

 Preliminary Documentation Release

PDR3061
REFERENCE GUIDE,
MULTIPLE INDEX
DATA ACCESS
SYSTEM
(MIDAS)

PRIME SOFTWARE DOCUMENTATION FAMILY

HIGH-LEVEL LANGUAGE USER GUIDES

FORTRAN COBOL RPG II CBASIC INTERPRETIVE
Iv BASIC

PDR3057 PDR3056 IDR303! POR3085 MANIBI3
PTUOS
PTU29
PTU38

OPERATING SYSTEM

SOFTWARE SUBSYSTEM

REFERENCE REFERENCE

THIS
DOCUMENT

ASSEMBLY LANGUAGE
PRIMOS COMPUTER USER GUIDE OBMS MIDAS

INTERNALS AND ROOM
FILE SYSTEM

MAN2603 IDR3043 PDR3IOGI

PDR3HO PTU32 IDR3044
MAN2604 PTU43 IDR3045
PTU30O CPU SYSTEM PMA IDR3046

REFERENCE

INTERACTIVE SOFTWARE MANI671I ae PDR3059 FORNS EDITOR/
COMMANDS LIBRARY MAN2798 RUNOFF

MAN2602 PDR3I06 IDR3040 POR3IO4
PTUSI
PTU42

This is the reference guide for MIDAS -- Prime's Multiple Index Data
Access System. It contains the detailed information needed by a FORTRAN,
COBOL or RPG programmer in order to:

e@ Build aMIDAS template file with the CREATK interactive utility.

@ Build MIDAS data files, either with the KBUILD interactive

utility or with the BILDSR, PRIBLD and SECBLD user-program sub-
routines.

@ Maintain a MIDAS data base using the FORTRAN-compatible MIDAS data
access subroutines (FINDS, etc.). (COBOL and RPG users use the
protocols for these languages.)

@ Restructure an existing application file with the interactive
utilities REMAKE, REPAIR and KIDDEL.

@ Modify MIDAS parameter files and COMMON blocks to meet special
user needs.

The guide concludes with a detailed analysis of the planning,,
implementation and use of MIDAS in an order entry and back-order control
application.

All correspondence on suggested changes to this document should be
directed to:

Max Goudy, Technical Writer
Technical Publications Department
Prime Computer, Inc.
145 Pennsylvania Avenue
Framingham, Massachusetts 01701

Acknowledgements

We wish to thank the members of the REFERENCE GUIDE, MULTIPLE INDEXED
DATA ACCESS SYSTEM team and also the non-team members, both
customer and Prime, who contributed to and revised this PDR.

PRIME DOCUMENTATION TYPES

IDR

PDR

Initial Documentation Release: provides usable, accurate
advanced information -without regard to style and format.

Preliminary Documentation Release: provides more complete and
accurate information about the product, but is not in final
format.

Final Documentation Release: a complete product description:
edited, formatted and produced at a high standard of
graphic quality.

Manual: early reference documents to be phased out by PDR's
and FDR's.

Prime Technical Update: interim updates to existing documents.

Copyright 1977 by
Prime Computer, Incorporated

145 Pennsylvania Avenue
Framingham, Massachusetts 01701

The information contained in this document is subject to change without
notice and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility
for any errors that may appear in this document.

First Printing November 1977

CONTENTS

section Title

SECTION 1 INTRODUCTION TO MIDAS

PURPOSE
MIDAS AND THE FILE SVSTEM
USING MIDAS
GLOSSARY OF TERMS

SECTION 2 CREATK UTILITY

CREATK FUNCTIONS

CREATK DIALOG

SELECTING A VERSION OF CREATK

CREATK DEFAULTS

SECTION 3 KBUILD UTILITY

KBUILD FUNCTIONS

KBUILD DIALOG

INPUT FILES

COBOL INPUT FILE EXAMPLE

FORTRAN INPUT FILE EXAMPLE

OUTPUT FILE

REPORT AND ERROR FILE

SECTION 4 REMAKE UTILITY

REMAKE FUNCTIONS

REMAKE DIALOG

SECTION 5 REPAIR UTILITY

PRINCIPLES OF REPATR OPERATION

THE REPATR DIALOG

ACTION OF REPATR

EXAMPLE OF REPAIR ACTION

SECTION 6 KIDDEL UTILITY

KIDDEL FUNCTIONS

KIDDEL DIALOG

O
o
o

CONTENTS (Cont'd)

section Title

SECTION 7 SUBROUTINES TO BUILD A MIDAS

FILE (PRIBLD, SECBLD, AND BILDSR)

BUILDING FILES
MAINTENANCE SUBROUTINE DESCRIPTIONS

SECTICN 8 CONSIDERATIONS FOR SINGLE-USER

PROGRAMMING

INTRODUCTION

OFFCOM
MIDAS ROUTINES IN USER MODULE
OTHER USEFUL MIDAS ROUTINES

SECTION 9 DATA ACCESS SUBROUTINES

CALLING SEQUENCES
ADDIS

DELETS
FINDS
LOCKS
NEXTS
UPDATS

SECTION 10 MODIFYING MIDAS TO MEET USER

NEEDS

LDPOOL, COMMON CONTROL MODULE
KPARAM, MIDAS PARAMETER FILE

SECTION 11 EXAMPLES

HYPOTHETICAL USER EXAMPLE
USING CREATK TO BUILD A TEMPLATE
BUILDING THE INITIAL FILE WITH KBUILD
USING THE ON-LINE MIDAS FILE HANDLER

10-1
10-3

11-1

11-1
1-2

11-9

CONTENTS (Cont'd)

Section Title

APPENDIX A CONDITION CODES

NONFATAL CODES
DISK ERROR CONDITION CODES
FILE HANDLER CONDITION CODES
MIDAS ERROR CONDITION CODES
FILE SIZE CONDITION CODES

APPENDIX B CREATK MAXIMUM OPTIONS DIALOG

PDR3061 INTRODUCTION TO MIDAS

SECTION 1

INTRODUCTION TO MIDAS

PURPOSE

MIDAS (Multiple Index Direct Access System) provides a series of programs
and subroutines for the creation and maintenance of Keyed-Index Direct
Access (KI/DA) files.

Keyed-Index files are sometimes referred to as ISAM (Indexed Sequential
Access Method) files. MIDAS gives the user the advantages of ISAM files
plus additional useful features, all of which are described in this
document. Figure 1-1 gives a functional overview of MIDAS. This
schematic attempts to relate the tasks of creating a file template,
building a data file, maintaining a file, and the data access.

MIDAS usage falls into four areas (see Figure 1-1)

@ Creating/modifying the template - the user defines the data
file, indices, etc. (CREATK)

e Building the data file - data existing in a text or binary
file are converted to a MIDAS file. (KBUILD)

e Maintaining the file - data entries are added, deleted,
changed, or viewed.

e Performing housekeeping - files are restructured after
significant maintenance (REMAKE), deleted in part or full
(KIDDEL), or rebuilt after crashes (REPAIR).

MIDAS AND THE FILE SYSTEM

At Rev. 14, MIDAS has been converted to the new file system. With the
change the format of MIDAS's internal pointers has also changed. The
change has been implemented so that accessing a MIDAS file with the
Rev. 14 (or later) version of MIDAS automatically converts the file to
new pointers. NOTE, however, that once a file has been accessedby a
new version of MIDAS, it can no longer be accessed by older versions.

1-1 November 1977

SECTION 1 PDR3061

USING MIDAS

Generally, the first task a user is concerned with is the creation of a
template (file descriptor) for the MIDAS file. A program, CREATK, is
provided for that purpose. (Refer to Section 2 for details of CREATK
usage.) CREATK, along with REMAKE, can also be used to modify and update
the template. MIDAS also provides a program, KBUILD, and, alternatively,
provides a series of subroutines; PRIBLD, SECBLD, and BILDSR, to build a
MIDAS data file from an input user-data file. (refer to Sections 7 and 8
for further information on data file building.) The programs REMAKE,
REPAIR, and KIDDEL provide a means for ensuring MIDAS file integrity.

For further information, refer to Sections 4,5, and 6. Finally, a series
of subroutines are available for access, maintenance, and retrieval of
the data records in a MIDAS file. They are: ADD1$, DELETS, FINDS,
LOCKS, NEXTS, and UPDATS. (Refer to Section 9 for further details.)

Creating and Modifying the Template

The interactive program CREATK allows the user to build, examine, and
modify the MIDAS file template. This template contains the information
the MIDAS programs and subroutines required to build and maintain the
data file and its associated index file(s) and directories. When
constructing the template, the user specifies filename, direct access
support (if supplied), block, length, and index requirements (both
primary index and secondary indices, if any). For many parameters,
the system will supply default values in lieu of the user's specifications
if so desired.

REV. 0 1-2

PDR3061

BUILD FILE
TEMPLATE

WITH CREATK

MODIFY FILE
TEMPLATE
PARAMETERS
WITH CREATK

 ‘

REBUILD
INDEXES, ETC.
WITH REMAKE

DELETE MIDAS
FILE WITH
KIDDEL

YES

EXIT TO
PRIMGS

MAINTAIN |
FILE

INTRODUCTION TO MIDAS

| REBUILD

BROKEN FILES
WITH REPAIR

|
|
|
I
|
L

BUILD DATA
FIL

USER
E WITH
PROGRAM

PRIBLD
SECBLD
BILD$R

BUILD DATA
FILE USING
KBUILD

KEY:

PRIME-SUPPLIED
PROGRAM

USER ~ SUPPLIED
PROGRAM

PRIME—SUPPLIED
SUBROUTINES

' t ¢
CHANGE/ INQUIRE/RAde5 DELETE UPDATE. RETRIEVE :__..-4 Lone L RECORD | |RECORD | aos

FIND$BILD$R
UPDAT$ADDIS DELET$ (LOCK$) (H60Ke)

t ¢ t. |

Figure 1-1. Functional Overview of MIDAS

November 1977

SECTION 1 PDR3061

Example CREATK Dialog

The following CREATK dialog shows the creation of the template for a

new file. User response is underlined.

OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? POLITIC
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : 2
DATA SIZE = : 40

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A

KEY SIZE = :W1

USER DATA SIZE = : 2

INDEX NO. 2

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A
KEY SIZE = : W2
USER DATA SIZE = : 40

INDEX NO.? CR

OK ,

REV. 0 1- 4

PDR3061 INTRODUCTION TO MIDAS

Building the Data File (Single-User Environment)

The MIDAS data file may be constructed with the Prime-supplied program
KBUILD (Refer to Section 3) or the user may create a program with the
PRIME~supplied subroutines BILDSR, PRIBLD, SECBLD (Refer to Section 7).
Using KBUILD is simpler but it has certain restrictions; for example,
input data files and the resulting output MIDAS data file must have
fixed length records.

Maintaining and Using the MIDAS File (Multi-User Environment)

A number of subroutines are supplied to enable the programmer to make
effective use of the MIDAS file. These subroutines are designed to
allow more than one user to access the data file simultaneously. The
lockout subroutine protects data entries fran attempts at simultaneous
changes/deletions. All the subroutines require the file PARM.K in
the UFD name SYSCOM to be inserted in the user program by the SINSERT
cammand (Refer to Section 8). A summary of these MIDAS subroutines
follow.

Subroutine Functions

ADDIS adds a data entry to the file and modifies the index
files appropriately. Insertion is by primary key
only; the file is locked during insertion.

DELETS deletes a data entry and modifies the index file(s)
accordingly. Deletion may not occur if the data
entry is locked.

FINDS locates a data entry and reads its contents into a
buffer. Look-up is by primary and secondary key(s).
If data entries exist with the same secondary key
(synonyms), the oldest data entry (i.e., first one
in the file) is retrieved.

NEXTS retrieves the data entry with the next higher key.
Search may be on a primary or secondary key. This
subroutine allows synonyms which are not oldest to
be accessed.

LOCKS locates a data entry and locks it, if not already
locked. The data entry is only unlocked by a
successful call to UPDATS.

UPDATS rewrites a data entry. This subroutine should not
be called before a successful call to LOCKS.

1-5 November 1977

SECTION 1 PDR3061

GLOSSARY OF TERMS

The following paragraphs describe a number of terms and conventions
used throughout this manual, They are arranged in sequence to help the
reader progress from fundemental to more complex concepts.

MIDAS File

A KI/DA (Keyed Index-Direct Access) File.

KI/DA File

A collection of subfiles under a segment directory. In particular:

1. A file descriptor subfile (Segment 9)
2. One or more index subfiles (Segments 1-184)
3. A data subfile (Segments 185)

Segment Directory

A file whose entries are pointers to other files. The other files
are called segments or segment subfiles.

For information on files and file types refer to the File System User
Guide (MAN 2604) and the File Management System Reference Guide (PDR3110).

Segment

A Segment (or "segment subfile") is a SAM or DAM file that can be
accessed only through its associated segment directory. Segments
are numbered 0, 1, 2, .. . etc. Most of MIDAS' segments are DAM

files.

Index Subfile

Physically, an index subfile consists of one or more segments. The first
segment is SAM and is required. The other segments are DAM files and
are created only as needed. Logically, an index subfile consists of an
index descriptor block and one or more index blocks. The resulting
index is a tree structure. The index descriptor block and one index
block are contained in the required first segment of the index. All

other index blocks are contained in the other segments of the index.

Figure 1-2 shows the layout of the index subfiles within a MIDAS file
structure.

REV. 0 1-6

PDR3061 INTRODUCTION TO MIDAS

USERS UFD (SAM)
USRFIL—I CUSFIL ses-sam |ene”
CUSFIL > oO >| DESCRIPTION

USRFIL— 2 1-10 SUBFILE
ii - 20

21-30 INDEX |.(SAM/DAM)
18S - SUBFILE

ETC. (PRIMARY [— POINTERS TO
’ | INDEX) . DATA ENTRIES

MIDAS FILE
SEGMENT
DIRECTORY SUBTILE r— (SAM/DAM)

(SECONDARY }— POINTERS TO
INDEX-1) }+— DATA ENTRIES

SUBTILE — (SAM/DAM)

(SECONDARY }— POINTERS TO
INDEX~2) -— DATA ENTRIES

DATA DAM _.) DATA i
SUBFILE ENTRY —I

L,| pata
ENTRY-2

DATA
ENTRY-3

Figure 1-2. Typical MIDAS File Structure

November 1977

SECTION 1 PDR3061

Index Descriptor Block

A local guide to the index subfile. It is used when adding an entry to
the index or deleting an entry from it.

Index Block

A collection of "index entries", together with a search rule for
searching the entries in the block. The search rule is contained in
Control words at the beginning of the block. ‘The index entry is used
to determine what to search next.

Index Entry

A key (key value) and a three word pointer to either another index
block or a data entry. For secondary indexes only, it may also contain
optional secondary data.

Key, Key Value, Key Field

Key, Key value, Key field refer to a value that is used to look up
something in an index. For example, in an employee file for PRIME
camputer 'MAX GOUDY' and 'ROGER THORT' might be keys. Then sanewhere,
in the appropriate index would be an "index entry containing "MAX GOUDY,
ptr" and "ROGER THORT, ptr".

Sometimes "key" is modified by reference to an index number.
For example:

"Primary key" a key used with a primary index (Index 1)

“Secondary key" a key used with a secondary index (Index 1)

Secon Data

Information separate from the data record that is stored in a secondary

index entry. Secondary data may be retrieved only through the secondary
index entry.

Template File

A Template (KI/DA) file (See Figure 1 - 2) is a segment directory plus

l. A file descriptor subfile (Segment 9@)

2. A Primary index subfile which contains only an index descriptor block
and a "seed" index block.

3. Optional secondary index subfiles each containing only an index
descriptor block and a "seed" index block.

REV. 0 pu
t I C
O

PDR3061 INTRODUCTION TO MIDAS

Overflow

Eventually, so many overflow entries may be accumulated that file
access slows down considerably. In this case the REMAKE utility can
be run to restructure the file and incorporate all overflow entries.
Overflow is a collection of sorted chains of index entries stored in
index blocks that are effectively merged into the main body of the
index when the index is traversed sequentially. Overflow entries
accumulate during access and use of a MIDAS file.

ce Recove

Sometimes a user will have deleted many records from the index and
will wish to retrieve the lost space. The REMAKE utility can be run
to compress the file and recover all wnused records.

1-9 November 1977

PDR3061 CREATK UTILITY

SECTION 2

CREATK UTILITY

CREATK is a interactive utility module that creates a template for a
MIDAS keyed-index file. CREATK may also be used to modify the template
of an existing file, or obtain information about the structure of a file.
The functions availabie are:

Create a new MIDAS file template.
Modify index or data descriptions for an existing file.
Add new secondary index subfiles to an existing file.
Display existing index or data descriptions.

CREATK FUNCTIONS

CREATK generates the minimum requirements for a MIDAS file: a segment
directory, a file descriptor subfile, and one-level primary index subfile
that contains the index descriptor block and an empty last level index
block. Additionally, if the file is organized for direct access, the
data segments are allocated and initialized. Similarly, for each
secondary index that is defined, an index subfile (i.e., an index
descriptor block and empty last level index block) are created.

CREATK can define additional secondary index subfiles once the basic file
has been defined, or can change the description of existing primaryor
secondary index subfiles. If the description of an existing index subfile
is modified, this is reflected only in the description in the file descriptor
subfile. The existing index is not affected and may continue in use until
it is convenient to use the REMAKE program to update the index subfile.
It is also possible to change the length of index subfile by changing
the segment length which can have the effect of making a MIDAS indexa eeedOe Se itive

subfile hold more entries.

CREATK may be used to determine the potential size of a MIDAS file based
on the maximum number of records to be stored in the file. Finally, CREATX
is used to examine the existing file to determine the number of entries
currently in each index or to display the parameters used to create the
file, such as key length, block length, data length and so on.

CREATK does not allow the user to destroy a MIDAS file that already exists.
If the operating system is properly configured, the file may be examined
and modified when the file is being used by more than one user.

Minimum Options

For most MIDAS files,theMINIMUM OPTIONSalternativeprovides a nearly
optimm file design. Users that mix storage module disks with other disk
types may need to change the block size for some files, from the default

size to a size that optimized access times.

2-1 November 1977

SECTION 2 PDR3061

If MINIMUM OPTIONS is selected, all keys have the same length as the full
key for the last level index. All index subfiles have their default length
specified in the SINSERT file named KPARAM (440 words, as delivered prior
to Revision 14; 1024 words thereafter).

Alternative Versions of CREATK

The standard version of CREATK, as delivered, is built to support
direct access but not long indexes. The user may build alternate
versions to enable or suppress these features. For details, see
SELECTING A VERSION OF CREATK at the end of this section.

CREATK DIALOG

Following is a step-by-step description of the basic CREATK dialog.
To assist the user in following the dialog, line numbers have been
assigned to each step. For every step requiring user response, all the
possible answers are shown. A "goes to" statement in parentheses,
following each response, indicates where the dialog resumes.

Note

All user input to CREATK must be in UPPER-CASE
letters only.

The CREATK dialog is also illustrated in flow-chart form in Figures 2-1
through 2-5.

Invoking CREATK

To cammence the CREATK program, the user types:

CREATK

at the terminal. CREATK responds with the first question of the dialog:

MINIMUM OPTIONS?

By replying YES to this question a shortened version of the CREATK dialog

is utilized.A NO response enters the expanded version of CREATK. The
expanded versionof CREATK is used when its optimizing capabilities are
required. (For full details see Appendix B.) This section deals only with
the MINIMUM OPTIONS path.

REV. 2 2 - 2

File Identification - Lines 0-4 (Figure 2-1).

Reviewing for a moment, a user desiring the MINIMUM OPTIONS CREATK dialog
would begin his terminal session as follows:

(Line 0) OK, CREATK (Goes to Line 1)
(Line 1) MINIMUM OPTIONS? YES (Goes to Line 2)

If the response to line 1 is NO, the CREATK dialog resumes on line 38, which
begins the expanded version. Any response other than either YES or NOis
invalid and the dialog repeats line 1.

Assuming a YES response to MINIMUM OPTIONS, the CREATK dialog resumes on
line 2 as follows:

(Line 2) FILE NAME (treename) (Goes to Line 3)
(other) : (Reveats Line 2)

The parameters enclosed in the brackets can either describe a pathname or
filename with options.

(Line 3) NEW FILE? YES (Goes to Line 4)
NO (Goes to Line 23)
other) (Repeats Line 3)
a

If the FILE NAME given in line 2 is a new file, the response to NEWFILE
is YES. If not, the user responds with NO and CREATK skips to line 23.
Assuming the response is YES, the dialog resumes on line 4.

Line 4 is optional and is skipped if this version of CREATK was built
without Direct Access support. If this is the case, the dialog would
resume on line 5. Assuming that Direct Access is supported by CREATK:

(Line 4) DIRECT ACCESS? YES (Goes to Line 17)
NO (Goes to Line 5)
(other) (Repeats Line 4)

2 - 3 November 1977

SECTICN 2

Cl]

C2)

C3]

C4]

CS]

PDR3061

USER TYPES:
CREATK

 (OTHER)

 (INVALID)

MINIMUM
OPTIONS

SEE APPENDIX B

 YES

USER TYPES:
CVolumename]
Ufd CPasswd]

C Ldisk] >Filename

 (OTHER)

NEWFILE

(OTHER)

CREATK
BUILT WITH

DIRECT ACCESS
SUPPORT

Figure 2~1. CREATK Dialog - File Identification

PDR3061 CREATK UTILITY

Data Subfile Questions - Lines 5-9 (Figure 2-2)

(Line 5) DATA SUBFILE QUESTIONS (Goes to Line 6)

No user reply is necessary in line 5. If the response to DIRECT
ACCESS is NO, CREATK defines the parameters for data subfiles in
lines 6 through 9. Parameters for Direct Access data subfiles are
defined in lines 17 through 22. Assuming that the file named by

FILE NAME is not for Direct Access:

(Line 6) KEY TYPE : (Goes to Line 7)

(Goes to Line 7)
(Goes to Line 8)
(Goes to Line 8)
(Goes to Line 8)
(Goes to Line 8)

other) (Repeats Line 6)

[c
ap

OO
]
A]

Hf
|

oo
—
,

There are six possible valid responses to line 6. Each indicates a
different key type. These key types are as follows:

Response in Key Type is:
Line 6 is:

A ASCII character string; the key length in bytes or words
must be supplied in line 7.

B Bit string; the key length in bits or words must be

supplied in line 7.
I Signed Short Integer
L Signed Long Integer
S$ Single Precision Floating Point
D Double Precision Floating Point

Key types A and B require that key length be specified, as they have
no predetermined length. Key length is defined to CREATK in line 7.
Numeric key types I, L, S and D do not require such specification as
their respective lengths are known by definition. If the response to
line 6 is either A or Bthe dialog resumes on line 7 as follows:

(Line 7) KEY SIZE= :B (Number of bits/bytes) (Goes to Line 8)
W (Number of words) (Goes to Line 8)
(other) (Repeats Line 7)

KEY SIZE requires two specifications. The first indicates the unit of
measure for the key. Either B (bits or bytes) or W (words) can be used.
This specification is followed by a space and then the KEY SIZE. For
example to indicate a KEY SIZE of 32 bytes, the user would type the
following in line 7:

KEY SIZE= :B 32

2 - 5 November 1977

SECTION 2 PDR3061

B (numberof bits or bytes)

C5]

(61 I/L/D/S

(OTHER)

[7] KEY SIZE:

W(No of wds)

(OTHER)

[8]

[9] |
(OPTIONAL) |

| YES

END OF -DATA
SUBFILE QUESTIONS
FOR PRIMARY

c10]

Rtn (ref variable
length data)

Figure 2-2. CREATK Dialog - Data Subfile Question

PDR3061 CREATK UTILITY

The CREATK dialog resumes on line 8 as follows:

(Line 8) DATA SIZE= : (Number of words in entry) (Goes to Line 9)

(CR) (Goes to Line 9)
(other) (Repeats Line 8)

DATA SIZF refers to the length of the data record in the data subfile.

Size is expressed in words and refers to the data entry portion of data

record only. It does not include other data subfile fields, such as

control words or the primary key value. Typing a CRin line 8 indicates

that there are variable length data entries. In either case the dialog

resumes on line 9 as follows:

(Line 9) DOUBLE LENGTH INDEX? YES (Goes to Line 10)
NO (Goes to Line 10)
(other) (Repeats Line 9)

The YES response indicates that a long index is desired. Long indexes
are described in detail at the end of this section under SELECTING A

VERSION OF CREATK.

Line 9 is optional, and in either case the dialog resumes on line 10.

2 - 7 November 1977

SECTION 2 PDR3061

Secondary Index Questions - Lines 10-16 (Figure 2-3)

(Line 10) SECONDARY INDEX (Goes to Line 11)

There is no user input required in line 10.

(Line 11) INDEX NO.? (number from 1 to 19) (Goes to Line 12)

(CR) (Goes to Line 22)
(other) (Repeats Line 11)

If there are going to be SECONDARY INDEX subfiles, the number of these files
to be buile is defined in line 11. Typing a number from 1 to 19 following
INDEX NO defines the index number to CREATK. After all the SECONDARY INDEX
questions have been answered, CREATK will loop back to line 11 to see whether
there are more SECONDARY INDEX subfiles.

Typing a (CR) in line 11 indicates either that there are no SECONDARY INDEX
subfiles, or that there are no more. Assuming that there is at least one
SECONDARY INDEX, the dialog resumes on line 12 as follows:

(Line 12) DOUBLE LENGTH INDEX? YES (Goes to Line 13)
NO (Goes to Line 13)

(other) (Repeats Line 12)

Line 12 is optional, depending on the version of CREATK. In either case
the dialog resumes on line 13 as follows:

(Line 13) DUPLICATE KEYS PERMITTED? YES (Goes to Line 14)

NO (Goes to Line 14)
(other) (Repeats Line 13)

(Line 14) KEY TYPE (Goes to Line 15)

(Goes to Line 15)
(Goes to Line 16)

(Goes to Line 16)
(Goes to Line 16)
(Goes to Line 16)
(Repeats Line 14)A|

W)
O
y
H
y
>
|

O 5 5

There are six possible valid response to Key TYPE. Refer to the list follow-
ing line 6 for a full explanation. Key types B and Arequire a key length
to be specified. Key types I, L, D and S do not. The key length, when
required, is entered on line15. 7

(Line 15) KEY SIZE = :B (Number of bits or bytes) (Goes to Line 16)
W (Number of words) (Goes to Line 16)
(other) (Repeats Line 15)

The KEY SIZE reguries two specifications, Refer to the explanation following
line 7,

REV. 9 2-8

Cio0J

Cid

Ci2]

(OPTIONAL)

CIS]

CI4]

C15 3

Ci6]

CI7 3

Figure 2-3.

PDR3061 CREATK UTILITY

(OTHER) 1

INDEX Rtn ON
NO PRIMOS

TT— ~~ (1/273/---/19)

(OTHER)

| DOUBLE NO
LENGTH INDEX

| YES
—_——

(OTHER)

DUPLICATE
KEYS NO

PERMITTED
?

(OTHER)

(OTHER) I/L/D/S

ss oom
(OIMER)

 DATA SIZE=

(No of Words)

CREATK Dialog - Secondary Index Questions

2 - 9 November 1977

SECTION 2 PDR3061

(Line 16) SECONDARY DATA SIZE= : (Number of words) (Loops back to Line 10)

(CR) (Loops back to Line 10)

(other) (Repeats Line 16)

SECONDARY DATA SIZE refers to the length of the data entry included along

with the key. Size is expressed in words. A response of either gor

(CR) indicates that there is no SECONDARY DATA.

Reviewing for a moment, the preceding 13 lines dealt with files without

Direct Access support. If instead on line 4 the response is YES the

CREATK dialog would resume at line 17. The following four lines deal

specifically with files set up for Direct Access.

PDR3061 CREATK UTILITY

Data Subfile Questions - Lines 17-22 (Figure 2-4)

(Line 17) DATA SUBFILE QUESTIONS (Goes to line 18)

No response is necessary in line 17.

(Line 18) KEY TYPE :B (Goes to Line 19)
(Goes to Line 19)
(Goes to Line 20)
(Goes to Line 20)
(Goes to Line 20)
(Goes to Line 20)

other) (Repeats Line 18)
f
A
J
O
P
O
H
]

D
I

—

There are six possible valid responses to line 18. Refer to the list
following line 6 for a full explanation. Key types B and Arequire
the key length to be specified. Key types I, L, D and S donot. When
required the key length is specified in Line 19.

(Line 19) KEY SIZE= :B (Number of bits or bytes) (Goes to Line 20)
W (Number of words) (Goes to Line 20)
(other) (Repeats Line 19)

KEY SIZE requires two specifications. Refer to the explanation
following line 7.

(Line 20) DATA SIZE= : (Number of words in entry) (Goes to Line 21)
(CR) (Goes to Line 21)
(other) (Repeats Line 20)

DATA SIZE refers to the length of the data record in the data subfile.
Size is expressed in words and refers to the data entry portion of the
data record only. It does not include other data subfile fields, such as
control words or the primary key value. Typing a CR in line 20 indicates
that there are variable length data entries.

(Line 21) NO OF ENTRIES TO ALLOCATE? (Numeric) (Goes to Line 22)
(other) (Repeats Line 21)

(Line 22) DOUBLE LENGTH INDEX? YES (Loops back to Line 10)
NO (Loops back to Line 10)
(other) (Repeats Line 22)

Line 22 is optional, depending on the version of CREATK. In either case
the dialog loops back to line 10 for additional SECONDARY INDEX specifi-
cations.

2 - di November 1977

SECTION 2 PDR3061

DATA
SUBFILE

Ci7] QUESTIONS (FOR DIRECT ACCESS)

[(OTHER)

C18] I/L/D/S

(OTHER

:B (No of Bits or Bytes)
C19]

W (No of Words)

(OTHER)

C20]

| (No of Wordsin entry)

(OTHER)

Ceti

C22]

(OPTIONAL)

Figure 2-4. CREATK Dialog - Direct Access Questions

REV. @ 2 ~- 12

Existing File Modification - Lines 23~36 (Figure 2-5)

PDR3061 CREATK UTILITY

Reviewing for a moment, lines 4 through 22 dealt with new files only.
If the response in line 3 is:

NEW FILE? NO
——

the CREATK dialog would resume on line 23.
MINIMUM OPTIONS dialog deals with operations performed on existing
MIDAS files.

(Line 23) FUNCTION?

There are twelve valid responses to FUNCTION;

MODIFY

ADD —
DATA

PRINT
HELP

FILE

QUIT

USAGE

LUSAGE

VERSION

EXTEND

SIZE

(other)

The remainder of the

(Goes to Line 24)
(Goes to Line 26)
(Goes to Line 27)
(Goes to Line 28)
(Goes to Line 30)
(Goes to Line 31)
(Returns to PRIMOS)
(Goes to Line 32)
(Goes to Line 33)
(Goes to Line 34)
(Goes to Line 35)
(Goes to Line 36)
(Repeats Line 23)

each is described below.

November 1977

SECTION 2 PDR3061

[(OTHER)

 [23]

LEGAL CREATK FUNCTION

FUNCTION
PERFORMSTASK;
POSSIBILITIES
ARE:

C24] C25], [26]

EXTEND

C27] [28]

£30] C31]

[32]

C34] [33]

[35] C36]i

Figure 2-5. CREATK Dialog Conclusion

REV. @ 2 - 14

PDR3061 CREATK UTILITY

QUIT Function

QUIT terminates CREATK and returns the user to PRIMOS command level. A
(CR) or a blank in response to a dialog prompt message has the same
effect.

QUIT is executed by typing QUIT to the FUNCTION question on line 23.
Once QUIT has been executed,reentry intoCREATK can only be accomplished
by a full restart.

(Line 24) INDEX NO.? (A number fram 1-19) (Goes to Line 25)
(CR) (Returns to PRIMOS)
(other) (Repeats Line 24)

MODIFY Function

MODIFY enables a user to change specific parameters and/or data from a
specified INDEX. Modifications supported include:

Change block length
Add data
Remove data
Change key lengths (All index levels except last)
Change support of duplicate key occurrences.
Change index to long index (if supported by the CREATK
version in use).

*

O
V

O
l
m
W
N
!

(Line 25) The remainder of the MODIFY (Returns to Line 23)
dialog is similar to adding either
a primary or secondary index subfile
except KEY SIZE may not be modified.
If no subfile exists to be modified,
an error message is displayed.

ADD Function

(Line 26) The ADD dialog adds a secondary index to (Returns to Line 23)
an already existing file. The ensuing
dialog is similar to creating a secondary
index (Lines 10 through 16). If the
secondary index already exists, an error
message is displayed.

2 - 15 November 1977

SECTION 2 PDR3061

DATA Function

(Line 27) Data may be redefined with the DATA (Returns to Line 23)

function. The length of a data entry may
be made shorter or longer. The DATA
dialog is similar to the data subfile

questions (Line 17).

PRINT Function

(Line 28) INDEX NO.? (Number fram 1 to 19) (Goes to Line 29)

(DATA) (Goes to Line 29)

(other) (Repeats Line 28)

(Line 29) The current configuration of the (Returns to Line 23)

specified subfile is displayed. The

configuration is taken from the file

descriptor subfile.

The PRINT fumction enables the user to obtain various descriptions of the

index structures. For index subfiles, the following information is

provided by PRINT:

. Number of segments allocated

Index capacity (entries which can be indexed - Rev 14)

Key type

Number of index levels (as of last REMAKE)

For each level of indexing:

- Block size
Key length

- Number of control words

— Maximum number of entries per block

- Length of an index entry

~ Number of blocks in the level (as of last REMAKE)

U
m
W
N

F
e

ss
¢

e¢
#@

For data subfiles, the following information is provided by PRINT:

1. File type (Keyed Index or Direct Access)

2. Number of index subfiles defined

3. Number of entries indexed (as of last REMAKE)

4, Entry size
5. Key size

REV. @ 2 - 16

(Line 30)

(Line 31)

(Line 32)

(Line 33)

(Line 34)

PDR3061 CREATK UTILITY

HELP Function

HELP prints a summary of CREATK functions (Returns to Line 23)
at the users terminal.

FILE Function

The FILE function allows specification (Returns to Line 2)
of a new working file without leaving
and reentering CREATK. FILE specifies
that the old file is to be closed and
a new session may begin in the new file.
CREATK resumes the dialog at the NEW
FILE question on line 2.

USAGE Function

The USAGE function allows the user to (Returns to Line 23)
display the number of records currently
available through any defined index. The
number of records are displayed as;
ENTRIES INDEXED, ENTRIES IN OVERFLOW and
ENTRIES DELETED. These values are summed to
provide the TOTAL ENTRIES IN FILE,
Additionally, the number of blocks in
overflow and the length of the longest
overflow chain are displayed if these
are nonzero.

LUSAGE Function

The LUSAGE function provides the same (Returns to Line 23)
information as USAGE. It also prints
additional information concerning the
version of MIDAS last used to modify the
file (Revision 12 or later).

VERSION Function

The VERSION function displays the (Returns to Line 23)
version of MIDAS used to create the
file, and the version of CREATK
used to create the file and the
parameters used.

2 - 17 November 1977

SECTION 2 PDR3061

EXTEND Function

(Line 35) The EXTEND function allows the user to
change the length of the segment and/or
segment directory. The user is asked
the length of the segment directory in
words and the length of each segment in
words. If either @ or (CR) are supplied,
the default values in effect for CREATK
are used.

The length of a segment directory for a MIDAS file has previously been
set to 440 segments. As of revision 14 this has been changed to 512
segments. The main reason for changing the length of the segment
directory is to increase the size of the data subfile. The data
subfile begins in segment 185, hence the size of the data subfile is
(segdir length - 185) *segment length. There is no need to increase
the length of the segment directory if there is sufficient data
subfile space.

The length of a segment is expressed in words. Prior to revision

14, seaqments held 193600 words. As of revision 14 the default

length is 524288 words. The shorter length assumed 440 word

disk records, the longer 1024 word disk records. This length may

be changed so that a user may increase the capacity of a file

or optimize a file for the type of disk containing it.

The main reason for changing the length of a segment is to increase

the size of an index. This change is then implemented across all

segments in the file, however. Note that as of revision 12, all

DAM files are fully indexed so DAM files never go into SAM mode, so

increasing the length of a segment does not slow down the file.

REV. @ 2 - 18

PDR3061 CREATK UTILITY

SIZE Function

(Line 36) NUMBER OF ENTRIES: (numeric) (Line 37)

(Line 37) INDEX: (Number from 0-19) (Returns to Line 23)

(DATA) (Returns to Line 23)

(TOTAL) (Returns to Line 23)

SIZE allows the user to specify an anticipated number of entries for
a file. CREATK determines the number of segments and disk records
required for any single index, the data subfile or the whole file.

If a number from 0 to 19 is specified only that index is displayed.
The following information is provided:

1. Number of disk blocks (440 and 1024 word)
2. Number of segments reauired to contain index blocks
3. Number of segments allocated for the index

For the data subfile the following information is provided:

1. Number of disk blocks (440 and 1024 word)
2. Number of segments required to contain index blocks
3. Number of segments allocated for the index

For the total file the following information is provided:

. Number of disk blocks (440 and 1024 word)
Number of segments required to contain index blocks
Number of segments allocated for each index subfile
Number of segments allocated for the data subfile
Total of all index subfiles and the data subfilei

i
m
W
h

e
H

e
*

e
e

2 - 19 November 1977

SECTION 2 PDR3061

SELECTING A VERSION OF CREATK

CREATK Options

CREATK has two optional features that are determined when it is built.

Direct access support may be suppressed, and long indexes (for very

large files) may be included. In either case, CREATK must be rebuilt

with the appropriate command file to incorporate or remove the option.

As delivered, CREATK is created by the command file C<CREA and supports

direct access but does not support long indexes.

Direct Access Support

In general, Direct Access support adds about 300 words to any MIDAS

applications program that includes it. If the user decides that this

support is unnecessary, KIDALB and/or VKDALB may be rebuilt and CREATK

rebuilt with either C+CREA (no long indices) or C+LCRE (with long indices).

Long Indexes

Users with very large files may find that there is not enough room in

some index subfiles to contain index entries for all data entries to be

indexed. This can be overcome by permitting indexes requiring more

space to use two adjacent index positions, i.e., to create a long index.

The implications of a long index are that one potential index subfile is

lost for each index created as a long index. For example, if index-

Subfile-0 is declared to be a long index, then the first available

secondary index is index-subfile-2.

For MIDAS Rev. 14 and later, the size of an existing index subfile may

be increased by increasing the length of the segments making up the index

and REMAKEing the file with this new length. (See Section 4 for further

information). Other users must use the long index feature as described

below.

If the user discovers that the default index-subfile size is too small,

after a file already has data in it, the long index feature may be invoked

on that index-subfile if the next available position in the MIDAS file

segment directory index-subfile is free. If the next index-subfile

position is not free, one solution is to move the affected index-subfile

further down the list of secondary-indices where two index-subfile positions

are available and to recode applications using the index-subfile position

to reflect the new index number requested by CREATK.

To clarify this concept, consider as an example that secondary-index-1l
is running out of roam and there is no secondary-index-2. The solution
would be to invoke the long index version of CREATK on the file and to
modify the description of secondary-index-1 to make it a long index.
On the other hand, suppose there are secondary-indexes 2, 3, and 4. The
only possibility in this case is to write a program to build a new
secondary-index-5 (created as a long index) fran old secondary-index-l.

REV. @ 2 - 20

PDR3061 CREATK UTILITY

All programs using secondary-index-l have to modified to use secondary-
index-5.

CREATK DEFAULTS

At Rev. 14, some of the default values for CREATK enhance support for
storage modules. In particular, the default size for an index block

has been changed to 1024 words, the length of the segment directory has
been changed to 512 segments and the length of a DAM file to 512 disk
records. Users with no storage modules who prefer the other defaults
can easily build a suitable MIDAS by modifying the parameter file
KPARAM. In any case, this does not affect existing MIDAS files. They
continue with the same block sizes, etc. that they were created with.
To convert existing files to new default block sizes, run each index
through the MODIFY path of CREATK and respond to the BLOCK SIZE query
with a (CR).

2 - 21 November 1977

PDR3061 KBUILD UTILITY

SECTION 3

KBUILD UTILITY

KBUILD FUNCTIONS

KBUILD is a utility that may be used to build a MIDAS file from one or
more sequential disk files. KBUILD may also be used to add data records

to an existing file.

The MIDAS file created by KBUILD will have no index information in

overflow upon completion of the run,

The incoming data may be unsorted, or sorted on the primary key and/or
one or more secondary keys. The user is asked if, and how, the input
data is stored, and KBUILD makes use of this information to build the
file more efficiently. When adding to an existing MIDAS file, the input

file must be declared to be unsorted.

Note

The program KBUILD cannot be used to process
variable-length data, either as input information
or for creation of a variable-length data MIDAS

file. Use the MIDAS subroutine BILDSR, or PRIBLD and

SECBLD, to process variable-length data.

KBUILD can build secondary-index-subfiles with no secondary data in
the associated data record. For detailed information, refer to
"Specifying Secondary Indexes" in this Section.

Keys associated with the secondary indexes (secondary keys) do not have
to be included in the data entries. To exclude secondary keys, they must
occur following the data portion of the input data entry. Secondary keys
are then truncated fram the end of the entry, before the entry is
written to the MIDAS file.

If only secondary indexes are to be built, the user has the choice of
adding one or more secondary indexes either from information contained
in the MIDAS file itself, or of providing the required keys from a

sequential disk file.

Existing data records cannot be modified with KBUILD. However, new
records may be added to an existing file with KBUILD. The technique
to do this is discussed in the latter part of this section.

3-1 November 1977

SECTION 3 PDR3061

KBUILD always builds a MIDAS file with at least one secondary index
record in each secondary index subfile for each data entry; i.e., as
each data entry is written, a secondary index record is also written to
each secondary index subfile. However, it is not necessary to build all
secondary indexes with KBUILD. A sparse secondary index can be built
later, either with a user program or by KBUILD using a sparse input file.
("Sparse" implies fewer index entries than data entries.)

KBUILD DIALOG

Following is a step-by-step walk-through of the KBUILD dialog. To assist
the user in following the dialog, line numbers have been assigned to each
step. For every step requiring user response, all possible answers are
shown. A "goes to" statement in parentheses, following each response,
indicates where the dialog resumes. The entire dialog is summarized in
Figures 3-1 through 3-3.

To cammence KBUILD, the user types:

KBUILD

at PRIMOS command level. KBUILD then returns with the first question of
the dialog as follows:

(Line 1) SECONDARIES ONLY? YES. (Goes to Line 2)

NO (Goes to Line 4)

(OTHER) (Repeats Line 1)

(Line 2) USE KI/ DA DATA ENTRIES? YES (Goes to Line 3)
NO (Goes to Line 4)
(OTHER) (Repeats Line 2)

(Line 3) ENTER KI/DA FILENAME: FILENAME (Goes to Line 10)

(Line 4) ENTER INPUT FILENAME: FILENAME OR TREENAME (Goes to Line 5)

(OTHER) (KBUILD aborts)

CAUTION

Invalid responses in lines
4, 5 and 8 will cause KBUILD

to abort. The user will be
returned to PRIMOS command

level.

(Line 5) ENTER INPUT RECORD LENGTH: (WORDS) (Goes to Line 6)

(NUMERTC=512) (Goes to Line 6)
(OTHER) (KBUILD aborts)

REV. @ 3 - 2

Cl]

[2]

C3]

r
a

b ta
t

C5]

Figure

PDR3061

NO.SECONDARIES
ONLY

YES

USE —-
KI/DA_ DATA
ENTRIES ,

 YES

ENTER
KIDA NAME FILENAME OR TREENAME

(invalid) (invalid)

ENTER
INPUT FILE

NAME

 VALID FILENAME
OR TREENAME

(invalid)

3-1. KBUILD Dialog (Lines 1-5)

KBUILD UTILITY

November 1977

SECTION 3 PDR3061

(SEE PART A) (SEE PART A)

©)
numeric=512

c6] COBOL

(OTHER)

BINARY OR TEXT

ENTER
[7] NUMBER OF

INPUT FILES:

(OTHER)

C8]

VALID FILENAME
OR TREENAME

[9]

minimum
!-19

C10] SECONDARY
KEY NUMBER:

Figure 3-2. KBUILD Dialog (Lines 6-10)

REV. g 3 - 4

Cild

Cla]

CI3]

" & ha
d

CI5I

0
m Go !

C17]

PDR3061 KBUILD UTILITY

(invalid)

 ‘YES OR CR

(invalid)

IS
PRIMARY KEY

SORTED

 YES OR CR

OF SECONDARY
SORT KEY:

@ OR CR

NUMBER

OR RECORDSIN
INPUT FILE

(numeric 7 digits) , ENTER .
LOG/ERROR FILE

NAME

FILENAME OR TREENAME

ENTER
MILESTONE
COUNT

numeric or B

KBUILD
PROGRAM

BUILDS FILE

3-5 Novernber 1977

SECTION 3 PDR3061

(Line 6) INPUT FILE TYPE: (T OR TEXT) (Goes to Line 7)

(C OR COBOL) (Goes to Line 7)

(B OR BINARY) (Goes to Line 7)
(OTHER) (Repeats Line 6)

(Line 7) ENTER NUMBER OF FILES: (NUMERIC) (Goes to Line 8)

(Line 8) ENTER OUTPUT FILENAME: FILENAME OR TREENAME(Goes to Line 9)

(OTHER) (KBUILD aborts)

(Line 9) ENTER STARTING CHARACTER POSITION ’

PRIMARY KEY: (NUMERIC) (Goes to Line 10)

(Line 10) SECONDARY KEY NUMBER: (NUMBER 1 to 19) (Goes to Line 11)
(8 or CR) (Goes to Line 12)

(Line 11) ENTER STARTING CHARACTER POSITION:

(NUMERIC) (Goes to Line 10)

(Line 12) IS FILE SORTED? YES OR CR (Goes to Line 13)

NO (Goes to Line 16)
(OTHER) (Repeats Line 12)

(Line 13) IS THE PRIMARY KEY SORTED? YES OR CR (Goes to Line 14)

NO (Goes to Line 14)
(OTHER) (Repeats Line 13)

(Line 14) ENTER INDEX NUMBER OF SECONDARY

SORT KEY: (NUMERIC) (Loops back to Line 13)

(@ OR CR) (Goes to Line 15)

The loop will continue until the user responds to line 14 with either
a zero or a CR. This signifies the last index.

(Line 15) NUMBER OF RECORDS IN INPUT FILE:

(NUMERIC 7 DIGITS) (Goes to Line 16)

(Line 16) ENTER LOG ERROR FILENAME: FILENAME OR TREENAME

(Goes to Line 17)

(Line 17) ENTER MILESTONE COUNT: (NUMERIC, or @) (Exits)

Following line 17 the program exits to the KBUILD file building program.

INPUT FILES

The following paragraphs describe the contents of input files to KBUILD
and give example input file formats for use with FORTRAN and COBOL. The
input stream to KBUILD may come from one or more disk files. The file
names may be supplied to KBUIID as a treename. Multiple input files
are processed sequentially, one at a time.

REV, @ 3-6

PDR3061 KBUILD UTILITY

If more than one input file is to be processed, the name of the first
file must end in two digits and additonal files must have the same nane,
but with the number at the end incremented. For example, to use three
input files in a UFD named BUILD, the first of the input files could be
called INP@1, the second file would be called INP§@2, and the third INP#3.
If the user is not attached to the UFD names BUILD, then the name
specified to KBUILD to identify all three files would be BUILD>INP#1.
File names may be more than six characters on new style PRIMOS file
system partitions. (Rev. 14 and later.)

Sorted Input Files

Input data may be sorted on one or more key fields, one of which may be
the primary key. At run time, the user specifies whether the file is
sorted. If so, faster routines can be used to build the indexes
(including the primary index) corresponding to the sorted key fields,
An example of a file with sorted key fields is a file that was being
built with a second copy of the primary index as a secondary index for
security reasons. If the incoming data were sorted on a primary key,
then it is also sorted on the key of the duplicate index. If the file
is declared sorted, the user is asked to supply the numbers of the keys
on which the file is sorted and the number of entries in the input file.

Note

Even if the input data is sorted, if KBUIID is
being used to add to a file the input file must
be declared unsorted. If the file is declared
sorted, all index subfiles that correspond to
the sorted keys contain only the new records.

Format of Input Data Files

KBUILD processes input files that are either in text file format (TEXT),
binary format (BINARY), or COBOL format (COBOL).

In TEXT format, the data is entirely in character form. The input file
may be created, examined or modified by the PRIMOS Text Editor. Text
files are created by FORTRAN WRITE statements and COBOL programs.

A BINARY file may contain text information, but the end of a record is
not determined by the presence of a new-line character. Other data types,
such as integer or floating point numbers, can be included in the data
record. A binary file can not normally be examined by the Editor. Binary
files can be created using the PRIMOS file system subroutines PRWFIL or
PRWESS. They can be accessed by FORTRAN programs but not by COBOL or
RPG programs.

COBOL data files must be in TEXT format but with the primary key as the

first field in the data entry.

3-7 November 1977

SECTION 3 PDR3061

Format of Input Data Records

The input record must be already formatted for placement in the MIDAS
file. The data portion of the MIDAS record must be the first part of
the input data record. The primary key may be included in the data
portion of the MIDAS record. COBOL requires this and also requires
that the primary key be the first field in the MIDAS data entry.
Ordinarily, however, it is not necessary for the user to keep a
separate copy of the primary key since MIDAS keeps a copy with the
data and can return its copy to the user upon request. The primary key
must be included in the input data record. If not a part of the user's
data, the primary key must follow in the area of the input data record
that will not be written out to the MIDAS file.

There are no further requirements for the format of the input data
record, except that the portion to be included in the MIDAS file must
be the exact image of the MIDAS data record, and the data in the input
file must correspond to either TEXT or BINARY format.

Specifying Secondary Indexes

KBUILD can build secondary index-subfiles with no secondary data in the
associated data record and in which there is a secondary index subfile
for each data record. It is not necessary to build any or all secondary
index subfiles with KBUILD. At rum time, the user specifies which
index subfiles are to be built and the byte offset (character position)
within the input data record of the secondary key field. To indicate
that there are no secondary index subfiles or that the last index has
been processed, a carriage return (CR) is entered.

If the record is in binary format, the format of the data record must
be arranged so that all key values begin on a byte boundary (i.e. key
may begin either on Bit 1 or Bit 9 of a word). This happens automatically
if the record is in text format. If some secondarv keys are to be
excluded from the data in the MIDAS file, secondary keys must be placed
at the end of the input data record so that they may be truncated from
the record when it is written to the MIDAS file.

Input Record Length

The input record length is the length of the data entry in full as
it resides in the input file. The input record length must include the
length of the primary key, the length of the user's data, and the length
of any secondary keys not to be included in the data. Since KBUILD only
builds MIDAS files with fixed-length data entries, it is not necessary
to supply KBUILD with the length of the MIDAS record. MIDAS retains this
information in the file. Consequently, KBUITLD is able to truncate the
input data to its correct length without the user supplying this length.

At run time, the input record length is specified in computer words
(two characters per computer word).

REV. @ 3 - 8

PDR3061 KBUILD UTILITY

COBOL INPUT FILE EXAMPLE

Assume that COBOL user wishes to build a MIDAS file that has a 128
character (64 word) data entry. There will be four secondary index
subfiles, specified by four keys, three of which are parts of the
primary key, which is 29 bytes long. The offsets of these key fields
are:

Byte 1 - Primary key - as required by COBOL
Byte 2 - Secondary index 1, key length 28 bytes
Byte 2 - Secondary index 2, key length 6 bytes
Byte 9 - Secondary index 3, key length 6 bytes

Note that these secondary keys are portions of the primary key.

The fourth secondary key begins on byte 52. This key is ten
characters (bytes) long. Since MIDAS keeps track of the length
of each of the keys, the key lengths do not have to be supplied to
KBUILD. The data fields in the record’ that are not key fields are of
no interest to MIDAS: therefore, they are not described to KBUILD.
The user specifies COBOL format to KBUILD, and all 64 words in the
input data entry are written to the MIDAS file.

FORTRAN INPUT FILE EXAMPLE

Assume that another user wishes to build a MIDAS file to be accessed
only by FORTRAN applications. The data entry, not including the
primary key, will be 50 words long. Most of the information in the
file will be numeric fields that can be stored in floating point or
long integer format. The user has converted his data from its
original source and prepared an input data file. An input data
record is 63 words long and has the following format:

data words i through 50

primary-key words 51 through 61; key type is
character. The user will use the
MIDAS copy when retrieving the data
record so the key will not be
included in the user's data record.

secondary-key-1 words 62 and 63; key type is long
integer and is not required as part
of the data entry.

Seco —-key-3 words 1 through 4; key type is
double precision floating point
and is part of the data.

3-9 November 1977

SECTION 3 PDR3061

There is a second secondary index, but the user does not require an entry

in this index for every data record. He has decided to have the values

for this index entered as needed by the interactive applications

program that will normally process the file. KBUILD will write the 50

data words to the MIDAS file. Words 51 through 63, which contain key

information not to be included in the data, will not be included.

At run time, the user will specify the input file type to be BINARY.

These examples are further explained later in this section.

OUTPUT FILE

The specified output file must be a MIDAS file. If a new file is to

be built, these must be a template file created by CREATK. When building

a new file, use of an old MIDAS file (with data already in it) as the
output file results in a broken file containing some of the old

information as well as the new.

When specifying the name of a MIDAS output file, a treename may be

used and on new partitions, long names are also acceptable.

REPORT AND ERROR FILE

KBUILD reports nonfatal errors and milestone timings to the user both
on the user's terminal and to a og/ rror file. The user supplies the
name of this file at run time. The name may be a treename and may be
up to 32 characters long on a new partition.

REV. @ 3 - 10

PDR3061 KBUILD UTILITY

Milestone Reports

At run tine, the user enters a milestone count that is used as a
counter for printing a milestone time record. For example, if the
user enters a milestone count of 100 then every one hundred records,
a milestone time record is printed for the user's terminal and written
to the Report/Error file. If a milestone count of 0 is entered,
milestone records are only printed for the first and last records.

A sample milestone report for building a MIDAS file from an input file
named FILEO1, containing 103 records, with a milestone count of 50, is
shown as follows:

FILEOL
COUNT DATE TIME CPU MIN DISK MIN TOTAL T™ DIFF

0 05-23-77 12:34:52 0.000 0.000 0.000 0.000
50 05-23-77 12:38:06 0.384 0.179 0.563 0.279

100 05-23-77. 12:40:42 0.822 0.340 1.161 0.297
END OF RUN

103 05-23-77 12:40:56 0.882 0.354 1.236 0.074

The name of the input file FILEO] appears as the first line in the
report. This is followed by colum headers as follows:

Colum Contents

COUNT the number of entries processed (up to 231_1)
DATE and TIME date and time of entry (time hrs., mins., secs.)
CPU MIN minutes of CPU time used since start of mn

DISK MIN minutes of disk I/O time (including paging)
from start

TOTAL, T™ sum of disk and CPU time since start
DIFF increment in total time since last milestone

After the one-hundred-and-third record is processed, an end of file
is encountered, and the final line is preceded by the note: END OF RUN.

3 - 11 November 1977

SECTION 3 PDR3061

Report Records

In addition to the milestone report, other conditions generate a
report record and milestone type record. In particular:

In a milestone report, when opening a new input file, the new file
name is printed, for example:

FILE 02
COUNT DATE TIME CPU MIN DISK MIN ‘TOTAL T™ DIFF
103. 05-23-77 12:40:56 0.882 0.354 1.236 0.074

FILE HANDLER ERROR 12 (FILHER)

20007252277379027634500000000001222NE000009900117600000000DBLTO00
RECORD NOT ADDED

8 05-27-77 16:33:41 0.031 0.005 0.037 0.004

which indicates that the eighth record was not added because the entry
was already in the file (error code 12).

In a milestone report, when a secondary index entry is not added due
to an error input, a record is printed plus other descriptive text,
for example:

KEY SEQUENCE ERROR (KXSCHK)
20006775A10804027624000000000000013K0000009900160720000000DBLT000
SECONDARY KEY 02 NOT ADDED

5 05-27-77 16:10:54 0.041 0.021 0.062 0.010

which indicates that an entry was not added, either because there was a
duplicate occurance of a key in an index not supporting duplicate entries
or than an entry out of order was detected in a sorted input system.

Fatal errors are written to the log/error file before KBUILD aborts.

REV. 9 3 =- 12

PDR3061 KBUILD UTILITY

COBOL Program Example

The offsets of the secondary keys were discussed above. In addition
assume that there are three input files in the UFD named BUILD>INP@1.
INP#2, and INP#3. Assume that the input data is sorted on secondary
key 2 (six bytes of the primary key beginning in byte 2) but not on
key 1 (28 bytes beginning in the same location). In addition, among
the three input files, there are 23000 data records to add. The file
will be built into an existing MIDAS template file called ACCRCl.
The KBUILD interactive session would be as follows (user input is
underlined):

ENTER INPUT FILE NAME: BUILD>INP@1
ENTER INPUT RECORD LENGTH (WORDS): 64
INPUT FILE TYPE: COBOL
ENTER NUMBER OF INPUT FILES: 3
ENTER OUTPUT FILE NAME: ACCRC1
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 2
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 2
SECONDARY KEY NUMBER: 3 —
ENTER STARTING CHARACTER POSITION: 9
SECONDARY KEY NUMBER: 4
ENTER STARTING CHARACTER POSITION: 52
SECONDARY KEY NUMBER: (CR)
IS FILE SORTED? YES
IS THE PRIMARY KEY SORTED? NO
ENTER INDEX NUMBER OF SECONDARY SORT KEY:
ENTER INDEX NUMBER OF SECONDARY SORT KEY:
NUMBER OF RECORDS IN INPUT FILE: 23000
ENTER LOG/ERROR FILE NAME: ERRO1
ENTER MILESTONE COUNT: 1000

a
j

IZ

Suppose that at some future time, an input file INP@4 which has the same
description as INP@1, - 2, and -3 is to be added to the already existing
MIDAS file. The KBUILD session to add to the file would be as follows:

ENTER INPUT FILE NAME: BUILD>INP@4
ENTER INPUT RECORD LENGTH (WORDS): 64
INPUT FILE TYPE: COBOL
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILE NAME: ACCRC1
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 2
SECONDARY KEY NUMBER: 2
ENTER STARTING CHARACTER POSITION: 2
SECONDARY KEY NUMBER: 3
ENTER STARTINGCHARACTERPOSITION: 9
SECONDARY KEY NUMBER: 4

~
J

~
Ji3 - 13 November 19

PDR3061 KBUILD UTILITY

ENTER STARTING CHARACTER POSITION; 52
SECONDARY KEY NUMBER: (CR)
IS FILE SORTED? NO
ENTER LOG/ERROR FILE NAME: ERRO2
ENTER MILESTONE COUNT: 1000

The FORTRAN Program Example

As additional information for the FORTRAN example described above,
suppose the file is sorted on the primary key only, that there is one
input file containing 10100 entries called FILEO1 in the current UFD
and that the output file is a MIDAS template file called CUSTFIL.KIDA
which is on a new partition UFD called NEWPAR. The error file
ERRFIL.KIDA will also be written to this UFD. The following is an
example for FORTRAN (user input is underlined):

ENTER INPUT FILE NAME: FILEO1
ENTER INPUT RECORD LENGTH (WORDS): 63
INPUT FILE TYPE: B a
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILE NAME: NEWPAR CUSFIL.KIDA
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 51
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION:
SECONDARY KEY NUMBER: 3
ENTER STARTING CHARACTER POSITION:
SECONDARY KEY NUMBER: (CR)
IS FILE SORTED? (CRLF)
IS THE PRIMARY KEY SORTED? (CR)
ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
NUMBER OF RECORDS IN INPUT FILE: 10100
ENTER LOG/ERROR FILE NAME: NEWPAR ERRFIL.KIDA
ENTER MILESTONE COUNT: (CRLF=0)

[t
he

(
2 aa
)

3-14 November 1977

PDR3061 REMAKE UTILITY

SECTION 4

REMAKE FUNCTIONS

REMAKE is invoked to restructure a MIDAS file. Restructuring is
required when the user has added or deleted a large number of data entries
or secondary index entries, using ADD1$ or DELETS. New entries are added
into overflow areas, and when these areas becone large, searching becomes
very inefficient. Furthermore, deleted entries represent empty space
on the disk, and reduce the file storage efficiency.

REMAKE has several options. Individual secondary indices may be
restructured, all indices may be restructured, all indices and the data
may be restructured, or the whole file may be restructured and rewritten
into a new file.

Restructuring an index causes the index to be builtwith all overflow
areas incorporated into the main body of the index and causes space
occupied by deleted index entries to be recovered. This is done within
the existing file structure. REMAKE must have enough space available
on the disk to make a temporary second copy of the largest index to be
restructured. If REMAKE aborts due to insufficient disk space, the
MIDAS utility KIDDEL (refer to Section 6) may be used to delete the
partially built replacement index. The file may continve in use until
sufficient disk space is available for REMAKE to run to completion.

When the data is restructured, all indexes are rebuilt, and in addition,
the data subfile is rebuilt with the data entries put into the data
subfile in sorted order on the primary key. Secondary indices must be
restructured during a data REMAKE, otherwise, the pointers into the
data subfile from these indices would be incorrect. Space occupied
by deleted data entries is recovered. In a data restructure, REMAKE

.
oswr one masses fenn Atal we Ae nan tha Atal anntatninn thea £21 an

K TYrecoros ; TiL.é asmist have as many free disk on the disk containing the
are required by the data-subfile and the primary-index. If REMAKE
aborts due to insufficient disk space while restructuring the data and
primary-index, the file may be recovered, and the data REMAKE tried again
when more disk space is available. Alternately, the file may be rebuilt
into a new file on another disk.

If the file is rebuilt into a new file, REMAKE creates a new template
for the file, if no template exists. If a template exists with the
new name, it is used. If the new template differs from the old (for
example if the length of the data entry is changed), the values in the
new template are used to describe the new file. If the template is an
old MIDAS file (with data already in it), REMAKE cleans out the old
information before inserting the new.

When therestructure of a MIDAS file is complete, allmodifications to
the subfiles that have been implemented using CREATK (or other means)
are incorporated into the restructured MIDAS file.

4-1 November 1977

SECTION 4 PDR3061

REMAKE DIALOG

Following is a step-by-step description of the REMAKE dialog. To
assist the user in following the dialog, line numbers have been
assigned to each step. For every step requiring user response, all thepossible answers are shown. A "goes to" statement in parentheses,
following each response, indicates where the dialog resumes.

To start REMAKE, type:

REMAKE

at PRIMOS command level. REMAKE returns with the first question of the
dialog as follows:

(Line 1) FILE NAME? (treename or filename) (Goes to Line 2)
(other) (Repeats Line 1)

(Line 2) INDICES? DATA (Goes to Line 3)
ALL (Goes to Line 3)
NEW (Goes to Line 4)
(1 to 20 numeric fields (0 to 19)
separated by spaces) (Goes to Line 3)
(other) (Repeats Line 2)

Typing DATA in line 2 causes REMAKE to recreate all index subfiles and
the data. REMAKE requests verification before proceding as this
procedure cannot be aborted. ALL orders the REMAKE of all defined
indexes according to the existing data subfile. To REMAKE an existing
file into a new file use NEW. The new file can be on another logical
disk. To specify which index subfiles are to be recreated, type the
number(s), separating each field by a space.

(Line 3) DONE EXIT (Returns to PRIMOS)

(Line 4) NEW FILE NAME? (filename or treename) (Goes back to Line 3)

(other) (Repeats Line 4)

PDR3061 REMAKE UTILITY

When the specified recreation(s) are complete, REMAKE displays DONE
on the user's terminal and returns to PRIMOS.

Notes

The response D or DATA causes REMAKE to ask the
user to verify that he wishes to continue. Upon
completion of the procedure, all index subfiles
and the data have been recreated. The user may

not abort this procedure.

The response A or ALL results in recreation of
all the defined indices according to the existing
data subfile.

REMAKE restructures the entire existing file with
the new name. The file may be on another logical

disk.

One or more numeric fields cause only the index
subfiles specified to be recreated.

4-3 November 1977

SECTION 4

PDR3061

VALIO FILENAME
OR TREENAME

DATA

(invalid)4

(OTHER) ,

NEW

FILENAME

RECREATE ALL
RESTRUCTURE DEFINED INDEXES

EXISTING FILE ACCORDING TO

INTO NEW FILE EXISTING

DATA SUBFILE

!T0 20
NUMERIC
FIELOS
0 -I9

RECREATE
SPECIFIED

INDEX
SUBFILES ONLY ‘

DO
YOU WISH TO

REBUILD

WHOLE FILE

Figure 4-1. REMAKE Dialog

4-4

PDR3061 REPATR UTILITY

SECTION 5

REPATR UTILITY

REPATR is a utility moduie that may be used in an attempt to repair a
MIDAS file that has been damaged by a svstem or MIDAS program crash.
The REPAIR program constructs a new MIDAS file from any portions of the
damaged file that can be interpreted correctly.

There is no guarantee that REPAIR can completely restore a damaged file.
It cannot recover file damage resulting from a disk failure (or user
program failure) that has overwritten, deleted or removed information
from a file by truncation (e.g., by FIXRAT). In some instances, most
of the file is usable, but because of the damaged section, cannot be
accessed through the MIDAS routines or utilities. When a problem such
as this exists, REPAIR prints a message at the user's terminal (and into
a file) indicating where data is missing from the damaged file. However,
REPATR can recover the usable portions of the damaged file.

At run-time, the user may choose to attempt to recover the whole file
(the primary index subfile plus data and all secondary index subfiles),
or just the primary index subfile and data plus selected secondary
index subfiles. This option is useful if alternative means are available
for creating secondary index subfiles, and it is prefered to insure that
no secondary index entries are missing from data entries recovered.

PRINCIPLES OF REPAIR OPERATION

REPATR requires mma innit fila ftthe damage MTNAS File), and two outnues one input file (tt ed MIDAS file) 1d two output
files: a MIDAS template file and an error logging file. There is no
assurance that the template portion of a damaged file is intact. There-
fore, before using REPAIR, you must rum CREATK and generate a new template
file identical to the original template. (Just run your original CREATK
dialog command file.)

REPAIR asks for the physical disk record length (440 or 1024 words) so
that it has the best chance to handle defective disk records. REPAIR
also allows the user to specify which secondary index subfiles are to
be recovered. REPAIR reauires sufficient disk space of the same or another
disk to build a new copy of the file. After the initial dialog, the
REPAIR program constructs a new MIDAS file from all portions of the
damaged file that can be correctly intepreted. Valid data entries
which simply cannot be accessed by MIDAS are recovered. Overwritten,
deleted, or truncated data cannot be retrieved. REPAIR does not use the

normal data access routines, and therefore is able to retrieve information

that is no longer accessible through MIDAS routines and utilities.
REPAIR builds a new MIDAS file using the new template and what exists

of the old file.

5-1 November 1977

PDR3061 REPAIR UTILITY

REPAIR is a multi-pass program operating on the MIDAS subfiles in

this order:

Primary Index
Primary Index Overflow
Data Entries
Secondary Index 1
Secondary Index 1 overflow
Last secondary Index
Last secondary Index overflow

The purpose of this approach is to recover as much as can be retrieved.
The user is offered the option of recovering any or all secondary
index subfiles at the time of repair, or using another program or
KBUILD to recover secondary index information.

THE REPATR DIALOG

Following is a detailed description of the REPAIR dialog. It is
summarized in Figure 5-1.

(Line 0) REPAIR (Goes to Line 1)

(Line 1) OLD FILE NAME: (filename or treename) (Goes to Line 2)

(other) Exit to PRIMOS
(abort)

The only restriction on the source file is that it must have been created
by PRIME software Revision 14. (or later) or have been processed by Rev.
14. (or later) REMAKE to rebuild all indexes. The name of the damaged
file may be supplied as a treename if it is not in the home UFD.

CAUTION

Supplying an invalud response
in lines 1 and 3 will cause

REAPIR to abort. User is returmed

to PRIMOS cammand level.

(Line 2) ENTER LOG ERROR

FILE NAME: (filename or treename) (Goes to Line 3)

The user is asked to supply the name of the error logging file. As usual

the name may be a treename.

(Line 3) NEW FILE NAME: (filename or treename) (Goes to Line 4)

(other) Exit to PRIMOS

(abort)

5-2 November 1977

Section 5 PDR3061

The new template file must correspond in every respect to the original
template fran which the old file was built. It need not reside in the
same UFD as the old file nor on the same logical or physical disk as the
old file. The user may supply a treename to identify the file.

(Line 4) SECONDARY INDICES: ALL (Goes to Line 5)

(number 1 to 19) (Goes to Line 5)
(CR) (Goes to Line 5)

In line 4 if the response is ALL, then all defined indexes will be recovered.
When a mumber (1 to 19) is specified only those indexes will be recovered.
Typing a CR indicates that no secondary indexes are to be recovered.

(Line 5) PHYSICAL DISK RECORD LENGTH: (mumeric) (Goes to Line 6)

The number is either 1024 words for storage modules or 440 words for
all others.

(Line 6) EXIT

The program exits to perform the REPAIR operation, i.e., restructure the
MTDAS file. Refer to the discussion on action of REPAIR for a full

explanation.

REV. 0 5 - 3

PDR3061

REPAIR

OLD (invalid)

C1] FILE NAME

FILENAME OR
(invalid) TREENAME

t2]

invalid
[3]

()

FILENAME OR
up to 19 TREENAME

I=19)In SECONDAR
‘41 INDICES:

?

PHYSICAL
[5] DISK RECORD

LENGTH:

440 OR 1024

REPAIR PROGRAM
RESTRUCTURES

FILE PER
SPECIFICATIONS

C6]

EXIT
TO

PRIMOS

Figure 5-1. REPAIR Dialog

REPAIR UTILITY

November 1977

ACTION OF REPAIR

Method of File Recovery

REPAIR requires that the user supply a template file (generated by CREATK)
corresponding to the file to be regenerated. All useful information
found in the old file is put into the new, as specified by the user.
The primary index and data are processed first. Then, a pass is made
through each secondary index specified by the user to create that index
in the new file.

Only entries in the old index corresponding to data entries in the new
file are transferred to the new index.

Primary Index and Data

The primary index and data subfiles are considered to consist of three
parts. First, there is the main body of the primary index which is
composed of all entries indexed as of the last REMAKE. Second, there is
the collection of entries added into overflow since the last REMAKE.
Finally, there is the data itself. REPAIR traverses each of these three
parts of the file to recover as much information as possible.

First, the main body of the primary index is examined and all entries
for which there is a valid index entry and data entry are written to
the new file. Entries where the information in the index and data
subfiles either do not agree or are missing are noted in the error
logging file. At the end of this pass, the message END PASS 1 is given.

Second, the overflow area of the primary index is examined in the same
fashion as the main body of the index. At the end of this pass, the
message END PASS 2 is given.

Finally, the data subfile is examined to recover any data records for
which index entries have been lost. At the end of this pass, the
message PRIMARY INDEX AND DATA COMPLETE is given.

As a result of this three-pass approach, the user has the best possible
chance of not only recovering all the data, but also being the most
informed about any missing entries.

Secondary Index Subfiles

Only those secondary index subiles specified by the user are processed.
(See line 4 of dialog.) Secondary index subfiles are processed in two
passes,corresponding to the main index and overflowpasses of the
primary index and data rebuild. Those secondary entries for which
there is no longer a data entry available are flagged in the error
file and on the user's terminal. All other entries are transferred

to the new file.

REV. 0 5-5

PDR3061 REPATR UTILITY

Error Detection

REPAIR tries to open and read each segment in the segment director of
the MIDAS file. In most cases, an index subfile does not use all the
segments allocated for it. Similarly, the data subfile normally does
not use all its segments. Nevertheless, one of the possible ways in
which a MIDAS file can be damaged is that a segment is deleted, or
truncated. For this reason, all segments that do not exist in an
index subfile are reported as missing, though this does not mean that
there is necessarily anything wrong. Additionally, the data subfile
segments are read and reported as missing until twenty consecutive
segments have been found missing. At this point, REPAIR assumes that
there are no more data segments.

When an error in the file is encountered, an explanatory error
message is printed. Each error message is flagged with the nearest
entry that was successfully processed. When an error has been
detected and REPAIR is able to begin processing again, the first
entry successfully processed is also reported. This information
gives the user some idea of where the problem areas are.

EXAMPLE OF REPAIR ACTION

As an example of the action of REPAIR, assume that the following
REPAIR dialog takes place (user input is underlined). The old file
has secondary indexes but the user does not wish to recover them:

OK, REPAIR

OLD FILE NAME: ACCRL Damaged file

ENTER LOG/ERROR FILE NAME: ERROL In current UFD

NEW FILE NAME: ACCRC2 In current UFD

SECONDARY INDICES: (CR) None

PHYSICAL DISK RECORD LENGTH: 1024 A storage module
Exit to REPAIR program

processing

~~
]

~~
]

5 - 6 November 1977

SECTION 5 PDR3061

The dialogue results in the following error log in file ERRO1:

PASS 1 - MAIN PRIMARY INDEX (REPATR) Remarks

ENTRY PROCESSED Note 1

00211508A11206007434700000000 BYPASSED Note 2
BAD DATA ENTRY (GETARC)

00571505A10904000000000000000 ENTRY PROCESSED

10063156280264017634300000000 LAST ENTRY PROCESSED Note 3
MISSING SEGMENT (HUNT)

10063156280264017634300000000 LAST ENTRY PROCESSED Note 4
END PASS 1 (REPAIR)
PASS 2 - OVERFLOW (REPAIR)

10066315628026401763430000000 ENTRY PROCESSED Note 5

10071282271187017630900000000 LAST ENTRY PROCESSED
MISSING SEGMENT (HUNT)

10071282271187017630900000000 LAST ENTRY PROCESSED
MISSING SEGMENT (HUNT)

10071282271187017630900000000 LAST ENTRY PROCESSED
PRIMARY INDEX AND DATA COMPLETE (REPAIR)

REV. 0 5-7

PDR3061 REPATR UTILITY

Notes - Error Log Example

The first entry in any MIDAS file is usually a
dummy key that may be unprintable, This
indicates that REPATR has started.

There was an index entry for this key, but the
data entry was unreadable. It was bypassed.
REPAIR then reports on the next entry
successfully processed.

This is the last entry in the main portion of
the file. There is no overflow in this file so
at this time REPAIR traverses all the missing
segments, reporting on them as it goes. This
is all right.

REPAIR has detected the end of the index, hence
will close pass one. It then moves on to
overflow, but there is none, so REPAIR moves
immediately to the last pass.

There are same entries in the data file for
which index entries have been lost. The first
one of these has the key value 10063388 ...
the last one is also flagged and once again
missing segments are processed, this time up
to twenty of them. Finally, REPAIR notes
that the primary index and data are rebuilt.

5 - 8 November 1977

PDR3061 KIDDEL UTILITY

SECTION §&

KIDDEL UTILITY

KIDDEL FUNCTIONS

KIDDEL allows the user to delte an index subfile, the entire MIDAS file,
or any unwanted segments that are left over form a non-fatal abort fran
a MIDAS subroutine. The dialog is described below and summarized in
Figure 6-1.

KIDDEL DIALOG

(Line 1) FILE NAME? (filename or treename) (Goes to Line 2)

(other) (Repeats Line 1)

(Line 2) INDICES? JUNK (Goes to Line 3)
ALL (Goes to Line 3)
(numeric 0-19, up to twenty
fields separated by commas) (Goes to Line 3)
(other) (Repeats Line 2)

(Line 3) DONE (Exits to PRIMOS)

J or JUNK reclaims unwanted segments at the end of the file. These
segments are created by off-line procedures when building or rebuilding
indices. If a procedure has aborted without destroying the file, the J
feature of KIDDEL may be used to delete them.

ALL will result in the deletion of the entire file.

Specification of one or more numeric fields causes the specified index
subfiles to be deleted. When the requested deletions have taken place
KIDDEL returns to PRIMOS command level.

6-1 November 1977

SECTION 6

REV. 9

C2]

C3]

PDR3061

(invalid)

TREENAME OR
(invalid) FILENAME

DELETE
UNWANTED
SEGMENTS

DELETE ALL |
SEGMENTS

Figure 6-1. KIDDEI, Dialog

6 - 2

PDR3061 BUILDING A MIDAS FILE

SECTION 7

SUBROUTINES TO BUILD A MIDAS FILE
(PRIBLD, SECBLD, AND BILDSR)

BUILDING FILES

Once source data and a template file are available, user maintenance

routines may be used to build a MIDAS file (refer to Figure 1-1). One
of these routines, BILDSR, accepts unsorted data and builds the file in
overflow. . Periodically, the index subfile and overflow are merged to
Create a new index subfile, so that the overflow is not allowed to become
too large. Therefore, the process of building a MIDAS file rms more
efficiently.

A second routine, PRIBLD runs much faster than BILDSR, provided that the
source data is sorted by primary key.

There is also a routine SECBLD that may be used to build secondary
indices from data sorted on a secondary key value.

Modifying Files

BILDSR may be used to add new entries to an existing file fram either
sorted or unsorted source data. PRIBLD and SECBLD may not be used to
add entries to the file. PRIBLD, SECBLD and BILDSR may all be used
concurrently to build a MIDAS file.

Communication Flag

All three of the single-user maintenance routines use a communication
flag to control the flow of records through the routine. The values are:

Value Meaning

0 Set initially to 0 by the user to indicate that the first
record is to be processed.

1 Set by the called routine to indicate that the first entry
has been processed. The value remains 1 until...

2 Set by the user after the last entry has been processed

3 Set by the called routine to indicate that the index has
been finished and closed.

7-1 November 1977

SECTION 7 PDR3061

The single-user maintenance routines are serially reusable and ti.
process may be started over for a new index or a new MIDAS file by
setting the flag (SEQFLG) to 0 again,

The following paragraphs describe the calls to the maintenance routines
BILDSR, PRIBLD and SECBLD. Variables or arrays specified in these calls
must be specified as INTHGER*2 in FORTRAN programs that call these
routines, with the exception of the parameter RNUM. RNUM specifies the
number of expected entries to be added to the file, and it is defined
as REAL to allow a MIDAS file to contain more than 32,000 entries.

In all cases, the user must open the template and the partially filled
MIDAS file prior to the first call to any of these routines and must
also open the file descriptor segment on the PRIMOS file unit assigned
to ISSAM by a call to FILSET.

MAINTENANCE SUBROUTINE DESCRIPTIONS

PRIBLD

PRIBLD is a subroutine to build the primary index and data subfile from
sorted source data. Calls to PRIBLD may be used concurrently with
BILDSR and SECBLD. Before calling PRIBLD, the user must have assigned
PRIMOS file unit numbers to ISUNIT, ISSAM, and ISDAT. Programs calling
PRIBLD must be compiled with the SINSERT file OFFCOM from UFD named
SYSCOM (i.e., SINSERT SYSCOM > OFFCOM). Also, the MIDAS file description
subfile (template)must exist, and it must be open for reading on file
unit ISUNIT. PRIBLD initially reads a new copy of the file descriptor
subfile; therefore, the user should write out a previous copy of his own
with the routine KXSBWI, if modifications have been made to the subfile
prior to the user's first call to PRIBLD.

The calling sequence for PRIBLD is:

CALL PRIBID (segflg, keybuf, pbuffr, plngth, altrtn, mum)

REV. 0 7-2

PDR3061 BUILDING A MIDAS FILE

The Parameters have the following significance:

Parameter Meaning

segflg Is the commmication flag. Its possible values have
been discussed. In summary they are

0 before first call to PRIBID.
1 during operation.
2 & 3 at the time of last call to PRIBID.

keybuf Is a numeric variable or a one-dimensional array
containing the current value of the primary key.

pbuffr Is a one-dimensional array containing the data to
| be added. If plngth is zero, pbuffr may also be zero.

pingth Contains the number of words of data supplied in pbuffr.
If plngth is 0, the entry written to the MIDAS file is
all zero's, If plngth is less than the length of pbuffr,
the entry is zero-filled.

altrtn Is an alternate return to be taken if an error occurs.
Tf altrtn is zero, the routine returns to PRIMOS command
level. The cause of the error will be printed at the

user's command.

mum Is, approximately, the number of entries in the finished
MIDAS file being built by PRIBLD. Rnum must be equal to
or larger than the number of entries in the file. If
rum is 0, or not supplied, the default value assumed
by PRIBLD is 200,000. rnum is a real variable.

SECBLD

SECBLD is a routine to build a secondary index from sorted data. The

secondary keys must be in sorted order.

SECBLD may be used to build several secondary index subfiles concurrently

with the primary index and source data. SECBLD may be used in conjunction

with PRIBLD or BILDSR or by itself. SHCBLD may not be used to add new

index entries to an existing index.

Prograns that call SECBLD must be campiled with the SINSERT file named
OFFCOM in the UFD naned SYSCOM on the master disk(i.e., SINSERT SYSCOM>
OFFCOM). Before calling SECBLD, the user must have assigned PRIMOS file
unit numbers to ISUNIT, ISSAM, ISDAM, and ISDAT. The MIDAS file descrip-—

tion subfile (template) must also exist, and it must be open for reading
on the file unit specified by ISUNIT. A callto the routine FILSET must
be made to read the file descriptor. In addition, the flag word in array
JTEMPS must be set to zero.

7 - 3 November 1977

SECTION 7 PDR3061

When all entries have been added, a final call is made to SECBLD, for
each index, with the communication flag set to 2, If this final
calling sequence is not made, the index is not useable.

Calling Sequence

The calling sequence for SECBLD is:

CALL SECBLD (jtemps, keybuf, prikey, index, pbuffr, plenth,
altrtn, rnum)

The meaning of the parameters is as follows:

REV. 0

Parameter

jtemps

altrtn

Meaning

Is a three-word flag and scratch area that
permits SECBLD to rumconcurrentlywith itself,
PRIBLD and BILDSR. jtemps (1) is the communication
flag for SECBLD. The remaining words, jtemps (2)
and jtemps (3), are used internally by SECBLD and
must not be modified by the user.

If SECBLD is being used to build several index
subfiles concurrently, a separate copy of jtemps
is required for each index being built.

Is a one-dimensional array that contains the
current value of the secondary key.

Is a one-dimensional array that contains the
value of the primary key for this entry.

Is the number of the secondary index to which
the entry is to be added (1 through 19).

Is a one-dimensional array that contains any
secondary data to be added. If plenth is
zero, pbuffr may be zero also.

Is the length of the data supplied by the user.
If the plenth is zero, or less than the MIDAS
file handler expects, the user data entry to be
written to the file is zero-filled. If no user
data is expected, none will be added to the file.

Is an alternate return to be taken if an error

occurs. If an error occurs and altrtn is zero,

the program aborts and exits to PRIMOS. The
cause of the error will be indicated at the
user's terminal.

mum

PDR3061 BUILDING A MIDAS FILE

Is approximately the number of entries to be added
to the file by SECBLD. Rnum must be equal to or
greater than the number of entries in the file. If
mum is 9, the default value is 200,000. imum is a
REAL variable.

7-5 November 1977

SECTION 7 PDR3061

BILDSR

BILDSR is a MIDAS single-user maintenance subroutine that can be used to
build a keyed-index or direct access MIDAS file from unsorted data.
BILDSR adds an entry to the overflow area of an established MIDAS file.
BILDSR may also be used to add new entries to an existing file or index.
The arguments are set up as for their equivalents in the calling sequence
of ADDIS. The advantage of BILDSR over ADDIS is that it restructures the
overflow periodically, which reduces the amount of ‘time required to build
the index (and data).

Programs uSing BILDSR must be compiled with the SINSERT file OFFCOM from
the UFD named SYSCOM (i.e., SINSERT SYSCOM > OFFCOM). Prior to the first
call to BILDSR, the user must have assigned PRIMOS file unit numbers to
ISUNIT, ISSAM, ISDAM and ISDAT. The template MIDAS file must be open
for reading on ISUNIT. The user must also call FILSET to read in the file
descriptor, and the flag word in ITEMPS must be set to @.

When all entries have been added the user must make a final call to
BILDSR for each index with the commmication flag set to 2. Otherwise,
future additions to the file may overwrite entries added by BILDSR.

If the user is building a MIDAS file with secondary index subfiles
using PRIBLD or BILDSR to create the primary index and data, it is not
necessary for the user to do anything to set up jarray for the
addition of secondary index entries. This is done automatically by the
file handler as long as the call to add the primary index/data entry
is made immediately prior to the calls to add the secondary index entries
for that primary index/data entry.

REV. 0 7 - 6

PDR3061 BUILDING A MIDAS FILE

The calling sequence for BILDSR is:

CALL BILDSR (jtemps, keybuf, pbuffr, plenth, jarray,
index, altrtn)

The parameters have the following significance:

Parameter

Meaning

A two-word flag and scratch area that permits
BILDSR to concurrently build several index
subfiles. Jtemps (1) is the communication
flag for BILDSR. The remaining words are used
by BILDSR and must not be modified by the user.

Refer to key in call to ADDIS (Section 10)

Refer to buffer in call to ADDIS.

Refer to plenth in call to ADDIS.

Refer to array in call to ADDIS.

Refer to index in call to ADDIS.

An alternate return to be taken in the event
an error occurs. If altrtn is zero, the pro-
gram aborts to PRIMOS. The cause of the error
will be printed on the user's terminal.

7-7 November 1977

PDR3061 SINGLE-USER PROGRAMMING

SECTION 8

CONSTDERATIONS FOR SINGLE-USER PROGRAMMING

INTRODUCTION

This section describes a number of subroutines to aid the usage of
single-user procedures. Single-user procedures are those MIDAS
subroutines that must be used with MIDAS files when no other user
is accessing them. Generally these subroutines are PRIBLD, SECBID
and BILDSR, described in Section 7.

OFFCOM

OFFCOM is a SINSERT file that defines 'in a common block' several
variables needed by the user for commmication with MIDAS. When
writing single-user routines that call MIDAS routines, the statement:

SINSERT SYSCOM > OFFCOM

must be included in each routine that calls one or more MIDAS routines.
The FORTRAN SINSERT statement begins in colum 1, and must immediately
follow the declaration of any COMMON area defined by the user, and must
precede any DATA statements. OFFCOM resides in the UFD named SYSCOM
and must not be moved from there to the user's UFD. ‘The SINSERT
command to the compiler specifies a treename.

MIDAS ROUTINES IN USER MODULE

The user may call any of the routines from the MIDAS file handler
without conflicting with the single-user routines. The MIDAS file
handler may be used to read from or write to other MIDAS files. For
example, one file may be read to create another if some major changes
in file format is taking place. However, the Single-user routines
normally only deal with one MIDAS file at a time.

If BILDSR is being used, and more than one MIDAS file is being accessed,
the user must call KXSFCL before and after each call to BILDSR. ‘The
call is:

CALL KXSFCL

OTHER USEFUL MIDAS ROUTINES

FILSET is a routine that reads in the file descriptor subfile (template).
The user may find this and some of the other KIDALD routines useful
and these routines are described below.

8-1 November 1977

SECTION 8 PDR3061

KXSOIX

KXSOIX is a routine to determine the number of entries currently indexed

by an index. The calling sequence is:

LINDEX = index

CALL KXSOIX (RNUM)

RNUM will contain the number of entries

on return from KXSOIX. RNUM is a

REAL variable.

LINDEX is a variable defined in OFFCOM.

index is the number of the index to be

examined.

An invalid index number in LINDEX causes KXSOIX to abort. KXSOIX
also reports the contents of the index on the user's terminal.

SYSINI

SYSINI is a routine to close all PRIMOS file units except Unit 6.

Calling sequence:

CALL SYSINI

SYSINI closes all open PRIMOS file units except Unit 6, which is

usually the PRIMOS unit open for a command file. SYSINI is a useful

routine to call, but at the beginning and the end of a program to

ensure that no stray file units remain open from previous procedures

and that none are open upon exit from the current procedure.

FILSET

FILSET is a routine to read in the file descriptor subfile.

Calling Sequence:

TSSAM=funit

CALL FILSET

ISSAM is a variable defined in OFFCOM and funit is the PRIMOS file wit

assigned to it.

FILSET reads the first 296 words of the file descriptor subfile into

INFO in the KIDALB common and otherwise initializes the file. The 296

words are required for all single-user KIDALB routines. Only PRIBLD

reads them in independently. If the user wishes to modify these 296

words, they must be written back to the file with a call to KXSBWT.

REV. @ 8 - 2

PDR3061 SINGLE-USER PROGRAMMING

KXSBWT

KXSBWI is a routine to access the file descriptor subfile.

Calling Sequence:

CALL KXSBWT (KEYS)

KEYS is an integer variable set to:

2:11 - Read Descriptor
7:12 - Write Descriptor

KXSBWT opens the file descriptor subfile on ISSAM if necessary. When
reading the file descriptor subfile, KXSBWI also makes a cursory check
to see if it is valid. FILSET calls KXSBHT.

ERROPN

ERROPN is a routine to open a global logging file.

Calling Sequence:

CALL ERROPN (funit)

funit is the PRIMOS file unit to be used for the

error/log file.

The MIDAS routines FILERR, FILHER and KXSTIM print messages on the
user's terminal regarding error or milestone occurrences. These
messages can also be written to a file if the user, first, calls
ERROPN to open a logging file. The user may also add messages to the
logging file by setting up his message in a buffer and then writing
it out with a call to the IOCS library routine OSAD07.

The user supplies ERROPN with the file wit for the log file. ERROPN
then requests the name of the file to be used. The name may be supplied
as a treename.

FILERR

FILERR is a routine to set up and display an error message.

Calling Sequence:

CALL FILERR (irout, msg, numb, ialter)

irout is the name of the routine calling FILERR.
It is a text string with a length of six
characters.

msg is the ASCIT text to be printed by ERRPRS

numb is the number of characters in MSG

ialter is the user's error return.

8 - 3 November 1977

SECTION 8 PDR3061

FILERR calls the system routine ERRPR$ to print the system error
message relating to a nonzero error code returned from one of the
system routines. The user may append a message as well.

Routines calling FILERR must be compiled with KPARAM from the UFD
named KI/DA as a SINSERT file. KPARAM defines the integer variable
CODE which FILERR assumes contains the System Error Code for the
ERRPRS$ message. To print his own message, the user may set CODE
to 37.

The message is displayed on the user's terminal, and if ERROPN has
been called, the message is written to the logging file.

If IALTER is zero or not supplied, FILERR closes all open file wnits
and aborts to the monitor.

For the call - CALL FILERR ('KXSBWI', 'BAD FILE', 8,$1000), the

message printed by FILERR is for example:

file system error message. BAD FILE (KSEWT)

FILHER

FILHER is a routine to convert and print a MIDAS error code.
Calling Sequence:

CALL FILHER (ierror, ialter)

ierror is the MIDAS error code

ialter is the user's error return. If IALTER is 0,

FILHER will close all file units and abort

to PRIMOS.

FILHER converts a MIDAS error code to ASCII and calls FILERR to print
the result. If the error code is greater than 12, FILHER aborts to
PRIMOS.

PDR3061 SINGLE-USER PROGRAMMING

KXSTIM

KXSTIM is a routine to print a milestone/time record.
Calling Sequence:

CALL KXSTIM (lnum,timfil,text,txlent)

Jnum is a long integer which represents, for
example, a record count. If Inum is Q,
a header record also is printed.

timfil is the PRIMOS file unit to which the
message is to be written. If timfil
is 0, the message only appears on the
user's terminal.

text is an additional message to be written
out before the time record. If txlent
is 0, text may be 0 also.

txlent is the length of text in words. If
txlent is zero, no message corresponding
to text Will be written.

KXSTIM prints a time difference record with additional user information.
For example the message:

END OF RUN

103 05-23-77 12:40:56 0.882 0.354 1.236 06.074

was printed by KXSTIM.

The example above could have been printed by the statement:

CALL KX$TIM(000103,4,'END OF RUN',5)

8-5 November 1977

SECTION 8 PDR3061

The message would appear on the user's terminal and would also be
written out to the file open on file unit 4.

The following call:

CALL KXSTIM (000000,0,0,0)

results in the generation of a header as follows:

COUNT DATE TIME CPU MIN DISK MIN TOTAL TM DIFF

0 05-23-77 12:34:52 0.000 0.000 0.000 0.000

The columns in the message are as follows:

COUNT number of entries processed (up to 2**31-1)

DATE AND TIME date and time of entry (Time hrs., mins.,secs.)

CPU MIN minutes of CPU time used since start of rm

DISK MIN minutes of disk I/O time (including paging)
from start

TOTAL TM sum of disk and CPU time since start

DIFF increment in total time since last call to KXSTIM

CAUTION

If calling any other routines in that reside in
the library KIDALB, remember that most of these
routines make assumptions about the contents of
COMMON which the user may not have anticipated.

PDR3061 DATA ACCESS SUBROUTINES

SECTION 9

NATA ACCESS SUBROUTINES

The subroutines described in this section make it possible to access
a MIDAS file for read, write or update functions in a multi-user
environment. The MIDAS file handler takes care of file integrity
so that two or more users may not update or add to the same record
at the same time. In order to achieve multi-user access, two system
wide conventions are required. These are:

1. ‘The READ/WRITE lock, RWLOCK, must be set to 3. (Note: on
some systems, the individual file protection attributes
for MIDAS files may be set at 2). This setting allows
multiple readers, and one writer, to access the MIDAS file.
The system (or file) ‘mst not be set up for access by
multiple writers.

2. Each user of the multi-user subroutines must open MIDAS
files for reading only using the PRIMOS file system
routine SRCHS$S. This is true even if the user plans
to update or add records to the file. MIDAS opens the
file for writing when necessary and returns the file
to read-only access upon closing it.

Data access subroutines are called directly by FORTRAN and PMA programs,
and they are part of the run-time support package for indexed file
processing with COBOL and RPG. Data access routines provided by
MIDAS are:

Routine Function

ADDIS Adds a data entry to a MIDAS file.

DELETS Deletes a data entry from a MIDAS file.

FINDS Finds a data entry on a MIDAS file.

LOCKS Finds a data entry on a MIDAS file and locks it
for safe updating in the multi-terminal environment.

NEXTS Finds the next data entry in a MIDAS file.

UPDATS ' Updates a data entry on a MIDAS file.

With respect to the data transferred, the primary key of the entry

accessed may be included or excluded from the user's entry. The desired

option is selected by setting a bitinthecalling sequence flag word.

9 - 1 November 1977

SECTION 9 PDR3061

(flags). This feature is useful when accessing entries through the
secondary indexes when the data is being traversed sequentially.

Unless otherwise specified, all variables and arrays used as parameters
for calls to the MIDAS file handler data access routines must be defined
in INTHGER*2.

CALLING SEQUENCES

General Format

The six MIDAS data access subroutines have essentially the same FORTRAN
calling sequence; therefore, the parameter list is defined only once.
Individual variations in parameter values are discussed with the
appropriate data access subroutine. The calling sequence is:

CALL Rtn (funit, buffer, key, array, flags, altrtn,
index, file-no, plenth, keylnt

Rtn is the name of one of six MIDAS data access routines: FINDS,
LOCKS, UPDATS, ADDIS, DELETS, NEXTS. Further on in this section
each routine is described individually. Associated with each description
is an example of the use of the routine. The examples supply a
consistent picture of how to use MIDAS in a simple situation. In the
examples the following variables are used:

FUNIT PRIMOS file unit on which the MIDASfile is open.

BUFFER The data record buffer. Dimensioned to 80 for
demonstration purposes.

PKEY Buffer for the primary log. Dimensioned to 6 for
demonstration purposes. Equivalenced to BUFFER (,).

SKEY-2 Buffer for a secondary key to be used with secondary
index 2. Dimensioned to 4 for demonstration purposes.

RKEY-3 Variable holding key value for secondary index 3. The
key is REAL for demonstration purposes.

FLAGS The MIDAS file handler flag word

ARRAY The MIDAS file handler communications array

Description of Parameters

Table 9-1 defines the purpose and content of the parameters in a call
to a MIDAS data access subroutine.

REV. @ 9 - 2

PDR3061 DATA ACCESS SUBROUTINES

Table 9-1. Parameters for Data Access Subroutines

Parameter Meaning

funit is a PRIMOS File Unit on which the MIDAS file is open.

buffer is a one-dimensional array into which, or from which
data is transferred.

key is a numeric variable or a one-dimensional integer
array containing the key field value to be used in
locating the data entry.

array is a 14-word integer array used for file handler and
user communications. Format and values contained
in array are discussed in the following paragraphs.

flags is a integer variable used to select options for
the call. Values and format of flags are given in
the following paragraphs.

altrtn is an alternate return to be taken by the routine if
an error occurs.

index is a short integer variable that identifies the access

method to be used (Keyed Index or Direct Access)

and/or selects the index to be used. Values for
index are given in the following paragraphs.

file-no a short integer variable that, at present, must be
set to 0 or -l. It is provided for subsequent index
retention and sharing on Prime 400 computer systems.
Note, past versions of MIDAS included a functionality
for this argument. This functionality is still available

- as previously described but it is of littie use to most
users, unless they are operating under an old softwar

revision.

plenth is a short integer variable which contains the length
of the data to be transferred. May be zero if the
full data entry is to be transferred. This parameter is
not required or used for calls to DELETS.

keylnt is a short integer variable containing the key length to be used. It is expressed in words or bits (bytes)

as determined by flags. Keylnt may be zero if the

full key is to be used. This parameter is not

required or used for calls to UPDATS, DELETES, ADD1$

or LOCKS.

November 1977

SECTION 9 PDR3061

The following paragraphs amplify some of the more camplex parameters in
the calling sequence for a MIDAS data access routine.

Format of Index

The index parameter specifies whether the file is to be accessed through
a keyed-index or direct access method. For the keyed-index method, the
index parameter also specifies the index-value that is to be used. The
format for the index parameter is:

Direct Access Indexed Access

bits 1-8 all l's all O's

bits 9-16 all l's Index number

(primary index is 0)

Format of Flags

The parameter flags in a data access calling sequence provides user
options within the routine that is being called. At present, up to ten
bits of the flags parameter are used. The remaining bits are reserved
for use by the MIDAS file system.

The SINSERT file PARM.K in the UFD named SYSCOM contains mnemonics for
the flag bits for use in the user's MIDAS applications. To compile with
the SINSERT file include the statement: SINSERT SYSCOM > PARM.K.

Accordingly, the PARM.K mnemonics are included in the descriptions
below. Parameters in the SINSERT file may also be efficiently summed to
generate the appropriate constant without generating a number of useless
constants.

For example:

FLSUSE + FLSRET + FLSPLW complies as :144000.

The bit settings in flags are summarized in Table 9-2.

REV. 0 9 - 4

PDR3061 DATA ACCESS SUBROUTINES

Table 9-2, Bit Settings for Flags Parameter

Bit Mnemonic Setting Meaning

1 FLSUSE SET Use contents of array

RESET Ignore contents of array

2 FLSRET SET Return contents of array
RESET Return completion code only.

3 FLSKEY SET Include primary key in the data

buffer, "Buffer".
RESET Do not include primary key in

Buffer.

For NEXTS and
FINDS only:

4 FLSBIT SET Key size is in bits or bytes

RESET Key size is in words

5 FLSPLW SET Get next entry, regardless.
RESET Get next entry only if key agrees

with search key.

6 FLSUKY SET Update key field with key from data

base.
RESET Do not change original contents of

key field.

7 FLSSEC SET Return secondary data from secondary

index.
RESET Access primary data record.

lFor UPDATS ONLY:|

8 FLSULK SET Update the setting of the data.
RESET Update data entry.

For FINDS,
LOCKS, and NEXTS:

9 FLSFST SET Position to first index entry
RESET Use user-supplied search key.

For FINDS AND
NEXTS:

10 FLSNXT SET Get next record greater than supplied key.

RESET Get record specified by supplied key.

11-16 MBZ Must. be zero.)

November 1977

SECTION 9 PDR3061

Use of FLSKEY

In the physical data subfile, MIDAS stores a data record that has the
format shown in Figure 9-1A. Since MIDAS keeps a copy of the primary
key (PKEY), it is unnecessary for the user to maintain a copy also,
as shown in Figure 9-1B or C. Accordingly, MIDAS allows the user to
consider his data records as shown in Figure 9-1D, where the value of
PKEY is MIDAS', i.e., a user with a type B record can retrieve it with

either one or two copies as in Figure 9-1E. This is even move obvious
for users with records of this type shown in Figure 9-lF.

Users probably like to be consistent. For those users who like to
consider the primary key as part of their data record, are willing to
have it as the first field in the data record, and do not want two
copies of the primary key in the data subfile, the following
provision exists:

1. Put the primary key (PKEY) in the users copy of the
data buffer.

2. Set FLSKEY.

3. For a call to ADDIS, MIDAS writes only one copy of key.

Format of Array

General Information: The parameter array is an array of either one word
or 14 words that is used by the MIDAS file handler to return a
completion code. If Bits 1 and 2 (FSUSE and FSRET) of the parameter
flags are RESET, then array may have a length of one word (i.e., two
bytes), otherwise, array must have a length of 14 words (28 bytes).
For most purposes, an array size of 14 words is recammended.

L
L
O
T

F
C
C
U
B
A
O
N

cw PKEY USER'S DATA USER DATA PKEY USER DATA

A. PHYSICAL DATA SUBFILE DATA RECORD

cw PKEY User PKEY USER DATA PKEY USER DATA PKEY USER DATA

B. DATA RECORD WITH USER'S COPY OF PRIMARY E. RETRIEVAL OF DATA RECORDS,TYPE A
KEY, TYPE A

cw PKEY PKEY USER DATA PKEY USER DATA

C, DATA RECORD WITH USER'S COPY OF PRIMARY
KEY, TYPE 8

USER DATA FLSKEY) KEY PKEY USER DATA

F, RETRIEVAL OF DATA RECORDS, TYPE B

PKEY USER DATA FLSKEY! cw PKEY USER DATA

D. LOGICAL DATA RECORDS

cw PKEY PKEY USER DATA

G. DATA RECORD RESULTING FROM CALL TO ADDI$

Figure 9-1. Duplicate Key Examples

FL$KEY
=0

FL$KEY

FL$KEY
=0

FL$KEY

FLSKEY

FL$KEY
=0

T
9
0
E
d
d
d

S
A
N
T
D
N
O
Y
A
N
S

S
S
H
O
O
W
W
I
V
d

SECTION 9 PDR3061

Indexed Access: The general format of array for indexed access is

as follows:

Word Bit Setting Contents and/or meaning

1 - O0Oorl Contents of array are valid

-1 Contents of array are not valid.
For condition codes, see Appendix A.

Words
2-12 - - Used by the file handler.

Not to be referenced or
modified by user.

Word 13 1-4 0 Flags for file handler (DESLOK)

5 SET: Record locked

CLFAR: Record not locked

6-16 Flags for file handler

Word 14 - - Length of data entry
(exclusive of length of
primary key).

If a user sets FLSUSE in flags, the only valid modification of Array is
Word 1 to -l. This overrides FLSUSE set to 1 and allows a user to make
the first call in a NEXTS loop with the same flags value as is used in
subsequent calls in the loop. Any other tampering with the contents of
Array may cause trouble.

A user wishing to know if another user is in the process of updating
the data record may examine the bit 5 flag to find out.

Direct Access: The following list shows the format of Array when the
method is Direct Access:

Word Contents and/or meaning

1 Array state or condition code word.

2 Entry length (key length + user's
data +2.)

3-4 A single-precision floating point
entry number

5-14 Same use and format as for the

corresponding bits in indexed
access.

REV. @ 9 - 8

PDR3061 DATA ACCESS SUBROUTINES

ADDIS

The ADDIS subroutine adds an entry to a specified data or index subfile.

ADDIS has no control over access methods. The method required by ADDIS$

is established when CREATK is used to create the template file. The

user must add records according to this pre-determined file definition.

Synonym entries (i.e., duplicate keys) may only be added through

secondary index access, and they are only allowed if permitted by the

user's file structure. Other special consideration for secondary

indexes are discussed in the following paragraphs. A copy of the

array returned by a call to ADDI$ may not be used by a subsequent call

to NEXTS, but it may be used for re-reading the entry or for adding
additional secondary index entries.

ADDIS can be used to add a secondary index to an existing data entry

in the MIDAS file. When adding secondary index entries, the user

must supply the following information:

Secondary index number
Secondary key value
Primary key value

Secondary data (if any)m
W
N

The secondary index number is supplied as a one word integer in the

argument index to ADDIS. The secondary key value is supplied in the

argument key.

The primary key value is supplied as the first item in the argument

array buffer. If there is secondary data, the data follows the

primary key in buffer.

The user may either request the MIDAS file handler to locate the primary

data entry (FLSUSE reset), or may use an existing, valid copy of array

(FLSUSE set to 1). In particular, array (2-14) must be correct for the

entry to be added. An array returned by a previous call to ADDIS for

the same primary key is satisfactory.

If plenth is 0 (undefined), the parameter buffer is assumed to contain

the primary key and any secondary data specified by the file description.

If plenth is not 0, the length supplied must include the primary key

as well as the length of any user data.

For both the keyed index and direct access methods, data entries can

be added by the primary key only.

When ADD1$ is adding information to a file, the file is locked to

other user additions until operations are camplete.

9 - 9 November 1977

SECTION 9 PDR3061

The parameter settings for each option are discussed in the following

paragraphs.

Access Methods

ADD1S can operate in either of two access methods, Keyed Index or
Direct Access.

Data entries can be added to a direct access file (MIDAS' DAM #
PRIMOS DAM) by direct access only. Entries to a non-direct access
file must be added through the primary index.

The direct access mechanism is specified by setting the index parameter
to the value -1. Any other legal value indicates that the keyed index
access method is required.

Keyed Index Method: The keyed index method enables data entries and
corresponding primary index entries to be added to the primary index.
Secondary index entries may be added to the existing data entry for one
of 19 secondary indexes. The index structure to be used is specified
in parameter index. Possible values are:

Value Meaning

~-l See Direct Access Method
0 Primary Index
1 to 19 Specified Secondary Index

For index values of 0, the data entry information must be supplied in
buffer. For index values of 1-19, the primary key must be at least
specified in first item in the array buffer, and the corresponding
full secondary key must be specified in key.

When adding data entries or index entries to a MIDAS file, full sized
keys (i.e., not partial) must always be supplied in parameter key.
The parameter keylnt (key length) may be omitted. Therefore, Bit 4
(FLSBIT) in flags is not applicable, in this case.

Direct Access Method: The direct access method supplements the keyed index
method of retrieval and addition of entries via ADDIS. It is applicable
to MIDAS files with CREATK templates that specify the direct access
mechanism (i.e., for the direct access mechanism to apply the data entry
suofile of a MIDAS file must be pre-allocated on disk). On such files,
addition of data and primary index entries is illegal.

To ADD a record through direct access the user must supply a full

primary key, a floating point data entry number and the full data entry
size specified in words. The data entry number need not be related to
the primary key in any way.

The data entry number is passed to the file handler in words 3 and 4 of
array.

PDR3061 DATA ACCESS SUBROUTINES

The data entry size is the length of the data record as stored on disk
(i.e. 2 + Key length in words + data length in words). It is passed to
the file handler as word 2 of array.

Hence the first 4 words of array contain:

Word 1 Condition code (0 or 1)
Word 2 Entry size
Word 3-4 “Entry number" in REAL formt.

Index must be set to -l1. Key must contain the desired full Primary Key
value.

If an entry is already found for the Data Entry Number, MIDAS resolves
the conflict by placing the second data entry in an overflow area.

A primary index entry is created and added to the file, making it
possible to use NEXTS on direct access MIDAS files through Primary
Index access.

Adding Information

ADD1$ adds data to a MIDAS file in one of two ways:

1. Add a new data entry with associated primary key.
2. Add a new secondary index with user data, if any, to

an existing secondary index.

There are no user options to distinguish adding of primary index
entries from the adding of data.

Use of Buffer Parameter

The information required in buffer differs, depending upon whether a
primary index entry/data entry is being added or whether a secondary
index entry is being added to an existing data entry.

Primary Index Entry/Data Entry: buffer must contain the full sized
data entry information. For fixed data length MIDAS files, the
parameter plenth must be set to the default value of 0. Variable
length files require a plenth that is the length of the data to be
added.

When writing the data to the data entry on file, the primary key value
is added from parameter key and will procede the data entry in the data
entry written to disk.

9 - ll November 1977

SECTION 9 PDR3061

Secondary Index Entry: buffer must contain the full sized primary key
value. Furthermore, if supplementary information is required to be
stored in the secondary index entry, the supplementary data must follow
the primary key value. The parimary key value is required to locate the
data entry to which the specified secondary index is applicable.

Use of Plenth Parameter

Primary Index Entry/Data Entry: The plenth parameter must be set
according to the type of data entry:

Data Entry Plenth

Fixed-length 0

Variable - length Length of data

Secondary Index Entry: If plenth=0, ADDIS adds the entire contents of
buffer - the primary key plus secondary data as specified in the file
description.

If plenth is set to the length of the primary key plus part of the
secondary data, only that part will be added. (The entry will be
zero-filled if necessary.) |

Notes

1. To add a secondary index entry, (FLSUSE) of flags
must be set. There must have been an inmediate
prior call to FINDS on the primary key, specifying FLSRET
in flags, i.e., return array, and FLSKEY must be set to
include the full primary key in buffer.

2. To add a primary index entry, FLSUSE of flags will be
ignored: that is, ADDIS locates the point in the index
structure to add the data entry.

3. ADDIS returns an array that is suitable only for index
entries.

PDR3061 DATA ACCESS SUBROUTINES

Use of Array Parameter

The array parameter defines a scratch area used by the MIDAS file
handler. The first word of array is always used to return completion
codes or error codes to the caller.

Value

0

1

12

none of above

Possible values are:

Meaning

Successful completion

Successful completion. There is a
synonym (secondary indexes only)

This is a synonym and synonyms are
not allowed (primary indexes and
specified secondary indices specified
at file creation time - see
Appendix A).

Refer to the Error Message summary
in Appendix A.

By setting FLSRET in flags, the option may be called that returns the

full scratch values for the current access. The values contained in

this array are pointers to the last level index block and data entry.

13 November 1977

SECTION 9 PDR3061

Table 9-3. Summary of Parameter Values for ADDIS

|
Parameter Options (if any) Meaning

funit File unit on which the specified
file's segment directory is open.

buffer Buffer in which data to be added

is stored. Buffer must include a
Primary Key if a secondary index
add is specified and must include
any data needed to add to the
secondary indexes.

key | Full primary or secondary key
appropriate to the index.

array Full primary or secondary key
appropriate to the index.

flags Options that specify use offags I
various parameters. The options
for ADDIS are:

FLSUSE Use contents of array
Not required for adding a primary
index and data.

FLSRET Return contents of array. Only
applicable for a primary or
direct access add.

altrtn An alternate return to be taken
if an error occurs.

index 0 = Primary Index; Nonzero =
Secondary Index; - 1 = Direct Access.

plenth Length of data (see text).

REV. 9 - 14

PDR3061 DATA ACCESS SUBROUTINES

When using ADDIS, the only time the returned parameter array is useful
is for subsequent calls to add a secondary index. After such a call to
add a secondary index entry, the contents returned in array are still
useful for adding a further secondary index entry.

By setting FLSUSE in flags the option may be called that short circuits
the index search mechanism provided the array contents are valid. If
the user is adding a secondary index, then this option may be used for
adding secondary index entries to an existing data entry which has
already been located.

When using the direct access facility and a primary index entry/data
entry is being added, array contains the user supplied Data Entry
Number and entry size. In this case, FLSUSE in flags may be set; it
is used anyway. Also, with direct access, the array that is returned
is useful for the addition of secondary index additions. However, it
is meaningless for other MIDAS operations.

9 - 15 November 1977

SECTION 9 PDR3061

Using ADDIS - Examples

The following code adds a data record to a MIDAS file and adds a
secondary index entry for the same data record:

INTEGER * 2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14),
+ SKEY 2 (4)

FQUIVALENCE (BUFFER (1), PKEY (,))

FLAGS = FLSKEY + FLSRET /* RETURN ARRAY, KEY IN BUFFER
CALL ADD1$ (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $9000,0,0,0)
FLAGS = FLSUSE
CALL ADD1$ (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9100,2,0,0)

The following code adds a secondary index entry to a MIDAS file
data entry that has not been recently accessed:

INTEGER * 2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14)
REAL PKEY-3

EQUIVALENCE (BUFFER (1), PKEY (,))

FLAGS = @
CALL ADDIS (FUNIT, PKEY, PKEY-3, ARRAY, FLAGS, $9200,3,0,0)

REV. @ 9 - 16

PDR3061 DATA ACCESS SUBROUTINES

DELETS

DELETS locates a data entry by either the keyed index or direct access
method and deletes the data entry and/or primary index entry. The
secondary index entry is deleted if a secondary index is specified.
DELETS ignores any data entry lockouts that may be have been applied.

Where synonyms are present in the file (secondary indexes only), DELETS
locates the first only (oldest synonym). NEXTS must be used to position
DELETS in this case.

Calling Sequence

DELETS is called using the standard call described in this section. The
parameter values involved in the call to DELETS are used to specify the
options available in the following areas:

1. Access Methods

2. Use of array

The parameter settings for each option are discussed in the following
paragraphs.

Access Methods

Before deletion, the data entry may first be located by FINDS, if there
are no synonym (duplicate) keys. NEXTS must be used if there are
synonym (duplicate) keys. The basic access method for DELETS is keyed
index. The direct access method is applicable if Direct Access was
specified when the template was created by CREATK.

The direct access mechanism is specified by setting the index
parameter to the value -l1. Any positive value indicates that the
keyed index method is required.

Keyed Index Method

Choice of Index: The keyed index method enables data entries to be
located by searches on the primary or one of the secondary index
structures. If index is 0 or -l, it means Delete data; if index
is greater that 0, it means: delete the specified secondary index entry.
The index structure to be used is specified in the index parameter.

Possible values are:

=“
Meaning

-1 See Direct Access method

° primaryTndex

mee Specified secondary index

9-17 November 1977

SECTION 9 PDR3061

If direct access or a primary index are specified, the data entry and
the primary index entry are deleted and all related secondary index
entries are rendered void. During the next run of REMAKE, these
voided secondary index entries are deleted. This accounts for the
difference in secondary index entry counts before and after a REMAKE.

If the secondary index is specified, only the specified secondary
index entry is deleted.

Full or Partial Key Values: When using the keyed index method, the
user must supply a full key (primary or secondary) to DELETS. Partial
keys are illegal because positive identification of the entry to be
deleted is required. The user supplies a key value in parameter key.

Direct Access Method

The direct access method is applicable to MIDAS files with templates
that were created specifying direct access. For the direct access
mechanism to apply, the records of the data entry subfile of a MIDAS
file must be preallocated on disk. On any such MIDAS file, all keyed
index operations (i.e., full key searches on secondary indexes for
deletion of secondary index entries) still apply.

To delete a record through direct access the user must supply a full
primary key, a floating point data entry number and the full data entry
size specified in words. The data entry number need not be related to
the primary key in any way.

The data entry number is passed to the file handler in words 3 and 4 of
array.

The data entry size is the length of the data record as stored on disk
(i.e., 2 words + Key length in words + data length in words). It is
passed to the file handler as word 2 of array.

Hence the first 4 words of array contain:

Word 1 Condition code. (0 or 1)
Word 2 Entry size
Word 3-4 "Entry number' in REAL format.

Other parameters are:

index must be set to -1

key must contain the desired full Primary
Key value.

flags FLSUSE may be zero; array is used anyway.

PDR3061 DATA ACCESS SUBROUTINES

If two or more primary key values are found at the same data entry
number, MIDAS resolves this conflict by the normal index search.
Consequently, a slight increase in search tine results.

Use of Array

The array is a scratch area used by the file management system. Consult
Table 9-4 for detailed contents. The first word of array is used to
return completion codes or error codes to the caller. Possible values

are: |

Value Meaning

0 Successful deletion

1 Successful deletion but there
may be further synonyms on the file

7 Entry not found

other Error code (refer to Appendix A)

When using the direct access facility, array is used to contain the
user supplied Data Entry Number. With direct access, it is meaningless
to set FLSRET since the returned array cannot be used.

By setting FLSUSE in flags, the user may supply valid array contents.
These must have been generated by a previous call to FINDS, NEXTS, or
LOCKS that located the data entry on the same index whose index entry
(and data entry for primary indexes) is required to be deleted.

Summary of Parameters for DELETS

Table 9-4 summarizes possible values for parameters and options
specified in a call to DELETS.

9 - 19 November 1977

SECTION 9

Table 9-4.

PDR3061

Summary of Parameter Values for DELETS

Parameter

+

Options (if any) Meaning

funit

buffer

key

ra :

flags

altrtn
FLSUSE

PRIMOS file unit on which this
files segment directory is
opened. This specifies the
MIDAS file being used.

Not applicable

Full primary or secondary key
to be used to identify the
data entry.

14-word block used for file
handler/user communication and
for direct access only. For
direct access, array is used to
input the user-supplied data
entry number and entrysize.

Options that specify use of
array parameter. The options
for DELETS are described in the
following table entries.

For direct access: May be =0;
array is used anyway.

For keyed index: 1 = use contents
of array. Array must be set up
from a previous successful call
to one of the file system routines
(i.e., have a condition code of
0 or 1, successful retrieval).

By supplying a valid copy of
array, the same data that was
retrieved from a previous call
(FINDS, NEXTS, etc.) will be
deleted. All other bits in
flags are ignored except FLSRET.

An alternate return to be taken

if an error occurs.

REV. @

PDR3061 DATA ACCESS SUBROUTINES

1
Parameter Options (if any) Meaning

index Index to be used - Its values are:

Value Meaning

0 Primary
1 Secondary
2 Data

-1 Direct Access

Values of 0 or -l cause both the
data entry and primary index
entry to be deleted. Any other
value causes the appropriate
secondary index entry to be
deleted.

file-no. G or -1

plenth Not used

keylnt Not used

November 1977

SECTION 9 PDR3061

Using DELETS

Following is an example of the use of DELETS to delete a data record
and all secondary index entries associated with it.

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14)
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSKEY

CALL DELETS (FUNIT, BUFFER (80), PKEY (6), ARRAY, FLAGS, $9000,0,0)

To delete a secondary index entry when there are duplicate occurrences
of the key, as in:

- @

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14),
PTEST (6) EQUIVALENCE (BUFFER (1), PKEY (1))
REAL RKEY 3

FLAGS = FLSRET + FLSUSE + FLSKEY
ARRAY (1) = -1l
100 CALL NEXTS (FUNIT, PTEST, RKEY-3, ARRAY, FLAGS, $9000,3,0,6,0)
DO 200 I = 1,6
IF (PTEST (I) .NE. PKEY (I) GO TO 100

200 CONTINUE
FLAGS = FLSUSE

CALL DELETS (FUNIT, PTEST, RKEY-3, ARRAY, FLAGS, $9100,3,0)

PDR3061 DATA ACCESS SUBROUTINES

FINDS

The MIDAS routine FINDS locates a data entry by either the keyed index
or direct index method and reads the specified amount of data into the
location specified by the buffer parameter. Parameters specified by

FINDS are listed in Table 9-5.

FINDS ignores any data entry lockouts that may have been applied. Where
synonyms are present on the file (secondary indexes only), FIND$ locates

the first synonym only (oldest synonym).

Calling Sequence

FINDS is called using the standard call described previously. The
parameter values in the CALL to FINDS are used to specify the options

available in the following areas:

l. Access Methods

2. Information retrieved

3. Use of user-supplied array

The parameter values for each option are discussed in the following

paragraphs.

Access Methods Supported by FINDS

There are two access methods supported by FINDS. These are:

1. Keyed Index
2. Direct Access

The most commonly used access method is keyed index. The direct access

method is potentially faster and is applicable if a full primary key

value is supplied and Direct Access was specified when the file

template was created by CREATK. The direct access mechanism is specified
Tne e mextbeanee bh Amanecer enby setting the index parameter to the value -1. Any other allowable

value indicates that the keyed index method is required.

Keyed Index Access Method

Choice of Index: The keyed index method enables data entries to be

retrieved by searches on either the primary or one of the secondary

index structures. The index structure to be used is specified in

parameter index as follows:

9 ~ 23 November 1977

SECTION 9 PDR3061

index Meaning

-1 Refer to Direct Access Method

0 Primary Index

1 to 19 Specified secondary index

The user must supply a primary key value if the primary index is
specified, or supply a first secondary key if the first secondary
index is specified, etc.

Full or Partial Key Values: When using the keyed index method, full
keys or partial keys (both primary and secondary) may be supplied to
FINDS for retrieval of the required data entry.

Partial keys are truncated full keys (for example, the first four
characters of an eight-character full key). When partial keys are
Supplied, FINDS returns the first data entry that has a full key that
begins with the partial key.

Use of partial keys is specified in the parameter keylnt which takes
the following values:

Keylnt Meaning

0 Use full sized key

non-zero Size of partial key in bits, bytes
or words

The value of the partial key size is either in bits, bytes or words
according to the value of FLSBIT in parameter flags, namely:
RESET = partial key size in words or; SET = partial key size in bits or
bytes (always supplied in key). Key values are specified in oarameter
keys.

PDR3061 DATA ACCESS SUBROUTINES

Direct Access

The direct access mechanism provides an alternative, potentially faster,
retrieval mechanism for those retrievals that are based upon a full
primary key value being supplied. For the direct access mechanism to
be effective, the data entry subfile of a MIDAS file must be
pre-allocated on disk.

On any direct access MIDAS file, all keyed index operations i.e., full
or partial key searches on primary or secondary indexes function as
previously described.

The user must supply a Data Entry Number previously assigned to the
data entry.

To find a record through direct access the user must supply a full
primary key, a floating point data entry number and the full data entry
size specified in words. The data entry number need not be related
to the primary key in anyway.

The data entry number is passed to the file handler in word 3 and 4
of array.

The data entry size is the length of the data record as stored on disk
(i.e., 2 + Key length in words + data length in words). It is passed to
the file handler as word 2 of array.

Hence the first 4 words of array contain:

Word 1 Condition Code (0 or 1)

Word 2 Entry size

Word 3-4 "Entry number' in REAL format

The index parameter must be set to -1. Key must contain the desired
full primary key value. Keylnt must be set to the default value of
zero (i.e., it indicates a full key). Flag FLSUSE may be zero; the

array will be used anyway.

If two or more primary key values are found at the same Data Entry
Number, MIDAS resolves the conflict by the normal index search method.

This results in a slight increase in retrieval speed.

9 = 25 November 1977

SECTION 9 PDR3061

Information Retrieved (All Methods)

The user options available in FINDS enable information to be returned
from:

@e The data entry
e The primary key value for the data entry
@ The secondary index entry and any user data

stored with the index entry.
e The full key vali.

Use of Buffer: After a successful call to FINDS, MIDAS returns the
information from the data entry corresponding to the key supplied or,
alternatively, information from the last level secondary index entry
in buffer. This latter option is available if a secondary key search
is made.

FLSSEC of flags must be SET if it is required to return information
from the index entry rather than the data entry.

The user must provide a buffer sufficiently long to contain all the
return information, the data entry, and the full primary key if
specified by FLSKEY.

If the return of all information is required, plenth may be zero.
Otherwise, plenth specifies the total number of words required to be
returned, including the full primary key if specified by FLSKEY.

The facility to return the full primary key can be most useful to the
user under the following sample conditions:

1. The data entry has been found by supplying a secondary
key and it is necessary to know the value of the
corresponding primary key.

2. The data entry has been found by supplying a partial
primary key and it is necessary to identify the exact
data entry accessed by the corresponding full primary
key value.

3. The data entry has been found by supplying a partial
secondary key, but array indicates that further synonyms
exist on the file. The identify of this first synonym can
be established by reference to the full primary key returned,
which is always unique.

Use of Kev: This key parameter provides the information by which FINDS
locates the data entry in the file.

REV. 9 9 - 26

PDR3061 DATA ACCESS SUBROUTINES

When a partial key is supplied, the data entry retrieved will be the
first whose appropriate key gives a match over the partial key length.
Sometimes, it is necessary to identify the data entry retrieved by a
partial key by having the full secondary or primary key returned also.
FLSUKY in flags must be set if this option is required. On return, key
contains the full key corresponding to the partial key originally supplied.
The user must ensure that the key array is large enough to contain the
full key if FLSKEY is set.

Use of Array: The user-supplied array is a scratch area used by the
MIDAS file management system.

The first word of array is always used to return completion codes or
error codes to the caller. These may be:

Code Meaning

0 Successful retrieval

1 Successful retrieval but there
may be further synonyms on the
file

7 Entry not found

other See Appendix A

By setting FLSRET in flags, the full contents of array are retumed
for the current access. A user may have the full array returned in
order to call other MIDAS routines (such as LOCKS, DELETS, etc.) for
the same data entry, perhaps with different optional parameters.
The values returned in array allow the file handler to short-circuit the
index search mechanism.

When using thedirect access facility, array contains the user-supplied
data entry number. Also, with Direct Access, the returned array can
only be used for addition of secondary index entries or to re-access the
same record.

Summary of Parameters for FINDS

Table 9-5 lists the parameters specified in a call to FINDS along with a
brief explanation of their meaning. Further information is given in
the general discussion of parameters at the beginning of this section.

9 = 27 November 1977

SECTION 9 PDR3061

Table 9-5. Summary of Parameter Values for FINDS

Parameter} Options (if any) Meaning

funit PRIMOS file unit number on which the
specified files segment directory is
open. This specifies the MIDAS file
being used.

buffer Buffer into which retrieved data is
stored.

key Full or partial primary or secondary
key is used to identify the data
entry.

array 14-word block used for file handler/
user communication and for direct
access only to input the user supplied
data entry number and entry size.

flags Options that specifv use of various

FLSUSE

FLSBIT

FLSSEC
parameters. The options for FINDS
are described in the following table
entries:

For direct access may be =0 (i.e.,
RESET); (array is used regardless
for direct access).
For keyed index, SET bit 1 to use
contents of array. Array must be
set up from a previous call to one
of the MIDAS file system routines
and have a condition code of 0
indicating successful retrieval.
(A condition code of 1 indicates
successful retrieval, but there may
be further synonyms.)
By supplying an array, the data

. retrieved from a previous call (FINDS,
NEXTS, etc.) is obtained again, but
array must be correctly set up. If the
index parameter indicates direct access,
array must be set up with entry size
and entry number.

Key size to use is specified in bits
or bytes.

Return user data from secondary index
rather than primary data entry. This
is not applicable if primary indexaccess
or direct access has been specified.

REV. ~ 28

PDR3061 DATA ACCESS SUBROUTINES

FLSKEY Include primary key in data returned
to caller (unless specified, it is not
returned). Plenth must be specified
with the primary key vaiue in mind.

FLSUKY Update keyfield with actual key from
data base. This option is useful if
FINDS is being used with partial keys.

FLSRET Return full array; otherwise, only
return completion code.

altrtn An alternate return to be taken in the
event of an error.

index Index to be used:

0 - Primary
1 to 19 - Secondary
-l - Direct Access

file no. 0 or -l

plenth Length of input data. § means full
amount of data entry plus full primary
key if specified by FLSKEY.

keylnt Length of key to be used. Zero means
full size as in data base; nonzero
means partial key. A direct access
must use the default value of 0, l.e.,
it must contain the full key.

9 - 29 November 1977

SECTION 9 PDR3061

Using FINDS

The following example retrieves a data record from a MIDAS file via the
primary index:

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14)
EQUIVALENCE (BUFFER (1), PKEY (1))

*

FLAGS = FLSKEY + FLSRET 1* SET UP TO RETURN ARRAY AND PKEY
CALL FINDS (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $9000,0,0,0,0)

This example retrieves a data record from a MIDAS file via a REAL
secondary key:

INTEGER *2 FLAGS, BUFFER (80), FUNIT, ARRAY (14), PKEY (6)
REAL RKEY-3
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSKEY + FLSRET
CALL FINDS (FUNIT, BUFFER, RKEY-3, ARRAY, FLAGS, $9000,3,0,0,0)

PDR3061 _ DATA ACCESS SUBROUTINES

FINDS - EXAMPLE

This example retrieves secondary data from a KI/DA file (index 2)

INTEGER *2 FLAGS, BUFFER (80), FUNIT, ARRAY (14), PKEY (6),
SKEY 2 (4)
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSKEY + FLSSEC + FLSRET

CALL FINDS (FUNIT, BUFFER, SKEY 4, ARRAY, FLAGS, $9000,2,0,0,0)

9 - 31 November 1977

SECTION 9 PDR3061

LOCKS

LOCKS locates a data entry by either the keyed index (any index) or
direct access method. If the data entry is not locked LOCKS reads
into buffer the specified amount of data. Afterwards, LOCKS locks the
data entry.

The action of LOCKS is similar to FINDS, with some differences caused
by inclusion of the data entry lock feature. These differences are

discussed in the following paragraphs.

Data Entry Lockout

Data entry lockout protects a data entry on a MIDAS file between retrieval
and subsequent update. This protection prevents other users (also using
LOCKS rather than FINDS) from retrieving the same data entry and updating
it. If this happened, the result of the first update would be lost.
LOCKS protects the data entry from retrieval or update by any of the
possible primary or secondary index values.

LOCKS first tests that the data entry is not already locked before
retrieval. After successful retrieval, the data entry is locked.
UPDATS must be the next routine called for the file retrieved, and
there must be no other access to the locked record by the locking user
until then. FINDS, NEXTS, AND DELETS may not be used to access the
record by other users while it is locked.

Calling Sequence

LOCKS may be called specifying any index, and it prevents update by
other users asking for retrieval, while LOCKS is operating.

Since UPDATS must be the next routine called after LOCKS, and UPDATS
must have array supplied, FLSRET in flags must be set to cause return
of the array contents. Array is valid whether LOCKS used the keyed
index or direct access method specified in the index parameter of

the call.

The data entry being locked must be identified fully. The user must

supply a full key value in the key parameter and the key must be

appropriate to the index that is used. Keylnt is ignored.

Use of Array

Array can be supplied on input (i.e., FLSUSE set in flags). This is

appropriate when it is required to lock a data entry after a call to

FINDS or NEXTS for the same data entry. Using this technique, the data

entry can be identified before the lock is applied. Index traversals

can be short circuited when calling LOCKS.

PDR3061 DATA ACCESS SUBROUTINES

The first word of the returned array always returms completion codes or
error codes to the caller. The meanings of the contents of this word are:

Value Meaning
0 Successful retrieval

1 Successful retrieval but there may
be further synonyms on the file.

7 Entry not found

10 Entry found, but already locked.

Other See Appendix A.

Summary of Parameters for LOCKS

Table 9-6 lists and briefly describes the parameters and options for LOCKS.

Notes

1. If LOCKS is being used to locate the record, a full
key for the selected index (or direct access) must

be supplied.

2. If the record has been found by FINDS or NEXTS and
FLSUSE is set in flags, no key is required or used
as the data entry has already been found.

9 - 33 November 1977

SECTION 9 PDR3061

Table 9-6. Summary of Parameter Values for LOCKS

Parameter] Options (if any) Meaning

funit PRIMOS file unit number on which
this file's segment directory is
open. This specifies the MIDAS
file that is being used.

buffer Buffer into which retrieved data.

is stored.

key Full primary or secondary key
. used to identify the data entry

to be locked.

array The 14-word block used for file

handler/user communication. For
direct access only, the parameter
is used to input the user-supplied
data entry number and entry size.

flags Options that specify use of various
parameters. The options for LOCKS
are described in the following
table entries.

FLSUSE For direct access, may be zero.
Array is used anyway for direct
access. For keyed index, 1 = use
contents of array. Array must be
set up from a previous successful
call to one of the MIDAS file
handler routines (have a condition
code of 0 indicating successful
retrieval). If the condition code is
1 indicating successful retrieval,
there may be further synonyms.
By supplying array, the same data
that was retrieved from a previous
call (FINDS, NEXTS, etc.) is
obtained again; however, array
must be correctly set up. If index
indicates direct access, array
must be set up with Entry size and
Entry number.

FLSSEC Ignored
REV. @ 9 - 34

PDR3061 DATA ACCESS SUBROUTINES

altrtn

FLSKEY

FLSUKY

FLSRET

Include primary key in data
returned to caller (unless
specified, it is not returned).
If not 9, plenth must be
specified with the value of the
primary key in mind.

Ignored

Return full array - For LOCKS
this bit must be SET for use by
a following cali to UPDATS.

An alternate return to be taken

in the event an error occurs.

Index to be used:

Value Meaning

0 Primary

1 Secondary

2 Tertiary

-1 Direct Access

0 or -l

Length of Data to be input.
A value of 0 means specify the
full iength of data entry file

WO TIET

specified by FLSKEY.

Ignored (see Note)

35 November 1977

SECTION 9 PDR3061

Using LOCKS

The following example retrieves and locks a record for updating on

primary key.

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), FUNIT, ARRAY (14)
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSKEY + FLSRET
CALL LOCKS (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $9000,0,0,0)

This example retrieves and locks a data record for updating using an
array returned by NEXTS on a secondarykey:

100

INTEGER *2 FLAGS, BUFFER, PKEY (6), SKEY-2 (4), FUNIT, ARRAY (14)
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSRET + FLSUSE + FLSUKY + FLSPLW + FLSKEY

CALL NEXTS (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9000,2,0,0,2)

CALL LOCKS (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9100,2,0,0)

PDR3061 DATA ACCESS SUBROUTINES

NEXTS

NEXTS locates the next sequential data entry in the file. NEXTS can

be used to obtain the first entry in a sequence as well as subsequent

entries and reads into buffer the specified amount of data. This

routine is useful for ordered scans of MIDAS files according to

ascending key order in one of the indexes. This subroutine ignores

any data entry lockouts that may have been applied. Where synonyms

are present on the file (secondary indexes only), NEXTS is the only

method of returning further synonyms. Repeated calls to NEXTS retrieve

synonyms in the time-order in which they were added to the file. NEXTS

cannot use the direct access method (i.e., index set to -1).

Calling Sequence

NEXTS is called using the standard call. The parameter values involved

in the call to NEXTS are used to specify the various options available:

1. Access Methods

2. Information retrieved
3. Use of user-supplied array

The parameter settings for each option are discussed in the following

paragraphs.

Access Methods

NEXTS traverses the MIDAS file using the keyed index method only.

Specification of the direct access method is meaningless and, therefore,

illegal (i.e., an indexvalue of -1 is illegal.)

Principles of NEXTS

1. FLSUSE RESET indicates "get first entry as specified".

2. FLSUSE SET indicates "get next entry according to

array supplied".
3. FLSRET RESET is invalid.

Thus, NEXTS may be used to position into the file. FINDS may also be

used if FLSRET is set for the FINDS call. For NEXTS to function after

the first call, both FLSUSE and FLSRET must be set in flags; the

array must be used because it contains details of the current position

in the index, and it must be returned for use in the next call to NEXTS.

The first positioning call to FINDS or first call to NEXT$ must return

the array for use by the subsequent call to NEXTS.

If FLSUSE in flags is not set, then NEXTS behaves exactly like FINDS,

i.e., it initiates an index search to locate the first data entry with

a key that matches the full or partial key supplied.

9 - 37 November 1977

SECTION 9 PDR3061

Choice of Index

Either the primary or any of the 19 secondary indexes of a MIDAS file can
be traversed sequentially by repeated calls to NEXTS. The index structure
to be used is specified in parameter index. Values may be as follows:

Value Meaning
-1 Tllegal for call to NEXTS

0 Primary Index

1 to 19 Specified secondary index

When reading data entries in ascending key order of the chosen index, the

user must supply the same index value in repeated calls to NEXTS.

The concept of next data entry means: the next data entry in a file with
the next highest key value in that particular index. To alter the index
parameter between repeated calls to NEXTS is, therefore, meaningless.

Partial Key Values

Key values for NEXTS are used in the following ways:

1. To initiate a sequential traverse of the index if
FLSUSE is reset.

2. To stop a sequential traverse of the index, if the key
value is no longer satisfied when FLSPLWis reset.

The key value is used exactly as for FINDS; if a full key search is
specified (say for duplicates) and FLSPLW is not set, an error code of
7 is returned if there are no entries with the specified key.

The key value and other parameters described below are used as selection
criteria, on the next data entry. If the selection criteria are not
satisfied, the next data entry is rejected and NEXTS indicates to the
user that the data entry is NOT FOUND.

FLSPLW in flags indicates the selection criteria. Its values are:

Value Meaning

SET Read the next data entry regardless

RESET Read the next data entry only if it
matches the user supplied full or
partial key in parameter. Key for the
length specified in Keylnt (in units
specified by FLSBIT in flags). If the
partial key does not match, NEXTS indicates
that the data entry is NOT FOUND.

REV. 9 9 - 38

PDR3061 DATA ACCESS SUBROUTINES

As an example of the use of this selection criterion, consider a third

secondary key with two alphabetic and three numeric characters. By

using FINDS and specifying the two character partial key AA, the user

can position to the first key beginning with AA and retrieve the data

entry. Thereafter, the user can retrieve in sequence each data entry

that begins with AA. At the end of the entries beginningwith AA, for

example, the partial key changes to AB. NEXTS takes the NOT FOUND exit

if FLSPIW is reset. This indicates to the caller that the end of the

AA's has been reached.

To position to the first data entry on the selected index, FLSFST in

flags must be set. In this case the contents of key is immaterial.
The entire file can be scanned, with data entries being returned

according to ascending order of the chosen index. Since the indices

supported are primary and 19 secondaries, a sort mechanism can be

provided allowing 20 different sort keys.

Information Retrieved

The user options available in NEXTS enable information to be retrieved

from:

1. The Data Entry
2. The Primary Key value.
3. The Secondary Index Entry where more

additional information can be stored to
supplement the main data entry

In addition, user options enable this information to be returned to

either the user-supplied buffer or the user-supplied key. The following

paragraphs describe how the options are used to returninformation and

where it is returned.

Use of Buffer

After a successful call to NEXT$, MIDAS returns the information from the

next data entry corresponding to the index selected or, alternatively,

information from the last level secondary index entry. This latter

option is available only if a secondary index search is made. FLSSEC
of flags must be SET to return information from the index entry rather

than the data entry. Whichever option is chosen, the conditions

described in the following paragraphs still apply.

The information retrieved can optionally be preceded by the corresponding

primary key value returned from the data entry, regardless of whether

the information was retrieved with a primary or secondary index.

FLSKEY of flags must be set if this option is required. Buffer must be

sufficiently long to contain all the specified return information, the

data entry, and the full primary key, if specified.

9 = 39 November 1977

SECTION 9 PDR3061

If the user requires the return of all information, then plenth
may be set to zero. Otherwise, plenth specifies the total number of
words to be returned including the full primary key, if specified.

The facility to return the full primary key can be most useful to the
user under the following example circumstances:

l. The next data entry has been found using a
secondary index and it is required to know the
value of the primary key value corresponding to
that data entry.

2. The data entry has been found by supplying a
partial primary key and it is necessary to identify
the exact data entry accessed by the corresponding
full primary key value.

3. The data entry has been found by supplying a secondary
key, but the array indicates that further synonyms
exist in the file. The identity of this first
synonym can be established by reference to the
full primary key returned, which is always unique.

Use of Key

The keyfield key usually provides to NEXTS the key by which it optionally
retrieves or rejects the next data entry from the file.

The full key corresponding to the next sequential data entry on the
chosen index is returned to key if FLSUKY is set. Setting FLSUKY
does not interfere with partial key values.

The user must ensure that the key parameter is large enough to contain
the full key if FLSUKY is set.

Use of Array

The first word of array is always used to return completion codes or
error codes to the caller, as follows:

REV. 9g 9 —- 40

Code

Other

PDR3061 DATA ACCESS SUBROUTINES

Meand

Successful retrieval

Successful retrieval, but there
may be further synonyms of the file.

Error code.

See Appendix A

When using NEXTS$, FLSRET must be set in flags. If a call to NEXTS is
made without specifying FLSUSE, NEXTS is identical to FINDS, i.e., it
searches the indexes using the keyed index access method and locates
the first data entry that matches the full or partial key supplied
(unless FLSPLW is set).
entries.

Summary of Parameters for NEXTS

FLSUSE must be set to retrieve subsequent

Table 9-7 summarizes parameters and options for NEXTS.

9 -— 41 November 1977

SECTION 9 PDR3061

Table 9-7. Summary of Parameter Values for NEXTS

Parameter] Options (if any) Meaning

funit PRIMOS file unit on which the file's
segment directory is open. This
vecifies the MIDAS file being used.

Buffer into which retrieved data

is stored.

Full or partial primary or secondary
key to be used to identify the data.

14-word block used for MIDAS file

handler and user communication.

.Q
Y

Kh

°
g

Options that specify use of various
parameters. The options for NEXTS
are described in the following
table entries.

FLSUSE Use contents of array. This bit
generally is set. Array must be
set up by a previous call to
FINDS or NEXTS for the same index.
Direct access is not supported
by NEXTS.

If FLSUSE is not set, then a first
time search for the key supplied is
made, similar to keyed index
FINDS operation.

FLSRET Must be set. Returns contents of
Array.

FLSKEY Include primary key in buffer.

FLSBIT Keysize is specified in units or
Bytes.

FLSPLW Get next entry regardless of key
match.

FLSUKY Update keyfield with full key from
data base.

FLSSEC Return secondary data from secondary
index.

REV. @ 9 - A2

PDR3061 DATA ACCESS SUBROUTINES

FLSFST Position to first index entry.

altrtn An alternate return to be taken if
an error occurs.

index Index to be used.
Its values are:

Value Meaning
0 Primary

1 Secondary

n n th index

Note: Direct access is illegal.

file no. 0 or -l

plenth Length of data to be input. Plenth
= 0 means full amount in data entry
plus full primary key, if specified.

keylnt Length of key to be used and
whether the user wants a full or
partial key. Possible values are:

Value Meaning

0 Full size key in
data base

nonzero User length in words
or bytes/bits as
specified by FLSBIT

9 -~— 43 November 1977

SECTION 9 PDR3061

Using NEXTS

The following example traverses the whole file on Index 2:

100
1000

The use
Primary

100

INTEGER *2 FLAGS, BUFFER (80), SKEY-2 (4), PKEY (6),
ARRAY (14), FUNIT
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSRET + FLSFST + FLSKEY + FLSUKY
CALL NEXTS (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9000,2,0,0,0)
FLAGS = FLSUSE + FLSRET + FLSKEY + FLSUKY + FLSPLW
GO TO 1000

CALL NEXTS (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9100,2,0,0,0)

(User)

GO TO 100

of NEXTS does a partial key search on 3 characters of the
key:

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), ARRAY (14), FUNIT
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSUSE + FLSRET + FLSBIT + FLSKEY
ARRAY (1) = -1
CALL NEXTS (FUNIT, BUFFER, PKEY, ARRAY, FLAGS, $9000,0,0,0,3)

GO TO 100

PDR3061 DATA ACCESS SUBROUTINES

This example gets all occurrences of synonym keys in secondaryindex 3:

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), ARRAY (14), FUNIT
REAL RKEY-3
EQUIVALENCE (BUFFER (1), PKEY (1))

FLAGS = FLSRET + FLSUSE + FLSKEY

CALL FINDS (FUNIT, BUFFER, RKEY-3, ARRAY, FLAGS $9000,3,0,0,0)

1000

IF (ARRAY (1) NE. 1) GO TO 3000
CALL NEXTS (FUNIT, BUFFER, RKEY-3, ARRAY, FLAGS, $9100,3,0,0,0)
GO TO 1000

3000—«zt. (USER PROCESS)

9 -— 45 November 1977

SECTION 9 PDR3061

UPDAT$

UPDATS writes a replacement data entry from the caller's buffer.

The routine LOCKS must have been called immediately before calling
UPDATS and LOCKS must have returned valid array contents for use by
UPDATS. (Condition code set to 0 or l.)

Updates may be performed through any index, whether the file is keyed
index or the direct access.

Calling Sequence

UPDATS is called using the standard call described previously in this
section. The parameter values involved in the call to UPDATS specify
the options available in the following three areas:

1. Access Methods
2. Information Retrieval
3. Use of User supplied Array

The parameter settings for each option are discussed in the following
paragraphs.

Access Methods

There are two access methods supported by UPDATS. These are:

l. Keyed Index
2. Direct Access

The basic access method is keyed index. The direct access method is
potentially faster than the keyed index method for retrievals.

The same index value used to LOCK the record must be used to update it.

Value Meaning

-1 When direct access is a specified
option for this file.

0 When direct access is not specified
for this file.

n Any secondary index.

Partial keys are not relevant to UPDATS, and the parameter kevint is
ignored. Since array must be supplied, FLSUSE in flags must be set.

Information Returned

Tf FLSULK of flags is set, UPDATS only unlocks the data entry and does
not update it. Otherwise, the complete updated data entry must be
present in buffer.

The data entry may optionally be preceded by the full primary key in
buffer, in which case FLSKEY in flags must be SET.

Use of Array

Array must be supplied on input (FLSUSE set in flags) and must contain
information returned from the previous successful LOCKS call.

If FLSRET of flags = 1 the retum of an array takes place, but it is
meaningless since, after a successful call, the contents are not
changed.

The first word of the retained array is always used to return completion
codes or error codes to the caller, regardless whether FLSRET of flags
is SET. These codes are:

Code Meaning

0 Successful update

11 Entry not locked by user;
unsuccessful update

other Error code; see Appendix A

Summary of Parameters for UPDATS

Table 9-8 summarizes parameters and options for UPDATS.

9 - 47 November 1977

SECTION 9 PDR3061

Table 9-8. Summary of Parameter Values for UPDATS

Parameter Option (if any) Meaning

funit PRIMOS file unit number on which

this file's segment directory is
open. This specifies the MIDAS
file being used.

buffer Buffer in which the updated data
entry must be presented. It may
include Primary Key.

key Full or partial primary or
secondary key.

array Must be supplied

flags Options that specify use of

FLSUSE

FLSRET

FLSKEY

FLSULK
various parameters. The options
for UPDATS are described in the
following table entries.

User array must be set

Return array, may be set. However,
this call is meaningless, and
array is not set after a call to

UPDATS.

If set, there is a full primary
key in buffer.

If set, unlock only, do not
update data. All other bit
settings for flag are ignored.

48

PDR3061 DATA ACCESS SUBROUTINES

Using UPDATS

The following example updates a record previously locked through index 2:

INTEGER *2 FLAGS, BUFFER (80), PKEY (6), ARRAY (14), SKEY-2 (4)
FUNIT
BQUIVALENCE (BUFFER (1), PKEY (6))

FLAGS = FLSUSE + FLSKEY
CALL UPDATS (FUNIT, BUFFER, SKEY-2, ARRAY, FLAGS, $9100,2,0,0)

9 - 49 November 1977

PDR3061 MODIFYING MIDAS

SECTION 10

MODIFYING MIDAS TO MEET USER NEEDS

MIDAS parameter values that users may have a legitimate need to change
have been pulled out of the collection of MIDAS source modules and
isolated for the most part in two modules. The first of these is a
parameter file called in the UFD named SYSCOM called KPARAM. The
second is a dummy routine for defining COMMON called LDPOOL. This
section describes the various parameters in SYSCOM > KPARAM and LDPOOL
and under what circumstances their values should be changed.

LDPOOL, COMMON CONTROL MODULE

LDPOOL contains the basic definition of the conmon areas for the
MIDAS on-line file handler. Part of the on-line file handler is loaded
with almost every MIDAS program regardless of whether it is a program
for use in a multi-user environment or is intended to be run by a single
user in off-line environment. Accordingly, a version of LDPOOL is
loaded with every MIDAS program. There is a version built into the
libraries named KIDALB, VKDALB, and KIDAFM by the command files used to
generate these libraries. This version may be replaced by a user-

created version by loading it before KIDALB. The definition of the common

areas has been handled in this way so that the cormon areas may easily
be tailored for each application without requiring that any of the

MIDAS libraries be rebuilt.

LDPOOL defines the on-line buffer pool POOLBG and the control array for
POOLBG, CTLA. POOLBG is the destination array for all index blocks

that MIDAS needs to examine. The standard rule of thumb for the length

of POOLBG is that it must be long enough to hold two of the longest

last-level index blocks likely to be encountered, plus a little extra.

POOLBG must be long enough to hold at least one of any size index block.

The provision for a little extra is so that most first level index blocks

can be held in memory through a MIDAS call. A buffer pool that is twice

as long as the longest last-level index block can hold both a main index

last-level block and an overflow last-level block Guring the course of

a single call to MIDAS, which improves the efficiency of NEXTS.

As delivered, POOLBG in KIDALB is 5000 octal locations long, based on

the assumption that the longest index block will be 1024 (2000 octal)

words long from a storage module. This is the default index block

size for Rev 14.0. Previous versions of KIDALB defined POOLBG to be

2000 octal (1024) words long assuming a maximum index block size of

440 words. Users modifying the defaultindexblocksizeor usingthe
full options stream of CREATK to define all block sizes as less than

1024 words long may wish to shorten the length of POOLBG accordinglv.

It is suggested that 2-1/2 times the longest last level index block

is an appropriate size (but POOLBG must be at least as long as the

longest index block of any size).

lo - 1 November 1977

SECTION 10 PDR3061

To control the usage of POOLBG, there is an array CTIA also defined in
LDPOOL. As delivered, LDPOOL in KIDALB defines CTLA to hold information
for 19 index blocks. When CTLA is filled (all 19 positions used), old
positions in POOLBG are used, destroying index blocks previously in
memory. Hence, CTLA should be large enough to make full use of POOLBG
in any conceivable situation. On the other hand, five words are
required to retain information for each index block in memory. A user
with space problems in memory may wish to cut down the number of
positions in CTLA based on knowledge of the actual sizes of index
blocks in his files.

The final array with a user-variable size in LDPOOL is FILES. FILES
is designed to contain information on MIDAS files when it is desired
to retain an index in memory from one MIDAS call to another. Previous
releases of MIDAS documented calls to OPENS and CLOSES which activated
this feature. These calls are still available. However, their use
is not recommended because retaining index blocks in memory, as
presently implemented, will substitute paging activity for regular
disk activity. Users not planning to retain index blocks in memory
from one MIDAS call to the next may set the file size parameter in
LDPOOL to 0. As delivered, KIDALB supports retention of information for

10 MIDAS files.

VKEDALB is built with a longer version of POOLBG on the assumption that
programs running in V-mode on the Prime 400 have more memory available
and can benefit from the increased efficiency of a larger buffer pool,
without significantly increasing paging. At Rev 14, the default size
of POOLBG built into VKDALB is 10240 (24000 octal) locations. This
version of POOLBG is defined in the modified copy of LDPOOL called
LONGPL in the UFD named KI/DA on the master disk. CTLA is set up to
hold information about 99 index blocks in LONGPL and FILES will hold
information for about 20 MIDAS files.

There is a second special purpose version of LDPOOL called MIDPOL that
is designed for use with off-line programs only. POOLBG contains
28674 words; CILA supports 39 entries and FILES supports 0 files.

Unless either LONGPL or MIDPOL is exactly what is desired, the user
should start with a copy of LDPOOL and create his own version rather
than modifying the copies in the UFD named KI/DA. If the changes are
to be made within the libraries themselves, then the copies in the
UFD named KI/DA must be changed.

REV. 0 10 - 2

PDR3061 MODIFYING MIDAS

Each of the arrays POOLBG, CTLA and FILES is determined by a parameter

in LDPOOL. ‘These are:

POOLSZ - Siz of POOLBG

CTLASZ - Number of entries in CTLA

FILESZ - Number of entries in FILES

To change the size of any or all of the arrays, the user need only
change the values of these parameters and recompile a new version of

LDPOOL. This new version can then be loaded before KIDALB, VKDALB or

KIDAFM to implement the new sizes for a particular application. If
LDPOOL or LONGPL are changed and KIDALB, etcetra is rebuilt with the
new values, then the changes are global across all applications loaded

with MIDAS.

KPARAM, MIDAS PARAMETER FILE

The parameters in KPARAM are used by almost all MIDAS routines.
Tf values in KPARAM are changed, the user's MIDAS libraries must be
completely rebuilt. Any applications that require the change must be
loaded with the new MIDAS library. All the command files to build
the MIDAS utility programs must also be run.

KPARAM is divided into two sections separated by a line of asterisks.
Parameters below the line must not be changed by users. Parameters

above the line may be changed according to the suggestions outlined in

this section. Any changes made to parameters above the line of

asterisks will not affect the ability of the rebuilt MIDAS libraries

to access existing files. Changes made to KPARAM do not change the

size or shape of existing MIDAS files, unless a new version of CREATK

is used to introduce the changes.

If, for example, a user is planning to move a MIDAS file from a 60

megabyte disk to a 300 megabyte storage module and wishes to optimize

the file for access on the storage module, the Rev. 14 version of

CREATK should be run on the file. The Extend function must be run

with a CR (return) entered in response to the SEGMENT DIRECTORY LENGTH

and SEGMENT LENGTH queries. This tells CREATK to use its default

values. Then, each index (including the primary index) must be

accessed with CREATK's Modify command and a CR entered in response

to the BLOCK SIZE query. (Or, minimum options can be selected.) In

this way, when the file is next restructured by REMAKE it is
configured for best access on the storage module.

10 - 3 November 1977

SECTION 10 PDR3061

RECLNT Default Index Block Length

The optimum size for an index block is an integral multiple or fraction
of one physical disk record. For example, if the physical disk record
is 440 words, suitable block sizes are 880 words, 440 words, 220 words,
etc. If the physical block size is 1024 words, suitable blocks sizes
are 1024 words, 512 words or 256 words.

The user may wish to increase the default block size if all his
indexes are very long. A larger block size will make index access
the indices more efficient. On the other hand, the user may wish to
decrease the default block size if all his indexes are small and program
size is a problem. If the index block size is smaller, then POOLBG can
be smaller.

The maximum allowable block size is 1024 words. It is not reconmended

that block sizes smaller than 220 words be used.

As delivered, RECLNT is set to 1024 words, which assumes a storage
module disk. If the user has no storage modules, RECLNT may be changed
to 440 words (or 880 or 220 as indicated above).

Index block sizes may be changed on a per-file basis by using the full
options stream of CREATK.

SEGLNT ~- Length of the Segment Directory

The length of the MIDAS segment directory is arbitrarily set to one
physical disk record on a storage module. If the length is shorter,
the data subfile will not be able to hold as many records, but the
PRIMOS commands FUTIL and MAGSAV/MAGRST will be able to deal with the
file more efficiently. If the length of the segment directory is
longer, the data subfile will hold more records, but FUTIL and MAGSAV/
MAGRST will be slower.

The user may want to reduce SEGLNT to 440 words if there are no
storage modules on the system. If the data subfile size is only a
problem for some files on a system, the segment directory size may be
changed on a per-file basis by CREATK.

TWRAP - Number of Words per Segment

The length of a segment is expressed in 16-bit words rather than in
terms of records and words. The length of a segment is arbitrarily set
to enable one level of indexing to manage up to 524288 words in a DAM
file on a storage module. On any other disk, this length requires two
levels of indexing in the DAM file directory. Users that do not have
storage modules may prefer to change this value to 193600 words, which
on all other disks is the length of file which can be accessed as a
DAM file with only one level of directory indexing.

REV. 0 10 - 4

PDR3061 MODIFYING MIDAS

Regardless of the disk type on the system, users may wish to change
IWRAP to a larger number to increase the number of entries that files
can hold. For example, doubling the length of a segment doubles the
number of entries that each index can hold and also doubles the number
of data records which the data subfile can hold. Of course, disk space
must be available too, for the file is also capable of using twice as
many disk records.

If file size is a problem only with some of the files on the system, the
length of a segment can be changed on a per-file basis with CREATK.

BREAKE ~ Program Interrupt Control

During calls to ADDIS and between calls to LOCKS and UPDATS, MIDAS
disables the user program interrupt capability. That is to say the user
May not interrupt the running of the program with control-P or Break.
This is done to guarantee file integrity. At the end of the call to
ADDIS, and after the call to UPDATS, MIDAS re-enables the program
interrupt capability. Some users may wish to prevent MIDAS from
re-enabling Break. This assumes that the user is, instead, going to
call BREAKS, at a time of the user's choice.

The parameter BREAKE controls MIDAS calls to re-enable Break. As
delivered BREAKE is set to 1. The value has the effect of causing MIDAS
calls to BREAKS to disable and enable the program interrupt facility
as indicated above.

To prevent MIDAS from re-enabling the program interrupt facility, set
BREAKE to 0. This causes MIDAS to disable breaks as usual but prevents
it from re-enabling them. The user may then re-enable them or not as
desired.

RECYLA-Recycle Control Parameter

When attempting to open a segment that some other user may have open,
MIDAS calls the PRIMOS file system subroutine RECYCL and tries again
to open the segment. This is done the number of times specified in
parameter RHCYLA. If RECYCLA is not large enough, MIDAS may, from
time to time, return to the user with an error code 22 or 24. This
problem is most likely to occur on a Prime 400 with only two or three
users. The problem may go away if RECYLA is increased. As delivered,
RECYLA is set to 100.

KFILE, Start of MIDAS'S File Units

MIDAS uses three of the 16 available PRIMOS file units for accessing
segments under the segment directory. As delivered these are file wits
14, 15, and 16. Some users may wish to have MIDAS use other file units.
The three file units must be contiguous. Within this limitation, the
user may choose another set of file units by changing the value of KFILE.
For example, if KFILE is set to 7, then MIDAS will use file units 7,8 and 9.

10 - 5 November 1977

SECTION 10 PDR3061

BIGSIZ, Default Number of Fntries for PRIBLD and SECBLD

To build a MIDAS file using PRIBLD and SECBLD without specifying the
number of entries in the file, or to REPAIR a file, a default number of
entries for the file is assumed. This value is defined by BIGSIZ. As
delivered BIGSIZ is set to 200000. If this is not large enough, BIGSIZ

may be set to a larger value.

OVFCON -— BILDSR Control

When building an index with BILDSR, the new records are added to overflow.
At intervals the overflow is merged into the main body of the index.
BILDSR computes an optimum value for the maximum number of blocks in an
overflow chain before the merge is done. However, there is a minimm
number below which it is not worth doing the merge. The minimum number
is defined by OVFCON. As delivered, OVFCON is set to 7. It is possible
that this value may not be optimum for all index block sizes. A user
running programs calling BILDSR frequently may wish to set OVFCON higher
or lower. The optimm value must be determined by experiment.

TBULEN - Buffer Pool Size

The MIDAS utilities REMAKE and REPAIR use a buffer pool to build index
blocks in and to hold control information about the size and number of
index blocks. The size of this buffer pool is determined by the value
of IBULEN. As delivered, IBULEN is set to 15000. Users making several
concurrent calls to PRIBLD, SECBLD and BILDSR may find that this value
is not large enough. Other users concerned about program size may find
that a smaller value will do. The value of IBULEN may be changed by the
user according to the following guidelines:

1. For building an index with PRIBLD or SECBLD, allow 86
words plus the length of an index block for each level
of indexing expected in each index to be built.

2. For ome or more indices to be built with BILDSR, allow
6006 words.

3. For a fixed length data record, allow the length of the
data plus the length of the primary key plus 2.

4. For a variable length data record, allow 4096 words plus

the length of the primary key plus 2.

5. Add at least 100 words for other small buffers.

REV. 0 10 - 6

PDR3061 MODIFYING MIDAS

@e Primary key - 10 words

@ Data length - Fixed 120 words

e@ Secondary index subfiles 1,2,3, and 4

@ Data stream sorted on the primary key

@ Allow 5 levels of indexing for all indices

e Assume all index blocks 1024 words long

The primary index and data will be built with PRIBLD, all the secondaries
with BILDSR. Then PRIBLD will require 5120+86 words. BILDSR will
require 6006 words and the data record will require 132 words. Allowing
100 extra words, IBULEN must be at least 12244 words.

If the incoming data stream were sorted on two secondary index keys as
well as the primary index and all other factors remained the sane,
5120486 words (6006) would have to be allowed for each of these secondary
indices as well. IBULEN would then have to be at least 12244+12012 or

24256.

OFFSIZ-Size of the Off-Line-On-Line Buffer Pool

Off-line programs, in particular REMAKE, KBUILD, and REPAIR, are loaded
with MIDPOL to give a larger POOLBG for increased speed. User off-line
programs may be loaded with MIDPOL also for the same reason. The size
of POOLBG in MIDPOL is determined by the parameter OFFSIZ. As delivered
OFFSIZ is set to octal 70002. Users may find that OFFSIZ couid be even
larger. OFFSIZ only affects the utility programs mentioned above plus
MIDPOL. If the value of OFFSIZ is changed, only these utilities must be
rebuilt. The MIDAS libraries do not need to be rebuilt.

MKEYSZ-Maximum Key Size for ASCIT Keys

As delivered, the maximm key size for ASCII keys is set to 64
characters (32 words). The size of various buffers is computed based
on this length. If a user wishes to use longer ASCII keys, the length
of MKEYSZ may be increased appropriately and the MIDAS libraries rebuilt.

10 - 7 November 1977

PDR3061 EXAMPLES

SECTION 11

EXAMPLES

-

This section presents examples of how MIDAS capabilities can be used to
build and access a MIDAS file. The example below is written in FORTRAN
Since COBOL and RPG use the protocols for those languages.

HYPOTHETICAL USER EXAMPLE

First, assume a hypothetical user application that will use a MIDAS file
with two secondary index subfiles. For demonstration purposes, one of
these secondary index subfiles will contain secondary data along with
the secondary index entries. The other secondary index will not contain
secondary data.

The purpose of the application is to maintain an up-to-date customer
file for a national manufacturing concern. The file contains:

e at least one data record for each customer.

e information about the status of each account.

@e backorder information.

Each data record will be 120 words long initially. The customer wishes
to be able to increase the size of the data record to 150 words at some
future date without impacting existing applications.

A backorder occurs when a customer places an order with the manufacturer
that cannot be completely filled. If acceptable to the customer, the
unfilled portion of the order is placed on backorder, and whenthe items
become available, the backorder is filled on a first-come-first-served
basis.

The manufacturer has a central computer in its home office. All sales
orders are entered into this central computer by an interactive program
that can be accessed by phone lines from all the remote sites. Hence,
one file is maintained for all the company's customers.

The manufacturer has a different division for manufacturing each
different product. There is a national sales staff that sells the
products of all divisions, divided into regions of the country.
Customer orders are always directed to a particular division of the
company. That is to say, a customer purchasing from more than one
division of the company purchases from each as if they were separate
companies. Most customers can be handled by one regional office.
Several customers are national concerns and thus are serviced by nore
than one regional office. Insuchcases, the manufacturer considers
each region as having a separate account with the customer.

ll-1 | November 1977

SECTION 11 PDR3061

Primary Index

Each customer is identified by a unique alphanumeric 12-character
customer ID. broken up into three fields. The first eight characters
are numeric and identify the customer. The next two characters
identify the division with which the customer does business. The last
two characters identify the regional office handling the order. These
last two fields are alphabetic. This 12-character ID is the primary
key for the file.

First Secondary Index

In some instances the manufacturer found that it was easier to have
access to the customer file through customer name and address alone.
The name and address field in each custamer record is 80 characters
long. However, a hashing algorithm was applied to compress the name
and address fields into a single seven-word field. The hashing
algorithm does not guarantee a unique identifier for each customer
but does locate the general area in the customer file from which the
particular customer record can be located. Additional accesses
through a sequential traverse of the file can locate the particular
record. This is the key for the first secondary index. This index
has no secondary data stored with the index entry.

Second Secondary Index

The backorder information is stored in the second secondary index
using a two-word key. Each item that the manufacturer sells has a
four-digit part number. This becomes the first word and is stored as
an integer value. The second word contains the date the customer's
order was placed (a five digit number referenced from a base date)
and also stored as a integer. The secondary data that is stored with
each index entry comprises the quantity of the item on backorder,
the ID for the regional sales office handling the account, and salesman's
ID. This requires three additional words for each secondary index entry.

USING CREATK TO BUILD A TEMPLATE

The minimm options stream of CREATK was used. If, in the future, the
optimizing features of CREATK are required, each index can be
re-shaped using the full options stream. Refer to Section 2 for details
of the CREATK dialog. Figure 11-1 shows the steps used in creating the
template for the example file and shows how CREATK was reinvoked to
specify new characteristics for the secondary index subfile 2.

Primary Index and Data

The customer ID in the primary key is in characters; therefore, the

designer chose ASCII for the key type. It is easier to consider the

key length in characters also; therefore, the key length was given

as B 12.

REV. @ ll - 2

PDR3061 EXAMPLES

OK, CREATK
GO

MINIMUM OPTIONS? YES

FILE NAME? CUSFIL
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : B12
DATA SIZE = : 129

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A
KEY SIZE =: W7
USER DATA SIZE = :

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? NO
KEY TYPE: B
KEY SIZE = : 2
USER DATA SIZE = : 3

INDEX NO.?

OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? CUSFIL
NEW FILE? NO
FUNCTION? MODIFY

INDEX NO.? 2
DUPLICATE KEYS PERMITTED? YES
USER DATA SIZE = : 3

INDEX NO.?

FUNCTION? QUIT

Figure 11-1. CREATK Dialog to Define and Modify Customer File

ll - 3 November 1977

SECTION 11 PDR3061

Although expansion of the data record to 150 words is anticipated,
this expansion can be accomplished at a later date by increasing the
data size using CREATK and then invoking the REMAKE program to
restructure the file. With this in mind the applications designer
chose to set the original data size to 120 words.

Secondary Index 1

Because the value of this key is not expected to be unique, duplicate
keys are supported for this index.

The key value resulting from the hashing algorithm is in characters
so the key type is ASCII. As indicated, the designer thinks of this
key as being in words; therefore, the key length was given as W 7.

There is no secondary data for secondary index-l so the response to
USER DATA SIZE was a CR to indicate @.

Secondary Index 2

At first, the designer thought that this index would have no need to
support duplicate entries, so the original MIDAS template was not
built to permit duplicate entries in this field. Almost inmediately,
this was discovered to be the wrong choice. The existing file was
made usable by rerunning CREATK and changing the option to support
duplicate entries. REMAKE was invoked to restructure index 2 (See
Figure 11-2), and the applications program was inmediately able to
create duplicate entries as necessary.

Consideration was given to whether this secondary index key should
be declared as a long integer or as a bit string. When a part on
backorder became available it would be necessary to locate an entry
in the index based on the part number alone. This requires that a
partial key search be done on the first word of the key, whoch would
not be possible if the key were considered a long integer.
Consequently, the key was declared a Bit String key type. The length,
two words, was given as W 2.

In this case, there are three words of user data. The answer to

SECONDARY DATA SIZE, therefore, was 3.

REV. @ ll - 4

PDR3061 EXAMPLES

CUSFIL OLDFIL LLXxX@#1

OK, REMAKEoT

FILE NAME? CUSFIL
INDICES? 2

INDEX SUBFILE 2

ENTRIES INDEXED: g
ENTRIES IN OVERFLOW: g
ENTRIES DELETED: g
TOTAL ENTRIES IN FILE: g

ENTRIES INDEXED: g
INDEX LEVELS: 1

OK,

Figure 11-2. Using REMAKE to Restructure Modified File

ll - 5 November 1977

SECTION 11 PDR3061

BUILDING THE INITIAL FILE WITH KBUILD

As the MIDAS application replaced existing applications using data
from tape and disk files, the applications designer proceeded as
follows:

1. Wrote a conversion program to rearrange the
data in the sequential source files into the
proper MIDAS data record image.

2. Used KBUILD to process the converted files into
MIDAS files.

The dialog in Figure 11-3 shows the use of KBUILD to build the
example file. A labelled FUTIL listing of the file shows the file
structure resulting from the invokation of CREATK and KBUILD in this
example.

The decision to perform the conversion in two passes was made because
the programming staff was already familiar with the data sources and
could go to work immediately. If they had stopped to learn the
MIDAS file handler subroutinesin section 10, they would have been
able to handle the conversion in one pass. However, the penalty
would have been a greatly increased number of man hours reauired to
complete the project.

KBUILD was used to build the primary index and secondary index 1.
A one-to-one correspondence does not exist between the entries in
secondary index 2 and the data file so this index could not be built
with KBUILD. Being a small index it was easily built using an
applications program designed to manipulate the file in general.

The input data record produced by the conversion and processed by
KBUILD contained 133 words. The first 128 were the MIDAS data
record image, the next six were the primary key, and the final seven
were the hash of the name and address fields (the key for secondary
index 1). The program used to build the sequential file called
PRWFIL to write the data to disk, as some of the data records were
not in ASCIT characters. None of the keys are part of the MIDAS
record although the applications program always restores the MIDAS
copy of the primary key with the data record.

REV. g 11 — 6

PDR3061 EXAMPLES

LISTF

UFD= MIDEXP 5 0

CUSFIL OLDFIL

OK, KBUILD
GO
SECONDARTES ONLY? NO
ENTER INPUT FILE NAME: OLDFIL
ENTER INPUT RECORD LENGTH (WORDS) : 133
INPUT FILE TYPE: TEXT
ENTER NUMBER OF INPUT FILES: 1
ENTER OUTPUT FILE NAME: CUSFIL
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 121
SECONDARY KEY NUMBER: 1
ENTER STARTING CHARACTER POSITION: 127
SECONDARY KEY NUMBER:
IS FILE SORTED? NO |
ENTER LOG/ERROR FILE NAME: LLXX#1
ENTER MILESTONE COUNT:

OLDFIL
COUNT DATE TIME CPU MIN DISKMIN TOTAL ™ DIFF

B P9-P1-77 14:38:95 9.699 B.99B D290 B .BBD

INDEX SUBFILE f@
ENTRIES INDEXED: 2
INDEX LEVELS: 1

INDEX SUBFILE 1
ENTRIES INDEXED: 2
INDEX LEVELS: 1

INDEX SUBFILE 2
ENTRIES INDEXED: 2
INDEX LEVELS: i
END OF RUN

5 §9-91-77 14:38:21 9.925 9.928 9.953 9.913

Figure 11-3. Sample KBUILD Dialog

ll - 7 November 1977

SECTION 11

OK, FUTIL
GO

LISTF 3 TYPE SIZE
FROM-DIR = *
TO-DIR = *

BEGIN *

OLDFIL 1 SAM

BEGIN CUSFIL

(0) 1 SAM
(11) 3 SAM
(185) 1 DAM

END CUSFIL

LLXX01 1 SAM

END *
QUIT

OK,

Figure 11-4.

REV. @

PDR3N61

1 UFD

2 SEGSAM

(1) 3 SAM

(21) 3 SAM

13 SEGSAM

16 UFD

MIDAS file segment directory

File Descriptor Subfile

Primary Index Subfile

Secondary Index 2 Subfile
Secondary Index 1 Subfile
Data Subfile

FUTIL Listing of Sample MIDAS File

ll - 8

PDR3061 EXAMPLES

USING THE ON-LINE MIDAS FILE HANDLER

Setting Up

When the data records had been converted and the initial applications

designed, the designer create an $INSERT file called KIDINS to

describe the data record and facilitate communication between the main

program and various subroutines. Note that the designer allowed 15%

words for the MIDAS data record in anticipation of the increased data

record length.

C

Q
A
a
A
A
D

KIDINS

INTEGER*2 FLSUSE,FLSN'T,
+ FLSRET,FLSKEY,FLSBIT FLSPLW,FLSUKY,FLSSEC,FLSULK,FLSFST

t
H
e
t
e
t
t
e
e
t
e
e
e
e
e
e
t
t

For example:

MIDAS FLAGS VALUES

PARAMETER
PARAMETER
PARAMETER
PARAMETER
EARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

FLSUSE=
FLSRET=
FLSKEY=
FLSBIT=
FLSPLW=
FLSUKY=
FLSSEC=
FLSULK=
FLSFST=
FLSNXT=

: 190002 /*USE ARRAY
:40000 /*RETURN ARRAY
: 2000

21086
: 4608
2 20080
: 1060
: 408

: 206
: 189

INTEGER DBUFFR¢156),
PKEY (6) ,
SKEY1 (7),
SKEY2 (2),
SBUFFR (9) ,
NAME (11),
ADDR (26) ,
ZIP(3),
CODE,
BPKEY (6) ,
PARTNC,
BLATE,
PARTS,
REGION,
SALSID,
ARRAY t14),
BARRAY (14)

COUBLE PRECISION BALANC /*OUTSTANDING BALANCE

@ /*INCLUDE PRIMARY KEY IN BUFFER
@ /*KEY IN BITS OR CHARS
/*GET NEXT ENTRY, REGARDLESS
/*UPDATE KEY FIELD IN USER PROGRAM
/*RETRURN SECONDARY DATA
/*UNLOCK, DON'T UPDATE
/*GET FIRST RECORD IN INDEX
/*GET RECORD 'NEXT GREATER THAN'

/*BUFFER FOR DATA AND PRIMARY KEY
/*BUFFER FOR PRIMARY KEY
/*BUFFER FOR SECONDARY KEY 1
/*BUFFER FOR SECONDARY KEY 2
/*BUFFER - PRIMARY KEY, 2NDARY DATA
/*CUSTOMER NAME FIELD
/*CUSTOMER ADDRESS FIELD
/*CUSTOMER ZIP CODE
/*CUSTOMER CREDIT CODE
/*PRIMARY KEY COMES WITH 2NDARY DATA
/*PART NUMBER FIELD OF 2NDARY KEY 2
/*DATE FIELD OF 2NDARY KEY 2
/*NUMBER ON BACK ORDER, 2NDARY DATA
/*REGION, 2NDARY DATA
/*SALESMAN'S ID, 2NDARY DATA
/*MIDAS COMMUNICATIONS ARRAY
/*EXTRA MIDAS COMMUNICATIONS ARRAY

/*ETC.

11 - 9 November 1977

SECTION 11 PDR3061

COMMON /KIDCOM/DBUFFR , SKEY1,SKEY2, SBUFFR,ARRAY, BARRAY
EQUIVALENCE (DBUFFR,PKEY) ,/*PRIMARY KEY AIWAYS WITH DATA

+ (NAME ,DBUFFR(7)), /*NAME FIELD IN DBUFFR
+ (ADDR,DBUFFR(18)), /*ACDRESS FIELD IN DBUFFR
+ (ZIP,DBUFFR(44)), /*ZIP COLE IN DBUFFR
+ (CODE ,DBUFFR(47)), /*CREDIT CCDE IN DBUFFR
+ (BALANC ,DBUFFR(48)), /*OUTSTANDING BALANCE IN DBUFFR

. /*ETC.

EQUIVALENCE (SKEY2,PARTNO), /*MANUFACTURERS PART #
+ (SKEY2 #2) ,BDATE), /*DATE OF BACKORDER
+ (SBUFFR(1),BPKEY), /*PRIMARY KEY FOR BACKORDER
+ (SBUFFR(7),PARTS), /*NUMBER ON BACKORDER
+ (SBUFFR(8),REGION), /*SALEE REGION
+ (SBUFFR(9) ,SALESID) /*SALESMAN'S ID

File Handler Calls

The method for handling error conditions is demonstrated in the first
two examples. Thereafter, it is assumed that the user is aware of the
technique for error handling. Throughout the examples, it is assumed
that the MIDAS file was opened on File Unit 1. This can be accomplished
by a call to SEARCH, for example:

'

CALL SEARCH (1, KIDAFL,1)

Locating Data Record By Primary Key Using FINDS

One of the purposes of the application was to enable members of the
sales staff to interrogate customer data records. It is assumed that
the staff member knows the customer ID. In this portion of the
application, updates are not permitted; hence, it is not necessary to
be able to re-access the record. The application asks the user for the
appropriate primary key value which is read into PKEY. A routine called
DISPLY is called to display the record if it is found. This call to
FINDS is located in a subroutine called FINDIT. The part of FINDIT
of interest to MIDAS follows:

SUBROUTINE FINDIT(.....-- coer

SINSERT KIDINS
INTEGER FLAGS
CATA FLAGS/FLSKEY/ /*RETURN PRIMARY KEY WITH DATA

REV. # ll - 10

PDR3061 EXAMPLES

C DATA GOES INTO DBUFFR, INCLUDING MILAS'S COPY OF PRIMARY KEY
C USER HAS PUT COPY OF PRIMARY KEY INTC PKEY FOR CALL
C FLAGS TELLS MIDAS TO RETURN PRIMARY KEY
C INDEX IS @ —- FIRST @ IN ARG LIST
C FILE# IS @ — SECOND @ IN ARG LIST
C PLNGTH IS @ - 3RD @ IN ARG LIST, SAYS RETURN FULL RECORD
C KEYLNT IS @ - 4TH @ IN ARG LIST, SAYS USE FULL KEY

C
1600 CALL FINDS ¢1,DBUFFR, PKEY,ARRAY,FLAGS ,$9@006,0,8,0,9)

CALL DISPLY
RETURN

C
C THERE WAS AN ERROR
C
9@@@ #IF(ARRAY(1).NE.7) GO TO 9106

WRITE 9601
9981 FORMAT('RECORD NOT IN FILE')

RETURN
Cc
9196 IF(ARRAY(1).EQ.22) GO TO 9280

C
C ALL OTHER ERRORS ARE FATAL!!!!

C
CALL ERROUT /*USER ROUTINE TC ABORT

9200 CC 9368 I=1,108
CALL RECYCL /*A FILE WAS BUSY - WAIT A WHILE

9386 CONTINUE
GO TC 1620 /*TRY AGAIN

ENC

Using FINDS to Start ANEXTS$ Sequence

The backorder index is sometimes used by the staff to determine how

many of a particular item, if any, are on backorder. If nothing is

on backorder, the routine HOWMNY indicates this and returns immediately.

If there are some parts on order, the number is summed and the value

reported. It is assumed that the rest of HOWMNY has managed to set up

the key value. Only the high order word (the part number) is supplied

as the secondary key value. The low order word (date of order reference)

is ignored, as the search is date independent.

SUBROUTINE HOWMNY (...22eeceececes

SINSEPT KIDINS
INTEGER FLAGS , RSUM -

ll - 11 November 1977

SECTION 11 PDR3061

FLAGS IS SET BELOW AS FOLLOWS:
PRIMARY KEY RETURNED IN BUFFER, ARRAY RETURNED IF SUCCESSFULL
SECONDARY DATA RETURNED - NOT BASIC DATA RECORD

FLAGS=FLSKEY+FLSRET+FLSSEC

DATA WILL GO INTO INTO SBUFFR
USING SKEY2 (OR THE FIRST WORD THEREOF)
INDEX = 2, THE BACKORDER INDEX
FILE# = @, AS USUAL - THE FIRST @
PLNGTH - THE 2ND @, SAYS RETURN ALL OF DATA
KEYLNT = 1, THIS MEANS 1 WORD OF THE KEY IS USED SINCE

FLSBIT IS NOT SET IN FLAGS. THIS ACTIVATES THE
PARTIAL KEY SEARCH.

A
A
D

A
Q
A
A
A
A
N
D
A

& ~ CALL FINDS (1,SBUFFR, SKEY2,ARRAY, FLAGS ,$8000,2,8,0,1)

GOT ONE , SET UP COUNTER AND MOVE ON TO NEXTS

A
A
A
H
F
A
N
I
A
A
N
N
I
N
A
N
A

RSUM=PARTS
FLAGS=FLAGS+FLSUSE /*NOW USE ARRAY TOO

C
C SEARCH WILL STOP WHEN PART NUMBER NO LONGER MATCHES THE
C HIGH ORDER PART OF SKEY2 AS FLSPLW IS NOT SET IN FLAGS.
C THE REST OF THE ARGS ARE THE SAME AS THE CALLS TO FINDS.

C
1620 CALL NEXTS (1,SBUFFR,SKEY2,ARRAY,FLAGS ,$90@0,2,0,08,1)

RSUM=RSUM+PARTS /*ADD TO THE COLLECTION

GO TO 1080

ERROR RETURN FROM FINDS

o
a
a
q
n

900 IF (ARRAY(1).EQ.7) GO TO 8208
IF (ARRAY (1) .NE.22) CO TO 3500
DO 8180 I=1,18
CALL RECYCL /*A FILE WAS BUSY

6108 CONTINUE
GO TO 106 /*TRY AGAIN

C
8206 WRITE 8281
@201 FORMAT('NONE ON BACKORDER ')

RETURN
C
C ERROR RETURN FROM NEXTS

C
9008 IF (ARRAY(1).EQ.7) GO TO 9386

IF (ARRAY (1) .NE.22) GO TO 950@

DO 9100 I=1,18
CALL RECYCL /*A FILE WAS BUSY

918 CONTINUE
GO TO 1008 /*TRY AGAIN

REV. @ ll - 12

PDR3061 EXAMPLES

C THEY HAVE ALL BEEN COUNTED

93608 WRITE 9301, RSUM
9361 FORMAT(1I5,' ON BACKORDER')

RETURN
Cc
9588 CALL ERRCUT /*ABORT - ERROR WAS FATAL
C

END

Updating a Data Record (LOCKS and UPDATS)

Every time a customer makes a payment or an order is shipped, the
BATANCE field in the data record must be modified. There are two
ways to handle this using MIDAS. First, a call to FINDS can be made
and the user asked to verify that the correct data record has been
accessed, then LOCKS is called if the correct record was accessed.
Finally, a call to UPDATS alters the record. Alternatively, LOCKS
could be called first, user verification requested, and then an
"unlock only call" made to UPDATS if the wrong record was obtained.
Although the staff is careful to access the correct record, mistakes
sometimes occur. Because of this, the latter sequence was choosen.
The subroutine is named UPDATR and as usual only the MIDAS parts are
shown. Error handling is not indicated, but the user must test
ARRAY (1) for NOT FOUND, etc.

SUBROUTINE UPDATR(.....226s
SINSERT KIDINS

INTEGER FLAGS
LOGICAL VERIFY
DOUBLE PRECISION ADJSUM

C
C SET FLAGS TO RETURN PRIMARY KEYIN BUFFER, RETURN ARRAY

C
FLAGS=FLSKEY+FLSRET

C
C INDEX IS @, 'FILE#' IS 8, @ DATA LENGTH SAYS WHOLE RECORD

C LOCKS DOES NOT USE KEY LENGTH

C
CALL LOCKS (1, DBUFFR, PKEY,ARRAY, FLAGS , $9080 ,8,2,8)

11 - 13 November 1977

SECTION 14 PDR3061

VERIFY IS A LOGICAL FUNCTICN WHICH DISPLAYS THE DATA RECORD
AND REQUESTS A YES-NO ANSWER.

IF (.VERIFY(.....).) GO TO 2080

THIS RECORD IS NOT TO BE UPDATED, UNLCCK IT

FLAGS=FLSULK+FLSUSE /*USE ARRAY, UNLOCK ONLY

UPDATS DOES NOT USE KEY LENGTH

A
N
A

A
N
N
A

A
a
A
Q
A
N

CALL UPDATS (1,DBUFFR, PKEY,ARRAY, FLAGS ,$9190,9,6,9)
RETURN

UPDATE THIS RECORD

SET FLAGS FOR PRIMARY KEY IN BUFFER, USE ARRAY

FLAGS=FLSUSE+FLSKEY

THE USER UPCATES THE VALUE OF BALANCE RETURNED BY LOCKS

TG INSURE THAT THE MOST RECENT COPY IS UPDATED.
THE AMOUNT TO BE ADDED TO RBALANC IS IN ADJSUM.

A
A
A
N
Q
A
R
A
I
A
A
A
Y

S m
S

BALANC=BALANC+ADJSUM

THE PARAMETERS TC THIS CALL TO UPDATS ARE AS ABOVE

A
a
A
0
Q

CALL UPDATS (1, DBUFFR, PKEY,ARRAY, FLAGS ,$9200,0,0,0)
RETURN

In this example, the user would probably check the error return from
LOCKS to see if the record was already locked. If this is the case,
it is appropriate to recycle a few times, until the record was
unlocked and then proceed with the update.

REV. 9 ll - 14

PDR3061 EXAMPLES

Updating a Data Record (NEXTS, LOCKS and UPDATS)

Sometimes the staff wishes to be able to process payments by accessing
the data record through the customer name and address hash. For this
purpose, a slightly different routine named UPDATH is used. It is
assumed that the user has obtained the user hash into SKEY1. The
principle in this case is that NEXTS is called until the correct record
is found, then the file is modified using LOCKS and UPDATS.

SUBROUTINE UPDATH(....,ALTRIN,......

LOGICAL VERIFY,AYENAY
INTEGER FLAGS ,ALTRIN
DOUBLE PRECISION PAY

SINSERT KIDINS
Cc

SET FLAGS TO USE AND RETURN ARRAY, RETURN PRIMARY
KEY IN BUFFER AND STOP SEARCHING ONLY WHEN
TERMINATED BY USER.

A
N
Q
N
A
A
N

FLAGS=FLSRET+FLSUSE+FLSPLW+FLSKEY
ARRAY (1)=-1 /*FLAG NEXTS TO IGNORE ARRAY

DATA WILL BE READ INTO DBUFFR
SEARCH WILL BE DONE ON SKEY1
USING INDEX 1
FILE# IS 9, AS USUAL - FIRST @
PLNGTH IS @ - RETURN FULL RECORD - 2ND @
KEYLNT IS @ - USE FULL KEY - 3RD @

B
P
O
A
A
N
A
A
N
A
I
N
A
N

6@ CALL NEXTS$ #1,DBUFFR, SKEY1,ARRAY, FLAGS , $9009,1,8,9,8)
IF (.VERIFY(......).) GO TO 1990sees esype

AYENAY IS A FUNCTION REQUESTING A YES/NO RESPONSE FOR THE
MESSAGE INDICATED.

A
N
A
N
D
A

IF (.AYENAY ('NEXT? ',6).) GO TO 100

CO TC ALTRIN
C
C CALL LOCK$ USING SAME PARAMS
C
1Q60 CALL LOCKS é1,DBUFFR,SKEY1],ARRAY,FLACS,$9100@,1,0,8,9)

BAITANC=BALANC+PAY

C
C CALL UPDATS USING SAME PARAMS TOC
C

CALL UPDATS ¢1,CBUFFR, SKEY1,ARRAY,FLAGS ,$9188,1,0,0,9)
RETURN

ll - 15 November 1977

SECTION 11 PDR3062

In this example, the user would probably check the error return from
LOCKS to see if the record was already locked. If this is the case,
it is appropriate to recycle a few times until the record is unlocked
and them proceed with the update.

Adding Records to a File (ADDIS)

A new customer is added to the file by adding the customer ID to the
primary index, then adding the name and address hash using the location
of the record returned by the first call to ADDIS. If an error is ©
returned by ADD1$, if a message is printed at the users terminal, the
subroutine ADDR checks to see if the record is already in file.

SUBROUTINE ADDR(....,ALTRIN,....
C
SINSERT KIDINS

INTEGER FLAGS ,ALTRIN
C

C
C THE DATA IS IN DBUFFR AND THE KEY ESTABLISHED IN PKEY.
C THE NAME AND ADDRESS HASH IS IN SKEY1.
Cc

FLAGS=FLSRET+FLSKEY /*KEY IN BUFFER, RETURN ARRAY
C
C ADD RECORD TO PRIMARY INDEX
C

CALL ADD1$(1,DBUFFR, PKEY,ARRAY, FLAGS , $8000,0,0,8,0)
FLAGS=FLSUSE /*USE ARRAY RETURNED.

C
C ADD TO SECONDARY INDEX 1
C

CALL ADD1$(1,DBUFFR, SKEY1,ARRAY, FLAGS ,$8100,1,0,0,0)
RETURN |

C
8000 IF (ARRAY(1).NE.12) GO TO 8100

WRITE 8001
@001 FORMAT('RECORD ALREADY IN FILE')

GO TO ALTRIN
C
€180 CALL ERROUT /*ALL OTHER ERRORS FATAL

ENC

REV. @ ll - 16

PDR3061 EXAMPLES

Adding a Secondary Index (ADD1S)

When a backorder is to be added to the file, the customer ID must always

be known. The routine to add to the backorder index is called RACK.

SUBROUTINE BACK(.......,ALTRIN,...
C
SINSERT KIDINS

INTEGER FLAGS ,ALTRIN
C

THE USER HAS PLACED THE PARTNUMBER/DATE COMBINATION
USED FOR THE KEY IN SKEY2. THE CUSTOMER ID HAS BEEN
PLACED IN THE FIRST SIX WCRDS OF DBUFFR - EQUIVALENCED
TO PKEY IN KIDINS. THE THREE USER DATA WORDS HAVE BEEN
LOCATED IN DBUFFR(7), DRBUFFR(8) AND CBUFFR(9).

SET FLAGS TO @, NO SPECIAL FEATURES
MIDAS WILL USE THE PRIMARY KEY TO LOCATE THE CORRECT
DATA RECORD.

A
A
N
R
Q
N
A
A
Q
A
A
A
N
R
A
I
A
A
N

FLAGS=8

CALL ADD1S (1,DBUFFR, SKEY2,ARRAY,O,$90@@,2,0,0,@)

Deleting a Data Record (DELETS)

Customer records that have been inactive for over four years are _

deleted from the file, after the pertinent information has been written

out to magnetic tape. Deleting the data record causes all secondary

index entries associated with that record to be deleted also. In this

case, the file is traversed by NEXTS, a date field checked and appropriate

records deleted.

C USER PROGRAM TO DELETE OL RECORDS

C

SINSERT KIDINS
INTEGER FLAG], FLAG2,CATE, TODATE
DATA FLAG]/FLSRET+FLSUSE+FLSKEY/
DATA FLAG2/FLSUSE/

11 - 17 November 1977

SECTION 11 PDR3061

THE DATE FIELD IN THE DATA RECORD IS CALLED 'DATE'. THE
CUTOFF DATE FOR DETERMINING 'OLDNESS' IS IN 'TCDATE'.

M
A
A
N

ARRAY (1) =-1 /*TELL NEXTS TO IGNORE ARRAY
196 CALL NEXTS (1,DBUFFR,PKEY,ARRAY, FLAG], $9066 ,8,@,2,9)

IF (DATE.GI.TCDATE) GO TOC 100
CALL DELETS (1,DBUFFR, PKEY,ARRAY, FIAG2,$9106,0,0,8,9)
GO TO 100

Filling a Backorder Using NEXTS and DELETS

Backorders are filled by locating the first entries in the file for
the backordered part and applying the available quantity to successive
backorder entries using the subroutine fill. Filled backorder entries
are then deleted. In the routine, INUM specifies the quantity of an
item available.

SUBROUTINE FILL(.......,ALTRIN,....
SINSERT KIDINS

INTEGER FLAG],FLAG2,ALTRTN, INUM
DATA FLAG1/FLSUSE+FLSUKY+FLSRET+FLS$KEY/
DATA FLAG2/FLSRET+FLSUKY+FLSKEY/

s

THIS WILL INVOLVE A PARTIAL KEY SEARCH ON THE

PART NUMBER HALF OF THE KEY FOR SECONDARY INDEX

2. THE KEY IS IN SKEY2. RECORDS WILL BE

RETURNED IN ORDER OF DATE OF BACKORICER AS THE DATE

IS PART OF THE KEY. WHEN NO MORE ENTRIES WITH

THE CORRECT PART NUMEER EXIST NEXTS WILL STOP

AS FLSPLW IS NOT SET.

SINCE FLSBIT IS NOT SET, THE PARTIAL KEY SEARCH

WILL USE THE FIRST FULL WORD OF THE KEY.

AS FLSUKY IS SET, THE SECOND WORD OF SKEY2 WILL BE

UPLATED BY MIDAS ALLOWING THE USER TO EXAMINE THE

DATE OF THE BACKORCER AND PROVIDING A FULL COPY

OF THE SECONDARY KEY FOR DELETS.A
N
A
N
A
A
N
A
N
A
A
A
N
A
A
A
N
N

REV. @ ll - 18

PDR3061 EXAMPLES

C
C SEE IF THERE ARE ANY

C
CALL FINDS (1,SBUFFR, SKEY2,ARRAY,FLAG2,$9000,2,0,@,1)

C
C SBUFFR CONTAINS THE PRIMARY KEY, PLUS THE USER DATA.

C SEE KIDINS - ABOVE

C
GO TO 268

C
C FOR SUBSEQUENT ENTRIES USE NEXTS

C
180 CALL NEXTS (1,SBUFFR, SKEY2,ARRAY,FLAG1,$920€,2,0,6,1)

288 IF (INUM.LT.PARTS) GO TO 3800 /*NOT ENOUGH

INUM=INUM-PARTS

C

C SOME USER STUFF UNDOUBTEDLY GOES IN HERE

C DELETE BACKORDER ENTRY - USING DELETS

C ON INDEX 2
C

CALL DELETS ¢1 , SBUFFR, SKEY2 ,ARRAY , FLSUSE, $91@8,2,9,8,0)

GO TO 100 /*CET NEXT

Deleting a Single Secondary Index Entry

From time to time, a customer cancels a backorder. When this happens,

the backorder entries for that particular customer must be deleted.

Since the values of the keys in the backorder index are not guaranteed

to be unique, the correct entry must be found by locating the one (s)

that correspond to the correct customer. For example:

SUBROUTINE UNORDR(....eeeeseee

SINSERT KIDINS
INTEGER FLAGS

1i - 19 November 1977

SECTION 11 PDR3061

SET FLAGS TO USE AND RETURN ARRAY, KEY IN BUFFER, RETURN
2NDARY DATA IN SBUFFR, ON SECONDARY INDEX 2. ALL ENTRIES
FOR THE CORRECT PART/DATE MUST BE EXAMINED (A FULL KEY SEARCH).
PRESUME THAT THE USER HAS SUPPLIED THE CUSTOMER ID (IN PKEY)
AND THE INFORMATION REQUIRED TO GENERATE THE SECONDARY
KEY VALUE, WHICH IS STORED IN SKEY2.

A
A
A
N
A
A
A
A
N

FLAGS=FLSUSE+FLSRET+FLSKEY+FLSSEC
ARRAY=-1 /*TELL NEXTS TO IGNORE FLAGS
CALL NEXTS ¢1,SBUFFR, SKEY2,ARRAY, FLAGS ,$9080,2,0,9,@)~ 2 2

COMPARE KEY VALUE IN SBUFFR (BPKEY) WITH KEY IN PKEY. IF
SAME DELETE ENTRY

Q
A
A
a
A
N

DO 15@ I=1,6
IF (BPKEY (I) .NE.PKEY(I)) GO TO 100

158 CONTINUE

C USER MAY WANT TO REPORT TO CALLER HERE

CALL DELETS (1,SBUFFR, SKEY2,ARRAY,FLSUSE, $9100,2,8,0,@)
GO TO 106

AN OFF-LINE PROGRAM

Here is an example of a general build/add program using the MIDAS
subroutines PRIBLD and BILDSR, The data for the program is of no
interest as it is generated by the program. The important part is
the calls to MIDAS. In this instance, the data will be generated so
that it is sorted on primary key order. If the build path is chosen,
this fact can be used to create the file more quickly, using PRIBLD
for the primary index and BILDSR for the secondary index subfiles.
(There are two secondary index subfiles to be built.) If the add path
is chosen, BILDSR mist be used to build the primary as well as the
secondary index subfiles, since PRIBLD would destroy the existing file.

REV. @ ll - 20

PDR3061 EXAMPLES

OFFLINE TEST PROGRAM EXERCISING PRIBLD AND BILDSR

THE COMMAND FILE TO BUILD THE PROGRAM IS C_NDAV.
THE COMMAND FILE TO BUILD THE TEMPLATE IS C_DAVB

THIS PROGRAM BUILDS A MIDAS FILE WITH TWO SECONDARY INDICES.

PRIMARY INDEX - KEY IS ASCII, LENGTH 6 CHARACTERS.

DATA RECORD IS VARIABLE LENGTH - CONTROLED IN THIS PROGRAM BY

THE VARIABLE 'LGH'.

FIRST SECONDARY INDEX - KEY IS ASCII, LENGTH 6 CHARACTERS.

THERE IS NO SECONDARY DATA.

SECOND SECONDARY INDEX - KEY IS ASCII, LENGTH 4 CHARACTERS.

THERE IS NO SECONDARY DATA.

THIS PROGRAM ALLOWS THE USER TO BUILD A FILE FROM 'SCRATCH',
ADD TO AN EXISTING FILE OR DO BOTH. THE USER INTERACTIVELY
SELECTS WHICH IS TO BE DONE. THE USER IS ALSO ASKED TO SUPPLY
THE NAME OF A LOG/ERROR
FILE TO WHICH MILESTONE AND ERROR MESSAGES WILL BE WRITTEN.

KAKAKKKEREKERRRRRRKRERRRRREERERRREEREREREREKREREREREERE

ARRAYS RELATING TO THE DATA AND KEYS

A
a
n
A
N
Q
A
N
A
N
A
N
A
A
A
N
A
A
A
N
A
A
N
A
N
A
A
N
A
A
N
A
A
N
A
N
A
N
A
N
A
A
N
A
A
N
A
N

DIMENSION K3(3) ,K1 (3) ,K2 (2) , IDATA (80) , IBUFF (89)

THE COMMUNICATIONS AREAS FOR PRIBLD AND BILDSR

Q
a

INTEGER SEQFLG,JTEMPS (2) , KTEMPS (2) , LTEMPS (2) ,JARRAY (14)

DIMENSION K14 (2) ,K23 (1)

EQUIVALENCE THINGS IN THE DATA BUFFER

Q
a
n

EQUIVALENCE (IBUFF (1) ,K3(1)) , (IBUFF (4) ,K1 (1))
EQUIVALENCE (IBUFF¢7) ,K2¢1)) , (IBUFF(1@) , IDATA (1))
FQUIVALENCE (IBUFF (9) , LGH)
EQUIVALENCE (K14,K1(2)) , (K23,K2(2))

YOU NEED A COPY OF OFFCOM. OURS IS IN THE LIBRARY UFD

INSERT LIB>OFFCOM

SET UP A 'DATA RECORD!

DATA IDATA/8@*'AB'/

SET UP OF UNIT NUMBERS. ‘THE VARIABLES ISUNIT, ISSAM,

ISDAT AND ISDAM ARE DEFINED IN OFFCOM.A
A
D

A
A
A
M
A
A
N

11 - 21 November 1977

SECTION 11 PDR3061

C
ISUNIT=1
ISSAM=2
ISDAM=3
ISDAT=4

C SET THE COMMUNICATIONS FLAG TO INITIATE THE BUILD ROUTINES

A
A
D

A
A
A
N

a
a
n

Q
0
Q
0
Q

A
A
A
N
A

Q
a

REV. 9g

SEQFLG=0 /*PRIBID NEEDS ONLY ONE WORD

KTEMPS (1) =@ /*BILDSR NEEDS TWO WORDS
LTEMPS (1)=0
JTEMPS (1) =@ /*IN CASE USER IS ONLY GOING TO ADD TO FILE

CLOSE ALL UNITS BUT 6, THEN OPEN THE MIDAS TEMPLATE

CALL SYSINI
CALL SEARCH (: 4881, 'DATBAS ' , ISUNIT)
CALL FILSET /*SET UP THE DESCRIPTOR SUB FILE

INIT KEYS AND DATA RECORD LENGTH

Kl] (1)='AA'
K1 (2)='AA'
K2 (1)='AA'
LGH=9
J1=9 /*A FLAG FOR ADD ONLY PATH
CALL TNOUA (*HOW MANY: ',18)
CALL TIDEC (NUM)

IF USER ANSWERED @, ADD TO EXISTING FILE

RNUM=NUM
CALL ERROPN (5) /*GET AN ERROR FILE

IF (NUM.EQ.@) GO TO 5808
CALL KXSTIM (@68000,5,8,@)

PRIBLD FLAGS BILDSR TO USE A DATA RECORD POSITION SET UP

BY PRIBIL SO IN THIS CASE JARRAY IS A FAKE.

JARRAY (1) =-1

MAIN LOOP TO BUILD THE FILE

DO 568 J1l=1,NUM

SET UP THE DATA AND KEYS

ll - 22

109

118

128

A
A
D

Q
a
A
a
A
N
D

o
m
e
n
e
@
)

508

M
l
A
Q
a
N
n

a
a

A
A
D

A
A
D

PDR3061 EXAMPLES

IK1=RT ((K3 43) +1IK1) ,19)

IK2=(IK1/25)+1
RK3=RK3+1
TRK3=RK3

ENCODE (5,1@6@,K3) RK3

FORMAT (B'Z#####')
ENCODE (3,11@,K14) IK1

FORMAT (B'####')
K] (2)=RT (K1 #2) ,8)+LS ¢: 301,8)
ENCODE (2,12@,K23) IK2

FORMAT(B'##')

SET THE LENGTH OF THE DATA RECORD

LGH=LGH+1

IF (LGH.GT. 89) LGH=1+9

ADD THE PRIMARY INDEX AND DATA ENTRY

CALL PRIBLD (SEQFLG, K3, IBUFF, LGH, $999 , RNUM)

WRITE THE SECONDARY KEYS

CALL BILDSR (KTEMPS , K1 ,K3,@,JARRAY,1,$45@, RNUM)

CALL BILDSR (LTEMPS ,K2,K3,@,JARRAY, 2,$450,RNUM)

EVERY 1924 RECORDS CALL THE MILESTONE ROUTINE

IF (AND (J1,:1777) .EQ.@) CALL KXSTIM (INTL (I) ,5,9,9)

CONTINUE

SET THE VALUES OF THE COMMUNICATIONS FLAGS TO 2 TO

TELL THE BUILD ROUTINES TO FINISH UP THE INDICES

SEQFLG=2
KTEMPS (1)=2
LTEMPS (1)=2

MAKE THE FINAL CALLS

CALL PRIBLD (SEQFLG, K3, IBUFF, LGH, $999, RNUM)

CALL BILDSR (KTEMPS ,K1,K3,0,JARRAY,1,$45€)

CALL BILDSR (LTEMPS ,K2 ,K3,@,JARRAY, 2, $458)

MAKE A CALL TO THE MILESTONE ROUTINE

CALL KXSTIM(INTL(I),5,'END PASS 1',5)

PROCEED TO THE 'SECOND PASS'

JTEMPS (1) =0
LTEMPS (1) =@
KTEMPS {1)=@
GO TO 6600

li - 23

SECTION 11 PDR3061

5000

6000
A
A
A

a
a
n

A
A
D

Q
A
A
A
N

A
A
A
N
Q
Q

u
o
R
Q
B
S

REV.

CALL TNOUA('STARTING NUMBER: ',17)

CALL TIDEC (IRK3)
RK3=IRK3
CALL TNOUA('HOW MANY: ',18)

CALL TIDEC (NUM)
IF (NUM.EQ.@) GO TO 7080
CALL KXSTIM(INTL(J1),5,'PASS 2',3)

MAIN LOOP TO ADD TO THE FILE

DO 6588 J1l=1,NUM

SET UP THE DATA RECORD

IK1=RT ((K3 (3) +IK1) ,19)
IK2= (IK1/25)+1
RK3=RK3+1

IRK3=RK3

ENCODE (5,18@,K3) RK3

ENCODE (3,11@,K14) IK1
K1 (2)=RT ¢K1 (2) ,8)+LS ¢:301,8)

ENCODE (2,12@,K23) IK2

SET UP DATA RECORD LENGTH

LGH=LGH+1
IF (LGH.CT.89) LGH=1+9

ADD DATA AND SECONDARIES TO THE FILE. CAN'T USE PRIBLD TO ALD

TO A FILE.

CALL BILDSR (JTEMPS ,K3, IBUFF,LGH ,JARRAY, 8, $450)

CALL BILDSR (KTEMPS , K1,K3,0,JARRAY,1,$458)

CALL BILDSR (LTEMPS ,K2,K3,0,JARRAY, 2,$450)

EVERY 1024 RECORDS CALL THE MILESTONE ROUTINE

IF (AND (J1,:1777) -EQ.@) CALL KXSTIM(INTL(J1) ,5,@,8)

CONTINUE

SET THE COMMUNICATIONS FLAGS TO 2 AND MAKE FINAL CALLS

JTEMPS(1)=2
CALL BILDSR (JTEMPS ,K3, IBUFF , LGH,JARRAY , 0, $450)

KTEMPS(1) =2

CALL BILDSR (KTEMPS ,K1,K2,0,0,1,9459)
LTEMPS (1) =2

CALL BILDSR (LTEMPS ,K2,K3,8,0,2,$450)

ll - 24

f
a

A
Q
A
A
A
D
T
W
A
A
N

W
O
N
A
A
R
A
A
A
N

PDR3061 EXAMPLES

MAKE A FINAL CALL TO THE MILLESTONE ROUTINE

CALL KXSTIM (INTL (J1) ,5,'END' ,2)

CLOSE ALL FILES EXCEPT UNIT 6

CALL SYSINI
CALL EXIT

GO AN ERROR ON A CALL TO BILDSR. PRINT FILE HANDLER ERROR
CODE - IF ANY -— AND ABORT.

CALL FILHER(JARRAY (1) ,@)

GOT AN ERROR, CALL FILERR TO PRINT MESSAGE AND ABORT

CALL FILERR('BDAVIS','BAD PRIBLD',198,®)
END

ll — 25 November 1977

NONFATAL CODES

PDR3061 CONDITION CODES

APPENDIX A

CONDITION CODES

The following codes are non-fatal and indicate that the user program
may continue as long as the program correctly interprets the code.

Code

0

10

11

12

Meaning

No error

There may be a synonym index entry for the
user-supplied key. The user may not have
located the exact entry desired and the
index should perhaps be searched further to
check.

Entry not found. This error condition terminates
any sequence of calls to NEXTS. The contents
of the communication array must be considered
to be invalid in this case.

User is attempting to lock a data entry for
update, and the entry has already been locked
by another user. The current user must wait
until the entry becomes available.

It is possible that an entry may have remained
locked because of a system crash or program
failure. If it is suspected that this may be
the case, contact an analyst for help in
unlocking such records.

User has not locked a data record before
attempting to update it. The user must lock
the record with a call to LOCKS, then a call
to UPDATS must be made using the copy of the
commmnications array returned by LOCKS.
Intervening calis to other MIDAS routines
using this copy of the communications array
may interfere with the LOCK/UPDATE process.

User is attempting to add a data entry whose
primary key already exists in the data file
or is trying to add a duplicate secondary
index entry to an index that does not permit
duplicate keys. If appropriate, the user
should delete the existing entry before
attempting to add the new one.

A-1 November 1977

APPENDIX A PDR3061

DISK ERROR CONDITION CODES

The following error condition codes indicate failure on an attempt to
access a disk file. They are generally fatal errors,

Note

It may be appropriate to treat error codes 22 and
24 as nonfatal errors if the user's system is
configured for more readers than writers to disk files.
In this case, these codes may mean that another user
has the required file open and will release it shortly.
A call to the system routine RECYCL may return with the
file available for a new user.

The user must determine whether the disk error reported on his terminal
is due to a disk failure or to a software problem. If the user cannot
locate the source of a software problem in the program, he should
contact his field analyst for help in determining other possible
sources of the problem. Disk error codes are as follows:

Code Meaning

20 Error on attempt to write to disk. This is fatal.

21 Error on attempt to read from disk. This is fatal.

22 A needed segment file is open for input/output
by another user, The current user cannot
continue until the file becomes available.

23 An error was encountered while trying to open
a segment file. This is a fatal error.

24 The MIDAS file is already open for input/output
by another user. The current user cannot add
any new entries to the file until the other
user has released the file.

25 An error was encountered on an attempt to open
the MIDAS file for input/output so that a new
entry could be added. This is a fatal error.

26 An error on attempt to examine (read) the disk.
This is fatal.

27 Error on attempt to add a data entry. This is fatal.

28 Error on attempt to close a file. This is fatal.

REV. 0 A- 2

PDR3061 CONDITION CODES

FILE HANDLER CONDITION CODES

The following error codes are generated as a result of incorrectly supplied
arguments when calling one of the MIDAS file handler routines. The user
must correct his program and try again.

Code

30

31

32

33

34

35

Meaning

The user has called either NEXTS or LOCKS without
specifying that the commmication array is to be
returned. This can be corrected by setting the
flag FLSRET in the MIDAS flag parameter for these
calls. .

The user has not supplied a copy of the commmications
array on a call to UPDATS. This can be corrected by
setting the flag FLSUSE in the MIDAS flag word and
supplying a copy of the array generated by a call
to LOCKS,

The user has supplied a data length as the parameter
plenth that is inconsistent with the length maintained
in the MIDAS file. This generally occurs if plenth
is too long.

The user has supplied a bad copy of the communications
array for use by the MIDAS file handler for subsequent
processing. This occurs if the user attempts to use
a copy of the array which generated an error on a
previous call to the file handler. There are also
other possible causes.

The user has attempted to call NEXTS through direct
access,

The user has attempted to add a data entry to a
direct access file through the primary index or has
tried to add a data entry through direct access to
a file not set up for direct access.

A - 3 November 1977

APPENDIX A PDR3061

MIDAS ERROR CONDITION CODES

The user may encounter error codes 42, 43, 44, 45, 46 or 48. These codes
reflect problems within MIDAS itself or in the MIDAS file. The user must
note the value of the code carefully and report it to his field analyst.

FILE SIZE CONDITION CODES

The following error codes indicate that the MIDAS file is not configured
to be large enough for any additional records. The user should contact
his field analyst for a possible solution.

Code Meaning

51 The addition of a data record will make the data

subfile too large.

52 The addition of another index entry will make the
index subfile too large.

REV. 0 A- 4

PDR3061 CREATK MAXIMUM OPTIONS DIALOG

APPENDIX B

CREATK MAXIMUM OPTIONS DIALOG

This appendix explains the MAXIMUM OPTIONS version of the CREATK
dialog. The format is similar to the example in Section 2. For
an explanation of the symbols and other pertinent information,
refer to the CREATK Utility section. (Section 2)

Note

The opening statements of the CREATK
dialog are not shown. This section
commences with line 38.

(Line 38) FILE NAME? filename or treename (Goes to Line 39)
(other) (Repeats Line 38)

(Line 39) NEW FILE? YES (Goes to Line 40)
NO (Goes to Line 23)
(other) (Repeats Line 39)

If the response to line 39 is NO, the MINIMUM OPTIONS dialog will be
invoked. Refer to Section 2 for subsequent steps.

(Line 40) DIRECT ACCESS? YES (Goes to Line 69)

(other) (Repeats Line 40)

If CREATK was not built (i.e., copied from the master disk) with direct
access support, then line 40 will not be included in the dialog.

(Line 41) KEY: (Goes to Line 43)
(Goes to Line 43)
(Goes to Line 44)
(Goes to Line 44)
(Goes to Line 44)
(Goes to Line 44)

other) (Repeats Line 42)

[
M
,
C
]
E
H
]
P
|

wo
“
—

B- 1 November 1977

APPENDIX B PDR3061

For an explanation of the key types, refer to the MINIMUM OPTIONS
CREATK dialog in Section 2.

(Line 43)

(Line 44)

(Line 45)

(Line 46)
(Line 47)

(Line 48)

(Line 49)

(Line 50)

(Line 51)

REV. 0

KEY SIZE=:

DATA SIZF=;

B (number of bits or bvtes)
W (number of words

(other)

(number of words)
(CR)
(other)

Note

(Goes to

(Goes to
(Repeats

(Goes to
(Goes to
(Repeats

For Line 44, if the number of words is svecified;
that number of record must not include the key
size; i.e., it must specify the size of the data
only. If the user responds to Line 44 with a
carriage return (CR), then it indicates that the
file has variable length records.

DOUBLE LENGTH INDEX? YES
NO
(other)

PRIMARY INDEX FIRST LEVEL OF INDEX
BLOCK SIZE=: (number of words in block)

(CR)
(other)

Note

(Goes to
(Goes to

(Repeats

(Goes to
(Goes to

(Goes to
(Repeats

If the KEY TYPE is not A or B, and the user

specifies a number of words in the block,
then the dialog returns to Line 40.

KEY SIZE=: B(number of bits or bytes)

W(number of words)
(other)

SECOND LEVEL OF INDEX

BLOCK SIZE=:

KEY SIZE=:

(number of bits)
(CR)
(other)

(number of bits or bytes)
(number of words)

(other)

(Goes to

(Goes to
(Repeats

(Goes to

(Goes to

(Goes to
(Repeats

(Goes to
(Goes to
(Repeats

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line
Line
Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

44)
44)
43)

45)
45)
44)

46)
46)
45)

47)
48)
48)
47)

49)
49)
48)

50)

51)
51)
50)

52)
52)
51)

(Line

(Line

(Line

(Line

(Line

(Line

(Line

(Line

(Line

54)

55)

56)

57)

58)

59)

60)

PDR3061

LAST LEVEL OF INDEX

BLOCK SIZE=: (number of words in block)

(CR)
(other)

SECONDARY INDEX

TNDEX NO.? (numeric 1-19)

(CR)
(other)

Note

(Goes to

(Goes to
(Goes to
(Repeats

(Goes to

(Goes to

(Goes to
(Repeats

Double length indexes are optional, according
to the version of CREATK,.

Refer to Section 2.

DOUBLE LENGTH INDEX? YES
NO
(other)

DUPLICATE KEYS PERMITTED? YES
NO
(other)

KEY TYPE: B

A
I
L
D
s
(other)

FIRST LEVEL OF INDEX

BLOCK SIZE=: (number of words)

(CR) 7
(other)

Note

Tf KEY TYPE is not equal to Aor B,
and the number of words is specified
in response to Line 60, then CREATK
goes to Line 62.

If they are not

supported, CREATK continues with line 57.

(Goes to

(Goes to

(Repeats

(Goes to

(Goes to

(Repeats

(Goes to
(Goes
(Goes
(Goes
(Goes
(Goes to
(Repeats

to
to
to
to

(Goes to

(Goes to

(Goes to

(Repeats

CREATK MAXIMUM OPTIONS

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line
Line
Line
Line

Line
Line
Line

Line

Line

Line

Line

DIALOG

53)

54)
54)
53)

55)

54)
54)
55)

57)
57)
56)

58)
58)

57)

59)
59)
59)
59)
59)
59)
58)

60)

61)
61)
60)

November 1977

APPENDIX B

(Line 61)

(Line 62)

(Line 63)

(Line 64)

(Line 65)

(Line 66)

(Line 67)

(Line 68)

(Line 69)

REV. 0

PDR3061

KEY SIZE=: B(number of bits in Key)
W(number of words in Key)
(other)

SECOND LEVEL OF INDEX

Note

If KEY TYPE is not equal to or B,
and the number of words is specified
in response to Line 60, then CPFATK
goes to 65.

BLOCK SIZE=: (number of words)

(CR)
(other)

KEY SIZE=: B(number of bits in key)

W(number of words in key)
(other)

LAST LEVEL OF INDEX

BLOCK SIZE=: (number of words in block)

(CR)
(other)

Note

If KEY TYPE is not A or B, and the
number of words is specified in
response to Line 66 CREATK goes
to Line 68.

KEY SIZF=: B(number of bits)

W(number of words)
(other)

USER DATA SIZE=: (number of words)

(CR)
(other)

Note

If the user has responded to YES to the
question DIRECT ACCESS in Line 40, the
following questions are asked; otherwise

DATA SUBFILFE QUESTIONS

(Goes to
(Goes to
(Repeats

(Goes to

(Goes to

(Goes to

(Repeats

(Goes to

(Goes to

(Repeats

(Goes to

(Goes to

(Goes to

(Repeats

(Goes to

(Goes to

(Repeats

(Goes to
(Goes to
(Repeats

(Goes to

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line

Line
Line
Line

Line

Line
Line

Line

62)
62)
61)

63)

64)
64)

63)

65)

65)
64)

66)

67)
67)
66)

68)
68)
67)

69)
69)
68)

70)

PDR3061 CREATK MAXIMUM OPTIONS DIALOG

{Line 70) KEY TYPE: B (Goes to Line 71)
A (Goes to Line 71)

i (Goes to Line 72)
L (Goes to Line 72)
D (Goes to Line 72
Ss (Goes to Line 72)
(other) (Repeats Line 71)

(Line 71) KEY SIZE=: _B(number of bits) (Goes to Line 72)
W(number of words) (Goes to Line 72)
(other) (Repeats Line 71)

(Line 72) DATA SIZE=: number of words in entry (Goes to Line 73)

Note

The user must include the numeric value
of the key size in above.

(Line 73) NUMBER OF ENTRIES TO ALLOCATE?

(number) (Goes to Line 41)
(other) (Repeats Line 73)

B-5 November 1977

BIGSIZ 19-6

BILDSR 7-6

BIIDSR, APPLICATION EXAMPLE
11-29

BLOCK, INDEX 1-8

BREAKE 16-5

CALLING SEQUENCE, DATA ACCESS
SUBROUTINES 9-2

COBOL INPUT FILE EXAMPLE, KBUILD
3-9

CODES, CONDITION A-1l

COMMON CONTROL MODULE, LDPOOL
18-1

CONDITION CODES A-1

CREATK DEFAULTS 2-21

CREATK DIALOG, DETAILS 2-2

CREATK DIALOG, EXAMPLE 1-4

CREATK DIRECT ACCESS SUPPORT
2-26

CREATK LONG INDEX SUPPORT 2-20

CREATK MAXIMUM OPTIONS DIALOG
B-1

CREATK OPTIONS 2-26

CREATK UTILITY 2-1

CREATK, ALTERNATIVE VERSIONS
2-2

INDEX

CREATK, APPLICATION EXAMPLE
11-2

CREATK, INVOKING 2-2

CREATK, MINIMUM OPTIONS 2-1

CREATK, SELECTING VERSION OF
2-29

CTLA 19-1

DATA ACCESS SUBROUTINES 9-1

DATA FILE, BUILDING 1-5

DATA FILES, INPUT, KBUILD 3-7

DATA SUBFILE QUESTIONS, CREATK
2-5

DATA, SECONDARY 1-8

DEFAULTS, CREATK 2-21

DELETS 9-17

DIRECT ACCESS QUESTIONS, CREATK
2-11

DIRECT ACCESS SUPPORT, CREATK
2-28

DUPLICATE KEY EXAMPLES 9-7

ERROPN 8-3

ERROR DETECTION, REPAIR 5-6

EXAMPLES, MIDAS APPLICATION
11-1

EXISTING FILE MODIFICATIONS,
CREATK 2-13

FIELD, KEY 1-8

FILE IDENTIFICATION, CREATK
2-3

FILE SYSTEM, MIDAS AND 1-1

FILE, TEMPLATE 1-8

FILERR 8-3

FILHER 8-4

FILSET 8-2

FINDS 9-23

FINDS, APPLICATION EXAMPLE
11-11

FLSKEY, USE OF 9-6

FLAGS PARAMETER 9-4

FORTRAN INPUT FILE EXAMPLE,
KBUILD 3-9

GLOSSARY 1-6

IBULEN 19-6

INDEX BLOCK 1-8

INDEX DESCRIPTOR BLOCK 1-6

INDEX ENTRY 1-8

INDEX PARAMETER 9-4

INDEX SUBFILE 1-6

INPUT DATA FILES, KBUILD, FORMAT
3-7

INPUT DATA RECORDS, KBUILD,
FORMAT 3-8

INPUT FILE EXAMPLE, COBOL, KBUILD
3-9

INPUT FILES, KBUILD 3-6

INPUT FILES, SORTED, KBUILD
3-7

INPUT RECORD LENGTH, KBUILD
3-8

INDEX

IWRAP 16-4

KBUILD DIALOG 3-2

KBUILD INPUT DATA FILES, FORMAT
3-7

KBUILD INPUT DATA RECORDS, FORMAT
3-8

KBUILE INPUT FILES 3-6

KBUILD INPUT RECORD LENGTH 3-8

KBUILD MILESTONE REPORTS 3-11

KBUILD OUTPUT FILE 3-18

KBUILD REPORT AND ERROR FILE
3-11

KBUILD REPORT RECORDS 3-12

KBUILD UTILITY 3-1

KBUILD, APPLICATION EXAMPLE
11-6

KBUILD, COBOL INPUT FILE EXAMPLE
3-9

KBUILD, FORTRAN INPUT FILE
EXAMPLE 3-9

KEY 1-8

KFILE 16-5

KIDAFM 19-1

KIDALB 18-1

KIDDEL DIALOG 6-1

KIDDEL UTILITY 6-1

KPARAM, MIDAS PARAMETER FILE
19-3

KXSBWT 8-3

wre eNTs

KXSOIX 8-2

KXSTIM 8-5

LDPOOL 10-1

LDPOOL, COMMON CONTROL MODULE
16-1

LOCKS 9-32

LOCKS, APPLICATION EXAMPLE
11-13

LOCKS, APPLICATION EXAMPLE
11-15

LONG INDEX SUPPORT, CREATK
2-20

LONGPL 19-2

MAINTAINING MIDAS FILE 1-5

MAXIMUM OPTIONS DIALOG, CREATK

B-1

MIDAS AND FILE SYSTEM 1-1

MIDAS APPLICATION EXAMPLES
11-1

MIDAS DATA ACCESS SUBROUTINES
9-1

MIDAS FILE, MAINTAINING 1-5

MIDAS FILE-BUILDING SUBRCUTINES
7-1

MIDAS PARAMETER FILE, KPARAM

18-3

MIDAS ROUTINES IN USER MODULE
8-1

MIDAS ROUTINES, MISCELLANEOUS
8-1

MIDAS SUBROUTINE FUNCTIONS,
SUMMARY 1-5

INDEX

MATTNAC OCTMIDAS SUBROUTINES, APP

EXAMPLES 11-9

MIDAS, FUNCTIONAL OVERVIEW 1-3

MIDAS, INTRODUCTION TO 1-1

MIDAS, MOCIFYING 18-1

MIDAS, USING 1-2

MIDPOL 19-2

MILESTONE REPORTS, KBUILD 3-11

MINIMUM OPTIONS, CREATK 2-1

MKEYSZ 18-7

MULTI-USER ENVIRONMENT 1-5

NEXTS 9-37

NEXTS, APPLICATION EXAMPLE
11-15

OFF-LINE PROGRAM EXAMPLE 11-29

OFFCOM SINSERT FILE 8-1

OFFSIZ 19-7

OVERFLOW 1-9

OVFCON 18-6

PARAMETERS, DATA ACCESS
SUBROUTINES 9-2

POOLBG 19-1

PRIBLD 7-2

PRIBLD, APPLICATION EXAMPLE

11-29

RECLNT 18-4

RECORD LENGTH, INPUT, KRUILD
3-8

INDEX

RECOVERY, SPACE 1-93 SPACE RECOVERY 1-9

RECYCLA 18-5 SUBFILE, INDEX 1-6

REMAKE DIALOG 4-2 | SUBROUTINES, MIDAS FILE BUILDING
7-1

REMAKE UTILITY 4-]
SYSINI 8-2

REMAKE, APPLICATION EXAMPLE
11-5 TEMPLATE FILE 1-8

REPAIR ACTION, EXAMPLE OF 5-6 TEMPLATE, CREATING AND MODIFYING
1-2

REPAIR DIALOG, DETAILS 5-2
UPDATS 9-46

REPAIR UTILITY 5-1
UPDATS, APPLICATION EXAMPLE

REPAIR, ACTION OF 5-5 11-13

REPAIR, ERROR DETECTION 5-6 USING MIDAS 1-2

REPAIR, PRINCIPLES OF OPERATION VKDALB 18-1
5-1

REPORT AND ERROR FILE, KBUILD
3-18

REPORT RECORDS, KBUILD 3-12

SECBLD 7-3

SECONDARY DATA 1-8

SECONDARY INDEX QUESTIONS, CREATK
2-8

SECONDARY INDEXES, SPECIFYING,
KBUILD 3-8

SEGLNT 19-4

SEGMENT 1-6

SEGMENT DIRECTORY 1-6

SINGLE USER ENVIRONMENT 1-5

SINGLE-USER PROGRAMMING 8-1

SORTED INPUT FILES, KBUILD 3-7

	0001
	0002
	001
	002
	003
	004
	005
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	X-01
	X-02
	X-03
	X-04

