

 Initial Documentation Release —

IDR 3046
PRIME COMPUTER

COBOL
REFERENCE GUIDE FOR DBMS

First Printing July 1977

Copyright 1977 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 91761

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

REV. @ i = 2

Section Title Page

SECTION 1 INTRODUCTION 1-1

ABOUT THIS MANUAL 1-1

DATABASE DOCUMENTATION 1-1

Documentation Releases 1-3

OTHER RELATED DOCUMENTS 1-3

COBOL/DBMS INTERFACE 1-5

DATABASE DEVELOPMENT 1-5

SECTION 2 COBOL DDL 2-1

INTRODUCTION 2-1

CODING INSTRUCTIONS 2-1

Character Set 2-1
Punctuation 2-2
Word Formation 2-3

CODING RULES 2-3

FORMAT NOTATION 2-4

USING THE COMPILER 2-5

Invoking the Compiler 2-5
User Work Area Map 2-5

SUBSCHEMA IDENTIFICATION 2-7

Function 2-7

Complete mitry 2-7

IDENTIFICATION-SUBSCHEMA NAME 2-8

Function 2-8

General Format 2-8
Syntax Rules 2-8
General Rules 2-8

IDENTIFICATION-PRIVACY KEY 2-9

Function 2-9
General Format 2-9
Syntax Rules 2-9
General Rules 2-9

SUBSCHEMA DATA DIVISION 2-18

Function 2-18
Structure of the Subschema DATA DIVISION 2-108

i - 3 July 1977

CONTENTS (Cont)

RENAMING SECTION

Function
Complete Entry
Syntax Rules
General Rules

AREA SECTION

Function
Complete Entry

AREA SECTION-COPY AREA

Function
General Format
Syntax Rules
General Rules

RECORD SECTION

Function
Complete Record Description Rntry Skeleton
Complete Record Control Etnry
Complete Data Description Entry
Syntax Rules for Complete Record Descrtiption Entry
General Rules for Complete Record Description ntry

RECORD SECTION-RECORD NAME

Function
General Format
Syntax Rules
General Rules

RECORD SECTION-WITHIN CLAUSE

Function

General Format
Syntax Rules
General Rules

RECORD SECTION DATA-BASE-DATA-NAME

Function
General Format

Syntax Rules
General Rules

REV. @ i- 4

2-11

2-11
2-11
2-12
2-13

2-15

2-15
2-15

2-16

2-16
2-16
2-16
2-16

2-17

2-17
2-17
2-17
2-18
2-18
2-19

2-28

2-28
2-208
2-28
2-28

2-21

2-21
2-21
2-21
2-21

2-22

2-22
2-22
2-22
2-22

CONTENTS (Cont)

RECORD SECTION-LEVEL NUMBER

Function
General Format
Syntax Rules
General Rules

RECORD SECTION-OCCURS CLAUSE

Function
General Format
Syntax Rules
General Rules

RECORD SECTION- (PICTURE CLAUSE)

Functon

General Format
Syntax Rules
General Rules

RECORDS SECTION-USAGE CLAUSE

Function

General Format
Syntax Rules
General Rules

RECORD SECTION-SIGN CLAUSE

Function

General Format

Syntax Rules
Generali Rules

DATABASE DATA NAME

Function
General Format

Syntax Rules
General Rules

SET SECTION

Complete Entry

SET SECTION-COPY SET

Function
General Format

General Rules

July 1977

CONTENTS (Cont)

SECTION 3 COBOL DATA MANIPULATION LANGUAGE 3-1

PROCESSOR (CDML)

OVERVIEW 3-1
HOW TO USE THE CDML PREPROCESSOR 3-1

Programming Tips 3-1

CDML ORGANIZATION 3-2

Two Classes of CDML Statements 3-2
Run-Unit Oriented Commands 3-2
Area Oriented Commands 3-2

Record Oriented Commands 3-2
Set Oriented Commands 3-3
Suppor ting Commands 3-3
Concurrency Functions 3-3

CDML SYNTAX COMPONENTS AND NOTATION 3-3

CDML Statement Format Rules 3-3
Character Set 3-3
Terminating CDML Statements 3-4
Delimiting Characters 3-6
Generic Terms 3-6
CDML Syntax Notation 3-7

CDML PREPROCESSOR COMMANDS 3-9

Function 3-9
General Format 3-9

Syntax Rules 3-9
General Rules 3-9
Examples and Discussion 3-9

COMPLETE SYNTAX SKELETON 3-10

RECORD SELECTION EXPRESSIONS 3-16

DML STATEMENTS 3-17

ABORT TRANSACTION 3-17

Function 3-17
General Format 3-17

Syntax Rules 3-17
General Rules 3-17
Examples and Discussions 3-17

CLEAR ERROR 3-18

Function 3-18
General Format 3-18
Syntax Rules 3-18
Examples and Discussion 3-18

REV. @ i- 6

CONTENTS (Cont)

CLOSE

Function
General Format
Syntax Rules
General Rules

Examples and Discussion for CLOSE Statement

DELETE

Function
General Format

Syntax Rules
General Rules

Error Status Codes for DELETE Statement

Examples and Discussion for DELETE Statement

END TRANSACTION

Function
General Format
Syntax Rules
General Rules
Examples and Discussion

EXIT DBMS

Function
General Format

Syntax Rules
General Rules
Examples and Discussion

FETCH

Function
General Format
Syntax Rules
General Rules

Error Status Codes for the FETCH Statement

FIND

Function
General Format
Syntax Rules
General Rules

Error Status Codes for the FIND Statement

Examples and Discussion of FIND Statement

July 1977

CONTENTS (Cont)

GET

IF

Function
General Format

Syntax Rules
General Rules
Error Status Codes for the GET Statement
Examples and Discussion of the GET Statement

Function

Syntax Rules
General Rules
Error Status Codes for the IF Statement
Examples and Discussion of the IF Statement

INSERT
Function
General Format
Syntax Rules
General Rules
Error Status Codes for the INSERT Statement
Examples and Discussion for the INSERT Statement

INVOKE

Function
General Format

Syntax Rules
General Rules
Error Status Codes for the INVOKE Statement
Examples and Discussion

MODIFY

Function
General Format
Syntax Rules
General Rules
Error Status Codes for the MODIFY Statement
Examples and Discussion of the MODIFYStatement

MOVE

REV.

Function
General Format
Syntax Rules
General Rules
Error Status Codes for the MOVE Statement
Examples and Discussion of the MOVE Statement

3-36

3-36
3-36
3-36
3-36
3-38
3-39

3-49

3-46
3-46
3-48
3-42
3-43

3-44
3-44
3-44
3-44
3-44
3-47
3-48

3-49

3-49
3-49
3-49
3-49
3-58
3-58

3-58

3-58
3-58
3-50
3-598
3-54
3-55

3-56

3-56
3-56
3-56
3-56
3-58
3-59

CONTENTS (Cont)

ON ERROR CLAUSE

Function
General Format
Syntax Rules
General Rules
Examples and Discussion for the ON ERROR Clause

OPEN

Function
General Format

Syntax Rules
General Rules
Error Status Codes for the OPEN Statement
Examples and Discussion for the OPEN Statement

PRIVACY KEY

Function
General Format
Syntax Rules
General Rules
Examples and Discussion for the PRIVACY KEY

RECORD SELECTION EXPRESSIONS

General Format
Syntax Rules
General Rules
Examples and Discussion of the RECORD

SELECTION EXPRESSIONS

REMOVE

Function
General Format

Syntax Rules
General Rules
Error Status Codes for REMOVE
Examples and Discussion for REMOVE

START OF TRANSACTION

Function
General Format
Syntax Rules
General Rules
Example and Discussion of START OF TRANSACTION

3-66

3-68
3-68
3-68
3-61
3-62

3-64

3-64
3-64
3-64
3-65
3-68
3-69

3-70

3-78
3-78
3-71
3-71
3-72

3-73

3-74
3-75
3-75
3-81

3-83

3-83
3-83
3-83
3-83
3-83
3-86

3-87

3-87
3-88
3-88
3-88
3-89

July 1977

CONTENTS (Cont)

STORE

Functon

General Format
Syntax Rules
General Rules
Error Status Codes for the STORE Statement
Examples and Discussion for the STORE Statement

SUBSCHEMA

Function

General Format
Syntax Rules

General Rules
Example and Discussion of the SUBSCHEMA Statement

SUPPRESS

Function
General Format
Syntax Rules
General Rules
Error Status Condition of the SUPPRESS Statement
Example and Discussion of the SUPPRESS Statement

SECTON 4 COBOL DDL & DML DIAGNOSTIC METHODS

SUMMARY OF MAJOR CODES
SUMMARY OF NON-FATAL MINOR CODES
SUMMARY OF CONCURRENT ACCESS CONFLICTS

REV. @

3-98

3-96
3-98
3-98
3-91
3-97
3-98

3-99

3-99
3-99
3-99
3-99
3-168

3-161

3-181
3-161
3-101
3-182
3-183
3-194

4-1

4-1

4-3
4-6

Figure

1-1
1-2
1-3

ILLUSTRATIONS

Title

PRIME DBMS Documentation

Documentation Releases
Database Development Sequence of Events

Usage-Mode Rules

Page

1-2
1-4
1-6

3-67

July 1977

TABLES

Table Title Page

3-1 CDML Statements Character Set 3-5

REV. @ i - 12

FOREWORD

FOREWORD

The COBOL Reference Manual for DBMS contains specifications of the Data
Description Language declaring a COBOL sub-schema (Section 2), and the
COBOL Data Manipulation Language (Section 3).

DOCUMENTATION EXCELLENCE

Prime is striving to maintain the highest documentation standards. ‘To
achieve this goal, the Database documentation will be published in
three documentation releases as described in Section 1. This is the
Initial Documentation Release. Prime asks that each serious Database
user correspond his comments about this manual concerning technical
accuracy and additional information needed to implement the task of
Database Administrator.

Robert E. Dawes, Technical Writer
Technical Publications Department
Prime Computer Inc.
145 Pennsylvania Avenue,
Framingham, Ma. 91741

i - 13 July 1977

IDR3'46 INTRODUCTION

SECTION 1

INTRODUCTION

ABOUT THIS MANUAL

This manual is oriented toward knowledgeable database application
programmers. The reader is assumed to be acquainted with basic
concepts of virtual memory operating systems and familiar with the
benefits of database management principles. |

This manual contains reference information for the COROL Data

Description Language (DDL) and Data Manipulation Language (DML).
Section 2 contains the language specifications for COBCL DDL and

Section 3 contains language specifications for COBOL DML.

DATABASE DOCUMENTATION

Database documentation (Figure 1-1) is provided for both the Database

Administrator and the application programmer. The Database
Administrator uses two manuals: 1) The Prime Database Administrator
User's Guide and 2) Prime DBMS Schema Data Description Language (DDL)

Reference Manuals.

The application programmer uses two manuals per application language:

1) the Prime FORTRAN Reference Manual for DBMS and the Companion Prime
FORTRAN User's Guide, 2) The COBCL Reference Manual for DBMS and th
Companion Prime CCROL User's Manual.

1 - 1 July 1977

COMPILATION
PROCEDURES

ERROR
MESSAGE
DEFINITION

DBMS
SCHEMA
DDL
REFERENCE
MANUAL

Figure 1-1.

MAN3046

CREATION
PROCEDURES

D
E
V
E
L
O
P
M
E
N
T

DATABASE
ADMINIS-
TRATORS
GUIDE

PRIME'S
DBMS
FEATURES

< REFERENCE
MANUAL
FOR
DBMS

FORTRAN
REFERENCE
MANUAL COBOL

FOR USER
DBMS GUIDE

FORTRAN
USER
GUIDE

PRIME DBMS DOCUMENTATION

IDR3646 INTRODUCTION

Documentation Releases

Prime provides three documentation releases (see Figure 1-2) for every
new product: The Initial Documentation Release (IDR), the Preliminary
Documentation Release (PDR), and the Final Documentation Release (FDR).

The Initial Documentation Release (IDR) provides whatever information
is available without regard to whether the information is grammatically

correct, or properiy formatted. ‘Thus, the intent is to provide usable
information when needed.

The Preliminary Documentation Release (PDR) is the second draft by the
writer. It provides more complete and accurate information about the
product, but does not represent the final product information.
Customers having the IDR should request the PDR from his sales
representative.

The Final Documentation Release (FDR) is the complete product
description up to the stated software revision number. This release is
edited, formatted and presented in Prime's highest professional
standards. Users will be notified when this release is available and
should contact the local sales representative for a copy.

OTHER RELATED PRIME DOCUMENTS

PRIMOS FILE SYSTEM USER'S GUIDE MAN2604

PRIMCS INTERACTIVE USER'S GUIDE MAN26@2

PRIMOS COMPUTER ROOM USER'S GUIDE MAN26@3

PROGRAM DEVELOPMENT SOFIWARE USER'S GUIDE MANI879

COBOL IV USER'S GUIDE MAN3@57

COBCL USER'S GUIDE MAN2797

1 - 3 7 July 1977

SECTION 1 MAN3€ 46

PRIME
INITIAL
DOCUMEN-
TATION
RELEASE

(IDR)

PROVIDES IMMEDIATE
INFORMATION

PRIME
PRELIMINARY
DOCUMEN-
TATION
RELEASE

(PDR) r

 EDITED & FORMATTED
INFORMATION

PRIME
FINAL
DOCUMEN-
TATION
RELEASE

(FDR)

 BETTER
PRESENTATION

Figure 1-2.

FEV.

DOCUMENTATION RELEASES

IDR3646 INTRCDUCTICN

THE COBOL/DBMS INTERFACE

The COBCL interface to the DBMS includes two major processors and their
respective lenguages: the CCPRCL Subschema Data Definition Language
(DDL) Compiler and the COBCL Data Manipulation Language (DML)
Preprocessor.

The application programmer's "view" of a schema is written in the COBOL

Subschema DDL. The Subschema Compiler transiates the DDL into an
internal, tabular form called the subschema table which is used by the
DML Preprocessor.

Commands for locating a string, as well as retrieving, deleting, and
modifying the contents of a database, are written in the CCBOL DML.
These commands are interspersed with COBOL statements in the
application program source file and translated into COBCL declarations
and statements by the COCBCL DML Preprocessor. The output of the
Preprocessor is the source input for the CORCL Compiler.

DATABASE DEVELOPMENT

The database development sequence of events is illustrated in Figure
1-3. Before performing any compilation, the user should examine this
flow to assure that the database is constructed in the proper sequence.

1 - 5 July 1977

SECTION 1

DBA DOMAIN

Schema

DDL Source

Schema

DDL Compiler

Schema

Table

DBMS DOMAIN

MAN3646

 cetre

COBOL USER DOMAIN

COBOL DML Program
Subschema Source
DDL Source (COBOL + DML)

COBOL

DML

Preprocessor

COBOL
Subschema
DDL Compiler

FORTRAN
Source

Code

Subschema
Table

COBOL

Compiler

COBOL
Object

Code

DMLCP

Template

Segmented

Loader

Figure 1-3

REV. @

Application Program

SEG Run FILE

Database Development Sequence of Events

IDR3846 COBOL DDL

SECTION 2

COBOL DDL

INTRODUCTION

This section contains the specifications of the Data Description
Language (DDL) for declaring a COBOL subschema.

The specifications provide for two divisions which serve to:

@ Identify the subschema (subschema IDENTIFICATION division).

e Define (and optionally rename) the areas, records, and sets
included in the subschema (subschema DATA division).

The subschema IDENTIFICATION division must precede the subschema DATA
division and consists of a single entry.

CODING INSTRUCTIONS

Character Set

The COROL subschema data source language character set consists of the
following characters:

Letters A through 2

Blank or space
Digits @ through 9
Special characters:

+ Plus sign
- Minus sign

Aster isk
Equal sign
Relational sign (greater than)
Relational sign (less than)
Dollar sign
Comma
Semicolon
Period or decimal point
Quotation mark
Left parenthesis
Right parenthesis

" Apostrophe (alternate of quotation mark)
/ Virgule

*
~
~
O
e

e
e
Y
A
Y

idl

2 - Jd July 1977

SECTION 2 IDR3846

Of the previous set, the following characters are used for words:

g through 9

A through Z

(hyphen)

The following characters are used for punctuation:

(
)
s

e

e
‘

Left parenthesis
Right parenthesis
Comma
Per iod
Semicolon

following relational characters are used in simple conditions:

l
a
v

Punctuation

The following general rules of punctuation apply in writing source
programs:

1. A period, semicolon, or comma, when used, should not be preceded
by a space, but must be followed by a space.

2. A left parenthesis should not be followed immediately by a space;
a right parenthesis should not be preceded immediately by a
space.

3. At least one space must appear between two successive words
and/or literals. Two or more successive spaces are treated as
single space, except in non-numeric literals.

4, Relation characters should always be preceded by a space and

followed by another space.

5. When the period, comma, plus, or minus characters are used in the
PICTURE clause, they are governed solely by rules for report
items.

6. A comma may be used as a separator between successive operands of
a statement, or between two subscripts.

7. A semicolon or comma may be used to separate a series of

statements or clauses.

IDR3846 COBOL DDL

Word Formation

A word is composed of a combination of not more than 38 characters,
chosen from the following set of 37 characters:

8 through 9 (digits)
A through Z (letters)

~ (hyphen)

A word must begin with a letter; it may not end with a hyphen. A word
is ended by a space, or by proper punctuation. A word may contain more
than one embedded hyphen; consecutive embedded hyphens are also
permitted. All words are either reserved words, (refer to Appendix)
which have preassigned meanings, or programmer~supplied names. If a
programmer-supplied name is not unique, there must be a unique method
of reference to it by use of name qualifiers; e.g., TAX-RATE IN
STATE-TABLE. Primarily, a non-reserved word identifies a data item or
field, and is called a data-name. Other cases of non-reserved words
are file-names, condition-names, mnemonic-names, and procedure-names.

CODING RULES

Since Prime COBOL is a subset of American National Standards Institute
(ANSI) , COBOL subschemas are written on standard COBOL coding sheets .
The following rules are applicable.

1. Each line of code should have a_ six-digit sequence number in
columns 1-6, such that the punched cards are in ascending order.
Blanks are also permitted in columns 1-6.

2. Reserved words for division, section, and paragraph headers must
begin in Area A (columns 8-11). Level numbers may appear in
Margin A.

3. All other program elements must be confined to columns 12-72,
governed by the other rules of statement punctuation.

4. Columns 73-88 are ignored by the compiler. Frequently, these
columns are used to contain the deck identification.

5. Explanatory comments may be inserted on any line within a_ source
program by placing an asterisk (*) in column 7 of the line. Any
combination of characters may be included in Areas A and B of
that line. The asterisk and the characters will be produced on
the source listing but serve no other purpose. If a slash (/)
appears in column 7, the next card will be printed at the top of
a new page when the compiler lists the program. A hyphen (-) is
used to continue a non-numeric literal from one line to another.
Refer to Non-Numeric Literals for coding rules.

2 - 3 July 1977

SECTION 2 IDR3946

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
clauses or statements. These generalized descriptions guide the
programmer in writing his own statements. They are presented in a
uniform system of notation:

1.

2.

3.

5.

6.

7.

All words printed entirely in capital letters are reserved words.
(See Appendix A.) These are words that have preassigned
meanings. In all formats, words in capital letters represent an
actual occurrence of those words.

All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
words. If any key word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are optional words; they are used

solely for improving readability of the program.

The characters < > = when appearing in formats, although not

underlined, are required when such formats are used.

All punctuation and other special characters represent the actual
occurrence of those characters. Punctuation is essential where
it is shown. Additional punctuation can be inserted, according
to the rules for punctuation specified in this publication. In
general, terminal periods are shown in formats in the manual
because they are required; semicolons and commas are not shown
generally because they are optional.

Words printed in lower-case letters in formats represent generic
parts (e.g., data-names) of which a valid representation must

appear.

Parts of a statement or data description entry which are enclosed
in brackets ([]) are optional. Parts between matching braces
({}) represent a choice of mutually exclusive options of which
one must be chosen.

Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats in
appropriate sections of the text.

In order to facilitate reference to them in the text, some
lower-case words are followed by a hyphen and a digit or letter.
This modification does not change the syntactical definition of
the word.

The ellipsis (...) indicates that the immediately preceding unit
May occur once, or any number of times in succession. A unit
means either a single lower-case word, or a group of lower-case

IDR3846 COBOL DDL

words and one or more reserved words enclosed in brackets or
braces. If a term is enclosed in brackets or braces, the entire
unit of which it is part must be repeated when repetition is
specified.

16. Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of this
manual .

USING THE COMPILER

The COBOL Subschema DDL Compiler (CSUBS) translates the COBOL Subschema
Data Definition Language (DDL) into an internal tabular form called the
Subschema table. CSUBS also produces an output listing which includes
the DDL text, error messages, and a map of the User Work Area. ‘the

listing is found in the current UFD and is called "“L<-name", where
“name” is the DDL input file name.

Invoking the Compiler

The COBOL Subschema DDL Compiler is invoked withthe command:

CSUBS source-file (-VOL volume—name]

If volume-name is not specified for the output subschema table, the
volume of the schema table is assumed.

Compiler Errors

There are three classes of errors that may be encountered by the
compiler:

l. Fatal - cannot parse further.

2. Nonfatal - can continue parsing for further errors after end of
this clause, but final subschema table will not be produced.

3. Warning - Syntax is ambiguous or incomplete and the compiler has
made an arbitrary decision so that a final Subschema table may be
produced.

Error messages are displayed both on theuser terminal with the line in
which the error occured, as well as in the output listing after the
erroneous line.

User Work Area Map

A map of the User Work Area WORKING STORAGE entries are included in the
output listing of the COBOL Subschema DDL Compiler. The map includes

2 - 5 July 1977

SECTION 2 IDR3046

the name, size, COBOL data type, and starting address in User Work Area
for all items and data-base-dasta-names specified in the Subschema as
well as the various DML run-time error and exception registers.

REV. @ 2 - 6

IDR3046 COBOL DDL

REKKKKREKEEREERKEEKEKERKEERER

* SUBSCHEMA IDENTIFICATION *
HEKKREKREREREEEEEREREREREEREER

Function

To define and name a subschema within a schema.

Complete Entry

SUBSCHEMA NAME IS Sub-schema-name OF SCHEMA NAME schema-name

[PRIVACY KEY FOR COPY {literal-1}],

2 - 7 July 1977

SECTION 2 IDR3046

REKKKKEKKEKEKEEEKEKEREEREEKEKEKEEER

* IDENTIFICATION-SUBSCHEMA NAME *
RERKKKRERREEENERAEEREREREREEERERE

Function

To name a subschema and its associated schema.

General Format

SUBSCHEMA NAME IS sub-schema-name OF SCHEMA NAME schema-name .

Syntax Rules

1. Subschema-name must be unique among the subschema-names
associated with the specified schema.

General Rules

None

REV. @ 2 = 8

IDR3846 COBOL DDL

KKKKEKRAKKKEKKEKEERERRERRREE

* IDENTIFICATION-PRIVACY KEY *
REEKKEEKEEEKEEEKEEKERREREEEKEE

Function

To specify the key for accessing a schema which includes a privacy lock
on its use for developing a subschema (that is, it includes a PRIVACY
LOCK FOR COPY clause).

General Format

PRIVACY KEY FOR COPY IS {literal-1}.

Syntax Rules

None

General Rules

None

2 - 9 July 1977

SECTION 2 IDR3646

KAKKRKEKEKKRRERERREEEEREEREEEE

* SUBSCHEMA DATA DIVISION *
KEEKKK

Function

To name and give certain characteristics of the areas, records, and
sets of the schema that are contained in the subschema.

Structure of the Subschema DATA DIVISION

The Subschema DATA consists of four sections. The names of these four
sections in their required order of appearance are as follows:

RENAMING SECTION

AREA SECTION

RECORD SECTION

SET SECTION

The RENAMING SECTION and the SET SECTION may be omitted if not
required. The RENAMING SECTION consists of a single entry. ‘The AREA,
RECORD, and SET SECTIONS consist of an entry for each area, record, or
set to be included in the subschema being defined.

REV. @ 2 - 18

IDR3946 COBOL DDL

HREKKKEKEKEEEKEKKKKREK

* RENAMING SECTION *
KEKKKKEKRKEREKEEREERE

Function

To relate names in the subschema to names in the schema in order to
achieve conformity with the naming conventions of COROL or for
convenience purposes.

Complete Entry

RENAMING SECTION

AREA NAME area-name-]1 IN SCHEMA IS CHANGED TO area-name—2

sarea-name-3 TO area-name- |Jef

RECORD NAME record-name-1 IN SCHEMA IS CHANGED TO record-name-2

- _ |
|#2cord-nane-3 TO record-nane-t| cee eee ¢

2 - ll July 1977

SECTION 2 IDR3846

DATA NAME data-base-identifier-1 IN SCHEMA IS CHANGED TO data-base-data-name-1

 rdata-base- identifier-2 TO dotabaoe-date-nane-2| won| ooe

SET NAME set-name-] IN SCHEMA IS CHANGED TO set~name-2

| seet-nane-2 TO set-nane- .

Syntax Rules

1. In each renaming clause, the first name of each pair of names
must have been previously declared in the schema; the second
name of each pair must conform to COBOL naming rules. The second
name is known as a synonym for description purposes.

2. The following categories of names declared in the schema can be
the subject of RENAMING clauses in a subschema.

REV. 8 2 - 12

3.

IDR3646 COBOL DDL

a. Area-names

b. Record-names

c. Set-names

d. Names of data aggregates or data items within each record

type

e. Names of data items not within any record type

Within each category the collection of names for a_ subschema
consists of:

a. The synonyms defined in RENAMING clauses for a particular
subschema, plus

b. Those names declared in the schema which are known to the

subschema and do not have synonyms in this subschema.

Each collection of names must not contain any duplicates. In
addition, names of data items not within a record type cannot be
the same as any record name.

Within each category, any name declared in the schema must not be

the subject of more than one RENAMING clause in any one
subschema.

If necessary to ensure uniqueness, database-identifier-l and
database~identifier-2 must be qualified, using the same record
name declared in the schema.

General Rules

1. A name which is a synonym in a RENAMING clause must be used
instead of the corresponding name declared in the schema
throughout subsequent sections in the subschema and throughout
any run-unit which invokes the subschema. This rule applies
equally to names communicated by a run-unit to the DBMS and to
names communicated by the DBMS to a run—unit.

Any name declared in a schema which is the subject of a RENAMING
clause and appears in a subschema as result of a COPY area-name
or COPY set-name clause, will be replaced by its corresponding
synonym.

Whenever there is a requirement that an area, record, set, or
data item be referred to by name in the subschema, then

e if a synonym exists as a result of a RENAMING clause in the
subschema, this synonym must be used; failure to do this
produces only a warning message and CSUBS replaces the schema
name;

2 - 13 July 1977

SECTION 2 IDR3646

e otherwise, the name declared in the schema must be used.

4. All synonym names declared in the remaining section must be used
once subsequently in this subschema. Failure to do this is a
fatal subschema compiler error.

REV. 8 2 - 14

IDR3046 COBOL DDL

REREKKEKEEKKEEKE

* AREA SECTION *
KREKKKRERREREERE

Function

To enumerate the areas of the schema that are included in the subschema

and by implicaton, to remove from view all other areas of the schema.

Complete Entry

Format 1]

COPY area-name~] [,area-name-2]}]

Format 2

COPY ALL AREAS.

2 - 15 July 1977

SECTION 2 IDR3846

RAEKKKKKEKKREKEREKREKEKEEKKER

* AREA SECTION-COPY AREA *
KEKKKRRAKKERKKEKRERERERRERE

Function

To name all areas which are to be included in the subschema.

General Format

Format 1]

COPY area-name-] [, area-name-2]...

Format 2

COPY ALL AREAS.

Syntax Rules

l. Area-name-l1, area-name-2 must refer to areas defined in the

schema.

2. Format 1] may be repeated as required.

3. If Format 2 is used, Format 1] entries are not allowed.

General Rules

1. Format 1 causes the entries for the referenced areas in the
schema to be included in the subschema.

2. Format 2 causes all areas for which entries are included in the
schema to be included in the subschema.

REV. @ 2 - 16

IDR3646 COBOL DDL

KRKKEKEKKKEEKKEEKEKKKEEK

* RECORD SECTION *
REKKKEKRRKKKKKKKKKK

Function

To name and define the records and subordinate data items within
records of the schema that are to be included in the subschema.

By implication, to remove from view all other records and data items
within records of the schema.

Complete Record Description Entry Skeleton

RECORD SECTION

Record Control fntry.

[Data Description fntry...],

Complete Record Control Entry

Format 1

91 record-—name-1.

[;WITHIN area-name-] [,area-name-2] ...] .

Format 2

77 data~base-—data-—name-2,

2 - 17 July 1977

SECTION 2 IDR3646

Complete Data Description Entry

level-number data-base-data-name-1

- PICTURE

3 IS character-string

PIC

COMPUTATIONAL
COMP
COMPUTATIONAL~3

; USAGE IS COME
DISPLAY
DATABASE-KEY |

LEADING
, SIGN Is SEPARATE CHARACTER || .

TRAILING |

~ *
sOCCURS integer-2 TIMES,

;OCCURS integer-1 TO integer-2 TIMES |.

 DEPENDING ON data-base-data-name-3
may

Syntax Rules for Complete Record Description Entry

1. A record control entry is required as the first element in a
subschema record description; if Format 1, it may be followed by
zero or more data description entries.

REV. @ 2 - 18

5.

IDR3846 COBOL DDL

In a Format 1 record control entry, any WITHIN clause which
follows the name of the record is optional and its order of
appearance is immaterial.

Level-number in a data description entry may be any number from
82-49, (Format 1).

The PICTURE clause must be specified for every elementary item,
except any data item defined with a USAGE IS COMPUTATIONAL or
USAGE IS DATABASE KEY clause.

In data description entries, the clauses may be written in any
order, with the exception that the data-base-data-name clause
must immediately follow the level-number.

General Rules for Complete Record Description Entry

1.

2.

3.

A record description entry extends from a record control entry to
the next record control entry, or to the end of the RECORD
SECTION.

A data description entry is used to describe group and elementary
items associated with a Format-] record control entry.

If the record referenced by record-name-] has been defined in the
schema as having no data, then only clauses included in the.
record control entry are permitted in this record description.

The PICTURE clause must not be specified, except for elementary
data items. (see Syntax Rule 4).

2 - 19 July 1977

SECTION 2 TDR3046

RAEEKKKEEKEREKERKKEKEKREKEREKERKEE

* RECORD SECTION-RECORD NAME *
KREEKKKEKEKEKEKEKKEREREREREKES

Function

To define records which are to be included in the subschema.

General Format

record-name .

Syntax Rules

1. All record—names must be unique within the record-names used in

the subschema.

2. Record-name must refer to a record declared in the schema.

General Rules

None.

REV. @ 2 - 26

IDR3@46 COBOL DDL

EAKEKEKEKRKEKREERKEEKERERREKRKEKEREEK

* RECORD SECTION-WITHIN CLAUSE *
KRKKKEKERERERERRERKREKEREREREERE

Function

To define and restrict the selection of occurrences of the record
named.

General Format

WITHIN area-name-] [,area-name-2]... .

NOTE

At present, only syntax checking of this clause is done, and
that is only partial: area-name-l, area-name-2 must refer to

areas defined in the schema.

Syntax Rules

None.

General Rules

None.

2 - 21 July 1977

SECTION 2 IDR3046

HEEKKEEKKEKKKKEKEEREKEEKEKEKREKEREKRKEREKEE

* RECORD SECTION DATA-BASE-DATA-NAME *
KHKKAKKKKKRKEKKEREEKRKKERERIKERERERERERERERE

Function

To select data items and data aggregates of interest from a record
defined in the schema, thereby implicitly removing from view all
unnamed items of the record.

General Format

data-base-data-—name .

Syntax Rules

1. Data-base-data-name may refer to any data item or data aggregate
declared for the record in the schema.

2. Any elementary data item declared for this record in_ the
subschema must have been declared in the schema as a data item.

3. Any data item or vector which is declared as a camponent of a
repeating group in the schema can only be declared in the
subschema as a component that is an elementary data item or an

array, of that repeating group.

4. Data-base-data-names must be unique within the subschema_ record

description entry.

General Rules

1. If data—base-data-name is the name of a repeating group declared
in the schema for this record, any component of the group can be
omitted from the subschema record description entry. If a
subordinate repeating group is omitted, all its components are
omitted.

REV. © 2 - 22

IDR3846 COBOL DDL

KKKKKKKEKEREIRAEREREEREREERER

* RECORD SECTION-LEVEL NUMBER *
REKKEKEKEEKEEKKKEKKKKRKKKKKKKKRKK

Function

To show the hierarchy of data names within a record.

General Format

level-number ,

Syntax Rules

1. A level-number is required as the first element in each data
description entry.

2. Data description entries describe a record entry and may have
level-numbers with values of 62 through 49.

General Rules

1. A level-number @1 entry identifies the first entry; that is, the
record control entry.

2. Tlevel-numbers assigned to data items and data aggregates in the
schema record entry may be altered in the subschema declarations;
however, for repeating groups, the relative levels within the
group's hierarchy must be maintained in the subschema record.

2 - 23 July 1977

SECTION 2 IDR3846

EKKRKKKERERERERKEERERREREEREREREER

* RECORD SECTION-OCCURS CLAUSE *
KEKKKEKEKKKKKKKKKKKKKKKK

Function

To supply the information required for the application of subscripts or
indices for repeated data, eliminating the need for separate entries.

To define arrays and repeating groups based on schema declarations of
vectors and repeating groups.

General Format

Format 1

OCCURS integer-2 TIMES.

Format 2

OCCURS integer-l1 TO integer-2 TIMES

DEPENDING ON data-base-data-name-1 .

Syntax Rules

1. Integer-1 and integer-2 must be unsigned nonzero integers. Where
both are used, the value of integer-] must be less than the value
of integer-2.

2. The data description entry for data-base-data~name-] must
describe an integer.

3. Data-base-data-name-1 must not be the subject of an OCCURS
clause, or subordinate to a group item containing an OCCURS
clause.

4. Data-base-data-name-] must refer to a data item defined in both
the schema and subschema as belonging to the same record to which
the item being described by this clause belongs. The description

REV. @ 2 - 24

IDR3646 COBOL DDL

of data-base- data-name-] must precede the description of the
data item described by the CCCURS clause in the total record
description to which both items belong.

The OCCURS clause may only be specified in a data description
entry that describes a data item that has been declared in the
corresponding schema record entry as an element of a vector or a

repeating group.

General Rules

l.

3.

The OCCURS clause is used in defining arrays and repeating
groups. Whenever the OCCURS clause is used, the
data-base-data-name which is the subject of this entry must be
subscripted whenever it is referenced in a COBOL statement other
than SEARCH. Further, if the subject of this entry is the name
of a group item, then all data-base-data-names belonging to the
group must be subscripted whenever they are used as operands.

Except for the OCCURS clause itself, all data description entry
clauses associated with an item whose data description entry
includes an OCCURS clause apply to each occurrence of the item
descr ibed.

In Format 1, the value of integer-2 represents the exact number
of occurrences; in Format 2, the value of integer-2 represents
the maximum number of occurrences in the data-base andthe exact
number of occurrences within the COBOL program.

Format 2 specifies that the subject of this entry has a variable
number of occurrences in the database only. This does not imply
that the length of the subject is variable, but that the number
of occurrences iS variable.

The value of data-base-data-name-] is the count of the number of
occurrences of the subject and its value must not exceed
integer-2 or be less than integer-l1. Reducing the value of
data~base-—data-name~] makes the contents of data items, whose
occurrence numbers now exceed the value of data-base-data-name-1,

unpredictable.

If Format 1 is used, the number of occurrences specified by
integer-2 in the subschema must be less than or equal to the

number of occurrences declared in the schema for the
corresponding vector or repeating group. If Format 2 is used,
data~base-data-name-1 must be identical to the depending variable
name specified in the schema.

2 - 25 July 1977

SECTION 2 IDR3846

KRKKEKEKEKKERKREKEKERREKEKREREEREAKEKKEE

* RECORD SECTION- (PICTURE CLAUSE) *
HKEKKKKKKKEREERRERERERERERERERRERERE

Function

To describe the general characteristics of elementary items as_ they
appear in the User Working Area.

General Format

PICTURE

IS character-stringm
e

PIC

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item
level.

2. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols.

3. mre maximum number of symbols allowed in the character-string is

4. The PICTURE clause describes fixed length data items.

5. PIC is an abbreviation for PICTURE.

6. The PICTURE clause must be specified for every elementary item
except when USAGE is COMPUTATIONAL or DATABASE-KEY.

General Rules

l.

2.

There are three categories of data that can be described with a
PICTURE clause: Alphabetic, Numeric and Alphanumeric.

To define an item as Alphabetic:

a. Its PICTURE character-string can only contain the symbol '‘A';
and

REV. @ 2 - 26

3.

4.

5.

IDR3846 COBOL DDL

b. Its contents when represented in Standard Data Format must be
any combination of the twenty-six (26) letters of the Roman
alphabet and the space from the COBOL character set.

To define an item as Numeric:

a. Its PICTURE character-string can only contain the symbols
'9', ‘Pt, 'S" and 'v'. The number of digit positions that
can be described in the PICTURE character-string must range
from 1 to 18 inclusive;

b. If unsigned, its contents when represented in Standard Data
Format must be a combination of the Arabic numerals '9', 'l',
‘2', ‘3', ‘4, "5", '6', '7', '8', and '9's if signed, the
item may also contain a '+', '-', or other representation of
an operational sign.

To define an item as Alphanumeric:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'x', '9', and the item is

treated as a character-string containing all 'x's. (A
PICTURE character-string which contain all 'A's or all '9's
does not define an Alphanumeric item); and

b. Its contents when represented in Standard Data Format are
allowable characters in the computer's character set.

The size of an elementary item, where size means the number of
character positions occupied by the elementary items in Standard
Data Format, is determined by the number of allowable symbols
that represent character positions. An unsigned nonzero integer
which is enclosed in parentheses following the symbols 'A', 'x',
‘9', ‘pt, indicates the number of consecutive occurrences of the
symbol. Note that the symbois ‘S’ and 'V' may appear only once
in a given PICTURE.

The function of the symbols used to describe an elementary item
are explained as follows:

A fkach 'A' in the character-string represents a character
position which can contain only a letter of the alphabet or a
space.

P The 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point,
when the point is not within the number that appears in the
data item. The scaling position character 'P' is not counted
in the size of the data item. Scaling position characters
are counted in determining the maximum number of digit
positions (18) in numeric items which appear as operands in
arithmetic statements. The scaling position character 'P'
can appear only to the left or right as a continuous string

2 - 27 July 1977

SECTION 2 IDR3046

7.

REV. 8

of 'P's within a PICTURE description; since the scaling
position character 'P' implies an assumed decimal point (to
the left of 'P', if 'P's are the left-most PICTURE characters
and to the right of 'P's if 'P's are the right-most PICTURE
characters), the assumed decimal point symbol 'v' is
redundant as either the left-most or right-most character
within such a PICTURE description.

S The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily,
the position of an operational sign; it must be written as
the left-most character in the PICTURE. The 'S' is not
counted in determining the size (in terms of Standard Data
Format characters) of the elementary item unless the entry is
subject to a SIGN clause which specified the optional
SEPARATE CHARACTER phrase.

V The 'v' is used in a character-string to indicate the
location of the assumed decimal point and may only appear
once in a character-string. The 'V' does not represent a
character position and therefore is not counted in the size
of the elementary item. When the assumed decimal point is to
the right of the right-most symbol in the string, the 'v' is
redundant.

X Each 'X' in the character-string is used to represent a
character position which contains any allowable character
from the computer's character set.

9 Each '9' in the character-string represents a character
position which contains a numeral and is counted in the size
of the item.

The Subschema PICTURE clause describes the format and
characteristics of schema data items as they appear in the User
Working Area. The characteristics of data items defined in the
subschema may differ from the characteristics of the
corresponding data items defined in the schema. Variations are
limited to those differences which would not violate the rules
stated in the subschema for the OCCURS clause, USAGE clause, etc.
When characteristics differ, conversion rules are employed in
transferring data to and from the User Working Area.

IDR3946 COBOL DDL

REKKKEKKEKKEKEEKKEEKEKKEKEREEKEEEKE

* RECORDS SECTION-USAGE CLAUSE *
KRKKEKEREREEREREREREREREEEEEEEEA

Function

To specify the format of the COBOL data items and to cause certain
conversions between an item as it is defined in the schema and as it is
desired in the User Working Area.

— _

COMPUTATIONAL
COMP
COMPUTATIONAL-—3

: USAGE IS COMP—3 .

DISPLAY
DATABASE-KEY

Syntax Rules

6.

The PICTURE of a COMPUTATIONAL-3 item can contain only ‘'9', the
Operational sign character ‘'S', the implied decimal point
character 'V', one or more 'P's,.

The USAGE IS DISPLAY clause indicates that the format of the data
is Standard Data Format.

COMP is an abbreviation for COMPUTATIONAL-3.

The USAGE IS DATABASE-KEY clause defines a data item designed to

hold a database-key.

The format of a data item described with a USAGE IS DATABASE-KEY
clause is PICTUREX(6); no other clauses, may be specified for
the data item.

The clause USAGE IS DATABASE-KEY may be used in the subschema if
and only if it describes an item declared in the schema as a
database-key.

General Rules

1. The USAGE clause can be written at any level. If the USAGE
clause is written at a group level, it applies to each elementary
item in the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs.

2 - 29 July 1977

SECTION 2 IDR3846

6.

The USAGE clause specifies the manner in which a data item is
represented in the User Working Area and may affect the radix or
type of character representation of the item.

COMPUTATIONAL-3 items are represented as packed decimal data.

If the USAGE clause is not specified for an elementary data item
or for any group item to which it belongs, the USAGE is assumed
to be DISPLAY.

If the USAGE IS DISPLAY clause is combined with a PICTURE clause
that specifies a numeric category, the data item is represented
as unpacked decimal data.

When USAGE is COMPUTATIONAL or DATABASE-KEY, the use of the

PICTURE clause is prohibited.

REV. @ 2 - 38

IDR3646 COBOL DDL

KEKKKKEKREEREEKEEERKEKEKKEKEKKEK

* RECORD SECTION-SIGN CLAUSE *
HRKKKRKKKRKRKAKRERRKEREKERERKE

Function

The SIGN clause specifies the position and the mode of the
representation of the operational sign.

General Format

LEADING

‘ SIGN IS SEPARATE CHARACTER| -

TRAILING

Syntax Rules

l.

2.

3.

NOTE

To be implemented in Rev. 15 or a subsequent release of the
DBMS.

The SIGN clause may be specified only for a numeric Data
Description entry whose PICTURE contains the character 'S' or a
group item containing at least one such numeric Data Description
entry.

The numeric Data Description entries to which the SIGN clause
applies must be described as USAGE IS DISPLAY.

At most, one SIGN may apply to any given numeric Data Description
entry.

General Rules

1. The optional SIGN clause, if present, specifies the position and
the mode of representation of the operational sign for the
numeric Data Description entry to which it applies.

The SIGN clause applies only to numeric Data Description entries
whose Subschema PICTURE contains the character 'S' (the ‘'S'
indicates the presence of,but neither. the. representation nor,
necessarily, the position of the operational sign).

2 - 3] July 1977

SECTION 2 IDR3846

2.

4,

REV. @

A numeric Data Description entry whose PICTURE contains the
character '‘'S', but to which no optional SIGN clause applies, has
an operational sign, but neither the representation nor,
necessarily, the position of the operational sign is specified by
the character 'S'. In this (default) case, the position and
representation of the operational sign will be embedded trailing.

If the optional SEPARATE CHARACTER phrase is not present, then:

a. the operational sign will be associated with the leading (or,
respectively, trailing) digit position of the elementary
numeric data item.

b. the letter 'S' in a PICTURE character-string is not counted
in determining the size of the item (in terms of Standard
Data Format characters).

If the optional SEPARATE CHARACTER phrase is present:

a. the operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary
numeric data item; this character position is not a digit

position.

b. the letter 'S' in a PICTURE character-string is counted in
determining the size of the item (in terms of the Standard
Data Format characters) .

c. the operational sign for positive and negative are the
Standard Data Format characters ‘+' and '-', respectively.

IDR3846 COBOL DDL

EKKKKKKERREKRRERRERREK

* DATABASE DATA NAME *

Function

To select data-base-data-names which appear in the schema, but not in
any data sub-entry of a record.

General Format

77 data-base-data-name-2.

Syntax Rules

1. Data-base-data-name-2 may raefer to data-base-data-names defined
in the Schema as data-base-keys used in LOCATION MODE IS DIRECT,
AREA-ID IS, and ALIAS within the set selection clause.

2. The format of data-base-data-name-2 will be the same as defined
inthe Schema and cannot be modified by the subschema. Therefore,
no usage or PICTURE clause is allowed.

General Rules

None

2 - 33 July 1977

SECTION 2 IDR3846

REKEKEKKEEEKKKESE

* SET SECTION *
KERKKKKEREKKKER

Function

To name and define the sets of the schema that are to be included in
the subschema and by implication, to remove from view all other sets of
the schema;

Complete Entry

SET SECTION

Format 1]

COPY set-name-1] | sset-name-2 | eee

J

Format 2

COPY ALL SETS.

REV. @ 2 - 34

IDR3646 COBCL DDL

KEKEKKEREKEKREKREEKEKEKKK

* SET SECTION-COPY SET *
EEKEREKEAEKERREREREEEEEK

Function

To name all sets which are to be included in the subschema.

General Format

Format 1]

COPY set-name-] | sset-nane-2 1 wee

J

Format 2

COPY ALL SETS.

General Rules

1. Format 1 causes the entries for the referenced sets in the schema

to be included in the subschema. No changes are allowed.

2. Format 2 causes all sets for which entries are included in the
schema to be included in the subschema.

3. A record description entry for the owner record of each set
included in a subschema, must also be included in that subschema.

2 - 35 July 1977

IDR3046 COBOL DATA MANIPULATION

SECTION 3

COBOL DATA MANIPULATION LANGUAGE PROCESSOR (CDML)

OVERVIEW

The purpose of the COBOL Data Manipulation Language (CDML) is to
Support access to the Data Manipulation Command Processor (DMLCP) using
COBOL as a host language. The CDML language consists of English-like
statements and is based on the April 71 report from the CODASYL DBTG.
These statements are translated by the CDML preprocessor into COBOL
Working Storage data-descriptions, COBOL call statements, and other
COBOL procedure statements.

Before a CDML program can be written, a COBOL SUBSCHEMA must be written
and compiled by the COBOL SUBSCHEMA compiler (FSUBS) described in
Section 2 of this manual. ‘The COBOL SUBSCHEMA contains the names and
data-descriptions of the areas, sets, items, records and

data-base-data-names that the CDML application program can reference.

HOW TO USE THE CDML PREPROCESSOR

Programming Tips

Once the subschema has been provided, the following programming tips
should be considered when writing application programs.

1. All COBOL program units which contain CDML commands must contain
a SUBSCHEMA statement.

Zz. Oniy one subschema of one schema can be invoked at any one time
in a DBMS application program.

3. The application program and subprograms which contain DML
commands must be programmed in one language, e.g., all COBOL or
all FORTRAN.

4. The COBOL DML application program must reference a COBOL
SUBSCHEMA.

5. The COBOL application program must avoid using the USER WORK AREA
register names which are inserted into Working Storage by the
COBOL SUBSCHEMA compiler (see page 3-99), and any names beginning
with the characters "DML".

6. ‘The procedure section of the COBOLapplication program may freely
intermix COBOL statements and CDML statements; however, CDML
Statements and COBOL statements may not be mixed on the same line
or on a continuation line.

3 - Jd July 1977

SECTION 3 IDR3046

7. Only one INVOKE statement should be executed during the duration
of a run-unit. The execution of more than one INVOKEhas
undefined results. The failure to execute an INVOKE statement
will cause any CDML statements to be ignored.

8. All CDML statements must be preceded by a '‘'#' to identify the
statement to the CDML preprocessor.

9. All CDML programs must terminate execution with an EXIT DBMS
statement.

CDML ORGANIZATION

Two Classes of CDML Statements

There are two general classes of statements in the CDML, declaration
Statements and executable commands.

The declaration statements allow the CDML program to declare the SCHEMA
and the SUBSCHEMA required for the application program. It also
inserts the definition of a part of COBOL which serves as the User Work
Area (UWA) for the application program. ‘The USER WORK AREA contains
the items and their PICTURE declared by the subschema and the DBMS
registers.

The CDML executable commands specify the individual DML processes
required by the CDML application program. Currently the following CDML
capabilities exist:

Run-Unit Oriented Commands

Run-Unit Oriented Commands are used by the run-unit to initiate and
terminate communication with the DBMS. They also allow the user to
clear error statuses and declare Privacy keys. ‘They include: INVOKE,
EXIT DBMS, ABORT DBMS, CLEAR ERROR and PRIVACY KEY.

Area Oriented Commands

Area Oriented Commands obtain and relinquish control of the DBMS area
files. They also allow the user to specify the mode in which these
files are to be used. ‘They include: OPEN and CLOSE.

Record Oriented Conmands

Record Oriented Commands are used to create, manipulate, remove and
obtain records from the database. These commands include: STORE,
DELETE, GET, MODIFY, FIND and FETCH.

IDR30846 COBCL DATA MANIPULATION

Set Oriented Commands

Set Oriented Commands manipulate set membership. They include:
INSERT, REMOVE and MODIFY.

Supporting Commands

Supporting Commands allow the user to manipulate currency statuses.
They include: SUPPRESS, MOVE, IF and CLEAR.

Concurrency Functions

Concurrency Functions allow a run-unit to access and update a database
along with concurrent run-units. They insure that the view of the
database is consistent, guarantee its integrity and provide for
rollback and recovery facilities. These commands include: START
TRANSACTION, END TRANSACTION and ABORT TRANSACTION.

CDML SYNTAX COMPONENTS AND NOTATION

This section describes the requirements for the COBOL Data Manipulation
Language (CDML) statements and syntax notation used in programming
COBOL Application Programs to run on Prime's DBMS system. The first
Subsection describes the syntax components which may appear in an CDML
statement. The next subsection describes the syntax notation which
will be used in defining the permissible syntax within the statements.

CDML Statement Format Rules

The CDML statements are in an English-like format but they have some of
the characteristics of a COBOL statement. ‘They must start in column 7
and endbefore column 73. A statement may be continued simply by
omitting the terminating period and putting a '#' character in column 7
of the next statement. There is no limit to the number of continuation
statements that may be used. Note that all CDML statements and
declarations must start with a "#" character in column 7 to be
recognized by the CDML preprocessor.

Character Set

The CDML statements are composed of tokens which are themselves
composed from the character sets shown in Table 3-1.

3 - 3 July 1977

SECTION 3 IDR3846

Terminating CDML Statements

CDML statements must be terminated by a period.

REV. @ 3 - 4

IDR3046 COBOL DATA MANIPULATION

Table 3-1. CDML STATEMENTS CHARACTER SET

CHARACTER GROUP MEMBERS

letters A BC OD E F GH iI

T U VW X Y @

DIGITS 123 45678 9 @

Special Characters blank (space)

~ (minus sign or dash)

, (comma)

(semicolon)=
e

- (period)

" (quotation mark)

Reserved for future use

= (equal sign)

> (greater than sign)

< (less than sign)

* (Asterisk)

$ (Dollar sign)

3 -~ 5 July 1977

SECTION 3 IDR3846

Delimiting Characters

The following CDML characters serve to delimit syntax components: 1)
space, 2) comma, 3) semicolon and 4) period. Consecutive spaces are
treated as a single space. The end of a line also serves as a
delimiting character so that a syntax component may not cross a line
boundary.

Generic Terms

The following is a list of generic terms for the CDML Language and the
rules for their function.

Schema—name

Used to identify that schema the run-unit is to access. It must
identify a valid schema compiled by the DDL.

Subschema-name

Used to identify the subschema which the run-unit is to access. It
must identify a COBOL subschema which has been compiled by CSUBS.

COBOL-label

Refers to a COBOL paragraph name or section name which can be accessed
by a @ TO.

Integer

Used in CDML statements to provide a literal integer value. The
integer syntax component obeys the normal COBOL rules for a

COMPUTATIONAL item.

Literal

Used in the CDML statements to refer to a literal value that is to be
passed for a PRIVACY KEY statement. ‘The literal component must refer
to a valid COBOL integer, decimal or display constant.

Identifier

Used in CDML statements to refer to a COBOL variable name.

REV. @ 3 - 6

IDR3046 COBOL DATA MANIPULATION

Data-base-data-name (dbdn)

Refers to a storage location which has been declared by the schema and
the subschema to hold a particular value such as an area name or data
base-key.

Data-base-identifier (dbid)

Refers to a storage location which has been declared by the schema and
the subschema to hold the value of an item of a record. ‘The dbid is a
valid COBOL identifier and is declared in the COBOL application program
in the User Work Area in Working Storage.

Area-name

Refers to a valid area name which has been defined by the schema. It
is formed by providing the identifier which has been defined in the
invoked subschema.

Record—name

Refers to the database record type which has been declared in the

schema. It is formed by providing the identifier which has been
defined in the invoked subschema.

Set-name

Refers to the database set type which has been declared in the schema.
It is formed by providing the identifier which has been defined in the
invoked subschema.

CDML Syntax Notation

This subsection defines the conventions used to describe syntactically
correct CDML statements.

A syntax skeleton consists of a sequence of syntax component names,
delimiters, and keywords, which may be grouped by special notational
symbols. The skeleton represents a source specification of input to
CDML in which the sequence of actual syntax components, delimiters, and

keywords corresponds to that in the skeleton. The special notational
symbols denote whether optional, alternative, or repeated sequences may
occur within the corresponding source specification.

3 - 7 July 1977

SECTION 3 IDR3246

The following conventions apply within a syntax skeleton:

1. All underlined upper-case words are required when the format is
used.

2. Upper-case words which are not underlined are optional words and
need not be used.

3. Lower-case words are generic terms which must be replaced by
appropriate names or values.

a A source specification is not required in this
b position but it may contain either a, b, orc.
c

a A source specification in this position must
{»} include exactly one of the components a, b, or c.

Cc

A source specification in this position may
a consist of a list of one or more of a, b, orc.
b If more than one is specified, they must be
c separated by commas.

ees The immediately preceding construct may be
repeated an arbitrary number of times.

REV. @ 3 - 8

IDR3846 COBOL DATA MANIPULATION

CDML PREPROCESSOR COMMANDS

This subsection describes in detail the CDML declarations and commands.
The description of each clause contains the following headings:

Function

A brief narrative description of the function of the facility.

Generali Format

The arrangement of the syntax elements which make up the clause.

Syntax Rules

These serve to amplify or restrict the usage of the elements within the
general format.

General Rules

1. A description of the semantic rules for using the command and a
description of program capability and error conditions which
relate to the statement.

Examples and Discussion

Specific examples of the use of the statement.

3 - 9 July 1977

SECTION 3 IDR3€46

COMPLETE SYNTAX SKELETON

ABORT TRANSACTION identifier-l .

CLEAR ERROR ,

CLOSE

Format]

CLOSE ALL AREAS ,

Format 2

CLOSE AREA[S] area-name-] [,area-name-2]... .

MANDATORY
DELETE SELECTIVE +

ALL
re

END TRANSACTION identifier-l ,

EXIT DBMS .

REV. € 3 - 18

IDR3646 COBOL DATA MANIPULATION

FIND
ree} rse.

Record Selection Expressions

Format]

USING identifier-l.

Format 2

RECORD record—name-—2

WNER —name~-
PEER| IN set-name- | CURRENT or SEZ set-name-4

AREA area-name-] °
RUN-UNIT

Format 3

; NEXT

PRIOR

ae

AREA area-name-2{ °*

treager-1

SET set-nam
RECORD [record name-3] OF SET 5

\ identifier-2]

Format 4

{NEXT DUPLICATE WITHIN] RECORD record-name-4 ,

Format 5

record-name-5 VIA [CURRENT OF] SET set-name-7 [USING dbid-3 [,dbid4]...].

Format 6

NEXT DUPLICATE WITHIN SET set-name-8 USING dbid-5 [,dbid-6]...

July 1977

SECTION 3 IDR3046

GET [dbid—] ’ dbid~2...] e

Format]

cobol-procedure-name-1
IF set-name~] SET [NOT] EMPTY exse cobol—procedure-name] .

NEXT

Format 2

MEMBER set—name-2 cobol-procedure-name~3

JE RECORD [NOT] (Guner (-” any set NEXT

[ELSE cobol-procedure-name-4].

SETS set-name-] [,Set-name2]...
INSERT INTO {== ’ .
at INTO ALL SETS

INVOKE DBMS ,

REV. 8 3 - 12

IDR3846 COBOL DATA MANIPULATION

MODIFY [dbid-1 , dbid-2...].

MOVE

Format 1]

RUN-UNIT

RECORD record-name . wee
MOVE CURRENCY STATUS FOR SERSrea-name TO identifier-l.

SET set-—name

Format 2

| ; RUN-UNIT

RECORD record-name

MOVE RANE FOR AREA area—name TO identifier~3 ,
SET set—name

Identifier-2

ON ERROR

Format 1]

;ON ALL ERRORS GO TO cobol~procedure-name .

Format 2

;ON ERROR integer-1 [,integer-2]... GO TO cobol-procedure-name]... .

[ON ERROR integer-3[,integer-4] ... GO TO cobol-procedure-name]... .

[ON OTHER ERRORS GO TO cobol-procedure-name] .

3 - 13 July 1977

SECTION 3 IDR3€46

OPEN

Format 1]

EXCLUSIVE RETRIEVAL

OPEN ALL AREAS USAGE-MODE IS |paorecrED UPDATE

Format _2

OPEN AREA(S] area-name-1 [,area—name-2]...

EXCLUSIVE RETRIEVAL

USAGE MODE IS Feorecten| UPDATE °

PRIVACY KEY

Format 1]

EXCLUSIVE

|eeorocte| RETRIEVAL
PRIVACY KEY [FOR ~~]OF
oo EXCLUSIVE UPDATE

PROTECTED

AREAS area-name-] [,area-name-2]...{ IS literal-l
ALL AREAS identifier-1 *

rc >
REST

Format 2 STORE

GeT
MODIFY

; INSERT*PRIVACY KEY [FOR 4 ensue > | OF

 DELETE ALL
FIND

7.

RECORDS record-name-] [,record-name-2]...{ IS literal-2
ALL RECORDS identifier-2

REV. @ 3 - 14

IDR3046 COBOL DATA MANIPULATION

identifier-4~~

Format 3

REST

STORE . .
PRIVACY KeY [FOR car JOF DATA-ITEMS dbid-1 [,dbid-2]...

MODIFY

IS literal-3 .
= })identifier-3

Format 4

REST
INSERT

PRIVACY KEY [FOR REMOVE] OF SETS set-name-1 [,set-name-2]...

— ALL SETS

(iit 1-4 |1s }2 eral- | .

REMOVE FROM
SETS set-name-1 [,set-name-2]

ALLALLSETS

START TRANSACTION identifier ate .

STORE record-name .

3 - 15 July 1977

SECTION 23 IDR36 46

SUBSCHEMA subschema-name of SCHEMA schema-name .

SUPPRESS

ALL
RECORD

[CLEAR] |SUPPRESS AREA

SET

eetname-1 [set-name-2]...

REV. @ 3 - 16

|

IDR3@46 COBOL DATA MANIPULATION

DML STATEMENTS

REKKKEEKEEKKEKKEKKERKKK

* ABORT TRANSACTION *
REKEKKEEKKKKKKKKEKRKKSE

Function

Causes all update actions since the last START OF TRANSACTION command
to be negated (i.e., the database is rolled back) ; all locks to be
released and all currency indicators to be reset as they were at the
last START TRANSACTION command.

General Format

ABORT TRANSACTION identifier-1 ,

Syntax Rules

1. Identifier~1 must contain the value assigned by the START OF
TRANSACTION command.

2. Identifier-1 must be a level 77 name with USACE COMPUTATIONAL.

General Rules

1. If before-imaging is turned off for the INVOKED schema (using
DBACP) then the ABORT TRANSACTION has no effect.

2. If identifier-1 is invalid or no transaction is currently active,
error status condition 2535 results and CONTYP will contain more

detailed error information.

Examples and Discussion

See START TRANSACTION.

3 - 17 July 1977

SECTION 3 IDR3@46

KEEKKKEKKEKEKEKE

* CLEAR ERROR *
KEKKKKKERKKKKK

Function

CLEAR ERROR clears DBMS error conditions and the associated registers.

General Format

CLEAR ERROR.

Syntax Rules

None

General Rules

1. This command clears all DBMS registers in the User Work Area,

including ERSTAT, CONTYP, ERAREA, ERDEC, ERSET, ERITEM, ERCASE.

2. If the error is a non-fatal error, it clears an internal flag

allowing the DBMS to continue processing.

3. It must be called after every DBMS error condition.

4. No Error Status Codes can result from CLEAR ERROR.

Examples and Discussion

See ON ERROR clause.

REV. © 3 - 18

IDR3846 COBCL DATA MANIPULATION

KEKKKEKKEKE

* CLOSE *
KeRKEEREK

Function

To relinquish control over the specified areas and make them available
to other run-units.

General Format

Format 1]

CLOSE ALL AREAS.

Format 2

CLOSE AREA[S] area-name~] [,area-name-2]... .

Syntax Rules

1. All area names specified must be included in the invoked schema.

General Rules

1. Note that CLOSE (unlike OPEN) need not deal with all opened

areas.

2. After execution of a CLOSE statement for a given area, any
attempt to access that AREA will result in Error Status Condition
nn@]1 (where nn indicates the particular DML statement attempted).
A subsequent CLOSE statement does not return an Error Status- the
command is treated as a no-op.

3. In format 1, the CLOSE statement applies to all areas which are
in an open status for the run-unit. These areas are then subject
to General Rule 2 above.

4, The run-unit's currency indicators may identify those record
occurrences located in areas which are no longer in an open
status for that run-unit. These currency indicators become null
after the CLOSE statement is executed.

5. If all area-names specified are not included in the invoked
subschema, Error Status Condition 9146 results; otherwise ERSTAT
is zero, indicating successful execution of the CLOSE statement.

6. A CLOSE statement cannot be executed during an open transaction,
otherwise Error Status Condition @135 will result with CONTYP set
to 15.

3 - 19 July 1977

SECTION 3 IDR3046

Examples and Discussion for the CLOSE Statement

Example 1]

CLOSE AREAS MY-AREA, YOUR-AREA.

This statement closes two areas: 1) MY-AREA and 2) YOUR-AREA. All
records in these areas are no longer available for processing and all
of the currency statuses that refer to records in those areas are
cleared.

REV. @ 3 - 2@

IDR3@46 COBOL DATA MANIPULATION

KREKKEKEERKER:

* DELETE *
KAKKKKKREK

Function

The DELETE statement performs the following functions:

1. Makes the object record occurrence unavailable for further
processing by the imperative-statements of the DML.

2. Removes the object record from all set occurrences in which it is

a member.

3. Deletes all record occurrences which are mandatory members of set
occurrences owned by the object record.

4, Removes or deletes optionally all record occurrences which are
optional members of set occurrences owned by the object record.

5. Optionally prevents deletion of the object record if the database
contains any non-empty set occurrences of which the object record

is the owner.

General Format

| MANDATORY|
DELETE SELECTIVE -

ALL
~~

syntax Rules

none

General Rules

1. The immediate object record occurrence of the DELETE statement is

the current record of the run-unit.

2. The object record is removed from all set occurrences in which it
is a member. It is then deleted; that is, made unavailable for

further processing by any DML statement.

3 - 2l July 1977

SECTION 3 IDR3646

Note that there is a distinction made between a removed record
occurrence and a deleted record occurrence. A DELETE statement
is inclusive of the function of a REMOVE statement, and is
described in the previous paragraph of this general rule. A
REMOVE statement cancels the existing membership of a record
occurrence in specific set occurrences. The removed record is
then not accessible through those set occurrences but continues
to be accessible through any other sets in which it participates
aS a member. It may also be accessible by virtue of its having
been defined with a LOCATION MODE IS CALC clause. It is always
accessible by means of a complete scan of the area in which it
participates, or through its database~key (if that is known).

The unqualified form of the DELETE statement deletes the object
record only if it has no member records. If the object record is
the owner of a non-empty set occurrence, the DELETE statement is

not successfully executed and Error Status Condition 6230
results.

The DELETE MANDATORY form of the statement deletes the object
record and all of its mandatory members. It removes but does not

delete its optional members.

If any deleted mandatory member is the owner of a set occurrence,
then the DELETE statement is executed on such records as if it
were the object record of a DELETE MANDATORY statement. Thus,
all mandatory members of such sets are also deleted, which in

turn causes this process to continue down the hierarchy.

The DELETE SELECTIVE form of the statement has the same results
as the DELETE MANDATORY statement with the exception that:

@ Optional members are deleted if they do not currently
participate as members in other set occurrences.

e All deleted records which are themselves the owners of any
set occurrences are treated as if they were the object of a

DELETE SELECTIVE statement.

The DELETE ALL form of the statement deletes the object record

together with all of its member records, regardless of whether
they are mandatory or optional. As with the DELETE MANDATORY
form of the statement, the delete process continues down the

hierarchy with the difference that all deleted records, which are
themselves the owners of any set occurrences, are treated as if

they were the object record of a DELETE ALL statement.

The current record of the run-unit becomes null. No other
currency status information is altered. Thus, the object record
and all other records deleted or removed remain as current of
area-name, record-name, and of all set-names in which they were

current prior to the execution of the DELETE statement.

8.

16.

IDR3646 COBOL DATA MANIPULATION

If the run-unit has not satisfied the privacy locks for the
object record itself, or, for any other record occurrence which
would be deleted, removed, or modified as a result of the
execution of the DELETE statement, Error Status Condition @2@4F

will result and the run-unit will be aborted by DBMS.

If the areas in which the records are being deleted are opened
for concurrent update and this command causes a concurrent update
conflict or no update transaction is currently active, then error
8235 will result with concurrent error status found in CONTYP.

In addition to the conditions described in General Rule 8, any of
the following conditions will result in an error if they occur
during the execution of a DELETE statement:

@® If the current record of run-unit is not known, Error Status
Condition 8213 results.

e If the unqualified form of the DELETE statement is attempted
against the owner record of a non-empty set occurrence, Error
Status Condition @23@ results.

@ If any of the record occurrences which would be deleted,
removed, or modified as a result of the execution of the
DELETE statement is in an area which is not open, Error
Status Condition 92981 results.

e If the object record, or any record that would be deleted or
removed as a result of executing the DELETE statement, is
located within an area that is open for RETRIEVAL, Error

Status Condition 6289 results.

e If any record occurrence needed by the DBMS for informational
purposes (such as following a search path) is not available
because it is off-line or under exclusive control of another
run-unit, Error Status Condition 9218 results.

@e The subschema invoked must name:

a. All of the records which would be deleted, removed or
modified as a result of executing the DELETE statement.

b. All of the sets in which any record to be deleted is an
owner or a mandatory member,

c. All of the sets from which any record is to be removed.

d. All of the owner record types of the sets from which
records are being removed. Otherwise, Error Status
Condition §288 results.

3 - 23 July 1977

SECTION 3 IDR3046

ll.

REV. @

When an error occurs, the database remains in the state existing
prior to the attempted execution of the DELETE statement and the
appropriate Error Status Condition code is made available in
special register ERSTAT. Otherwise, ERSTAT is set to zero,
indicating successful execution of the DELETE statement.

IDR3646 COBOL DATA MANIPULATION

Error Status Codes For DELETE Statement

Condition Content of
Error Status

Area not open 8201

Referenced record-name or set-name not in invoked sub-schema 0288

Incorrect usage mode for area 8289

No current record of run-unit 8213

Implicitly referenced area not available 8218

Concurrent update conflict #235

Unqualified DELETE command attempted on non-empty set 8236

Fatal - privacy breach attempted ~82@4 (@224F)

3 - 25 July 1977

SECTION 3 IDR3046

Examples and Discussion for the DELETE Statement

Example 1

DELETE ALL.

This statement will delete the record that is the current record of
run-unit and all of its members and remove it from all sets in which it
is a member. It will then repeat this process moving down the
hierarchy until all of the records which participate in the hierarchy
which has the current record of run-unit as its root node have been

deleted.

Example 2

DELETE.

This statement will delete the current record at run-unit only if it
owns no sets or if the sets which it does own currently have no
members. It also removes the record from all sets in which it
participates as a member.

REV. @ 3 - 26

IDR3846 COBOL DATA MANIPULATION

KKKKKKKKEKREREREREEE

* END TRANSACTION *
KREKEKREKEEKEREEKEKEE

Function

END ‘TRANSACTION defines the end of a recoverable program sequence and
causes a record of the successful termination to be written to the DBMS
system LOG file.

The DBMS guarantees that all updates are secure to disk.

The end of an update transaction allows modified data to be accessed by
other transactions by releasing all locks.

General Format

END TRANSACTION identifier-1.

Syntax Rules

1. Identifier-1 is a level 77 COBOL identifier with USAGE
COMPUTATIONAL which contains the value assigned by the most
recent START TRANSACTION command to the current transaction.

General Rules

1. If Logging is turned off, then the END TRANSACTION has no effect.

2. If Identifier-]1 does not match the identifier on the most recent
START TRANSACTION, or no transaction is currently active, Error
Status Condition 2435 results and CONTYP contains more detailed
information.

Examples and Discussion

(See START TRANSACTION)

3 - 27 July 1977

SECTION 3 IDR3046

HEEKKEKEKKEEE

* EXIT DBMS *
KERKKKEKEEEKK

Function

To terminate communication with the DBMS. To close all opened files
and clear all status registers.

General Format

EXIT DBMS.

Syntax Rules

None

General Rules

1. An EXIT DBMS must be executed before termination of a run-unit.

2. Once an EXIT DBMS has been executed, the only way communication
to the DBMS can be reinitialized is through an INVOKE.

3. An EXIT DBMS cannot occur inside an opened DBMS transaction,
otherwise, Error Status Condition 1835 results with CONTYP set to

15.

Examples and Discussion

NONE

REV. @ 3 - 28

IDR3046 COBOL DATA MANIPULATION

REKKKKKKE

* FETCH *
KEKKKKKKK

Function

The FETCH statement is a combined FIND and GET statement which both

establishes currency for the object record and makes available the

contents of that record in the User Work Area.

General Format

FETCH rse.

Syntax Rule

See Record Selection Expressions.

General Rules

1. Execution of a FETCH statement causes the affected record to

become available to the program; that record becomes the current

record of the run-unit. A FETCH command is logically identical

to execution of a FIND followed by a GET of all data items in

that record.

2. Refer to the discussion of the FIND statement.

3. Refer to the discussion of the GET statement.

3 - 29 July 1977

SECTION 3 IDR3646

Error Status Codes for the FETCH Statement

Content of
Condition ERROR~STATUS

Area not open 2201

Database-key inconsistent with area-name 2262

Data items invalid or inconsistent 2264

Current record of set, area, record-name not known 2206

End of set or area or DUPs 2267

No current record of run-unit 2213

Implicitly referenced area not available 2218

Conversion of value of data item not possible 2219

Record not currently a member of named set 2222

Illegal area-name 2223

No record satisfies the FIND specified 2226

Concurrent access error 2235

Attempted to find owner of a singular set 2233

Record type not a member of named set 2248

Record type not owner of named set 2241

Record type not included in named area 2242

Arguments of Location Mode Clause not included in subschema 2243

Arguments of Set Occurrence Selection Clause not included

in subschema 2244

Location mode of record not specified as CALC 2245

Specified data item, record, set or area not in subschema 2246

Fatal - privacy breach attempted ~2204 (2204F)

REV. @ 3 - 38

IDR3846 COBOL DATA MANIPULATION

KkAKKEKK

* FIND *
KREKKEEKEK

Function

The FIND statement specifies a record occurrence as:

1. The current record of the run-unit.

2. The current record of the area in which it is stored.

3. The current record of its record-name.

4. The current record of set for all set-names in which it currently
participates as owner or member.

A prior SUPPRESS may prevent the establishment of the object record
occurrence as:

1. The current record of the area in which it is stored.

2. The current record of its record-name.

3. The current record of set for all, or specified sets in which it
currently participates as an owner or member.

General Format

FIND rse.

NOTE:

Refer to rse for a discussion of the record-selection-expression.

Syntax Rules

See Record Selection Expression.

General Rules

1. Execution of a FIND statement causes the record referenced by the
record-selection-expression to become the current record of the
run-unit.

3 - 31 July 1977

SECTION 3 IDR3046

Execution of a FIND statement does not make the selected record
available to the program - it merely identifies the record for
use in certain subsequent statements. These include: GET,

MODIFY, INSERT, REMOVE and DELETE.

If the suppression of updating currency indicators has not been
set, the object record also becomes the current record of its
area-name, the current record of its record-name, and the current
record of all set-names in which it is defined as an owner or in
which it currently participates as a member.

The effect of a SUPPRESS command or a series of SUPPRESS commands
is to specify the area, record, set, and set-name currency
indicators which are to retain their existing status.

If any of the following conditions are encountered, the FIND
statement is not successfully executed, the database remains in
the state existing prior to the attempted execution, and the
appropriate Error Status Condition code is made available in
special register ERSTAT. Otherwise, ERSTAT is set to zero,
indicating successful execution of the FIND statement.

@e If the sought record is in an area which has not been opened,

Error Status Condition 9@3@1 results.

e If any record occurrence along the search path of the FIND
statement is in areas which are off-line or under the
exclusive control of a concurrent run-unit, Error Status
Condition 9318 results.

e If any current record of the type specified is not known,
Error Status Condition #386 results.

e If a database-key is supplied or developed which is
incompatible with the areas specified, Error Status Condition

9302 results.

e If an end-of-set, end-of-area, or end-of-Dups condition is
encountered, Error Status Condition 9387 results.

e If no record in the area satisfies the FIND specified, Error

Status Condition @326 results.

e If a specific record type is sought in a set occurrence or is
used in a FIND to define the current set occurrence of a set,
and the record type is not defined as a member of the set in
the schema, Error Status Condition 6348 results.

IDR3@46 COBOL DATA MANIPULATION

If ARFA-ID is initialized with an area-name not included in
the WITHIN clause in the Schema DDL, Error Status Condition
8323 resuits.

All data items, areas, records, and sets specified in a FIND
statement must be defined in the invoked subschema;

otherwise, Error Status Condition @346 results.

3 - 33 July 1977

SECTION 3 IDR3846

Error Status Codes For the FIND Statement

Content of
Condition ERROR-STATUS

Area not open 8361

Database-key inconsistent with area-name 8382

Data items invalid or inconsistent G384

Current record of set, area, record-name not known 8386

End of set or area or DUPS 0387

Implicitly referenced area not available 0318

Record not currently a member of named set 9322

Illegal area-name 9323

No record satisfies the FIND specified 8326

Attempted to find owner of a Singular set 2333

Concurrent Access Error 8335

Record type not a member of named set 9348

Record type not owner of named set 0341

Record type not included in named area 9342

Arguments of Location Mode Clause not included in subschema $343

Arguments of Set Occurrence Selection Clause not included
in subschema 0344

Location mode of record not specified as CALC 9345

Specified data item, record, set, or area not in subschema 0346

Fatal - privacy breach attempted -8304 (304F)

REV. @ 3 - 34

IDR3646 COBOL DATA MANIPULATION

Exampies and Discussion of FIND Statement

See the Examples and Discussion under Record Selection Expression.

3. - 35 July 1977

SECTION 3 IDR3046

KRaKKKKK

* GET *
RKKEKKK

Function

Transfers the contents of the specified data items of the object record

occurrence into the User Work Area for the invoked subschema.

General Format

GET [dbid-1 , dbid-2...].

Syntax Rules

l. Dbid-]1 , dbid-2 ..., must be items defined in the subschema as
being in the record type of the current record of the run-unit.

General Rules

1.

2.

The object of the GET statement is the current record of the

run-unit.

The record-name of the object record serves as an implicit major

qualifier for the data-base-identifiers. If they are not defined
as part of the record type, Error Status Condition 8564 results.

In cases where the format of a data item, as defined in the

subschema invoked by the run-unit, differs from the definition of

that data item in the schema:

@ ‘The standard DBMS procedure will be in accordance with the
rules specified in the PICTURE clause of the Schema DDL and
the PICTURE specification of the Subschema DDL for COBOL.

Missing data items in the object record occurrence in the

database will result in null-values being placed, for those data

items, in the User Work Area. The value of a null item is as

follows:

e For numeric items, the item is set to zero.

e For Alphanumeric DISPLAY items , the item is set to blanks.

A GET statement must be executed before any reference can be made
to the data of the object record in the User Work Area.

S.

1€.

ll.

IDR3046 COBOL DATA MANIPULATION

If only "GET" is written, then all data items defined for the
object record in the subschema invoked by the run-unit are moved
to the User Work Area. If dbid‘'s are specified, only the
specified data items are moved to the User Work Area.

If the current record of the run-unit is not known, Error Status
Condition 9513 results.

If the run-unit has not satisfied the privacy locks on all data
items and records needed to execute the GET, Error Status
Condition @5@4F will result and the run-unit will be aborted by
DEMS.

If the size of the dbid in the User Work Area is greater than the
Size of the item in the object record occurrence, the excess
elements of the item in the User Work Area will be set to the
appropriate null-value (see general rule 4).

If the value of any data item in the database is such that it
cannot be converted to the specified subschema format for that
data item, Error Status Condition 6519 results. (Conversion

rules are included under the description of TYPE clause in the
DDL for the SCHEMA and PICTURE and USAGE specification in the
subschema DDL for COBOL.)

If any of the above Error Status Conditions is encountered, then
the GET statement is not successfully executed. The record in
the User Work Area is in an undefined state and the appropriate
Error Status Condition code is made available in special register
ERSTAT. Otherwise, ERSTAT is set to zero, indicating successful
completion of the GET statement. :

3 - 37 July 1977

SECTION 3 IDR3846

Error Status Codes For The GET Statement

Content of
Condition ERROR-STATUS

Data item invalid or inconsistent 9584

No current record of run-unit 0513

Conversion of value of data item not possible 9519

Fatal - privacy breach attempted -6504 (@584F)

Concurrent access error 8535

Specified dbid not included in subschema 9546

REV. @ 3 - 38

IDR3@46 COBOL DATA MANIPULATION

Examples and Discussion of the GET Statement

GET LNAME, FNAME, MNAME, DOB.

This command moves the contents of LNAME, FNAME, MNAME, DOB from the
record to the User Work Area. It assumes that the current record of
run-unit has these items defined within it and that the subschema has
declared them. If necessary, conversion is performed on these items to
change them from the schema type to the subschema type. Only the named
items will be obtained from the record. The rest of the variables in
the User Work Area are left unchanged,except ERSTAT,which is set to
zero.

GET.

This command gets all the data items from the schema for the record
type which is current of run-unit and places them in the User Work
Area.

3 - 39 July 1977

SECTION 3 IDR3€46

KeEKKE
* IF *
RKKKEK

Function

The IF statement causes a condition to be evaluated. ‘The subsequent

action of the run-unit depends on whether the value of the condition is

true or false.

General Format

Format 1

cobol-procedure-name-1
IF set-name-1 SET [NOT] EMPTY exse cobol-procesure-nane-2|

NEXT

Format 2

MEMBER set~name-2 cobol-procedure-name-3
IF RECORD [NOT] (GaneR

p

OF ANY set NEXT

[ELSE cobol—procedure-name-4] .

Syntax Rules

none

General Rules

1. Set-name-1, set-name-2 must be defined in the invoked subschema;

otherwise, Error Status Condition 1846 results.

2. Format 1 of the IF statement is designed to determine whether the

object set occurrence has any members. ‘The object set occurrence

is determined by the current record of set-name-l1. If the NOT

phrase is omitted and the set occurrence does not have any member

records, the condition is evaluated as true. If the NOT phrase

is omitted and the set occurrence contains member records, the

condition is evaluated as false. If the NOT phrase is stated,

the condition is reversed.

REV. @ 3 - 46

3.

IDR3@46 COBOL DATA MANIPULATION

Format 2 of the IF statement is designed to determine whether the
current record of the run-unit currently participates as an owner
or member, depending on the option specified, in set-name-2 or in
any set. If the NOT phrase is omitted and the record is an owner
or member as specified, the condition is evaluated as true. If
the NOT phrase is omitted and the record is not an owner or
member as specified, the condition is evaluated as false. If the
NOT phrase is stated, the condition is reversed. If neither the
OWNER nor MEMBER phrase is specified, the test is of the
association aS an owner or member of the object record with the
specified set.

If the current record of the run-unit is not known, Error Status
Condition 1813 results.

If the current record of the set-name specified is not known or
the currency indicator is null, then the object set occurrence
cannot be determined and Error Status Condition 18@6 results.

If any of the above Error Status Conditions is encountered, then
the IF statement is not successfully executed. The condition
stated in the IF statement will be left umevaluated and the
appropriate Error Status Condition code is made available in
special register ERSTAT.

3 - 41 July 1977

SECTION 3 IDR3046

Error Status Codes for the IF Statement

Content of

Condition ERSTAT

Current of set not known 1886

No current record of run-unit 1813

1846Specified set not included in subschema

REV. @ 3 = 42

IDR3046 COBOL DATA MANIPULATION

Examples and Discussion of the IF Statement

Example]

IF DEPT-SET SET EMPTY NEXT ELSE LABEI+1.

LABEI-1.
PERFORM NEXT-PARAGRAPH.

The IF command allows the application programmer to test for a number
of conditions within the DBMS. The test in example one checks to see
if there are any members of the "“DEPT-SET". If the set is empty,
control passes to the next statement; otherwise, control passes to the
paragraph labeled LABEI-1.

Example 2

IF RECORD NOT MEMBER OF DEPT-SET LABEI-2.

In this example, the current record of run-unit is tested to see if it
is a member of the DEPT-SET. If it is, control is passed to the next
statement; otherwise, control is passed to the paragraph labeled

[ABEI-2.

3 - 43 July 1977

SECTION 3 IDR3846

REKKKKAKKKE

* INSERT *
KERKKAKKIK

Function

Inserts and makes the object record a member of occurrences of the
specified set-names, provided that it is defined as an optional
automatic, optional manual, or mandatory manual member of those sets.

General Format

SETS set-name-] [,Set-name2]...[(,INSERT INTO ALLSETS

syntax Rules

l. The sets, set-name-l1, and set-name-2, must be defined in the
invoked subschema.

The record that is current record of run-unit must be defined as
an optional or manditory manual member of the specified sets. If
the ALL option is used, the record must be of at least one of the
sets in the invoked subschema.

General Rules

1.

2.

REV.

The object record occurrence of the INSERT statement is the
current record of the run-unit.

If set-names are specified, then the object record must have been
defined in the schema as an optional automatic, optional manual,
Or mandatory manual member of each set named. It will be
inserted into the object set occurrence of each set-name
specified in accordance with the set-ordering criteria defined in
the schema. For each set named, the object set occurrence is
determined by the current record of the named set.

0 3 - 44

IDR3246 CCBOL DATA MANIPULATION

@e If the current record of any set-name specified is not known
or its currency indicator is null, Error Status Condition
8706 resuits.

The ALL SETS option inserts the object record into’ the
appropriate occurrence of each set included in_ the invoked
subschema, where it is defined as an optional automatic, optional
manual, or mandatory manual member and in which it is not
currently amember. The specific occurrence of each set will be
determined by the current record of set-name for each of the
set-names involved. The object-record will be inserted into each
set occurrence in accordance with the set-ordering criteria

specified in the schema.

@e If the current record of any set-name implicitly specified by
ALL SETS is not known or its currency indicator is null,
Error Status Condition #786 results.

As specified in the April 1971 DBTG Report, INSERT does not
employ the set occurrence selection clauses defined in the schema
which would otherwise have been aplicable for identifying the
current occurrences of each set.

For each set-name into which the object record is inserted, it
becomes the current record of set-name if such a currency update
is not in a 'SUPPRESS' state (see the SUPPRESS command) .

If the area in which the inserted record is stored is opened for
concurrent update and there is a concurrent update conflict,
Error Status Condition 735 results with CONTYP set to the
concurrent update conflict type.

If the run-unit has not satisfied the privacy locks for all
records, sets, areas, and data items needed to execute the INSERT
statement, Error Status Condition 8@7@4F will result and the
run-unit will be aborted by DBMS.

In addition to the conditions described, any of the following
conditions will result in an error if they occur during the
execution of an INSERT statement:

e If all set-names specified are not included in the subschema,
Error Status Condition 9746 results.

e If the current record of the run-unit is not known, Error

Status Condition 9713 results.

@ If the object record is not defined as an optional automatic,
optional manual, or mandatory manualmember of.all---of --the
specified set-names, Error Status Condition 8714 results.

Ww
W ' 45 July 1977

SECTION 3 IDR3046

If the object record, when inserted, would violate a
DUPLICATES NOT ALLOWED clause for any record or set involved,
Error Status Condition #705 results.

If the current record of any set-name specified is not known
or itS currency indicator is null, Error Status Condition

8766 results.

If the object record is already a member of any occurrence of
a set explicitly named in the INSERT statement, or if it is
already a member of an occurrence of any set implicitly
specified by the ALL SETS option, Error Status Condition 9716
results. This is true whether the object record is a member
in the object set occurrence or in any other occurrence of
the same set.

If the object record or any record occurrence affected by the
INSERT statement is located in an area which is open for

RETRIEVAL, Error Status Condition 8789 results.

If any record occurrence needed to execute the operation is
located in areas that are not available, Error Status
Condition 8718 results. An area is not available if it is
off-line or under the exclusive control of a concurrent
run-unit.

9. When an error occurs, the database remains in the state existing

prior to the attempted execution of the INSERT statement and the
appropriate Error Status Condition code is made available in
special register ERSTAT.

REV. @

IDR3046

Error Status Codes for the INSERT Statement

COBOL DATA MANIPULATION

Content of

Condition ERROR-STATUS

Violation of DUPLICATES NOT ALLOWED clause 8785

Current record of set-name not known 0786

Incorrect usage mode for area 8789

No current record of run-unit 8713

Object record not defined as an optional member
or mandatory manual member of a named set @714

Record already a member of named set 9716

Implicitly referenced area not available 9718

Concurrent update conflict 8735

Specified set-name not in subschema 8746

Fatal-Privacy Breach Attempted -8704 (G704F)

July 1977

SECTION 3 IDR3846

Examples and Discussion for the INSERT Statement

INSERT INTO ALL SETS.

The current record of run-unit is inserted into all sets of which it is
not already a member. In addition, if the sets have search keys
defined, the search key is inserted into its list. The insertion into

the set is based on the ordering criteria given in the schema.

REV. @ 3 - 48

IDR3046 COBOL DATA MANIPULATION

KEKKKKKEKE

* INVOKE *
KEKEKEKEKSE

Function

INVOKE is’ used to indicate that the COBOL program is ready to use the
DBMS services and to establish the program as a DBMS user.

It is also used to invoke the use of the subschema specified in the
subschema declaration.

General Format

INVOKE DBMS.

Syntax Rules

None

General Rules

1. The INVOKE statement must be executed before any other DML
statement. Before it is executed, all other DML statements
executed by the COBOL program will be ignored by DBMS.

2. The INVOKE statement causes a Sequence to establish the COROL
program aS a run-unit under Prime DBMS.

3. If the schema or the subschema which the run—-unit wishes to use

is not available to the DBMS, a fatal error occurs and the
run-unit will be aborted.

3 - 49 July 1977

SECTION 3 IDR3846

Error Status Codes for the INVOKE Statement

Content of

Condition ERSTAT

Invoke has already been executed 1483

Fatal - invoked subschema has been deleted from DBMS -1461 (1481F)

Fatal - invoked schema has been deleted from DBMS -1491 (1402F)

Examples and Discussion

None.

REV. @ 3 - 58

IDR3846 COBOL DATA MANIPULATION

REKKKKKEKK

* MODIFY *
HERKKKKRKKE

Function

The MODIFY statement replaces the values of all, or of specific data items of the
object record occurrence in the database, with values from the User Work Area.

General Format

MODIFY [dbid-} , dbid-2...].

Syntax Rules

1. dbid-1, dbid-2..., must be defined as items of the record which is a
current record of run-unit in the invoked subschema.

General Rules

]. The object record occurrence of the MODIFY is the current record of the

run-unit. If the current record of the run-unit is not known, the MODIFY
statement is not executed and Error Status Condition 9813 results.

2. ‘The record—name of the object record serves as an implicit major qualifier
for the data-base-identifiers. They must be defined as part of the record
type, otherwise Error Status Condition 9894 results.

3. If data-base-identifiers are not specified, all data items in the object
record which are specified in the subschema named in the INVOKE clause of
the program are modified with (i.e., replaced by) values from the User Work
Area. Any data item in the object record occurrence in the database which
is not specified in the invoked subschema remains unchanged.

4. If data-base-identifiers are specified, only the data items specified are
modified with values from the User Work Area. All other data items in the
object record occurrence in the database remain unchanged.

5. In cases where the definition of a data item in the subschema invoked by
the run-unit differs from the definition of that data item in the schema.
Conversions performed by DBMS will be in accordance with the rules
specified in the TYPE clause of the Schema DDL and the TYPE specification
of the subschema DDL for COBOL.

3 - 5] July 1977

SECTION 3 IDR3046

1@.

ll.

12.

13.

REV. 8

If any of the modified data items is defined as a sort-control item in th
object record for any set occurrence in which the object is currently a
member, then its modification causes the intra-set occurrence position of
the object record to be examined. If necessary, the object record is
removed and re-inserted in the set occurrence to maintain the set order
specified in the schema. The current occurrence of the set-name involved
remains as the current occurrence.

If the current of run-unit is the current of the set-name involved, it
remains as the current of set-name. If it is not, it becomes the current
of that set-name if such a currency update is not in a 'SUPPRESS' state
(see the SUPPRESS command). The database-key of the object record remains
unchanged.

If any of the modified data items are defined with a SEARCH KEY clause in
any set in which the object record is currently a member, then the
execution of the MODIFY statement causes DBMS to adjust the indices i
maintains for those data items. The database-key of the object recor
remains unchanged.

If any of the modified data items is defined as a CALC key in the LOCATION
MODE clause for the object record, then the execution of the MODIFY
statement causes the DBMS to make the necessary adjustments which will
enable the record to be found on the basis of the new values for the CALC
keys. The data item (if any) specified as AREA-ID must also be initialized
with an area~name specified or implied for the record type; otherwisad
Error Status Condition 9823 results.

If the insertion of the object record under any of the conditions described
in general rules 6, 7, or 8 would violate a DUPLICATES NOT ALLOWED clause
(defined for any of the sets or records involved), then the MODIFY
statement is not executed and Error Status Condition 9885 results.

All data items involved must be initialized in the User Work Area with the
required values prior to execution of the MODIFY statement.

If the run-unit has not satisfied the privacy locks for all records, sets,
areas, and data items needed to execute the MODIFY, Error Status Condition
O804F will result and the run-unit will be aborted by DBMS.

If the object record or any record occurrence affected by the execution of
the MODIFY statement is located in an area which is open for RETRIEVAL,
Error Status Condition 9889 results.

If the area in which the modified record is opened for concurrent update
and there is a concurrent update conflict Error Status Condition @835,
results and CONTYP is set to the concurrent update conflict type.

14.

15.

16.

IDR3046 COBCL DATA MANIPULATION

If any record occurrence needed to execute the operation is located in
areas that are not available, Error Status Condition @818 results. An area
is not available if it is off-line or under the exclusive control of a
concurrent run-unit.

If the value of a data item in the User Work Area is such that it cannot be

converted to the format specified in the schema for that data item, Error
Status Condition #819 results.

Under all Error Status Conditions described in the above general rules, the
database remains in the state existing prior to the attempted execution of
the MODIFY statement, and the appropriate Error Status Condition code is
made available in special register ERSTAT. Otherwise, ERSTAT is set to
zero, indicating successful execution of the MODIFY statement.

3 - 53 July 1977

SECTION 3 IDR3046

Error Status Codes for the MODIFY Statement

Content of
Condition ERROR-STATUS

Database-key inconsistent with area-name 882

Data items invalid or inconsistent 0804

Violation of DUPLICATES NOT ALLOWED clause 8885

Incorrect usage mode for area 8829

No current record of run-unit 8813

Implicitly referenced area not available 9818

Conversion of value of data item not possible 9819

Illegal area-name 8823

Concurrent update conflict 9835

Arguments of Location Mode clause not included in subschema 8843

Fatal - Privacy Breach Attempted 9804 (O804F)

Arguments of Set Occurrence Selection clause not included
in subschema 6844

Specified set not included in subschema 846

REV. @ 3 - 54

IDR3046 COBOL DATA MANIPULATION

Examples and Discussion of the MODIFY Statement

Example 1

MODIFY LNAME, FNAME.

The MODIFY command allows the application programmer to change the
contents of a given record. The MODIFY command always operates on the
current record of run-unit. In the example above, the fields LNAME,
FNAME in the record will be replaced by the contents of the fields in
the User Work Area. The items named must be defined in the subschema
and be contained in the record that is current record of run-unit.

In addition to changing the contents of the fields, if the items make
up any part of a sort, the list is reorded to reflect the new ordering
with the new value. If the item is a CALC key, the record is recalced

to reflect the value of the new key.

Example 2

MODIFY.

This form of the MODIFY command replaces the entire contents of the
record, which is current of run-unit, with the contents of the User
Work Area. It does all conversions called for between schema types and
subschema types. It also re-orders any set list which contains items
that are sort or search keys, and if the record has a location mode

CALC, the record is recalced to reflect the new value of the CAIC keys.

3 - 55 July 1977

SECTION 3 IDR3046

RKERKKKKK

* MOVE *
REKKKKKK

Function

The MOVE statement saves the contents of the specified currency status ©
indicators and provides a means for deriving the area-name or
record-name which corresponds to a database-key.

General Format

Format 1

RUN-UNIT
RECORD record-name . Ei

MOVE CURRENCY STATUS FOR

|

SRER~Srea-name TO identifier-l .

SET set-name

Format 2

RUN-UNIT

RECORD record-name

MOVE SRN FOR {AREA area-name TO identifier-3 .

. SET set-—name
Identifier-2

Syntax Rules

1. The specified record-name, area-name or sets name must’ be
included in the invoked subschema.

2. Identifier-]1 and identifier-2 must refer to data items that are
used as Database keys. Identifier-3 must refer to a character
data type.

General Rules

l. The specified record-name, area-name, or set-name must be
included in the invoked sub-schema; otherwise, Error Status
Condition 1946 results.

2. Identifier-1 and identifier-2 are assumed to be level 77 fields
with a length of 6 characters (i.e., COBOL variables meant to
contain database-keys). For more detail about the representation

REV. @ 3 - 56

IDR3646 COBOL DATA MANIPULATION

of a database-key, refer to the TYPE clause in the Schema DDL and

the TYPE specification in the Subschema DDL for COBOL (See
Section 2).

Identifier-3 is assumed to be a level 77 variable which can
contain a 38 character string.

In Format 1, if the RUN-UNIT phrase is specified, the
database-key for the current record of run-unit is placed in
identifier-1. The current record of the run-unit is not altered.
If a record-name, area-name, or set-name is specified, the
database-key for the current record of record-name, area-name, or
set-name is placed in identifier-l. The current record of
record-name, area-name, or set-name is not altered. If the
current record is not known or the currency indicator is null,
Error Status Condition 1913 results.

Use of Format 2 causes DBMS to return, in identifier-3, the name
of the area or record which corresponds to the database-key in
identifier-2 or to the currency indicator specified. If a
currency indicator is specified and the current record is not
known or the currency indicator is null, Error Status Condition
1913 results.

When an error occurs, the database and all of the run-unit's

COBOL variables remain in the state existing prior to the
attempted execution of the MOVE statement.

30 - 57 July 1977

SECTION 3 IDR3046

Error Status Codes for the MOVE Statement

Content of

Condition ERSTAT

No current record of run-unit 1913

Specified record, area, or set not included
in subschema 1946

REV. @ 3 - 58

IDR3646 COBCL DATA MANIPULATION

Examples and Discussion of the MOVE Statement

Example]

MOVE CURRENCY STATUS FOR RECORD EMPLOYEE TO ID1.

This statement takes the database-key which is the currency status for
the record EMPLOYEE and moves it to the COBOL identifier ID]. The
run-unit can later refer to the record by a

FIND IDI.

To establish the record as current of run-unit.

Example 2

MOVE AREA-NAME FOR ID1 TO ANAME,

This statement gets the 3@-character Area-name of the DBK defined in
ID1 and moves it to the 15-word COBOL array ANAME.

3 - 59 July 1977

SECTION 3 IDR3046

KEKKKEKKKKKKKKKKKKKK

* ON ERROR CLAUSE *
KKKKKRERRERKKRREREER

Function

The ON ERROR clause specifies where program control is to be
transferred if the DBMS encounters an error during the execution of a
DML command.

General Format

Format 1

ON ALL ERRORS GO TO cobol-procedure-name .

Format 2

;ON ERROR integer-] [,integer-2]... GOTO cobol-procedure-name

[ON ERROR integer-3[,integer-4] ... GO TO cobol-procedure-name]... .

[ON OTHER ERRORS GO TO cobol-procedure-name] .

Syntax Rules

1. integer-l, integer-2,... are COMPUTATIONAL values of the form:

MMEE

where MM is the major code of the command

EE is the error code

The major code is an optional specification

2. No check is ever made to verify that the values specified by
integer-1, integer-2,... can actually occur. If an invalid code
is used, no branch will ever be taken at run time.

3. Label must be a valid COBOL procedure-name known to this program.

General Rules

1. The ON ERROR clause may be appended to any DML command.

2. If an error is detected, the DBMS returns to the statement
specified by the appropriate ON ERROR clause (if any).

REV. @ 3 - 68

IDR3646 COBOL DATA MANIPULATION

The ON ERROR clause may be appended to any DML command.

If an error is detected, the DEMS returns to the statement
specified by the appropriate ON ERROR clause (if any).

The ON ERROR clause refers only to the command of which it is a
part.

If an error is detected and there is no error clause, control is
returned to the run-unit at the statement following the DML
command. The run-unit may test the register ERSTAT to see if an
error occurred. If ERSTAT is @, then no error has occurred;
otherwise, ERSTAT will be of the form MMEE

where MM is the major code

EE is the error code

If an error has occurred, no further DML statements may be
processed until a CLEAR ERROR command has been executed.

If another DML statement is executed before a CLEAR ERROR command
is executed, or if a fatal error has occurred, the run-unit is
immediately abort and the special registers are dumped to the
terminal.

Whenever the execution of a DML statement results in an Error
Status Condition, the following information is available to the
run-unit:

@ The Error Status Condition code is available in the special
COBOL COMPUTATIONAL variable ERSTAT.

@ The name of the area in which the error occurred is available

in the 38 character field FRAREA.

@ The name of the set, if appropriate, in which the error

occurred is available in the 3@ character field array ERSET.

@ The name of the record, if appropriate, for which the error

occurred is available in the 3@ character field ERREC.

@ If ERSTAT contains an error code of nn35 which indicates a
concurrent update conflict, then the register CONTYP contains
a code indicating the type of concurrent update conflict.

3 - 61 July 1977

SECTION 3 IDR3046

@e The name of the item, if appropriate, for which the error
occured is available in the 30 character field ERITEM.

e ERCASE contains the conditional valve of an error return for

a G TOC DEPENDING ON statement.

@ The number of the current transaction can always be found in

TRNO. |

@ ‘The type of the current transaction can be found in TRIYPE
where l=update transaction and @=retrieval transaction.

8. A summary of the major codes, error codes and concurrent update
conflict codes may be found in Section 4.

Examples and Discussion for the ON ERROR Clause

Example]

FIND NEXT RECORD EMPLOYEE OF SET DEPT-SET
ON ERROR 387 GO TO LABEI-1.

GET.

LABEL-1.
DISPLAY ‘END OF SET ENCOUNTERED'.

This example shows a find statement with an error clause. If an end of
set is encountered, control will pass to LABEI-1; otherwise control
will pass to the next statement. If an error other than 387 occurred,
no other CDML statement may be executed until a clear error command has

been executed.

Example 2

FIND RECORD DEPT.

IF ERSTAT NOT = @ GO TO LABEI~-1.

LABEL-1.

DISPLAY 'DBMS ERROR' ERSTAT.

CLEAR ERROR.

Example 2 demonstrates an alternate form of DBMS error detection. If
the FIND in the example succeeds and there are no errors, ERSTAT will

be @ and control will proceed to the next statement. Otherwise, ERSTAT
will be nonzero and control will be passed to TABLE-] where the error

REV. @ 3. - 62

IDR3246 COBOL DATA MANIPULATION

is written to the user terminal and the error status is reset by the
CLEAR ERROR command.

3 - 63 | July 1977

SECTION 3 IDR3646

REKEKKKKE

* OPEN *
Kk

Function

The OPEN statement specifies an area's usage-mode and prevents the
run-unit's access to the area until such usage can be permitted.

General Format

Format 1]

EXCLUSIVE RETRIEVALOPEN ALL AREAS |UsAGE-wone 15 |FRotectsD || CEDATE

Format 2

OPEN AREA[S] area-name-1 [,area-name-2]...

EXCLUSIVE] RETRIEVAL
USAGE MODE IS |Eeorecren UPDATE °

syntax Rules

1. Areas area-name-1, area~name-2, must be names which are included

in the invoked subschema.

REV. @ 3 - 64

IDR3646 COBOL DATA MANIPULATION

General Rules

1é.

Area-name-1, area-name-2, must be the names of areas included in
the subschema invoked; otherwise, Error Status Condition 0946
results.

The OPEN ALL format refers to all the areas included in the

subschema invoked by the run-unit.

Because of the file-level deadlock prevention plan of DBMS, an
OPEN can only be executed if the run-unit has no areas already
open, otherwise Error Status £929 results. Thus you must open
any areas together that will be needed simultaneously; you are
requested, additionally, to open no more areas than you will need
at one time, and to close all areas during any relatively long
interval when you are not using DBMS services. ‘The CLOSE
statement, unlike the OPEN, may close a subset of the areas open.

Use of the USAGE-MODE IS RETRIEVAL phrase (without the EXCLUSIVE

Or PROTECTED phrases) allows concurrent run-units to open the
same area with any usage-mode other than one which is exclusive.

Use of the USAGE-MODE IS UPDATE phrase (without the EXCLUSIVE or
PROTECTED phrases) allows concurrent run-units to open the same
area with any usage-mode other than one which is exclusive or
protected.

If the USAGE-MODE phrase is not used, then retrieval without the
exclusive or protected option, called "concurrent retrieval", is
assumed.

Use of the EXCLUSIVE phrase prevents concurrent run-units from
interacting with the same area in any usage-mode.

Use of the PROTECTED phrase prevents concurrent update and allows
concurrent retrieval within the same area if and only if
before-imaging is turned off and concurrent update is not allowed
by the Data Administrator. Otherwise, protected update and
protected retrieval are the same as simple update and simple
retrieval.

All specified usage-modes remain in effect until the run-unit
issues a CLOSE statement for the specified areas, or until the
run-unit terminates.

To execute a FIND, STORE, MODIFY, INSERT, REMOVE or DELETE
Statement successfully, the run-unit must have previously opened
(as relevant to the statement being executed):

@ The area that contains the object record of a FIND statement,

@ The area into which a record is to be stored.

3 - 65 July 1977

SECTION 3 IDR3@46

ll.

12.

13.

14.

REV.

e All areas containing any record occurrence which would be

deleted or removed as a result of a DELETE statement.
Otherwise, Error Status Condition nn@]l results, where nn

indicates the particular DML statement being attempted.

In addition to the areas containing the object records of the
statements cited above, there are additional, implicit areas
which can be impacted by DML statements. The impact can be of
two forms:

e DBMS requires information contained within the implicit area,
in which case the area must be ‘available'. For an area to
be available, it must not be under exclusive control of a
concurrent run-unit. It must be OPEN for the requesting
run-unit. If an implicit area is not available, Error Status
Condition nn18 results (where nn indicates the particular DML
statement attempted.)

e The DBMS must alter the information contained in record
occurrences within the implicit area, in which case the area
must not only be available but it must permit the necessary
alterations. Such implicit areas are deemed to be
‘affected', and must be OPEN. If an implicit area which is
affected is not open, Error Status Condition nn2] results
(where nn indicates the particular DML statement attempted).

Record occurrences which are in the search path of the sought
record of a FIND statement, or in the search path of the sought
record of an implicit find which occurs during the execution of a
STORE statement, must be in areas which are open.

To execute an INSERT, REMOVE, STORE, DELETE, or MODIFY statement

successfully, both the explicit and the affected implicit areas
involved must be open with a usage-mode of update. If any of the
areas involved are open for retrieval, Error Status Condition
nngé9 will result, (where nn indicates the particular DML
statement attempted.)

Any attempt to execute an OPEN statement which would result in
usage-mode conflict for an area will result in Error Status
Condition #931. ‘The user can then choose to program a wait
sequence or go on to do something else.

e the following table reflects usage-mode conflicts with an
'N', and permitted concurrency with a 'y'.

@® Usage-mode conflict occurs when any of the usage-mode
combinations marked with an 'N' applies to an area as a
result of a concurrent run-unit attempting to execute an open
against it.

@ In the shaded areas (see Figure 3-1) the usage-mode conflict

occurs only if before-imaging is turned off.

g 3 - 66

IDR3046 COBOL DATA MANIPULATION

9 ¢| |8
© a Oj ww] &

7 fm Pi a Z
3 fy a i 5
cE 2 ~~

Slealalblb1al1S

FIZ /BIB BIB]BIG/E|E12) S18
USAGE-MODE o Dim !a!] a!

OPEN-NO USAGE-MODE yiyiyly/yinitin

RETRIEVAL Yiyilyiy/jyIlnin

DI,UPDATE y yY YY N|N

PROTECTED RETRIEVAL y Y UY Y Uf N|N

PROTECTED UPDATE yly UY NIN

EXCLUSIVE RETRIEVAL |n nininininIin

EXCLUSIVE UPDATE NIN/INININI NIN

FIGURE 3-1. USAGE-MODE RULES

15. An attempt to execute an OPEN statement on an area for which the
run-unit has not satisfied the privacy locks will result in Error
Status Condition 9984F and the user will be aborted.

16.

17.

If none of the Error conditions described above occurs, ERSTAT is
zero, indicating successful execution of the OPEN statement.

If the total number of areas open by all concurrent run-units
exceeds an implementation limit, Error Status 99@5F results and
the user will be aborted.

July 1977

SECTION 3 IDR3846

Error Status Codes for the OPEN Statement

Content of

Condition ERSTAT

Area not physically available 8928

Violation of deadlock protection rule 8929

Open blocked 6931

Specified area-name not in subschema 6946

Fatal - privacy breach attempted -0904 (O904F)

Fatal - attempted to open too many areas simultaneously -8985 (G985F)

REV. @ 3 - 68

IDR346 COBOL DATA MANIPULATION

Examples and Discussion for the OPEN Statement

Example 1

OPEN ALL AREAS.

This command will make available all areas which have been defined in
the subschema, for a usage- mode of simple retrieval.

Example Z

OPEN AREAS AREA-]1, AREA-2, USAGE-MODE IS EXCLUSIVE UPDATE AREAS
AREA-3, AREA-4 USAGE MODE IS RETRIEVAL.

This command will make available AREA-] and AREA-2 for exclusive update
and AREA-3 and AREA-4 for concurrent retrieval. This is the only way
different areas are allowed to be open for different usage-modes. The
execution of two open commands would violate the file-level dead lock
prevention scheme in the DBMS.

Example 3

OPEN ALL AREAS USAGE-MODE IS PROTECTED RETRIEVAL.

This form of the open command would open all areas defined in the
subschema. The actual usage mode depends on several factors. If
concurrent update mode and before-imaging are turned off via the Data
Administrator module, then the usage mode would be protected retrieval.

If concurrent update were allowed and before-imaging was on, then it is
possible that there will be concurrent updaters but the application
program would be guaranteed a consistent view of the database for the
duration of each transaction.

Ca
d 1 69 July 1977

SECTION 3 IDR3046

REKKKKEKKKKKKKEKK

* PRIVACY KEY *
HKEKKKKKKKKRERKR

Function

The PRIVACY KEY statement is executable, not declarative and
establishes the program and run-unit authority to execute classified

DML imperative-statements in accordance with the locks declared in the
schema.

General Format

Format]

EXCLUSIVE

CY KEY [FOR |Horecien | RETRIEVAL oF
PRIVACY Y ~~
oe EXCLUSIVE UPDATE

PROTECTED ~~

AREAS area-name-] [,area-name-2]... is literal-l

ALL AREAS identifier-l

f~

REST }
Format 2 STORE

GeT
MODIFY

INSERT’PRIVACY KEY [FOR 4 Seance > | OF

DELETE SELECTIVE
DELETE ALL
FIND

N 7

RECORDS record-name-]1 [,record-name-2].../ IS

}

literal-2

ALL RECORDS identifier-2

Format 3

REST
PRIVACY KEY [FOR

{||

Seo | JOF DATA-ITEMS dbid-1 [,dbid-2]...
MODIFY

li
IS)identifier-3

REV. @

IDR3046 COBOL DATA MANIPULATION

Format 4

PRIVACY KEY [FOR SETS set-name-] [,set-name-2]...

REST
ane) OF

FIND ALL SETS

literal-4

is identifier-—4

Syntax Rules

l.

2.

Multiple PRIVACY clauses that differ only in the specification of
the key are not permitted.

All identifiers must be defined in the COBOL source program as
level 77 identifiers.

General Rules

Identifier-l1, 2, 3, and 4 are intended to contain PRIVACY KEYS.

If the optional FOR phrase is omitted, the PRIVACY KEY clause
applies to all functions that could have been specified.

Any database-identifiers, records, sets, or areas named which are
not included in the invoked subschema will be ignored.

If a PRIVACY LOCK has been declared in the schema, a PRIVACY
command must be executed at run time to allow usage of the
function even if no lock value has been assigned.

If the specified area-name, record-name, set-name or dbid-name

are not in the invoked subschema, Error Status 1346 results.

3 - 71 July 1977

SECTION 3 IDR3046

Examples and Discussion for the PRIVACY KEY

WORKING-STORAGE SECTION.

t SUBSCHEMA MY-SUB OF SCHEMA THE-SCHEMA.
@1 LOCK-VALUE USAGE DISPLAY PIC X(3@).

PROCEDURE DIVISION.

DISPLAY 'ENTER KEY FOR OPEN WITH USAGE-MODE OF UPDATE’.
ACCEPT LOCK-VALUE.

INVOKE DBMS.

PRIVACY KEY FOR UPDATE OF ALL AREAS IS LOCK-VALUE.
OPEN ALL AREAS USAGE-MODE IS UPDATE.

This example illustrates the use of a PRIVACY command in a run-unit.
The sample program reads a 3@-character string from the user terminal;
it then invokes the DBMS and passes the key to unlock the open for
update. If an improper key is passed, the open command will fail. If
the proper key is passed or the Data Administrator has not yet defined
the key value, the open will succeed.

The PRIVACY KEY command can be executed any time before the entity with
a lock defined for a particular operation is accessed in that type of
operation.

REV. 8 3. - 72

IDR3@46 COBCL DATA MANIPULATION

KEKKKEKKEKEEKEEREKEEEEKEREKEKEKKEKKKKKKKKK

* RECORD SELECTION EXPRESSIONS (rse) *
KKKKKKKEKERAKEIERRREEREREEERE

Record selection expressions are used to specify the criteria by which
DBMS is to select a record in the database. The selected record
becomes the current record at the run-unit, upon which subsequent
statements may operate when accessing the database.

There are six formats of the record selection expression. These
formats permit both relative and absolute selection criteria in which
records may be selected according to their contents, their database key
value, or by currency indicators. If a currency indicator is used,
either a current record or a record related to a current record is
selected.

The record selection expression may only occur on a FIND or a FETCH
statement.

3 - 73 July 1977

SECTION 3 IDR3046

General Format

Format 1

USING identifier-l .

Format 2
RECORD record-name-2

OWNER SET set-name-4

nee IN set-name OF| CURRENT OF AREA area-name-1 °

RON-UNIT

Format 3

NEXT

PRIOR :

FIRST SET set—name—-5
TAST RECORD [record name-3] OF

|

AREA area-name-2/ °

integer-1
identifier-2

Format 4

[NEXT DUPLICATE WITHIN] RECORD record-name-4 ,

Format 5

record-name-5 VIA [CURRENT OF] SET set-name-7 [USING dbid-3 [,dbid4]...].

Format 6

NEXT DUPLICATE WITHIN SET set-name-8 USING dbid-5 [,dbid-6]....

REV. @ 3 - 74

IDR3646 COBCL DATA MANIPULATION

Syntax Rules

Format 1]:

1. Identifier 1 must be a six byte level 77 identifier containing a
database key.

Format 2:

1. Record-name-2 if specified must be defined in the subschema.

Format 3:

1. Integer-1 may be signed.

2. ‘The data item referenced by identifier-2 must be USAGE
COMPUTATIONAL and may be signed or unsigned.

3. If both record-name~3 and set-name-5 are used, then the record
must be a member of the named set.

Format 4:

1. The record named by record-name-4 must have location mode CAIC.

Format 5:

1. dbid-3, dbid-4..., must be items defined within record-name-5.

1. dbid-5, dbid-6..., must be items defined within the record which
is the current record of the set type specified in set-name-8.

General Rules

All formats

1. Evaluation of a record selection expression results in the

identification by the DBMS of a specific record in the database.

2. Records identified by a record selection expression must be
stored in areas that are in an opened mode.

3. All records that participate in the DBMS search for’ the
identified record must be stored in areas that are opened.

3 - 75 July 1977

SECTION 3 IDR3646

4. Error Statuses defined in the following rules of the form nnxx
may have the values @3xX if the error occurred on a FIND, or 22XxX
if the error occurred on a FETCH.

Format 1:

1. The record identified is the record whose database-key is equal
to the value of the data item referenced by identifier-l.

Format 2:

l.

9.

18.

This clause without the OWNER or MEMBER phrase selects the record
occurrence that is the current record of the specified
record-name, set-name, or area-name, or it selects the current
record of run-unit.

If the current record of the type specified is not known or its
currency indicator is null, Error Status Condition nn@6 results.

Use of the CURRENT OF RUN-UNIT form of the FIND permits revision
of currency status indicators which were previously suppressed.

Set-name-3 and set-name-4 may be the same set-name or different
set-names.

If the OWNER phrase is used, the occurrence of set-name-3 whose
owner is to be selected is identified by the specified current
record. Set-name-3 must not be a singular set; otherwise, Error
Status Condition nn33 results.

If the specified current record is not of a record type defined
as a member of the set in the schema, Error Status Condition nn4@¢
results.

If the specified current record does not currently participate as
a member of any occurrence of set-name-3, and if it is not known
as the current record of set-name-3 by the run-unit, Error Status
Condition nn22 results.

If the MEMBER phrase is used, the record selected is the first
member (in terms of logical order of the set) in the set

occurrence of set-name-3 owned by the specified current record.

If the specified current record is not of the record type defined
to be the owner record type of set-name-3 in the schema, Error
Status Condition nn4l1 results.

If the set occurrence of set-name-3 owned by the specified
current record is null, Error Status Condition nn26 results.

IDR3046 COBOL DATA MANIPULATION

Format 3:

5.

In Format 3, if the record-name-3 phrase is used, only
occurrences of record-name-3 will be considered in evaluating the
record selection expression. If area~name-2 is stated, then the
WITHIN clause in the schema for record-name-3 must include
area-name-2; otherwise, Error Status Condition nn42 results. If
set-name-5 is stated, record-name-2 must be defined as a member
of set-name-5; otherwise, Error Status Condition nn4f results.

If a set-name is specified, the set occurrence from which the
object record is to be selected is identified by the current
record of the specified set. If the current record of that set
is not known or its currency indicator is null, Error Status
Condition nng@6 results.

If an area-name is specified, the object record is selected from
the named area. If the named area is not open, Error Status

Condition nn@gl results.

If the NEXT or PRIOR phrase is used and an area-name is
specified, and the current record of the named area is not known
or its currency indicator is null, Error Status Condition nn@6é
results.

NEXT RECORD OF area-name AREA means the record physically closest
in the “next" direction to the current record of the named area.
If there is no such record in the area named, Error Status
Condition nn@7 results.

PRIOR RECORD OF area-name AREA means the record physically

closest in the "prior" direction to the current record of the
named area. If there is no such record in the area named, Error

Status Condition nn@7 results.

NEXT RECORD OF set-name SET means the subsequent record relative
to the current record of the named set in the logical order of
the set regardless of the database-key sequence. If the set is
empty, that is, no member record occurrences participate in the

set, Error Status Condition nn26 results. If the current record
is the last record in the set, Error Status Condition nn@7
results.

PRIOR RECORD OF set-name SET means the previous record relative
to the current record of the named set in the logical order of

the set regardless of database-key sequence. If the set is
empty, that is, no member record occurrences participate in the
set, Error Status Condition nn26 results. If the current record

is the first record in the set,Error Status Condition nn@7
results.

3 - 77 July 1977

SECTION 3 IDR3246

18.

ll.

12.

13.

14.

FIRST RECORD OF area-name AREA is the record occurrence
physically first in the named area. If there are no records in
the named area, Error Status Condition nn26 results.

LAST RECORD OF area-name AREA is the record occurrence physically
last in the named area. If there are no records in the named
area, Error Status Condition nn26 results.

FIRST RECORD OF set-name SET is the first member occurrence in
terms of the logical order of the set. The record selected is
the same as would be selected if the current record of the set
was the owner record and the NEXT RECORD OF set-name SET was
used. If the set occurrence is empty, that is, no member record

occurrences participate in the set, Error Status Condition nn26
results.

LAST RECORD OF set-name SET is the last member record occurrence
in terms of the logical order of the set. The record selected is
the same aS would be selected if the current record of the set

was the owner record and the PRIOR RECORD OF set-name SET was
used. If the set occurrence is empty, that is, no member record

occurrences participate in the set, Error Status Condition nn26
results.

Identifier-2 must be USAGE COMPUTATIONAL and be initialized with
an integer prior to execution of the FIND statement.
Identifier-2 and integer-] represent the ordinal count of the
object record occurrence relative to the beginning, if positive,
or ending, if negative of a set occurrence or area. A negative
value selects in the prior direction and a positive value in the
next direction of the set occurrence or area.

Tf there are no records in the set occurrence or area named,

Error Status Condition nn26 results. If the value of integer-]
or the contents of identifier-2 are greater than the number of
record occurrences in the set occurrence or area specified, then
Error Status Condition nn@7 results.

Format 4:

1.

REV.

In Format 4, the LOCATION MODE IS CALC clause must have been used
in the description of record-name-4; otherwise, Error Status
Condition nn45 results. All search arguments specified in the
CALC clause must be included in the invoked subschema;
otherwise, Error Status Condition nn43 results.

g 3. - 78

IDR3046 COBCL DATA MANIPULATION

Prior to the execution of the FIND statement, the data items
specified in the LOCATION MODE clause must be initialized and if
the related WITHIN clause includes more than one area, the data
item declared as AREA-ID must also be initialized with the
area-name to which the resulting database-key applies. If an
area-name is specified which is not included in the WITHIN
clause, Error Status Condition nn23 occurs. If no record with
the specified CALC key values is found, Error Status Condition
nn26 results.

When the NEXT DUPLICATE phrase is not used, the first record
found by DBMS which satisfies the argument values for the CALC
keys in User Work Area is the one selected. When the NEXT
DUPLICATE phrase is used and the following conditions exist, the
record occurrence selected will be the next record found by DBMS
with the same value for its CALC key as the current record of the
run-unit. If no such duplicate record occurrence is found, then
Error Status Condition nn26 results.

@ The CALC key in UWA is equal to the value of the CALC key in

the current record of run-unit.

e ‘The implied area-name or the area-name explicitly specified
in AREA-ID is the area in which the current record of
run-unit exists.

When the NEXT DUPLICATE phrase is used and the above conditions
do not exist, the effect is the same as if the NEXT DUPLICATE
phrase had not been stated.

Format 5:

1.

2.

Record-name-5 must be defined in the schema aS a member of

set-name-7; otherwise, Error Status Condition nn4@ results.

Format 5 of the rse, when the CURRENT phrase is used, causes
record selection based on the current set occurrence of
set-name-7. When the CURRENT phrase is not used it causes record

selection based on the SET OCCURRENCE SELECTION clause defined
for the named record and set. All search arguments specified in
that clause must be included in the invoked subschema;
otherwise, Error Status Condition nn44 results. The search

arguments must be initialized prior to the execution of the FIND
statement. In addition, if the process involves selection of any

record on the basis of a LOCATION MODE IS CAIC clause, any
AREA-ID in the WITHIN clause for that record must be initialized.
If AREA-ID is not initialized with an area-name specified or
implied for the record type, Error Status Condition nn@2 results.
If the database-keydeveloped from the CALC keys is inconsistent
with the area-name specified, Error Status Condition nn@2
results.

3 - 79 July 1977

SECTION 3 IDR3046

3. The record selected if the USING phrase is not specified is the
first record occurrence of the record type specified by
record-name-5, which is in the selected occurrence of the named
set. If the USING phrase is employed, data-base-identifier-3 and
data-base-identifier-4 are implicitly qualified by record-name-5
and must be the names of fixed length data items included in

-record-name-5; otherwise, Error Status Condition nn@4 results.
DBMS will select a record having the same values for
data-base-identifier-3 and data-base-identifier-4 as are in the
User Work Area. If more than one record occurrence meets the
criteria specified, the first such record occurrence will be
selected in terms of scanning the set in the next direction. If
no record is found which meets’ these criteria, Error Status
Condition nn26 results. When the CURRENT phrase is used, if the
current record of set-name-7 is not known or its currency

indicator is null, Error Status Condition nn@g6 results.

Format 6:

l.

REV.

Format 6 of the rse causes a search of the members of the current
set occurrence of set-name-8 for a record which is of the same
type as the current record of set-name-8, and, which has the same
values for data-base-identifier-5, data-base-identifier-6. All
values in the User Work Area are ignored. The search is in the

next direction and starts from the current record of set-name-8.
It continues until either a duplicate is found or the end of set
is reached. If no duplicate is found, Error Status Condition
nn@7 results. If the current record of set-name-8 is not known

or its currency indicator is null, Error Status Condition nn@6
results. If the current record of set-name-8 has been deleted by
this or another run-unit, since it became current in this
run—-unit, Error Status Condition nnl7 results. If
data~base~identifier-5, data-base-identifier-6 are not defined in

the subschema invoked as part of the current record of
set-name-8, Error Status Condition nn@4 results.

g 3 - «88

IDR3046 CCBCL DATA MANIPULATION

Examples and Discussion of the RECORD SELECTION EXPRESSIONS

For the following examples assuming there is a database with these
record types: A DEPARTMENT (DEPT) record, an EMPLOYEE record and a
SUPERVISOR record. The DEPT record has a location mode of CALC on the
DEPINM field and is the owner of the DEPARTMENT-SET (DEPT-SET) of which
the EMPLOYEE and the SUPERVISOR records are a member. ‘The set is
sorted on an EMPLOYEE NUMBER field which is part of both the EMPLOYEE
record and the SUPERVISOR record. ‘The database has been pre-stored

with the following set occurrence.

DEPARTMENT | EMPLOYEE
ing| — 8programming s\[EMPLOYEE

EMPLOYEE | 7

t NW
| (DEPT-SET) SUPERVISOR

6

SUPERVISOR | /r2 EMPLOYEE

) S| EMPLOYEE EMPLOYEE »7; 5

3 " 4
J

Example]

FIND USING DBKi.

The COBOL identifier DBK] has been declared to be PICTURE X(6) which
has been initialized to a valid database-key. The result of this
command is that the record specified by this DBK becomes current at the
run-unit area in which it is stored, of record and of all sets in which
it participates as an owner or member.

Example 2

FIND OWNER IN DEPT-SET OF CURRENT OF RECORD EMPLOYEE.

Assuming that the current of RECORD Employee is EMPLOYEE 4, the owner

record DEPARIMENT whichis programming willbeselected and become
current at run-unit, current at record type DEPARIMENT, current at set
DEPARIMENT-SET and current at the area in which the DEPT record

resides.

3 - 81 July 1977

SECTION 3 IDR3646

Example 3

FIND -2 RECORD SUPERVISOR OF SET DEPT-SET.

The format of the rse will traverse the DEPT-SET in the prior direction
and produce the supervisor record with the number 2 as the current of
run-unit at all. It should be noted that the employee record in the
set did not affect the count. Had the "RECORD SUPERVISOR" clause been
dropped from the FIND, the Employee Record 8 would be the record

selected.

Example 4

FIND NEXT RECORD EMPLOYEE OF SET DEPI-SET.

Assuming that the current record of run-unit is Employee 1, the record
chosen by this format of the record selection expression would be

Fmployee 3. This record would then become current of run-unit, etc.

Example 5

FIND RECORD DEPT.

Assuming the Department name field was assigned the value of the Dept
name, the Department record (whose field matched the Dept name) would
have been selected and would have become current of run-unit.

Example 6

FIND EMPLOYEE VIA DEPT-SET USING EMPNUM.

Assuming the set selection clause for Dept Set is location mode of
owner and the call field for the Dept record was assigned to
PROGRAMMING and the database-identifier EMPNUM was assigned the value
5, this format at the record selection expression would have first
located the record Dept which had the DEPTNUM field with the value

programming and then located the Employee record with the EMPNUM of 6,
which was owned by that Department. The EMPLOYEE record would then
become current of run-unit, current of record EMPLOYEE, current of set

DEPI-SET, and current of area in which it is stored.

REV. & 3. - 82

IDR346 COBOL DATA MANIPULATION

REKEKKKEKRK

* REMOVE *
KEKKKKKKEE

Function

To cancel the membership of the object record in the occurrences of the
specified set-names in which it currently participates as «a member,
provided that the object record is defined as an optional member of the
sets named.

General Format

SETS set-name-1 [,set-name-2] ..- °
REMOVE FROM ALLSETS

syntax Rules

1.

Ze

The Sets set-name~]1, set-name-2 must be defined in the invoke
subschema.

The record which is current of run-unit must be defined as an
‘ arl Po . ah NTE om roptional member of the named sets in the schema DDL.

General Rules

1. The object record of the REMOVE statement is the current record
of the run-unit.

If set-names are specified in the REMOVE statement, then the
object record must have been defined in the schema as an optional

member of all of the sets named. It must also currently
participate as a member in an occurrence of at least one of the
sets named.

The ALL SETS format is designed to remove the object record from
all set occurrences in which it is defined in the invoked
subschema aS an optional member and in which it currently
participates as a member.

3 - 83 July 1977

SECTION 3 IDR3046

4,

5.

REV.

No change occurs to any currency information maintained by the

DBMS.

If the run-unit has not satisfied the privacy locks for all
records, sets, areas, and data items needed to execute the REMOVE
statement, Error Status Condition 1194F will result and the

run-unit will be aborted by DBMS.

In addition to the conditions described, if any of the following
conditions are encountered, the REMOVE statement is not
successfully executed, the database remains in the state existing
prior to the attempted execution, and the appropriate Error
Status Condition code is made available in special register
ERSTAT. Otherwise, the contents of ERSTAT is set to zero,
indicating successful execution of the REMOVE statement.

e If all set-names specified are not included in the invoked
subschema, Error Status Condition 1146 results.

e If the current record of the run-unit is not known, Error

Status Condition 1113 results.

e If the object record is not defined as an OPTIONAL MEMBER of
all of the specified set-names, Error Status Condition 1115
results.

e If the object record does not currently participate as a

member in an occurrence of at least one of the sets specified
or implied, Error Status Condition 1122 results.

e If the object record or any record occurrence affected by the
REMOVE statement is located in an area which is open for
RETRIEVAL, Error Status Condition 11@9 results.

e If any record occurrence needed by the DBMS for informational
purposes (such as following a search path) is not available
because it is off-line or under exclusive control of another
run-unit, Error Status Condition 1118 results.

IDR2€46 COEBCL DATA MANIPULATION

Error Status Codes for REMOVE

Content of
Condition ERROR-STATUS

Incorrect usage-mode for area 11€9

No current record of run-unit 1113

Object record not defined as an optional member of a named set 1115

Implicitly referenced area not available 1118

Object record not currently a member of named or implied set 1122

Concurrent update conflict 1135

Specified set-name not in subschema 1146

Fatal - privacy breach attempted ~1104 (11@4F)

3. - 85 July 1977

SECTION 3 IDR3846

Examples and Discussion for REMOVE

REMOVE FROM ALL SETS.

This format of the REMOVE statement will take the current record of
run-unit and remove it from all sets of which it is an optional member.
That is, the record will no longer be accessible from the set
occurrences from which it has been removed. It will still be
accessible from other set occurrences of which it is a mandatory member
or from its CALC key if the record has a location mode of CALL or from
a traversal of the AREA.

REV. & 3. - 86

IDR3846 COBCL DATA MANIPULATION

RRKKKEKKEEKEKREKRKEKKKKKEKK

* START OF TRANSACTION *
KAKKKEKKKEKKKKKEKERRERER

Function

The START TRANSACTION command defines the start of either an update or
retrieval activity on the database. It provides a_ retrieval
transaction a consistent view of the database. It allows an update
transaction to define the beginning of a recoverable series of commands
and it guarantees exclusive update rights to data which may be
modified. It also saves the currency indicators as they are defined at
the beginning of the transaction.

3. = 87 July 1977

SECTION 3 IDR3046

General Format

START TRANSACTION identifier aes| e

syntax Rules

1. Identifier is a level 77 COBOL identifier which contains a
COMPUTATIONAL value assigned to the transaction as the user's
(run-unit's) name for that transaction.

General Rules

1. All commands which access the database (FIND, GET, FETCH, MODIFY,
STORE, INSERT, REMOVE, DELETE, IF, MOVE) must be nested between

START TRANSACTION, END OF TRANSACTION or ABORT TRANSACTION

statements.

The following commands may not be nested between the START and
END or ABORT TRANSACTION statement: INVOKE, OPEN, CLOSE, START

TRANSACTION and EXIT DBMS.

If Before-imaging is turned off by the DBACP, roll back cannot
occur (i.e., a subsequent ABORT TRANSACTION will not roll back
the DB).

If a subsequent update command (MODIFY, STORE, INSERT, REMOVE,
DELETE) attempts to modify data that has been modified by another
update transaction that is currently active, the update command
will receive an Error Status of mm35 where mm is the major code.
The only choice allowed the application at that point is to abort
the transaction and start it over again. If this isn't done, on
excution of the next DML command, the transaction will be rolled

back and the run-unit aborted.

If a START TRANSACTION command is executed when a transaction is
already active, ERROR STATUS 2435 results.

IDR3046 COBCL DATA MANIPULATION

Example and Discussion of START OF TRANSACTION

WORKING-STORAGE SECTION.

77 =TRANID COMP VALUE 1.
77 ONE COMP VALUE 1.

PROCEDURE DIVISION.

FIRST SECTION.
BEGIN.

INVOKE DBMS.
OPEN ALL AREAS USAGE-MODE IS UPDATE.aH

:
=
H

LABEL-1
ADD ONE TO TRANID.

START TRANSACTION TRANID, UPDATE.
FIND RECORD DEPT.
STORE EMPLOYEE.

IF ERSTAT = @ GO TO LABEI-18@.

CLEAR ERROR.
ABORT TRANSACTION TRANID.

G TO LABEI-1.
LABEL-1¢.

SH
:

=H
=

H
e

=H
:
=
H

END TRANSACTION TRANID.

@ TO LAPEI-1.

The above program is an example of a procedure that might be used to

add an employee record to a department in aé_ concurrent on-line
environment.

The DBMS is first invoked and all areas defined in the subschema are
opened. Then, a start of transaction is executed. During the
transaction a FIND statement is executed and then a STORE. If the

STORE statement has a concurrent update error, the transaction is
rolled back and tried again. If it is successful, execution continues
until the END TRANSACTION, which then secures all updates to disk and
defines the start of a quiescent point until the next STARTRANSACTIGN. Se hee De a

3 - 89 July 1977

SECTION 3 IDR2046

REKKKKEKE

* STORE *
KAKKKKEKE

Function

The STORE statement accomplishes the following:

1. Acquires space and a database-key for a new record occurrence in
the database.

Causes the values of the appropriate data items in User Work Area
to be included in the occurrence of the object record in the

database.

Inserts the object record into all sets for which it is defined
aS an automatic member in the schema.

Establishes a new set occurrence for each set where the object
record is defined as owner in the schema.

Establishes the object record as the current record of the
run-unit.

Depending on the SUPPRESS status, establishes the object as:

e The current record of the area in which it is stored,

e The current record of the record-name,

e ‘The current record of set for all set-names in which it is

specified as an owner or automatic member.

General Format

STORE record-name.

syntax Rules

1.

REV.

The invoked subschema must include: The named record; the data
items or sets specified in the LOCATION MODE clause of the named
record; at least one of the areas specified in the WITHIN clause
of the named record, all sets in which the named record is
defined aS an owner or an automatic member; all data items,
records, and sets specified or referenced in the SET OCCURRENCE
SELECTION clauses and ASCENDING/DESCENDING KEY clauses of those

sets in which the named record is defined as an automatic member.

8 3. - 98

IDR3€46 COBOL DATA MANIPULATION

General Rules

8.

The subschema invoked must include the named record; otherwise,
Error Status Condition 1246 results.

The data items, data-base-data-names, or sets specified in the
LOCATICN MODE clause of the named record must be included in the
invoked subschema; otherwise, Error Status Condition 1243
results.

The area in which the record is to be stored must be included in

the invoked subschema; otherwise, Error Status Condition 1247
results.

All sets in which the named record is defined as an automatic

member must be included in the invoked subschema; otherwise,
Error Status Condition 1208 results.

All data items, data-base-data-name, records, and sets specified
or referenced in the SET OCCURRENCE SELECTION clauses of those
sets in which the named record is defined as an automatic member
must be included in the subschema; otherwise, Error Status
Condition 1244 results.

All data items specified in the ASCENDING/DESCENDING KEY clauses
of those sets in which the named record is defined as an
automatic member must be included in the invoked subschema;
otherwise, Error Status Condition 1248 results.

A database-key and space for the object record are allocated on
the basis of the description of the record in the subschema
invoked by the run-unit and values provided by the user.

* Data items from the User Work Area are included in the object
record of the STORE statement. Data items not initialized
will be given indeterminate values.

@ Also included is any control data item, as specified or
referenced in the SET OCCURRENCE SELECTION clauses for this
record, when all sets are defined as automatic members. Tf
any such SET OCCURRENCE SELECTION clause is THRU CURRENT SET,
the user must insure that the current record of that set

identifies the proper set occurrence. If any such SET
OCCURRENCE SELECTION clause is THRU LOCATION MODE OF OWNER,

then all control data items specified for that owner record
must be initialized. In addition, all other data items
specified in the applicable SET OCCURRENCE SELECTION clauses
must be initialized.

For each LOCATION MODE clause involved in the execution of a
STORE, the following control data items (dbdn's) (depending on
the option used) must be initialized.

G
J - 91 July 1977

SECTION 3

REV. G

IDR3046

In the case of the DIRECT phrase, the dbdn specified in the
LOCATION MODE clause must be initialized. In a STORE
statement, the first 28-bits of such a data item is ignored.
The last two characters of the data-field must be initialized
with zero or a positive integer number. If a non-zero value
is given, this word will be used by the DPMS as_ the
Pucket-number portion of the database-key. If a zero has
been used, DBMS will assign an available Bucket number for
the record type in the specified area. In either case, the
DBMS will generate the first 2@-bits of the database-key
(which represents the record type and the area in which the
occurrence is to be stored). The system will assign the
resulting 48-bit DBK, if it is available, to the record which
is the object of the STORE statement. If the
occurrence~number portion waS Supplied by the user, and the
resulting database-key is not available, the DBMS will assign
an occurrence-number which will result in an available DBK in
the specified area. In any case, the full 48-bit
database~key by which the record occurrence is stored will be
returned in the dbdn specified in the DIRECT phrase of the
LOCATION MODE clause.

A database-key can be determined by the DBMS to be ‘not
available' for either of the following reasons:

e The database-key is already in use either by a current or
a deleted record occurrence of the database.

@e The storage structure implemented under the current
version of the DBMS will not allow the database-key,
since it will cause overflow.

If the DIRECT phrase is used, and the WITHIN clause is
specified, the dbdn declared as AREA-ID must_ be
initialized with an area-name specified or implied for
the record type or to zero, in which case the first area
in which the record definition is included in the schema
will be chosen. If an area-name is specified which is
not defined in the schema as a possible area for this
record type, Error Status Condition 1223 results.

@® In the case of the CALC phrase, the
database-identifiers named in the LOCATION MODE
clause must be initialized, and if the record type
can be stored in more than one area, the dbdn
declared as AREA-ID in the WITHIN clause must be
initialized with an area-name specified or implied
for the record type (or zero, as above). If an
area-name is specified which is not defined in the
schema aS a possible area for the record type, Error
Status Condition 1223 results. The DBMS will develop
a database-key which is compatible with the specified
area-name.

IDR3646 COBOL DATA MANIPULATION

@ In the case of the VIA set-name phrase, the data
items specified in the SET OCCURRENCE SELECTION
clause for this record in the named set must be
initialized, and, if the record type can be stored in
More than one area, the dbdn declared as AREA-ID in
the WITHIN clause must be initialized with an
area-name specified or implied for the record type
(or zero, aS above). Initialization of the data
items specified in the SET OCCURRENCE SELECTION

clause is required to enable the DBMS to select a
unique occurrence of the named set, and is required
regardless of whether the record being stored is an
automatic or manual member of that set. If it is an
automatic member of the set, it will be logically
inserted into the selected set occurrence. If it is
a manual member, it will not be inserted into the
selected set occurrence. In both cases, however,
subject to the constraints of the implied area and
areas specified in the WITHIN clause, the record
being stored will be placed by the DBMS as close as
is possible to the actual or probable logical insert
point in the selected set occurrence. The effect of
implicit and explicit areas on placement is as
follows: if the record type is defined in the schema
to be a possible occurrence of only one area-name,
placement is controlied by that area-name; If more
than one area-name is specified, the initialized
value of AREA-ID controls placement. AREA-ID must be
initialized with an area-name appropriate for the
record type or it must be initialized with a zero;
otherwise, Error Status Condition 1223 results. If

AREA-ID is initialized with a legal area-name,
placement is in that area. If AREA-ID is initialized
with a zero, placement occurs as close as is possible
to the logical insert point. Such placement is,
however, constrained by the implied or specified
areas for this record.

If no LOCATION MODE clause has been specified for the record

being stored, DBMS will assign a database-key consistent with the
relevant area-name. If the record can be stored in more than one
area, AREA-ID specified in the WITHIN clause must be initialized
with an area-name specified or implied for the record type or
zero (aS above). If an area-name is specified which is not
included for the record type, Error Status Condition 1223
results.

3 -~ 93 July 1977

SECTION 3 IDR3@46

1@.

ll.

12.

13.

14.

15.

16.

17.

In cases where the type of a data item, as defined in the
subschema invoked by the run-unit, differs from the definition of
that data item in the schema:

@ conversions performed by the DBMS will be in accordance with
the rules specified in the TYPE clause of the DDL for the
SCHEMA and the PICTURE and USAGE specifications of the
subschema DDL for COBOL.

Data items defined in the schema for the database but not
included in the subschema invoked by the run-unit are not
assigned User Work Area locations. Null-values will be placed in

the database for such data items.

The object record occurrence is inserted into a set occurrence
for each set in which the record is defined as an automatic
member. The ordering rules for the set govern the insertion
point of the object record in all of the relevant’ set
occurrences.

The object record is established as the owner of a set occurrence

for each set in which it has been defined as an owner. These set
occurrences are empty at this time; that is, they have no member
records.

The successfully stored record occurrence becomes the current
record of the run-unit.

If suppression of currency updates is not in effect (see SUPPRESS
command), the object record also becomes the current record of
the area in which it is placed, the current record of its
record-name, and the current record of all set-names in which it
is defined as an owner or automatic member.

The SUPPRESS command provides the selective facility to prevent
the object record from becoming the current record of the area,
the current record of its record-name, and the current record of
any or all of the set-names in which it is defined as either an
Owner or an automatic member. When SUPPRESS is used, the
specified currency indicators are not affected by the execution
of the STORE statement.

Use of SUPPRESS cannot prevent the object record from becoming
the current record of the run-unit.

If any of the following conditions are encountered, the STORE
statement is not successfully executed, the database remains in
the state existing prior to the attempted execution, and the
appropriate Error Status Condition code is made available through
the special register ERSTAT. Otherwise, ERSTAT will be zero,
indicating successful execution of the STORE statement.

REV. @ 3 - 94

IDR3846 COBOL DATA MANIPULATION

If the named record is not included in the invoked subschema,

Error Status Condition 1246 results.

If all database entities specified in the LOCATION MODE
clause of the named record are not included in the invoked
subschema, Error Status Condition 1243 results.

If the area in which the named record is to be stored is not
included in the invoked subschema, Error Status Condition
1247 results.

If the object record is to be stored in an area which is not
open, Error Status Condition 1281 results.

If the object record or any record occurrence affected by the
STORE statement is located in an area which is only open for
retrieval, Error Status Condition 1289 results.

If any record occurrence needed by the DBMS for informational
purposes (such as following a search path) is not available
because it is off-line or under the exclusive control of

another run-unit, Error Status Condition 1218 results.

If media space is not available, (i.e., there is insufficient
room in the area specified or in a set where INSERTion would
occur for the new record occurrence), Error Status Condition
1211 results.

If the area specified for the object record, or for any
record selected through its CALC keys as a result of the
execution of the STORE statement, is not one of those
implicitly or explicitly specified in the schema definition
of the relevant record type, Error Status Condition 1223
results.

If the record to be stored would violate a DUPLICATES NOT

ALLOWED clause defined for any of the records or sets
involved, L-:ror Status Condition 1205 results.

If all sets in which the named record is defined as an
automatic member are not included in the invoked subschema,
Error Status Condition 1208 results.

If for any of the set-names involved, a set occurrence which
meets the relevant set selection criterion cannot be found,

Error Status Condition 1225 results.

Error Status Condition 1244 results if all database entities

specified or referenced in the SET OCCURRENCE SELECTION
clauses of those sets in which the named record is defined as
an automatic member are not included in the invoked
subschema.

3 - 95 July 1977

SECTION 3 IDR3946

If all data items specified in the ASCENDING/DESCENDING KEY
clauses or search key clauses of those sets in which the
named record is defined as an automatic member are not
included in the invoked subschema, Error Status Condition

1248 results.

If a CHECK clause applies and any of the stored data items is
detected as invalid, Error Status Condition 1227results.

If the value of the data item in the User Work Area is’ such
that it cannot be converted to the format specified in the
schema for that data item, Error Status Condition 1219
occurs.

18. If the run-unit has not satisfied the privacy locks on all data
items, records, sets, and areas needed to execute the STORE,
Error Status Condition 1204F will result and the run-unit will be
aborted by the DBMS.

REV, G

IDR3646 COBOL DATA MANIPULATION

Content of
Condition ERROR STATUS

Area not open 12¢1

Violation of DUPLICATES NOT ALLOWED clause 12@5

Referenced set-name not in subschema 1268

Incorrect usage-mode for area 12€9

Media space not available 1211

Implicitly referenced area not available 1218

Conversion of value of data item not possible 1219

Illegal area-name 1223

No set occurrence satisfies argument values specified 1225

New value of data item or actual result data item
violates CHECK clause 1227

Concurrent Update Error 1235

Arguments of Location Mode clause not included in subschema 1243

Arguments of Set Occurrence Selection clause not included
in subschema 1244

Specified data item, record, set, or area not in subschema 1246

Referenced area-name not in subschema 1247

Arguments of ASCENDING/DESCENDING KEY clause not in subschema 1248

Fatal - privacy breach attempted ~1264 (12@4F)

July 1977

SECTION 3 IDR3046

Examples and Discussion for the STORE Statement

STORE DEPT.

The STORE command creates the record in the database, assigns it a DBK,
inserts it into all sets for which it is an automatic member, and

creates entries for all sets which it owns. Data items which are
declared in the schema but not defined in the subschema are filled with
null values.

REV. & 3 - 98

IDR2046 COCECL DATA MANIPULATION

EKKKKKKEKKKEEE

* SUBSCHEMA *
KEKKKKKERKEKEE

Function

To name the subschema which will provide the description of the data to
the application program.

General Format

SUBSCHEMA subschema~name of SCHEMA schema—name.

Syntax Rules

l. The schema-name specified must be the name of a schema known to
the DBMS.

The subschema-name specified must refer to a COBOL subschema for
the named schema and must be known to the system.

This statement must be present in any program unit (main program
or subprogram) containing CDML commands. It must appear
somewhere in the Working Storage section in the Pata Division.

If there is more than one program unit in a file, the SUBSCHEMA
statements in those program units must all refer to the same
schema-name and subschema-name. This error cannot be defected by
the DBMS, and must therefore be verified by the user.

General Rules

1. When the COBOL program is preprocessed, CDML will insert
declarations for all records, data-base-identifiers and

dGata-base-data-names defined in the specified subschema. The
COBOL programmer must therefore ensure that other identifiers
declared in the program do not have naming conflicts with the
subschema names.

3 - 99 July 1977

SECTION 3 IDR3@46

Example and Discussion of the SUBSCHEMA Statement

WORKING-STORAGE SECTION.
SUBSCHEMA MY-SUB OF SCHEMA THE-SCHEMA.
01 DUMMY-REC PIC X(1@).
77> ~=DUMMY-VAL COMP VALUE 1.

The above example shows how a sample application program might appear

in a file. This program consists of a main routine and two subroutines
which will to reference the database.

The above statement is replaced by the Working Storage declarations
which serve as the User Work Area.

REV. @ 3. - 1&8

IDR3646 COBCL DATA MANIPULATION

RKKKKKKEKKKK

* SUPPRESS *
HEKKKKKKKRKKE

Function

Suppresses, that is prevents, the updating of any combination of the
currency indicators: Current record of areas, current record of
records, and current record of sets, or optionally, current record of
specific sets.

Optionally, it clears all suppression which exists and indicates new
suppression of currency indicators.

General Format

ALL
RECORD

{CLEAR} SUPPRESS AREA — °

{SET |
[\ il{set-name-1 [set-name-2].. fll] |

Syntax Rules

1. The Sets set-name-1, set-name-2 must be defined in the invoked
subschema.

3 - 11 July 1977

SECTION 3 IDR346

General Rules

1.

REV.

The SUPPRESS statement will dictate the currency indicator
updates performed by succeeding FIND, STORE, FETCH, or INSERT
commands.

If the CLEAR option is not used, all currency indicators
specified in the SUPPRESS statement are in addition to any
currency indicators specified for suppression previously.

If the CLEAR option is used, the suppression now existing on any
currency indicators will be lifted. Then, if the SUPPRESS phrase
is also used, the specified currency indicators will be set for
suppression of currency updates.

If all set-names specified are not included in the invoked
subschema, Error Status Condition 1546 results; otherwise,
special register ERSTAT is set zero, indicating successful
execution of the SUPPRESS statement.

g 3. - 102

IDR3€46 COBOL DATA MANIPULATION

Error Status Condition of the SUPPRESS Statement

Content of
Condition ERSTAT

Set-name specified not in subschema 1546

3 - 163 July 1977

SECTION 3 IDR3046

Example and Discussion of the SUPPRESS Statement

FIND FIRST RECORD EMPLOYEE OF SET DEPI-SET.

SUPPRESS SET CURRENCY UPDATES.

FIND NEXT RECORD EMPLOYEE OF SET DEPT-SET.

CLEAR.

FIND NEXT RECORD EMPLOYEE OF SET DEPI-SET.

FIND NEXT RECORD EMPLOYEE OF SET DEPT-SET.

This program is an example of the use of the SUPPRESS statement. The
first FIND makes the object record current of AREA, RECORD, and all
sets which it owns or of which it is currently a member. The
subsequent SUPPRESS command will turn off all currency updates for any
set. The next FIND will update current of run-unit, current of area,
and current of record, but will not update any set currency pointers.
Thus, any reference to the current of set by an INSERT or FIND command
will reference the set currency indicators defined by the first FIND.

In the example, the object record of the third FIND would be the same
as the object record of the second FIND because the current of set

DEPT-SET was not updated. After the CLEAR command is executed, the
object record of the fourth FIND would be the third record of the set
because the third FIND updated the currency pointer of that set.

REV. @ 3 - 104

IDR3646

SECTION 4

COBCL DDL & DML DIAGNOSTIC

SUMMARY OF MAJOR CODES

Major
Code DML Statement

G1 CLOSE

G2 DELETE

§3 FIND

G5 GET

87 INSERT

88 MODIFY

89 OPEN

16 CLEAR ERROR EXIT DBMS

11 REMOVE

12 STORE

13 PRIVACY KEY

14 INVOKE

15 SUPPRESS

18 IF

19 MOVE

22 FETCH

24 START TRANSACTION

25 END TRANSACTION

26 ABORT TRANSACTION

4 - dl

MET CyBWA.
TC
LAS

COECL DDL AND DML

July 1977

SECTION 4

REV. @

IDR3¢46

NOTE

ERROR CODE FORMAT

is XXYY where
major code is XX

and error code is YY

IDR3046 COBOL DDL AND DML

SUMMARY OF NON-FATAL MINOR CODES

Minor
Code Error Condition

01

82

G3

04

85

G6

07

88

89

+ u
a

{
—

ta
d

15

16

17

18

19

28

21

22

23

24

Area not open

Database-key inconsistent with area-name

Invoke has already been executed

Data items invalid or inconsistent

Violation of DUPLICATES NOT ALLOWED clause

Current of set, area, or record~name not known

End of set or area

Referenced record or set~name not in subschema

Incorrect usage-mode for area

Not used

Media space not availabie

Database-key not available

No current record of run-unit

Object record is mandatory automatic in named set

Object record is mandatory in named set

Record already a member of named set

Deleted record involved

Implicitly referenced area not available

Conversion of value of data item not possible

Not used

Not used, no current owner record of named set

Record not currently a member of named set

Illegal area-nane

Not used

4 - 3 July 1977

SECTION 4 IDR3046

25

26

27

28

29

38

31

32

33

34

35

36

37

38

39

40

4]

42

43

44

45

46

47

48

49

58

REV.

No set occurrence satisfies argument values

No record satisfies the FIND specified

CHECK clause violation

Not used

Violation of deadlock protection rule

Unqualified delete attempted on non-empty set

OPEN blocked

Deleted set occurrence involved

Attempted to find owner of a singular set

Time out |

Concurrent update conflict, refer to 35A

Not used

Not used

Not used

Not used

Record type not a member of named set

Record type not owner of named set

Record type not included in named area

Arguments of LOCATION MODE clause not included in subschema

Arguments of SET OCCURRENCE SELECTION clause not included in
subschema

Location mode of record not specified as CALC

Specified data item, record, set or area not in subschema

Referenced area-name not included in subschema

Arguments of ASCENDING/DESCENDING clause not in subschema

Arguments of within clause not included in subschema

Not used

54

O1F

62F

O3F

O4F

OSF

DOF

O7F

O8F

O9F

16F

11F

12F

13F

1 t
a

h
y

15F

IDR346 COBCL DDL AND DML

Not used

Virtual data item not available, not used

Invalid value for virtual result data item, not used

Value of string data item truncated in User Work Area

Required subschema has been deleted

Required schema has been deleted

Not used

Privacy breach attempted

Attempted to open too many areas simultaneously

Not used

Not used

Not used

Feature not implemented

Internal fatal error

Schema locked

Database files not allocated

Volume not on system

Too many files opened on schemas in concurrent use

User Work Area larger than declared space in dynamic invoke

NOTE
Fatal errors are indicated by
a negative number. (e.g., - 8311
is a fatal error for the FIND

command) .

4 - 5 July 1977

SECTION 4

SUMMARY OF CONCURRENT ACCESS CONFLICTS

Message

1) ATTEMPTED ACCESS TO CONCURRENTLY
UPDATED BLOCK

2) ATTEMPTED ACCESS TO INVALID
BEFORE-IMAGE

3) TRANSACTION MUST ABORT

4) NO TRANSACTION IS IN EFFECT

5) OVERFLOW OF BIT MAP

6) OVERFLOW OF OLDEST BEFORE-
IMAGE TABLE

7) OVERFLOW OF GENERATION NUMBER

alli,"
8) OVERFLOW OF REFORE-IMAg:, FILE

9) ATTEMPTED WRITE BY READ
TRANSACTION

16) INVALID START UPDATE WITHIN
ACTIVE TRANSACTION

11) INVALID START RETRIEVAL WITHIN

ACTIVE TRANSACTION

12) INVALID ABORT TRANSACTION --
NO TRANSACTION ACTIVE

13) INVALID END TRANSACTION --
NO TRANSACTION ACTIVE

OPEN IS INVALID WITHIN ACTIVE
TRANSACTION

14)

15) CLOSE OR EXIT DBMS IS
INVALID
WITHIN ACTIVE TRANSACTION

16) CANNOT READ OR WRITE BEFORE,
LOG OR AFTER FILE

17) LOG FILE NOT OPEN

REV. @ 4 -

IDR3046

Meaning

External conditions

Slow reader - requested before
image has been recycled

A concurrency error has already occurred.

DML program error.

Too many updates or a slow update
or an aborted update.

Same as above.

More than 232 transactions (update
transactions) .

Too much update activity.

DML program error.

DML program error.

DML program error.

DML program error.

DML program error.

DML program error.

DML program error.

DBMS error.

Can't happen currently.

IDR3646 COBOL DDL AND DML

18) OVERFLOW OF READ TRANSACTION More than 232 read transactions.

NUMBER

19) BEFORE-IMAGE FILE NOT OPEN DBA error.

2@) INCONSISTENT TRANSACTION Identifier on END or ABORT

IDENTIFIER TRANSACTION does not match

identifier on START OF TRANSACTION.

The following error conditions are transient: 1,2,3,5,6,8; transient errors
will eventually go away if the transaction is repeated. The following error
conditions are fatal to a subsequent retry of the same transaction:

4,7,9,18,11,14,15,18,19.

4 - 7 July 1977

A DATABASE-KEY 3-56

A LEVEL 77 3-17

ABORT DBMS 3-2

ABORT TRANSACTION 3-17

ABORT TRANSACTION 3-88

ABORT TRANSACTON 3-3

ABOUT THIS MANUAL 1-1

APPLICATION PROGRAMMER 1-1

AREA ORIENTED COMMANDS 3-2

AREA SECTION 2-18

AREA SECTION 2-15

ARFA-ID IN THE WITHIN CLAUSE
3-93

AREA-ID IS 2-33

AREA-ID 3-52

AREA-ID 3-79

ARFA-ID 3-93

AREA-NAME 3-56

AREA-NAME 3-7

AREA-NAME-2. 3-77

ASCENDING/DESCENDING KEY
CLAUSES 3-98

ASCENDING/DESCENDING KEY
CLAUSES 3-96

BEFORE-IMAGING 3-88

CALC KEY 3-52

CALC KEY 3-79

CDML COMMANDS 3-1

INDEX

CDML DECLARATIONS AND COMMANDS
3-9

CDML PREPROCESSOR COMMANDS 3-9

CDML STATEMENT FORMAT RULES
3-3

CDML STATEMENTS 3-2

CDML SYNTAX COMPONENTS AND
NOTATION 3-3

CDML SYNTAX NOTATION 3-7

CHARACETER SET 2-1

CHARACTER SET 3-3

CLEAR ALL STATUS REGISTERS
3-28

CLEAR ERROR COMMAND 3-61

CLEAR ERROR 3-18

CLEAR ERROR 3-2

CLEAR OPTION 3-182

CLEAR 3-3

CLOSE ALL OPEN FILES 3-28

CLOSE 3-19

CLOSE 3-2

COBOL COMPUTATIONAL VARIABLE
ERSTAT 3-61

COBOL DATA MANIPULATION LANGUAGE
(DML) PREPROCESSOR 1-5

COBOL DATA MANIPULATION LANGUAGE
PROCESSOR 3-1

COBOL DDL AND DML DIAGNOSTIC
METHODS 4-1

COBOL RULES 3-6

COBOL SUBSCHEMA COMPILER 3-1

INDEX

COBOL SUBSCHEMA DATA DEFINITION CURRENCY INDICATORS 3-94

LANGUAGE (DDL) COMPILER 1-5
CURRENT OF RUN-UNIT 3-76

COBOL WORKING STORAGE 3-1

CURRENT RECORD OF AREAS 3-101
COBOL~LABEL 3-6

CURRENT RECORD OF ITS RECORD

CODING INSTRUCTIONS 2-1 NAME 3-31

CODING RULES 2-3 CURRENT RECORD OF RECORDS
3-181

COMMA 3-6
CURRENT RECORD OF SETS 3-121

COMPILER ERRORS 2-5
CURRENT RECORD OF SPECIFIC

COMPUTATIONAL ITEM 3-6 SETS 3-161

COMPUTATIONAL VALUE 3-88 DATA AGGREGATE 2-22

COMPUTATIONAL 3-27 DATA AGGREGATES 2-23

COMPUTATIONAL-3 2-29 DATA DESCRIPTION ENTRIES 2-18

CONCURRENCY FUNCTIONS 3-3 DATA DIVISION 2-1

oo ACCESS CONFLICTS DATA DIVISION 2-18

DATA ITEM 2-22

CONTYP 3-18
DATA ITEMS 2-23

CONTYP 3-23
DATA~BASE-DATA-NAME 2-22

CONTYP 3-45
DATA-BASE-DATA-NAME 3-7

CONTYP 3-61
DATA-BASE-IDENTIFIER 3-7

COPY ALL SETS 2-15
DATABASE DATA NAME 2-33

COPY AREA 2-16
DATABASE DEVELOPMENT 1-5

COPY AREA-NAME 2~13
DATABASE DOCUMENTATION 1-1

COPY SET 2-35
DATABASE RECORD TYPE 3-7

COPY SET~NAME CLAUSE 2-13
DATABASE-KEY 3-79

COPY 2-15
DATABASE~KEY 3-98

CURRENCY INDICATOR UPDATES
3-182 DBACP 3-88

CURRENCY INDICATOR 3-77 DEID 3-36

INDEX

DELETE MANDATORY STATEMENT ERROR CODE FORMAT 4~2

22 ERROR STATUS CODES FOR THE FIND
DELETE SELECTIVE FORM 3-22 STATEMENT 3-34

DELETE STATEMENT 3-21 ERROR STATUS 8929 3~65

DELETE 3-2 ERROR STATUS CODES FOR DELETE
STATEMENT 3-25

DELETE 3-32

ERROR STATUS CODES FOR REMOVE
DELETE 3-65 3-85

DELIMITING CHARACTER 3-6 ERROR STATUS CODES FOR THE MODIFY
STATEMENT 3-54

DELIMITING CHARACTERS 3-6

ERROR STATUS CODES FOR THE GET
DEPENDING ON STATEMENT 3-62 STATEMENT 3~38

DESCENDING KEY CLAUSES 3-91 ERROR STATUS CODES FOR THE FETCH
STATEMENT 3-30

DML STATEMENTS 3-17

ERROR STATUS CODES FOR THE INSERT
DOCUMENTATION RELEASES 1-3 STATEMENT 3-47

DUPLICATES NOT ALLOWED CLAUSE ERROR STATUS CODES FOR THE STORE
3-52 STATEMENT 3-97

ELEMENTARY DATA ITEM 2-22 ERROR STATUS CODES FOR THE IF
STATEMENT 3-42

ELEMENTARY NUMERIC DATA ITEM
2-32 ERROR STATUS CODES FOR THE INVOKE

STATEMENT 3-508
END OF TRANSACTION 3-88

ERROR STATUS CODES FOR THE OPEN
END TRANSACTION 3-27 STATEMENT 3-68

END TRANSACTION 3-3 ERROR STATUS CODES FOR THE MOVE
STATEMENT 3-58

ERARFA 3-18
ERROR STATUS CONDITION 8241

ERCASE 3-18 3-23

ERDEC 3~+18 0208 3-23

ERITEM 3-18 8213 3-23

ERITEM 3-62 9218 3-23

ERREC 3-61 0230 3-22

ERROR 2235 3-23 9230 3-23

0301

382

9306

9327

9318

8323

9326

6346

0346

O504F

9504

513

0519

S704F

8785

0786

0766

9713

8714

0718

6735

8746

0804

8804F

8885

0813

6818

3-32

3-32

3-32

3-32

3-32

3-33

3-32

3-32

3-33

3-37

3-36

3-37

3-20

3-45

3-46

3-46

3-45

3-45

3-45

3-46

3-45

3-45

3-51

3-52

3-52

3-51

3-52

INDEX

8819

0823

0946

1635

1282

1285

1208

1288

1269

120F

1211

1219

1223

1223

1225

1243

1244

1244

1246

1247

1247

1248

1248

1277

1886

1813

1913

3-52

3-52

3-65

3-28

3-95

3-95

3-91

3-95

3-95

3-96

3-95

3-96

3-95

3-93

3-95

3-91

3-91

3-95

3-91

3-91

RESULTS

RESULTS

3-91

3-96

3-41

3-4]

3-57

3-95

3-96

INDEX

1913 3-57 SUBSCHEMA STATEMENT 3-10

1946 3-56 EXAMPLE AND DISCUSSION OF THE
SUPPRESS STATEMENT 3-164

2535 3-17
EXAMPLES AND DISCUSSION FOR THE

NNG1 3-66 STORE STATEMENT 3-98

NNG4 3-88 EXAMPLES AND DISCUSSION FOR THE

CLOSE STATEMENT 3-26
NNG@6 3-88

EXAMPLES AND DISCUSSION FOR THE
NN@7 3-78 ON ERROR CLAUSE 3-62

NNO 3-66 EXAMPLES AND DISCUSSION FOR
REMOVE 3-86

NN18 3-66
EXAMPLES AND DISCUSSION FOR THE

NN26 3-78 DELETE STATEMENT 3-26

NN26 3-79 EXAMPLES AND DISCUSSION FOR THE

PRIVACY KEY 3-72
NN43 3-78

EXAMPLES AND DISCUSSION FOR THE
NN44 3-79 OPEN STATEMENT 3-69

OF THE SUPPRESS STATEMENT EXAMPLES AND DISCUSSION FOR THE
3-183 INSERT STATEMENT 3-48

ERROR STATUS CONDITON @835 EXAMPLES AND DISCUSSION OF THE
3-52 MODIFY STATEMENT 3-55

ERROR STATUS CONDITON 6931 EXAMPLES AND DISCUSSION OF THE
3-66 MOVE STATEMENT 3-59

ERROR STAUS CONDITION 1218 EXAMPLES AND DISCUSSION OF THE

3-95 RECORD EXPRESSIONS 3-81

ERSET 3-18 EXAMPLES AND DISCUSSIONS OF THE

IF STATEMENT 3-43
ERSET 3-61

EXCLUSIVE PHRASE 3-65
ERSTAT 3-18

EXIT DBMS 3-2
ERSTAT 3-24

EXIT DBMS 3-28
ERSTAT 3-37

FDR 1-3
ERSTAT 3-41

FETCH STATEMENT 3-29
ERSTAT 4-53

FETCH 3-2
EXAMPLE AND DISCUSSION OF THE

FINAL DOCUMENTATION RELEASE

1-3

FIND STATEMENT 3-31

FIND 3-2

FIND 3-29

FIND 3-65

FIRST RECORD OF 3-78

FUNCTION 3-9

GENERAL FORMAT 3-9

GENERAL RULES 3-9

GENERIC TERMS 3-6

GET STATEMENT 3-29

GET STATEMENT 3-36

GET STATEMENT 3-37

GET 3-2

GET 3-32

GET 3-36

HOW TO USE THE CDML
PREPROCESSOR 3-1

IDENTIFICATION DIVISION 2-1

IDENTIFIER 3-6

IDR 1-3

IF STATEMENT 3-46

IF 3-3

INITIAL DOCUMENTATION RELEASE
1-3

INSERT POINT 3~93

INSERT 3-65

INDEX

INSERT 3-3

INSERT 3~32

INSERT 3~44

INTEGER 3-6

INTEGER~1 3+75

INVOKE STATEMENT 3-2

INVOKE STATEMENT 3~49

INVOKE 3-2

INVOKE 3-28

INVOKING THE COMPILER 2-5

LAST RECORD OF 3-78

LEVEL 77 COBOL IDENTIFIER 3-88

LEVEL 77 IDENTIFIER 3-75

LEVEL 77 IDENTIFIERS 3-71

LEVEL 77 VARIABLE 3-57

LEVEL NUMBER 2-23

LINE BOUNDARY 3-6

LITERAL COMPONENT 3-6

LITERAL INTEGER VALUE 3-6

LITERAL 3-6

LOCATION MODE CLAUSE FOR THE
OBJECT RECORD 3-52

LOCATION MODE CLAUSE 3~98

LOCATION MODE IS CALC CLAUSE
3-22

LOCATION MODE IS DIRECT 2~33

LOGGING 3-27

MAJOR CODE 4-]

INDEX

MINOR CODES 4-3 PICTURE CLAUSE 2-26

MODIFY STATEMENT 3-51 PICTURE CLAUSE 2-33

MODIFY 3-2 PRELIMINARY DOCUMENTATION
RELEASE 1-3

MODIFY 3-3

PRIOR RECORD OF 3-77
MODIFY 3-32

PRIOR 3-77
MODIFY 3-65

PRIVACY KEY STATEMENT 3-6
MOVE STATEMENT 3-56

PRIVACY KEY 2-9
MOVE 3-3

PRIVACY KEY 3-2
MULTIPLE PRIVACY CLAUSES 3-71

PRIVACY KEY 3-78
NEXT RECORD OF 3-77

PRIVACY LOCK 3-71
NEXT 3-77

PRIVACY LOCKS FOR THE OBJECT
NUMERIC DATA DESCRIPTION ENTRY RECORD 3-23
2-32

PROGRAMMING TIPS 3-1
OBJECT RECORD OCCURRENCE 3-87

PROTECTED PHRASE 3-65
OBJECT RECORD 3-22

| PUNCTUATION 2-2
OCCURS CLAUSE 2-24

RECORD CONTROL ENTRY 2-18
OCCURS CLAUSE 2-25

| RECORD NAME 2-28
OCCURS CLAUSE 2-28

| RECORD OCCURENCE 3-98
ON ERROR CLAUSE 3-68

RECORD ORIENTED COMMANDS 3-2
OPEN STATEMENT 3-64

RECORD SECTION 2-18
OPEN 3-2

RECORD SECTION 2-17
PACKED DECIMAL DATA 2-38

RECORD SELECTION EXPRESSIONS
PDR 1-3 3-73

PERIOD 3-6 RECORD SELECTION EXPRESSIONS
3-9

PICTURE CHARACTER-STRING 2-26

RECORD TYPE 3-52
PICTURE CHARACTER-STRING 2-32

RECORD-NAME 3-7
PICTURE CHARACTER-STRING 2-27

RECORD-SELECTION-EXPRESSION

3-31

REMOVE STATEMENT 3-22

REMOVE

REMOVE

REMOVE

REMOVE

3-3

3-32

3-65

3-83

RENAMING CLAUSE 2-13

RENAMING SECTION 2-10

RENAMING SECTION 2-11

REPEATING GROUP 2-22

RETRIEVAL

RETRIEVAL

ROLL BACK

RUN-UNIT ORIENTED COMMANDS

@829 3-52

209 3-23

3-88

SCHEMA NAME 3-6

SEMICOLON

SEPARATE CHARACTER PHRASE

SEPARATE CHARACTER PHRASE

3-6

SET OCCURRENCE CLAUSES

SET OCCURRENCE SELECTION

CLAUSE 3-98

SET ORIENTED COMMANDS

SET SECTION 2-18

SET SECTION 2-34

SET TYPE

SET-NAME

SET-NAME-3

3-7

3-7

3-76

INDEX

SIGN CLAUSE 2-31

SPACE 3-6

START OF TRANSACTION COMMAND
3-17

START TRANSACTION COMMAND 3-27

START TRANSACTION COMMAND 3-87

START TRANSACTION 3-3

STORE STATEMENT 3-90

STORE 3-2

STORE 3-65

SUBSCHEMA IDENTIFICATION 2-7

SUBSCHEMA NAME 2-8

SUBSCHEMA RECORD DESCRIPTION
ENTRY 2-22

SUBSCHEMA STATEMENT 3-1]

SUBSCHEMA 3-99

SUBSCHEMA-NAME 3-6

SUMMARY OF MAJOR CODES 4-1

SUPPORTING COMMANDS 3-3

SUPPRESS COMMAND 3-45

SUPPRESS COMMAND 3-94

SUPPRESS STATUS 3-96

SUPPRESS 3-161

SUPPRESS 3-3

SUPPRESS 3-31

SUPPRESSION OF CURRENCY
UPDATES 3-94

SYNTAX COMPONENT NAMES 3-7

INDEX

SYNTAX NOTATION 3-3 WITHIN CLAUSE 2-21

SYNTAX RULES 3-9 WITHIN CLAUSE 3-98

SYNTAX SKELETON 3-9 WORD FORMATION 2-3

SYNTAX SKELETONS 3-8 TNS APPLICATION PROGRAMS

TERMINATING CDML STATEMENTS
3-4

TERMINATION OF A RUN-UNIT 3-28

THE UPDATING 3-181

USAGE CLAUSE 2-28

USAGE CLAUSE 2-29

USAGE COMPUTATIONAL 3-17

USAGE COMPUTATIONAL 3-75

USAGE IS DATABASE-KEY 2-29

USAGE IS DISPLAY CALUSE 2-36

USAGE IS DISPLAY CLAUSE 2-29

USAGE-MODE IS RETRIEVAL 3-65

USAGE-MODE IS UPDATE 3-65

USAGE-MODE PHRASE 3-65

USER WORK AREA MAP 2-5

USER WORK AREA 3-2

USER WORK AREA 3-29

USER WORK AREA 3-36

USER WORK AREA 3-7

USER WORK AREA 3-99

USER WORKING AREA 2-28

USER WORKING AREA 2-29

USING THE COMPILER 2-5

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09

