
Initial Documentation Release

IDR 3043
PRIME COMPUTER

USER’S GUIDE
FOR THE DATABASE
ADMINISTRATOR

First Printing July 1977

Copyright 1977 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 91701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such
license.

REV. 9 i- 2

CONTENTS

Section Title

SECTION 1 INTRODUCTION

ABOUT THIS MANUAL
PRIME DBMS DOCUMENTATION

Documentation Releases

OTHER RELATED PRIME DOCUMENTS
LIST OF DBMS REFERENCE DOCUMENTS

SECTION 2 PRIME'S DBMS ENVIRONMENT

INTRODUCTION
HARDWARE

Speed
Integrity and Security
Hardware Upgrade and Expansion

PRIMOS ARCHITECTURE

File and Access Management
Integrity in PRIMOS
Security Within PRIMOS
Buffer Pooling
Data Structure Assistance
Speed
Maintainability

DBMS ARCHITECTURE

SECTION 3 STORAGE STRUCTURE SUPPORT

INTRODUCTION

Database Layout
Area Format
Set Format & Search Keys
Location Mode
Ease of Expansion
Space Utilization

SECTION 4 THE PRIME VIEW OF SOME COMMON
DBMS CONCEPTS

INTRODUCTION

Data Structures

Page

2-4
2-4
2-4

2-5
2-5

2-5

July 1977

SECTION 5

CONTENTS (Cont)

Access Strategies
Data Independence
Privacy
Integrity
Shar ing/Concurrent Access with Most DBMS
Sharing/Concurrent Access with Prime's DBMS
Preserving the Physical Integrity of the Database

RECOVERY

The Operation of the Run-Unit
Roll Back
The Recovery Processor
Recovery Facilities

DATABASE ADMINISTRATOR SUPPORT

Pr ivacy-Locking
Caretaker Functions
Creating the Database

INTRODUCTION

GLOBAL EXTENSIONS

Database Transactions (DBT'S)
INVOKE Command

Privacy Keys
ON ERROR Clause
Dynamic Reference

SPECIFIC EXTENSIONS

Item Type Extensions
Data Aggregates
FORTRAN Record Overlays

OMISSIONS/RESTRICTIONS
PENDING

SECTION 6 DBMS FILES

INTRODUCTION
SCHEMA TABLE
SUBSCHEMA TABLE
AREA FILE
SET FILE
CAIC FILE
LOG FILE
BEFORE-IMAGE FILE

REV. @ i

EXTENSIONS/RESTRICTIONS

4-1
4-2
4-3
4-3
4-3
4-4
4-6

4-6
4-7
4-7
4-7

4-8

4-8
4-8
4-9

CONTENTS (Cont)

AFTER-IMAGE FILE

SECTION 7 DATABASE GENERATION

INTRODUCTION
SCHEMA CREATION
FILE ALLOCATION

SECTION 8 DATABASE MAINTENANCE TECHNIQUES

INTRODUCTION
MEDIA SPACE VERIFICATION
MEDIA SPACE CLEAN-UP AND EXPANSION
CONCURRENCY
RECOVERY
DATABASE BACKUP

DML COMMAND PROCESSOR CLEAN-UP
PRIVACY KEYS

EXPANSION DIALOG
OTHER ALTERATIONS

SECTION 9 DBA COMMAND PROCESSOR (DBACP)

INTRODUCTION
PROCEDURES

Concurrent Run-Units

SECURITY

Data Administrators
Schema Privacy Locks

COMMAND SYNTAX

DBACP COMMAND VERBS AND OBJECTS

COMMAND DESCRIPTION
AFTER-IMAGING

Function

Format

AREA

Function

Format

AREAS

Function

Format

9-2
9-3
9-5
9-6

July 1977

CONTENTS (Cont)

BEFORE-IMAGING

Function

Format

CALC OF RECORD

Function

Format

CALCS

Function

Format

FILES

Function

Format

KEY OF LOCK

Function

Format

KEYS

Function

Format

LISTING

Function

Format

LOGGING

Function

Format

SCHEMA

Function

Format

SCHEMAS

Function

Format

REV. @ i - 6

9-18

9-18
9-19

9-11

9-11
9-11

9-12

9-12
9-12

9-13

9-13
9-13

9-15

9-15
9-15

9-16

9-16

SET

Function

Format

SETS

Function

Format

SUBSCHEMA

Function

Format

SUBSCHEMAS

Function

Format

TAPE

Function

Format

APPENDIX A

APPENDIX B MAXIMUMS

CONTENTS (Cont)

PERFORMANCE NOTES

9-22

9-22
9-22

9-23

9-23
9-23

9-24

9-24
9-24

9-25

9-25
9-25

S-26

9-26
9-26

A-1

B-1

July 1977

W
w

W
w
W
w

W
N

REV. @

ILLUSTRATIONS

Title

PRIME DBMS Documentation

Database Documentation Releases

Hardware Ring Structure

DBMS Layout

Area Format

Set Structure P
e
P
y

O
n
W

R
O

FOREWORD

The Database Administrator User's Guide was written to aid the Database
Administrator in determining what resources are available, how Prime's
DEMS is structured and the methods by which a database can be created
and maintained. This User's Guide serves three purposes:

1. to describe Prime's DPMS product for the prospective user,

2. to describe the Database Administrator's Command Processor, and

3. to provide instructions on database maintenance.

DOCUMENTATION EXCELLENCE

Prime is striving to maintain the highest documentation standards. ‘To
achieve this goal, the Database documentation will be published in
three documentation releases as described in section 1. This is the
Initial Documentation Release. Prime asks that each serious Database
user correspond his comments about this manual concerning technical
accuracy and additional information needed to implement the task of

Database Administrator.

Robert E. Dawes, Technical Writer
Technical Publications Department
Prime Computer Inc.
145 Pennsylvania Avenue,
Framingham, Ma. 81761

1 - 9 July 1977

ACKNOWLEDGEMENT

Prime Computer, Inc. wishes to formally acknowledge the work of the
CODASYL Programming Language Committee (PLC) and the Data Description
Language Committee (DDLC). The Data Base Task Group (DBTG) of the PLC
produced in April, 1971 a report containing the specifications of a
standardized data base management facility consisting of a Data
Description Language for describing a database, a Data Description
Language for describing that part of the database known to a COBOL
program, and a Data Manipulation Language for COBOL.

The Prime DBMS, portions of which are described in this manual, is
based almost completely on the April 1971 DBTG specifications. Prime
Computer is also participating in the ongoing work of CODASYL in the
area of data base management through its membership on the DDIC and on
the Data Base Language Task Group (DBLTG) of PLC.

REV. @ i - 1g

IDR3@43 INTRODUCTION

SECTION 1

INTRODUCTION

ABOUT THIS MANUAL

This manual is oriented toward knowledgeable Database Management System
(DBMS) personnel (i.e., the potential Database Administrator or
consulting expert) in Data Management. Readers are invited to make a
direct comparison of the functional capabilities provided with the
DBTG-71 specification.

The reader is assumed to be acquainted with the basic concepts of
Virtual Memory Operating Systems; he should also be intimately
familiar with Data Management in general, the benefits of Database
Management in particular, the DBTG-71 Report, and relevant Prime
product bulletins.

PRIME DBMS DOCUMENTATION

DBMS documentation (Figure 1-1) is provided for both the Database
Administrator and the application programmer. The Database
Administrator uses two manuals: 1) The Prime Database Administator
User's Guide and 2) The Prime DBMS SCHEMA Data Description Language
(DDL) REFERENCE Manual.

The application programmer uses two manuals per application language:
1) the Prime FORTRAN Reference Manual for DBMS and the companion Prime
FORTRAN User's Guide; 2) The Prime COBOL Reference Manuals for DBMS
and the companion Prime COBOL User's Guide.

The Prime DBMS SCHEMA DDL Reference Manual contains definitions and
rules for using the DDL syntax and "How to Use" procedures for the
Schema DDL Compiler.

The application programmer uses the COBOL and FORTRAN Reference Manuals
for DBMS for syntax definition and rules and "How to Use" procedures
for the Subschema DDL Compilers and DML Preprocessors.

1 -] July 1977

SECTION 1

COMPILATION
PROCEDURES

ERROR
MESSAGE
DEFINITION

REFERENCE
MANUAL

Figure 1-1.

REV. g

IDR3043

CREATION
PROCEDURES

.
D
E
V
E
L
O
P
M
E
N
T

DATABASE
ADMINIS-
TRATORS
GUIDE

PRIME'S
DBMS
FEATURES

COBOL
REFERENCE
MANUAL

FOR
DBMS

FORTRAN
REFERENCE
MANUAL COBOLMOR USER
DBMS GUIDE

FORTRAN
USER
GUIDE

PRIME DBMS Documentation

IDR3243 NTRODUCTION

Documentation Releases

Prime provides three documentation releases (see Figure 1-2) for every
new product: The Initial Documentation Release (IDR), the Preliminary
Documentation Release (PDR), and the Final Documentation Release (FDR).

The Initial Documentation Release (IDR) provides advanced information.
The intent is to provide usable, accurate information without regard to
style and format.

The Preliminary Documentation Release (PDR) is the second draft by the
writer. It provides more complete and accurate information about the
product, but does not represent the final document format.

The Final Documentation Release (FDR) is the complete product
description up to the stated software revision number. This Release is
edited, formatted and presented in Prime's highest professional
standards. Users will be notified when this release is available.

OTHER RELATED PRIME DOCUMENTS

© PRIMOS FILE SYSTEM USER GUIDE (MAN2664)

Oo PRIMOS INTERACTIVE USER GUIDE (MAN26@2)

oO PRIMCS COMPUTER ROOM USER GUIDE (MAN26@3)

O PROGRAM DEVELOPMENT SOFIWARE USER GUIDE (MAN1879@)

© FORTRAN IV USER'S GUIDE (MAN3@57)

© COBOL USER'S GUIDE (MAN2797)

1 - 3 July 1977

SECTION 1 IDR3043

PRIME
INITIAL
DOCUMEN-
TATION

 “PROVIDES IMMEDIATE
INFORMATION

RELEASE

(IDR) (
—

PRIME
PRELIMINARY
DOCUMEN-
TATION

EDITED & FORMATTED
INFORMATION

RELEASE
(PDR) r

 PRIME
FINAL
DOCUMER-
TATION

BETTER
PRESENTATION

RELEASE

(FDR)

Figure 1-2. Database Documentation Releases

IDR3043 INTRODUCTION

LIST OF DBMS REFERENCE DOCUMENTS

This document is written assuming that the reader has a certain level
of knowledge concerning the concepts and environment relevant to the
Prime DBMS. To define the prerequisite level of understanding, the
following list of documents serves as a reference. The required
reading list includes some information on the PRIMOS system as well as
the n CODASYL (DBTG-71) report.

Required Reading:

1. CODASYL Database Task Group April 1971 Report (DBIG-71)

2. "“PRIMOS IV AND V", Prime Product Bulletin

3. “Database Management System (DBMS)", Prime Product Bulletin

Suggested Reading:

1. DBMS Concepts: (either of the following, or equivalent)

"Database Systems: A Practical Reference" - Ian Palmer

QED Information Sciences
Wellesley, Mass. 1975

"An Introduction to Database Systems" - C. J. Date.
Addison-Wesley, Reading, Mass., 1975

“Computer Database Organization" - James Martin.
Prentice Hall, Englewood Cliffs, N.J., 1975

2. Balanced Trees and B-Tree Variations: Set Implementation
Technique

"Sorting and Searching" - D. E. Knuth
“The Art of Computer Programming, Volume III"

Addison-Wesley, Reading, Mass., 1975

3. CODASYL Systems:

CODASYL Database
Management Systems,
ACM Computing Surveys
Vol. 8, No. 1, March 1976

1 nr) July 1977

IDR3043 PRIME'S DBMS ENVIRONMENT

SECTION 2

PRIME'S DBMS ENVIRONMENT

INTRODUCTION

This section focuses on the contribution of the environment provided by
the Prime hardware and PRIMOS software to the achievement of the design
objectives of the DBMS.

HARDWARE

Prime's DBMS operates on a Prime 488 system or higher. The Prime 480
and 5@@ are true virtual memory machines with a large address space
(512 Megabytes per user for up to 63 users). While they are designed
specifically for time-sharing applications, any multi-user environment
benefits from their memory management (for example, transaction

processing).

In addition to the multi-user environment capability, the hardware
contributes significantly to the speed, integrity, security, and
upgrade flexibility of the entire system.

Speed

Hardware design has aided overall speed in a Prime system. Instruction
execution speed is greatly enhanced by utilization of a cache memory
which remembers data from recent memory references. Subsequent
instructions referring to the same locations actually get their data
from the cache. This in effect turns those memory reference
instructions into register reference instructions, for a speed
enhancement of approximately 3:1.

Subroutine Calls: A direct hardware implementation for handling
subroutine calls and passing arguments significantly reduces the
overhead involved with calling subroutines. This is extremely
advantageous to systems such as DBMS where subroutine calling is heavy.

Paging Speed: Paging speed has been enhanced by the new disk storage
module because its record size is identical to the central processor
memory page size; this simplifies buffering and paging.

Page Size: The large page size, 2K bytes, increases the likelihood that
desired information will be in high-speed memory since instructions and

data that are used together frequently occur together, e.g.,the
contents of a record. Furthermore, the implementation of the storage
structure of the DBMS has carefully taken advantage of this large page

size.

2 - 1 July 1977

SECTION 2 IDR3943

Integrity and Security

Integrity and security is an important aspect of database system
requirements. Prime's hardware environment includes internal
transmission checking and a ring structure.

Prime CPU memory has always been highly reliable because Prime hardware
performs parity checks at both ends of every internal transmission.
The memory for the Prime 408 and 5@@ machines is built in an
error-correcting array: no word can be incorrectly transmitted except
by multiple failure.

Contributing to the integrity of the system is enhanced security. The
hardware is ring-structured (see Figure 2-1) to protect software and
data. This ring structure enforces security by checking every memory
address reference at the time it is generated by the hardware, and
trapping unauthorized references to any lower-level ring.

 NON-DBMS
USER

Figure 2-1. Hardware Ring Structure

REV. @ 2 - 2

IDR3843 PRIME'S DBMS ENVIRONMENT

PRIMOS resides in the innermost ring, where it is accessible only via
legitimate calls. ‘The DBMS resides in a ring of its own, just outside
the PRIMOS ring. User programs reside outside the PRIMOS and DBMS
rings and consequently cannot access anything in those rings (for
example, password tables) except via legitimate function calls (which
are examined for proper authority). Any unauthorized attempt to READ,
EXECUTE, Or WRITE in any ring from outside causes the offender to be
trapped by the hardware and aborted.

The Prime storage module disk controiler uses a_ sophisticated
polynomial algorithm capable of detecting error bursts exceeding 38
bits, and correcting bursts up to 1] bits in length. This means that
transient failures which are largely fast intermittent errors, are
virtually eliminated. In other words, unrecoverable disk errors rarely
happen anymore, except on disks that are actually damaged.

Hardware Upgrade and Expansion

Prime has designed an upgrade and expansion capability into all Prime

machines.

The procedure for upgrading the CPU of a Prime machine to a Prime 400
or higher consists solely of replacing the current boards’ with
different ones.

Similarly, the procedure for expanding high-speed memory consists
solely of plugging in an additional memory board or replacing an
older/smaller/slower board with an improved one. PRIMOS adjusts

completely and automatically to its new environment.

Adding more disk memory requires only the additional step of altering
the PRIMOS configuration table to reflect the addition. A command
exists to perform this function (see Section 9).

The architecture of the DBMS reflects this ease of expansion in its
treatment of areas, allowing a database to expand naturally as new disk

facilities become available.

PRIMOS ARCHITECTURE

The flexible architecture of the Prime hardware/software complex

provides a substantial base for the DBMS.

PRIMOS (Prime Operating System) itself has a great deal to offer the

DBMS. Most obvious is its orientation toward multiple-users. Beyond
that includes the provision of device independence. PRIMOS offers a
system in which a user can simply log in and process files with
virtually no concern forphysical protocol, regardlessofhis approach
(interactive or not) or the services he desires (DBMS or not, etc.).

2 - 3 July 1977

SECTION 2 IDR3043

File and Access Management

PRIMOS also. contributes the services of its File Management System
(FMS). PRIMOS interfaces to DBMS via a Random Access Manager (RAM),
provides utilities and an optimizing ANS FORTRAN IVCompiler - the
implementation language of Prime's DBMS. These software components
make significant contributions to the speed and integrity of the DBMS,
provide a foundation for its data structure, and add some lower-level
capabilities.

FMS is used as the undercarriage of the DBMS for its physical I/O
management. RAM provides the interface to DBMS, which accomplishes

logical file management.

RAM multiplexes the use of logical file units, thereby extending the
concept of "virtualization" to files. This allows more files to be
open than there are file units to use, thereby rendering these physical
restrictions invisible to the user.

(The word "file" has no defined usage in the DBTG-71 Report, and
consequently is reserved by Prime to mean the physical entities upon

which the FMS operates.)

Integrity in PRIMOS

Another contribution by PRIMOS is its built-in integrity. FMS threads
the physical blocks of its files bi-directionally. A utility (FIXRAT)
is provided to examine and repair file faults using this threading.

RAM accomplishes concurrent update access via its total control over
the buffer pool, where it provides for multi-threading of user requests
on the DBMS I/O and supports database recovery procedures.

Security within PRIMOS

Security is provided by PRIMOS through its access rights. FMSprovides
dual password protection at the physical file level: one password
designated as "Owner" and another as "Non-Owner". These are each
associated with different access rights.

FMS provides different types of access rights:

No-Access Delete-Only
Read-Only Delete-Truncate-Read
Write-Only Delete~Truncate-Write
Read-Write Full-Access

Buffer Pooling

Another PRIMOS feature is the efficient memory management. FMS
provides physical blocking and buffer-pooling, for efficient memory
management at the data level (as opposed to memory management at the
instruction level; i.e., virtualization) .

REV. @ 2 - 4

IDR3043 PRIME'S DBMS ENVIRONMENT

RAM provides logical buffer-pooling, the sharing of common files and
distribution of data to requesting users. It selects its buffers using
a Least-Recently—Used algorithm.

This architecture provides cascaded levels of memory management, each
adding advantages of its own, and building on the previous level.
Virtualization is extended in both directions from the page level
(PRIMOS) to the file level at one end (by RAM) and the word level at
the other (by CPU cache), while two levels of buffer pooling provide
physical (FMS) and logical (RAM) sharing.

Data Structure Assistance

PRIMOS construction and utilization of segment directories, essentially
a file directory at a physical level, provide a sound foundation (with
FMS) for DBMS file structure.

FMS provides direct access files which DBMS utilizes to implement its
data structure, simultaneously profiting from the other FMS benefits
mentioned above.

Speed

The newest and most crucial feature of PRIMOS to the DBMS is its
ability to share common program space with multiple users. All DBMS
code is re-entrant, and is therefore shared single-copy code, but
PRIMOS simultaneously treats it as though it were a_user-—bound
subroutine. Thus the advantages of shared code (minimizing paging) and
user calls (no interrupts with low-overhead parameterization are both
realized).

Among the single-copy items shared by the DBMS, besides PRIMOS and DBMS
itself, are the object schema (database model), the buffer pool, and
tables of locks for controlling concurrent use.

Maintainability

PRIMOS facilities include its optimizing ANS FORTRAN Compiler, allowing
the entire DBMS to be written in a higher-level language. This
enhances its maintainability, yet the optimization minimizes the
execution price of using a higher level language.

DBMS ARCHITECTURE

DBMS has been designed to place independent features into separate
independent components, as enumerated below:

1. Schema Data Definition Language (Schema DDL) Compiler

2. COBOL Subschema Data Definition Language (Subschema DDL) Compiler

2 ~ 5 July 1977

SECTION 2 IDR3843

3. FORTRAN Subschema Data Definition Language (Subschema DDL)

Compiler

4. COBOL Data Manipulation Language Pre-Processor

5. FORTRAN Data Manipulation Language Pre-—Processor

6. Database Administrator Command Processor (DBACP)

It is especially important to note that this separation of components

permits definition of databases, generation of databases, and

definition of private user views of these databases (subschema) to

proceed independently, each in the language most suitable for it. The

data manipulation commands are pre-processed to produce ANS COBOL or

ANS FORTRAN final versions of the application program.

The DBMS has also made use of modularity in that it has re-used

technigues wherever legitimate (for example, set ordering and search

keys share a single high-speed technique; database generation and

database expansion are virtually identical). Additionally, many

low-level modules are used in more than one of the above components.

REV. @ 2 - 6

IDR3843 STORAGE STRUCTURE SUPPORT

SECTION 3

STORAGE STRUCTURE SUPPORT

INTRODUCTION

This section describes some features of PRIME's DBMS storage structure
in terms of database layout, area layout, set format and search keys.

The DBMS is capable of handling many different databases, each with a
structure which may be as complicated as a full network.

Although each DBA controls the databases at his installation, the
existence of passwords for all schema operations provides for a
separation of authority.

Database Layout

The DBMS layout is illustrated in Figure 3-1. Multiple databases imply
the need for a schema directory. Each entry in the schema directory
holds an internal identifying number and a pointer to a table which
holds information about the database. (schema table). The schema
table includes a subschema directory (which lists the subschema
associated with this schema) and definition tables which define this
database with respect to space on physical volumes, and all information
contained in the schema DDL.

The set and record definitions are the logical view of the database and
the area definitions are the physical view. The implementation of
their relationship is naturally a crucial determinant of the
effectiveness of the entire system. .

Area Format

The Area definition is illustrated in Figure 3-2. Each area is divided
into buckets. The buckets are chosen to be multiples of physical block
Size appropriate to house the specific record types assigned to them.
Because of the relatively large page size (and its correspondence to
block size), this multiple is often 1, which contributes greatly to the
effectiveness of paging in data records.

3 - Jd July 1977

SECTION 3

SCHEMA DIRECTORY (SCHDIR)

REV. @

NAME| ID |

t

’

NAME £ IDL

a

!

t

”

AREA

FILES

~

CALC
FILES

FILES “
FOR

SCHEMA £
SET
FILES

~N

SUB
SCHEMA
TABLES
NS

Figure 3-1

IDR3043

~

SCHEMA TABLE £

SCHEMA DDL INFORMATION

AREA DDL AND FILE
INFORMATION

RECORD DDL AND
FILE INFORMATION

SET DDL AND FILE INFORMATION

MISC.

ALPHABETICAL DIRECTORIES
LOCK TABLE
LITERAL TABLE

 SUBSCHEMA DIRECTORY (SCHDIR)

DEMS Layout.

IDR3043

tC: SUPPORT

AREA FILE BUCKET £
j
/
/
/ RECORD

BUCKET | / OCCURRENCES
/
/
/
/
/
/

AVAILABLE SPACE

WM

\

\

1
\
\| /
\
\

\ BUCKET DIRECTORY

BUCKET n \

\

\| POINTER TO
' LAST BUCKET

POINTER TO
NEXT BUCKET

Figure 3-2 Area Format.

July 1977

SECTION 3 TIDR3043

Each bucket has its data records built down from the top with a

directory at the bottom. If necessary, any data record may span many
buckets, but no matter how it expands or contracts, it will always be
located through the bucket to which it was originally assigned.

Each record's database key is a pointer to it built of several
portions: 1) the identity of the area within the area definition for
the database (up to 1K areas/databases), 2) the bucket within the area
(up to 1M buckets/area), and 3) the directory entry within the bucket
(up to 255 entries/bucket). The key also contains the record type
identifier (up to 1K/database). Since the record never changes bucket
directories, the invariance of the database key is preserved.

Set Format & Search Keys

The Set structure is illustrated in Figure 3-3. Sets are implemented
via external multi-level pointer arrays which are a variation of
"B-trees" (as described by Knuth). The leaves of the B-trees are
database keys. The nodes of the B-trees are indices of the next lower
level in the B-tree.

The Prime B-tree variation has several advantages. First, the nodes
are doubly-threaded (left and right) for fast traverse. Second, the

node size (fanout) is chosen ona type of set basis to reflect the
average significance of database key occurrences for the type of set.
Third, the association of nodes with page size leads to quicker access.

A separate B-tree is also built for each search key of a set. Thus the
R-tree mechanism does double—-duty as a fast data inversion method.

The entry for each owner occurrence in the set directory contains a
pointer to the head of the B-tree relevant to that occurrence.

To enhance traverse, the nodes of the B-tree are not only threaded
bi-directionally, but point back to the parent node, aiding in

insertion and removal of member entries.

Any database may span any number of available volumes, even though the
DBMS I/O is’ founded on the FMS (which cannot span volumes). This is
accomplished by restricting the files containing types of sets, calc
tables and data base areas to a partition of a volume, while allowing
different files to reside on any available volume.

REV. @ 3 - 4

SET FILE

SET DIRECTORY

B-TREE NODE SPACE
FOR MEMBERLIST 1

B-TREE NODE SPACE
FOR MEMBERLIST m

IDR3043 STORAGE STRUCTURE SUPPORT

SET DIRECTORY ENTRY Z

OWNER DBK

POINTER TO ROOT NODE FOR
MEMBER LIST !

POINTER TO ROOT NODE FOR
MEMBER LIST m

POINTER TO ROOT NODE FOR
SEARCH LIST |

 POINTER TO ROOT NODE FOR
SEARCH LIST 5

B-TREE NODES

TREE NODE LEAF NODE

™~

POINTER TO PARENT NODE POINTER TO PARENT NODE

B-TREE NODE SPACE
FOR SEARCH LIST |

POINTER TO NODE TO LEFT POINTER TO NODE TOLEFT

POINTER TO NODE TO RIGHT POINTER TONODE TO RIGHT

 B-TREE NODE SPACE
FOR SEARCHLIST 5

CHILD NODE POINTER £

KEY! KEY!

CHILD NODE POINTER| MEMBER DBK |

KEY &

KEY £

 MEMBER DBK 2

Figure 3-3 Set Structure.

July 1977

SECTION 3 IDR3043

Given the orientation of the DBMS toward rapid access, one would expect
speed to be a primary objective or the implementation approach.
B-trees have demonstrable advantages for retrieval, update, and
deletion when compared to other data structures involving ordered sets.

B-trees themselves are tunable (by varing fanout) for measuring space-
time tradeoffs. Consequently, Prime has chosen to use B-trees
exclusively, which adds uniformity to the efficiency of this approach.

LOCATION Mode

Location mode CALC, is implemented as a hashing algorithm into a table
of database keys. Collisions are resolved by a threaded list overflow
technique which links all calc records having the same hash address
together. Record occurrences with identical CALC keys (DUPLICATES) are
also threaded.

Placement of the data is of limited concern to a Prime DBMS Database
Administrator (DBA) because of the Prime hardware optimizing
random—-sectoring technique; proximity other than same page is
Meaningless. To take advantage of the benefits of page-proximity, the
DBA can designate record-types in sets to have a location mode which is
via set. The DBMS then stores these member record occurrences as close
to their owner occurrence as possible.

If no location mode is specified, a record is stored in the next bucket
with available space.

Ease of Expansion

A major concern of the Database Administrator is the complexity of
expansion. PRIME's DBMS is expandable through’ the following

techniques:

Areas can be expanded to include more buckets. Similarly, bucket sizes
may be expanded. The DBMS automatically pads the extra space. A
record re-organization may be requested at this time (PACK) to use the
new space as efficiently as possible.

Areas which contain no data can be initially defined for later
expansion. This makes it possible to define a database which is going
to grow substantially over the years using today's sizes and today's
storage space, and to simply expand old areas onto new devices, as the
size of the data demands and the acquisition of more storage space
permits.

The use of buckets also highly localizes the effects of record
alteration. Records can expand and contract with little effect upon
other records (except for bucket-mates). If new space is needed by an
expanding record, a new bucket is acquired for it to flow into. A
free-bucket chain is kept to minimize search time for new buckets.
This whole process obviates the need for special overflow mechanisms,

REV. @ 3 - 6

IDR3843 STORAGE STRUCTURE SUPPORT

and minimizes the price of "overflow accesses" paid by the physical

system. Garbage collection occurs only upon the request of the DBA so
that update users pay no execution penalty for alteration of record
size, unless the accumulation of alterations affect system performance.

The fixing of the database key, the logical consistency and the saving
of space more than cancel out the extra access needed to reach an
extension of a record into another bucket.

Space Utilization

Field experience suggests that total space overhead ranges from
approximately 5 to 6@ percent, the latter occurring when there is a
great deal of structure. Yet, such files have generally been found to
take no more space than their pre-DBMS counterparts, which implies that
the actual cost of this overhead approaches zero. The reason for this
is simply that the redundancy required by non-DBMS systems requires as
much space as Prime DBMS overhead. But there is a large improvement in
capability and flexibility (as in access speed) obtained by utilizing
that same space for DBMS-structured data.

3° - 7 July 1977

IDR3643 DBMS CONCEPTS

SECTION 4

THE PRIME VIEW OF SOME COMMON
DBMS CONCEPTS

INTRODUCTION

This section discusses Prime's approach to implementing many common
considerations. These include:

Oo DATA STRUCTURES

Oo ACCESS STRATEGIES

Oo DATA INDEPENDENCE

O PRIVACY

O INTEGRITY

© SHARING/CONCURRENT UPDATE PROTECTION

O PRESERVING THE PHYSICAL INTEGRITY CF THE DATABASE

Q RECOVERY

Oo DATA BASE ADMINISTRATOR SUPPORT

Data Structures

All data structures recommended by DBTIG-71 are supported. These
include ordered, tree, hierarchical, cyclic, and network. However, as
per DBTG, no two record types may own each other directly; a third
record type must be invented to own them both, thereby associating them

as desired.

Access Strategies

The supported access strategies have been partially discussed in
earlier sections. There are access-via-set capabilities provided via
the set directory with linked-to-owner feature; there are
indexed-entry capabilities in several forms: via a search key as
provided by the B-trees or via a search key provided in the same
manner, or via the CALC function, hashing values to scatter table
containing database keys. ‘There is also direct access via the database

key.

4 - d July 1977

SECTION 4 IDR3843

Data Independence

The data independence provided by the DBTG is realized by the
definition of subschemas and their relationship to the schema. The
DBTG states that a Subschema Data Definition Language (DDL) and a Data
Manipulation Language (DML) should exist for each application program
language which will interface to the database, but DBTG-71 considers
only COBOL.

Prime has implemented the subschema Data Definition Languages (DDL) and
Data Manipulation Languages for both COBOL and FORTRAN. While the
manipulation languages are nearly identical and very English-like, as
the DBTG recommends, the Subschema Data Definition Languages reflect
their host languages quite clearly.

COBOL and FORTRAN recognize different data types and have different
naming conventions. Their respective DDL's address themselves to the
appropriate data types for each language. Since implicit data typing
is permitted by FORTRAN, it is also permitted by the FORTRAN DDL: the
implicit data type is that of the schema (or an appropriate default
variation if that type does not exist in FORTRAN).

During compilation, the User Work Area is constructed as a COMMON Block
for FORTRAN and as WORKING STORAGE declarations in COBOL. A tabular
listing of the User Work Area is provided by the subschema compilers,
thus giving the user a complete definition of his work area, including
all the items and their types.

All schemas and subschemas are compiled into an object table for faster
reference. Hence, whenever a schema changes, it and all its subschemas
must be recompiled. Of course, if a subschema is changed, it must be
recompiled.

Changes to subschemas affect all application programs using them, which
must generally be recompiled. All changes to schema currently require
such recompilation, since all subschema are affected.

Were this not true, the enterprise would be faced with a particularly
dangerous form of data independence. Changes which affect the User
Work Area imply that run-units using that work area are now outmoded.
They must at least be checked; particularly if the definition of the
database has been changed, or the view of it represented by a
run-unit's subschema has been changed in previously existing run-units.
However, if an older version of a subschema is deleted, run-units
referring to it will be trapped by the DBMS. MThis represents an
enhancement to the potential integrity of the database.

The Prime DBMS provides an entirely new level of data independence
called "dynamic reference", based on really not caring about the actual
data contents. This is the type of data independence which general
text editors, dump routines, and other utilities appear to have. DBMS
achieves this by delaying binding wntil run-time. ‘The schema and
subschema to be used by the run-unit need not be declared until

REV. @ 4 - 2

IDR3843 DBMS CONCEPTS

run-time. Thus generic utilities which view the schema through any

subpschema can be written. This capability is described further in
Section 5, Extensions.

Privacy

The natural attributes of the hardware and software allow an effective
Privacy capability. Privacy is maintained well beyond the capability
set down by the DBTG specification. The PRIMOS Password and Protect
capabilities are used here. The Hardware Ring Structure provides a
measure of security unachievable in any other fashion. Lists of DBAs
and their privacy keys may be kept in memory and be absolutely
inaccessible to unauthorized personnel.

For further protection, keys are supplied at run time. This means that

access to a source listing is not access to the keys it must use - for
the key can be supplied interactively at run-time.

As recommended by DBTG, every operation on every DBMS entity can carry

a separate lock. These locks may be literal or variable. Those which
are declared as variable can be changed by the DBA at his discretion.

Integrity

The Prime DBMS provides integrity in many ways already mentioned. The
hardware provides parity checks at both ends of all gating paths, the
CPU memory and disk controller both utilize error correction
algorithms. The FMS provides bi-directional threading of all files and
a utility to provide file maintenance. RAM provides control over

logical sharing of the data.

The DBMS also prepares extensively for recovery of data in event of
failure, including before-imaging, after-image journalling, and

database transaction-oriented delayed incremental updates.

Sharing/Concurrent Access with Most DBMSs

In most database systems, concurrent access to data present no problems
as long as data does not change. If any users change shared data,
several problems arise.

Insuring logical consistency, when shared has changed: If any user is
changing shared data while one user is attempting to analyze the data,
the analysis may be meaningless. Logical inconsistencies may flaw the
analysis since the analysis does not represent a single state of the
data.

For example, suppose that user A is reading a personnel database to
produce a list of employees by department. If another usertransfers
employee xX from a department that has been listed already to a
department that has not yet been listed, the employee X will appear to
be a full-time employee to both departments. Thus, user A has an
inconsistent view of the data.

4 - 3 July 1977

SECTION 4 IDR3843

Lost updates when shared data has changed: Suppose that the following
sequence of events occurs:

user A reads item X
user B reads item X
user A replaces X by X + 180
user PB replaces X by X + 20

Notice that the update by user A has been lost. This occurs because
user B read the same value of X as user A rather than reading the
result of the update by user A.

Locks are often employed to eliminate the above problems. Parts of
files are locked while they are being analyzed or updated. Not only.
does this raise the problem of lock management, but it can lead to a
Situation known as deadlock. Consider the following sequence of
events:

user A locks record X
user B locks record Y
user A requests record Y
user B requests record X

User A waits on user B, while user B waits on user A. Neither user can
proceed. One user must be aborted. How can a decision be made as to
which user to abort? What should be done about any records that have
been modified by the user that is selected for abortion?

Sharing/Concurrent Access with Prime's DBMS

The Prime DBMS eliminates the problems of inconsistent analysis, lost
updates, deadlock, and many other problems resulting from concurrent
update of files by introduction of Database Transactions (DBTs). DBTs
are used to group data accesses which must be performed together to
insure consistency of a database. A DBT is introduced by a START
TRANSACTION DML command and is terminated by an END TRANSACTION command
or an ABORT TRANSACTION.

There are two types of DBTs: Retrieval DPRTs and Update DBTs. The two

types of DBT provide different sets of features.

The Retrieval DBT provides the user with a consistent view of a

database even though concurrent users may be updating the database.
This is done by saving before-image copies of modified blocks. When a
Retrieval DBT requests information from a modified block, it is given
the before-image copy of the block as it existed when the Retrieval DBT
started. Thus, all updates initiated since the beginning of the
retrieval transaction are transparent to the Retrieval DBT.

The Update DBT provides a consistent view, prevents lost updates,
prevents deadlock, and provides rollback of updates. As an Update DPT
modifies blocks, before-image copies of the blocks are saved. The

REV. @ 4 - 4

IDR3043 DBMS CONCEPTS

before-images are used to rollback a transaction when a user aborts the

transaction or when a transaction is aborted automatically.

An Update DBT is not permitted to read or write a block that has been
modified by a concurrent Update DBT. If this restriction is violated,
the offending transaction is notified that it must abort. the
transaction can perform its own’ recovery before aborting’ the
transaction. The transaction will be aborted automatically if it
attempts to execute any DML command other than ABORT TRANSACTION.

Since concurrent Update DBTs are permitted to proceed only if they
operate on different subsets of the database, a consistent view of the
data is insured, and lost updates are eliminated. Transaction rollback
provides recovery from deadlock and recovery from many errors including
DML program errors, certain DBMS errors, and even halts due to hardware

or software errors.

When an Update DBT aborts because of concurrency conflict, the program

can immediately begin another DBT to attempt the same update.
Concurrent update conflicts are transient and usually clear very
quickly.

The key elements in the implementation of DBTs are update transaction
numbers, lists of completed transactions, and before-images. When an
Update DBT starts, it is given a new transaction number and a list of
transactions that have completed. An Update DBT is only permitted to
read and write blocks that were last written by transactions that are
in the list of completed transactions for the Update DBT. Whenever an
Update DBT modifies a block, its transaction number is written into the
header of the block. Before the modification is done, a before-image
copy of the block is saved in a before-image file. The before-image
and the modified block are linked together for use in transaction
rollback, other recovery procedures, and Retrieval DBTs.

When a Retrieval DBT starts, it too, is given a list of completed
transactions. If the Retrieval DBT attempts to read a block that was
written by an incomplete transaction, the chain of before-images for
the block is searched backward for the most recent block that may be

read by the Retrieval DBT.

By using Update DBTs, the blocks dynamically involved in an update are
inaccessible for other updates. An exception occurs only when one
Updated DBT actually attempts to access data which has been modified by
another concurrent Update DBT. In addition, Retrieval DETs never lock
out Update DBTs, yet consistent data is always available to Retrieval
DBTs in the before-images. The use of DBTs results in a much smaller
fraction of the database being locked than schemes which require
pre-locking of data to be updated to be retrieved. In particular,
portions of the database may be dumped while others are concurrently
running against those same portions, since a dump program can be
programmed aS a Single retrieval DBT!

4 - 5 July 1977

SECTION 4 IDR3943

Preserving the Physical Integrity of the Database

In the overwhelming majority of cases, each DBT will be interested in a
very few records for a very short time. No conflicts of any sort will
occur, and this entire system will be utterly transparent, because the
new version of each record replaces the old in the very same spot and
no additional accesses of any sort are required.

The only inconsistencies that can creep into the data base under this
system are errors introduced by application programs which are
authorized to make changes and do so incorrectly (i.e., faulty user
program logic).

Operations which must affect significant portions of the database are
performed without concurrency at the request of the DBA, which is
effected by locking the entire schema against any access. The
operations are:

Command Function

ALLOCATE Allocate space for the files of the
database and preformat it.

EXPAND Allocate more space for the files of
the database.

PACK Garbage collect and reorganize the
specified areas/calc files.

SAVE/RESTORE Copy the database to/from
Iagnetic tape.

NOTE:

These facilities are with the DBACP and are described in

Section 9.

RECOVERY

Many kinds of errors, exceptional conditions, and failures can occur in
the use of a DBMS. A sophisticated DBMS must provide a variety of
recovery techniques to assure the reliability of the system and the

integrity of the data.

The Operation of the Run-Unit

The DML Command Process (DMLCP) performs extensive validation of each

DML command issued by a run-unit. The DML languages provide facilities
for a DML program to trap all nonfatal errors in two ways. Each DML
command may include a list of errors that the program wants to trap and
where to go if an error is detected. A run-unit can also check the
error status in-line after each DML command and perform the appropriate

REV. @ 4 - 6

IDR3043 DBMS CONCEPTS

recovery if necessary. When the DMLCP detects an error during the
execution of an UPDATE DML command, it rolls back the database to its
status before the erroneous DML command. The run-unit is given the
opportunity to recover from the error. If another DML command is
attempted before the error is cleared, the DMLCP aborts the run-unit
and automatically rolls back the entire transaction (if one is active).

Roll Back

Several kinds of exceptional conditions can occur during concurrent
update of files. The most frequent exception is when concurrent
transactions attempt to update the same block. Concurrent update
exceptions can be trapped by the user in the same manner as other DML
errors. After a concurrent update exception has occurred, the DMLCP
will always roll back the transaction when the next ABORT TRANSACTION
command is executed. If the DML program detects an error in any way
during a transaction, it can execute an ABORT TRANSACTION command, and
the DMLCP will roll back the transaction.

The Recovery Processor

If a DML program does not terminate properly, it can leave the database
in an indeterminant state. Termination can be caused by the program
user hitting the break key, by the DML program exiting before ending a
transaction, closing the areas, and exiting the DBMS, by fatal errors
in the DML program, the DMICP, or system software (errors such as
division by zero, invalid addressing, end of file, etc.), or bya
system halt due to hardware or software failure. The Prime DBMS
includes a recovery processor. The recovery processor includes
commands to report the status of transactions and DBMS usage and to
roll back all incomplete transactions and to clean up DBMS control

tables.

Sometimes a DML program that appears perfectly correct to the DMLCP
introduces errors into a database. Perhaps the DML program deleted or
modified the wrong record; it may have deleted the entire database.
It is also possible that a new version of the DMLCP could contain some
bugs that introduce errors into a database.

Recovery Facilities

The Prime DBMS provides a couple of facilities for recovering from the
errors mentioned above and other catastrophic errors. Before a block
in the database is modified, a before~image copy is saved in a
before-image file. A modified block is written out to disk, a
duplicate copy is written to the after-image file. All blocks are
labeled by the transaction that last modified the block. In addition,
a message is written into a log file whenever a_ transaction. starts,
ends, or aborts, and whenever a block is modified. Before-imaging,
after-imaging, and logging can be turned on and off separately by using
the Database Administrator's Command Processor (DBACP), see Section 9.

The I/O subsystem of the DBMS has been designed to insure that the

4 - 7 July 1977

SECTION 4 IDR30843

recovery files are robust to system halts and other failures.

The recovery processor can examine the log file to help identify faulty
transactions and to analyze update activity since the faulty
transactions. The recovery processor can roll back the database using
the before-image file or roll the database forward using a saved copy
of the database and the after image file. A copy of a database can be
saved and restored by use of PRIMOS MAGSAV/MAGRST or through use of
SAVE/RESTORE in the Database Administrator's Module. The selection of
rollback or rollforward depends on the size of the database, on the
volume of updates since the last database save, on the volume of
updates since the errors, and on the type of failure.

Analysis of the log file may sometimes indicate that a restore and
rollforward of part of the database will still guarantee integrity of
the data and speed up the recovery process. The recovery processor
includes features to expedite this.

Recovery from a disk head crash can be done by restoring the affected
areas from a database save and rolling forward using after-images.

DATABASE ADMINISTRATOR SUPPORT

Privacy-Locking

Each installation's databases are overseen by Database Administrators
(DBA). Each DBA potentially has control over all databases at
installation. However, a database may be removed from a_ DBA's
authority by Privacy-Locking its usage, thus barring those DBA's who
are not authorized to know its keys.

Each installation may define to the DBMS how many of the DBA's
(including none) will be privileged DBA's. These DBA's are understood
by the DBMS to know all necessary keys, and thus have special
privileges useful in database debugging and assisting other DBA's and
applications programmers. :

Caretaker Functions

The function of the DBA is essentially that of caretaker of the
database. The DBA creates the model, populates it, monitors it,

tinkers with it, revises it, improves it. Help is provided to the DBA

in accomplishing this multifarious task by the Database Administrator
Command Processor (DBACP).

Because the DBA functions are so far-ranging, each can be guarded by
its own lock. In fact, since all the locks are single—-purpose, an
extensive dialog is often required for a DBA to accomplish his
objectives. These safeguards are intended to protect against careless

errors.

REV. @ 4 - 8

IDR3243 DBMS CONCEPTS

Creating the Database

The DBA component helps the DBA in a number of ways. The earliest
function which must be provided is database creation.

Definition of the schema, it should be recalled here, is outside the
realm of this component, since a separate component, the schema DDL
Compiler, exists solely to perform this task.

Anyone may use the DDL to define, and even compile a schema; but only
a DBA may allocate space to the schema and populate it with data.
There iS an advantage in this. A DBA can assemble a staff of technical
experts, but can investigate the proper modeling of it, experiment with
possible models, and ultimately determine the best one, technically,
for the DBA to use.

4 - 9 July 1977

IDR3043 EXTENSIONS

SECTION 5

EXTENSIONS

INTRODUCTION

Most of the capabilities already discussed include functional and/or
operational extensions to the DBTG-71 Report recommendations. This

section focuses on the more important global extensions that have been

mentioned, and some specific ones that have not.

GLOBAL EXTENSIONS

Database Transactions (DBT's)

The existence of DBT's and their value has been fairly extensively
discussed. The existence of the START and EXIT/ABORT transaction block
structure allows dynamic implicit locking of data instead of static
pre-locking in concurrency situations.

INVOKE Command

The INVOKE command is executable. Prior to executing the INVOKE

command, a run-unit is not associated with the DBMS. The EXIT/ABORT

DBMS commands disconnect DBMS from the run-unit. DML commands
occurring outside the scope of an INVOKE are ignored. Multiple
INVOKE-EXIT/ABORT pairs are permitted, but all must reference the same

subschema.

Keys

Keys are supplied interactively at run time for more privacy. It is
also easy for a DBA to change keys for variable privacy locks.

ON ERROR Clause

An ON ERROR clause applicable to each DML command allows the

application program to specify alternatives for each different type of

possible error on that command, so the program can handle them in

whatever fashion it chooses (barring required ABORT). The ON ERROR
clause may specify either GO TO label or CALL external value.

Dynamic Reference

Dynamic reference provides total data independence for special
purposes, by delaying binding to a. schema/subschema until run time.
The names of such database entities as sets, areas, record-types, and
items may therefore be referenced dynamically, as conversational input

via an interactive terminal, for example. An application program

written to utilize this facility can reference the subschema entry

5 - 1 July 1977

SECTION 5 IDR3843

which defines the supplied name and can extract any of its
characteristics (e.g., for items: type, PICTURE, PICTURE length, data
length, and null-representation) as well as operate on the data values
themselves.

This is the type of data independence that facilitates the
implementation of general utilities, such as general text editors, dump
routines, and on-line interactive query languages.

SPECIFIC EXTENSIONS

Item Type Extensions

There are many extensions at the item level. Extended data types
include double-precision numbers, both integer and real, plus the types
TIME, DATE, and CODE. TIME and DATE are self-explanatory, and in both
cases a special internal format provides for compilation of these
values on disk. CODE associates a literal string for external (human)
consumption with space-saving internal code types. ‘These codes are
indices into a common stored decoding table. Coding in both directions
is automatic.

The code table is treated as a single literal pool in each database.
Literal strings which are represented by codes (whether the same or
different) for more than one item are not repeated in separate per-item
tables.

The Prime DBMS also permits variable-length character strings. It
automatically stores such strings without any trailing blanks. The
length attributed to these strings for accessing purposes is taken from
the invoked subschema User Work Area at run-time. The reserved space
need not be large enough to hold every value of the item in the
database; only those which are accessed. The DBMS will fill with
trailing blanks as necessary to reach the size required by the
subschema.

No single value is used to represent a null valve universally. The
representation of the null value depends on the data type and is chosen
for efficiency by Prime.

Data Aggregates

There is a very significant extension to data aggregates, and that is
that any data aggregate may occur a variable number of times,
regardless of whether it is part of, or contains, any other data
aggregate. This feature cannot yet be utilized in a COBOL subschema,
because it is beyond the ability of ANS COBOL.

One significant use of this feature works well with CODE item types to
provide exception reporting without wasting space. ‘The usual procedure
for this is to encode the standard values (responses) with an
additional code for exceptions (often, "Other, Specify").

REV. @ 5 - 2

The specification of this exception would be a-string which rarely

appeared. Defining it as a variable length and/or variable in

occurrence would result in a minimum of waste in this situation.

FORTRAN Record Overlays

An extension concerning records is the ability to specify that

different record types shall share the same space in a FCRTRAN User

Work Area (COMMON Blocks), in consonance with the FORTRAN concept of

EQUIVALENCE.

OMISSIONS/RESTRICTIONS

No description of the DBMS would be complete without identifying

current ommissions vis-a-vis the DPTG-71 Report. These are:

1. Set Mode is always system standard: PB-trees, linked-to-owner.

2. Temporary areas are not implemented.

2. The CHECK clause - CHECK IS PICTURE is not implemented.

CHECK IS RANGE is limited to numeric values

CHECK IS LIST is confined to character strings

4. The ORDER DML Command is not implemented.

5. New Groups in the Subschema

No data aggregates or naming groups are permitted in the

subschema unless they also occur in the schema upon which

that subschema is based.

6. Dynamic Sets are not implemented.

7. ENCCDING/DECCDING is not implemented.

PENDING

Some current omissions are already planned but not available in the

first release

1. Procedures

The procedure facility is complex and far-reeching. ‘The

state of this facility has delayed the availability of

ON CLAUSES. Procedures will also be

available in PRIVACY, CALC and CHECK clauses.

2. DBMS Access to MIDAS Files

5 - 3 July 1977

SECTION 5 IDR3@43

PEV.

Application programs can access both DBMS files and
Multiple Index Data Access System (MIDAS) files.
Presently each type of file must be accessed by using
its own access system. Extensions to both MIDAS
and DBMS will make it possible for MIDAS files to
be accessed by CBMS commands.

Testing

Testing new DML programs is very time-consuming if a
test database must be created. It is often difficult
to obtain a meaningful test in a synthetic
environment. Testing update DML programs on an
active database can obviously have disastrous effects.
The Prime DBMS facilites testing of update DML programs
by providing test mode.

When a DML program invokes a schema for test mode, all
transactions are considered retrieval transactions.
Differential file technicues are used to store the
updates in a scratch area that is private to the test
mode program. The database is never modified in any
way by a DML program in test modes. Cther run-units,
whether in test mode or not, are completely unaffected
by a run-unit in test mode.

TDR3843 DBMS FILES

SECTION 6

DBMS FILES

INTRODUCTION

This section defines the database types of files that serve the
Database Management System.

The database files are subordinate to segment directories, one segment
directory per volume per schema. A database file may, thus, be
uniquely identified by schema name, volume name, and segment directory
entry number (INTEGER*4). This information is displayed by the VERIFY
commands of the DBACP.

There are eight types of files associated with each schema or database:

o Schema table (one per database:)

o Subschema tables (one per subschema)

© Area files (one per area)

o Set files (one per set)

© Calc files (one per record with location mode calc)

o Log file (one per schema)

o Pefore-Image file (one per schema)

o After-Image file (one per schema)

SCHEMA TABLE

The schema table is a tabular representation of all of the information
supplied in the schema source DDL. Also included in the schema table
are: volume/entry identifier for each database file other than the
schema table, keys for variable locks, and a directory of all
subschemas for the schema.

SUBSCHEMA TABLE

The subschema table is a tabular representation of all of the
information supplied in the subschema source DDL plus’ privacy

information from the corresponding schema constructs.

6 - 1 July 1977

SECTION 6 IDR3043

AREA FILE

Area files are divided into equal length sections called buckets.
Record occurrences are stored in the bucket from the top down. A
directory of all record occurrences stored in a bucket grows upward
from the bottom of the bucket. When there is no more room in the
bucket for another directory entry and at least part of a record
occurrence, the bucket is flagged as FULL, and the next bucket with
available space is used.

SET FILE

Set files contain a Set Directory and B-trees (see Knuth Vol. 3,
Section 6.2.4) representing set occurrences. The set directory entries
are of fixed length for each set with all free entries linked together
on an available entry list. There is one B-tree node space for each
member list (one list per member if "ORDER IS SORTED;" else one per
set) as well as one node space for each search key for all members of
the set. The B-tree nodes are of fixed length for each node space with
all free nodes linked together on an available node list for each node
space.

CALC FILE

Calc files contain a hash table which is used to find the DBK of a
record using a table entry number derived from hashing the concatenated
values of all items declared as CALC keys for this record. At any time
a table entry may be used or it may be flagged as empty (never used) or
freed (used but record deleted or calc key(s) modified).

LOG FILE

The log file is a sequential file for writing messages regarding
transactions and updates. The log file is intended to assist in
recovery from serious database damage such as disk head crashes. The
log file may grow very rapidly when there is a lot of transaction
activity and update activity. The log file should be cleared
periodically using the CLEAR LOG command of the DBACP when the database
is inactive and secure. Message types are ASCII strings, start
transaction, end transaction, abort transaction, and update a block.
The pointer to the next available location in the log file is located
in the transaction tables of the before-image file.

BEFORE-IMAGE FILE

The before-image file consists of the transaction tables and the
before-images. The transaction tables contain transaction numbers, a
list of completed transactions, information for the before-image queue,
the log file, and the after-image file and other information necessary

REV. @ 6 - 2

IDR3843 DBMS FILES

for support of concurrent update of files. The rest of the

before-image file contains before-images. Just before an update is

made to a block in a database file, a copy of the block is saved in the

before-image file. The blocks are arranged as a queue which is

cyclically reused. Pointers describing the before-image queue are kept

in the transaction tables.

AFTER-IMAGE FILE

The after-image file is a sequential file of after-images. An

after-image is a copy of a modified block. After-images provide the

redundancy required for a recovery after tragedies such as disk head

crashes. An after-image is written when a block is depaged because of

overflow of the buffer pool or at the end of a transaction.

After-images are written at the end of the after-image file. A pointer

to the next available location in the after-image file is located in

the transaction tables of the before-image file.

6 - 3 July 1977

IDR3043 DATABASE GENERATION & ACCESS

SECTION 7

DATABASE GENERATION & ACCESS

INTRODUCTION

This section discusses what is involved in creating a database. It
includes some important considerations of file allocation and the steps
required to create a database.

SCHEMA CREATION

The Schema DDL Compiler generates the schema table and enters the new
schema name and number and volume name for the schema table in the
system directory of all schemas.

See the schema DDL manual for a complete description of the Data
Definition Language and how to use the schema compiler.

FILE ALLOCATION

The files for a given database are created and initialized using the

ALLOCATE FILES command of the DBACP (Section 9).

To assist the DBA in constructing the database, the DBACP queries him
about quantities for which no fixed vaiue was defined in the schema,

such as:

o The average length of variable-length strings.

© ‘The average number of occurrences of a variable-occurrence data

aggregate.

© The maximum number of occurrences of each record type.

o ‘The average number of manual inserts of each manual member of

each set.

From the estimates given by the DBA, the DBMS calculates the exact
storage requirements of each file constituting the database, and
informs the DBA of space usage statistics including:

o The length and node-size of each B-tree.

Oo The number and size of each collection of buckets.

o The size of CALC file tables.

o The data-utilization ratio (the inverse of the overhead ratio).

7 - Jd July 1977

SECTION 7 IDR3043

The DBA need not proceed immediately using these figures; he can test
various assumptions and adjust his estimates to arrive at a final
configuration which he feels best suits the enterprise's current needs.
In this way he may manage to reduce overhead, compare various versions
for efficiency, or find a way to force the database into a smaller
space occasioned by the size of his current system. Because of the
ease of expansion, the DBA is free to select a version of the database
which adjusts today's data needs to today's system, even though he
knows this version to be much smaller than ultimately intended.

Having selected the satisfactory space configuration, the DBA can then
actually allocate the files. The DBMS requests a volume identification
for each AREA, SET, CALC TABLE, BEFORE-IMAGE FILE, the LOG, and the
AFTER-IMAGE FILE associated with the schema. Thus, though DBMS depends
on FMS, which cannot span volumes, a database can span volumes because
each file is confined to a single volume itself, though the collection
of files may cover all available volumes. The DBA assigns all files to
available volumes, even those he originally defined only for future
usage. AREAS defined in the schema which are not used initially can be
defined to have one occurrence of a record in them during the
Space-calculation dialog, and thus require minimal space until they
actually are put into use.

Only a DBA can allocate database files. A DBA can also clear the files
of all data, or delete the files and data. These commands (ALLOCATE,
CLEAR, and DELETE) must operate on all files of the database to ensure
its integrity (refer to Section 9 for a description of these commands) .
The creation dialog is recorded, as are all DBACP dialogs, along with
the date, time and name of the DBA. This record may be filed for later
scrutiny to recall the origins of the database and the founding
estimates.

After allocation of the database, it must be populated with data. The
DBA defines a subschema for database loading and writes an application
program in the language of his choice (COBOL or FORTRAN), which
utilizes the DML to construct the database via updating DML commands.
This gives the DBA complete control over the populating process.

The actual steps for creating a database are:

1. Define the schema and compile it into a schema table (Schema DDL
Compiler).

2. ALLOCATE store space for the database (ALLOCATE files in DBACP).

3. Define a subschema to be used by the loading program and compile
it into a subschema table (FORTRAN or COBOL Subschema DDL
Compiler) .

4, Write the database load program for this database.

REV. @ Jo N
D

TDR3943 DATABASE GENERATION & ACCESS

5. Pre-process the load program into standard host-language form
(FORTRAN or COBOL DML pre-processor) .

6. Compile and run the loading program.

7 - 3 July 1977

IDR3843 DATABASE MAINTENANCE

SECTION 8

DATABASE MAINTENANCE TECHNIQUES

INTRODUCTION

After the database is created and put into use, the DBA must monitor
its use for loss of efficiency and provide for its expansion and
re-organization when or if necessary. The need for reorganizing must
be determined from space utilization figures. The PRIMOS system
accounting data, which includes a measure of paging activity, can be

used as an aid in this context.

A DBA can request space utilization status reports at any time. These
reports detail the space utilization figures for all areas, sets, CALC
tables and all recovery files for each requested database.

Whenever the DBA observes excessive paging activity, or the impending
overflow of allocated space, or lengthening response times due to
excessive accumulation of record alterations, he can initiate garbage
collection.

MEDIA SPACE VERIFICATION

At any time in the life of a database, the status of the various files

in terms of space usage may be ascertained using the various VERIFY
commands of the DBACP. If file space usage is verified frequently,
there is less chance of the DML command processor error "MEDIA SPACE
NOT AVAILABLE" being encountered (see Media Space Clean-up and
Expansion) .

MEDIA SPACE CLEAN-UP AND EXPANSION

To make more media space available, space no longer in use (due to
DELETE record DML commands) may be freed for DBMS use using the PACK
AREA command on any area from which records have been deleted since the
ALLOCATE FILES or the last PACK AREA command. If insufficient space is
freed using the PACK AREA command, or media space is not available in
one or more set or calc files, the DBACP command, EXPAND FILES, must be
used. After an EXPAND has been executed, it is advisable to PACK any
areas in which the bucket size was expanded to optimize space usage by
trying to concatenate any record occurrences which were continued in

other buckets.

The expansion dialog is similar to file allocations, expanding only
those spaces which actually require expansion. Since the revised
definition is at least partially based on actual usage, it could turn
out to be more efficient. The DBA may wish to investigate expansion
simply to see if a more efficient configuration results from using

8 - i July 1977

SECTION 8 IDR3043

actual figures.

If many records with location mode calc are deleted or the calc keys
modified, the calc file may become filled with freed (no longer used)
hash table entries, thus increasing the number of hash table probes for
success or failure. This condition may be remedied by using the PACK
CALC command of the DBACP which rehashes the entire table.

CONCURRENCY

A run-unit which updates a database must have exclusive use of the
database files unless concurrent update is allowed (see ALLOW
CONCURRENT UPDATE in DBACP). Since the concurrent update mechanism
makes use of before-images, a before-image file of "sufficient" size
must have been allocated and before-imaging must be turned on (see
START BEFORE-IMAGING in DBACP) before concurrent update can be allowed.

The size of the before-image file is requested from the user by DBACP
during the ALLOCATE FILES dialog as a percentage of the total database
file size. This can be estimated by multiplying the percentage of the
database accessed by an average update transaction times the maximum
number of concurrent update run-units using this schema. The
percentage of the database accessed is roughly the ratio of the number
of record occurrences accessed by an average update transaction to. the
total number of record occurrences to be stored (i.e., the sum of the
answers given for the individual record types in the ALLOCATE FILES
dialog).

NOTE:

Before-imaging may be either on or off when concurrent update
is disallowed.

RECOVERY

There are two types of DBMS recovery available: roll back a database

to a given point, or roll forward a database from a check point (see

SAVE SCHEMA in DBACP) to a given point. Roll back is implemented using
before-imaging and roll forward using after-imaging. The points to
which a database is rolled back or forward is determined using the
logging function of the DBMS (see the BEFORE-IMAGING, AFTER-IMAGING,
and LOGGING commands in DBACP).

Although before-image, after-image, and log files are allocated and
before-imaging, after-imaging, and logging may be turned on and off,
the actual roll back and roll forward processors have not yet been
implemented. These will be documented and distributed to DBMS users
with Rev. 14 of PRIMOS. Until then, users are advised to backup
active databases with the SAVE SCHEMA command in DBACP as described
below.

REV. @ 8 - 2

IDR3043 DATABASE MAINTENANCE

DATABASE BACKUP

It is advisable to keep one or more copies of an active (frequently
altered) database on magnetic tape for backup using the SAVE SCHEMA
command of the DBACP. It is also advisable to save a database before
using any volatile DBACP commands such as PACK AREA or running a DML
program which "cleans up" the database by deleting record occurrences

(periodic purging).

DML COMMAND PROCESSOR CLEAN-UP

If a DML program does not terminate properly, it can leave the data
base in an indeterminate state. Termination can be caused by the
program user hitting the break key, by the DML program exiting before
ending a transaction, by fatal errors such as division by zero or by a
system halt. After a DML program halts abnormally, the DML clean- up
program, CLUP, should be run from the same terminal. CLUP rolls’ back
the current transaction if one is active, closes files, releases locks,
and cleans up DBMS control tables. If a DML user is uncertain about
the termination of the DML Program, the user should run CLUP. If the
user is not found in the DBMS, CLUP has no effect. Executing CLUP can

never have an adverse effect.

PRIVACY KEYS

Privacy keys for variable locks may be displayed or altered at any time
(see various KEY and KEYS commands in DBACP). This does not affect any
run-unit which has already gained access to the data whose keys are
concurrently changed.

8 - 3 July 1977

IDR3843 DBA COMMAND PROCESSOR (DBACP}

SECTION 9

DBA COMMAND PROCESSOR (DBACP)

INTRODUCTION

The DBACP (Database Administrator Command Processor) is an interactive

processor which allows the Data Administrator to create, investigate,

and change the various files within databases. Several commands are

available to all users for verification of the current status of

database files. All other commands are restricted to use by those

people officially designated as Data Administrators.

PROCEDURES

To initiate DBACP, the user must log in and type:

DBACP

DBACP prompts for each new command by displaying:

READY

SCHEMA schema-name READY

The user may exit DBACP by typing the command:

QUIT or Q

After each command the elapsed, CPU, and disk I/O timings are displayed

in seconds.

Concurrent Run-Units

Those DBACP commands which alter an existing database or set system

flags which limit run-unit access to the schema may only be executed

when no run-units are currently running against the schema specified.

Those commands which affect database files, such as the EXPAND and PACK

commands, automatically lock the - schema as well as checking for

concurrent usage to prevent further invocation of the schema while the

command is being executed (the UNLOCK SCHEMA command must be used to

free the schema). If no run-units are currently accessing the schema,

the command proceeds. If there are run-units currently accessing the

schema the run-unit user numbers are displayed and the user is asked:

DO YOU WISH TOABORT THE RUN-UNITS?

If yes is typed, the run-units are aborted and the command proceeds,

else the user is asked:

9 - Jd July 1977

SECTION 9 IDR3843

DO YOU WISH TO WAIT FOR THE RUN-UNITS TO FINISH?

If no is typed, the command is aborted; otherwise the command waits,
giving a running list of run-unit user numbers accessing the schema as
they are invoked and exit until all are finished. At this time the
command is executed to completion.

SECURITY

Data Administrators

Data Administrators are identified by login name. ‘There exists a
protected system list of Data Administrator names, including a fixed
nunber of privileged Data Administrators. A privileged Data
Administrator need not specify privacy keys for schema privacy locks
for ALTER, DISPLAY, and LOCKS.

Schema Privacy Locks

Privacy locks may be specified in the schema DDL for ALTER (ALLOCATE,
CLEAR, DELETE, EXPAND, PACK, etc.), LOCKS (all commands with object KEY
or KEYS), and DISPLAY (VERIFY or implicit verification). If locks
exist for any of the above functions when execution is attempted, the
user will be prompted for a privacy key for the related schema lock.
If an invalid key is specified, the command is aborted. Once a valid
key is specified, the function remains unlocked for the current schema
until the next schema name (possibly the same) is specified in a
command.

COMMAND SYNTAX

Data Administrator commands are of the general form:

verb object schema-name

The command verb must always be specified. If the command object is
omitted, the object, SCHEMA, is assumed. When a command object
specifies some part or function of a schema, the schema-name may be
used to specify the desired schema. Once a schema has been specified
by a schema-name on an appropriate command, the schema is the current
Schema until another schema-clause is specified. If the schema-name is
omitted from a command, the current schema is assumed. The name of the
current schema, if any, is displayed with each READY prompt for a new
command.

The format of the schema-name is:

OF SCHEMA schema-clause

NOTE:

The words OF and SCHEMA are not required.

REV. @ 9 - 2

DBACP COMMAND VERBS AND OBJECTS

IDR3@43 DBA COMMAND PROCESSOR (DBACP)

The following are lists of valid command verbs and objects. Those
command words or word parts which are not underlined may be omitted.

ADD
ADVANCE
ALLOCATE
ALLOW CONCURRENT UPDATE

CHANGE

CLEAR

DELETE
DISALLOW CONCURRENT UPDATE

EXPAND

LOAD

VERBS

July 1977

SECTION 9 IDR3843

OBJECTS

AFTER IMAGING
AREA area-name
AREAS
BEFORE IMAGING
CALC OF RECORD record-name

CALCS
FILES
KEY OF LOCK lock-name

SCHEMA schema-name *
SCHEMAS *
SET set-name
SETS
SUBSCHEMA subschema-name
SUBSCHEMAS
TAPE *

* no schema-name with this object

REV. @ 9 - 4

TDR3@43 DBA COMMAND PROCESSOR (DBACP)

COMMAND DESCRIPTION

The following is a description of each valid DBACP command grouped by

command object and listed in alphabetical order.

9 - 5 July 1977

SECTION 9 IDR3843

KKEKKREKKEKEKKKKKEKE

* AFTER-IMAGING *
KEKKKKKERKRERKEKKE

Function

After-imaging is the process of writing two copies of a database block.
When updating the database, the first copy is put into the database
file; the second is written to a collector file which contains
after-images. After-imaging allows the database to be restored (roll
forward) to its latest state in the event the files are destroyed.

Format

CLEAR

START

STOP AFTER-IMAGING [OF SCHEMA schema-name]

VERIFY

Descriptions:

CLEAR

Delete all entries from after-—image file and reinitialize.

START

Set a system flag so that all run-units using this schema invoked after
this point will save after-images in the after-image file for use with
roll forward facilities.

STOP

Set a system flag so that all run-units using this schema invoked after
this point will not save after-—images.

VERIFY

Display the volume name and entry number ffor the after-image file.
Display a message stating if after-imaging is on or off.

REV. @ 9 - 6

IDR3843 DBA COMMAND PROCESSOR (DBACP)

RKKKKKEKK

* AREA *
KREKKKKER

Function

The object 'AREA' allows the Database Administrator to perform
maintenance functions on an area such as restoration of files, file
cleanup and packing, copying a file onto a magnetic tape or displaying
information about the area file.

Format

UNLOAD({ AREA area-name [OF SCHEMA schema-name]

Descriptions:

LOAD

Delete the dummy area file and restore the original area file from

magnetic tape.

PACK

Erase all record occurrences in the area file that have been flagged as

DELETED. Squeeze the occurrences and bucket directories as records are
erased. After all deleted records are erased and their occurrences and
directory entries are freed, all broken record occurrences (in more
than one bucket) are examined and, if possible, concatenated in the
newly freed spaces. The number of records erased and concatenated is

displayed.

NOTE:

The before-image, after-image, and log files are
automatically cleared by the PACK command since the images
and log entries are no longer valid.

WARNING:

The "PACK AREA" command actually moves data in the area file,
and will leave the file in an undefined state if aborted by
user or operator intervention. It is therefore recommended
that the schema be saved before one or more "PACK AREA"

commands are executed.

UNLOAD

Copy the area file onto magnetic tape and replace the area file with a

9 - 7 July 1977

SECTION 9 IDR3@43

dummy file containing information identifying the tape.

VERIFY

Display the following information about the area file: area name,
number of buckets, and bucket size in bytes; volume name and entry
number; login name, date, and time of creation; and percent empty,
number of full buckets, and number of bytes free. If the area file has
been unloaded, the date and time of unload are displayed instead of the
usage Statistics.

REV. @ 9 - 8

IDR3843 DBA COMMAND PROCESSOR (DBACP)

RKKKKKEKRE

* AREAS *
REKKEKEEERE

Function

Area is a logical subdivision of a database. In Prime DBMS, Area also
corresponds to a physical file on a disk. The object 'AREAS' allows
the Database Administrator to list each area name and usage statistics.

Format

VERIFY AREAS [OF SCHEMA schema-name]

Descriptions:

VERIFY

Perform "VERIFY AREA area~name" for every area of the schema.

9 a) July 1977

SECTION 9 IDR3043

RKKEKKKEEREKKEEKKES

* BEFORE-IMAGING *
KRKKKKERAKEREEKREKE

Function

Before-imaging is the process of making a copy of a database block
before the block is updated. This allows the changes to a database to
be cancelled (ROLL BACK) if an update to the item was found to be in
error.

NOTE:

The Prime DBMS uses’ Before-Imaging Concurrent
update protection.

Format

CLEAR
START
STOP (BEFORE IMAGING [OF SCHEMA schema-name]
VERIFY

Descriptions:

CLEAR

Reinitialize all concurrent update and recovery information for the
schema, including the log, before-image, and after-image files.

START

Set a system flag so that all run-units using this schema invoked after
this point will save before-images in the before-image file for use
with concurrent update and roll back facilities.

STOP

Set a system flag so that all run-units using this schema invoked after
this point will not save before-images: Before-imaging may not be
stopped if concurrent update is currently allowed.

VERIFY

Display the size in bytes, volume name, and entry number of the before-
image file. Display a message stating if before-imaging is on or off.

REV. @ 9 - 18

IDR3843 DBA COMMAND PROCESSOR (DBACP)

EKKKEKEKRKERREREKEKE

* CALC OF RECORD *
KKKKKKKERKEKREKKEK

Function

CALC is a method of locating a record; where fields in the record are
used as input to calculate the address of the record. CALC is one of
three strategies used to locate records. The other two are direct and
SET.

Format

LOAD
PACK

UNLOAD CALC OF RECORD record-name [OF SCHEMA schema-name]
VERIFY

Descriptions:

LOAD

Delete the dummy calc file and restore the original calc file from
Magnetic tape.

PACK

Rehash the CALC table, eliminating freed (deleted) entries, thus
reducing the number of probes to failure or success.

NOTE: The before-image, after-image, and log files are automatically
cleared by the PACK command since the images and log entries are no
longer valid.

NOTE: The “PACK CALC" command generates a second file for the packed
CALC table and deletes the old file after rehashing into the new one.
There must be, therefore, enough space on the CALC file's volume for a
temporary, duplicate file.

UNLOAD

Copy the CALC file onto magnetic tape and replace the CALC file within
a dummy file containing information identifying the tape.

VERIFY

Display the following information about the CALC file: record name and
number of entries in the table; volume name and entry number; login
name, date, and time of creation; and number of table entries empty,
used, and freed. If the CALC file has been unloaded, the date and time
of unload are displayed instead of the usage statistics.

9 - ll July 1977

SECTION 9 IDR3843

KEKKEKKEKK

* CALCS *
RKKKKKKKE

Function

The CALCS object of the verb 'VERIFY' locates every record with
location mode CALC and displays each record name with various usage
statistics.

Format

VERIFY CALCS [OF SCHEMA schema-name]

Descriptions:

VERIFY

Perform "VERIFY CALC OF RECORD record-name" for every record of the
schema with location mode calc.

REV. @ 9 - 12

IDR3843 DBA COMMAND PROCESSOR (DBACP)

KRKKKEKKKEEK

* FILES *
KEKKKKKEK

Function

FILES are the physical mapping of a database to the storage medium

(DISK) .

The object ‘FILES’ allows all files within the named schema to be
allocated, cleared, expanded, displayed or deleted.

Format

ALLOCATE
CLEAR
DELETE FILES [OF SCHEMA schema-name]
EXPAND
VERIFY

Descriptions:

ALLOCATE

Estimate, allocate and initialize all area, set, and CALC files and the
log, before-image, and after-image files for this schema. Estimation
is an interactive process, requesting size information about various
schema constructs, and displaying the estimated file sizes and
characteristics. Allocation and initialization occur only after the
user accepts the estimation given. Size information requested includes
the following: maximum number of occurrences of each record type to be
stored within each area; maximum number of occurrences of each record
type to be inserted into all occurrences of sets in which the records
participate as manual members; mean value of all items which are used
in variable occurs clauses; and the mean number of characters of items
of type variable length string. The allowable range of each of these
requested figures is displayed if either an invalid answer or a null
line (carriage return only) is entered. Using these figures, the
following are calculated and displayed: for each area, the number of
buckets and bucket size in bytes; for each non-singular set, the
number of 18 byte directory entries (one per owner); for each member
and search list type of a set, the member or search list number, number
of nodes and node size in bytes; for each record with location mode
CALC, the number of 1@ byte entries in the CALC table; for each record
type, the number of data bytes and system bytes (counts and pointers)
for an "average" record occurrence; the total space used by all area,
set, and CALC files in bytes; and the ratio of data to total space for

the maximum size database as a percentage.At thispointthe usermay
continue with allocation or abort the command. Information requested
for file allocation includes a user estimate of the size of the
before~image file as a percentage of total file space, and the name of
each volume on which the files should be allocated. A short
verification (See VERIFY FILES) is displayed for each file after it is

9 - 13 July 1977

SECTION 9 IDR3943

initialized.

CLEAR

Verify and reinitialize all area, set, and CALC files and the log,
before-image, and after-image files. Verification includes a full
verify of each file (see VERIFY AREA, VERIFY SET, etc.), after which
the user may continue with or abort the CLEAR command. Verification
may be circumvented altogether ("DO YOU WISH TO VERIFY?"). A_ short
verification (see VERIFY FILES) is displayed for each file before it is
reinitialized.

DELETE

Verify and delete all area, set, and CALC files and the log, before-

image, and after-image files. Verification proceeds as in the CLEAR
FILES command.

EXPAND

Verify, examine, reestimate, and, if necessary, reallocate and expand
all area, set, and CALC files. The log, before-image, and after—image
files are reallocated and reinitialized. Verification proceeds as in
the CLEAR FILES command. Reestimation is identical to the estimation
process in the ALLOCATE FILES command with the following exceptions:
reestimation takes in to account the current usage of each file by
examining the amount of free space left, total amount of data stored,
and various statistics on distribution of data within each file;
instead of requesting "MAXIMUM NUMBER OF OCCURRENCES" of each record
type within areas and inserted manually into sets, the request is for
"MAXIMUM NUMBER OF ADDITIONAL OCCURRENCES", meaning additional

occurrences to be stored and inserted from this point. Mly those
area, set, and CALC files which need more space are reallocated and
expanded. Otherwise, reallocation and expansion proceed as allocation
and initialization in the ALLOCATE FILES command, with the exception
that the short verification is displayed for each file before it is
expanded. NOTE: The "EXPAND" command generates a new file,
initializes the new file, copies all data from the old file, and
deletes the old file for each file to be expanded. ‘There must be room,
therefore, for a new file to exist before the corresponding old file is
deleted if the new file is to be on the same volume as the old file.

VERIFY

Display a short verification of all area, set, and CALC files and the
log, before-image, and after-image files. If the files have not been
allocated or have been deleted, short verification (as well as long
verification) includes only the schema construct name and the message

"<NOT ALLOCATED>". Otherwise, short verification includes’ the
following: schema construct name; and the volume name and entry
number. Verify of areas includes number of buckets and bucket size in
bytes. Verify of CALC files includes the number of table entries.

REV. @ 9 ~ La
nd

>

TDR3243 DBA COMMAND PROCESSOR (DBACP)

HREKKEKEKKEKEKEREKE

* KEY OF LOCK *
KKKKKKKKKRKERERRE

Function

Those privacy clauses in the schema DDL using lock-names have no effect
until a literal key is assigned. The object KEY allows the Data
Administrator to assign, deallocate, change, and display the literal
values for the keys for variable locks.

Format

ALLOCATE
CHANGE
DELETE (KEY OF LOCK lock-name [OF SCHEMA schema-—name]

VERIFY

Descriptions:

ALLOCATE

Set the key for this lock if it is not set.

CHANGE

Verify and reset the key for this lock.

DELETE

Deallocate the key for this lock.

VERIFY

Display the key for this lock.

9 - 15 July 1977

SECTION 9 IDR3843

RKKKKKEKK

* KEYS *
KEKKKKKRK

Function

Like the object "KEY", KEYS allows the Data Administrator to assign,
deallocate, change, and display the literal values for the keys for all
variable locks for the schema.

Format

ALLOCATE
CHANGE KEYS [OF SCHEMA schema-name]

DELETE
VERIFY

Descriptions:

ALLOCATE

Set the keys for all variable locks in this schema that are not set.

CHANGE

Verify and reset the keys for all variable locks in this schema.

DELETE

Deallocate the keys for all variable locks in this schema.

VERIFY

Display the keys for all variable locks in this schema.

REV. @ 9 - 16

IDR3943 DBA COMMAND PROCESSOR (DBACP)

REKKKEEKEKSE

* LISTING *
KEKKKEKEKKR

Function

LISTING allows the DBACP to retain a recording of the session with the
Database Administrator. The Database Administrator can save or clear

the listing.

Format

Sain} LISTING

SAVE

Descriptions:

CLEAR

Rewind and truncate the DBACP listing file DBA@nn, where nn is the user
number. Display and write out a heading including login name, terminal
number, date, and time. When DBACP is invoked, a clear list is
automatically performed.

SAVE

Copy the DBACP listing file into a user specified file. The DBACP
listing includes a copy of all interactions between the user and DBACP
except the values of keys of variable locks. |

9 - 17 July 1977

SECTION 9 IDR3043

KRKEKRKKKKEKK

* LOGGING *
KEKKKKKKAKK

Function

The DBMS records all database transactions in a file called 'log file’.
The object 'LOGGING' and the four verbs allows the Database
Administrator to control the operation of this log file.

Format

CLEAR

START [LOGGING [OF SCHEMA schema-name]
STOP

VERIFY

Descriptions:

CLEAR

Delete all entries from log file and reinitiate.

START

Set a system flag so that all run-units using this schema invoked after
this point will save all logging information in the log file.

STOP

Set a system flag so that all run-units using this schema invoked after
this point will not save logging information.

VERIFY

Display the volume name and entry number for the after-image file.
Display a message stating if after-imaging is on oroff.

REV. @ 9 - 18

IDR3843 DBA COMMAND PROCESSOR (DBACP)

REEKKKEKKE

* SCHEMA *
KEKKKKKKKE

Function

The object 'SCHEMA' allows the Database Administrator to perform

maintenance functions on the named schema such as renaming, adding a
new schema, deleting a schema, updating, etc.

Format

ADD
| RESTORE)
ALLOW CONCURRENT UPDATE \

DELETE
DISALLOW CONCURRENT UPDATE
LOCK
RENAME P [SCHEMA schema-name] *
SAVE

UNLOCK
VERIFY

w
e

 / J
* If the Schema-name is omitted, the current schema is assumed.

Descriptions:

ADD

Enter a schema which was created on another PRIME DBMS system into the
Schema Directory for this system. The schema is assumed to have been
transported intact from its original system on volumes on removable
disk packs which have been loaded on this system. DBACP asks for the
name of the volume on which the schema table resides and the schema
number from the original system. If there are any conflicts with the
schema name or number, the user may change the name or number of the
schema being added or abort the command.

ALLOW CONCURRENT UPDATE

Set a system flag which will allow concurrent updating and retrieving
of all files for this schema for all run-units currently running and
invoked after this point. Before-imaging must be on before concurrent
update can be allowed.

DELETE

Verify and delete all subschemas, all area, set, and calc files, the
log, before-—image, and after-—image files, and the schema table for this
schema. Verification proceeds as in the CLEAR FILES command with the
addition of the schema table and the subschemas. When deletion is
complete, the entry for the deleted schema is removed from the Schema
Directory.

9 - 19 July 1977

SECTION 9 IDR3843

DISALLOW CONCURRENT UPDATE

Set a system flag which will allow only one updating or multiple
retrieving run-units to access the database concurrently.

LOCK

Set a system flag which prevents any run-units invoked after this point
from accessing this schema.

RENAME

Change the name of this schema. If desired, the schema number may also
be changed (system supplied).

RESTORE

Copy the schema and all of its related files from magnetic tape and
enter it into the Schema Directory. If there are any schema name or
number conflicts, the command is aborted.

SAVE

Copy the schema and all of its related files onto magnetic tape.

UNLOCK

Set a system flag which allows run-units to access this schema after
this point.

VERIFY

Display the following information about the schema table: schema name
and number; volume name and entry number; login name, date, and time
of creation; name of schema DDL source file; a message stating if
concurrent update is allowed or not allowed; and messages stating if
logging, before-imaging, and after-imaging are on or off.

REV. @ 9 - 20

IDR3843 DBA COMMAND PROCESSOR (DBACP)

RKEKEKKEKRKER

* SCHEMAS *
KEKKKKKKKKK

Function

The object 'SCHEMAS' allows the display of the names and numbers of all
SCHEMAS known to the DBMS.

Format

VERIFY SCHEMAS

Descriptions:

VERIFY

Display the schema name and number of each schema in the system.

9 - 21 July 1977

SECTION 9 IDR3043

kkRKKKK

* SET *
KKKEKKE

Function

The object 'SET' allows the Database Administrator to perform
maintenance functions on the SET file.

Format

LOAD
UNLOAD} SET set-name [OF SCHEMA schema-name]

VERIFY

Descriptions:

LOAD

Delete the dummy set file and restore the original set file from
Magnetic tape.

UNLOAD

Copy the set file onto magnetic tape and replace the set file with a
dummy file containing information identifying the tape.

VERIFY

Display the following information about the set file: set name;
volume name and entry number; login name, date, and time of creation;
number of directory entries and number of entries free (for non-

Singular sets only); and for each member and search list, the member
or search list number, number of nodes, node size in bytes, and number
of nodes free.

REV. @ 9 - 22

IDR3843 DBA COMMAND PROCESSOR (DBACP)

RKRKKEKE

* SETS *
KKEKKKKE

Function

The object 'SETS' allows each set name to be listed at the terminal

with various usage statistics.

Format
VERIFYSETS [OF SCHEMA schema-name]

Descriptions:

VERIFY

Perform "VERIFY SET set-name" for every set of the schema.

9 - 23 July 1977

SECTION 9 IDR3843

REKKEKKKEKKKKEKK

* SUBSCHEMA *
KEKKKKKREKKKE

Function

The 'SUBSCHEMA' object allows the Database Administrator to verify and
delete the named subschema.

Format

DELETE

WwERTFY} SUBSCHEMA subschema-name {OF SCHEMA schema-name]

Descriptions:

DELETE

Verify and delete the subschema.

VERIFY

Display the following information about the subschema table: subschema
language type, name, and number; volume and entry number; login name,
date, and time of creation; name of subschema DDL source file; and
size of common work space in bytes for DML programs accessing this
subschema.

REV. @ 9 - 24

IDR3843 DBA COMMAND PROCESSOR (DBACP)

RKKEKKEREREKKE

* SUBSCHEMAS *
KKKKKEKKRAERKEKK

Function

This object performs the same functions as the 'SUBSCHEMA' object on
all subschemas associated with the named schema.

Format

DELETE
VERIFY§ SUBSCHEMAS [OF SCHEMA schema-name]

Descriptions:

DELETE

verify and delete all subschemas of this schema. The user may abort
the command after the verification of any subschema.

VERIFY

Perform "VERIFY SUBSCHEMA subschema-name" for every subschema of this
schema.

9 - 25 July 1977

SECTION 9 IDR3843

kkkKKKKKK

* TAPE *
KERRI

Function

The object TAPE allows the Database Administrator to control the
magnetic tape such as rewind, advance tape forward, or to display
information about the tape.

Format

ADVANCE
CHANGE TAPE
VERIFY

NOTE: The first command executed which accesses magnetic tape will
request the tape unit number for that tape. All successive commands
will assume the same tape unit until the physical end of tape marker is
reached or a 'CHANGE TAPE" command is executed.

Descriptions:

ADVANCE

Advance the tape forward to the next schema save or file unload and
verify the header.

CHANGE

Rewind the tape and request a new tape unit number (may be the same).

VERIFY

Read the tape header and display the following information: schema
name and number; if file unload, name of schema construct; date and
time saved or unloaded; and tape sequence number (always one for first
tape and incremented by one for each successive tape for this schema
save or file unload). If the tape is positioned at the end of the last
save or unload on the tape, the message "END OF TAPE" is displayed.

REV. 8 9 - 26

IDR3643 PERFORMANCE NOTES

APPENDIX A

PERFORMANCE NOTES

The following presents a brief summary of performance-oriented
considerations:

l. The DBMS is designed for on-line processing and recovery. This
reflects in the generation approach to database update, and the
delayed garbage collection of records. It is part of the
rationale for using P-trees as the sole implementation of sets.

Database Transactions (DBT's) provide for minimal data lockout

and multiple concurrency (viz: retrieval and update).

Two levels of buffer - pooling create efficient physical I/0
Management and allow common information to be shared. The large
CPU page size and its equivalence to physical block size are a
source of I/O speed.

The databases are expandable, partly due to the plug-in
expandability of Prime hardware, partly due to the ability of
adjust for hardware expansion, and consumated in the EXPAND and
PACK capabilities provided to the DBA by the Prime DBMS.

Tne ability of the DBA to examine every aspect of the schema, and
of the DBMS to utilize actual running figures is realized in
Prime's DBMS. DPA estimates during later expansion are an aid to
increasing overall efficiency.

Rapid search is provided by several facilities: the hashing
implementation of CALC, the use of B-trees, and the Set Qwner-
Directory which associates owners with all their members, which
is accessed directly from every associated record occurrence
(i.e., universal link to owner).

Space utilization is generally efficient: the size of DEMS-
structured files compares favorably with pre-DBMS versions.

The hardware cache memory and random-sectoring disk controller
technique enhance speed; the self-correcting internal memory and

disk controller enhance integrity; the hardware ring structure
creates additional security.

A -] July 1977

IDR3043

APPENDIX B

MAXIMUMS

MAXITMUMS

The following numbers are definitions of maximum sizes with respect to
the DBMS. ‘The reader should be aware that many of these numbers assume
no storage limitation but is available for future system expansion.

PRIME Storage capability
Maximum file size:
Maximum Pucket size:
Maximum Record Size:
Maximum Number of Areas:
Maximum Number of Record types:
Maximum Number of Buckets per Area:
Maximum Number of Record Entries per Bucket:
Maximum Number of Items in a Record:
Maximum Number of users:
Maximum Number of concurrent files opened at the

same time:
Maximum Number of Sets:
Maximum Number of Set Occurrences:

2.4 Billion Bytes
388 Million Bytes
128,@0@ Bytes

65,88@ Bytes

1@23 Areas

1@23 record types
(2**28)-1 Buckets
255 entries
4896 items
63 users

256 files

(2**27)

July 1977

(DBACP)

(DBT'S)

(DBTS) 4-

(DMLCP)

(ROLL BACK)

ABORT TRANSACTION

APORT TRANSACTION

ACCESS STRA

ADD 9-19

. ADVANCE THE

AFTER-IMAGE

APTER-TMAGE
Lob2

AFTER-IMAGE

AFTER-IMAGE

AFTER-IMAGING

ALLOCATE DA

ALLOCATE

ALLOCATE

ALLOCATE

ALLOCATE

ALLOCATE

ALLOW CONCURRENT UPDATE

APPLICATION

AREA DEFINITION

AREA FILE

AREA NAME

4-7

5-1

(DBT'S) A-1l

4

4-6

9-18

4-5

4-4

TEGIES 4-1

TAPE FORWARD 9-26

FILE

FILE

8-2

9-6

TABASE FILES 7-2

4-6

7-2

9-13

9-15

3-16

9-19

PROGRAMS 5-4

3-1

6-2

9-8

INDEX

ARFA 7-2

AREA 9-7

AREA, SET, AND CALC 9-14

AREAS CAN BE EXPANDED 3-6

AREAS 8-1

AREAS 9-9

B-TREE 3-4

B-TREE 7-1

B-TREES 5-3

B-TREES 6-2

BEFORE-IMAGE FILE 6-2

PEFORE-IMAGE FILE 7-2

PEFORE-IMAGES

BEFORE-IMAGING 8-2

BEFORE-IMAGING 9-1¢@

BUCKET SIZE 9-8

BUCKETS 3-1

BUCKETS 3-6

PUCKETS 6-2

BUCKETS 7-1

PUFFER FOCL 2-5

BUFFER POOL 6-3

PUFFER POCLING 2-4

CALC FILE TABLES 7-1

CALC FILE 6-2

CALC FILE 9-11

CAIC FILES 9-14

CALC FUNCTION 4-]

CALC KEYS 6-2

CALC KEYS 8-1

CALC OF RECORD 11

CALC TABLE 7-2

CALC TABLE 9-11

CAIC TABLES 8-1

CAICS 9-12

CARETAKER FUNCTIONS 4-8

CHANGE 9-15

CHANGE 9-16

CHANGES TO SCHEMA 4-2

CHANGES TO SUBSCBEMAS 4-2

CHECK CLAUSE 5-3

CHECK IS LIST 5-3

CHECK IS PICTURE 5-3

CHECK IS RANGE 5-3

CLEAR 7-2

CLEAR 9-14

CLEAR 9-17

CLEAR 9-18

CLEAR 9-6

CLUP 8-3

COBCL SUPSCHEMA 5-2

CCBCL 4-2

CODE TAFLE 5-2

INDEX

CODE TYPES 5-2

COMMAND DESCRIPTION 9-5

COMMON BLOCK 4-2

COMMON BLOCKS 5-3

COMMON WORK SPACE 9-24

CONCURRENCY CONFLICT 4-5

CONCURRENCY 8-2

CONCURRENT ACCESS 4-3

CONCURRENT RUN UNITS 9-1

CCNCURRENT UPDATE 9-18

CONCURRENT UPDATE 4-7

CONCURRENT USE 2-5

COFY THE SET FILE 9-22

CCPYING 9-7

CREATING THF DATABASE 4-9

CYCLIC 4-1

DATA AGGREGATES 5-3

DATA AGGREGATES 5-2

DATA INDEPENDENCE 4-2

DATA INDEPENDENCE 5-1

DATA LENGTH 5-2

DATA MANIPULATION LANGUAGE 4-2

DATA STRUCTURE ASSISTANCE 2-5

DATA STRUCTURES 4-1

DATA-UTILIZATION RATIO 7-1

DATAPASE ADMINISTRATOR'S CCMMAND
PROCESSCR (DPACP) 4-7

DATABASE ADMINISTRATOR
SUPPORT 4-8ere me

DATABASE BACKUP 6&-3

DATABASE FILE 6-1

DATARASE KEYS 4-1

DATABASE LAYOUT 3-1

DATAPASE MANAGEMENT SYSTEM 6-1

DATABASE MODEL 2-5

DATABASE TRANSACTIONS
(DBI'S) A-1

DATAPRASE TRANSACTIONS
(DBT'S) 5-1

DATABASE TRANSACTIONS
(DBTS) 4-4

DPACP COMMAND 8-1

DBACP DIALOGS

DBACP LISTING FILE

DEMS

DEMS

DEMS

DEMS

DBMS

DCL

~2s
l

9-17

ARCHITECTURE 2-5

CONTROL TABLES 8-3

FILES 6-1

RECOVERY 8-2

STORAGE STRUCTURE 3-1

4-2

DEADLOCK 4-4

DEALLOCATE 9-15

DEFINITICN TABLES 3-1

DELETE THE DUMMY SET FILE 9-22

DELETE 7-2

DELETE 9-15

X

DELETE 9-16

DELETE 9-19

DISALLOW CONCURRENT UPDATE 9-28

DISPLAY THE FCLLOWING INFCRMATICN

ARCUT THE SET FILE 9-22

DISPLAY 9-8

DML CCMMAND PRCCESS (DMLCP) 4-6

DML COMMAND PRCCESSCR
CLEAN-UP 8-3

DML 4-2

DMLCP 4-7

DUMMY CALC FILE 9-11

DYNAMIC FEFERENCE 5-1

DYNAMIC REFERENCE 4-2

DYNAMIC SETS 5-3

EASE CF EXPANSICN 3-6

ENCCDING/DECCDING 5-3

END CF A TRANSACTICN 6-3

END OF TAPE 9-26

END TRANSACTICN CCMMAND 4-4

END/ABCFT 5-1

ENDING A TRANSACTION 68-3

ENTER A SCHEMA 9-19

ERROR-CORRECTING ARRAY 2-2

EXIT/ABOPT 5-1

EXPAND.FILES . 8-1

EXPAND 4-6

EXPAND 6-1

INDEX

EXPAND 9-1] HIERARCHICAL 4-1

EXPAND 9-14 HOST-LANGUAGE 7-3

EXPANSION 3-6 IDR 1-3

EXTENSIONS TO THE DBTG-71 IMPLEMENTATION OF DBTS 4-5
REPORT 5-1

INITIAL DOCUMENTATION
EXTENSIONS/RESTRICTICNS 5-1 RELEASE 1-3

FANOUT 3-6 INTEGRITY AND SECURITY 2-2

FATAL ERRORS 8-3 INTEGRITY 4-3

FDR 1-3 INVOKE COMMAND 5-1

FIELDS IN THE RECORD 9-1] INVOKE 5-1

FILE ALLOCATION 7-1 ITEM TYPE EXTENSIONS 5-2

FILE AND ACCESS MANAGEMENT 2-4 KEY OF LOCK 9-15

FILE CLEANUP 9-7 KEYS OF VARIABLE LOCKS 9-17

FILE MANAGEMENT SYSTEM 2-4 KEYS 5-1

FILES 9-13 KEYS 9-16

FINAL DOCUMENTATION RFLEASE 1-3 LINKED-TO 5-3

FMS 2-4 LISTING 9-17

FORTRAN DDL 4-2 LITERAL POOL 5-2

FORTRAN RECORD OVERLAYS 5-3 LOAD 9-11

FCRTRAN USER WORK AFEA (COMMON LOAD 9-22
BLOCKS) 5-3

LCAD 9-7
FCRTRAN 4-2

LOCATING A RECCRD 9-1]
GENERIC UTILITIES 4-3

LOCATION MODE 3-6
HARDWARE UPGRADE AND
EXPANSION 2-3 LOCATION MODE 8-1

HARDWARE 2-1 LOG FILE 4-8

HASH TAPLE 6-2 LOG FILE 6-2

HASHING VALUES 4-1 LOG 7-2

LOGGING 9-18

LOGIN NAME 9-11

LOST UPDATES 4-4

MAGSAV/MAGRST 4-8

MAINTAINABILITY 2-5

MANUAL INSERTS 7-1

MAXIMUM BUCKET SIZE B-l

MAXIMUM FILE SIZE B-1

MAXIMUM NUMPER OF AREAS B&-]

MAXIMUM NUMEER OF BUCKETS B-1l

MAXIMUM NUMBER OF CONCURRENT
FILES OPENED AT THE SAME
TIME B-1

MAXIMUM NUMBER OF ITEMS IN A

RECORD PB-1l

MAXIMUM NUMBER CF CCCURRENCES OF
EACH RECCRD TYPE 7-1

MAXIMUM NUMPER OF RECORD
TYPES E-l

MAXIMUM NUMEER OF RECCRD ENTPFIES
PER BUCKET B-1l

MAXIMUM NUMPER CF SETS B-1

MAXIMUM NUMBER OF SET
OCCURRENCES B-l

MAXIMUM NUMPER OF USERS B-1

MAXIMUM RECORD SIZE P-1

MAXIMUMS B-1

MEDIA SPACE VERIFICATION 8-1

MESSAGE TYPES 6-2

MIDAS 5-4

INDEX

MULTIPLE DATABASES 3-1

NAMING GROUPS 5-3

NETWCRK 4-1]

NEW GROUPS 5-3

NODE-SIZE 7-1

NODES OF B~TREFS 2-4

NUMBER OF PUCKETS 9-8

NUMPER CF PYTES FREF 9-8

NUMREPR OF FULL BUCKETS 9-8

OBJECT TAPLE 4-2

OCCURRENCES OF A
VARIABLE-OCCURRENCE DATA

AGGREGATE 7-1

OMISSIONS/RESTRICTONS 5-3

ON EFROR CLAUSE 5-1

ON-LINE PROCESSING AND
RECOVERY A-l

ORDER DML COMMAND 5-3

ORDER IS SORTED 6-2

CRIGINAL CALC FILE 9-11

OVEPRFLOW CF ALLOCATED SPACE §&-1

OWNER CCCURRENCE 3-4

PACK AREA 8-3

PACK CAIC 9-11

PACK 3-6

PACK 4-6

PACK 9-1

PACK 9-11

5

PACK 97

PACKING 9-7

PAGE PROXIMITY 3-6

PAGE SIZE 2-1

PAGING ACTIVITY 8-1

PAGING SPEED 2-1

PASSWORD CAPABILITIES 4-3

PASSWCRD PROTECTION 2-4

PDR 1-3

PERFORMANCE SUMMARY A-1

PHYSICAL INTEGRITY 4-6

PICTURE LENGTH 5-2

PICTURE 5-2

PCINTER ARRAYS 32-4

POINTERS 6-3

PRELIMINARY DOCUMENTATICN

RELEASE 1-3

PRESERVING THE PHYSICAL INTEGRITY
OF THE DIABASE 4-6

PRIME STORAGE CAPABILITY B-l

PRIMCS AFCHITECTURE 2-3

PRIVACY KEYS FOR VARIAELE
LOCKS 8-3

PRIVACY KEYS 5-1

PRIVACY KEYS 8-3

PRIVACY 4-3

PRIVACY 5-1

PRIVACY-LOCKING 4-8

INDEX

PROCEDURE FACILITY 5-4

PROTECT CAPARILITIES 4-3

RAM 2-4

RANDOM ACCESS MANAGER 2-4

RANDOM-SECTORING TECHNIQUE 3-6

RE-ENTRANT 2-5

READ THE TAPE HEADER AND
DISPLAY 9-26

RECORD DEFINITIONS 3-1

RECORD NAME AND NUMEER OF ENTRIES
IN THE TABLE 9-11

RECORD OCCURRENCES 8-3

RECORD OCCURRENCES 6-2

RECORD TYPEE 4-1

RECORD-TYPES 3-6

RECOVEFY FACILITIES 4-7

RECOVERY PROCESS 4-8

RECOVERY PROCESSOR 4-7

RECOVERY 4-6

RECCVERY 8-2

RECOVERY 9-10

REFERENCE DOCUMENTS 1-5

RENAMING 9-19

RESTCRATION CF FILES 9-7

RESTORE 9-11

RETRIEVAL DBTS 4-4

RETRIEVING OCF ALL FILES 9-19

REWIND THE TAPE 9-26

INDEX

RING STRUCTURE 2-2 SEARCH KEYS 2-6

ROLL BACK A DATABASE 8-2 SECURITY WITHIN PRIMOS 2-4

ROLL BACK FACILITIES 9-1¢ SECURITY 9-2

ROLL BACK 4-7 SEGMENT DIRECTORIES 6-1

RCLL BACK 8-2 SEQUENTIAL FILE 6-2

ROLL FORWARD 4-8 SET AND RECORD DEFINITIONS 2-1

ROLLBACK A TRANSACTION 4-5 SET DEFINITIONS 3-1

ROLLBACK OF UPDATES 4-4 SET DIRECTORY 6-2

RUN-TIME 4-2 SET FILE 6-2

RUN-TIME 5-2 SET MCDE 5-3

RUN-UNIT 4-6 SET OCCURRENCES 6-2

RUN-UNIT 4-7 SET ORDERING 2-6

RUN-UNIT 5-1 SET SET-NAME 9-22

RUN-UNIT 8-2 SET 7-2

SAVE 9-17 SETS 6-1

SAVE/RESTORE 4-6 SETS 9-23

SAVE/RESTORE 4-8 SHARE COMMON PROGRAM SPACE 2-5

SCHEMA CHANGES 4-2 SHARED CATA 4-3

SCHEMA CREATION 7-1 SHARED SINGLE-CCPY CCDE 2-5

SCHEMA DDL COMPILER 7-1 SHARING OF COMMON FILES 2-5

SCHEMA DIRECTORY 3-1 SHARING/CCNCURRENT ACCESS WITH

MOST DBMS 4-3

SCHEMA PRIVACY LOCKS 9-2
SHARING/CONCURRENT ACCESS WITE

SCHEMA TABLE 6-1 PRIME'S DEMS 4-4

SCHEMA TAPLE 7-1 SPACE UTILIZATION 3-7

SCHEMA 9-19 SPECIFIC EXTENSIONS 5-2

SCHEMAS 9-21 SPEED 2-1

SEARCH KEY 6-2 SPEED 2-5

INDEX

START TRANSACTION DML TRANSACTION ROLLBACK 4-5
COMMAND 4-4

TRANSACTION TABLES 6-2
START 5-1]

TREE 4-1
START 9-18

TYPE 5-2
START 9-18

TYPES OF FILES 6-1
START 9-6

UNLOAD 9-11
STATUS REPORTS 8-1

UNLOAD 9-7
STOP 9-10

UPDATE DBT 4-5
STOP 9-18

UPDATE DETS 4-4
STOP 9-6

UPDATE TRANSACTION NUMBERS 4-5
STORAGE SPACE 3-6

USER WCRK AREA 5-2
SUBROUTINE CALLS 2-1

VARIABLE PRIVACY LOCKS 5-1
SUBSCHEMA DATA DEFINITION
LANGUAGE 4-2 VARIAPLE-LENGTH CHARACTER

STRINGS 5-2
SUBSCHEMA DIRECTORY 3-1

VAPRIABLE-LENGTH STRINGS 7-1
SURSCHEMA TABLE 6-1

VERIFY AND DELETE ALL
SUBSCHEMA 9-24 SUBSCHEMAS 9-19

SUBSCHEMAS 9-25 VERIFY AND DELETE ALL
SUBSCHEMAS 9-25

SYSTEM DIRECTORY 7-1

VERIFY AND DELETE THE NAMED
TABLES OF LOCKS 2-5 SUBSCHEMA 9-24

TEMPORARY AREAS 5-3 VERIFY AREA AREA-NAME 9-9

TERMINATICN 8-3 VERIFY CALC OF RECORD 9-12

TESTING NEW DML PROGRAMS 5-4 VERIFY COMMANDS 6-1

TESTING 5-4 VERIFY SCHEMAS 9-21

THE CPERATION OF THE VERIFY SET SET-NAME 9-23
RUN-UNIT 4-6

VERIFY SETS 9-23
TIME OF CREATION 9-1]

VERIFY 9-8
TIME, DATE, AND CCDE 5-2

VEFIFY 9-1f

INDEX

VERIFY 9-14

VERIFY 9-15

VERIFY 9-16

VERIFY 9-18

VERIFY 9-24

VERIFY 9-6

VOLUME AND ENTRY NUMBER 9-24

VOLUME NAME AND ENTRY
NUMBER 9-8

VOLUME NAME AND ENTFY
NUMEER 9-11

VOLUME/ENTRY IDENTIFIER 6-1

WORKING STORAGE 4-2

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	8-01
	8-02
	8-03
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	9-24
	9-25
	9-26
	A-01
	B-01
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09

