

Initial Documentation Release

TDR 3040

PRIME

FORMS MANAGEMENT SYSTEM

(FORMS)

This IDR is the first release of information on the Prime Forms
Management System (FORMS) as distributed on Master Software Disk
Revision 13.

Revision @ June 1977

IDR 3040

PRIME

FORMS MANAGEMENT SYSTEM

(FORMS)

PRIME
Computer,Inc.

145 Pennsylvania Ave.
Framingham, Mass. 01701

Copyright 1977 by

Prime Computer, Incorporated

145 Pennsylvania Avenue

Framingham, Massachusetts 61701

Performance characteristics are
subject to change without notice.

REV. @ i - 2

CONTENTS

Section Title

SECTION 1 SYSTEM CONCEPTS

1.1 Form Definition
1.2 Applications Programming with FORMS

SECTION 2 FORMS SYSTEM COMPONENTS

2.1 Forms Definition Language

2.2 Forms Administrative Processor
2.3 FORMS Run-time Package

SECTION 3 FORMS DEFINITION LANGUAGE

3.1 General Syntax
3.2 Naming Conventions
3.3 Form Description Structure
3.4 Descriptor/Block Delimiter Statements
3.5 Stream Descriptor FIELD Statement
3.6 Device Format Descriptor FIELD Statement

3.7 Programming Aids
3.8
3.9
3-1
3+]
3-1

-8 Listing Control Statements
Alternate Input File (SINSERT) Command

-19 Using FDL
+1] FDL Error Messages
12 FDL Temporary Files

SECTION 4 FORMS ADMINISTRATIVE PROCESSOR

4.1 Centralized FORMS Directory Information
4.2 FAP Commands

SECTION 5 FORMS RUN-TIME PACKAGE

5.1 General Information
5.2 Command Descriptions
5.3 Run-Time Error Handling
5.4 Run-Time System File I/O

SECTION 6 INSTALLING FORMS

2-1

2-1
2-1
2-1

3-1

3-1
3-2
3-2
3-4
3-6
3-13
3-16
3-18
3-18
3-19
3-28
3-24

4-}

4-]
4-]

5-1
5-2
5-5
5-7

June 1977

CONTENTS (Cont)

SECTION 7 DEVICE INPUT-OUTPUT SYSTEM

7.1 Device Mapping Scheme
7.2 User-Written Device Driveres
7.3 Prime-Supplied Device Drivers

APPENDIX A SAMPLE FORM DEFINITION SOURCE

APPENDIX B SAMPLE FORM DEFINITION

APPENDIX C SAMPLE FIN PROGRAM USING FORMS

APPENDIX D FORMS CONTROL DIRECTORY FORMATS

REV. @ i - 4

A-1

B-1

C~1

D-1

FOREWORD

The Prime Forms Management System (herein referred to as FORMS)

provides a convenient and natural method of defining a form in a
language designed for such a purpose. These forms may then be
implemented by any applications program which uses Prime “s Input-Output

Control System (IOCS), including programs written in COBOL, FORTRAN,
RPG-II, and PMA. Applications programs communicate with FORMS through
input/output statements native to the host language. Programs that
currently run in an interactive mode can easily be converted to use
FORMS.

FORMS allows cataloging and maintenance of form definitions available
within the computer system. To facilitate use within an applications
program, all form definitions reside within a centralized directory in
the system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion
of form definitions.

FORMS is device independent. There may be any mix of terminals
attached to the Prime computer which, so long as they contain some

basic properties discussed later in this document, may be used with the
FORMS system. Terminal configuration is governed by a control file in
the centralized FORMS directory. This file is read by FORMS at
run-time to determine which device driver to use, depending on this
user “Ss terminal type. This means that multiple terminal types may be
Griven by the same applications program without change. Certain
terminal types are supported by FORMS as released by Prime. Should the
user have another terminal capable of supporting FORMS, all that he
need do is write a low-level device driver for the terminal and
incorporate it into the FORMS run-time library.

RELATED DOCUMENTS

The following listed documents may provide useful supplemental
information to the reader of this User Guide.

Document Title Order No.

PRIMOS Interactive User Guide MAN 2682

Primos File System User Guide MAN 2604

Program Development Software User Guide MAN 1879

i a) June 1977

IDR3048 SYSTEM CONCEPTS

SECTION 1

SYSTEM CONCEPTS

1.1 Form Definition

All applications program/FORMS data transfer is handled through

input/output statements in the host language. This means that the user

must "tell" FORMS the format of the input/output data that is going to

transferred from and to the applications program. This definition,

known as the data stream descriptor, serves two primary functions.

First, it defines the location of each data item, called a field,

within the input/output record(s). Second, it defines the length of

each field. Optionally, it can include justification and validation

parameters.

The programmer must then define the format of the data as it is to

appear on the input/output device. This definition, known as_ the

device format descriptor, describes the position of the data in terms

Of line/column coordinates, field length, justification, and optional

display attributes. Display attributes include:

. write enable/write protect (terminal)
- blink (terminal)
. reverse video {terminal}
- not displayed (terminal/hard-—copy)

- underline (hard-copy)

The data stream descriptor serves as an interlude between the

applications program and the device format descriptor. One stream

descriptor is mapped to one format descriptor, which may contain format

definitions for several devices (e.g., a terminal and the line

printer). When requesting acertain form, the applications program

names {in a FORMS command) the data stream descriptor, which in turn

contains the name of the format descriptor to be used. This run-time

binding among the applications program, data stream, and format

descriptors allows the user to modify one of the descriptors without

necessarily having to change, recompile, or reload the applications

program or the other descriptor. For example, should the user wish to

change the position of a field in the device format, he need recompile

only the device format and replace the existing descriptor with the new

one in the FORMS catalog.

Within a device format descriptor, each field which is to contain data

from the applications program is assigned a unique 1-8 character name.

Stream descriptor fields map data from the applications program to

these fields. The format descriptor maps the data received from the

stream descriptor to a defined position on the input/output device.

A block diagram showing data flow from the applications program to the

input device might look like this:

1 -]d June 1977

SECTION 1 IDR3048

| input/ | | fieldl | | to
applications| output | stream | Field? | format | device

| record | | fields | |----~---->
|
|
| program | | descriptor | fieldn | descriptor |
| | | | | |

To summarize, the data stream descriptor separates the user’s
input/output record into fields, which are then mapped onto fields in
the device format descriptor. The device format descriptor defines the
location, length, and attributes of the data on the input/output
device. It is interesting to note that on input the same mapping is
used as for output - from the stream descriptor to the format
descriptor. No "backwards" mapping exists; the data flow is simply
reversed.

1.2 Applications Programming with FORMS

A unique advantage of FORMS over other transaction-oriented processing
systems is that it allows the user to program in standard languages
such as COBOL and FORTRAN; no non-standard processing language exists.
Commands are issued to the FORMS run-time package as output records
from the applications program. Until a FORMS command is issued, all
input/output is processed normally, using the standard 1/0 drivers
resident in the Fortran library (FINLIB). When a FORMS command is
issued, it is trapped and processed by the run-time package. The
run-time package also traps and processes all data I/O requests from
the applications program when a form is being processed (is invoked) .

The method of data transfer using FORMS is no different from that used
with normal input/output. In FORTRAN, for example, one would still
write to the terminal (logical unit 1) or line printer (logical unit 4)
according to a FORMAT statement. In COBOL, a file would be selected
and assigned to the TERMINAL for a user-terminal form. Because of
compatibility problems between FORMS and COBOL, a new device type,
called OFFLINE-PRINTER, was added to print a form on the line printer:
this device type is now valid in a SELECT/ASSIGN statement.

When designing the input and output record formats for the applications
program (and hence, the stream descriptor), the user must be careful
not to exceed the default FORTRAN I/O buffer size of 132 characters.
Should he choose to define his own 1/0 buffer and reset the record-size
table entry for a particular device (namely, the terminal or printer)
with the ATIDEV subroutine, he is warned that the absolute maximum
record size that FORMS is able to handle is 16@ characters. If the
form contains more than 132 or 16@ characters, or if the programmer
deems it convenient to break the data up into smaller records, a
facility exists for writing or reading the form in "pieces". This
facility, known as a substream definition, allows the programmer to
transfer the form to and from the applications program in multiple
records. It is described in detail later in this document.

REV. 6 l - 2

IDR3040 FORMS SYSTEM COMPONENTS

SECTION 2

FORMS SYSTEM COMPONENTS

2.1 Forms Definition Language

The Forms Definition Language (FDL) translates the user’s form
definition files into binary control block files. Form definition
files, which are prepared with the Prime text editor (ED), describe the
form in the FDL language described later in this document. The binary
control block files emitted by FDL are placed in the central FORMS
directory by the system administrator using the Forms Administrative
Processor. These definitions are now available for use in an
applications program. FDL optionally emits a listing file containing
the user’s source text listing, error codes and explanations (if any),
and data formats as FDL perceives (from the user’s form definition)
they should "look" at run-time.

FDL statements, syntax, and usage are described later in this document.

2.2 Forms Administrative Processor

The Forms Administrative Package (FAP) is a utility program which
allows the system administrator to manipulate and catalog the forms
definitions within the system. Also, it allows him to change the
terminal configuration tables when terminals are added to/removed from
the system. The basic functions provided by FAP are:

Create FORMS directory
Add/replace form descriptions
Purge form descriptions
List catalog of form descriptions
Modify/list terminal configuration table0

0
0
0
0

FAP commands and syntax are described later in this document.

2.3 FORMS Run-time Package

The FORMS Run-time Package is a collection of subroutines which is
loaded as a library with the applications program. These subroutines
perform all run-time functions, including forms lookup, buffer
management, data manipulation, and input-output control.

The FORMS Run-Time Package must be loaded immediately before the
FORTRAN library, as it contains replacements for some IOCS tables
defined in FINLIB (and VFTNLB). A typical load sequence for a COBOL
program which uses FORMS and KI/DA might look like this:

2 - 1 June 1977

SECTION 2 IDR3048

OK, HILOAD

GO
$ COMMON 168000 (load common below 169808)
$ LOAD B_USRPRG (user “s COBOL program)
$ AU 40 (use automatic Linkbase generation)
$ LIBRARY COBKID (COBOL library with KI/DA)
$ LIBRARY RFORMS (64R mode FORMS library)

S$ LIBRARY (FORTRAN library)
LC
$ SAVE *USRPRG
$ QUIT

OK, .

Two FORMS libraries exist: one for 64R mode (called “"RFORMS"), and one
for 64V mode (called "VFORMS"). In addition, a template command file
exists for building a shared-procedure version of FORMS (for the Prime
408 only). ‘These are discussed in detail later in the document.

All FORMS Run-Time Package libraries use COMMON initialization via
FORTRAN "BLOCK DATA". ‘This requires the user to place the COMMON area
out of the area used by the loader, where it normally resides, when
loading the library in 64R mode. Note that this does not hold true in
64V mode, aS COMMON does not overlay the segmented loader (SEG) .

Although it resides in the library as one file, the run-time package is
made up of three separate parts, described below.

2.3.1 Run-Time Package Proper

The Run-Time Package Proper is the control portion of the run-time
package. It processes all FORMS commands issued by the applications
program, as well as all input/output data. This package contains the
two routines that directly control the input and output of forms, as
well as routines for form initialization, data transfer, text
justification, validation, etc.

2.3.2 Buffer Pool Manager

The Buffer Pool Manager controls all form lookup and retrieval at
run-time. This package is called by the run-time package proper to
perform three functions: form lookup, form definition retrieval, and
form termination. This package controls a buffer pool capable of
holding multiple form definitions in either a single-user or
shared-procedure environment. When a form definition is requested and
the buffer pool becomes full, the pool manager writes least recently
used form definitions to a temporary file and reads in the requested
form. This "rollout" function is performed to prevent having to lookup
the form definition again, which could be a lengthy process if there

REV. @ 2 - 2

IDR3046 FORMS SYSTEM COMPONENTS

are several hundred forms in the system.

2.3.3 Input-Output System

The Input-Output System (IOS) is the collection of device drivers which
control all devices supported by the FORMS system. Any user-written
device drivers are incorporated into this package. The IOS also
contains replacements for the write-ASCII and read-ASCII tables (WATBL
and RATBL) in the Fortran Library IOCS. These tables cause calls to
the write-ASCII (WRASC) subroutine for the terminal line-pr inter
and call to the read-ASCII subroutine (RDASC) for the terminal to be

trapped and processed by a high-level FORMS subroutine. If a form is
invoked on the given device, the data is processed by FORMS; if not,
the call is reflected by FORMS to the standard I/O driver for the
device (OSAA91, ISAA12, and OSAL@6/84, respectively). Note that all
input/output (i.e., READ and WRITE) statements in FORTRAN, COBOL, and
RPG~II generate calls to RDASC and WRASC, respectively.

2 - 3 June 1977

IDR3048 FORMS DEFINITION LANGUAGE

SECTION 3

FORMS DEFINITION LANGUAGE

3.1 General Syntax

FDL supports a free-format input line, much like the Prime Macro

Assembler (PMA).

All form descriptor, substream, and field names must start in the first

character position of the lime and must be followed by at leastone

space. Descriptor statements may start anywhere after column 1, and

may occupy columns 2 through 72. Columns 73 through 8@ are ignored.

Items in the input line may be separated by either a Space or a comma,

unless otherwise noted. Lower case characters are mapped to upper

case, with the exception of characters in a text string (enclosed

within single quotes) .

Should an input record contain too many characters to fit on one line,

the programmer may continue his source text by placing a semicolon (;)

as the last character of the line to be continued. Note that input

items (words, text strings, etc.) may not be split across two lines.

There is no limit to the number of continuation lines in a source

record; there is, however, a 24@-character limit per record.

If the first character of a line is an asterisk, that line is treated

as a comment, listed in the output file and ignored. If the first

character is a single quote (°), the line is treated as a comment, but

causes an eject in the listing and becomes the new page header.

In addition to full line comments (lines beginning with an asterisk or

single quote), in-line comments are also supported. In-line comments

are preceded by a fore-slash and asterisk (‘/*°) and followed by an

asterisk and a fore-slash (°*/"). Should the programmer place the

in-line comment as the last item on the line, the terminating

characters (°“*/") may be omitted. Note that, unlike FORTRAN, in-line

comments may not occur within an item (eg, in the middle of a name or

text string).

3 - | June 1977

SECTION 3 IDR 3048

Examples:

* THIS IS A COMMENT LINE

" THIS WILL CAUSE A PAGE-EJECT AND WILL BECOME THE NEW HEADER

LABEL FIELD ABC, LENGTH 6 /* THIS IS AN IN-LINE COMMENT

LABEL FIELD ABC, /*THIS TOO IS AN IN-LINE COMMENT*/ LENGTH 6

NAME FIELD “FOUR SCORE AND SEVEN YEARS AGO... ” ;
- POSITION (18,18) PROTECT /* CONTINUATION LINE

3.2 Naming Conventions

The rules for naming form descriptors, fields, substreams, etc. are as
follows:

o Name length: 1-8 characters

o First character must be alphabetic

© Permitted characters: A-Z, @-9

Examples:

Permitted Not Permitted Why

SHIPFORM GAZORKLEFORM name too long
FORMS 5FORM bad lst character (5)
AMTOWED OWEDS illegal character (S$)

3.3 Form Description Structure

The following diagrams represent the various form definition structures
for both the stream descriptor and format desciptor.

IDR3648 FORMS DEFINITION LANGUAGE

Stream Descriptor

Stream descriptor header Stream descriptor header
Substream descriptor header

Field definitions -Or- .
. Field definitions

Stream descriptor terminator .
Substream descriptor terminator

Substream descriptor header

Field definitions

Substream descriptor terminator

Stream descriptor terminator

Format Descriptor

Format descriptor header
Device block] header

Field definitions

Device block] terminator
Device block n header

Field definitions

Device block n terminator
Format descriptor terminator

3 - 3 June 1977

SECTION 3 IDR3646

3.4 Descriptor/Block Delimiter Statements

3.4.1 The STREAM Statement

This statement is used to define the beginning of a data stream
descriptor control block. The name of the stream descriptor must
appear starting in the left margin (column 1) and must conform to the
rules specified above.

3.4.1.1 FORMAT Parameter (optional)

This parameter names the FORMAT control block to be used with this
stream descriptor. If it is omitted, the FORMAT descriptor is assumed
to be the same name as the STREAM descriptor. Note that two modules by
the same 8-character name but of different types (such as a stream and
format descriptor) may coexist in the FORMS catalog.

Examples:

TAXFORM STREAM

SHIPFORM STREAM, FORMAT SCREEN]

3.4.2 The END STREAM Statement

This statement terminates a data stream descriptor. It must be the
last statement in the stream descriptor.

Example:

END STREAM

3.4.3 The SUBSTREAM Statement

This statement defines one input or output record within a stream
definition. It gives the capability of multiple input and/or output
records (streams) under one stream descriptor. An optional name is
permitted starting in the left margin (column 1). If present, the
applications program can position directly to this substream instead of
sequentially reading or writing multiple records to access or display a
certain piece of data (see run-time package command description) .

If this feature is to be used, no field definitions may reside outside
of a substream block. Any fields that do are flagged as errors by FDL.

REV. @ 3 - 4

IDR 36406 FORMS DEFINITION LANGUAGE

SUBSTREAM

INPDATA SUBSTREAM

2.4.4 The END SUBSTREAM Statement

This statement is used to define the end of a substream block. For

each SUBSTREAM statement, there must be a corresponding END SUBSTREAM

statement. Substreams cannot be nested.

Example:

END SUBSTREAM

3.4.5 The FORMAT Statement

This statement defines the beginning of a format descriptor control

block. The name of the format descriptor must appear starting at the

left margin (column 1). Note that this does not start a device format

descriptor; it only identifies the format for which the succeding

device descriptors will be included. This statement must be followed

by one or more device descriptors (see below).

Example :

ORDENTRY FORMAT

2.4.6 The END FORMAT Statement

This statement terminates a format descriptor. It must be the last

statement in the descriptor.

Example:

END FORMAT

June 1977A
) ! o
n

SECTION 3 IDR3648

3.4.7 The DEVICE Statement

This statement defines the beginning of a device descriptor. It mustoccur within a ae format descriptor, but outside of any other devicedescriptor (i.e., after a FORMAT or END DEVICE Statement), and must befollowed by a 1-8 character device name.

All hard-copy devices (except user terminals) have hard-wired devicenames. At this release, the only hard-wired device name is "PRINTER",for the off-line (spooled) line printer. All device names forterminals are installation-dependent.

Examples:

DEVICE VISTAR3

DEVICE PRINTER

3.4.8 The END DEVICE Statement

This statement terminates a device descriptor block. It must be the
last statement in the device descriptor and must occur before an ENDFORMAT or another DEVICE statement.

Example:

END DEVICE

3.5 Stream Descriptor FIELD Statement

The FIELD statement in the stream descriptor serves two primarypurposes. First, as previously discussed, it defines the position ofthe field and its length in the user ’s input and/or output record.Secondly, it maps this field onto a field in the corresponding deviceformat descriptor.

The FIELD statement also can perform several supplemental functions.Instead of processing data from an applications program output record,fields can output predefined (literal) data or special systeminformation data (such as time, date, user-name, etc.), which isprocessed entirely by the FORMS run-time package. On input, not onlycan they return data from the input device, but also predefined(literal) data, or a literal string in the event of a device fieldbeing empty.

Should the programmer desire, he can declare certain fields to be inputonly and/or certain fields to be output only (i.e., fields that occur

REV. @ 3 - 6

TDR3848 FORMS DEFINITION LANGUAGE

in either the input or output record, but not both). In most cases,
the default is input-output.

Every direct, output-literal, or input/empty-conditional field (see
below) has a name associated with it. Normally, this is the name of

them mapped-to field in the device format descriptor. The programmer
can, however, override this by placing a name starting in the left
margin of the FIELD statement. Display attributes of a field maybe
modified by the applications program at run-time by referring to the
field by its stream descriptor field name in a FORMS command. Note
that the applications program never "“talks" to the device format
descriptor directly; it always communicates through the stream

descriptor. This makes the device format fully invisible and therefore
fully independent of the applications program.

The statement must be followed by a mapping or literal specification.
The following is a list of possible specification types:

Direct: the most common specification. It maps (1:1) the stream
descriptor field to a named device format descriptor field.

Specification:

FIELD dev ice-field-name

Input-Literal: identifies the field to be input-only (it is ignored
on an output request). The literal data is returned to the
applications program as part of the input record, just as though
it had been read from the device. A name is not permitted on a
field with input-literal specification; it does not map to a
device format field and therefore has no attributes which can be
modified.

Specification:

FIELD “text string’

Output-Literal: an output-literal field maps predefined data (a
itera! text string) to a field in the device format descriptor;
it does not process data from the output record of the
applications program. The OUTPUT parameter (see below) is

required when this construction is used, as the
Input/Empty-Conditional mapping uses the same type of
specification.

Spec ification:

FIELD (device-field-name, ‘text string”), OUTPUT

Input/Empty-Conditional: This input-only field functions the same
as a Direct input-only field with one exception. If the data in
the device field is all blanks (i.e., if the field is empty), the
literal string is returned to the applications program instead of

3 - 7 June 1977

SECTION 3 IDR3840

the blank input data. The INPUT parameter (see below) must be
specified, as the Output-Literal mapping uses the same type of
specification.

Specification:

FIELD (device-field-name, “text string’), INPUT

Filler: This identifies this field as being a dummy field. It is
used only to fill a gap in the input or output record. The
LENGTH parameter (see below) is required when this construction
is used. A field name is not permitted, as no mapping to a
device field is done.

Specification:

FIELD FILLER, LENGTH n

System Information Field: A system information field causes system-

or user-dependent data, such as time of day, date, user login
name, etc. to be mapped to a device format field as if it were a
piece of output data. Note that this has no effect on either
input or output records.

System information field names and formats are as follows:

DATE]: date, YY/MM/DD (8 characters]

DATE2: date, DD-MMM-YY {9 characters]
DATE3: date, MM/DD/YY {8 characters]
DATE4: date, DD.MM.YY {8 characters]
TIME]: time, HH:MM {5 characters]
TIME2: time, HH:MM AM/PM {8 characters]
USERNAME: user login name, XXXXXX {6 characters]

USERNUM: user number, NN [2 characters]
FORMNAME: form name, XXXXXXXX {8 characters]

Specification:

FIELE jdevice-field—name ,sys-info-field-name)

The following parameters are position-independent. They may occur
anywhere after the mapping or literal specification.

3-5-1 LENGTH Parameter

This parameter defines the length of the field. It must be followed by
an integer number greater than zero, which represents the field length,
in characters.

REV.

IDR3646 FORMS DEFINITION LANGUAGE

Usage:

Mapping Type Remarks

Direct Required
Input-literal Optional - if omitted, defaults to text

string length; if supplied, text string
is padded/truncated as required to meet

given length
Output-literal Same as input-literal
Empty-conditional Same as input-literal
Filler Required
System-info Ignored

3.5.2 JUSTIFY Parameter

This defines the justification for the input and/or output field. It

must be followed by one of the following four options:

o NONE specifies no justification
o LEFT the field is left-justified, right-padded
© RIGHT the field is right-justified, left-padded

o CENTER the field is centered

Note that ‘JUSTIFY NONE’ has the same effect as not specifying the

JUSTIFY parameter at all.

If justification is specified on both the stream descriptor and format

descriptor fields, it is justified as per the stream descriptor field

specification on input and as per the format descriptor field on

output.

Usage:

Mappin Remarks

Direct Optional
Input-literal Opt ional
Output-literal Optional
Empty-conditional Optional
Filler Ignored
System-info Ignored

3 a) June 1977

SECTION 3 IDR3646

3.5.3 INPUT, OUTPUT, and INPUT-OUTPUT Parameters

These parameters, which form a mutually exclusive trio, define in what
mode(s) this field should be processed. If INPUT is specified, the
field is only processed on input; if OUTPUT is specified, it is only
processed on output; if INPUT-OUTPUT is specified (guess what), it is
processed on both. Note that when a field is "not processed", it is
ignored completely.

Usage:

Mappin Remarks

Direct Optional; default is INPUT-OUTPUT
Input-literal Default to INPUT, if specified, must

be INPUT
Output-literal Must be specified as OUTPUT
Empty-conditional Must be specified as INPUT
Filler Default to INPUT-OUTPUT
System-info Ignored

3.5.4 VALIDATE Parameter

This optional parameter defines input validation of a field. It must
be followed by one or more validation masks, enclosed in Single quotes
and optionally separated by the word ‘OR’.

When a field with a validation specification is transferred to the
users input record at run-time, the data is checked against the
validation mask(s). If it fails all tests, the rest of the input
record is processed and control is passed to the error return if
supplied, else to the normal return. The applications program may then
interrogate the FORMS run-time package to determine which field(s)
failed the validation tests and which fields passed.

A validation mask consists of a string of characters, each defining a
certain criterion for each character in the field. The following is a
list of validation mask characters and their meanings:

REV. @ 3 - 1

IDR3048 FORMS DEFINITION LANGUAGE

Mask Character Validation Criteria

Numeric (6-9)

Alphabetic (A-Z, a-Z)
Alphanumeric (8-9, A-Z, a-z)

Period
Fore-slash
Space (blank)
Dollar sign
Dash
Any character
Numeric character (@-9, +, -, or blank)

Floating numeric (8-9, +, -, ., blank)
Unsigned integer (8-9, blank)
Personal name (A-Z, a-Z, »«, , OY blank)
Alphabetic character or space

>
i

LO
1
i
n
m
t
u
N
e

N
u
c
y
2

Usage :

Mappin Remarks

Direct Optional
Input-literal Ignored
Output-literal Ignored
Empty-conditional Optional
Filler Ignored
System- info Ignored

3.5.5 FIX, NOFIX parameters

When a field with one or more validation masks fails to meet any of the
specified validation criteria, the user has the option of forcing the
operator to correct the data before FORMS allows the applications

programmer to see it.

If FIX is specified, the data must pass one or more of the supplied

validation tests before it is returned to the application program. If

NOFIX is specified, the data is returned to the program whether or not
it passes any of these validation tests. In most cases, it is much
more convenient to require the data to be in the proper format when it
reaches the applications program, thus eliminating the task of
inspecting multiple fields on a character-by-character basis, which may

be unnatural or impossible in the host language.

3 - djl June 1977

SECTION 3 MAN3040

Usage:

Mapping Remarks
Direct Optional
Input-literal Ignored
Output-literal Ignored
Empty-conditional Optional
Filler Ignored
System-info Ignored

3.5.6 START Parameter

This parameter allows the programmer to position the input and/or
output character pointer to a given character within the record. It is
equivalent to ‘T” format in a FORTRAN FORMAT statement. START allows
overlapping of input/output fields, a function not available with the
‘Filler “ map specification, which only allows forward positioning.

The word START must be followed by an integer number, which represents
the new absolute position of the character pointer.

Warning: if START is specified in an input-only record, the character
pointer gets reset for the input record but not for the output record.
The inverse is true for output-only records. This is reflected in the
Input and Output Stream Descriptors generated by FDL if A register bit
6 (°2608) is set on entry.

Usage:

Mappin Remarks

Direct Optional
Input-literal Optional
Output-literal Optional
Empty-conditional Optional
Filler Opt ional
System-info Ignored

Examples:

* DIRECT MAPPING

FIELD IDNUM, LENGTH 5

* INPUT LITERAL, START IN COLUMN 38

FIELD “LITERAL INPUT STRING’, START 30

* OUTPUT LITERAL

FIELD (HEADER, ‘HEADER TEXT’), OUTPUT

IDR2048 FORMS DEFINITION LANGUAGE

* INPUT/EMPTY CONDITIONAL, OVERRIDE DEFAULT LENGTH
FIELD (EMPLNAME, ‘NO NAME SPECIFIED’), LENGTH 48 ;

INPUT

* FILLER
FIELD FILLER, LENGTH 4

* SYSTEM INFORMATION FIELD
FIELD (OUTDATE, DATE3)

* INPUT FIELD WITH VALIDATION, JUSTIFICATION
FIELD AGE, LENGTH 2, JUSTIFY RIGHT ;
VALIDATE °999°, INPUT

3.6 Device Format Descriptor FIELD Statement

The FIELD statement in the device format descriptor defines the

position of a data item on the input/output device. There are two
types of device descriptor field statements:

Mapped: this type of field is mapped from a stream descriptor
field. All mapped fields must contain a 1-8 character field
name starting in the left margin. Note that any fields in the
stream descriptor that are mapped to non-existent fields in the
device descriptor are ignored. The same is true for mapped
fields in the device descriptor that are not "mapped to" in the
stream descriptor by either a direct, output-literal, or
input/empty-conditional field.

Literal: this type of field contains literal data specified in
the field definition. It does not have a name, as no mapping
may be done from a stream descriptor field. The literal must
immediately follow the word FIELD and must be enclosed within

Single guotes.

The following parameters may follow the FIELD statement in a mapped
field and the literal specification in a literal field. They are all
non-positional; i.e., they may occur anywhere in the field definition.
Note that all parameters apply to both the mapped and literal device
descriptor field types. All parameters are optional unless otherwise
noted.

3.6.1 LENGTH Parameter

This parameter defines the length of the field as it is to appear of
the device. It must be followed by an integer number greater than
zero, which represents the field length in characters. This parameter
is required on mapped fields and optional on literal fields. If
omitted, the field length is assumed to be the length of the literal
string. Note that the length of a field in the stream descriptor may

3 - 13 June 1977

SECTION 3 IDR3848

be different from the length of a field in the device format
descriptor. The stream field defines the length in the input/output
record of the applications program and the device format field length
defines the length of the field on the input/output device. If they
differ, the data is truncated or padded accordingly.

3.6.2 POSITION Parameter

This parameter defines the absolute position of the field on the
input/output device in terms of column/line(/page) coordinates. It
must be followed by either two or three numbers, enclosed within
parenthesis and separated by commas. The first two numbers represent
the column and line (x & y) coordinates of the field. ‘The optional
third number represents the physical device page on which the field
resides. If the page number is omitted, it is assumed to be 1. The
POSITION parameter is mandatory on both mapped and literal fields.

3.6.3 JUSTIFY Parameter

This parameter defines the justification of the field on input or
Output. Refer to the description of the JUSTIFY parameter in the
stream descriptor FIELD description for information on the arguments.
This parameter is optional on both mapped and literal fields and is
defaulted to JUSTIFY NONE if not specified.

3.6.4 Attribute Parameters

The following eight parameters are used to set the display attributes
when a data field is output to a device. Note that if a device does
not support a certain feature, such as reverse video or blink, the
attribute is ignored at run-time. Note that a word in square brackets
following the attribute name means that it is synonymous with the
preceding attribute (eg., ENABLE is synonymous with NOPROTECT).

3.6.4.1 NOPROTECT [ENABLE] Parameter

This parameter, which is mutually exclusive with PROTECT, declares this
field to be write~enabled upon display to the user terminal. When
displayed on the line printer the field is underlined.

3.6.4.2 PROTECT Parameter

This parameter declares that this field is to be displayed
write-protected when output to the user terminal. When output to. the
line printer, it is displayed normally (not underlined). If both
PROTECT and NOPROTECT are not specified, the default is PROTECT.

REV. @ 3 - 14

IDR3848 FORMS DEFINITION LANGUAGE

3.6.4.3 BLINK Parameter

7% =This parameter declares this field to be blinked when displayed on the
terminal. It has no effect in a device descriptor for the printer.

3.6.4.4 NOBLINK Parameter

This parameter declares that this field is not blinked when displayed
to the user terminal. If both BLINK and NOBLINK are not specified, the
default is NOBLINK.

3.6.4.5 REVERSE VIDEO Parameter

This parameter causes the field to be displayed in reverse video when
output to the user manual. It has no effect when output is to the line
printer.

3.6.4.6 NORMAL VIDEO Parameter

This parameter declares the field to be displayed in normal (not
reverse!) video when output. If both the REVERSE VIDEO and NORMAL
VIDEO parameters are omitted, the default is NORMAL VIDEO.

3.6.4.7 NODISPLAY [HOLD] Parameter

This parameter causes this field not to be displayed wnen the form is
output. It is valid on all terminal and line printer device types.

3.6.4.8 DISPLAY [FREE] Parameter

This attribute causes this field to be displayed when the form is
output to either the terminal or the line printer. If both the DISPLAY
and NODISPLAY parameters are not specified, the default is DISPLAY.

Examples:

* MAPPED FIELD, NOT WRITE-PROTECTED
INVNUM FIELD POSITION (78,2), LENGTH 6, NOPROTECT

* LITERAL FIELD
FIELD ‘Literal String Test”, POSITION (1,4) ;

REVERSE VIDEO

3 - 15 June 1977

SECTION 3 IDR3840

3.7 Programming Aids

Following is a list of statements designed to assist the programmer in

form definition. At present they include a macro capability and
iterative field generation.

3.7.1 The DEFINE [DEF] Statement

This statement allows the programmer to define a macro. At present, a
macro consists simply of one text item replacing another item or text
string. Future plans call for implementation of macro arguments.

A DEFINE (or DEF) statement must be preceded by the name of the macro,
starting in the left margin. The statement name must be followed by
one or more spaces, and then by the macro text.

Whenever the macro name is encountered as a single item within an input
line (not in a literal text string), the macro name is replaced by the
given definition. Because FDL is a one-pass processor, a macro must be
defined before it is used.

Macro definitions are not retained between form definitions; i.e.,
they are “erased” after each END STREAM and END FORMAT statement. They
are, however, retained across device block definitions.

Examples:

FLD DEFINE FIELD

LEN DEFINE LENGTH
POS DEFINE POSITION
D1X DEFINE 5
D1Y DEFINE 1¢@
*

*

* FIELD DEFINITION USING ABOVE MACRO DEFINITIONS
DATA] FLD, POS (D1X,D1Y), LEN 10
*

* NOTE THAT THIS HAS THE SAME FUNCTION AS:
DATA] FIELD, POSITION (5,10), LENGTH 1¢@

3.7.2 Iterative Field Generation

This feature of FDL allows the programmer to generate multiple blocks
of field statements with only one block definition. Fields to be
generated in this manner must be enclosed within REPEAT and END REPEAT
statements (see below) .

Iterative field generation is permitted in both stream descriptor and
device format descriptor definitions. In both stream and device format

REV. @ 3 - 16

IDR3 646 FORMS DEFINITION LANGUAGE

descriptors, a two-digit iteration number is appended to any field

names found in the left margin. If the field name is seven or eight

characters, it is truncated to six characters to permit this iteration

number to be appended. The same is true for device format ("mapped

to") field names encountered in direct, output-literal, and

input/empty-conditional stream descriptor fields.

3.7.2.1 The REPEAT Statement

This statement defines the beginning of an iterative field generation

(REPEAT) block. It must be followed by an integer number, greater than

zero, which represents the number of iterations to make through the

following field definitions. The iteration counter is initially set to

one and is incremented by one each pass through the REPEAT block. When

the counter exceeds the specified repeat count, the statement

immediately following the END REPEAT (see below) is processed.

Only FIELD statements are permitted within a REPEAT block.

3.7.2.2 The END REPEAT Statement

This statement terminates a REPEAT block. For each REPEAT statement,

there must be one END REPEAT statement. REPEAT blocks may not be

nested.

3.7.2.3 Relative POSITION Parameter Specification

A device format descriptor field may specify relative positioning when

defined within a REPEAT block. This allows the programmer to define

such fields in a repeat block without having them overlay one another

on the I/O device.

Relative positioning is specified by placing a plus or minus sign

immediately preceding the line and/or column definition in the POSITION

parameter. The absolute line or column number is formed by adding or

subtracting the current iteration number to or from the specified

offset.

Example:

*

* THIS BLOCK WILL BE REPEATED 3 TIMES
*

REPEAT 3
LASTNM FIELD LENGTH 20, POSITION (18,+7)
FRSTNM FIELD LENGTH 16, POSITION (35,+7)
MIDDIN FIELD LENGTH 1, POSITION (59,+7)

END REPEAT

3 - 17 June 1977

SECTION 3 IDR3048

NOTE THAT THIS HAS THE SAME FUNCTION AS:
+

+
e
e

LASTNM@] FIELD LENGTH 28, POSITION (10,8)
FRSTNM@1] FIELD LENGTH 16, POSITION (35,8)
MIDDIN@1 FIELD LENGTH 1, POSITION (56,8)
LASTNM@2 FIELD LENGTH 28, POSITION (10,9)
FRSTNM@2 FIELD LENGTH 10, POSITION (35,9)
MIDDIN@2 FIELD LENGTH 1, POSITION (50,9)
LASTNM@3 FIELD LENGTH 20, POSITION (10,10)
FRSTNM@3 FIELD LENGTH 18, POSITION (35,18)
MIDDIN@G3 FIELD LENGTH 1, POSITION (58,16)

3.8 Listing Control Statements

3.8.1 The NOLIST Statement

This statement disables the listing of all FDL statements, macro and
repeat block expansions, except for those containing errors. It is
overridden only by the ‘FULL LIST’ option bit in the A Register on
entry to FDL.

3.8.2 The LIST Statement

This statement enables the listing of FDL statements, macro and repeat
block expansions, after being disabled by the NOLIST statement. It is
overridden by the “ERRORS ONLY’ option bit in the A Register on entry
to FDL.

3.8.3 The EJECT statement

This statement causes the listing to eject to the top of a new page
when the listing file is output (spooled) to the line printer. The old
page header is retained. For a new page header, refer to the section
entitled ‘General Syntax’. Note that this statement has no effect if
the listing is turned off (via the ‘ERRORS ONLY’ option bit or ‘NOLIST’
statement) .

3.9 Alternate Input File (SINSERT) Command

A method exists whereby the programmer can ‘insert’ the contents of
another FDL source file into his standard input file at compile time.
This is accomplished by placing the command ‘SINSERT” in the left
margin of the input line, followed by at least one space and the tree
name of the disk file to be inserted. When the end-of-file is reached

REV. @ 3 - 18

IDR 3048 FORMS DEFINITION LANGUAGE

on the alternate input file, FDL returns to the line following the

SINSERT in the main input file. Note that the main input file is not
modified. Input flow is merely switched from the main to the alternate

input file temporarily.

The SINSERT command provides a convenient method of reading a common

macro definition file into an FDL source file.

Example:

SINSERT <SOFIWR> FORMS> MACROS

3.18 Using FDL

FDL is invoked by typing the command ‘FDL’ following the ‘OK,” prompt

issued by PRIMOS. The command is followed by the name of the input
file (if input is from disk), followed by an optional A Register

setting.

The A Register option bits currently implemented are:

lOIMIETFITIRIX ISISISILILILIBIBIB!

i 16

List emitted object text
Extended macro listing

Errors-only listing
Full list (override NOLIST pseudo-op)
List errors on terminal
List I/O stream format and device format
Expanded REPEAT block listing
Source (input) device:

> none

> terminal
> paper tape
> card reader
> undefined
> magtape

> undefined
> disk file

list (output) device; same values as ‘S”
binary (output) device; same values as ‘S”

M
x
d
h
a

S
O

“
I
O
V

U
1
O
R
G
l
O
e
&

L

B

The default A Register setting is 7777.

The rules regarding input and output (source, listing, and binary) file
usage that apply to FORTRAN and PMA also apply to FDL. If the input
file is open on entry to FDL, the file is read from the current file
pointer to end of file and not closed on exit. If the input file is

3 - 19 June 1977

SECTION 3 IDR3049

not open, FDL opens the file named in the command line. If an output
(listing or binary) file is open on entry, data is written to that file
starting at the current file pointer. The file is truncated but not
closed upon completion of the compilation. If the output file is not
opened on entry, an output file name is generated by appending the
first four characters of the source file name to the characters ‘L_° in
the case of a listing file and ‘B ” in the case of a binary file. This
file is truncated and closed uponcompletion of the compilation. ‘The
file units corresponding to source, listing, and binary files are 1, 2,
and 3, respectively.

After each form definition is processed, FDL types the number of
errors, followed by the FDL revision number. A sample interaction
between the user and the computer for an FDL compilation might look
like this:

OK, CLOSE 1 2 3 (ensure no file units open)
OK, FDL FORM] 1/47777 (st ‘d options + full macro listing)
GO
@600 ERRORS (FDL, REV 91)
ERROR C#01 (0086) LEN DEFIN LENGTH
**%* STATEMENT NOT RECOGNIZED.
@001 ERRORS (FDL, REV 91)

OK, SPOOL LFORM
e

°

3.11 FDL Error Messages

The Forms Management System generates a variety of different types of
error codes. All errors generated by the FDL compiler are of the form:

C#nn text message

Where ‘nn” represents a unique two-digit error code for each type of
error. The message printed is a one-line diagnostic of why the error
occurred and possibly what action has been taken by the compiler.
Following is a table which elaborates on the error codes generated by
FDL.

C#8@ BAD STATEMENT FORMAT.
The contents of the statement field is not an alphanumeric text
item. This statement is ignored.

C#01 STATEMENT NOT RECOGNIZED.
The statement field does not contain a valid FDL statement.

This line is ignored.

REV. @ 3 - 26

CHO2

C#O3

CHO

C#O5

C#B6

C#O7

C#O8

C#10

C#11

C#12

C#13

C#14

IDR 3048 FORMS DEFINITION LANGUAGE

ARGUMENT REQUIRED.
An argument is required following the statement name. This

statement is ignored.

ARGUMENT TOO LONG.
A text item exceeds 8@ characters. This statement is ignored.

MULTIPLY DEFINED MACRO.
A macro by the same name already exists. This statement is
ignored and the previous macro definition is retained.

BAD NAME FIELD.

The name field (starting in the left margin) contains an illegal

character. This statement is ignored.

NAME REQUIRED.

A name must be present in the name field (starting in the left
margin). This error is generally issued because a mapped field
in the device format descriptor is missing a name. This
statement is ignored.

STATEMENT FIELD IS BLANK.
A name was present in the name field, but no statement followed.
This statement is ignored.

NO END STATEMENT; END ASSUMED.
An end-of-file was encountered while processing a stream or

format descriptor. An END STREAM or END FORMAT is assumed here.

NOT PROCESSING STREAM DESCRIPTOR.
An END STREAM or SUBSTREAM statement was issued and a stream

descriptor is not being processed. This statement is ignored.

END SUBSTREAM MISSING. IT IS ASSUMED HERE.

An END STREAM statement was issued while a substream block was

being processed. An END SUBSTREAM is assumed prior to the END

STREAM.

NOT PROCESSING SUBSTREAM.
An END SUBSTREAM statement was issued while not processing a
substream block. This statement is ignored.

NOT PROCESSING FORMAT.
An END FORMAT or DEVICE statement was issued while not
processing a FORMAT block. This statement is ignored.

END DEVICE MISSING. IT IS ASSUMED HERE.
An END FORMAT was encountered while still processing a device
block. An END DEVICE is generatedprior to the END FORMAT.

NOT PROCESSING DEVICE BLOCK.

A FIELD definition was issued after a FORMAT statement, but
before a DEVICE block was started. This statement is ignored.

3 - 21 June 1977

SECTION 3 IDR39840

C#15

C#17

C#18

C#19

C#21

CH22

C#23

C#24

C#25

C#26

C#27

REV.

END STATEMENT MISSING; IT IS ASSUMED HERE.

A stream or format descriptor was not terminated before another
was started. An END STREAM or END FORMAT is generated prior to
this statement.

BAD PARAMETER.

This indicates that an unrecognizable parameter was present on a
FIELD statement. The entire field definition is ignored.

INVALID FORMAT NAME.

The name supplied following the FORMAT parameter in the STREAM
statement does not conform to the naming conventions discussed
earlier in this document. This statement is ignored.

NAME NOT PERMITTED.

A name waS present on a statement which does not permit one.
This usually means that a literal field in the device format
descriptor contains a name.

ALREADY PROCESSING SUBSTREAM.

A SUBSTREAM statement was issued while already processing a
substream block. This statement is ignored.

VALIDATION STRING MISSING.

The VALIDATE parameter is present on a stream descriptor field,
but is not followed by any validation masks. ‘The entire FIELD
statement is ignored.

BAD JUSTIFY PARAMETER.

The JUSTIFY parameter in the field descriptor is not followed by
one of its four valid arguments. The field statement is
ignored.

MAPPING SPECIFICATION REQUIRED.

A stream field descriptor is not followed by a mapping
specification. The FIELD statement is ignored.

BAD MAPPING SPECIFICATION.

A stream field descriptor is not followed by a valid mapping
specification. The field definition is ignored.

BAD LENGTH SPECIFICATION.
The LENG?H parameter in either stream or device descriptor is
not followed by a valid numeric argument. The field definition
is ignored.

BAD INPUT-OUTPUT SPECIFICATION.

An INPUT, OUTPUT, or INPUT-OUTPUT parameter has been misused.
This usually means that INPUT-OUTPUT or OUTPUT has been issued
when processing an input-literal field. This statement is
ignored.

C#28

C#29

C#32

C#31

C#32

C#33

C#34

C#3S

C#36

C#37

C#38

C#39

IDR3848 FORMS DEFINITION LANGUAGE

MAP FIELD NAME TOO LONG.

The "map to" field name in a stream descriptor field is longer
than eight characters. This field is ignored.

ALREADY PROCESSING DEVICE BLOCK.
A DEVICE statement has been issued while already processing a
device block. This statement is ignored.

SYNTAX ERROR.

This general error message is issued whenever two items in a
field definition are separated by an illegal character. This
statement is ignored.

BAD POSITION PARAMETER.

The POSITION parameter in a device format descriptor field is

not followed by a valid argument. This statement is ignored.

POSITION OUT OF RANGE.

One or more of the arguments in the POSITION parameter is/are
zero. This statement is ignored.

LENGTH PARAMETER MISSING.
The length declaration for a stream or device format descriptor
field is required but not supplied. This field is ignored.

POSITION PARAMETER MISSING.
The POSITION parameter in a device descr iptor field is not
supplied. This field is ignored.

UNRECOGNIZED SYSTEM INFORMATION FIELD NAME.
The name specified in a system information field is
unrecognized. This statement is ignored.

INPUT/OUTPUT SPECIFICATION NOT PERMITTED.

An INPUT, OUTPUT, or INPUT-OUTPUT specification was included on

a system information field definition. This statement is

ignored.

UNRECOGNIZED PARAMETER.

See C#17.

NOT PROCESSING STREAM/DEVICE FORMAT BLOCK.

A field definition has been issued outside of a stream or device
format descriptor. This and all other field declarations up to
the next STREAM, FORMAT, or DEVICE statement are ignored. Note
that this error message is issued only once per violation.

MULTIPLY DEFINED SYMBOL.

A field name has been redefined within the same stream or device
descriptor. This field is processed normally, but will produce
undesired results at run-time.

3 = 23 June 1977

SECTION 3 IDR3048

C#4D

C#41

CH42

CH43

C#44

C#45

C#46

BAD START SPECIFICATION.

The argument following the START specification in the stream
field definition is not numeric and greater than zero.

ILLEGAL MACRO ARGUMENT SPECIFIER.
The item following the argument reference symbol (#) is not
numeric and greater than zero. Note that this error code should
not be emitted by FDL at this release. It is generated by a
macro pre-scanner that is already incorporated into’ the
compiler.

EOF ENCOUNTERED BEFORE END REPEAT.

An end-of-file was encountered on the input file before a repeat
block was terminated. This usually causes abortion of the
compilation.

END REPEAT MISSING - REPEAT BLOCK IGNORED.
An END statement was encountered while processing a REPEAT
block. ‘The entire repeat block is ignored and the END statement
processed.

STATEMENT NOT ALLOWED WITHIN REPEAT BLOCK.

A statement other than a FIELD statement was found within a
REPEAT block. The statement is ignored; processing of the
REPEAT block continues.

INPUT/OUTPUT SPECIFICATION REQUIRED.

A input/empty-condition or output-literal field did not contain
a required INPUT or OUTPUT statement.

INCONSISTENT SUBSTREAM USAGE.
A field definition appears outside of a substream block in a
multi-record stream definition -or- the user has attempted to
start a substream definition when previously defined fields do
not reside within a substream. This error message is only
issued once per stream descriptor.

3.12 FDL Temporary Files

In the course of translating the source file to the binary, FDL may
create any of the following four temporary files:

Name Format Contents

ER##uu ASCII Error definitions (*)
RP##uu ASCII Current repeat block

IN##uu ASCII Input stream/substream definition
OU##uu ASCII/ Output stream/substream format

binary Device format map

Note that all files are created and deleted by FDL; the only way that

REV. @ 3. - 24

IDR3648 FORMS DEFINITION LANGUAGE

the user can "see" these is if he quits (BREAK key or control/p) out of

the translator.

* The ‘uu’ in the file name denotes the current user # - this permits
multiple FDL translations simultaneously within the same directory.

3 - 25 June 1977

IDR3048 ADMINISTRATIVE PROCESSOR

SECTION 4

FORMS ADMINISTRATIVE PROCESSOR

4.1 Centralized FORMS Directory Information

The FORMS directory, called “FORMS*’, may be located on any disk in the

computer system. It is strongly recommended, however, that due to the

time element involved in accessing remote files, the directory be

located on a local disk as opposed to a disk started remotely across

the network.

The FORMS UFD, which may be created by FAP, contains two files. The

first is the FORMS segment directory, called ‘FMS.**” which contains

all form definitions and internal directories used by FAP and the

run-time package. This segment directory must be created using the FAP

CREATE command. The second file, called “DCF.AS”, is the FORMS system

device control file. It contains information for each device

configured into the system. This file is created by the system

administrator using the standard text editor. The format of the DCF is

discussed in the section entitled "Device Mapping Scheme".

4.2 FAP Commands

The following is a description of the nine commands supported by FAP.

All command names may be abbreviated to three characters.

4.2.1 The CREATE Command

The CREATE (or CREATE DIRECTORY) command allows the system

administrator to create a skeleton FORMS directory. The CREATE command

processor first checks to see if the FORMS UFD (FORMS*) exists on any

started-up disk. If not, it inquires as to which disk the UFD is to be

created on and requests the MFD owner password for the disk. Once

created, or if already present, FAP creates a skeleton segment

directory, with an empty catalog and terminal configuration.block. The

user may now insert form definitions into the directory.

If the FORMS UFD is already present on the system, FAP creates the

segment directroy and prints the message “DIRECTORY CREATED’. If the

UFD is not a first-level directory (directly under an MFD) on any

started-up disk on the system, FAP requests a disk volume-ID on which

the UFD is to be created. The user must then enter the volume-ID

(DSKRAT name) of the pack/partition which will contain the FORMS

directory. FAP then asks the user for the MFD owner password on this

volume. Once this has been supplied, the FORMS UFD and segment

directory are created. Note that the CREATE command will produce an

error if both the FORMS UFD and segment directory exist. The segment

directory must be TREDELeted with FUTIL before it can be CREATE ‘d.

4 - Jd June 1977

SECTION 4 IDR3040

All error messages produced by the CREATE command processor are

self-explanatory.

Following is an example of CREATE command dialogue. Note that all
underlined data is entered by the user.

OK, FAP
GO

FORMS ADMINISTRATIVE PROCESSOR, REV 12.0-P

* CREATE

UFD "FORMS*" DOES NOT EXIST.
SHALL I CREATE IT? YES
ENTER DISK VOLUME-ID: TS/A
ENTER OWNER PASSWORD (IT WON‘*T ECHO): ABCXYZ
THIS MFD IS FULL, TRY AGAIN.

ENTER DISK VOLUME-ID: SOFTWR
ENTER OWNER PASSWORD (ITWON ‘T ECHO): XXXXXX
DIRECTORY CREATED.

*

On any input request within the CREATE dialogue, the user may type
control/c to abort creation and return to the FAP command level.

4.2.2 The ADD Command

This command allows the addition of form definitions to the FORMS
catalog. The name of the binary form definition file, generated by the
FDL translator, must follow the ADD command. This file name usually
Starts with “‘B “. Note that one binary file may contain more than one
form definition, eg. if there was one stream descriptor and three
device format descriptors in the source file, the binary file contains
those four form definitions. FAP considers each device descriptor
under one format descriptor to be a separate form.

The ADD command adds only new modules to the FORMS catalog; any
attempt to redefine a form already residing in the FORMS catalog with
the ADD command causes the new form definition to be ignored and a
message printed on the user terminal to that effect.

The input (binary) file name may optionally be followed by the word
LIST or LIST UPDATES. If this is specified, all form definitions added
to the FORMS directory are listed by name on the terminal.

When the entire binary file has been processed, the number of modules
added and ignored (due to duplicate entries) is printed.

Should the message “WARNING! "form-name" CONTAINS ERRORS” be printed,

REV. @ 4 - 2

IDR3048 ADMINISTRATIVE PROCESSOR

it denotes that this stream or format descriptor contains FDL errors.
The user should fix the source file and recompile it with FDL. This
binary form definition will probably generate undesirable results at
run-time.

Examples:

* ADD B-FM@3
@1 DEFINITION ADDED.

* ADD B-FM@4 LIST

DEDUCT STR VOG ADDED
DEDUCT FMT VISTAR3 V@8 ADDED

DEDUCT FMT PRINTER V6 ADDED

03 DEFINITIONS ADDED.
*

4.2.3 The REPLACE Command

This command functions the same as the ADD command, but causes any form

definitions in the FORMS catalog which are redefined in the input

(binary) file to be replaced with the new definition. Any form

definitions in the binary file that are not defined in the catalog are

added.

Examples :

* REPLACE B-FO19
92 DEFINTIONS REPLACED.
* REPLACE B-FO20
@1 DEFINITION ADDED 93 DEFINITIONS REPLACED.
*

4.2.4 The PURGE Command

This command purges form definitions from the FORMS catalog. The
command must be followed by a form name specification (see below),
which designates what form definition(s) is/are to be purged. It may
also be followed by the word LIST or LIST UPDATES, which will cause all
purged forms to be listed by name on the user terminal.

4 - 3 June 1977

SECTION 4 IDR384@

4.2.4.1 Form Name Specification

The form name specification designates the form definitions to which
this command applies. Both PURGE and LIST commands use this option.

The form name specification is enclosed within parentheses and has the
following formats:

form—name
form—name .type
form—name .type :dev ice

type = STR for stream descriptor

FMT for format descriptor

If only the form-name is specified, this command relates to all forms

with the given name, any type and any device (if format). If the
second specification is used, the command relates to all forms of the
given name and type. If the type is FMT, it relates to all device
descriptors within the format definition. If the third type of
specification is used, the command relates to the one definition that

contains the same name, type, and device. Note that this construction
should only be used on format descriptors (there is no device
definition for a stream descriptor) .

If any item in the form name specifier (form-name, type, or device) is
specified as an asterisk (*) or the word ANY, this will cause no check
to be made on this item when scanning the FORMS catalog.

Up to 2@ form names may be specified within the parentheses, separated
by commas.

Examples:

(TAXFORM) All forms of name “TAXFORM’,
any type, any device

(TAXFORM .STR) TAXFORM, stream definition

(TAXFORM .FMT: PRINTER) PRINTER format definition for
TAXFORM

(* .* :VISTAR3) All VISTAR3 device format def ’s

(* .STR) All stream’descriptors

(TAXFORM ,SHIPFORM) All forms with names TAXFORM
or SHIPFORM, any type, any

device

IDR3648 ADMINISTRATIVE PROCESSOR

PURGE Examples:

* PURGE (FM@@20)
@1 DEFINITION PUr:3ED.
* PURGE (FMO@21,FMO022,FM@023,FM@024) LIST

FM6621 STR V@2 PURGED
FM8822 STR V@6 PURGED
FM6024 STR V@@ $PURGED
FMG024 FMT PRINTER V@@ PURGED
FM@024 FMT VISTAR3 V68 PURGED

05 DEFINITIONS PURGED.
k

4.2.5 The LIST Command

This command causes all or part of the FORMS catalog to be listed by
name and type. This may be followed by a form name specifier (see
above) to selectively list a part of the catalog. If the form name

specifier if omitted, the entire catalog is listed. If the phrase FILE
<filename> or ON FILE <filename> is included, the catalog listing is
output to the specified file. If the phrase ON TERMINAL is specified,
or if the ON FILE specifier is omitted, the listing is written to the
user terminal.

The information listed in the catalog listing includes:

Oo Form-name, type, and device (if any)
© Version number
o Creation, last access, last modified dates

(file output only)

Examples:

* LIST

FORMS DIRECTORY LISTING ON WEDNESDAY, JANUARY 12, 1977 AT 9:45 PM

NAME TYPE DEVICE VER

HDRF@1 STR VO2

HDRF@1 FMT VISTAR3 VB
HDRF@2 STR Vee

HDRF@2 FMT VISTAR3 VOB

84 ENTRIES.
* LIST (HDRF@1) ON FILE CATLOG
*

4 - 5 June 1977

SECTION 4 IDR3840

4.2.6 The QUIT Command

The QUIT command causes FAP to exit and return to PRIMOS command level.

FAP may be re-entered by typing the START (S) command.

4.2.7 The JOURNAL Command

The JOURNAL command allows the user to log his transactions with the
FORMS catalog in an ASCII file which can be spooled to the line

printer. All ADD, REPLACE, PURGE, and TCB (see below) transactions are

recorded in the JOURNAL file.

This command may be used to enable or disable the logging function. To

disable it, the command JOURNAL or JOURNAL STOP may be issued. To
enable it, the command JOURNAL <filename> or JOURNAL START ON
<filename> may be issued.

Example:

* JOURNAL LOG#dd
* ADD B-F@
88 DESCRIPTIONS ADDED.

* JOURNAL STOP
*

4.2.8 The TCB Command

The TCB command modifies the terminal configuration block table. The
TCB is a 64 by 4 word file which contains the terminal type for each
FORMS user on the (local) computer system. This file, contained in the
FORMS segment directory, is used in conjunction with the device control
file (DCF) at run-time to select the terminal device driver for a given
FORMS user. Both TCB and OCF files are explained in detail in the
section enitiled “Device Mapping Scheme".

The TCB command may be followed by the word LIST to dump the contents
of the TCB on the user terminal. Optionally, LIST may be followed by a
file name. If this is the case, the contents of the TCB will be dumped
to the specified file.

IDR3048 ADMINISTRATIVE PROCESSOR

To modify the CB, the command may optionally be followed by one of

three noise words to reflect the type of operation being performed:

ADD, CHANGE, or DROP. This must then be followed by the user number

for which this operation applies, from 1 to 64. If the user wishes to

drop the current TCB entry for this user, he may terminate the command

line by typing RETURN. If the user attempts to drop an non-existent

entry, FAP prints a warning message and returns to command mode. If he

wishes to add or change the terminal type, he must type the 1-8

character terminal name. If the specified user already had an entry,

the name of the old terminal type is printed on the terminal.

Examples:

* TCB LIST

TERMINAL CONFIGURATION ON WEDNESDAY, JANUARY 12, 1977 AT 16:83 PM

USER TERMINAL

4 VISTAR3
12 29803
13 VISTAR3
20 29003

* TCB 3 VISTAR3 (set user 3 = VISTAR3)

* TCB 12 B500 (change user 12 to B58)

WAS ZOBR3.

* TCB 13 (drop user 13°s entry)

* TCB LIST

TERMINAL CONFIGURATION ON WEDNESDAY, JANUARY 12, 1977 AT 10:04 PM

3 VISTAR3
4 VISTAR3

12 B560
26 29003

4 - 7 June 1977

SECTION 4 IDR3648

4.2.9 The GENERATE Command

This command generates three SINSERT files for the run-time device
interlude subroutine.

The files generated are as follows:

© DEVEXT - external declaration statements for
run-time device drivers

O DEVWAC - 64R mode driver dispatch table
© DEVIP - 64V mode driver dispatch table

All three files must reside in the same UFD as the sources for the
run-time input/output system in order to be assembled with the 1/0
package.

The GENERATE command should be issued and a new run-time I/O package
assembled each time the device control file (DCF) is modified.

For more information on the device control file and input/output
scheme, refer to the section entitled "Device Mapping System".

4.2.18 Using FAP

FAP is invoked by typing the command ‘FAP’ following the ‘OK, ° prompt
issued by the operating system. FAP prints a header line, followed by
the current revision number. If bit 1 in the A Register is set when
FAP is started, all updates to the FORMS directory and terminal
configuration table are automatically recorded in a file called
‘"FAP.UP” in the FORMS control directory. It is strongly recommended
that if this option is to be used all of the time, FAP be RESTORE “d and
SAVE ‘d with the A Register set appropriately. When this option is
used, the JOURNAL command is disabled.

4.2.11 FAP Error Messages

Like FDL, all FAP error messages are of the form:

t#nn text message

The “t” in the error code represents the error type. At present, there
are three such types:

. F - file system/input file/control block error
- §S — syntax error
- T - TCB or DCF format error

The ‘nn’ represents a 2-digit error number, unique for each error
message generated by FAP.

Following is a list of error messages and explanantions:

REV. @ 4 - 8

r
y

=f io
)

D>

F#@1

F#04

F#O5

F#06

F#07

S#00

S#01

S#02

S#03

S#04

S#05

S#06

IDR3848 ADMINISTRATIVE PROCESSOR

CONTROL BLOCK UFD DOES NOT EXIST.
An operation other than CREATE was attempted and the FORMS UFD
(“FORMS* ’) does not exist on the system.

CONTROL BLOCK DIRECTORY DOES NOT EXIST.
An operation other than CREATE was attempted and the FORMS
segment directory (FMS.**’) does not exist within the FORMS
UFD.

INPUT FILE IS EMPTY.

The input file specified in an ADD or REPLACE command is empty.

PREMATURE EOF.

An EOF was encountered on the input file in an ADD or REPLACE

command before the end-of-data record. The module is deleted
from the control directory. This is usually caused by the user

depressing the BREAK key in the middle of an FDL compilation.

FILE DOES NOT EXIST.

The input file specified in an ADD or REPLACE command does not
exist in the current UFD.

BAD INPUT FILE.
The input file specified in an ADD or REPLACE command is not a
valid FDL binary file. No action is taken with this file.

FILE NAME REQUIRED.

An ADD or REPLACE command was issued, but no file name followed.

The command is ignored.

BAD FORM NAME SPECIFIER.

The form name specifier contained a syntax error. This command
is ignored.

BAD ARGUMENT.

One of the parameters in the command line was not recognized.
The command is ignored.

BAD TYPE.

The form name specifier contained a type declaration other than
STR (stream) or FMT (format). This command is ignored.

NO FORM NAME SPECIFIED.

A PURGE command was issued without a required form name
specifier. The PURGE command is ignored.

MISSING ARGUMENT.
The TCB command was issued without any following user number.
The command is ignored.

BAD USER NUMBER.

4 - 9 June 1977

SECTION 4 IDR3048

S#07

THOD

T#O1

THO2

T#O3

T#OA

T#O5

T#OE

REV. g

The user number specified in the TCB command is not an integer
number greater than zero. The TCE command is ignored.

BAD TERMINAL NAME.
The user attempted to assign the name “PRINTER” as a terminal
type in a TCB command. This is not permitted and the TCB
command is ignored.

DCF DEVICE INTERLUDE FIELD ERROR.

The device interlude number field in the given DCF entry is not
numeric or greater than zero. The DCF must be edited and
corrected before continuing.

DCF DEVICE NAME FIELD ERROR.
The device name field in the given DCF entry contains an illegal
character or is empty. The DCF must be edited and corrected
before continuing.

DCF DEVICE ABBREVIATION FIELD ERROR.

The device abbreviation field in the given DCF entry is empty or
contains a space or illegal character. The DCF must be edited
and corrected before continuing.

TCB LINE/COLUMN FIELD ERROR.

The line or column specification field in the given DCF entry is
empty, contains a non-numeric value, or is less than 1]. The DCF
must be edited and corrected before continuing.

MAX DEVICE NUMBER EXCEEDED IN DCF.
The DCF contains an entry with a device interlude number greater
than 59. ‘This error is issued from the GENERATE command only.
Only 5@(!) devices may be in use at one time.

DEVICE CONTROL FILE EMPTY.
The DCF is empty and the user issued a TCB or GENERATE command.

TERMINAL UNDEFINED.
The terminal type specified in the TCB command is not present in

the DCF.

IDR3040 FORMS RUN-TIME PACKAGE

5.1 General Information

The FORMS run-time package invisibly performs all forms lookup, buffer

management, data manipulation, and input/output for the applications

program.

Before the applications program can input and output data from/to a

form, he must first request the run-time package to retrieve the form

definition from the FORMS catalog. When he is through with the form,

he must release it; i.e., inform the run-time package that it is no

longer needed. This function is mandatory in a shared procedure

environment, aS idle form definitions can take up unnecessary table

space in the buffer pool manager, of which a finite amount is

available.

As previously stated, the two devices available to the user at this

release are the user terminal and the offline (spooled) line-printer.

To use a form with the terminal, the user reads and writes to logical

unit 1] in Fortran, or reads and writes data in a file selected and

assigned to the TERMINAL in Cobol. For the line printer, the user

writes to logical unit 4 in Fortran or writes a record in a file

selected and assigned to the OFFLINE-PRINTER in Cobol. Note that both

devices may be used simultaneously with the forms system.

5.1.1 Device I/O Processing

The FORMS run-time system handles all device input/output, but it may

be convenient for the applications programmer to know when and how

physical device I/O is going to take place. A form is initially output

to a device when the entire stream descriptor has been output by the

applications program. Subsequent stream descriptor output causes the

form to be modified if on the user terminal (only those fields that are

changed are actually modified on the CRT). On the line-printer, each

time the end of stream descriptor is encountered, a new form is output.

For READ statements, on a Single record form (no substream

definitions) , each READ causes the device driver to wait for and

process input from the terminal. The input data is then transferred to

the applications program. In a form with multiple §substream

definitions, the initial READ causes the device driver to process input

from the terminal. ‘The data for the first substream definition is then

transferred to the applications program. Subsequent READs transfer the

remainder of the data.

5 - J] June 1977

SECTION 5 IDR3648

5.2 Command Descriptions

All commands to the FORMS run-time system are issued via output records
from the applications program. FORMS commands described below must be
immediately preceded by two hash marks (“##’).

5.2.1 The INVOKE Conmand

This command invokes the usage of a specific form by the applications
program. The stream descriptor name is specified as an argument, and
must be separated from the command by at least one space.

The INVOKE command processor retrieves both stream and device format
definitions from the FORMS catalog through the buffer pool Manager. It
then initializes an input/output data area, known as “IOLST’, which is
used to pass both data and control information (such as position,
attributes, etc.) to and from the device driver by the run-time
package proper. Note that if a form was already invoked on this
device, the old form is released before the requested form is
retrieved. If the requested form is the same form that was previously
invoked, the form is only initialized, that is, the attributes are
reset to their original states and data is reset to spaces.

All errors (such as ‘FORM NOT FOUND’) usually cause the program to
abort and print a suitable error message on the user terminal.

All future input/output requests are trapped and processed by the
run-time system as data for the form in use. Usage of the form is
terminated by a RELEASE command (see below) .

Example :

##INVOKE SHIPFORM

5.2.2 The RELEASE Command

This command informs the form system that the form definition for this
device is no longer needed. Future input and output data will be
processed by the standard device drivers (OSAA@1 and ISAA12 for the
terminal; OSAL@6/04 for the line-printer).

Example:

##RELEASE

REV. @ 5 - 2

IDR3848 FORMS RUN-TIME PACKAGE

5.2.3 The STAT Command

L Ls . .
ni un-tim ackage to return the validationTHis command causes © UF e pac u

on the next READ statement(s).
v.

status of all input data)

The status is returned in the form of a two-digit number for each
input/empty-condit ional or direct field that is not declared as
output-only. It is not returned for input-literal fields. The
two-digit number returned can represent one of the following three
conditions:

Value Condition

-l The data failed all validation tests.

86 No validation specified for this field.

>d This is the number of the first validation
mask that the data passed. Validation
masks are numbered in the order in which

they appear in the field definition.

The validation status is returned in the same manner that data is
returned on a READ statement. If there are multiple substream
definitions, the user must do multiple READS to input the validation

status for all fields. The STAT command causes the next READ statement
to input the validation status of the first substream in the stream
descriptor unless a SUBC““REAM command is issued before it. The STAT
function is disabled and normal data input resumed when either the end
of the stream descriptor is encountered or a SUBSTREAM command is
issued.

5.2.4 The SUBSTREAM Conmand

This command sets the next substream to be processed on a READ or WRITE
statement. The substream name must follow the command and be separated
from it by at least one space. If the named substream does not exist
in the stream descriptor, an error message will be generated but the
program will be allowed to continue. In this case, the next substream
to be processed will be the first one defined in the stream descriptor.

Example:

##SUBSTREAM EMPLDATA

5 - 3 June 1977

SECTION 5 IDR204@

5.2.5 The CLEAR Command

This command clears all wumprotected data displayed on the user
terminal. It also causes all data items marked as unprotected and
displayed in the input/output list to be reset to spaces. This is a
fast and convenient method to erase all operator-input data. The other
way 1S writing spaces into all unprotected fields (sigh!) .

If this command is followed by the word ‘ALL’, the entire display is
erased. This should only be done before a RELEASE command, else
catastrophe will certainly strike!! This option was added to allow the
applications program to leave the terminal in a “human” state before
exiting to command level.

Examples:

##CLEAR

##CLEAR ALL

5.2.6 Attribute Modification Commands

The applications program may dynamically change the attributes of a

device format field by naming its corresponding stream descriptor field
in one of the eight attribute commands described below. From one to
twenty stream descriptor field names may be placed as arguments, each

separated by at least one space. The attribute change occurs the next
time the form is output to the device.

The following table describes each of the eight attribute modification
commands and three synonyms.

Command/Synonym Description

PROTECT Write-protects field
NOPROTECT/ENABLE Write-enables field
RVIDEO Field displayed in reverse video
NVIDEO Field displayed in normal video
BLINK Blinks field when displayed
NOBLINK Field is not blinked when displayed
DISPLAY/FREE Field is displayed when form is output
NODISPLAY/HOLD Field is not displayed when form is output

REV. @ 5 - 4

IDR3@40 FORMS RUN-TIME PACKAGE

Examples:

##DROTECT FIELD] FIELD2 FIELD3

##BLINK ERRMESG

##RVIDEO BALANCE CREDIT

5.3 Run-Time Error Handling

All errors that occur at run-time are recorded in a file in the home

UFD called “FMS##E°, where the “##° represents the user number.

The file format is as follows:

mmddyy hhmm ee error message

Where ‘nmddyy” represents the date (month, day, year), ‘hhmm’
represents the time that the error occurred (hours and minutes after
midnight, local time), and “ee” represents the error number. Each
run-time error condition is assigned a unique error number. The
following is a list of run-time error numbers, accompanying diagnostic
messages, and a brief explanation of why the error occurred. Unless
otherwise specified, all errors are fatal.

81 ROLLOUT DIRECTORY FULL (pool manager)
The FORMS UFD (“FORMS*°) is full and the pool manager needs to
write a form definition to a temporary file.

§2 ROLLOUT FILE MISSING (pool manager)
The pool manager cannot locate a file that was temporarily rolled
out to the FORMS UFD. This either indicates that a user has
deleted it, or less likely, that the pool manager is sick.

@3 OBJECT BLOCK TOO LARGE (pool manager)
A form definition is too large to fit into the entire buffer pool.
The systems administrator must reconfigure the buffer pool manager
for a larger buffer pool in order to use this form.

84 POOL ALLOCATION MAP FULL (pool manager)
A form definition was requested by the user, but the pool manager
allocation map cannot hold it. This map is currently configured
for 6@ entries. This error message usually means that applications
programs have not been RELEASE “ing form definitions when they are
through with them.

@5 STREAM/FORMAT DEFINITION MISSING (pool manager)
The user has requested a non-existent stream or format descriptor.
The name of the requested definition is included in the error
message.

5 - 5 June 1977

SECTION 5 IDR3049

06

Q7

88

09

16

ll

12

14

15

USER LOCKED IN POOL MANAGER (pool manager)

A user became locked in the buffer pool manager. This means that
the current user was waiting more than 5@ time-slices for another
user to exit it. This was probably caused by the "locked" user
aborting his program (via BREAK or control/p) while using the pool
manager. This is an informative message only - it is written to
the error file but not to the terminal. The current user is
allowed to continue running and enter the pool manager.

INVALID CALL TO FMSSDV (run-time package)

The form-initialization processor within the run-time package
passed a bad internal unit number to the device translation
subroutine. This error should never occur - it indicates that the
run-time package is sick.

USER DOES NOT HAVE VALID TCB ENTRY (run-time package)
A user without a TCB entry attempted to invoke a form on the
terminal. The cure for this error is to run FAP and, using the TCB
command, insert a valid terminal name in the terminal configuration

block entry for this user.

DEVICE DOES NOT HAVE DCF ENTRY (run-time package)
The run-time package could not find a DCF entry for the specified
device. The system administrator should update the DCF and
recompile the input/output system.

ILLEGAL CONTROL STATEMENT (run-time package)
The applications program issued an unrecognized control statement

to the run-time package. The statement name is printed in the
message text.

SUBSTREAM ERROR (run-time package)
An end-substream control block was encountered while not processing
a substream block. This error usually indicates that the run-time
package or FDL is sick.

TOO MANY SUBSTREAMS (run-time package)
The stream descriptor contained too many substream descriptions.
At this release, the maximum number of substreams permitted under
one stream descriptor is 36.

I/O LIST OVERFLOW (run-time package)
The storage required for control and data information for the
current form exceeds the amount of space available. The cure for
this error is for the run-time I/O list to be enlarged. At this
release, 1888 words are allocated to ‘the I/O list.

DCF FORMAT ERROR (run-time package)
A format error exists in a DCF field. The user may either inspect
the DCF or invoke FAP and type the GENERATE command to determine
which field or fields is/are in error.

IDR3849 FORMS RUN-TIME PACKAGE

16 SUBSTREAM NOT FOUND (run-time package)
A SUBSTREAM command was issued from the applications program, but
the named substream does not exist within the current stream
descriptor. ‘The error is logged in the error file, but the program
is allowed to continue. The next input or output statement will
cause the first substream descriptor in the form to be used.

56 LINE SEQUENCE ERROR (V3SIO)

The Vistar/3 I/O driver found the I/O list to be out of sequence.
This indicates that the run-time package proper, in particular
FMSSLK, iS Sick.

98 LINE SEQUENCE ERROR (PRSIO)
The line-printer I/O driver found the I/O list to be out of order.

See the description for error #5@, above.

9] READ ATTEMPTED FROM PRINTER (PRSIO)

The user attempted to read a form from the line-printer. Consider
yourself suitably scolded!

92 SPOOL DIRECTORY FULL (PRSIO)
The RELEASE command issued from the applications program caused the

line-printer driver to attempt to insert the printer form into the

spool queue, however, the spool directory is full.

5.4 Run-Time System File I/O

The run-time package (run-time package proper, buffer pool manager, and
line-printer driver) all use file wits 12-16 to perform form

definition lookup, rollout file I/O, and other associated file system
operations. This will not interfere with KI/DA which reserves file
units 12-15, and the rev-12 file system bounce package, which uses file
unit 16.

For each form definition invoked, FORMS generates a temporary file in

the home UFD named ‘FMlluu’, where:

"11° represents the internal logical unit #:
gl = user terminal
82 = line-printer

“uu” is the current user #

These temporary files contain the current form status (iolist and
related variables) and are "swapped" in and out of memory when multiple
form definitions are in use. They are deleted when the form definition
is released, and should never be visible to the user.

5 - 7 June 1977

As shipped, FORMS resides on two directories.
contains all sources and command files to create the FDL translator,

FAP utility program,
contains the following files and directories:

IDR3648 INSTALLING FORMS

SECTION 6

INSTALLING FORMS

The first, called FORMS,

and 64R and 64V mode libraries. The FORMS UFD

File Type Description

FDL subUFD sources for FDL translator

FAP subUFD sources for FAP utility
RUN subUF'D sources for run-time package proper

PMGR subUFD sources for buffer pool manager
IOS subUFD sources for input/output system
DOC subUFD source for this document
C_RLIB cominp creates 64R mode library from indiv. objects
C VLIB cominp creates 64V mode library from indiv. objects
REFORMS object 64R mode FORMS library
VFORMS object 64V mode FORMS library
MACROS insert SINSERT file containing FDL macro definitions
CINST cominp installs FDL, FAP, and libraries
CSHAR cominp template for creating shared procedure

memory image files
C_2618 cominp creates seg 2618 shared procedure

C4016 cominp creates seg 4916 shared procedure (for test)
C_LOAD cominp template for loading shared procedure

The second directory,

FORMS system

called ‘FORMS*’, contains a skeleton FMS.**
segment directory and a device control file containing information for
all devices supported by Prime.

To install FORMS as shipped, the user need only run the
called ‘C_INST’, which performs the following functions:

command file

© Copies FORMS>FAP>*FAP to CMDNC@>FAP

Oo Copies FORMS>FDL>*FDL to CMDNC@>FDL

© Copies FORMS>RFORMS to LIB>RFORMS

Oo Copies FORMS>VFORMS to LIB>VFORMS

It is strongly recommended that the copy of FORMS as shipped be copied
and saved in case of accidental damage or deletion of the FORMS source
directory.

June 1977

IDR3048 DEVICE INPUT-OUTPUT SYSTEM

7.1 Device Mapping Scheme

All devices supported by FORMS are assigned a unique ‘logical device

number’. When the run-time package wishes to perform some function on

a device, it calls an interlude subroutine passing the logical device

number aS an argument. The interlude subroutine then caliis the

corresponding device driver to perform the specified function.

FORMS uses a file known as the device control file (DCF) to maintain

certain information about each device supported by the system. The

primary purpose of the DCF is to assign each device name to a logical

device number. When the device name becomes known to the run-time

package, the DCF is scanned to extract the related logical device

number, thus allowing the run-time package to "communicate" with the
device.

The device interlude subroutine (DEVSIO) contains a table which points
to the beginning address for each device driver. It uses the logical
device number to index into this table (much like indexing into a

Fortran array) to select the device driver to be used. Because of this

relationship between the DCF and device interlude subroutine, we can

conclude that any time the DCF changes, the device address table within

DEVSIO must change accordingly. The FORMS Administrative Processor

(FAP) has a facility for generating a new device driver address table

any time the DCF is updated. The Input/Output System must then be

rebuilt with the new address table (this process is discussed in detail

later).

So far, we have discussed how the run-time system translates a device

name into a device driver address. We have not, however, discussed how
it goes about determining the device name. For the line-printer, IOCS
logical unit 4, the hard-wired name “PRINTER” is assigned, after which
the DCF lookup and subsequent processing described above takes place.
The terminal, however, involves yet another step.

Because FORMS permits multiple terminal types, another file, known as

the terminal configuration block (TCB) is needed. This file assigns a

terminal type (eight-character name) to each FORMS user on the system.
The run-time package uses the user number, as returned from the

operating system, to index into this file and extract the terminal

name. After this is done, the DCF lookup and subsequent processing
described above takes place.

The device control file resides in the FORMS UFD (“FORMS*’) and is
called ‘DCF.AS’. It is an ASCII file and may be changed with the text
editor (ED). The file contains one record for each device supported by

FORMS.

7 - Jd June 1977

SECTION 7 IDR3048

The record format is as follows:

ldn, name, dna, lines, columns

ldn = logical device number

name = device name, 1-8 characters

dna = device name abbreviation, see below

lines = # lines on the device (max Y coordinate)

columns = # columns on the device (max X coordinate)

The device name abbreviation represents the first two characters of the

name of the device driver. This must be two characters, the first
being alphabetic. A space is not permitted, and will yield an error
from the FAP GENERATE processor. The full device driver name consists
of the two-character abbreviation followed by ‘SIO’. For example, the
line-printer uses the two-character abbreviation ‘PR’, and hence the
device driver name is “PRSIO”’. Note that each device name abbreviation
must be unigue.

The terminal configuration block lives in the FORMS segment directory

(‘FMS.**") and may be altered with the TCB command in FAP. Refer to
the section entitled ‘FORMS Administrative Processor” for more
information.

7.2 User-Written Device Drivers

Should the user have a terminal not supported by FORMS as released by
Prime, he may want to write his own device driver.

7.2.1 Terminal Requirements

Any terminals to be used with FORMS must have the following
capabilities:

© Internally buffered (block transmission) mode

o Protected fields

© Absolute cursor positioning

© Both protected and unprotected data modification
once displayed

o Clear entire screen/clear unprotected data commands

REV. @ 7 = 2

IDR3048 DEVICE INPUT-OUTPUT SYSTEM

Other features that could be taken advantage of by the FORMS system or

device driver include:

o Blink

o Reverse video

o Underlining

o Keyboard lock

© Input and/or output space compression

7.2.2 Device

Device drivers must be named “xXxSIO’, where the “XX

Driver Specification

A

represents the

two-character abbreviation used in the device control file. They have
the following calling sequence:

CALL XXSIO (function, iolist)

Function is one of the following nine function codes:

1—

2

Initialize device: Reset all device logic, clear the
entire screen, and enter block transmission mode (if this
is a software function).

Output initial form: Write the contents of the entire I/O
data list (IOLIST) to the screen. The device driver
should reset bits 1, 2, 3, and 4 of the attribute word for
each entry and set bit 5 for each field displayed. It
should not display any fields with the ‘NODISPLAY” bit
(bit 14) set. When the screen has been output, the cursor
should be positioned to the first write-enabled location
on the screen.

Input form: The device driver should wait for the
operator to fill in the displayed form and process the
input as it is transmitted from the terminal. As it
receives the data, the driver is responsible for inserting
it into data area in each field in the I/O list. Mly
fields with the ‘DISPLAYED’ and ‘ENABLED’ bits set in the
attribute word should be input. It should be noted that
on a full duplex line, the device driver should disable
the echo and auto-linefeed generation with a call to
DUPLX$; this must be restored after the data has been
input. If possible, a brief prompt message should be

output in an out-of-the-way place on the screen, informing
the operator that there is an input request pending. |

7 - 3 June 1977

SECTION 7

REV. 8

IDR3040

4 — Modify existing form: The device driver must examine each
entry in the I/O list and update those fields with
attribute bits 1, 2, or 4 set. Following is the

recommended logic for the modify processor:

5 -

6 --

7 --

o if data changed, enable/protect changed, or field
attribute changed bits are all reset, process next
field, else

Oo save current attribute word in a temp and reset bits
1-4 (data/attributes modified) of the attribute word
in IOLIST, then

Oo extract field length, and x,y coordinates from
IOLIST, then

o if the field is currently displayed and ‘NODISPLAY’
bit is set, erase this field from display and
process next, else

o if field is not currently displayed and ‘NODISPLAY’
bit is reset, display the field according to the
supplied attributes and x,y coordinates, else

o if ‘NODISPLAY” bit is set, ignore this field and
process next, else

o if enable/protect changed bit is set and special
handling is required to accomodate this change,
perform this special handling; either way,

o if attribute changed bit is set, update the field
using the new attributes and process the next field,
else

© update the data and process the next field

Clear entire screen.

Clear unprotected data on screen.

Close device: This function code is used to terminate
device usage after a RELEASE command and is applicable
only to the line-printer driver; terminal device
drivers should ignore this call.

Correct data: The device driver must scan the I/O list
for the first field with the ‘data-invalid’ attribute
bit set (see below), position the cursor to the first
character position of this field, and allow the
Operator to re-enter the data. It is recommended that
an error/prompt message be displayed in an
out-of-the-way place, informing the operator that the

IDR3648 DEVICE INPUT-OUTPUT SYSTEM

specified field has failed all validation tests and

that it must be re-entered.

9 -- Print local: Write the contents of the entire screen

to the local printer attached to the terminal; this

feature must be supported by the particular terminal

hardware in use. ‘The device driver should return to

the caller when the printer has completed printing.

Iolist is an array that contains the control and data

definitions for each field in the form. It contains seven

header words and at least one data word for each entry. The

array should be accessed by the device driver using a pointer

to the beginning of the field (supplied by the run-time

package) added to an offset. This offset should be specified

in the form of a PARAMETER “ed symbol, as defined below.

The following PARAMETERS represent each of the control words,

plus the start of the data area. The device driver should be

oblivious to their actual values, as these may change when new

control information is addded. The parameter declarations may

be made through an SINSERT file called ‘IOPARM” in the

directory containing the source of the I/O system (as released,

FORMS>IOS>IOPARM).

IOLK —— Link to next entry in chain by position; this is

not used by device drivers.

IOVP -- Stream definition field pointer for this entry;

this is not used by device drivers.

IORP —- Format definition field pointer for this entry;

this is not used by device drivers.

I0SZ —- Field length, in characters.

IOAT —- Field attributes, as follows:

Bit Definition

1 Set by FORMS if data has changed since last display.

Reset be device driver when data has been updated on

device.

2 Set by FORMS if enable/protect attribute has changed

since last display. Reset by device driver when
field has been updated on device.

3 Set by FORMS if field has failed all supplied
validation tests. Reset by device driver when field

has been re-entered from device.

7 - 5 June 1977

SECTION 7 IDR3048

4 Set be FORMS if any field attributes has been
modified since last display. Reset by device driver
when field has been updated on device.

5 Set by device driver if field is currently displayed
on device. Reset by device driver if field is
currently not displayed on device (initially reset) .

13 Set by FORMS if field should be blinked when
displayed. Reset by FORMS if field should not be
blinked when displayed.

14 Set by FORMS if field should not be displayed or
should be erased if currently displayed. Reset by
FORMS if field should be displayed.

15 Set by FORMS if field should be displayed in reverse
video. Reset by FORMS if field should be displa
in normal video.

16 Set by FORMS if field should be write-enabled (not

protected). Reset by FORMS if field should be
write-protected.

IOYX -- line and column coordinates:
. left byte line # (Y)
» right byte column # (x)

IOPG -- physical page #; this is not used by device drivers

IODA -—- start of text data; data is in ascii format, packed
two characters per word, blank filled

The initialize, clear, close, and print functions (1, 5, 6, 7, and
9) are all relatively straightforward. These operations do not have
to process data from the I/O list and therefore should assume it to
be void.

The output, input, modify, and correct functions (2, 3, 4, and 8)
all need to traverse the I/O list and process (or at least inspect)
each field therein. The device driver must depend on the run-time
system to provide a pointer for the start of each field definition
in the I/O list. The run-time package contains two subroutines
callable by the device driver for such a purpose. They are:

REV. @ 7 = 6

IDR3040 DEVICE INPUT-OUTPUT SYSTEM

FMSSRE - Resets the internal (run-time package) field pointer to
the beginning of the current page. This routine must be
called at the beginning of the output, input, modify,
and correct-data function processors. It may be called
again to reset the pointer to the first field in the
page when necessary (eg, on an input error).

Calling Sequence:

CALL FMSSRE

FMSSNF - Returns the pointer to the next field in the I/O list to

be processed. if the pointer is @, the end of page or

end of I/O list has been encountered. Fields are
returned to the caller in line/column sequence.

Calling Sequence:

CALL FMSSNF (pointer)

For a sample I/O driver, the reader is referred to the VISTAR3
device driver in the input/output system source directory.

7.2.3 Error Message Generation

The user is allowed to generate run-time error messages from within
the device driver, should he encounter an error condition. A
subroutine called ‘RTERRS’ exists in the run-time package, which ma
be called to log an error in the error file and set up the user’s
error vector. The calling sequence is as follows:

CALL RTERRS (enum, text, textsz, name)

enum = error number (see below)
text = text error message (2 characters/wd)
textsz = length of ‘text’, in characters
name = routine name (8 characters) or 9 if none

The user is allowed to use any error number between 60 and 89,
inclusive. All others are reserved for future use by Prime. Should

the user wish to exit to PRIMOS command level, he need only call the

ERRSET subroutine as follows:

CALL ERRSET (: 100000,8)

This causes the text message passed as an argument to RTERRS to be
typed on the user terminal, followed by the “ER!” prompt from
PRIMOS. If the error condition was non-fatal, the device driver
should not call ERRSET, but rather perform whatever error recovery

is necessary to continue.

7 - 7 June 1977

SECTION 7 IDR3646

7.2.4 Installing the Device Driver

To install a new device driver into the FORMS run-time library, the
user should follow the steps outlined below:

a)

b)

Cc)

q)

e)

f)

Obtain a listing of the device control file and choose a free
logical unit number above 1@ (the first 1@ are reserved by
Prime). Append an entry to the DCF containing the selected
logical unit number, device name, first two characters of the
driver name (remember, the last three must be ‘$IO’), and the
dimensions of the device in accordance with the format
described in the section entitled "Device Mapping Scheme",
above. For example, the Vistar/3 entry, whose logical unit
number is 3, driver name is ‘V3SIO", and dimensions are 24 by
88, would look as follows:

3, VISTAR3, V3, 24, 88

Attach to the directory containing the source for the
Input/Output System and copy into it the source for the device
driver to be installed.

Edit the C_IOR (64R mode) and C_IOV (64V mode) command files
and insert aline to campile the hew device driver after the
PRSIO routine.

Run FAP and issue the GENERATE command to create the new
device tables which will include the new driver.

Execute the C_IOR and/or CIOV command file(s) to create a new
input/output system.

Attach to the first-level FORMS source directory (‘FORMS’) and
execute the command file “C RFMS” to create a 64R mode library
and/or C_VFMS to create a 64V mode library.

The user may now modify the TCB entries for the users which have
the new terminal and reload his applications program with the new
version of the library. It is strongly recommended that the new
library not be installed in the “LIB” UFD until the new device
driver has been proven to work.

7.3 Prime-Supplied Device Drivers

At present, the FORMS system as released by Prime supports the
following two device drivers:

. Offline printer (PRINTER)
- Vistar/3 (modified) (VISTAR3)

REV.

IDR3848 DEVICE INPUT-OUTPUT SYSTEM

7.3.1 Offline Printer Device Driver

The PRINTER device driver writes a form (or forms} to the line-printer

spool queve. When the INVOKE command is issued to the]ine-printer
(IOCS logical unit 4), a file called PR##nn (where ‘nn’ represents the
user number) is opened. If it already exists, the file pointer is
positioned to the end of file, where the new form definition will be
written. If it does not exist, it is created, after a record is
written containing the control code for the line-printer to enter
Fortran forms-control mode.

When a form is output, one ASCII record is written for each line
defined in the form. The first line contains a ‘1° in column 1, which
causes the printer to eject to the top of a new page. Any enabled
fields are underscored (with the “© ° character).

When the form is released, the file is copied into the spool queue,
with the appropriate spool file header and file name. It is then
closed and deleted from the home UFD. Note that the PrR##nn file should
never appear in the home UFD after the program has been completed: if
it does, it means that the PRINTER form was not released.

7.3.2 Vistar/3 Device Driver

The Infoton Vistar/3 device driver (V3SIO) is written for a specially
modified Vistar/3 (with microcode and hardware updates) available

through Prime.

The device dimensions are 24 lines by 88 columns {1928 characters), all

of which except the 15 character positions in the lower right of the
screen are available for use by the applications program. These
character positions contain one of the following prompt or error

messages from the device driver:

(spaces):

Input not allowed.

ENTER

Enter data into unprotected fields on form,
depress “XMIT PAGE” key when done.

ERROR, RE-ENTER (blinking)
A character was lost on the last transmission -
depress “XMIT PAGE” key.

DATA ERROR (reverse video)
A field (or fields) does not meet the specified

validation criteria - the cursor is positioned to
the first character position of the offending field.
Correct the data and depress the “XMIT PAGE” key.

7 - 9 June 1977

SECTION 7 IDR3640

All unprotected fields are displayed in full - intensity, surrounded by
Square brackets (°[° and *]*). All protected fields are displayed in
half~intensity. Note that care must be taken to allow for the square
brackets on unprotected fields when designing the form.

To operate the Vistar/3 with a program using FORMS, the dip-switches in
the rear of the display must be set as follows:

EOT character: CR

Mode : Block

Line-speed: (User-selectable)
Sec channel: Off
Parity: None
Fdux/hdux: (User-selectable)
Stop bits: Two
Roll/page: Roll

REV. @ 7 = 10

IDR3849 SAMPLE FORM DEFINITION SOURCE

APPENDIX A

SAMPLE FORM DEFINITION SOURCE

ESFORM, FORMS, JRW, 76/12/38 stream descriptor definition

Employee Status Form Definition - **FORMS** Demonstration

This form definition is intended for use with “EMPUPD’

HIKERKEREREEKEEEKERRERK

* *

* stream definition *
* *

KXKEEKEEKEEEEEEEKEEKEREREKEEEREREEEEKEEEEEEEKKER

---Macro Definitions File (FORMS > MACROS)

INSERT FORMS>MACROS

+
+
#
€
D

©
F
H
H
H

HF
HF

OF
HF

HF
+
H
F

OF

*---stream definition for employee status form
* last updated: 3@-Dec-76
*

estatus stream
ey
wv

*~--header information (name, employee & dept #, marital status)

header substream
f name, len 38

empn f empn, len 4, jusr, v ‘N°
f deptn, len 3, jus r, Vv N’
f marital, len 1, v A’ or ‘B’
end substream

*

*---address, phone numbers

addrfone substream

f street, len 36
f city, len 28
f state, len 2, v “AA” or ‘B’
f zipcode, len 5, v °9° or ‘B”

f homefone, len 12, v °999-999-9999° or ‘B’

f workfone, len 12, output
f (workfone, "212-587-1234 "), len 12, in;

v 999-999-9999" or ‘B”
f ext, len 3, v 99° or ‘B’
end substream

*

*-—-start, termination, and return dates

A - J] June 1977

APPENDIX A

dates

*

*~———wor k
wstatus

*

substream

f strtdate, len 8,
f termdate, len 8,
f retndate, len 8,

end substream

status information
substream
f fullpart, len l,
f permtemp, len 1,
f direct, len 1, v
f workstat, len l,
end substream

*--—jJob title, code
jobinf

*

substream

f jobtitle, len 26
f jobcode, len 2
end substream

*—--salary information
salryinf

*

substream

IDR3640

"99/99/99* or “B’
"99/99/99" or ‘B

v 99/99/99" or ‘B’”

a
<

v ‘A’ or ‘B’
v ‘A’ or ‘B’
‘or “B’

v ‘A’ or 3B’

#
f lastincr, len 8, ¥ 29/99/99 ° or “B’
f amtincr, len 7, v

f perincr, len 3, v ‘N’
f salary, len 8, v

nN’

f speriod, len 1l, v ‘A’ or ‘3B’
end substream

*---error message facility
errmesg
error

x

*

*

REV. @

substream

f error, len 39, output
end substream

end stream

IDR3@48 SAMPLE FORM DEFINITION SOURCE

KEKKEKKEKKEKEKKEKEKEEKERERKRREEEREEEKEREREKKEKKE

* ESFORM, FORMS, JRW, 76/12/38 format descriptor definition
*

*

*

* KKKEKKKEKKKEKEKEEKEKEKKEREEKEKRKKKEEEKEEEKKKEKE

* * *

* * format definition *
* * *

&

&

*

*~--Macro definition file (FORMS > MACROS)

SINSERT FORMS>MACROS
*

*

*---device format definition for VISTAR/3 terminal

* last updated: 36-Dec-76
*

estatus format

device vistar3
*

*--—Jiteral form header
f “Employee Status Form” pos (32,1)

*

*---header line >> employee name, id#, dept#
f “name” pos (1,3)

name f len 30, pos (7,3), np
f ‘emp#° pos (47,3)

empn f len 4, pos (53,3), np
f ‘dept#~ pos (68,3)

deptn f len 3, pos (75,3), np
*

*-—-marital information
f “marital status” pos (1,5)

marital f len 1, pos (17,5), np
f ‘S=single, M=married, D=divorced, W=widowed” pos (20,5)

*

*~--address information
f “address: street” pos (1,7)

street f len 39, pos (18,7), np
f “city” pos (18,8)

city £ len 28, pos (18,8), np
f “state” pos (41,8)

state f len 2, pos (49,8), np
f “zip” pos (54,8)

zipcode f len 5, pos (68,8), np
*

*-~-telephone numbers...
f “telephone #: home” pos (1,10)

homefone f len 12, pos (28,19), np
f “business” pos (35,18)

workfone f£ len 12, pos (45,18), np

f ‘extension’ pos (68,18)

A - 3 June 1977

APPENDIX A IDR3648

“ext f len 3, pos (71,10), np
*

*——-start date, termination date, return date

f “start date” pos (1,12)
strtdate f len 8, pos (13,12), np

f “term date” pos (24,12)
termdate f len 8, pos (35,12), np

f “return date” pos (46,12)
retndate f len 8, pos (59,12), np
*

*---work status
f ‘status: ” pos (1,14)

fullpart f len 1, pos (10,14), np

f ‘F=full, P=part’, pos (13,14)
permtemp f len 1, pos (38,14), np

f “P=permanent, T=temporary’, pos (41,14)
direct f len 1, pos (19,15), np

f ‘D=direct, I=indirect ’, pos (13,15)
workstat f len 1, pos (38,15), np

f ‘A=active, L=leave, T=terminated’, pos (41,15)
*

*-——job information
f “job title’, pos (1,17)

jobtitle f len 28, pos (12,17), np
f “job code’, pos (36,17)

jobcode f len 2, pos (46,17), np
*

*-—-salary information
f ‘date last increase’, pos (1,19)

lastincr £ len 8, pos (21,19), np
f ‘amount’, pos (33,19)

amtincr f len 7, pos (41,19), np
f ‘percent’, pos (52,19)

perincr f len 3, pos (61,19), np
*

f ‘salary’, pos (1,21)
salary £ len 8, pos (9,21), np

speriod f len 1, pos (25,21), np
f ‘H=hourly, W=weekly, Y=yearly’, pos (28,21)

*

*---error message field
error f len 38, pos (1,24), blink
*

*

end device

end format

REV. @ A - 4

(9801)
(@202)
(8693)
(6804)
(8895)
(8806)
(0007)
(6208)
(0299)
(8818)
(8811)
(8812)
(8013)
(8814)
(8815)
(815)
(9615)
(8815)
(8015)
(8815)
(9815)
(8815)

(8815)
(615)
(9615)
(9615)
(6815)
(8815)
(8015)
(9815)
(0615)
(8016)
(9817)
(8618)
(8019)
(0028)
(8621)
(6922)
(@823)
(8024)
(8825)
(8826)
(0827)
(8928)
(8829)
(8230)
(8831)

IDR3048 SAMPLE FORM DEFINITION

APPENDIX B

* ESFORM, FORMS, JRW, 76/12/38 stream descriptor definition

* Employee Status Form Definition - **FORMS** Demonstration
* This form definition is intended for uSe with EMPUPD .
*

*¥

*

* KKKKKHIKARIKIKIEKEREAE

* * *

* * stream definition *
* * *&

* REKKEKEEKEEKEKKEKKEAKKEKREERKKERERKEREEKREKEKEEEE

*

*

*-~-~-Macro Definitions File (FORMS > MACROS)
*---Start FORMS>MACROS
* $INSERT file for standard syntax abbreviations
*

*

f def field
V def validate
len def length
pos def position

in def input
out def output

jus def justify
r def right
1 def left
c def center

np def noprotect
*

*—-~End FORMS>MACROS
*

*

*-—-stream definition for employee status form
* last updated: 3@-Dec-76
*

estatus stream
*

*---header information (name, empl & dept#, marital status)
header substream

f name, len 38
empn f empn, len 4, jus r, v ‘N°

f deptn, len 3, jusr, v ‘N°’
f marital, len], v ‘A’ or “B’
end substream

*

*---address, phone numbers

B - 1 June 1977

APPENDIX B TDR3048

(0832) addrfone substream

(8633) f street, len 38
(8034) f city, len 26
(9835) f state, len 2, v ‘AA’ or ‘B’
(0836) f zipcode, len 5, v “9” or ‘B’
(0937) *
(9238) f homefone, len 12, v °999-999-9999° or ‘B”
(8039) f workfone, len 12, output
(8048) f (workfone, “212-587-1234 °), len 12, in ;
(8041) v 999-999-9999" or ‘B’
(8042) f ext, len 3, v “9° or ‘BB’
(8043) end substrean
(8944) *

(9845) *———start, termination, and return dates
(0846) dates substream
(8647) f strtdate, len 8, v 99/99/99" or “B’

(0048) f termdate, len 8, v 99/99/99" or “B’
(8049) f retndate, len 8, v "99/99/99" or ‘BB’
(0850) end substream
(0851) *
(@852) *-—-work status information

(9853) wstatus substream

(9954) f fullpart, len il, v ‘A’ or “‘B’
(8655) f permtemp, len 1, v ‘A’ or “B’
(Q056) f direct, len 1, v A’ or ‘B’
(9857) f workstat, len 1, v ‘A’ or ‘B’
(8058) end substream

(8059) *
(6869) *-—-job title, code
(8861) jobinf substream
(8962) f jobtitle, len 20
(8863) f£f jobcode, len 2
(6964) end substream
(8865) *
(9866) *---salary information
(8867) salryinf substream
(8868) f lastincr, len 8, v °99/99/99° or ‘B’
(8069) f amtincr, len 7, v ‘N’
(9078) f perincr, len 3, v N°
(8871) f salary, len 8, v ‘N”
(9072) f speriod, len 1, v ‘A’ or ‘B’
(8873) end substream

(0074) *
(9875) *---error message facility
(0876) errmesg substream
(9077) error f error, len 39, output

(9978) end substream
(0879) *
(8986) *

(6881) *
(8682) end stream

9900 ERRORS (FDL, REV 12.8 -— PRE-RELEASE)

REV. @ B - 2

INPUT

SUBSTREAM
ft

et
B
e

&
&
f
&

W
w

l
y

N
O
B
O

P
h
A

A
Y
P
O
b
o

D
A
N
A

S
O

U
l

U
l

STREAM

FIELD

NAME
EMPN

DEPIN
MARITAL

STREET
CITY
STATE
ZIPCODE
HOMEFONE
WORKFONE

EXT

STRTDATE
TERMDATE
RETNDATE

FULLPART
PERMTEMP
DIRECT
WORKSTAT

JOBTITLE

JOBCODE

LASTINCR

AMTINCR
PERINCR
SALARY
SPERIOD

DESCRIPTOR:

LENGTH

o
m
©

N
m
M
O
W
n
)
I
0
O

N
H
B

H
H
H
H

IDR3049

START

1
3]
35
38

1
31
51
53
58
78
82

N
fm
t

1
m
m
W
N

~
)
W
O

t
o
e

be
~
)
W
O
A
t
o

F
e

SAMPLE FORM DEFINITION

June 1977

APPENDIX B TDR3048

OUTPUT STREAM DESCRIPTOR:

SUBSTREAM FIELD LENGTH START

1 NAME 30 1
1 EMPN 4 31
1 DEPIN 3 35
1 MARITAL 1 38

2 STREET 30 1
2 CITY 20 31
2 STATE 2 51

2 ZIPCODE 5 53
2 HOMEFONE 12 58
2 WORKFONE 12 76

2 EXT 3 82

3 STRTDATE 8 1

3 TERMDATE 8 9
3 RETNDATE 8 17

4 FULLPART 1 1
4 PERMTEMP 1 2
4 DIRECT 1 3
4 WORKSTAT 1 4

5 JOBTITLE 20 1

5 JOBCODE 2 21

6 LASTINCR 8 1

6 AMTINCR 7 9
6 PERINCR 3 16
6 SALARY 8 19
6 SPERIOD 1 27

7 ERROR 36 1

REV. @ B - 4

(2683)
(8684)
(8885)
(8886)
(8887)
(8888)
(8689)
(8899)
(8091)
(6892)
(8893)
(8694)
(8695)
(8095)
(8895)
(8695)
(9295)
(9895)
(8895)
(8895)
(9895)
(9895)
(9895)
(9895)
(9895)
(8895)
(6095)
(8895)
(8895)
(8896)
(8897)
(9898)
(9899)
(8180)
(01981)
(8182)
(8183)
(8164)
(6185)
(8196)
(8187)
(8198)
(8189)
(6110)
(8111)
(8112)
(8113)
(8114)
(9115)
(8116)
(9117)
(8118)

IDR3048 SAMPLE FORM DEFINITION

* ESFORM, FORMS, JRW, 76/12/38 format descriptor definition
*

*

*

* KEKKKEKKKKKKEEKEEEKEKREREEREEEREREREEEEEEKKKK

* * *

* * format definition *
* * *

* KEKEKKEREREKERKEKERERKEEKEERERKKKE

*

*

*---Macro definition file (FORMS > MACROS)
*---Start FORMS>MACROS
* SINSERT file for standard syntax abbreviations
*

*

f def field
V def validate
len def length

pos def position
in Gef input
out def output
jus def justify
r Gef right
1 def left
c def center
np def noprotect
*

*---End FORMS>MACROS
*

*

*---device format definition for VISTAR/3 terminal
* last updated: 30-Dec-76
*

estatus format
device vistar3

*

*-~-literal form header
f ‘Employee Status Form” pos (32,1)

*

*—-—header line >> employee name, id#, dept#

f “name” pos (1,3)
name f len 36, pos (7,3), np

f “emp# ° pos (47,3)
empn f len 4, pos (53,3), np

f “dept#° pos (68,3)
deptn f len 3, pos (75,3), np

*~--marital information _

f ‘marital status” pos (1,5)
marital f len 1, pos (17,5), np

f “S=single, Memarried, D=divorced, W=widowed °

pos (28,5)

B - 5 June 1977

APPENDIX B IDR3648

(0119)
(8128)
(0121)
(0122)
(8123)
(9124)
(8125)
(9126)
(0127)
(6128)
(8129)
(8138)
(0131)
(8132)
(6133)
(6134)
(9135)
(2136)
(8137)
(2138)
(6139)
(6148)
(9141)
(8142)
(8143)
(6144)
(8145)
(0146)
(8147)
(6148)
(8149)
(8158)
(0151)
(0152)
(8153)
(8154)
(8155)
(8156)
(6157)
(6158)
(8159)
(8168)
(0161)
(8162)
(6163)
(8164)
(8165)
(0166)
(6167)
(8168)
(2169)
(8178)
(8171)

REV. 8

*

*---address information
f ‘address: street” pos (1,7)

street f len 38, pos (18,7), np

f ‘city’ pos (10,8)
city f len 28, pos (18,8), np

f “state” pos (41,8)
state f len 2, pos (49,8), np

f “zip” pos (54,8)
zipcode f len 5, pos (60,8), np
*

*---telephone numbers...
f “telephone #: home’ pos (1,18)

homefone f len 12, pos (29,18), np
f “business” pos (35,18)

workfone f len 12, pos (45,18), np
f ‘extension’ pos (68,16)

ext f len 3, pos (71,16), np
*

*-—-start date, termination date, return date
f ‘start date” pos (1,12)

strtdate f len 8, pos (13,12), np
f “term date” pos (24,12)

termdate f len 8, pos (35,12), np
: f “return date” pos (46,12)

retndate f len 8, pos (59,12), np

*——-work status

f “status: ° pos (1,14)
fullpart f len 1, pos (16, 14), np

f ‘F=full, P=part’, pos (13,14)
permtemp f len 1, pos (38,14), np

“P=permanent, T=temporary’, pos (41,14)
direct ¢ len 1, pos (18,15), np

f “‘D=direct, I=indirect”, pos (13,15)
workstat £ len 1, pos (38,15), np

f “A=active, L=leave, T=terminated’, pos (41,15)
*

*-——Jjob information
_ £ “job title’, pos (1,17)

jobtitle f£ len 26, pos (12,17), np
f “job code’, pos (36,17)

jobcode f len 2, pos (46,17), np
*

*——-Salary information
f “date last increase”, pos (1,19)

lastincr f len 8, pos (21,19), np
f “amount’, pos (33,19)

amtincr f len 7, pos (41,19), np

f ‘percent’, pos (52,19)
perincr f£ len 3, pos (61,19), np
*

f ‘salary’, pos (1,21)

(8172)
(8173)
(@174)
(8175)
(9176)
(8177)
(8178)
(6179)
(8188)
(8181)

IDR3040 SAMPLE FORM DEFINITION

Salary £ len 8, pos (9,21), np

speriod f len 1, pos (25,21), np
f£ “H=hourly, Weweekly, Y=yearly’, pos (28,21)

*

*---error message field
error f len 38, pos (1,24), blink
*

*

end device
end format

88808 ERRORS (FDL, REV 12.0 — PRE-RELEASE)

B - 7 June 1977

A
N
A
A
N
N
A

q
a
q
a

A
N
N
R
A
A
N
N
A
A
N
A
A
N
A
N
A
N
A
N
A
N
A
N
A
A
N
A
A
A
N
A
A
N
A
N
A
N
A
A
N
N
A
A
A
A
A
N
A
N

MAN3046 SAMPLE FIN PROGRAM

APPENDIX C

SAMPLE FIN PROGRAM

USING FORMS

FORMS DEMONSTRATION PROGRAM - EMPLOYEE STATUS UPDATE

—~THIS PROGRAM DEMONSTRATES SOME OF THE CAPABILITIES OF THE

PRIME FORMS MANAGEMENT SYSTEM.

~--OPERATION:

FROM COMMAND LEVEL: R *EMPUP

. TO CREATE A NEW ENTRY (NEW EMPLOYEE):

ENTER THE EMPLOYEE NAME INTO THE NAME FIELD AND

DEPRESS THE TRANSMIT KEY.

THE EMPLOYEE WILL BE ASSIGNED THE NEXT SEQUENTIALLY

AVAILABLE ID# FROM THE CONTROL FILE (E*CTRL).

THE OPERATOR MAY THEN PROCEED TO ENTER THE DATA

FOR THE NEW EMPLOYEE INTO THE FIELDS PROVIDED.

WHEN DONE, DEPRESS THE TRANSMIT KEY TO UPDATE

THE KI/DA FILE. TO IGNORE THE UPDATE, CLEAR THE

EMPLOYEE NAME FIELD AND DEPRESS THE TRANSMIT KEY.

. TO UPDATE AN ALREADY-EXISTING ENTRY:

ENTER EITHER THE EMPLOYEE NAME INTO THE EMPLOYEE

NAME FIELD OF THE EMPLOYEE ID# INTO THE ID# FIELD

AND DEPRESS THE TRANSMIT KEY. THE KI/DA FILE WILL

BE SCANNED FOR THE GIVEN ENTRY AND, IF FOUND, THE

DATA FOR SAID EMPLOYEE WILL BE DISPLAYED ON THE SCREEN.

IF NOT FOUND, A SUITABLE ERROR MESSAGE WILL BE DISPLAYED

IN THE LOWER LEFT-HAND CORNER OF THE CRT.

WHEN THE USER HAS MODIFIED THE: DESIRED DATA, HE MAY

DEPRESS THE TRANSMIT KEY TO UPDATE THE KI/DA FILE -OR-

HE MAY CLEAR THE EMPLOYEE NAME FIELD IF HE DOES NOT

WISH TO UPDATE THE FILE.

. TO EXIT THE PROGRAM, CLEAR BOTH EMPLOYEE NAME AND EMPLOYEE

ID# FIELDS (LEAVE THEM BLANK) AND HIT THE TRANSMIT KEY.

Cc - 1 June 1977

APPENDIX C IDR3840

TO INITIALIZE THE DATA AND CONTROL FILES, THE USER CAN RUN THE
‘C_DATA* COMMAND FILE.

Q
A
N
Q
A
A
A
R
A
A
N

SINSERT EQUIV
Cc
SINSERT SYSCOM>FILD.F

SINSERT SYSCOM>ERRD.F
C
Cc

INTEGER VERRET, ERRCOD, ARY(14), XEMPN, I, VIBL(18)
C
Cc

C---INITIALIZE PROGRAM:
C INVOKE FORM, OPEN DATA FILES.
Cc

WRITE (1,168)

199 FORMAT (“##INVOKE ESTATUS *)
CALL SEARCH (OPNRED, “E*DATA’, 1)
CALL SEARCH (OPNBTH, “E*CTRL’, 2)
GO TO 58d /* READ INITIAL DATA

C
Cc

C---HERE TO CLEAR ERROR MESSAGE FIELD AND UNPROTECTED
C DATA TO PROCESS NEXT EMPLOYEE.
C

300 WRITE (1, 318)
318 FORMAT (“##NOPROTECT EMPN “/

+ “##SUBSTREAM ERRMESG °/
+ /
+ "#4CLEAR *)

Cc
Cc
C---INPUT DATA FOR NEXT EMPLOYEE.
C
508 ASSIGN 518 TO VERRET /* VALIDATION ERROR RETURN

GO TO 53¢
Cc
Cc
C---HERE FOR VALIDATION ERROR RECOVERY WHILE
C READING HEADER RECORD.
C
518 WRITE (1,528) /* RE-INPUT 1ST SUBSTREAM
520 FORMAT (“##SUBSTREAM HEADER ’)
C
538 READ (1,548,ERR=90080) NAME, EMPN, DEPIN,MARTAL
540 FORMAT (15A2,14,13,Al)
Cc

MAN3048 SAMPLE FTN PROGRAM

C
C---EX:I IF BOTH NAME AND EMPLOYEE # FIELDS ARE EMPTY.
Cc
a

IF (NAME(1).NE.” °.OR.EMPN.NE.@) GO TO 600

WRITE (1,558)
550 FORMAT (“##CLEAR ALL ’/ “##RELEASE °)

CALL SEARCH(CLOSE, 9, 1)
CALL SEARCH(CLOSE, @, 2)
CALL SEARCH(CLOSE, @, 3)
CALL EXIT

C
Cc
C---HERE IF EITHER EMPLOYEE# OR NAME SPECIFIED.

C
680 IF (EMPN.EQ.8) GO TO 2008

Cc

C
C---EMPLOYEE ID # SUPPLIED - LOOK UP ON INDEX 8.

Cc
CALL FINDS (1,FILBUF, EMPN,ARY, : 46008 ,$86008,8,08,0,9)

Cc

C
C---UPDATE FORM WITH DATA READ FROM FILE.

C
760 WRITE(1,710)
716 FORMAT (‘##PROTECT EMPN “/

+ “##SUBSTREAM HEADER”)
Cc
800 WRITE(1,810) FILBUF
819 FORMAT(

15A2,B #### °,B### °,Al/
25A2,A2,2A2,Al,12A2,B ### “/
12A2/
4A1/
1@A2,A2/

4A2,3A2,21, “#4 °,4A2,Al/

t
t
h
e
e
e
t

t

C
Cc

C---READ ANY UPDATED DATA FROM THE SCREEN.

THE OPERATOR AT THIS POINT HAS THE FOLLOWING OPTIONS:

A) CHANGE ANY DATA ANY HIT XMIT - THE UPDATES WILL BE MADE

TO THE KI/DA FILE.

B). CLEAR THE NAME FIELD (WITH THE “CLEAR FIELD“ KEY)

THIS WILL CAUSE NO UPDATE TO OCCUR.

Q
A
A
Q
A
N
A
A
A
A
N

1809 ASSIGN 1005 TO VERRET
1005 READ(1,1160,ERR=90000) FILBUF
1108 FORMAT (

C - 3 June 1977

APPENDIX C IDR384@

15A2,14,13,Al1/
25A2,A2,2A2,A1,12A2,13/
12A2/
4Al/
19A2,A2/
4A2,3A2,A1,13,4A2,Al

t
e
e

+t
e
t

+
~
~

IF (NAME (1) .EQ.° °) GO TO 3098 /* IGNORE UPDATE

—--UPDATE THE KI/DA FILE WITH THE USER‘’S CHANGES.
THIS IS DONE BY DELETING THE ENTRY BY DELETING THE PRIMARY
INDEX ENTRY AND THEREFORE DELETING ALL RELATED SECONDARY INDEX
ENTRIES. THE DATA IS THEN ADDED VIA ‘ADDIS’.

A
A
N
Q
A
A
N
A
Q

A

CALL DELETS (1,FILBUF, 0,ARY, :160020,0,0,8,0,8)
CALL ADD1$ (1,FILBUF, EMPN,ARY, :49000,$81000,0,8,0,8)
CALL ADD1$(1,6,NAME,ARY, :199008,$81000,1,0,0,8)
CALL ADDIS (1,8,DEPIN,ARY, :180000,$81800,2,0,08,@)
CALL ADD1$(1,8,EXT,ARY, :180000,$81000,3,8,0,0)

Cc

G TO 306
C
Cc
C---NAME SUPPLIED WITH NO EMPLOYEE # -
C FIRST LOOKUP IN FILE - IF NOT FOUND, GIVE THE OPERATOR
C THE OPTION OF ADDING THE NEW EMPLOYEE.
Cc
2688 CALL FINDS (1,FILBUF,NAME,ARY, :40000,$4000,1,0,0,2)

CALL FINDS (1,FILBUF,EMPN,ARY, : 40000,$81000,0,0,8,9)
GO TO 706 /* FOUND...

Cc
Cc
C---NEW EMPLOYEE - FIRST GET NEXT AVAILABLE ID# FROM CONTROL
C FILE AND DISPLAY IN EMPLOYEE # FIELD. IF THE OPERATOR
C LEAVES THIS FIELD ALONE, THE EMPLOYEE WILL BE ADDED TO THE
C FILE. IF THIS FIELD IS CLEARED, THE OPERATION IS IGNORED.
C
4908 CALL SEARCH(REWIND, @, 2)

READ (6, 4018) EMPN
401@ FORMAT(IS)

XEMPN=EMPN
Cc

WRITE (1,4858) NAME, EMPN
4058 FORMAT (15A2,B “#### °)

ASSIGN 4055 TO VERRET

MAN3046 SAMPLE FIN PROGRAM

4955 READ(1,1100,ERR=90000) FILBUF
IF (EMPN.EQ.@.OR.NAME(1) .EQ.“ “) GO TO 300
CALL ADD1$ (1,FILBUF, EMPN ,ARY, :48908,$81208,9,9,8,9)
CALL ADD1S (1,0,NAME,ARY, :100080,$81680,1,0,8,8)
CALL ADD1$(1,0,DEPIN,ARY, : 180006 ,$81000,2,0,0,9)
CALL ADD1$(1,0,EXT,ARY, :160000,$81000,2,0,0,8)

C
C
C---UPDATE EMPLOYEE NUMBER IN CONTROL FILE IF THE
C USER DIDNT CHANGE IT ON US.
C

IF (EMPN.NE.XEMPN) GO TO 300
CALL SEARCH(REWIND, 8, 2)
EMPN=EMPN+1
WRITE (6,4090) EMPN

4098 FORMAT (B ##### °)
GO TO 300

Cc
Cc
C---HANDLE ‘FIND’ ERROR FROM KI/DA -

Cc
80000 IF(ARY(1).NE.7) GO TO 88506

WRITE (1,880010) EMPN

8G81G FORMAT (“##SUBSTREAM ERRMESG */

+ ‘Employee °,B“####°,° not on file’)

Cc
Cc
C--~HERE TO SET UP SCREEN AFTER ERROR.

C THIS WILL CLEAR THE UNPROTECTED DATA, WRITE-ENABLE

C THE EMPLOYEE # FIELD, AND RETURN TO ACCEPT INPUT FROM

C ‘THE OPERATOR.

OQ

86658 WRITE (1,80069)
80060 FORMAT

(

“##NOPROTECT EMPN “/
+ "##CLEAR °)
GO TO 580

Cc

Cc

C-~-HERE TO CHECK FOR DUPLICATE ENTRY ERROR

Cc

80566 IF(ARY(1).NE.12) GO TO 81808

WRITE (1,89518) EMPN

80518 FORMAT(“##SUBSTREAM ERRMESG °/

+ ‘Employee # °,B“####°,° already on file’)

GO TO 88058

C

C
C--~HERE ON ANY UNEXPECTED KI/DA FILE HANDLER ERROR.

C
81088 WRITE(1,81018) ARY(1)

81016 FORMAT(“KI/DA Err# °,B“##°)

GO TO 5868

C

June 1977

APPENDIX C IDR3840

C
C---HERE OF VALIDATE ERROR FROM READ STATEMENT
Cc
99000

980198

Cc
98058

98068

Cc
90169
99128

C
Cc
C

CALL GETERR(ERRCOD, 1)
IF (ERRCOD.NE.2HVA) GO TO 98050
WRITE (1, 98010)
FORMAT (“##SUBSTREAM ERRMESG “/ “Validate Error ’)
GO TO VERRET

IF (ERRCOD.NE.2HFD) GO TO 90168

WRITE (1, 98068)
FORMAT (“##SUBSTREAM ERRMESG “/ ‘Format/Data Mismatch ’)
GO TO VERRET

WRITE (1,9912@) ERRCOD
FORMAT (°##SUBSTREAM ERRMESG ‘/ “Error "",A2, "’)
GO TO VERRET

IDR3848 FORMS CONTROL DIRECTORY

APPENDIX D

FORMS CONTROL DIRECTORY FORMATS

The FORMS segment directory consists of three control files and a

variable number of user form definitions. The file formats are

described below:

. Module Name File (MNF) - Segment @

This file contains the name and type (stream Or format) of each

form in the directory. Entry length is five words and file length

is var iable (will accommodate any number of entries).

Entry Format:

Offset Definition

9-3 Form name (left adjusted, right padded)

4 Entry type (l=stream, 2=format)

. Module Information File (MIF) - Segment]

The MIF contains information related to each entry in_ the

directory. Each module information file entry has a correspond ing

module name file entry. ‘They are the same entry number, but,

because of the difference in entry sizes, they are not the same

offset into the two respective files. Entry length is 32 words and

file length is variable.

Entry Format:

Offset Definition

0-3 Device type (left adjusted, right padded)

4 Version #

5-9 Creation date/time

10-14 Modify date/time

15-19 Access date/time

20 Segment directory entry #

21-31 Reserved for future expansion

D - J] June 1977

APPENDIX D IDR3@48

- Terminal Configuration Block (TCB) - Segment 2

The TCB contains the terminal name for each FORMS terminal on the
the system. The file is a 64 by 4 matrix, allowing a 1-8 character
terminal name for each user on a 16, 32, or 64 user system. The
file is fixed length, 256 words.

File Format:

Offset Definition

9-3 user] terminal type

4-7 user 2 terminal type

8-11 user 3 terminal type

252-255 user 64 terminal type

Note: If the terminal type for a user is undefined, the first word
of the entry is @.

REV. 9 D - 2

SINSERT COMMAND 3-18

ADD COMMAND (FAP) 4-2

ADMINISTRATIVE PROCESSOR,
FORMS 2-1

ADMINISTRATIVE PROCESSOR,
FORMS 4-1

AIDS, PROGRAMMING 3-16

ALTERNATE INPUT FILE
(SINSERT) 3-18

APPLICATION PROGRAMMING WITH
FORMS 1-2

ATTRIBUTE MODIFICATION COMMANDS

(RUN TIME) 5-4

ATTRIBUTE PARAMETERS 3-14

BLINK PARAMETER 3-15

BUFFER POOL MANAGER 2-2

CLEAR COMMAND (RUN TIME) 5-4

COMMAND DESCRIPTIONS (RUN

TIME) 5-2

COMMANDS, FAP 4-1

CONVENTIONS , NAMING) 3-2

CREATE COMMAND (FAP) 4-1

DEFINE (DEF) STATEMENT 3-16

DEFINITION LANGUAGE, FORMS 2-1

DEFINITION, FORM 1-1

DESCRIPTOR/BLOCK DELIMITER

STATEMENTS 3-4

DEVICE DRIVER ERROR MESSAGE

GENERATION 7-7

DEVICE DRIVER SPECIFICATION 7-3

DEVICE DRIVER, INSTALLING 7-8

INDEX

DEVICE DRIVER, OFFLINE

PRINTER 7-9

DEVICE DRIVER, VISTAR/3 7-9

DEVICE DRIVERS,

PRIME-SUPPLIED 7-8

DEVICE DRIVERS,

USER-WRITTEN 7-2

DEVICE FORMAT DESCRIPIOR FIELD

STATEMENT 3-13

DEVICE I/O PROCESSING 5-1

DEVICE INPUT/OUTPUT SYSTEM 7-1

DEVICE MAPPING SCHEME 7-1

DEVICE STATEMENT 3-6

DIRECTORY FORMATS, FORMS
CONTROL D-1

DISPLAY (FREE) PARAMETER 32-15

EJECT STATEMENT 3-18

END DEVICE STATEMENT 3-6

END FORMAT STATEMENT 3-5

END REPEAT STATEMENT 3-17

END STREAM STATEMENT 3-4

END SUBSTREAM STATEMENT 3-5

ERROR HANDLING, RUN TIME 5-5

ERROR MESSAGE GENERATION, DEVICE

DRIVERS 7-7

ERROR MESSAGES, FAP 4-8

ERROR MESSAGES, FDL 3-20

FAP COMMANDS 4-1]

FAP ERROR MESSAGES 4-8

FAP, USING 4-8

INDEX

FDL ERROR MESSAGES 3-28 INPUT-OUTPUT SYSTEM 2-3

FDL TEMPORARY FILES 3-24 INPUT/OUTPUT SYSTEM, DEVICE 7-1

FDL, USING 3-19 INSTALLING DEVICE DRIVER 7-8

FIELD STATEMENT, DEVICE FORMAT INSTALLING FORMS 6-1]
DESCRIPIOR 3-13

INVOKE COMMAND (RUN TIME) 5-2
FIELD STATEMENT, STREAM
DESCRIPIOR 3-6 ITERATIVE FIELD GENERATION 3-16

FILE 1/0, RUN TIME SYSTEM 5-7 JOURNAL COMMAND (FAP) 4-6

FIX PARAMETER 3-11] JUSTIFY PARAMETER 3-9, 3-14

FORM DEFINITION SOURCE, LENGTH PARAMETER 3-8, 3-13
SAMPLE A-] |

LIST COMMAND (FAP) 4-5
FORM DEFINITION STRUCTURE 3-2

LISTING CONTROL STATEMENTS 3-18
FORM DEFINITION 1-1

NAMING CONVENTIONS 3-2
FORM DEFINITION, SAMPLE B-] :

NOBLINK PARAMETER 3-15
FORM NAME SPECIFICATION
(FAP) 4-4 NODISPLAY (HOLD) PARAMETER 3-15

FORMAT PARAMETER 3-4 NOFIX PARAMETER 3-]]

FORMAT STATEMENT 3-5 NOLIST STATEMENT 3-18

FORMS ADMINISTRATIVE NOPROTECT (ENABLE)
PROCESSOR 4-1] PARAMETER 3-14

FORMS ADMINISTRATIVE NORMAL VIDEO PARAMETER 3-15
PROCESSOR 2-1

OFFLINE PRINTER DEVICE
FORMS CONTROL DIRECTORY DRIVER 7-9
FORMATS D-]

OUTPUT PARAMETER 3-16
FORMS DEFINITION LANGUAGE J-]

POSITION PARAMETER 3-14
FORMS RUN TIME PACKAGE 5-1

PRIME-SUPPLIED DEVICE
FORTRAN PROGRAM, SAMPLE C-l DRIVERS 7-8

GENERATE COMMAND (FAP) 4-8 PROGRAMMING AIDS 3-16

INPUT PARAMETER 3-18 PROTECT PARAMETER 3-14

INPUT-OUTPUT PARAMETER 3-19 PURGE COMMAND (FAP) 4-3

INDEX

QUIT COMMAND (FAP) 4-6

RELATIVE POSITION
PARAMETER 3-17

RELEASE COMMAND (RUN TIME) 5-2

REPEAT STATEMENT 3-17

REPLACE COMMAND (FAP) 4-3

REVERSE VIDEO PARAMETER 3-15

RUN TIME ERROR HANDLING 5-5

RUN TIME PACKAGE, FORMS 2-1,
5-1

RUN TIME SYSTEM FILE I/O 5-7

SAMPLE FORTRAN PROGRAM C-]

SPECIFICATION, DEVICE
DRIVERS 7-3

START PARAMETER 3-12

STAT COMMAND (RUN TIME) 5-3

STREAM DESCRIPTOR FIELD

STATEMENT 3-6

STREAM STATEMENT 3-4

SUBSTREAM COMMAND (RUN
TIME) 5-3

SUBSTREAM STATEMENT 3-4

SYNTAX, GENERAL 3-1

TCB COMMAND (FAP) 4-6

TEMPORARY FILES, FDL 3-24

TERMINAL REQUIREMENTS 7-2

USER-WRITTEN DEVICE DRIVERS 7-2

‘VALIDATE PARAMETER 3-18)

VISTAR/3 DEVICE DRIVER 7-9

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	2-01
	2-02
	2-03
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	6-01
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	X-01
	X-02
	X-03

