¥

RED

Prime.

C User’s Guide

Release T3.0-23.0

DOC7534-4LA



7

A

C User’s Guide

Fourth Edition

Marilyn Hammond

This guide documents the use of the PRIMOS C compiler
and libraries as implemented on the PRIMOS operating
system at Translator Family Release T3.0-230.

Prime Computer, Inc.,, Prime Park, Natick, MA 01760



The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of Prime
Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 2850,
2950, 4050, 4150, 4450, 6150, 6350, 6450, 6550, 6650, 9650, 9655, 9750, 9755, 9950, 9955,
995511, Prime INFORMATION CONNECTION, DISCOVER, INFO/BASIC, MIDAS, MIDASPLUS,
PERFORM, PERFORMER, PRIFORMA, Prime INFORMATION, PRIME/SNA, INFORM, PRISAM,
PRIMAN, PRIMELINK, PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER,
PRIME TIMER, RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT4S, PT65, PT200,
PT250, and PST 100 are trademarks of Prime Computer, Inc.

UNIX is a registered trademark of AT&T.

Printing History

First Edition (DOC7534-193) June 1985
Second Edition (DOC7534-2LA) January 1986
Third Edition (DOC7534-3LA) January 1988
Fourth Edition (DOC7534-4LA) June 1990

Credits

Editorial: Norma Kellstedt and Judy Goodman
Engineering Support: Wendy Merrill
Illustration: Carol Smith

Production: Judy Gordon

P



3

)

How to Order Technical Documents

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Thursday,
8:30 a.m. to 8:00 p.m. and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

PRIME SERVICE:"

Prime provides the following toll-free number for customers in the United States needing
service:

1-800-800-PRIME

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701



Reading Path for PRIMOS Documentation

Book Level
PRIMOS Introduction
ser's
Guide — for all Users
CPL ERIMOSd
User's ommands
Guide < Reference Reference
Guide for all Users
y
%u?routines [hanguage
eference elerence
e P Relerar Reference for
< Programmers
Y
[ >
\i
Eour;:e SEG and grugrammer's
eve LOAD uide to
Debugger Reference BIND and Programmer
User's Guide EPFs Tools
Guide
y Yy
4 A4 y
Advanced Advanced Advanced Advanced
Programme:'s Programmer's Programmer's Programmer’s
Guide 1: Guide It Guide 11 Guide:
BIND and Command file System Appendices
EPFs Environment and Master
Index
Advanced
y Programmer
Information
System Instruction Assembly
Architecture Sets Guide Language
Relerence Programmer’s
Guide Guide

Lpath D7534 4LA

J

)



CONTENTS

ABOUT THIS BOOK vii
OVERVIEW OF PRIMOS C

PRIMOS C 1-1
Standardization 1-2
System Resources Supporting C 1-4

COMPILING PROGRAMS IN C
Standard Include Files 2-1
Include Files and the Search Rules Facility 2-2
Using the C Compiler 2-4
LINKING C PROGRAMS
Runtime Libraries 3-2
Guidelines for Linking C Programs 3-4
Creating Shared C Programs 3-1
USING THE C LIBRARY

Include Files 4-1
Dictionary of C Library Functions and Macros 4-3

INTERFACING TO OTHER LANGUAGES

Differences Between C and Other Languages 5-2

Calling Other Language Routines From C 5-7
Programs

Calling 64V-mode Routines From Other 5-12
Languages

Calling 32I1X-mode C From Other Languages 5-15

Calling 64V-mode C From 32IX-mode C 5-17

Calling 32IX-mode C From 64V-mode C 5-18

Function Return Types From C and Other 5-19

Language Routines
Making Your Code Correct for Both Modes 5-21
Using the PRIMOS Condition Mechanism From C5-21
Common Blocks 5-23
Calling MIDASPLUS From C 5-26

ADVANCED TOPICS

C Stack Frame Formats
Shortcalls



Vi

PORTABILITY CONSIDERATIONS

Features of PRIMOS C
PRIMOS C Library Functions

USING ANSI C

Writing and Compiling Standard-conforming C

Programs
Linking Standard-conforming C Programs
Running Standard-conforming C Programs

Converting Older PRIMOS C Programs to ANSI

Cc
ANSI C Library Functions

APPENDICES

EXTENSIONS TO THE C LANGUAGE

Enumeration Data Type

Void Data Type

The long double Data Type
fortran Storage Class

Unary Plus Operator

Identifier Names

Preprocessor Commands
Automatic String Concatenation

DEBUGGING C PROGRAMS

Using DBG
DBG and C Language Constructs
Sample DBG Session

OPERATOR PRECEDENCE AND ASSOCIATIVITY
SUMMARY OF C LIBRARY FUNCTIONS

C DATA FORMATS
Data Formats

THE PRIME EXTENDED CHARACTER SET

Specifying Prime ECS Characters

Special Meanings of Prime ECS Characters
C Programming Considerations

Prime Extended Character Set Table

GLOSSARY
INDEX

>:|°>}|>>|‘>>>> >
NhAhbhbWWN =2 =

©
[

? ¢ PPE
- -— DOHBN -

E-1

J

)

J



ABOUT THIS BOOK

The C User's Guide documents the C compiler of the PRIMOS® operating system and
provides all the information necessary to compile, load, execute, and debug C programs
r under the PRIMOS operating system on 50 Series™ machines.

The PRIMIX™ operating system is a separately priced operating system based on AT&T
UNIX® System V and coresident with PRIMOS on the S50 Series. Some of the topics
discussed in this book are also relevant to PRIMIX users. These topics include compiler
options and interfacing to other Prime® languages. However, the library functions described
in this book are different from those supplied with PRIMIX. If you are developing
programs under PRIMIX, consult the PRIMIX books listed below under Associated Documents.

r Throughout this book, references to PRIMOS C refer to the manner in which the C
programming language is implemented under PRIMOS on 50 Series computers.

This guide is not a tutorial on the C programming language. Instead, this book is intended
for experienced programmers who have a knowledge of C but who may not be familiar
with 50 Series computers. Those users who are unfamiliar with the C programming
language should obtain a copy of one of the many commercially available manuals
describing the language.

NEW FEATURES OF PRIMOS C

At Release T3.0-23.0, PRIMOS C has added the following new features:

® ANSI standard compliance. This release of the compiler makes the compiler consistent
with the ANSI C standard, X3.159-1989, when the -ANSI compiler option is used.
New standard-conforming header files and function libraries are also provided.
Chapter 8 explains how to compile, link, and run ANSI C programs using PRIMOS C.

® Quadruple precision floating point support. Quadruple precision floating point
computations, using the data type long double, are now supported in non-ANSI mode
with the -QUADFLOATING and -QUADCONSTANTS options. (ANSI mode supports
r the long double datatype.) See Chapter 2 for information about these options.

vii



C User's Guide

® New compiler options. The following new compiler options have been added to

PRIMOS C. All are available only in 32IX mode. They are

-ANSI, -NOANSI

-CLUSTER, -NO__CLUSTER

-DISALLOWEXPANSION

-EXTRACTPROTOTYPES

-FORCEEXPANSION

-HARDWAREROUNDING, -NOHARDWAREROUNDING
-HOLEYSTRUCTURES, -NO_HOLEYSTRUCTURES
-INTEGEREXCEPTIONS, -NO__INTEGEREXCEPTIONS
-PACKBYTES, -NO_PACKBYTES

-PREPROCESSONLY

-QUADCONSTANTS, -NO_QUADCONSTANTS
-QUADFLOATING, -NO__QUADFLOATING
-SEGMENTSPANCHECKING, -NO__SEGMENTSPANCHECKING
-STRICTCOMPLIANCE, -NOSTRICTCOMPLIANCE

See Chapter 2 for more information about these options.

® %p format for scanf(). The %p format specification, previously available only with

printf( ), inputs the address of a pointer in the usual Prime format (segment, ring,
word number). See the discussion of scanf() in Chapter 4.

The following features were first available at Release T2.0-22.1.

® Additional Prime extensions. These are the #assert, #display, and #elif preprocessor

viii

commands, as well as the defined unary expression. The handling of #include
commands now allows the use of preprocessor tokens. Automatic string concatenation is
also supported. See Appendix A for information about these commands.

Two compiler options: -SPEAK and -STANDARDINTRINSICS. See Chapter 2.

Two library routines: assert() and signal(). See Chapter 4.

additional features were first available at Release T1.3-21.0.

system( ) library function. FExecutes its argument as a PRIMOS command line. See
Chapter 4.

Nested #include files. The limit on the levels of nested insert files increased from 9
to 20. See Chapter 7.

Formal parameters to #define macros. The maximum number of formal parameters to
#define macros increased from 16 to 128. See Chapter 7.

STRING.H.INS.CC include file.  This file is identical to STRINGS.HINS.CC. Later
revisions of the C compiler will no longer support STRINGS.H.INS.CC. See Chapter 4.

J

)

J



)

ABOUT THIS BOOK

ORGANIZATION OF THIS BOOK

This guide contains eight chapters and seven appendices, as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

A

Q

Overview of PRIMOS C. Introduces PRIMOS C, including extensions to the
language and 50 Series system resources supporting the C language.

Compiling Programs in C. Provides instructions for invoking and using the
C compiler. This chapter also contains a description of compiler options.

Linking C Programs. Provides information on loading and executing C
programs with the BIND and SEG loaders.

Using the C Library. Lists and describes the non-ANSI C library
functions contained in the CCLIB and C__LIB runtime libraries, and the
preprocessor macros defined in the supplied include files.

Interfacing to Other Languages. Describes how C can be used to interface
to other 50 Series languages.

Advanced Topics. Contains information on advanced, system-related topics.
Portability Considerations. Describes characteristics of S0 Series machines
that you should consider when you port C applications to and from the
50 Series.

Using ANSI C. Provides an overview of ANSI C. Explains how to
compile, link, and run C programs that conform to the ANSI C standard.

Describes the ANSI C library functions contained in C__LIB.

Extensions to the C Language. Describes the extensions to the C language
that are available on the 50 Series.

Debugging C Programs. Introduces the Source Level Debugger.

Operator Precedence and Associativity. Lists the C operators and their
order of evaluation.

Summary of C Library Functions. Presents a summary of the non-ANSI
C library functions by action performed.

C Data Formats. Presents the data formats used by the C language on
the 50 Series.

The Prime Extended Character Set. Contains the ASCII reference tables
and the mnemonics for character constants and string constants.

Glossary. Explains concepts and conventions basic to 50 Series computers
and the PRIMOS operating system.



C User's Guide

ASSOCIATED DOCUMENTS

Refer to the guides listed below when using the PRIMOS C compiler.  The suggested
audience and reading sequence for many of these books are shown in the figure entitled
Reading Path for PRIMOS Documentation, opposite the table of contents for this book.

To find out how to order these books, consult the Guide to Prime User Documents.
® Advanced Programmer's Guide: Appendices and Master Index (DOC10066-4LA)
® Advanced Programmer's Guide I: BIND and EPFs (DOC10055-2LA)
® Advanced Programmer's Guide I1: File System (DOCI10056-3LA)
® Advanced Programmer’s Guide I11: Command Environment (DOC10057-2LA)
® Assembly Language Programmer's Guide (DOC3059-3LA)
® CPL User's Guide (DOC4302-3LA)
® EMACS Primer (IDR6107)
® EMACS Reference Guide (DOC5026-2LA)
® Instruction Sets Guide (DOC9474-3LA)
® MIDASPLUS User's Guide (DOC9244-2LA)
® New User's Guide to EDITOR and RUNQFF (FDR3104-101B)
® PRIMOS User's Guide (DOC4130-5LA)
® PRIMIX User's Guide (MAN9502-1LA and UPM9502-11A)
® PRIMIX Programmer's Guide (MAN9503-2LA)

® Programmer's Guide to BIND and EPFs (DOC8691-1LA, UPD8691-11A, and
UPD8691-12A)

® SEG and LOAD Reference Guide (DOC3524-192L)

® Source Level Debugger User's Guide (DOC4033-193L, UPD4033-21A, and
UPD4033-22A)

® Subroutines Reference I: Using Subroutines (DOCI10080-2LA and UPD10080-21A)
® Subroutines Reference I1: File System (DOCI0081-2LA)

® Subroutines Reference I11: Operating System (DOCI10082-2LA)

® Subroutines Reference IV: Libraries and 1/0 (DOC10083-2LA)

® Subroutines  Reference V: Event  Synchronization (DOC10213-1LA  and
UPDI10213-11A)

® System Architecture Reference Guide (DOC9473-3LA)
® Using PRIMIX on the 50 Series (DOC9709-3LA)

J



ABOUT THIS BOOK

ACKNOWLEDGEMENTS

The C compiler described in this book was designed and developed by David A. Kosower
and Garth Conboy of Pacer Software Inc., a La Jolla, California corporation with technical
offices in Westborough, Massachusetts.

PRIME DOCUMENTATION CONVENTIONS

The following conventions may be used throughout this document. The examples in the

table illustrate the uses of these conventions.

Convention

UPPERCASE

italic

Abbreviations
in format
statements

Brackets

Braces

Braces within
brackets

Parentheses

Underscore
in examples

Explanation

In command formats, words in upper-
case bold indicate the names of com-
mands, options, statements, and
keywords. Enter them in either upper-
case or lowercase.

In command formats, words in lower-
case bold italic indicate variables for
which you must substitute a suitable
value. In text and in messages, vari-
ables are in non-bold lowercase italic.

If a command or option has an ab-
breviation, the abbreviation is placed
immediately below the full form.

Brackets enclose a list of one or more
optional items. Choose none, one, or
several of these items.
Braces enclose a list of items. Choose
one and only one of these items.

Braces within brackets enclose a list of
items. Choose either none or only one
of these items; do not choose more than
one.

In command or statement formats, you
must enter parentheses exactly as
shown.

In examples, user input is underscored
but systemm prompts and output are not.

Example
SLIST

LOGIN user-id

Supply a value for
x between 1 and 10.

SET_QUOTA
SQ

-BRIEF
LD [—SIZE ]

filename }
-ALL

CLOSE {

BIND [ {p "”.ma”‘e} ]
options

DIM array (row, coI)

0K, RESUME MY_PROG
This is the output
of MY_PROG.CPL

0K,

i



C User's Guide

Xii

Convention

Ellipsis
Hyphen

Subscript

Key symbol

Explanation

An ellipsis indicates that you have the
option of entering several items of the
same kind on the command line.

Wherever a hyphen appears as the first
character of an option, it is a required
part of that option.

A subscript after a number indicates
that the number is not in base 10.
For example, a subscript 8 is used for
octal numbers.

In examples and text, the name of a
key enclosed by a rectangle indicates
that you press that key.

Example
SHUTDN pdev-1
[...pdcv—n ]

SPOOL -LIST

200,

Press

J

J

J



3

D

OVERVIEW OF PRIMOS C

This chapter introduces PRIMOS C. The first section describes the implementation of C
under PRIMOS and PRIMIX and the characteristics of the C compiler. The second section
discusses C language standardization, executable code compatibility within the SO Series line,
and source code compatibility with other C implementations. The last section briefly
describes the system resources supporting C language development.

PRIMOS C

The C programming language is a general-purpose language that can be used for a wide
variety of applications.  Although the C language is widely associated with the UNIX
operating systems, it is not dependent on any particular operating system or on any
particular hardware architecture.

PRIMOS C is a full implementation of the C programming language. PRIMOS C supports
two versions of C:

® The C language as defined in 1978 by Brian W. Kernighan and Dennis M. Ritchie in
The C Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall, 1978).

® The new ANSI C standard, X3.159-1989.

PRIMOS C provides modern flow control and data structures in addition to a full
complement of operators and data types. Other features of PRIMOS C are separate
compilation, data sharing, and data initialization.

Prime has also added several extensions to the C language so that it more closely matches
the operating environment found in PRIMOS, the proprietary operating system on 50 Series
machines. These extensions are listed later in this chapter.



C User's Guide

Use of PRIMOS C Under PRIMIX

PRIMIX is a separately-priced operating system based on AT&T UNIX System V and
coresident with PRIMOS on the 50 Series. PRIMIX uses the same C compiler as PRIMOS.
However, the command syntax and library functions described in this book are different
from those available under PRIMIX. PRIMIX programmers may wish to consult this book
for information on compiler options, interfacing to other S50 Series languages, and wvarious
advanced topics.  For information about PRIMIX commands and about the C language
libraries supplied with PRIMIX, consult the PRIMIX references listed in the preface to this
book.

The C Compiler

The PRIMOS C compiler generates object code in both 32IX and 64V addressing modes,
which allows access to 512 megabytes of virtual address space on 50 Series machines.
When used in 32IX mode the compiler is fully optimized to take advantage of the new C-
oriented architecture changes and enhancements to 32IX mode.

The C compiler is fully compatible with the BIND and SEG loaders, the Symbolic
Debuggers (VPSD for 64V mode and IPSD for 321 and 32IX modes), and the Source Level
Debugger (DBG).

Application programs written in C can access common data blocks. The data blocks can be
defined either by C routines or by routines written in other languages. C can also access
data that span segment boundaries, with some restrictions (see Chapter 7). Subroutines
written in other languages, as well as PRIMOS system subroutines, can call or be called by
C programs and subroutines with full argument transfer where data types permit.

STANDARDIZATION

-

PRIMOS C provides compile-time and runtime support for the ANSI C standard,
X3.159-1989, which is also documented in the second edition of Kernighan and Ritchie’s The
C Programming Language. Chapter 8 provides information about compiling, linking, and
running standard-conforming C programs. PRIMOS C continues to support the 1978 wversion
of the C language. Use the first edition of The C Programming Language as a reference
guide in developing non-ANSI C programs.

At the source level, non-ANSI PRIMOS C is reasonably compatible with the C compilers
running under the newest versions of the UNIX operating systems from AT&T and from
the University of California at Berkeley. In addition, the command line option
-COMPATIBILITY causes the compiler to accept code written for the older AT&T UNIX
Version 6. Other portability issues are discussed in Chapter 7.

1-2

N

N

J



4

Overview of PRIMOS C

Runtime Libraries

PRIMOS C provides runtime libraries and header files that fully comply with ANSI C
requirements, as well as libraries and header files that support the 1978 C language. The
non-ANSI libraries support a subset of the AT&T UNIX System V subroutines. These

runtime libraries include
e File 1/0 functions (for example, open(), read( ), fopen( ), fprint(), fscanf())
e String and character manipulation functions (for example, isalpha(), isdigit())
® Mathematical functions (for example, abs( ), sqrt(), tan())

e System functions (for example, abort(), setjmp( ), longjmp( ), sleep())

Compatibility

Prime uses a common operating system architecture on all SO Series machines. Therefore, C
application programs compiled in 64V mode on one system can, without any modification,
be executed on another 50 Series system. Programs compiled in 32IX mode, however, do
not run on older machines.

50 Series Extensions to the C Language

The PRIMOS C programming language contains a number of extensions to the 1978 C
language, all of which are part of the ANSI standard unless otherwise stated.  These
extensions are listed below.

® enum data type

® void data type

® long double data type, supporting quadruple precision floating point numbers
o fortran storage class

® Unary plus (+) operator

® Identifier names up to 32 characters in length

® Preprocessor commands #assert, #display, #list, #nolist, and #endincl (these
commands are not in the ANSI standard)

® Preprocessor command #elif

® Preprocessor operator defined

® Support for preprocessor tokens with the #include command
® Automatic string concatenation

A description of each extension is provided in Appendix A, Extensions to the C Language.



C User's Guide

SYSTEM RESOURCES SUPPORTING C

Application programs written in PRIMOS C can access a wide range of libraries, system
utilities, and file management resources. The sections below describe a few of the major
resources accessible to C application programs.

Libraries

Chapter 4, Using the C Library, contains a description of the non-ANSI C library functions
and Chapter 8, Using ANSI C, includes a description of the ANSI C library functions.

BIND Linker and SEG Loader

BIND and SEG are the 50 Series linking and loading utilities for both 64V-mode and 32IX-
mode programs. BIND and SEG combine separately compiled program modules, subroutines,
and libraries into an executable program. A single C source file can be a maximum of
128K bytes. All memory management, linking, and the like are handled by these utilities.
Various types of load maps may be obtained. Chapter 3, Linking C Programs, demonstrates
the use of BIND and SEG to link C programs.

Editors

The PRIMOS editor (ED) is a line-oriented text editor that enables you to enter and modify
source code and text files. A complete description of ED is in the New User's Guide to
EDITOR and RUNOFF. Prime also offers the screen editor EMACS as a separately priced
product. The EMACS screen editor is described in the EMACS Primer and the EMACS
Reference Guide.

Source Level Debugger

The Prime Source Level Debugger (DBG) is an interactive debugger that enables you to
debug C code interactively. Appendix B contains some suggestions for using DBG with C
programs. The Source Level Debugger User's Guide details the operation of DBG.

Multiple Index Data Access System

Prime Multiple Index Data Access System (MIDASPLUS™) is a software subsystem of
utilities and subroutines for creating and maintaining keyed-index/direct-access files.
MIDASPLUS provides the C programmer with a keyed-index multilevel file structure. All
housekeeping functions on the index and data subfiles are performed by MIDASPLUS
subroutines called from C programs.

Prime MIDASPLUS files created by programs written in one language may be accessed and
manipulated by programs written in other languages, thus ensuring compatibility. The
MIDASPLUS User's Guide contains a complete description of MIDASPLUS.

1-4

J

J



3

3

Overview of PRIMOS C

Chapter 5, Interfacing to Other Languages, provides information on calling MIDASPLUS
from PRIMOS C programs.

Language Interfaces

Object modules generated by the C compiler are capable of calling and being called by
object modules generated by the COBOL 74, FORTRAN IV, FORTRAN 77, Pascal, or PL/I
compilers.  This is possible because all SO Series high-level languages are similar at the
object code level, and all use similar calling conventions. However, certain restrictions must
be adhered to.

® Data types must be compatible when variables are passed as parameters.
® All modules must be compiled in 64V, 32IX, or 32I mode.

® The C compiler must be informed that interlanguage calling is taking place by use of
the fortran keyword or by command line options.

Application programs written in C can also call Prime Macro Assembler (PMA) routines and
vice versa. For further information on PMA routines, see the Assembly Language
Programmer's Guide.

Chapter S, Interfacing to Other Languages, provides guidelines and examples for interfacing
C to other SO Series languages.



5

2

COMPILING PROGRAMS IN C

This chapter explains how to compile C programs under PRIMOS on 50 Series systems. The
first section of this chapter describes the include files that are provided with the C
compiler and libraries. The second section describes the PRIMOS search rules facility and
explains how to specify directories to be searched for include files. The last section
describes the use of the C compiler, the messages produced during compilation, and the
command line options available.

The PRIMOS C compiler generates binary code in 64V and 32IX segmented addressing modes
in two passes and three passes, respectively. The C compiler accepts a source program
meeting the requirements specified in this guide. The C compiler also accepts both .C and
.CC as suffixes for source files.

The C compiler, like the other high-level language compilers on the 50 Series, can generate
an object file, a source file listing, error and statistical data, and other helpful information
regarding the compilation of C application programs.

STANDARD INCLUDE FILES

The standard C include files are located in the directory SYSCOM. These files have names
that end in .INS.CC. The C compiler does not recognize files in SYSCOM that lack the
INS.CC suffix. The .INS.CC suffix is optional in other directories. If you copy a header
file from SYSCOM to another directory, you may remove the suffix or not, as you wish.

Table 4-1 in Chapter 4 and Table 8-1 in Chapter 8 list the C include files in SYSCOM
that are provided for the non-ANSI and ANSI C libraries, respectively. The files
AKEYSINS.CC, ERRD.INS.CC, and KEYS.INS.CC are installed as part of PRIMOS. They are
documented in Volume Il of the Subroutines Reference Guide. Other products may also
provide C include files. For example, if MIDASPLUS is installed on your system, SYSCOM
contains the file PARM.K.INS.CC.



C User's Guide

INCLUDE FILES AND THE SEARCH RULES FACILITY

The PRIMOS search rules facility enables you to establish an INCLUDES search list. An
INCLUDES search list is a list of directories that are to be searched for an include file
whenever a #include directive is processed by the compiler.  Although there are several
kinds of search lists, this section explains only the INCLUDES$ search list. For complete
information about the PRIMOS search rules facility, see the Advanced Programmer's Guide,
Volume 11.

In PRIMOS C, you can specify directories to be searched for include files in a number of
different ways. When the C compiler encounters a #include directive, it searches for the
file in the following manner.

1. If the pathname is delimited by angle brackets (<. . .>), the compiler goes to step 2.

If the pathname is delimited by double quotes (“. . .”), the compiler proceeds as
follows. If the pathname is a simple filename, the compiler searches the current
directory. If the pathname is an absolute pathname (that is, if it begins with a disk
partition) the compiler searches that disk partition for the specified path. If the
pathname is a full pathname (that is, if it begins with a top-level directory) the
compiler searches all the disk partitions for the specified path. If it still cannot find
the file, the compiler goes to step 2.

2. The compiler searches the directories specified in command line -INCLUDE options, if
any. If it cannot find the file in those directories, the compiler goes to step 3.

3. PRIMOS searches the INCLUDES search list and supplies pathnames to the compiler.
The compiler then searches these directories. If the compiler cannot find the file in
those directories, it goes to step 4.

4. The compiler searches the top-level directory SYSCOM. If it cannot find the file, the
compiler reports an error.

Note

The standard C include files in SYSCOM contain the suffix .INS.CC. Files in
SYSCOM that lack the .INS.CC suffix are not recognized by the C compiler. The
INS.CC suffix is optional in other directories. If you copy a header file from
SYSCOM to another directory, you may remove the suffix or not, as you wish.

In directories other than SYSCOM, the statement
#include "name"

causes the compiler to search for the following files, in this order:

name.INS.CC
name.INS.C
name

Establishing Search Rules: To establish search rules for include files, perform the
following steps:

2-2

J

J

J



3

)

Compiling Programs in C

1. Create a template file called

[yourchoice. INCLUDES.SR

This file should contain a list of the pathnames of the directories that contain your
include files. List the directories in the order that you want them searched. For
example, you might create a file called MY.INCLUDES.SR that contains the following
directory names:

<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>ME

2. Activate the template file by using the SET__SEARCH__RULES (SSR) command. For
example, if your file is named MY.NCLUDES.SR, type

0K, SSR MY.INCLUDE?

This command sets your INCLUDES search list. This search list may contain system
search rules and administrator search rules in addition to the rules you specified in
MY .INCLUDES.SR.

When you give the SSR command shown in step 2, PRIMOS copies the contents of
MY.INCLUDES$.SR into your INCLUDES$ search list. If you have no special system or
administrator search rules, your INCLUDES search list appears as follows when you type
the LIST_SEARCH__RULES (LSR) command:

List: INCLUDES
Pathname of template: <MYSYS>ME>CPROGS>MY.INCLUDES.SR

[home_dir]

<SYS1>MASTER_DIR>INSERT_FILES

<SYS2>ME
[home_dir], your current attach point, is the system default. It is always the first
directory searched, unless you remove it from the list or change the order of evaluation by
using the -NO__SYSTEM option of the SSR command. Additional search rules, established as
systemwide defaults by your System Administrator, may also appear at the beginning of
your INCLUDES search list. The above search rules initiate the search in [home__dir), then
search <SYS1>MASTER__ DIR>INSERT__FILES, and finally search <SYS2>ME.

The SET_SEARCH__RULES and LIST_SEARCH_RULES commands are described in the
PRIMOS Commands Reference Guide. For more information about establishing search
rules, see the Advanced Programmer's Guide, Volume I1I.

Using Search Rules: The C compiler searches the contents of the directories according to
the pattern described at the beginning of this section.

Using [referencing_diryk The Advanced Programmer's Guide, Volume Il describes several
expressions that you can use in your list of search rules. One of these, [referencing_dir],
has a special meaning for INCLUDES search lists. [referencing_dir] is less useful in C than
in other Prime languages because include files can be specified in so many ways in C.

2-3



C User's Guide

Like [home_ dir), [referencing__dir] is a variable that PRIMOS replaces with a directory
pathname. [referencing_dir] always evaluates to the pathname of the directory from which
the request for an include file is made. Thus, if a #include directive is located in a
source file, [referencing_ dir] evaluates to the pathname of the directory that contains the
source file.

USING THE C COMPILER

Invoke the C compiler from PRIMOS command level with the command

CC sourcefile [-option 1] [-option 2] . . . [-option n]

where CC invokes the C compiler, sourcefile denotes the pathname of the C source program
to be compiled, and -option denotes an option controlling the compiler functions. All
compiler options begin with a hyphen.

For example, the command

0K, CC TEST_PROGRAM -LISTING -STATISTICS

compiles a program named TEST__PROGRAM.CC or TEST__PROGRAM.C with the -LISTING
and -STATISTICS options.

The compiler options are listed in Table 2-1, C Command Line Compiler Options, at the end
of this section. Each option is described in detail later in this chapter.

Compile-time Error Messages

The C compiler automatically displays an error message at the terminal for each error it
encounters during the compilation procedure. The C compiler also records compilation errors
in a source listing if one is specified. The format for C compiler error messages is

Error# n on source line = y has severity z:

descriptive-text

where n indicates the cumulative error count, y shows the source line on which the error
was encountered, and z states the severity of the error, as follows:

Verbose Error, warning, or information that is not normally displayed (see
description of -VERBOSE option on page 2-35)

Warning Error encountered that may later result in an unsuccessful execution

Fixable Recoverable syntax error that does not prevent code generation

2-4

J

)



r Compiling Programs in C

'_ Error Uncorrectable error that prevents code generation
Fatal Error that prevents further compilation

An example of a compile-time error message follows:

0K, SLIST BADPROGRAM.C
main( )

|

printf("hello, world\n")
}

0K, CC BADPROGRAM -32IX
{CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

Error# 1 on source line = 4 has severity Error:

r }
‘ A syntax error was found; a "}* was found where another
token was expected. Error recovery was invoked.

01 Error and 00 Warnings detected in 4 source lines.
After any compilation is complete, the C compiler displays an end of compilation message:
nn Error and xx Warnings detected in y source lines.

r“ where nn indicates the total number of compilation errors. (00 indicates an error-free

- compilation.)

Compiler Options

The C compiler provides a variety of compiler options that enable you to perform many
tasks during program compilation. These tasks include

Generating a binary file

‘ e Defining the properties of generated object code

Generating a source listing and specifying its contents

Generating compiler error and statistical information

Controlling optimization

Many of the compiler options come in pairs. That is, for each option there is an option
having the opposite effect. ~One option of each pair is always the default. Compiler
options can be specified in any order.

The PRIMOS command line is not case-sensitive. Commands, compiler options, and
arguments can be specified in uppercase or lowercase.

r In the summary of compiler options in Table 2-1, the default options are indicated by an
asterisk (%). A few of the options require an argument specification in addition to the
option specification. The argument specification is not preceded by a hyphen. The short

2-5



J

C User's Guide

form of each option is underscored. The second column of the table indicates the valid
addressing mode(s) for each option; for example, an option designated 64V can be used only
in conjunction with the -64V option. Detailed explanations of the options follow the table.

J

TABLE 2-1. C Command Line Compiler Options

Option Modes  Operation Per formed
-321X -— Generates 32IX-mode object code.
-64Vx - Generates 64V-mode object code.
-6
-ANSI 321X, Examines a source program for adherence
-AN 64V to the ANSI C standard. \
-BIG 321X, Assumes external arrays and pointed-to

64V objects span segment boundaries.
-BINARY* 321X, Generates binary (object) file. This option
-B 64V may take an argument.
-BIT8% 321X, Sets bit 8 in character and string con-
-BIT 64V stants.
-CHECKOUT 321X, Executes only the compiler’s first pass. ‘\
-CH 64V
-CIX 64V Enables 64V to call 32IX code. This op-
-CI tion takes an argument.
-CLUSTER 32IX Causes optimization and code generation
-CLU for entire source file.
-COMPATIBILITY 321X, Compiles Version 6 source code as well as
-COMPA 64V Version 7, System III and System V

source code. \

-COPY* 64V Passes parameters by value.
-DEBUG 321X, Generates information for full Source
-DEB 64V Level Debugger (DBG) support.
-DEFINE 321X, Defines a specified name to be a specified
-DEF 64V value. This option takes two arguments.
-DISALLOWEXPANSION 32IX Causes named routine not to be expanded
-DIS inline. This option takes an argument.
-DOUBLEFLOATING* 321X, Performs all floating-point math in double
-DOU 64V precision.
-ERRTTY* 321X, Displays error messages on user’s terminal.
-ERRT 64V
-EXPLIST 321X, Generates expanded (assembly) listing. \
-EXP 64V

J

Asterisks (%) indicate defaults.

2-6



)

Compiling Programs in C

TABLE 2-1. C Command Line Compiler Options (continued)

Option Modes  Operation Per formed

-EXTRACTPROTOTYPES 321X Creates header file with ANSI-style

-EXTRAC prototype declarations for all functions in
source file. This option may take a path-
name argument.

-FORCEEXPANSION 320X Forces named routine to be expanded in-

-FORCEE line. This option takes an argument.

-FRN 321X, Generates Floating Round Number (FRN)

64V instruction before FST instruction.

-HARDWAREROUNDING 321X Turns on hardware rounding.

-HARD

-HIGHENDPROCESSORS 64V Generates code optimized for the 4000,

-HIGH 6000, and 9000 series processors.

-HOLEYSTRUCTURES 321X Causes all non-bit-field structure members

-HOLE 32 bits or larger to be aligned on 32-bit
boundaries.

-IGNOREREGISTER 32IX Ignores the register keyword.

-1G

-INCLUDE 321X, Specifies include search pathnames. This

-INC 64V option takes an argument.

-INPUT 321X, Designates the source file to be compiled.

-1 64V A pathname must be specified. This op-
tion is obsolete. Its use is not recom-
mended.

-INTEGEREXCEPTIONS 32IX Causes runtime errors to be generated for

-INTE integer overflow, underflow, and divide
by zero.

-INTLONG* 32IX, Generates 4-byte integers.

-INTL 64V

-INTRINSIC 32IX, Causes compiler to generate inline code

-INTR 64V for one of several library functions. This
option takes one or two arguments.

-INTSHORT 321X, Generates 2-byte integers. Use of this op-

-INTS 64V tion is not recommended.

-LBSTRING* 321X, Places string constants in the linkage area.

-LBS 64V

-LISTING 32IX, Generates listing file. This option may

-L 64V take an argument.

Asterisks (*) indicate defaults.

2-7



C User's Guide

TABLE 2-1. C Command Line Compiler Options (continued)
Option Modes  Operation Per formed
-LOWENDPROCESSORSx* 64V Generates code optimized for machines
-LOW other than the 4000, 6000, and 9000
series processors.
-NEWFORTRANx 64V Uses the new interlanguage interface.
-NEWF
-NOANSI* 321X, Does not examine source program for ad-
-NOAN 64V herence to the ANSI C standard.
-NOBIG* 321X, Assumes external arrays and pointed-to
64V objects do not span segment boundaries.
This option may cause use of 16-bit in-
dexing.
-NOBITS 321X, Does not set bit 8 in character and string
-NOBIT 64V constants. Use of this option is not
recommended.
-NOCHECKOUT 321X, Does not execute only the compiler’s first
-NOCH 64V pass.
-NOCLUSTER%* 321X Does not cause optimization and code
-NOCLU generation for entire source file.
-NOCOMPATIBILITY* 321X, Does not accept Version 6 source code.
-NOCOMPA 64V
-NOCOPY 64V Passes parameters by reference.
-NODEBUG* 321X, Does not generate information for full
-NODEB 64V Source Level Debugger (DBG) support.
-NOERRTTY 321X, Does not display error messages on user’s
-NOERRT 64V terminal.
-NOEXPLIST* 321X, Does not generate an expanded listing file.
-NOEXP 64V
-NOFRNx 321X, Does not generate FRN instructions.
-NOFR 64V
-NOHARDWAREROUNDING* 321X Does not turn on hardware rounding.
-NOHARD
-NOHOLEYSTRUCTURES* 32IX Does not cause all non-bit-field structure
-NOHOLE members 32 bits or larger to be aligned
on 32-bit boundaries.
-NOIGNOREREGISTER 321X Respects the register keyword.
-NOIG

2-8

Asterisks (%) indicate defaults.

J

J

J



3

Compiling Programs in C

TABLE 2-1. C Command Line Compiler Options (continued)

Option Modes  Operation Per formed

-NOINTEGEREXCEPTIONS* 321X Does not cause runtime errors to be

-NOINTE generated for integer overflow, underflow,
and divide by zero.

-NOONUNIT 321X, Lets PRIMOS report the occurrence of fa-

-NOON 64V tal compiler errors.

-NOOPTIMIZE* 321X, Performs no object code optimization.

-NOOPT 64V

-NOPACKBYTESx* 321X Does not pack adjacent single-byte entities

-NOPACK in structures and unions.

-NOOPTSTATISTICSx 321X Does not print optimization statistics.

-NOOPTS

-NOPOP* 321X, Removes old constant macro definition.

64V

-NOQUADCONSTANTS* 321X Does not support quad-precision constants.

-NOQUADC

-NOQUADFLOATINGx 321X Does not support quad-precision variables.

-NOQUADF

-NOSAFEPOINTERS* 321X, Does not always retain byte offset bit.

~-NOSAFE 64V

-NOSEGMENTSPANCHECKINGx 32IX Does not cause two block-memory func-

-NOSEG tions to produce correct code for segment-
spanning arguments.

-NOSILENT* 321X, Displays warning messages on the user’s

-NOSIL 64V terminal.

-NOSTATISTICS* 321X Does not generate compiler statistics.

-NOSTAT

-NO_STORE_OWNER_FIELDx* 32IX, Suppresses the generation of code that per-

-NSOF 64V forms a store owner field operation.

-NOSTRICTCOMPLIANCE* 321X Does not detect certain violations of the

-NOSTRIC ANSI standard.

-NOSYSOPTIONS 321X Does not look for the system options file.

-NOSYS

~-NOVERBOSE* 321X, Does not display verbose messages on the

-NOVERB 64V user’s terminal.

-OLDFORTRAN 64V Uses the old interlanguage interface.

-OL

D

Asterisks (%) indicate defaults.

2-9



C User's Guide

TABLE 2-1. C Command Line Compiler Options (continued)

Option Modes  Operation Per formed

-OPTIMIZE 321X, Performs object code optimization. This

-OPT 64V option may take an argument.

-OPTIONSFILE 32IX, Reads command line options from a

-OPTIO 64V specified file. This option takes an ar-
gument.

-OPTSTATISTICS 321X Prints optimization statistics.

-OPTS

-PACKBYTES 321X Packs adjacent single-byte entities in struc-

-PACK tures and unions.

-PARTIALDEBUG 321X Generates debugger symbol information

-PAR only for variables that are referenced.

-PBSTRING 321X, Places string constants in the procedure

-PBS 64V area.

-POP 321X, Pops old macro definitions.

64V

-PREPROCESSONLY 321X Generates file that contains source with

-PRE macros expanded. This option may take a
pathname argument.

-PRODUCTION 321X, Generates information for partial DBG

-PROD 64V support.

-QUADCONSTANTS 321X Supports quad-precision constants when

-QUADC the program is compiled without the
-ANSI option.

-QUADFLOATING 32IX Supports quad-precision variables when the

-QUADF program is compiled without the -ANSI
option.

-SAFEPOINTERS 321X Always retains byte offset bit.

-SAFE

-SEGMENTSPANCHECKING 321X Causes two block-memory functions to

-SEG produce correct code for segment-spanning
arguments.

-SHORTCALL 321X, Enables the compiler to generate shortcalls.

-SHORTC 64V This option takes an argument.

-SINGLEFLOATING 321X, Allows single precision floating-point

-SIN 64V math.

-SILENT 321X, Does not display warning messages on the

-SIL 64V user’s terminal.

Asterisks (*) indicate defaults.

2-10

J



3

Compiling Programs in C

TABLE 2-1. C Command Line Compiler Options (continued)
Option Modes  Operation Per formed
-SOURCE 321X, Identical to -INPUT, this option is obsolete.
64V Its use is not recommended.
-SPEAK 321X Enables compile-time progress messages
after each stage of the compiler.
-STANDARDINTRINSICS 32IX Causes compiler to generate inline code
-STAN for all the options supported by the
-INTRINSIC option.
-STATISTICS 321X, Generates compiler statistics on the user’s
-STAT 64V terminal.
-STORE__OWNER__FIELD 321X, Generates code within a program to store
-SOF 64V the identity of a called procedure in a
known place.
-STRICTCOMPLIANCE 321X Detects certain violations of the ANSI
-STRIC standard, such as PRIMOS-specific exten-
sions, when used in conjunction with
-ANSL
-SYSOPTIONSx 32IX Looks for the system options file.
-SYS
-UNDEFINE 321X Removes an initial definition. This option
-UNDEF takes an argument.
~-VALUEONLY 32IX Identifies a routine that has no side ef-
-VALUE fects. This option takes an argument.
-VERBOSE 321X, Displays verbose messages on the user’s
-VERB 64V terminal.
-XREF 32IX, Generates a full cross-reference listing.
64V
-XREFS 321X, Generates a partial cross-reference listing.
64V

Asterisks (%) indicate defaults.

2-11



C User's Guide

Command Line Compiler Options

This section provides detailed descriptions of C compiler options. Option pairs, that is,
options that have opposite effects, are listed together.  An asterisk (%) indicates that the
option before it is the default.

> -32IX
Short form: -32IX

Generates object code in 32IX mode. This option is available on all newer SO Series
processors (that is, all processors with four-digit names except the 2250™ processor). Code
produced with the -32IX command line option runs between 1.5 and 4.0 times faster than
code produced with the -64V option. When you use the -32IX option, the compiler prints
the following banner:

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

> -64Vx

Short form: -6

Generates object code in 64V mode. Code produced with this option runs on any 50 Series

machine newer than and including the 400™ processor.

Note

Use of the -64V option is not recommended. This option generates code that results
in poor performance. If your machine supports 32IX mode, use the -32IX option.

When you compile a C program in 64V mode, the compiler prints the following banner:
[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

» -ANSI / -NOANSIx
Short forms: -AN / -NOAN

This option is intended for use with -32IX only. Examines a C source program for
adherence to the ANSI C standard. It can be used with -64V, but it only checks for uses
of the fortran keyword. For example:

J



D)

Compiling Programs in C

main()

{

}
OK, CC TEST -NEWFORTRAN -ANSI

[CC Rev. 23.0-T3.0 Copyright (c) 1990, Prime Computer, Inc.]

fortran mkon$p();

Error# 1; Error type = 269; Source line = 3;
Error severity = Warning
fortran mkon$p();

The use of the "fortran" keyword may not be portable construct.

00 Errors and 01 Warning detected in 4 source lines.

For information about writing, compiling, and linking ANSI C programs, see Chapter 8.

-ANSI
Instructs the C compiler to perform extra checking for violations of the ANSI C
standard.

-NOANSI
Instructs the C compiler to disregard violations of the ANSI C standard. Instead, the
compiler checks for violations of the C language as defined in the first (1978) edition of
The C Programming Language, by Kernighan and Ritchie.

You may not put either of these options in an options file (see the -OPTIONSFILE option).
You must specify them on the command line.

P -BIG / -NOBIGx
Short forms: -BIG / -NOBIG

Determines the type of code generated for array and pointer references.

-BIG
Assumes that unless they are declared small, all external arrays, structures, and pointed-to
objects span segment boundaries and exceed 128K bytes.

-NOBIG
Assumes all external arrays and objects referenced by pointers that are declared with a
size smaller than 128K bytes do not span segment boundaries, thus allowing 16-bit array-
addressing code to be generated. The object code is faster, but introduces the risk of
incorrect array referencing code being generated for arrays that exceed one segment. This
option may cause 16-bit pointer increment and decrement code to be generated.

P -BINARY [argument]

Short form: -B

Generates and names a binary file. This option, however, does not define the properties of
the binary file. The argument specification for this option can be one of the following:

2-13



C User’s Guide

Argument Meaning
pathname Indicates the pathname to which the object code is written.
YES%x Instructs the C compiler to create a binary file named PROGRAM.BIN for

all programs compiled in 32IX mode and for 64V-mode programs with a
CC or .C suffix. If you compile in 64V mode and the source filename
does not include a .CC or .C suffix, the C compiler generates an object
file named B__PROGRAM. This argument is the default.

NO Does not generate a binary file.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

» -BIT8x / -NOBITS
Short forms: -BIT / -NOBIT

Controls the setting of the most significant bit in each byte of string and character
constants. This most significant bit is always ON for Prime ASCII, the basic character set
in the Prime Extended Character Set (Prime ECS). (For information about Prime ECS, see
Appendix F.) The purpose of disabling this bit by using -NOBITS8 is to provide compatibility
with algorithms that expect the integer value of character constants to be from O through
127 decimal.

Note

Areas of programs that need to use -NOBIT8 must be localized because character
constants generated with -NOBIT8 are not supported by any libraries or I/0
subsystems.

-BIT8
Produces object code that conforms to Prime ECS. All nonoctal character and string
constants have their eighth bit (most significant bit) set.

-NOBIT8
All nonoctal character and string constants have their eighth bit masked off, so that
they do not conform to Prime ECS. These constants are not recognized as members of
the standard Prime character set. Severe runtime problems occur if you attempt to use
these character constants outside of the routine compiled with this option.

» -CHECKOUT / -NOCHECKOUTx
Short forms: -CH / -NOCH

Runs only the compiler’s first pass to increase compilation speed for detection of initial
program errors.

2-14

J

J J



3

Compiling Programs in C

-CHECKOUT o
Runs only the first pass of the compiler. No code generation or expanded listings can be

produced if this option is specified.

-NOCHECKOUT
Runs all passes of the compiler.

» -CIX routinename

Short form: -CI
This option is valid in 64V mode only.

Causes the compiler to assume that the external routine routinename was compiled in 321X
mode and to generate the correct calling sequence. No Argument Pointers (APs) are used,
all pointers are shortened to two 16-bit halfwords, and the address of the argument list is
placed in the XB register before the PCL procedure call. See Chapter 5, Interfacing to
Other Languages, for more information.

» -CLUSTER / -NOCLUSTERx*
Short forms: -CLU / -NOCLU

These options are valid in 32IX mode only.

Controls the order of compilation for a source file with multiple routines. -CLUSTER is
useful only in conjunction with -OPTIMIZE.

-CLUSTER
Causes the compiler to accumulate intermediate representation for an entire source file
before performing optimization and code generation. -CLUSTER behaves differently
depending on the optimization level specified:

e With -NOOPTIMIZE (the default), -CLUSTER simply increases the amount of
memory required to compile a given source file.

e With -OPTIMIZE 1, -OPTIMIZE 2, or -OPTIMIZE 3, -CLUSTER causes the compiler
to build a calling tree (call graph) and to process inline expansion bottom-up. As
optimization level increases, the complexity of routines that are considered candidates
for inline expansion also increases. If a nonstatic routine is expanded inline, the
compiler also generates code for an external version of the routine so that it can be
reached from routines in other source files.

-NOCLUSTER
Causes the compiler to accumulate intermediate representation and perform optimization

and code generation for each function before moving on to the next function in the
source file.



C User's Guide

» -COMPATIBILITY / -NOCOMPATIBILITY*
Short forms: -COMPA / -NOCOMPA
Controls the handling of AT&T UNIX Version 6 C source incompatibilities.

-COMPATIBILITY
Compiles AT&T UNIX Version 6 C source code as well as the more recent AT&T UNIX
Version 7, System Il and System V C source code. This option also permits the use of
Version 6 syntax (for example, =op and old initialization style).

-NOCOMPATIBILITY
Interprets all occurrences of Version 6 C syntax as errors.

» -COPYx / -NOCOPY
Short forms: -COPY / -NOCOPY

These options are valid in 64V mode only.

Controls the passing of arguments from one function to another function either by reference
or by value. See Chapter S, Interfacing to Other Languages, for more information.

-COPY
Passes arguments from one function to another function by value.

-NOCOPY
Passes arguments from one function to another function by reference.

> -DEBUG / -NODEBUG*
Short forms: -DEB / -NODEB
Enables full Source Level Debugger (DBG) support.

-DEBUG
Enables DBG support.

-NODEBUG
Does not enable DBG support.

Refer to Appendix B, Debugging C Programs, for more information on DBG.

» -DEFINE name value
Short form: -DEF

Simulates an initial #define C preprocessor command. That is, compiling the source file
MYPROGRAM.CC with the command line

2-16

J



D

Compiling Programs in C

0K, CC MYPROGRAM -DEFINE MYCONST 20

has the same effect as specifying
#define MYCONST 20

as the first directive in the source file MYPROGRAM.CC. If no value is specified following
name, value is assumed to be 1. If value contains spaces, enclose it in single quotation
marks. For example,

0K, CC MYPROGRAM -DEFINE SUM '5 + 2°

You may not use the -DEFINE option to define macros with arguments on the command
line. You may specify as many -DEFINE options as required on the command line.

P -DISALLOWEXPANSION
See -FORCEEXPANSION.

» -DOUBLEFLOATINGx* / -SINGLEFLOATING
Short forms: -DOU / -SIN

Controls the precision of floating-point math operations.

-DOUBLEFLOATING
Performs all floating-point math in double precision.

-SINGLEFLOATING
Allows the calculation to be performed in single precision if both arguments to a
floating-point operation are single precision.

» -ERRTTYx / -NOERRTTY
Short forms: -ERRT / -NOERRT

Controls the display of compiler error messages on a user’'s terminal.

-ERRTTY
Displays compiler error messages on the user’s terminal.

-NOERRTTY
Does not display compiler error messages on the user’s terminal.

See the description of compiler messages earlier in this chapter. The -NOERRTTY option
does not affect the contents of a file produced with the -LISTING option. [t affects only
error messages printed to the terminal.

2-17



C User's Guide

» -EXPLIST / -NOEXPLIST*
Short forms: -EXP / -NOEXP

Controls the insertion of pseudo-assembly code into the source listing file.

-EXPLIST
Causes pseudo-Prime Macro Assembler (PMA) code to be written to the listing file for
each C language statement in the source file.

-NOEXPLIST
Does not insert pseudo-PMA statements into the source listing file.

P -EXTRACTPROTOTYPES [pathname]
Short form: -EXTRAC

This option is valid in 32IX mode only.

Causes the compiler to create a file that contains ANSI-style prototype declarations for all
functions defined in the source file.

The pathname argument specifies the name of the file to be created by
-EXTRACTPROTOTYPES. If the pathname is omitted, the default name of the file is
name.H, where name is the root name of the source file.

For more information about -EXTRACTPROTOTYPES, see Chapter 8.

P -FORCEEXPANSION routine / -DISALLOWEXPANSION routine
Short forms: -FORCEE / -DIS

These options are valid in 32IX mode only.

Overrides the compiler’s default algorithm for determining which routines are expanded
inline. Both -FORCEEXPANSION and -DISALLOWEXPANSION work only when used in
conjunction  with  -CLUSTER. If you specify either -FORCEEXPANSION or
-DISALLOWEXPANSION without specifying -CLUSTER, the compiler ignores it.

-FORCEEXPANSION
Orders the compiler to expand the named routine inline.

-DISALLOWEXPANSION
Forbids the compiler to expand the named routine inline.

2-18

J

J



Compiling Programs in C

p -FRN / -NOFRN=x
Short forms: -FR / -NOFR

Controls generation of the floating-point round instruction. The -FRN option usually
improves the accuracy of calculations involving single precision floating-point numbers.
Such numbers are type float in C.

For programs compiled in 32IX mode on newer 50 Series systems (that is, all systems with
four-digit names except  the  2250), -FRN has  been superseded by the
-HARDWAREROUNDING option (-HARD). If you have one of these systems, use
-HARDWAREROUNDING instead of -FRN. (See the discussion of -HARDWAREROUNDING.)

-FRN
Causes all single precision numbers to be rounded each time they are moved from a
register to main storage. -FRN adds the Prime Macro Assembler instruction FRN to the
generated code at every single precision store. For information about how this
instruction works, see the System Architecture Guide and the Instruction Sets Guide.
The rounding method that is used ordinarily reduces loss of accuracy in the low-order
bits when many calculations are performed on the same number.

-NOFRN
Does not generate FRN instructions.

Occasionally, a program may give less accurate results with -FRN than without it. Use
-FRN only if you are familiar enough with the FRN instruction to know how it will
affect the operations in your program.

-FRN does not affect double precision real numbers (double) or quadruple precision floating-
point numbers (long double). Often the best way to gain increased accuracy is to use
double or long double numbers rather than float. -FRN causes a slight increase in
execution time, and should therefore be used only when maximum accuracy for single
precision numbers is a major consideration.

» -HARDWAREROUNDING / -NOHARDWAREROUNDING %
Short forms: -HARD / -NOHARD
This option is valid in 32IX mode only.

-HARDWAREROUNDING enables hardware rounding for floating-point operations.  This
option usually improves the accuracy of calculations involving both single precision and
double precision real numbers (float, double). -HARDWAREROUNDING has an effect only
with the newer 50 Series systems (that is, all systems with four-digit names except the
2250). On these systems, use -HARDWAREROUNDING instead of -FRN for single precision
rounding. Do not use -HARDWAREROUNDING and -FRN together; such use is redundant
and degrades runtime performance.



C User's Guide

-HARDWAREROUNDING

Enables hardware rounding for the following floating-point operations: add, subtract,
multiply, divide, store, and compare. It ordinarily provides greater accuracy than -FRN,
which causes rounding to occur only when a number is stored. For information about
how hardware rounding is performed, see the System Architecture Guide and the
Instruction Sets Guide. The rounding method that is used ordinarily reduces loss of
accuracy in the low-order bits when many calculations are performed on the same
number.

-NOHARDWAREROUNDING
Causes no rounding to be performed.

Occasionally, a program may give less accurate results with -HARDWAREROUNDING than
without it. Use -HARDWAREROUNDING only if you are familiar enough with hardware
rounding to know how it will affect the operations in your program.

-HARDWAREROUNDING does not affect quadruple precision floating-point numbers (long
double). Often the best way to gain increased accuracy is to use double numbers rather
than float, or long double numbers rather than double. -HARDWAREROUNDING causes a
slight increase in execution time, and should therefore be used only when maximum
accuracy is a major consideration, and when it is not possible to convert to the next higher
precision.

» -HIGHENDPROCESSORS / -LOWENDPROCESSORSx
Short forms: -HIGH / -LOW

These options are valid in 64V mode only.

Controls the target machine optimization for 64V-mode code generation. The distinction
between high-end and low-end processors is not valid in 32IX mode, which performs fairly
consistently across all machines on which it runs. All newer 50 Series processors - that
is, all processors with four-digit names except the 2250 — can generate 32IX-mode code.

-HIGHENDPROCESSORS
Generates optimal code for all processors in the 4000, 6000, and 9000 series by avoiding
the use of skip instructions. Code generated with this option runs on all 50 Series
machines, but runs faster on the high-end processors.

-LOWENDPROCESSORS
Generates optimal code for SO Series machines other than the 4000, 6000, and 9000 series
processors. Code generated under this option runs on all 50 Series machines, but runs
faster on the low-end machines.

2-20

J

J



)

Compiling Programs in C

» -HOLEYSTRUCTURES / -NOHOLEYSTRUCTURES*

Short forms: -HOLE / -NOHOLE

These options are valid in 321X mode only.

Controls the alignment of structure members 32 bits or larger that are not bit fields.

-HOLEYSTRUCTURES
Causes all non-bit-field structure members that are 32 bits or larger to be aligned on

even word (32-bit) boundaries.

-NOHOLEYSTRUCTURES
Causes all non-bit-field structure members that are 32 bits or larger to be aligned on
half word (16-bit) boundaries.

P> -IGNOREREGISTER / -NOIGNOREREGISTER
Short forms: -IG / -NOIG

These options are valid in 32IX mode only.

Controls the meaning of the register keyword. In 64V mode, variables declared with the
register keyword are placed not in registers, but in the stack frame.

-IGNOREREGISTER
Ignores the register keyword and allows the compiler’s optimizer to control all
placement of register variables. This option is the default at optimization levels 1 and
higher.

-NOIGNOREREGISTER
Respects the register keyword. The option is the default at -NOOPTIMIZE.

» -INCLUDE pathname
Short form: -INC

Specifies an additional directory to be searched when the compiler is attempting to locate
files that were specified with #include preprocessor commands. The pathname must end in
a directory name.

In PRIMOS C, you can specify directories to be searched for #include files in a number of
different ways. The search algorithm used by the C compiler is described on page 2-2.

2-21



C User's Guide

» -INPUT pathname

Short form: -I

Is identical to the -SOURCE option. That is, both options designate the source file
pathname to be compiled. For example,

CC -INPUT pathname
and
CC pathname

produce the same result. Also, pathname must not be designated more than once on the
command line. The -INPUT option is obsolete, and its use is not recommended.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

» -INTEGEREXCEPTIONS / -NOINTEGEREXCEPTIONS*
Short forms: -INTE / -NOINTE

These options are valid in 32IX mode only.

Forces the hardware to take a fault on integer overflow, underflow, and division by zero.

-INTEGEREXCEPTIONS
Enables the integer exception-handling mechanism. When integer arithmetic causes an
integer to be larger than the data item to which it is assigned, a FIXEDOVERFLOW
runtime error occurs. When a division by zero is encountered, a ZERODIVIDE runtime
error occurs.

-NOINTEGEREXCEPTIONS
Does not enable integer exception handling.

» -INTLONGx / -INTSHORT
Short forms: -INTL / -INTS

Controls the meaning of the int keyword.

-INTLONG
This is the standard operational mode for the PRIMOS C compiler. The int keyword
means long int, or 32-bit integer. All undeclared functions are expected to return a
long int.

-INTSHORT

This option is useful when debugging code to be ported to a machine where int means
short int, or 16-bit integer. Use of this option is not recommended.

2-22

) J



)

Compiling Programs in C

When you call a function from a program compiled with -INTSHORT, parameters of
type short or char are converted to type long int, just as they are with the default,
-INTLONG. This conversion allows you to use the standard C libraries. You must,
however, declare all C library functions that return type int as returning type long.
Otherwise, the C compiler assumes that the functions return type short.

» -INTRINSIC [sourcename)] intrinsicname
Short form: -INTR

Causes the compiler to generate inline code for, or a shortcall to, any of a limited number
of common C library routines. The first argument, sourcename, is optional and is the name
that is used in the source program to reference the intrinsic function. If this argument is
missing, it is assumed to be the same as Kintrinsicname}. The last argument to the option,
intrinsicname, is the true name of the intrinsic function. The currently supported intrinsic

routines are as follows:
e In V mode, strlen(), strcpy(), and strncpy().

e In IX mode, abs(), fabs(), strien(), strcmp(), strcpy(), strncpy(), and, if -ANSI is
specified, memcpy( ).

If -ANSI is not specified, specifying -INTRINSIC STRNCPY enables strncpy( ) to perform a
block move. If -ANSI is specified, specifying -INTRINSIC MEMCPY enables memcpy() to
perform a block move, and specifying -INTRINSIC STRNCPY enables strncpy() to perform
according to the standard: that is, it copies the specified number of characters from string
1 to string 2, then pads any remaining spaces in string 2 with \O’s.

For example, suppose you invoke the compiler with the command line

0K, CC MYPROGRAM -INTRINSIC MYSTRLEN STRLEN

During compilation, each call to the function MYSTRLEN in the program MYPROGRAM causes
the compiler to generate inline code for the C library function strlen( ).

The intrinsic versions of strncpy() and memcpy() do not copy strings that span segment
boundaries unless the -SEGMENTSPANCHECKING option is specified.

» -LBSTRINGx* / -PBSTRING
Short forms: -LBS / -PBS
Controls the placement of string constants.

-LBSTRING
String constants are placed in the linkage area and thus may be modified at runtime.
This is the default.

2-23



C User's Guide

-PBSTRING
String constants are placed in the procedure area and thus may not be modified at

runtime. They may, however, be shared between multiple processes. This option
improves performance slightly.

» -LISTING [argument]

Short form: -L

Controls generation of a source listing file. The argument specification can be one of the
following:

Argument Meaning
pathname Source listing is written to the file pathname.
YES Instructs the C compiler to create a listing file named PROGRAM.LIST for

all programs compiled in 32IX mode and for 64V-mode programs with a
LC or .C suffix. If you compile in 64V mode and the source filename
does not include a .CC or .C suffix, the C compiler generates a listing
file named L_PROGRAM. This argument is the default.

NO Does not generate a source listing file. This is the default when you do
not specify the -LISTING option.

TTY Source listing is displayed on the user’s terminal.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

» -LOWENDPROCESSORSx*
See -HIGHENDPROCESSORS.

» -NEWFORTRANx / -OLDFORTRAN
Short forms: -NEWF / -OL
These options are valid in 64V mode only.

Controls the interlanguage interface in 64V mode. In 32IX mode, only the new language
interface is available.

-NEWFORTRAN
Uses the new interlanguage interface in 64V mode. This is the default when you
compile a 64V-mode program that uses the fortran keyword.

2-24

J

J



3

Compiling Programs in C

-OLDFORTRAN .
Uses an old, obsolete interlanguage interface in 64V mode. If you compile a 64V-mode

program with the -OLDFORTRAN option, the compiler issues a warning.  You are
strongly encouraged to use the new interlanguage calling interface instead of the old one.

» -NOONUNIT
Short form: -NOON

Lets PRIMOS report the occurrence of fatal compiler errors. Use of this command option is
not recommended, as the compiler performs appropriate cleanup procedures and PRIMOS does

not.

» -OLDFORTRAN
See -NEWFORTRAN.

» -OPTIMIZE [level] / -NOOPTIMIZEx*
Short forms: -OPT / -NOOPT

Controls object code optimization.

-OPTIMIZE
Without an optimization level, this option is valid in 64V mode only. Causes all data to
be even halfword-aligned, and causes variables declared register to be copied into the
local stack frame.

-OPTIMIZE 1
This option is valid in 32IX mode only. Performs first-level optimizations:

® Register allocation
® Complex tree pruning
® Unreachable code elimination

® Peephole optimizations such as branch chaining, instruction changing (complex
strength reduction), and instruction elimination

-OPTIMIZE 2
This option is valid in 32IX mode only. Performs second-level optimizations:

® Solving of data flow equations and use of this information
® Post-op improvements
® Loop invariant code removal

® Induction expression identification and elimination

2-25



C User's Guide

® Copy propagation
® Dead variable elimination
® Useless code removal

® Pointer comparison improvement

-OPTIMIZE 3
This option is valid in 32IX mode only. Performs third-level optimizations:

® Elimination of tail recursion

® Running of copy propagation iteratively until no further changes are made to the
intermediate representation

® Running of dead variable elimination iteratively until there are no more dead
variables to remove

® Increase of the complexity of routines that are made available for inline expansion

® Provision of more sophisticated register tracking to allow better overlapping of
temporary, scratch, and special registers

® More aggressive temporary assignment

Note

When you wuse second-level or third-level optimizations, compilation time is
significantly longer than at lower optimization levels. Debug all code fully before
you use the -OPTIMIZE option.

-NOOPTIMIZE
Does not perform any object code optimization. However, constant folding and simple
strength reduction are performed in both 64V and 32IX modes. In 32IX mode, simple
tree pruning, conversion propagation, and avoidance of code generation for discarded
values are also performed.

P -OPTIONSFILE pathname
Short form: -OPTIO

Specifies that you have placed compiler command line options in a text file called
pathname. The compiler processes the options file before compiling your program. The
optional suffixes for an options file are .OPTIONS.CC and .OPTIONS.C. The compiler
automatically appends a suffix if needed. An options file may contain any options except
the following: -32IX, -64V, -ANSI, -NOANSI, -BINARY, -INPUT, -LISTING, -SOURCE,
-SYSOPTIONS (321X mode only), -NOSYSOPTIONS (321X mode only). Options files may be
nested for up to nine levels. A single options file may contain no more than 1024
compiler options. You may use CPL style comments in an options file. A /% comments
out until the end of line. Blank lines are also allowed.

2-26

)

J



3

Compiling Programs in C

P -OPTSTATISTICS / -NOOPTSTATISTICS*

Short forms: -OPTS / -NOOPTS
These options are valid in 32IX mode only.

Controls the printing of optimization statistics. This option is meaningful only when used
in conjunction with an optimization level of 1 or higher. See the discussion of the
-OPTIMIZE option.

-OPTSTATISTICS
Prints compiler statistics about optimization.

-NOOPTSTATISTICS
Does not print compiler statistics about optimization.

P -PACKBYTES / -NOPACKBYTES
Short forms: -PACK / -NOPACK

These options are valid in 32IX mode only.

Controls the alignment of contiguous single-byte entities in structures and unions.
Ordinarily, these entities are structure members of type char. Structure or union members
that are larger than a single byte (including character arrays) are aligned to start on a
halfword (16-bit) boundary.

-PACKBYTES
Packs adjacent single-byte entities in structures or unions, two per halfword.

-NOPACKBYTES
Causes adjacent single-byte entities in structures and unions to be stored in the high byte
of a 16-bit halfword, followed by a single-byte hole.

If -PACKBYTES is specified, the structure

struct smallpack {
char a;
char b;
char ¢;
char arr[3];

}s
is stored as

| 8 bits | 8 bits

a b (word 1)
c (word 2)
arr[0] arr[1] {word 3)
arr(2] (word 4)

2-27



J)

C User's Guide

It is not stored as ;
| 8 bits | 8 bits |
a b (word 1)
c arr(0] (word 2)
arr{1] arr[2] (word 3)
If -PACKBYTES is not specified, the previous example is stored as
| 8 bits | 8 bits |
a (word 1)
b (word 2)
¢ (word 3)
arr[0] arr[1] (word 4)
arr[2] (word 5)
P -PARTIALDEBUG \

Short form: -PAR
This option is valid in 32IX mode only.

Generates symbol information for the Source Level Debugger (DBG) only for variables that

are actually referenced in expressions. (Refer to Appendix B, Debugging C Programs, for

more information on DBG.) With -PARTIALDEBUG, the debugger does not know about

symbols that are declared but never referenced. Use of this option can dramatically ‘\
decrease the amount of debugger object text emitted for a routine, because most routines

include many declarations that are not used.

» -PBSTRING
See -LBSTRING.

» -POP / -NOPOPx*
Short forms: -POP / -NOPOP

Controls pushing and popping of multiple #define macro definitions if a macro is defined ~
more than once.

-POP
Pushes previously defined values onto a value stack each time a new macro definition is
encountered. A macro definition can be removed with a single #undef, which also
reinstates the previous value for the macro definition.

-NOPOP
Discards the old value and replaces it with the new value. ‘\

J

2-28



P
r

Compiling Programs in C

P -PREPROCESSONLY [pathname]

Short form: -PRE
This option is valid in 32IX mode only.

Causes the output of the C preprocessor to be placed in the specified file. If the pathname
argument is omitted, the default name of the file is namel, where name is the name of

the source file.

Subsequent phases of the compilation are not performed. Use this option to make sure that
your macros are expanded in the way you intend. If -ANSI is also specified, the resulting
file is much more readable than if -ANSI is not specified.

» -PRODUCTION
Short form: -PROD

Enables production level DBG support. (Refer to Appendix B, Debugging C Programs, for
more information on DBG.) This support includes information about each program block
and symbol, but does not include statement information.

» -QUADCONSTANTS / -NOQUADCONSTANTS*
Short forms: -QUADC / -NOQUADC

These options are valid in 32IX mode only.

Enables support for quadruple precision floating-point constants when the program is
compiled without the -ANSI option.

-QUADCONSTANTS
Allows the use of quad-precision constants (type long double). Quad-precision constants
are specified in the same way as double constants, with an added “L” suffix. (“L” may
be in uppercase or lowercase.)

Note
The -ANSI C compiler option automatically includes support for quad-precision
constants.
-NOQUADCONSTANTS

Does not allow the use of quad-precision constants.

» -QUADFLOATING / -NOQUADFLOATINGx
Short forms: -QUADF / -NOQUADF

These options are valid in 32IX mode only.

2-29



C User's Guide ﬂ

Enables support for quadruple precision floating-point variables when the program is ‘
compiled without the -ANSI option. )

-QUADFLOATING

Allows the use of quad-precision variables. Such variables are declared as type long
double.

Note
The -ANSI C compiler option automatically includes support for quad-precision
constants.
-NOQUADFLOATING

Does not allow the use of quad-precision variables.

» -SAFEPOINTERS / -NOSAFEPOINTERS*
Short forms: -SAFE / -NOSAFE

These options are valid in 32IX mode only.

Controls the preservation of the byte offset bit when converting pointers to integers.

-SAFEPOINTERS
Always preserves the byte offset bit of pointers when converting them to integers, even ‘“
if the pointer type is noncharacter and thus the pointer should not have an odd byte
offset. ~ Use this option only in tricky C code where noncharacter pointers are used to
hold odd integer flags (such as -1). If even integers (such as -2) are used for the flags,
use of this option is not necessary. This option is not the default, and considerably
better code is generated for pointer comparisons if the option is not used.

-NOSAFEPOINTERS
When converting pointers to integers (for example, for comparisons), assumes that any
noncharacter pointers point to half word-aligned objects and thus do not have byte offset “\
bits.

» -SEGMENTSPANCHECKING / -NOSEGMENTSPANCHECKING %
Short forms: -SEG / -NOSEG

These options are valid in 32IX mode only.

Tells two intrinsic functions to check for arguments that span segment boundaries.

J

2-30



3

Compiling Programs in C

-SEGMENTSPANCHECKING
Causes the two block-memory intrinsic functions strncpy() and memcpy() to check for
segment-spanning arguments before performing their operations. If any of the arguments
span segments, the compiler generates slower code that produces the correct results across
segment boundaries. This option works only if you specify it in conjunction with one
or more of the following: -INTRINSIC STRNCPY, -INTRINSIC MEMCPY,

-STANDARDINTRINSICS.

-NOSEGMENTSPANCHECKING
Does not cause the two functions to check for segment-spanning arguments.

» -SHORTCALL routinename
Short form: -SHORTC

Instructs the compiler to generate a shortcall to the specified routinename (either a JSXB or
a JMP, depending on addressing mode). The actual behavior of this option varies between
64V and 32IX modes; see Chapter 6, Advanced Topics, for more information.

» -SINGLEFLOATING
See -DOUBLEFLOATING.

P -SILENT / -NOSILENTx
Short forms: -SIL / -NOSIL

Controls the output of warning and verbose compiler error messages.

-SILENT
Prevents verbose and warning compiler error messages from appearing. These messages
are not displayed on the user’s terminal or printed in the source listing file.

-NOSILENT
Causes verbose and warning compiler error messages to appear on the user’s terminal and
in the source listing file.

See the description of compiler error messages on page 2-4.

» -SOURCE pathname

Short form: -SOURCE

Is identical to the -INPUT option. That is, they both designate a source file pathname to
be compiled. For example,

2-31



C User's Guide

CC -SOURCE pathname
and
CC pathname

produce the same result. Also, pathname must not be designated more than once on the
command line. The -SOURCE option is obsolete, and its use is not recommended.

You may not put this option in an options file (see the -OPTIONSFILE option). You must
specify it on the command line.

P> -SPEAK
Short form: -SPEAK

This option is valid in 32IX mode only.

Enables the display of compile-time progress messages.  These messages indicate which
include files are being processed and when the compiler is parsing, generating, and emitting
code.

P -STANDARDINTRINSICS
Short form: -STAN

This option is valid in 32IX mode only.

Causes the compiler to generate inline code for, or a shortcall to, a small group of common
C library routines. -STANDARDINTRINSICS generates code for all of the routines that can
be enabled separately by the -INTRINSIC option. These routines include abs(), fabs(),
stremp( ), strepy( ), strlen( ), strncpy( ), and, if -ANSI is specified, memcpy( ).

If -ANSI is not specified, strncpy() is enabled to perform a block move. If -ANSI is
specified, memcpy() is enabled to perform a block move, and strncpy() is enabled to
perform according to the standard: that is, it copies the specified number of characters
from string 1 to string 2, then pads any remaining spaces in string 2 with “\O’s.

The intrinsic versions of strncpy() and memcpy() do not copy strings that span segment
boundaries unless the -SEGMENTSPANCHECKING option is specified.

2-32

J

J



Compiling Programs in C

P -STATISTICS / -NOSTATISTICSx*
Short forms: -STAT / -NOSTAT

Controls the display of compiler statistical data on the user’s terminal.

-STATISTICS
Displays statistical data on compiler internal table use, number of source lines compiled,

and average compilation speed.

-NOSTATISTICS
Does not display compiler statistical data on the user’s terminal.

» -STORE_OWNER_ FIELD / -NO_STORE_OWNER_ FIELDx
Short forms: -SOF / -NSOF

Stores the identity of called procedures in a location available to the PRIMOS
DUMP_STACK command mechanism. When the PRIMOS DUMP_STACK command is
issued, the names of procedures compiled with -STORE_OWNER_FIELD appear within the
information displayed for that procedure’s stack frame.

-STORE__OWNER__FIELD
Causes the generation of code that stores the name of each procedure directly following
its: ECB. The procedure name can then be used by the PRIMOS DUMP_STACK
mechanism.

-NO__STORE_OWNER_FIELD
Suppresses the generation of code that stores the identity of a called procedure.

» -STRICTCOMPLIANCE / -NOSTRICTCOMPLIANCEx*
Short forms: -STRIC / -NOSTRIC

These options are valid in 32IX mode only. Used to detect certain violations of the ANS]
standard, mainly PRIMOS extensions that are not available in other C compilers. In
particular, this option causes uses of the fortran keyword to be flagged as an error.
-STRICTCOMPLIANCE should be used in conjunction with the -ANSI option.

-STRICTCOMPLIANCE
Checks for certain ANSI violations and issues warnings/errors if found.

-NOSTRICTCOMPLIANCE
Does not check for certain ANSI violations.

2-33



C User's Guide

» -SYSOPTIONS* / -NOSYSOPTIONS
Short forms: -SYS / -NOSYS

These options are valid in 32IX mode only.

Controls reading of an optional global system options file. This file can be processed in
32IX mode only. If -SYSOPTIONS is active (the default), the system options file is
processed at the start of command line processing.

-SYSOPTIONS

Looks for the file SYSOVL>CLOPTIONS.CC and if the file exists, processes it as if you
had typed

0K, CC -32IX -OPTIONSFILE SYSQVL>CI.OPTIONS.CC

on the command line. The alternate name for this file is SYSOVL>CLOPTIONSC.

-NOSYSOPTIONS
Does not look for the file SYSOVL>CLOPTIONS.CC.

You may not put either of these options in an options file (see the -OPTIONSFILE option).
You must specify them on the command line.

P -UNDEFINE macroname
Short form: -UNDEF

This option is valid in 321X mode only.

Removes any initial macro definition for macroname. The following initial definitions are
entered by the compiler in 32IX mode: __ _ CI as 1, ___ SOSERIES as 1 DEBUG as 1
if the -DEBUG option has been specified, and _ _ OPTIMIZE as the optimization level
specified on the command line, if any.

-

» -VALUEONLY routinename
Short form: -VALUE

This option is valid in 32IX mode only.

Identifies the specified routinename as having no side effects, thus allowing the optimizer to
remove it as loop invariant code.

2-34

J

J



3

M

3

Compiling Programs in C

» -VERBOSE / -NOVERBOSEx
Short forms: -VERB / -NOVERB

Controls the display of verbose messages (messages that are not normally displayed).

-VERBOSE
Causes verbose messages to be displayed on the user’s terminal and in listing files.

-NOVERBOSE
Prevents verbose messages from appearing. These messages are not displayed on the user’s

terminal or printed in the source listing file.

See the description of compiler messages earlier in this chapter.

» -XREF / -XREFS
Short forms: -XREF / -XREFS

Controls generation of full or partial cross-reference listing.

-XREF
Generates a full symbol cross-reference at the end of the listing file. Information as to
the site, type, storage class, line declared, and lines used is printed in the listing file for
each declared symbol.

-XREFS

Prints only information about symbols that have been referenced at least once after they
have been declared.

2-35



D

)

3

LINKING C PROGRAMS

This chapter provides you with the basic information you need to link and execute non-
ANSI C programs under PRIMOS. (See Chapter 8 for information about linking and
running ANSI C programs.) It describes the CCMAIN library, the runtime libraries, and the
use of BIND and SEG.

Although PRIMIX uses the same C compiler as PRIMOS, the command syntax and library
functions described in this book are different from those available under PRIMIX. For
information about linking and executing C programs under PRIMIX and about the C
language libraries supplied with PRIMIX, consult the PRIMIX references listed in About This
Book.

The CCMAIN library allows you to pass arguments to your program from the command
line in the customary C fashion. (If you do not use this library, PRIMOS does not allow
you to use command line arguments.) CCMAIN parses the PRIMOS command line used to
invoke the program. It then passes the PRIMOS command line to your MAIN program in
the argument count/argument value (argc/argv) format. You must link CCMAIN before
you link your object files.

Note
There is a new library called ANSI_CCMAIN. It allows you to pass arguments to
your program from the command line as CCMAIN does. Additionally, ANSI_CCMAIN
enables calls to the ANSI C library functions. (See Chapter 8 for more information
about the ANSI C library.)



C User's Guide

RUNTIME LIBRARIES

Two runtime libraries come with the PRIMOS C compiler: C_LIB and CCLIB. C_LIB is a
binary library containing DYNTs (dynamic links) to two Executable Program Format (EPF)
libraries in the directory LIBRARIES*. The EPF libraries contain the runtime library
routines described in Chapter 4. Use the C__LIB DYNT library with the BIND utility, not
with the SEG utility. For more information about EPFs, see the Programmer’'s Guide to
BIND and EPFs. The CCLIB library provides the same functionality as the C_LIB
DYNT library, except that CCLIB links much more slowly, results in a larger program, and
contains no DYNTs.

Note
If you use the SEG utility to link C programs, you must use the CCLIB library.

Note also that SEG does not provide the improved performance and reduced linking time
that BIND provides. The CCLIB library is provided primarily for compatibility with
pre-Rev. 194 systems. Use of SEG and CCLIB is also required to build shared static-mode
programs.  See the end of this chapter for more information about shared static-mode
programs.

Using the C_LIB Library

By default, each user has search rules in ENTRY$.SR, which is located in the top-level
directory SYSTEM. The following entries may appear in the ENTRYS$.SR file for a typical
system:

~PUBLIC SYSTEM_LIBSPRG.RUN

-PUBLIC TRANS_LIBSPRG.RUN

-PUBLIC TRANS_LIBSPRC.RUN

-PUBLIC SYSTEM_LIBSPRC.RUN

-PUBLIC APPLICATION_LIBRARY.RUN

-PUBLIC FTN_LIBRARY.RUN
-STATIC_MODE_LIBRARIES

-PUBLIC CC_LIBRARY.RUN
-PUBLIC ANSI_CC_LIBRARY.RUN

Name Conflicts

Two complete versions of the C libraries exist: one for use by 64V-mode code, the other
for use by 32IX-mode code. In a dynamic linking environment (programs linked with
BIND), library calls made by a 64V-mode routine must link to the 64V mode libraries, and
library calls made by a 32IX-mode routine must link to the 32IX library. In addition,
calls to a C ..biary routine must link to wie C library rather than to a routine with the
same name in another language library. The compiler and linkers accomplish this
automatically, in the following manner:

e If a 64V-mode routine that calls printf() is linked with CCLIB using SEG, the
routine printf( ) from CCLIB is statically bound into the user program.

3-2

J



Linking C Programs

e If a 64V-mode routine that calls printf() is linked with C_LIB using BIND, the
symbol name printf is changed to CCSprintf and a dynamic link is made to
CCsprintf in the EPF libraries via the DYNTs in C_LIB.

e In 32IX mode, the names of all non-FORTRAN external definitions and references
(routines and common blocks) are changed by prepending the prefix G$ to the symbol
name in the user code. Thus, a call to printf( ) is treated by the compiler as a call
to the routine GS$printf. The 32IX library, which was written in C and compiled in
32IX mode, also has the G$ prefix prepended, so either SEG or BIND resolves the
correct references from user code to library.

Because of the prefix handling described above, the number of significant characters in
external names varies with the addressing mode and linker used. The following table
summarizes these differences:

Number of
Linker Addressing Mode Significant Characters
SEG 64V 8
BIND 64V 32
SEG 321X 6
BIND 321X 30

As a user of the C language under PRIMOS, be aware of potential conflicts between C
library subroutine names and subroutine names in the FORTRAN and other libraries. To
avoid conflicts, always link C subroutines and libraries before you link subroutines and
libraries written in another programming language.

For example,

[BIND Rev. T73.0-23.0 Copyright (c) 1990 Prime Computer, Inc.]
: L0 C_MODULE_1.BIN
. LO C_MODULE_2.BIN

: LT C_LIB /* Resolves calls to C specific
libraries */

: LO FTN_MODULE_1.BIN

: LO FTN_MODULE_2.BIN

: LI /* Resolves calls to the system
library PFTN.LIB */

3-3



C User's Guide

GUIDELINES FOR LINKING C PROGRAMS

Before linking C programs, observe the following guidelines:

If you wish to use the command line argument feature of the C language, link
CCMAIN as the first library.

If you link CCMAIN, BIND expects your main routine to be named main( ); this
routine can be located anywhere in your program. If your main routine is not
named main( ), use the MAIN subcommand to tell BIND which routine is your main
routine. See page 3-6 for information about the MAIN subcommand.

If you do not link CCMAIN, BIND expects your main routine to be the first routine
in the first object file you link. However, this routine does not have to be named
main( ). If your main routine is not the first routine in the first file you link, use
the MAIN subcommand to tell BIND which routine is your main routine.

Whether or not you use CCMAIN, you must link the C_LIB DYNT library before
you link the PRIMOS system libraries.

Linking Programs

You

may use either BIND or SEG to link C programs. Note, however, that use of BIND is

recommended on systems at Rev. 19.4 or later. Use of SEG is explained at the end of this
chapter.

The
link

1.

BIND utility creates a runfile called an Executable Program Format (EPF). You can
most C programs using BIND by following this procedure:

Invoke the BIND utility with the BIND command. The system displays a colon (:)
prompt, indicating that you are now interacting with the BIND utility.

. Issue the LIBRARY (LI) subcommand to link CCMAIN if you want to use the

command line argument features of the C language.

Issue the LOAD (LO) subcommand to link the main object file and any additional
object files from separately compiled subroutines.

Issue the LI subcommand to link the C_LIB library. If you get a BIND COMPLETE
message at this point, you may skip the next step.

Issue the LI subcommand to link system subroutines and functions called from
libraries. The system responds with a BIND COMPLETE message after the subroutines
and functions have been linked. If you do not receive the BIND COMPLETE message,
use the MAP subcommand to identify the modules that were not linked, and link
them. The BIND utility automatically appends a .RUN suffix to the end of the
executable file.

Issue the FILE command to exit from BIND. The FILE command also saves the
newly created executable file in your directory and returns you to PRIMOS command
level.

J



D)

Linking C Programs

BIND Examples

The BIND utility allows you to create an EPF interactively or on a single command line.
Three linking sessions are illustrated in this section. Example 1 shows the use of BIND
without the CCMAIN runtime library. Example 2 shows the use of BIND with the
CCMAIN runtime library. Example 3 shows the use of command line arguments that
accomplish the BIND link in a single command without interactive usage of BIND.

Example 1:

OK, SLIST EXAMPLE1l.CC

main( )
{
printf("Goodbye, universe\n");
}
0K, CC EXAMPLE]1 -32IX /* Compile EXAMPLE1 */

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
0 Errors and 0 Warnings detected in 4 source lines.

OK, BIND EXAMPLE] /* Invoke the BIND utility */
[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LO EXAMPLE1L /* Link object file */

: LI C_LIB /* Link EPF libraries */

¢ L1 /* Link system subroutines called

from program and C library,
if necessary. */
BIND COMPLETE
: FILE /* File (save) executable file in
directory and return to PRIMOS */
oK,

Example 2:

OK, SLIST EXAMPLEZ2.CC
main (argc, argv)

int argc;

char *argv [];

printf("Number of arguments detected = 7%d.\n", argc);

0K, CC EXAMPLE2 -32IX /* Compile EXAMPLEZ */
[CI Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 6 source lines.

0K, BIND EXAMPLE2 /* Invoke the BIND utility */

[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LI CCMAIN /* Link CCMAIN runtime library */

: LO EXAMPLE2 /* Link object file */

: LI C_LIB /* Link EPF libraries */

BIND COMPLETE

: FILE /* File (save) executable file in

directory and return to PRIMOS*/
oK,



C User's Guide

Example 3:

0K, CC EXAMPLE3 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 112 source lines.

OK, BIND EXAMPLE3 -LI CCMAIN -LO EXAMPLE3 -LI C_LIB -LI
[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

Unreferenced Routines and Variables

A program may contain declarations for external routines or variables that are not
referenced in the program. In such cases, the PRIMOS C compiler behaves differently
depending on whether the -DEBUG option was invoked.

e If -DEBUG is invoked, the compiler retains information about all variables and
functions that it encounters. If any external variable or function is declared but not
referenced in the program, BIND will be unable to resolve the reference and will not
issue a BIND COMPLETE message.

e If -DEBUG is not invoked, the compiler ignores references to any variables or
functions that are declared but not referenced, and BIND will issue a BIND
COMPLETE message.

Using the MAP Subcommand

If BIND does not display the message BIND COMPLETE at the end of the linking procedure,
you can issue the MAP subcommand to check for any unresolved subroutine, program, or
common block references. The MAP subcommand of BIND has the following format:

MAP [pathname] [options]

If you specify pathname, the MAP subcommand writes the unresolved references to a file
instead of displaying them at your terminal. For example,

. MAP MYFILE /* Writes a BIND map of your program to a
file called MYFILE */

The -UNDEFINED option enables you to display a list of all unresolved references in your
program as follows:

: MAP -UNDEFINED /* Displays a list of all unresolved
references at your terminal */

Using the MAIN Subcommand

The MAIN subcommand tells BIND which routine is the main entrypoint of your program.
Use MAIN in either of the following situations:

® You are using CCMAIN, and your main routine is not named main().

® You are not using CCMAIN, and your main routine is not the first routine in the
first object file you link.

3-6

J



B

3

Linking C Programs

The MAIN subcommand has two formats, one for 64V mode and one for 32IX mode. If
you compiled your program in 64V mode, the format is

MAIN routine-name

where routine-name is the name of your main routine. If you compiled your program in
321X mode, the format is

MAIN GS$routine-name

That is, you must put the G$ prefix before the name of your main routine. (See page 3-3
for more information about the G$ prefix.)

Issue the MAIN subcommand after you load your source file(s), but before you link in the
C_LIB library.

For example, suppose that you are compiling the program TEST.C in 64V mode, that you
want to use command line arguments, and that your main routine (the only routine in
your program) is called test( ). You can compile and link your program as follows:

0K, CC TEST

[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 16 lines and 594 include lines.
0K, BIND

[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LI CCMAIN

. LO TEST

: MAIN TEST

Main Program ECB is TEST at -0002/000236

¢ LI C_LIB

BIND COMPLETE

L FILE

0K,

As another example, suppose that you are compiling TEST2.C in 32IX mode, that you are
not using command line arguments, and that your main routine, called main(), is the last
routine in your source file. You can compile and link your program as follows:

0K, CC TEST2 -32IX

[CI Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 134 lines and 176 include lines.
0K, BIND

[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LO TEST2

: MAIN GIMAIN

Main Program ECB is GSMAIN at -0002/000166

: LI C_LIB

BIND COMPLETE

D FILE

0K,




C User's Guide

Using the QUIT Command

If for some reason you have to exit prematurely from a BIND session, you can do so by
issuing the QUIT command. Simply type the following:

QUIT

The QUIT command aborts a BIND session and does not save the EPF. Before it returns

you to PRIMOS command level, BIND prompts you to make sure you really want to abort
the session. For example,

0K, BIND EXAMPLE

[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
: LI CCMAIN

: LO EXAMPLE .BIN

: LI C_LIB

BIND COMPLETE

: QUIT

EPF not filed, ok to quit? ('Yes', 'Y’
oK,

. 'No', 'N):Y

Using the HELP Subcommand

The HELP subcommand of BIND is available in case you encounter problems while trying
to link a program. The HELP subcommand has the following format:

HELP [command__name] [-LIST]

When you issue the HELP subcommand followed by the name of a particular command,
BIND replies with concise online information describing the syntax and semantics of the
specified command. For example,
: HELP MAP
MAp [<map dest>] [<map option>]
will copy a mapfile to <map dest> with <map option>.
<map dest> may be a file, -TTY or -SPOOL.
«<map option> may be one of the following:
-FULL, -RANGES, -BASE, -UNdefined, -FLAGS,
-Named_SYmbols.
If you issue the HELP subcommand followed by the -LIST option, BIND displays a list of

its subcommands at your terminal.

Executing an EPF

You can execute an EPF at PRIMOS command level by issuing the RESUME (R) command
followed by the program name. For example,

OK, RESUME EXAMPLEI1.RUN

Goodbye, universe
0K,

3-8

N
ﬁ

J



3

Linking C Programs

If you linked your program using the CCMAIN library, you may follow the program name
with command line arguments. The RESUME command is not included in the argument
count (argc) or the argument vector (argv). For example, if your program, PROG.C, is

#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{

}

int 1;

printf("The arguments are: ");
for (i = 0; 1 < argc; 1++)

printf("%s%c", argv[i], (1 < arge-1) 2 * ' : "\n');
printf("%d arguments\n®, argc);

and your command line is

0K, RESUME prog how many args is this

the program will display

The arguments are: prog how many args 1s this
6 arguments

0K,

Loading C Programs With the SEG Linking Loader

You can load most C programs with the SEG loader using the following procedure:

1.

6.

Invoke the SEG utility with the SEG -LOAD command. The system displays a
3

prompt, indicating that you are now interacting with the SEG linker’s VLOAD
subprocessor.

. Issue the LIBRARY (LI) command to link CCMAIN if you want to use the UNIX-like

command line argument feature.

. Issue the LOAD (LO) command to load the main object file and any additional object

file from separately compiled subroutines.

Issue the LI command to link the CCLIB runtine library. If you get a LOAD
COMPLETE message at this point, you may skip the next step.

Issue the LI command to link the system libraries. SEG then responds with a LOAD
COMPLETE message. If this message does not appear, then use the MAP 3 command to
identify the modules that were not linked, and link them. (See the SEG and LOAD
Reference Guide for more information.) The SEG loader automatically appends the
SEG suffix to the runfile.

Issue the QUIT command to exit from SEG.

Note that you cannot use numerical command line arguments to a program if you use SEG
to link the program. When you execute the program, numerical command line arguments
are interpreted as arguments to the SEG command itself.

3-9



C User's Guide

Example:

OK, SLIST EXAMPLE.C
void main{argc, argv)
int argc;
char *argv[];
{

printf("Number of arguments is %d.\n", argc);

}

0K, CC EXAMPLE
[CC Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer. Inc.]
00 Errors and 00 Warnings detected in 6 source lines.

0K, SEG -LOAD

[SEG Rev. 73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
$ LI CCMAIN

$ LO EXAMPLE

$ LI CCLIB

s LT

LOAD COMPLETE

5 QU

OK, SEG EXAMPLE every breath you take
Number of arguments is 5.

0K, SEG EXAMPLE money for nothing
Number of arguments is 4.

CREATING SHARED C PROGRAMS

Shared programs written in C may be created using the methods outlined in Chapter 4,
Advanced SEG Techniques, of the SEG and LOAD Reference Guide. However, you must
observe some additional restrictions to insure that shared C programs execute successfully.

You must use the nonshared static-mode library, CCLIB. You may not use the DYNT
library, C__LIB.

If the C program to be shared does not use CCMAIN, then RUNIT may be used for the
shared program. In this case, you must ensure that segment 4000 is used as the data
segment. For example, if PROGRAM.BIN is the binary file for a program to be shared into
segment 2177, a possible SEG command sequence is as follows:

0K, SEG -LOAD

[SEG Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

$ COMMON ABS 4000 /* Gets data into segment 4000
3 MIX

$ SPLIT

$ S/LO PROGRAM.BIN 0 2177 4000 /* Shares into segment 2177

with data in segment 4000
$ D/LI CCLIB
$ D/LT
LOAD COMPLETE

3-10

J



D,

3

Linking C Programs

$ RETURN

# SHARE

FILE ID: EX
Creating EX2177
Creating EX4000
# QuIT

If the C program to be shared uses CCMAIN, then RUNIT may not be used. In this case,
you must ensure that data is placed in some segment above 4000. For example, if
PROGRAM.BIN is the binary file for a program to be shared into segment 2177, a possible
SEG command sequence is as follows:

0K, SEG -LOAD
[SEG Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
$ S/LI CCMAIN 0 2177 4001 /* Shares into segment 2177 with

data in segment 4001
$ D/LO PROGRAM.BIN
$ D/LI CCLIB
$ D/LT
LOAD COMPLETE
$ RETURN
# SHARE
FILE ID: EX
Creating EX2177
4 Quit

It is strongly recommended that you become completely familiar with Chapter 4, Advanced
SEG Techniques, of the SEG and LOAD Reference Guide, before attempting to create
shared programs. The examples above demonstrate only the use or nonuse of CCMAIN and
the placement of data. They are too trivial to demonstrate other features used in creating
shared programs.

3-11



)

4

USING THE C LIBRARY

This chapter explains how to use the non-ANSI C library. Following a discussion of the
supplied include files is a dictionary of C library functions and macros available under
PRIMOS.

The non-ANSI C library is the library you use when you do not link your program with
the ANSI_CCMAIN library. If you link your program with the ANSI_CCMAIN library,
you can call all the functions in the non-ANSI library that are not available in the ANSI
library. For a list of these functions, see the section entitled Nonstandard Library Functions
in Chapter 8.

Chapter 8 provides an alphabetical list of the ANSI C library functions, along with
information on how to write, compile, and link your program in order to call these
functions. For complete documentation of the ANSI C library functions, consult the second
edition of The C Programming Language, by Kernighan and Ritchie (1988).

Note

The library routines described in this chapter are different from those supplied with
PRIMIX. If you are developing programs under PRIMIX, consult the PRIMIX books
listed under Associated Documents in About This Book.

INCLUDE FILES

Many of the library functions require defined constants and keys in the calling sequence.
Other routines are actually implemented as macros, not functions. In addition, some
functions must be declared in the calling program because they return values that are not
of type int. Most of the constants, keys, and macros are defined in a set of include files
(also called header files), which are located in the top-level directory SYSCOM. The
return types of most noninteger functions are also declared in the include files. Table 4-1
lists the supplied C include files and the routines that use them.



C User's Guide

Using Include Files

To include one of these files in your program, enclose its name, in lowercase and without
the .INS.CC suffix, in angle brackets after the #include command. For example,

#include <math.h>

If you copy one of these files to another directory, you may remove the .INS.CC suffix or
not, as you wish. For more information about include files, see the description of include
search rules on page 2-2 and the description of the command line option -INCLUDE on page
2-21.

TABLE 4-1. C Include Files
Include File Routines That Use Include File
ASSERT.H.INS.CC assert( )
CTYPE.H.INS.CC Character classification
MATH.H.INS.CC Mathematical
PRIME__ECS__CHARS.HINS.CC  None (see page 4-2)
SETIJMP.H.INS.CC setjmp( ) and longjmp()
SIGNAL.H.INS.CC signal( )
STAT.H.INS.CC stat() and fstat()
STDIO.H.INS.CC Input/output
STRING.H.INS.CC String-handling
TERM.H.INS.CC gterm( ) and sterm()
TIME.H.INS.CC ctime( ) and localtime( )
TIMEB.H.INS.CC ftime( )

Using the Extended Character Set

As of Rev. 21.0, Prime expanded its character set. The Prime Extended Character Set
(Prime ECS) includes characters with octal values from O through 0377. The include file
PRIME__ECS__CHARS.H.INS.CC allows you to use the ECS symbols listed in Appendix
F. The basic character set remains the same as it was before Rev. 21.0; it is the ANSI
ASCII 7-bit set (called ASCII-7), with the eighth bit turned on.

The C library functions and preprocessor macros have not been modified to recognize the
new extended character set. In particular, the character evaluation routines isascii( ),
ispascii( ), isalpha(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(), and

4-2

J

J

J



Using the C Library

isupper( ) behave exactly as they did before Rev. 21.0. With the exception of isascii( ) and
ispascii( ), these routines are essentially blind with respect to the 8th bit.

For example, the mnemonic UCUC_CHAR is defined to be octal 0133 in the include file
PRIME__ECS_ CHARS.H.INS.CC. This character represents an uppercase U circumflex (U) in
the Extended Character Set. When passed UCUC_CHAR, however, isupper() returns false,
because isupper() treats the character octal 0133 the same as the character octal 0333,
which is the left bracket character ([).

DICTIONARY OF C LIBRARY FUNCTIONS AND MACROS

The library functions are contained in two EPF libraries, referenced through C_LIB, and in
the nonshared static-mode library CCLIB. (Use C_LIB and BIND whenever possible.) The
predefined macros are contained in the supplied include files.

Interpreting Definitions of Functions and Macros

Each description in this section contains a format, in boldface, that resembles C code. The
format shows the header file required by the function or macro, the parameter list, the
data types of the parameters, and the type of value returned. For example, the format
used for the ftell() function is

#include <stdio.h>
int ftell(filePointer)
FILE =xfilePointer;

This format indicates the following:
® You must include the stdio.h header file in your program when you use ftell().
® The ftell() routine returns an integer value.
® You must pass one parameter to ftell().

® The data type of the parameter is FILE %, where FILE is a typedef contained in the
stdio.h header file.

In the formats, the parameters are given names that are consistent with their use. When
several routines use the same kind of parameter, the same name is used in their formats.
For example, ftell() and fscanf() both have parameters called filePointer, because both
routines use a value returned by fopen() or fdopen(), which is of type FILE *. Similarly,
Iseek( ) and read() both have parameters called fileID because both of those routines use a
value returned by open() or fileno( ), which is of tvpe int.

The discussion section that follows each definition contains a fuller explanation of the
parameters, return value, and behavior of the routine, including whether it is implemented
as a function or as a macro.



C User's Guide

Differences Between Functions and Macros

If a routine is implemented as a macro, rather than as a function, it can be undefined
with a preprocessor command of the form

#undef functionname

This is useful if you want to substitute a routine with the same name to replace the
library routine. In general, substituting a function for a macro reduces the size of the
executable program but increases execution time. Macros are expanded inline each time they
are encountered, whereas functions are expanded only once. However, a call to a function
takes longer than execution of inline code.

C Library Functions in Alphabetical Order

The following section describes the library functions contained in both C_LIB and CCLIB.
The library functions and their descriptions are listed alphabetically. Appendix D contains a
set of tables listing the library functions by the type of action performed. Chapter 7
contains a summary of differences between these functions and their counterparts in other
implementations, such as the UNIX operating systems.

» abort()

Raises the ABORTS condition, which, under normal circumstances, causes your program to
terminate.

abort()
PRIMOS prints the following message:
CONDITION ABORT$ RAISED AT segment-number/hal fword-number

You have two ways to regain control after a call to abort( ).
® Use signal() in 32IX mode to catch ABORTS$ where the signal type is SIGABRT.

® Set up an on-unit for the ABORT$ condition via a call to MKONSP. See page 5-21 in
this book, and the Subroutines Reference II1I1, for more information about the
MKONSP subroutine.

Example: An example of using signal() to catch ABORTS follows.

OK, SLIST TMP1.C

#include <signal.h>

main()

{
void abort_handler();
signal(SIGABRT, abort_handler);
abort();

4-4

J



3

r

3

Using the C Library

/* function that is called when abort() is invoked */
void
abort_handler(s1g)
int sig;
{
printf("abort has been called again\n");
exit(1l);
}
0K, CC TMP1 -32IX
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 17 lines and 115 include lines.
OK, BIND -LI CCMAIN -LO TMP1 -LI C_LIB
[BIND Rev. 73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE
0K, R TMP1
abort has been called again
0K,

P abs(), fabs()

Returns the absolute value of an integer and the absolute value of a floating-point number,
respectively.

int abs(integer)
int integer;

#include <math.h>
double fabs(floating)
double floating;

» access()

Checks a specified PRIMOS pathname to determine whether the specified access rights are
permitted.

#include <stdio.h>

int access(pathname, mode)
char *xpathname;

int mode;

Zero is returned if the rights are allowed. This function returns -1 either on any error or
if the access rights are not allowed. It sets errno (defined in stdioh) to the file system
error code. The following modes are allowed:

0 The file exists.
2 The file exists and the process has write access.

4 The file exists and the process has read access.



C User's Guide

Combinations of access modes can be specified by summing the above values. For example,
6 indicates ERW (exist/read/write).

» acos()

Returns the arc cosine of its argument. The range of the returned value is from O
through 7 radians.

#include <math.h>
double acos(x)
double x;

P asin()

Returns the arc sine of its argument. The range of the returned value is from - /2
through 7/2 radians.

#include <math.h>
double asin(x)
double x;

» assert()

Adds runtime diagnostics to programs. Available in 321X mode only.

#include <assert.h>
void assert(expression)
int expression;

The assert() function is implemented as a macro. If the expression argument is false or
equal to zero when it is executed, then the information about the failure is written to the
standard error file named stderr. This information includes the text of the argument, the
name of the source file, and the source line number. The format of the message is:

Assertion failed: "expression", file "pathname", 1ine line-number.

The abort() function is then called to terminate execution. If, however, the expression is
true, then assert() has no effect.

Another macro, NDEBUG, is referenced, but not defined, in the ASSERT.H.INS.CC file. If,
however, NDEBUG is defined in a user's program at the point in the source file where
<assert.h> is included, the assert macro will always be ignored, regardless of its evaluated

value.

)

J

)



Using the C Library

P atan()

Returns the arc tangent of its argument. The range of the returned value is from -m/2
through #/2 radians.

#include <math.h>
double atan(x)
double x;

» atan2()

Returns a value in the range -7 through 7. The returned value is the arc tangent of x/y,
where x and y are the two arguments.

#include <math.h>
double atan2(x, y)
double x, y;

» atof(), atoi( ), atol()

Converts strings of ASCIl characters to the appropriate numeric values.

#include <math.h>
double atof(inputPointer)
char *inputPointer;

int atoi(inputPointer)
char xinputPointer;

long atol(inputPointer)
char xinputPointer;

These functions recognize strings in various formats, depending on the returned data type.
The string for atof() may contain leading white space (space or tab). This is followed by
an optional sign, then a string of digits (optionally containing a decimal point), then an
optional exponent composed of an e or E, and then an (optionally signed) integer. The first
unrecognized character ends the string.

The string for atoi() and atoll ) may contain a series of leading tabs and spaces, then an
optional sign, and finally a series of digits (with no decimal point). The first unrecognized
character ends the string.

These functions do not account for overflows resulting from the conversion. In the 50
Series implementation, long is synonymous with int; thus atoi( ) and atol( ) are equivalent.

a-7



C User's Guide

» atoi()

int atoi(inputPointer)
char *inputPointer;

For more information, see the atof( ) function.

» atol()

long atol(inputPointer)
char xinputPointer;

For more information, see the atof( ) function.

P bio$primosfileunit()

#include <stdio.h>
int bio$primosfileunit(fileID)
int filelD;

The function bio$primosfileunit() allows you to determine PRIMOS file unit that is being

used to access a disk file. Given a fileID returned from open() or

bio$primosfileunit( ) returns the corresponding PRIMOS file unit.

#include <stdio.h>

int filelD;

FILE *filePointer;

int primosUnitl, primosUnit2;

filelD = open("aFileName", 2);
filePointer = fopen("anotherFileName", “w");

primosUnitl = bio%primosfileunit(filelD);
primosUnit2 = bio$primosfileunit(fileno(filePointer));

» cabs()

#include <math.h>
double cabs(z)
struct {double x, y;} z;

For more information, see the hypot( ) function.

» calloc()

This function allocates an area of memory.

4-8

For example,

fileno( ),

J

J



)

Using the C Library

char xcalloc(numberOfElements, elementSize)
unsigned numberOfElements, elementSize;

The calloc( ) function allocates space for an array of numberOfElements elements of size
elementSize. If calloc() is unable to allocate the space, it returns O.

For more information, see the malloc() function on page 4-34.

» ceil()

Returns as a double the smallest integer that is equal to or greater than its argument.

#include <math.h>
double ceil(x)
double x;

P cfree()

int cfree(pointer)
char *pointer;

For more information, see the free( ) function.

» chdir()

Changes the current home directory (that is, attaches) to the specified PRIMOS pathname.

#include <stdio.h>
int chdir(pathname)
char *pathname;

The target pathname is set as the new working directory. This function calls the PRIMOS
subroutine AT$ to do the attach. Zero is returned if the change of directory is executed
correctly. The routine returns -1 on any error and sets errno (defined in stdio.h) to the
file system error code.

» chrcheck()

Returns 1 if a character has been typed but not read. Returns O if no character has been
typed but not read. If you use chrcheck() instead of getc( )/fgetc(), the program can
continue with other processing when there has been no terminal input. (See gterm() and
sterm( ).)

int chrcheck()



C User's Guide

» clearerr()

Resets the error and end-of-file indications for a file, so that ferror() and feof() no longer
return a nonzero value. The clearerr() function is implemented as a macro.

#include <stdio.h>
clearerr(filePointer)
FILE xfilePointer;

» close()

Closes a file specified by a fileID. The fileID is the return value from the open()
function.

#include <stdio.h>
int close(fileID)
int filelD;

If the file was opened for write or update, any buffered data is written to the file. The
function returns O if the file is successfully closed. On any error, the function returns a
-1 and the file system error code is set in the external variable errno (defined in stdio.h).
Use C library routines to close all files opened by C library routines.

» copy()

Copies a file to a new location.

#include <stdio.h>

int copy(oldPathname, newPathname)
char *oldPathname;

char *newPathname;

Zero is returned if the copy is executed correctly. The function returns -1 on any error
and sets errno (defined in stdio.h) to the file system error code. Both specified pathnames
may be PRIMOS pathnames.

» cos()

Returns the cosine of the argument expressed in radians.

#include <math.h>
double cos(x)
double x;

J



3

)

Using the C Library

» cosh()

Returns the hyperbolic cosine of the argument.

#include <math.h>
double cosh(x)
double x;

» creat()
Opens a specified file and assigns specified access rights to the file. See open().

Note

You are strongly advised to use open( ) instead of creat() in the PRIMOS environment.
The open() function creates files opened for write or read/write if they do not
previously exist.

#include <stdio.h>

int creat(pathname, createMode)
char xpathname;

int createMode;

If the specified file does not exist, it is created. If the file already exists, its length is
truncated to 0. The file is opened for binary read/write. If the call executes correctly,
the function returns an integer fileID. This fileID may then be supplied as an argument
to routines such as read( ), write( ), Iseek() and close(). On any error, the function returns
-1 and sets errno (defined in stdio.h) to the file system error code. The values for
createMode are discussed with the setmod() and getmod( ) functions.

P> ctime()

Converts a time in seconds since 00:00:00 Jan. 1, 1970 to a 30-byte ASCII string of the
form DD MMM YY HH:MM:SS <day-of-week>\n\0.

char *ctime(seconds)
int *seconds;

The argument to ctime() is a pointer to the time to be converted. (This can be obtained
from the time() routine.) ctime() returns a pointer to a 30-byte ASCII string, which
contains the result.

» cuserid()

Returns a pointer to a character string containing the user ID of the current process.

4-11



C User's Guide

#include <stdio.h>
char *cuserid(string)
char *string;

If the argument is null, the user name is stored internally. If not null, the argument
must point to a storage area of length L_ cuserid (defined in stdio.h), and the name is
written into that storage area.

P delete()

Deletes a specified file.

#include <stdio.h>
int delete(pathname)
char xpathname;

The file to be deleted may be specified by a fully qualified PRIMOS pathname. Zero is
returned if the file is deleted correctly. The function returns -1 on any error and sets
errno (defined in stdio.h) to the file system error code.

» ecvt(), fevt()

Converts a double value to a NULL-terminated string of ASCIl digits and returns the
address of the string.

char *ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char xfcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign?

In both functions, value is the double precision value to be converted, and ndigit is the
number of ASCII digits (not including the terminating NULL) to be used in the converted
string. Calls to these functions overwrite any existing string. The integer pointed to by
kdecpt returns the position of the decimal point relative to the first character in the
returned string. A negative *decpt value means that the decimal point is to the left of
the returned digits, and a O means that the decimal point is immediately to the left of the
first digit. The integer pointed to by x*sign is set to nonzero if value was negative;
otherwise, %sign is set to zero.

The following example uses the ecvt() function to convert a double value called dblval
and prints the information returned.

J



b

3

/* ECVT EXAMPLE */
#include <stdio.h>
main( )

{

char *ecvt( );

double dblval; /* Value to be converted */

int sign, point; /* Qutput for sign, decimal point */
static char string[20]; /* Array for converted string */
dblval = -4.6389240e-4,;

printf("input value: 7e\n", dblval);

strepy(string, ecvt(dblval, 6, &point, &sign));
printf(“converted string: %Zs\n", string);

printf(“value is %s\n", (sign) ? "negative" : "positive");

printf(“decimal point is at position Zd\n", point);

}
The output of the program is

input value : -4.6389240e-4
converted string: 463892

value is negative

decimal point is at position -3

P exit()

Terminates a user process and returns to PRIMOS.
exit(status)
int status;

The exit() function returns the specified status to PRIMOS.
buffers and closes all open files before performing the exit.

» exp()

Returns base e raised to the power given by the argument.

#include <math.h>
double exp(x)
double x;

Using the C Library

This function also flushes all



C User's Guide

P fabs()

#include <math.h>
double fabs(floating)
double floating;

For more information, see the abs( ) function.

» fclose()

Closes a file, flushing any buffers associated with the file pointer.

#include <stdio.h>
int fclose(filePointer)
FILE xfilePointer;

This function returns O on success. If the buffered data cannot be written to the file, or
if the file control block is not associated with an open file, fclose() returns EOF (a
preprocessor constant defined in stdio.h).

» fcvt()

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

For more information, see the ecvt( ) function.

» fdopen()

Associates a file pointer with a fileID returned by the open() or creat() functions.

#include <stdio.h>

FILE xfdopen(fileID, accessMode)
int filelD;

char xaccessMode;

The fdopen() function allows you to access a file originally opened by a call to open() or
creat() as if it had been opened by a call to fopen(). Generally, a file can be accessed
either by fileID if opened by open() or creat(), or by filePointer if opened by fopen().
A file cannot be accessed by both file/D and filePointer.

The first argument to fdopen() is the fileID returned by open() or creat(). The second
argument is the same as the second argument to fopen( ). This access mode must agree
with the original mode with which the file was opened. If the operation is completed

4-14

J

J



YD)

Using the C Library

successfully, a nonzero file descriptor is returned. The fdopen( ) function returns NULL
(defined in stdio.h) on any error and sets errno (defined in stdio.h) to the file system error
code. The values of accessMode are discussed with fopen( ).

» fdtm()

Returns the modification time for the specified file. The time is as it would be returned
by the time() function.

#include <stdio.h>
int fdtm(pathname)
char *xpathname;

The fdtm() function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code.

» feof()

Tests a file to see if the end of file has been reached. If so, feof() returns a nonzero
integer; if not, it returns 0. The feof() function is implemented as a macro.

#include <stdio.h>
int feof(filePointer)
FILE xfilePointer;

A call to this function continues to return a nonzero integer until the file is closed or
until clearerr() is called.

» ferror()

Returns a nonzero integer if an error occurred while the file was being written or read.

#include <stdio.h>
int ferror(filePointer)
FILE *filePointer;

A call to this function continues to return a nonzero integer until the file is closed or
until clearerr( ) is called. The ferror( ) function is implemented as a macro.

> fexists()

Returns 1 if the specified PRIMOS pathname exists and O if it does not.



C User's Guide

#include <stdio.h>
int fexists(pathname)
char *pathname;

The fexists( ) function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code. The pathname may terminate with either a filename or a directory
name.

P fflush()

Writes out any buffered information for the specified file. Output files are normally
buffered only if they are not directed to a terminal.

#include <stdio.h>
int fflush(filePointer)
FILE *filePointer;

The smallest data item that can be written to a PRIMOS disk file is a 16-bit item; thus, if
there is an odd number of bytes in the buffer when fflush() is called, the last byte is not
dumped to disk. When fflush() returns, the buffer still contains the leftover byte. In
order to force this byte out to disk with a zero-padding byte, the file may be closed. The
fflush() function returns O when it is successful. If the buffered data cannot be written
to the file, or if the file control block is not associated with an output file, fflush()
returns EOF (a preprocessor constant defined in stdio.h).

> fgetc()

#include <stdio.h>
int fgetc(filePointer)
FILE x*filePointer;

For more information, see the getc() function.

> fgetname()

#include <stdio.h>

char xfgetname(filePointer, buffer)
FILE xfilePointer;

char *xbuffer;

For more information, see the getname() function.

4-16

J

)

J



Y

Using the C Library

> fgets()

#include <stdio.h>

char xfgets(string, maxline, filePointer)
char *string;

int maxline;

FILE xfilePointer;

For more information, see the gets() function.

» fileno()

Returns an integer fileID. The fileno() function is implemented as a macro.

#include <stdio.h>
int fileno(filePointer)
FILE x*xfilePointer;

The argument filePointer is a file pointer returned by fopen( ).

» floor()

Returns (as a double) the largest integer that is less than or equal to its argument.

#include <math.h>
double floor(x)
double x;

» fopen()

Opens a file, returning the address of a FILE structure, denoting a file control block.

#include <stdio.h>
FILE *fopen(pathname, accessMode)
char xpathname, *accessMode;

The file pointer (type FILE *) returned by fopen() may be used as an argument to the
following functions: clearerr(), fclose(), feof(), ferror(), fflush(), fgetc(), fgetname(),
fgets(), fileno(), fprintf( ), fputc(), fputs(), fread(), freopen(), fscanf(), fseek(), fstat(),
frell( ), fwrite(), getc(), geth(), getname(), getw(), putc(), puth(), putw(), rewind(),
setbuf( ), and ungetc( ).

The file control block may be freed with the fclose( ) function or by default on normal
program termination (a call to exit()).



C User's Guide

The first argument to fopen() is a character string containing a valid PRIMOS pathname.
The second argument, accessMode, is one of the character strings listed in Table 4-2.

Output may not be directly followed by input without an intervening call to fflush() or
to one of the file positioning functions fseek() and rewind(). Similarly, input may not be
directly followed by output without an intervening call to the fflush() function or to a
file positioning function, unless the input operation encounters the end of file.

An ASCII file is a file in PRIMOS standard text format, that is, an editable file. Space
compression is used in an ASCI file, and the new line (\n) at the end of a line may be
padded with a NULL (\0) byte to make each record contain an even number of bytes. A
binary file can contain arbitrary data with no translation done for either input or output.
Data written to ASCII files may be changed/compressed as it is actually written to disk;
however, as the file is read back in, these changes are undone and the data appears exactly
as it was written. The disk format of a binary file is exactly what was written.

The r or i character strings open an existing file for input. Conversely, the w or o
character strings open a file for output. If the file does not exist, fopen() creates a new
file. If the file exists, fopen() truncates the file. The wa and oa character strings are
virtually the same as w and o, except that the initial file position is set to the end of file
(no truncation occurs).

TABLE 4-2. Character Strings for fopen

Character String Action Per formed
r Reads ASCII
w Writes ASCII
i Reads binary
o Writes binary
wa Writes ASCII append
oa Writes binary append
i+ Updates binary
o+ Updates binary (truncate when opening)
oa+ Updates binary append

The "i+" character string opens a file for read/write with the initial position at the
beginning of the file. The "o0+" character string opens a file for read and write and
initially truncates the file. The "oa+" character string opens a file for read and write

with the initial position at the end of file.

4-18

J

)

~N
~



)

D

Note

Using the C Library

The smallest unit of data that can be written to a PRIMOS disk file is a 16-bit
entity. The f routines (for example, fread() and fopen()) attempt to hide this fact
from the user. (See the comments in the fflush() documentation.)

If fopen() is forced to create a file (opening a write file that does not previously exist), it

creates a DAM file.

The function returns a null pointer (defined in stdio.h) to signal errors. Use C library

routines to close all files opened with C library routines.

» fprintf()

#include <stdio.h>
int fprintf(filePointer,
formatSpecification [, outputSource,.
FILE xfilePointer;
char xformatSpecification;

For more information, see the printf( ) function.

> fputc()

#include <stdio.h>
int fputc(character, filePointer)

char character;
FILE =xfilePointer;

For more information, see the putc() function.

> fputs()

int fputs(string, filePointer)
char *string;
FILE xfilePointer;

For more information, see the puts( ) function.

» fread()

Reads a specified number of items from the file.

)

4-19



C User's Guide

#include <stdio.h>

int fread(pointer, sizeOfItem, numberOfItems, filePointer)
char *pointer;

int numberOfitems, sizeOfltem;

FILE x*filePointer;

The first argument, pointer, points to a buffer intc which data is read from the file
pointed to by the fourth argument, filePointer. The reading of the specified items begins
at the current location in the file. The items read are placed in storage beginning at the
location given by the first argument. The second argument, sizeQOfItem, specifies the size
of an item in bytes. The function returns the number of items actually read. If fread()
encounters the end of file or an error, it returns O (not EOF).

> free(), cfree()

Makes available for reallocation the area allocated by a previous calloc( ), malloc(), or
realloc( ) call.

int free(pointer)
char *pointer;

int cfree(pointer)
char *pointer;

The argument is the address returned by a previous call to malloc(), calloc(), or realloc( ).
The functions return O if the area is successfully freed, -1 if an error occurs.

Note

The C library’s routines for dynamic memory management (malloc(), calloc(),
realloc( ), free( ), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine. Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

» freopen()

Substitutes the file specified by a pathname for the open file addressed by a file pointer.
The latter file is closed.

#include <stdio.h>

FILE xfreopen(pathname, accessMode, filePointer)
char xpathname, *accessMode;

FILE *xfilePointer;

The freopen() function is typically used to associate one of the predefined names stdin,

stdout, or stderr with a file.

4-20

)

N\



)

Using the C Library

The first two arguments to freopen() have the same meaning as the arguments to fopen().
The third argument is a pointer to a FILE structure, denoting a currently open file. After
the function call, the open file is closed.

If the attempt to reopen fails, the function returns a null pointer (defined in stdioh);
otherwise, the function returns the address of the reopened file control block, which is the
third argument.

» frexp()

Returns the mantissa and exponent of a double argument.

#include <math.h>
double frexp(value, eptr)
double value;

int xeptr;

The mantissa is a double, and its magnitude is less than one. The second argument is a
pointer to an int, to which frexp() returns an integer n such that value = mantissa * 2"

» frwlock()

Returns the current read/write lock for the specified file. The read/write lock is discussed
in the PRIMOS Commands Reference Guide under the commands COPY and RWLOCK.

#include <stdio.h>
int frwlock(pathname)
char *pathname;

The frwlock() function returns -1 on any error and sets errno (defined in stdio.h) to the
file system error code.

The wvalid return values are

0 System default

1 N readers or one writer

2 N readers and one writer
3 N readers and N writers

4-21



C User's Guide

» fscanf()

#include <stdio>

int fscanf(filePointer, formatSpecification [, inputPointer,. . . ])
FILE *filePointer;
char *formatSpecification;

For more information, see the scanf() function.

» fseek()

Positions the file to the specified byte offset in the file.

#include <stdio.h>

int fseek(filePointer, offset, direction)
FILE xfilePointer;

int offset, direction;

The argument direction is an integer indicating whether the offset is measured from the
current read or write address (1), from the beginning of the file (0), or from the end of
the file (2). The fseek() function returns EOF (a preprocessor constant defined in stdio.h)
for improper seeks, O for successful seeks. To position into ASCII files that have been
opened for writing or updating, a previous call to ftelll) must have been made to obtain a
valid byte position in the disk file. The only operations that can be performed successfully
on an ASCII file opened for reading are seeks to the beginning or end of the file where
the offset is zero. Any other operation causes fseek() to return EOF. Arbitrary seeks on
binary files are permitted. See the fopen() description.

Note

Under PRIMOS, ASCII text files are stored on disk with as many as 128 spaces stored
in only two bytes. The C library routines generally hide this fact by compressing
the data on the way out to disk and expanding it on the way in from disk. This
compression can cause problems if you update a file after it has been written. For
example, you cannot write the string "abcedf" on top of six spaces in an ASCII
disk file without overwriting data following the spaces, because only two bytes on
the disk file are used to store six spaces. Additionally, space compression causes
problems when reading ASCII files because the 32-bit offset is not large enough to
always store a unique file position. These problems are, of course, solved by using
binary files rather than ASCII files.

P fsize()

Returns the size of a specified file in bytes.

int fsize(pathname)
char xpathname;

4-22

)

J



h)

)

Using the C Library

The fsize() function opens the file and positions to the end of file to perform this
calculation. (This can be a time-consuming task for large SAM files) The function
returns -1 on any error and sets errno (defined in stdio.h) to the file system error code.

P fstat()

This function is equivalent to the following stat( ) call:

stat(fgetname(filePointer, charBuf), buffer)

#include <stdio.h>

#include <stat.h>

int fstat(filePointer, buffer)
FILE x*filePointer;

struct stat xbuffer;

The information returned by fstat() is virtually identical to the information returned by
stat( ); however, fstat() returns the status information for an already open file, while stat()
returns the same information for a specified pathname. The first argument to fstat() is a
file pointer as returned by the fopen() routine.  See the stat() function for more
information.

» ftell()

Returns the current byte offset to the specified stream file.

#include <stdio.h>
int ftell(filePointer)
FILE xfilePointer;

The offset is measured from the beginning of the file. This function is useful only for
obtaining an offset that is later passed to fseek(). Any error causes ftell) to return EOF
(a preprocessor constant defined in stdio.h). Note that ftell( ) cannot reliably measure offsets
into ASCII files opened for reading, and will return EOF. For more information, see the
fseek( ) description.

» ftime()

Returns the elapsed time since 00:00:00, Jan. 1, 1970, in a timeb structure. The structure
layout is as follows (structure defined in timeb.h):

struct timeb { int time; /* Time in seconds */
short millitm; /* Fractional milliseconds */
short timezone; /* Always zero */
short dstflag; /* Always zero */
1

4-23



C User's Guide

#include <timeb.h>
ftime(timePointer)
struct timeb *timePointer;

> ftype()

Returns the type of a specified file.

#include <stdio.h>
int ftype(pathname)
char *pathname;

The ftype() function returns -1 on any error and sets errno (defined in stdio.h) to the file
system error code. The valid return values are

Value Meaning

0 SAM file

DAM file

SAM segment directory

DAM segment directory

Directory

Access Category (ACAT)
CAM file

N N AW N e

» fwrite()

Writes a specified number of items to the file.

#include <stdio.h>

int fwrite(pointer, sizeOfItem, numberOfItems, filePointer)
char *pointer;

int numberOfitems, sizeOfltem;

FILE *filePointer;

The first argument, pointer, points to a buffer from which data items are written.
sizeOfItem is the size in bytes. The fourth argument, filePointer, is the pointer that was
returned by the function fopen() or fdopen(). The writing begins at the current location
in the file. The function returns the number of items actually written. It returns O if
there is an error.

» gSamiix()

Determines if the current machine is capable of executing C 32IX-mode code.

4-24

J

J

J



-
r

Using the C Library

int g$amiix()

This routine is an integer function that returns true (1) if the current machine is capable
of executing C 32IX-mode code; it returns false (0) otherwise. Call g$amiix() from 64V-
mode C code only.

> getc(), fgetc()

Returns the next character as an int from a specified file.

#include <stdio.h>
int getc(filePointer)
FILE xfilePointer;

#include <stdio.h>
int fgetc(filePointer)
FILE xfilePointer;

The getc() function positions the file after the character is returned, and the next getc()
call takes the character from that position. The getc( ) function is implemented as a macro.
The argument, filePointer, is the pointer that was returned by the function fopen() or
fdopen( ).

The fgetc() function is almost identical to the getc() function; however, the fgetc()
function generates an actual function call and not a macro substitution.

Normally, when a program is reading from a terminal, input is not available until the user
types a newline. If the terminal is in raw mode, however, the program can read each
character as it is typed. See sterm(), gterm( ), and chrcheck( ).

» getchar()

Returns the next character from the standard input and is identical to using getc(stdin).
This function is implemented as a macro.

#include <stdio.h>
int getchar()

» geth()

Similar to getw(), except that the next two characters are read from the file and returned
as an int. (Sign extension occurs.)

#include <stdio.h>
int geth(filePointer)
FILE xfilePointer;

4-25



C User's Guide

The argument, filePointer, is the pointer that was returned by the function fopen() or
fdopen(). The getc(), fgetc(), getchar(), getw(), and geth() functions all return EOF on
end of file or error, but because EOF is an integer, you must use feof() and ferror() to
check the success of getw() or geth().

> getmod()

Returns the access available to the current user to a specified file or directory.

#include <stdio.h>
int getmod(pathname, user)
char xpathname, *user;

If the specified file is ACL protected, all return bits are valid. If the file is password
protected, then only the read, write, and delete bits are valid. The second argument is
usually ignored in the current implementation. The only exception is that for a file in a
password protected directory, the user name can be specified as _non-owner_; then
getmod( ) returns the access held by a nonowner to the file. The function returns -1 on
any error and sets errno (defined in stdio.h) to the file system error code.

getmod( ) returns the following bit settings:

Bit Setting Meaning

01 Read
02 Write
04 Use

010 List

020 Add

040 Delete

0100 Protect

» getname(), fgetname()

Returns the PRIMOS pathname associated with an integer fileID (getname()) or a file
pointer (fgetname( )).

#include <stdio.h>

char *getname(fileID, buffer)

int filelD;

char xbuffer;

#include <stdio.h>

char xfgetname(filePointer, buffer)
FILE xfilePointer;

char xbuffer;

4-26

J

J



h)

Using the C Library

fileID is the integer returned by open(), creat(), or fileno(). filePointer is the pointer
returned by fopen() or fdopen(). Both functions place the filename in buffer and return
the address of buffer. The filename is padded with one NULL to form a correct C string.
The buffer must be at least 129 bytes in length. If an error occurs, both functions return
NULL and set errno (defined in stdio.h) to the file system error code.

b gets(), fgets()

Reads a line from a specified file.

#include <stdio.h>
char *gets(string)
char *string;

#include <stdio.h>

char xfgets(string, maxline, filePointer)
char *string;

int maxline;

FILE *filePointer;

The gets() function reads a line from standard input into the buffer specified by string.
This function replaces the newline character (\n) with a NULL (\0). The gets() function
returns its argument, which is a pointer to a character string containing the acquired line.
If an error occurs or if an EOF is encountered before the newline character is encountered,
the function returns NULL (defined in stdio.h). The fgets() function reads from the file
until it has read a newline character (An) or until it has read maxline - 1 characters,
whichever comes first. The function puts the characters into the buffer string. filePointer
is a value of type FILE * that was returned by fopen() or fdopen().

The fgets() function terminates the line with NULL (\0). Unlike gets(), fgets() places the
newline that terminates the input record into the user buffer as it fits. On end of file or
error, the functions return NULL (defined in stdio.h); otherwise, they return the address of
the first character in the line.

> getw()

Returns the next four characters from a specified input file as an int value. No type
conversion is performed.

#include <stdio.h>
int getw(filePointer)
FILE xfilePointer;

If the getw() function encounters an end of file (EOF) during the retrieval of any of the
four characters, the EOF (a preprocessor constant defined in stdio.h) is returned, and the
four characters are lost.

4-27



C User's Guide

» gterm()

Obtains the current terminal characteristics and puts them in the specified structure.

#include <term.h>
void gterm(buffer)
struct term xbuffer;

All terminal attributes can be set with the sterm() function. Read and Write mode
(RAW) indicates that each character can be read (with fgetc()) as it is typed without
waiting for a terminating line feed. The structure and flag bits (defined in term.h) are as
follows:

/* Flag bits */

#define BREAK 01 /* Break enabled? */
#define CRLF 02 /* Echo LF after CR? */
#define ECHO 04 /* Echo characters? */
#define RAW 010 /* Single character reads? */
#define XON 020 /* Flow control enabled */
struct term { short tt_flags; /* Flag bits x/
char tt_erase; /* Erase character */

char tt_kill; /* Kill character x/

h

> gvget()

Returns a pointer to a static character array that contains the value of the named PRIMOS
global variable set by the gvset() routine or the PRIMOS command DEFINE_GVAR.

#include <stdio.h>
char *gvget(name)
char *name;

Returns O on any error or if the wvariable is undefined, and it sets errno (defined in
stdio.h) to the file system error code. gvget() is an interlude to the PRIMOS subroutine
GVSGET.

> gvset()

The gvset() function changes the value of a PRIMOS global variable.

#include <stdio.h>
int gvset(name, value)
char *name, *value;

If the specified name does not exist, the name is created as a global variable. Zero is
returned if the function is executed successfully. gvset( ) returns -1 on any error and sets

4-28

J

J



3

Using the C Library

errno (defined in stdio.h) to the file system error code. This function is an interlude to
the PRIMOS subroutine GVSSET.

» hypot(), cabs()

hypot( ) returns sqrt(x? + y?). cabs() returns the complex absolute value sqri(zx® + zy?).

#include <math.h>
double hypot(x, y)
double x, y;

double cabs(z)
struct {double x, y;} z;

P index()

#include <string.h>
char *index(string, character)
char *string, character;

For more information, see the strchr( ) function.

» isalnum()

Returns a nonzero integer if its argument is one of the alphanumeric ASCII characters;
otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isalnum(character)
char character;

» isalpha()
Returns a nonzero integer if its argument is an alphabetic ASCII character; otherwise, it

returns zero. This function is implemented as a macro.

#include <ctype.h>
int isalpha(character);
char character;

4-29



C User's Guide

P isascii()

Returns a nonzero integer if its argument is any ASCIl character (value less than 0400
octal); otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isascii(character)
char character;

P isatty()

Returns 1 if the current process is running from a terminal; zero if not.

int isatty(fileID)
int filelD;

The required argument is a dummy argument; it need not be the actual fileID of the
process.

» iscntrl()

Returns a nonzero integer if its argument is an ASCII DEL character (0177 or 0377 octal)
or any nonprinting ASCII character (code between 00 and 040 octal or between 0200 and
0240 octal). Zero is returned otherwise. This function is implemented as a macro.

#include <ctype.h>
int iscntrl(character)
char character;

P> isdigit()
Returns a nonzero integer if its argument is a decimal digit character in the range 0
through 9. Returns zero if not. This function is implemented as a macro.

#include <ctype.h>
int isdigit(character)
char character;

» isgraph()

Returns a nonzero integer if its argument is a graphic ASCII character; otherwise, it returns
zero. Graphic characters are not control characters and are not the space characters (040
and 0240). This function is implemented as a macro.

4-30

J

J



)

‘

Using the C Library

#include <ctype.h>
int isgraph(character)
char character;

» islower()

Returns a nonzero integer if its argument is a lowercase alphabetic ASCII character;
otherwise it returns zero. This function is implemented as a macro.

#include <ctype.h>
int islower(character)
char character;

P ispascii()

Returns a nonzero integer if its argument is any valid Prime ASCII character in the range
0200 through 0377 octal; otherwise, it returns zero. This function is implemented as a
macro.

#include <ctype.h>
int ispascii(character)
char character;

» isprint()

Returns a nonzero integer if its argument is any ASCII printing character. ASCII printing
characters have values from 040 through 0176 octal and from 0240 through 0376 octal.
The routine returns zero otherwise. This routine is implemented as a macro.

#include <ctype.h>
int isprint(character)
char character;

» ispunct()

Returns a nonzero integer if its argument is an ASCII punctuation character; that is, if it is
nonalphanumeric and greater than 040 and less than 0177 octal or greater than 0240 and
less than 0377 octal. It returns zero otherwise. This function is implemented as a macro.

#include <ctype.h>
int ispunct(character)
char character;

4-31



C User's Guide

P isspace()

Returns a nonzero integer if its argument is white space, that is, if it is an ASCII space,
tab, RETURN, form feed, or newline character. It returns zero otherwise. This function is
implemented as a macro.

#include <ctype.h>
int isspace(character)
char character;

P isupper()

Returns a nonzero integer if its argument is an uppercase alphabetic ASCIl character;
otherwise, it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isupper(character)
char character;

P isxdigit()

Returns a nonzero integer if its argument is a hexadecimal digit (0-9, A-F, a-f); otherwise,
it returns zero. This function is implemented as a macro.

#include <ctype.h>
int isxdigit(character)
char character;

» ldexp()

Returns the following quantity: value times 2 to the power of exp.

#include <math.h>
double ldexp(value, exp)
double value;

int exp;

P localtime()

Converts a time (as returned from the time() function) to a time structure.

#include <time.h>
struct tm *localtime(seconds)
int *seconds;

4-32

J



3

Using the C Library

The localtime() function returns a pointer to the time structure; successive calls overwrite
the structure. The following is the structure layout (structure defined in time.h):

struct tm { int tm_sec,
tm_min,
tm_hour,
tm_mday,
tm_mon,
tm_year,
tm_wday,
tm_yday.

tm_isdst;

> log()

/*
/*
/*
/*
/*
/*
/*
/*
/*

seconds */

minutes */

hours (24) */

day in month (1-31) */
month (0-11) */

year (00-99) */

day in week (0-6) */
day in year (0-365) */
0 */

Returns the natural (base e) logarithm of the argument, which must be of type double.
(The returned value is also double.)

#include <math.h>
double log(x)
double x;

> log1o()

Returns the base 10 logarithm of the argument, which must be of type double. (The
returned value is also double.)

#include <math.h>
double log10(x)
double x;

» longjmp()

#include <setjmp.h>
longjmp(env, val)
jmp__buf env;

For more information, see the setjmp() function.

P 1sdir()

Returns a pointer to a static character array

directory.

containing the next filename in an open

4-33



C User's Guide

#include <stdio.h>
char xlsdir(fileID)
int filelD;

The directory is specified by the integer value fileID returned from open(), creat(), or
fileno( ). If you pass the negative integer -filelD, Isdir() positions the directory to entry O
before the next name is read. The function returns O on any error and sets errno (defined
in stdio.h) to the file system error code.

P lseek(), seek()

Positions a file to an arbitrary byte position and returns the new position as an int.

#include <stdio.h>
int lseek(fileID, offset, direction)
int fileID, offset, direction;

#include <stdio.h>
int seek(fileID, offset, direction)
int fileID, offset, direction;

These functions set the position relative to the beginning of the file (direction = O or 3),
the current position (direction = 1 or 4), or the end of file (direction = 2 or 5). The
target byte position is specified by the offset argument. directions of 3, 4, and 5 cause
the offset to be multiplied by 2048 before the positioning is performed. The size of a
physical disk record is 2048 bytes on 50 Series systems, and is, thus, system dependent.
The target file is specified by a fileID returned from open().

For disk devices, lseek() returns the new byte offset within the file, or -1 on any error.
For magnetic tape devices, lseek() returns O if the operation was successful and -1 on error.
In either error case, the external variable errno (defined in stdio.h) is set to the PRIMOS
error code.

seek( ) and lseek() are valid operations for disk files and magnetic tape devices, but not for
TTY devices or asynchronous lines. lIseek() requests for tape devices are specified in records
instead of bytes. O and 1 are the only direction keys allowed for lseek() on magnetic tape
devices. Their meanings are as follows:

0 Record from beginning of tape

1 Record from current position

For more information, see the description of the open() function on page 4-36.

» malloc()

Allocates a contiguous area of memory whose size in bytes is supplied as an argument.

4-34



)

)

~
-

Using the C Library

char *malloc(size)
unsigned size;

The malloc() function returns the address of the first byte, which is aligned on a 16-bit
boundary. A value of O is returned if malloc() is unable to allocate enough memory.

When you call the library routines malloc() and calloc( ) in 32IX mode, you must declare
them as returning pointer types.

Note

The C library’s routines for dynamic memory management (malloc(), calloc(),
realloc( ), free(), and cfree( )) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine.  Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

P mkdir()
Creates a specified directory (this may be a PRIMOS pathname).

#include <stdio.h>
int mkdir{pathname)
char *pathname;

The new directory has default protections, which can be altered with setmod(). mkdir()
returns O if the directory is created successfully. The function returns -1 on any error and
sets errno (defined in stdio.h) to the file system error code.

» modf()

Returns the positive fractional part of a specified double and stores the integer part in the
double pointed to by integerPart.

#include <math.h>
double modf(value, integerPart)
double value, *integerPart;

» move()

Moves a specified file to a specified new location.

#include <stdio.h>
int move(oldPathname, newPathname)
char xoldPathname, *newPathname;

4-35



C User's Guide

This function performs a change of name if the old and new pathnames refer to the same
directory; otherwise, it performs a copy and delete operation. The function returns -1 on
all errors and sets errno (defined in stdio.h) to the file system error code.

» open()
Opens a specified file.

#include <stdio.h>
int open(pathname, openMode,
[fileUnit])

int open(pathname, openMode,
protocol, config, lword)

int open(pathname, openMode,
magTapeOptions)

char *pathname;

int openMode;

int fileUnit;

char xprotocol;

int config, lword;
char xmagTapeOptions;

If successful, open() returns an integer fileID. You use fileID as an argument to the
following functions: bio$primosfileunit( ), close( ), fdopen(), fgetname(), getname(), Isdir(),
Iseek( ), read( ), seek(), tell() and write().

If unsuccessful, open() returns -1 and the global variable errno (defined in stdio.h) is set to
the PRIMOS error code.

pathname is of type char *. It may be specified by any of the following character
strings:

pathname
A normal PRIMOS style pathname specifying a disk file. The special name
"_current-dir_" may be used to open the current directory for reading. All Keys are
ignored in this case. For compatibility with previous releases, you may use

_current-ufd_" as a synonym for “_current-dir_".

“Device=TTY"
Device type TTY, specifying the current user’s terminal.

"Device=ASYNCxxx"
Device type ASYNC, specifying an assignable asynchronous line, where xxx is the decimal
line number. The asynchronous line is assigned by the open() call and unassigned by its
corresponding close( ) call. You can disable automatic assigning and unassigning by using
the 04000 additive key. Use the 01000000 additive key to disable unassigning only.

4-36

J

)

N\

~



9

3

Using the C Library

"Device=MTx"

Device type tape drive, specifying an available magnetic tape device, where x is the tape
unit number. The tape drive is assigned by the open() call and unassigned by its
corresponding close( ) call. You can disable automatic assigning and unassigning by using
the 04000 additive key. Use the 01000000 additive key to disable unassigning only.
PRIMOS prints a message when a tape device is assigned or unassigned by the C
libraries. For example, opening and closing MTO produces the messages Device MTO
assigned and Device MT0 released.

The values for the openMode argument include several additive keys. These keys are octal
numbers representing bit patterns that can be ORed together with other additive keys. You
must retain the initial zero so that the C compiler interprets them as octal numbers. The
values for openMode appear in Table 4-3.

TABLE 4-3. Values for the openMode Argument of open

Value Meaning
0 Open for reading.
1 Open for writing. A binary file opened for write only is actually

opened for read/write because for certain 1/0 operations, PRIMOS must
read in a halfword (16-bit) quantity to write out a byte quantity. To
write one byte to an existing file, one halfword must be read in so
that the halfword containing the new character can be written.

2 Open for reading and writing. This key is not valid for magnetic tape
devices.
-1 Open for reading. The compiler assumes that the disk file is already

open on PRIMOS file unit fileUnit. No additive keys are allowed when
this openMode is used. Whenever possible, use additive key 02000
rather than openMode -1.

-2 Open for writing. The compiler assumes that the disk file is already
open on PRIMOS file unit fileUnit. No additive keys are allowed when
this openMode is used. Whenever possible, use additive key 02000
rather than openMode -2.

-3 Open for reading and writing. The compiler assumes that the disk file
is already open on PRIMOS file unit fileUnit. No additive keys are al-
lowed when this openMode is used. Whenever possible, use additive
key 02000 rather than openMode -3.

0100 Additive key to enable no-wait mode 1/O. This key is valid only for
TTY, asynchronous, and magnetic tape devices.

0200 Additive key to cause mapping of \n to \n\r on output. This key is
valid only for TTY and asynchronous devices.

0400 Additive Key to cause truncation of an already existing disk file when
it is opened for writing, that is, with openMode 1, 2, -2, or -3. This
key is valid only for disk devices. If this key is used with additive
key 02000 (or openModes -2 or -3), the file is truncated at its current
position, rather than at the beginning of file.

4-37



C User's Guide

TABLE 4-3. Values for the openMode Argument of open (continued)

Value

Meaning

01000

02000

04000

010000

020000

040000

0200000

0400000

01000000

02000000

Additive key to disable disk write buffering. This causes all write()
and seek() requests to be flushed immediately to PRIMOS, with the pos-
sible exception of a single odd byte at the end of file. This key is
valid only for disk devices.

Additive key to signal that a disk file is already open on PRIMOS file
unit fileUnit for the specified openMode (0, 1, or 2). The current file
position is not altered. This key is valid only for disk devices. Use
this key rather than -1, -2, or -3 whenever possible. Other additive
keys may be used with this key.

Additive key to disable automatic assigning (on open()) and unassigning
(on close( ) of asynchronous and magnetic tape devices. This key is
valid only for asynchronous and magnetic tape devices.

Additive key to cause a SAM file to be created if key 1 or 2 are used
and the specified file does not already exist. Creation of a new DAM
file is the default. This key is valid only for write or read/write
open( ) requests for disk devices.

Additive key to cause a CAM file to be created if key 1 or 2 is used
and the specified file does not already exist. Creation of a new DAM
file is the default. This key is valid only for write or read/write
open( ) requests for disk devices.

Additive key to disable disk read buffering. This causes all read() re-
quests to come directly from PRIMOS rather than through a local
buffer. Similarly, all seek( ) requests are executed immediately instead
of being deferred until the next physical disk I/O operation. This key
is useful if one process is reading a file that is being concurrently writ-
ten by another process and the most up-to-date data must be available
for reading at all times. This key is valid only for disk devices.

Additive key to cause a magnetic tape device to be rewound when
closed. This key is valid only for magnetic tape devices.

Additive key to cause a magnetic tape device to be unloaded when
closed. This key is valid only for magnetic tape devices.

Additive key to disable unassigning of asynchronous or magnetic tape
devices when they are closed. This key causes the device to be assigned
when it is opened, but leaves it assigned to the user process after it is
closed. This is useful for writing multiple tape marks to magnetic tape
devices. This key is valid only for magnetic tape devices.

Additive key to signal that the optional arguments protocol, config and
lword are present. This key causes open( ) to use these arguments for
asynchronous device assignment. These arguments are passed through to
the PRIMOS routine ASNLNS$. If this key is not specified then the fol-
lowing values are used. This key is valid only for asynchonous devices.

4-38

J

) )



T

Using the C Library

TABLE 4-3. Values for the openMode Argument of open (continued)

Value Meaning
Value Meaning
protocol null string
con fig 0
Iword 0

04000000 Additive key to signal that the optional argument magTapeOptions is
present. This key causes open() to use this argument for magnetic tape
device assignment. The argument magTapeOptions must be a NULL-
terminated string containing command line options acceptable to the
PRIMOS ASSIGN command, for example, "-density 6250 -speed 100".
See the PRIMOS Commands Reference Guide for other options to the
ASSIGN command. If this key is not specified, no additional options are
used. The MTX syntax supported by the PRIMOS ASSIGN command is
not supported by the C libraries, which support only 9-track tape 1/0.
This key is valid only with magnetic tape devices.

010000000  Additive key that causes all PRWF$$ writes to be done in force write
mode. This means that PRWFS$S does not return until the disk records
involved are written to disk. This key should be combined with the
unbuffered write key (01000) to achieve the desired results.

The opened file is a binary file. No translation takes place between the user program and
the disk. Any type of data can be written and read back correctly. However, ASCII data
written to these types of files is not translated into PRIMOS standard text format and thus
is not valid data for other PRIMOS commands such as ED and SPOOL. Reading and
writing these types of files with read() and write() is much faster than using fopen()
with fread() and fwrite().

All I/0 to TTY and asynchronous devices is in raw mode; that is, your Kkill and erase
characters are not interpreted. Normally, the output is not filtered in any way, but if you
use the 0200 key, the \n (newline character) is translated to \n\r (newline carriage-return)
on output.

Because of disk buffering, a maximum of one page (2048 bytes) may be buffered by the
low-level I/0 routines before it is actually written to disk. You can use the function
fflush() to write the contents of the buffer to disk. You must first use fdopen() to
obtain a filePointer, which you then pass to fflush().

While a file is being accessed by C's I/0 libraries it may appear to have an odd size in
bytes. The libraries maintain this illusion. However, PRIMOS does not support odd length
files, so when a file with an odd length is closed, it may be padded with one null byte
to bring it up to an even length.

Three predefined fileIDs (values O through 2) do not have to be opened before 1/0 may be
performed using them.

4-39



C User's Guide

Value Meaning

0 TTY input (stdin)
TTY output (stdout)
2 TTY output (stderr)

These fileIDs always refer to the user’s terminal and may not be redirected. The two
output filelDs have the 0200 additive key set.

The fileIDs returned for nondisk devices, including the three predefined fileIDs, are for
use only with the I/O routines read( ), write( ), Iseek() and tell(). You cannot pass any of
these fileIDs to fdopen() to obtain a filePointer.

You can perform four low-level 1/O operations on an open device: read( ), write(),
Iseek( )/seek( ), and tell( ). All four operations are permitted on disk devices. Only read(),
write( ) and tell( ) operations are valid for TTY and asynchronous devices. The operations
read( ), write() and lseek() are valid for magnetic tape devices. close() is valid for all
devices. Any files opened by C library routines must be closed by C library routines.

For TTY devices, tell() returns O if no characters are available to read, and returns 1 if
characters are available to read.

For asynchronous devices, tell( ) returns two pieces of information packed into the returned
32-bit integer. The most significant 16 bits contain the amount of free space in the output
buffer, in bytes. This corresponds to the value returned by the PRIMOS subroutine
TSAMLC called with a value of 7 for the key argument. (See Volume IV of the
Subroutines Reference Guide for more information about TSAMLC.) The least significant
16 bits contain the number of bytes waiting to be read in the input buffer.  This
corresponds to the value returned by TSAMLC with a key value of 4.

For example,

unsigned int Asyncstatus;
short freeOutputBytes, waitingInputBytes;

Asyncstatus = tell(filelD);
freeQutputBytes = Asyncstatus >> 16;
waitingInputBytes = Asyncstatus & OxFFFF;

Magnetic tape devices may be opened for read or write, but not read/write. All magnetic
tape operations are in raw mode and affect an entire tape record. The operations read( ),
write( ) and Iseek() are valid for magnetic tape devices. However, each read() or write()
causes an entire tape record to be read or written, and all position (1seek( )) requests are
specified in records rather than bytes. O and 1 are the only direction keys allowed for
lseek( ) on magnetic tape devices. O means record from beginning of tape, 1 means record

from current postion.

When a magnetic tape device that has been opened for write is closed, an end-of-file tape
mark is written. You can write a double tape mark by using the following procedure.

4-40

J

J



Using the C Library

T o

1. Open the device using the 01000000 additive key. When you use this key, the
device is not unassigned when closed.

2. Close the device. This writes one tape mark.

3. Open the device again using no additive keys. The device is reassigned even though
it is already assigned, but that does no harm.

4. Close the device. This writes the second tape mark and unassigns the device.

No-wait mode 1/0, enabled by the 0100 openMode, has different effects depending on the

device type. For TTY and asynchronous devices, no-wait mode causes read( ) requests not to

wait if fewer than the specified number of characters are actually available to read. For

example, in no-wait mode, if a request is made to read 10 bytes and the user has typed

only two characters, then read() returns only two bytes. In wait mode the read() blocks
(. until 10 bytes are actually available, and all 10 are returned.

For tape devices, no-wait mode affects read(), write() and Iseek() operations. Control

returns to the caller as soon as the requested operation is started. Thus, for a read()

request, control returns to the caller before the user’s buffer is filled with the requested

data. Similarly, for write( ) requests, control returns to the caller before all of the data is

actually written to tape. This enables you to implement double buffering tape 1/0

mechanisms. If your program makes a second tape request before the previous one has
) completed, then control does not return to the caller until the first operation is complete
r and the second one has started. In order to wait for the completion of an operation in no-
' wait mode, make the following lseek( ) call for the tape device:

Iseek(filelD, 0, 1);

In wait mode, for tape devices, all operations are completed before control is returned to the
caller.

For disk devices, Iseek() returns the new byte offset within the file, or -1 on any error.

’ For magnetic tape devices, Iseek( ) returns O if the operation was successful and -1 on error.
) In either error case, the external variable errno (defined in stdio.h) is set to the PRIMOS
error code.

The C library 1/0 routines use the PRIMOS subroutine TSMT to move data to and from
magnetic tape. (See Volume IV of the Subroutines Reference Guide) This places the
following constraints upon magnetic tape 1/0:

® You cannot write records that contain an odd number of bytes. If you request an
odd number of bytes, TSMT rounds your request up to a even number.

® The largest tape record that you can read or write is, at most, 12K bytes. It may be
as small as 10K bytes, depending on the page alignment of the buffer. You are not
allowed to use larger records.

boundary. If you try to pass an odd byte aligned buffer, these routines return -1

W o ® The buffer address used for tape 1/O (read() or write()) must be aligned on a 16-bit
and set errno to ESBPAR.

4-41



C User's Guide

The external variable errno (defined in stdio.h) is used for two distinct purposes in
conjunction with magnetic tape 1/0. If the function read(), write( ) or Iseek( ) fails because
of a PRIMOS error, such as Device not assigned, the function returns -1 and errno is
set to the PRIMOS error code. If the function succeeds, however, and an operation is
successfully started, read() or write() returns the size of the request in bytes, and lseek()
returns 0. In this case, errno is set to the current hardware status, which is the second
element of the statv argument to TSMT. It is your responsibility to check errno for any
errors that occur during tape operations, such as End of tape detected or Parity
error.

The meaning of the current hardware status depends upon whether you are performing
wait mode or no-wait mode I/0. If you have enabled no-wait mode by using the 0100
key, when a tape operation is successfully started, errno is set to the current magnetic tape
hardware status before the read(), write( ) or lseek() operation is started. If you are using
wait mode I/0, however, errno reflects the hardware status after the operation is complete.
In either mode, you can use the special call

Iseek(fileID, 0, 1)

to cause errno to be set to the current hardware status, after completion of any pending
operation. The function bio$primosfileunit() allows you to determine the PRIMOS file unit
that is being used to access a disk file. Given a fileID returned from open() or fileno(),
bio$primosfileunit( ) returns the corresponding PRIMOS file unit.

» perror()

Writes a short error message to the user’s terminal describing the last error encountered
during a call to the C runtime library from a C program.

#include <stdio.h>
extern int errno;
perror(string)
char xstring;

The perror() function writes out its argument (a user-supplied prefix to the error message),
followed by a colon, followed by the message itself, followed by a newline. The argument
is typically the name of the program that incurred the error.

The external symbol errno (defined in stdio.h) contains the number of the most recent error.
This is a standard system error code as defined in SYSCOM>ERRD.NS.CC; a value of O

indicates no previous error.

» powl()

Returns the first argument raised to the power of the second argument.

4-42

| J

J



Using the C Library

#include <math.h>
double powl(x, y)
double x, y;

The first argument cannot be negative. Both arguments must be double, and the returned
value is double.

» primospath()

Takes a pathname such as those used by the UNIX operating systems and converts it to a
PRIMOS pathname.

char *primospath(unixPathname)
char *unixPathname;

The UNIX operating systems use the slash (/) character as a separator in pathnames instead
of the PRIMOS greater-than (>) symbol. The symbol . specifies the current directory, and ..
specifies the parent directory. By definition, . of / is /. (The parent of the root is the
root.) Pathnames that do not start with a slash are considered to be relative to the current
attach point. The characters @, +, and = are passed through unchanged.

The function primospath() returns a pointer to a static character array containing the
PRIMOS pathname.

» printf(), fprintf(), sprintf()

Perform formatted output to the standard output (printf()), to a specified file (fprintf()),
or to a character string in memory (sprintf()).

#include <stdio.h>
int printf(formatSpecification [, outputSource,. . . ])
char *formatSpecification;

#include <stdio.h>
int fprintf(filePointer,
formatSpecification [, outputSource,. . . ]
FILE xfilePointer;
char xformatSpecification;

#include <stdio.h>

int sprintf(string, formatSpecification [, outputSource,. . . ])
char xstring;

char *formatSpecification;

All three functions take a format-specification argument containing characters to be written
literally to the output and/or conversion specifications corresponding to the list of optional
output sources.

4-43



C User's Guide

All three functions return the number of characters actually written out. The printf( )
and fprintf() functions return -1 if an 1/0 error occurs.

The output sources are expressions whose types correspond to conversion specifications given
in the format specification. If no conversion specifications are given, the output sources
may be omitted; otherwise, the function call must have exactly as many output sources as
there are conversion specifications, and the conversion specifications must match the types of
the output sources. Conversion specifications are matched to output sources in simple left-
to-right order.

formatSpecification is a  character string that specifies the output format.
formatSpecification may contain ordinary characters, conversion specifications, or both.
Ordinary characters are printed to the output literally.

Conversion Specifications

A conversion specification causes the conversion of a corresponding outputSource to a
formatted character string. Each conversion specification begins with a percent sign (%) and
ends with a conversion character that specifies an output format. Conversion characters and
their corresponding output formats are listed in Table 4-4,

Optionally, conversion specifiers may be inserted between the percent sign and the
conversion character. Table 4-5 lists the conversion specifiers and their effect upon the
output format. If you use conversion specifiers, you must place them in the order shown
in that table.

TABLE 4-4.  Conversion Characters for Formatting Output

Character Meaning

Jod Converts to decimal format.

90 Converts to unsigned octal format without leading O.

Yox Converts to unsigned hexadecimal format without leading Ox.

ou Converts to unsigned decimal format, returning a number in the
range O through 4,294,967,295.

Foc Outputs a single character. (A NULL is ignored.)

Yos Outputs a character string. (Characters are written until NULL

is encountered or until the number of characters indicated by the
precision specification is exhausted. If the precision specification
is 0 or omitted, all characters up to a NULL are output.)

4-44

J

J



1D

Using the C Library

TABLE 4-4. Conversion Characters for Formatting Output (continued)

Character Meaning

Ye, 9oE Converts float or double to the format
[-Im.nnnnnnE[+-]xx
where the number of ns specifies the precision (default = 6). If
the precision is explicitly O, the decimal point is displayed but
no ns are displayed. An E is printed if the conversion character
is an uppercase E. An e is printed if the conversion character is
a lowercase e.

%f Converts float or double to the format
[FJm. . . m.annnnnn
where the number of ns specifies the precision (default = 6).
Note that the precision does not determine the number of sig-
nificant digits printed. If the precision is explicitly O, no
decimal point and no ns appear.

%g Converts float or double to %d, %e, or %f format, whichever is

%Lf, %Lle, %Lg

%p

%o

shorter. (Suppresses insignificant zeros.)

Same as %e, %f, %g, except that they convert a long double
number to the corresponding format. Use this specification in
conjunction with either the -ANSI option, or with the
-QUADCONSTANTS and -QUADFLOATING options. (The -ANSI
option includes support for the long double data type.)

Converts the address of a pointer to the format
[xIssss[(r))/ wwwwww][+8b]

The asterisk (*) indicates that the fault bit is set. ssss is the
segment number, in octal. r is the ring number (0, 1, 2, or 3).
wwwwww is the word number, in octal. +8b indicates that the
byte bit (also called the extension bit) is set, indicating that the
address is 48 bits in length. (If +8b does not appear, the address
is 32 bits in length.)

Writes out the percent (%) symbol. No conversion is performed.

4-45



C User's Guide

TABLE 4-5. Field Specification for Output Formats

Character

Meaning

width

precision

Left-justifies the converted output source in its field.

Designates the minimum field width. The value is an integer
constant. If the converted output source is wider than this min-
imum, write it out anyway. If the converted output source is
smaller than the minimum width, pad it to make up the field
width. Padding is normally done with spaces, and with O if
the field width is specified with a leading 0. (This does not
mean that the width is an octal number.) Padding normally oc-
curs on the left. If a minus sign is used, however, padding oc-
curs on the right.

Separates field width from precision.

Designates the maximum number of characters to print with the
%s format, or the number of fractional digits with the %e, %f
or %g format. The value is an integer constant.

Indicates that a following %d, %0, %X, or %u specification cor-
responds to a long output source. (Note that in PRIMOS C, all
ints are long by default.) Indicates that a following %e, %f or
%g specification corresponds to a double output source.

Can be used to replace the field-width specification and the
precision specification. The corresponding width or precision is
given in the output source.

» putc(), fputc(), putchar(), putw(), puth()

Write characters to a specified file.

#include <stdio.h>

int putc(character, filePointer)
char character;

FILE x*filePointer;

#include <stdio.h>

int fputc(character, filePointer)
char character;

FILE x*filePointer;

#include <stdio.h>
int putchar(character)
char character;

4-46

J

J

J



D

)

3

Using the C Library

#include <stdio.h>

int putw(integer, filePointer)
int integer;

FILE x*filePointer;

#include <stdio.h>

int puth(integer, filePointer)
int integer;

FILE xfilePointer;

The putc() function writes a single character to a specified file and returns the character.

The file pointer is left positioned after the character. This function is implemented as a
macro.

The fputc() function generates the same results as the putc( ) function, but it is not
implemented as a macro.

The putchar() function writes a single character to the standard output and returns the
character. This function is identical to putc(stdout). The putchar() function is
implemented as a macro.

The putw() function writes an int to an output file as four characters. No type
conversion is performed.

The puth( ) function writes the low-order two bytes of an int to a specified output file as
two characters. No type conversion is performed.

All of these functions return EOF (defined in stdio.h) to designate output errors. Because
EOF is itself an integer, use ferror() to detect errors encountered by the putw() function.

» puts(), fputs()

Write a character string.

#include <stdio.h>
int puts(string)
char xstring;

int fputs(string, filePointer)
char *string;
FILE xfilePointer;

The puts() function writes a string to the standard output, followed by a newline. The
fputs() function writes a character string to a specified file, but it does not append a
newline to the string. Neither function copies the terminating NULL to the output stream.

4-47



C User's Guide

> putw()

#include <stdio.h>

int putw(integer, filePointer)
int integer;

FILE x*filePointer;

For more information, see the putc() function.

P rand(), srand()

rand() returns pseudo-random numbers that range from O through 2°' - 1. srand() can be
called at any time to reset the random number generator to a random starting point.

int rand()
int srand(seed)
int seed;

The rand() function uses a multiplicative congruential random number generator with a
repeat factor (period) of 2°%. The random number generator is reinitialized by calling
srand() with the argument 1, or it can be set to a specific point by calling srand() with
any other number. If rand() is called before a call to srand(), an initial seed of 1 is
used.

» read()

Reads bytes from a file specified by a fileID returned from the open() or creat( ) function,
and places them in a buffer.

#include <stdio.h>

int read(fileID, pointer, nbytes)
int fileID, nbytes;

char *pointer;

pointer points to a buffer into which data is read from the file specified by file/D. The
buffer must be large enough to hold at least nbytes of contiguous storage. The function
returns the number of bytes actually read. The return value does not equal nbytes if an
end of file is encountered before the read() can be completed.

Use of open() and read() is more efficient than use of fopen() and fread(). To get
maximum speed from this routine, pointer and the file pointer should have the same
alignment. Both should be at an odd byte or an even byte.

A return value of O means that an end of file was encountered before any bytes of data
could be read. The function returns -1 on any error and sets errno (defined in stdioh) to
the file system error code.

4-48

1 J

J



9

A

Using the C Library

The read() function is valid for disk devices, TTY and asynchronous devices, and magnetic
tape devices.

For more information, see the description of the open() function on page 4-36.

» realloc()

Changes the size of the area pointed to by the first argument to the number of bytes
given by the second argument.

char xrealloc(pointer, size)
char *pointer;
unsigned size;

The realloc( ) function returns the address of the area, because the area may have moved to
a new address. If the area was moved, the space previously occupied is freed. If realloc()
is unable to reallocate the space (for example, if there is not enough room) it returns O.

The realloc() function must be used on currently allocated space and cannot be called with
an area that was previously freed. The contents of the area are unchanged up to the
lesser of the old and new sizes. If the old size is less than the new size and is not an
even multiple of 8, then any bytes between the old size and the next highest multiple of
8 will contain garbage. After that, new space in the reallocated area is initialized with O.
For example, if the old size is 6 and realloc() is called with a size of 50, the contents of
the first 6 bytes remain the same; the next two bytes contain garbage; and the last 42
bytes are initialized with O.

Note

The C library’s routines for dynamic memory management (malloc(), calloc(),
realloc( ), free(), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine.  Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

» rewind()

Positions the file to the beginning.

#include <stdio.h>
int rewind(filePointer)
FILE *filePointer;

The rewind() function is equivalent to fseek(filePointer, 0, 0). It returns -1 to
indicate failure and O to indicate success.

4-49



C User's Guide

» rindex()

#include <string.h>
char *xrindex(string, character)
char *string, character;

For more information, see the strrchr( ) function.

» scanf(), fscanf(), sscanf()

Perform formatted input from the standard input (scanf()), from a specified file (fscanf()),
or from a character string in memory (sscanf()).

#include <stdio.h>
int scanf(formatSpecification [, inputPointer,. . . ]
char *formatSpecification;

#include <stdio.h>

int fscanf(filePointer, formatSpecification [, inputPointer,. . . D
FILE xfilePointer;

char xformatSpecification;

#include <stdio.h>
int sscanf(string, formatSpecification [, inputPointer,. . . D
char xstring, *formatSpecification;

In each function, formatSpecification may contain ordinary characters, conversion
specifications, or both. Ordinary characters are matched literally. Each conversion
specification converts a portion of the input to a target designated by an inputPointer.

Each function returns the number of successfully matched and assigned input items. If end
of file (or string) is encountered, the functions return EOF (a preprocessor constant defined
in stdio.h).

The formatSpecification is a character string that can include three kinds of items:

® White-space characters (spaces, tabs, and newlines), which cause input to be read up to
the next non-white-space character.

® Ordinary characters (except %), which must match the next non-white-space character
in the input.

e Conversion specifications (beginning with %), which govern the conversion of the
characters in an input field and their assignment to an object indicated by a
corresponding inputPointer. (See Table 4-6, at the end of this section.)

Each inputPointer is an address expression indicating an object whose type must match that
of the corresponding conversion specification. The indicated object is the target that receives
the input value. The number of inputPointers must match the number of conversion

4-50

J

)

J



3

)

N

Using the C Library

specifications, and the addressed objects must match the types of the conversion
specifications.

On successive calls, scanf( ) and fscanf() resume searching at a point immediately after the
last character processed by the previous call. The sscanf() function lacks this functionality.
The string is searched from the beginning on each call to sscanf().

Conversion Specifications

Each conversion specification begins with a percent sign (%). This sign is followed by an
optional assignment-suppression character (%), an optional number giving the maximum field
width, and a character indicating the type of conversion. The conversion characters are
described in Table 4-6.

An input field is defined as a string of non-white-space characters. It extends either to the
next white-space character or until the optionally specified field width is exhausted. (Note
that because the newline character belongs to the set of white-space characters, the function
reads across line/record boundaries.) The delimiters of the input field can be changed with
the bracket conversion specification, %l. . . ], described in Table 4-6.

If the assignment-suppression character (%) appears in the format specification, the
corresponding input field is interpreted and then skipped, without making any assignment.
For example, you can use assignment suppression to read a character followed by a newline:

scanf("%c%*c", &c);

This call to scanf() reads one character, then drops the next character it sees. If the
assignment suppression character is not used here, the next call to scanf( ) will pick up the
next character, with possibly unexpected results.

The inputPointer arguments must be pointers or other address-valued expressions. To read a
number in decimal format and assign its value to n, you must use the code

scanf("%d", &n)
not
scanf("%d", n)

White space in a format specification matches optional white space in the input field. That
is, the format specification string = %d matches

string = 1234
string=1234
string= 1234
string =1234

but not

strin g=1234

4-51



C User's Guide

TABLE 4-6. Conversion Specifications for Formatting Input

Character

Meaning

%od

%0

Y%ox

Yos

%f, %he, %hf

e
%1d, %lo, %lx
PDlf, Fole

%Lf, %Le, %Lg

A decimal integer is input. The corresponding argument must be
an integer pointer.

An octal integer is input with or without a leading sign and O.
The corresponding argument must be an integer pointer.

A hexadecimal integer is input with or without the leading Ox.
The corresponding argument must be an integer pointer.

A single character is input. The corresponding argument must
point to a character. White space is not skipped in this case, so
that n white-space characters can be read with %nc. If a field
width is given with %c, the given number of characters is read,
and the corresponding argument must be a character array
pointer.

A character string is input. The corresponding argument must
point to an array of characters that is large enough to contain
the string plus the terminating NULL (\0). The input field is
terminated by a white-space character (space, tab, or newline).

A floating-point number is input. The corresponding argument
must be a pointer to a floating-point number. The input format
for a floating-point number is

[++Innn[fddd]][{Ee}{+Inn]

where d and n are decimal digits.
Same as %f format.

Same as %d, %o, %x.

Same as %e, %f, except that the corresponding argument is a
pointer to a double rather than a floating-point number. The
same effect can be obtained by using an uppercase E or F.

Same as %e, %f, %g, except that the corresponding argument is a
pointer to a long double rather than a floating-point number.
Use this specification in conjunction with either the -ANSI option,
or with the -QUADCONSTANTS and -QUADFLOATING options.
(The -ANSI option includes support for the long double data

type.)

4-52

J

J



A

)

)

Using the C Library

TABLE 4-6. Conversion Specifications for Formatting Input (continued)

Character Meaning

%p The address of a pointer is input, in the format
[*]ssss[(r))/ wwwwww[+8b | +0b]

The asterisk (%) causes the fault bit to be set. ssss is the seg-
ment number, in octal. r is the ring number (0, 1, 2, or 3).
wwwwww is the word number, in octal. +8b sets the byte bit
(also called the extension bit), indicating that the address is 48
bits in length. +0b leaves the byte bit reset, indicating a 32-bit
address.

Note

For scanf( ) to read the %p specification correctly, the ar-
gument must be a pointer to a pointer to void. For ex-
ample, the declaration

void sptr;

and the statement

scanf ("%p", &ptr);

will read in a pointer value correctly.

%hd, %ho, %hx Same as %d, %o, %x, except that the corresponding argument is a
pointer to a short rather than an int.

% ..] A string that is not delimited by white-space characters is input.
The brackets enclose a set of characters. Ordinarily, this set is
made up of the characters that comprise the string field. Any
character not in the set terminates the field; however, if the
first character in this set is a caret (), the set specifies the
characters that terminate the field. The corresponding argument
must be a character array pointer.

P> seek()

#include <stdio.h>
int seek(fileID, offset, direction)
int fileID, offset, direction;

For more information, see the lseek( ) function.

» setbuf()

Associates a buffer with an input or output file.

#include<stdio.h>
setbuf(filePointer, buffer)
FILE xfilePointer;
char xbuffer;
4-53



C User's Guide

The setbuf() function may be called only after the file has been opened and before any
I/0 is done with respect to the file. It causes file operations to use the specified buffer
for all subsequent I/O operations on the file instead of using an automatically allocated
buffer. The buffer must be large enough to hold an entire input record. The BUFSIZ
constant defined in the stdio.h module is available for your use in defining the size of the
buffer. If the buffer is NULL (defined in stdio.h), the file is unbuffered. The buffer
must be obtained by calling malloc() because it is freed when a call to fclose( ) is made
with filePointer.

Note that unbuffered 1/0 is permitted on binary files only. That is, the file must have
been opened by a call to fopen() with an open mode of "i" or "0", nmot "r" or "w".
The setbuf() routine can also be used with the defined files stdout and stderr to cause

terminal output to be buffered. Buffered terminal input is not allowed.

setbuf( ) returns the defined constant EOF if the requested operation cannot be performed.
See the discussion of input and output buffering in Chapter 7.

» setjmp(), longjmp()

Provide a way to transfer control from a nested series of functions back to a predefined
point without returning normally (that is, not by a series of return statements).

#include <setjmp.h>
setjmp(env)
jmp__buf env;

#include <setjmp.h>
longjmp(env, val)
jmp_buf env;

The setjmp() function saves the context of the calling function in an environment buffer.
The longjmp() function restores the context of the environment buffer.

The environment buffer is declared as an array of integers long enough to hold the context
of the calling function.

When setjmp() is first called, it returns the value 1. If longjmp() is then called and the
same environment is named as in the call to setjmp(), control is returned to the setjmp()
call as if it had returned normally a second time. The value then returned by the
setjmp{ ) routine is second argument to longjmp() in 32IX mode.

In 64V mode the value returned by setjmp() is undefined when setjmp() returns by virtue
of a call to longjmp(). (The second argument to longjmp() is retained for compatibility
only.) Since this value could coincidentally be 1 (which also indicates that setjmp() has
been called for the first time), it is best to use a static external data object to communicate
between the code that calls longjmp() and the code that calls setjmp( ). Never rely on the
value returned by setjmp() in V-mode code.

4-54

1 J

N\

J



3

)

-
r

Using the C Library

Routines that call setjmp() should be compiled with low levels of optimization (that is,
-NOOPT or -OPT 1).

For an example of the use of setjmp() and longjmp(), see page S5-21.

» setmod()

Sets access rights for a specified file. This function is analogous to the getmod() function,
which reads access rights for a specified file.

#include <stdio.h>

int setmod(pathname, user, mode)
char xpathname, *user;

int mode;

Specify the user argument to set access rights for a particular named user or group. If the
object is protected by a default ACL or by an access category, then a copy of that ACL is
made as a specific ACL for the objct. This routine modifies an existing ACL rather than
replacing it. For objects in password-protected directories, only the read, write, delete, and
nonowner

default bits are used. Specify a user name of to set nonowner rights for

an object in a password-protected directory.

setmod( ) uses three additional bit settings that getmod() does not use: 00 for no access,
0200 to remove an ACL, and 0400 to return the object to default protection. The bit
settings for access rights are listed with getmod() above.

The setmod() function returns -1 on all errors and sets errno (defined in stdio.h) to the
file system error code.

» signal()

Provides a mechanism for handling conditions that arise during execution. In addition, the
CCMAINBIN C library must be linked in for signal() to work properly. This function is
available in 32IX mode only.

#include <signal.h>
void (*ksignal(sig, func)X)
int sig;
void (*funcX );
Note

See the descriptions of the abort() and timer() functions in this chapter for examples
of programs that use signal( ).

The signal() function determines how conditions that occur during execution will be
handled. The first argument, sig, is a constant that specifies the type of signal to be

4-55



C User's Guide

handled. These constants, or macros, are defined in the SIGNAL.H.INS.CC file and are listed

in Table 4-7 as follows.

TABLE 4-7. Conditions Raised by sig Argument of signal Function
sig Arg Cause Condition Raised
SIGHUP Hangup LOGOUTS$
SIGINT Interrupt QUITS first choice
SIGQUIT Quits QUITS second choice
SIGILL Illegal instruction RESTRICTED__INSTS
UIIS$

SIGABRT Abnormal termination ABORTS

SIGFPE Arithmetic error ARITHS
ERROR

SIGBUS Bus error ACCESS__VIOLATIONS

SIGSEGV Segmentation violation ILLEGAL _SEGNOS$
OUT__OF_BOUNDS$
NO_AVAIL__SEGS$
NULL__POINTER$
POINTER_FAULTS

SIGSYS Bad arg to system call LINKAGE_FAULTS
LINKAGE__ERRORS
SVC_INSTS

SIGALRM Alarm clock ALLARMS

SIGTERM Software termination CLEANUPS (STOPS)

The second argument, func, specifies the function to be called if the condition named by

sig is raised.

defined in SIGNAL.H.INS.CC.

Func Arg

SIG_DFL
SIG__IGN

Action to be Taken

This can be either a user-defined function or one of the following macros

Implementation-defined default behavior

Ignore the condition

The user-supplied handler, func, for any signal is invoked as:

func(sig)

where the argument, sig, specifies the condition that was raised.

4-56

J

J



)

r
~

Using the C Library

» sin()

Returns the sine of its radian argument. Both the argument and the sine value must be
double.

#include <math.h>
double sin(x)
double x;

» sinh()

Returns the hyperbolic sine of the argument. Both the argument and the hyperbolic sine
value must be double.

#include <math.h>
double sinh(x)
double x;

> sleep()

Suspends the execution of the current process for at least the number of seconds specified
by its argument. When successful, sleep() returns the number of seconds that the process
slept.

int sleep(seconds)
unsigned seconds;

P sprintf()

#include <stdio.h>

int sprintf(string, formatSpecification [, outputSource,. . . ])
char x*string;

char *formatSpecification;

For more information, see the printf( ) function.

» sqrt()
Returns the square root of the argument. The argument and the returned value are both

double. The argument must not be negative.

#include <math.h>
double sqrt(x)
double x;

4-57



C User's Guide

» srand()

int srand(seed)
int seed;

For more information, see the rand() function.

» sscanf()

#include <stdio.h>
int sscanf(string, formatSpecification [, inputPointer,. . . ]
char *string,xformatSpecification;

For more information, see the scanf() function.

» stat()

Fills a stat structure with information about a specified file.

#include <stdio.h>

int stat(pathname, buffer)
char *pathname;

struct stat xbuffer;

The stat structure contains all information returned from the fsize(), fdtm(), ftype(), and
frwlock() routines. The stat() function returns -1 on all errors and sets errno (defined in
stdio.h) to the file system error code. The structure layout is as follows (structure defined
in stat.h):
struct stat { long st_size; /* File size
in bytes */

long st_mtime; /* DTM of file */

short st_type; /* Type of file */

short st_rwlock; /* Read/write

lock of the
file */

» sterm()

Sets terminal characteristics.

#include <term.h>
void sterm(buffer)
struct sterm Xxbuffer;

4-58

J



)

b

Using the C Library

The BREAK bit is ignored in the passed-flags structure. The two additional bit settings of
INHIBIT_BREAK 040 and ENABLE_BREAK 0100 are used in its place. See also the
description of gterm() on page 4-28.

P strcat(), strncat()

Concatenate character strings.

#include <string.h>
char xstrcat(stringl, string2)
char *stringl, *string2;

#include <string.h>

char xstrncat(stringl, string2, max)
char *stringl, *string2;

int max;

The strcat() function concatenates its second argument to the end of its first argument.
Both arguments must be character strings, and, in the case of strcat( ), NULL-terminated.

The strncat() function performs the same operation as strcat( ), but it uses characters from
the second argument up through the specified maximum unless a NULL terminator is
encountered first. The argument max is an integer giving the maximum number of
characters to use from string2. If a strncat() call reaches the specified maximum, strncat()
sets the next byte in stringl to NULL.

Both functions return the address of the first argument, stringl. The argument is assumed
to be large enough to hold the concatenated result.

» strchr(), index(), strrchr(), rindex()

Find the first (or last) occurrence of a character in a string.

#include <string.h>
char *strchr(string, character)
char xstring, character;

#include <string.h>
char #*strrchr(string, character)
char x*string, character;

These functions perform similar tasks. The strchr() function returns the address of the
first occurrence of a given character in a NULL-terminated string. It returns O if the
Character does not occur in the string. The strrchr() function is similar to strchr(), but it
returns the address of the last (rightmost) occurrence of the character.

4-59



C User's Guide

The index() function is a synonym for strchr(), and the rindex() function is a synonym
for strrchr( ).

» stremp(), strncmp()

Compare two ASCII character strings.

#include <string.h>
int strcmp(stringl, string2)
char *stringl, *string2;

#include <string.h>

int strncmp(stringl, string2, max)
char x*stringl, *string2;

int max;

The stremp() function compares two ASCI character strings and returns a negative, O, or
positive integer, indicating that stringl is lexicographically less than, equal to, or greater
than string2. The returned value is obtained by subtracting the ASCIl values of the
characters at the first position where the two strings disagree.

The strnemp() function performs the same operation as strcmp( ), but it compares a specific
maximum number of characters in the two strings. The argument max gives the maximum
number of characters, beginning with the first to be compared.

With either function, the comparison is terminated when a NULL is encountered.

» strcpy(), strncpy()

Copy argument strings.

#include <string.h>
char xstrcpy(stringl, string2)
char x*stringl, *string2;

#include <string.h>

char *strncpy(stringl, string2, max)
char xstringl, *string2;

int max;

The strcpy() function copies string2 into stringl. This function terminates when a NULL
is encountered in string2.

The strncpy() function copies a specified number of characters from string2 to stringl.
Exactly max characters are copied, including NULLs. This is a block memory move. If
string2 contains more than max characters, the copy in stringl is not necessarily terminated
by a NULL. Both functions return the address of stringl.

4-60

J

J



b

>

Searches a string for a character in a specified set of characters.

strcspn( )

#include <string.h>
int strcspn(string, charset)
char *string, *charset;

Using the C Library

The strespn( ) function returns the number of characters that precede the matched one.
That is, the function spans the characters not in charset and returns the number of such

leading characters.

If the argument string is a null string, O is returned.

charset, the length of string is returned.

| 4

Returns the length of a string of ASCII characters.

strlen()

the terminating NULL (\O).

For more information, see the strcat() function.

>

For more information, see the strcmp() function.

#include <string.h>
int strlen(string)
char *string;

strncat( )

#include <string.h>

char xstrncat(stringl, string2)
char xstringl, *string2;

int max;

strncmp( )

#include <string.h>

int strncmp(stringl, string2, max)
char *stringl, *string2;

int max;

If no characters in string are in

The returned length does not include

4-61



C User's Guide

» strncpy()

#include <string.h>

char *strncpy(stringl, string2, max)
char xstringl, *string2;

int max;

For more information, see the strcpy() function.

» strpbrk()

Searches a string for an occurrence of one of a specified set of characters.

#include <string.h>
char *strpbrk(string, charset)
char xstring, *charset;

The strpbrk() function returns the address of the first character in string that is in
charset, or NULL if no character is in the set.

» strrchr()

#include <string.h>
char *strrchr(string, character)
char x*string, character;

For more information, see the strchr( ) function.

P strspn()

Searches a string for the occurrence of a character not in a specified set of characters.

#include <string.h>
int strspn(string, charset)
char *string, *charset;

The strspn() function returns the number of characters that precede the mismatched
character. That is, the function spans the characters in charset and returns the number of
such leading characters.

If charset is a null string, a value of O is returned. If all the characters in string are
also in charset, the length of string is returned.

4-62

y

J



r

Using the C Library

» system()

Executes the command contained in its argument as a PRIMOS command, and then resumes
execution of the current program.

int system(command)
char *command;

Abbreviations are expanded. If the call succeeds, system() returns O. If the call fails,
system( ) returns a positive integer.

» tan()

Returns a double value that is the tangent of the argument expressed in radians, which
must also be double.

#include <math.h>
double tan(x)
double x;

» tanh()

Returns a double value that is the hyperbolic tangent of the double argument.

#include <math.h>
double tanh(x)
double x;

> tell()

Returns the current byte position in a file specified by a fileID returned from open().

#include <stdio.h>
int tell(fileID)
int filelD;

The byte position returned by the tell() function can be used in future calls to seek() or

Iseek( ). The function returns -1 on any error and sets errno (defined in stdio.h) to the
file system error code.

The use of tell() is valid on disk, TTY, and asynchronous devices, but not on magnetic
tape devices. For TTY devices, tell() returns O if no characters are available to read and 1
if characters are available to read. See open() for more information.

4-83



C User's Guide

» time()

Returns the time, in seconds, elapsed since 00:00:00, Jan. 1, 1970.

int time(seconds)
int *seconds;

If the pointer seconds is not NULL (0), the returned value is also stored in the location to
which seconds points.

» timer()

Causes the PRIMOS ALARMS condition to be raised after a specified number of elapsed
minutes.

void timer(mins)
int mins;

The timer( ) function is analogous to the alarm routine found on UNIX operating systems,
except that a separate call to either signal() or MKONSP must be made to set up the
handler for the condition.

The following examples demonstrate how to catch the ALARMS condition using signal()
and MKONS$P. In the examples, note that you can turn off the timer by calling the
function with a O argument.

Example 1:

0K, SLIST TMP1.C
#include <signal.h>
static short minutes = 0;

main()
{

void alarm_handler();

signal(SIGALRM, alarm_handler);

timer(1); /* raise ALARM$ in one minute */
for (33) {
if (minutes == 2) {
timer(0); /* turn timer off */
return;
}
printf("looping...\n");
sleep(10);
}
}
J* function that is called when timer is up */
void
alarm_handler(sig)
int sig;

4-64

J

J ')



Using the C Library

{
printf("A minute has passed.\n");
++minutes;
timer(1); /* reset timer */
return;

}

0K, CC TMP1 -32IX

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 31 lines and 115 include lines.
OK, BIND -LI CCMAIN -LO TMP1 -LI C_LIB

[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

0K, R TMP1

looping...

looping...

looping...

looping...

looping...

looping...

A minute has passed.

looping...

looping...

looping...

looping...

looping...

looping...

A minute has passed.

0K,

Note the use of the 32IX-mode predefined symbol ___ CI in the next example. The _ _ CI
symbol enables the compilation unit to be correct for both 64V and 32IX mode. The
__CI symbol is discussed in more detail on page 5-20. See the description of the

-UNDEFINE option on page 2-34 for information about other predefined symbols.

Example 2:

static short minutes = 0; /* Minute count;
incremented by

handler */
main( )
{
#ifdef _CI
fortran void handlier( ); /* Condition handler */
#else
extern void handler( ); /* Condition handler */
#endif
fortran void mkon$p( ); /* Make an onunit */
fortran void sleep$( ); /* PRIMOS sleep routine */

/* *** Start of code *** */

mkon$p( “ALARMS", 6, handler);
/* Set up ALARMS handler */

timer(1);
/* Raise ALARMS in one minute */

4-65



C User's Guide

for(s:)
{
if (minutes == 2)
{
timer(0); /* Turn timer off */
return;
}
printf(“Looping. . . \n");
sleep$((long)10000); /* Sleep for 10 seconds */
}
} /* main */
#ifdef _CI
fortran
#endif
void handler(cfh)
int *cfh; /* PRIMOS passed condition frame
header pointer;
we'll ignore it. */
{
printf("A minute has passed.\n");
++#minutes; /* Bump count */
timer(1); /* Reset timer */
return; /* Back to where we were */

} /* handler */

» tmpnam()

Creates a character string that can be used in place of the pathname argument in other
function calls such as open() and fopen( ).

#include <stdio.h>
char *tmpnam(name)
char *name;

If the name argument is null, tmpnam() places the string in an internal storage area and
returns a pointer to it. If it is not null, it is taken to be the address of an area of
length L__tmpnam (defined in stdio.h). In this case, the string is written into this location,
and name is returned. Multiple calls to tmpnam() with a null argument cause the current

name to be overwritten.

» toascii()

Converts a character or integer to an ASCII character by ANDing the value with 0377.
Note that this is a mathematical operation only; it is not intended to convert noncharacter
data to printable characters. This function is implemented as a macro.

#include <ctype.h>
int toascii(character)
char character;

4-66

J J



3

D

Using the C Library

» tolower(), _ tolower()

Converts its argument, an uppercase alphabetic ASCII character, to lowercase.

#include <ctype.h>
int tolower(character)
char character;

The algorithm used is
character - ‘A’ + ‘@’

The function tolower() first checks the range of the argument to make sure that it is an
uppercase character. If so, it returns the lowercase form of argument; otherwise, it returns
the argument unmodified. However, _tolower() is implemented as a macro and operates on
any passed argument. It does not check the range of the argument.

P topascii()

Converts a character or integer to a Prime ASCII character by ANDing the value with 0377
and then ORing it with 0200. Note that this is a mathematical operation only, and is not
intended to convert noncharacter data to printable characters. This function is implemented
as a macro.

#include <ctype.h>
int topascii(character)
char character;

» toupper(), _ toupper()

Returns its argument, an ASCII lowercase alphabetic character, converted to uppercase.

#include <ctype.h>
int toupper(character)
char character;

The algorithm used for the conversion is
character - ‘2’ + ‘A’

The function toupper() first checks the argument to make sure it is a lowercase character.
If so it returns the uppercase form of the character. Otherwise, it returns the argument
unmodified. However, __toupper() is implemented as a macro and operates on any passed
argument. It does not check the range of its argument.

4-67



C User's Guide

> ungetc()

Writes a character to the buffer of a file and leaves the file positioned before the
character.

#include <stdio.h>

int ungetc(character, filePointer)
char character;

FILE x*filePointer;

The written character is said to be pushed back onto the file, because it is returned by the
next getc() call. The function returns the pushed-back character or EOF if it cannot push
the character back.

One character is guaranteed to be pushed back, provided something has previously been read
from the file. The fseek( ) function erases all memory of pushed-back characters.

P  write()

Writes a specified number of bytes from a buffer to a file specified by a fileID returned
from the open() or creat() functions.

#include <stdio.h>

int write(fileID, pointer, nbytes)
int fileID, nbytes;

char *poin;

pointer is the address of nbytes of contiguous storage. The write() function returns the
number of bytes actually written. write() returns -1 on all errors and sets errno (defined
in stdio.h) to the file system error code.

The write( ) function is valid for disk devices, TTY and asynchronous devices, and magnetic

tape devices.

For more information, see the description of the open() function on page 4-36.

4-68

J

P!

J



)

5

INTERFACING TO OTHER LANGUAGES

On SO Series systems, you can write programs in C that call subroutines written in other
SO Series languages such as PL/I, Pascal, and F77. Similarly, you can write programs in
other SO Series languages that call C subroutines. Interlanguage calling, however, is
somewhat complicated. @ Each of the high-level languages has its own conventions for
declaring and accessing different data types and for passing data to a called function or
procedure. In addition, differences exist in the way individual compilers are implemented on
the 50 Series. Consequently, you must use special programming techniques to bridge this
gap between different languages.

On 50 Series systems, you can compile C programs in either 64V or 32IX mode. Both
modes are standard C, so they share the same language-specific conventions for declaring and
accessing data types and for passing data to functions. Some differences exist, however, in
the ways the two modes are implemented on the 50 Series. As a result, the techniques for
interlanguage calling are somewhat different for the two modes.

Organization of This Chapter

This chapter contains information about the following topics:

® The differences between C and other languages that are important to interlanguage
calling

® How to call other languages from either 64V-mode or 32IX-mode C
¢ How to call 64V-mode C from other languages

® How to call 32IX-mode C from other languages

® How to call 64V-mode C from 32IX-mode C

e How to call 32IX-mode C from 64V-mode C

® Function return types from C and other language routines

® How to use conditional compilation to make your interlanguage C code correct for
both modes



C User's Guide

® How to use the PRIMOS condition mechanism from C
® How to create and access common blocks from C

® How to access MIDASPLUS files

DIFFERENCES BETWEEN C AND OTHER LANGUAGES

This section begins with a list that summarizes the major differences between C and other
high-level languages. The list is followed by more detailed descriptions of each of the
differences. These descriptions contain references to examples that occur in later sections of
the chapter.

Differences common to both 64V-mode and 32IX-mode C are the following:

® C passes parameters to a function by value. Other languages pass parameters to a
function or procedure by reference.

® Certain data types are promoted when they are passed as parameters to a function in
C. This does not occur in other languages.

® Arrays begin with element zero in C. In many other languages, arrays begin with
element one.

e Strings in C are NULL-terminated arrays of characters. Some other languages use a
different representation for strings.

® When C passes an array as a parameter to a function, it actually passes a pointer to
the first element of the array. Most other high-level languages actually pass the first
element itself.

Differences specific to 64V-mode C or 32IX-mode C are the following:

® In 64V-mode C, pointers are 48 bits long. In 32IX-mode C, pointers are 32 bits long.
Some of the other SO Series languages use 48-bit pointers, some use 32-bit pointers,
and some use both.

e In 32IX mode, the compiler changes the names of external identifiers. The prefix G$
is prepended to the names of external variables, routines, and common blocks. This
does not occur in 64V mode.

e 32[X-mode C programs cannot easily access pointers returned by routines written in
other languages. This problem does not exist in 64V mode.

Pass by Value Versus Pass by Reference

In a C program, if you pass a scalar variable to a function, the called function receives a
copy of the variable. Therefore, the called function cannot change the value of the original
variable. This is called passing by value. In C, if you want a function to change the
value of a variable, you must expressly pass a pointer to the variable. The called function
then receives a copy of the pointer, but both the -original pointer and the copy point to the

5-2

J

) J



D

),

Interfacing to Other Languages

same place. Therefore, if the called function changes the variable pointed to, the original
variable is changed. The following program example shows both ways of passing a
variable to a function in C.

#include <stdio.h>

main( )

{
int var;
int *ptr;
var = 5;

funcl(var);

printf("After call to funcl, var = %d. \n",var);

ptr = &var;:

func2(ptr);

printf("After call to func2, var = %Zd. \n",var);
}

funcl(myvar)
int myvar;

{
}

myvar += 2; /* This doesn't change the value of var. */

func2(myptr)
int *myptr;
{

}

This program prints

*myptr += 2; /* This changes the value of var. */

After call to funcl, var = 5.

After call to func2, var = 7.
Note that funcl does not change the value of var, but func2 does. That is because var
is passed to funcl by value, so funcl gets only a copy of var. The function func2 gets
a copy of the pointer myptr. The copy of myptr, however, points to the same place as
myptr, so funcZ can change the value of var. The only way you can pass a scalar
variable by reference in C is to pass a pointer.

Other high-level languages are different from C. Most high-level languages pass parameters
to a function by reference. That is, you do not have to pass a pointer in order to change
the value of the original variable. The called function actually gets the original variable,
not a copy of the variable.

On 50 Series systems, special interlanguage calling conventions allow you to pass most types
of arguments by reference from C language programs to non-C functions without expressly
passing a pointer. See Examples 1 and 2 on pages 5-8 and 5-9.

To pass a pointer by reference, you must use an integer as a dummy variable and cast it
to a pointer. See Example 7 on page 5-12.

5-3



C User's Guide

Promotion of Argument Types

In a non-ANSI C program, when you pass a char, short int, or short unsigned int as a
parameter to a function, it is promoted to type int. Similarly, if you pass a float, it is
converted to type double. The following example shows the proper way to code a
function that receives these data types.

main( )
{
char c¢;
short int s;
int 1,
float f;
double d;
foo(c,s,1,f,d);
}
foo(c,s,1,f,d)
int ¢,s,1;
double f,d;
{
/* Any code here */
}

Notice that the passed variables of type char and short int are received as type imnt, and
the variable of type float is received as type double. This method of passing and picking
up arguments conforms to the Kernighan and Ritchie standard. The important point here is
that other high-level languages do not promote data types; the called function or procedure
receives the same data type that was originally passed.

For the reasons just described, the only data types that can be passed from a non-C
program to a C function on 50 Series systems are types long int, double, and pointers to
all types. When you call a non-C routine from a C program, the interlanguage calling
conventions available with PRIMOS C automatically suppress promotion. See Examples 1
and 2 on pages 5-8 and 5-9.

Be particularly cautious when you write code in which a C function receives a parameter,
then passes it to a non-C routine. The C compiler lets you write code that hides the fact
that data type promotion has occurred, as shown in the following example:

foo(c,s,1,f,d)

char c;

short s;

int 1;

float f:

double d;
{

/* Any code here */
}
With the PRIMOS C compiler, this method works correctly, even though it is not standard
C. The compiler makes the assumption that C and S were really passed as type int and
that f was really passed as type double. The compiler warns you about the type change
only when you use the -VERBOSE option. If you pass one of these parameters to a non-C

5-4

) J

J )



Interfacing to Other Languages

routine, and you do not use -VERBOSE on the command line, you can easily forget what
data type you are really passing. See Example 6 on page S5-11.

In an ANSI C program using function prototypes, variables passed to a function are
converted to the parameter types of the function’s prototype. If the parameter list ends
with (, ..), however, the default argument promotion is done in the same way as for non-
ANSI C.

First Element of an Array
In a C program, arrays are indexed starting with item zero, as shown in the following
example:

static int array[3] = {1, 2, 3};
main{ )

{
}

This program prints

printf("array[2] = %d. \n",array[2]);

array[2] = 3.

because array[2] is the third element of the array, which is 3. In FORTRAN and many
other languages, the first element of an array is item one. This simple difference needs no
elaboration, but remember to watch for it in interlanguage programs. See Example 9 on
page 5-13.

Representation of Strings

In C, a string is simply a NULL-terminated array of type char. Most C library functions
that operate on strings use the NULL byte to determine when they have reached the end
of the string. For example, if you use the conversion specification %s in a format
specification for the printf() function, printf() expects the corresponding variable to be a
NULL-terminated array of characters. If the NULL byte is missing, printf() cannot format
the data properly.

Other high-level languages do not terminate their strings with a NULL byte. Instead, they
store the length of the string along with its contents. If your C program uses strings
received from non-C routines, you may wish to add a NULL byte so that you can treat
them like ordinary C strings. Alternatively, if you pass such a string to a formatting
function such as printf() or sprintf(), you can use a precision specification so that the
function accesses only a specific number of characters. When you pass a string from a C
program to certain non-C routines, you may be required to pass its size, also. See Examples
1, 4, and 6 on pages 5-8, 5-10, and 5-11.

5-5



C User's Guide

Passing Arrays as Parameters

In C, the name of an array is actually a pointer to the first element of the array. You
pass this pointer when you pass an array to a function. Other 50 Series languages, such as
F77 and PL/I, pass the first element of the array. Thus, array handling in C has one
more level of indirection than in other languages.

When you pass an array to a C function from another language, you may use either of
two methods to deal with the extra level of indirection. One method is to force the other
language to pass C the address of the array. You can do this by using the LOC function
in F77 or the ADDR function in PL/I. See Examples 9 and 12 on pages 5-13 and 5-16.
Another method is to use a dummy integer variable to receive the array, then cast its
address to a pointer type. See Examples 10 and 13 on pages 5-14 and 5-16. When you
pass an array from a C program to a routine written in another language using the special
interlanguage calling conventions, the array is passed in a manner that is compatible with
the other language. See Examples 1, 2, and 4 on pages 5-8, 5-9, and 5-10.

Be cautious when you write code in which a C function receives an array as a parameter,
then passes the same array to a non-C routine. The C function actually receives a pointer,
and you must cast the pointer to an array type before you can pass it to a non-C routine.
See Example 4 on page 5-10.

Pointer Size in 64V-Mode and 32IX-Mode C

The pointer formats for 64V-mode and 32IX-mode C are described in Appendix E. 64V-mode
C uses 48-bit pointers; 32IX-mode C uses 32-bit pointers. Other 50 Series languages vary
with respect to pointer size. For example, Pascal uses 48-bit pointers. PL/I uses 48-bit
pointers by default, but you can pass a 32-bit pointer from PL/l by using the SHORT
option. F77 does not use pointers, but you can get the address of an F77 variable with
the LOC function, which generates a 32-bit pointer.

When you pass a pointer to a C function from a PL/I program, pass a full 48-bit pointer
if the function is compiled in 64V mode. You may pass either a 32-bit or a 48-bit pointer
if the function is compiled in 32IX mode. When you call a C function from Pascal, the
pointer is the correct size for 64V-mode C, and 32IX-mode C simply ignores the extra
information. When you use LOC to pass an address from F77 to a C program, the pointer
is the correct size for 32IX-mode C, but is missing some information expected by 64V-mode
C. This is not a problem, however, because all data types in F77 are aligned on an even
byte, so the byte offset bit is never set. As a result, the short pointer is interpreted
correctly by 64V-mode C. See Examples 8, 9, 11, and 12 on pages 5-12, §5-13, 5-15, and
5-16.

The special interlanguage calling conventions, described later in this chapter, allow you to
pass 48-bit pointers from both 64V-mode C and 32IX-mode C when you call other language
routines. See Examples 1 and 2 on pages 5-8 and S5-9.

5-6

J

)

J )



9

Interfacing to Other Languages

External identifier Names in 32IX Mode

Two versions of the C libraries exist on your system: one for use by 64V-mode programs
and the other for use by 32IX-mode programs. A special naming convention helps to
insure that the correct routine is linked. In 32IX mode, the prefix G$ is prepended to each
external symbol name in the user code. The 32IX mode library, which was also compiled
in 32IX mode, also has G$ prepended to its routines, so that the correct link is made.

This naming mechanism becomes visible to you, as a programmer, only when you share a
common block between 32IX mode-C and another language. The non-C code must explicitly
specify the G$ prefix. See Examples 19 through 22 on pages 5-23 through 5-25.

Functions Returning Pointers

Most non-C routines return pointers in a register that is the wrong one for 32IX-mode C
programs. The interlanguage calling conventions on 50 Series systems do not resolve this
incompatibility. Non-C functions that return pointers must be declared as type int in a C
program. The returned value must then be cast to a pointer type. See Example 16 on
page 5-20.

Note

The C library’s routines for dynamic memory management (malloc(), calloc( ),
realloc( ), free(), and cfree()) are designed for use only with each other. If you
allocate memory with code written in another language, do not deallocate it with a C
routine.  Similarly, if you allocate memory with a C routine, do not deallocate it
with code written in another language.

CALLING OTHER LANGUAGE ROUTINES FROM C PROGRAMS

Prior to Rev. 19.4, the PRIMOS C compiler supported code generation in 64V mode only.
These early versions supported an awkward, antiquated interlanguage-calling convention now
known as -0oldFORTRAN. With -oldFORTRAN, the fortran keyword was used to declare
any non-C routines. For example, the PRIMOS subroutine SRCH$$ was declared as follows:

fortran void srch$$( );

In the argument lists to these routines, the & character was given special meaning. When
placed in front of simple variables, the & character caused them to be passed by reference.
For compatibility reasons, this convention, now known as the -OLDFORTRAN option, is still
available in 64V mode, although -NEWFORTRAN is the default. We strongly suggest that

you make whatever source changes are required and use the -NEWFORTRAN compile line
option in 64V mode.

In 32IX mode, only -NEWFORTRAN is available. All the explanations and examples in this

chapter assume that you are using the -NEWFORTRAN option when you compile your
program.

5-7



C User's Guide

The fortran Storage Class

When your C program calls a subroutine written in another language, you must suppress
the default action of converting char and short int arguments to int and float arguments
to double. You must also enable the passing of arguments by reference. Further, if your
C program is compiled in 32IX mode, you must force the compiler to use a compatible
stack frame format and to pass 48-bit pointers. You do all of these things by declaring
the non-C routine with a storage class of fortran. Note that you use the fortran storage
class for all non-C routines, not just FORTRAN language routines.

In general, PRIMOS C passes arguments to routines declared with the fortran storage class
by reference, if possible. However, certain data types, parenthesized lvalues, and non-lvalues
are passed by value. (An lvalue is a data item that may appear on the left side of an
assignment statement.) The specific rules are as follows.

Arguments of the following types are passed by value, as described in the following table:

Type How Passed

Characters As short integers (that is, as the low
order byte of a 16-bit halfword)

Pointers As 48-bit pointers

Bit fields As long integers

Constants As whatever type they are

Non-lvalues As whatever type they are

Parenthesized lvalues As whatever type they are

Lvalues of the following types are passed by reference: short integer, long integer, float,
double, structure, union, and array (including string constants).

Notes
You can cause any lvalue to be passed by value by putting it in parentheses.

You cannot pass a pointer by reference.

Example 1

The PRIMOS routine TNOU expects an array of characters, followed by a 16-bit integer
containing a count of characters in the array. Valid calls to TNOU from C are shown in
the following program.

main( )

{
fortran tnou( );
static char buffer[] = "Hi there";
char *p = "Another test";
tnou("This is a test”, 14);
tnou({buffer, (short)strlen(buffer));
tnou((char [J)p, (short)strien(p)):

5-8

Y

J

J



3

Interfacing to Other Languages

Note the following points about this example:
@ TNOU is declared with the storage class fortran.
® The constant number 14 is passed correctly.
® The constant string ''This is a test" is passed correctly.
® The string called buffer is passed correctly because it is declared as an array.

® The string called p is declared as a pointer, so it must be cast to an array before it
is passed.

Note that the following call is incorrect.

main( ) /* THIS EXAMPLE IS WRONG!! */
{

fortran tnou( );

char *p = "Another test”;

tnou(*p, (short)strlen(p)): /* This won't work!! */
}

This is wrong because *p has type char. If you passed *p, the first character of the
string would be converted to a short integer and passed by value.

Example 2

This example shows a C program that passes various data types to non-C routines called
FUN and MOREFUN.

main( )
{
short s, *p:
struct {short a; char buf[10], int f1:5,f2:4;} str;
long al10];
fortran fun( ):
fortran morefun( );
fun(s, (s), (float)s, a[s], (als]), *p, p):
morefun(str, str.buf, str.buf[str.a], str.fl);
}

The parameters are passed to fun as follows:
® S is passed by reference as short.
® (5) is passed by value as short.
® (float)s is passed by value as float.

e a[s] is passed by reference as long.

(a[s]) is passed by value as long.

*p is passed by reference as short.

® p is passed by value as a pointer.

str is passed by reference as a structure.

5-9



C User's Guide

® str.buf is passed by reference as an interlanguage compatible array.
e str.buf[str.a] is passed by value as a short integer.

® str.fl is passed by value as a long integer.

Example 3

Some PRIMOS subroutines expect to receive a character as a 16-bit integer.  In the

following example, the character pointed to by cptr is passed correctly to the subroutine
T10U.

stillAnotherMain( )
{

char *cptr;
fortran tlou( );
tlou(*cptr);

}

Example 4

When a C routine is passed an array as a parameter, it actually gets a pointer. If you
want a C routine that receives an array to pass it to a non-C routine, you must cast it
first, as shown in the following example:

foo(string)

char string[]: /* The compiler changes this to char *string */

{

fortran tnou( );
tnou((char [])string, (short)strlen(string)); /* 0K */
}
The following call does not work correctly, because string is a pointer, not an array,
when it is received as a parameter by the routine foo.

foo(string) /* THIS EXAMPLE IS WRONG!! */
char string[];: /* The compiler changes this to char *string */
{

fortran tnou( );
tnou(string, (short)strlen(string)); /* THIS DOESN'T WORK!! */

Example 5

As noted previously, certain data types are promoted when they are passed as parameters to
a function, but you can write C code that hides the fact that promotion has occurred. The
following program contains a C routine that receives three parameters, then passes the same
parameters to a non-C routine. Although the C routine’s parameters are declared as char,
short, and float, they are actually received as long int, long int, and double,
respectively. As a result, NON_C_ROUTINE receives two long ints and a double.

J

)

J



)

Interfacing to Other Languages

Subroutine (c,s,f)

char c; /* Changed to long int */
short s; /* Changed to long int */
float f; /* Changed to double */

main( )

{
fortran non_C_routine({ );
non_C_routine(c,s,f):

}

Example 6

Some F77 and PL/I routines are coded to accept a string of variable size as a parameter.
When you pass a string argument from a C program to such a routine, you must pass an
additional parameter in order to describe the true length of the string argument.
Furthermore, if nonstring parameters are passed to such a routine along with the string,
you must pass length arguments for all the parameters, even the nonstring parameters. The
argument list must contain the actual arguments followed by the length arguments, in the
same order. In the case of a nonstring argument, the value zero is used as a length
argument.

In the following example, a string variable, a short, and a string constant are passed to the
F77 or PL/I routine DEMO. The F77 and PL/I code are also shown.

C program:

main( )
{
static char string[] = "hi there";
short idummy;
fortran demo( );
demo(string, idummy, “"other string”,strlen(string), 0, 12);

}
F77 routine:

SUBROUTINE DEMO(S1, SHORT, S2)
CHAR*(*) S1, S2

INTEGER*2 SHORT

RETURN

END

PL/1 routine:

demo: proc(sl, short, s2);
dcl (s1,s2) char(*);
dcl short fixed bin(156);
return;

end;

Note that in the call to the subroutine DEMO, a value of O was passed in the fifth
position, corresponding to the argument whose type was short.



C User's Guide

Example 7

Some non-C routines change the value of pointers that they receive as parameters. Such
routines require you to pass pointers by reference. Unfortunately, C programs pass pointers
by value, even to routines declared with the fortran storage class. To pass a variable by
reference, you must declare it to be an integer type. After the call to the routine, the
integer contains the desired value. If you want to use this value as a pointer in your
program, you must then cast the integer to a pointer type. On the 50 Series, a direct cast
from an integer type to a pointer type, or vice versa, alters the bit pattern. To perform
such a cast without altering the bit pattern you must add a level of indirection.

The following program uses a dummy integer variable to pass a pointer to a non-C routine
by reference. (See also the discussion of casting between pointer and integer types in
Chapter 7.)

main( )

{
long *ptr;
int dummy;

fortran void non_c_routine( );
non_c_routine(dummy); /* Dummy is passed by reference as an int */

ptr = *(char **)&dummy; /* This doesn't alter the bit pattern */
/* Any code using ptr */

Note the following points about this example:

® The dummy argument is declared as type int.

Because NON_C_ROUTINE is declared fortran, dummy is passed by reference.

® You must cast the value of dummy to a pointer type before you can use it as a
pointer.

® You must use a complex cast to avoid altering the bit pattern of the value.

CALLING 64V-MODE ROUTINES FROM OTHER LANGUAGES

Because of the argument type conversion expected by C functions, only integral types (long
int), double precision real (double), and pointers (to any type) may be passed to C routines.

Example 8

The following example shows a PL/I main routine that calls a 64V-mode C subroutine.



P

f-\

D

Interfacing to Other Languages

PL/1 program:

main: proc;
dcl Céb4Vroutine entry(fixed bin(31), float bin(47), pointer);
dcl charArray char(100) static
init('This is a test, only a test');

call C64Vroutine(123, 3.14159, addr(charArray));
end;

C subroutine:

void C6d4Vroutine(longInt, doubleReal, charPointer)
int longlnt;

double doubleReal;

char *charPointer;

{
printf(“Arguments are: %d, Zf, Z.20s\n",
tonglnt, doubleReal, charPointer);

}
Note the following points about this example:

® The character array passed from PL/I is not NULL terminated. Therefore, the call to
printf( ) contains the precision specification .20 so that printf() accesses only a
specified number of characters.

® The declaration of the C subroutine in the PL/I program specifies a full 48-bit
pointer.

® The PL/I program specifically passes the address of the string.

Example 9

The following C routine expects to be called with an array of short integers passed in
from another language:

void JustForFun(array)

short array[]; <-- Two equivalent */
short *array; <-- declaration options */
{

/* Use of the array */

}

This C routine can be called correctly by the two following programs:

F77 program:

INTEGER*2 ARRAY(10)

CALL JUSTFORFUN(LOC(ARRAY))
STOP

END



C User's Guide

PL/I program:

main: proc;
dcl JustForFun entry(pointer);
dcl array(10) fixed bin(15);
call JustForfun(addr(array));
return;

end;

Note the following points about this example:

® Whether the incoming array is declared as short array[] or as short *array, the
C routine always expects a pointer to the first element of the array,

® F77 and PL/I normally pass an array by passing the first member of the array, so

you need to add a level of indirection to the array before you pass it from F77 or
PL/I to C.

® You add a level of indirection by passing the address of the array returned by LOC
in F77 or ADDR in PL/L

® Because this C routine is compiled in 64V mode, it expects a full 48-bit pointer from
PL/I, but it can correctly interpret the 32-bit pointer from F77.

Example 10

The C routine and F77 program below accomplish the same task as Example 9 above.

C routine:

void test(dummy)

int dummy;
{

short *array = (short *)&dummy;

printf("First two elements = %d %Zd\n",array[0], array[1]);
}

F77 program:

INTEGER*2 ARRAY(10)
ARRAY(1) = 3
ARRAY(2) = 10

CALL TEST(ARRAY)
STOP

END

Note the following points about this method:

® The F77 program passes the array in normal F77 fashion, so the C routine actually
receives the first member of the array by reference.

® The incoming argument to the C routine is declared to be of type int.

® The address of the dummy integer is cast to type short * within the C routine.

ARRAY(n) in the F77 program becomes array[n-1] in the C routine, where n is an
index value.

)

J



)

Interfacing to Other Languages

CALLING 32IX-MODE C FROM OTHER LANGUAGES

Because of the argument type conversion expected by C functions, only integral types (long
int), double precision real (double), and pointers (to any type) may be passed to C routines.
As mentioned previously, and as defined fully in Chapter 6, 32IX mode uses a unique stack
frame format. A 32[X-mode C routine that is called from another language must be
defined as having the fortran storage class in its definition line. This syntax is legal in
32IX mode only.

Example 11

The following example shows the same program that was used in Example 7, but with the
C routine compiled in 32IX mode. The two differences between this example and Example
7 are the use of the fortran storage class in the C subroutine’s definition line and the size
of the pointer passed from PL/I.  Once again, a PL/l main routine calls a 32IX-mode C
subroutine.

PL/1 program:

main: proc;
dcl C32IXroutine entry(fixed bin(31),float bin(47),
pointer options(short));
dc1 charArray char(100) static
init('This is a test, only a test');

call C32IXroutine(123, 3.14159, addr(charArray));
end;

C subroutine:

fortran void C32IXroutine(longInt, doubleReal, charPointer)
int longlnt;

double doubleReal;

char *charPointer;

{
printf("Arguments are: 7%d, Zf, %Z.20s\n",
longInt,doubleReal, charPointer);

Note the following points about this example:
® The definition of the C function begins with the word fortran.

® Again, the character array passed from PL/I is not NULL terminated. Therefore, the
call to printf() contains the precision specification .20 so that printf( ) accesses only a
specified number of characters.

® The declaration of the C subroutine in the PL/I program specifies a short pointer.
(This is optional.)

® The PL/I program specifically passes the address of the string.



C User's Guide

Example 12

This example is the same as Example 9, but the C routine is compiled in 32IX mode. The
C routine expects to be called with an array of short integers passed in from another
language:

fortran void JustForFun(array)
short *array;

{

/* Use of the array */

}

The following two programs can correctly call this C routine:

F77 program:

INTEGER*2 ARRAY(10)

CALL JUSTFORFUN(LOC(ARRAY))
sToP

END

PL/1 program:

main: proc;
dcl JustForFun entry(pointer options(short));
dcl array(10) fixed bin(15);
call JustForFun(addr(array));
return;
end;

Note the following points about this example:
® The 32IX-mode C routine has the word fortran in its definition line.

e The incoming array is declared as short xarray, and the C routine always expects a
pointer to the first element of the array.

e F77 and PL/I normally pass an array by passing the first member of the array by
address, so you need to add a level of indirection to the array before you pass it
from F77 or PL/I to C. You do this by passing the array to LOC in F77 or ADDR
in PL/L

@ Because this C routine is compiled in 32IX mode, it can handle either a 48-bit pointer
or a 32-bit pointer.

Example 13

The C routine and F77 program below are the same as Example 10, but the C routine is
compiled in 32IX mode.

5-16

J

y



’;-
—

M)

Interfacing to Other Languages

C routine:

fortran void test(dummy)
int dummy;
{
short *array = (short *)&dummy;
printf(“First two elements = %d Zd\n",array[0], array[1]);
}

F77 program:

INTEGER*2 ARRAY(10)
ARRAY(1) = 3
ARRAY(2) = 10

CALL TEST(ARRAY)
STOP

END

Note the following points about this method:
® The 32IX-mode C routine has the word fortran in its definition line.

® The F77 program passes the array in normal F77 fashion, so the C routine actually
receives the first member of the array by reference.

® The incoming argument to the C routine is declared to be of type int.
® The address of the dummy integer is cast to type short * within the C routine.

® Array members ARRAY(1) and ARRAY(2) in the F77 program become array[0] and
array[1] in the C routine.

CALLING 64V-MODE C FROM 32IX-MODE C

Calling a C routine compiled in 64V mode from a C routine compiled in 32IX mode is
similar to calling another language from 32IX-mode C, as described earlier in this chapter.
You must declare the 64V-mode routine with storage class fortran so that the compiler in
32IX mode uses argument-passing conventions compatible with 64V mode. The 64V-mode
routine, however, differs from a foreign language routine in two important respects:

® It expects its parameters to be passed by value.

® It assumes that standard C argument conversions have been performed by the caller.

Because you are using the fortran storage class, you must use parentheses if you want
arguments to be passed to the 64V-mode routine by value. The use of the fortran storage
class also disables standard C argument promotion. However, you can expressly cast each
char, short int, or short unsigned int to type int and each float to double before
passing it. This insures that the 64V-mode routine gets the data types it expects.

5-17



C User's Guide

CALLING 32IX-MODE C FROM 64V-MODE C

There are two ways to call 32IX-mode routines from 64V-mode C. One method is similar
the one discussed above in the previous section, Calling 32IX-mode C From Other Languages.
That is, you include the word fortran in the definition line for the 32IX-mode routine.
For example,

fortran void ixroutine(argl)
int argl;
{
/* Code for the 32IX-mode routine */

}

This causes the 32IX-mode routine to use a stack frame format compatible with 64V mode.
In all other respects, you code as you normally would.

An alternate method is to use the -CIX command line option when you compile the 64V-
mode program. In this case, you do not use the fortran storage class. The format of the
compile line option is

CC program -CIX routine

where program is the name of the 64V-mode source program and routine is the name of
the routine that was separately compiled in 32IX mode. This causes the compiler to assume
that the external routine name was compiled by the C compiler in 32IX mode, and causes
the correct 32IX-style calling sequence to be generated. Argument type conversions are
compatible between 64V and 32IX C code, so these issues do not cause any problems here.
This method is not recommended, because your code is wrong if you forget to use the -CIX
option.

Example 14

This example shows the 64V assembler code generated when a 64V-mode C program calls a
32IX-mode routine.

C code to be compiled in 64V mode:

main( )
{

int 1;

double d;

char *p;

ci(i,p,d); */ Assume "-CIX ci" on the command line */
}

“N
——



r
-

3

Interfacing to Other Languages

Generated 64V-mode assembler code:

LDL I <-- Copy the arguments for pass
STL SB%Z+OFFSET+0 by value

LDL P

STL SB7%+0FFSET+2

DFLD D

DFST SB7%+0FFSET+4

EAXB SB%+0FFSET+0 <-- Set up 32IX "argument pointer®
PCL Cl,* <-- Call 32IX routine

Note that no APs are used, all pointers are shortened to two halfwords, and the address of
the argument list is placed in the XB register before the PCL. See Chapter 6 for more
information.

FUNCTION RETURN TYPES FROM C AND OTHER LANGUAGE
ROUTINES

Functions written in C may return values to routines written in other languages, and vice
versa. Type compatibilities are shown in Table 5-1.

TABLE 5-1. Language Type Compatibilities

C F77 PL/T Pascal
short INTEGER*2  fixed bin(15)  integer
long INTEGER*4  fixed bin(31)  longinteger
float REALx%4 float bin(23) real

double REALx*8 float bin(47) longreal

See Volume I of the Subroutines Reference for other language type compatibilities.

Avoid writing interlanguage functions that return characters, structures, or pointers, if
possible.

Example 15

Normally, avoid writing interlanguage functions that return structures. However, the
following instance is a valid use of a C structure to receive a string returned by a PL/I
routine. Assume that TEST is written in PL/I and returns a CHAR(100) VAR.



C User's Guide

main( )
{
typedef struct {short length; char data[100];} Cvar;
Cvar string;
fortran Cvar test( );
string = test( );
printf("String = %.*s\n", string.length, string.data);
}

Note the following points about this example:
® The struct is declared to contain a short followed by an array of 100 characters.

® The short variable is used as an argument to printf(). It corresponds to the
character, which replaces the precision specification, so printf() accesses the correct
number of characters.

Example 16

Normally, avoid calling routines in other languages that return pointers. However, you may
wish to use certain PRIMOS subroutines, such as memory allocation routines, that return
pointers. If you are using 32IX-mode C, this presents a problem because certain routines
return pointers in a register that is the wrong one for 32IX-mode C programs. To pick up
the returned pointer in the correct register, you must declare such a routine type int in
your 32IX-mode C program. In order to use the returned value as a pointer, you must
cast it to a pointer type. However, casting between pointer and integer types on the 50
Series alters the bit pattern, unless you add a level of indirection. (See the discussion of
casting in Chapter 7.)

The following example shows a 32IX-mode C function that uses a pointer returned by the

PRIMOS routine STRSAL.

char *foo(bytes)
unsigned int bytes;

{
fortran int str$al( ); /* Returns a pointer value as an integer */
short ecode;
int temp; /* Intermediate storage for pointer value */

char *pointer;
temp = str$al(0, bytes >> 1, 0, ecode);
pointer = *(char **)&temp; /* Convert integer to pointer without

changing the bit pattern */
}

Note the following points about this example:
® STR$AL is declared as type int, with storage class fortran.
® A temporary variable of type int holds the returned value.
® The returned value is cast to a pointer type so that it can be used as a pointer.

® A complex cast is used so that the bit pattern is not altered.

5-20

J

J

J



)

)

Interfacing to Other Languages

MAKING YOUR CODE CORRECT FOR BOTH MODES

Sometimes you must write C code that can be safely compiled in either 64V mode or 32IX
mode. For your convenience, PRIMOS C provides the predefined symbol ___ Cl. The
symbol ___ Cl is always defined when you compile in 32IX mode, but not when you
compile in 64V mode. You can use this symbol with the preprocessor commands #ifdef,
#else, and #endif to make your code correct for both 64V and 32IX mode. (See the
description of the -UNDEFINE compile line option on page 2-34 for more information about
predefined symbols.)

Example 17

This example shows a C function that is called from another language. If you compile
this in 32IX mode, you must declare the storage class of this funcion as fortran in the
definition line. However, this syntax is illegal if the function is compiled in 64V mode.

Note the use of the symbol _ __CL
#ifdef _CI
fortran short foo( )
#else
short foo( )
#endif
{
/* Code */
}

USING THE PRIMOS CONDITION MECHANISM FROM C

You can access the PRIMOS condition mechanism from C. Use the PRIMOS routine MKONSP
to set up on-units, and the C library functions setjmp() and longjmp() to perform non-
local gotos. When a condition is signaled, PRIMOS makes a call on your behalf to the
routine specified as the handler for the condition in a previous call to MKONSP. PRIMOS
passes one argument to the handler, a pointer to the condition stack frame. PRIMOS expects
to be able to transfer this argument in the standard fashion. Therefore, in 32IX mode, the
handler must be declared with storage class fortran.

Example 18

This example shows correct use of the MKONSP routine and of the setjmp() and longjmp()
library functions. Note the use of the predefined symbol __ _ CI to make the C code
correct for both 64V mode and 32IX mode.

5-21



C User's Guide

Main C program:

#include <stdio.h>
#include <set jmp.h>

static int s, val;
static jmp_buf env;

main( )
{
#ifdef __CI
fortran void handler( );
felse
void handler( );
#endif

fortran mkon$p( );
fortran sleep$( ):

/* Set up on-unit for "QUITS" */
mkon$p( "QUIT$", 5, handler);
val = setjmp(env);
printf("Starting right here!\n");
while(1l)
{
sleep$((long)400);
printf("Looping. . . \n");

}

Handler routine:

#ifdef _CI

fortran void handler(cfh)
#else

void handler(cfh)

#endif

int *cfh;

{

char c;

printf(“\nCaught QUITS condition.\n");
printf(“\nContinue? y or n: ");
scanf("Zci*c", &c);

if (¢ 1= 'n")
Tongjmp(env, val);
exit(0);

5-22



Interfacing to Other Languages

COMMON BLOCKS

C may access common blocks defined in other languages, and other languages may access
common blocks defined in C. To access a common block created in another language from a
C subroutine, you must declare the common block name with a storage class of extern in
the C routine. To declare a common block in C, declare any variable at level O (outside
of any procedure) without any storage class.

Data types must be compatible between the C common block descriptions and the common
block descriptions in the other languages. Therefore, avoid putting either single characters
or pointer types in common blocks shared between C and other languages. You may use
character arrays.

As mentioned previously, all external symbols referenced or defined in 32IX mode have the
G$ prefix prepended to their names. This poses a potential problem. If you define a
common block in 32[X-mode C and reference it from another language, you must explicitly
specify the G$ prefix in your reference. Similarly, if you define a common block in
another language and reference it from 32IX-mode C, you must define the common block
with a G$ prefix in the other language’s code. Also, if you use the advanced symbol
placement commands of the SEG loader to move 32IX-mode C common blocks, you must
specify the G$ prefix (for example, A/SYM GSEXAMPLE 100).

Example 19

The following example shows one common block created in F77, two common blocks
created in PL/I, and a 64V-mode C function that imports all of them.

F77 declaration for 64V-mode C:

INTEGER*2 S

REAL*4 F

COMPLEX*16 C

COMMON /F77COM/ S,F.,C

PL/I declaration for 64V-mode C:

dcl alonglnteger fixed bin(31) external;
dcl 1 complex external,

2 real_part float bin(23),

2 cplx_part float bin(23);

64V-mode C function:

LetsGetSomeExternalData( )

{
extern struct { short s;
float f;
struct { double r_part;
double c_part; } c; } F77com;
extern int alonglnteger;
extern struct { float r_part;
float c_part; } complex;
}

5-23



C User's Guide

Example 20

This example is the same as Example 19, except that the C routine is compiled in 32IX
mode. One common block is created in F77, two common blocks are created in PL/I, and a
32IX-mode C function imports all of them. Note the G$ characters in the non-C
declarations, but not in the 32IX-mode C function.

F77 declaration for 32IX-mode C:

INTEGER*2 S

REAL*4 F

COMPLEX*16 C

COMMON /GSF77COM/ S,F,C

PL/1 declaration for 32IX-mode C:

dc1 G%alongInteger fixed bin(31) external;
dcl 1 GScomplex external,

2 real_part float bin(23),

2 cplx_part float bin(23);

32IX-mode C function:

LetsGetSomeExternalData( )

{
extern struct { short s;
float f;
struct { double r_part;
double c_part; } ¢; } F77com;
extern int alonglnteger;
extern struct { float r_part;
float c_part; } complex;
}
Example 21
If you must declare a common block that is acceptable to both 64V-mode C and 32IX-mode
C, you must code the block with the G$ characters prepended, then use the _ __CI symbol

in the C function to add the G$ characters in 64V mode but not in 32IX mode. This
example is the same as Examples 17 and 18. It is correct for both modes of C. One
common block is created in F77, two common blocks are created in PL/I, and a C function
imports all of them.

F77 declaration:

INTEGER*2 S

REAL*4 F

COMPLEX*16 C

COMMON /G$F77COM/ S,F,C

PL/1 declaration:

dc1 G$alongInteger fixed bin(31) external;
dcl 1 GScomplex external,

2 real_part float bin(23),

2 cplx_part float bin{(23);

5-24

J



)

YY)

Interfacing to Other

C function, correct for both modes:

LetsGet SomeExternaiData( )

{
extern struct { short s:
float f;
struct { double r_part;
double c¢_part; } c:
#ifdef _CI
} F77com;
#else
} G$F77com;
#endif
#ifdef __CI
extern int alonglnteger;
#else
extern int G$alongInteger;
#endif
extern struct { float r_part;
float c_part;
#ifdef __CI
} complex;
#else
} GScomplex;
#endif
}
Example 22

Languages

The following example shows a common block created in C and accessed by F77 and PL/I

routines. The predefined symbol

CI is used to make the C code correct for both 64V

mode and 32IX mode. (Compare Examples 19 and 20 with Example 21, to determine how

to code this for 64V alone or for 32IX alone.)

C declaration of a common block:

#ifdef _ CI
short s;
#else
short G%s;
#endif
struct { float f;
long anotherlLonglnteger;

#ifdef __CI

} ss;
felse

} G3ss;
#endif
main( )
{

/* Code for main program */

}

6-25



C User's Guide

F77 routine:

INTEGER*2 S_VALUE
COMMON /G3S/ S_VALUE
REAL*4 F

INTEGER*2 L

COMMON /G$SS/ F,L

PL/1 routine:

dcl G¥s fixed bin(15) extern;
dcl 1 G3$ss extern,

2 f float bin(23);

2 1 fixed bin(31);

CALLING MIDASPLUS FROM C

You can call the MIDASPLUS data management system from C routines. Be sure that you
understand MIDASPLUS thoroughly before you attempt to access it from C.

You must do the following things when you use the callable interface to MIDASPLUS:
e Use the (default) -NEWFORTRAN option on your CC command line.
® Use the fortran storage class to define all MIDASPLUS routines.

® Use OPENMS$ and CLOSMS$ to open and close MIDASPLUS files. Do not use PRIMOS
file system routines, such as SRCH$$ and TSRCSS.

® Do not use hard-coded file units when you open MIDASPLUS files. Use the KSGETU
key to allow PRIMOS to select an available file unit.

® Include the files PARMK and KEYS. They contain flags and keys needed by
MIDASPLUS.

® When you handle MIDASPLUS errors in C programs, use a zero for the alternate
return argument, and check the communications array after the call for any error
conditions. C does not support label variables, so it does not support alternate return
arguments.

Under some circumstances, using zero for the alternate return argument is not satisfactory.
For example, some MIDASPLUS routines, such as PRIBLD, do not support a communications
array argument that is cast to a long integer (that is, (long)0). These routines terminate
the calling program with an error message if you use (long)0 as the alternate return
argument. Also, some MIDASPLUS routines, such as ADDI1S$, support the communications
array and classify errors as fatal or nonfatal. These terminate if a fatal error occurs and
O was used for the alternate return argument.

5-26

)

J



D

D

Interfacing to Other Languages

Example 23

To handle the error conditions described above, you can write a routine in a language that
supports alternate returns, such as FIN, F77, or PL/l.  The following is an example of an
interlude written in FORTRAN for ADD1$. It returns O if no fatal error occurs, and 1 if

a fatal error occurs.

FORTRAN interlude to MIDASPLUS:
INTEGER*4 FUNCTION ADD1$C(FUNIT, BUFFER, KEY, ARRAY, FLAGS,

& INDEX, FILENO, PLENTH, KEYLNT)
CALL ADD1$(FUNIT, BUFFER, KEY, ARRAY, FLAGS, $10, INDEX,
& FILENO, PLENTH, KEYLNT)
ADD1$C = 0
RETURN
10 ADD13C = 1
RETURN
END
Example 24
The following C program accesses a MIDASPLLS file.
/* This is a C program that opens an indexed file, */
/* reads a record, and displays it. */
#include <keys> /* Primos I/0 keys */
#include <parm.k> /* Flags used by MIDASPLUS */
#include <stdio.h> /* Needed for getchar( ) */
main( )
{

/* Data structures: */
fortran closm$( ), find$( ), openm$( );
short int funit, i, status, routine, buffer[43];
short int array[l14];
char choice;
static struct thekey {char one[9]; 1;
static struct thekey findkey;

/* START EXECUTION: */
/* Open file: */
openm$((short)(kSrdwr+k$getu), “bank", 4, funit, status);
if (status 1= Q)
abort( );

/* Ask for key to be entered from terminal: */

choice = 'Y'; /* Next while is repeated as long as choice is yes */
while ((choice == 'Y') | (choice == 'y'}))
{

printf("ENTER KEY VALUE (9 NUMBERS): \n");

i = 0;

5-27



C User's Guide

while (i <=8)

{
findkey.one[i] = getchar( );
P4+

} /* end while */

/* Read and display sequential record:

find$(funit,
buffer,
findkey,
array,
(short }(FLSRET + FLSKEY),
(long) O,

]

O O O O

)i
/* Check error code in array: */

if (array[0] == 0);
else

if (array[0] == 7)

*/

/*
/*
/*
/*
/*

/*

/*

ALTRTN -- no use in C but
must be long */

Search on primary key */

Obsolete for MIDASPLUS */

Return all data */

Full key */

Do nothing, 0 is normal */

Key not found  */

printf("THERE IS NO RECORD WITH THIS KEY\n");

else

{

printf("ERROR -- ASK FOR HELP\n");

abort( );
} /* end else */

/* Display what is returned in buffer:

printf("%s\n", buffer);
printf("\n");

*/

printf("DO YOU WANT TO CONTINUE? Y or N:\n");

i= 0;

getchar( ); /* Throw away last CR */

choice = getchar( );

getchar( ); /* Throw away last CR */

} /* end while for choice*/

/* Close file: */
closm$(funit, status);

if (status == 0)
printf ("NORMAL END OF RUN");
else

printf (“STATUS IS", "Zd\n", status):

} /* end program */

5-28

y

J



D

Note

Interfacing to Other Languages

the following points about this program:

The program must be compiled with -NEWFORTRAN.

The MIDASPLUS routines are declared with storage class fortran.
OPENMS$ and CLOSMS$ are used to open and close the file.

The K$GETU Kkey is used in the call to OPENMS.

The header files PARMXK and KEYS are included.

The argument (long)0 signifies to FIND$ that no alternate return point has been
specified.

5-29



)

6

ADVANCED TOPICS

This chapter contains information about stack frame formats and shortcalls in 32IX-mode
and 64V-mode C. These topics are provided purely for your interest. You do not need to
understand this information to program in C.

C STACK FRAME FORMATS

32IX Mode

C in 32IX mode uses a nonstandard stack frame format. One bit of the flags halfword of
the standard stack frame header (SFH.FLAGSMBZ) is used to tag 32IX stack frames. This
bit is always O for standard stack frames. Setting this bit allows proper handling of the
C 32IX stack frame format, register tracking across procedure calls, and shortcall capability.
This wuse is similar to the use of the USER PROC bit, which is set by the
-STORE_OWNER_FIELD option of many 50 Series compilers, including C in 32IX mode.

When this extended frame bit is set, it signifies that extension flags exist at SB%+042 and
SB%+043. The three Most Significant Bits (MSBs) of SB%+042 tag the type of information
present in the following halfwords. Currently, only type O (all three bits 0) is defined.
Type O indicates a C 32IX extended stack frame.

Figure 6-1 shows the stack frame header format for 32IX routines. All numbers are in
octal.



C User's Guide

00

042
043
044
045
046

0120
0121
0122
0123
0124

0217

6-2

Flags

EFH

J

<+—— One 321X bit (Extended Frame Bit)

<«+——— Standard Extended Frame Header

Tag

Save

Mask

XB
Save Area

Primary
Save
Area

Secondary
Save
Area

C1 Extended Frame Header

——— Max 020 Halfwords

—— Max 020 Halfwords

Shortcall
Save Mask

Shortcall XB
Save Area

Primary
Save
Area

Secondary
Save
Area

Shortcall
Scratch Space

FIGURE 6-1.

Present only if the C1
routine makes calls to
shortcalled routines

—— Max 020 Halfwords

|
|
[
|
|
I
|
|
:
——— Max 022 Halfwords :
|
|
[
[
[
[
[
|
|
I

106.01.D7534-4LA

J

Stack Frame Header Format for 321X Routines



a
-

Advanced Topics

The format of the first save mask is shown in Figure 6-2.

1 3 4 5 8 9 16
042| Tag |SC MBZ GR Bits <— QOne Bit for Each GR Saved
043 MBZ GR Bits -<— One Bit for Each GR Saved

106.02.D7534—4LA

FIGURE 6-2. Format of the First Save Mask

The three tag bits are O, which signifies that this is a C 32IX extended stack frame. The
SC bit is used to tag shortcall frames. This bit is set on entry to all 32IX-generated
shortcall routines and reset on exit. Setting the SC bit signifies that a shortcall routine is
currently executing and that the shortcall frame header (starting at SB%+0120) is active.
The GR bits at halfword SB%+042 comprise the save mask for the secondary save area.
The GR bits at halfword SB%+043 comprise the save mask for the primary save area. All
MBZ bits are reserved and may be used for future expansion of the 32IX frame header.

The format of the shortcall save mask is shown in Figure 6-3.

0120 MBZ GR Bits <— One Bit for Each GR Saved
0122 (LB MBZ GR Bits <— One Bit for Each GR Saved

106.03.D7534—41A

FIGURE 6-3. Format of the Shortcall Save Mask

The GR bits at halfword SB%+0120 represent the save mask for the shortcall secondary
save area. The GR bits at halfword SB%+0121 represent the save mask for the shortcall
primary save area. The LB bit is used to denote the saving of the link base register
(LB%). This is why the shortcall primary save area can be as many as 022 halfwords
long, rather than 020. All MBZ bits are reserved and may be used for future expansion of
the 32IX frame header.

When a C 32IX routine is entered, all nontemporary registers to be used by the routine are
saved in the primary save area. The extended frame bit and the primary save mask are
set. This is done as a long store, so the secondary save mask is set to O also. Currently,
registers R3 to R7 are considered nontemporary and are tracked across procedure calls. FEach

6-3



C User's Guide

C 32IX routine has a single return point where any saved registers are restored before the
PRTN.

With 32IX C, APs are never used to pass arguments. Rather, arguments are placed on the
caller’s stack in contiguous memory. Before the PCL or shortcall, the XB% is set to point
to the start of this argument template. Thus, the current XB% must usually be saved on
the caller’s side before a procedure call and restored after the return. The 32IX stack
frame header reserves a long (32-bit) word for this purpose. Because this is a consistent
operation, and because the save location is constant, there is no need to update save masks
here.

Before doing a ZMVD or calling a fortran storage class routine, a C 32IX routine must
save registers that are currently in use and that may be corrupted by the operation. These
saves are done into the secondary save area, and the secondary save mask is set. When the
operation is completed, the secondary save mask is reset to O.

The primary save area contains registers saved by the callee. The secondary save area
contains registers saved by the caller. Except for unusual conditions (ZMVD, fortran
routines, and intrinsics) all registers are saved by the callee.

The primary save area of a stack frame must be restored when the stack is unwound, via
a longjmp( ), past the frame. The restoration is necessary because the primary save area
contains the registers that must be active for the previous frame. The secondary save area
of a frame must be restored only when that frame is the target frame of a stack unwind.

A 32IX C routine that calls a shortcall routine reserves a 0100 halfword block of stack
space at SB%+0120. The first halfwords of this area are used as the stack frame header
for the shortcalled routine, because it does not have its own stack frame. The rest of the
space is used for automatic variables.

The shortcalled routine’s stack frame header has the same format and meaning as a normal
32IX C stack frame header, but the former starts at SB%+0120 rather than SB%+042.
When any C-32IX-generated shortcalled routine is entered, the shortcalled bit (SC bit of
SB%+042 of the extended stack frame) is set. When the shortcalled routine returns, the bit
is reset.

During stack unwind, if the shortcalled bit of a frame is set, the stack frame header in
the shortcall area is processed before the normal stack frame header. This handles the case
of a shortcall routine longcalling another routine that then calls longjmp() and causes a
stack unwind.

64V Mode

The following example shows a brief but complete C program.

6-4

J



3

main( )

{
int 1;
char c;
float f;
double d;

foo(i,c,f.d):
}

foo (i,c,f,d)
int i;

int ¢;

double f;
double d;

{

}

/* Any code here */

This program can be compiled and loaded with either BIND or SEG.
the runtime environment during execution of the program.

Advanced Topics

Figure 6-4 represents

SEG’s Stack SEG
Frame
Return
Information
Extended Standard PRIMOS Stack
Stack Frame Header, 42 (octal)
Frame Halfwords
Header
- No Argument Pointers
MAIN’s Stack . .
Frame i 32Dbits
c 16 bits Dynamic Data for MAIN
f 32bits
d 64 Dbits
i copy 32bits Copies of each argument
c copy 32bits for pass-by-value. Note
f copy 64 bits type conversions: ¢ to long,
d copy 64 bits f to double
Return
Information
Extended
Stack 42 (octal) Halfword Header
Foo’s Stack Header
Frame
AP to i .
AP to C Argument pointers to
AP to f the copies of each of
AP to d the four passed arguments

106.04.D7534—41.A

FIGURE 6-4. 64V-mode Runtime Environment



C User's Guide

The subroutine foo could perform another procedure call and pass any of its parameters on
to the called procedure as arguments. In that case, a new copy of each parameter would

be made and the passed argument pointers would point to these copies. This standard, pass-
by-value method works correctly in all normal cases.

Problems arise, however, if a routine that accepts many arguments is called with too few
arguments. The called routine attempts to pass all of its arguments on to yet another
routine. When the middle routine attempts to copy its arguments to pass them by value,
an argument is missing, so a pointer fault occurs.

The following example shows a program with such a bug.

buggy( )
{

}

error(format,al,a2);

error(format,al,a2,a3,a4,ab)
char *format;

{
}

When the function called error attempts to copy a3 for the call to fprintf(), a pointer
fault is raised. This problem exists in 64V mode only, since 32IX-mode C does not use
argument pointers.

fprintf(stderr, format, al, a2, a3, a4, ab);

Avoid calling a function with more or fewer parameters than the function expects. (See
Chapter 7.) If you must code in this manner, however, you can avoid problems in 64V
mode by using the -NOCOPY command line option. (<COPY is the default.) This causes
function parameters passed on to other functions to be passed by reference rather than by
value. The two compile line options -NOCOPY and -COPY exist in 64V mode only.

SHORTCALLS

For general information about the shortcall mechanism, see the Assembly Language
Programmer’s Guide and the Instruction Sets Guide.

Shortcalls From 32IX Mode

When you use the command line option -SHORTCALL name in 32IX mode, the compiler
generates a JMP rather than a PCL to the external routine name. The normal C-style
(pass-by-reference) argument template is built up before the JMP is generated. The address
of the start of the argument list is placed in the XB% register (via an EAXB). The return
address for these routines is placed in RO before the JMP. These shortcalled routines may
be written in PMA, or they may be written in C and compiled in 32IX mode with a
-SHORTCALL command line option specifying the name of the routine in the source file
that is to be generated as shortcallable.

6-6

N

“~

J



3

Advanced Topics

Unlike other S0 Series language implementations of shortcall, 32IX C shortcalled routines
have an ECB. Calls to the routines are made indirectly through the first halfword of the
ECB using a JMP rather than a PCL. All calls to shortcalled routines pass the address of
the shortcalled routine’s ECB in a register (R1). The shortcalled routine can thus find the
value for its link base (by looking in its ECB) and create one for itself. This involves
saving the current link base on entry and restoring it on exit from the shortcalled routine.
A bit in the shortcall primary save mask indicates that the link base has been saved. If
the shortcall routine does not use any static or external data, the generated code does not
save and restore the previous link base value.

The ECBs of shortcalled routines must be tagged so that the determination of the type of
call to make (short or long) can be made at runtime. At runtime, the address of
shortcalled rtoutines is taken, and calls are made through pointers to functions that may
point to either shortcalled or longcalled routines. The tag for ECBs belonging to shortcalled
routines is the value -1 in the number of arguments field. The use of an invalid number
in this field does not cause any problems because the compiler never generates a PCL
through a shortcalled routine’s ECB. This mechanism offers a great deal more flexibility
than other shortcall implementations.

Taking the address of static shortcalled routines is permitted. The address of a static
shortcalled routine is the address of the routine’s ECB, as is the address of other routines.
However, static shortcalled routines assume that they can share the link base of their caller.
Unlike other shortcalled routines, static shortcalled routines do not expect their ECB address
to be passed to them. Thus, the address of a shortcalled routine cannot be passed to and
called from another routine because the wrong link base would be referenced. This is
consistent with C’s concept of static.

The following code sequence is used by 32IX C to perform shortcalls. Note that expanded
listings produced by 32IX C use Rx+<offset>,* to denote GRR addressing, that is, register
indirect through Rx. However, this format is not accepted by Prime Macro Assembler
(PMA).

<«Create the argument template by copying
any arguments into contiguous memory>

EAXB <«first argqument> ¢<-- Set "argument pointer”
LIP R1,<IP to <name>s ECB>

L Rx,R1+00,* (GRR)

EAR RO,<return address>

JMP Rx+00,* (GRR)

If the routine to be called is in the same source file as the caller, the last two lines are

EAR RO,<return address>
JMP <«first instruction>



C User's Guide

The following code sequence is used by 32IX C to return from shortcalled routines.

JMP R0O+00,* (GRR)

or, if coding in PMA (with no GRR):
ST RO, <temp>
JMP <temp>,*

The following restrictions apply to all shortcalled routines:

® They may directly call other shortcalled routines. This is implemented by longcalling
a dummy routine that then shortcalls the target routine.

@ They have limited automatic data space.

Shortcalled routines may call setjmp(), the C library equivalent of MKLB$F. However, a
bit in the label, the fault bit of the target PB%, must be set. Setting this bit tells
longjmp( ), the C library equivalent of PLI1$NL, that it is resuming execution in shortcalled
code. When longjmp() resumes execution, it restores registers from the secondary save area
in the shortcall stack frame header (starting at halfword 0120). (For more information
about setjmp() and longjmp( ), see page 4-54).

The format of a C 32IX label variable created by setjmp() is incompatible with the format
created by other languages, using MKLBSF, and by 64V-mode C. This incompatibility
prevents a label from being created in a C 32IX routine and then passed to another
language that could try to do a PLISNL through the passed label. All nonlocal gotos to C
32IX stack frames go through longjmp() so that registers are restored correctly.

The format of the C 32IX label variable is shown in Figure 6-5. Note that the last two
halfwords of the label variable are the reverse of the standard label variable.

Halfword Number of Target PB%

Segment Number of Target PB%

Halfword Number of Target SB%

Segment Number of Target SB%

106.05.D7534-4LA

FIGURE 6-5. Format of the C 321X Label Variable

The implementation of longjmp() for 32IX C is more complicated than simply calling
PLISNL. On a nonlocal goto, registers are restored as the stack is being unwound. The
sequence of steps is as follows:

1. longjmp() walks back the stack to the target frame specified by the SB% entry in
the target label. As it does so, longjmp() examines each stack frame passed.

2. longjmp( ) then builds a structure containing the state of the register file that should
be reinstated before execution is continued in the target frame.

6-8

B

J



3

D

Advanced Topics

The PB% entry in the label variable is modified to point back into longjmp( ).
The stack is unwound by a call to PL1SNL.

The register file is restored.

o v oA W

. longjmp( ) does a JMP to the original target PB% location, and execution continues in
the target frame.

Shortcalls From 64V Mode

If the compile line option -SHORTCALL name is used in 64V mode, the compiler generates
a JSXB rather than a PCL to the external routine name. The normal C-style (pass-by-
reference) argument template is built up, and the address of the start of the argument list
is placed in the L register (via an EAL) before the JSXB is generated. The shortcalled
routine must be written in PMA. The following example shows a program that calls the
routine SC.

main( )

{
int i;
double d;
char *p;
sc(i,p,d);:

}

If this program is compiled in 64V mode with the command line option -SHORTCALL SC,
the following code is generated.

LoL 1 <-- Create argument template.
STL SBZ+0FFSET+0

LDL P

STL SBZ+0FFSET+2

LDA P+2

STA SB%+0FFSET+4

DFLD D

DFST SBZ+QFFSET+5

EAL SB%Z+OFFSET+0  <-- Point L to first argument.
JSXB SC,* <-- Perform the shortcall.

6-9



7

PORTABILITY CONSIDERATIONS

The first section of this chapter describes features of PRIMOS C that may differ from those
of other C implementations.

The second section of this chapter, PRIMOS C Library Functions, contains two lists. The
first list compares the functions in the PRIMOS C library with like-named functions in
other C implementations. The second list compares functions not provided in the PRIMOS
C library with suggested alternative functions that are available in the PRIMOS C library.

FEATURES OF PRIMOS C

This section describes features of 50 Series machines and of PRIMOS C that may differ
from those of other implementations. You should take these features into consideration
whenever you port C applications to and from PRIMOS C.

Character Set

The basic character set used internally under PRIMOS is the ANSI, ASCII 7-bit set with the
8 parity bit always on. This character set, known as Prime ASCI, is a proper subset of
the Prime Extended Character Set (Prime ECS). If your terminal or printer supports Prime
ECS, the 8th bit is significant. For terminals and printers that do not support Prime ECS,
symbolic characters or Prime ASCIl values (decimal 128-255) must be used within programs
for character comparisons, and characters may not be used as array indices 0-127. Note
that, on a S50 Series machine, a NULL character pointer does not point to a zero. Some
code written for other machines uses the 8th character bit as a flag. Such code must be
modified for terminals that do not support Prime ECS. (For information about Prime ECS,
see Appendix F.)

7-1



C User's Guide

Blank Compression and Null Padding in ASCIl Text Files

On 50 Series machines, ASCII text files are stored on disk with multiple blanks compressed
and lines padded to an even number of bytes with the NULL character. All utilities that
manipulate files as standard Prime ASCII text manage this blank compression in a manner
that is transparent to the user. These utilities include

e C library functions that explicitly manipulate ASCII files and data
® System subroutines that explicitly manipulate ASCII files and data

® PRIMOS text editors

Problems can arise when programs that manipulate ASCII text files using direct access or
binary file I/0 methods are ported from other machines to a 50 Series machine. Neither
direct access nor binary file 1/0 methods manage the blank compression for the user. See
the discussion of fopen(), fseek(), and ftell() in Chapter 4, Using the C Library.

Text Files Generated by Programs

Some PRIMOS utilities require their input files to have a specific format. Prime EMACS,
for example, expects text files to consist of lines terminated by newline characters (0212).
If your program generates a text file that lacks newline characters, you cannot use EMACS
to view that file.

Parameters Passed to a Function

The number of parameters passed to a function must be equal to the number of parameters
expected by that function. On some other machines, you may write code in which a
function is called with more or fewer parameters than the function actually expects. Such
code may work correctly on the SO Series, but only if the missing or extra parameter is
never referenced. A program fails when it tries to reference a parameter that was not
supplied. A function that is expecting an integer parameter does not assume O as a default.

Function Return Values

On some other machines, programs run correctly if function return value data types are
left undeclared. For example, a program may contain a function that returns a pointer. If
this function is not explicitly defined as returning a pointer, the default return value is
type int. Such a program may run correctly on some machines, but not on a 50 Series
machine. All functions must be declared with the proper return value data type to insure
proper operation.

J



9

Portability Considerations

Size of Pointers

When a program is compiled in 64V mode, its pointers are 48 bits long. An int is 32 bits
long. In 32IX mode, pointers and ints are the same size, 32 bits. The pointer formats are
shown in Appendix E.

Casting Between Pointer and Integer Types

Under some unusual circumstances, you may have to cast a pointer to an integer type, or
an integer type to a pointer. On S50 Series systems, pointers are complex data types. If
you perform ordinary casts, such as

ptr
num

(char *) num; /* Changes the bit pattern */
(int)ptr; /* Changes the bit pattern */

where num is an integer type and ptr is a pointer, the C compiler changes the bit pattern
of the value. If you add a level of indirection, as shown below, the compiler does not
alter the bit pattern.

ptr = *(char **)&num;
num = *(int *)&ptr;

High Bit of a Pointer or Character

Some code written for other machines uses the most significant bit of a pointer or character
as a flag. You cannot use the high bit of a pointer or character as a flag on the 50
Series.

Null Pointers

On some other machines, a NULL pointer points to address zero or to a memory location
guaranteed to contain zero. On SO Series machines, no user has access to word zero of
segment zero. In the following example, a pointer is set to zero, then dereferenced. Such
code fails and raises the condition ACCESS__VIOLATIONS on a 50 Series machine.

main{( ) /* This function won't work! */

{
int *p;
p = (int *)0; /* p is now a NULL pointer */
if (*p = 0) printf("Hello world.\n");
else printf("Goodbye world.\n");
}

Segment-spanning Data Objects

On 50 Series machines, you cannot reference an atomic data object that is split across a
segment boundary. Atomic data objects include types char, short, int, long, float, double,
and their unsigned counterparts.



C User's Guide

Under certain circumstances, however, you can reference a non-atomic data object -- a string,
array, or structure -- that spans a segment boundary. If your program contains an array
of structures that exceeds 128K bytes, a structure member may be split across the boundary
if it is not aligned according to its size.

In 64V mode, if you plan to use arrays of a struct, align the data objects by padding the
struct with extra members. Align the types int, long, and float, for example, on
addresses that have offsets that are multiples of 4. See Appendix E for details about data
formats. In 32IX mode, you can use the compiler option -HOLEYSTRUCTURES to align
these data types for you.

Arrays of type char may not span a segment in 64V mode, although they may do so in
321X mode.

If your program contains arrays that span a segment, use the -BIG compiler option. In
321X mode, if a string argument to strncpy(), memcpy(), or strfil() is likely to span a
segment, use the -SEGMENTSPANCHECKING compiler option in conjunction with either
-INTRINSIC or -STANDARDINTRINSICS. See Chapter 2 for more information.

Command Line Arguments

PRIMOS C allows you to pass arguments to a program from the command line. The
argument handling is functionally the same as in the UNIX operating system. However,
you must link the library CCMAIN or ANSI_CCMAIN before your main program when
you use SEG or BIND. See Chapter 3 for more information. You can use numerical
command line arguments to a program, provided you use BIND, not SEG, to link the
program. When you execute a SEG-loaded program, numerical arguments on the command
line are interpreted as options to the SEG command itself.

Input and Output Buffering

Under the UNIX operating systems, the high-level 1/0 routines fread, fwrite, fscanf, and so
forth, are buffered, but the low-level I/0O routines read and write are unbuffered. The
situation is more complex in the case of the PRIMOS C library functions because more than
one level of buffering exists.

Like their UNIX counterparts, fread(), fwrite(), and the other high-level C 1/0 functions
use a high-level buffer that is automatically allocated when you call fopen(). You can
eliminate this level of buffering from the high-level 1/0 functions by calling setbuf() with
a buffer value of NULL after you call fopen(). The low-level functions read() and
write( ), like their UNIX counterparts, do not use this level of buffering.

By default, all C library 1/O functions employ very low-level disk read and write
buffering as a performance enhancement. Ordinarily, this level of buffering is transparent.
You can see it, however, if you quit out of an executing program and type STAT UNIT.
For example, the following program reads 80 characters from a file, then prompts you to
quit.

7-4

“N

1

~



3

Portability Considerations

#include ¢stdio.h>
main{ )
{
char buf[150], temp[80];
int i, filelD, open( ), fread( ):
if ((filelD = open(“testfile”, 0)) == -1)
{ printf("file system error %Zd\n", errno);
exit(errno);
}
i = read(filelD, buf, 80);
printf("%d bytes read from testfile.\n", 1);
puts("Hit CONTROL-P, then type STAT UNIT");

gets(temp);
}
When you quit out of the program and type STAT UNIT, you see the following display:
User YOU SYSTEM
File File Open File
Unit Position Mode Type RWlock Treename
31 000001024 R SAM  NR-1W <DIR>TESTFILE

32 000000000  VMr DAM  NR-1W <DIR>TESTBUF.RUN

Note that you are positioned more than 80 bytes into the file TESTFILE.

You can disable this level of read and write buffering by using the additive keys 040000
and 01000, respectively, as openMode values when you call open( ). If you need to use
high-level 1/0 functions, such as fread() and fwrite(), with no buffering of either kind,
you must use a series of function calls, such as the following:

filelD = open("mydir>myfile", 040000 | 01000);
filePointer = fdopen(fileID, "r");
setbuf(filePointer,NULL);

Interlanguage Calling

In general, the mechanisms used on other machines are not the same as those needed for
the SO Series. See Chapter 5 for a full discussion of these mechanisms.

\

Macro Preprocessor
Nested Include Files: In PRIMOS C, include files may be nested up to 20 levels deep.

#define Commands: Unlike some C preprocessors, the macro processor in non-ANSI
PRIMOS C performs syntax checking on the arguments to #define commands, instead of

waiting until the macro is expanded.

For example, non-ANSI C accepts only single character arguments in single quotation marks
in #define commands. You cannot use a multiple character argument in single quotation
marks within a macro definition. For example, the definition

#define ctri(letter) ('letter' & 077)

is incorrect and results in an error message. Instead, use the definition

7-5



C User's Guide

#define ctri(L) ('L’ & 077)
which expands, for example, ctrl(G) to (G’ & 077).

Similarly, commands like

#define HUGE 12345678901234567890
#define HEX Ox

#define OCT 0778

#define CH ‘t

will draw compiler error messages if -ANSI is not specified. If -ANSI is specified, these
macros will draw errors only when their expansion results in a syntactically invalid
program.

A #define macro may have up to 128 formal parameters.

Character Boundary

The boundary for a character on the 50 Series is a 16-bit halfword, not a byte. Character
arrays, however, are packed two characters per halfword. Therefore, adjacent character
variables do not ordinarily reside on adjacent bytes unless they are members of an array.

Some code written for other machines assumes that adjacent characters always reside on
adjacent bytes. If you wish to port such code to a Prime machine, use the -PACKBYTES
compiler option to pack adjacent characters within structures or unions. For information
about -PACKBYTES, see Chapter 2.

Note that character arrays still start on an even 16-bit halfword boundary, whether or not
the code is compiled with the -PACKBYTES option. Moreover, since the C language treats
a multi-dimensional character array as an array of arrays, each array starts on an even
boundary. This results in “holes” between dimensions if the nth dimension contains an odd
number of character elements.

Promotion of Character Arguments

If the declaration of a function is old-style (as defined by the ANSI standard), all character
arguments are promoted to int when they are received as a parameter to a function.
However, taking the address of a char argument will yield the address of the int in
which it is stored. If the user desires to use the address of the actual character, then the
char parameter should be assigned to a locally declared char variable. Then the address of
the locally declared char variable can be used for whatever the user desires.

J

N



)

h)

Portability Considerations

Identifier Names

In PRIMOS C, identifier names are significant for a maximum of 32 characters. This may
cause a problem if a program written on a S50 Series machine is ported to a system on
which only eight characters are significant.

Vertical Tab Character

The vertical tab character \v is not recognized by the PRIMOS C compiler. If used, this
construct yields a lowercase v.

Case Sensitivity

The PRIMOS C compiler is case sensitive, but neither PRIMOS itself nor the BIND, SEG, and
DBG utilities are case sensitive. Therefore, the PRIMOS implementation of C is not case
sensitive with respect to external (common) identifier names. In the following program, for
example, varl and VARI are interpreted as the same variable:

int varl;

int VARI;

main( )
{
varl=10;
VAR1=20;
printf("varl=%d VAR1=%d",varl,VARL);
}

On a SO Series machine, the output of this program is

varl=20 VAR1=20

Quadruple Precision Floating Point Support

PRIMOS C supports quadruple precision floating point numbers, which are declared long
double. The -ANSI compiler option includes support for the long double data type. If
the -ANSI option is not used, then include the -QUADCONSTANTS compiler option to
enable support for quad-precision constants; use the -QUADFLOATING option to enable
support for quad-precision variables.

PRIMOS C LIBRARY FUNCTIONS

This section contains two lists of library functions in alphabetical order. The first list
compares the functions in the PRIMOS C library with like-named functions in other C
implementations. The second list pairs functions not provided in the PRIMOS C library
with suggested alternative functions that are available in the PRIMOS C library.

7-7



C User's Guide

PRIMOS C Library Functions Compared With Other C Implementations

abort( )
Does not generate a core dump.

abs()
Equivalent.

access( )
Modes may differ slightly.

acos( )
Equivalent.

asin( )
Equivalent.

assert( )
Equivalent.

atan()
Equivalent.

atan2()
Equivalent.

atof( )
Equivalent.

atoi( )
Equivalent.

atol( )
Equivalent.

cabs( )
Equivalent.

calloc( )
Equivalent.

ceil()
Equivalent.

cfree()
Equivalent.

chdir()
Equivalent.

chrcheck( )

Specific to the PRIMOS C library.

7-8

/

J



3

3

Portability Considerations

clearerr( )
Equivalent.

close( )
Equivalent.

copy()
Specific to PRIMOS C library. Similar functionality is provided by link() in the UNIX
operating systems.

cos( )
Equivalent.

cosh()
Equivalent.

creat( )
Modes are different. Use open(), not creat(), whenever possible.

ctime( )
Format and length of string may differ. Some installations may not support Daylight
Saving Time. Consult your System Administrator.

cuserid( )
Equivalent.

delete()
Specific to the PRIMOS C library. Similar functionality is provided by unlink() in the
UNIX operating systems.

ecvt()
Equivalent.

exit()
The parameter status must be passed.

exp()

Equivalent.

fabs()
Equivalent.

fclose( )
Equivalent.

fevt()
Equivalent.

fdopen( )
Equivalent.



C User's Guide

fdtm()
Specific to the PRIMOS C library. The information provided by this function is a subset
of that provided by stat() in the UNIX operating systems.

feof( )
Equivalent.

ferror()
Equivalent.

fexists()
Specific to the PRIMOS C library.

fflush()
Equivalent.

fgetc()
Equivalent.

fgetname( )
Returns a PRIMOS pathname.

fgets()
Equivalent.

fileno( )
Equivalent.

floor( )
Equivalent.

fopen()
Access modes differ.

fprintf()
Equivalent.

fputc()
Equivalent.

fputs()
Equivalent.

fread( )
Equivalent.

free()
Equivalent.

freopen( )
Access modes differ.

7-10



Y

)

Portability Considerations

frexp()

Equivalent.

frwlock()
Specific to the PRIMOS C library.

fscanf()
Extended. Conversion specification characters differ.

fseek( )
A valid byte position must be obtained with ftell() when fseek() is used with ASCII
files.

fsize()
Specific to the PRIMOS C library. The information provided by this function is a subset
of that provided by stat() in the UNIX operating systems.

fstat()
Equivalent.

ftell()
Return value differs when used with ASCII files because of disk file space compression.

ftime( )
Equivalent. Some installations may not support Daylight Saving Time. Consult your
System Administrator.

ftype()
Specific to the PRIMOS C library. Similar information is provided by stat() in the

UNIX operating systems.

fwrite()
Equivalent.

g$amiix()
Specific to the PRIMOS C library.

getc()
Equivalent.

getchar()
Equivalent.

geth()
Specific to the PRIMOS C library.

getmod( )
Specific to the PRIMOS C library.

getname( )
Returns a PRIMOS pathname.

7-11



C User's Guide

gets()
Equivalent.

getw()

Equivalent.

gterm( )
Specific to the PRIMOS C library.
UNIX operating systems.

gvget()
Specific to the PRIMOS C library.

gvset()
Specific to the PRIMOS C library.

hypot()
Equivalent.

index( )
Equivalent. (Synonym for strchr().)

isalnum( )
Equivalent.

isalpha( )
Equivalent.

isascii( )
Equivalent.

isatty( )
Specific to the PRIMOS C library.

iscntrl()
Equivalent.

isdigit( )
Equivalent.

isgraph( )
Equivalent.

islower( )
Equivalent.

ispascii( )
Specific to the PRIMOS C library.

isprint()
Equivalent.

7-12

Similar information is provided by ioctl() in the

J



)

Portability Considerations

ispunct()
Equivalent.

isspace( )
Equivalent.

isupper( )
Equivalent.

isxdigit( )
Equivalent.

ldexp( )
Specific to the PRIMOS C library.

localtime( )
Equivalent, but some installations may not support Daylight Saving Time. Consult your
System Administrator.

log()

Equivalent.

log10()
Equivalent.

longjmp( )
Equivalent.

1sdir( )
Specific to the PRIMOS C library.

1seek( )
Extended. New values for the direction argument allow positioning by physical disk
record.

malloc( )
The first byte of the allocated area is always aligned on a 16-bit halfword boundary.

mkdir( )
Takes one argument, a PRIMOS pathname.

modf( )
Equivalent.

move( )
Specific to the PRIMOS C library. Similar functionality is provided by calling link()
followed by unlink() in the UNIX operating systems.

open( )
Values for openMode differ. Additive keys provide extended functionality.

7-13



C User's Guide

perror( )
Equivalent.

pow()
Equivalent.

primospath( )
Specific to the PRIMOS C library.

printf()
Equivalent.

putc( )
Equivalent.

putchar()
Equivalent.

puts()
Equivalent.

putw()
Equivalent.

rand( )
Equivalent.

read( )
Equivalent.

realloc( )
May be used only to change the size of currently allocated space.

rewind( )
Equivalent.

rindex()
Equivalent. (Synonym for strrchr().)

scanf( )
Extended. Conversion specification characters differ.

seek( )
Equivalent to lIseek( ).

setbuf( )
Equivalent.

setjmp( )
Does not return a value in 64V mode. Equivalent in 32IX mode.

J

J

J



-

setmod( )
Specific to

signal( )
Equivalent.

sin()
Equivalent.

sinh()

Equivalent.

sleep( )

Equivalent.

sprintf( )
Equivalent.

sqrt()

Equivalent.

srand( )

Equivalent.

sscanf( )
Extended.

stat( )

Equivalent.

sterm( )
Specific to

strcat( )

Equivalent.

strchr()

Equivalent.

stremp( )

Equivalent.

strcpy()

Equivalent.

strespn( )

Equivalent.

strlen( )

Equivalent.

Portability Considerations

the PRIMOS C library. Similar functionality is provided by chmod() in the
UNIX operating systems.

Conversion specification characters differ.

the PRIMOS C library. Similar functionality is provided by ioctl( ) in the
UNIX operating systems.

7-15



C User's Guide

strncat( )
Equivalent.

strncmp( )
Equivalent.

strncpy()
The specified number of bytes is copied,
encountered.

strpbrk()
Equivalent.

strrchr( )
Equivalent.

strspn( )
Equivalent.

system( )

regardless of whether a NULL byte is

The argument, command, will differ because PRIMOS and other operating systems (such
as UNIX) use different commands for the same operation.

tan( )
Equivalent.

tanh()
Equivalent.

tell( )
Specific to the PRIMOS C library.
open( ).

time( )
Returns only the time, in seconds.
Time. Consult your System Administrator.

timer( )
Specific to the PRIMOS C library.
UNIX operating systems.

tmpnam( )
Equivalent.

toascii( )
Equivalent.

tolower( )
Equivalent.

__tolower()
Equivalent.

7-16

Similar to ftell( ), but used with files opened with

Some installations may not support Daylight Saving

Similar functionality is provided by alarm() in the

4

J



)

Portability Considerations
topascii( )
Specific to the PRIMOS C library.

toupper( )
Equivalent.

__toupper( )
Equivalent.

ungetc( )
Equivalent.

write( )
Equivalent.

Library Functions Not Supported in PRIMOS Compared With Suggested
Alternatives

Non-supported Similar Function Available
Function in the PRIMOS C Library
alarm( ) timer( )

chmod( ) setmod( )

ioctl( ) gterm( ), sterm()

link() copy( ), move()

unlink( ) delete( ), move()

7-17



r
~

8

USING ANSI C

This chapter provides the information you need in order to compile, link, and run PRIMOS
C programs that conform to the ANSI C standard. It does not provide a reference guide to
the ANSI C language. To write standard-conforming programs, consult an appropriate
reference work. The two most authoritative references to ANSI C are described below.

The Standard: The definitive reference work for the C language is the ANSI standard,
American National Standard for Information Systems -- Programming Language C,
X3.159-1989. To obtain a copy of this document, write to the American National Standards
Institute, 1430 Broadway, New York, New York 10018.

K&R 2: Almost equally definitive is the second edition of The C Programming Language,
by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1988),
informally known as K&R 2. This book appeared before the ANSI standard was approved,
but the information in it is consistent with the standard.

The changes that were made to the C language for ANSI are briefly described below.

® New header files are available containing function prototypes for all of the ANSI
library functions, new constants, and new structures.

® The behavior of several existing library functions has been modified, and many new
functions are now available.

® A new processor command #error has been introduced which produces a diagnostic
message while preprocessing is performed.

® Two processor operators (# and ##) have been added which surround a parameter
with quotes and concatenate adjacent tokens, respectively.

® Parameters inside macro strings are no longer replaced.
® The new keywords const, volatile, and signed have been added.
© The type qualifier const specifies that the value of an object cannot be changed.

O The type qualifier volatile announces that optimization should be suppressed for
an object.

8-1



C User's Guide

o The type-specifier signed can be applied to int or char, but is mainly used to
force char objects to carry a sign.

New escape sequences are available for character constants, such as the hexadecimal
character representation \xhh.

A quad precision data type, long double, is available.

Rules have been established about mixing pointers of different types without the use
of casts.

Ranges of arithmetic types for a particular implementation are given in the headers,
<limits.h> and <float.h>.

Function prototyping has been added, providing error detection of arguments across
function calls. (The mixture of function prototyping and the old style of function
declaration should be avoided.)

’»

Variable-length argument lists using the ellipsis notation “, ..” and the macros in the

header <stdarg.h> are also new.

Name spaces of identifiers have been changed such that labels are placed in a separate
name space.

Unions may be initialized. The initializer refers to the first member.

Automatic structures, unions, and arrays may be initialized.

The first two sections of this chapter describe how to write, compile, link, and run C
programs that conform to the ANSI standard. The third section describes how to avoid

some

potential problems in converting older PRIMOS C programs into standard-conforming

programs. The fourth section provides a quick alphabetical reference to ANSI C library

functions.

WRITING AND COMPILING STANDARD-CONFORMING C
PROGRAMS

This section explains

How to use the standard ANSI C header files

How to use the -ANSI option to check the syntax of your program

® How to use the -EXTRACTPROTOTYPES option to obtain a header file of new-style

8-2

function declarations

J



D

)

Using ANSI C

Using the Standard Header Files

The C library functions and the header files that define them are specified by the ANSI C
standard. The header files are located in the directory SYSCOM. Table 8-1 lists these
header files and the routines that use them. For information on how PRIMOS C handles
header files, see Chapter 2.

Note
Some ANSI C library function declarations are not in the same header file as their
non-ANSI C equivalents. Some functions did not have a function declaration in a
header file in non-ANSI C, but do in ANSI C. To find out whether you need to
modify any #include commands in your program, compare the description of the
function in Chapter 4 with the description in the last section of this chapter.

TABLE 8&-1. ANSI C Header Files

Header File Contents of Header File

ASSERT.H.INS.CC Diagnostic macro definition

CTYPE.H.INS.CC Character classification functions

ERRNO.H.INS.CC Error condition macros

FLOAT.H.INS.CC Constant definitions for floating-point type
sizes

LIMITS.H.INS.CC Constant definitions for integral type sizes

LOCALE.H.INS.CC Numeric value formats and macros

MATH.H.INS.CC Mathematical functions

SETIMP.H.INS.CC Non-local jump functions

SIGNAL.H.INS.CC Signal handling functions

STDARG.H.INS.CC Variable argument macros

STDDEF.H.INS.CC Miscellaneous types and macros

STDIO.H.INS.CC Input and output functions

STDLIB.H.INS.CC Utility functions

STRING.H.INS.CC String handling functions

TIME.H.INS.CC Date and time functions

Many of these files (STDIO.H.NS.CC, for instance) are the same for both standard-
conforming and non-standard-conforming programs. The files use the preprocessor macro
_ _STDC__ _ (STanDard—Conforming) to separate standard-conforming and non-standard-

8-3



C User's Guide

conforming header information. If a program is compiled with the -ANSI option,
—_STDC___ is defined as 1, and the appropriate parts of the header file are used.
Therefore, the preprocessor command

#include <stdio.h>

pulls in different parts of the file STDIO.HINS.CC depending on whether or not the -ANSI
option was specified.

SYSCOM also contains the following nonstandard header files:

PRIME__ECS__CHARS.H.INS.CC
STAT.H.INS.CC
STRINGS.H.INS.CC
TERM.H.INS.CC
TIMEB.H.INS.CC

For information about using Prime ECS, see page 4-2 and Appendix F.

Syntax Checking: The -ANSI Option

Use the -ANSI compiler option to check your program’s syntax for violations of the ANSI
standard. You must use -ANSI in conjunction with the -32IX option.

0K, CC ANSIPROG -32IX -ANSI

The -ANSI option is described in Chapter 2. Information about the -ANSI option can also
be found in the discussions of the following options in Chapter 2: -INTRINSIC,
-PREPROCESSONLY, -STANDARDINTRINSICS.

Function Declarations: The -EXTRACTPROTOTYPES Option

The greatest change that the ANSI standard has made to the C language is the addition of
a new syntax for function declarations and definitions.  Although the standard allows
programs to use the old style of function declaration and definition, users are encouraged to
use the new style.

The -EXTRACTPROTOTYPES option makes it easier for you to convert your programs to
the new style. If you compile an old-style C source file with this option, the compiler
creates a header file with new-style declarations for all the functions in your source file.

For example, suppose your program contains three function definitions:

main( )

funcl(myvar)
int myvar;

func2(myptr)
int *myptr;

8-4

)

J



)

Using ANSI C

If you name the source file EX.C, then the command

0K, CC EX -32IX -EXTRACTPROTOTYPES

creates a header file, EX.H, that contains the following declarations:

Tong int main(void):
long int funcl(long int);
long int func2(long int *);

To add the new-style function declarations to your program, put the preprocessor command
#include "ex.h"

before any of the function definitions in your source file.

Caution

If you use this option, do not name one of your include files program-nameH; if you
do, it will be overwritten.

Function Definitions: If you want to make your function definitions conform to the
standard, you must change them by hand. New-style definitions for main( ), func1(), and
func2() look like this:

int main(void)
int funcl(int myvar)

int func2(int *myvar)

LINKING STANDARD-CONFORMING C PROGRAMS

Use BIND, not SEG, to link a program that has been compiled with the -ANSI option. If
you use SEG, you cannot link in the ANSI C runtime libraries.

Use the following steps to link your program with BIND:

1. After you invoke BIND, give the subcommand

LI ANSI_CCMAIN

to link in the ANSI libraries. If you give the subcommand LI CCMAIN, you must
use the -Ansilibs command line option (discussed on page 8-7) in order to access the
ANSI libraries when you execute your program.

2. To load each compiled program unit, give the subcommand

L0 sourcename

where sourcename is the name of the program unit.

8-5



C User's Guide

3. BIND expects your main routine to be named main(). If your main routine is not
named main(), use the MAIN subcommand to tell BIND which routine is your main
routine.

: MAIN G$routine-name

4. To link in the C DYNT library, give the subcommand
: LI C_LIB

5. If you do not receive a BIND COMPLETE message, give the subcommand
: LI

to load the system libraries.
6. If you still do not receive a BIND COMPLETE message, give the subcommand
: MAP -UN

to obtain a list of unresolved references. You can then exit BIND by giving the
QUIT subcommand.

7. When you receive a BIND COMPLETE message, give the subcommand
FILE

to save your runfile and exit from BIND.

Below is an example of a BIND command line for ANSI C programs.

OK, BIND EXAMPLE -LI ANSI_CCMAIN -LO EXAMPLE -LI C_LIB -LI

See Chapter 3 for more information about linking with BIND.

RUNNING STANDARD-CONFORMING C PROGRAMS

ANS] C programs are executed in the same manner as non-ANSI C programs with the
RESUME command:

OK, RESUME progname

or

0K, RESUME progname [args]

Two command line options are available to switch between the ANSI and non-ANSI
libraries, if your program has linked in either CCMAIN or ANSI_CCMAIN. The command
line options -AnsilLibs and -NoAnsilibs cause RESUME to invoke the ANSI runtime library
and the non-ANSI runtime library, respectively.

8-6

J



D

3

Using ANSI C

Note
The command line options -AnsiLibs and -NoAnsiLibs must be entered in full and
capitalized exactly as shown.

If you linked your program with the ANSI_CCMAIN library and decide to access the non-
ANSI C runtime library instead, issue the following command

OK, RESUME progname -NoAnsilibs

where progname is the name of your program. Enter the -NoAnsiLibs option exactly as
shown; case is significant, and there is no short form.

If you linked your program with CCMAIN, you can access the ANSI C runtime libraries by
giving the following command

0K, RESUME progname -Ansilibs

where progname is the name of your program. Enter -AnsiLibs exactly as shown.

To use the -AnsiLibs and -NoAnsiLibs options,
® You must have compiled your program in -32IX mode.
® You must have linked your program with the CCMAIN or ANSI_CCMAIN library.
® You must have linked your program with C_LIB, not CCLIB.

If you use command line arguments, you can place the -AnsiLibs or -NoAnsiLibs option in
any position on the command line after the program name. For example, if your program
is

#include <stdio.h>

main(argc, argv)
int argc;

char *argv(]:

{

int 1;

printf("The arguments are: ");
for (i = 0; 1 < argc; i++)

printf("%s%c", argv[i], (i < argc-1) ? ' ' : ‘\n');
printf("“%d arguments\n", argc);

}

and your command line is

0K, RESUME prog how many args -Ansilibs is this

the program will display

The arguments are: prog how many args is this
6 arguments
0K,

8-7



C User's Guide

PRIMOS C has a preprocessor macro, ___ ANSILIBRARIES, which you can put in your
program as a flag to indicate whether you are using the ANSI libraries or not. The
following example shows how to use the _ _ ANSILIBRARIES macro:

#include <stdio.h>

main( )

{
extern short _ ANSILIBRARIES;

if (_ANSILIBRARIES)
printf(“I'm in ANSI mode.\n");
else
printf("I'm not in ANSI mode.\n");
}
You can declare the ___ ANSILIBRARIES macro in uppercase, lowercase, or both, as long as

you refer to it consistently throughout your program.

CONVERTING OLDER PRIMOS C PROGRAMS TO ANSI C

This section describes a few potential problems that await users who want to make older
PRIMOS C programs conform to the ANSI C standard. Most of these problems have to do
with the C library, the macro preprocessor, and mixing old-style and new-style function
declarations, the areas of greatest difference between PRIMOS C and the ANSI standard.

Examine carefully your program’s use of library functions. Make sure
® That you include the correct header file

e That you declare correctly the variables that hold function arguments and returned
values

The list of ANSI C library functions in the next section provides a quick reference both to
the required header files and to the required types for function arguments and returned
values.

The following list of specific differences between ANSI PRIMOS C and non-ANSI PRIMOS C
is not exhaustive.

Using the Extended Character Set With ANSI

The ANSI C library recognizes the extended character set (Prime ECS). The library
functions that perform character evaluation recognize the setting of the 8th bit when the
code that invokes these functions is compiled with the -ANSI option in 32IX mode. These
library functions are isalnum(), isalpha( ), iscntrl(), isdigit( ), isgraph( ), islower(), isprint(),
ispunct( ), isspace( ), isupper( ), and isxdigit( ).

The following example illustrates the difference between compiling these functions with the
-ANSI option and without the -ANSI option.

8-8

J

)

J



0K, SLIST TEST.C
#include <ctype.h>

#define UPPERCASE_A 0301
#define UPPERCASE_A_WITH_ACCENT 0101

main()
{
if (isupper (UPPERCASE_A))
printf(*%o is uppercase\n”, UPPERCASE_A);
if (isupper (UPPERCASE_A_WITH_ACCENT))
printf("%o is uppercase\n", UPPERCASE_A_WITH_ACCENT);

}

OK, CC TEST -32IX
[CI Rev. T3.0-23.0 Copyright (c¢) 1990, Prime Computer, Inc.]

00 Errors and 00 Warnings detected in 12 lines and 107 include lines.

0K, BIND -LI CCMAIN -LO TEST -LI C_LIB

[BIND Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

OK, R TEST

301 is uppercase

101 is uppercase

0K, CC TEST -32IX -ANSI
[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

00 Errors and 00 Warnings detected in 12 lines and 107 include lines.

OK, BIND -LI ANSI_CCMAIN -LO TEST -LI C_LIB

[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

OK, R TEST

301 is uppercase

The atof( ) Library Function

Using ANSI C

If you compile your program without -ANSI, the atof() function expects the math.h header
file.

If you compile your program with -ANSI, the function expects the stdlib.h header file.

Caution

If you include neither the math.h header file nor the stdlib.h header file, or if you
include the wrong header file, your program will compile and link, but it will

produce erroneous output.

The strncpy( ) Library Function

The non-ANSI version of strncpy() performs a block move from string-2 to string-1 of a
specified number of characters, including null characters.

The ANSI version of strncpy() also copies chararacters from string-2 to string-1 but does
not copy anything from string-2 that follows a null character.
encounters a null character in string-2 before n characters have been copied, it appends null
characters to string-I until n characters have been written.

Therefore, if strncpy()

8-9



C User's Guide

The following example illustrates the difference between the non-ANSI and ANSI version of
the strncpy( ) function.

OK, SLIST TEST.C
#include <stdio.h>
#include <string.h>

main()
{
int i,
char str[10];

strncpy(str, "12345\0abc”, 9);
for (i = 05 i < 9; i++)
putchar(str[i]);
putchar('\n');
}

0K, CC TEST.C -32IX

[CI Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

00 Errors and 00 Warnings detected in 14 lines and 248 include lines.
0K, BIND -LI ANSI_CCMAIN -LO TEST -LI C_LIB

[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]

BIND COMPLETE

0K, R TEST -NoAnsilLibs
12345abc

0K, R TEST -Ansilibs
12345

The ctime( ), localtime( ), and time( ) Library Functions

The non-ANSI versions of ctime(), localtime(), and time() each expect an argument that is
a pointer to int. The time() function returns an int value.

The ANSI version of these functions each expect one argument that is a pointer to time__t,
which is defined in the time.h header file. The ANSI version of time() returns a time__t
value.

The ANSI and non-ANSI versions of the ctime() function return the date and time in
different formats. The following program prints out the value returned from ctime( )

#include <time.h>

main( )
{

time_t sec;

time(&sec);

printf{“%Zs\n", ctime(&sec));
}

If you use the ANSI library, the string looks like this:

0K, R EXAMPLE -Ansilibs
Mon Mar 3 13:06:07 1990

8-10

J

J

J



N

)

Using ANSI C

If you use the non-ANSI library, it looks like this:

0K, R EXAMPLE -NoAnsilibs
03 Mar 90 13:06:07 Monday

The #endif Preprocessor Command

Non-ANSI PRIMOS C allows you to follow an #endif command with an identifier name,
as in the following example:
#ifndef PRIME

#define PRIME 1
#endif PRIME

main( )
{
}

The 1978 C language does not sanction this practice, but it does not forbid it. If you
compile such a program with -ANSI, you will receive the following error message:

0K, CC PROG -32IX -ANSI

[CI Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
Error #1 on line 4 in file <mysys>myid>prog.c

Extraneous input seen after #endif directive.

01 Error and 00 Warnings detected in 7 source lines.

Redefining Macros

The non-ANSI C preprocessor allows you to redefine a macro in a program without first
using #undef to disable the previous macro definition. For example, the non-ANSI C
compiler accepts the following program:

#define color “green®

#define color “blue”

main()

{
}

printf("color is %s\n", color);

The ANSI C preprocessor requires that you undefine a macro with the #undef command
before you redefine it with a different value. If you compile the program above with
-ANSL, you receive the following error message:

OK, CC PROG -32IX -ANSI

[CI Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
Error #1 on line 2 in file <mysys>myid>prog.c

Redefinition of ‘'color' must match (ignored).

01 Error and 00 Warnings detected in 7 source lines.



C User's Guide

Macro Expansion

Formal Parameters in Quoted Strings: The non-ANSI C macro preprocessor replaces
formal parameters that occur within quoted strings. For example, in the following program,
the parameters value and format in the macro definition are replaced within the string
argument to printf( ):

#include <stdio.h>
#define PR(format,value) printf("value = Zformat\t", value)

main( )
{
int x;
x = 35;
PR(d,x):
}

The program displays the following:
x = 35

The ANSI C macro preprocessor does not automatically replace formal parameters within
quoted strings. To obtain the same result when you compile with -ANSI, precede the
parameter name with a #  The preprocessor expands the parameter as a quoted string,
which is then concatenated with any other strings in the macro definition. The following
command performs the same function as the one in the program above:

#define PR(format,value) printf(#value " = %"#format"\t", value)

If you use the old-style macro definition (without the #) and compile with -ANSI, you
obtain the unintended output

value = 0.0000000rmat

Syntax Checking in #define Commands: In non-ANSI PRIMOS C, the macro processor
performs syntax checking on the arguments to #define commands.

In ANSI PRIMOS C, the macro preprocessor checks the syntax only when the macro is
expanded in the program.

For example, non-ANSI C accepts only single character arguments in single quotation marks
in #define commands. For example, the definition

#define ctri(letter) ('letter' & 077)
is incorrect and results in an error message. Similarly, commands like

#define HUGE 12345678901234567890
#define HEX Ox

#define OCT 0778

#define CH ‘t

will draw compiler error messages if -ANSI is not specified.

8-12

J) )



Y O

)

Using ANSI C

If -ANSI is specified, these macros will draw errors only when their expansion results in a
syntactically invalid program.

The fopen( ), fdopen( ), and freopen( ) Library Functions

The non-ANSI and ANSI versions of fopen(), fdopen(), and freopen() have different
expectations for the contents of the second argument, accessMode (mode in the ANSI
function descriptions).

If you link your program with the CCMAIN library, you must use the non-ANSI argument
contents. The non-ANSI argument contents are described in the discussion of fopen() in
Chapter 4.

If you link your program with the ANSI_CCMAIN library, you must use the ANSI
argument contents that are described in the discussion of fopen() in the ANSI C Library
Functions section of this chapter.

Table 8-2 shows how the non-ANSI arguments correspond to the ANSI arguments.

TABLE 8-2. Non-ANSI and ANSI fopen Argument Strings

Non-ANSI String  ANSI String

l(r” llr”
tlw” l(w”
“wa” “a”
“” “rb”
“o” “wb”
“oa” “ab”
“47 “r+b”
“o+” “w+b”
“oa+” “a+b”
oy

ilw+”

“ay?

If you want a program to be able to use both the ANSI and the non-ANSI libraries, you
can use the _ __ ANSILIBRARIES macro to switch from one argument string to another, as
in the following example:

8-13



C User's Guide

#include <stdio.h>

main( )

{
extern short __ANSILIBRARIES;
char writeBinary[3];
FILE *fp, *fopen( );

if (__ANSILIBRARIES)
strepy(writeBinary, "wb");
else
strepy(writeBinary, “"o");

if ((fp = fopen(“tmp.file", writeBinary)) == NULL)
printf("can't open tmp.file\n");

else {
fprintf(fp, "put stuff in tmp.file");
fclose(fp);

}

Mixing Old and New Style Function Definitions and Declarations

A program should not mix function prototypes and old-style function definitions and
declarations because default argument promotion is performed on arguments if the old style
is used. This means that char and short int arguments are converted to int, and float
arguments are converted to double.

In the following example, the character argument passed to print_char is promoted to an
int due to the old-style function declaration. Since the function definition is in the new
style, however, no type promotion is expected and the parameter is treated as a char. This
leads to incorrect results.

OK, SLIST MAIN.C
extern void print_char();

main()
{

print_char('a'); .
}

OK, SLIST PRINT.C
void print_char(char ch)

{

}

OK, CC (MAIN PRINT) -32IX -ANSI

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.)
00 Errors and 00 Warnings detected in 6 source lines.

[CI Rev. T3.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
00 Errors and 00 Warnings detected in 4 source lines.

OK, BIND -LI ANSI_CCMAIN -L0 MAIN PRINT -LI C_LIB

[BIND Rev. T73.0-23.0 Copyright (c) 1990, Prime Computer, Inc.]
BIND COMPLETE

0K, R MAIN

character is

printf(“character is Zc\n", ch);

J

) )



)

Y

Nonstandard Library Functions
The following non-ANSI C library functions are implementation-dependent system calls; they

are not part of the ANSI C standard library.
you compile with -ANSI or without it, and whether you link the ANSI__CCMAIN or

CCMAIN library:

access( )
chdir()
creat( )
fevt()
fgetname( )
fstat( )
geth( )
gterm( )
index( )
1sdir( )
open( )
read( )
sleep( )
timer( )

bio$primosfileunit( )
chrcheck()
cuserid( )
fdopen( )
fileno( )
ftime( )
getmod( )
gvget()
isascii( )
1seek( )
primospath( )
rindex( )
stat( )
toascii( )

cabs( )
close( )
delete( )
fdtm( )
frwlock()
frype( )
getname( )
gvset( )
isatty( )
mkdir( )
puth( )
seek( )
sterm( )
topascii( )

See Chapter 4 for information about these functions.

ANSI C LIBRARY FUNCTIONS

Using ANSI C

However, you can reference them whether

cfree( )
copy( )
ecvt()
fexists( )
fsize( )
g$amiix( )
getw( )
hypot( )
ispascii( )
move( )
putw( )
setmod( )
tell( )
write( )

This section lists all the ANSI C library function and macro names in alphabetical order.
It shows the returned value and argument types for each function as well as the header

file in which its declaration resides.
existed prior to ANSL

The C Programming Language by Kernighan and Ritchie.

abort( )
asin( )
atexit( ) *
bsearch( ) *
clock( ) *
difftime( ) *
fabs( )
fflush( )
floor( )
fputc( )
freopen( )
fsetpos( ) *
getchar( )
isalnum( )
isgraph( )
isspace( )

abs( )
assert( )
atof( )
calloc( )
cos( )
div() *
fclose( )
fgetc( )
fmod( ) *
fputs()
frexp( )
ftell( )
getenv( ) *
isalpha( )
islower( )
isupper( )

acos( )
atan( )
atoi( )
ceil()
cosh( )
exit( )
feof( )
fgetpos( ) *
fopen( )
fread( )
fscanf( )
fwrite( )
gets( )
iscntrl( )
isprint( )
isxdigit( )

For more information, see Chapter 4 if the function
If it did not, consult the ANSI standard or the second edition of

asctime( ) *
atan2( )
atol( )
clearerr( )
ctime( )
exp( )
ferror( )
fgets( )
fprintf( )
free( )
fseek( )
getc( )
gmtime( ) *
isdigit( )
ispunct( )
labs( ) *



C User's Guide

1dexp( )

log( )
mblen( ) *
mememp( ) *
mktime( ) *
printf( )
gsort( ) *
rewind( )
setbuf( )
signal( )
sqrt( )
strchr( )
strespn( )
strncat( )
strrchr( )
strtok( ) *
system( )
tmpfile( ) *
ungetc( )
viprintf( ) *
wctomb( ) *

Idiv() *
log10( )
mbstowes( ) *
memcpy( ) *
modf( )
putc( )
raise( ) *
remove( ) *
setjmp( )

sin( )

srand( )
stremp( )
strerror( )
strnemp( )
strspn( )
strtol( )
tan( )
tmpnam( )
va_arg( ) *
vprintf( ) *

localeconv( ) *
longjmp( )
mbtowc( ) *
memmove( ) %
perror( )
putchar( )
rand( )
rename( ) *
setlocale( ) *
sinh( )

sscanf( )
streoll( ) *
strftime( ) *
strncpy( )
strstr( ) *
strtoul( ) *
tanh( )
tolower( )
va__end() %
vsprintf( ) *

localtime
malloc( )
memchr( ) *
memset( ) *x
pow()

puts()
realloc( )
scanf( )
setvbuf() *
sprintf( )
strcat( )
strepy( )
strlen( )
strpbrk( )
strtod( ) *
strxfrm( ) *
time( )
toupper( )
va_ start( ) *
westombs( ) *

Asterisks (%) denote functions that are new for ANSL

These functions are described in the following pages.

8-16

y

)

J



3

N

Using ANSI C

» abort()

Causes abnormal program termination to occur.

#include <stdlib.h>
void abort(void);

This function cannot return to its caller.

» abs()

Computes and returns the absolute value of an integer.

#include <stdlib.h>
int abs(int j);

» acos()

Computes and returns the arc cosine of x.

#include <math.h>
double acos(double x);

The returned value is in the range [0, 7] radians. If an argument is not in the range [-1,
+1], a domain error occurs.

P asctime()
Converts the time in the structure timeptr into a string that has the following form.

Fri Feb 09 13:15:59 1990\n\0

#include <time.h>
char *asctime(const struct tm *timeptr);

This function returns a pointer to the string.

P  asin()

Computes and returns the arc sine of x.

#include <math.h>
double asin(double x);



C User's Guide ‘\

The returned value is in the range [-/2, +7/2] radians. If an argument is not in the
range [-1, +1}, a domain error occurs.

|
~
P assert()
Places diagnostics into programs.
#include <assert.h>
void assert(int expression);

If the argument is false when it is executed, the macro writes information about the
failure to stderr.

» atan()

Computes and returns the arc tangent of x.
#include <math.h>
double atan(double x);

The returned value is in the range [-/2, +7n/2] radians. 4\

» atan2()

Computes and returns the arc tangent of y/x.

#include <math.h>
double atan2(double y, double x);

The returned value is in the range [-m, +7] radians. If both arguments are zero, a domain

erTor occurs.

P atexit()

Registers the function func, to be called with no arguments at the normal termination of
the program. A maximum of 32 functions can be registered.

#include <stdlib.h>
int atexit(void (*funcXvoid));

If the registration succeeds, this function returns zero. If it fails, atexit( ) returns nonzero.

J



)

)

Using ANSI C

» atof()

Converts the string nptr to double representation and returns the converted value.

#include <stdlib.h>
double atof(const char *nptr);

P atoi()

Converts the string nptr to int representation and returns the converted value.

#include <stdlib.h>
int atoi(const char *nptr);

» atol()
Converts the string nptr to long int representation and returns the converted value.

#include <stdlib.h>
long int atol(const char *nptr);

» bsearch()

Searches an array base of nmemb objects for an element that matches the object pointed to
by key.

#include <stdlib.h>
void *bsearch(const void *key, const void *base,
size__t nmemb, size__t size,
int (kcomparXconst void ¥, const void *));

size specifies the size of each array element. compar points to a comparison function that
is called with two arguments that point to the key object and an array element.

If the key object is less than, matches, or is greater than the array element, bsearch()
returns an integer less than, equal to, or greater than zero, respectively. The array is sorted
according to the comparison function.

This function returns a pointer to a matching element of the array. If no match is found,
however, it returns a null pointer.

» calloc()

Allocates space for an array of nmemb objects of size size. This function initializes all bits
in the space to zero.

8-19



C User's Guide
#include <stdlib.h>
void *calloc(size__t nmemb, size_t size);

calloc( ) returns a pointer to the allocated space or a null pointer.

» ceil()

Computes and returns the smallest integer that is equal to or greater than x.

#include <math.h>
double ceil(double x);

» clearerr()

Clears the error and end-of-file indicators for the stream stream.

#include <stdio.h>
void clearerr(FILE *stream);

» clock()

Calculates and returns the processor time used.

#include <time.h>
clock__t clock(void);

The macro CLOCKS__PER__SEC converts the estimated processor time into time in seconds.

» cos()

Computes and returns the cosine of x expressed in radians.

#include <math.h>
double cos(double x);

» cosh()

Computes and returns the hyperbolic cosine of x. If the magnitude of x is too large, a

range error occurs.

#include <math.h>
double cosh(double x);

8-20

J



T Sy

Using ANSI C

P ctime()

Converts the calendar time pointed to by timer to the local time with the following form
<day-of-week> MMM DD HH:MM:SS YYYY\n\O.
#include <time.h>
char *ctime(const time__t *timer);

This function returns a pointer to the local time string.

p difftime()

Computes and returns the difference in seconds between two calendar times: timel - time0.

#include <time.h>
double difftime(time_t timel, time_ t timeO);

> div()

Computes the quotient and remainder of the division of numer by denom such that
quotient * denom + remainder = numer.

#include <stdlib.h>
div_t div(int numer, int denom);

This function operates on int types and returns a structure of type div__t that consists of
the quotient and the remainder.

» exit()

Causes normal program termination to occur.

#include <stdlib.h>
void exit(int status);

All functions registered by atexit() are called in the reverse order of their registration.
This function flushes all open output streams, closes all open streams, and removes all files
created by tmpfile(). Control returns to PRIMOS.

A nonzero status, however, is used as a severity code that is returned to the invoker of
the program.

8-21



C User's Guide

> exp()

Computes and returns base e raised to the x power.

#include <math.h>
double exp(double x);

If the magnitude of x is too large, a range error occurs.

» fabs()

Computes and returns the absolute value of a floating-point x.

#include <math.h>
double fabs(double x);

» fclose()

Flushes the stream stream and closes the associated file.

#include <stdio.h>
int fclose(FILE *stream);

If the stream was successfully closed, fclose( ) returns zero.

the function returns EOF.

» feof()

Tests the end-of-file indicator for the stream stream.

#include <stdio.h>
int feof(FILE %stream);

If any errors were detected,

If the end-of-file indicator is set for stream, this function returns nonzero.

» ferror()

Tests the error indicator for the stream stream.

#include <stdio.h>
int ferror{FILE *stream)

If the stream's error indicator is set, this function returns nonzero.

8-22

J

J



r
P~

D

Using ANSI C

» fflush()

Writes any unwritten data to the file if stream points to an output stream or to an
update stream in which the most recent operation was not input.

#include <stdio.h>
int fflush(FILE *stream);

If stream is a null pointer, fflush() performs the flushing action on all appropriate streams.
If a write error occurs, this function returns EOF; otherwise it returns zero. Refer to the
fflush( ) description in Chapter 4 for PRIMOS limitations.

» fgetc()

From the input stream stream, this function gets the next character as an unsigned char
converted to an int, and advances the file position indicator.

#include <stdio.h>
int fgetc(FILE #*stream);

fgetc() returns the character. If stream is at the end-of-file, its end-of-file indicator is set
and EOF is returned. If a read error occurs, stream’s error indicator is set and EOF is
returned.

P fgetpos()

Saves the current value of the file position indicator for the stream stream in the object
pos.

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t %pos);

The saved value contains information that fsetpos() can use for repositioning stream to its
position at the time of the call to fgetpos(). If successful, fgetpos() returns zero. If it
fails, the function returns nonzero.

» fgets()

Reads at most one less than n characters from the stream stream into the array s.

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

When fgets() encounters a new-line character or end-of-file, it reads no additional

characters. When the last character is read into the array, the function immediately writes
a null character.

8-23



C User's Guide

If successful, fgets() returns s. If it encounters an end-of-file, the contents of the array
remain unchanged and a null pointer is returned. If a read error occurs, the array contents
are indeterminate and a null pointer is returned.

> floor()
Computes and returns the largest integer that is less than or equal to x.

#include <math.h>
double floor(double x);

P> fmod()

Computes and returns the remainder of x/y. If y is zero, this function returns a zero.

#include <math.h>
double fmod(double x, double y):

» fopen()

Opens a file whose name is the string filename, and associates a stream with it. The
argument mode points to a string that begins with one of the sequences listed in Table 8-3.

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Opening a file with read mode fails for a nonexistent or unreadable file. Opening a file
with append mode forces subsequent writes to the file’s current end-of-file, regardless of
intervening calls to fseek( ).

Opening a file with update mode, allows input and output to be performed on the
associated stream.  Output followed directly by input requires an intervening call to
fflush() or a file positioning function (fseek(), fsetpos(), or rewind()). Input followed
directly by output requires an intervening call to a file positioning function, unless the
input operation encounters end-of-file.

fopen( ) returns a pointer to the stream. If the open operation failed, the function returns
a.null pointer.

P fprintf()

Writes output to the stream stream under control of the string format, which specifies
how the subsequent arguments are to be converted for output.

8-24

\ J

J



|

)

Using ANSI C

TABLE 8-3. Values for mode Argument of fopen Function

Argument Action Per formed

“r” Open text file for reading.

“w” Truncate to zero length or create text file for writing.

“a” Append; open or create text file for writing at end-of-file.

“rb” Open binary file for reading.

“wb” Truncate to zero length or create binary file for writing.

“ab” Append; open or create binary file for writing at end-of-file.

“r+” Open text file for update (reading and writing).

“w+” Truncate to zero length or create text f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>