processor compiles a list of items that match the given

wildcard specification, it may ask the user to verify (or approve

action on) each item:

e If -VERIFY was specified, it will request verification.

e If -NO_VERIFY was specified, it will not request verification.

e If neither -VERIFY nor -NO_VERIFY was specified, it either does

or does not request verification, depending on the default for

that particular command.

As the user affirms each matching object, or as each matching object is

found (if no verification is taking place), the command processor

builds a command line for each object. When the list of objects has

been compiled, the command processor passes each resulting command line

through Step 10.

STEP 10: EXPANSION OF NAME GENERATION PATTERNS

If a token on the command line contains the name generation character

(=), the command processor performs name generation. Name generation

characters also include ~ and +, although = must be present for name

generation to be performed.

The command processor analyzes the source pattern for the name

generation. The source pattern is a particular token on the command

line, typically the first argument, although internal commands and EPFs

may select subsequent arguments as their name generation source

patterns.

Then, the command processor combines the source pattern with each token

containing = to replace the tokens with actual names. After each

command line is constructed, the command processor invokes the target

command or program.

2-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

INVOCATION

The final step is invocation of the target command or program. There
are four invocation modules:

@ The internal-command invoker

@ The EPF invoker

@ The CPL-program invoker

e@ The static-mode-program invoker

Each of these invokers calls the target command or program, and each
regains control when the command or program returns. (Static-mode
programs are specially handled when they call EXIT so that they return
to the static-mode-program invoker.)

If same form of interruption occurs, causing a new command level to be
obtained, the iteration at the original level is only suspended, not
terminated. Continuing the interrupted program resumes iteration where
it left off.

Moreover, if iteration is in progress at command level 1, and the user
types Control-P to reach command level 2, the user may issue another
command that performs iteration without disturbing the suspended
iteration at command level 1. After the second command has finished,
the user may use the START command to continue with the iteration begun
at command level 1.

However, if the user releases the original level, moving down toa
previous level; or, if the user releases to the Original level, thus
releasing the target program and the invocation of the command
processor for that program, all of the iteration is terminated.

First Edition 2-8

Program EPF Calling

Sequence

The main entrypoint of a program EPF is invoked by the command

environment with a standard calling sequence. This calling sequence

consists of five arguments:

1. ‘The command line, supplied by the invoker

2. The command status, set by the invoked program to indicate its

level of success to the invoker

3. Information on the command processing state, supplied by the

invoker

4. A flag indicating whether the invoker desires a return value —

. that is, whether the invoker is treating the invoked program as

a command function

5. A pointer, set by the invoked program to point to the returned

value structure

The complete calling sequence is illustrated near the end of this

chapter; however, very few programs need all the information and

arguments provided by the command enviroment. In fact, most programs

need accept only two or fewer arguments.

The invoker is always the EPFSINVK subroutine. EPFSINVK may be called

directly by user programs, by the EPFSRUN subroutine, or by the CP§

_ subroutine. EPFSRUN itself is called directly by user programs. CP$

is also callable by user programs, and is called by PRIMDS to execute a

command.

3-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

TYPES OF CALLING SEQUENCES

There are five types of progran EPF calling sequences, with various
levels of complexity. They are:

1, The program calling sequence, which takes no command line and
which returns no information

2. The command calling sequence, which accepts a command line and
which returns a severity code

3. The command function calling sequence, which accepts a command
line and which returns both a severity code and a pointer to
the returned function value —

4. The detailed command calling sequence, an extended form of the
command calling sequence that accepts detailed command
processing information

5. The complete calling sequence, which combines the command
function calling sequence with the detailed command calling
sequence

The remainder of this chapter describes each of the calling sequences
listed above.

In all cases, the EPFSINVK subroutine passes either zero or five
arguments to the EPF it invokes. It determines the number by examining
the ECB of the EPF's main subroutine. If the EC shows that the
subroutine accepts no arguments, EPFSINVK passes none (thus using the
program calling sequence for the invocation). Otherwise, EPFSINVK
passes all five arguments to the invoked EPF; the EPF itself decides
how many of the arguments to accept. Any arguments it does not accept,
it ignores. (The PCL instruction, which performs procedure calls on
Prime systems, handles this situation properly.) Alternatively, the
main subroutine of the invoked EPF may accept all five arguments but
choose to ignore some or all of then.

Except for the program calling sequence, therefore, the five types of
calling sequence listed above are differentiated not by the actions of
EPFSINVK but by the number of arguments that the main subroutine has
been designed to accept. This chapter differentiates and describes
them to simplify your job when you construct the main program of an
EPF, By looking at the descriptions of the functiormality each calling
Sequence provides, you can decide what kind of program you are writing
and then choose the calling sequence that best suits your program.

First Edition 3-2

PROGRAM EPF CALLING SEQUENCE

PROGRAM CALLING SEQUENCE

The program calling sequence is the simplest calling sequence because

it accepts no arguments. Any command line passed to such a program is

ignored; no severity code is returned, so a_ severity code of 0 is

assumed by the invoker; if the program is invoked as a command

fimction, no pointer to the returned value is returned.

The calling sequence is not illustrated, because it contains no input

or output arguments.

A program whose main subroutine accepts no arguments may use the SETRCS

subroutine, described in the Subroutines Reference Guide, to return a

severity code, even though it does not accept the severity code

argument in its main subroutine. This feature eases the conversion to

an EPF of an existing static-mode program that uses SETRCS.

COMMAND CALLING SEQUENCE

The command calling sequence is used for programs that accept command

line arguments and options and that return a severity code.

Arguments in the Command Calling Sequence

The command calling sequence is the simplest calling sequence that

accepts arguments. It accepts two arguments:

1. The command line, an input-only argument

2. The severity code, an output-only argument

If a program that accepts only these two arguments is invoked as a

command function, no pointer to the returned value is returned.

Figure 3-1 illustrates the command calling sequence, where EPF is the

main subroutine of the program EPF.

Command Line: The length of the command line can be a maximum of

32,766 characters, Your program may limit the length to any value it

chooses. Practical limits depend on the source of the command line.

For example, the limit on the length of a command line entered by an

interactive user, or from a command input file, is 160 characters,

whereas the limit on the length of a command line in a CPL program is

1024 characters.

If your program is passed a command line that is longer than it can

handle, it should use the error code ESTRCL both as a severity code and

‘ as an error code to ERRPRS to indicate that the command line has been

truncated, If your program aborts due to this condition, then a

3-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

CommandCalling Sequence

CommandLine
Arguments

=352766

STRING

EPF (command-line, severity-code)

|
HALF
INT

| <0: Warning
0: No Error

>0: Error

Command Calling Sequence
Figure 3-1

First Edition 3-4

PROGRAM EPF CALLING SEQUENCE

truncated command line is an error; therefore, your program should

return ESTRCL, a positive value, as the severity code. If your program

continues processing, but uses a truncated form of the command line,

your program should return -ESTRCL, a negative value, as the severity

code (unless a positive error code is required for other reasons) to

indicate a warning condition.

In PL/I-G, you can use the LENGTH built-in function to check whether

the length of the command line is greater than your program supports,

even if you have declared the command line to be the maximum size your

program supports. In FORTRAN and other languages, you can compare the

first halfword of the command line argument, which is the actual length

of the command line, to the maximum length your program supports.

If your progran does not accept a null command line, it should use the

ESNOOM error code to indicate that it has been passed a null command

line. In addition, you may wish to have your program display usage

information when passed a null command line; this is what many

Prime-supplied programs, such as SPOOL and JOB, do with a null command

line. Even if your program does display usage information, it should

still return ESNOOM, a positive value, as the severity code to indicate

an error.

Other error codes your progran may wish to return as either positive

values (to indicate errors) or as negative values (to indicate

warnings), and which your program may also wish to use when calling

ERRPRS to display warning messages, are:

Error Code Used For

ESBPAR Invalid numeric arguments — arguments where a

number was expected but same other argument was

supplied

ESBNAM Invalid file system objectname arguments

ESNMLG Overly long names, such as a file system

objectname that is more than 32 characters long

ESITRE Invalid pathnames

ESCMND Invalid command formats, such as the use of an

option when no options are allowed, or the use of

command line arguments when no command line

arguments are allowed

ESBARG Invalid arguments, such as the use of an

unrecognized option, or the use of a name or

number when an option was expected

ESIVCM Invalid usage of a command, such as a combination

of options and arguments that is not permitted or

that does not make sense

3-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

ESMISA Missing arguments, such as when a number, name,
or option that is required is not provided on the
command line

All standard PRIMOS error codes, including those shown above, are
listed along with their numeric equivalents, messages, and
descriptions, in Volume 0 of this series,

Severity Code: Your program should set the severity code to an
appropriate value before returning fron its main Subroutine. Themeaning of a severity code depends on whether it is negative, zero, orpositive, The magnitude of the Severity code is not defined by PRIMS;however, your program should have documentation that describes the
different severity codes it may return and what they mean, Typically,
standard PRIMOS error codes, listed in Volume 0 of this series, are
used for severity codes; to indicate warning conditions, the negated
values of standard PRIMDS error codes are often used.

COMMAND FUNCTION CALLING SEQUENCE

The command function calling Sequence is used when the program expects
to be invoked as a command function, It may Or may not expect command
line arguments and options, and it May Or may not return a_ severity
code. Such a program constructs a returned value — that is, a text
String that can be substituted on the command line for the function
reference that invoked the progran. It then returns a pointer to the
structure that contains that returned value.

The steps a command function performs are:

1. Accept five arguments in the main entrypoint calling sequence,

2. Determine the string value to be returned to the calling
program.

3. Allocate memory for the string value to be returned,

4. Copy the string value into the allocated memory.

5. Store the pointer to the allocated memory into the pointer
passed in the calling sequence of the main entrypoint.

6. Return to the calling progran.

Step 1, accepting five arguments in the main entrypoint, is described
below in the section entitled Arguments in the Command Function Calling
sequence. Step 2, determining the value to be returned, depends on the
Purpose of your program. Steps 3 and 4 are usually combined into one
‘step by calling the ALSSRA subroutine, described below in the sectionentitled The ALSSRA Subroutine, Alternatively, they may be performed

First Edition 3-6

PROGRAM EPF CALLING SEQUENCE

separately by calling the ALCSRA subroutine and then copying the string

value afterwards. Typically, only programs written in PL/I-G or PMA

perform Steps 3 and 4 separately.

Step 5 is often performed implicitly during Step 3 if ALSSRA or ALCSRA

is passed the same variable that was accepted in the calling sequence

of the main entrypoint; otherwise, your command function must

explicitly set the rtn-fcn-ptr variable passed to it in the calling

sequence of the main entrypoint so that it points to the structure

allocated by ALSSRA or ALCSRA.

Step 6 is performed in the same way for functions as for other types of

programs, Your program should set the returned severity code to an

appropriate value before returning.

After the next three sections, a section entitled Sample Command

Functions presents two simple sample command functions.

Arguments in the Command Function Calling Sequence

The main subroutine of a command function accepts five arguments:

1. ‘The command line, an input-only argument

2. ‘The severity code, an output-only argument

3. An input-only argument, which may be ignored by most command

functions

4. The invocation form bit, an input-only argument

5. The returned value pointer, an output-only argument

Figure 3-2 illustrates the command calling sequence, where EPF is the

main subroutine of the program EPF.

Command Line: See the section earlier in this chapter entitled COMMAND

CALLING SEQUENCE for information on the command line. ‘That information

applies to command functions as well.

Severity Code: See the section earlier in this chapter entitled

COMMAND CALLING SEQUENCE for information on the severity code. ‘That

information applies to command functions as well,

Ignored: The information passed to a program in the third argument may

be ignored by most command functions. It is described in the next

section, entitled DETAILED COMMAND CALLING SEQUENCE.

3-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Command Function Calling Sequence

Command Line Bit 1 2........ 16

Arguments

|

f

|

reserved

f=0: Not a Function Call
f=1: A Function Call

<=32766 1

STRING BIT

| |
EPF (command-line, severity-code, ignored, function__call, rtn-fcn-ptr)

|
HALF

PTR
INT |

| Halfword STRUC
<0: Warning

0: No Error 0 0 (version)
>0: Error 1] Returned Value

<32766
STRING

Command Function Calling Sequence
Figure 3-2

First Edition 3-8

PROGRAM EPF CALLING SEQUENCE

Invocation Form: The form of progran invocation is a bit that

indicates whether the program is being invoked as a command function or

as a normal command, When set (1), function-call indicates that the

invoker expects the program to set rtmfcn-ptr to point to a structure

containing the returned value of the function. When reset (0),

function-call indicates that the invoker does not expect the program to

set rtn-fon-ptr at all, and that in fact the invoker may not have

supplied thertn-fcn-ptr argument.

Caution

Under no circumstances should your program set rtn-fcm—ptr when

function-call is reset (0), nor’ should your program allocate

Storage for the returned value. When functior-call is reset

(0), the fifth argument, rtn-fcn-ptr, may not be passed to your

program, and any attempt that your program makes to set it may

therefore result in a POINTER_FAULTS error condition being

signaled. If the fifth argument is passed, but function-call

is reset (0), then your program may succeed at setting

rtn-fom—ptr, but the invoking program will not expect it to

point to the returned structure, and will therefore not

Geallocate the memory used by the structure.

Returned Value Pointer: If your program has been invoked with the

function-call bit of the calling sequence set (1), then the invoking

program expects your progran to returna pointer to a structure that

contains the returned value. The returned value is a text string of

0-32766 characters. The structure contains a version number (currently

0) as a HALF INT value and the returned value as a <=32766 STRING

value.

After ALSSRA or ALCSRA returns a pointer to your program, your program

must use the rtmfcn-ptr argument to return that pointer to its

invoker. The calling program will pass the pointer your program

returns in rtn-fen-ptr to the FRESRA subroutine (described in Chapter

4), so that FRE can free the storage allocated by ALSSRA or ALCSRA.

Caution

If your program does not use ALSSRA or ALCSRA to determine the

rtn-fcn-ptr pointer, but uses instead a pointer constructed by

other means, then when the calling program calls FRESRA with

the returned pointer, a fatal error will occur.

The ALSSRA Subroutine

_ The ALSSRA subroutine allocates sufficient memory to hold the supplied

string value, copies the string value into the allocated memory, and

returns the pointer to the allocated memory for use by the program that

3-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

invoked the command function. The calling sequence for ALSSRA is
illustrated in Figure 3-3.

Your program passes ALSSRA the string value to be returned in value and
its size, in characters, in value-size. ALSSRA allocates sufficient
memory (at least (value-sizet5) /2 halfwords) to hold the string value;
sets the first halfword of the allocated memory to 0 to indicate a
version 0 returned value structure; stores the length of the string in
value-size into the second halfword of the allocated memory; copies
the string in value into the allocated memory starting with the third
halfword; and returns a pointer to the first halfword of the allocated
memory in rtn-fcn—-ptr.

After calling this subroutine, your program needs only to ensure that
the pointer returned by ALSSRA is returned by the main entrypoint of
your program to the calling program. Your program ensures this by
storing the pointer into the rtn-fcn-ptr argument of its main
entrypoint, Then, your program simply returns to its invoker. ‘The
invoking program is responsible for deallocating the memory allocated
by ALSSRA,

The ALCSRA Subroutine

The ALCSRA subroutine is similar to the ALSSRA subroutine, except that
it does not copy the string value into the allocated memory. It leaves
this task to your program, the command function.

The ALCSRA subroutine allocates sufficient memory to hold string
value of the specified length and returns the pointer to the allocated
memory for use by your program. The calling sequence for ALCSRA is
illustrated in Figure 3-4.

Your program passes the number of halfwords to be allocated in
halfwords, This value should be at least (value-sizet5)/2, where
value-size is the length of the string value to be returned. ALCSRA
allocates the requested number of halfwords to hold the string value,
and returns a pointer to the first halfword of the allocated memory in
rtn-fon-ptr.

After calling this subroutine, your program must set the first halfword
of the allocated memory to 0 to indicate a version 0 returned value
Structure; set the second halfword of the allocated memory to the
length of the string value in characters; then copy the string value
into the allocated memory starting at the third halfword of the
allocated memory. Your program must use the rtm-fcn-ptr pointer to
perform these tasks; therefore, only programs written in PL/I-G or PMA
are likely to use this interface.

After copying the string value into the allocated memory, your program
must store the pointer returned by ALCSRA into the rtn-fcn-ptr argument

‘ of your program's main entrypoint, in order to ensure that the pointer
is returned to the calling program. Then your program simply returns

First Edition 3-10

PROGRAM EPF CALLING SEQUENCE

Allocate and Set Returned Function Value

rned
Length of

Value
Returned Value
(characters)

FULL
STRING INT

| |
ALSSRA(value, value-size, rtn-fcn-ptr)

!

PTR

Halfword STRUC

0 O (version)

11 Returned Value
‘ <32766

STRING

The ALSSRA Subroutine
Figure 3-3

3-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Allocate Space for Returned Function Value

Numberof
Halfwords to
Allocate

FULL

INT

|
ALCS$RA(halfwords, rtn-fcn-ptr)

|
PTR

Halfword STRUC

; _

The ALCSRA Subroutine
Figure 3-4

First Edition 3-12

PROGRAM EPF CALLING SEQUENCE

to its invoker. The invoking program is responsible for deallocating

the memory allocated by ALCSRA.

Sample Command Functions

The first sample progran is a FORTRAN program that returns the

usernumber of the user invoking the program,

SUBROUTINE USRNUM(COMLIN, CODE, IGN, FUNC,RINPTR)

INTHGER*2 COMLIN(1) ,CODE, IGN, FUNC

INTHGER*4 RINPIR (2)

C
SINSERT SYSCOM>ERRD.INS.FIN

SINSERT SYSCOM>KEYS. INS. FIN
C

INTHGER*2

& U, /* User number; later, units digit of U.

& TIMARR(12), /* TIMDAT array.
& STR(2), /* String value containing user number.

& STRLEN, /* Number of characters in STRLEN.

& H, /* Hundreds digit of U.
& /* Tens digit of U.

Cc
C Make sure we have no command line.

Cc
IF (COMLIN(1).HQ.0) GO TO 10

Cc
C Reject attempted use of command line.

Cc
CODE=ESIVCM /* Invalid command error.

IF (AND(FUNC, :100000) .—Q.0) /* Invoked as command?

& CALL ERRPRS(KSIRIN, CODE, 'No command line accepted',24,

& "USERNUMBER' , 10)

RETURN /* Return to invoker.

C

10 CALL TIMDAT(TIMARR,12) /* Get user number in TIMARR(12).

U=TIMARR (12) /* For ease of access.

IF (U.GT.9) GO TO 20 /* More than one digit?

STR(1)=LS(U,8)+'0 ' /* Convert to single-digit ASCII.

STRLEN=1 /* Set tol digit.

GO TO 100
Cc

20 H=U/100 /* Get hundreds digit.

U=U-H*100 | /* Get last two digits.

T=U/10 /* Get tens digits.

U=U-T*10 /* Get last digit.

IF (H.NE.0) GO TO 30 /* Need three digits?

STR (1) =LS(T,8) +U+'00' /* No, make two digits into ASCII.

STRLEN=2 /* Indicate two digits.

GO TO 100
C

3-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

30 STR (1) =LS (H, 8) +T+'00' /* Make three digits into ASCII,
STR(2)=LS(U,8)+'0 '
STRLEN=3 /* Indicate three digits.

Cc .

100 IF (AND(FUNC, :100000) .NE.0) GO TO 200
C
C Not a function call; display user number,
C

CALL TNOUA('Your user number is ',20)
CALL TNOUA(STR, STRLEN)

CALL TNOU('.',1)

GO TO 300
C
C A function call; allocate and store user number.
Cc
200 CALL ALSSRA(STR, INTL (STRLEN) 7RINPIR)
C
C Return to invoker.
C
300 QODE=0 /* Success!

RETURN

C
END

The next sample program, written in PL/I-G, returns the username of the
invoking user.

username: proc (comlin,code,ign, func, rtn_fcn_ptr);

dcl comlin char(32) var, /* Must be null. */
code fixed bin(15), /* Severity code. */
ign fixed bin(15), /* Ignored, */
func bit(1), /* Set if function call. */
rtn_fcn_ptr ptr; /* Returned function value pointer, */

tinclude 'SYSQOM>ERRD. INS.PL1';
tinclude 'SYSQCOM>KEYS.INS.PL1';

del unam char (32) var; /* Trimmed username, */

dcl 1 timarr,
2 ignore (12) fixed bin(15), /* Ignore 12 halfwords, */
2 user_name char(32); /* The username, */

dcl 1 rtn_struc based(rtn_fcn_ptr),
2 version fixed bin(15),
2 value char(32) var;

del timdat entry(1,2 (12) fixed bin(15) ,2 char(32) ,fixed bin(15)),
errpr$ entry (fixed bin(15) ,fixed bin (15) ,char(40) ,

fixed bin(15) ,char(8) ,fixed bin(15)),
alc$ra entry (fixed bin(31) ,ptr),

First Edition 3-14

PROGRAM EPF CALLING SHQUENCE

tnou entry (char (60) ,fixed bin(15)),
tnoua entry (char (60) ,fixed bin(15));

if comlin='' then
do; /* No command line. */
call timdat (timarr,28);
unam=trim(user_name, '11'b) ;
if func then

do; /* Cammand function invocation. */

call alc$ra (divide (length (unam) +5 ,2,15) ,rtn_fcn_ptr) ;

rtn_struc.version0;
rtn_struc.value=unam;
end; /* if func */

else
do; /* Cammand invocation, */
call tnoua('Your user name is ',18);

call tnoua ((unam) ,length (unam)) ;
call tnou('.',1);
end;

code=0; /* Success. */
end; /* if comlin='' */

else
do; /* if comlin®="' */
code=eSivcm;
if “func then

call errpr$(k$irtn,code,'No command line accepted' ,24,

"USERNAME ' ,8) 3

end; /* if comlin*='"' */

end; /* username: proc */

DETAILED COMMAND CALLING SEQUENCE

The detailed command calling sequence adds a third argument to the

command calling sequence described earlier in this chapter. This third

argument is a structure passed to the program EPF being invoked that

includes the following information:

@ The command name as entered by the user

@ A pointer to CPL local variables, if appropriate

@ Command preprocessing information

Typically, a program EPF uses only the portions of the structure that

are applicable to the program. For example, if you wish your program

to display the command name entered by the user (rather than the

original name of your program) in error messages, you could have the

main entrypoint of your program use only the command name as entered by

_ the user and ignore the remainder of the structure.

3-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The remainder of this section describes the information passed in the
third argument of the program EPF calling sequence.

Arguments in the Detailed Command Calling Sequence

The detailed command calling sequence accepts three arguments:

1. The command line, an input-only argument

2. The severity code, an output-only argument

3. A structure containing command processing information, an
input-only argument

If a program that accepts only these three arguments is invoked as a
command function, no pointer to the returned value is returned,

Figure 3-5 illustrates the command calling sequence, where EPF is the
main subroutine of the progran EPF.

Command Line: See the section earlier in this chapter entitled COMMAND
CALLING SEQUENCE for information on the command line. That information
applies to detailed commands as well.

Severity Code: See the section earlier in this chapter entitled
COMMAND CALLING SEQUENCE for information on the severity code. ‘that
information applies to detailed commands as well.

Cammand Processing Information Structure: Figure 3-6 illustrates the
command processing information, which is described in detail in the
next section.

Currently, two versions of the command processing information structure
are defined. The first two fields, the command name and the version
number, are always present. If versionis 0, the remainder of the
command processing information structure is undefined and should not be
referenced; only halfwords 0-17 (0-21 octal) are defined for a version
0 structure, If version is 1, the entire structure is defined as
shown; that is, halfwords 0-25 (0-31 octal) are defined. Future
versions of the structure will have higher version numbers and may
define extensions to version 1 of this structure; however, the content
and meaning of halfwords 0-25 will remain the same.

First Edition 3-16

PROGRAM EPF CALLING SEQUENCE

Detailed Command Calling Sequence

Command Line command

Arguments rocessing
information

STRING |

EPF (command-line, severity-code, command-information)

|
HALF

INT

<0: Warning
0: No Error

>0O: Error

Detailed Command Calling Sequence
Figure 3-5

3-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Command Processing Information (Versions 0 and 1)

Halfword
oct dec
0 O-

20 16

21. 17

22 18
23 19
24 20

25 21

26 22

27 23

30 24

31 25

Command Name <=32 STRING

Version (0 or 1) HALF INT

CPL Local Variables Pointer PTR

-DIR |-SEGDIR -FILE| -ACAT] —RBF
1eitl1er |1BiTl1er 1B] Reserved 11 BIT

-VERIFY -BOTUP
+ BIT 1 BIT Reserved 14 BIT

-WALK__FROM Value HALF INT

-WALK__TO Value HALF INT

() 325] Reserved 13 BITeserve
1 BIT} 4 BIT 14 BIT

Note: For a version 0 structure, only halfwords 0-17 (0-21 octal)
have defined values.

First Edition

Command Processing Information
Figure 3-6

3-18

Halfword
oct dec
0 O

16 20

17 21

(18 22
19 23
20 24

21 25

22 26

23 27

24 30

25 31

PROGRAM EPF CALLING SEQUENCE

WARNING

Never store data into the command processing information

structure for any purpose. Some calling programs may have

declared only 18 halfwords of storage for a version 0

structure, representing halfwords 0-17, and any attempt to

store beyond halfword offset 17 may corrupt memory. In

addition, because the structure is an input argument to the

program being invoked, the calling program may place the

structure in memory that is protected against writing.

Your program should check the version number only if it needs to use

information beyond halfword offset 17° (21 octal) into the command

processing structure; and, in such a case, your program should check

only that the version number is not 0 to ensure that the information

being retrieved is valid. Do not reject version numbers higher than l.

However, if you choose, you may have your progran reject version

numbers that are negative, because such numbers probably indicate

corrupted memory.

Command Processing Information

This section describes each field in the command processing information

structure shown in Figure 3-6.

Command Name: ‘The command name field contains the command name as

specified by the user. The name will contain only the final element of

a pathname; it may or may not include the .RUN suffix. Your program

may use this name rather than the name designed for it in messages

displayed to the terminal, or your progran may reject attempts to

invoke it with a name other than that which it was designed to have.

Typically, the command name is the same name specified during the BIND

session that linked the progran. However, if a user copies your

program to a file with a different name and invokes the copy, or if the

name of the file containing the program is changed (via CNAME for

example), the command name will be different from the original name of

the program.

Version: The version number field contains the version number of the

‘command processing structure. Currently, version numbers 0 and 1 are

defined as described above. Higher version numbers will be used if

future versions of PRIMOS extend the command processing information

structure. The following table lists the currently defined version

numbers and the halfwords that are defined (have meaningful values) in

a structure with each version number listed:

3-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Version Defined Halfwords

0 0-17
1 0-25

CPL Local Variables Pointer: The CPL Local Variables Pointer is
provided if the calling program is either a CPL program or a program
EPF provided with a CPL Local Variables Pointer (ultimately invoked by
a CPL program).

Sometimes referred to as the vcb_ptr, for Variables Control Block
pointer, this pointer is used only when the program EPF wishes to read
or set a CPL variable that is local to the CPL program that invoked the
program EPF. Typically, such programs are designed as command
functions, and the CPL program uses the SSET_VAR directive, as in:

&SET_VAR MYVAR := [RESUME MYPROG]

However, a program that must reference more than one CPL variable must
either be constrained to use only global variables (accessing them via
the GVSGET and GVSSET subroutines) or must use the CPL Local Variables
Pointer along with the LVSGET and LVSSET subroutines. A program
constructed in the latter fashion might be invoked from a CPL program
as follows:

RESUME MYPROG MYVAR OTHERVAR

Here, the MYPROG program accepts two variable names, MYVAR and OTHERVAR
in this example, and accesses them using LVSGET and LVSSET, which are
described (along with GVSGET and GVSSET) in the Subroutines Reference

Guide.

The CPL Local Variables pointer is NULL() (7777/0) if the invoking
program is not a CPL program, or if it is not a program EPF invoked by
a CPL program (either directly or via other program EPFs). A valid CPL
Local Variables pointer is generated only by the invocation of a CL
program, and is valid only while that program is active; only program
EPFs invoked by the CPL program, and their descendants, may use the
Local Variables pointer for that CPL progran.

Note

For maximum flexibility, design your program so that it accepts
either global variables — which have names beginning with a
period (.) — or local variables — which have names not
beginning with a period (.). ‘Then, your progran would call
either GVSGET/GVSSET or LVSGET/LVSSET, depending on what type
of variable name is supplied.

First Edition 3-20

PROGRAM EPF CALLING SEQUENCE

-DIRECTORY (-DIR) Bit: The -DIRECTORY bit is set if the command

processor iS matching file directories when checking wildcard-laden

names. It does not necessarily mean that the file system object that

is specified in the current invocation is a file directory.

~SEGMENTDIRECTORY (-SEGDIR) Bit: The -SEGMENT_DIRECTORY bit is set if

the command processor is matching segment directories when checking

wildcard-laden names. It does not necessarily mean that the file

system object specified in the current invocation is a segment

directory.

-FILE Bit: The -FILE bit is set if the command processor is matching

files when checking wildcard-laden names. It does not necessarily mean

that the file system object specified in the current invocation is a

file.

~ACCESSCATEGORY (-ACAT) Bit: The -ACCESS_CATEGORY bit is set if the

command processor is matching access categories when checking

wildcard-laden names. It does not necessarily mean that the file

system object specified in the current invocation is an access

category.

-RBF Bit: The -RBF bit is set if the command processor is matching RBF

files when checking wildcard-laden names. It does not necessarily mean

that the file system object specified in the current invocation is an

RBF file. (RBF files are reserved for use by Prime.)

-VERIFY (-VFY) Bit: The -VERIFY bit is set if the command processor

requires user verification of file system objects selected by

wildcard-laden names. It does not necessarily mean that the user has

verified the file system object specified in the current invocation,

because verification is requested only if the user specifies a

wildcard-laden name. Use the wildcard bit, described below, if you

wish to determine whether the user was actually asked to verify the

current invocation for the file system object; if both the -VERIFY bit

and the wildcard bit are set (1), then verification was both requested

and provided.

-BOPTOM_UP (-BOTUP) Bit: The —-BOTTOM_UP bit is set (1) if the

=BOrTOM_UP option (abbreviated -BOTUP) was specified on the command

line, causing any treewalking to be performed at the lowest directory

levels first. It does not necessarily mean that treewalking is being

performed; see the treewalking bit, described below, for that

information.

3-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

—WALK_FROM (-WLKFM) Value: The -WALK_FROM value is set to either the
value specified following the -WALK_FROM option (abbreviated -WLKFM) on
the command line or to the default value, which is 2. Level 1 is the
contents of the directory itself; level 2 is the contents of the
subdirectories, and so on, For example, in the treewalking
specification DIR1>@@>FOO, level 1 is the DIR1 directory; if FOO
exists in DIR1, it is found only if -WALK_FROM 1 is specified.

This value does not indicate whether treewalking is, in fact, being
performed; see the treewalking bit, described below, for that
information.

-WALK_TO (-WLKTO) Value: The -WALK_TO value is set to either the value
Specified following the -WALK_TO option (abbreviated -WLKIO) on the
command line or the default value, which is 999. This value does not
indicate whether treewalking is, in fact, being performed; see the
treewalking bit, described below, for that information,

Iteration () Bit: The iteration bit is set to 'l'b if the command
line usedto invoke the program contained an iteration list (that is,
contained parentheses). However, this bit is never set if the BIND
subcommand NO_ITERATION (abbreviated NITR) was issued when the program
was linked,

Wildcard @ + Bit: The wildcard bit is set to 'l'b if the command line
used to invoke the program contained a wildcard-laden entryname (that
is, contained the @, +, or ~*~ character in the final element of a
pathname or in a simple pathname). However, this bit is never set if
the BIND subcommand NO_WILDCARD (abbreviated NWC) was issued when the
program was linked.

Treewalk >@> >+> Bit: The treewalk bit is set to 'l'b if the command
line used to invoke the program contained a wildcard-laden directory
name (that is, if it contained the @, +, or ~ character ina nor-final
element of a pathname). However, this bit is never set if the BIND
subcommand NO_TREEWALK (abbreviated NIW) was issued when the program
was linked,

Sample Program

The following sample PL/I-G progran simply displays all of the
information in the command processing information structure. While it
is intended primarily to illustrate how to declare and use the command
processing information structure in PL/I-G, it is also a useful program
for experimenting with various combinations of command preprocessing
features and BIND subcommands that enable, disable, or set parameters
for command preprocessing features.

First Edition 3-22

PROGRAM EPF CALLING SEQUENCE

com_proc_info: proc(comline, code, cominfo);

dcl comline char(1024) var,

code fixed bin(15),

1 cominfo,
2 comname char(32) var,
2 version fixed bin(15),

2 veb_ptr ptr,
2 preprocessing_info,

3 mod_after_date fixed bin(3l),
/* -MODIFIED_AFTER date.

3 mod_before_date fixed bin(31l),

/* -MODIFIED_BEFORE date.

3 bak_after_date fixed bin(31),
/* -BACKEDUP_AFTER date.

3 bak_before_date fixed bin(31),

/* The command line. */
/* Severity code. */

/* The command name. */
/* Currently 0 or 1. */
/* CPL local variables. */

/* Command processing info, */

/* Command preprocessing info, */

3 type_dir bit(1),
3 type_segdir bit(1),
3 type_file bit(1),
3 type_acat bit(1),
3 type_rbf bit(1),
3 reserved_] bit(1l),
3 verify_sw bit(1),
3 botup_sw bit(l),
3 reserved2 bit(14),
3 walkfram fixed bin(15) "

*&

/*

/*

/*

/*

/*

3 walk_to fixed bin(15),
3 in_iteration bit(1),
3 inwildcard bit(l),
3 in_treewalk bit(1),
3 reserved_3 bit(13);

%include 'SYSOCOM>ERRD. INS.PL1';
Sinclude 'SYSOOM>KEYS. INS.PL1';

dcl strings fixed bin(15),

last_string char(80) var,

line_to_show char(80) var;

-BACKEDUP_BEFORE date. */
-DIR option specified. */
-SHGDIR option specified. */
-FILE option specified. */
-ACAT option specified. */
-RBF option specified. */
Reserved for future use. */
-VERIFY option specified. */
-BOTUP option specified. */
Reserved for future use. */

-WALK_FROM value. */
-WALK_TO value. */
In iteration sequence, */
In wildcard sequence, */
In treewalk sequence. */
Reserved for future use. */

/* Number of strings. */
/* Last string. */
/* Line waiting to be shown. */

dcl (tnoua,tnou) entry (char (80) ,fixed bin(15)),

tovfid$ entry (fixed bin(15));

call tnoua('Command name is "',17);

call tnoua ((comname) , length (comname)) ;

call tnoua('"',1);

if version=0 then
do; /* Version 0 means no more info, */
call tnou('.',1);

code=0;
return;

end;

3-23 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

if version=1 then; /* Expected version number. */
else

do; /* New version, display it. */
call tnoua(', version #',11);
call tovfd$ (version) ;
end; /* if version*=0 */

if vcb_ptr=null() then call tnou(', no CPL variables.',19);
else call tnou(', with CPL variables.',21);

call tnoua('Command line is "',17);
call tnoua ((comline) , length (comline)) ;
call tnou('",',2)3

strings=0;
last_string='"';
line_to_show='Options: ';

if mod_after_date=0 then;
else call show_date('-MODIFIED_AFTER' ,mod_after_date) ;

if mod_before_date=0 then;
else call show_date('-MODIFIED_BEFORE' ,mod_before_date);

if bak_after_date=0 then;
else call show_date('-BACKEDUP_AFTER' ,bak_after_date) ;

if bak_before_date=0 then;
else call show_date('~BACKEDUP_BEFORE' ,bak_before_date);

if type_dir then call show_this('-DIR');
if type_segdir then call show_this('-SBEGDIR');
if type_file then call show_this('-FILE') ;
if type_acat then call show_this('-ACAT');
if type_rbf then call show_this('—RBF') ;
if verify_sw then call show_this('-VERIFY') ;
if botup_sw then call show_this('-BOTUP') ;

if walk_from=2 then; /* The default. */
else call show_value ('-WALK_FROM' ,walk_fram) ;

if walk_to=999 then; /* The default. */
else call show_value ('—-WALK_TO' ,walk_to);

if in_iteration then call show_this('iteration’) ;
if in_wildcard then call show_this('wildcard') ;
if in_treewalk then call show_this('treewalk');

/* Show last line if we have shown anything. */

if strings=0 then;
else

if strings=l1 then

First Edition 3-24

PROGRAM EPF CALLING SEQUENCE

call tnou('Option: '||last_string, length (last,_string) +8) ;

else call show_this('');

code=0;
return;

show_date: proc(string,dtm); /* Display option with date/time, */

dcl string char(32) var,
dtm fixed bin(31);

dcl dow fixed bin(15),
dtm_str char(21) ;

dcl cv$fda entry (bin(31) ,bin,char(21));

call cv$fda (dtm, dow, dtm_str);

call show_this(string||' "| |trim(dtm_str,'11"b));

end; /* show_date: proc */

show_value: proc(string,value); /* Display option with integer. */

dcl string char(32) var,
value fixed bin(15) 3

call show_this(string||' "| |trim(char(value) ,'11'b));

end; /* show_value: proc */

show_this: proc(string); /* Display string in comma list, */

dcl string char(80) var;

dcl joiner char(6) var;

strings=stringstl;

if strings<=2 then joiner='"';

else
if string="" then

if strings<=3 then joiner=' and ';

else joiner=', and ';

else joiner=', ';

if length (last_string) +length (1ine_to_show) +length (joiner) >79 then

do ’

if strings<=3 then
call tnou((line_to_show) , length (line_to_show)) ;

else call tnou(line_to_show||',',length (line_to_show) +1) ;

if string='"' then line_to_show='and '| |last,

_

string;

else line_to_show=last_string;
end;

else
line_to_show=line_to_show | |joiner | |last_string;

3-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: OOMMAND ENVIRONMENT

if string='' then call tnou((line_to_show) , length (line_to_show));
else last_string=string;

end; /* show_this: proc */

end; /* com_proc_info: proc */

COMPLETE CALLING SEQUENCE

The complete calling sequence combines the command function calling
sequence with the command processing information provided in the third
argument of the calling sequence, as’ used in the detailed command
calling sequence. In the command function calling sequence, described
earlier, the third argument was ignored; in the detailed command
Calling sequence, as in the complete calling sequence, the third
argument provides the program with information on the processing of the
command that invoked the program.

Figure 3-7 illustrates the complete calling sequence, where EPF is the
main entrypoint of the program EPF.

The first and second arguments are described in detail in the section
entitled COMMAND CALLING SEQUENCE earlier in this chapter; the third
argument is illustrated in Figure 3-6 and is described in the section
entitled DETAILED COMMAND CALLING SEQUENCE earlier in this chapter;
the fourth and fifth arguments are described in the section entitled
COMMAND FUNCTION CALLING SEQUENCE. ‘The remainder of this section
explains why the complete calling sequence is useful and points out
effects of combining a command and a command function in ome program.

Why Use the Complete CallingSequence?

A program that uses all five arguments in the complete calling sequence
does so for one of several reasons:

@ It is a command function that needs access to CPL variables
local to the CPL program that called it.

@ It is a command function that needs access to its own command
name,

@® It is a program that may be invoked as a command function or as
a command, and when invoked as a command, it wishes to make use
of command preprocessing information.

@ It combines any of the above three reasons; for example, it
might be a progran that, when invoked as a command, does not
need command processing information, but when invoked as a
command function, needs the CPL Local Variables pointer,

First Edition 3-26

—

PROGRAM EPF CALLING SEQUENCE

Each of these uses of the complete calling sequence is examined in more

detail in the next section.

Command Function Needing Local CPL Variables

When a command function needs access to the CPL variables local to the

CPL progran that invoked the command function, it uses the LVS$GET and

LVSSET subroutines to read and set the local CPL variables. An example

of a command function that also sets local CPL variables is the

[OPEN_FILE] function, described in the PRIMDS Commands Reference Guide

and in the CPL User's Guide. Although not an EPF, this function could

be written as an EPF aS of Rev. 19.4, due to the program EPF interface

described earlier in this chapter.

Command Function Needing Command Name

Rarely, a command function may need access to its command name, if it

wishes to make a distinction (or to enforce an equivalence) between the

name of the program as built during the BIND session that linked the

program and the name of the progran as invoked by the user. For

example, when such a program issues messages, it may wish to use its

invocation name, rather than its original name, so that its name may be

easily changed without making error messages originating from the

program difficult to track down.

Program Usable as a Command and as a Command Function

A program may need to be usable as both a command and as a command

function. In addition, it may meed access to command processing

information when invoked as a command, as a command function, or as

either one.

For example, a program may, when invoked as a command, wish to use

command preprocessing information to generate useful output, depending

upon whether its invocation included any wildcard, treewalking, or

iteration specification. The same program, when invoked as a command

function, does not need that information.

It is important to understand that the PRIMDS command processor does

not perform any type of command iteration (including wildcarding,

treewalking, and explicit iteration) when it is called upon to invoke a

program as a command function.

Therefore, a program invoked as a command function should not expect to

find any usable information in the command preprocessing information

contained in halfword offsets 21-25 (25-31 octal) of the command

processing information structure.

3-27 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The PRIMOS command processor knows that a command is being invoked as a
command function because its entrypoint, CPS, has a command-function
bit as one of its input arguments. When this bit is set, CPS does not
perform any command iteration on the command line; instead, it passes
the untouched command line directly through to the program EPF, (Other
command preprocessing is performed as usual.)

However, a user-written command processor, other than CPS, may invoke a
program EPF aS a command function, providing useful information in
halfword offsets 21-25 in the command processing information structure
by passing it to EPFSINVK or EPFSRUN. If your program EPF is designed
to be invoked only by such an application, it May use the command
Preprocessing iteration information even when invoked as a command
function. This situation is expected to be quite rare,

First Edition 3-28

PROGRAM EPF CALLING SEQUENCE

Complete Calling Sequence

Command
Processing
Information

CommandLine

Arguments

|

|reserved

_

f=0: Not a Function

Call

f=1: A Function Call

<32766 v 1

STRING STRUC BIT

| | 4
EPF (command-line, severity-code, command-information, function-call, rtn-fcn-ptr)

a |

INT
PTR

| Halfword |

<0: Warning o [0 (version) STRUC

0: No Error 1

>0O: Error Returned Value |. |

<32766

STRING

Complete Calling Sequence
Figure 3-7

3-29 First Edition

Invoking Programs

From Within

Programs

A progran or library may invoke another command, program, or function.

PRIMOS provides three methods of invoking a progran EPF, whether or not

it is a function:

e Via the CP$ subroutine, which invokes the PRIMDS command

processor

e Via the EPFSRUN subroutine, which invokes any progran EPF

e Via the EPFSINVK subroutine, which invokes a progran EPF that is

already mapped to memory, allocated, and initialized

You may also use the CP$ subroutine to invoke a command, a program, a

function, a CPL program, a CPL function, or a static-mode program.

This chapter describes how to use these subroutines to invoke commands,

programs, and functions. ‘This chapter also describes how to use the

FRESRA subroutine to free memory used to store the result of a command

function. Finally, this chapter explains particular items that may be

of interest when invoking other commands, programs, Or functions.

4-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

COMMANDS, PROGRAMS, AND FUNCTIONS

There are several ways to categorize commands and programs under
PRIMOS. From the point of view of the programmer who will be writing
programs that invoke other programs or commands, the three most useful
methods of categorizing commands and programs consider:

@ Where the programming instructions for the command or program
reside

@ In which format the programming instructions for the command or
program are stored

@ Whether the command or program is invoked as a function (that
is, whether it returns a value to its invoker)

In most cases, the PRIMOS command processor allows you to issue
commands and run programs independent of their categorization. ‘The
interfaces described in this chapter, CP$, EPFSRUN, EPFSINVK, and
FRESRA pertain to different categories of commands and programs:

@ CPS can invoke any command or program, optionally as a function.

@ EPFSRUN and EPFSINVK can invoke only a progran EPF, optiomlly
as a function.

@ FRESRA is used only at the completion of a function invocation,
after the function has returned its value; it is used
independently of the function's location or format.

Where the Programming Instructions Reside

The programming instructions for a command or program reside in one of
the following locations:

@ Internal to the PRIMOS Operating System

@ On disk, in the CMDNCO UFD

@ On disk, but not in the CYDNCO UFD

Commands are stored in the first two of these locations; programs are
stored in the third. A command residing in the CMDNCO UFD is just a
program in a special place, and it may be run as a program; a program
not residing in the CMDNCO UFD may be made into a command simply by
copying it into CMDNCO. Therefore, the distinction between commands
and programs on disk is samewhat hazy; the terms "command" and
"program" are often interchangeable, and are often used together in
this guide. Some, but not necessarily all, commands and programs are
supplied by Prime.

First Edition 4-2

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Internal to PRIMOS. are internal commands. These are all

Prime-supplied; Prime does not support the modification of PRIMDS by

custaners, such as adding new internal commands. Because internal

commands reside in virtual memory rather than on disk, they are treated

specially by the PRIMOS command processor. In fact, some internal

commands have special privileges, such as_ the ability to access

internal PRIMOS tables.

While user-written programs cannot always perform the same functions as

internal PRIMOS commands, such programs can call the PRIMOS command

processor to invoke internal PRIMODS commands.

A special internal PRIMOS command is the RESUME command, abbreviated R.

The RESUME command is used to run

a

program, ‘Therefore, the command

processor treats a RESUME command as the invocation of a program rather

than the invocation of an internal PRIMOS command. ‘he special

processing this involves is usually unimportant, except when handling

errors and such.

Format of the Programming Instructions

The format of the programming instructions for a command or program is

important to the PRIMOS command processor, because it determines how

the command processor invokes the command or program. For commands and

programs that reside on disk, there are three formats:

e Executable Program Format (EPF) Runfiles

e Command Procedure Language (CPL) Programs

e Static-mode Runfiles

(A fourth format, the SEG runfile, is not recognized by the PRIMDS

command processor —- it is recognized only by the SEG command, which

itself is a static-mode runfile residing in the CMDNCO UFD.)

Whether the PRIMOS command processor is called upon to execute a

command in the CMDNCO UFD or elsewhere on disk, it uses suffix

searching to scan for the appropriate runfile. ‘he suffixes .RUN,

.SAVE, and .CPL are tried, in that order, and then a search with no

suffix is tried, Based on the suffix that was in place when the

runfile was found, the command processor infers the format of the

runfile, as described in Chapter l.

The most flexible format for programming instructions is the EPF,

because a program written as a program EPF may be a function. In fact,

it can determine whether it is being invoked as a function, and modify

its actions accordingly. (The mechanism by which it does this is

described in Chapter 3.)

4-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

In addition, a progran EPF can modify CPL variables local to the CPL
program that invoked it. Finally, a program EPF has the most control
over selecting command processing features and determining which
features are in use for a particular invocation,

The second most flexible format is the CPL progran. A CPL program can
be written either as a program or as a function. However, CPL prograns
cannot automatically determine whether they are being invoked as
functions; but they can accept a command line option supplied by the
invoker to indicate which type of invocation is taking place,
Otherwise, a CPL program must assume either that it will always be
invoked as a program or that it will always be invoked as a function.

CPL programs can also choose how they will handle wildcards, as
wildcards are not processed for CPL programs,

The least flexible format is the static-mode progran. A static-mode
program cannot be written as a function, If the name of a_ static-mode
progran begins with NxX$ or NWS, this disables various combinations of
command processing features, This naming scheme represents the only
control that static-mode programs have over command processing
features; and it requires users to enter the NX$ or ws prefix when
entering the program name,

For commands internal to PRIMDS, there is only one format, and that is
the format of a subroutine, or procedure, that accepts a_ standardized
calling sequence as its arguments,

Functions

A function returns a value to the invoker of the function. This value
typically replaces the invocation of the function (in a CPL program
command line, for example).

Almost all Prime-supplied functions are commands, either internal to
PRIMOS or residing in CMDNCO. Functions that are commands are often
called command functions. Prior to Rev. 19.4, users could write
functions only in CPL; as of Rev. 19.4, they may write functions as
program EPFs, The term program function can be used to refer toa
function not supplied by Prime; however, this distinction is not
usually important for readers of this guide. Therefore, the tems
function and command function are used generically to refer to any
command or progran that returns a function value when invoked as a
function,

The difference between a program that is a function and one that is not
is whether the progran is designed to operate as a function and whether
the invoker of the progran is invoking it as a function,

For example, the ABBREV -STATUS command, when used as a command, does
‘not operate as a function — it displays the pathname of the user's
abbreviation file, and the number of abbreviations defined in the file.

First Edition 4-4

INVOKING PROGRAMS FROM WITHIN PROGRAMS

OK, ABBREV -STATUS

Abbreviation file: UNGER>LOGIN.ABBREVS

Abbreviations: 183

OK,

When used as a function, however, ABBREV -STATUS modifies its behavior

so that it displays nothing to the terminal. Instead, it returns the

pathname of the user's abbreviation file as the value of its

invocation:

OK, TYPE Your abbreviation file is: [ABBREV_ -STATUS]

Your abbreviation file is: UNGER>LOGIN.ABBREVS

OK,

The displayed output came not from the ABBREV -STATUS invocation, but

from the TYPE command.

The ABBREV -STATUS command is an example of a command that operates as

either a command or as a function, depending on how it is used.

Typically, however, a command or program always operates as one or the

other. For example, another internal command, RDY, operates only aS a

command — when invoked as a function, it still behaves as a command

and returns no value:

OK, TYPE Value of RDY command is: [RDY]

OK 14:33:39 243.024 11.354

Value of RDY command is:

The first line of displayed output came from the invocation of the RDY

command. ‘The second line of output came from the invocation of the

TYPE command, which included a function invocation of RDY that returned

no result because RDY is not a function.

Conversely, a command or progran may be constructed to run only aS a

function, For example, when invoked as a command, the internal command

SUBSTR detects that it has not been invoked as a function, displays an

error message, and returns a positive severity code (producing the ER!

prompt) :

OK, SUBSTR TEST 2 2

May only be invoked as a command function. (SUBSTR)

ER!

4-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

DECIDING WHICH INTERFACE TO USE

To write a progran, library, or subroutine that invokes anothercommand, program, or function, you must first decide which interface to
use :

@ cps

@ EPFSRUN

@ EPFSINVK

@ FRESRA

You make your decision based on what kind of program you wish toinvoke, and whether you wish to use command preprocessing features suchas variable expansion, wildcarding, and name generation.

@ Use CPS to invoke a PRIMOS command or a program, or to include
command preprocessing features.

@ Use EPFSRUN to invoke a program EPF,

@ Use EPFSINVK to invoke a program EPF with more control over how
and when the EPF is set up.

@ Use FRESRA only if you invoke a function and accept a_ returned
text string.

Typically, you choose only one of the CPS, EPFSRUN, and EPFSINVK
subroutines; these allow your program to invoke either a program or a
function. After calling a function, your progran makes use of the
returned text string. Your program then calls the FRESRA subroutine to
free the memory used to store the returned text string, allowing the
memory to be reused,

When to Use CPs

You use the CPS subroutine to invoke:

@ ‘Internal PRIMOS commands, such as ASSIGN

@ External CPL prograns

@® External EPFs

@ External static-mode programs

Except for external static-mode programs, any of the above may be
invoked as functions,

First Edition 4-6

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Calling CP$ invokes the PRIMDS command processor, STDSCP. This same

command processor is invoked when the user enters a response to the OK,

prompt issued by PRIMDS.

User-defined abbreviations are not expanded by CP$. Therefore, you can

reliably use CPS in your program without concerning yourself with

user-defined abbreviations that might change the meaning of your

command lines. For example, calling CP$ to invoke the ASSIGN MTro

command always invokes that command, even if the user has defined

ASSICN or MIO as an abbreviation via the PRIMDS abbreviation facility.

The PRIMOS command processor, invoked via CP$, determines what command

is being executed as follows:

1. The first token of the command line is parsed. This is the

name of the command being invoked. For example, consider the

command line:

COPY FRED>MEMO.12/31/84 *>MEMOS>MEMO.118

Here, the name of the command is OOPY.

2. The command name is checked against the list of internal PRIMOS

commands. One important internal PRIMOS command is RESUME; if

the command is RESUME, the program specified by the pathname

following the RESUME command is invoked.

If the command name is not RESUME, and is found in the list of

internal PRIMOS commands, the appropriate command line

preprocessing (such as wildcarding) is performed, and the

internal PRIMOS subroutine that corresponds to the command name

is invoked. ‘The command processor returns to the caller when

the internal PRIMOS subroutine has finished.

3. If the command name is not in the list of internal PRIMOS

commands, the command processor searches the CMDNCO directory

for a program with the same name as the command. If found, the

program is executed as if it had been RESUME.

When executing a program, the command processor first performs the

appropriate command preprocessing (such as wildcarding) , depending upon

the program type. If the program is an EPF, the command preprocessing

is determined by information that is placed within the EPF itself when

the EPF is built using BIND subcommands. For information on BIND

subcommands that describe the command preprocessing environment for an

EPF, see Chapter 2. See the PRIMDS Commands Reference Guide for

information on command preprocessing for static-mode and CPL programs,

4-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Although command programs reside only in the CYMDNCO directory, CPS can
be used to invoke programs residing anywhere on disk, by invoking the
internal command RESUME via CPS. For example, to invoke the program
ACQOUNTS_PAYABLE in the current directory, call CP$ with the following
command line:

RESUME ACCOUNTS_PAYABLE

When to Use EPFSRUN

You use EPFSRUN to invoke a program EPF. As with CPS, you pass the
command line to the target program, but no command preprocessing is
performed on the command line. Therefore, use EPFSRUN when you do not
want any changes to be made to the command line being passed.

EPFSRUN handles all of the tasks needed to execute a program EPF,
including mapping the EPF to memory, allocating the linkage area,
initializing the linkage area, and optionally removing the EPF from
memory when the invocation has been completed,

When to Use EPFSINVK

You use EPFSRUN to invoke a program EPF that has already been mapped to
memory, allocated, and initialized. As with CP$, you pass the command
line to the target program, but no command preprocessing is performed
on the command line. Therefore, use EPFSINVK when you do not want any
changes to be made to the command line being passed,

The advantage of using EPFSINVK over EPFSRUN is that you have more
control over the phases of EPF execution. However, you must call
Several other subroutines, described in this Chapter, to map the EPF to
memory, to allocate the linkage area, to initialize the linkage area,
and to remove the EPF from memory after invocation.

When to Use FRESRA

You use the FRESRA subroutine after using CPS, EPFSRUN, or EPFSINVK to
invoke a function only if the returned function pointer is not a null
pointer (segnent number 7777). Your program should call FRESRA
sometime after it finishes using the returned function value; this may
be after it makes its own copy of the value, or after it finishes
analyzing the value. If you have used EPFSINVK to invoke the function,
it is not important whether your program calls FRESRA before or after
Calling EPFSDEL to remove the EPF,

First Edition 4-8

INVOKING PROGRAMS FROM WITHIN PROGRAMS

THE CP$ SUBROUTINE

There are two ways of using CPS:

@ Invoking commands or programs

@ Invoking functions

The calling sequence for CPS has six arguments. When not invoking a

function, you may wish to pass only three arguments; the renaining

three arguments are assigned default values before being passed to the

PRIMOS command processor, STDSCP.

Figure 4-1 illustrates the calling sequence for CP$. The next two

sections describe how to use CPS to invoke a command, program, or

function,

Using CP$ to Invoke a Command or Program

To use the CPS subroutine to invoke an internal PRIMOS command or a

program, rather than a function, you typically need to supply only the

first three arguments -- command-line, code, and severity-code — of

the calling sequence illustrated in Figure 4-1. If you wish to pass a

pointer to local CPL variables, then you must supply five or six

arguments in the calling sequence to include the cpl-local-vars—ptr

argument.

Before calling CP$, your program should initialize the severity-code

argument to 0, in case it is not set by the command or program being

invoked,

When your program calls CP$, the command processor attempts to execute

the command passed in command-line. If it fails to begin execution, a

standard PRIMOS error code is returned in code. If it succeeds in

executing the command, 0 is returned in code, and the status of the

command itself is returned in severity—code.

Ultimately, when the program you invoke via a call to cps is a program

EPF, the severity-code argument to CP$ corresponds to and is set from

the severity-code argument in the calling sequence for a program EPF,

described in Chapter 3; CPL programs set this value by issuing a

&RETURN directive, and static-mode programs set this value by calling

the SETRCS subroutine.

Note

The returned value of severity-code is undefined if the

returned value of code is nonzero.

4-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Invoke a Command, Program, or Function

Bit _
h 2 3.......16

0: Not a Function Call
1: A Function Call
0: Evaluate Variable & Function

References

i =1: Inhibit Evaluation of Variable

& Function References

—
n

f
f
i

Pointer to Local
. CPL Variables, or

Command Line NULL()

 y
=32766 2
STRING BIT PTR

| | |
CP$ (command-line, code, severity-code, flags, cpl-local-vars-ptr, rtn-fcn-ptr)

HALF HALF |

INT INT

Status From Status From |

Attempt to Invoked
Invoke Command Command STRUC

Halfword

0 O (version)

1 Returned Value

<=32766
String

Calling Sequence of CPS
Figure 4-1

First Edition 4-10

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The Command Line: In command-line, simply pass the command line that

you would type as a user invoking the command. The PRIMOS Commands

Reference Guide contains information on command formats. For example,

to assign a magnetic tape drive for a runing program, you might have

your program call CP$ with the command line:

ASSIGN MTO -WAIT

The RESUME command is a special case, because it is an internal command

that runs an external program. Use the RESUME command to invoke a

program via CP$, For example, to run a program, you Might have your

program call CP$ with the command line:

RESUME MYPROG MEMO.03/08/05

Unless you place a tilde (~) in front of the command line, CPS performs

certain kinds of command preprocessing on command-line before actually

invoking the internal command (although it never modifies command-line

itself). First, if the command line contains one or more unquoted

command separator characters (;), CP$ splits up the command line into

several separately handled command lines.

Then, unless inhibited by the second bit of flags, CP$ resolves command

function references and variable references. Subsequent command

preprocessing depends on the command or program being invoked; for

example, ATTACH does not accept wildcards, but LIST_QUOTA does. See

the PRIMOS Commands Reference Guide for information on command

preprocessing support by Prime commands ; use the LIST_EPF

—COMMAND_PROCESSING command to determine what kind of command

preprocessing is performed for a particular program EPF being invoked,

Note

Placing a tilde (~) in front of the command line as passed to

ce$ has the effect of preventing all forms of command

preprocessing. Therefore, calling CPS with the command line

~SETVAR .FOO $OPTIONS is an option; [SET.1] isa function.

causes the global variable .FOO to be set to exactly the string

shown. Without the tilde, the variable %OPTION% and command

function reference [SET_1] would be evaluated, and the results

would be substituted in the command line (assuming the variable

and function references succeeded). In addition, the semicolon

after "option" would be treated as a command separator.

4-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The Error Code: The code argument, returned by CPS, indicates the
degree of success encountered by the command processor's attempt to
execute the command. For example, if the command is not found, the
error code eSfntf (Not found) is returned in code,

Any nonzero value returned in code indicates that all other output
arguments have undefined values, because they all depend upon the
successful invocation of the command.

See the section entitled Error Codes Fram CPS, later in this chapter,
for a partial list of error codes; see Volume 0 of this series for a
complete list of PRIMOS error codes,

The Severity Code: The severity-code argument, returned by the invoked
command via the command processor and CPS, indicates the degree of
Success reported by the invoked command. For example, if you invoke
the ATTACH command to attach to a nonexistent subdirectory, the error
code eSfntf (Not found) is returned in severity—code.

Note

The RESUME command is handled by the command processor in a
Special way. The target of the RESUME command is the program
to be invoked, If the target program is not found, the error
code is returned in code, not in severity-code as for other
commands (such as ATTACH, COPY, and so on). ‘This allows the
calling progran to distingyish between a missing program and a
program that cannot find the target specified on its command
line,

The Function-Call Bit: The first bit of the flags argument specifies
whether the call to CPS is to invoke a function (Such as GVPATH or a
user-written function) or not. If flags is not supplied in the calling
Sequence, the functioncall bit defaults to 0, meaning that a function
invocation is not being made. If flags is supplied, set this bit to 0
to indicate that you are invoking a command or program rather than a
function. (The use of CP$ to invoke a function is described in the
next section.)

The Inhibit-Evaluation Bit: The second bit of the flags argument
Specifies whether command function references and variable references
in the command line are to be evaluated. If flags is not supplied in
the calling sequence, the inhibit-evaluation bit defaults to 0, meaning
that such references are to be evaluated. If flags is supplied, set
this bit to 0 if youwish such references to evaluated, or set this
bit to 1 if you wish such references to be passed to the target program
instead of being evaluated.

First Edition 4-12

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The CPL Local Variables Pointer: The cpl-local-vars-ptr argument

provides the necessary "toehold" for the target command or program to

set CPL variables local to the procedure that invoked your program.

Typically, you either do not supply this argument or you supply the

null pointer (NULL(), which is segnent 7777 offset 0). If you do not

pass this argument, CP$ substitutes the null pointer when calling the

PRIMOS command processor, STDSCP.

If your program may be invoked by a CPL program, and if it is using CPS

to invoke a progran that may need to set one or more CPL variables

local to the invoking CPL program, then your program should pass, in

cpl-local—vars-ptr, the corresponding pointer that was passed to its

main entrypoint in the command-information structure of the program EPF

calling sequence. (See Chapter 3° for more information on the

command-information structure.)

The Returned Function Value Pointer: The rtn-fm-ptr argument is not

used when invoking a command or program. It is used only when invoking

a function, that is, when bit 1 of the flags argument is set tol, as

described in the next section.

Using CP$ to Invoke a Function

The CPS subroutine may be used to invoke a command function that is

either an internal PRIMOS command function, such as DATE and GVPATH, or

a user-written command function, written in CPL or as a program EPF.

Whether the command function being invoked is a Prime-supplied command

function or a user-written command function, your program calls CP$ in

the same way.

To use the CPS subroutine to invoke a function, have your program pass

all six arguments to CPS as illustrated in Figure 4-1 earlier in this

chapter.

Before calling CP$, your program should initialize the severity-code

argument to 0 and the rtmfcn-ptr to the null pointer (NULL() in

PL/I-G), in case these arguments are not set by the function being

invoked.

When your program calls CP$, the command processor attempts to execute

the command passed in command-line. If it fails to begin execution, a

standard PRIMOS error code is returned in code. If it succeeds in

executing the command, 0 is returned in code, the status of the command

itself is returned in severity-code, and a pointer to the returned text

string structure is returned in rtn-fm-ptr.

Ultimately, when the program you invoke via a call to ceS is a program

EPF, the rtn-fcn-ptr argument to CPS corresponds to the rtn-fcn-ptr

_ argument in the calling sequence for a program EPF, described in

Chapter 3; CPL programs set this value by issuing a &RESULT directive.

4-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Notes

1. +The returned values of severity-code and rtmfc-ptr are
undefined if the returned value of code is nonzero.

2. When invoking a command function, no wildcarding,
iteration, or treewalking is performed. In addition, the
command separator character, the semicolon (3) is not
honored; is treated like any other character.

The Command Line: In command-line, use the RESUME command, or the
command name itself, just as you would when invoking a command or
program. Do not enclose the command line in square brackets ([]) as
you would in a CPL program.

For example, to determine the user's abbreviation file, call CPS with
the command line:

ABBREV -STATUS

The pathname of the abbreviation file, -OFF, or both, is returned in
the structure pointed to by rtn-fon—-ptr, as described below.

To invoke a user-written command function, you might have your program
call CP$ with the following command line:

RESUME PROGRAMS>GET_RECORD 1154 -DATABASE PAYROLL

Again, the information is returned in a_ structure pointed to by
rtn-fcn-ptr.

Unless you place a tilde in front of the command line or set the second
bit of flags to 1, CPS resolves (nested) command function references
and variable references,

The Error Code: The code argument, returned by CPS, has the same
meaning for function invocation as for command or progran invocation,
described earlier in this chapter.

The Severity Code: The severity-code argument, returned by the invoked
function via the command processor and CPS, has the same meaning for
function invocation as for command or progran invocation, described
earlier in this chapter.

The Function-Call Bit: The first bit of the flags argument specifies
whether the call to CPS is to invoke a function (such as GVPATH or a

First Edition 4-14

INVOKING PROGRAMS FROM WITHIN PROGRAMS

user-written function) or not. Set this bit to 1 to indicate a

function invocation.

The Inhibit-Evaluation Bit: ‘The second bit of the flags argument has

the same meaning for function invocation as for command or program

invocation, as described earlier in this chapter.

The CPL Local Variables Pointer: The cpl-local-vars—-ptr argument has

the same meaning for function invocation as for command or program

invocation, as described earlier in this chapter.

The Returned Function Value Pointer: The rtm-fm-ptr argument contains

a pointer to the returned function value when CPS returns, or the null

pointer if no function value has been returned. Actually, rtn-fcm-ptr

points to a structure that contains the returned value, as illustrated

in Figure 4-l.

Note

If the invoked command did not return a value, then rtn-fcn-ptr

may not have been modified. Therefore, set it to the null

pointer before calling CP$, and check it after CPS returns to

make certain that a result has been returned.

In PL/I-G, the declaration of the returned function value structure is:

dcl 1 rtn_function_structure based(rtn-fcm-ptr) ,

2 version fixed bin(15),

2 text_string char(32766) var;

If version does not contain 0, do not attempt to use text_string,

because a nonzero version indicates a new version of the returned

structure. However, version should contain 0, and text, string should

contain the returned text string.

After using the returned text string, your program should free the

returned text string structure to the pool of available memory. Use

the FRESRA subroutine to do this. FRESRA is described later in this

chapter.

If your program is written in FORTRAN, access to the returned function

value is difficult. Here is a programming discipline that allows a

FORTRAN program to copy the returned function value, pointed to by an

INTEGER*4 pointer variable named RFNPIR, into an INTHGER*2 array of

_ Characters named RINFCN and a length variable named RINLEN. The

maximum number of characters that can be held by RINFCN is set in a

parameter named RINMAX.

4-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

INTHGER*2 GCHAR, IXS, IXD,RINFCN (512) 7RINLEN,RINMAX —
INTHGER*4 RFCPIR

Cc
PARAMETER RINMAX=1024

Cc eee

C ... CALL CPS HERE, check error code
Cc eee

C
C Check if the returned pointer is the null pointer,
C

IF (AND(RFCPIR, :177600000) .NE. :17760000) GO 10 98710
C
C Null pointer, assume zero-length result.C

RINLEN=0
GO TO 98800 /* Do not call FRESRA with a null pointer!

C
——

C Have a pointer, see if version 0.
C
98710 IxS=0 /* Source string index,

IF (GCHAR (RFNPTR, IXS) +GCHAR (RFNPTR, IXS) -—Q.0) GO TO 98720

c Not version 0, unknown version, assume null value.

° RINLEN=0
GO TO 98790 /* Do call FRESRA to deallocate the structure.

C Get length of returned function value in RINLEN.

30720 RINLEN=LS (GCHAR (RFNPTR, IXS) ,8) +GCHAR (RFNPTR, IXS)

C Now, IXS should be 4 which is the beginning of the value itself,
C Copy the value into RINFCN until the end of the source or the end
C of the destination is reached,

IF (RINLEN.HQ.0) GO TO 98790 /* Null value!

IxXD=0 /* Destination string index.

Loop until string copied.

Q
Q
N
2
Q

A
A

8730 CALL SCHAR (LOC (RINFCN) , LXD,GCHAR (RFNPTR, IXS))
IF (IXS.LT,.RINLEN.AND, IXD.LT.RINMAX) GO TO 98730

Q
w
o

C Now free the structure,
Cc

98790 CALL FRESRA(RFNPTR)
Cc

C Done!

Cc
98800 CONTINUE

First Edition 4-16

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Error Codes Fran CP$

An output argument, code, informs the calling program of the success or

failure of the operation. This argument is a HALF INT value. Symbols

are provided to allow PL/I-G, FORTRAN, Pascal, and PMA programs to

substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code

has one of many values. Typical values and their meanings follow. Not

all possible error codes are listed; for example, PRIMENET-related

error codes such as ESRLDN (The remote line is down) may be returned by

ces, but are not listed.

Note

When you use CP$ to invoke a program EPF, either via the RESUME

command or by specifying a program EPF in CMDNCO, an error code

returned by the EPFSRUN subroutine is returned by CPS.

Therefore, consult the list of error codes returned by EPFSRUN,

later in this chapter, for information on additional error

codes returnable by CPS.

Keyword Value Meaning

<ok> 0 The operation was successful.

ESEOF 1 End of file. Typically, this error

indicates an attempt to invoke a text file

(such as a CPL file) as a_static-mode

progran, Alternatively, this error

indicates a file that has been truncated by

FIX_DISK during systen maintenance

procedures. In the latter case, you must

replace the program with a backup copy.

ESFIUS 3 File in use. Indicates an attempt to run a

program that is open for writing.

ESNRIT 10 Insufficient access rights. You do not
have access to the program.

ESDIRE 14 Operation illegal on directory. Typically,

this error indicates an attempt to invoke a

segnent directory, such as a_.SEG file,

with the RESUME command. Alternatively,

this error indicates an attempt to invoke a

file directory.

4-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

ESFNTF 15 Not found. If the command is the RESUME
command, the target program could not be
found, Otherwise, the command is not an
internal command, and a program with the
same name could not be found in CMDNCO.

ESBNAM 17 Illegal name. The RESUME command specifies
a filename not conforming to filename
syntax rules,

ESTTRE 57 Tllegal treename. The RESUME command
specifies a pathname not conforming to
pathname syntax rules,

ESCMND 68 Bad command format. The command name, the
first token on the command line, is more
than 32 characters long or does not conform
to filename syntax rules.

ESBARG 71 Invalid argument to command, The RESUME
command is not followed by a program name.

ESNDAM 109 Not a DAM file. The target program is a
-RUN file, indicating an EPF, but is nota
DAM file. ‘The fault is in the installation
of the program being invoked.

ESBVER 158 Incorrect version number. Typically, this
error means that the command function
invoked by the call to CPS returned a
structure containing an invalid version
number, Alternatively, this error means
that the target EPF contains an invalid
version number. In both cases, the fault
is in the command function, not the calling
program. The command function is an EPF,
because a CPL program should never cause
this error. If the command function is in
fact a CPL program, contact your Custamer
Support Center,

ESNINF 159 No information. You do not have access to
the program.

THE EPFSRUN SUBROUTINE

The EPFSRUN subroutine is used in the following manner:

1. The calling progran opens the program EPF file to be invoked.

2. The calling program calls EPFSRUN, passing the file unit number
o£ the opened program EPF file.

First Edition 4-18

INVOKING PROGRAMS FROM WITHIN PROGRAMS

3. The calling program closes the program EPF,.

4. After the EPFSRUN subroutine completes, the calling program

checks the returned error code to determine whether the program

EPF was successfully invoked by EPFSRUN.

5. If the error code from EPFSRUN is 0, the calling program uses

the information returned by EPFSRUN to determine whether the

program EPF completed successfully or unsuccessfully, and — if

the program EPF was invoked as a command function —- to access

the returned text string.

6. If the error code from EPFSRUN is 0, and the calling program

invoked the program EPF as ‘a command function, the calling

program uses the FRESRA subroutine to return the memory used to

store the returned text string to the free memory pool.

These steps are described in detail below. They are followed by a list

of error codes that may be returned by EPFSRUN.

Step 1: Open the EPF File

Your program must first open the target program EPF file for VMFA-read

before calling EPFSRUN. VMFA (Virtual Memory File Access) provides

efficient data retrieval from disk storage by mapping disk records into

memory via the virtual memory mechanism. PRIMOS implements a limited

form of VMFA called read-only VMFA, and supports this mechanism for use

only by the EPF mechanisn.

To open the target program EPF file for VMFA-read, use the kSvmr key

when you invoke the SRCHS$, TSRC$$, or SRSFX$ subroutines. For

example, a PL/I-G program might use the following call:

call srsfx$(k$vmr+k$getu, 'MY_EPF', unit, type,1,'.RUN',basename, i,

code) ;

A FORTRAN program might use the following statement:

CALL SRCHSS (KSVMR+KSGETU, 'MY_EPF.RUN' ,10,UNIT,TYPE, CODE)

Typically, you add k$getu to the k$vmr key, to specify that a free file

unit is to be found by PRIMOS. I£ you do, the file unit number used is

returned in unit. If you do not add k$getu, you must pass a valid file

unit number in unit.

4-19 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

If code is 0 when SRSFXS$, TSRCS$S, or SRGHSS returns, the file is open
on the indicated file unit. Otherwise, the file is not Open, and code
contains an error code indicating the problem. If an error occurred,
EPFSRUN cannot be called to invoke the EPF, because it is not open,

See the Subroutines Reference Guide for details on the SRSFX$, TSRCSS,
and SRCHSS subroutines.

Step 2: Invoke EPFSRUN

After your program has opened the target program EPF file, it calls
EPFSRUN. Figure 4-2 illustrates the calling sequence for the EPFSRUN
subroutine.

Although the calling sequence contains eight arguments, there are two
cases in which only the first three arguments need be passed. ‘These
cases are:

@ When the kSrestore_only value for key is used, in which case the
target EPF is not actually invoked

@ When the main entrypoint of the target EPF is known to accept no
arguments

The other five arguments are not used by EPFSRUN or by EPFSINVK (which
EPFSRUN calls to invoke the EPF). They are simply passed to the main
entrypoint of the program EPF, corresponding to the five arguments in
the complete calling sequence of a program EPF, described in Chapter 3.

The arguments for the EPFSRUN subroutine are described below.

The Key: For key, specify kSinvk, k$invk_del, or k$restore_only. Both
kSinvk and k$invk_del cause the target EPF to be invoked; however,
kSinvk causes the program EPF to be left in the EPF cache after it
completes, whereas kSinvk_ del causes the program EPF to be removed from
the EPF cache after it completes.

The kSrestore_only key causes all activities up to, but not including,
the invocation of the program EPF to be performed; use the EPFSINVK
and EPFSDEL subroutines, described later in this chapter, to complete
the process of executing the program EPF.

The EPF cache is a mechanism in PRIMDS to optimize frequent reuse of
EPFs. Therefore, use the kSinvk key if the target program EPF may be
invoked more than once by the program or user. Use the kSinvk_del key
if you are certain that the invocation of the target program EPF by the
calling program will be the last such invocation by that user for same
time,

First Edition 4-20

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Run a Program EPF

Command Line

Arguments

. Command

eral Processing
Information

Bit 1 2............16

Tr]reserved
f=0Q: Not a Function

(eine ex) caf=1: A Function Call

{K$RESTORE__ONLY}| ’

HALF HALF =32766 STRUC BIT

INT INT STRING

EPFS$RUN(key, unit, code, command-line, severity-code, command-information, function-call, rtn-fen-ptr)

|!
#ULL HALF HALF
INT INT INT PTR

EPF |
Id

STRUC
Status From
Attempt to

Invoke Program Status From Halfword
Invoked Program 0 0 (Version)

1

Returned Value

<32766
STRING

Calling Sequence of EPFSRUN
Figure 4-2

4-21 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The File Unit: Pass the file unit on which the target program EPF is
Open for VMFA-read (from Step 1) in unit.

The Error Code: When EPFSRUN returns, the value in code indicates the
success or failure of the operation. If code is 0, thetarget program
EPF was successfully invoked, althoughit may not have completed
successfully.

If code is not zero, an error occurred while trying to invoke the EPF.
In this case, your program should display an error message (using the
ERRPRS subroutine) and perhaps log the error; however, your program
should not make use of any other information returned by EPFSRUN, such
as severity-codeor rtn-fon-ptr, because these variables are assigned
only as a result of successful invocation of the EPF,

See the section entitled Error Codes From EPFSRUN, later in this
~aEe eee we.eeeee

The Command Line: Pass the command line containing the command
arguments for the target program EPF in command-line; if there are no
arguments, pass the null string.

Note

Do not include the RESUME command or the progran name in the
command-line argument. Otherwise, the target program EPF
treats theRESUME command as the first token in the command
line, and the pathname of the program as the second token,
rather than treating the information following RESUME
program-name as the command line.

The Severity Code: When the EPFSRUN subroutine returns, if code is 0,
severl —code contains the severity code of the invoked EPF. ‘the
interpretation of severity-code is strictly dependent on the program
EPF itself; however, it is typically set and interpreted as follows:

Value Meaning

0 Progran completed successfully

<0 Successful completion, defined operation
not performed (warning)

> 0 Progran did not complete successfully (error)

First Edition 4-22

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Note
Because severity-code may not be set by the target program EPF,

preset it to 0 fore calling EPFSRUN, so that the default

value indicates successful completion. This is particularly

important when invoking a program that does not use its command

line to receive information, and hence may have a main

entrypoint that does not accept any arguments.

The CommandInformation: There are currently two versions of the

command information structure that your program can pass. Both of

these versions are illustrated in Chapter 3. Typically, you can pass a

version 0 structure, which contains only the command name and the

version number. If your program must pass a pointer to local CPL

variables, or if your program performs command preprocessing such as

wildcards, it must pass a version 1 structure.

In PL/I-G, version 0 of the command-information structure is declared

as follows:

dcl 1 command_state static,
2 command_name char(32) var init(''),
2 version fixed bin(15) init(0);

Version 1 of the command-information structure is declared as follows:

dcl 1 command_state static,
2 command_name char (32) var init(''),

2 version fixed bin(15) init(1),

2 cpl_local_vars_ptr ptr init(null()),
2 cp_iter_info, /* Command iteration info, */

3 mod_after_date fixed bin(31) init(0),

3 mod_before_date fixed bin(31) init(0),

3 bk_after_date fixed bin(31) init(0),

3 bk_before_date fixed bin(31) init(0),

3 type_dir bit(1) init('l'b),
3 type_segdir bit(1) init('1'b),
3 type_file bit(1) init(‘'l'b),
3 type_acat bit(1) init('l'b),
3 type_rbf bit(1) init('O'b),
mbz1 bit(11) init('00000000000'b),
verify_sw bit(1) init('0'b),
botup_sw bit(1) init('0'b),
mbz2 bit(14) init('00000000000000'b) ,
walk_from fixed bin(15) init(2),
walk_to fixed bin(15) init(999),
initeration bit(1) init('O'b),
inwildcard bit(1) init(‘'O'b),
intreewalk bit(1) init('0O'b),
moz3 bit(13) init ('0000000000000'b);W

W
W
W
W
W
W
W
W
W

4-23 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Before calling EPFSRUN, set command to the name of the target
program EPF you are invoking (32 characters maximum). If you know the
name of the progran while writing the program, you may place the name
in the INITIAL attribute for the declaration of command name. If, in
Step 1, your program called SRSFX$, then store the basename variable,
returned by SRSFX$, in command_name. command_name should not contain
the .RUN suffix of the program. The degree of flexibility you have in
setting command name depends solely upon the progran EPF you are
invoking; therefore, consult the specification for the appropriate
program.

The INITIAL attributes used in the declaration above indicate the
default settings used by PRIMOS. If your program is performing
wildcard selection, matching, treewalking, and so on, you may wish to
have your program modify cp_iter_info appropriately.

If the progran being invoked references CPL variables local to the CPL
program that invoked it (and therefore the CPL program that invoked
your progran EPF), store the pointer passed to the main entrypoint of
your program EPF (in the command-information structure argument) into

ocal_vars ptr before calling EPFSRUN. See Chapter 3 for more
information on the command-information structure passed to program
EPF's.

Function Call: The function-call bit indicates to the target EPF
whether the EPF should return a function value. If you do not intend
to use the target program EPF as a command function, set this bit to 0.
If you do intend to use the target program EPF as a command function,
set this bit tol.

The Returned Function Value Pointer: The rtn-fcn-ptr variable has the
same meaning for EPFSRUN as it does for CPS, as scribed earlier in
this chapter,

The EPF Id: The returned value of EPFSRUN, when invoked as a_ function
that returns a FULL INT value, is an internal PRIMOS identifier of the
EPF that is valid only if code is 0 and your program did not supply a
key value of kSinvk del. You may use this identifier in subsequent
Calls to EPFSCPF, EPFSINVK, and EPFSDEL, which are described below.

You do not need to declare EPFSRUN as a function if you do not intend
to use the returned EPF identifier.

First Edition 4-24

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Step 3: Close the EPF File

After EPFSRUN returns, close the file unit on which the target program

EPF is open by calling SRCHS$. For example:

call clo$fu(unit,i); /* Don't overwrite CODE! */

Note

It is not necessary to repeatedly open and close a program EPF

file when repeated invocations of the EPF are to be performed,

The progran EPF file can be opened once, invoked several times

via EPFSRUN, and then closed once.

Step 4: Check the EPFSRUN Error Code

After closing the EPF file, check the returned code value. If code is

0, proceed to step 4. Otherwise, de contains a standard PRIMDS error

code; use ERRPRS or ERTXT$ to report the error to the user or to log

the error. A listing of possible error codes that may be returned by

EPFSRUN is provided later in this chapter, following the description of

Step 6.

Step 5: Check the Returned Command Status

After you check the returned error code, check the returned

severity-code value to determine whether the target program EPF

completed successfully, The exact meaning of severity-code is defined

by the target program EPF. ‘Typically, if severity-code is 0, the

program completed successfully; if severity-code is less than 0, the

program encountered problems or unuswal conditions but probably

completed successfully; if severity-code is greater than 0, the

program completed unsuccessfully.

Step 6: Use and Free the Returned Function Value Structure

If you invoked the target program EPF as a function, if code was set to

0 by EPFSRUN, -and if rtn-fon-ptr was not set to the null pointer by the

target program EPF, your program should first use the returned function

value, for example, by copying it and then return its structure to the

pool of available memory. Use FRESRA to do this, as described later in

this chapter.

4-25 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: OOMMAND ENVIRONMENT

Error Codes Fran EPFSRUN

An output argument, code, informs the calling program of the success or
failure of the operation. This argument is a HALF INT variable.
Symbols are provided to allow PL/I-G, FORTRAN, Pascal, and PMA programs
to substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code
has one of many values. ‘Typical values and their meanings follow. Not
all possible error codes are listed; for example, PRIMENET-related
error codes such as ESRLDN (The remote line is down) may be returned by
EPFSRUN, but are not listed.

Note
When you use EPFSRUN -- which itself invokes other EPFS
subroutines — an error code returned by any of those
subroutines is returned by EPFSRUN. ‘Therefore, consult the
lists of error codes returned by EPFSMAP, EPFSALLC, EPFSINIT,
EPFSINVK, and EPFSDEL, later in this chapter, for information
on additional error codes returnable by EPFSRUN.

Keyword Value Meaning

<ok> 0 The operation was successful.

ESEOF 1 End of file. This error indicates a file
that has been truncated by FIX_DISK during
system maintenance procedures. You must
replace the program with a backup copy.

ESUNOP 3 Unit not open. There is no file open on
unit. You must open the target program EPF
for VMFA-read before calling EPFSRUN to
invoke the EPF,

ESBKEY 28 Bad key in call. You are not passing a
valid key value to EPFSRUN.

ESBUNT 29 Bad unit number. You are not passing a
valid unit value to EPFSRUN.

ESROOM 55 No roan. You cannot invoke the EPF because
there is insufficient dynamic storage
available to allocate internal EPF
information. Use the LIST_EPF and
REMOVE_EPF commands to remove inactive
EPFs, thereby freeing up dynamic storage.

ESNMTS 106 No more temp segnents. You cannot invoke
the EPF because you would exceed your limit
on dynamic segnents. This limit is

First Edition 4-26

INVOKING PROGRAMS FROM WITHIN PROGRAMS

displayed using the LIST_LIMITS command.

You should use the LIST_EPF and REMOVE_EPF

commands to remove inactive EPFs, thereby

freeing up dynamic segments, and attempt to

run your program again. If you need more

dynamic segnents, contact your System

Administrator.

ESNMVS 107 No more VMFA segnents. You cannot invoke

the EPF because there are insufficient

segnents. The condition may be temporary,

in which case an attempt to invoke the

target EPF later might succeed. If the

condition recurs, consult your System

Administrator about increasing the number

of VMFA segments on your system (by

changing the NVMFS configuration directive

in the system startup file).

ESBVER 158 Incorrect version number. Typically, this

error means that the function invoked by

the call to EPFSRUN returned a_ structure

containing an invalid version number.

Alternatively, this error means that the

version number of the EPF itself is

invalid. In both cases, the fault is in

the target EPF, not the calling program.

THE EPFSINVK SUBROUTINE

The EPFSINVK subroutine provides a more controlled, step-by-step

interface to the invocation of a program EPF than does the EPFSRUN

subroutine. In most ways, however, the use of EPFSINVK is identical to

the use of EPFSRUN. This section concentrates on the differences in

the use of these two subroutines.

The EPFSINVK subroutine is used in the following manner:

1.

2.

The calling program opens the program EPF file to be invoked.

The calling program calls EPFSMAP to map the EPF to memory,

passing the file unit number of the opened program EPF file

and obtaining an EPF identifier for use with the other EPFS

subroutines (except for EPFSRUN, described above).

The calling program closes the program EPF.

The calling progran optionally calls EPFSCPF, passing it the

EPF identifier to obtain information on the EPF, such as its

selection of command processing features.

4-27 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

5. The calling program calls EPFSALLC to allocate the linkage
areas for the EPF,

6. The calling program calls EPFSINIT to initialize the linkage
areas for the EPF,

7. The calling program calls EPFSINVK to invoke the program EPF,

8. After the EPFSINVK subroutine completes, the calling progran.
Checks the returned error code to determine whether the
program EPF was successfully invoked by EPFSINVK.

9. If the error code from EPFSINVK is 0, the calling program uses
the information returned by EPFSINVK to determine whether the
program EPF completed successfully or unsuccessfully, and
optionally to access the returned text string (if the program
EPF was invoked as a function).

10. If the error code from EPFSINVK is 0, and the calling program
invoked the program EPF as a function, the calling progran
uses the FRESRA subroutine to return the memory used to. store
the returned text string to the free memory pool,

11. The calling program calls EPFSDEL to renove the program EPF
from memory.

For repeated invocations of the same Program EPF, repeat Steps 6
through 10. Because avoiding Steps 1 through 5 and Step 11 for
Subsequent invocations of an EPF saves time, the use of EPFSINVK is
Sometimes preferred over the use of EPFSRUN.

Note that Step 2 and Steps 4 through 6 correspond to calling the
EPFSRUN subroutine with a key value of k$restore_only as described
earlier in this chapter. You may choose to use EPFSRUN rather than
EPFSMAP, EPFSALLC, and EPFSINIT, if that is more appropriate for your
application. After calling EPFSRUN with the kSrestore_only key, close
the program EPF file as described in Step 3, then continue with Step 7
of the above procedure to invoke the EPF.

The eleven steps are described below. Steps peculiar to the use of
EPFSINVK are described in detail; steps identical to the use of
EPFSRUN refer back to the descriptions given in that section.

Step 1: Open the EPF File

This step is identical to Step 1 as described in the section entitled
The EPFSRUN Subroutine, earlier in this chapter.

First Edition 4-28

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Step 2: Invoke EPFSMAP

The calling program calls EPFSMAP to map the EPF to memory, passing the

file unit number of the opened program EPF file and obtaining an EPF

identifier for use with the other EPF$ subroutines (except for EPFSRUN,

described above). This corresponds to Phase 4 of the life of an EPF,

as described in Volume I of this series.

Figure 4-3 illustrates the calling sequence for the EPFSMAP subroutine.

The EPFSMAP subroutine may be used to map either a program EPF or a

library EPF. (Although this chapter does not describe the use of EPF§

subroutines on library EPFs, most of them work identically with library

EPFs as they do with program EPFs. The exception is EPFSINVK, which

supports only the invocation of program EPFs.)

The arguments in the EPFSMAP calling sequence are described next.

The Key: Specify either kSany or k$copy for key. (The value k$dbg is

used only by DG, Prime's source~level debugger. You may use it, but

it only increases the amount of virtual memory used by an EPF compiled

with the -DEBUG option, without providing any additional

functionality.)

The kSany key is most often used, because it specifies that the EPF is

to be mapped to any available segnents. The procedure (PROC) segnents

of a mapped EPF cannot be modified by a user, because they may be

shared between users by PRIMDS.

The kScopy key is used when the invoking program intends to modify the

procedure (PROC) segnents of the EPF. Instead of mapping the procedure

segments to memory, k$copy causes EPFSMAP to copy their contents into

memory as for static-mode programs. Use the kScopy key if you plan to

set breakpoints in an EPF via VPSD, for example.

The File Unit Number: Pass the file unit number of the EPF in unit.

This is the unit on which your program opened the EPF runfile for

VMFA-read in Step 1. Once you have called EPFSMAP, you can close this

unit.

The Segnent Access: Pass k$rx in access. This represents the desired

segment access, Only one other value iS allowed in access, the value

k$r. However, both k§$rx and k§r result in the same effective segnent

access — read and execute access, Therefore, always use k$rx access

in case kSr is someday redefined to mean something different (such as

read-onlyaccess).

The Error Code: A standard error code is returned in code. Possible

errors codes are summarized later in this chapter.

4-29 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Map an EPF to Memory

File Unit
Number

KS$COPY
KS$DBG KSAX

Vv
HALF HALF HALF

INT INT INT

14 4
EPFS$MAP(key, unit, access, code)

Y '

KSANY

FULL HALF
INT INT

| Standard
Error

EPF Id Code

Calling Sequence of EPFSMAP
Figure 4-3

First Edition 4-30

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The EPF Identifier: The returned FULL INT value is an identifier of

the mapped EPF that your program passes to subsequent EPF$ subroutines

to identify the EPF.

Step 3: Close the EPF File

This step is identical with Step 3 described in the section entitled

THE EPFSRUN SUBROUTINE, earlier in this chapter.

Step 4: Invoke EPFSCPF (Optional)

The calling progran may call EPFSCPF, passing it the EPF identifier, in

order to obtain information on the specified EPF, such as its selection

of command processing features,

Figure 4-4 illustrates the calling sequence of the EPFSCPF subroutine.

The epf-id and code arguments have the obvious meanings. The epf-info

structure, which may be used by your program to select valid command

processing features, has the following declaration in PL/I-G:

dcl 1 epf_info, /* EPF info data structure */

2 command_flags,

3 wildcards bit(1), /* Enable wildcards. */

3 treewalks bit(1), /* Enable treewalks. */

3 iteration bit(1), /* Enable iteration. */

3 verify bit(1), /* Verify wildcard selections. */

3 reserved bit(4) /* Ignore. */
3 file_types,

4 directory bit(1), /* Select directories. */

4 segdir bit(1), /* Select segnent directories. */

4 file bit(1), /* Select files. */

4 acat bit(1), /* Select access categories. */

4 rbf bit(1), /* Select RBF files. */

4 reserved bit(3), /* Ignore. */

2 name_generation_position fixed bin(15); /* Token #. */

For wildcards, treewalks, and iteration, a bit set to 1 indicates that

PRIMOS is to perform the corresponding function. For example, if

wildcards is 'l'B, PRIMOS intercepts a specification of @@ and expands

the command line to several command lines, one for each file system

object in the directory (as limited by the object selection in

filetypes). If wildcards is '0'B instead, PRIMOS passes a

Specification of @@ to the program EPF without modification, and

performs no expansion.

4-31 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Obtain Information on EPF

EPF
Id

FULL
INT

EPFSCPF(epf-id, epf-info, code)

| |
STRUC HALF

INT

Standard
Error
Code

Bit #
HalfwordOffset 1 2 3 4 5 6 7 8Y9 10 141

O |wild| tree} iter |vfy| — |—
12 13 14 #15 16

seg
—

|

—

|

dir dir file j}acat| rbof} —|—

|

—
 Name Generation Position

Calling Sequence of EPFSCPF
Figure 4-4

First Edition 4-32

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The verify bit is the default setting of the -VERIFY or -NO_VERIFY

(-VFY or -NVFY) options. When 'l'p, the default is -VERIFY; when

'Q0'B, the default is -NO_VERIFY. Actual verification takes place only

when wildcards are being processed by the command processor —— that is,

when wildcards is set to '1'B and the command line contains an actual

wildcard specification.

The file types bits indicate the default settings of the -FILE,

—-SEGMENT_DIRECTORY (-SEGDIR), —~DIRECTORY (-DIR),

|

—ACCESS_CATHGORY

(-ACAT), and -RBF options. A bit set to '1l'B indicates that the

corresponding file type is to be processed.

Note that all filetype bits except the -RBF bit are additive, That

is, setting both -FILE and -SEGDIR processes both types. The —RBF bit,

however, determines the nature of the other file types. For example,

if -SEGDIR and -RBF are both specified, then only RBF segnent

directories are processed. :

The file_types bits are used only during wildcard processing, as with

the verify bit. For example, if the command RESUME MYPROG XYZ is

given, MYPROG is invoked for the file system object named XYZ even if

XYZ is a directory and the directory bit is reset to 'O'B. However, if

the command RESUME MYPROG xyYz@@ is given (and the wildcards bit is

'1'B), the XYZ directory is not selected if directory is '0'B, because

wildcard processing is taking place.

The name_generationposition variable is an integer that specifies

which of the tokens that follow the program or command name is to ke

used as the name generation source pattern. Normally, this variable is

set to 1, meaning that the first token after the RESUME MYPROG tokens

is to be used as the source pattern. For example, the command line

RESUME MYPROGFOO BAR =

produces an effective command line of:

RESUME MYPROG FOO BAR FOO

However, if name_generationposition is 2, the second token is used

instead. For example, given the same command line above, the effective

command line produced when name_generation_position is 2 is:

RESUME MYPROG FOO BAR BAR

The token count for a program EPF installed in CMDNCO also begins

immediately after the program name. Therefore, the following two

command lines always produce the same result with regard to name

generation pattern processing.

4-33 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

MYPROG AB =

RESUME CMDNCO>MYPROG AB =

Step 5: Invoke EPFSALLC

The calling program now calls EPFSALLC to allocate the linkage areas
for the EPF, passing the EPF identifier. This step corresponds to
Phase 5 of the life of an EPF,

Figure 4-5 illustrates the calling sequence of the EPFSALLC subroutine,

The epf-id and code arguments have the ustal meanings.

Step 6: Invoke EPFSINIT

The calling program calls EPFSINIT to initialize the linkage areas for
the EPF, passing the EPF identifier, This step corresponds to Phase 6
of the life of an EPF,

Figure 4-6 illustrates the calling sequence of the EPFSINIT subroutine.

The epf-id and code arguments have the usual meanings.

The key argument specifies whether a complete initialization is to be
Performed, The first time EPFSINIT is called for an EPF that has just
had its linkage allocated via EPFSALLC, key must be set to kSinitall,
which specifies complete initialization. After calling EPFSINVK, in
the next step, a subsequent invocation of the program requires only a
call to EPFSINIT with a key of kSreinit to reinitialize only certain
portions of the linkage areas for the EPF before calling EPFSINVK
again.

Specifically, while a key of kSinitall specifies complete
initialization of the linkage areas, a key of kSreinit specifies that
only faulted IPs (dynamic links) and static data are to be
reinitialized, ECBs, static IPs, and other nonfaulted IPs are not
reinitialized. Once initialized, they do not need to be initialized
again unless the program modifies them during execution (which is
considered poor programming practice).

If a program being invoked by your program seems to fail in strange
ways after the first invocation, have your program use the kSinitall
key exclusively to see if the problem is caused by the invoked program
— it might be modifying linkage data that should not be modified onceit has been initialized by EPFSINIT,

First Edition 4-34

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Allocate Linkage Areas for EPF

EPF
Id

FULL

INT

EPFSALLC(epf-id, code)

HALF
INT

Standard
Error

Code

Calling Sequence of EPFSALLC
Figure 4-5

4-35 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Initialize Linkage Areas for EPF

KSINITALL
KSREINIT

EPF

tt
HALF FULL

INT INT

1 |
EPFSINIT (key, epf-id, code)

!

HALF
INT

Standard
Error
Code

Calling Sequence of EPFSINIT
Figure 4-6

First Edition 4-36

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Step 7: Invoke EPFSINVK

The calling progran calls EPFSINVK to invoke the program EPF, passing

the EPF identifier. This step corresponds to Phase 7 of the life of an

EPF.

Figure 4-7 illustrates the calling sequence for the EPFSINVK

subroutine.

The epf-id and code arguments have the usual meanings. The remaining

arguments correspond precisely to the same arguments to the EPFSRUN

subroutine, described earlier in this chapter. In fact, as with

EPFSRUN, the latter five arguments may be omitted if the main

entrypoint of the target program EPF does not accept any arguments,

Step 8: Check the Returned Error Code

This step is identical to Step 4 in the section entitled THE EPFSRUN

SUBROUTINE, earlier in this chapter.

Step 9: Check the Returned Command Status

This step is identical to Step 5 in the section entitled THE EPFSRUN

SUBROUTINE, earlier in this chapter.

Step 10: Use and Free the Returned Function Value Structure

This step is identical to Step 4 in the section entitled THE EPFSRUN

SUBROUTINE, earlier in this chapter.

Step 11: Invoke EPFSDEL

The calling program calls EPFSDEL to remove the program EPF fran

memory, passing the EPF identifier. This step corresponds to Phase 10

of the life of an EPF.

Figure 4~8 illustrates the calling sequence of the EPFSDEL subroutine.

The epf-id and code arguments have the usual meanings.

If the EPF is still in use by this process, such as when a user types

Control-P while the program is executing, then the EPF is not removed,

and an error code (eSswpr) is returned in code.

The EPF is not actually removed from the system's virtual memory if

other users have the EPF mapped to their memory. However, it is

4-37 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Invoke a Program EPF

____ Command Line
Arguments

Command
Processing

Information Bit 1 2.......... 16

Id
f=0: Not a Function

Call
f=1: A Function Call

EPF [" f]reserved _]

1FULL =32766 TR

INT STRING STRUC BIT

| | ; |
EPFSINVK(epf-id, code, command-line, severity-code, command-information, function-call, rtn-fcn-ptr)

| !
HALF HALF PTR
INT INT

Status From STRUC
Attemptto
Invoke Program Status From

Invoked Program

Halfword

0 0 (Version)

1 |Returned Value

=32766
STRING

Calling Sequence of EPFSINVK
Figure 4-7

First Edition 4-38

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Remove an EPF From Memory

EPF
Id

FULL

INT

EPFS$DEL(epf-id, code)

HALF
INT

Standard
Error
Code

Calling Sequence of EPFSDEL
Figure 4-8

4-39 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

unmapped from the calling user's Memory, and is removed fram the
system's virtual memory when the last user unmaps it fron his or her
memory.

Error Codes From EPFS Subroutines

All of the EPF$ subroutines may encounter errors. In addition, opening
a file for VMFA-read may result in an error that pertains specifically
to the VMFA mechanism, rather than the file access mechanism. An
output argument, code, informs the calling program of the success or
failure of the operation. This argument is a HALF INT value. Symbols
are provided to allow PL/I-G, FORTRAN, Pascal, and PMA programs to
substitute mnemonic keywords for numeric values.

If code is 0, the operation was entirely successful. Otherwise, code
has one of many values. Typical values and their meanings are listed
for each EPFS subroutine, Not all possible error codes are listed;
for example, PRIMENET-related error codes such as ESRLDN (The remote
line is down) may be returned by one or more of these subroutines, but
are not listed.

Error Codes Involving the KSVMR Key: Error codes specific to opening a
file for VMFA-read (using the kSvmr key) are listed below. Other error
codes applying to opening files in general may also be returned.

Keyword Value Meaning

<ok> 0 The operation was successful.

ESNRIT 10 The user has insufficient access to open
the target file for VMFA-read. Currently,
Read access to the file is required,

ESNDAM 109 The target object is not a DAM file; this
error code is also returned if an attempt
is made to open the cache directory by
specifying the kScurr value forthe
filename or by specifying a null pathname.

Error Codes From EPFSMAP: Error codes that may be returned by EPFSMAP
are:

Keyword Value Meaning

<ok> 0 The operation was successful.

ESUNOP 3 The unit specified in unit is not open.

First Edition 4-40

INVOKING PROGRAMS FROM WITHIN PROGRAMS

ESBPAR 6 An invalid segment access has

_

been

specified in access. It must be either

k$rx or k§r.

ESBKEY 28 The value of keyis invalid.

ESBUNT 29 The value specified in unit is an invalid

file unit number.

ESNMVS 107 There are not enough VMFA segments in the

system to accommodate the EPF. If this

errors persists, contact your System

Administrator, who may wish to increase the

number of VMFA segments on your system (via

the NVMFS configuration directive in the

system configuration file).

ESNMI'S 108 There are no more temporary segments

available into which the EPF procedure

segments can be copied.

ESNDAM 109 The file open on unit is not a DAM file.

ESNOVA 110 The file open on unit is not open for

VMFA-read. It must be opened using the

kSvmr key.

ESBVER 158 Invalid EPF version. The file open for

VMFA-read is either a corrupted EPF, not an

EPF, or an EPF generated by a future

revision of PRIMOS that is not supported by

the current revision of PRIMOS.

ESEPFT 217 The file open for VMFA-read on the file

unit is not a valid EPF. Either the file

contains a corrupted EPF or is not an EPF

at all, or the file contains an EPF

generated by a revision of PRIMOS later

than Rev. 19.4 that is not recognized by

Rev. 19.4 PRIMOS.

ESEPFL 222 The EPF file is too large for the current

EPF implementation. More segments are

required by the EPF than are supported by

the current revision of PRIMOS. If you are

using the -DEBUG option, recompile the

program without the option to reduce its

size. Alternatively, consider splitting

the program up into smaller pieces, such as

one progran EPF and one or more library

EPF'S.

4-41 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Error Codes Fran EPFSCPF:

ares

Keyword

<ok>

ESBPAR

Value

0

6

Meaning

The operation was successful.

The epf-id passed represents an EPF that is
no longer mapped to memory.

Error Codes Fram EPFSALLC: Error codes that may be returned
EPFSALLC are:

Keyword

<ok>

ESBPAR

ESBVER

ESEPFT

ESILTD

First Edition

Value

0

6

158

217

219

Meaning

The operation was successful.

The epf-id passed represents an EPF that is
no longer mapped to memory.

Invalid EPF version. The EPF is either a
Corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMOS
that is not supported by the current
revision of PRIMOS. Because this condition
is checked by EPFSMAP, this error is not
likely to occur when calling ZPFSALLC
unless it is called out of sequence,

The EPF is nota valid EPF. Either the
file contains a corrupted EPF or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIMS later
than Rev. 19.4 that is not recognized by
Rev. 19.4 PRIMOS. Because this condition
is checked by EPFSMAP, this error is not
likely to occur when calling EPFSALLC
unless it is called out of sequence,

The EPF contains an invalid linkage
descriptor. The problem is not with the
calling program; this error usually
indicates a corrupted EPF file,

4-42

Error codes that may be returned by EPFSCPF

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Error Codes Fran EPFSINIT: Error codes that may be returned by

EPFSINIT are:

Keyword Value Meaning

<ok> 0 The operation was successful.

ESBPAR 6 The epf-id passed represents an EPF that is

no longer mapped to memory.

ESBKEY 28 Fither the key argument is invalid (not

kSinitall or k$reinit), or the k$reinit key

is specified but the linkage areas for the

EPF have not yet been fully initialized (by

specifying the kS$initall key ina call to

EPFSINIT) .

ESBARG 71 The EPFSALLC has not yet been successfully

called to allocate linkage areas for this

EPF.

ESBVER 158 Invalid EPF version. The EPF is either a

corrupted EPF, not an EPF, or an

_

EPF

generated by a future revision of PRIMDS

that is not supported by the current

revision of PRIMOS. Because this condition

is checked by EPFSMAP and EPFSALLC, this

error is not likely to occur when calling

EPFSINIT unless it is called out of

sequence,

ESEPFT 217 The EPF is not a valid EPF. Either the

file contains a corrupted EPF or is not an

EPF at all, or the file contains an EPF

generated by a revision of PRIMDS later

than Rev. 19.4 that is not recognized by

Rev. 19.4 PRIMOS. Because this condition

is checked by EPFSMAP and EPFSALLC, this

error is not likely to occur when calling

EPFSINIT unless it is called out of

sequence.

ESILTD 219 The EPF contains an invalid linkage

descriptor. The problem is not with the

calling program; this error ustally

indicates a corrupted EPF file.

ESILTE 220 The EPF contains an invalid linkage

descriptor. The problen is not with the

calling program; this error usually

indicates a corrupted EPF file.

4-43 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Error Codes From _EPFSINVK: Error codes that may be returned by
EPFSINVK including any codes that may be returned by EPFSDEL in
addition to those listed below.

Keyword Value Meaning

<ok> 0 The operation was successful,

ESBPAR 6 The epf-id passed represents an EPF that is
no longer mapped to memory.

ESBVER 158 Invalid EPF version. The EPF is either a
Corrupted EPF, not an EPF, or an EPF
generated by a future revision of PRIMOS
that is not supported by the current
revision of PRIMOS. Because this condition
is checked by EPFSMAP, EPFSALLC, and
EPFSINIT, this error is not likely to occur
when calling EPFSINVK unless it is called
out of sequence,

ESEPFT 217 The EPF is not a valid EPF, Either the
file contains a corrupted EPF or is not an
EPF at all, or the file contains an EPF
generated by a revision of PRIMDS beyond
Rev. 19.4 that is not recognized by
Rev. 19.4 PRIMOS. Because this condition
is checked by EPFSMAP, EPFSALLC, and
EPFSINIT, this error is not likely to occur
when calling EPFSINVK unless it is called
out of sequence.

ESECEB 221 The command envirorment breadth limit has
been reached; the currently running
program can call no more programs. Use the
LIST_LIMITS command to display command
envirorment limits, or use the C&SBRD
Subroutine to determine the command
enviroment breadth limit from within a
program.

First Edition 4-44

INVOKING PROGRAMS FROM WITHIN PROGRAMS

Error Codes From EPFSDEL: Error codes that may be returned by EPFSDEL

are:

Keyword Value Meaning

<ok> 0 The operation was successful.

ESBPAR 6 The epf-id passed represents an EPF that is

no longer mapped to memory.

ESBVER 158 Invalid EPF version. The EPF is either a
corrupted EPF, not an EPF, or an EPF

generated by a future revision of PRIMOS

that is not supported by the current

revision of PRIMOS. Because this condition

is checked by EPFSMAP, EPFSALLC, EPFSINIT,

and EPFSINVK, this error is not likely to

occur when calling EPFSDEL unless it is

called out of sequence.

ESEPFT 217 The EPF is nota valid EPF. Either the

file contains a corrupted EPF or is not an

EPF at all, or the file contains an EPF

generated by a revision of PRIMOS beyond

Rev. 19.4 that is not recogized by

Rev. 19.4 PRIMOS. Because this condition

is checked by EPFSMAP, EPFSALLC, EPFSINIT,

and EPFSINVK, this error is not likely to

occur when calling EPFSDEL unless it is

called out of sequence.

ESSWPR 225 The EPF is suspended by this user process,

and hence cannot be unmapped from memory.

This error code is returned if a program

attempts to call EPFSDEL to unmap itself.

THE FRESRA SUBROUTINE

After calling CP$, EPFSRUN, or EPFSINVK to invoke a function, and after

making use of the returned function value, your program must call

FRESRA to free the memory used to hold the returned function value.

(Call FRESRA only if the function your program invoked actually

returned a function value.)

Figure 4-9 illustrates the calling sequence of FRESRA. Simply pass the

returned function pointer (rtn-fcn-ptr).

For information on how returned function values are set, see Chapter 3,

‘ including the descriptions of the ALSSRA and ALCSRA subroutines.

4-45 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Free a Returned Function Value Structure

Returned
Function
Pointer

PTR

FRESRA(rtn-fcn-ptr)

Calling Sequence of FRESRA
Figure 4-9

First Edition 4-46

INVOKING PROGRAMS FROM WITHIN PROGRAMS

SAMPLE PROGRAMS

The first sample progran is called SLOW_INVOKE. It takes an EPF name

and command arguments for the EPF as arguments to the program, and it

then performs each step associated with executing the target EPF.

After each step, it pauses so that the user may use the LIST_EPF

-DETAIL command to see how far it has gotten. Although not necessarily

a useful example by itself, this program does illustrate how each step

is performed, and also shows the PL/I-G declarations for the

appropriate subroutines and structures.

slow_invoke: proc (x_command_line , code, command_state, command_flags,

return_function_ptr) ;

dcl x_command_line char(1024) var,

code fixed bin(15),

1 command_state,

2 com_name char (32) var,
2 version fixed bin(15),
2 veb_ptrptr,

2 cp_iter_info,
3 mod_after_date fixed bin(3l),

3 mod_before_date fixed bin(31),

3 bk_after_date fixed bin(31),

3 bk_before_date fixed bin(31),

3 type_dir bit(1),
3 type_segdir bit(1),
3 typefile bit(1),
3 type_acat bit(1),
3 type_rbf bit(1),

mozl bit(11),
verify_sw bit(1),
botup_sw bit(1),
mboz2 bit(14),
walkfrom fixed bin(15),
walk_to fixed bin(15),
initeration bit(1),
in_wildcard bit(l),
in_treewalk bit(1),
mbz3 bit(13),

1 command_flags,
2 command_function_call bit(1),

2 moz bit(15),
return_function_ptr ptr;

W
W
W
W
W
W
W
W
W
W

%include 'SYSCOM>ERRD. INS.PL1';

%include 'SYSCOM>KEYS.INS.PL1';

dcl epf_unit fixed bin(15),
epf_id fixed bin(31l),
epf_filename char(128) var,
i fixed bin(15),
command_line char(1024) var,

4-47 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

dcl

epf_command_line char(1024) var,
basename char(32) var,
suffix_used fixed bin(15),
type fixed bin(15),
command_status fixed bin(15);

errpr$ entry (fixed bin(15) ,fixed bin(15) ,char(80),
fixed bin(15) ,char(80) ,fixed bin(15)),

srsfx$ entry (fixed bin(15),char(128) var,fixed bin(15),
fixed bin(15) ,fixed bin(15) ,char(32) var,char(32) var,
fixed bin(15) ,fixed bin(15)),

clo$fu entry (fixed bin(15) ,fixed bin(15)),
tnou entry (char (80) ,fixed bin(15)),
epfSmap entry (fixed bin(15) ,fixed bin(15) ,fixed bin(15),

fixed bin(15)) returns(fixed bin(31)),
epfSallc entry (fixed bin(31) ,fixed bin(15)),
epfSinit entry (fixed bin(15) ,fixed bin(31) ,fixed bin(15)),
epfS$invk entry (fixed bin(31) ,fixed bin(15) ,char(1024) var,

fixed bin(15),
l, 2 char(32) var,

2 fixed bin(15),
2 ptr,
2, fixed bin(31),

fixed bin(31),
fixed bin(31),
fixed bin(3l),
bit(1),
bit(1),
bit(1),
bit(1),
bit(1),
bit(11),
bit(1),
bit(1),
bit(14),
fixed bin(15),
fixed bin(15),
bit(1),
bit(1),
bit(1),
bit (13),

1, 2 bit(1),
2 bit(15),

ptr),
epf£$del entry (fixed bin(31) ,fixed bin(15));

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

W
w
W
w
W
w

command_line=trim(x_command_line,'11"b);
i=index(command_line,' ');

if i=0 & command_line=''
then do;

code=eSivcan;
call errpr$(kSirtn,code,'Specify EPF filename',20,

"SLOW_INVOKE' ,11) ;

First Edition 4-48

INVOKING PROGRAMS FROM WITHIN PROGRAMS

return;

end;

if i=0
then do;

epf_filename=command_line;
epf_command_line='';
end;

else do;
epf_filename=substr (command_line,1,i-1) 3

epf_command_line=trim(substr (command_line,it+1) ,'11'b) ;

end;

call srsfx$ (k$getut+k$vmr ,ep£_filename,epf_unit, type,1, ' RUN’,

basename, suffix_used, code);

if code”=0
then do;

call errpr$(k$irtn, code, (epf_filename),

length (epf_filename), 'SLOW_INVOKE' ,11) 3

return;

end;

call tnou('SRSFX$ complete’ ,15);

call pause_me;

epf_id-epf$map(kSany,epf_unit, k$rx, code) ;

call cloSfu(epf_unit,i) ;
if code*=0

then do;
call errpr$(k$irtn, code, 'Mapping '| lepf_filename,

length (epf_filename) +8, 'SLOW_INVOKE" rll);

return;

end;

call tnou('EPFSMAP complete’ ,16) 3

call pause_me;

call epf$allc(epf_id, code);

if code*=0
then do;

call cloSfu(epf_unit,i);

call errpr$(k$irtn,code, "Allocating ' | lep£_filename,

length (epf_filename) +11, 'SLOW_INVOKE' yll)?

return;

end;

call tnou('EPFSALLC complete',17) ;

call pause_me;

call epf$init (kSinitall,epf_id, code) ;

if code*=0
then do;

call cloS$fu(epf_unit,i);

call errpr$(kS$irtn,code, ‘Initializing '| lep£_filename,

4-49 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

length (epf_filename) +13, 'SLOW_INVOKE' ,11);
return;

end;

call tnou('EPFSINIT complete! ,17);
call pause_me;

command_status=0 ;
Command_state.com_name=basename;
call epf$invk (epf£_id, code, epf_command_line, command_status,

command_state,command_flags, return_function_ptr);
if code*=0

then do;

call clo$fu(epf_unit, i) 3
call errpr$(kSirtn, code, "Invoking '||epf_filename,

length (epf_filename) +10, "SLOW_INVOKE' ,11) ;
return;
end;

call tnou('EPFSINVK complete',17) ;
Call pause_me;

call epf$del (epf_id, code);
if code*=0

then do;

call cloSfu(epf_unit,i) ;
call errpr$(k$irtn,code,'Removing '|lepf_filename,

length (epf_filename) +9, 'SLOW_INVOKE' ,11);
return;
end;

call tnou('EPFSDEL complete',16) :
call pause_me;

code=command_status;

return;

pause_me: proc;

dcl pause_ char(32) var static init('PAUSES');

dcl signl$ entry(char(32) var,ptr options (short) ,fixed bin(15),
ptr options(short) ,fixed bin(15) ,bit(1) aligned);

call signl$(pause_,null() ,0,nul1() ,0,'1'b);

end; /* pause_me: proc */

end;

First Edition 4-50

INVOKING PROGRAMS FROM WITHIN PROGRAMS

The next sample progran, called DISPLAY_EPF_INFO, displays command

processing information for an EPF by mapping it to memory, calling

EPFSCPF, and then removing the EPF from memory. It illustrates how to

process the informationreturned by EPFSCPF.

display_epf_info: proc (command_line, code, command_state,
command_flags, return_function_ptr);

dcl command_line char(1024) var,
code fixed bin(15),
1 command_state,

2 com_name char(32) var,
2 version fixed bin(15),

1 command_flags,
2 command_function_call bit(1),
2 moz bit(15),

return_function_ptr ptr;

%include 'SYSCOM>ERRD. INS.PL1';
%include 'SYSCOM>KEYS.INS.PL1';

dcl epf_unit fixed bin(15),
epf_id fixed bin(31),
epf_filename char(128) var,
i fixed bin(15),
basename char (32) var,
suffix_used fixed bin(15),
type fixed bin(15);

dcl errpr$ entry (fixed bin(15) ,fixed bin(15) ,char (80) ,
fixed bin(15) ,char (80) ,fixed bin(15)),

srsfx$ entry (fixed bin(15) ,char(128) var,fixed bin(15),

fixed bin(15) ,fixed bin(15) ,char(32) var,char(32) var,

fixed bin(15) ,fixed bin(15)),
cloSfu entry (fixed bin(15) ,fixed bin(15)),
tnou entry (char (80) ,fixed bin(15)),
epfSmap entry (fixed bin(15) ,fixed bin(15) ,fixed bin(15),

fixed bin(15)) returns(fixed bin(31)),
epf$del entry (fixed bin(31) ,fixed bin(15));

if command_line=''
then do;

code=eSivan;
call errpr$(kSirtn, code, 'Specify EPF filename',20,

(com_name) , length (com_name)) ;
return;

end;

epf_filename=command_line ;

call srsfx$(kSgetutkSvmr ,epf_filename,epf_unit,type,1,'.RUN',
basename , suff£ix_used, code) ;

if code*=0

4-51 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

then do;
call errpr$(k$irtn, code, (epf_filename) ,

length (epf_filename) , (com_name) , length (com_name)) ;
cerns
end;

epf_id=epfSmap (kSany,epf_unit, k$rx, code);
call clo$fu(epf_unit,i); /* Close the unit, */
if code*=0

then do;
call errpr$(k$irtn, code, 'Mapping '||epf_filename,

length (epf_filename) +8 , (com_name) , length (com_name)) ;
return;
end;

call say_nl (trim(char (ep£_id) ,'11"b));

call show_epf_info(epf_id); /* Display the information, */

call epf£$del (epf£_id, code) ;
if code*=0 & code“*=eSswpr

then do;
call clo$fu(epf_unit, i);
call errpr$(k$irtn, code, 'Removing '| lepffilename,

length (epf£_filename) +9, (com_name) ,length (com_name)) ;
return;
end;

else if code=eSswpr
then call say_nl('(Still suspended by this process.) ');

code=0;
return;

show_epf_info: proc (epf_id) ;

dcl epf_id fixed bin(3]1);

dcl code fixed bin(15),
1 epf_info, /* EPF info data structure */

2 command_flags,
3 wildcards bit(1),
3 treewalks bit(l),
3 iteration bit(1),
3 verify bit(1),
3 reserved bit(4),
3 file_types,

directory bit(1),
segdir bit(1),
file bit(1),
acat bit(l),
rbf bit(l),
reserved bit(3),

2 name_generation_position fixed bin(15);

h
h
b
&
&
h

b
h
P
L

First Edition 4-52

INVOKING PROGRAMS FROM WITHIN PROGRAMS

del epfS$cpf entry(fixed bin(31),
1, 2, 3 bit(l),

3 bit(1),
3 bit(1),
3 bit(1),
3 bit(4),

3,
4 bit(l),
4 bit(1),
4 bit(1),
4 bit(1),
4 bit(1),
4 bit(3),

2 fixed bin(15),
fixed bin(15));

/* Call EPFSCPF to get the information. */

call epf$cpf (epf_id,epf_info, code);

if code*=0 then call errpr$(k$irtn, code, 'Calling EPFSCPF' ,15,

(com_name) , length (com_name)) ;
else do;

/* Command processing info. */

call say_nl('');
call say_nl('Info on '|lepf_filename||':');
call say_nl('');

call say('Command processing:');

if epf_info.wildcards then call say(' wild");

if epf_info.treewalks then call say(' tree');

if epf_info.iteration then call say(' iter");

if epf_info.verify then call say(' vfy');

call say_nl('');
call say('Object selection:');

if epf_info.directory then call say(' dir");
if epf_info.segdir then call say(' segdir');
if epf_info.file then call say(' file');

if epf_info.acat then call say(' acat');
if epf_info.rbf then call say(' rbf');

call say_nl('');
call say_nl('Name generation position: '

| |trim(char (name_generation_position) ,'11'b));

call say_nl('');

end;

end; /* show_epf_info: proc */

4-53 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

say: proc(text) ;

dcl text char(*) var;

dcl tnoua entry (char (*) ,fixed bin(15));

call tnoua ((text) , length (text)) ;

end; /* say: proc */

Say_nl: proc(text) ;

dcl text char(*) var;

dcl tnou entry (char (*) ,fixed bin(15));

call tnou((text) , length (text)) ;

end; /* say: proc */

end;

IF A PROGRAM INVOKES ITSELF

A program may invoke itself recursively, either directly by calling
itself using CP$, EPFSRUN, or EPFSINVK, or indirectly by calling
another program or collection of programs that ultimately call the
original progran.

A program invoking itself recursively via CPS, EPFSRUN, or EPFSINVK,
whether directly or indirectly, does not necessarily produce the same
results as it does when it calls itself by invoking its own main
entrypoint. In both cases, dynamic storage is allocated and
initialized for each invocation. However, static storage is allocated
only during program invocation; it is allocated for all procedures in
that program each time the program is invoked. Once the program is
running, no additional static storage is allocated by PRIMDS,

PRIMOS allocates and initializes one copy of static storage per program
invocation. Static storage includes COMMON and STATIC EXTERNAL areas
except for those explicitly named using the SYMBOL subcommand of BIND.
In addition, static storage contains subroutine linkage pointers,
static data (SAVE or DATA in FORTRAN, STATIC in PL/I), and program
constants.

Because PRIMOS separates progran invocations so that they cannot
destroy one another's data, one program can be invoked, suspended, and
reinvoked; and then the original invocation can be continued by
issuing the START command. The second invocation of the program does
not affect the first invocation of the program; therefore, the results
of the first invocation are essentially unchanged.

First Edition 4-54

INVOKING PROGRAMS FROMWITHIN PROGRAMS

Of course, if a program makes use of data that is not in static or
dynamic storage, such as QOMMON or STATIC EXTERNAL storage specified
using the SYMBOL command, then separate invocations of the program are
not necessarily independent of each other, Other data not in static or
dynamic storage includes system objects such as attach points, files,
file units, and so on, PRIMOS does not provide a fully recursive
command envirorment, it provides only a separation of per-program data
between program invocations. See Chapter 6 for more information on
this subject.

Terminal Input and Output

Keep in mind that invoking a command from within a program does not
redirect terminal input or output. For example, if you invoke the LD
command fron within a program, the output from LD is sent to the user
terminal, and responses to the —More-— prompt are solicited from the
user terminal.

Therefore, you may wish to use the COMO$S subroutine or the internal
PRIMOS command COMOUTPUT to redirect terminal output to a command
output file. To redirect terminal input to a command input file
written by your program, you may use QOOMIS$ or the internal PRIMOS
command COMINPUT; alternatively, when supported by the command, you
may specify an option indicating how to substitute for terminal input.
(For example, LD accepts a -NO_WAIT option, which specifies that
—More-- prompts are not to be issued.)

Few functions perform any terminal I/O. Some allow the invoking
program to specify command line options that disable or redirect
terminal I/O.

4-55 First Edition

The Command

Processor Stack

This chapter describes the command processor stack and how to examine

and manipulate it.

WHAT THE GOMMAND PROCESSOR STACK IS USED FOR

The command processor stack is used by the command processor to hold

information that pertains to a particular command level or toa

particular program invocation. In addition, the command processor
stack is used by program EPFs to hold stack frames for procedures.

In fact, the command processor itself consists of a collection of
procedures that use the command processor stack for their stack frames.

A procedure that uses a particular stack is said to be executing on
that stack. Therefore, a program EPF that is invoked by the command
processor executes on the command processor stack.

Subroutines in a library EPF usually execute on the same stack as their

calling program. Because a library EPF is a collection of entrypoints,

different subroutines in a library EPF may execute on different stacks;

the library EPF itself does not execute on a particular stack.

Therefore, many of the programs that you develop, implement, debug, and
test will use the command processor stack. You will find it useful to

- know how to examine and manipulate the stack.

5-1 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

QOMMAND LEVELS

As explained in Chapter 1, a command level consists of the invocation
of the listener, which displays the OK, or ER! prompt and awaits. the
input of a user command.

The Listener

A command level is distinguished by the invocation of the listener,
whose stack frame on the command processor stack indicates a new
command level, Typically, this stack frame is easily distinguished by
the conditions for which it has set up orunits. You can see this by
issuing the DUMP_STACK command while at command level 1:

OK, DUMP_STACK -—ON_UNITS

No condition frame exists on the stack. (dmstk)
Backward trace of stack from frame 1 at 6002(3)/6576.

STACK SEGMENT IS 6002.

(1) 006576: Owner= (LB= 13(0) /20250) .
Called from 13(3)/135505; returns to 13(3)/135515.

(2) 005520: Owner= (LB= 13(0) /137334).
Called from 13(3) /134650; returns to 13(3) /134654.

(3) 002212: Owner= (IB= 13(0) /137334).

Called from 13(3)/13521; returns to 13(3)/13541.

(4) 001406: Owner= (LB= 13(0) /20250).
Called fran 13(3)/7233; returns to 13(3)/7245.
Onunit for "CLEANUPS" is 13(3)/21331.
Onunit for "STOPS" is 13(3)/21051.
Onunit for "SUBSYS_ERRS" is 13(3)/21071.

(5) 000640: Owner= (LB= 13(0)/11220).
Called fram 13(3) /163406; returns to 13(3)/163412.
Onunit for "CLEANUPS" is 13(3)/12016.
Onunit for "ANYS" is 13(3) /124163.
Onunit for "LISTENER_ORDERS" is 13 (3) /12056.
Onunit for "SETRCS" is 13 (3) /12036.
Onunit for "REENTERS" is 13(3)/12076.

(6) 000632: Owner= (IB= 13(0) /163024).

Called fram 1(0)/163410; returns to 1(0)/0.
OK,

In the above example, the stack root is segnent '6002. This is, in
fact, the command processor stack segment at Rev. 19.4, although it may
change in future revisions.

First Edition 5-2

THE COMMAND PROCESSOR STACK

The stack frame labeled frame 6 in the above display is always at the

bottan of the command processor stack. Its frame number varies

depending on the number of stack frames on the stack at the time the

DUMP_STACK command is issued.

The stack frame labeled frame 5 is the listener's stack frame. Notice

the long list of conditions that it catches; in particular, it catches

the ANYS condition, which is the default on-unit (called DF_UNIT_).

The listener inputs a command and then invokes the command processor,

which is identified in the above sample display as stack frame 4, and

which is named STDSCP. (STDSCP stands for "Standard Command

Processor .")

Stack frames 3 and 2 belong to the iteration processor, which handles

all of the iteration list, treewalk, and wildcard processing along with

the corresponding options (such as -MODIFIED_BEFORE and -WALK_FROM) .

Stack frame 3 belongs to the iteration processor itself, while stack

frame 2 belongs to a procedure internal to the processor. Because the

DUMP_STACK -ON_UNITS command specifies no iteration, none is performed

by the iteration processor.

Stack frame 1 belongs to a procedure internal to STDSCP that executes

internal PRIMOS commands; DUMP_STACK is such a command. DUMP_STACK

does not display the stack frames it creates, but they are also present

during the execution of the command. ‘the internal-command executor

that owns stack frame 1 invokes the DUMP_STACK procedure. When

DUMP_STACK finishes executing, it returns to the internal-command

executor, which returns to the iteration processor. The iteration

processor sees no more commands to process (because there is no form of

iteration in use) so it returns to the command processor. Because the

command processor seeS no more commands to process (a semicolon, the

command separator, is not present), it returns to the listener, which

displays the OK, prampt and awaits another command.

Multiple Invocations of the Listener

More than one invocation of the listener causes multiple command levels

to be created, This is what happens when a running program encounters

an error such as an illegal instruction or when the user types

Control-P, Rather than stop the running program and return to the

listener, which would wipe out the stack history of the running

program, rendering it unrestartable and difficult to debug, the default

on-unit (DF_UNIT_) catches the condition (such as TLLEGAL_INSTS or

QUITS) and invokes the listener again, creating a new command level.

Fran this new command level, you may issue the START command to attempt

to continue the program. This causes the listener to return to its

caller, the default or-unit, which itself returns to its caller, the

_ condition-signaling mechanism. The condition-signaling mechanism then

returns to its caller, the running program, The instruction being

5-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

processed when the interruption occurred is retried, and the progran
continues running.

Not all interruptions are restartable — same program faults require
some form of repair before the program can be restarted. The QUITS
condition, however, is restartable as described above. What this means
to you as a programmer is specified in more detail at the end of this
chapter,

THE RDY COMMAND

The RDY command specifies the kind of prompt you wish displayed. When
working with the command enviroment, you will find the RDY command
useful because it can tell you what command level you are currently at.
In addition, the RDY command can display useful CPU and 1/0 usage
information for your process,

The Long Pramnpt

You can use the RDY command to display a long prompt that contains a
user-selectable prompt followed by the time of day, incremental CPU and
I/O times, the command level number, and an indicator of whether a
static-mode program is in use at the current level.

For example:

OK 15:25:14 245.275 19.103

Here, the level number is not displayed because the user is at command
level 1, If the user is at command level 2 or above, the display
appears as in the following example:

OK 15:26:36 5.869 0.118 level 2

If a static-mode progran is in use at the current level, a plus sign
(+) is displayed immediately following the level number:

OK 15:26:36 5.869 0.118 level 2+

The + sign indicates that a START command will continue execution of
the static-mode program rather than restarting the suspended program at
command level 1. It also indicates that a RELEASELEVEL command will

‘ release the static-mode program (meaning that a subsequent START would
then start the suspended program at level 1).

First Edition 5-4

THE COMMAND PROCESSOR STACK

Turning On Long Pranpts

fo turn on long prompts permanently, place the RDY —LONG command in

your LOGIN.CPL file. |

Tailoring Your Prompts

To specify the prampt you wish displayed, use the various options of

RDY as described in the PRIMOS Cammands Reference Guide. For example:

OK 15:32:22 23.721 0.000 level 2
RDY -READY_LONG 'System SYSA'
System SYSA 15:32:33 0.160 0.000 level 2

THE RELEASELEVEL COMMAND

The RELEASELEVEL command releases command levels. Because a command

level is really an invocation of the listener, RELEASE_LEVEL actually

performs a nonlocal GOTO to a previous invocation of the listener

(unless it is being run by the listener invocation for command level 1,

in which case it does nothing).

Generally, there are two reasons to use the RELEASE_LEVEL command:

e To release resources used by one or more levels and by the

programs invoked on those levels

e To return toa particular level so that a subsequent START

command will continue the appropriate progran

Typically, you use RELEASE_LEVEL to achieve one or both of the above

effects.

Please note that you cannot follow the RELEASE_LEVEL command with the

command separator followed by more commands. For example, the command

RELEASE_LEVEL —ALL;CLOSE —ALL

does not close any file units.

5-5 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Instead, you must use:

CLOSE —ALL;RELEASE_LEVEL —-ALL

This restriction is necessary because, as described earlier in this
chapter, the command processor itself executes on the command processor
stack, and subroutines that perform various forms of iteration are part
of the command processor. Therefore, in the first example above, the
RELEASELEVEL command releases the invocation of the procedure that is
prepared to execute the CLOSE -ALL command after RELEASELEVEL returns.
Note, too, that RELEASE_LEVEL never returns. Instead, it performs a
nonlocal goto by signaling a special condition. (The signaling of the
condition invokes an on-unit for the listener invocation that is the
target of the RELEASELEVEL command, It is the orm-unit that actually
performs the non-local goto.)

Releasing Resources

When you release a particular command level, all resources used by that
level are released. The resources are those used by the command
processor itself and those used by all EPFs or internal commands that
were invoked at that command level. (Certain static-mode program
resources cannot be released, as noted below.) Such resources incluce:

@ Stack frames

@ Dynamically allocated storage (except for process-class and
subsystem-class storage)

e@ Linkage areas and common storage (depending upon EPF type, but
not for static-mode programs)

@ Procedure code storage (depending upon EPF type, but not for
static-mode programs)

@ Any resources (such as file units) freed by on-units for the
CLEANUPS condition

When you release a particular level, all of these resources are freed.
In addition, the resources listed above are freed for the level that is
the target of the release, except for the stack frames used by the
invocation of the listener for that level. Therefore, you can issue
the RELEASE_LEVEL command to release to level 1, and resources used by
programs invoked on level 1 are freed; however, level 1 itself can be
freed only by logging out,

First Edition 5-6

THE COMMAND PROCESSOR STACK

Releasing to Restart a Suspended Program

You may sometimes want to release levels down toa particular level in

order to use the START command to continue the execution of a progran

invoked one level lower. ‘Thus, the following example shows a user

giving the command "RELEASE_LEVEL —TO 2," in order to restart a program

on level l.

OK, RDY —-LONG
OK 17:50:36 131.645 5.612
HELP LD

LD Lists contents of a directory

LD [pathname] [wildl ... wildl5] [options]

The LD command lets you list the contents of a directory 23 lines at

a time. The argument "pathname" specifies both the directory to be

listed and the first wildcard name. For example, "a>b>.list"

specifies entries in the directory A>B whose names match ".LIST". If

"pathname" is omitted, " "is assumed; that is, all entries in the

current directory are selected.

The argument "wildl...15" specifies additional wildcard names. An

entry is selected if it matches either the “entryname" part of

pathname or one of the wildcard names.

If no entries are selected, the message "No entries selected" is displayed.

LD pauses after 23 lines of output, displays the prompt line

"_-More-—", and waits for your response. To see more entries, press

the carriage return. To suppress further output and return to

command level, type Q, Quit, N, or No. Any other response causes LD

to display the last header and to continue listing entries.

--More-~ (user types Control-P)

QUIT.
OK 17:51:14 @.712 9.218 level 2

HELP COPY

COPY Copies file system objects

COPY source_pathname [target_pathname] {options]

source_pathname: pathname of file system object to be copied

target_pathname: pathname of output file system object

(if omitted, entryname portion
of "source_pathname" is used)

5-7 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

The COPY command copies file system objects (files, directories,
segment directories, access categories, and EPFs) from one directory

to another or within a directory. See the end of this file for
details on how EPFs (Executable Program Formats) are handled by the
COPY command. .

-~~More-— (user types Control-P)

QUIT.

OK 17:51:48 9.509 @.887 level 3

RELEASK_LEVEL ~TO 2

OK 17:51:44 9.096 8.088 level 2
START

(CR)

LD has the following options:

-NO_SORT, -NSORT —CATEGORY_PROTECTED, -CATP

-SORT_DTM, -SORTM ~DEFAULT_PROTECTED, -DFLTP

~SORT_NAME, -SORTN -SPECIFIC_PROTECTED, -SPECP
-SORT_DTB, -SORTB -DETAIL, ~DET

-SORT_SIZE, -SORTSZ -BRIEF, -BR

~REVERSE, -RV -PROTECT, -PRO

-NO_WAIT, -NW -~DT™

-SINGLE_COLUMN, -SGLCOL -DTB

-NO_HEADER, -NHE -SIZE
-WIDE -NO_COLUMN_HEADERS, -NCH

-FILE -ACAT

~SEGMENT_DIRECTORY, -SEGDIR -DIRECTORY, -DIR

You can select options in any order.

The following screens give brief descriptions of each option.

~-More~-

In the above example, the user released the second invocation of HELP
(which displayed information on the COPY command) so that a START
command would continue the first invocation (which displayed
information on the LD command).

The command envirorment does not treat static-mode programs and progran
EPFs in the same way after they terminate. Typing START after a
static-mode progran has terminated results in the continued execution
of that program; typing START after an EPF has terminated results in
the continued execution of the program that was suspended before the
EPF was invoked,

First Edition 5-8

THE COMMAND PROCESSOR STACK

Therefore, the RELEASE_LEVEL command, issued without options, is

sometimes used to prevent the START command from restarting a

static-mode progran. For example:

OK 17:58:13 418.196 20.266

HELP LD

LD Lists contents of a directory

LD [pathname] [wildl ... wildl5] {options}

The LD command lets you list the contents of a directory 23 lines at

a time. The argument "pathname" specifies both the directory to be

listed and the first wildcard name. For example, “a>b>.list"

specifies entries in the directory A>B whose names match ".LIST". If

"pathname" is omitted, " " is assumed; that is, all entries in the

current directory are selected.

The argument "wildl...15" specifies additional wildcard names. An

entry is selected if it matches either the “entryname" part of

pathname or one of the wildcard names.

If no entries are selected, the message "No entries selected" is displayed.

LD pauses after 23 lines of output, displays the prompt line

"_-More--", and waits for your response. To see more entries, press

the carriage return. To suppress further output and return to

command level, type Q, Quit, N, or No. Any other response causes LD

to display the last header and to continue listing entries.

-—~-More-- (user types Control-P)

QUIT.

OK 17:58:37 @.706 @.198 level 2

ED
INPUT

THIS IS A TEST.

(CR)
EDIT

FILE A_TEST

OK 17:50:55 @.272 98.063 level 2+

START

INPUT

(CR)
EDIT

QUIT

OK 17:59:03 0.048 9.800 level 2+

RELEASE_LEVEL

Static mode program released. (rls)

OK 17:59:07 @.069 8.008 level 2

5-9 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

START
(CR)

LD has the following options:

~-NQ_SORT, -NSORT ~CATEGORYPROTECTED, —CATP
-SORT_DTM, ~SORTM ~DEFAULT_PROTECTED, -DFLTP

~SORT_NAME, -SORTN -SPECIFIC_PROTECTED, -SPECP
-SORT_DTB, -SORTB -DETAIL, —-DET
-SORT_SIZE, -SORTSZ -BRIEF, -BR
~REVERSE, —-RV -PROTECT, -PRO
-NO_WAIT, -NW -DTM
-SINGLE_COLUMN, ~-SGLCOL ~DTB
~NO_HEADER, -NHE ~SIZE
-WIDE -NO_COLUMN_HEADERS, ~NCH
~FILE -ACAT
~SEGMENT_DIRECTORY, ~SEGDIR ~DIRECTORY, -DIR

You can select options in any order.

The following screens give brief descriptions of each option,

--More--

In the above example, the user attempted to use START to continue
execution of the previously suspended HELP program. However, because
ED is a static-mode program, ED was restarted instead, producing the
INPUT prompt. Realizing the mistake, the user entered EDIT mode and
used the QUIT subcommand of ED to exit the editor. Then, the user
issued the RELEASE_LEVEL command without an option. When invoked
without an option, RELEASE_LEVEL either releases the command level (if
no static-mode program has been invoked at the current level) or
releases the static-mode program invoked at the current level.

THE DUMP_STACK COMMAND

To display the contents of your stack, use the DUMP_STACK command.
When you issue this command without specifying a particular stack frame
as the starting point of the dump, DUMP_STACK searches the stack
(starting with the most recently created stack frames) for a condition
frame (a stack frame generated by the Signaling of a condition). If it
finds a condition frame, it starts the dump at that frame; otherwise,
it starts the dump at the stack frame of its calling procedure
(typically the internal procedure in STDSCP that executes internal
commands) .

When you are working with multiple command levels or with programs that
invoke other programs or commands, DUMP_STACK is useful for examining
‘the call history for a particular progran.

First Edition 5-10

THE COMMAND PROCESSOR STACK

By using the -ON_UNITS option of DUMP

>

STACK, as described earlier in

this chapter, you can see what conditions are being caught by each

invocation of a procedure whose stack frame is dumped. Some of the

important command environment subroutines, such as STDSCP and the

listener, are easily distinguished by the conditions they catch.

Although the list of conditions caught by any PRIMDS subroutine may

change from revision to revision, you will find it useful to experiment

with DUMP_STACK, Control-P, START, RELEASE_LEVEL, and related commands

while you are not debugging a program. Later, when you are Gebugging a

program, you will already know what the stack looks like and you will

therefore be able to make more sense of the DUMP_STACK display.

THE INITIALIZECOMMANDENVIRONMENT COMMAND

When you issue the INITIALIZE_COMMAND_ENVIRONMENT command (abbreviated

ICE), your entire process state is reset to its original login state.

PRIMOS does not do this by maintaining a copy of your login state;

instead, it releases all resources in use by your process and performs

much of the same initialization that it does when you log in. During

program development, the IC command is useful for tracking down

program bugs and measuring performance by resetting your envirorment to

a known state. For example, uninitialized variables may be more easily

tracked down if you use the ICE command.

Before You Use ICE

Issuing the ICE command is similar to issuing the LOGOUT command, with

one important difference: when you invoke ICE, no external logout

program (supplied by your System Administrator) is run. Therefore, the

ICE command has potentially damaging effects on certain Prime products

and on same user-written products, For example, a system may use an

external logout program that runs MPLUSCLUP to protect itself against a

user logout in the midst of a MIDASPLUS transaction; this system

cannot protect itself against a user issuing the ICE command at the

same point in time.

In general, the danger involved with the IG command is that one of its

main features, the resetting of your environment even if the command

processor stack or static-mode program stack is damaged, prevents the

notification of subsystems that they are being terminated. A suspended

subsystem that wishes to be notified when it is being terminated (that

is, when it and its stack history are being released) makes an orr-unit

to catch the CLEANUPS condition. Because information on conditions

caught by a procedure resides in the stack frame for that procedure,

and because ICE must avoid examining the stack in any way to prevent a

damaged stack from aborting it, ICE does not signal the CLEANUPS

_ condition.

5-11 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Therefore, use the ICE command only in circumstances where you are
certain that it will cause no harm. In general, the safest way to use
the ICE command is by issuing the following sequence of commands:

RELEASE_LEVEL —ALL
INTTIALIZE_COMMAND_ENVIRONMENT

The RELEASE_LEVEL ~ALL command does signal CLEANUPS for all stack
frames from the most recent to those for command level 1, notifying
subsystems that they are being terminated, and it then releases those
stack frames, If the command fails to complete successfully, then your
Stack is indeed damaged. In either case, it is then appropriate to
issue the ICE command, because either you have successfully notified
subsystems of impending termination, or your stack is damaged and they
cannot be notified anyway.

THE REENTER COMMAND

You may use the REENTER command if you wish to reenter a program that
catches the REENTERS condition. The REENTER command currently ignores
any command line arguments,

REENTER Signals the condition REENTERS. The first program that catches
the condition may:

@ Continue the signal and return, in which case it is considered
not reenterable (although a program invoked earlier Iay catch
the condition)

® Return without continuing the signal, in which case it is
considered not reenterable, and no other program can catch the
condition

@ Perform a nor-local goto to one of its procedures, such as its
command processor

@ Set a flag in the information structure (pointed to by the
condition frame header), and then return to restart the program,
in which case REENTER functions like START, However, the
program may distinguish START from REENTER by having’ the
REENTERS on-unit set a flag that is used elsewhere in the
program

First Edition 5-12

THE COMMAND PROCESSOR STACK

Using RELEASE_LEVEL With REENTER

As with the START command, you may wish to skip toa program so that

you may use the REENTER command on that desired program rather than on

a more recently invoked program that allows use of REENTER. You may

use the RELEASELEVEL command to accomplish this.

In fact, in some cases, you may have to use RELEASE_LEVEL to reach the

desired level so that REENTER works, even if programs between your

current command level and the desired level do not intercept the

REENTERS signal. For example, if you invoke a program EPF that

intercepts REENTERS at command level 1, such as EMAG, and you

Control-P to command level 2, invoke a static-mode program such as’ ED,

then Control-P to command level 3, .: and invoke another static-mode

program such as SLIST, you cannot use REENTER to reenter EMACS even

though neither ED nor SLIST intercept REENTERS. Instead, PRIMOS

displays the following message:

Attempt to proceed to non-executable program image. (listen_)

ER!

If this message is displayed, issue the RELEASE_LEVEL command to

release the current command level. Then, attempt the REENTER command

again, Continue alternating RELEASE_LEVEL and REENTER until you

successfully reenter the desired program or you receive the message:

No subsystem supporting reentry exists on the stack, (ren)

ER!

The reason you cannot reenter EMACS on command level 1 with ED on level

2 and SLIST on level 3 is that, because ED and SLIST are both

static-mode programs, SLIST may have overwritten ED. When REENTERS is

signaled, SLIST does not catch it, so it passes to the invocation of

the listener at level 3. The listener's or-unit recognizes that the

program at the level below it cannot proceed because it has been

overwritten. The listener discontinues the signaling of REENTERS and

displays an error message; otherwise, if ED did catch REENTERS, it

would be executing an overwritten program image. The listener cannot

"skip over" ED and continue to signal the condition on the levels below

it; therefore, the condition is not signaled for EMAG.

Programs That Handle REENTER

If a program does not catch the REENTERS condition, you cannot use the

REENTER command to continue execution of that program.

‘ Only a few Prime-supplied programs (such as EMACS) catch the REENTERS

condition. User-written programs may also catch it.

5-13 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Static-mode programs that allow START 1000 or START 1001 to perform
some form of program restart may choose to switch to catching the
REENTERS condition instead, so that users May issue the REENTER command
rather than having to renember START 1000 or START 1001. Such programs
may continue to be static-mode after they are changed to catch the
REENTERS condition,

MINI-QOMMAND LEVEL

Mini-command level is entered when a call to the listener is made when
the user is already at the maximum command level allowed by the Systen
Administrator or by the Project Administrator. Calls to the listener
can occur when:

@ The user types Control-P

e@ The program calls COMLVS

e@ The program encounters an error such aS an access violation,
illegal instruction, or insufficient memory

While at mini-command level, you can use only a small subset of
internal PRIMOS commands. You cannot use external commands, and your
abbreviations are temporarily disabled. These restrictions are in
place to ensure that you can use certain critical internal commands
without allowing you to use commands that May cause all resources to be
exhausted, While at mini-command level, you should be able to
determine why and how you got there.

When debugging a program, you may wish to use the DUMP_STACK command at
mini-command level (along with COMOUTPUT to record the display on disk)
to determine the stack history of your program leading up to the point
where mini-command level was reached. For example, if you are at
mini-command level because your program failed due to an access
violation, the error message displayed by the omunit for
ACCESS_VIOLATIONS is followed by the information displayed when you
enter mini-command level, (In fact, at Rev. 19.4, this information
plus the prompt is 24 lines long, so the Original error message may
scroll off the top of your screen.) You use DUMP_STACK to trace the
Source of the ACCESSVIOLATIONS error.

If possible, you should invoke the errant program starting at a lower
command level, so that you avoid entering mini-command level when your
program fails, This allows you more freedom in tracing the source of
the error. For example, you might want to use BIND to display a map of
the errant program EPF,

Other commands useful at mini-command level include LIST_EPF,
RELEASELEVEL, INITIALIZE_COMMAND_ENVIRONMENT, START (if you reached
mini-command level by typing Control-P), and LOGOUT.

First Edition 5-14

THE COMMAND PROCESSOR STACK

WHAT CONTROL-P ACTUALLY DOES

When you type Control-P, PRIMDS signals the QUITS condition for your

process. Any program may catch the QUITS condition and perform its own

quit handling. Typically, however, this condition is caught by the

default or-unit for the most recently created command level, because

the listener establishes the default on-unit as the handler for any

condition (the ANY$ condition).

The default on-unit performs the following actions when it catches the

QUITS condition:

e Turns terminal output on (using an action similar to that

performed by the COMOUTPUT —TTY: command)

e Clears terminal input and output buffers (using an action

similar to that performed by issuing the RSTERM command)

@ Displays the QUIT. message on the terminal

e Suspends command input (using an action similar to that

performed by issuing the CGOMINPUT —PAUSE command)

e Calls COMLVS to invoke a new command level

The COMLVS subroutine calls the listener.

When the user issues a START command with no arguments at a command

level that has no static-mode program in use, the START command

subroutine signals a condition that is caught by the listener. The

on-unit invoked by the condition performs a nonlocal GOTO to a point in

the listener that, after performing same internal cleanup of per-level

information, simply returns to its caller; in this case, its caller is

COMLVS. COMLVS then returns to its caller, DF_UNIT_, which returns to

the condition-signaling mechanism. Ultimately, the condition-signaling

mechanism returns to the point at which the Control-P was typed in the

original program.

If Your Program Catches QUITS

Therefore, if you wish your program to catch the QUITS condition, you

should ensure that it:

e Turns terminal output on (by calling COMDSS)

e Clears terminal input and output buffers (by calling TTYSRS)

® Displays a useful message on the terminal

e Suspends command input (by calling COMISS)

5-15 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

@ Calls COMLVS to invoke a new command level, calls a command
processor of its own, continues the signal, or resignals the
condition, as appropriate

@ Can proceed when a user types START (or the equivalent command
in your progran) in that any actions performed by the QUITS
on-unit do not prevent program restart

The last requirement is often forgotten by programmers who write
Programs to catch QUITS. If you write a QUITS on-unit, ensure that it
either:

@ Does nothing that prevents the program fromcontinuing when the
user types START (For example, closing one or more file units is
not appropriate in a QUITS on-unit)

@ Prevents a user from attempting to use START to restart the
program (if your progran must close file wits when QUITS is
Signaled)

@ Resets any conditions affected by the QUITS on-unit when the
user types START so that the progran may continue (such as
reopening file units or, more typically, reinitializing a
terminal display)

The last two options require your QUITS on-unit to maintain control
after the user types START. In other words, your on—unit cannot simply
continue the QUITS signal and return (which usually causes the signal
to reach the default on-unit, DF_UNIT_). It must either call COMLVS
itself (after performing the actions listed above), in which case a
START command returns control to the or-unit following the call to
COMLVS, or it must resignal the QUITS condition, in which case a START
command returns control to the on-unit following the call to SIGNLS.

Resignaling the QUITS Condition

Resignaling the QUITS condition is generally the best solution,
although it is a bit tricky to implement. It combines two advantages:

@ It allows the on-unit to regain control following a START.

@ It does not require the on-unit to assume what action is desired
by its invoking program upon receipt of a QUITS signal.

Typically used in a subroutine library, where the caller of the library
wishes to catch QUITS in the caller's own way independent of the
library, resignaling allows the designer of the subroutine library to
deal with the QUITS condition in a way that does not interfere with the
needs of a program that uses the subroutine library.

‘However, the trick to resignaling QUITS is that the on-unit doing the
resignaling is invoked again for the second signal. To handle this,

First Edition 5-16

THE COMMAND PROCESSOR STACK

you must use a flag in static or common storage that indicates whether

the QUITS condition seen is signaled by the or-unit itself or by an

external occurrence (such as a user typing Control-P) or by yet another

subroutine package using this method).

For example, the following on-unit handles QUITS in a_ transparent

manner:

quit_handler: proc(cp) ;

dcl cp ptr; /* Pointer to the condition frame. */

dcl 1 cfh based(cp),
2 flags,

3 backup_inh bit(1),
cond_fr bit(l),
cleanup_done bit(1),
efh_present bit(1),
user_proc bit(1),
stk_chits bit(1),
libproc bit(l),
ecb_cbits bit(1),
mbz bit (6),
fault_fr bit(2),

2 root,
3 mbz bit(4),
3 seg_no bit(12),

ret_pb ptr options(short),
ret_sb ptr options(short) ,
ret_lb ptr options(short),
ret_keys bit(16) aligned,
after_pcl fixed bin,
hdr_reserved(8) fixed bin,

owner_ptr ptr options(short),
cflags,
3 crawlout bit(1),
3 continue_sw bit(1),
3 return_ok bit(1),
3 inaction_ok bit(1),
3 specifier bit(1),
3 mbz bit(12),

2 version fixed bin,

2 cond_name_ptr ptr options(short),

2 ms_ptr ptr options(short),

2 info_ptr ptr options(short) ,

2
2

W
W
W
W
W
W
W
W
W

N
N
D
N
D
N

N
D
N
D
b
d

ms_len fixed bin,
info_len fixed bin,

2 saved_cleanup_pb ptr options(short);

dcl my_signal bit(1) static init ('O'b);

dcl cond_name char(32) var based;

5-17 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

del cnsig$ entry (fixed bin(15)),
signl$ entry (char(32) var,ptr,fixed bin(15) ,ptr,

fixed bin(15) ,bit(16) aligned),
tnou entry (char (30) ,fixed bin(15)),
break$ entry(fixed bin(15));

/* A second signal right at this point is not bad, because the
Second on-unit invocation then performs cleanup and sets
MY_SIGNAL, causing the first on-unit invocation to simply
continue the signal. */

call break$(1); /* Inhibit quits, */

if my_signal /* Did I signal this condition? */
then do; /* More precisely, have I already cleaned up? */

call cnsig$(code); /* Yes, just continue it. */
call break$(0); /* Enable quits. */
return; /* Continue the signal down the stack, */
end;

/* Perform cleanup processing. */

call tnou('Quit.',5); /* Display a useful message, */

my_Signal="1'b; /* Set before enable to prevent multiple quits, */
Call break$(0); /* Enable quits, */
call sign1$ (cp->cond_name_ptr—>cond_name, cp->ms_ptr,cp->ms_len,

cp->info_ptr ,cp~>info_len, 'E000'bd);
Call break$(1); /* Disable quits, */

call tnou('Restarting.',11);

/* Perform cleanup recovery code, or display "Not
restartable" error message, or similar, */

My_Signal='0'b; /* No longer Signaling ourselves, */
Call break$(0); /* Enable quits, */

/* Quits after this point are acceptable because all cleanup
has been reset by the cleanup recovery code, */

return;
end; /* quit_handler: proc */

First Edition 5-18

THE COMMAND PROCESSOR STACK

If the method shown above is used in a process-class library EPF, then

a more reliable method of setting MY_SIGNAL to 'O'b should be used.

Simply initializing it when the linkage for the library is initialized

is insufficient for a process-class library. You may wish to make it a

common area (STATIC EXTERNAL) and have a_ standard initialization

entrypoint in your library EPF initialize the bit to 'O'b.

Be sure you reset MY_SIGNAL after calling SIGNLS and BREAKS, but do not

reset after calling CNSIGS and BREAKS. Otherwise, a Control-P during

the resignaling (and any processing it causes) would cause your onunit

repeat its cleanup activities, which may not be intended. The method

shown above guarantees only one invocation of the cleanup code (shown

as the first set of three periods) and only one corresponding

invocation of the cleanup recovery code (the second set of three

periods). It prevents reinvoking the cleanup code until the cleanup

recovery code has been completely executed.

5-19 First Edition

The Recursive

Command

Environment

The command environment is designed to accommodate recursive invocation

of :

The listener

The command processor

The iteration processor

The command line reader

The default on-unit

User programs

Many internal commands

Although user programs are part of this recursive environment, they

often make use of resources that are not recursive (such as file units)

or that are not dynamic (such as attach points).

WHAT IS A RECURSIVE RESOURCE?

A recursive resource is a resource that is identified separately by

each invocation of a procedure. File units are not recursive, because

if you invoke a progran that opens a file on unit 2 and then calls

another program that references unit 2, the second program references

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

the file opened by the first progran; unit 2 is not a different file
unit, even though it is being referenced by a different program.

WHAT IS A DYNAMIC RESOURCE?

A dynamic resource is one that, while not recursive, is acquired and
released in a fashion that allows unique identification of one of its
activations, For example, file units can be obtained dynamically.
This facilitates their use by recursive subsystems; the programmer of
Such a subsystem must simply remember always to have the subsystem
obtain its file units dynamically by using the k$getu key, as described
in Volume II of this series.

WHAT IS A STATIC RESOURCE?

A static resource is one that is either always activated (and therefore
is not actually acquired or released) or that can have only one
activation at a time (in that a second activation of the resource
destroys the first activation).

If file units are obtained statically, then it is possible for two
programs to conflict in their static assignments of file unit numbers.
Hence one of these programs cannot run after the other has been
interrupted; or, if it can run, the second program cannot be continued
after the first has finished,

THE CACHE ATTACH POINT AS A STATIC RESOURCE

An example of a static resource is the cache attach point, also
described in Volume II of this series. There is only one cache attach
point per process, yet many programs use it. A program may use the
cache attach point explicitly (by calling ATS subroutines or ATCHSS) or
implicitly (by calling TSRCS$$ or SRSFX$). Or a program may use the
cache attach point because it has been invoked by the command processor
as a command or by pathname. This is because the command processor
attached to CMDNCO using the cache directory and it accesses a pathname
using SRSFXS.

Therefore, a program that uses the cache attach point may not always
continue execution successfully if it is interrupted (by Control-P, for
example) and if another program or command is invoked before the START
command is issued to continue the original program. Evena mistyped
command resets the cache attach point, because the command processor
Searches CMDNCO for the command.

_, Even a program that invokes another progran directly should do so
without relying on the preservation of the cache attach point by the
program being invoked,

First Edition 6-2

THE RECURSIVE COMMAND ENVIRONMENT

These problems are not normally encountered when a user quits out of a

program, invokes another program, then restarts the original program —

particularly if the original program references the cache attach point

only by calling PRIMOS subroutines such as TSRCSS and SRSFX$. However,

if the program happens to be in the midst of such a call when the

interruption occurs -—- a rare but possible occurrence -—— the

continuation of the program may produce strange results.

OTHER STATIC RESOURCES

Other static resources, when used by an EPF, may render that EPF static

in nature, either with regard to all other EPFs or only to those EPFs

that also use the resource.

File Names

File names in a directory are static. A program that uses a_ temporary

file named TEMP.MYPROG in the user's hame (or origin) directory cannot

be recursively invoked. If a subroutine in a library EPF uses the

temporary file, then two programs that use that subroutine cannot

coexist in the same process.

If the file is in a system-wide location (such as OMDNCO) and has a

static name (such aS TEMP.MYPROG), then the problem becomes worse,

because at that point two users running the same program simultaneously

may encounter conflicts. Even if the user's home or origin directories

— which at first glance seem to be per-process entities — are used,

conflicts can result whenever two users have the same home or origin

directories.

To make filenames dynamic, you must have your program or subroutine

generate a unique filename. A reasonably unique filename is one that

contains the date, the time of day (to ticks), the system name, and the

usernumber of the user's process. Except for the system name, which is

obtained by calling XSSTAT, all of this information can be obtained by

calling TIMDAT.

User's Display

The user's display screen is a static resource. If a subroutine is

designed to display an important message at a particular spot on the

screen, then multiple uses of that subroutine cause messages to be

overwritten.

. You must build a dynamic screen handler package to be used by programs

and subroutines that wish to access the display screen in a dynamic

fashion. These programs and subroutines would then call your package

6-3 First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

to obtain a spot on the screen that suited their needs, and your
package would find an appropriate spot based on the current state of
the screen, If necessary, your package could overwrite existing
messages only when approved by the user (in a fashion similar to the
——More—- prompt of the HELP command), or it could allow the user to
display erased messages.

However, the dynamic screen handler package itself would not be
dynamic; a second invocation of the package with a previous invocation
already suspended would probably result in corruption of the display
screen either immediately or when the previous invocation was
continued,

Terminal Escape Sequences

Keep in mind that escape sequences sent to a terminal are static in
nature. (An escape sequence consists of two or more characters that
cause the terminal to perform a single action, such as clearing the
screen or positioning the cursor.) If a subroutine sending such an
escape sequence is interrupted in the midst of sending the sequence,
(for example, via a forced logout (signaling LOGOUTS) or via
Control-P), the ormunit for the interruption must not send any
characters to the terminal. Otherwise, the first few characters it
sends will be interpreted by the terminal as being part of the
interrupted escape sequence. Such a window is rarely encountered; but
it can happen, and it corrupts the screen,

If on-units for asynchronous conditions (such as LOGOUTS, QUITS,
PH_LOGOS, and so on) do not write any messages to the terminal either
directly or indirectly (by calling other subroutines), the problem is
avoided, Instead, the or-units might record the desired message in
memory and set a flag to be picked up by the mainline code at a point
not in the midst of an escape sequence,

First Edition 6-4

INDEX

Symbols
: (command separator character),

~ (tilde), 2-2, 4-11

A

ABBREV command, 2-3

Abbreviation processor, 1-19

Abbreviations,
disabled at mini-command level,

5-14

~ACCESS_CATHGORY bit, 3-21, 4-33

ALCSRA subroutine, 3-9, 3-10,
3-13

Allocating,
linkage areas, via EPFSALLC,

4-34

_ ALSSRA subroutine,
3-12

3-9, 3-10,

X-1

Index

Applications,
command environment support

for, 1-7
defined, 1-7

Attach point,
Cache r 6—2

B

BIND,

NO_GENERATION subcommand, 2-2
NO_ITERATION subcommand, 2-2
NO_TREEWALK subcommand, 2-2
NO_WILDCARD subcommand, 2-2

-BOTIOM_UP bit, 3-21

c

Cache attach point,
as a static resource, 6-2

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Calling sequences,
command, detailed, 3-15, 3-17
complete, 3-26, 3-29
error codes, 3-5 |
for command functions, 3-6
for commands, 3-3, 3-4
for program EPFs, 3-1
for programs, 3-3

Closing,

file after EPFSRUN returns,
4-25

code argument,

for EPFSMAP subroutine,
for EPFSRUN, 4-22

4-29

COMINPUT files,
command envirorment support

for, 1-3

Command,
defined, 1-8
invocation, 1-10
name, determination of, 2-4

Command calling sequence, 3-3
arguments for, 3-3
error codes for, 3-5

Command environment, 1-1
(See also command processing
information)

abbreviation processor,
command features decoder,
command interface, 1-10
command line reader, 1-19
command preprocessor, 1-21
command processor, 1-20
command prompter, 1-19
default on-unit, 1-22
features for applications, 1-7
features for QOMINPUT files,

1-3
features for CPL programs, 1-4
features for interactive users,
1-2

features for user-written
functions, 1-7

features for user-written
prograns, 1-6

key modules, 1-16

1-19
1-21

First Edition X-2

Command environment (continued)
listener, 1-17
program invokers, 1-22

Command features decoder, 1-21

Command function calling
sequence, 3-6, 3-8

Command function invocation,
via CPS, 4-13
via EPFSINVK, 4-27

via EPFSRUN, 4-18

Command functions, 4-4
actions of, 3-6
arguments for calling sequence,

3-7
behavior when invoked as

commands, 4-4

needing command name, 3-27
needing local CPL variables,

3-27
sample programs,
special cases of,
usable as commands,

3-11
3-26

3-27

Command information structure,
two versions of, 4-23
use of with EPFSRUN, 4-24

Command interface, 1-10
for one program invoking
another, 1-11

levels of complexity, 1-10

Command invocation, (See also
command processing
information)

calling sequence,
command line, 1-12
defined, 1-11
error codes for, 3-5
limits on, 1-13
severity code,

3-2 to 3-4

1-12

Command levels,
defined, 1-17
listener, 1-17
listener, the, 5-2
mini-command level,
multiple, 5-3
releasing, 5-5, 5-6

1-17, 5-2

1-18, 5-14

Command line,
accepted by EPF, 1-12
as argument in calling

sequence, 3-3 |
as argument to CPS, 4-11
use of tilde (~) in front of,

4-1]

Command line reader, 1-19
recursive invocation of, 6-1

Command names, determined by
command processor, 2-4

Command preprocessor, 1-21

Command processing information,
1-13, 3-15, 3-16, 3-18

-ACAT bit, 3-21, 4-33
-BOTTOM_UP bit, 3-21
command name, 3-19
CPL local variables pointer,

3-20
—DIRECTORY bit, 3-21, 4-33
-FILE bit, 3-21, 4-33

iteration bit, 3-22
-RBF bit, 3-21, 4-33
sample program, 3-22, 4-51
-SEGMENT_DIRECTORY bit, 3-21,

4-33
treewalk bit, 3-22, 4-31
-VERIFY bit, 3-21, 4-33
version, 3-19
-WALK_FROM bit, 3-22
-WALK_TO bit, 3-22
wildcard bit, 3-22, 4-31

Command processor, 1-20, 2-1
ABBREV command, handling of,

2-3
actions when invoked by CPS,

4-7
calls STDSCP, 1-20
command separator character

(:), handling of, 2-3
determines command name, 2-4
determines command type, 2-5
evaluates function references,

2-4
evaluates variable references,

2-4
expression evaluator, 1-20
inhibition of features, 2-2,

2-5

X-3

Index

Command processor (continued)
interface with commands, 1-10,

j-11
invocation modules, 2-7
invokes commands, 2-7
iteration, handling of, 2-5
listener, 1-17
listener, the, 5-2
name generation, handling of,

2-7
-NO_VERIFY, handling of, 2-7
recursive invocation of, 6-1
removes null tokens, 2-4

' RESUME command, 2-5
sequence of actions, 2-1
simple iteration, handling of,

2-5

treewalking, handling of, 2-6
-VERIFY, handling of , 2-7

wildcards, handling of, 2-6

Command processor stack, 5-l
viewed with DUMP_STACK, 5-2

Command prompter, 1-19

Command separator character, 2-3

command-information argument,
for EPFSRUN subroutine, 4-23

command-line argument,
for EPFSRUN subroutine, 4-22

Commands ,
DUMP_STACK, 5-10
external, 1-10
format of, 4-3
Ics, 1-16, 5-11
INTTIALIZE_COMMAND_ENVIRONMENT,

1-6, 5-11
interface with command
processor, 1-ll

internal, 1-9, 4-3

RDY, 5-4

recursive invocation of, 6-1

REENTER, 5-12

REN, 5-12
resident in QMDNCO, 4-2
resident within PRIMOS, 4-2

RLS, 5-5

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

Commands (continued)
START, 5-14
usable as command functions,
3-27 |

Common storage,
releasing, 5-6

Complete calling sequence,
3-29

3-26,

Conditions,
ANYS, 1-22
LINKAGE_ERRORS, 1-14
NO_AVAIL_SEGSS, 1-16
PAGING_DEVICE_FULLS,
QUITS, 5-15
REENTERS, 5-12
STORAGE, 1-15
SYSTEM_STORAGES,

QONTROL-P (Quit), 5-15
(See also QUITS condition)

1-16

1-15

CP$ subroutine, 1-20, 3-1, 4-9

actions of, 4-7
calling sequence, 4-10
command-line argument of,

4-11, 4-14
cpl-local-vars-ptr, 4-13, 4-15
error codes returned by, 4-17
error-code argument of, 4-12,

4-14
flags argument of, 4-12
ftn-fcn-ptr argument of, 4-14
functiorn-call bit, 4-12, 4-14
inhibit-evaluation bit, 4-12,

4-15
rtn-fcn—-ptr argument, 4-13
severity-—code argument of,

4-12, 4-14
used for command invocation,

4-9
used for function invocation,

4-13
used for program invocation,

used for recursive invocation,
4-54

when to use it, 4-6

First Edition X-4

CPL programs,
abilities of, 4-4
command environment support

for, 1-4

CPL variables,
pointed to by

cpl-local-vars—ptr, 4-15
used by command functions,

3-27

4-15
4-13

cpl-local-vars-ptr,
argument to CPS,

CPL-~program invoker, 2-7

D

Decoder, command features, 1-21

Default on-unit, 1-22
actions on catching QUITS,

5-15
recursive invocation of, 6-l

Detailed command calling
sequence , 3-15, 3-17

DF_UNIT_ (See Default on-unit)

DUMP_STACK command, 5-10
~-ON_UNTITS option, 5-2, 5-11

to display call history of a
program, 5-10

use at mini-command level,
5-14

used to track program errors,
1-18

used to view command processor
stack, 5-2

used to view your stack, 5-10

Dynamic resources, 6-2

Dynamically allocated storage,
releasing, 5-6

E

EPF',

invocation by CP$ subroutine,
4-9

invocation by EPFSINVK
subroutine, 4-27

invocation by EPFSRUN
subroutine, 4-20

most flexible format for
programming instructions,
4-4

program, calling sequence, 3-1
recursive invocation of, 4-54

EPF calling sequence,
arguments for, 3-1
command sequence, 3-2
program sequence, 3-2

EPF generation and use,
phase 10 (removal from memory) ,

4-37
phase 5 (linkage allocation),

4-34
phase 6 (linkage

initialization) ,
phase 7 (entrypoint

invocation), 4-37
sample program, 4-47

4-34

EPF id, 4-24

EPF invoker, 2-7

4-34
4-35

EPFSALLC subroutine,
calling sequence,
error codes, 4-42

EPFSCPF subroutine,
calling sequence,
epf-info structure,
error codes, 4-42
sample program using,
wildcard bit, 4-31

4-31
4-32

4-31

4-51

EPFSDEL subroutine,
calling sequence,
error codes, 4-44

4-37
4-39

EPFSINIT subroutine,
calling sequence,
error codes, 4-43

4-34
4-36

X-5

Index

EPFSINVK subroutine, 3-1, 3-2
calling, 4-37
calling sequence, 4-38
compared with EPFSRUN, 4-8
error codes, 4-44
invoking EPFSALLC before using,

4-34
invoking EPFSCPF before using,

4-31
invoking EPFSDEL after using,

4-37
invoking EPFSINIT before using,

4-34
' invoking EPFSMAP for,
key argument, 4-34
opening file for, 4-28
steps in using, 4-27
used for recursive invocation,

4-54
when to use it, 4-8

4-29

EPFSMAP subroutine, 4-29
access argument, 4-29
calling sequence, 4-30
code argument, 4-29
key argument, 4-29
unit argument, 4-29

EPFSMAP subroutines,
error codes, 4-40

EPFSRUN subroutine, 3-1, 4-18
actions of, 4-8
calling sequence of, 4-21
checking returned code value,

4-25
checking returned command

status, 4-25
command-information structure,

4-23
command-line argument,
EPF id, 4-24

error codes returned by,
error-code argument, 4-22
file-unit argument, 4-22
function-call bit, 4-24
invoking, 4-20
key argument, 4-20
opening EPF file before

calling, 4-19
rtn-fen-ptr, 4-24
severity-code argument,
steps in using, 4-18

4-22

4-26

4-22

First Edition

EPFSRUN subroutine (continued)
used for recursive invocation,

4-54
using and freeing returned

value structure,
when to use it,

Epf-info structure,

4-25
4-8

4-31

Error codes,

checking code returned by
EPFSRUN,

ESBARG,
ESBKEY,
ESBNAM,

ESBPAR,

ESBUNT,
ESBVER,

4-44

ESCMND,
ESDIRE,

ESECEB,
ESEOF,

ESEPFL,
ESEPFT,
ESFIUS,

ESFNIF,
ESILTD,
ESILTE,

ESITRE,
ESIVCM,
ESMISA,
ESNDAM,
ESNINF

ESNMLG,
ESNMIS,
ESNMVS,
ESNOVA,
ESNRIT,
ESROOM,
ESSWPR,
ESUNOP,

4-25

3-5, 4-18, 4-43

4-26, 4-41, 4-43
3-5, 4-18

3-5, 4-41 to 4-44
4-26, 4-41
4-18, 4-27, 4-41 to

3-5, 4-18

4-17
1-14, 4-44
4-17, 4-26

4-4]
4-41 to 4-45
4-17
4-18
4-42, 4-43
4-43
3-5, 4-18
3-6
3-6
4-18, 4-40, 4-41

4-18
3-5
4-26, 4-41
4-27, 4-41
4-4]
4-17, 4-40
4-26
4-45
4-26, 4-40

returned by EPFS subroutines,
4-40

returned by EPFSALLC,
returned by EPFSCPF,
returned by EPFSDEL,
returned by EPFSINIT,
returned by EPFSINVK,
returned by EPFSMAP,
returned by EPFSRUN,

First Edition

4-42
4-42
4-44
4-43
4-44

4-40
4-26

X-6

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

error-code argument,
of EPFSRUN subroutine, 4-22

Escape sequences,
as a static resource, 6-4

Evaluation of function and
variable references, 2-4

Expression evaluator, 1-20

External commands, 1-10

F

File,
closing after EPFSRUN returns,

4-25
opening for VMFA access, 4-19

-FILE bit, 3-21, 4-33

File names,
as a static resource, 6-3
creating dynamic file names,

6-3
search order of, 1-10

File unit number,
as argument to EPFSMAP, 4-29

File units,
as a static resource, 6-l

file-unit argument,
of EPFSRUN subroutine, 4-22

4-45
4-46

4-8

FRESRA subroutine,
calling sequence,
when to use it,

Freeing memory,
via FRESRA subroutine,
via ICE command, 1-16

4-45

Function invocation, (See also
Command function invocation)

command line, 1-12
defined, 1-11
returned character string,
1-12

severity code, 1-12

Function invocation (continued)

via EPFSINVK, 4-27
via EPFSRUN, 4-18

Function references, evaluation

of, 2-4

function-call argument, 3-9

function-call bit,
4-24

4-12 v 4-14 t

Functions, (See also Command
functions)

command environment support
for v 1-7

interaction with command
processor, 1-ll

invocation of, 1l-ll

i

ICE command, 5-ll
use of, 1-16

Inhibit-evaluation bit,
4-15

4-12 r

Inhibition of command processor
features, 2-5

INITIALIZE_COMMAND_ENVIRONMENT

command, 5-11
use of, 1-16

Initializing,
linkage areas, via EPFSINIT,

4-34

Interactive users,
command envirorment support

for, 1-2

Internal commands, 1-9

Internal-conmand invoker, 2-7

X-7

Index

Invocation, (See also Command

invocation; Function
invocation; Program
invocation)

limits on, 1-13
of commands, 1-11
of commands, by command

processor, 2-7
of functions, 1-11
of programs, 1-10
of prograns, from within

programs, 4-1
. recursive, 4-54

Invoking an EPF,
sample program, 4-47

Iteration,
handling of by command

processor, 2-5
simple, 2-5

Iteration bit, 3-22

Iteration processor,
recursive invocation of, 6-1

K

kS$getu key, 4-19

kSinvk key, 4-20

kSinvk_del key, 4-20

kSrestore_only key, 4-20

kSvmr key, 4-19

key argument,
for EPFSINVK subroutine,
for EPFSMAP subroutine,
for EPFSRUN subroutine,

4-34
4-29
4-20

L

IBSSET subroutine, 3-27

Linkage areas,
releasing, 5-6

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

LINKAGE_ERRORS condition,
1-15

1-14,

LIST_LIMITS,

use of, 1-14

LIST_SEGMENTS ,
use of, 1-14

Listener, 1-17

Listener, the, 5-2
and mini-command level, 5-14
multiple invocations, 5-3
recursive invocation of, 6-1

Long prompt, 5-5

LVSGET subroutine, 3-27

M

Memory,
releasing via FRESRA

subroutine, 4-45

system-wide limits on, 1-15

Mini-command level, 1-18, 5-14

N

Name generation,

handled by command processor,
2-7

Names of commands, determined by
command processor, 2-4

NO_AVAIL_SEGSS$ condition, 1-16

—NO_VERIFY option,
handled by command processor,

2-7

Null tokens, removal of from
command line, 2-4

NWS filename prefix, 4-4

NX$ filename prefix, 4-4

First Edition X-8

9

Opening,
EPF file for VMFA access, 4-19
file for VMFA read, possible
error codes, 4-40

P

PAGING_DEVICE_FULLS condition,

1-16

Pointer, returned value, 3-9

Procedure code storage,
releasing, 5-6

Program EPF, calling sequence,
3-1

Program invocation,
calling sequence, 3-2, 3-3
deciding which interface to

use, 4-6
Gefined, 1-10
from within programs, 4-1
limits on, 1-13

Programs,
command environment support

for, 1-6
format of, 4-3
interface with command
processor, 1-10

invoking programs from, 4-1
resident on disk, 4-2

Prompter, command, 1-19

Prompts, set by RDY command, 5-5

Q

QUITS condition, 5-15
as handled by default on-unit,

5-15

QUITS condition (continued)

how your program can handle it,

5-15, 5-16
resignaling the condition,

5-16
sample program, 5-16

R

-RBF bit, 3-21, 4-33

RDY command, 5-4
in LOGIN.CPL files, 5-5
to specify system prompts, 5-4

Reader, command line, 1-19

Recursive command envirorment,

6-1
creating dynamic screen
handlers for, 6-3

file units not recursive, 6-1

generating dynamic file names
for, 6-3

handling terminal escape
sequences in, 6-4

limits on use of cache attach

Recursive invocation of EPF's,
4-54

behavior of static storage
during, 4-54

redirecting terminal I/O
during, 4-55

REENTER command, 5-12
used with RELEASE_LEVEL

command, 5-13

REENTERS condition, 5-12

RELEASE_LEVEL command, 5-5, 5-7

releasing to a particular
level, 5-7

resources released by, 5-6
used to restart a suspended

program, 5-7
used with REENTER command,

5-13

X-9

Index

Releasing,
memory holding returned value,

4-45
resources, 5-6

Removing EPF from memory,

via EPFSDEL subroutine, 4-37

REN command (See REENTER
command)

Resources,
dynamic, 6-2
‘per-user limits, 1-13

releasing, 5-6
static, 6-2
system-wide limits, 1-16

Restarting suspended programs,

5-7
with REENTER command, 5-13

RESUME command,

special treatment by command
processor, 2-5

Returned character strings, 1-12

Returned command status,

checking after EPFSRUN, 4-25

Returned function value pointer
(See rtn-fcn-ptr)

Returned function value
structure, 4-15

accessed from FORTRAN, 4-15,

4-16 |
accessed from PLIG, 4-15

deallocating memory via FRESRA,

4-45
using and freeing it after
calling EPFSRUN, 4-25

Returned value,
defined, 3-6
freeing memory used by, 4-45

Returned value pointer
rtm-fcn-ptr)

(See

RLS command
command)

(See RELEASE_LEVEL

First Edition

ADVANCED PROGRAMMER'S GUIDE, VOLUME III: COMMAND ENVIRONMENT

RLS command (RELEASELEVEL), 5-5

declaration of structure,
for EPFSRUN subroutine,

4-15
4-24

S

Sample programs,
command functions, 3-ll, 3-14
handling command processing

information, 4-51
handling QUITS condition,
showing EPF invocation and

execution, 4-47
using command processing

information, 3-22

5-16

Screen handlers, building, 6-3

Search order for filenames, 1-10

Segnent access,
as argument to EPFSMAP

subroutine, 4-29

-SEGMENT_DIRECTORY bit,
4-33

3-21 v

Severity code,
as argument to CPS, 4-12
as argument to EPFSRUN, 4-22
for command calling sequence,

3-6
returned by EPF, 1-12

Simple progran,
defined, 1-8

SRCHS$ subroutine,
used to open file for VMFA

read, 4-19

SRSFXS subroutine,
used to open file for VMFA

read, 4-19

Stack frames,
releasing, 5-6

‘ Stack, command processor, 5-1

First Edition X-10

Standard command processor, 1-20
(See also Command processor)

START command, 5-14

Static resources, 6-2
cache attach point, 6-2
escape sequences sent to

terminal, 6-4
file names, 6-3
user's display screen, 6-3

Static storage,
and recusive invocation, 4-54

Static-mode programs,
limits on flexibility of, 4-4

Static-mode-progran invoker, 2-7

STDCPS subroutine, 1-20

STORAGE condition, 1-15

Storage, static, 4-54

Suffixes,
Search order of, 1-10, 4-3

Suspended prograns,
restarting, 5-7

System prompts, 5-5

SYSTEM_STORAGE$ condition, 1-15

z

Terminal I/O,
redirection during recursive
invocation of EPFs, 4-55

Tilde, use of, 2-2

Treewalk bit, 3-22, 4-31

Treewalking,
handled by command processor,

2-6
in command processing

information, 3-22
in epf-info structure, 4-31

Treewalking (continued)
options for, 2-6
specified in command

information structure,
specified in epf-info

structure, 4-31

4-23

TSRCSS subroutine,
used to open file for VMFA

read, 4-19

U

User programs,
recursive invocation of, 6-1

User-written functions,
command envirorment support

for, 1-7

User-written programs,
command envirorment support

for, 1-6

Vv

Variable references, evaluation
of, 2-4

-VERIFY bit, 3-21

-VERIFY option,
handled by command processor,

2-7

WwW

-WALK_FROM bit, 3-22

-WALK_TO bit, 3-22

Wildcard bit, 3-22, 4-31

X-ll

Index

Wildcards,
handled by command processor,

2-6
in command processing

information, 3-21
in epf-info structure,
options for, 2-6

4-31

First Edition

SURVEY

READER RESFONSE FORM

DOC10057-1LA Advanced Programmer's Guide, VolumeIll

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent very good _good __fair _poor

2. Please rate the document in the following areas:

Readability: __hard to understand | ___average very clear

Technical level: __too simple __about right _too technical

Technical accuracy: __poor average

-_

very good

Examples: __too many about right __too few

Illustrations: __too many

-

about right

_

too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Name : Position:

Company :

Address:

__Zip:

| | | | roma
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications
Bidg 10B

Prime Park, Natick, Ma. 01760 m
n

READER RESPONSE FORM

DOC10057-1LA Advanced Programmer's Guide, VolumeIII

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent __very good

-_

good ___fair

_

poor

2. Please rate the document in the following areas:

Readability: __hard to understand | ___average very clear

Technical level: __too simple __about right _too technical

Technical accuracy: __poor

_

average very good

Examples: __too many ___about right ___too few

Illustrations: __too many about right __too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name : Position:

Company :

Address:

__Zip:

Ill pee
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bldg 10B

Prime Park, Natick, Ma. 01760

READER RESPONSE FORM

DOC10057-1LA Advanced Programmer's Guide, VolumeII]

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent __very good good ___fair

_

poor

2. Please rate the document in the following areas:

Readability: _hard to understand -__average ___very clear

Technical level: __too simple __about right too technical

Technical accuracy: __poor

-

average _very good

Examples: __too many ___about rignt ___too few

Illustrations: __too many __about right

_

too few

3. What features did you find most useful?

4. What faults or errors gave you problems?

Name : Position:

Company :

Address:

_ZLip:

il eee
NECESSARY
IF MAILED
IN THE

UNITED STATES

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postagewill be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

m
n

READER RESPONSE FORM

DOC10057-1LA Advanced Programmer's Guide, VolumeIII

Your feedback will help us continue to improve the quality, accuracy,

and organization of our user publications.

1. How do you rate the document for overall usefulness?

___excellent ___very good

-_

good ___fair

_

poor

2. Please rate the document in the Following areas:

Readability: __hard to understand -__average

_

very clear

Technical level: __too simple ___about right ___too technical

Technical accuracy: __poor

_

average

_

_very good

Examples: __too many

_

about right _too few

Illustrations: __too many -__about right too few

3. What features did you find most useful?

4, What faults or errors gave you problems?

Name : Position:

Company :

Address:

Zip:

 ee ees oe ee aLemaeyhtttthe ae ns meceaeeeceeee oe eeeo

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES
First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

PRIME
Attention: Technical Publications

Bidg 10B

Prime Park, Natick, Ma. 01760

m
n

mee

tee

~~”

ae

MEA

OO1als?- 1LA

	Front cover
	Title page
	ii
	iii
	iv
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	xiv
	xv
	xvi
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-1
	6-2
	6-3
	6-4
	Index-1
	Index-2
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	Survey-1
	Survey-2
	Survey-3
	Survey-4
	Survey-5
	Survey-6
	Survey-7
	Survey-8
	Survey-9
	Survey-10
	Survey-11
	Survey-12
	Survey-13
	Survey-14
	Survey-15
	Survey-16
	Survey-17
	Survey-18
	Survey-19
	Survey-20
	Back cover

